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Chapter 1
Introduction

1.1 Motivation

Flows of two distinct adjacent fluids occur in a wide variety of physical systems and
engineering applications. The interaction of the fluids at their mutual interface
gives rise to a multitude of complex phenomena. In many cases, however, one of
the fluids exerts negligible stress on the interface, so that the other fluid can be
considered separately. The interface then acts as a free surface, i.e., a boundary
of which the position depends on the behavior of the enclosed flow. A specific
instance of such a free-surface flow, that is of great practical relevance, is the flow
of water underlying air. Accurate prediction of the behavior of free-surface flows
is therefore important, e.g., in the assessment and design of immersed structures
and vessels, such as ships.

Predictions of the behavior of free-surface flows are made on the basis of
models. These models can be constructed at various levels of approximation. A
particularly reliable mathematical model of fluid flow is a system of nonlinear
partial differential equations, referred to as the Navier—Stokes equations. These
equations were formulated independently by Navier (1822) and Stokes (1845). Un-
fortunately, these equations are too complicated to explicitly extract their solution.
It is, however, possible to construct discrete approximations to the solution. The
discretization of the differential equations yields a system of nonlinear algebraic
equations. The solution of the algebraic system can be formulated in terms of
recurrence relations, which are ideally suited to treatment by computers. Conse-
quently, the prosperous development of computers has made it possible to consider
increasingly complex flow problems. The investigation of flow problems by means
of a computer is called Computational Fluid Dynamics (CFD). Figure 1.1 on the
following page displays the steps in the solution of a flow problem by CFD, in-
cluding some examples.
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[ Physical formulation of the problem ]

Mathematical formulation of the problem

Navier-Stokes equations

Discretization of the equations

Finite elements, finite volumes, finite differences

Numerical solution method

Newton’s method, multigrid, Krylov-subspace methods

Solution

Figure 1.1: Steps in the solution of a flow problem by means of CFD.

The numerical solution of the Navier-Stokes equations with a free bound-
ary has only recently become tractable. Previously, one had to revert to simpler
models, for instance, the free-surface potential-flow equations. The free-surface
potential flow equations already describe many of the prominent features of free-
surface flow. The numerical techniques for these potential-flow equations are well
developed, and they are routinely used in the investigation of practical flow prob-
lems. However, to include viscous effects, e.g., the interaction between the viscous
boundary layer and the free surface near a surface-penetrating object, it is nec-
essary to progress to the Navier-Stokes equations. Unfortunately, many of the
numerical techniques for free-surface potential flow cannot be extended straight-
forwardly to the free-surface Navier-Stokes equations.

An important class of problems for which efficient numerical techniques are
available for the potential-flow equations, but not for the Navier-Stokes equations,
are steady free-surface flows. An example of such a steady free-surface flow is the
wave pattern carried by a ship at forward speed in still water. In the field of ship
hydrodynamics, dedicated techniques have been developed for solving the steady
free-surface potential-flow equations. In contrast, methods for the Navier—Stokes
equations typically continue a transient process until a steady state is reached.
This time-integration method is often computationally inefficient, due to the spe-
cific transient behavior of free-surface flows. Alternative solution methods for
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the steady free-surface Navier—-Stokes equations exist. However, the performance
of these methods usually depends sensitively on the parameters in the problem,
or their applicability is too restricted. In general, the numerical solution of the
steady free-surface Navier-Stokes equations by current computational methods is
prohibitively expensive in actual design processes.

The need for efficient numerical techniques for the steady free-surface Navier—
Stokes equations in practical applications, and the inadequacy of available meth-
ods, provide the motivation for the research presented in this tract.

1.2 OQutline

The contents of this tract are organized as follows:

In Chapter 2 we present the mathematical formulation of free-surface flow.
The Navier-Stokes equations are introduced. In addition, we discuss boundary
conditions and initial conditions and their relevance for well-posedness of the cor-
responding initial boundary value problem. Furthermore, we state the interface
conditions for two contiguous fluids and we derive the free-surface conditions as a
special case.

Chapter 3 contains an analysis of the free-surface Navier—-Stokes equations
in primitive variables, by means of perturbation methods and Fourier techniques.
In contrast to the classical analyses of free-surface flows (e.g., Refs. [42,46,65]),
we adhere to a formulation of the equations in primitive variables, instead of a
vorticity-based formulation. By virtue of the formulation in primitive variables,
the analysis can serve in the investigation of numerical methods for the free-surface
Navier—Stokes equations, if the differential operators in the continuum equations
are replaced by their difference approximation. Moreover, the formulation in prim-
itive variables permits a convenient treatment of the practically relevant case of
three spatial dimensions, whereas the classical analyses are restricted to two spa-
tial dimensions due to the properties of the vorticity formulation. The analysis
yields important information on the properties of viscous free-surface flows in two
and three spatial dimensions, e.g., on the dispersive behavior of surface gravity
waves, the asymptotic temporal behavior of wave groups and the structure of the
free-surface boundary layer.

In Chapter 4 we propose a novel iterative solution method for solving the
steady free-surface Navier—Stokes equations. Moreover, we prove that the usual
time-integration approach is generally inappropriate for solving steady free-surface
flows. The proposed iterative solution method is analogous to methods for solving
steady free-surface potential-low problems. The method alternatingly solves the
steady Navier-Stokes equations with a so-called quasi free-surface condition im-
posed at the free surface, and adjusts the free surface on the basis of the computed
solution. The quasi free-surface condition ensures that the disturbance induced by
the subsequent displacement of the boundary is negligible. Each surface adjust-
ment then yields an improved approximation to the actual free-boundary position.
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To establish the efficiency of the method, we show that its convergence behavior is
asymptotically independent of the mesh width of the applied grid. The asymptotic
computational complexity (computational cost per grid point) of the method dete-
riorates only moderately with decreasing mesh width. Mesh width independence
of the computational complexity can be achieved by means of nested iteration.
Numerical experiments and results are presented for a two-dimensional test case.

In Chapter 5 we consider an alternative approach to solving steady free-
surface flow problems, viz., the optimal shape design method. A general charac-
teristic of free-boundary problems is that the number of free-boundary conditions
is one more than the number of boundary conditions required by the governing
boundary value problem. A free-boundary problem can therefore be reformulated
into the equivalent shape optimization problem of finding the boundary that min-
imizes a norm of the residual of one of the free-surface conditions, subject to the
boundary value problem with the remaining free-surface conditions imposed. Such
optimal shape design problems can in principle be solved efficiently by means of
the adjoint method. Chapter 5 investigates the suitability of the adjoint shape op-
timization method for solving steady free-surface flow problems. Because inviscid,
irrotational flow adequately describes the prominent features of free-surface flow,
we base our investigation on the free-surface potential-flow equations. The adjoint
shape optimization method is equally applicable to the free-surface Navier—Stokes
equations, but the specifics of the method are in that case much more involved.
Our investigation serves as an indication of the properties of the adjoint shape op-
timization method for steady free-surface flows. We formulate the optimal shape
design problem associated with steady free-surface potential flow, and we examine
the properties of the optimization problem. In addition, we analyze the conver-
gence behavior of the adjoint method, by means of Fourier techniques. Motivated
by the results of the analysis, we address preconditioning for the optimization
problem. Numerical experiments and results are presented for a two-dimensional
model problem.

Chapter 6 presents a preliminary investigation of the interface capturing ap-
proach to solving free-surface flow problems. Free-surface flows form a specific
class of two-fluid flow. If the objective is the numerical solution of a free-surface
flow problem, then it can be attractive to adhere to the underlying two-fluid flow
formulation. In the absence of viscosity, two-fluid flow is described by a system
of hyperbolic conservation laws. The numerical techniques for such systems of
hyperbolic conservation laws are well developed and, in particular, efficient al-
gorithms are available for solving steady hyperbolic problems. In Chapter 6 we
present the prerequisites for a Godunov-type interface capturing method. We
consider an Osher-type approximate Riemann solver and we elaborate its appli-
cation to two-fluid flows. Moreover, we address the spurious pressure oscillations
that are commonly incurred by conservative discretizations of two-fluid flows, and
we construct a non-oscillatory conservative discretization. The implementation of
the interface capturing approach with efficient techniques for steady problems is
deferred to future research.



Chapter 2

Mathematical Description of Free-Surface
Flow

2.1  Introduction

Flows of two distinct, contiguous fluids are encountered in many practical applica-
tions. A free-surface flow is a particular instance of such a two-fluid flow, in which
the properties of the fluids are such that one fluid exerts negligible stress on the
other. A model for free-surface flow is therefore included in a model for two-fluid
flow. The mathematical model for two-fluid flow comprises governing equations
for fluid flow and interface conditions, which describe the interaction of contigu-
ous fluids at their interface. In this chapter we present the governing equations
for fluid flow and the interface conditions for two-fluid flow, and we derive the
free-surface conditions from the general interface conditions.

2.2 Governing Equations for Fluid Flow

2.2.1 Conservation Laws

Fluid flows are presumed to be governed by conservation laws. These conservation
laws state that mass, momentum and energy are conserved during the motion of the
fluid. To model a fluid flow, the state of the flow is described by a set of designated
fluid-properties called the state variables, e.g., velocity, pressure, density, etc. The
conserved quantities can be expressed in these state variables. The mathematical
description of the conservation laws for the derived quantities is a system of partial
differential equations for the state variables.

To present the governing equations for fluid flow, we consider a volume of
fluid. The fluid occupies an open domain V C R¢ (d = 2,3). Positions in V are
identified by spatial coordinates (x1,...,xq) relative to the horizontal Cartesian
base vectors ey,...,eq_1 and the vertical Cartesian base vector e4. The gravi-



6 Chapter 2. Mathematical Description of Free-Surface Flow

Figure 2.1: Schematic illustration of the free-surface flow problem.

tational acceleration, g, is constant and vertically downward, i.e., g = —gey for
some constant g > 0. See Figure 2.1 for an illustration.

Suitable state variables for a viscous, compressible fluid are the velocity,
the pressure, the density, the temperature and the internal energy of the fluid.
Denoting time by ¢ > 0, we identify the velocity by v(x,t), the pressure by p(x, t),
the density by p(x,t), the temperature by T'(x,t) and the internal energy per unit
mass by e(x,t). The total energy is defined by E := p(e + |v|?/2). Conservation
of mass, momentum and energy is then expressed by, respectively,

%p—l—div(pv)z(), xeV,t>0, (2.1a)

0
apv—l—div(pverpI—T)—pgzo, xeV,t>0, (2.1b)

%E+div((E+p)v~v~‘r-kVT)—pv'gzo, xeV,t>0, (2.1
with % the thermal conductivity of the fluid. The tensor 7 in (2.1b) is called the
viscous stress tensor. In the absence of  and k, the equations (2.1) are called the
Euler equations.

The velocity vector can be represented by d Cartesian components v; 1= v-e;.
Similarly, the viscous stress tensor has d° Cartesian components 73j. Hence, the
unknowns in (2.1) are p, v; (j=1,...,d), p, T, e and 75 (i,j = 1,...,d), and
their number is d? + d + 4. The momentum equations (2.1b) can be separated
into d independent conditions. Hence, (2.1) specifies d + 2 relations. Closure of
the system of equations therefore requires d? + 2 supplementary relations. These
relations are provided by a constitutive relation, which relates the viscous stress
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tensor to the state variables, and two additional equations of state, which give a
mutual relation between the state variables; see also [77].

A common constitutive relation for the viscous stress tensor is (see, for in-
stance, Ref. [6])

Ti=p ((VV) + (V)T = 2(div) 1) , (2.1d)

where 1t is the dynamic viscosity of the fluid. A fluid with constitutive rela-
tion (2.1d) for the viscous stress tensor is called a Newtonian fluid. The mo-
mentum equations (2.1b) with 7 according to (2.1d) are called the Navier-Stokes
equations.

The flows considered in the sequel have a constant temperature and internal
energy. The considered fluid either satisfies a barotropic equation of state p :=
p(p), or it is homogeneous and incompressible, i.e., p is constant and v is solenoidal.
In both cases, conservation of mass and momentum implies conservation of energy,
and (2.1c) is redundant.

2.2.2 Dimensionless Equations

It is often convenient to express the quantities that are used to describe the flow
problem on scales that are relevant for the considered problem. For example, an
appropriate reference length for flow around a ship hull is the length of the hull.
For the considered fluid flows, three independent reference scales can be assigned,
viz., a reference length Lg, a reference velocity Vj and a reference density pg. All
other scales in the problem are then implicitly defined, e.g., the implied time scale
is L() / Vo.

Let Ly, Vo and pg denote a suitable reference length, velocity and density,
respectively. We introduce the dimensionless variables

x'=x/Lo, t :=tVo/Lo, v =v/Vo, p=p/po b = —po)/pVs,
(2.2)
with pg a reference pressure, typically, the atmospheric pressure. The dimension-
less form of the Navier—Stokes equations is obtained by inserting (2.2) into (2.1b),
(2.1d). Upon omitting the primes, we obtain

%pv +div (pvv +pI — T) + pFr%ey = 0, XxeEV,t>0, (2.3a)
with 7 the dimensionless viscous stress tensor,
T :=Re"! ((VV) + (V)T = 2(div v) 1) : (2.3b)
and
Re = poVolo , Fr .= Vo (2.3¢)

2 VgLo

The dimensionless numbers Re and Fr are called the Reynolds number and the
Froude number, respectively. The Reynolds number is the ratio of inertial and
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viscous forces in the flow. The Froude number is the ratio of the reference velocity
over the velocity of a particular gravity wave, viz., a sinusoidal wave with dimen-
sionless wave-number one in a fluid of infinite depth. In the absence of free-surface
stresses, such as surface tension, the parameters Re and Fr are the distinguishing
parameters for a viscous flow subject to gravity.

2.2.3 Additional Conditions and Well-Posedness

To complete the description of a flow problem, the governing equations (2.1) must
be provided with additional conditions. The additional conditions specify condi-
tions which the state variables must satisfy at the boundaries of the considered
space—time domain. In general, we can distinguish initial conditions and boundary
conditions. The partial differential equations (2.1) and the additional conditions
form an initial boundary value problem.

The properties of an initial boundary value problem depend critically on the
additional conditions. In particular, the additional conditions determine whether
a boundary value problem is well posed or ill posed. An initial boundary value
problem is said to be well posed if it possesses the following properties:

Existence: a solution exists,
Uniqueness: the solution is unique,
Stability: the solution is stable,

and ill posed otherwise. The stability requirement implies that the solution can
be bounded in terms of the right-hand side of the differential equations and of the
additional conditions (in some appropriate sense).

Only in specific cases has it been established that initial boundary value
problems from fluid dynamics are well posed. A detailed discussion of additional
conditions and of existence, uniqueness and stability of initial boundary value prob-
lems is beyond the scope of our research. Relevant references on the subject of
additional conditions and posedness include, e.g.: [70, 71] for homogeneous, incom-
pressible fluids, [62] for non-homogeneous incompressible fluids, [41] for boundary
conditions for hyperbolic systems with constant or variable coefficients, and [17]
for absorbing boundary conditions on truncated spatial domains.

2.3 Interface Conditions
2.3.1 Two-Fluid Flow Interface Conditions

We consider a flow of two distinct contiguous fluids, separated by an interface.
Equations (2.1) describe the behavior of the flow in each of the fluids. At the in-
terface, the state variables must comply with interface conditions. These interface
conditions provide a relation between the state variables of the contiguous fluids.
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The interface conditions consist of kinematic and dynamic conditions. The
kinematic conditions are related to the continuity of velocity of the fluids at the
interface. The dynamic conditions express conservation of momentum at the inter-
face. A detailed model for the behavior of fluid interfaces and the corresponding
interface conditions are presented in [5,58]. Without additional assumptions on
the properties of the interface, the dynamic conditions depend in a complicated
manner on the geometry of the interface. To simplify the dynamic interface con-
ditions, we assume that the contributions of interface viscosity, interface tension
and interface density to the dynamic conditions are negligible. These assumptions
are valid in many practical applications.

To present the interface conditions, we consider an interface S between the
two contiguous fluids. One fluid is designated the primary fluid and the other fluid
the secondary fluid. Denoting the unit normal vector to & from the primary to
the secondary fluid by n(x,t), we define

xT =limx +en, (2.4)

el0
i.e., x~ and x* are at the interface in the primary and secondary fluid, respectively.

Under the aforementioned assumptions, the stresses exerted on the interface by
the primary and secondary fluid must cancel:

x
—n-(pI—7) =0. (2.5)
.
Conditions (2.5) are called the dynamic interface conditions. In equation (2.5), we
can distinguish d separate conditions. If t;(x,t) (j =1,...,d — 1) are orthogonal
tangent vectors to S, the inner product of (2.5) and t; yields d — 1 conditions:
x+
tj-Tnl =0, j=1,...,d-1 (2.6a)
.
Conditions (2.6a) prescribe continuity of shear stresses across the interface. These
conditions are called the tangential dynamic conditions. The inner product of (2.5)
and n yields:
+
=0. (2.6b)

x=

~(p—‘r:nn)x

This condition is called the normal dynamic condition.
The kinematic conditions for the interface prescribe that the flow velocity is
continuous across the interface:

=0, (2.7a)

and that the interface moves with the local flow velocity. The latter implies that
if the interface position is written in parametric form as

S:={xeR: x=X(y,t)}
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Table 2.1: Appropriate number of interface conditions n, for different combi-
nations of the contiguous fluids in a two-fluid Aow in R

combination n
viscous /viscous | 2d+1
viscous /inviscid | d+ 2

inviscid/inviscid 3
with y € R4, then
X(y,t
a_é%’il = v(X(y,t),1). (2.7b)

Note that the velocity at the interface is uniquely defined by virtue of (2.7a).
The interface conditions (2.6) and (2.7) are only valid if both fluids are

viscous. If either of the fluids is inviscid, the kinematic conditions (2.7) must be

modified. The continuity condition (2.7a) then only applies in the direction normal

to the interface, i.e.,
xT

n-vl =0, (2.8a)

x

and only the normal velocity of the interface is prescribed:

Do =n-v. (2.8b)
Moreover, the tangential dynamic conditions then imply that the shear stress of
the viscous fluid must vanish at the interface.
If both fluids are inviscid, the dynamic conditions are modified as well. In
that case, the tangential dynamic conditions (2.6a) are discarded and the normal
dynamic condition reduces to:

—p =0. (2.9)

Condition (2.9) states that the pressure is continuous across the interface.

The above implies that the number of interface conditions depends on the
properties of the contiguous fluids. Table 2.1 lists the appropriate number of
interface conditions for different combinations of the contiguous fluids.

2.3.2 Free-Surface Conditions

A free surface can be regarded as a particular instance of an interface, in which
the stresses exerted on the interface by one fluid are negligible on a reference scale
that is appropriate for the other. This occurs if the difference in densities of the
contiguous fluids is large.

In order to derive the free-surface conditions from the general interface condi-
tions, we consider a flow of two adjacent fluids with different densities. Let pg and
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py denote the reference densities for the primary and secondary fluid, respectively,
and let Vj be a suitable reference velocity for the flow. The derived reference stress
po Vi is suitable for the secondary fluid if moderate constants ¢; and T (1=1,2)
exist such that

P —poll _ - Il _
<t LT cy < < (2.10)
L1 = . ~ C1, Lo > >~ €2,
Po Vi po Vi
with || - || the maximum norm of - in the secondary fluid for all ¢ > 0. Equa-

tion (2.10) is expressed with respect to the reference stress p, V7, which is suitable
for the primary fluid, by

o (P8 2 lp=poll __ (pg T WP [ I P RY
& — = ,V-Z >~ €1 — 3 Lo — > _V2 > (2 — . .
Po Po Vo Po Po Po Vo )

This implies that if the density ratio pa’ /py is small, the deviation from pon of
the stress exerted on the interface by the secondary flow is insignificant for the
primary flow. The primary flow is then independent of the secondary flow and,
moreover, the motion of the interface depends exclusively on the primary flow. In
this case, the interface is called a free surface (or free boundary) of the primary
flow.

The free-surface conditions follow from the general interface conditions under
the assumption that the secondary flow is inviscid and exerts a constant pressure on
the interface. The dynamic free-surface conditions follow immediately from (2.5):
in dimensionless form,

n-(pI—7)=0, xeS,t>0, (2.12)

with p and 7 the dimensionless pressure and viscous stress tensor,, respectively.
The kinematic condition (2.8b) describes the motion of the free surface. Condi-
tion (2.8b) can be recast into a convenient form, if the free surface is represented
as a level set:
S:={xeR?:¢(x,t)=0}. (2.13)
The kinematic free-surface condition can then be recast into
o

5?+V-V1p:(), x€8,t>0. (2.14)

In the absence of overturning waves, the free surface is often represented by a height
function of the horizontal coordinates. If n(x1,...,24-1,1t) denotes the height of
the surface with respect to some fixed reference surface, then the corresponding
level set is ¥(x,t) = n(zy,...,2q-1,t) —x4. The kinematic condition then assumes
the familiar form:

[ a/

Equations (2.8b), (2.14) and (2.15) are different formulations of the condition that
the free surface moves in its normal direction with the normal component of the
local flow velocity.
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2.4 Problem Statement

We are concerned with the steady flow of water underlying air. The ratio of the
density of air to the density of water is sufficiently small to treat the water-air
interface as a free surface. Moreover, for our purposes, water can be treated as a
homogeneous, incompressible, viscous fluid.

To formulate the free-surface flow problem, let V denote the volume occupied
by the water, OV its boundary, S the free surface and R = 9V \ S the rigid
boundary; see Figure 2.1 on page 6. The steady free-surface flow problem is
described by the aforementioned equations with the partial derivatives with respect
to t omitted. Because the water is assumed to be homogeneous and incompressible,
the density can be removed from the dimensionless governing equations. The
steady free-surface flow problem is then stated as: Given the rigid boundary R,
find S and v : V — R% and p : V — R such that:

div (vv +pl — 7) = —Fr %ey, xeV, (2.16a)
divv =20, xeV, (2.16b)

with the viscous stress tensor T according to (2.3b), subject to the free-surface
conditions

n-(pI—7)=0, xes§, (2.17a)
nv=_0, xeS, (2.17b)

and the rigid-boundary conditions on R.

The above problem statement contains the envisaged problem. However,
to facilitate the investigation of numerical techniques, in the ensuing sections we
will also consider closely related problems, e.g., the two-fluid compressible Euler
equations or the steady free-surface potential flow equations.



Chapter 3

Analysis of Viscous Free-Surface Flow in
Primitive Variables

3.1 Introduction

Flows that are partially bounded by a freely moving boundary occur in many
practical applications, for instance, ship hydrodynamics, hydraulics and coating
technology. Classically, free-surface flow problems have been examined by means
of perturbation methods and Fourier techniques; see, e.g., Refs. [42, 46, 65]. These
analyses are restricted to generic problems, such as perturbations of a uniform
flow. However, these generic problems already contain important information on
the general properties of free-surface flow problems. Presently, computational
methods play an important role in the analysis of free-surface flow problems that
occur in actual engineering applications.

The analysis of numerical methods for (initial) boundary value problems gen-
erally proceeds in the same manner as the classical analyses based on perturba-
tion methods and Fourier techniques. The differential operators in the continuum
problem are then replaced by their difference approximation. The familiar von
Neumann stability analysis (see, for instance, Refs. [27,53,77]) is in fact an ap-
plication of perturbation methods and Fourier techniques to difference equations.
The analyses are important in the assessment of the stability of discretizations and
of the convergence behavior of numerical solution methods.

It appears that an analysis of viscous free-surface flow problems in primitive
variables, i.e., velocity and pressure, is not available. The classical analyses of
viscous free-surface flows [42] and, in a more general context, stratified flows [28]
adopt a vorticity-based formulation of the flow equations. Recent investigations of
viscous free-surface flows (e.g., Ref. [16]) maintain this formulation. This outset
has two disadvantages. Firstly, these analyses are generally inappropriate for the
investigation of numerical methods, because most numerical methods for viscous
free-surface flow problems treat the flow equations in primitive variables. Secondly,

13
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the analyses are restricted to two spatial dimensions and, due to the properties of
the vorticity formulation (see, e.g., Ref. [20]), cannot be straightforwardly extended
to include the practically relevant case of three spatial dimensions.

In this chapter we present an analysis of the viscous free-surface flow equa-
tions in primitive variables. We consider the generic problem of perturbations in a
uniform horizontal flow of finite depth in two- and three spatial dimensions. Only
first-order perturbations are considered. Our primary interest is in the application
of the analysis to the assessment of numerical methods for the viscous free-surface
flow problem. However, this application is not currently presented. The presented
analysis has raison d’étre independently, as it yields important information on the
properties of viscous free-surface flows in three spatial dimensions. Classical re-
sults in two spatial dimensions are included as a special case. The results concern
the dispersive behavior of surface gravity waves, the asymptotic temporal behav-
ior of wave groups, and the structure and properties of the free-surface boundary
layer.

3.2 Statement of Objectives

We consider the dimensionless Navier-Stokes equations for an incompressible ho-
mogeneous fluid subject to gravity. The velocity being solenoidal, divr = pAv,
with g := 1/Re. Hence, we consider

vi+divvv + Vp — ulAv = —Fr2e,, XeEV,, t>0, (3.1a)
divv =0, x€eV,,t>0. (3.1b)

The considered spatial domain V), is defined by
Vyi={x¢€ RY: —00 < 21,...,Zq1 < 400, —1 < 24 < n}, (3.2)

with 7 :=n(x1,...,24-1,t). The domain V, is bounded by the moving boundary
S, = {xq = n} and the rigid boundary R := {z4 = —1}.
At the boundary R we impose the free-slip boundary conditions:

e v=20, eq ((Vv)+(Vv)T)-e; =0, x€R, >0, (3.3)
with j =1,...,d —1. At &, the dynamic free-surface conditions are imposed:
p—2un-Vv-n=0, n-(Vv) +(vv)')-t; =0, x€ 8, t>0, (34)

with n the unit normal vector to S, and t;, j = 1,...,d — 1, orthogonal unit
tangential vectors to &,. Moreover, the vertical displacement 1 of the moving
boundary S, is related to the velocity of the underlying fluid flow by the kinematic
condition

m+v-Vn—uvy=0, Xx€S,,t>0. (3.5)

The moving boundary &), is then a free surface.
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Equations (3.1)—(3.5) must be supplemented with suitable initial conditions

V(X)O) - VO(X) 3 p(X, 0) = pO(x) 5 X € VT} I (36&)
with V), the closure of V,, and
n(x0)=m(x),  x€S, (3.6b)

with vq, po and 1 given.

Our objective it to determine asymptotic solutions of (3.1)—(3.6) in the limit
as ||n]] — 0, i.e., for small displacements of the free surface. Moreover, we investi-
gate the properties of such solutions.

3.3 Infinitesimal Solutions
3.3.1 Generating Solution
If the initial displacement of the free surface is specified
n(x,0) =0, x €8y, (3.7a)
and the initial conditions (3.6a) are specified
v(x,0) = v p(x,0) = —Fr 22,4, x eV, (3.7b)

where v(© = (1)§0), .. ,véo_)l, 0), with 1,v§0), . ,U;(l)l constant velocity components,
and * denotes closure, then the corresponding solution of (3.1)—(3.6) reads

n(x,t) =0, x € Sy, t >0, (3.8a)

and
v(x,t) = v p(x,t) = —Fr2z,, x €V, t>0. (3.8b)

The above solution corresponds to a uniform horizontal flow. A uniform horizontal
flow is indeed a (steady) solution of the considered free-surface flow problem.
If, instead, the initial displacement of the free surface is specified

n(x,0) = ehp(x) , x eS8y, (3.9a)

with hg independent of €, and, accordingly,
v(x,0) =vo(x;¢),  p(x,0)=polx;e), x€V,, (3.9b)
where vo(x;€) — v and po(x:e) — —Fr 2z, as € — 0, then the corresponding

solution of (3.1)-(3.5) approaches (3.8) as ¢ — 0. In this context, the solution (3.8)
is called a generating solution.
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3.3.2 Infinitesimal Conditions

We consider the free-surface flow problem (3.1)—(3.5), supplemented with the ini-
tial conditions (3.9). Motivated by §3.3.1, we assume that as ¢ — 0 the corre-
sponding perturbed solution can be expanded asymptotically as

n(x,t;e€) le W (x,t) + o(xn) , (3.10a)
(%, t€) = ()—I-Zz,bl(e Wi t) o), j=1,....d,  (3.10b)
=1
p(x,te) = —Fr 2z + Z@ pO(x,t) + o(¢n) (3.10c¢)
for all n = 1,2, ..., with respect to certain uniform asymptotic sequences {wlj(e)},

j=1,....d, {¢i(e)} and {x;i(e)}, with [ =1,2,.... For a definition of asymptotic
sequences and the Landau symbols, o and O, used below, see, e.g., Ref. [39].

The condition that (3.10a) complies with (3.9a) implies that x; must be of
O(e). We choose x1 = e. The functions 7{(e) and ¢;(e) are required to be of
o(1) as € — 0. We assume that the expansion (3.10) is uniformly valid in (x,¢)
for x € V,, and ¢ > 0. The representation (3.10) of the solution as an asymptotic
series is referred to as a formal solution. We refer to the first term in the series
expansion as the infinitesimal perturbation or the first-order perturbation.

Upon inserting (3.10) in (3.1), we obtain

(0  d-1 (l d_g2,® (9 )
P
z=1<w[at +Zlv 8 82] 87)

k
n d o (l)
+Z Z(W) v(m) D >+o(dﬂ)+o(¢n)—0, (3.11a)

=1 m=1k=1

and

n )
(Z W ;)> =0, (3.11b)

=1

M-

for all x € V,),t > 0. Because terms of different order in e must vanish separately
as € — 0, (3.11a) implies: (1) that zlzlj = O(¢;) to maintain a meaningful relation
between v and p; (2) that ¢; = O(¢1¢-1) = O(¢}) to maintain a meaningful
relation between successive terms in the expansion. Based on (1), we choose
P =gy

The requirement that (3.10) satisfies (3.1)-(3.5) and (3.9) imposes certain
conditions on the successive terms in the expansion. The infinitesimal conditions,
i.e., the conditions which the first-order perturbation must satisfy, are obtained
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by inserting the expansion (3.10) in (3.1)—(3.5) and (3.9), and collecting terms of
order O(¢1).
Collecting terms of order O(¢y) in (3.11):
vgl) +v@. vy v -y AvD =0 XEV,t>0, (3.12a)
divv® =0, x €V, t>0. (3.12b)

Inserting (3.10) in (3.3) and collecting terms of O(¢;), the boundary condi-
tions at the rigid boundary R yield

o =0, xeR,t>0, (3.13a)
(9’[)(1) av(l)
J d .
+ =0, xER, t>0,j=1,....d—1. 3.13b
Oxg Ox; J ( )

To obtain the free-surface conditions for the infinitesimal perturbation, an
asymptotic expansion of the unit tangential and normal vectors to &, is required.
If the tangential and normal vectors to the undisturbed free surface Sy are e;
and eq, respectively, then the unit tangential and normal vectors to S, can be
expanded as

ti(x+n(x,t)eq) = e + (e;- Vn(x,t)) eq + O(e?) (3.14a)
d—1

n(x+7(x,t)eq) = es— »_(e;-Vn(x,1t)) e; + O(e) (3.14b)
j=1

with x € 8. The remainder is O(e?) because 1 = O(e).
Taylor expansion of v(x,¢) around x € Sy yields

v(x +n(x)eq, t) = v(x,t) +n(x,t) eq- Vv(x,t) + O(e?) (3.15a)

Vv(x +n(x)eqt) = Vv(x, t) + n(x,t) eq- VVvV(x,t) + O(e?) . (3.15Db)
Hence, by (3.10),

v(x +n(x) eq, t) = v + v (x,t) + r(e) (3.16a)

V(x4 n(x)eqt) = 0 Vv (x,t) +r(e), (3.16b)

with x € Sy and the remainder r(e) = O(e?) + O(ep1) + O(¢?). Similarly, we
obtain for the pressure

p(x+n(x)eq t) = dipM(x,t) — eFr* D (x,t) +7(e),  x€S8, (3.17)

with #(¢) = O(¢2) + O(eg1) + O(x2). Equation (3.17) yields a meaningful relation
between p and 7, provided ¢1 = O(¢). We choose ¢y = e. From the remainder 7
we infer that a meaningful relation between successive terms in the approximation
is only obtained if x; = O(e!). Hence, the remainders r and 7 are both of O(¢?).
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Figure 3.1: The spatial domain Vn and the undisturbed free surface So; Sp is
not contained in V,,.

Inserting (3.10) and (3.14)—(3.17) in (3.4)~(3.5) and collecting terms of O(e),
we obtain the infinitesimal conditions

)

. 0
p(l) — Fr_‘an(l) —2u P 0, % € Sp,t >0, (3.18a)
8xd
oo vtV
J d
—Le = (), x € Sg,t >0, 3.18b
drg | Oz, 0 (3.18b)
and
a2 o
— + v = — vy =0, x €8y, t>0. (3.18¢)
ot b Oz d

Observe that (3.18) must be satisfied on the undisturbed free surface Sy.
However, v(!) and p") are defined on the spatial domain V,,. Because &y is not
necessarily contained in Vm it can occur that v and p» in (3.18) are not
properly defined; see Figure 3.1. To avoid this, we assume that v(!) and p(V) can
be extended smoothly beyond the boundary S, in such a manner that they are
well defined in a neighborhood of S, including Sy. For x € Sp,x ¢ 7,7, we then
define v(¥) and p(*) in (3.18) by their smooth extension from S,,.

Ignoring terms of O(e?), the initial conditions (3.9) yield

enV(x,0) = eho(x) , xe 8y, (3.19a)
v (x,0) = vo(x;€) — v xeV,, (3.19b)
PV (x,0) = po(x;€) + Fr 2z, x€eVY,. (3.19¢)

Equation (3.19) specifies the infinitesimal initial conditions.
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3.3.3 Generic Modes

To determine the infinitesimal perturbation, i.e., the solution of (3.12)-(3.13) and
(3.18)-(3.19), we first determine generic modes in compliance with (3.12). Subse-
quently, we use these generic modes to form the infinitesimal perturbation.

For convenient notation, let q(x, 1) := ('uil), o8 p W) (x, 1) and h(x, t) =
n)(x,t). To construct a Fourier representation of q(x,t), we first consider an
isolated mode:

a(x,t) := q(k, s,w) exp (ik-x + szq + iwt) , (3.20a)
h(x,t) == h(k,w)exp (ik-x + iwt) , (3.20b)

f

with k := kyey + -+ - + kg—1e4-1, k; € R the horizontal wave number, w € C the
radian frequency and s € C. Note that the product kx yields kyz1+. . . +kg—174-1.
Inserting (3.20a) into (3.12), we obtain

Pk, s,w) -4k, s,w)exp (ik-x + sxq + iwt) =0, (3.21)

with the Fourier symbol ]§(k, s,w) according to

Ak, s,w) 0 . 0 ik
0 H(k, s,w) ... 0 ko
Pk, s,w) = : Sl (3.22a)
0 0 . H(k,s,w) s
i]ﬁ lkg RN S5 0
where X
H(k, s,w) = iw~+iv? . k+ n(k|? = s%). (3.22Dh)

Hence, (3.20a) complies with (3.12) if
q(k, s,w) € kernel(f’(k,s,w)) ) (3.23)

Equation (3.23) only allows nontrivial §(k, s,w) if P(k, s,w) is rank-deficient. This
requires that k, s and w satisfy

d—1

det(P(k,w)) = (|k|* — s?) (H(k, s,w)) 0. (3.24)

For d = 2, the kernels of P(k,s,w) corresponding to the different roots
of (3.24) are:

span 0F,{11.,10 , ifk,s,w=0, (3.25a)
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or otherwise

iky
span (=1)7|k] , if s =(=1)7k| (=1,2), (3.25b)
—i(w +v(® k)
s )
span —iky , if H(k,s,w)=0. (3.25¢)
0
For d = 3,
1 0 0 0
0 1 0 0 .
span ol lol-til 1o , ifk,s,w=20, (3.26a)
0 0 0 1

or otherwise

iky
ik: . ; .
span (—1)§|k| : ifs=(-1)k|l (j=1,2), (3.26b)
-—1(w +v(0 k)
e 0
s e B
span R R , if Hk,s,w)=0. (3.26¢)
0

Note that (3.25a) and (3.26a) correspond to constant modes. Because (3.25Db)

and (3.26b) are independent of 1, the associated modes are called inviscid modes.

In contrast, the modes corresponding to (3.25¢) and (3.26c) are viscous modes.
In view of the linearity of (3.12), a solution of (3.12) can be represented as a

linear combination of the modes (3.25) or (3.26). Hence, a generic inviscid mode
can be defined by

Hk,w, %, 1) 291 (k,w)q k w)exp (ik-x + (=1) [klzg +iwt) ,  (3.27a)
with 6% : R*™! x C— C (j = 1,2), and
ik,
dilkw) = ka1 : (3.27b)

(=1)7[K]
~i(w +v(© Ak)
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A generic viscous mode is

d—1 2

q'(k,w, x,1) ZZQZJJ (k,w) 47 ; (k, w)exp (ik-x+ (=1 ozq +iwt), (3.28a)
=1 j=1

withe;jj-.Rd*l xC—C(=1,...,d—1,7=1,2),

o= o(k,w) = /K2 +i(w+ VO k) /u, (3.28D)
and A
(=1)o
ai (kw)=| -k |, ifd=2, (3.28¢)
0
and
(1o 0
AU __ 0 AV (—1)j0 . N
ql,j(kuw) = —ikl 5 gs ](k CU) —ikg 5 ifd=3. (328(1)
0 0

3.3.4 Surface Gravity Waves

A solution of (3.12)—(3.13) and (3.18) can be formed by linear combination of the

generic modes (3.27)-(3.28). The case d = 2 can be treated as a particular case of

d = 3, with 95’7]. and ko set to 0, and will therefore not be considered separately.
To enforce the boundary conditions (3.13), we choose

9;(1{, w) = 6'(k,w) exp ((-1)7[k|), 07 (k,w) = 0] (k,w) exp ((-1)0), (3.29)

with 0%(k,w) : R x C — C and 07 (k,w) : R4 x C +— C, where j = 1,2 and
1 =1,2. Equations (3.27) and (3.28) then yield

ik cosh Elk[(l + :cd);
ikq cosh (|k|(1 4 zq)

i ot (il(1+ 7))
—Qcosh ([k|(1 + zq))

d'k,w,x,t) = 0'(kw) exp (ik - x + iwt) , (3.30a)

with
Q:=Qk,w) =i(w+v" k), (3.30b)
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and

o cosh (0(1 + Il?d))
0

—iky sinh (o(1 4 zq
0

q’(k,w,x,t) =07 (k,w) ) exp (ik-x + iwt)
0

o cosh (o(1 + zq))

—ikgsinh (o (1 + x4)

+ 65 (k,w) (
0

) exp (ik-x +iwt) ., (3.30¢)

respectively.

The sum of the above inviscid and viscous modes, g + g, and the infinites-
imal surface displacement (3.20b) satisfy the conditions (3.18) if the following
conditions hold:

') cosh |k| + Fr2h + 2u(0%[k|*cosh |k| — iocosh o (8K + 03ks)) =0, ( )
Qh — (0 |k|sinh [k| — isinh o (6% + 65ks)) =0, (3.31b)
0 2ik; |k|sinh |k| + 67 (0 + k) sinho =0, (3.31c)
0" 2iky |k|sinh |k| + 65 (0% + k3)sinho =0, (3.31d)
Eliminating the ratios /8%, 67 /6" and 83 /6° from these equations, we obtain
(k'%(cfz +k3) + k3 (o + k%)) (4;1,Qa|k|(tanh k|/tanh o) + 2Fr~?|k|tanh [k!)
— (0 + k) (0 + k2) (Q(Q + 2u[k|?) + Fr2|k|tanh |k]> =0. (3.32)

Recall that o is defined by (3.28b). Hence, (3.32) specifies a relation between the
radian frequency w and the wave number k. Such a relation is called a dispersion
relation. Elimination of o2 from (3.32) by means of the definition (3.28b) yields
the following implicit relation for the dispersion relation:

Q2 + plk]?) ((Q +2u[k[?)” + Fr2|k|tanh Ik])
— i <4Qa}k|(tanh |k|/tanh o) <|k|2(Q + plk|?) + Q;Lk‘fkg)
+ k22 (3Fr*2tk|tanh k| — Q2+ 2p|k|2)>) =0. (3.33)

It appears impossible to explicitly extract the dispersion relation w(k) from
equation (3.33). However, an asymptotic expansion of the dispersion relation in
the limit g — 0 can be constructed. As p — 0, (3.33) possesses two distinct roots

wjl; p) = —v Ok + (=1)70(k) + i2ulk|? + o(p) , (3.34a)
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with j = 1,2 and

®(k) = 1/Fr2|k|tanh |k]| . (3.34b)

To construct the expansion (3.34), it is important to note that

o VulkP+Qexp 2y/[KP /) +1
tanho VH exp (2\/m) 1" O(1/vn), (3.35)

as 1 — 0. Hence, the remainder in (3.34) is indeed o(u).
If (3.34) is inserted in (3.20a) and terms of o(u) are ignored, it follows that

an isolated Fourier mode behaves in z1,...,z4-1 and ¢ as:
exp ( — 2ulk|*t)exp (ik-x — i(v(o) k= (=1)2(k))t) . (3.36)

Equation (3.36) associates a traveling wave with each root of the dispersion re-
lation. These waves are called surface gravity waves. The surface gravity waves
move with the phase velocity

ck) = k(v k- (-1)ok)k, =12, (3.37)

see, e.g., Ret. and attenuate as exp (—2pn t).
Ref. [78]) and 2|k|2

3.3.5 C(onstant Perturbations

A solution of (3.12)—(3.13) and (3.18) can also be formed by linear combination
of the constant modes (3.26a). One can infer that for d = 3 any such constant
perturbation can be represented as

vy U1
(1) 7
L%l) (x,t) =w, with w:= v (3.38a)
o 0
p(D) D
and
h(x,t) = Friay (3.38b)

for arbitrary constants 1,02 and p. The case d = 2 can again be treated as a
particular case of d = 3, with U5 set to 0, and will not be considered separately.

3.3.6 Compatibility of Initial Conditions

The surface gravity waves express the infinitesimal perturbation corresponding to
a disturbance in the initial conditions in the form of an isolated Fourier mode. A
general infinitesimal perturbation can be represented as a linear combination of
the constant mode and the Fourier integral of these surface gravity waves, provided
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that the perturbation in the initial conditions complies with certain compatibility
conditions.

To facilitate the description of the compatibility conditions, we note that
the conditions (3.31c¢)—(3.31d) specify an interdependence between the inviscid
mode (3.30a) and the viscous mode (3.30c). For each root w;(k) of the dispersion
relation (3.33), we can condense the corresponding surface gravity wave into

w;(k, zq) exp (ik-x + iw; (k)t) , (3.39a)
where ,
Wik, zg) = Wi (K, 2a) — pW (K, z4) | (3.39b)
with
ik; cosh §|kl(1 +24)
i . | ikgcosh (|k[(1 4 zq)
Wil 2a) = | i) sinh (IK|(1 4+ 2q)) | (3.39¢)
—Q cosh (k| (1 + 2q))
and
ojcosh (0;(1+ x4))/sinho;
(K, 1) = 21k |k|sinh |k| 0
Wil La) = plk|? + Q; + pk? | —iky sinh (aj(l + :r:d))/sinhaj
0
0
2iks [k|sinh [K| ojcosh (0;(1 + zq)) /sinho; (3.394)

plk]? +Q; + pk? | —ikzsinh (0;(1 + 24))/sinhoy |
0

with Q; = Q(k,w;(k)) and ¢; := o(k,w;(k)) according to (3.30b) and (3.28b),
respectively.

Moreover, from the conditions (3.31) it follows that the surface displacement
carried by the surface gravity wave (3.39) is

h; (k) exp (ik-x + w;(k)t) (3.40a)

with
ﬁ,j(k) = —Fy? {Qjcosh k| + 2u/k|?cosh |Kk|

4420 ;|K|sinh [} 2 2
_ I U.?l |Slnh| (| kl 5 4 A’Q 5 ) (340b)
tanh o plk|? + Q5 + pk? o plk]? + Q5 4 pks
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To specify the compatibility condition for the initial conditions (3.9), we

define (0)
1 vo(x;e) —v
go(x) = lim (po(x &) - ) . (3.41)

Let m denote the number of roots of the dispersion relation (3.33). The ini-
tial conditions (3.9) are called compatible with (3.1)-(3.5) to O(e?) as ¢ — 0, if
0; : R9~1 i C exist such that

=W+ / k) w;(k, zq) exp (ik-x) dk + O(e) , (3.42a)

™m

ho(x) = Fray + / | Z 0;(k) hj (k) exp (ik -x) dk + O(e) . (3.42h)

with W € R4! a constant vector in accordance with (3.38a). The compatibility
conditions (3.42) imply that the infinitesimal initial conditions (3.19) can be
satisfied to O(€?) by a linear combination of the constant modes (3.38) and a
Fourier integral of the surface gravity waves.

Existence of the integrals in (3.42) implies certain restrictions on the initial
conditions, in addition to the compatibility conditions; see, e.g., Ref. [73]. How-
ever, many of these restrictions can be relaxed if §; is understood in a generalized
sense [45].

3.3.7 General Infinitesimal Perturbations

The infinitesimal perturbation corresponding to an arbitrary compatible initial
condition can be represented as

q(x,t) =w+ Z / k) w;(k, zq) exp (ik-x + iw;(k)t) dk , (3.43a)
h(x,t) = Fr?m, + Z/ 0, (k) hj(k) exp (ik -x + iw;(k)t) dk , (3.43b)

for appropriate w and 6,(k). If 6;(k) w;(k, zq) and 6;(k) ﬁj(k) are analytic func-
tions of k for all considered x4, then the integrals describe the behavior of wave
groups, i.e., a group of contiguous (in Fourier space) surface gravity waves.
Denoting the Fourier transforms of qy(x) and ho(x) from z1,...,24-1 to k
by wo(k,zq) and ﬁo(k), respectively, the infinitesimal initial conditions imply the
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following conditions on w and 6;(k):

m

Wo(k, zq) = wo(k) + Y 0;(k)w;(k, zq) , (3.44a)
J=1
ho(k) = Fria, 6(k) + Z 0;(k)h;(k) (3.44b)

with d(k) the Dirac d-function. If the conditions (3.44) uniquely determine W
and 6;(k) for all k such that w,(k,zq) # 0 or l:",j(k) # 0, then the infinitesimal
perturbation (3.43) is uniquely determined by (3.1)-(3.5) and the initial condi-
tions (3.9). This is, of course, a prerequisite for well posedness of the problem
defined by (3.1)-(3.5) and (3.9).

From (3.33) and (3.39)-(3.40) it follows that Ww;(k,z4) = 0 and fAL_,,-(k) =0
iff k = 0. The conditions (3.44) with k = 0 then uniquely determine w. For all
k # 0, the conditions (3.44) uniquely determine 6;(k), provided that the pairs
(Wj(k, zq), il,j (k)), 7 =1,...,m, are linearly independent for some z4 € [0, 1].

For sufficiently small y, the infinitesimal perturbation is unique: From (3.34)
and (3.39) it follows that the number of roots of the dispersion relation is m = 2
as ft — 0 and that the associated pairs (W;(k,xq), fz,j(k)), j = 1,2, are linearly
independent for all k # 0.

3.4 Solution Behavior

In this section we summarize several characteristic features of surface gravity waves
and of surface gravity wave groups.

3.4.1 Evolution of Local Disturbances

The dispersive behavior of the surface gravity waves implies that the velocity of
the waves varies with the wave number. This is apparent from expression (3.37) for
the phase velocity. Consequently, the Fourier modes that are present in an initially
local disturbance in the flow appear later at different positions. This well-known
phenomenon is also described in the classical references [42, 46].

To illustrate this behavior, we consider the evolution of the free-surface dis-
placement for a stagnant inviscid free-surface flow in two spatial dimensions, i.e.,
U%O) =0, p =0 and d = 2, in the case that the infinitesimal initial displacement
of the free surface is given by
T2

ho(x) =e™" —o0<x<00. (3.45)

The Fourier components of the initial displacement hg(z) are

; Lo —ika ek
ho(k) = o ho(z)e dz = N (3.46)
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The infinitesimal free-surface displacement is expressed by (3.43b). Considering
the typical case 05(k) = 0, we obtain that the infinitesimal free-surface displace-
ment is given by the wave group

00 o—k?/4
h(z,t) = / —2-7_7;~exp (1]% +iy/Fr?|k[tanh | k| t) dk . (3.47)

Figure 3.2 plots the real part of h(xz,t) according to (3.47) for Fr = % The
separation of the Fourier components with different wave numbers that occurs due
to the dispersive behavior of the surface gravity waves is indeed apparent.
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Figure 3.2: Evolution of a local disturbance in the free-surface position ac-
cording to (3.47).

3.4.2 Steady Waves

Equations (3.39)-(3.40) imply that a surface gravity wave with wave number k is
steady if the dispersion relation (3.33) has a root w;(k) = 0. For inviscid flows
(1 =0), it follows from (3.34) that this occurs for k such that

(v(?.%)* = Fr?|K|tanh [K| . (3.48)

Without loss of generality, below we assume that the reference velocity is chosen
such that [v(®] = 1.
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For d = 2, equation (3.48) yields a relation between the wave number and
the Froude number:
|k| " tanh |k| = Fr? . (3.49)

For subcritical flows, i.e., for Fr < 1, equation (3.49) specifies a unique relation
between the Froude number and the wave length A\ := 27 /k. Figure 3.3 displays
the relation between the wave length of the steady surface gravity wave and the
Froude number, according to (3.49). For supercritical flows (Fr > 1) a solution

” /

4 //
e
2 /
,////
0 1/5 2/5 3/5 4/5 1

Fr

Figure 3.3: Relation between the wave length, A\, and the Froude number, Fr,
for steady surface gravity waves in a channel of unit depth.

to (3.49) does not exists and, accordingly, a steady surface gravity wave does not
oceur.

To facilitate the derivation of the steady waves for d = 3, we assume, without
loss of generality, that v(®) = e, so that v(?).k = k;. Equation (3.48) then yields
the following relation between ki, ko and Fr:

K 2
=k 3.50
Vk? + k2 tanh \/k? + k2 (3.50)

Figure 3.4 on the next page displays curves in the (kq,kq)-plane on which the
condition (3.50) is fulfilled for different values of Fr 2. From Figure 3.4 it becomes
apparent that for d = 3 the inviscid free-surface flow problem allows surface gravity
waves with unbounded |k|. From (3.36) it follows that these high wave number
modes are effectively removed by viscosity.
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Figure 3.4: Wave-number curves of steady surface gravity waves in 3 dimen-
sions for Fr™2 = 0,1, 1 1,2 4,8

v 40 9

3.4.3 Asymptotic Temporal Behavior of Wave Groups

The asymptotic temporal behavior of a group of inviscid surface gravity waves
is determined by the asymptotic properties of the inverse Fourier transforms
in (3.43), with w;(k) by (3.34) and u = 0. The behavior of these integral trans-
forms for t — oo can be determined by means of the asymptotic expansion

/OOO fk)exp(i€(k)t) dk =

f(ko) —,,2”— exp (i[€(ko)t + tmsign&”(ko)]) + O <3> +0(e™PY), (3.51)
€ (ko) [t t

with J a positive constant, f (k) an analytic function and kg a stationary point
of £(k), i.e., &(ko) = 0. In the absence of stationary points, the bracketed term
vanishes and only the exponentially decaying term remains. The expansion (3.51)
requires that (k) is smooth in the neighborhood of stationary points in the sense
that the ratio & (ko)/|€" (ko)|?/? is small; see Ref. [42]. The method of stationary
phase (sometimes called method of steepest descent) can be used to prove (3.51);
see, e.g., Refs. [46,79)].

The inverse Fourier transforms in (3.43) can be evaluated for ¢ — oo by intro-
ducing a suitable coordinate transformation for k and applying (3.51) recursively
with respect to the transformed coordinates. The following asymptotic behavior
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of the inverse Fourier transforms (3.43) is then obtained:

(27 /)42 (det H(ko)) /% exp (i€ (ko)t + i¢) + O(e ™), (3.52a)

as t — 0o, where
E(k) =k-x/t+wjk), (3.52b)

H(k) denotes its Hessian and ¢ is a multiple of 7/4 depending on the properties
of the Hessian; see also Ref. [78].
If £t = 0 in (3.34), then for fixed x and t — oo, a stationary point ko of £(k)
occurs when
00(k) - tanh |k| + [k|(1 — tanh ?|k|) k; O

Ok; 2 \/|k[tanh |K| k| s

j=1,....d-1. (3.53)

Without loss of generality, we assume that v(?) is scaled such that [v(O| = 1. A

necessary and sufficient condition for a stationary point to exist is Fr=2A(|k|) = 1,

with

(tanh |k| + |k|(1 — tanh %|k|))?
4 [k|tanh |k '

One can show that A(|k]|) is a bijection from R, to (0, 1]. Therefore, a stationary
point exists iff Fr < 1, i.e., for subcritical flows. This stationary point corresponds
to a wave of which the group velocity (see, e.g., [46, 78]) equals the flow-velocity.
Consequently, the energy associated with this wave remains at a fixed position
and decays only due to dispersion.

By (3.52a), at subcritical Froude numbers the asymptotic temporal behavior
of the wave groups in (3.43) in R? is O(t('=9/2) as t — co. In particular, the
wave groups attenuate as 1/v/f in R? and as 1/t in R3. At supercritical Froude
numbers, a stationary point of (k) does not exist and the first term in (3.52a)
disappears. The wave groups then vanish exponentially as t — oc.

A(k]) = (3.54)

3.4.4 Free-Surface Boundary Layer

A particular feature of viscous free-surface flows is the boundary layer that is
present in the vicinity of the free surface. The boundary layer of a surface gravity
wave (3.39) is contained in the viscous contribution (3.39d). From (3.39d) it follows
that the typical structure of the free-surface boundary layer is

cosh (0;(1+ z4))
sinh o;

, (3.55a)

and
sinh (o (1 + 24))
sinho; '

(3.55h)

for the horizontal and vertical velocity components, respectively. The pressure
does not exhibit a free surface boundary layer.
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Figure 3.5 plots the modulus of (3.55a) versus the vertical coordinate for
several values of p. The modulus of (3.55b) behaves similarly. The setting of the
remaining parameters is Fr = v/tanh 1, k; = 1 and ks = 0. In the absence of
viscosity, this setting corresponds to a steady surface gravity wave with d = 2;
cf. (3.49). To create Fig. 3.5, for each value of y we extracted the €1 closest to
—1 from (3.33) and, subsequently, we obtained the corresponding o from (3.28b).
The free-surface boundary layer structure is apparent in Figure 3.5.

0.8 A

0.6 1

0.4

|cosh (o (1 + zq)) /sinh o]
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-1 -0.8 -0.6 g —04

Figure 3.5: Structure of the free-surface boundary layer according to (3.55a)
for 4 =10"1,1072,1073,107*, with Fr = vtanh 1, k; = 1 and ks = 0.

The free-surface boundary layer is weak in the sense that the boundary layer
vanishes as 1 — 0. From (3.33) it follows that
Q;=0(01), as pu— 0. (3.56)
The definition (3.28b) then implies
o, =0(1/y/p), as i — 0. (3.57)

Hence, by (3.39), the viscous contribution to the horizontal velocity is O(,/f) and
the viscous contribution to the vertical velocity is only O(u). This result is consis-
tent with the statement in [6] that the velocity deviation through the free-surface
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boundary layer is O(1/ VRe). The above implies that the free-surface boundary
layer indeed vanishes as u — 0. In contrast, the deviation of the horizontal and
vertical velocities through the boundary layer near a rigid no-slip boundary is O(1)
and O(y/t), respectively; see, e.g., Ref. [39]. Hence, the boundary layer near a
rigid no-slip boundary persists as p — 0.



Chapter 4

Efficient Numerical Solution of Steady
Free-Surface Navier—Stokes Flows

4.1 Introduction

The numerical solution of flows that are partially bounded by a freely moving
boundary is of great importance in ship hydrodynamics [3, 13, 18, 47|, hydraulics,
and many other practical applications, such as coating technology [54,55]. In
ship hydrodynamics, an important area of application is the prediction of the
wave pattern that is generated by the ship at forward speed in still water. This
wave generation is responsible for a substantial part of the ship’s resistance and,
therefore, it should be minimized by a proper hull form design. Computational
methods play an important role in this design process. Most computational tools
that are currently in use for solving gravity subjected free-surface flows around
a surface-piercing body rely on a potential flow approximation. Present develop-
ments primarily concern the solution of the free-surface Navier-Stokes (or RANS)
flow problem.

For time-dependent free-surface flows, generally there is no essential differ-
ence in the treatment of the free surface between numerical methods for potential
flow or Navier-Stokes flow. Typically, the solution of the flow equations and
the adaptation of the free boundary are separated. Each time step begins with
computing the flow field with the dynamic conditions imposed at the free surface.
Next, the free surface is adjusted through the kinematic condition, using the newly
computed velocity field.

For steady free-surface flows, however, such a conformity of approaches for
viscous and inviscid flow cannot be observed. For instance in ship hydrodynamics,
whereas dedicated techniques have been developed for solving the free-surface po-
tential flow problems (see, e.g., Ref. [52]), methods for Navier—-Stokes flow usually
continue the aforementioned transient process until a steady state is reached (see,
e.g., Refs. [3,13]). However, this time-integration method is often computation-

33
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ally inefficient. In general, the convergence to steady state is retarded by slowly
attenuating transient surface gravity waves. Moreover, the separate treatment of
the flow equations and the kinematic condition yields a restriction on the allow-
able time-step. Due to the specific transient behavior of free-surface flows and the
time-step restriction, the performance of the time-integration method deteriorates
rapidly with decreasing mesh width. In practical computations, tens of thou-
sands of time steps are often required, rendering the time-integration approach
prohibitively expensive in actual design processes.

Several approaches have been suggested to improve the efficiency of time-
integration methods, e.g., pseudo-time integration and quasi-steady methods; see
Refs. [18,75]. It appears that these approaches indeed improve the efficiency,
but do not essentially improve the asymptotic convergence behavior of the time-
integration method.

Alternative solution methods for steady free-surface Navier-Stokes flow ex-
ist, but they have not been widely applied in the field of ship hydrodynamics. In
the field of coating technology successive approximation techniques are often em-
ployed, in particular, kinematic iteration and dynamic iteration [55]. Kinematic
iteration imposes the dynamic conditions at the free surface and uses the kinematic
condition to displace the boundary. Dynamic iteration imposes the kinematic and
the tangential dynamic conditions at the free surface and uses the normal dynamic
condition to adjust the boundary position. However, the convergence behavior of
both iteration schemes depends sensitively on parameters in the problem; see,
e.g., Refs. [12,61]. A method that avoids the deficiencies of the aforementioned
iterative methods, is Newton iteration of the full equation set [55]. The positions
of the (free-surface) grid nodes are then added as additional unknowns and all
equations, including the free-surface conditions, are solved simultaneously. An ob-
jection to this method is that simultaneous treatment of all equations is infeasible
for problems with many unknowns, such as three-dimensional problems and prob-
lems requiring sharp resolution of boundary layers. Finally, the free-surface flow
problem can be reformulated into an optimal shape design problem, which can then
in principle be solved efficiently by the adjoint optimization method. A problem
with this approach is its complexity: although much progress has been made in
the formulation of adjoint equations for problems from fluid dynamics, including
the Navier-Stokes equations [22], setting up the adjoint method remains involved.
Moreover, efficiency is only obtained if proper preconditioning is applied [67,69],
and constructing the preconditioner for the free-surface Navier—Stokes flow prob-
lem is intricate.

The current work presents an iterative method for efficiently solving steady
free-surface Navier—Stokes flow problems. Although our interest is the previously
outlined ship hydrodynamics application, it is anticipated that the method is
also applicable to other gravity dominated steady viscous free-surface flows at
high Reynolds numbers, such as occur, for instance, in hydraulics. The proposed
method is analogous to the method for solving steady free-surface potential flow
problems presented in [52]. The method alternatingly solves the steady Navier-
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Stokes equations with a so-called quasi free-surface condition imposed at the free
surface, and adjusts the free surface using the computed solution. The quasi
free-surface condition ensures that the disturbance induced by the subsequent dis-
placement of the boundary is negligible. Each surface adjustment then yields an
improved approximation to the actual free-boundary position.

The contents of this chapter are organized as follows: In Section 4.2 the
equations governing incompressible, viscous free-surface flow are stated and the
quasi free-surface condition is derived. Section 4.3 proves that the usual time-
integration approach is generally unsuitable for solving steady free-surface flows.
Section 4.4 outlines the iterative solution method and examines its convergence
behavior. Numerical experiments and results for a two-dimensional test case are
presented in Section 4.5. The application to actual ship wave computations is in
progress and will be reported in a sequel. Section 4.6 contains concluding remarks.

4.2 Governing Equations

4.2.1 Incompressible Viscous Flow

An incompressible, viscous fluid flow, subject to a constant gravitational force
is considered. Although only steady solutions are of interest, for the purpose of
analysis the equations are considered in time-dependent form.

The fluid occupies an open, time-dependent domain V, C R (d = 2,3),
which is enclosed by the free boundary, S,, and a fixed boundary, OV, \ &,,.
Positions in R? are identified by their horizontal coordinates (X1,...,24-1) and a
vertical coordinate y, with respect to the Cartesian base vectors eq,...,eq4_; and
j, respectively. The origin is located in the undisturbed free surface &y, and the
gravitational acceleration, g, acts in the negative vertical direction. We consider
free surfaces that can be represented by a so-called height function, ie.. S, =
{(x,n(x,t))}. The height function n is assumed to be a smooth function of the
horizontal coordinates and time. See Figure 4.1 on the following page for an
illustration.

The distinguishing parameters of the viscous free-surface flow problem are
the Froude number, Fr := U//g?, and the Reynolds number, Re := pUf/y, with
U an appropriate reference velocity, g the gravitational acceleration, £ a reference
length and p the dynamic viscosity of the fluid. The fluid density p is assumed to be
constant. The state of the flow is then characterized by the (non-dimensionalized)
fluid velocity v(x,y,t) and pressure p(x, y,t). Incompressibility of the fluid implies
that the velocity field is solenoidal:

divv =0, (x,4) € Vp, t > 0. (4.1a)

Conservation of momentum in the fluid is described by the Navier-Stokes equa-
tions. The pressure is separated into a hydrodynamic component ¢ and a hydro-
static contribution as p(x,,t) = ¢(x,y,t) — Fr~?y. Because the gradient of the



36 Chapter 4. Efficient Numerical Solution of Steady Free-Surface Flows

AN
/'l p
J g ; 1 4 \
= 1 A 1 \
, H 3 / .
!7’]} 3y / \v‘
[ \
e; N So ! \
S SRR S R Vo AN A -
AN : \ ! \ !
/
N \ i \ i
N ! \ ] \ ’
\ i i i N~
\ H g -
\ \ !
8 ! \ 7
N I N
\ ; -
\ !
o S |
N |
|
1z i
]
OVn \ Sy :»
|
|

Figure 4.1: Schematic illustration of the free-surface flow problem.

hydrostatic pressure and the gravitational force cancel, the Navier-Stokes equa-
tions for a gravity subjected incompressible fluid read:

¢

ov

5 +divvv + Vo —divr(v) =0, (x,y) € Vp,t >0, (4.1b)

where 7(v) is the viscous stress tensor for an incompressible Newtonian fluid:
T(v):= Re“l((VV) +(vv)h). (4.1¢)

Our primary interest is in turbulent flows. We consider the Reynolds Av-
eraged Navier-Stokes (RANS) equations, supplemented with a turbulence model
that is based on eddy viscosity. For our purpose, the RANS equations are essen-
tially the same as the Navier—Stokes equations, with the important difference that
the RANS equations have steady solutions even at the envisaged high Reynolds
numbers.

4.2.2 Free-Surface Conditions

Free-surface flows are essentially two-fluid flows, of which the properties of the
contiguous bulk fluids are such that their mutual interaction at the interface can
be ignored. For an elaborate discussion of two-fluid flows, see, e.g., Refs. [5, 58].
The free-surface conditions follow from the general interface conditions and the
assumptions that both density and viscosity of the adjacent fluid vanish at the
interface and, furthermore, that the interface is impermeable. Here it will moreover
be assumed that interfacial stresses can be ignored, which is a valid assumption in
the practical applications envisaged.
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On the free surface, the fluid satisfies a kinematic condition and d dynamic
conditions. Impermeability of the free surface is expressed by the kinematic con-
dition 5
a—z +v-V(n—y)=0, (x,y) € Sp,t > 0. (4.2a)

Supposed that the viscous contribution to the normal stress at the free surface is
negligible, continuity of stresses at the interface requires that the pressure vanishes
at the free surface. This results in the normal dynamic condition

o—Fr =0, (x,y)€8,t>0. (4.2b)

The requirement that the tangential stress components vanish at the free surface
is expressed by the d — 1 tangential dynamic conditions

t'-T(v) n=0, (x,y) € &y, t > 0. (4.2¢)

Here, t' (i = 1,...,d — 1) are orthogonal unit tangent vectors to S, and n denotes
the unit normal vector to S,,.

One may note that the number of free-surface conditions for the viscous free-
surface flow problem is d + 1. The incompressible Navier-Stokes equations in R¢
require d boundary conditions. Hence, the number of free-surface conditions is
indeed one more than the number of required boundary conditions.

4.2.3 Quasi Free-Surface Condition

A fundamental problem in analyzing and computing free-surface flow problems, is
the interdependence of the state variables v, p and their spatial domain of defini-
tion through the free-surface conditions. This problem can be avoided by deriving
a condition that holds to good approximation on a fixed boundary in the neigh-
borhood of the actual free boundary. We refer to such a condition as a quasi free-
surface condition, because the qualitative solution behavior of the initial boundary
value problem with this condition imposed is similar to that of the free-boundary
problem, but the boundary does not actually move. A suitable quasi free-surface
condition for the free-surface Navier-Stokes flow problem is derived below.
Let S, denote the actual free surface, as defined before. In a similar manner,
a nearby fixed boundary Sy := {(x,6(x))} is introduced, with §(x) a smooth
function on Sy. We require that Sy is close to the actual free surface in such a
manner that
d(x,t) :==n(x,t) —0(x), (4.3)

is small and sufficiently smooth. In particular, for all ¢ > 0, § must satisfy ||d||s, +
IVlls, + |I6¢]ls, < €, for some e < 1. Here || - ||s, is a suitable norm on the

approximate boundary. Assuming that p and v can be extended smoothly beyond
the boundary Sy, Taylor expansion in the neighborhood of Sy yields for p and v
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at the actual free surface,

p(x,m(x,t),t) = p(x,0(x),t) + (%, 1) j- Vp(x, 0(x),t) + O(c?), (4.4a)
(x,1(x,1),t) = v(x,0(x), 1) + 5(x, 1) j- Vv (x, 0(x),t) + O(e?), (4.4b)

<

The normal dynamic condition (4.2b) demands that the left-hand side of (4.4a)
vanishes. Hence, the elevation of the free surface can be expressed in terms of the
pressure and its gradient at the approximate surface:

])(X, H(X)v t) 2

n{x,t) = 6(x) T VX, 600, 1) +O(e%) . (4.5)
To obtain an O(e?) accurate quasi free-surface condition, i.e., an O(e?) ap-
proximation of the conditions at Sg, v and # in the kinematic condition (4.2a) can
be replaced by (4.4b) and (4.5), respectively. The resulting condition is, however,
intractable. Instead, two additional assumptions concerning v and p are intro-
duced to obtain a convenient quasi free-surface condition. The first assumption is
that the vertical derivative of the pressure is dominated by the hydrostatic compo-
nent, —Fr=2, Generally, this assumption is valid for waves of moderate steepness.

Specifically, we suppose that a constant 0, < 1 exists such that for all ¢ > 0,

11+ F?§-Vplls, < o0y - (4.6)

The second assumption is that the vertical derivative of v is small, in such a
manner that a constant o, < 1 exists with the property that for all ¢ > 0,

Hj 'VVHSQ <oy. (47)

Under this assumption, the velocity at the actual free boundary, v(x, n(x,t),t),
can be accurately approximated by the velocity at the fixed boundary, v(x, 8(x), t).
By (4.4b), the error in the approximation is only O(eoy). In [6] it is shown that
the velocity-deviation through the free-surface boundary layer is proportional to
the surface curvature and 1/v/Re. Moreover, o, in (4.7) increases with the wave
steepness. Therefore, the assumption o, < 1 is valid if the steepness and curvature
of the free-surface waves are moderate and if Re is sufficiently large.

Under the above assumptions a convenient quasi free-surface condition can
be derived. Substitution of the hydrostatic approximation of the pressure gradient
in (4.5) yields

_ p(x,0(x), 1)
~Fr (1 + O(oy))

n(x,t) = 0(x) = 0(x) + Fr?p(x, 0(x),t)(1 + O(c,)) . (4.8)

The dynamic condition (4.2b) and (4.4a) imply that p = O(¢) on Sy. Hence,
ignoring terms O(€?, €op), the free-surface elevation is related to the hydrodynamic
pressure at the approximate boundary by

n(x,t) = 0(x) + Fr¥p(x, 0(x),t) = Frlp(x, 0(x), ) . (4.9)
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To transfer the kinematic condition (4.2a) to the approximate surface Sy, 7 is
replaced by (4.9) and v on &, is replaced by v on Sy. The error thus introduced
is only O(€?, €0p,€0y). Special care is required in expressing the gradient of 7,
because (4.9) relates 7 to ¢ on the curvilinear surface Sp:

o dy o(0p  Op 06 9 op 06
Vi = dx br (6x * Ay 8x> br <V<‘0+ 8y<6x J)) (4.10)
It then follows that
In _ 29 =
?5Z+V~V(77 y) = Fr (8t +v-V(p—Fr y))+
dp o0
iy (= 2 =0. (4.11
Fr 8yv (0x _])+O(6 J€0p, €0y) = 0. (4.11)

Using the kinematic condition (4.2a) and definition (4.3), the second term on the
right-hand side of (4.11) can be recast into
9y

Fr2~(-,}—y—v~‘7(9 —y) = FrZ%%V~V(77 - —y) = —Frz%(v-V(S +0r)  (4.12)

o

By virtue of the smoothness of 4, the term in parenthesis is just O(e) and (4.12)
is only O(eop). The second term on the right-hand side of (4.11) can therefore be
ignored. Hence, it follows that

%?+V-V(99~Fr_2y) =0, (4.13)
approximates the conditions at the boundary Sy to O(e?, €0y, €0y). This implies
that (4.13) is a quasi free-surface condition on any fixed boundary that is suffi-
ciently close to the actual free surface, provided that (4.6) and (4.7) are fulfilled.

One may note that (4.13) is exactly satisfied at the actual free surface.
Therefore, the quasi free-surface condition can replace either the kinematic condi-
tion (4.2a) or the normal dynamic condition in the formulation of the free-surface
conditions in §4.2.2.

The importance of the quasi free-surface condition is that the quasi free-
surface flow solution, i.e., the solution of the Navier—Stokes equations with (4.13)
and (4.2¢) imposed at a fixed boundary in the neighborhood of the actual free
surface, is an accurate approximation to the actual free-surface flow solution. Be-
cause the tangential dynamic conditions are largely irrelevant to the shape of the
free surface (see Ref. [6]), it is anticipated that the change in the solution due to
imposing (4.2c) at Sy instead of S, is negligible. In that case, if (4.13) holds at Sy,
then the free surface conditions (4.2b) and (4.2a) are satisfied to O(e?, eop, €0y at
the boundary

{(x, Frzgp(x,ﬁ(x?t)))} ) (4.14)

Therefore, the solution of the quasi free-surface flow problem is an O(e?, €0p, €0y )
approximation to the solution of the free-surface flow problem. Moreover, (4.14)
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is an equally accurate approximation of the actual free-surface position. One may
note that (4.14) just uses the normal dynamic condition to determine the position
of the free surface.

4.3 Time Integration Methods

The most widely applied iterative method for solving gravity dominated steady
free-surface Navier-Stokes flow is alternating time integration of the kinematic
condition, and the Navier—Stokes equations subject to the dynamic conditions,
until steady state is reached. This section examines the computational complexity
of this time-integration method, i.e., the number of operations per grid point
expended in the solution process.

The computational complexity of the time-integration method depends on
the physical time that is required to reduce transient wave components in the
initial estimate to the level of other errors in the numerical solution. The tran-
sient behavior of surface gravity waves therefore plays an essential part in the
complexity analysis. This transient behavior is discussed in detail in Chapter 3.
Sections 4.3.1 and 4.3.2 below summarize the main results. The implications on
the computational complexity is examined in Section 4.3.3.

4.3.1 Surface Gravity Waves

We consider the specific case of a small amplitude disturbance of a uniform hor-
izontal flow on a domain V C R? of infinite horizontal extent and unit vertical
extent. The domain is bounded by the undisturbed free surface Sy = {(x,0)}
and a rigid impermeable free-slip bottom B := {(x,—1)}. The uniform flow ve-
locity is v(©@ := (v%o), e ,'1)2(1)1,0), with [v(®)] = 1. The above implies that the
undisturbed fluid-depth and flow velocity are designated as reference length and
velocity, respectively.

Suppose that a disturbance is generated in the flow, such that for all ¢ > 0
the resulting surface elevation satisfies ||9ls, + |V 7lls, + Intlls, < €, for some
positive e. We assume that the corresponding perturbed free-surface flow solution
can be written as

v +(© v
(x,y,t;¢) = +e (x,9,t) + O(e?), ase— 0. (4.15)
® 0 %0(1)

From §4.2.3 it follows that the solution of the quasi free-surface flow problem on V
is an O(€2, €0y, €0y) approximation of the actual free-surface flow, with o, and oy
defined by (4.6) and (4.7), respectively. However, (4.15) implies that o, and o are
of O(e). Hence, the quasi free-surface flow solution on V is an O(€?) approximation
to the actual free-surface flow solution. Consequently, for sufficiently small and
smooth perturbations the results on the behavior of the quasi free-surface flow
solution apply immediately to the behavior of the actual free-surface flow solution.
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Suppose that the disturbance can be written as a linear combination of hor-
izontal Fourier modes exp(ik-x + iwt), with k € R?"! the wave number of the
Fourier mode and w its radian frequency. Because the perturbed quasi free-surface
flow problem is linear to O(e?), it suffices to consider a single mode. If the following
Fourier mode is inserted for the perturbations in (4.15),

1
vi! iky cosh(|k| (1 +v))
oD G =] ik cosh(k| (1 +y)) | ep(ikex+iv;(k)1),
oD fsinb(k| (1 + 1)
o0 (=1)7 i®(k) cosh(|K| (1 + 1))
(4.16a)
where w; (k) is either of the two roots of the dispersion relation:
wik) = v .k (-1Y®(k), j=12 (4.16b)
and
(k) := /Fr [k tanh(|K]) (4.16¢)

then the corresponding v and ¢ comply to O(e?) with the quasi free-surface flow
problem, except the tangential dynamic conditions (4.2¢), which yield

t'7r(v)-n=Re ' e2ik; [k|sinh(k|) exp(ik-x + iw; (k) t) . (4.17)

Because (4.17) is only O(e|k|?/Re) as |k| — 0, the error is negligible for sufficiently
small k and large Re. Hence, equation (4.16a) accurately describes the behavior of
smooth free-surface waves in a uniform horizontal flow at sufficiently high Reynolds
numbers. The perturbations (4.16a) are called surface gravity waves. For an
elaborate discussion of surface gravity waves in potential flow see, e.g., Refs. [42,
46].

4.3.2 Asymptotic Temporal Behavior

The asymptotic temporal behavior of surface gravity waves is determined by the
asymptotic properties of the Fourier integral of the modes (4.16a). The behavior
of the integral transform for t — oo can be determined by means of the asymptotic
expansion

/000 F(kyexp(iti(k)) dk =

<F(ko) ﬁ exp(i[td (ko) + g7 sign v (ko)]) + o(%)) +O0(e™),

(4.18)
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with @ a positive constant, F(k) an analytic function and k¢ a stationary point of
W(k), ie., ¥/ (ko) = 0. In the absence of stationary points, the bracketed term van-
ishes and only the exponentially attenuating term remains. The expansion (4.18)
requires that (k) is smooth near stationary points in the sense that the ratio
Y (ko) /[0 (ko) |>/? is small; see Ref. [42]. The method of stationary phase (some-
times called method of steepest descent) can be used to prove (4.18); see, e.g.,
Refs. [46,79].

The Fourier integral of (4.16a) can be evaluated for ¢ — oo by introduc-
ing a suitable coordinate transformation for k and applying (4.18) recursively
with respect to the transformed coordinates. Denoting by o(x,y,t) a component
in (4.16a) and by &(k,y) its Fourier transform, one obtains

(%, y,t) = 6(ko, y) (2 /1) /2 (det F(ko)) ~"* exp (it (ko) + i) + O(e ™),
(4.19a)
as t — oo. In (4.19a) we have ignored O(t%?) contributions of the stationary
points. The phase function (k) is defined as

(k) =k x/t + wa(k), (4.19b)

H(k) denotes its Hessian and ¢ is a multiple of 7/4 depending on the properties

of the Hessian; see also [78]. By (4.16b) and (4.16¢), for fixed x and t — oo, a
stationary point kg of (k) occurs when

o0(k) - tanh k| + [k|(1 — tanh*|k|) k; () ;

Ok; 2+/|k|tanh |Kk| (k| I ' -

Assuming that v(9) is scaled such that [v(®)| = 1, a sufficient and necessary
condition for a stationary point to exist is Fr=?A(|k|) = 1, with
v : o 2 2
A(lK]) = (tanh k]| Id{k&(l tanh #|k]|)) _ (4.21)
anh |k|
One can show that A(Jk|) is a bijection from Ry to (0,1]. Therefore, a single
stationary point exists iff Fr < 1, i.e., for subcritical flows. This stationary point
corresponds to a wave of which the group velocity (see, e.g., Refs. [46, 78]) equals
the flow-velocity. Consequently, the energy associated with this wave remains at
a fixed position and decays only due to dispersion.

By (4.19a), at subcritical Froude numbers the asymptotic temporal behavior
of the surface gravity waves (4.16) in R? is O(t(1=9/2) as t — co. In particular,
surface gravity waves attenuate as 1/y/t in R? and as 1/t in R®. At supercritical
Froude numbers, a stationary point of 1(k) does not exist and the first term
in (4.19a) vanishes. The surface gravity waves then decay exponentially as ¢ — oo.

4.3.3 Computational Complexity

If the objective is to solve a steady free-surface flow problem by the time-integration
method, then the asymptotic temporal behavior of surface gravity waves can be
used to estimate the asymptotic computational complexity of the method.
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Spatial discretization of the incompressible Navier—Stokes equations with ap-
propriate boundary conditions on fixed boundaries and the free-surface conditions
on the free boundary yields a discrete operator Ly, : Ay — By, with A, denoting
the space of grid functions on a grid with characteristic mesh width h. The op-
erator Ly, is assumed to be stable and pth order consistent, i.e., the discretization
error, €y, is O(hP) as h — 0.

Numerical time integration of the spatially discretized free-surface flow prob-
lem yields a sequence g} € Ay, n=0,1,2,.... The grid-function q% is a restriction
of initial conditions to the grid. Assuming the time step in the time-integration
method, 7, to be constant, qj approximates the solution of the free-surface flow
problem at time t = n7. Suppose that the discretized free-surface flow problem
has a unique solution qj € Ay, and that the sequence g} indeed approaches qj
as n7 — o0o. The evaluation error is defined by

7" = gy —aall- (4.22)

If the aim is to approximate the solution of the steady free-surface flow prob-
lem, it is sufficient to reduce the evaluation error to the level of the discretization
error. Further reduction does not yield an essential improvement in the approxi-
mation of the continuum solution anyway. By (4.19a), the asymptotic behavior of
the evaluation error at subcritical Froude numbers is

A" = O((nr)1=D/2) as nT — 00. (4.23)

For an example of this convergence behavior in actual computations, see the nu-
merical experiments on fine grids in [75]. From (4.23) it follows that 4" < ¢,
requires

n = Q(h2/ (=) =1y, ash — 0. (4.24)

Equation (4.24) implies an increase of the number of time-steps to reach steady
state within the required tolerance. This is particularly manifest for high-order
discretizations (large p) and low spatial dimension (d = 2).

An additional complication is that usually the allowable time-step decreases
with h. Time integration of free-surface flow problems typically proceeds in two
alternating steps:

(T1) Integrate the incompressible Navier-Stokes equations, subject to the dy-
namic conditions at the free surface and appropriate boundary conditions at
fixed boundaries.

(T2) Integrate the kinematic condition to adjust the free-surface position, using
the solution from (T1).

Due to this separate treatment and the hyperbolic character of the kinematic
condition, stability of the numerical time-integration method requires that the
time step complies with a CFL-condition, 7 o h.
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Summarizing, equation (4.24) and the CFL-condition imply that the number
of time steps required to reach v < ¢, is O(h~(1+2P/(=1))) " Agsuming that the
computational complexity of the time-integration method is proportional to the
number of time steps, at subcritical Froude numbers the computational complexity
is

W = O(h_(l“”/(d_l))), as h — 0. (4.25)

Equation (4.25) implies a severe increase in the computational expenses as h de-
creases. For example, in the typical case of a 2-nd order discretization of the
three-dimensional problem, if the mesh-width is halved, the required computa-
tional work per grid point increases by a factor of 8.

4.4 Efficient Solution of Steady Free-Surface Flows

From Section 4.3 it is evident that the usual time-integration approach is inap-
propriate for solving steady free-surface flows at subcritical Froude numbers. In
this section we present an efficient iterative solution method for gravity subjected
steady free-surface flows. The method is outlined in Sect. 4.4.1. The conver-
gence properties of the method and its computational complexity are examined in
Sects. 4.4.2 and 4.4.3.

4.4.1 lterative Solution Method

From the results in §4.2.3, it follows that an accurate approximation to the free-
surface flow and to the free-surface position can be obtained by the following
operations:

(I1) For a given initial boundary S, solve (v, ) from

divvv + Vo —divr(v) =0

divy — 0} . xy eV, (4.264)
B(v,p) = b(x,y), (x,y) € OV\ S, (4.26b)

t’i-T(v)-nzO

. X, y) €S, 4.26¢
v-ch—Fr#Qj-v::O} Gey) ( )

where (4.26b) represents boundary conditions on the fixed boundary.
(I2) Use the solution of (I1) to adjust the boundary S to
{(xy+Fp(xy)): (x,y) € S} . (4.27)

Note the appearance of the quasi free-surface condition in its steady form in (4.26c¢).
The modified boundary approximates the actual free surface more accurately than
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the initial boundary, provided that the conditions discussed in §4.2.3 are fulfilled.
Hence, it is anticipated that the solution to the free-surface flow problem can be
obtained by iterating the operations (I1) and (I2).

If § is the actual free surface, then the normal dynamic condition is satisfied,
i.e., p vanishes on §. In that case, n | Vp, and (4.26c) implies that the solution
of (4.26) complies with the kinematic condition and the tangential dynamic con-
ditions. Hence, operation (I1) then yields the free-surface flow. Moreover, the
normal dynamic condition ensures that the surface adjustment in (I2) vanishes,
so that the solution of the free-surface flow problem is indeed a fixed point of the
iteration.

It is important to notice the absence of time-dependent terms in (I1) and (12).
Therefore, the slow decay of transient waves described in Section 4.3 is irrelevant
to the convergence of the iterative process. The actual convergence properties
of (I1)-(12) are examined below.

4.4.2 Convergence

The convergence behavior of the iterative method (I1)-(I2) can be conveniently
examined by rephrasing the free-surface flow problem as an optimal shape design
problem. A general characteristic of free-boundary problems is that the number
of free-boundary conditions is one more than the number of boundary conditions
required by the governing boundary-value problem. A free-boundary problem can
therefore be reformulated into the equivalent optimal shape design problem of
finding the boundary that minimizes a norm of the residual of one of the free-
surface conditions, subject to the boundary-value problem with the remaining
free-surface conditions imposed.

To obtain an optimal shape design formulation of the steady free-surface flow
problem, the cost functional F is defined by

E(S, (V,p)) = /5 Ip(x,y)]dS . (4.28)

Assuming that (4.26) is well posed for all surfaces S in a space of admissible
boundaries @, and that O contains the actual free-surface, the free-surface flow
problem is equivalent with the optimal shape design problem

'gnel(lol {E(S,(v,p)) : (v,p) satisfies (4.26)} . (4.29)

Notice that (4.29) is in fact a constrained optimization problem, with the boundary
value problem (4.26) acting as a constraint on (v, p).

The optimal shape design formulation of the free-surface flow problem al-
lows convenient assessment of the convergence properties of the iterative method
(I1)-(I2). Each iteration adjusts the approximation to the free-surface position.
Convergence of the iterative method is ensured if each surface adjustment yields a
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reduction of the cost functional (4.28). Moreover, the reduction of the cost func-
tional between successive iterations is a measure of the efficiency of the method.

To determine the effect of a surface adjustment, consider the boundary S
and the modified boundary

Sea = {(x,y) + ea(x,9)j: (x,y) € S}, (4.30)

for a suitably smooth function « independent of € on §. The modified boundary
is the boundary of a domain V,,, which approaches V as ¢ — 0. Following [51],
VY and V., are embedded in a bounded set £ and it is assumed that for all V C £
with S € O, a solution of (4.26) can be extended smoothly beyond the boundary,
so that (v,p) is well defined everywhere in £.

The displacement of the boundary from S to S, induces a disturbance in the
solution of (4.26). Denoting by (v, p)co the solution of (4.26) on V., the induced
disturbance is defined by

(v, p)o = lim £ ((v,p)ea = (v,p)) - (4.31)

Taylor expansion of the cost functional then yields
E(Seas (ViD)ea) = / [p+e(aiVp+pl)| (1+€ps) dAS+O(€?), as € — 0. (4.32)
s

In (4.32), the function p, : S — R accounts for the change in the surface area
from dS to dS.,. Ignoring terms O(€?), the modified boundary S, improves on
S if a positive constant ¢ < 1 exists such that

/ Ip+ (@ Vp+ o) (1 + i) dS < ¢ / 1pldsS . (4.33)
JS S

If (4.33) holds for some ¢ < 1, then the modification of the boundary from &
to Seo yields a reduction of the cost functional. The smallest positive constant
that satisfies (4.33) is called the contraction number. Clearly, a small contraction
number implies a successful surface modification.

Operation (I2) in the iterative procedure gives a correction of the boundary
position eaw = Fr?p. In that case, the value of the cost functional corresponding to
the modified surface is bounded by

E(Sear (V,P)ea) S/ Iplll+F1‘23'-Vp}(1+f/m)d5+/ lep,ldS . (4.34)
S s

Hence, the contraction number ¢ of the iterative process (I1)-(12) is bounded by

fs |€p/a| ds
JslpldS

with o, defined by (4.6). From (4.35) it follows that if € and o, are indeed small,
then the induced disturbance determines the convergence behavior of the iterative
method.

(<op+ + O(e), (4.35)
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To establish convergence of (I1)-(I2), it remains to show that the induced
disturbance p/, is indeed small. Sec. 4.2.3 shows that the quasi free-surface condi-
tion (4.13) approximates the conditions at a fixed boundary in the neighborhood of
the free surface to O(e?, eop, €0y ). Hence, displacing this condition from S to Seq
yields no greater disturbance than that. In [6] it is shown that the tangential dy-
namic conditions are largely irrelevant to the shape of the free surface. Conversely,
the induced disturbance due to enforcing the tangential dynamic conditions at S
instead of S¢, can be neglected. Therefore, the contraction number of the method
(I1)-(12) is estimated

¢ =0(e,0p,0v) . (4.36)

4.4.3 Computational Complexity

Eq. (4.36) provides an upper bound for the contraction number of the method (I1)-
(I2). One may note that if the approximate boundary is sufficiently close to the
actual free surface (e small), then (4.36) depends on properties of the continuum
solution only. Therefore, if the free-surface flow problem is solved numerically, the
behavior of the iterative method is asymptotically independent of the mesh width.

The iteration must be continued until the pressure defect at the free sur-
face (4.28) has been reduced to the level of the spatial discretization error. Fur-
ther reduction does not essentially improve the approximation of the continuum
solution anyway. Fach iteration reduces the pressure defect at the free-surface by
a factor . Therefore, the number of iterations n must satisfy

" = O(n?), (4.37)

where p denotes the order of consistency of the spatial discretization. This implies
that n = O(plogh/log(). Assuming that the computational complexity of the
iterative method is proportional to the number of iterations, the following estimate
of the computational complexity is obtained:

W = O(logh) . (4.38)

Hence, the efficiency of the method (I11)-(12) decays only moderately as h decreases.

To eliminate the remaining weak h-dependence of the computational com-
plexity, nested iteration can be used. Generally, an iterative solution method is
used to solve the boundary value problem (4.26) in step (I1) of the algorithm. The
nesting involves the use of the solution from the previous iteration as an initial
estimate for the solution process. Because this initial estimate becomes increas-
ingly accurate, the cost of performing (I1) reduces as the iteration progresses. In
particular, assuming that the cost of solving (4.26) is proportional to the pressure
defect at the free surface, the amount of work that is required to achieve (4.37) is

W=w+Cw+Cw+--+w < w, (4.39)

1
1—¢
with w the cost of solving (4.26) initially. Observe that the computational com-
plexity (4.39) is indeed entirely independent of the mesh width.
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Figure 4.2: Example of a grid used in the numerical experiments. The grid
is coarsened for illustration purposes.

4.5 Numerical Experiments and Results

The method is tested for subcritical flow over an obstacle in a channel of unit
depth, at Fr = 0.43 and Re = 1.5 x 10°, with the undisturbed fluid depth and the
undisturbed flow velocity at the free surface assigned as the reference length and
velocity, respectively. The geometry of the obstacle is

27T H
y(:v):~1+z7ﬁ:ﬂ(x—L)2, 0<z<L, (4.40)

with H and L the (non-dimensionalized) height and length of the obstacle, re-
spectively. Choosing H = 0.2 and L = 2, the setup is in agreement with [12]. At
the bottom boundary no-slip boundary conditions are imposed. A boundary-layer
velocity profile in accordance with the experiments from [12] is imposed at the
inflow boundary.

The test case with H = 0.2 displays large amplitude waves that exhibit
typical nonlinear effects, such as sharp wave crests and wave-length reduction. In
addition, H = 0.15 is considered. This test case displays waves more in accordance
with linear wave-theory, see, e.g., Refs. [42, 46].

The experiments are performed on grids with horizontal mesh widths A =
275,276 The number of grid cells in the vertical direction is 70 and exponential
grid stretching is applied to resolve the boundary layer at the bottom. Further-
more, the grid is coarsened towards the inflow and outflow boundaries to reduce
reflections. A typical example of a grid used in the numerical experiments is pre-
sented in Figure 4.2. The RANS equations, closed with an eddy viscosity model
due to Cebeci and Smith [14], and the boundary conditions are discretized and
solved by the method described in [32]. After each evaluation, the grid is adapted
using vertical stretching. An initial estimate of the solution on the adapted grid
is subsequently generated by linear interpolation from the solution on the pre-
vious grid. Details of the discretization method and the setup of the numerical
experiments can be found in [10].
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Figure 4.83: Wave profile obtained after successive iterations (H = 0.15).

Figure 4.3 and Figure 4.4 show the wave profiles obtained in successive iter-
ations for H = 0.15 and H = 0.2, respectively. The initial estimate (Oth iterate) is
just the undisturbed free surface. One may note that the first iterate already dis-
plays a qualitatively correct wave profile. This confirms that the quasi free-surface
flow solution is an accurate approximation to the actual free-surface flow solution.
A converged solution is obtained in approximately 2 iterations for H = 0.15 and
in approximately 10 iterations for H = 0.2. Due to the decreasing computational
cost of each iteration (refer to §4.4.3), even for H = 0.2 the entire computation
is just 2 to 3 times as expensive as the corresponding fixed domain problem with
symmetry boundary conditions at the undisturbed surface.

Figure 4.5 on page 51 displays the pressure defect at the free surface af-
ter consecutive iterations. The results confirm convergence of the method. For
H = 0.15, the average contraction number is ¢ =~ 0.15 and the convergence be-
havior is indeed independent of h. After several iterations the contraction number
increases. However, this is entirely due to the fact that the quasi free-surface flow
problem (4.26) is solved only by approximation. If the tolerance on the residual
of (4.26) is reduced, i.e., if (4.26) is solved more accurately, then the original con-
traction number is recovered. For H = 0.20, the average contraction number is
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Figure 4.4: Wave profile obtained after successive iterations (H = 0.2).

¢ =~ 0.45 for h = 27% and ¢ =~ 0.52 for h = 275, As a result of strong nonlinearity,
the asymptotic mesh width independence of the convergence behavior is in this
case not yet apparent.

A detailed investigation of the convergence behavior of time-integration meth-
ods for the test case with H = 0.20 is presented in [75]. Typically, the time-
integration method requires approximately 10* surface adjustments to reduce the
initial error by a factor of 10. The presented method achieves this in approximately
4 iterations, for a similar setting of the numerical experiment.

Figure 4.6 on page 52 compares the computed wave elevation with measure-
ments from [12]. In [12], a non-dimensionalized amplitude a = 4.5 x 1072 + 15%
and wave length A = 1.10 £ 10% are reported for the trailing wave. The trailing
wave of the computed wave elevation on the grid with h = 27° displays amplitude
a = 6.5 x 1072 and wave length A = 1.11. Hence, the computed wave length
agrees well with the measurements. The amplitude appears to be overestimated.
However, the difference between the amplitude of the numerical results and of
the experimental data is not unusual, see, e.g., Refs. [75,76]. Observe also that
the difference in the amplitude of the first wave and the second wave is correctly
predicted.
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Figure 4.5: Pressure defect at the free surface versus the iteration number for
H=0.15h=27°(0),h=2"%() and H =020, h = 27°(+),h = 27 (o).

4.6 Conclusion

The usual time-integration method for solving steady free-surface Navier—Stokes
flow problems was shown to be inefficient due to the specific transient behavior of
surface gravity waves and a CFL-condition on the allowable time step.

Motivated by the demand for efficient computational methods in practical
applications, we proposed a new iterative solution method. The method alternat-
ingly solves the steady Navier-Stokes equations with a quasi free-surface condition
imposed at the free surface, and adjusts the free surface using the computed solu-
tion and the normal dynamic condition.

Examination of the convergence properties of the iterative method revealed
that the method uses the quasi free-surface condition to ensure that the distur-
bance induced by the displacement of the boundary is small. It was shown that
the behavior of the method is asymptotically independent of the mesh width. The
asymptotic computational complexity of the iterative method deteriorates only
moderately with decreasing mesh width. Mesh width independence of the compu-
tational complexity can be achieved by means of nested iteration.
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Figure 4.6: Computed wave elevation for h = 275 (solid line) and measure-
ments from [12] (markers only), for H = 0.20. The obstacle is located in the
interval z € [0, 2].

Numerical results were presented for two-dimensional flow over an obstacle
in a channel. For the presented test cases, a converged solution was obtained in
at most 10 iterations. The numerical results agree well with measurements. The
numerical experiments confirmed that the behavior of the method is asymptotically
independent of the mesh width.

We believe that the proposed method will be useful in ship hydrodynamics,
hydraulics and other fields of application in which the efficient computation of
steady free-surface flows at high Reynolds number is required.



Chapter 5

Adjoint Shape Optimization for Steady
Free-Surface Flows

5.1 Introduction

The numerical solution of flows that are partly bounded by a free boundary is of
great importance in engineering applications, e.g., ship hydrodynamics [3,13,18],
hydraulics and coating technology [54,55]. A relevant class of free-surface flow
problems are steady free-surface flows. An example of a steady free-surface flow
is the wave pattern carried by a ship at forward speed in still water. The numer-
ical techniques for free-surface potential flow are well developed; for an overview,
see [74]. In particular, dedicated techniques have been developed for solving the
steady free-surface potential-flow equations, e.g., Ref. [52]. In contrast, methods
for the steady free-surface Navier-Stokes equations typically continue a transient
process until a steady state is reached. This time-integration method is often com-
putationally inefficient, due to the specific transient behavior of free-surface flows;
see (11, 80]. Alternative solution methods for the steady free-surface Navier—Stokes
equations exist. However, the performance of these methods usually depends sensi-
tively on the parameters in the problem, or their applicability is too restricted; see,
for instance, Refs. [55,61]. In [11], an efficient iterative algorithm was presented.
However, the implementation of the quasi free-surface condition that underlies the
efficiency of this method can be involved. Hence, the investigation of numerical
methods for the steady free-surface Navier-Stokes equations is warranted.

A general characteristic of free-boundary problems is that the number of
free-boundary conditions is one more than the number of boundary conditions
required by the governing boundary value problem. A free-boundary problem
can therefore be reformulated into the equivalent shape optimization problem of
finding the boundary that minimizes a norm of the residual of one free-boundary
condition, subject to the boundary value problem with the other free-boundary
conditions imposed.

53
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Optimal shape design problems can in principle be solved efficiently by means
of the adjoint method. In recent years, much progress has been made in the de-
velopment of adjoint techniques for problems from fluid dynamics. Applications
to the Navier-Stokes equations include flow control (see [21] and the references
therein), a posteriori error estimation and adaptivity (for instance, 7, 8]) optimal
design (e.g., Refs. [22,25]) and domain decomposition (cf. Ref. [26]). The tech-
niques that are required to solve the optimal shape design problem associated with
steady free-surface flow are readily available.

The present work investigates the suitability of the adjoint shape optimiza-
tion method for solving steady free-surface flow problems. Our primary interest
is in the steady free-surface Navier—Stokes equations. However, because inviscid,
irrotational flow adequately describes the prominent features of free-surface flow
and to avoid the excessive complexity of the Navier-Stokes equations, we base our
investigation on the free-surface potential-flow equations. It is anticipated that
the adjoint shape optimization method is equally applicable to the free-surface
Navier—Stokes equations, although the specifics of the method are much more in-
volved in that case. Our investigation serves as an indication of the properties of
the adjoint shape optimization method for steady free-surface flow problems.

The contents of this chapter are organized as follows: In Section 5.2 the
equations governing steady free-surface potential flow and the associated design
problem are stated. Section 5.3 formulates the adjoint equations and sets up the
adjoint optimization method. Section 5.4 presents an analysis of the properties of
the optimization problem and the behavior of the adjoint method, using Fourier
techniques from [69]. Motivated by the results of the Fourier analysis, we describe
a preconditioning for the optimization problem in Section 5.5. Numerical exper-
iments and results are presented in Section 5.6. Section 5.7 contains concluding
remarks.

5.2 Problem Statement

We consider an incompressible, inviscid fluid flow, subject to a constant gravita-
tional force, acting in the negative vertical direction. The fluid occupies a domain
V C RY (d = 2,3) which is bounded by a free boundary, S, and a fixed boundary
OV \ S. The fixed boundary can be subdivided in an inflow boundary, an outflow
boundary and a rigid, impermeable boundary.

5.2.1 Governing Equations

The (non-dimensionalized) fluid velocity and pressure are identified by v(x) and
p(x), respectively. Assuming that the velocity-field is irrotational, a velocity po-
tential ¢(x) exists such that v = V¢. Enforcing incompressibility then yields that
the velocity potential is governed by Laplace’s equation,

Ap=0, xeV. (5.1)
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Assuming that [V ¢| = 1 at the inflow boundary, Bernoulli’s equation relates the
pressure to the velocity potential by

p(x) = § — (3| Vo[> + Fr2zq) (5.2)

with x4 the vertical coordinate and Fr the Froude number, defined by Fr := V/\/gL
with V' an appropriate reference velocity, g the gravitational acceleration and L a
reference length.

The free-surface conditions prescribe that the free surface is impermeable
and that the pressure vanishes at the free surface:

n-Ve¢ =0, x €S, (5.3a)
p= 0, X e Sa (53b)

with n(x) the unit normal vector to S. Conditions (5.3a) and (5.3b) are referred
to as the kinematic condition and the dynamic condition, respectively. A single
appropriate boundary condition must be specified at the fixed boundary. We
assume that this condition is of the form

an-Vo+bo=c, x € dV\S, (5.4)

for certain functions a,b,c: 9V \ S — R.

The steady free-surface flow problem under consideration is the problem of
finding & and ¢ such that ¢ satisfies (5.1)—(5.4). However, this problem is not
necessarily well posed. Firstly, solutions can be non-unique due to the occurrence
of arbitrary non-physical upstream waves. To remove these waves, a radiation
condition must be imposed; cf., for instance, [42,46,65]. In numerical computa-
tions, this radiation condition can be conveniently enforced by introducing artifi-
cial damping (see Section 5.6) or by selecting a suitable discretization (see, e.g.,
Ref. [52]). Secondly, a steady solution can be nonexistent, in the sense that the
transient problem underlying (5.1)-(5.4) does not approach a steady state as time
progresses ad infinitum; see, for instance, Ref. [80].

5.2.2 Optimal Shape Design Formulation

One may note that the number of free-surface conditions (5.3) is one more than
the number of boundary conditions required by (5.1). The free-boundary problem
can therefore be reformulated into the equivalent optimal shape design problem
of finding the boundary that minimizes a norm of the residual of one of the free-
surface conditions, subject to the boundary value problem with the remaining
free-surface conditions imposed.

To obtain an optimal shape design formulation of the steady free-surface flow
problem, the cost functional E is defined by

E(S,¢) = / %p(x)zdx, (5.5)

JS
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-

and the constraint C is defined by the boundary value problem (5.1), (5.3a)
and (5.4):
Ap =0, xEeV,
C(S,9) = n-Ve=0, x€eS, (5.6)
an-Vo+bo=c, x € 0V\S.

Note that the cost functional is a norm of the residual of the dynamic condi-
tion (5.3b) and that the kinematic condition (5.3a) appears in the constraint. The
free-surface flow problem is equivalent to the optimal shape design problem

H}Sin{E(S,d)) (8,9}, (5.7)

i.e., minimize (5.5) over all 8, subject to the constraint that ¢ satisfies (5.6).
Because the boundary value problem (5.6) associates a unique ¢ with each free
boundary &, it is often convenient to use the notation E(S) for E(S,¢) with ¢
from (5.6).

5.3 Adjoint Optimization Method

Shape-optimization problems can in principle be solved efficiently by means of the
adjoint optimization method. The essential problem in treating shape optimiza-
tion problems is that a displacement of the free boundary induces a disturbance
in the solution of the boundary value problem and, consequently, it is attended
with an induced change in the cost functional. Efficient solution of a shape opti-
mization problem requires control over the induced change in the cost functional.
The adjoint optimization method eliminates the induced change by means of the
solution of a dual problem. Upon elimination of the induced change, the gradi-
ent of the cost functional with respect to the free-boundary position is obtained.
Improvement of the free-boundary position is then straightforward. This section
outlines the adjoint optimization method for solving (5.7).

5.3.1 Induced Disturbance

To formulate the adjoint optimization method for (5.7), the induced disturbance in
the solution of the constraint and the corresponding change in the cost functional
must first be identified. To this end, we consider a domain V with free boundary
S and a modified domain V., with free boundary

Sea = {x+ea(x)n(x): x € S}, (5.8)

where « is a smooth function on S, independent of e. Following [51], V and V., are
embedded in a bounded set £ and it is assumed that a solution of the constraint
can be extended smoothly beyond the boundary, so that it is well defined in &.
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Denoting by ¢ the solution of C(S, ¢) and by ¢, the solution of C(Seq, Pea), We
define the induced disturbance by the function ¢/, : £ — R with the property

¢ea - (/) + 6¢)£y + 0(62) 5 as e — 0 ) (59)

i.e., €¢l, approximates to O(e?) the change in the solution of the constraint (5.6)
due to the displacement of the free boundary from S to S,. The kinematic
condition corresponding to the modified boundary yields:

[nea ' V(z)ea} (X -+ 6()6()()11()()) =

[(n —€ Cf(tj Va)t, +0(62)) . <v¢+ev(/); +ean-VV¢+ O(eg)ﬂ (x) =0,
"~ (5.10)

for x € S, with n., the unit normal vector to S., and t; orthogonal tangent
vectors to S. Hence, inserting (5.9) in C(Seq, ¢ea) and collecting terms Ofe), it
follows that the induced disturbance satisfies the boundary value problem:

A¢l, =0, xeV, (5b.1la)
—1
n- Vo, =—ann:VVe¢+ » (t;-Va)(t;-Ve¢), xeS8, (511b)
=1
an-V¢, +bgl, =0, x€IV\S.
(5.11c)

au

)
Il

The operator nn : V'V in (5.11b) represents the second order derivative in the
normal direction.

To identify the induced change in the cost functional, the functional value
corresponding to the modified boundary, F(S.,), is expanded as

E(S.0) = E(Sca, bea) = E(S)+e (IL(S)+J4(S)) +O(e), as € — 0, (5.12a)
with
1(8) =~ [ p V6 Veidx. (5.12b)
S

2
JL(S) = —/Sa <§R— +pn-ViVe? —|—pF1'42n~ed> dx, (5.12¢)

where R(x) is the radius of curvature (d = 2) or mean radius of curvature (d = 3)
and eq is the vertical unit vector. The curvature-term in (5.12¢) results from
the change in the surface area from S to S.o; see, e.g., Ref. [51]. Noting that
only (5.12b) depends on ¢/, the induced change in the cost functional is readily
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identified as (5.12b). Integration by parts recasts (5.12b) into the convenient form:

d—1
1S) = [ 60 St Vot Vo) ix. (5.13a)
Js % 2

Moreover, the second term in (5.12¢) vanishes due to the kinematic condition (5.3a):

2

JL(S) =~ /s ! (§—R +pFr‘2n-ed> dx . (5.13b)

If a(x) is chosen such that I/, 4 J/, < 0, an adjustment of the free boundary
from S to Syq, with 7 a small positive number, results in a reduction of the
cost functional and thus improves the approximation to the actual free-boundary
position. Such a choice of « is called a descent direction.

5.3.2 Adjoint Operators and Duality

The inherent problem in determining a descent direction from (5.13), is the de-
pendence of (5.13a) on ¢/, which is connected to « through the boundary value
problem (5.11). Equations (5.11) and (5.13) are useful to verify if a particular « is
a descent direction. However, they are unsuitable to determine a descent direction.

The adjoint optimization method uses the equivalence of (5.11), (5.13a) to
its dual problem to eliminate the induced change in the functional. To define the
duality property, adjoint operators must be introduced. Let (-,-)y and (-, -)ay
denote the Lo integral inner products over the domain V and its boundary OV,
respectively. Consider the linear boundary value problem:

Ll(qﬁ) =1, xeV, (5148.)
Lb(¢) = lb ) x €0V ’ (514b)

and the functional
I= (fz,Fl((z)))V—i_ (fban(¢))3v ) (515)

for certain interior operators L;, F; and boundary operators Ly, . The adjoint

operators L7, F;* and adjoint boundary operators L}, F} are defined by the identity

for all appropriate functions ¢ and \. For example, if

Li(¢) =D0¢, Ly(¢)=an-Vo+bp, Fi(¢p)=0¢, Fy(p)=an-Vé+bo,
(5.17a)
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for certain functions a, b,a,b: OV — R such that ba — ab # 0, then

LE(N) = Li(A) | L;()\):bsb_()\(zb, Fr(\) = Fi(\), F5‘<A)=—~——b§b9;b-
S (517D

To prove that (5.17a) and (5.17b) indeed satisfy the identity (5.16):

:/ ¢AAdx+7f <@%) <gn-v¢+g¢> dx
Vv Jov u — Wl

:/)\Aqﬁdx—%—jé (pn- VA —An-V¢)dx
v oV

Jov ba — ab

:/)\Aqbdx—k% (Miﬁi) <an-‘v¢+b¢> dx
Jy Jov ba — ab

= (FF(A), Li(8)),, + (F5 (V) Lo(9)) 5y, (5.18)
The identity (5.16) implies that (5.15) subject to (5.14) is equivalent to
I= (i, FF )y, + (o Fy (V) oy, (5.19)
subject to
LY\ = fi, xeV, (5.20a)
LyN) =/, xedV. (5.20b)

To prove the equivalence:

I= (.fi’ Fl(é))v + (fbv FP)(¢))8V = (LT()‘)v FZ((b))V + (L;()\)v Fb((b))av
= (F2 0, L))y, + (FL (0. Lo(9)) gy = (BT O, 1i)y, + (Fy (W) 1a) - (5:21)
In this context, (5.14)-(5.15) is called the primal problem and (5.19)—(5.20) is
called the dual problem. Duality is the equivalence of the primal and dual problem.
The adjoint optimization method uses duality to eliminate the induced change
in the cost functional (5.13a). Observe that for given ¢, the functional (5.13a) is
the Ly inner product of ¢/, with a given function and (5.11) acts as a constraint
on ¢/, . Hence, (5.13a) subject to (5.11) is of the form (5.14)—(5.15). To obtain the
dual problem for (5.11)-(5.13a), we note that (5.11) implies

d—1

/v)\Aqﬁgdx—l— /s Yvn-Ve! dx+/5/z/) <(x on: VYo — ;(tj-Va) (tj~V¢)> dx

+ / Y(an- Ve, +be,)dx =0, (5.22)
Jow\s
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for all admissible functions A : V +— R and ¢ : dV — R. Integrating by parts,
(5.22) can be recast into

d—1
/qf);A)\dx—/<b’an-V)\dx+/a<wnn:VV¢+th~V(wtj~V¢)> dx
v Js S

Jj=1

+/(/\+w)n~v¢;dx+/ (b —n-VA) ¢, + (ay+ M) n- Vg, dx = 0.
s B

WS
(5.23)
Hence, if ¢ in (5.23) is set to
—A(x), x€S,
P(x) = —A(x)/a(x), x € IV\S, a(x) #0,
n- VA(x)/b(x), x € 0V \ S, otherwise,
and if A satisfies the dual problem
AN=0, x€eV, (5.24a)
d—1
n-VA=>t;-V(pt;-V¢), x€S, (5.24b)
j=1
an-VA+br=0, x€V\S, (5.24¢)

then

d—1
I;(S):—/a()\nn:Vqu+th-V()\tj~V¢)> dx . (5.25)
S “
Jj=1
One may note that (5.25) expresses the induced change in the functional indepen-
dent of the induced disturbance in the solution.

5.3.3 Optimization Method

Due to the absence of the induced disturbance in (5.25), a descent direction for o
can be determined from (5.13b) and (5.25) in a straightforward manner. For this
purpose, we define the gradient of E with respect to & by the function grad E(S) :
S — R with the property:

e—0

fs a(x) grad E(S)(x) dx = lim $[E(S.,) — E(S)], (5.26)

for all suitable o. By (5.12), (5.13) and (5.25), the gradient is readily identified
as:

d—1 2

grad B(S) = —Ann: VVé - Y t;-V(At; V) - 2

-2
— —pFrn-eqs. (5.27)
st 2R
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From (5.26) it follows that if & = —grad E(S) and  is set to a small positive
number, then

E(S,0) — E(S) = —~ / (grad B(S))  dx + O(4?) <04+ 0(+%).  (5.28)
s
Therefore, @ = —grad E(S) is a descent direction and S, improves on §. The

free-surface flow problem can thus be solved by repeating the following operations:
(A1) For given S, solve the primal problem (5.6) for ¢.

(A2) Solve the dual problem (5.24) for A.

(A3) Determine « = —grad E(S) from (5.27).

(A4) Choose the step size v > 0 and adjust S to Syq4.

The iterative process (Al)-(A4) is called the adjoint optimization method. The
actual free boundary S* is obtained if grad E(S*) = 0.

The condition grad E(S*) = 0 only ensures that a local minimum is attained.
If the cost functional is non-convex, then multiple local minima can occur. The
actual solution to the steady free-surface flow problem is then determined by the
global minimum. The dynamic condition (5.3b) implies that the cost functional
vanishes for the actual solution. Hence, the correct minimum is identifiable. If
the cost functional is indeed non-convex, then it is important that the adjoint
optimization method is provided with an initial approximation that is sufficiently
close to the actual solution. For instance, a prolongated coarse-grid approximation
to the solution can serve for this purpose.

5.4 Fourier Analysis of the Optimization Problem

The behavior of the cost functional in the neighborhood of a minimum is character-
ized by the Hessian, i.e., the second derivative of the cost functional with respect
to the free boundary. As a result, the properties of the optimization problem and
the convergence behavior of the adjoint optimization method depend on the char-
acteristics of the Hessian. In this section we use Fourier analysis to examine the
properties of the Hessian and we consider the implications for the solution behav-
ior and the posedness of the optimal shape design problem and the convergence
behavior of the adjoint method.

5.4.1 Hessian of the Functional

The behavior of the cost functional in the neighborhood of a minimum is charac-
terized by its Hessian, which is defined by the function grad?E(S) : S x S — R
with the property:

/Soz(y) grad*E(S)(x,y)dy = lim Llgrad E(Seo)(x) — grad E(S)(x)],  (5.29)
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for all suitable o. To show that the properties of the optimization problem are
essentially contained in the Hessian, we consider the following expansion of the
cost functional:

E(S..) = E(S) + E/Sl a(x) grad E(S)(x) dx

2 .
+ % / / a(x) a(y) gradzE(S)(X, y)dy dx + 0(53) \ as € — 0. (5‘30)
SJS

Clearly, in order to have a minimum, the gradient must vanish, so that indeed the
Hessian determines the behavior of the cost functional in the neighborhood of a
minimum.

To demonstrate that the Hessian determines the convergence behavior of
the adjoint optimization method, we consider a perturbation S, of the optimal
boundary §*. Because grad E(S*) = 0, it follows from (5.29) that for sufficiently
small e,

grad BE(S87,)(x) = 6/ a(y) grad*E(S*)(x,y) dy + O(€?) . (5.31)
s

This implies that in the neighborhood of the optimum, the Hessian relates the

gradient to the disturbance in the free-boundary position. Because the adjoint

method uses the gradient to adjust the free boundary, the Hessian determines the

change in the error in the boundary position. Hence, the Hessian indeed determines

the convergence behavior of the adjoint optimization method.

5.4.2 Fourier Analysis of the Hessian

The properties of the Hessian can be conveniently examined by means of the
Fourier analysis for optimization problems presented in [69]. We perform the
analysis for the generic case of a domain V* := {x € R?: —1 < 24 < 0} with free
boundary §* := {x € R? : 2, = 0} and fixed boundary 0V*\ §* = {x e R? : 14 =
—1}. Recall that x4 is the vertical coordinate. Assuming that the fixed boundary is
impermeable, a in (5.6) is set to 1 and b and ¢ are set to 0. The uniform horizontal
flow potential ¢* = U-x, with U a constant vector in {U € R? : ||U|| = 1,Uy = 0},
then satisfies the boundary value problem (5.6). The corresponding solution of the
dual problem (5.24) is A* = 0 and the gradient (5.27) vanishes, so that S* is the
optimal boundary. Indeed, the uniform horizontal flow is a solution of the steady
free-surface flow problem.

Next, consider the perturbed boundary S7,. The solutions of the perturbed
primal and dual problem are expanded as

$ro = U-x + e (x) + O(?), (5.
AL =04e) (x)+O0(2). (5.
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If (5.32a) and (5.32b) are inserted in (5.6) and (5.24), respectively, and the normal
vector to S, is expanded in the same manner as in (5.10), then collection of terms
of O(e) reveals that the induced disturbances are governed by:

A¢l, =0, xe V', (5.33a)
eV, =0, x €V \S", (5.33b)
e V¢, =U-Va, xeS”, (5.33¢)
and
AN, =0, x eV, (5.34a)
e VAL, =0, X €IV \S", (5.34b)
e VN, =-U-V(U - V¢, +Fr2a), xe€8". (5.34c)

Moreover, upon inserting (5.32) in (5.27), one obtains that the gradient corre-
sponding to the perturbed boundary S, reads

gradE(S!)) =€ (Fr_Z(U-Vd); + Fr2a) - U-V/\g) +O0(€?) . (5.35)

Note that for any perturbation «, the induced disturbances follow from (5.33)
and (5.34). The gradient corresponding to the perturbed boundary can then be
obtained from (5.35). Because grad E(S*) = 0, important information about the
Hessian can subsequently be extracted from (5.29).

The analysis proceeds by assuming «, ¢/, and X\, to be a linear combination
of horizontal Fourier modes. Because (5.33) through (5.35) are linear in «, ¢/, and
AL, it suffices to consider a single mode. Denoting by k = kieq + -+ + kg_1e4-1
the horizontal wave number, « is set to

a(x) = a(k)exp (ik-x), (5.36)

with i = v/—1. The induced disturbances ¢/, and X/, comply with (5.33) and (5.34),
respectively, if

¢, = d(k) exp (ik - x) cosh (k| (x4 + 1)), (5.37a)
A, = A(k) exp (ik-x) cosh (k] (z4 + 1)), (5.37b)
and
k| sinh |k| d(k) = ik-Ud(k) , (5.384)
Ik sinh [k| \(k) = —ik-U(i U cosh k| ¢(k) + Ff?d(k)) . (5.38b)

Recalling that grad E(S*) = 0, by (5.35) through (5.38), the change in the gradient
satisfies

lilr(l) llgrad E(S:,) — grad E(S*)] = H(k) a(k) exp (ik-x) , (5.39)
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with

N AU S LI
H(k) := (Fl —m> . (5.40)

The object H (k) is referred to as the Fourier symbol of the Hessian.

5.4.3 Properties of the Optimization Problem

The Fourier symbol of the Hessian contains important information about the
posedness and the solution behavior of the optimization problem. To illustrate
this, we consider the Fourier transform of the perturbation a(x) and its inverse

a(k) = (27r)1_d/* a(x)exp (—ik-x)dx, a(x) = /_00 a(k)exp (ik-x) dk .
(5.41)
From (5.29) and (5.39) it then follows that
/* aly) grad*E(S*)(x,y)dy = / H(k) &(k) exp (ik -x) dk . (5.42)

Hence, by (5.30), if terms of O(e®) are ignored, the change in the cost functional
due to the perturbation of the free boundary reads:

E(SZ,) - <s*>=—/ / y) grad*E(S")(x,y) dy dx

= / / H(k) a(k) exp (ik - x) dk dx

- H( )a(k)/ a(x)exp (ik-x) dx dk

2 —00 S
:%(%)d—l i H (k) a(k) a(k) dk
=§(2w)d—1 _OO H(k)|a(k)|? dk (5.43)

with a(k) the complex conjugate of a(k). Equation (5.43) implies that H (k)
expresses the ability of the optimization problem to distinguish a boundary S&*
from a perturbed boundary S7,, with a(x) a Fourier mode with wave number k.

To illustrate the behavior of the Fourier symbol H (k), we consider (5.40) for
k € R? (ie., d = 3). Without loss of generality, we assume that U = e, so that
k-U = k. Figure 5.1 on the next page then displays contours of Fr2 + Ak ,
e.g., if Fr = 1/2, then Fr2 &+ \/A(k) = 4 is the contour for which H(k) = 0 and
Fr=2 + /fi(k) € {0,8} are the contours for which H (k) = 16.
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Figure 5.1: Contours of Fr~2 + / A (k).

The solution behavior of the shape optimization problem is determined by
the critical modes, i.e., the wave numbers for which H (k) vanishes. These critical
modes yield a change in the cost functional of just O(e?), instead of O(e?). Hence,
a small perturbation of the uniform free-surface flow is composed of a linear combi-
nation of the critical modes. It is important to observe that to each Froude number
corresponds a curve of critical wave numbers. The critical modes are associated
with steady surface gravity waves; see, e.g., Refs. [42,46]. Note that for d = 2
(kg = 0) and Fr < 1, the condition H(k) = 0 yields a unique relation between the
wave number of the surface gravity wave and the Froude number. For d = 2 and
Fr > 1, critical modes are absent and steady surface gravity waves do not occur.

The Fourier symbol of the Hessian also gives information about the posedness
of the optimization problem. The optimization problem is said to be well posed
if it has a unique solution that is stable to perturbations in the auxiliary data.
Uniqueness is ensured if H (k) > 0 for all k. From the above considerations, it is
clear that uniqueness cannot be ensured. However, this does not necessarily imply
that the optimization problem is ill posed. It merely implies that the behavior
of critical modes is not described by the above theory. Linear stability of the
optimization problem generally demands that

Hk)=0(k’),  as|k| — oo, (5.44)

for some 6 > 0; see [69]. This requirement expresses that the optimization problem
clearly notices high wave number perturbations of the free boundary. Unfortu-
nately, if k € R?, the contours on which H(k) = 0 contain waves with |k| — oo.
Hence, the linear theory is insufficient to establish the stability of the 3 dimen-
sional free-surface flow problem. However, such waves do not occur for d = 2 and,
therefore, linear stability of the two-dimensional optimization problem is ensured.
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5.4.4 Stability of the Adjoint Method

To examine the stability of the adjoint method, we consider a perturbation S7, of
the optimal free boundary S*. One iteration of the adjoint optimization method
yields a new approximation &;,, with

ea(x) = ex(x) — ygrad E(S,)(x) , (5.45)

for some step-size v > 0. Hence, by (5.31), @ and « are related in the following
manner:
a(x) = a(x) -4 / aly) grad*E(S")(x,y) dy - (5.46)
JS

The contraction number ¢ of the adjoint method is defined by the reduction of the
error in the free-boundary position between successive iterations, i.e.,

a0 - aty) s ey |
c Bl !

(5.47)

where the supremum is taken over all admissible functions a(x). Because || <
C|lex]], stability of the adjoint method is ensured if ¢ < 1.

If the Ly norm is implied in (5.47), we can use (5.42) and Parseval’s identity
to recast (5.47) into:

(5.48)

¢ =sup

«

I (1 - ) a2 dk)
T Ja(oR dk '

If the problem (5.7) is solved numerically, then the infinite domain is usually
truncated and «(x) is represented on a grid. In that case, it £ = ({3,...,04_1)
is the horizontal length of the truncated domain and h = (hy,...,h4—1) is the
horizontal mesh width of the applied grid, then we only have to consider isolated
wave numbers in the set

Whi={k:kj =nnw/l;,n==21,£2,... |kj| <7/h;}; (5.49)
see Figure 5.2 on the facing page for an illustration. It follows from (5.48) that ¢
is then given by X

¢ = sup |1 —~vH(k)|. (5.50)
keWy
Stability of the adjoint optimization method is ensured if the right hand side
of (5.50) is at most 1. This can be accomplished by choosing the step size v
according to

y=c (Sup ﬁ(k))nl ; (5.51)

kewWy

for some constant ¢ € 10, 2].
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Figure 5.2: The set of wave numbers Wi (dots) and H (k) = 0, H(k) = 6, .

The supremum of H in Wy is for well posed problems determined by the
highest wave number components in Wy; refer to (5.44). From (5.49) it follows
that the highest wave number in Wy, is O(1/|h|). Hence, in general, the step size
diminishes as v = O(|h|?) as |h| — 0. In particular, for the Fourier symbol (5.40),
if the grid is refined in such a manner that h = |hjc as |h| — 0, with ¢ a constant
vector, then the supremum of H(k) in Wy, is O(|h|~2). The step size must then
comply with

v=0(hf),  as|b|—0, (5.52)

to maintain stability of the oscillatory modes, i.e., the modes with large |k|. This
implies that the step size in the adjoint optimization method must be reduced as
the spatial grid is refined to maintain stability of the high wave number modes.

5.4.5 Convergence of the Adjoint Method

The convergence behavior of an iterative method is usually characterized by its
contraction number. However, this characterization is inappropriate for problems
with critical modes (H(k) = 0) and dispersive behavior, such as the considered
free-surface flow problem. The contraction number is based on the behavior of
isolated waves, whereas for dispersive problems the behavior of wave groups is
relevant; see, e.g., Refs. [46,78]. This distinction is essential if critical modes
occur. As a result of the critical modes, the contraction number indicates that
convergence lacks. However, due to the dispersive properties of the problem, this
indication is too pessimistic.
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To determine the convergence behavior of the adjoint optimization method
(A1)—(A4), we reconsider the perturbation S, of the optimal free boundary S*.
The Fourier components of the perturbation can be separated into a contribution
p(k) of the modes in the neighborhood of the critical modes and a remainder:

&) = pi) + (A(k) - H(K)) (5.530)
where p(k) := w(k) a(k),
oy s

and 0y o are constants such that do > §; > 0; see the illustration in Figure 5.2 on
the page before. The transition of w(k) from 1 to 0 can be constructed in any
suitable manner and is largely arbitrary. However, below, p(k) is required to be
an analytic function.

Denoting by ea,(x) the disturbance in the free-boundary position after n
iterations of the adjoint method, we obtain from (5.42) and (5.46):

i) = (1~ yﬁ(m)" a(k). (5.54)

Hence, it follows from (5.53) that
(%) = / <1 - ’yf[(k)) p(k) exp (ik-x) dk + O(]1 = ~v6:]") . (5.55)

Because |1 — 01| < 1, the remainder vanishes exponentially as n — oo. This
implies that the asymptotic behavior of o, (x) for large n is determined by the
Fourier components in the neighborhood of the critical modes.

From (5.55) it follows that if p,, (k) is defined recursively by

po(k) = p(k) , (5.56a)
pn(k) = (1 - ~,/H(k)> pnoi(),  n=1,2,... (5.56b)

then o, (x) ~ pn(x) as n — oo. Equation (5.56b) can be recast into:

P"_ﬂ(k)v“_/’(kl + H(K) pu(k) =0. (5.57)

Note that for sufficiently small v, the first term can be conceived as a difference
approximation to the derivative of p, (k) with respect to pseudo time nvy. We
assume that p,, (k) ~ exp (tny) po(k) as n — oco. Equation (5.57) then implies

(exp (1) —1)/v+ H(k) = 0. (5.58)
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Taylor expansion of exp (7) yields
T =—H(k), (5.59)

provided that O(r2) terms are negligible. By (5.53b), H(k) < d,. Hence, if d is
chosen sufficiently small, the O(72) terms in the Taylor expansion can indeed be
ignored. Equation (5.59) relates the pseudo time behavior of a disturbance in the
free-boundary position to its spatial behavior. Therefore, it appears appropriate
to refer to (5.59) as the pseudo dispersion relation of the adjoint method.

From (5.55) to (5.59) it follows that as ny — oo,

(%) ~ /oo plk) exp (iQ(k) nvy) dk , (5.60)

—0oo
with
kx
ny
The integral in (5.60) vanishes exponentially as ny — o0, except near critical
stationary points of H (k), i.e., the wave numbers kg such that

5 oH

H(kg) =0, — (ko) =0. (5.62)

Ok;

Each critical stationary point yields a contribution
2H

(d=1)/2
R 2
pa)(Z2) (et 5

with & a multiple of 7/4, depending on the properties of 8% H /0k;0k;. The above
can be proved by the method of stationary phase; see, e.g., Refs. [78, 79].

Due to the quadratic form of (5.40), any critical point is a stationary point
as well. Hence, if we define the evaluation error e, by the Lo norm of the error

Q(k) = iH (k) + (5.61)

~1/2
(ko) ) exp (ikovx+i§)+O((n’y)_d/2>, (5.63)

in the boundary position, i.e., e, := |lea,]|, then we anticipate that the adjoint
method yields the following asymptotic convergence behavior:
e, = 0(¢") if Vk : H(k) >0, (5.64a)
e, = O((m)“‘d)/?) if 3k : A(k) =0, (5.64b)

as n — 00, for some constant ¢ in |0, 1[. The implications of (5.64) for the conver-
gence behavior of the adjoint method are summarized in Table 5.1 on the following

page.

5.5 Preconditioning

The asymptotic error behavior (5.64) and the stability condition (5.52) imply that
the performance of the adjoint optimization method deteriorates with decreasing
mesh width. This deficiency of the method can be repaired by means of precondi-
tioning. This section outlines the preconditioning operation.
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Table 5.1: Convergence behavior of the adjoint method: asymptotic behavior
of the evaluation error e, for sub- and supercritical flow in 2D and 3D, with n
the iteration counter, v the step size and ¢ a constant in |0, 1[.

d=2 d=3

subecritical o(1/ymv) | O(1/(ny))
supercritical | O(¢") O(1/(ny))

5.5.1 Reconsideration of Objectives

To introduce the preconditioning operation, we consider the gradient of the cost
functional at a perturbation S, of the optimal boundary S*. By (5.39), the
Fourier components of the gradient read:

grad E(S%,)(k) = ¢ H (k) a(k) . (5.65)

Equation (5.65) implies that for problems that are stable according to (5.44)
with 0 strictly positive, the gradient primarily contains highly oscillatory modes
(large |k|). Consequently, the adjoint optimization method effectively reduces the
cost functional by removing the highly oscillatory disturbances in the boundary
position. However, smooth error components are inadequately resolved.

In general, one is interested in obtaining the free-boundary position rather
than minimizing the cost functional. If the objective is indeed to obtain the free
boundary, then the gradient is unsuitable for adjusting the boundary position.

5.5.2 General QOutline

The aim of preconditioning is to restore the relation between the boundary adjust-
ment and the error in the boundary position. An accurate approximation to the
error in the free-boundary position can be recovered from the gradient by solving

Pp=gradE(S!)), (5.66)

where P is any convenient operator of which the Fourier symbol satisfies
H(k) < P(k), forallk, (5.67a)
Jim H(k)/P(k)=C, for some C €]0,1] . (5.67b)

The operator P simulates the relation between the gradient and the disturbance
in the boundary position. The Fourier components 3(k) are related to the com-
ponents of the disturbance by:

A(k) = (H(k)/P(k)) a(k) . (5.68)

Therefore, §(x) is an accurate approximation to a(x) if H(k)/P(k) ~ 1.
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If the adjoint method uses ((x) instead of the gradient to displace the free
boundary, then the corresponding stability condition reads:

-y H(k)/P(k)| <1. (5.69)

Requirement (5.67a) ensures that H / P < 1for all k, so that the step size v in the
preconditioned method can be set to 1. Consequently, if the problem is solved nu-
merically, the convergence behavior of the preconditioned method is independent
of the mesh width of the applied grid. Condition (5.67b) makes certain that all
Fourier components that are present in the boundary disturbance are also present
in the correction, so that the error indeed vanishes as the iteration progresses.

It is important that the numerical methods for solving (5.66) do not reintro-
duce the mesh-width dependence. In general, preconditioners P can be constructed
for which efficient solution methods, e.g., multigrid methods [9, 68], are available.

5.5.3 A Preconditioner for 2D Free-Surface Flows

The construction of the preconditioner from its symbol relies on the theory of
pseudo-differential operators; see also [67]. In this section we set up a precon-
ditioner for the 2D steady free-surface flow problem. It is anticipated that a
preconditioner for 3D free-surface flows can be constructed similarly.

In two dimensions, the free-boundary is one dimensional and the considered
wave number is k € R. Without loss of generality, we assume that the velocity is
scaled such that U = 1 in (5.40). To derive the preconditioner, we first consider
the asymptotic behavior of (5.40) for large k:

H(k)~k*, ask—o0. (5.70)

The Fourier symbol —k? corresponds to a Laplace operator. An operator which
has the desired behavior for high wave-number components is:
0?3

o2’

where 0/0t denotes the tangential derivative along the free boundary. The Fourier
symbol of (5.71) is

Py = (Fr™2 - 1)24 - (5.71)

Py(k) = (Fr=2 —1)2 + k2. (5.72)

Indeed, PH(k:) ~ k? as k — oco. Figure 5.3 on the next page compares the Fourier
symbols PH and H. The behavior of Py closely resembles that of H at high wave-
numbers. Hence, Py accurately recovers highly oscillatory errors in the boundary
position. Moreover, Py eliminates the mesh-width dependence of the step size.

The Fourier symbols Py and H differ markedly at low wave numbers if
Fr < 1. For Fr < 1, the low wave-number behavior of H is accurately approximated
by:

Pr(k) = (1= (2 = 2u)(k/ko)? + (1 — p)(k/ko)*) (Fr~2 = 1), (5.73)
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Figure 5.3: Fourier symbols Pr(k), Py (k) and H(k) for Fr = \/tanh () /7

with ko the critical wave number critical mode of (5.40) and u a small positive
constant; see Figure 5.3. The symbol Pr (k) corresponds to the differential operator
221 %8 1—p 04[)’>

P o= (Fr_2~1)2<ﬁ+ I i

5.74
k2 ot? ki ot (5.74)

The constant g ensures that the polynomial PL(k;) has no real roots. This is
a prerequisite for stability of the preconditioner. Unfortunately, it also implies
that the preconditioner leaves the root of H undisturbed, i.e., H(k)/Pp(k) = 0
for critical modes. Hence, the asymptotic convergence behavior (5.64b) is not
essentially improved.

Summarizing, for supercritical flows an effective correction of the free bound-
ary can be obtained from (5.66) and (5.71). The mesh-width dependence of the
convergence behavior is then eliminated. For subcritical flows, the correction is a
combination of a high wave number correction Sy from (5.66), (5.71) and a low
wave number correction 8y, from (5.66), (5.74), e.g., (81 +Fr)/2. The mesh-width
dependence of the convergence behavior is then removed. However, the asymp-
totic convergence behavior is not improved, because the preconditioning does not
remove the critical modes.

5.6 Numerical Experiments

The preconditioned adjoint optimization method is tested for 2 dimensional sub-
and supercritical flow over an obstacle in a channel of unit depth at Fr = 0.43 and
Fr = 2.05. The geometry of the obstacle is

27T H
! z(x — L)%, 0<z<L, (5.75)

y(z) = -1+ 1"
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with H and L the (non-dimensionalized) height and length of the obstacle, respec-
tively. We choose H = 0.2, L = 2 for the subcritical test case and H = 0.44 and
L = 4.4 for the supercritical test case, in accordance with the experimental setup
from [12]. In addition, we consider the subcritical test case with H = 0.1, L = 2
and the supercritical test case with H = 0.22 and L = 4.4.

The boundary value problems (5.7) and (5.24) are discretized with bilinear
finite elements. The differential operators in the gradient (5.27) are discretized
with central differences. The resulting discrete optimization problem is unstable
and displays odd/even oscillations. These are simply removed by smoothing the
gradient with the biharmonic operator. For subcritical flows (Fr < 1), a radiation
condition must be imposed to avoid nonphysical upstream waves; cf. §5.2.1. The
upstream waves are eliminated by smoothing the gradient upstream of the obstacle
with the Laplace operator, and by applying the low wave number preconditioner
P only downstream.

The numerical experiments are performed on grids with horizontal mesh
width h € {L/36,L/72} and vertical mesh width 1/24. For the supercritical
test case, the correction is computed using (5.66) and (5.71). For the subecritical
test case, the upstream correction is determined in the same manner and the
downstream correction is taken as (3 + Ou)/2, with 8y from (5.66), (5.71) and
O from (5.66), (5.74). The constant p in (5.74) is set to 0.025. In all cases the
step size v = 1 is employed.

For the supercritical test case, Fig. 5.4 on the following page plots the Lo
norm of the correction after n iterations, ||3,||, versus the iteration counter. The
correction behaves as ||3,|| = O(C™), for some constant ¢ €]0, 1[. The norm of the
evaluation error after n iterations can be bounded by

en = Z 1951 - (5.76)

It follows from (5.76) that the evaluation error converges as O(¢™) as well. This
is in accordance with the entry in Table 5.1 on page 70. From Fig. 5.4 we obtain
¢ =~ 0.35 for H = 0.22 and { ~ 0.5 for H = 0.44. One may note that the
convergence behavior is indeed independent of the mesh width. Fig. 5.5 on page 75
compares the computed surface elevation with measurements from [12] for the
supercritical test case. The computed result agrees well with the measurements.
For the subcritical test case, ||8,|| is plotted versus n in Fig. 5.6 on page 75.
Note that Fig. 5.6 is a log-log plot. In this case, ||5,| behaves as O(n™7), with
o~ 1.5 for H=0.1and o ~ 1.2 for H = 0.2. It follows from (5.76) that the
convergence behavior of the evaluation error is approximately O(n~%%) for H = 0.1
and O(n=%2) for H = 0.2. Hence, the test case with H = 0.1 confirms the entry
in Table 5.1 on page 70. The deteriorated converge behavior for H = 0.2 can be
attributed to apparent nonlinear behavior. One may note that the convergence
behavior is virtually independent of the mesh width. Fig. 5.7 on page 76 compares
the computed surface elevation with measurements from [12] for the subcritical
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Figure 5.4: Supercritical test case: norm of the correction versus the iteration
counter for H = 0.22 (A) and H = 0.44 (B) (h = L/36 and h = L/72 coincide).

test case. The surface elevation displays typical nonlinear effects, such as sharp
wave crests and wave length reduction. The amplitude of the computed result is
overestimated. However, the overestimation of the amplitude of the trailing wave
is not unusual; see, for instance, [11,75,76]. The wave length of the computed
result is in good agreement with the measurements.

5.7 Conclusions and Discussion

We investigated the suitability of the adjoint optimal shape design method for
solving steady free-surface flows. To this end, the free-surface potential flow prob-
lem was reformulated into an equivalent optimal shape design problem. We then
presented the adjoint optimization method for solving the design problem. We
determined the asymptotic convergence behavior of the adjoint method for sub-
and supercritical flows in 2D and 3D. Moreover, we showed that preconditioning
is imperative to avoid mesh-width dependence of the convergence behavior and we
presented a suitable preconditioner for the free-surface flow problem.

Numerical results were presented for two-dimensional flow over an obstacle in
a channel. The observed convergence behavior is in agreement with the asymptotic
estimates, i.e., the evaluation error behaves as O((™) for the supercritical test case
and as O(n~'/2) for the subcritical test case. Moreover, the numerical results
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Figure 5.6: Subcritical test case: norm of the correction versus the iteration
counter for H = 0.1, h = L/36 (A), h = L/72 (B) and H = 0.2, h = L/36 (C),
h=1L/72 (D)
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Figure 5.7: Subcritical test case: computed surface elevation with H = 0.2
and h = L/72 (solid line) and measurements from [12] (markers only)

confirm that the convergence behavior of the preconditioned adjoint method is
independent of the mesh width. For both test cases the computed results agree
well with measurements.

The convergence behavior of the adjoint shape optimization method for
steady free surface flows is for two-dimensional problems similar to that of time-
integration methods (see also [11]): the error converges as O(¢™) for supercriti-
cal flows and as O(n~1/?) for subcritical flows. For three-dimensional problems,
the anticipated convergence behavior of the adjoint method is O(n~!) for sub-
and supercritical flows. The convergence behavior of time-integration methods is
O(n~1) for subcritical flows and O(¢™) for supercritical flows. The convergence
behavior of the preconditioned adjoint method is independent of the mesh width,
whereas the convergence behavior of the usual time-integration method deterio-
rates with decreasing mesh width, due to a CFL-restriction on the admissible time
step. Therefore, the preconditioned adjoint method is expected to be more effi-
cient than time-integration methods, except in the case of 3D supercritical flow.
However, for 3D flows and 2D subcritical flows, the convergence behavior of the
adjoint method is less efficient than the mesh-width independent O(¢™) behavior
of the method presented in [11].

The O(n~'/?) (2D, subcritical) and O(n~") (3D) convergence behavior of
the adjoint method is caused by the critical modes. It is therefore anticipated
that a combination of the adjoint method and a solution method that effectively
eliminates these critical modes yields O((™) convergence behavior.



Chapter 6
Interface Capturing

6.1 Introduction

Free-surface flows form a particular class of two-fluid flows, in which the stresses
exerted on the interface by one fluid are negligible on a reference scale that is
appropriate for the other. If the objective is the numerical solution of a free-
surface flow problem, then it can be attractive to adhere to the two-fluid-flow
formulation. In the absence of viscosity, two-fluid flows can be described by a
system of hyperbolic conservation laws, and can be treated as such. This approach
is referred to as interface capturing. For examples of interface capturing see, for
instance, Refs. [15, 38, 48].

A common objection to conservative interface capturing is the occurrence of
so-called pressure oscillations. These pressure oscillations expose the loss of cer-
tain invariance properties of the continuum problem under discretization. Several
correctives have been proposed to avoid pressure oscillations, e.g., (locally) non-
conservative discretization methods [1, 36, 37,56], correction methods [35] and the
ghost-fluid method [19]. For an overview of these correctives, and of their merits
and deficiencies, see Ref. [2] and, for homentropic flows, Ref. [40]. A characteristic
of these methods is that at the interface the conservative formulation is aban-
doned. Hence, these methods are generally non-conservative. Recently, enhance-
ments of the ghost-fluid method have been proposed, which retain conservation;
see Refs. [23,49]. However, the interface treatment of these methods is not trivial
and further investigation is warranted.

It is commonly assumed that the loss of the aforementioned invariance prop-
erties is inherent to any conservative formulation; see, e.g., Refs. [2,57]. However,
since the invariance properties are intrinsic to the continuum equations, irrespec-
tive of their form, we conjecture that it is possible to devise conservative numerical
schemes that inherit the necessary invariance properties.

77
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The interface-capturing approach requires that the employed numerical tech-
niques remain robust and accurate in the presence of discontinuities. If one ad-
heres to the conservative form of the equations, then Godunov-type schemes [24]
are particularly useful in these circumstances. Such schemes can be suitably com-
bined with finite volume methods and with discontinuous Galerkin finite element
methods. For finite volume methods, the schemes can be implemented with higher-
order limited interpolation methods, to achieve accuracy and secure monotonicity
preservation in regions where large gradients occur (see, e.g., Refs. [64,66]). For
discontinuous Galerkin methods, accuracy and monotonicity preservation can be
obtained by appropriate hp-adaptivity (see, e.g., Refs. [29, 33]) and stabilization.

The present chapter considers the interface-capturing approach to solving
two-fluid flow problems. We investigate the pressure oscillations that are com-
monly incurred by discrete approximations of two-fluid flow problems, and we
present a non-oscillatory, conservative Godunov-type method for barotropic flu-
ids. Moreover, we set up a modified Osher-type flux-difference splitting scheme
for the approximate solution of the two-fluid Riemann problems. The novelty of
our method is its pressure invariance in combination with a formulation of the
two-fluid flow problem as a system of hyperbolic conservation laws. It is generally
accepted that methods based on such a formulation necessarily exhibit pressure
oscillations; our results refute this.

The contents of this chapter are organized as follows: Section 6.2 presents the
governing equations for two-fluid flows. In Section 6.3 we examine the pressure-
oscillation phenomenon and we propose a non-oscillatory conservative formulation.
Section 6.4 presents the modified Osher scheme for barotropic two-fluids. Numer-
ical experiments and results are reported in Section 6.5. Section 6.6 contains
concluding remarks.

6.2 Two-Fluid Flows

The basic notion underlying the interface-capturing method, is that a flow of two
contiguous, inviscid compressible fluids can be construed as a flow of a single
medium sustaining a discontinuity at the interface. In this section we derive the
two-fluid Euler equations from the Euler equations for the separate fluids and the
interface conditions.

6.2.1 Conservation Laws

We consider flows of two contiguous inviscid compressible fluids. For convenience,
we arbitrarily designate one of the fluids as the primary fluid and the other as
the secondary fluid. For our purposes, it suffices to consider a single spatial di-
mension. We refer to the corresponding spatial coordinate as z and to the tem-
poral coordinate as t. The fluids occupy an open bounded space/time domain
Q C {(z,t) € R?}, which is the union of the disjoint open sets €2, and €2, contain-
ing the primary and secondary fluid, respectively, and the interface I := Q, N Q)
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(the overbar denoting closure); see Figure 6.1.

t

D\ Qp Qs = O\ O

Figure 6.1: The space/time domain  := Q, UQsUT.

In both fluids the flow is characterized by the state variables p : {3 — R
and v : 2 — R, representing density and velocity, respectively. To facilitate the
presentation of the governing equations, we introduce the notation:

P g2
= , and f = \ 6.1
4 </W> ' (@ <(J§/ @+ p> (61)

where p refers to the pressure. Eq. (6.1) must be furnished with equations of
state for the primary and secondary fluid. Under the assumption that the fluids
are barotropic (see, e.g., Ref. [77]), these equations of state have the form p :=
pp(p) and p = ps(p). In a proper functional setting, conservation of mass and
momentum in the fluids is expressed by the variational statement

wyq+w,-flq)dedt =0, vw e [C5° (U Qs)r , (6.2)
J
where C§° (G) denotes the space of functions that have continuous partial deriva-
tives of all orders k = 0,1,2,... and that have compact support in G.

Eq. (6.2) combines the weak formulation of the Euler equations for the pri-
mary and secondary fluid. Because Q, and Qg are disjoint (€2, and €2 are con-
tiguous at the interface, but the sets are open and therefore do not overlap), it
holds that [C§°(£2, U QS)]2 = [C5° (Qp)]2 ® [C5° (QS)]2. This implies that the
variational statement (6.2) ensures conservation of mass and momentum in each
of the fluids separately.

6.2.2 Interface Conditions

To present the interface conditions for the two-fluid flow, we define

(z,t)F = lim(z + €, 1), (z,t) e T, (6.3)

€l0
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ie, (x,t)” and (z,t)T are at the interface in the primary and secondary fluid,
respectively. The interface conditions for the two-fluid flow prescribe that the
velocity and pressure are continuous across the interface. In particular,

(z,t)*

v (o)~ =0, (laf) el (64‘3‘)
(z,t)*

p( ) =0, (z,t)eT. (6.4b)
z,t)"

Eq. (6.4b) is referred to as the dynamic condition. Furthermore, the interface mo-
tion must comply with a kinematic condition. To express this kinematic condition,
we identify the interface by a level set:

Ii={(z,t) € Q:60(x,t) =0},

with 6 € C°°(Q) a suitably chosen function. We assume that 6(€2,) > 0 and
6(€2s) < 0. The kinematic interface condition is stated:

O +v0, =0, (x,t) € 0. (6.4c)

Eq. (6.4c) implies that the interface moves with the local flow velocity and thus
ensures immiscibility. Recall that the velocity at the interface is uniquely defined
by virtue of (6.4a).

6.2.3 Two-Fluid Euler Equations

To formulate the two-fluid Euler equations, it is important to note that the inter-
face conditions (6.4) imply that the Rankine-Hugoniot condition for discontinuities
in hyperbolic systems (see, for instance, Ref. [63]) is satisfied at the interface:

s(a(z, )" —q(z,t)7) = f(ale, t)*) = f(a(z,1)"),  (z,t)eT,  (6.5)

with s the shock speed. In particular, for the interface, s = v(z,t) for (z,t) € T
The variational statement (6.2) subject to (6.5) is equivalent to

K (6.6)

/wt-q—l-wm-f(q)dacdt:(h Yw € [C5°(9)]
Q

Note that the functions w in (6.6) can have support across the interface, in contrast
to (6.2). The equivalence is founded on the classical principle that a piecewise
continuous solution is a valid weak solution if and only if it satisfies the Rankine-
Hugoniot condition at discontinuities.

To obtain a conservative formulation of the two-fluid Euler equations, we
must replace the nonconservative, advective form of the kinematic condition (6.4c)
by a conservative equivalent. Under the conditions imposed by (6.6), an appropri-
ate replacement for (6.4c) is:

/ e pg(6) + Az pg(0) vdedt =0, VA e C§°(Q), (6.7a)
Ja
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with 6 — g(6) a strictly monotone map with the property that for all A € C§°(82)
and for all admissible (p, pv) there exists a w € C§°(2) such that

/ wip + wy prdedt = / (A g(0) +X1g'(0)6:) p+ (Mo g(6) + Ag'(0) 0,) prdadi.
O )
(6.7b)

If g is a O map then A\g(f) € C°°(§2) and the identity (6.7b) follows by setting
w = Ag(0) and invoking partial differentiation. However, even if g is less regular,
e.g., piecewise C°, then the condition can still be satisfied if the derivatives are
understood in a generalized sense. To establish that (6.6) and (6.7a) imply (6.4¢),
we note that by (6.6) and (6.7b)

/ At pg(0)+ Xz pg(0) vda dt+/ Mz pg' (6) (0t+v 995) dxdt =0, VA € C5R ().
Q Q
(6.8)

By virtue of (6.7a), the integrals in (6.8) must vanish separately. Therefore,
Eq. (6.6) and (6.7a) imply (6.4c) weakly.

To conclude the setup of the two-fluid Euler equations, we note that the
interface conditions (6.4) are identical to the continuity conditions for contact
discontinuities; see, e.g., Refs. [63,77]. Therefore, the two-fluid flow problem can
be condensed into the variational statement

/wt-q%—ww-f(q)dmdtzo, Yw € [C’(‘)’O(Q)]S, (6.9a)
Ja
where
14 qz
q=| pv |, and f(a)=|a/a+p]|, (6.9b)
pg(0) 432/ q1

with the provision that 6 can only change sign across a contact discontinuity, i.e.,
that the interface coincides with a contact discontinuity. In §6.4.2 we shall show
that (6.9) indeed complies with the latter requirement.

Eq. (6.9) must be equipped with a compound equation of state of the form
p := p(p, ) with the property:

p(p,0) = {ps(p) - (6.10)

One may note that in (6.9)-(6.10), 8 only acts as an intermediary between g and
p. Therefore, 8 does not have to appear explicitly in the formulation.



82 Chapter 6. Interface Capturing

6.3 Pressure Oscillations

A common objection to interface capturing is the occurrence of pressure oscil-
lations. These pressure oscillations expose the loss of the pressure-invariance
property of the continuum problem under discretization. Below, we exemplify
the pressure oscillations and we derive a pressure-invariance condition for dis-
crete approximations to two-fluid flow problems. Furthermore, we construct a
non-oscillatory conservative discretization for barotropic two-fluid flows.

6.3.1 Exempilification

The ensuing exemplification has appeared in similar form in, e.g., Refs. (2,40, 57
and is merely included here for completeness.

To illustrate the pressure oscillations that are generally incurred by conserva-
tive discretizations of two-fluid flow problems, we counsider (6.9) on Q := £ x]0, o],
with £ an open bounded subset of R. We assign ¢ as the primary volume fraction.
In particular, this implies

9(0) := (6.11)

0 otherwise.

{1 if 9 > 0,

The compound equation of state is specified accordingly as

p(p.0) = g(6)pp(p) + (1 —g(8)) ps(p) , (6.12)

with pp(p) and ps(p) the equations of state for the primary and secondary fluid.
In fact, (6.12) provides a definition of the volume fraction in terms of p and p; see
also §6.3.3. We allude to the fact that # can be removed from the formulation and
we suppress the dependence of g on 6 below.

The spatial interval £ is subdivided into open intervals £; :=|z;, x;.1[ with
j=1,...,nand (6.9)-(6.12) is supplemented with the initial conditions

0(170) :p_(;a ,U(:Bv()) :Vv Q(]vo):ggv €T E]Ijvl'j+1[a 7: 1a'~'7na
(6.13a)
with V' an arbitrary positive constant and p? and g? constants such that

pj = g5 pp(P) + (1 = g7) ps(P) , (6.13b)

for some constant P. The equations (6.9)-(6.13) represent a two-fluid flow in
which the velocity v is uniform and in which the density p and the primary volume
fraction g are such that the pressure p is uniform as well.

The obvious solution to (6.9)-(6.13) is given by

q(z,t) =q(z - Vt,0). (6.14)

The pressure p(z,t) corresponding to (6.14) follows from the compound equation
of state:
pa,t) = g(z.t) pp(plx,t)) + (1 — g(z, 1)) ps(p(z,1)). (6.15)
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By (6.14)—(6.15),
plz = Vt,0) = g(z — Vt,0) pp(p(z,1)) + (1 — g(z = V1,0)) ps(p(z. 1)), (6.16)

and it follows that p(z,t) = P. In conclusion, if the initial velocity and pressure
are uniform, then the pressure is invariant under (6.9).

To illustrate the loss of the pressure-invariance property, we consider the
discretization of (6.9)-(6.13) on the grid {(z;,tx) : j = 1,...,n,k = 1,2,...}
(to = 0 and ¢, < tgy1) by means of the discontinuous Galerkin finite element
method with piecewise constants:

q1§+1 — qé‘ n f(q;va q?—&—l) - f(q];_l’qgc)

=0, k=01,.... (6.17)
tk+1 - tk .'Ej_|_1 — lj

This discretization is a first-order forward Euler finite-volume discretization. We
specify the initial conditions q) = (p9, P9V, p9¢?)", in conformity with (6.13).
In (6.17), f(qj‘f, q;‘»"“) refers to the numerical flux (see, e.g., Ref. [31]) between the
elements £; and £;41. The grid function qé‘f is a piecewise constant approximation
to g(x, tx) according to (6.14) in the interval £;.

The states q? and q(} 41 (J=1,...,n—1) are connected by a contact discon-
tinuity with velocity V. The corresponding Godunov flux becomes:

p? 0
flaf,qf) =V AV ] +|P]. (6.18)
p}95 0

Expression (6.18) is also valid for any approximate Riemann solver that features
an exact representation of contact discontinuities, such as Osher’s scheme. From
Egs. (6.17)~(6.18) it follows that

qj =q) - C(a) —q)-1), (6.192)
with
C:=V(t, —to)/(xj41 — xj), (6.19b)
the local CFL-number. From Eqs. (6.19) and (6.13b) we obtain, successively,
p; =05 = C(p = p)_1) = g; po(P)+ (1= g}) ps(P), (6.20a)
with
g; = g;) - C(g? - g?_l) . (6.20b)

Comparing (6.20) to (6.13b), we infer that a necessary and sufficient condition for
pressure invariance of the discrete approximation is gjl» = gj. However, conversely,
from (6.13b) and (6.19) we obtain

(1= )G+ Cg9-1)? )y + ((1 = C)g0(1 = g9) + Cgl_y (1 = 60-1) ) s

(9? - C(g) - 9.9—1)>Pp + (1 - (9? - Clg) - g?_l)))[)s

g =

(6.21)
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with pn/s == ppss(P). In general, gjl- # g; and, hence, the discrete approxima-
tion from (6.17) lacks the pressure-invariance property of the continuum equa-
tions (6.9). Trivial exceptions are: C' =0 (= qj = q)), C =1 (= qj = qj_,),
92 = g?_l (= q? - q?_l) and pp, = ps.

It is noteworthy that if (pg): + (pgv), = 0 in (6.9) is replaced by

gt +vg, =0, r€eLt>0, (6.22)

then, subject to the initial conditions (6.13), the first-order forward Euler dis-
cretization yields

g9 =95 = Clg} —gj-1)- (6.23)

Hence, gjl- = g;, and pressure invariance is maintained. However, Eq. (6.22) is
in non-conservative form. The pressure invariance is in this case achieved at the
expense of the conservative form of the equations.

6.3.2 Pressure-invariance Condition

The implications of the above exemplification are restricted: The analysis does
not imply that pressure oscillations are inherent to conservative discretizations of
two-fluid flow problems. It merely implies that discrete approximations to two-
fluid flow problems do not necessarily inherit the pressure-invariance property of
the continuum equations.

To avoid pressure oscillations, discrete approximations of two-fluid flow prob-
lems must comply with a pressure-invariance condition. This condition is also
mentioned in Ref. [57] in the context of a not-strictly-conservative method for
multi-fluid flows with a stiffened-gas equation of state; see also [4,59,60]. Below
we formulate the pressure-invariance condition for strictly conservative hyperbolic
systems conform (6.9), provided with a compound equation of state of the form
p(p,0). We do not yet attach a specific connotation to g.

The pressure-invariance condition for discretizations of (6.9) is stated: If
U;” =V, with V a constant, and pé? and 9;“7 satisfy

p(pf,05) = P, (6.24a)

for some constant P, then p is invariant under the characteristic mapping of the
discretization, i.e.,
p(py*h 00 = P. (6.24b)

In fact, gjl. = gj with g} according to Eq. (6.20b) is an implementation of
the pressure-invariance condition for a compound equation of state conform (6.12)
and the first-order forward Euler discretization (6.17).
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6.3.3 A Non-Oscillatory Conservative Scheme

To set up a pressure-invariant discretization for two-fluid flow problems, we con-
sider two distinct compressible fluids with barotropic equations of state pp,(p) and
ps(p). For given density and pressure, the primary volume fraction « is implicitly
defined by

pl,t) = ale, pp(p(, £)) + (1 - ale.)p.(p(a. 1)) . (6.25)
Under the assumption py(p) # ps(p), Eq. (6.25) uniquely defines . However, a
does not appear in our final formulation and we do not rely on its unicity.

We also require the primary and secondary partial densities, defined as:

pn=apy, and  pgi=(1—a)ps, (6.26)

respectively. In terms of these partial densities, conservation of mass, for each
fluid separately, is expressed by

(Pp)e + (ppv)a =0, and ()i + (Pv)e = 0. (6.27)

Furthermore, the compound density satisfies p = pi, + p;. Hence, if we assign g as
the primary mass fraction,
9= pp/p, (6.28)
then conservation of mass, for each of the fluids separately, and conservation of
momentum can be condensed into the form (6.9).
The compound equation of state associated with g according to (6.28) is
implicitly given by

pg = apy(p), (6.29a)
p—pg=(1-a)psp). (6.29b)

Eq. (6.29) follows from pg = p;, and p — pg = p; and (6.26). Elimination of a
yields the convenient form

1 g 1—g

P ) | )

The first-order forward Euler discretization of (6.9) with the compound equa-
tion of state (6.29) or (6.30) satisfies the pressure-invariance condition. To corrob-
orate this assertion, we note that if v =V and p(p}, g}) = P, ie.,

(6.30)

sk = akpy(P). (6.312)

pi =gy = (1—af)ps(P), (6.31D)

forall j = 1,...,n, then the forward Euler discretization (6.17) with the numerical
flux (6.18) yields

Pyt =pk = C ok = ok, (6.32a)

PiTgiT = phay — Cofgf — pf_19i) (6.32b)
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with C' defined by (6.19b). From (6.31)-(6.32) it follows that

pitgt =l (P), (6.33a)
Py = PTGt = (1=l ) pu(P), (6.33)

with
o/j“ = aj‘ - C’(af —af ). (6.33¢)

The compound equation of state (6.29) thus yields p(p§*', g/ ') = P.

Summarizing paragraphs 6.3.1-6.3.3, we conclude that if g represents the pri-
mary volume fraction and the compound equation of state is specified accordingly
as (6.12), then the discretization does not comply with the pressure-invariance con-
dition. In contrast, if ¢ is the primary mass fraction and the compound equation
of state is given by (6.30), then the pressure-invariance condition is satisfied.

6.4 A Modified Osher Scheme for Two-Fluids

By virtue of its conservative form, the pressure-invariant formulation from §6.3.3
is ideally suited to treatment by Godunov-type methods. To avoid the compu-
tational expenses of solving the associated Riemann problems, below we set up
an approximate Riemann solver for the two-fluid flow problem. The approximate
Riemann solver is of Osher type. As a digression, we show that the interface in-
deed appears as a contact discontinuity, both in the exact Riemann solution and
in the rarefaction-waves-only approximation that underlies Osher’s scheme.

We emphasize that the choice of the approximate Riemann solver does not
affect the pressure invariance; the invariance is ensured by the specific choice (6.28)
for g and the corresponding compound equation of state (6.30). Any other ap-
proximate Riemann solver that resolves contact discontinuities exactly could have
been selected here, e.g., Roe’s scheme or the AUSM scheme.

6.4.1 The Two-Fluid Riemann Problem

We consider (6.9) provided with a compound equation of state of the form p :=
p(p, ), e.g., Eq. (6.30). The formal dependence of g on # in (6.9) can be ignored.
The corresponding Riemann problem is defined on the half-space Q 1= {—0c0 < 2z <
00,0 < t < oo} and is obtained by imposing the discontinuous initial conditions

ifrx <0
a(z,0) = {qL e <t (6.34)
qp otherwise,

for certain constant left and right states g, and qp.

The properties of the Riemann problem and its solution are classical; see, e.g.,
[63]. This paragraph serves to collect the essentials for the ensuing presentation
and contains the specifics for the two-fluid flow problem.
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To obtain the Riemann solution for the two-fluid Euler equations, we need
the Jacobian of f(q):

of(q) 0 1 0
Alq) == B—S = | (6 +3w)/ai+¢F 20/ E/a . (6.35a)
—(I3Q2/Q% (Ia/th Q2/Q1

with
c1(p.g) = /0p(p.9)/0p, and calp.g) = \/Ip(p.g)/dg. (6.35b)
Its eigenvalues are
Ai=qe/a -, Ai=q@/a, and Azi=g/qtorn, (6.36)

and the corresponding eigenvectors are

1 adi 1
rii= @/ —c |, roi= G2 ,andrs == | ¢o/q1 + 1
as/@ ~(e1/c2)?qF + qs q3/q

(6.37)
The eigenpairs (Mg, rj) are genuinely nonlinear for k = 1,3 and linearly degenerate
for k = 2 (cf. Ref. [43] for a definition of these classifications). The genuinely
nonlinear eigenpairs are related to rarefaction waves and shock waves. The linearly
degenerate eigenpair corresponds to a contact discontinuity.
For any admissible state g4 we associate two paths in state space with each
eigenpair: the k-shock path and the k-rarefaction path. The k-shock path is
defined as

Sk(aa):={aeR’ : s(q,a4)(a—a)=F(a)~F(aa), 5(a aa) = Ak(aa) as a—au

(6.38)
where s(q,qy) is referred to as the k-shock speed. The k-rarefaction path is
defined as

Ri(aa) == {q e R*: q=h(¢),£ e R}, (6.392)
with h(€) the solution to the ordinary differential equation
W (&) = re(h(€))/B(h(€)), subject to h(Ar(as)) =qa, (6.39b)

with 3 1= 0qA\x(q)-rx(q) for the genuinely nonlinear eigenpairs and 3 := 1 for the
linearly degenerate eigenpair. Note that Ag(h(€)) = £ for the genuinely nonlinear
eigenpairs.

The Riemann solution can be constructed by means of the shock and rar-
efaction paths. The solution is constant in four (possibly empty) disjoint subsets
of Q. The constant states are denoted by g /3 k = 0,1,2,3. Furthermore,
we set g = qp and q; = qp. We refer to q;/3 and q,,; as intermediate
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states. By connecting each pair of consecutive states by either a shock or a
rarefaction path, we can connect gy to q;. The unique sequence of paths that
satisfies Mg (Qgp_1y/3) > Ak(Qrya) if Qe_1y/3 and qy 3 are connected by Sy and
Ak (Ae—1y/3) < Ak(Qrsz) if Qr—1)/3 and qy /3 are connected by Ry corresponds to
the Riemann solution. If A (qes_1y/3) = Ak (Qy/3) then the shock and rarefaction
paths coincide and we opt for a rarefaction-path connection. This situation occurs
for the contact discontinuity.

Recalling that the Riemann solution assumes the similarity form g(z,t) =
q(z/t) (see, e.g., Ref. [63]), we obtain

qp if 2/t < of,
.« — +
_ Ak/3 if o, <z/t <oy,
z,t) =qglx/t) = 6.40a
a(@, t) = a(@/t) hp(z/t) ifo) | <az/t <o, ( )
q; ifx/t >0y,
where hy, := h according to (6.39b) with g, := q(;_1/3 and
ot = Mot (Qrys) s I Meri(ar/s) < Aot () s)s (6.40D)
’ Sk+1 otherwise,
i if A\ a) > A ) .
o = {/\k(qk/d)7 i k(q{ﬂ/s) > Me(Qp=1y/3) (6.40¢)
Sk, otherwise.

An example of the solution (6.40) is presented in Figure 6.2.

t

a'f =0,
To=A .
T, l(ql/d) )‘2(q1/3) — )\2(q2/3)
+ -
of = Milag) d1/3 92 =%
NS As(da,5) > As(ay)
hy(z/t)
Q2/3
A\ ,
Yo /’ a,
€

Figure 6.2: Illustration of a two-fluid Riemann solution: An expansion fan
(shaded) connects qq to q, 3, a contact discontinuity (dashed) connects q /5
to gy /5 and a shock discontinuity (solid) connects q, 3 to q.

6.4.2 Riemann Invariants

To each k-rarefaction path corresponds a set of Riemann invariants, i.e., functions
which are invariant on Ry. These Riemann invariants allow us to conveniently de-
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termine the intermediate states in the rarefaction-waves-only approximation to the
Riemann solution that underlies Osher’s scheme. Moreover, by means of the Rie-
mann invariants and a simple argument for shocks, we can show that the interface
indeed appears as a contact discontinuity (cf. §6.2.3).

Consider the eigenvectors (6.37). A k-Riemann invariant for the two-fluid
Euler equations (6.9) is any continuously differentiable function ¢y : R® — R with
the property

Iq¥(a) tr(a) = 0. (6.41)
There are at most two such k-Riemann invariants with linearly independent partial
derivatives. Note that for the linearly degenerate eigenpair the eigenvalue is a
Riemann invariant.

To derive the 1-Riemann invariants, we first solve the system of ordinary
differential equations

h'(€) = v (h(€)), subject to h(0) = h, (6.42)
with & = 1:
hi(€) = €+ Y, (6.43a)
1o hi(€) . ¢,
ha(€) = hl(_ﬁ)(;—; - /h ) “S’) dw) , (6.43b)
h(€) = (h§/hY) € + h3 , (6.43¢c)

with ¢1(w) := ¢; (b1 (), hs(w)/h1(w)). The 1-Riemann invariants can be obtained
by constructing &-independent functions of h;(§), j = 1,2,3. The invariants thus
obtained are presented in (6.48). Note that by virtue of the similitude of r; and
r3, the 3-Riemann invariants can be chosen identical to the 1-Riemann invariants
with ¢; replaced by —c¢;.

To derive the 2-Riemann invariants, we solve (6.42) for k = 2. Obviously,

hi(€) = hlet, and ho(€) = hlet. (6.44)

To determine h3(£), we recall that ¢; and ¢y are defined by (6.35b). Therefore,
Eq. (6.42) yields
h3Dap + Dip — hsDap = 0, (6.45)

where D; denotes differentiation with respect to the j-th argument. Moreover,
from p := p(hi, hy/hy) we obtain

dp

d¢
Eqgs. (6.44)-(6.46) imply that dp/d€ = 0, i.e., p is a 2-Riemann invariant and hs(&)
is implicitly specified by

p(hi(€), ha(€)/h1(€)) = p(hY, hS/hT) . (6.47)

hsD D.
3 2p)+h.’ 2p (6.46)

=1 (Dyp— =2
”( e hy
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From (6.44)-(6.47) we infer that p and ¢o/¢; are 2-Riemann invariants. Indeed,

the linearly degenerate eigenvalue Ay := ¢o/q; is a 2-Riemann invariant.
Summarizing, we can associate the following Riemann invariants with the

two-fluid Euler equations (6.9) with a compound equation of state of the form

p:=p(p,g):

Pi=v+¥(pg), vy=v, ¥i=v-"U(pg),
3 3 ) (6.484a)
1/)1:97 ’(/}‘zzpa 'l/)3:ga
where )
T(p,g) = / aw.9) g, (6.48b)
J p0 w

with p° an arbitrary positive real constant.

It is important to note that g is a Riemann invariant for the genuinely nonlin-
ear eigenpairs (k = 1,3) and that p and v are Riemann invariants for the linearly
degenerate eigenpair (k = 2). In the absence of shocks, this implies that the change
in g associated with the fluid transition at the interface can ounly occur across the
contact discontinuity and, moreover, that the interface conditions (6.4) are indeed
satisfied.

To demonstrate that g is also invariant across genuine (non-degenerate)
shocks, we note that

s(p—pa)=pv—pava = s(pga—paga)= pgav —pagava,  (6.49)

for any constant g4. From (6.38) and (6.49) we can infer that there exist two shock
paths on which ¢ is invariant. Moreover, the shock path and rarefaction path of
the degenerate shock (k = 2) coincide. Because g is not a 2-Riemann invariant, g
can vary on the 2-shock path. Therefore, the shock paths on which g is invariant
must be the 1- and 3-shock paths. These paths correspond to genuine shocks. The
invariance of g on the 1- and 3-shock paths implies that the fluid transition at the
interface cannot occur across a genuine shock.

6.4.3 Rarefaction-Waves-Only Approximation

In §6.4.1 it was shown that the intermediate states in the Riemann solution are con-
nected by shock and rarefaction paths. A rarefaction-waves-only approximation is
obtained by replacing the shock paths by rarefaction paths. Shock discontinuities
in the Riemann solution are then approximated by so-called overturned rarefaction
waves; see, e.g., Ref. [44].

The intermediate states in the rarefaction-waves-only approximation can be
conveniently determined by means of the Riemann invariants. Supposing the
approximate intermediate states G(_q,, and q;,, are connected by Ry, with
k:{1,2,3} — {1,2,3} a bijection,

,I/)Zq(/l) ((i(l—l)/S) = w;cn(’l) ((il/S) ) lv/rn‘ = 17 27 37 m 7& k(l) )

T i (6.50)
with g, = q; and q; :=qp.
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Usual choices for the ordering of the paths are the O-variant k(I) := 4 — [ (see
Ref. [50]) and the P-variant k(l) := [ (see Ref. [30]). The O-variant and the
P-variant have mutually reversed orderings. Throughout, we presume a P-variant
ordering.

Eq. (6.50) represents a system of nonlinear equations, from which the ap-
proximate intermediate states q,,3 and Qy/5 have to be extracted. Using the
expressions for the Riemann invariants (6.48), it is easy to show that the Jacobian
matrix corresponding to (6.50) is nonsingular. Therefore, by the inverse function
theorem, Eq. (6.50) is indeed solvable.

To establish the accuracy of the approximate intermediate states from (6.50),
we recall from [63] that the change in the k-Riemann invariants across a k-shock
with strength g is O(u®) as p — 0, with the k-shock strength defined as the
change in the eigenvalue A\ across the shock. It follows that for sufficiently weak
shocks, ie., if u = sup,_; 3 ()‘A:(Q(k~1)/3) - )‘k(Qk/S)) is sufficiently small, the
error in the approximate intermediate states is only O(u®) as well. Moreover, in
the absence of shocks, the approximation according to (6.50) is even exact. If
strong shocks impair the accuracy of the numerical solution, then an approximate
Riemann solver which is suitable for shocks, or even an exact Riemann solver,
should be applied.

From (6.48) and (6.50) we obtain

g3 =91, ga/3=gr, and Uiz =0yz =0y, (6.51)
and, in turn,
"P1/3 »
S / alpgr) g, (6.52a)
PL P
P23
U1yg — / e1lp.gr) dp = vr, (6.52b)
Y PR p
(P13, 91) = p(Payss 9r), (= P1j2). (6.52c)

For a compound equation of state of the form p := p(p, g), e.g., Eq. (6.30), these
conditions for the intermediate states can be cast in a convenient form. To de-
rive this form, we use Eq. (6.35b) and the transformation p := p(p, ) to obtain,
successively,

/‘pb c1 p, /pb 8}7 /) / ap(pa ) (653)
Pa Pa pv 8 a

for any p,, pp € Ry and corresponding p,, pp. Eqgs. (6.52)-(6.53) imply

P1/> P1/2 6
p, gr) dp +/ P(I{’»QR) dp = vy, — vp . (6.54)
. ,,L p(p,g1) on P 9R) dp
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Equation (6.54) presents a concise condition for the intermediate pressure py .
Once the intermediate pressure has been extracted from (6.54), the intermedi-
ate densities follow from the compound equation of state and v;/, is obtained
from (6.52a) or (6.52b) in a straightforward manner.

It is noteworthy that (6.54) is well suited to treatment by numerical approx-
imation techniques. In particular, the derivatives of the integrals with respect to
P1/2, which are required in Newton’s method, are simply the integrands evalu-
ated at pi/p. Moreover, for a given approximation to p;/;, the integrals can be
evaluated by a standard numerical integration method (see, e.g., Ref. [34]).

6.4.4 The Modified Osher Scheme

The numerical flux in Osher’s scheme [50], is determined by

3
folas.an) = 3f(as) + 3fan) — 3 > i, (6.550)
=1
with .
ai= [ IA®E)]| 1o (B() de (6.55D)

where h(¢) refers to a parametrization of the section of the k(l)-rarefaction path
between q(;_1)/3 and q;/3 and

|A(q)| == (r1, 1, r3) -diag(|A1], A, [As]) - (rhrz,rg)_l, (6.55¢)

with the eigenvalues and eigenvectors according to (6.36) and (6.37), their de-
pendence on g being suppressed for transparency. The numerical flux (6.55) ap-
proximates f(q(0)), with g(z/t) the Riemann solution in similarity form according
to (6.40).

From Egs. (6.55b)—(6.55¢) it follows that

1
d; = /0 sign (A (1(£))) A(h(€)) Ty (h(€)) dE. (6.56)

If Ay in (6.56) does not change sign on the integration interval, then the integral
evaluates to

d; = sign (M) (Qu-1)/m)) (£(Qrym) = £(@a-1)n)) - (6.57)

whereas if Ay changes its sign once, say at q, (i.e., Ap)(@,) = 0), then

d; = sign(Aey (Qu-1)/n)) ((f(fi*) —£(@g-1ym) — (@) - f((i*))) . (6.58)
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Under the condition 0 < A2(@y,3) = A2(Qa/3) < A3(Qa/3), A3(Qy), we can then
derive three generic cases

f£(a.) if A1(@p) <0 <A@y 3),
folap, ar) = § £(ay3) if A1(Qo) < Mi(dy3) <0,  (6.59)
£(Qo) + £(@y/3) — £(a.) if M(dg) > 0> Ai(Gyy3)-

Comparison to the corresponding f(q(0)) shows that fo(qy,qp) is accurate in the
first two cases, in particular, the error is then O(u?), and inaccurate in the third
case, the error then being O(p). This failure of Osher’s scheme is exemplified by
means of the Burgers equation in [44].

To avoid the aforementioned deficiency of Osher’s scheme, we propose a mod-
ification of the scheme. The rarefaction-waves-only approximation is maintained.
However, the overturned-rarefaction-wave representation of shocks in the approx-
imate Riemann solution is avoided. Instead, the intermediate states from (6.50),
with a presumed P-variant ordering of the subpaths, are used to construct the
approximate Riemann solution:

do if 2/t <oy,

d(a/t) = /3 if 6, </t <&, (6.60a)
hy(z/t) if 6}, <z/t <a;,
& if 2/t > 65,

where hy, := h according to (6.39b) with q4 = q(;_1)/3 and

o Aba1(Grsa) i Merr(Qrya) < Ao (Qrirnya)s (6.60b)
k Sk+1 otherwise,
57 = )‘k (qk/.'}) if )‘k (‘ik/3) = Ak (q(k—l)/3)7 (6 GOC)
k Sk otherwise, '
. 1 - 1 -
S = 5 Ak (Qr—1)/3) + 3k (Qnys) - (6.60d)

The numerical flux is subsequently computed as fonr(qy,qg) = £(g(0)).

Comparison of the approximate Riemann solution (6.60) with the exact Rie-
mann solution (6.40) shows that §; acts as an approximation to the shock speed.
In Ref. [63] it is proved that the speed of a shock with strength yu is equal to the
average of the eigenvalues on either side of the shock and a remainder of O(u?),
as p — 0.
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Pg Tlp Tp /)8 T)s Vs
1 3000 7 10% 0 7/5

Table 6.1: Constants in Tait’s equation of state (6.61).

6.5 Numerical Experiments and Results

To test the non-oscillatory conservative scheme from §6.3.3, equipped with the
modified Osher scheme from §6.4.4 for the numerical fluxes, we consider two test
cases. The first test case is a Riemann problem in which the initial velocity and
pressure are uniform. Its solution corresponds to a translation of the interface.
This test case serves to verify the pressure invariance of the method. The second
test case concerns a Riemann problem associated with the collision of a shock
with the interface. As a result of the interaction of the shock and the interface,
both the conservation properties and the pressure invariance of the method are
relevant in this case. Moreover, test case II is used to verify the asymptotic
behavior of the error in the approximate intermediate states and in the shock-
speed approximation, as the shock strength vanishes; refer to Sec. 6.4.

6.5.1 Test Case |

We consider the two-fluid Euler equations (6.9), provided with the compound
equation of state (6.30). The primary and secondary fluid comply with Tait’s
equation of state (see, e.g., Ref. [72]):

0 1/’)/;)/:4
o [ (@/P°) +nps
(p) = p0, | L T Ie/s 6.61
Pp/s(D) pp/b< T, : (6.61)

with p¥ (:= 1) an appropriate reference pressure, pg /s the corresponding densities of
the primary and secondary fluid and 7, /s > 0 and /s > 1 fluid-specific constants.
The constants used in the numerical experiments are listed in Table 6.1. These
constants are chosen such that the primary fluid models water and the secondary
fluid models air in homentropic flow. Appropriate constants for other fluids are
provided in [72].

Test case I concerns a Riemann problem with

103

p 1 p
v o= 110? and v} o= 10% |. (6.62)
g 1 g 0

0 1

Hence, p(z,0) = 1 and v(2,0) = 100 for all x, i.e., the pressure and velocity are
uniform. The solution then corresponds to a translation of the interface.



6.5. Numerical Experiments and Results 95

141077 1 5
1 0.5
0
p Prg
1-1077 : ‘ 0 e -]
-2 ~1 0, 1 2 -2 -1 0 L 1 2
(a) pressure at t = 0.01. (b) density at ¢ = 0.01.

Figure 6.3: Test case I: Computed result (markers only) and exact solution
(solid line).

The two-fluid flow problem is discretized by means of a Godunov-type finite
volume method, with the numerical fluxes based on the modified Osher scheme
from §6.4.4. Instead of a first-order discretization conform (6.17), we use a limited
second order scheme with the minmod limiter (see, e.g., [77]). The intermediate
pressure py /o is solved from (6.54) by means of Newton’s method. The integrals
in (6.54) are approximated by 16-point Gauss quadrature. We use a uniform grid
with mesh width i = 276, The time step is set to 7 = 27%h.

Figure 6.3 plots the results for test case I. The initial position of the interface
is set at x = 0. The results confirm the pressure invariance of the scheme.

6.5.2 Test Case i

Test Case Il is illustrated in Figure 6.4 on the following page. The equation of state
of the primary and secondary fluid is specified by (6.61), with the same constants
as in Test Case I (Table 6.1 on the preceding page). The states qq, q; and q, are
determined by

p 1.000427 . .. p 1 P 1073
v} o= ]0.062042... |, v| =10 and v o= 0 (6.63)
9/, 1 9/, 1 9/, 0

The pressure corresponding to qq is py(po) = 10. The states g and q; in the
primary fluid (water) are connected by a 3-shock with speed s, = 145.062002. . .
and g; is connected to q; by a steady contact discontinuity, representing the
interface. At time ¢t = 0, the shock collides with the interface, which is set at 2 = 0
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(see Figure 6.4). The states qy and q; are then contiguous and, hence, the collision
induces a Riemann problem. The corresponding Riemann solution assumes the
form of a reflected rarefaction wave, a moving interface and a transmitted shock

with speed s; = 37.491063...(= 0F =03 ).

t -
of  of of =05 oy =05
AN \‘\ K
\ \ ;
/
\ \\ Q13 ) days
/
\\ ; .

/

h

N h

h

\\ /

9o N\ / a1
. \\ 1’
N\ |/
t=20 D r
:
Qo H
Sp ' q

'
q; ‘
¢

x=0

Figure 6.4: Test case II: The shock/interface collision at ¢ = 0 induces a

Riemann problem.

The details of the set up of the numerical experiment for test case II are
identical to test case I. In figure 6.5 on page 97 we have plotted the results for test
case II. The numerical results exhibit good agreement with the exact Riemann
solution. We also monitored the mass-conservation errors for the two fluids sep-
arately and the momentum-conservation error for this test case: these errors are
indeed of the order of the machine precision (results not displayed).

Furnished with different settings of the parameters, test case II can be used
to verify the asymptotic behavior of the error in the intermediate states of the
rarefaction-waves-only approximation and the error in the shock speed, as the
shock strength vanishes (cf. §6.4.3 and §6.4.4). For this purpose, we consider dif-

ferent states g, on the 3-shock path through g;. These states are characterized
by the corresponding pressure. We then determine the intermediate states of the
actual Riemann solution, q; ;3 and g, 3, by means of the appropriate shock and rar-
efaction relations and, subsequently, the corresponding intermediate pressure py /o
and the shock strengths p, = As(qg) — As(aq;) and ps = Az(qq3) — As(ay)-
The approximate intermediate pressure is extracted from (6.54). Furthermore,
we determine the exact shock speeds s, and ss and their approximations accord-
ing to (As(qo) + As(a;))/2 and (As(qy3) + As(dy))/2, respectively. The results
are listed in Table 6.2 on page 98. The entries in columns 4 and 6 confirm that
P = Pre — prje o pp as g, — 0 and s = ss — (Aa(agys) + As(an))/2 o< g
as ps — 0, in accordance with the estimates in §6.4.3 and §6.4.4. Remarkably,
column 5 indicates superconvergence of the approximation of the primary shock
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(a) pressure at t = 0.01 (log-scale).
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(c) momentum at ¢t = 0.01.

(b) density at t = 0.01 (log-scale).

(d) primary partial density at ¢ = 0.01.

Figure 6.5: Test case II: Computed result (markers only) and exact solution

(solid line).

speed, in particular, s/ :=

b= 5p — (A3(ao) + As(ay))/2 o pd as pp — 0. A te-
dious asymptotic expansion analysis conveys that this superconvergence occurs
exclusively for v, = 7. A detailed exposition is beyond the scope of this work.
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po(ao) Hp Hs i sp S5
1+10%  2.73399 10°  1.63994 10°  4.24266 10~%  1.09924 10~ **  6.96208 10~°
14+10" 275718 10~'  1.65388 10! 4.21251 107  1.19356 107'°  7.10475 107°
1+10°  2.75954 1072  1.65530 1072  4.20939 10™'?  1.20356 1072° 7.11930 1077
1+107" 2.75978 10™°  1.65544 10™%  4.20907 10™'°  1.20456 10~*'  7.12075 107°
1+1072  2.75980 10™%  1.65545 10~* 4.20904 10™'%  1.20466 107*7 7.12090 10~
141073 2.75980 10~° 1.65545 10™° 4.20904 10~2' 1.20467 10~ 7.12091 10~
14107%  2.75980 107% 1.65545 107% 4.20904 1072* 1.20468 10~*° 7.12091 10~ *°

Table 6.2: Errors p’, s;) and s, for different shock strengths p, and ps.

6.6 Conclusions

We presented a non-oscillatory method for barotropic two-fluid flows, founded on
a formulation of the two-fluid flow problem as a system of hyperbolic conservation
laws. The conservative form of the two-fluid flow problem is well suited to treat-
ment by a Godunov-type method. We considered an approximate Riemann solver
for barotropic two-fluid flows, based on the rarefaction-waves-only approximation
that underlies Osher’s scheme. We established that the interface appears as a
contact discontinuity, both in the exact solution and in the rarefaction-waves-only
approximation. This implies compliance with the interface conditions.

Numerical results were presented for two Riemann problems, viz., a trans-
lating-interface test case and a shock/interface-collision test case. The first test
case confirms the pressure invariance of the method. The second test case confirms
its conservation properties. In both cases, the computed results agree well with
the exact Riemann solution. Furnished with different settings, the second test case
also confirmed the anticipated asymptotic behavior of the error in the approximate
intermediate states and in the shock-speed approximation underlying the modified
Osher scheme, as the shock-strength vanishes.



[1]

Bibliography

R. ABGRALL, How to prevent pressure oscillations in multicomponent flow
calculations: A quasi conservative approach, J. Comput. Phys. 125 (1996),
150-160.

R. ABGRALL AND S. KaRrNI, Computations of compressible multifluids, J.
Comput. Phys. 169 (2001), 594-623.

B. ALESSANDRINI AND G. DELHOMMEAU, Simulation of three-dimensional
unsteady viscous free surface flow around a ship model, Int. J. Num. Meth.

Fluids 19 (1994), 321-342.

G. ALLAIRE, S. CLERC, AND S. KOKH, A five-equation model for the nu-
merical simulation of interfaces in two-phase flows, C. R. Acad. Sci. Paris,
Série I 331 (2000), 1017-1022.

R. ARri1s, Vectors, tensors and the basic equations of fluid mechanics, Prentice-
Hall, Englewood Cliffs, N.J., 1962.

G.K. BATCHELOR, An introduction to fluid dynamics, Cambridge University
Press, Cambridge, 1967.

R. BECKER, An optimal control approach to a-posteriori error estima-
tion for finite element discretizations of the Navier—Stokes equations, Tech.
Report IWR/SFB-Preprints 2000-34, Ruprecht-Karls-Universitdt Heidel-
berg, 2000, Available at http://www.iwr.uni-heidelberg.de/sfb359/PP/
Preprint2000-34.ps.gz.

R. BECKER, M. BRAACK, AND R. RANNACHER, Adaptive finite ele-
ment methods for flow problems, Tech. Report IWR/SFB-Preprints 2000-20,
Ruprecht-Karls-Universitat Heidelberg, 2000, Available at http://www.iwr.
uni-heidelberg.de/sfb359/PP/Preprint2000-20.ps.gz

A. BRANDT, Multigrid techniques: 1984 guide with applications to fluid dy-
namics, Tech. report, GMD, 1984.

E.H. vaN BRUMMELEN, Numerical solution of steady free-surface Navier—
Stokes flow, Tech. Report MAS-R0018, ISSN 1386-3703, CWI, 2000, Available
at http://www.cwi.nl/ftp/CWlreports/MAS/MAS-R0018.ps.Z

99



100

Bibliography

[11]

[12]

[13]

E.H. vaNn BrRUMMELEN, H.C. RAVEN, AND B. KOREN, Efficient numeri-
cal solution of steady free-surface Navier-Stokes flow, J. Comput. Phys. 174
(2001), 120-137.

J. CAHOUET, Etude numérique et experimentale du probléme bidimensionnel
de la résistance de vagues non-linéaire, Ph.D. thesis, ENSTA, Paris, 1984, (In
French).

E. Campana, A. D1 Mascio, P.G. EsposiTOo, AND F. LALLIL, Viscous-
inviscid coupling in free surface ship flows, Int. J. Num. Meth. Fluids 21
(1995), 699-722.

T. CeEBECI AND A.M.O. SMmITH, Analysis of turbulent boundary layers, Aca-
demic Press, New York, 1974.

Y.C. CHaNG, T.Y. Hou, B. MERRIMAN, AND S. OSHER, A level set formu-

lation of Eulerian interface capturing methods for incompressible fluid flows,
J. Comput. Phys. 124 (1996), 449-464.

U.T. EHRENMARK, On wviscous wave motion over a plane beach, STAM J.
Appl. Math. 51 (1991), 1-19.

B. ENGQUIST AND A. MAJDA, Absorbing boundary conditions for the nu-
merical simulation of waves, Math. Comp. 31 (1977), 629-651.

J. FARMER, L. MARTINELLI, AND A. JAMESON, A fast multigrid method for
solving the nonlinear ship wave problem with a free surface, Proceedings of
the 6th International Conference on Numerical Ship Hydrodynamics (Iowa,
1993) (W. Patel and F. Stern, eds.), National Academy Press, Washington
D.C., 1994, pp. 155-172.

R.P FeEDKIW, T. AsLaM, B. MERRIMAN, AND S. OSHER, A non-oscillatory
Eulerian approach to interfaces in multimaterial flows (the ghostfluid method),
J. Comput. Phys. 152 (1999), 457-492.

C.A.J. FLETCHER, Computational techniques for fluid dynamics 2, Springer,
Berlin, 1988.

A.V. Fursikov, M.D. GUNZBURGER, AND L.S. Hou, Boundary value prob-
lems and optimal boundary control for the Navier-Stokes system: the two-
dimensional case, SIAM J. Control Optim. 36 (1998), no. 3, 852-894.

M.B. GILES AND N.A. PIERCE, Adjoint equations in CFD: Duality, boundary
conditions and solution behaviour, ATAA 97-1850 (1997).

J. Guimm, X.L. L1, Y. Liu, aND N. Zuao, Conservative front tracking and
level set algorithms, PNAS 98 (2001), no. 25, 14198-14201.



Bibliography 101

[24]

[25]

[26]

[27]

[28]

[29]

S.K. GobuNov, Finite difference method for numerical computation of dis-
continuous solutions of the equations of fluid dynamics, Mat. Sbornik 47
(1959), 271-306, (In Russian).

M.D. GUNZBURGER AND H. Kim, Existence of an optimal solution of a shape
control problem for the stationary Navier-Stokes equations, SIAM J. Control
Optim. 36 (1998), no. 3, 895-909.

M.D. GuNZBURGER AND H.K. LEE, An optimization-based domain decom-
position method for the Navier-Stokes equations, STAM J. Numer. Anal. 37
(2000), no. 5, 1455-1480.

B. Gustarsson, H.-O. Kreiss, AND J. OLIGER, Time dependent problems
and difference methods, Pure and Applied Mathematics, Wiley, New York,
1995.

W.J. HARRISON, The influence of viscosity on the oscillations of superposed
fluids, Proc. Lond. Math. Soc. 6 (1908).

R. HARTMANN AND P. HoUSTON, Adaptive discontinuous Galerkin fi-
nite element methods for nonlinear hyperbolic conservation laws, Tech.
Report ITWR/SFB-Preprints 2001-20, Ruprecht-Karls-Universitit Heidel-
berg, 2001, Available at http://www.iwr.uni~heidelberg.de/sfb359/PP/
Preprint2001-20.ps.gz.

P.W. HEMKER AND S.P. SPEKRELISE, Multiple grid and Osher’s scheme
for the efficient solution of the steady Fuler equations, Appl. Num. Math. 2
(1986), 475-493.

C. HirscH, Numerical computation of internal and external flows, volume i:
Fundamentals of numerical discretization, Numerical Methods in Engineering,
Wiley, New York, 1995.

M. HOEKSTRA, Numerical simulation of ship stern flows with o space-
marching Navier-Stokes method, Ph.D. thesis, Delft University of Technology,
Netherlands, 1999.

P. HousToN, B. SENIOR, AND E. SULI, hp-discontinuous Galerkin finite

element methods for hyperbolic problems: error analysis and adaptivity, Int.
J. Numer. Meth. Fluids 40 (2002), 153-169.

E. IsaacsoN AND H.B. KELLER, Analysis of numerical methods, Wiley, New
York, 1966.

P. JENNY, B. MULLER, AND H. THOMANN, Correction of conservative Euler
solvers for gas miztures, J. Comput. Phys. 132 (1997), 91-107.

S. KARrNI, Multicomponent flow calculations by a consistent primitive algo-
rithm, J. Comput. Phys. 112 (1994), 31-43.



102

Bibliography

[39]

(40]

, Hybrid multifluid algorithms, STAM J. Sci. Comput. 17 (1996), 1019~
1039.

F.J. KELECY AND R.H. PLETCHER, The development of a free surface cap-
turing approach for multidimensional free surface flows in closed containers,
J. Comput. Phys. 138 (1997), 939-980.

J. KEVORKIAN AND J.D. COLE, Perturbation methods in applied mathemat-
ics, Applied Mathematical Sciences, no. 34, Springer, Berlin, 1981.

B. Koren, M.R. LeEwis, E.H. vAN BRUMMELEN, AND B. VAN LEER, Go-
dunov and level-set approaches for homentropic two-fluid flow computations,
J. Comput. Phys. (2002), Accepted for Publication.

H.-O. KRrEiss, Initial boundary value problems for hyperbolic systems, Comm.
Pure Appl. Math. 23 (1970), 277-298.

H. Lawms, Hydrodynamics, 6th ed., Dover, New York, 1945.

P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl.
Math. 16 (1957), 537-566.

B. VAN LEER, On the relation between the upwind-differencing schemes of
Godunov, Engquist-Osher and Roe, SIAM J. Sci. Stat. Comput. 5 (1984),
1--20.

M.J. LiGHTHILL, Introduction to Fourier analysis and generalised functions,
Cambridge University Press, Cambridge, 1958.

ey, Wawes in fluids, Cambridge University Press, Cambridge, 1978.

H. Mivara, T. SATo, AND N. BABO, Difference solution of a viscous flow
with free-surface wave about an advancing ship, J. Comput. Phys. 72 (1987),
393-421.

W. MULDER, 3. OSHER, AND J.A. SETHIAN, Computing interface motion
in compressible gas dynamics, J. Comput. Phys. 180 (1992), 209-228.

D. Ncuvyen, F. GiBou, AND R. FEDKIW, A fully conservative ghost fluid
method and stiff detonation waves, Technical Papers of the 12th Interna-
tional Detonation Symposium, 12th International Detonation Symposium,
San Diego, CA, 2002, Available at http://www.sainc.com/onr/detsymp/
PaperSubmit/FinalManuscript/pdf/Nguyen-37.pdf.

S. OsHER AND F. SovLoMoN, Upwind difference schemes for hyperbolic con-
servation laws, Math. Comput. 38 (1982), 339-374.

O. PIRONNEAU, Optimal shape design for elliptic systems, Computational
Physics, Springer, Berlin, 1984.



Bibliography 103

[52]

[53]

[54]

[57]

H.C. RAVEN, A solution method for the nonlinear ship wave resistance prob-
lem, Ph.D. thesis, Delft University of Technology, Netherlands, 1996.

R.D RicHTMYER AND K.W. MORTON, Difference methods for initial-value
problems, 2nd ed., Pure and Applied Mathematics, no. 4, Wiley, New York,
1967.

P.A. SACKINGER, P.R. ScHUCK, AND R.R. RAao, A Newton-Raphson
pseudo-solid domain mapping technique for free and moving boundary prob-
lems: A finite element implementation, J. Comput. Phys. 125 (1996), 83-103.

H. Sarro AND L.E. SCRIVEN, Study of coating flow by the finite element
method, J. Comput. Phys. 42 (1981), 53-76.

R. SAUREL AND R. ABGRALL, 4 multiphase Godunov method for compress-
ible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), 425-467.

, A simple method for compressible multifluid flows, STAM J. Sci. Com-
put. 21 (1999), 1115-1145.

L.E. SCRIVEN, Dynamics of a fluid interface, Chem. Eng. Sc. 12 (1960),
98-108.

K. Suvue, A fluid-mizture type algorithm for compressible multicomponent
flow with van der Waals equation of state, J. Comput. Phys. 156 (1999),
43-88.

, A fluid-mizture type algorithm for compressible multicomponent flow
with Mie-Grineisen equation of state, J. Comput. Phys. 171 (2001), 678-707.

W.J. SILLIMAN AND L.E. SCRIVEN, Separating flow near o static contact
line: Slip at a wall and shape of a free surface, J. Comput. Phys. 34 (1980),
287-313.

J. SIMON, Nonhomogeneous viscous incompressible fluids: Existence of veloc-
ity, density and pressure, SIAM J. Math. Anal. 20 (1990), 1093-1117.

J. SMOLLER, Shock waves and reaction-diffusion equations, Grundlehren der
mathematischen Wissenschaften, Springer, New York, 1983.

S. SPEKREWSE, Multigrid solution of monotone second-order discretizations
of hyperbolic conservation laws, Math. Comput. 49 (1987), 135-155.

J.J. STOKER, Water waves: the mathematical theory with applications, Pure
and Applied Mathematics, Wiley, New York, 1992.

P.K. SWEBY, High resolution schemes using flux limiters for hyperbolic con-
servation laws, STAM J. Numer. Anal. 21 (1984), 995-1011.



104

Bibliography

[67]

(73]

[74]

[75]

S. TA’ASAN, Infinite dimensional preconditioners for optimal design problems,
Inverse Design and Optimization Methods (R.A. van den Braembussche and
M. Manna, eds.), VKI Lecture Series, vol. 5, Von Karman Institute for Fluid
Dynamics, 1997.

, Multigrid one-shot methods and design strategy, Inverse Design and
Optimization Methods (R.A. van den Braembussche and M. Manna, eds.),
VKI Lecture Series, vol. 5, Von Karman Institute for Fluid Dynamics, 1997.

, Theoretical tools for problem setup, Inverse Design and Optimization
Methods (R.A. van den Braembussche and M. Manna, eds.), VKI Lecture
Series, vol. 5, Von Karman Institute for Fluid Dynamics, 1997.

R. TEMAM, Navier-Stokes equations : theory and numerical analysis, Studies
in mathematics and its applications, vol. 2, North-Holland, Amsterdam, 1977.

, Navier-Stokes equations and nonlinear functional analysis, CBMS
Regional Conference Series in Applied Mathematics, vol. 41, SIAM, Philadel-
phia, 1983.

P.A. THOMPSON, Compressible fluid dynamics, Advanced Engineering Series,
McGraw-Hill, New York, 1972.

E.C. TrrcuMARSH, Introduction to Fourier integrals, Oxford University
Press, Oxford, 1937.

W. Tsar aND D.K.P. YUug, Computation of nonlinear free-surface flows,
Annual Rev. Fluid. Mech. 28 (1996), 249-278.

G.D. TzaBIRAS, A numerical investigation of 2D steady free surface flows,
Int. J. Num. Meth. Fluids 25 (1997), 567-598.

M. Vocr, A numerical investigation of the level set method for comput-
ing free-surface waves, Tech. Report CHA /NAV /R-~98/0054, ISSN 1101-0614,
Chalmers University of Technology, 1998.

P. WESSELING, Principles of computational fluid dynamics, Springer Series
in Computational Mathematics, vol. 29, Springer, Berlin, 2001.

G.B. WHITHAM, Linear and nonlinear waves, Pure and Applied Mathemat-
ics, Wiley, New York, 1974.

E. ZAUDERER, Partial differential equations of applied mathematics, 2nd ed.,
Pure and Applied Mathematics, Wiley, Chichester, 1989.

S. ZHU AND Y. ZHANG, On nonlinear transient free-surface flows over a
bottom obstruction, Phys. Fluids 9 (1997), no. 9, 2598-2604.



Author

Abrall, 77, 82, 84
Alessandrini, 33, 53
Allaire, 84

Aris, 9, 36

Aslam, 77

Babo, 33

Batchelor, 7, 31, 38, 39, 47

Becker, 54

Braack, 54

Brandt, 71

Brummelen, van, 48, 53, 74, 76, 77,
82

Cahouet, 34, 48, 50, 52, 73, 75, 76
Campana, 33, 53

Cebeci, 48

Chang, 77

Clerc, 84

Cole, 16, 32

Delhommeau, 33, 53

Ehrenmark, 13
Engquist, 8
Esposito, 33, 53

Farmer, 33, 34, 53
Fedkiw, 77
Fletcher, 14
Fursikov, 54

Gibou, 77
Giles, 34, 54
Glimm, 77
Gunzburger, 54
Gustafsson, 13

105

Index

Harrison, 13
Hartmann, 78
Hemker, 91
Hirsch, 83
Hoekstra, 48
Hou, 54, 77
Houston, 78

Isaacson, 92

Jameson, 33, 34, 53
Jenny, 77

Karni, 77

Kelecy, 77

Keller, 92

Kevorkian, 16, 32

Kim, 54

Kokh, 84

Koren, 53, 74, 76, 77, 82
Kreiss, 8, 13

Lalli, 33, 53

Lamb, 13, 26, 29, 41, 42, 48, 55, 65

Lax, 87

Lee, 54

Leer, van, 77, 82, 90, 93

Lewis, 82

Li, 77

Lighthill, 13, 25, 26, 29, 30, 41, 42,
48, 55, 65, 67

Liu, 77

Majda, 8
Martinelli, 33, 34, 53
Mascio, di, 33, 53



106

Author Index

Merriman, 77
Miyata, 33
Morton, 13
Mulder, 77
Miiller, 77

Nguyen, 77

Oliger, 13
Osher, 77, 91, 92

Pierce, 34, 54
Pironneau, 46, 56, 57
Pletcher, 77

Rannacher, 54
Rao, 33, 53

Raven, 33, 34, 53, 55, 74, 76

Richtmyer, 13

Sackinger, 33, 53
Saito, 33, 34, 53

Sato, 33

Saurel, 77, 82, 84
Schuck, 33, 53

Scriven, 9, 33, 34, 36, 53

Senior, 78
Sethian, 77
Shyue, 84
Silliman, 34, 53
Simon, 8
Smith, 48

Smoller, 80, 81, 86, 88, 91, 93

Solomon, 91, 92
Spekreijse, 78, 91
Stoker, 13, 55
Sili, 78

Sweby, 78

Ta’asan, 34, 54, 62, 65, 71

Témam, 8
Thomann, 77
Thompson, 94
Titchmarsh, 25
Tsai, 53

Trzabiras, 34, 43, 50, 74
Vogt, 50, 74

Wesseling, 7, 13, 79, 81, 94
Whitham, 23, 30, 42, 67, 69

Yue, 53

Zauderer, 29, 42, 69
Zhang, 53, 55
Zhao, 77

Zhu, 53, 55



Subject

adjoint
- equation, 34, 54
— method, 4, 34, 53, b4, 56, 58, 59,
61, 62, 66-72, 74, 76
— operator, 58
asymptotic
- behavior, 3, 14, 29, 30, 41-43,
68-72, 74, 94, 96, 98
- expansion, 16, 17, 22, 23, 29, 37,
41, 46, 62, 69, 96
—— sequence, 16
- series, 16
—— solution, 15

barotropic, see equation of state
Bernoulli’s equation, 55
boundary condition, 3, 4, 8, 12, 17,
21, 37, 43-45, 48, 49, 53, 55
free-slip —, 14, 40
no-slip —, 32, 48
boundary layer, 2, 32, 34, 48
boundary value problem, 4, 8, 45, 47,

initial —, 3, 8, 13, 37
Burgers equation, 93

CFL
- condition, 43, 44, 51, 76
----- number, 83
compatibility, 23-25
complex conjugate, 64
computational complexity, 4, 40, 42,
44, 47, 51
conservation
— law, 5

107

Index

— of energy, 6, 7
———————— of mass, 6, 7, 79, 85, 95
- of momentum, 6, 7, 9, 35, 79, 85,
95
conservative discretization, 4, 77, 78,
82, 84, 86, 93
constitutive relation, 6, 7
constraint, 45, 56, 57, 59
contact discontinuity, 81, 83, 86-90,
95, 97
continuity, 9, 10, 37
contraction number, 46, 47, 49, 66,
67
convergence, 3, 4, 13, 33-35, 43-47,
49-52, 54, 61, 62, 67-69, 71—
74, 76
cost functional, 45, 46, 55-62, 64, 65,
70
critical mode, 65, 67-69, 72, 76

descent direction, 58
discretization error, 43, 47
dispersion, 3, 14, 26, 27, 30, 42, 67
— relation, 22-27, 41, 69
dual problem, 56, 58-62
duality, 58, 59
dynamic
— condition, 9-11, 14, 33, 34, 36—
41, 43, 45,47, 51, 55, 56, 61,
80
———— - iteration, 34
''''' viscosity, 7

eddy viscosity, 36, 48
equation of state, 7, 82



108 Subject Index
Tait’s —, 94 generic mode, 19-21
barotropic —, 7, 78, 79, 82, 85, genuinely nonlinear, 87, 90
96 Godunov
compound —, 81, 82, 84-86, 90— — flux, 83
92, 94 — method, 4, 78, 86, 94, 96
Euler equations, 6, 12, 78-81, 87, 89, gradient, 56, 60, 62, 63, 70, 71, 73
90, 94 gravity, 6, 8, 14, 33-36, 40, 44, 54, 55

evaluation error, 43, 69, 70, 73, 74
existence, 8, 25
expansion, see asymptotic expansion

finite element method, 2, 73, 78, 83
finite volume method, 2, 78, 83, 94
first-order perturbation, see infinites-
imal perturbation
flux
— difference splitting, 78
numerical —, 83, 85, 92-94
formal solution, 16
Fourier
— analysis, 3, 4, 13, 54, 61, 62
—— component, 26, 27, 70, 71
»»»»» — integral, 23, 25, 41, 42
— mode, 19, 23, 26, 40, 41, 63, 64,
67, 68, 70
— symbol, 19, 64, 65, 67, 70-72
— transform, 25, 42, 64
inverse —, 29, 30, 64
free boundary, see free surface
free surface, 1-5, 10-12, 14, 15, 17,
18, 26, 27, 33-40, 4345, 47~
49, 51, 53-58, 61, 62, 6466,
68-72
— boundary layer, 3, 14, 30-32, 38
-— condition, 3-5, 10-12, 14, 17, 34,
36, 37, 39, 43, 45, 53, 55
rrrrrrr flow, 1-6, 12-16, 26, 28, 30, 33~
37, 39, 40, 42-45, 47, 51-56,
61, 62, 65, 67, 70, 71, 74, 76,
Tl
Froude number, 7, 8, 28, 30, 35, 42—
44, 55, 65

generating solution, 15

group velocity, 30, 42

height function, 11, 35
Hessian, 30, 42, 61-65
hydrodynamic, 35, 38
hydrostatic, 35, 38
hyperbolic, 43
-— conservation law, 4, 77, 78, 96
~— problem, 4
— system, 8, 80, 84

ill posed, see posedness
infinitesimal
— condition, 16, 18, 25
— perturbation, 14, 16, 17, 19, 22,
23, 25-27
initial condition, 3, 8, 15, 16, 18, 23—
26, 43, 82-84, 86, 93
interface, 1, 5, 812, 36, 37, 77-81,
89, 90, 93-97
- capturing, 4, 77, 78, 82
— condition, 3, 5, 8-11, 36, 78-81,
86, 90, 97
intermediate state, 88-91, 93, 94, 96,
98
internal energy, 6, 7
inviscid mode, 20, 22, 24
irrotational, 4, 54

kinematic
— condition, 9-11, 14, 33, 34, 36—
40, 43, 45, 55-58, 80
-— iteration, 34

level set, 11, 80
linearly degenerate, 87, 89, 90

mass fraction, 85, 86



Subject Index

109

method of stationary phase, 29, 42

Navier—Stokes equations, 1-4, 7, 33—
37, 39, 40, 43, 51, 53, 54
Reynolds averaged —, 33, 36, 48
dimensionless —, 7, 14
nested iteration, 4, 47, 51
Newton’s method, 2, 34, 92
Newtonian fluid, 7, 36
non-convex, 61
non-oscillatory discretization, 4, 78,
82, 93, 96

odd/even oscillation, 73

optimal shape design, 4, 34, 45, 53~
56, 61, 65, 74, 76

Osher scheme, 4, 78, 83, 86, 89, 92—
94, 97, 98

Parseval’s identity, 66
partial density, 85, 97
perturbation method, 3, 13
phase velocity, 23, 26
posedness, 3, 8, 26, 45, 55, 61, 64, 65,
67
potential flow, 2-4, 12, 33, 34, 41, 53—
55, 62, 74
preconditioning, 4, 34, 54, 69-74, 76
pressure
— defect, 47, 49
— invariance, 78, 82—-86, 93, 94, 97
— oscillation, 4, 77, 78, 82, 84
primal problem, 59, 61, 62
primitive variable, 3, 13, 14
pseudo
— differential operator, 71
— dispersion relation, 69
— time, 34, 68, 69

quasi free-surface
— condition, 3, 34, 35, 37-39, 44,
47, 51, 53
— flow, 39-41, 49
quasi-steady method, 34

radiation condition, 55, 73
Rankine-Hugoniot condition, 80
RANS equations, see Navier-Stokes
equations

rarefaction

— path, 87, 88, 90, 92

— wave, 86, 87, 89, 90, 93, 95-97
reference

— density, 7, 11

— length, 7, 35, 40, 48, 55

- pressure, 7, 94

— scale, 7, 10, 77

— stress, 11

— surface, 11

— velocity, 7, 11, 27, 35, 40, 48, 55
residual, 4, 45, 49, 53, 55, 56
Reynolds number, 7, 34-36, 41, 52
Riemann

— invariant, 88-91

— problem, 78, 86, 93-97

-— golution, 86-90, 92, 93, 95, 96, 98

— solver, 4, 83, 86, 91, 96

shape optimization, see optimal shape
design
ship hydrodynamics, 2, 13, 33, 34, 52,
53
shock
— path, 87, 88, 90, 96
— speed, 80, 87, 93-96, 98
-— strength, 91, 94, 96, 98
— wave, 87-91, 93, 95-97
similarity form, 88, 92
stability, 8, 13, 43, 65-67, 69, 71, 72
von Neumann —, 13
stationary point, 29, 30, 41, 42, 69
critical —, 69
stratified flow, 13
subcritical, 28, 30, 42-44, 48, 70, 72—
74,76
successive approximation, 34
supercritical, 28, 30, 42, 70, 72-74,
76



110

Subject Index

surface gravity wave, 3, 14, 21, 23~
31, 34, 40-42, 51, 65

thermal conductivity, 6

time-integration method, 2, 3, 33-35,
40, 42-44, 50, 51, 53, 76

total energy, 6

turbulence model, 36

two-fluid, 4, 5, 8, 10, 12, 36, 77-82,
84--86, 88-90, 94, 96

uniform flow, 13-15, 40, 41, 62, 65
uniqueness, 8, 26, 43, 55, 56, 65

viscous

— mode, 20-22, 24

'''''' stress tensor, 6, 7, 11, 12, 36
volume fraction, 82, 85, 86

wave
— group, 3, 14, 25-27, 29, 30, 67
-~ length, 28, 48, 50, 74
''''' number, 19, 22, 26-29, 40, 63-67,
69, 71-73
- pattern, 2, 33, 53
— profile, 49, 50
well posed, see posedness



CWI1 TRACTS

1

N

w

0 ~N o 1&

[t=}

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

D.H.J. Epema. Surfaces with canonical hyper-
plane sections. 1984.

J.J. Dijkstra. Fake topological Hilbert spaces and
characterizations of dimension in terms of negli-
gibility. 1984.

A.J. van der Schaft. System theoretic descrip-
tions of physical systems. 1984.

J. Koene. Minimal cost flow in processing net-
works, a primal approach. 1984.

B. Hoogenboom. Intertwining functions on com-
pact Lie groups. 1984.

A.P.W. Bohm. Dataflow computation. 1984.

A. Blokhuis. Few-distance sets. 1984.

M.H. van Hoorn. Algorithms and approximations
for queueing systems. 1984.

C.P.J. Koymans. Models of the lambda calculus.
1984.

C.G. van der Laan, N.M. Temme. Calculation of
special functions: the gamma function, the expo-
nential integrals and error-like functions. 1984.
N.M. van Dijk. Controlled Markov processes;
time-discretization. 1984.

W.H. Hundsdorfer. The numerical solution of
nonlinear stiff initial value problems: an analysis
of one step methods. 1985.

D. Grune. On the design of ALEPH. 1985.
J.G.F. Thiemann. Analytic spaces and dynamic
programming: a measure theoretic approach.
1985.

F.J. van der Linden.
infinite primes. 1985.
R.J.P. Groothuizen.  Mixed elliptic-hyperbolic
partial differential operators: a case-study in
Fourier integral operators. 1985.

H.M.M. ten Eikelder. Symmetries for dynamical
and Hamiltonian systems. 1985.

A.D.M. Kester. Some large deviation results in
statistics. 1985.

T.M.V. Janssen. Foundations and applications of
Montague grammar, part 1: Philosophy, frame-
work, computer science. 1986.

B.F. Schriever. Order dependence. 1986.

D.P. van der Vecht. Inequalities for stopped
Brownian motion. 1986.

Euclidean rings with two

J.C.S.P. van der Woude. Topological dynamix.
1986.
A.F. Monna. Methods, concepts and ideas in

mathematics: aspects of an evolution. 1986.
J.C.M. Baeten. Filters and ultrafilters over defin-
able subsets of admissible ordinals. 1986.

AW.J. Kolen. Tree network and planar rectilin-
ear location theory. 1986.

A.H. Veen. The misconstrued semicolon: Rec-
onciling imperative languages and dataflow ma-
chines. 1986.

A.JM. van Engelen. Homogeneous zero-
dimensional absolute Borel sets. 1986.

T.M.V. Janssen. Foundations and applications
of Montague grammar, part 2: Applications to
natural language. 1986.

H.L. Trentelman. Almost invariant subspaces and
high gain feedback. 1986.

A.G. de Kok. Production-inventory control mod-
els: approximations and algorithms. 1987.

31 E.E.M. van Berkum. Optimal paired comparison
designs for factorial experiments. 1987.

32 J.H.J. Einmahl. Multivariate empirical processes.
1987.

33 0O.J. Vrieze. Stochastic games with finite state
and action spaces. 1987.

34 PH.M. Kersten. Infinitesimal symmetries: a
computational approach. 1987.

35 M.L. Eaton. Lectures on topics in probability in-
equalities. 1987.

36 A.H.P. van der Burgh, R.M.M. Mattheij (editors).
Proceedings of the first international conference
on industrial and applied mathematics (ICIAM
87). 1987.

37 L. Stougie. Design and analysis of algorithms for
stochastic integer programming. 1987.

38 J.B.G. Frenk. On Banach algebras, renewal mea-
sures and regenerative processes. 1987.

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in
game theory and related topics. 1987.

40 J.L. Geluk, L. de Haan. Regular variation, exten-
sions and Tauberian theorems. 1987.

41 Sape J. Mullender (ed.). The Amoeba distributed
operating system: Selected papers 1984-1987.
1987.

42 P.R.J. Asveld, A. Nijholt (eds.). Essays on con-
cepts, formalisms, and tools. 1987.

43 H.L. Bodlaender. Distributed computing: struc-
ture and complexity. 1987.

44 AW. van der Vaart. Statistical estimation in
large parameter spaces. 1988.

45 S.A. van de Geer. Regression analysis and empir-
ical processes. 1988.

46 S.P. Spekreijse. Multigrid solution of the steady
Euler equations. 1988.

47 J.B. Dijkstra. Analysis of means in some non-
standard situations. 1988.

48 F.C. Drost. Asymptotics for generalized chi-
square goodness-of-fit tests. 1988.

49 F.W. Wubs. Numerical solution of the shallow-
water equations. 1988.

50 F. de Kerf. Asymptotic analysis of a class of per-
turbed Korteweg-de Vries initial value problems.
1988.

51 P.J.M. van Laarhoven. Theoretical and compu-
tational aspects of simulated annealing. 1988.

52 P.M. van Loon. Continuous decoupling trans-
formations for linear boundary value problems.
1988.

53 K.C.P. Machielsen. Numerical solution of op-
timal control problems with state constraints
by sequential quadratic programming in function
space. 1988.

54 L.C.R.J. Willenborg. Computational aspects of
survey data processing. 1988.

55 G.J. van der Steen. A program generator for

recognition, parsing and transduction with syn-

tactic patterns. 1988.

J.C. Ebergen. Translating programs into delay-

insensitive circuits. 1989.

57 S.M. Verduyn Lunel. Exponential type calculus
for linear delay equations. 1989.

58 M.C.M. de Gunst. A random model for plant cell
population growth. 1989.

5

s



it

59 D. van Dulst. Characterizations of Banach spaces

not containing 1'. 1989.

H.E. de Swart. Vacillation and predictability
properties of low-order atmospheric spectral mod-
els. 1989.

P. de Jong. Central limit theorems for generalized
multilinear forms. 1989.

(=)

88 E.D. de Goede. Numerical methods for the three-

dimensional shallow water equations. 1993.

M. Zwaan. Moment problems in Hilbert space
with applications to magnetic resonance imaging.
1993.

C. Vuik. The solution of a one-dimensional Ste-
fan problem. 1993.

62 V.J. de Jong. A specification system for statisti- 91 E.R. Verheul. Multimedians in metric and normed
cal software. 1989. spaces. 1993.
63 B. Hanzon. Identifiability, recursive identification 92 J.L.M. Maubach. Iterative methods for non-linear
and spaces of linear dynamical systems, part |. partial differential equations. 1994.
1989. 93 A.W. Ambergen. Statistical uncertainties in pos-
64 B. Hanzon. /dentifiability, recursive identification terior probabilities. 1993.
and spaces of linear dynamical systems, part II. 94 P.A. Zegeling. Moving-grid methods for time-
1989. ) ) ) dependent partial differential equations. 1993.
65 B.M.M. de Weger. Algorithms for diophantine 95 M.J.C. van Pul. Statistical analysis of software
equations. 1989. _ _ reliability models. 1993.
66 A. Jung. Cartesian closed categories of domains. 96 J.K. Scholma. A Lie algebraic study of some in-
1989. ) » tegrable systems associated with root systems.
67 J.W. Polderman. Adaptive control & identifica- 1993.
tion: Conflict or conflux?. 1989. 97 J.L. van den Berg. Sojourn times in feedback and
68 H.J. Woerdeman. Matrix and operator exten- processor sharing queues. 1993.
sions. 1989. o ) . 98 A.J. Koning. Stochastic integrals and goodness-
69 B.G. Hansen. Monotonicity properties of in- of-fit tests. 1993.
finitely divisible distributions. 1989. 99 B.P. Sommeijer. Parallelism in the numerical in-
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). tegration of initial value problems. 1993.
Twenty-five years of operations research in the 100 J. Molenaar. Multigrid methods for semiconduc-
Netherlands: Papers dedicated to Gijs de Leve. tor device simulation. 1993
1990. - o . .
J.C . fe k Il
71 P.J.C. Spreij. Counting process systems. Identi- 101 H.J.C. Huilberts. Dynamic feedback in nonlinear

synthesis problems. 1994.

102 J.A.M. van der Weide. Stochastic processes and
point processes of excursions. 1994.

103 P.W. Hemker, P. Wesseling (eds.). Contributions
to multigrid. 1994.

104 |.J.B.F. Adan. A compensation approach for
queueing problems. 1994.

105 O.J. Boxma, G.M. Koole (eds.). Performance
evaluation of parallel and distributed systems -
solution methods. Part 1. 1994.

106 O.J. Boxma, G.M. Koole (eds.). Performance
evaluation of parallel and distributed systems -
solution methods. Part 2. 1994.

107 R.A. Trompert. Local uniform grid refinement
for time-dependent partial differential equations.
1995.

108 M.N.M. van Lieshout. Stochastic geometry mod-

generalized functions. 1991. els in image analysis and spatila/ statistics. 1995.

80 S.A. Smulders. Control of freeway traffic flow. 109 R.J. van Glabbeck. Comparative concurrency se-
1996. mantics and refinement of actions. 1996.

81 P.H.M. America, JJ.M.M. Rutten. A parallel 110 W. Vervaat, H. Holwerda (ed.). Probability and
object-oriented language: design and semantic lattices. 1997.

fication and stochastic realization. 1990.

72 J.F. Kaashoek. Modeling one dimensional pat-
tern formation by anti-diffusion. 1990.

73 A.M.H. Gerards. Graphs and polyhedra. Binary
spaces and cutting planes. 1990.

74 B. Koren. Multigrid and defect correction for the
steady Navier-Stokes equations. Application to
aerodynamics. 1991.

75 MW.P. Savelsbergh. Computer aided routing.
1992.

76 O.E. Flippo. Stability, duality and decomposition
in general mathematical programming. 1991.

77 A.). van Es. Aspects of nonparametric density
estimation. 1991.

78 G.A.P. Kindervater. Exercises in parallel combi-
natorial computing. 1992.

79 J.J. Lodder. Towards a symmetrical theory of

foundations. 1992. 111 I. Helsloot. Covariant formal group theory and
82 F. Thuijsman.  Optimality and equilibria in some applications. 1995.

stochastic games. 1992. 112 R.N. Bol. Loop checking in logic programming.
83 R.J. Kooman. Convergence properties of recur- 1995.

rence sequences. 1992. 113 G.J.M. Koole. Stochastic scheduling and dy-
84 AM. Cohen (ed.). Computational aspects of Lie namic programming. 1995.

group representations and related topics. Pro- 114 M.J. van der Laan. Efficient and inefficient esti-

ceedings of the 1990 Computational Algebra mation in semiparametric models. 1995.

Seminar at CWI, Amsterdam. 1991. 115 S.C. Borst. Polling models. 1996.
85 V. de Valk. One-dependent processes. 1994. 116 G.D. Otten. Statistical test limits in quality con-
86 J.A. Baars, JAM. de Groot. On topological trof. 1996.

and linear equivalence of certain function spaces. 117 K.G. Langendoen. Graph reduction on shared-

1992. memory multiprocessors. 1996.

87 A.F. Monna. The way of mathematics and math-
ematicians. 1992.

118 W.C.A. Maas. Nonlinear H ., control: the sin-
gular case. 1996.



119 A. Di Bucchianico. Probabilistic and analytical
aspects of the umbral calculus. 1997.

120 M. van Loon. Numerical methods in smog pre-
diction. 1997.

121 B.J. Wijers. Nonparametric estimation for a win-
dowed line-segment process. 1997.

122 W.K. Klein Haneveld, O.J. Vrieze, L.C.M. Kallen-
berg (editors). Ten years LNMB — Ph.D. research
and graduate courses of the Dutch Network of
Operations Research. 1997.

123 R.W. van der Hofstad. One-dimensional random
polymers. 1998.

124 W.J.H. Stortelder. Parameter estimation in non-
linear dynamical systems. 1998.

125 M.H. Wegkamp. Entropy methods in statistical
estimation. 1998.

126 K. Aardal, J.K. Lenstra, F. Maffioli, D.B. Shmoys
(eds.) Selected publications of Eugene L. Lawler.
1999.

127 E. Belitser. Minimax estimation in regression and
random censorship models. 2000.

128 Y. Nishiyama. Entropy methods for martingales.
2000.

129 J.A. van Hamel. Algebraic cycles and topology of
real algebraic varieties. 2000.

130 P.J. Oonincx.  Mathematical signal analysis:
wavelets, Wigner distribution and a seismic ap-
plication. 2000.

131 M. Ruzhansky. Regularity theory of Fourier inte-
gral operators with complex phases and singular-
ities of affine fibrations. 2001.

132 J.V. Stokman. Multivariable orthogonal polyno-
mials and quantum Grassmannians. 2001.

133 N.R. Bruin. Chabauty methods and covering
techniques applied to generalised Fermat equa-
tions. 2002.

134 E.H. van Brummelen. Numerical methods for
steady viscous free-surface flows. 2003.



MATHEMATICAL CENTRE TRACTS
1 T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.

3 G. de Leve. Generalized Markovian decision processes,
part I: model and method. 1964.

4 G. de Leve. Generalized Markovian decision processes,
part 11: probabilistic background. 1964.

5 G. de Leve, H.C. Ti}'ms. P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.

6 M.A. Maurice. Compact ordered spaces. 1964.

7 W.R. van Zwet. Convex transformations of random variables.
1964. ’

8 LA. Zonneveld. Automatic numerical integration. 1964.

9 P.C. Baayen. Universal morphisms. 1964.

10 E.M. de Jager. Applications of distributions in mathematical
physics. 1964.

11 A.B. Paalman-de Miranda. Topological semigroups. 1964.

12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.

I3 H.A. Lauwerier. Asymptotic expansions. 1966, out of print:
replaced by MCT 54.

14 H.A. Lauwerier. Calculus of variations in mathematical
Pphysics. 1966.

15 R. Doornbos. Slippage tests. 1966.

16 J.W. de Bakker. Formal definition of programmin
Iar?uages with an application to the definition of ALGOL 60.
1967.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 1. 1968.

18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.

19 J. van der Slot. Some properties related to compactness.
1968.

20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. 1968.

21 E. Wattel. The compactness operator in set theory and
topology. 1968.

22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part 1. 1968.

23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.

24 J.W. de Bakker. Recursive procedures. 1971.

25 E.R. Paérl. Rzgvre:emauan.r of the Lorentz group and projec-
tive geometry. 1969.

26 European Meeting 1968. Selected statistical papers, part 1.
1968.

27 European Meeting 1968. Selected statistical papers, part I1.
1968.

28 J. Oosterhofl. Combination of one-sided statistical tests.
1969.

29 J. Verhoefl. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.

31 W. Molenaar. Apgm.ximmlon: to the Poisson, binomial and
hypergeometric distribution functions. 1970.

32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.

33 F.W. Steutel. Preservations of infinite divisibility under mix-
ing and related topics. 1970.

34 L. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func-
tions in topology. 1971.

35 M.H. van Emden. An analysis of complexity. 1971.

36 J. Grasman. On the birth of boundary layers. 1971.

37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.EJ. Kruseman Aretz, W.L. van der Poel, J.P. Schaap-
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.

38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.

39 H. Bavinck. Jacobi series and approximation. 1972.

40 H.C. Tijms. Analysis of (5,S) inventory models. 1972.

41 A. Verbeck. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica-
tions in number theory). 1972.

43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.

44 H. Bart. Meromorphic operator valued functions. 1973.

45 A.A. Balkema. Monotone transformations and limit laws.
1973.

46 R.P. van de Riet. 4BC ALGOL, a portable language for
formula manipulation systems, part 1: the language. 1973.

47 R.P. van de Riet. ABC ALGOL, a ﬁor{able language for
Sformula manipulation systems, part 2: the compiler. 1973

48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.

49 H. Kok. Connected orderable spaces. 1974.

50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, CH.A.
Koster, M. Sintzoff, C.H. Lindsey. L.G.L.T. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.

51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.

52 P.C. Baayen (ed.). Topological structures. 1974.

53 M.J. Faber. Merrizability in generalized ordered spaces.
1974

54 H.A. Lauwerier. Asymptotic analysis, part 1. 1974,

55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, 7/0“)1(1(1’[0"5, partitions and combinatorial
geometry. 4,

57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.

58 W. Albers. Asyn_lfmlir expansions and the deficiency con-
cept in statistics. 1975.

59 J.L. Mijnheer. Sample path properties of stable processes.
1975.

60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.

64 W.J. de Schipper. Symmetric closed categories. 1975.

65 J. de Vries. T_o/wologwul transformation groups, 1: a categor-
ical approach. 1975.

66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.

68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.

69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Ir. Recursive program schemes: semantics
and proof theory. 1976.

71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.

72 J.K.M. Jansen. Simple periodic and non-periodic Lamé
functions and their applications in the theory of conical
waveguides. 1977.

73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.LJ. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.

75 A.E. Brouwer. Treelike spaces and related connected 1opo-
logical spaces. 1977.

76 M. Rem. Associons and the closure statements. 1976.

77 W.C.M. Kallenberg. Asymptotic lflima/il_\' of likelihood
ratio tests in exponential families. 1978.

78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.

79 M.C.A. van Zuijlen. Empirical distributions and rank
statistics. 1977.

80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. 1977.

81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science 11, part 1. 1976.

82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science 11, part 2. 1976.

83 L.S. van Benthem Jutting. Checking Landau’s
“Grundlagen” in the AUTOMATH system. 1979.

84 H.L.L. Busard. The translation of the elements of Euclid
[from the Arabic into Latin by Hermann of Carinthia (?). books
vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallmann spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program-
ming system for operations on vectors and matrices over arbi-
trary fields and of', variable size. 1978.

88 A. Schrijver. Matroids and linking systems. 1977.

89 J.W. de Roever. Complex Fourier transformation and ana-
Iytic functionals with unbounded carriers. 1978.

90 L.P.J. Groencwc%en. Characterization of optimal strategies
in dynamic games. 1981.



91 .M. Geysel. Transcendence in fields of positive characteris-
tic. 1979.

92 P.J. Weeda. Finite g lized Markov progr ing
937 17‘I.C. Tijms, J. Wessels (eds.). Markov decision theory.
1977.

1979.

g ]

94 A. Bijlsma. Simul
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Lindenmayer §gvslem.\': structure,
languages, and growth functions. 1980.

97 A. Federgruen. Markovian control problems; functional
equations and algorithms. 1984.

98 R. Geel. Singular perturbations of hyperbolic type. 1978.

99 J.K. Lenstra, A H.G. Rinnooy Kan, P. van Emde Boas
(eds.). Inlezaces between computer science and operations
research. 1978.

100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
ings é]i;enlermial congress of the Wiskundig Genootschap, part

approximations in ir

101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed-
E"gf 913;’9cemennial congress of the Wiskundig Genootschap, part

}(g)%gD' van Dulst. Reflexive and superreflexive Banach spaces.
103 K. van Ham. Clas.vip'in infinitely divisible distrib

by functional equations. 197

104 J.M. van Wouwe. GO-spaces and generalizations of metri-
zability. 1979.

133 C.AJ. Klaassen. Statistical performance of location esti-
mators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna-
tional conference on ALG(}) 68. 1981.
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part 1. 1981.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the study of language, part I1. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Math | models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic prog ing, succes-
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. 4 mathematical theory of hyure
exgl;ange economies without the no-critical-poini Rypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 1. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The solution of initial value problems using
interval arithmetic; f lation and analysis of an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo-
rithms. 1981.
146 C.V.M. van der Mee. Semiqrmq) and factorization

hods in transport theory. 1981.

105 R. Helmers. Ed, h
of order statistics. 1982.

}g?/gA. Schrijver (ed.). Packing and covering in combinatorics.

P for linear

107 C. den Heijer. The » ical solution of nonli opera-
tor equations by imbedding methods. 1979. '
108 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science I11, part 1. 1979.

109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science I11, part 2. 1979.

110 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and di ion of the impl ion model. 1979.

111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen-
tation model. 1979.

112 H.C.P. Berbee. Random walks with stationary increments
and renewai theory. 1979.

113 T.A.B. Snijders. 4 totic optimality theory for testin
problems with rjexrricte?:z’;zmativ:;. 1979?) ¥ ¢
114 AJ.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.

115 P.C. Baayen, J. van Mill (eds.). Topological structures I,
part 1. 1979,

116 P.C. Baayen, J. van Mill (eds.). Topological structures I1,
part 2. 1979. :

117 P.J.M. Kallenberg. Branching processes with

147 H.H. Tigelaar. Identification and informative sample size.
1982.

148 L.C.M. Kallenberg. Linear programming and finite Mar-
kovian control problems. 1983.

149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg,
W.K. Vietsch (eds.). From A to Z, groceeding: of a sympo-
sium in honour of A.C. Zaanen. 1982.

150 M. Veldhorst. An analysis of sparse matrix storage
schemes. 1982.

151 R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982.

152 G.F. van der Hoeven. Proje of lawless
1982.-

i

153 L.P.C. Blanc. Application of the theory of boundary value
problems in the Afp' ofagq L g moryde/ with paizd ser-
vices. 1982.
154 HW. Lenstra, Jr., R. Tijd
methods in number theory, part I. 1982,
155 H.W. Lenstra, Jr., R. Tijd (eds.). Computational
methods in number theory, part I1. 1982.

156 P.M.G. Apers. Ques ing and data allocation in
distributed datubase systers, 1983.

157 H.A.W.M. Kneppers. The covariant classification of two-
diy ional smooth ive formal groups over an alge-
braically closed field of positive characteristic. 1983.

(eds.). C ional

¥

state space. 1979.

118 P. Groeneboom. Large deviations and asymptotic
efficiencies. 1980.

119 F.J. Peters. Sparse matrices and substructures, with a novel
impl i ojpﬁnire I Igorithms. 1980.

120 W.P.M. de Ruyter. On the asymptotic analysis of large-
scale ocean circulation. 1980.

121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.

122 J.C.P. Bus. Numerical solution of of nonli
equations. 1980.

}ggﬂl. Yuhész. Cardinal functions in topology - ten years later.
124 R.D. Gill. Censoring and stochastic integrals. 1980.

125 R. Eising. 2-D systems, an algebraic approach. 1980.

126 G. van der Hoek. Reductii hods in nonlinear pro-
gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.

128 A.JJ. Talman. Variable dimension fixed point algorithms
and triangulations. 1980.

129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.JW. ten Haien, T. Hagen, P. Klint, H. Noot, H.J.

?lglatd AH. Veen. ILP: intermediate language for pictures.

131 R.JR. Back. Correctness preserving program refinements:
proof theory and applications. 1980.

132 H.M. Mulder. The interval function of a graph. 1980.

158 J.W. de Bakker, J. van Lecuwen (eds.). Foundations of
computer science 1V, distributed systems, part 1. 1983.

159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.

160 A. Rezus. Abstract AUTOMATH. 1983.

161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. 1983.

162 J.J. Dik. Tests for preference. 1983.

163 H. Schi Multiple grid methods for equations of the
second kind with applicati Sin fluid foms 1983. 4

164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.

165 P.C.T. van der Hoeven. On point processes. 1983.

166 H.B.M. Jonkers. Abstraction, specification and implemen-
tation techniques, with an application to garbage collecti

1983,

167 W.H.M. Zijm. Nonnegative matrices in dynamic program-
ming. 1983.

168 J.H. Evertse. Upper bounds for the numbers of solutions of
diophantine equations. 1983.

169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order
structures, part 2. 1983.







