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CHAP'fER I 

INTRODUCTION ANDS 

In 1963 Blackwell and Dubins [4] obtained a stochastic upper bound 

for the maximum of a martingale which is closed on the right. This bound 

depends only on the distribution of the last element of the martingale. 

Fifteen years later Dubins and Gilat [8] showed that this upper bound is in 

fact the least upper bound by constructing a specific continuous-parameter 

martingale for which the bound is attained. They further use their 

construction to deduce the equivalence between some of Doob's martingale 

inequalities and related maximal inequalities of Hardy and Littlewood, 

dating back to their fundamental paper [IO] of 1930. 

An additional example of a martingale whose maximum attains the Blackwell

Dubins upper bound, was provided by Azema and Yor in [I]. In contrast to 

the Dubins-Gilat extremal martingale whose paths are discontinuous, the 

Azema-Yor martingale is a (uniformly integrable) piece of Brownian Motion 

and has therefore continuous paths. The Azema-Yor construction is a by

product of their work on the Skorokhod embedding problem. 

The original Skorokhod problem is to find a stopping time with finite mean 

for Brownian Motion (started at zero), that embeds a given distribution, 

which means that the distribution of Brownian Motion at that stopping time 

is equal to the given distribution. For such a stopping time to exist, the 

given distribution must have mean O and finite variance. Various 

constructions of stopping times solving the problem were given by Skorokhod 

[18], Dubins [7]~ Root [16], Rost [17], Chacon and Walsh [6] and Azema and 

Yor [l] .. 

Skorokhod's method uses external randomization, while the other methods 

don't. More important however is that Azema and Yor give an explicit 

description of their stopping time, whereas the others use a limit 

procedure to obtain their stopping times. Another important observation is 

that the requirement of a finite mean for the stopping time (implying a 
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finite variance for the given distribution) is superfluous. Dubins (1972) 

notes that for his construction of a ''natural't stopping time it is only 

essential that the given distribution has a mean O. That indeed is also the 

only requirement for the stopping times defined by Skorokhod. However, Doob 
-

(see Meyer [13]) showed that if one allows the stopping time to have an 

infinite mean, then there is a trivial way to embed any distribution, but 

then the stopping time it yields, will generally be ''too big'' .. The ref ore 

it becomes necessary to select a class of ''good'' stopping times. Monroe 

[ 14] explores the class of ''minimal'' stopping times, which he attributes to 

Doob. It consists of those stopping times, for which there is no essentially 

smaller stopping time that embeds the same distribution. Monroe proves that 

minimality of a stopping time together with Brownian Motion at that stopping 

time having mean O is equivalent to uniforn1 integrability of the stopped 

Brownian Motion. Now, that is precisely the class of stopping times which 

following Chacon [5] are called ''standard''. Those stopping times were 

studied by Baxter and Chacon (2] and Falkner [9] • Azema and Yor [1] also 

show that their embedding method works for all mean zero distributions and 

that it yields standard stopping times. Baxter and Chacon [2] consider 

stopping times for n-dimensional Brownian Motion. Their work was extended 

by Falkner [9] who explicitly uses standard stopping times. His definition 

of standardness, being tailored for then-dimensional case is somewhat 

different from the one given above> but in the one-dimensional case they 

coincide. In three and n1ore dimensions ''standard'' coincides wi tl1 ''minimal 1', 

but, as Falkner remarks, in these cases all stopping times are standard. 

Embedding can be used as a tool to transform certain Brownian Motion 

results into martingale results and vice versa. In this work some of those 

results are further investigated, often by the use of specially chosen 

stopping times. The Dubins-Gilat martingale will be obtained as a 

transformation of the Azema-Yor one. The Blackwell-Dubins upper bound will 

be derived directly for standardly stopped Brownian Motion. A similar upper 

bound is obtained for the maximum of the norm of standardly stopped d

dimensional Brownian Motion (d = I ,2, .•. ). In order to show it is a least 

upper bound we define Azema-Yor type stopping times for which the bound is 

attained. Such a stopping time depends on a certain characteristic of the 

distribution to be embedded. To show that the ones we define, indeed embed 

the desired distribution we prove a continuity theorem for tl1e 

characteristics involved. This also yields an alternative way to prove that 



the Azema-Yor construction works. Further these stopping times are shown 

to be essentially the only ones for which the corresponding Blackwell

Dubins upper bound is attained. This uniqueness property is used to prove 

a result concerning ultimateness of stopping times. 
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The characteristic of a distribution involved in an Azema-Yor type stopping 

time depends on a specific function. For the original Azema-Yor stopping 

time it is the identity. In the last chapter we investigate uniqueness of 

the characteristic for a function of bounded variation. 

For the concepts and terminology concerning Brownian Motion, stopping times 

and potential theory, used in this thesis, we refer to the book by Port and 

Stone ''Brownian Motion and Classical Potential Theory'' [ 15 J. 



CHAPTER Il. 

CONTINUITY THEOREMS 

For a function f and a random variable X for wl1ich Ef(X) is well

defined, the f-characteristic of X, gX, is defined by 

(1) 
E ( f (X) I X ;::: x) 

f (x) 

if P(X ~ x) > 0, 

otherwise. 

Then gX is well-defined, though it may have either-«> or +oo as one of its 

values. Note that gX depends only on the distribution of X. Further note 

that gX is left-continuous on {x: P(X ~ x) > O}. In this chapter we 

consider the £-characteristic for some special choices off. First we 

derive an inversion formula and then some continuity theorems, asserting 

weak convergence of random variables, assuming mainly convergence of their 

£-characteristics. Finally we prove a converse of one of the theorems. 

The functions f considered are given by 

X x Em., ford== 0, 

X X > 0, for d - I , (2) -
fd(x) -. --• 

log 0, for d 2, X X > ---
2- d 

> o, for d 3,4, .... , -x X ---

where fd(O) = -oo ford~ 2. 

Of course if d ~ I only random variables X ~ 0 have a well-defined fd

characteristic. 

Further easily verified observations for fd-characteristics g = gx are: 

5 
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(i) g < co if and only if d ~ 3:, or d = 2 and E log X < 00 , or d :;;; I and 

EX < 00 , 

(ii) g is non-decreasing and left-continuous, 

if g is discontinuous at x, then P(X = x) > 0, (iii) 

(iv) if g(x) < oo and P(X = x) > 0, then either g is discontinuous at x, 

or x = es sup X for d = I, and 

x £ { 0 , es sup X} for d ~ 2 , 

(v) g has at most countably many discontinuities. 

Notational conventions 

For any function h put in case the right-hand side exists 

h(x-) := lim h{y) 
ytx 

and h(x+) := lim h(y) 
y+x 

Now let h be left-continuous and have right-hand limits, Define 

t h(x) = h(x+) - h(x), 

and let he denote the continuous part of h. 

With f some other function define (formally) for any Borel set B cIR 

(3) G(h,B) := TI 
XEB 

h{x) - f(x) \ 
\ h(x+) - f(x)) 

where the convention is made, that for x < y 

• 

G(h,[x,y)} = 0, 

whenever h = f on [x, 00 ) and f(x) ~ f(y). 

exp -

The dependence on f is suppressed in the notation, because where it is 

used f will be fixed. 
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Inversion theorem 

THEOREM 1 (Inversion Theorem). Take f = fd (as defined in (2)) and let X 

be a ra:ndom variable hav1:ng fd-cha:pacteristic g < 00., then 

(4) P(X ~ x) = 

G(g, (-CX),x)) 

G (g, [ 0, x)) 

P(X > O) G (g, (O,x)) 

x r::: IR, for d = 0 , 

x > 0, ford= l, 

x > 0, ford~ 2. 

For the cased= 0 the result of Theorem 1 is already known and can be 

found in Azema and Yor [l]. 

□ 

The proof of the theorem is preceeded by a le1111i1a, in which a partial 

inversion formula is proved, that holds for functions f of a more general 

form than fd. In the proof of the lemma we use two assertions, which are 

slightly generalized left-continuous versions of two lemmas in Liptser and 

Shiryayev [II, lemma 18.7 and 18.8, p. 253,255] and are proved analogously. 

Therefore the proofs are remitted to the appendix. 

The first is a forrnula of integration by parts for Lebesgue-Stiel tj es 

integrals. 

For left-continuous functions g and h of bounded variation 

(5) g(t)h(t) = g(s)h(s) + f g(x) d h(x) + 
[s,t) 

The second concerns an integral equation. 

J h ( x+) d g ( x) • 
[s, t) 

Let g(t), t ~ t 0 E IR, be a left-continuous function of bounded variation 

and let v(t) denote the total variation of g over the interval [t0 ,t). 

t 2: be a measurable function with 

J I a
8 

f d v (s) < 00 

[t
0
,t) 

fort< oo. 

Then the equation 

(6) 

has a unique locally bounded solution, which has limits to the right and 

can be defined by 



II 
t: s;s<t 

0 

t 
C 

a d g (s). 
s 

( ~a i-va tued) 
variable X with 

on the 
, , .. " ... , .. ,,, . ,. . = assume., a 

JW-. ""'J,• , , '/4),; _, I-• 1,.,,~ f • + - £ (x) I > o .. 

f(X ·~ x). P(X ~ a)G (g,[a,x)). 

f'fU)()f.. For all x t [a, b] we have 

P(X. 2: x)g(x) = J f(s)dF(s), 
[x,oo) 

w:h~re r, is the distribution function of X. By (5) 

P(X ?: x)g(x) = 

P(X ~ a)g(a) + J P(X ~ s) d g(s) + 
[a,x) 

f g (s+) d P (X ~ s). 
[a,x) 

Combining triose two equalities we get 

f f(s) d P(X ;?; s) = f P(X ~ s) d g(s) + 
[a,x) (a,.x) 

J d P(X 2: s) = 
[a, x) 

J g (s+) d P (X ~ s), 
[a,x) 

f P(X 
[a,x) 

-1 
~ s) g(s+) - f(s) dg(s), 

vhich is equation (6). As £ is of bounded variation on [a,b], so is g, 

vtiicl:, is easily checked by writing f on [a,b] as the difference of two 

mot1t,tc>1le functions. As all the necessary conditions are satisfied, the 

10lution of the last equation is given by (7), i.e. 
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P(X 2 x) = 

P(X ~ a) 
a$ S < X 

1 -
g(s+) - g(s) 
g(s+) - f(s) 

exp -
a 

--

P (X 2 a) IT (g(s) - f(s) 
\g(s+) - f(s) exp -

x d gc(s) 
J g(s) - f(s) · D 

a$ S < X a 

PROOF of THEOREM l. Note that for x < es sup X with x ~ 0 ford= l and 

x > 0 ford~ 2 

g (x) = E ( f (X) - f (x) I X ~ x) + f (x) > f (x), 

whence, using the continuity off and property (ii) of g, 

inf (g - f) > 0 
[a,x] 

for any a:; x with a~ 0 ford= I and a> 0 ford~ 2. We can therefore 

apply Lemma I. Letting a ➔ - 00 ford= 0, a= 0 ford= I and a+ 0 for 

d ~ 2 we get the inversion forrnula (4) for x < es sup X. By left-continuity 

(4) then also holds for x = es sup X. For x > es sup X both sides of (4) 

equal zero. 

Continuity theorems 

Consider the following situation: take fd as defined in (2). Let 

X, x 1, x2 , .•• be (real-valued) random variables which all have a well

defined fd-characteristic, ·denoted respectively by g, g 1, g2 , ... 

Assume g < oo. 

Then we have the following theorems. 

□ 
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• • 

2 If g ( x) + g (x) -r:-or all x < es sup X that ~e eonti,nui- ty-THEORE'M: a. n J • 

po-ints of g and if" tfzere is an a < es sup X with a > 0 if d 2::: 1 such that 

P(X ~a)+ P(X ~ a) and g (a)+ g(a), 
n n 

then 

D X -+ X. 
n 

TiiE,OREM 2b. Take d = 

in ( -oo, es sup X) and 

0. If g (x) + g(x) far all 
n 

lim inf E X > -«>, then 
n 

eontinuity-points x of g 

□ 

X !?. X. 0 
n 

THEOREM 2c. Take d ~ I. If g (x) + g (x) for all continuity-points x of g 
n 

in (0,essup X) and g (0) + g(O} > --oo, then 
n 

D 
X ➔ X. 0 

n 

THEOREM 2d. Take d ~ 2. Let the fol Zowing hold: 

(i) g (x) + g(x) for all continuity-points x of g in [O,es sup X). 
n 

(i~) There is a random variabte x0 t O with fd-charaoteristie g 0 and an 

a> 0 such that for all n (large enough) 

for all x E (O,a]. 

Then 

D 
X IX > 0 +XI X > 0, n n 

i.e. P(Xn ~ x I Xn > 0) + P(X 2 x IX> O) for all x at which 

P (X ~ x I X > O) is continuous. 

The proofs of these theorems are preceeded by a string of lemmas. Lemma 4 

is the most crucial one. It contains a kind of conditional continuity 

result. 

□ 



LEMMA 2. Asswne f is a function of bounded variatio1i and g is a non

decreasing left-continuous function, both on a given intePVal I. Put 

C := sup g(x+) - f(x) and c := inf g(x) - f(x). 
xEI x~I 

If c > 0, then for any Borei-set B contained in I 

(9) Li(g,B) < exp - _ 
C 

exp -

exp -
d g(x) 

B 

where Ll(g,B) = J d g(x). 
B 

PROOF. For O $a< l 

-log ( I - a) = r: 
n=l 

with which 

f d g (x) < 
B g(x) - f(x) -

s exp -

n 
a. < 

6(g,B) 
C 

n - I - Ct , 

, 

G(g,B) s 

d g(x) 
---:---=---__.;.......-'-'.-- + I: 6g(x) < 

g(x+) - f(x) -
B B g(x) - f(x) XEB 

B 

d g c (x) --=--__,__,.;___ - L 
XEB 

log - -il-=-g ___ ( x ___ ) ___,...._ \ _ 
g(x+) - f(x)} - -log G(g,B) s 

1 ---=--...;,_.;,___ + L 
B g(x) - f(x) x~B 

flg (X) X 

g(x+) - f(x) 1 - 6 g ( x) / ( g ( x+) - f ( x) ) 

f d g(x) 
B g(x) - f(x) · 

That implies that the second and the third inequality of (9) hold. The 

first and the last are evident from the definition of c and C. 

Note that Lemma 2 also holds in case g 

c = sup g(x) - f(x) < 0 and C = inf 
XEI XEI 

. ,. . 
is non-increasing, 

g(x+) - f(x). 

1 1 

--

□ 
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LE:MM.A 3. Let g, f, g , f , n E lN, be real-valued funetions on the in·tervaZ 
n n 

[a, b J c IR, a < b. Assume g., g , n Em, to be left-eontinuous and nonn 
increasing. Denote the set of diseontinuity-points of g by D. 

If 

f is continuous on D, 

inf (g - f) > 0~ 
[a, b] 

g + g pointwise on ([a,b] \ D) u {a}, 
n 

f n f uniformly on [a,b], 

then there is an N E lN such tJiat 

inf 
n,k~ N 

inf (g - fk) > O. 
[a,b] n 

PROOF. Put c := inf (g - f). Define D' c D by 
[a,b] 

D' := {d : Ag(d) > ~}. 

As D' contains only a finite number of points and f is continuous at these 

points, there is a 8 > 0 such that for all d ED' 

x,y E [d - o,d + o] implies lf(x) - f(y)I < ~. 

Choose points e0 , e 1, e 2, ... in ([a,b] \ D) u {a} as follows 

e 0 := a, and having chosen e0 , ... ,ei, then 

- if there is ad ED' withe. E [d - 8,d], choose e. 
1 

E [d,d + o], 
l. i+ 

(which set is not empty, as d <bi D,) 

- if there is ad ED' withe. < d - o and g(d) - g(e.) < c then take 
l. l. 8' 

e. I E [d - 6,d], 
1+ 

- otherwise we can and will choose ei+l such that 

and 

or e. 1 
l. + 

= b. 



As g(b) - g(a) < 00 and D' contains only a finite number of points, there 

is an m E IN such that 

< " • • < e = e 
m m+l • • • = b. 

By that and the uniforn1 

such that n ~ N implies 

convergence of (f) to f 
n we can find an N E lN 

lg (e.) - g(e .. )1 < n 1.. l.. 

C 

8 ' i = 0,1, ... ,m, 

and 

for all x E [a,b]. 

Now for all x E [a,b] there is an i 5 m with 

If there 

e. ~ x ~ e. 
1

• 
1. l. + 

is ad ED' withe. ~ d ~ e. 1 , then for n,k ~ N 
l. i+ 

( f ( ) ( ) f ( ) ( ) C - f (x) - C gn x) - k x ~ gn ei - k x ~ g ei - 8 8 

~ g(e.) 
l. 

C 
>-- 2 • 

3c 
- f(e.) - -

l. 8 

If there is no such d, then for n,k ~ N 

~ g(x) -

> C • 
- 2 

C - C - f(x) 
4 4 

13 

□ 
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LEMMA 4. Let f be a continuous (reaZ-vaZ.ued) function of bounded variation 

mt tiie interval [a,b] .. Assume g.., gn, n e: lN, are (real-valued) left

aontinuous, non-decreasing functions on [a,b] with 

and 

inf (g - f) > 0, 
[a,b] 

lim g (x) = g(x) 
n 

for x = a and for all eontinuity-points x of g. 

Then for G, the functional corres;Jonding with f according to (3): 

lim 
n-+oo 

= G(g, [a,b)). 

PROOF. By Lemma 3 there is a c > 0 such that for all n large enough 

inf (g - f) ~ c. We ass11m~ that to hold for all n, which can be done 
[a, b] n 

without loss of generality. Further we take c so small, that 

inf (g - f) ~ c as well. 
[a,b] 

d • For h = g, g 1, g2 , ..• the discontinuous 
C 

part, h, and the continuous part, 

h, of hare defined by 

d h (x) := x E [a,b]. 
a~ y < X 

Note that h(x) = 
C d h (x) + h (x). 

:hoose € E (0,1). Let D denote the set of discontinuity-points of g. We 
•• 
:1 rs t assume that 

.et a = d < 
I 

Dis not empty. 

•·· < dk be a finite subset of Du {a} such that 

r 6g(d) ~ £c. 
de D\ {d 1 , •.. ,dk} 

, L 6g(d) < g(b) - g(a) < 00 ~ we can certainly find such a set. 
dE D 

h Leuuna 2 it follows that 



( l 0) G ( g , D \ { d l , • • • , dk} ) = 

~ exp - €. 

Choose a> 0 such that 

g(a + o) - g(a+) 
E:C 

< -- k , 

IT 
dE 

~g(d) 
g(d+) -

g(d. + 8) - g(d. - o) - ~g(d.) 
1 1 l. 

£c 
< - k , . 2 i = , .•• ,k, 

( l I ) G(g, ((a,a + o) 
k 

u u 
i=2 

[ d. - o, d. + o)) \ D) 2 exp - £, 
l. l. 

Var(f,a,a + o) 
E:c 

< 
- k ' 

Var(f,d. - 6,d. + 6) 
l. l. 

E:c 
< - k , . 2 1 = , ..• ,k, 

where Var(f,x,y) denotes the total variation off over [x,y], 

a + o i D, 

d. - a, d. + o i D, 
l. 1 

. 2 k 1.= , ••• ,. 

Now there is an N E IN such that n ~ N implies 

for all XE {a,a + o,b} u {d. -
1. 

8, d. 
J. 

+ c5 : i = 2, ... ,k}. 

f(d) 

We want to show G(g ,[d. - o,d. 
n I. i 

+ o)) is close to G(g,{d.}) 
1 

for n large 

enough. 

For all d E {d 1 , ..• ,dk} and n ~ N do the following, where d - c5 must be 

read as d, if d = d
1 

= a. 

Choose discontinuity-points p 1 
(if there are any,) such that 

< P2 < • • • < p of g in (d - o ,d + o) , 
m n 

E ~g (x) 
x E ( d - o, d + o) \ { p 

1 
, ... , pm} n 

Ee < - k , 

15 
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then, using Ler,r11 1a 2, 

£ 
R :~ ~ exp- k • 

Put: p O : = d - o 
Then 

and p l = d + o. 
m+ 

G(g ,[d - o,d + o)) = 
n 

m 
R IT 

i::0 
exp -

p. 
]. 

C 
d g (x) 

n 
g (x) - f(x) 

n 

For i = 0, ... ,m define 

m 
Note that I: 

i=O 
Now 

v. := Var(f,p. ,p. 1). 
1 1 1+ 

Pi+l 
exp - f 

C 
d g (x) 

n 
g (x) - f(x) 

n 
--

d g c (x) 
n 

p. 
1. 

C d 
g (x) + g (x) - f(p.) 
n n 1 

C 
d g (x) 

n 

6g (p.) 
n 1. 

1 - ---------.,-
g (p.+) - f(p.) 

n 1. l. 

+ f(p.) - f(x) 
]. 

+ v. 
l. 

--

gn(pi+l) - f(pi) + vi 
exp -log --c-----d~--=----=-----

gn (pi)+ gn (pi+l) - f(pi) 

< -

C d 
gn (pi)+ gn (pi+l) - f(pi) 

whence 

+ v. 
]. 

, 

+ V. 
l. 

• 



Conclusion: 

( l 2) 

Also 

m 
TI 

i=O 

8 (d - a) - t(d - o) 
n 

1 x -g__,,..( d-=---+-· ...,.oi:-:"'")--·-t~< a-+-· -i~) 
n 

2s 
exp k 

Ee 
g(d - o) - f (d - o) + k 
g (d + 8) - f(d + o) 

n 

2Ec 
g(d) - f(d) + k 
g (d + o) - f(d + 6) 

n 

2s 
exp k 

g(d) - f(d) ( 2s 

--

< -

C -~~...;...,----=---=------- 1 + -
g (d + o) - f(d + o) \ k 

n g(d) - f(d) 
2£ 

exp k 

f(d + g(d) - f(d) 
g(d+) - f(d) 

- f(d) - g (d + 6) + 
n 

~.l +---~-~-----------) , g Cd+ o) - f(d + o) 
n 

g(d) - f(d) 
g(d+) - f(d) 

g(d) - f(d) 
g(d+) - f(d) 

1 + 

exp 

g(d + o) - g (d + o) 
n· 

g (d + o) - f(d + 8) 
n 

6£ 
k . 

C 
d g (x) 

n 

exp -
p. 

l. 

g (x) - f(x) 
n 

C g (x) 
n 

C 
d g (x) 

n 
d + g (p.+) 

n l. 

£ 
+ k exp 

for n ~ N. 

--
- v. 

l. 

1 7 

--

exp 
4£ 
k :5 
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whence 

n i+I n 1. 

G(g ,[d - o,d + o)) ~ 
n 

m g (p. +) - f (p. 
1
) - v. 

i=O gn(pi+l) - f Pi+l 

g (d - o) 
n 

- f(d - o) 

g (d + o) 
n 

- f(d + o) 

g (d - o) - f(d - o) 
n 

8 (d + o) - £Cd+ o) n 

Ee Ee 
g ( ~,, .. - . o _) . - ~ - f ( d_). - ~ 

£c £C 
g(d + o) + k - f(d) + k 

3£c 
g(d) - f(d) - k 

(I -

> -
- v. 

l. 

g (p. ) - f (pl..) n i 

f(pi+l) - f(p.) + v. 

\ g (p.+) 
i=O n i 1. 

£ > exp - k -

( ) - f{d) + 3e::c 
(1 - exp - £ > 

k -
g d+ k 

g(d+) - f(d) k (1 -

g(d+) - f (d) k • 

In the last but one equation we thrice use 

for y > 0 and x,y ~ z 2 O. 

Conclusion: 

exp -

X - Z --2 
y + z 

Now consider for i = 1, .•. ,k with ~+I - o = b 

• 

X (1 - z) (1 -
y X 



G (g , [ d . + o , d . l - o) \ D) • 
1. l. + 

Note that for the case Dis empty the proof starts here with k = I and 

o = o. 
Let di+ o = e 0 < e 1 < ••• < eM = di+l - o be a partition of 

[di+ o,di+l - o] with e 0 , ... ,eM t D \ {a} such that 

C C 

( e:) exp - k 
M 

exp - I: 
i=l 

g (e.) - g (e. 
1

) 
l. 1.-

sup (g - f) 
< -

exp -

( E) exp k 

Ee 

M 
exp - l: 

i::I 

[e. 
1
,e.] 

1.- l. 

\ D) s; 

C C 
g (e.) - g (e. 

1
) 

1. i-

inf (g - £) • 

[e. 
1
,e.] 

1.- l.. 

(O,Mk), then there is a 6 
n 

> 0 such that for all d ED with 

Var (f ,d - 6 ,d + o ) s; n, 
n n 

For i = l, ••• ,M select a set {q. 
J 

points of gin the following way 

and for j ~ 1, 

e. 1 , 1.-

E [e. 
1
,e.] 

1..- l. 
• • cont1.nu1.ty-

if ( ) g qj-1 ~ g(e.) - n, then q. 
1 J 

:= e. and the procedure stops, otherwise, 
l. 

if possible, take q. such that 
J 

otherwise there is ad with 6g(d) > n 
- 2 such that 

g(d) - Tl < 
2 - s; g(d+) - n, 

19 
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and then if q. 
1 

~ d - o take q. E (d,d + 6 ], otherwise take 
J- n J n 

q. ( [ d - o ,.d). 
J n • 

As g(e.) - g(e. 
1

) < +00 , we get only finitely many points qJ .• 
1 i-

clear, that I= {0,1, ..• ,m} for an m EJN and ei-l = q0 < q 1 < 

Further it is 

••• < q = e •• 
m 1 

Now let N. t IN be such that n ~ N. implies 
l. l. 

lg (q.) - g(q.)I < n, 
n J J 

. 0 J = , .•. ,m. 

By the way of choosing 0
11

, q0 , .•. , 4m we get for n ~ Ni 

sup (g - f) s 2n + 
n 

[e. 1,e.] 
1- l. 

sup (g - f) 
[e. 

1
,e.] 

1.- 1 

and 

inf (g - f) ~ -2n + 
[e. l,e.] n 

l. - l. 

inf (g - f). 
[e. 

1
,e.] 

1.- 1 

Using Le11@a 2 in the first inequality we get for n ~ max N. 

M 
TI G (g , [ e . 

1 
, e . ) ) !'. 

n i- l. 
i==l 

exp -
M g (e.) - g (e. 1) 
I: n 1 n 1-

sup (g - f) 
[e. 1,e.) n 

1.- l. 

g (e.) 
n 1 

- g (e. l) n 1-
exp - sup (g - f) 

[e. 1,e.J 
1- l. 

exp -

exp -
M gC(e.) - gC(e. ) 
L 1 1-l 

i=l 211 + sup (g -
[e. 

1
,e.] 

1.- 1 

f) exp 

exp -
M gC(e.) - gC(e. ) 
L 1 i-1 

i=l sup (g - f) 
[e. 

1
,e.] 

1- l. 

exp 

• I i 
i= , •• ,M 

C 

2T)M 
exp 

C 



2£ 
Mkc 

Conlusion: for all n large enough 

(14) 

G(g,[d. + o,d. l - a) 
l. l. + 

£ 
\ D) exp k 

for i == I , .... , k. 

On the other hand 

M 
II 

i=l 
G (g , [ e. 

1 
, e. ) ) ~ 

n i- 1. 

exp -
• 

exp -

exp -

M 
:r: 

i=l 

g (e.) - g (e. 1) 
n 1. n 1.-

inf (g - f) 
n [e. 

1
,e.) 

1.- 1. 

g (e.) 
n i. 

- g (e. l) n i-

> -

M 
:r: -2n + i=l 

inf (g - f) 
[e. 

1
,e.] 

M 
:r: 

i=l 

g(e.) 
l. 

-2n + 

g(e.) 
l. 

i- l. 

- g (e. 1) + 2n 
1-

inf (g - f) 
[e. 

1
,e.] 

1.- l. 

21 

• 

C C 
g (di+l - 6) - g (di+ 8) 

3 + ------------
c 

, 

> -

> -

2nM 
exp -

M 
:r: 

-2ri + i=l 
inf (g - f) exp - C - 2n 

exp -
M 
:r: 

M 
exp - :r: 

i=l 

[e. 
1
,e.] 

1- l. 

inf (g - f) 
[e. 

1
,e.] 

1.- l. 

exp -

d d 
g (eM) - g (e

0
) + 2nM 
. ---·- --·- - > 

C - 2n -

X 

+ 2nM 

C - 2n 
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C d 
- g (eo)) + g (8M) -

Conclusion: 

(15) 

exp 
\ k C - 2n 

G(g,[e0 ,eM] \ D) x 

e: 
exp - -

k 

C C 
2£(g (~) - g (eo) 

k(l - 2£) 

G(g ,[d. + o,d. I - o)) ~ n i. i+ 

G(g,[d. + c,d. 
1 

- a) , n) x 
l. i+ 

C C 

exp\ k k(l - 2£) 

+ 1) 

d 
- o) - g (di+ o) \ 

-----c~(l---2£~)~---} ' 

for i = 1, .•• ,k. 

As 

k 

-

+ 1 

d 

c( 1 

-

C C 
E g (d. I - 8) - g (d. + 6) s 

l. + l. 
g(b) - g(a) < oo, 

i=I 

- 2e:) 

k d 
E g (di+l 

i=I 
- o) - L ~g(d) 

dE D\ {d 1 , ••• ,<\_} 

and £ was arbitrary, 

> -

• 

the proof finishes by combining (10), (11), (12), (13), (14) and (15). D 

Lemma 5. Let f and g be non-decreasing real-valued funtions on [a,b]~ 

f continuous and g teft-eontinuous. Assume inf (g - f) = c ~ 0, 

then 

G(g,[a,b)) ~ g(a) - f(a) 
g(b) - f(a) • 

[a,b] 

PROOF. First assume c > 0. Choose E > 0. As g(b) - g(a) < +oo, we can find 

finitely many discontinuity-points of gin (a,b) such that the sum of the 



jumps in the other discontinuity-points of gin (a,b) is smaller than £c. 

Let a 1 < a 2 < ••• < an be such points. Put a 0 := a and an+l := b. 

For all d < e in [a,b] we have 

g(d) - f(d) 
g(d+) - f(d) exp - < -

d 

g(d) - f(d) 
g(d+) - f(d) exp -

e d gc(x) J-~__:_...:,_ ___ _ 
d g(e) - gc(e) + gc(x) 

g(d) - f(d) 
g(d+) - f(d) 

g(e) C - 6(g ,(d,e)) - f(d) _ 

g(d) - f(d) -------· g(e) - f(d) 

g(d) - f(d) 
g(e) - f(d) 

It follows that 

G(g, [a, b)) = 
n 
TI 

i=O 

1 + 

exp 

g(e) - f(d) 

d 
~(g ,(d,e)) 
g(d+) - f(d) 

d 
1-1(g ,(d,e)) 

• 
C 

< -

n g(a.) - f(a.) 

i=O g(ai+l) i 

By induction we shall prove 

< ' . 

n 
TI 

i=O 

g(ao) - f(ao) 

g(an+l) - f(ao) , 

which completes the proof for c > 0. 

-

- f(d) 
--

For n = 0 the assertion is trivial. Assume it holds for n = m - l, then 

m 
TI 

i=O 

g(a.) - f(a.) 
]. l. < 

g(a. 1) - f(a.) 
i+ ]. 

-

23 
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g(a) 
m 

g(ao) - f(ao) 

g(am+l) - f(ao) 

g(a) -
m 

f (a ) 
m 

- f(a) 
m 

g(am+l) - f(ao) 

g(am) - f(ao) 

--

g(a) - f(a) 
m m 

g(a 1) - f(a) • m+ m 

• So it suffices to prove,that the product of the last two factors is 

smaller of equal to 1, or equivalently 

or 

- f(a )) :s; 
m 

(g(a 1) - f(a ))(g(a) - f(a0)), m+ m m 

-g(a 1)f(a
0

) - g(a )f(a ). 
m+ m m 

The last inequality follows from 

- g(a ))(f(a) -.f(a0 )). 
m m 

If c = 0 then ford> 0 

G(g,[a,b)) :s; 

g(a) + d - f(a) 
g(b) + d - f(a) ' 

where the last inequality follows from the first part of the proof. Letting 

d go to zero settles the result for c = 0. 0 

Note that Lemma 5 holds with equality, if g(x) = g(b) for all x in (a,b). 
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LEMMA 6. Let f and g be non-decreasing Peal-valued functions on [a,b], 
' 

f con~inuous and g left-continuous, with g(x) - f(x) > O for ali x ~ [a,b). 

Then for all x € [a,b) 

G(g,[a,x]) > g(a) - f(x) 
- g ( x+) - f ( X) • 

PROOF. Choose x E [a,b). If f(x) ~ g(a), then there is nothing to prove. 

So ass,1me f(x) < g(a). Choose EE (0,1). Select a finite number of points 

s 0 = a < s 1 < ••• < sn = x such that the s,iro of the jumps of g in the 

remaining discontinuity-points is smaller than c(g(a) - f(x)), then 

whence 

II 
SE [a,x]\ {s 0 , ... ,sn} 

~g (_s.), \ 
g(s+) - f(s)} > l - £ 

G(g,[a,x]) > 

n g(s.) - f(s.) 
1. l. 

( 1 - s) IT 
i=O 

----,,----~~ exp -g(s.+) - f(s.) 
x d gc(s) 
J g(s) - f (s) 

n 
(1 - s) IT 

i=O 

l. 1. 

g(s.) - f(x) 
]_ 

g(s.+) - f(x) 
]_ 

n s. 
"'('"' f1. exp - "-

a 

X 

, 

i= 1 s. l 
1.-

C C 
g (s) - g (si-1) + g(s. 

1
+) - f(x) 

1-

n 
(1 - e:) IT 

i=O 

g(s.) - f(x) 
1. 

g(s.+) - f(x) 
]_ 

X 

n 
IT 

i=l 

(1 - E) 

g(s. 
1
+) - f(x) 

1.-

g(so) - f(x) 

g(s +) - f(x) · 
n 

> -
- f(x) 

As s
0 

= a and sn = x, the result follows by letting£ go to zero. 

--

□ 

Note that we have equality in Lemma 6, if g(s) = g(a) for alls in [a,x]. 
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LEMMA 7. Let£, g and h be non-decreasing real-valued functions on [a,b], 

f continuous and g and h left-continuous with f < g ~hon [a,b). 

Then for aZZ x in [a,b) 

G(h,[a,x]) ~ G(g,[a,x)) 
g(x) - f(x) 
h(x+) - f(x) • 

PROOF. Choose x e [a,b). Let 5:m be a sequence, whose elements consist of 

the set {s : s E {a} u ([a,x] n (Q) and g(s) < h(s)}, then sm · is dense in 

{s: s ~ [a,x] and g(s) < h(s)}. 

Define the functions b0 , h 1, ••• by 

and 

where 

h 
n 

·.-
h 

1 
on [a,t] and (s ,b], 

n- n n 

g(s) on (t ,s ], 
n n n 

< g(s )}, 
n 

and sup 0 = -oo, [a, 00 ] = 0. 
Then by Lemma 6 

• 

n c: lN. 

Further (hn) converges pointwise to h' defined by 

h ' ·-.-

So, using Le1111nA. 4, 

hon (x,b], 

g on [a,x]. 

G(h,[a,x]) 2 

G(h',[a,x]) = G(g,[a,x)) g(x) - f(x) 
h ( x·+) - t' ( x) • □ 



The more general lemmas are now covered. Before we prove the theorems, we 

give two more le1ru:l1as, which consider only f = fd as defined in (2) and 

functions g that are the f-characteristics of random variables. 

LEMMA 8. Take d ~ 2 and f = f d. Let X be a random variab Z.e that is not 

identically zero and whose f-a"haracteristic g is well-defined and not 
identically +00, then 

lim 
s.J-0 

g(s) -
f(s) - O. 

PROOF. If g(O+) > --oo, then the lemma follows directly from f(O+) = 00 • 

If g (O+) = - 00 , then evidently lim inf g(s) /f (s) ~ 0. Therefore it is left 
s + 0 

to prove limsup g(s)/f(s) < o. -

Choose 

and so 

s -t 0 
a E (0,1). Note that for 0 < s < -
0 s f(x)/f(s) < 1 • Now -

limsup g(s)/f(s) = 
s + 0 

1 .. 1 E i.m sup _P_(_X_~_s_) 
s + 0 

1 . 1 
im sup _P_(_X_~_s_) 
s + 0 

P (O < X < a) 
P(X > O) • 

f(X) 
f(s) 

P(X ~ a)g(a) 
f (s) 

X ~ a, we have O < -f(x) ~ -f(s) 

+ P(s::;; X < a) --

27 

Let a go to zero to get the desired result. D 

Let X, X, n E IN, be random variables with 
n 

characteristic, denoted respectively by g, 

following ler111i1a. 

a well-defined fd

g , n E IN. Then we 
n 

have tl1e 
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L 9. Assume m := es sup X < +00 and if d ~ 2, m > O, then both 

and 

g (m)-+ g(m), 
n 

g (x) -+ g(x) for aZZ aontinuity-points of g in an interval 
n 

irrrply 

(m - a,m) with a> 0 

P(X ~ b) + 0 for aZZ b > m. 
n 

• 

PROOF. Choose b > m and E > O. Choose o E (O,a) such that m - o 
£ 

continuity-point of g and f(m) - f(m - o) < 2 (f(b) - f(m)). 

Let N be such that n ~ N implies 

• 
l.S a 

where x is either m or m - o. Note that g·(x) :s; f (m), and therefore 

g (x) - f(x) 5 E(f(b) - f(m)) 5 £(g (b) - f(x)). 
n n 

With Theorem l and Lemma 5 we get for n ~ N 

□ 

PROOF of THEOREM 2a. Let s < es sup X and if d ~ 2, s > 0 be a continuity

point of g. Put x = min(s,a) and y = max(s,a). Using Theorem I and Le1c11tia 4: 

whence 

P(X ~ s) + P(X ~ s). n 

• 

_ P(X ~ y) -
P(X ~ x) ' 



Ford ~ 1 now P(X ~ s) = 1 = P(X;:: s) for s :::; 0, and by Lerii1na 9 n 
P(X ~ s) + 0 = P(X :2: s) for s > es sup X. So it only remains to consider n 
s = es sup X. 

29 

If P(X = es sup X) > 0, the proof is ready. Otherwise select a sequence xlt-
4 

of continuity-points of g in (--oo, es sup X) converging to es sup X, ( that can 

be done, because g has at most countably many discontinuities,) then 

lim sup P (X 2:!: es sup X) ~ 
n 

n+ oo 

lim lim P(X ~ x) = n m 

P (X :2: es sup X) = 0. 

PROOF of THEOREM 2b. By Theorem 2a it is sufficient to prove 

P(X ~ a) + P(X 2:!: a) for a continuity-point a < es sup X of g. 
n 

As for s < a 

P(X ~a)= G(g ,(-oo,s))G(g ,[s,a)) 
n n n 

and 

P(X :2: a)= G(g,( 00 ,s))G(g,[s,a)), 

□ 

it is by Lemma 4 sufficient that for any£> 0 we can find a continuity

points of g such that 

for h = g and h 

Note that g (-oo) 

= g for all n large enough. 
n 

= E X and g ( -oo) = EX , n E IN, and 
n n 

00 < lim inf EX ~ lim inf g (x) = g(x) 
n n 

for all continuity-points x of g, and therefore 

00 < Jim inf EX ~ EX. 
n 
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Choose t: E (0, I). Put c 

g so small that 

:= liminf EX • Now choose a continuity-point s of 
n 

g(s) - EX s 1, 

and 

s S c - 1 - I (EX - c + 3). 

Let N E IN be such that n ~ N implies g (s) - g(s) n 
~ l and g (-00 ) ~ 

n 
Then for h = g, gN, gN+ 

1 
, • • • we have using Le111111a 2 

exp - f 
(-oo,s) 

d h(x) 
h(x) - x 

1 - f 
( oo, s) 

d h(x) 
h(x) - x 

l _ _h..::...( s...::.)_-_h_(:....· _00
) 

h( 00 ) - s 

1 -
g(s) + I - c + 1 

C - 1 - S 

EX - c + 3 
1 - ------

c - 1 
> -- s 

l - E. 

> -

PROOF of THEOREM 2c. For d = 1 put g (x) := g (0) = EX and 
n n n 

g(x) := g(O) = EX, x < 0, and the result follows from Theorem 2b. 

C - I. 

D 

Ford~ 2 we have lim f(x) = 00 • So for all E > 0 there is a continuity
x-tO 

points of g such that 

g(s) - g(O) ~ l and f(s) ~ g(O) - I - 3 . 

Also there is an N e: IN such that n ~ N implies 



g (s) ~ g(s) + 1 and g (O) ~ g(O) - 1. 
n n 

• • • using Le1ru11a 2 

1 im G ( h, [ 0 , t)) 
t+O 

exp - f 
[t,s) 

exp -
h(s) - f (O) 
h(O) - f(s) 

exp -
g(s) + 

g(O) 
l - _g_( 0) + 1 
- I - f(s) 

exp - e:. 

d h(x) 
h(x) - f(x) 

> -

Use Le,,,,,,a 4, Theorem 1 and 2a to get the desired result. 
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□ 

PROOF of THEOREM 2d. Note that because of convergence and left-continuity 

g ~ g
0 

on (0,a] too and therefore X t 0. Choose a continuity-point x of g 

in ( 0, es sup X). Choose £ E ( 0, 1). By Le1,1111a 8 we can and do select a 

continuity-points of gin (O,min(a,x)) such that 

lg(s)/f(s)I < £/8, lg0 (s)/f(s)I < s/4, and 

Choose N E IN such that for n ~ N 

E: 
I g ( s ) - g

0 
C s ) I < 8 If C s ) I , 

implying 

lg (s)/g(s)I < £/4. 
n 

Now for h = g, gN, gN+ 1 , ••• we get using Le1111na 7 
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( l - E/2) 

1 - E:. 

go(s) - f(s) 

h(s) - f(s) 

I - E/4 
I+ £/4 

With Le11aa1a 4 and Theoretr1 l it fol lows that 

P(X ~ x j X > 0) + P(X ~ x IX> 0). 
n n 

With Theorem 2a the result now follows. 

A converse of Theorem 2b 

tf(x) := - EIX - xi, X E lR, 

is well-defined. It is called the potential of X. 

THEOREM 3. Let X, x1, x2, .•• be Pandom variabies in L1 with potential 

and t
0
-characteristia denoted respeativety by u, u

1
, u

2
, ••• and 

g, g, g2, •••• Then the following four assertions are equivalent. 1 . 

(i) 

(ii) 

(iii) 

X ~ X and there is a c E IR such that U (c) + U(c). 
n ' n 

• • u + u po~nto.nse. 
n 

(iv) g (x) + g(x) for all continuity-points x of gin ( 00 ,essup X), n 
and lim inf EX ~ EX. 

n 

If the assertions hold, then also EX + EX .. 
n 

• The equivalence of (i), (ii) and (iii) is already known • 

□ 

D 

Before the proof of Theorem 3, we state a theorem that can be found in 

Billingsley [3, Theorem 5.4, p. 32] and almost j,mmediately settles the 

equivalence of (i) and (ii), and we make two other useful observations in 

• 
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a separate le1:1·,1na. 

THEOREM 4. 

then 

Suppose X, x1., x
2

, ••• are random variables in L 1 and Xn 
D 
+ X, 

X , n 
n e: IN, uniformly integ1"able implies EX -+ n 

EX, and (i) 

(ii) X, x1, x2, .•. non-negative and 

uniformly integrable. 

EX ➔ EX implies X , n 
n n 

L •~·~ 10. Assume Xis a random Va:Piable in L 1 with potential 

characteristic denoted respectively by U and g~ then 
y 

(i) U(y) - U(x) + y - x = 2 f P(X > z)d z, and 
X 

(ii) 2(g(x) - x)P(X ~ x) = EX - U(x) - x. 

PROOF. (i) follows easily from the following. 

-U(x) = EIX - xi= E(X -
+ -x) + E(X - x) 

oo X 

J P(X > z) d z + f P(X :S: z) d z • 
X --00 

Whence 

y y 

--

Elli, are 

and f -
0 

U(y) - U(x) = f P(X > z) d z -
X 

J ( 1 - P (X > z) ) d z = 
X 

y 
x - y + 2 J P (X > z) d z. 

X 

For x ~ es sup X both sides of (ii) equal zero. 

For x < es sup X 

2(g(x) - x)P(X ~ x) = 

2 E (X - x) + = 

+ -E(X - x) - E(X - x) - U(x) = 

EX - x - U(x). 

□ 

□ 
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PROOF of THEOREM 3. Theorem 4 applied to IX - cl, IX1 - cl, IX2 - cl, ••· 
• gives the equivalence of (i) with (ii) . 

• 
Part (i) of Lea1111a 1 o with y = c and a bounded convergence argt.1ment give 

that (i) implies (iii). 

ht( ... ) h ld and let x be a continuity-point of X. Ass,.nne t a 1.1.1 o s 

Take h > O. Using part (i) of Le1'1111,a IO we get 

lim sup P(Xn > x) ~ 

1 
lim sup h 

h 

I 
x-h 

P(X > z) d z = 
n 

- U (x - h) + h) = 

and 

n 

1 (u(x) - U(x - h) + h) = 
2h 

I X 
f P(X > z) d z ~ 

h x-h 

P(X > x - h). 

lim inf P(X > x) ~ 
n 

1 . . f I 
1m 1.n h 

x+h 

f 
h 

P(X > z) d z = 
n 

l x+h 
h f P(X > z) ~ 

h 

P(X ~ x + h). 

Ash> 0 was arbitrary, it follows that X ~ X. So (iii) implies (i). n 

Af?Sume that (iii) holds and let x· be a continuity-point of X in 

( 
00

, es sup X). Note that (ii) holds now too, whence EX + EX by Theorem 4. 
n 

Part (ii) of Lemma 10 now gives g (x) ➔ g(x). So (iii) implies (iv). 
n 



Assti111e that (iv) holds, then by Theorem 2b 

lim sup E X :::; 1 im sup g ( y) = g (y) 
n n 

X 
n 

D 
+ X. Now 

for all continuity-points y of X in (--oo,essup X). Letting y + --<X) gives 

lim sup EX s;; EX. So (iv) implies 
n 

EX + EX. 
n 

Part (ii) of Lemma IO now gives 

U (x) + U(x) 
n 

for all continuity-points x of X in (-oo,essup X). 

So (iv) implies (i). 

35 
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CHAPTER m 

THE BLACKWELL-DUBINS BOUND FOR STANDARDLY STOPPED BROWNIAN MOTION 

For a random variable X with distribution function F define the 
-I 

function F , the generalized inverse function of F, by 

( 1) := inf{x : P(X :S x) > s}, O :S s :S 1. 

T -1 . . h . hen F 1s rig t-cont1nuous and non-decreasing. 
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Let A denote Lebes 0 ue-measure on the unit interval. The distribution of F-I ...,.., 

with respect to A is equal to the distribution of X. 

If EX< oo, then associated with (the distribution of) Xis the so-called 

Hardy-Littlewood maximal fi,tnction HX, which is defined by 

(2) 0 :St< 1. 

Note that HX is continuous and non-decreasing. 

In this chapter we only consider f 0-characteristics. Recall that for any 

random variable X with EX < 00 its f 0-characteristic gX is given by 

E(X I X 2.: x) if P(X 2: x) > 0, 
(3) 

X 
• otherwise. 

Because 

I 

J 
P (X< x) 

-I 
F (s) d s 

1 
= f 

0 
: F-1 (s) ;;: x} d s = 

EX l{x~ x}' 

there exists the following relation between HX and gX: 
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(4) 

If EIXI < 00 , h Ux .. ten ., 

for x with P(X < x) < 1. 

the potential of X, is given by 

X E IR. 

Let (B) denote standard Brownian Motion started at zero. 
t t 2: 0 

A stopping time T (for (Bt)t~ 0) is called standard, if whenever Rand S 

are stopping times with R $ S 5 T, then 

EIBRI < 00 and EIB8 1 < 00 , and 

(5) 
BR BS 

u 2: u (pointwise). 

Note that for a standard stopping time Tit follows by taking R = 0 and 

S = T that EI BT I < 00 and moreover by letting x + 00 and -oo in 

El BT - x I - EI Bo - x I = EI BT - x I - Ix I ~ 0, that E BT = 0. 

Another characterization of standardness is given in the following le1n1ita 

due to Falkner [9, prop. 4.9., p 386]. 

LEMMA 1. A stopping time Tis standard if and only if the stopped process 

(Bt A T) t ~ 0 is uniformly integrable. 

For a stopping time T let 
• 
J.. e. 

:= sup Bt. 
0~ t:S T 

The Blackwell-Dubins bound 

denote the maximum of the stopped process, 

THEOREM 1 

-time,, then 
(The Blackwell-Dubins bound). Let T be a standard stopping 

(6) 

(7) 

(A denotes Lebesgue-measure on the unit interval.) 

□ 

□ 
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Our main objective is to derive (7). However, we use the weaker assertion 

(6) in deriving (7). Notice that in case P(BT = x) = 0 for all 

x € (-oo,essup X) gBT is continuous, in which case (6) and (7) can be 

seen to be equivalent using (4). 

COROLLARY. (Blackwell-Dubins [4]) Let (X ) 1N be a 
n n E 

martingale 

Then 

having X 

as its last eleme1it. Let M be defined by M := sup Xn. 
n 

The bound on the distribution of M.r, in (7) or Min the corollary will be 

referred to as the BlackwelZ-Dubins bound. 

PROOF of THEOREM 1 .. For every x E IR define f, 

f (x) := min(x, es sup BT), 

H x := inf{t 
I 

> H X .. B < - 1 • t - f(x)}, 

• 1 2 1. = , • 

T x and T x b 
I 2 y 

In the remainder we omit the superscript x and we write g for 

Note that 

Because Tis standard and T1 ~ T2 s T, we have with Ui the potential of 

BTi' i = 1,2, that u1 ~ u2 • 

As 

and 

-U 1(f(x)) = E!BT_ 
1 

--

□ 
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- f (x) I ( 1 {T < H } + 
2 

- f (x) I l { T < H } = 
2 

EIB -T f (x) l I { T < H } 
1 

it follows that 

(8) 

For x < es sup BT we have f(x) = x < g(x) and 

(g(x) - x)P(BT ~ x) = 

and 

--

So for x < es sup BT (8) implies P(T ~ H1) ~ P(BT ~ x), whence (6) is 

established for x < es sup BT. 

For x > es sup BT we have g(x) - f (x) = x - es sup BT > 0 and 

P(H 1 s T < H2) = O, whence using (8) P(T ~ H1) ~ 0 = P(BT ~ x). 

For x = es sup BT (6) follows because both sides of (6) are left-continuous, 

or is trivial in case BT= 0. This completes the proof of (6). 

Proof of (7): We write H for HBr· 

For x < es sup BT we have g(x) = H(P(BT < x)) and 

P(BT ~ x) = A(s : H(s) ~ H(P(BT < x))), because His strictly increasing 

on [O,P(BT < es sup B
1
,)). 

For x ~ es sup BT we have g(x) = x and P(BT ~ x) = A(H ~ x). So (7) follows 

from (6) for all x E R(g), the range of g. 

As E(BT) = 0, it follows that H ~ 0 and A(H ~ x) = 1 for all x ~ 0 and 

therefore (7) is trivial for x ~ 0. 

Now take x > 0 and x l R(g). As g is non-decreasing and left-continuous 

and lim g(y) 
y )- 00 

= E BT = 0, there is 

For such zit is necessary that 

a z €IR such that g(z)<x s g(z+). 



z < g(z) and P(B = z) > O. 
T 

First consider g(z) < x < g(z+). 

As His continuous and 

H(P(BT < z)) = g(z) < x < g(z+) = H(P(BT ~ z)), 

there is ans E (P(BT < z),P(BT ~ z)) such that H(s) = x. 

Moreover A(H ~ x) = 1 - s • 
• 

Choose b > z and let a(b) be such that 

z - a(b) 
b - z 

Then a(b) < z and 

P(BT ~ z) - s 
-- s - P(BT > z) • 

z - a(b) 
b - a(b) 

P(BT ~ z) - s 
=-------

P(BT = z) 

Define the stopping time Tb by 

T 

inf{t ~ T: Bt t (a(b),b)} 

z, 

Then Tb is standard too, which is easily seen by observing that 

{Bt - BT: T < t $ Tb} is uniformly bounded and using Lemma 1. 

Further observe that 

P(BT ~ z) = P(BT > z) + P(BT = 
b 

= I - s = A(H ~ x), 

(1 -
-1 

s) E(BT 
b 

= ( I -
-1 

P(BT s z) 
= H(s) + (b - z) 1 _ 

5 

z,BT = b) 
b 

z - a(b) 
z) b - a(b) 

+ b(P(BT $ z) - s)) 

- s 

- s 
= x + (b - z) 

1 - s • 

41 
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Now using (6) for Tb it follows that · 

?: z) = A (H ;;:;: x), 

and by letting b ~ z 

Taking x t y (7) now follows for ally E (g(z),g(z+)] and therewith (7) is 

fully established. 

PROOF of COROLLARY. 

H - µ = HX .) For 
X -µ 

We assume thatµ =EX= 0. 

n E 1N let M n 
• be the maximum 

(That is allowed, because 

of {x
1

, ••• ,x
0
}. The 

martingale {x 1, ... ,Xn,X} can be embedded in Brownian Motion by means of 

standard stopping times T 

Using Theorem I we get 

P(M ~ x) 
n 

n, 1 
T n,n 

:S T • 
n (See Falkner [9].) 

As {M ~ x} = U 
n 

{M ~ x} = lim {M ~ x} we can conclude 
n n n >OO 

_Sharpness of_ the, _B l~c~_we,l_l ~?.ub~n~ bo_und; 

the Dubins-Gilat and Azema-Yor martingales 

□ 

□ 

Let X be a random variable with distribution function F with 

generalized inverse F-l and finite meanµ. As it will not be a real 

restriction, we assume~= 0. Let H denote the Hardy-Littlewood maximal 

function associated with X and g the £0-characteristic of X. (See (2) and 

(3).) On the Borel unit interval (A= (0,1),B,A) as probability space 

Dubins and Gilat [8] considered the stochastic process 

Y = (Yt(a), a.EA, 0 $ t::;; 1) defined by 

H(t) fort::;; a., 

fort> a.. 

It is easily seen and max Y (a)= H(a). 
0:St:51 t 
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As moreover Y is a martingale, as is explicitly proved in Dubins-Gilat [8], 

it is an example of a (continuous parameter) martingale for which the 

Blackwell-Dubins bound is attained. 

The Azema-Yor martingale is the stopped 

where Tis defined by 

Brownian Motion process (B T) 0 , tA t~ 

T := inf{s : g(B) ~ M }. 
s s 

This special stopping time Twas devised by Azema and Yor [l]. 

They 

(i) 

proved the following properties 

T embeds X, 

(ii) Tis standard. 

of T. 

We refer to T as the Azema-Yor stopping time (embedding X). 

The connection between the two martingales is stated in Theorem 2. 

For O ~ts 1 let gt be the f 0-characteristic of Yt and Tt the Azema-Yor 

stopping time embedding Yt, i.e. Tt = inf{s : gt(B
5

) 5 Ms}. 

Notice that Tl= T. 

THEOREM 2. The set 

0 5 rs ts l and 

of stopping times 
D 

(BT ) 0 :S t s l = y • 
t 

is such that T r 
~ T for 

t 

From Theorem 1 and 2 the following is now direct. (See also Azema and Yor 

[lb].) 

COROLLARY. The Azema-Yor martingale is a martingale for which the 

□ 

Black;.;Jell-Dubins bound is attained. □ 

PROOF of THEOREM 2. First consider Yt to deterr11ine g . As H( t) 
t 

fort> a, it follows that 

H(t) 

\. X for x > H(t). 

For x ~ F- 1(t) 
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l ( ( l - t)H(t) J F- 1(a)da) -+ -
P(Yt > x) F- 1(a)~x} {a E (O, t) - • • 

1 ( f '-1 
F- 1(a)da.) --

F-l (a) ).(a • > x) {a. : F (a.) 2: x} • -

g(x). 

Now gr s gt for Os r :5 t ~ 1, because 

-1 
for x s F (r), 

for x > H(r), and 

-I for F (r) < x s H(r), because then rs P(X < x). 

From the definition of the stopping times T 1.t ( ) . 
t Os ts 1 

is now easily seen 

that T s T for OS r :5 ts I. 
r t 

Moreover Tr= Tt on {BTr < H(r)} for Os rs t :5 I, for 

and 

The equalities hold, because 

The inequality holds, because 

and non-decreasing. 

on {BT < H(r)} fort 
r 

F- 1 (r) on {BT < H(r)}. 
r 

~ r' 

is continuous and g is left-continuous r 

Take Os t 1 < t 2 < ••• < t
0 

s 1 and c 1, .•. ,cn ElR and consider 

P(BTti Sci, i = l, .•. ,n). As P(BTt S H(t)) = 1 for all t, it is no 

restriction to take c. < H(t.), i = 1, ..• ,n. But then 
l. l. 

and 

S C., 
l. 

• l = 1 , ••• , n) C. ) , 
l. 

' 



P(Yti 

A(a 

$ C., 
l. 

• 
1 = 1, ••• ,n) = 

$ C. , i = 1 , ••• , n) = 
l. 

c.) = 
1. 

min c.) 
1 < . < ]. 

- 1. - n 

and P(Y s 
t 

H(t)) 
D = 1 for all t, Y = 

45 

is proved. □ 
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CHAPTER IV 

STANDARDLY STOPPED cl-DIMENSIONAL BROWNIAN MOTION (d = 1,2, •.. ): 

We derive a bound for the maximum of the norm of cl-dimensional 

Brownian Motion up to a standard stopping time. It is similar to the bound 

in chapter m.. Further Azema-Yor type stopping times are defined and proved 

to be standard stopping times for which the bound is attained. 

d For x E IR we denote its Euclidean norm by I lxl I (d ~ 1). For 

valued random variable with Efd (I IXI I)< 00 let gX denote the fd

characteristic of I IX! I, i.e. 

d anlR -

E(fd(I IXI I) I I IXI I ~ x) 

fd(x) 

if P(IIXll ~ x) > 0, 

-1 
Let Fl lXI t 
Define the 

otherwise. 

denote the inverse distribution function of I !XI I. 

function hx by 

1 
1 - t 

Q::;t< 1. 

Between gX and hx the following relation exists. 

It follows from 

I 

J 
P ( I Ix I I < x) 

I -1 
f fd(F11x11<s))l 
0 

for x ~ 0 with P(l IX! I < x) < I. 

-1 }ds = 
{ s : FI IX I I (s) :2: x 
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E f d ( I IX I I ) l { ! l XI I z x}. 

LEMMA l • Let the distribution of X be such that E f d ( I IX I l ) < 00 for 

d = 1,2 and P(!IXII = 0) = O ford z 2. 
-I -1 

Then with h = hx and F = F I Ix l I 

l - t = exp - -1 
0 h(s) - fdF (s) 

0 ::; t :s; P ( I IX I I < es sup IIXII). 

PRO·OF. Note that h(t) is continuous on [0,1) and 

I 
(I - t)h(t) = J 

whence 

-h(t)d t + (I - t) d h(t) = 

As h(t) - > o for o < t < P ( I Ix I I < es sup I Ix I I ) , 

d t = _d_h....;..{ t~) ___ _ 
1 - t 

By integrating the last expression and taking limits for the boundary 

points we now get the result. 

The potential of X, denoted X by U, is defined by 

tf(x) = -Ef (IIX - xii), 
d 

d 
X E ]R • 

Let (Bt)t~ 0 denote (standard) cl-dimensional Brownian Motion (started at 

the origin). A stopping time T (for (Bt)t
2 0) is called standard, if 

whenever Rand Sare stopping times with R::; S ~ T, then 

E f d ( I I BR I I ) < 00 and E f d ( I I BS I I ) < 00 , 

and 

• 

□ 
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The following letruna characterizing standard 

Falkner [9, prop. 4.9, p. 386 and p. 388/9]. 

• • • stopping times is due to 

LEMI.1A 2. A stopping time T for cl-dimension.al Brownian Motion is dtandard 

if and only if 

d;;;: 3, 

or 

d :5 2 and the is uniformly 

iri tegrab le, 

+ where fd (x) = max(O,fd(x)), 
+ 

X E IRO • 

If T is standard, then for any stopping time S :5 T 

+ + 
E f d ( I I B s I I ) ~ E f d ( I I BT I I ) < o:>. 

For a stopping time T let ~ denote the maximum of 11 Bt I I up to T, 

:= sup IIBtll. 
0:5 t:5 T 

The Blackwell-Dubins bound 

THEOREM 1. Let T be a standard stopping time, then 

(I) x), 

(2) 

The right-hand side of (2) is what we caZl the Black:well-Dubins bound for 

standardly stopped d-dimensional Bro-wnian Motion. 

PROOF. We first proof (1) and then use it to derive (2). For x = 0 it is 

· IR+ · x Kx Tx Txb trivial. For every x E define f, K1 , 2 , 1 , 2 Y 

f(x) := min(x,essup l]BTII), 

> K X • - I • ~ f (x)}, 

□ 
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i • l ,2 .. 

111 the reaainder we omit tlie superscript x and we write g for 

Note tl\at. 

gB. 
T 

f -1 ( ')' d g X, j • {K 
1 

1 
s; TJ. 

Because Tis standard and T1 s T2 ~ T, we 

i • l. 2, that U 1 ;;;; u2 • Furti1er with U the 
d. y ( m \ ( 0 ' 0 , .. .. • ' 0) t i1a t 

and 

we have for d 
y " IR \ (0,0, •.• ,0) that 

(3) 

As on {I<
1 

<; T} 

{K 1 s: T} for 0 

-1 . 
I I Br 1 I I • f d g (x) 

< 1 I y I I < f (x) 

i • I ,2. 

have with U. 
l 

potential of 

and 

the potential of Jtl.ri' 

BT we have for 

< 00 • 

we have on 

Now fd is non-decreasing. Using the monotone convergence theorem we get 

with y ➔ 0 from (3) that 

(4) 
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We consider the cases x $ es sup I IBTI I and x > es sup I IBTI I now separately. 

As both sides of (I) are left continuous, we do not need to consider 

x = es sup ! I BT I I, unless BT = 0, but then T = 0 and things are trivial. 

Assume x < es sup ! I BT I I . 
Then f(x) = x and 

(6) 

> 0. 

Now {K
1 

s T < K2 } c { 11 BT I I ?: x} and f d ( I I BT I I) ~ f d (x) on { I I BT I I ~ x}, 

whence, using (5) and (6), we get 

which is ( 1 ) • 

Now assume x > es sup I I BT I I . 
Then P(K

1 
~ T < K2) ~ P(IIBTI! > essup !IBTII) = 0, and g(x) - fd(f(x)) = 

fd(x) - fd(essup I IBTI I) > O. So (5) implies (I) for this case, which 

completes the proof of (I). 

We shall now prove (2). Write h for hBT· 

As 
d -I 

If P(I IBTI ! ~ x) = O, then x = fd g(x) and (2) follows trivially from (1). 

consider only x?: 
-1 

fd h(O). 

Therefore ass time P ( l I BT I I < x) < 1 • 

If R th Off -lg (2) follows from (I), because then with x E fa-1 8 , e range d , 

-1 
X = fd g(y) 

p ( I I BT I l ?: y) = A ( t : t ?: p ( I I BT I I < y) ) ~ 
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Now ass,.une x 

-I 
fd g(y) < X 

Rf -I • As 
d g 
-I 

.s fd g(y+) 

< y))) = A(t 

-1 = fd g(O), there is a y such that 

and therefore P(I IBTll= y) > 0. 

As both sides of (2) are left-continuous, we need not consider 
-1 

X = fd g(y+). 

We consider the following three cases seperataly: (i) y = 0 and d ~ 2; 

(ii) y = 0 and d = 1; (iii) y > 0 and d arbitrary. 

(i): In this case (0,0, .•• ,0) is a polar set, i.e. 

P(inf{t > 0: Bt = (0,0, ... ,0)} < 00 I Bo= z) = o. 

So {I IBTI I= O} = {T = O} a.s. and therefore, as x > 

for all d z € JR 

P (M.r 2: x) ~ P ( I I BT I I > 0) = A ( t : t ~ P ( I I BT I I = 0)) = 

> - < - 2: x), 

whence (2) holds. 

is continuous and strictly increasing on 

there is at< 

-1 
fd h(t) = x. 

Further there is a ct> 0 such that 

Now with pc := (P(I IBTI I < c) - t) / P(I IBTI I= 0) define the randomized 

stopping time T by 
C 

T : == 
C 

inf { t 2: T : I I B t I I 2: c} on { I I BT I I = 0} with 

probability pc, 

T otherwise. 

Use Len1i,1a 2 to derive that T is standard. 
C 

Now use the strong Markov-property to check that 



p ( I I BT I I 2:: C) = p ( I I BT I I ?: 
C 

1 - t. 

0 , I I BT . I I = c) = 
C 

Let gc denote the f 1-characteristic of I I BTc I I, then 

and 

Apply ( 1) 

l 
1 - t 

1 
1 - t 

I 
I - t 

lim g (c) = x. 
C 

c-+0 

to T with c < x to get 
C 

g (c)) = P(M_ 
C -'IC 

p ( I I BT I I ~ C) = l - t, 
C 

whence with c + 0 

P(M.r > x) ~ l - t = 

< C) - t)) ?: 

?: x). 

Taking left-hand limits in the last expression yields (2). 

(iii): Note that in this case 

2:: X) < p ( I I BT I I ?: y) ' 

-1 -1 
because P ( I I BT I I > y) = A ( f d h ?: f d g ( y+) ) and 

-1 -1 
P(I [BTI I ~ y) = )...(fd h?: fd g(y)). 

Now for O < a < y < b define the stopping time T' by 

T' = 
inf { t 2:: T : I I B t l I t ( a , b ) } 

T 

i f I I BT I I = y , 

otherwise. 

53 
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Use Le1n1na 2 to derive that T' is standard. 

Note that y 
-1 

< fd g(y) < x and that, using the Markov-property, 

p ( I l BT' I I 

(See Port & Stone [15, prop.1.5, p. 55 and prop. 4.8, p. 75] for the 

expression in fd.) 

From this it is clear that we can choose b < x and that for all b close 
-I 

enough to y we can choose a such that P ( I I BT, l 1 ~ y) = A (f d h ~ x) . 

For such a pair (a,b) with g' the fd-characteristic of I IBT' I I we have 

whence 

and 

g' (y) = 

= y , I I BT , I I = b) 

x) 

p ( I I BT I I > y) h (PI I BT I I s y)) + f d (b) p ( I I BT I I = y, I I BT' l I = b) 

x) 

P ( I I BT I I = y , I I BT , I I = b ) 
~ x)) + fd(b) - fd(y)) ------------ = 

fd(x) + (fd(b) - fd(y)) 
P ( I I BT I I = y , I I BT , I I = h) 

lim g' (y) = fd(x). 
b{-y 

~ x) 
, 

Apply ( 1) to T' with b < x to get 

p ( I I BT ' I I ~ y) = ?:: x), 

--



whence letting b + y 

Taking left hand limits in the last inequality settles this case and 

· finishes the proof. 

Azerna-Yor type stopping times 

Let Y be a non-negative random variable and let g denote its 

characteristic (d = 1,2, ••. ). 

For d = I, 2 assume E fd (Y) < 00 and for d ~ 2 assume P(Y = 0) = O. 

f -d 

Define the stopping time T for (Bt) (, d-dimensional Brownian Motion,) by 

(7) T := inf{t > 0: 

Note that, as Mt= sup I IB
5

1 I, Tis actually a stopping time for the 
0 :::; s :::; t 

Bessel process ( 11 Bt I l) t ~ o· 
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□ 

THEOREM 2. The 

(i) P(T < oo) 

stopping time T defined in (7) has the following properties 

(ii) 

(iii) 

(iv) 

= 1., 

Y, 

T is standard., 

x). 

COROLLARY. The inequalities of Theorem 1 are sharp. 

PROOF of THEOREM 2. It is convenient to assume first that Y is bounded, 

say m = es sup Y < 00 • 

For k E ]N I.et Dk be the set containing the points in [ O,m] given by 

sup{x 
-I 

: fd g(x) i EIN, and m itself. 

Let dk(l) < dk(2) < ••• < dk(nk) = m denote the points of Dk. 

Define the function gk and stopping time Tk by 

□ 

D 
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Then 

Moreover 

lim gk = g. 
k>oo 

• • • 

g(dk ( l)) 

g(dk(i)) 

X 

for O $ x ~ dk(l), 

for '\(i - l) < x ~ dk(i), 

for x > dk(~) = m, 

-1 } 
: Mt ~ f d gk ( I l B t I I ) • 

~ g, whence 

and the ref ore (Tk)k ~ 1 is convergent. 

As limsup llBtll=oo a.s. and MT] s; m a.s., it follows that (Tk)k~ 1 and T 
t ➔ 00 

are all finite a.s •. 

We shall now show 

whence with continuity of the paths of (B) · 
t t ~ o • Y. 

Note a step-function with 

> X for x 

With the continuity of paths of (Bt)t~ 0 it follows, that 

< m. 

Use the strong Markov-property to get 

and 

- fd(dk(l)) 

- fd(dk(l)) 

gk(dk(i)) - fd(dk(i)) 

gk ( dk ( i + I ) ) - f d ( dk ( i ) ) ' 
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whence 

gk(dk(i)) - fd(dk(i)) 

gk ( dk ( i + 1 ) ) - f d ( dk ( i) ) 

Therefore gk is the fd-characteristic of I IBTkl I. 
Now apply Theorem ][. 2c for d = 1 and Theorem n:. 2d with g 0 = g for d ~ 2 

to conclude 

D 
-+ Y. 

Define S := lim Tk, and consider the set 
k ►oo 

{T #- S} = U 
nE IN 

{T + l 
- < s}. 
n 

Now with ~(y) := sup{x: gk(x) ~ g(y)} 

I 
0 ~ t :5 - k E lN}. n' 

As ~(y) increases toy, when k tends to infinity, it follows that 

Now 

{T + 1 
n < s} C { I I BT + t l I ~ I I BT I I , 1 } • 0 ~ t :$: -n 

0 I) --:$: t :5 
n 

0 :$; t s 1 } I BT ) ) = 0 , 
n 

because for y > 0 all x on the sphere with radius y are regular for 

{z: llzll < y}, i.e. P(inf{t > 0: IIBtll < y} = 0 I B0 = x) = I. 

(See Port & Stone [15, prop. 3.1,3.3 and 3.4, p. 30,31].) 

So 

T = S a .. s . on { I I BT I I > 0} . 
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. IRI As 1.n xis regular for {x}, i.e. P(inf{t > 0 

it follows that T = S a.s. ford= l. 

InJRd, d ~ 2, we have, that {O} is polar and therefore 

For£> 0 define Te:= inf{t ~£:Mt 

Then 

T = S a.s. on {s ~ s}. 
E 

by the previous part of the proof. So 

As lim T = T and T $ S, it follows that 
£+0 E 

S = T a.s., 

which settles (i) and (ii) for Y bounded. 

For the case that Y is unbounded define the functions g and the stopping 
V 

times TV, v E lN, by 

T ·-V .-

for x < v, 
for v :s; 

for x > 

-I 
f d gv ( I I B t I I ) } . 

Verify that~ is the fd characteristic 

So by the first part of the proof 

of Y 1 

and 



< 00 a. s. 

As 

and 

lim P(I IBTvl I < V) = lim P(Y < v) = 19 
\H"OO \)• ►00 

it follows that 

T < co a. s • and 

completing the proof of (i) and (ii). 

As ford~ 3 all stopping times are standard, we only have to consider 

d ~ 2 in proving (iii). In doing so we use the stopping times 
• again. 

T , \) ElN, 
\) 
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+ 
Note that for all v E IN the process fd ( I ! B T I I) is bounded and there

t" \) 
fore uniforn1ly integrable, whence using Ler1111ta 2 

T is standard. 
\) 

To prove Tis standard it is therefore sufficient to prove, that for any 

stopping time S ~ T 

and 

lim 
v-+oo 

- xii)== 

Use Ler,Dua 2 and Fatou' s Lerrr111a to get 

\)+ ex, 

( I I BS " T I I ) 5: 
V 

d 
X Em.. 
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v ➔ co '\) 

Use a monotone convergence argument to get 

lim E f d ( I I B5 - x I I ) I {s ~ T } = E f d ( I I BS - x I I ) • 
v-+oo V 

Further for v 2: I Ix I I + I 

The last expression tends to O for v ➔ oo, with which the proof of (iii) is 

finished. 

We shall prove (iv) now. 

As 

{ I I BT I I ~ y } = 

and 

-1 (iv) is immediate for x E Rf -1 , the range of fd g. 
d g 

-I -1 
For x ~ fd h(O) = fd g(O) both sides of (iv) are equal 

-1 - 1 Consider 

As f -lh 
d 

the only case left: fd g(y) < x ~ fd g(y+). 
• • is continuous and 

< y)) 

there is at E (P(Y < y),P(Y s y)J such that 

-I 
X = fd h(t). 

to 1. 



• 

61 

Now 

-I 
f d g(y)) 

g(y) - fd(y) 

f d (x) - f d (y) ' 

-I 
because given M.r ~ fd g(y), T can not stop before either I IBtl I reaches 

level x or I !Btl l returns to level y, starting from level fd- 1g(y). 

Using Le1r11:i1a I we get 

~ x) = l - t = exp 
t -J d h(s) 

-1 
0 h(s) - fdF (s) 

t 
(1 - P(Y < y)) exp 

d h(s) 
h(s) - fd(y) - J 

P(Y 2= y) exp 

-1 
fd g(y)) 

p (Y < y) 

h(t) - fd(y) 

g(y) - fd(y) 

fd(x) - fd(y) • 

--

--

--

As one saw already that the last expression equals P(M.r ~ x), the proof is 

now complete. D 

PROOF of the COROLLARY. The corollary is in101ediate except when d ~ 2 and 

P(I IBTI I= O) > O. But in that case 

{ I I BT I I = o } = { T = O } , 

and embedding of the distribution of I !BT] I I I !BT[ I > 0 according to 

Theorem 2 yields that the bound is sharp. 

REMARK. The methods employed in the proof of Theorem 2 (together with 

Theorem E.2b) provide an alternative for the original proof of the 

analogous statements for the Azema-Yor stopping time used in chapter m. 

□ 
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CHAPTER V 

ULTIMATENESS OF STOPPING TIMES AND ORDER OF CHARACTERISTICS 

Let X be a random variable inJRd and Ta standard stopping time for 

cl-dimensional 
d 

any JR -valued 

Brownian Motion, that embeds X. It is well known, that for 
+ 

random variable Y with E fd (I !YI I)< 00 satisfying 

Efd (IJY - xii) 2 Efd (IIX - xii), d 
X E IR , 

and ford~ 2 a condition concerning polar sets, there exists a standard 

stopping time T' ~ T, that embeds Y. (See Falkner [9].) 

The question of the converse was for I-dimensional Brownian Motion 

considered by I. Meilijson [12]. In this chapter we derive similar results 

for higher dimensions, which are naturally phrased as results for Bessel 

processes (IIBtll)t~o· 

• times 
It 

A standard stopping time T for I-dimensional Brownian Motion (Bt)t 2 0 is 

called ultimate, if whenever Xis a random variable with 

EIX - xi 5 EIBT - xi, then there is a stopping time S ~ T, that embeds X. 

For the following result of Meilijson cf. Meilijson [12] and Van der Vecht 

[ 19 J. 

THEOREM I. A standard stopping time Tis ultimate if and only if there 

are a~ o ~ b such tmt P(BT E {a,b}) = I. D 

A stopping time T for (I !Btl I) is called standard, if Tis a standard 

stopping time for (Bt). 

Before defining ultimateness for stopping times for Bessel processes we 

state a lemma, with which it becomes clearer how this should be done. 
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Leto denote the uniform distribution on the surface of the d-dimensional 
r 

ball with radius rand the origin as its centre. 

LEMMA I. 

d 
X E m. . 

PROOF: See Port and Stone [15, prop. 1.7, p .. 56 and prop. 4.9, P• 75]. D 

With Le11011a l it follows that 

Efd (liX - xi I)~ Efd (IIY - xi I), 

implies 

Efd(IIXII v r) ~Efd(IIYII v r), r 2: O. 

A standard stopping time T for (I IBtl I) is called ultimate, if whenever 

Xis a non-negative random variable with 

E f d (X v r) ~ E f d ( I I BT I I v r) , r ;?:: 0 

and ford~ 2 

then there is a stopping time S for (I IBtl I) with S ~ T, which embeds X. 

LEMMA 2. Let T be a standard stopping time for (Bt) and 7,,et g denote the 

f d-aha.raoteristie of I I BT I I . 
If 

x), X ~ 0, 

then 

on {T > O}. D 
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LEMMA 3. Let T be a standard stopping time for ( I l Bt 11) and iet g denote 

-the f d-eharaateristic of I I BT I I. 
If Tis ultimate~ then 

T a~s. inf{t > 0: M 
t 

on {T > O}. 

Theorem 2. A standard stopping time T (for (I IBtl I)) is uLtimate if and 

only if there is an m ~ 0 such that P(I IBTl I E {O,m}) =land Tis as 

D 

described in Lemma 3. □ 

PROOF of LEMMA 2. Define T by T := inf{t 

Now 

whence 

X X 

• 

E f d ( I I BT I I v r) ~ E f d ( I I BT /\ T I I v r ) = 

{T < T } 
X 

X 

v r)P(T ~ 

E f d ( I I BT I I v r) 1 { T < T } + g (x) P ( I I BT I I ~ x), 
X 

With r ➔ 0 it follows that for x > 0 

T ) ~ 
X 

The last equality holds trivially for x = 0. It also a.s. holds for all x 
+ -1 

in a countable dense subset of lR.
0

. As fd g is left-continuous, it a.s. 

Hence 

a.s. on {T > O} • 

• 
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of 

1 IB 11 I T > 0 in (I IB 11) and I IB 11 is nowhere constant, 
T t t 

the standardness of T that the desired result holds. 

it follows from 

□ 

PROOF of LEMMA 3. By Lemma 2 and Theorem IV.I it is sufficient to prove 

Define the stopping time T' by 

then 

T ' ·-.-
0 

inf{t > 0: M 
t 

D 
I I BT' I I = 

As T' is standard and P(M.r, 

of T implies 

-1 
fd g(x)) 

if T = 0, 

> -
• otherwise, 

~ x), the ultimateness 

PROOF of THEOREM 2. First assume T is ultimate. Then by Lem1na 3 T is as 

described in there. 

Assume there are O <a< c with P(a < I IBTI I < c) > 0 and 

P ( I I BT I I > c ) > 0 • 

(If there are no such a and c, then there is an m ~ 0 such that 

P ( I I BT I I E { 0 , m}) = 1 • ) 

Now define b by 

then a< b < c .. 

Let X be a non-negative random variable dis tibuted as I I BT I I on IR \ (a, c) 

and P(a < X < c) = P(X = b) = P(a < I IBTI I < c). 

Then 

□ 



E f d ( X v r) :S E f d ( I I BT I I v r) , 

which follows from the observation that by Jensen's inequality 

E f d (X v r) l -
{X = b} -

As Tis ultimate, there is a stopping time Tb :ST embedding X. 

Define the stopping time T' by 

T T •-
Tb for I I BT I I b, 

b .-
T A inf { t ~ Tb : I I B t I I t. (a, c) } for I I BT I = b • 

b 

Then T' :s: T and so E f d ( ! I BT, I I v r) s E f d ( I l BT I I v r) , r ~ 0. 

From which with A1 = { I I BTb I I = b, I I BT, I I = a}, 

A2 = {I IBTbl I = b, I IBT' 11 = c} and A3 ={I IBTbl I = b} \ (A1 u A2 ) 

we get for r E [b,c) 

E f d ( I I BT I I v r) I { I I B I I 
T 

> 
E (a,c)} -

E f d ( I I BT ' I I v r ) I { I I BT I I = b } = 
b 

+ E f ( C) I + E fd ( I I BT I I V d A2 

From which with r t c we get P(A2 ) = O. 

As T ~ Tb, it follows that 

r) 1 A • 
3 

M.:r < 
b 

on { I I BT I I = b} \ { T = Tb}. 
b 

If for an E > 0 I IBT, I I :Sb - Eon {I IBTbl I = b}, then starting fro□ b 

I IBtl I must reach b - s before c. 

67 
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I IBT' I I E [e,e + E) c [b,c) withe< c - s on 

{T = Tb}, then starting from b I l Bt 11 must anyway 

If for ans> 0 

{ I I BTb I I = b } \ 
-1 

reach fd g(e) .and then get back to e + E before reaching c. 

As for O < x < y < z 

P(I IBTI I reaches z before x I I IB0 1 I = y) > 0, 

it follows using the strong Markov property that with P(A2) = 0 

T = Tb a.s. on { I I BT I I = b } • 
b 

first 

Because we can repeat the foregoing for any a> 0 and c < m := es sup I 1BTI I, 

it follows that 

Now choose E € (O,b) so small that 

non-negative random variable with 

< m - £ and let X be a 

P (X = 0) = P ( I I BT 11 = 0) and 

P (X = y - £) = P ( I I BT I I = y), for y = b, m. 

Then there is a stopping time S s T, that embeds X. 

As T is as described in Le,oma 3, we have 

on = b - s}. 

With the strong Markov-property we get P(T < S) > 0. So Tis not ultimate. 

If P(I IBTI I E {O,m}) = 1, then for any X with 

and 

ford~ 2, 



we have gX $ g, where gX is the fd-characteristic of X and so by 

Theorem IV. 2 one can embed X before T. In case d ?! 2 and P (X = 0) > 0 

the stopping time will be randomized. 

Order of characteristics 

Let x
1 

and x2 be (real-valued) random variables, both with finite 

expectationµ. Let g., H., U. denote respectively the f 0 -characteristic, 
1. ]_ 1 

Hardy-Littlewood maximal function and potential of X., i = 1,2. Then the 
1 

following theorem holds. 

THEOREM 3. 

a) 

bJ 

The equivalence in a) was first observed by D. Gilat. The condition 

u
1 

~ u
2 

is also equivalent to the pair (X 1,x2 ) being 'martingalizable' 
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D 

□ 

(i.e. tl1ere exists a martingale pair with marginals distributed as x 1 and 

x2 respectively.) (Cf. for instance Chacon and Walsh [6] and Chacon [SJ.) 

Together with Theorem 3 we consider also the following situation ford~ 1 . 
• < co, ]. Let x1 and x2 be non-negative random variables with 

(in cased= 1,2). Let gibe the fd- characteristic 

Define for i = 1,2 

of X. , i = I , 2. 
l. 

where 

and 

-I 
F. 

l. 

THEOREM 4. 

a) 

b) 

h. (t) 
1. 

1 I 
:= 1 - t J 

t 

is the inverse distribution 

0 ~ t < 1, 

function of X., 
l. 

P(X 1 = O) ~ P(X2 = O) ford~ 2 J 

=] , 2 

□ 
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REMARKS. The result on ultimateness in Theorem 1 shows that the converse 

to Theorem 3b does not necessarily hold. The ultimateness result of 

Theorem 2 implies that there is no suitable additional condition for a 

converse to Theorem 4b. 

LEMMA 4. If EX= 0 we have fop x E IR 

PROOF. 

LEMMA 5. 
1 

EIX - xi= 2 E(X v x) - x. 

EIX - xi 
+ + = E(X - x) + E(x - X) --

E(X v x) - x + x P (X < x) - EX I {X < x} + EX = 

2 E(X v x) - x. 0 

Let k. 
l. 

be a non-decreasing extended reai function on [0,1) fo~ 

whi~h f k. (s) d s is 7.,)el,l-defined:, i = I ,2. 
0 l. 

The following tr.Jo asseptions a-Pe equivalent. 

(i) 

(ii) 

1 
1 - t 

I 

I l 
f kl (s) d s :S -1---t 
t 

f (kl (s) 
0 

l 
v k) d s :S f 

0 
V k) d s, 

. k 1 = - 00 on { s > 0 : k 
2 

( s ) = -co} • 

0:::; t < 1. 

k Em., 

PROOF. First ass1une (i). Then with ). Lebesgue 1,1easure on [ O, 1) 

1 1 
f (k1 (s) v k) d s = k). (k

1 
< k) + 

0 
f k 1(s)ds s: 

11.(k 1 < k) 

I 1 
k 11. (k 1 < k) + J k 2 (s) d s :::; J 

11.(k 1 < k) O 
V k) d s. 

Now ass11me (ii). Then for t with k
2

(t) finite 

• 



If k 2 (t) --
If k 2 {t) --
1 
f kl (s) d s 
t 

1 1 

t 0 

l 
f (k2 (s) V k 2 (t)) d s - tk

2
(2) 

0 

+oo, then (i) • • • for tr1.v1.al that 1S 

-co , then either 

and (i) • trivial for that = -oo l.S 
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t. 

t, or 

k 2 (s) > - 00 for s > t and then (i) follows by continuity for that t. 0 

PROOF of the THEOREMS. Note that ford~ 0 

1 
E f d (Xi v x) = J 

0 

• 
l. = I , 2. 

Further note that to prove Theorem 3 it is no restriction to assumeµ= O. 

Use the lemmas to establish Theorem 3a and 4a. 

Theorem 3b and 4b follow from the existence of the A-Y stopping time 

(chapter ill) and the A-Y stopping times of chapter IV. □ 



73 

CHAPTER VI 

f-CHARACTERISTICS FOR FUNCTIONS f ONJR OF BOUNDED VARIATION 

If f is only required to be of bounded variation, it is possible 

that two different probability distributions have the same £-characteristic. 

This is trivially seen by taking f constant. But already for fd

characteristics g, d ~ 2, g(O) = - 00 implied only uniqueness of the 

conditional distribution on (0 , 00). (See Theorem II. 1.) In this chapter we 

shall for a fixed f and given f-characteristic g determine the set of 

distributions that have gas £-characteristic. 

Let f be a function from:m. to 1R that is of bounded variation (on 

bounded intervals). Denote with Cf the set of probability measuresµ for 

which Jfd µ is finite. With g we denote the £-characteristic ofµ. 
µ -

For any probability distributionµ letµ be defined by 

-µ(x) = µ[x,oo), X € JR. 

THEOREM I • The function µ + gµ is one-to-one if and onZ.y if f is striatly 

monotone and then for x E 1R 

-
(l) µ(x) 

(= exp 

C 
x d gµ (s) \ 

TI 
S < X 

g (s) - f(s) µ 
g (s+) - f(s) 

µ 
as defined in 11(3)). 

PROOF. If f is not strictly monotone, one can find x < y < z such that 
• f(z) ~ f(x) ~ f(y) or f(y) ~ f(x) ~ f(z). In both cases there is an 

a E [O, I] such that 

af(y) + (1 - a)f(z) = f(x). 



74 

For p E (0,1) define the measure µp by 

then 

µ {x} = l - p, µ {y} = ap and µ {z} = (1 - a)p, 
p p p 

= 

f(x) 

f(z) 

f 

on (-oo,y], 

on (y,z], 

on (z , 00). 

So gµp is independent of the choice of p e (0,1). 

Now ass\1m~ that f is strictly monotone. Take µ E Cf and put m - es supµ 

and g = g. For b < m we have for all x s b 
µ 

lg(x+) - f(x)I J 
(x,oo) 

• 

f lf(s) - f(x)ldµ(s) ~ J 

(f (s) - f (x)) d µ (s) I ~ 

If (s) - f (x) I d µ ( s) 2= 

(x,<X)) (b ,oo) 

f l f ( s) - f (b) I d µ ( s) > 0 • 
(b ,oo) 

Therefore we can apply I.Jet11111a II. 1 with any a < b. Hence with a ➔ -oo 

for all b < m. 

Let b t m to get (1) for x = m. For b > m it holds, because in that case 

both sides are equal to zero. 

For an £-characteristic g define the points 

Ag C ( 00,00) by 

bg := inf{x: g = f on [x,00)}, 

b , 
g 

c E [-co,00] and the set 
g 

□ 
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bg if g(b -) I g(b) or g(b -) = f(b) I f(b +), 
g g g g g 

C g 

A 
g 

·--• 

. --• 

sup{x 

{x < C -

{x < C 

~ b 
g : g(y) = f(b +) for ally E (b ,x)} 

g g 
otherwise, 

• g(x) f(x)} if g • left-continuous - l.S • -g 

• g(x) - f(x)} otherwise • • -g 

For all a EIR u {oo} let µa be the probability measure defined by 

(I) 
-
µ (x) := 

a 

G ( g , ( - 00 , X) 

0 

\ A ) 
g 

for x :Sa, 

otherwise. 

at C 

-To see that µa is indeed a probability measure, one must verify that µa 

is non-increasing and increases to I as x tends to -oo. But that follows 

from I.er,1111::t 8 in this chapter. 

The set 

will be 

C of all probability measuresµ f,g 
characterized in the next theorem. 

THEOREM 2. Let g be an f-eharacteristic. 

(i) If G(g,( 00 ,bg) \Ag)= 0, then 

Cf = {Jµ d A(a) : A E A
1
}, 

,g a 

E Cf with £-characteristic g 

where A
1
. is the set of azi probability measures A on A u {b} with 

g g 
es sup A = b • 

g 
Let A2 be the set of all probabiZity measures A on Ag with es sup A = bg 

-and A(b ) = O. 
g -

Let A3 be the set of all probability measures A on Ag with A(bg) > O. 

Note that A2 is empty, if bg is not a limit point of ( 00 ,bg) n Ag. 

(ii) If G(g,(-00,b) \A) > 0~ then we have the following: 
g g 

(a) if g(b -) j g(b ), then 
g g 

C = {J µ d A (a) : A E A2J·; 
f ,g a 

if g(b -) = g(b ), then g g 

g' 
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(b) if b t A , then 
g g 

(c) if b € A , then 
g g 

cf = {f µ d A ( a) : A E A2 u A'j}. ,g a 

We proceed with proving several lena11as leading to the proof of Theorem 2. 

LEMMA 1. Forµ with gas f-cha.racteristic g(x+) I f(x) implies 

g(x+) - g(x) 
g(x+) - f(x) 

µ{x} 
== ....... µ .,.....{ x--} or x ~ es supµ. 

PROOF. Assitme x < es sup µ, then 

I g(x+_), ~ g(x) = 
g(x+) - f(x) 1 -

g(x) - f(x) 
g(x+) - f(x) 

--

µ(x, 00) f f(y) - f(x) d µ(y) 

---~(~x~'-oo~)---~-~-~-=1-
1 - P(x) J f(y) - f(x) d µ(y) 

(x,co) 

µ (x,oo) 
iI(x) 

- µ{x} - l](x) • 

~:!:!!~2. For the £-charaateristic g of µ we have for x < es supµ 

g(x) = f(x) ~ g(x+) = f(x). 

PROOF. g(x) l =--P(x) (f(x)µ{x} + g(x+)µ(x, 00)). 

LEMMA 3. If, the f-aha.Pacteristic of µ, g = f on [a, b] c ( -00 ,es supµ), 

~hen f is constant on [a,b]. 

PROOF. As g is left-continuous on ( 00 ,essup µ), g is continuous on [a,b] 

by Le11u11a 2. Hence f is continuous on (a, b) and f (a+) = f (a) and 

f(b-) = f(b). Therefore we can find c, d E [a,b] such that 

f(c) = min f and 
[a,b] 

f(d) = max f. 
[a,b] 

D 

□ 

□ 



If c = d, then f is constant on [a,b]. 

If c < d, then 

f (c) 

1 
µ(c) 

1 
µ(c) 

1 = g(c) = -- f f(y) d µ(y) = 
µ(c) [c,oo) 

(J f(y)dµ(y) +µ(d)g(d)) 2! 

[c,d) 

whence f(c) ~ f(d) and therefore f constant on [a,b]. 

If c > d, one proves f(c) ~ f(d) analogously. 

COROLLARY. If. bg < es sup µ, then f is constant on (b , es sup µ). 
g 

PROOF. Apply 

b t essupµ. 

Lemma 3 to [a,b] c (b ,es supµ) and let a+ 
g 

LEMMA 4. Ifµ has gas its f-aharacteristic, then 

bg :S es supµ :s;; C • g 

b 
g 

and 

PROOF. b 
g 

~ es supµ is evident. If b = es supµ or c = 00 , 
• there 1.s 

g g 
nothing to prove. So < es sup µ and c < ex>. Then g 

g assume b g 
is left-

• continuous at b • 
g If (g(bg+) =) f (b +) #= f (b ) , then by Lern111a 

g g 
l, as 

bg < es supµ, 

f(b +) 
g 

- f(b) g 
- f(b) 

g 

µ (b ,oo) 
---,---=.g _ ../. 0 • 
µ (bg) ' 

And so, according to the definition, 

c = sup{x ~ b : g (y) = f(b +) for ally E (b ,x)}. 
g g g g 

Soc 
g 

is the maximal x for which f is constant 

corollary to l,emm~. 3 we get es sup µ :S C • g 

on (b ,x), whence by the 
g 

77 

□ 

D 

□ 
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LEMMA s. Let µ
1 

and µ
2 

be probability measu:res in Cf respeatively with 

f-aharaateristia g 1 and, g2 • 

Assume m
1 

:= es sup µ 1 ~ m2 := es sup µ 2• 

If g
1 

= g
2 

on (-00 ,m 1), then for all a E 

a.µ
1 

+ (1 - a.)µ
2 

is equaZ to g2 • 

PROOF. For x < m2 

ga. (x) = 
1 

[0,1) the f-eharaateristia g of a. 

f f(z)d(a.µ 1 
[x,oo) 

- -a.µ
1

(x)g
1

(x) + (1 - a)µ 2 (x)g2 (x) 
-- aµ

1
(x) + (1 - a.)µ 2 (x) 

• 
COROLLARY. C f,g 1-s aonvex. 

--Define the set A by g 

□ 

□ 

-A := {x::; c : 3(x) lN with x ➔ x and g(x ) - f(x ) + O}. 
g g n ne: n n n 

--LENMA 6. The set A is alosed and 
g 

--A c A c A u {x: f is discontinuous at x}. 
g g g 

--
PROOF .. If xis a limit point of A, g 
such that Ix n 

-yl< 1 d I () an g yn 
n n - -

then there are x 
l n 

and - f(y )I < 
n n 

also y + x. So 
n 

- -
x E A and A is closed. 

g g --A c A is evident. 

--
E A and 

g 
X ➔ X. 

n 

n € IN, 

then 

g g -
Assume -x EA \A. Letµ be a probability measure in 

g g 
then 

and 

g(x) ~ f(x) and g is left-continuous at x. Hence X 
n 

If x < es sup µ, 

X or X + X 

g(x) - f(x) + 0 
n n 

imply f(x) ➔ g(x) 
n 

or f(x) ➔ g(x+) 
n 

n 
respectively .. 

With Ler1m1a 2 it follows that f is discontinuous at x. If x ~ es supµ, then 

verify that x = c 
g 

A. But then f(x-) = g(x-) # g(x) = f(x). 
g 

D 



Define the set B by 
g 

B : = IR \ (A U [ C , co)) • 
g g g 
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Then Bg is open and therefore has at most countably many open • intervals as 
• 
1. ts components. 

7. Forµ E Cf and (a,b) a component of B we 'have ~or any ,g g J' 

x E (a,b] 

-
G(g,(a,x)) = µ(x) 

µ(a,oo) • 

PROOF. Let [y,z] be contained in (a,x). Lemma II.I implies 

-
G(g,[y,z)) 

µ(z) = ..;.__.:._;:;_ 
i}(y) • 

Let y + a and z t x and the result follows. 

+ 
For any interval I c IR define the (possibly empty) interval I by 

LEMMA 8. 

I+ := {x E IR \ I : x 2: sup I}. 

Forµ E 

-

C f,g 

µ(x) = G(g,(-oo,x) \ A ) 
g 

II 
j E J 

+ 
µ (A. ) 

J 
+ , 

µ (A. u A. ) 
J J 

where {A. : j E J} are the components of A n g 
( oo,x). 

J 

PROOF. -First ass11me µ (x) > O. Choose E: E (O, I). The set ( 00 ,x) 

consists of at most countably many disjoint open intervals, say 

n B g 

□ 

-
(xn,yn), n E N c lN. The set Ag \ Ag contains by Lemma 6 only discontinuity-

points off and therefore consists of at most countably many points. Hence 
• us 1.ng Lemma l and 7 

G(g,(-co,x) \A)= g 
II 

nEN 

IT 
y < X !::(y,oo) 
E A \ A µ(y) • 

y g g 
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There are also at most countably many A. with 
J 

µ(A.)> O. Hence we 
J 

as 

G(g,(-oo,x) \A) g 

IT 

+ µ(I ) 
n 

ne:Mµ(I 
n 

II 
j f' J 

+ 
µ(A. ) 

J 

( A. +) µ A. u 
J J 

with Mc 1N and the I disjoint intervals (including singletons). 
n 

As 

+ µ(I ) 
n 

n + 
nEMµ(I u I ) 

n n 

-

- i· n 
- i.m M 

k >co n E 
n~ k 

~ µ(x) > 0, 

+ µ(I ) 
n 

+ µ(I u I ) 
n n 

> -

there is a k E IN suc.h that 

and 

k 
TI 

n=l 
----- s (1 - e:) 
µ(I u I+) 

n n 

-

II + 
n EM µ(I U I ) 

n n 

~ µ(-oo,x) - e:µ(x). 

Order the intervals 

Then 

suc.h that In. 1 i+ 

+ 
c In., 

]. 

• 
1 < k. 

- k 
oo x) - µ( U I) 

' n=l n s-------------
µ( ~ I) 

n=l n 

µ(x) + µ( 

-
µ(x) + 

-
(1 + e:)µ(x) l + £ -

-=p::-7(-x-==-) _+....;...;..µ_(;--co..:--,-x~) -_-e:_µ_(_x_) s -1----£ µ ( x) , 

and 

< -

can write 



81 

+ + k-1 + µ(In.) k-1 µ(Ini \ ( In. l u In. I)) 
1 < IT l. 1.+ l. + < I: exp < -

exp 

+) i=l µ(I u I 
n. 1 n. 1 1.+ 1.+ 

k 
µ(-oo,x) - µ(n~l In) 
______ ....;...:., _____ ::.::.._ < 

--
µ(x) 

Combine the inequalities to conclude 

-
i=l µ(I 

n. 1 1.+ 

exp E. 

+ E: __ l_ µ(x) ~ 
] - E 

TI < /1 -----+- - \-1---E exp€ 
n EM µ(I u I ) 

n n 

-
u I +) 

n. l i+ 

-
µ(x). 

-
As EE (0,1) was arbitrary, the result is proved for x with µ(x) > 0. For 

es sup µ the result follows by letting x t es sup µ. 

If x E (es sup µ,c ], there is a component AO of Ag n (-00 ,x) containing 
g + 

(es sup µ,x) and so µ(A0 ) = 0, whence the result follows. 

If x > c, then G(g,(-co,x)) = 0 and the result is evident. D g 

LEMMA 9. Letµ be in Cf . Let g denote the £-characteristic of the ,g a 
probability measure µa (defined in (2)). 

Then for a E Ag with µ(a) > 0 and for a= bg if G(g,(-oo,bg) \Ag)= 

if g(b -) = g(b ) = f(b ) an,d b is a 'limit point of (·-00 ,b ) n A 
g g g g g g 

g = g 
a 

on ( 00 ,a]. 

0 or 

PROOF. Note that if G(g,( 00 ,b) \A)= 0, then for any component A of A 
g g g 

• ( + WI.thµ A)= 
+ 0, A c [b ,oo) implying Ac [b , 00 ) and hence µ(A)= 0. 

g - g 
First ass1rme G(g, (-00,b ) \ A ) = 0 or µ(a) > O. 

g g 
Let A

1
, A

2
, ••. be the components of Ag n (-oo,a) with positive µ-measure. 

Define the probability measures v 0 , v 1, ... by the following 

Having defined V , 
n 

-
µ(x) for x ~ a, 

\ 0 otherwise. 

then 
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Let g' 
n 

Now g0 ' 

from 

-v (x) 
n 

-
V (x) 

n 

+ 
vn(An+l u An+l) 

+ 
\Jn (An+l) 

+ 
u An+l) 

denote the f-characteristic of \J, n 0. n 

if XE: 

if XE A , 
n 

otherwise. 

= g on (-w,a], which is evident for x = a and follows for x < a 

1 
-µ(x) 

J f(z)dµ(z) 
[x,a) 

+ g(a)µ(a)) = g(x). 

Moreover gn' = gn+i' n ~ O, which is evident for x ~ a and follows for 

x < a from 

1 
-
\Jn+ 1 (x) 

J f (z) d v (z) + 
( A +) n [x,a] \ An+l u n+l 

+ v (A u A ) n n+l n+l 
+ 

vn (An+ 1 ) 
J + 

[x,.a] n A 1 n+ 

f(z) d v (z) 
n 

and then considering separately x E 

noting for x EA 1 that n+ 

x EA 1 and x t A 1 u n+ n+ 
A + 
n+l' 

1 
g '(x) = ---

n 

We may conclude 

f + 
A 

n+l 

f(z)dv (z). 
n 

g '= g on (-oo,a], 
n 

n ~ 0. 

- -
Use Lei:1,111a 8 to get \Jn t µa for n + 00 , whence also v

0 
{x} 

because, using the monotony in the last inequality, 

lim lim 
yix n~ 

-
\} (y) 5: 

n 
lim inf V (x,oo) :S 

n n-+ oo 

+ µ {x} for x e: lR, 
a 

limsup \J (x,oo) = 
n + oo n 



-
limsup lim v (y) ~ 

n n-+ 00 y+x 

-
lim µa(y) = 
y+x 

As f is bounded on [x,a],it follows that g '-+ g (by splitting into a n a 
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continuous and a discontinuous part, cf. Billingsley [3] Theorem S. I, p.30). 

Now let a, n ~ l, be a sequence in (-00 ,b) n g 
n Ag that converges to bg 

n + oo. 

-Then µ(a
0

) > 0, whence the £-characteristic of µan is equal tog on 

(-00,a] by the foregoing. 
n - -

As 1-la = µb on (-oo,a ], n g n 

f f (z) d µb (z) = g (x) + 
[x, oo) g 

- f (an)) d µb ( z) • 
g 

Now 

J ( f ( z) 
[a ,b ] 

n g 

converges to 

- f(an))dµb (z) = 
g 

f l f cz) 
[a , b J 

n n 

if g(b -) 
g 

= g(b) = f(b ). This settles 
g g 

for n-+ 0, 

the last case. 

PROOF of THEOREM 2. In case (i) µ = µb for all a~ b. 
a g g 

for 

In the cases (ii)b and c check that for all a E [b ,c J n g g 
A,µ is in 

g a 
Cf (using Ler1nna 9) , whence Le11n11a. 9 110 lds for al 1 a E A . ,g g 

in these two 

cases. 

Use Lemma 5 and 9 now to conclude for all cases 

Jµ d >..(a) E cf a ,g 

for A belonging to the class given in Theorem 2 that corresponds to the 

case considered. 

Now forµ E Cf define ,g 

-
A (x) : = µ 

Aµ by 

+ 
µ(A. ) 

TI J 

j E J µ (A . u A. +) 
J J 

for x $ essupµ, 

0 for x > es sup µ, 

□ 
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where A. , j E J, 
J 

Le1ral11a 8 assures 

are the components of (-oo,x) n A. 
g 

Case (i) is now settled by observing that it makes no difference to take 
-A (x) = 0 µ 
Note that 

for x > b in this case. 
g 

if G(g,(-oo,b) \A)> 0, g g 

- -

then 

-
µ(x) = Aµ(x) G(g,(--oo,x) \ Ag) > 0 ~ A (x) µ > o. 

-Case (ii)a follows, because 
-

g(b -) 1 g(b) implies µ(b) = 
g g g 

µ E cf and so A (b) = o. ,g µ g 
Case (ii)b follows, because bg t Ag, 

-
g(b -) = g(b) 

g g implies 

hence A (b) > 0 for allµ e Cf . µ g ,g 
For case (ii)c there is nothing left to prove. 

0 for all 

-
µ(b) > 0 and 

g 

□ 
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APPENDIX 

• 
PROOF of ]I. (5). Note first that g and h do have limits to the right, since 

each of them can be represented as the difference of two non-decreasing 

functions. 

By virtue of Fubini's Theorem 

(g(t) - g(s)) (h(t) - h(s)) = 

f 2 dg(x) dh(y) = 
[s,t) 

f 2 
[s,t) 

1 { > } d g (x) d h(y) + 
X- y f 2 

[s, t) 
1{ }dg(x)dh(y) = 

X < y 

f (h(x+) 
[s,t) 

- h(s)) d g(x) + f (g(y) - g(s)) d h(y) = 
[s,t) 

f h ( x+) d g ( x) + 
[s,t) 

f g(y) d h(y) - h(s)(g(t) - g(s)) -

[s,t) 

g(s)(h(t) - h(s)). 

From this we imrnediately obtain (5). 

PROOF 
•• LLZ raea 1m ■ ••·• IU • Ii I Oil¥ 

Let U := P 
t t 0 

(1 + a ~ g(s)) 
t s 

Then by virtue of (5) 

U V = U V + 
t t t t 0 0 

t 
and Vt:= exp J 

ta 

C a d g (s). 
s 

0 
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C 
U V a d g (s) + 

s s s L V (U + - U) = s s s 

p + f 

p + f 

C 
U V a d g (s) + 

s s s 

U V a d g (s). 
s s s 

t
0 

=:; s < t 

U V a /:'J. g(s) = s s s 

So the function Pt given by (7) is a solution of (6). We shall show that 

it is unique in the class of locally bounded solutions. 

Let pt t ~ t , t 0 , be another solution. Put 

,.., 

pt := pt - p;' 

Then for any s =:; t 

...., 

la ldv(s) .. 
s 

"' 

~ 

IP I , 
s 

IP I :s; 
s IP I la Id v(u) S Lt b(s). 

u u 

Hence also 

,..,, 
IP I :s; 

s 

,..._. 

IP I I a I d v ( u) s L 
u u t 

and in general for s $ t and any n ~ 1$ 
,.., 

And so PS= 0 for s ~ to· 
• 

, 

□ 
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