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Introduction

The present monograph deals with two different but related topics. The first
one is the regularity theory of Fourier integral operators. We restrict our at-
tention to non-degenerate operators but allow phase functions to be complex
valued. The non-degeneracy means that the canonical relation of the operator
is locally a graph of a diffeomorphism between cotangent bundles of two man-
ifolds. Such operators arise naturally as propagators (solution operators) for
partial differential equations. The theory of these operators is well developed
and we refer the reader to excellent monographs [11], [27], [74]. Regularity
properties of these operators have been under study for a long time. The L?
boundedness of operators of zero order was established in [25], but was essen-
tially known in different forms before (see, for example, [16]). The boundedness
properties of Fourier integral operators in LP spaces for 1 < p < oo were estab-
lished in [62]. The authors prove that operators of order —(n — 1)|1/p — 1/2]
are bounded from L%, (Y) to L}, (X), where n = dim X = dimY". However,
in this paper the authors came up with an interesting condition called “the
smooth factorization condition”, which allows to improve L? estimates given
certain information on the dimension of the singular support of the Schwartz
integral kernel of the operator and singularities of its wave front. All this
concerns operators with real phase functions.

Fourier integral operators with complex phases appear naturally in differ-
ent problems. The theory of operators with complex phases was systematically
developed in [37] and [38]. It was used in [74] to describe solution operators
for the Cauchy problem for partial differential operators with complex char-
acteristics. L? boundedness of these Fourier integral operators of zero orders
is due to [38], and to [26] in greater generality. The complex phase is used in
the analysis of the oblique derivative problems ([38]) and in the description of
projections to kernels and cokernels of pseudo-differential operators with non-
involutive characteristics ([12]). In a way the use of complex phase functions
is more natural than the real ones. First, there are no geometric obstructions
like the non-triviality of Maslov cohomology class. Second, one can use a single
complex phase function to give a global parameterization of a Fourier integral
operator ([33]).

The first chapter of this monograph describes the LP properties of Fourier
integral operators with complex phases. We suggest a local graph type condi-
tion (L) which insures that operators of order —(n—1)|1/p—1/2| with complex
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2  Introduction

phases are bounded from L%, to L}, . If the imaginary part of the phase func-
tion is zero, that is if the phase function is real, our condition (L) is equivalent
to the local graph condition for real phase functions. In Section 1.12 we propose
the smooth factorization type condition (F) for the complex phase. Again, if
the phase function is real valued, our condition (F) is equivalent to the smooth
factorization condition of [62]. Under this condition we establish better L?
properties of operators. We provide the reader with the necessary background
information on Fourier integral operators in Sections 1.1, 1.2, 1.3, as well as
the overview of the regularity theory for real and complex phase functions in
Sections 1.4 and 1.6. '

It is convenient to use the complex domain for the analysis of the smooth
factorization condition. This is the second topic of the present monograph. We
will state a general problem of singularities of affine fibrations which includes
the smooth factorization condition as a particular case. Let 2 be an open
subset of C*. An affine fibration in Q is a family of affine subspaces of 2
which locally do not intersect and whose union equals to almost the whole of
. These subspaces will be controlled by kernels of holomorphic mappings. To
be more precise, let A : @ — CP*™ be a holomorphic matrix valued mapping.
Let k = maxgeq rank A(€) be the maximal rank of A in Q. The set Q%) where
it is maximal, is open and dense in 2, and on this set the mapping

& ker A(€)

is regular from Q(*) to the space of all (n — k)-dimensional linear subspaces of
Q. Our main condition will be that 3¢ defines a fibration in Q*), which means
that for & € Q) 5 is constant on & +ker A(¢). This setting will be made more
precise as conditions (A1), (A2) in Chapter 2.

An important case occurs when A = DT is the Jacobian of a holomorphic
mapping T' : © — CP. In this case I' is constant on & 4 () for all £ € Q).
This means that the level set ['"}(I'(€)) is an affine subspace of (2, equal to
&€+ #(€). Such fibrations will be called Jacobian. Conditions (A1), (A2) will
be called (I'A1), (I'A2) in this case. If T itself is a gradient of a holomorphic
mapping ¢ : 8 — C, the fibration will be called a gradient fibration. In this
case A(§) = D?*¢(€) is the Hessian of ¢. In our applications ¢ will be the
complex analytic extension of the phase function of a Fourier integral operator
when the phase function is real analytic.

In Chapter 2 we will study these fibrations and especially their singular
sets. It turns out that the mapping ¢ is meromorphic and we can use methods
of complex analytic geometry. All the background information will be provided
in Section 2.5.

Chapter 3 is complementary to Chapter 2 and there we will study fibrations
of gradient type in both real and complex setting. In Chapter 4 we will apply
results of Chapters 1 and 2 to derive further estimates for analytic Fourier
integral operators. Those are operators whose phase function is real analytic.
Based on the estimates for the set of singularities for corresponding fibrations
in Chapter 2, we will show that the smooth factorization type condition (F)
holds automatically in a number of cases.
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Finally, in Chapter 5 the analysis will be applied to several problems. In
Section 5.1 we will describe several applications of the regularity theory of
Fourier integral operators. We will go on to discuss regularity properties of
solutions of hyperbolic equations in Section 5.2. In Section 5.4 we will allow
the characteristic roots of a partial pseudo-differential equation to be complex.
However, in order to be able to apply the theory of Fourier integral operators
with complex phases, we will assume that the imaginary part of characteristic
roots is non-negative. Then, according to [74], the Cauchy problem is well posed
and its propagator is a Fourier integral operator with complex phase. We will
derive estimates for fixed-time solutions of these equations in L? spaces. We will
also discuss the improvements when the smooth factorization type condition
(F) is satisfied. In some cases it is satisfied automatically, for example in R*
or R®, when coefficients of the operator may depend on time, but not on the
other variables. As another application, we will briefly discuss L? estimates for
the oblique derivative problem in Section 5.5.

The present monograph is based on the author’s doctoral thesis. However,
there only operators with real phases were investigated, meanwhile the empha-
sis of this monograph is on operators with complex phases. Parts of this book
have appeared in several papers. Chapter 4 is a complex valued phase version
of [52], where analytic operators with real phases were considered. Some results
of Section 5.2 have appeared in [53] and in [55]. Section 1.11 has appeared in
[54]. A survey of the regularity theory of operators with real phases has ap-
peared in [56]. However, Chapter 2 presents a more general problem (A1), (A2)
for holomorphic matrix valued functions. Some of its results were announced
in [57] and [58]. We would like to mention the paper [59], which is related to
the LP estimates under the failure of the factorization condition. However, we
did not feel it would take an integral part in this book and we mention it only
briefly in Remark 1.12.4. The results on the complex phase were announced in
[60]. Above all, in this book we tried to emphasize the geometric role played by
the affine fibrations in the regularity theory, especially in the case of complex
phase functions in Section 1.12.

Finally, it is a pleasure for me to thank several people who have contributed
in one way or another to the appearance of this work. First, I would like to
thank Hans Duistermaat for all the support which I have had from him during
my years at the Utrecht University as his graduate student. His influence
on my understanding of Fourier integral operators and my work can not be
overestimated. I would like to thank departments of mathematics of Utrecht
University, the Johns Hopkins University and University of Edinburgh, and
finally the Imperial College, where I was able to continue to work on this
project. I am also grateful to Chris Sogge, Andreas Seeger, Anders Melin, Ari
Laptev and Yuri Safarov for interesting discussions about real and complex
phases.
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Chapter 1

Fourier integral operators

In this chapter we will discuss Fourier integral operators. The exposition will
include both real and complex phase functions. We will provide essential def-
initions and point to the references for the general theory. Section 1.4 gives
an overview of the regularity properties of Fourier integral operators with real
phase functions. In Section 1.6 we will give a brief introduction to the regularity
properties of operators with complex phases. However, we will not give proofs
in these sections as we will prove more general statements for complex phases
later. These sections are informally written and can be read independently.

Section 1.1 contains the necessary definitions from the theory of Fourier
integral operators with real phases. Section 1.2 gives backgrounds on the use
of complex phase functions. It also gives several references to more detailed
sources. In Section 1.3 we recall the necessary facts from the relevant function
theory.

In Section 1.5 we describe the smooth factorization condition for Fourier
integral operators with real phases and how it enters the regularity theory.
This is where the relation with affine fibrations of the following chapters plays
a role and some discussion of it can be found in Section 1.5.2. Section 1.7
contains the LP-estimates for Fourier integral operators with complex phases.
We introduce condition (L) which plays a role of the local graph condition in
the analysis. The proof of these estimates is given in Section 1.9. Estimates in
LP spaces imply estimates in other function spaces in Section 1.10. In Section
1.11 we consider the question of the sharpness of the estimates. To determine
the order of the best possible estimate it is sufficient to consider real phases.
An application of the stationary phase method gives the best possible orders
for all dimensions of the singular support of the operator. As a consequence,
we also derive a representation formula for bounded elliptic operators of small
negative orders.

An analogue of the smooth factorization condition for complex phases is
formulated in Section 1.12 (condition (F)). There we also establish the improved
LP estimates under this condition. These estimates are best possible in view of
the arguments of Section 1.11. In the case of the real phase functions, results
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6 Chapter 1. Fourier integral operators

of Sections 1.7 and 1.12 imply results of [62] on the regularity properties of
Fourier integral operators.

In the sequel, our primary concern will be the local analysis. However,
global constructions often help to give a better insight in problems at hand. The
intrinsic global characterization of Fourier integral operators was systematically
developed in [25], [9], [27]. Excellent expositions of the theory can be found
in [14], [15]. Many important to us notions are described in [35]. The global
theory is based on constructions of the symplectic geometry.

1.1 Fourier integral operators with real phases

We start by recalling several relevant notions from the symplectic geometry.
Let M be a smooth real manifold. A form w is called symplectic on M if it is
a 2-form on M such that dw = 0 and such that for each m € M the bilinear
form wy, is antisymmetric and non-degenerate on T,, M. The pairs (T;, M, wyy,)
and (M, w) are called the symplectic vector space and the symplectic manifold,
respectively. Let X be a smooth real manifold of dimension n. The canonical
symplectic form o on the cotangent bundle T*X of X can be introduced as
follows. Let 7 : T*X > (x,€) — & € X be the canonical projection. Then for
(z,£) € T*X the mappings D7, ¢y : T(4,e)(T*X) = T, X and £ : T, X — R
are linear. Their composition

Q(z,6) = § 0 Dy g) (1.1.1)

is a 1-form on T*X. Its derivative o = da is called the canonical 2-form on
T*X and it follows that o is symplectic. This form corresponds to the form
Z?:l dp; A dg; in mechanics, with possible change of sign. It can be shown
that any symplectic form takes the latter form in symplectic coordinates. The
same objects can be introduced on complex analytic manifolds.

A submanifold A of T*X is called Lagrangian if (T, ¢)A)7 = T (5 ¢)A, where

(Tae)N)” ={p € T(0,)(T*X) : 5(p,q) = 0 Vg € T ¢)A}.

In particular, this implies dim A = n. A submanifold A of T*X\0 = {(z,¢) €
T*X : £ # 0} is called conic if (z,€) € A implies (z,7€) € A for all 7 > 0. Let
¥ C X be a smooth submanifold of X of dimension k. Its conormal bundle in
T*X is defined by

N*E ={(z,8) €eT*X :z € £,£(6z) =0, Véz € T, X}

The proofs of the subsequent statements can be found in [14], [15], [27]. We
mainly follow [11].

Proposition 1.1.1. (1) Let A C T*X\0 be a closed submanifold of dimen-
ston n. Then A is a conic Lagrangian manifold if and only if the form o
in (1.1.1) vanishes on A.

(2) Let ¥ C X be a submanifold of dimension k. Then its conormal bundle
N*¥ is a conic Lagrangian manifold.
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(3) Let A C T*X\0 be a conic Lagrangian manifold and let D, ¢y : T(z e)A —
T, X have constant rank equal to k for all (z,£) € A. Then each (z,&) € A
has a conic neighborhood I' such that

(a) T=w(ANT) is a smooth submanifold of X of dimension k,
(b) ANT is an open subset of N*X.

In the sequel we will mainly deal with conic Lagrangian manifolds and we
will need their local representations. For this purpose, we consider a local
trivialization X x (R™\0) of 7% X'\0, where we can assume X to be an open set
of dimension n. However, in the sequel we will also need a slight generalization
of it, so that we allow the dimensions of X and the fibers differ. Thus, let T’
be a cone in X x (RV\0). A smooth function ¢ : X x (RV\0) — R is called
a phase function, if it is homogeneous of degree one in § and has no critical
points as a function of (z,0): ¢(z,70) = 7é(z,0) for T > 0 and d(, g)p(z,0) # 0
for all (z,0) € X x (RV\0). A phase function is called non-degenerate in T if
(z,0) € T,dpgp(z,0) = 0 imply that d(z’g)%gj-e—) are linearly independent for
j=1,...,N.

Proposition 1.1.2. (1) Let T be a cone in X x (RN \0) and let ¢ be a non-

degenerate phase function in I'. Then there exists an open cone I' O T
such that the set

Cy = {(,0) € T : dy¢(z,0) = 0}

is a smooth conic submanifold of X x (RV\0) of dimension n. The map-
ping
T? :Cy 3 (x,0) = (z,d.¢(x,0)) € T*X\0

is an tmmersion, commuting with the multiplication with positive real
numbers in the fibers. Let us denote Ay = T?(Cy).

(2) Let A be a submanifold of T*X\0 of dimension n. Then A is a conic La-
grangian manifold if and only if every (z,£) € A has a conic neighborhood
[ such that ANT = Ay for some non-degenerate phase function ¢.

Naturally, the cone condition for A corresponds to the homogeneity of ¢.

We give the following definition for the completeness, although we will not
use it in the sequel. Let A be a closed conic Lagrangian submanifold of 7* X'\ 0.
A distribution u is called the Lagrangian distribution of order m associated to
A, ueI™(X,A),if

ﬁpju € ©HY (X)), (1.1.2)

—m—n/4
Jj=1

whenever P; € ¥!(X) are properly supported pseudo-differential operators
whose principal symbols p;(z, £) vanish on A and *H ﬁ’fn_n /4 is the localization
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of the usual Besov space. First, a distribution u € S'(R") belongs to the Besov
space ®H,(R"),if @ € L} .(R*) and

loc

) 1/2
ull o,y = (fige la©)2dE)

C o \1/2
+ Sup;>g (f2i§|§|§21‘+1 12774(8)] df) < oo.

For a smooth manifold X of dimension n the space ®H!¢(X) is defined to
be the space of all u € D'(X) such that (¢u) o 7! is in *°H,(R") whenever
) C X is a coordinate patch with coordinates > and ¢ € C§°(f2). More details
can be found in [27, 25.1] and [65, 6.1].

Let now X,Y be open in R” and let ¢ be a non-degenerate phase function.
Let a € SM(X x Y x RY) be a symbol of type p and order m, which means
that 1/2 < p<1,a € C®(X xY x RV), and for every compact subset K of
X x Y and any multi-indices «, 8 holds

107,08 a(z,0)] < C(a, B, K)(1+ [g])m#lettU=o)lF]

for all (z,y) € K and § € RV\0. Operators of the form

Tu(z) = /Y/RN @0 gz y, 0)u(y)dody. (1.1.3)

are called Fourier integral operators. Expression (1.1.3) can be understood in
the classical sense if m+N < 0 and u € C§°(X), when the integral is absolutely
convergent. The integral kernel of (1.1.3) is equal to

K(z,y) = / e @v:0 gz, y, 0)d6. (1.1.4)
RN
According to Proposition 1.1.2, the set

Ay = {(z,y,dz0(x,y,8),dyd(x,y,0)) : dodp(x,y,6) =0} (1.1.5)

is a conic Lagrangian submanifold of T7*(X x Y)\0 of dimension 2n. It follows
that for p = 1, the kernel (1.1.4) is a Lagrangian distribution in X xY" associated
to Ag of order p = m —n/2+ N/2, K € I"(X x Y,As). Conversely, any
Lagrangian distribution K € I'*(X x Y, A) can be microlocally written in the
form (1.1.4) modulo C*°, with p = 1 (cf. [65, Theorem 6.1.4]). The kernel
(1.1.4) is also called the Fourier integral distribution. In general, I¥(X,A) will
denote the space of Fourier integral distributions consisting of Fourier integral
distributions

u(z) :/ e @ 0q(z,0)db, (1.1.6)
RN

with A locally equal to A4 as in Proposition 1.1.2, a € S;*(X x RY), p>1/2,
and p =m —n/4+ N/2.
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The behavior of the integral (1.1.3) can be independent of some of the
variables 6 and the order of T is taken to be = m + (N — n)/2, which is the
order of its Lagrangian distribution (in this case we have X x Y instead of X).
The following theorem describes the family of phase functions corresponding
to the same Fourier integral distribution (1.1.4) (Theorem 2.3.4 in [11]). We
formulate it for the general case of I}'(X,A) as in (1.1.6), rather than for a
particular case I} (X x Y, A).

Theorem 1.1.3. Suppose ¢(z,6) and ¢(z,0) are non-degenerate phase func-
tions at (z0,00) € X x (RV\0) and at (zo,0) € X x (R¥\0), respectively.
Let T and T be open conic neighborhoods of (zo,00) and (wo,éo) such that
Ty :Cy = Ty and T(; : C$ — I's are injective, respectively. If Ay = A$’ then
any Fourier integral distribution, defined by the phase function ¢ and an am-
plitude a € S;'(X x RN), p > 1/2, with ess supp a contained in a sufficiently
small conic neighborhood of (xg,6), is equal to a Fourier integral distribution

defined by the phase function ¢ and an amplitude @ € SZH_%(N_N) (X x }Rﬁ).

In particular, the phase function ® of the operator T in (1.1.3) can be
always written in the form

(I)(.’L‘,y,f) = (:c,&) - 1,/1(1/,5),

with some function 3 and £ € R™. This fact will be often used in the sequel.
The function 1 (as well as ®) is also called the generating function for Ag.

Thus, the notion of Fourier integral operator becomes independent of a
particular choice of a phase function associated to the Lagrangian manifold A.
The set

C =N ={((z,6),(y,m) € T"X xT"Y : (,y,£,—n) € A}

is a conic Lagrangian manifold in 7* X \0xT*Y "\ 0 with respect to the symplectic
structure ox @ —oy and it is called a homogeneous canonical relation from
T*Y to T*X. The space of integral operators with distributional kernels in
IF(X x Y,A) will be denoted by I5(X,Y;C) and it is the space of Fourier
integral operators associated to the canonical relation A'.

1.2 Fourier integral operators with complex
phases

In this section we will discuss the use of complex valued phase functions in the
theory of Fourier integral operators. We will give only an overview as a reader
can consult [74], [14], [27] for details.

As before, Fourier integral operators are operators which can be represented
microlocally in the form

Tu(x)z// @ g (. y, 0)u(y)dody. (1.2.1)
Y n
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The integral makes sense only if Im & > 0. The rest of the properties of the
phase function are similar to the real ones. Let V' C R* x R* x RV\{0} be
a conic set. A smooth in V function ® = ®(z,y,0) is called a regular phase
function of positive type, if

(i) @ has no critical points: d® # 0 on V.

(ii) @ is positive homogeneous of degree one in §: ®(z,y,t0) = t®(z,y,6) for
t>0.

(iii) d(0®/001),...,d(0®/I0N) are linearly independent over C on Corp =
{(z,y,0) e V: ¥, =0}.

(iv) Im ®(z,y,0) >0on V.

In order to set up the calculus of such operators one uses the notion of almost
analytic continuation.

A function f : U — C on an open set U C C is called almost analytic in
Ur = UNRY, if f satisfies the Cauchy—Riemann equation in Ug of infinite
order, that is f and all of its derivatives vanish in Ur. In a natural way
one defines an almost analytic extension of a real manifold X requiring that
corresponding coordinate functions are almost analytic in X. The positivity of
the canonical relation C means that

i~ (ox (u, @) — oy (v,7)) >0

for all (u,v) € C, where ox and oy are the standard symplectic forms on T* X
and T*Y, lifted to their almost analytic extensions. Let us give more details
now.

Let €2 be an open subset of R* and let p : © — R be a non-negative Lipschitz
function. A function f : Q — R is called p-flat on Q if for every compact set
K C Q and for every integer N > 0 there exist a constant C' = C(K,N) > 0
such that |f(z)| < C|p(z)|V, for all z € K.

This notion defines an equivalence relation on the space of function on Q.
Thus, two functions f and g are called p-equivalent if f — g is p-flat on Q.
A function is called flat on a compact set K C  if it is p-flat with p(z) =
dist (z, K). :

Let function f € C*(f2) be p-flat. Then all its derivatives D®f are also
p-flat. It follows that f is flat on K if and only if D®f(z) = 0 for all z € K
and all a.

Let now O be an open subset of C* and let K be a closed subset of O.
A function f € C*(0) is called almost analytic on K if for j = 1,... ,n the
functions 0; f are flat on K. For a set O C C™* by Or we denote the intersection
ONR™. On the other hand, for an open set 2 C R™ we denote Q = Q+iR* c C
and will identify Q with QN { Im z = 0}.

Each function f € C*°(Og) defines an equivalence class of almost analytic
functions on Og, which consists of functions in C°°(0) which are almost ana-
lytic on Og, modulo functions which are flat on Og. Any representative of this
class is called an almost analytic continuation of f in O.
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Let O be an open subset of C*, M a smooth submanifold of codimension
2k of O, K a closed subset of O. Then M is called almost analytic on K if
every point zg of K has an open neighborhood U in O in which there exist

k complex smooth functions fi,..., fr, almost analytic on K N U, and such
that in the set U, M is defined by the equations fi(z) = ... = fr(z) =0, and
differentials dfy,... ,dfr are C-linearly independent. We say that two almost

analytic submanifolds M; and M, of O are equivalent, if they have the same
dimension, and the same intersection Mg with R", and locally f; — g; are
flat functions on Mg, where M; and M, are defined by f; and g;, respectively.
Thus, a real manifold €2 defines an equivalence class of almost analytic manifolds
in Q. A representative of this class is called an almost analytic continuation of
Qin C".

For further definitions in this section we will mostly follow [14]. Let now M
be a real symplectic manifold of dimension 2n, and let M be its almost analytic
continuation in C?>". Let A C M be an almost analytic submanifold containing
the real point pg € M, and let (z,£) be be real symplectic coordinates in a
neighborhood W C R2™ of the point pg. Let (Z, §~) be almost analytic contin-
uation of the coordinates (z,£) in W so that (Z, E) map W diffeomorphically
onto an open subset in C*”. Let g be an almost analytic function such that
Im g > 0 in R”, and such that A is defined in a neighborhood of po by the
equations ¢ = 9¢g(x)/0%, T € C*. An almost analytic manifold A satisfying
this property in some real symplectic coordinate system at every real point is
called a positive Lagrangian manifold. An almost analytic manifold A C M
is called a strictly positive Lagrangian manifold if dim Ag = 2n and Ag is a
submanifold in M, o4]a, ~ O for all local representatives A, of A and for
all local almost analytic continuations o, of the symplectic form ¢ on T,,(M ),

and if i 1o (v,0) > 0 for all v € T,(A)\T,(Ar), p € Agr, where T,(Ag) is the
complexification of T, (Ag). The local coordinates T, £ on A are almost analytic
continuations of local coordinates (z,&) on Ag.

Proposition 1.2.1. Let M,A and W be as before. If (§,7) is another almost
analytic continuation of coordinates in W and A is defined by the equation
7= H(Y) in a neighborhood of the point pg, then A is locally equivalent to the
manifold 7 = Oh(y)/0y, y € C*, where h is an almost analytic function and
Im h >0 in R".

Furthermore, let ® be a regular phase function of the positive type that is
defined in a conical neighborhood. Let ® be an almost analytic homogeneous
continuation of ® in a canonical neighborhood in C* x C* x (CN\0). Let

C3 = {(%,7,0) € C" x C* x (CN\0) : 88 (%, 7,0)/86 = 0}.

Then the image Az of the set Cg under the map

Cz > (3,7,0) — (’f aq’(g’;”g), aq>(g;7y,9)> € C" x (C™\0) x (C™\0)
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is a local conical positive Lagrangian manifold. Further, Ag, is the image of
Cs,, and when ® is replaced by an equivalent almost analytic continuation, the
manifold Ag is replaced by an equivalent conical positive Lagrangian manifold.

A manifold A C T*(X x Y)\0 is called a positive canonical relation if A’ =
{(z,&y,7m) : (z,€,y,—n) € A} is a closed conical positive Lagrangian manifold

in T*(X x Y)\0 and Ag C (T*X\0) x (T*Y'\0). The set of Fourier integral
operators I#(X,Y’; A) with positive canonical relation A, p > 1/2, with symbols
in SH(X xY x R") is defined as for the operators with real phase functions.
There is a usual definition of the principal symbol and the calculus of such
operators holds as well. We can refer the reader to [37] and [74] for the details.

1.3 Spaces of functions

In this section we will briefly discuss function spaces, which will be used
throughout this monograph. Let X be a smooth manifold with a measure dx.
For 1 < p < oo by LP(X) we will denote the usual space (of the equivalence
classes) of measurable functions f on X with finite norm || ||, = ([ | f|Pdz)'/>.
For 0 < p < 1 this expression fails to be a norm and the substitute for LP(X)
in the analysis of singular integrals are Hardy spaces HP(X). The general
theory of complex and real variable versions of Hardy spaces can be found in
[67], [70], [18], [68], where one can also find proofs of subsequent statements of
this section. Since our interest are the local properties, we restrict to the real
Euclidean case of HP(R").

Let S be the Schwartz space of smooth rapidly decreasing functions, equipped
with a countable family of seminorms

16]las = sup |28 ¢(z)|.
rER™

Let ® € S and for ¢ > 0 define ®;(x) = ¢ "®(x/t). Then for a distribution f
the convolutions f x ®; are smooth and one defines the maximal operator

Mo f(2) = sup |(f * ®;)(x)|.
>0

Let F be a finite collection of seminorms on S and one defines
Sr={2€S:||®|lag <liorall||lasz € F}.

The maximal operator associated to the family Sz, determining the approxi-
mation of the identity, is now defined by

Mgzf(z) = sup Mo f(z).

dcSr

For the definition of the Hardy space HP(R™), we take the space of functions,
satisfying one of the following equivalent conditions.
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Proposition 1.3.1. Let f be a distribution and let 0 < p < oo. Then the
following conditions are equivalent:

(1) There is a function ® € S with [ ®dz # 0 so that Msf € LP(R™).

(2) There is a collection F so that Mxf € LP(R™).

The expression ||f||g» = ||Me f||Lr can be taken to be the norm of H?(R").
Note, that it is equivalent to || M #||L» and it is actually a norm only if p > 1.
For 0 < p < 1, the topology of HP can be defined by the metric d(f,g) =

Hf - g”?—]r‘ .

In the case 1 < p < 00, a simple argument shows that HP(R") coincide
with the Lebesgue spaces LP(R™). However, already for p = 1 one only has
H'(R™) € L'(R™). On the other hand, if f € L},,,,(R") satisfies the moment
condition [ fdz = 0 (which is in fact necessary for f to belong to H'(R")),
then f € LI(R?) for any ¢ > 1 implies f € H'(R*). One often makes use
of an atomic decomposition of Hardy spaces, similar to the classical Calderén-
Zygmund decomposition. For 0 < p < 1, an H? atom is a function a such
that

(1) a is supported in a ball B,
(2) |a| < |B|~/? almost everywhere,
(3) [z~a(z)dz =0 for all a with |a| <n(p~! —1).
An HP atom belongs to HP(R™) with uniform bound and to LP(R™) with

/ la(@)Pdz < 1,

which follows from (1) and (2). One has the following characterization of HP
in terms of H? atoms.

Proposition 1.3.2. Let0 < p < 1.

(1) Let ar be a collection of HP atoms and let A\, € C satisfy
Yok |[Ak|? < 0o. Then the series

F= Xay (1.3.1)
k

converges distributionally, its sum f belongs to HP(R"™), and

1/p
[[fllae <c (ZIM”) :
k

(2) Let f € HP(R™). Then f can be written as a sum of HP atoms as in
(1.8.1), which converges in HP norm. Moreover,

1/p
(Zw) < ellflln-
k
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" Let X be an open subset of R". For 0 < v < 1 the Lipschitz (Holder) space
Lip (X, ) consists of functions f for which there exists a constant A such that
|f(z)| < A almost everywhere and

sup [f(z —y) = f(@)] < Aly”

holds for all y with z —y € X. Minimal A satisfying these two inequalities can
be taken to be the norm of f (cf. [66], [75], [4]). The Hardy space H' plays an
important role in the complex interpolation method.

Proposition 1.3.3. Let T, be a family of linear operators on R, parameter-
ized by complex z with 0 < Re (z) < 1. Suppose that for all simple (step-)
functions f,g, vanishing outside a set of finite measure, the map

z | (T:f)gde
Rn

is bounded and analytic in the open strip 0 < Re (z) < 1 and is continuous in

its closure. Suppose that ||T. f||p1 < Col|f|lg for Re (2) =0 and ||T.fl|q <
Ci||fllp, for Re (z) = 1. Then also
ITeflla, < Co~"Cillf Iy, (1.3.2)

with p; and g; defined by 1/py = (1 —¢t) +t/p1 and 1/qs = (1 —t) +t/q1.
The proof is based on the duality between H' and BMO ([18]).

Proposition 1.3.4 (Hardy-Littlewood-Sobolev). For every 0 < v < n,
l<p<g<ooandl/q=1/p— (n—r)/n, there exists a constant Apy such
that

[1f* (11" Mza < Apgll fllLe-

There is a similar result in Hardy spaces ([68, I11.5.21]).

Proposition 1.3.5. The operator I,f = f * (ly|”"7) allows an analytic ex-
tension on the set —n(p~' — 1) < Re~y < n, when [z f(z)dz = 0 hold for
la| < n(p~t=1) andp < 1. For every0 < p< q< oo and1/q=1/p—(n—v)/n,
there ezists a constant Ap, such that

F* (y ™) e < Apgll fl e

The same result holds for q =00, p<1land0<p=qg < oo, Rey=n.

The development of the complex Hardy space theory can be traced in [78] for
C and in [13],[66], [70] for C*. The real theory in terms of maximal operators
and Calderon-Zygmund decomposition can be found in [18]. Applications of
Hardy spaces to several problems of the theory of singular integral operators
appeared already in [23]. The general theory and applications can be found in
[66], [70] and [68].
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1.4 Overview of the regularity theory for the
real phase

In this section we will give a brief informal overview of the regularity properties
of Fourier integral operators. In the sequel by the continuity in L? (or from
LP to LP) we will always understand the continuity (of a linear operator) from
L2y to Lj,.. Because L? results may depend on the geometric structure of
the wave front of the operator, we will discuss several related problems from the
singularity theory of the wave fronts. Singularities arising in the LP theory are
a particular case of the singularities of affine fibrations, discussed in Chapters
2 and 3.

Let T be a Fourier integral operator with real phase. As in Section 1.1, this

means that locally T is of the form

Tu(z) =/ / e @0z, y, 0)u(y)dody, (1.4.1)
m JRN

where a € S”(R" x R™ x RV) is a symbol of order v. The phase function &
is smooth, real valued, non-degenerate, and positively homogeneous of degree
one in #. The Schwartz integral kernels of operators of the form (1.4.1) are
Lagrangian distributions (or Fourier integral distributions). The wave front of
the Lagrangian distribution of an operator T' defines a geometric invariant for
the operator T'. Indeed, the set

WE(T) = {(z,d,®(z,y,9),y,dy®(z,y,0)) : dg®(z,y,0) =0}  (1.4.2)

in the cotangent bundle 7*(R" x R™) does not depend on the choice of a phase
function ®. If T*(R™ x R™) is equipped with its standard symplectic form, then
the conic set in (1.4.2) becomes a Lagrangian submanifold of the cotangent
bundle T*(R™ x R™). The converse statement is one of the main results of
the global theory of Fourier integral operators. It can be formulated more
conveniently in the manifold setting. Let X and Y be real smooth manifolds
of dimensions n and m, respectively, and in this paper we will assume that
n = m. Let ox and oy denote the canonical symplectic forms on 7*X and
T*Y, respectively. Let C' be a conic Lagrangian submanifold of the cotangent
bundle T*X\0 x T*Y'\0 equipped with the symplectic form ox & —oy. Then
C defines a family of Fourier integral operators T' with W F(T')' = C, locally of
the form (1.4.1). The set C is called the canonical relation. If we fix an order
v of a symbol a in (1.4.1), the family of operators T is denoted by I*(X,Y;C),
where p = v + (N — n)/2. Let us give now several important examples of
Fourier integral operators. If we take n =m = N, a =1, and

®(z,y,0) = (z —y,0), (1.4.3)

then the right hand side of (1.4.1) is a composition of the Fourier transform and
its inverse in R™, and T is the identity operator in this case. If a phase function
® of an operator T is given by (1.4.3) and its symbol a is polynomial in 6, then
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T defines a partial differential operator with symbol a. If a phase function ® of
T is given by (1.4.3) and its symbol a € S” is arbitrary, then T defines a pseudo-
differential operator with symbol a. The space of pseudo-differential operators
of order u is denoted by ¥#. The solution operator to the wave equation has
the phase function of the form ®(z,y,60) = (z — y,6) + |6]. In Section 1.5.3 we
will give more examples of convolution operators and in Chapter 5 the solution
operators to the Cauchy problem for hyperbolic equations will be regarded as
Fourier integral operators as well.

In this monograph we will be interested in the continuity properties of the
described operators in various function spaces. The best behavior is exhibited
by pseudo-differential operators. Thus, pseudo-differential operators P € ¥°
of zero order are continuous (as linear operators) from LP to LP for all 1 <
p < oo. Moreover, a pseudo-differential operator P € ¥# of order 4 € R can
be extended to a continuous operator from the Sobolev space L} to L _ u for
allk € R, kK > p, and 1 < p < oo. Similar results hold in Lipschitz spaces,
operators P € ¥# are continuous from Lip () to Lip (y — p) for all v > p.
However, the phase function ® for pseudo-differential operators is of the form
(1.4.3) and its canonical relation C is equal to the conormal bundle to the
diagonal in R” x R™. For the Fourier integral operators the structure of the
canonical relation C is much more complicated and their continuity properties
depend on the geometric structure of the corresponding canonical relations.

Let T € I°(X,Y;C) be a Fourier integral operator of zero order, associated
to the canonical relation C. Let mxxy,7x, 7y be the canonical projections:

T*X\0 & ¢ 5% TrY\0.
lvrny (1.4.4)
XxY

It turns out that the continuity properties of a Fourier integral operator T
rely heavily on singularities of the projections mxxy,7mx,7my. Projections
mx,Ty can be diffeomorphic only simultaneously and in this case for every
Ao = (20,&,Y0,m0) € C there exists a symplectomorphism x (a diffeomor-
phism preserving the symplectic structure) in a neighborhood of the point
(Yo,m0) € T*Y'\0 such that in a neighborhood of Ay, the canonical relation C
has the form

{(=,&y,m) : (2,8 = x(y,n)}- (1.4.5)

In this case, C is locally equal to the graph of a canonical symplectic transfor-
mation and is called a local canonical graph or just a local graph. It is clear that
C being a canonical graph implies that the projections 7y, my are diffeomorphic
from C to T*X\0 and T*Y'\0, respectively. In particular, this implies n = m.
The converse is also true. In fact, assume that, say, 7y : C — T*Y\0 is a
local diffeomorphism. Then, the canonical relation is locally of the form (1.4.5)
in (y,n) coordinates and the condition of C' to be Lagrangian for ox ¢ —oy
implies that ox @ —oy vanishes on C and oy = x*(ox). The latter means
that x* is a symplectomorphism and C' is a canonical graph.
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In this monograph we will be interested in applications to the hyperbolic
partial differential equations, where canonical relations are local canonical
graphs. Such operators arise as solution operators of hyperbolic Cauchy prob-
lems. In this case, the mapping mx|c o7y is equal to x in (1.4.5) and defines
a local diffeomorphism from 7*Y\0 to T*X\0. It follows that dimensions of
X and Y coincide. Operators T' € I°(X,Y;C) with a local canonical graph C
are continuous in L? ([16], [25], [27]). The proof is based on the fact that the
canonical relation of 7' o T is the conormal bundle of the diagonal in X x X,
and, therefore, it is a pseudo-differential operator of order 0 and hence bounded
on L?. In general, for 1 < p < oo, p # 2, Fourier integral operators of order
zero need not be bounded on LP.

From the point of view of the LP continuity of Fourier integral operators,
pseudo-differential operators and operators arising as solution operators to the
wave equation are two opposite cases. The phase function of the latter has the
form (z—y, &) +|¢| in R, and Littman ([34]) has shown that the corresponding
operators T € I*(X,Y;C) are not bounded in L? when p > —(n — 1)|1/p —
1/2|. The LP properties of solutions to hyperbolic Cauchy problems for the
equations of the wave type have been studied in many papers ([67], [44], [40],
[3]). Lipschitz and LP estimates for the wave equation on compact manifolds
were derived in [8] and some results for hyperbolic equations are in [71]. General
results on LP continuity were obtained in [62]. Let us describe them in more
detail. Operators T € I*(X,Y;C) are bounded from L%, to L}  if p <
—(n—=1)|1/p—1/2| and this order is sharp if T is elliptic and d7x xy |c has full
rank, equal to 2n — 1, anywhere. These conditions hold for operators arising as
solutions to strictly hyperbolic Cauchy problems in some cases. There is the
same loss of order by (n — 1)|1/p — 1/2] in Sobolev and in Lipschitz spaces (in
Lipschitz spaces p = 00). If we denote o, = (n — 1)|1/p — 1/2|, then operators
T € I*(X,Y;C) are continuous from L% to Ly_, _, and from Lip (a) to
Lip (@ — aso — ). The proof of the L? boundedness is based on the complex
interpolation method. Having the L? boundedness of zero order operators,
the problem reduces to showing that operators of order —(n — 1)/2 are locally
bounded from the Hardy space H! to L'.

1.5 Overview of the low rank conditions

1.5.1 Smooth factorization condition

In general, the projection mx xy satisfies inequalities
n < rank drxxyle < 2n -1, (1.5.1)

because C is conic. The boundary cases are pseudo-differential operators with
no loss of smoothness and solutions to strictly hyperbolic partial differential
equations with the loss of (n —1)/2 derivatives. An important ingredient influ-
encing the best order for L? continuity is the rank in (1.5.1). Here it is essential
that p # 2 because the L? results do not depend on the rank in (1.5.1). Now, we
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will formulate the important result due to [62] for the operators in . ;,‘(X Y2 0),
which assures the improved LP regularity under the following condition. The
canonical relation C will be said to satisfy the smooth factorization condition, if
there exists k, 0 < k < n —1, such that mx «y can be locally factored by fiber—
preserving homogeneous maps on C' of constant rank n+ k. More precisely, this
means that for every Ao = (2o, 0,%0,7m0) € C there is a conic neighborhood
Uy, of Ap in C, and a smooth map 7y, : C NUy, — C, homogeneous of degree
0, such that

rank dmy, = n+k,

Txxylenuy,, = Txxy 0. (1.5.2)

Under the condition that C'is a local graph and under the smooth factorization
condition, the operators in I}(X,Y;C), 1/2 < p < 1, are bounded from LYy
to LY  provided 1 <p < oo and p < (=k+ (n — k)(1 —p))|1/p—1/2|.

The smooth factorization condition is not necessary for operators T' € I*
with p < —k|1/p — 1/2| to be continuous in LP. Several examples show that
the continuity is possible when the factorization condition fails ([59]).

The relaxation of the smooth factorization condition is an open problem.
The best result would be to show that operators T' € I*(X,Y;C) are bounded
from L2, to L} . provided u < —k[1/p—1/2|,1 < p < 00, and rank drxxy|c <
n+ k. Note that the proof of this result for £ = n —1 is based on the continuity
result from H! to L' for operators of the order —(n — 1)/2. One can assume
that these operators are also weakly continuous in L!. However, this problem
is still open. The factorization condition is interesting in its own right and it
allows fascinating generalizations, which we will discuss in Chapters 2 and 3.

The smooth factorization condition is trivially satisfied in two cases: pseudo-
differential operators with & = 0 and the maximal rank case with k = n — 1,
where 7y, is the projection along the conical direction. It turns out, that under
some natural conditions on the canonical relation C, corresponding to the most
important cases, it is extremely difficult to exhibit the failure of the smooth
factorization condition.

Now, we will describe the geometric meaning of this condition. On a smooth
submanifold ¥ of the set ¥ = mx«y (C) the canonical relation can be found
back as the conormal bundle N*¥* of ¥°°. The set ¥ is the singular support
of the Schwartz integral kernel of the operator T'. The conormal bundle N*X*
of ¥ C X x Y is defined by

NE® = {(z,6,y,m) €T(X xY): (a,y) € T,

£(6x) +n(y) = 0, Y(6z,8y) € T(z,, ). (1.5.3)
Thus, the diagram
N*Z>® cC
l TXxy (1.5.4)

ZOO
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defines a smooth local fibration over 3 with affine fibers. In these terms the
factorization condition becomes equivalent to the condition that the smooth
fibration of N*¥*° allows a smooth extension to C. This smooth extension is
defined by the levels of the mapping my,. In Chapters 2 and 3 we will analyze
this property with different degrees of smoothness of fibrations. However, the
theory becomes much more subtle if we assume that the described fibration
over X is analytic. The analyticity assumption is quite natural and is almost
always satisfied. In fact, if a critical point of a phase function has finite order of
degeneracy, then the phase function is actually even a polynomial in a suitably
chosen coordinate system in a neighborhood of the critical point. On the
other hand, there are very few infinitely degenerate critical points, because
the coefficients of the Taylor expansion of such phase function have to satisfy
infinitely many independent algebraic equations. Another reason is that the
study of Fourier integral operators is often reduced to the asymptotics of the
oscillatory integrals corresponding to the associated Lagrangian distributions.
However, the asymptotic behavior (as A — o00) of the oscillatory integrals
Ik e*) depends essentially on the first terms of Taylor expansion, namely the
power of the highest order term of the asymptotic expansion corresponds to the
first non-vanishing term of the Taylor expansion ([9], [2]). In particular, the
analyticity assumption is satisfied for the propagation operators of hyperbolic
partial differential equations with analytic coefficients. The properties of the
oscillatory integrals with analytic phase functions were studied in, for example,
[2]. The corresponding geometric constructions can be found in [27], [14].
The singularities of wave fronts are analyzed in [1]. The smooth factorization
condition is called the holomorphic factorization condition if all mappings in
(1.5.2) are analytic (and hence holomorphic after the continuation to a complex
domain). We will show, that under the analyticity assumption the holomorphic
factorization condition holds in the most important cases. Some results of this
type can be found in [52] and [53]. There are alternative presentations of
Lagrangian distributions which make use of complex-valued phase functions.
Fourier integral operators associated to such functions have been studied in [37]
and global representations of Lagrangian distributions were obtained in [33].
A survey of the main theory is in [14].

The converse sharpness results for the wave-type equations can be found in
[40], [44], [62] for the case when rank drmx «y|c = 2n—1 somewhere. For essen-
tially homogeneous symbols (S;j with p = 1) we will generalize the sharpness
results to arbitrary ranks. We will show that the order —k|1/p — 1/2| is sharp
for all elliptic Fourier integral operators provided rank drxxy|c < n + k.
As a consequence it follows that elliptic operators of small negative orders
which are continuous in L? or from LP to LY can be obtained as a composition
of pseudo-differential operators with Fourier integral operators induced by a
smooth coordinate change. Some results of this type appeared in [54] and we
will describe them in Section 1.11. There, we will also mention the case of
an arbitrary p where the sharpness of the orders for general elliptic operators
under a rank restriction condition for the projection mx xy|c is not settled in
general. In Chapter 4 we will provide examples of the failure of the factoriza-
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tion condition in general and for the canonical relations corresponding to the
translation invariant operators in R™.

Now we will briefly describe the smooth factorization condition in terms of
the phase function of a Fourier integral operator. From now on, we will replace
the frequency variable 6 by & in the cases when the dimensions of X, Y and
the frequency space = coincide. By the equivalence-of-phase-function theorem
(Theorem 1.1.3 below), we can assume that a phase function @ of an operator
T e I"(X,Y;C) is of the form

Therefore, the corresponding wave front is given by

A<I> = {(v£¢(ya f): ga Y, Vy¢(y7 E))}

and C = Ay = {(z,&,y,—m) : (2,€,y,n) € Ag}. The local graph condition is
equivalent to

det ¢y (y,€) # 0 (1.5.5)

on the support of the symbol of the operator T. The mapping

Y(@,€) =Y xE3 (3,8 = (Ved(y,£), &1, Vyd(y,8) € T"X xT*Y

defines a diffeomorphism from Y x Z to C. The level sets of the mapping
mxxy : C = X xY correspond to the kernels of the linear mapping drx xv|c,
or to the kernels of the mapping dnx xy o dvy. It is straightforward that

2
kerdmx xy o dy(y, &) = (0, ker 6—(1/75))-

0¢?
Therefore, fibration (1.5.5) reduces to the fibration defined by the kernels
ker ¢z (y, &), or by the level sets of the mapping (y,§) = Ved(y,£) on the
set where the rank of (;S'g'g is maximal. A simple example of the failure of the
factorization condition is already possible in R®. The fibers of the function

¢(y,8) = (y,6) + é(ylfl + 126, (1.5.6)

(i.e. the level sets of V¢ (y, &) with respect to &) are straight lines with the slope
equal to y2/y1. It is clear that the corresponding fibration is not continuous at
zero. In the case when a phase function is real analytic we will concentrate on
its complex extension and on the holomorphic mapping

(Y, €) = Veo(y, §).

Let us discuss the corresponding singularity problem in terms of affine fibrations
in more detail.
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1.5.2 Parametric fibrations

First let us reduce the general manifold setting to open sets in R™. It does not
restrict the generality since we are interested in local properties of operators.
Note that sets X and Y have equal dimensions which follows from the condition
that the canonical relation is a local graph. In general, the canonical relation of
a Fourier integral operator in 7*X x T*Y can be regarded as a smooth family
of Lagrangian submanifolds of 7*R" parameterized by points in 7*R". Let us
first show that from this point of view the ranks of the projection to the base
space differ by n. It follows from the equivalence-of-phase-function theorem
(Theorem 1.1.3) that a homogeneous canonical relation has the form

A={(Ved(y,8),&y,Vyo(y,6)} (1.5.7)

in a neighborhood of a point (o, o, Yo, 70). The generating function ¢ satisfies

Ved (o, %) = o, Vyd(yo,&0) = no-

The phase function of an operator T’ € I}(X,Y; A) has the form

®(z,y,8) = (x,8) — 6(y,¢) (1.5.8)

and A = Ag is locally the collection of the points

{(V§¢(y7 6)7 f, Y, Vy¢(y7 g))}

The set in (1.5.7) will be often denoted by A, with phase function & as in
(1.5.8). Microlocally, the Schwartz kernel of operator T has the form

K(z,y) = / ei((zé)—ﬁb(y,ﬁ))b(m)y, €)d¢ (1.5.9)

with some symbol b € S%. Therefore, locally, modulo smooth terms, the
Schwartz kernels of operators in I5(X,Y; A’) are finite sums of kernels of the
form (1.5.9) with symbols b € S/'. Each of the kernels has this form in its own
coordinate system.

Therefore, we will assume that X and Y are open sets in R™. The local
graph condition is equivalent to the condition

det ¢!’ (y,€) # 0 (1.5.10)

on the support of the symbol of T'. In this local coordinate system, the projec-
tion mx xy|a takes the form

7rX><Y|A . (v§¢(y7£)a£3yavy¢(y7£)) = (ngb(y,f),y) (1511)

The level sets of the projection mxxy|s can be parameterized by points &,
for which the gradient V¢¢(y,&) is constant. On the other hand, in view
of Proposition 1.1.1 an open submanifold Ay of the canonical relation A is
equal to the conormal bundle N*Yy of a smooth submanifold ¥y of the set
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Y =7xxy(A). It follows that the level set of the projection mx xy|a in Ag at
the point (zg,&o,¥o0,70) is a linear subspace of T* (X xY). By (1.5.11),

(z0,y0)

these linear subspaces are parameterized by the pairs (¢, V,¢(y, )). Therefore,
points £ in the level set of V¢¢(y, §) form a linear subspace of the n—dimensional
frequency space Z. It is clear how this subspace dépends on (y, £):

Lemma 1.5.1. The mapping v:Y xE = T*X x T*Y defined by
’Y(ya 6) = (vﬁd)(yv g)a 61 Y, Vyd’(ya é))

is a diffeomorphism from'Y x = to A. For every y € Y, the restriction £ —
v(y,&) is a diffeomorphism from Z to AN(R™ x R” x {y} x R™), with the inverse
given by the projection (x,&,y,n) — .

Therefore, the linear mapping dmx «y|a is isomorphic to drxxy o dvy|y x=
and, in particular, their kernels are isomorphic. The latter is

ksrd'ITXxY o d“/LYxE(y,f) =
{(8y,0¢) : 5 (y, )06 + 58 (y, £)8y = 0,6y = 0}.

We obtain

2
kerdmx xy o dyly xz(y, &) = (0, ker g?(y,f)). (1.5.12)

We proved the following characterization of the projection in terms of the phase
function:

Theorem 1.5.2. Let a local graph A be defined by the generating phase func-
tion

®(z,y,8) = (x,8) — d(y,€). Then, for every 0 < k < n — 1, the following
statements are equivalent.

(1) rankdrxxy|as <n+k.

(2) rankdmxxy o dy|yyxz <k for ally €Y and v from Lemma 1.5.1.

(3) rank %‘g(y,f) <kforallycY and €€ =.
Remark 1.5.3. By the linearity of the level sets of the projection mxxy|a, it
follows that the equality

W;(lxy(ﬂ’xxy(/\)) NA= keI‘dTrxxylA(/\)

holds locally at every A € A. On the other hand, if we use linearity of the level
sets of the mapping V¢¢(y, &) and the isomorphism in (1.5.12), we get that the
level sets of the mapping

& V§¢(y7 6)

are defined by the kernels of the matrix Dggqb(y, £). The same conclusion follows
if we apply the argument of Section 3 to the function ¢ directly.
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The level sets of mx xy | correspond to the level sets of the gradient V¢ ¢(y, §)
with respect to €. In particular, they are disjoint and are extendible to an open
set Q in C*, provided that ¢ is analytic. Therefore, we have fibrations in QNR"
and Q by the level sets (with respect to &) of the gradlent Ved(y, &) and its
holomorphic extension.

Remark 1.5.4. If the maximal rank of dmxxy|a equals n + k, we denote by
A®) the set on which it is attained. In terms of fibrations, the fibration by
linear subspaces in Remark 1.5.3 is also defined by the smooth mapping

¢
g2
The factorization condition (1.12.2) is equivalent to the condition that the
mapping s oy~ ! is locally smoothly extendible from A*®) to A. This extension
corresponds to the fibration by the kernels ker dmry,, where 7y, is as in (1.12.2).
In terms of fibrations, the set of essential singularities of the mapping g is

equal to Q%"8 N (R® x R™), where Q"8 is the set of essential singularities of
the complex extension of the mapping .

g 1y AR 5 (y,€) - ker 75 (y,8) € Guop (R™). (1.5.13)

The following example shows that the factorization condition is not trivial.
In view of Remarks 1.5.3 and 1.5.4, by Theorem 1.5.2 the factorization condition
reduces to the study of the inequality ker ¢¢,(y,€) < k. In this case we have
rank drx xy|as < 1+ k by Theorem 1.5.2, (3). The function

k+1

1,6) = (0, 6) + = 3 (1r +iks)?

6”1‘2

satisfies the necessary rank condition in a neighborhood of &, = 1. On the
other hand, we have

Y1 Z (ylgl + 4:&)
y2(y1§1 + y2&2)

Ved(y,£) = y+§— y’“‘l(yl&gy’“‘lg’“‘l) : (1.5.14)
0

& 2 &+ yik)?

For points y with y; # 0, 1 < i < k+ 1, the level sets in (1.5.14) correspond to
the level sets if the mappings y1&1 + y:&i, 2 < ¢ < k + 1. The direction of the
level sets is now determined by fractions y;/y1, 2 < ¢ < k + 1, which are not
continuous at y = 0. We obtain

Example 1.5.5. Let 1 <k <n—2 and let z,y,£ € R”. The function

k+1

fln Z(ylfl +y:&i)®

=2

®(z,y,8) = (z —y,6) —
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satisfies the rank condition
rank drx xylp, <n+k

and defines a local canonical graph Ag, for which the fibration by the level sets
of the mapping 7x xy|a, does not allow a continuous extension over y = 0.

Remark 1.5.6. In the case of k = 0, the operators are conormal and their
analysis can be reduced to the analysis of pseudo-differential operators by com-
posing them with Fourier integral operators induced by a smooth coordinate
transformation (see Section 1.11.2). For such operators, the factorization con-
dition is trivially satisfied. The case of k = n — 1 correspond to the inequality
rank drx xy|a < 2n — 1, when the factorization condition is satisfied because
A is conic. In this case, one can take 7y, in (1.12.2) to be the projection in the
conic direction.

Remark 1.5.7. The failure of the factorization condition implies that the sin-
gular support X of an operator T' can not be a smooth manifold. Indeed, if
¥ is a smooth manifold, then A = N*¥ and the factorization condition holds.
Conversely, the fact that ¥ is not smooth does not imply the failure of the
factorization condition. For example, let us take a semicubic parabola G in R3:

G={zecR :2? =23 25 =0}

and define ¥ by ¥ = {(z,y) € RS : z — y € G}. It is straightforward that a
corresponding phase function ® has the form

4 3
Q(mayvé-) = <37_y,£> - 2_72—%

It is clear that X is not smooth at zero. Meanwhile, the factorization condition
holds for ®, which will become clear in Section 4.2.

In Chapter 3, we will discuss fibrations in the real setting in the classes C™.
For now, we restrict ourselves to one example.

Example 1.5.8. For k£ € N the function
1
&n
satisfies condition rankDgfb < 1 and defines a local canonical graph, for which

the fibration by level sets of the function V¢® is continuously extendible over
y = 0. Moreover, this extension is locally C?*~!, but not C?*.

d(z,y,8) = (z - y,&) Wty + (W +43)&)% yeRY, (eR”

1.5.3 Operators, commuting with translations

Here we want to give an intuitive argument for the LP continuity under the
factorization condition for the translation invariant operators. Let X, Y be
open sets in R™. Let an operator T' € I#(X,Y; A') commute with translations.
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It follows that T is a convolution operator with some distribution w. This
distribution w is a Lagrangian distribution of order p, associated to some real
conic Lagrangian manifold C' C T*X. Let C satisfy the smooth factorization
condition. This condition means that the rank of the projection 7 : C — R»
does not exceed k, is equal to k at points in general position, and the projection
7 can be factored in a composition

T=aof,

where  is a fibration from A to some k-dimensional smooth manifold M and
« is a smooth mapping from M to R™. The mapping « induces the pullback
a* from C*®°(R") to C*°(M) by a*f = f o« and the pushforward a, from
(C®)' (M) to (C§°)'(R™) by axg = goa*. Let 1 be a smooth positive compactly
supported measure in M. Then the distribution v = a.u defines a Fourier
integral distribution with the Lagrangian manifold C, obtained from A by fixing
an arbitrary point in 7*X. The pullback a, maps measures in M to measure
in R™, hence v is also a measure in R". In order to see that v = a.,u defines a
Fourier integral distribution we write v in some local coordinates z in M:

v() = (2m)7" [ [elemvlu(y)dyde
=m0 (0 ) (y)dyde
= ) e (e ) () dude
= (2n)7" [ [ete—a2)8) y(z)dzdE.

As a candidate for the distribution w above we can take the Fourier integral
distribution v. One readily checks that the order of v as a Fourier integral
distribution is equal to —k/2. For the convolution operator with v we have the
estimate

T fllze = [lo* fllze < o(R*)||f]ze,

based on the translation invariance of the LP norm. Letting p go to one we get
the continuity of operators of order —k/2 in L? spaces, which corresponds to
the expected orders.

1.6 Fourier integral operators with complex
phase functions

The theory of Fourier integral operators with complex valued phase functions
was systematically developed in [37] and good expositions of the theory can be
also found in [74], [14], [27]. An approach using positive conic ideals instead
of almost analytic extensions is presented in Sections 25.4 and 25.5 in [27].
The L? continuity was established in [38] in the case when C is the graph of a
positive complex canonical transformation and then was generalized in [26] to
more general canonical relations. In the present chapter, under a local graph
type condition we will establish L? estimates for operators with complex valued
phase functions. These results extend results of [62] to the complex case as well
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as results of [38] to the case of LP with any 1 < p < co. The result is sharp if
the imaginary part of the phase function vanishes or is small (see [62], [65], [54]
for the arguments in the real case). However, if it becomes large, the regularity
properties can be improved and we will give some conditions for it as well.

Let us note here that the use of complex valued phase function is advanta-
geous in many situations. It is well known that canonical relations of Fourier
integral operators do not allow global parameterizations with a single real val-
ued phase function due to the non-triviality of Maslov cohomology class. How-
ever, it was shown in [33] that such global parameterizations become possible
if one allows phase functions to be complex valued. In this way our estimates
allow to apply the regularity theory of Fourier integral operators to certain
global problems.

Let C C (T*X\0) x (T*Y'\0) be a smooth complex positive homogeneous
canonical relation, closed in T*(X x Y)\0. As usual, the tilde denotes an almost
analytic extension of the corresponding space.

The L? continuity of operators in I°(X,Y;C) was established in [38] in
the case when C is the graph of a positive complex canonical transformation
and then was generalized in [26] to the following formulation. Assume that
for every + in the real subset Cg of C the maps from (T,C)g to the tangent
spaces of T*X and T*Y are injective. Then the operators in I°(X,Y; C) are L>
continuous. Moreover, one can also assume that locally the maps Cr — 7% X\0
and Cr — T*Y\O from the real subset Cr are injective. In this case the
operator T o T* belongs to \Il(l) /25 which imply the L? continuity of 7.

The proof of LP estimates in Theorem 1.7.1 consists of a standard complex
interpolation argument between the L? continuity of zero order operators and
the continuity from H' to L' of operators of order —(n — 1)/2 in Theorem
1.7.2. In order to establish the latter it is sufficient to obtain uniform bounds
for all atoms due to the atomic decomposition of H'. If the support of an
atom is large, the estimates follow easily from the Cauchy-Schwartz inequality.
However, if the support is small, we need an additional almost orthogonality ar-
gument. Applying a refined Littlewood-Paley decomposition to the operators,
it is possible to replace the phase function by its linear approximation on every
dyadic region in the frequency space. Then we have to take into account the
fact that the phase function is complex valued. It turns out that we can replace
it by a non-degenerate real valued phase function in the integration by parts
argument and still have the desired estimates for the kernels. The singular sup-
port of the integral kernel can also be replaced by the singular support of the
corresponding operator with a real valued phase function and the exceptional
set is constructed for this new operator. Let us note here that we can deduce
certain LP properties of operators by applying corresponding results for opera-
tors with real valued phase functions. Below we give an argument, from which
it follows that operators with complex phase of order p are continuous from
L2,y to Ly, provided p < —(n —1/2)|1/p—1/2|. This estimate follows from
the observation that we can always regard an operator with complex phase as
an operator with real phase of the same order and of type 1/2. However, we
will see that the bound above is never sharp, even for elliptic operators. This
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is the reason why a more refined analysis is necessary, and the local graph type
assumption (1.7.2) in Theorem 1.7.1 will be used to relate dyadic peaces of
the operator to some operators with real phase, for which we can perform the
integration by parts procedure.

By the standard duality argument we get the estimates in Lipschitz space.
We also establish the continuity from L? to LP by reducing the operators to
fractional integrals. This result is applied to analyze the regularity properties of
a parametrix in Section 5.5. We also derive LP—LY properties of Fourier integral
operators with complex phase and these properties are in general sharp as well.
In Section 1.7 we consider the case of I* with complex phases and in Section
1.12 we consider the general case I}, 1/2 < pl, and the smooth factorization
type condition. In Section 1.10 we discuss LP-L? estimates as well as other
spaces.

1.7 Estimates for operators with complex phases

Let X and Y be smooth manifolds of dimension n and let C C (T*X\0) x

—_~—

(T*Y'\0) be a complex positive homogeneous canonical relation. Let T €
I"(X,Y;C) be a Fourier integral operator of order u. As usual, modulo C'*°
we can write T locally as an integral operator with the kernel

A(z,y) = / e @0 q(z,y,0)do, (1.7.1)
RN

where a is a symbol of order u + (n — N)/2 and ® is a smooth regular phase
function of positive type. By the equivalence-of-phase-function theorem, we can
always write the kernel of a Fourier integral operator T in the form (1.7.1) with
N = n. Therefore, in this monograph without loss of generality we will always
assume N = n. By the symbol class S™ in this section we will always mean
the symbol class ST, unless we state otherwise. The notation a(z,y,f) € S™
means that it is a smooth function, satisfying

02,05 a(z,y,0)| < Cag(L + |6)™1A1.

Let C C (T*X\0) x (T*m be a smooth complex positive homogeneous

canonical relation which is closed in T*(X x Y)\0. Let ® be a regular phase
function of positive type, locally parameterizing C. Our main assumption will
be that there exists 7 € R, such that

(L) Re®+ 7Im @ defines a local graph in T*(X x Y)\0.
Locally, this means that

det 9,09( Re ® + 7 Im @) # 0, detdydp( Re ® +7Im ®) #0 (1.7.2)

on the support of the symbol a. Condition (1.7.2) is an analogue of the local
graph condition. For example, if Im ® = 0, it is equivalent to the local graph
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condition for C saying that the projections from Cgr to 7*X and T*Y are locally
diffeomorphic. In general, as it will be clear from Lemma 1.8.1, assumption
(1.7.2) with 7 € R is equivalent to the same assumption with some 7 € C.
Indeed, the determinants in (1.7.2) are polynomial in 7, which means that if
(1.7.2) holds for some T, it also holds for all but finitely many 7 in C. Therefore,
(L) is equivalent to the existence of T € C such that (1.7.2) hold on the support
of the symbol of a.

We should also note that condition (1.7.2) is invariant in the following sense.
Given an operator T € I*(X,Y;C), according to [33], there exists a single
complex valued phase function ®;, which parameterizes C globally. Such ® does
not depend on a particular choice of the coordinate system in (z,y, #)-variables.
Note finally, that in the general case with N > n condition (1.7.2) should be
replaced by condition that the rank of the matrix 8,9¢( Re ® + 7 Im ®) equals
n.

e

Theorem 1.7.1. Let C C (T*X\0) x (T*Y'\0) be a smooth complex positive
homogeneous canonical relation which 18 closed n

T*(X xY)\0. Let ® be a regular phase function of positive type, locally pa-
rameterizing C. Assume that condition (L) holds. Let p < —(n—1)|1/p—1/2|,
1 < p < oo. Then the operators in I*(X,Y;C) are continuous from L%, (V)
to LP (X).

loc

Note that the conditions of Theorem 1.7.1 imply the L? continuity of
I°(X,Y;C) (as in [26, Theorem 3.5]), which we will freely use in the rest
of the paper. Let us, however, give a more direct argument for L? continuity.

There is a simple argument showing certain LP properties. It also shows
that Theorem 1.7.1 does not not follow from its real valued counterpart. Using
assumption (L), we can always write the operator T' € I#(X,Y’; C) in the form

Tf(:l:) — /ei( Re &+7 Im @)a(z7y, 6)e~(1+i7) Im q’f(y)d&dy, (1.7_3)

with real 7 € R and with the phase function Re ® + 7 Im ® defining a real
canonical relation which is a local graph (condition (L)). The symbol of this
operator is

a(m, Y, 9)6—(1+i7—) Im ®(z,y,9)

and it belongs to Sf/Z if a € S#. This follows from the fact that e~(1+i7) Im ® ¢
S9 /o~ See Lemma 5.3 in [38] for the detailed argument. Regarding T as an
Fourier integral operator with real phase in I{‘/z, we get that T is bounded on
L? when p < —(n—1/2)|1/p — 1/2|, according to Section 1.5.1. However, this
order is not as good as the one in Theorem 1.7.1. In order to improve this order
in Theorem 1.7.1, we need to avoid the reduction to a real phase function and
perform the almost orthogonality argument in the complex case. Thus, for the
proof we will make a construction similar to the real case as in [62], making
some necessary modifications. However, this argument already shows the L2
boundedness of operators of order zero. Indeed, according to (1.7.3), we can
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view T in Theorem 1.7.1 as a Fourier integral operator with real phase, of order
zero and type 1/2. It now follows from, for example [20], that T' is bounded on
L2

One can simplify the kernel (1.7.1) in the following way (see also the proof
of Theorem 3.5 in [26]). Let v = (z0,&o,¥0,M0) € Cr and let ®(z,y,0) be a
regular phase function of positive type at (xo,&o,¥0,00). The corresponding
canonical relation will be denoted by Cg. Then & = ®/ (20, yo0,60) and 1o =
—@;(:co, Yo, 0o) are real. Assume that & and 7o are nonzero and that the critical
point of ®(z,y,0) + (y,n) as a function of y,6 is non-degenerate at (yo,6p),
T = o, = 1. Let ¢(x,n) be the critical value of an almost analytic extension
of ®(z,y,0)+ (y,n). Thus means that ¢(z,n) = ®(z,y,0)+ (y,n) at the points
where 0®/0y = —n and 0®/00 = 0. The almost analytic continuation of Ce

18
— 0P 0%\ 09
C<I> . {(.’E, 5:1‘;,’5/, —'55) ; '55 = 0} (174)

and ¢(z,n) — (y,n) defines the complex canonical relation

(2020} 0z

At the critical points 0®/06 = 0 the canonical relations (1.7.4) and (1.7.5) are
equal. According to Lemma 2.1 of [37] the function ¢ is of positive type and
by Theorem 4.2 of [37] for classical symbols the kernel (1.7.1) can be given by

A(m,y):/ ei(¢($»n)—(y:7l>)a(x’y’n)dn’ (1.7.6)

where a € S* and ¢ is of positive type. Localizing by partitions of unity, may
assume that the symbol a is compactly supported in  and y. By the complex
interpolation techniques, we will show that Theorem 1.7.1 follows from the
following endpoint result.

Theorem 1.7.2. Let C C (T*X\0) x (T*Y'\0) be a smooth complex positive
homogeneous canonical relation satisfying the conditions of Theorem 1.7.1. Let
T € I-=1/2(X Y;C) be an operator with the integral kernel locally given by
(1.7.6). Then T is continuous from H' to L'.

Let us make some remarks about the sharpness of the orders above. In the
case Im ® = 0, the operator has a real phase function and the estimates in The-
orem 1.7.1 are sharp if the rank of the canonical projection from C C T*(X xY')
to X xY has maximal rank equal to 2n—1 at some point. However, when Im &
becomes strictly positive and large, we can make certain improvements using
representation (1.7.3) of T'. Thus, in general one can expect the improved esti-
mates since the symbol in (1.7.3) contains an exponent to the negative power.
For example, if Im ¢ in (1.7.6) behaves like |n|, T' regarded as an operator
with real valued phase function, is a smoothing operator. In general, if m > 0,
1/2 < p <1 are such that

—Im ¢ —-m
€ < Sp,l—p’
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then T is a bounded operator from L2, . to Ly ., provided u < —(n—p)|1/p—
1/2| + m, 1 < p < co. This follows easily from the real phase results. Indeed,
according to Lemma 1.8.1 below, there is 0 < € < 1, such that ¥ = Re ® +
et Im ® is a non-degenerate phase function of positive type and such that Cy
satisfies the conditions of Theorem 1.7.1. It follows, that we can regard T as
a composition of an operator with phase function ¥ and symbol of order y,
with a pseudo-differential operator of order —m. Since this pseudo-differential

operator is bounded from L? to L?,, we obtain the statement.

1.8 A relation between real and complex phases

We begin with an observation relating our operators to the real Lagrangian
distributions.

—_~—

Lemma 1.8.1. Let A C T*X\0 be a closed conic positive Lagrangian manifold.
Let ¢(z,0) € C=(I),T C X x (RV\0), be a non-degenerate phase function
which generates A locally near (x0,60) € (Cy)r. Then the matriz

Re ( /9/m7¢:9,0) + Im ( g:w ¢g0) (1'8'1)

has rank N at (zg,6p) for all p € C in the complement of a discrete subset of
C.
Suppose, in addition, that N > n and that there exists T € C such that

rank ( Re ¢, + 7 Im ¢;,) = n.
Then the rank of
Re ¢, + 1 Im ¢, (1.8.2)

is mazimal, equal to n, for all u € C in the complement of a discrete subset of

C.
Proof. The fact that ¢ is non-degenerate means that the matrix
Re (¢yz, bgg) + 1 Im (852, b4p)
has rank N at (zo,6) for p = i. The rank condition is an algebraic condition

in p which implies the statement. For the second part, the rank condition for
(1.8.2) is algebraic and open, n < N, therefore we obtain the second statement.

Remark 1.8.2. The argument of Lemma 1.8.1 can be used in order to show
that there ezists a real conic Lagrangian manifold Ay, containing Agr, such that
IH(X,A) C If/z(X,Ao) for every p > 1/2.

In order to see it one finds a non-degenerate matrix in (1.8.1) with real 7
and writes u € I¥(X, A) as

U(.’L’) — /ez( Re ¢+7 Im ¢)a(x,9)e—(1+i7‘) Im q)de (183)
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Then the phase function in the first exponent in (1.8.3) defines a real La-
grangian manifold Ag, meanwhile

em(HmImé e gd . (1.8.4)

Let us make some observations, clarifying the symplectic aspects of the prob-

lem. Let C C (T*X\0) x (T*Y'\0) be a smooth complex positive homoge-
neous canonical relation such that for every v € Cgr the projections (T,C)r —
T(T*X) and (T,C)r = T(T*Y') are bijective. It is sufficient to restrict our-
selves to the linear case first. Let S1,Ss be real symplectic finite dimensional
vector spaces with complexifications S;¢, Sac, and with complexified symplec-
tic forms o7 and o2. Let A C Sic @ Saoc be a linear positive canonical relation
from S, to S;. It means that A is a linear complex subspace of Sic @ Sac,
Lagrangian with respect to the difference 0; — o2, where ; and o9 are lifted
to S1 ® Ss, and such that

it (01(X, X) —02(Y,Y)) >0, (X,Y) €A

Suppose that the projections of Ag = AN (S; & S2) to S1 and S, are bijective.
Let

A ={X€Sic: (X,00€A}, a={X €Soc: (0,X)€A},  (185)

let
512:{ReX:XE)\1}, Szzz{ReX;X€A2}

and let S1; and Ss; be symplectically orthogonal complements of S;2 and Sao
in S7 and Ss, respectively. Then we have S; = S11 @ S12 and Sy = Sa1 & Saa.
It follows from Lemma 3.3 in [26] that the decomposition

A=A B A D A2

is unique, where A; ()\2) is a strictly positive (negative) Lagrangian plane in
S1ac (S12c), respectively, and Ay is the graph of a symplectic isomorphism from
So1¢ to S11c. The planes A; and \s in this decomposition are given by (1.8.5). If
we assume that A\; = A\;r@i\jr for j = 0or 1, we get Ap = Agr@®Air®A2r. The
set Ajr consists of X € S; with (X,0) € A. However, in this case (X,0) € Ar
and hence X = 0. The same argument applies to A2 and we obtain that
A1 = Ay = {0} and A = Ay is the graph of a symplectic isomorphism from Sac
to Sic /.\’l;his would also imply that C is locally a graph of a symplectomorphism
from T*X to T*Y.

1.9 Proofs

Let us now prove Theorem 1.7.2. For a function f € H'(R") we will use its
atomic decomposition
f=2_aqaq,
Q
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similar to the one described in Section 1.3, where ) |ag| is comparable to
|| f||a, and the atoms ag € H! satisfy

(1) Every agq is supported in the cube @ C R".

(2) llaglle < 1QI7.
(3) The cancellation property [, a(y)dy = 0.

Therefore it is sufficient to establish the uniform estimate ||Tagl||r: < C for
all atoms ag with small cubes (). In fact, if the sidelength of ) is larger than
one, the Cauchy-Schwartz inequality and L? continuity of 7' imply

ITagl|z: < CIQI"?||Tagllz2 < C'1Q["?|lagl| Lz,

which is uniformly bounded by the second property of the atoms.

The idea of the proof for small cubes @ is to make a dyadic decomposition
of T and to replace T by an operator with a complex linear phase function of
positive type. For every such operator we make integration by parts replacing
the complex phase function by a non-degenerate real phase function according
to Lemma 1.8.1.

For every A = 2/ we consider the set n¥ of points on the unit sphere S"~!,
In¥| = 1, such that [p¥ —7%'| > A=/2 if v # ', and for every 7 € S"~! there
exists a ¥ with [n —n¥| < A7'/2. Let N()\) be the maximal number of points
ny for a fixed A. It it easy to see that

N(\) = oAn=1/2)y, (1.9.1)

The points 7} define a set of roughly equally distributed directions in the phase
space. Let

D5 = {n:[n/Inl — 5| < 227172}
be the corresponding conical decomposition of the 7-space. Let x% be an asso-

ciated partition of unity (see [68, IX.4.4]). The functions x are homogeneous
of degree 0 in 7 such that

(i) Every xX is supported in I'§.
(ii) For all » # 0 and all A holds >, xX(n) = 1.
(iii) [95xK ()] < AgAlel/2|n|=lel,

Such family can be constructed by taking a smooth non-negative function 8(u),
supported in |u| < 2, and equal to one in |u| < 1. Then one defines

B(n) = BAY2[n/In| - nX])

and

X5 = 8% (Z ﬁi) : (1.9.2)
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Let 0 be a dyadic decomposition in the phase space. Let 8 be a smooth function
supported in the interval (1/4,1) such that
>, 60(27%) =1 for all s > 0. Let 0x(n) =0(A~'n). Let 6o =1 — 3,54 0ar.

Lemma 1.9.1. Let a§(z,y,n) = xX(n)0x(n)a(z,y,n). Define

A5 (@,y) =/ P =wm)al (z,y, m)dn.

n

Then for all y,y' € R™ we have

[ 145 @ide < OA-D7, ang (193)
[ 145, - A5l < Cly -y I3 A2 (194
Proof. By a rotation we assume that 7, = n§ and n' = (12,... ,1,) is perpen-

dicular to n}. Denote

r(n) = ¢(z,n) — (¢ (z,n5), m)-
Then the original phase function is

o(z,n) —(y,m) = (¢n(@,nX) —y,m(d(z,n) — {¢y,(z,nX),m)
= (¢y(z,nX) —y,m +r(n).

We have the following estimates for r(n):

‘(g%)Nwm

|(Va)Nr(n)| < CnAN2, (1.9.6)

< CnA7N, (1.9.5)

if N >1and n € supp af(z,y,n). Estimates (1.9.5) and (1.9.6) hold for Rer

and Im r in view of their homogeneity, since the first two terms in the Taylor

expansion vanish at n}. It follows then that (1.9.5), (1.9.6), also hold for 7(n).
We can rewrite A as

AY (z,y) = / el’(%(fbm’i)—ym)bx(m’ y,n)dn, (1.9.7)
where b (z,y,n) = "M xX (n)8x(n)a(z,y,n). Define the self adjoint operator

v o__ 2 62
v = (I —A aT;f) (I = MV, V). (1.9.8)
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The fact that a € S™("1)/2 and the choice of x¥ imply that
I(L)N aX (z,y,m)| < CnA~ (712 (1.9.9)

and in view of (1.9.5) and (1.9.6) the same estimate holds for b%(z,y,n). Inte-
gration by parts implies

Al (z,y) =Hi'(3?,y)/ (LY)N K (2, y, m)elOn@m)=vm dp, (1.9.10)
where
v p v -N v -N
HY(z,y) = (14 X|(¢,(z,n5) —)1*) " (1 + (8@, n5) —»)']?) .
(1.9.11)

We will need the following

Lemma 1.9.2. Let z,a, 3 € R and let p € R be such that |u| < 1/4. Then
L+ Az —a—iB]? >1/2(1+ Xz — a — pp)?)
for every A > 0.
Proof. The case with y = 0 is easy. Assume that p > 0. We have
(z—a—=uf)’ + (1 +p*)B - |2 —a—if]> = 2uB(uf + a - 2),
which implies
(z—a—pB)’ + (1+p*)B < |z —a—if° +2u|B||z — a — ppl.
It follows that

L+ Az —a—if* >
L+ A [(L+p*)8 + (2 —a — pp)® — 2u|Bl|z — o — pf] -

The statement would follow from the inequality
1
2ulBllz — a = pbl < 5 (L4 p»)B*+ (2 — a — up)?). (1.9.12)

Let’s consider two cases. First, assume that |8 < |z — a — p|. Then

1
2ulBllz — o = pB| < 5 (2 — a = pp)?,
implying (1.9.12). On the other hand, if u|g| > %|z —a— uf|, we get

1+ 1447

" 1+p21
2ulBl T 2p?

22 4

161 > 2= a - B 2 2z — a — bl
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when u < 1/4. Thus, (1.9.12) follows. The case p < 0 is similar. The proof of
the lemma is complete.

We now apply Lemma 1.9.2 to (¢, (z,7%) —y) with u < 1/4. It follows that

HY(z,y) <272NCn(1+ X*|( Re ¢} (z,n%) + pIm ¢} (z,n5) — y)1[?) ™Y
(1.9.13)
—-N
(1+ X[(Re ¢y (z,n%) + p Im ¢, (z,75) — )')
for any p < 1/4. We fix 0 < pu < 1/4 for which the matrices in Lemma 1.8.1
have maximal ranks (we write u rather than 7 to emphasize that u is real).
Then the mapping

z — Re ¢y (z,n5) + p Im ¢, (z,n5)

is non-degenerate, implying that [|HY(z,y)|dz < CA~(+D/2 if N > n/2.
Since the support of b%(z,y,n) has volume at most A - A(""1)/2 and estimate
(1.9.9) holds for b, the integral in (1.9.10) is bounded by A. Estimate (1.9.3)
now follows. Differentiation in y introduces a factor bounded by A, so we get

/IVyAK(x,y)Idaz <CM- ,\—(n—l)/z,

which implies (1.9.4).

In order to take into account the singular support of the operator, we define
an exceptional set with respect to the real valued phase function ¥ = Re ¢ +
p#Im ¢ for a fixed p € R as above. Let the atom ag be supported in the cube
(@) centered at yo and with sidelength 6. For every n} define a rectangle

L= {2 lyo — ¥, m)| < A2 |7 (yo — ¥ (,mX))| S AT}, (1.9.14)

where 7§ is the orthogonal projection in the direction of n§. Let Ng = |J, R}_..
Then because the mapping ¢ (z,7) has a non-vanishing Jacobian in z for every
7, we get

|Ng| < CiN(37Y) (671~ (D72 < 0y,

Lemma 1.9.3. Let Q and § be as above. Then for everyy € Q and X\ > 61
holds

[ i@l s oxgiann (19.15)
R™\Ng

Proof. We will argue similar to [68, IX.4.7] with a difference that we replace
the phase function by its real modification. According to the choice of the
set n}, there exists a unit vector 132, such that |n} — n}<,| < §1/2. Since
Ng =U, Rj-1, x € Ng implies x ¢ R}, which in view of (1.9.14) means

672 yo — iy (m, M3 )| + 67 w3 (yo — W (2, m3a))| > e (1.9.16)
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We have |y — yo| < & because y € @, and since ¢ can be assumed sufficiently
large, applying triangle inequality to (1.9.16) and multiplying by Ad, we obtain

My = n(@m) 1| + X2 (y = ¢ (z,15))| > A6 (1.9.17)

when A > §71. Now we can perform the integration by parts argument as in
(1.9.10) and insert (1.9.17) into (1.9.3). We use the estimates

1+a)™Ma+p)N <221 +a+8)7, ,8>0,
with a = A|(y — ¥; (z,n%))1] and 8 = A/2|(y — ¢ (z,7¥))"], and

(L+ Ay = o) (@, m) 1] + A2y — ¢ (z,m¥) )~ < e
in order to get
H}(z,y) < CAXT'67H(L+ Al(y — o) (z,m¥)1 |
+ N2 =) )TN, A= 6 (1.9.18)

from (1.9.11). Using inequality (1.9.10) and the fact that /3, is non-degenerate,
we get

Jemung 4% (@,9)lde <
CA-A7167 [(1+ X2|(y — ) )V (1 + N (y — ) |?) 2N da.

With 2N — 1 > n we obtain (1.9.15).
The final estimate in our preparation is

Lemma 1.9.4. Let T be as in Theorem 1.7.2. Then the uniform estimate

/ Tagldz < C
Ng

holds for all cubes Q) with sidelength bounded by one.

Proof. The proof is relied on the fact that the operator T o (I — A)(n—1)/4
belongs to I°(X,Y; C") and, therefore, is bounded on L2,

[Tagllz < Cl|(I — A)~(=D/gg]|,. (1.9.19)

The rest of the argument is standard. The Hardy-Littlewood-Sobolev inequal-
ity for fractional integrals yields

(I = A)~ D ag|l2 < Cllagllp. (1.9.20)

where p, = 2n/(2n — 1). By the second property of atoms we have ||a <
: Qllpn
|Q|71/?". Applying the Holder inequality to Tag, (1.9.19) and (1.9.20), we
obtain,
ITaglli(vg) < CIOIY*"[lagllp, < C.
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End of the proof of Theorem 1.7.2. We set A = 2! now. Let
An(e,y) = [ 6=y (a,y,n)dn,

where ax(z,y,m) = Ox(n)a(z,y,n). Then ay(z,y,n) = 3, a5 (z,y,n) and
because of (1.9.1) with A = 2!, the estimates of Lemma 1.9.1 and Lemma 1.9.3

imply

/ | Ay (z,y)|de < C, y € R™, (1.9.21)

/|A2: (z,y) — Agi(z,y")|dz < Cly — ¢'|2, v,y € R?, (1.9.22)

/ |Agi (z,y)|de < C27%7 1, ye B, 271 < 4. (1.9.23)
R™\Ngq

Writing Thia(z) = [ A (2, y)a(y)dy, we have a decomposition Tag = X + s,
where

Si= Y Tyag; Ba= Y Tuagq. (1.9.24)

2051 2l>45-1

For the first sum we can use the cancellation property for the atom ag, [ a(y)dy =
0, to obtain Thiag(z) = fQ[AQz (z,y) — Agi(z,y0)]ag(y)dy. Using (1.9.22), we
get

/ (Tyrag (@)|de < C26jag]),

and

/ Z1(2)de < ) / Tyag(z)lde <C > 26 <C.
R R™

2l<s-1 21<§-1

For the second sum we can use (1.9.23) to obtain

Jamn,, |Z2(2)|dz Yoaiss-1 Jrmng [T2raq (2)|de
\Ng \ @ I

C (221>(5—1 2707 ) ”C"Qlll

C.

INIA A

The estimates for ¥; and X yield ||T'aq|| 11 (r\no) < C, which, together with
Lemma 1.9.4, imply [, |Tag(x)|dz < C and the statement of Theorem 1.7.2.

Proof of Theorem 1.7.1. The adjoint operator T* belongs to I°(Y, X; (C~1)")
and it is clear that C~! satisfies the assumptions of Theorem 1.7.1 as well.
Therefore we may assume that 1 < p < 2 and for 2 < p < oo take the adjoint
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operators. Now the statement follows by complex interpolation. In fact, one
can define the analytic family of Fourier integral operators T, with kernels

Az($7y) 2/ ei(¢(z,77)—<yv77))a(z.,y,n)(l + |7]|2)Z/2d1‘1.

The L? continuity of zero order order operators implies
IT:fll2 < C:llfllL2, Rez=(n—-1)(1/p—1/2),
meanwhile Theorem 1.7.2 means
ITAllz < Cellfllir, Rez=(n—1)(1/p—1).

The bounds C, depend only on finitely many derivatives of symbols and hence
the constants C, have at most polynomial growth in |z|. The complex interpo-
lation techniques of Proposition 1.3.3 imply the theorem.

Finally, for the sake of the factorization condition (F) in Section 1.12 let us
prove a slightly stronger version of Lemma 1.9.2.

Lemma 1.9.5. Let z,a,3 € R. Then for every 0 < po < 1/v/3 there exists
0 > 0 such that for every p € R with |p| < po holds

14+ Mz —a—if]* > 81+ Xz —a — pp)?)
for every A > 0.

Proof. The case with u = 0 is easy. Assume that g > 0. Let us indicate
the difference with the proof of Lemma 1.9.2. Let § =1 — 2p0/+/1 + p3. The
condition 0 < po < 1 /\/§ implies 1 > § > 0. The statement of the Lemma
would follow from

1+ Az—a—if* >
L+ A [(1+ 628 + (2 —a = pp)® — 2uBl|z — o — pg]
and from the inequality
2lBllz — o — Bl < (1= 0) [(1+u)F* + (: —a—uB)?].  (19.25)

The first inequality is the same as in Lemma, 1.9.2. For the second one let us
consider two cases. First, assume that u|g| < 1—§§]z —a — pf|. Then

2ulBllz — a = ppl < (1= 6)(z — a — up)?,
implying (1.9.25). On the other hand, if u|8| > 52|z — a — pf|, we get

1+ p®)p* _ 14 p? 14+p21-=96 1
> P P S >
T ul|B| > 52 z—a—puf| > 1

2
2
provided that 1—2%1—? > L= This is equivalent to (1 — )% > 1—4_}-’_%, which is

6|Z—a_:u‘13|7

an increasing function of y > 0, but (1 — §)% > 1‘%"}; due to our choice of 4.
0

Thus, (1.9.25) follows. The case g < 0 is similar. The proof of the lemma is
complete.



1.10 Estimates in other spaces ' 39

1.10 Estimates in other spaces

As consequence of Theorem 1.7.1 we obtain estimates in other function spaces.

Corollary 1.10.1. Let C be as in Theorem 1.7.1 and let
T € I°(X,Y;C). Then

(i) T is continuous from (LZ+(n—1)/|1/p—1/2|)Comp(Y) to (LP)1oc(X) for every
a€eR 1<p<oo.

(ii) T is continuous from Lip (a + (n — 1)/2)comp(Y) to Lip (a)ioc(X) for
every a € R.

(iii) T 4s continuous from (Li+n(1/2_1/q))comp(Y) to (L9)1oc(X) for every
a€Rand2<gq.

The first part follows from Theorem 1.7.1 and properties of pseudo-differential
operators. The second part follows from Theorem 1.7.2 and the duality argu-
ment (see [62], [68]). For the third part we write

T=I-AM?0(I—-A)H20T,

so T is continuous from L? to LY when (I — A)#/? is. According to Hardy-
Littlewood-Sobolev theorem there is the loss of n(1/2—1/q) derivatives (Propo-
sition 1.3.4). Statement (iii) of Corollary 1.10.1 can be generalized to LP-L?
continuity:

Theorem 1.10.2. Let C be as in Theorem 1.7.1. Let1 < p < q < 2. Let
uw<1/g—n/p+ (n—1)/2. Then the operators in I*(X,Y;C) are continuous
from L2 (V) to L] (X). The dual statement holds for 2 < p < q < co.

comp loc

Let us first note that the the statement of this Theorem is in general sharp.
For example, if Im & = 0, then according to the remarks above, T satisfies the
local graph condition. If 4 > 1/g —n/p+ (n—1)/2, T is elliptic, and the rank
of the canonical projection from the canonical relation to the base space equals
2n — 1, then there exists a function f € L%, such that Tf ¢ L] . Such
f can be constructed uniformly for all T' (see Section 1.11). The statement
of Theorem 1.10.2 follows from Theorem 1.7.1. Indeed, the statement would
follow by a standard complex interpolation argument between Theorem 1.7.1
and the fact that operators of order —n/2 are continuous from the Hardy space
H' to L?. To show the latter, let S € I="/2(X,Y;C) be a Fourier integral

operator with complex phase of order —n/2. We can write S as
S=S8o(I—-A)"*o(I-A)"4,

which is a composition of (I — A)~"/* with a Fourier integral operator of zero

order, with complex phase satisfying assumptions of Theorem 1.7.1. This latter
operator is therefore continuous in L?, meanwhile (I — A)~"/4 is continuous
from H' to L? by the Hardy space version of the Hardy-Littlewood-Sobolev
theorem (see Proposition 1.3.5).

Let use now make some remarks concerning the case of real phase functions.
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Remark 1.10.3. Let T € I* be microlocally given by

71 = [ [ ety 0)1() dy de

where & is real valued. Let 1 < p,q < oo. Then by interpolation the operator
T : LP(R™) — LI(R™) is continuous provided p < n(l/g—1/p) and p <2 <gq.
For p = 1 the statement holds if we replace L' (R") by the Hardy space H!(R").

However, in the case rank D?,® = n — 1 this statement can be improved.
Let 1 < p,q < oo and let p',q" denote their conjugates. Then operator T' is
continuous from LP(R™) to L?(R™) provided

The statement extends to the case of p = 1 if we replace L' (R") by the Hardy
space H'(R").

The proof of Remark 1.10.3 follows by the complex interpolation method
between Theorem 1.7.1 and the fact that under conditions of Remark 1.10.3 the
operator T is continuous from H!(R") to L>®°(R") provided p = —(n + 1)/2.
The sharpness of the bound for p in Remark 1.10.3 is shown in [68, IX.6.16] for
operators with the phase function ®(z,y,£) = (x — y,£) + |€]. See also Section
1.11.

Remark 1.10.4. It follows from Proposition 1.3.5 with p = 1 and ¢ = 2 that
operators of order —n /2 are continuous from H! to L?.

As a consequence, we get a statement for pseudo-differential operators.

Proposition 1.10.5. Let P € ¥#(X) and let 1 < p < g < co. Then P :
L, (X)— Ll (X) is continuous, when p < —n(1/p—1/q).

comp loc

Proof. Let us give a direct proof without using the interpolation technique.
The case p = ¢ is well known and it follows, for example, from Theorem
1.12.1 with £ = 0 and g < 0. Let us assume now that p < q. The operator
(I—A)~#/?0 P is continuous in L? and the statement reduces to the properties
of the operator (I — A)*/2. Tts principal symbol is homogeneous of degree p
and its integral kernel has degree —n — p in |z — y|. Therefore, the operator
(I — A)#/2 is of the form

51w = [ o=yl ) dy

with v = n+ p. For p < 0, it follows from Proposition 1.3.4 that I, is
continuous from L? to L? provided 1/q = 1/p+ u/n. This completes the proof
of Proposition 1.10.5.
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1.11 Sharpness of the estimates

In this section we will discuss the sharpness of the orders of LP-bounded Fourier
integral operators in I#(X,Y;C) with real phases for different ranks of the
projection drxxy|c. We will show that the orders for the general LP-L?
continuity depend on the rank of drx xy|c and that the orders derived in this
chapter are sharp. For the question of the sharpness of the orders it is sufficient
to consider operators with real phase functions.

Let X and Y be smooth paracompact n—dimensional manifolds and let
T € I}'(X,Y;C) be a Fourier integral operator with a real canonical relation C.
In the sequel we will concentrate on the essentially homogeneous case (p = 1).
However, for 1/2 < p < 1, the sharpness of the order u = —(n — p)|1/p — 1/2|
for the continuity in LP can be shown by the following example. Let ¥ be a
manifold given by the set of points (z', z",y’,y") with ' = ¢’ and |z —y"| = 1.
Let C be the conormal bundle N*¥ of ¥. Let ¥(£) be a smooth function,
homogeneous of degree zero for large &, supported in the truncated cone

{€=(£,6") e R xRH g > 1 |€"]/2 < (€] < 216"},

and equal to one in an open truncated subcone. Let T' be a convolution operator
with the kernel

K(z,y) = /\Iz(g)eilﬁll"”|g|uei[<z—y,e>+|e'|]d€.

One can readily check that T' € I*(R",R"; C). Let §,(¢) = (1+]¢[*>) /2. Then
go € LP for 0 > n(1 — 1/p). Acting by T on g, and applying the stationary
phase method in polar coordinates for &', one can show that T'g, ¢ L} _ for o
converging to n(1—1/p), and p > —(n — p)|1/p—1/2|. Asymptotic expansions
for such operators were derived in [77] and the analysis was used in [62] to show
that the order y is sharp in Theorem 1.12.1.

1.11.1 Essentially homogeneous case

In the essentially homogeneous case with p = 1 one can show that the order
@ = —k|1/p — 1/2| is sharp for arbitrary LP continuous elliptic operators with
real phases satisfying the condition

rank drx xy|c < n+ k. (1.11.1)

It turns out that in order to check that an operator is not continuous in LP? it
suffices to let T act on functions f with point singularities in LP. In this case
the singularities of T'f can appear only in directions transversal to some fixed
k—dimensional manifold in X.

Theorem 1.11.1. Let the real canonical relation C be a local canonical graph
such that the inequality rank drxxy|c <n+k holds with0 <k <n -1, and
the rank n + k is attained somewhere. Then elliptic operators T € I*(X,Y;C)
are not bounded from L%, (Y) to L}, (X), provided u > —k|1/p — 1/2| and
1<p<oo.
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Let us note at once that by the equivalence-of-phase-function theorem it is
sufficient to consider operators T' in R" with kernels, locally given by

K(z,y) = / w0 =0wlp(z, y, £)de, (1.11.2)

with symbols b € S* supported in compact sets with respect to z and y. The
local graph condition means that the phase function ¢ satisfies

det ¢lr #0 (1.11.3)

on the support of b. Locally A has the form {(V¢¢,&,y,V,¢)}. We can assume
that 1 < p < 2. For 2 < p it suffices to consider the adjoint operator 7 and the
statement follows from the result for the conjugate index p' = p/(p—1) < 2.

The set Co = {XA € C : rankdrxxy|c(\) = n + k} is not empty and
is open in C. Let Ao = (2o, &0,¥0,M0) € Co. Consider a family of functions
fs(y) = (I-A)=*/25,,)(y) for a fixed value of yo € Y. Let K_ be the integral
kernel of (I — A)~*/2. Then we have

fuly) = / K_ (4, 2)8y0 (2)dz = K (3, 0).

Using standard estimates for Schwartz kernels of pseudo-differential operators
([64], [11], [68]), we get that |K_s(y,y0)| < Cly — yo|~™"* in some local coor-
dinate system. This means that f; € L? if and only if s > n(1 —1/p).

Let ¥ = mxxy (CNU), where U C Cy is a neighborhood of Ag. Because the
rank of 7mx xy is constant in U, the set ¥ C X x Y is a smooth k—dimensional
manifold, given by equations hj(z,y) = 0,1 < j < n —k, in a neighborhood
of yo. The vectors Vhy,...,Vh,_ are linearly independent on ¥. Then,
microlocally, C' is the conormal bundle of ¥, and the phase function of the

operator T' assumes the form
n—k
B(a,y, ) = Y Nihy(z,y)-
j=1

Since a composition with a pseudo-differential operator does not change the
canonical relation, we get that T'o (I — A)~%/2 € I*~%(X,Y;C). It follows that
Tfs(x) = To (I —A)~%/%(,,)(x), which in local coordinates can be written as

Tfo(@) = Jgnllgns €' =N Va(@, X)dy, (y)dA)dy
Jgn—r eiXh@YN g(z, X)dX (1.11.4)
(27r)n_k(f—la)(m7h(xayo))a

where X and h are vectors with components A; and hj, respectively, and F~!
is the inverse Fourier transform. The symbol a € S#~5tk/2(R*—*) is obtained
from the symbol of the operator T o (I — A)~*/2 by using the stationary phase
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method, where we can eliminate k variables. The inverse Fourier transform of
the symbol a with respect to the second variable is

(2m)"*(F1a)(z,¢) = /

M a(z, N)do(V)dA = Po(¢) = K(C,0),
Rk ‘

where P € ¥™(R"*) is a pseudo-differential operator of order m = n—s+k/2
with symbol a(z,A) € S™ and K is the integral kernel of P. The function
K(¢,0) is equivalent to |¢|~(»~¥)=™_ For the set X,, = {z : (z,y0) € X} we
have dist(z, Zy,) ~ |h(z,y0)|, and, therefore,

(2m)"*(F ) (z, h(z, yo)) ~ |dist(z, By, )|~ (707 ms k),

locally uniformly in z. It follows from (1.11.4) that the function 7 f; is smooth
in ¥,,. Hence T'f, ¢ L (R") if and only if

loc
pn—k+p—s+k/2)>n—k. (1.11.5)

For s it means that s < p+ (n — k)(1 — 1/p) + k/2. Thus, in order to have
fs € L? and Tf, & L? , it is sufficient to have the inequality

loc loc?
n(l—1/p) < p+ (n = k)(1 = 1/p) + k/2,

which is equivalent to p > —k|1/p — 1/2].
Concerning LP — L9 continuity we have:

Corollary 1.11.2. Let T and C satisfy conditions of Theorem 1.11.1 and let
1 < p,q < co. Then T is not bounded from L%, (V) to Lj, (X), provided
p>n(l/qg—1/p) - k(1/q - 1/2).

To prove this we can apply the same argument as in the proof of Theorem
1.11.1. The only difference is that now we do not need to assume p < 2 and
inequality (1.11.5) is replaced by

gln—k+p—s+k/2)>n—k.

Remark 1.11.3. In the case when k =n—1and 1 < p < g < 2, the statement
of Corollary 1.11.2 complements the statement of Remark 1.10.3.

By duality we also have a statement, analogous to the one in Theorem
1.11.6, for indices 2 < p < g < 0.

Remark 1.11.4. The operator T in Theorem 1.11.1 is not bounded as a linear

operator in Sobolev spaces L?, — Lg——kll/p—1/2|—u’ 1< p<oo.

1.11.2 A representation formula for continuous operators
of small negative orders

According to Proposition 1.10.5 pseudo-differential operators of zero order are
continuous in LP for 1 < p < oo. Now we will show that all LP continuous
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elliptic Fourier integral operators with real phases can be obtained from pseudo-
differential operators by a composition with operators, induced by a smooth
coordinate change. A smooth mapping o : X — Y induces the pullback o* :
C*(Y) = C*°(X), defined by (¢* f)(z) = f(o(z)). It is not difficult to see that
o* is a Fourier integral operator with phase function (o(z)—y,n). The canonical
relation of o* is equal to the graph of the mapping & : T*X\0 — T*Y'\0, where
#(z,€) = (0(x), —(1Do,) 1 (©)).

Theorem 1.11.5. Let 1 < p < oo, p# 2, and 0 > p > —|1/p—1/2|. Let
C be a real local canonical graph. Then an elliptic operator T € I"(X,Y;C)
is continuous from L%, (Y) to Ly, (X) if and only if there exist pseudo--
differential operators P € UH(X),Q € UH(Y) such that T = Poo* =0 0@,
where o* is the pullback by a smooth coordinate change from X to Y.

Proof. The pullback o* is continuous in LP. Pseudo differential operators P
and @ of order p < 0 are continuous in LP. Therefore, T is also continuous in
L?. Conversely, let k be such that n + k = maxyec rank drxxy|c(A). Then
n — k is the maximal dimension of the set ¥ = 7x«y(C) C X x Y. In view
of Theorem 1.11.1 and L? continuity of T, it is necessary that £ = 0. This
means that rank drx xy|c = n and ¥ is a smooth n—dimensional submanifold
of X xY. The rank of the differential dwx |5, of the projection 7x : X xY — X
is equal to n because C is a local canonical graph. Surjectivity of drx|s and
condition dim ¥ = n imply that 7x|s is a diffeomorphism and ¥ can be locally
parameterized by ¥ = {(z,0(z))}, for some diffeomorphism o : X = Y. It
follows that the canonical relation of the pullback ¢* is the conormal bundle
of ¥, which is C'. Therefore, an operator Q in T' = o7 o Q) must be pseudo--
differential, since its canonical relation is the conormal bundle to the diagonal
in X xY. A similar argument in Y implies that the formula in the theorem
holds for an operator P with the same mapping o, since the canonical relation
of o* equals C".

Theorem 1.11.6. Let 1 < p < g < 2 and —n(l/p—1/¢) > pn > —(1/q —
1/2) — n(1/p — 1/q). Let T € I*(X,Y;C) be elliptic and let C be a real
local canonical graph. Then T is continuous from LE,.,.(Y) to L (X) if and
only if there exist pseudo-differential operators P € U (X),Q € ¥*(Y), such
that T = P oo* = o* o ), where o* is the pullback by some diffeomorphism

c: X Y.

The continuity of T' follows from the continuity from LP to LY of pseudo--
differential operators of order —n(1/p — 1/q) (Proposition 1.10.5).

Note also that Corollary 1.11.2 with & = n implies the sharpness of the
orders in Proposition 1.10.5 for elliptic operators P.

1.12 Smooth factorization condition for com-
plex phases

In this section we discuss an analogue of the smooth factorization condition for
complex phase functions. The results of this section were announced in [61].
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As we mentioned in Section 1.5, the LP estimates can be improved if the rank
drmx xy restricted to the real wave front of the operator does not attain 2n — 1.
The exact statement is in the beginning of Subsection 1.5.1.

The similar situation happens in the case of complex phase functions. Let
us recall first the factorization condition for the real non-degenerate phase
function ¥(z,y,0). Let Ay be locally defined by

A\Il = {(:Evya dmw(x7y76)7dyql(mvyag)) : d0ql($7y59) = 0}
c T*X xY). (1.12.1)

The smooth factorization condition for ¥ can be formulated as follows. Sup-
pose that there exists a number k, 0 < k < n — 1, such that for every
Ao = (xo0,%,Y0,70) € Aw, there exist a conic neighborhood U,, C Ay of
Ao and a smooth homogeneous of zero order map my, : Ay N Uy, = Ay with
constant rank rank dmy, = n + k, for which holds

TXxY|Ae = TXxY|Ag © - (1.12.2)

Recall, that under this assumption, operators T' € I} (X,Y;Ay) with 1/2 <
p <1are LP-bounded if l <p<ooand p< —(k+ (n—k)(1—p))|1/p—1/2|
(see Section 1.5.1).

Let now ® be a non-degenerate complex phase function. Let ® satisfy the
local graph type condition (L) of Section 1.7 for some 7 € R. Recall that it
then satisfies (L) for all but finitely many 7 € R and it satisfies (1.7.2) for all
but finitely many 7 € C. Our smooth factorization type condition (F) for ®
will be the following condition

(F) There egists a real |T| < 1/+/3 such that condition (L) holds with this T
and, moreover, the real phase function ¥ = Re ® + 7 Im ® satisfies the
real smooth factorization condition (1.12.2) with some k, 0 <k <n — 1.

Note that if the phase function ® is real, condition (F) is just the smooth
factorization condition for the real valued phase function. The reason to impose
condition |7| < 1/4/3 is technical and is due to Lemma 1.9.5. Under condition
(F) we have

Theorem 1.12.1. Let C C (T*X\0 x T*m be a smooth positive homo-

geneous canonical relation which is closed in T*(X x Y)\0. Let ® be a reg-
ular phase function of positive type, locally parameterizing C. Assume that
& satisfies the smooth factorization type condition (F). Let p < —(k + (n —
EYQ—p)|1/p—1/2] with1 < p < oo and 1/2 < p < 1. Then operators
T € I!(X,Y;C) are continuous from L2, to L]

comp loc”

Operators T € Ig (X,Y;C) are continuous in L? and this result does not
depend on the factorization condition. Indeed, the argument of Section 1.7
using formula (1.7.3) reducing the situation to the operators in I? /2 with real
phases (see also Remark 1.8.2), shows that operators in I2(X,Y’; C) with C as
in Theorem 1.12.1 are bounded in L2.
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As usual, we can assume that the kernel of T is given by (1.7.1). Proof of
Theorem 1.12.1 is based on the complex interpolation method (as in Proposition
1.3.3) applied to the continuity in L? and in the Hardy space H!, for which we
have

Theorem 1.12.2. Let C satisfy conditions of Theorem 1.12.1, let its Schwartz
integral kernel be given by (1.7.1), and let the number N of frequency variables
be equal to n. Assume that the symbol a € 55/2+("_k)(1_p)/2 in (1.7.1) vanishes
outside a compact set in Ry x Ry. Then T is continuous from H(R™) to

LY(R™).

Let us indicate briefly some ideas behind the proof of the above theorem.
Let us begin with pointing out the difference with the proof of Theorem 1.7.1.
Let a be a symbol of order —(n — 1)|1/p —1/2| and type (1,0), and we assume
that 1 < p < 2. Let T, be a family of Fourier integral operators with Lagrangian
distributions

AZ(:U::U) =
/ @10 gy )(1 4 [6]2) (=D /p=1/2)=(n=1)/242(n=1)/2] gg.

The continuity of zero order operators in L? implies
IT=flle> < C:|l |2, Re z =1,
and Theorem 1.12.2 implies
|T:fllr < C:||fllg, Rez =0.

Constants C, depend on finitely many derivatives of the symbol and, therefore,
have polynomial growth in |z|. Let us apply Proposition 1.3.3 with ¢ = 2(1 —
1/p). Wehave 1/py =1/q = 1-t/2, (n—1)(1/p—1/2)—(n—1)/2+t(n—1)/2 =
0, so that T3 = T and Theorem 1.12.1 with £k = n — 1 and p = 1 follows from
Proposition 1.3.3. Similarly, Theorem 1.12.1 follows from Theorem 1.12.2 if we
take a € G, FF(n=RA=PDI/P=1721 414 Kernels

A(zy) = [one®@¥a(z,y,0)
(1 + [§]2) 3=+ (n=k)(1=p)) |1 /p=1/21+ (=) b+ (n—=k)(1-0)}/2] g,

To prove Theorem 1.12.2, it is convenient to use an atomic decomposition
f = D" Akag, as in Proposition 1.3.2. If a ball B from the definition of an
atom contains the unit cube, the Cauchy—-Schwartz inequality implies

ITak||z: < C| supp ag|'/?||Ta||r: < C'| supp ax|'/?||ar|| L2,

which is uniformly bounded in view of the second property in the definition of
atoms. Therefore, Proposition 1.3.2 reduces the statement of Theorem 1.12.2 to
proving the uniform bound ||Tax||1 < C for all atoms supported in sufficiently
small balls. This estimate can be obtained using a number of decompositions
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in the frequency space. However, decomposition in the phase space will be
related to the real phase function ¥ = Re ® + 7 Im @ satisfying the smooth
factorization type condition (F). First one uses a conic decomposition of the
phase space and applies a dyadic decomposition to each cone. Using the cor-
responding partition of unity, it is possible to replace the phase function of T
by a linear function, in each domain, so that integration by parts yields L!
estimates. However, to get the estimate outside the exceptional set Ng one
needs to use the L?-boundedness of certain pseudo-differential operators.

The proof of Theorem 1.12.2 is similar to the proof of Theorem 1.7.2. How-
ever, some modifications are necessary. There are also certain additional com-
plications related to the fact that the phase function is complex. We will
indicate the difference with the proof of Theorem 1.7.2.

First, in the proof of Theorem 1.12.2 it will be more convenient to us to
interchange the roles of x and y. Thus, as before, we may assume that the
integral kernel of the operator T' in Theorem 1.12.2 is given by

Az,y) =/ 80w g(z,y, £)de,

with some symbol a € S. Thus, we have to show that operators with such

kernels are continuous from H! to L', if a € S, ™** is supported in a narrow
cone in ¢-space, and m(k,p) = k/2+ (n — k)(1 — p)/2.
Let 7 € R be such that condition (L) is satisfied and let

Y(y,€) = Re ¢(y,§) + 7 Im é(y, £).

Since 1 satisfies the real local graph condition, we may assume that there exists
a k-dimensional submanifold S (y) of S*"*NT for some narrow cone I, Sy (y)
varies smoothly with y, and such that S"~!NI is parameterized by £ = &, (u,v),
for (u,v) in a bounded open set U x V near (0,0) € R¥ x R*~*~!_ Furthermore,
&, (u,v) € Sk (y) if and only if v = 0, and

d)é (y7 gy(“» U)) = 1//’& (y1 gy ('LL, 0))

Let us now describe constructions similar to those of the proof of Theorem 1.7.2
in Section 1.9. We keep in mind that later we will set A = 2!. Thus, let u¥ be
a collection of points in U, such that [u} —uY | > CoA~'/2 for v # ', and such
that U is covered by balls centered at v and radius C1A71/2, Let Ni()\) be the
maximum of such points for a fixed . It is easy to see that Ni(\) = O(\*/?).

Let & = &, (u¥,0) and let 2% (y) = Pe(y, £)- Let the atom ag be supported
in the cube @) centered at some yo with sidelength §. For sufficiently large M
let RY, be the set of all 2 such that

(@ — v (y, ), ¢)| < MATY2,

for all vectors e’ tangential to Si(y) at £, and

2 — ¥e(y, €X),€")| < MAT,
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for all unit vectors e which are normal to Sk(y) at &. Thus, RY,, is a rectangle
with k sides of length of order A='/? and n — k sides of length of order A~°.

Let
Ni(N)

No=J U R

yeQR v=1

Then
|Ng| < C|QIP1=F/m),

The argument of Lemma 1.9.4 gives
||TaQHL1(NQ) =/ ITaQIdJ) <C.
Neg

Indeed, T'o (I — A)=™*0)/2 ¢ JO(X,Y;C) is bounded in L?. Therefore, by the
Hardy-Littlewood—Sobolev inequality,

ITagll: < ClII = A)"™ 8" ag|l; < Cllagllp,,

(T—p—Q)an' By the second property of atoms, we have ||ag||p, <

|Q|~'*1/P». Hence by the Holder inequality we obtain

where p, =

—p(.n—k')

ITagll < ClQI™ >

Finally, by the Cauchy—Schwartz inequality, we get

| ITaglds < CING| 2 [Taglla < CIQI™-H7/" - [Q 41" < €.

No

Note that to derive this estimate we used the size of Ng which is determined by

the fact that the real phase function 1 defines a local graph, that is det 1,%’5 # 0.
Now we need an estimate outside the exceptional set Ng. Let XX be a

partition of unity in w-coordinates, such that, as before for the partition in
(1.9.2),
IDEXK oo = O(AII72).

Define the partition of unity xX on I' corresponding to the directions &5, by
setting

XX (s€(u,v)) = XX (u), s> 0.
Then we define a¥ similar to Section 1.9, by

ax(z,y,€) = X3 ()0 (&)a(z,y, ),

and '
A(e,y) = fpn (@O (@,y, €)de
= fom el<’”_¢€(y’5k)’€>bx(w,y,f)d{,

where b (z,y,€) = ez’(<¢’5(y,ﬁ'i)—¢(y,€),€>)ai(x7y,g)_



1.12 Smooth factorization for complex phases | 49

As before, the estimate for ||Tag||L1(r»\ng) Will follow from the estimate
/ |45 (2, y)ldz < CAF2(A8) 7, (1.12.3)
R™\No

when X > 671, and where ¢ is the sidelength of Q, and if for all y,y' € R® we
would have

/ A% (2,9) — A (z,")|de < Cly — y'|A- A~H72, (112.4)

which will be used when X < §~1.
By a rotation, we may assume that every £ € T splits into & = (£',¢") €
R* x R*~* where £" is normal to Si(y) at £ = £(u¥,0). Define the operator

{ = (1= (W2, M/2Ve)) (I = (W Ver, V)

€ p

and, as before, the same estimate holds for b. Recalling that 2% (y) = ¢ (y, £5)—
x, integration by parts yields

Af(z,y) = (1+ [N (¢ (5, €8) — 2)" )~V x
X (L+ A2y, €0) — 2)' 1) VK (2, ), (1.12.5)

where
K{n(z,y) = / (LYY B (2, y, €)eH o9 €00 g, (1.12.6)

Note that similar to Section 1.9, we always use Lemma 1.9.5 instead of Lemma
1.9.2 in the integration by parts argument to get rid of the complex phase, by
replacing ¢ by 9 = Re ¢ + 7 Im ¢ with 7 for which condition (F) holds. All
such estimates are similar to the one in (1.9.13). Condition (F) guarantees that
po < 1/4/3 in Lemma 1.9.5. The rest of the proof is similar to [62], but some
changes are necessary in order to take into consideration the imaginary part of
the phase function.

If we dilate RY, be a factor C(A\§)~' the resulting rectangle will still be
contained in Ng. Hence we can use the Cauchy-Schwartz inequality in z'' to
obtain for y € Q

Jam g |45 (@, 9) e <
-N
CNAP 2 [ o (L IN2(0(0,60) —2)' ) x
x ([ 1KYy (22", y)2da") " da' +
-N
CN/\—p(n—k)/2(/\5)(2N—n+k)p/2 f ((1 + I/\I/Z((bé(y’fly) _ m)/|2) %

x ([ 1KYy (@ 2" y)|2da") " da.
(1.12.7)
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For fixed z' and &' let the pseudo-differential operator S¥, (z',&’) be given by
[S{n (', €) f1 (") = Am0) / (LVBK (', 2"y, €, € f(€")el ™ e,

which is of order 0 and type (p,1 — p). Let g be a smooth function, defined
on R*~* with the property that §(¢") = 1 for |¢”| < 8, which vanishes for
|€”| > 16. Define gy = g(A~! - ). Then

Ky (z,y) = A7mE) /-[SKN(x',é')fA} (z")el@ € g, (1.12.8)

where fy(€") = ga(€")e HOeWEN O (¢! ¢"), where o¥ is a smooth bounded
cutoff function in a narrow cone around &, o¥(§) = 1 on supp xX and equal
to 0 outside the cone twice the support of x%. Function fA depends on ¢’ as a
parameter.

The condition Im @ > 0 means Im ¢ < 0 since ®(z,y,¢) = (z,&) — ¢(y, §).
Suppose that Im ¢(y,£y) < 0. Then by the Euler identity Im (¢ (y,&5),)
is equal to Im ¢(y,&Y) and is strictly negative at £ = £§. Therefore, if A is
sufficiently large, then £ € supp of implies that £ and &5 are sufficiently close,
so that Im (¢;(y,£5),€) < 0 for all £ € supp of. In fact, for sufficiently
large A we can always choose partition u% such that Im ¢(y,£&¥) < 0, unless
Im ¢(y, §) equals to zero in an open set around some & = &§. If A is large, we
can assume that this set contains supp of. But in this case, Im (¢ (y,¢X),¢)
is 0 since the derivative with respect to £ is 0 at &5. It follows that in all cases
for sufficiently large A we have Im (¢ (y,&X),€) <0 for all £ € supp o3.

This implies that

Al L2 @n-r) = [|AllLz@n-#) < Cllgallze@n-ry < CA"7E.

Observe now that S§, (z',£') = 0 for £ outside a set of measure bounded by
C\F/2 . Finally, since pseudo-differential operators of order 0 and type (p,1—p)
are bounded on L%, we get

(f |KKN(x’,x”,y)|2dx”)1/2 <
CA NP2 £y || 2 s (1.12.9)
< ONn=k)p/2

for large A. The argument on the sign of Im (¢ (y,&5), &) depends on y, but
we have y € @ and the support of the symbol a(z,y, &) is compact in (z,y), so
we obtain (1.12.9) uniformly if A is larger than some absolute constant Ag.

Performing the z’-integration in (1.12.7) yields the estimate (1.12.3), for
A > §71. The same argument also yields

/ IV, 4% (2, 9)ldz < CA- A2,

where the extra factor A is introduced because of the differentiation with re-
spect to y. But this inequality implies (1.12.4). The rest of the proof proceeds
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similarly to the end of the proof of Theorem 1.7.2 after Lemma 1.9.4. The only
difference is when the sum there is over | > 0 such that A = 2! < Ag. The
support of fy is bounded in & and S¥ (', &) vanishes for ¢ outside a set of
bounded measure. This implies that the estimate (1.12.9) is still valid. More-
over, there are only finitely many | > 0 with 2! < A, and each of the integrals
in ¥, is multiplied by some constant, this constant can be chosen uniform with
respect to the small cubes @ since the symbol a(z,y, £) is compactly supported
n (x,y). This completes the proof of Theorem 1.7.2.

Proposition 1.12.3. Let the canonical relation C satisfy conditions of Theo-
rem 1.12.1. Let 1 <p<qg<2andletp < —-n/p+ (n—k)/q+k/2. Then
operators T € I*(X,Y; C) are continuous from L%, (V) to L}, .(X). The dual
statement holds for 2 < p < g < o0.

The statement follows by the interpolation method between the statements
of Theorem 1.12.1 and Remark 1.10.4. Similarly, we get that operators from
I* are continuous from Lip (o — k/2 — ) to Lip () for all @ € R.

Remark 1.12.4. Let us note that the factorization condition is not necessary
for operators in Theorem 1.12.1 to be bounded. Thus, in [59] it is shown that
Fourier integral operators with phases as in Example 1.5.5 of Section 1.5.2 and
of order of Theorem 1.12.1 are still LP-continuous. For example, if the phase
function of an operator T€I#(R3, R, C) is given by

B(r,y,6) = (& — y,6) + é(ylél T 26a)?

in a conic neighborhood of &3 = 1 away from & = 0, then the factorization
condition fails for C'. However, operators T' are still bounded from L%, to
LY ., provided that 1 < p < oo and p < —|1/p — 1/2|. Note that in this case
k = 1 and the order —|1/p — 1/2| can not be improved according to Section

1.11.
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Chapter 2

Affine fibrations

2.1 Introduction

The singularity theory of the fibrations and the fibers of the regular mappings
have been under study for a very long time. One of the early references is [49].
Many general results can be found, for example, in [32], [51], [63]. One is often
interested in the singularities of fibrations and of the fibers themselves. In this
monograph we will study the following classes of fibrations. We assume that the
fibers are regular and, moreover, that locally they have a very simple form of
affine spaces. Let Q be an open subset, of C*. The fibers are (n—k)-dimensional
affine subspaces of 2, equal to the kernels ker A(£) of a holomorphic matrix
valued mapping A :  — CP*" on the set where the rank of A(£) is maximal
and equal to some k < n — 1. It follows that the fibration is regular on an open
dense subset of , i.e. the fibers do not intersect and behave analytically with
respect to their position. We will analyze its singularities in the complement
of this regular set.

A particular case arises when the matrices are Jacobi matrices of a regular
(holomorphic) mapping I'. In this case A = DI and the regular fibers can
be defined as level sets of this holomorphic mapping I'. The direction of the
fibers is the same as the direction of the kernels of the Jacobi matrix DI'. In
such way we are led to consider a more general case of the fibrations defined
by the shifted kernels of the Jacobi matrix, for which the fibers of the mapping
become the ruled analytic varieties constituted by the kernels.

Problems of this type arise in the analysis of the regularity properties of
Fourier integral operators and hyperbolic equations, see [62], although there
they are formulated in a very different form in the real domain. However,
the analysis in C" allows to draw many conclusions in the real domain as
well. In particular, some results of this chapter will be applied to establish
the LP-regularity properties of Fourier integral operators, which turn out to
be sharp ([52], [54]). As a consequence, in [53], sharp LP-regularity is derived
for solutions of hyperbolic Cauchy problems in four dimensions. The results of
this chapter extend some of the analysis of [54] to the general case of fibrations

53
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defined by kernels of arbitrary holomorphic matrix valued functions. Here it
will appear in subsequent chapters.

In general, the affineness assumption holds generically in the study of La-
grangian manifolds, which can be viewed as closures of smooth (analytic) conor-
mal bundles. Regular fibers in this case are the fibers of a conormal bundle.
Results of this chapter imply, in particular, that certain singularities are im-
possible in lower dimensions.

First, in Section 2.2 we formulate the problem in the invariant case cor-
responding to the Fourier integral operators commuting with translations. In
this case the generating function is ¢(y,&) = (y,&) — H(§). According to the
theory of Fourier integral operators (Section 1.5.2), functions H : V' — R on an
open subset V of R™ have the following property. The maximal rank & of the
Hessian D? H (£) is strictly less than n, and points £ where rank D2H(§) = k is
maximal form an open set U. One of the interesting properties of the gradient
[': & VH(E) is that for every point &€ € U the level set T1(T'(€)) locally in a
neighborhood of ¢ coincides with the affine space ¢ + ker D2H (§). If H is real
analytic, then the holomorphic extension I' of the gradient VH has the same
property in some open neighborhood of the open set V in C". This property
motivates the study of holomorphic mappings I' with properties (A1), (A2)
formulated below.

2.2 Fibrations with affine fibers

2.2.1 Affine fibrations setting

Now we will give a precise formulation of the first problem. Let A be a holomor-
phic mapping from a connected open subset 2 of C* to CP*™, with p,n € N.
Assume that for some k£ < n — 1 holds

(Al) max¢eq rank A(§) = k.

We will be interested in the kernels of A(£) and thus the condition k¥ < n —1
is natural. The set © can be decomposed into disjoint union of the sets Q%) of
the points ¢ € Q with rank A(¢) =i,4=0,...,k. Then the set Q\Q*) where
rank A(£) < k is an analytic subset of Q without interior points and in the
open dense subset Q(*) the mapping

3 & ker A(E)

is holomorphic from Q) to the Grassmann manifold G,,_j (C*), where G,,_ (C*)
consists of all (n — k)-dimensional subspaces of C*. Let us denote by Q"8 the
subset of £ € Q\Q"*) such that 3¢ can not be extended to a holomorphic mapping
U — G,_1(C") on any open neighborhood U of ¢ in Q. Thus, the mapping 3
is regular at ¢ € Q*) and such points will be called regular. Its complement
O\Q®) will be called the exceptional set. It consists of the removable singular-
ities at O\ (Q®) U Qsing) and essential singularities (or simply singularities) at
Qsmg.
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An additional assumption which we will make is that the affine subspaces
&+ x(€) define a local fibration in Q. It means that locally there is exactly one
fiber through a regular point, or that the regular fiber is the same for all points
contained in it. In other words, s(& + ¢) = s(¢) for all £ € Q®) | ¢ € x(¢),
such that & + ¢ € Q). For the later convenience we formulate it here in the
following form:

(A2) For every £ € Q) and 5 € Q with 5 € (&€ + »#(£)) N Q") the subspaces
#(€) and »(n) are equal.

If (€ + (&) N is connected (which certainly is the case if Q is convex or if
we require that for any affine subspace L in Q of codimension & the set L N}
is connected), property (A2) is global in Q). Thus, for simplicity we will
assume that Q is convex, which is not restrictive because we will analyze only
local singularities. The mapping s is holomorphically extendible to the open
subset Q\Q%"8 containing *¥), and we will denote this extension also by .
Then, for every ¢ € Q\Q%"8, s is also constant on (£ + »(£)) N Q. And, if
&,m € O\ then (€ + (£)) N (n + 2(n)) N (N\Q5I"8) is empty, or, if not,
2#(€) = s(n). This property extends (A2) from Q*) to Q\Q*"&. This makes it
possible to define the following equivalence relation in 2\Q%"8. The relation
& ~nifn € E+(€) and 5(€) = »(n) defines an equivalence relation in Q2\(25i"8,
the factor space Q\Q%"8/ ~ is a smooth analytic space of dimension k and the
projection & — (£ + 2(£)) N (Q\Q51"8) is an analytic submersion. In this sense
(€ + 2(€)) N (Q\Q5n8), ¢ € Q\Q"8 | define a smooth fibration of Q\ 578,

The simplest singular fibration can be defined for @ = C* by taking for
one dimensional fibers open rays starting from zero. Clearly, such fibration is
analytic for all £ € C*, £ # 0, and the singular set Q"8 = {0}. However,
it turns out that it is impossible to construct a holomorphic mapping A, for
which the described lines would be the kernels of A.

Condition (A2) can be regarded as a definition of the fibrations in . The
linearity of the fibers is, therefore, essential. Let us give now an important
example related to the theory of Fourier integral operators. Let X be a smooth
(analytic) manifold of dimension n and let T*X denote the cotangent bundle
of X. Let A be a (conic) analytic Lagrangian submanifold of 7*X. Let 7 :
T*X — X be the canonical projection. It follows that w(A) is semi-analytic
as the image of an analytic set A under a proper mapping =. Let ¥ denote its
regular part. Manifold ¥ is smooth and its conormal bundle

N*S = {(z,¢) : x € £,£(6z) = 0 for all 6z € T, %}

is a conic Lagrangian submanifold of 7*X, densely contained in A. It follows
from the Poincaré lemma that every (z,£) € A has a conic neighborhood C
such that AN C is locally equal to the set of points

{(Ve(©), 0},

where ¢ is a generating function for A. The detailed proof of this can be found
in [11, 3.7]. In this notation the fibers of dr|s correspond to the kernels of the
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Hessian D?¢ and the fibration in A is defined by the mapping A(¢) = D2¢(¢).
The regular set Q%) is the set of points ¢ from N*¥. This example will be
discussed in more detail in the next chapters.

2.2.2 Jacobian affine fibrations setting

A particular case of (A1), (A2) happens when we assume that A is a Jacobian
of a holomorphic vector valued mapping I' :  — CP. However, this generalizes
the previous example, where I' = V¢. In the case of a general I the matrix
A = DT is not necessarily symmetric as in the case when it is a Hessian of a
holomorphic function ¢ as above. However, later we will derive a number of
results without using the symmetricity. Relations between ¢ and the fibration
» defined by A = D?¢ will be explored in Chapter 3 in more detail. As conse-
quence, we will derive there several properties of fibrations in the Lagrangian
manifolds (as above) as well as related properties of Fourier integral operators,
for which ¢ is related to their phase functions. Thus, for future convenience we
formulate condition (A1) in this case as

(TA1) The matrix A(§) is the Jacobian, A(¢) = DI(£), for all £ € Q, of a
holomorphic mapping I' :  — CP. For this A holds max¢cq rank A(£) =
k.

Here, ifI' = (Pl, .o ,Fp), then A”(f) = 65]]._‘1(6)

Condition (A2) can now be formulated in terms of T', both locally and
globally in Q. Condition (A2) means that the mapping s = ker DT is constant
along x(¢) for each ¢ € Q). Tt then follows that I' is constant on (&)
(Proposition 2.8.2). Because ¢ € Q*), the level set T~ (T'(¢)) is a smooth
analytic manifold of dimension n—k, locally at &, locally containing the (n—k)-
dimensional affine space £ + 3(&). It then follows that &+ 5(€) itself is the level
set of T, locally at £. Condition (A2) is, therefore, equivalent to

(TA2) For every ¢ € Q) the affine subspace & + »(€) is locally (at &) equal to
I~Y(T'()), the fiber of I' passing through &.

The global version of the condition (I"A2) is the following

(TA2') For every & € Q(F) the affine subspace (€4 (€))NQ is equal to T~1(T'(€)),
the fiber of I' passing through &.

As before, s can be extended to Q\Q"&. In view of our assumption that
Q is convex, for every £ € Q\Q"8 T is constant on (£ + 5(¢)) N Q. And,
if &,m € Q\Q"8, then (€ + 2(£)) N (7 + 3(n)) N (Q\Q5"8) is empty, or, if
not, »(€) = s(n). As before, s induces an equivalence relation in \%in&
and a smooth fibration of Q\Q%"8 by (£ + (&) N (Q\QsI"8), ¢ € Q\Qsing,
The mapping ' factorizes through this fibration (see Corollary 2.8.4 for the
details). Therefore, conditions (A2), (I'A2) and (T'A2') are equivalent. A
further characterization of this property will be given in Proposition 2.8.2.
The assumption (I'A2) of the linearity of the fibers is essential for the anal-
ysis. Thus, we will show that for k& < 2 the set Q"8 of singular points is
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empty, which even for £ = 1 is not the case if we restrict to the assumption
(TA1) only (Example 2.8.1). However, in a number of important cases, (I'A2)
is satisfied, especially if T is the gradient of a holomorphic function ¢, which
then, because D2¢(£) = DI'(€) has rank < k < n, necessarily is a solution of
the Monge-Ampere equation D?¢(¢) = 0.

We will be interested in the properties of the singular set Q%"8. It is shown
in [52] and in Chapter 1 that for all 1 < k < n — 1 there exist analytic families
I'y(&) of mappings satisfying (I'A1), (I'A2) for every y in an open subset of
C™, m > 2, for which the singular set "8 is not empty. The construction
there is similar to the o-processes centered at some point of Q"8 ([63]). This
problem will be formulated in the next section. However, if such family T,
consists of only one mapping I', the theory becomes much more subtle. In
[52] the partial results of this chapter have been applied to establish the L?-
regularity properties for the translation invariant Fourier integral operators
(for more discussion see Chapter 4), which are in fact sharp (Section 1.11). In
general, the gradient of an analytic phase function corresponding to a Fourier
integral operator in a space of dimension n+1 satisfies conditions (I'A1), (['A2)
(Theorem 4.2.3). With this approach one can interpret the set 2 as a section of
the closure of an analytic conormal bundle and Q%78 as the set of the essential
singularities for the canonical projection in this closure. Again, this leads to
a description of the wave front sets of a class of Fourier integral operators
(Chapter 4) and to improvements in the regularity theory of the hyperbolic
partial differential equations (Sections 5.2 and 5.4).

There is a number of interesting problems related to fibrations arising in
this way. Thus, for a given fibration 3¢ in an open dense set g in 2, we would
like to determine whether there exists a holomorphic mapping I' satisfying con-
ditions (T'A1), (I'A2), such that the fibration defined by s coincides with the
fibration defined by 3¢ in Q9 N Q*). The construction of a phase function ¢
for a given I'(§) = V¢¢(&) leads to further complications. In Chapter 3 we will
derive necessary and sufficient conditions in terms of a system of partial differ-
ential equations with coefficients corresponding to a given fibrations. However,
the regularity (analyticity) of the fibration does not immediately imply that
solutions of the constructed system of differential equations are sufficiently reg-
ular. Moreover, this system depends on the choice of a local coordinate system
in the Grassmannian. It would be interesting to obtain an invariant description
of the results of Chapter 3 as well as their generalization to spaces of higher
dimensions. The results of this chapter (for example, Theorems 2.4.2 — 2.4.5)
describe possible dimensions of the set "8 under conditions (A1), (A2). They
also give some understanding of its structure. It would be interesting to inves-
tigate its further properties, especially in the case of gradient fibrations. For
example, in Section 3.4, we will give examples of fibrations of gradient type
for which Q%78 is not empty. However, in all our examples, the set Q58 is
affine and its dimension is equal to n — 2. It is not clear whether the condition
dim Q%178 = n, — 2 is necessary for the fibrations of gradient type.
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2.3 Formulation for the parametric fibrations

2.3.1 Affine fibrations setting

Let us briefly consider a more general problem allowing y dependence. Let A
be a holomorphic mapping from an open connected set Q@ C C™ x C* to CP*".
The dependence of A = A(y,£) on y can be assumed to be smooth. In this
case all the results are smooth in y and holomorphic in €.

Let k < n — 1 be the maximal rank of A(y,¢) in Q,

(R1) max(y¢en rank Ay, ) = k.

Let Q(®) be the set of points (y,£) where the maximal rank & is attained. It is
open and dense in 2. The mapping

s (y,€) = ker A(y, €)

is holomorphic from Q) to the Grassmannian G,,_, (C*) of (n—k)-dimensional
linear subspaces of C*. Let Q"8 denote the set of the essential singularities of
», i.e. the set of points (y,£) € Q such that the mapping > does not allow a
holomorphic extension to any neighborhood of (y, &) in Q. It is clear that the
sets Q%) and Q58 are disjoint. As before, the following condition guarantees
that kernels of A define a fibration with respect to &:

(R2) For every (y,€) € Q%) and (y,n) € Q¥ with n € (€ + x(y,£)), the affine
spaces x(y, &) and »x(y,n) are equal.

Similar to conditions (A1), (A2), condition (R2) means that s defines a local
holomorphic fibration in 2\Q%1"8. Example (1.5.6) with A = D%¢ shows that in
general fibrations can have essential singularities. If we fix a value of y or if we
take A independent of y, then conditions (R1), (R2) are equivalent to conditions
(A1), (A2) above. It turns out that simple examples as in (1.5.6) are impossible
in the problem (A1), (A2) and the analysis becomes more interesting. For
example, one of the necessary conditions for an analytic set Q%"8 to be the
set of the essential singularities of a mapping s associated to a holomorphic
mapping A is the following dimension estimate:

k—1 < dimg Q578 <n -2,
provided that A(y, &) = A(€) is constant in y, and Q"8 stands for the set of

the essential singularities of 3¢ associated to A(£), as in the previous section.

2.3.2 Jacobian affine fibration setting

Here, as before we assume that there is a holomorphic mapping I' from an open
connected set @ C C™ x C* to CP, such that A = DI'. Let k < n — 1 be the
maximal rank of the Jacobian DI'(y,§) in Q,

(FR1) max(y ¢)eq rank Del'(y,§) = k.
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The following condition guarantee the linearity of the level sets of I" with respect
to &:

(TR2) For every (y,£&) € Q®) the affine space (y,&)+(0, »(y, £)) locally coincides
with the level set T=Y(T'(y, £)) through the point (y,§).

Again, if we fix a value of y or if we take I' independent of y, then conditions
(R1), (R2) are equivalent to conditions (A1), (A2) above. In this case the
analysis becomes even more interesting. For example, one of the necessary
conditions for an analytic set Q°"8 to be the set of the essential singularities of
a mapping s associated to a holomorphic mapping I is the following dimension
estimate:

max{k — 1,n — k + 1} < dim¢ Q*"8 < n — 2,

provided that T'(y, &) = I'(€) is independent of y, and Q%"8 stands for the set
of the essential singularities of 3¢ associated to A(§) = DI'(¢). In particular,
Q51"& can not contain isolated points.

In view of the similarity of two problems described above we will use the
same notations in their analysis. In order to eliminate any confusion, we will
always consider problem (A1), (A2) unless we explicitly state otherwise.

2.4 Main results

Our main results are Theorems 2.4.1-2.6.4, 2.8.3, 2.9.2, which however employ
the notation introduced later. Theorem 2.7.7 with the upper bound on the
dimension of "¢ is quite standard (in the spirit of [51]). It turns out, that the
singularities are removable if the fibers are of codimension 1 or 2, i.e. if K = 1 or
k = 2. In particular, it follows that for n = 3 the singular set is always empty,
which corresponds to the fact that in 4-dimensional space, playing an important
role in the applications to the theory of strictly hyperbolic equations in physics,
the translation invariant Fourier integral operators satisfy the assumption for
the regularity in Chapter 1. Summarizing the main results, we state them here
in a form avoiding the notation introduced later.

Theorem 2.4.1. Let A satisfy (A1), (A2). Suppose that Q5" is not empty.
Then the singular set Q%"8 is an analytic subset of Q and for every & € Q"8
holds

k—1 < dimg Q"8 <n — 2.

Under the Jacobian condition (I'A1), we have a stronger statement.

Theorem 2.4.2. Let T satisfy (A1), (TA2). Suppose Q"8 is not empty.
Then the following holds:

(i) The singular set Q58 is an analytic subset of Q and for every £ € Q"8
we have .
max{k —1,n — k + 1} < dim¢ Q%" <n — 2.

In particular, 3 <k <n-—1, andn > 4.
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(ii) Let & € Q%i"8 be a point in the smooth (regular) component of Q5"8. Let
€ =limLo &, & € Q¥ and G, (C?) 3 3¢ = lim;_,o0 5#(&). Then
» C T{QSing.

As a consequence we get that in the case k < 2 all singularities are remov-
able:

Theorem 2.4.3. Let I satisfy (A1), (TA2). Let k < 2. Then the singular
set Q51" s empty.

The estimates on the dimension of Q%8 in (i) of Theorem 2.4.2 and The-
orem 2.4.3 together with the statement of Theorem 2.4.2, (ii), are sharp, in a
sense that all the intermediate dimension can be exemplified with even entire
mappings in C":

Theorem 2.4.4. For every3<k<n—1and2<d<min{k—-1,n—k+1}
there ezist a holomorphic mapping T' : C* — C" satisfying (I'Al), (T'A2), and
such that dim Q¥"8 = n — d. Moreover, T' can be chosen such that Q\Q*) =
Qsing'

Note, that similar results remain valid if CP is replaced by an arbitrary
analytic space. Finally, we would like to formulate precisely the relation for
the mappings with affine fibers and properties (A1), (A2).

Theorem 2.4.5. LetT' : 2 — CP be holomorphic, Q open subset of C*. Let Qg
be open and dense in ) and suppose that for every & € Qq the fiber T~1(I'(€))
through £ is an affine subspace of Q of codimension k, k < n — 1. Then T’
satisfies properties ([A1), ([A2), and Q58 C Q\Qy.

There are different ways to formulate the problems in a more general setting.
One way is to observe that s is a meromorphic mapping and work in the
category of meromorphic mappings. Another way is to define the set Mor(X,Y")
of morphisms from the analytic set X to the (compact) analytic set Y as follows.
The morphism x belongs to Mor(X,Y) if there is an analytic subset C' of X
such that locally dim C' < dim X and such that there is a holomorphic mapping
X : X\C — Y. Then x consists of the pair (C,X). However, our analysis will
sometimes rely on the fact that the fibration s is related to a holomorphic
mapping I' (as in (I'A1), (I'A2)) which is fixed in this monograph. Thus, if we
chose to work with morphisms which are smooth on a dense open part of 2, a
number of results would be lost. This is the reason for us to avoid the general
category language and to restrict to the local properties of s.

2.5 Methods of complex analytic geometry

In this section, we will review some notions and facts of complex analytic
geometry which will be frequently used in the sequel. Following [51], let us
define meromorphic mappings.
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Definition 2.5.1. A mapping 7 : X — Y between complex manifolds X and
Y is called meromorphic, if the following three conditions hold.

(1) For every xz € X the image set 7(z) C Y is non-empty and compact in
Y. .

(2) The graph of the mapping 7, that is the set all pairs (z,y) € X x Y
such that y € 7(z), is a connected complex analytic subset of X x Y of
dimension equal to the dimension of X.

(3) There exist a dense subset X* of X, such that for every € X* the image
set 7(z) consists of a single point.

One of the important tools for the analysis of the structure of analytic sets
are dimension estimates. Let M be a complex n-dimensional manifold and let
E C M be an arbitrary subset of M. Dimension of E is defined by

dim E = sup{dim F' : F C E},

where supremum is taken over all smooth submanifolds of M contained in E.
If the set on the right hand side is empty, we assume that the supremum is
—oo. If E is a submanifold or an analytic subset of M, then this notion of
dimension coincides with the standard, used in the analytic geometry. If 7 is a
projection from the Cartesian product to one of the sets, then the upper bound
for the dimension of the preimage is given by the following theorem.

Theorem 2.5.2. Let E C M x N, where M, N are complex manifolds. Let
w: E — M be the natural projection. Assume that for k € N holds

dim771(2) <k, Vz € n(E).
Then dim E < k + dim 7 (E).

By a globally analytic subset of the manifold M we mean any set, of the form
Z(frseoo s fi) ={z € M : fi(2) = ... = fi(2) = 0},

where fi,..., fr are some holomorphic functions on M. A subset Z of the
manifold M is called analytic if every point of M has an open neighborhood U
such that the set ZNU is globally analytic in U. Analytic subsets of open sets
in M are called locally analytic in M. In particular, a set Z is analytic in M if
and only if it is locally analytic and closed.

Theorem 2.5.3. (1) LetV C M and W C N be non-empty subsets of mani-
folds M and N, respectively. Then the product V x W is (locally) analytic
in M x N if and only if both V and W are (locally) analytic in M and
N, respectively.

(2) (The Analytic Graph Theorem) Every continuous mapping f : M — N
with analytic graph is holomorphic.
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(3) Ewvery proper analytic subset Z of a connected manifold M is nowhere
dense and its complement M\Z is open and connected.

If VC M and W C N are locally analytic subsets, then the mapping
f:V — W is called holomorphic if every point in ¥V has an open neighborhood
U in M such that f|yny is the restriction of a holomorphic mapping from U
to V.

Theorem 2.5.4. Let k € N and let f be a holomorphic mapping defined above.
Then

(1) dimV > k +dim f(V), if dim f~(w) > k for all w € f(V).

(2) dimV < k +dim f(V), if dim f~Y(w) < k for all w € f(V).
The proof of the first part is based on the reduction of the estimate to a
subset Z of the image f(V) of dimension equal to dim f(V'). So, in this case,

the set f(V) can be semi-analytic. The second estimate is based on Theorem
2.5.2. If the level sets are of the same dimension, we have

Corollary 2.5.5. Let Z C W be a locally analytic subset of N. Ifdim f~1(w) =
k holds for all w € Z, then dim f~1(Z) = k + dim Z.

For z € V let I, f denote the germ of the fiber of f

Lf=(f7(f()),
at the point z.

Theorem 2.5.6. (1) (semicontinuity) The mapping
Vazrmdiml, f

is upper semicontinuous: for all a € V the inequality dim!l, f < diml,f
holds in some neighborhood of a.

(2) The inequality diml,f > dim, V — dim f(V) holds for all z € V.

(3) (Cartan-Remmert). For every k € N the set {z € V : diml,f > k} is
analytic.

The set E is called analytically constructible if there exist analytic sets V
and W such that £ = V\W.

Theorem 2.5.7. Let V,W C M be analytic sets. Then the closures of any
connected component of the set VAW, any open and closed set in V\W, and,
in particular, the set VAW, are unions of some simple components of V' not
contained in W, and so they are analytic. The family of the connected compo-
nents of the set V\W is locally finite.

We will also need the following
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Proposition 2.5.8. IfV is an analytically constructible set, then the set V\V
s nowhere dense in V.

Proofs of the above statements can be found in [32] in I11.1.4, 11.3.4, V.1.1,
11.3.6, V.3.2, V.3, IV.2.10. The last proposition is a remark on p. 250 in [32].
By [51] and [32, V.5.1] we have:

Theorem 2.5.9 (Remmert’s Proper Mapping Theorem). If f : X = Y is a
proper holomorphic mapping of analytic spaces, then its range f(X) is analytic
in Y. Consequently, the image of each analytic subset of X is an analytic
subset of Y.

Let us briefly review some other techniques. A subset Z of a complex
manifold M is called thin, if it is closed, nowhere dense, and for every open
set  in M every holomorphic function on Q\Z which is locally bounded near
QN Z extends to a holomorphic function on §2. An important statement which
will be of use to us is the following ([32, I1.3.5]):

Proposition 2.5.10. Every nowhere dense analytic subset of a complex man-
ifold M is thin in M.

If E is a nowhere dense subset of a non-empty set F', where both E and F'
are analytically constructible in M, then dim E < dim F. In fact, as in [32, p.
253], we have

Proposition 2.5.11. For E and F as above, E is nowhere dense in F' if and
only if dim, E < dim, F' for all z € E.

If M is connected, we have the following property ([32, I1.3.6]).

Proposition 2.5.12. If the complex manifold M is connected, then every proper
analytic subset Z of M is nowhere dense and its complement M\ Z is connected
and open.

An important inequality for studying dimensions of analytic sets is that for
any analytic germs Aj,... , Ag at a point a of a complex manifold M, holds

codim (A; N...N Ag) < codim A; + ... codim Ay. (2.5.1)
The proof can be found in [32, I11.4.6]. Let now f;, ¢ = 1,...,k, be analytic
functions on a neighborhood of a such that f;(a) =0, for all: =1,... ,k. Let
Zjy, denote the zero set of f;. As a consequence of (2.5.1), we get
codim (Zy, N...NZy) <k,

or

dim (Zs, N...NZz) > n—k. (2.5.2)
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2.6 Some properties of affine parametric fibra-
tions

In this section we will discuss several general properties of parametric fibrations
and their implications for the non-parametric case with £ = 1. Thus, under
conditions (I'R1), (I'R2) we have:

Theorem 2.6.1. Let T' satisfy conditions (TR1), (TR2) with k = 1 and let
(y,&) € Q"8 Then the mapping n — I'(y,n) is constant.

To prove this, we start with two lemmas.

Lemma 2.6.2. Let A satisfy conditions (R1) and (R2). For w € Q*"8 and for
every k-dimensional linear subspace C of C" there exists a sequence w; € Q)
such that w; converges to w as j — 0o, »(w;) converges to »x € G, (C") as
Jj— 00, and 32N C # {0}.

Proof. The set G(C) = {L € G,—;(C") : LN C = {0}} is holomorphically
diffeomorphic to C*»=%) (c¢f. [32, B.6.6] and [32, Prop., p.367]). Therefore, if
there exist a neighborhood U of the point w in Q such that the image »(UNQ*))
is contained in a compact set in G(C), then w ¢ Q%"&. For the latter conclusion
we use Proposition 2.5.10, which means, in particular, that every bounded
holomorphic function on the complement of an analytic subset of U has a
holomorphic extension to U.

Lemma 2.6.3. Let I' satisfy conditions (TR1), (TR2). For every point (y,&) €
Q58 and for every k-dimensional linear subspace C of C"* there exists a linear
subspace L of C with dim L > 1 such that for every l € L holds

Iy, & +1) =T(y,%).

Proof. According to Lemma 2.6.2 there exists a sequence w; — (y,§) with
wj € Q®) such that the limit lim; s¢(w;) = s exists and 5 N C # {0}. Let
L = »NC. In view of condition (R2) for all w; = (y;,¢;) and z; € »(w;) holds
I'(y;,& + 25) = I'(y;,&). The statement of the lemma now follows from the
continuity of I'.

The proof of Theorem 2.6.1 follows from Lemma 2.6.3 with £ = 1, since in
this case Lemma 2.6.3 holds for an arbitrary C.

Corollary 2.6.4. Let I' satisfy (A1), (TA2) with k = 1. Then the set of
essential singularities Q"8 s empty.

Proof. Let ¢ € Q%"8. According to Theorem 2.6.1 the mapping 7 — I'(n) is
constant in {2 and the matrix DI" vanishes. This contradicts k£ = 1.
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2.7 General properties of affine fibrations

In this section we will analyze some structural properties of the singular set
Q5i& and establish several general properties of affine fibrations. From now
on we will always assume that the mapping A satisfies (A1) and (A2), unless
stated otherwise.

We start with noting that the graph of s is given by

G ={(6L) € QxGpi(C*) : £ € Q¥ L = 5(¢)}

and we also define
E={¢0L)eNxGyp(C"): L CkerA(9)}.
Clearly FE is a closed analytic subset of Q x G,_(C") and
G = (2" x G (C)NE =E\{({L) € Ax Gy (C"): £ € N\QW},

which is the complement in E of the closed analytic subset E N {(¢,L) €
Q% Gpp, (C) : € € QWY Let 52(€) C Gp—k (C™) be the set of the limits of
%(fj) as fj — f, §j € Q).

For V C G,_;(C") we define the set V by

v=JL

Lev

We will use the following properties of the mapping V V:

Proposition 2.7.1. Let V be an analytic subset of Gp_(C"). Then V is an
analytic subset of C*. Moreover,

dimV < dimV +n — k.
IfdimV > 1, then diimV >n —k + 1.
Proof. The incidence relation I defined by
I={(L)eC" xG,x(C"): €€ L}

is an analytic (even algebraic) subset of C* x Gy,—;(C"). Let m : (§,L) — &
be the projection from C"* X G,_;(C") to C* and let V be an analytic subset
of Gp— (C™). Then

V=m(IN(C" xV)).

The set C* x V and, therefore, IN(C™ x V) is analytic in C* X Gp_ (C*), so V
is analytic if the mapping m is proper by Remmert’s proper mapping theorem
2.5.9. This is indeed the case in view of the compactness of the Grassmannian

Gaor (C).
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Now we will prove the estimate of the dimension. Let 72 : (£, L) — L be the
projection from C" x G,,_;(C") to G,,_x (C*). We have my(IN(C* xV)) =V
and let v € V C G, (C™). The fiber of m3 in v in I N (C* x V) is the set
{(&,v) : € € v}, so that dim(m; () NI N (C* x V)) = dim% = n — k. The
application of Theorem 2.5.4 implies that dim(IN(C* xV) = n—k+dim V. The
projection 71 can not increase the dimension and the estimate of Proposition
follows. _ B

Assume now that dimV > 1 and dimV = n — k. The set V is analytic,
therefore it has at most finite number of irreducible components at each point.
By definition of V', each of this components can be only a (n — k)-dimensional
subspace of C*. But this would imply that the set V is finite, a contradiction
with dim V' = 1. The proof is complete.

Now we can prove

Proposition 2.7.2. The following holds:

(i) The set G is analytically constructible, the closure G is analytic. The set
7(€) is analytic and connected. The set (€) is analytic in C".

(ii) We have (€) C ker A(€) for every & € ).

(iil) If &€ € Q"8 then dim 5(¢) > 1 and dim 3(¢) > n — k + 1. On the other
hand, if ¢ € Q\Q58 then 3(£) contains only one element L € G, (C)
and (&) = L.

(iv) Moreover, if ¢ € Q& and C is an irreducible component of 5(£), then
dimC >n—k+ 1.

(v) If € € Q*k=D N QS8 then 3(€) = ker A(€) and dim 5(¢) =n — k + 1.

Proof. (i) We have already shown that G is analytically constructible. The
closure (G is analytic because the closure of any analytically constructible set
is an analytic set (Theorem 2.5.7). It follows that

#(€) ={L € Gn i (C"): (£, L) € G}

is an analytic subset of G,_ (C"), since {¢} x 5(¢) = ({£} x G—x (C*)) NG
and hence analytic, implying the analyticity of 5(£) by Theorem 2.5.3, (1).

Now we shall prove that () is connected. Let U,V be open subsets of
Gn_x(C*),UNV =0 and (&) C (UUV). Let A = {n e Q¥ : x(n) € U}
and B = {n € Q%) : 5(n) € V}. Then A and B are disjoint open subsets of
Q) There is an open neighborhood W of ¢, such that W N Q*) is connected
and WNQ® c AUB. Hence ANWNQ®) =Por BAWNQH = and it
follows that #(£) NU = 0 or 5(£) NV = . This completes the proof that 3(¢)
is connected.

The analyticity of 5(¢) in C* follows from Proposition 2.7.1.

(ii) The inclusion (and equality) holds for £ € Q\Q"8. Now, let & € Qsin8
and let 3 € 3(€). Then there exists a sequence & € Q) such that &;
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converges to ¢ in Q and s(&;) converges to sq in the Grassmannian. Then
we have »(&;) = ker A(§;) and A(§;)s(&;) = 0. Taking a limit and using the
continuity of A, we get A(£)s = 0, which means 3¢ C ker A(£). Because this
holds for any s € 3(£), we obtain the statement.

(iii) If ¢ ¢ Q"8 then (&) consists of one point, so that dim 5(¢) = 0.
Conversely, if £ € Q"8 we have that for every C € Gy, (C?) the set

Gni (C")e = {L € Gy (C") : LN C # {0}}

is a hypersurface (for general n, k with singularities, analytically constructible
in G, (C") x Gy (C"), see [32, p.367]), the intersection property 3(§) N
G-t (C) ¢ # O for every C € Gy (C") implies that () is infinite, hence
dim 7(€) can not be equal to zero. Proposition 2.7.1 implies that dim (&) >
n—k+1.

(iv) Suppose again that dimC < n — k. Then C € G, (C"), C € x(£).
The set 3(¢) is connected by (i) and contains more than one element by (iii).
It follows that C belongs to the closure of a smooth part of () of positive
dimension, which implies that C' is contained in an irreducible component of
3(€) of dimension > n — k + 1, in contradiction with the assumption that C is
an irreducible component of ().

(v) If € € Q=1 N Qsine | then ker A(€) is a linear subspace of codimension
k—1, and ¢ € Q%78 implies that 5(¢) has codimension k — 1. For 7 € ker A(€),
1 # 0, let L denote the linear span of . Then L C ker A(£) and there exists
C € G (C") such that L = ker A(¢§) N C. By Lemma 2.6.2, there exists s €
#(€) with dim(s¢9 NC) > 1. Then s NC C ker A(§) N C = L and, therefore,
s NC = L. This implies n € L = 3 NC C 5y C x(¢) and the equality of
(&) and ker A(€).

Remark 2.7.3. The statement of Proposition 2.7.2, (iii), implies in particu-
lar, that for & € Q"8 holds dimg (€ + 5(€)) >n -k + 1.

Remark 2.7.4. The graph of the mapping > is analytic in Q X G,_ (C").
The analytic graph theorem (Theorem 2.5.3, (2)) implies then that the following
conditions are equivalent:

3 s locally bounded.
7 1S continuous.

)
)

(iii) 3¢ is holomorphic.
)

Remark 2.7.5. For k = n — 1 we have G,—(C*) = P(C") and by Chow’s
theorem ([6]) it follows that 3(£) must be algebraic, defined by some homoge-
neous polynomial equations in C*. For arbitrary k, using Pliicker embedding
Gn—k (C*) — P(A™*C") and Chow’s theorem, it follows that 3(£) is algebraic
in A"kCP,
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Remark 2.7.6. If for an algebraic variety V we denote by T,V its Zariski
tangent space at m, which is the intersection of all ker D f(n) with f a polyno-
mial, which is constant on V, then it follows that, for every n € x(§) such that
E+n € Q, we have Ty 3(€) C ker A(€ +1).

In view of Proposition 2.7.2 and compactness of G, _ (C"), the mapping 3 :
Q = G, (C") is meromorphic in a sense that it coincides with holomorphic
mapping s on Q*)  its graph is analytic and the values 5(¢) for ¢ € Q\Q(*)
are compact. Now we will derive an upper bound on the dimension of (sin8.

Theorem 2.7.7. The set Q58 is an analytic subset of Q with

dim Q%"8 < n — 2.

Proof. In fact, this is a consequence of [51, p.369]. However, let us give an
idea of its proof. Let 7 be the restriction to G of the projection (¢,L) —
&. Then, according to a theorem of Cartan and Remmert (Theorem 2.5.6,
(3)), the set ¥ of the points g € G such that the dimension of the germs
at g of the fiber 7~!(n(g)) has positive dimension is an analytic subset of
G, so an analytic subset of Q x G,_;(C"). On the other hand, due to the
compactness of G,_j,(C"), 7|5 is a proper analytic mapping from G to €, so
in view of Remmert’s proper mapping theorem (Theorem 2.5.9), 7(G) is an
analytic subset of Q. However, 7(G\G) = Q"8 s0 Q51”8 is an analytic subset
of Q.

By Proposition 2.7.2 and Proposition 2.5.8, the set G\G is nowhere dense
in G. Then, by Proposition 2.5.11, we have dimG\G < dimG and since
every analytically constructible set is a locally finite union of analytically
constructible leaves ([32, Prop.3(2),p.249]), we have dimG = dim G. Thus,
dim G\G < dimG — 1 = n — 1. The projection 7 of G\G to the first factor by
Proposition 2.7.2 has dimension of each fiber > 1 and image equal to Q*"8. By
Theorem 2.5.4 we get

dim Q"8 < dim G\G < n — 2.

Proposition 2.7.8. The mapping s is holomorphically extendible over every
point £ € Q\Q5"8. The set Q\Q*"8 is a connected subset of Q and, therefore,
s allows the holomorphic extension to Q\Q*"8. This extension coincides with
the restriction of 7 to Q\Q%"8. Moreover, for every £ € Q\Q"8 and n €
(€ + 5(€)) N (Q\Q¥8) we have 3(€) = (n).

Proof. By definition of Q%" each point & € Q\ Q5" is a removable singularity
for sr and the mapping s is extendible in a neighborhood of this point in
Q\Q51"8  which is an open subset of . It is also connected by Proposition
2.5.12, and s has the global holomorphic extension to Q\Q%"8, say s¢. The
graph of s is between the graphs of s and 5 in Q x G,,_; (C"). It follows that
the closure of the graph of s is equal to the graph of > and this implies that
30 is equal to the restriction of 5 to Q\Q*"8. Suppose now, that £ and 7 are as
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in the conditions of Proposition 2.7.8. Let & € Q%) ¢; — ¢. Then there exists
a sequence 1; € (& + (&) N Q®) such that n; — 7. Then 3(n;) — 3(n) as
s is extendible over 7. But x(€;) = s(n;) because &;,m; € Q%) and (A2), so
that s(&) = lim; 2(&;) = »(n).

Now we will introduce the equivalence relation defined by the fibration s.
On the regular subset Q(*) two points are in the same equivalence class if they
belong to the same fiber. The closure of such equivalence relation defines a
relation on 2, for which the class of a point £ € Q consists of the limit cone
#(€). In particular, for £ € Q' = Q\Q%"8 the equivalence classes are of the
same dimension as for ¢ € Q(¥), This is used to establish some relations with
Qsin8 and estimate its dimension.

Proposition 2.7.9. The set
R={(n) €V xQ :n-Eex&)}

is a closed analytic subset of Q' x Q', smooth, dim R = 2n — k. Moreover, R
defines an equivalence relation in ', namely

(i) (&€) € R for every £ € V.

(ii) If (&,n) € R, then (n,€) € R.
(iil) If (&,m) € R and (n,¢) € R, then (§,() € R.

If€ €Y then
R(E) ={neQ:(,n) eR}

is the equivalence class of & and Q' is partitioned into equivalence classes. The
set Q' /R is a smooth complex analytic manifold of dimension equal to k.

Proof. The statements in the first sentence about R are obvious, with dim R =
n+ (n — k) = 2n — k. Properties (ii) and (iii) follow from Proposition 2.7.8.
If R(§) NR(n) # 0, then R(£) = R(n) and Q' is equal to the union of R(£)’s.
Because R is a closed subset of Q' x ', the quotient space '/R of equiva-
lence classes is a Hausdorff topological space, when provided with the strongest
topology for which the natural projection p : £ — R(£) is continuous. Using
transversal sections we see that actually /R is a smooth complex analytic
manifold of dimension equal to k, since dimR(§) = n — k.

The set R N (QF) x Q%)) is equal to the complement of
(NP x Q) U (Q x (2\Q*))) (2.7.1)
in the analytic subset

{(&n) eQxQ:n—EekerA(§)}

of 2 x (2. Because the set (2.7.1) is an analytic subset of  x 2, it follows that
‘R is analytically constructible and the closure R of R in 2 x Q is an analytic
subset of 2 x Q (Theorem 2.5.7). Thus, we have
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Lemma 2.7.10. The set R = RN (Q x Q) is analytically constructible, its
closure R is an analytic subset of 0 x ) and

dim(R\R) < 2n — k — 1.

Proof. We have already shown that R is analytically constructible and its
closure R is analytic. Then the set R N (Q*) x Q) is dense in R and
Proposition 2.5.11 and 2.7.9 imply

dim(R\(R N (QF x Q#)))) < dimR = 2n — k.

The dimension estimate of Lemma follows from it.
We have the projections

() EAXA>Q m:(En)—~n:QxQ—>Q,

which are analytic mappings. We will actually consider the restrictions of m
and 72 to R. Note that (7' ({€}) NR) is equal to the cone 3(€) over 5(€).
Because by Theorem 2.7.7 the set Q"8 is an analytic subset of (2, also

,Riing =RN (Qsing x Q)

is an analytic subset of 2 x 0 and we have the analytic mappings 7 : ﬁii"g —
Q"8 which is surjective, and my : R} "¢ — Q. We have

U (€+3©) = m(Rn (@ x ). (2.7.2)
Eering

Note that the dimension estimate dim Q5”8 < n—2 in Theorem 2.7.7 follows
also from Lemma 2.7.10. Indeed, the set R N (Q5i"8 x ') is contained in R\R,
so has dimension < 2n — k — 1. The fibers of m; from ’Rii“g onto ("8 have
dimension > n — k + 1. Hence dim Q%78 < n — 2.

Proposition 2.7.11. The following estimates hold:

n—k+1<dimm(RN (18 x Q)), (2.7.3)

dim Q%8 4 — k + 1 < dim(R N ("8 x Q)). (2.7.4)

Proof. The estimate (2.7.3) follows immediately from (2.7.2). By Proposition
2.7.2 for each w € m (R}"8) = Q"8 the fiber 7] '(w) restricted to R}"®
satisfies dim 77! (w) > n — k + 1, hence by Theorem 2.5.4 we get (2.7.4).

Now we will analyze the structure of Q%"8. Let us first overview a general
construction and then concentrate of the case k =n — 1.
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By a m-dimensional projective subspace of the space P = P(C*) we mean
any subset of P(C"*) of the form P(L), where L € Gy,4+1(C"). For more dis-
cussion on the general structure of these sets see [32]. By G, (P) we denote
the set of all m-dimensional projective subspaces of P(C"), so that we have the
bijection ‘

w:Gnt1(C*) 3 L P(L) € Gy (P).

If L is one dimensional, we will identify L with P(L) and Gy (P) with P. Via
this mapping w we can identify elements of G, (P) with (m + 1)-dimensional
linear subspaces of C*. Let D = Gp_;—1(P) and for a given L € D and
complementary to w™!(L) k-dimensional linear subspace H of C", let wp g be
the linear projection from C* onto H along L.

Let Dy = P(H) be the space of directions in H. Then 7y, g induces a holo-
morphic rational fiber bundle from D\{P(L)} onto P(H). The fiber 7} (M)
over any M € P(H) consists of all K € D such that K # P(L) and K C L+M
so that

(M) = Gu_g—1 (P(L + M)\{P(L)}.

Adding (the points of) P(L) to it, we get the spaces G,—x—1 (P(L + M)) =
Gr—k (L+ M) in Gp_j—1 (P) as the closure of the fibers. Thus, 7y, g defines an
almost fibration D — P(H) with (n — k)-dimensional projective subspaces as
fibers, except that all fibers intersect each other at the subspaces of L in D.

We may assume that not for all £ € Q*) we have »(¢) = L. This implies
that

D= (e u(e) £ L}

is equal to the complement in 2 of an algebraic subset of complex codimension
> 1. Hence Q(Lk) is a connected, open and dense subset of Q(*) and of Q. On

Q(Lk) we have the set valued mapping 7 g ow o 3 : Q(Lk) — P(H).

Let us do now the technically simpler case of K = n — 1, which will turn
out to be the most important case later. The above construction simplifies.
We consider the projection of the fibers to some hyperplane H in C*, which
can have its own singularities. Let L € P(C") be given and let an (n-1)-
dimensional linear subspace H of C" be complementary to L. Let 7y g be the
linear projection from C" onto H along L. The projective space P(H) is the
space of directions in H and 7y g induces a holomorphic rational fiber bundle
from P(C*)\{L} onto P(H). The fiber 7%, (M) over any M € P(H) consists
of all K € P(C") such that K # L and K C L+ M, so that

(M) = P(L+ M)\{L}.

Adding L to it, we get the spaces P(L + M) in P(C*) as the closure of the
fibers. Thus, 7 g defines an almost fibration P(C*) — P(H), except that all
fibers intersect each other at L in P(C").

We may assume that not for all £ € Q%) we have »(€) = L. As before, the
set

QP = (e € QW . x(6) # L}
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is a connected, open and dense subset of Q%) and of . On Q(Lk) we have the
holomorphic mapping 7r g o s : Q(Lk) — P(H).

Let QSLi"g be the set of £ € Q such that 7p g o 3¢ does not have a holo-
morphic extension to any open neighborhood of £. Clearly QSLing C Qsing,
If £ € Q8\QS™8 then 77y maps 5(€) to the single value of the analytic
extension of 7, g o 3 over &, say M, which means that 3#(§) C P(L + M).
By Proposition 2.7.2 we have dim3(¢) > n — k + 1 and dim ﬁ(L + M) =
dim(L+ M) =n—k+1 =2, so we get that it is open in P(L+ M). It follows
that 5(¢) is an open conic subset of P(C?). If & € Q"¢ and & — ¢ in ©,
Lje x(), Lj = Lin P(C"), then L € (). This implies that £ € 2578 and
#(§) contains all limit positions of elements of #(§;), j = co. In particular, if
0 € Q5in8\(5™8 5(0) = P(J), J a 2-dimensional linear subspace of C"*, and we
choose L' € P(C") with L' ¢ J, then £ ¢ Q5"8\ Q57 for all £ in a neighborhood
of zero. Thus, we have proved

Proposition 2.7.12. Let k = n — 1. For every £ € Q58 there exist an open
neighborhood U of & in Q, such that Q"¢ NU = Q" NU for L in an open
dense subset of Gy (C").

Now we want to establish estimates from below on the dimension of Q5"8.
We will need the following simple result from linear algebra, the proof of which
is obvious.

Lemma 2.7.13. Let A € CP*"™ with rank A = k, attained on a submatriz
AM € C** of the rows and columns with numbers in L and M respectively,
Lc{l,...,p}, MC{1,...,n}. Then for each 1 <r <k and {\;};—; C L
there exist {u;}i_, C M, such that det ARE # 0, where AYY € C7 is a
submatriz of A, obtained by the zntersectzon of rows \; with columns Wi, & =
1,...,r.

The following Lemma shows the ambiguity of a blowing-up in the case when
its center S is not an immersed manifold. We assume that the functions defining
the blowing-up do not have a common factor vanishing at the points of S. If
S is a smooth manifold of codimension k, then the fibers of the blowing-up
over the points of S are equal to the projective space Pr_; (cf. [32], [63]). If
S is analytic, then the above procedure can be applied to the interiors of its
irreducible components of different dimensions, leading to the projective spaces
of different dimensions. See [24] for more details in fuller generality. For our
purposes it is important that the fibers are not zero dimensional, or that the
blowing-up is not holomorphically extendible over its center.

Lemma 2.7.14. Let f : Q@ — CP be holomorphic, Q0 open and connected in
C',p>2,f#£0. Let S={£€Q: f(§) =0}, { € S, dimg, S <n —2. Then
there is no open neighborhood U of & in Q such that the holomorphic mapping

F: €0 CF(€) : Q\S — P(CP)

has a holomorphic extension to U.
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Remark 2.7.15. The condition dimg, S < n —2 is equivalent to the condition
that fi,...,fp do not have a common factor, which is zero at §. The set
F(&) of limit values of F at & is an algebraic subvariety of P(CP) of positive
dimension.

Proof. The argument as in Lemma 2.6.2, shows that if there exists a hyper-
plane H in P(CP) such that F(&) N H is empty, then F has a holomorphic
extension to a neighborhood of &, which we also denote by F. The converse
also holds. Then there exists an index 4 such that n € F(&), n # 0 imply
7; # 0. Because of the continuity of F' at &, we get an € > 0 and a neighbor-
hood U of & in Q such that £ € U, n € F(£) imply |n;| > €|n;| for every j # i.
It follows that if £ € U\S then f;(§) # 0, or

SNUcC f71(0)nU c S,

in contradiction with dim f;*(0) = n — 1 and dimg, S < n — 2. This completes
the proof of Lemma.

Proposition 2.7.16. Either Q"8 is empty or dim¢ Q"8 > k — 1 for every
E € Qsing'

Proof. By Lemma 2.7.13 there exist subsets £, M of {1,... ,n}, with k ele-
ments, such that A} (£) = det A;;(£)ier,jem is not equal to zero for all £ € Q.

Let Z; m be the zero set of A% in Q. Then, for ¢ € Q\Z, a1, we have
7 € ker A(§) if and only if

D AG©ni+ Y Am(Enm =0, i€ L. (2.7.5)

JEM mgM

Moreover, the equations (2.7.5) can be solved with respect to n;, j € M and
we get that (2.7.5) is equivalent to

pe ¥ EMO, oy (27.6)
J e? AZ\A (f) 9 )
in which fK”M(g) is a polynomial in the coefficients of A({). For each j € M,

let Zﬁ, am be the common zero set of the functions fgnM, m & M, and A,
after we have divided away possible common factors. Because 2\ Z. a4 is dense
in Q, we get from Lemma 2.7.14 that Z%,M C Q"8 The number of m ¢ M is
n —|M| =n — k, and with A?* holds

dime Z4 py >n—(n—k+1)=k—1
by (2.5.2). Hence we get the estimate dim, Q"8 > kg — 1.

Proposition 2.7.17. If k = n — 1, then either Q%"8 is empty or dim Q5"& =
n—2. Moreover, if A is an irreducible component of Q"8 then dim A = n—2.
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Proof. The first statement follows from Proposition 2.7.16 and Theorem 2.7.7.
Now, for £, M as in the proof of Proposition 2.7.16 there exist unique numbers
1<l,m<n,l¢L m¢gM and we denote Ay, = A2 and Z§ (= Zf,. The
second statement will follow if we show that

sing __ k
Qins = U Zf,.
Lm,k: A 20, ff, #0

From the proof of Proposition 2.7.16 we see that ZF, C Q"8 so it is sufficient
to prove that for every & € Q"8 there exist I, m, k such that A, Z0, fF, #0
and ¢ € Z,’”m By Lemma 2.7.13, for every [ there exists m such that Ay, #
0. Let & € Q8. Then Ay,(€) = 0, because otherwise ¢ € Q=1 but
Qe N Q=1 = ). The system (2.7.6) becomes

(3
= Alm(f)

If for all k € M the functions fF (£) = 0, this would imply that all n, = 0,
k # m, which means that the fibration would be constant. Thus, for every m
there exist  and k such that f # 0. The condition £ ¢ ZF would mean that
fE (&) #0, or 9y, = 0. If this is true for all m, then all 7, = 0, a contradiction
with Q%P8 £ (). The proof is complete.

Nm, k#m

2.8 Affine fibrations of Jacobian type

In this section we will always assume that A is of the Jacobian type, A = DT,
and that properties (I'A1) and (T'A2) are satisfied. First of all, we can recall
Corollary 2.6.4, which states that if £ = 1 then Q"8 is empty, that is there
can be no essential singularities in fibrations by hyperplanes.

Note, that the assumption (I'A2) of T being constant along s(£) is very
essential. Assumptions (I'A1) alone do not guaranty the emptiness of (%" for
k = 1. It is shown by the following example.

Example 2.8.1. Let I'(§) = (£ + &2 + €2,0,0) € C*. Then

26 26 26
ar
o¢ ( 0 0 0 )

thus k = 1, Q1) = C*\{0} and for € € QO with & # 0, the kernel »(€) is
spanned by
-6 /6 -&/&
1 , 0
0 1
The singular set is Q"8 = {0}.

However, the mapping I' is not constant along s(£). Related to the as-
sumption (I'A2), we have the following characterization:
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Proposition 2.8.2. For every ¢ € Q) the mapping T is constant on (€ +
#(&))NQ, i.e

') =T() (2.8.1)
for all ¢ € (€4 »(£)) N if and only if »(£) is constant on (§ + 2(£)) NN, i.e.

#(€) C ker DT'(¢) (2.8.2)

for all ¢ € (€ + »(€)) N Q with the equality if ¢ € (€ + (€)) N QK.

Proof. Differentiation of (2.8.1) with respect to the basis elements of »(¢)
implies (2.8.2). For ¢ € Q*) the dimensions of both sides coincide, so that the
equality holds. Conversely, it follows from (2.8.2) that DT'(§ + n)2(§) = 0 for
n € #(£) and therefore I'(€ + n) is constant along s(£), which is (2.8.1).

In case of the rank drops by one, we have the following

Theorem 2.8.3. Assume that & € Q%8 and that £ € Q¥ je. rank DT(¢) =
k—1. Then D(£+ X) =T() for all X € ker DT'(&), £+ X € Q.

Proof. Denote M = ker DI'(¢). Note, that ¢ € Q* =1 implies dim M =
n —k + 1. For every s = limj_, o 3(&;) as Q®) 35 ¢ — ¢ we have that
»#9 C M by continuity of DI'. For each one dimensional linear subspace L of
M there exists a k-dimensional linear subspace C of C*, such that L = M NC.
On the other hand 1 < dim (s N C) and 3 N C C M N C = L, which implies
that s N C = L. Hence, by Lemma 2.6.3, I'(¢ + \) = I'(¢) for all XA € L.
Because this holds for every one dimensional subspace L of M, we get that
T+ A) =T(¢) for all A € M. The proof is complete.

Proof of Theorem 2.4.5: Assume, that the properties (I'A1) and (T'A2)
are satisfied for T' with some m < n (instead of k). Then, by the implicit
function theorem we have that the regular fibers of " are (n — m)-dimensional,
and, therefore, m = k, and thus we have (I'Al) and (['A2). For £ €
define A\(¢) = T71('(¢)) — €. By the assumption ) is the mapping from (g
to Gp—r(C™). The mapping T is constant on (£ + A(€)) N © and hence by
Proposition 2.8.2 we get A(€) C ker DI'(¢) for ¢ € (§+ A(§)) N Q. In particular,
() = ker DT'(¢) for all £ € Qo NQ*) and we obtain (I'A2) on Qo N QK. The
set Qo NQM is dense in ©Q and Q*). Therefore, for every ¢ € Q*) there exists a
sequence §; € (1o NO*) | convergent to £. The compactness of G,_x (C*) implies
the existence of a subsequence of §;, such that the corresponding subsequence of
#(&;) converges to some s € G,—k (C*). Without loss of generality we denote
this subsequence also by ;. For every 1 € (£ + 35) N (2 there exists a sequence
n; € (& + (&) NQ, such that n; converges to . The above proof of (I'A2) for
QoN Q™ implies that T is constant on &; +5(¢;), and, therefore, T'(n;) = ['(§;).
Letting j to infinity, we get that ['(n) = ['(€) and n € T=1(T'(¢)). The argument
holds for any n € (£ + 79) N, and we obtain (£ +5)NQ C TH(T(£)). By the
implicit function theorem the fiber I'"1(T'(£)) is a smooth analytic submanifold
of  of codimension k and, therefore, coincides with £ + s locally at £&. On
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the other hand, s is holomorphic at £, implying »(§) = 5¢ and (I'A2) for all
£e W,
Finally, if £ € Q5"8  then Proposition 2.7.2 implies that the fiber through &
is of codimension strictly less than k, and hence £ € Q. The proof is complete.
The following is the consequence of Proposition 2.7.9.

Corollary 2.8.4. Let p be the natural projection
p: Q36 R(E) e /R

The mapping T : & — T'(§) is constant on the R(§), so there is an analytic
mapping g : ' /R — CP, such that

C=gop. (2.8.3)

The mapping g is an immersion on Q(’“)/’R, that is, at each point its tangent
mapping 1s injective, because rank DI' = k implies rank Dg > k.

Remark 2.8.5. The factorization conclusion (2.8.3), when restricting to the
real domain, implies the "factorization condition” of Section 1.5.1, especially
when Q"8 s empty.

Remark 2.8.6. If (¢,n) € R, then still T(¢) = ['(n) by the continuity of I'.
So, if R denote the smallest closed equivalence relation which contains R, then

(€,m) € R=T(&) =T(n).

If R has an equivalence class with nonempty interior, then I' is constant and
k=0.

Lemma 2.8.7. We have the inclusion mo(R N ("8 x Q)) € Q\QK),

Proof. Let £ € Q"8 let C be an irreducible component of 5(¢) and let C° be
its smooth part. Because I' = I'(¢) is constant on ¢ + %(¢), we have for every
n° € C° such that £ +7° € Q, that T;,C° C ker DT'(€ +1°). So by Proposition
2.7.2, (iii), dimker DT'(€ +7°) > n —k+ 1 or £ +1° € Q\Q®). Because C° is
dense in C and  is open, every n € C can be approximated by n° € C° such
that £€+7° € Q, hence £+7° € Q\Q®). Because Q\Q™*) is closed in Q, it follows
that £ + C C Q\Q®*). Because this holds for every irreducible component C of
(), we get € + 2(€) € Q\Q*) and because this holds for every & € Q58 we
get T (R N (178 x Q) c Q\Q*),
As a consequence of Proposition 2.7.11, we get

Corollary 2.8.8. The following estimate holds:

n—k+1<dimm(RN QM8 x Q) <n -1, (2.8.4)
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Proof. The estimates (2.8.4) follow immediately from (2.7.2), Lemma 2.8.7
and the fact that dim Q\Q®*) <n — 1.

Now we will prove some consequences of the relative position of Q58 and
(R N ("8 x Q)), which we will use later to show that certain cases are
impossible. In what follows we will assume that the set Q5"8 of essentially
singular points is not empty.

Proposition 2.8.9. The following holds:
(1) Qg C (R N (5178 x Q) C Q\QE),

(ii) If Q"8 = 1y (RN (QSi“g %)), then the closure R can be decomposed into
relations on (Q\Q5"8) x (Q\Q51"8) and on Q"8 x Q5i"e. In formulas,

RN (Q58 x Q) C Qsine x Qsing,
Moreover, in this case
n—k+1 < dimg Q"8
for every & € Qsing,
(iii) If Q58 #£ (R N (Q%"8 x Q)) and

l= max dim(Q58 N (n + ,
nEm2(RN(Qsing x Q\Qsing)) ( (77 %(77)))

then

dim 7, (R N (Q51"8 x Q\Q*8)) < k — 2 + 1. (2.8.5)

(iv) If in addition to (iii) either dim(RN (28 x Q\Q"8)) = dim(RN(Q5"8 x
Q)) or dimm (R N (25178 x Q\Q5i8)) = dim Q"8 then

dim Q%8 4 2 < dim 7y (R N (18 x Q). (2.8.6)

(v) Let Q%78 # my(R N (Q%"8 x Q). Then for any £ € Q"8 with £ ¢
71 (R N (508 x Q\QN8)) we have & 4+ #(€) C QO¥"8. Moreover, in this
case k > 3 and dimg Q"8 >n —k + 1.

Proof. (i) The first inclusion follows from the fact that if £ € Q%"8, then it
is a limit point of some sequence ¢; € Q) because of the density of Q*) in
Q. By Proposition 2.7.9, (i), it follows that ({;,(;) € R C R and, therefore,
(£,€) € R, (£,€) € RN (25178 x Q) and & € m(R N ("8 x Q)). The second
inclusion is Lemma 2.8.7.

(ii) The statement follows easily from definitions and the last part of (ii)
from (2.7.3) and Remark 2.7.3.
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(iii), (iv) Assume now that Q5"8 #£ 1o (R N (2578 x Q)). To abbreviate the
notation, we denote

B = RN (@ x Q\05is),
C = m(B)=m(Ry"E)\Q5s,
D = 1 (B)

For n € C the fiber of w3 : B — C over 7 consists Qf all (¢&,n) with ¢ € Qsine
and € € 7+ 5(n) = 0+ (n), i.e. 73" (n) N B = (28N (1 + »(n)),n). Thus,
by Theorem 2.5.4, we obtain
dim B < max dim (Q*"8 N (1 + 3(n))) + dim C. (2.8.7)
n
We have ;' (Q\(578) = Q x (2\("€) and the set 2\ Q" is open in 2, hence
B is open in R;"™8. Moreover, for the set B we have

B = Ry"™N(Qx (Q\@8)) = RY" 0wyt (Q\250E)
ﬁimg\(ﬂsing X Qsing)7
hence B is analytically constructible and B is analytic. The set Q58N (n+(n))

is an analytic subset of (), proper, in view of n ¢ Q"8 so dim(Q5"8 N (n +
#(n))) <n—k— 1. Hence from (2.8.7) we also have

dmB<n-k-1+dimC. (2.8.8)

Note that if B is also dense in R5", then dim B = dim B = dim R} and
estimates (2.7.4) and (2.8.8) imply (2.8.6). If B is not dense in R}"®, then B
is a component of the analytic set R} "¢ with

dim B = dim B < dim R§"€.

Now we will deduce the estimates for the dimension of Q*"8. The fiber of
m @ B — D over { € D consists of points (§,7) with 7 € (£ + #(£)) and
n & Q8. Tt follows that w7 (&) N B = (&, (Q\Q58) N (€ + 3#(¢))), so

dim D + lggg dim(Q\Q5"8) N (¢ + 3(¢)) < dim B. (2.8.9)

If £ € Q%'"8 then dim 5(¢) > n — k + 1 by Proposition 2.7.2, (iii). The set (&)
does not have isolated points by the same Proposition, (i) and it follows that
dim((Q\Q5"8) N (€ + 2(¢))) >n—k+ 1 for £ € D, so

dimD +n—k+1<dim B. (2.8.10)

By the first part of Proposition we get C C Q\Q*) and dim C < n — 1. This,
the estimates (2.8.10) and Theorem 2.5.4, (ii), imply

dimD < dimB-(n—k+1)
< dimC — (n — k + 1) + max,ecp dim(2°"8 N (£ + 3(£)))
<

k — 2 4+ max, e g dim(Q58 N (€ + 5(¢))),
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which is (2.8.5) and (iii) is proved.

Combination of (2.8.10) and (2.8.8) yields dim D < dim C'—2, which implies
(2.8.6) if dim D = dim Q"8 by dim C' < dim m»(R7"®). On the other hand, if
dim B = dim R{"™®, then (2.8.8) and (2.7.4) yield dim Q*"& +2 < dim C, which
again imply (2.8.6) if we use that dim C < dim my(R}™).

(v) Let € € in“g\ﬂl(B). This means (R N7, (€)) N B = () and in view of
ROa(€) C RY™E we get

RO (€) C RY™\B C RN (€ x Q5ine),
On the other hand R N7 (€) = (&, € + 5(€)), and
£+ 5(8) = ma(€, £ + 5(€)) C ma(R N (" x Q°1"8)) C (ins,
Now, this implies
n—k+1< dim3%(¢) < dim Q"8 <n — 2,
and it is possible only if k¥ > 3. The proof is complete.
Corollary 2.8.10. We have proved

dimD <dimC -2<n-3.

Note, that statements (ii), (iv), (v) of Proposition 2.8.9 still hold in the case
of general fibrations. The proof of (iii) makes use of Lemma 2.8.7, which uses
the Jacobian structure of A.

Corollary 2.8.11. If dim Q"8 = n — 2, then the set D = 7 (R N (258 x
O\Q*"8)) has measure zero in Q%"%, or “the largest part” of Q¢ consists of
1 (RN (Q5In€ x Qsing)).

Remark 2.8.12. Note that the inclusion
RN (518 x Q\Q8) ¢ RN (5118 x Q)

is strict because for any & € Q"8 the point (£,€) € R does not belong to the
left hand side. The set R N (2578 x Q\Q51"8) s open in R N ("8 x Q) and
the the condition of Proposition 2.8.9, (iv), may fail if it is an open component
of strictly lower dimension.

As consequence for the positions of m; (B) and Q%"8, we get
Proposition 2.8.13. The following holds:

(i) If m1(B) # Q"8 then dimg Q*i"8 > n — k + 1 for every £ € Q5"8\m; (B)
and k > 3.

(ii) If m (B) = Q"8 then dim Q"8 < n — 3.
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Proof. (i) The conditions ¢ € Q%" and ¢ ¢ 7 (B) just mean that dim (&) >
n—k+1and ¢+ 3x(¢) C Q%"8. Hence by Theorem 2.7.7

n—k+1§dim§QSi"g§n—2

and, therefore, also k£ > 3. :

(ii) The mapping 7; : B — Q"8 is surjective. For every ¢ € Q"8 the fiber
is equal to (&, (€ + 3(£)) N Q). Using the same argument as in the proof of
Proposition 2.8.9, (iv), we get dim(¢ 4 3(£))NQ') > n—k+ 1 and by Theorem
2.5.4 we conclude that

dim B > dim Q%" +n — k + 1.

Next we consider the mapping 7, from B into the analytic subset Q\Q(*),
not necessarily surjective. For each n € my(B) the fiber over 7 is equal to
((n + »(n)) N Qg p). Because (n + s(n)) N Q"8 is an analytic subset of
(n+ 5(n)) NQ with nonempty interior, we get dim(n + s(n)) N Q"8 < dim(n+
#(n)) —1 <n—k—1. Again, by Theorem 2.5.4 we conclude that

n—1>dimO\Q® > dimB - (n -k —1)
and the proof is complete.
Corollary 2.8.14. If k = 2, then dim Q%8 < n — 3.
Proof. An application of Proposition 2.8.13, (i), (ii).
Theorem 2.8.15. If n =3 and k = 2, then Q578 = ().
Proof. Proposition 2.7.17 and Corollary 2.8.14 imply that Q5”8 is empty.

Now we turn back to the case of arbitrary 1 < k <n — 1.

Example 2.8.16. Consider the mapping

c" > (xla"' Y L1 Y1y .- 7yn—l) =
m—1 l
(Z YiZs; +2/m in,ylv"‘ Y YL Y1, - - - ayrao) € cr
i=1 i=m

with2 <m <I1<r<n-1,0e€C* 1. The singular set is given by
Q8 = {(z,9) €Q:y1 =... =Yy, =0},
so that .
dim Q%" = n — m.

The dimension of the regular fibers is equal tol — 14+ (n —1) —r=n—-7r -1,
hence we have
rank DI < r + 1.

The limit set (R N (178 x O)) is the set of yi = 0, 1 < i < m, arbitrary
Tiyee T GNA Ypiy1,- .. ,Yn—t, and is equal to Q5"8.
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Note, that if m = I, then Q\Q*) = Q"8 As a consequence, we have the
converse to Proposition 2.8.9, (ii).

Proof of Theorem 2.4.4: It is sufficient to take r = k — 1 and m = d in
Example 2.8.16 and in view of k — 1 < n —d, d < n/2 and hence d < n —d,
the mapping

d
F(mlw" yTdy Y1, - - 7yn—d) = (Zydwd)yla"' ayk—170) € (Cn
L=l

is well defined and satisfies the required conditions. The equality dim Q"8 =
n — d follows from the fact that if not all y;, 1 < i < d are equal to zero, then
rank DI at such point is equal to k. On the other hand, clearly the points
with y; = 0 for all 1 <4 < d belong to %", This finishes the proof.

We can see from Theorem 2.4.4 that the case k = 2 and not all dimensions
of 2i"8 are obtained in this way. This is partly explained by Proposition 2.7.16
and is not without a reason, which we intend to show next. First we will show
that the complementary intersection of Q"8 with any fiber is impossible.

Theorem 2.8.17. Let dim Q"8 = k — 1 and let A be a smooth component
of the same dimension. Assume that there exist a k-dimensional surface S
containing A, transversal to Q\Q*) | and n & Q%" such that n+ (n) intersects
S transversally at a point of A. Then Q%8 is empty.

Proof. Let 6 : @ — C** be the the determining mapping for »(¢), £ € Q).
The mapping 9 is given by a meromorphic mapping which takes all values in an
arbitrary neighborhood of ¢ = 0, which we assume to be in Q%"8. Let A be the
smooth part of Q%"8 with dim A = k— 1, it is a complex analytic manifold with
the origin in its closure. Let S be a complex analytic k-dimensional surface
containing A and transversal to Q\Q*), as in the assumption. The fact that
most of the limit directions of the fibers s(¢) are in m(R N (578 x Q)) C
Q\Q®) | hence transversal to S, makes that each regular fiber »(¢), £ € Q)
intersects S transversally in view of

dim S + dim s|qm (§) =k + (n — k) = n.

This implies that every point of A is a point of indeterminacy of §|s. But this
is in contradiction with the fact that the points of indeterminacy of d|s form a
set of codimension 2 in S, being the zero set of at least two analytic equations.
This implies that A is empty, a contradiction.

Corollary 2.8.18. Let k =n — 1 and let A be a smooth component of Qsing,
Let n € my(R N (%78 x Q') and € = (n+ »(n)) N A. Then sx(n) C T¢A.

Proof. We have dim A = n — 2 by Proposition 2.7.17. If 5 + s(n) is not tan-
gential to A, then we have the existence of S satisfying conditions of Theorem
2.8.17 and a contradiction.
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2.9 Limiting properties of the fibers

In this section we will show that in the case m(R N ("8 x Q)) # Q"8 in
Proposition 2.8.9, the intersection of the fibers with (2*"& can not be transver-
sal. As a result, we get additional estimates on the dimension of (2°'"8.

Proposition 2.9.1. Let m3(R N (€ x Q)) # Q%°8, A a smooth component
of Q"8 and assume that there exists £ € A such that %(€) ¢ TeA. Then Q™8
18 empty.

Proof. Let &£ € Q"8 with £+ 32(¢) ¢ Q%"8. Then because of the connectedness
of 5(€) there exist different s, 35 € #(£), not contained in Q58 and in T (Qs1"8.
The set Ky, of all H € Gg41 (C*) such that H N3¢, H N 2e5 are not contained
in T¢ Q%8 is open and dense in Gy41 (C™). The set

Ko ={H € Gp41(C*) : HN 3 # HNos}
is open and dense in Gy1 (C"). For i = 1,2 the sets
K= {H € Gk.l,_l ((Cn) cdim H N = 1}

are open and dense in Gy (C"), their intersection is open and dense in Gg41 (C™)
and we take H € K1 NKyNKoN K. Let 7 € QK be close to ¢ with (1) close
to one of s;. Then, by transversality, dim(n + s(n)) N (£ + H) = 1. The set
Q%) N (n + 3(n)) is not empty, and hence is open and dense in QN (1 + 2(7)).
Therefore, there exists ¢ € Q%) N (n + x(n)), ¢ close to (n + »(n)) N (€ + H),
such that there exists Hy € K1 N Ky N Ko N Ky with ¢ € Hg. Thus, without
loss of generality we may take H = Hy. Now, by (I'A2), s(n) = »(({), implying
that the mapping
Y= I1|(£+H)rm

satisfies ker Dy({) = (¢) N H, which is one dimensional, and, therefore,
rank Dy(¢) = dimH — 1 = k. Moreover, if § € ker Dy(¢), then y(f) =
I'(@) = I'(¢) = v(C) because 0 € »(¢). This means that conditions (I'A1) and
(TA2) are satisfied for v. Let n; € Q) such that n; — ¢ and s(n;) converges
to one of ;.

Because the set

QR (H) = {¢ e (E+H)NQ: rank Dy(¢) = k}

is open and dense in (¢ + H) N, we can find ¢; € Q) (H) which are arbitrary
close to ({ + H) N (n; + #(n;)), from which it follows that s((;) is arbitrary
close to s(n;). Note, that Q*) (H) c Q) and s is constant on an open dense
subset of ( + »(n)) NQ, n € QK

This proves that at the limit point & in (§+ H) N (€ + ») we get all H N 3x(§)
as limits of H N 5((;), ¢; € QW) (H), ¢; — &, or € is in the singular set for the
mapping v by H € Ko, the 3, N H € (&) N H are two different limit lines for
the fibration defined by . On the other hand, we have

Q"8 (1) ¢ O"8(T) N A,
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implying (£ + 5¢) N H ¢ Q5"8(y) because & + 3; ¢ Q%"8(T") by the choice of
1, »#. Moreover, . _
ToQ5"5(y) C TeQ™8(T) N H

and by H € K¢, we get that H N3¢ ¢ TeQ"8 (7). This is a contradiction with
Corollaries 2.8.18, 2.8.11 and Proposition 2.7.17 applied to v with n = k + 1.
In case n = 3, this is also a contradiction with Theorem 2.8.15, which says that
for n = 3, k = 2 the singular set is empty.

Proof of Theorem 2.4.3: For k£ =-1 this is Theorem 2.6.4. For k = 2 by
Proposition 2.7.2, (iii), for £ € Q"8 we have dim 3(¢) > n — 1 and, therefore,
conditions of Proposition 2.9.1 are satisfied.

Finally, Theorem 2.4.2 follows from

Theorem 2.9.2. Let Q"8 be not empty. Then for every smooth point & in
Qsine holds (&) C TeQ5"8. Moreover, for every & € Q"8 we have

n—k+1 < dimgQsing,
k-1 < dimg Qsine.

Proof. The. first statement fol}ows from Proposition 2.7.16. The inclusion
#(€) C T8 implies dimg Q5178 > dim 5(€) and the first estimate follows
from Proposition 2.7.2. The last estimate is Proposition 2.8.9.
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Chapter 3

Affine fibrations of gradient
type

In this chapter we will concentrate on different topics. First, we will intro-
duce local coordinates in © and in the Grassmannian, and derive several local
characterizations of the fibrations. In particular, conditions for the global ex-
tendibility of fibrations in the direction of fibers will be discussed.

Further, we will study fibrations of gradient type. These are fibration cor-
responding to mappings I" for which I' = V¢ for some holomorphic function ¢.
This case is closely related to Fourier integral operators, where ¢ would be the
generating phase function with factored out conic direction. The analysis will
be carried out in both complex and real settings at the same time.

Questions of reconstruction of the phase function from a given local fibra-
tions will be discussed to a certain extent. Finally, we will present families of
functions ¢ for which the smooth factorization condition fails. Note, that if the
parameter dependence is allowed, examples are quite easy to construct (Section
1.5.2). However, if there is no parameter dependence, that is when the corre-
sponding Fourier integral operator is translation invariant, the construction of
examples is more complicated. We present such families in Section 3.4.

3.1 Fibrations in local coordinates

In this section we continue to always assume that T satisfies conditions (T'A1),
(TA2). Without loss of generality we can assume that the origin of the space
C™ belongs to the open set ). Clearly, if the fibration s¢ is continuous at zero,
that is, if 0 € Q"8 then there is a neighborhood U of the origin, disjoint from
Q%08 such that the fibers through the points of U are close to the fiber s(0)
through zero. Therefore, there exists a k—dimensional linear subspace of C”,
transversal to all »(¢) for € € U. On the other hand, if 0 € Q58 and U C Q is
a small open neighborhood of zero, then for every H € Gy (C™), either the set

Un={cUNQ® . x(&)nH = {0}}

85
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is empty, or it is open and dense in U NQ*) | and hence in U. Thus, for H with
non-empty set Ug, we can choose a coordinate system around zero such that
H is parameterized by points (h,0) € C* x C*~* and that on an open dense
subset of the set Q%) all fibers are transversal to the k-dimensional subspace
of (h,0) € C¥ x C* %, Let m, : C* — C* denote the projection to the first
k coordinates. Let sz) be the set of all points h € () with (h,0) € Q*).
The set of all h € 74(2) such that (h,0) € Q we denote by Q.

For the simplicity in notations throughout this section we will identify C"
with C'*" so that the elements of C" are the rows with n elements in C.
In this notation we parameterize the fibration by a matrix valued mapping
R: ng) C Ck — C(=k)xk  The fibers s(h,0) can be parameterized by X in
some neighborhood of the origin in C*~*: locally we have

#(h,0) = {(h+AR(h),\),\ e C*}
= {(h+ X1 NRi(h),N), X € C k).

The rows of R(h) will be denoted by R;(h) € C*, i =1,...,n — k, and the
components of each row R;(h) by R](h), j = 1,...,k. The j-th column of
R(h) we denote by Ri(h) € C*~% j=1,...,k, and its elements by R!(h). In
order to avoid any confusion with this notation, we write

R} R? ... Rt
R = : L : (n—k),
R, B, Ry
(3.1.1)
R = (R R! ... RV),
OR} ... OyR}
DR, = L :
ORF ... OiRf
Condition (I'A2) that I" is constant on s can now be written as
T(h+ AR(h),\) = T(h,0),Yhe Un Q¥ A eV, (3.1.2)
in some neighborhood U x V C (C* x C**) N Q of the origin.
Lemma 3.1.1. Define v: Qp — CP by v(h) = T'(h,0). Then
n—k
{8iT(h + AR(h), N)}F_, [Ik + Z MDRi(h)| = Dy(h). (3.1.3)
=1

for all h € Q;lk).
Proof. Differentiating I'; in (3.1.2) with respect to h,,, we obtain
Onl;(h,0) = Gi-T;(h+AR(h),\)

= Only(h+ AR(h),N[1+ A0 R™(R)]
+ Ycicnbizm i (h + AR(h), N[0 Ri(R)].
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In matrix notation it means (3.1.3).
The group GL,(C) acts on I in a natural way. For A € GL,, let us denote

La(§) = I'(Ag).
Proposition 3.1.2. Let T’ satisfy conditions ([A1), (TA2).

(1) For every A € GL, the mapping T4 : A1 () — CP satisfies (CA1),
(T'A2). Moreover, Q¥)(I'y) = A~1(Q*)(T)) and
Qsing(FA) — A—l(Qsing(F))'

(2) There exists A € GLy, such that the mapping ya : (A71(Q)), — CP
defined by ya(h) = T 4(h,0) satisfies

rank Dya(h) =k

for h in an open dense subset of (A1(Q))4.

Proof. Statement (1) is straightforward. Now we will prove (2). Let 41,... ik
be the minimal indices, for which there exist ji, ... ,jx and & € Q%) such that
9T3 (&) .. 9,T;(8)
det : - : # 0. (3.1.4)
ail ij (5) oo 6ik ij (6)

For 7 # 0 define A, € GL, by

k
AC=TC+ Ge,

=1
where e; stands for the [-th standard unit basis vector of C"*. By the first part of
the proposition the mapping I'4, satisfies conditions (I'A1), (T'A2). Jacobian
of the mapping 4, has the form

Dya,(() = (3.1.5)
T T1(A-C) + 05, T1(A0) ... 7OkT1(AC) +<9,,cr1 (A

In particular, this matrix contains a block of the form

+C)

TOTy(ArC) + 8 Tp(ArC) ... 7OTH(A, g)+a“r (4,0)

TN, (A7) + BuT5 (ArC) oo TORT(42) + BT, (4:C) )
)

00T, (A;0) + 05T, (ArC) ... Tk, (Ar <)+azkr,k (A,
(3.1.6)

The determinant of this block does not vanish for some ¢ € A= (Q®)) in view
of the choice of iy,... ,ix and ji,...,jk as in (3.1.4), if 7 is sufficiently small.
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Finally, in view of the analyticity of I', the block (3.1.6) is non-degenerate on
the complement of an analytic set in Q%) implying the last statement.

In view of Proposition 3.1.2 without loss of generality we may assume that
the mapping 7 in (3.1.3) satisfies the non-degeneracy condition of Proposition
3.1.2, (2). Thus, for the global fibrations we get

Proposition 3.1.3. LetT' : C* — CP be an entire holomorphic function. Then
for every h € Q;k) the condition rank D~y(h) = k implies that the matrices
DRy (h) are nilpotent for all 1 <1 <n—k.

Proof. Suppose that some D‘R,0 (h) is not nilpotent and let u € C be its
nonzero eigenvalue. Equation (3.1.3) holds locally in A, A, but both sides are
holomorphic with respect to A, so by the analytic continuation it holds for all
X € C, because I is an entire function. Substitution of \; = —u~1dy, leads to
the degeneracy of Dvy(h), a contradiction.

Example 3.1.4. Define I : C* — C* by
['(61,82,85,84) = (616 + &84, 62,63, 0).

The fibration associated to I' is global, and for the mapping I' and its restriction

’y(hl ) h’2a h3) = (hlh27 h'Za hB’ 0)

holds
& & & & ha hy 0
DrO=| 5 g 1 o |PW=| g g
0 0 0 O 0 0 O

Proposition 3.1.3 holds for all h € C® with hy # 0. Localization R of the

fibration s satisfies the equality DT'(h,0) (£{") = 0, from which we conclude

that R'(h) = —hs/ha, R*(h) = 0, R3*(h) = 0, with nilpotent matrix DR(h) =
0 h3hy? —hy!

0o 0 0
(V] 0

Example 3.1.5. The rank of the matrix DI' can drop by a number larger
than one at points of Q\Q(’“). For Ty (&) = (616 + €384,63,€2,0) and T'5(¢) =
H(61& + 660, 8,63,0) we have

& & & &
o2 0 o0
Drl(é-) - 0 02 253 0 )
0 0 0 0
&a(8) &a(§) &a(l) &Gal(b)
_ 0 13 0 0
DFZ(&) - O 02 63 0
0 0 0 0
with a(§) = && + &&. Therefore, rank DI'i|g,—¢,—0 = 1,

rank DI'i|¢—o = 0 and rank DI's|¢,—¢,—0 = 0.
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3.2 Fibrations of gradient type

In what follows we prove the results simultaneously for two fields of scalars, R
and C, which we will denote by K. In this notation for m > 1 we will write
C™(K™) for the space C™(R™) when K = R, and for the space of holomorphic
functions when K = C.

We consider the case of the fibration by codimension k hyperplanes, corre-
sponding to the conditions (I'A1), (I'A2), with T" having a gradient form, that
is

['(€) = Vi(¢) (3.2.1)

for some function ¥ :  — K. If the mapping I is as in (3.2.1), the associated
fibration will be called the fibration of gradient type. Fibrations of this type will
appear in Section 4, where I is of the form (3.2.1) with a generating function
¢ or its no