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PREFACE

This, mdnograph is an investigation in infinite-dimensional topology.
By a fake topological Hilbert space we mean a separable, metrizable space
that shares many topological properties with £2, but yet is not homeomorph;
ic to it. We thiﬁk of properties like: X is homogeneéus, X x X is homeo-
morphic to £2 (which implies that X is an absolute retract), every
compactum in X is a Z-set and X is universal for the class of separable,
ﬁetrizable.spaces. Our aim is to comstruct a sequence X—I’XO’XI’XZ"" of
fake Hilbert spaces such that an arbitrary o-compact subspace of Xk has
dimension < k if and only if it is stromgly negligible. In other words Xk
has the negligibility -properties of £2 precisely up to dimension k ‘
inclusive. ' A

The. standard wa& to obtain spaces with certain negligible subsets is
through pseudo-boundaries. We first comstruct in chapter 2 a k-dimensional
pseudo-boundary in Ifl.Employing this result we build in chapter 3 a
k-dimensional pseudo—béundary in the Hilbert cube for every
X

k e {-1,0,1,2,...}. As basis for our sequence X XI’XZ"" we use a

_12%q5
.fake Hilbert space Y, which has been introduced ;y gnderson, Curtis & van
Mill [ACM]. We show in chapter 4 that Y is homogeneous in a very strong
sense and we conclude from this fact that Ak is alsé a pseudo-boundary in
Y. Finally, in chapter 5 the spaces Xk = Y\Ak are analysed.

The author has highly benefited from discussions with and suggestions
from Jan van Mill. Thanks are also due to the Centre for Mathematics and
Computer Science for their willingness to publish this monograph és a

CWI Tract.
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CHAPTER 1

GENERAL THEORY

1.1 Preliminaries

In this section we introduce basic concepts and we give two simple
methods to construct autohomeomorphisms. Our notation is standard, cf.
Engelking [E1]. For information concerning infinite-dimensional topology

see Bessaga & Petczyfiski [BP2] and Chapman [C]. We make the following

restriction.

All topological spaces in this treatise are assumed to be separable

and metrizable.

We now give a list of definitions and notations. Let X and Y be topo-

logical spaces, let U be a collection of open subsets of X and let d be an

admissible metric on X.

(a) H(X) denotes the group of autohomeomorphisms of X and ]X or simply 1

is the identity on X.
(b) A continuous mapping is called a map.
(c) The symbol X Y means that X and Y are homeomorphic spaces.

(d) If f is a mapping from X into X and A is a subset of X then we say

that f is supported on A if the restriction f|X\A is equal to ]X\A'



(e)

(£)

(g)

(h)

(1)

(3)

(k)

Mappings f,g ¢ Y + X are U-close if for each y € Y with £(y) # g(y)
there exists a U € U containing both f(y) and g(y) (note that we did
not require U to cover X). Observe that if f : X » X is U-close to 1

then f is supported on UU.
If f and g are mappings from Y into X then
d(£,8) = supld(£(y),g(y) |y € ¥} € [0,=].
R, N and Q‘denote the real, natural and rational numbers, respectively.

If C is an n-cell, n ¢ N, then 3C denotes the geometric boundary of C.

Int C is the set C\BC.‘

A homotopy is a map F : Y x K » X, where K is a compact interval in RR.
Usually, K equals the set I = [0,1] and we define for t ¢ K,
Ft : Y > X by Ft(Y) = F(y,t). F is called limited by U if for every

y € Y the path of y, F({y} x K), is a singleton or is contained in

some member of U.

An isotopy H of X is a homotopy from X x K into X such that the
function H : X x K » X x K, defined by ﬁ(x,t) = (H(x,t),t) is an
element of H(X x K). For compact X this means that an isotopy H is a
homotopy such that each level Ht is in H(X). Occasionally, we shall
also call H an isotopy. If € > O then H is an e-isotopy if the

supremum for x € X of the d-diameter of H({x} x K) is less than €.

X is called homogeneous if for every pair x,y € X there is an

f e HX) with f(x)_= v

We conclude this section with two lemmas which give frequently used

methods to construct homeomorphisms.



1.1.1. LEMMA: If H : X x K > X is an isotopy of X and o is a map from

Y into K then the function f defined by
f(x,y) = (H(x,a(y)),y) for x e Xand y ¢ Y

is an element of H(X x Y).
PROOF: This is trivial.

1.1.2. LEMMA: Let T be a tree of height w, X a topologically complete
space and (ft)teT a function from T into H(X) such that for every open
covering U of X and t € T there is an immediate successor t' of t such that
ft' and 1 are U-close. If d is an admissible metric on X then there is a

branch t ,t ,tz,...vin T such that (fti ° ... © ft] ° has a

0’71

uniform d-limit that is an element of H(X).

f‘:O)i elN

Note that for compact X the condition on (ft) can be replaced by:

teT

for every € > 0 and t ¢ T there is an immediate successor t' such that
a(ft,,]) < €, where d is some fixed metric on X. This lemma is essentially

due to Anderson [A2].

PROOF: Let d be an arbitrary admissible complete metric on X. Pick a

t0 in T with rank 0. Assume that a chain t ety has been chosen. Put

Oﬂt] e
g; = ft; ° «-. © ft; ° fr, and define the metric d' on X by:

d'(6y) = dGoy) + d(g; (0,8 ().

Let t. . be an immediate successor of t, such that d'(fg,, .,1) < 27 1t is
1+ i i+1]

1

easily verified that the sequence (gi):= constructed in this way has the

0

properties a(gi,gi )y < 271 and a(gzl,ggil) <2t fori-= 0,1,2,...

+1
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. . . . .. . . -1 .
Since d is complete the uniform limits g = lim g, and h = lim g. exist and
‘ i ise T
are continuous. We have for x € X:

d(ho g(x),x) = }im d(hoe gi(x),x) = }im d(ho gi(x),g;]o gi(x)) <

1> 1>

lim .3, 2% = 0.
fre J7T

This means that ho g = 1. Analogously, one may show that go h = 1 and the

lemma is proved.

1.2. Negligibility and pseudo-boundaries

We introduce a triple (X,S,I') that will remain fixed throughout this
section. X is a topologically complete space and (S,I') satisfies the

following conditions:

(a) S is a collection of closed subsets of X,

(b) T is a subgroup of H(X),

(¢) S is hereditary, i.e. every closed subset of a member of S is in S,
(d) S is invariant under the action of T,

(e) There is an admissible metric d on X such that every f € H(X) that is

the uniform d-limit of a sequence in I belongs to I'.

For convenience we shall call an object that satisfies (a) - (e) a
A-pair on X. Observe that for compact X condition (e) is equivalent to: T
is closed in the compact-open topology on H(X). Let SU denote the collection

of all countable unions of members of S.



1.2.1. DEFINITION: A subset S of X is called negligible if X =~ X\S.
The set S is called strongly negligible if for every collection U of open
subsets of X there is a homeomorphism f : X + X\ (S n UU) that is U-close to

to 1.

Obviously, every (relatively) open subset of a strongly negligible set
S is negligible; in particular, S itself is negligible. Every negligible
subset of X is an Fc-set. This can be seen as follows. If X\S = X then X\S
is, like X, topologically complete. This implies that X\S is a Gs-set in X
and hence that S is an F_-set ([E1, 4.3.24]1). It is also easily verified
that a strongly negligible set is always a countable union of nowhere dense
sets (indeed, it is a O—Z—;et, see section 3.1). We give more properties of

strong negligibility.

1.2.2. PROPOSITION: Every (relatively) closed subset of a strongly

negligible set in X is strongly negligible.

PROOF: Let S be strongly negligible in X and let F be a closed subset
of S. There is an open W in X with S\W = F. Consider a collection U of open
subsets of X and select an open star refinement V of U, i.e. UV = UU = O
and for every V € U there is a U € U such that every V' e¢ U that intersects
V is contained in U. Since S is strongly negligible there exist homeo-
morphisms £ : X > X\(Sn 0) and g : X > X\(Sn 0 n W) such that f is
V-close to 1 and g is {Vn W|V e V}-close to 1. Then h = g_lo fis a
homeomorphism from X onto X\(F n 0) which is U-close to 1. This proves that

F is strongly negligible in X.

1.2.3. THEOREM: Strong negligibility is o-additive.



PROOF: As remarked above every negligible set is an Fc—set. So
proposition 1.2.2 reduces the problem to: if (Si)ie]N is a sequence of

closed, strongly negligible subsets of X then S = ig]N Si is strongly

negligible.

Let 81,82,53,... be all strongly negligible, closed subsets of X and

let U be a collection of open subsets of X. We define O, = UU and 0i+ =

1 1

= Oi\si for i ¢ N. Select a complete metric d on X and construct a complete

metric d] on O, such that for every x,y € O], d](x,y) > d(x,y) and for some

1
Uel, {z ¢ Olld](z,x) < 1} ¢ U (see [El:5.4.H]). Choose for every i e N

a complete metric di+ on O such that for x,y € Oi+l’d' (x,y) = di(x,y).

1 i+1 i+l

We shall construct inductively a sequence f],fz,f3,... such that for every

i eN, fi is a homeomorphism from X onto X\(Si n Oi) that is supported on

Oi. Since S1 is strongly negligible there is a homeomorphism

f1 : X > X\(S] n 0]) that is supported on O

d(£,]0,,1) < 4.

1 and has the property

Suppose that fi has been constructed. It follows easily from the

induction hypothesis that g; = fi° e © f] is a homeomorphism from X onto

. Define the metric d£+ on O by

1 i+1

X\((Sl 9 cee U Si) n 0]) = (X\Ol) uo.,

a! (x,y) =4d

. (%) + d(g; ()85 (7))

i+l

and select a homeomorphism fi+] ¢ X > X\(Si+1 n Oi+l) that is supported on
Oi+] and satisfies

1 -i-1

di+1(fi+lloi+1’l) <2 :

This completes the induction.
T -1 .
If S i el Si then (gi [X\(s n o]))ie]N is a sequence of maps from

X\(8 n Ol) into X that satisfies:

ag X\ 00,1 <



and for i ¢ NN,

A~ -1 -1 -i-1
d(giHIX\(S n 0,8, |X\ (s n 0,)) <2 .

Since d is a complete metric h = lim g;llX\(S n 01) is a continuous function
1>

from X\ (S n 0]) into X.

Analogously, we can prove that g = lim 8; is a map from X into X, which
i

is obviously supported on O .. Let i € IN and recall that gi(X) =

1

(X\Ol) U Oi+l' Since (g. IO is a Cauchy sequence with respect to the

i+k i+1)ke]N

we have that g(X) c X\Ol u 0.

ie1® This means that g is

complete metric di+l
a map from X into X\(S n Ol)' Since both h and g are uniform limits we have

that he g = lX and g°o h = and hence that g is a homeomorphism

'x\(s 0 0))
from X onto X\(S n Ol)' Obviously, we have that a](g|01,l) < 1 and

g|X\01 = 1, which implies that g and | are U-close.

1.2.4. COROLLARY: A subset of a strongly negligible set S in X is
(strongly) negligible in X iff it is an Fo-set (in X or, equivalently, in

S).

PROOF: Use proposition 1.2.2, theorem 1.2,3 and the fact that every

negligible set is an Fo—set.

1.2.5. REMARK: One easily verifies that negligibility is neither
closed hereditary nor additive (consider for instance the interval I). A
more sophisticated counterexample is the space Y which is discussed in
chapter 5. This space is universal for the class of separable metric spaces
(corollary 5.3.6) and has the property that a compact subspace is

negligible iff it has the shape of a finite space (theorems 5.5.4 and 5.5.5).

We now come to the pseudo-boundaries. The first to study this concept



were Anderson [A4] and Bessaga & Petczyfiski [BP1]. Their notion of a
péeudo-boundary was generalized to arbitrary complete mgtric spaces by
Toruficzyk [T1] (these pseudo-boundaries are called skeletoids) and differ-
ently by West [W] (called absorbers here). We shall now define these

concepts,

1.2.6 DEFINITION: Let U be a collection of open subsets of a space Z
and let E ¢ H(Z). A map h is a U-push in E if there is an isotopy
H:Zx I~>2Z that is limited by U and satisfies : Hy=1, H =h and

Ht € E for every t € I.

1.2.7 DEFINITION: An element A of S is called an (S,T)-absorber if
for every S € S and every collection U of open subsets of X there is an
h € T such that h is U—clqse to 1 while moreover h(S n UU) < A, If we can
always choose h in such a way that it is a U-push in T then A is an (S,T)-

~
absorber .

1.2.8 DEFINITION: Let A1 c A2 c A3 c ... be a sequence of elements of
S. We call (Ai)ielN an (S,I')-skeleton ((S,F)-skeletonﬂ) if for every open
covering U of X, every S ¢ S and every n ¢ IN there exist an h in

{y € I‘[y[A.n = 1} that is U-close to 1 (a U-push h in {y € FlylAn = 1}) and
an m € IN such that h(S) c Am' The set iéﬁﬂ Ai € SO is called an (S,T)-

skeletoid ((S,T)-skeletoid ).

Examples of pseudo-boundaries in the Hilbert cube can be found in
section 3.1. We now introduce a concept that covers both absorber and

skeletoid.



1.2,9 DEFINITION: Let A, ¢ A, €< A, ¢ ... be a sequence of elements of

1 2 3

S. We call (Ai)ieIN a strong (S,T')-skeleton (strong (S,F)—skeletonﬂ ) if
for every open covering U of X, every S € S, every closed subset F of X
with Fn S = @ and every n ¢ IN there exist an h in {y ¢ F[ylAn uF =1}
that is U-close to 1 (a U~push h in {y ¢ Fly|An UF=1}) and an m € IN
such that h(S) c Am. The set ig]N Ai € So is called a strong (S,T)-skel-
etoid (strong (S,P)-skeletoid~ )e

It is obvious that every strong skeletoid is a skeletoid. With

absorbers there is the same connexion.

1.2.10 PROPOSITION: Every strong (S,T')-skeletoid ( ~) is an (S,T)-

absorber ( ™).

PROOF: We only prove the proposition for plain strong skeletoids and

absorbers; the version with the ~ is completely analogous. Let (Ai)ieIN

be a strong (S,T)-skeleton and put A = i%IN Ai' Assume that U is a collect-
ion of open subsets of X and that S is an element of S. Put O = UU and
select an admissible metric d on O such that {U](x)lx € 0} refines U, where
U (x) = {y € 0]d(y,x) < €} for € > 0 and x ¢ O ([El: 5,4.H]). Let Sy < S,

c 82 € ... be a sequence of closed subsets of S such that S0 =@ and

oo
SnoO-= igo Si' We shall construct inductively sequences fO’fl’fZ"" in T

and n, < n, <n

0

9 S ees inIN such that for i = 1,2,3,...

fio fi-1° eee© fO(si) c Ani
and

fi is supported on O\Ani-l'
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Put fO = lX and ng = 1. We shall make sure that every fi can be chosen

arbitrarily close to 1. This implies with lemma 1.1.2 that we may assume

that there is an f ¢ H(X) which is the uniform d'-limit of (fi0 eee® fO)ieHV

where d' is a metric on X such that T is closed with respect to d'. So we

may assume that f = lim fio cee© fo is an element of TI'. The other properties
10
that f must satisfy follow easily. We have that f is supported on O and

IA

a(f|0,1) Z a(f.|0,l) < | which means that f and 1 are U-close. Moreover,
i=1 i

[}
8
Hh
~
wn
~

£f(S n 0) = igl f.o...o0 fO(Si) = igl Ani c A and we may conclude

1

that A is an (S,T)-absorber.

It remains to perform the induction. Assume that fi has been chosen.

Let F be a closed neighbourhood of X\0O such that F n f]._o ceoo £ (S )y =0

0 71+l

and in order to show that the fi+l we are about to determine can be chosen

arbitrarily close to | let V be an open covering of X that refines

{IntX(F)} U {Uz (x)|x € O}. Since in eeoo f (Si+1) is a member of S

-i=2 0
there exist an f ¢ T and an n,, | > n; such that £|F v Ay, = 1,
fi+1° fi° vee © fO(Sn+1) c Ani+1 and fi+l and 1 are V-close. This 1mp11es‘

-i-1

that d(fi+1|0,1) <2 and that fi+ is supported on O\Ani' The proof is

1

completed.

Observe that if f € T and A is for instance an (S,T)-absorber then
f(A) is also an (S,I')-absorber. Conversely, we have the uniqueness theorem

for absorbers:
1.2.11 THEOREM (West [W]): If A and B are (S,T)-absorbers (™) then
for every collection U of open subsets of X there is an f € T that is

U-close to 1 (a U-push f in T) with £(A n UU) = B n UU.

PROOF: Again we only prove the theorem for plain absorbers. Let A and



B be (S,T)-absorbers and let U be a collection of open subsets of X. Put

= i = .U U = =
UU and write A SN A and B = Yy Bis where A1 B, $® and for

ielN, Ai’Bi € S. Select a metric d on O such that the open I-balls of d

form a refinement of U. We construct a sequence fl’fz’f3"" in T such that

for i e IN:

fi is supported on O,

d(£; [0,1) < 27h,

£, 0 gi—l(Ain 0) < Bn O,
B, nOc fiogi-l(A n 0)
and

i-1
£15Y; (g ap v By =

where g, = £, jo...of,. Weput £, = 1.

Assume that fl""’fi have been selected. Then gi(Ai+1)

f.o ...0 f (A ) is an element of S. It follows from the induction hypo-

1 1 1+l

i
thesis that .U (gi(A.) U Bj) n 0 ¢ B, Consequently, there is a B ¢ T that

j=1
-i-2

1 -
is supported on 0\ (gi(Aj) U Bj) and that satisfies d(8|0,1) < 2 and

=1

B(g (A;,.) n 0) ¢ Bn O. Note that since Bo g; € T, Bo gi(A) is an (§,T)-

1+1

i
absorber and that (.g](gi(A.) u B.) U Bo gi(Ai+l)) n O is contained in

Bo g.(A). This implies that there is a y € T such that y is supported on

1.
\(JQI (g; (A ) u B ) U Beg (A 1)), d(ylo,1) < 2 “1-2 na

v (B,

i+l is obviously

n 0) c Bo gi(A) n 0. Define fi+l = Y_ o B. The map fi+]

supported on O and has the property a(fi+l|0,l) < 2—1_1. Consider the

inclusion

£ie1©8; (A0, N 0) =y ©B(g (A, ) n0) =

i+1 17i+1 i+1



= B(gi(Ai+l) n0)cBnoO

and observe that y(Bi n0) cBo gi(A) n 0, whence Bi n 0 is contained in

fi+1° gi(A). It is obvious that fi+ restricts to the identity on

1

jél (gi(Aj) U Bj)' This completes the induction.

Observe that every fi could have been chosen arbitrarily close to 1,

Hence, we may assume in view of lemma 1,1,2 that g = %im g; € I'. We have
o0

that g is supported on O and that '

-~ oo -~ o _i
d(glo,1) < Z d(fiIO,l) <E o=

This means that g and 1 are U-close. The sets g(A n 0) and B n O coincide

because

g(An0) = U g no)= U g (A n0)cBno

and

-1
BnO—]._UG]NBinO—]._lé:INgOgi (BinO)cg(AnO).

This proves the theorem.

The same statement could of course have been made about strong
skeletoids, For skeletoids a similar result can be obtained (see Bessaga &
Petczyfiski [BP2 : ch.VI prop.2.2]). We now give the obvious connexion between

absorbers and strong negligibility.

1.2,12 THEOREM: If A is an (S,T)-absorber and S is an element of S0

then S\A is strongly negligible in X\A.

PROOF: Let A be an (S,T')-absorber and let S € So‘ It is trivial that

A u S is also an (S,T')-absorber. Let U be a collection of open subsets of
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X\A and construct a collection U' of open subsets of X such that

U= {U\A|U € U'}. Let f be an element of T that is U'-close to ! and that

has the property £(A n UU'") (A u S) nul'., Then f|X\A is a homeomorphism

from X\A onto (X\A)\((S\A) n UU) that is U-close to 1.

The next theorem shows that when we omit an absorber the homogeneity

properties of the space are preserved.

1.2.13 THEOREM: Let A be an (S,T)-absorber and let U be a collection
of open subsets of X. Assume that f is an element of T that is U-close to 1
and that F is a closed subset of X with the property that both F and f(F)
are contained in X\A. Then f|F can be extended to an h e T that is U-close

to 1 and that satisfies h|X\A e H(X\A).

PROOF: Put O = UU and define V = {U n f_l(U)|U e U}. Since f and 1 are
U-close V is an open covering of O. Since f ¢ T, f_l(A) is an (8,I')-absorber.
Note that F is disjoint from both A and f—](A). Using theorem 1.2,11 we
find a g € T that is {V\F|V € V}-close to 1, while g(A n 0) = f-l(A) n 0,

Let h = fo g and note that h € T, We have the following situation:

h(A) = £ g((An 0) u (A\O)) = fog(A n 0) u f£o g(A\O)
= £(£77A) n0) UAO = (An 0) U (AO) = 4,
h|F = fog|F = f|F
and
h|X\O = 1,

If x € O then there is a U ¢ U such that {x,g(x)} c U n f—l(U) and hence
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{x,fo g(x)} < U. We conclude that h is U-close to 1.

1.2.14 COROLLARY: If A is an (S,T)-absorber and T is such that it makes
X homogeneous, i.e. X = {Y(x)ly € T} for any x ¢ X, then X\A is also homo-

geneous.
PROOF: This is trivial.

1.2,15 REMARKS: The concepts we discussed in this section can of course
also be defined for non-complete spaces. However, since we then do not have
a convergence criterion like lemma 1.1.,2 at our disposal this generalization
is of limited interest.

The concepts absorber and absorber  (or skeletoid and skeletoid”
etc.) do not coincide. In séction 5.3 we discuss a space XO with the
property that f,g ¢ H(XO) are isotopic iff f = g (remark 5.3.5). This space
is, however, homogeneous in a very strong sense (theorem 5.3.3) which
implies that every countable, dense subset is a strong (Sf,H(XO))-skeletoid,
where Sf is the collection of finite subsets of Xy

In section 3.1 we give a A-pair (S,H(Q)) on the Hilbert cube such that

there exists an (S,H(Q))-absorbern but no (S,H(Q))-skeletoid.









CHAPTER 2

FINITE DIMENSIONAL SPACES

This chapter is devoted to the comstruction of k-dimensional skeletoids

in 1" and R".

2.1 Tame compacta in R" and I

In their papers [GS1,GS2] Geoghegan & Summerhill have introduced the
collection ED?E of "tame" <k -dimensional compacta in R". We shall define
this object and discuss its properties and those of the corresponding
collection in the n-cube. Let n and k be integers with the properties n 2 1
and 0 < k < n. The numbers n and k remain fixed throughout this chapter.

We begin with some terminology.

Let X be a subspace of RS, A subpolyhedron of X is a subset of X that
is the underlying set of a countable, locally finite simplicial complex in
R™. A subset P of X is called a tame polyhedron' if there is an h ¢ H(X) such

that h(P) is a subpolyhedron of X.

2.1.1 DEFINITION: ED?E consists of all compact subsets S of R" that
satisfy the following property: if P is a subpolyhedron of R" with dimension
<n-k-1and U is a collection of open subsets of R" that covers S n P

then there exists a U-push h in H(@R™) with h(S) n P = @.



iﬁ; consists of all compact subsets S of 1" that satisfy the following
property: if P is a subpolyhedron of 1" with dim (P) £n-k-1 and
dim (P n 3I") < n-k-1 and U is a collection of open subsets of 1" that

covers S n P then there exists a U-push h in H(I™) with h(S) n P = @.

One sees immediately that iﬂz and ikﬁ are invariant under PL-homeo-
morphisms. If P is a < k-dimensional subpolyhedron of'Rp(In) then by a
general position argument we find that P ¢ ﬂR: (P e iﬁz). For information
concerning PL-topology see Hudson [H]. The following theorem has been

obtained by Geoghegan & Summerhill [GS2].
2.1.2 THEOREM: ﬂRﬂ is invariant under the action of HCRP).

We shall see that an analogous statement can be derived for ika.

2.1.3 LEMMA: Tf k < n-2, x ¢ 31" and £ : BY | > 3I1™\{x} is a homeo-

1

morphism then for every S cRY , S e ﬂRE_l iff £(S) € ﬁkﬂ.

PROOF: Prove the lemma first for a PL-homeomorphism f and use then the

invariance of ﬂRE_l. The details are left to the reader.

2.1.4 LEMMA: If S is a subset of Int I" then it is an element of ika

iff it is in mﬁ.
PROOF: This is obvious.

2.1.5 LEMMA: iRE and ﬁkﬂ are hereditary.



PROOF: We give the proof for EUEE Let S' be a closed subset of an
element S of ‘.IRE Assume that P is a subpolyhedron of IRrb1 with dimension
< n-k-1 and that U is a collection of open subsets of R" that covers
S' n P. Write P as union of two subpolyhedra P1 and P2 that satisfy P] c uv

and P2 nSs'=@. Let h be a {U\P2|U e U}-push in H(an) with h(S) n PI = @.
We have that h(S') n P = (h(8') n Pl) u (h(S') n Pz) c (h(S) n P]) U

h(S' n P2) = @ and hence the lemma is proved.
2.1.6 PROPOSITION: ﬂNRE is invariant under the action of H(I™).

PROOF: Let S € ETJ'CE, f e H(I™), let P be a subpolyhedron of 1" with

dim (P) £ n-k-1 and dim (P n BIn) < n-k-2 and let U be an open covering

n
x*

every closed subset of 917 is an element of ﬁ?ﬁ If k < n -1 then

of P n £(S) in I". We first show that £(S) n 3I" ¢ M. If k = n-1 then

there is an x € 9I"\S. Since ﬁt{: is invariant under PL-homeomorphisms we may

assume that f fixes x. Let g :Z[Rn—-1 > 31™{x} be a homeomorphism. Applying

lemma 2.1.5, lemma 2.1.3, theorem 2.1.2 and again lemma 2.1.3 we find

n-1

e g lof(s n a1®) €

successively that S n I € ﬁ?ﬁ, g_l(S n aI“) e M

n-1 n SN
smk and £(S n 31 ) € fmk.

Let V be a star refinement of U. There is a VU-push h] in H(In) with

hlef(S n 31“) nP=@. Select an i € N such that h1°f(S) nNPcoO=

(1/i, 1 - l/i)n. Put C = f_1 °h;] (ClIn(O)) n S and note that lemma 2.1.5

implies that C ¢ ﬁt{: Since C ¢ Int I" we have that C EIRE, lemma 2.1.4.

Since h] o f can be extended to an element of H(]Rn) theorem 2.1.2 implies
that h] o f(C) € EIRE By virtue of lemma 2.1.4 we have that h1 o £(C) € ﬁtﬁ
So there is a {V n 0|V ¢ V}-push h2 in H(I™) such that hzoh] of(C) nP =@.

This means that h, o hl is a U-push in H(In) with h

2 °h]°f(S)nP=¢.

2

The following propositions are essentially due to Geoghegan & Summerhill
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[GS2]. For the sake of completeness, we have included proofs.

2.1.7 PROPOSITION: Let S be an element of SIRE(@E), let U be a
collection of open subsets of IRn(In) and let L be a countable collection of
tame polyhedra in an(In) having dimension < n-k-1 (for 1" in addition:
dim (UL n SIn) < n-k-2). Then there exists a U-push h in H(]Rn) (H(In))

such that h(X) n UL n UU = @.

PROOF: We prove the proposition for R". Put 0 = UU and write O n UL as
countable union of tame polyhedra with dimension < n-k=-1: O n UL = ilé’]N Ti'
Let d be a metric on O such that the 1-balls form a refinement of U. Put
T_ = . We shall construct inductively a sequence G?,G!,G%,... of isotopies:

0
n bl .
R x I >R x I such that for i = 0,1,2,...

Gt is supported on 0\}9: Tj for t € I,
a(Gt|0, 1) < 2 fortel
and

Hf(S) 0T, =g,

where H1 = Glo ve.0GY, Put GO =1

RMx I°

If every Gi is chosen close enough to IIR“x I then H = %im Hi is an
isotopy of ]Rn, lemma 1.1.2. It follows easily from the induc;—;:n hypothesis
that H is limited by U and that HI(S) nuULno-=¢g.

Assume that Gi has been constructed. Let f € H(IRn) be such that f(Ti)

is a subpolyhedron of R". It is a consequence of the induction hypothesis

i i
that f o H;’(S) n f(jl.=J0 Tj) = (. Since EIRE is invariant we have that
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fo H?(S) € ﬂRE. Consequently, there is an isotopy F of R" such that FO =1,

Fl° fo H?(S) n f(Ti+1) = @ and for every t € I, Ft is supported on
. Define the isotopy Gl+1:

R x I -R" x I by Gt+] = f—lo Fto f for t € I. It is clear that G1+]

£(0\,U. T.) and d(£ ' o F_|£(0), £ '|£(0)) < 277!
i=0 7] t ’

satisfies the induction hypothesis.

2.1.8 PROPOSITION: If S is a compact element of ﬁREO(ﬁkEO) then S is an

n,~n
element of ﬁRk(ﬂRk).

PROOF: Consider a compact S € ﬂﬂzo. Write S = iU

S. where each S. is
eN "1 1

in ﬂR; and let P be an (n—- k- 1)-dimensional subpolyhedron of R™. Let hI
push S‘ off P. Since ﬁRE is invariant we have that h](SZ) € ﬁRE. So we can

push hl(Sz) away from P keeping h](Sl) fixed. Continue this process. For the

epsilonics see the very similar proof of proposition 1.2.10.

Note that lemma 2.1.4, theorem 2.1.2 and proposition 2.1.6 state that
(ﬂRﬁ,H(R.)) and (ﬁkE,H(In)) are A-pairs.
We now introduce a cell structure on I1 for 1 e N. If i € {0} uN then

Ji is the collection of all cubes in 11 that have the form

1 . .
-i -1i
jgl [mj3 ,(mj+ N3 71,
where m My, ..., are elements of {0,1,...,31—1}. Define furthermore for
i e {0} UN,
_ 2m+] i_
K, = {2.3i|m e {0,1,...,3-1}}

and K = igo Ki' Note that KO c K1 c K2 c ... and that the 1-fold product

(Ki)1 is the set of centres of members of Ji. Let d1 be the maximum metric

on]R1 and let Ul(ﬁi) denote the e-balls inIR;(Il) that correspond with dl'
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Let Pn(ﬁn) be the subgroup of H(Igl)(H(In)) that corresponds to

permutating the n coordinates. We define the Menger space ME by

ME = In\u{U;3-i_|(a({p} X In—k_]))la c ﬁn’

k+1

i e {0} UN and p ¢ (Ki) 1.

It was proved by Stan'ko [$] that Mﬁ is universal for the k-dimensional
compact subsets of R". The following fact has been obtained by Geoghegan &

Summerhill [GS2]:

2.1.9 PROPOSITION: Mk“ € mﬁ.

2.1.10 DEFINITION: If A is a countable dense subset of R then the
N&beling space NE(A) is the set of all points in R" for which at most k
coordinates are elements of A. If A is a countable dense subset of (0,1)

then ﬁE(A) is the set of all points in 1" for which at most k coordinates

are in A. We put N

e = N.(@ and N = Nl(@n (0,1)).

2.1.11 REMARKS: We have the following alternative definitions of NE

and EE:

NE =jmp\U{a({p} ximg_k—l)|a € Pn and p € Qk+l}

and

S

Nk = In\U{a({p} X In_k—])la € in and p € (@ n (O,l))k+1

}.

It is obvious that if A is countable and dense inR (in (0,1)) then there

is an h ¢ H(R™) (H(I™)) such that h(NE) = NE(A) (h(ﬁﬁ) = F]E(A)). It is

n

known that Nk and ﬁﬁ are k-dimensional spaces, see [E2:1.5.9].
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- 2.1.12 THEOREM: If A is a countable dense subset of R then
EIRE = {f(S)|f e H( ]Rn) and S compact c N;(A)}.
If A is a countable dense subset of (0,1) then

e = {£(8)|f ¢ H(In) and S compact c ﬁn(A)}.
k k

PROOF: In view of 2.1.11 it suffices to prove the theorem for A = @
respectively A = Q n (0,1). The inclusion HRE c {f(S)|f € H(ZRP) and S
compact < NE} is a consequence of 2.1.7 and 2.1.11. For 1" the same argument
applies.

Consider now Bothe's theorem (see Bothe [Bel] or [E2: 1.11.6]) that

every compact subset S of Nz can be embedded into M.kn by an f ¢ H( RrY). If

we combine this result with 2.1.2, 2.1.5 and 2.1.9 we have proved the
n
theorem for R.

Let f € H(In) and let S be a compact subset of 'ITIE Define for every

i e NN, Si =S n [2_1, 1-2711% 1If we prove that every element of

{Sili e N} u {S n F|F an (n- 1)-face of iy

is in ﬁ?{: then the propositions 2.1.6 and 2.1.7 imply that £(S) € ‘zﬁt{: For
n

k
that Si € ﬁtz Let F be an (n- 1)-face of In and let x € BIn\F. If k =n-1

every i € N we have that Si c N, and hence that Si € ‘JRE This means

then every closed subset of o1" is in ?TJ'IE and we are done. If k < n-1
select a homeomorphism h : 3I™\{x} >R’ such that h(S n F) c NE(Q\{O,I}).

Then h(S n F) € EU?E_I and hence S n F ¢ E'I\I‘EI: This completes the proof.

2.1.13 COROLLARY: Every S e ED?E (ﬁeﬁ) has dimension < k.
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PROOF: dim (NE) = dim (ﬁﬁ) = k, see [E2:1.5.9].

2.1.14 COROLLARY: If S ¢ &IRE (m‘l:) and S' ¢ EIRE, (ive{{‘,) then

n+n' ,~n+n'

S x 8' € ﬂnk+k' (ﬂRk+k,).

1
PROOF: There exists an f ¢ H(R™) and an f' « H(Bfl) such that

1
£(S) < NE and f(S') c NE,. Consequently, one has that
' n n' n+n'
f xg(SxS8' c Nk X Nk' c Nk+k"

2.2 Skeletoids in I"

In this section we prove that (ﬁki, H(In))—skeletoids exist. Our
construction of a skeleton is based on the space ME, which was introduced
by Menger [M] and which we modify slightly.

Consider the following collection of (n-k- 1)-dimensional planes in

L = {a({p} x In_k-])|p € Kk+] and o € ﬁn}'

Select an enumeration (Li)eio= of L such that if Li = a({p} x In—k-l) then

0
P € (Ki)k+1. Define for m ¢ N and i ¢ {0} UNN the compact sets

F‘(‘)‘ = 1",
m  _ .m%n )
Fivr = Fj\Uygmi-m(Ly)

and Am = iQO F?. It is easily seen that F? can be written as union of

members of J?+ . We obviously have the following situation:

m- 1

F! c F? c F? c ..
i i i



and

A1 c A2 c A3 C .

Note that K is a countable, dense subset of (0,1) and that ﬁE(K) = T™UL.

This implies in view of theorem 2.1.12 that every Ai is a member of ﬁkﬁ.

. SN n ~
2.2.1 THEOREM: (Am)me]N is a strong (ﬂRk, H(I"))-skeleton .
The remaining part of this section is devoted to the proof of this

theorem. Before we start with the actual proof we introduce some pushes of

EF+1 d Ik+].

an

Let € € (0,1/3] and define ®, ¢ [0,2) > [1,») by

if 0

IA
L2
IA

4+ e
3e ’

_ 1 1-3¢ )
O (1) = 3oy @+ 5 if

™
IA
a}
IA
-

v

1 if r

Note that that the function f(r) = rws(r), r € [0,9), is a PL-autohomeo-

morphism of [0,») with the property £([0,e)) = [0,1/3). Using the vector

space structure of'mk+] we define for € € (0,1/3] the homeomorphism

Xe € H( ]RkH) by

Xe(®) =0 _(d, , (x,0))x.

3

]+1(O) and satisfies

Note that Xe is supported on U

k+1

k+1
X (U (0)) = U1/3(0).

Section 2.4 is devoted to a proof for the statement:
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k+1

+ ' 2
for x,y e R ’ dk+1(Xe(x)’X€(y)) 2 5 dk+](x,Y)-

Since Xy/3 = 5Rk+] it is easily seen that for every € ¢ (0,1/3], Xe is a

k+1

k+1
, )|

(0)}-push in {y € H(R

X,y € EF+1}.

{u dey (Y5 (y)) 2 %-dk+l(x,y) for

Let m ¢ {3,4,5,...}, i € {0,1,2,...}, p ¢ (Ki)k+1 and put for every

X € Ik+1,

m

Vo =+ 137 et e,

It follows that w? » is a {ﬁggli(p)}-push in

B = {y e O™ e, 0G0y 0) 2 § dp,, Gy for x,y € T,

which satisfies

m okl _ ~k+]
¢i’p(U%3—1/m(P)l - U%3—1—](P)~

PROOF of theorem 2.2.1: Let m be a natural number, € a positive real
number, F a closed subset of I" and S a member of iki that misses F. Since
1" is cbmpact it suffices to consider only one metric: dn. We have to find
a {ﬁg(x)lx € In}—push g in {y € H(In)lylAm UF =1} and an i € N such that
g(8) < A;.

Let T be the countable subgroup of H(I™) that is generated by the set

ﬁn U {wi,p X lln—k—llr e {3,4,5,...}, 1 € {0} uN and

k+1

P € (Kl) }.

Consider the collection

k-1 k+1

K= {y{p} x ™ )p e K and vy € T}.
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Note that L is contained in K. Since K is a countable set of tame polyhedra
of dimension n-k~-1 there exists according to proposition 2.1.7 a

{Uzlz(x)|x € I™}-push £ in {y € H(In)l Y|F v Am = 1} with
£(S) n UK\A_ = 9.

Put S' = £(S) and select a j ¢ N such that j > m, 37 e/2 and

3_J+1 < dn(S',F). Define the compactum
C=U{Je J?lJ ns'# 0}

Note that C is a neighbourhood of S' that has distance greater than 377 to

F.

n n

We shall construct a 3_J+]—isotopy H: I xI->T1I x I that satisfies:

H, =1

= ' . o
0 n’ HtIF u A.m 1 for t € I and HI(S ) c A. Then the function H, o f

j+1° 1

is the push of 1" we need. The isotopy H will be the limit of a sequence

HO,H!,H2,... of isotopies of 1" that satisfies for 1 = 0,1,2,...
1
HI(C\UK) = C\UK

and

1., j+l1
HI(S ) c F1 .

The Hl's are determined inductively with as first step H? = 1

it will be shown that G1 = H1+l

0y T Moreover,
1,-1 . -1-j .
o (H") is a 3 -isotopy such that for

every t € I, Gi € E', where

El

v e HOM 4 (1,7 (1) > 3 a_(x,y) for x,y € 1" and

Y|F u A =1}

Consider now lim Hl. Since G1 is a 3-]'"J

1o

-isotopy with Gé = 1 the
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sequence (Hl)olo=0 is uniformly Cauchy. So H = lim H1 exists and it is a
. T

]—homotopy" of I" with H = 1. We show that H is an isotopy. Since I"

" —j+
3 0

is compact it suffices to prove that every Ht is onto and one-to-one. Let
t € I and note that Ht is the limit of a sequence of autohomeomorphisms of
a compactum and hence it is onto. Let x and y be two arbitrary distinct

points in I". Select an 1 ¢ IN such that 21-dn(x,y) > 1. Since for every

n
>

s € {0} UN, Gi € E' we have that for z,z' ¢ I
s S/ 2 '
dn(Gt(z)’ Gt(Z )) 2 3 dn(Z,Z )

and hence that

4 (10, B 2 Gl a ey > 37

-] s

-isotopy with GO = 1 it follows that
3
2

Since G° is a 3 °
1

i, moomh <

-j-1
a1 e N 3 . Consequently,

a (B (x), B (y) > d_(H.(), B () - 3.3 >0

and Ht(x) # Ht(y). It is obvious that Ht fixes F u Am' So we have proved

that H is a 3_J+l~isotopy of I" that satisfies H, = 1 and HtlF U Am = 1 for

0

FJ+] =) FJ+l > FJ+1 > lead, together with

0 " 2 cee
H?(S') c Fi+], s ¢ {0} UN, to

t € I. The inclusions

H (s") = lim B}(S") < B ot a

s=0 "s j+1°
S—>0o
Now it remains to perform the construction of the Hl's.
Assume that Hl has been determined. Since H1 = Gl_lo ... oG we have

that Ht fixes F u Am for every t € I. Consider the situation:
s' c C,

u} (C\UK) = C\UK
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and
1 =
S' n UK\A.m 1)
This implies that
HY(ST)\A © C\UK
1 m

and since L e L c K and L are disjoint.

1

n Am = () we have that H}(S') and L1

Furthermore, we may derive that
1, 1, o 1.,
Hl(s ) c HI(S \Am) u H](S n Am) c C.

Since S' is compact there exists an r ¢ {3,4,5,...} such that

Logr 141
dn(Hl(S ) Ll) > 27 3 .

Let L1 be of the form a({p} x In—k—l), where o € ﬁn and p € (Kl)k+l. Let V¥
be a 3-1_J-isotopy of Ik+1 such that ¥ =1, V¥

0 and for t € I, Wt

_ ¥
1 w]-"'j sP

is a member of

E={ye E|ly is supported on ﬁ:gll_j(p)}.
Consider the product Ik+] X In_k—l

T s Ik+1 X In_k_l - In-k_]. Let J be the cube in J?:; of which p is the

n-k-1 n-k-1

= 1" and the projection

centre. Define C = 7(J x I n a_l(C)) and F = m(J x I n a_l(F)).

Since the diameter of J with respect to dk+1 is 3_1_J and since dn(C,F) > 37d
we have that C and F are disjoint. Let B : In_k-] -+ I be a Urysohn function

with 8(C) < {1} and B(F) c {0}. Define the isotopy © : I" x I + 1" x I by

k+1 k-1

0, (x,y) = (¥(x,t8(y)),y) for x e T ', y ¢ I et

and put Gt = a<’9t° u_] for t ¢ I. Since Wt ¢ E it follows that G1 is a

3-1_J—isotopy of I" such that every level is an element of
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ty € HIM]a, 0G5 2 3 d (x,y) for x,y € T°

and y 1s supported on u(ﬁ%;ll_j(p) X (In_k_]\ﬁ))}.
2

. n n-k-1, 2 . R, - .
Since F ¢ T \a(J x (I \F)) and since Am c Aj c F1+1 Fl\U%3_1_J(L1)
this implies that G1 is a 3_1_J

Define now H1+] = Glo Hl. We prove that H}+](C\UK) = C\UK and

k+1
1+3°

G}(D) = D. Both Fi+1 and C can be written

as union of members of J?+j and hence we have that G}(Fi+1) =F

-isotopy with each level in E'.

1+1,., j+l1
B (1) = Fp

implies that for each D ¢ J

. Note that for every t € I and D ¢ J Wt(D) = D. This

n
1+3°
i+l

1 and

G}(C) = C. Define g ¢ H(In) by
g=oo W, X lpp-p oo’
l+j,p © I ’

The function g is a member of I' and consequently we have that g(UK) = UK.

We shall see that g|C = G}[C. Let x € Ik and y € In—k_] such that

a(x,y) € C. If x ¢ J then y ¢ ¢ and B(y) = 1. This implies that O](x,y) =
(w;+j p(x),y) and hence that G}(a(x,y)) = g(a(x,y)). If x ¢ J then
3

Y (x) =x= ¢r . (x) for every t € I and consequently Gl(u(x,y)) =
t 1+j,p 1

a(x,y) = g(o(x,y)). Now we have that G}(C\UK) = C\UK and H}+](C\UK) = C\UK.
Since ¢{+j p(ﬁggll_j/r(p)) - ﬁ:;ll_j_](p) and dn(H}(s'),Ll) > 3375 /r we

have that go H}(S') and ﬁT3_1_j_](L1) are disjoint. If we combine this with
2

1 1,y 1, 3+1, _ _j+1 _ Al 1,., j+1
G oH/(S') < G (F ) =Fy , g|c = G]]C, H(S') < Cand Fj,| =
J+1\ﬁ?3_1_j_1(L1) we find that

1

141
H 1

v=°1| j+l
(s") G Hl(S ) c F1+1.

This completes the proof of theorem 2.2.1.
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2.3 Skeletoids in R"

Using the result of the preceeding section 2.2 we construct a
k-dimensional skeletoid in R". As an application we obtain universal spaces
in the class of strongly o-complete spaces.

2.3.1 THEOREM"

: There exists a strong (ﬂRE,H(IRP))—skeletoidﬂ.
. n n ~n n . .
PROOF: Consider Int I" ~®TR and S = {S ¢ HRk|S n 31 = @}. It is easily
seen that it suffices to prove that there is a strong (S,H(Int In))—
skeletoid”. Let (Ai)ie]N be a strong (ﬁﬁE,H(In))—skeletonﬂ, thecrem 2.2.1,
and define A! = A. n [2_1,1-—2_1]n for i ¢ N. We show that (A!). is a
1 1 i’1elN
strong (S,H(Int 1™"))-skeletoid” ((S,H(Int 1™)) is a A-pair because
(ﬂRE,H(]Rn)) is a A-pair). Let S € S and let U be a collection of open sub-
sets of Int I" that covers S. If i ¢ IN then there are a j € N and a U-push
h in {y « H(In)|y|Ai = 1} withh(S) < Aj. Let m > j such that
27 < dn(h(S),BIn). Then h|Int " is a U-push in {y € H(Int In)|y|Ai =1}

with h(S) c Ai.

n
k

n

k

is topologically complete. By the countable

Let B, be a strong (ﬂRE,H(]Rn))—skeletoidN and put s =]Rn\BE. Note

that since Bl is g-compact s

k k
sum theorem ([E2: 3.1.8]) we have that dim (BE) = k. Geoghegan & Summerhill
[GS2] have shown that there exist (ﬂRE,H(iRP))—absorbers. This result

follows from theorem 2.3.1. Moreover, theorem 1.2.11 implies that the

absorbers constructed in [GS2] are in fact also strong skeletoids.

*)

This theorem can also be found in Dijkstra [D1].
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2.3.2 PROPOSITION: s

k is homogeneous.

PROOF: Apply corollary 1.2.14.

Using theorem 1.2.13 we can prove more results in this direction: SE is
strongly locally homogeneous and hence countably dense homogeneous (see

Anderson, Curtis & van Mill [ACM : sec.5]).

2.3.3 PROPOSITION (Geoghegan & Summerhill [GS2]): dim (SE) =n-k-1

n

and every compact subset of sk

is an element of ﬂRn .
n-k-1

PROOF: The set]Rn\Ng_k_1 is a countable union of k-dimensional

subpolyhedra of R™ and hence there is an h ¢ H( R™) with h(BE) =
2y
k

dim (s;) = n-k=-1 ([E2:1.5.10]).

B ('Rp\Nz_k_l), theorem 1.2.11. Consequently h(S;) c NE—k—l and hence

n
K
subpolyhedron of R" and that U is a collection of open subsets of R" that

Let S be a compact subset of s Assume that P is a k-dimensional

covers S n P. Since P ¢ ﬁRE there is a U-push h in H(imp) such that

h(BE nul) = (B; u P) n UU, theorem 1.2.11. Hence, we have that h(S) n P = @.

2.3.4 PROPOSITION (Geoghegan & Summerhill [GS2]): If n < 2k+ 1 then

every o-compact subset of SE is strongly negligible in SE.

PROOF: According to proposition 2.3.3 every o-compact subset of SE is
an element of (ﬂR:_k_])o c ﬁREU. Theorem 1.2.12 implies that it is strongly

negligible.

2.3.5 DEFINITION: A space is called strongly o-complete if it is a



33

countable union of closed, topologically complete subspaces. If

1 ¢ {0,1,2,...,2} then we define the class

Vl
o

= {X|X is a strongly o-complete space with dimension < 1}.

A space X is called universal for Vi if

Vé = {Y|there is an F -set in X that is homeomorphic to Y}.

Note that V: is simply the class of all strongly o-complete spaces. If
X is negligible in a complete space then it is an Fo—set and hence a
strongly o-complete space. We shall see that V: is precisely the class of
spaces that can be negligible subsets of a complete space (see theorem

4.5.12).

2.3.6 DEFINITION: A closed subset S of a space X is called thin if for
every collection U of open subsets of X there is an f ¢ H(X) that is U-close

to 1 and satisfies h(S n UU) n S = @.

Geoghegan & Summerhill [GS2] have shown that every member of ﬂRik+] is
thin inﬁmzk+l. This implies with proposition 2.1.8 that if S,S' € ﬂR2k+1

k

then there is an h € H(]Rn), which can be chosen arbitrarily close to 1,

with h(S) n S8' = @. A straightforward application of lemma 1.1.2 gives that

2k+1

if S, 8' € (ﬂRk )0 then there is an h € H(TRP) such that h(S) n S' = @.

2k+1

2.3.7 THEOREM: The space sk

. , k
is universal for VG. Moreover, an

arbitrary space X is an element of Vﬁ iff it is homeomorphic to a (strongly)

2k+1

negligible set in Sk

2k+1

PROOF: If X is strongly negligible in Sy

then X is negligible and
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hence an Fo—set. Consequently, X is strongly o-complete.

Let X ¢ Vg and select a compactification C of X with dimension < k,

[E2:1.7.2]. There is an embedding f of C in N§k+] (see [E2:1.11.5]) and

2k+1 2k+1 2k+1

hence f(C) € ﬂRk , theorem 2.1.12. Since Bk € ﬂch , £(C) can be
pushed off Bik+]. So we may assume that f embeds C into sik+]. Write
X = ig]N Si,'where Si is a closed, topologically complete subset of X.

Define for every i e N, Ri = f(CIC(Si)\Si) and furthermore

P = f(ClC(Si)) and R = iU Ri' For i ¢ N we have that Ri is the

igni €N

remainder of a topologically complete space in a compactification and hence

. +
a o-compact space. So R is a o-compact subset of sik ! and consequently an

2k+1
element of ﬂRko

2k+1
By

. Using theorem 1.2.11 we find an h € H(B¥5 such that

. 2k+1
ik+1. The o-compact space h(P) is an element of ﬂRko

2k+1
k

h( UR) =B

and hence h(P)\BIZ(k+1 is strongly negligible in s , theorem 1.2.12. Since

Si is closed in X for every i ¢ N, we have that

2k+1

h(P)\Bk = h(P\R) = ho £(X).

This proves the theorem.

2.3.8 REMARK: The space sé

verified that sé is nowhere locally compact. The assertion follows then

from the Alexandroff & Urysohn [AU] characterization of R\Q.

is homeomorphic to R\Q. It is easily

2.4 A technical lemma

In this section we consider the functions we : [0,®) > [1,o) and

Xe € H(IR;) which are defined by



3e if0<r<ce
o (r) = 3(11 €)(2 . r3€) fe<rc<l
1 ifr2>1
and
X, ®) = o_(llx|D=,

where € ¢ (0,1/3] and ||x|| = dl(x,O)

2.4.1 LEMMA: For every X,y e]R1 we have that

I, 6 = x, =5 llx- vl

PROOF: We comsider four cases.
I. If ||x]|| =

statement is obvious.

II. Let e < ||x||,|lyll < 1.

|xi-yi|. Without loss of generality we may assume that X,

= max {|xi| i=1,2,...
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,11.

e or ||x|]| 21 and ||y|| < € or |ly]| 2 1 then the

For some i < 1 we have that ||x-y]|| =

> v and X, > 0.

This implies that ||x|| - ||yl] = llx-y]| = XY and hence we have that
=] - y; 2 x| - X, . Since ||x|| - X, 2 o, X, 2y, and X, 2 0 we find that
xi(“yll— yi) P yi(Hx“ - X;). So we have that

i -2 7i .

=1l iyl
Consider now

X, v,
_ - i . 1-3e, _ i 1-3e, _
XE(X)i Xe(y)i 3(1_6)\2+ HXH ) 3(1_5)\ + Hy”
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2 1-3¢ (%i i 2
oo st st () 25

We may conclude that
2
x, @) = x, N = Ix ), - x ;] 25 lIx-yll.

III. Let ||y|| s € and e < ||x]| < 1. Select an i < 1 such that [|x- y| =

Ixi . We may assume that x; 2 0. We make the following subdivision.

- yi!

v

(a) vy,

i X, . Since wE is a decreasing function we have that

WE(HYH) 2 @E(”XH) and hence that

lIx, @ = x @l

"

v, 0.yl = x; o (=l 2

v

2
yi=x; = ==yl 25 llx-vll.

(b) x, 2 y;+ As above we have that yin|| < xiHy[| and consequently,

i
Sy s
y. < yil € €.
ol [E3]
Consider
R s S (”x”_e)-_yi=
€ 1 € 1 3”XH 3(]"8) ”x” 3e

3L.(exi ) .> . % xi(”x|]-e) R
S Ml (1-e)ll =]l

ex, ]l - €
G 79 5 =5 e

So the conclusion is that ”xe(x)— Xe(Y)” 2 % llx-yll.

IV. Let |ly|| < and ||x]| = 1 and assume that ||x- y|| = x; - y;. Again
we consider two cases.
(a) Ixil > 1. This implies that X, 2 1. Consider the set A = {z EIEFI

z, = 1}. Obviously, there exists an a e¢ A such that ||a| = 1 and
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dl(xe(y),A) = dl(xa(y),a).ln view of the results obtained above Xe

satisfies

w|N

4 ()58 = 4, (X (1),a) 2 5 d,(y,2) > 5 d,(7,8).

It is easily seen that dl(xe(Y)’Xe(x)) > dl(xs(y),A) + dl(xe(x),A).

This yields:
2

d; (X ()5x (®)) 2 3 d,(v,4) + d;(x (x),A) 2

2 2 2

3 (4 (7,8) + d (x,A) = 5=y, +x, -1 =3 [x-yl.

. g 1
(b) |xi| < 1. Define x € R™ by
Q; = min {1, max {‘l,xi}} for 1 <1i< 1.

Note that [|§|| = 1 and that []x—y” = ||;—yH We have proved that

”xe(;) - xe(y)” 2-% ”;-y l. Using xe(x) = x and XE(;) = X we find that

I G0 = x DI 2 lIx @ = x Ol = 2 1F-yll =2 llx-yll.

Since we have considered all possible choices of x and y this concludes

the proof.






CHAPTER 3

THE HILBERT CUBE

3.1 Introduction

We discuss in this section the connexion between absorbers and
skeletoids in the Hilbert cube. Furthermore, we give examples of pseudo-
boundaries and related objects.

The Hilbert cube will, except in section 3.2, be represented by

Q=;In i
where each Ji is the closed interval J = [-1,1]. Let ™ be the projection

Q ~» Ji' We use on Q the following convex metric

1
p(x,y) = max [x; - y.| 57,

1
1elN

)

= = - > i i
where x (xi i el and y (yi)i e I The open e-balls (e = 0) in Q with
respect to p are denoted by Ue’ The symbol p is also used for the metric on

subproducts of Q: if P ¢ N then for x,y ¢ .1I_ J,, p(x,y) = max ]x. - y.I !
1€P 1 ieP 1 1

If A is a subset of ig Ji then diam A is the diameter of A with respect to

P
p. If i €N and P = {j e N|j 2 i} then we define Q = ng Jj.
Let J; =J° = (-1,1) for i ¢ N and define the pseudo-interior s of Q

by s = iglﬂ'];' The space s is homeomorphic to the separable Hilbert space
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£2, Anderson [Al]. Put 0 = (0,0,0,...) € Q and B = Q\s. The set B is called
the pseudo-boundary of Q and an element f € H(Q) is called boundary
preserving if £(B) = B or, equivalently, f(s) = s. We can write B as the

union U{Eg|i e N and 6 € {-1,1}}, where the Eg’s are the endfaces of Q:

6 _ =
E; = {x e Q|xi =0},

3.1.1 DEFINITION: A closed subset S of a space X is called a Z-set in
X if for every open covering U of X and for every map £ : Q + X there is a
map g : Q > X\S that is U-close to f. A subset A of X is called a o-Z-set in
X if it is a countable union of Z-sets. The collections of Z-sets and

o-Z-sets in X are denoted by Z(X) and ZG(X), respectively.

In complete spaces the following properties are easily proved (see
[BP2: sec.V.2]): (Z(X), H(X)) is a A-pair, if A is a closed o-Z-set then A
is a Z-set and every Z-set is nowhere dense. It is well known that in Q
every Z-set is thin and that every endface and every compactum in s is a
Z-set (;ee [BP2 : sec.V.3]). So B is a o-Z-set.

Note that since Q is compact, a closed subset S of X is a Z-set iff
for every € > 0 and £ : Q > X there is a map g : Q + X\S with a(f,g) < g,
where d is some fixed metric on X. The following theorem may be derived
from Chapman [C: 19.4] and Anderson & Chapman [AC]. We obtain it as a

direct consequence of theorem 4.3.6.

3.1.2 THEOREM: Let U be a collection of open subsets of Q, let A be a
compact space and let F : A x I » Q be a homotopy that is limited by U. If
FO and F] are embeddings of A in Q such that their images are Z-sets then
there is a U-push h in H(Q) with ho F

0=F1.
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3.1.3 COROLLARY: If A and A' are Z-sets in Q and £ is a homeomorphism
from A onto A' with p(f,1) < € then there is a g € H(Q) such that gIA = f

and S(g,l) < €.

PROOF: Define the straight-line homotopy
F(a,t) = (1-t)a + tf(a) for a ¢ A and t ¢ I.

Then F is limited by U = {Ue/z(x)!x € Q}. Applying the theorem we find a

U-push g in H(Q) with goF, = F.. So p(g,1) < € and g|A = f.

0 1

Theorem 3.1.2 has the following consequence.

3.1.4 THEOREM: 1f (S,H(Q)) is a A-pair such that S < Z(Q) then every

(8,H(Q))-skeletoid is a strong (S,H(Q))-skeletoid .

PROOF: Let (Ai)ie]N be an (S,H(Q))-skeleton. Assume that S ¢ S, ¢ > 0,
m € N and that F is a closed set in Q with p(F,S) > €. There are an n ¢ IN
and an f ¢ H(Q) such that p(f,1) < £/2, f|Am =1 and £(8) < An' Define the

map F : (S v Am) x I +Qx1Iby
F(a,t) = ((1-t)a + tf(a),t).

Let 7 be the projection Q x I +~ Q. If X = (An x I) u (8 x {0,1}) then F|X
is an embedding. Since F(X) c (An U Am U S) x I, we have that it is a Z-set
in Q x I. According to theorem 11.2 in Chapman [C] there exists an
embedding F of (S v An) x I in Q x I such that ?IX = F|X and

E(ﬂo F,wo F) < €/2. Define G = 7o F and note that G is a homotopy from

Su Am into Q that is limited by

U= {U_()\(F v Am)|x e Ql.
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The functions G0 = ISLJAm

onto a Z-set in Q. According to theorem 3.1.2 there is a U-push h in H(Q)

and Gl = f|S ] Am are homeomorphisms from S u Am
with h(S) = Gl(S) = f(S) ¢ An. This proves the theorem.

3.1.5 REMARK: As a corollary to this theorem one has that every
(8,H(Q))-skeletoid is an (S,H(Q))-absorber. There are collections S in Q
such that absorbers exist but no skeletoids. Let S be the collection of all
countable Z-sets in Q. It is well known (and easily proved with theorems
3.1.2 and 1.2.11) that every countable dense subset of Q is an (S,H(Q))-
absorber . Consider a sequence A1 c A2 c A3 € ... in 8. For every i e N
there exists a countable ordinal ay such that the ai-th derived set (Ai)(ai)
is empty, see Mazurkiewicz & Sierpifiski [MS]. If B is a countable ordinal
with B > sup {aili € N} then [O,NBJ(B) # @. Hence, the ordered space [O,NB],
which is of course embeddable as a Z-set in Q, cannot be embedded in any of

the Ai's. This means that (Ai)ie is not an (S,H(Q))-skeleton. Note that

N

this idea also works in I" and R".

We shall now discuss some examples of skeletoids in Q. The most
important example is B, which is a (Z(Q),H(Q))-skeletoid (Anderson [A4]).
This has the consequence that every o-compact subset of s = £2 is strongly

negligible. Another example (also due to Anderson) is

de = {x ¢ Q|there is an i € N such that for every j > i

This o-Z-set is a skeletoid for {S ¢ Z(Q)]S is finite dimensionall}. Curtis
and van Mill [CM] have shown that every dense o-Z-set in Q that is homeo-
morphic to the product of @ and Cantor's discontinuum is a skeletoid for

the collection of zero-dimensional Z-sets in Q. We shall construct this
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skeletoid in the next section. A related concept is that of a boundary set.

3.1.6 DEFINITION: A o-Z-set A in Q is called a boundary set if
Q\A ~ £2, A g-Z-set A in Q is called a deformation boundary set if there is
a homotopy F : Q x I » Q with FO =1 and F(Q x (0,1]) c A.

Curtis [Cs] has shown that every deformation boundary set is a boundary

set. Clearly, B and B_., are deformation boundary sets. Van Mill [M1] has

fd
obtained a boundary set that.contains no arcs. This shows that the concepts
boundary set and deformation boundary set do not coincide. Henderson & Walsh
[HW] have given an example of a deformation boundary set without disks.
Every boundary set has infinite dimension. Since each complete space can be
embedded as a closed set in £2 this follows directly from the existence of

complete spaces with arbitrarily high defect (de Groot & Nishiura [GNJ]). See

also remark 5.4.6.

3.2 k-dimensional skeletoids

Using the main result of section 2.3 we build (Sk,H(Q))—skeletoids in

the Hilbert cube, where
Sk = {S|S is a Z-set in Q with dimension < k}

The number k ¢ {0,1,2,...} remains fixed throughout this section.

It is convenient to use a different representation for the Hilbert cube
here. Let cTR be the compactification of R that is obtained by attaching
two endpoints -~ and ». Let d be a convex metric on c R that is bounded by

1. The Hilbert cube Q is represented by , gnq cR and has metric
i
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p(x,y) = max {d(x,y)/i|i ¢ N}.

Let LI Q > ¢ R be the projection on the i-th coordinate.
We construct the skeletoid. Identify for every n e NN, R" with

R" x {(0,0,0,...)} < Q. This gives us the following situation:

RcR2cR3c ... cR'c ... c Q

and in view of corollary 2.1.14:

k+l ﬂRk+2 c ﬂRk+3 c

W?k Xk Xk

. + . .
Since the elements of smﬁ 1 are compact subsets of the pseudo-interior

s = iI;I]NIR with dimension < k, we have that ?D?tﬂ c Sk for every 1 € WN. Let

158

(ci)ie]N be an (iU%E,H( R™))-skeleton for n = 2k+I , 2k+2,..., theorem 2.3.1.

1’f2’f3"" and natural numbers

LIFLUTLPPRRE such that for every i ¢ NN,

We determine inductively functions f

fi e H( ]R2k+i)

and

i 2k+]j 2k+i+]

g £ (Cn. ) < fi+](cn. )
1 i+]
where n, = 1 and f] = ,]R2k+l'

then f.(C2k+J) is a member of M
J n4

The construction is straightforward. If j < i

2k+]j
k 3

proposition 2.1.8 this implies that jgl fj (¥

2k+i+1 2k+i+1 2k+i+1
1 )l em MR

k
2k+i+1
fi+l e H(R ) and an n

, theorem 2.1.2. According to

2k+j

. Since
ny

) e smf(k””

(c is an (M ))-skeleton there exist an

f.(02k+:|) cf (02k+1+l

i
> n, such that .U .
i i=1 73 nig i+l 054

If we define
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2k+1

then Di € ﬂRk

c Sk and

© 3 3
In order to prove that (Di)i=1 is a skeleton we need a dimension-

theoretic lemma.

3.2.1 DEFINITION: A map f from a metric space (X,8) into a space Y is
called an e-mapping if for every pair x,y € X with §(x,y) 2 €, £(x) and f(y)

are distinct.

3.2.2 LEMMA: If X is a compact metric space with dimension < k and L

2k+1+1, le {0} UN, then for every € > 0 the

+ 1
set of e-mappings from X intoﬁR?k l+]\L is dense in C(X,im2k+ +1), where

is a linear k+ l-variety in R

C(X,Y) is the space of continuous functions from X into Y with the compact-

open topology.
The proof of this lemmais an easy adaptationof [E2:1.10.4 and 1.11.3].

3.2.3 THEOREM™): (D.)

idiem is a strong (Sk,H(Q))—skeletOn".

PROOF: In view of theorem 3.1.4 it suffices to show that (Di>ie]N is an
(Sk,H(Q))—skeleton. Let € > 0, me N and S ¢ Sk' Since Q is compact we only
have to prove that there are a y € H(Q) and a j € N with Y|Dm =1,

y(8) ¢ Dj and p(y,1) < e. Corollary 3.1.3 reduces the problem to finding a
j e N and an embedding f of S u Dm in Dj such that f|Dm =1 and S(f,l) < €.

Select an 1 € N with 1/i < ¢/2 and i > m. We shall construct a "tame"

*)

This theorem can also be found in Dijkstra [DI1].
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embedding of S inimzk+1+]. Define the function space

K=1{yecm us, r2FIHLy

Togsis) © Y(8) © (==,0]
and y|Dm = 1}.

Note that K is a closed subset of the complete metric space

2k+i+l, 4 e . .
(C(Dm usS, R ),d), where d = d2k+i+].Hence, it is a Baire space. Let H
2k+i+1 .
be a closed subset of R and let £ > 0. Define the compactum
SE = {x € S|p(x,Dm) > g}

and the set of functions

K(g,H) = {y € K! Y]Dm u s is a g-mapping such that

€

Y(SE),n H = ¢}.

k

CLAIM: If H = a({p} x R'?), where a ¢ P ket

+
Ik+it+] and p € R , then

K(¢,H) is open and dense in K.

PROOF: Showing that K(£,H) is open is left as an exercise to the

reader. Consider the density. Let Yy € K and 6§ > 0. The set y(Sg) is

2k+1 2k+1

contained in R x (==,0)) with

d(y|SE,y') < §/2. Since H is a linear k+i—varie£y inJR2k+1+l we can find

2k+1

x (=»,0]. Select a y' in C(Sg,]R

with lemma 3.2.2 a ¢-mapping § € C(S,, R x (=2,0)) with d(B,y') < /2

and B(S,) n H = §. Since D_ c r2KH

g-mapping from Dm u SE intoim2k+1 x (==,0] which satisfies

x {0} the function B' = Ip, v B is a

&(s',ylnm ] SE) < §. If we apply Tietze's theorem coordinate-wise to the

2k+1

function B' - (Y|Dm U SE) we find an extension B : Dm UusS->1R x (==,0]

with d(B,f) < 6. So B is an element of K(£,H) and the claim is proved.
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Consider the set L = {a({p} ximk+l)|u e P and p € Qk+]}. Select

2k+i+1

an enumeration (LJ.)j of L such that for each L ¢ L the set {jeN|L = Lj}

eN

is infinite. Because K is a Baire space the set

1
D=.n K—.—L.
jeN (J’ J)

is dense in K. It is easily seen that the set {y ¢ K|5(y,1) < g/2} is an
open non-empty subset of K. Let h be an element of D n {y ¢ K|p(y,1) < &/2}.
If x and y are distinct points in Dm U S then there is a j € N such that

X,y € Dm us / and p(x,y) = 1/j. Since h|Dm u S]/j is a 1/j-mapping we may

1
conclude that h is one-to-one and hence an embedding. Note that for every

2k+i+1 - N2k+i+1

j e N, h(S]/j) n UL = @ which means that h(S]/j) cR Xk

\UL

Theorem 2.1.12 and propositions 2.1.5 and 2.1.8 imply that h(S), which is a

h(sl/j)’ is an element of ﬁR§k+1+]. Obviously,

compact subset of Dm u jg]N

one has that S(h,l) < gf2 énd h|Dm = 1. The map h is the aforementioned

"tame" embedding of S.

Consider now the sequence (Dj)j N The set Dm is contained in
Di+l = fi+l(C§§:i+]). Since (fi+l(C§k+i+l))j€]N is an (ﬂR§k+i+l,
H('R?k+;+l))—ske1eton there exist a g ¢ H(:m?k+i+]) and a j € N such that
gla =1, gh(s)) < fi+](c§k+i+‘) and p(g,1) < €/2. Let 1 be such that
n, > j and 1 > i+1. Then fi+](C§k+i+l) is a subset of D1+1. The embedding

f = goh has the following properties:
fIDm =1,
£(8) = Dpy,
and

p(£,1) < €.

This concludes the proof.






CHAPTER 4

SHRUNKEN ENDFACES

4.1 Preliminaries

The main result of this chapter is a theorem that enables us to mani-
pulate compacta in the Hilbert cube with ambient isotopies without moving
certain copies of Q, called "shrunken endfaces". Let us define these objects

Let R be the set of all sequences PysPysPgse-e in (0,1) such that
}im p; = 1. We pick a (piyielN in R that will remain fixed throughout
1>

sections 4.1, 4.2 and 4.3. For every i ¢ N we define the shrunken endface

in the i-coordinate direction by

W=, 1) n jgi m (C pi’Pi])'

Note that Wi is a subset of El and hence a Z-set in Q. Observe furthermore
that the Wi's are disjoint copies of Q. If € > O then there is an 1 e IN
such that 1/i < € and pj > 1 - ¢ for every j > i and hence there exists for
every j > 1 amap B : Q ~ Wj with p(B,1) < €. This implies that every union
of infinitely many shrunken endfaces, especially W = i%]N Wi, is both dense

and connected. Moreover, it follows that every compact subset of Y = Q\W is

a Z-set in Q. It is easily seen that T defined by

L)

FW = {f € H(Q)[for every i e NN, f(Wi) = Wi}

is a closed subgroup of the topological group (H(Q),p).
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Anderson, Curtis & van Mill [ACM: sec.4] have shown that Y is homo-

geneous. We shall prove the following stronger statement

Let U be a collection of open subsets of Q, A a compact space and

F:Ax1I~>Qahomotopy that is limited by U. If F. and F] are embeddings

0

of A in Y then there is a U-push h in Tw with ho FO = F].

The method we use is derived from proofs given in Chapman [C : ch.II]
for theorems of this type. Moreover, in lemma 4.2.2 we use an idea of
Anderson, Curtis & van Mill [ACM: 4.1].

We conclude this section with some notations. If A is a subset of a
space X and D is a collection of subsets of X then the star of A with

respect to D is defined by.
St(A,D) = U{D ¢ D|D n A # @}.

Furthermore, Stn(A,D), n = 0,1,2,..., is determined by
st%a,0) = a

and

st™1(a,0) = st(st™(a,D),D).

4,2 The pseudo-interior

This section is about extending homeomorphisms between compact subsets

of s. Consider the factorization Q = Qodd X Qeven’ where
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= n
Uad = iew J2i-1

and
= 1
Qeven ieN JZi'
Let "odd : Q- Qodd and neven : Q> Qeven be projections and define S odd’
S oven’ 0odd and Oeven in the obvious way.

4.2.1 LEMMA: If A is a compact subset of s then there is a boundary

preserving f ¢ Fw such that for every x,y € f£(A) with “even(x) = ﬂeven(y)

we have that ﬂodd(x) = ﬂodd(y).

PROOF: Let i be odd and m > i even. We may assume that A has the form
.M. [-a.,a.] where a. ¢ (0,1). Select a § such that a_ < § < 1. Let
jeN 31773 J m

® Jm x J > Jm be an isotopy of Jm with the following properties:

@, is supported on (-6,8) for t € J,

wt([-am,am]) c [—am,am] for t € J
and for every y € Jm,

. _ . ' _ .
diam {x ¢ [ ai,aijlthere isay' el am,am] with

"o 1
(Dx(y ) = y} < o

See the next page for a picture of ©.
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1
-aj aj

(Xi Xpm) —— (X @ Xm)
1

Let k be a natural number such that for every j > k, pj > 8. For j ¢ N let

Bj : Jj -+ I be a map that satisfies Bj(l) =1 and Bj([—aj,aj]) = {0}. Define

i

Xy ¢ Q > Q by ﬁj °X; = “j for j # m and
iy 2
T X, (®) = o(x ,a(x)) for x e Q,
where

a(x) = min {l,xid-Z max {Bj(xj)lj e {1,2,...,kN\{m,i}}}.

Since o is a continuous function which is independent of X we have with
i, . . . Lo .
lemma 1.1.1 that X, 18 2 homeomorphism. Since diam Jm = 1/m it is obvious

that a(x;,l) < 1/m. Furthermore, we have that x;(A) c A and for every

6 Sl

i, 0, _ . i
endface En’ Xm(En) = En' We verify that Xp € -

(a) If x ¢ Wi then X 1 and hence o(x) = 1. This implies that x;(x) = x.

(b) If x € Wm then X = 1. Since wt(l) = 1 for every t € J this yields that

x;(x) = X.
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(c) Let x ¢ Wj with j < k and j # i,m. In this case Xj = 1, whence a(x) = 1

and X;(x) = Xx.

(d) Assume that j > k and j # m. This means that pj > 8. Since @, is
supported on (-§,8) we have that wt([-pj,pj]) = [-pj,pj] and hence

i
W.) = W..
X € J) 5

So x; is a member of Fw. Consider now a point z in A. Then all
] . Yy = =
Bj(zj) s vanish and hence a(z) z; and L x(z) w(zm,zi). We have for

every y € Jm that

. . i _ 1
diam {zilz e A with L xm(z) =y} < o

Now, let £ be a function from N onto {2j - 1|j e IN} such that every
fibre is infinite., Select with lemma 1.1.2 a strictly increasing sequence

of even numbers (m(j))j€ such that m(j) > £(j) and

N

£ = lim Xig;" ceuo xié:; e H(Q).

1->00
It is obvious that f(A) ¢ A, f is boundary preserving and that f ¢ T

e EG)
0dd ° F 7 Modd ® Xu(G) T Modd

number, € > 0 and x,y ¢ £(A) with “even(x) =T

W

Observe that = for every j e IN. Let i be an odd

even(y). Select a j ¢ IN such

that £€(j) = i and 1/j < €. We have the following estimate for p(xi,yi):

p(xi,yi) < diam {zilz e £(A) with “even(z) = weven(x)} <

: EG-1), L By LEG) Ly
diam {zilz c Xm(j—l) eee Xm(l)(A) with ﬂm(j) Xm(j)(z) =

B . . . L&) -
= Xm(j)} < diam {zi|z € A with ﬂm(j) Xm(j)(z) = Xm(j)} <

1
m(j)

<

e

Consequently, p(xi,yi) = 0 and the lemma is proved.
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4,2,2 LEMMA: If A is a compact subset of s such that for every

X,y € A, T (x) =

T even neven(y) implies that wodd(x) = ﬂodd(y) then there is

a boundary preserving h e T withw  oh=m andm . ° h(A) ¢ {Oodd}'

PROOF: Let A be such a set, Select for every i ¢ N an a; e (0,1) with

. . i
wi(A) c (-ai,ai). Construct a continuous mapping H™ : Ji X (—ai,ai) > Ji
that satisfies for t ¢ (—ai,ai): Ha =1, Hi(t) = 0 and Hz is an element of
H(Ji) that is supported on (—ai,ai). Let Si : Ji - I be a map with

Bi(l) = 0 and Bi([—ai,ai]) = {1}, Select an arbitrary j in IN and consider

(y) then

A= “even(A) c Qeven' We have that if x,y € A and ﬂeven(x) =T

even

x2j—] = y2j-1' Since "even[A t A > A is a quotient map this implies that

there exists a continuous g. : A + (—azj_],a j) such that

i 2j-
g;° “evenIA = wzj_llA. Let g ¢ Uyen ~ (_aZj—l’aZj—l) be a continuous
extension of gj. Select a E € IN such that for every k > E, 82?—1 <Py and

define aj : Q> (_azj-l’aZj—l) by

~ j
o) =850 Toyen® - 0, Bx

k# 2j-1

k)'

Let hj : Q > Q be determined by e hj =m if k #.2j-1 and

Toe 4 © hj(x) = HZJ_]

2j-1 (XZj—l’aj x)).

Since aj is independent of X2j—1 we have that hj e H(Q). That hj is an

element of Pw follows from:

_ 2j-1 _ L
(a) If x ¢ wzj_l then XZj—l =1 and H (xzj_l,aj(x)) =1, This yields
that hj(x) = X,

(b) If k < ? and k # 2j~1 then for x ¢ Wes Bk(xk) = 0. Consequently, we

have that aj(x) = 0 and hj(x) = X,
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(¢) Let k> j and k # 2j-1. In this case [—azj_],azj_]] c [-pk,pk].

. 2j-1 . _ N
Since Ht is supported on ( a2j-l’32j-]) we have that hj(wk) Wk.

It is clear that = oh, =1 and that for every EG, h.(Ee) = Ee.
even j even n’ j'n n

Define h = lim h.o ,,. 0 h]. Obviously, h is a boundary preserving map
j->m

onto Q with oh =1 . We show that h is one-to—-one and hence a
even even

homeomorphism. Let x and y be distinct points in Q. If ﬂeven(x) # “even(y)

then also h(x) # h(y). Assume therefore that “even(x) = (y). Let

™
even

i = 2j-1 be a coordinate with X # v and define x' = hj_lo ees © hl(x) and

L ° 1y = '
y hj—l° vee hl(x). If uj(x ) aj(y ) then

miohGe) = B Ge,0s D) = HYGegas () #
H (5550, = m; 0 B()

and therefore h(x) # h(y). If, however, uj(x') # uj(y') then in view of

~

g.om ") = g.o

' ) . v . ' .
5° Teven 3 “even(y ) there is ' a k < j with Bk(xk) # Bk(yk).

] 1 1 1 . . . -
Consequently, X # Vi and {xk,yk} is not contained in [ ak,ak]. We can have

the following situations:

(i) T ° h(x) = x' and e h(y) = y! or

k k

.. - ° = k 1 _ k 1
(ii) For some t,r e ( ak,ak), T h(x) Ht(xk) and me° h(x) = Hr(yk)'

Since HE and Ht are supported on (—ak,ak) we may conclude in both cases
that ™ ° h(x) # ™ ° h(y). So h € H(Q) and since h is the limit of a

sequence in the closed group Fw we have that h ¢ PW.

Let x € A and 1 = 2j-1, If x' = hj—l

(x'") and X, = xi we have that

° 44s 0 hl(x) then ™o hx) =

=m,0h,(x"). Since w x) =
i 7 even even

~o '=~o = = =
gj %ven(x) gj “even(x) gjo ﬂeven(x) 5T %

For every k ¢ IN, Xy is an element of (—ak,ak) and since HE is supported on
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(—ak,ak). Consequently, aj(x’) = x!

_ .. . '
( ak,ak) this implies that x' e TI H

kelN

o = i ! ' = 1
and L h(x) = H (xi,aj(x )) = 0. So Modd® h(A) < {Oodd} and the lemma is

d

proved.

We are now ready to prove that homeomorphisms between compacta in s

can be extended.

4,2,3 LEMMA: If A and A' are compact subsets of s and h is a homeo-
morphism from A onto A' then there is a boundary preserving f in Pw with

£|A = h.

PROOF: Lemma 4.2.1 and 4.2.2 reduce the problem to the statement: if

A and A' are compacta in respectively s and Sodd and h is a homeomorph-

even

ism from A onto A' then there is an f ¢ T such that f(B) = B and for every

W

a e A, £(a,0 ,h(a)). Define the compact subset C of s by

odd) = (Oeven

C = {(a,h(a))]a e A} = {(n" ' (b),b)|b € A'}.

We can apply lemma 4.2.2 to C: there is a Y, € T with yl(B) = B,

W
Teven® Y1 = Teven and Todd® v(C) ¢ {Oodd}. Analogously, there is a Yy € Tw
with YZ(B) = B, Tad® Y2 = Todd and T even YZ(C) c {Oeven}' Then

Yy o y;l € Fw has the properties Yy © Y;](B) = B and for every a € A,

-1 )
Yoo v] @0, = vy(ah@) = O, h(@).

Before we prove an estimated version of this lemma we give two

technical lemmas.



57

4,2,4 LEMMA: Let U be a collection of open subsets of s and let A be
a compact. space. If f : A > s is a map and AO is a closed subset of A such
that f|A0 is an embedding and f(A\AO) c UU, then there is an embedding g of

A into s that is U-close to f and coincides with f on AO'

REMARK: This lemma is essentially Chapman [C: 8.,1], We have included a

more elementary proof.

PROOF: Let (Fi)ie]N and (Gi)ie]N be sequences of compact subsets of

A\A0 with the properties

Fi n Gi = @ for every i ¢ IN,
U =
ielN Fi A\AO

and for all distinct x ana y in A\A0 there is an i1 € IN such that x € F. and
y € Gi' Select for every i € IN a closed neighbourhood Vi of A0 with

Vi n (Fi U Gi) = f. Note that f(A\Vi) has compact closure in UU. This
enables us to select a strictly increasing sequence (mi)ie]N of natural
numbers with the property that for every x € f(A\Vi) there is a U e U such
that UZ/mi(x) c U. Observing that Mg ° f(Vi) is a compact subset of

o
Jmi = (-1,1) select with Tietze's extension theorem for every i ¢ N a

o
continuous g; ¢ A > Jmi with the properties:

gJV.=

M. o £|V.
i1 mj | i

and
gi(vi) n (gi(Fi) u gi(Gi)) = gi(Fi) n gi(Gi) = f.

Define the map g : A -+ s by Tm; © & = 8; for i e N and m;o8 =m0 f

for i eim\{mjlj € N}, Obviously, we have that g|AO = fIAO. The properties
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of (Fi)ielN and (Gi) imply that g is one-to-one and hence an embedding.

ielN
Let x € A and assume that m, is the first coordinate with

g © f(x) # Ty © g(x). Then x ¢ Vi and since diam jgmi Jj = 1/mj, we have
that p(f(x),g(x)) < 2/m;. Consequently, there is a U ¢ U with

{f(x),gx)} < Uz/m_(f(x)) < U. This means that f and g are U-close.
i
The following lemma is folklore.

4.2.5 LEMMA: Let (X,d) be a metric space and U a collection of open
subsets of X. Then there is a map € : X + 1 such that e_]((O,l]) = Ul and

for every x € X, {y € X|d(y,x) < €(x)} is contained in some member of U.

PROOF: We may assume without loss of generality that U is locally
finite and that d is bounded by 1. Define for every U ¢ U the map

fU : X>1Ihby

fU(x) = d(x,X\U).
Since U is locally finite the function € : X > I defined by
e(x) = max {fU(x)|U e U}

is continuous. It is obvious that € meets the requirements.
We now come to the estimated .extension theorem for s.

4.2.6 THEOREM: Let U be a collection of open subsets of Q, A a compact

space and F : A x I >~ s a homotopy that is limited by U. If FO and F] are

embeddings then there is a U-push h in {y ¢ FW|Y(S) = s} with ho Fy=F,.
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PROOF: We first introduce a notation. If o : X > I is continuous then

the variable product of X and I is the space
X Xy I={(x,t)|x e Xand t ¢ [0,a(x)]} ¢ X x I.

Let A0 be the closed subset of A that is determined by AO x I =
= F_I(Q\UU). We have that FtlAO = FO|A0 for t € I and that U covers
F((A\AO) x I). Select an open covering V of F((A\Ao) x I) in Q such that for
every a € A\AO, st* (F({a} x I1),V) is contained in some element of U. We may

assume that every member of V has a non-empty intersection with

F((A\A)) x 1).

CLAIM 1: There exists an isotopy G : Q x I » Q that is limited by V

and has the properties: Gt e T . and Gt(s) =s for t e I, G0 = 1 and

W
G o F (A\A)) n Fo(a) = 0.

A proof of this assertion can be found below. Since UV < UU we have
that thFO(AO) =1 for each t ¢ I. We may assume that A is a subset of the
pseudo-interior of Q2. Let n be an element of (0,1) with n < min D, and

ielN
define o : Q2 + I by a(x) = p(x,AO)-n/Z. Let F : A Xa I > s be given by

F(a,t) = (a) if a ¢ A\Aj

Gt/ot(a) ° Ft/a(a)

and

F(a,0) = Fo(a) if a c Aj.

It is easily verified that F is a continuous mapping that satisfies

F({a} x [0,0(a)]) ¢ St(F({a} x I),V) for every a ¢ A\AO. Define the compact

subset X of A Xa I by

X = {(a,t) € A X, I|]t =0 or t = a(a)}.
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Since F. = FO’ F(a,a(a)) = G

0 ° F](a) for a € A and G]o FI(A\AO) n FO(A) =0

1
we have that %[X is an embedding. According to lemma 4.2.4 there is an

embedding P of A X I in s such that ¥ and P are V-close and F[X = P|X. Note

that we have for every a ¢ A\AO:

P({a} x [0,a(a)]) c St(F({a} x [0,a(a)]),V) c St2(F({a} x I),V).

CLAIM 2: There exists an isotopy H : Q x I + Q that is limited by
W= {st(P({a} x [0,a(a)]),V)]a ¢ A\AO} and that satisfies moreover Ht o FW

and Ht(s) =s for t € I, HO = 1 and Hlo FO = Glo Fl'

Define the isotopy H: Q x I~ Q by
i = @) 'oH forte 1.
t t t

One readily sees that H = 1, H oF =F, and for t e I, ﬁt e T and

0 1 1 0 W
H,_(s) = s. We shall see that H is limited by {St*(F({a} x 1),V)]a e A\AO}
and hence by U. Let x ¢ Q and assume firstly that H({x} x I) = {x}. Pick an
arbitrary t € I and let y be such that Gt(y) = x., If x € UV then there is a
Ve V with {Go(y),Gt(y)} = {y,x} < V. Consequently, H({x} x I) is contained
in St({x},V) and since every element of V intersects F((A\AO) x I),
ﬁ({x} x I) c St2(F({a} x I),V) for some a ¢ A\AO' If x ¢ UV then
G({x} x I) = {x} and hence ﬁ({x} x I) = {x}.

Consider now the second case that H({x} x I) is contained in
St(P({a} x [0,a(a)]),V) for some a € A\AO. If t ¢ I then we have as above

that there is a V € V such that {Ht(x)’Ht(X)} c V. This means that

H({x} x I) is contained in st2(P({a} x [0,a(a)]),V) and hence that

H({x} x I) < St*(F({a} x I),V).
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So .we may conclude that H, is the U-push we need. It remains to prove the

1

claims.

PROOF of claim 1: According to 4.2.1 and 4.2.2 there is a boundary

preserving ¥ in I, such that 7, o xo F(A x I) c {0}. Let A be the

W 1 (0)

projection of x°oF (A,.,) on Q, and select a 6 in (O,min p.). According to
177(0) 2 P em b
lemma 4.2.5 there is a map € : Q2 -+ [0,6] such that E(K\KO) c (0,06] and for

every x € Q2, Us(x)(o’x) is contained in some element of x (V). Let

® Jl x [0,6] - J. be an isotopy of J] such that w0, = 1, wt(O) = it and @,

1
is supported on (-t,t) for t € [0,06], Define the isotopy G : Q x I - Q by

Gt(x,y) = (o j(x),y) for x € I, y € Q, and t ¢ I.

te(y

The maps Gt are obviously boundary preserving and since 6 < min P they are
ielN

elements of Pw. It is easily seen that G is limited by x(V) and that

Gl({O} X (K\KO)) misses {0} x QZ' This means that,x—lo Gto x is the isotopy

we need.

PROOF of claim 2: Note that since A is a subset of the pseudo-interior

x J.). So

of Q2 the variable product A Xy I is contained in s (write Q = Q2 1

P is a homeomorphism between two compact subset of s. According to lemma

4.2.3 there is a boundary preserving h e I' . such that for each (a,t) €A Xq I

W
we have that h(a,t) = P(a,t). Consider the following open covering of

(A\Ag) x T in Q:

W= {u_({a} x [0,a(a)])]a « A\Aj, € > 0 and

Ue({a} x [0,a(a)]) < h—l(w) for some W e (}.

By virtue of lemma 4.2.5 there is a map § : Q2 + [0,n/2] such that

G(A\Ao) c (0,n/2] and for every x € Q2’ Ud(x)(x,a(x)) is contained in some
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element of W', Define the open set 0 = {x ¢ Q2|6(x) > 0} and construct with
Tietze's theorem a continuous B : Q2\A0 - [0,n\2] that extends ulA\AO and
satisfies B(x) = 0 for x ¢ 0 and B(x) < a(x) for x ¢ Q2\A0. Since a(a) = 0
for a ¢ AO the function B : Q2 > [0,n/2] that is defined by B(x) = B(x) if
x ¢ AO and Ekx) =0 if x € AO’ is continuous.

Let C be the space ([0,n/2] x (0,n/21) u {(0,0)} < 12 and construct a

continuous function ¢ : Jl x C +>J] with the properties

v

t,r € H(Jl)’

12 =1,

t,0

is supported on (-t,r+t)

] r
and
wt,r(o) =T,

where we used the notation wt r(x) = Y(x,t,r) for x € J] and (t,r) € C.
’
Just as if Y were an isotopy we can construct an isotopy H : Q x I » Q by

™o Ht = if 1 > 1 and
™o Ht(y,x) = w(x,é(y),tgky)) for x € J1 and y € QZ'
The following properties of H are easily verified:
H =1,
H e {y ¢ ley(s) =35} fort el
and

H](a,O) = (a,a(a)) for a ¢ A.

We prove that H is limited by h_l(W). Let (y,x) € Q2 X Jl and select an
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€ >0 and an a € A\Ao such that
Ua(y)(y,a(y)) c Ue({a} x [0,a(a)]) e W'.

Then 8(y) < € and hence {y} x (-8(y),a(y) + 8(y)) is contained in

Ue({a} x [0,a(a)]) which is in turn a subset of an element h—l(w) of

h—](W). Recall that wé(y) B (y) is supported on (-§(y), tB(y) + &(y)) and

hence on (-8(y),a(y) + 8(y)). This implies that H({(y,x)} x I) = {(y,x)} or

that H({y,x} x I) < {y} x (-8(y),a(y) + 8(y)). So we have shown that H is

1

limited by h (W),

Let us now introduce the isotopy
H' =hoH oh ! for t e I.
t t

Obviously, we have that HO =1, Hé e {y ¢ Fw|Y(S) = s} for t € I and that

H' is limited by W. H! is’a W-push in T, with the property that for every

1 w
a € A:
HjoFy(a) = hoH o b e P(a,0) = ho H,(a,0) =
h(a,a(a)) = P(a,a(a)) = F(a,a(a)) = 6 o F (a).

This proves claim 2.

4.2.7 COROLLARY: Let A and A' be compact subsets of s. If h : A > A'

is a homeomorphism with a(h,l) < € then there is an h ¢ T.. with 5(%,1) < g,

W
ﬁ]A = h and ﬁ(s) = s,

PROOF: Define the map F : A x I » s by F(a,t) = (1-t)a + th(a). The
straight-line homotopy F is limited by U = {Ue/z(x)|x € Q}. Apply theorem

4.2.6 to F. The U-push h we get has the properties her ﬁ]A = h,

w’
B(ﬁ,l) < £ and E(s) = s.



64

4.3 The estimated extension theorem

In this section we reduce our problems to compacta in s so that theorem
4.2.6 can be applied. We prove that any compact set that is disjoint from W
can be homeomorphed into s. We conclude the section with an observation that

shows that Y is not quite as homogeneous as £2.

4.3.1 LEMMA: Let A be a compact subset of an endface Eg such that
AN W= (. Then there are for each € > 0. an h ¢ Fw and an m > n such that

h(A) n U{E?|i <mand p € {-1,1}} = @, h(A) < E;] and p(h,1) < €.

PROOF: Let € > 0 and select an m > n with 1/m < p(A,Wn) and 1/m < €/2.
We first push A into E;l and then away from the endfaces in the lower
coordinate directions. Noting that diam (Jm) = 1/m it is geometrically
obvious that there exists an e/2-isotopy X : B(Jn X Jm) x I~ B(Jn X Jm)

such that Xg = 1,

Xel (C=ppsp, ] x {11 v ({-8} x J ) =1 for t ¢ I
and

xl({e} x J ) eJd x {-1}

See the facing page for a picture of X
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Noting that Jn x J is a subset of the linear space R? define the &/2-

isotopy x of Jn X Jm by x}(O) = 0 and
Qt(x) = ||x]| Xt(xlllx“ ) if x# 0 and t ¢ I.

Observe that it is norm preserving, i.e. ||§(x)“ = I[x” for every x.

Define h € H(Q) by ™o h = m, for i # m,n and

™ h(x) = nib Xa(x)(xn’xm) for i = m,n,
where

a(x) = min {I1,m.max ({-6} v {D(Xj,[-pn,pn])|

jedl,...,m-1N\{n}H)}.

It is obvious that a(h,l) < ¢/2. The function h is a member of Fw because:

(a) Let x ¢ Wn. If 6 = -1 then x = -6 and Xt(xn’xm) = (xn,xm) for every
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t € I. This means that h(x) = x. Let now 6 = 1. For every i # n we have
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_ that X, € [-pnzpn] and hence o(x) = 0. So again h(x) = x.

(b) If x € W then (xn,xm) € [-pm,pm] x {1}. Since this set is fixed by X¢

and it we have that h(x) = x.

(c) Let i # m,n. Since it is norm preserving we have that

_ 2y = = 2 -
Xt([ pi,pi] ) L pi,pi] and hence that h(Wi) wi.

If x € A and 6 = -1 then a(x) = 1 which yields that h(x) € E;l. If

& = 1 then p(x,wn) > 1/m implies that there is a j < m such that j # n and
p(xj,[—pn,pn]) > 1/m. Consequently, a(x) = 1 and h(x) € E;l. The conclusion
is that h(A) < E_'.

Consider now Bm = jE] Jj and the projection p : Q ~ Bm' There is a
homeomorphism § of aBm such that S(w,]) < gf2, w(p(E;])) c (?ﬁ; J;) x {-1}

and for every j < m, wlp(wj) = ] (the picture gives the situation for

m = 3).

R T~
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Let § ¢ H(Bm) be given by $(0) = 0 and y(x) = [lx]] v(x/ ||x]] ) for x # 0.

Define g € H(Bm) by gx,y) = ($(x),y) for x € Bm and y e.Qm. We show that

ge T . If j <m then @[p(wj) = ¢(P(Wi)) = ] and hence gle

W 1. If > m

then, since a is norm preserving, we have that $([—pj,pj]m) = [—pj,pj]m
and g(W&) = Wj. If x is an element of E;l then ﬁic @o p(x) € J; for i < m.
This means that g(E;l) and U{Egli <mand p € {-1,1}} are disjoint. Also we

have that g(E;l) c E;l and a(g,l) < g/2. It is now obvious that go f is the

homeomorphism we need.

4.3.2 LEMMA: If A is a compact subset of Eg\w then there is for every

€>0anfel with p(£,1). < € and £(A) < s.

PROOF: Using the convergence criterion 1.1.2 we can find sequences

(fi)ie]N in I‘w and mo<my <mg <., in IN such that
 lim F.oo e . 0.
f-i}::fi ceoof €T and £ 0., fl(A)nU{Ej|J<mi and

6 ¢ {-1,1}} = @. If we take care that for every i ¢ N,

o

- L 6.
j=§+] p(fj,l) <p(f e ...of,(A), U{Ejlj <m; and 6 ¢ {-1,11})

then f(A) < s.

4,3.3 LEMMA: If A is a compact subset of Y then for every Ei and € > 0
]

there is an f ¢ Fw with S(f,l) < g and f(A) n En = {.

PROOF: Let A be a compactum in Y, let € > 0 and put
8§ = min {%p(A,Wn),e}. Define the compact set A = {x ¢ Eg[p(x,A) < 68},
According to lemma 4.3.2 there is a ¥ € FW with 5(x,l) < &§/4 and x(g) c s,

If m is a natural number such that 1 - P, < 8§/4 and 1/m < §/4 then there is

amap h : Q » Wm with S(h,l) < 8/4. Note that ho X(K) n A =@ and construct
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a continuous g : Q + s such that
6(g,1) < min {8/4,p(h o x(A),A)}.

Since goheo x(ﬁ) c s and goho x(g) n A= @ there exists by virtue of

lemma 4.2.4 an embedding B of x(ﬁ) in s that satisfies
plge h[x(a),B) < min {8/4,0(goho x(R),A)}.

We now have the following situation: p(B,1) < 38/4, B is a homeomorphism
between compact subsets of s and Bo x(A) n A =‘¢, In view of corollary 4.2.7
there is an extension B € Fw of B with B(E;l) < 38/4. Consider

f = (go )()—I e T We have that E(f,l) < g and £(A) n A= @. If x € £(A)

W
then p(x,A) < & and x ¢ A. This implies that x ¢ Eg and the conclusion is

that £(A) n Eg = ¢.

4.3.4 LEMMA: If A is a compactum in Y then for every € > 0 there
exists an f € Fw such that E(f,l) < ¢ and f(A) c s.
PROOF: This is a straightforward application of the convergence

criterion, see lemma 4.3.2.
Before we prove the main result a technical lemma.

4.3.5 LEMMA: Let U be a collection of open subsets of Q and let A be
a compact space. If £ is a continuous function from A into Q and AO is a
closed subset of A such that f(A\AO) < Ul and f(AO) c s, then there is a
continuous g : A - s that is U-close to f and that coincides with f on A..

0

PROOF: Select for every i € N a compact neighbourhood Vi of AO with
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e f(Vi) c Ji. Let (ei)ie be a decreasing sequence of numbers from (0, 3%)

N
such that. for every x ¢ f(A\Vi) there is a U ¢ U with Usi(x) c U. Select

for every i € N a continuous g; ¢ A > J; such that a(gi,nio f) < € and
gi]Vi =m0 f|Vi. Let g : A~ s be defined by m,°8 =8, for i € N. Assume
that x is an element of A with f(x) # g(x). If i is the first coordinate
with L f(x) # gi(x) then x ¢ Vi and there is a U € U such that

Uei(f(x)) c U. Since p(f(x),g(x)) < sup {p(ﬁiD f(x),gj(x))lj > i} < €; e
have that both f(x) and g(x) are in U. This shows that f and g are U-close

and since it is obvious that g|AO = f|A0, the proof is completed.

4.3.6 THEOREM: Let U be a collection of open subsets of Q, A a compact

space and F : A x I >~ Q a homotopy that is limited by U. If F0 and F] are

embeddings of A in Y then there is a U-push h in Fw with ho F0 = Fl'

PROOF: Let A0 be the closed subset of A that is determined by

A0 x I= F—I(Q\UU). Since FO(A) U FI(A) is a compact subset of Y there

exists by virtue of lemma 4.3.4 an f ¢ Fw with f(FO(A) u FI(A)) c s. Let F

be the homotopy f o F. Select an open covering V of F((A\AO) x I) in Q such

that for every a € A\A, St(ﬁ({a} x I),V) is contained in some element of

~

£(U). Note that F (A) u ¥, (A) = F (&) u F,(A) v F(Ay x I). According to
lemma 4.3.5 there is a homotopy G : A x I + s that is V-close to F and that
coincides with F on (A x {0,1}) v (A0 x I). Since G is also limited by

f(U) we find with theorem 4.2.6 an f£(U)-push g in T such that go G, = G,.

\ 0 1

Then h = f_lo gof is a U-push in Fw with hoF0 = Fl'
4.3.7 COROLLARY: If h is a homeomorphism between compacta in Y with

a(h,l) < € then it has an extension h € Fw such that S(E,l) < e,
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. PROOF: See corollary 4.2.7.

The next corollary has already been introduced as theorem 3.1.2. It is

essentially due to Anderson & Chapman [AC].

4.3.8 COROLLARY: Let U be a collection of open subsets of Q, A a
compact space and F : A x I ~ Q a homotopy that is limited by U. If both FO
and Fl are embeddings such that their image is a Z-set then there exists a
U-push h in H(Q) with heF, = F

0 1°
PROOF: According to Cﬁapman [C:10.2] there is an f ¢ H(Q) with

f(FO(A) U F](A)) c s c Y. Apply theorem 4.3.6 to the homotopy f o F.

As is well known theorém 4.3.6 holds also for £2 ~ s (cf. theorem
4.2.6). In £2 we can also extend homeomorphisms between non-compact Z-sets,
Anderson [A2]. This is not the case for Y. To show this we need the

following lemma that we took from Anderson, Curtis & van Mill [ACM: 3.6].

4.3.9 LEMMA: Let B1 and B2 be 0-Z-sets in Q and let f : Q\B] > Q\B2 be
a homeomorphism. Then there exist a compact space M and monotone maps

) -1 _ oo 1ol 1l
YiaYg M »> Q such that Y, (Bl) =, (B2) and f YllYl (Q\Bl) YZIYZ (Q\BZ)'

Recall that a map h is monotone if it is onto, closed and has the
property that every fibre is connected or, equivalently, the pre-image under

h of every connected set is connected.

PROOF: Let M be the closure of the graph of f in Q x Q and take for

Y, an v, the restrictions to M of the projections Q x Q - Q. By symmetry,
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it suffices to prove that Y, is monotone. Since M is compact and Q\B1 is
dense in Q, Y, is closed and onto. Let X € Q and consider the e-ball Ue(x).
Since every path in UE(X) connecting two points of Ue(x)\Bl’ can be pushed

off the o-Z-set B1 we have that Us(x)\B] is connected. So

C = {ClM{(a,h(a))|a € Ue(x)\B]}le > 0}

is a collection of continua that is linearly ordered by c. Since

y;l({x}) equals NC it is also a continuum. The other properties of Y, and

Y, are obvious.

Now let L] and L2 be two copies of (0,1) that are embedded in Y as

Z-sets such that L] U W] u wz and L2 V] w1 are continua. So Ll and L2 are

paths going from w1 to W2 and from wl to W], respectively.

4.3.10 PROPOSITION: There is no h € H(Y) that throws L., onto L7.

1
PROOF: Assume that h ¢ H(Y) has the property that h(L]) = L2' There
are a compact space M and monotone maps Y10 Yo : M > Q such that
S P -1,00 _ -1 . .
Y, W) = Yo (W) and he Y1|Y] (Y) = YZ!YZ (Y). Since W1 u Wz u L1 is a
continuum and Yy is monotone we have that YI](W] u W2 U L]) and hence
-1 . . -1 .
Yz(y1 (W] u w2 U Ll)) is a continuum. Note that YZ(YI (wl U w2 U Ll)) is
covered by the disjoint collection {L2 u Wl} u {Wi|i > 2}. Applying the
Sierpifiski theorem, see section 5.2, we find that yz(yI](W1 u W2 u L])) is
contained in L2 U Wl. Since YII(W) = Y;](w) this means that

y;'(wl u Wz) c ygl(wl). If we apply the same argument to the continuum

Yl(Y;l(w])) we find that YI(Y;](WI)) = Wl U W2 which is obviously false.
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4.4 Shifting shrunken endfaces

In this section we prove that whatever choice we make for p € R, the
space Y is topologically always the same. Furthermore, it is shown that
subsets of Y that are homeomorphic to Q are negligible. In order to prove
the first assertion we need a notation that distinguishes between

representations of Y.

4.4,1 NOTATION: If r € (0,1) and i ¢ IN then we define the shrunken

endface Wi(r) by

1

W, (r) = w;]({i}) n J.Qi 'rr;.- (C-r,r]).

If p = (pi)ie]N € R then W(p) = i%]N Wi(pi); Fw(p) and Yp are defined in

the obvious way. The set Rf is given by

b = {p e R|p] <Py < Pg < ceet.

4.4,2 LEMMA: If p € R then there is a q € R1L and an f € H(Q) such that
£f(Y =Y .
( p) g
PROOF: Let p ¢ R. We show that there are a q € R and an £ ¢ H(Q) such
that for i # j, q; # qj and f(Yp) = Yq. If we have established this then
the lemma follows by simply applying a permutation of coordinates.

We construct inductively a sequence f in H(Q) and a

1’f2’f3""
sequence q;,q,,qq,«-- in (0,1) such that for every i e IN:

qi é {q]’ LU ’qi_l},
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P; < 4
fi(wj(qj)) = Wj(qj) for j < i,
£, W (py)) = W, (q;)
and
fi(wj(pj)) = WJ(Pj) for J > 1.

In order to obtain that f = lim fio ves © f] € H(Q) we make sure that every
i
fi can be chosen arbitrarily close to 1. It is obvious that f and

q = (qi)ie]N meet the requirements.

Put f1 = 1 and q, = pi. Suppose that hi and q; have been selected. Let

e > 0 be such that (Pi+l’ Pyt €) n {ql,...,qi} = ¢ and Pipg; t €< 1.

Pick an element q; + ¢) and define r € R by rj = qj for

1 °F iy Piy

j <1 and rj = pj for j > i. Let x € H(Q) be defined by x(x) = (x],...,xi,

..). Note that yx(W. )) and x(W.. . (q.

141 (Pia i41(d44y)) are

Xi+1? *i422 Xi4300

subsets of Yr and that there exists a homeomorphism

g X(Wi+1(Pi+1)) > X(wi+1(qi+l)) with p(g,1) < 94y " Pyyqr Im view of
coroll#ry 4.3.7 there is an extension g ¢ Rﬂ(r) of g such that
0(g,1) < 941 T Py Then f]._+1 = yogoy has the following properties:
fi+1(Wj(qj)) = Wj(qj) for j < i,
fi+1(wi+l(pi+l)) = Wi+](qi+1)’

fi+](wj(pj)) = Wj(pj) for j > i+l
and

O(fi+],l) < qu‘PiH
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This completes the induction.

4.4.3 THEOREM: If p,q € R then there is an f € H(Q) such that

f(Yp) = Yq.

PROOF: In view of lemma 4.4.2 it suffices to prove the theorem for
P,q € R*. Let B be an element of H(J) such that for every i e IN, B(Pi) =q

and B(-pi) = -q;- If f = ignls e H(Q) then f(Yp) = Yq.

4.4.4 LEMMA*): If p € Rf_then there is an £ ¢ H(Q) such that for every

(P, ,)-

W, £0; () = Wy, (o,

i+l

PROOF: Let p € R+ and construct for every i € IN a norm preserving

Bi € H(J x J) such that
By (U1} X Doppy 5Py D) = {1} x Dopy;5Py; 4]
and
Bi<[-p2i’p2i] x {1}) = {-1} x [_pZi’pZi]'
If we define x € H(Q) by
x(x) = (B, (x15x)), By(x55%,), By(xg,x(), -.0)
then we have for every i e N, X(wzi—](pzi—l)) = w2i_1(p2i_]) and
-1

= 1 _
X3 (®p)) = mys  (=1D i  fb y o

j ([-pZi’pZi])'

Let v be the homeomorphism of Q that interchanges adjacent odd and even

*)

This lemma is due to R.D. Anderson (unpublished).
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coordinates:
V() = (X9s% 5% s XgsXg s Kpsene)e
Define ¢ € H(Q) by
Ox) = (x5 BT (x,,%)5 B85 (x,,%), Bal (x.,%.),5 +.n)
17 71 2°7372 "2 4°7572 73 6>7772 *°°
Observe that for every i ¢ N we have that (p(wzi(pZi_])) = wzi(pZi—l) and
@ (=11 n 0w (Copo.p,. 1) = WL (o)
2i j#2i 3 2i°F2i 2i+1F2i7°

Since (pi)ie]N is strictly increasing there is an o € H(J) such that for

every i e NN, u(pi) =p and a(-pi) = -p If we put § = ifT o then it

i+l i+l° elN

is easily verified that £ = po@eo yo x has the property:

f(Wi(pi)) =W ) for every i e IN.

i+] (P4
4.4.5 THEOREM: Any subset of Y that is homeomorphic to Q is negligible.

PROOF: Let Y be represented by Yp’ where p € R+, and let £ ¢ H(Q) be

a "shift" on the shrunken endfaces: f(wi) =W for i € N. Then f_](wl) is

i+l
a negligible subset of Y and in view of the homeomorphism extension theorem

4.3.7 this implies that every copy of Q is negligible in Y.

4.4.6 REMARK: By use of a similar technique one may prove that Y x Q

is homeomorphic to Y.






CHAPTER 5

FAKE HILBERT SPACES

5.1 Introduction

The study of "fake Hilbert spaces' has been inspired by Taruficzyk's

characterization of £2. Before we state it some definitions.

5.1.1 DEFINITION: A space X is called an absolute retract (aR) if for
every space Z, every map into X that is defined on a closed subset of Z can
be extended over Z. A space X is called an absolute neighbourhood retract
(ANR) if for every space Z and every map f from a closed subset Z0 of Z into
X there is a neighbourhood of Z. in Z over which f can be extended. For

0

information concerning A(N)R's see Borsuk [Bl].

5.1.2 DEFINITION: A collection D of subsets of a space X is discrete
if each point of X has a neighbourhood intersecting at most one.member of
D. A space X is said to have the strong discréte approximation property
(spap) if for every admissible metric d on X, every € > 0 and every map f
from the countable free union of Hilbert cubes i.?]N Qi into X there is a

map g: , @, Q. > X such that &(f,g) <e and‘{g(Qi)]i € N} is discrete.

5.1.3 THEOREM (Toruficzyk [T2]): A topologically complete AR is homeo-

morphic to £2 iff it has the SDAP.
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This extremely useful characterization has now become the standard
megﬁod for recognizing topological Hilbert spaces. In Anderson, Curtis &
van Mill [ACM] it was shown that the SDAP cannot be relaxed by considering
only one metric on the space. Specifically, they constructed a topologically

complete AR space X with the following properties:

(1) There is an admissible metric d on X such that for every ¢ > 0 and

. . . . : . .
continuous f lganl X there is a map g Q1 X that satis

i
fies d(g,f) < € while {g(Qi)|i e N} is discrete (this is called the

weak discrete approximation property, WDAP).
(2) Every compact subset of X is a Z-set.
(3) X embeds as a linearly convex subset of £2.
(4) X x X~ L2,
(5) X is homogeneous.
(6) Every countable subset of X is strongly negligible.
(7) ©No Cantor set is negligible in X.

Since in £2 every o-compact set is strongly negligible, Anderson [A3],
property (7) shows that X % £2, The space X is a "fake topological Hilbert
space" since it has many of the familiar topological properties of £2 but
yet is not homeomorphic to it. As an "application" we get that the
properties (1) through (6) do not characterize £2. It is useful to push
this point further. Every "fake topological Hilbert space" blocks a possible
generalization of Toruficzyk's theorem.

The aim of this chapter is to comstruct spaces that "approximate" £2

closer than the space above. We are interested in dimension theory and
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negligibility properties and we shall obtain a characterization of dimension
in terms of negligibility.

Consider the space Y defined in section 4.1. Recall that we proved in
section 3.2 that there is for every k ¢ {0,1,2,...} a strong (Sk,H(Q))-
skeletoid” Ak in Q, where Sk is the collection of Z-sets in Q with dimension
< k. For convenience, we put A_l = @ and S-l = {¢}. The skeletoids Ak were
constructed in the pseudo-interior s of Q which is a subset of Y (indeed,
we may always assume this, because every o-Z-set can be pushed into s).

Let k e'{~1,0,],...} and Ak be fixed in.the remaining part of this chapter.

The space Xk is defined as

X = Yy

We shall prove that Xk is a topologically complete AR, which is not
)

homeomorphic to £2 but which has the following properties* :
(1) Xk has the WDAP.
(2) Every compact subset of Xk is a Z-set.

(3) Xk'embeds as linearly convex subset of 22,

%) xkxkaLZ.

(5) Let U be a collection of open subsets in Xk’ A a compact space and
F:Ax1I> Xk a homotopy that is limited by U. If F0 and F] are
embeddings then there is an h € H(Xk) that is U-close to 1 and has
the property ho Fo = Fl' Since Xk is an AR this implies that Xk is

homogeneous.

*)

This result was established in Dijkstra & van Mill [DM].
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(6) If Ac Xk is o-compact, then A is strongly negligible iff dim (A) < k

(in particular, Xk # Xk' if k # k').

(7) If Ac Xk is a compactum of fundamental dimension at most k, then A is
negligible (in particular, if C c Xk is an n-cell, then C is negligible

and C is strongly negligible iff n < k).

5.2 A generalization of the Sierpifiski theorem

The aim of this section is to prove a generalization of Sierpiiiski's
theorem that no continuum (i.e. a compact connected space) can be
partitioned into countably many pairwise disjoint non—empty closed subsets,
see Sierpifiski [S] or [El : p.440]. This generalization plays a key role in
deciding whether a subset of Xk is strongly negligible. Since we feel that
the result is of independent interest we have put it in a separate section.

As usual, s™ denotes the n-sphere, n € {0,1,2,...}.

5.2.1 THEOREM: Let n be a nonnegative integer and X a compact space.
If'{FiIi e N} is a closed covering of X such that for each pair of distinct
natural numbers i and j, dim (Fi n Fj) < n then every map f : F] » 8" can

be extended over X.

The theorem is also valid outside the class of metric spaces, see
Dijkstra [D2]. The reader is encouraged to verify that Sierpifiski's theorem

follows easily if one substitutes n = 0.

PROOF: We shall work with the following induction hypothesis for

n=0,1,2,...
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Let X be a compact space and M an AR. If‘{Fi|i € N} is a closed
covering of X such that for every i and j with i # j, dim (Fi n Fj) <n

then every map f : F1 > 8™ x M is extendable over X.

Consider the case n = 0, where we have that s™ is the discrete double-
ton {-1,1} and {Fi|i € N} is a pairwise disjoint collection. Assume that
the closed set A = f_l({—l} x M) c F, is non-empty. Let X be the space we
obtain from X by identifying A to a single point a and let q : X > X be the
decomposition map. If C is the component of a in X then it is a continuum

with the following pairwise disjoint, closed covering:
{{a},A n C} v {Fi ncli= 2},

where A = f_]({l} x M). According to Sierpifiski we have that C = {a}. Since
X is a compact Hausdorff space there is a clopen neighbourhood O of a in X
that misses A. Because M is an AR we can find maps g ¢ qﬁl(O) > {-1} x M
and 8y ¢ q_l(i\o) > {1} x M such that g][A = f£|A and g2|§ = £|X. Then

g v e, is the required extension of f.

Assume now that the induction hypothesis holds for n. Let {Fili € IN}
be a closed covering of X such that for i # j, dim (Fi n Fj) < n and let
f:X~> Sn+1 x M be continuous. According to the countable sum theorem
(see [E2:3.1.8]) the set R = U{Fi n Fj|i,j e N with 1 # j} has dimension

n+1

< n. Select two distinct points X, and X, in S and note that

Sn+1\{x1,x2} is homeomorphic to s™ x R. Using the separation theorem (see

[E2:4.1.13]) we find a closed covering {HI’HZ} of X such that for

j e {1,2}, Hj n f_]({xj} x M) = ¢ and

dim(Hl n H, n R) < n.

2

Consider the compact space X' = H] n H2 and its closed covering

'{Fi n X'|i ¢ N}. Obviously, we have for i # j that
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dim (F, n Fj n X') < dim (R n X') < n. Observe that f{F] nX'isa

continuous mapping into (Sn+]\{x],x2}) X M, which space is homeomorphic to

s" xR x M. SinceR x M is, as product of AR's, itself an AR we may apply

the induction hypothesis to find a continuous g : X' ~ (Sn+]\{x],x2}) x M

with gIF1 nx's= f[F1 n X'. Observing that Sn+]\{xj} is homeomorphic to

n+l . . .
R select for j € {1,2} a continuous extension

hy o H > (s™!

i \{xj}) x M of (f|F] n Hj) ug. Thenh =h, uh, is a map

1 2
1

. + . .
from X into S™ ' x M which extends f and the theorem is proved.

5.3 Some topological properties of X

In this section we give a number of properties that Xk shares with £2;
we show that Xk is a "fake Hilbert space'.
5.3.1 THEOREM:
(N Xk is topologically complete.
(2) Xk embeds as a linearly convex set in £2 and hence it is an AR.
(3) xk has the WDAP.

(4) Every compact subset of Xk is a Z-set.
5) X x kazZ.

PROOF: It is proved in Anderson, Curtis & van Mill [ACM: sec.3] that
if A is a o-Z-set in Q such that for every € > 0 there is amap 8 : Q - A

with p(B,1) < € then Q\A satisfies (1) through (5).
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We now turn to the homogeneity properties of Xk' Put

Skw = {S c Y|S is compact and dim (S) < k}.

Since every compact subset of Y is a Z-set in Q it follows that
SkW = {S ¢ Sle nw=g>

We have the following proposition:

5.3.2 PROPOSITION: Ak is a strong (S Tw)-skeletoida in Q and a strong

kW’

(S, . ,H(Y))-skeletoid " in Y.

kW’

PROOF: Since Ak nw=4g, Ak is a member of (skw)c' Let S be in SkW and
assume that U is a collection of open subsets of Q that covers S. Put
0 = UU and select a closed.neighbourhood F of Q\O that misses S. Let
i .
(Ak)ie]N be the skeleton that corresponds with Ak and let n € N. There arg
an m € N and an isotopy H of Q such that H is limited by {IntQ(F)} u

By =1, H(S) < A and Ht|F uA =1 for every t ¢ I. So H|S x I is a homo-

topy that is limited by {U\An|U € U} and with the property that H0|S and
H]|S are embeddings of S into Y. According to theorem 4.3.6 there is a

{U\An‘U € U}-push h in T with h(S) < Am' This proves that Ak is a strong

%)

S Fw)—skeletoidﬂ. Since h|Y is a {U n Y|U ¢ U}-push in

kW’

{y € H(Y)|y|An = 1} we have also proved that Ak-is a strong (S, . H(Y))-

kW’
skeletoid .

5.3.3 THEOREM: Let U be a collection of open subsets in Q, A a compact

space and F : A x I -~ Q a homotopy that is limited by U. If F0 and Fl are

embeddings of A in Xk then there is an h ¢ Fw that is U-close to 1 and that

has the properties he FO = Fl and h|Xk € H(Xk)'
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PROOF: According to theorem 4.3.6 there is an f ¢ Fw that is U-close

to 1 and satisfies f o F0 = Fl' Using theorem 1.2.13 we find an h ¢ Fw that

extends f[FO(A) and has the properties that it is U-close to 1 and

h(Ak) = A

5.3.4 COROLLARY: Let U be a collection of open subsets of Xk’ A a

compact space and F : A x I ~» Xk a homotopy that is limited by u. rf F1 and

F0 are embeddings then there is an h ¢ H(Xk) that is U-close to 1 and has

the property he FO = F’.

PROOF: This is trivial.

5.3.5 REMARK: In view of theorem 4.3.6 it is natural to ask whether
the homeomorphism of corollary 5.3.4 can be chosen in such a way that it is
isotopic to the identity of Xk' This is not the case for k = 0. We believe
that for k > 0 the spaces Xk also behave '"badly" in this respect, but we
have no proof of this assertion.

Consider an isotopy H : XO x I > XO X I such that HO = 1. We shall

show that H1 =1 for every t € I. Pick an arbitrary point x in AO and let

be a sequence in X, that converges to x in Q. There is a copy L of

(xn)n eIN
[0,1) in X

0

o Such that {xnln €N} ¢ L and L u {x} & I (use the fact that

every Z-set in Q is thin). If we put D = H(L x I) then D is a closed subset

of X, x I that is homeomorphic to [0,1) x I. Let K =Cl (M)\D and let X

0 Qx I

be the projection of K into the first factor of the product Q x I. Then K

and K are continua which are contained in (Wu AO) x I and W u AO’

respectively. Since A0 U W can be written as a disjoint union of compacta

0° Now Ao is
totally disconnected and hence K = {x}. This implies that lim Ht(xi) = x
>0

and since x ¢ K n AO’ Sierpifiski's theorem gives that Keca
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for every t € I and hence H_-can be extended over Y with the identity on AO.

Since AO is dense in Y we have that Ht =1 for every t ¢ I.
So we may conclude that if f and g are isotopic members of H(XO) then

f =g (cf. remark 1.2.15).

5.3.6 COROLLARY: Let A be compact and f : A ~ Xk continuous. If A' is
a closed subset of A such that f|A' is an embedding and if U is an open
covering of Xk’ then there is an embedding g of A in Xk such that g and £

are U-close and g|A' = f|A'.

PROOF: It is no problem to find a subset R of Xk that is homeomorphic
to s; put for instance R = {-1} x iﬁZ (-1,1). Let C be a subset of R that
is homeomorphic to f(A). Both embeddings of f(A) in Xk are of course
homotopic in Q and hence there is an h € H(Xk) such that ho f(A) c R. Since
R ~ s, there is according to lemma 4.2.4 an embedding g of A in R such thgt
g and ho f are h(U)-close and g|A' = ho £|A". If E = h_lo g then § and f

are U-close and E|A' = f£|A'.

5.4 Negligibility and dimension

In this section we shall prove the connexions that exist between

(strong) negligibility in Xk and dimension.

5.4.1 THEOREM: Every o-compact subset of Xk with dimension at most k

is strongly negligible.

PROOF: As observed in the preceeding section, Ak is a strong



86

(S, . ,H(Y))-skeletoid . Now apply proposition 1.2.10 and theorem 1.2.12.

kW’
We identify Sn—1 and the boundary a1" for every natural number n. Let
X be a space. Amap £ : X > I" is called essential if flf_](Sn_]) cannot be

extended to a map g : X ~> Sn—].

5.4.2 LEMMA: Let n be a natural number with n > k. If A is a compact

subset of Xk and f : A > I" is essential then f—I(Int In) is not negligible
in Xk.

1

PROOF: Let R = £ '(s®°!) and 0 = A\R. In view of corollary 5.3.6 we

may assume that A x I is a subset of Xk such that A x {0} coincides with A.
Suppose that O is a negligible subset of Xk' This implies that

Z = (A x I)\O can be embedded as a closed subset in Xk' Assume that Z is

reembedded as a closed subset in Xk and let Z be the closure of Z in Q. Put

*
Z

Z\Z and note that the local compactness of A x (0,1] implies that

z¥ URis compact. Also, z" is a closed subset of Q\Xk = Ak U W. Since

z* n Ak is o-compact and at most (n-1)-dimensional, we can find a sequence
* *

(Fi)ie]N of compact subsets of Z n Ak such that Z n Ak = igzm Fi and

Fi n Fj is at most (n-2)-dimensional for all distinct i,j € IN. In addition,
observe that Z* n W is a countable disjoint union of compacta and that
W Ak = (. Theorem 5.2.1 implies that the map g = f|R can be extended to a

map g @ (Z* u R) > Sn—]. Since Sn—] is an ANR there is an open U containing

PAY (R x I) such that the map h, defined by
h(x) = g(x) if x e z¥ UR
and

h(x,t) = f(x) if (x,t) € R x I,
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can be extended to a continuous h : U +-Sn—l. Since (A x (0,11)\U is compact
there is an € € (0,1] such that A x {e} c U. Define the function
n:A-~> gn! by n(a) = h(a,e) , a € A. Then n|R = £|R and n(A) c Sn—l, which

means that f is not essential.

5.4.3 COROLLARY: If n ¢ N and n > k then there exist copies of R" in

Xk that are not negligible.
PROOF: I" is embedded in Xk’ corollary 5.3.6, and ]In is essential.
5.4.4 COROLLARY: X, is not homeomorphic to 22,

PROOF: As remarked in section 3.1, every o-compact subset of £2 is

strongly negligible.

5.4.5 COROLLARY: Xk does not admit the structure of a topological

group.

PROOF: £2 is the only infinite-dimensional complete AR that admits

a group structure (Dobrowolski & Toruficzyk [DT]).

5.4.6 REMARK: With the method of lemma 5.4.2 and corollaries we can

prove that if C is a compact space containing £2 and C\£2 = i%]N Fi’ where

the Fi's are compacta, then there is for every n € N an infinite set

{im|m € N} of natural numbers greater than n such that for every m ¢ IN,
1 . . >

dim (F1m n F1m+l) 2> n.

We sketch a proof. Define the following equivalence relation on

N = {i eZN[i >n} : m~ 1 if there is a sequence m = i],iz,..., ij =1in N
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witb dim (Fir’Fir+]) 2n for r = 1,2,..., j=1. If there is an infinite
equivalenge élass we are done. If every class is finite we define new
compacta G[i] = U{Fj|j ~ i}, where [i] is the class of i € N. Note that if
[i] # [j] then dim (G[i] n G[j]) < n. Let U be an open, non-empty subset of
£2 which closure in C misses igl F,. If Z = In+2\(1nt In+1) x {0} then we

can embed Z as a closed subset in £2 such that Z c U. The proof of lemma

n
5.4.2 shows that we cannot do this in C\(igN G U igl F.) = C\.U F..

[i] i ielN i

We now come to the announced characterizations of dimension in terms

of negligibility.

5.4.7 THEOREM: Let k # -1. For every o-compact space A, the following

statements are equivalent:
(1) dim (A) < k.

(2) There is an embedding f of A in Xk such that for every open 0O in A,

f(0) is negligible in Xk'

(3) Every embedding f of A in Xk has the property that for every open 0 in

A, £(0) is negligible in Xk'

PROOF: (1) » (3). If dim (A) < k then by theorem 5.4.1 f(A) is strongly
negligible. Consequently, every relatively open subset of f(A) is negligible.
(3) + (2). By corollary 5.3.6, Xk is universal.
2) - (1). Assgme that A satisfies (2) for some embedding f.
Write A as a countable union of compacta FI’FZ’F3"" . We show that Fi
also satisfies (2). Let i ¢ IN and let O be a relatively open subset of Fi'
Choose an open 0 in A with O n Fi = 0. Since A satisfies (2) there exist
two homeomorphisms o : Xk > Xk\f(a) and B : Xk -> Xk\f(B\Fi)' In view of the

homeomorphism extension theorem 5.3.4 there is a y ¢ H(Xk) with
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Y quFi = B-]o f]Fi. Then Y_?o B—lo o is a homeomorphism from Xk onto

-1

v e s AED)) = v 8T

v e ea) ° £(F, n 0))

X NEE; 0 0) = X \£(0),

which proves the claim that Fi satisfies (2). Since Fi is compact lemma
5.4.2 implies that no map from Fi into Ik+l is essential. This means that
dim (Fi) < k, see [E2:1.9.A]. According to the countable sum theorem, see

[E2: 3.1.8], we have that dim (A) < k.

5.4.8 REMARK: As for the case k = -1, we shall show in the next section

that a space A satisfies (2) or (3) iff it is finite.

5.4.9 LEMMA: If A is a nonempty, compact subset of Y = X_1 and if

f : Y~ Y\A is a homeomorphism then {x ¢ Y]f(x) = x} is a z-set in Y.

PROOF: According to lemma 4.3.9 there exist a compact space M and

monotone maps g,h from M onto Q with g_l(Y) = h_l(Y\A) and f o gIg_](Y) =

= h|g_](Y). Consider a shrunken endface W, . Since h is monotone we have that
g(h—](wi)) is a continuum in W. By Sierpifiski's theorem there is an a(i) e IN
with g(h_](wi)) c wa(i)' Analogously we can show that h(g_l(wa(i))) c Wi.

So for every i € NN, h—l(wi) = g—](wa(i)) and hence a is one-to-one. Since
g(h_l(A)) is a non-empty subspace of W, a(lN) # N. Put Z = {x ¢ Y|f(x) = x}.
Let y be a map from Q into Y and let € > 0. Since a : N +WN is one-to-one

but not onto there exist an 1 ¢ N and amap B : Q >~ W such that

a(i)

- . , _ . -1 _ -l

p(B,1) < ef/2 and i # a(i). Put & = %p(wi,wa(i)). Since g (wa(i)) =h (Wi)’
~ -1 ) . .

the set 0 = Ué(wa(i))\g(h (Q\Ud(wi))) is a neighbourhood of Wa(i)' Since

fo glg_l(Y) = h]g_l(Y) the sets Z and O are disjoint. Let §' be an element

of (0,e/2) such that Us'(wa(i)) c 0 and construct a map n : Q - s with
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B(Q,l) < 8'. Then the map y' = no Boy has the properties:

6(y',y) <.6(n,1) + p(B,1) < ¢ and
y'(Q) < n(Wa(i)) c0n s cY\Z.

This proves that Z is a Z-set in Y.

5.4.10 THEOREM: Let A be a o-compact space. The following statements

are equivalent:
(1) dim (A) < k.

(2) There is an embedding f of A in Xk such that f(A) is strongly

negligible in Xk'

(3) Every subset of Xk that is homeomorphic to A is strongly negligible.

PROOF: (1) - (3). Apply theorem 5.4.1.

(3) > (2). This is trivial.

(2) » (1). Note that every relatively open subset of a strongly
negligible set is negligible. If k # -1, apply theorem 5.4.7. Let A satisfy
(2) for k = -1. If A is non-empty then there is an a ¢ A such that {f(a)}
is strongly negligible in X—l’ proposition 1.2.2. This means that for every
neighbourhood U of f(a) there is a homeomorphism g : X, - X_l\{f(a)} that
is supported on U. Since a Z-set is always nowhere dense this contradicts
lemma 5.4.9. So we may conclude that A = ¢§ and dim (A) = -1. Note that we
did not use the o-compactness of A here: the empty set is the only strongly
negligible subset of X_].
We conclude this section with discussing a generalization of

o-compactness, strongly o-complete spaces (cf. section 2.3). Note that
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every negligible subset of a complete space is strongly o-complete. So
strongly o-complete spaces are the most general type of .spaces for which it

makes sense to consider negligibility in Xk'

5.4.11 PROPOSITION: Every strongly o-complete space with dimension < k

has a strongly negligible embedding in Xk.

PROOF: Let S be a space with dimension < k and let (Si)iE]N be a
sequence of closed, topologically complete subsets of S with S = i%]N Si'
Select a < k-dimensional compactification C of S (see [E2:1.7.2]) and
assume that C is embedded in Xk' Define for i ¢ N, Ri = CIC(S]._)\Si and
P = j%]N ClC(Sj), R = j%]N Rj' Since Si is closed in S we have that
Ri = ClC(Si)\S and hence S = P\R. The set Ri is the remainder of a
topologically complete space in a compact space and hence a o-compact space.
So also R is a o-compact space with dimension < k. Consequently, R u Ak is

an (S, . ,H(Y))-absorber in Y. According to the uniqueness theorem 1.2.11

kW’
there is an f ¢ H(Y) with f(R v Ak) = Ak' This means that
£(S) = f(P)\Ak c Xk' The space f(P) is an element of (skw)c and hence

theorem 1.2.12 implies that £(S) is a strongly negligible subset of Xk'

We do not know whether the converse of this proposition holds. Note
that every non-o-compact space has a nonnegligible embedding in Xk (embed
a compactification of the space in Xk and observe that it is not an Fo-set).
If we apply the argument of proposition 5.4.11 to the pseudo-boundary B in

Q (see also theorem 2.3.7) we find that £2 is universal for V:.

5.4.12 THEOREM: Let X be a space. The following statements are equi-

valent:



92

(1) X is strongly o-complete.
(2) X is homeomorphic to a (strongly) negligible subset of L2,

(3) X is homeomorphic to an F -set in £2.

5.5. Negligibility and shape

In this section we shall discuss a connexion between negligibility of
compacta in Xk and fundamental dimension. We begin by giving the definition
of shape in the sense of Borsuk [B2].

Let A and A' be compacta in Q. A shape map { from A to A' is a sequence
fn : Q~>Q, n e N, of maps with the following property: for every
neighbourhood V of A' there are a neighbourhood U of A and a natural number
n such that for every m > n, fmIU and fm+]lU are homotopic in V, i.e. there
We write

isamapF:UxI—>Vwithfm|U=F and fm+1|U=F

0 1°
§ = (fn,A,A'). If § = (fn,A,A') and g = (gn,A,A') are two shape maps from A
to A' we say that § and g are homotopic if there are for every neighbourhood
V of A' an n € N and a neighbourhood U of A such that fmIU and gmlU are
homotopic in V for m > n.

The identity shape map is IA = (1,,A,A). If § = (fn,A,A') and

Q
g = (gn,A',A") are shape maps then their composition is the shape map

gef = (gn° fn,A,A"). We say that A and A' have the same shape, notation
Sh(A) = Sh(A'), if there exist a shape map { from A to A' and a shape map g
from A' to A such that geo § and §° g are homotopic to 1A and IA"
respectively. One may show that this notion is independent of the given

embeddings of A and A' in Q.

We now state the complement theorem that is due to Chapman [C: sec.25].
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5.5.1 THEOREM: If A and A' are zZ-sets in Q then Sh(A) = Sh(A') iff

Q\A ~ Q\A'.

5.5.2 COROLLARY: If A is a non-empty Z-set in Q then A has trivial
shape (i.e. the shape of a singleton) iff Q/A = Q, where Q/A is the space

we obtain by identifying A to a point.

PROOF: If Q/A ~ Q then Q\A =~ Q\{p} for some p ¢ Q and hence A and {p}
have the same shape.

If A has trivial shape then for every p € Q, Q\A = Q\{p}. Observe that
Q/A and Q are one-point compactifications of Q\A and Q\{p}. Since one-point

compactifications are unique this implies that Q/A s Q.

We have for Xk the following analogue of Chapman's theorem.

5.5.3 LEMMA: If A and A' are compacta in Xk with the same shape then
there is a homeomorphism h : Q\A - Q\A' with h(Ak) = Ak and h(wi) = Wi for

every i € NN.

PROOF: The method is based on Chapman's proof for theorem 5.5.1. Let
§ = (fn,A,A') and g = (gn,A',A) be shape maps such that fog and go { are
homotopic to 1A' and 1A’ respectively. Since W u Ak is a o-Z-set we may
assume that for every n € N both fn(Q) and gn(Q) are contained in Xk. It is
left as an exercise to the reader to verify this. We shall construct
inductively a sequence XpsXgsXgseos in {y € PW|Y(Xk) = Xk} and a sequence
01 =] O2 > O3 > ... of open neighbourhoods of A in Q such that for every

i € N, X.(0.) contains A' and there exist an n ¢ IN and an open neighbourhood
ivi

V of A' in Q with the property that V c Xi(oi) and lV is in Xi(oi) homotopic
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to x; °© ngV for every m 2 n. The basis step of the induction is X; = 1 and
O1 = Q.

Assume that X5 and Oi have been constructed and that they satisfy the
induction hypothesis. Since § is a shape map and since geo § and IA are
homotopic there exist an m > n and an open neighbourhood P of A in Q such

that P c Oi’ gm(>fmlP and IP are homotopic in Oi and fm]P, £ P, £ |p,

m+1l m+2

.. are all homotopic in V' =V n U (A'). Since fm(A) cV'n Xk there

2/ (i+1)

is in view of corollary 5.3.6 an embedding o of A in V' n Xk that is in V'
homotopic to fm|A. We have that the following maps are homotopic to each

other in xi(Oi):
O, fm]A, X;° 8y ° fm|A and XilA'

Using theorem 5.3.3 we find a B € {y ¢ Fw|y(Xk) = Xk} that is supported on
Xi(oi) and satisfies o = B o XilA' So B o XilA and fm|A are homotopic in V'.
Since V' is, as open subset of Q, an ANR there is an open neighbourhood

0,,., of A in Q such that Bo Xi|0i+l and fmIO

i+ are homotopic in V'. We may

i+l
assume in addition that Oi+] c U2/(i+l)(A) n P. Note that Oi+] and

Bo Xi(oi+l) are contained in Oi and V', respectively.

Since g is a shape map and since §° g is homotopic to IA' there is an
open P' in Q and an m' > m such that A' ¢ P' c V', fm,0 gm,|P’ and ]p' are
homotopic in V' and gm,|P', gm,+][P', gm,+2|P', ... are all homotopic to

. . ' .. .
each other in Oi+ Since B o X; © gm,(P ) € Bo Xi(oi+l) n Xk there is in view

1
of corollary 5.3.6 an embedding o' of A' in Xk that is in Be Xi(oi+])

homotopic to Be X; °© gm,lA'. It is easily verified that
a', Box;og |A", £ oog |AT, £ ,og |A" and 1),

are homotopic in V'. Using theorem 5.3.3. we find a B' e {y ¢ ley(Xk) = Xk}

that is supported on V' and satisfies B'oa' = ]A" Put hi+1 = B'o B and
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X:., = h. X5 Since o'(A') c Bo Xi(oi+1) we have that

A" =B'oa'(A") < X,

1+1(0

).

i+l

. o s .
One readily sees that X541 ° gm,|A is in Xi+l(oi+1) homotopic to
1 (] = . . . ~
B'oa ]A" Since Xi+](oi+l) is an ANR there is an open set V such that
1 v 1 4 ~ . . : '
A' ¢ VcP'and X541 ° gm,|V and 1V are homotopic in Xi+l(oi+1)' If j 2m

1 1 3 . ~ 3 .
then gm,IP and gj|P are homotopic in 0i+l and hence Xi41° ngV is in

X (Oi+l) homotopic to lv. This completes the induction.

i+1

Note that every hi+ is supported on Xi(oi) and is a member of

1
{y € Fw|y(Ak) = Ak}. Observe furthermore that for i ¢ NN, Oi c UZ/i(A) and
Xi(oi) c Uz/i(A'). If x € Q\A and i is such that 2/i < p(x,A) then Q\Oi is
a neighbourhood of x such that Xi(Q\Oi) c Q\A' and for every j > i

Xj|Q\oi = xi|Q\0i. Consequently, if we define for x € Q\A, h(x) = }i: xi(x)
then h is a local homeomorphism from Q\A into Q\A'. Since Oi c UZ/I(A) and
Xi(oi) c Uz/i(A‘) for i €e N, h is one-to-one and onto and hence a homeo—v

morphism. Since for every x € Q\A there is an i € IN such that h(x) = xi(x)

we have that h(Ak) = Ak and h(wj) = Wj for j € N. This completes the proof.

It is natural to ask whether strong negligibility in theorem 5.4.10
can be replaced by negligibility. The following theorem shows that that is
not the case. If X is compact then the fundamental dimension Fd(X) of X is

defined by

Fd(X) = min {n|there is a compact Z with Sh(Z) = Sh(X)

and dim (Z) = n}.

5.5.4 THEOREM: If S is a compactum in Xk with Fd(S) < k then S is

negligible. If S is a compactum in Y with the shape of a finite space then
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S is negligible.

PROOF: If Fd(S) < k we can choose by corollary 5.3.6 a compact S' c Xk
such that Sh(S) = Sh(S') and dim (S') < k. By lemma 5.5.3 and theorem 5.4.1
we have that Xk\S ~ Xk\S' ~ X .

According to theorem 4.4.5 every copy of Q is negligible in Y. Since
Q has trivial shape lemma 5.5.3 implies that every singleton is negligible
in Y. Consequently, every finite subset of Y is negligible. Applying once
more lemma 5.5.3 we find that every space with the shape of a finite set

is negligible.

So every cube is negligible in any Xk. We can prove a partial converse
of theorem 5.5.4.

5.5.5 THEOREM: If S is a negligible compactum in X, then Fd(S) < 0. If

0

S is a negligible compactum in Y then S has the shape of a finite space.

PROOF: Let k be either -1 or O and assume that S is a negligible
compactum in Xk' Let h be a homeomorphism from Xk\S onto Xk' According to
lemma 4.3.9 there exist a compact space M and monotone maps Y, and Yy from

-1 -1 -1 _ -1
M onto Q with Y, (Xk\S) =, (Xk) and ho Y]|yl (Xk\S) = YZIYZ (Xk). Let C

be the collection of components of S and define
P= {wi|1 e N} u {{a}|a ¢ AL

Let C ¢ C and consider the non-empty continuum o(C) = YZ(YII(C)), which is
a subset of Ak U W. Since Ak is a o-compactum with dimension < 0
Sierpinski's theorem implies that there is a P ¢ P with a(C) < P. Analogous-

ly we can prove that the continuum y](y;l(P)) is contained in S and hence
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in'C. So o is a function from C into P such that for every C ¢ C,
-1 -1
Y, (€ =1y, (@(C).

Consider the compact set S = YZ(Y;I(S)), which is equal to

](g). Since any union of

u{a(C)|C e C} < A, U W. Observe that YI](S) = Y;
infinitely many shrunken endfaces is dense in Q, S can intersect only

~ 1
finitely many Wi's. Let 1 be such that S n W= .U wij' Define the

ERRREES i=1
quotient space 6 of Q by identifying every Wij to a point aj and let p be
the natural map from Q onto 6. We show that S and p(§) have the same shape
(cf. Chapman [C: 25.1] and Kozlowski [K]).

It is easily verified that if Z is a Z-set in Q then p(Z) is a Z-set
in 5. According to corollary 5.5.2 6 is homeomorphic to Q. Note that
Su Ak U W and p(Ak U W) are o-Z-sets in Q and 6, respectively. Consequent-

ly there exist homotopies F : Q x I - Q and G : 6 x I~ a such that F

o=
Gy = 15 F(Q x (0,11) « Q\(S v A u W) and 6@ x (0,11) = Q\p(a_u W).

Observe that p|Y :Y>Yc 6 is a homeomorphism and define for n e N,

f =pohoF and g_ = h_]° p_I° G We shall prove that § = (£_,S p(g))
n 1/n n 1/n° n’"’

and g = (gn,p(g),s) are shape maps such that f°g and go § are homotopic to

1P(§) and IS’ respectively.

Let V be an open neighbourhood of S in Q. Since YII(S) = Y;l(g) =
Y;l(p—](p(s))) we have that C = peo YZ(Y;I(Q\V)) is a compact set that is
disjoint from p(g). Then there is a neighbourhood U of p(g) in 6 and an

1 .
n € N such that G(U x [0,;]) nC=¢@. Since po £(V n Xk\S) = Xk\C and

G(a x (0,11) < Xk we see that gnlU, g .. are homotopic in V.

So g is a shape map. The proof that § is a shape map is analogous.

To see that geo { is homotopic to TS choose an open neighbourhood U of

S in Q. Select a neighbourhood V of p(g) in 6 and an n, € N such that

L p lec(v n x) x [0,}—11——]) cU
1
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and select subsequently a neighbourhood W of S in Q and an n, > n, with for

every m >,n2,fm(w) c V and

1
F(W x [O’EE]) c U.

_] ...1 -
If m > n, then g o £IW=h op ° 61 /n® £ |W and h

1 -1
op o fmlw are

homotopic in U. Furthermore, we have that h_10 p—1° fmlw = Fl/mlw and 1w
are homotopic in U. So we may conclude that geo § is homotopic to TS. The
proof for feog is similar.

So we have shown that Sh(S) = Sh(p(g)). Consider first the case k = -1.

Then Ak =@ and p(g) = {a ,,al}. If k = 0 then Ak is a zero-dimensional

1"
o-compactum. Here the countable sum theorem implies that

dim (p(Ak) u {al,...,al}) = 0. Consequently, dim (p(8)) < 0 and the theorem
is proved.

We believe that the converse of theorem 5.5.4 is also true for k > 0

but we have no proof of this.

5.5.6 CONJECTURE: Let k 2 0 and let S c Xk be compact. Then S is

negligible iff Fd(S) < k.

According to theorem 5.4.10 a o-compact subset of Xk is strongly
negligible iff its dimension is at most k. So strong negligibility depends
only on topological properties of the space itself and not on the way that
it is embedded in Xk' This is not surprising for compact spaces since they
have essentially only one embedding in Xk’ cf. corollary 5.3.4. For non-
compact spaces, however, there are many non-equivalent embeddings.
Negligibility of a o-compact space in Xk is dependent on the way the space
is embedded. Let k > 0. By corollary 5.4.3 there are copies of']R.k+1 in Xk

that are not negligible. According to theorem 5.5.4 every subset of Xk that
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. . k+1 . .. k+1 .
is homeomorphic to I is negligible. Also the boundary of I is
negligible because it is k-dimensional. This implies that it is possible
to embed Ik+]\81k+l N]Rk+] in Xk in such a way that it is negligible.

It remains to prove remark 5.4.8.

5.5.7 PROPOSITION: An arbitrary subspace S of Y is finite iff every

relatively open subset of S is negligible in Y.

PROOF: One direction of the equivalence follows from theorem 5.5.4.

Consider now a subspace S of Y such that every open subset of S is
negligible. Precisely as in theorem 5.4.7 we can prove that every compact
subset C of S is negligible in Y and has dimension < 0. This implies in
view of theorem 5.5.5 that C has the shape of a finite set. So C has
finitely many components which are singletons because dim (C) < 0. We have
shown that every compact subset of S is finite and hence S is a countable,
discrete space. If S is finite we are done.

We shall see that S cannot be infinite (cf. Anderson, Curtis & van
Mill [ACM: 6.2]). Let £ : Y\S - Y be a homeomorphism. According to lemma
4.3.9 there exist a compact M and monotone maps Y, and Yy from M onto Q
such that Y_I(Y\S) = YZ(Y). We construct in the usual way a one-to-one
function o : S + NN such that for every a ¢ S, Y;l({a}) = Y;](wa(a))' Note
that D = U{Wa(a)|a € S} is connected if S is infinite. Consequently,

S = YI(Y;I(D)) is connected which is obviously false.






[AU]

[A1]

[A2]

[A3]

[A4]

[AC]

[AcM]

[BP1]

[BP2]

[B1]

[B2]

[Be]

101

B1BLIOGRAPHY

ALEXANDROFF, P. and P. URYSOHN, Uber null-dimensionale
Punktmengen, Math. Ann. 98 (1928) 89-106.

ANDERSON, R.D., Hilbert space is homeomorphic to the countable
infinite product of lines, Bull. Amer. Math. Soc. Zg.(l966)
515-519.

ANDERSON, R.D., On topological infinite deficiency, Mich. Math.
J. 14 (1967) 365-383.

ANDERSON, R.D., Strongly negligible sets in Fréchet manifolds,
Bull. Amer. Math. Soc. 75 (1969) 64-67.

ANDERSON, R.D., On sigma-compact subsets of infinite-dimensional

spaces, unpublished manuscript.

ANDERSON, R.D. and T.A. CHAPMAN, Extending homeomorphisms to
Hilbert cube manifolds, Pacific J. Math. 38 (1971) 281-293.

ANDERSON, R.D., D.W. CURTIS and J. van MILL, A fake topological
Hilbert space, Trans. Amer. Math. Soc. 272 (1982) 311-321.

BESSAGA, C. and A.PEECZYﬁSKI, The estimated extension theorem,
homogeneous collections and their application to the
topological classification of linear metric spaces and

convex sets, Fund. Math. 69 (1970) 153-190.

BESSAGA, C. and A.PEECZYﬁSKI,Selected topics in infinite-
dimensional topology, PWN, Warsaw, 1975.

BORSUK, K., Theory of retracts, PWN, Warsaw, 1967.
BORSUK, K., Theory of shape, PWN, Warsaw, 1975.

BOTHE, H.G., Eine Einbettung m—-dimensionaler Mengen in einen
(m+ 1)-dimensionalen absoluten Retrakt, Fund. Math. 52
(1963) 209-224.



102

[C] CHAPMAN, T.A., Lectures on Hilbert cube manifolds, CMBS Regional
A Conf. Series in Math. no.28, Amer. Math. Soc., Providence,
R.I., 1976.
[cM] CURTIS, D.W. and J. van MILL, Zero-dimensional countable dense

unions of Z-sets in the Hilbert cube, to appear in Fund.

Math.
[Cs] CURTIS, D.W., Boundary sets in the Hilbert cube, to appear.
n ,
[D1] DIJKSTRA, J.J., k-dimensional skeletoids inR  and the Hilbert

cube, to appear in Topology Appl.

[D2] DIJKSTRA, J.J., A generalization of the Sierpihski theorem, to

appear in Proc. Amer. Math. Soc.

[DM] DIJKSTRA, J.J. and J. van MILL, Fake topological Hilbert spaces
and characterizations of dimension in terms of negligibility,

to appear in Fund. Math.

[DT] DOBROWOLSKI, T. and H. TORUﬁCZYK, Separable complete ANR's
admitting a group structure are Hilbert manifolds, Topology
Appl. 12 (1981) 229-235.

[E1] ENGELKING, R., General topology, PWN, Warsaw, 1977.
[E2] ENGELKING, R., Dimension theory, PWN, Warsaw, 1978.
[GS1] GEOGHEGAN, R. and R.R. SUMMERHILL, Concerning the shapes of

finite-dimensional compacta, Trans. Amer. Math. Soc. 179
(1973) 281-292.

[GS2] GEOGHEGAN, R. and R.R. SUMMERHILL, Pseudo-boundaries and pseudo-
interiors in euclidean spaces and topological manifolds,

Trans. Amer. Math. Soc. 194 (1974) 141-165.

[GN] GROOT, J. de and T. NISHIURA, Inductive compactness as a
generalization of semicompactness, Fund. Math. 58 (1966)
201-218.



[aw]

[H]

X1

[Ms]

M]

[M1]

[s]

[8]

[T11

[T2]

[wl

103

HENDERSON, J.P. and J.J. WALSH, Examples of cell-like
decompositions of the infinite-dimensional manifolds ¢ and

Z, Topology Appl. 16 (1983) 143-154.

HUDSON, J.F.P., Piecewise linear topology, University of Chicago

lecture notes, Benjamin, New York, 1969.
KOZLOWSKI, G., Images of ANR's, unpublished manuscript.

MAZURKIEWICZ, S. and W. SIERPIﬁSKI, Contributions & la topologie
des ensembles dénombrables, Fund. Math. 1 (1920) 17-27.

MENGER, K., Allgemeine Raume und Cartesische Raume, zweite
Mitteilung: Uber umfassendste n-dimensionale Mengen, Proc,

Kon. Ned. Akad. Wetemsch. 29 (1926) 1125-1128.

MILL, J. van, A boundary set for the Hilbert cube containing no

arcs, to appear in Fund. Math.

SIERPIﬁSKI, W., Un théoréme sur les continus, T8hoku Math. J.
13 (1918) 300-303.

8TAN'KO, M.A., Solution of Menger's problem in the class of
compacta, Soviet Math. Dokl. 12 (1971) 1846-1849; from:
Dokl. Akad. Nauk SSSR 201 (1971) 1299-1302.

TORUﬁCZYK, H., Skeletonized sets in complete metric spaces and
homeomorphisms of the Hilbert cube, Bull. Acad. Pol. Sci.
Sér. Math. Astr. Phys. 18 (1970) 119-126.

TORUﬁCZYK, H., Characterizing Hilbert space topology, Fund. Math.
11 (1981) 247-262. '

WEST, J.E., The ambient homeomorphy of an incomplete subspace of
infinite-dimensional Hilbert spaces, Pacific J. Math. 34
(1970) 257-267.






LIST OF SYMBOLS

H(X)
iy
X~y
d
R, N, Q, I
3C, Int C
S

ag

n ShIL
m,, @)
it

1
K., K
4
Ul, ot

€ €
Pn’ Pn
M

n ~n
Ne» Ny
n n
B> Sy
P

g
lIx||
Q
™.

1
3, 3
P U€
diam A
Q

17
21

21

21

21

22

22

22

31

33

35

39

39

39

39

39

39

39

20, 7(X)

Bea

S

cR

st™(a,D)
(Q’S’O’“)even, odd
Xx I

a
W, (r)

FW(p)
Y

-0

R

Fd (X)

105

39

40

40

40

42

43

43

44

49

49

49

49

50

51

59

72

72

72

72

79

80

83

92

92

95



106

SUBJECT INDEX

(8,T)-absorber
ANR
AR

boundary preserving

boundary set

U-close
complement theorem
continuum

convergence criterion

A-pair
deformation boundary set

discrete collection

essential

fake topological Hilbert space

fundamental dimension

hereditary

homeomorphism extension theorem,

X O n

k
Y

homogeneous
homotopic

homotopy
(e-) isotopy
limited by U

map

e-mapping

77
77

40
43

93
80

43
77

86 -

78
95

58,63
40,41
84
69

92

45



Menger space

monotone

negligible
Nobeling space

norm preserving

pseudo-boundary, the
pseudo-interior, the

U-push

o-Z-set

SDAP

shape (map)

shrunken endface
Sierpifiski's theorem
(8,T)-skeleton(-o0id)

star refinement ]
strong (S,T)-skeleton(-oid)
strongly negligible
strongly o-complete
subpolyhedron

supported on

tame polyhedron

thin

. k
universal for V0
variable product
WDAP

Z-set

22
70

22
65

40
40

40
77
92
49
80

32
17

17
33

33

59

78

40

107



108

AUTHOR INDEX

Alexandroff, P. 34,101.
Anderson, R.D. i,3,8,32,40,42,50,70,
74,78,82,99,101.

Bessaga, C. 1,8,12,101.

Borsuk, K. 77,92,101.

Bothe, H.G. 23,101,

Chapman, T.A. 1,40,41,50,57,70,92,97,
’ 101,102.

Curtis, D.W. , i,32,42,43,50,70,78,82,

99,101,102.

Dijkstra, J.J. 31,45,79,80,102.

Dobrowolski, T. . 87,102.

Engelking, R. 1,102.

Geoghegan, R. 17,18,19,22,31,32,33,
102.

Groot, J. de 43,102,

Henderson, J.P. 43,103.

Hudson, J.F.P. 18,103.

Kozlowski, G. 97,103.

Mazurkiewicz, S. 42,103.

Menger, K. 24,103.

Mill, J. van i,32,42,43,50,70,78,79,
82,99,101,102,103.

Nishiura, T. - 43,102,

Pelczyhski, A. 1,8,12,101.

Sierpidski, W. 42,80,103.

Stan'ko, M.A. 22.103.



109

Suﬁmerhill, R.R. 17,18,19,22,31,32,33,
' 102.

Toruficzyk, H. 8,77,87,102,103.

Urysohn, P. 34,101.

Walsh, J.J. | 43,103.

West, J.E. 8,10,103.






MATHEMATICAL CENTRE TRACTS
1.T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.

3 G. de Leve. Generalized Markovian decision processes, part
I: model and method. 1964.

4 G. de Leve. Generalized Markovian
11: probabilistic background. 1964.

5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
decisi icati 1970.

g,

processes, part

pr
6 M.A. Maurice. Compact ordered spaces. 1964.

7 W.R. van Zwet. Convex transformations of random variables.
1964.

8 J.A. Zonneveld. A ic numerical integration. 1964.

9 P.C. Baayen. Universal morphisms. 1964.

10 E.M. de Jager. Applications of distributions in mathematical
Pphysics. 1964.

11 A.B. Paal de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54. P

14 H.A. Lauwerier. Calculus of variations in mathematical
Pphysics. 1966.

15 R. Doornbos. Slippage tests. 1966.

16 J.W. de Bakker. Formal definition of programmin,
lar?uagex with an application to the definition of ALGOL 60.
1967.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 1. 1968. .

18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.

19 J. van der Slot. Some properties related to compactness.
1968.

20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.

21 E. Wattel. The compactness operator in set theory and
topology. 1968.

22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part 1. 1968.

23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.

24 J.W. de Bakker. Recursive procedures. 1971.

25 E.R. Paérl. Rzpresemalions of the Lorentz group and projec-
tive geometry. 1969.

26 European Meeting 1968. Selected statistical papers, part 1.
1968.

27 European Meeting 1968. Selected statistical papers, part 1.
1968.

23619 Oosterhoff. Combination of one-sided statistical tests.
1969.

29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.

31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.

32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.

33 F.W. Steutel. Preservation of infinite divisibility under mix-
ing and related topics. 1970.

34 1. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func-
tions in topology. 1971.

35 M.H. van Emden. An analysis of complexity. 1971.

36 J. Grasman. On the birth of boundary layers. 1971.

37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, EW.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.EJ. Kruseman Aretz, W.L. van der Poel, J.P. Schaap-
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.

38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.

39 H. Bavinck. Jacobi series and approximation. 1972.

40 H.C. Tijms. Analysis of (s,S) inventory models. 1972.

41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica-
tions in number theory). 1972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.

44 H. Bart. Meromorphic operator valued functions. 1973.

45 A.A. Balk M transfor and limit laws.
1973.

46 R.P. van de Riet. ABC ALGOL, a ﬁoﬂable Iangua%e Sfor
formul ipulatic part 1: the language. 1973

J (s

47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973

48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.

49 H. Kok. Connected orderable spaces. 1974.

50 A. van Wijngaarden. B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.

51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.

52 P.C. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.

54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974.

55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph thea?/, foundations. partitions and combinatorial
geometry. 1974,

57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.

58 W. Albers. 4 ic e. 7
cept in statistics. 1975.

59 J.L. Mijnheer. Sample path properties of stable processes.
1975.

and the deficiency con-

Y

60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.

64 W.J. de Schipper. Symmetric closed categories. 1975.

65 J. de Vries. Tgpolagiml transformation groups, 1: a categor-
ical approach. 1975.

66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.

68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976. .
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.

70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.

71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.

72 J.K.M. Jansen. Simple periodic and non-periodic Lamé
Sfunctions and their applications in the theory of conical
waveguides. 1977.

73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. te Riele. A th ical and ¢ [ study of
generalized aliquot sequences. 1976.

75 A.E. Brouwer. Treelike spaces and related connected topo-
logical spaces. 1977.

76 M. Rem. Associons and the closure statement. 1976.

77 W.C.M. Kallenberg. Asymptotic l_)ftimali!y of likelihood
ratio tests in exponential families. 1978.

78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977." -

79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.

80 P.W. Hemker. A4 numerical study of stiff two-point boundary
problems. 1977.

81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science 11, part 1. 1976.

82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science 11, part 2. 1976.

83 L.S. van Benthem Jutting. Checking Landau’s
“Grundlagen” in the AUTOMATH system. 1979.

84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (?), books
vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallman spaces. 1977.

86 S.G. van der Meulen, M. Veldhorst. Torrix 1, a program-
ming system for operations on vectors and matrices over arbi-
trary fields and :f variable size. 1978.

88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and
analytic functionals with unbounded carriers. 1978.

Y



90 L.P.J. Groenewe%en. Characterization of optimal strategies
in dynamic games. 1981

=91 J.M. Geysel. Transcendence in fields of positive characteris-
tic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.

94 A. Bijlsma. Simul approximations in transcendental
number theory. 1978.

95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages,
and growth functions. 1980.

97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984

98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra, A.H.G. Rinnooy Kan. P. van Emde Boas

(eds.). Inter aces between computer science and operations
research. 197

100 P.C. Baayen. D. van Dulst, J. Oosterhoff (eds.). Proceed-
lngs bicentennial congress of the Wiskundig Genootschap, part
979.

101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
ings bicentennial congress of the Wiskundig Genootschap, part
79.

102 D. van Dulst. Reflexive and superreflexive Banach spaces.
1978.

103 K. van Harn. C[MSI{)’lng 1f
by functional equations. 1978

104 J.M. van Wouwe. Go-spaces and generalizations of metri-
zability. 1979.

105 R. Helmiers. Edgeworth exp
of order statistics. 1982.

1(9)69A Schrijver (ed.). Packing and covering in combinatorics.

itely divisible distrib

.

Sor linear ¢

107 C. den Heijer. The numerlcal solution of nonlinear opera-
tor eq by 19

108 J.W. de Bakker, J. van Leeuwen (eds) Foundations of

computer science 111, part 1. 1979.

109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of

computer science 111, part 2. 1979.

110 J.C. van Vliet. ALGOL 68 transput, part I: h/smma/

review and discussion of the implementation model. 197

111 J.C. van Vliet. ALGOL 68 transput, part I1: an lmplemen

tation model. 1979.

112 H.C.P. Berbee. Random walks with stationary increments

and renewal theory. 1979.

113 T.A.B. Snijders. Asymptotic optimality theory for testing

problems with restricted alternatives. 1979.

114 AJ.EM. Janssen. Application of the Wigner distribution to

harmonic analysis of generalized stochastic processes. 1979.

115 P.C. Baayen, J. van Mill (eds.). Topological structures 11,

part 1. 1979.

116 P.C. Baayen, J. van Mill (eds.). Topological structures 11,

part 2. 1979.

117 PJ.M. Kallenberg. Branching processes with continuous

state space. 1979.

118 P. Groeneboom. Large deviations and asymptotic efficien-

cies. 1980.

119 F J. Peters. Sparse matrices and substructures, with a novel
o/}?mle I algorithms. 1980.

120 W.P.M. de Ruyter. On the asymptotic analysis of large-

scale ocean circulation. 1980.

121 W.H. Haemers. Eigenvalue techniques in des:gn and graph

theory. 1980.

122 J.C.P. Bus. Numerical solution of s of li

equations. 1980.

lgéol Yuhasz. Cardinal functions in topology - ten years later.

1980.

124 R.D. Gill. Censoring and stochastic integrals. 1980.

125 R. Eising. 2-D systems, an algebraic approach. 1980.

126 G. van der Hoek. Reduction methods in nonlinear pro-
gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.

128 AJ.J. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.

129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Haien T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. ILP: intermediate language for pictures.
1980.

131 RJ.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.

132 H.M. Mulder. The interval function of a graph. 1980.

133 C.A.J. Klaassen. Statistical performance of location esti-
mators. 1981

134 J.C. van Vliet, H. ng)er (eds.). Proceedings interna-
tional conference on ALGOL 68. 1981.

135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part 11. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.

138 H.A. Lauwerier. Matk ical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming, succes-
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.

140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis.
1981.

141 G.E. Welters. Abel-Jacobi isogenies for certain tvpes of
Fano threefolds. 1981.

142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 1. 1981.

143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.

144 P. Eijgenraam. The solution of initial value problems using
interval arithmetic; formulation and analysis of an algorithm.

145 A.J. Brentjes. Multi-dimensional continued fraction algo-
rithms. 1981.

146 C.V.M. van der Mee. Semrgroup and factorization
methods in transport theory. 1981.

147 H.H. Tigelaar. Identification and informative sample size.
1982.

148 L.C.M. Kallenberg. Linear progr

kovian control problems. 1983.

149 C.B. Huijsmans. M.A. Kaashoek, W.A.J. Luxemburg,

W.K. Vietsch (eds.). From A to Z, proceedings of a symposium

in honour of A.C. Zaanen. 1982.

150 M. Veldhorst. An analysis of sparse matrix storage

schemes. 1982.

151 R.J.M.M. Does. Higher order asymptotics for simple linear

rank statistics. 1982.

152 G.F. van der Hoeven. Projections of lawless sequences.

1982.

153 J.P.C. Blanc. Application of the theory of boundary value

problems in the analysis of a queueing model with paired ser-

vices. 1982.

154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational

methods in number Iheor} part 1. 1982,

155 H.W. Lenstra, Jr., R. Tijdeman (eds ). Computational

methods in number theory, part 11. 1982,

156 P.M.G. Apers. Query processing ami data allocation in

distributed database systems. 1983.

157 H.A.W.M. Kneppers. The covariant classification of two-
[ smooth ¢ ,{ormal groups over an alge-

braically closed field of positive characteristic. 1983.

158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of

computer science 1V, distributed systems, part 1. 1983.

159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of

computer science 1V, distributed systems, part 2. 1983.

160 A. Rezus. Abstract AUTOMATH. 1983.

161 G.F. Helminck. Eisenstein series on the metaplectic group,

an algebraic approach. 1983.

162 J.J. Dik. Tests for preference. 1983.

163 H. Schippers. Multiple grid methods for equations of the

second kind with applications in fluid mechanics. 1983.

164 F.A. van der Duyn Schouten. Markov decision processes

with continuous time parameter. 1983.

165 P.C.T. van der Hoeven. On point processes. 1983.

166 H.B.M. Jonkers. Abstraction, specification and implemen-

tation techniques, with an application to garbage collection.

1983.

g and finite Mar-

167 W.H.M. Zijm. Nonnegative matrices in dynamic program-
ming. 1983,

168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.

169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. 1983.



‘CWI TRACTS
}9&!‘“. Epema. Surfaces with ical hyperpl

2 J.J.-Dijkstra. Fake topological Hilbert s and characteri-
zations of dimension in terms of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie

1

groups. -
6 A.P.W. Bshm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.






