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PREFACE 

This monograph is an investigation in infinite-dimensionai topology. 

By a fake topological Hilbert space we mean a separable, metrizable space 

that shares many topological properties with £.2 , but yet is not homeomorph­

ic to it. We think of properties like: Xis homogeneous, Xx Xis homeo­

morphic to £.2 (which implies that Xis an absolute retract), every 

compactum in Xis a Z-set and Xis universal for the class of separable, 

metrizable _spaces. Our aim is to construct a sequence x_ 1,x0 ,x1 ,x2, ..• of 

fake Hilbert spaces such that an arbitrary er-compact subspace of~ has 

dimensions kif and dnly if it is strongly negligible. In other words Xk 

has the negligibility-properties of £.2 precisely up to dimension k 

inclusive. 

The. standard way to obtain spaces with certain negligible subsets is 

through pseudo-boundaries. We first construct in chapter 2 a k-dimensional 

pseudo-boundary in lR.n. Employing this result we build in chapter 3 a 

k-dimensional pseudo-boundary in the Hilbert cube for every 

k E {-l,0,1,2, ••• }. As basis for our sequence x_ 1,x0 ;x1,x2 , •.. we use a 

.fake Hilbert space Y, which has been introduced by Anderson, Curtis & van 

Mill [ACM]. We show in chapter 4 that Y is homogeneous in a very strong 

sense and we conclude from this fact that 1\ is also a pseudo-boundary in 

Y. Finally, in chapter 5 the spaces~~ Y\1\ are analysed. 

The author has highly benefited from discussions with and suggestions 

from Jan van Mill. Thanks are also due to the Centre for Mathematics and 

Computer Science for their willingness to publish this monograph as a 

CWI Tract. 
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CHAPTER 1 

GENERAL THEORY 

I.I Preliminaries 

In this section we introduce basic concepts and we give two simple 

methods to construct autohomeomorphisms. Our notation is standard, cf. 

Engelking [El]. For information concerning infinite-dimensional topology 

see Bessaga & Pelczyfiski [BP2] and Chapman [CJ. We make the following 

restriction. 

All topological spaces in this treatise are assumed to be separable 

and metrizable. 

We now give a list of definitions and notations. Let X and Y be topo­

logical spaces, let Ube a collection of open subsets of X and let d be an 

admissible metric on X. 

(a) H(X) denotes the group of autohomeomorphisms of X and IX or simply I 

is the identity on X. 

(b) A continuous mapping is called a map. 

(c) The symbol XRI Y means that X and Y are homeomorphic spaces. 

(d) If f is a mapping from X into X and A is a subset of X then we say 

that f is supported on A if the restriction fJX\A is equal to JX\A" 
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(e) Mappings f,g Y + X are U-close if for each y € Y with f(y) f g(y) 

there exists a U € U containing both f(y) and g(y) (note that we did 

not require U to cover X). Observe that if f: X +Xis U-close to I 

then f is supported on UU. 

(f) If f and g are mappings from Y into X then 

d(f,g) sup{d(f(y),g(y))jy € Y} € [Q,oo]. 

(g) lR, lN and ~ denote the real, natural and rational numbers, respectively. 

(h) If C is an n-cell, n E lN, then ac denotes the geometric boundary of C. 

Int C is the set C\clC. 

(i) A homotopy is a map F: Y x K + X, where K is a compact interval inlR. 

Usually, K equals the set I [0,1] and we define fort EK, 

Ft : Y + X by Ft(y) = F(y,t). Fis called limited by U if for every 

y E Y the path of y, F({y} x K), is a singleton or is contained in 

some member of U. 

(j) An isotopy Hof Xis a homotopy from Xx K into X such that the 

function H: Xx K +Xx K, defined by H(x,t) (H(x,t),t) is an 

element of H(X x K). For compact X this means that an isotopy His a 

homotopy such that each level Ht is in H(X). Occasionally, we shall 

also call Han isotopy. If E > 0 then His an E-isotopy if the 

supremum for x EX of the cl-diameter of H({x} x K) is less than E. 

(k) Xis called homogeneous if for every pair x,y EX there is an 

f E H(X) with f(x) = y. 

We conclude this section with two lennnas which give frequently used 

methods to construct homeomorphisms. 



1 • I • 1 • LEMMA: If H : X x K + X is an isotopy of X and a is a map from 

Y into K then the function f defined by 

f(x,y) = (H(x,a(y)),y) for x € X and y € Y 

is an element of H(X x Y). 

PROOF: This is trivial. 

3 

1.1.2. LEMMA: Let T be a tree of height w, X a topologically complete 

space and (ft)t€T a function from Tinto H(X) such that for every open 

covering U of X and t € T there is an immediate successor t' oft such that_ 

ft' and l are U-close. If dis an admissible metric on X then there is a 

branch t 0 ,t 1,t2, ... _ in T such that (fti O ... 0 ft 1 ° fto\€lN has a 

uniform d-limit that is an element of H(X). 

Note that for compact X the condition on (ft)t€T can be replaced by: 

for every e > 0 and t € T there is an innnediate successor t' such that 

d(ft 1 ,l) < e, where dis some fixed metric on X. This lennna is essentially 

due to Anderson [A2]. 

PROOF: Let d be an arbitrary admissible complete metric on X. Pick a 

t 0 in T with rank O. Assume that a chain t 0 ,t 1, ••. ,ti has been chosen. Put 

gi = fti O ••• 0 ft 1 ° fto and define the metric d' on X by: 

-I -I d'(x,y) = d(x,y) + d(g. (x),g. (y)). 
1 l 

A -i 
Let ti+I be an innnediate successor of ti such that d'(fti+l;l) < 2 • It is 

easily verified that the sequence (g.)~ 0 constructed in this way has the 
l 1= 

A -i A -I -I -i 
properties d(gi'gi+l) < 2 and d(gi ,gi+I) < 2 for i = O, 1,2, .... 
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Since dis complete the uniform limits g 

are continuous. We have for x € X: 

d(h o g(x) ,x) lim d(h o gi (x) ,x) 
i--

lim gi and h 
i--

-1 
lim gi exist and 
i--

-1 
limd(hog,(x),g. og.(x)),,; 

l. l. 1 

This means that hog 

lemma is proved. 

1. Analogously, one may show that go h 1 and the 

1.2. Negligibility and pseudo-boundaries 

We introduce a triple (X,S,r) that will remain fixed throughout this 

section.Xis a topologically complete space and (S,r) satisfies the 

following conditions: 

(a) Sis a collection of closed subsets of X, 

(b) r is a subgroup of /-1 (X) , 

(c) S is hereditary, i.e. every closed subset of a member of S is in S, 

(d) S is invariant under the action of r , 

(e) There is an admissible metric don X such that every f € 1-/(X) that is 

the uniform d-limit of a sequence in r belongs tor. 

For convenience we shall call an object that satisfies (a) - (e) a 

~-pair on X. Observe that for compact X condition (e) is equivalent to: r 

is closed in the compact-open topology on 1-/(X). Let S denote the collection a 

of all countable unions of members of S. 
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1.2.1. DEFINITION: A subset S of Xis called negligible if X ~X\S. 

The set Sis called strongly negligible if for every collection U of open 

subsets of X there is a homeomorphism f: X + X\(S n UU) that is U-close to 

to I. 

Obviously, every (relatively) open subset of a strongly negligible set 

Sis negligible; in particular, S itself is negligible. Every negligible 

subset of X is an F O -set. This can be seen as follows. If X\S ~ X then X\S 

is, like X, topologically complete. This implies that X\S is a G0-set in X 

and hence that Sis an F -set ([El, 4.3.24]). It is also easily verified 
0 

that a strongly negligible set is always a countable union of nowhere dense 

sets (indeed, it is a o-Z-set, see section 3.1). We give more properties of 

strong negligibility. 

1.2.2. PROPOSITION: Every (relatively) closed subset of a strongly 

negligible set in Xis strongly negligible. 

PROOF: Let S be strongly negligible in X and let F be a closed subset 

of S. There is an open Win X with S\W = F. Consider a collection U of open 

subsets of X and select an open star refinement V of U, i.e. UV= UU = 0 

and for every VE V there is a U € U such that every V' E V that intersects 

Vis contained in U. Since Sis strongly negligible there exist homeo­

morphisms f: X + X\(S n O) and g: X + X\(S n On W) such that f is 

I -I V-close to I and g is {V n WV E V}-close to I. Then h = g of is a 

homeomorphism from X onto X\(F n 0) which is U-close to I. This proves that 

Fis strongly negligible in X. 

1.2.3. THEOREM: Strong negligibility is a-additive. 



6 

PROOF: As remarked above every negligible set is an F0 -set. So 

proposition 1.2.2 reduces the problem to: if (S.). lN is a sequence of 
l. l. E 

closed, strongly negligible subsets of X then S = . U S. is strongly 
l. E]N l. 

negligible. 

Let s 1,s2 ,s3 , ••• be all strongly negligible, closed subsets of X and 

let Ube a collection of open subsets of X. We define o1 = UU and O. = i.+I 

= O.\S. for i E lN. Select a complete metric don X and construct a complete 
l. l. 

metric d 1 on o1 such that for every x,y E o1, d 1(x,y) ~ d(x,y) and for some 

U EU, {z E o1 id 1(z,x) < I} c U (see [El:5.4.H]). Choose for every i E lN 

a complete metric di+J on Oi+J such that for x,y E Oi+l'di+l(x,y) ~ di(x,y). 

We shall construct inductively a sequence f 1,f2,f3 , •.• such that for every 

i E lN, fi is a homeomorphism from X onto X\(Si n Oi) that is supported on 

Oi. Since s 1 is strongly negligible there is a homeomorphism 

f 1 : X + X\ (S I n O 1) that ,is supported on O I and has the property 

d I (f I IO I, I) < ! . 

Suppose that fi has been constructed. It follows easily from the 

induction hypothesis that gi = f i O ••• 0 f I is a homeomorphism from X onto 

X\((s 1 u ••• u Si) n o1) = (X\0 1) u Oi+I· Define the metric di+I on Oi+I by 

and select a homeomorphism fi+I : X + X\(Si+I n Oi+I) that is supported on 

Oi+I and satisfies 

This completes the induction. 

- u -I I If S - iElN Si then (gi X\(S n o1))iElN is a sequence of maps from 

X\(S n o1) into X that satisfies: 
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and for i ( lN, 

Since d is a complete metric h = lim g: 1 IX\(S n o 1) is a continuous function 
i-- l. 

from X\(S n o 1) into X. 

Analogously, we can prove that g = lim gi is a map from X into X, which 
i--

is obviously supported on o 1• Let i E 1N and recall that gi(X) = 

(X\0 1) u Oi+l" Since (gi+kloi+I \ElN is a Cauchy sequence with respect to the 

complete metric di+! we have that g(X) c X\0 1 u Oi+I" This means that g is 

a map from X into X\(S n o 1). Since both hand g are uniform limits we have 

that h 0 g = IX and g 0 h = J.X\(S n 01 ) and hence that g is a homeomorphism 

from X onto X\(S n 0 1). Obviously, we have that a. 1 (gl0 1,1) < I and 

glX\0 1 = 1, which implies that g and I are Ll-close. 

1.2.4. COROLLARY: A subset of a strongly negligible set Sin Xis 

(strongly) negligible in X iff it is an F 0 -set (in X or, equivalently, in 

SJ • 

PROOF: Use proposition 1.2.2, theorem 1.2.3 and the fact that every 

negligible set is an F0 -set. 

1.2.5. REMARK: One easily verifies that negligibility is neither 

closed hereditary nor additive (consider for instance the interval I). A 

more sophisticated counterexample is the space Y which is discussed in 

chapter 5. This space is universal for the class of separable metric spaces 

(corollary 5.3.6) and has the property that a compact subspace is 

negligible iff it has the shape of a finite space (theorems 5.5.4 and 5.5.5). 

We now come to the pseudo-boundaries. The first to study this concept 
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were Anderson [A4] and Bessaga & Pe½czynski [BPI]. Their notion of a 

pseudo-boundary was generalized to arbitrary complete metric spaces by 

Torunczyk [Tl] (these pseudo-boundaries are called skeletoids) and differ­

ently by West [W] (called absorbers here), We shall now define these 

concepts. 

1.2.6 DEFINITION: Let Ube a collection of open subsets of a space Z 

and let E c H(Z), A map his a U-push in E if there is an isotopy 

H: Z x I+ Z that is limited by U and satisfies: HO = I, H1 =hand 

Ht EE for every t EI. 

1,2.7 DEFINITION: An element A of S0 is called an (S,r)-absorber if 

for every SES and every collection U of open subsets of X there is an 

h Er such that his U-close to I while moreover h(S n UU) c A. If we can 

always choose h in such a way that it is a U-push in r then A is an (S,r)­

absorber"' 

1,2.8 DEFINITION: Let A1 c A2 c A3 c ••• be a sequence of elements of 

S. We call (A.). lN an (S,r)-skeleton ((S,r)-skeleton"') if for every open 
l. l. E 

covering U of X, every SES and every n ElN there exist an h in 

{y E rlylA = I} that is U-close to I (a U-push h in {y E rlylA = I}) and 
n n 

an m E lN such that h(S) c Am• The set i~JN Ai E S0 is called an (S,r)-

skeletoid ((S,r)-skeletoid"'). 

Examples of pseudo-boundaries in the Hilbert cube can be found in 

section 3,1. We now introduce a concept that covers both absorber and 

skeletoid, 



1.2.9 DEFINITION: Let A1 c A2 c A3 c ••• be a sequence of elements of 

S, We call (A.). IN a strong (S,r)-skeleton (strong (S,r)-skeleton"" if 
l. l. € . 

for every open covering U of X, every S € S, every closed subset F of X 

with F n S = 0 and every n €IN there exist an h in {y € rJylA u F = I} 
n 

that is U-close to (a U-push h in {y € rlyJA u F 
n 

I } ) and an m € IN 

such that h(S) c Am. The set i~lN Ai€ Scr is called a strong (S,r)-skel­

etoid (strong (S,r)-skeletoid,... ). 

It is obvious that every strong skeletoid is a skeletoid. With 

absorbers there is the same connexion. 

1,2.10 PROPOSITION: Every strong (S,r)-skeletoid ( "") is an (S,r)­

absorber ( ,.,.) • 

PROOF: We only prove the proposition for plain strong skeletoids and 

absorbers; the version with the ,... is completely analogous. Let (Ai)iEIN 
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be a strong (S,r)-skeleton and put A= i~lN Ai. Assume that U is a collect­

ion of open subsets of X and that Sis an element of S. Put O = UU and 

select an admissible metric don Osuch that {u 1(x)lx € O} refines U, where 

U£(x) = {y € oJd(y,x) < £} for £ ;;: 0 and x € 0 ([El: 5,4.H]). Let s0 c s1 

c s2 c ••• be a sequence of closed subsets of S such that s0 = 0 and 
00 

Sn O = i~O Si' We shall construct inductively sequences f 0 ,f 1,f2, ••• in r 

and n0 < n 1 < n2 < ••• inIN such that for i = 1,2,3, ••• 

and 

fi is supported on O\Ani-l' 
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Put f 0 = IX and n0 =I.We shall make sure that every fi can be chosen 

arbitrarily close to I. This implies with lemma 1.1.2 that we may assume 

that there is an f E H(X) which is the uniform d'-limit of (fi O ••• 0 f 0)iElN' 

where d' is a metric on X such that r is closed with respect to d'. So we 

may assume that f = lim fi o ••• 0 f 0 is an element of r. The other properties 
i-+oo 

that f must satisfy follow easily. We have that f is supported on O and 
00 

d(fl0,1) ~ L d(f. IO,I) < I which means that f and I are U-close, Moreover, i=I i 

f(S n 0) l.. __ u) f(S.) = .u) f. O ••• O fo(S.) = .u) Aul.· CA and we may conclude 
]. i= ]. ]. i= 

that A is an (S,r)-absorber. 

It remains to perform the induction. Assume that fi has been chosen. 

Let F be a closed neighbourhood of X\O such that F n f. 0 ••• 0 f 0 (S. 1) = 0 
]. i+ 

and in order to show that the fi+I we are about to determine can be chosen 

arbitrarily close to I let V be an open covering of X that refines 

{IntX(F)} u {u2_i_2 (x) Ix E ,o}. Since fie ••• 0 f 0 (Si+!) is a member of S 

there exist an f Er and an n. 1 > n. such that flF u A.= I, 
i+ l. "111. 

fi+I O fi O ••• 0 f 0 (sn+l) c ~i+I and fi+I and I are V-close. This implies 

A I -i-1 that d(fi+I 0,1) < 2 and that fi+I is supported on O\Aui• The proof is 

completed. 

Observe that if f Er and A is for instance an (S,r)-absorber then 

f(A) is also an (S,r)-absorber. Conversely, we have the uniqueness theorem 

for absorbers: 

1.2.11 THEOREM (West [W]): If A and Bare (S,r)-absorbers ('"") then 

for every collection U of open subsets of X there is an f Er that is 

U-close to I (a U-push fin r) with f(A n UU) = B n UU. 

PROOF: Again we only prove the theorem for plain absorbers. Let A and 



B be (S,r)-absorbers and let Ube a collection of open subsets of X, Put 

0 = UU and write A= i~lN Ai and B = i~lN Bi, where A1 = B1 = r/J and for 

i ElN, A.,B. ES. Select a metric don Osuch that the open I-balls of d 
l. l. 

11 

form a refinement of U. We construct a sequence f 1,f2,f3 , ••• in r such that 

for i E lN: 

fi is supported on O, 

a<LJo,1) 
l. 

-i 
< 2 ' 

B. n o c f. o g. 1 (A n 0) 
l. l. 1.-

and 

i-1 
f.J.U 1 (g. 1(A.) u B.) = I, 

l. J= 1.- J J 

where gi-l = fi-l o ••• o f 1• We put f 1 = IX. 

Assume that f 1, ••• ,fi have been selected. Then gi (Ai+!)= 

fi O ••• 0 f 1 (Ai+!) is an element of S. It follows from the induction hypo­
i 

thesis that .u 1 (g. (A.) u B.) n O c B. Consequently, there is a SE r that 
J= 1.. J J 

is supported on 0\j~J (gi (Aj) u Bj) and that satisfies d(SjO,I) < 2-i-2 and 

S(g/Ai+I) n O) c B n 0, Note that since S 0 gi Er, S 0 gi(A) is an (S,r)-
i 

absorber and that (.U 1(g.(A.) u B.) u Sog.(A. 1)) n O is contained in 
J= l. J J l. 1.+ 

S 0 gi(A). This implies that there is a y Er such that y is supported on 

i A -i-2 
O\(j~I (gi(Aj) u Bj) u So g/Ai+I)), d(yJO,I) < 2 and 

y(Bi+I n O) c So gi (A) 

supported on O and has 

inclusion 

-I 
n 0, Define fi+I = y O S. 

the property d(f. 1 J0,1) < 1.+ 

The map f. 1 is obviously 1.+ 
-i-1 2 • Consider the 
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=S(g.(A. 1)nO)cBn0 
l. 1.+ 

and observe that y(Bi n O) c So gi(A) n O, whence Bin O is conuained in 

f i + 1 ° gi (A). It is obvious that f i+ 1 restricts to the identity on 
i 

J.~1 (g.(A.) u B.). This completes the induction. 
l. J J 

Observe that every f. could have been chosen arbitrarily close to I, 
l. 

Hence, we may assume in view of lemma 1,1,2 that g = lim g. Er. We have 
• l. 
1.-+<x> 

that g is supported on O and that 

d(glO,I) ~ f d(f. lO,I) < i 2-i 
i=I 1. i=I I• 

This means that g and I are U-close. The sets g(A n 0) and B n O coincide 

because 

g(A n O) .U lN g(A. n 0) 
l. E l. 

. U lN g. (A. n O) c B n o 
l. E l. l. 

and 

-I 
ilblN go gi (Bi n 0) c g(A n O). 

This proves the theorem. 

The same statement could of course have been made about strong 

skeletoids, For skeletoids a similar result can be obtained (see Bessaga & 

Petczyfiski [BP2: ch.VI prop.2.2]). We now give the obvious connexion between 

absorbers and strong negligibility. 

1.2.12 THEOREM: If A is an (S,r)-absorber and Sis an element of Sa 

then S\A is strongly negligible in X\A. 

PROOF: Let A be an (S,r)-absorber and let SE Sa. It is trivial that 

Au Sis also an (S,r)-absorber. Let Ube a collection of open subsets of 
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X>A and construct a collection U' of open subsets of X such that 

U = {U\AIU € U'}. Let f be an element of r that is U'-close to I and that 

has the property f(A n UU') = (Au S) n UU', Then flX\A is a homeomorphism 

from X\A onto (X\A)\((S\A) n UU) that is U-close to I, 

The next theorem shows that when we omit an ab.sorber the homogeneity 

properties of the space are preserved, 

1,2.13 THEOREM: Let A be an (S,r)-absorber and let Ube a collection 

of open subsets of X. Assume that f is an element of r that is U-close to 

and that Fis a closed subset of X with the property that both F and f(F) 

are contained in X\A. Then fiF can be extended to an h € r that is U-close 

to I and that satisfies hlX\A € H(X\A), 

PROOF: Put O = UU and define V ={Un f- 1(u)IU € U}. Since f and I are 

U-close Vis an open covering of o. Since f € r, f- 1(A) is an (S,r)-absorber. 

Note that Fis disjoint from both A and f- 1(A), Using theorem 1.2.11 we 

find a g € r that is {V\FIV E V}-close to I, while g(A n O) = f- 1(A) n O. 

Let h = f O g and note that h € r. We have the foHowing situation: 

and 

h(A) f O g((A n 0) u (A\O)) = f O g(A n 0) u f o g(A\O) 

f(f-l (A) n O) u A\O = (A n 0) u (A\O) = A, 

hlF fog!F fiF 

hlX\O = I. 

-I If x € 0 then there is a U € U such that {x,g(x)} c Un f (U) and hence 
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{x,f 0 g(x)} c U, We conclude that his U-close to I. 

1.2.14 COROLLARY: If A is an (S,r)-absorber and r is such that it makes 

X homogeneous, i.e. X = {y(x)ly Er} for any x EX, then X\A is also homo-

geneous. 

PROOF: This is trivial. 

1,2.15 REMARKS: The concepts we discussed in this section can of course 

also be defined for non-complete spaces, However, since we then do not have 

a convergence criterion like lennna 1,1.2 at our disposal this generalization 

is of limited interest. 

The concepts absorber and absorber~ (or skeletoid and skeletoid~ 

etc,) do not coincide. In section 5,3 we discuss a space xO with the 

property that f,g E H(XO) are isotopic iff f = g (remark 5.3.S). This space 

is, however, homogeneous in a very strong sense (theorem 5.3.3) which 

implies that every countable, dense subset is a strong (Sf,H(xO))-skeletoid, 

where Sf is the collection of finite subsets of xO• 

In section 3.1 we give a ~-pair (S,H(Q)) on the Hilbert cube such that 

there exists an (S,H(Q))-absorber"' but no (S,H(Q))-skeletoid. 







CHAPTER 2 

FINITE DIMENSIONAL SPACES 

This chapter is devoted to the construction of k-dimensional skeletoids 

in In and ]Rn. 

2.1 Tame compacta inlRn and In 

In their papers [Gs1;cs2J Geoghegan & Summerhill have introduced the 

collection !II?~ of "tame" $ k -dimensional compacta in ]Rn. We shall define 

this object and discuss its properties and those of the corresponding 

collection in then-cube. Let n and k be integers with the properties n ~ 

and O $ k < n. The numbers n and k remain fixed throughout this chapter. 

We begin with some terminology. 

Let X be a subspace oflRn. A subpolyhedron of Xis a subset of X that 

is the underlying set of a countable, locally finite simplicial complex in 

]Rn. A subset P of Xis called a tame polyhedron if there is an h E H(X) such 

that h(P) is a subpolyhedron of X. 

2.1.1 DEFINITION: We~ consists of all compact subsets S of ]Rn that 

satisfy the following property: if Pis a subpolyhedron of lRn with dimension 

$ n - k - 1 and U is a collection of open subsets of ]Rn that covers S n P 

then there exists a U-push h in H(1Rn) with h(S) n P = 0. 
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!Ul~ consists of all compact subsets S of In that satisfy the following 

property: if P is a subpolyhedron of In with dim (P) :;; n- k- I and 

dim (P n arn) < n - k - I and U is a collection of open subsets of In that 

covers Sn P then there exists a U-push h in H(In) with h(S) n P = 0. 

One sees immediately that !Pl~ and !Ul~ are invariant under PL-homeo­

morphisms. If P is a :;; k-dimensional subpolyhedron of 1Rn(In) then by a 

n ~n general position argument we find that PE !Vlk (PE !Vlk). For information 

concerning PL-topology see Hudson [HJ. The following theorem has been 

obtained by Geoghegan & Summerhill [GS2]. 

2. 1.2 THEOREM: !Pl~ is invariant under the action of H(1Rn). 

~n We shall see that an analogous statement can be derived for !Vlk. 

2.1.3 LEMMA: If k :;; n-2. x E arn and f : ]Rn-I + arn\{x} is a homeo-

n-1 n-1 ~ n 
morphism then for every S c]R , SE !Vlk iff f(S) E !Vlk. 

PROOF: Prove the lemma first for a PL-homeomorphism f and use then the 

n-1 invariance of !Vlk . The details are left to the reader. 

n ~n 2.1.4 LEMMA: If Sis a subset of Int I then it is an element of !Vlk 

iff it is in !Pl~. 

PROOF: This is obvious. 

2.1.5 LEMMA: !Pl~ and fill~ are hereditary. 



n PROOF: We give the proof for ID?k. Let S' be a closed subset of an 

element S of ID?~. Assume that Pis a subpolyhedron oflRn with dimension 

:,; n - k- I and that U is a collection of open subsets of ]Rn that covers 
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S' n P. Write Pas union of two subpolyhedra P1 and P2 that satisfy P1 c UV 

and P2 n S' = 0. Leth be a {U\P2 1u E U}-push inH(lRn) with h(S) n P1 = 0. 

We have that h(S') n P 

h(S' n P2) = 0 and hence the lemma is proved. 

2.1.6 PROPOSITION: IDl~ is invariant under the action of H(In). 

PROOF: Let SE IDl~, f E H(In), let P be a subpolyhedron of In with 

dim (P) :,; n - k - I and dim (P n Hn) :,; n - k - 2 and let U be an open covering 

n n .....,n 
of P n f(S) in I . We first show that f(S) n ar E ID?k. If k = n- I then 

n ~n every closed subset of :3L is an element of ID?k. If k < n - I then 

n ~n there is an x E :31 \S. Since ID?k is invariant under PL-homeomorphisms we may 

assume that f fixes x. Let g : lRn-l + Hn\ {x} be a homeomorphism. Applying 

lemma 2.1.5, lemma 2.1.3, theorem 2.1.2 and again lemma 2.1.3 we find 

n ~ n -1 n n-1 -1 n successively that S n ar E mk, g (S n ar ) E mk > g O f(S n ;n ) E 

=n-1 d f( ~rn) ~ n ''"k an S n " E !Ink. 

Let V be a star refinement of U. There is a V-push h 1 in H(In) with 

h 1 e f(S n Hn) n P = 0. Select an i E lN such that h 1 ° f(S) n P c O = 

(1/i, I - 1/i)n. Put C = f-l O h~ 1 (C11n(O)) n Sand note that lemma 2.1.5 

implies that CE IDl~. Since Cc Int In we have that CE !In~, lemma 2.1.4. 

Since h 1 ° f can be extended to an element of H(lRn) theorem 2. I. 2 implies 

that h 1 o f(C) E !In~. By virtue of lennna 2.1.4 we have that h 1 ° f(C) 

So there is a {V n olv E V}-push h 2 in H(In) such that h2 o h 1 ° f(C) 

~n 
E !Ink. 

n P = 0. 

This means that h2 ° h 1 is a Ll-push in H(In) with h2 o h 1 ° f(S) n P = 0. 

The following propositions are essentially due to Geoghegan & Sunnnerhill 
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[GS2]. For the sake of completeness, we have included proofs. 

n ~n 
2. I. 7 PROPOSITION: Let S be an element of !Vlk (!Vlk), let U be a 

collection of open subsets oflR.n(In) and let L be a countable collection of 

tame polyhedra in lR.n(In) having dimension $ n - k - I (for In in addition: 

dim (UL n nn) $ n-k-2). Then there exists a U-push h in H(lR.n) (H(In)) 

such that h(X) n UL n UU = 0. 

PROOF: We prove the proposition forlR.n. Put O = UU and write On UL as 

countable union of tame polyhedra with dimension $ n - k- I: 0 n UL = i ~lN Ti. 

Let d be a metric on Osuch that the I-balls form a refinement of U. Put 

T0 0. We shall construct inductively a sequence c0 ,G1,G2 , .•. of isotopies: 

lR.n x I +lR.n x I such that for i = 0,1,2, ..• 

Gi I 
0 ' 

Gi is supported on O\~u 1 T. fort E I, 
t J=I J 

and 

where Hi 

If every Gi is chosen close enough to I lR.n x I then H = lim Hi is an 
i--

isotopy of lR.n, lemma 1.1.2. It follows easily from the induction hypothesis 

that His limited by U and that H1(S) n UL n O = 0. 

Assume that Gi has been constructed. Let f E H(lR.n) be such that f(Ti) 

is a subpolyhedron of lR.n. It is a consequence of the induction hypothesis 

i i 
that f O H1 (S) n f (j~O T j) = 0. Since IDl~ is invariant we have that 
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f O H~(S) E W'I~. Consequently, there is an isotopy F 

i 

of ]Rn such that F O I, 

F1 °f 0 H1(S) n f(Ti+I) = r/J and for every t EI, Ft is supported on 

f(O\~o Tj) and d(f-l ° Ftlf(o), f-l lf(O)) < 2-i-I _ Define the isotopy Gi+I 

]Rn x I +]Rn x I b Gi+I = f-l ° F O f for t E I. It is clear that Gi+I y t t 

satisfies the induction hypothesis. 

n ~n 2.1.8 PROPOSITION: If Sis a compact element of 9Jlk0 (9Jlk0 ) then Sis an 

n ~n 
element of W'lk (W'lk). 

n 
PROOF: Consider a compact S E W'lko" Write S = i ~lN Si where each Si is 

in W'I: and let P be an (n - k- I )-dimensional subpolyhedron of ]Rn. Let h 1 

push s1 off P. Since W'I~ is invariant we have that h 1(s2) E W'I~. So we can 

push h 1(s 2) away from P keeping h 1(s 1) fixed. Continue this process. For the 

epsilonics see the very similar proof of proposition 1.2. 10. 

Note that lemma 2.1.4, theorem 2.1.2 and proposition 2. 1.6 state that 

(W'l~,H(lR)) and (!m~,H(In)) are ti-pairs. 

We now introduce a cell structure on I 1 for 1 E lN. If i E {O} ulN then 

J~ is the collection of all cubes in I 1 that have the form 
l. 

i where m1,m2, ••• ,m1 are elements of {0,1, .•. ,3 -I}. Define furthermore for 

i E {0} u lN, 

{2m+l. Im ~ { i }} K. c 0,1, .•• ,3 -I 
1. 2. 31. 

00 

and K i~O Ki. Note that K0 c K1 c K2 c •.. and that the 1-fold product 

(K.) 1 is the set of centres of members of J~. Let d1 be the maximum metric 
l. l. 

onlR1 and let u1 (u1) denote the E-balls inlR1(I1) that correspond with d1. 
E E 
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Let P (P) be the subgroup of H(Rn)(H(In)) that corresponds to 
n n 

n 
permutating then coordinates. We define the Menger space~ by 

k+l 
i E { 0} u lN and p E (K.) }. 

l. 

It was proved by ~tan'ko [~]that~ is universal for the k-dimensional 

compact subsets of lRn. The following fact has been obtained by Geoghegan & 

Summerhill [GS2]: 

2.1.9 PROPOSITION:~ EID?~. 

2.1.10 DEFINITION: If A is a countable dense subset of JR then the 

N6beling space N~(A) is the set of all points inlRn for which at most k 

coordinates are elements of A. If A is a countable dense subset of (0,1) 

~n 
then Nk(A) is the set of all points in In for which at most k coordinates 

are in A. We put N~ 

2.1.11 REMARKS: We have the following alternative definitions of N~ 

= and Nk: 

and 

= n n-k-1 ~ k+l Nk = I \U{a({p} x I )/a E pn and p E (~ n (0,1)) }. 

It is obvious that if A is countable and dense in JR (in (0,1)) then there 

n n n n ~n ~n 
is an h EH( lR) (H(I )) such that h(Nk) = Nk(A) (h(Nk) = Nk(A)). It is 

known that N~ and~ are k-dimensional spaces, see [E2: 1.5.9]. 
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2. 1. 12 THEOREM: If A is a countable dense subset of lR then 

ll.Jl~ {f(S) if E H( lRn) and S compact c N~(A)}. 

If A is a countable dense subset of (0,1) then 

n ~n 
{f(S) if E H(I) and S compact c Nk(A)}. 

PROOF: In view of 2.1.11 it suffices to prove the theorem for A=~ 

respectively A= 111 n (0,1). The inclusion ll.Jl~ c {f(S)if E H(lRn) and S 

compact c N~} is a consequence of 2.1.7 and 2.1.11. For In the same argument 

applies. 

Consider now Bothe's theorem (see Bothe [Be] or [E2: 1.11.6]) that 

every compact subset S of N~ can be embedded into~ by an f E H(lRn). If 

we combine this result with 2.1.2, 2.1.5 and 2.1.9 we have proved the 

theorem for lRn. 

n ~n 
Let f E H(I) and let S be a compact subset of Nk. Define for every 

i E lN, S. = S n [2-i, I - 2-i]n. If we prove that every element of 
l. 

is in 

every 

that 

{S.ii ElN} u {Sn FiF an (n-1)-face of In} 
l. 

~n then the propositions 2 . I . 6 and 2 . I . 7 imply that f(S) ~n 
ll.Jlk E: ll.Jlk. 

i E lN we have that n s. 9.ll~. This means Sic Nk and hence that E: 
l. 

s. ~n Let F be an (n - I )-face of In and let Hn\F. If k E: ll.Jlk. XE: 
l. 

n ~n then every closed subset of 3I is in ll.Jlk and we are done. If k < n - I 

For 

n- I 

n n-1 n 
select a homeomorphism h: 3I \{x} +JR such that h(S n F) c Nk(~\{0,1}). 

Then h(S n F) E: ll.Jl~-I and hence S n F E: IDI~. This completes the proof. 

2.1.13 COROLLARY: Every SE ll.Jl~ (IDI~) has dimension~ k. 
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PROOF: dim (N~) k, see [E2: J.5.9]. 

mJ,Il ,.., Il f ll I rv Il I 
2. I. 14 COROLLARY: If SE a-,k (!Vlk) and S E !Vlk, (!Vlk,) then 

n+n' ~n+n' 
s X S' E !Plk+k' (!Plk+k'). 

PROOF: There exists an f EH( lRn) and an f' EH( lRn 1
) such that 

n n' 
f(S) c Nk and f(S') c Nk'" Consequently, one has that 

n n' n+n' 
f X g(S XS') C Nk X Nk, C Nk+k'" 

2.2 Skeletoids in In 

~n H n In this section we prove that (!Vlk' (I ))-skeletoids exist. Our 

construction of a skeleton,is based on the space~• which was introduced 

by Menger [M] and which we modify slightly. 

Consider the following collection of (n - k- I )-dimensional planes in 

Select an enumeration (L ) 00 of L such that if L. = a({p} x In-k-l) then i i=O i 

( ) k+ I . • { } p E Ki • Define form Elli" and i E O u:m the compact sets 

and A = 
m 

members 

00 

iQO Fr. It is easily seen that Fr can be written as union of 

of J~ 1• We obviously have the following situation: i+m-

F! c F~ c F~ C • • • 
1 1 1 



and 

= n Note that K is a countable, dense subset of (0,1) and that Nk(K) = I \UL. 

~n 
This implies in view of theorem 2.1.12 that every Ai is a member of !Vlk. 

~n H n ,.. 
2.2.1 THEOREM: (Am)mc:lN is a strong (!Vlk, (I ))-skeleton. 

The remaining part of this section is devoted to the proof of this 

theorem. Before we start with the actual proof we introduce some pushes of 

lRk+ 1 and Ik+ 1 • 

Let EE (0,1/3] and define ~E [0,oo) + [1,oo) by 

if O 5 r 5 E, 

1 1-3£ 
3(1-E) <2 + -r-) if E 5 r 5 1, 

if r ~ 1. 

Note that that the function f(r) = r~ (r), r E [0, 00 ), is a PL-autohomeo­
E 

morphism of [0, 00 ) with the property f([O,E)) [0,1/3). Using the vector 

k+l 
space structure of ]R we define for EE (0,1/3] the homeomorphism 

X E H ( ]Rk+ 1 ) by 
E 

k+l 
Note that x8 is supported on u1 (O) and satisfies 

Section 2.4 is devoted to a proof for the statement: 

25 
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]Rk+I for x,y E , 

Since x113 = 1:m_k+I it is easily seen that for every EE (O,1/3], XE is a 

k+I . k+I I 2 
{U1 (O)}-push 1n {y E H(1R ) dk+l(y(x),y(y)) <'. 3 dk+l(x,y) for 

x, y E: ]Rk+ I } • 

Let m E: {3,4,5, ••. }, i E: {O,1,2, ••. }, p E: (Ki)k+I and put for every 

XE: 

m ~k+I 
It follows that wi,p is a {U½ 3-i(p)}-push in 

k+I I 2 k+I E {y 1c H(I ) dk+l(y(x),y(y)) <'. 3 dk+l(x,y) for x,y 1c I }, 

which satisfies 

PROOF of theorem 2.2.1: Let m be a natural number, Ea positive real 

number, Fa closed subset of In and S ~n 
a member of link that misses F. Since 

In is compact it suffices to consider only one metric: d We have to find 
n 

a {iJil(x) Ix E: In}-push gin {y E H(In)IYIA u F = I} and an i E: 1N such that E m 

g(S) C Ai. 

Let r be the countable subgroup of H(In) that is generated by the set 

~p u{,,,r I I {345 } 1 {O}ulN d n o/1,p x rn-k-1 r E ' ' ' ••• ' E an 

Consider the collection 
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Note that Lis contained in K. Since K is a countable set of tame polyhedra 

of dimension n - k- I there exists according to proposition 2. I. 7 a 

f(S) n UK\A = 0. 
m 

Put S' = f(S) and select a j E lN such that j > m, 

3-j+I < dn(S',F). Define the compactum 

-j+I 
3 < £/2 and 

C U{J E J~IJ n S' + 0}. 
J 

Note that C is a neighbourhood of S' that has distance greater than 3-j to 

F. 

-J'+J n n We shall construct a 3 -isotopy H: I x I+ I x I that satisfies: 

H0 11n, Ht IF u Am= I for t E I and H1 (S') c Aj+I' Then the function H1 ° f 

is the push of In we need. The isotopy H will be the limit of a sequence 

HO,H1 ,H2 , ••• of isotopies of In that satisfies for 1 = 0,1,2, ... 

Hi (C\UK) C\UK 

and 

Hl(S') j+I 1 C Fl • 

The H11 s are determined inductively with as first step HO= 11nx 1 . Moreover, 

it will be shown that G1 = Hl+l O (H1)-l is a 3-l-j_isotopy such that for 

every t E I, G! EE', where 

YIF u A = I}. 
m 

Consider now lim H1 . Since G1 is a 3-l-j_isotopy with G~ 
1--

1 the 
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1 00 1 sequence (H )l=O is uniformly Cauchy. So H = lim H exists and it is a 
1-+«> 

-j+I n . h n "3 -homotopy" of I wit H0 = I. We show that His an. isotopy. Since I 

is compact it suffices to prove that every Ht is onto and one-to-one. Let 

t EI and note that Ht is the limit of a sequence of autohomeomorphisms of 

a compactum and hence it is onto. Let x and y be two arbitrary distinct 

points in In. Select an 1 E lN such that z1-dn(x,y) > I. Since for every 

s E {0} u lN, G~ EE' we have that for z,z' E In, 

and hence that 

Since Gs is a 3-s-j_isotopy with G; = I it follows that 

d~ (H (H1t)- 1,I) 3 3-j-l C 1 n+I t O < 2 ,• onsequent y, 

and Ht (x) f Ht (y). It is obvious that l\ fixes F u Am. So we have proved 

-·+1 
that His a 3 J -isotopy of In that satisfies H0 = I and HtjF u Am= I for 

t E l. h . . j+I Fj+I Fj+I Te inclusions F0 J I J 2 

Fj+I {O} c s , s E u lN, to 

Hl(S') = lim Hsl(S') C n Fj+I 
s=O s 

s-+«> 

::> ••• lead, together with 

A. 1· J+ 

Now it remains to perform the construction of the H11 s. 

Assume that H1 has been determined. Since H1 = Gl-l O ••• 0 GO we have 

that H! fixes Fu Am for every t EI. Consider the situation: 

S' C C, 

H~ (C\UK) C\UK 
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and 

S' n UK\A r/J 
m 

This implies that 

H1(s')\A C C\UK 
I m 

and since L1 EL c Kand L1 n Am= r/J we have that Hi(S') and L1 are disjoint. 

Furthermore, we may derive that 

Since S' is compact there exists an r E {3,4,5, •.. } such that 

n-k-1 ~ k+l Let L1 be of the form a({p} x I ), where a E Pn and p E (K1) . Let 'I' 

-1-j k+l r be a 3 -isotopy of I such that '!'0 = I, '1' 1 = ~ and fort EI, 'l'r l+j ,P ,._ 

is a member of 

E I ~k+l 
{y EE y is supported on u½ 3-1-j(p)}. 

"d d k+l In-k-l -- In and the . . Consi er the pro uct I x proJection 

n: Ik+l x In-k-l + In-k-l. Let J be the cube in Jk+l of which pis the 
l+j 

A n-k-1 -I A n-k-1 -I centre. Define C = n(J x I n a (C)) and F = n(J x I n a (F)). 

-1-j -j 
Since the diameter of J with respect to dk+l is 3 and since dn(C,F) > 3 

we have that C and Fare disjoint. Let 6 : In-k-l + I be a Urysohn function 

with S(C) c {I} and S(F) c {O}. Define the isotopy 0 

k+I n-k-1 0t(x,y) = ('l'(x,tS(y)),y) for x EI , y EI , t EI 

and put G! = o. o et o a-I fort E I. Since 'l't E E it follows that G1 is a 

3-l-j_isotopy of In such that every level is an element of 
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{y E H(In)ld (y(x),y(y)) ~ ~ d (x,y) for x,y E In 
n 3 n 

~k+I 
and y is supported on a(u½ 3-1-j(P) 

Since F c In\a(J x (In-k-l\F)) and since Am c Aj c Fi+! Fi\ui3-l-j(L1) 

this implies that G1 is a 3-l-J_isotopy with each level in E'. 

Define now Hl+l G1 o H1. We prove that Ht! (C\UK) = C\UK and 

Hl+l(S') c Fj+I Note that for every t EI and DE Jkl++J!, ~t(D) = D. This 
I l+I' 

n 1 j+I 
implies that for each DE Jl+j' G1(D) = D. Both F1 and C can be written 

as union of members of J~+j and hence we have that Gi(Fi+I) Fi+! and 

Gi(C) = c. Define g E H(In) by 

The function g is a member of rand consequently we have that g(UK) UK. 

I 11 k n-k-1 We shall see that g C = GI C. Let x EI and y EI such that 

a(x,y) EC. If x E J then y EC and S(y) = I. This implies that e1(x,y) 

r 1 
(tl+j,p(x),y) and hence that G1(a(x,y)) = g(a(x,y)). If xi J then 

r 1 ~t(x) = x = w1 . (x) for every t EI and consequently G1(a(x,y)) = 
+J ,p 

a(x,y) = g(a(x,y)). Now we have that Gi(C\UK) = C\UK and Hi+l(C\UK) = C\UK. 

r ~k+I ~k+I 1 -1-j 
S.ince wl+j,p(Up-1-j/r(p)) Up-1-j-J(p) and dn(H 1(S'),L1) ~ P /r we 

have that g O H~(S') and ~rl-j-1 (11) are disjoint. If we combine this with 

G1 oH1 (S')cG1 (Fj+l)=Fj+I jC=G1 jc H1 (S')cC dFj+I 
I I I 1 1 'g I ' I an l+I 
j+I = F1 \U! 3-l-j-J(L1) we find that 

Hl+I (S') 
I 

This completes the proof of theorem 2.2.1. 
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2.3 Skeletoids inlRn 

Using the result of the preceeding section 2.2 we construct a 

k-dimensional skeletoid inlRn. As an application we obtain universal spaces 

in the class of strongly a-complete spaces. 

*) n n ,.,. 
2. 3. I THEOREM : There exists a strong ( IDlk, H ( lR ) )-skeletoid . 

n n { ~nl n r1,} PROOF: Consider Int I ~lR and S = SE IDlk Sn aI = w. It is easily 

seen that it suffices to prove that there is a strong (S,H(Int In))-

"' ~n H n ,.,. skeletoid. Let (Ai)iElN b~ a strong (IDlk, (I ))-skeleton, theorem 2.2.J, 

-i -in 
and define AJ_ = Ai n [2 , 1-2 J for i E lN. We show that (AJ_)i ElN is a 

strong (S,H(Int In))-skeletoid"' ((S,H(Int In)) is a ll-pair because 

(IDl~,H(lRn)) is all-pair): Let SES and let Ube a collection of open sub­

sets of Int In that covers S. If i E lN then there are a j E lN and a U-push 

h in {y E H(In)hlA. = J}withh(S) c A .. Let m > j such that 
1 J 

-m n I n nil 2 < dn(h(S),aI ). Then h Int I is a U-push in {y E H(Int I) y Ai I} 

with h(S) c A'.. 
J 

n nH n ·"' n nn Let Bk be a strong (IDlk, (lR ))-skeletoid and put sk =lR \Bk. Note 

that since B~ is a-compacts~ is topologically complete. By the countable 

sum theorem ([E2: 3.1.8]) we have that dim (B~) = k. Geoghegan & Summerhill 

[GS2] have shown that there exist (IDl~,H( lRn))-absorbers. This result 

follows from theorem 2.3.1. Moreover, theorem 1.2.11 implies that the 

absorbers constructed in [GS2] are in fact also strong skeletoids. 

*) This theorem can also be found in Dijkstra [DI]. 
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2.3.2 PROPOSITION: s~ is homogeneous. 

PROOF: Apply corollary 1.2.14. 

n Using theorem 1.2.13 we can prove more results in this direction: skis 

strongly locally homogeneous and hence countably dense homogeneous (see 

Anderson, Curtis & van Mill [ACM: sec.SJ). 

2.3.3 PROPOSITION n (Geoghegan & Summerhill [GS2]): dim (sk) 

d n , m,n 
an every compact subset of skis an element of w•n-k-J" 

n\ n PROOF: The setlR Nn-k-l is a countable union of k-dimensional 

subpolyhedra of ]Rn and hence there is an h E H( 1Rn) with h(B~) 

n-k-1 

Bn ( 1Rn\Nn ) th I 2 11 C tl h( n) Nn and hence k u n-k-l , eorem ••• onsequen y sk c n-k-l 

n dim(sk) n-k-1 ([E2:I.5.IO]). 

n Let S be a compact subset of sk. Assume that Pis a k-dimensional 

subpolyhedron of1Rn and that U is a collection of open subsets of ]Rn that 

covers Sn P. Since PE !!JI~ there is a U-push h in H(1Rn) such that 

n n 
h(Bk n UU) = (Bk u P) n UU, theorem 1.2.11. Hence, we have that h(S) n P 0. 

2.3.4 PROPOSITION (Geoghegan & Summerhill [GS2]): If n::; 2k+ I then 

n n 
every a-compact subset of skis strongly negligible in sk. 

n . PROOF: According to proposition 2.3.3 every a-compact subset of skis 

an element of (!!Jl~-k-l)a c !!Jl~a· Theorem 1.2.12 implies that it is strongly 

negligible. 

2.3.5 DEFINITION: A space is called strongly a-complete if it is a 



countable union of closed, topologically complete subspaces. If 

1 E {O,1,2, •.• , 00 } then we define the class 

V1 {X\X is a strongly a-complete, space with dimension$ 1}. 
a 

A Xis called universal for V1 if space a 

V1 {Y\there is an F -set in X that is homeomorphic to Y}. 
a a 
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Note that V00 is simply the class of all strongly a-complete spaces. If 
a 

Xis negligible in a complete space then it is an Fa-set and hence a 

strongly a-complete space. We shall see that V00 is precisely the class of a 

spaces that can be negligible subsets of a complete space (see theorem 

4.5.12). 

2.3.6 DEFINITION: A closed subset Sofa space Xis called thin if for 

every collection U of open subsets of X there is an f E H(X) that is U-close 

to I and satisfies h(S n UU) n S = 0. 

Geoghegan & Summerhill [GS2] have shown that every member of 

thin inJR2k+I. This implies with proposition 2.1.8 that if S,S' E 

IDl2k+I is 
k 

IDlTh+I 
k 

then there is an h EH( JR.n), which can be chosen arbitrarily close to I, 

with h(S) n S' = 0. A straightforward application of lemma 1.1.2 gives that 

if S, S' E (IDl2k+I) then there is an h EH( JR.n) such that h(S) n S' = 0. 
k a 

2k+I . k 
2.3.7 THEOREM: The space sk is universal for Va. Moreover, an 

arbitrary space Xis an element of Vk iff it is homeomorphic to a (strongly) 
a 

2k+I 
negligible set in sk 

2k+I PROOF: If Xis strongly negligible in sk then Xis negligible and 
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hence an Fa-set. Consequently, Xis strongly a-complete. 

Let XE Vk and select a compactification C of X with dimensions k, a 

[E2: 1.7.2]. There is an embedding f of C in N!k+I (see [E2: 1.11.5]) and 

hence f (C) E !IR!k+ I, 

pushed off B!k+l. So 

. 2k+I 2k+l 
theorem 2.1.12. Since Bk E !!Rka , f(C) can be 

h f b d C . 2k+l W. we may assume tat em es into sk . rite 

X = i ~lN si'· where Si is a closed, topologically complete subset of X. 

Define for every i E lN, Ri = f(ClC(Si)\Si) and furthermore 

P = i ~lN f(ClC(Si)) and R = i ~lN Ri. For i E lN we have that Ri is the 

remainder of a topologically complete space in a compactification and hence 

2k+I 
a a-compact space. So Risa a-compact subset of sk and consequently an 

1 f m,2k+ I . 2 . H( n) h h e ement o ""'ka • Using theorem I. • 11 we find an h E lR sue t at 

2k+I 2k+I 2k+l 
h(Bk u R) = Bk . The a-compact space h(P) is an element of !!Rkcr 

2k+I 2k+l . 
and hence h(P)\Bk is strongly negligible in sk , theorem 1.2.12. Since 

Si is closed in X for every i E lN, we have that 

h(P)\B2k+I 
k 

This proves the theorem. 

h(P\R) ho f (X). 

2.3.8 REMARK: The spaces~ is homeomorphic tolR\~. It is easily 

verified thats~ is nowhere locally compact. The assertion follows then 

from the Alexandroff & Urysohn [AU] characterization of JR\~. 

2.4 A technical leimlla 

In this section we consider the functions ~8 

X E H( lR1) which are defined by 
€ 

[0, 00 ) + [1, 00 ) and 



and 

I 
3E ifOSrSe: 

I I - 3 e: 1· f e: s r s I 
3(1 - e:) <2 + -r-) 

if r 2 I 

X (x) = lP ( llxll ):it, e: e: 

where e: e: (0,1/3] and llxll = d1 (x,O) = max {lxilli 1,2, ••• ,1}. 

1 
2.4. I LEMMA: For every x,y e: lR we have that 

llx (x)- X (y)II 2 I3 llx- Yll-e: e: 

PROOF: We consider four cases. 

I. If llxll S e: or llxll 2 I and IIYII s e: or IIYII 2 I then the 

statement is obvious. 

II. Let e: s llxll,\\yll SI. For some is 1 we have that llx-yll = 
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I xi - y i I - Without loss of generality we may assume that xi 2 y i and xi 2 0. 

This implies that llxll - IIY\I S llx-y\l =x.-y. and hence we have that 
1 1 

llxll - y. 2 llxll - x .. Since llxll - x. 2 O, x. 2 y. and x. 2 0 we find that 
1 1 1 1 1 1 

xi Yi 
---2--, 

llxll IIY\I 

Consider now 

( ) ( ) xi (2 + I - 3e:) 
Xe: x 1· - Xe: y 1· 3 ( I ) 

- e: llxll 
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We may conclude that 

llx (x)- X (y)IJ?: Ix (x). - X (y).j ?:-3
2 Jlx- YIJ. £ £ £ ]. £ ]. 

III. Let IIYII $ £ and £ :,; llxlJ $ I. Select an i $ 1 such that IJx- yJI = 

lxi - Yil. We may assume that xi?: O. We make the following subdivision. 

(a) yi?: xi. Since~£ is a decreasing function we have that 

y.-x. = llx-yll ?:-32 llx-yll-
]. ]. 

(b) xi ?: y i. As above we h~ve that y J x II $ xJy II and consequently, 

x. x. 
y. $-]. IIYII 

1. llxll 
$-].- £. 

llxll 

Consider 

( llxll - £)_Yi= 

llxll 3£ 

_!_(£xi_ y.) + I xi(llxll-£)?: 

3£ llxll 1. 3 (I - £) II x II 

So the conclusion is that llx (x)- x (y)II ?: -3
2 llx-yll-

£ £ 

IV. Let IIYII $ and llxll ?: I and assume that llx- YII = x. -y .. Again 
]. ]. 

we consider two cases. 

(a) lx,I?: I. This implies that x.?: I. Consider the set A= {z E 1Rkl 
]. ]. 

z. = J}. Obviously, there exists an a EA such that llall = I and 
]. 



(b) 

d1 (xE(y),A) = d1 (xE(y),a). In view of the results obtained above XE 

satisfies 

It is easily seen that d1 (xE(y),xE(x)) ~ d1 (xE(y),A) + d1 (xE(x),A). 

This yields: 

Ix-I 
l. 

~ 1 
:S I. Define x E lR by 

xi= min {I, max {-1,x.}} for 
l. 

:Si:Sl. 

Note that II ;I I = and that II x - y 11 = II'~ - y 11, We have proved that 
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llx (~)- X (y)II ~ I3 li~-yll, Using X (x) = x and x (~) = x we find that E E E E 

Since we have considered all possible choices of x and y this concludes 

the proof. 





CHAPTER 3 

THE HILBERT CUBE 

3.1 Introduction 

We discuss in this section the connexion between absorbers and 

skeletoids in the Hilbert cube. Furthermore, we give examples of pseudo­

boundaries and related obiects. 

The Hilbert cube will, except in section 3.2, be represented by 

where each Ji is the closed interval J = [-1,1]. Let ni be the projection 

Q +Ji.We use on Q the following convex metric 

p (x,y) = max Ix. - y. I Zi' 
iElN i i 

where x = (xi)i ElN and y = (yi)i E lN. The open e:-balls (e: ~ 0) in Q with 

respect top are denoted by Ue:. The symbol pis also used for the metric on 

subproducts of Q: if P ~lN then for x,y E i~P J., p(x,y) = max Ix. - Y•I zi· 
l. iEP l. l. 

If A is a subset of i~P Ji then diam A is the diameter of A with respect to 

p. If i E lN and P = {j E lNlj ~ i} then we define Q. = .TIP J .• 
l. JE J 

Let J~ = J 0 = (-1,1) for i E lN and define the pseudo-interiors of Q 
l. 

0 

bys= i~lN Ji. The spaces is homeomorphic to the separable Hilbert space 
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l 2 ,. Anderson [Al]. Put O = (0,0,0, ••• ) E Q and B = Q\s. The set Bis called 

the pseudo-boundary of Q and an element f E H(Q) is call.ed boundary 

preserving if f(B) = B or, equivalently, f(s) = s. We can write Bas the 

union U{E~li c: lN and 0 c: {-1,1}}, where the E~'s are the endfaces of Q: 
l. l. 

{x E Qlx. 
l. 

0}. 

3.1.1 DEFINITION: A closed subset Sofa space Xis called a z-set in 

X if for every open covering U of X and for every map f : Q + X there is a 

map g: Q ➔ X\S that is U-close to f. A subset A of Xis called a cr-z-set in 

X if it is a countable union of Z-sets. The collections of Z-sets and 

cr-Z-sets in X are denoted by Z(X) and Z0 (X), respectively. 

In complete spaces the following properties are easily proved (see 

[BP2: sec.V.2]): (Z(X), H(X)) is a ~-pair, if A is a closed cr-Z-set then A 

is a Z-set and every Z-set is nowhere dense. It is well known that in Q 

every Z-set is thin and that every endface and every compactum ins is a 

Z-set (see [BP2 : sec. V. 3]). So B is a cr-Z-set. 

Note that since Q is compact, a closed subset S of Xis a Z-set iff 

for every E > 0 and f: Q + X there is a map g: Q + X\S with d(f,g) < E, 

where dis some fixed metric on X. The following theorem may be derived 

from Chapman [C: 19.4] and Anderson & Chapman [AC]. We obtain it as a 

direct consequence of theorem 4.3.6. 

3.1.2 THEOREM: Let Ube a collection of open subsets of Q, let A be a 

compact space and let F Ax I+ Q be a homotopy that is limited by U. If 

F0 and F 1 are embeddings of A in Q such that their images are z-sets then 

there is a U-push h in H(Q) with h ° F0 = F1• 



3.1.3 COROLLARY: If A and A' are z-sets in Q and f is a homeomorphism 

from A onto A' with p(f,1) <Ethen there is a g E H(Q) such that glA = f 

and p(g,J) < E. 

PROOF: Define the straight-line homotopy 

F(a,t) (1-t)a + tf(a) for a EA and t EI. 

Then Fis limited by U = {u812 (x)lx E Q}. Applying the theorem we find a 

U-push gin H(Q) with g°F0 = F1. So p(g,1) < E and glA = f. 

Theorem 3.1.2 has the following consequence. 

3.1.4 THEOREM: If (S,H(Q)) is at-pair such that Sc Z(Q) then every 

(S,H(Q) )-skeletoid is a strong (S,H(Q) )-skeletoia'"'. 
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PROOF: Let (A.). 1N be an (S,H(Q))-skeleton. Assume that SES, E > O, 
1 1 E 

m E 1N and that Fis a closed set in Q with p(F,S) > E. There are an n E 1N 

and an f E H(Q) such that p(f,J) < E/2, flA = 1 and f(S) c A. Define the m n 

map F: (Su Am) x I+ Q x I by 

F(a,t) ((1- t)a + tf(a),t). 

Let TI be the projection Q x I+ Q. If X = (A x I) u (S x {0,1}) then FIX 
n 

is an embedding. Since F(X) c (An u Am u S) x I, we have that it is a Z-set 

in Q x I. According to theorem 11.2 in Chapman [CJ there exists an 

embedding F of (Su An) x I in Q x I such that FIX= FIX and 

p (TI° F, TI° F) < E/2. Define G = TI o F and note that G is a homotopy from 

Su Am into Q that is limited by 

U {U (x)\(F u A )Ix E Q}. 
E m 
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The functions G0 = IS u Am and G1 = f IS u Am are homeomorphisms from S u Am 

onto a Z-set in Q. According to theorem 3.1.2 there is a U-push h in H(Q) 

with h(S) = G1(S) = f(S) c An. This proves the theorem. 

3.1.5 REMARK: As a corollary to this theorem one has that every 

(S,H(Q))-skeletoid is an (S,H(Q))-absorber. There are collections Sin Q 

such that absorbers exist but no skeletoids. Let S be the collection of all 

countable Z-sets in Q. It is well known (and easily proved with theorems 

3.1.2 and 1.2.11) that every countable dense subset of Q is an (S,H(Q))-

absorber ...... Consider a sequence A1 c A2 c A3 c in S. For every i E lN 

there exists a countable ordinal a. such that the a.-th derived set (A.)(ai) 
i i i 

is empty, see Mazurkiewicz & Sierpinski [MS]. If Sis a countable ordinal 

with S > sup {a. Ii E lN} then [O,wS](S) f 0. Hence, the ordered space [O,ws], 
i 

which is of course embeddable as a Z-set in Q, cannot be embedded in any of 

the Ai' s. This means that (Ai)i ElN is not an (S,H(Q) )-skeleton. Note that 

this idea also works in In andlR.n. 

We shall now discuss some examples of skeletoids in Q. The most 

important example is B, which is a (Z(Q),H(Q))-skeletoid (Anderson [A4]). 

This has the consequence that every o~compact subset of s ~ l 2 is strongly 

negligible. Another example (also due to Anderson) is 

Bfd {x E QI there is an i E lN such that for every j > i 

X, O}. 
i 

This o-Z-set is a skeletoid for {SE Z(Q) Is is finite dimensional}. Curtis 

and van Mill [CM] have shown that every dense o-Z-set in Q that is homeo­

morphic to the product of~ and Cantor's discontinuum is a skeletoid for 

the collection of zero-dimensional Z-sets in Q. We shall construct this 
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skeletoid in the next section. A related concept is that of a boundary set. 

3.1.6 DEFINITION: A cr-Z-set A in Q is called a boundary set if 

Q\A RS l 2. A cr-Z-set A in Q is called a deformation boundary set if there is 

a homotopy F: Q x I+ Q with F0 = I and F(Q x (O,l]) c A. 

Curtis [Cs] has shown that every deformation boundary set is a boundary 

set. Clearly, Band Bfd are deformation boundary sets. Van Mill [Ml] has 

obtained a boundary set that contains no arcs. This shows that the concepts 

boundary set and deformation boundary set do not coincide. Henderson & Walsh 

[HW] have given an example .of a deformation boundary set without disks. 

Every boundary set has infinite dimension. Since each complete space can be 

embedded as a closed set in l 2 this follows directly from the existence of 

complete spaces with arbitrarily high defect (de Groot & Nishiura [GN]). See 

also remark 5.4.6. 

3.2 k-dimensional skeletoids 

Using the main result of section 2.3 we build (Sk,H(Q))-skeletoids in 

the Hilbert cube, where 

Sk {sis is a Z-set in Q with dimension~ k} 

The number k E {0,1,2, ... } remains fixed throughout this section. 

It is convenient to use a different representation for the Hilbert cube 

here. Let c]R be the compactification of]R that is obtained by attaching 

two endpoints - 00 and 00 • Let d be a convex metric on c]R that is bounded by 

I. The Hilbert cube Q is represented by . TT c JR and has metric 
iElN 
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p(x,y) = max {d(x,y)/ili E 1N}. 

Let ~i: Q + c lR be the projection on the i-th coordinate. 

We construct the skeletoid. Identify for every n E 1N, ]Rn with 

]Rn x {(0,0,0, .•• )} c Q. This gives us the following situation: 

]R C ]R2 C ]R 3 C • • • C ]Rn C • • • C Q 

and in view of corollary 2.1.14: 

C • • • • 

Since the elements of 9:R~+l are compact subsets of the pseudo-interior 

k+l s = i ~lN lR with dimension s k, we have that 9:Rk c Sk for every 1 E 1N. Let 

(C1.1). 1N be an (9:Rnk,H(lRn))-skeleton for n = 2k+l, 2k+2, ..• , theorem 2.3.1. 
1 1 E 

We determine inductively functions f 1,f2,f3 , ••• and natural numbers 

n 1,n2 ,n3 , ••• such that for every i E 1N, 

and 

where n 1 = I and f 1 = J]R2k+l" The construction is straightforward. If j Si 

then f. (CZk+j) is a member of 9:Rk2k+j, theorem 2. I. 2. According to 
J ni 

proposition 2.1.8 this implies that 6 f (c2k+j) E m2k+i+l Since j=l j ni k . 
2k+i+l 2k+i+l 2k+i+l .. 

(C1 \ ElN is an (9:Rk ,H( lR ))-skeleton there exist an 

f. E H(lR2k+i+l) and an ni.+l > n. such that .6 1 f.(C2k+j) cf. (c2k+i+l). 
i+l i J= J ni+I i+l ni+l 

If we define 

D. f. (CZk+i) for i E 1N, 
i i ni 



In order to prove that (D.): 1 is a skeleton we need a dimension-
1. 1.= 

theoretic lemma. 
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3.2.1 DEFINITION: A map f from a metric space (X,o) into a space Y is 

called an £-mapping if for every pair x,y EX with o(x,y) ~ E, f(x) and f(y) 

are distinct. 

3.2.2 LEMMA: If Xis a compact metric space with dimension~ k and L 

is a linear k+ 1-variety in lR2k+l+l, 1 E {O} u 1N, then for every E > 0 the 

set of £-mappings from X intolR2k+l+\L is dense in C(X, JR2k+l+I), where 

C(X,Y) is the space of continuous functions from X into Y with the compact­

open topology. 

The proof of this lemma is an easy adaptation of [E2: 1.10.4 and 1.11.3]. 

*) .... 
3.2.3 THEOREM : (D.). 1N is a strong (Sk,H(Q))-skeleton. 

l. l. E 

PROOF: In view of theorem 3.1.4 it suffices to show that (Di)i ElN is an 

(Sk,H(Q))-skeleton. Let E > 0, m E 1N and SE Sk. Since Q is compact we only 

have to prove that there are a y E H(Q) and a j E 1N with yjD = I, 
m 

y(S) c D. and p(y,I) < E. Corollary 3.1.3 reduces the problem to finding a 
J 

j E 1N and an embedding f of Su D in D. such that fjD = I and p(f,I) < E. 
m J m 

Select an i E 1N with 1/i < E/2 and i > m. We shall construct a "tame" 

*) 
This theorem can also be found in Dijkstra [DI]. 
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. . 2k+i+l . . embedding of Sin JR . Define the function space 

2k+i+l I K {y E C(Dm u S, JR ) 1T 2k+i+l o y(S) c (-00 ,O] 

and y In = I}. 
m 

Note that K is a closed subset of the complete metric space 

(C(Dm u S, JR2k+i+I),d), where d = d2k+i+l' Hence, it is a Baire space. Let H 

be a closed subset of JR2k+i+l and lets> 0. Define the compactum 

and the set of functions 

K(s,H) {y E Kl YIDm u Ss is a !;;-mapping such that 

CLAIM: If H = a({p} xJRk+i), where a E P2k+i+l and p E JRk+l, then 

K(!;;,H) is open and dense in K. 

PROOF: Showing that K(,,H) is open is left as an exercise to the 

reader. Consider the density. Let y EK and o > 0. The set y(Ss) is 

2k+l 2k+i . contained in JR x (-00 , OJ. Select a y I in C (Ss, JR x (-oo, O)) with 

d(yls,,y') < o/2. Since His a linear k+i-variety inJR2k+i+l we can find 

with lemma 3.2.2 a !;;-mapping 2k+i 
f3EC(S,,JR X (-oo,0)) with <l(f3,y' > < 0/2 

and f3(Ss) n H = ~- Since D c JR2k+i 
m X {0} the function f3' = 1nm u f3 is a 

s-mapping from D . 2k+i 
(-00 ,0] which satisfies m u s, into JR x 

d(f3',y1Dm u Ss) < o. If we apply Tietze's theorem coordinate-wise to the 

function f3' - (ylD u Sc) we find an extension S: D u S +JR2k+i x (-00 ,O] 
m ~ m 

with d(S,f) < o. So Sis an element of K(s,H) and the claim is proved. 
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Consider the set L = {a({p} x lRk+i)la E P2k+i+I and p E ~k+I}. Select 

an enumeration (1.). JN of L such that for each L E L the set {j ElNIL = L.} 
J J E J 

is infinite. Because K is a Baire space the set 

V 

is dense in K. It is easily seen that the set {y E Kip(y,I) < £/2} is an 

open non-empty subset of K. Leth be an element of V n {y E Kip(y,I) < £/2}. 

If x and y are distinct points in Dm u S then there is a j E JN such that 

x,y E Dm u Sl/j and p(x,y) ~ 1/j. Since hiDm u Sl/j is a 1/j-mapping we may 

conclude that his one-to-one and hence an embedding. Note that for every 

. 2k+i+I N2k+i+I 
j E JN, h(Sl/j) n UL= 0 which means that h(Sl/j) c]R \UL= k . 

Theorem 2.1.12 and propositions 2.1.5 and 2. 1.8 imply that h(S), which is a 

compact subset of D u . UJN h(s 11 .), 
m J E J 

one has that p(h,I) < £/2 ~nd hiD = 
m 

"tame" embedding of S. 

2k+i+I . 
is an element of W?k . Obviously, 

I. The map his the aforementioned 

Consider now the sequence (D.). JN' The set D is contained in 
J J E m 

D. = f. (C2k+i+I). 
i+I i+I ni+I 

2k+i+I 
H(lR ))-skeleton 

Since (f (C 2k+i+I)) is an (W1 2k+i+I 
i+I j j ElN k ' 

there exist a g E H(lR2k+i+I) and a j ElN such that 

glA I, g(h(S)) C 
m 

f. (C~k+i+I) and p(g,1) < £/2. Let 1 be such that 
i+I J 

n 1 > j and 1 > i+I. Then fi+l(CJ2.k+i+I) . b f D Th b dd' is a su set o l+I' e em e ing 

f = g O h has the following properties: 

fiD = I, 
m 

f(S) C Dl+I 

and 

p(f,I) < £, 

This concludes the proof. 





CHAPTER 4 

SHRUNKEN ENDFACES 

4.1 Preliminaries 

The main result of this chapter is a theorem that enables us to mani­

pulate compacta in the Hilbert cube with ambient isotopies without moving 

certain copies of Q, called "shrunken endfaces". Let us define these objects 

Let R be the set of all sequences p1,p 2,p3 , ..• in (0, I) such that 

limp. = I. We pick a (pJi ElN in R that will remain fixed throughout 
• l 
l.~ 

sections 4. I, 4.2 and 4.3. For every 

in the i-coordinate direction by 

w. 
l. 

i E lN we define the shrunken endface 

Note that W. is a subset of E! and hence a Z-set in Q. Observe furthermore 
l. l. 

that the Wi's are disjoint copies of Q. If£> 0 then there is an i E lN 

such that 1/i <£and p. > 
J 

- £ for every j > i and hence there exists for 

every j > i a map$: Q + W. with p($,1) <£.This implies that every union 
J 

of infinitely many shrunken endfaces, especially W = i~lN Wi, is both dense 

and connected. Moreover, it follows that every compact subset of Y = Q\W is 

a Z-set in Q. It is easily seen that rW defined by 

rw = {f E H(Q)ifor every i ElN, f(W.) = w.} 
l. l. 

is a closed subgroup of the topological group (H(Q),p). 
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Anderson, Curtis & van Mill [ACM: sec.4] have shown that Y is homo­

geneous. We shall prove the following stronger statement 

Let Ube a collection of open subsets of Q, A a compact space and 

F: Ax I+ Q a homotopy that is limited by U. If F0 and F1 are embeddings 

of A in Y then there is a U-push h in rW with h ° F0 F1• 

The method we use is derived from proofs given in Chapman [C: ch.II] 

for theorems of this type. Moreover, in lemma 4.2.2 we use an idea of 

Anderson, Curtis & van Mill [ACM : 4. I]. 

We conclude this section with some notations. If A is a subset of a 

space X and Vis a collection of subsets of X then the star of A with 

respect to Vis defined by 

St(A,V) U{D E Vin n A f 0}. 

Furthermore, Stn(A,V), n = 0,1,2, ... , is determined by 

and 

4.2 The pseudo-interior 

This section is about extending homeomorphisms between compact subsets 

of s. Consider the factorization Q = Qodd x Qeven' where 



and 

Let rrodd : Q + Qodd and rreven: Q + Qeven be projections and define sodd' 

seven' Oodd and Oeven in the obvious way. 

4.2.1 LEMMA: If A is a compact subset of s then there is a boundary 

preserving f E rW such that for every x,y E f(A) with rreven(x) = rreven(y) 

we have that rrodd(x) = rrodd(y). 
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PROOF: Let i be odd and m > i even. We may assume that A has the form 

J.TTE1N [-a.,a.] where a. E (O,1). Select a 6 such that a < 6 <I.Let 
J J J m 

W: Jm x J + Jm be an isotopy of Jm with the following properties: 

Wt is supported on (-6,6) fort E J, 

and for every y E Jm' 

diam {x E [-a.,a.Jlthere is a y' E [-a ,a] with 
i i m m 

1 w (y') = y} < 
X m' 

See the next page for a picture of W, 
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I I 

- -

- -

----

I 
I 
I 
I 
I 
I 
I 
I 
I 
I --,----

Let k be a natural number such that for every j > k, p. > o. For j ElN let 
J 

a. 
J 

J. + I be a map that satisfies a.(1) = I and a.([-a.,a.J) = {0}. Define 
J J J J J 

i 
~ 

where 

i Q + Q by ,r • 0 x = ,r • for j 1' m and 
J m J 

i 
,r ox (x) = q>(x ,a(x)) for x E Q, 

m ·,n m 

a(x) =min {t,x.+2 max {S.(x.)lj E {1,2, ..• ,k}\{m,i}}}. 
1 J J 

Since a is a continuous function which is independent of xm we have with 

lennna I.I.I that xi is a homeomorphism. Since diam J = 1/m it is obvious 
m m 

that p(x!_,t) $ 1/m. Furthermore, we have that x!_(A) c A and for every 

endface E!, x!<E!) E:. We verify that x! ~ rw. 

(a) If x E W. then x. 
1 1 

and hence a(x) i 
t. This implies that xm(x) x. 

(b) If x E W then x 
m m 

I for every t E J this yields that 

i 
~(x) = x. 



(c) Let x E W. with j s k and j f i,m. In this case x. 
J J 

I, whence a(x) 

i 
and xm(x) = x. 

(d) Assume that j > k and j f m. This means that pj > o. Since ~tis 

supported on (-o,o) we have that~ ([-p.,p.]) = [-p.,p.] and hence 
t J J J J 

i 
X (W.) = W •• 

m J J 

Sox! is a member of rW. Consider now a point z in A. Then all 

S/zj)'s vanish and hence a(z) = zi and ,rmox(z) = ~(zm,zi). We have for 

every y E Jm that 

I 
y} < -. 

m 

Now, let E;, be a function from JN onto {Zj - 1 J j E JN} such that every 

fibre is infinite. Select with lemma 1.1.2 a strictly increasing sequence 

of even numbers (m(j)). 1N such that m(j) > E;,(j) and 
J E 

f 

It is obvious that f(A) c A, f is boundary preserving and that f E rW. 
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- E;,(j) - . Observe that ,rodd O f - ,rodd a ~(j) - ,rodd for every J E JN. Let i be an odd 

number, E > 0 and x,y E f(A) with 1Teven(x) = ,reven(y), Select a j E1N such 

that E;, (j) i and 1/j < E, We have the following estimate for p(xi,yi): 

p(x1.·•Y1.·) s diam {z.lz E f(A) with 1T (z) = ,r (x)} s 
l. even even 

{ I E;,(j-1) E;,(I) . 0 E;,(j) 
diam zi z E ~(j-l) 0 ••• 0 ~(I/A) with ,rm(j) ~(j)(z) 

I < 1 
m(j) - J < E. 

0 and the lemma is ~roved. 
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4.2.2 LEMMA: If A is a compact subset of s such that for every 

x,y EA, '!feven(x) = 11even(y) implies that 11odd(x) = 11odd(y) then there is 

a boundary preserving h E rW with 11 ° h = 11 and 11 dd O h (A) c { O dd}. even even o o 

PROOF: Let A be such a set, Select for every i E]N an ai E (O,I) with 

11i(A) c (-ai,ai). Construct a continuous mapping Hi : Ji x (-ai,ai) ➔ Ji 

that satisfies fort E (-ai,ai): H~ = I, H!(t) = 0 and H! is an element of 

H(Ji) that is supported on (-ai,ai)' Let Si : Ji ➔ I be a map with 

Si())= 0 and Si([-ai,ai]) = {I}, Select an arbitrary j in]N and consider 

A= 11even(A) c Qeven" We have that if x,y EA and 11even(x) = 11even(y) then 

x2j-l = y2j-l' Since 11evenlA A ➔ A is a quotient map this implies that 

there exists a continuous gj A ➔ (-a2j_1,a2j_1) such that 

g. 0 11 JA= 11 2 . 1 JA. Let g.: Q ➔ (-a2 . 1,a2 . 1) be a continuous 
J even J - J even J - J -

extension of gj. Select a j E]N such that for every k > j, a2j-l < pk and 

define aj : Q ➔ (-a2j_1,a2j_l) by 

a. (x) 
J 

g. o 11 (x) 
J even 

j 
• ki;!l fl(xk). 

kf 2j-l 

Leth. 
J 

Q ➔ Q be determined by 11k o h j 11k if k f.2j-l and 

11 2 . I o h. (x) 
J- J 

2j-1 
H (x2 • 1 , a. (x) ) . 

J- J 

Since aj is independent of x 2j-l we have that hj E H(Q). That hj is an 

element of rW follows from: 

(a) If X 

that 

E w2j-l then x2j-l 

h. (x) = x, 

2j-1 
I and H (x2 . 1,a. (x)) 

J- J 
I, This yields 

J 

(b) If k ~ j and k f 2j-l then for x E Wk' Sk(xk) 

have that a.(x) = 0 and h.(x) = x. 
J J 

0, Consequently, we 



(c) Let k > j and k f 2j-J, In this case [-a2j_1 ,a2j_1J c [-pk,pk]. 

2j-J 
Sinc_e Ht is supported on (-a2j_1,a2j-l) we have that \ (Wk) = Wk. 

8 8 8 
It is clear that 1T O h. = 1T and that for every E , h. (E ) = E • 

even J even n J n n 
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Define h = lim h. 0 , •• o h 1 , Obviously, h is a boundary preserving map 
j-- J 

onto Q with 1T o h = 1T , We show that h is one-to-one and hence a 
even even 

homeomorphism, Let x and y be distinct points in Q. If 1T (x) f 1T (y) 
even even 

then also h(x) f h(y). Assume therefore that 1Teven(x) = 1Teven(y). Let 

i = 2j-l be a coordinate with xi f yi and define x' = hj-J O ••• 0 h 1 (x) and 

y 1 = h. 1 ° ,., 0 h 1(x), If a:.(x') 
J- J 

1Tl.. o h(x) = Hi(x~ ,a:. (x' )) 
]. J 

1Tioh(y) 

a:. (y') then 
J 

Hi (x. , a: . (x' ) ) f 
]. J 

and therefore h(x) f h(y)·. If, however, a:. (x') fa. (y') then in view of 
J J 

g. o 1T (x') = g. o 1T (y') there is a k ~ j with Sk(xk') f Sk(yk'). 
J even J even 

Consequently, xk f yk and {xk,yk} is not contained in [-ak,ak]. We can have 

the following situations: 

(i) 1Tko h(x) 

Since H~ and H~ are supported on (-ak,ak) we may conclude in both cases 

that 1Tk 0 h(x) f 1Tk 0 h(y). So h E H(Q) and since his the limit of a 

sequence in the closed group rW we have that h E rW. 

Let x E A and i = 2j-1, If x' = hj-l O ••• o h 1 (x) then 1Ti O h(x) 

1T. 0 h.(x'). Since 1T (x) 
i J even 1Teven(x') and xi x ! we have that 

]. 

g. o 1T (x') 
J even 

g.o1T (x) 
J even 

g.01T (x) 
J even 

x. x!. 
]. ]. 

For every k ElN, xk is an element of (-~,ak) and since H: is supported on 
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(-~,ak) this implies that x' E TT (-ak,~). Consequently, aj(x') = xi 
kElN 

Hi(xi,aj(x')) = 0, So 1Todd O h(A) c {Oodd} and the lemma is and 1T. o h(x) 
l . 

proved. 

We are now ready to prove that homeomorphisms between compacta ins 

can be extended. 

4,2.3 LEMMA: If A and A' are compact subsets of sand his a homeo­

morphism from A onto A' then there is a boundary preserving fin rW with 

f IA= h. 

PROOF: Lemma 4.2.1 and 4.2.2 reduce the problem to the statement: if 

A and A' are compacta in respectively seven and sodd and his a homeomorph­

ism from A onto A' then there is an f E rW such that f(B) =Band for every 

a EA, f(a,O 0 dd) = (Oeven'h(a)). Define the compact subset C of s by 

C = {(a,h(a))la EA}= {(h-1(b),b)[b € A'}. 

We can apply lemma 4.2.2 to C: there is a y1 E rW with y 1(B) = B, 

1r O y 1 = 1T and 1r dd O y(C) c {O dd}. Analogously, there is a y2 E rW even even o o 

with y2(B) = B, 1Todd o Y2 = 1Todd 
-I r 2 ° r 1 E rW has the properties 

and 1T O y2 (C) c {O }, Then even even 
-I r2 ° y 1 (B) = B and for every a E A, 

(O even'h(a)) • 

Before we prove an estimated version of this lemma we give two 

technical lemmas. 



57 

4.2,4 LEMMA: Let Ube a collection of open subsets of sand let A be 

a comp{:lct. space. If f A+ s is a map and AO is a closed subset of A such 

that flAo is an embedding and f(A\AO) C ULJ, then there is an embedding g of 

A into s that is U-close to f and coincides with f on AO• 

REMARK: This leIIIIIla is essentially Chapman [C: 8,1]. We have included a 

more elementary proof. 

PROOF: Let (F i)i ElN and (Gi\ ElN be sequences of compact subsets of 

A\AO with the properties 

F. n G. 
]. ]. 

</J for every i E lN , 

.U F 
]. ElN i 

and for all distinct x and yin A\AO there is an i ElN such that x E Fi and 

y E Gi. Select for every i ElN a closed neighbourhood Vi of AO with 

Vin (Fi u Gi) = </J, Note that f(A\Vi) has compact closure in UU, This 

enables us to select a strictly increasing sequence (mi)iElN of natural 

numbers with the property that for every x E f(A\Vi) there is a U EU such 

that UZ/m. (x) c U. Observing that 1Tm. 0 f (V.) is a compact subset of 
]. ]. ]. 

J;. = (-1,1) select with Tietze's extension theorem for every i ElN a 
]. 

continuous g. : A+ J;. with the properties: 
]. ]. 

fiV. 
]. 

and 

Define the map g : A + s by 1Tmi O g = gi for i E lN and 1T i O g = 1T i O f 

for i ElN\{mjlj ElN}. Obviously, we have that giAO = fiAO• The properties 
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of (Fi)iElN and (Gi)iElN imply that g is one-to-one and hence an embedding. 

Let x EA and assume that m. is the first coordinate with 
l. 

0 

11m. 0 f(x) 1' 11m. 0 g(x). Then x I. V. and since diam .TI J. = I/mi, 
J 

we have 
l. l. l. J=mi 

that p(f(x),g(x)) < 2/mi. Consequently, there is a U E U with 

{f(x),g(x)} c u2/m·(f(x)) c U. This means that f and g are U-close. 
l. 

The following lennna is folklore. 

4.2.5 LEMMA: Let (X,d) be a metric space and LJ a collection of open 

-I 
subsets of X. Then there is a map£ : X ➔ I such that£ ((0,1]) ULJ and 

for every x EX, {y E Xld(y,x) < £(x)} is contained in some member of LJ. 

PROOF: We may assume without loss of generality that U is locally 

finite and that d is bounde,d by I. Define for every U E U the map 

fU: X ➔ I by 

Since U is locally finite the function£ X ➔ I defined by 

is continuous. It is obvious that£ meets the requirements. 

We now come to the estimated extension theorem for s. 

4.2.6 THEOREM: Let LJ be a collection of open subsets of Q, A a compact 

space and F : Ax I ➔ s a homotopy that is limited by LJ. If FO and F1 are 

embeddings then there is a LJ-push h in {y E rW\y(s) = s} with h°FO = F1• 
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PROOF: We first introduce a notation. If a X + I is continuous then 

the variable product of X and I is the space 

X X I 
Ci, 

{(x,t)lx EX and t E [O,a.(x)]} c Xx I. 

Let A0 be the closed subset of A that is determined by A0 x I= 

F- 1(Q\UU). We have that FtiA0 = F0 iA0 fort EI and that U covers 

F((A\A0) x I). Select an open covering V of F((A\A0 ) x I) in Q such that for 

every a E A\A0 , St4 (F({a} x I),V) is contained in some element of U. We may 

assume that every member of V has a non-empty intersection with 

CLAIM I: There exists an isotopy G: Q x I+ Q that is limited by V 

and has the properties: Gt E rW and Gt(s) = s fort EI, G0 = I and 

A proof of this assertion can be found below. Since UV c ULJ we have 

that GtjF0 (A0 ) = I for each t EI. We may assume that A is a subset of the 

pseudo-interior of Q2 • Let n be an element of (0,1) with n < min p. and 
i E:JN l 

define a: Q2 + I by a.(x) = p(x,A0)-n/2. Let F: A xa. I+ s be given by 

F(a,t) 

and 

It is easily verified that Fis a continuous mapping that satisfies 

F({a} x [O,a.(a)]) c St(F({a} x I),V) for every a E A\A0 • Define the compact 

subset X of A xa. I by 

X = {(a,t) EA x Ijt 
Ci, 

0 or t a.(a)}. 
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Since Fo = FO' F(a,a(a)) = GI O Fl (a) for a E A and GI° Fl (A\Ao) n Fo(A) 0 

we have that FjX is an embedding. According to lemma 4.2 .. 4 there is an 

embedding P of Ax I ins such that F and Pare V-close and FjX = PjX. Note 
a 

that we have for every a E A\A0 : 

P({a} x [O,a(a)]) c St(F({a} x [O,a(a)]),V) c St2 (F({a} x I),V). 

CLAIM 2: There exists an isotopy H : Q x I + Q that is limited by 

W = {St(P({a} x [O,a(a)]),V)Ja E A\A0} and that satisfies moreover Ht..: rW 

and Ht(s) = s fort EI, HO= I and H1 °F0 = GI °F 1• 

Define the isotopy H Q x I+ Q by 

One readily sees that H0 =I, H1 ° F1 = F0 and fort E I, Ht E rw and 

Ht(s) = s. We shall see that His limited by {St 4 (F({a} x I),V)Ja E A\A0} 

and hence by U. Let x E Q and assume firstly that H({x} x I)= {x}. Pick an 

arbitrary t EI and let y be such that Gt(y) = x. If x E UV then there is a 

VE V with {G0 (y),Gt(y)} = {y,x} c V. Consequently, H({x} x I) is contained 

in St ( {x}, V) and since every element of V intersects F ((A \A0) x I), 

H({x} x I) c St2 (F({a} x I),V) for some a E A\A0 . If xi UV then 

G( {x} x I) {x} and hence H( {x} x I) = {x}. 

Consider now the second case that H({x} x I) is contained in 

St(P({a} x [O,a(a)]),V) for some a E A\A0 . If t E I then we have as above 

that there is a VE V such that {Ht(x),Ht(x)} c V. This means that 

H({x} x I) is contained in St2 (P({a} x [0,a(a)]),V) and hence that 

H ( { x} x I) c St 4 (F ( {a} x I) , V) • 



So_we may conclude that H1 is the U-push we need. It remains to prove the 

claims. 

PROOF of claim I: According to 4.2.1 and 4.2.2 there is a boundary 

preserving x in rW such that TI 1 ° x ° F(A x I) c {0}. Let A(O) be the 

in (O,min p.). According to 
i Elli 1. 
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projection of x ° F1 (A(O)) on Q2 and select a 8 

lemma 4.2.5 there is a map£ : Q2 + [0,0] such that £(A\Ao) C (O,e] and for 

every x E Q2 , Udx)(O,x) is contained in some element of x(V). Let 

~: J 1 x [0,8] + J 1 be an isotopy of J 1 such that ~O = I, ~t(O) = It and ~t 

is supported on (-t,t) fort E [0,0], Define the isotopy G : Q x I+ Q by 

The maps Gt are obviously boundary preserving and since e < min p. they are 
i Elli 1. 

elements of rW" It is easily seen that G is limited by X (V) and that 

G1 ({O} (A\A0)) misses {O} X Q2. This that 
-I 

o Gt o X is the isotopy X means X 

we need. 

PROOF of claim 2: Note that since A is a subset of the pseudo-interior 

of Q2 the variable product A xa I is contained ins (write Q = Q2 x J 1). So 

Pis a homeomorphism between two compact subset of s. According to lemma 

4.2.3 there is a boundary preserving h E rW such that for each (a,t) EA xa I 

we have that h(a,t) = P(a,t). Consider the following open covering of 

W' = {U£({a} x [O,a(a)J)la E A\A0 , £ > O and 

U£({a} x [O,a(a)J) c h- 1(W) for some WE W}. 

By virtue of lemma 4.2.5 there is a map o : Q2 + [O,n/2] such that 

o(A\A0) c (O,n/2] and for every x E Q2 , Uo(x)(x,a(x)) is contained in some 
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element of W'. Define the open set O = {x E Q2 lo(x) > 0} and construct with 

Tietze's theorem a continuous S : Q2\A0 ➔ [0,n\2] that extends alA\A0 and 

satisfies S(x) 0 for xi O and S(x) ~ a(x) for x E Q2\A0 . Since a(a) = 0 

for a E A0 the function S : Q2 ➔ [O,n/2] that is defined by S(x) = S(x) if 

xi A0 and S(x) = 0 if x E A0 , is continuous. 

Let C be the space ([O,n/2] x (O,n/2]) u {(0,0)} c I 2 and construct a 

continuous function~: J 1 x C ➔ J 1 with the properties 

~t,O I, 

~tr is supported on (-t,r+t) 
' 

and 

where we used the notation~ (x) = ~(x,t,r) for x E J 1 and (t,r) EC. 
t,r 

Just as if~ were an isotopy we can construct an isotopy H: Q x I ➔ Q by 

1r • 0 H = 1r • if i > I and 
l. t l. 

~(x,o(y),tS(y)) for x E J 1 and y E Q2 . 

The following properties of Hare easily verified: 

s} for t E I 

and 

(a,a(a)) for a EA. 

We prove that His limited by h- 1(W). Let (y,x) E Q2 x J 1 and select an 



£ ·> 0 and an a E A\A0 such that 

Then o(y) $£and hence {y} x (-o(y),a(y) + o(y)) is contained in 

-I 
UE({a} x [O,a(a)J) which is in turn a subset of an element h (W) of 

-I -
h (W). Recall that ~o(y),tS(y) is supported on (-o(y), tS(y) + o(y)) and 
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hence on (-o(y),a(y) + o(y)). This implies that H({(y,x)} x I)= {(y,x)} or 

that H({y,x} x I) c {y} x (-o(y),a(y) + o(y)). So we have shown that His 

limited by h - I (W) . 

Let us now introduce the isotopy 

H' ho H o h-l. for t E I. 
t t 

Obviously, we have that Ho= I, H~ E {y E rwly(s) = s} fort EI and that 

H' is limited by W. Hj is·a W-push in rw with the property that for every 

a EA: 

-I 
ho H1 oh o P(a,O) = ho H1 (a,O) = 

h(a,a(a)) P(a,a(a)) = F(a,a(a)) 

This proves claim 2. 

4.2.7 COROLLARY: Let A and A' be compact subsets of s. If h: A+ A' 

is a homeomorphism with p(h,J) <£then there is an h E rW with p(h,l) < £, 

hlA =hand h(s) = s. 

PROOF: Define the map F : A x I ➔ s by F(a, t) = (I - t)a + th(a). The 

straight-line homotopy Fis limited by U = {UE/ 2(x)lx E Q}. Apply theorem 

4.2.6 to F. The Ll-push h we get has the properties h E rW, hlA = h, 

p(h,l) < E and h(s) = s. 
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4.3 The estimated extension theorem 

In this section we reduce our problems to compacta ins so that theorem 

4.2.6 can be applied. We prove that any compact set that is disjoint from W 

can be homeomorphed into s. We conclude the section with an observation that 

shows that Y is not quite as homogeneous as l 2 • 

4.3. I LEMMA: Let A be a compact subset of an endface E6 such that 
n 

An W = 0. Then there are for each E > 0 an h E rW and an m > n such that 

h(A) n U{E~Ji < m andµ E {-1,J}} = 0, h(A) c E-I and p(h,J) < E. 
i m 

PROOF: Let E > 0 and select an m > n with 1/m < p(A,W) and 1/m < E/2. 
n 

-1 
We first push A into Em and then away from the endfaces in the lower 

coordinate directions. Noting that diam (Jm) = 1/m it is geometrically 

obvious that there exists an E/2-isotopy x : 3(Jn x Jm) x I+ 3(Jn x Jm) 

such that x0 = I, 

xt I < [ -p , p J x { 1 } ) u ( { -e} x J ) m m m I fort EI 

and 

See the facing page for a picture of x1. 



x, -
.____ _ __,,\ 

{ e} xJm 

Noting that Jn x Jm is a subset of the linear space1R2 define the E/2-

isotopy i of J x J by i (O) 
n m t 

0 and 

llxll xt(x/ llxll ) if x I O and t E I. 

Observe that xt is norm preserving, i.e. lli(x) II 

Define h E H(Q) by 11i O h = 11i for i / m,n and 

llxll for every x. 

where 

11i o h(x) 

a(x) = min {1,m.max ({-8} u {p(x.,[-p ,P J)I 
J n n 

j E {1, ... ,m-1}\{n}})}. 

It is obvious that p(h,1) < E/2. The function his a member of rW because: 

(a) Let x E W. If 8 = -I then x = -8 and xt(x ,x) = (x ,x) for every n n n m n m 
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t EI. This means that h(x) = x. Let now 8 =I.For every i / n we have 
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0. So again h(x) x. 

(b) If x E Wm then (xn,xm) E [-pm,pm] x {I}. Since this set is fixed by xt 

and xt we have that h(x) = x. 

(c) Let if m,n. Since xt is norm preserving we have that 

xt([-p.,p.] 2 ) = [-p.,p.]2 and hence that h(Wi.) W .. 
]_ ]_ ]_ ]_ ]_ 

-I 
If x EA and 8 = -I then a(x) = I which yields that h(x) E Em. If 

8 = I then p(x,Wn) > 1/m implies that there is a j < m such that j f n and 

p(x.,[-p ,P ]) > 1/m. Consequently, a(x) = I and h(x) EE-I. The conclusion 
J n n m 

is that h(A) c E-I. 
m 

m 
Consider now B .TT 1 J. and the projection p : Q ➔ B. There is a 

m J= J m 
~ -I m-1 

homeomorphism~ of aB such that p(~,I) < E/2, ~(p(E )) c (.TT1 J~) x {-I} 
m m J= J 

and for every j $ m, ~Jp(W.) = I (the picture gives the situation for 
J ' 

m = 3). 



Let~ E H(B) be given by ~(O) 
m 

0 and $(x) llxll ip(x/ llxll ) for x 1' 0. 

Define g E H(B) by g(x,y) = ($(x),y) for x EB and y E Q. We show that m m m 

g E rw. If j s m then ~jp(W.) = lji(p(W.)) = I and hence gjw. I. If j > m 
J 1 J 

A A m m 
then, since 1jJ is norm preserving, we have that lji([-pj,pj]) = [-pj,pj] 

and g(W.) = W .• If x is an element of E-I then;. 0 ~ 0 p(x) E J: for i < m. 
J J m 1 1 
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This means that g(E:1) and U{Etli < m andµ E {-1,1}} are disjoint. Also we 

-1 -1 A have that g (E ) c E and p (g, I) < E/2. It is now obvious that g O f is the 
m m 

homeomorphism we need. 

e 4.3.2 LEMMA: If A is a compact subset of En\W then there is for every 

E > 0 an f E rw with p(f,1). < E and f(A) cs. 

PROOF: Using the convergence criterion 1.1.2 we can find sequences 

(fi) i ElN in r W and m1 

f ~im f i o ••• o f I E 

1~ 

< m2 < m3 < ••• in lN such that 

rw and fi o ••• o f 1(A) n U{E~jj < m. 
1 

e E {-1,1}} =~-If we take care that for every i ElN, 

and 

CX> 

I: p (f. , I) < p (f. 0 ••• 0 f I (A) , U{E~ jj < m. and e E { - I , I}}) 
j=i+l J 1 J 1 

then f(A) cs. 

4.3.3 LEMMA: If A is a compact subset of Y then for every Ee and£> 0 
n 

there is an f E rw with p(f, I) < E and f(A) n E! = 0. 

PROOF: Let A be a compactum in Y, let E > 0 and put 

A e1 o = min {ip(A,Wn),E}. Define the compact set A= {x E En p(x,A) so}. 

According to lennna 4.3.2 there is ax E rw with p(x,1) < o/4 and x(A) cs. 

If mis a natural number such that I - p < o/4 and 1/m < o/4 then there is 
m 

a map h: Q + W with p(h,1) < o/4. Note that h 0 x(A) n A= 0 and construct 
m 
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a c_ontinuous g Q + s such that 

p(g,I) < min {cS/4,p(h O x(A),A)}. 

Since g O h O x (A) c s and g O h O x (A) n A = 0 there exists by virtue of 

lemma 4.2.4 an embedding$ of x(A) ins that satisfies 

We now have the following situation: p($,I) < 3cS/4, $ is a homeomorphism 

between compact subsets of sand$ 0 x(A) n_A = 0:_ In view of corollary 4.2.7 

there is an extension$ E rW of$ with p(S,I) < 3cS/4. Consider 

f = (S 0 x)-I E rw. We have that p(f,I) < E and f(A) n A= 0. If x E f(A) 

then p(x,A) < cS and xi A. This implies that xi Ee and the conclusion is 
n 

that f(A) n Ee= 0. 
n 

4.3.4 LEMMA: If A is a compactum in Y then for every E: > 0 there 

exists an f E rW such that p(f,I) < E: and f(A) cs. 

PROOF: This is a straightforward application of the convergence 

criterion, see lemma 4.3.2. 

Before we prove the main result a technical lemma. 

4.3.5 LEMMA: Let Ube a collection of open subsets of Q and let A be 

a compact space. If f is a continuous function from A into Q and A0 is a 

closed subset of A such that f(A\A0) c UU and f(A0) cs, then there is a 

continuous g : A+ s that is U-close to f and that coincides with f on A0 • 

PROOF: Select for every i E lN a compact neighbourhood Vi of A0 with 
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0 

1Ti 0 f(Vi) c Ji. Let (£i\ElN be a decreasing sequence of numbers from (O,½) 

such that. for every x E f(A\Vi) there is a U EU with U£i(x) c U. Select 

for every i E lN a continuous gi : A+ J: such that p(gi,1Ti O f) < £i and 

g. Iv. = 1T. 0 flV .• Let g : A+ s be defined by 1T 1. 0 g = g 1. for i E lN. Assume 
l. l. l. l. 

that xis an element of A with f(x) f g(x). If i is the first coordinate 

with 'Tr. 0 f(x) f g. (x) then x i V. and there is a U E U such that 
l l l. 

U£i(f(x)) c U. Since p(f(x),g(x)) .,; sup { p ( 1T. 0 f (x), g. (x)) jj '.?: i} < £. we 
l J l 

have that both f(x) and g(x) are in U. This shows that f and g are U-close 

and since it is obvious that giA0 = fiA0 , the proof is completed. 

4.3.6 THEOREM: Let Ube a collection of open subsets of Q, A a compact 

space and F : Ax I+ Q a homotopy that is limited by U. If F0 and F1 are 

embeddings of A in Y then there is a U-push h in r W with h ° F O = F 1 • 

PROOF: Let A0 be the closed subset of A that is determined by 

A0 x I= F- 1(Q\UU). Since F0 (A) u F1(A) is a compact subset of Y there 

exists by virtue of lemma 4.3.4 an f E rW with f(F0 (A) u F1(A)) cs. Let F 

be the homotopy f ° F. Select an open covering V of F((A\A0) x I) in Q such 

that for every a E A\A0 , St(F({a} x I),V) is contained in some element of 

f(U). Note that Fo(A) u Fl(A) = Fo(A) u Fl (A) u F(Ao XI). According to 

lemma 4.3.5 there is a homotopy G: Ax I+ s that is V-close to F and that 

coincides with Fon (Ax {0,1}) u (A0 x I). Since G is also limited by 

f(U) we find with theorem 4.2.6 an f(U)-push g in rW such that g O G0 = G1• 

-1 
Then h = f o g o f is a U-push in r W with h ° F O = FI • 

4.3.7 COROLLARY: If his a homeomorphism between compacta in Y with 

p(h,1) <£then it has an extension h E rW such that p(h,1) < £. 
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PROOF: See corollary 4.2.7. 

The next corollary has already been introduced as theorem 3.1.2. It is 

essentially due to Anderson & Chapman [AC]. 

4.3.8 COROLLARY: Let Ube a collection of open subsets of Q, A a 

compact space and F : Ax I+ Q a homotopy that is limited by U. If both F0 

and F 1 are embeddings such that their image is a z-set then there exists a 

U-push h in H(Q) with h°F0 = F1• 

PROOF: According to Chapman [C: 10.2] there is an f E H(Q) with 

f(F0 (A) u F1 (A)) c s c Y. Apply theorem 4.3.6 to the homotopy f ° F. 

As is well known theorem 4.3.6 holds also for l 2 ~ s (cf. theorem 

4.2.6). In i 2 we can also extend homeomorphisms between non-compact Z-sets, 

Anderson [A2]. This is not the case for Y. To show this we need the 

following lemma that we took from Anderson, Curtis & van Mill [ACM: 3. 6]. 

4.3.9 LEMMA: Let B1 and B2 be o-z-sets in Q and let f: Q\B 1 + Q\B2 be 

a homeomorphism. Then there exist a compact space Mand monotone maps 

Recall that a map his monotone if it is onto, closed and has the 

property that every fibre is connected or, equivalently, the pre-image under 

h of every connected set is connected. 

PROOF: Let M be the closure of the graph off in Q x Q and take for 

y 1 an y2 the restrictions to M of the projections Q x Q + Q. By symmetry, 
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it _suffices to prove that y 1 is monotone. Since Mis compact and Q\B 1 is 

dense in Q, y 1 is closed and onto. Let x E Q and consider the E-ball UE(x). 

Since every path in UE(x) connecting two points of UE(x)\B 1, can be pushed 

off the cr-Z-set B1 we have that UE(x)\B 1 is connected. So 

is a collection of continua that is linearly ordered by c, Since 

-I y 1 ( {x}) equals nc it is also a continuum. The other properties of y 1 and 

y 2 are obvious. 

Now let L1 and L2 be two copies of (0,1) that are embedded in Y as 

Z-sets such that L1 u w1 u w2 and L2 u w1 are continua. So L1 and L2 are 

paths going from w1 to w2 and from w1 to w1, respectively. 

4.3.10 PROPOSITION: There is no h E H(Y) that throws L1 onto L2. 

PROOF: Assume that h E H(Y) has the property that h(L 1) = L2. There 

are a compact space Mand monotone maps y 1, y2 : M + Q such that 

-I -I j -I I -1 y I (W) = y 2 (W) and h O y I y I (Y) = y 2 y 2 (Y) . Since WI is a 

-I 
continuum and y 1 is monotone we have that y 1 (W 1 u w2 u L1) and hence 

y 2(y~ 1(w1 u w2 u L1)) is a continuum. Note that y 2 (y~ 1(w 1 u w2 u L1)) is 

covered by the disjoint collection {L2 u w1} u {Wili ~ 2}. Applying the 

-1 
Sierpinski theorem, see section 5.2, we find that y 2 (y 1 (W1 u w2 u L1)) is 

. -1 -I 
contained in L2 u w1. Since y 1 (W) = y 2 (W) this means that 

-I 
y 2 (W1). If we apply the same argument to the continuum 

-I 
we find that y 1(y2 (W1)) = w1 u w2 which is obviously false. 
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4.4 Shifting shrunken endfaces 

In this section we prove that whatever choice we make for p ER, the 

space Y is topologically always the same. Furthermore, it is shown that 

subsets of Y that are homeomorphic to Qare negligible. In order to prove 

the first assertion we need a notation that distinguishes between 

representations of Y. 

4.4.1 NOTATION: If r E (0,1) and i E 1N then we define the shrunken 

endface Wi(r) by 

-I } n -I 
Tii ({i) n jfi Tij ([-r,r]). 

If p = (pi)iE1N ER then W(p) = iUEJN W/pi); rW(p) and YP are defined in 

the obvious way. The set Rt is given by 

t 
4.4.2 LEMMA: If p ER then there is a q ER and an f E H(Q) such that 

f(Y) = Y. 
p q 

PROOF: Let p ER. We show that there are a q ER and an f E H(Q) such 

that for if j, q. f q. and f(Y) = Y. If we have established this then 
1 J p q 

the lenuna follows by simply applying a permutation of coordinates. 

We construct inductively a sequence f 1,f2 ,f3 , .•• in ff(Q) and a 

sequence q1,q2 ,q3 , ..• in (0,1) such that for every i E JN: 

q. '{qi, •.• ,q. ]}, 
l. 1.-



and 

f. (W. (q.)) 
l. J J 

w. (q.) 
J J 

f. (W. (p.)) = W. (p.) 
l. J J J J 

for j < i, 

for j > i. 

In order to obtain that f = ~im fi O ••• 0 f I E H(Q) we make sure that every 
1.-+= 

fi can be chosen arbitrarily close to I. It is obvious that f and 

q = (qi\ ElN meet the requirements. 
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Put f 1 = I_ and q 1 = p1. Suppose that hi and qi have been selected. Let 

£ > 0 be such that (pi+l' Pi+! + £) n {q 1, .•• ,qi} = 0 and Pi+!+£< I. 

Pick an element qi+] of (pi+I, pi+] +£)and definer ER by rj = qj for 

j $ i and rj = pj for j > i. Let x E H(Q) be defined by x(x) = (x 1, .•• ,xi' 

-xi+l' xi+Z' xi+3 , .•. ). Note that x(Wi+l(pi+l)) and x(Wi+l(qi+l)) are 

subsets of Yr and that there exists a homeomorphism 

g: x(Wi+l(pi+l)) + x(Wi+l(qi+I)) with p(g,1) < qi+l - Pi+!" In view of 

corollary 4.3.7 there is an extension g E rW(r) of g such that 

P (g, I) < 

and 

qi+] - Pi+] • Then fi+l = XO g O x has the following properties: 

f. I (W. (q.)) 
1.+ J J 

w.(q.) for j $ i, 
J J 

f. l(W.(p.)) = w.(p.) for j > i+I 
1.+ J J J J 

P (f. I ' I) < 1.+ 
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This completes the induction. 

4.4.3 THEOREM: If p,q ER then there is an f E H(Q) such that 

f(Y) = Y. 
p q 

PROOF: In view of lemma 4.4.2 it suffices to prove the theorem for 

p,q E Rt. Let 8 be an element of H(J) such that for every i E lN, 8(pi) = qi 

and 8(-pi) = -qi. If f = irlN 8 E H(Q) then f(Yp) = Yq. 

*) t 4.4.4 LEMMA : If p ER_ then there is an f E H(Q) such that for every 

PROOF: Let p E Rt and construct for every i E lN a norm preserving 

8. E H(J x J) such that 
i 

and 

s.([-Pz·,Pz·J x {t}) 
i i i 

If we define x E H(Q) by 

LP.t y be the homeomorphism of Q that interchanges adjacent odd and even 

*) This lemma is due to R.D. Anderson (unpublished). 
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coordinates: 

Define~ E H(Q) by 

Observe that for every i E lN we have that ~(w2i<Pzi-l)) = w2i<Pzi-l) and 

Since (pi\ ElN is strictly increasing there is an a E H(J) such that for 

every i E lN, a(pi) = pi+l and a(-pi) = -pi+l. If we put 1/1 = i ~lN a then it 

is easily verified that f = ijJ O ~ o y O x has the property: 

4.4.5 THEOREM: Any subset of Y that is homeomorphic to Q is negligible. 

PROOF: Let Y be represented by 

a "shift" on the shrunken endfaces: 

t Y, where p ER, and let f E H(Q) be 
p 

f(W.) = W. I for i E lN. Then f-l (W1) is 
]. 1+ 

a negligible subset of Y and in view of the homeomorphism extension theorem 

4.3.7 this implies that every copy' of Q is negligible in Y. 

4.4.6 REMARK: By use of a similar technique one may prove that Y x Q 

is homeomorphic to Y. 





CHAPTER 5 

FAKE HILBERT SPACES 

5.1 Introduction 

The study of "fake Hilbert spaces" has been inspired by Toruiiczyk's 

characterization of l 2 • Before we state it some definitions. 

5.1.1 DEFINITION: A space Xis called an absolute retract (AR) if for 

every space Z, every map into X that is defined on a closed subset of Z can 

be extended over Z. A space Xis called an absolute neighbourhood retract 

(ANR) if for every space Zand every map f from a closed subset z0 of Z into 

X there is a neighbourhood of z0 in Z over which f can be extended. For 

information concerning A(N)R's see Borsuk [Bl]. 

5.1.2 DEFINITION: A collection V of subsets of a space Xis discrete 

if each point of X has a neighbourhood intersecting at most one member of 

V. A space Xis said to have the strong discrete approximation property 

(SDAP) if for every admissible metric don X, every E > 0 and every map f 

from the countable free union of Hilbert cubes i flN Qi into X there is a 

map g: i flN Qi+ X such that d(f,g) < E and {g(Qi) Ii E lN} is discrete. 

5.1.3 THEOREM (Toruiiczyk [T2]): A topologically complete AR is homeo­

morphic to l 2 iff it has the SDAP. 
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This extremely useful characterization has now become the standard 

method for recognizing topological Hilbert spaces. In Anderson, Curtis & 

van Mill [ACM] it was shown that the SDAP cannot be relaxed by considering 

only one metric on the space. Specifically, they constructed a topologically 

complete AR space X with the following properties: 

(I) There is an admissible metric don X such that for every E > 0 and 

continuous f : i !JN Qi + X there is a map g : i !JN Qi + X that satis­

fies d(g,f) < E while {g(Q,) Ii E lN} is discrete (this is called the 
l. 

weak discrete approximation property, WDAP). 

(2) Every compact subset of Xis a Z-set. 

(3) X embeds as a linearly convex subset of £2 • 

(4) X x X RJ £2• 

(5) Xis homogeneous. 

(6) Every countable subset of Xis strongly negligible. 

(7) No Cantor set is negligible in X. 

Since in £2 every a-compact set is strongly negligible, Anderson [A3], 

property (7) shows that X F/J £2 • The space Xis a "fake topological Hilbert 

space" since it has many of the familiar topological properties of £2 but 

yet is not homeomorphic to it, As an "application" we get that the 

properties (I) through (6) do not characterize £2 • It is useful to push 

this point further. Every "fake topological Hilbert space" blocks a possible 

generalization of Torunczyk's theorem. 

The aim of this chapter is to construct spaces that "approximate" £2 

closer than the space above. We are interested in dimension theory and 
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negligibility properties and· we shall obtain a characterization of dimension 

in terms of negligibility. 

Consider the space Y defined in section 4.1. Recall that we proved in 

section 3.2 that there is for every k E {0,1,2, ... } a strong (Sk,H(Q))­

skeletoid~ \: in Q, where Skis the collection of Z-sets in Q with dimension 

~ k. For convenience, we put A_ 1 = 0 and S_ 1 = {0}. The skeletoids \: were 

constructed in the pseudo-interiors of Q which is a subset of Y (indeed, 

we may always assume this, because every cr-Z-set can be pushed into s). 

Let k E {-1,0,1, ... } and\; be fixed in the remaining part of this chapter. 

The space~ is defined as 

We shall prove that~ is a topologically complete AR, which is not 

homeomorphic to ! 2 but whi~h has the following properties*): 

(1) ~ has the WDAP. 

(2) Every compact subset of~ is a Z-set. 

(3) ~ embeds as linearly convex subset of ! 2 . 

(5) Let Ube a collection of open subsets in~• A a compact space and 

F: Ax I+~ a homotopy that is limited by U. If F0 and F1 are 

embeddings then there is an h EH(~) that is U-close to 1 and has 

the property h°F0 = F1. Since~ is an AR this implies that~ is 

homogeneous. 

This result was established in Dijkstra & van Mill [DM]. 
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(6) If Ac¾ is a-compact, then A is strongly negligible iff dim (A)~ k 

(in particular,¾ f/i ¾• if k / k'). 

(7) If Ac¾ is a compactum of fundamental dimension at most k, then A is 

negligible (in particular, if Cc¾ is an n-cell, then C is negligible 

and C is strongly negligible iff n ~ k). 

5.2 A generalization of the Sierpinski theorem 

The aim of this section is to prove a generalization of Sierpinski's 

theorem that no continuum (i.e. a compact connected space) can be 

partitioned into countably many pairwise disjoint non-empty closed subsets, 

see Sierpinski [SJ or [El: p.440]. This generalization plays a key role in 

deciding whether a subset of¾ is strongly negligible. Since we feel that 

the result is of independent interest we have put it in a separate section. 

As usual, Sn denotes then-sphere, n E {0,1,2, ••• }. 

5.2.1 THEOREM: Let n be a nonnegative integer and X a compact space. 

If {F. Ii E lN} is a closed covering of X such that for each pair of distinct 
i 

n 
natural numbers i and j, dim (Fin Fj) < n then every map f : F1 + S can 

be extended over X. 

The theorem is also valid outside the class of metric spaces, see 

Dijkstra [D2]. The reader is encouraged to verify that Sierpinski's theorem 

follows easily if one substitutes n = 0. 

PROOF: We shall work with the following induction hypothesis for 

n = 0,1,2, ••. 



Let X be a compact space and M an AR. I{ {F - Ii e: lN} is a closed 
]. 

covering -of X such that for every i and j with i + j, dim (F. n F.) < n 
]. J 

then every map f: F1 + Sn x Mis extendable over X. 
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Consider the case n = O, where we have that Sn is the discrete double-

ton {-1,1} and 

the closed set 

{Fili e: lN} is a pairwise disjoint collection. Assume that 

-1· ~ A= f ({-I} x M) c F1 is non-empty. Let X be the space we 

obtain from X by identifying A to a single point a and let q: X + X be the 

decomposition map. If C is the component of a in X then it is a continuum 

with the following pairwise disjoint, closed covering: 

{{a},A n c} u {F. n cli ~ 2}, 
.J. 

where A 
-1 

f ({!} x M). According to Sierpinski we have that C = {a}. Since 

Xis a compact Hausdorff space there is a clopen neighbourhood O of a in X 

- -1 that misses A. Because Mis an AR we can find maps g1 : q (0) + {-I} x M 

and g2 : q- 1(X\O) + {I} x M such that g1 1A = flA and g2 IA =fl.A.Then 

g 1 u g2 is the required extension off. 

Assume now that the induction hypothesis holds for n. Let {F. Ii e: lN} 
]. 

be a closed covering of X such that for i + j, dim (F. n F.) ~ n and let 
]. J 

f Sn+I b . A d. h bl h : X + x M e continuous. ccor 1.ng tote counta e sum t eorem 

(see [E2: 3.1.8]) the set R = U{F. n F.li,j e:lN with i + j} has dimension 
]. J 

~ n. Select two distinct points x 1 and x2 in Sn+I and note that 

~I· n S \{x1 ,x2} is homeomorphic to S x lR. Using the separation theorem (see 

[E2 : 4.1. 13]) we find a closed covering {H1 ,H2} of X such that for 

j e: {1,2}, H. n f-l{{x.} x M) = 0 and 
J . J 

Consider the compact space X' = H1 n H2 and its closed covering 

{F. n X'li e: lN}. Obviously, we have for i + j that 
]. 
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dim (F. n F. n X') s dim (Rn X') < n. Observe that flF 1 n X' is a 
. l. J 

n+l 
continuous mapping into (S \{x 1,x2}) x M, which space is homeomorphic to 

Sn xlR x M. Since JR x Mis, as product of AR's, itself an AR we may apply 

the induction hypothesis to find a continuous g: X' 

with glF 1 n X' = flF 1 n X'. Observing that Sn+l\{xj} is homeomorphic to 

Rn+! select for j E {1,2} a continuous extension 

n+l 
hi : Hj + (S \{xj}) x M of (f[F 1 n Hj) u g. Then h = hi u h2 is a map 

from X into Sn+! x M which extends f and the theorem is proved. 

5.3 Some topological properties of X. 
=-K 

In this section we give a number of properties that¾ shares with 12 ; 

we show that¾ is a "fake, Hilbert space". 

5. 3. I THEOREM: 

(I) ¾ is topologically complete. 

(2) ¾ embeds as a linearly convex set in l 2 and hence it is an AR. 

(3) ¾ has the WDAP. 

(4) Every compact subset of¾ is a Z-set. 

PROOF: It is proved in Anderson, Curtis & van Mill [ACM: sec.3] that 

if A is a cr-Z-set in Q such that for every E > 0 there is a map S: Q + A 

with p(S,I) <Ethen Q\A satisfies (I) through (5). 
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We now turn to the homogeneity properties of¾· Put 

skW ={SC YIS is compact and dim (S) ~ k}. 

Since every compact subset of Y is a Z-set in Q it follows that 

We have the following proposition: 

5.3.2 PROPOSITION:¾ is a strong (SkW'rW)-skeletoid"' in Q and a strong 

(SkW'H(Y))-skeletoid"' in Y. 

PROOF: Since¾ n W =~.¾is a member of (SkW) 0 • Let S be in SkW and 

assume that U is a collection of open subsets of Q that covers S. Put 

0 = UU and select a closed,neighbourhood F of Q\O that misses S. Let 

(~) i ElN be the skeleton that corresponds with ¾ and let n E 1N. There are 

an m E1N and an isotopy Hof Q such that His limited by {IntQ(F)} u U 

H0 = I, H1 (s) c A and H IF u A = I for every t EI. So His x I is a homo-
m t n 

topy that is limited by {U\Anlu EU} and with the property that H0 1s and 

H1 Is are embeddings of S into Y. According to theorem 4.3.6 there is a 

{U\Anlu E U}-push h in rW with h(S) c Am. This proves that¾ is a strong 

(SkW'rW)-skeletoid"'. Since hlY is a {Un YIU E U}-push in 

{y E H(Y)lylAn = I} we have also proved that¾ is a strong (SkW'H(Y))­

skeletoitl'"'. 

5.3.3 THEOREM: Let Ube a collection of open subsets in Q, A a compact 

space and F: Ax I+ Q a homotopy that is limited by U. If F0 and F1 are 

embeddings of A in¾ then there is an h E rW that is U-close to I and that 

has the properties h°F0 = F1 and hi¾ EH(¾). 
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PROOF: According to theorem 4.3.6 there is an f E rw that is U-close 

to I and satisfies f o FO = FI. Using theorem 1.2.13 we find an h E rw that 

extends fjF0 (A) and has the properties that it is Ll-close to I and 

5.3.4 COROLLARY: Let Ube a collection of open subsets of~, A a 

compact space and F : Ax I+~ a homotopy that is limited by U. If F1 and 

F0 are embeddings then there is an h EH(~) that is U-close to I and has 

the property h " F O = F 1 • 

PROOF: This is trivial. 

5.3.5 REMARK: In view of theorem 4.3.6 it is natural to ask whether 

the homeomorphism of corollary 5.3.4 can be chosen in such a way that it is 

isotopic to the identity of~- This is not the case fork 0. We believe 

that fork> 0 the spaces~ also behave "badly" in this respect, but we 

have no proof of this assertion. 

Consider an isotopy H XO XI+ XO XI such that Ho I. We shall 

show that H1 = I for every t E I. Pick an arbitrary point X in AO and let 

(xn)n ElN be a sequence in x0 that converges toxin Q. There is a copy L 

[O, I) in XO such that {x In E 1N} n 
C L and L u {x} ~ I (use the fact that 

of 

every Z-set in Q is thin). If we put D = H(L X I) then Dis a closed subset 

of x0 x I that is homeomorphic to [0, I) x I. Let K = ClQ x 1 (D)\D and let K 

be the projection of K into the first factor of the product Q x I. Then K 

and Kare continua which are contained in (Wu A0) x I and Wu A0 , 

respectively. Since A0 u W can be written as a disjoint union of compacta 

and since x EK n A0 , Sierpinski's theorem gives that Kc A0 . Now A0 is 

totally disconnected and hence K = {x}. This implies that lim Ht(xi) = x 
i+oo 
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for every t EI and hence Ht can be extended over Y with the identity on AO• 

Since AO is dense in Y we have that Ht= I for every t EI. 

So we may conclude that if f and g are isotopic members of H(X0) then 

f g (cf. remark 1.2.15). 

5.3.6 COROLLARY: Let A be compact and f : A+~ continuous. If A' is 

a closed subset of A such that flA' is an embedding and if U is an open 

covering of~, then there is an embedding g of A in~ such that g and f 

are U-close and glA' = flA'. 

PROOF: It is no problem to find a subset R of~ that is homeomorphic 

to s; put for instance R = {-I} x ifi2 (-1,1). Let C be a subset of R that 

is homeomorphic to f(A). Both embeddings of f(A) in~ are of course 

hornotopic in Q and hence there is an h E H(~) such that h O f(A) c R. Since 

I 
R ~ s, there is according to lemma 4.2.4 an embedding g of A in R such that 

g and h 0 fare h(U)-close and glA' = h 0 flA'. If g = h-l O g then g and f 

are U-close and glA' = flA'. 

5.4 Negligibility and dimension 

In this section we shall prove the connexions that exist between 

(strong) negligibility in~ and dimension. 

5.4.1 THEOREM: Every a-compact subset of~ with dimension at most k 

is strongly negligible. 

PROOF: As observed in the preceeding section,¾ is a strong 
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(SkW'H(Y))-skeletoid~. Now apply proposition 1.2.10 and theorem 1.2.12. 

We identify Sn-I and the boundary 3In for every natural number n. Let 

X be a space. A map f: X + In is called essential if flf- 1(Sn-l) cannot be 

extended to a map g 

5.4.2 LEMMA: Let n be a natural number with n > k. If A is a compact 

subset of~ and f: A+ In is essential then f- 1(Int In) is not negligible 

in~-

PROOF: Let R f-l(Sn~I) and O = A\R. In view of corollary 5.3.6 we 

may assume that Ax I is a subset of~ such that Ax {0} coincides with A. 

Suppose that O is a negligible subset of~- This implies that 

Z =(Ax I)\O can be embedded as a closed subset in Xk. Assume that Z is 

reembedded as a closed subset in~ and let Z be the closure of Zin Q. Put 

z* Z\Z and note that the local compactness of Ax (0,1] implies that 

* u R is z compact. Also, z* is a closed subset of Q\~ = ~ u w. Since 

* n ~ is a-compact and (n-1)-dimensional, find z at most we can a sequence 

(Fi)i ElN of compact subsets * * of Z n ~ such that Z n ~= iuElN F. and 
]. 

F. n F. is at most (n-2)-dimensional for all distinct i,j E 1N. In addition, 
]. J 

observe that z* n Wis a countable disjoint union of compacta and that 

W n ~ = 0. Theorem 5.2.I implies that the map g = flR can be extended to a 

map g: (z* u R) +Sn-I. Since Sn-I is an ANR there is an open U containing 

z* u (Rx I) such that the map h, defined by 

h(x) = g(x) if XE: z* u R 

and 

h(x,t) f(x) if (x,t) E Rx I, 
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can-.be extended to a continuous h U + Sn-I_ Since (Ax (0,1])\U is compact 

there is an EE (0,1] such that Ax {E} c U. Define the function 

n-1 - j n-1 n : A+ S by n(a) = h (a,E), a EA. Then nlR = f Rand n(A) c S , which 

means that f is not essential. 

5.4.3 COROLLARY: If n E lN and n > k then there exist copies oflRn in 

~ that are not negligible. 

PROOF: In is embedded in~• corollary 5.3.6, and I1n is essential. 

5.4.4 COROLLARY:~ is not homeomorphic to l 2 • 

PROOF: As remarked in section 3.1, every a-compact subset of l 2 is 

strongly negligible. 

5.4.5 COROLLARY:~ does not admit the structure of a topological 

group. 

PROOF: l 2 is the only infinite-dimensional complete AR that admits 

a group structure (Dobrowolski & Toruficzyk [DT]). 

5.4.6 REMARK: With the method of lemma 5.4.2 and corollaries we can 

prove that if C is a compact space containing £2 and C\l2 = .UlN F., where 
l. E l. 

the Fi's are compacta, then there is for every n E lN an infinite set 

{i jm E lN} of natural numbers greater than n such that for every m ElN, 
m 

dim (Fim n Fim+I) ~ n. 

We sketch a proof. Define the following equivalence relation on 

N {i E lNji > n} : m ~ 1 if there is a sequence m = i 1,i2 , ... , ij 1 in N 
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with dim (Fir•Fir+l) ~ n for r = 1,2, •.. , j-1. If there is an infinite 

equivalence class we are done. If every class is finite we define new 

compacta G[i] = U{Fj lj ~ i}, where [i] is the class of i EN. Note that if 

[i] f [j] then dim (G[i] n G[j]) < n. Let Ube an open, non-empty subset of 

! 2 which closure in C misses .fl1 F .. If Z In+2\(Int In+!) x {0} then we 
1= 1 

can embed Z as a closed subset in ! 2 such that Z c U. The proof of lemma 

n 
5.4.2 shows that we cannot do this in C\(.UN G['J u .u 1 F.) = C\.UlN F .. 

lE 1 1= 1 1 E 1 

We now come to the announced characterizations of dimension in terms 

of negligibility. 

5.4.7 THEOREM: Let k ~ -1. For every a-compact space A, the following 

statements are equivalent: 

(I) dim (A) s k. 

(2) There is an embedding f of A in~ such that for every open O in A, 

f(O) is negligible in~-

(3) Every embedding f of A in~ has the property that for every open O in 

A, f(O) is negligible in~-

PROOF: (I)+ (3). If dim (A) s k then by theorem 5.4.1 f(A) is strongly 

negligible. Consequently,every relatively open subset of f(A) is negligible. 

(3) + (2). By corollary 5.3.6, ~ is universal. 

(2) +(!).Assume that A satisfies (2) for some embedding f. 

Write A as a countable union of compacta F1,F2 ,F3 , .... We show that Fi 

also satisfies (2). Let i E lN and let O be a relatively open subset of F .• 
1 

Choose an open O in A with On F. 0. Since A satisfies (2) there exist 
1 

two homeomorphisms a:~+ ~\f(O) and S : ~ + ~\f(O\Fi). In view of the 

homeomorphism extension theorem 5.3.4 there is a y EH(~) with 



YO f IF• . i 
-1 I -1 -1 S O f Fi. Then y . 0 S O a is a homeomorphism from ~ onto 

which proves the claim that Fi satisfies (2). Since Fi is compact lemma 

4 2 . 1 . h . k+ l . . . h 5 .. imp ies tat no map from Fi into I is essential. This means tat 

dim (Fi)~ k, see [E2: 1.9.A]. According to the countable sum theorem, see 

[E2: 3.1.8], we have that dim (A)~ k. 
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5.4.8 REMARK: As for the case k = -1, we shall show in the next section 

that a space A satisfies (2) or (3) iff it is finite. 

5.4.9 LEMMA: If A is a nonempty, compact subset of Y = x_ 1 and if 

f Y + Y\A is a homeomorphism then {x E Yif(x) = x} is a z-set in Y. 

PROOF: According to lemma 4.3.9 there exist a compact space Mand 

monotone maps g,h from M onto Q with g- 1(Y) = h- 1(Y\A) and f 0 glg- 1(Y) 

= hlg- 1(Y). Consider a shrunkenendface W .. Since his monotone we have that 
i 

-1 
g(h (Wi)) is a continuum in W. By Sierpinski's theorem there is an a(i) E lN 

with g(h- 1(W.)) c W (.). Analogously we can show that h(g- 1(w (.)))cw .. i Cl i Cl i i 
-1 -1 

So for every i E lN, h (W.) = g (W (.)) and hence a is one-to-one. Since 
i a i 

-1 I g(h (A)) is a non-empty subspace of W, a(lN) flN. Put Z = {x E Y f(x) = x}. 

Let y be a map from Q into_ Y and let E > 0. Since a : lN + lN is one-to-one 

but not onto there exist an i E lN and a map S: Q + Wa(i) such that 

p(S,1) < E/2 and if a(i). Put o = !p(Wi,Wa(i)). Since g-l(Wa(i)) = h- 1(Wi), 

-1 
the set O = U0(Wa(i))\g(h (Q\U0 (Wi))) is a neighbourhood of Wa(i)" Since 

f O g I g - l (Y) = h I g -\Y) the sets Z and O are disjoint. Let o' be an element 

of (0,E/2) such that U0 ,(Wa(i)) c O and construct a map n : Q + s with 
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p(n, I) < o'. Then the map y' = n °S O y has the properties: 

p(y',y) S_p(n,I) + p(S,I) < E and 

y'(Q) c n(Wa(i)) c On s c Y\Z. 

This proves that Z is a Z-set in Y. 

5.4.10 THEOREM: Let A be a a-compact space. The following statements 

are equivalent: 

(I) dim (A) s k. 

(2) There is an embedding ·f of A in~ such that f(A) is strongly 

negligible in~-

(3) Every subset of~ that is homeomorphic to A is strongly negligible. 

PROOF: (I)+ (3). Apply theorem 5.4.1. 

(3) + (2). This is trivial. 

(2) + (I). Note that every relatively open subset of a strongly 

negligible set is negligible. If k f -1, apply theorem 5.4.7. Let A satisfy 

(2) fork= -1. If A is non-empty then there is an a EA such that {f(a)} 

is strongly negligible in x_ 1, proposition 1.2.2. This means that for every 

neighbourhood U of f(a) there is a homeomorphism g: x_ 1 + x_ 1\{f(a)} that 

is supported on U. Since a Z-set is always nowhere dense this contradicts 

lemma 5.4.9. So we may conclude that A= 0 and dim (A) -1. Note that we 

did not use the cr-compactness of A here: the empty set is the only strongly 

negligible subset of x_ 1. 

We conclude this section with discussing a generalization of 

cr-compactness, strongly cr-complete spaces (cf. section 2.3). Note that 
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every negligible subset of a complete space is strongly a-complete. So 

strongly a-complete spaces are the most general type of spaces for which it 

makes sense to consider negligibility in¾· 

5.4. II PROPOSITION: Every strongly a-complete space with dimension 5 k 

has a strongly negligible embedding in¾· 

PROOF: Let S be a space with dimension 5 k and let (Si)iElN be a 

sequence of closed, topologically complete subsets of S with S = i~lN Si. 

Select a 5 k-dimensional compactification C of S (see [E2: I. 7 .2]) and 

assume that C is embedded in¾· Define for i E lN, Ri = Clc(Si)\Si and 

P = .UlN Clc(S.), R = .UlN R .• Since S. is closed in S we have that 
JE J JE J 1 

Ri = Clc(Si)\S and hence S = P\R. The set Riis the remainder of a 

topologically complete space in a compact space and hence a a-compact space. 

So also Risa a-compact space with dimension 5 k. Consequently, Ru i\ is 

an (SkW'H(Y))-absorber in Y. According to the uniqueness theorem 1.2.11 

there is an f E H(Y) with f(R u i\) = i\· This means that 

f(S) = f(P)\i\ c ¾· The space f(P) is an element of (SkW)a and hence 

theorem 1.2.12 implies that f(S) is a strongly negligible subset of¾· 

We do not know whether the converse of this proposition holds. Note 

that every non-a-compact space has a nonnegligible embedding in¾ (embed 

a compactification of the space in¾ and observe that it is not an Fa-set). 

If we apply the argument of proposition 5.4.11 to the pseudo-boundary Bin 

Q (see also theorem 2.3.7) we find that l 2 is universal for V00
• 

a 

5.4.12 THEOREM: Let X be a space. The following statements are equi­

valent: 
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(I) X is strongly a-complete. 

(2) Xis homeomorphic to a (strongly) negligible subset of l 2 . 

(3) Xis homeomorphic to an Fa-set in l 2 . 

5.5. Negligibility and shape 

In this section we shall discuss a connexion between negligibility of 

compacta in~ and fundamental dimension. We begin by giving the definition 

of shape in the sense of Borsuk [B2]. 

Let A and A' be compacta in Q. A shape map 6 from A to A' is a sequence 

fn Q + Q, n E lN, of maps with the following property: for every 

neighbourhood V of A' there are a neighbourhood U of A and a natural number 

n such that for every m > n, fmiu and fm+I iu are homotopic in V, i.e. there 

is a map F: U x I+ V with fmiu = F0 and fm+I iu = F1. We write 

(gn,A,A') are two shape maps from A 

to A' we say that 6 and g are homotopic if there are for every neighbourhood 

V of A' an n E lN and a neighbourhood U of A such that f iu and g iu are 
m m 

homotopic in V form> n. 

The identity shape map is 7A = (JQ,A,A). If 6 = (fn,A,A') and 

g = (gn,A',A") are shape maps then their composition is the shape map 

g O 6 = (g O f ,A,A"). We say that A and A' have the same shape, notation 
n n 

Sh(A) = Sh(A'), if there exist a shape map 6 from A to A' and a shape map g 

from A' to A such that g O 6 and 6 ° g are homo topic to 7 A and 7 A,, 

respectively. One may show that this notion is independent of the given 

embeddings of A and A' in Q. 

We now state the complement theorem that is due to Chapman [C: sec.25]. 



5.5.I THEOREM: If A and A' are z-sets in Q then Sh(A) 

Q\A ~ Q\A'. 

Sh(A') iff 

5.5.2 COROLLARY: If A is a non-empty Z-set in Q then A has trivial 

shape (i.e. the shape of a singleton) iff Q/A ~ Q, where Q/A is the space 

we obtain by identifying A to a point. 

PROOF: If Q/A ~ Q then Q\A ~ Q\{p} for some p E Q and hence A and {p} 

have the same shape. 
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If A has trivial shape then for every p F Q, Q\A ~ Q\{p}. Observe that 

Q/A and Qare one-point compactifications of Q\A and Q\{p}. Since one-point 

compactifications are unique this implies that Q/A ~ Q. 

We have for~ the following analogue of Chapman's theorem. 

5.5.3 LEMMA: If A and A' are compacta in~ with the same shape then 

there is a homeomorphism h: Q\A + Q\A' with h(~) =~and h(Wi) = Wi for 

every i E 1N. 

PROOF: The method is based on Chapman's proof for theorem 5.5.1. Let 

6 = (f ,A,A') and g = (g ,A' ,A) be shape maps such that 6 ° g and g O 6 are 
n n 

homotopic to 7A, and 7A, respectively. Since Wu~ is a cr-Z-set we may 

assume that for every n E 1N both f (Q) and g (Q) are contained in X... It is n n -7.< 

left as an exercise to the reader to verify this. We shall construct 

inductively a sequence x 1,x 2,x 3 , ..• in {y E rwlY(~) =~}and a sequence 

o1 ~ o2 ~ o3 ~ ... of open neighbourhoods of A in Q such that for every 

i E 1N, xi(Oi) contains A' and there exist an n E1N and an open neighbourhood 

V of A' in Q with the property that V c x,(0.) and IV is in x.(O.) homotopic 
i i i i 
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to X· 0 g Iv for every m ~ n.·The basis step of the induction is x1 l. m I and 

Assume that xi and Oi have been constructed and that they satisfy the 

induction hypothesis. Since 6 is a shape map and since g O 6 and 1 A are 

homotopic there exist an m > n and an open neighbourhood P of A in Q such 

that Pc Oi' gm O fmlP and JP are homotopic in Oi and fmlP, fm+I IP, fm+ 2 JP, 

.•. are all homotopic in V' = V n u2/(i+l)(A'). Since fm(A) c V' n ~ there 

is in view of corollary 5.3.6 an embedding a of A in V' n ~ that is in V' 

homotopic to f IA. We have that the following maps are homotopic to each 
m 

a, f I A, x. 0 g O f I A and x. I A. m l. m m l. 

Using theorem 5.3.3 we find a SE {y E rwlY(~) =~}that is supported on 

xl..(Ol..) and satisfies a= S 0 x.lA. So S 0 x.lA and f IA are homotopic in V'. l. l. m 

Since V' is, as open subset of Q, an ANR there is an open neighbourhood 

Oi"+J of A in Q such that S O X· lo. 1 and f Jo. 1 are homotopic in V'. We may l. i+ m i+ 

assume in addition that Oi+I c u2/(i+l)(A) n P. Note that Oi+I and 

S O xi (Oi+I) are contained in Oi and V', respectively. 

Since g is a shape map and since 6 ° g is homotopic to 1 A, there is an 

open P' in Q and an m' > m such that A' c P' c V' f O g IP' and I , are ' m' m' p 

homotopic in V' and g, IP', g, 1 IP', g, 2 1P', ••. are all homotopic to 
m m + m + 

each other in Oi+J" Since S 0 xi o gm 1 (P') c So xi(Oi+I) n ~ there is in view 

of corollary 5.3.6 an embedding a' of A' in~ that is in S 0 Xi(Oi+I) 

homotopic to S 0 x. 0 g ,IA'. It is easily verified that l. m 

a' 
' Sox.og ,IA', fog ,IA', f ,og ,IA' and IA' l. m m m m m 

are homotopic in V'. Using theorem 5.3.3. we find a S' E {y E rwlY(~) = ~} 

that is supported on V' and satisfies S' 0 a' = IA'" Put hi+I = S' 0 Sand 



One readily sees that X· 1 ° g , IA' is in x. 1 (0. 1) homotopic to 1+ m 1+ 1+ 

13 I o Cl I IA,. Since Xi+I (Oi+I) is an ANR there is an open set V such that 

A' C V C P' and X· I O g I Iv and Iv~ are homotopic in X• I (0. I). If j ~ m' 1+ m 1+ 1+ 

then gm' IP' and g. IP' are homotopic in o. I and hence X·+1 ° g. Iv is in 
J 1+ l J 

Xi+l(Oi+I) homotopic to IV. This completes the induction. 

Note that every hi+! is supported on xi(Oi) and is a member of 

{y E rwlY(i\) = i\}· Observe furthermore that for i E JN, Oi c u 2/i(A) and 

xi(Oi) c u2/i(A'). If x E Q\A and i is such that 2/i < p(x,A) then Q\Oi is 

a neighbourhood of x such that xi(Q\Oi) c Q\A' and for every j > i 
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x,IQ\O. = X· IQ\O .• Consequently, if we define for x E Q\A, h(x) = lim x.(x) 
J l l l i-+<» l 

then his a local homeomorphism from Q\A into Q\A'. Since Oi c u2/i(A) and 

xi(Oi) c u2/i(A') for i E JN, his one-to-one and onto and hence a homeo­

morphism. Since for every x E Q\A there is an i E lN such that h(x) = xi(x) 

we have that h(i\) = 1\ and h(Wj) W. for j E JN. This completes the proof. 
J 

It is natural to ask whether strong negligibility in theorem 5.4.10 

can be replaced by negligibility. The following theorem shows that that is 

not the case. If Xis compact then the fundamental dimension Fd(X) of Xis 

defined by 

Fd(X) min {nlthere is a compact Z with Sh(Z) 

and dim (Z) = n}. 

Sh(X) 

5.5.4 THEOREM: If Sis a compactum in~ with Fd(S) ~ k then Sis 

negligible. If Sis a compactum in Y with the shape of a finite space then 
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Sis negligible. 

PROOF: If Fd(S) ~ k we can choose by corollary 5.3.6 a compact S' c ¾ 

such that Sh(S) = Sh(S') and dim (S') ~ k. By lemma 5.5.3 and theorem 5.4.1 

we have that ¾\S R1 Xk\S' R1 ¾· 

According to theorem 4.4.5 every copy of Q is negligible in Y. Since 

Q has trivial shape lemma 5.5.3 implies that every singleton is negligible 

in Y. Consequently, every finite subset of Y is negligible. Applying once 

more lemma 5.5.3 we find that every space with the shape of a finite set 

is negligible. 

So every cube is negligible in any¾· We can prove a partial converse 

of theorem 5.5.4. 

5.5.5 THEOREM: If Sis a negligible compactum in XO then Fd(S) ~ 0. If 

Sis a negligible compactum in Y then S has the shape of a finite space. 

PROOF: Let k be either -I or O and assume that Sis a negligible 

compactum in¾· Leth be a homeomorphism from ¾\S onto¾· According to 

lemma 4.3.9 there exist a compact space Mand monotone maps y 1 and Yz from 

-] 
M onto Q with y 1 (¾\S) -] I -I I -I 

y 2 (¾) and ho y I y I (¾ \S) = y 2 y 2 (Xk). Let C 

be the collection of components of Sand define 

-1 
Let CE C and consider the non-empty continuum a(C) = y 2 (y 1 (C)), which is 

a subset of~ u W. Since~ is a o-compactum with dimension~ 0 

Sierpinski's theorem implies that there is a PEP with a(C) c P. Analogous-

-I 
ly we can prove that the continuum y 1(y2 (P)) is contained in Sand hence 



in C. So a is a function from C into P such that for every CE C, 

-I -I . 
Y1 (C) = Y2 (a(C)). 

-I 
Consider the compact set S = y 2 (y 1 (S)), 

I -I 
U{a(C) CE C} c ¾ u W. Observe that y 1 (S) = 

which is equal to 

-I ~ 
y 2 (S). Since any union of 

infinitely many shrunken endfaces is dense in Q, Scan intersect only 
1 

finitely many Wi's. Let i 1, ••. ,i1 be such that Sn W = j~I Wij. Define the 

quotient space Q of Q by identifying every Wi· to a point a. and let p be 
J J 

the natural map from Q onto Q. We show that Sand p(S) have the same shape 

(cf. Chapman [C : 25. I] and Kozlowski [K]). 

It is easily verified that if Z is a Z-set in Q then p(Z) is a Z-set 

in Q. According to corollary 5.5.2 Q is homeomorphic to Q. Note that 
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Su¾ u Wand p(¾ u W) are a-Z-sets in Q and Q, respectively. Consequent­

ly there exist homotopies F Q x I+ Q and G Q x I+ Q such that F0 = I, 

Go= I, F(Q x (0,1]) c Q\(S u ¾ u W) and G(Q x (0,1]) c Q\p(¾ u W). 

Observe that PIY: Y + Y c Q is a homeomorphism and define for n E lN, 

-I -I 
fn = p 0 h°Fl/n and gn = h op oGl/n· We shall prove that 6 (f ,S,p(S)) 

n 

and g = (g , p (S), S) are shape maps such that 6 ° g and g O 6 are homotopic to n 

lp(S) and ls, respectively. 

-I -I ~ Let V be an open neighbourhood of Sin Q. Since y 1 (S) = y 2 (S) = 

-I -I -I 
y 2 (p (p (S))) we have that C = p O y 2 (y 1 (Q\V)) is a compact set that is 

disjoint from p(S). Then there is a neighbourhood U of p(S) in Q and an 

I n E lN such that G(U x [O,n]) n C = 0. Since p O f(V n ~ \S) = ~ \C and 

G(Q x (0,1]) c ~ we see that gnlu, gn+I iu, gn+2 iu, ... are homotopic in V. 

So g is a shape map. The proof that 6 is a shape map is analogous. 

To see that g O 6 is homo topic to 1 S choose an open neighbourhood U of 

Sin Q. Select a neighbourhood V of p(S) in Q and an n 1 E lN such that 

-I -I I h op oG((V n X..) x [0,-]) c U -le n 1 
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and select subsequently a neighbourhood W of Sin Q and an n2 > n 1 with for 

every m >.n2 ,fm(W) c V and 

F(W X [O,_!_]) Cu. nz 

I -1 -1 f -1 -1 f If m > n2 then gm o fm W "' h O p o G 1 /mo fm W and h O p O fm W are 

-1 -1 I I homotopic in U. Furthermore, we have that h O p O fm W"' Fl/mW and lW 

are homo topic in U. So we may conclude that g O o is homo topic to 1 S. The 

proof for o O g is similar. 

So we have shown that Sh(S) "'Sh(p(S)). Consider first the case k"' -1. 

Then~"' 0 and p(S) "'{a1, •. ,,a1}. If k"' 0 then~ is a zero-dimensional 

o-compactum. Here the countable sum theorem implies that 

dim (p(~) u {a 1, .•• ,a1 }) "'0. Consequently, dim (p(S)) $ 0 and the theorem 

is proved. 

We believe that the c6nverse of theorem 5.5.4 is also true fork> 0 

but we have no proof of this. 

5.5.6 CONJECTURE: Let k ~ 0 and let Sc~ be compact. Then Sis 

negligible iff Fd(S) $ k. 

According to theorem 5.4.10 a a-compact subset of~ is strongly 

negligible iff its dimension is at most k. So strong negligibility depends 

only on topological properties of the space itself and not on the way that 

it is embedded in Xk. This is not surprising for compact spaces since they 

have essentially only one embedding in~• cf. corollary 5.3.4. For non­

compact spaces, however, there are many non-equivalent embeddings. 

Negligibility of a a-compact space in~ is dependent on the way the space 

is embedded. Let k ~ 0. By corollary 5.4.3 there are copies oflRk+l in~ 

that are not negligible. According to theorem 5.5.4 every subset of Xk that 



. h h" Ik+l . 1· "bl Al h b d f k+l . is omeomorp ic to is neg igi e. sot e oun ary o I is 

negligible because it is k-dimensional. This implies that it is possible 

k+l k+l k+l . . 
to embed I \31 ~Ill in~ in such a way that it is negligible. 

It remains to prove remark 5.4.8. 

5.5.7 PROPOSITION: An arbitrary subspace S of Y is finite iff every 

relatively open subset of Sis negligible in Y. 

PROOF: One direction of the equivalence follows from theorem 5.5.4. 

Consider now a subspace S of Y such that every open subset of Sis 

negligible. Precisely as in theorem 5.4.7 we can prove that every compact 

subset C of Sis negligible in Y and has dimensions O. This implies in 

view of theorem 5.5.5 that Chas the shape of a finite set. So Chas 

finitely many components which are singletons because dim (C) s 0. We have 

shown that every compact subset of Sis finite and hence Sis a countable, 

discrete space. If Sis finite we are done. 

We shall see that S cannot be infinite (cf. Anderson, Curtis & van 

Mill [ACM: 6.2]). Let f: Y\S + Y be a homeomorphism. According to lemma 

4.3.9 there exist a compact Mand monotone maps y 1 and Yz from M onto Q 
-1 

such that y (Y\S) = y 2 (Y). We construct in the usual way a one-to-one 

-1 -1 
function a : S +lN such that for every a E S, y 1 ({a}) = Yz (Wa(a)). Note 

that D = U{Wa(a)la ES} is connected if Sis infinite. Consequently, 

-1 
S = y 1 (y2 (D)) is connected which is obviously false. 
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