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From the editors

These proceedings of the 11th general meeting of the EWM contain a selection
of the talks given at the conference as well as information about the activities and
workings of the organization itself. The meeting, held in November 2003 at Luminy
contained three sessions of invited talks, as well as a poster session and activities
related to the governance and development of the EWM.

All of the talks included here have been through a refereeing process. We
particularly thank the referees for their advice and insight and the contributors
who made this publication possible.

The Center International de Rencontres Mathematiques in Luminy, France pro-
vided a scenic and practical setting for the meeting, and we would like to thank the
staff of CIRM for ensuring a pleasant and effective conference.

Finally, we extend our thanks to our publisher CWI, the Center for Mathemat-
ics and Computer Science in Amsterdam for their understanding and assistance.
We also would like to thank Cor Kraaikamp for his valuable Latex expertise and
help.

The editors, Karma Dajani and Jennifer von Reis
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Preface

This volume contains reports on some of the talks given at the 11th General
Meeting of the association ” European Women in Mathematics” (EWM). The meet-
ing took place near Marseille, France, November 3-7 2003 and gathered fourty-four
women from France, Italy, the UK, Germany, Denmark, Sweden, Norway, Finland,
The Netherlands, Serbia and Montenegro, Russia, Ukraine, the Czech Republic,
Algeria, Morocco and the USA.

Since it started in 1986, EWM has developped a tradition of gathering women
mathematicians from all specialities, pure and applied, to meet and share mathe-
matics and reflections on issues related to being a woman in mathematics. Because
we wish to discuss mathematics together across specialties, we have been led to plan
talks that are meant to be accessible to non-specialists, and nonetheless present the
latest research.

Proceedings for the 1991 and 1995 meetings in Luminy and in Madrid, as well
as for the interdisciplinary workshop on Renormalization in 1996 were copied and
distributed by the association. For the Trieste and Hanover meetings (1997 and
1999), the Hindawi Publishing Corporation produced both a paper version and an
electronic version, freely available at http://www.hindawi.com, whilst the Malta
meeting in 2001 was published as a book by World Scientific. The present journal
edition marks a new step towards a wider distribution among mathematicians.

The mathematical program consisted of three series of talks. The session in
Pure mathematics, on Functional Analysis and Spectral Theory (with a orientation
towards Ergodic Theory), chaired by Karma Dajani, with
Karma Dajani: Measures of mazimal entropy for random expansions in non-integer
bases,

Paola Loreti:Ingham type theorems and applications,

Svetlana Katok: Livshitz Theorem for the unitary frame flow and its applications,
Kathy Merrill: Constructing Wavelets from Generalized Conjugate Mirror Filters,
Martine Queffelec: Fourier analysis and continued fractions,

Anne Siegel: Spectral theory for dynamical systems arisen by substitutions.

The applied session devoted to Biomathematics was chaired by Alessandra Car-
bone, with talks by Natasha Jonoska: DNA nanotechnology,
Marie-France Sagot: Bioinformatic,
Rebecca Wade: From protein structure to drug via the computer?
Susan Holmes: Using distances in Multidimensional Statistics.

The interdisciplinary session devoted to Numerical Methods, chaired by Rosa
Maria Spitaleri, with
Michelle Schatzman: Preconditioning and partial differential equations:
cross-fertilization of numerical analysis and PDE theory in unusual ways,
Rosa Maria Spitaleri: Grid generation and partial differential equations: numerical
methods and applications,
Tatyana Kozubskaya: Mathematical Models and Numerical Techniques in Fuler
Based Computational Aeroacoustics,
Tatiana Vasileyva: Historical aspects of numerical methods for ODEs,
Zorica Uzelac: A spline collocation method and a layer adapted mash for a singu-
larity perturbed convection-diffusion problem,
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Dahbia Boukari: Free surface flow over an obstacle: a numerical study.
Abstracts of all the talks can be found at
http://www.math.helsinki.fi/ewm/meetings/luminy03.html

The new EWM web-based mentoring scheme formed the basis for a discussion
session on the theme of mentoring. In addition, a poster session was held, where
all the participants were invited to present themselves and their work. Abstracts of
the posters are presented in this volume.

The organizing committee consisted of Laura Fainsilber (Sweden), chair, Va-
leri Berth (France), Elisabeth Remy (France), Aviva Szpirglas (France), Tatiana
Ivanova (Russia), Sheung Tsun Tsou (United Kingdom), Irene Sciriha (Malta).

The venue for the conference was the CIRM (Centre International de Rencontres
Mathematiques) in Luminy, between the city of Marseille and the ”Calanques”
coastal cliffs, a very pleasant and welcoming center for mathematical conferences.
We are very grateful for sponsoring from the CIRM, the Institut Mathematique de
Luminy, the city of Marseille, the region Provence-Alpes-Cote d’Azur, and donations
from participants, Michelle Schatzman and others.

During the meeting, we showed the EWM video Women and Mathematics
across Cultures. The exhibit Women in mathematics, Why not you produced by the
French association femmes et mathematiques with beautiful portraits of 16 contem-
porary women mathematicians was hanged in the library of the CIRM and stayed
there for one month to be seen also by participants in other conferences. This ex-
hibit (in French or in English) is available to be shown in other places. (Contact:
femmes et mathematiques http://www.femmes-et-maths.fr.fm/

As these proceedings go to press, we are planning the 12th General Meeting of
EWM in Volgograd, Russia in the fall of 2005.

Warm thanks to all the participants, and especially to Karma Dajani and Jen-
nifer Von Reis, editors of the proceedings.

Laura Fainsilber, Gteborg, September 2004.
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Constructing Wavelets from Generalized Filters
Kathy Merrill

Department of Mathematics
Colorado College

Colorado Springs, CO 80903-329/
USA
kmerrill@coloradocollege.edu

ABSTRACT. Over the past twenty years, wavelets have gained popularity as
bases for transforms used in image and signal processing. We begin by showing
how wavelets arise naturally in this context. Classical construction techniques
using Fourier analysis are then presented. The paper concludes with recent ex-
tensions of these techniques employing the tools of abstract harmonic analysis
and spectral multiplicity theory.

1. Introduction

Wavelets arise naturally in efforts to store images efficiently. To capture a black
and white image on a 1600 by 1200 pixel computer screen we might first try storing
a gray scale number between 0 and 255 for each of the 1,920,000 pixels. However,
pixel by pixel storage is not very efficient, because it does not take advantage of
regions in which the darkness does not change. For example, there are clearly more
efficient ways to store an image of a black rectangle covering half of the screen, than
to keep 960,000 copies of the number 0 and 960,000 copies of the number 255. Even
a photograph of a face usually has large regions of constant darkness.

To overcome the inefficiency of pixel by pixel storage, we would like to use
different levels of resolution in different regions of the image. In areas where darkness
is highly variable, we need a higher level of resolution than in areas where it stays
constant. As a first step toward this goal, we capture the whole image at different
levels of resolution as follows: First we record the average gray scale on the whole
image, which for convenience we think of as occupying the unit square. (For more
general images, we can think of averaging over each of the 1 x 1 squares whose
vertices are lattice points.) We call this the 0** level of resolution. Then we record
the average on each % X % subsquare, which we call the 15! level of resolution. We
can proceed to the resolution of single pixels by successively averaging our image
and recording that average on each of the 51; X 51]— subsquares (called the j** level of
resolution), for larger and larger j. This process yields a sequence of approximations
to our image. We will have captured our image completely accurately at the j**

level if it was of constant darkness on all of the subsquares of a & x & grid.

27 3
Mathematically, we can describe this process in terms of a sequence of closed
subspaces of L?(R?) given by V; = functions constant on 5> x 7 squares. Our

approximation at the j** level of resolution is simply the closest L? approximation

to our image in the subspace V;. If we allow ourselves to both zoom in and zoom
out arbitrarily far, i.e. to consider —oo < j < oo, we will have a structure of the
following type, first defined by S. Mallat [13]:

DEFINITION 1. A Multiresolution Analysis (MRA) in L?(R") is a collection of
closed subspaces V; that have the following properties:

(1) V; CVip
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(2) Vi1 ={6(f) = 2f(22)} ey,

(3) UV, is dense in L*(R™) and NV; = {0}

(4) Vp has a scaling function ¢ whose translates form an orthonormal basis
for Vo

Property 2 explicitly defines a dilation operator on L?(R") that takes us between
different levels of resolution. The normalization factor of 2 makes this dilation a
unitary operator. The first three properties together describe how the different
levels of resolution are related in a way that reflects the successive capturing of
our image. The final property describes how we can use a second unitary operator
of translation to move around at the 0** level (and thus at any fixed level if we
conjugate by dilation). In our image example, ¢ is the characteristic function of the
unit square.

By using an MRA, we have achieved our preliminary goal of capturing our
image at different levels of resolution. However, we have not yet gained efliciency
over pixel by pixel storage unless our image is, like the rectangle, an element of
one of the V; spaces. Indeed, if we continue our process down to the level of pixel
by pixel resolution, we will have all the inefficiency we started with, together with
information from all the previous levels of resolution as well. The problem is that
we are starting over at each level, so that there is redundancy in the information
stored at successive levels. To see an explicit example of this, notice that in going
from the 0" level to the 1°¢, we already know the overall average gray scale value,
and thus would only need to record the averages on three of the four subsquares to
have total information about all four subsquare averages.

To overcome the redundancy, instead of storing all of the V; information in
addition to Vy’s, we write Vi = Vy @ Wy and seek an orthonormal basis for Wy. In
our example, we let q1, g2, g3, and g4 be the upper left, upper right, lower left, and
lower right quadrants of the unit square respectively, and let

1 = Xq1Ugs — XgsUgas

Y2 = Xq1Ugqs ~ Xqz2Uaa
and

g = Xq1Ugqs — Xg2Ugs>
where x4 denotes the characteristic function of the set A. Then the translates
of 91, 19, ¥3 and ¢ form an orthornormal basis for V. In fact, positive and
negative dilates of translates of just i1, 12 and 3 form an orthonormal basis for
L2%(R?). Storing the coefficients of our image in terms of its coefficients for the
orthonormal basis given by the dilates and translates of the ’s does finally achieve
the image compression we were seeking. At each level, the new information given
by the coefficients of the further dilated 1’s can be thought of as correction terms to
update the information from the previous level of resolution. In regions of the image
where darkness does not change, these coefficients will all eventually be 0. Thus we
achieve lossless compression from the savings of storing sequences containing lots
of zeroes. We can accomplish further compression with the least loss of accuracy
in the image by throwing away the coefficients that are smallest in absolute value.
Since our dilation operator normalizes at each step, the coefficients will give an
accurate measure of the relative importance of the correction terms.

The 1’s are called a wavelet. In general we have:

DEFINITION 2. {9y }gp=1.. C L*(R") is an orthonormal wavelet for dilation by

an integral ezpansive matriz D if {11 = /| det D|]1pk(Djx —D}Yiiezk=1..r form
an orthonormal basis for L?(R™).
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We began our description of wavelets in L?(IR?) in order to show their relation-
ship to the problem of image compression, but the simplest place to study wavelets
is in 1-dimension. Three well-known and simple examples of wavelets for dilation
by 2 in L%(R) are the Haar wavelet [11],

V= Xjo.4) T X4

the Shannon wavelet, for which

Y= X[—1,- Lok

and the Journé wavelet [13], with
Y= X[-28 -0~ §,- UlZ Uiz )

We can think of the 2-dimensional example we developed above as being built
out of tensor products of the 1-dimensional Haar wavelet. The other ]—Qimcnsional
examples given here are described in terms of their Fourier transform . They are
interesting as wavelets because of the simplicity of these transforms. In particular,
the Shannon wavelet is so-named because of its relationship to the Shannon sam-
pling formula [15]. Note that on the Fourier transform side, translation becomes
multiplication by exponentials. We will see in the next section that this fact makes
the Fourier transform very useful in the study of wavelets.

Two basic questions arise in looking at the examples given above:

(1) How do we find new wavelets with desirable properties? The examples
of wavelets we have described so far all have their drawbacks. The Haar
wavelet in either dimension 1 or 2 is discontinuous, and thus is not the
best basis to use to capture smooth images. The Shannon and Journé
wavelets have Fourier transforms that are discontinuous, and thus are not
well localized. Can we find a smooth wavelet for dilation by 2 in L2(R) that
still has compact support? Another natural question about finding new
wavelets concerns the number of ¢,’s required. The fact that our examples
so far consist of single wavelets (r = 1 in Definition 2) in 1 dimension, but
a 3-wavelet in 2 dimensions also raises the question of whether we can find
a 1-wavelet or 2-wavelet for dilation by 2 in L2(IR?).

(2) How strong is the connection between wavelets and MRA’s? Although we
motivated the definition of wavelet using the idea of an MRA, it turns
out that some wavelets (for example, the Journé wavelet above) have no
associated MRA’s.

The first question is easiest to answer if we assume we have an MRA for dilation
by 2 in L?(R). This is the setting in which Meyer [21] and Daubechies [10] carried
out their famous construction of wavelets using filters. We describe that work in
Section 2 below. Their answer can then be generalized to situations where no MRA
is possible. This leads to the work of Baggett, Courter, Jorgensen, Medina, Packer
and Merrill, which is described in Section 3.

2. Building MRA wavelets from filters in L%(R)

Suppose we have a single wavelet v for dilation by 2 in L?(R), with an associated
MRA, and so a scaling function ¢ whose translates form an orthonormal basis for
Vo. L P L L

Because Vy € Vi, and Wy C Vi, we can write ¢ € Vg and ¢ € Wy in terms
of exponentials times the dilate of $ That is, there must exist periodic functions
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(with period 1) h and g such that

~ 1 T ~ T
(1) P(z) = —271(‘2‘)¢(§)
and
) o) = 50(5)5(3)

EXAMPLES: For the Shannon wavelet, where 1/7 = X[=1,-1)U[L.1) and QAS =
X[-1,1), we have

h = \/EX[_
For the Haar wavelet, where ¢ = xg 1) and ¢ = X[0,4) ~ X[}.1)> We have

1 o omiz
h = 75(1 +e*™) and g = \%(ez"“ -1).

The functions h and g are called low and high pass filters. Notice that in
the Shannon example in particular, h and g do indeed act by filtering out all but
low (for h) or high (for g) frequencies. Because of the orthonormality conditions
satisfied by translates of ¢ and v, all filters defined by (1) and (2) must satisfy
orthonormality-like conditions:

yand g = \/§X[*§,—§>UH‘%>‘

11
a7

3) B + bz + 5 =2
(@ 9@ +lg(e + )P =2
and

— 1 1
(5) h(z)g(x) + h(xz + §)g(:c + 5) =0.

The reason filters are useful is that we can reverse this process of finding filters
from wavelets. First note that we can easily build a high pass filter to go with any
low pass filter. Indeed, if h is any periodic function that satisfies (3), we can take

g(x) = ¥ h(x + é),

and the other two orthonormality conditions (4) and (5) will be satisfied as well.
(Other choices for g are possible.) Given h and g, under appropriate conditions, we
can then build 5 by iterating equation (1). The appropriate conditions are exactly
those that are needed to make the resulting infinite product converge.

THEOREM 1. Let h and g be C' functions that satisfy the orthonormality con-
ditions (3), (4), and (5). Suppose, in addition, that h is nonvanishing on [—1, é),
and [h(0)| = V2. Then:
~ 1 .

x) = —h(27 7z
o) =[] Zh27a)

Jj=1
18 a scaling function for an MRA, and

).

SRR

1 T ~
Y(z) = ﬁg(gw(

is an orthonormal wavelet.
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This technique was developed by Mallat [13] and Meyer [21], and used by
Daubechies [10] to build C” wavelets with compact support. (It can be shown that
there are no C°° wavelets with compact support.) Daubechies’ construction uses
powers of the trigonometric identity sin?(2) + cos?(z) = 1, which fits naturally into
equation 3 to find the lowpass filter h. A good introductory description of these
constructions appears in [16].

The theorem’s requirements that h satisfy |h(0)] = /2 and h be in C' are
natural restrictions in order to make the infinite product converge. The condition
that h is nonvanishing on [— 4, 4] appears less natural; it is used in the proof to
ensure L2 convergence of the infinite product and thus the orthonormality of the
translates of ¢. A famous example due to A. Cohen [6] showed that removing the
condition h nonvanishing on {‘%’ 211-) can in fact lead to functions ¢ and v whose

—6mix ) .
translates are not orthonormal. Cohen took h = H’C—Z, which resulted in a

stretched out version of the Haar scaling function and wavelet, ¢ = %X[ng) and
. ’ 3
Y= §(X[f%,1) ~X[1,8 ).
However, the classical Theorem 1 can be extended to accommodate this and
similar examples if we generalize our definition of wavelet.

DEFINITION 3. {%;.} 4 a normalized tight frame for L%(R™) if for ecach
f € L we have ||f|* =32, . [(f 1)1

{n} C L2(R™) is a frame wavelet for dilation by an inlegral expansive matriz

D if {00 = /] det D[ yr(Diz — 1)} form a normalized tight frame for L*(R™).

Note that a normalized tight frame can exhibit redundancy, and therefore need
not be a basis. Indeed, it can include 0 as one of its elements. However, a normalized
tight frame {f;} does have the property that every f € L? can be recaptured from
its coeficients, f =3 (f, f;) f;. It turns out that a normalized tight frame of unit
vectors must be an orthonormal basis.

By broadening our definition of wavelet to include frame wavelets, we get the
following generalization of Theorem 1, which appears in [5] and was proven inde-
pendently in [12] for d = 2:

THEOREM 2. Suppose h, gy, - ga—1 are periodic Lipschitz continuous function
in L*(R), which satisfy |h(0)| = V/d and the filter equations

(1) Zz - +glf=d
(2) h(:z+ )g7(m+d) 0
(3) Zl =0 gi(x + (1)93(1"‘ (1) = dd;

then the construction (/)(I) = HJ 1 \/—h(d Jx) produces an L? function ¢ (whose
translates are not necessarily orthogonal), and the d — 1 functions

k() = 9(3)

z~«.|<‘s

1
gk(
Vd
form a frame wavelet for dilation by d in L*(R).
This extension starts with a filter from an MRA orthonormal wavelet and pro-
duces a frame wavelet that need not be associated with an MRA. Thus it suggests

that we look again at the connection between wavelets and MRA’s, and consider
the possibility of more general filters.
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3. Generalized Multi-resolution Analyses and Generalized Filters

As mentioned in the introduction, even orthonormal wavelets need not be as-
sociated with an MRA. The reason for this lies in the MRA requirement of the
existence of a scaling function. Given an orthonormal wavelet {1} C L2%(R™),
if we let V; = the closed linear span of {t; }i<;, then the subspaces {V;} do
determine a generalized MRA, according to the definition below:

DEFINITION 4. A Generalized Multiresolution Analysis (GMRA) is a collection
of closed subspaces {V;};ez of L*(R™) such that:
(1) V; C Vjn
(2) Vigr ={0p(f) = /| det D[f(Dz)} sev,
(3) UV; dense in L*(R™) and NV; = {0}
(4) Vo is invariant under translation.

The definitions of MRA and GMRA differ only in condition (4): An MRA
requires that V has a scaling function ¢ such that translates of ¢ form an or-
thonormal basis for Vj, while a GMRA requires only that V; be invariant under
translation by the integer lattice. In spite of this difference, it is shown in [3] that
a GMRA has almost as much structure as an MRA. Translation is a unitary repre-
sentation of Z™ on Vp, and thus is completely determined by a multiplicity function
m : ~%, %)” — {0,1,2, -, 00} describing how many times each character occurs
as a subrepresentation. A GMRA is an MRA iff m = 1. Journé’s famous non-MRA
wavelet example for dilation by 2 in L%(R) has

2 ze[-1,3)
_ 1 + I 5 +[3 1
m(z) = z € %[5, 3) U3, 3)
0 otherwise
In any GMRA, we write V3 = Vy & Wy, just as we did in the MRA case.
Representation theory can then be used (see [3]) to show that the GMRA has an
associated orthonormal wavelet if and only if the multiplicity function satisfies a
consistency equation:

m(z) + (number of wavelets) = Z m(preimages of 2 under D).

Taking m = 1, this consistency equation determines that the number of wavelets
must be 3 for an MRA wavelet for dilation by 2 in L?(R?), so 1-wavelets cannot
be found there using the MRA filter technique. However, examples of non-MRA,
GMRA orthonormal wavelets whose Fourier transforms are characteristic functions
can be built directly from the consistency equation. We have used this technique
(in [3]and [1]) to make l-wavelets and a 2-wavelet in L%(R?), and a 4-wavelet in
L?(R3). (By the consistency equation, MRA wavelets require 7-wavelets in L?(R3).)
Other examples of non-MRA 1-wavelets in L2(IR?) appear in, e.g. [8] and [4].

In every GMRA, there is a unitary equivalence between translation on V) and
multiplication by exponentials on ©L?(S;), where S; = {z : m(z) > j}. This
unitary equivalence plays a role here similar to that of the Fourier transform in the
classical MRA case. It ensures that in a GMRA we can find generalized scaling
functions, 1, ¢2,-- - such that {¢;(z — 1)} form a normalized tight frame for Vj. It
also enables us to develop a generalized notion of low and high pass filters.

Just as in the classical case, we begin by building filters from wavelets, then see
if we can reverse the process. Suppose we have a non-MRA orthonormal k-wavelet
1, - -+, 1y, for dilation by D in L?(R™). We then have generalized scaling functions
1, ,be. Since Vo € Vi and Wy C Vi, we can show ([1]) there exist periodic
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functions h; ; and g ;, supported on the periodization of S;, such that
6 Az Di -1
(6) ¢i(z) = \/I_dﬁ Z i 2);((D") ')

(7) 11’1(35) ngl](

These generalized filters g; ; and h; ; satisfy orthonormality-like conditions that are
generalizations of the classical conditions (3),(4) and (5):

;((D") '),

¢ ldetD|—1
(8) S hig(@)he (@) = (det D)6y pxs, (),
¢ |detD|-1
(9) > gii(@)gn (@) = (det D)y i,
=1 1=0
and
¢ |detD|-1
(10) Z Z h” X gw(a:l) 0,
j=1  1=0

where the z; are the preimages of x under D! mod 1.
In the case of the Journé wavelet, equations (6) and 7 simplify to:
— 1 T~ .~
Bi(@) = 55 (Mo (5) + hal(5)oa(3))
— 1 T~ T T, —~,
B2(0) = = (maa((5)81(5) + hea((3))

and

~ 1 r -~ T T~ T
o) = (2G5 G) +e(3)a(3)).
which look very similar to the equations (1) and (2) that define classical low and

high pass filters. We can use these to find the Journé generalized filters from the
wavelet

~

V= X420 - DUl iz )
and generalized scaling functions

$1(2) = X-1 - U= 2,200, 8) 92(8) = X(_s _nup,s
We obtain (see [7])
h1 1= fx _2 _

2-hu-3.huik 3 0 e =0,

han = Vx4 - poig.p) > h22 =0

\fx[_kﬁf UL, 1) 5 and g, = \/ﬁx[_%%).

To use gener allzed filters to build wavelets, we now wish to reverse this pro-
cedure, just as we did in the classical case. In order to first build filters, we use
functions on the disjoint union of the S;’s whose values are vdet D times unitary
matrices, with different dimensions for different values of . We need the values of
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the filters to be v/det D times unitary matrices in order to satisfy the generalized
orthonormality conditions (8), (9), and (10). The matrices of filter values have
different dimensions depending on how many of the sets S; the point x and its
preimages are in. Once we have the filters, we build the generalized scaling function
using an infinite product of matrices that comes from the iteration of equation (6).
The wavelet is then produced by equation(7). Conditions that make this possi-
ble are described in the following generalization (see [2]) of the Bratteli-Jorgensen
theorem:

THEOREM 3. Suppose {h; ;} and {gy ;} are periodic functions that are supported
on the periodization of S;, Lipschitz continuous in a neighborhood of the origin,
and that satisfy the three generalized orthonormality conditions (8),(9), and (10).
Suppose in addition the h; ; satisfy the generalized lowpass conditions h; j = 0 for
J > i and |h;(0)] = \/(|det D|)d; 1y0¢;1y. Write H for the matriz (h ;). Then

the components of [];—, mH((D Y~*2) converge pointwise to P ; € L*(R").
If we let gbi = D1, then

—~

Yi(2) = —e | TaDl ng L) (DY) ')

are the Fourier transforms of a fmme wavelet on L2(R™).

The proof, like that of [5], proceeds by using matrices of values of the filters
to define partial isometries that satisfy relations similar to those defining a Cuntz
algebra [8].

Using this procedure, we have built wavelets with interesting properties, for
example, a non-MRA orthonormal wavelet on L?(R) whose Fourier transform is
C* on an arbitrarily large interval (see [1]), and a non-MRA frame wavelet on
L*(R) whose Fourier transform is € on all of R (see [2]). These examples are
somewhat surprising since it is known that compactly supported wavelets on R
must be MRA wavelets.
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ABSTRACT. Symbolic dynamical systems were first introduced to better un-
derstand the dynamics of geometric maps; particularly to study dynamical
systems for which past and future are disjoint as for instance toral automor-
phisms or Pseudo-Anosov diffeomorphisms of surfaces. Self-similar systems are
defined to be topologically conjugate to their own first return map on a given
subset. A basic idea is that, as soon as self-similarity appears, a substitution
is hidden behind the original dynamical system. In this lecture, we first il-
lustrate this idea with concrete examples, and then, try to understand when
symbolic codings provide a good representation. A natural question finally
arises: which substitutive dynamical systems are isomorphic to a rotation on
a compact group? Partial answers have been given by many authors since the
early 60’s. Then, we will see how a spectral analysis problem finally reduces
to a combinatorial problem, whose partial answers imply Euclidean geometry
and even some arithmetics.

1. What is a substitution 7

Let A be a finite alphabet and A* the set of finite words on A. The empty
word is denoted ¢.

1.1. Substitution on finite words. A substitution or iterated morphism is
a combinatorial object that simply replaces letters in .4 by nonempty finite words.
An example on the three-letters alphabet A = {1,2,3} is given by o defined by
112,23, 3 1.

As dynamicians, our aim is to iterate this substitution. Hence we formally
define a substitution as an endomorphism of the free monoid A* endowed with the
concatenation (defined by o(uv) = o(u)o(v)), such that the image of each letter
of A is nonempty, and such that for at least one letter, say a, the length of the
successive iterations o™ (a) tends to the infinity (these two conditions ensure that
the substitution can be iterated infinitely).

Then, the successive iterations of the example o previously defined applied on
the letter 1 give

1

12

123

1231

123112

123112123

1231121231231

1231121231231123112
1231121231231123112123112123
12311212312311231121231123231231121231231
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Onme should notice that for all n, each word o™ (1) starts with the preceeding
one 0™(1). Roughly, it is natural to call the infinite iteration of these words a fized
point of o. However, such a fixed point appears to be an infinite word defined as a
limit, so that we need to introduce now a couple of formal definitions about infinite
sequences and topology.

1.2. Extension of a substitution to infinite words. A (finite or infinite)
word on A is denoted w = wowy . ... The metrizable topology of the set of infinite
words A" is the product topology of the discrete topology on each copy of A. A
cylinder of AN is a closed-open set of the form: [W] = {(w;); € AV wo ... wyw 1 =
W1 for W e A*.

A substitution naturally extends by concatenation to the set of infinite words
AN

o(wowy ...) = o(wg)o(wy) ...

A periodic point of a substitution ¢ is an infinite word u = (u;);en € AV that
satisfies 0¥ (u) = u for some v > 0. If o(u) = u, then u is a fized point of 0. A
simple combinatorial proof states that a substitution may not always have a fixed
point, but it always admits at least one periodic point [25].

1.3. What is symbolic dynamics? A specialist in dynamical systems always
looks for maps acting on objects. Dealing with infinite sequences, a natural map
immediatly appears, that is, the deletion of the first letter of the word. Formally,
we denote by S the shift map on AN defined by S( (wy)ien ) = (wit1)ien-

Symbolic dynamics consists in studying the shift map on a closed set of infinite
sequences of AN, which is supposed to be invariant through the action of the shift
map. We are particularly interested in symbolic sets that are minimal, that is, that
do not contain a strictly smaller closed invariant subset.

1.4. Symbolic dynamical system associated with a substitution. Deal-
ing with a substitution, a natural process to associate with it a symbolic dynamical
consists in first building a fixed point (or a periodic point if a fixed point does not
exist) by iteration, then shifting this infinite word infinitely many often (then one
gets the orbit of the sequence through the shift point), and finally considering the
closure of this orbit. However, this process should be interesting provided that when
further periodic points do exist, they generate the same symbolic system.

Formally, the symbolic dynamical system generated by a word w is the pair
(X.,S), where X, denotes the closure in AN of the orbit {S™u, n € N} of u under
the shift map. The shift map S is an homeomorphism on this compact subset of
AN,

We call a substitution o primitive if there exists an integer v (independent of
the letters) such that, for each pair (a,b) € A2, the word o¥(a) contains at least
one occurrence of the letter b.

THEOREM 4 (see (25, 13]). Let o be a primitive substitution. If u is a periodic
point for o, then X, does not depend on u and we denote by (X, 5) the symbolic
dynamical system generated by o. The system (X,,5) is minimal and uniquely
ergodic: X, contains no non-empty closed shift-invariant subset and there exists a
unique shift-invariant probability measure px, on X,.

Notice that the property of minimality has a combinatorial interpretation in
this case: (X,,5) is minimal if and only if any every word occurring in a periodic
point w appears in an infinite number of positions with bounded gaps.
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2. From geometric dynamics to symbolic dynamics

Historically, symbolic dynamics has been introduced to better understand the
dynamics of geometric maps. Indeed, by coding the orbits of a dynamical system
with respect to a cleverly chosen finite partition indexed by the alphabet A, one
can replace the initial dynamical system, which may be difficult to understand, by
a simpler dynamical system, that is, the shift map on a subset of AY.

This old idea was used intensively, up to these days, particularly to study dy-
namical systems for which past and future are disjoint, such as toral automorphisms
or pseudo-Anosov diffeomorphisms of surfaces. These systems with no memory,
whose entropy is strictly positive, are coded by subshifts of finite type, defined by a
finite number of forbidden words, and belong to the Markov framework. Some very
important literature has been devoted to their many properties (see [21]). The par-
titions which provide a good description for a topological dynamical system, leading
to a subshift of finite type, are called Markov partitions.

2.1. An example of the use of symbolic dynamics: The Morse se-
quence. In 1920, M. Morse was studying geodesics, that is, the curves realizing
the minimum distance between two points, on connected surfaces with constant
negative curvature. He was looking at infinite geodesics which remain within a
small part of the space. More precisely, a geodesics is said to be recurrent if every
point of the geodesics lies at a given distance (whatever small it can be) of a point in
every long enought segment of the geodesics. Hence, closed geodesics are recurrent
or periodic. An intricate question is the existence of non-closed recurrent geodesics.

FIGURE 1. Two examples of connected surfaces with constant neg-
ative curvature.

To answer this question, in [24], using a method initiated by Hadamard, Morse
did a coding of geodesics, by infinite sequences of 0’s and 1’s, according to which
boundary of the surface they meet: thus, we arrive in the space {0,1}" of infinite
symbolic sequences. To advance along a geodesic translates into looking at the next
element of the sequence. The coding sends under suitable conditions the topology
of the surface onto the product topology in {0, 1}".

Properties of geodesics are then easy to check: a closed geodesic corresponds to
a periodic sequence. In the same way, by replacing points by elementary segments,
the reader shall be able to check that a recurrent geodesic corresponds to what
is now called a minimal sequence: every word occurring in « appears an infinite
number of positions with bounded gaps.

Thanks to this coding, Morse proved the existence of a closed and recurrent
geodesics:

THEOREM 5 ([24]). A minimal and nonperiodic sequence is given by the
(Prouhet-Thue)-Morse sequence,

01101001100101101001011001101001100101100110100101101001100101101...
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defined as the fized point (starting with 0) of the Morse substitutiono : 0 — 01 1 —
10.

A full study of the Morse sequence is made in [13].

2.2. Self-similar dynamics and substitutions. Dealing with a dynamical
system, a usual problem is to try to understand the local structure of its orbits. A
classical method to study this problem is to consider the first return map (Poincaré
map) over an appropriate neighborhood A of a given point. For some systems such
as toral quadratic rotations or some interval exchanges with parameters living in
a quadratic extension, the system defined by the first return map on some subset
is topologically conjugated to the original system. One can say that the original
dynamical system has a self-similar structure. A basic idea is that, in general, as
soon as self-similarity occurs, a substitution is hidden behind the original dynamical
system: the trajectories of points in the neighborhood A before they come back
into AV, define a substitution. Then, the trajectories of the points of the full system
belong to the symbolic dynamical system associated with the substitution. Let us
immediatly illustrate this idea with a simple example.

2.3. Example: addition of the golden ratio. Let ¢ denote the addition of
the golden ratio & =1 — o = 1,61... on the one-dimensional torus T:

p:z€e€T=R\Z —~ =z+amodleT.
This map has two intervals of continuity:
TZIQUIh with 122[0,1—05[, 11:[1—(1,1[‘

Let 1 denote the first return map of ¢ on the largest interval of continuity fy,
that is,

Vrel-all, plz) = gnrleN el (),

We are going to prove thanks to a short computation that v is equal to ¢ itself,
up to a reversal of the orientation and a renormalization.

Indeed, Let us consider the following partition of I;:

I =J1UJy, with J1 =[1 - «,2—2a], Jo=1[2-2a,1].
Then a simple computation yields that ¢ restricted to J; is equal to ¢?:
@ Jl = {l ~a,2—2a[C 11,
e (1) =[0,1-alZ I,
® (p2(J1) = [CY, l[C 1.

Similarly, since Jo = [2 — 2a, 1[{C I} and p(J1) = [1 — o, &[C T4, 9 restricted to
Jo is equal to ¢.

A graphical representation of ¢ and v is given in Figure 2: the two graphics
appear to be equal up to a reversal of the orientation and a renormalization. For-
mally, there is no difficulty to prove that ¢ and 1 are homeomorphic through the
conjugacy map 7: ¢ € [0,1[— (1 —a)z +1 €[l — a, 1].

The interest of such a coding is that we are now able to code the trajectories of
a point in [1 — «, 1] for both the addition ¢ of the golden ratio and its first return
map . Let us study the example shown in Fig. 3. Indeed, the point o mod 1
(denoted by 0 on each figure) belongs to the largest interval 7;. Then one sees that
o(a) (denoted by 1) belongs to I, @*(a) € I, etc. Then the trajectory of « is
coded by 11]2[1]1[211]211.

Similarly, computing the trajectory of a for the first return map ¥ gives Jq JoJ; J1 Js.
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1 - ey 1 R
o o
\ T-gt
¢ | 0 . e
0 1-o 1 1o 220 1
Representation of ¢ First return map ¢ on [1 — a, 1]

FIGURE 2. The addition of the golden ratio is equal to its first
return map up to a reversal of the orientation and a renormaliza-
tion.

i
i

4 1 6 3 0 5 1 7

4 1 2
Trajectory through : Trajectory through :
Ll LI T, JiJoJ1J1 s

FIGURE 3. Trajectories of the point « relatively to intervals of
continuity of ¢ and its first return map

The main point is that, since 1 is defined as the first return map of ¢, there is
a relationship between the two codings introduced here. Indeed, as soon as a point
x lies in Jy, then we know that

e x belongs to Iy,
e p(r) €I
o Y(z) = ¢*(2).

Hence, coding a point x by J; according to ¢ implies that the trajectory of the
same point will be coded by I I according to ¢. Similarly, coding a point z by Ja
according to ¢ implies that the trajectory of the same point will be coded by I
according to ¢. We thus deduce that the trajectory of a point x through ¢ can be
obtained by mapping the trajectory of a point z through 1 thanks to the map:

J] —>]112; J2—>[1.

One should remember now that we stated that ¢ and 1) were conjugate through
the map 7. However, « is a fixed point for 7, and the partition Jy U Jy is the image
of I U I, through 7. Hence, the trajectories of o have the same coding through ¢
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and 1. Consequently, this coding must be nothing else than the fixed point of the
following substitution, called the Fibonacci substitution

1—12; 2+~ 1.

One finally proves that the addition of the golden ratio is very well represented
as a symbolic shift map:

THEOREM 6 (see a general proof in [4]). The coding of the trajectory of o mod 1
through the addition ¢ by the golden ratio o on T according to the intervals of
continuity Iy and I is the fized point of the Fibonacci substitution 1 — 12, 2 — 1:

w=121121211211212112121121121211211212112121121121211212112112121...

The set of codings of all the points of T is equal the symbolic dynamical system
associated with the Fibonacci substitution. The coding map is a semi-topological
congugacy between the shift map on the symbolic system and the addition by the
golden ratio.

REMARK 7. For the example of the toral addition by the golden ratio, we can
define an inverse map, from the symbolic system onto the torus. It is proved that
this map is continuous, 2-to-1, and 1-to-1 except on a countable set; this is the best
possible result, given the fact that one of the sets is connected and the other one a
Cantor set.

3. From symbolic dynamics to geometry 7

As shown in Section 2.3, Poicaré’s method defines a coding map from the geo-
metric system onto the substitutive symbolic dynamical system. A natural question
is: how far is this map from being a bijection? We have just seen that a precise
answer has been given to this question for the Fibonacci substitution (Remark 7).
For other examples, the question can be much more difficult. It is natural then
to focus on the reverse question: given a substitution, which self-similar geometric
actions are coded by this substitution?

For the Morse substitution, it is proved that the symbolic dynamical system
associated with this substitution is a two-point extension of the dyadic odometer,
that is, the group Z, of 2-adic integers ([9] and also [13], chapter 2).

The three-letter equivalent of the Fibonacci substitution is the Tribonacci sub-
stitution 1 — 12, 2 — 13, 3 — 1. G. Rauzy, with methods from number theory,
proved in 1981 that the symbolic dynamical system associated with this substitution
is measure-theoretically isomorphic, by a continuous map, to a domain exchange on
a self-similar compact subset of R? called the Rauzy fractal [27]. Tiling properties
of the Rauzy fractal yield an isomorphism between the substitutive system and a
translation on the two-dimensional torus. This example will be studied in more
details in Section 3.2.

These examples emphasize the connection between searching for a geometric
interpretation of a symbolic dynamical systems and understanding whether this
dynamical system is already known up to an isomorphism. Since substitutive dy-
namical systems are deterministic, i.e., of zero entropy, they are very different from
subshifts of finite type. Hence, the following question is natural: which substitutive
dynamical systems are isomorphic to a translation on a compact group? More gen-
erally, what is their maximal equicontinuous factor, that is, the largest translation
on a compact group that topologically embeds into this symbolic system?

Let us introduce now the point of view of spectral theory. Indeed, to a dynamical
system (X,.S) is associated the unitary operator U : f € L?*(X,,S) +— foS €
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L?(X,,S) [34]. One usual calls eigenvalues of the dynamical system the eigenvalues
A’s of U; their modulus is equal to one, so that the word eigenvalue sometimes also
holds for every x € [0, 1] such that A\ = €%7®. The eigenfunctions of the dynamical
system are the eigenfunctions of U; they appear to be functions f € L?(X,, S).

From this point of view, the maximum equicontinuous factor of a dynamical
system is proved to be the unique abelian compact group translation with the
same eigenvalues than the dynamical system. Hence, it uniquely determined by the
eigenvalues [34].

Starting from a geometrical and combinatorial question, we naturally come to
a question of spectral theory, that is, computing the eigenvalues of a dynamical
system.

3.1. Substitution of constant length. During the seventies, a precise an-
swer to this question has been obtained for substitutions of constant length (the
images of each letters in the alphabet share the same length) [18, 23, 10]. This
caracterization implies some p-adic groups Z,,, also called p-adic odometer, obtained
as the completion of Z for the p-adic topology [14].

THEOREM 8 (Dekking [10]). Let o be a substitution of constant length n. Let
u = (Up)nen be a periodic point for o. We call height of the substitution the
greatest integer m which is coprime with n and divides all the strictly positive ranks
of occurrence of the letter ug in u. The height is less that the cardinality of the
alphabet.

The mazimal equicontinuous factor of the substitutive dynamical system asso-
ciated with o is the addition of (1,1) on the abelian group Z,, x Z/mZ, where Z,
denotes the product of the p-adic groups Z, for every prime p that divides n.

As an example, the letter 1 appears at rank 3 and 5 in the fixed point
w=122121122112122121121...

of the Morse substitution so that this sustitution has height 1. Hence, the maximal
equicontinuous factor of the associated substitutive system is the 2-adic group Zs.

An example of a substitution with an height different from 1 is given by 1 —
121 2+ 312 3+ 213: the letter 1 appears at every even rank in the fixed point

w=121312121213121312121312
so that the height is 2 and the maximal equicontinuous factor is Zz x Z/2Z.

Dekking also provides a necessary and sufficient condition for a measure-theoretic
isomorphism between such a substitutive system of constant length and its maximal
equicontinuous factor. This condition is purely combinatorial: a substitution o is
said to satisfy the coincidence condition if there exists n such that the image of each
letter under a power o has the same n-th letter. We have:

THEOREM 9 (Dekking [10]). Let o be a substitution of constant length and of
height 1. The substitutive dynamaical system associated with o has a purely discrete
spectrum if and only if the substitution o satisfies the condition of coincidence.

As an example, the substitution 1 +— 12 2+ 23 3+ 13 has a pure discrete
spectrum dynamical system since its three fixed points contain a 1 at rank 6:

122323123131213231312131...
231312131223121312232313...
122323132313121312232313...
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Conversely, the two fixed points of the Morse substitution have no coincidence
so that the associated dynamical system is not isomorphic to the dyadic odometer.

In the case when the height of the substitution is different from 1, it is possible to
recode the substitution into a substitution with height 1 and to check the coincidence
condition on this last substitution. As an example of application, this allows one to
prove that the substitution 1 — 121 2+ 312 3+ 213 introduced previously has
a pure discrete spectrum dynamical system (see [10] and [13], Chap. 7 for details).

3.2. A first step towards the study of substitution of nonconstant
length: The Tribonnacci substitution. G. Rauzy generalized in [27] the dy-
namical properties of the Fibonacci substitution to a three-letter alphabet substi-
tution, called the Tribonacci substitution or Rauzy substitution, and defined by

o(l) =12 o(2) =13 a(3)=1.

Broken line associated with the substitution — Let u = denote the unique infinite
fixed point of o:

w = 12131211213121213121121312131211213121213121...

Let us embed this infinite word u as a broken line in R® by replacing succesively
each letter of u by the corresponding vector in the canonical basis (e1, ez, e3) in
R3.

An interesting property of this broken line is that it remains at a bounded
distance of a line, turning around it. One states that this axis if nothing else that
the expanding direction of the incidence matrix of the substitution, that is, the
matrix that contains in each column j the number of occurences of each letter ¢ in

o(j)-

1 11

M,=|1 0 0

01 0
Notice that the reason why o is called the Tribonacci substitution is that the
characteristic polynomial of M, is X% — X? — X — 1 so that its roots satisfy a® =
a?+a+1, and are called Tribonacci numbers in reference to the Fibonacci number.
One root is strictly greater than 1 and is associated with an expanding eigenline;

the two other roots are complex conjugates of modulus less than 1. They generate
a contracting plane.

Definition of the Rauzy fractal — When one projects the vertices of the broken line
onto the contracting plane of M, along the expanding direction, then one obtains
a bounded set in a two-dimensional vector space. The closure of this set of points
is a compact set denoted by R and called the Rauzy fractal (see Fig. 4).
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To be more precise, denote by 7 the linear projection in R?, parallel to the
expanding direction of M,, on the contracting plane of M,, identified with the
complex plane C. If u = (u;);ez is the periodic point of the substitution, then the

Rauzy fractal is
n
R = {w (Zeuf) i nE Z}.
i=0

("
S

FIGURE 4. The projection method to get the Rauzy fractal for the
Tribonnacci substitution.

Partition of the Rauzy fractal — As shown in Fig.4, three subsets of the Rauzy fractal
can be distinguished. Indeed, for each letter 7 = 1,2, 3, the cylinder R; is defined to
be the closure of the set of ends of any segment on the broken line which is parallel
to the canonical vector e;:

n
RJ = {W <Zeu1.> 5 n e Z’ un+1 :J}
=0

The union of these three cylinders covers the compact R, and G. Rauzy proved
in [27] that their intersection has zero measure.

Dynamics on the Rauzy fractal — One should notice that it is possible to move on
the broken line, from a vertex to the following one, thanks to a translation by one
of the three canonical vectors e;, e or e3. In the contracting plane, this means
that each cylinder R; can be translated by a given vector, i.e., w(e;), without going
out of the Rauzy fractal: R; + 7(e;) C R.

Thus, the following map ¢, called a domain ezchange (see Fig. 5) is well defined
for any point of the Rauzy fractal which belongs to only one set R;. Since the
cylinders intersect on a set of measure zero, this map is defined almost everywhere
on the Rauzy fractal:

Vee R, olx)=x+n(e), ifze R,

It is natural to code, up to the partition defined by the 3 cylinders, the action
of the domain exchange ¢ over the Rauzy fractal R. G. Rauzy proved in [27] that
the coding map, from R into the three-letter alphabet full shift {1,2,3}? is almost
everywhere one-to-one. Moreover, this coding map is onto the substitutive system
associated with the Tribonacci substitution. Thus we have the following result:
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FIGURE 5. Domain exchange over the Rauzy fractal.

THEOREM 10 (Rauzy, [27]). The domain exchange ¢ defined on the Rauzy
fractal R is semi-topologically conjugate to the shift map on the symbolic dynamical
system associated with the Tribonacci substitution.

Factorization onto a torus - The domain exchange ¢ is defined only almost every-
where, which prevents us to define a continuous dynamics on the Rauzy fractal.
A solution to this problem consists in factorizing the Rauzy fractal by the lattice
L =7Zmn(e; —e3) + Zm(es — e3). Indeed, this quotient map sends the contracting
plane onto a two-dimensional torus; the three vectors mw(e;), m(e2) and 7(e3) map
onto the same vector on the torus. Thus, the factorization of the domain exchange
© on the quotient is a toral translation.

G. Rauzy proved in [27] that the restriction of the quotient map to the Rauzy
fractal is onto and almost everywhere one-to-one. Consequently, we get that the
domain exchange on the Rauzy fractal, which is known to be semi-topologically con-
jugate to the Tribonacci substitutive dynamical system, is also measure-theoretically
isomorphic to a minimal translation on the two-dimensional torus T2. Finally, by
mixing dynamics, self-similarity and number theory, we get the two following equiv-
alent results:

THEOREM 11 (Rauzy, [27]). The symbolic dynamical system generated by the
Tribonacci substitution is measure-theoretically isomorphic to a toral translation,
that is, it has a purely discrete spectrum.

3.3. A significant advance towards the understanding of the spec-
trum of substitutive systems. B. Host made a significant contribution to the
understanding of ergodic properties of substitutive systems; in [16], any class of
eigenfunctions is proved to contain a continuous eigenfunction (see [34] for usual
definition about ergodic theory). Thus, the two main dynamical classifications (up
to measure-theoretic isomorphism and topological conjugacy) are equivalent for
primitive substitutive systems.

Coboundaries — In the continuation of this, the notion of coboundaries introduced
by B. Host allows one to better understand the structure of the spectrum of a
substitutive system. A coboundary of a substitution o is defined asamaph : A — U
(where U denotes the unit circle) such that there exists a map f : A — U with
f(b) = f(a)h(a) for every word ab of length 2 that appears in a periodic point for
o. The coboundary defined by h(a) = 1 for every letter a (that is, f(a) = f(b)
for every ab in the language) is called the trivial coboundary. For substitutions of
constant length, nontrivial coboundaries are related to the finite group contained in
the maximal equicontinuous factor described in Theorem 8. Details can be found
in [13], Chap. 7.

In the most simplest cases the only coboundary is the trivial one, that is, the
constant function equal to 1. However, there exist some substitutions with nontrivial
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coboundaries such as 1 — 1231, 2 — 232, 3 — 3123. Indeed, words of length 2 that
appear in the fixed point of this substitution begining with 1 are 12, 23, 31 and 32.
Hence for every A € [0, 1], the function k(1) = 1, h(2) = €2™ = 1/h(3) defines a
non-trivial couboundary associated with the function f(1) =1 = f(2), f(3) = e*™.

Structure of the spectrum — Coboundaries allow Host to describe precisely the strue-
ture of the spectrum defined in Section 3.

THEOREM 12 (Host [18]). Let o be a primitive substitution over the alphabet
A. A complex number A C U is an eigenvalue of (X,,S) if and only if there exists
p > 0 such that for every a € A, the limit h(a) = limy,_ oo A7 @ s well defined,
and h is a coboundary of o.

Hence, the spectrum of a substitutive system can be divided into two parts.

Arithmetic spectrum: incidence matriz — Since the constant function equal to one 1
is always a coboundary, a sufficient condition is the following: if there exists p € N
such that A € C satisfies lim A7 (@)l = 1 for every letter a of the alphabet, then A
is an eigenvalue of the substitutive dynamical system associated with o.

Such eigenvalues are said to be arithmetic since they are computable (the con-
dition lim M7 (@ = 1 can be interpreted in terms of scalar product) and depend
only on the incidence matrix of the substitution. Especially, two substitutions that
differ only by the order of occurencies of the letters in images of the letters have
the same arithmetical spectrum (see [13], Chapter 7).

Combinatorial spectrum: return words — Conversely, the eigenvalues for non-trivial
coboundaries are “non-commutative”: they depend heavily on the combinatorics
of the substitution. Durand [11], Ferenczi [12] and Livshits [22] established that
they depend on return words, playing the role of the height that was defined for
substitutions of constant length. Roughly, a return word is a word W = ay...ay
such that Wa, is in a factor of the periodic point of the substitution, and a; # ay
for all i. A more precise definition should be found in [13].

A condition for no combinatorial spectrum: coincidences — A combinatorial condi-
tion is related to the existence of only a trivial coboundary. This condition is called
strong coincidence condition and generalizes the condition of Dekking. It was de-
fined by Host, Hollander and formalized by Arnoux and Ito [5]. Formally, o is said
to satisfy the strong coincidences conditions if for every pair of letters by, ba, there
exists a letter a and Py, Sy, Py, So € A* such that

U”(b]) = P (LSl U”(bg) =P GSJ

Coincidences are related to coboundaries by the following result (see a proof in
[13], Chapter 7).

LEMMA 13 (Host). Let o be a substitution with a nontrivial coboundary g : A —
U. Let f be the function of modulus 1 which satisfies f(b) = g(a)f(a) as soon as
the word ab belongs to the language of a periodic point of the substitution. If there
exist two letters a and b and o rank k such that
e [(a) # f(b),
s o%(a) begins with a and o (b) begins with b,
then o does not satisfy the coincidence condition on prefizes.
Roughtly, this lemma means that a substitutive system with coincidences do

not have a combinatorial spectrum. However, we are unable to prove this last result
in general, but only for substitutions of Pisot type (see Section 4.2).
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4. Applications

4.1. Properties of the spectrum of substitutive systems. From the end
of the 80’s, many papers have provided conditions for a substitutive dynamical
system to have a purely discrete spectrum [22, 33, 31, 15]. Some are necessary
conditions, others are sufficient conditions. Let us focus on some typical examples
of applications.

e Weakly mixing examples of substitutive systems are derived From Host’s
results, as 1 — 12121, 2 ~ 112, since 1 is the only eigenvalue of the
associated substitutive system.

e Refinements of Host’s theory allowed Livshits to define conditions for pure
discrete spectrum or partially continuous spectrum, as a mix of the coin-
cidence condition and return words. Hence, the system associated with
1+ 23, 2 — 12, 3 — 23, has as a continuous spectral component but is
not weakly mixing [22, 33].

e An important result is stated by Solomyak in the case when the incidence
polynomial of a substitution is irreducible: the existence of discrete spec-
trum depends on the expanding eigenvalues of the incidence matrix of
the substitution. Indeed, if there exist P € Z[X] and C' € R such that
P(a) = C for every expanding eigenvalue « of the matrix, then exp(2miC')
is an eigenvalue of (X, 5) [31]. A partial converse was established by Fer-
enczi, Mauduit, Nogueira [12]. This allows one to compute explicitly the
spectrum of some substitutive systems, such as 1 +— 1244, 2 — 23, 3 +— 4,
4+ 1, whose spectrum is exp(2miZ/2).

4.2. A specific class of substitutions: substitutions of Pisot type. A
substitution o is of Pisot type if every non-dominant eigenvalue A of its incidence
matrix M satisfies 0 < |A\| < 1. We deduce that the characteristic polynomial of
the incidence matrix of such a substitution is irreducible over Q. Consequently,
the dominant eigenvalue « is a Pisot number and the other eigenvalues A are its
algebraic conjugates and substitutions of Pisot type are primitive (see the proofs in
[13]). A substitution o is unimodular if det M = +1.

The spectrum of substitutive systems of Pisot type has some important prop-
erties:

e such systems are never weakly mixing since they have only one expanding
eigenvalue so that they satisfy the conditions of Solomyak given in Section
4.1.

e Their arithmetical spectrum can be computed thanks to Host’s method.
In the unimodular case, the arithmetic spectrum is generated by the fre-
quencies of the letters in the fixed point. In the non-unimodular case,
additional rational eigenvalues have to be computed.

e Substitutions of Pisot type never has a nontrivial coboundary [7]. Hence,
their spectrum is equal to their arithmetic spectrum, which is explicit as
explained in the preceeding item.

From these properties, one naturally wonders whether substitutions of Pisot

type have a pure discrete spectrum. Unfortunately, a positive answer is not so easy
to give.

The case of substitutions on a two-letters alphabet is completely studied. We
first know from the work of Host and Solomyak-Hollander that substitutions that are
of of Pisot type with coincidences on two letters all have a pure discrete spectrum
dynamical system [15]. Then, Barge and Diamond proved that substitutions of
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Pisot type on two letters always have coincidences [6]. This yields the following

theorem:

THEOREM 14. All substitutive systems of Pisot type on two letters have a pure
discrete spectrum.

However, on more than three letters, the methods used before are not successful
anymore. More intricate results have to be proved in the flavour of Rauzy’s work
for the Tribonacci substitution.

4.3.

Rauzy fractals. Starting for a substitution of Pisot type, nothing pre-

vents one from computing a Rauzy fractal as done for the Tribonacci substitution:

(1)

1+— 11223, 2 — 123,
32

one can build a broken line from a periodic point of the substitution.
Since the substitution is of Pisot type, the broken line turns around a one-
dimensional direction and projects onto a compact set called the Rauzy
fractal of the substitution. If the substitution is not unimodular, then
the projection space should take into account an arithmetic part. More
precisely, the space of projection is a product of the Euclidean space with
finite extensions of p-adic spaces that has a non-zero Haar measure [29].

A piece on the Rauzy fractal is associated with each letter of the alphabet.
The strong coincidence condition means that the pieces are disjoint in
measure [5]. Finally, the Rauzy fractal of a Pisot type substitution with
strong coincidences appears to be self-similar and compact.

Shifting the fixed point, that is moving on the broken line, factorize onto an
exchange of domains on the Rauzy fractal. Arnoux and Ito proved that
the shift map and the domain exchange are equivalent from a spectral
point of view, as stated in Theorem 15.

1—12,2—31,3—1

1+—12,2+—13,3— 132
1—1112,2— 12

FIGURE 6. Example of Rauzy fractals for substitutions of Pisot type.

THEOREM 15. Let o be substitution of Pisotl type over a d-letter alphabet which
satisfies the condition of coincidence. Then the substitutive dynamical system as-
soctated with o is measure-theoretically isomorphic to the exchange of d domains
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defined almost everywhere on the Rauzy fractal of o, that is, a self-similar compact
set on a product of the Fuclidean space with finite extensions of p-adic spaces that
has a non-zero Haar measure.

Notice that we do not know any example of a substitution of Pisot type with
no strong coincidence.

As for the Tribonacci substitution, there is no problem to factorize the Rauzy
fractal through a lattice on an compact abelian group, so that the exchange of
domains reduces to a group translation. The question is the same as before: is
this representation one-to-one? Unfortunately, the methods used for the Tribonacci
substitution are quite specific and cannot be generalized. Anyway, some researches
on that direction allow to deduce from the factorization of Rauzy fractal on compact
abelian groups some combinatorial conditions for pure discrete spectrum. These
conditions are based either on graphs [30, 32| or on the notion of balanced pairs
[7, 26]. The problem is that the conditions are not general and need to be checked
by hand on each substitution.

Since each example of a substitution of Pisot type that have been tested has a
pure discrete spectrum, the point now is to exhibit some families of substitutions
that provide a pure discrete spectrum dynamical system.

5. Conclusion

As a conclusion, we would like to emphasize the fact that the results exposed
here mainly deal with spectral theory but can be also be expressed in more geo-
metrical terms. Indeed, pure discrete spectrum has a nice geometrical equivalent in
the unimodular case: thanks to the geometrical representation with Rauzy fractal,
it is proved that a substitution of Pisot type with coincidence has a pure discrete
spectrum if and only if its Rauzy fractals generates a periodic tiling of the plane
[30, 26, 7]. Hence, conditions for pure discrete spectrum discussed above allows
one to prove that the Rauzy fractals generated by the Tribonacci substitution, the
substitution 1 — 11223, 2 — 123, 3 +— 2, or the substitution 1+ 12,2+ 3,3+ 1
generate a periodic tiling. More generally, all the Rauzy fractal showed before do
generate a periodic tiling.

111223, 2 — 123,

Trib i
ribonacci 3409

substitution

1—12,2—3,3—1

FIGURE 7. Periodic tilings generated by Rauzy fractals.

Hence, substitutions have relations with a quite large number of mathematical
domains (further illustrations are given in [13]). Combination of combinatorics,
spectral theory, geometry and number theory will allow now to consider and apply
this simple combinatorial object (a substitution) in different directions:

e proving general results on discrete spectrum and tilings;
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application to S-numeration and diophantine analysis [8, 1];

Generation of discrete planes (2, 3];

Models for quasi-crystals [28, 20];

Construction of explicit Markov partitions for toral automorphisms [17,
19].
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1. Integer Versus Non-integer

Given any integer » > 1, any = € [0,1) can be developed in a series expansion of
the form

[o o]
Ck
(11) IEZZ‘T"E:.ClCQ...Cn...,
k=1
where ¢, € {0,1,...,r — 1}. Furthermore, every = € [0,1) has a unique series
expansion; only rationals p/q of the form m/r* for some k > 1andm = 0,1,...,r*—

1 have two different expansions of the form (11), one of them being finite while the
other expansion ends in an infinite string of » — 1’s. Dynamically expansions in base
r are generated by iterating the map T, : [0,1) — [0,1) given by

T-(z) = rz (mod 1),
and the digits ¢, = ck(x), k > 1, are given by
ek = |rTFY(2)], k>1,

where |£] denotes the largest integer not exceeding &, and TX is the k-fold compo-
sition of 7.

It well-known that the Lebesgue measure X is T-invariant, i.e., A(T,71(A)) =
A(A), for every Borel set A in [0,1), and T is related to the Bernoulli-shift on r
symbols, with uniform product measure.

On the other hand, if # > 1 is a non-integer, then almost every = € [0, | 8] /(83—
1)] has a continuum number of expansions of the form
(12) z = %’;, ar €4{0,1,..., |8},

k=1
see [EJK], [Si], [DV].

We assume from now on that § > 1 is a non-integer, and we identify the
expansion (12) with the infinite sequence (a1,as,...). For each z € [0,|8]/(8 —
1)], we order the set of all possible expansions of z of the form (12) using the
lexicographical ordering. Then, the largest expansion lexicographically is called the
greedy ezxpansion of z, and the smallest is called the lazy ezpansion. One main
advantage of these two extreme cases is that they can be generated dynamically
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by iterating an appropriate map, this makes it possible to use the tools of ergodic
theory in order to understand the dynamical and statistical properties of these
maps; see [P], [G], [DK1], [DK2], [R], [KL], [EJK].

2. Greedy Versus Lazy

The greedy expansion was introduced in 1957 by A. Rényi [R1]. Originally the
greedy expansion was studied for points on [0, 1), and it is obtained by iterating the
transformation T} defined on [0, 1] by

Tpx = fz (mod 1).

Rényi studied the statistical properties of these expansions. He showed that T} is
ergodic with respect to A, i.e., any Borel set A satisfying Tﬂ_l(A) = A has measure
0 or 1. He also showed that A is equivalent to a T-invariant probability measure
1p with density hg satisfying

1 1
I-5= ha(z) < T
g
Independently, A.O. Gel'fond [G] (in 1959) and W. Parry [P] (in 1960) showed that
1 1
13 hg(x) = —— — ligpn x),

where F(f) = jol (st ﬂ%)da: is a normalizing constant. After Parry the er-
godic properties of T were studied by several authors. E.g., M. Smorodinsky [Sm)]
“closed the gap” between the ergodic properties of T for 8 € Z and 8 & Z, by show-
ing that for each non-integer § > 1 the system ([0,1),p3,75) is weak-Bernoulli,
which roughly means that digits by in the ‘far future’ are independent of digits b,
in the ‘far past’.

Since we are interested in expanding all pointsin [0, |3]/(3 — 1)], we will extend
the definition of the greedy map T3 to all points in [0, |3]/(5 — 1)] by

Bz (mod 1), 0<xz <1,
Tp(z) =
Be— B8], 1<z<|Bl/(B-1)

It is easy to see that the interval [0,1) is an attractor for the map Tg. This al-
lows us to extend the measure pug defined above by simply setting hg(z) = 0 on
[1,18]/(B = 1)]. The new measure obtained is invariant with respected to the ex-
tended greedy transformation, which from now on we will refer to as simply the
greedy transformation.

In the last decade an interest in expansions to non-integer bases 3 > 1 other
than the greedy expansion has developed. In particular in papers by P. Erdés,
M. and 1. Joo, V. Komornik, P. Loreti, F. Schnitzer and others, the so-called lazy
expansion to base # € (1,2) has been studied, see e.g.[EJK], [KL1],[KL2], [JS]. In
particular in these (and other) papers the lazy expansion of 1, and its relation to the
greedy expansion of 1 has been thoroughly investigated. The dynamical properties
of the lazy expansion, as well as the interconnection with the greedy expansion has
been studied in [DK1].

Dynamically the lazy expansion is obtained by iterating the map Lg defined on

[0,18]/(B = 1)] by
Ls(z) = fr—d for x € A(d),
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where

and

(18 1Bl-d+1 8] |g)—d
Ad) = (ﬁfl" 5 B-1 ﬁ]

_ 18] -1 _ 1A d
- (5(5_1)+ 3 ’B(ﬁ—1)+/3}’ de{1,2,...,16]}

The greedy map T and the lazy map Lg are strongly related. If one defines
the map < : [0, [3]/(8 — 1)] — [0,8]/(8 — 1)] by

Nl
then ¢ is a continuous (hence measurable) bijection and ¥Tp = Lg. As a conse-
quence of this one sees that if the greedy expansion of z is given by (12), then the
lazy expansion of ¥(z) is given by

Ya)= Y Lm"Ta’“ _
k=1

As mentioned above the greedy transformations has an attractor the set [0, 1).
Likewise, the interval (1(1), | 3]/(8—1)] is an attractor for Lz. Hence, any invariant
measure must be supported on the corresponding attractor.

Using the map 1, any Tg-invariant measure on [0, |3]/(8 — 1)) gives rise to an
L g-invariant on the same space. Hence, the measure pg = pugo1 is Lg-invariant. Tt
was shown by F. Hofbauer [Ho] that pg is the unique measure of maximal entropy
of entropy log 3. Using the map 1 one concludes that the measure pg = pgo ¥
is the unique of measure of maximal entropy for the map Lg. Using the tools of
ergodic theory, one can give a complete description of the distribution of the digits
generated and their statistical properties in general (see [DK1]).

z,

3. Intermediate f-Expansions

In the previous section, two transformations were given, the greedy and the
lazy, whose iterations generated expansions in base § for points in [0, |8]/(8 — 1)].
In [DK1], a family of transformations, defined on [0, |8]/(8 — 1)], were given whose
iterations generate intermediate expansions in base 3 that are neither greedy nor
lazy. To do so, we first super-impose the greedy map and the corresponding lazy map
on [0, |8]/(8—1)]. One then gets a natural partition of [0, | 3]/(8—1)] into two types
of sets switch regions {S1,S2,---, 5|5/}, and equality regions {Eo, E1, ..., Eg}},
where L B L

5= [ 55 ket

and

_ 18] E—1 k+1 o B
E‘”‘(ﬁ(ﬂ—l) 5B ) F=bo Lol
18 18-1 18]

v 1 —
E°_{°’B> and ELﬁJ_<B(6—1)+ i -1

On Sj, the greedy map assigns the digit &, while the lazy map assigns the digit
k — 1. Outside these switch regions both maps are identical, and hence they assign
the same digits. This means that new algorithms can be defined based on what
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one decides to do in the switch regions. In [DK1] the case when each overlapping
interval is divided in the same proportion was considered. To be more precise, for

each
13
[(AS [O, B———I — 1j|

define a map Np,q : [0,[8]/(8—1)] — [0, [B]/(8 — 1)] by

ﬁx, T e [0,m1),

Npo(z) == Bz —1, T € [mi,miy1), L < i< |B],

Bz — 8], @€ lmypy, 120,

where
m; = a;—'a i=1,...,|8].

It is not hard to see that the interval [, a+1) is an attractor for the transformation
Ng,o. Just as the greedy map T3 and the lazy map Lg, iterations of the map Ng o
generate series expansion in base 3 of the form (12).

In order to understand the dynamical properties of Ng, consider the map
P* o, a0+ 1) — [0,1], given by ¥*(z) := a + 1 — z. Setting

T*(z) = ¥*(Npa(¥™ ' (2))).
THEOREM 1 (DK1). Let f> 1, 8 ¢ Z, and let o € [0, 12 —1). Then
T*(z) = Bz + a* (mod 1),
where a* = |3] — (a+1)(8 - 1).

Remark 1. Maps of the form T ,(2z) = Bz + a (mod 1) were first introduced
and studied by Parry in [P1]. Parry showed that T3, is ergodic with respect to
the Lebesgue measure A, and that there exists a unique Ty o-invariant probability
measure T (= 7g,4) < A, with density

he(z) = M| > 31’_’— > BI; Lo, (x),
(1)

w<Ty z<Ty (0)

where M = Mp o is a normalizing constant. In [Wi], Wilkinson showned that T
is weak-Bernoulli with respect to Parry’s measure 7 when § > 2, a result which
was first extended in [P2] to 8 > v/2, and then by R. Palmer [Pa). In [Pa] all pairs
(B, «) are characterized for which T} , is weakly-Bernoulli.

4. Random p-Expansions

It is natural to seek a nice map whose iterations generate all possible expansions in
base 3. In order to do so, the following random procedure was introduced in [DK2]
and studied further in [DK2], [DV]. The expansions generated are random mixtures
of greedy and lazy expansions, and are obtained by randomizing the choice of the
map used in the switch regions. So, whenever z belongs to a switch region flip a coin
to decide which map will be applied to z (greedy or lazy), and hence which digit will
be assigned. To be more precise consider Q = {0, 1} with product c-algebra A. Let
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o : @ — Q be the left shift, and define Kg : Qx [0, |8]/(8—1)] — Qx[0,|8]/(F-1)]
by

(w, Bz — k) z € E, k=0,1,...,|8],
(14) Kp(w,z) = (o(w), Bz — k) z€S, and w1 =1, k=1,...,|8],

(0(w),Bx—k+1) z€S, and w1 =0,k=1,...,|8].

We call the map K the random [(-transformation, and the elements of €2 represent
the coin tosses (‘heads’=1 and ‘tails’=0) used every time the orbit hits a switch
region. In order to see that iterations of Kz generate expansions in base 3, we will

rewrite K as follows. Let E = U,LEO Ei, and S = U,Lcijl Sk. Define

k if z€ FEy, k=0,1,...,|8],
di = dy(w,z) = or (w,z)€{w =1} xS, k=1,2,...,|06],
k-1 if (w,z) €{w; =0} xSk, k=1,2,...,16],

then
(w, Bz —dy) if xekE,
Kp(w,z) =
(o(w), Bz —dy) if z€S.

Set d, = dp(w,x) = di (Kg"l(w,z)>. The sequence {d;} is referred to as the

random digits of x in base 3. Let m2 : Q@ x [0, |8]/(8—1)] — [0, |8]/(8 —1)] be the
canonical projection onto the second coordinate. Then

Ty (Kg(w,a:)) =z — " ldy — - — Bdn1 — dn,

and rewriting yields

B dl d2 dn Up) (Kg(w,l))
TR tEY TRt T e

Since (Kg(w,x)) € [0,18)/(8 — 1)), it follows that

"4 T (Kg(w,w))
-y —=——"—>- 50 as n-—o oo
; ﬁz Bn
This shows that for all w € Q and for all z € [0, | 8] /(8 — 1)] one has that

= d; = di(wam)

LE N s
The random procedure just described shows that with each w € ) corresponds an
algorithm that produces expansions in base 8. Further, if we identify the point (w, x)
with (w, (di(w, z),d2(w,),...)), then the action of K3 on the second coordinate
corresponds to the left shift. In [DV] it was shown that the map Kz has three
essential properties.
(i) It preserves the lexicographical ordering on the set of all possible random ex-
pansions.
(ii) It captures all possible expansions in base £3.
(iii) Tt gives a characterization of unique expansions.
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To be more precise, et <je, and <., denote the lexicographical ordering on both
Q, and {0,1,...,|3]}N. For each x € [0, %], consider the set

D, = {(d1(w,z),ds(w,x),...) :w € }.

The following theorem shows that the elements of D, are ordered by the lexico-
graphical ordering on 2.

THEOREM 2. [DV] Suppose w,w’ € 2 are such that w <j, w’, then
(di(w,z),da(w,2),...) Sjax (d1(W,2), da (W', 2),. . .).

Theorem 2 gives another proof of the fact that among all possible S-expansions of
a point x € [0, 8]/(8 — 1)], the greedy expansion is the largest in lexicographical
order (it corresponds to the largest element (1,1,...) of ), and the lazy is the
smallest (it corresponds to the smallest element (0,0,...) of £2).

THEOREM 3. [DV] Let z € [0,(3]/(8 — 1)], and let z = Y77 a;/(" with
a; € {0,1,...]8]} be a representation of z in base 5. Then there exists an w €
such that a; = d;(w, x).

The above theorem shows that the map Kz captures all algorithms producing 0-
expansions. In fact the proof shows that there are three possibilities based on how
often does the sequence {2, aJ%‘L:l : j > 1} hit the S-region.
— If it hits S infinitely often, then there is a unique w € ) such that
di(w,z) = a; for all ¢ > 1.
— If it hits S finitely many times only, then there is a cylinder C' in €2 such
that d;(w,z) = a; for all ¢ > 1, and all w € C.
— If it never hits S, then d;(w,z) = a; for all i > 1, and all w € . In this
case x has a unique representation in base (3, and the greedy expansion of
x is the only representation of z in base §. Furthermore, for all n > 1,
T, = Tg_lx = Sg_lx.
The following theorem can be easily proved from the structure of the map Kz see
[DV]. We remark that this theorem was obtained independently for the case z = 1,
and via other methods in [KL], Theorem 3.1.

THEOREM 4. Suppose x has an infinite greedy expansion of the form x =
ai1/B+as/B% +.... Then, z has a unique expansion in base 3 if and only if for all

n > 0 with a,41 > 1, we have T/’;H:c > % —1.

Remark 2. The question of unique expansion was initiated in the 1990’s by a
group of Hungarian mathematicians led by Paul Erdés [EJ], [EJK], [EK], [JS],
[KL]. Their initial investigation was for 1 < 8 < 2, and their interest was in how
"large” (in the measure theoretic and topological sense) is the set of points with
a unique expansion. They showed that the set of points with unique expansion

14++/5
2

of expansions. The smallest 1 < § < 2 for which 1 has a unique expansion was
obtained by Komornik and Loretti [KL], which is defined as the unique solution
of the equation Y 77, t,a™ "1 = 1, where ¢ = (¢,,) is the well-known Thue-Morse
sequence

has zero Lebesgue measure, and if § < , then every = has a continuum

t=01101001100101101001011001101001 - - - .

In [AC], Allouche and Cosnard proved that this number is transcendental. Ques-
tions on the Hausdorfl dimensions of this set were studied in [GS].
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5. Ergodic Properties of Kj

In [BV] it was shown that the map Kz on Q x [0, %] can be essentially identified
with the left shift on {0,...,|3]}". This allows Kg to inherit all the nice dynamical
properties of the shift map. As a consequence one can identify the maximal entropy
of the map Kg, and show that there is a unique K g invariant measure that has this
maximal entropy. In this section we summarize the results obtained in [DV].

Let D ={0,...,|3]}" be equipped with the product o-algebra D, and the uniform
product measure IP. Let o’ be the left shift on D.. On the set Qx [0, |3]/(8—1)] we
consider the product o-algebra A x B, where B is the Borel o-algebra on [0, | 3] /(8-
1)], and A the product o-algebra on 2. Define the function ¢ : Q2 x [0 LB ] — D by

' B-1
o(w,z) = (di(w,z),da(w, x),...).

It is easily seen that ¢ is measurable, and ¢ o K3 = o’ o p. Furthermore, Theorem 3
implies that ¢ is surjective. Unfortunately the map ¢ is not injective (see the
paragraph following Theorem 3). However, the restriction ¢ to an appropriate K g-
invariant subset is in fact invertible, and the image of this set under ¢ has full IP
measure. To be more precise, let

Z ={(w,x) e Q2 x]0, %] t Kj(w,z) € Q x S infinitely often},

and
D' ={(a1,a,...) €D : Z a—]tz—_—l € S for infinitely many 7}.
i=1 ﬁ
Then, o(Z) = D/, K[;l(Z) = Z and (¢’)"1(D’) = D'. Let ¢’ be the restriction of
the map ¢ to Z.

THEOREM 5. [DV] The map ¢’ : Z — D’ is a bimeasurable bijection, and
P(D') =1.

Now, consider the Kg-invariant measure vg defined on A x B by vg(A) =

P (p(Z N A)).

THEOREM 6. [DV] Let 8 > 1 be a non-integer. Then the map ¢ : (2 x
o, BL%]’ Ax B,vg, Kg) — (D,D,IP,0’) is a measurable isomorphism.

The above theorem implies that h,,(K3) = log(1+|3]). Furthermore, one can show
that any Kg-invariant measure o with p(Z¢) > 0, one has h,(Kp) < log(1+ |8]).
Using this and the fact that IP is the unique shift invariant measure of maximal
entropy on D, one arrives at the following theorem.

THEOREM 7. [DV] The measure v is the unique Kpg-invariant measure of
maximal entropy.

An interesting consequence of the above theorems is that if 8,4 > 1 are non-
integers, then

18] = |B'] if and only if (Kg,vg) is isomorphic to (Kg/,va).

There is an intimate connection between the measure vg and the so called Erdos
measure on [0, B—}l], which is an infinite convolution of Bernoulli measure. In [DV]
it was shown that the second marginal of vg is exactly the Erdds measure. To be

more precise, let o : Q% [0, %] — [0, %] be the natural projection m(w, z) = z,
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and let vg o m; ! be the measure defined on [0, 12L] by 15 0 751 (A) = vs(m5 ' A).

b ﬁ,_l
Consider the purely discontinuous measures {9, };>1 defined on R as follows:
1 . 1
6({0) = ——— ..., ) = .
(0D = g U™ = roy

So 6; is concentrated on the set

{0,875 ..., 18187}
Let g be the corresponding infinite Bernoulli convolution,

5,@:71152051*...*6”.
THEOREM 8. [DV] vgomy ' = ds.

Remark 3. If 8 € (1,2) then § is an Erdds measure on [0, ﬁ], and lots of things
are already known. For example, if 8 is a Pisot number, then § is singular with
respect to Lebesque measure; [E1], [E2], [S]. Further, for almost all 8 € (1,2)
the measure § is equivalent to Lebesgue measure; [So|, [MiS]. There are many
generalizations of these results to the case of an arbitrary digit set (see [PSS] for
more references and results).

6. The Markov property of Kz

In the previous section it was shown that the dynamical system (Q2x [0, BL%], Ax
B, vg, Kg) is isomorphic to a Bernoulli shift, dynamically a very desirable property.
Unfortunately, the natural partition

g = {EO?Sl’EhSZ"‘7SL5J7E|ﬁJ}

is not the generating Bernoulli partition. As a result it is quite hard to calculate the
vy measure of measurable sets, even the basic ones such as C' x E; or C' x S; with
C a cylinder in Q. In [DV] (see also [BDK2]), it was shown that for a certain Pisot
values of 3, one can find a refinement of £ which is a generating Markov partition
for the dynamical system (2 x [0, BL%],.A x B,vg, Kg).

Let B > 1 be such that the greedy expansion of 1 in base § has the form

1=0b/B+by/B*+...+b,/8"

with b; > 1, and n > 2 (notice that |8] = b1). We describe briefly how one finds
a Markov refinement of £ such that the dynamics of Kz can be identified with a
subshift of finite type with an irreducible adjacency matrix. This permits one to
define several Kz invariant Markov measures, one of which is the measure vg, the
measure of maximal entropy. We refer the reader to [DV] for more details.

The crucial ingredient in obtaining the Markov partition is the following simple
proposition that gives a complete description of the K g-orbits of the points (w, 1)
b
and (w, (1)) for all w € Q. Recall that ¥(1) = 18l =1
-1 p-1
PROPOSITION 1. [DV] Suppose 1 has a finite greedy expansion of the form
L=0by/B+by/B*+ ...+ b, /3"

Ifb; > 1 for 1 <j<n, then

(i) Til = Lyl € By,,,, i=0,1,...,n— 2,
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(i) Tg'1=Lg 1= €S, Ty1=0,and Ljl = 1.

(i) Tiy(1) = Lyw(1) € Epy—b,,,, 0< i <n—2,

(iv) TnWI"/}( ) = L"_lil/( ) ,3 B(B-1) + bl* € Sln bn+1, Tﬁw( ) = gb_ll -1,
and Ljy(1)) = 43
We use the points {Tél,Téw(l) :1=0,...,n — 2} to refine the partition
£ = {Eo,Sl,El,Sg "'7Sb17Eb1}'
We obtain a refinement
C={Cy,Cy,...,CL}.
We choose C to satisfy the following. For 0 <i <n — 2,
- T4l € Cj if and only if T41 is a left end-point of Cj,

- Té’t/)(l) € Cj; if and only if Tﬁiw(l) is a right end-point of Cj.

From the dynamics of K3 on this refinement, one reads the following properties of

C.
pL- Co = [0.4(1)] and Cp = [1, 7]

p2- For i = 0,1,...,b;, E; can be written as a finite disjoint union of the
form E; = Ujen, Cj with Mo, My, ..., M, disjoint subsets of {0,1,...L}.
Further, the number of elements in M; equals the number of elements in
My, ;.

p3- For each S; there corresponds exactly one j € {0,1,...,L} \U’,’;:OMk such
that S; = C;. This is possible since the Tg-orbits of 1 and (1) never hit
the interior of U?;lSi.

p4- If C; C Ej, then Tp(C;) = Sg(Cy) is a finite disjoint union of elements of
C,say Tp(C;j) = Ci, U - UCu Since ¥(Cy) = Cp—j C Ep, —i, it follows
that T,@(CL ]) Cr—iy U---UCL—y,.

p5- If C; = 5;, then T3(C;) = Cy and Lg(C;) = Cy.
From p4 and p5 we conclude that C is a Markov partition underlying the map Kpg.

To define the underlying subshift of finite type associated with the map Kg, we
consider the (L + 1) x (L + 1) matrix A = (a; ;) with entries in {0, 1} defined by

1 if i e U My and C; C T5(C),
0 if i € U My, and N(C; N T5'Cy) =0

1 if ie{0,...,L}\ Ut My and j =0, L,

0 if ie{0,...,L}\ Ul My and j # 0, L.

The matrix A is irreducible, and can be seen as defining a graph with vertices
{0,1,...,L}. There is an edge from vertex i to vertex j if and only if C; C T3(C;).
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The set Y of all infinite paths on this graph is the topological Markov chain de-
termined by A. That is, Y = {y = (y;) € {0,1,... L} : ay,y,,, = 1}. We let oy
be the left shift on Y. In [DV], the topological entropy of (Y, oy) was shown to be
h(Y) = log(by +1). The corresponding unique Markov measure of maximal entropy
@ can be calculated following Parry’s recipe. Namely, @ is generated by the transi-
tion matrix P = (p;;), where p; ; = aiﬁj(b%_:)_l‘)v_l, and stationary distribution p = v
which is the right positive eigenvector of A satisfying Zf:o v; = 1.

To see that the dynamics of K3 and oy are essentially the same, we first need to
find a map « from Y to 2 x [0 M] that commutes the actions of K3 and oy . For

' B=1
ease of notation, we denote by s1,s2,..., 8, the states j € {0,1,...,L}\ UZ;OMk
corresponding to the switch regions 51, 9, ..., S, respectively.
For each y € Y, one can easily associate an = € [O, ﬁb_ll]. One first associates a
sequence (e;) € {0,1,...,b;} as follows,
i if Y; € M,
(16) €; = 1 if Y; = Si and Yj+1 = 0,

i—1 if y; =s; and yj4q = L.

Now set

(17 = Z

To define a point w € {2 corresponding to y, one needs that y; € {s1,...s}
infinitely often. For this reason it is not possible to define « on all of Y, but only
on an invariant subset. To be more precise, let

|&)

e,
J

=

Y'={y=(y1,y2,--) €Y : y; € {s1,..., 5, } for infinitely many i’s}.

Given y € Y/, we first locate the indices n; = n;(y) where the realization y of
the Markov chain is in state s, for some ¢ € {1,...,b1}. That is, let ny <ng < ---
be the indices such that y,,, = sp for some £ =1,...,b;. Define

Wi = 1 if Ynj+1 = 0,
7 0 if ynj+1 =1L.

Now set afy) = (w, z).
THEOREM 9. [DV] The map

by
A1

a:(Y,g,Q7ay)—>(Q><[0, },DxB,Qoa—l,KO

is a measurable isomorphism.

The above theorem implies that hgoq-1(K ) = log(bs + 1) = log(| 8] + 1). By
the uniqueness of the measure v described in the previous section, we see that
Qoa™ ! = vg. Recall that the projection of v in the second coordinate is the Erdos
measure g = vgom, '. One easily calculates that d5(E;) = v5(Q x E;) = D, Vis
and 03(5;) = vp(2 x 5;) = vs,.

In [DV] it was shown that the projection of Qoa ™! = v on the first coordinates
is the uniform Bernoulli measure on €. If in the switch regions we decide to flip
a biased coin, with 0 < P(Heads) = p < 1, in order to decide whether to use
the greedy or the lazy map, then the measure of maximal entropy does not reflect
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this fact. A natural invariant measure that preserves this property is obtained by
considering the Markov measure on Y with transition probabilities p; ; given by,

ANCiNTZ'Cy)/NC) i § € UPL My
pij =19 p if i€{0,1,...,L}\ U M and j =0,

1—p if ie{0,1,...,L}\ U’ M and j = L,

and initial distribution the corresponding stationary distribution. Another inter-
esting feature of this measure is that if p = 1, then one gets the Parry measure pg,
and if p = 0, then one gets the lazy measure pg.
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ABSTRACT. We describe a method developed in collaboration with C. Baiocchi
and V. Komornik [1], [2]. This new method allows us to solve different control
problems (see [8] for a general description). In particular we investigate this
approach by discussing some former results due to A. E. Ingham [5] and to
Kahane [6].

1. Introduction

Motivated by many engineering applications, control problems have been stud-
ied for a long time. To describe a general class of control problems let us consider
a system, whose evolution is governed by the equation

7' = Az + Bu, z(0) = o,

where A is a densely defined, closed linear operator in a Hilbert space H, and B is
a densely defined, closed linear operator from another Hilbert space S into H. Here
B is called a control operator and u is a control. In the applications A is usually an
elliptic linear partial differential operator.

The exact controllability problem for the system can be stated in the following
way: given a positive real number T (time), can we steer the system to the rest at
the time T by a suitable choice of the control v € L2(0,T;5)?

The problem of controllability is equivalent to a problem of observability con-
cerning the dual system

d)/ = _A*(b) d)(o) = ¢0a ¢ = B*(b)
where A* and B* denote respectively the adjoints of A and B. Here B* is called
an observability operator and 1 is an observation.

The problem of observability in time T for this system can be stated whether
two different initial data always lead to two different observations.

We refer to Russell [12] for a basic review of the subject of controllability, ob-
servability, and stabilizability for linear partial differential equations. In particular
[12] contains the analysis of the equivalence of the controllability of a linear system
and the observability of the associated linear observed system.

From a mathematical point of view the observability problem leads to the re-
search of suitable estimates. The way to prove these estimates depends on the
problem we are considering.

If we consider hyperbolic or more general time reversible systems, then the
Hilbert Uniqueness Method (HUM), introduced by J.-L. Lions [11], applies to a

1The author thanks the organizers of the conference “11leme colloque international de PTEWM?”
for the invitation.
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rather large class of partial differential equations and it can be used in general
domains. In this approach the estimates are established by the so-called multiplier
method.

Alternatively, the so-called harmonic (or non harmonic) analysis method can
be applied to problems on special domains. It is based on an accurate study of the
spectrum of the spatial operator of the dual problem, and it gives fine estimates of
the controllability time. The fields of applicability of the two methods are somewhat
complementary. For a general exposition of this method we refer to [8].

Let us recall that many linear problems can be solved easily by using Fourier’s
method of the separation of variables. In the simplest one-dimensional case the
desired estimates can then be obtained by applying the theory of Fourier series.
This method was extended by Wiener [13] to more general series with nonharmonic
exponents. Subsequently, his results were generalized by Ingham [5], Beurling [3],
Kahane [6] and many others in different directions. These generalizations made it
possible to solve a great number of linear problems in one space dimension and on
symmetric domains in several dimensions. The object of this work is to describe a
method developed in [1], [2] by discussing the result of Ingham [5]. We also give a
generalization of a result contained in [1] and [2].

2. A Theorem of Ingham

PROPOSITION 1. Let (wn)nenr be a family of real numbers, satisfying the gap
condition

inf |wy, —wm| >
n;Iélm, |w u.)m| =7
for some v > 0. Then all sums

z(t) = Z zpetnt

neM
with square summable complex coefficients x,, satisfy the estimate
JECI RS
I neM

for all intervals I, with a constant ¢ depending only on v and the length of I.

ProOOF. Let us fix an integrable, nonnegative function & and consider the inte-
gral

/OO k(t)|z(t)[* dt.

— 00

Introducing the Fourier transform K of &k by the usual formula

1 e it
I((.’E) = \/77/ k’(t)eiltl dt,

this integral can be rewritten in the form
o0
/ k@)a(t)? dt = Vor Y wnTm K (wn — wi).
-0 n,m

Here and in the sequel, in all sums the indices n and m run over M.
If the function K vanishes outside the interval (—+, ), then thanks to the gap
condition this formula reduces to

/OO k@)t dt = V2rK(0) Y o, .

-0
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Now, if k has a positive lower bound 3 on some interval J, then we deduce from
this equality the following estimate:

[t @< O S

n

This inequality remains valid for every translate J + ¢y of J. Indeed, putting

y(t) =t +t0) = Y (waen'o)en!

n

we have
, | X0
/ kel de= J o ae< ﬁé‘@Z\! m Zlm

Now every interval I can be covered by a finite number of translates J + ¢1,...,
J +t, of J. Hence the desired estimate follows with ¢ = +/2mpK (0)

/lx )P dt<Z/JH ()7 dt < 27Tg(o)pZI:cniQ~

It remains to find a function k having the above properties, that is:

e k is integrable, nonnegative and it has a positive lower bound 3 on some
interval J;
e its Fourier transform K vanishes outside the interval (—v, 7).

Let us choose an arbitrary nonzero, even real-valued, square summable function
H, which vanishes outside the interval ( %, 2), and set K = H x H, where the
convolution is defined by the formula

(H « H)(z) = # / o; Hix — y)H(y) dy.

It is clear that K is also even and real-valued. Furthermore, we have the following
properties:
¢ The inverse Fourier transforms h and k of H and K are also even and real-
valued. This follows from the definition of A and k and from the analogous
properties of H and K by the formulae

h(t) = #‘/ H(z)e" dx = #/ H(z)costz dx

and

k(t) = \/%7 /*00 K(z)e'™® do = \/—;:W /~Oo K(z)costx da.

e Since h is real-valued and since & = h? by the usual rule of the Fourier
transform of a convolution, & is nonnegative.

e Since H is square summable, h is also square summable by Plancherel’s
theorem. Then k = h? is integrable by Hélder’s theorem.

e Since k is integrable, its Fourier transform K is continuous.

e K vanishes outside the interval (—v,~), because H vanishes outside the
interval ( =, 2) and K = H « H.

e We have seen that K is continuous and it has a compact support. Hence
K isintegrable, and therefore its inverse Fourier transform k is continuous.
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¢ Since H # 0 by assumption and

H(z) = \/_.%7;/_00 h(z)e ™ di,

h #0, and thus k = h% # 0.
e Since k is nonnegative, continuous and not identically zero, it has a positive
lower bound [ on some interval J.

A simple choice for H is the characteristic function of the interval (— o %) O

PROPOSITION 2. Let (wy,)nen be again a family of real numbers, satisfying the
gap condition
inf |wn, —wm| >
n#m

for some y > 0. Then all sums
z(t) = Z zpeent
neM
with square summable complex coefficients z,, satisfy the estimate

€ 2 C X 2
P [1 (]2 di

for all intervals I of length > 27/, with a constant ¢ only depending on +y and the
length of 1.

Proor. By translation invariance it suffices to establish the estimate for the
intervals I = (—R, R) with R > 7/7.

Let us choose two functions k, K as at the beginning of the proof of the previous
proposition, so as to have the identity

oo

/ ()]t dt = V2rK(0) > |z

J — 00 n

If k£ is negative outside an interval I, then k is bounded from above by some con-
stant « (because k is continuous), and we deduce from this identity the following

inequality:

V2rK(0) ) " fan|? < oz/{ lz(t)|? dt.

If K(0) is positive, then we can conclude by a translation argument.
It remains to find a function k having the required properties, that is:

e k is integrable, bounded from above and nonpositive outside I,
e K(0) is stricly positive and K vanishes outside the open interval (—v, ).

We try to find such a function k with [ = (—R, R) as short as possible.

Write I, := (—%,3) for brevity. Let us choose an arbitrary nonzero, even,

real-valued function H, which belongs to the Sobolev space H}(L,), and define the
functions K and k by the formulae

K=R*H+«H+H «H',

where R is a positive constant to be chosen later, and by

k(t) = \/—1.7;/_00 K(x)e"™ da.

Then H and H' are square summable, and hence & is integrable by the same argu-
ments as before. Moreover, it follows from the equality

k(t) = (R — £2)h2(¢)
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that k(t) is nonpositive if ¢ is outside of the interval (—R, R). Finally, since H is
even and thus H' is odd, we have

VER(H * H)(0) = /jo H(x)H(—z) dz = /jo H2(z) do

and
o0

V2r(H' « H')(0) = /jo H'(z)H'(—2) dz = —/ (H')*(x) dz.

- 00

Since both H and H’ vanish outside I, it follows that
V2rK(0) = RQ/ H?(z) dx ~/ (H"?(z) dz.
I, I,

Since the first integral is positive, we conclude that K(0) is positive if R is large
enough.

We give an example of a function for which the above properties are satisfied.
Let G be the characteristic function of the interval (—%, %); then H = GG satisfies
the above conditions. In order to see it, let us compute the value of

K=R*H+«H+H «H'
in 0. Since

H(z) = 3 ~ x|

if x € I, and 0 otherwise, we have:

3
/ H?*(z) do = T and / (H"Y(z) dz = .
1, 12 1,
Hence the corresponding function K has all the required properties if

R>&§.
il

However this simple choice does not lead to the shortest possible intervals (— R, R).
The above form of K(0) shows that the optimal choice for K is the first eigen-
function of the operator —A in Hg(I,). Indeed, this is the function which minimizes
the fraction
Jy (H'2(@) da
/ p, H?(x) dx

in H}(I,).
We shall thus use the function H : R — R defined by

Hiz) = cos ”—f— ifxe I'y,
0 otherwise.
We have
/ H?(z) da::/ e
I, I, voo2
and
2 2
/ (H)2(z) da :/ 220
I, Y I S
so that )
2
- 27y T 2 T 0
Vark () =R -T2 4<R~—> i
K (0) 2 323 29
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is positive if and only if

213

This proves the proposition. O

3. On a Theorem of Kahane

In [6] Kahane extended Ingham’s theorem to several variables. The following
propositions generalize to the LP case some results obtained in [2] and also described
in [8].

Let Bp denote the Euclidean ball of radius R in RY, centered at the origin:

Br:={z R : |zl < R}.
Fix a number 1 < p < oo.

PROPOSITION 3. Let (wn)nen be a family of vectors in RY, satisfying the gap

condition

inf |lwp — wmllp > v

n#EmM
for some v > 0. Then all sums

z(t) = Z xpetent

neM
with square summable complex coefficients z,, satisfy the estimate
JICCIETS S
Br neM
for all R > 0.
In the preceding result the value of p has not a particular rule. In order to

formulate a theorem concerning the converse inequality, let us denote by u, the
first eigenvalue of —A in H&(B:/z) where B:/z denotes the ball of radius v/2 in

RN with respect to the p-norm:
N
B:/2 ={zeR" : |z|, <v/2}.
PROPOSITION 4. Let (w,)nen be again a family of vectors in RY, satisfying

the gap condition

inf [|wn — wmllp >y

n#Em
for some vy > 0 and for some p > 1. Then all sums

z(t) = z Tpent

neM
with square summable complex coefficients x,, satisfy the estimate
S Jaal? < c/ w(t)? dt

neM Br

for all R > VHp-

IDEA OF THE PROOF. We can repeat the proofs given before, by choosing K to
be the first eigenfunction of —A in Hj(BY ,), and by choosing K = (R + A)H + H

with R > | /fip. O
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1. Introduction

If we want to study the arithmetical or dynamical properties of real numbers
we usually associate to them various expansions such as:

—g-adic-expansions;

—~Continued fraction expansions;

~f-expansion; and many others (Engel’s Series expansion,...), which lead to
different classifications and results; no simple link exists from one to another and
it is quite natural to ask about properties involving two different expansions. For
example what can we say about normal numbers to base ¢ but non-normal to base p?
or does there exist a normal number (to any base) with bounded partial quotients?

The first question refers to p-adic and g-adic expansions, while the second one
refers to any adic expansion and to regular continued fraction (RCF) expansion.

After recalling several facts around expansions, we concentrate on the second
problem, mentioned by Montgomery in his book “Ten lectures on the interface
between Analytic Number Theory and Harmonic Analysis” (1994) [22] and try to
prove that the set of normal numbers with bounded partial quotients is rather big
(in a sense to be precised).

2. Uniform Distribution and Normal Numbers

2.1. Uniform distribution.

DEFINITION 5. The real sequence (up )y, is said to be uniformly distributed mod
14f
1
VO<a<b<l, N\{n <N {un} € [a, b} — b—a,
where {x} is the fractional part of x.
For example, for any irrational «, the sequence (na), is uniformly distributed
mod 1 because of the following [27]:

Weyl’s criterion: (u,), is uniformly distributed mod 1 if and only if

1
k£0, & > elkun) =0,

n<N

where e(z) = €™,

The definition can be equivalently expressed in the following way, which allows
interesting generalizations: we consider the set of all complex Borel measures M (T)
as the dual space of the set of continuous functions C(T) and we have the
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DEFINITION 6. The real sequence (uy), is uniformly distributed mod 1 if the
sequence of probability measures on T (identified to [0,1)):

% Z Ofuny — A weak™
n<N

where 0, is the unit mass at x and X the Lebesque measure on [0, 1].

In case of convergence to some probability measure v # A on T, we speak of
Weyl-distributed sequence [19]. We can also consider other summability methods.

A first general result on uniform distribution is the following:

THEOREM 1. (Weyl) If (ng )y is an increasing sequence of positive integers, then
the real sequence (njz), is uniformly distributed mod 1 for A-almost all z.

Proof: Consider fy(z) = = Z,{V:J] e(jniz), j # 0. Now
fT |fN|2(-77) dz

Il
o
T

because ny # n; if k # 1.

It follows that Y [ [fn]* = [1 3 [fn]* < 400 and Y [fy[* converges almost
everywhere. This implies that limy fy =0 A — ae.

To finish the proof, for M > 0 we peak N such that N2 < M < (N + 1)2, and
write

Mo = a0 AT
= %_[7(7\/1‘2 Zo )+ % NZ
I +0(%)
for 0 < M — N? < 2N, and this tends to 0. O

Of course the interesting set is the one, attached to (ny), of those x for which
uniform distribution does not happen.

If now, instead of fixing the sequence (ny), we fix the set F of real numbers and
look for sequences of integers ensuring uniform distribution for the elements of F,
which property of E is relevant?

In this direction we have the following;:

PROPOSITION 1. Let i be a probability measure supported on ' C T satisfying
(18) fi(n) = O(In| ")

where § > 0; then, for every increasing sequence of integers (s, ), {s,x} is uniformly
distributed for p-almost all z € F.

Proof: It turns out to be a simple consequence of the very well-known and very
useful result of Davenport-Erdés-LeVeque (see [6], 23], and [25] for various appli-
cations).

THEOREM 2. (Davenport-Erdos-LeVeque): Let u be a probability measure on
X, (X,,) a sequence of bounded random variables and Sy = % Zf:[:} Xy if

1/ ,
> = [ 18n[?du < oo,
ferl

then Sy — 0 a.e.-pu.
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It remains to verify the hypothesis of the DEL theorem with X, = e(—ksy,)
and p. If k #0,

N
Z filk(sn —sm)) = N+ Z ik(sn — sm))
m,n=1 m,n<N, m#n
< N+C > fk(sn—sm)|™°
m,n<N, m#n
N m-—1
S N+QCZ Z'(Snism)!gg-
m=2 n=1
When m > n, S — Sn = Sm — Sm-1+ Sm—-1 — -+ + Sp+1 — Sp > M —n, and
N N m-—1
Z ((k(sn = sm)) < N +2C z Z(m —n)7% now,
m,n=1 m=2 n=1
N m-—1 N m-—1 *
Y2 m=mt = 30 w7
m=2 n=1 m=2 n=1
N-1
< N }:(n) s
n=1
= O(N?7%)
Finally
1 N
Z N3 Z [i(k(sn = 8m)) < 00
N>1 m,n=1
since § > 0. O

Property (1) required in the proposition is rather restrictive and gives very few
information about the size of the set F; it is not shared by arbitrary sets of positive
Lebesgue measure, or even of full Lebesgue measure and actually it is correlated
with the shape of the set E.

We begin our investigation with weaker properties.

2.2. Classification of measures on T. If © € M(T), p is uniquely deter-
mined by its Fourier coefficients

a(n) = /re(—nx) dp(z), n € Z.

LY (T) can be identified with the set of absolutely continuous measures (with re-
spect to Lebesgue measure) and Mo(T) consists of the measures p whose Fourier
transform tends to 0: limj,|_q fi(n) = 0.

By the Riemann-Lebesgue lemma, L'(T) C My(T), and Mensov (1916) con-
structed the first singular measure in My(T) (a variant of the Cantor measure)
21].

If we denote by M.(T) the set of continuous measures (pu({z}) = 0 Vo € T), as
a consequence of Wiener’s lemma:

111{711 N:~1 lz lip(n)]? = Z W{:L'}[z,

n|<N zeT

we have My(T) C M.(T); Riesz products give examples of continuous measures
which are not in My(7T) [17]. This can be summarized in

LYT) € Mo(T) € M.(T).
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For a singular measure, it is difficult to have precise knowledge of both its support
and its Fourier transform (Heisenberg’s uncertainty principle).

Continuous measures are, by definition, characterized by a class of annihilated
sets: indeed countable sets; and, thanks to Wiener’s lemma, they can be char-
acterized by the behaviour of their Fourier transform. Whence the question: Is
there some class of sets C such that the measures in M (T), well-described by their
Fourier transform, put no mass on the sets in C? Such a class should be intermedi-
ate between the countable sets and the sets of Lebesgue measure zero. Its existence
has been discovered by R. Lyons [19].

A set E is called a Weyl set, if there exists a non-decreasing sequence (ny) such
that, for any z,

1
7 Z Onpay — Vo weak”
k<K

where v, € M(T) different from A ({ngx} ~ v, # ). We have the following result.
THEOREM 3. Let p € M(T).
1€ My(T) < pu(F) =0V Weyl set E.

2.3. Normal numbers. We begin with a somewhat algorithmic description
of normality with respect to the base ¢, involving the g-expansion of numbers ([27]).

Let ¢ be an integer > 1. A real number z € [0,1] is normal to the base ¢ (¢-
normal) if, when x = 0.z125 ... is written in base g, every digit 0 < d < ¢ appears
equally often:

.1 1
III{IH—NH”S N, z, = d}| = Ev

every pair of digits dyds appears equally often:
L1 1
111511 NHH <N, xp =d1,Tny1 = da}| = el

and so on, whence the definition:

DEFINITION 7. The real number © € [0,1] is g-normal if each word w =
dydy ...d, on the alphabet {0,1,...,q — 1} appears in the q-adic expansion of x
with expected frequency, namely: ¥Yr > 1, Yw word of length r,

1 1
N!{n <N, TpTp_1 .. Tpyr—1 =W} — et

By using this definition, explicit ¢g-normal numbers and non-normal numbers
can be exhibited ; for example Champernowne’s number whose expansion consists
in concatenation of all consecutive words to base ¢ is g-normal:

0.01234567891011121314151617 . ..

when ¢ = 10.

Nevertheless, almost nothing is known concerning the question of whether clas-
sical arithmetical constants (7, e, v/2, ((n),...) are normal numbers to a fixed base,
say ¢ = 2; it is unknown whether any irrational algebraic number is normal to any
integer base; even weaker assertions are unresolved. For example it is not known
whether /2 has arbitrarily long blocks of zeros appearing in its binary expansion
ie. Jiminf, ... {2"v2} = 0?
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We develop another point of view: the first definition is equivalent to the fol-

lowing condition: if 7 C T is any g-adic interval [ﬁ, aq#[,

N
. n—1 _
h]{,n nEZI 17(¢" z) = M),

where 1; is the characteristic function of I. Since any interval can be approxi-
mated by subsets and supersets which are finite unions of g-adic intervals, we have
equivalently:

DEFINITION 8. The real number x is normal to base q (q-normal) if the sequence
(q™x)y is uniformly distributed mod 1.

By the preceding Weyl’s theorem, N, the set of g-normal numbers in [0, 1], has
full measure. It is also a consequence of Birkhoff’s ergodic theorem: if we denote by
T, the transformation of [0,1)  — gz mod 1 (the g-transformation), the Lebesgue
measure is invariant under T, and ergodic (that means T, 'A = A = A (A) =
0 ou 1) so that, if k& # 0, % Z”<N exo Ty — fT er d\ = 0 M-almost everywhere
(14)).

It follows that the set N = NgN, of normal numbers to any base has full
measure.

2.4. Negligible sets. So what more can be said about N7, N7 To answer
this problem we first need the following definition (see also [20]).

DEFINITION 9. If A = (ng)k, W*(A) is the set of x such that ({ngz})k is not
uniformly distributed (sometimes called non-normal set)

(Note that the associated-Weyl set W(A) C W*(A).)

So what can we say about W*(A)?

Classically one uses Hausdorff dimension to compare set of Lebesgue measure
zero. We give a brief overview of the underlying theory.

The a-dimensional Hausdorff measure (« > 0) is in fact the outer measure in
scale z®. Let E be a subset of R; for ¢ > 0,

H(E) = inf{>_|I|*, E C UL}

the infimum being taken over all possible covers (I,,) of E consisting of intervals of
diameter < e.
HZ is a non-decreasing function of € and we put

HY(E)=lim HZ(E).
£l0

It is easily seen that H*(E) = 400 when @ ~ 0, H*(F) = 0 when a ~ 00
and sup{a / H*(E) = +oo} = inf{a / H*(E) = 0}; this value is the Hausdorff
dimension of E (dimg (F)).

Note that countable sets have zero Hausdorff dimension, and that

0 <dimpy(F) <1, VECR.
If the set £ supports a probability measure u such that
w(I) < C|I1°, VI interval C R,

for some constants C' > 0, s €]0, 1], then

L=u(E) <> ull) <CY LI,
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and Hi(E) > &, H*(E) > %, dimy (F) > s. In this way we get a lower bound for
the Hausdorff dimension.
Erdos and Taylor proved the following [8]:

THEOREM 4. If A = (ng) is a lacunary sequence of integers: [l >p > 1,
n
then dimy (W*(A)) = 1.
Thus W*(q) :== W*((¢*)) or N is a “bigset” in the sense where dimy (W (q)) =

The size of a negligible set E can also be related to the nature of the (singu-
lar) probability measures p supported on it and to the behavior of their Fourier
transform [28]:

PROPOSITION 2. If there exist C' > 0,17 > 0 such that |a(t)] < CJt|~", then
dimgy (E) > 2n.

If 1 # 0 is a singular probability measure, invariant and ergodic with respect
to the g-transform (there are plenty of such measures), then for some k # 0,

% 3 elkq"a) — k) 0 p - ac,
n<N
and W*(q) supports a continuous singular measure (by considering a Riesz product).
Due to the invariance, this measure does not belong to My(T) and it was conjectured
that for any probability measure u € Mo(T): “p-almost every number in [0, 1) is
normal to base ¢” (as for Lebesgue measure).
But in 1986, R. Lyons ([20]) proved that this is not the case.

THEOREM 5. Suppose that ¢ is a non-increasing function on the non-negative
integers such that

[o¢]
1) Z o) = (with an additional technical condition). Then there
5N logn

exists a probability measure ;1 concentrated on N§ such that |(n)] < ¢(n).

2) Z _$m) < 0o. Then u(N§) = 0 for any positive measure with |i(n)| <

W*(2) thus supports a probability measure p € My(T) with prescribed optimal
decay rate.

Actually these two points of view (measure and dimension) are dependent in
a non-obvious way: the set of Liouville numbers has zero Hausdorff dimension and
supports a probability measure in My(T) [3], while this is not the case for the
triadic Cantor set, which has yet the positive Hausdorfl dimension log 2/ log 3.

As an illustration of this, let us mention a striking result, due to Erdés and
Salem, attached to Cantor sets Ee, 0 < & < 1/2 [7].

1
THEOREM 6. E¢ supports a probability measure pr € My(T) < —é; ¢ S, where

S is the set of Pisot numbers.

Turning back to normal numbers, W. Schmidt [29] proved the existence of g¢-
normal numbers which are not p-normal if and only if p and ¢ are multiplicatively
independent integers. Pollington [24] showed that the set of such numbers has full
Hausdorff dimension. Later, Brown, Moran & Pierce [5] constructed a continuous
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singular probability measure supported on Ny, N N7. Generalizations have been ob-
tained by Feldman & Smorodinski [9], B. Host [H],.... But none of these measures
do belong to My(T).

3. The Regular Continued Fraction

3.1. The RCF algorithm. We recall now the classical notations and results
for the regular continued fraction algorithm [11].

e Given a real number z € [0,1), = is the limit of the sequence of rational
numbers

Py, _ 1
@ ar + ! 1
as + - -- i
ap—1 + —
ag
shortly [0;a1,...,ak]. The rationals 55; are called the convergents of z and
a1, as, . .. the sequence of its partial quotients (a) > 1if k > 1).
So we have
Po=0,Q=1, PL=1, Qi =ay,
and for k > 2

Qr = arQr-1+ Qr—2,

This can be easily established with help of the following matrices

0 1
Ai_(l ai>’

{Pk = arPr-1+ Pr-2,

and the identity:

Py Qi
19 My =Ai... A = .
(19) ’ ! Py Qr
From these recurrence relations, it can be seen that P, and @y in fact are
polynomials in ay, - - -, ak, connected by the relation:

Pr1Qk — Qr-1 Py = (1),
By taking the transpose in (2),
Qrlar, - ar) = Qrlag, ..., a1),

and
Pilay, -+ ar) = Qr-1(az, ..., ax),

Qr—1
oy
This means that a pair of consecutive denominators contains the total prior history
of the continued fraction expansion.
The convergents are good rational approximations of z and we recall that
A
Qr  (Th1Qk + Qr-1)Qk

whence

=[0;ak,...,a1).

where
Tt = [t} Qpta, - -,
so that
Py 1
e
Qr' ~ Qry1Qr

|z
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@ The g-transformation on T is topologically half-conjugated to the g-shift on
AY with A = {0,1,...,¢ — 1}. The shift on the RCF expansion is conjugated to
an expanding transformation, the Gauss map, defined on X = [0,1]\Q by Tz =
1
— mod 1; thus
* 1

ar = [;], apg1 = ap(Tz)
and
Thy = [0; ak+1, Akt2, - -]

e The absolutely continuous probability measure p on X (called the Gauss
measure) defined by p(A) = l"mlg_z Sa 1{% for every Borel-set A, is preserved by T
and T-ergodic [2].

Applying Birkhoff’s ergodic theorem, we get the following result.

PROPOSITION 3. The set BAD of numbers in [0, 1) with bounded partial quo-
tients has zero Lebesgue measure.

The notation BAD comes from another characterization of these numbers: these
are the badly approximable numbers [25].

Proof: Observe first that the function a1 ¢ L'(X, p):

1 1 '
bl du@) = Y [h mests do

k+1

k+1)2
= glgﬁ 2oy klog ;(c(;c+;) =00

Let be A > 0; applying now the ergodic theorem with f = a114,<4 € L' (X, 1) we

obtain .
— Z ajly<a — / ap dp = a(A) p-—ae
n T a1 <A

Jjsn
so that, for every A > 0,
o1 N |
hmnmf - Z aj > hmnlnf - Z ajle,<a = a(A) p—ae
j<n j<n
and the results follows, letting A — 0. a

However, in terms of dimension, BAD is maximal: a result of Jarnik [13] states
that dimy BAD = 1 as we shall see below.

3.2. Sets F(A). Mahler and many others considered the sets F(N) of real
numbers in [0, 1) with partial quotients bounded by N > 2:
F(N)={z€[0,1); 2 =[0;a1,az,...] with a; < N Vi > 1}
More generally, if A is a finite alphabet of integers > 1, |A| > 2,
F(A)={x€0,1); z =[0;a1,as,...] witha; € AVi > 1}
All these sets are zero Lebesgue measure Cantor-type sets with positive Hausdorff
dimension. The first estimates of d(N) = dimg (F(N)) are due to Jarnik: for N > 8
4
Nlog?2 SdN)<1- legN'
In 1941 Good [10] proved that a,,, the solution of the equation

Z Qm(a’lwuaam)wza - 17

tends to dimpy (F(A)) as m — oo, which leads to better estimations.
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Recently, a joint work of Jenkinson and Pollicott [14] yields an algorithm to
compute these dimensions: it is interesting to note that

dimpy (F(2)) = 0.531280 ... dimpy(F(3)) = 0.68...

while
dimH(F(A)) < 1/2 if A= {1,4}.

3.3. A question of Montgomery. Montgomery [22] in his book proposes
the following classical problem: Find a normal number whose partial quotients are
bounded.

In 1980, R. Kaufman [18], using the structure of the sets F(N), obtained the
following deep result:

THEOREM 7. Suppose that F(N) has Hausdorff dimension > 2/3.Then F(N)
carries a probability measure p such that |i(t)| < c[t|™7 for a certain n > 0.

He shows in his construction that one may take n = 0.0007.

When Kaufman’s paper appeared, R.C. Baker [1] observed that combining
this with Jarnik’s computations and Davenport-Erdds-Leveque’s theorem gives the
existence of a normal number in BAD. Such a number can be taken from F'(3) since
F(N) fulfills Kaufman’s hypothesis for N > 3; but F(2) does not.

Actually, Kaufman’s estimations can be improved to give [26]:

THEOREM 8. Let A be a finite alphabet of integers > 1, |A| > 2. Suppose that
dimpg (F(A)) > 1/2. Then for all ¢ > 0 and 1/2 < § < dimpy (F(A)), we are able to
construct a probability measure p = p. 5, supported by F(A) such that

(1) w(I) < Cy|1)°, VI interval C [0, 1);

- 5(1-25)
(2) ()] < Ca(1 + J¢)* T Tat=s | vt > 0.

As a consequence there exist infinitely many normal numbers with partial quo-
tients € {1,2}; but the question remains open for alphabets yielding low Hausdorff
dimension such that {1,4} for example.

Sketch of Proof: Suppose A C [1,..., N].

1. We first observe that the set F'(A) may be endowed with two topological
structures: the metric structure of [0, 1] and the one of AV, which can easily be
compared on F(A):

a) If z,y € F(A) are such that a;(z) = a;(y), 1 < j < k and appi(z) #
aj+1(y), then

2
oy <
Qkyi(2)
b) If t and ¢t +h € [0,1) and 0 < h < 5 then the interval [t,¢ + h] C
la1,...,a¢), the cylinder {z € [0,1); a;j(z) = a;, 1 < j < £}, where £ is such that

Q(;(al,. .. ,ag) Z m

2. After Kaufman, we consider AV as the product of infinitely many blocks
Ao Jy to be specified, v some discrete measure on A7 and g = v xvx...insuch a
way the quantity log @ s to be equal a.e. — p to its mean value E,(log Q) =: log @),
for J multiple of Jg.

The condition (1) in the theorem can be seen to be satisfied.

3. It remains to evaluate

S|
i) :/0 e(ut) du(t), u>0.
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Put J = kJy and decompose any x into
PJ(.’E) +tPy_4 (I) )
Qu(a) +tQy-1(z)’

in turn can be decomposed into x 1 with pp, = v x ... X v so that
0 p Pr X Pk

I:[O§al($)7"'7a~]($)+t]:

k
N ! euPJ(CU)+tPJ_1<fE)
) = /0 ( / (1 G H o Yo (@) (e,

1
i) = / F(t)du(t)
Py+tP;_4

witth:/eu—-v——dk.
(t) ( 0,10, % -
A lemma, due to Kaufman, allows us to compare the p-integral of /' with the

A-one:
LEMMA 1. Let F be a function C! on [0, 1] such that |F'(¢)] < 1and |F'(¢)| < M.

Denote by my = fol |F(t)|?dt. Let now A be a probability measure on [0,1] and
denote by A(u) the maximum of At, ¢+ u] for ¢ € [0,1 — u]. Then we have

that we write

1
/ |F(t)] d\ < 2 + A(r/M)(1 + maMr—3),
0
for any » > 0.

So we are led now to estimate the following

1 " Py+1tPj_, P;+tP;_4
Fﬂdt:/// J it Syt dt) dprdpr
/0 il . ( e(uQJ+tQJ—1 QJ+tQ.J—1) ) dpidp

which contains an oscillating integral of the form jol e(f(t)) dt.
We plan to apply to it classical lemmas involving the behavior of f’, by distin-
guishing two cases:

LEMMA 2. If f is C? on [0, 1], satisfying |f'(¢)| > a and |f”(t)] < b, then we
have

! 1 b

LEMMA 3. If f is C% on [0, 1] and f/(t) = (at+B)g(t) where g satisfies [g(t)]| > a
and [¢'(t)] < b with b > a, then we have

1
b
./0 e(f(t))dt‘ < GW‘

4. Given ¢ > 0 we choose Jy, v and p as in the first step. Now we fix u > 0;
by using the three lemmas we get an estimation of |fi(u)| in terms of 7, @ and w.
Finally we choose k (or J) great enough to optimize this quantity in parameters Q
and r. This gives (2). OO0
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ABSTRACT. In this article we present three arithmetic methods for coding ori-
ented geodesics on the modular surface using various continued fraction expan-
sions and show that the space of admissible coding sequences for each coding is
a one-step topological Markov chain with countable alphabet. We also present
conditions under which these arithmetic codes coincide with the geometric code
obtained by recording oriented excursions into the cusp of the modular surface.

Introduction

Let H = {#z = = + 14y : y > 0} be the upper half-plane endowed with the
hyperbolic metric, ' = {z € H : |z| > 1, |Rez| < 1} be the standard fundamental
region for the modular group PSL(2,Z) = SL(2,Z)/{£I}, and M = PSL(2,Z)\H
be the modular surface which topologically is a sphere with one puncture (the
cusp) and two singularities (fixed points of elliptic elements). Let SH denote the
unit tangent bundle of H. Then the quotient space PSL(2,Z)\SH can be identified
with the unit tangent bundle of M, SM, although the structure of the fibered bundle
has singularities at the elliptic fixed points (see [K 1, §3.6] for details). Let 7 : SH —
SM be the projection of the unit tangent bundles. In all our considerations, we
assume implicitly that an oriented geodesic on M is endowed with a unit tangent
(direction) vector at each point and therefore is an orbit of the geodesic flow {¢'}
on M, which is defined as an R-action on the unit tangent bundle SM (see e.g.
[KH, §5.3, 5.4]). For an oriented geodesic v on M, its lift to H is any oriented
geodesic 7/ on H such that w(y') = .

In this article we will consider only oriented geodesics which do not go to the
cusp of M in either direction. The corresponding geodesics in F' contain no vertical
segments, and both end points of all their lifts to H are irrational. In what follows,
when we say “every oriented geodesic”, we refer to every geodesic from this set.
The set of excluded geodesics is insignificant from the measure-theoretic point of
view, more precisely, the set of vectors tangent to the excluded geodesics £ C SM
is invariant under the geodesic flow {¢'} and w(E) = 0 for any Borel probability
measure g invariant under {¢'}. This can be seen from the decomposition of this
set £ = ET U E™, so that ¢'(E™) (respectively, o~ *(E~)) escape to the cusp as
t — +oo. For any compact K C E* there exists T > 0 such that K Nt (K) =0
for any t > T. u(E*) > 0 would then contradict the Poincaré Recurrence Theorem
(see [KH, §4.1]).

Oriented geodesics on the modular surface M = PSL(2,Z)\'H can be symboli-
cally coded in two different ways. The geometric code with respect to the fundamen-
tal region F is obtained by recording the successive sides of F' cut by the geodesic,
and can be presented by a bi-infinite sequence of non-zero integers by assigning an
integer, positive or negative, depending on the orientation, to each excursion to the
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cusp. Another method (we call it arithmetic) is to use the boundary expansions of
the end points of the geodesic at infinity and a certain “reduction theory”. This
method was first introduced by Artin [Ar] for the modular group who used simple
continued fractions for the boundary expansions to prove the existence of a dense
geodesic on M. Artin’s method was used by Hedlund [Hed] to prove ergodicity of
the geodesic flow on M. If applied literally, this method gives a GL(2, Z)-invariant
code, but it does not classify geodesics on the modular surface. Artin’s method has
been modified by Series in [S1] to eliminate this problem, and further developed in
[BS, S2, S3] for other Fuchsian groups. Related work on coding geodesics can be
also found in [AF1, AF2, AF3, Arn, GL, S4].

In this article we give a unified approach for construction of arithmetic codes
for geodesics on the modular surface using generalized minus continued fractions.
Any irrational number z can be expressed uniquely in the form

1
r=mnyg— —

meT
ng — —

which we will denote by = = (ng,n1,---) for short. The “digits” n; are non—zero

integers determined recursively by n;y1 = (Tit1), Zip1 = —ﬁ, starting with
ng = (x) and x; = ~ﬁ, where (-) is a certain integer-valued function. The
function « — [z] = [z] + 1 (where |x] is the integer part of z, or the floor

function, i.e. the largest integer < z) gives the minus continued fraction expansion
first used for the arithmetic code in [K2, GK], although the notations in the present
paper are different from [K2, GK] where only one arithmetic code was studied.
(Notice that [x] is the smallest integer greater than z, and differs at integers from
the commonly used ceiling function.) This coding procedure for closed geodesics is
exactly the Gauss reduction theory for indefinite integral quadratic forms translated
into matrix language [K2], therefore we will refer to the above code as the Gauss
arithmetic code (G-code). We review it in Section 1. Using appropriate functions
(-) we reinterpret the classical Artin code (A-code) in these terms in Section 2
and describe an arithmetic code based on the nearest integer continued fraction
expansions of the end points in Section 3. The latter expansions were developed
and used by Hurwitz [H] in order to establish a reduction theory for indefinite real
quadratic forms, therefore we call the third code Hurwitz arithmetic code (H-code).

All three coding procedures are actually reduction algorithms which may be con-
sidered as generalized reduction theories for real indefinite quadratic forms trans-
lated into matrix language. Although they follow the same general scheme, the
notion of reduced geodesic is different in each case, and so are the estimates in
Theorems 1.1, 2.1, and 3.1.

The most elegant of the three codings is the Gauss arithmetic code obtained in
K2, GK] using minus continued fraction expansions of the end points, and inter-
preted in [GK] via a particular “cross-section” of SM. The set of such arithmetic
coding sequences was identified in [GK]: it is a symbolic Bernoulli system on the
infinite alphabet N’ = {n € Z,n > 2}, i.e. it consists of all bi-infinite sequences
constructed with symbols of the alphabet A'. We give similar interpretations for
the Artin and the Hurwitz codes, and show that the space of admissible sequences
for each code is given by a set of simple rules which can be described with the
help of a transition matrix of zeros and ones, and constitutes a one-step topologi-
cal Markov chain with countable alphabet. An explicit canonical Markov partition
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of the corresponding cross-section is presented for each arithmetic code. Symbolic
representation of the geodesic flow on M as a special flow for each code is given in
Section 4.

In contrast, the set of admissible geometric coding sequences is quite compli-
cated, and, as has been proved in [KU], is not a finite-step topological Markov
chain (see [KH, §1.9] for exact definitions). Therefore, there are geodesics whose
geometric code differs from any arithmetic code. It is worth noting that the H-code
comes closest to the geometric code: we show that for the class of geometrically
Markov geodesics—identified in [KU] as the maximal one-step topological Markov
chain in the set of all admissible geometric codes—the H-code coincides with the
geometric code.

Acknowledgments. We thank David Fried for bringing to our attention the paper by
Hurwitz [H], and the referee for helpful suggestions which improved the presentation
of this article. The second author acknowledges summer support from NSF grant
DMS-9704776.

1. Minus continued fraction coding (Gauss coding)

In this section we review the arithmetic coding procedure for geodesics on the
modular surface, using minus (or, backward) continued fraction expansions which
we call here G-expansions. Every real number o has a unique G-expansion a =
[ng,n1,n2,...] with ng € Z and ny,na,--- > 2, by setting no = [a] (the smallest

integer greater than «), a; = —E—_l—?; , and, inductively,
1
n; = |ay Qi1 = — .
(3 |— L-| I 1+ a; — n;
Conversely, any infinite sequence of integers ng, ni,na,... with n; > 2 for ¢ > 1 de-

fines a real number whose G-expansion is [ng, n1,n2,...]. The following properties
are satisfied (see [Z, K2|, and [K3| for the proofs):

(G1) « is rational if and only if the tail of its G-expansion consists only of 2’s,
i.e., there exists a positive integer [ such that ny = 2 for all k > [;

(G2) « is a quadratic irrationality, i.e. a root of a quadratic polynomial with
integer coefficients, if and only if its G-expansion is eventually periodic,
a = [ng,n1,... Nk, TEt1, .- Mktm| (With the periodic part being any-
thing but a tail of 2’s);

(G3) A quadratic irrationality « has a purely periodic G-expansion if and only
if o > 1 and o’ € (0,1), where o’ is conjugate to o, i.e. o’ and « are roots
of the same quadratic polynomial with integer coefficients;

(G4) If a = [ng; - 7], then 1/a/ = [, 71

(G5) Two irrationals «, 8 are PSL(2,7Z)-equivalent if and only if their G-expan-
sions have the same tail, that is o = [ng,ny,...| and 8 = [mg,m1, ... ]
with n;yx = m;y; for some integers k,[ and all i > 0.

From the theory of G-expansions (see [K3]), we have that if « = [ng,n1,...], then
the convergents v, = [ng,n1, ... ,nk] can be written as py/qr where p, and g are
obtained inductively as:

p2=0,p_1=1; pp=ngpr_1 —pr—2 for k>0
g2=-1,q1=0; g = Q-1 — qr—2 for k>0.
PRrOPOSITION 4. The following properties are satisfied:

D l=gp<qa<gqgp<..;
(i) pr-19k — Prqr—1 = 1, for all k > 0;
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(iii) Let T(z) = z + 1, S(z) = —1/z be the generating transformations for
PSL(2,Z), then for any z € HURU {co0}

T™ST™S...T™5(z) = [no,n1,..., g, 2] = DiZ = Pht ;
qk? — qk—1

(iv) The sequence {r} is monotone decreasing, converges to «a and

pe/ar —a < 1/qx;

(v) If o is irrational, then there is a sequence of denominators {qx, } such that

_qf'J_>2.

Ak,

PROOF. Proofs of the properties (i)—(iv) can be found in [K3]. We give a proof
of (v) here. Since « is irrational, its G-expansion contains infinitely many entries
strictly greater than 2, hence we can find a sequence kj;, such that n;, > 3. But
this implies that

Gy = Moy Qlej—1 — Qh;—2 > 3qk;—1 — Qh;—1 = 2k, 1
Using (i) we obtain

Ak; > qk;

Qkj_y k;—1

> 2.
]

DEFINITION 1. An oriented geodesic on H is called G-reduced if its repelling
and attracting end points, denoted by u and w, respectively, satisfy 0 < u < 1 and
w > 1.

To a G-reduced geodesic vy, one associates a bi-infinite sequence of positive
integers [y] = [...,n_2,n_1,n0,m1,n2,... |, called its G-code, by juxtaposing the
G-expansions of 1/u= [n_y,n_2,...] and w = [ng,n1,n2,...].

Reduction algorithm. We present the procedure of reducing any geodesic to
a G-reduced one. This will help us extend the symbolic coding to all geodesics on

H.

THEOREM 1.1. Every oriented geodesic on H is PSL(2,Z)-equivalent to a G-
reduced geodesic.

PROOF. Let v be an arbitrary geodesic on H with irrational end points v and w,
and [ng, n1,n2, ... | be the G-expansion of w. We construct the following sequence
of real pairs {(ux, w)} (k > 0) defined by ug = u, wy = w and:

Wyt = ST ™™ . ST ™MST "w, wpyq = ST ™ ... ST ™8T "oy,

Since w is irrational, w1 = [Ng41, Nkt2, ... | > 1. By Proposition 4 (iii),
, W1 — Pl
w=T"ST™S . . T"™S(wyi1) = PkWkA1 = Pk—1
QWhk+1 — Qk—1

, Ukt — Dh—
U= TnOSTmS_ ) .T’“"S(UI\«,H) _ PkUk+41 Pk—1 ’
qkUk+1 — Gk—1
hence

. 1U — DL ‘_ 1 o
(1.1) U1 = qr—1 Pr—1 _ k-1 +— _ k-1 ter
qrU — pi. a  qi(pe/ak —u)  ar
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where &, — 0. Moreover, using property (iv), we have px/qr \, w, hence, for large
enough k, |pe/qr — u| > 3w — u| and
1 2
= < .
Glpe/ar —ul — qilw — |
Property (i) and the previous relation imply that, for large enough k, |ex| < 1/qx
and

lek

_ 1 . i 1
0<qk_1_._<uk+1:qk_1+gk<(_]}_”_l+_.§1.
qx qk Gk qk qk
Therefore, we can find a positive integer [ such that 0 < u;4+1 < 1. The geodesic
with end points ;41 and w4 is G-reduced and PSL(2,7Z)-equivalent to . O

REMARK 1. (i) The proof of Theorem 1.1 gives also the algorithm for G-
reducing a geodesic : one has to construct the sequence {(uy,wy)} inductively
until 0 < wp < 1; (ii) any further application of the reduction algorithm to a re-
duced geodesic yields reduced geodesics whose G-codes are left shifts of the G-code
of the first reduced one.

Now we associate to any oriented geodesic v on H the G-code of a reduced
geodesic PSL(2,Z)-equivalent to v, e.g. obtained by the reduction algorithm de-
scribed in the proof of Theorem 1.1. Since our goal is to define a symbolic coding
for the geodesic flow on M, we need to show that this code is PSL(2,Z)-invariant,
i.e. that two oriented geodesics on H are PSL(2,Z)-equivalent if and only if their
G-codes coincide up to a shift. We are going to present a geometric proof of this fact
in Corollary 1, by constructing a cross-section of the geodesic flow on M, directly
related to the notion of G-reduced geodesics.

Construction of the cross-section. A cross-section for the geodesic flow is
a subset of the unit tangent bundle SM which each geodesic (maybe with some
exceptions) visits infinitely often both in the future and in the past. We construct
a cross-section Cg for the geodesic flow on M, such that successive returns of a
geodesic v to Cg correspond to left-shifts in the G-code of v. We define Cg¢ = PUQ
to be a subset of SM, where P consists of all tangent vectors with base points in
the circular side of F' and pointing inward such that the corresponding geodesic on
H is G-reduced, i.e. 0 < u < 1 and w > 1 and @ consists of all tangent vectors with
base points on the right vertical side of F' pointing inwards, such that if v is the
corresponding geodesic, then T'S(7y) is G-reduced (Figure 8). This is a clarification
of the definition given in [GK]. Notice that C¢ = w(C,) where Cy is the set all
unit tangent vectors with base points on the unit semi-circle |z| = 1 and pointing
outward such that the associated geodesic on H is G-reduced.

THEOREM 1.2. Cg¢ is a cross-section for the geodesic flow on M.

ProOOF. Let v be an oriented geodesic on M. It is presented as a bi-infinite
sequence of PSL(2,7)-equivalent geodesic segments on F. Any segment, extended
to a geodesic on H, can be reduced according to Theorem 1.1. Thus, there exists
a G-reduced geodesic 7' on H such that w(y’) = . Notice that ' intersects the
right half of the unit semicircle |z| = 1 in such a way that the unit tangent vector
of 4" at the intersection point belongs to the set C,. Therefore either v N F or
ST~(y') N F is one of the segments of v on F. In either case 7 intersects Co at
least once. Denote this intersection point by xg € Co C SM, and let us follow the
geodesic on M from this starting point. If xg € P, then the corresponding geodesic
~v" on H from u to w is G-reduced. In order to prove that 7 intersects Cz again,
it is enough to notice that +' intersects the left-half of the semi-circle |z — ng| = 1,
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FIGURE 8. The cross-section Cg = PUQ

where ng = [w], such that for the unit tangent vector at the intersection point
xj € SH, we have ST (x}) € Cy. Hence x; = n(x}) € Cg, and v intersects Cg
at x1. Moreover, x1 € Cg is the next intersection point of v with C¢ after x3. One
obtains a similar property in the case where x¢ € @, by studying the G-reduced
geodesic 4/ on H corresponding to 75 (xo). a

Every oriented geodesic v on M can be represented as a bi-infinite sequence
of segments o; between successive returns to C. To each segment o; we associate
the corresponding G-reduced geodesic +; on H. Thus we obtain a sequence of
reduced geodesics {v;}52__, representing the geodesic . If one associates to 7;
its G-code, [v;] = [...,n_2,n_1,n0,n1,n2,...] then v41 = ST "°(y;) and the
coding sequence is shifted one symbol to the left. Thus all G-reduced geodesics ;
in the sequence produce the same, up to a shift, bi-infinite coding sequence, which
we call the G-code of v and denote by [v]. The following Corollary shows that the
G-code is well-defined.

COROLLARY 1. The G-code is PSL(2,Z)-invariant, i.e. two geodesics 7,7’ on
H are PSL(2,Z)-equivalent if and only if for some integer [ and all integers ¢ one

has n} = g1, where [y] = [n]2_, and [y] = [n]]2 ..

PRrROOF. Let v, be PSL(2,Z)-equivalent. Then n(y) = w(y') is the same
oriented geodesic on M. By choosing the same starting point xo, one obtains the
same bi-infinite sequence of segments o; between successive returns to C¢ and hence
the same G-code up to a left shift. Conversely, a left shift of a G-code corresponds
to an application of ST~™ to the end points of the geodesic, i.e., it produces a
PSL(2,Z)-equivalent reduced geodesic. O

EXAMPLE 16. Let v be a geodesic on H from u = /5 to w = —/3. The
G-expansions are

w=[-1,2,23], 1/u=/[1,2622].

First, we need to find an equivalent G-reduced geodesic. For this we use the al-
gorithm described in the proof of Theorem 1.1 to construct the sequence (uy,w;),
(ug,wa), ..., until we obtain a G-reduced pair equivalent to (u,w). We have

w; = ST (w) = (1+v3)/2, uy =ST(u)=(1—-5)/4,
wy = ST 2(w1) =1+ 1/V3, ug = ST 2(u;) = (7 - V/5)/11
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and the pair (uz2, w9) is already G-reduced. The minus continued fraction expansions
of 1/us and wq are

we = [2,3], 1/us=[3,2,2,6,2],

hence [v] = [2,6,2,2,3,2,3] = [...,2,2,6,2,2,2,6,2,2,3,2,3,...]. This corrects
a misprint in the Example of [GK].

Let NVZ be the Bernoulli space on the infinite alphabet Ng = {n € Z,n > 2}.
We proved that each oriented geodesic which does not go to the cusp of M in either
direction corresponds to its G-code, [v] € Ng. Conversely, each bi-infinite sequence
T € Ng which does not have an infinite tail of 2’s in either direction produces a
geodesic on H from u(z) to w(z) (irrational end points), where

w(;v):[no,nl,...] 5 :(n_l,n_g,...].

u(z)
This correspondence will extend to all oriented geodesics on M if we extend the
notion of G-reduced geodesic to those with 0 < u < 1 and w > 1, as can be easily
seen from the proof of Theorem 1.1. For example, a geodesic which goes from the
cusp down to the point i € OF and back to the cusp will be coded by the sequence
[2,3,2]. Thus the set of all oriented geodesics on M can be described symbolically
as the Bernoulli space (minus one point) X¢ = NZ \ [2].

The partition of the cross-section. The infinite partition of the cross-
section C¢ corresponding to the G-code can be constructed as follows. We parame-
terize the cross-section Cy by (¢, 6), where ¢ € [0, 7/2] parameterizes the circle arc
(counterclockwise) and 6 € [—7/2,7/2] is the angle the unit vector makes with the
positive horizontal axis (counterclockwise). The angle # depends on the position ¢
and is determined by the condition that the corresponding geodesic is G-reduced.

The partition of Cy (and that of C obtained by projection) corresponding to
the arithmetic G-code (“the horizontal triangles”) and its iteration under the first
return map R to the cross-section C, (“the vertical triangles”) is shown on Figure 9.
Its elements (“the horizontal triangles”) are labeled by the symbols of the alphabet
Ng, €y = Unen,Cr and are defined by the following condition: C), consists of
all tangent vectors x in Cy such that the corresponding geodesic in H goes from
O<u<lton—1<w<n,ie, if z is its coding sequence, then ng(x) = n.

We also observe that the elements C,,, and R(C,,) intersect transversally for all
n,m > 2, thus, according to Theorem 7.9 of [Ad], the infinite partition is Bernoulli.
This gives an alternative geometric way to see that all arithmetic coding sequences
are realized.

‘When does the G-code coincide with the geometric code? The relation
between the geometric code and the arithmetic G-code of an oriented geodesic on
M was established in [K2, GK]: the geometric code and the arithmetic G-code of

a geodesic v on M coincide if and only if % + - 1H < %, where [v] = [n]82_ ..

2. Alternating continued fraction coding (Artin coding revisited)

In this section we describe the arithmetic coding of geodesics on the modular
surface, using alternating continued fraction expansions which we call A-expansions.
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R(C2) R(C3) R(Cy)
72 ] e

Csy

—m/2

FIGURE 9. Infinite partition for the G-code and its image under
the return map R

The result will be a modified Artin code, as described by Series [S1]. Every irra-
tional number « has a unique A-expansion

a = [ng,n1,n9,...| =ng —
m —
ng — —

with ng € Z and |n;| > 1, by setting ng = [a], a1 = _+7m , and, inductively,

«

1

oG — Ny

la] fa>0
[a] ifa<0.

n, = [ou], aip1 = — ,  where [a] = {
Notice that n;n;y1 < 0, hence the use of terminology of alternating continued
fractions. Conversely, any infinite sequence of nonzero integers with alternating
signs ng,n1,n2, ... defines a real number whose A-expansion is [ng,n1,nz,... |.

REMARK 2. The properties of A-expansions can be easily established if one
notices the relation with simple continued fraction expansions: if a > 0 then
1 1
a = [ng,ni,n2,...| =ng— ——————=ng + —————— = | Mg, M1, ... |
T e A
! 1 ' 1
ng — — ng -+ —

where m; = (—1)*n;, and |mg,my, ... ] is the simple continued fraction expansion
of a.

The following properties are proved using the corresponding properties of the
simple continued fractions, see e.g. [O]:

Al) « is a quadratic irrationality if and only if its A-expansion is eventuall
y Y p y
periodic, @ = [ng, n1, ..., My Tt 15+ 3 Tk )
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(A2) A quadratic irrationality  has a purely periodic A-expansion if and only
if |a| > 1 and —1 < sgn(a)a’ < 0, where o’ is conjugate to a;
(A3) If a = 71,7k, then 1/a/ = [mg;—71);
(A4) Two irrationals «, 8 are PSL(2, Z)-equivalent if and only if their A-expan-
sions have the same tail.
Similarly to the theory of minus continued fraction expansions, if & = [ng,n1, ... |,
then the partial fractions r = [ng,n1,...,n%| can be written as pi/qi, where py
and g are obtained inductively as:

p—2=0, p_1 =15 pxr = ngpPr-1 — pr—2 for k>0
g2=-1,91=0; g =nggr—1 — g2 for k>0.
PROPOSITION 5. The following properties are satisfied:
(1) 1=qo0 <lg1f <lgof < ..
(it) pr—19k — prqe—1 = 1, for all & > 0;
(iii) Let T(z) = z+ 1, S(z) = —1/z be the generating transformations for
PSL(2,Z), then for any z € HUR U {oo}
TMST™S ... T™S(2) = [no,n1, .y Ny 2] = Pz = Pk-t ;
i gk = k-1
(iv) The sequence {ry} converges to a and |py/qr — | < 1/¢;
(v) If @ > 0, then either ?137?5—1 > /2 or q—f}’i—fl < —/2; if @ < 0, then either

s < —V2or B > /D,

d2k -1

ProoF. The properties (i)—(iv) are proved similarly to those in Proposition 4,
so we prove (v). We assume that o > 0 (the case o < 0 can be treated in a similar
way). Then

=g < <-<g<qa<-¢<-¢<g<g<..,

thus 0 < gar—1/gor < 1, and —1 < qox/gok41 < 0. Taking into consideration the
order of the signs and the fact that qx = nrqr_1 — gqx_2, one obtains
(2.1) lae] = Inel - lge-1] + lax—2]-

Indeed, if k = 4m, then qx > 0, gx—1 > 0, gx—2 < 0, ng > 0, and (2.1) follows. (The
cases k = 4m+1,4m+2,4m + 3 can be treated similarly.) From (2.1) and property
(i), we get

qe—2| _ 1
lak| = || - lge—2| + lge—2| = lge—2|(Ink| + 1) = 2|qe—2| = | ar] | <3
and since k2 < 0,
qk
1 _ _ _
4_S(Ik 2:% 2 Gk 1<0
2 qr. Q-1 Q
Therefore we either have
_ 1 1 )
0<q2k1§ or ——=< @2k < 0.

G2k —\/_5 V2 T Garsa
O
DEFINITION 2. An oriented geodesic on H is called A-reduced if its repelling

and attracting end points, denoted by u and w, respectively, satisfy |w| > 1 and
—1 < sgn(w)u < 0.
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To an A-reduced geodesic v, one associates a bi-infinite sequence of nonzero inte-
gers (with alternating signs) [y] = [...,n_2,n_1,n0,n1, 72, ... |, called its A-code,
by juxtaposing the A-expansions of 1/u = [n_1,n_q,... | and w = [ng,n1,n2,... |.

Reduction algorithm. The following theorem extends this symbolic coding
to all geodesics on H.

THEOREM 2.1. Every oriented geodesic on H is PSL(2,Z)-equivalent to an
A-reduced geodesic.

PROOF. Let v be an arbitrary geodesic on H, with irrational end points u and
w. Let [ng,n1,n2...| be the alternating continued fraction expansion of w. We
construct the following sequence of real pairs {(uk, wi)} (k > 0) defined by uwg = u,
wo = w and:
Wy = ST™™ 8T ™MST ™w, gy =ST ™. ST ™MST "oy
Notice that w1 = [Pg41, k2, .- |, |[wes1] > 1, and by Proposition 5 (iii),
Wh+1 — Dh—
w=TYST™S .. TS (wpyy) = Lot ~ Pl
JkWk+1 — k-1

u — Dk—
u=T™ST™S ... T™ S (upy1) = Dokt “Phol
QeUk+1 — Q-1

hence
_ Pk—1
11U — — _ ]
(2.2) Uyt = Q-1 Pr—1 _ Gk-1 q;: _ k-1 6
gkt — Pk qx u— gk qr

where 6, — 1. If w > 0, we have wy > 1 and wor1 < —1. By Proposition 5 (v),
one can find a positive integer [ such that either ug; € (—1,0) or ug 1 € (0,1). Then
either a geodesic from wug; to wo; or a geodesic from ug 11 to wo1 is A-reduced and
PSL(2,7Z)-equivalent to v. The case w < 0 is treated similarly. O

REMARK 3. (i) The proof of Theorem 2.1 gives also the algorithm for A-reducing
a geodesic y: one has to construct inductively the sequence {(uy, wi )} until |wy| > 1
and sgn(wy)uy € (=1,0); (ii) any further application of the reduction algorithm to
an A-reduced geodesic yields reduced geodesics whose A-codes are left shifts of the
A-code of the first reduced one.

Similarly to the situation in Section 1, we define the A-code of an oriented
geodesic v on H to be the A-code of a reduced geodesic PSL(2, Z)-equivalent to +,
and prove its PSL(2,Z)-invariance by constructing a cross-section of the geodesic
flow on M, directly related to the notion of A-reduced geodesics.

Construction of the cross-section. We describe the cross section C4 for the
geodesic flow on M, such that successive returns to the cross section correspond to
left-shifts in the arithmetic A-code. Let C4 = P U @1 U Q2 be a subset of the unit
tangent bundle SM, where P consists of all tangent vectors with base points in the
circular side of F' and pointing inward such that the corresponding geodesic is A-
reduced; J; consists of all tangent vectors with base points on the right vertical side
of F' pointing inwards, such that if -y is the corresponding geodesic, then T'S () is A-
reduced; (2 consists of all tangent vectors with base points on the left vertical side
of F pointing inwards, such that if v is the corresponding geodesic, then T715(7y)
is A-reduced. Notice that C'y = 7(C,) where C, is the set all unit tangent vectors
with base points on the unit semi-circle |z| = 1 and pointing outward such that the
associated geodesic on H is A-reduced (Figure 10).
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FiGURE 10. The cross-section Cy = PU Q1 U Q2

One can show similarly to the proof of Theorem 1.2 that Cy = PU Q1 U Q4
is indeed a cross-section for the geodesic flow on M, hence every geodesic v can
be represented as a bi-infinite sequence of segments o, between successive returns
to C'4. To each segment o; is associated the corresponding A-reduced geodesic 7;,
so that [v;11] differs from [+;] by a left shift. Thus we associate to v a bi-infinite
coding sequence, defined up to a shift, which we call theA-code of v and denote by
[v]. The argument of Corollary 1 shows that the A-code is PSL(2,Z)-invariant.

The set of all oriented geodesics on M can be described symbolically as a
countable 1-step Markov chain X C J\/’% with the infinite alphabet Ny = {n €
Z,n # 0} and transition matrix A,

1 ifnm <0,
0 otherwise.

(2.3) A(n,m) = {

Each oriented geodesic « corresponds to its A-code, [v] € X 4 and each bi-infinite
sequence of nonzero integers with alternating signs x € X 4 produces a geodesic on
H from u(z) to w(z), where

w(x) = [ng,n1,...] m =[n_1,n_2,...].

The partition of the cross-section. The infinite partition of the cross-
section C4 corresponding to the A-code can be constructed as follows. We pa-
rameterize the cross-section C, by (¢,6), where ¢ € [0, 7] parameterizes the unit
semicircle (counterclockwise) and 6 € [—n/2,(37)/2] is the angle the unit vector
makes with the positive horizontal axis (counterclockwise). The angle 8 depends on
¢ and is determined by the condition that the corresponding geodesic is A-reduced.

The partition of C, (and therefore of C4 by projection) corresponding to the
arithmetic A-code (“the horizontal triangles”) and its iteration under the first return
map R to the cross-section C, (“the vertical triangles”) is shown on Figure 11. Its
elements (“the horizontal triangles”) are labeled by the symbols of the alphabet N 4,
Co = Unen, Cpn and are defined by the following condition: C,, = {x € C,,no(x) =
n}, lLe. it consists of all tangent vectors x in C, such that the coding sequence
2z € X 4 of the corresponding geodesic with this initial vector has its first symbol in
the A-code ng(z) = n. Thus, for n > 1, C,, consists of all tangent vectors x € C,
such that the corresponding geodesic goes from —1 < u < 0ton—1 < w < n.
We call this part of the cross section the positive part, and denote it by C} (and
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FI1GURE 11. Infinite partition for the A-code and its image under
the return map R

let PT U QT UQJ denote its corresponding projection on Cy4). For n < —1, C,
consists of all tangent vectors x € C, such that the corresponding geodesic goes
from0 <u<1lton—1<w<n. Wecall this part of the cross section the negative
part, and denote it by C; (with P~ U Q] U Q5 denoting n(C,)).

Some results of this section can be illustrated geometrically since the Markov
property of the partition is equivalent to the Markov property of the shift space.
If no(x) = n and ny(x) = m for some x € Cy4, then R(Cy) N Cp, # 0. Therefore,
as follows from Figure 11, the signs in the A-code must alternate, because R(C,,) N
Cm # 0 < nm < 0. Moreover, all intersections are transversal, hence, according to
Theorem 7.9 of [Ad], the partition is Markov.

When does the A-code coincide with the geometric code? The next
theorem gives a sufficient condition for the geometric code and the arithmetic A-
code of a geodesic v on M to coincide.

THEOREM 2.2. The geometric code and the arithmetic A-code of a geodesic ~y
coincide if |n;] > 2 and n;n1 < 0 where [v] = [n; |2 _ .

ProOF. Let z = {...,n_2,n_1,n0,n1,...} be a sequence of integers with
[n;] > 2 and nyn;p1 < 0. Consider the geodesic y(z) on H, from
1 1 1
ul{x)= = to w(z) = (ng,n1,...) =ng — .
( ) (7’L*1,n_2,...) 1 ( ) ( 07 ) 0 1

n_y— ny ——

1

n_g— —

Since x € X4, the A-code of v(z) is [y(z)] = [n_2,n_1,n0,71,...]. We showed
in [KU, Theorem 1.4], that if a sequence x satisfies |n;| > 2 and |- + ——]

niy1 ! —
1, then such geodesic v(z) from u(z) to w(z) has the geometric code [y(z)] =
[...,n_1,n0,n1,n3,...]. Therefore the geometric code and the A-code of 7(vy(z))
coincide (up to a shift). O
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3. Nearest integer continued fraction coding (Hurwitz coding)

In this section we describe the arithmetic coding procedure for geodesics on the
modular surface, using the nearest integer continued fraction expansions, and the
corresponding reduction theory for real quadratic forms with positive discriminant
(indefinite real quadratic forms) developed by Hurwitz [E] (see also [F]). Every
irrational number o has a unique H-expansion o = (ng,n,na,...) with ng € Z and

[n;| > 2 for i > 1, by setting ng = {a) (the nearest integer to o), a; = —E—_ln—o, and,
inductively,
1
ng = (CY1> s Gy = — .
Q; — Ny
Notice that if n; = £2, then n;n;,11 < 0. Conversely, any infinite sequence of
integers ng,n1,ng,... with |n;| > 2 for ¢ > 1 which does not contain the pairs

{2,p} and {-2,—p} for p > 2 defines an irrational number whose H-expansion is
(no,n1,nz2,...). The following properties are satisfied (see [H]| for more details):

(H1) « is a quadratic irrationality, i.e. a root of a quadratic polynomial with
integer coefficients, if and only if its H-expansion is eventually periodic,
Q= <’I’L0,TL1, ceey My M1y - 77’Lk+m);

(H2) A quadratic irrationality « has a purely periodic H-expansion if and only
if ja| > 2 and sgn(a)a’ € [r — 1,r], where o is conjugate to a and
r=(3-v5)/2;

(H3) Two irrationals o, 8 are PSL(2, Z)-equivalent if and only if their H-expan-

sions have the same tail or one has 1/r = (3) as a tail, and the other has
—1/r = (=3) as a tail.

DEFINITION 3. An oriented geodesic on H is called H-reduced if its repelling
and attracting end points, denoted by u and w, respectively, satisfy |w| > 2 and
sgn(w)u € [r — 1,7], where r = (3 — /5)/2.

We remark that the H-expansion satisfies an asymmetric restriction (if n, = £2,
then n;n,41 < 0), and the statement “if & = (77, -, M), then 1/a’ = (Ag; - 77)”
is not always true. For example, if one considers the conjugate quadratic irrational-
ities o = (15 + 12v/2)/7 and o = (15 — 12¢/2)/2, then (o) = (5,2, -3), but
(/) = (—4,-2,4). For that reason, we cannot construct a meaningful symbolic
sequence for an H-reduced geodesic just by juxtaposing the H-expansions of w and
1/u. In order to associate to an H-reduced geodesic a bi-infinite sequence of integers,
we use a different expansion for 1/u introduced by Hurwitz, and called the H-dual
ezpansion. Every irrational a has a unique H-dual expansion o = {ng,ni,na,...)

with ng € Z and |n;| > 2 for i > 1, given by ng = {a), a1 = —a_lno and,
inductively,
1
ni = <<al>> ) Qi) = ‘Oéi —n 3
where

(o)) = {<a> —sgn(e) if sgn(a)((a) —a) >

(a) otherwise
Notice that if n;41 = £2, then n;n, 41 < 0, and moreover if « = (77, .-, k), then
1ol = ().
If o = (ng,n1,...), then the convergents r, = (ng,ni,...,ng) can be written

as pr/qr where py and g, are obtained inductively as:
p—2=0, po1=1; px =ngPr-1 — pr-2 for k>0
g—2=-1, g1 =0; qu =ngGr-1 — gx—2 for k>0.
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The proof of the following Proposition is contained in [H].

PROPOSITION 6. The following properties are satisfied:

(i) =g < |q1| < IQQI <...;

(i) pr—1qr — Prqr—1 = 1, for all k > 0;

(i) Let T(2) = z+ 1, S(z) = —1/z be the generating transformations for

PSL(2,Z), then for any z € HURU {o0}
TrST™MS . T™S(2) = [ng,n1, ... ynge, 2] = Dhz = Phot ;
9Kz — Qk—1
(iv) The sequence {ry} converges to a and |px/qx — o < 1/q2;

(v) q—:lf—l € [nk —rng+ 1 —7] if ng > 0, anda‘?f—l € [k — 1+ rny+r]if

ny < 0; in particular, [ #-[ > 2 —r = %

To an H-reduced geodesic v, one associates a bi-infinite sequence of integers
(v) ={(...n-1,n0,n1,...), by juxtaposing the H-dual expansion of 1/u and the H-
expansion of w. Observe that |n;| > 2 and the only additional restriction on n;’s is
that if n; = £2, then n;n;; < 0.

Reduction algorithm. We describe the reduction procedure of any geodesic
to an H-reduced one.

THEOREM 3.1. Every oriented geodesic on H is PSL(2,Z)-equivalent to an
H-reduced geodesic.

PrOOF. For the sake of completeness, we present the proof following Hurwitz
[H]. Let v be an arbitrary geodesic on H, with irrational end points u and w, and
assume that u < w. Let (ng,n1,ng,...) be the H-expansion of w, and suppose that
its tail is different from (3) (the situation when the tail of w coincides with (3) can
be treated similarly). We construct the following sequence of real pairs {(ug, wg)}
(k > 0) defined by ug = u, wg = w and:

W1 = ST ™ ST ™MET ™w, wupyy = ST ™. . ST ™MST ™.

Notice that wi1 = (Pk41, Nkye, ... ) and by Proposition 6 (iii),

PkWk+1 — Pk—1 PrUk+1 — Pk—1
w = u =

GrWi+1 — Gk—1 ’ qrUk+1 — k-1 '
Hence .
U — Pl _ _
Uk+1:qk1 Pk 1:% 1_|_ 5 :(Jk 1+€k,
QU — Pk & Gpe/ae —vw)  qk

where g, > 0 (for large enough k) and &, — 0. For infinitely many k's, ni, # 2, 3,
and one can find a subsequence k; such that
W41 > 2, Ngyq1 > 2, and ng, = —2,-3,44, ...
or
W41 < =2, g1 < —2, and g, = —3,+4,....
Using Proposition 6 (v), one has, in the first case

U < —-2+4ror ak,
Gk;—1 Qhj—1

1
Z24d—r = up41 € [:"m“i"flcwm‘FEkj}

and, in the second case,

qk; qk; 1 1 ]
M o 3yror By s g€ |t —— e |
Tk; -1 Qr; -1 S [—3+r by Tk
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Since 1/(=2+7)=r—1,1/(=3+7r)=—r, 1/(d=r)<r<l—-r,and 0 < &g, — 0,
there exists an integer [ such that wy, 11 > 2 and ug, 41 € [r — 1,7] or w41 < =2
and uy,+1 € [-r,1—r]. The geodesic with end points uy,+1 and wy, 11 is H-reduced
and PSL(2,7Z)-equivalent to ~.

We finish the proof by explaining how one can derive the reduction procedure
for the case u > w. Let w =< ng,ny,--- > and consider, as before, the sequence of
real pairs {(ug, wr)} (k > 0) defined by ug = u, wp = w and:

Wyt = ST ™ .. ST™™MST 0w, gy = ST ™ ... ST ™ ST "oy,

Since —u < —w, one can apply the reduction procedure described above to the
geodesic ¥ from 4 = —u to @ = —w. Notice that —w =< —ng, —nq,--- > and the
sequence of pairs {(@g, W)} (k > 0) is defined by @g = @, Wy = W and:

Wiy = ST™ . STMET™W, Uy = ST™ ... ST™MET0u.

Using the identity ST™(—w) = —ST " "w, one has Wy = —wy, and @, = —a,. From
the proof above, there exists a positive integer k such that the geodesic with end
points 4y and Wy is H-reduced and PSL(2,Z)-equivalent to 4. Thus, the geodesic
from uy = —ay, to wy = —Wy, is also H-reduced and PSL(2,7Z)-equivalent to v. [

REMARK 4. (i) The proof of Theorem 3.1 gives also the algorithm for H-reducing
a geodesic v: one has to construct inductively the sequence {(ug, wi)} until |wi| > 2
and sgn{wy)ug € [r — 1, 7]; (ii) any further application of the reduction algorithm
to an H-reduced geodesic yields reduced geodesics whose H-codes are left shifts of
the H-code of the first reduced one.

As in the previous sections we define the H-code of an oriented geodesic v on
H to be the H-code of a reduced geodesic PSL(2,Z)-equivalent to v, and prove
its PSL(2, Z)-invariance by constructing a cross-section of the geodesic flow on M,
directly related to the notion of H-reduced geodesics.

Counstruction of the cross-section. We describe the construction of the
cross section C'y for the geodesic flow on M, such that successive returns to the
cross section correspond to left-shifts in the H-code. We define Cy = PU Q1 U Q>
to be a subset of the unit tangent bundle SM, where P consists of all tangent
vectors with base points in the circular side of F' and pointing inward such that
the corresponding geodesic is H-reduced; @1 consists of all tangent vectors with
base points on the right vertical side of F' pointing inwards, such that if v is the
corresponding geodesic, then T'S(y) is H-reduced; Q2 consists of all tangent vectors
with base points on the left vertical side of F' pointing inwards, such that if ~ is
the corresponding geodesic, then T7'S(v) is H-reduced. Notice that Cy = 7(C},)
where C}, is the set all unit tangent vectors with base points on the unit semi-circle
|z] = 1 and pointing outward such that the associated geodesic on H is H-reduced
(Figure 12).

One can show similarly to the proof of Theorem 1.2 that Cy = P U Q1 U @5
is indeed a cross-section for the geodesic flow on M, hence every geodesic «y can
be represented as a bi-infinite sequence of segments o; between successive returns
to Cyr. To each segment o; is associated the corresponding H-reduced geodesic v;,
so that [v,11] differs from [v;]| by a left shift. Thus we associate to v a bi-infinite
coding sequence, defined up to a shift, which we call the H-code of v and denote by
(7). The argument of Corollary 1 shows that the H-code is PSL(2,Z)-invariant.

The set of all oriented geodesics on M can be described symbolically as a
countable I-step Markov chain X g C Nf% with infinite alphabet Ny = {n € Z,|n| >
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FIGURE 12. The cross section Cyg = PU Q1 U @,

2} and transition matrix H,

(3.1)

H(n,m) 0 if |n| =2 and nm >0,
,m) =
1 otherwise.

Each oriented geodesic 7 corresponds to its H-code, (7) € Xy and each bi-infinite
sequence of nonzero integers x € X g produces a geodesic on H from u(z) to w(z),

where .
w(x) = (ng,ng,...) , —={no,n-1,...).

u(z)

The partition of the cross-section. The infinite partition of the cross-
section C'y corresponding to the H-code can be constructed as follows. We pa-
rameterize the cross-section Cj, by (¢,6), where ¢ € [0, w] parameterizes the unit
semicircle (counterclockwise) and 6 € [—n/2,(37)/2] is the angle the unit vector
makes with the positive horizontal axis (counterclockwise). The angle 6 depends on
the position ¢ and is determined by the condition that the corresponding geodesic
is H-reduced.

The partition of Cp, (and therefore of Cy by projection) corresponding to the
arithmetic H-code (“the horizontal rectangles”) and its iteration under the first
return map R to the cross-section C}, (“the vertical rectangles”) is shown on Figure
13. Its elements (“the horizontal rectangles”) are labeled by the symbols of the
alphabet Ny, C), = Unen, Cn and are defined by the following condition: (), =
{x € Ch,no(x) = n}, i.e. it consists of all tangent vectors x in C}, such that the
coding sequence x € X of the corresponding geodesic with this initial vector has its
first symbol in the H-code ng(xz) = n. Thus, for n > 2, C,, consists of all tangent
vectors x € C}, such that the corresponding geodesic goes from r — 1 < u < r to
n—1/2 <w < n+1/2. For n < =2, C, consists of all tangent vectors x € C}, such
that the corresponding geodesic goes from —r <u < l—rton—-1/2 <w <n+1/2.

Some results of this section can be illustrated geometrically. If ng(x) = n
and ni(x) = m for some vector x € Cy, then R(C,) N Cy, # 0. Therefore, as
follows from Figure 13, if R(C,,)NC,y, # 0 and n = £2, then nm < 0. Moreover, all
intersections are transversal, hence, according to Theorem 7.9 of [Ad], our partition
is Markov.

When does the H-code coincide with the geometric code? The next
theorem gives a sufficient condition for the geometric code and the arithmetic H-
code of a geodesic v on M to coincide.
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R(C3) R(Cy4)
R(C2)

7 7
///// C_y ///f

R(C_3)

R(C,,4) R(C_g)

Figure 13. Infinite partition for the H-code and its image under

the return map R

THEOREM 3.2. The geometric code and the arithmetic H-code of v coincide if
|n;| > 2 and

1 1 1
(32) - + S PR
N Myl 2
where () = (ni)72_ -
ProoF. Let x = {...,n_2,n_1,n9,n1,...} be a sequence of integers with
[n;| > 2 and satisfying (3.2). Consider the geodesic v(z) on H, from
1 1 L
wl(z) = = to w(z) = (ng,ny,...) =ng — ————.
@)= ima ) 1 () = (no,ma,...) = o 1
n_.j— ————— ny — —
1 .
n_g — —

Since z € Xy, the H-code of y(z) is (y(z)) = (n_2,n_-1,n0,n1,...). We showed in
[KU, Theorem 1.4], that such a geodesic v(z) from u(z) to w(z) has the geomet-
ric code [y(z)] = [...,n_1,n0,n1,n29,...]. Therefore the geometric code and the
arithmetic code of 7(y(z)) coincide (up to a shift). O

REMARK 5. There exist geodesics that are not geometrically Markov, for which
the geometric code and the H-code coincide. For example, consider the closed geo-
desic 7y given by the axis of T°ST3ST~2S. Its geometric code is [y] = [5,3, —2] and
coincides with the H-code (v) = (5,3, —2). However, « is not geometrically Markov.
A natural question would be to characterize completely the class of geodesics for
which the two codes coincide.

REMARK 6. One can easily notice that the H-code and G-code of a geodesic
coincide if n; > 3, and, the H-code, G-code and geometric code coincide for positive
geodesics.
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4. Symbolic representation of the geodesic flow

Geodesic flow as a special flow. Let C, C SM (a = G, A, H) be a cross-
section for the geodesic flow {('} on M constructed for one of the arithmetic codes
studied in the previous sections, and X, the corresponding set of coding sequences.
Every x € C, defines an oriented geodesic vy(x) on M which will return to Cyq
infinitely often. Let R, : C, — C\ be the first return map, and f, : C, — R be
the time of the first return on C, defined as follows: for x € C,,, Ra(x) = ¢'(x),
fa(x) =t. Then {¢'} can be represented as the special flow on the space

Cafﬂ = {(x,y) x €0, 0<y < fa(x)}

with the ceiling function f, by the formula ¢!(x,y) = (x,y +t) with the identifica-
tion (x, fa(3)) = (Ra(x),0).

In the previous sections for each arithmetic code we have established a bijective
map Codg : Cp — X, by Codg : x — (77(x)) such that the diagram

Codq
Co — Xa

| [

Cod
Co — Xa

is commutative. Here o, is the left shift o4 : X0 — X, defined for z = (n;(2))2 _
by (04); = nip1(x). Thus we obtain three symbolic representations of the geodesic
flow (for o« = G, A, H) on the space

Xo‘f& = {(m,y) 12 € Xo,0 <y < folz)}
given by the formula ¢'(z,y) = (z,y + t) with the identification (z, fo(z)) =
(0a2,0), where (X4, 0,) is the space of a-coding sequences, and f, is the time
of the first return to the cross-section Cl,.

Calculation of the return time. Let @ = G, A, H. The ceiling function
fa(z) on X, is the length of the segment between successive returns of the geodesic
~(z) to the cross-section C,. The following theorem was proved in [GK] for the
G-code. The proof for the A- and H-code is the same.

THEOREM 4.1. Let € X, and w(z), u(x) be the end points of the correspond-
ing geodesic y(z). Then

fa(z) = 2logw(z)| +logg(z) — log g(0ax)

o) = lw(z) — u(z)|yw(z)? -1
w(z)?/1 —u(z)?
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ABSTRACT. The purpose of this article is to explain how some apparently sim-
ple problems from numerical linear algebra are in fact extremely difficult, so
that we cannot hope to solve them effectively in general. However, if we build
and analyze algorithms to solve them in special cases of interest for the numer-
ical analysis of partial differential equations, we find that the theory needed to
validate these methods is of the same nature as that used for pseudo-differential
operators, though the operators considered probably do not enter the frame-
work of pseudo-differential operators. This relationship between distant fields
of analysis displays how the interaction between different parts of mathematics,
motivated by problems of practical origin, leads to interesting questions and
solutions. The article is intended for mathematicians of all backgrounds and is
written so that beginning graduate students with a good background in PDE’s
and analysis can read it, and hopefully enjoy it also.

1. Introduction

This article contains a description of how different fields of mathematics fertilize
one another in the course of solving some highly practical and apparently simple
problems.

This article is presented for non specialists and does not include technical proofs.
I have tried to write it in simple language. Hopefully, a graduate student with a
good background in partial differential equations and analysis should understand
it.

The simple problem is to solve a system of d linear equations in d unknowns,
for d very large. Very large would mean for instance d = 106.

In section 2, I show that this problem requires a very large number of operations,
and I emphasize the importance of choosing an appropriate algorithm in order to
have any chance to succeed before the end of the universe.

Then, I move on to a more analytical point of view.

Let A be the matrix of our linear system. The condition number of A is the
number x(A) = [|A||||A7Y|, which provides an upper bound of the relative error
on the solution of a linear system in terms of the relative errors on the right hand
side and the matrix. The condition number is also involved in the convergence
properties of the so-called iterative methods: in an iterative method, we construct
a sequence of approximations to the solution of the linear system.

For large matrices with lots of vanishing coeflicients i.e. sparse matrices, the
iterative methods are the methods of choice: they let us obtain a solution when
Gaussian elimination and its analogues require too many operations to give a prac-
tical answer.

It turns out that the numerical solution of linear systems is meaningless if the
condition number is too large, and on average, in floating point arithmetic, for very
large matrices, the condition number is so large that for all practical purposes, the
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matrices might as well be considered as singular. This problem can be handled if
we use longer mantissas, which is not always a feasible solution.

However, it is common practice to solve for numerical approximations of large
systems of linear equations coming from the discretization of partial differential
equations. This is in fact possible only because these matrices are very special and
very rare, as is shown in section 3. I would expect that the reason why they are so
special is that they have a particular algebraic structure: such a structure has not
been described in algebraic terms and this question deserves to be studied.

The choice of good algorithms contains the question of preconditioning. If we
want to solve Az = b, we might as well try to solve B~ Az = B™'b or AB~ly =
b, x = By, provided that the matrix B is a “good” approximation of A and it
has nice algorithmic properties. If the condition number of B~'A or of AB™! is
small relatively to that of A, the numerical solution will be faster than that of the
original problem. If in addition, we have a precise algorithm for multiplying B~' 4
by a vector, it will be also more precise.

But one has to understand in mathematical terms what one means by saying
that B is a “good” approximation of A.

As an example, in section 4, I show how the construction of approximate inverses
is a standard trick of the analysis of partial differential equations, by explaining the
basics of parametrices of elliptic operators.

We start from the fundamental solution for an elliptic constant coefficient op-
erator P(D): it is obtained by a combination of the Fourier method and Cauchy-
Kowalevskaia theorem.

How to work with a variable coefficients elliptic operator P(xz, D)? We construct
a parametrix, i.e. an asymptotic series giving an approximate inverse of a partial
differential, or more generally pseudo-differential operator.

The first step of the construction gives an approximate inverse Sy such that
1—P(z,D)Sp and 1 — Sy P(z, D) smooth the data by one degree of differentiability.

The process can be iterated: the operator S; is such that 1 — S;P(z, D) and
1 — P(z,D)S; smooth the data by j degrees of differentiability.

Eventually, one can get an asymptotic series of sum S, such that 1—5S., P(x, D)
and 1 — P(z, D)S are infinitely smoothing operators.

The validation of this strategy relies in an essentially way on the stationary
phase method and on many estimates and technical steps.

This set of ideas has filtered into numerical analysis in many ways: paraxial
approximation of variable coefficient wave equations (Bamberger et al., [3], [2]),
boundary element methods, which are appropriate for integral formulation of PDE’s,
and these are nothing but another word for Green’s function, preconditioning of
variable coefficient problems by wavelets (Piquemal and Liandrat, [37]), H-matrices
(Hackbusch and coworkers, [4], [20], [19], [18], [22], [26], [25], [17], [23], [24], [21]),
which are very much motivated by integral equations.

This is the standard use of analysis for numerical analysis: we take a classical
method from the analysis of partial differential equations, and we turn it into an
applicable numerical method.

In the last part of this paper, I give another example of the importation of PDE
methods into numerical analysis.

But before sketching this example, I must stress the difference between approx-
imate inverses for theoreticians of PDE’s and approximate inverses for numerical
analysts: for a theoretician of partial differential equations, a good approximate
inverse S of P(x, D) is such that 1 — SP(x, D) has strong smoothing properties.
For a numerical analyst, a good approximate inverse of A is an S for which there
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is a fast computational algorithm giving the matrix vector product Sz, and the
condition number of SA is small with respect to the condition number of A. It may
also have other desirable properties.

In section 5, I move on to a specific numerical problem: how does one ap-
proximate numerically the solutions of the heat equation in one dimension, and I
show that though this problem looks quite simple, it contains a few delicate points.
Spectral approximations are very popular, because their accuracy is limited only
by the smoothness of the data. Unfortunately, they involve rather full and very
ill-conditioned matrices, and nobody likes to solve a system having this kind of ma-
trix. Therefore, it is tempting to precondition the problem by using another kind
of discretization, namely finite elements, which are known to yield a sparse matrix.

In the elliptic case, this is a very classical process: in 1980, Orszag [32] sug-
gested preconditioning by finite differences; he gave an argument for the spectral
equivalence between the spectral and finite differences stiffness matrices in the case
of periodic boundary conditions and a Fourier basis, and stated that this equiva-
lence still holds in many other cases. Haldenwang et al. [28] give an argument for
spectral equivalence between the stiffness matrices for finite differences and Cheby-
shev spectral approximation. In [7], Canuto and Quarteroni tested a large number
of preconditioners for Chebyshev spectral calculations, including preconditioning
by finite elements, and gave numerical estimates of the spectral radii of the differ-
ent numerical methods; in [11] Deville and Mund test a variety of finite elements
methods for the same problem and in [12], they extend their ideas to more general
classes of orthogonal polynomials.

In the case of a time dependent equation, there are two ways to solve the
problem. One is to apply the method of lines, and then precondition an operator of
the form 1+ AtA, with A a discretization of the Laplacian. Since, most of the time,
no error estimation is performed on iterative methods, this source of error will be
left out. Moreover, instabilities may come from the approximate character of the
resolution; this question is now studied by M. Ribot.

Another strategy is the one embodied by the Residual Smoothing Scheme
(RSS), as presented in [1].

This is a scheme that has been floating around for some time; the name of
Orszag has been mentioned in this respect, but I have been unable to find a precise
reference.

In order to prove the stability of RSS for the heat equation, we have to prove
the spectral equivalence of two matrices, uniformly with respect to the number of
discretization points.

Section 6 describes the strategy used by Magali Ribot [39], [40] for solving this
problem. The result could also have been obtained as a consequence of results by
Parter [34], who used totally different methods.

The principle of the method of validation is based on the method of the station-
ary phase, that is on the techniques used for constructing parametrices of elliptic
equations.

Therefore, the conclusion, given in Section 7, is that though it is not (yet)
very popular, a considerable progress may be expected from importing some very
theoretical techniques into numerical analysis, but this must be done in an un-
prejudiced way. Considering the operators of numerical analysis as some funny
pseudo-differential operators would not do, because the analysis of boundary prob-
lems for pseudo-differential operators meets with many difficulties, and it may not
be a good idea to go in this direction. However, some of the wisdom of pseudo-
differential operators has its place in numerical analysis, This is already well-known
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for the construction of artificial boundary conditions, paraxial approximations, in-
tegral equations, multi-polar methods, H matrices. But it can be probably used
in many other places, provided that the spirit is imported, but not necessarily the
techniques created for specific situations.

Conversely, the matrices of the numerical analysis of partial differential equa-
tions happen to be very rare objects; most probably, if we had known how rare they
are, we would not have even tried to solve problems from the numerical analysis of
PDE’s!

But ignorance is blissful only in innocence. Once the information is out, there
is no reason not to look at the question from an algebraic point of view.

Numerical analysis should start a dialogue with contemporary algebra and ask
how the matrices of numerical analysis can be characterized on algebraic grounds.
There may exist algebraically characterizable classes of matrices among which the
matrices of numerical analysis are very common, and for which the methods of
resolution are much more efficient than in the general case, even for very large
matrices.

2. The simplest numerical problem

The simplest problem of numerical linear algebra is to solve a linear system of
d equations with d unknowns. Let A be a d X d matrix, real or complex, and let b
be a d x 1 vector. We want to solve the linear system

(2.1) Az = b.

The theory is without mysteries: there exists a unique solution to (2.1) iff A is
regular.

Practically, how do we do that?

Let us first kill Cramer’s formulas. The calculation of the determinant of a
d x d matrix requires the calculation of d! products of d numbers, hence (d — 1)d!
multiplications, and then the addition of the d! results, i.e. d! — 1 additions, that is
for one determinant,

di{d—-1)+d —1=(d)d —1.
We have to calculate d + 1 such determinants, and to perform d divisions; the total
operation count is
(d+1)({(d)d—-1)+d~ d((d +1)1).
For d = 100, which is considered as a small matrix, Stirling’s formula gives
101! ~ 10110157101\ /2

and therefore

100 x 101! ~ 9.4 x 10%%,
With a computer working at 1 gigaflops, that is (10° floating point operations per
second ), we can perform

10° x 365 x 86400 ~ 3.5310'%operations per year

and therefore, we will need approximately 3 x 10'4® years to complete the operation.
y ¥ p

If the age of the universe is 15 billion years, this means that the solution of this
smallish linear system would require 2 x 10'3% times the age of the universe.

Not very realistic, which means that the chosen algorithm was stupid, and every
first year student knows that.

The alternative algorithms are usually based on Gaussian elimination, with its
variants: Cholesky’s method, LDU and a few more.
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In terms of operation counts, Gaussian elimination, even with pivoting, re-
quires O(2d®/3) operations, so that our smallish system of 100 equations with 100
unknowns requires 2 x 10/3 operations, and on the same machine as above, it will
take two thirds of a millisecond. This operation count is explained in all books of
numerical analysis, for instance in [42].

If we consider a more common machine, a modern personal computer that
might work at 10 megaflops, the Cramer method takes 2 x 10137 years and the
Gauss elimination requires 0.066 second.

It is also well-known that sparsity improves the situation; however, this im-
provement is not good enough for really large matrices, because of fill-in: it is
known that, in general, in the factors L and U of the LU decomposition, the por-
tion of line between the most removed non zero element and the diagonal is filled
with non zero coefficients; in fact, there may be even more non zero elements in L
and U, depending on the exact distribution of the non zero terms in A = LU. In
consequence, when a linear system is obtained from a finite element discretization,
the numbering of the elements and of the vertices may play a very important role.

By the way, a matrix by vector multiplication requires about 2d? floating point
operations. A naive analysis seems to show that one cannot do better than that
number of operations for a full matrix. But this is not true if the matrix has a special
structure: a very well-known example of that situation is the case of an FFT. A
discrete Fourier transform is a linear transformation which can be performed most
efficiently through the Fast Fourier Transform algorithm (FFT): the operation count
is then O(dlogd) instead of 2d>.

Numerical analysts are not interested in solving baby problems such as a system
of 100 equations with 100 unknowns. A large problem is for instance a problem with
d = 10% unknowns.

This would correspond for instance to the discretization of a stationary partial
differential equation in a cube, with 100 discretization points or modes in each
direction.

In this case, Gaussian elimination requires 2 x 10'®/3 floating point operations,
and on the previous machine, the computing time would be of 21 years and about
two months.

More reasonable but not yet fast enough.

This is the reason why the so-called iterative methods have been developed.
The principle of an iterative method is the following: instead of solving by a direct
method such as Gaussian elimination, which is supposed to give the result up to
computer arithmetic error, also called round-off error, we agree to be satisfied with
the construction of a sequence of approximations z,, to the solution, where we decide
to stop when a certain error criterion is satisfied.

The simplest methods are well known and easy to describe, but not very effi-
cient. For instance, Jacobi’s method is defined by the data of an initial guess x°;
given z", we calculate the solution of

i—1 d
j=1

=it

In other words, in each row of the system, we think that the off-diagonal terms are
data and we just solve for the diagonal terms, which is of course algorithmically
very easy. A slightly better alternative is Gauss-Seidel’s method, where we think
that at row i of the system, the data are the JTZ+1 for k < i—1 and the z} for
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k > i+ 1: we just have to solve for the term IZ_H and once again, this is very easy:
i—1 d

(2.3) ZAij-T;‘H—l + Aga?tt 4+ Z Ajal =b;, 1<i<d
=1 j=i+1

The difference between (2.2) and (2.3) is that in the former method, we use
only data from the previous step z7,...2} , at line 7, while in the latter, we use
data which have just been calculated in the present step 1:?’“1 Cee x,’;jll and data
from the previous step.

In fact, these elementary iterative methods perform badly in systems derived
from the discretization of partial differential equations, because such systems are
generally not strongly diagonally dominant. This is very easy to see for a finite
element method and an elliptic problem of order 2, determined by the bilinear form

N
alu,v) = /ﬂ (Z ai; (x)dsu(z) djv(z)

N
3 bil)dh(@)ul) vle) + c(:c)u(ac)v(x)) da.

If ¢, is a basis function whose support does not meet the boundary of the domain

2, we observe that
> aldr, ¢1) = aldr, Y -

l lel(k)
where I(k) is the set of indices [ such that the support of ¢, intersects the support
of ¢r. On the support of ¢,
> b=l
)

lel(k
and therefore,

Za(q‘)k,qﬁl) =a(¢i, 1) = /C(L)qﬁk(:z) dx

l
and therefore, the sum of the coefficients along the line k is an O(h"), while we
expect that each individual coefficient will be of size O(h™¥~2).

However, these methods are interesting building blocks for other methods, in
particular multi-grid methods.

Of course, one may well wonder why such a primitive method as (2.2) of (2.3)
might give any kind of result whatsoever.

Here is a sufficient condition for the convergence of these methods: assume that
the matrix A is positive definite and that it decomposes as A = M — N; if M+ N* is
Hermitian positive definite, then the iterative method defined by Ma™t! = Na" +b
converges.

The main interest of iterative methods is that many matrices of numerical
analysis are sparse, i.e., very few of their coefficients are non zero. Here is an idea
of what sparse means, for a low order approximation of a scalar elliptic problem,
there are O(10) non vanishing coeflicients in spatial dimension 2 and O(50) in spatial
dimension 3.

For a precise approximation of the system of three-dimensional elasticity, we
might have several hundred non vanishing coefficients per row.

The main idea is that multiplying a sparse matrix by a vector is cheap, provided
that we use the sparse structure when coding the multiplication: we just do not
want to multiply anything by 0. Observe that this approach means that our linear
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operators are not written as matrices, but as algorithms. In the jargon of numerical
analysis, we say that we do not assemble matrices, i.e. we never produce a list of
their coefficients, we just produce an algorithm which enables us to perform the
matrix by vector multiplication.

The standard efficient iterative methods for solving linear systems are the conju-
gate gradient, if A is Hermitian positive definite, or GMRES, the biconjugate gradient
and many others. There are many references which describe them, and the reader
is referred for instance to [41] for a detailed description of many classes of iterative
methods.

Until now, we have not considered another numerical question: what is the size
of the error we make when solving a system of linear equations? Here is the answer:
assume that § A and §b are perturbations of the data A and b. Provided that A+JA
is still regular, the perturbed solution x + dz satisfies

(2.4) (A+0A)(x + ox) = b+ 0b.
If we subtract (2.1) from (2.4), we find
(2.5) bz = A" (0b— Az — §Abz).

We apply now the triangle inequality to (2.5), we divide by the vector norm ||,
assuming that it does not vanish, and we get

oz _ ob SA|| |0z
(26 el <y (B oy + 125121,
|| |z] ||
Here | | is an arbitrary vector norm and ||A|| is the operator norm of A, i.e. the

maximum of |Az| over the ball {|z| < 1}.
We use now the obvious inequality

bl < [ Alllz] <= |a] > bl A~
to simplify the right hand side of (2.6):

|0z] -1 0] l0A]l | [I6All[d|
— < NATMAN T + T T A )
|| ol Al Al
We introduce the condition number of A:
R(A) = [lAIIIATY].
The condition number depends on the choice of operator norm || ||, and hence
on the choice of the underlying vector norm | |. By default, | | is the canonical

hermitian vector norm.

When A is Hermitian positive definite, and | | is the Hermitian norm, «(A4) is
the ratio of the largest to the smallest eigenvalue of A.

The error on the solution can now be estimated as follows:

] I6AIS(A) 6zl _ . (1sbl Al
@7 (1 11 ) B (A)(w A )

Assume that x(A)||dA]l/|| Al is at most equal to 1/2, and that A and b are known
with a relative error of 10™™. In practice, this means that we work with a mantissa
of length m in floating point representation. Then, very coarsely, relation (2.7) tells
us that the number of correct decimals in the mantissa of z is at least m—log, k(A4).

Of course, this statement is sloppy: it assumes that the relative error on the
coefficients is comparable to the relative error on the norm; if this is not true, it is
possible to obtain more detailed statements, depending on the particular structure
of the matrix under consideration.
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Thus, x(A) is the natural object which describes the feasibility of the resolution
of a system. For instance, in classical double precision arithmetic, the mantissa has
16 decimal digits. If the condition number is larger than 106, the numerical solution
is probably meaningless, and in double precision, a matrix with condition number
larger than 106 is as good as singular

As always in the partly experimental field of numerical analysis, this statement
must be taken with a grain of salt. In some special circumstances, we may control
better the growth of round-off error, when we do better than applying the triangle
inequality. This may happen under appropriate algebraic conditions, as has been
shown by Boros et al. [6] for a special class of matrices, and also by Demmel and
Koev [9] for a different problem. The basic idea is that the really bad operation
is the addition of numbers of opposite sign and comparable magnitude: this is
the operation that creates the most relative error. If we can build an algorithm
that does not perform this kind of operation, there is much less degradation in the
relative error.

This question winds tightly together algebraic and algorithmic preoccupations:
can you obtain a well-defined result in exact arithmetic, when you restrict the set of
permissible operations? Which of these exact arithmetic expressions are accessible
under this type of restrictions?

There is more to the condition number.

Let us consider the simplest iterative method namely Richardson’s method
given by

(2.8) M (2™ — ™) = o"™(b— Az™).

Here, M is a regular matrix: its choice is crucial for the efficiency of the method.

Let us analyze the simplest case: take M to be the identity matrix 1, assume
that a does not depend on n and that A is Hermitian positive definite. We write
(z,y) for the canonical Hermitian scalar product.

The error e” is e™ = 2™ — a, and it satisfies the recurrence relation e?*! =
(1 — aA)e™. Therefore, we choose the real number « so as to minimize the spectral
radius of the matrix I —«aA. By a straightforward analysis, we find that the optimal
choice is

2

)\min(A) + )\max(A)
where Apin(A4) and A\yax(A) are respectively the smallest and largest eigenvalues of
A. Therefore, the spectral radius of 1 — A is
)\max(A) - )\min(A) _ 1 1/K(A)
/\max(A) + /\nﬂn(A) - 1 + 1/H<A> .

The number of iterations necessary to divide the error by 2 is proportional to x(A).
Of course, the method (2.8) is rather crude. There are two ways of improving

o =

(2.9)

it.

One way of improving the rate is to precondition the method, i.e. to choose a
matrix M in (2.8) such that the condition number of M ~'A is much smaller than
the condition number of A.

Remember that we assumed A to be Hermitian positive definite. If M happens
to be Hermitian positive definite, an analogous analysis can be performed using
the vector norm |z|4 = (xTAT.)l/Q; this works because M ~! A is Hermitian relative
to the scalar product deduced from the norm | |4. Now, the rate of convergence
depends on the condition number of M ~'A, the formula being analogous to (2.9).
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The other method is to perform a conjugate gradient algorithm, instead of a

Richardson algorithm. The conjugate gradient can be written
p? =70 =b— Az0;
and while p* does not vanish:
¢" = Ap",

k __ (Tkapk)

(¢%, pk)’

2R = b 4 kR,

R gk gk

(2.10)

P

(rkH,rk“)
(,,.Icﬂ«k) ?

k41 — ,IJC—FI +ﬁk+1pk.

,Bk+1 _

p

The rate of convergence of algorithm (2.10) is at most

V(@) oinld) _ 1 1//5(A)
\/)\max(A) + \/)\min(A) 1 + 1/ V K’(A)
a result which is proved for instance in [41].
Therefore, the number of steps needed to divide the error by 2 is proportional
to \/x(A), which is much smaller than x(A), if k(A) is large.
Of course, these are upper bounds, but without more precise qualifications, that
is all we have.
Moreover, there is a preconditioned version of the conjugate gradient algorithm,

0 =b— A2, p’=2:0=pm"1",

and while p* does not vanish,
¢" = Ap",
k_ (Zkﬂ"k)
(g, p*)’
(2.11) ot = gk gk,
PRk gkgk
MR+ = pht1
(z’”'“,rk“)
(zk,rk) 7
P = SR gLk

Bk_H _

If M is Hermitian positive definite and the vector norm is (x,y)p = x' My, the
rate of convergence of algorithm (2.11) is

1—1/\/k(M-12ZAM-1/2)
1+ 1//k(M-12AM-1/2)
so that we gain a lot by preconditioning the algorithm.
In practice, one must choose the matrix M in such a way that a system with
matrix M is easy to solve.

The ideal choice would be to take M = A; but this is impossible, since we
are really looking for an algorithm which provides the inverse of A. Therefore, we
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look for a matrix M which approximates A while remaining algorithmically easy to
invert.

Beyond solving a system with matrix M, the algorithm (2.11) uses only matrix
by vector multiplications, addition of vectors and scalar product of vectors.

Let us give an order of magnitude of these condition numbers. In the case of a
second order elliptic problem discretized on an approximately uniform grid in a cube,
with 100 discretization points for each dimension, the number of unknowns is 10°,
while the condition number is O(104). This condition number can be substantially
degraded if the mesh contains very flat elements or if the order of magnitude of the
coefficients of the problem varies widely. These orders of magnitude are important:
as we shall see below, there are very few 106 x 10% matrices with condition number
less than 10* or even less than 10°.

3. How many bad matrices are there?

If we start from another side of the problem, it is legitimate to ask the following
question: given a dimension d, what is the relative volume of the set of matrices in
GL4(R) or GLg(C) whose condition number is larger than z?

This question makes sense, since the condition number is invariant by the trans-
formation A — tA for all ¢ # 0. It has been studied first by Jim Demmel [10] and
the solution given by Alan Edelman [15] deserves a description. First, we need the
definition of the Frobenius norm of a matrix:

d
Al = | Y 1Al

i,5=1

1/2

The Frobenius norm is very easy to understand, since it is simply the Hermitian
norm of matrices, seen as vectors in d?-dimensional space. On the other hand, the
operator norm of matrices is a very complicated object. Nevertheless, the following
estimate is classical:

(3.1) 1Al < I4llF < V||A].

Denote the sphere in Frobenius norm of radius 1 about 0 by ST It is equipped
with the measure deduced from Lebesgue measure in d?-dimensional space.
Let us introduce a deformed condition number:

(3.2) kp(A) = Al A7,

which makes the theory easier.

The choice of (3.2) comes from Eckart-Young’s theorem [13]; this theorem
stated that the Frobenius distance from a matrix A to the set of singular matrices
is 1/||AY|. A proof of this theorem can be found for instance in Blum et al’s book
[5].

The relative volume of the set of matrices in S¢ ~! whose condition number & D
is larger than x is a probability P(z, d):

C{Aes T kp(A) >l
P(z,d) = S|

and its density is exactly known. In the real case, the density is

d—1d+2 d*+d-2 )
;T T g @ *d))’

])(I,d) — Mml—d2 (I2 _ d)d(d*#l)/Z*‘ZQFW1 <

where p is given by
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o () () yor (4420 ).

Here o F is the Gauss hyper-geometric function. An equivalent for z > Vd and
d > 1 of the distribution function, i.e. P(z,d) = ffoo p(y, d)dy is known:
d3/2
P(z,d) ~ —.
(0,d) ~ =
In the complex case, the density formula is much simpler:

p(a’lv d) = 2d(d2 —_— 1>$1—2d2($2 _ d)dzfz,

and there is an exact formula for the probability distribution:

2

(3.3) pm¢n:1—<1—ﬁ>f‘{

Moreover, for d > 1, kp(A) ~ Vdky(A)/2, which is a nice observation, since it
means that the average ratio of the operator and Frobenius norms is almost in the
middle of the interval defined by (3.1).

We combine all these observations and apply them to the case d = 10% and
ka(A) = 10% then = kp(A) ~ 5 x 10, Then, the numerical application of (3.3)
gives
1— e—4><104.

~

106 )25x106><4>< 10%—1

P(104,10%) =1 — (1 - ————
(105,107 =1 ( 25 x 1012

Therefore the probability that, in the complex Frobenius sphere S(10‘2—1)7 a matrix
has a condition number less than 10% is at most e~4*10" = 10=17371,

This is such a small probability that if we had not constructed such a matrix
in an ad hoc fashion, we would have been extremely lucky to find it just by chance.
The probability of finding it is the same as the probability that random typing will
get a text of 12316 characters completely right using an alphabet of 26 letters plus
space. More generally, the set of matrices such that x(A), the ordinary condition
number satisfies the inequality

1< K(A)/2 < d

has relative volume in the Frobenius sphere exp(—4d®/r(A)?), which is very small.

To make matters worse, Edelman has also proved in [14] that for matrices
with independent Gaussian normal coefficients, the average of the logarithm of the
condition number is the logarithm of the dimension plus a bounded number, while
the condition number itself is so bad that none of its moments is bounded. Since
we deal here with random matrices, the moments are taken with respect to the
probability measure; in particular, there is no average of the condition number over
this class of random matrices.

The practical consequence is that, if we pick “randomly” a 10 x 106 matrix, on
average, we will lose 6 decimal places when solving the corresponding linear system.
Of course, once again, this is a very coarse statement, and it has to be qualified
by all sorts of ifs and buts. Nevertheless, it is a rule of thumb: solving large linear
system with no specific information on their structure is a hard problem.

In other words, the matrices of numerical analysis of partial differential equa-
tions are very special objects. There is no universal method that could work for
large matrices. In the numerical analysis of partial differential equations, we have to
use the special algebraic structure of the matrices, and therefore, it would be very
interesting to characterize specifically these matrices from an algebraic viewpoint.
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4. Preconditioning and parametrices

A preconditioner for a linear system of equations (2.1) is a matrix B such that
k(AB™1) or k(B71A) is small relatively to #(A); moreover, there should exist an
algorithm of low complexity for solving the system

(4.1) By =c.

In other words, B~! is an approximate inverse of A which can be realized as a low
complexity algorithm.

Constructing inverses of low complexity is an idea that is very close to the
construction of a parametrix for a partial differential operator.

Let us explain briefly what a parametrix is. Write 0; = 0/dz; and D; = —i0;.
When we have variables z and &, the derivation operator with respect to x will be
written Dj, = —10/dz; in order to avoid confusion.

Recall that the Schwartz space S(RY) is the space of infinitely differentiable
functions which decrease fast to 0 at infinity as well as their derivatives of all order.
If u belongs to this space, its Fourier transform is

ale) = /R () dr,

and the Fourier inversion formula is

u(z) = (271)N /IP;N el Eq(€) de.

We have the identities

Diu =&, = —Dii.
A constant coefficient differential operator is a finite sum of the form
(4.2) P(D) =" anD",
where we have used the multi-index notation
a=(a1,...,an) € NN g =07 .. O
Provided that we define
=g

the action of P(D) on & € S(R™Y) can be expressed very simply:
(PD)u)(€) = 3 aab®al€) = P(E)a(e).

Therefore, it is tempting to write the inverse of the operator P(D) by

L g ds
PO u = mn /RN PE)

This formula makes sense immediately if P does not vanish over RY. When this is
not true, a famous theorem of L. Ehrenpreis [16] and B. Malgrange [29], [30], [31]
shows the existence of a fundamental solution of the operator P(D), i.e. a solution
of

P(D)u=246
where § is the Dirac mass at 0 € RN. A (very) short proof of this result is given
by M. E. Taylor in his book [44], pages 33-35. Let us pretend now that we do not
know how to find fundamental solutions for constant coefficient operators, and let
us take a rather particular case, where the set Z of zeros of P is compact in RV,
So as to avoid all difficulties, we will even assume that P is elliptic; this means that
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if Pp, is the homogeneous part of highest degree m of P, then P,, vanishes only at
0 RN

Let x be a smooth cut-off function which is equal to 0 in a neighborhood of 0
and to 1 outside of a large ball or radius R about 0. The operator S given by

L ©ae)eede
S0 = gy [ e

is well defined. Moreover, we may calculate P(D)S and SP(D). A straightforward
calculation gives

gy L X(§)&iu(g)e™ dg
Disu= Gmyw /RN P(€) ’
and therefore
i 1 )
u=PDISu = o [ (1 x(@)ae)e de

If we let ¢(€) = 1—x(€), we see that 1 — P(D)S is simply the convolution operation
with ¢. As ¢ is a smooth function with compact support, 1 — P(D)S is an infinitely
smoothing operator.

As P(D) commutes with S, 1 —SP(D) is also an infinitely smoothing operator.

What good is this for solving partial differential equations?

Since ¢ is the inverse Fourier transform of a compactly supported smooth func-
tion, it is an entire function of exponential type, i.e. it satisfies the estimate

lp(z +iy)| < Cexp(Lly|), VvyeRM.

Here, we have extended ¢ to CV by letting

- ! J(£)e(e i) €
: = HETIYS dE.
oo +i) = G [ 6@ ;
By Cauchy-Kowalevskaia theorem, it is possible to construct a solution of
P(DYyw = ¢

and even to take w entire of exponential type. Then, a fundamental solution of
P(D) is
v=w+ K

where K is the inverse Fourier transform of (1 — x(&))/P(€). As (1 — x(£))/P(&)
increases at most polynomially at infinity, K is a temperate distribution. Therefore,
if f is a compactly supported data, u = v * f is well defined, and it is a solution of
P(D)u = f.

This is not yet very interesting. If we consider now a variable coeflicient elliptic
operator

P(z,D) = aa(z)D"

we are tempted to apply the same type of process to find a parametrix, which we
assume to be of the form

1
(2mn
We assume that for each z, P(z, §) is elliptic, and we call Py, (z, ) the homogeneous

part of degree m in £. The ellipticity means that for all z, P, (z, ) vanishes only
at & = 0.

(S)(e) = g [ ¢Sk ()
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We want to choose k so that P(z,D)S — 1 will be an infinitely smoothing
operator. We observe immediately that
Dj (e w(z)) = (&) + Dy 2 )w(a).
This implies the following identity
P(z, D)(e* Sw(z)) = ¢ (P(§ + Dy)w) (@),
and we can decompose P(z,£ + D,) into a sum of homogeneous polynomials of
degree m — 7 in £ and of degree j in D:

m

P(2,& + Dy) = Po(2,8) + Y Py(,€, Dy).

j=1
Assume formally that
k(z,8) = ko(z,§) + ki(z, &) + ka(z,6) + ...

where k; will be homogeneous in £ of degree n — j.
We just apply the standard asymptotic argument, by equating the terms of the
same degree of homogeneity in ¢:

Pr(z,8)ko(z,€) = 1,
P (2, 8)k1(z,8) + Pm-1(z, &, Dy )ko(z,€) = 0,
Pm(.l’, €)k2(l,§) + Pm_l(iﬂ,f,Dl-)kl(l‘, f) + Pm..;[(flf,f,Dm)kg(iL',g) = 07

and so on. Of course, we cannot really invert P,, because of its zero set, but we are
going to pretend that we can; then

ko(z,8) = 1/Pp(z,€)
ki(z,8) = —(Pm-1(2,§, Ds)Ko(2,£))/ P (2, £), and so on,

so that, at least formally, we can write all the terms k; of the expansion. Of course,
many tricks are needed to validate this expansion into a bona fide kernel, and this is
the crux of the classical theory of pseudo-differential operators. This presentation
of the beginning of the theory has followed the first section of chapter 1 of Tréves’
book [45].

When we apply 1 — P(z, D)ko(z, D) to a function u whose derivatives of order
at most k are square integrable, we obtain a function whose derivatives of order at
most k + 1 are square integrable; if we define indeed

(Sou)(e) = gy [ € kol () de,

then

. 1 - R
(43) (1= Pl D)So))@) =~y [ > B Dol | ate)de

But Pj(xz, &, D) is of degree m— j with respect to € and ko(x, ) is of degree —m in £.
Therefore, if the « derivatives do not contribute any messy terms, we have to expect
that, at infinity, the kernel in the integral (4.3) contributes terms which decrease as
|€|71. Therefore, it is possible to prove that if 4 belongs to the Sobolev space H™,
i.e. its derivatives of order at most m are square integrable, then (1 — P(z, D)Sp)u
belongs to H™*1,

More generally, 1 — P(z, D)(ko + - - + k;) gains j degrees of smoothness.
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I have carefully hidden the technicalities of the construction of parametrices.
Let it just be known that the method of stationary phase plays here a prominent
role.

It is not really possible to infer directly from this process a preconditioner
for a given variable coefficient operator. Nevertheless, the fundamental solution
obtained in the first part of the present section yields a Green function for the
constant coefficient operator. Green functions are very much used when solving
boundary problems in homogeneous media, since simple and double layers can be
used to treat the boundary conditions.

In the case of variable coefficients, parametrices have not been used for pre-
conditioning; however, the idea of wavelet preconditioning for variable coefficients
elliptic operators has been used by Piquemal and Liandrat [37]. Once the tech-
nology of wavelets has been developed, theoretical ideas from PDE’s become much
easier to implement numerically, though the treatment of boundary conditions is
not yet very satisfactory.

The important message is that the construction of approximate inverses is a
classical method in analysis, and therefore, it is not surprising that it is used in
numerical analysis. A striking and recent example is the theory of H-matrices by
Hackbusch and coworkers ([4], [20], [19], [18], [22], [26], [25], [17], [23], [24], [21]):
they define a class of matrices for which there is a fast algorithm which encodes the
matrix by vector multiplication. The inverse of an H-matrix is not an H-matrix,
but an ‘H matrix possesses an approximate inverse which is an H-matrix. The finite
element discretizations of elliptic problems and the matrices obtained from integral
equations happen to be H-matrices.

5. A specific problem

Most often, in numerical analysis, the error analysis does not involve the influ-
ence of preconditioners or of the criteria used to stop iterations, and there might be
food for thought in this area. Even more striking is the fact that the construction
of preconditioners is more art than science. I believe that science is more power-
ful than art, and that it must go beyond the ideas of the artist in order to define
systematic strategies for tackling problems. One should try to analyze rigorously
methods which have been proposed and whose efficiency is demonstrated in prac-
tice: the hope is that a scientific analysis will let us understand better the causes
of and the limits to efficiency.

Let us take therefore an extremely simple problem, namely the one-dimensional
heat equation:

ou  O%u

. — == : >
(5.1) 5 g =0 e, 120,

with Dirichlet boundary conditions and initial data ug at time ¢ = 0.

In order to discretize (5.1), we rewrite it as a variational problem. For this
purpose, we multiply equation (5.1) by a function v(z), and we integrate by parts
over (0,1). If we choose a function v which vanishes at 0 and 1, the integrated part
goes away and we are left with

1 1 P
ou ou dv
—(z,t)v(z)dz + —(z,t)=—(x)dx = 0.
[ S [ FenTe)

Of course, we have to say a few things on functional analysis; let H&(O, 1) be
the space of square integrable functions u, with square integrable derivative, such
that «(0) and «(1) vanish. It so happens that square integrable functions whose

(5.2)
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derivative is square integrable are almost everywhere equal to continuous functions,
and therefore, this definition makes sense.
In relation (5.2), v must be continuous from R* to Hg(0,1) with square inte-
grable derivative over (0,1) x RT and the equality must hold for all v € H(0,1).
Then, in order to discretize, we choose a finite dimensional space of functions
V included in H}(0,1), we replace in (5.2) the time derivative by a finite difference,
and we write the following formulation:

" eVandforallveV,

(5.3) Lyntl _ gy b dum do
L 4z = 0.
/0 Al vdx-l—/o i da dz

Since V is finite dimensional, we just have to decompose this problem on a basis of
V; denoting by M the mass matrix, i.e. the matrix of the bilinear form

VxV =R,

1
(u,v)r—>/ uvdz,
0

and by K the stiffness matrix, which is the matrix of the bilinear form
VxV =R,

1
(u,v) — / u'v' dx,
0

the relation (5.3) can be rewritten

Un+1 _ Un
Mt

At
where U™ is the vector of coordinate of u™ at the discrete time nAf.
In the nice cases where M happens to be diagonal, the resolution of (5.6) is

trivial, since it requires only a matrix by vector multiplication, a vector addition
and a multiplication by a scalar.

Unfortunately, the method (5.6) is very inefficient, because unless the following
condition is satisfied:

(5.7) AtAmax(MIEK) <2

the numerical solution will develop exponentially increasing oscillations. The expla-
nation of this behavior is as follows: if U™ is an eigenvector of M ~!K corresponding
to the largest eigenvalue A of this operator, we will have the identity

Urtl = U™ - AtMTYKU™ = (1 - MAHU™,

and therefore, if (5.7) does not hold, the magnitude of U™ is multiplied by a negative
number of absolute value larger than 1. Since any round-off error is susceptible
of triggering the development of a component in the direction of an eigenvector
corresponding to the largest eigenvalue of M ~'K, we see why the choice (5.7) is
necessary.

However, the largest eigenvalue of M ~!K diverges when the precision of the
discretization tends to 0.

Let us see why this is true. We choose for instance V to be the space of
continuous functions over [0, 1] whose restriction to each interval [j/J, (j +1)/J] is
a polynomial of degree at most 1; define the following basis of V:

¢i(x) = {1_J|$‘j/J| if [ — j/J] <1/J,

0 otherwise,

(5.4)

(5.5)

(5.6) + KU™ =0,
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Instead of exact integration, we use the trapezium formula in (5.4); then relation
{(5.6) can be written

2 -1 0 oo 0N
Un+1 Un -1 2 -1 0

(5.8) ~t o 12 ol =0
0 0 0 2

here, the matrix has J — 1 rows and J — 1 columus.
The reader will check that

v; = sin(i(J — V)w/J)

is an eigenvector of the matrix appearing in (5.8); its corresponding eigenvalue is
4J?sin*(m(J — 1)/2J), and it can be shown that it is the largest eigenvalue of this
matrix; therefore, if Az =1/J < 1 is the mesh size, the condition (5.7) is satisfied
only if
AtAz?sin?(n(J —1)/2J) <1,
which is equivalent to
At < Az?/2,

up to higher order terms in Ax.
The alternative to this sorry situation is to use an implicit scheme, i.e., instead
of (5.6), we use

n+1 n

M U -U

At
The price to pay is that we have to solve a system with matrix M + AtK. For a
small problem such as the one-dimensional problem considered here, it cheap and
easy. But in higher dimension, this is a time-consuming process, and therefore it is
important to find a fast alternative, which could also inciude non uniform meshes,
non constant coefficients, and so on.

When the stiffness matrix has nice algebraic properties, such as the matrix
written in (5.8), or its higher dimensional analogues, it is possible to apply adapted
strategies, such as a fast Fourier transform. But, if the coefficients are not constant,
or if the mesh is not uniform, this strategy breaks down, and we are left with a bear
of a problem.

These considerations make natural the idea of the residual smoothing scheme
(RSS) of Averbuch, Cohen and Israeli [1]; given a matrix &1 which is algorithmically
simpler than K but resembles K enough to make the process stable, replace (5.9)
by

(5.9) + Ky™tt = .

n+1 n

M unt —-u
At

Here 7 is a positive parameter that has to be tuned in order to make the method
efficient and stable: if 7 is large, the precision is poor; if 7 is small, the stability is
destroyed.

The advantage of this method is that the only systems we have to solve have
matrix M + 7AtK,.

In [38], we have proved that if M is the identity matrix, K and K| are hermitian
positive definite, and 7 is large enough, (5.10) is stable; the number 7 just has to

(5.10) + KU+ 7K, (U™ —U™) = 0.
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be larger than or equal to
. z'Kzx
50 20T K1z
If this bound is independent of the number of discretization point, RSS is uncondi-
tionally stable.

The proof is contained in [38], and the norm used to describe the stability is
the energy norm, i.e. ||z|4 = (x7 Az)/2.

The specific question that I would like to describe now is related to the so-
called spectral methods. These methods use for V' a space of polynomials instead
of a space of piecewise polynomial functions. For convenience, we will work now on
the interval (—1,1) instead of (0,1). In simple geometries, these are very efficient
methods, because they are potentially of infinite precision. In other words, the order
of the discretization error is bounded only by the smoothness of the data, and for
infinitely differentiable functions, the discretization error decreases faster than any
power of the number of discretization points.

However, spectral methods have two substantial defects: the stiffness matrices
are not sparse, and the size of the largest eigenvalue of the stiffness matrix is ex-
pected to be larger than J*, J being the degree of the polynomial. On the other
hand, when they are written under an appropriate form, spectral methods are also
collocation methods. This means that it is possible to find points &5, 1 < ¢ < J -1
where (5.6) is equivalent to

un+l(£]') _ un(é]) B a‘zun
At Ox?

The reader should be reminded at this point that v and u"*! are polynomials. In
other words, at the nodes &;, we just write a point-wise equality, hence the name
collocation. Moreover, the mass matrix is diagonal. In fact, it is not necessarily
a good choice to solve (5.6) under the form (5.11) and it can be argued that the
situation looks better under the form (5.6), since there, M and K are positive
definite matrices. Some obvious discretizations of (5.11) do not have this property.

But if we want to apply an implicit method for solving (5.9), we fall back onto
the question of preconditioning.

Some nice propositions have proved effective: in the case of Dirichlet boundary
conditions, we know what the £;, 1 < j < J — 1 should be: they are the zeroes of
the derivative of the Legendre polynomial of degree J. Recall that the Legendre
polynomials are the orthogonal polynomials over [—1, 1], relatively to the weight 1.
The idea developed by Orszag [32], Canuto and Quarteroni [7], Deville and Mund
[12], [11] is to precondition the spectral method by a finite difference or a finite
element method whose nodes are those of the spectral method; they are also the
nodes of a Gauss-Lobatto-Legendre quadrature formula. This means that we choose
Vi to be a space of continuous and piecewise polynomial functions, the pieces being
bounded by the §; and £1. The corresponding stiffness matrix will be denoted by
K.

For many years, this brand of preconditioning was used without possessing
a mathematical proof of any of the properties of the method, the simplest being
that K; and K ought to be spectrally equivalent independently of the number of
discretization points.

A series of articles of Parter [33], [34], [35] proves this uniform spectral equiv-
alence and many other results of interest; the method of proof depends strongly on
very detailed results in the theory of orthogonal polynomials, which were deduced

(5.11)

(&) =0.
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from results of Gatteschi; these are obtained by Sturm sequences type techniques
and comparison of solutions of ordinary differential equations.

When we tried to understand the RSS for a spectral method, with a finite el-
ement preconditioning, we were unaware of the results of Parter, and we studied
in detail at the asymptotics used by the specialists of spectral methods. We could
not find in Szegd’s bible of results of orthogonal polynomials [43], the asymptotics
we needed, and therefore, we embarked on a very technical enterprise: give asymp-
totics for the Legendre polynomials and the zeroes of the derivative of Legendre
polynomials, with error estimates. This is a work that Magali Ribot accomplished
[39], [40].

6. Strategies and how to validate them

In order to explain better the strategies, I have to be more specific than in the
previous section. Let Ly be the N-th Legendre polynomial and let &;,...{v_1 be
the zeroes of L%y. They all belong to the open interval (—1,1) and they will be

arranged in increasing order. Define {y = —1, &y = 1.
The basis functions will be the Lagrange basis function over &, ..., &N so that
they are given as
z — & .
Vi) = H ‘((5_—_%%, 0<j<J
0<i<N \SF TSt
i
Define also the numbers
. _ 2
pPo = PN = N(N—}-l),
(6.1) 9
pi=—— 1< j<N-1.
NN+ 1)L (&)
Then, the spectral mass matrix is
0 p2 ... 0
A’[S - . . . )
0 0 ce PN -1

while the coefficients of the stiffness matrix Kg are given by

4

<KS)i,J‘ — N<N -+ ;)LN(&)LN(é’])(gL . gj)2o

3(1 - &) Ln(&)*

ifi# j,
if i =j.

The matrix Kg is full; in dimension 2, the spectral discretization of Laplace
operator does not yield a full matrix, since the stiffness matrix will be of the form
Ms ® Kg + Kgs ® Mg. The structure of this matrix is shown in Figure 14. The
number of non vanishing elements per line is equivalent to 2./ for a (J—1)?x (J —1)*
matrix. For a more complicated elliptic operator, in particular one which would
involve cross-derivatives, the matrix would indeed be full.
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FIGURE 14. The structure of the matrix Mg ® Kg + Kg ® Mg for
J = 6. Possibly non vanishing elements are indicated by a black
circle.

The mass matrix for finite elements with nodes at the &;, using numerical
integration is

(&2+1)/2 0 . 0
0 (§itr — &i-1)/2 0
Mg = . , . )
0 0 oo (T4 E&520)/2
and the coefficients of the finite elements stiffness matrix, which is tridiagonal, are
! + ! ifi=j
i=7,
&i—&i1 o G —& J
1
Kp)yj= d —— ifi=j+1,
(K §i-1— & J
1
- ifi=j—1.
& — &

Let us describe now the RSS scheme with preconditioning by finite elements. In
the method (5.6), we let V" = M51~/2U"7 so that the equation in V™ becomes
Vn+1 _ Vn
At
The corresponding RSS scheme is then
Vn+1 _ Vn
At
Observe that this method is not difficult to implement, since (6.2) can be rewritten
in the coordinates W™ = M ;1/ 2 V, as

(Mp + AtKp) (W™ — W) = —AtMp Mg 2K e Mg P My P,

As My and Mg are diagonal matrices, the bulk of the numerical work consists in
solving systems with matrix Mg + AtKp, which are much faster to solve than the
system with matrix Mg + AtKg.

+ Mg RsMYPVT = 0.

(6.2) MR PR MYV - vy 4 MG PR s MY VT = 0.
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Therefore, the question is to prove that M ;1/ ’K FM;U 2is spectrally equivalent
to MS_1/2K5]V[S_1/2, uniformly with respect to J.

The first step, which is due to Parter and Rothman [386], is to show that Kz and
K are spectrally equivalent, uniformly with respect to the number of discretization
points.

Now, according to [39], the problem boils down to proving that

MYPMFY2K My 2 MY
is spectrally equivalent to K. Let us define the discrete H' norm by
1/2

U.
WUl = 2'”1 :

€]+1

then it is equivalent to prove the above spectral equivalence or to prove that
Mg V2 ;/ % and its inverse are bounded in discrete H'! operator norm, uniformly
with respect to the discretization parameter.

The diagonal elements of MEIMS are called o} and they are given by the
explicit formula

2pk
o= Ek+1 — Ek—1
with pj being defined at (6.1).
Define
_ 2= 1G] =kl | 1 __1_2
Ekt+1 — &k Ok+1 Ok

Then, another reduction performed in [39] implies that it suffices to bound the
sum

J-1
(6.3) >
k=0

in order to obtain the desired result. Thus, it suffices to have precise asymptotics
of the Legendre polynomials and their derivatives, in order to conclude.
The Legendre polynomials belong to the so-called family of ultra-spherical poly-

nomials: Ly = P§1/ 2), and their derivatives are also ultra-spherical polynomials:

d a2 3/2 d?
wh @ =P, g
It turns out that the literature, and more precisely Szegé’s book [43] contains

asymptotics of the zeroes of ultra-spherical polynomials in the following regions:

P“/ (z) = 3PP D (2).

(1) the first K zeroes can be related to the zeroes of an appropriately scaled
Bessel function, and the error estimate depends on K;
(2) the zeroes indexed by j for aJ < j < (1—a)N can be related to the zeroes
of trigonometric functions, for some a > 0.
There was no information in Szegé’s book on the intermediate region. Therefore,
the option followed in [40] was to write the classical integral representation formula

1-2X ™
(6.4) Py‘) () = 2 [ +23) / (z 4+ i1 = 2% cos ¢)J sin?* ! ¢ dg.
0

Trm? J
The principle of the asymptotics is to apply the method of the stationary phase to
the representation (6.4). Some really technical work is required, first because the
phase is not of the form iJf(z, ), with a real valued f. The function f in the
phase has a positive imaginary part. The second reason for the technical difficulties
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is that some very precise asymptotics are needed in order to conclude that the sum
(6.3) is bounded: it is necessary to get three terms for each of P}l/ %) and Pﬁs/ 2,

two terms for P{*/% and one for Py/ 2 Moreover, in order to get all these terms,
one has to differentiate composite functions several times, and this is a process that
can be qualified as messy, though it is possible to organize it with the help of trees.
A tree formulation of Fad di Bruno’s theorem can be found in [27], and the process
was already known to Cayley [8].

Conversely, once one knows that it suffices to write a clean asymptotic expansion
using the stationary phase method, the strategy is clear and is easy to reproduce in
other cases. It could also probably be transferred to symbolic computation codes,
provided that these softwares gave clean error estimate, in all the parameters of the
problem.

7. Where the snake is eating its own tail

Though it is not (yet?) very popular, progress may be expected from importing
some very theoretical techniques into numerical analysis, but this must be done in
an unprejudiced way. Considering the operators of numerical analysis as some
funny pseudo-differential operators would not do, because the analysis of boundary
problems for pseudo-differential operators meets with many difficulties, and it may
not be a good idea to go in this direction. However, some of the wisdom of pseudo-
differential operators has its place in numerical analysis, This is already well-known
for the construction of artificial boundary conditions and paraxial approximations.
But there is more, in particular for constructing and analyzing preconditioners.

Conversely, the matrices of the numerical analysis of partial differential equa-
tions happen to be very rare objects, and there is probably an algebraic reason why
this should be so. Therefore, numerical analysis should turn to modern algebra
and ask the question of recognizing and analyzing the very special structure of the
matrices of numerical analysis.

It is somewhat sobering to observe that the inclination and the culture of math-
ematicians play such a role in the choice of mathematical strategies. With Magali
Ribot, we looked in the direction of the stationary phase method, because it be-
longed to my culture, and being the senior author, I steered the junior author in
the direction I understood. But other methods did work as well, as Parter’s results
show.

As the strategy used for tackling a given problem is highly dependent on the
background of the authors who use it, it is sensible to expand the set of tools and
the culture of people who deal with applied problems. We may not be always in
the situation where a high-brow and a low-brow method both work.

Beyond that, I believe that realistic numerical analysis has to leave its well-
ploughed furrows, and use unusual mathematical techniques — not for their own
sake, but because there may be a large number of problems, waiting for us out
there, which will have very nice solutions if we incorporate another culture into
the standard culture of numerical analysis. Conversely, I believe also that many
mathematicians, who are not usually interested in numerical analysis, would find
there some fascinating questions, provided that the translation to their language is
properly performed.

In particular, there are many problems which are highly non commutative,
others which seem to require a good command of algebra, and still others which
mix geometry together with analysis. Their presentation would require a much
longer paper to be substantiated and will be left for later.
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POSTER SESSIONS

The poster sessions were organized by Tatiana Ivanova. All participants were
invited to submit an abstract and present a poster at the conference. Participants
were encouraged to include information about themselves, works in progress, and
future works to facilitate contact between participants with common interests.

Posters related to one of the lecture series were presented together. The posters
were divided into three sessions, and the corresponding abstracts are included below
according to their sessions.

POSTER SESSION I
BIOMATHEMATICS / APPLIED MATHEMATICS

Using Distances in Multidimensional Statistics
Susan Holmes

Stanford University Statistics Department
Sequoia Hall, Serra Mall, CA94305 Stanford, U.S.A.
e-mail: susan@stat.stanford.edu

Abstract. Biology now requires the use of non standard parameters generalising
work done on multivariate Euclidean spaces to spaces of parameters that are not
embeddable in Euclidean structures.

I will present examples of extracting useful information by using distances be-
tween non standard objects in computational biology. In particular, trees, permu-
tations and networks.

Visualisation of distances often provides much more information that the simple
distributions.

Examples include :

¢ Comparing Phylogenetic trees from different DNA data.
Comparing Hierarchical clustering trees on melanoma patiens.
Comparing protein interaction networks.
Constructing confidence sets for non standard data.
Comparing permutations of genes along different genomes.

e & @ 9

These all require use of interactive multidimensional visualisation techniques.

Some of these pose interesting statistical questions on how to build probability
distributions that are defined if the sample sizes increase, interesting algorithmic
questions arise as the computations of distances become exponentially difficult and
good approximations are needed.

Mathematics Subject Classifications (2000): 62H30, 62H25, 60B05, 92B10,
92B05.

Keywords: Phylogenetic Trees, Gene Order Data, Distance, Multivariate Analy-
ses, CAT(0) space, Bootstrap.
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Zooming into Fullerenes
Irene Sciriha and Patrick W. Fowler*

Dept of Mathematics, Faculty of Science
University of Malta, Malta
e-mail: irene.sciriha-aquilina@um.edu.mt

*School of Chemistry, University of Ezeter, UK
e-mail: PWFowler@ex.ac.uk

Abstract. Carbon does not appear only in the form of diamond and graphite.
Fullerenes, a third family of allotropes of carbon (C) exists as large stable clusters
of C atoms. A trivalent polyhedron P is a cubic graph which may be embedded on
a convex 3-D surface and a fullerene, Cy, is P with twelve pentagons and n — 12
hexagons.

According to the Hiickel molecular orbital theory (HMOT), the spectrum
consisting of the eigenvalues of the adjacency matrix A of a graph G gives a good
estimate of the spread of the 7- elctron energy levels when G has the same struc-
ture as the (C)-skeleton of a molecule, a solution to a simplified Schrédinger’s
equation. The eigenvalue zero of A indicates the presence of NBOs or zero energy
levels which in fullerenes is relatively rare. A corresponding eigenvector, called a
kernel eigenvector, describes a NBO and determines a unique subgraph called the
core that characterizes the charge-rich C centres contributed by the NBO-electron.

The distribution of the twelve pentagons and other hexagonal faces that tesse-
late the surface on which a Cy-fullerene is embedded determines the substructures
that force the NBO to be occupied. Of particular interest are the nut fullerenes so
called because their skeleton is a nut graph that implies equidistributivity of the
charge contributed by the NBO electron.

We study the substructures in fullerenes and other trivalent polyhedra, that
determine the presence of the eigenvalue zero. Together with the symmetry group
of the graph, they shed new light on singular graphs and polyhedra in particular.

Mathematics Subject Classifications (2000): 05C50, 92E10, 05C25, 05C90,
20F28.

Keywords: non-bonding orbital (NBO), core, fullerenes, adjacency matrix, mini-
mal configuration (mc), nut graph, automorphism group.

Cellular Neural Network Models in Biclogy and Ecology
Angela Slavova

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Sofia 1113, Bulgaria
e-mail:slavova@math.bas. bg

Abstract. This poster deals with Cellular Neural Network (CNN) models of some
parabolic differential and integro-differential equations arising in biology and ecol-

ogy.
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We shall present the derivation of the CNNs implementations throught spatial
discretization, which suggests a methodology for converting a PDE to CNN tem-
plates and vice versa. We shall demonstrate how an autonomous CNN can serve
as a unifying paradigm for active wave propagation, several well-known examples
chosen from different disciplines will be modeled.

Sixty years ago Fisher showed that the propagation of a mutant gene can be
modeled by a nonlinear reaction-diffusion partial differential equation (PDE):

0 2u

(0.1) 8—;‘ =Dg¥+qu(1~u>.

This classic equation, also known as the ”diffusional logistic” equation, has since
been found to be useful in many other applications and has been widely studied. In
chemical media the function u(t, z) is the concentration of the reactant, D represents
its diffusion coefficient, and the positive constant g specifies the rate of the chemical
reaction. In media of other natures u, D, q can represent different quantities. In
general, medium described by (1.1) is often refered to as a bistable medium, because
it has two homogeneous stationary states, u = 0 and u = 1.

The second model we consider is a more general form of the Hodgkin-Huxley
model for the propagation of the voltage pulse through a nerve axon which is referred
to as the FitzHugh-Nagumo equation:

(0.2) U — Uy = u(u — O)(1 —u) — b/t u(s,z)ds,
0

0 <2t <1, 0<©® < 1/2,b > 0. The proposed equation (1.2) is nonlinear
parabolic integro- differential equation, in which u; is the first partial derivative of
u(t, ) with respect to t, uz, is the second derivative of w with respect to x, u is a
membrain potential in a nerve axon, the steady state u = 0 represents the resting
state of the nerve.

Dynamical behavior of such models is studied using the describing function
technique. Travelling wave solutions are constructed and their structure and sta-
bility are investigated for the CNN equations.

Mathematics Subject Classifications (2000): 92B20, 34K57, 34C55.

Keywords: Cellular Neural Networks, Fisher equation, FitzHugh-Nagumo equa-
tion, travelling waves.

Mathematical Virology:
A novel approach to the protein stoichiometry of viral cap-
sids.

Reidun Twarock

Centre for Mathematical Science, City University, Northampton Square, London
EC1V 0HB
e-mail: r.twarockQcity.ac.uk

Abstract. A vital part of infectious virus particles is the protein shell, called the
viral capsid. It protects the viral genome and is formed by so-called morphological
units, entities composed of usually five or six protein subunits. The derivation of
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mathematical models for the location and the types of these morphological units in
the viral capsids is important as this information is key for an understanding of the
viral assembly process and hence for the design of anti-viral therapeutics.

For a large class of viruses this problem is solved by Caspar-Klug theory [1], and
the classification implied by this theory is presently used in the classification and
evaluation of experimental data. However, for a significant number of viruses, in-
cluding for example important cases such as polyoma virus — the causative agent for
cervical cancer in women — this theory does not apply. In [2] a new theory has been
introduced that uses tiling theory, a theory investigating tessellations of surfaces
in terms of a given finite set of different shapes called tiles, combined with group
theory to generalize Caspar-Klug theory. The new theory [3] not only accommo-
dates the open cases that are known at present, but also makes predictions about
novel viral structures that have not yet been discovered. Furthermore, apart from
predicting the types of the morphological units for the open cases correctly, the new
theory also predicts the bonding structure between protein subunits in the capsid
both for the novel and the Caspar-Klug cases, a result that could not be obtained
within the framework of Caspar-Klug theory.

In this contribution we demonstrate the new theory for the example of polyoma
virus based on [2].

References

[1] D.L.D. Caspar and A. Klug, Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962).

[2] R. Twarock, “A new view on quasi-equivalence: A tiling approach to virus capsid formation”,
accepted by J. Theor. Biol.

[3] R. Twarock, “Classification of viral capsids based on the tiling principle”, in preparation.

Mathematics Subject Classifications (2000): 05B45, 62P10, 92C40

Keywords: tiling theory, viral capsids, protein stoichiometry

Algebraic Classification of Discrete Kinetic Models
Mirela Cristina Vinerean

Karlstad University
Universitetgatan 2, 651 88 Karlstad, Sweden
e-mail: mirela.vinerean@kau.se

Abstract. The basic equation in kinetic theory is the Boltzmann equation for
time-evolution of the particle density f = f(z,t;v,¢,...), where z,{,v,e represent
the position, the time, the velocity and the internal energy of the particle in the
phase space.

Discrete kinetic models (DKMs) or simply, discrete velocity models (DVMs) in
the particular case when there exist no internal degrees of freedom, are models where
all phase coordinates, except the space one, are discretized ( i.e. the velocities are
assumed to be able to take a finite number of values). In this case, the Boltzmann
equation is replaced by a system of differential equations easier to analyze from the
mathematical or numerical point of view.

In many interesting papers on DVMs, authors postulate from the beginning that
the finite velocity space with "good” properties is given and only after this step,
study the Boltzmann equation (system). Contrary to this approach, our aim is not
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to study the equations, but to discuss all possible choices of finite phase spaces (sets)
satisfying this type of ”good restrictions”. Due to the velocity discretization is well-
known that it is possible to have DVMs with ”spurious” summational invariants
(conservation laws which are not linear combination of physical invariants). Our
purpose is to give a method (algorithm) for constructing normal models (without
spurious invariants) and to classify all normal plane models with small number of
velocities (which usually appear in applications).

In the first step we describe DKMs as algebraic systems. We introduce for this
an abstract discrete model (ADM) which is defined by the matrix of reactions (same
as for the concrete model). This matrix contains as rows all vector of reactions,
which can be written as n-dimensional vectors (ky, ., k,,) with k; € Z, describing the
7jump” from a pre-reaction state to a new reaction state. The conservation laws
corresponding to the many-particle system are uniquely determined by the ADM,
or equivalently, by its corresponding matrix of reactions, and do not depend on the
concrete realization.

We find the restrictions on ADM such that it is a realization of some concrete
DM and in the next step we give a general method of constructing normal models
(using the results on ADMs). Having the general algorithm, we consider in more
details, the particular cases of models with mass and momentum conservation (in-
elastic lattice gases with pair collisions) and models with mass, momentum and
energy conservation (elastic lattice gases with pair collisions).

Mathematics Subject Classifications (2000): 82C40, 76P05.

Keywords: kinetic theory, discrete kinetic (velocity) models, conservation laws.

POSTER SESSION II

PURE MATHEMATICS and POPULARIZATION OF
MATHEMATICS

On Universality in Varieties of Semigroups
Marie Demlova

Department of Mathematics, Faculty of Electrical Engineering, Czech Technical
University

Technicka 2, 166 27 Prague 6, Czech Republic

e-mail: demlova@math.feld.cvut.cz

Abstract. Endomorphisms of any algebra together with the operation composition
form a monoid, so called endomorphism monoid.

We say that a class IC of algebras is monoid universal if for every monoid M
there exists an algebra A € K such that M and the endomorphism monoid of A
are isomorphic. An important and useful generalization of a monoid universality
is alg-universality (this notion plays a key role in proofs that a concrete category
is monoid universal). A concrete category K is alg-universal if the category of all
graphs and compatible mapping can be fully embedded into K.
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For semigroup varieties the notions of monoid universality and alg-universality
coincide. All alg-universal varieties of semigroups were completely described by
V. Koubek and J. Sichler. Usually, if a semigroup variety is not alg-universal then
there exist trivial homomorphisms between any pair of its semigroups. One of the
possibilities how to forbid trivial homomorphisms is an expansion of similarity type.
A variety V has an alg-universal nullary expansion if we can add finite number of
nullary operations to the type so that the new variety is alg-universal.

All band varieties that have alg-universal nullary expansion were fully described
by M. Demlova and V. Koubek. We present a further result in this investigation.

For a semigroup variety V, let v/V denote the class of all semigroups S = (5, -)
such that the subsemigroup of S on the set S? = {s-t|s,t € S} belongs to V. Then
VYV is a variety.

Theorem: If V is the variety of left-zero semigroups or the variety of right-
zero semigroups then the variety v/V has alg-universal expansion by two nullary
operations.

The above result is in contrast with the following proposition proved by M. Demlovd
and V. Koubek:

Proposition: If V is the variety of left-zero semigroups or the variety of right-
zero semigroups then every algebra from the variety v/V can be reconstructed from
its endomorphism up to isomorphism.

Mathematics Subject Classifications (2000): 20M07, 20M15, 18B15.

Keywords: endomorphism, semigroup, variety, universal category, nullary opera-
tion

Regularity Results for Functionals with Non Standard Growth
Michela Eleuteri

Dipartimento di Matematica di Trento
via Semmarive 14, 38050 Povo (Trento)
e-mail: eleuteri@science.unitn.it

Abstract. The aim of this poster is to present some regularity results for scalar
minimizers of functionals with non standard growth, also in the case of a minimiza-
tion problem with obstacle. We deal with functionals of the following type:

Flu, Q) = /Qf(:zt,u(a:),Du(x))dz,

where {1 is a bounded open set of R™, while f: {2 x R x R™ — R is a Carathéodory
function and u € Wli’cl(Q, R). The main assumption is that f satisfies a p(z)—type
growth, that is

AP < F ) < L(1+ [P

where p(x) > 1 is a variable growth exponent and it is continuous and f satisfies
suitable assumptions of convexity with respect to the variable z. Such types of en-
ergies owe their importance to the fact that several models (also non variational)
coming from Mathematical Phisics are built using a variable growth exponent. Un-
der sharp assumption on the modulus of continuity p(z) we prove regularity results
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for the minimizers. In particular, if p(z) is Holder continuous, the gradient is Holder
continuous too. A model functional that satisfies our assumption is:

/ a(z, u)| DuP®) dz |
Q
where a(z,u) is a bounded function which is far from zero and continuous.

Mathematics Subject Classifications (2000): 49N60, 49.J10.

Keywords: Regularity results, non standard growth.
Generalized Polynomials in Ergodic Theory and Number The-
ory

Inger Johanne Haland Knutson

Dept of mathematics, Agder University College,
Serviceboks 422, NO-4604 Kristiansand, Norway
e-mail: inger.j.knutson@hia.no

Abstract. A generalized polynomial is a function ¢ : Z — R obtained from
finitely many polynomials by use of the greatest integer function, addition and

multiplication, like the following examples: [v/2n]v/2n, [[7(77,2] o3 + \/gn] len],

[vV2n][v/3n] — [V/6n?]. Since the family of generalized polynomials is a natural exten-
sion of the family of usual polynomials, I have been interested in investigating some
results in ergodic theory involving polynomials to show that they are also true for
some classes of generalized polynomials. Here are some results about polynomials
that we extend:

1. If p(¢) is a real polynomial with at least one coefficient other than the con-
stant term irrational, then the sequence p(n), n = 1,2,..., is uniformly distributed
modulo 1. (H.Weyl 1916).

2. A set R C Z is called a set of recurrence if given any invertible measure
preserving system (X, B, u,T) and A € B, u(A) > 0, there exists n € R\ {0} such
that p(ANT~"A) > 0. If p(n) is an integer-valued polynomial with p(0) = 0, then
{p(n) | n € Z} is a set of recurrence. (Furstenberg, Sérkozy)

3. Let (X,B,u,T) be a weakly mixing measure preserving system, and let

pi(n),...,pr(n) be pairwise essentially distinct integer-valued polynomials. Then
for any f1,..., fr € L=(X, B, u), one has
X koo,
lim — Tri(n) g oee(n) g / 1.‘ -0
|, 4 S samog, T f 1)

(V. Bergelson 1986)

The classes of uniformly distributed generalized polynomials and those giving
rise to sets of recurrence include generalized polynomials with sufficiently indepen-
dent coefficients. We also show that a multiple recurrence theorem (corresponding
to 3.) is true for wide classes of generalized polynomials including oscillating gen-
eralized polynomials of, for example, the form [[an]fn] — [[Bn]an], where «, § and
7 are irrational.

Some of the work presented in the poster is joint with V. Bergelson.

Mathematics Subject Classifications (2000): 28D05, 11J71, 11B83.
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Keywords: polynomials, uniform distribution, set of recurrence, multiple recur-
rence.

Some Practical Combinatorial Computations of the
Matrix Functions and Applications

Rajae Ben Taher

Faculte des Sciences
Universite Moulay Ismail
Meknes, 50000

Maroc

e-mail: bentaher@fsmek.ac.ma

Abstract. We present some explicit formulas for A™ (n > r) and €' for every
r x r matrix A, using here some linear recurrence relations in the algebra of square
matices. We extend some of this results to the general case of f(A), where f is
defined on the spectrum of A. New formulas are obtained for f(A4) are given and
some well-known formulas are derived. Examples and applications are also studied.

Mathematical Subject Classifications (2000): Primary 15A99, 40A05. Sec-
ondary 40A25, 45M05, 15A18.

Keywords : algebra of matrices, linear recurrence relations, combinatorial powers
of a matrix, matrix functions.

Study of Finnish Women in Mathematics
Marjo Lipponen-Salhi and Jennifer J. von Reis

Department of Mathematics, 20014 University of Turku, Finland
e-mail: marlip@utu.fi, jvonreis@fulbrightweb.org

Abstract. Finland was the first country in Europe to grant women sufferage. It
is a country widely known for its progressive policies in gender equality. However,
this equality is not visible in the field of mathematics. For example, in Finland
there is currently no woman professor of mathematics. Also, the participation in
the EWM has been alarmingly low compared to the number of women involved in
mathematics. This discrepancy was the inspiration for our study.

Our study aims to gather information about the current situation of women in
mathematics in Finland. We plan to raise awareness and participation in EWM, to
find out the factors for success, and underlying difficulties for women in the field
of math. In particular we would like to see if there are any candidates for future
professorships.

The methods of our study include a questionnaire sent out to all women in math-
ematics departments who have at least a M.Sc. degree. Included in the questionnaire
was information about the EWM, the mentoring project, and the forthcoming meet-
ing in Luminy. We asked for statistics from each mathematics department about the
number of graduate students, people in the department, visiting researchers, and
degrees granted seperated by gender. We also requested information on all Ph.D.
degrees granted in mathematics from the Statistics Finland. To give us a better
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interpretation of the original questionnaire, we have also sent out a slightly modified
version to roughly twenty male mathematicians at the University of Turku.

The Department of Women Studies at the University of Turku is interested in
the project. We have had informal discussion with them and have been invited to
present our results at a seminar in their department. This contact has already been
fruitful in terms of ideas and inspiration.

The study is still on-going and the interpretation of the results we do have is not
final. However, already there is evidence of a large interest in the EWM meetings
and the mentoring program. Women who are still in a Ph.D. program have been
more active in responding to our study as well as foreigners. Since the obstacles
tend to appear after the completion of the Ph.D. degree, the study does not yet
give much information about the real problems facing women in their careers. There
was little evidence of any ambition to obtain a professorship, though this might be
partly due to Finnish modesty. In the responses there is also a general feeling of
doubt about the choice of mathematics and the future.

We plan to further the study with interviews with women mathematicians. The
website for the project, www.math.utu.fi/EWM will be further developed. Most
importantly, we are also planning a meeting for all Finnish women mathematicians
through which we hope to begin to increase the participation of women in the EWM.

Funding for the project has been provided by Research Programme MaDaMe
funded by the Academy of Finland. This study is also connected to a research
project funded by a Fulbright Grant to Finland and the Center for International
Mobility in Finland.

Keywords: Gender issues, mentors, factors for success, Finnish women in mathe-
matics.

POSTER SESSION III: NUMERICAL METHODS

Recent Methodologies in Applied Scientific Computing

Maria Mercede Cerimele, Daniela Mansutti, Francesca Pistella and Rosa
Maria Spitaleri

Istituto per le Applicazioni del Calcolo-CNR,
Viale del Policlinico 137, 00161 Roma, Italy
e-mail: spitaleri@iac.rm.cnr.it

Abstract. We present recent methodologies based on the development of models
and methods for handling complex application problems.

Differential computing is a powerful tool for the investigation of physical phe-
nomena. The numerical approach to dissect and understand a physical phenomenon
includes appropriate differential modeling, an effective design of the overall compu-
tational process, the definition of accurate and robust algorithms, the implementa-
tion of advanced software tools allowing a fast evaluation of computed intermediate
and final results.

We are developing models and methods looking at the computational simulation
as a cyclical process which is able to accumulate knowledge cycle by cycle.



112 Poster Session

We believe that several knowledge environments are involved in simulation pro-
cesses and integrated in powerful methods and tools. We focus on fundamental
substeps of numerical simulations, linking developed models, algorithms and soft-
ware tools.

We illustrate PDE models, computational algorithms and numerical results on:

e multigrid variational image segmentation,
e growth of a wall film resulting from spray impingement,
e solidification processes in microgravity.

Mathematics Subject Classifications (2000): 65N06, 656N22, 65N55

Keywords: differential computing, PDE modeling, finite differences, multigrid
computation

Validation and Verification of a Dynamic Blood Flow Model
- Using Numerical Simulations in FEMLAB

Sofie Inari Castella
in cooperation with Jacob Kirkensgaard Hansen and Ingunn Gunnarsdottir

Roskilde University
IMFUFA, Postbox 260, 4000 Roskilde, Denmark
e-mail: sic@ruc.dk

Abstract. The following project is a bachelor project from Roskilde University,
Denmark.

In the project we seeked to validate and verificate a non-linear dynamic model of
blood flow in arteries. Based on the concepts of validation and verification we
”investigated” the model thoroughly. This includes a discussion of the assumptions
that underlies the model, an alternative simulation setup in the commercial program
FEMLAB in order to compare two different numerical solutions, and a comparison
of simulations with scanning data from a human artery.

It is concluded that we in general succeded in verificating the model mathe-
matically, even though we through an alternative deduction of one of the models
equations found a missing term that should not be neglected under the model as-
sumptions. Further it is concluded, that we did not succeed in producing comparible
alternative simulations, which primarily is do to implementational difficulties in the
commercial simulation program, FEMLAB. Finally it is concluded that we did not
succeed in validating the model based on the scanning data, since data and sim-
ulations concern two quite different arteries. Allthough there are indications of
qualitative similarities between data and model.

Mathematics Subject Classifications (2000): 35Q30, 35Q51, 76D05, 76M10,
91B74, 93A30.

Keywords: Blood Flow, non-linear Navier-Stokes, verification, validation, FEM-
LAB.
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Simulation of Waves through Soft Heterogenous Tissue:
Approximation of Rays by Algebraic Curves.

Cathrine Tegnander

Department of Mathematical Sciences
NTNU, NO-7491 Trondheim, Norway
e-mail:cathrine@math.ntnu.no

Abstract. We study simulation of ultrasound waves through soft tissue (breast).
Most of the existing techniques for reconstruction of images by ultrasound waves are
based on homogenous background. Since the breast consists of strongly heteogenous
soft tissue, we study the deviation of the propagated wave, compared with the
propagation in a homogenous case. Raytracing is used in this work. Our aim is
to understand the importance of this deviation due to changes in the velocity. We
would also like to understand whether methods based on heterogenous media (from
seismic applications) might improve the existing imaging.

We model the propagation of a given pulse f (MHz) through soft (inhomoge-
nous) tissue. With reasonable approximation, we can model our propagation by a
linear wave equation.

Let t denote time (sec). We consider propagation in 2D (but this can easily be
generalised to 3D) so 2 € R? (m?). v is velocity (m/sec) with v* = plm p is density
(kg/m?) and & is compressibility (Pa~'). Then, we use the linear model given by

- 2
v lg,_ Lo
o pv? §t?
where p = p(x, 1) is the pressure.

The breast is highly heterogenous, but with a small variation in velocity. We
study the importance of this variation by considering the wave front. We follow the
wave front in a given direction (ray tracing), and construct a 2nd order curve that
approximates the ray. This gives a family of rays or algebraic curves covering the
wave front.

We study a numerical example where we trace the numerical rays in some
directions from an initial given point. The given pulse is highfrequency of size
10-15 MHz such that the wave length is of order 150u-m. Then we effectuate the
L;-differences between a straight line ray and the numerical ray, and further the
Li-difference between some second order curves and the numerical ray.

Mathematics Subject Classifications (2000): 35L05, 65M06, 65M25, 65M32,
14H50.

Keywords: wave equation, ray tracing, algebraic curves, ultrasound imaging.
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Modelling Valveless Pumping — with Experimental Validation
Stine Timmermann

Dept. of Mathematics and Physics
Roskilde University, P.O. 260, 4000 Roskilde, Denmark
e-mail: stinet@ruc.dk

Abstract. This abstract describes an ongoing master thesis project with planned
termination in June 2004.

When a water filled torus consisting of two elastic tubes with different elasticity
is compressed symmetrically and periodically in a place of asymmetry a unidirec-
tional mean flow in the system is created. The direction and size of the mean flow
depend among other things upon the frequency of compression and the difference
in elasticity of the tubes.

This phenomenon is called valveless pumping and since its discovery in the 18th
century scientists have tried to describe and understand the phenomenon. Their
works mainly deal with one-dimensional models of an equivalent system consisting
of two vessels in connection with a periodic compressed elastic tube.

The aim of the master thesis is to investigate the phenomenon through experi-
ments and by making a two-dimensional mathematical model of the torus system.
In outline: A mathematical description of the torus system consists of the Navier
Stokes equations with periodic boundary conditions. The modelling difficulties lie
both in the moving boundary caused by the elasticity of the tube and in the de-
scription of the pumping mechanism. The purpose of making a two-dimensional
model is among other things to maintain information about the velocity profile to
be compared with the experimental results.

The master thesis is a continuation of the work done by J.T. Ottesen, Journal
of Mathematical Biology, vol. 46 (4): 309-332 APR 2003.

Mathematics Subject Classifications (2000): 76D05, 35Q30, 65N06, 91B74,
93A30.

Keywords: flow, periodic compression, elastic tubes, mathematical model, Navier
Stokes equations.
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Some Recent Results About Steady Flows of Viscoelastic Flu-
ids

Colette Guillopé

Laboratoire d’Analyse et de Mathématiques Appliquées

CNRS and Université Paris XII-Val de Marne

61, avenue du Général de Gaulle, 94010 Créteil Cedez, France
e-mail: guillope @univ-paris12.fr

Abstract. Flows of viscoelastic liquids might be modeled by a system of coupled
partial differential equations, a Navier-Stokes (or Euler) equation type for the ve-
locity field, a transport equation for the non-Newtonian part of the stress tensor,
and the usual equation describing the conservation of mass.

Recently we have been interested in slightly compressible fluids, in an attempt
to understand how important the effects of small compressibility are near sharp
corners, or next to irregular obstacles. In a first stage we only consider regular
solutions.

A first study was done by R. Talhouk? the behavior of the stress tensor is
modeled by a relatively simple equation, the Oldroyd model, the flow is confined into
a regular bounded domain €2, and subject to homogeneous boundary conditions. In
collaboration with R. Talhouk, we also studied a similar problem for flows around an
obstacle, i.e. flows outside a bounded domain. A second study, done in collaboration
with A. Hakim® and R. Talhouk, concerns the White-Metzner model, in which the
parameters entering the constitutive equation depend nonlinearly on the rate of
deformation tensor.

The case of an exterior domain, i.e. a domain which is the complement of a
bounded domain of IR?, is fairly interesting because it leads to the study of three
linear problems, an Oseen problem for the linearized velocity, a transport problem
for the linearized non-Newtonian stress, and a Neumann problem for a modified
pressure.

Results of existence and uniqueness of regular solutions are obtained for small
compressibility, small exterior forces, and for small velocity of the flow at infinity,
but without any condition on the viscosity of the fluid.

Mathematics Subject Classifications (2000): 35Q35, 76A10, 76N10.

Keywords: Navier-Stokes equations, transport equation, Oseen equation, exterior
domain, viscoelastic fluids.

2Faculté des Sciences - Section 1, Université libanaise, Beyrouth, Liban
3Faculté des Sciences de Guéliz, Marrakech, Maroc
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About European Women in Mathematics

by Laura Tedeschini Lalli

EWM, European Women in Mathematics, was established in 1986, at the In-
ternational Congress of Mathematicians in Berkeley, and held its first meeting later
that year in Paris.

Our history begins with informal meetings in which we exchanged our iews of
professional life, as well as our mathematics.

While later the association became official, with its seat in Helsinki, still to this
date the General Meetings are the structural backbone of EWM, with their strong
stress on exchanging ideas and making contacts.

The general aims of EWM are:

- to encourage women to take up and continue their studies in mathematics.

- to support women with or desiring careers in research in mathematics or
mathematics related fields.

- to provide a meeting place for these women.

- to foster international scientific communication among women and men in
the mathematical community.

- to cooperate with groups and organizations, in Europe and elsewhere, with
similar goals.

Within our general aims, some reflections on our obstacles and/or difficulties
took place along the years, yielding to actions and more focused questions and
projects. We have learned with experience that each subject that has prompted
our attention, inevitably led to discover obstacles, or discrimination, or pointless
difficulties, acting against free and respectful communication and dissemination of
mathematics, regardless of gender.

We think this is one of our contributions to the mathematical community at
large, so let us see briefly some of these points.

Women academicians in mathematics across Eurcpe. It has been very
clear since the meeting in Warwick, December 1988, that when you walk into a
department of Mathematics in a European University, your chances of meeting
with a female mathematician vary deeply, and strogly depend on the country you
are in.

In years such as these, in which Europe denounces a shortage of graduates in
technical subjects, we think educational institutions should observe and meditate
what happens in countries like France, India, Italy, Russia, Spain, to name just
a few, where girls are not scared away from mathematics during highschool and
college, on the basis of surrounding cultural expectations.

On this subject we have some statistics available through our webpage at:
http://www.math.helsinki.fi/EWM/, and the video ” Women in Mathematics across
Cultures”, produced by EWM and also available through the web. At the meeting in
Luminy, a special day was organized by Femmes et Maths , about ”Mathématiques
au féminin en Méditerranée”.

Age limits. Together with the stereotype of a male mathematician, goes the
idea that math is a young person’s task. We worked together with the Committee
fo Women and Mathematics of the European Mathematical Society, at removing or
soften age limits for prizes and positions, as well as at understanding what kind of
career breaks are more likely for women, and can be overcome with due help.
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Isclation of women in research. Unfortunately, it is still the case in many
European universities that women are singularities within the mathematical de-
partments. Frequently this has a well known inhibiting effect on us, resulting in
self-consciousness or defensiveness, both particularly negative when we start our
professional path. And if we are inhibited, we do not speak about mathematics,
and if we do not speak about mathematics we do not learn how to speak about
mathematics, and the loop traps us. The vicious circle of communication, well-
known to many, creates a steady isolation which becomes sterile and depressing,
as opposed to the temporary isolation which is necessary to all creative work. In
fact, we think many problems arise for women in mathematical research from the
different types of isolation (communication, life passages...) adding to the second,
necessary one, and making it seem unbearable.

For much the same reasons, men are always welcome to the scientific pat of our
meetings.

EWM issues a yearly newletter and maintains an e-mail list and a list of dis-
cussion. All the relative information can be gathered from our webpage at

http://www.math.helsinki.fi/EWM/

To join EWM, please either contact your regional coordinator (list in this vol-
ume), or contact our office in Helsinki directly from our web page.

Rome, September 2004
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European Women in Maths Web-based Mentoring Scheme

By Cathy Hobbs

In August 2001 the European Union agreed to fund a project proposed by EWM
to provide web-based mentoring to women in mathematical sciences in Europe.
Recent reports had highlighted (yet again) the lack of women in higher positions
in academia across scientific disciplines. The EU is committed to improving the
human potential across Europe, and in particular, to realising the talent of the
female population, so this project was funded as a step towards encouraging women
to progress in their mathematical science careers. The funding from the EU for the
scheme finished in August 2003 but the scheme is still operating, based at Oxford
Brookes University, Oxford, UK.

Aim and scope of project

The aim of the web-based mentoring scheme is to enable new women mathe-
matical scientists (e.g. graduate students, those considering graduate work, post-
doctoral students) to find mentors amongst the mathematical science community.
In this context, a mentor is someone who can listen to what their mentee is saying,
provide advice on academic issues such as applying for jobs, applying for grants,
when and where to publish research work, and also may act as a role-model to the
mentee. Mentors may also advise on broader gender-related issues faced by women
in a mainly male-dominated environment. The mentors in this scheme are volun-
teers, not trained counsellors, who are willing to share their own experiences with
less-experienced mathematicians.

Using the web to facilitate the mentoring scheme enables women to form links
with mentors across Europe. Because of the wide distribution of mentors and
mentees across Europe, they mainly communicate by e-mail but they have the
freedom to structure their own mentoring relationship. This may mean telephone
contacts and face-to-face meetings where appropriate (eg both attending a confer-
ence together).

Similar schemes are now starting up across the world, for example that run
by the American Women in Maths organisation. Our scheme links with them to
provide mentors for European women, and also to provide US mentors for those
considering studying in the US. We hope that schemes of this nature will contribute
to the support network for women in mathematical sciences and encourage women
to progress in their mathematical science careers.

Web Site

The website for this scheme was designed and implemented by a professional
web designer. On the home page the basic idea of the scheme is outlined. Users can
then go to sections on signing up to be a mentor, signing up to request a mentor,
profiles of existing women in mathematics and information on careers, education
and on mentoring generally.

The sign-up pages give further information about the role of a mentor and
guidelines on the time commitment required to be part of the scheme. There are
links to guidelines on being a mentor and being a mentee, as appropriate, and
guidelines on electronic communication. The mentor or mentee can then fill out an
online form.
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The data provided goes directly to a database which is only accessible to the
administrators of the site. Matching of pairs is then done, paying particular atten-
tion to the aspects the mentor and mentee have highlighted. For example, for some
people the subject area is most important whereas others would feel that geograph-
ical location is more critical. The mentor/mentee pair will then be informed of the
matching and provided with basic details of their partner. They are then free to
conduct their mentoring relationship as they see fit.

Results and feedback

So far the website has had nearly 8000 visitors. 50 mentors have signed up
and 60 mentees. There have been around 30 successful matches. Matching mentees
successfully is quite difficult since there is not always a good overlap between the
mentees’ requirements and what the mentors have to offer. This is particularly true
of research interests, which seems to be the most important matching factor. We do
not always manage to find mentors with the same research interests as the mentees,
which is the main reason for the number of unmatched mentees.

Evaluation was planned from the start of the project. Statistics were collected
on the website and database on numbers of visitors, numbers of mentors and mentees
signed up and related data. Questionnaires were e-mailed to mentors and mentees
in March and August 2003. The feedback showed overwhelming support for the
scheme, which seems to be meeting a deep need amongst its target audience, both
mentors and mentees. The majority of respondents gave positive answers on the
operation of the scheme and the results so far. Almost all respondents felt the
matching process was clear and most thought the communication from the men-
toring scheme helpful. All mentors and mentees were content with the choice of
mentee/mentor made for them.

Respondents found the site easy to navigate, the guidelines useful, the biogra-
phies valuable, the form easy to fill in and the right number of questions asked,
although one mentee would have liked the mentor to indicate whether they had a
family. Most felt no need for more structured procedures, although one mentor sug-
gested it would be useful to send out discussion tips regularly to give mentors and
mentees something to help things move and another suggested a quarterly email
newsletter.

Most mentees felt no need for formal training but did say they might be inter-
ested at a later stage.

All mentors had agreed frequency of contact times with their mentees and most
had kept up their contact on a regular basis. Only one mentor reported a ‘fizzling
out’ of the agreement. Contact was mainly by email (75%), others had face to face
meetings.

Around two thirds of mentors thought that being a mentor had benefited them
in some way and over half of the mentees felt that having a mentor had made a
difference to their career plan even after such a short time period. Many reported
gaining opportunities to study and work through contacts made, and an increase
in confidence. This is key for many women who often lack confidence in their own
abilities. Communicating with an impartial advisor is providing mentees with such
opportunities. One mentee commented “I feel more confident to pursue a purely
academic career, not having a single female maths lecturer at my university got
me doubting those plans, I have to admit”. Another stressed the important of the
mentoring for those who did not have much money to travel or attend conferences
and make contacts.
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Athena Award

In 2003 the mentoring scheme won a UK prize for the best use of information
technology in advancing the careers of women in science, engineering and technology.
The Royal Society of Great Britain (the leading society of scientists in the UK) and
the British Computer Society sponsored this prize, known as the Athena Award.
The prize was around 4500 Euros and will be used to fund a project to collect
current statistical data on the numbers of women in mathematics in Europe (to
compare with the figures collected by EWM in 1993).

Further Information
The website is at
http://ewm.brookes.ac.uk

If you would like further information about the scheme or the statistics project,
contact Dr Cathy Hobbs (cahobbs@brookes.ac.uk).
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