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Chapter 1 

Introduction 

This book studies, from a mathematical point of view, a number of transformations 
that map functions f E L2 (JR), i.e., square integrable functions on JR, to functions 
J E L 2 (JR2 ). In particular we study transformations that are related to the Fourier 
transform in the following sense. 

The Fourier transform maps a function f to a function J. For a function of time (a 
signal), J represents the intensity of the fluctuations (frequencies) in the signal f. 
Analysing a signal in this way is called spectral analysis. Besides the representation 
in time f and the representation in frequency J, there exists transformations f f----+ J 
to represent a signal both in time and in frequency. Some of these transformations 
are discussed extensively in this book, namely the windowed Fourier transform, the 
Wigner distribution, the Rihaczek distribution, the fractional Fourier transform and the 
wavelet transform. In this introduction we will briefly introduce these transformations. 

This introduction also considers applications of the wavelet transform in the field of 
signal and image processing. We show, that the wavelet transform can be a very useful 
tool for denoising algorithms, data compression techniques, and numerical analysis. 

Finally, this introductory chapter summarizes the contents of this book. 

1.1 Time-Frequency Methods 

In 1822 Fourier published his famous work Theorie analytique de la Chaleur, see [31] 
for an English translation. In this work he stated that a periodic function f could be 
expressed as the sum of trigonometric functions 

(X) 

f(x) = ao + L (ak cos(kwo.1:) + bk sin(kwox)), (I.I) 
k=l 
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Figure 1.1: Approximation of a discontinuous function by a Fourier series 

for some ao, ak, bk E JR. Here w0 = 21r /T, with T the period of f. The series in 
( 1.1) is called the Fourier series off. In the literature the Fourier series of f is mostly 
given by 

f(x) = Lckeikwox_ (1.2) 
kE"lL. 

Not only periodic functions can be expressed in terms of their Fourier series. Also 
compactly supported functions can be written in this way. To do this, we extend such 
a function f to a periodic function and compute its Fourier series. This Fourier series, 
regarded on the support of f, is then said to be the Fourier series of f. 

Fourier's idea was that also a discontinuous function f could be expressed in this way, 
namely as the sum of continuous function. Later, Dirichlet formulated necessary and 
sufficient conditions such that ( 1. 1) holds pointwise. In Figure 1. 1, an example of a 
discontinuous function and its Fourier series is depicted. As an example we have taken 

{ 

7T 

f(x) = 2 - x, 
0, 

XE (0, 21r), 
X = 0, 

and with f ( x + 21r) = f ( x), for all x E JR. Its Fourier series is given by 

(X) 

f(x) = L sin(kx)/k. 
k=l 

We observe, that the coefficients ak in ( 1. 1) all vanish in this example, since f is an 
odd function. A good approximation of f is already established by a partial sum 

N 

SN= L sin(kx)/k, 
k=l 
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with N > 0 relatively small. In fact, Figure 1.1 shows f and its approximation by 
means of the partial sum S 8 • 

Analysing signals by means of Fourier series, called spectral analysis, is nowadays 
a standard technique to obtain additional information of a signal. However, in our 
era, signals we want to analyse are often not continuous in time. These discrete-time 
signals are mostly the result of a sampling procedure built into the measurement equip
ment, that measures an incoming physical signal. To deal with these signals, we can 
use the discrete Fourier transform (DFT) instead of the Fourier series. The DFT is 
given by a discretisation (1.2). Particularly, if the signal has been measured during a 
finite time interval, the number of samples of such a signal is finite and its DFT sim
plifies to a polynomial on the unit circle. 

In this particular case, the DFT can be computed in a fast way by means of the but
terfly algorithm, see [19]. This algorithm arranges the Fourier coefficients in such a 
way, that they can be computed recursively. The complexity of this algorithm is given 
by O(N log N), with N the number of samples in the signal. Computing the DFT 
in this manner is called the fast Fourier transform (FFT). The existence of such a fast 
algorithm is an important reason why Fourier analysis has become a standard tool in 
signal analysis. 

For non-periodic functions the Fourier transform provides a tool for spectral analysis. 
This transform is given by 

1 J . ff--+ \/'2n f(x)e-,x· dx. 

JR 

The Fourier transform J of f can be considered intially for functions that belong to 
a class of rapidly decreasing functions, called the Schwartz class S(JR), see [89, 90]. 
Each function f E S(JR) can also be recovered from its Fourier transform J. This 
means that the Fourier transform indeed offers an alternative way for representing a 
function f E S(JR). The Fourier transform can be extended to functions in L1 (JR), 
i.e., absolutely integrable functions on JR, or functions in L2 (JR). A unique recon
struction of the original function in L1 (JR) or L2 (JR) from its Fourier transform is 
also possible. 

After taking the Fourier transform off, the value J ( w0 ) represents the complex-valued 
amplitude by which a frequency wo appears in the signal f. However, we cannot read 
off from J ( wo) at which time intervals the frequency wo appears in f. So, J is not 
localized both in time and in frequency. 

For localizing a signal simultaneously in time and frequency we can use transforms 
f f--+ J, with f E L 2 (JR) and J E L2 (JR2), representing the signal both in time and 
in frequency. However, although such a transform can improve localization compared 
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to the Fourier transform, we are not able to localize time and frequency arbitrarily 
well. The limitations on simultaneous time-frequency analysis are given by the time
frequency equivalent of Heisenberg's uncertainty relation 

J x2 lf(x)l2 dx · J w2 IJ(w)l2 dw 2 llflli/4. (1.3) 

IR IR 

Equality in (1.3) is established for all canonical states and squeezed states. Originally 
Heisenberg presented relation (1.3) in quantum mechanics as a relation between the 
standard deviation of position and the standard deviation of momentum. In his famous 
paper [34], Gabor translated this relation in terms of time-frequency analysis. 

A natural starting point for an overview of time-frequency transformations is the win
dowed Fourier transform (WFT). The idea of the WFT is to multiply a signal f by 
a window function h and then to take the Fourier transform of the product function. 
By translating such a well localized window h along the signal, the WFT is able to 
analyse the frequency behavior of f during the time interval for which h is localized. 
Translated into a representation formula the WFT reads 

l J . . h[f](x,w) = J27r J(y)h(y - x)e-iwy dy. (1.4) 

IR 

Since :Fhf can assume complex values, mostly the spectrogram of a signal is used to 
analyse the signal's behavior in time and frequency. The spectrogram off is given by 
1:Fh[.f](x, w)J 2 . 

It follows from (1.4), that h(x) should be more or less concentrated around x = 0. 
Furthermore, the behavior of :Fhf in both time and frequency is strongly influenced 
by the window function h. This suggests that we have to deal with the problem of 
finding a window function h, that is both well localized and for which :Fhf is a good 
reproduction of the time-frequency behavior of f. 

Since no information of a signal f is thrown away by representing it by means of the 
WFT, f can also be reconstructed from Ft· We observe, that f(x 0 ) contributes to 
:Fh(x, w), for all x E JR, for which 

J(.To)h(xo - x) -=f=. 0. 

Consequently, f is represented redundantly by :Fh, which means that no unique re
construction formula exists to recover f from its WFT, like we have for the Fourier 
transform. 

A window function, that is optimal in the sense, that it gives the best localization of 
the WFT in time and frequency will strongly depend on the signal f. In I 946, Gabor 
suggested in his paper [34] to use a window function, that is optimal in the sense that 
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Figure 1.2: Time-frequency representations of a quadratic chirp: fig. a) the original 
signal, fig. b, c, d) its time-frequency representation by means of the WFT, the Wigner 
distribution and the Rihaczek distribution respectively. 
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equality in the Heisenberg relation is established. Such a window function is given by 

hr,(x) = (1rCT2)-lf4e-x 2 /2r,2, 

where CT > 0. The constant (1rCT2)-1/4 is chosen such that llhr,11 2 = 1 for all CT > 0. 
The WFf that corresponds to this choice for h is given by the Gabor transform 

Yr,[J](x,w) = (21r)-3/4CT-1/2 f f(y)e-(y-x)2/2r,2 e-iwy dy. (1.5) 

JR 

In Figure 1.2.b, the spectrogram of the function sin( 1rx2 ) is depicted. In this picture, 
the dark grey values indicated high amplitudes of the spectrogram at that particular 
time-frequency point. The function itself is depicted in Figure 1.2.a. For the spectro
gram a Gaussian function is used. Obviously, the spectrogram provides information 
about the signal's behavior both in time and localization. However, energy is spread 
instead of being perfectly localized. 

Choosing an appropriate window is not the only difficulty we have to deal with, when 
we use the WFf to analyse a signal. An other problem is to choose the 'width' of 
the window, i.e., its support for compactly supported windows or the parameter CT for 
the Gaussian function hr,. If the signal f contains a frequency component with in a 
very small time interval, the chosen window width can be too large to detect the lo
calization of such a component with high precision. On the other hand, if the window 
'width' is chosen too small, the WFf will not detect very low frequency components 
inf. 

A time-frequency representation that only takes the behavior of the signal itself into 
account is the Wigner distribution 

1 ;· WV[J](x,w) = 27r f(x + t/2)f(x - t/2)e-itw dt. (1.6) 

JR 

This representation was already introduced in 1932 by Wigner in his paper [104]. 
He presented this representation in the field of quantum mechanics. In 1948, Ville 
introduced the representation in the fields of signal analysis in [99]. Therefore, this 
representation is also known in the literature as the Wigner-Ville distribution. A com
prehensive approach of the Wigner distribution as a tool for time-frequency analysis 
is provided by a paper by Claasen and Mecklenbriiuker [ 15]. 

We observe, that the Wigner distribution is in fact the Fourier transform of the auto
correlation function Rt,x, given by 

Rt,x(t) = f(x + t/2) f(x - t/2)/,J'i;i. 

This means that the Fourier transform is taken of the product of a signal with a trans
lated version of itself. Consequently, the Wigner distribution is non-linear and it also 
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represents a signal redundantly in time and frequency. Therefore, a signal can be re
constructed from its Wigner distribution, but this cannot be done in a unique way. 

The quadratic character of the Wigner distribution is a problem when analysing a sum 
of signals. Then interference of the two signals appears in the time-frequency analysis. 
As a result of this interference it can happen that WV[f](x, w) f. 0, while j(x) = 0 
for a fixed x E JR. This is the case if f ( x) = 0 for x in a finite interval. 

In Figure 1.2.c, the Wigner distribution of the function sin ( 1rx2 ) is depicted. We ob
serve, that this function behaves linearly in the Wigner plane. Since we only computed 
the Wigner distribution for a finite part of the signal, the edges of this time interval 
cause distortions, that are visualized between the two lines. 

In [17], Leon Cohen presented a general class of time-frequency transformations. A 
general formula for the transformations in his class is given by 

f(x,w) = 4!2 / f(u + t/2)f(u - t/2)¢(v, t)e-i(xv+wt-uv) dudtdv. (1.7) 

JR3 

Starting from this representation formula, all known time-frequency distributions can 
be derived by choosing an appropriate kernel function ¢. In his paper, Cohen also 
showed that properties of the time-frequency representations are reflected by rela
tively simple constraints on the kernel function ¢. 

Relation (1.7) turns into the Wigner distribution for¢ = 1 and it turns into the spec
trogram for 

cp(v, t) = / h(u + t/2) h(u - t/2)e-iuv du. 

JR 

In both cases, Fourier integrals have to be computed for obtaining the Wigner distribu
tion and the spectrogram from (1.7). A third time-frequency representation, that will 
be used in the sequel of this book, is the Rihaczek distribution. This representation is 
given by 

R[f](x,w) = f(x)](w)e-iwx /,/'i;. (1.8) 

It can be obtained from ( 1.7) by taking ¢( v, t) = eivt/z. For a comprehensive list of 
time-frequency distributions and its corresponding kernel functions, we refer to [ 18]. 
In Figure 1.2.d, the Rihaczek distribution of the function sin(1rx2 ) is depicted. We 
observe, that for this particular signal the localization in the phase plane is poor. 

A representation of a signal in a domain other than the time or frequency domain is 
given by the fractional Fourier transform (FRFT). This transform is given by 

.Fa[f](x) = Ca_ J f(u) ei((u2 +x2 )-(cota)/2- uxcsca) du, (l.9) 
J21r I smal 

JR 
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for some parameter a E JR and a constant Ca. This transform was introduced by 
Namias in 1980. He defined this transform as a fractional power of the Fourier trans
form, 

(1.10) 

where :F denotes the Fourier transform. Namias derived formula (1.9) starting from 
his definition (1.10) and using generating functions for Hermite functions, which are 
eigenfunctions of the Fourier transform. In 1987 Kerr and McBride provided a rig
orous mathematical framework for the fractional Fourier transform on L2 (JR), see 
[53, 61]. 

In 1992 the FRFT became interesting for signal analysis by a paper of Almeida [4]. 
He showed, that taking the Wigner distribution of :Fa f corresponds to the Wigner dis
tribution of the function f followed by a rotation over an angle a in the Wigner plane, 
the time-frequency plane that corresponds to the Wigner distribution. In Figure 1.3, 
this phenomenon is illustrated by taking the FRFT of the signal sin( 1rx2 ) for four dif
ferent values of a and taking their Wigner distributions. We observe, that Figure 1.3.b, 
c, dare rotated versions of Figure 1.3.a. 

The rotation property of the FRFT inspired mathematicians in the past to study also 
other transformations in the Wigner plane, that correspond to linear operators on 
L2 (JR). Already before the introduction of the FRFT De Bruijn proposed in [9] a 
class of operators that are related to linear operators in the Wigner plane. Also we 
study this problem in this book. 

The last representation of a signal, that is briefly discussed in this introduction, is the 
wavelet transform. This transform was introduced in 1984 by Morlet and co-workers, 
who wanted to analyse geophysical signals with some kind of an adaptive WFT. How
ever, in mathematical circles this transform was not new. It was already know as 
Calderon's reproducing formula [10]. 

The WFT analyses a signal by multiplying it with a sliding window function and then 
by taking the Fourier transform of this product function. The wavelet transform makes 
use of the same principle, however the Fourier transform is replaced by a dilation of 
the window function in L2 (JR). In this way the window function can be adapted in a 
better way to the signal. This transform reads 

W,µ[f](a,b) = )a.I J(x)if; (x:b) dx, (1.11) 

JR 

for some 7/J E L2 (JR) and a E JR+ and b E JR. The window function 7/J is called a 
wavelet if it satisfies the additional condition 

./ 
l~(aw)l 2 d 

0 < C,µ = 21r a a < oo, 

JR+ 
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Figure 1.4: Four well-known wavelets: fig. a) the Haar wavelet, b) the Daubechies-4 
wavelet, c) the Meyer wavelet, d) the Mexican hat. 
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Figure 1.5: The continuous wavelet transform of sin ( 1rx2 ). 

for almost all w E JR. This condition guarantees the existence of a unique reconstruc
tion formula. 

To give an impression, what kind of functions are wavelets, four-well known wavelets 
are depicted in Figure 1.4. The first wavelet we see (fig. a) is the Haar wavelet, which 
is probably also the oldest known wavelet. In 1910 already Haar used this function for 
constructing an orthonormal basis in L2 (JR) by means of dilations and integer trans
lations of a mother function. We shall recognize this idea later as the discrete wavelet 
transform. The second wavelet, that is depicted (fig. b), is the Daubechies-4 wavelet. 
Generally, the Daubechies-N wavelet belongs to a class of wavelets that posses some 
desirable properties for signal analysis. Also these properties are discussed when 
we come to the discrete wavelet transform. The index number N denotes the order 
of regularity of the particular wavelet. We observe, that the Haar wavelet is also a 
Daubechies wavelet, namely the Daubechies-1 wavelet. 

The wavelet in Figure 1.4.c is named after Meyer, who created this Meyer wavelet by 
starting from some necessary condition on the Fourier transform of the wavelet, e.g. 
compact support of the Fourier transform. The fourth wavelet (fig. d) is called the 
Mexican hat, since it looks like a sombrero. In fact, the Mexican hat is the second 
derivative of the Gaussian function, that is used for the Gabor transform. This wavelet 
is often used for applying the CWT in physics. In choosing a wavelet for analysing 
a signal, we are led by the shape of the signal and the aim of the analysis. Of course 
we want the wavelet to match with the signal, that has to be analysed. However, if 
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the aim of the analysis is to give a time-scale representation with only a few wavelet 
coefficients W.,b ( a, b ), then a compactly supported wavelet can be appropriate. 

The wavelet transform analyses a signal in time and scaling behavior, since it is based 
on a scaled window function, instead of a frequency representation of the product of 
the signal and the window function. Therefore, we say that the wavelet transform is a 
time-scale transformation. 

As an example, we analysed the behavior of the quadratic chirp f ( x) = sin ( 1rx2 ) in 
time and scale. For this we computed the wavelet transform of this function using the 
Daubechies-4 wavelet. In Figure 1.5 we have depicted the scalogram [W,,t;[J](a, b)[ 
for the time period b E [0, 5] and the scales a E (0, 128]. As in Figure 1.2, the dark 
grey values indicated high amplitudes of [W,p[J](a, b)[ at that particular time-scale 
point. By comparing the plots of the spectrogram and the Wigner distribution of this 
function in Figure 1.2 and the scalogram in Figure 1.5 it is obvious, that scale and 
frequency are reciprocal concepts. 

Formula ( 1.11) is mostly called the continuous wavelet transform (CWT), since there 
also exists a discrete version of this transform. This discrete wavelet transform (DWT) 
can be obtained by computing the CWT on a lattice 

Then the DWT of a function f is given by 

00 00 

(1.12) 
m=-oo n=-oo 

with 1Pm,n(x) = 'lj;(2mx-n) and with (j, 1Pm,n) denoting the inner product in L2 (IR) 
off and 1Pm,n· The breakthrough of the (discrete) wavelet transformation was set by 
two important contributions by Daubechies and Mallat. 

In 1988 Daubechies introduced a method to construct wavelets 'lj; that are compactly 
supported and for which 1Pm,n, m, n E "ll.. form an orthonormal basis in L2 (IR). Since 
'lj; is compactly supported, also 1Pm,n is compactly supported for all m, n E "ll... Con
sequently, a compactly supported function f can be written as a finite sum of mutually 
orthonormal functions with compact support. As we shall see, this property is of great 
importance if we want to represent a signal or an image by a few coefficients. 

An other important contribution for the DWT was given by Mallat in 1989. In his pa
per [60] he related the DWT to a concept called multiresolution analysis (MRA). This 
MRA provides an algorithm of complexity O(N), with N proportional to the number 
of inner products (j, 1Pm,n) that are not zero. This algorithm, called the pyramid al
gorithm, relates the inner products (f, 1Pm,n) for different values of m and n to each 
other. In this way only a few inner products have to be computed explicitly. The other 
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ones follow from the computed inner products by means of the algorithm. Computing 
the DWT in this way is mostly referred to as the fast wavelet transform. 

1.2 Applications of the Wavelet Transform 

In the past decade the wavelet transform has become of great value not only for signal 
and image analysis, but also for signal and image processing. Even outside these fields 
the wavelet transform has shown to be a useful in mathematics, e.g. in the field of nu
merical analysis. Here, we briefly discuss the advantages of using a wavelet transform 
for these applications. 

1.2.1 Denoising 

The idea behind denoising signals using a wavelet transform is as follows. Given 
a measured signal f, that consists of a signal g and some undesired noise signal h, 
linearity of the wavelet transform yields 

W,;,[f](a, b) = W,;,[g](a, b) + W,;,[h](a, b). 

Then, by choosing an appropriate orthogonal wavelet, we expect the wavelet coef
ficients W,;, [g] ( a, b) to be concentrated within a small set of time-scale points ( a, b). 
Since the energy of g is then spread over a small set in the time-scale plane, the wavelet 
coefficients will attain relatively large values at these points. The wavelet coefficients 
of the noise, W,;,[h](a, b), are expected to be spread out over the whole time-scale 
plane, since in general we cannot indicate dominating frequencies in a noise signal 
h. Consequently, the wavelet coefficients related to the noise signal h will attain rela
tively small values at all points in the time-scale plane. 

Following these considerations, a natural way to come to a wavelet based denoising 
algorithm is given by thresholding the wavelet coefficients, i.e., IW,;, [f] ( a, b) I is set to 
be zero, if I W,;, [J] ( a, b) I < M, with M the chosen threshold value. After this thresh
olding procedure the inverse wavelet transform reconstructs the signal g. 

The problem of this method is how to find an appropriate threshold value M. In a 
series of papers Donoho and co-workers have dealt with this wavelet denoising method 
if h is a white noise signal, see e.g. [24]. For white noise signals they derived an 
expression for the threshold value M as a function of the standard deviation O' of the 
noise. In Chapter 7 we use the same technique for denoising seismic signals. For this 
application the threshold value is determined by computing the wavelet coefficients of 
noisy reference signal. 
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1.2.2 Compression 

Using the wavelet transform for analysing signals, we are able to represent fluctuations 
in a signal with wavelet coefficients at a low scale. If a signal does not fluctuate during 
a time interval, we can represent the signal on this time interval by a small number 
coefficients at larger scales. Combining these observations yields that a signal can be 
represented in a sparse way. This is done by throwing away the wavelet coefficients at 
high scales if fluctuations in a signal can be observed in the corresponding time inter
val. Furthermore, the wavelet coefficients at low scales can be put to zero, if the signal 
only contains low frequencies in the corresponding time interval. This compression 
procedure is mostly applied to the DWT. We observe, that this compression technique 
is based on the adaptive character of the wavelet transform, that the WFT does not 
posses. 

For images the same procedure can be applied. The wavelet transform is then replaced 
by a two-dimensional wavelet transform. For this transform the wavelet is replaced 
by a wavelet 'I/; E £ 2 ( JR2 ), the scaling parameter a is replaced by a matrix A E JR2 x 2 

and the translation over b is changed into translation over a two-dimensional lattice. 
Finally, fluctuations in a signal are translated into edges in an image. 

Data compression is an important issue for multimedia applications, where one wants 
to store a huge set of images in a database or wants to send images to a receiver by 
the internet in a fast way. In the field of image compression, the JPEG standard does 
not use the wavelet transform yet, however the new JPEG-2000 standard will be fitted 
with a wavelet compression technique for data compression. 

1.2.3 Wavelet-Galerkin methods 

We consider a boundary value problem 

(£f)(x) = g(x), x E [x1,x2], 

with f(xi) = 0, f(x2) = 0, f E C 2 (JR), g E C(JR) and£ a second order linear 
differential operator with continuous coefficients. The differential equation can also 
be given in a weak formulation, i.e., 

(£!, ¢) = (g, ¢), 

with f(x1) = f(x2) = 0, for all¢ E C([x0 , x1]), that satisfy ¢(x0 ) = 0, ¢(xi) = 0 
and¢' piecewise continuous and bounded on [x0 , xi]. The space of such functions ¢ 
is denoted by V. 

Galerkin's method consists of approximating f and¢ by functions in a finite dimen
sional subspace V0 of V, see e.g. [49]. By choosing a set of basis functions ¢k, 
k = 1, ... , dim(V0 ), the weak formulation can then be written as a linear system of 
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equations 
A~= b, 

with 
A(i,j) = (¢;,£¢J), b(i) = (9,<Pi), i,j = 1, ... ,dim(Vo). 

Let Jo denote the approximation of Jin V0 , then~ is related to Jo by 

dim(Vo) 

Jo= I: ~(i)<t>i-
i=l 

d2 Now, assume that£,= -JxI, then 

The wavelet-Galerkin method uses a wavelet bases for V0 . If such a wavelet bases 
is compactly supported, then the stiffness matrix A becomes a sparse matrix. We ob
serve, that if¢ is a wavelet, then¢' is also a wavelet. Mostly, semi-orthogonal wavelet 
bases with compact support are used to create a sparse stiffness matrix. We observe, 
that solving the linear system of equations can be established in a fast numerical way 
if A is sparse. Another way of looking at the wavelet-Galerkin method is to consider 
the wavelet approach as a pre-conditioning of the matrix A. 

A comprehensive view of wavelet based methods in scientific computing is given by 
a series of papers by Beylkin et al., see e.g. [8]. 

1.3 Some Main Results 

The following chapters can be divided into three parts, with each part consisting of two 
chapters. The first part consists of two chapters that introduce the Fourier transform, 
the windowed Fourier transform, the Wigner distribution and the wavelet transform 
in a rigorous mathematical way. Properties of these transformations and their mutual 
relations are extensively discussed. Furthermore, we study the relation of the intro
duced transformation to Lie groups. It is well known, that the wavelet transform is a 
unitary representation of the linear affine group, see e.g. [55, 62], and that the intro
duced time-frequency transformations are all related to a unitary representation of the 
Heisenberg group, see e.g. [29]. 

In Chapters 4 and 5 we study two theoretical topics in the fields of the wavelet trans
form and the Wigner distribution respectively. In relation to the discrete wavelet 
transform we study the concept of an multiresolution analysis for arbitrary separable 
Hilbert spaces. By doing this we obtain a functional analytical framework in which 
the concept of an MRA can be studied. This framework relates the problem of finding 
wavelet bases in L2 ( JR) to the problem of finding semi-orthogonal bases in l 2 (ll.). By 
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means of a discrete Fourier transform the latter problem is translated into the problem 
of finding invertible matrix functions on the n-fold unit circle. This theoretical ap
proach of the concept of an MRA is illustrated by the example of constructing a spline 
wavelets, that generate a semi-orthogonal basis in L2 (1R). This topic can be found in 
Chapter 4 and is mainly based on 

[76] P.J. Oonincx and S.J.L. Van Eijndhoven, "Frames, Riesz systems and MRA 
in Hilbert spaces", lndag. Math., 10 (3), 369-382, 1999. 

Chapter 5 concerns affine transformations in the n-dimensional Wigner plane. This 
topic was inspired by the study of the fractional Fourier transform. This transforma
tion was recently introduced for analysing signals in the Wigner plane, since it acts 
like a rotation in this plane. We show with relatively elementary results from Lie 
group theory, that the fractional Fourier transform on L 2 ( mn) can be embedded in a 
group of unitary operators. Each element in this group corresponds to a symplectic 
transformation in the Wigner plane. Moreover, linear transformations in the Wigner 
plane that are related to unitary transformations on L2 ( mn) can only be symplectic. 

We show that the FRFT is a special element of this group, since it is the only trans
formation that corresponds to an orthogonal symplectic transformation in the one
dimensional case. For the multi-dimensional case we also present other transforma
tions that correspond to orthogonal symplectic transformations. Finally, a represen
tation formula is given for all unitary transformations that correspond to symplectic 
transformations in the Wigner plane. This topic is mainly based on 

[63] H.G. ter Morsche and P.J. Oonincx," On the integral representations for 
metaplectic operators", to appear. 

The last two chapters of this tract deal with applications of the studied transforma
tions. The first application deals with energy localization problems and is based on 
a generalization of the FRFT. Two well-known problems are discussed rigorously, 
namely maximalization of the energy of time-limited signal within a compact fre
quency interval and maximalization of a signal's energy within a disc in the Wigner 
plane. Both problems are already extensively studied in the literature, see [57, 80, 92] 
and [20, 28, 29, 46]. In this chapter, we give a rigorous proof of Slepian's conjecture, 
that shows how the eigenvalues of an energy localization operator behave asymptot
ically. Furthermore, an alternative proof is given for showing that Hermite functions 
are optimally localized on a disc in the Wigner plane. This proof is based on an argu
ment, that uses the rotation property of the FRFT. 

In the second part of Chapter 6 we show how the generalized FRFT can be used to 
solve a class of localization problems in the phase plane, if the solution of one prob
lem in such a class is known. This procedure is illustrated by using it for the classical 
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localization problems, that we discussed in the first part of this chapter. These prob
lems and their solutions can be found in Chapter 6. This chapter is mainly based on 

[73] P.J. Oonincx, "On time-frequency analysis and time-limitedness", 
CWI-Report PNA-R9720, 1997. 

[75] P.J. Oonincx and H.G. ter Morsche, '!Integral representations for metaplectic 
operators: energy localisation problems", 
Proc. SPJE Adv. Sig. Proc. Alg. X, San Diego, 2000. 

Chapter 7 is devoted to an application of the discrete wavelet transform in the field 
of seismology. Seismic data that are measured when an earthquake has taken place 
consist of several waves. These waves travel at different velocities from the epicenter 
of the earthquake towards the earth's surface, where they are measured. Consequently, 
they do not appear at the same time in a seismogram. Moreover, the several waves are 
overlapping and are also embedded in different kinds of noise. By detecting the arrival 
time of the so-called S-waves in a seismogram and relating this arrival time to the first 
time sample that the earthquake was recognized, an estimate of the distance towards 
the epicenter can be given. This is done by relating the difference in time between the 
two measured time samples to the difference in velocity between the S-wave and the 
P-wave, the first wave to arrive. 

We developed an algorithm to detect automatically S-wave arrival times in seismo
grams. This algorithm is based both on physical properties of the waves and on sepa
ration of the waves by means of the discrete wavelet transform. Moreover, the DWT 
is used to reduce the noise in the waves. By doing this, a better estimate of the S-wave 
arrival time is established. This research has been done in strong collaboration with 
the Royal Dutch Meteorological Institute (KNMI). At KNMI the algorithm has been 
tested for a large set of seismic events. The results of this test are also included in 
Chapter 7. The mathematical concept of the algorithm has been published in 

[70] P.J. Oonincx, "A Wavelet Method for Detecting S-Waves in Seismic Data", 
Computational Geosciences, 3, 111-134, 1999. 
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Chapter 2 

Time-Frequency Analysis 

In this chapter we study the Fourier transform for functions in L 1 and L2 • Using this 
transform on a signal one obtains information about its frequency behaviour. To ob
tain information about a signal's behaviour in both time and frequency we consider 
the windowed Fourier transform. This transform computes the Fourier transform of 
a signal within a sliding window. The last transform we discuss in this chapter is the 
Wigner distribution of a signal. This is a non-linear transform that also gives informa
tion about a signal's behaviour in both the time and frequency domain. 

In the last section of this chapter we relate the discussed time-frequency represen
tations to the Heisenberg group. Therefore an introduction in Lie group theory is 
presented. The group theoretical approach will play an important role in Chapter 5. 

The contents of this chapter are based on existing literature on Fourier transforms [ 11, 
35, 94, 109], on time-frequency transforms [18, 44] and Lie group theory [98, 102]. 

2.1 The Fourier Transform 

To obtain information on the frequency behaviour of a function we can consider its 
Fourier transform. This transform computes the frequency spectrum of a given func
tion. However, the Fourier transform neglects information about the function itself. 
We discuss the Fourier transform first for functions in L1 ( JR) and next for functions 
in L2 (JR). 
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2.1.1 The Fourier Transform on L1 

In dealing with a function f E £ 1 (JRn ), one can consider the spectrum j off given 
by its Fourier transform 

J(w) = (21r)-nf2 I f(x)e-i(w,x) dx, (2.1) 

]Rn 

with ( •, •) the inner product in JRn. 

In this section, we present some useful properties of the Fourier transform on £ 1 (JR), 
which can all be generalized straightforwardly to properties for functions in £ 1 ( JRn). 
A fundamental property of Fourier transforms on £ 1 (JR) is given by the Riemann
Lebesgue theorem, see e.g. [11]. 

Theorem 2.1.1 (Riemann-Lebesgue) Let f E £ 1 (JR) and j be its Fourier trans
form. Then 

J](w)J --+ 0 (JwJ --+ oo). 

Also the following fundamental result on j can be proved for f E £ 1 (JR). 

Lemma 2.1.2 Let f E L1(JR), then J E C(JR) and Jlflloo :S llflli/v'27r. 

Proof 
Let f E £ 1 (JR). Then 

< 

1 / . . -- f(x)(e-,wi:c - e-,w2:c) dx 
J27r . 

JR 

_1_ / Jf(x)J · Jl - ei(w1-w2)xJ dx 
J27r 

JR 

·I! J lf(x)I · I sin((w1 - w2).r/2)J dx. 

JR 

Applying the dominated convergence theorem on the latter result yields 

which shows that J is continuous. Furthermore, we have 

Jf(w)J :S ~ J lf(x)e-iwxl dx = ~ J lf(x)J dx = JJJIJi/v'27r. 
JR JR 

Taking the supremum over w establishes the proof. 

Combining Theorem 2.1.1 and Lemma 2.1.2, we arrive at the following corollary. 

□ 
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Corollary 2.1.3 Let f E L 1 (JR), then J E C0 (JR), the supremum-nonned Banach 
space of all complex continuous jimctions on JR that vanish at infinity. Furthennore, 

llflloo::; llfllifJ2;. 

A useful property of the Fourier transform is its action on the convolution product f * g 

of two function f and gin L1 (JR), given by 

(f * g)(x) = J f(x - u)g(u) du. (2.2) 

JR 

By Young's inequality [109], we have llf * gl 11 ::; llf 111 · llgll 1. Since f * g E L1 (JR), 
we can compute its Fourier transform 

1 11· . J2; f(x - u)g(u) due-,wx dx 

JR JR 

-- f(x - u)e-iw(x-u) g(u)e-iwu dudx 1 ;·;· 
~-

JR. JR 

1 / . / . -- f(x)e-,wx dx g(u)e-'w1' du 
~ 

JR JR 

J2; J(w) fj(w), (2.3) 

using Fubini's theorem. We observe that the iterated integral in the second last line is 
absolutely convergent, which justifies the change of integration. 

At the end of this subsection we study the inverse Fourier transform on L 1 (JR). For
mally, an inverse Fourier transform exists and is given by 

1 / A • f(x) = ~ f(w)e'xw dw. 

JR 

The following example shows that J is not necessarily in L 1 ( JR) if f E L1 (JR). 

Example 2.1.4 Let f E L 1 (JR) be given by 

f(x)={ o~,21re-x, x2'.0, 
X < 0. 

Then its Fourier transform is given by 

A 1 
f(w)=l+iw' 

whichisnotinL1(JR). Note that] E C0 (JR),cf. Corollary2.l.3. 

(2.4) 
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Following [11, 35], we present additional conditions on f and J, that are necessary 
for a well-defined inversion formula. 

Theorem 2.1.5 Let f E L1 (JR,) and j E L1 (JR,). Then 

1 / A • f(x) = y'2m f(w)eixw dw a.e. x E JR,. 

JR 

Moreover, the latter results holds for every x E JR, if also f E C(JR,). 

2.1.2 The Fourier Transform on L2 

For f E L2 (JR,) we want to define its Fourier transform also by (2.1). However, this 
can only be done if f E L1 (JR,) n L2 (JR,), since the Fourier transform off E L2 (JR,) 
may not be defined everywhere. To come to a definition of the Fourier transform on 
L2 (JR,) we will define the Fourier transform first on a dense subspace of both L1 (JR,) 
and L2 (JR,) and then extend it uniquely to L2 (JR,). 

A dense subspace of both L1 (JR,) and L2 (JR,) is given by the Schwartz class S(JR,), 
see [89, 90]. 

Definition 2.1.6 The Schwartz class S(JR,n) is the space of rapidly decreasing C00 -

functions on mn, i.e.,for each k, l E IN 

It can be shown that the Fourier transform F, given by F[f] j for f E S(JR,), 
is a bounded linear mapping on S(JR,) as a subspace of L2 (JR,). Moreover, Fis an 
isometry on S(JR,), with respect to the inner product in L2 (JR,), see [35, 94]. So, we 
have Parseval's formula 

(f,g) = (Ff,Fg), 

with ( •, •) 2 the inner product in L 2 (JR,). 

Since S(JR,) is dense in L2 (JR,), F can be uniquely extended to a Hilbert space isom
etry of L2 (JR,), which yields the definition of the Fourier transform on L2 (JR,). 

Definition 2.1.7 Let f E L2 (JR,). Then its Fourier transform J = Ff is given by 

N 

F[f](w) = l.i.m.N--+oo ~ f f(x)e-iwx dx, 

-N 

where l.i.m. stands for limit in L2 mean. 

(2.5) 
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Remark, that this definition coincides with (2.1) if f E L1 (JR) n L2 (JR). Also we 
observe that by this definition Ff is a function, defined almost everywhere on JR 
and belonging to L2 (JR). Moreover, with this construction Parseval's formula can be 
extended to L 2 (JR) 

f f(x)g(x) dx = f }(w)g(w) dw, (2.6) 

IR IR 

for all f, g E L2 (JR). As a result we also have Plancherel's formula 

f lf(x)J2 dx = f J}(w)l2 dw, (2.7) 

IR IR 

for all f E L2 (JR). The two equal sides of (2.7) give the energy off E L2 (JR). 

Property (2.3) on convolution products of functions in L1 can also be proved for f E 
L2 (JR) and g E L1(JR). Since II!* gJl2 :S llfll2 llgll1 by Young's inequality we can 
follow (2.3). This yields straightforwardly 

(f *gr(w) = ~ }(w)g(w) a.e. \:/fEL2(IR) \:/gEL'(IR)· 

A similar result on convolution products in the Fourier domain can be derived by 
taking 

g(x) = h(x)eif.x 

in (2.6), with h E L2 (JR). This yields 

~F[f · h](~) = f f(x)h(x)e-if.x dx = f f(x)g(x) dx 

IR IR 

f }(w)g(w) dw 

IR 

~ i f(w) (i h(x),-•(e-w), dx) d,.; 

f }(w)h(~ - w) dw = (} * h)(~). (2.8) 

IR 

We summarize these results in the following lemma. 

Lemma 2.1.8 Convolution products and the Fourier transform are related by 

1. (f * gr(w) = ~ }(w) · g(w), for f E L1 (JR) U L2 (JR) and g E L1 (JR), 

2. ~ (f · gr(w) = (i * g)(w), for f, g E L2 (JR). 
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Since j E L2 (JR) for f E JR, we can derive an inversion formula using the same 
construction as for (2.5), i.e., 

N 

f(x) = l.i.m.N➔oo ~ J f(w)eixw dw. 
y2Jr 

(2.9) 

-N 

A subspace of L2 (JR), which is of special interest in signal analysis is L~omp(JR), i.e., 
the space of all functions in L 2 ( JR) with compact support. Related to this space we 
can define two types of signals. 

Definition 2.1.9 A signal f E L2 (JR) is called time-limited if f E L~omp(JR). 

If J E L~omp(JR), then f is called band-limited. 

Another special class of functions in L2 ( JR) is the class of functions of exponential 
type. 

Definition 2.1.10 A function f E L 2 (JR) is called of exponential type (fit extends to 
a holomorphicfunction on([) and if there are two positive constants C and !.1 such that 

lf(z)I < Ce!tllmzl, \:/z E ([)_ 

Functions of exponential type can be related to band-limited functions by means of 
the following lemma. 

Lemma 2.1.11 If f E L2 (JR) is band-limited, then f is of exponential type. 

Proof 
Assume f (w) = 0 for lwl > !.1, with !.1 > 0. Then 

S1 

l J , . f(x) = ~ f(w)eiwxdw, 

-$1 

initially defined for x E JR, remains well-defined for x E ([), and yields a holomorphic 
function f on ([)_ Furthermore, we derive for all z E ([) 

S1 

lf(z)I I~ J .f (w)eiwzdwl 
-$1 

< 
S1 S1 

l J , . e!tllm zl J , 
~ lf(w)e'wzjdw ::=; ~ lf(w)Jdw 

-$1 -$1 

< 
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Lemma 2.1.11 can be extended to the Paley-Wiener theorem, a well-known result in 
Fourier theory; for a proof, see [108]. 

Theorem 2.1.12 (Paley-Wiener) ff f E L2 (JR) is holomorphic and of exponential 
type, then f is band-limited. Conversely, if f is band-limited, then f is holomorphic 
and of exponential type. 

Since a holomorphic function f E L2 (JR), vanishing at a certain interval, has to be 
identically zero, the Paley-Wiener theorem immediately yields 

Corollary 2.1.13 If f E L2 (JR) is both time-limited and band-limited, then f = 0. 

The previous corollary states that there does not exist a non-trivial band-limited sig
nal f, whose energy is contained within a finite interval in the frequency domain, say 
[-D, D]. In Section 6.1 we will deal with this phenomenon. There, we will consider 
the problem of maximizing the energy of a band-limited signal within a finite interval 
[-D, D] in the frequency domain. 

It is clear, that, when using the Fourier transform to analyse a signal, we hide all in
formation of the signal's behaviour in the time domain. In order to obtain information 
about a signal simultaneously in the frequency domain and the time domain, we may 
replace the Fourier transform by one of the integral transforms that we discuss in the 
following sections. 

2.2 The Windowed Fourier Transform 

A strategy to obtain information about the frequency contents of a signal f E L2 (JR) 
locally in time is to first multiply f with a window function h E L2 (JR) and then take 
its Fourier transform, i.e., 

l / . . h[f](x,w) = ,12;- f(y)h(y - x)e-iwy dy. (2.10) 

JR 

This formula is called the windowed Fourier transform (WFT) or also sometimes in 
literature [18] the short-time Fourier transform (STFT). 

The multi-dimensional WFT is defined as a straightforward generalization of (2.10) 
by 

.rh[J](x,w) = (21r)-n/2 / f(y)h(y - x)e-i(w,y) dy. (2.11) 

JR.n 

Properties and results that we derive in this section for the one-dimensional WFT can 
all be generalized in a direct way for functions in L2 (JR"). 
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By introducing the shift operator Ti on L 2 (JR) by 

Ti[f](x) = f(x - b), 

for some b E JR and the frequency shift operator operator M w on L 2 (JR) by 

Mw[f](x) = eiwx f(x) 

for some w E JR, we can write (2.10) also as 

This notation immediately yields by Schwarz's inequality 

IFh[J](x,w)I::; IIJll2 · llhll2 Vx,wETR· 

So .rhf E L00 (JR2), for all f, h E L2 (JR). 

(2.12) 

(2.13) 

(2.14) 

A desirable property of the WFT is its invariance under the action of a frequency 
modulation Mw and its invariance up to a phase factor under the action of a translation 
Ti,. Indeed, a straightforward calculation shows 

We can also write (2.10) by means of a Fourier transform on L 1 (JR), namely 

(2.15) 

which can be rewritten as 

.rh[f](x,w) = (.r[J] * .r[T,,h])(w)/J2;, (2.16) 

using Lemma 2.1.8. Using Lemma 2.1.2 on (2.15) immediately yields that .rhf is 
continuous in w for fixed x E JR. Moreover, we have 

using that the mapping x f---i T,,h is continuous for all h E L2 (JR). This inequality 
shows that Fhf is also continuous in x for uniform w E JR. Combining this with the 
fact that Fhf is continuous in w for fixed x E JR, we have .rh[f] E C(JR2 ) for all 
f,h E JR2 . 

In the following example we consider a widely used window function h to compute 
the WFT of a given function. 

Example 2.2.1 We take for h the Gaussian function 
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Figure 2.1: A composition of two different oscillations with finite duration. 

where CY > 0. Note that llhull 2 = 1 for all CY > 0. The corresponding WFT is given 
by the Gabor transform [34] 

9u[f](x,w) = (21r)-3/4CY-1/2 J f(y)e-(y-x)2/zu2e-iwydy. (2.17) 

JR 

As an example we use the Gabor transform to obtain both time and frequency infor
mation about the function 

{ 
sin(21rx), x E [1, 2), 

f(x) = sin(81rx), x E [2, 3), 
0, otherwise, 

(2.18) 

which is depicted in Figure 2.1. 

For the parameter CY three different values have been taken, namely CY2 = 1/8, CY2 = 
1/32 and CY2 = 1/200. Figure 2.2 shows the amplitude of l9u[f](x,w)I for these 
three choices for CY. We see that in Figure 2.2.a the two frequency components of f 
are clearly visible and well localized in time. Here maxima of l91; 2v0I can be ob
served around w = ±21r for x E [1, 2] and around w = ±81r for x E [2, 3]. 

When decreasing the value of CY to 1 / 4v'2 only maxima are attained around w = 0 
for x = 1.25 and x = l. 75, which is depicted in Figure 2.2.b. This means that only 
information about the function's behavior in time is visible during the interval [1, 2]. 
For x E [2, 3] the situation remains the same. This phenomenon is explained by the 
fact that the 'width' of the Gaussian function becomes too small to recognize low fre
quency behavior. 

By decreasing the value of CY even more also higher frequency components are ne
glected and only maximum amplitudes are measured by the Gabor transform. This 
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situation is visualized in Figure 2.2.c where a = 1/10\/'2 has been chosen. 

Parseval's formula (2.6) and notation (2.15) are used to prove a counterpart of Parse
val's formula for the WFT. 

Theorem2.2.2 Let f,g E L 2 (JR) and h E L 2 (JR), with h-::/- 0 on a set in JR with 
positive measure. Then .h[f], Fh[g] E L2 (JR2 ) and 

J f(x)g(x) dx = ll:II~ / Fh[J](x, w)Fh[g](x, w) dw dx. (2.19) 

JR JR2 

Proof 
Using notation (2.15) in the right-hand side of (2.19) yields 

1 1· llhll~ Fh[f](x, w)Fh[g](x, w) dw dx 
JR2 

l J -llhll~ F[f · Txh](w)F[g · Txh](w) dwdx. 
JR2 

Now, Parseval's formula (2.6) gives 

ll;II~ / F[f · Txh](w)F[g · Txh](w) dw dx 
JR2 

l J -llhll~ f(y) g(y) lh(y - x)l 2 dy dx 
JR2 

ll;II~ / f(y) g(y) j lh(y - x)l2 dx dy = j f(y) g(y) dy, 
JR JR JR 

using Fubini's theorem. Since f · g E L1 (JR) the last iterated integral is absolutely 
convergent, which justifies the change of integration. □ 

As a result we have Plancherel's formula for the WFf 

/ 
2 1 / 2 lf(x)I dx = llhll~ IFh[f](x, w)I dw dx, (2.20) 

JR JR2 

for f, h E L2 (JR), with h -::/- 0 on a set in JR with positive measure. This shows that 
the operator Fh : L2 (JR) ➔ L2 (JR2 ) is an isometry up to a constant llhll 2 . The term 
1Fh[f](x,w)l2 in (2.20) is usually called spectrogram [18]. Refering to (2.20), the 
spectrogram is a measure for the energy density in the time-frequency plane. Note 
that the spectrogram of a given function f E L2 ( JR) strongly depends on the window 
function h E L2 (JR). 
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Figure 2.2: A contour plot of the amplitude of a Gabor transform with a) CJ 2 = 1/8, 
b) CJ2 = 1/32 and c) CJ2 = 1/200. 
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From Parseval's formula (2.19) we derive 

J f(x) g(x) dx 
JR 

-/2irl 2 J Fh[f](y,w) jg(x)h(x - y)eiwx dxdwdy 
llhll•) 

- JR2 JR 

/ ( -/2irl 2 f Fh[J](y,w)h(x-y)eiwxdwdy) g(x)dx, (2.21) 
21T llhlb 

JR JR2 

which yields the following formal inversion formula. 

Theorem 2.2.3 Given f, h E L 2 ( JR), with h -::/- 0 on a set in JR with positive measure, 
we have 

l J . f(x) = v'2rrllhll2 F1i[f](y,w)h(x -y)e'wx dwdy, 
2 JR2 

(2.22) 

weakly in L 2 (JR). 

Relation (2.22) should be interpreted by means of (2.21). A stronger result holds if 
additional conditions on f and h apply. 

Theorem 2.2.4 Let f, h E L 2 (JR), with h -::/- 0 on a set in JR with positive measure. 
Furthermore, let F[f • h] E L1 (JR). Then 

f(x) = -/2irl 2 / V Fh[f](y, w)h(x - y)eiwx dw) dy. (2.23) 
21T llhll2 . . 

JR 

For each x E JR, both the inner and the outer integral are absolutely convergent, but 
possibly not the double integral. 

Proof 
Fix x E JR. Then from (2.15) we have 

Fh[f](y,w) = F[f · Tyh](w). 

Since f · h E L 1 (JR) and F[f · h] E L 1 (JR) yields F[f • Tyh] E L 1 (JR), we can take 
the inverse Fourier transform as given in Theorem 2.1.5. This gives us 

l J . f(x)h(x - y) = -v'2n Fh[f](y,w)e'wx dw. 

JR 

Multiplying both sides of this equation by h(x - y) followed by integration over y 
establishes the proof. □ 
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We observe that a sufficient condition on f and h such that (2.23) holds is given by 
J, h E L 1 (JR,). This follows from Lemma 2.1.8 and Young's inequality. 

We have shown that, for a given h E L2 (JR), Fh maps all f E L2 (JR) to Fhf E 
L2 (JR2 ). Moreover, we have proven that f can be recovered from Fhf, if h-::/- 0 on a 
set with positive measure. However not every element in L 2 (JR2 ) is the image of an 
f E L2 (JR) by means of the WFT, since the range of Fh, Ran(Fh) is only a subset of 
L2 (JR2 ), see [51]. To characterize Ran(Fh) we derive from (2.14) and (2.19) 

with 

Fh[f](x,w) (f,Mw Txh)2 

llh~II~ / Fh[f](u,v)Fh[MwTxh](u,v)dudv 
JR2 

f kh(x,w;u,v)F1i[f](u,v)dudv, 
JR2 

kh(x,w; u,v) F1i[Mw Txh](u, v) = F[(Tuh) · (Txh)](w - v) 

~ f h(y - u) h(y - x)e-i(w-v)y dy, 

JR 

the reproducing kernel. Note that by definition we have k1i(x, w; •, •) E L2 (JR2 ) for 
all x, w E JR. From this derivation it follows that 0 E L 2 (JR2 ) should necessarily 
satisfy 

0(x,w) = f kh(x,w;u,v)0(u,v)dvdu, (2.24) 

JR2 

in order to be an element of Ran(F1i). Note that (2.24) is well defined, since Fhf is 
continuous for all f, h E L2 (JR). 

We can also show that (2.24) is a sufficient condition on 0 to be in Ran(Fh)- This 
is shown by constructing an f E L2 (JR) such that Fhf = 0, for some h E L2 (JR) 
and with 0 satisfying (2.24). Before constructing such a function f, we observe that 
0 E L2 (JR2 ). AsaresultofFubini'stheorem, wethushave0(·,v) E L 2 (JR) for fixed 
v E JRand0(u,·) E L2 (JR) forfixedu E JR. 

We take 

f(y) = ~ f B(t -y)h(l)ei~y dl, weakly in L2 (JR). 
JR2 

This means that 

j J(y) g(y) dy = j B(l, -y)h(l)g(y)ei~y d( dy, 

JR JR2 
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for all g E L 2 (JR,). Consequently, we have 

j f(y) g(y) dy :=:; ~ ll0ll2 llhll2 llgff2, 
JR 

for all g E L2 (JR). To show that :hf= 0, we derive for h E S(IR) and 0 E S(JR2 ) 

f kh(x,w; u, v)0(u, v) du dv 
JR2 

~ L 0(u, v) U h(y - v )h(y - x )e-;,(,-,) dy) du dv 

= 2~ f { f 0(u,v)eivy f h(l)ei(y-u)E, dldudv) h(y - x)e-iyw dy 

JR ~2 JR 

2~ ff { f 0(u,v)e-iuE,eivy dudv) h(l)h(y - x)eiyE,e-iyw dydl 

JR JR ~2 

f 0(w, -y)l,(l)h(y - x)eiE,ye-iyw dy dl 

JR2 

We observe, that 

V, kh(x, w; u, v )8( u, v) du dv < 11811, llkh (x, w; ·,·)II, 

f [0[ [2 [[.FhMw Txhf f 2 = f [0[[2 [f hf[~ 
and 

IJ f 0(w,-y)h(w)h(y-x)eiwye-iywdydw :=:; ff0[[2f[hff~. 
W2 JR2 

We conclude, that the previous derivation also holds for 0 E £ 2 ( JR2 ) and h E £ 2 (JR). 
From (2.24) and the definition off it follows directly, that 

.Fh[f](x, w) = 0(x, w). 

We summarize the previous result in the following theorem. 

Theorem 2.2.5 For h E L2 (JR), the range of .F1i, Ran(.Fh), is given by 

Ran(.F1i) = {0 E L2 (JR2 ) f 0(x,w) = f kh(x,w;u,v)0(u,v)dvdu}. 
JR2 
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From Plancherel's formula (2.20) it follows that Ran(Fh) is closed and that the trans
form f f-+ Fhf /llhll 2 is a Hilbert space isometry from L 2 (JR) onto Ran(Fh) as given 
in Theorem 2.2.5. 

2.3 The Wigner Distribution 

To obtain both time and frequency information of a signal f E L 2 ( JR) we may also 
use the Wigner distribution. This is a bilinear time-frequency representation given by 

WV[f](x, w) = 2-f f(x + t/2)f(x - t/2)e-itw dt, 
21r 

JR 

(2.25) 

for all f E L2 (JR). In the sequel we will refer to the domain of the Wigner distribution 
as the Wigner plane. 

In the sequel we will also use the mixed Wigner distribution given by 

WV[f,g](x,w) = 2~ / f(x + t/2)g(x - t/2)e-itw dt, (2.26) 

JR 

for all f, g E £ 2 (JR). Obviously, this representation coincides with the Wigner distri
bution if f = g. 

The mixed Wigner distribution can also be written as a windowed Fourier transform. 
We derive 

WV[f,g](x,w) 

Particularly, we have 

~ff (x + t)g(x - t)e-2itw dt, 

JR 

e2;w f f(y)g(2x - y)e-2iyw dy, 

JR 

j!e2ixw Fg(-·) [.f](2x, 2w). 

WV[f](x, w) = j!e2ixw F_r(-·) [f](2x, 2w). 

(2.27) 

(2.28) 

The relation between the WFT and the Wigner distribution will be used to derive ele
mentary properties of the Wigner distribution, that also hold for the WFT. 

The multi-dimensional Wigner distribution is defined from a straightforward general
ization of (2.25) by 

WV[f](x,w) = (21r)-n f f(x + t/2)f(x - t/2)e-i(t,w) dt, (2.29) 

IR" 
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for all f E L 2 (1Rn) and with (·, ·) the inner product in IRn. As for the Fourier 
transform and the WFT we only discuss properties of the Wigner distribution for 
f E L2 (JR). Generalizations of these results for functions in L2 ( IRn) can be made in 
a rather direct way. 

The Wigner distribution is, like the WFT, invariant under the action of both translation 
Tt, and frequency modulation Mwo. A straightforward calculation shows 

WV[Tt,J](x,w) = WV[f](x - b,w) and WV[Mw0 f](x,w) = WV[f](x,w-wa). 

Furthermore, by a change of variables in (2.25) it follows immediately that the Wigner 
distribution is real-valued, i.e., WV[.f] = WV[.f], and that 

WV[J](x,w) = WV[.f](x, -w), (2.30) 

for all f E L2 (JR). In particular (2.30) yields WV[f](x,w) = WV[f](x, -w) for all 
real-valued f E L2 (JR). Rewriting (2.25) enables us to derive more useful properties 
of the Wigner distribution. 

By defining h,v,w(t) = f(x + t/2)e-itw/2 j,Jiir, for f E L2 (JR), we can also write 
(2.25) as 

WV[f](x,w) = J hx,w(t)h,v,w(-t)dt. 
JR 

Now, Parseval's formula (2.6) yields 

WV[f](x, w) = J hx,w(0) hx,w(-0) d0 
JR 

_!_ J }(w + 0/2) }(w - 0/2)eiex d0, 
21r 

JR 

(2.31) 

for all f E L 2 (JR). Relation (2.31) shows that WV[!] ( ·, w) is the Fourier trans
form of a function in L 1 (JR). So, Lemma 2.1.2 can be applied. This yields that 
WV[f](-,w) is bounded and continuous for fixed w E JR. In the same manner it 
follows from (2.25) that WV[f](x, ·) is bounded and continuous for fixed x E JR. 
Continuity of the Wigner distribution in both variables follows immediately from 
(2.28) and the fact that .F1i[.f] E C(JR2 ), for all f, h E L2 (JR). Concluding, we 
have WV[.f] E L 00 (JR2 ) n C(JR2 ), for all f E L2 (JR). 

Also Relation (2.31) yields immediately 

WV[.Ff](x,w) = WV[f](-w,x), 

for all f E L2 (JR). 

(2.32) 
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As we have seen in Example 2.2.1, the energy of a time-limited signal f is spread by 
means of the WFf over a larger interval than supp(!), the support of .f. An advantage 
of the Wigner distribution is that this phenomenon does not appear for the Wigner 
distribution. In fact, the following properties hold 

f(x) = 0, x (j_ [T1,T2] =} WV[f](x,w) = 0, x (j_ [T1,T2] (2.33) 

J(w) = 0, w (j_ [01,02] =} WV[f](x,w) = 0, w (j_ [01,02) (2.34) 

for f E L2 ( JR) and T1 , T2 , 0 1 , 0 2 E JR. Property (2.33) states that the energy of a 
time-limited signal is not spread over a larger interval than its support. Furthermore, 
(2.34) states that the energy of a band-limited signal is not spread over a larger inter
val than the support of its Fourier transform. We observe, that the WFf does not have 
these properties. 

Properties (2.33) and (2.34) follow straightforwardly from (2.25) and (2.31). The 
converse of (2.33) and (2.34) also holds for j E L 1 (JR) and f E L1 (JR) respectively. 
This is shown in the sequel of this section. 

By rewriting the integrand in (2.31) we get 

with 

J(w + 0/2) J(w - 0/2) 

2~ / / f(x) f(y) e-ix(w+e/2) eiy(w-0/2) dxdy 

JR JR 

2~ / / f ( u + t/2) f ( u - t/2) e-iue e-itw du dt 

JR JR 

~ f M[f](-0, t)e-itw dt, 

JR 

M[f](0, t) = ~ / f(u + t/2)f(u - t/2)eiue du. 

JR 

(2.35) 

The function M [!] is called the characteristic function of the Wigner distribution, see 
e.g. [18]. Note that M[f)(-·, t) is the Fourier transform off(· + t/2) f(· - t/2), 
which is in L 1 (JR) for all t E JR. Using this characteristic function we obtain 

WV[f](x, w) = (21r)- 3!2 / / M[f](0, t)e-i0xe-itw d0 dt. (2.36) 

JR JR 

Introducing the function Rt,x off E L 2 (JR) by 

Rt,x(t) = f(x + t/2) f(x - t/2)/,/2; 
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gives the last representation of the Wigner distribution which we discuss here. We 
have 

WV[f](x,w) = .F[R1,x](w). (2.37) 

In the following example we compute the Wigner distribution of two signals and of 
their sum. 

Example 2.3.1 We introduce the function 

{ 
psin(21rx), x E [1, 2), 

fp,q(x) = qsin(87rX), x E [2,3), 
0, otherwise. 

(2.38) 

Note that fi, 1 coincides with (2.18). Furthermore, fp,q is the sum of two waves with 
finite duration and different frequencies if p · q =f. 0. 

We compute the Wigner distribution for fi,0 , fo, 1 and fi, 1 . Contour plots of these 
distributions are depicted in Figure 2.3.a, 2.3.b and 2.3.c respectively. 

Since f p,q is time-limited for all p, q E JR, Relation (2.33) holds for alI f p,q · This 
is also clearly visible in the Figure 2.3. Besides, in Figure 2.3.a and 2.3.b maxima 
of WV[fp,q] appear around frequency w = 0 and extremal points of fp,q· Minima of 
WV[Jp,q] appear in these figures around w = 0 and extremal points of J;,q. Moreover, 
at these points we have WV[Jp,q] < 0. Also maxima of WV[Jp,q] appear around the 
characteristic frequencies of the two waves. 

Comparing Figure 2.3.c with Figure 2.3.a and 2.3.b, it is clear that WV is a non-linear 
transformation. This non-linearity introduces cross-terms in the computation of the 
Wigner distribution of a sum of functions. The cross-terms are clearly visible in the 
time interval [1.5, 2.5]. A more detailed discussion on these cross-terms and their ef
fect on time-frequency analysis can be found in e.g. [18]. 

In Figure 2.4, WV[fi,1](x, 0) is plotted as a function of x. As we observed before 
local maxima and minima can be noticed for this frequency at the values for which 
respectively fi, 1 and f{, 1 attain their extremal values. It is also visible that the minimal 
values of WV [fi,1] ( x, 0) are indeed negative. 

The discussion of the Wigner distribution proceeds with a counterpart of Plancherel 's 
formula. To deduce such a formula for the Wigner distribution we use relation (2.37). 

Lemma 2.3.2 Let f E L 2 (JR). Then 
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Proof 
We derive 

/ lf(u)l2 du J lf(v)l2 dv 
JR JR 

J J lf(x + t/2)1 2 lf(x - t/2)1 2 dtdx 
JR JR 

J J If (x + t/2) f (x - t/2) 12 dt dx 
JR JR 

21r / / 1Rt,x(t)l 2 dtdx. 
JR JR 

Applying Plancherel's formula on the inner integral of the latter result yields 

which follows from (2.37). 

21r / / IF[R1,x](w)l 2 dwdx 
JR JR 

21r / / IWV[f](x, w )12 dw dx, 
JR JR 

□ 

Lemma 2.3.2 also follow from combining (2.20) and (2.28). We observe that this 
lemma also yields WV[!] E L2 (JR2 ) for all f E L 2 (JR). A counterpart of Parse
val's formula also exists. This is given by Moyal's formula, which is derived in the 
following theorem. 
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Theorem 2.3.3 (Moyal) Let f, g E L2 (JR). Then 

l(f,g)l2 =21r ff WV[f](x,w)WV[g](x,w)dwdx. 
JR JR 

Proof 
First we observe that WV[f](x,w) WV[g](x,w) E L 1 (JR2 ). This is a result of 
Schwarz's inequality and Lemma 2.3.2 

ff IWV[J](x,w) WV[g](x,w)I dwdx < IIWV[f]ll2 IIWV[g]ll2 
JR JR 

We derive as a corollary ofFubini's theorem 

f WV[f](x,w)WV[g](x,w)dw = 
JR 

f F[R1,x](w)F[R9 ,x](w) dw 
JR 

= f RJ,x(t)Rg,x(t) dt, 
JR 

using Parseval's formula. Integrating the latter result over x yields 

21r ff WV[f](x,w) WV[g](x,w) dwdx 
JR JR 

ff f (x + t/2)g(x + t/2) f (x - t/2)g(x - t/2) dt dx 
JR JR 

= ff f ( u)g(u) f (v)g(v) du dv = I (f, g)l 2 . 

JR JR 

□ 

A further desirable property of the Wigner distribution is given in the following theo
rem. 

Theorem 2.3.4 Let f E L2 (JR). Then 

lf(x)l2 f WV[f](x,w) dw, if J E L1 (JR) (2.39) 

JR 

f WV[f](x,w) dx, if f E L1 (JR). (2.40) 

JR 
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Proof 
We derive from (2.31) 

j IWV[f](x,w)I dw < 2~ / / lf(w + 0/2)1 lf(w - 0/2)1 d0dw 
JR JR JR 

2~ j j lf(u)l lf(v)I dudv = llflli/21r. 
JR JR 

Fix x E JR. Then WV[f](x, ·) E L1 (JR) if j E L1 (JR). Equivalently, :FRt,x E 

L1(JR) if J E L 1 (JR), cf. (2.37). Also Rt,x E C(JR), since .f is continuous, which 

follows from applying Theorem 2.1.2 on J. Finally, Rt,x E £ 1 (JR) since .f E L2 (JR). 
Now, we can apply Theorem 2.1.5, which yields 

l.f(x)l 2 = J2-iiR1,x(O) = J :F[R1,x](w)dw = J WV[f](x,w)dw. 
JR JR 

This proves (2.39). Relation (2.40) is proved in the same way by replacing J by .f. □ 

Relations (2.39) and (2.40) are called the time-frequency marginals, see also [ 18]. As 
acorollaryofTheorem2.3.4wehavefor j E L 1 (JR) nL2 (JR) 

WV[.f](x, w) = 0, x (/. [T1 , T2], w E JR===} .f(x) = 0, x (/. [T1 , T2] 

and for .f E L1 (JR) n L 2 (JR) 

WV[.f](x,w) = 0, w (/. [01 ,fh], x E JR===} ](w) = 0, w (/. [01 ,02], 

A last result on the energy density of the Wigner distribution is obtained by integrating 
(2.40) over w. This yields 

11.fll~ = j WV[f](x,w) dxdw, (2.41) 

JR 

For a comprehensive list of other properties of the one-dimensional Wigner distribu
tion we refer to [15, 44]. 

At the end of this discussion of the Wigner distribution, we consider its range. We have 
already observed that the range of the Wigner distribution, Ran(WV), is in L2 (JR2 ). 

However, WV : L2 (JR) ---+ L2 (JR2 ) is not surjective. So Ran(WV) -::j:. L2 (JR2 ). 
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Moreover, in [105] Wigner showed that a bilinear time-frequency distribution satisfy
ing time-frequency marginals as in Theorem 2.3.4 cannot be non-negative everywhere 
"in the time-frequency plane. In [47], Janssen showed that for one class of signals and 
one class of signals only, the Wigner distribution is positive, namely for 

we obtain 

with a, b, wo E JR. 

WV[f](x,w) = .!_e-ax2 /2-(w-bx-w0 ) 2 /a, 
7r 

2.4 Lie Group Theory and the Heisenberg Group 

In this section we will discuss the Heisenberg group and its relation to the multi
dimensional WFf and mainly to the multi-dimensional Wigner distribution. In Chap
ter 5 we will recall these properties to construct time-frequency operators using a 
group theoretical approach. 

We start with some standard definitions on Lie group theory, that can be found in e.g. 
[98, 102]. 

Definition 2.4.1 A set G with both a topological and a group structure is called a 
topological group if the mapping 

(2.42) 

is a continuous mapping from G x G onto G. A topological group G is called a Lie 
group if there is a differentiable structure on G, compatible with its topology, such 
that G converts into a C 00 -manifold and for which the mapping (2.42) is C00 • 

Related to a Lie group G we can also look for a Lie subgroup G' defined as a Lie 
group that is a subgroup of the group G and a C00 -submanifold of the C00 -manifold 
G. In the following example we shall consider a well-known Lie group and some of 
its Lie subgroups. 

Example 2.4.2 Consider the group G L ( n) = { M E ]Rn x n I det M i= 0}. It can 
be verified rather easily that G L ( n) is a Lie group using the fact that the mapping 
M c-+ det M is continuous. Some well-known Lie subgroups of G L( n) are given by 

I. SL(n) ={ME GL(n) I detM = 1}, 

2. O(n) ={ME GL(n) I MTM = I}, 
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3. SO(n) ={ME O(n) I detM = 1}. 

Another example of a well-known Lie group is the Heisenberg group, which is defined 
as follows. 

Definition 2.4.3 The 2n + I-dimensional Heisenberg group Hn is identified with 
]Rn x ]Rn x JR with the multiplication law 

To relate a topological group to an operator on a separable Hilbert space, we use the 
concept of topological group representations. 

Definition 2.4.4 Let G be a topological group, H be a Hilbert space and B(H) be the 
space of all bounded operators on H. Then a representation of G in H is a mapping 
µ: G-+ B(H)forwhich 

1. µ(x)µ(y) = µ(xy),for all x, y E G, 

2. µ( e) = I, with e the identity of G and I the identity operator on 1{, 

3. x f--t µ(x)f is a continuous mapping from G to H,forall f EH. 

Note, that Definition 2.4.4 yields that µ is a group homomorphism, which is continu
ous in the strong operator topology of B ( H). 

Topological group representations may satisfy several important properties. A first 
desirable property of a representation is that it is unitary, i.e., µ(x) E U(H), for all 
.T E G, where U(H) denotes the space of all unitary operators on H. Furthermore, 
µ is said to be irreducible if {O} and H are the only closed subspaces of H that 
are invariant under the action of µ(x), for all x E G. A last property concerns the 
equivalence of two representations. A representation µ is said to be equivalent with a 
representation p : G -+ B ( H) if there exists an operator V E U ( H), such that 

p = V*µV. (2.43) 

Note that a unitary representation µ is a group homomorphism, which is continuous 
in the strong operator topology of U(H). Also we observe, that for unitary represen
tations it can be proved, see e.g. [54], thatµ is irreducible if and only if for p = µ, 
(2.43) only holds for V = CI, with ICI = 1. 
An irreducible unitary representation of Hn in the space L2 (1Rn) is given by the 
Schri:idinger representation 

µ(p, q, t)[f](x) = ei(p,x)ei(t+(p,q)/2) f(x + q). (2.44) 

In the sequel of this section the representation µ will denote the Schri:idinger represen
tation. 
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The WFT of a function f E L 2 (JRn) can be given in terms of this representation. 
According to (2.11) we have 

.h[f](x, w) = (21r)-nl2 e-i(w,x)l2 (J, JL(w, -x, O)h)2, (2.45) 

for all f, h E L2 (JRn). The spectrogram IFh[f](x, w)l 2 can be given by 

1Fh[f](x,w)l2 = (21r)-nl(f,µ(w, -x, t)h)21 2 VtEIR· (2.46) 

A relation between the Heisenberg group and the Wigner distribution can be derived 
using the characteristic function M[f] for the multi-dimensional Wigner distribution. 
We derive 

1vl[f](p,q) = (21r)-n/2 / f(u+q/2)f(u-q/2)ei(p,u)du 

JRn 

(2.47) 

This yields 

WV[f](x,w) = (21r)-n/2F[M[f]](x,w) 

= (21r)-n:F[(µ(·, ·,O)f,fh](x,w), (2.48) 

with WV the multi-dimensional Wigner distribution and F the 2n-dimensional Fourier 
transform. By polarization, we get that (2.48) also holds for the mixed Wigner distri
bution, i.e., 

WV[!, g](x, w) = (21r)-n F[(µ(·, ·, O)f, g)2](x, w). 

Sinceµ is irreducible, we have for unitary operators V, as a corollary of (2.49), 

WV[!] = WV[V fl ¢::==> V = CI, ICI = 1. 

(2.49) 

(2.50) 

We have seen that the Wigner distribution is related to the Schrodinger representation 
by means of the characteristic function. Assume that there exists a unitary represen
tation p of Hn in U(L2 (1Rn)), for whichµ = V*pV, for some V E U(L2 (1Rn)). 
Then 

WV[VJ](x,w) (21r)-nF[(µ(·, ·, O)Vf, Vfh](x, w) 

(21r)-n F[(V* µ(·, ·, O)V f, Jh](x, w) 

(21r)-n F[(p(·, ·, O)f, fh](x, w), 

for all f E L2 (JRn). This yields 

WV[V J](x, w) = (21r)- 2n / (p(p, q, O)f, Jhe-i(p,x)e-i(q,w) d0 dv. (2.51) 

JR,2n 

We will return to these results in Chapter 5. 



44 Time-Frequency Analysis 



Chapter 3 

The Wavelet Transform 

In this chapter we study a transform that analyses signals in time/space and scale, the 
wavelet transform. In the first section we introduce the continuous wavelet transform 
(CWT) on L2 (JRn), particularly on L 2 (JR). Definitions and properties of this trans
form are given. Furthermore, we discuss a group theoretical approach for the CWT. 
In the second section we consider the discrete wavelet transform (DWT). After an in
troduction by means of a sampled CWT, we consider its relation with the concepts of 
Multiresolution Analysis (MRA) and filter bank theory. A fast algorithm to compute 
the DWT and its use on discrete-time functions in l2 ('ll.) are discussed. 

This chapter is mainly based on existing literature on the Wavelet transform [23, 45, 
51, 55, 59, 62] and its relation to filter banks by means of an MRA [16, 43, 60, 95]. 
Therefore, we will refer several times to the existing literature throughout this chapter. 
However, we also add some new ideas. 

3.1 The Continuous Wavelet Transform 

The CWT of .f E L2 ( JR) is a linear operator defined by 

W,/1[.f](a, b) = )a J .f(x)1p ( x: b) dx, (3.1) 

JR 

for some~ E L2 (JR) and a E JR+ and b E JR. By introducing the dilation operator 
Va on L2 (JR) by 

(3.2) 

for some a E JR we can write (3 .1) also as 

(3.3) 
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with Ti, the shift operator as introduced in (2.12). Using this notation we prove that 
W,;,[J] is continuous on 1H for all f E L 2 (R), with 1H = m+ x m. 

Lemma3.1.1 W,;,[f] iscontinuousonlHforallf E L2 (R). 

Proof 
Using the notation 7Pa,b = Ti,Va'!f;, with 'lj; E L2(R), we prove this lemma in two 
parts. First we give a proof for continuous functions 'lj; with compact support and next 
for arbitrary 'lj; E L2 (R). Assume 'lj; E L~omp(R), then 'lp is uniformly continuous. 
So 

ll7Pa,b - 7Pa' ,b' 112 ---+ 0, (a, b) ---+ (a', b'). 

Now, chooseE > 0 and takeg E L2(R) such that Ilg -'!f;II < E/3, with 'lj; continuous 
and compactly supported. Then 

llga,b - ga' ,b' 112 llga.,b - 7Pa,b + 7Pa,b - 7Pa' ,b' + 7Pa' ,b' - ga' ,b' 112 

::; llga,b -'!f;a.,bll2 + ll7Pa,b -7Pa.1 ,b1 ll2 + llga',b' -7/Ja1 ,b'll2 

::; 211g - '!f;ll2 + ll7Pa,b - 7Pa' ,b' 112-

To establish the proof, we take (a, b)-(a', b') small such that ll7Pa,b -'!f;a',b' 112 < E/3. 
□ 

Furthermore, from (3.3) we obtain by Schwarz's inequality 

which yields W,;,J E L 00 (JH), for all f E L2(R). Later on we shall show that under 
certain conditions on 'lj;, W,;; : L2(R) ---+ L2 (JH, a- 2 dbda) is an isometry up to a 
constant that depends on 'lj;. Here L 2 (1H, a- 2 dbda) denotes the space of all Euclidean 
square integrable functions on L2(JH) with respect to the measure a- 2 dbda. Besides, 
by Parseval's theorem we can write (3.3) in terms of the Fourier transforms off and 
7/J 

W,;,[f](a, b) (Ff, FTi,Va'!f;) 

va.f i(w)'l/;(aw)eibw dw. (3.4) 

JR 

A third way to write (3.1) is given by means of a convolution product. Take 1~(x) = 
7/J( -x ), then 

(3.5) 

The CWT can be generalized into a transform on L 2 (R") by replacing the scalar a 
by a non-singular matrix A E _mn x n and the scalar b by a vector b E _mn, i.e., 

W,;;[s](A, b) = l ./ s(x)?jJ(A- 1 (x - b)) dx. 
JI det(A)I 

]Rn 
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Figure 3.1: Two admissible wavelets: a) the Haar wavelet, b) the Mexican hat. 

In the literature mostly A = al is taken, see e.g. (23, 59]. For this choice, prop
erties for the multi-dimensional CWT can be proved in a rather straightforward way 
using properties of the one-dimensional CWT. Murenzi followed a different approach 
in (66]. He introduced a multi-dimensional CWT based on a dilation operator that 
involves a non-singular matrix A E JRnxn, translations in JRn and a rotation opera
tor. Also properties of this CWT resemble the properties we will deduce for the one 
dimensional CWT in the sequel of this chapter. 

Definition 3.1.2 A function 'ljJ E L 2 (JR) which satisfies the admissibility condition 

(3.6) 

for almost all w E JR is called an (admissible) wavelet. 

Note that all 't/J E L2 (JR) are admissible wavelets if 'ljJ -::f. 0, ?/j differentiable in 0 and 
?/j(O) = 0. Furthermore, the set of admissible wavelets is dense in L2 (JR), which is 
not very hard to prove, see e.g. (59]. 

We introduce two functions that satisfy the admissibility condition, namely the Haar 
wavelet and the Mexican hat. 
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Example 3.1.3 The Haar wavelet is defined by 

{ 
1, x E [0, 1/2), 

1/)(x) = -1, XE [1/2, 1), 
0, otherwise. 

(3.7) 

The Haar wavelet is depicted in Figure 3. I .a. Later we will see that the Haar wavelet is 

admissible, since it is compactly supported and/ 1/J(x) dx = 0. These two conditions 

JR 
are sufficient to guarantee that 1/J is admissible. However, here we show that the Haar 
wavelet is an admissible wavelet by computing 

( 

1/2 1 ) 

1/J(w) = ~ I e-ixw dx - I e-ixw dx 

and so 

11/J( aw) 12 

a 

0 1/2 

11 + e-iaw - 2e-iaw/212 

a3w2 

16 sin4 (aw/4) 
a3w2 . 

1e-iaw/21 2 . leiaw/4 _ e-iaw/41 4 

a3w2 

Integrating by parts yields 

C,t, 

Nw/4 . 1· sin4 (x) hm --3-dx 
N---too X 

0 

. 4( ) INw/4 Njw/42 . (2 ) . (4 ) 
lim - sm. x + lim 1 / 4 sm x - sm x dx 

N---too 2x2 x=O N---too x2 
0 

1. sin(4x) - 2sin(2x) INw/4 
lffi ------- + 

N---too 4x x=O 

Nw/4 
lim / cos(2x) - cos(4x) dx 

N---too X 
0 

lim ( N!wl\os(2x) - 1 dx - Nlw/2 cos(4x) - 1 dx) 
N---too X . X 

0 0 

= lim Ci(Nw/4) - ln(Nw/4) - Ci(Nw/2) + ln(Nw/2) = In 2, 
N---too 

where Ci denotes the cosine integral, see [96]. 
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Figure 3.2: The CWT using the Haar wavelet: a) a contour plot of W,i,[J](a, b) with 
'1/J the Haar wavelet, b) the original signal f. 

We used the Haar wavelet to compute the CWT of the function fas given in (2.18). In 
Figure 3.2.a the contour plot of this CWT is depicted. In this plot maxima of W ,,i, [!] 
can be observed around scale a = 80 for b E [1, 2] and around scale a = 20 for 
b E [2, 3]. This difference in scaling behaviour is due to the difference in frequency 
at the corresponding intervals x E [1, 2] and x E [2, 3]. Note that the frequency of 
f increases by a factor of 4 going from one interval to the other and that the scale 
corresponds to reciprocal values in frequency. Finally, we observe that the energy is 
also spread outside the interval b E [1, 3]. Moreover, energy is spread more widely for 
increasing scales, which is due to the convolution product (3.5). 

Example 3.1.4 The Mexican hat '1/J is defined by 

The Mexican hat is depicted in Figure 3.1.b. Since F[f'](w) = 'iw}(w) and 

I e-x2/2e-ixw dw = e-w2/2, 

JR 

(3.8) 
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Figure 3.3: The CWT using the Mexican hat: a) a contour plot of W,j,[f](a, b) with 'ljJ 
the Mexican hat, b) the original signal f. 

A 1 2 /2 
we get 'l/J(w) = fiLw 2 e-w . So 

v21r 

C,p = 21r / l7;6(:w)l 2 da = I a3w4 e-a2 w 2 da = 1/2 / ye-Y dy = 1/2. 

JR+ JR+ JR+ 

Also with the Mexican hat we have computed the CWT off, as defined in (2.18). 
A contour plot of this CWT is shown in Figure 3.3.a. As in Figure 3.2.a maxima of 
W 7/J [fl can be observed. However, here maxima are located around scale a = 20 for 
b E [1, 2] and around scale a = 5 for b E [2, 3]. The difference in scaling behaviour 
compared to the CWT using the Haar wavelet is due to a difference in frequency 
behaviour of both wavelets. It can be seen in Figure 3 .1 that frequencies of the Haar 
wavelet that contain most energy are located around frequencies that are about 4 times 
higher than the corresponding frequencies of the Mexican hat. 

To understand the admissibility condition we give some necessary and sufficient con
ditions on 'ljJ such that it is a wavelet. A necessary condition on ·if; E L1 (JR) n L2 (JR) 
such that it satisfies (3.6) can be derived by applying Lemma 2.1.2 on C,p, Since 

'ljJ E L1 (JR) this theorem yields 7;6 E C(JR), particularly 7;6 is continuous in 0, which 
yields with (3.6) 

/ 'l/J(x) dx = 7;6(0) = 0. 
JR 
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A sufficient condition on 'ljJ E L 1 (JR) n L2 (JR) such that it is a wavelet is given by 

f 'l/J(x) dx = 0 and / lxl1I'l/J(x)I dx < oo, (3.9) 

JR. JR 

for l > 1/2. A proof of this result can be found in e.g. [59]. From this sufficient con
dition it follows immediately that a compactly supported 'ljJ E L2 ( JR) is a wavelet if 

and only if/ 'lj!(x) dx = 0, since / lxl1 l'l/J(x) I dx < oo, for l ~ 0 if 'ljJ is compactly 

JR JR 
supported. For more sufficient conditions on 'ljJ such that it satisfies the admissibility 
condition the reader may consult [23, 45, 55]. 

The following theorem shows that for admissible 'if,,, the operator Wv, : L2 (JR) ➔ 
L 2 (1H, a- 2 dbda) is an isometry up to the constant.Jc;. 

Theorem 3.1.5 Let f E L2 (JR) and let 'lj! E L2 (JR) be an admissible wavelet. Then 

f lf(x)l2 dx = 1/01/J / IW,df](a, b)l 2 db!~. (3.10) 

JR JI-I 

Proof 
From (3.5) we get 

We integrate both the left-hand side and the right-hand side of this relation over 1H 
and apply Plancherel's formula (2.7) on the right-hand side. Now, we arrive cf. [55] 
at 

I 9 da /' ~ da IWv1U](a, b)I- db a2 = 271' lf(w)l 2 l'l/J(aw)l 2 dw ~-

11-I JI-I 

So 

f IW1/J[f](a, b)l 2 db!~ 

JI-I 

/ l.f(w)l 2 (271' / IJ(:w)l 2 
da) dw 

JR JR+ 

01/J f l.f(w)l2 dw = 01/JIIJII~, 
JR. 

using Fubini's theorem and Plancherel's formula. □ 

Relation (3.10) can be seen as Plancherel's formula for the CWT. As a result of this 
relation we get 
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for any '1/J for which C,p < oo. Moreover, by polarization, (3.10) yields immediately 
Parseval' s formula for the CWT 

I - lf da 
. f(x)g(x) dx = C,p W,;,[f](a, b)W,p[g](a, b) db a2 , (3.11) 

JR 1H 

for f, g E L2 (JR), if '1/J is admissible. Formula (3.11) gives 

J f(x)g(x) dx 

JR 

l ;· J - (x -b) da C,p W,p[f](a,b) l/,/ag(x)'l/J -a- dxdb a2 , 

1H JR 

J ( 1 / (x -b) da )-
JR C,p 1H W,p[f](a, b)'I/J -a- db a2 fa g(x) dx, 

for all g E £ 2 (JR). This proves the following formal reconstruction theorem. 

Theorem 3.1.6 Let f E L 2 (JR) and let 'l/J E L 2 (JR) be an admissible wavelet. Then 

J (x-b) ~ f(x) = 1/C,;; W,p[f](a, b)'l/J -a- db a2 fa. (3.12) 

1H 

Relation (3.12) holds weakly in L 2 (JR). 

Relation (3.12) should be interpreted by means of the first identity derived above be
fore Theorem 3.1.6. Astrongerresultholdsfor f E L1 (JR)nL2 (JR) and} E L1 (JR). 
With these assumptions on fit can be proved, see e.g. [55], that (3.12) holds point
wise. Furthermore, under these assumptions, for each x E JR, both the inner integral 
(over b) and the outer integral (over a) are necessarily absolutely convergent, while 
the double integral in (3.12) is not necessarily absolutely convergent. Note that f(x) 
is well-defined for all x E JR, since f is continuous due to Lemma 2.1.2. 

We have shown that W,p maps all f E L 2 (JR) into some W,;d E L 2 (JH, a-2 dbda). 
Moreover, we have shown that we can reconstruct f from W 1/J f, if '1/J is an admissible 
wavelet. However the range of W,p, Ran(W,p) is only a subset of L 2 (JH, a- 2dbda). 
To characterize Ran(W,p) for admissible wavelets '1/J we derive from (3.11) using Fu
bini's theorem 

W,f![f](a, b) 

(f, Ti,Vat/J) 

l J J (x -v) (x -b) du C~,fa W,f;[J](u, v)'l/J -u- 'lj1 -a- dv u2 fo, dx 
JR lH 
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l / / ( X - v) ( x - b) du C1/J,/a W,;,[f](u, v)'l/J -u- 'ljJ -a- dx dv u2 ,/u 
IE-I JR 

I du 
k,µ(a, b; u, v)W,fJ[/](u,v) dv u2 , 

IE-I 

with k1/J (a, b; u, v) = (TvDu'l/J, Ti,Da'l/J) /C1/J the reproducing kernel. Remark, that 

Therefore, k'I/J(a, b; u, v) E L 2 (JH, u-2 dvdu), for all (a, b) E JH. A necessary condi
tion on h E £ 2 (JH, a- 2 dbda) such that it is in Ran(W,j;) is given by 

I du 
h(a,b) = k,j;(a,b;u,v)h(u,v)dv u 2 • (3.13) 

IE-I 

Note that his continuous on 1H by Lemma 3.1.1. Therefore (3.13) is well defined. 

Moreover, it can be shown [ 51], that (3 .13) is also a sufficient condition on h to be in 
Ran(W,j;)- Resuming, 

Ran(W'I/J) = {h E L2 (JH, a- 2 dbda) I h(a, b) = J k'I/J(a, b; u, v)h(u, v) dv ~~}-

IE-I 

Obviously, Ran(W 1/J) is closed due to Theorem 3.1.5. Combining this result with The
orem 3.1.5 yields that the transform f r-+ W'I/Jf / Jcii, is a Hilbert space isometry 
from £ 2 (JR) onto Ran(W,j;) as given above. 

We observe that the results on the reproducing kernel and the range of W 1/J as presented 
here are similar to the results we presented in Section 2.2, where we considered the 
WFT. 

In Chapter 2 we have seen that the WFT and the Wigner distribution are related to 
the Heisenberg group by means of the Schrodinger representation. Also the CWT 
is related to a group, namely the Lie group G, which is identified with 1H with the 
multiplication law 

(3.14) 

We observe that the affine-linear group G af identified with JR2 with multiplication law 
(3.14) is isomorphic to ll..2 1>< G. The left and right Haar measures (µLand µR) of G 
areBorelmeasuresforwhich11L(gE) = µL(E) andµR(Eg) = µR(E) forallg E G 
and all Borel sets E c G. A straightforward calculation yields dµL(a, b) = a- 2 dbda 
and dµR(a, b) = a- 1dbda. 
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We introduce a representation of Gin U(L2 (JR)) by 

7r(a, b) = Ti,Da, "l(a,b)EG· 

Obviously 7r is a group homomorphism. Furthermore, it is continuous in the strong 
operator topology of U(L2 (JR)) and 7r(a, b) is unitary for all (a, b) E G. In this setting 
a function h E L2 (JR) is called an admissible vector if 

(3.15) 

Since(!, 7r(a, b)h) = Wh[f](a, b) Theorem 3.1.5 states that his an admissible vector 
if and only if Ch < oo. We already observed that the set of admissible wavelets is 
dense in L2 (JR) and therefore the set of all h E L2 (JR) that satisfy (3.15) is dense in 
L 2 (JR) as well. The following theorem shows that 7r is irreducible. 

Theorem 3.1.7 Let 'll" be the unitary representation ofG in U(L2 (JR)) by 

7r(a, b) = Ti,Da, 'v(a,b)EG· 

Then 'll" is irreducible. 

Proof 
We assume 7r is reducible. Then there exists a closed linear subspace V c L2 (JR), 
with V-:/- {O} and V-:/- L 2 (JR), such that 

7r(a, b)V c V for all (a, b) E G. 

Then there exists non-trivial vectors g E V and f E V ..L such that(!, 7r(a, b)g)2 = 0 
for all (a, b) E G. Now 

llfll~C9 = (!, 7r(a, b)g)2 = 0, 

yields f = 0 or g = 0, which is in contradiction with f -:/- 0 and g -:/- 0. □ 

To conclude, the continuous wavelet transform with a wavelet 'I/; is a unitary irre
ducible representation of the Lie group G with admissible vector 'I/;. More detailed 
studies on the wavelet transform and group theory can be found in [38, 39, 66]. 

3.2 The Discrete Wavelet Transform 

In the previous section we considered the CWT. We showed that this integral trans
form is able to analyse signals both in time/space and scale. Moreover, it turned out 
that such signals can be recovered from their CWT. In this section we consider the 
problem of calculating efficiently the wavelet transform of a function and reconstruct
ing it efficiently from its transform. 
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A first approach is to compute the wavelet transform only for a discrete subset L c 1H, 
e.g. 

L = {(ag',nboa;f) I n,rn E ?l}, 

for some a0 > l and b0 > 0 and to replace the double integral in (3.12) by a double 
sum over L. Using such an approach we have to show that the integral can indeed be 
replaced by a double sum without loss of information. Furthermore, reconstruction of 
a function f E L2 (JR) by means of this double sum should depend continuously on f. 
This kind of stability is guaranteed if the tuple ( 'ljJ, a0 , b0 ) generates a wavelet frame, 
i.e., 

rnFIIJII§ :S: L IW,;}[f](a,b)l2 :S: MFll!llt VJEL 2 (JR) (3.16) 
(a,b)EL 

for some constants rnF, IVIF > 0 called the frame bounds. We observe that if the 
triple ('l/;, ao, bo) generates a wavelet frame with rnF = MF = l and if ll'l/Jll2 = 1 
then 

(3.17) 

is an orthonormal basis in L2 (JR) and conversely. In that case we can transform and 
reconstruct any f E L2 (JR) with respect to the lattice L using a transformation called 
the discrete wavelet transform (DWT). This DWT provides an efficient algorithm, that 
does not need to compute W,;, [!] ( a, b) for all ( a, b) E L by means of inner products. 
In Section 3.2.2 we will discuss this algorithm, called the pyramid algorithm. 

In [22] Daubechies has given necessary and sufficient conditions on ( 'ljJ, a0 , b0 ) such 
that (3.17) is a wavelet frame. We summarize some of these conditions in the follow
ing theorem. 

Theorem 3.2.1 Assume that 

1. ess inf I: l7/'(ag1w)l 2 > 0, 
lwlE[l,ao] mE?l. 

2. ess sup I: l7/'(ag1w)l 2 < oo, 
lwlE[l,ao] mE?l. 

3. sup(l +x2 )(1H)/2 h(x) < oo,forsomeb > 0 with 
xEIR 

h(x) = sup L l1/'(a~nw)ll1/'(a;fw + x)l-
lwlE[l,ao] mE?l. 

Then there exists an N > 0 such that 

a. ( 'l/;, ao, bo) generates a wavelet frame for 'ljJ E L 2 (JR), a0 > land O < b0 < N, 

b. V1o>0:3boE[N,N+1o] : ('l/;, ao, bo) does not generate a wavelet frame. 
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Moreover, if ( 'ljJ, ao, bo) generates a wavelet frame, then 

C¢ 
mF ~ 2b 1 ~ MF. 

o nao 

Proof 
Cf. [22]. 

(3.18) 

□ 

From (3.18) it follows immediately that 'ljJ is an admissible wavelet if ('1/J, a0 , b0 ) gen
erates a wavelet frame or an orthonormal basis in L2 (JR). A more elegant and fast 
way to come to a DWT by means of orthonormal wavelet bases in L2 (JR) is given by 
the concept of a multiresolution analysis (MRA), which is considered in the sequel of 
this section. In Chapter 4 we shall return to the notion of frames related to MRA. 

3.2.1 Multiresolution Analysis in L2 (JR) 

The concept of an MRA is due to Mallat [60] and Meyer [62] and was originally used 
as a signal processing tool by means of perfect reconstruction filter banks [43, 95], 
which is discussed in Section 3.2.2. We start with the definition of an MRA, following 
[16, 23, 60]. 

Definition 3.2.2 An MRA in L 2 (JR) is an increasing sequence of closed subspaces 
Vj, j E 71., in L 2 (1R), 

· · · C Vi C Vi C Vo C V-1 C V-2 · · · , 

such that 

J. LJ ½ is dense in L 2 (JR), 
jE"ll. 

2. n ½ = {O}, 
jE"ll. 

3. f E Vj {=::::} v-1 f E Vj-1, Vja, 

4. 3,t,EL2(R) : {Tk¢ I k E 71.} is an orthonormal basis for Vo, 

with V := V2 and T := Ti and <p real-valued. 

For a more general concept of an MRA we can replace Condition 4 by 

3,t,EL2(m) : {Tk¢ I k E 71.} is a Riesz basis for Vo. 

Characterizations of a Riesz basis are given in [108]. Also the concept of an MRA for 
L2 (1Rn) has been described in the literature thoroughly, see [23, 62]. In Chapter4 we 
consider this general concept of an MRA in a functional analytical setting. Here we 
stick at Definition 3.2.2. 
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By Definition 3.2.2 an orthonormal basis for½, with j E 'll. fixed, is given by 

once such function ¢ has been found. Such ¢ is called scaling function. Since V is a 
unitary operator on L 2 (JR) and V0 is invariant under the action of T, the collection 

is an orthonormal basis for V_ 1 , As we also have¢ E V_ 1 , we get 

<p = LP(k)v-1Tk¢, 
kE'll. 

(3.19) 

for some real-valuedp E l2 ('ll.). In Section 3.2.2 we also wantp to generate a bounded 
convolution operator on l2 ('ll.). Therefore we require p E l1('ll.). Relation (3.19) is 
referred to as scale relation and p as scale sequence. 

We consider again the inclusion V0 C V_ 1 . Obviously we can define a subspace Wo 
such that Wo :::::: V_1 /Vo. For a unique definition of Wo, we take Wo = V_1 n V/. 
Using the invariance of the subspaces ½ under the action of the unitary operator v- 1 

we arrive in a natural way at the definition of the closed subspaces Wj c L 2 (JR) by 
putting Wj = ½-1 n ½J_. Recursively repeating the orthonormal decomposition of 
some v_J into V-J+l and W-J+l yields 

v_J v-J+i EB w-J+i = v-J+2 EB w-J+2 EB w-J+1 
-J+l 

... = VJ EB ( EB Wj). 
j=J 

Taking J ➔ oo and applying Conditions 1 and 2 from Definition 3.2.2 leads to 

EB Wj = L2(JR). 
jE'll. 

Now assume that we can find a real-valued function 'I/; E V_ 1 , such that {Tk'I/; I k E 
'll.} is an orthonormal basis for W0 • Then {ViTk'I/; I k E 'll.} is an orthonormal basis 
for Wj, j E 'll.. Since the subspaces Wj are chosen to be mutually orthogonal, we 
then have an orthonormal basis in L2 (JR) given by {ViTk'I/; I j, k E 'll.}. By (3.18) 
the function 'I/; is a wavelet and 

is a wavelet basis for Wj, for fixed j E 'll.. So, using these wavelet bases we are able 
to decompose any f E L2 (JR) into functions at several scales. 
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Since the wavelet function 'l/J should be in V_ 1 , there exists also a scale relation for 'l/J 

'l/J = L q(k)v-1,k</J, (3.20) 
kEZ 

for some real-valued q E l2 (7l..), the scaling sequence for 'l/J. As in (3.19) we will also 
require q E l1 (71..). By this relation, the problem of finding 'ljJ can be replaced by the 
problem of finding q if¢, and therefore also p, is known. A well-known choice [23] 
for q is given by 

q(k) = (-llp(l - k). (3.21) 

Note that we have introduced the concept of an MRA for L 2 (JR) to constitute or
thonormal wavelet bases in L2 (JR) by means of dilations and translations. These 
bases are equal to the wavelet frames (3.17) defined on the lattice 

Ld = {(2m,n2m) I m,n E 71..} (3.22) 

with frame bounds mF = MF = 1 and ll'l/Jll2 = 1. 

An MRA for L2 (1Rn) can be defined in a similar way, see e.g. [23, 62]. In Chapter 4 
we also consider a framework of such an MRA as well as a setting for an MRA which 
generates wavelet bases defined on other lattices than (3.22). 

3.2.2 MRA and Filter Banks 

An MRA can be related to filter banks by looking at a one-level decomposition and 
reconstruction ½-1 = ½ EB Wj. At the same time this relation yields a scheme to 
calculate the wavelet transform of a function in L2 (JR) and to reconstruct it from its 
transform on Ld in a fast way. For this decomposition and reconstruction we introduce 
the orthoprojectors Pj and Qj on ½ and Wj respectively. By definition we have 

Pj-1 = Pj + Qj, (3.23) 

for all j E 71... Note that Conditions 1 and 2 from Definition 3.2.2 yield 

(3.24) 

and 

(3.25) 

for all f E £ 2 (JR). 

The decomposition algorithm: 

We assume Pj-1 f E ½-1 is known for a certain j E 71... Consequently there exists a 
sequence Cj-l E l2 (7l..) such that 

Pj-1! = L cj-1(k)vi-1,k¢. 
kEZ 
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Moreover, the sequence Cj-l is given by Cj_ 1 (k) = (vj-lTk</>,fh- Following 
decomposition (3.23) we have 

(3.26) 
kE"ll. 

with the sequence di given by 

Qjf = L dj(k)VjTk'l/J. 
kE"ll. 

Note that the sequences Cj and dj can be calculated by cj(k) = (ViTk</>, fh and 
dj(k) = (VjTk'l/J, fh respectively. However with the known sequence Cj-I we can 
also derive using (3 .19) and (3 .26) 

Cj(k) = (Pj-lf, VjTk</>h = L p(n) (Pj-If, vJ- 17 2k+n4>)2 
nE"ll. 

m,nE"ll. 

LCj-1(2k+n)p(n) = ((.j,2)[cj-1 *P])(k), (3.27) 
nE"ll. 

with (cj-l * p)(k) = L Cj-l (n - k)p(k), p(n) = p(-n) and with(+ 2) the down
kE"ll. 

sampling operator given by 

((+ 2)[11J)(k) = u(2k), 

for all u E l 2 ( ll). In the same manner we get 

d.i = (+ 2)(cJ-1 * ij). (3.28) 

So Cj and dj are obtained from Cj-l by taking Cj-l as input for the linear time
invariant filters p and ij respectively. After this filtering operation the sequences are 
downsampled by a factor 2. This can be visualized by means of an analysis part of a 
two channel filter bank as depicted in Figure 3.4. 

Recursively we get expressions for CJ+n and d.i+n for n ~ 1, namely 

Cj+n = ((+ 2)Cp)nCj and dj+n = (+ 2)Cq((+ 2)Cp)n-lCj, 

where Cu denotes convolution with u E l1 (ll), i.e., 

Cu[c](n) = L v,(n - k)c(k), 
kE"ll. 

(3.29) 

for all c E l 2 (ll). In terms of filter banks we can say that CJ+n and d.i+n are obtained 
by iterative use of the analysis part of two channel filter bank of Figure 3.4. 
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p p 

Cj-1 Cj-1 

Cf q 

Figure 3.4: A two channel filter bank related to the wavelet filters p and q 

The reconstruction algorithm: 

Once we have computed a decomposition of Pi-d into Pif and Qif by means of 
the coefficients Cj and dj, we can also recover Cj-I out of Cj and di in an efficient 
way. In order to come to such a reconstruction formula we will represent Pj f and 
Q.d in terms of V,i-ITkc/>, k E "ll.., the basis functions of ½-i- For this we introduce 
for f E L2 (JR) the l2-sequences 

an,m(k) = (Pnf, vmTkc/>) and f3n,m(k) = (Qnf, vmTkc/>) (3.30) 

Since Pif E ~i-l, we can write 

Pjf = L aj,j-1 (k)vi-lTkcp. 
kE"lL. 

An expression for aj,j-l is found by taking the inner product with vj-ITkc/> in both 
the left-hand side and the right-hand side of this equation. This yields in combination 
with (3.26) and (3.19) 

aj,j-1 (k) = (Pjf, vj-lTkc/>h = L Cj(n) (DjTnc/>, vj-lTkc/>h 
nE"lL. 

m,nE"lL. 

L Cj(n)p(k - 2n) = (((t 2)cj) * p)(k), 
nE"lL. 

with (t 2) the upsampling operator given by 

(t 2)[u](k) = { u(k/2), 
0, 

kmod2=0, 
otherwise, 

(3.31) 
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for all u E l2 (7l.). We observe that 0- 2)(t 2) = I and(.!.. 2)* = (t 2). In the same 
manner we have 

with 

Q.if = L /3.i,j-1 (k)v.i- 1Tk</>, 
kE"ll.. 

So we derived the reconstruction formula 

(3.32) 

Hence, Cj _ 1 can be recovered from a.i ,j- l and /3 j ,j- l . Here a j ,.i- l and /3 .i ,.i - l can 
be seen as the output sequences of the linear time-invariant filters p and q respectively 
with input sequences Cj and d.i upsampled by a factor 2. This can be visualized by 
means of a synthesis part of a two channel filter bank as has been depicted also in 
Figure 3.4. 

Recursively we get expressions for ai+n,.i and f3Hn,.i for n ~ 1, namely 

In terms of filter banks we can say that ai+n,.i and f3Hn,.i are obtained by iterative use 
of the synthesis part of two channel filter bank of Figure 3.4. This recursive approach 
to obtain ai+n,.i and /3.i+n,.i is depicted in Figure 3.5 for n = 2. 

The algorithm of decomposing and reconstructing functions by means of filter banks 
related to an MRA is known as the pyramid algorithm. 

3.2.3 Implementation of the DWT and its Use for l2 (~) 

A problem that appears in decomposing a function f E L 2 (JR) at several scales by 
means of the pyramid algorithm is that the coefficients c.i should be known in order to 
compute P.i+mf, m E IN, in a fast way. Computing Cj does not only slow down the 
algorithm, it can also be impossible if only samples off are given. The last problem 
appears if f is given by discrete-time measurements. 

An approximation of c.i can be given by 

Note that if only measurements off are available, we can identify these measurements 
with c.i assuming that the samples are taken from some f E L2 (1R) at sampling rate 
2.i. The following theorem, which is a generalization of an exercise in [59], shows that 
this is a good approximation, under certain conditions on f and the scaling function 
¢. 
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Figure 3.5: Decomposition and reconstruction by means of a filter bank at one resolu
tion level 

Theorem 3.2.3 Let f E L2 (JR) be Holder continuous of order a: E (0, 1], i.e., 

lf(x) - f(y)I :SC· Ix - YI'\ 'vx,yEIR, (3.34) 

foraconstantC > Oandletsj(k) = f(2ik)forsomej E 71.. Letthescalingfunction 
</> be continuous in 71. and let </> satisfy 

L </>(x - k) = 1 a.e. x E JR, 
kEZ 

where the sum converges absolutely almost everywhere, and 

L lkl 0 l</>(k)I < 00. 

kEZ 

Then 
Ve:>O :3JEZ 'vj<J VnEZ 1Pi[/](2in) - Sj[/](2in)I < c, 

with Si : L2 (JR) -+½given by 

Si[f](x) = L sj(k)</>(Tix - k). 
kEZ 

Proof 
For all j E 71. we can write 

IPj[/](x) - Sj[/](x)I IPj[/](x) - f(x) - Si[f](x) + f(x)I 

< IPi[f](x) - J(x)I + ISi[f](x) - J(x)I. 

(3.35) 

(3.36) 
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From the Holder continuity off and Jackson's inequality, see e.g. [106], it follows 
that 

IIPjf - flloo < C sup Iii - T,,flloo 
O<lhl<2i 

< Co 2"'j ---+ 0 (j ---+ -oo ), 

for some positive constants C and Co. The proof is established by showing that 

We derive 

IL Sj(k)cp(n - k) - sj(n)I 

kE"lL. 

kE"lL. 

< C2i"' L lkl"'l</J(k)I---+ 0 (j---+ -oo). 
kE"lL. 

□ 

In the previous theorem we used two conditions on ¢, which might seem strong and a 
bit unfamiliar as well. However, Condition (3.36) is already satisfied if¢ is compactly 
supported, which is the case for the well-known Daubechies functions [23] and the 
spline scaling functions, i.e., B-splines [12]. For¢ continuous in 7l, sufficient condi
tions on¢ such that Condition (3.35) is satisfied are given in the following lemma. 

Lemma 3.2.4 Let </J E L1 (JR) n L2 (JR) such that {Tk<P I k E 7l} is an orthonormal 
set in L2 (JR) and ¢(0) = 1/J'Jm. Then 

L¢(x-k)=l a.e. xEIR, 
kE"lL. 

where the sum converges absolutely almost everywhere. 

Proof 
Take g(w) = I: 1¢(w + 27rl) 12 . Then g is 27r-periodic and L1 . Its Fourier coefficients 

lE"lL. 
are given by 

2,r 2,r 

Ck = 1/'✓'hr / g(w)e-iwk dw = 1/'✓'hr L J 1¢(w + 2Jrl)l2e-iwk dw 
o lE"lL. o 

1/'✓'hr J 1¢(w)l2e-iwk dw = 1/'✓'hr (¢, T-k<P) = 1/'✓'hrJo,k• 
JR 
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This yields g ( w) = 1 / ,,/ii for all w E JR, since ¢ is continuous. In particular we 
have g(O) = 1/,,/ii, which leads in combination with ¢(0) = 1/,,/ii to ¢(21rl) = 0 
for all l E ?l\{O}. Now, put h(x) = I: ¢(x - k). Since¢ E L 1 (JR) this sum 

kE"lL. 
converges absolutely. This means that h is well defined. Furthermore, h is I -periodic 
and L 1 . Its Fourier coefficients can be computed in the same manner as for g. We get 
c1 = ,,/2i¢(21rl) = 60,1. Writing down the Fourier series of h establishes the proof. □ 

The property of¢ as considered in Lemma 3.2.4 is called the partition of the unity. If 
¢ is also continuous in k E ?l, then the preceding lemma gives sufficient conditions 
on¢ such that (3.35) holds. The conditions on¢ such that this partition is guaranteed 
are quite natural. In fact, Wojtaszczyk showed in [106] that every scaling function 
¢ E L1 ( JR) n L2 ( JR) of an MRA as defined in Definition 3.2.2 satisfies the conditions 
in Lemma 3.2.4. Moreover, also scaling functions¢ for which {Tk</> I k E ?l} is 
a Riesz basis may satisfy Conditions (3.35) and (3.36). A classical example of such 
scaling functions ¢ are the cardinal B-spline functions [12], which will be discussed 
briefly in Section 4.5. 

Starting with a discrete-time function, obtained from measurements, we would like to 
get a decomposition at various discrete-time resolution levels instead of a DWT for 
L2 (IR). A natural way to obtain such a decomposition is to identify a givens E l2 (ll) 
with a sequence of coefficients Cj for some j E ?l. So, we construct a function in 
L 2 (IR) withUj: l2 (7l)---+ V'.i by 

Uj[s](x) = Tj/2 ~ s(k)</>(Tjx - k), 
kE"lL. 

A decomposition of sat level m, denoted by s(m) should satisfy 

Ujs(m) = Qj+mUjS, 

Its approximation at level m, denoted by s~';'l should satisfy 

U ·s(m) - P· U·s 
J' ap - J+m J • 

These relations hold if and only if sCm) = /3j+m,j, s~';') = aj+m,j and c1 = s, with 
a and /3 as in (3.33). Combining this result with (3.29) we arrive at the definition of 
the DWT for l2 (7l). 

Definition 3.2.5 Let p and q be the scale sequences as given in (3.19) and (3.20). 
Furthennore, let 9u = Cu(t 2) for u E l1 (?l). The l2 -DWT of a sequences E l2 (?l) 
at scale m E IN is given by 

s(m) = g;-1 gq g; w;)m-1 s. (3.37) 



The Discrete Wavelet Transfonn 

Its approximation at scale m E IN is given by 

s(m) = gm (Q*)ms 
ap P P • 
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(3.38) 

In the following lemma we come to some useful properties of the l 2-DWT, which we 
already met in the case of the DWT for L2 (/R). 

Lemma 3.2.6 Fors E l2 ("7l.), let s(m) ands~';) denote the l2 -DWT at level m and its 
approximation at level m respectively form E IN. Then 

M 

/. 11s11~ = 11s~M) II~ + I: 11s(m) 11~,Jor all M E IN, 
m=l 

2. lim lls(m)ll2 = 0. 
1n➔oo 

Proof 
First we observe that Uj is unitary for all j E "ll.., which yields 

11s11~ IIUisll~ = IIPPisll~ 
M 

ll(Pj+M + L Qj+m)Ujsll~ 
m=l 

M 

IIPi+MUjsll~ + L IIQi+mUjsll~ 
m=l 

M M 

11ujs~tn11~ + L IIUjS(m)II~ = 11s~~)II~ + L 11s(m)II~-
m=l m=l 

Using (3.25) we get 

11s(m) II~ IIUj.S(m) II~ = II Qj+mUjsll~ 
IIPi+m-1Ujsll~ - IIPj+mUjsll~ ➔ 0 (m ➔ -oo), 

with j E "7l. fixed. D 
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Chapter 4 

A Framework for 
Multiresolution Analysis in 
Hilbert Spaces 

In Section 3.2 we already introduced the DWT for functions in L 2 (R) by means of 
a multiresolution analysis. In this chapter we consider a functional analytical setting 
of an MRA for separable Hilbert spaces H. Using this framework necessary and suf
ficient conditions on operators on H and functions in H are derived such that they 
constitute wavelet bases in H. 

Meyer already gave strong hints for a generalization of MRA in [62]. A more general 
concept, like we present here, was also investigated by Goodman, Lee and Tang in 
[36]. However they use a different approach to construct bases in H using MRA. 

4.1 Frames and Riesz Systems 

In the previous chapter we already mentioned the concept of frames and Riesz bases, 
related to the DWT in L2 (m). Here we introduce these concept for arbitrary separable 
Hilbert spaces H with inner product ( ·, ·). Furthermore, we come to some results that 
relate these concepts. 

In the sequel we denote for a countable index set JD, the Hilbert space of all square 
summable functions from ID into([) by l2 (1D) and its inner product by(·, ·)JD. The 
standard orthonormal basis in l 2 (JD) is denoted by { ej} jEID, so ej ( i) = <5;,j for 
i, j E JD. The expression l5 (ID) indicates the linear span of the set { ej I j E JD}. 
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Definition 4.1.1 A collection n . = { v j I j E JD} in H is called a frame with frame 
bounds mp and Mp, 0 < mp ::; Nip, if for all x E H the sequence (x, Vj )JEID 

belongs to l2 (JD) and 

mpllxll 2 ::; L l(x, VJ)l 2 ::; Mpllxll 2 -

jEJD 

(4.1) 

Note that the wavelet frame ('lj;, a0 , b0 ) as introduced in Section 3.2 also satisfies this 
condition. Obviously, condition (3.16) equals (4.1) by taking 

for some wavelet 'lj; E L2 (JR). 

For { vii j E JD} a frame in H, define Sp : H -+ l2 (JD) by 

Spx = L (x, Vj )ej, "ixEH· 

jEID 

According to Definition 4.1.1, 

mpllxll 2 ::; IISpxll 2 ::; Mpllxll 2 -

(4.2) 

(4.3) 

So SP is a bounded linear operator from H into l2 (JD), such that S}S p has a bounded 
inverse. The optimal constants mp and Mp are given by 

The operator Sp is called the frame generator associated with the frame n. 

A straightforward computation shows that 

S}a = L (a, ej)Vj, VaEl2(JD)· 

jEID 

Hence, the adjoint frame generator S} is given by 

The following lemma presents some auxiliary results on bounded operators. Using 
this lemma we are able to derive relations between the frame generator and its adjoint. 

Lemma 4.1.2 Let A E B(H1 , H 2 ), with B(H1 , H 2 ) the space of all bounded linear 
operators from the Hilbert space H 1 to the Hilbert space H 2 . Then, the following are 
equivalent 

(i) There exists an operator BE B(H2 , H1 ) such that BA= I, 

(ii) There exists an m > 0 such that IIAxll ~ mllxll,Jor all x E Hi, 
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(iii) The null space Ker(A) = {O} and the range Ran(A) is closed, 

(iv) There exists an operatorC E B(H1, H 2 ) such that A*C = I, 

(v) The range Ran(A*) = H1. 

Proof 
Assume (i) holds. Then 

llxll = IIBAxll:::; IIBII IIAxll-
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So, property (ii) holds form= IIBII- If property (ii) holds, then Ker(A) = {O}, since 
IIAxll = 0 implies llxll = 0 using property (i). For proving that Ran(A) is closed, we 
take a sequence (xn)nEN in H1 and a vector y E H 2 , such that 

Then 

Axn ➔ y (n ➔ oo). 

1 
llxk - Xnll :::; -IIAxk - Axnll ➔ 0 (n ➔ oo). 

m 

So, (xn)nEN is a Cauchy sequence. For its limit x E H1 we have 

Ax= lim Axn = Y, 
n➔oo 

which yields that Ran(A) is closed. 

Obviously, (i) and (iv) are equivalent. If (i) holds, then then also (iv) holds for C = B* 
and conversely. Therefore, instead of proving property (iv), if property (iii) holds, we 
prove property (i). To do this, we consider the mapping A1 from H1 into Ran(A), 
given by A1x = Ax, for all x E H1 . Since Ran(A) is closed, we have that A 1 

is a continuous linear bijection from the Hilbert space H 1 onto the Hilbert space 
Ran(A). By the inverse mapping theorem, A 1 is invertible with bounded inverse 
A11 : Ran(A) ➔ H1. Now, define B by By = A11 y1, for y = Y1 + Y2, with 
Y1 E Ran(A) and Y2 EE Ran(A).L. Then BE B(H2, H1) and BA= I. 

Next, we assume that (iv) holds. Then 

H1 = Ran(A*C) c Ran(A*) c H1, 

and therefore Ran(A*) = H1 . The last thing we have to prove is that property (iv) 
holds, given property (v). This is shown as follows. Take [ as A* restricted to 
Ker( A*) .L. Then [ is a continuous linear bijection from the Hilbert space Ker( A*) .L 
onto H1 . As before, the inverse mapping theorem yields that [ has a bounded inverse 
E-1 from H 1 onto Ker(A*).L. By defining an operator C by Cx [- 1x, for all 
x E H1 , property (iv) is established. D 
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It follows from the previous lemma, that Sp is an injective bounded linear opera
tor from l2 (DJ) into H with range, Ran(Sp), closed in H. This is equivalent with 
the fact that Sj;,S p is a boundedly invertible operator. Also Sp ( Sj;,S p )-1 is the 
right inverse of Sj;, with minimal norm, which can be shown as follows. Take P = 
Sp(Sj;,Sp )- 1Sj;,, the orthoprojector from l2 (DJ) onto Ran(Sp ). Let further A be a 
right inverse of S}. Then 

IISp(S}Sp)- 1 11 = IIPSp(S}Sp)- 1 11 = IIPAII ~ IIAII-

In addition to the frame elements Vj we define Vj, j E DJ, in Ran( Sj;,) by 

Vj = (Sj;,Sp)- 1vj = (Sj;,Sp)- 1Sj;,ei. 

Then for all x E Ran(S}) 

and 

x = Sj;,(Sp(Sj;,Sp)- 1)x = Sj;, 2)Sp(Sj;,Sp)-1x,ej)ej 
jEID 

L(x,(Sj;,Sp)- 1Sj;,ei)Sj;,ei = L(x,vi)vi 
jEID jEID 

X ((Sj;,Sp)- 1S})Spx = (S}Sp)- 1s;,, L(SpX,ej)ej 
JEID 

L(x,S}ej)(S}Sp)- 1S}ej = L(x,vi)vi. 
JEID JEID 

Following these derivations and the equivalent properties as desribed in Lemma 4.1.2 
we arrive at the following theorem. 

Theorem 4.1.3 Let n = { Vj I j E DJ} be a collection in H satisfying the rigt in
equality in (4.1) and let Sp be defined by (4.2). Then n is a frame if and only if the 
adjoint of the frame generator Sp associated with n is surjective. If n is a frame, the 
collection {vi I j E DJ}, defined by Vj = (Sj;,Sp )- 1S}ej, is also a frame, which we 
call the frame dual to fl. 

We observe that since {vi I j E DJ} is a frame, there exists also an associated frame 
generator given by Sp ( Sj;,S p )- 1 . Special cases of frames are exact frames and tight 
frames, which are defined as follows. 

Definition 4.1.4 An exact frame is a frame that is no longer a frame whenever any 
one of its elements is removed. A tight frame is a frame for which the frame bounds 
satisfy mp = Mp. 

It can be shown in a rather straightforward way that if n = { vi Ii E DJ} is a tight 
frame for which mp = 1 and llvill = 1 for all j E DJ, then n is an orthonormal 
system in H and conversely. A similar property also holds for Riesz systems, which 
are defined as follows. 
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Definition 4.1.5 The collection !! = { v 1 I j E JD} in H is called a Riesz system with 
Riesz bounds O < mR :S MR, if 

mRllallb :S II 1:(a,ej)vJll2 :S MRllallb, \/aE!5(JD)· 

jEJD 

(4.4) 

Obviously, a Riesz system with Riesz bounds mR = MR = l is an orthonormal sys
tem, which means that orthonormal systems constitute a special set of Riesz systems. 
Also to a Riesz system we associate an operator in a similar way as we have done for 
frames. 

For {vJI j E JD} a Riesz system, define S~) : l5(JD)-+ H by 

s~)a = L a(j)vj, \/aEl5(JD)· 

jEJD 

Hence, S~) eJ = v1. The operators~) extends to a bounded linear operator SR from 
l2 ( JD) into H, called the Riesz system!generator of!!. This Riesz generator satisfies 

(4.5) 

In the same manner as we concluded for the frame generator, we conclude that S'kSR 
is a boundedly invertible operator on l2 (JD). Moreover, the left inverse of SR with 
minimal norm is given by (S'kSR)- 1S'k- This can be verified in the same manner as 
for the right inverse of S}. 

Beside the Riesz system {vJ I j E JD} we also define the elements v1, j E JD, in 
Ran(SR) by VJ= SR(S'kSR)- 1 ej. Hence, S'kiJJ = ej and consequently 

(v.i, Vk) = (vj, SRek) = (ej, ek) = 6j,k• 

Furthermore, for all x E Ran(SR) and for a E l2 (JD) with x = SRa, we have 

and 

x SRa = SR(S'kSR)- 1 (S'kSR)a 

SR(S'kSR)- 1SRx = SR L ((SRSR)- 1SRx, e1)ej 
jEJD 

1:(:r,SR(SRSR)-1 eJ)SRei = 1:(x,v.i)v1, 
jEJD jEJD 

x SR(SRSR)- 1SRx = SR(SRSR)- 1 L (SRx, e1)ej 
jEJD 

L (x, SRei )SR(SRSR)-1eJ = L (x, vi )vi. 
jEJD jEJD 

These results are summarized in the following theorem. 
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Theorem 4.1.6 Let n = { Vj [ j E JD} be a collection in H. Then n is a Riesz 
system if and only if there is a bounded linear injection SR: l2(JD)-+ H with closed 
range such that SRej = Vj, j E JD. If so, the collection {'Vj I j E JD}, defined by 
Vj = SR(SRSR)- 1ej, is the Riesz system dual ton. 

Note that by definition a Riesz system is a linearly independent set. A special set of 
Riesz systems are Riesz bases, which are defined as follows. 

Definition 4.1. 7 A Riesz system which is total is a Riesz basis. 

Obviously, every Riesz system is a Riesz basis for the closure of its linear span. For a 
Riesz basis, the corresponding Riesz generator SR is invertible. This yields immedi
ately that the frame { Vj I j E JD} is a Riesz basis if and only ifs;,, is invertible. It can 
be proved, see [7], that the concepts of exact frame and of Riesz basis are equivalent. 
So, an exact frame can also be seen as a frame for which s;,, is invertible. Connections 
between frames and Riesz systems are given in the following theorem, which results 
from the previous considerations. 

Theorem 4.1.8 Let n = { Vj [ j E JD} be any collection in H, and define the operator 
S: l2 (JD) -+ H by Sei = VJ, j E JD. Then 

(i) n is a frame if and only if SS* is a boundedly invertible operator on H, 

(ii) n is a Riesz system if and only if S* S is a boundedly invertible operator on 
z2(JD), 

(iii) n is a Riesz basis if and only if Sis a boundedly invertible operator on l2 (JD), 
i.e., if both SS* and S* Sare boundedly invertible operators. 

The relations between frames and Riesz systems as considered in this theorem are also 
depicted in Figure 4.1. 

A characterization of Riesz systems which is used frequently in the sequel of this 
chapter is given in terms of a Gram matrix. For n = { v JI j E JD} in H, we define its 
Gram matrix f n by fn(i, j) = ( Vj, vi)H, i, j E JD. Since fn(i, j) = (SRSReJ, ei) 
we conclude fn is the matrix of SRSR, yielding with (4.5) that n is a Riesz system if 
and only if 

(4.6) 

4.2 Multiresolution Analysis in Hilbert Spaces 

In Section 3.2.l we introduced the concept of an MRA for L2 (IR) following the ideas 
of Mallat [60] and Meyer [62]. This definition can be extended in a canonical way 
to an MRA for L2 (/Rn), see e.g. [23, 62]. In this section we define an MRA for a 
separable Hilbert space H using mutually dependent unitary operators on H. 
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Figure 4.1: Relations between frames and Riesz systems, with S the Riesz generator. 

Definition 4.2.1 Let A be an ( n x n) matrix with integer entries and eigenvalues 
Ai, i = 1, ... , n, such that I Ai I > 1. Furthermore, let H be a separable Hilbert 
space,¢ EH andU1,U2,1, ... , U2,n unitary operators on H, such thatU2,1, ... ,U2,n 
mutually commute. Then [ ¢, U1 , U2 ,1 , ... , U2,n] is an MRAin H if 

(i) {Uf ¢ I k E 72'.n} is a Riesz system in H, 

(ii) ¢ E clos span{U1Uf¢I k E 72'.n}, 

(iii) UfU1 = U1Ufk, for all k E 72'.n, 

with 

In the sequel ¢ is called the MRA generator. 

To compare this definition with Definition 3.2.2 we construct a nested sequence of 
closed subspaces for H by 

Then we have 

U1(½) = ½-1, Uf(YJ) = Vj, k E 72'.n, and Vj C ½-1• 

For n = 1, A = 2, U1 = v-1, U2 ,1 = T and H = L 2 (JR), Definition 3.2.2 and 
Definition 4.2.1 are nearly the same. However in Definition 3 .2.2 an orthonormal basis 
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for Vo was constructed, which is a special case of a Riesz basis, and in the definition 
above we also did not introduce the conditions 

clos LJ Vj = H and n Vj = { 0}, (4.7) 

which occur in Definition 3.2.2. Whether or not inserting these conditions will not 
change any of the further derivations. Therefore these conditions have been omitted. 

The concept of MRA in H is now used to construct Riesz systems in H of a special 
kind. We start this construction by defining a unique countable collection of closed 
subspaces Wj, .i E 71., like we have done as well in Section 3.2.1, namely by writing 

Wj = ½-1 n 101-, 

for all .i E 71.. Since U1 and U2 are unitary operators on H, we have 

Ui(½-1 n v/) = U1Wi-d nUi(l01-) 

U1(Vj_i) n (U1(Vj))1- = Wj-1, 

andsimilarlyU2,z(Wj) = Wj,l = 1, ... ,n. Obviously,sinceWj =U1-j(W0 ),each 
Riesz basis O for W0 yields the Riesz basis u;j (0) for Wj, .i E 71., with the same 
Riesz bounds. 

Following the same orthogonal decomposition as in Section 3.2.1 and adding Condi
tion 4.7 we arrive at 

CX) 

H= EB wj. 
j=-oo 

From this direct sum decomposition of Hit follows immediately that U U{ (0) is a 
jE"ll. 

Riesz basis for H, if O is a Riesz basis for W0 . 

Now the idea is to construct Riesz systems in W0 of the form {Uf'lj; I k E ?l.n}. It 
will tum out that, for constructing a Riesz basis of this form in general more than one 
element 'lj; will be needed. Our aim here is to prove existence of an N E IN and of a 
collection 

{1P1, · · · ,1PN-d C Vi, 
such that 

(a) ('lj;z,Uf</>) = 0, l = 1, ... ,N -1, for all k E 71.n, i.e., 'lj;z EV/, 

(b) {Uf'lj;z I l = 1, ... , N - 1, k E ?l.n} is a Riesz basis for W0 • 

Since V_ 1 = V0 EB W0 Condition (b) can be also written as 

(b') {Uf'lj;z I l = 0, ... , N - 1, k E ?l.n} is a Riesz basis for V_1, with 'lpo = <f>. 
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Since V0 C v_ 1 and W0 c V_ 1 and since {U1Uf¢ I k E ~n} is aRiesz basis in V_ 1, 
we come to 

L p(k)U1UJ¢, (4.8) 
kE"lLn 

L q1(k)U1Uf ¢, l = 1, ... , N - 1, (4.9) 
kE"lLn 

where p E l 2 (~n), known, and the q1 E l 2 (~n), to be determined, are the generating 
sequences. For U1 = v- 1 and U2 = T, these sequences are called scaling sequences 
as we have seen already in Section 3.2.1. In the sequel the term scaling sequence will 
only be used for cases in which U1 = v-1 has been chosen. 

So the idea is to formulate constraints on the sequences q1, given the sequence p, such 
that the Conditions (a) and (b') are satisfied. Therefore we reformulate these condi
tions in terms of the generating sequences. 

Condition (a) can be put in a rather straightforward way in terms of the generating se
quences by substituting (4.8) and (4.9) into this condition and using UfU1 = U1Ufk. 
We get 

('Ip/, Uf ¢) = ( Tq, * q1, nAkP)"lLn, 

with Tq,(k) = (¢,Uf¢), k E ~n, and nm = R'{' 1 ... R;;,'n form E ~n, a com
position of bilateral shift operators on l2 (~n), each one acting along a standard basis 
vector of ~n. So Condition (a) is equivalent with 

(4.10) 

In order to put Condition (b') in terms of the generating sequences we present the 
following lemma. 

Lemma 4.2.2 Let [¢, U1 , U2 ,1 , ... , U2,n] be an MRA and let p be the generating se
quence of¢. Then 

is a Riesz system in l2 (~n). Furthermore, let 'lj!0 = ¢ and 'lj!1, l = 1, ... , N - 1, be in 
W 0 with generating sequences q1• Then 

is a Riesz basis for V_ 1 if and only if 
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Proof 
We introduce the boundedly invertible operator B : V_1 --+ l2 (7L.n) by 

Bf= a if and only if f = L a(k)U1Uf¢. 
kE"lL.n 

Since BUf = R,AkB, k E 7L.n and B¢ = p, applying the operator Bon the Riesz 
system {Uf¢ I k E 7L.n} yields {RAkp I k E 7L.n}. This is also a Riesz system, 
since B is a boundedly invertible operator. The second result follows immediately by 
observing that 

□ 

From this lemma it follows that if we can construct sequences q1 E 12 ( 7L.n), such that 

• (Tq, * q1, R,AkP)"?L.n = 0, 'v'tE{l, ... ,N-1} \,'kE"lL.n, 

• {RAkqz I l = 0, ... , N - 1, k E 7L.n} is a Riesz basis for l2 (7L.n), with q0 = p, 

then elements 1/Jz, l = 1, ... , N -1, in V_ 1 can be constructed for which Conditions (a) 
and (b) are satisfied. This naturally leads us to the next item. 

4.3 Riesz Systems Generated by Unitary Operators 

In Section 4.1 we already considered necessary and sufficient conditions on a set n 
such that it is a Riesz system. Now, we will deal with sets n of a special kind, namely 
those sets that are generated by unitary operators acting on one or more elements in 
H. This is done, since such Riesz systems occurred in Lemma 4.2.2. 

First we consider the case of a Riesz system generated by several unitary operators 
all acting on one element in H. So, our aim is to derive necessary and sufficient con
ditions on the tuple [U1, ... ,Un,¢], such that {Ujcp I j E 7L.n} is a Riesz system, 
with Ui = Uf' • • • U~n. Besides, we compute its dual Riesz system. These derivations 
follow Section 4.1 with JD = 7L.n and with the Riesz generator S given by Sej = Uj ¢. 

By Section 4.1, {Ui ¢ I j E 7L.n} is a Riesz system if and only if its Gram matrix r, 
given by 

r(i,j) = (Ui¢,ui¢) = (¢,ui-j¢) = rq,('i - j), 

satisfies ( 4.6). Observing that S* S with matrix r acts by convolution on l 2 (7L.n), 

S* Sa = Tq, * a, 

we arrive at the following theorem. 
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Theorem 4.3.1 For commuting unitary operators U1 , ... , Un on H and ¢ E H, the 
collection {UJ ¢ I j E ~n} is a Riesz system if and only (f the sequence Tcp defined by 

yields a boundedly invertible convolution operator on l2 (~n), i.e., if and only if 

0 < ess inf fcp(z) < ess sup fcp(z) < oo, 
zETn - zETn 

where f-cp denotes the discrete Fourier transform of T cp 

f-cp(z) = L Tcp(j)z-i, z E T71 , 

jE?l.n 

(4.11) 

with z.i = z{' · · · zk•, j E ~n, and Tn the n-fold product of the unit circle with 
normalized Lebesgue measureµ. 

Note that from this theorem it follows that for Tcp E l1 (~71 ) the collection 

is a Riesz system if and only if fcp has no zeroes on T71 • 

By definition, the dual Riesz system is given by S(S*S)- 1e.i, where SeJ = U.irp and 
S* Sa = Tcp * a, for all a E l2 (~). This yields immediately that the dual Riesz system 
0 of D is of the form 

with ¢ given by 

4> = L Tcp(j)Uirp, 
jE?l." 

where Tcp * Tcp = ea. 

Next we replace the vector ¢ E H by a finite collection { ¢1, ... , ¢ N} and pose the 
same problem, namely under which conditions 

is a Riesz system. For this we take as index set JD = {1, ... , N} x ~n. Further
more, we define the unitary operator EN from l2 (JD) into £ 2 (T'1, ([}N) = L 2 (Tn) C>9 

([}N by ([Net,J)(z) = zis1, with {s1 , ... ,EN} the standard orthonormal basis in 
([}N_ We see that EN is a Riesz system if and only if the Gram matrix r with en
tries (Ui ¢1, Ui¢m)(m,J),(k,i) represents a bounded invertible operator on l2 (~n). A 
straightforward computation shows 
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where r(z) E q;:NxN is defined a.e. by (r(z)h,m = L (¢m,Ujcpk)z-i. Hence 
jE"ll.n 

the Gram matrix r represents a boundedly invertible operator on l 2 (JD) if and only if 
the matrix valued function f from Tn into (} N x N satisfies 

(4.12) 

4.4 Riesz Bases in l2(7l..n) 

In the previous section we derived necessary and sufficient conditions such that 

is a Riesz system. According to Lemma 4.2.2 such conditions can also be derived in 
terms of the generating sequences. Therefore in this section we deal with the following 
problem. Let the sequence I yield a boundedly invertible convolution operator on 
l2 Cll.n) and let {30 E l2 ('ll.n). Find necessary and sufficient conditions on sequences 
/31, l = l, ... , N - 1, in l2 ('7l.n), and determine N such that 

(i) (, * /31, RAkf3oh = 0, 'litE{l, ... ,N-1} \lkan, 

(ii) {RAk /31 I l = 0, ... , N - 1, k E 'll.n} is a Riesz basis for l2 ('7l.n). 

We reformulate this into terms of the Hilbert space L 2 (Tn). 

Since we deal with a rather arbitrary matrix A E 'll.nxn we introduce the so-called 
Smith normal form of a matrix with integer entries, which is given in the following 
theorem. In [56] one can find a proof of this theorem for matrices over a ring of poly
nomials in one variable. This result generalizes immediately to the case of matrices 
over the ring of integers. 

Theorem 4.4.1 (Smith normal form) Let A E 'll.nxn_ Then there are unimodular 
matrices U, V E 'll.nxn, i.e., det(U) = det(V) = 1, and a diagonal matrix D E 
'll.nxn, such that 

A= UDV. (4.13) 

This factorization is not unique. 

In the sequel we use the notation L = I det(D)I. 

It can be proved by some straightforward computations that the problem posed in the 
beginning of this section is equivalent with the following one. Give necessary and 
sufficient conditions on sequences {31, l = l, ... , N - 1, in l2 ('ll." ), and determine N 
such that 



(ii) {RDk /31 I l = 0, ... , N - l, k E a':n} is a Riesz basis forl 2 (a':n), 

with D E a1:nxn a diagonal matrix involved in the Smith normal form of D. 
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Let now d; = D(i, i), i = 1, ... ,-n. Define wd; = e2r.i/d;, i = l, ... , n, and Kn the 
n-fold segment of all z E T11 such that 

arg(z;) E [0,21r/d;), i = l, ... ,n. 

We observe, that {zk I k E a':n~ is an orthonormal basis for L2 (T11 ) and 

{ v'L ztl d1 ... z~n dn I k E a1:n} 

is an orthonormal basis for L 2 (K11 ). So 

{ v'L zt1d1 ... z~ndne; Ii= 1, ... , N, k E a':n} 

is an orthonormal basis for L 2(K11 ,([}N), the Hilbert space consisting of all ([}N_ 

valued Euclidean square integrable functions on K 11 • In dealing with the above stated 
problem, we present some auxiliary results. 

The proof of the following lemma is based on the fact, that the (n x n) Fourier matrix 
F11 with entries 

F11 (i,j) = 1/yn, wij, i,j = 0, ... ,n -1, 

is unitary. Furthermore, we use the notation 

ldil-1 ldnl-1 

P9,1,(z)= L ··· L fj(w~:z1, ... ,wtzn)h(w~:z1,---,w~:zn)- (4.14) 
j,=0 Jn=O 

Lemma 4.4.2 Let g, h E l2 (a':11 ). Then 

J { (g, RDkh)?Z.n 
l/L P9,1,(z)zm dµn(z) = O 

r 
Proof 

ifm = Dk, k E a':11 , 

if m-:/- Dk, k E a':n_ 

We consider the following computation 

l/L J Y 1,(z)zmdµn(z) g, 

r 
ld1\-l ldnl-1 

l/L L · · · L wd/'m' · · ·wi!nmn J fj(z)h(z)z-mµn(z) 
j,=0 ]n=O Tn 

if m = Dk, k E a':n, 

if m -:/- Dk, k E a':n. 
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The proof is completed by observing that the n-dimensional discrete Fourier trans
form of R 1 h is given by z-1 h. □ 

From this lemma we deduce the following result. 

Lemma 4.4.3 Let g, h E l2 ("ll.n). Thenforall k E "ll.n 

J Pg,h(z)zt 1 'li · · • Z~nd"dµn(z) = (g, RDkh)ll.n, 

Kn 

Proof 
Obviously, P9 ,ii ( z) zt 1 d, · • • z~n dn remains unchanged if Zi is replaced by w ~; Zi, 

'i = 1, ... ,n, form E "ll.n and so 

with 
K:;' = [rn1Wd1 , (rn1 + l)wdi) X ... X [rnnWdn, (rnn + l)wdJ-

Consequently the result follows from Lemma 4.4.2. □ 

By Lemma 4.4.3, Condition (i) can be written as 

J y , , (z) zk1d1 ... zkndn dµ (z) = 0. 
,(31 ,f3o 1 n n 

Kn 

Since this relation must hold for every k E "ll.n and since 

is an orthonormal basis for L 2 (Kn), we get that 

P,(3' (3, = 0 a.e. on Kn, l = l, ... , N - l. (4.15) 
'Y l, 0 

So, sequences f31 that should satisfy Condition (i) are given in terms of their Fourier 
transforms that satisfy ( 4.15). Note, that for finite sequences (30 and I Condition ( 4.15) 
only deals with polynomial function on the n-dimensional unit sphere. 

Condition (ii) can also be reformulated in terms of function on Tn, using (4.12). 
Therefore we introduce 

Since B N is generated by N vectors f31 and the unitary operators R 1, ... , Rn, we may 
use result (4.12). This yields that EN is a Riesz system if and only if 

rnJN '.S I'(z) '.SM IN a.e. z ET", 
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with 

f(z)k,,n = L (f3m, RD! fJk)znz- 1, k, m = 0, ... , N - l. 
lE"lL.n 
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(4.16) 

This result can also be put in terms of the Fourier transforms of /31 . Therefore we 
derive the relation 

~ d d 
r(z1 1 ' ..• 'Znn km = 1/ L P13m,fJk (z), k, m = 0, ... , N - 1, (4.17) 

using Lemma 4.4.3, and the fact that 

{ ~ zk1d1 ... zkndn I k E ?l.n} 

is an orthonormal basis for L 2 (Kn)-

~ ~ . ~ d 
Definer d(z) = r d(z1 , ... , Zn) = r(z1 1, ... , z~n ). Then we arrive at the following 
theorem by combining ( 4 .12) and ( 4 .17). 

Theorem 4.4.4 Let NE IN be fixed and {(30 , .•. , f3N-d be a subset ofl2 (7l.n). Let 
further D be an ( n x n) diagonal matrix with integer entries. Then the collection 

is a Riesz system if and only if the (N x N) matrix valued function z H J\(z), 
z E Kn, with entries 

fd(z)km=l/LPf3· f3, (z), k,m=0, ... ,N-1, 
' m, k 

admits real positive constants m and M, such that 

mJN Sf d(z) S MIN a.e. z E Kn. (4.18) 

So, Theorem 4.4.4 presents necessary and sufficient conditions on ~0 , ... , ~N-l, so 
that B N is a Riesz system. We proceed by searching for similar conditions on the 
Fourier transforms of ~o, ... , ~ N -l, such that B N is a Riesz basis for l2 ( ?l.n). As 
a starting point for deriving such conditions we present a corollary of the preceding 
theorem. 

Corollary 4.4.5 If B N is a Riesz system, then N S L. 

Proof 
Define the (L x N) matrix valued function z H M(z), z E Kn, with entries 

M-( ) _ L-1/2/JA ( (1r(r))(l) (1r(r))(n) ) z r,l - l Wd1 z1, ... ,Wdn Zn ' (4.19) 

l = 0, ... , N - 1, r = 0, ... , L - 1, where 1r is an arbitrary bijection from the 
collection {0, 1, ... , L - 1} onto 

{r E ?l.n IO Sri S ldil-1,i = 1, ... ,n}. 
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Since 
i\(z) = if*(z)M(z), z E Kn, 

f d is invertible a.e. if and only if M is injective a.e. If therefore f r1 satisfies ( 4.18), 
i.e., f d(z) is invertible for almost all z E Kr1, then N ::; L. □ 

For deriving conditions on So, ... , SN_ 1, such that B N l_s a Riesz basis for l2 ( '11.n) 
we consider the special case N = Land we assume that rd satisfies (4.18). Now the 

proof of Corollary 4.4.5 yields that f d is invertible a.e. if and only if M, as introduced 
in the above proof, is invertible a.e. So (4.18) is equivalent with M being invertible a.e. 
on Kn. FurthermJre, let £_ and M denote bounded linear operators on L 2 (Kn; CL) 
corresponding tor r1 and M, respectively, i.e., 

(Qry)(z) = fd(z)ry(z) and (Mry)(z) = M(z)ry(z) a.e. z E Kn, (4.20) 

for all ry E L2 (Kn; CL). Then g = M* M and M-1 = g-1 M*. Thus M is a 
boundedly invertible operator, since g is a boundedly invertible operator and 

These considerations are used to give conditions on So, ... , SN-l, such that EN is a 
Riesz basis for l 2 ( '11. n). 

Theorem 4.4.6 Let N E IN be fixed and D = diag(d1 , ... , dn) with di E '11.. Let 
further {,80 , .•. , ,8 N -d be a subset of l2 ('11.n ), such that the collection 

BN={RDk,81ll=O, ... ,N-l, kE'll.n} 

is a Riesz system. Then this collection is a Riesz basis if and only if N = L. 

Proof 
Take N = L and let BL be a Riesz system in l2 ('11.n). Besides, let M be defined as in 

(4.19) and let M be associated with M by (4.20). Then M(z) is invertible for almost 

all z E Kn and Mis invertible, since f d satisfies (4.18). Define El,k E L2 (Kn; CL) 
for l = 0, ... , L - l, and k E '11.n by 

Ez,k(z) = ~ zDkEt, z E Kn. 

Furthermore, introduce VD : l2 ('ll.n) --+ L 2 (Kn; CL) by 

( 
h, ( (1r(O))(l) (1r(O))(n) ) ) Wd1 Z1, ... ,wdn Zn 

h, ( (1r(L-l))(l) : (1r(L-l))(n) ) 
W d1 Z1' ... , W dn Zn 

where 1r is an arbitrary bijection from the set {O, 1, ... , L - l} onto the collection 

E = { r E '11.n I O ::; r i ::; I di I - 1, i = 1, ... , n} . 
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With this definition 

/ Pr,,1i(z)dµn(z) = llhll~n, 
Kn 

for all h E l2 (:ll:n), so that VD is an isometry. Define hz,k E l2by 

with l E E, k E 71..n. Then { h1 ,k I l E E, k E 71..n} is an orthonormal basis for 
l 2 (71..n). This yields VDh,r(l),k = sz,k and so the operator VD is unitary. Applying VD 
on RDk f31 now yields 

( 
(3, ( (,r(O))(l) (,r(O))(n) ) ) 

l Wd, Z1, ... ,wdn Zn 

-Dk . 

Z (3, (. (,r(L-1))(1) : (,r(L-l))(n) ) 
l W d1 Z1 ' ... 'W dn Zn 

v'L z-DkM(z)s1 = M(z)s1,-dz) = (Msz,-k)(z), 

for all l = 0, ... , L - 1. So RDk f31 = (VD)* Mst,-k· 

Since {st,k I l = 0, ... , L -1, k E 71..n} is an orthonormal basis for £ 2 (K,,,; f[}L) and 
(VD)* M is boundedly invertible, it follows that EN is a Riesz basis for l2 (71.. 11 ). 

For proving the converse, we assume EL to be a Riesz basis for l2 (71..n). Then M has 
~be invertible, since RDk f3z = V0Mst,k• It follows that the matrix valued function 

lvl has to be invertible a.e. on Kn, and thus N = L. □ 

From the preceding theorem we conclude that for satisfying Condition (ii) we have to 
search for sequences (31 , ... , f31 detAl-l, given (30 , such that (4.18) holds. 

Although we are not dealing with the concept of frames in l2 (71..n) in this section, 
similar results can now be given in rather straightforward way such that 

EN = {RDk f3t I l = 0, ... , N - 1, k E 71..n} 

is a frame. We can write 

RDk f3z = V0Msz,k = V0MUe1,k, 

with U: l2 ({0, ... ,N - 1} x 71..n) --+ L2(Kn; f[}N) the unitary operator given by 
Uez,k = S/,k· So SF = U* M*VD is the frame generator of EN if EN is a frame. 
Now Theorem 4.1.8 immediately yields the following theorem. 
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Theorem 4.4.7 Let N E IN be fixed and {,80 , ••• , ,BN-d be a subset of l2 (7ln). 
Then the collection 

{RDk ,81 I l = 0, ... 'N - l, k E zn} 

is a frame if and only if for the ( L x L) matrix valued function z 1-t M ( z) M* ( z ), 
z E Kn, with M defined as in (4.19) there exists real positive constants mp and Mp, 
such that 

(4.21) 

So, we presented necessary and sufficient conditions on /30 , ... , fJ N _ 1, so that B N is 
a frame in a similar way as in Theorem 4.4.4. Finally, we also present a corollary of 
Theorem 4.4.7, analogous to Corollary 4.4.5. 

Corollary 4.4.8 If B N is a frame, then N 2:: L. 

4.5 MRA and Riesz Bases in Hilbert Spaces 

In Section 4.2 we used the concept of MRA to construct Riesz bases of the form 

{Uf Uf 'I/J1 I l = 1, ... , N - l, j E ?l, k E zn} 

for the separable Hilbert space H. We showed that the vectors 'ljJ1 were uniquely 
determined by (4.9) and that their generating sequences q1 had to be determined such 
that 

• (T¢ * Ql, R,Akqo)zn = 0, \7'/E{l, ... ,N-1} \7'kE"ll.n, 

• {nAkql I l = 0, ... 'N - l, k E zn} is a Riesz basis for l2 (?ln), with Qo = p, 
the generating sequence of the MRA generator ¢. 

By taking 'Y = T<f> and ,81 = qi, l = 0, ... , N - l, in (4.15), Theorem 4.4.4 and 
Theorem 4.4.6, we arrive at the following theorem on the construction of Riesz bases 
in Hilbert spaces using MRA. 

Theorem 4.5.1 Given a sequence q0 E 12 (?ln). Then the following two problems are 
equivalent. 

Problem 1: Construct sequences qi, l = l, ... , I <let Al - 1, in l2(?ln) such that 

I.I (T¢ * Qt, nAkqo)zn = 0, v'tE{l, ... ,ldetAl-1} vkE"ll.n, 

1.2 {R,Akql I l = l, ... , I <let Al - 1, k E zn} is a Riesz basis for l2 (?ln). 

Problem 2: Construct qi, l = l, ... , I <let Al - 1, in L 2 (Tn), then-dimensional dis
crete Fourier transforms of Qt E l2(?ln), such that 
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2.1 Pf<t,<ii,<io(z) = 0 a.e. on Kn, l 1, ... , [ det A[ - 1, with P as given in 
Definition ( 4.14 ). 

2.2 The matrix-valued function z c-+ M(z), z E Kn, with entries 

(M( )) - [ d tA[-1/2 A ( (1r(T))(l) (,r(r-))(n) ) 
Z r,l - e qz Wd, Z1, ... ,wd,, Zn, 

l, r = 0, ... , [ det A[ - 1, where 1r is an arbitrary enumerationfrom 

{O, 1, ... , I det A[ - 1} 

onto 
{ m E "ll..n [ 0 ::; m; ::; [d; [ - 1, i = 1, ... , n} 

and with di = D(i, i) as in Theorem 4.4.1, is invertible for almost all z E Kn. 

Possible solutions to these problems are given in [37, 62] and [74]. 

To illustrate how to deal with Theorem 4.5.1 we consider an example of an MRA, 
which we already mentioned in Section 3.2.1, namely an MRA for L2 (JR) using Riesz 
systems. It will tum out that in this example, Problem 2 is not hard to solve. Moreover, 
for this example Conditions 2.1 and 2.2 will reduce to conditions, which are described 
thoroughly in the literature [12, 23, 62]. 

Example 4.5.2 This example deals with an MRA for L 2 (JR) as introduced in Sec
tion 3.2.1. However, here we take an MRA generator¢ E L 2 (JR), such that 

isaRieszsystem. So,accordingtoDefinition4.2.l wetakeH = L2 (JR),U1 = Dand 
U2,1 = T Obviously, Condition (iii) in Definition 4.2.1 holds for A = 2. As MRA 
generator we take ¢ = ¢m, the cardinal B-spline of order m 2". 1, which is defined by 

¢ _ { X[o,1], m = 1, 
m - ¢1 * c/Jm-1, m 2". 2. 

In Figure 4.2, ¢ 2 and ¢ 4 have been depicted. 

For cardinal B-splines we have the following properties 

1. supp ¢m = [O, m], 

2. L ¢m(X - k) = 1 VxEIR, 
kE"?L. 

3. ¢m(m/2 - x) = </Jm(m/2 + x) VxEIR 

4. ffk¢m I k E "ll..} is a Riesz system, 

(4.22) 



86 A Framework for Multiresolution Analysis in Hilbert Spaces 

0.9 0.6 

0.8 

0.5 

0.7 

0.6 0.4 

0.5 

0.3 

0.4 

0.3 0.2 

0.2 

0.1 

0.1 

0 0 
0 0.5 1.5 2 0 3 

(a) x-axis (b) x-axis 

Figure 4.2: Two cardinal B-splines: a) order 2, b) order 4. 

5. </>m E clos span {'Da Tk</>m I k E ?l} v'aE.IN\{O}· 

For a proof of these and other properties of cardinal B-splines we refer to [ 12, 88]. 

For solving Problem 2, i.e., to search for a sequence q1 whose Fourier transform sat
isfies Conditions 2.1 and 2.2, we have to determine p and f ¢. 

By Pm we denote the generating sequence of ¢m• To give an expression for Pm, we 
derive 

</>m ¢1 *</>m-1 = (LP1(k)'DTk</>1) * (LPm-1(l)'DT1</>m-1) 
kEZ IEZ 

= L P1(k)Pm-1(l) (1>Tk</>1 * 'DTk</>m-1) 
k,lEZ 

1/./2 L P1(k)Pm-1(l)'DTk+l(</>1 * </>m-i} 
k,lEZ 

1/./2 L (Pl * Pm-1)(k)'DTk</Jm, 
kEZ 

Recursively we get Pm(z) = 21/2-m(p1(z))m. For ¢1 we find in a straightforward 
way 
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which yields 

Pm(z) = 21/2-m(l + z-lr = 21/2-m f (7) z-k_ 
k=O 

So, the generating sequence Pm of <l>m is given by 

(k) = k ' - ' ... 'm, { 21/2-m (m) k _ 0 
Pm 0, otherwise. 

Using Property 3 of cardinal B-splines we derive 

Tcf>m (k) = J </>m(x)</>m(x - k) dx = J </>m(x)</>m(M + k - x) dx 
JR JR 

(</>m * </>m)(m + k) = </>2m(m + k). 

Its Fourier transform is given by 

m 1-m 
fq,m(z) = L </>2m(m + k)z-k = (2: _ l)!E2m-1(z), 

k=-m 

with E2m-l the Euler-Frobenius polynomial of order 2m - 1, see [12]. We observe 
that fc/>m (1) = 1, which follows from Property 2 of cardinal B-splines. Besides, as 
a property ofEuler-Frobenius polynomials we have E2m-i(z) -::/- 0, z ET, for all 
m E .BV\ { 0}. These two considerations yield that f cf>m satisfies ( 4.11 ). So, indeed 
{Tk</>m I k E ?l} isaRieszsystemforallm E .BV\{0}. 

According to Problem 2, we have to search for a qm E l2 (?l), such that 

• Tcf>m (z)qm(Z)Pm(z) + Tcf>m (-z)qm(-z)pm(-z) = 0 a.e. Z ET, 

• M(z) = ( fm(~)) }m(~)) ) is invertible for almost all z ET. 
Pm z qm z 

It can be verified that the first condition holds for 

, ( ) _ 2k+l, ( ) , ( ) qm Z - Z Tcf>m -z Pm -z , 

k E ?l. With this choice for IJm we compute 

I det(M(z))I 

We already observed that 

IPm(z)qm(-z) - Pm(-z)qm(z)I 

(f¢m (z)IPm(z)l2 + Tcf>m (-z)IPm(-z)l2) 

Tq,m(z)IPm(z)l2 +f¢m(-z)IPm(-z)l2 a.e. z ET. 



88 A Framework for Multiresolution Analysis in Hilbert Spaces 

for a certain positive constant mr. Furthermore, we derive 

k,l 

k,l 

with fas in (4.16). So, 

lfim(z)l2 + lfim(z)l2 ~ mp a.e. z ET, 

for a certain positive constant mp, Together these results yield 

Concluding, Qm and its corresponding wavelet function '¢m can be obtained from the 
coefficients of the polynomial 

A (-2z)l-m m 
Qm(z) = v'2 (1 + z) E2m-1(-z). 

2(2m - 1)! 



Chapter 5 

The FRFT and Affine 
Transformations in the Wigner 
Plane 

This chapter provides a classification of all unitary operators that act as affine transfor
mations in the multi-dimensional Wigner plane. Moreover, a representation formula 
is given that encloses all these operators. 

The problem of finding these operators is inspired by studying the fractional Fourier 
transform. This operator, which is introduced in the first section of this chapter, turns 
out to be acting as a rotation in the Wigner plane. Using a group theoretical approach 
we arrive at a classification of all linear transformations in the Wigner plane that cor
respond to unitary operators. This classification is used to come to a representation 
formula for the corresponding operators on L2 (JRn). This is done in the second sec
tion of this chapter. 

5.1 The Fractional Fourier Transform 

The fractional Fourier transform (FRFT) was introduced by Namias in [68] as a Fourier 
transform of fractional order. This was done starting from fractional powers of the 
eigenvalues of the Fourier transform and their corresponding eigenvalues. With this 
formalism he derived in a heuristic manner an integral representation of this operator. 
In [53, 61], McBride and Kerr provided a rigorous mathematical framework in which 
the formal work of Namias could be situated. We discuss this mathematical frame
work and Namias formal work in the first part of this section. 
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Recently, the FRFf turned out to be an interesting transformation for time-frequency 
signal processing and optical engineering. The growing interest for the FRFf is the 
consequence of a series of papers that deal with the relation of the FRFf to time
frequency representations of a signal, like the Wigner distribution, see e.g. [4, 67, 77, 
78]. This relation is discussed in the second part of this section. 

5.1.1 Definition and Properties 

We start with the definition of the FRFf for functions in L2 (JR). 

Definition 5.1.1 Take f E L2 (JR). Its fractional Fourier transform of order a E 

(-1r, 1r] is given by 

Fa[f](x) = Ca_ J f(u) ei((u2 +x2 )•(cota)/2- uxcsca) du, (5.l) 
J21r I smal 

JR 

forO < lal < 1r, with 

(5.2) 

Furthermore, for a = 0 and a = 1r the FRFT is defined by 

Fo[f](x) = J(x) and F1r[!](x) = J(-x). 

Fora r:/. (1r,1r] theFRFTisdefinedbyperiodicityFa+21r = Fa, 

Particularly, we have from this definition 

F1rj2 = F and Fn1r/2 = Fn 'vnE'lZ., 

with F the Fourier transform on L 2 (JR). 

The factor Ca in (5.2) is chosen to guarantee that Fa is continuous in a and that Fa 
is properly normalized. Indeed, it can be shown that 

lim IIF;d - Faf 112 = 0, 
/3-+a 

(5.3) 

for all f E L2 ( JR) and for this particular choice of Ca. 

This result is obtained by combining two properties of the FRFf. The first property of 
the FRFf is known as the index law, i.e., 

(5.4) 

for all a, fJ E JR and f E L2 (JR). A rigorous proof of this property for functions in 
the Schwartz space S(JR) is given in [61]. Consequently, this result can be extended 
to functions in L 2 (JR) since S(JR) is dense in L2 (JR). 
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The second property we need for proving the continuity of Fa is the continuity of the 
FRFf either in a = 0 or a = 1r. In [53], it is proven that 

lim ll:Faf - f 112 = 0, 
a➔O 

(5.5) 

for all f E L2 (JR). Result (5.3) can now be obtained in a straightforward way by 
combining (5.4) and (5.5). We observe, that (5.3) also holds for other choices of Ca, 
see e.g. [4]. 

Considering again (5.4) we have in particular 

It follows that the inverse of Fa is given by F-a, for all a E JR. 

Fort E JR, we introduce the unitary operatorC1 on L2 (JR) by 

Ct[f](x) = eitx2/2 f(x). (5.6) 

Obviously, Ct multiplies a given function f E L2 ( JR) with a quadratic chirp, i.e., 
a Fourier mode with a quadratic argument. Using this chirp multiplication and the 
dilationoperatorD as defined in (3.2), we can write Fa, a E (-7r,7r)\{0}, also as 

(5.7) 

The fact that all operators in the right-hand side of (5.7) are unitary operators on 
L2 (JR) and that ICal = 1 yields that Fa is a unitary operator on L2 (JR), for all 
a E JR. Note, that :F0 and F1r are also unitary, which follows immediately from 
Definition 5 .1.1. As a consequence we also have Parseval' s formula for the FRFT 

.If (x)g(x) dx = .I :Fa[f](x):Fa[g](xt d:r, (5.8) 

IR IR 

for all a E JR and f,g E L2 (JR). Furthermore, as a result we have Plancherel's 
formula for the FRFT 

.f if (x)l2 dx = .f i:Fa [f](x)l 2 dx, 
JR JR 

for all a E JR and f E L 2 (JR). 

From the preceding derivations and the definition of :F0 it follows that 

G.rr = { Fa I a E JR} 

(5.9) 

is a strongly continuous subgroup of unitary operators on L2 (JR). A cyclic subgroup 
of order 4 is given by the integer powers of the Fourier transform 

{:Fn In= 0, 1, 2, 3}. 
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Consequently, the discrete cyclic group with generating element Fis embedded in the 
continuous group G fr· 

A further relation with the classical Fourier transform on L2 (JR) can be observed by 
considering the formal derivation of the FRFr by Namias in [68]. His starting point 
was to consider the eigenvalues and eigenfunctions of the Fourier transform. 

It is known, see e.g. [29], that the eigenfunctions of the Fourier transform are given 
by the Hermite functions 

where Hk are the Hermite polynomials given by 

Hk(x) = (-l)kex2 (!) k e-x2_ 

The Hermite functions form an orthonormal basis for L2 (JR) and they satisfy 

Fhk = eikTC /2 hk. 

(5.10) 

(5.11) 

The first idea for the construction of the FRFr was to define an operator F ex, satisfying 

(5.12) 

for o: E JR. For o: = m1r /2, with m E 'll., we have F mTC ; 2 = Fm. Particularly, if 
m mod 4 = 0, then Fm = I. For a formal representation of Fa, with 0 < a < 1r /2, 
we follow Namias in [68]. 

CX) 

We write f E L 2(JR) as f = L (f, hk)2hk. Consequently, we have 
k=O 

CX) CX) 

= jJ(u) (~ eika Hk(u)Hk(x)e-u2/2-x2/2) 
L.J 2k k!y'Jr , C 

JR k=O 

du. 

The latter expression can be rewritten using Mehler's formula, see [64], 

(5.13) 
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We observe that the series converges in L2 with respect to 'U, for all x and z, see [29]. 
Using Mehler's formula in the previous result yields 

1 

e . f(u)ei((u 2 +x-)·(cota)/2-uxcsca)du. 
i1f/4-ia/2 J 0 

J21r sm a 
JR 

For a rigorous framework in which this formal work of Namias can be studied we 
refer to [53, 61]. 

5.1.2 The FRFT and the Wigner Plane 

For time-frequency analysis it is interesting to consider the relation of the FRFI with 
time-frequency operators like the Wigner distribution. Therefore, we compute the 
Wigner distribution of the FRFT. This will give us insight in how the FRFT acts in 
phase space. 

For this computation we need the following lemma. 

Lemma 5.1.2 Let Ti, and Mw, b, w E JR, denote the shift operator and frequency 
modulation on L2 (JR) as given in (2.12) and (2.13) respectively. Furthermore, let 
:Fa, a E JR, the fractional Fourier transform on L2 (JR) as given in Definition 5.1.1. 
Then 

ib2 (sin 2a)/4 M rr ,r 
e -bsina lbcosaFa, 

-iw 2 (sin 2a)/4 M rr ,r e wcosa lwsina.ra-

Proof 

(5.14) 

(5.15) 

For a = 0 both results are trivial, since :F0 = I. For a = 1T both results follow 
directly from Definition 5.1.1. Furthermore, equation (5.15) follows from (5.14) by 
observing that :F Mw = Tw:F, with :F the Fourier transform. Indeed, if (5.14) holds, 
this observation yields 

:FaMw 

:Fa:F*Tw:F = :Fa-1C/2'fw:F1Cj2 
iw 2 (sin(2a-7r))/4 M rr ,r ,r 

e -wsin(a-7r/2) lwcos(a-7r/2)Fa-7r/2F7r/2 

-iw 2 (sin 2a)/4 M rr ,r 
e wcosa lwsina.ro:, 

using the index law for the FRFT. Consequently, the proof is established by showing 
that (5.14) holds for O < ial < 1T. We derive for J E L2(JR), b E JR and O < lal < 1T 

:Fa Ti,[J](x) 
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Cc, J f (u _ b) ei ((u2 +x 2 )-(cot a)/2 - -ux csc a) du 
J21r I sin al 

JR 

Cc, J f ( U) ei ((-u2 +x2 +b2 +2-ub)·(cot a)/2 - (-u+b)x csc a) du 
J21r I sin al 

JR 

Cc, ei(b2 -(cos a)/2-bx)(l-cos2 a) csc o- X 

J21r I sin al J J( U) ei ((-,i2+(x-b cosc,) 2 )(cot a)/2 - (-u(x-b corn)) csc a) du 

JR 

ei(b2 (sin2a)/4-bxsina) Fa[f](x _ bcosa) 

ib2 (sin2a)/4 M --,-- ,,- [J]( ) e -bsina lbcosc,.rc, X • 

□ 

Using this lemma, we can compute the action of the FRFf in phase space by means 
of the Wigner distribution. For this we write 

WV[f](x, w) ]_ J J(x + t/2)f(x - t/2)e-itw dt 
21r 

JR 

~ J f(t + x)f(x - t)e-Zitw dt 

JR 

(M-w T-xf, Mw TxF1rf)/1r. 

Using Lemma 5.1.2 we compute 

F-aMw Tx 
i(w 2 -x2 )•(sin2a)/4 M ,-r M ,-r ,r 

e w cos a I -w sin a x sin a Ix cos a.r -a 

·i(w 2 -x 2 )-(sin 2a)/4 ixw sin 2 c,M rr ,r e e X sin a+w COS a IX COS Q:-W sin aJ -a· 

Combining these two results yields 

WV[Faf](x,w) 

(M-w T-xFaf, Mw TxF1rFaf)/1r 

(F-c,M-w T-xFaf, F-aMw TxF1rFo-f)/1r 

(M-x sin c,-w cos c, T-x cos a+w sin af, 

Mx sin a+w cos c, Tx cos c,-w sin o-F1r f) /1r 

WV[J](x cos a - w sin a, x sin a+ w cos a) 

WV[f](Ra(x, w)), 

where Ra ( x, w) represents the matrix vector product with matrix 

- sin a ) . 
cos a 

(5.16) 

(5.17) 

(5.18) 
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We conclude from this derivation that the FRFf of order o: acts like a rotation by o: 
in the Wigner plane. In particular, we have a rotation by 1r /2 in the Wigner plane for 
:F1r ; 2 • We observe, that this result coincides with the action of the Fourier transform 
in the Wigner plane as given in (2.32). · 

The action of the FRFf in the Wigner plane leads us in a natural way to the question 
which operators on L2 (JR) act like a linear transformation in the Wigner plane. The 
sequel of this chapter is devoted to this question. However, instead of operators on 
L2 (1R) we consider operators acting on L 2 (1Rn). It will tum out that finding a so
lution for the multi-dimensional problem does not follow straightforwardly from the 
solution for the one-dimensional case. 

Since we want to give an answer to our problem for operators on L 2 (1Rn), we intro
duce the fractional Fourier transform on L2 (]Rn) by 

(5.19) 

for o:1 , ... , O:n E JR. Computing the multi-dimensional Wigner distribution of this 
FRFT yields 

WV[:Fa,, ... ,anf](x,w) = WV[f](Ra,,···,a,.(x,w)), 

with 

cos 0:1 0 - sin 0:1 

Ra1 ,···,an == 
0 COS O'.n 0 

sin 0:1 0 cos 0:1 

0 sino:n 0 

This result follows in a straightforward way from (5.17). 

0 

- sino:n 
0 

COS O'.n 

5.2 Affine Transformations in the Wigner Plane 

(5.20) 

(5.21) 

Inspired by the fractional Fourier transform and its action in the Wigner plane, we 
search for linear operators Von L2 (1Rn) such that there exist a matrix A E m2nx 2n 

and a vector b E JR211 for which 

WV[V f](x, w) = WV[f](A(x, w) + b), (5.22) 

holds for all f E L 2 (JR11 ). We observe, that De Bruijn already considered this prob
lem in [9] using a new class of generalized functions. Here we will follow an ap
proach based on group theory, see [86, 87, 100]. These results will be placed within 
the concept of the FRFf in order to embed this transform in a larger class of unitary 
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transformations. Also new results will be added. 

We restrict ourselves to matrices A for which det A = ±1. For these matrices we 
have ff WV[f](A[x,w] + b) dwdx = f f WV[.f](x,w) dwdx. 

JRn JRn 

We shall refer to such affine transformations in the Wigner plane as energy preserving 
affine transformations. For these transformations the corresponding operators V on 
L 2 ( JRn) satisfy 

(VJ, V.f) ff WV[Vf](x,w)dwdx 

f f WV[.f](A(x, w) + b) dw dx 

j j WV[.f](x,w)dwdx = (f,.f), 
m,n m.n 

for f E L1(1Rn) n L 2 (1Rn) or j E L 1 (1Rn) n L 2 (1Rn) which follows from (2.41). 
We observe that L 1 ( mn) n L 2 ( mn) is a dense subspace of L 2 ( mn). Concluding, 
an operator on L 2 ( mn) that yields an energy preserving affine transformation in the 
Wigner plane has to be an isometry on L2 (1Rn). On the other hand, Equation (5.22) 
follows directly from applying (2.41) on both sides of the equation (V f, V .f) = (f, .f), 
for f E L 1 (1Rn) n L 2 (1Rn) or j E L 1 (1Rn) n L 2 (JRn). 

Before dealing with a classification of all unitary operators that satisfy (5.22), we 
present some well-known operators for which (5.22) holds. 

Multiplication 

We start our set of unitary operators on L 2 ( mn) with a trivial one, namely multipli
cation by a constant C with ICI = 1. Result (2.50) already showed that WV[.f] = 
WV[C f], for all IC I = 1. Consequently, this multiplication operator satisfies (5.22) 
with A= hn, the (2n x 2n) identity matrix, and b = 0. 

Complex conjugation 

Besides linear operators there also exists a non-linear operator for which (5.22) holds, 
namely the operator f c-+ f. For the one-dimensional case we have already seen in 
(2.30) that 

WV[J](x,w) = WV[.f](x, -w). 

For f E L2 ( JRn) this result also holds. This follows from a straightforward general
ization of (2.30). We conclude, that taking the complex conjugate also satisfies (5.22) 
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with 

O ) and b = 0. 
-In 

97 

We observe that we have det A = ( -1) n for the complex conjugation. Later in this 
section it will tum out that a necessary condition on a linear operator V, such that 
(5.22) holds, is given by det A = l. 

Space and frequency shift 

For x0 , w0 E mn we introduce the shift operator and the frequency shift operator on 
L2(1Rn) by 

Tx 0 [J](x) = f(x -xo) and Mw0 [J](x) = ei(wo,xlj(x) 

respectively, with f E L2 ( mn). Remark, that these operators coincide with the shift 
and frequency shift operators (2.12) and (2.13) in the one-dimensional case. 

We combine the introduced unitary operators Tx 0 and Mw0 into one unitary operator 
on L2 ( IRn), given by 

N(x 0 ,w0 )[f](x) = Tx 0 Mw0 [J](x) = ei(wo,x) f(x - xo). (5.23) 

Computing the Wigner transform of this operator yields 

WV[N(xo,wo)f](x,w) = WV[f](x - Xo,W -wo), 

which is a result we have seen before in discussing the one-dimensional Wigner distri
bution. From this result we conclude, that (5.22) holds for N(xo,wa), namely by taking 
A= hn and b = -(xo, wo)-

We observe that all possible translations b E mn in (5.22) can be obtained from Nb. 
This means, that if we are looking for a unitary operator Von L 2 (JRn) such that (5.22) 
holds, then we only have to find a linear operator U on L 2 ( mn) such that 

WV[Uf](x, w) = WV[f](A(x, w)), (5.24) 

for all f E mn. The operator V we are looking for is then given by V = NbU. 
Therefore, we will restrict ourselves from now on to operators U that satisfy (5.24) 
with det A= ±l. 

The Fourier transform 

In Section 2.3 we already derived for the Fourier transform :F on L2 ( JR) 

WV[:Ff](x,w) = WV[J](-w,x). (5.25) 

For f E L 2 (JRn) and then-dimensional Fourier transform :F this relation remains the 
same, which follows straightforwardly from a generalization of Relation (2.31) for 
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the multi-dimensional Wigner distribution. Consequently, the Fourier transform on 
L 2 (]Rn) satisfies ( 5 .24) with A = JJ. Here Jn denotes the ( 2n x 2n) matrix given 
by 

J ( 0 In) 
n - -In O . (5.26) 

In the sequel of this section this matrix will play an important role in classifying all 
unitary operators U that satisfy ( 5 .24). 

The dilation operator 

For BE mnxn, with <let B -1- 0, the dilation operator DB on L2 (1Rn) is defined by 

1 
DB[f](x) = JI <let Bl J(B-Ix), (5.27) 

with inverse 
D13 1 [f](x) = JI detBIJ(Bx). 

We use the definition of the Wigner distribution to derive the action of DB in the 
Wigner plane. We compute 

WV[DBJ](x,w) 

1 / J(B- 1 (x + T/2))J(B- 1 (x - T/2))e-i(T,w) dT 
(27r)nl <let Bl 

JRn 

(2!)n J f(B- 1x+T/2)f(B- 1 .T-T/2)e-i(T,Brw)dT 
JRn 

(5.28) 

Concluding, also DB corresponds to a linear transformation in the Wigner plane. For 
DB Relation (5.24) holds with 

Multiplication with a chirp 

B-1 

0 

The last example of a unitary operator that satisfies (5.24) is the operator that multi
plies a function in L2 (]Rn) with a quadratic chirp. This operator is given by 

Cs[f](x) = ei(Sx,x)/2 f(x), (5.29) 

with S E mnxn symmetric. Remark, that we have seen this operator already for the 
one-dimensional case in (5.6), which coincides with (5.29) for n = l. Obviously its 
inverse is given by 
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We use (2.51) to derive the action of Cs in the Wigner plane 

WV[Csf](x,w) = (21r)-2n / / ((C5µ(p,q,O)Cs)f,f)2e-i(v,x)e-i(q,wl dpdq. 

JR,n JR,n 

In a direct way we get 

which yields 

(C5µ(p, q, O)Cs)[f](x) 
e-i(Sx,x)/2ei(p,x)ei(p,q)/2ei(S(x+q),x+q)/2 f(x + q) 

ei(p+Sq,x)ei(v+S(q,q))/2 f(x + q) 

µ(p + Sq, q, O)[f](x), 

WV[Csf](x,w) 

(21r)-2n / / (µ(p + Sq, q, O)f, f)2e-i(p,x)e-i(q,w) dpdq 

(21r)-2n / / (µ(p, q, O)f, f)2e-i((p,q),A(x,w)) dpdq 

WV[f](A(x, w)), (5.30) 

with A= ( ~'s i ) . Consequently, also Cs satisfies (5.24) with A as given be

fore. 

5.2.1 A Group Theoretical Approach 

In the last example of the previous subsection we have already seen that the relation 
between a unitary operator on L 2 ( mn) and its affine action in the Wigner plane can 
be given by using (2.51). This relation can also be used to translate our problem in 
terms of group theory. This can be done in the following way. 

Given a unitary operator Von L2 (1Rn), we define a unitary representation p of the 
Heisenberg group Hn by p(g) = V* µ (g) V, for all g E Hn and µ the Schrodinger 
representation. Then by (2.51) we have for such p and V 

WV [V fl( X' w) 

(21r)-2n / / ((V* µ(p, q, O)V)f, J)2e-i(p,x)e-i(q,w) dpdq. 

(21r)-2n / / (p(p, q, O)f, f)2e-i(p,x)e-i(q,w) dpdq. 

JR,n JR,n 
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Consequently, if there exists a linear transformation A such that µ(g, 0) = p(AT g, 0) 
for all g = (p, q) E H;,, with 

H~ = {g E 1R2n [ VtEJR(g, t) E Hn}, 

then 

WV[Vf](x,w) 

(21r)-2n I I (µ(A-T(p,q),O)f,f)2e-i(p,x)e-i(q,w) dpdq. 

I detA[ -WV[f](A(x,w)), 

using the notation A-T = ( A- 1 ) T. 

(5.31) 

This derivation shows that the problem we are considering is equivalent to problem of 
finding operators V E U(L 2 (1Rn)) for which there exist matrices A E mnxn such 
that 

(5.32) 

for all g E H~ and t E JR. 

Besides the Lie groups that have been discussed in Example 2.4.2 we will use another 
Lie group for solving this problem, namely the symplectic group Sp(n). This group 
is defined by 

(5.33) 

with Jn as given in (5.26). Note that by definition MT E Sp(n) and <let M = ±l 
for any M E Sp(n). Moreover, it can be shown that Sp(n) is connected, see [29]. 
This yields that <let M = l if M E Sp(n). Furthermore, we observe, that Sp(n) C 
SL(2n), but Sp(l) = SL(2). It will tum out later in this section, that this property of 
the symplectic group causes the fact that solutions for the multi-dimensional problem 
do not follow straightforwardly from the solution for the one-dimensional case. 

To solve our problem we start with the introduction of G, the subgroup of U(L 2 (1Rn)) 
given by 

Obviously, G is a semi-group. Later we will show that every g E G has an inverse 
element in G, which yields that G is a group. This group can be equipped with the 
strong operator topology of U(L2 (1Rn)). Furthermore, it is clear from (2.44) that g' 
in (5.34) is uniquely determined. So a mapping v(V) : JR2n --+ JR2n can be defined, 
which depends on V E G. This v(V) is given by v(V)(p, q) = (p', q'), with p,p', q 
and q' as in (5.34). Also v(V) is a homomorphism for all V E G. This is shown in the 
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following way. 

For Pl, P2, q1, q2 E mn we have 

V*µ(p1, q1, 0) µ(p2, q2, 0)V 

V* µ(p1 + P2, q1 + q2, (q1,P2)/2 - (P1, q2)/2)V 

µ(11(V) (p1 + P2, q1 + qz), ( Jn (p1, q1 ), (pz, qz)) /2). 

On the other hand we also have 

V* µ(p1, q1, 0) µ(p2, q2, 0)V 

µ(11(V) (p1, q1 ), 0) µ(11(V) (P2, qz), 0) 

= µ(11(V) (p1, qi) + 11(V) (pz, qz), (y1, x2) /2 - (x1, Y2) /2), 

101 

with (x1,Y1) = 11(V)(p1,q1) and (x2,y2) = 11(V)(p2,q2 ). Taking these results to
gether yields 

µ(11(V) (p1 + P2, q1 + q2), ( Jn (p1, q1), (pz, qz)) /2) 

= µ(11(V) (P1, q1) + 11(V)(p2, q2), (y1, x2) /2 - (x1, Y2) /2). (5.35) 

A necessary condition such that (5.35) holds for all p1 , p2 , q1 and q2 is given by the 
additivity of 11(V) for all V E G. Linearity of 11(V) can also be proved if II is a 
continuous mapping, which is the case, as we shall see. Consequently, 11(V) : m2 n ➔ 
m2n is a homomorphism, that satisfies 

V*µ(p,q,t)V = µ(11(V)(p,q),t). (5.36) 

Using this relation we can show, that 11(V) is also injective. To do this, we assume 
11(V)g = 0, or equivalently µ(g, t)V = µ(0, t). Then 

µ(g, t) = Vµ(0, t)V* = µ(0, t), 

which yields g = 0. 

Furthermore, 11 satisfies 

µ(11(CV)(p, q), t) (CV*)µ(p,q,t)(CV) = µ(11(V)(p,q),t) 

and 

µ(11(V1V2)(p,q),t) = VI(Vtµ(p,q,t)V1)V2 =Vlµ(11(V1)(p,q),t)V2 

= µ(11(V2)11(V1)(p, q), t), 

for all V1, V2 E U ( £ 2 ( mn)) and I Cl = 1. In the following lemma we deal with some 
other properties of the mapping 11. 
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Lemma 5.2.1 Let G be the subgroup of U ( L2 (]Rn)) as defined in ( 5.34) and let v 
be the mapping as defined in (5.36). Then v is a continuous mapping from G into 
Sp(n) in the subspace topology ofG C U(L2(1R")). The kernel of vis given by 

Kerv = {GIi ICI = 1}. 

Proof 
Since p' and q' are uniquely determined in (5.34) it follows that v(V) is a non-singular 
mapping on JR2n, or equivalently v(V) E GL(2n) for all V E G. To show that 
v(V) E Sp(n), we take T = v(V) andp1,p2 , q1, q2 E !Rn. Then by (5.35) we get for 
a= 1 and /J = 1 

µ(T(p1 + P2, q1 + q2), ( J,, (p1, qi), (pz, qz)) /2) 

µ(T(p1 + P2, q1 + qz), (Jn(x1, Y1), (x2, Y2))/2) 

µ(T(p1 + P2, q1 + qz), (TT JnT(p1, q1 ), (pz, qz))/2). 

This result must hold for all p1 ,p2 , q1 , q2 E JR". This implies that TT JnTJ,;, = I, 
which is equivalent with the condition in (5.33). 

To compute the kernel of v we take V such that v(V) = I. This yields VµV* = JL. 
Since fl is irreducible, we get from this equation V = CI, with ICI = 1. 

To complete this proof we show the continuity of the mapping. Let V1, V2 E G and 
W = V2 - V1. Then for all p, q E !Rn 

µ((v(V2) -v(V1))(p,q),t) 

µ(v(V2) (p, q), 0) µ(v(V1) ( -p, -q), 0) 

V;µ(p, q, 0)(W + V1)W µ(-p, -q, 0)V1 

L - v;w + v; µ(p, q, 0)WVt µ(-p, -q, 0)V1, 

with t = -(v(V1 )T Jnv(V2)(p, q), (p, q)). Consequently, for all E > 0 there exists an 
t5 > 0 such that 

IIV2 - V1ll2 < t5 ===} llµ((v(V2) - v(Vi))(p,q), t) - µ(0,0,0)112 < E, 'tfp,qEJRn. 

It can be shown, see e.g. [100], that if we have llµ(p, q, t) - µ(0, 0, 0)11 2 ➔ 0 then 
also necessarily (p, q, t) ➔ (0, 0, 0). Since the latter result must hold for all p, q E 

!Rn, we get llv(V2) - v(V1)ll 2 ➔ 0. This condition is not only necessary to obtain 
llµ(x, y, t) - µ(0, 0, 0)112 ➔ 0. It is also sufficient, since 

t--+ -(v(V1f Jnv(V1)(p, q), (p, q)) = -(Jn(P, q), (p, q)) = 0, 

□ 

For solving our original problem, namely to find unitary operators on L2 (!Rn) that 
act like affine transformations in the Wigner plane, we combine (5.31), (5.32) and 
Lemma 5 .2.1. This results into the following theorem. 
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Theorem.5.2.2 Let V be a unitary operator on L2 (1Rn) and A a linear transforma
tion on IR2n. Then 

WV[Vf](x,w) = WV[f](A(x,w)). 

if and only if 

(i) VEG, with Gas defined in (5.34), 

(ii) A E Sp(n), 

(5.37) 

(iii) A = v(V)-T, with v the continuous mapping from G into Sp(n) as defined in 
(5.36). 

Theorem 5.2.2 tells us under which conditions unitary operators on L2 (1Rn) act like 
affine transformations in the Wigner plane, namely if they belong to G. However, 
Theorem 5.2.2 does not tell us explicitly which unitary operators satisfy (5.37), e.g. 
by means of a representation formula for such operators. In the following examples 
we revisit three operators, that have been considered in the beginning of this section. 
We show that these three operators are elements of G and we compute v(V). These 
three operators will give us some insight in the type of operators, that G consists of. In 
Section 5.3 we will present a representation formula that gives us an explicit formula 
for all operators in G. 

Example 5.2.3 The first unitary operator we consider is the Fourier transform on 
L2 (1Rn). We derive 

(:F* µ(p, q, t):F)[J](x) I }(w + q)ei((p,w)+(x,w)+(p,q)/2+t) dw 

f j(w)ei((p,w)+(x,w)-(p,q)/2-(q,x)+t) dw 

JR,n 

ei((-q,x)+(-q,p)/2+t) I }(w)ei(x+p,w) dw 

JR,n 

= µ(-q,p, t)[J](x), 

for all f E L 2 ( IRn). Consequently, :F E G and 

v(:F) = f;,'. (5.38) 

According to Theorem 5.2.2 the symplectic transformation in the Wigner plane corre
sponding to the Fourier transform is given by 

which corresponds with (5.25). 
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Example 5.2.4 The second unitary operator we consider is the dilation operator VB 
onL2 (JR}'), withB E mnxn anddetB -f. 0. We derive 

ei(p,Bx)ei(t+(p,q)/2) f(x + B-Iq) 

ei(Brp,x)ei(t+(Brp,B- 1 q)/2) f(x + B-Iq) 

µ(BT p, B- 1q, t)[f](x). 

this shows that also V 8 E G for BE GL(n). Moreover, we have 

(5.39) 

Now, Theorem 5.2.2 states that the action of the dilation operator in the Wigner plane 
is given by 

We observe that this result corresponds to the linear transformation that we derived in 
(5.28). 

Example 5.2.5 The last unitary operator we consider here is the operator Cs with 
S E mnxn symmetric, as defined in (5.29). We have already seen 

(C8µ(p, q, t)Cs)[f](x) = µ(p + Sq, q, t)[J](x), 

fort = 0. A straightforward computation shows that this result also holds fort -f. 0. 
This result yields that Cs E G for S E mnxn symmetric. Furthermore, we have 

(5.40) 

Theorem 5.2.2 can also be applied to this operator. This yields 

-T I S I 0 
( )

-T ( ) 
A= v(Cs) = 0 I = -S I ' 

which is the same result we derived in (5.30). 

We observe that the fractional Fourier transform on L 2 (JRn) is a combination of the 
three unitary operators discussed in the previous examples. We have for 0 < la;! < 1r, 

i = 1, ... ,n, 

(5.41) 

with 

S(g_) = diag(cota1, ... ,cot an) and B(g_) = diag(sina1, ... ,sin an)-
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Starting from (5.41) a limit process determines the FRFT with ai = 0 or ai = 1r, for 
some , for some i = 1, ... , N. 

The following theorem classifies all possible elements of Sp( n). A proof of this result 
can be found in [29, 100]. 

Theorem 5.2.6 (Bruhat Decomposition) Let G be the group as defined in ( 5.34) and 
let v be the anti-homomorphism from G into Sp(n) as defined in (5.36). Then vis 
surjective. Moreover, let Jn, v(DB) and v(Cs) be the real valued (n x n) matrices as 
given in (5.26), (5.39) and (5.40) and let 

and 

G2 = {v(DB) [BE IE{"xn, <let B-:/= O}, 

then Sp(n) is generated by G1 U G2 U {Jn}-

This result is a corollary of the generalized Bruhat decomposition with respect to a 
suitable maximal parabolic subgroup [103]. 

The next corollary combines Theorem 5.2.2 and Theorem 5.2.6. It characterizes all 
unitary operators on L2 ( mn) that correspond to linear transformations in the Wigner 
plane. 

Corollary 5.2.7 Let J, g E L 2 (JRn ). Then 

WV[g](x,w) = WV[J](T(x,w)), 

for some TE Sp(n) if and only if 

with [Cl = 1 and ui = Cs, ui = DB or ui = :F, with S E mnxn symmetric and 
BE mnxn non-singular,fori = 1, ... , N, and NE IN. 

We omit the proof of this corollary since it follows immediately from Theorem 5.2.2 
and Theorem 5.2.6 by observing that v(:F)-T = v(:F), v(D8 )-T = v(D8 -T) and 
v(Cs)-T = J';;, v(Cs)Jn = v(:FCs:F*). 

The classification presented in Corollary 5.2.7 also holds for the mixed Wigner distri
bution. For a unitary operator Von L2 (1Rn) that corresponds to a linear transforma
tion A in the Wigner plane we also have 

WV[Vf, Vg](x,w) = WV[J,g](A(x,w)), (5.42) 



106 The FRFT and Affine Transformations in the Wigner Plane 

with A E Sp( n). This relation holds by polarization, i.e., 

WV[Vf, Vg](x,w) 

(WV[Vf](x,w) + WV[Vg](x,w) - WV[V(f + g)](x,w)) /2 
(WV[f](A(x,w)) + WV[g](A(x,w)) - WV[!+ g](A(x,w))) /2 
WV[!, g](A(x, w)), 

for real-valued f,g E L 2 (1Eln). For complex-valued functions we have to deal with 
the real and complex part separately. 

In Section 5.3 this relation is used to come to a representation formula for the unitary 
operators as discussed in Corollary 5.2.7. 

5.2.2 The FRFT Generalized 

As we have seen in (5.41) the fractional Fourier transform on L 2 ( mn) can be decom
posed into four unitary operators, namely a chirp multiplication, the Fourier transform, 
a dilation and again a chirp multiplication. Both the chirp multiplications and the di
lation depend on a set of parameters o:1 , ... , an, that determine the FRFT. Therefore, 
a natural generalization of the FRFT is given by 

(5.43) 

for some ICI = 1, r, Li E mnxn, both symmetric and with Li non-singular. We ob
serve, that Li is not required to be symmetric in (5.27). Here we require the symmetry 
of Li to obtain a symmetrical representation formula for the generalized FRFT. 

We observe, that (5.43) generalizes the multi-dimensional FRFT, which was intro
duced in Section 5.1.2. Indeed, by taking 

r = diag( cot o:1 , ... , cot an) and Li = diag(sin o:1 , ... , sin an) 

the generalized FRFT with the definition of the multi-dimensional FRFT. 

As a consequence of Corollary 5.2.7, we have for all operators Fr,1:,. 

WV[Fr,1:,.f](x,w) = WV[f](A(x,w)), 

(5.44) 

for some A E Sp(n). Using (5.38), (5.39) and (5.40) we compute straightforwardly 

-.!.l ) 
rL.i . (5.45) 

Taking rand Li as in (5.44) we arrive at the matrix A as given in (5.21). 

A special property of the FRFT is that for its corresponding transformation in the 
Wigner plane we have A E Sp(n) n S0(2n), the orthonormal symplectic group . 
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One may ask whether the generalized FRFT is also related to an orthogonal transfor
mation in the Wigner plane. The answer to this question is given in the following 
lemma. 

Lemma 5.2.8 Let Fr,t::. be the generalized FRFT as defined in (5.43), for certain 
symmetric real valued (n x n) matrices r and~- Then A as given by (5.45) is 
orthogonal if and only if 

(i) ~ - 2 - f 2 = I, 

(ii) r~-l is symmetric. 

Proof 
We compute 

X 
yr 

with 

x r~r - r~r2 ~r + ~ -2 - ~-1r~r - r~r~ -1, 
Y ~-1r~ - r~2 - r~r2~, 
z ~+~r2~. 

For orthonormal A we should have X = Z = I and Y = 0. The condition Z = I 
yields~ -l Z ~ -I = ~ - 2 , which equals (i). Obviously, Condition (i) is also sufficient 
to guarantee Z = I. Substituting (i) into the matrix Y yields 

Y = o <=} r~ -1 = ~ -1r <=} r~ -1 = (r~ -1)r. 

After substituting Condition (i) and (ii) in the matrix X we get X = I. So for the 
equation X = I no further conditions are required. □ 

We observe that Conditions (i) and (ii) in Lemma 5.2.8 are equivalent with 

It follows from this relation, that we have n 2 /2 + n degrees of freedom for choos
ing symmetric matrices r and ~. such that the matrix A corresponding to Fr ,t::. is 
orthogonal. Therefore, for higher dimensional function spaces we may expect more 
variety in the class of operators Fr ,t::. that yield orthogonal symplectic transforma
tions in the Wigner plane. For the one-dimensional case the one-parameter family of 
the FRFT turns out to be the only transformation up to a constant, that is in the class 
of generalized FRFT and that acts like an orthogonal transform in the Wigner plane. 

Lemma 5.2.9 Let Fr,t::. be the unitary operator on L2 (JR) as given in (5.43), with 
r, ~ E JR. Then A = v(Fr,t::.)-T is orthonormal if and only if Fr,t::. = C Fa, for 
some a E JR and C with ICI = 1. 
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Proof 
In the case that rand~ are scalars, the conditions in Lemma 5.2.8 reduce to 

~ -2 =I+ r2. 

This equation can be parameterized by taking r = cot a and ~ = sin a, for some 
a E JR. Substituting this parameterization into (5.43) leaves the FRFT :Fa up to a 
constant of absolute value I, which does not affect A. □ 

As we expected from the considerations before Lemma 5.2.9, this lemma cannot be 
extended in a canonical way to higher dimensions. This is shown by the following 
example for n = 2. Moreover, by extending the example to higher dimensions in a 
natural way it follows that the preceding lemma can only hold for :Fr ,t:. E U ( L2 (IR)). 

Example 5.2.10 We consider :Fr,t:. on L2 (JR2 ), with 

r = i 2 ( r 2 cos2 a+ r 2 sin2 a 
(ri - r2) cos a sin a 

(ri - r2) cos a sin a ) 
and rr sin2 a+ T'§ cos2 a 

"= ( Pi .cos2 a+p~ sin2a (p1 -p2) cosasina )-l 
U ( ) · 2·2 2 2 Pl - P2 cos a sm a p1 sm a + p2 cos a 

with a E JR and pf = 1 + r;, i = 1, 2. Then 

and 

( T"IPI cos2 a+ 1'§P~ sin2 a 
(r1pi - r2p2) cosasina 

(f~-lf. 

) = I, 

(r1p1 - r2p2) cos a sin a ) 
rf Pi sin2 a+ r§d cos2 a 

Consequently, the matrices r and~ satisfy the conditions in Lemma 5.2.8. The or
thogonal symplectic transformation in the Wigner plane, that corresponds to Fr ,t:. is 
now given by A= U(a)T MU(a), with 

M~( -ri/ P1 0 -I/pi 

0 ) 0 -r2/ P2 0 -I/p2 
I/pi 0 -ri/pi 

-r~/ P2 0 1/ P2 0 

and 
cos a sin a cos a sin a 

) U(a) = (-sinn cos a -sin a cos a 
sin a 

v. 
cos a cos a sma 

-sin a cos a -sin a cos a 



A Representation Formula 109 

Resuming, we have extended the FRFf to a unitary transformation on L2 (JRn) given 
by Fr,t:,., where r, 6. E mnxn, both symmetric and 6. non-singular. So the set of all 
generalizations of the FRFf on L2 ( mn) of this kind are given by the set 

Vn = {Fr,t:,. Ir, 6. E mnxn symmetric, det 6.-::/- 0}. 

Furthermore, a subset of V,1 is defined consisting of all Fr ,t:,. E V,1 that act like or
thogonal transformations in the Wigner plane. This subset is given by 

For the FRFf we have Fo: 1 , ... ,o:n E W 11 C V11 • Moreover, for the one-dimensional 
case we have 

and 

for n 2:: 2. 

5.3 A Representation Formula 

In this section we present a representation formula for all unitary operators V on 
L 2 ( JR11 ) for which there exists a transformation A on JR2n such that 

WV[Vf, Vg](x,w) = WV[f,g](A(x,w)). (5.46) 

We observe, that for the particular choice f = g, (5.46) coincides with (5.24). We 
have already shown that (5.46) can only be realized for symplectic transformations A. 
Therefore, we start with some properties of symplectic matrices. 

Given a matrix A E Sp(n), then we can represent A by its 2 x 2 block decomposition 

A= ( A11 
A21 

(5.47) 

Since A is symplectic, it has to satisfy (5.33). This yields for the block decomposition 

or equivalently 

Af2 A11 - A'[2 A21 

A'[1 A21 - Af1 A11 

AL A12 - A'f2 A22 

I, 

0, 

0. 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

Using these relation we prove the following less known properties of symplectic ma
trices. 
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Lemma 5.3.1 Let A E Sp(n) be given by its 2 x 2 block decomposition (5.47). Then 
the following relations hold 

(i) (A.f2)+--(Ran(A.f2)) = Ran(A.12), 

(ii) dim A22(Ker(A.12 )) = dim Ker(A.12 ), 

(iii) A22(Ker(A.12)) = (Ran(A.12))J_, 

with Ker(B) and Ran(B) denoting respectively the null space and range of a linear 
transfonnation B and with B+--(fV) denoting the inverse image of a subspace W 
under the linear transf01mation B. 

Proof 
Let v E (A.f2) +--(Ran(A?;)). Then there exists an u E JR" such that A~; v + A.[2 u = 
0. Hence, 

Since A is symplectic, we can apply (5.48). This yields 

( 71, ) = ( A.22 
V -A.12 

Consequently, v = -A.12 (Af1 v + A.'[1 u) E Ran(A.12 ). On the other hand, if v E 
Ran(A.12), then there exists aw E JR" such that v = A.12 w. Using (5.51) we derive 

Af2 v = Af2 A.12 w = AL A.22 w E Ran(A.f2), 

which proves Property (i). 

In order to prove (ii), it is sufficient to show that, if A.22 u = 0, for u E Ker(A.12 ), then 
u = 0. Using (5.49), this follows from 

In [63] we have shown that, given a linear transformation B in JR" and a linear sub
space V in JR", we have 

dim(BT(VJ_)) = dim VJ_==? BT(VJ_) = (B+--(V))J_. 

Now, replacing B by A~; and V by Ran (A.f2) yields 

(A22(Ker(A.12)))J_ = (A.f2)+--(Ran(A.f2)) = Ran(A.12), 

which proves Property (iii). 

For deriving a representation formula we also need the following result. 

□ 
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Lemma 5.3.2 Let W be a subspace of JR" and let B be a linear transformation on 
JR", such that dim(B(W)) = dim(W) = d. Then 

jJ(Bx)dx=qw~B) I f(x)dx, \;/fES(JRn), (5.52) 

W B(W) 

with qw (B) the d-dimensional volume of the simplex generated by B e1 , ••. , Bed, 
with e1 , ... ed an orthonormal basis in W. 

The proof of this lemma is omitted, since it is straightforward. We observe, that 
qw (B) is positive. Furthermore, if W is the null space and Bis non-singular, then by 
setting qw (B) = 1 the definition of qw (B) is extended in a consistent way. 

The last lemma we need to derive our representation formula is as follows. 

Lemma 5.3.3 Let f E S(JR") and A E Sp(n) with block decomposition (5.47). 
Furthermore, let dim Ran(A12 ) = d > 0. Then, 

I Jf(u)ei(v,Ar2uldudv= (27r)n-d I 
qKer(A 12 ) (A22) 

Ker(A 12 ) JR» Ran(A12) 

f(v) dv. (5.53) 

Proof 
SincedimA22(Ker(A12 )) = dimKer(A12 ) = n-d,cf. Property(ii)ofLemma5.3.1, 
we may apply Lemma 5.3.2. This yields 

I r1f(u)ei(v,Ar2 uldu)dv=(27r)"l2 I f(A22v)dv= 

Ker(A12) ~" Ker(A1 2 ) 

(27r)n/2 I 
f(v) dv. 

qKer(A 12 )(A22) 
A2 2 (Ker(A12)) 

From Fourier theory we have as a result 

(27r)-dim(W)/2 I f(v) dv = (27r)-(n-dim(W))/2 I f(v) dv, 

w w~ 

(5.54) 

for all f E S(JR") and linear subspaces W of JR". By taking W = A22 (Ker(A12 )) 
this result becomes 

I f(v) dv = (27r)n/2-d I f(v) dv. 

A22(Ker(A12)) A22(Ker(A12))~ 

Since A22(Ker(A12 ))1_ = Ran(A12 ), we have, cf. Property (iii) of Lemma 5.3.1, 

J f(v) dv = (27r)n/Z-d J f(v) dv. 

Ran(A12) 
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In combination with (5.54) the latter result establishes the proof. □ 

The starting point for the derivation of our representation formula is the characteris
tic function of the Wigner distribution (2.35). For the n-dimensional mixed Wigner 
distribution, we can also define a characteristic function by 

M[f, g](0, t) = (27r)-n/2 / f(u + t/2) g(u - t/2)ei(u,e) du, 
]Rn 

or equivalently 

M[f,g](0,t) = (27r)-n/2 / f(u+t)g(u)ei(u+t/ 2 ,0ldu, 

]Rn 

with f, g E L2 ( IRn). By the inverse Fourier transform we have 

f(x)g(y) = (27r)-n/2 / M[f,g](0,x - y)e-i(e,~,+v)/Z d0. 

iR" 

For the n-dimensional mixed Wigner distribution we have 

(5.55) 

(5.56) 

WV[f](x,w) = (27r)- 3n/2 / / M[f](0, t)e-i(e,x)e-i(t,w) d0dt. (5.57) 

]Rn ]Rn 

Now, let V be a unitary operator satisfying (5.46). It follows from (5.57) together with 
(5.46) that 

M[Vf, Vg] = M[f,g] o (A- 1f. 
Combining (5.58) with (5.48) and (5.56) we arrive at 

V[f](x) V[g](y) 

(27r)-n/2 I M[f, g]((A-lf (0, X - y))e-i(0,x+y)/2 d0 

g(u + A12 0/2 - A11 (x - y)/2) Eo(u, 0, x, y) du d0, a.e .. 

for all f and gin L 2 (1Rn), with 

Eo(u, 0, x, y) = exp(i (A22 0 - A21 (x - y), u) - i (0, x + y)/2). 

(5.58) 

This last relation only holds formally for general f, g E L2 ( mn), but it holds rigor
ously for f, g E S ( mn). Therefore, we assume f, g E S ( mn) from now on. After this 
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derivation, we will show that the representation formula also hold for f E L 2 (JR"). 

By taking v = u - An (x + y) /2 in the previous result, we have 

V[f](x) V[g](y) = 

(21r)-n / / f(v-A120/2+Anx)g(v+A120/2+ Any) x 

exp(i E1 (v, 0, x, y)) dv d0, 

withE1(v,0,x,y) = (A22 0-A:n (x-y),v+ An (x+y)/2)-(0,x+y)/2. Using 
Relations (5.49)- (5.51), we can write E 1 as 

E1(v,0,x,y) = (A220-A21(x-y),v)+(A120,A21(x+y))/2-

(A21 x, An x)/2 + (A21 y, An y)/2. 

Hence, V[f](x) V[g](y) can be rewritten as 

V[f] (x) V[g] (y) = e-i (A21 x,A11 x)/2 ei (A21 y,A11 y)/2 1-l[f, g] (x, y), (5.59) 

with 

1-l[f,g](x,y) = 

(21r)-n .I .I f(v-A120/2+Aux)g(v+A120/2+Any) x 

Our aim is now to write 1-l in a possible degenerate form. If this is established, then 
the representation formula for V f can be read off from this form. To come to such 
a form we substitute in the latter expression 0 = 01 + 02 , with 01 E Ran(Af2 ) and 
02 E Ker( A 12 ). This yields 

1-l[f,g](x,y) = (21r)-n / / / f(v-A120i/2+Anx) x 

Ran(Af2 ) Ker(A12) JRn 

g(v+A120i/2+Any) x 
ei (A22 01 -A21 (x-y),v) ei ((A12 01 ,A21 (x+y))/2+(A22 02,v)) dv d0z d0i. 

We are now in the position to apply Lemma 5.3.3 with respect to the function 

v f---t f ( v - A12 0i/2 + An x) g(v + A12 0i/2 + Au y) ei (A22 01-A21 (x-y),v). 

By applying this lemma, we arrive at 
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g(v + A12 0i/2 + A11 y) x 
ei( (A 12 01 ,A21 (x+y))/2+ (A22 01 -A21 (x-y),v)) dv d0i, 

with d =dim Ran(A12 ). Since v E Ran(A12 ), we may substitute v = A12 w with 
w E Ran(A'f2), since A12 restricted to Ran(A'f2) is a linear bijection onto Ran(A12 ). 
We obtain 

1-i[f, g](x, y) = 

C! J J f(A12 w - A12 0i/2 + An x) x 
Ran(Af2 ) Rm1(Af2 ) 

g(A12 w + A12 0i/2 + Au y) x 
ei( (A 12 01 ,A21 (x+y))/2+(A22 01 -A21 (x-y),A,2 w)) dw d01 , 

with 

s(A12) 
(21r)d qKer(A 12 ) (A22). 

(5.60) 

Heres ( A12 ) denotes the product of the nonzero singular values of A12 , or equivalently 

s(A12) = qRan(Af2 )(A12)-

Our next step is to substitute t1 = w - 01 /2 and t2 = w + 01 /2. Then, by using (5.49) 
- (5.51) one has 

(A12 01, A21 (x + y))/2 + (A22 01 - A21 (x - y), A12 w) = 

(A12 (t2 - ti), A21 (x + y))/2 + (A22 (t2 - ti), A12 (t1 + t2))/2 -

(A21 (x - y), A12 (t1 + t2))/2 = 

-(A22 t1, A12 ti)/2 + (A22 t2, A12 t2)/2 -

(A12 t1, A21 x) + (A21 y, A12 t2)-

With this result we can rewrite 1-i[f, g](x, y) in the degenerate form 

1-i[f, g] (x, y) = C! 1-io [!] (x) 1-io [g] (y), (5.61) 

with 

1-io[f](x) = J J(A 12 t+Anx)e-i((A22t,A12t)/2+(A12t,A21x))dt. 

Ran(Af2 ) 

Finally, combining (5.59) and (5.61) yields the degenerate form for V[f](x) V[g](y) 

V[f](x) V[g](y) = C! 1-io[f](x)Ho[g](y). (5.62) 

In a natural way this derivation results into the definition of an operator :FA that sat
isfies (5.46). We will define this operator on L2 (1Rn) and show that it indeed corre
sponds to the unitary operator we have been searching for. 
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Definition 5.3.4 Let A E Sp(n) with block decomposition (5.47). Then the linear 
operator FA on L 2 (1R 11 ) is defined as.follows. If A12 -/- 0, then 

FA[f](x) = CA e-i(Af, A21 x,x)/2 X 

I f (A12 t + A11 x) e-i (Ai2 A22 t, t)/2-i (t,Af2 A21 x) dt, (5.63) 

Ran(Af2 ) 

forall f E L 2 (JR11 ) and with CA as given in (5.60). Furthermore, if A12 = 0 then 

FA[f](x) = JidetA11 le-i(AfiA 2 ,x,xJ/2 f(A 11 :r), (5.64) 

for all f E L 2 (1R11 ). 

The main theorem of this section can be stated as follows. 

Theorem 5.3.5 Let A E Sp(n) and FA be given as in Definition 5.3.4. Then 

WV[FAf,FAg](x,w) = WV[f,g](A(x,w)), 

forall f,g E L 2 (1R11 ). 

Proof 
If A12 -/- 0 then we conclude from (5.62) and the definition of FA that a unitary 
operator V, for which WV[V f, Vg](x, w) = WV[!, g](A(x, w)) holds for all f, g E 

S(JR11 ), must satisfy 

V[f](x) V[g] (y) = FA [f](x) FA [g](y) a.e. on JR'1, 

for all f, g E S ( JR11 ). Hence, V defined on S ( JR11 ) is equal to FA up to a constant C, 
with ICI = 1. Note, that C may depend on A. Since S(JR11 ) is dense in L2 (1R11 ), we 
obtain 

VJ= C FAJ, 

for all f E L2 (JR"). The proof for the case A12 -/- 0 is completed by assuming, that 
V satisfies (5 .46). 

If A12 = 0, then (5.49) and (5.50) yield, that A11 is non-singular and that A1/ 
A22 T. Moreover, An T A21 is symmetric. Using these observations, we compute the 
mixed Wigner distribution of FA! and FAg as follows. 

ldetA11I ;· . 
WV[FAf,FAg](x,w) = (2 1r)n f(Aux+Ant/2) x 

]Rn 

g(An :r - An t/2) e-i (Ai, A21 x, t) e-i(t,w) dt = 

(21r)-n / J(An X + t/2) g(A11 X - t/2) X 

mn 
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Hence, 
WV[.FAJ, .FAg](x, w) = WV[f, g](A11 x, A21 .r + A22 w). 

This establishes the proof for dim(Ran(A12 )) = 0. □ 

At the end of this section, we present two well-known examples of unitary operators, 
that satisfy (5.46). 

Example 5.3.6 We recall, that for a set of parameters o:1, ... , O:n E (0, Jr) then
dimensional fractional Fourier transform is given by 

.Fa[f](x) = 
C ei (B x,x)/2 I 

a f(u)ei((Bu,u)/2-(Cx,u)) du 
J (2 Jr )n J sin 0:1 · ··sin O:n J ' mn 

(5.65) 

with matrices B = diag( cot o:1, ... , cot an), C = diag( csc o:1 , ... , csc an) and con
stant Cg_ = Ca, · · ·Ca", where Cak is given by (5.2). The symplectic matrix, that 
corresponds to this transform in the Wigner plane is given by the rotation matrix 
Ra 1 ,··,an as given in (5.21). We observe, that in this particular case A12 is non
singular. This yields qKer(A!2)(A22) = 1 and s(A12 ) = det(A12 ). Using these sim
plifications and the substitution u = A12 t + A11 x, Formula (5.63) simplifies to 

For A11 = A22 = diag(cos 0:1, ... , cos an) and A12 = diag(- sin o:1, ... , - sin an), 
the latter representation formula turns into then-dimensional FRFT as given in (5.65). 

Example 5.3. 7 The second example is the unitary operator on L 2 ( JR2), which corre
sponds in the Wigner plane to the symplectic matrix 

A= ( ~ ~ ~ -~ ) 
0 0 1 0 . 
0 1 0 0 

Remark, that all matrices in the block decomposition of A are singular. 

It can be verified in a straightforward way, that qKer(A, 2 ) (A22) = 1 and s(A12) = 1. 
By substituting the block matrices of A into (5.63), the unitary operator, we are dealing 
with, reads 

.FA[f](x1,x2) = ~ f f(x1,()e-i~x 2 d(, 

m 

which is the one-dimensional Fourier-transform of f ( x1, •). We observe, that this 
operator can also be derived from (5.65) by taking o:1 ---+ 0 and o:2 ---+ Jr /2. 
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We observe that in [29] and [33] also a representation formula is presented for unitary 
operators that correspond to symplectic transformations in the Wigner plane. How
ever, both references do not give a formula that can also handle symplectic transfor
mations with a block decomposition, that consists of four singular block matrices, 
which is the case in the second example. 
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Chapter 6 

Localization Problems in Phase 
Space 

A celebrated problem in signal processing is the problem of maximizing energy in 
both time and frequency. This problem already has received much attention in the 
literature, see e.g. [20, 28, 41, 58]. This chapter consists of two parts that are also 
devoted to this problem. 

In the first part we discuss two classical problems. The first problem concerns the 
maximization of energy of time-limited signals within a frequency band, i.e. finite in
terval in the Fourier domain. For this problem we revisit a series of papers by Slepian 
and co-workers, [57, 80, 93]. The second problem concerns the maximization of en
ergy within a disk in the Wigner plane, i.e. the phase space related to the Wigner 
distribution. Although this problem is discussed in several papers [20, 28, 29, 46], we 
also present alternative proofs and additional results in this section. 

The second part of this chapter is devoted to the FRFT, which we generalized in the 
previous chapter. Using this generalization we are able to relate several classes of en
ergy maximization problems in phase space to the two classical problems as discussed 
in the first part of this chapter. For this, we discuss the Weyl correspondence, see e.g. 
[29, 107]. 

6.1 Slepian's Energy Problem 

The first problem to be considered in this part of the chapter is the concentration of 
energy in a certain frequency band of a time-limited signal. So we consider for time 
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limited signals f the ratio 

wo 
J If (w)l 2 dw 

Er(wo) = -.7l}(w)l2 dw ' (6.1) 

JR 

with [ -w0 , w0 ] the frequency band we are looking at in this problem. Obviously, 
Er(w0 ) 2: 0, for all f E L 2 (JR). Moreover, Corollary 2.1.13 yields Er(wo) < 1. 

Since E f ( w0 ) < 1 for all f E L2 (JR), the problem arises of maximizing this energy 
ratiooverallf E L 2 ([-x0 ,xo]),forsomefixedxo > 0. 

For solving this problem we introduce two operators. The first operator we discuss is 
the integral operator B(w0 ) : L 2 (JR) -+ L 2 (JR). For w0 > 0 fixed, this operator is 
given by 

B(wo)[f](x) = f!_J sin(wo(x - u)) f(u)du, y; (x-u) 
JR 

for all f E L2 (JR). We observe that 

-1 rrsin(wox) 
F [X[-w 0 w 0 ]](x) = ----. 

' 7r X 

According to Lemma 2.1.8 the latter result yields 

FB(wo)f = X[-wo,wo] · Ff a.e. on JR. 

(6.2) 

(6.3) 

Hence B ( w0 ) is a Hermitian projection operator; in fact it is an orthogonal projection. 

The second operator we introduce in relation to the energy localization problem is the 
projection P(x0 ) : L 2 (JR) -+ L 2 (JR). For x0 > 0 fixed, this operator is defined by 

P(xo)[f](x) = { f(x), ~f lxl ::; xo, 
0, 1f lxl > xo. 

(6.4) 

By combining the introduced operators we arrive at 

P(xo)B(wo)P(xo)[f](x) = fr l sin(~~ aj u)) f(u)du, (6.5) 

-xo 

foralllxl::; xoandf E L2 (JR). Sincetheintegralkernelin(6.5)isinL2 ([-x0 ,x0]2), 
we have that P(x0 )B(w0 )P(x0 ) is a Hilbert-Schmidt operator. Hence, we see that 
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P(x0 )B(w0 )P(x0 ) is a compact operator. Also P(x0 )B(w0 )P(x0 ) is a positive defi
nite operator on L2 ([-x0 ,x0 ]), which is shown as follows. Using (6.3) we derive 

(P(xo)B(wo)P(xo)f, fh 

(B(wo)P(xo)f, P(xo)fh 

(:FB(wo)P(xo)f, :FP(xo)f)2 

(X[-w0 ,w0 ] · :FP(xo)f, :FP(xo)f)2 

(X[-w0 ,w0 ] • :FP(xo)f,X[-w0 ,w0 ] • :FP(xo)f)2. 

We assume 
(P(xo)B(wo)P(xo)f, f)2 = 0, 

for some f E L2 (JR). Then :FP(x0 )[f](w) = 0, for almost all w E [-w0 ,w0 ]. 

However, :FP(x0 )f is holomorphic by Theorem 2.1.12. This yields in combination 
with the latter result :FP(xo)f = 0, or equivalently f(x) = 0 for almost all !xi < xo. 
For f E L 2 ( [ -x0 , xo]) this yields 

(P(xo)B(wo)P(xo)f, fh = 0 =} f = 0 a.e. on JR. 

Following Pollack and Slepian [80, 92], we consider possible solutions P(x0 )f max, 

with f max E L 2 (JR), that maximize (6.1). Then 

EP(xo)lmax (wo) · (:FP(xo)f max, :FP(xo)f maxh 

= (X[-w0 ,w0 ] • :FP(xo)fmax, :FP(xo)fmaxh-

Equivalently, using Parseval's theorem and (6.3), 

Since f max is a stationary solution of this equation, it must satisfy 

B(wo)P(xo)f max = >-.P(xo)f max, 

a homogeneous Fredholm equation of the first kind. 

(6.6) 

We recall that P(x0 )B(w0 )P(x0 ) is compact. Furthermore, it is a positive definite op
erator on L 2 ([-x0 , x0 ]). These considerations yield that solutions P(x0 ) f for equa
tion (6.6) only exist for a discrete set of real positive values of>-., with the properties 
that 

1 > >-.o > >-.1 > >-.2 > ... 
and limk-+oo >,.k = 0. In general, the eigenvalues of a compact Hermitian operator are 
not necessarily distinct. However, for this particular Fredholm operator, Pollack and 
Slepian have shown in [80], that its eigenvalues are distinct. Also Slepian showed, see 
[92], that the kernel of the integral operator B(w0 ) commutes with the second order 
differential operator 

. d 2 d 2 2 D(xowo) = -d (1 - x )-d - (xowo) x . 
X X 

(6.7) 
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Since both operators have the same spectrum, they must have the same eigenvectors. 

Differential operator (6.7) is a well-known operator. It arises on separating the 3-
dimensional scalar wave equation in a prolate spheroidal coordinate system. Its real
valued eigenfunctions 'l/Jo, 'lj;1 , 'lj;2 , ... are known as prolate spheroidal wave functions 
(PSWF), see [27]. We observe, that the concentration of energy problem is solved by 
P(xo)'l/Jo, 

Some useful properties of the PSWF have been derived in the past. We present some of 
them in the following lemma. For a proof of these properties we refer to [57, 80, 93]. 

Lemma 6.1.1 Let 'l/Jo, 'l/J1, 'l/J2, ... be the eigenfunctions of P(xo)B(w0 )P(x0 ) and let 
their corresponding eigenvalues be given by >.0 , >.1 , >.2 , .... Then 

A 2 
(i) Wk EL ([-wo,wo]) 'vkEIN, 

XQ 

(ii) J Wk(x)'l/Jn(x) dx = Ak8k,n, 
-xo 

(iii) J Wk(x)'l/Jn(x) dx = 8k,n• 
IR 

Other properties for the PSWF follow from this lemma, e.g. Theorem 2.1.12 and 
(i) yield that Wk is holomorphic. However, this lemma does not provide us with an 
explicit expression for 'lj; k and consequently for Ak. More insight in the behaviour of 
the eigenvalues Ak is given by a conjecture of Slepian, which can be proven rigorously 
by using the following classical result, that is due to Landau and Widom, see [58]. 

Lemma6.1.2 Let1i(x0w0 ): L 2 (JR)-+ L 2 (JR) be given by 

1-i(xowo) = P(xowo)B(l)P(xowo). 

Furthermore, let N(1i(x0wo),p), 0 < p < 1, denote the number of eigenvalues of 
1-i(xowo) which are greater than or equal top. Then 

2xowo 1 1- p 
N(1i(xowo),p) = -- + 2 log(--) log(xowo) + R(xowo), (6.8) 

7r 7r p 

with R(x) of order o(log(x)) as x -+ oo. Using this result Slepian's conjecture was 
proven in a rigorous way. 

Theorem 6.1.3 (Slepian's conjecture) Let P(x0 )B(w0 )P(xo) be as defined in (6.5) 
and let Ak, k E IN, be its eigenvalues. Then for all 8, E: E (0, 1) there exists an 
M E JN such that 

(i) Ak < E,jor k ~ (1 + 8) 2x~wo and Xowo > M, 

(ii) 1 - Ak < E,jor 1 :S k :S (1 - 8) 2x~wo and x0 w0 > M. 
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Moreover, for all c > 0 and 0 E JR, there exist J > 0 and M E IN such that 

(iii) 1>-k - (l + e1r0 )- 1 I < E,for lk - zx~wo - ~ log(xowo)I < Jlog(xowo) and 
xowo > M. 

Proof 
We define cpk(x) = 1Pk(x/w0 ). Then, for lxl < xowo, we derive 

( ) fi Jxo wo sin(x - 'Uwo) ,1,k(uwo) du 
>.k¢k x = V; (x - uwo) 'I' 

-xo 

-xowo 

or equivalently 

1i(xowo)¢k = >.k¢k 'v'kEJN\{O}· 

Consequently, Lemma 6.1.2 can also be applied on the eigenvalues of the localization 
operator P(xo)B(wo)P(xo). 

Let O < c < 1 and O < J < 1. We take M > 0 such that 

log( 1~E)logx 1rR(x) 
J> 2 +-2-, 

7rX X 
(6.9) 

for x > M. Then 

2XoWo 1 1 - c 
-- + 2 log(--) log(xowo) + R(xowo) 

7r 7r c 
N(1i(xowo),c) 

< (l+J)2xowo, 
7r 

for xOwO > M. Consequently, if k 2'. ( 1 + J) 2x,:_w0 , then N (1i ( xOwO), c) < k. This 
result yields >.k < c. 

For proving Property (ii) we also take M > 0 such that (6.9) holds. Then 

2xowo 1 1- c 
N(1i(xowo), 1- c) -- - 2 log(--) log(xowo) + R(xowo) 

7r 7r c 

> (l _ J) 2xowo, 
7r 

for xOwO > M. Therefore, ifl ::; k ::; (1 - J) 2x,:_w 0 , then N(1i(xOwO), 1 - c) > k, 
which leads to 1 - >.k < c. 

Finally, let c > 0 and 0 E JR. Furthermore, take J > 0 and M E IN such that 

, 1 1 ( l+c+ce1r0 ) R(x) 
u < - og ----- - --

1r2 1 - c - ce-1r0 logx' 
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for x > l'vf. Then we have 

N(H(xowo), (1 + e,r0)- 1 + s) = 
2xowo 1 ( 1re 1 - c - se-1r0 ) -- + ? log e · 1 0 log(xowo) + R(xowo) = 

7r w- + c + se1r 

2xowo 0 -- + - log(xowo) -
7r 7r 

1 ( 1 + s + se1r0 ) 
? log _ 0 log(xowo) + R(xowo) < 
w- 1 - s - se 1r 

2xowo 0 -- + - log(xowo) - Jlog(xowo) 
7r 7r 

for x 0 w0 > l'vl. Consequently, if 

2xowo 0 
k > -- + - log(xowo) - Jlog(xowo), 

7r 7r 

or equivalently, if 

2x0w0 0 -- + - log( xow0 ) - k < J log( xowo), 
7r 7r 

In the same way, we derive 

N(H(xowo), (1 + e1r0 )-1 - s) = 
2xowo 0 -- + - log(xowo) + 

7r 7r 

1 (1 + s + +ce1r0 ) 
- 2 log _ 0 log(xowo) + R(xowo) > 
7r 1 - c - Ee ,r 

2xowo 0 -- + - log(xowo) + J log(xowo) 
7r 7r 

for x 0 w0 > M. Therefore, if 

2xowo 0 
k < -- + - log(xowo) + Jlog(xowo), 

7r 7r 

or equivalently, if 

2xowo 0 _ 
k - -- - - log(:r:owo) < 6 log(xowo), 

7r 7r 

then >..k - (1 + e1r0 )-1 > -s. Combining these two re~ults establishes the proof of 
Property (iii). D 
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Figure 6.1: Eigenvalues corresponding to the PSWF for a) x 0 w0 = 25, b) x0 w0 = 50. 

From this theorem it follows, that for large x 0 w0 approximately the first 2x0w0 /1r 
eigenvalues that correspond to the PSWF attain a value close to unity. For index num
bers in a region around 2x0w0 / 1r the eigenvalues plunge to zero and attain values close 
to zero afterwards. The number of eigenvalues in the region where the eigenvalues de
crease from close to one to close to zero is proportional to log x 0 w0 . Remark, that the 
eigenvalues depend on the product :r0 w0 . 

In Figure 6.1 the eigenvalues of H ( x0w0 ) are depicted for a) x 0w0 = 25 and b) 
x 0w0 = 50 respectively. We observe that in both figures the number of eigenval
ues close to unity is given by 2x0 w0 /1r. For x 0 w0 = 25, approximately the first 16 
eigenvalues are close to unity. For x 0w0 = 50, this number is approximately 32. The 
number of eigenvalues in the plunge region in Figure 6.1.b is approximately 1.25 times 
the number of eigenvalues in this region in Figure 6.1.a. This corresponds with the 
observation we have made after Theorem 6.1.3, namely that the multiplication factor 
is approximately given by log 32 / log 16 = 5 / 4. 

6.2 Energy Concentration on a Circle in the Wigner 
Plane 

The second problem to be considered is the concentration of energy in a circular region 
in the Wigner plane. So we consider a region 

CR= {(x,w) E JR2 I x 2 +w2 :SR} (6.10) 
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and search for functions f E L2 (JR) for which 

E1(R) = J WV[f](x,w)dxdw / llfll~ 
CR 

(6.11) 

is maximized. An upperbound for E1(R) follows from an upperbound for WV[f] 
which can be derived from (5.15) in the following way 

IWV[f](x, w)I 

This result yields 
E1(R) S R2 . 

Of course a better and more natural upperbound for E1(R) would be given by I, i.e., 
if E f ( R) is the total amount of energy off. A conjecture of Flandrin states that such 
an upperbound indeed exists, not only for integrals over circular regions, but in gen
eral for integrals over convex regions, see [28]. As far as we know, a proof of this 
conjecture has not been given yet. For non-convex regions this conjecture does not 
hold, which follows from various examples in [81]. 

We observe that from (2.41) it follows that 

E1(R) ➔ 1 (R ➔ oo), 

if also f E L1 ( JR) or .f E L1 (JR). Since the Wigner distribution can attain both posi
tive and negative values, this result is not sufficient to prove Flandrin's conjecture. 

In order to solve this energy localization problem, we introduce the localization oper
ator £(a-) on L2 (JR), associated with a bounded symbol on JR2 , by 

(£(a)f,g)2 = J J a(x,w)WV[f,g](x,w)dxdw, 
JR JR 

(6.12) 

for all f,g E L2 (JR) and with WV[f,g] the mixed Wigner distribution off and g. 
Then 

E1(R) = (£(a)f, fh/(.f, fh, 

with a = Xcw Furthermore, we observe that £(a) is a Wey! transform with symbol 
a E L2 (JR2 ), see [107]. 

It can be proved, see e.g. [107], that £(a) is compact for a E LP(JR2 ), 1 s p s 
2. Moreover, Flandrin showed in [28] that £(a) is self-adjoint for a real-valued. 
This means that £(a) is a compact Hermitian operator on L 2 (JR) for real-valued 
a E LP(JR2 ), 1 s p s 2. Consequently, the eigenvectors of £(a) can be chosen 
to form an orthonormal basis for L2 (JR), the set of real-valued eigenvalues is count
able and the only possible accumulation point is 0. 
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These considerations yield that the function !max, that maximizes E1(R) is given by 
the eigenvector ¢0 of .C(xcn) corresponding to the largest eigenvalue >..o of .C(xcn ). 
Moreover, EtmaJR) is given by .Ao. 

The eigenvectors of .C(xcn) are given by the Hermite functions hk, k E IN, as in
troduced in (5.10). This result was already given by Janssen in [46]. In the following 
lemma we come to the same result using a proof based on a property of the fractional 
Fourier transform. 

Lemma 6.2.1 Let CR= {(x,w) E JR2 I x2 + w 2 SR} and .C(xcn) as defined in 
(6.12). Then the eigenvectors of .C(xcn) are given by 

with hk the Hermite functions as defined in (5.10). 

Proof 
Since Xcn is rotation invariant, we have for all a: E [O, 27r) 

f WV[.Faf, .Fag](x, w) dx dw 

Cn 

f WV[!, g](Ra(x, w)) dx dw 

Cn 

f WV[f,g](x,w)dxdw = (.C(xcn)f,gh, 

Cn 

with Ra the rotation matrix as given in (5.18). Consequently, we have for all a: E 
[O, 27r) 

.Fa.C(xcn) = .C(xcn).Fa. 

Let now ¢k be an eigenvector of .C(xcn) and >..kits corresponding eigenvalue. Then 

This shows, that if ¢k is an eigenvector of .C(xcn), then also Fa¢k is an eigenvector 
of .C(xc n) for all a: E [O, 27r). Since .C(xc n) is compact, the set of eigenvectors 

should be finite or countable. This can only be realized if ¢k is an eigenvector of Fa 
for all a: E [O, 27r), i.e., ¢k is a Hermite function following (5.12). □ 

The eigenvalues >..k of .C(xcn) can be expressed in terms of Laguerre polynomials Lk 
given by 

(6.13) 
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In the following lemma we present a recurrence relation involving Laguerre polyno
mials that we shall use to compute the eigenvalues >..k. 

y 

Lemma 6.2.2 Define In(Y) = J e-x/2 Ln(x) dx. Then 

0 

(6.14) 

Proof 
First we observe that L~(x) = L~+l (x) + Ln(x), which follows from the recurrence 
relations for Laguerre polynomials, and L,,,(O) = 1, see e.g. [96]. Integration by parts 
yields 

y 

In(Y) 2 - 2Ln(y)e--y/2 + 2 / e-x/2 L~(x) dx 

y 

0 
y 

2 - 2Ln(y)e-Yl2 + 2In(Y) + 2 / e-x/2 L~+l (x) dx. 

0 

We conclude 2 / e-x/2 L~+l (.,r) dx = -In(Y) + 2Ln(y)e-Yl2 - 2. 

0 

Applying the same procedure on In+l yields 

y 

( ) -y/2 J -x/2 1 ( ) 2 - 2Ln+l y e + 2 e Ln+l x dx, 

0 

or equivalently 

y 

2 / e-x/2 L~+1 (x)dx = In+1(Y)+2Ln+1(y)e-Yl 2 -2. 

0 

Combining these two results completes the proof. □ 

Using this lemma we come to the following recurrence relation for the eigenvalues of 
C(xcR). 

Theorem 6.2.3 Let { >..k I k E IN} denote the set of eigenvalues of C(xcR), with 

CR= {(x,w) E 1El2 
J x2 + w2 ::; R}, 

with R > 0. Then 
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Proof 
The Wigner distribution WV[hk](x, w) can be expressed in terms of Laguerre poly
nomials, see e.g. [107]. This relation with Laguerre polynomials is given by 

Using polar coordinates we get 

Ak (C(xcR)hk, hkh 

j WV[hk](x,w)dxdw 

CR 

R 

2(-l)k / pLk(2p2)e-P2 dp 

0 

2R2 

J e-x/2 Lk(x) dx = (-ll h(2R2 )/2. 
0 

Consequently, we have 

2R2 

Ao= Io(2R2 )/2 = 1/2 / e-x/2 dx = ( 1 - e-R2
). 

0 

Moreover, Lemma 6.2.2 yields 

Ak+l (-l)k+lh+1(2R2 )/2 

(-l)k Jk(2R2 )/2 + (-l)k+le-R2 (Lk(2R2 ) - Lk+ 1 (2R2 )) 

Ak - (-ll e-R2 (Lk(2R2 ) - Lk+i(2R2 )) . 

This gives the recurrence relation for the eigenvalues. □ 

In Figure 6.2 the first 30 eigenvalues as given in Theorem 6.2.3 are depicted for R = 
\/3. To emphasize the eigenvalue behavior a spline interpolation function is used 
in this figure. As we have seen before for the eigenvalues Theorem 6.1.3, the first 
eigenvalues are close to Ao. Later the values plunge down towards zero and remain 
close to zero for larger index numbers. For the Wigner distribution, the eigenvalues 
can be negative, which can be observed in Figure 6.2 as well. Moreover, starting from 
a certain index number the eigenvalues alternate around zero. 



130 Localization Problems in Phase Space 

08 

02 

-0.4~-~-~-~--~-~-~ 
0 10 15 ~ ~ ~ 

Index number 

Figure 6.2: Eigenvalue behavior of the energy localization problem on a disk with 
radius R = \1'3. 

6.3 Localization Problems and the Generalized FRFT 

In this section we return to the fractional Fourier transform as introduced in Sec
tion 5.2.2. This generalized FRFT is used to solve two classes of energy localization 
problems that are related to the two problems, which we discussed in the previous 
sections. These two classes of localization problems are related to the discussed prob
lems via the Weyl correspondence. 

Although the problems we discuss concern signals in L2 ( JR) we consider first local
ization problems for signals in L2 (1Rn). For this we generalize the Weyl correspon
dence (6.12) to higher dimensions. Then a bounded symbol u on IR2n is associated 
with the localization operator £(u) on L2 (1Rn) by 

(£(u)f,g)2 =ff u(x,w) WV[f,g](x,w)dxdw, 
JRn JRn 

for all f, g E L 2 ( mn). Consequently, if u = xn, with n c IR2n, then 

(£(u)f, fh = f WV[f](x, w) dx dw 
[l 

represents the energy off in the Wigner plane within the region n. 

Using the generalized FRFT :Fr.~ as introduced in (5.43) we compute 

(£(u):Ff~f, :Ff,~g) 

(6.15) 

ff u(x,w) WV[:Ff~f,:Ff,~g](x,w) dxdw 
JRn mn 
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f f CJ(x, w) WV[!, g](A- 1 (x, w)) dx dw 
]Rn ]Rn 

f f CJ(A(x,w)) WV[J,g](x,w) dxdw 
]Rn JR,n 

with CJA(x,w) = CJ(A(x,w)) and A as given in (5.45). Now, let us assume that 
{ <Pk I k E IN} is the set of eigenvectors of .C( CJ) and { Ak I k E IN} the set of corre
sponding eigenvectors. Then 

.C(CJA):Fr,t::.<Pk = (:Fr,t::.L(CJ):Fr,t::.):Fr,t::.</>k 

= :Fr,t::..C(CJ)</>k = >-.k:Fr,t::.<Pk· (6.16) 

Consequently, the eigenvectors and eigenvalues of ,C ( CJ A) are given by 

{:Fr,t::.<Pk I k E IN} and {>-.k I k E IN} 

respectively. If .C(CJ) is a compact operator, both the eigenvectors <Pk and :Fr,t::.<Pk 
form an orthonormal set in L2 (JR'"). 

6.3.1 The Rectangle/Parallelogram Case and the Rihaczek Distri
bution 

The first problem we consider is to maximize 

(6.17) 

for f E L 2 (JR), with CJ= X[-x 0 ,x0 ]x[-w0 ,w0 ]· 

This problem may seem to be similar to Slepian's energy problem in Section 6.1. 
However, results presented for Slepian's energy problem cannot be related to the prob
lem of localizing the energy on a rectangle in the Wigner plane. 

The two problems can only be related to each other if ( 6.17) is maximized over abso
lutely integrable f E L~omp(JR), with supp(!) = [-x0 , x 0 ]. Using these constraints 
(6.17) is equal to (6.1), which follows straightforwardly from Theorem 2.3.4. If we 
do not require these constraints on the maximizing function f, we are only provided 
with some asymptotical results on the eigenvalues of .C(CJ), see [41, 81]. 

A less trivial relation with Slepian's energy problem is given for 

CJ= X[-xo,xo]x[-wo,wo] * 'P, (6.18) 

for some x 0 , w0 E JR+ and where cp is given by 
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We observe that llulloo ~ 1, and so O" E £=(JR2 ). 

The following lemma shows that the localization operator .C(O"), with O" as in (6.18), 
can be rewritten as an energy density operator related to the Rihaczek distribution, see 
[82]. 

Lemma 6.3.1 Let .C(O") be the localization operator as defined in (6.15), with O" the 
symbol as given in (6.18). Then for all f, g E L 2 (JR) 

(.C(u)f,g)2 = / X[-x 0 ,,c0 ]x[-wo,wo](x,w)R[f,g](x,w)dxdw, 
JR2 

with R[f, g] the mixed Rihaczek distribution given by 

R[f,g](x,w) = f(x)g(w)e-iwx /,Ii;. (6.19) 

Proof 
We observe that 

with O"o = X[-xo ,xo] x [-wo ,wo] · This expression can be rewritten by 

(<p * WV[f,g])(x,w) 

2!2 / <p(p,q)f(x-p+t)g(x-p-t)e-2it(w-q)dtdpdq 

JR3 

2!2 / <p(-(u + v)/2, q)f(x + u)g(x + v)e-i(u-v)(w-q) du dv dq 

JR3 

_l_ / e-iqx f (u)g(v)e-iu(w-q) eivw du dv dq 
47r2 

JR3 

_!_ I e-iqx }(w - q)g(w) dq = _!_e-iwa'g(w) l e-iwx f (q)eiqx dq 
27r . 27r 

JR JR 

f(x)g(w)e-iwx /,Ii;. 

This yields (.C(O")j, g)2 = ~ .J .J O"o(x, w) f (x)g(w)e-iwx dx dw 
JRJR 

□ 

Using this lemma we prove the following theorem, that relates .C(O"), with O" as in 
(6.18), with the localization operator of Slepian's energy problem. 

Theorem 6.3.2 Let .C(O") be the operator as in (6.15), with O" the symbol as in (6.18). 
Then 

.C(O")* .C(O") = P(xo)B(wo)P(xo), 

with B(w0 ) andP(x0 ) as defined in (6.2) and (6.4) respectively. 
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Figure 6.3: Localisation on a rectangle/parallelogram: fig. a) u = 1 on [O, 1] x [O, 1] 
and fig. b, c, d) uA with~= -1/f, ~ = -2/f and~= -1/f2 respectively. 

Proof 
From the preceding lemma it follows immediately that 

WO 

.C(u)* [g](x) ( ) 1 / , ( ) iw,c d X[-xo,xo] X • /cC g W e W 
V 21r . 

-wo 

= P(xo)B(wa). 

Since both B ( w0 ) is a projection operators, we have 

,C(u)* ,C(u) = P(xo)B(wo)P(xa). 

D 

Remark, that although u E L00 (JR), .C(u) is compact for u as in (6.18). This follows 
from the fact that ,C(u)* ,C(u) is compact. Furthermore, we observe that the result 
of Theorem 6.3.2 was already given in [28]. However, our aim is not to investigate 
existing time-frequency distributions, but to consider the generalized FRFT acting on 
these distributions. In this context, we return to the first part of this section. 

We have seen that the eigenvalues of ,C(u) and ,C(uA) coincide. In a direct way, we 
can also show that the eigenvalues of ,C ( u) * ,C ( u) and ,C ( u A)* ,C ( u A) coincide. This 
yields that the singular values of ,C ( u) and ,C ( u A) are the same. These singular values 
are given by 

Sk=,I>:;,, 
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Figure 6.4: Localisation on a circle/ellipse: fig. a) Cl = l on the circular region 
{(x,w) E JR2 I x2 + w 2 ::; 1}, fig. b, c, d) ClA with Li= -1/f,Li = -2/f and 
Li = -1 /f2 respectively. 

where >..k denote the eigenvalues of the operator P(x0 )B(w0 )P(x0 ). Since these >..k 

satisfy Theorem 6.1.3, a similar result holds for the singular values. Moreover, the 
asymptotical behavior of sk and Ak is similar. 

The eigenvectors of £.(Cl) do not follow from Theorem 6.3.2. The eigenvectors of 
L'.(Cl)* £.(Cl) are known, namely the prolate spheroidal wave functions 1/Jk, As before 
we can also show that the eigenvectors of £( Cl A)*£. ( Cl A) are then given by Fr ,t:... 'ljJ k. 
They can be computed as the eigenvectors of the operator 

V'(xowo) = Fr,t:.V(xowo)Fr,t:., 

which is also a second order differential operator that commutes with £. ( Cl A)*£ ( Cl A). 

In Figure 6.3.b,c and d the domain of Cl A is depicted instead of Cl, with the substitutions 
Li = -1/f, Li = -2/f and Li = -1/f2 and with r = 3 in (5.45). We observe 
that with these substitutions £. ( Cl A) represents the energy of the Rihaczek distribution 
within differently orientated parallelograms in phase space. The singular values of 
£.(ClA) for all A related to these parallelograms are the same and are given by~, 
with >..k as in Theorem 6.1.3. 

6.3.2 The Circle/Ellipse Case 

In Section 6.2 we already discussed the energy localization problem on a circle. More
over, we studied the operator £.(xcR), with CR a circle in the Wigner plane concen-
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trated around the origin and with radius R > 0. It turned out that its eigenvectors 
are given by the Hermite functions hk, defined by (5.11), and that the corresponding 
eigenvalues are given by Theorem 6.2.3. 

It follows from (6.16), that the eigenvectors of .C(cr A), with A as given in (5.45), are 
given by :Fr,t::.hk, k E IN. The eigenvalues of .C(cr A) are given by the recurrence 
relation in Theorem 6.2.3. 

In Figure 6.4.b,c and d the domain of er A is depicted with er the characteristic func
tion of CR, with the substitutions .6 = -1/f, .6 = -2/f and .6 = -1/f2 and 
with r = 3. With these substitutions .C( er A) represents the energy in the Wigner 
plane within differently orientated ellipses. The energy localization problem for each 
of these ellipso'idal areas is now solved by the eigenvectors :Fr,t::.hi,, using the corre
sponding substitutions, and the eigenvalues >..k. 
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Chapter 7 

A Seismic Problem: Automatic 
S-Phase Detection with the 
DWT 

In the last chapter of this book we consider a seismic problem, which has been dealt 
with while the author was seconded to the seismic department of the Royal Dutch 
Meteorological Institute (KNMI). For this problem an algorithm based on the DWT 
has been derived. Implementation and test results of the algorithm are also included 
in this chapter. These were established at KNMI by R. Sleeman and T. van Eck. 

7 .1 Introduction and Approach of the Seismic Problem 

A seismic earthquake signal recorded by a seismic station (seismogram) is built up 
by several different seismic waves (phases), which characterize the type of the sig
nal. Amongst others, significant phases that appear in a seismogram are the P-phase 
(primary phase) and the S-phase (secondary or shear phase), which we consider here. 
The problem we are dealing with, is to detect automatically the S-phase and to deter
mine its arrival time, once the P-phase arrival time is known with high accuracy as in 
[3, 6, 91]. This arrival time is defined as the time sample in the seismogram at which 
the P-phase appears for the first time. An accurate estimate of these arrival times is 
important for determining the type and location of the seismic event. 

The S-phase arrival time is determined in a three-component seismogram, represent
ing motion on a ground detector in three mutually orthogonal directions, two in the 
horizontal plane (x-y plane) and one vertical direction (z-axis). An example of a three
component seismogram is depicted in Figure 7 .1 . 
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Figure 7 .1: A three-component seismogram, with P- and S-phase arrival times picked 
by an analyst at ip = 1120 and is = 1275 respectively. 

The detection of the S-phase arrival time is mostly based on some physical differ
ences between the P-phase and the S-phase, as described thoroughly in [2, 13]. For 
our problem the most obvious property is the difference in arrival times. The S-phase 
is always delayed as compared to the P-phase arrival at the seismic station. A more 
fundamental property is the fact that P-phases compress volumes and S-waves deform 
volumes. Furthermore, the S particle motion, i.e. the direction of the S-phase when 
it arrives at the earth's surface, is contained in a plane perpendicular to the direction 
of the P particle motion, called the S-plane. This property only holds if reflections 
at the earth's surface may be ignored or when the phases arrive in a direction almost 
perpendicular to the earth's surface. In our problem the latter assumption is justified. 
The P-phase travels along the travel direction of the seismic event, unless the medium 
is anisotropic. Finally, comparing the frequency spectra of both phases, the P-phase 
appears at higher frequencies than the S-phase. 

The automatic S-phase detection algorithm that we present in this chapter is a combi
nation of traditional methods to detect S-phases as described before and the discrete 
wavelet transform for l 2 (ll..) as introduced in Section 3.2.3. The idea to analyse the 
three components of a seismogram at several scales has been described already in the 
literature, e.g. [5, 69]. However in these papers only the wavelet transform itself has 
been used as a phase detector in seismograms, whereas in our method the wavelet 
transform has been used in combination with traditional approaches, which are very 
well known in seismology and have been discussed in the past in various papers, e.g. 
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[13, 48, 85]. In Section 7.5 we compare results of this new algorithm with results 
based on ideas of Cichowicz [13]. 

7 .2 Seismic methods for S-Phase Picking 

A common strategy to detect phase arrival times is to construct one or more so-called 
characteristic functions. These are discrete-time functions, with some specific prop
erties at the time sample, at which a phase appears in the seismogram. In this section 
we discuss some of them for detecting S-phase arrival times. 

7.2.1 Characteristic functions based on a cross-power matrix 

We consider a (real valued) three-component seismic signal u E l2 ("ll, JR3 ). The time
dependent N-point cross-power matrix for such signal u is then defined as follows. 

Definition 7.2.1 Let N E IN and u E l2 ("ll., JR3 ). Then the N -point cross-power 
matrix of u at i E "ll is given by 

for i E 71., with 

for all i E 71.. 

< V,1, U2 >i 

< U2, 'U2 >i 

< U3,U2 >i 

i+N-l 

< Un,Um >i= 1/N L Un(k) ·um(k), 
k.=i 

(7.1) 

We observe that< ·, · >i in this definition depends also on N. The window length N 
itself is chosen depending on the (non)-stationary character of the signal u. Generally 
we take N ~ 1/w0 , with w0 the dominating frequency of ·u. Furthermore, before 
computing the cross-power matrix of a signal at a certain time sample, we first create 
a signal u, with zero mean at each component. This is done by subtracting the means 
of the components from the seismic signal. The reason for doing this is to neglect 
possible offsets without seismic cause. These can be generated by the measurement 
equipment. 

Starting with MN,u(i) we can analyse the signal using the eigenvalues and eigenvec
tors of MN,u(i). We observe that MN,u(i) can also be seen as the Gram matrix of the 
set {X[i,i+N-l]ui, X[i,i+N-i]U2, X[i,i+N-J]U3}, with xx the characteristic function 
on 71. of a discrete set X. So MN, u ( i) is a positive semi-definite matrix. Therefore the 
eigenvalues of MN,u(i) are real and positive, 
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and the eigenvectors v1 ( i), v2 ( i) and v3 ( i) can be chosen to form an orthonormal basis 
in JR3 • The following two characteristic functions are based on these eigenvalues and 
eigenvectors. Hereby we assume MN,u(i) =j:. 0, for any i E "Jl.., which is quite a 
realistic assumption. We observe that MN,u(i) = 0 is equivalent with u 1(k) = 
u2 (k) = u3 (k) = 0, fork= i, ... , i + N - l. 

Deflection angle: 

Let v1 ( i) denote the eigenvector of MN,u(i) corresponding to ..\1 ( i). This eigenvector 
v1 ( i) represents the direction of the particle motion at time i with most seismic energy. 
Let i p be the P-phase arrival time. Then v1 ( i p) is the direction of the P particle 
motion. The deflection angle is defined by 

. 2 ( I ( V1 ( i) , V1 ( i p)) I ) 
Kl(i) = :;arccos llv1(i)ll · llv1(ip)II · (7.2) 

Note that 1\:1 ( i p) = 0. Furthermore, since the direction of the S-phase particle motion 
v1 (is) is perpendicular to v1 ( ip ), K 1 attains its maximum 1 at the S-phase arrival time 
is. 

Degree of polarization: 

Following [85], the degree of polarization is defined by 

/\:2(i) = (..\1 (i) - ..\2(i))2 + (..\i(i) - ..\3(i))2 + (..\2(i) - ..\s(i))2 

2 · (..\1 (i) + ..\2(i) + ..\3(i))2 (7.3) 

This characteristic function can be used both for detecting P-phase arrival times and 
S-phase arrival times, since all types of seismic polarization, i.e. at all different phase 
arrival times seismic energy is concentrated along one single direction. In practice 
such an arrival yields ..\1 ( i) » ..\2 ( i), which means that we may expect maxima for 
1\:2 at both ip and is, the S-phase arrival time. 

Remark that K1 and K 2 depend on MN,u, and so they depend on the window length 
N. In Section 7.4.2 we will also discuss window lengths that depend on the frequency 
behaviour of the signal u. Furthermore, we observe that for all characteristic functions 
K introduced in this section we have 

(7.4) 

In the sequel we will use a combination of three characteristic functions K1 , K2 , K3 

such that 
3 3 

II K';,(i) = max II l\:;n(n) <==} i = is. 
nE"if 

m=l m=l 

(7.5) 

The square product of the characteristic functions will be used to emphasize the maxi
mum values attained in each function at is and to reduce other (local) maxima, related 
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to features in the signal other than the S-phase arrival. We have already met two candi
dates to be used in this product of functions. In the following subsection we introduce 
the third function that can be used in (7.5). 

7.2.2 Rotation and the Energy Ratio 

We transform the three-component seismic signal representing motion on a ground 
detector into a three-component signal representing motion in the longitudinal direc
tion and in two transversal directions. The longitudinal direction is the direction of the 
P particle motion ( v1 ( i p)). The transversal directions are mutually orthogonal and are 
chosen in the plane perpendicular to the longitudinal direction ( span { v2 ( i p), v3 ( i p)}). 
This transversal plane is also called the S-plane, since the direction of the S particle 
motion is in the S-plane. 

The seismic signal is transformed into the basis { v1 ( i p), v2 ( i p), v3 ( i p)} by 

(7.6) 

with 

(7.7) 

The third characteristic function we use in (7 .5) is the fraction of energy in the S-plane 
to the total amount of energy in the signal, given by 

n=i 

for some N E IN. This definition can also be rewritten as 
i+N-l 
I: (v1(ip),u(n)) 2 

K,3 ( i) = 1 - _n_=_i -----
i+N-l 
I: (u(n), u(n)) 
n=i 

(7.8) 

(7.9) 

which shows how ,..,3 depends on ip. Note that we may expect a minimum ,..,3 (ip) = 0 
and a maximum K,3(is) = 1. Furthermore, ,..,3 satisfies (7.4). 

7 .3 On the Use of Characteristic Functions 

In this section we discuss the stability of the characteristic functions that we consid
ered in the previous section. Also we discuss problems we have to deal with when 
using the characteristic functions in practice. 
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7.3.1 Error Analysis of the Characteristic Functions 

We consider three kind of errors that can appear in the characteristic functions 1£. 

Amongst others, an incorrect t£ can be the result of computational and truncation er
rors in the matrices MN,u, measurement errors in the signal u, and the determination 
of an incorrect P-phase arrival time i'p. We will show that t£ depends continuously on 
the errors as described above. 

First we consider stability with respect to computational and truncation errors in JyfN,u 

and measurement errors in u. To prove the stability of the characteristic functions we 
present some auxiliary results from linear algebra. 

Theorem 7.3.1 Let M = A+~' with M, A and~ (n x n) matrices with 11~11 2 « 
1. Furthermore, let 01, · · · , On be the eigenvalues of A and let u1, ... , Un be their 
corresponding eigenvectors. Finally, we assume Ak -/- Aj, k -/- j, with j fixed. Then 
a first order approximation of the eigenvector Vj is given by 

(7.10) 

with W1, ... , Wn the eigenvectors corresponding to the eigenvalues o 1 , ... , On of AH. 

Proof 
Cf. [32]. 

With this theorem we can prove the following corollary. 

□ 

Corollary7.3.2 Let H be a Hermitian (n x n) matrix, n > l, with eigenvectors 
u1, ···,Un, llukll = 1, k = l, ... , n. Furthermore, we assume Ak-/- Aj, k-/- j, with 
j fixed. Then the function gj, given by 

is continuous. 

Proof 
Let O < E « land let~ be a (n x n) matrix, n > l, with 11~11 2 < E • o/(n -1) with 
o = min lo1· - okl- Here 01, ···,On are the eigenvalues of H. Then by (7.10) 

k#,j 

II L (~uj' uk) Uk 112 ::; LI (~uj' uk) I 
k#-j Oj - Ok k#-j Oj - ak 

< (n - 1)11~112/0 < E. 

□ 
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We follow the definitions of K 1 and K 3 in (7.2) and (7.9) respectively. Now, Corol
lary 7.3.2 immediately shows that errors in K 1 and K 3 depend continuously on errors 
in MN,u( i) under the condition that )q ( ip) > )'2( ip ). This condition will be satisfied 
in practice, since .\1 ( i) » .\2 ( i) for all phase arrival times i. 

From [32] we take the following result to prove the stability of K2 . 

Theorem 7.3.3 Let M =A+ 6., with M, A and 6. Hermitian (n x n) matrices. Let 
further µ1 2 · · · 2 µn, a1 2 · · · 2 Oen and 81 > · · · 2 8n be the eigenvalues of 
M, A and 6. respectively. Then 

(7.11) 

Using this theorem we arrive at the following corollary. 

Corollary 7.3.4 Let Kn denote the set of all Hermitian (n x n) matrices and let the 
mapping.\ : Kn -+ mn be given by .\(H) = (.\1, ... , .\n), with .\1 2 · · · 2 .\n 2 0 
the eigenvalues of H E Kn, Then.\ is continuous on Kn, 

Proof 
Let E > 0 and let 6. be a Hermitian ( n x n) matrix, with eigenvalues 81 2 · · · 2 8n 
and such that ll6.ll2 < E. Furthermore, let .\i 2 · · · 2 .\~ denote the eigenvalues of 
H + 6.. Then by (7.11) 

I.\~ - .\kl :S max{l81I, l8nl} :S 116.112 < E. 

Therefore ll.\(H + 6.) - .\(H)ll2 < E. □ 

Corollary 7.3.4 yields immediately 

Corollary 7.3.5 Let f : mn -+ [O, 1] be continuous and let Kn denote the set of all 
Hermitian (n x n) matrices. Then K = f o .\ is continuous on Kn, with.\ as defined 
in Corollary 7.3.4. 

Since K 2 can be written as in Corollary 7.3.5, also errors in K 2 depend continuously 
on errors in MN,u· Resuming, we have proved 

(7.12) 

for n = l, 2, any fixed i E 7l. and with K~ the characteristic function associated 
with the perturbated matrices M~,u· The only restriction we have to make is that 
.\1 ( i p) > .\2 ( i p), which is always the case when the signal is polarized. We will now 
show that matrices J\/IN,u depend continuously on u in the following sense: 

Lemma7.3.6 Letu,w E l2 (7l.,JR3 ) and let MN,u and MN,w be the cross-power 
matrices associated with u and w respectively. Then 
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Proof 
Let 'Y E l2("ll,JR-3) be defined as 'Y(n) = u(n) - w(n) and let ~(i) E .m3 x 3 be 
defined by ~(i) = MN,u(i) - MN,w(i). With a straightforward calculation we get 

I< Uk,U[ >i - < Wk,W[ >i I 

I< Uk,Ut >i - < Uk - "/k,U[ - "/l >i I 

I< 'Yk,U[ >; + < Uk,'Yl >; - < "/k,"/l >; I 

< 2Nlhlloo · llulloo + Nlhll~-

So ll~(i)lloo ➔ 0 if llu - wlloo ➔ 0. The proof is completed by the equivalence of 
matrix norms. D 

Resuming, for all characteristic functions of Section 7 .2 we proved stability with re
spect to computational and truncation errors in MN,u and measurement errors in u. 

The last kind of error in the characteristic functions we discuss here is the error due to 
an incorrectly determined P-phase arrival time i'p. 

With a straightforward calculation we get MN,vu(i) = VMN,u(i)VT for all (3 x 
3) matrices V. For orthonormal matrices V this relation yields u(MN,vu(i)) = 
u(MN,u(i)), with u(A) denoting the spectrum of an (n x n) matrix A. In particular 
we have u(MN,v(ip )u(i)) = u(MN,V(i',,)u(i)) yielding that t.:2 is invariant under any 
orthogonal transformation of u. So an incorrect P-phase arrival time i'p will not affect 
t.:2. 

The deflection angle t.:1 is affected by an incorrect ip. An expression for the error in 
t.:1 due to an incorrect i p is given in the following lemma. 

Lemma 7.3.7 Let u E l2 ("ll, IR,3 ) and let R denote the shift on l2 ("ll, JR3 ) given by 

(R-y_)(k) = -y_(k - 1). 

Furthennore, let MN,u be the cross-power matrix associated with u and assume 
A1(ip) > A2(ip). Then 

'v'c:>O:l6>0 : llu - ni',,-ipulloo < J ===} llt.:1 - t.:~lloo < c, 

with t.:1 as given in (7.2) and with 

Proof 

(7.14) 

WedefineJ(i) = l(v1(i),v1(i'p))l- l(v1(i),v1(ip))I. Assume llu-Ri',,-ipulloo ➔ 
0, then Lemma 7.3.6 yields with w = R,i',,-ipu, 
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Now, by Corollary 7.3.2 and the assumption >.1 (ip) > >.2 (ip) we get 

llv1(i'p)-v1(ip)ll2-+ 0. 

This yields 

J(i) = l(vi(i),v1(i'p))l - l(v1(i),v1(ip))I 

:S lv1(i),v1(i'p)-vi(ip)I-+ 0, 

for all i E 71... For I 1>:1 - A:i I we derive an expression using a trigonometric formula. 

I arccos a - arccos bl I arccos ( ab + ~ ~) I 

I arccos ( a2 + ad+ ~ J1 - ( a + d) 2) I 

I arccos ( a2 +ad+ J(l - a2 - ad) 2 - d2 ) I, 

with d = b - a. After substituting a= l(v1(i),v1(ip))I, b = l(vi(i),v1(i'p))I and 
d = J(i) we obtain 

l1>:1 (i) - K~ (i)I = 21 arccos ( x(i) + J (1 - x(i)) 2 - J(i)2) I/Jr, 

withx(i) = l(V(ip)v1(i))il 2 +J(i)l(V(ip)v1(i))il,foralli E "11.. So we get 

l1>:1(i)-1>:~(i)I -+ 2larccos(x(i)+J(1-x(i)) 2 )1/7r 

2 arccos(l)/7r = 0, 

which completes the proof, since this result holds for all i E "11.. □ 

We conclude from Lemma 7.3.7, that not only i'p - ip has to be small in order to 
get small errors in K1, but also >.1 ( i p) > >.2 ( i p) and u has to be a signal of bounded 
variation, i.e., u should satisfy the sufficient condition in (7.14). Note that only the 
last condition holds automatically due to the constraints within the problem. 

Finally we derive an expression for the error in 1>:3 due to an incorrectly determined 
P-phase arrival time. 

Lemma 7.3.8 Let 1,;,~ be as defined in (7.8) with u~, u0 and u'r substitutedforuL, uq 
and ur respectively. Furthennore, we define 'Y = v1 ( i p) - v1 ( i'p ). Then 

111>:3-1>:;lloo :S ll"fv1(ipf +v1(ip)"fT +'Y'YTll2- (7.15) 

Proof 
Following (7 .9) we write 

i+N-1 i+N-1 

K3(i) = L (V(ip)TQV(ip)u,u) / L (u,u), 
ri=i n=i 
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Figure 7.2: The characteristic function"' for the seismic signal in Figure 7.1 (ip 
1120, is = 1275) for N = 15 (top) and N = 30 (bottom). 

with Q the orthogonal projection onto span {g.2 , ~}- Using this notation we derive in 
a straight forward way 

l"'s(i) - "';(i)I 
i+N-1 

L (V(ip)TQV(ip) -V(i'p)TQV(i'p)u(n),u(n)) 
n=i 

i+N-1 
I; (u(n), u(n)) 
n=i 

< IIV(ipfQV(ip) -V(i'pfQV(i'p)ll2 

IIV(ipf PV(ip) - V(i'pf PV(i'p)ll2 

llv1(ip)v1(ipf -v1(i'p)v1(i'pfll2, 

using P = I Q. Since this upper bound holds for any i E ll.., we can take the 
supremum of I K,3 ( i) - "'; ( i) I over all i E ll... The proof is completed by substituting 
v1(i'p)=v1(ip)- 1 . □ 

We observe that the upper bound in (7 .15) is sharp, so that (7 .15) is a good estimation 
for the error in the ratio of transversal to total energy, due to an incorrect P arrival time 
determination. 

7 .3.2 Problems in Analysing Seismic Data 

When analysing a three-component signal with "' = "'i · K,2 • "'s we have to deal with 
several problems. First of all the window length N for the matrices MN,u. and that 
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in t£3 has to be determined. Obviously N is related to the frequency spectrum of the 
signal. By fixing N we do not take into account that a signal can consist of a broad 
range of frequency contents. Moreover, the window lengths N that are not related to 
the frequency contents of the signal will introduce undesired spikes in the graph of t£, 
which has been depicted in Figure 7 .2. In this figure we see the seismic signal of Fig
ure 7.1 (ip = 1120, is = 1275) analysed by t£ using two different window lengths, 
namely N = 15 and N = 30. Due to an incorrect window length we see in the upper 
graph a Jot of local maxima that are not related to any features of interest in the signal. 

Another problem we have to deal with is the following. Ideally t£ should attain its 
global maximum at is. Moreover, this maximal value should be close to 1. However 
in practice a seismic signal does not only consist of a P-phase and an S-phase, but 
also other waves, which we did not consider here, appear in the seismogram. Besides, 
the signal is generally measured with both background noise and signal generated 
noise. Due to these facts t£ will generally not reach a value close to 1 at is and 
even the maximum oft£ at is can tum out to be a local maximum instead of a global 
maximum. Therefore we take a threshold value that has to be attained by t£ at the 
S-phase arrival time is. In practice it turns out that choosing this threshold value is 
very difficult. To illustrate this phenomenon we may have another look at Figure 7.2. 
In both pictures we notice that the global maximum of t£ is much less than its ideal 
value 1. Furthermore, we see that in the second picture t£ attains its global maximum 
at i = 1540 while is = 1290. 

7 .4 The Wavelet Method 

The reliable method Cichowicz introduced in his paper [13] to determine S-phase ar
rival times uses the product function t£ as given in (7.5) to determine is as described in 
Section 7.2. The problems he has to deal with in his paper are exactly the same prob
lems as described in the previous section. To overcome these problems we introduce 
an algorithm based on both Cichowicz's traditional method and the discrete wavelet 
transform for l 2 (7L.). 

7.4.1 Characteristic Functions and the DWT 

The idea to detect S-phase arrival times using the DWT is as follows. By making a 
decomposition of the three-component seismic signal u E l 2 (7L., JR3 ) into signals at 
several scales, it can be possible to separate the S-phase from other phases, that appear 
at other scales. This decomposition is made by taking the l 2 -DWT of each component 
of u after rotating the signal into longitudinal and transverse directions, i.e. 

u(m) = U},m)V1 (ip) + uhm)v2(ip) + u>t)v3 (ip ). 

We already know that the frequency spectrum of the P-phase appears at higher fre
quencies than the S-phase. Therefore generally the S-phase will appear at higher 
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Figure 7 .3: A three-component seismogram of a local event containing micro seismic 
noise. 

scales than the P-phase. Our aim is now to find a set J 5 , representing the collection 
of scaling levels at which most of the S-phase appears. To make this choice more 
explicit, we compute the energy in the l2-DWT of a segment 'U+ of 'U just after ip. 
This will yield information about J s. The measured seismic signal can also consist 
of background noise and micro seismic noise, which has been depicted in Figure 7.3. 
Therefore we have to subtract the energy of the noise. This is done by using a wavelet 
soft thresholding method similar to Donoho's method [24]. 

For denoising we assume 'U = s + r (s : signal consisting of several phase, r : several 
types of noise). By definition s(i) = 0, i < ip. We construct 

'U(ip+i), i=0, ... ,T-l, 

'U(ip - i - 1), i = 0, ... , T - l, 

with T such that T / is = 20, for the sampling frequency is• Also we take 'Ut(i) = 0 
and 'U:;;, ( i) = 0 for 0 < i and i ~ T. So 'U+ and 'U- are two segments with a duration 
of 20 seconds before and after the P-phase arrival time. Following [24], the wavelet 
coefficients g;w;)m-l'U:;;, of 'U:;;, can be used as soft thresholds for 9;W;)m-l'Ut. 
In this method we assume that the noise r is present both before and after i p. To make 
this more explicit we define the soft threshold operator 0 on l2 (7l) by 

0,i[ci](k) = sgn (a(k)) · max(0, la(k)I - TJ), (7.16) 

for all a E l2 (7l) and some 'f/ E JR+. Note that the wavelet filters p and q have not 
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been chosen yet. In Section 7.4.2 we will deal with the question of choosing appro
priate wavelet filters. 

We compute t(m) = ll9;W;)m-1u;;-ll 00 form E JN and use this as soft threshold 
for g; (Q;)m- 1ut. This yields the sequences 

(m) - /: r.m-le t:*(t:*)m-1 + - 1 2 3 IN 
Wn - '::Jq'::Jp t(m)':::lq ':::Ip Un, n - , , , m E , 

representing the denoised segment u+ at scaling level m. Experiments showed that 

with this denoising method the sequences w~n) can become free of micro seismic 
n01se. 

After this denoising procedure we can estimate J s by using the energy distribution of 
w over all scales 

3 

E(m) = L llw~m)ll~- (7.17) 
n=l 

Remark that, cf. Lemma 3.2.6, E tends to zero once a certain scaling level has been 
reached. So we can stop computing the l2 -DWT for higher scales at such a scaling 
level. In Figure 7.4 the relative energy distribution as a function of the scaling level 
has been depicted for both a local event, i.e. an event for which the distance from the 
source to the measurement equipment is less than 100 km, and a non-local event. In 
this analysis the Daubechies-4 (Db4) wavelet filter and its corresponding scaling filter 
have been used, see [23]. Our method also holds for wavelet filters that do not come 
from orthonormal wavelets, which we showed rigorously in [72]. 

The estimation of J s is based on the following physical properties of local and non
local events. Experiments showed that for local events the S-phase arrival time can 
be noticed within the time period of 20 seconds. Fo1' non-local events the difference 
is-ip will be larger than 20 seconds in general, due to the fact that for these events the 
traveling distance of the phases, i.e. the distance between the seismic station and the 
source of the event, is much larger. Another difference between local and non-local 
events is the frequency behaviour of the phases. Both the P-phase and the S-phase 
for local events are high frequency signals compared to the P-phase and S-phase of 
non-local events. Therefore most of the energy of w is found at low scaling levels 
for local events and at higher scaling levels for non-local events. For local events is 
is contained in u+, however in general is-ip > T for non-local events. So only the 
P-phase can be found in v,+ for non-local events 

To analyse the energy distribution we consider the scale mmax for which the maxi
mum of E is attained. In case of a local event this maximum will be related to the 
S-phase, which contains most of the energy in w. For non-local events mmax is re
lated to the P-phase. Let us now assume that we know that most of the energy of 
local events can be found generally at the first m1oc scales. Then in general an event 
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Figure 7.4: Energy distributions as functions of the scale for a) a local event, b) a 
non-local event. 

can be characterized as a local event if mmax :S m1oc and as a non-local event if 
mmax > mtoc· The parameter m1ac is determined experimentally and depends on the 
wavelet filters. Experiments with the Daubechies-4 wavelets yielded m1oc = 4. 

After looking at the energy distribution E of a seismic event we know with which type 
of event we are dealing with. Once we have this knowledge, we take 

JS = { { mmax, mmax + l}, 
{mmax + l, mmax + 2}, 

if mmax '.S mtoc, 

if mmax > mtoc • 
(7.18) 

The latter choice is justified by observing that the S-phase will appear at higher scales 
than the P-phase. Experiments showed that these choices for J s only lead to scales 
at which most of the S-phase appears for signals free of micro seismic noise. Micro 
seismic noise that contains a substantial part of the total amount of the signal's energy 
may appear at other scales than the S-phase. This phenomenon has been depicted in 
Figure 7 .5 .a. Here we see the relative energy distribution of the signal in Figure 7 .3 
during a 20 second period after ip. In Figure 7.5.b we see the relative energy dis
tribution of the same signal during the same time period, but now using the wavelet 
thresholding procedure. The effect of our wavelet thresholding procedure is obvious. 

Once Js has been determined"" can be applied to u(m) form E Js and the S-phase 
arrival time is then given by 

(7.19) 
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Figure 7.5: Energy distributions as functions of the scale for the local event in Fig
ure 7 .3 a) without wavelet denoising, b) with wavelet denoising. 

In practice we have to work with a threshold value that has to be attained at i5 . How
ever by separating the S-phase from the P-phase it will be less difficult to find an 
appropriate threshold value than in the situation we discussed in Subsection 7.3.2. 

Another problem discussed in Subsection 7.3.2 is the window length N which was 
not related to the frequency behaviour of u in Cichowicz's method. Now that we 
use a decomposition of u at several scales, we can use window lengths N(m), i.e. a 
monotone ascending function of the scaling level m. So the characteristic function /'i, 

to analyse u(m) will use the window length N(m) in its definition. In this manner 
the window length is adapted automatically to the frequency behaviour of the signal. 
Amongst others, in the next subsection we will discuss the choice we made for N ( m). 

7.4.2 A Set-Up for the DWT Analysis 

In the previous section we discussed our approach to analyse three-component seismic 
data using characteristic functions and the DWT. Here we will present some choices 
we made for the parameters in our algorithm after testing the method on seismic data. 
Note that also other choices for the parameters can be made as long as they fit in the 
mathematical framework of our algorithm. 

Wavelet filters: 

The first parameter we discuss is the wavelet function and the associated wavelet fil
ters. Generally, in order to come to an appropriate choice for these filters we induce 
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some constraints on the corresponding wavelet functions related to the physical prob
lem. In our problem the most important constraint is that the wavelet function should 
match with the seismic data, in such a way that the dilated and translated wavelets 
generate a good approximation of the several phases at the particular scaling levels. 
In experiments we minimized for a set of seismic data (also synthetic data) for which 
is is known the error in the determined is for a collection of candidate wavelet filters. 
The experimental results led to the choice of the Daubechies-4 ( D 4 ) wavelet filters. 

We observe that also other filters associated to wavelets within the Daubechies family 
(e.g. D 8 , D 20 ) performed very well in this test. These wavelets are much smoother 
than D4 , see [23), however in our problem smoothness of the wavelet does not play 
an important role. The most important property of the chosen wavelet is its match
ing property with the seismic signals, which are not smooth at all. Furthermore, the 
wavelet filters of D 8 and D 20 contain respectively two and five times as many filter 
coefficients as the D4 wavelet filters. Using more filter coefficients will increase the 
computing time of our algorithm slightly. 

Window length N ( m): 

In the previous section we already mentioned a way to adapt the window length N 
used in the characteristic functions. This adaptation can be related to the frequency 
behaviour of the seismic signals. Obviously, to analyse u at several scales m E IN the 
window length N ( m) has to be a monotone ascending function of the scaling level 
m. In order to come to an appropriate function for N ( m) one has to consider two 
facts. The signal is scaled at each level by the factor 2. Furthermore, for low and high 
scaling levels N ( m) should not become too small or too big, since N ( m) is used to 
obtain information out of the signal in a certain neighbourhood. These considerations 
led to the choice 

(7.20) 

with f · · ·l the entier function. So for the first four levels we take N 30 (= 0.75 
seconds at a 40 Hz sampling rate) and thereafter N is multiplied by powers of y'2. 

Threshold value: 

To declare an S-phase arrival time we can use (7.19). However, as we discussed 
already in practice "" will not attain its maximum value ""max at is. Therefore we 
replace ""max by a threshold value 'T) for which O ::; 'T) ::; ""max• Since K,max will vary 
for a set of seismic data we also want to make 'T/ adaptive. This can be done by putting 

'T/ = C · ""max· (7.21) 

Now the problem is left to choose c. Experiments with a substantial number of seismic 
events showed that the algorithm performed most successfully for c = 0.2. 
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Figure 7.6: The characteristic function K for the seismic signal in Figure 7.1 (ip = 
1120, is= 1275) using Cichowicz's method (top) and the DWT method (bottom). 

7 .5 Examples and Results 

In this section we demonstrate our algorithm by means of two examples. To illustrate 
the difference of our approach compared to Cichowicz's approach, we have plotted 
both the characteristic function in (7 .5) and the characteristic function in (7 .19) for 
two events. For these examples we used the set-up as discussed in the previous sec
tion. 

After these two examples we present the results of a test done at KNMI. We used both 
approaches on a set of 313 local events to come to some conclusions. 

Example 7 .5.1 For the local event in Figure 7 .1, we computed the energy distribution 
along scales (7.17) to obtain Js = {2, 3}. For these scales we computed K using the 
window length N = 30. Also K was computed without the wavelet method using the 
window length N = 30. Both functions have been depicted in Figure 7.6. 

Obviously, in our method we have more freedom to choose the threshold parameter 
c than in Cichowicz's method. Note, that for automatic phase detection we have to 
choose a value for c before analysing a seismic event. 

For this particular event an analyst at KNMI determined manually ip = 1120 and 
is = 1275. In our approach we get is = 1280 and for Cichowicz's approach we have 
is = 1295. Using a 40 Hz sampling rate these results differ 0.125 and 0.5 seconds 
respectively. Both results are acceptable in an automatic procedure. 
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Figure 7.7: A three-component seismogram of a teleseismic event, with P and S aITival 
time picked by an analyst at ip = 1810 and is = 11900 respectively. 

Finally, we observe that for this event is-ip = 1275-1120 = 155 (= 3.875 seconds). 
So is - ip < 20 seconds which we assumed for local events. 

Example 7.5.2 Also for the non-local event in Figure 7.7, we computed the energy 
distribution along scales (7.17) to obtain Js = {8, 9}. We computed K, using the win
dow length N(8) and N(9) at scale j = 8 and j = 9 respectively. For this event K, 

was also computed without the wavelet method using the window lengths N = 60 
and N = 120. All three functions have been depicted in Figure 7.8. 

We see that in the upper picture the S-phase aJTival will not be detected unless we put 
0.96 < c :S 1, which is not a very realistic choice for this parameter. With a larger 
window N = 120, the S-phase am val can be detected if we take 0.55 < c :S 1, how
ever in our approach we do not have to be that precise with choosing c, since for all 
0.15 < c :S 1 the S-phase arrival will be detected. Obviously, also here we have more 
freedom to choose the threshold parameter c than in Cichowicz's method. 

For this non-local event an analyst at KNMI determined manually ip = 1810 and 
is = 11900. We get is = 11960 in our wavelet approach and is = 11990 in Ci
chowicz's approach. Since also this signal has been sampled at a 40 Hz sampling 
rate, these results differ 1.5 and 2.25 seconds respectively. Also in this example our 
approach improves the automatic pick as compared to the traditional approach. 
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Figure 7.8: The characteristic function /'i, for the seismic signal in Figure 7.7 (ip = 
1810, is = 11900) using Cichowicz's method for N = 60 (top) and N = 120 
(middle) and the DWT method (bottom) respectively. 

Finally we observe that for this event is - ip = 11900 - 1810 = 10090 (= 252.25 
seconds). So is - ip > 20 seconds which we assumed for non-local events. 

Results: 
Our method has been implemented at the KNMI (Royal Dutch Meteorological Insti
tute) and tested for set of 313 local events, using a set-up as described in Section 7.4.2. 
For each event a manual P-phase arrival pick by an analyst has been used within the 
algorithm. Furthermore, a manual S-phase arrival pick by an analyst has been used to 
judge the result of the test. 

Also the performance of Cichowicz's method has been tested. For this test we did not 
use the raw seismic data, but we pre-filtered the data with a 0.6 - 6 Hz Butterworth 
bandpass filter, see e.g. [79]. The threshold parameter c for this method has been 
taken to be 0.6, which turned out to be the optimal value for c. 

For each event we measured for both methods the difference in is determined auto
matically by the two algorithms compared to the manual picked is. The results of 
this test have been depicted in Figure 7.9. In this figure the number of S-phase arrival 
picks have been plotted versus the difference in time with respect to the manual picks. 
This has been done for both Cichowicz's method (light colored bars) and for our new 
wavelet based method (dark colored bars). Except for the first and last, all bars rep
resent a 0.5 second time interval. The first and the last bars represent the number of 
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Figure 7 .9: Test result for 313 local events (number of S-phase arrival picks within 
time deviation intervals w.r.t. ip.) 

picks that differ more than 5 seconds from the manual picked is. For both methods 
these bars represent ±20% of all tested events. 
These differences are grouped into intervals of 0.5 seconds. 

Table 7 .1 shows the percentage of S-phase picks within an 0.5 and 1.5 second time dif
ference from the manual picked is. We see that for a physically acceptable difference 
of 1.5 seconds our new wavelet based method substantially improved Cichowicz's 
method (68.2 % versus 52.2 %). 

Note, that we did not compare our method with other wavelet based methods like 
[5]. The reason for not comparing our method with these other methods is that the 
results established in these methods do not show substantial improvements of tradi
tional methods in seismics. Moreover, the wavelet based methods that appear in the 
literature have been tested for at most 23 events. Such test results can not be used to 
draw serious conclusion. 

With some technical adaptations the wavelet based S-phase picking algorithm is ex
pected to become operational for picking S-phases automatically using only one seis
mic station of KNMI. For this the algorithm will also be tested on a set of non-local 
events. 
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Method Deviation is : [-0.5,0.5] Deviation is : [-1.5, 1.5] 
BPF 38.3 % 52.2% 
DWT 46.6% 68.2% 

Table 7.1: Number of determined S-phases (for 313 local events) for the traditional 
method and the wavelet based method. 
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