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EDITORIAL PREFACE vii

Editorial Preface

This CWI Tract contains the PhD dissertation of Dr. Jasper V. Stokman, as it has been
defended at the University of Amsterdam on June 11, 1998. The research of this thesis
has been performed within the framework of the Dutch Research School ‘Thomas Stieltjes
Institute for Mathematics’. The Stieltjes Institute has awarded Dr. Stokman’s thesis with
a prize, as being the best 1998 thesis written in this Research School. We congratulate Dr.
Stokman with this prize, and appreciate that we have obtained his permission to include
his thesis into the CWI Tract Series.

The editors of CWI Tracts
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Foreword

The intimate relation between representation theory and the theory of special func-
tions is a continuing source of new and beautiful results in both fields of mathematics.
An example of the interaction between representation theory and special functions is the
development of a general theory on hypergeometric functions associated with root sys-
tems by Heckman and -Opdam, which was motivated by their interpretation (for very
special parameter values) as zonal spherical functions on Riemannian symmetric spaces.
Another more recent example is the representation theoretic interpretation of Macdonald
polynomials associated with root systems. The Macdonald polynomials were related to
representation theory of affine Hecke algebras by Cherednik and to harmonic analysis on
certain quantizations of homogeneous spaces by Noumi and Sugitani. The last example is
an illustration of the remarkable fact that the “q” in g-special function theory is essentially
the same g as in quantum groups, if the “right” g-deformations are chosen.

One of the interesting new aspects of the harmonic analysis on quantized homoge-
neous spaces is the implicit role played by the Poisson structure on the underlying spaces.
The Poisson structure is built in the quantization, so inequivalent Poisson structures give
rise to different quantizations. Hence the harmonic analysis on quantizations of homo-
geneous spaces depends on the choice of Poisson structures on the underlying spaces. A
nice illustration of this phenomenon is the interpretation of several families of orthogonal
polynomials on different quantizations of the 2-sphere by Koornwinder, Mimachi, Noumi
and others.

Poisson structures also play an important role in the representation theory of the
quantized homogeneous spaces themselves. The origin of this observation lies in the or-
bit method of Kostant, Kirillov and Souriau in which irreducible unitary representations
of Lie groups are related to coadjoint orbits of the corresponding Lie algebras. Coadjoint
orbits are symplectic submanifolds for the Kostant-Kirillov Poisson bracket. The quan-
tum orbit method deals with the problem of relating representation theory of arbitrary
quantized Poisson algebras to the Poisson geometry of the underlying spaces. A beautiful
example of the quantum orbit method is Soibelman’s classification of the irreducible *-
representations of the quantized function algebras on compact simple Lie groups. Many
properties of the irreducible *-representations were shown to be closely related to geo-
metric properties of the underlying Poisson-Lie groups.

In the present CWI Tract the above mentioned ideas are developed further in several
different directions. It is entirely based on my dissertation which I have completed in
June, 1998 at the KdV institute for Mathematics, University of Amsterdam under the
supervision of Prof. Tom H. Koornwinder. The main text of my dissertation is reproduced
here without major changes; I have corrected some misprints, and updated the references.

Acknowledgments: 1 thank my former thesis-advisor Tom H. Koornwinder for his
advise and guidance during the four years that I have worked on my dissertation. I am
financially supported by a fellowship from the Royal Netherlands Academy of Arts and
Sciences (KNAW).



CHAPTER 1

General introduction

1.1. Introduction

The present Chapter contains a general introduction to the different topics of the
Tract. I aim to clarify some of the main ideas and techniques by considering certain
simplified examples in detail.

In Chapter 2 and 3 of the Tract certain families of multivariable orthogonal polyno-
mials are studied. A main tool in the analysis is the development of a residue calculus for
a specific multidimensional contour integral. In Section 1.2 we illustrate some of these
techniques for certain g-analogues of Euler’s beta integral.

The remaining chapters of the Tract rely on representation theoretic methods, which
are mostly of algebraic nature. In Chapter 5 and Chapter 6 intensive use is made of gener-
alizations of Pliicker coordinates. As an illustration, I give in Section 1.3 the construction
of Pliicker coordinates on complex Grassmannians. I only use here some well-known
notions from algebraic geometry and algebraic groups, which can for instance be found
in [112].

In Section 1.4 I give a detailed description of the contents of the Tract while refer-
ing to the simplified examples given in Section 1.2 and Section 1.3. The notations and
conventions which are used throughout the Tract, are listed in Section 1.5.

1.2. g-Analogues of Euler’s beta integral

A well-known identity in special function theory is Euler’s beta integral,

1
(1.2.1) /0 22(1 = 2)8dz = F(?(Z fr)g(f;r)l),

(Re(a), Re(f) > —1)
where I'(z) is the Gamma-function
T'(2) ::/ t*~le7tdt, (Re(z) >0).
0

In this section a discrete and a continuous g-deformation of (1.2.1) is considered, where
q is a fixed real number in the open interval (0,1). An identity (depending on g) is
called a g-deformation or a g-analogue of Euler’s beta integral when Euler’s beta integral
(1.2.1) can be recovered by taking the limit ¢ 1 1 in a suitable manner. The g-analogue
is called discrete (respectively continuous) if it is an evaluation of a possibly infinite sum
(respectively contour integral).
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The theory of g-special functions has its origin in the work of Euler, Gauss, Jacobi
and in particular Heine, who derived several fundamental properties of a g-analogue of
Gauss’s hypergeometric series. Nowadays g-deformations have been found for many
identities in classical special function theory. In particular, several g-analogues of Euler’s
beta integral (1.2.1) have been found. The discrete g-analogue of Euler’s beta integral
which are considered in this section can be most conveniently expressed in terms of Jack-

son’s g-integral,
d d c
[ t@dz= [ sz [ re

c
| 1@z = =03 Flered'
0 i=0 ,
which are considered here for functions f such that both sums are absolutely convergent.
Observe that the g-integral of a continuous function f over the interval [c, d] tends to the
usual Riemann integral of f over [c, d] when ¢ 1 1. The discrete g-beta integral is given
by

(1.2.2)

Y (9z49) T (a+1)T,(8+1)
1.2.3 2700 sag n= 1 g
(123 /0 (@ zq) . T T T,2+ath)
(o, B > —1), where (a; q),c (k € Z4 U {oo}) is the g-shifted factorial,
) k—1
(a;q), = H)(l —ag’), (a;9),, = lim (a;q),,

and I';(2) is the g-Gamma function

(49) o
(¢%59)
where Z is the set of positive integers. Observe that z € —Z should be excluded in
the definition of T'y(2) since (¢%; q)oo = 0 for z € —Z,. The discrete g-beta integral
(1.2.3) tends formally to Euler’s beta integral (1.2.1) in the limit ¢ 1 1 since the ¢-Gamma
function I'; (z) tends to the Gamma function I'(z) when ¢ 1 1, and

(1.2.4) Ty(z) :== Q- % =2¢-7,,

23
im M&_ = (1-2)".
qtl (qﬁ+l z; q)oo
A very general continuous g-analogue of the beta integral which depends, besides ¢, on
four additional parameters ¢ = (to, t1, t2, t3), is the Askey-Wilson integral [7]

1 (22,2_2;q)00 dZ
27 Jer (toz,toz“l,tlz,tlz—l,tzz,tgz—l,tgz,tgz"l;q)oo 2
_ 2(tot1tats; q)

~ (g,tot1, tota, tots, trta, tats, tats; q)

(1.2.5)
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where the parameters ¢; are generic complex with moduli < 1 and with T the unit circle in
the complex plane. Here the shorthand notation (ax, . .. ,ar;q), = (a1;9), - -- (ar; 9),
for products of g-shifted factorials is used. Although this is not clear at first sight, the beta
integral (1.2.1) is a limit case of the Askey-Wilson integral (1.2.5). This can be shown
by making the change of variables 7 = z + 2!, substituting t, = ¢®*2, t; = —¢°+2,
t, = q% and t3 = —q? and taking the limit ¢ 1 1 in (1.2.5). Then, we obtain

! o _ erppi D@+ DI(B+ 1)
/_1(1—95) (14 2)%de = 24901 2SS,

which is equivalent with (1.2.1) (cf. [30, Section 6.1]).

It turns out that the discrete g-beta integral (1.2.3) can be considered as a limit case
of the Askey-Wilson integral (1.2.5). This is illustrated here for special parameter values.
The ¢-beta integral (1.2.3) for @ = —1/2 and § = oo (i.e. ¢® = 0) is equivalent to the
summation formula

o k/2 1

(1.2.6) Y =

= (69),  (a%:9),

which is a special case of the g-binomial theorem

00 (a;q)kzk _ (az;q)oo ]
kz:% (¢:9), (za). (2] < 1).

The summation formula (1.2.6) can be derived from the Askey-Wilson integral (1.2.5) by
analytic continuation, residue computation, and a limit transition as follows. Specializing
the parameters by

-1 1 1
(tht17t2)t3) =(E 1(127_1,07—‘12)
in (1.2.5) and using that (2%;q) _ = (2,2, qiz,—q%z; q),,» we obtain

1 2

(1.2.7) — we(z;€)dz =
2mi Jer o(ee) (¢,—e7q%,—e7q,q%;q)

for e > ¢~ 2 with weight function w.(z; ) given by

i -1 i 1.
(2,472,271, q22715q)

z(e"1qz,e7 132715 )

we(z;€) =
o0

Now we(.;€) for generic e > 0 has two infinite sequences of simple poles, namely the
converging sequence of poles {s"lq%”} rez., respectively the diverging sequence of
poles {6q_%_k }kez... By analytic continuation, (1.2.7) is valid for arbitrary ¢ > 0 if the
integration contour T' is replaced by a rectifiable Jordan curve T for which the converging
sequence of poles is contained in its interior and the diverging sequence of poles is con-
tained in its exterior. Let wy(k;€) (k € Z ) be the residue of we(z;€) at z = e~ Lqz+F.
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By an easy computation, the residues w,(k; ) for generic € are computed explicitly as

(e72g;9), ) 1
(e'q%,e72g;9), ) (—e '3, —e71g59) (3:9) . (a7%;9),,

1

wq(k;€) = (

for k € Z . Observe that the residue of w.(z;¢€) at z = eq~ equals —wy(k; €). For
generic € > 0, the contour T, in fTs we(z; €)dz can now be pulled back to the unit circle
T while picking up residues. Then, it follows for generic € > 0 by Cauchy’s theorem that

1
371 oo we(z;€)dz+2 Z wq(k;e€)

(1.2.8) keZyie<q?
2

- 1 _ 1 °
(¢,—e1q2,—e71q,q2;q)

Observe that wq(k; ) and the right hand side of (1.2.8) have (—5‘1q%, —e7!¢;q)  asa
common factor in their denominators. Now multiply the left and right hand side of (1.2.8)
with this common factor and take the limit ¢ | 0. By Lebesgue’s dominated convergence
theorem, the continuous part in the left hand side of (1.2.8) disappears in this limit, while
the finite sum in the left hand side of (1.2.8) tends to the infinite sum

g2

2y 4
vz, (69, (69)

It follows that the remaining summation formula is equivalent to (1.2.6). This type of
computation can be done for general o, 3 > —1 (see [122] and Chapter 3), which then
shows that the discrete g-beta integral (1.2.3) is a limit case of the continuous g-beta
integral (1.2.5).

1.3. Pliicker coordinates on the Grassmann manifold

Let ! and n be non-zero positive integers such that [ < [n/2] and let ¥} ,, be the set
of | dimensional subspaces of V' := C". In the first part of this section we associate
to Y, ,, an algebra of functions, the so-called homogeneous coordinate ring of Y7 ,,. In
order to define the homogeneous coordinate ring of Y; ,,, we first need to give a different
description of Y7 ,.

The tensor algebra T'(V) of the vector space V is the linear space

T(V)=CoVoV®2eV®®g...

with multiplication defined by ¢.t' := t®¢t' (¢,¢' € T'(V)). The direct sum decomposition
T(V) = ®mez,V®™ is a grading with respect to this multiplication.

The exterior algebra A (V) of the vector space V is by definition the quotient of T'(V')
with the two-sided ideal J generated by v ® v (v € V). The product in A(V') is called
the wedge product, and is denoted by A.
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Let {v;}I., be the canonical basis of V' and let P,,, (n) be the collection of subsets of
{1,...,n} of cardinality m. The elements

vy = U5 ANvj, Ao A, EA(V)

with J = {j1 < ... < jm} € Pn(n)and 0 < m < n form a linear basis for A(V). Here
we have used the convention that vy := 1. The direct sum decomposition

A(V) =P A™(V),
m=0

with A™(V') the span of the basis elements vy (J € Py, (n)) is a grading of A(V') with
respect to the wedge product.

Let X := P(AY(V)) be the projective space associated with A'(V'), i.e. X is the col-
lection of one dimensional subspaces of A!(V'). The natural projection 7 : A/(V)\{0} —
X sends 0 # w € A'(V) to the one dimensional subspace [w] containing w. Now Y} ,,
can be embedded in X via the so-called Pliicker embedding. The Pliicker embedding is
defined by

Yin— X, W =span{wy,...,w}— [wi A... Awy).

It is easily seen that the Pliicker embedding is well-defined and injective.

It turns out that there is a nice description of the image of Y, under the Pliicker
embedding. To give this description of the image, we first need to introduce a group
action on the projective space X .

Let G := GL(n,C) be the group of n by n invertible matrices over C. It is well-
known that G has the structure of an irreducible affine variety, i.e. G is a connected linear
algebraic group. The group G acts on V by the usual matrix multiplication

(13.1) gvj =) &9, g€G,

where 5;'» is the coordinate function on G defined by £X(g) = gi; if g = (9i5)i,; € G-

The left G-action (1.3.1) on V extends to a G-action on A (V) as follows. The tensor
algebra T'(V') has a unique left G-module algebra structure such that its action on V'
coincides with the action (1.3.1). In particular, this means that g.(v ® w) = g.v ® g.w
forg € G and v,w € T (V). It follows that the two-sided ideal .7 is stable under the
G-action, i.e. g.J C J forall g € G. Consequently, the exterior algebra A(V') inherets
a G-module algebra structure from the G-action on the tensor algebra T'(V).

Explicitly, the action of G on the linear basis {v; | I € Pp(n)} of A™(V) is given
by

(13.2) gus= Y &g, JE Pn(n),
I€P,(n)

where ¢4 (g) is the determinant of the m by m submatrix of g obtained from g by deleting
all rows with row index I¢ := {1,... ,n} \ I and by deleting all columns with column
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index J¢. Formula (1.3.2) for the action on A™ (V') is a direct consequence of the well-
known expansion formula for determinants

(1.3.3) 55 — Z (-1 )l(a‘ g%r(l)glo’(?) flo(m),
0EG,

where I = {iy < ... <im},J = {j1 < ... < jm} € Pn(n), G, is the permutation

groupof {1,... ,m} and

o) =#{1<i<j<m|o(i) >0(j)}

is the so-called length function on &,,. In particular, it follows from (1.3.2) that the
graded pieces A™ (V') are invariant subspaces for the G-action. Observe that

(1.3.4) g.[w] :=[gw], (g€ GweA™(V)),
is a well-defined left G-action on X . Set

Z = Vn—itl,...,n} € AYV),
then it follows by elementary linear algebra that the G-orbit G.[z] := {g.[z]|g € G} C
X is exactly the image of Y} ,, under the Pliicker embedding. From now on, we identify
Y, with its image under the Pliicker embedding, i.e. we identify Y; ,, with the G-orbit
G.[z].
Observe that via the map G — G.[z], g — g.[z], the G-orbit Y} , = G.[z] can be
identified with the coset space G/G, := {gG, | g € G}, where

Gy :={g € G|glz] = [a]}

is the so-called isotropy subgroup of [z]. It is not difficult to verify that

(135) G.={9=1(gi)i,; €Glgiyj=0for1<i<n-—-1Il, n—-1+1<j<n}

In particular, the lower triangular matrices are contained in the isotropy subgroup G.
This fact implies that GG, is a so-called parabolic subgroup. A parabolic subgroup P of G
has the important property that the corresponding quotient G/ P is a projective G-variety,
i.e. the quotient G/ P can be realized as the zero set of a finite collection of homogeneous
polynomials. So Y;, = G.[z] becomes a (n — [)! dimensional irreducible projective

variety, the so-called (complex) projective Grassmann manifold.
The homogeneous coordinate ring A of ¥, , C P(AY(V')) is defined as

A= CA'(V))/3,

where C[A! (V)] is the coordinate ring of A/(V') and J is the ideal generated by the ho-
mogeneous polynomials f € C[A!(V)] which vanish on Y;,. Equivalently, A is the
coordinate ring of the affine cone Y%, := 771 (¥;n) U {0} C A/(V) over Yy ,,, where
7 : AY(V)\{0} — X is the natural projection. The algebra A can be realized as a subal-
gebra of the coordinate ring C[G] of G as follows. Consider the morphism ¢ : G — Y%,
defined by ¢(g) := g.z. The dual mapping ¢* is by definition the algebra homomorphism

¢":A—=CGl, ¢"(f):=fo¢
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The dual map ¢* is injective since #(G) = Y}, where ¢(G) is the closure of ¢(G) in
Y, Hence ¢* embeds A into the coordinate ring C[G] of G. We can give now an explicit
set of algebraic generators for the image of ¢* by computing the image under ¢* of the
coordinate functions on A'(V). We take here the coordinate functions n; € C[A! (V)]
(I € Py(n)) with respect to the linear basis {vr | I € P;(n)} of Al(V),i.e. nr : A(V) —
C is the linear mapping which maps the basis elements vy (J # I) to 0 and which maps
vy to 1. Then,

(" (n)(9) = ni(g-x) = tr(g), (I € R(n)),
where the t; (I € P;(n)) are the so-called Pliicker coordinates

(1.3.6) tr =€t ny (I € B(n)).

In other words, the algebra A may be identified with the subalgebra C[t; |I € P;(n)] of
C[G] generated by the Pliicker coordinates t; (I € P,(n)).

A set of homogeneous algebraic relations between the Pliicker coordinates ¢r are
called a set of defining relations if its pre-image under ¢* generates J as an ideal. We
describe here one well-known set of defining relations, namely the set of Pliicker relations.
To give these quadratic relations it is convenient to define for arbitrary i1, . . . ,%; between
1andn,

bin,yo it 1= Z (1D Er D&,
ceB;
Observe that t;, .. ; is anti-symmetric in the { indices ¢y, ... ,¢; and that its definition
coincides with the definition (1.3.6) of the Pliicker coordinate t(;, .. ;3 if 41 < ... <.
In particular, ¢;, ... ;, = 0 when two indices 4, i, (p # r) coincide. The Pliicker relations
are now given by the quadratic relations

I+1
(13.7) DD ki thidaedion =0

i=1
for subsets K = {k; < ... < ki41} € Pyi(n)and J = {j1 < ... < ji—1} € F_1(n),
where k means that the element k should be omitted. There is a rich combinatorial struc-
ture related to the defining relations of the Grassmann manifold, for which we refer to
Towber [128].

The so-called Levi subgroup L corresponding to the maximal parabolic subgroup G,

consists of the n by n invertible matrices of the form

(1.3.8) (’g g) , BeGL(n-1,0), CeGL(,0).
The algebra of right L-invariant polynomial functions on G,
(1.3.9) ClG/L] == {f € G]| f(gp) = f(9), Vg€ G,Vpe L},

turns out to be closely related to the homogeneous coordinate ring A of the projective
Grassmann manifold Y; ,,. Since the precise connection between A and C[G/L] in a
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more general setting plays a fundamental role in the last two chapters of the Tract, we
explain it here in more detail for the complex Grassmannian.

For the precise connection between A and C[G/L] we have to consider a specific
G-orbit within A (V') ® A!(V*), where V* is the dual module of V. First, we define the
dual module of V' and we give the dual construction of the Grassmannian manifold Y7 ,,
by replacing the role of the G-module V by its dual. Detailed discussions are omitted
here since the constructions and techniques are the same as before.

The G-action on the linear dual V* := {f : V — C | f linear } of V is given by

(9-f) W) :=Flg™ ), (feV" ,veV,g€q).

Let {v] }; be the dual basis with respect to {v; };. A linear basis of the mth graded part of
the exterior algebra A(V*) is given by the elements

* 0k * *
v =0, Av, AU A

i ?

where I = {i1 < ... < i} € Pp(n). Set
€(9) :=61(g™") (g€ Gand I, J € Py(n)),

=1 . . . .
then the £ ; occur as matrix coefficients of the induced G-action on A™(V'*),

gvi= Y i, (J € Puln).

IEP, (n)

Now consider the action of G on the projective space X * := ]P’(Am(V* )) and let Y/, be
the G-orbit of [z*] € X*, where

¥ = Ufn—l+1,...,n} € Al(V*).

Then Y}, is an irreducible projective variety of dimension /(n — ) with homogeneous
coordinate ring isomorphic to the subalgebra

A* :i=C[ty | I € P(n)],
where

. o
(1.3.10) 7 = &m-t41,..n}» (I € Ri(n))

are the dual Pliicker coordinates.

The map * : §; — Z;, % : det™ ! — det extends uniquely to a anti-linear involution *
of C[G], which maps A bijectively onto A*. In fact, x maps the Pliicker coordinate ¢ to
the dual Pliicker coordinate ¢7 for all I € P;(n). Hence the algebraic structure of A* is
determined by the algebraic structure of A.

A so-called real form U of G is associated with the involution * on C[G] by

U:={g€G|f(g) = f"(g) Vf € TG]}.

Here U is the group consisting of the n by n unitary matrices.
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Observe that the isotropy subgroup G := {g € G| g.[z*] = [z*]} of [z*] is given
by

Gy ={9=1(94)i;j €Glgiy =0forn—1+1<i<n, 1<j<n~-1},

which is a parabolic subgroup of G since it contains the subgroup of upper triangular
matrices. Observe furthermore that the Levi subgroup L is equal to the intersection G, N
G;.

Now we can relate the homogeneous coordinate rings A and A* with the subalgebra
C[G/L] (1.3.9) as follows. Consider the diagonal action of G on A'(V) ® A!(V*), which
is defined by g.(v ® w) := gv ® gw forg € G, v € AY (V) and w € A (V*). The
diagonal action descends to a well-defined action on P(A' (V) ® A'(V*)), cf. (1.3.4). Let
B be the homogeneous coordinate ring of the closure of the orbit G.[y], where y is given
by

(1.3.11) Y =Vttt m} @01,y € A(V) @ A(V).

The algebra B can be identified with the subalgebra of C[G] generated by the elements
trty (I,J € Pi(n)) via the dual ¢* of the morphism ¢ : g — g.y. On the other hand, L
stabilizes y, hence the image of ¢* is contained in C[G/ L]. It can be shown that C[G// L]
is in fact generated by the elements ¢;¢% (I, J € Pi(n)), i.e. any right L-invariant poly-
nomial function on G is a polynomial in the elements ¢;t% (I,J € F;(n)). This result
can be informally restated as follows: any right L-invariant polynomial function on G is a
sum of products of a holomorphic polynomial and an anti-holomorphic polynomial in the
Pliicker coordinates t; (I € F;(n)). From this viewpoint we have thus obtained a factor-
ization of the algebra C[G/ L] in terms of algebras of holomorphic and anti-holomorphic
polynomials.

1.4. Overview of the remaining chapters

1.4.1. Multivariable orthogonal polynomials. The study of orthogonal polynomi-
als related to multivariable beta type integrals started in the 1970’s with the work of James
and Constantine [45], Vretare [131], [132] and Koornwinder and Sprinkhuizen-Kuyper
[61], [62] [69], [113]. In the late 1980’s Heckman and Opdam [36], [37], [38] associated
to each irreducible root system certain multivariable analogues of the Jacobi polynomials.
Many important properties of the polynomials were derived, such as orthogonality rela-
tions, quadratic norm evaluations and the existence of a “large enough” system of differ-
ential equations for which the Jacobi polynomials are joint eigenfunctions; the so-called
hypergeometric differential equations.

Macdonald [82] introduced g-deformations of the Heckman-Opdam polynomials and
proved orthogonality relations with respect to multivariable continuous g-beta type inte-
grals. Cherednik’s affine Hecke-algebraic approach [12], [13], [14], [15] has led to a good
understanding of the basic properties of the Macdonald polynomials.

The Macdonald polynomials associated to the non-reduced root system BC of rank
1 form a two parameter subfamily of the four parameter family of Askey-Wilson polyno-
mials. The Askey-Wilson polynomials are the orthogonal polynomials with respect to the
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continuous g-beta integral (1.2.5). Koornwinder [65] extended the definition of the BC'
type Macdonald polynomials to a five parameter family of orthogonal polynomials, which
for rank 1 reduce to the full four parameter family of Askey-Wilson polynomials. Similar
results as mentioned above for the Heckman-Opdam polynomials and the Macdonald po-
lynomials have been proved for the Koornwinder polynomials by work of Koornwinder
[65], van Diejen [17], [18], Noumi [91], Macdonald [86] and Sahi [106].

The Askey-Wilson polynomials are on top of the so-called Askey tableau. The Askey
tableau is a hierarchy of families of basic hypergeometric orthogonal polynomials which
are joint eigenfunctions of a second order g-difference operator. Certain families can
be obtained from other families by limit transitions or specializations of the parameters,
which induces the hierarchy structure between the families in the Askey tableau. The
example treated in Section 1.2 is directly related to the hierarchy structure between the
Askey-Wilson polynomials and the orthogonal polynomials associated to the discrete g-
beta integral (1.2.3), which are called the little g-Jacobi polynomials. More explicitly,
in Section 1.2 it is mentioned that the discrete g-beta integral (1.2.3) is a limit case of
the Askey-Wilson integral (1.2.5). The corresponding limit on the level of orthogonal
polynomials gives the hierarchy structure between Askey-Wilson polynomials and the
little g-Jacobi polynomials.

In Chapter 2 and Chapter 3 multivariable analogues of three families of orthogonal
polynomials in the Askey tableau are introduced, namely the g-Racah polynomials and
the big and little g-Jacobi polynomials. It is also proved that limit transitions between
these three families and the Koornwinder polynomials exist, which can be seen as a mul-
tivariable generalization of the hierarchy structure in the Askey tableau. Furthermore, full
orthogonality of the polynomials is established with respect to multivariable g-beta type
integrals. Their quadratic norms are computed and it is shown that for each family there
is a second order g-difference operator which is diagonalized by the orthogonal polyno-
mials. The multivariable big and little g-Jacobi polynomials satisfy orthogonality rela-
tions with respect to multivariable discrete g-beta integrals which have been introduced
in 1980 by Askey [S], and have been studied intensively thereafter in several papers, e.g.
(51, [331, [54], [4], [29], [127].

An important tool for obtaining the above mentioned results on the multivariable As-
key tableau is the development of a residue calculus for Gustafson’s multidimensional
analogue of the continuous g-beta integral (1.2.5), which is presented in Chapter 2. Dis-
crete multivariable g-analogues of the beta integral can now be obtained from Gustafson’s
integral by suitable limit transitions. This was shown for a special one variable example
in Section 1.2. Several properties of the limit cases of the Koornwinder polynomials are
proved by taking the limits in the corresponding results for the Koornwinder polynomials.

The results of Chapter 2 and Chapter 3 have appeared in several papers. The multi-
variable big and little g-Jacobi polynomials were introduced and studied in [116]. Several
limit transitions between multivariable orthogonal polynomials were studied in an alge-
braic manner, cf. Section 3.6, in the joint paper [121] with Koornwinder. The multivari-
able g-Racah polynomials were introduced and studied in the joint paper [20] with van
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Diejen. In the papers [117], [118] the Koornwinder polynomials for special parameter
values are studied with respect to partially discrete orthogonality measures. The general
residue calculus for Koornwinder polynomials has appeared in [119]. In Chapter 2 and
Chapter 3 we have mainly followed the approach of [119]. Finally, the theory in Chap-
ter 2 and Chapter 3 in the one variable case has appeared in the joint paper [122] with
Koornwinder.

1.4.2. Multivariable orthogonal polynomials and quantum Grassmannians. In
the mid 1980’s Drinfeld [27] and Jimbo [47] quantized the universal enveloping algebra
U(g) of a simple Lie algebra g. They obtained the “standard” quantized universal en-
veloping algebra Uy, (g), which is a Hopf-algebra quantization of U(g) endowed with the
co-Poisson structure induced by the standard solution r of the modified classical Yang-
Baxter equation. The defining relations of U (g) are given by the so-called quantized
Serre relations. In particular, the definition of Uy (g) depends on a particular choice of a
Cartan subalgebra h C g and of a choice of simple roots A = {ay, ... ,a,} for the root
system associated with (g, b).

The Hopf-algebra dual C;, [G] of U (g) is a quantization of the function algebra of
regular functions on the connected, simply connected, simple Lie group G with Lie alge-
bra g. The associated Poisson-Lie group structure on G in the semi-classical limit is given
by the so-called Sklyanin-bracket on GG associated with r. This bracket is also known as
the Bruhat-Poisson bracket on G.

In Chapter 4,5 and 6 of the Tract an important object of study is a rational form
of Cy,[G], which is denoted here by C,[G]. Here ¢ is assumed to be specialized to a
value in the open interval (0, 1). For several simple Lie groups G, there is an explicit
realization of C, [G] in terms of generators and relations. For the purpose of this section,
we give here the construction of C,[G] for the reductive Lie group G = GL(n,C) in
terms of generators and relations. The quantized function algebra C, [SL(n,C)] is then
an Hopf subgroup of C, [GL(n, C)], which can formally be obtained from C, [G L(n, C)]
by setting the quantum determinant equal to 1. The algebra C,[GL(n, C)] is generated
by the elements ¢;; (1 < 4,7 < n)and detq_l, subject to the relations

thitk; = Qtrjtei,  tintie = qtjpta (2 < J),
tut; = thjta,  tijtw — tti; = (@ —q Dtate; (0 <k, j <),

and detq_1 is defined as the inverse of the quantum determinant

det, := Z (_Q)l(a)ta(l)lta(2)2 o to(yn-
0cEG,

Observe the striking similarity with the coordinate ring C[G] of G = GL(n,C) as con-
sidered in Section 1.3. In particular, it is immediate from the above description of C, [G]
that the coordinate ring C[G] is formally reobtained by taking the limit ¢ 1 1.

The function algebra C, [G/ L] of the regularly embedded quantum Grassmannian is
defined as the “standard” quantization of the algebra of functions C[G /L], where G =
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GL(n,C), L = GL(n — 1,C) x GL(l,C) and C[G/L] is the subalgebra of right L-
invariant functions in C[G], cf. (1.3.9). The quantized function algebra C,[G /L] can
be alternatively described as the subalgebra of right C,[L]-invariant elements in C, [G],
where C,[L] is the obvious quantum analogue of the subgroup L = GL(n —,C) x
GL(l,C), cf. (1.3.8). This quantization of the Grassmann manifold is called regularly
embedded because the quantum subgroup C, [ L] contains the quantized diagonal matrices.
This property turns out to have vast implications for the associated harmonic analysis.
For instance, it implies that the associated zonal spherical functions satisfy orthogonality
relations with respect to completely discrete orthogonality measures.

In Chapter 4 it is shown that the zonal spherical functions on the regularly embedded
quantum Grassmannian can in fact be identified with multivariable big and little g-Jacobi
polynomials. The strategy for obtaining this result is as follows. Noumi, Dijhuizen and
Sugitani [92] introduced a one parameter family of quantum complex Grassmannians and
they identified the associated zonal spherical functions with a subfamily of the Koorn-
winder polynomials. The regularly embedded quantum Grassmannian can be formally
reobtained from the one parameter family of quantum Grassmannians by sending the pa-
rameter to infinity. In Chapter 4 it is shown that such limits on the level of quantum
Grassmannians correspond on the level of zonal spherical functions with the limits from
Koornwinder polynomials to multivariable big and little g-Jacobi polynomials as studied
in Chapter 2. The results of Chapter 1 and Chapter 2 therefore play an essential role in
the study of the limit transitions on the one parameter family of quantum Grassmannians.

The rank 1 case of these results was obtained by Koornwinder [64], [66] for 2-spheres
and by Dijkhuizen and Noumi [24]. Chapter 4 is based on the joint paper [25] with
Dijkhuizen. The results in Section 4.5 and Section 4.6 have appeared before in the paper
[92] of Noumi, Dijkhuizen and Sugitani without proofs.

1.4.3. Quantum Pliicker coordinates and their generalizations. The concept of
Pliicker coordinates on Grassmannians can be generalized to arbitrary flag manifolds. The
general definition is based on the characterization of the Pliicker coordinates as matrix
coefficients of a finite dimensional (irreducible) representation, cf. (1.3.2), (1.3.6).

Flag manifolds are defined as the homogeneous spaces of the form G/ P, where G is
a connected, simply connected, simple Lie group and P is a parabolic subgroup of G. In
this section the parabolic subgroup P is assumed to be standard with respect to the fixed
Cartan subalgebra ) and with respect to the fixed simple roots A. The standard parabolic
subgroups are naturally parametrized by subsets of A.

On the other hand, irreducible finite dimensional representations of GG are parame-
trized by an integral cone ®,ecAZ 1w, the so-called integral cone of dominant integral
weights. The w, (o € A) are called the fundamental dominant weights and form a
type of dual basis with respect to the simple roots A. For a parabolic subgroup P of G
corresponding to a particular subset I C A, the (generalized) Pliicker coordinates can
be defined as certain matrix coefficients of the finite dimensional irreducible representa-
tions of G corresponding to the fundamental weights w, (« € I). Dual (generalized)
Pliicker coordinates are then defined as certain matrix coefficients of the corresponding
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dual representations. Quantum analogues of the generalized Pliicker coordinates and of
the generalized dual Pliicker coordinates can be defined in a similar manner by using the
finite dimensional corepresentation theory of C,[G].

If L is the Levi component of the parabolic subgroup P, then the “standard” quan-
tized function algebra C,[G /L] can be defined as the subalgebra of right C, [L]-invariant
elements of the quantized function algebra C, [G], where C,[L] is the quantum subgroup
associated with the Levi component L. Then, products of (generalized) quantum Pliicker
coordinates and dual (generalized) quantum Pliicker coordinates lie in the quantized func-
tion algebra C, [G//L]. From an informal point of view, this means that C, [G// L] contains
the quantized algebra of zero-weighted complex-valued polynomial functions on G/ L.

One of the questions which is addressed in Chapter 5 and Chapter 6 is the following:
Is C,[G/ L] generated as algebra by the products of the quantum Pliicker coordinates and
the dual quantum Pliicker coordinates? If the answer is affirmative, then the quantized
function algebra C, [G// L] is called factorizable. Affirmative answers to this factorization
problem is given for an interesting class of flag manifolds. In fact it turns out that the
answer is affirmative for all flag manifolds (unpublished result of the author).

In Chapter 5 the factorization problem is proved for the regularly embedded quan-
tum Grassmannian. Furthermore, the defining relations between the quantum Pliicker
coordinates and the dual quantum Pliicker coordinates are derived in case of the complex
Grassmannian. To arrive at this result, it is important to understand the algebraic structure
of the algebra A,, which is by definition the algebra generated by the quantum Pliicker
coordinates. The algebra A, is the quantized homogeneous coordinate ring of the Grass-
mann manifold Y; ,,, cf. Section 1.3. The algebraic structure of A, is well understood
due to the work of Taft and Towber [126] and of Noumi, Yamada and Mimachi [96].
In [126] it was shown that the defining relations of the quantum Pliicker coordinates are
given by Young symmetry relations, or equivalently by g-Garnir relations. Both of these
relations contain the quantum analogues of the Pliicker relations (1.3.7) as special cases.
The results of Chapter 5 are based on a handwritten manuscript of the author.

In Chapter 6 the factorization problem is considered for arbitrary flag manifolds.
The factorization is proved for an interesting class of flag manifolds, which contains in
particular the irreducible compact Hermitean symmetric spaces. This part is based on the
joint paper [123] with Dijkhuizen.

1.4.4. Quantum orbit method for flag manifolds. In Section 1.3 of this chapter an
involution on the coordinate ring C[G] of G = G L(n,C) was introduced. This involution
corresponds on the level of groups with choosing the n by n unitary matrices as real
form of G. The subalgebra C[G/L] (1.3.9) of right L = GL(n —1,C) x GL(I,C)
invariant polynomial functions on G = GL(n, C) is stable under this involution. In fact,
the involution maps the Pliicker coordinates to the dual Pliicker coordinates. There is
a natural anti-linear anti-involution  of the standard quantized function algebra C, [G]
which, in the semi-classical limit, reduces to choosing the n by n unitary matrices as real
form of G = GL(n,C). Again, C,[G/L] is *-stable and the anti-involution maps the
quantum Pliicker coordinates to the dual quantum Pliicker coordinates.
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For a given connected, simply connected, simple Lie group G with Lie algebra g and
Cartan subalgebra ) there is a standard way to construct a compact real form U of G using
a special root basis of g, cf. [40, Theorem 6.3]. The compact real form U has the property
that for any standard parabolic subgroup P, K = P N U is a compact real form of the
Levi component L of P. Furthermore, G/ P is isomorphic to U/ K as a real manifold.

There exists an anti-linear anti-involution * on the quantized function algebra C, [G]
which corresponds in the semi-classical limit to the above mentioned choice of compact
real form U. To emphasize that C, [G] is considered with this *-structure, it is customary
to write C, [U] instead of C,[G]. The subalgebra C,[G /L] with L the Levi component
of a standard parabolic subgroup P is stable under the *-involution. Furthermore, the
x-involution maps quantum Pliicker coordinates to dual quantum Pliicker coordinates. In
Chapter 6, the algebra C, [G/L] is considered with the above mentioned *-structure. To
emphasize the choice of *-structure, we write C, [U/K] (K := P N U) for the algebra
C,[G/ L] with this particular choice of x-structure.

In Chapter 6 the quantum orbit method is developed for flag manifolds U/K by re-
lating the irreducible *-representations of the x-algebra C,[U/K] to the geometry of the
underlying Poisson structure on U/K. Since C,[U/K] is a *-subalgebra of C, [U], the
Poisson structure of U/ K in the semi-classical limit is the induced Bruhat-Poisson struc-
ture of U, i.e. it is the unique Poisson structure on U/ K such that the natural projection
U — U/ K preserves the Poisson structures.

The Poisson geometry of U and U/ K with respect to the Bruhat-Poisson bracket was
studied by Soibelman [110], respectively Lu and Weinstein [80]. It was shown that the
symplectic foliation of U is a refinement of the Bruhat decomposition of U and that the
symplectic foliation of U/K coincides with the Schubert cell decomposition of U/K.
Every symplectic leaf of U is mapped surjectively onto a Schubert cell of U/ K under the
natural projection U — U/K.

The irreducible *-representations of the standard quantized function algebra of the
group of n by n unitary matrices were classified independently by Koelink [60] and
Soibelman [109]. In [110], Soibelman classified the irreducible x-representations of
C,[U] for an arbitrary compact simple Lie group U. Soibelman showed that the irre-
ducible *-representations of C, [U] are naturally parametrized by the symplectic leaves of
the Bruhat-Poisson structure on U.

The natural embedding C, [U/K] < C,[U] can be interpreted as the quantized dual
of the natural projection U — U/K. In Chapter 6 it is shown there is a close connec-
tion between the properties of the natural projection U — U/ K and the properties of its
quantized dual. For instance, it is shown that an irreducible *-representation 7 of C, [U]
remains irreducible as *-representation of C,[U/K] if and only if the symplectic leaf
corresponding to 7 is mapped isomorphically onto its image under the natural projection
U — U/K. Since for each Schubert cell Y of U/K there exist symplectic leaves of
U which are mapped isomorphically onto Y, we thus obtain in a natural way an irre-
ducible x-representation of C,[U/K] for every symplectic leaf Y of U/K. Irreducible
*-representations corresponding to different Schubert cells turn out to be inequivalent.
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A x-representation of a factorizable quantized function algebras C,[U/K] is com-
pletely determined by its action on the products of the quantum Pliicker coordinates and
the dual quantum Pliicker coordinates. This fact is used to give a complete classification
of the irreducible *-representations of a factorizable quantized function algebra C, [U/ K].
For factorizable quantized function algebras C, [U/K] it is shown that the irreducible *-
representations of C,[U/K] obtained by restriction of irreducible *-representations of
C, [U] exhaust the equivalence classes of irreducible x-representations, i.e. the equiva-
lence classes of irreducible #-representations are parametrized by the Schubert cells of
U/K. In particular, the complete classification of the irreducible x-representations is
obtained for the quantized function algebras of the irreducible compact Hermitean sym-
metric spaces.

These and other connections between the Poisson geometry of flag manifolds and
the irreducible *-representations of the quantized function algebras of flag manifolds are
explored in full detail in Chapter 6.

Chapter 6 is based on the joint paper [123] with Dijkhuizen.

1.5. Notations and conventions

The following notations and conventions are used throughout the Tract.

-N:={1,2,3,...}and Z, = {0,1,2,...}.

— Sums over empty index sets are equal to 0, products over empty index sets are
equal to 1.

— ¢ is a fixed real number in the open interval (0, 1), unless explicitly stated other-
wise.

- [k, :={k,k+1,...,1—1,1} for integers k, [ with k < I.

— An associative algebra is by definition an associative algebra with unit.

— The g-shifted factorial is defined by

(150 @0y = g, ()= [[ (1~ a),
' 4) o =0

provided that ag® ¢ {g *}rez,. Forb = k € Z., this reduces to (a;q), =
120 (1 — ag?), which is well defined f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>