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Introduction 

Geometrically, an algebraic variety X defined over the real numbers can be viewed 

as a complex algebraic variety with an involution given by complex conjugation. The 

study of the topology of X is therefore a study of the topology of its set of complex points 

X ( C) together with the action of G = Z/2 determined by this involution. Of course 

we are particularly interested in the set of fixed points of this G -action, since this is the 

set ofreal points X (R), which has in fact a natural structure of a real algebraic variety 

in the sense of [BCR], being locally biregularly isomorphic to an irreducible algebraic 

subset of R ~ A Zariski-closed subset of X (R) of dimension k has a fundamental class, 

hence it represents a homology class in the group Hk(X(R),Z/2). The subgroup 

of Hk(X(R),Z/2) consisting of classes represented by k-dimensional Zariski-closed 

subsets will be denoted by Hfg(X (R), Z/2). The main theme of this work will be the 

following question. 

Question 1. Given an algebraic variety X defi,ned over R and a natural number ~ which classes in 
Hk ( X (R), Z/2) are represented by k-dimensional ~,ariski-closed subsets? 

This question has been studied before by several authors, and it is related to 

other important problems in real algebraic geometry, like the approximation of C 00 

mappings by regular mappings and the approximation of C 00 hypersurfaces by real 
algebraic hypersurfaces; see for example the survey [BK2], which also contains an 

extensive bibliography. 

The leading principle in this work is that in order to understand Hfg ( X (R), Z/ 2) 

it is crucial to understand the topology of the complex subvarieties of Xe = X 0 C and 

the way complex conjugation acts on these subvarieties. Therefore, we will consider the 

group ~(X) of algebraic cycles of dimension k on X, as defined in [Fu], which can 

be identified with the fixed part under complex conjugation of the group ~ (Xe) of 

complex algebraic k-cycles on Xe. Borel and Haefliger have defined the cycle maps 
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and 

by sending a subvariety V C X defined over R (resp. a complex subvariety V C X c) to 

the homology class represented by V(R) (resp. V(C)). In particular, Hfg(X (R), Z/2) 
is the image of~ ( X) under cl~ 

Geometrically, the connection between the real cycle map cl R and the restriction of 

the complex cycle map cl c to the subgroup ~ ( X) = ~ ( X c) G of cycles defined over 

R is obvious. If it would be possible to find a connection between cl R and cl c on the 

level of homology, we would be able to apply the considerable knowledge that exists on 

the complex cycle map to the study of the real cycle map. 

Question 2. Is there a homological wiry ef relating cl R and cl c? 

Loosely speaking, we ask for a homological equivalent of 'taking fixed points'. As 

far as I know, it has been only recently that real algebraic geometers came to realize 

that such a construction is actually possible. Several different, but related techniques 

were developed independently around the beginning of the previous decade. When 

I started my research, I was aware of the work of F. Mangolte in [Mal], and an 

observation made in [CTS]. Mangolte concentrates on the case of nonsingular, simply 

connected complex surfaces with G = { 1, O'} acting via an antiholomorphic involution. 

For such a surface X he was able to show that every homology class in the subgroup 

M = { "( E H 2 ( X ( C), Z): O'( "() = -1} is actually represented by a topological cycle c 

with the property that O'( c) = -c. Taking the fixed point set of c then defines a mapping 

M---+ H 1 (X(R), Z/2). Since complex conjugation reverses the orientation of the set 

of complex points of a curve defined over R, the image of the complex cycle map 

cl c restricted to the group 2; ( X) = 2; ( X c) G is contained in M, so the composite 

mapping <p o cl c is defined on 2; ( X), and it follows from the definition that <p o cl c 

coincides with cl~ This construction has the advantage that it is very concrete, but it is 

hard to generalize to an arbitrary surface X or to cycles of arbitrary dimension on a 

higher-dimensional variety. 

On the other hand, Remark 2.3.5 in [CTS] implies that for any nonsingular 

variety X defined over R, the cycle map in etale cohomology with coefficients in 

Z/2, composed with a certain natural mapping from the etale cohomology of X into 

the cohomology of X(R), coincides with the real cycle map in cohomology (which 

is derived from clR using Poincare duality). Also, the cycle map in etale cohomology 

composed with the natural mapping into the cohomology of X(C) gives the complex 

cycle map (modulo 2). In other words, both the complex and the real cycle map 

factorize via etale cohomology, which provides, at least for nonsingular varieties, a 

positive answer to Question 2. 
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However, this answer is not completely satisfactory, since the etale topology is 

much harder to work with than the Euclidean topology. From [Nil] I learned 

that the etale cohomology of X with coefficients in Z/2 coincides with equivariant 

cohomology H*(X(C); G,Z/2) of the G-space X(C) in the sense of Borel ([Bol]) 

and Grothendieck ([Gr, Ch. VJ). Equivariant cohomology, with integral coefficients 

or coefficients modulo 2, had already proven to be an effective tool in real algebraic 

geometry (cf [Krl], [Si], [Nil]), which is not really surprising, since it was originally 

constructed in order to establish connections between the cohomology of a G -space 

and the cohomology of its fixed point set. Hence it was clear that the natural thing to 

do was to define for any nonsingular variety X over R of dimension n an equivariant rycle 

map 

cl: ~(X) -----t H 2"-2k(X(C); G,Z(n - k)) 

where Z( n - k) denotes the constant sheafZ with a twisted G-action (see Section III.8). 

This twist is needed, since complex conjugation reverses the orientation on a complex 

manifold of odd dimension. The definition of cl itself is in fact straightforward, and it 

follows from the definitions that the composition of the equivariant cycle map with the 

natural mapping 

coincides with the co homological version of the complex cycle map cl'=: Also the 

existence of a natural mapping (3 from the equivariant cohomology of X ( C) into 

the cohomology of X (R) is a well-known fact. The hard part is the proof that the 

composition of the equivariant cycle map cl with the mapping 

induced by (3 coincides with the cohomological version of cl~ For this fact I originally 

only obtained a satisfactory proof in the case n - k = 1; in the other cases it depended 

too much on rather messy computations. 

Then I found the paper [Kr2], containing the same equivariant cycle map cl, with 

for n - k = I the same proof for the compatibility between (3"-k o cl and clR as I had. 

The case of higher codimension was reduced to the case of codimension 1 using rather 

nontrivial techniques from algebraic geometry. Hence, at least for a nonsingular variety 

X, Question 2 was settled in the context of ordinary topology. Nevertheless, both for 

theoretical and practical purposes the answer was still unsatisfactory, since ideally we 

should have for any topologi,cal G-space Z C X ( C) representing a class [ Z] in the 

equivariant cohomology of X(C), that the image of [Z] in H*(X(R),Z/2) under 

the mapping (3 is essentially the fundamental class represented by zc C X(R). The 

algebro-geometric nature of Krasnov's proof made it impossible to generalize it to the 

topological situation, apart from some very special cases (see [Kr3, § 1.3]). 
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This problem, and also the idea that a good cycle map should have its image in 
homology rather than cohomology, led me to the construction of equivariant Borel

Moore homology, as can be found in Section III. l. I found a natural analogue to the 

mapping (3, a homomorphism p from the equivariant homology of X into the ordinary 

homology of X (R) (see Section III. 7), and I obtained the following, purely topological 

result (see Section III. 7 .1 ). 

Theorem. Let X be a cohomology manifold overZ/2 ef dimension n with an action ef G = Z/2 

and let µ x E H n ( X; G , Z / 2) be the equivariant fandamental class ef X. For any connected 

component V C X G ef cohomologual dimension d, the image ef p(µx) E H,(X G, Z/2) under 

the prqjection H * ( X G , Z / 2) -+ H d ( V, Z / 2) is the fandamental class ef V. 

The definition of an equivariant cycle map then is completely analogous to the 

definition of the complex cycle map. Since the mapping p is covariantly functorial, it is 

easy to deduce from the above theorem that the following diagram is commutative for 

any algebraic variety X defined over R (see Section IV l ). 

This completely answers Question 2 by purely topological methods. 

In particular, it follows that Htg(X (R), Z/2) is contained in the image of Pk· Since 

in general Pk does not map surjectively onto Hk(X (R), Z/2), this gives a restriction on 

H;g that only depends on the G-equivariant topology of X(C). This fact is exploited 

in severai"concrete situations. In Example N.3.1 the image of Pk is determined for an 

abelian variety X defined over R, giving in many cases highly nontrivial restrictions 

on the dimension of Hfg(X(R), Z/2). In Chapter V the mapping Pt is used in order 

to determine the group Httg( Y(R),Z/2) for a real Enriques surface Y. Since in that 

case H 2 ( Y, tJv) = 0 we actually have that Htg( Y (R), Z/2) coincides with the image 

of Pt . A close examination of the equivariant homology of a real Enriques surface 

and the mapping Pt, due to F. Mangolte and myself, the gives the following result (see 

Theorem V 1.2 for more details). 

Theorem. Let Y be a real Enriques suiface with Y (R) # 0. If all connected components ef the 
real part Y (R) are orientable, then 

Htg(Y(R),Z/2) = Ht(Y(R),Z/2). 

Otherwise, 

Finally, Chapter VI is based on the research I did before learning about equivariant 

cohomology. In the original paper on which this chapter is based, the main result 
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(Theorem VI.1.5, see below) is proven using well-known, but rather nontrivial facts 

from algebraic geometry. The present version uses equivariant cohomology, which 

not only shortens the proof considerably, it also embeds this result in a topological 

framework, clarifying both the role of the special topological structure and of the special 

algebraic structure of the varieties involved. The objects of study are real algebraic cycles 

of codimension 1 on a complex algebraic variety X, or, to be more precise, algebraic 

cycles on the under(ying real algebraic structure X R of X. Here X R is not an algebraic variety 

over R, but it is a real algebraic variety in the sense of [BCR]; in other words, XR is 

locally isomorphic to an algebraic subset of R". The set of points of X R is the set of 

complex points of X, and the real algebraic structure is obtained by considering an 
affine open subset U C X as a real algebraic set via the identification ofCN with R2N. 

In particular, if X is of (complex) dimension d, then XR has dimension 2d as a real 

algebraic variety. This construction allows us, for example, to ask which classes in the 

first homology group of a complex curve C are represented by real algebraic curves on 

C. The main result of Chapter VI is the following theorem. 

Theorem VI.1.5. Let X be a complete, nonsingular irreducible algebraic variety over C. The 

Albanese mapping ax : X ---+ Alb X induces an isomorphism 

a~: H;1g(Alb(X)R, Z/2) ~ H~g(XR, Z/2). 

This result, together with the Lefschetz Theorem on hyperplane sections and 

Bertini's Theorem, allows us to construct nonsingular complex algebraic varieties X 

of any dimension 2 2 with prescribed cohomology in codimension 1 and prescribed 

dimension of H~g(XR, Z/2) (see Theorem VI.3.2). On the other hand, a method due 

to J. Huisman for the computation of the group H ~g of a real abelian variety then gives 

a method of computing H;1g(XR, Z/2) in terms of the period matrix of X. Using these 

computations, the following results are obtained. 

Corollary VI.3.8. Let X be a complete nonsingular irreducible complex algebraic variefy with 

H~g(XR,Z/2) = H 1(X,Z/2). 

Then H' (X, Z/2) = H 1 (X, Z) ® Z/2 and Alb Xis efCM-rype. 

Corollary VI.3.10. There are, up to isomorphism, on(y countab(y many nonsingular irreducible 

projective complex curves C with H~g( CR, Z/2) = H 1 ( C, Z/2). 

Apart from the main questions concerning the cycle maps, there are some other 

questions concerning algebraic cycles and the topology of algebraic varieties defined 

over R that are studied in this work. First of all, there is the problem that if we consider 

algebraic k-cycles of X and on Xe modulo rational equivalence, then we obtain 

the Chow groups CHk(X) and CHk(Xc), and we see that the natural identification 

2;,(X) = 2;,(Xc)G gives a mapping CHk(X)---+ CHk(Xc)G, but this mapping need 

not be injective or surjective. There are examples of pairs of cycles defined over R 
which are not rationally equivalent over R, but which are rationally equivalent over C. 



6 INTRODUCTION 

On the other hand, there are examples of complex k-cycles on a variety over R that 

are rationally equivalent to their complex conjugate without being equivalent to a cycle 

that is actually defined over R (see Section I.2). 

Question 3. What is the kernel and what is the cokernel ef the natural mapping CHk(X) --+ 

CHk(Xc)G? 

In general this question is very hard. However, we will see that when X is 

nonsingular and complete a good knowledge of the equivariant cohomology of X 

can shed light on this question; see Section IV.5. 

Remark. This monograph is a slight revision of my PhD Thesis from 1997. I have 

corrected some errors and misprints, updated the references, and in a few cases added 

a remark about later developments. 



CHAPTER I 

Real algebraic cycles 

In this chapter the basic theory concerning algebraic cycles on varieties defined 

over R will be reviewed. Apart from the notion of real algebraic equivalence (Definition 1.5), 

everything is classical. 

1. Definitions 

In complex algebraic geometry there are two equivalent ways of defining an 

algebraic variety. The classical definition of a complex projective algebraic variety is 

an irreducible Zariski-closed subset of a complex projective space. In the language of 

schemes, a complex projective algebraic variety is a projective integral scheme over the 

complex numbers. Over the real numbers these two definitions yield entirely different 

concepts. The classical definition gives rise to a projective real algebraic variety in the 

sense of [BCR]. Here we will mostly study varieties in the scheme-theoretic sense. In 

order to avoid confusion, we will not call these varieties real algebraic varieties. 

Definition 1.1. Let K be a field of characteristic zero. An algebraic variety over a.field K is 

a reduced, separated scheme of finite type over K. If K is an algebraic closure of Kand 

Xx = X x K K is irreducible, X is said to be geometrically irreducible. 

For us, the field K will always be the field of real numbers R or the field of 

complex numbers C. Note that a variety over K is not by definition irreducible, since 

irreducibility behaves badly under field extensions; it is for example very easy to find an 

irreducible variety X defined over R such that X c is not irreducible. We will be mostly 

interested in geometrically irreducible varieties, but this property is not included in the 

definition of a variety, since we will need varieties that are not geometrically irreducible 

when working with algebraic cycles. 

Let G = Gal ( C /R) = { 1, CT} be the Galois group of C /R. The G -action on 

C induces a C-antilinear G-action on Xe. Indeed, a good way of looking at an 

7 
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algebraic variety over R is considering it as a complex variety with a C-antilinear (or 

'anti-holomorphic') G -action. For example, if Y is another algebraic variety defined 

over R, the set of morphisms HomR ( X, Y) defined over R is bijective to the set of 

G-equivariant morphisms Homc,e(Xe, Ye) defined overC. 

The set of complex points X ( C) of X will be equipped with the euclidean topology. 

The canonical G-action on X ( C), which will sometimes be called the complex conjugation 

on X ( C), is continuous and its set of fixed points is X (R), the set of real points ( or the 

real part) of X. Although X (R) has the natural structure of a real algebraic variety in the 

sense of [BCR], we will consider it as a topological space with the euclidean topology. 

In particular, X (R) can have several connected components, even if it is irreducible for 

the Zariski-topology. Note that there is a bijection between the quotient X(C)/ G and 

the set of closed points of X. In other words, a closed point P of X with a complex 

residue field determines a pair of complex points in X ( C). 
By ~(X) we denote the free abelian group generated by the k-dimensional 

irreducible closed subvarieties of X. An element of ~ ( X) is called an algebraic cycle 

ef dimension k. Any closed subscheme S C X of pure dimension k gives rise to a 

cycle consisting of the subvarieties of X associated to the irreducible components of 

S counted with geometric multiplicity (see [Fu, 1.5]). By abuse of notation this cycle 

will be denoted by S E ~(X). Sometimes it is more convenient to have a grading 

corresponding to codimension. Then we write 2'k(X) = ~-k(X), where n is the 

dimension of X. The G-action on Xe induces a G-action on ~(Xe), and base 

change from R to C induces an isomorphism ~(X) ..:::'., ~(Xe)G for any algebraic 

variety X over R. 
A proper morphism f : X ---+ Y induces a proper push-farward J. : ~ ( X) ---+ 

~(Y), and a flat morphism f: X---+ Y induces afiatpull-back f*: 2'k(Y)---+ 
2'k(X) (see [Fu, §§1.4 and 1.7] for the definitions). Note that the base change 

isomorphism ~ ( X) ..:::'., ~ (Xe) G is in fact the flat pull-back associated to the canonical 

projection 7r: Xe ---+ X. On the other hand, the proper push-forward associated to 7r 

gives a mapping n.: ~(Xe)---+ ~(X). We have that n. on*: ~(X)---+ ~(X) is 
multiplication by 2 and n* on.: ~(Xe) ---+ ~(Xe) is the mapping (1 + CT), where 

CT E G is the non-trivial element. 

Definition 1.2. Let X be an algebraic variety over field K of characteristic zero. 

The subgroup 2't(X) C ~(X) of cycles rational(y equivalent to zero is the subgroup 

generated by the algebraic cycles of the form Vo - Vc,0 , where V C X x P}. is a 

subvariety that is flat, ofrelative dimension k over P}.. 

Of course, two cycles a, b E ~(X) are said to be rational(y equivalent if a - b E 

2't(X). It is important to realize that the injection n*: 2't(X) '-----+ 2'i.ra1(Xe) G need 

not be surjective; see Example 2.3. It easily follows from the definitions that proper 

push-forward and flat pull-back homomorphisms always respect rational equivalence 



I. DEF1NITIONS 9 

(see [Fu, T. 1.4, Th. 1. 7]). In particular, 7r* o ?T, maps 2t(Xe) into itself Since 7r* o ?T, 

restricted to 2't(Xe)G is multiplication by 2, the quotient ~ra1(Xe)G j?T* 2't(X) is 
purely 2-torsion. 

There is another, equivalent, way of defining rational equivalence which can be 

very useful, especially in the codimension l case. Let Z C X be an irreducible closed 

subvariety of codimension 1. Let tf z ,x be the local ring of Z on X. For an element 

r E tf z ,x, let ordz ( r) be the length of tf z ,x / ( r) as an tf z ,x-module (see [Fu, § 1.2]). 
When X is normal then ordz ( r) can be interpreted as the order of vanishing of r along 

Z. Now let K(X) be the function field of X. Write f E K(X)* as f = a/ b for some 

a, b E tf z ,x and define 

ordz(J) = ordz(a) - ordz(b). 

This gives a well-defined homomorphism K(X)* -, Zand we get a homomorphism 

div: K(X)* _, ~(X) by putting 

div(J) = L, ordz (J) Z, 
z 

where Z ranges over all irreducible closed subvarieties of X of codimension 1. The 

cycle div(J) is called the divisor ef f. Fulton defines 2';!1 to be the image of the mapping 

div, and fork> l he defines 2;!JX) to be the image of the homomorphism 

EB 2;!J W)-, 2'k(X), 
W<-+X 

where W ranges over the irreducible closed subvarieties of X of codimension k - 1. 

This definition coincides with Definition 1.2 by [Fu, Prop. 1.6]. 

Ifwe would replace the base curve Pk in Definition 1.2 by an arbitrary nonsingular 

curve C over R, and instead of the points O and oo we would take two real points 

t0 , t1 E C (R), this would give a definition of algebraic equivalence that is compatible 

with Fulton's definition. However, if t0 and t1 are in different connected components 

of C (R), both intuitively and for any practical purposes the fibres T7t0 and v;, cannot 

be considered to be in the same 'continuous' family of subvarieties defined over R. 
Therefore it is of little use trying to take into account the ground field R, and it seems 

more natural to say that two cycles over R are algebraically equivalent if and only they 

are algebraically equivalent over C. 

Definition 1.3. Let Xe be an algebraic variety defined over C. The subgroup 

~alg(Xe) C ~(Xe) of cycles algebraically equivalent to O is the subgroup generated 

by cycles of the form T7t0 - Vi,, where t0 and t1 are closed points on a nonsingular curve 

C over C and V C Xe x C is a subvariety that is flat of relative dimension k over C. 
For an algebraic variety X over R, we define 
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Remark 1 .4. If T is a nonsingular variety over C of dimension n, and V C Xe x T 

is a subvariety which is flat over T ofrelative dimension dimension k, then for any pair 

of closed points t0 , ti E T the cycle v;0 - v; 1 is algebraically equivalent to zero, since 

we can connect any two closed points on T by a chain oflocally closed embeddings of 

nonsingular curves. 

An analogous result holds if V is any family of k-cycles over T, but then one cannot 

just take the scheme-theoretic fibres v;0 and v;1 - which need not even be of dimension 

k -, so a more elaborate concept like Fulton's Gysin morphisms is needed; see [Fu, 

Ch. 10]. In particular, we have by [Fu, Ex. 10.3.2], that for cycles over C our definition 

coincides with Fulton's definition. 

Note that there actually exist algebraic varieties over R for which Fulton's definition 

of algebraic equivalence gives an equivalence relation different from the equivalence 

relation defined here; one of them is in fact the curve of Example 2.3. 

The above discussion suggests a third equivalence relation under which the 

members of a 'continuous' family of algebraic cycles over Rare equivalent. 

Definition 1.5. Let X be an algebraic variety defined over R. The subgroup 
~R-alg ( X) C ~ ( X) of cycles real algebraically equivalent to 0 is the subgroup gener

ated by cycles of the form v;0 - v; 1 , where t0 and ti are points in the same connected 

component of the real part C (R) of a nonsingular curve C over R, and V C X R x C 
is a closed subvariety that is flat, of relative dimension k over C. 

It is not hard to check that proper push-forward and flat pull-back respect algebraic 

equivalence and real algebraic equivalence. Slightly more subtle is the fact that the 

mapping 1r,: ~(Xe) -+ ~(X) sends a complex cycle that is algebraically equivalent 

to zero to a cycle that is real algebraically equivalent to zero. 

Lemma 1.6. Let X be a geometrically irreducible algebraic variety defi,ned over R, and let k 2: 0. 

Let n,: ~(Xe) -+ ~(X) be the proper push-forward associated to the canonical prqjection 
n: Xe-+ X. Then n, maps ~alg(Xe) into ~R-alg(X). 

PROOF. Let C be a complex curve, let t0 , ti be closed points of C and let V C Xe x C 
be as in Definition 1.3. We will show that 1r, v;0 is real algebraically equivalent to 1r, v;1 • 

Let C" be the conjugate curve, i.e., the scheme C with structure morphism given 

by C -+ Spec C __:!___., Spec C. Then C x C" is a quasi-projective variety over C with 

a canonical C-antilinear involution, so by descent theory there is a quasi-projective 

variety C"f// defined over R, such that ( C1r )e = C x C". In fact, C"fl/ is the Weil restriction 
of C (see also Section VI.I); in particular, Crr(R) is homeomorphic to C(C), hence 

connected. 

Consider the subvariety V' = V x C" C Xe x C x C". Then, assuming for 

simplicity a( V') =/=- V', there is a subvariety V" C X x C"f//, such that 

V" ® C = V' U a( V'). 
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Clearly, V" is flat over C1f/ since V' U a-( V') is flat over C x ca. For i = 0, I, we 

defines;= (t;, t'[) E C(C) x ca(C). Thens; is invariant under a-, sos; E C1//(R). 
From the fact that ( V" ® C)s, = Vi; U a-( Vi;) C Xe, we see that ( V" ® C) ,, is the cycle 

1r* o 1r. Vi, E 2;,(Xc), so V,'.' = 1r, Vi; E 2;,(X) for i = 0, 1. Since C11/ is nonsingular 

and C,-y (R) is connected, this means that 7r * ( T7t0 - Vi 1 ) is real algebraically equivalent 

~~ro. □ 

Clearly we have 

The Chow group in dimension k is defined to be 

The elements of CHk(X) are called rycle classes, and the class of a cycle a E 

2;,(X) is denoted by [a] E CHk(X). The subgroup :Z:alg(X)/ :Z:ra\X) of cycle 

classes algebraically equivalent to zero is denoted by CH1°) ( X). The subgroup 

:z:R-alg( X) / :Z:rat( X) C CH1°) ( X) of cycle classes real algebraically equivalent to zero 

is denoted by CH~o)R ( X). 
For cycles of codimension k modulo rational equivalence we also use the notation 

CH'(X). The group 2'1 (X)/ 2;./g(X) is known as the Neron-Severi group of X and 

denoted by NS(X). Since proper push-forward f. and flat pull-back j* respect 

rational equivalence, they induce homomorphisms of Chow groups which are denoted 

by f. (resp. J*) as well. One of the properties of the Chow groups that are important 

in applications, the existence of an intersection product 

whenever X is nonsingular, will only play a minor role in the present work. 

2. The Galois action 

In this section we will investigate the mapping 

for an algebraic variety X defined over R. The main technical tool will be the 

cohomology H*(G,M) ofthe group G = Gal(C/R) = {l,o-} with coefficients in 

a G-module M (an abelian group with a G-action). Here it will be sufficient to know 

that H* ( G, M) is functorial in M, it transforms short exact sequences into long exact 

sequences and it can be computed as the cohomology of the complex 

(1) M~M~M~M~·-· 

(see also Section III. 7). 
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First we will study the kernel of the mapping 1r* : CH k ( X) --+ CH k ( X c) G. Note 

that the homomorphism 1r, o 1r* is multiplication by 2, so the kernel of 1r* is contained 

in the 2-torsion of CHk( X). It is easy to see that the kernel of 1r* is isomorphic to the 

co kernel of the map 

Unfortunately, for most k these two groups are quite mysterious; the codimension 1 

case is an exception. 

Proposition 2.1. Let X be a normal, geometrical[y irreducible variety over R. The kernel ef the 
mapping1r*: CH1(X)--+ CH1(Xc)c isisomorphicto H 1(G,tJ(Xc)*). 

PROOF. Since Xe is normal and irreducible, we have a short exact sequence 

(2) 

where tJ ( X c) denotes the ring of regular functions on X c and K ( X c) denotes the field 

of rational functions on X c. The short exact sequence induces a long exact sequence 

···--+ (K(Xc)*)c--+ .2;'.!/Xc)c--+ H 1(G,tJ(Xc)*)--+ H 1(G,K(Xc)*)--+ ··· 

Now H 1 ( G, K(Xc)*) = 0 by Hilbert's Theorem 90 and the image of (K(Xc)*( --+ 

.2;'.l/Xc) c is precisely the image of 2't(X) --+ .:Zt\Xc) c. □ 

As a corollary we obtain the following well-known and important result. 

Corollary 2.2. !f X is a complete, normal, geometrical[y irreducible variety over R, then 
1r*: CH1(X)--+ CH1(Xc)c is injective. 

PROOF. If Xis complete, then tJ( Xe)* = C*, so it follows from Hilbert's Theorem 90 

thatH 1(G,tJ(Xc)*)=0. □ 

The following example shows that the completeness condition is important. 

Example 2.3. Let S C A~ be the nonsingular affine plane curve defined by the 

equation x2 + y 2 = 1. Then S is isomorphic to the projective line Pk minus one closed 
point with complex residue field. It follows that any f E K( S)* having no poles on S 
has an even number of zeroes, so a single real point on S is not rationally equivalent 

to zero over R. In fact, we easily see that CH1 ( S) = Z/2. On the other hand, Sc is 

isomorphic to the complex projective line minus two points, so CH1 ( Sc) = 0. 

Since the restriction of the mapping 1r* o 7r * to CH k ( X c) G is multiplication by 2, 

the cokernel of the map 1r*: CHk(X)--+ CHk(Xc)c is purely 2-torsion. The short 

exact sequence of G -modules 

0--+ 2't(Xc)--+ ~(Xe)-+ CHk(X)--+ 0 

gives a long exact sequence 
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The image of the mapping ~(Xc)G ------, CHk(X)c in the long exact sequence is the 

image of 7r*, and it is easily seen that H 1 ( G, ~ ( X c)) = 0, so the cokernel of 7r* 

is isomorphic to H 1 ( G , :z;a' ( X c)). Again, this description is only really useful in 

codimension 1. 

Lemma 2.4. Let X be a normal, geometricalry irreducible variety over R. Then the cokernel 

of 7r* : CH 1 ( X) ------, CH 1 ( X c) G is isom01phic to the kernel of the canonical homomoiphism 

H 2 ( G, tJ(Xc)*) ____, H 2 ( G, K(Xc)*). 

PROOF. From the long exact sequence associated to the short exact sequence (2) and 

the fact that H 1 ( G, K(Xc)*) = 0, we see that the sequence 

is exact. □ 

Corollary 2.5. Let X be a complete, normal, geometricalry irreducible variety over R. .lf -1 is 

not the sum of two squares in K ( X) *, then 7r* : CH 1 ( X) ------, CH 1 ( X c) G is surjective. Otheiwise 

the cokernel of Jr* is isomorphic to Z/2. 

PROOF. Since Xis complete, tJ(Xc) = C, so H 2(G,tJ(Xc)*) = R*/R;0 = Z/2 
is generated by the class of -1. The class of -1 is zero in H 2 ( G, K ( X c) *) if and 

only if there is a function h E K ( X c) * such that h · h" = -1. In other words, writing 

h = 1 + ig, we see that the homomorphism H 2 ( G, tJ(Xc)*) ------, H 2 ( G, K(Xc)*) is 

zero if and only if there are 1, g E K(X)* such that 1 2 + g2 = -1. D 

Combining the above results on injectivity and surjectivity of 7r* we get the following 

well-known and important result. 

Theorem 2.6. Let X be a complete, normal, geometricalry irreducible variety over R with a 

nonsingular real point. Then 7r* : CH 1 ( X) ------, CH 1 ( X c) G is an isomorphism. 

PROOF. This follows from Corollary 2.2 and Corollary 2.5 since X (R) is Zariski-dense 

in X, so there are no 1, g E K(X)* such that 1 2 + g2 = -1. D 

There are many examples of complete, normal, geometrically irreducible varieties 

over R with X (R) = 0 and CH 1 ( X) I CH 1 ( X c) c . The easiest example is probably 

the projective conic C given by the equation 

xz + y2 + z2 = 0. 

Since Cc is isomorphic to the complex projective line, CH 1 ( X c) = CH 1 ( X c) G -::::: Z is 
generated by a single point, but all divisors on C defined over R have even degree, so 

the cokernel of the mapping 7r*: CH1 ( C) ------, CH1 ( Cc) c is isomorphic to Z/2. 
Observe that the above does not imply that 7r* induces an isomorphism NS(X) -=:'., 

NS(Xc)c whenever X satisfies the conditions of the theorem (see also [Si,§ I.4]). We 

will come back to this question in Section IVS. 
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3. Divisors and line bundles 

An algebraic cycle of codimension 1 is also known as a H'l,il divisor. If X is a 

nonsingular irreducible variety over R, a closed subvariety Z C X of codimension 1 is 

locally defined by one equation, so Z can be given by a collection ( U;, f;) where the 

U; form an open covering of X and the f; are nonzero elements of 0( U;) such that 

on U;J = U; n Ui we have f;i u,1 = hiJiJI u,; for some unit h;J E O*( U;J)- Since the 
f; are unique up to multiplication by an element of O* ( U;), we see that a Weil divisor 

determines a section of the sheaf x; I Dx, where Xx is the (constant) sheafofrational 

functions on X. For an arbitrary irreducible variety X over R we say that an element 

ofr( X, X; /Di) is a Cartier divisor. A Cartier divisor is said to be principal if it is in the 

image of the canonicalmapr(X, X.;)----+ r(X,Xx /Ox). We have a homomorphism 

div: r(X, X.;/ O}) ----+ 2' 1 (X) 

which is defined in the following way. Let ( U;, f;) be a collection as above, representing 

a Cartier divisor D. For an irreducible subvariety Z C X of codimension 1 define 

ordz ( d) = ordz (f;), where the index i is chosen such that U; n Z is nonempty. Then 

we put 

div(D) = I,ordz(D)Z. 
z 

When X is nonsingular, the mapping div is the inverse of the homomorphism 

2'1 ( X) ----+ r ( X, x; j o;,;) defined above. The composite mapping r ( X, x;) ----+ 

r( X, Xx/ Dx) ~ 2'1 ( X) is precisely the mapping div defined in the previous 

section, and the short exact sequence 

o - Di - x; - x.; / D} - o 
induces an exact sequence 

because X; is flasque (it is a constant sheaf on the space X with the Zariski topology). 

This implies that the mapping div induces a homomorphism 

which is an isomorphism if X is nonsingular; in that case we may use the term divisor 

class for an element in CH1 ( X) (or H l ( X' Dx )) without any danger of confusion. 

The group H 1 ( X, Dx) may also be interpreted as the Picard group of X, denoted 

Pic(X), which is the group of isomorphism classes of invertible sheaves on X with the 

tensor product as group operation. This interpretation is also valid for a singular variety 

X. More geometrically, Pic(X) is the group of isomorphism classes ofline bundles on 

X over R. Here a line bundle on X over R is a variety .!£ and a morphism p: .!t: ----+ X 
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such that we have an open cover { ui} of X and isomorphisms '1/J i : p- 1 ( ui) __::'., ui X Ak 
having the property that 'ljJ J o 'ljJ; 1 is a linear automorphism of ( Ui n Uj) x Ak (see [Ha, 

Exe. II.5.18]). After base change to Ca line bundle p: 2 - X gives rise to a complex 

algebraic line bundle p: .Ye - Xe with a C-antilinear involution a: .Ye - .Ye 
compatible with the involution a on Xe, and it is well-known that, conversely, any 

such pair (.Ye, a) actually comes from a line bundle 2 on X defined over R. Two 

line bundles 2, 2' on X defined over R are isomorphic if and only if there is an 

isomorphism of complex line bundles f : -Ye --'.:+ 2/,. that is equivariant for the Galois 

action, i.e., a of= f o a. 

Definition 3.1. Let Xe be an algebraic variety defined over C. The subgroup 

Pic0 (Xe) C Pie (Xe) of isomorphism classes of line bundles algebraically equivalent to 

0 is the subgroup generated by line bundles of the form £i0 @ ~; 1, where t0 and t1 

are closed points on a nonsingular irreducible variety T and 2 is a line bundle on 

Xe x T. 

Here .Yi; is of course the restriction of 2 to the fibre (Xe) 1,, which we identify 

with Xe. For an algebraic variety X over R we define Pic0 (X) = (n*)- 1 Pic0 (Xe)- Of 

course, we define the group 

Pic0R ( X) C Pic0 ( X) 

of isomorphism classes of line bundles real algebraically equivalent to zero as the subgroup 

generated by line bundles of the form £i0 ® ~; 1, where t0 and t1 are real points in the 

same connected component of the real part T (R) of a nonsingular variety T and 2 is 

a line bundle on X x T defined over R. 

Lemma 3.2. Let X be an algebraic variety defined over R. Then the homomorphism 

div: Pic(X) - CH1(X) 

maps Pic0 (X) into CH/0i(X) and Pic0R (X) into 2'la1/X)/ ~~t(X). 

PROOF. Any two points on a nonsingular irreducible variety over C can be connected 

by a chain of nonsingular irreducible curves, and for any two points t1, t2 in a connected 

component of the real part T (R) of a nonsingular irreducible variety T defined 

over R we can find (using the Stone-Weierstrass Theorem and Bertini's Theorem) a 

nonsingular curve C C T such that t1, t2 are in the same connected component of 

C (R). This means that the proof is easily reduced to the statement that if K = C, (resp. 

R), Xis a variety over K, C is a nonsingular curve over Kand 2 E Pic(X x C), then 

fixing t0 , t 1 E C ( K), there is a subscheme V C X x C of pure dimension n = dim X 
that is flat over C, and such that [ v;J = div .Yi, in CH1 ( Xi;) for i = 0, 1. 

The subscheme V C X x C is constructed in the following way. We can find 

a Cartier divisor D given by a collection ( Ui, ];), such that the image of D in 

H 1 ( X x C, {j*) equals 2. Without loss of generality, we may assume that no ]; is 

zero when restricted to X 10 or X 11 • This implies that ifwe write W = div(D), viewed 
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as a subscheme of X x C, then the fibres T1;;0 and T1;;1 are of pure dimension n - 1, 
and [vV;J = div2t; in CH1(X1;) for i = 0, l. Now W need not be flat over C, but if 

we take V C W to be the closed subscheme consisting of the irreducible components 

that project dominantly onto C, then v;; = Wi; for i = 0, 1 and V is flat over C. D 

4. The Picard variety 

Let X be a nonsingular irreducible variety over R. For any variety T over 

R we define Pic0 (X /R)( T) to be the group Pic0 (X x T)/ Pi Pic0 ( T), where 
p1 : X x T -----+ Tis the projection. Observe that for any x E X (R) we have a canonical 

isomorphism between Pic0 ( X /R) ( T) and the subgroup of Pic0 ( X x T) consisting of 

isomorphism classes of invertible sheaves that are trivial when restricted to { x} x T. 
The pull-back associated to a morphism S -----+ T of algebraic varieties defined 

over R induces a homomorphism Pic0 ( X /R) ( T) -----+ Pic0 ( X /R) ( S), so Pic0 ( X /R) 
defines a functor from the category of algebraic varieties over R to the category of 

abelian groups. If X is a complete nonsingular irreducible variety defined over R and 

X (R) =/=- 0, this functor is known to be representable; there is a variety P over R, which 

is in fact irreducible, and an isomorphism of functors 

Pic0 (X/R)(T) c::: Hom(T, P). 

More concretely, this means that if we fix an x0 E X (R), there is a universal line bundle 

!Y x defined over R on X x P which is trivial when restricted to { x0 } x P. The line 

bundle /Y x is irreducible in the sense that for any variety T over R, and any line bundle 

2' on X x T defined over R that is trivial when restricted to { x0 } x T, there is a 

unique morphism <p: T -----+ P of varieties over R, such that (id x <p )* !Y xis isomorphic 

to 2'. We call P the Picard variety of X and /Y x the Poincare bundle of X. By abuse of 

notation, the Picard variety of X will be denoted by Pic0 ( X /R) as well. 

It is well-known that Pic0 (X /R) is an abelian variety over R of dimension g = 
dimRH 1(X,o'x)). (In fact, it is easily deduced from the properties of the Picard 

functor that Pic0 (X /R) is a complete commutative group variety). Since the group 

Pic0 (X) is isomorphic to the group of real points of Pic0 (X /R), it follows from 

well-known facts on the structure of real abelian varieties that 

Pic0 (X) c::: (R/Z)g EB (Z/2)'\ 

where h is the number of connected components of Pic0 ( X /R) (R). This result in itself 

could have been derived by more elementary means than using the representability of 

the Picard functor (see Section IV4), but the lemma below uses the representability in 

its full power. 
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Lemma 4.1. Let X be a complete, nonsingular variety over R with X (R) -/=- 0. Let Po be the 

connected component ef Pic0 ( X JR) (R) containing 0. 17ze canonical isomorphism 

Pic0 (X JR)(R) ..:::'., Pic0 (X) 

induces an isomorphism 

PROOF. The existence of the Poincare bundle 9x on X x Pic0 (X JR) implies that Po 
maps to Pic0R(X). The surjectivityofthe mapping Po----, Pic0R (X) follows from the fact 

that 9x is the universal line bundle. Namely, let T be a nonsingular irreducible variety 

T over R, let 2 be a line bundle on X x T, let t0 , t I be any pair of points in the same 

connected component of T (R). We have that .!£' = 2 ®pf~~ i E Pic0 ( X JR) ( T), 
where Pi : X x T ___, X is the projection. Now the morphism from T into the Picard 

variety Pic0 (X JR) induced by.!£' sends t0 to O and ti to some other point in Po, since 

the induced mapping T (R) ----, Pic0 ( X JR) (R) is continuous. Hence~'. = .i'.';, ® ~~ i 

corresponds to a point in Po. □ 

As a corollary of the above lemma we get the real analogue of the fact that 

CH~0\Xc) is divisible for any k 2'. 0 and any irreducible variety Xe over C. 

Corollary 4.2. For airy irreducible variety X over R the group CH~o)R ( X) is divisible. 

PROOF. Let Ube a nonsingular irreducible curve over R, let t0 , t1 be two points in the 

same connected component of U(R), and let V C Xx Ube a subvariety which is 

flat of relative dimension k over U. We will show that for any integer m there is a cycle 

class"( E CHk(X) such that m"( = [v;0 - v;J 
Let C =:> U be the nonsingular projective closure of U, and let W C X x C 

be the Zariski-closure of V. Then W is flat over C of relative dimension k. Let 

P1 : X X C ___, X and Pz : X X C ___, C be the projections. Since Pi restricted to 

W is proper, it induces a homomorphism (Pi ) * : CH k ( W) ___, CH k ( X). Clearly 

(Pi).[Jil1t0 - JiV;,] = [v;0 - v;,], but [JiV;0 - JiV;,] = p2[to - ti] and by Lemma 4.1 we 

have aclasq' E CH1 ( C) such that m1' = [to - ti], hence m(Pi ).p21 1 = [ v;0 - v;J □ 

Corollary 4.3. Let X be a geometricalry irreducible algebraic variety over R. For any k 2'. 0 the 

homomorphism 

is surjective. 

PROOF. Since the mapping JT* o JT*: CH~o)R(X)----, CH~o)R(X) is multiplication by 2, 

this follows immediately from Corollary 4.2. □ 
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5. Cycle maps 

Maps from the groups of algebraic cycles on a variety X into appropriate homology 

groups or cohomology groups associated to X are usually called cycle maps. In the case 

of a variety X over R, Borel and Haefliger defined in [BH] two cycle maps, one into 

the Borel-Moore homology of the set of complex points, and one into the Borel-Moore 

homology of the real part. The use of Borel-Moore homology means that we can work 

with varieties that are not necessarily complete. A definition of Borel-Moore homology 

and an extensive treatment of its properties can be found in Section III. l (take G to be 

the trivial group). Here I will list a few important properties. 

Throughout this work the Borel-Moore homology (originally called homology with 
closed supports) of a locally compact space X with coefficients in a (noetherian, 

commutative) ring A will be denoted by H,(X,A). Since we do not use ordinary 

homology (also called homology with compact supports), this notation should not give 

any confusion; besides, the two theories coincide when X is compact. Borel-Moore 

homology is covariant with respect to proper mappings and contravariant with respect 

to open embeddings. If U C X is an open subset, we have a long exact sequence 

For any closed subset Z C X we have a cap product 

Hi(X,A) ® Hq(X,A) ~ Hq-p(Z,A) 

w ® ' f--+ 

where Hi(X,A) is cohomology with supports in Z, also denoted by Hk(X, X -
Z; A). If X is an n-dimensional manifold (not necessarily compact or connected), and 

either X is oriented or A = Z/2, then X has a fundamental class µx E Hn ( X, A) such 

that cap product with A induces the Poincare duality isomorphism 

In particular, we have 

if k = n, 

otherwise. 

If Z is a nonsingular variety over C or over R of dimension k, then Z ( C) is a 

2k-dimensional manifold and the complex structure induces a natural orientation on 

Z(C). Hence Z(C) has a fundamental class µz(c) E H2k(Z(C),Z). If Z is actually 

a closed subvariety of a variety X, the inclusion Z '-------+ X induces a homomorphism in 

homology, and we can define clc(z) E H2k(X(C),Z) to be the image of µz(C)· 

Similarly, if Z is a nonsingular variety over R of dimension k, Z (R) is a k
dimensional manifold. However, X (R) need not be orientable, and even if it is 
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orientable there is no canonical orientation. Hence Z (R) only has a fundamental class 

µz(R) E Hk( Z (R), Z/2). If Z is actually a closed subvariety ofa variety X over R, we 

define c!R(z) E Hk(X(R),Z/2) to be the image of µz(R) under the homomorphism 

induced by the inclusion. 

In order to extend the definition of cl e and cl R to arbitrary subvarieties of X, it is 

necessary to have fundamental classes for Z ( C) and Z (R) when Z is singular. Let Z, 
be the singular locus of Z. Then dim Z, s; k - I, where k is the dimension of Z, hence 

Hp(Z,(C),Z) = 0 for p > 2k - 2. Putting Zr= Z - Zs, we see from the long exact 

sequence (3) that the restriction H2k(Z(C),Z)---+ H2k(Zr(C),Z) is an isomorphism, 

and we define µz(e) to be the inverse image of µz,(e)• 

When we apply the long exact sequence (3) to the embedding Zr(R) C Z(R), we 

get an exact sequence 

It follows that if there is a class µz(R) which restricts to µz,(R), this class is unique. 

However, Hk-i(Z,(R),Z/2) need not be zero, so we still have to prove that µz(R) 

actually exists. It should be said that if Zr(R) = 0, we define µz,.(R) = 0 and µz(R) = 0. 
When Zr(R) -=/=- 0, Borel and Haefliger consider the normalization cp: Z ---+ Z. The 

normality of Z implies that the singular locus Z, is of dimension s:; k - 2, hence the 

abovelongexactsequenceshowsthatµ.z(R) exists. Thencp,µ.z(R) E Hk(Z(R),Z/2) is 
the fundamental class of Z (R). 

Thus we have, for any algebraic variety X over R, homomorphisms 

(4) 

(5) 

and 

(6) 

cl~c: ~(Xe)---+ H2k(X(C),Z), 

cl~: ~(X)---+ H2k(X(C),Z), 

It can be checked, that ~alg(Xe) C Kercl~c' (see for example [Fu, 19.1.1]), hence 

~alg(X) C Kercl~. Similarly, ~R-alg(X) C Kercl~ (see also Lemma IVI.2). In 

particular, de and c!R are well-defined on CHk(X). When confusion is unlikely, we will 

omit X and Xe from the notation of the cycle maps. We define 

and 
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In the survey [BK2] the reader can find references to the literature concerning 

the groups H;1g(X (R), Z/2). Very important for a better understanding of the groups 

H;1g(X (R), Z/2) is the fact that both de and clR factor via a third cycle map 

clx: ~(X)---+ H2k(X(C); G,Z) 

into equivariant Borel-Moore homology associated to the action of G = Gal( C/R) on 

X. The theory of equivariant Borel-Moore homology will be developed in the next 

two chapters, and the equivariant cycle map will be defined in Chapter IV. 



CHAPTER II 

Equivariant sheaves and Verdier duality 

For the definition in Chapter III of equivariant Borel-Moore homology and the 

study of the connections with the existing equivariant sheaf cohomology theory as 

defined in [Gr, Chap. V], we need some technical preparation. Although it is very well 

possible to define equivariant Borel-Moore homology and equivariant cohomology by 

more elementary means, for example using simplicial or singular chain complexes, it 

turns out to be complicated to prove that these theories have the desired properties. 

In particular, cup product and cap product then give calculations which are difficult 

to handle. Therefore I have chosen to develop the theory in the framework of derived 

categories. There it is much easier to use the fact that both equivariant Borel-Moore 

homology and equivariant sheaf cohomology are rather straightforward generalizations 

of the corresponding nonequivariant theories. 

Since for a large part of the theory it does not matter whether the transformation 

group G is Z/2 or another group, I have chosen not to restrict to the case G = Z/2. It 

should be stressed, however, that although the theory developed here is well-defined for 

any group, it only works well for discrete transformation groups, since in any application 

the results of Section III.6 will be needed, and there it is crucial that G acts properly 

discontinuously on X. 

1. G -sheaves 

Let G be a group and let X be a topological space with a left action of G. 

This means that for every g E G we have an automorphism <pg = <pg¥ of X with the 

conditions: 

<pi= id 

<pg o if)h = if)gh for every g, h E G. 

21 
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We will often use the notation g • x for r.p g ( x), when x E X. The quotient mapping will 
be denoted by 

?r: X --t X/G, 

and the set { x E X : g · x = x for all g E G} of fixed points will be denoted by 
xc ex. 

A sheaf on X will always be a sheaf of abelian groups. A G -sheef § on X will be 
a sheaf on X with a G-action compatible with the G-action on X. In other words, we 

have for every g E G an isomorphism 

a::§- r.p;§ 

such that 

St .d 
Oi1 = I 

r.p~ ( an o a'{ = a:; for every g, h E G. 

Observe that on the presheaflevel a'{ is given by isomorphisms a'{ ( U) : § ( U) --t 

§ (g · U), with the property that af = id and a'{( h · U) o a{( U) = a:; ( U) for 

every g, h E G. 

For a commutative ring A, which we always assume to be unitary, it is clear what 
we mean by a G-sheef ef A-modules on a G-space X (or G-A-module on X for short). A 

homomorphism of G-A-modules on Xis a homomorphism h: <ff --t § of sheaves of 

A-modules on X such that 

We then say that h is equivariant. 
The category of sheaves of A-modules on a space X will be denoted by A-V.Jtoil(X), 

and the category of G-A-modules on a G-space X by A-V.Jtoilc (X). If Xis a point we 

get categories A-Moil (resp. A-V.Jtoilc) of A-modules (resp. G-A-modules). All these 
categories are abelian categories with infinite direct sums and products. We use the 

notation Hom(At, JV) for homomorphisms in the categories without G-action and 

Home (At, JV) for the equivariant homomorphisms. 

2. Equivariant functors 

Let X and Y be two G-spaces, and let A and B be commutative rings. An additive 

functor F: A-V.Jtoil(X) --t B-V.Jtoil( Y) is said to be an equivariant.fanctor if it comes 
together with a collection of functor isomorphisms 

indexed by g E G, satisfying the obvious associativity relations. 
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An equivariant functor F: A-wtoil(X) - B-wtoil( Y) induces in a natural way 

a functor A-wtoila(X) - B-wtoila(Y), which we will denote by Fas well. For 
example, if Fis covariant, then for G-A-module .,II on X, the G-action on F(M) is 
defined by 

a;(.,ft) = F(a{). 

Similarly, if F: A-wtoil(X) x A-wtoil( Y) - A-wtoil(Z) is a bifunctor, then we say 
that F is equivariant if we have an isomorphism ofbifunctors 

If F is equivariant, it induces a bifunctor 

A-wtoila(X) x A-wtoila(Y)-A-wtoila(Z). 

If F is covariant in both variables, the G -action on F (.,II, JV) is given by 

ag = F(a{,a{); 

if F is contravariant in the first, and covariant in the second variable, then the G -action 
on F(.,11, JV) is given by 

ag = F(cp;(a1-,),a{). 

Let f: X - Y be a continuous mapping. Then we have the direct image .fanctor 

f.: A-wtoil(X) - A-wtoil( Y), 

which sends a sheaf of A-modules g on X to the sheaf of A-modules on Y given by 

J.ff( U) = g(J- 1 ( U)). The inverse image.fanctor 

j*: A-wtoil( Y) - A-wtoil(X), 

sends a sheaf of A-module ff on Y to the canonical sheaf associated to the presheaf of 

A-modules on X given by U f-+ .limv:::iJ(U) ff( V), where V ranges over the open sets 
on Y containing U. 

If f: X - Y is a morphism of G-spaces (i.e., a continuous equivariant mapping), 
then f. and f * are in a canonical way equivariant functors, so they induce covariant 
functors 

f.: A-wtoilc(X) - A-wtoDa ( Y) 

and 

f*: A-wtoila( Y) - A-wtoila(X). 

When f: X - pt is the constant mapping form a G -space X to a point, then f. is 
the global sections .fanctor 

r(X,-): A-wtoila(X)-A-wtoila, 

and f * M is the constant sheaf associated to the G -A-module M; we will usually write M 
instead off* M. 
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Recall that a continuous mapping j : X --+ Y between locally compact spaces is 

proper if it is closed and the inverse image of every compact subset of Y is compact. If 

j: X --+ Y is an arbitrary continuous morphism between locally compact spaces, and 

ff is a sheaf on X, then the presheaf 

U f-----+ {s E §(j-1 U): supp(s) is proper over U} 

is a subsheaf of J.Y:, called the direct image with proper supports of§ under j, and it is 

denoted by j§. This defines a functor 

fi.: A-9Jtoi)(X)--+ A-9Jtoi)( Y). 

If j is a morphism of G -spaces, the functor j is canonically equivariant, so it induces 

a functor 

fi.: A-9Jto()c(X)--+ A-9Jto()c( Y). 

Observe that if j is the constant mapping, then fi. is the functor of global sections with 

compact support 

Remark 2.1. If j: W --+ X is the inclusion of a locally closed G -subspace and ff is 

a G -sheaf on W, then 

(J°!ff)( U) = {s E ff( Un W): supp(s) is closed in U}. 

When X is not locally compact, this defines of]! for this special kind of mappings. For 

a sheaf ff on X we often write 

ffw = }j*Y:; 

it is the sheaf with stalk ffx for x E W and stalk O at x r/. W. 

If ...ft and JV are two sheaves of A-modules on X, then the sheaf £om A ( Af, JV) 
is defined by 

U f-----+ Hom A (j* ...ft, j* JV), 

where j: U ~ X is the inclusion. The A-module structure on JV induces the A

module structure on £om(...ft, JV). This construction is contravariantly functorial in 

the first variable and covariantly functorial in the second variable, so we get a bifunctor 

If G acts on X, the natural isomorphisms 

cp;£om( ...ft, JV) ::c £om( cp;...ft, cp;JV) 

make £om an equivariant bifunctor, so it induces a bifunctor 

£am(-,-): A-9Jto()c(X) x A-9Jtoi)c(X)--+ A-9Jto()c(X), 

which is contravariant in the first variable, covariant in the second variable and left 

exact in both variables. 
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Similarly we consider Hom as a bifunctor 

A-9.noi'Ja(X) x A-9.noilc(X)-+ A-9.noilc

We have an isomorphisms ofbifunctors 

(7) 

and 

(8) 
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where LG is the A-module of G -invariant elements of a G -A-module L. The functor 

sending L to L G will be denoted by 

rG: A-9.noilc --) A-9.noi'J. 

The tensor product ..4 ® A JV of two sheaves of A-modules on a space X is the 

sheaf associated to the presheaf 

U 1--+ ..4( U) ®A JV( U). 

This defines a bifunctor 

A-9.noi'J(X) x A-9.noi'J(X)-+ A-9.noi'J(X) 

which is covariant in both variables and equivariant if X is a G -space, so we can extend 

it to a bifunctor 

A-9.noilc(X) x A-9.noilc(X)-+ A-9.noilc(X). 

2.1. Adjunction properties 

In this section we will study the adjoin ts of various functors defined above. Recall, 

that if S : Qt -+ 123 and T : 123 -+ Qt are covariant functors, then we say that S is the left 
adJointfunctor of T and T is the right adJointfunctor of S if there is a natural transformation 

ofbifunctors 

Hom21(M, T(N)) ~ Hom'B(S(M),N). 

In order to extend the known adj unction properties of the functors defined above 

to the equivariant setting we will use the following lemma. 

Lemma 2.2. Let X and Y be G -spaces, let A and B be commutative rings and let 

S: A-9.noi'J(X)-+ B-9.noil( Y) 

be a covariant equivariant fanctor with right arfjoint 

T: B-9.noil( Y)-+ A-9.noi'J(X), 

which is assumed to be equivariant as well. The .following three statements are equivalent: 
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(i) For every G -A-module A on X and every G -B -module JV on Y the canonical isomorphism 

Hom(S(A),JV) ~ Hom(A, T(JV)) 

induces an isomorphism 

Homc(S(A),JV) ~ HomG(A, T(JV)) 

(ii) The adjunction morphism A -----+ T ( S (A)) is equivariant far every G -A -module A on 
X. 

(iii) The adjunction morphism S ( T (JV)) -----+ JV is equivariant far every G -B -module JV on 
Y. 

PROOF. (i) ==> (ii). Since the adj unction morphism 'lj; .4t: A -----+ T ( S (A)) is the image 

of id..1t E Hom(S(A), S(A)) under the isomorphism Hom(S(A), S(A)) -----+ 
Hom(A, T(S(A)), and id.41 is in Homc(S(A), S(A)), the hypothesis implies 

that f/tt is in HomG(A, T( S(A))). 
(ii) ==> (i). Since Home( - , - ) = Hom( - , - ) G, it is sufficient to prove that for a 

G-A-module A on X and a G-B-module JV on Y the natural isomorphism 

Hom(S(A),JV)-.'.:+ Hom(A, T(JV)) 

respects the G -action on both groups. Since T is an equivariant functor, the natural 
mappmg 

Hom(S(A),JV)-----+ Hom(T(S(A)), T(JV)) 

respects the G -action. By hypothesis the adj unction morphism A -----+ T ( S (A)) is 
equivariant, so the induced mapping 

Hom(T(S(A)), T(JV))-----+ Hom(A, T(JV)) 

is equivariant, hence the composite isomorphism 

Hom(S(A),JV)-----+ Hom(T(S(A)), T(JV))-----+ Hom(A, T(JV)), 

respects the G -action. 

(i) B (iii) As above. 

Now we will prove some adjunction formulas. 

□ 

Proposition 2.3. For any group G, any commutative ring A, and any morphism ef G-spaces 
f: X -----+ Y, thefanctor 

j*: A-9JtoDc( Y)-----+ A-9JtoDc(X) 

is left arfjoint to the functor 

f.: A-9JtoDG(X)-----+ A-9JtoDG( Y). 
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PROOF. Since f* and f. are adjoint when considered as functors between A-Moil( X) 

and A-Moil( Y), we only have to prove that the adjunction homomorphism 1/J: .,ff -

f.f* .,ft is equivariant, but if fJJ denotes the G-presheaf U 1--+ lim v::if( U) .,ft ( V) on 

X, with the canonical mapping 0: fJJ - f* .,ft, then f. fJJ is just .,ff and 1/J = f. ( 0), 
which shows that 1/J is equivariant. D 

Remark 2.4. If i: W '---+ X is the inclusion of a locally closed subspace, then, as in 

the nonequivariant setting (see [Iv, Prop. Il.6.6]), we have a right adjoint 

t: A-MoDc(X) - A-MoDc( W) 

to the functor 

defined by 

t§ = i* £om(i1A, ff). 

If Wis open, then i' = i*. For arbitrary morphisms f see Section 5. 

Proposition 2.5. Let G be any group, let X be a G-space, let A be a commutative ring and let 
B be a commutative A-algebra. The .fanctor 

B ®-: A-MoDc(X) - B-MoDc(X) 
A 

is left acijoint to the restriction ef scalars 

B-MoDc (X) - A-Molle (X). 

PROOF. The functor 

B ® - : A-MoD(X) - B-MoDc (X) 
A 

is left adjoint to the restriction of scalars B-MoD(X) - A-MoD(X) (c£ [Ve, App. 1, 
§ 1.4]). Both functors are clearly equivariant and for a G-A-module .,ff on X the 
adjunction homomorphism 

is given by 

.,ft( U) - B ®A .,ft( U) 
m 1--+ l ® m, 

so it is clearly equivariant. □ 

Proposition 2.6. Let G be any group, let X be a space on which G acts trivial{y, and let A be a 
commutative ring. Then the .fanctor 

£omc(A,-): A-MoDc(X)-A-MoD(X) 

is right aq,joint to the inclusion 

A-MoD(X) - A-MoDc(X). 
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PROOF. The claim is that for every sheaf of A-modules .4/ on X and every G -A

module fl on X there is a natural isomorphism 

Homc(.41,fl) '.c:: Hom(.41,£omc(A,fl)), 

where on the left hand side, .4/ is equipped with the trivial G -action. The isomorphism 

follows from the obvious fact that 

Homc(.41( U),fl( U)) '.c:: Hom(.41( U),fl( U)c) 

for any open U C X. □ 

Corollary 2. 7. Let G be any group, let X be a G -space, and let A be a commutative ring. The 

fanctor 

n:: A-9.JM>c(X)----, A-9.Jtoc>(X / G) 

is right at.ijoint to the functor 

n*: A-9.Jtoc>(X/G)----, A-9.Jtoc>c(X). 

PROOF. This follows from Proposition 2.6 and Proposition 2.3, since 

n: = £omc(A,-) on,. 

□ 

Proposition 2.8. Let G be any group, let A be a commutative ring and let X be a G -space on 

which G acts trivially. The fanctor 

A@ - : A-9.Jtoc>c (X)----, A-9.Jtoc>(X) 
G 

is left at.ijoint to the inclusion 

A-9.Jtoc>(X)----, A-9.Jtoc>c(X). 

PROOF. It is not hard to check, that for any G-sheaf of A-modules .4/ and any sheaf of 

A-modules fl with trivial G -action we have a natural isomorphism 

Homc(.41,fl) '.c:: HomA(A@.41,fl); 
G 

it also follows from [Ve, App. 1, § 1 .4], since we can consider a G-sheaf of A-modules 

on X as an A [ CJ-module. D 

Finally, we will define for any G -space X two functors which are the left and right 

adjoints of the forgetful functor A-9.Jtoc> c ( X) ----, A-9.Jtoc>( X). 

Definition 2.9. Let§ be a sheaf of A-modules on a G-space X. The induced G-A
module Ind G § is the sheaf of A-modules 

E9'P;§, 
gEG 
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the co-induced G -A-module Coind G § will be the sheaf of A-modules 

n<p;§ 
gEG 

and both are endowed with the obvious G -action. 

Proposition 2.10. Let G be any group, let A be any ring, and let X be a G-space. Then the 

.fanctor 
IndG : A-9J1oi'l(X) ___, A-9J1oi'Jc(X) 

is left adjoint to the fargeiful .fanctor, and the .fanctor 

CoindG : A-9J1oi'J(X) ___, A-9J1oi'Jc(X) 

is right adjoint to the .forgetful .fanctor. 

PROOF. Easy. □ 

Remark 2.11. Observe that if § is a G-A-module on X, the collection indexed by 

g E G of composed homomorphisms 

(i -I ,id) a§ 

£om A ( A [ G], ff) ~ £om A ( A , §) '.::::'. § ___!___,, <p; § 

defines an isomorphism of G-A-modules 

£omA(A[G],§)-'.::+ CoindG §_ 

Here ig: A '-------+ A [ G] is defined to be injection a f----+ ag. The collection of composed 

homomorphisms 

* & 'P;(a::1) & igOid A & A[G] & <p J ---------+ y, ----+ ® J '-------, ® y, 
g A A 

defines an isomorphism 

3. Derived functors 

In this section the notions of derived categories and derived functors are recalled. A 

full treatment of the subject can be found in [Ha, Ch. I], or [Iv, Ch. XI]. 

Let Qt be an abelian category and let g,• be a complex 

We say that g,• is bounded if 9" is nonzero for only a finite number of indices n. We 

call 9" bounded below if 9" = 0 for all n smaller than some n0 E Zand bounded above 

if 9" = 0 for all n larger than some n0 E Z. The category of complexes in Qt will be 

denoted by C (Qt) and the categories of bounded, bounded below, and bounded above 
complexes in Qt will be denoted by Cb(Ql), c+ (Qt), and c-(Qt), respectively. We 
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use the notation C* (Qt) for any of these four categories. We will often silently identify 

the category Qt with the full subcategory of C* (Qt) consisting of complexes which are 

concentrated in degree zero. Let K*(Ql) be the homotopy category corresponding to 
C*(Ql). 

The pth translationfanctor TP: C* (Qt) --'> C* (Qt) is defined for any p E Z by 

and P(J) is given by 

TP(9")" = 9n+P, 

!C)n - ( l)P!Cln+p 
UTP(&•) - - Ug, , 

TP(j)" = jn+p: 9n+p --'> gn+p 

for a morphism J: 9•---, 9°. Normally we use the notations 9"[p] and J[p] instead 

of P(9"), and P(J). It should be noted that T = T1 is a shift to the left; for 

example, if 9• is a complex concentrated in degree p, then 9• should be written as 

9• = P [-p], where P = 9P. The functors TP are compatible with homotopy, so they 

induce endofunctors K*(Ql) ---, K*(Ql), for which we will use the same notations. 

The nth homology object of a complex 9• is defined to be 

H"(9") = Ker8"/Im8"- 1• 

Observe that H"( 9"[p]) = H"+p( 9"). We get for every n E Z a functor 

H": C* (Qt) ---, Qt. 

Since H"(J) = H"(g) if J, g: 9• --'> g• are homotopic, the functors H" are 
well-defined on the homotopy category K*(Ql). We say that J: 9•--'> g• is a quasi

isomorphism if 

is an isomorphism for every n E Z. 
For a functor F: Qt--'>~ it is clear how to extend F to C*(Ql) and K*(Ql); for 

bifunctors like Hom and ® there is something more to be said. For simplicity we 

will assume that Qt has infinite direct sums and infinite direct products. If 9• and 
g• are complexes of objects in Qt, and we set x-p,q = Hom( 9P, 9q), then the 
differentials of 9• induce 8~,q: J(;P,q---, J(;P+l,q, and the differentials of g• induce 

o~'J: J(;P,q ---, J(;P,q+t, so we get a commutative diagram £• of which the nth row 

( J(;•,n, 8;,") ( n E Z fixed) and the nth column ( £"•", a;,;) are complexes for every 

n E Z. We call such a complex a double complex. There are various ways to transform a 

double complex like this into a simple complex. In this case, the right way to do it is by 

taking 

Hom"(9",9") = TI J(;P,q = IJHom(9-P,g-p+n) 
p+q=n p 
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and defining the diff~rential 8" by 

!'lnl - (-l)P+q+l !C:IP,q + !C:IP,q 
U ,X:M - UJ Un· 
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The choice of signs is the same as in [Ve, App. 1] and [Iv, De£ I.4.3], but different from 
[Ha, Sec. I.6]. It is clear this construction is functorial in 9• and 2•. Observe that we 

have a canonical isomorphism 

On the category A-9J1oll c ( X), we not only have the bifunctor Home into A-9J1oll, 
but we have a whole collection of similar functors, like Hom, £om, etc. We define the 

corresponding functors of complexes in exactly the same way as Hom~. 

If we have a tensor product in our category then the tensor product 9• ® 2• is 

defined using the double complex 

J(;M = 9P Q9 2q, 

with 8~'1 = ~ ® id, and 8 I I = id ® 81. The associated simple complex will now be 
defined by 

(9•02•)"= E9 9P@2q, 
p+q=n 

and the differential is given by 

!Cln I _ !C:IP,q + ( 1 )P !C:IP,q U,X:M-UJ - Un. 

This tensor product is only commutative up to sign. By this we mean that the obvious 
mappmgs 

sfa,q: 9P Q9 2q ---t 2q ® 9P 

do not induce a mapping of complexes 9• ® 2• ---t 2• ® 9•, since the sP,q do not 

commute with the differentials. Instead, we need the collection 

in order to define an isomorphism 

The collection of mappings 

(-1 )(p-m)n: 9P Q9 2q ---t 9P Q9 2q 

defines for any m, n E Z an isomorphism 

and the following diagram is commutative: 
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(9) 

For any m, m', n, n' E Z such that m + n = m' + n' and any homomorphism 
j: 9• ------, 9£'•[r] the following diagram is commutative. 

(10) 

From diagrams (9) and (10), we see that the following diagram is commutative as 

well. 

(11) 
id0f[m] 

.E?•[n] 0 9•[m] _ ______, .E?•[n] 0 9£'•[m + r] 
1 ( -I )"m r,,m l ( -l)"(m+,) r,,m+, 

( g• 0 9") [ m + n] ( g• 0 9£'•) [ m + n + r] 

l (-l)"'"''r,,,,,,,, l (-l)"'(m'+,)r,i,m'+, 

.E?• [ n'] 0 9• [ m'] ~I g• [ n'] 0 9£'0 [ m' + r] 

The derived category D*(Ql) corresponding to K*(Ql) is constructed by formally 

inverting all quasi-isomorphisms in K*(Ql). This means, for example, that a diagram 

in C*(Ql), with j a quasi-isomorphism, represents a morphism from 9• to g• in 

D*(Ql). A morphism in D*(Ql) will also be called a quasi-morphism of complexes and 

it will be denoted by an arrow 9• --+ g•, unless it is obvious that it is represented 

by a morphism 9•------, g• in C*(Ql). The homology functors H": C*(Ql)------, Q( 

and the translation functors T"C*(Ql) ------, C*(Ql) induce in the obvious way functors 
H": D*(Ql)------,QlandT"D*(Ql)------, D*(Ql). 
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We will use that D* (Qt) is a so-called triangulated category. A triangle in D* (Qt) is a 

sequence of quasi-morphisms 

(12) 

that is quasi-isomorphic to a sequence 

f.YJ' --+ }2• --+ a· --+ f.YJ' [ l], 

obtained in the usual way from a split short exact sequence 

o --+ 9· --+ .!2· --+ a· --+ o 
in C * (Qt). It can be shown that any short exact sequence of complexes in C * (Qt) 

(13) o --t g;• L !5J· _i__. a· --+ o 
gives rise to a (uniquely defined) triangle, and any morphism of short exact sequences 

induces a morphism of triangles. Finally, applying the homology functor to a triangle 

gives a long exact sequence 

···H~)H"(9•/!:J.!) H"(!5J•) !!j§) H"(a•) !!.:..02 H"+1(£JJ•t~) __ _ 

If F: Qt --+ i:B is a covariant additive functor between abelian categories, F induces 

functors C * (Qt) --+ C * ( i:B) and K* (Qt) --+ K* ( i:B), which will be denoted by F as well. 

If F is exact, we can even extend it to the derived categories, and we will use the 

notation 

F: D*(Ql)--+ D*(i:B), 

but in general this is not possible. Under some conditions, however, often only satisfied 

when D*(Ql) = D+(A) or Db(A ), we can construct the right derivedfanctor 

RF: D*(Ql)--+ D(i:B), 

which has the properties that it transforms triangles into triangles and that it comes 

with a morphism 

(: (loF--+RFo(l 

of functors K*(Ql) --+ D(i:B), where Q: K*(i:B) --+ D*(i:B) is the localization functor. 

It is characterized by the fact that RF is universal with respect to these properties (see 

[Ha, Sec. 1.5]). 

If the right derived functor of Fis defined on D*(Ql), we write 

for any complex g;• in D* (Qt). Observe that the fact that RF transforms triangles 

into triangles implies that a short exact sequence of complexes ( 13) induces a long exact 

sequence 

(14) ···--+RP F(9•)--+ RP F(!5J•)--+ RP F(a•)--+ RP+l F(9•)--+ · · · 
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If F is left exact, which is true for all functors F for which we will construct R F, the 

universal property of ( implies, that for any complex 9• in C* (Qt) such that 9" = 0 

for n < 0, we have a canonical isomorphism 

R° F(9") = F(H0 (9")). 

For a right exact covariant additive functor F it makes in general more sense to 

construct a left derived functor 

LF: D*(Ql) - D(SB), 

which, if it exists, is the universal functor that transforms triangles into triangles and 

comes with a morphism of functors 

(: LFoQ_- Q_oF. 

In particular, if 9• is a complex in C* (Qt) with 9" = 0 for n > 0, and Fis right exact 

then 

L 0 F(9") = F(H0 (9")), 

where we use the 'homological' notation 

The short exact sequence ( 13) induces a long exact sequence 

Proposition 3.1. Let Qt, SB be abelian categories, let F: Q( - SB be an additive functor. Suppose 
we have a collection Cef' ef objects .from Q( satiif.jing the fallowing properties: 

(i) Every object ef Q( admits an injection into an element ef Cef'. 

(ii) !f 
o-M-M'-M"-o 

is a short exact sequence, with M E Cef', then 

M' E Cef' {=;> M" E Cef' 

(iii) F carries short exact sequences ef objects ef Cef' into short exact sequences. 

Then the right derived.functor RF is defi,ned on n+ (Qt). 

PROOF. See [Ha, Corollary I.5.3]. The first two conditions ensure that the derived 

category n+ ( <!:) of the full subcategory<!: ofQ( that has the elements ofCef' as its objects, 

is equivalent to n+(Ql). By the last condition F takes quasi-isomorphism between 

complexes inc+(<!:) to quasi-isomorphisms in c+(SB), so Fis well-defined on n+(<t). 
To be more specific, we get the following recipe for computing RF(9") for a 

bounded below complex 9• of objects from Qt. Take a quasi-isomorphism i: 9• -
/" into acomplexofobjectsfrom Cef'. Then RF(9") is F(/") and((F): F(9") -
RF(9") is F(i). □ 
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In particular, if QI. has enough injectives, i.e., if every object in Qt can be injected into 

an injective object, then for every additive functor F the right derived functor RF is 

defined on n+(Qt.). 

Lemma 3.2. Let F: Qt -+ SB be a le.fl exact additive functor between abelian categories and 

assume that there is a collection '-ti' that satiifi.es the conditions ef Proposition 3 .1. Let '-ti'' be the 
collection ef objects M in QI. such that RP F ( M) = 0 far p > 0. Then '-ti' C '-ti'' and '-ti'' satiifi.es 

the conditions ef Proposition 3 .1. 

PROOF. From the construction of RF, we see that for any M E '-ti', we have 

RP F ( M) = 0 for p > 0, so '-ti' C '-ti'', which implies that '-ti'' satisfies condition (i) 

of Proposition 3.1. Conditions (ii) and (iii) can be checked by writing down the long 

exact sequences associated to the short exact sequences. D 

An object M in Qt such that RP F ( M) = 0 for p > 0 is called F -acyclic. 

Lemma 3.2 will allow us under certain conditions to extend the definition of RF 
from n+(Qt.) to the whole derived category D(Qt.). A sufficient condition is that F has 

finite cohomological dimension on QI., i.e., there is an n EN, such that Ri F(A) for every 

object A in Qt and every i > n. 

Proposition 3.3. Let F : Qt -+ SB be an additive functor between abelian categories such that we 

have a collection '-ti' far F as in Proposition 3 .1. !f F has finite cohomological dimension on Qt, then 
RF can be extended to D(QI.). 

PROOF. See again [Ha, Corollary I.5.3]. The idea of the proof is that under the 

hypothesis on F, we have for any complex of objects g;• from Qt a quasi-isomorphism 

into a complex / 0 of F-acyclic objects. Then Lemma 3.2 allows us to define 

RF(fJ'J•) = F(/ 0
). □ 

We have similar methods for the construction of left derived functors: just 'reverse 

the arrows'. However, the categories we are going to work with usually do not have 

enough projectives, so even for bounded above complexes it is much more work to 

prove the existence of the left derived functor associated a specific functor. 

3.1. Composition of derived functors and spectral sequences 

Proposition 3.4. Let QI. and SB be abelian categories and assume that QI. has enough injectives. 
Let F: Qt -+ SB be a covariant left exact functor, and let g;• be a bounded below complex ef objects 

in QI.. Then we have a spectral sequence 

This construction is fanctorial in g;•. 

PROOF. Well-known. □ 
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Corollary 3.5. Let Qt, $ and (t be abelian categories and assume that Qt and $ have enough 
irifectives. Let T : Qt ---+ $ and S : $ ---+ (t be covariant left exact .fanctors, and let 9" be a bounded 

below complex ef objects in Qt. Then we have a spectral sequence 

This construction is .fanctorial in 9". 

PROOF. Let i: 9" ---+ f• be an injection into a bounded below complex of injectives. 

Then on the one hand RP+q S(RT (9")) = RP+q S( T(f")), and on the other hand 

RP S(Rq T(9")) = RP S(Hq( T(f"))), so we can apply Proposition 3.4. □ 

Proposition 3.6. Let Qt, $ and (t be abelian categories. Let T : Qt ---+ $ and S : $ ---+ (t be 

covariant le.ft exact functors. Assume that RT is defi,ned on D* (Qt), that RS is defi,ned on D*($) 

and that RT maps D* (Qt) into D*($). If there is a collection Cfi' ef T -acyclic objects in !Zt, such 

that every complex in C * (Qt) admits an injection into a complex ef objects fiom Cfi', and such that T 

maps objects in Cfi' to S -acyclic of!jects, then we have a canonical isomorphism 

R(S o T) ~ RS o RT. 

PROOF. This follows from the construction of derived functors, c( [Ha, Prop. I.5.4]. D 

The isomorphism of derived functors R ( S o T) ~ RS o RT induces an isomor
phism RP+q S( RT (-)) ~ RP+q( So T), hence under the conditions of Proposition 3.6, 
we have by Corollary 3.5 a spectral sequence 

(16) 

for any bounded below complex 9" of objects in Qt. 

In this context the following lemma is often very useful. 

Lemma 3. 7. Let Qt and$ be two abelian categories. Let S : Qt ---+ $ be a .fanctor having a right 
adjoint.fanctor T: $ ---+ Qt. Then 

(i) S is right exact and T is left exact. 

(ii) If T is exact, then S takes prqjective objects in Qt to prqjective objects in $. 

(iii) If S is exact, then T takes irifective objects in $ to injective objects in Qt. 

PROOF. Easy category theory. 

4. Derived functors for G -sheaves 

□ 

In this section we will construct the derived functors of the functors introduced 

in Section 2. We will use the notation D(X,A) instead of D(A-W1oil(X)), and 

De ( X, A) instead of D(A-W1oil c ( X) ). 
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Most of the derived functors we are going to define will be right derived functors 

defined on the category of bounded below complexes, so the following lemma makes 

things easy. 

Lemma 4.1. Let G be airy group, kt A be any ring and let X be airy G -space. 17zen the category 
A-9.Jto () c( X) has enough injectives. 

PROOF. The category A-9.Jtoi'J(X) has enough injectives, so for a G-A-module !fr 
on X, we can find a an injective A-module f on X and a nonequivariant injection 

g; <-+ f. This gives rise to an equivariant injection g; <-+ Coind G f' and Co ind G f 

is injective by Proposition 2.10 and Lemma 3. 7. D 

This means that for any group G and any equivariant continuous mapping 

f : X --, Y between G -spaces, we have the derived functors 

Rf.: D"t;(X,A)--, D"t;(Y,A), 

R1r,:: D"t;(X,A)--, D"t;(X/G,A), 

Rr(X,-): D"t;(X,A)--; Di;(A-9.Jtoi'J), 

RrG(X,-): D"t;(X,A)--; n+(A-9.Jtoi'J). 

Proposition 4.2. Let A be a ring, let G be a group and let f : X --, Y and J' : Y --, Z be 
equivariant continuous mappings ef G -spaces. 17zen 

R(J.' of.) = Rf.' o Rf.. 

PROOF. This follows by Proposition 3.6 from Proposition 2.3 and Lemma 3. 7. D 

If X and Y are locally compact, we have the derived functor 

RJ,.: D"t;(X,A)--, D"t;(Y,A), 

and if J,. (resp. r,(X, -)) is of finite cohomological dimension, then by Proposition 3.3 

we can extend RJ,. (resp. Rr,), to the whole derived category. If r,(X,-) has 

cohomological dimension n on Qlb(X), we say that X has cohomological dimension n. 
If r(X, -) has cohomological dimension n on Qlb(X), we say that X has strict 

cohomological dimension n. If X has strict cohomological dimension n, then X has 

cohomological dimension :S n (see [Ve, Exp. 2, Th. 4.1 ]). 

A useful collection of sheaves satisfying the properties of Proposition 3.1 for the 

functors r ,( X, - ) and J,. is the collection of c-soft, resp. J,.-soft sheaves. 

Definition 4.3. A sheaf !fr on a locally compact space X is c-seft if for every compact 

subspace i: K <-+ X the restriction mapping r(X, !fr) --, r(K, i* !fr) is surjective. A 

sheaf !fr is J,.-seft, for a mapping f: X --, Y of locally compact spaces, if for every 

y E Y, the restriction of !fr to 1-1 (y) is c-soft. 

If !fr is c-soft, then !fr is J,.-soft for any f, and an J,.-soft sheaf is J,.-acyclic. 
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Proposition 4.4. Let A be a ring, let G be a group and let j : X --+ Y and J' : Y --+ Z be 
equivariant mappings ef locally compact G -spaces. Then 

R(j,_' o j) = Rf,_' o Rj. 

PROOF. This follows from Proposition 3.6 and the fact that j transforms c-soft sheaves 

into c-soft sheaves (see [Ve, Exp. 3, Prop. 1.4]). D 

The bifunctors we defined for G-sheaves give rise to pairings between derived 

categories. For example, if f!JJ• is a complex of G-A-modules, we have the right derived 

functor in one variable 

RHoma(f!lJ-,-): Dt(X,A)--+ D(A-9.J1oiJ). 

Moreover, this construction is functorial in f!JJ•, and for any complex of injectives J• in 

A-9.J1o () G ( X), a quasi-isomorphism f!JJ• --+ i72• in CG ( X, A) induces an isomorphism 

Homa( i72•, J•) --+ Homa ( f!JJ•, J•), so we get a bifunctor 

RHoma(-,-): Da(X,A) x Di;(X,A)--+ D(Qtb). 

Since RHoma ( f!JJ•, - ) is an ordinary right derived functor, it transforms triangles 

into triangles. When <f!• is a bounded below complex of G -A-modules on X, then 

RHom G ( - , <f?•) transforms triangles into triangles as well. A triangle 

is transformed into a triangle 

RHoma (8£'0
, 'i&'0 ) ---t RHoma (ll2°, 'i&'0 ) ---t RHoma ( f!JJ 0

, 'i&'0 ) ---t 

---t RHoma(8£'0 , 'i&'0 )[l]. 

In the same way we get for any group G, any commutative ring A and any G -space X 

the following bifunctors: 

RHom(-,-): Da(X,A) x Di;(X,A)--+ Da(A) 

R.Yeoma(-,-): Da(X,A) x Di;(X,A)--+ D(X/G,A) 

R.Yeom(-,-): Da(X,A) x Dt(X,A)--+ Da(X,A) 

Proposition 4.5. Let A be a ring, let G be a group. Then far any Jit•, JV• in D& ( X, A) we 
have an isomorphism 

.fanctorial in Jit• and JV•. 

PROOF. This follows from Proposition 3.6 ifwe take S = rc, T = RHom(Jit•, - ), 
and for 'i&' the injective objects in A-9.J1o()a(X) of the form lndG(J), where J is 

injective in A-9.J1o()(X). D 
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For the definition of the left derived functor of the tensor product we cannot use 

projective resolutions, since in general A-9Jto()c (X) does not have enough projectives. 

Instead we use flat G-A-modules. Let§ be a G-sheaf of A-modules on X, then we say 

that § is flat if the functor § ® - is exact. Observe that § .is flat as a G -A-module if 

and only ifit is flat as a sheaf of A-modules. We know that the category A-9Jto()(X) has 

enough flats; there is for every sheaf of A-modules .A on X a flat sheaf of A-modules 

§ mapping surjectively onto .A. If .A is a G-sheaf, the surjection §__,.A induces 

an equivariant surjection Incle§__, .A. Clearly Inda§ is flat, so A-VJto()c (X) has 

enough flats. A reasoning as in [Ha, §II.4] shows that we can extend the tensor product 

on complexes to a pairing 

L 
- ®-: De (X, A) X De (X ,A) - De (X,A) 

L 
f-+ g;• @i52" 

A 

We also obtain for any homomorphism of commutative rings A --, B the left derived 

functor 
L 

B@-: De(X,A)- De(X,B). 

4.1. Adjunction properties 

Proposition 4.6 (Yoneda). Let Qt be an abelian category having enough iryectives. Then.for any 
&• E D(Ql), !5)• E D+ (Qt), we have a canonical isomorphism 

PROOF. See [Ha, Th. I.6.4]. □ 

Taking n = 0 in the above proposition, we see that an equality 

RHom(RV(P/1°), i52") = RHom(P/1", RW(i52")) 

implies that the derived functors RV and R W are adjoint. 

Proposition 4. 7. Let G be a group, A a commutative ring, and f: X --, Y a morphism 

ef G -spaces. We have far any complex &• in D G ( X, A) and any complex !5)• in Dt ( Y, A) 
isomorphisms 

RHomc (j* g;•, i52") 

RHom(j* g;•, i52") 

Rf.R.Yt'omc (J* g;•, i52") 

Rf. R.Yt'om(j* g;•, i52") 

fanctorial in &• and !5)•. 

RHomc(P/1°, RJ.i52"), 

RHom(P/1°, RJ.i52"), 

R.Yt'omc(P/1°, Rf.i52"), 

R.Yt'om(P/1°, Rf.i52"), 
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PROOF. We will prove the equality 

the rest goes in a similar way. Take an injective resolution g• ---, f • of g•. Then we 

have a quasi-isomorphism 

RHomc(J* 9",.?2") c::: Hom~(J* 9",f"). 

On the other hand Rf. (.?2") is quasi-isomorphic to J.f", and J.f" consists of injective 

G-A-modules on Y, since J. transforms injectives into injectives by Proposition 2.3 
and Lemma 3. 7. In other words, 

The isomorphism 

Hom~ (J* 9", f") c::: Hom~ ( 9", J.f") 

follows immediately from Proposition 2.3. □ 

Proposition 4.8. Let G be a group, let A be a commutative ring, and let X be a G -space. We 
have far arry complex g• in Dt ( X, A) and any complex 9" in D ( X / G, A) an isomorphism 

RHomc( 1r* 9", .?2") c::: RHom( 9", R1r; (A, .?2") ). 

In particular, we have 

RI'(X, .?2") c::: RI'(X / G, R1r; .?2"), 

and far M" in D(A) and N" in Dt (A) we have 

RHomc(M",N") c::: RHom(M",RI'c N"). 

The isomorphisms arefanctorial in 9" and g• (resp. M" and N"). 

PROOF. The first equation is proven as Proposition 4. 7, using Corollary 2. 7 instead of 

Proposition 2.3. The other two equations are special cases of the first one. D 

Proposition 4.9. Let G be a group, A a commutative ring, and let X be a G-space. We have far 
arry complex 9" in D ( X, A) and arry complex g• in Dt ( X, A) isomorphisms 

RHom(9",.?2") c::: RHomc(IndG 9",.?2"), 

and 

RHom(.?2",9") c::: RHomc(.?2",CoindG 9"), 

which are fanctorial in 9" and g•. 

PROOF. This follows from Proposition 2.10. □ 
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5. Verdier duality 

Poincare duality is in the Grothendieck-Verdier formalism one of the consequences 

of the existence of a right adjoint functor f to the derived functor R j. The existence of 

f 1 is not as obvious as the existence of adjoints to other derived functors, since j itself 

has in general no right adjoint. In the nonequivariant setting Verdier has constructed 

f for any mapping j : X __, Y of locally compact spaces such that j has finite 

co homological dimension (see [Ve]). The generalization to the equivariant situation 

is straightforward. A short description following [Iv, Sec. VIII.3) and [Bo2, §V7] is 

included for sake of completeness and because one of the intermediate results will be 

needed in the next section. 

Lemma 5.1. Let G be a group, let A be a commutative ring, and let j : X ---, Y be a morphism 

ef locally compact G -spaces. Let .,ft be a G -A -module on Y and let JV be a G -A-module on X. 
The natural homomorphism ef G-sheaves 

.,,ft@jJV - j(j* .,,ft@JV), 
A A 

is an isomorphism if .,ft is fiat. 

PROOF. The homomorphism .,,ft@A jJV---, j(J* .,,ft@A JV) is defined using the 

adj unction morphism .,ft ---, f. j* .,ft and the obvious equivariant mapping 

j.j* .,ft@ jJV - j(j* .,,ft@JV). 
A A 

The statement now follows from [Ve, Exp. 3, Lemme 4.4.1]. D 

Lemma 5.2. Let G be a group, let A be a commutative ring, and let j : X ---, Y be a morphism 
ef locally compact G -spaces, such that j has finite cohomological dimension. Let .,ft and JV be any 

G -sheaves ef A-modules on X, such that JV is j-sqfi and either .,ft or JV is fiat, then .,ft® JV 
is j-sqfi. 

PROOF. See [Bo2, Prop. V6.5.). D 

Proposition 5.3. Let G be a group, let A be a commutative ring, and let j : X ---, Y be 

a morphism ef locally compact G -spaces, such that j has finite cohomological dimension. For any 
complex g• in Da ( X, A) and a,ry complex 9" in Dr; ( Y, A) we have a natural isomorphism 

L L 
9"@Rj(I5d") ~ Rj(j*9"@!5d"). 

PROOF. Take a flat resolution §• ---, 9" of 9" and an j-soft resolution g• ---, 't?" of 

!5d". Then 

and by Lemma 5.2, 

L 
Rj(j* 9" ® !5d") ~ j(j* §" ® 't?"), 
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so we can apply Lemma 5 .1. □ 

Corollary 5.4. Let G be a group, let A be a commutative ring, and let f: X -----+ Y be a 

morphism ef local{y compact G -spaces, such that j has finite cohomological dimension. Then far any 
flat and j-seft sheaf JV, the sheaf jJV is.flat. 

PROOF. Flatness of jJV is equivalent to the property that for any sheaf of A-modules 

J/t on Yandanyn > 0, we have Hn(Jlt®L jJV) = 0, butthisisatrivialconsequence 
ofthefactthat Hn(Jit@L jJV) = H-"(Rj(j*Jit@LJV)) = R-"j(j*Jit@JV), 

which follows from Proposition 5.3 and Lemma 5.2. D 

A standard c-soft and flat resolution of the constant sheaf A on X is the Godement 

resolution A -----+ 'if!• (see [Iv, II.3.6]), which we give the obvious G-action. If A is 

noetherian and j has cohomological dimension n, the truncation T:-,;n 'if!• is a finite 

j-soft and flat resolution of A (c£ [Iv, Prop. VI.1.3]). 

The following result will be needed in Section 111.1. 

Corollary 5.5. Let G be a group, let A be a noetherian commutative ring and let B be a 
commutative A-algebra. Let f : X -----+ Y be a morphism ef local{y compact G -spaces, such that j 
has finite cohomological dimension. Then we have far any bounded above complex 9• ef G -A -modules 

on X a natural isomorphism 

in Dc(X, B). 

PROOF. Let §• -----+ 9• be a flat resolution, and let A -----+ x• be a finite j-soft and 

A-flat resolution. Then f2• = §• ® f• is a bounded above j-soft and A-flat complex 

quasi-isomorphic to 9•. Since Rj(B ®~ 9•) ~ j(B ®A f2•) by Lemma 5.2, and 

B ®~ Rj( 9•) ~ B ®A jf2• by Corollary 5.4, the statement follows from Lemma 5.1. 

□ 

Observe that the isomorphism involved is an isomorphism in the derived category 

of G-B-modules, hence Corollary 5.5 is not just a special case of Proposition 5.3. 

Now we can get down to the actual construction of the functor f. For a flat and 

soft A-module X on X and any A-module / on Y the presheaf 

U f----+ Hom(fifu, /) 

is a sheaf which we denote by J!(f, /). This construction is functorial in both 

variables and equivariant as a bifunctor. Hence f ! ( X, /) is equipped with a canonical 

G -action if X is a flat and soft G -A-module on X and / is a G -A-module on Y. 

Lemma 5.6. Let G be a group and let A be a commutative ring. Let f: X -----+ Y be an equivariant 

mapping between local{y compact G -spaces, such that j has finite cohomological dimension. For any 
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flat and sqfi G -A-module % on X, any G -A -module ff on X and a17:.y G -A -module / on Y 

we have an isomorphism 

ef G -A -modules on Y, which is junctorial in ff, % and /. 

PROOF. For any U open in X and any V open in Y there is a canonical bilinear 

pairing 

ff(U) x JXu(V)--, j(ff®X)(V) 

which is compatible with the mapping ff ( U) --, ff (g · U), the mapping j Xu ( V) __, 
jXg. u(g· V) and the mapping j(ff ®%)( V)--, j(ff ® X)(g· V) induced by the 

G -actions on ff and % . This pairing gives us a homomorphism 

'I/J( U, V): Hom(j(ff ®%)( V), /( V)) __, Hom(ff( U),Hom(JXu( V), /( V))). 

When we vary U and V, we see that the 'I/J( U, V) are compatible with the mappings 

induced by the restriction mappings of ff, % and /, so the collection { 'I/J( U, V)} 
defines a homomorphism 

'I/J: £om(j(ff®%),/)- f.£om(ff,/(%,/)), 

which can be checked to be equivariant. It is shown in [Bo2, V.7 .14] that the 

homomorphism 'ljJ is an isomorphism. D 

Corollary 5. 7. Let j: X --, Y and% be as in Lemma 5. 6. The functor f 1 ( % , - ) is left 

exact and traniforms injective G -A -modules on Y into injective G -A-modules on X. 

PROOF. Since the functor j(- ® %) is exact by Lemma 5.2, this follows from 

Lemma3.7. D 

Assume the commutative ring A is noetherian and fix a quasi-isomorphism 

A __, % 0 of the constant G -sheaf A on X into a bounded complex % 0 of fi-soft 

and flat G-A-modules. For a complex of G-A-modules /" we define the complex 

] 1(%0 , /") following the same conventions as in the definition of the complex Hom•. 

Since A-9J1oil c ( Y) has enough injectives, the right derived functor 

/: Dt(Y,A) __, D;(X,A) 

of j 1 ( % 0 , - ) is defined by sending a complex JY• of G-A-modules on Y to 

/(%",yr•), where yr• is an injective complex quasi-isomorphic to JY•. If we have 

another j-soft and flat resolution A --, 2•, then /(£'•,yr•) is quasi-isomorphic to 

f 1 ( % 0
, yr•), so the definition does not depend on the choice of % 0 • 

Theorem 5.8. Let G be a group and let A be a noetherian commutative ring. Let j: X --, Y 
be an equivariant mapping between local!J compact G -spaces such that j has finite cohomological 
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dimension. rte have far any complex Jlt• in De ( X, A) and any complex JV• in Dt; ( Y, A) 
isomorphisms 

and 

R.Ytbm(RJ,.J!t-,JV•) ~ Rf.RJ"fbm(J!t-,/JV•), 

RHom(RJ,.J/1-,JV•) ~ RHom(J!t-,/JV•), 

which are fo.nctorial in Jlt• and JV•. 

PROOF. Let JV• -+ yr• be a quasi-isomorphism of JV• into a complex of injectives 

yr•, and let x• be as above. Then 

On the other hand, j!(X•, yr•) is an injective complex, so by Corollary 5. 7 

.Ytbm.(J!t-, /(X-, yr•))~ R£om(J!t-, /JV•). 

Since £om•(.4t•, j!(X", yr•)) consists offlabby sheaves by [Gr, Prop. 4.1.3], 

J..Ytbm"(J/1", /(X", yr•))~ Rf.RJ°eom(J/t", /JV"). 

Hence the first isomorphism is a consequence of Lemma 5.6; the other two isomor

phisms follow easily. D 

Remark. In [BL] J. Bernstein and V. Lunts construct a category which plays the role 

of the derived category of G-sheaves on a space with an action of a Lie group G, 

together with all the usual functors and Verdier duality. For a finite group G, they 

show in Section 8 that their construction is equivalent to the derived category of the 

category of G-sheaves. They remark that even in this case their construction might be 

useful, since is 'not abolutely clear' how to obtain Verdier duality directly. As we have 

seen in this section, the generalization from the non-equivariant setting is in fact quite 

straightforward. 



CHAPTER III 

Equivariant homology and cohomology 

In [Gr, Chap. VJ equivariant cohomology was defined as the natural equivari

ant analogue of ordinary sheaf cohomology H n ( X, ff) = Rn r ( X, ff). Similarly, the 

sheaf-theoretic definition ofBorel-Moore homology Hn( X, M) = R-"Hom( RfcA, M) 
has an obvious equivariant analogue. In Sections 2, 3, and 4 we see that the standard 

properties of homology and cohomology, including cup product, cap product and 
Poincare duality, come out automatically, since the formalism of derived functors 

and the results of the previous chapter allow us to copy all constructions and proofs 

directly from the nonequivariant case. The Hochschild-Serre spectral sequence (also 

known as the Borel-Serre spectral sequence), is introduced in Section 5. It is one of 

the main tools for determining the equivariant (co)homology from the G-action on 

the non-equivariant (co)homology groups. The connection between the equivariant 
( co )homology of a G -space X and the ( co )homology of the fixed point set X G is devel

oped in Sections 6 and 7. In particular, the mapping p mentioned in the introduction is 

defined in Section 7 for G = Z/ p, and the main result of this chapter is Theorem 7.4. 

Some extra information about the case G = Z/2 is gathered in Section 8, and we 

conclude with a series of examples of spaces with an involution in Section 9. 

The results concerning equivariant cohomology in this chapter are well-known; 

they are included for convenience and completeness. The definition of equivariant 

Borel-Moore homology, the mapping p and all related results are new. 

1. Definitions 

Definition 1. 1. Let G be a group, let A be a commutative ring, let X be a G -space. 
Then for a sheaf of G -A-modules ff on X we define the nth equivariant cohomology group 

45 
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ef X with coefficients in ff by 

H"(X; G,§) = R"rc(X,§), 

For an equivariant locally closed subset V C X we define equivariant cohomology with 

support in V by 

H~(X; G,§) = R"Homc(Av,ff). 

Observe that for a G-A-module M we have 

H"(pt; G,M) = H"(G,M) 

(cohomology of groups). It can be checked that our definition of equivariant 

cohomology coincides for reasonable spaces with the more geometric definition of 

Borel (see [Bo2]) ifwe give G the discrete topology. 

Definition 1.2. Let G be a group acting on a locally compact space X of finite 

cohomological dimension, let A be a commutative ring, and let M be a G-A-module. 

Then we define 

We call Hn ( X; G, M) the n-th equivariant Borel-JU.oore homology group with coefficients in M. 

For a G-A-module M, we have that Hn(pt; G, M) = H-"( G, M), so equivariant 

Borel-Moore homology can be considered as a mix of ordinary Borel-Moore homology 

and group cohomology. In particular, even for compact spaces, equivariant Borel-Moore 

homology does not coincide with equivariant homology as defined, for example, in [Br, 

VIL 7], which should be considered as a mix of ordinary homology and group homology. 

Probably the most striking difference between equivariant Borel-Moore homology and 

other equivariant homology theories is that Hn ( X; G, M) need not be zero for n < 0. 

It should be noted that if B is a commutative A-algebra, then a G-B-module 

is in a natural way a G -A-module as well, so the notations for cohomology and 

homology are a bit ambiguous. For example, it might make a difference for the 

computation of Ht(X; G,Z/2) and Hp(X; G,Z/2) whether we consider Z/2 as a 

Z/2-module or as a Z-module. However, it is well-known that an RHomc,s(Bv, -)

acyclic B-module is also an RHomc,A (Av, -)-acyclic A-module. This implies that 

RHomc,s(Bv,ff) '.::::' RHomc,A(Av,ff) for any G-B-module ff on X. 

For Borel-Moore homology the situation is similar, since we have in D(A) a 

well-known adjunction formula 
L 

RHomc,A(Rfc(X, A), M) '.::::' RHomc,s(B' Rrc(X, A), M), 

that gives gives by Corollary II.5.5 a quasi-isomorphism 
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for any G -B -module M. Hence, we get the same result, whether we compute 

Hn(X; G, M) over B or over A. Even when G is trivial, this does not seem to 

be as widely known as the corresponding statement in cohomology. In particular, for 

any locally compact space X of cohomological dimension n < oo (over Z), and any 

abelian group M we see that Hk ( X; M) = 0 if k < 0 or k > n, since we may assume 

the base ring to be Z and then the proof of the second part of [Iv, Prop. IX.1.6] is 

easily adapted to homology with coefficients in M. As far as I know, there is no proof 

in the literature of the vanishing ofBorel~Moore homology in negative degrees for such 

general X and M (see for example [Bo2, V.7.2]). 

2. Functoriality and long exact sequences 

When f: X ----+ Y is a continuous equivariant mapping of G -spaces, and i: W c......., 

Y is the inclusion of an equivariant locally closed subspace, then the adjunction 

morphism ff ----+ Rf.f* ff induces for G-A-module ff on Y a quasi-morphism 

RHomc ( i1A, ff) ---t RHomc ( i1A, Rf.j* ff). Since RHomc ( i1A, Rf.J* ff) is quasi

isomorphic to the complex RHomc (J* i1A, f* ff) by Proposition II.4. 7 and f* o i1 = 
Ji o f*, where j: 1-1 ( W) c......., X is the inclusion of the inverse image of W, we get a 

quasi-morphism 

(17) 

This induces for any n E Z the pull-back homomorphism 

j*: H;v(Y;G,ff)----+ H'J-1(w)(X;G,j*ff), 

which is clearly functorial in ff and has the property that 

(j O g)* = g* 0 f*. 

It is not hard to check that if j: U c......., X is the inclusion of an open subspace, and 

V C U is locally closed, then the restriction 

j*: Hf11 (X; G,ff)----+ Hi(u; G,j*ff) 

is an isomorphism. 

If W C X is an equivariant locally closed subspace, and V is an equivariant 

closed subspace of W, then the canonical mapping A w ----+ A v induces a natural 

homomorphism 

(18) H"(X· G ff)---+ H" (X· G ff) V , , W , , 

for any G -A-module ff on X. 
If f : X ----+ Y is a proper mapping oflocally compact spaces, then j = f., so by 

composing the adjunction morphism A----+ f.f* A = jA with the canonical mapping 

fi.Ax----+ RjA, we get a quasi-morphism A----+ RjA, which induces a quasi-morphism 
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Rfc(Y,A) - Rfc(Y,RjA) ~ Rfc(X,A), hence for any G-A-module M of a 

quasi-morphism 

RHomG(Rfc(X,A), M) - RHomG(Rfc( Y,A), M). 

This defines for any n E Z a homomorphism 

(19) 

which we call the proper push-forward by f. The construction is clearly functorial in M, 

and 

(j O g). = j. 0 g •. 

If j: U - X is the inclusion of an open equivariant subspace, we have a natural 

endomorphism j 1A - A which induces in a similar way a restriction homomorphism 

(20) j*: Hn(X;G,M)- Hn(U;G,M). 

A short exact sequence 

0-.,,11-JV-PJJ-o 

of sheaves of G-A-modules on X gives us for every locally closed subspace V C X a 

long exact sequence 

(21) · · · - H 11 (X; G,.,,1/) - H 11 (X; G,JV) - H 11 (X; G, PJJ) -

- H'v+ 1(X; G,.,,11) - H'v+ 1(X; G,JV) - ... 

which is a special case of the long exact sequence (14). A morphism of short exact 

sequences induces a morphism of long exact sequences and the pull-back morphisms 

f * induce for any equivariant mapping f: X - Y a morphism of long exact 

sequences. 

Similarly, assuming X to be locally compact of finite cohomological dimension, a 
short exact sequence of G -A-modules 

o-M-N-P-o 

gives rise to a long exact sequence 

(22) 

· · · - Hn(X; G, M) - Hn(X; G, N)- Hn(X; G, P) - Hn-1 (X; G, M) - · · · 

A morphism of short exact sequences induces a morphism oflong exact sequences and 

the push-forward morphisms J. induce for any equivariant mapping f: X - Y a 

morphism oflong exact sequences. 

If i: Z <.......; X is the inclusion of a closed equivariant subspace into an arbitrary 

G -space X, then for any sheaf§ of G-A-modules on X the kernel of the canonical 

mapping § - § z is precisely the image of the natural morphism § u - §, where 
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J : U <-+ X is the inclusion of the complement of Z. In other words, we get a short 

exact sequence 

(23) 

which gives a long exact sequence 

(24) · · ·-+ H"(X; G,ff u)-+ H"(X; G, ff)!..,, H"(Z; G, i* ff)-+ 

-+ Hn+I (X; G,ffu)-+ · · · 

where we use the fact that H"(X; G, ff z) c:::- H"( Z; G, i* ff) by Proposition II.4. 7. 

If for any sheaf of G-A-modules !: we apply the derived functor RHomc ( - , !:) to 

the triangle in D c ( X, A) associated to the short exact sequence (2 3) with ff = A, we 

get a long exact sequence 

(25) 
· · ·-+ H" (X· G !:)-+ H"(X· G !:)-+ H"(U· G y"!:)-+ H"+ 1(X· G !:) -+ .. · z ' ' ' ' ' ' z ' 7

, 

where R"Homc(Au,!f) = H"(U;G,j*!:), since we have by Remark II.2.4 a 

canonical isomorphism R"Homc (Au,!:) c:::- R"Homc (A, j* !:) ). It can be checked 

that the mapping H" ( X; G , !: ) -, H" ( U; G , !: ) in the long exact sequence is the 

homomorphism j* defined above. 

Applying RHomc ( RC( X, - ) , M) to the triangle associated to (23) with ff = A, 

we get for any bounded below complex M of G -A-modules a long exact sequence 

(26) 

••• ----t Hn(Z; G,M) ~ Hn(X; G,M) L Hn(U; G,M)-+ Hn-i(Z; G,M)- ... 

3. Cup product and cap product 

Let .,,tt• and ..A/" be bounded complexes of G-A-modules on X. Let ff• and 

9• be bounded above complexes of flat G-A-modules on X. Since A-9.Jloilc (X) has 

enough flats, enough injectives and a tensor product, we have by [G H, Prop. 2 .1] an 

A-bilinear pairing 

(27) 
RPHomc(ff0 ,A0 ) x RqHomc(9°,..A/0 )-+ RP+qHomc(ff0 @9°,A0 @..A/0 ) 

which is functorial in ff•, 9", .,,tt• and ._A/•, associative, and symmetric up to the usual 

sign ( -1 )Pq. In particular, if V and W are equivariant locally closed subspaces of X, 

then we can take ff• to be the single sheaf A v and 9• to be the single sheaf A w in 
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degree O and we get the cup product 

(28) 
Ht(X; G,.A) x Hw(X; G,JV) ---+ Ht~qw(X; G,.A®JV) 

W X TJ f-+ W LJ T/· 

which is functorial in X, V, W, ,A• and JV•, associative and symmetric up to the 

usual sign ( - 1 )pq, by which we mean that 

w U rJ = ( -1 )Pq TJ U w 

if w E Ht(X; G,.A) and TJ E Hw(X; G,JV). Using the cup product we give 
Ht ( X; G, A) the structure of a right H* ( X; G, A )-algebra, hence also the structure 

of a right H* ( G, A )-algebra (since we have the canonical mapping H* ( G, A) ---+ 

H* ( X; G, A) induced by the constant mapping X ---+ pt). 

For the definition of the pairing (27) we use the fact that by Proposition II.4.6 a class 

in RPHomG(ff",.A") can be represented by a quasi-morphism a: ff•--➔ .A"[p], 
and a class in RqHom(9",JV") by a quasi-morphism /J: 9" -- ➔ JV"[q]. Now the 

product of a and /3 is represented by the composition 

Here a® id is defined in the following way. Let a be represented by a diagram 

with .f52• flat. The flatness of ff• implies that ff•® JV• [ q] ---+ i52" ® JV• [ q] is a quasi

isomorphism and a ® id is the quasi-morphism represented by the diagram 

If ff• = JV• = A, the product of a and /3 is just the composite quasi-morphism 

a [ q] o /3, as can be seen from the commutative diagram 

id@,B a@id 
A® 9"--➔ A ® A[q]--➔ Jtt•[p] ® A [q] 

(29) l TO,q l Tp,q l 
,B 

--➔ A[q] 
a[q] 
--➔ .A"[p + q] 

When X is locally compact of finite cohomological dimension we can define a cap 

product between homology and cohomology in a similar way. Let §• and 9" again be 

bounded above complexes of flat G -A-modules on X, and let M" and N" be bounded 

complexes of G -A-modules. We will define a pairing 

(30) RPHomc(Rrc(X,§"),M") x RqHomc(9",N") 

---+ Rp+qHomc(Rrc(.%"@9"),M"®N"). 
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Taking§• = A v, and f!JJ• = A w, with V and W as above, we obtain the cap product 

Hp(V;G,M) x H'h,(X;G,N) ---+ Hp_q(Vn W;G,M®N) 
(31) 

"f X W I--+ 

The cap product is functorial in X, V, W, M and N. 
For the definition of the pairing (30) we embed §• in a complex <ef'• of 

flat and c-soft G -A-modules on X. Since re ( X, - ) transforms flat and c-soft 
A-modules into flat A-modules by Corollary Il.5.4, we see that re(X, <ef'•) rep
resents Rre ( X, <ef'•) and that it consists of flat A-modules. We define the prod

uct of a class in RPHom0 (Rre(X,§•),M•) represented by a quasi-morphism 
a: re(X,<ef'•) --+ M•[p] and a class in RqHom(f!JJ-,N•) represented by a quasi

morphism /3: f!JJ• --+ N•[q] to be the class represented by the composite quasi

morphism 

re(X, <ef'• ® f!JJ•) -~+ re(X, <ef'• ®N•[q]) ~ 

~ re(X, <ef'•) ® N•[q] ':~~ M•[p] ® N•[q] _:'"~~ (M• ® N•)[p + q], 

where /3' is the image of /3 under the exact functor re ( X, <ef'• ® - ) . 

Remark 3.1. If§•= A and N• = A, then a diagram similar to (29) shows that the 
product of a and /3 is represented by the composite quasi-morphism a [ q] o /3'. 

From the definitions itis clear that if"( E Hp( V; G, M•), w E H'h,(X; G, N•) and 

w E H(,(X; G,N 1•), then 

(32) ('Ynw) nw' = 'Yn (wUw), 

and we give H. ( X; G, M) the structure of a right H* ( X; G, A )-module, hence also 
the structure of a right H* ( G, A )-module using the cap product. 

If f: X ---+ Y is a proper equivariant mapping between locally compact spaces of 

finite cohomological dimension, and V, W are locally closed subspaces of Y, then for 

'YE Hp(j- 1(V); G,M•) andw E H'h,(Y; G,N•) wehavetheprojectionformula 

(33) 

This follows from the commutativity of the following diagram, where i: V ~ Y, 
;: W ~ Y, i': 1-1(V) ~ X andj': 1-1(W) ~ X,denotetheinclusions. 

Rre( Y,Av ®Aw) 

1 
. Rr,(id@ f'w) 

Rre(X,A1-1(v)®A1-1(w)) --+ Rre(X,A1-1(v)®N•[q]) 

1 rp,qo('"y@id) 

(M• ® N•)[p + q] 
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If X is a compact space of finite cohomological dimension, the constant mapping 

f: X - pt is proper, so it induces a homomorphism 

f.: H0 (X; G,A) - H0 (pt; G,A). 

Since H0 (pt; G, A) = H 0 ( G, A) = A, the mapping f. induces a canonical homo

morphism 

deg: H0 (X; G,A) - A, 

which enables us to define for any k E Z a cap product pairing 

(34) 
I X w f-----7 deg(, n w). 

Remark 3.2. The constructions in Sections 2 and 3 also work for the groups 

Ht(X; G,§•) = RPHomc(Av,§•) (often referred to as hypercohomology groups), 
where g;• is a bounded below complex of G -A-modules on X. The sole exception is 

the cup product 

Ht(X; G,A•)xHl11 (X; G,JV•) - Ht~qw(X; G,A•@JV•), 

which we have defined for bounded complexes A• and JV•, using the pairing (27). 

However, a closer look at the definition of the product (27) reveals that it already works 

when A• is bounded below and only JV• is bounded on both sides. Hence we can 

consider Ht ( X; G, §•) as a graded right H* ( X; G, A )-module and as a graded right 

H* ( G, A )-module. 

4. Equivariant Poincare duality 

Let G be a group, let A be a commutative noetherian ring, and let X be an n

dimensional cohomology manifold over A with a G -action. The definition of a cohomology 

manifold can be found in [Bo 1, Ch. I]; its dimension is the co homological dimension as 

defined in Section II.4. The prime example is a (not necessarily compact) n-dimensional 

topological manifold. We define the orientation sheaf Dr x (A) of X with coefficients in A 
to be the sheaf associated to the presheaf 

Uf----+Hn(U,A) 

(here, as always, Hn( U, A) denotes Borel-Moore homology). In fact, this presheaf is 

already a sheaf, locally isomorphic to A. It has a natural G-action induced by the 
G -action on X. 

We say that X is A-orientable if Dr x (A) is isomorphic to the constant sheaf A (in the 

category A-9J1oil(X)), and an A-orientation of Xis an isomorphism 
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of sheaves of A-modules on X. Any cohomological manifold has a unique Z/2-

orientation. An orientation of differentiable manifold X in the usual sense induces a 
unique Z-orientation Z -.'.::+ tJr x (Z) and vice versa. If a group G acts on X, then we say 

that the G -action preserves the A-orientation if 'ljJ is an isomorphism of G -sheaves. 
Assume that X is an n-dimensional cohomology manifold with a G-action. De

noting the constant mapping by f: X --+ pt, we have a canonical quasi-isomorphism 

J 1A-.'.::+ tJrxA[n] of G-A-modules on X (c£ [Ve, Exp. 5]). Since we have by Verdier 
duality (Theorem II.5.8) a canonical isomorphism 

RPHomc (A, /A)~ H_p(X; G, A), 

for every p E Z, this means that 

HP(X; G, tJrxA) ~ RPHomc(A, /A[-n]) = 
= RP-•Homc(A,/A) ~ Hn-p(X; G,A). 

If the G -action preserves the A-orientation, the equivariant isomorphism A -.'.::+ {fr x A 

induces an isomorphism HP ( X; G, A) -.'.::+ Hn-p ( X; G, A). More generally the A
orientation gives for every closed G -subspace i : Z '--+ X an isomorphism 

Conceptually it is better to describe these isomorphisms in terms of the cap product. 

Definition 4.1. Let A be a noetherian commutative ring, let G be a group and let 
X be an n-dimensional A-oriented manifold with an A-orientation preserving action 
of G . The equivariant fandamental class µ x E H n ( X; G , A) of X is the image of the 
A-orientation A -.'.::+ tJr( A) under the canonical isomorphism R0Homc (A, tJr( A)) ~ 

H.(X; G,A). 

It is clear from the definition that e(µx) E H.(X; A) is the usual fundamental class 
of X. Hence the image ofµ x under the composite homomorphism 

H.(X; G,A) ~ H.(X;A)--+ ~ H.( U;A) ~ A 
U3x 

is a generator for any point x E X, where the limit is taken over the open neighbour

hoods of x. Conversely, if a class v E H n ( X; G, A) has this property, then v induces 
an A-orientation of X which is preserved by the action of G and for which v is the 

fundamental class. 

Theorem 4.2 (Poincare duality). Let A be a noetherian commutative ring, let G be a group 
and let X be an A-oriented n-dimensional cohomology manifold with an A-orientation preserving 
G -action. Cap product with the equivariant fandamental class µ x E H n ( X; G , A) gives for arry 
closed G -subspace Z C X and arry G -A-module M an isomorphism 

H';(X; G,M) µxn Hn-m(Z; G,M). 
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PROOF. Let a: Rf,_A --7 A[-n] be the quasi-morphism corresponding to µx, where 

f: X ___, pt is the constant mapping. Then tensoring with M gives a quasi-morphism 

a': Rf,_M --7 M[-n]. The image of a' under the isomorphism 

1¥: HomDt(A-moD)(Rf,_M, M[-n]) .::::+ HomDt(X,A)(M, /M[-n]) 

is a quasi-isomorphism iIT(d): M _'::'.7 J'M[-n]. This means that composition with 

iIT(a'[m]) defines an isomorphism 

H;(X; G, M) = HomDt(x,A/Az, M[m]) ___, 

___, HomDt(x,A/Az, /M[m - n]) = Hn-m(Z; G, M). 

On the other hand, composition with iIT(a'[m]) corresponds to cap product with 

µx, by Remark 3.1 and the commutativity of the following diagram. 

where A ---, 'if'• is a c-soft flat resolution of A, and j is the inclusion W '-------+ X. □ 

Remark 4.3. Using Poincare duality we can transfer constructions in homology to 

cohomology and vice versa. We can for example define a Gysin map 

for any proper mapping f : X ---, Y of cohomological manifolds with an A-orientation 

preserving G-action, where n is the dimension of X and m is the dimension of Y. As 

in the nonequivariant case, f,_ is determined by the equation 

(35) µv n f,_w = f.(µx n w). 

When X is a compact cohomological manifold of dimension n with an A

orientation preserving G -action, the cap product pairing (34) can be transformed 

to the cup product pairing 

H"-k(X; G, A) x Hk(X; G, A) ___, A 
(36) 

W X W 1 1--7 (w,w'), 

which is related to the cap product pairing by the formula 

(37) (w,w') = (µx nw,w'). 

Similarly, for X as above, the cap product pairing can be transformed to the intersection 
pairing in Borel-Moore homology 

(38) 
Hk(X; G, A) x Hn-k(X; G, A) ___, A 

"( X 1' i--7 ('Y' 1')' 
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which is related to the cap product pairing by the formula 

(39) 

for"( E Hk(X; G, A), andw E Hn-k(X; G, A). Note that both the cup product pairing 

and the intersection pairing depend on the choice of an A-orientation (hence of the 

fundamental class µx ). 

5. The Hochschild-Serre spectral sequences 

Proposition 5.1 (Hochschild-Serre spectral sequence for cohomology). Let G be arry 
group, let X be a G-space, let W be a local(y closed G -subspace ef X. Then far arry bounded below 

complex $ ef G -A -modules on X there is a spectral sequence 

Ef'q = HP( G, Hlv(X,$)) ⇒ Hf:t(X; G,§), 

fanctorial in X and $. 

PROOF. The existence of the spectral sequence is by Corollary II.3.5 a consequence of 

the isomorphism of functors 

RHomc(Aw, -) = RI'c o RHom(Aw, -) 

(Proposition II.4.5). 

By functoriality in X we mean that a mapping of G-spaces j: X'--+ X induces a 

commutative 'diagram' 

HP( G, Hlv(X,$)) 

rl 
⇒ Hf:q(X; G,$) 

rl 
HP( G, Hlv(X', f*$))⇒ Hf:q(X'; G, J*§) 

By functoriality in $ we mean that a mapping g --+ .§: of complexes of G -A-modules 

on X induces a commutative 'diagram' 

HP( G, Hlv(X, rff)) =} Hf:q(X; G,rff) 

1 1 
HP( G, Hlv(X,§))⇒ Hf:q(X; G,$) 

Both diagrams are an immediate consequence of the functorial origin of the spectral 

sequence. D 

The filtration of Hw ( X; G, $) associated to the Hochschild-Serre spectral 

sequence will be denoted by F*. We have 

0 = F-1 H'/+,(X; G,$) C F 1 H'/+,(X; G,$) C ... 

c F" H'/+,(X; G,$) = H'/+,(X; G,$) 
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and 

Fq H" (X· G ff)/Fq-t H" (X· G ff)= En-q,q 
w ' ' w ' ' co . 

The edge morphism 

in degree p of the Hochschild-Serre spectral sequence is the homomorphism induced 

by the canonical mapping 

RHoma(Aw,ff)----+ RHom(Aw,ff). 

It is compatible with cup product: 

(40) e(w) U e(77) = e(w U 77) 

for any w E Ht(X; G, .,ft) and any 77 E Hfv(X; G, JV), where V, Ware arbitrary 

locally closed G-subspaces of X and .,ft, JV are arbitrary bounded below complexes 

of G -A-modules on X. 

Proposition 5.2 (Hochschild-Serre spectral sequence for homology). Let G be any group, 

let X be locally compact a G -space, ef finite cohomological dimension. Then far any bounded below 

complex M ef G -A -modules there is a spectral sequence 

E}q = H-P(G, Hq(X,M)) ⇒ Hp+q(X; G,M), 

fanctorial in X and M. 

PROOF. The existence of the spectral sequence is by Corollary II.3.5 a consequence of 

the functor isomorphism 

RHoma(Rrc(X, A),-)= Rrc o RHom(Rrc(X, A),-) 

(Proposition II.4.5). □ 

The edge morphism 

of the Hochschild-Serre spectral sequence is just the homomorphism induced by the 

canonical mapping 

RHoma(RC(X, A), M)----+ RHom(Rrc(X, A), M). 

It is compatible with cap product: 

(41) e(,) n e(w) = e(, n w), 

hence for a compact G -space X we have 

(42) ('y,w) = (e(,), e(w)) 
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for"( E Hk(X; G, A) andw E Hk(X; G, A), and when Xis acompactcohomological 

manifold of dimension n with an A-orientation preserving G -action, we have 

(43) (w,w') = (e(w),e(w')) 

forw E H"-k(X; G,A) andw' E Hk(X; G,A), and 

(44) ("/,11) = (e("f),e("f')) 

for"( E Hk(X; G,A), and "(1 E Hn-k(X; G,A), since e maps the euivariant funda

mental class of X to the ordinary fundamental class of X. 
The filtration of H, ( X; G, M) associated to the Hochschild-Serre spectral se

quence will be denoted by F.. If d is the co homological dimension of X, we have We 

have 

0 = Fd+l Hn(X; G, §) c Fd Hn(X; G,§) c · · · 
C F,,Hn(X; G,§) = Hn(X; G,§) 

and 

FqHn(X; G,ff)/ Fq-1 Hn(X; G,§) = E';q,q· 

Remark 5.3. If X is an A-oriented n-dimensional cohomology manifold with an 

A-orientation preserving G -action, then of course the Poincare duality isomorphism 

Hf(X; G,M)--) Hn-m(Z; G,M). 

of Theorem 4.2 corresponds to an isomorphism between the spectral sequence 

Ep,q = HP(G Hq (X M)) =;, Hp+q(X· G M) 2 , Z , Z , , 

and the spectral sequence 

Eiq = H-P(G, Hq(Z,M)) =;, Hp+q(Z; G,M), 

which is on the E 2-level given by the collection of isomorphisms 

HP(G,Hi(X,M)) ..'.:'., HP(G,Hn-q(Z,M)) 

induced by the Poincare duality isomorphisms Hi(X, M) ..'.:'., Hn-q(Z, M). 

6. Localization 

One of the main purposes of equivariant ( co )homology, is establishing connections 

between the ordinary ( co )homology groups of a G -space, of the fixed point set and of 

the quotient space. We will first study the extreme cases of fixed point free actions and 

trivial actions, and then prove a localization theorem of Borel-Atiyah-Segal type for 

equivariant Borel-M9ore homology. The base ring; A will be assumed to be noetherian 

and commutative throughout this section. In order not to overload the notation, 
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cohomology with supports in a locally closed subspace will not be mentioned, but 

everything generalizes without any problem. 

A central role is played by the Leray spectral sequence 

We will now define a class of G-actions for which the sheaves Rqn;/ ff are easy to 

describe. Recall that if x is a point of a G -space X, then the stabilizer G x of x is the 

subgroup of G leaving x fixed, i.e. G x = {g E G : g · x = x}. The G-action is said to 

be ftee if G x = { 1} for every x E X. A G -action on X is called proper{y discontinuous 
if for every x E X the stabilizer G x is finite and there is a neighbourhood Ux of x 

such that g· Ux n Ux =(/)for any g E G \ Gx. In particular, a finite group action on a 

Hausdorff space X is properly discontinuous. If G acts properly discontinuously on a 

space X, then X / G is at a pointy locally homeomorphic to the finite quotient U, / G x 

for an arbitrary x E 1r- 1 (y). This implies that if X is locally compact of cohomological 

dimension n, then X / G is locally compact of cohomological dimension n by [Bo 1, 

Prop. III.5.1], and if X is locally paracompact of strict cohomological dimension n, then 

X / G is locally paracompact of strict cohomological dimension n by [Qu, Prop. A.11]. 

Lemma 6.1. Let X be a space with a proper{y discontinuous action ef a group G. Let y E X / G 
and x E 1r- 1 (y) C X. Then far any G -A-module ff on X and any q E Z the stalk ( Rqn;/ ff))' 
is isomorphic to Hq( G, ( n,ff)J') '.:'.: Hq( Gx, ffx)-

PROOF. See [Gr, Th. 5.3.1]. □ 

From the above lemma and the Leray spectral sequence we see that for a group G 

acting properly discontinuously and freely on X the edge morphism 

is an isomorphism. In particular, if M is an A-module with a trivial G-action we have 

for such a G -space a canonical isomorphism 

H*(X/G;M) '.:'.: H*(X; G,M). 

Using Verdier duality this easily generalizes to homology. 

Proposition 6.2. Let X be a local{y compact space ef finite cohomological dimension with a 

proper{y discontinuous ftee G -action. For every A-module M with trivial G -action and every p E Z 
there is a natural isomorphism 

Hp(X/G;M) ~ Hp(X; G,M). 

PROOF. Since 7r: X ------, X / G is a locally trivial covering, we have a canonical 

isomorphism of derived functors n* ~ 7r!. Since n;/ is exact by Lemma 6.1, the derived 

functor Rn;/ on* is canonically isomorphic to the functor n;/ on*, which is the identity 
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functor idx;c on D(X / G, A). Hence we obtain an isomorphism idx;c ..::::, Rn? on!, 

which induces for any A-module Man isomorphism 

where j : X / G -t pt denotes the constant mapping. By Verdier duality this gives an 

isomorphism Hp(X/G,M) ~ Hp(X; G,M). □ 

If a group G acts trivially on X and § is a sheaf of A-modules on which G acts 

trivially as well, we have a natural mapping RHom(A, §) -t RHomc (A,§), which 

induces for every p E Z a homomorphism HP(X;§) -t HP(X; G,§). By abuse of 

notation we will denote the image of a class w E HP(X; §) by the same symbol w. If 
G is finite and A is a field, the above homomorphism and the cup product induce an 

isomorphism of graded A-modules 

H*(X;§)®H*(G,A)-t H*(X;G,§). 

This follows from the Ki.inneth type formula 

H"(X; G,§) ~ EB Hom(Hq( G,A), HP(X;§)) 
p+q=n 

(see [Gr, Th. 4.4.1]) and the fact that the cup product corresponds to the composition 

mappmg 

EB Hom(A, HP(X;§))@Hom(Hq( G, A), A) -t 

p+q=n 

EB Hom(Hq( G, A), HP(X;§)), 
p+q=n 

which is an isomorphism, since Hp( G, A) has finite dimension because G is finite. 

In equivariant Borel-Moore homology a similar fact holds true. If G acts trivially 

on X, and M is an A-module on which G acts trivially as well, we have a natural 

mappmg 

RHom(Rfc(X,A),M) -t RHomc(Rfc(X,A),M), 

which induces for every p E Z a homomorphism Hp(X; M) -t Hp(X; G, M); the 

image of a nonequivariant class 'Y will again be denoted by 'Y· 

Proposition 6.3. Let G be a finite group acting trivialfy on a localfy compact space X ef finite 
cohomological dimension . .if A is a field and M is an A -module with a trivial G -action, the natural 
homomorphism Hp ( X; M) -t Hp ( X; G , M) and the cap product induces an isomorphism ef 
graded A-modules 

H,(X; M) ® H*( G, A)..::::, H,(X; G, M). 
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PROOF. Since G acts trivially on X and M, we have a composite isomorphism 

RHomc(Rrc(X, A), M) '.:::' RHomc(A, RHom(RC(X, A), M)) '.:::' 
L 

'.:::' RHom(A ®A, RHom(Rrc(X, A), M)), 
G 

and we obtain for every n E Z a Kiinneth type isomorphism 

Hn(X; G, M) '.:::' EB Hom(Hq( G, A), Hp(X; M)). 
p-q=n 

A closer analysis of the cap product (cf Remark 3.1) shows that the mapping 

H,(X;M) ® H*( G, A)--+ H,(X; G, M) 

corresponds to the composition mapping 

EB Hom(A, Hp(X, M)) ®Hom(Hq( G,A), A)--+ 
p-q=n 

EB Hom(Hq( G,A), Hp(X, M)), 
p-q=n 

which is an isomorphism, since each H q ( G, A) is finite dimensional. D 

Now we will consider a localization theorem of Borel-Atiyah-Segal type for 

equivariant Borel-Moore homology. Suppose G acts properly discontinuously on 

X. Let S be a multiplicative subset of the centre of H* ( G, A), where A can be 

any noetherian commutative ring. For every x E X the inclusion Gx '-------+ G induces a 

homomorphism H* ( G, A) --+ H* ( G x, A). We define for 'T/ E H* ( G, A) the closed 

subspace 

X 17 = {x EX: rydoesnotmaptoOin H*(Gx,A)} 

and for a subset S C H*( G, A) we define X 8 = n1]ES X 17 • 

A localization theorem for equivariant cohomology of Borel-Atiyah-Segal type 
states that under certain conditions on X and G the inclusion X s '-------+ X induces an 

isomorphism 

s- 1 H*(X; G,M)-=:'., s- 1 H*(X 8 ; G,M) 

(see for example [Hs, §III.2]). Here we will avoid one of the technical conditions on the 

G-action by proving that s-1 H*(X; G, M)--+ s- 1 H*(X 17 ; G, M) is an isomorphism 

for any 'T/ E S. When G is finite, which is the case we will be interested in, this does not 

make a difference, since then we always have an 'T/ E S such that X 17 = X s. 
In order to prove the analogue for equivariant Borel-Moore homology, we will use 

Verdier duality. This means that we need a version of the localization theorem valid for 

equivariant hypercohomology (see Remark 3.2). 
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Theorem 6.4. Let G be a group acting properly discontinuously on a locally paracompact space 
X ef finite strict cohomological dimension. Let A be a noetherian commutative ring, let S be a 

multiplicative subset ef the centre ef H* ( G, A) and let 77 E S. For any bounded below complex ef 
G -A-modules ff•, the inclusion i: xri <-+ X induces an isomorphism 

s- 1 H*(X· c ff")--=:'., s-1 H*(X.,,· c i* ff") 
' ' ' ' . 

PROOF. The proof is essentially the same as the proof of [Hs, Th. III. I']. We disregard 

the trivial case by assuming 77 (j_ H 0 ( G, A). In order to simplify notation we assume 

that 77 is homogeneous of degree d. By the hypercohomology version of the long exact 

sequence (24) it is sufficient to prove that s-1 H* (X; G, ff•) = 0 for any bounded 

below complex of sheaves with supp(§") n xri = (/). 

Consider the Leray spectral sequence 

and observe that cup product with 77 is visible at the E 2-level as the mapping 
HP(X / G, Rq1r,G ff") --------, HP(X / G, Rq+d1r,f ff•) induced by a coefficient mapping 

Restricted to the stalk at a pointy E X / G, the mapping r.p is the homomorphism of 

groups Hq( Gx, ff;) --------, Hq+d ( Gx, ff;) given by cup product with the image of 77 in 

H d ( G x, A), where x is any point in the fibre 1r- 1 (y). In other words, the assumption 

supp($") n xri =(/)implies that r.p is zero. 

This need not imply that cup product with 77 is zero in H* ( X; G, ff). Nevertheless, 

since X / G has finite strict cohomological dimension, there is an N such that 

HP ( X / G; R q 1r ,G ff•) = 0 for all p > N. The general theory of spectral sequences 

then tells us that the mapping 

Hk(X; G,§ 0 )--------, Hk+(N+l)d(X; G,§ 0 ) 

given by cup product with 77N+l is zero. □ 

Theorem 6.5. Let G be a group acting properly discontinuously on a locally compact space 
X ef finite strict cohomological dimension. Let A be a noetherian commutative ring, let S be a 

multiplicative subset in the centre ef H* ( G, A) and let 77 E S. For any G-A-module M the 
inclusion i: xri <-+ X induces an isomorphism 

s- 1 H.(x.,,; c,M)--=:'., s- 1 H,(X; c,M). 

PROOF. By the long exact sequence (26) it is sufficient to prove that s-1 H,(X -
xri; G, M) = 0, but this follows from Theorem 6.4, since by Verdier duality we have 
that s-1 H,(X - xri; G, M) = s- 1 H*(X - xri; G, j!M), where J: X - xri _______, pt 

is the constant mapping. D 
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7. Transformation groups of prime order 

In this section we will study the equivariant cohomology and homology of a space 

X with an action of G = Z/ p, the cyclic group of prime order p. In order to be able to 

apply the results of the previous section, we put some cohomological conditions on X. A 

nice,finite dimensional G -space is a locally compact G -space of finite strict cohomological 

dimension. For example, a finite dimensional locally finite C W -complex with a G -

action is a nice, finite dimensional G -space. 

Let p be a prime and let /J' be the generator of G = Z/ p. Let A be a commutative 

ring and let v = I + /J' + 0'2 + · · · + /J'p- I be the norm element of the group ring A [ G]. 

Then for any G-A-module jl;f we have the following canonical r G -acyclic resolution 

ofM: 

(45) 

M - Hom(A[ G], M) ~ Hom(A[ G], M) ____:'._., Hom(A[ G], M) ~ · · · 

Hence H* ( G, M) is the homology of the complex of abelian groups 

(46) M~M____:'._.,M~---

In particular, H* ( G, M) is periodic: we have for any k 2: 0 a surjection Hk ( G, M) -+ 

Hk+2 ( G, M), which is an isomorphism when k > 0. With some more effort it can be 

deduced from the resolution (45) that as a graded ring 

H*(G Z/ ) ~ {Z/P[l/] 
' p - Z/p[(,1/2]/((2) 

if p = 2, 

if pis odd. 

Here 1/ and ( have degree I and 1)2 has degree 2. Hence Proposition 6.3 gives for any 

nice finite dimensional space X an isomorphism of groups 

h: Hk(XG; G,Z/p) ~ EB Hm(X;Z/p) 
m?:.k 

and we have an analogous isomorphism of groups in cohomology. When p # 2 these 

isomorphisms do not behave well with respect to cup product and cap product, since ( 

is sent to 1, whereas ( 2 = 0. 

Therefore we take the maximal ideal 

{
(1)-1) 

m = ((,1/2 - I) 
if p = 2, 

if pis odd, 

of H* ( G, Z/ p). By Proposition 6.3, we have an isomorphism 

(47) 
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and in cohomology we have the corresponding isomorphism 

(48) 

These isomorphisms do preserve cup product and cap product. The following proposi

tion gives the main reason why Z/ p-actions are so much easier to handle than actions 

of other groups. 

Proposition 7.1. With notations as above, we have far any nice,finite-dimensional G-space X 

canonical isomorphisms 

and 

PROOF. Let S = H* ( G, Z/ p) - m. The inclusion i: X G '---+ X induces by Theo

rem 6.5 an isomorphism 

hence an isomorphism 

The corresponding statement in cohomology follows from Theorem 6.4. 

In other words, reduction modulo m gives a homomorphism of rings 

(J: H*(X; G,Z/p) ~ H*(Xc;Z/p), 

and a homomorphism of groups 

such that, by the projection formula (33), 

p('-y) n (J(w) = p('-y n w). 

Of course we have for any equivariant mapping j: X ~ X' that 

{JO j* = j* 0 (J, 

if j is proper we also have 

p O j. = j. 0 p, 

and when J: U '---+ X is the inclusion of an open subspace, then 

poJ* =J*op. 

For a compact G -space X the above equalities imply that we have 

(49) (p('-y),(J(w)) = ('y,w) 

forany--y E Hk(X; G,Z/p) andanyw E Hk(X; G,Z/p). 

□ 
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In later sections we will often compose p with the projection H, ( X G, Z/ p) -+ 

Hk(XG ,Z/ p). Then we will denote the resulting mapping by 

Pk: H,(X; G,Z/p)-+ Hj(XG ,Z/p). 

Similarly, we define Peven and Podd to be the mapping p followed by the projection 

into the subgroup Reven ( X G, Z/ p) (resp. Hodd ( X G, Z/ p )) of H. ( X G, Z/ p) generated 

by the homogeneous classes of even (resp. odd) degree. In cohomology the similar 

conventions are followed; we write (3i: H* ( X; G, Z/ p) -+ HJ ( X G, Z/ p), 13even and 
{3odd_ 

Note that for odd p the grading modulo 2 is preserved by p and /3. In other words, 

p[Heven(X; G,Z/p)] = Heven(XG;z/p), 

p[Hodd(X; G,Z/p)] = Hodd(XG;z/p), 

and similarly for {3. When p = 2, the mappings p and /3 do not preserve the grading 

modulo 2. 

This is one of the reasons that it is often useful to take coefficients in Z, since we 

have 

for any prime p, so taking m' = (1 - r/) we get by Theorem 6.5 isomorphisms 

H,(X; G,Z)/m' '.:::' H,(XG; G,Z)/m' 

and 

H*(X; G,Z)/m' '.:::' H*(XG; G,Z)/m' 

which do preserve the grading modulo 2 for all primes p. The interpretation of 

H,(XG; G,Z)/m' and H*(XG; G,Z)/m', is slightly more difficult since Z is not a 

field. In particular, the Bockstein homomorphism 

associated to the short exact sequence 

(50) 0 -+ Z/ p-+ Z/ p2 -+ Z/ p -+ 0. 

comes into play. 

Lemma 7.2. Let p be a prime, let G = Z/ p, let h be the isomorphism (7), and let X be a nice, 
finite dimensional G -space. For any k E Z there is a commutative diagram 
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where the mapping h' is a natural isomorphism ef groups, and the homomorphism 'ljJ sends a class 

"/k + 'Yk+2 + "/k+4 + · · · to the class 

"/k mod P + bbk+2) + 'Yk+2 + J('YkH) + "/kH + · · · • 

PROOF. Since G acts trivially on X G, we have that 

Now RI'Gz is the complex (46) with M = z, so RrGz splits, i.e., we have a quasi

isomorphism h': RI'Gz-.:::'.. H*( G, Z). This induces an isomorphism 

Hk(XG; G,Z)-.:::'.. Hk(XG; H 0 ( G,Z)) EB Hk+2(XG; H 2 ( G,Z)) EB···, 

which we choose to be the isomorphism h' in the commutative diagram. When we 

replace Z by Z/ pin the above discussion, we get the isomorphism h instead of h'. 

Thus, the commutativity of the diagram can be checked on the level of the 

coefficients of R-kHom( RI',(XG, Z), - ) in the derived category ofabelian groups. It 
is sufficient to prove that the quasi-morphism 'lj; = 7z o (mod p) o (h')- 1 that makes the 

following diagram commutative, does induce 'l/J. 

The resolution (45) applied to Zand Z/ p enables us to write down a representative 

for the quasi-morphisms, and when we do this, we see that 'lj; = 'l/; 1 + 'l/;2 , where 

is just the reduction mod p map, and 

restricted to H 2k ( G, Z) is a non-trivial quasi-morphism 

Z/p[-2k] = H 2k(G,Z) --~ H 2k-l(G,Z/p) = Z/p[l - 2k] 

when k > 0, and zero on H 0 ( G, Z). In fact, 'l/;2 restricted to H 2k ( G, Z) is a the 

quasi-morphism Z/ p --~ Z/ p[l] associated to the short exact sequence (50), hence 'lj; 
induces 'l/J. D 

By abuse of notation we also write p for the composite mapping 

and /3 for the composite mapping 

H*(X; G,Z) - H*(X; G,Z/p) L H*(XG;Z/p). 
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Corollary 7.3. Let X and G be as in Lemma 7.2, let m' be the maximal ideal 

( 1 - r/) c H* ( G, Z). 

!f p =/- 2, the homomorphism p induces isomorphisms 

Heven(X; G,Z)/m'-.'.::+ Heven(Xc;z/p), 

Hodd(X; G,Z)m'-.'.::+ Hoctd(XG;z/p). 

!f p = 2, the homomorphism p induces isomorphisms 

Heven(X; G,Z)/m'-.'.::+ {1+8(')'): '"'/ E Heven(XG;Z/p)}, 

H 0 ctct(X; G,Z)/m'-.'.::+ {1+8(')'): "IE H0 ctct(XG;Z/p)}, 

where 8 is the Bockstein homomorphism associated to the short exact sequence (50). 

PROOF. This follows from Lemma 7.2 and the definition of p. □ 

There are obvious analogues of Lemma 7.2, Corollary 7.3 in cohomology; see 

[Kr4, Th. 1.2] . 

7.1. The equivariant fundamental class and the fixed point set 

If X is an n-dimensional cohomology manifold over Z/ p with an action of G = Z/ p, 
then X G is a cohomology manifold over Z/ p as well, and X G is Z/ p-orientable if X is 

Z/ p-orientable (see [Bo 1, Th. V.2.2]). We will now see that the mapping p connects the 
fundamental class of X to the fundamental class of X G. 

Theorem 7.4. Let p be a prime. Let X be a Z/ p-oriented n-dimensional cohomological manifold 
with an action ef G = Z / p and letµ x E H n ( X; G , Z / p) be the equivariant fundamental class ef 
X. For any connected component V C X G ef dimension d, the image ef p(µ x) E H, ( X G; Z/ p) 
under the projection H * ( X G ; Z / p) ---t H d ( V; Z / p) is a fandamental class ef V. 

PROOF. Cap product with µx gives an isomorphism 

H*(X; G,Z/p)-.'.::+ H,(X; G,Z/p), 

so it induces an isomorphism 

H*(X; G,Z/p)/m-.'.::+ H,(X; G,Z/p)/m, 

hence cap product with the restriction "Iv of p(µx) to V gives an isomorphism 

H*( V;Z/ p)-.'.::+ H,( V;Z/ p), 

which means that the projection of "Iv to Hd ( V; Z/ p) is a fundamental class of the 

cohomology manifold V. □ 

Note that the theorem does not claim that p(µx) is the Z/ p-fundamental class of 

X G (the sum of the fundamental classes of all connected components). The following 

example is a counterexample to that assertion. 



7. TRANSFORMATION GROUPS OF PRIME ORDER 67 

Example 7.5. Let X be the complex projective plane and let G = Z/2 act on X via 

the complex conjugation. Then xc is the real projective plane and Hk(XG ,Z/2) :::= 

Z/2 for k = 0, 1, 2. Since the natural orientation of X is preserved by the involution, 
X has an equivariant fundamental class µx E H4 (X; G,Z). Let us show that 

p(µx) = µxc + 8(µxc ), where 8 is the Bockstein homomorphism associated to (50). 

It follows from Corollary 7.3 that p(µx) = µxc + 8(µxc) + 'Y for some 'Y E 
H0 ( X c; Z/2). Let f : X --+ pt be the constant mapping. Then f. (µ x) = 0, hence 

f.(p(µx )) = f.('Y) = 0, and since xc is connected, this implies 'Y = 0. We conclude 
that 

p(µx) = µxc + 8(µxc) =/= µxc, 

since 8(µp2(R)) E H1 ( P 2(R), Z/2) is not zero. 

Remark 7.6. The above proof of Theorem 7.4 was inspired by the proof of [AP, 
Prop. 5.3. 7]. In fact, the result of Allday and Puppe is sufficient to prove the above 

theorem for the case of X being complete. My original version consisted of checking 

that for every x E V the image of p(µx) is nonzero in 

~ H.(V;Z/p) = ~ Hd(V;Z/p) = Z/p, 
xEW xEW 

where W ranges over the open neighbourhoods of x in V. When X is locally 
homeomorphic to Rn with a linear G-action, this is easily done by considering a small 

equivariant open ball around x in X and using the Hochschild-Serre spectral sequence. 
In the general case the use of this spectral sequence involves certain subtleties, but these 
subtleties have already been dealt with in the proof of the fact that X c is a cohomology 

manifold. 

Let us have a closer look at the connection between equivariant Poincare duality on 

X and the usual Poincare duality on X c. Let 0 x E H* ( X; G, Z/ p) be the equivariant 
Thom class of X G in X, the class defined by the equation 

i.µxc = µx n 0x, 

where µxc = I,; µ11;, the sum of the Z/ p-fundamental classes of all connected 
components of xc. Then p(µx) n{3(0x) = µxc in H.(Xc;z/p) and {3(0x) 1s 
invertible in H* ( X c; Z/ p), so 

(51) 

This means that the following diagram is commutative. 
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If p(µx) =/=- µxc, as in Example 7.5, then so (3(0x) is not the identity element 

1 E H 0 (X; G,Z/p) 
Remark 7. 7. For the Gysin map 

j: H"-k(X;G,A)--+ Hm-k(Y;G,A) 

induced by a proper mapping of cohomology G -manifolds f : X --+ Y, we see from 

(35) and (51) that 

(3(jw) = (3(01,) U j((3(0x t 1 n (3(w)), 

where j: H* ( X G; Z/ p) --+ H* ( Y G; Z/ p) is the usual Gysin map defined by the 

equation 

µyen jw = J.(µxc n w). 

Similarly, the cup product pairing (36) with coefficients in Z/ p is not completely 

compatible with (3: 

(53) (w,w') = (f3(0x )- 1 U (3(w),(3(w')). 

Also the intersection pairing (38) in homology with coefficients in Z/ pis not completely 

compatible with p: 

(54) 

8. Topological spaces with an involution 

In the rest of this work the results of the present chapter will be applied exclusively to 

topological spaces with an involution. Therefore it is worth studying the case G = Z/2 
in greater detail. In particular the Hochschild-Serre spectral sequence will be subject 

to a closer examination, but first it will be shown how to define the equivariant 

fundamental class with integral coefficients for a manifold with an orientation reversing 

involution. 

When X is an oriented manifold on which G = Z/2 acts via an orientation 

reversing involution, the orientation sheaf as defined in Section 4 will not be isomorphic 

to the constant G -sheaf Z, so X will not have an equivariant fundamental class with 

coefficients in Z. However, we can overcome this difficulty by 'twisting' the G -action 

on the sheafZ. 

Definition 8.1. Let G = Z/2 = { 1, a} For any k E Z the G-module Z( k) is defined 

to be the group Z with G -action given by 

For an arbitrary G -module M and any k E Z we define 

M(k) = M@Z(k). 
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Of course, Z(2m + k) can (and will) be identified to Z(k), and Z(O) = Z, so we 
could have confined ourselves to defining the G -module Z( 1), but in the notation it is 
often convenient to have Z(k) defined for every k. For example, we have for every k, 
l E Z a canonical isomorphism of G -modules 

Z( k) ® Z( l) ~ Z( k + l). 
From the complex (45) we see that for n 2". 0 

" {o H"(G,Z(l)) = 
Z/2 

if n is even 

if n is odd 

The generator of H 1 ( G, Z( 1)) will be denoted by rJ, a notation justified by the fact that 
the reduction modulo 2 mapping 

H 1(G,Z(l))-+ H 1(G,Z/2) 

sends 7] to the class 7] E H 1 ( G, Z/2) defined in the previous section. 
By Section 3 we have for every k, l a cup product 

H*(X; G, Z(k)) ® H*(X; G, Z(l)) -+ H*(X; G ,Z(k + l)) 
and a cap product 

H,(X; G, Z(k)) ® H*(X; G, Z(l)) -+ H,(X; G, Z(k - l)), 

where the choice for writing k + l and k - l, respectively, is for aesthetic reasons only. 

As in the previous section we denote the composite mapping 

H,(X; G,Z(k))-+ H,(X; G,Z/2) ~ H,(Xc ,Z/2) 

by p, and the composite mapping 

H*(X; G,Z(k))-+ H*(X; G,Z/2) L H*(Xc,Z/2) 

by (3, and we have that 

(55) (3(w U w') = (3(w) U (3(w') 

and 

(56) p('Y n w) = p('Y) n (3(w). 

foranyw E H*(X; G,Z(k)),anyw' E H*(X; G,Z(l)) andany,' E H,(X; G,Z(m)). 
Let m' = (1 - ry2) be the maximal ideal of H*(G,Z) defined in Section 7. 

Obviously, cup product with 7] E H 1 ( G, Z( 1)) induces an isomorphism 

H*(X; G,Z(l))/m'-::'.+ H*(X; G,Z)/m', 

and cap product with 7] induces an isomorphism 

H*(X; G,Z(l))/m'-::'.+ H*(X; G,Z)/m'. 
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Since cap product with TJ changes the parity of the degree, we have by Corollary 7. 3 

that 

(57) p[Heven(X; G,Z(l))] = {1, + 8('-y): '"YE H0 aa(XG;Z/2)}, 

(58) p[Hoad(X; G,Z(l))] = {1,+8('-y): '"YE H,ven(XG;Z/2)}. 

A similar formula in cohomology holds for (3 (c£ [Kr4]). 

In Chapter V we will also need to know the relation between the Bockstein 

homomorphism 

associated to the short exact sequence 

0 _, Z(m) _, Z(m) _, Z/2 _, 0 

and the Bockstein homomorphism 

associated to the short exact sequence (50). Reasoning, for example, as in the proof of 

Lemma 7. 2 we find that 

(59) 

(60) 

Peven(Jt)('-y)) = Pevenh) +8(Podd('-y)) 

Podd(Ji"')(,,)) = Podd('-y) + b(Peven('-y)) 

ifm + k is even, 

ifm + k is odd. 

Now we come back to the question of defining an equivariant fundamental class with 

integral coefficients when the G -action reverses the Z-orientation. Formally, we will say 

that when X is an n-dimensional Z-oriented cohomology manifold with an action of 

G = Z/2, then the G-action reverses the Z-orientation if the orientation 'l/J: Z ~ o'rx(Z) 
(see Section 4) induces an isomorphism of G-sheaves 

'l/J: Z(l) ~ o'rx(Z). 

Then the equivariant fundamental class µ x E H n ( X; G , Z( 1)) of X is the image of 'l/J 
under the canonical isomorphism 

R0Homc (Z(l), o'r x(Z)) c:::c R-"Homc(R.fiZ(l),Z) c:::c 

c:::c R-"Homc(RfiZ,Z(l)) = Hn(X; G,Z(l)), 

where f: X _, pt is the constant mapping. In this case cap product with µx gives an 

isomorphism 
: µx n 

Hl(X; G,M)---+ Hn_;(Z; G,M(l)) 

for any closed G-subspace Z C X, any i E Z, and any G-module M. 

For many questions concerning the topology of a space with an involution it is 

important to know whether the Hochschild-Serre spectral sequences are trivial or not. 
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In real algebraic geometry, a variety X defined over R is called a GM-vari.ery if the 

spectral sequence 

for G = Gal(C/R) = Z/2 is trivial (i.e., E2 = E00 ), and Xis called a Z-GM-variery if 

the spectral sequence 

is trivial. The notation 'GM, introduced in [Krl], is often pronounced as 'Galois

Maximal'. In situations where the Galois-action on the set of complex points is 

considered, (Z-)GM-varieties are often the ideal case (see for example Corollary 8.3, 

Corollary IY.5.2), but not every variety is (Z-)GM; see Section 9, Example IV5.9 and 

Theorem V2.9. 

Going back to the general situation of a topological space X with an action of 

G = Z/2, we have that the periodicity of the cohomology of G greatly simplifies the 

structure of the Hochschild-Serre spectral sequence. For equivariant cohomology this 

has been elaborated in [Krl]; here the same will be done for equivariant Borel-Moore 

homology. The important fact will be that for any abelian group N with an action of 

G = { 1, a} we have that the cup product with ry C H 2 ( G, Z( 1)) induces for i 2 0 a 

surjection 

(61) 

that is an isomorphism if i > 0. 
On the E 2-level of the spectral sequences 

and 

the mapping 

is given by 

It follows that when X is a locally compact space of finite cohomological dimension, 

and n 2 0, the cap product with ry" induces for every k E Zand every q 2 k a surjection 
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which is an isomorphism if k < 0. In particular, taking q = k, we get that the cap 

product with rJ" defines for q 2". 0 a surjection 

(62) 

and for q < 0 an isomorphism 

(63) 

We deduce the following result, which is the direct analogue in homology of Lemmas 2 .1 

and 3.2 in [Kr 1] (see Section 7 for notations and terminology). 

Lemma 8.2. ut X be a nice,finite dimensional topologi,cal space with an action ef G = Z/2, 
and let q > 0. The mappings 

and 

are isomorphisms. 

PROOF. The isomorphism (63) with M = Z/2 implies that for q > 0 the inclusion 

H_q(X; G,Z/2) <-t H.(X; G,Z/2) 

induces an isomorphism 

H_q(X; G,Z/2) _::::, H.(X; G,Z/2)/m 

so for coefficients in Z/2 the result follows from Proposition 7 .1. For integral coefficients 
the isomorphism (63) implies that the composite mappings 

and 

are isomorphisms so the result follows from Corollary 7.3. □ 

As a corollary we obtain the homological analogue of Theorems 2.3 and 3.3 in 

[Krl]. 

Corollary 8.3. ut X be a nice,finite dimensional topologi,cal space with an action ef G = Z/2. 
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(i) We have an inequaliry 

dim H,(Xc ,Z/2)::; dim H 1( G, H,(X,Z/2)) 

which is an equaliry if and only if the Hochschild-Serre spectral sequence 

Ej,q = H-P( G, Hq(X,Z/2)) =;, Hp+q(X; G,Z/2) 

is trivial. 
(ii) We have an inequaliry 

dim Heven(XG ,Z/2)::; dim H 1 ( G, Hodd(X,Z)) + dim H 2 ( G, Heven(X,Z)) 

which is an equaliry if and only if the Hochschild-Serre spectral sequence 

Ej,q = H-P( G, Hq(X,Z)) =;, Hp+q(X; G,Z) 

is trivial. 
(iii) We have an inequaliry 

dim Hodd(XG ,Z/2)::; dim H 1 ( G, Heven(X,Z)) + dim H 2 ( G, Hodd(X,Z)) 

which is an equaliry if and only if the Hochschild-Serre spectral sequence 

Ej,q = H-P( G, Hq(X,Z)) =;, Hp+q(X; G,Z) 

is trivial. 
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PROOF. This follows immediately from Lemma 8.2, the structure of the E 2-term of the 

Hochschild-Serre spectral sequence and the periodicity of the cohomology of G. □ 

We can also use the mappings 

H-P(G,Hq(X,M)) ~ H-P+ 1(G,Hq(X,M(l))). 

to deduce that for any G -module M the differentials of the Hochschild-Serre spectral 

sequence converging to H p+q ( X; G, M) are completely determined by the differentials 

with source Eo,q of the spectral sequence 

E;,q = H-P(G, Hq(X,M)) =;, Hp+q(X; G,M) 

and the differentials with source E ( l )o,q of the spectral sequence 

E(l)~,q = H-P(G, Hq(X,M(l))) ⇒ Hp+q(X; G,M(l)). 

In particular we have the following useful result that will be used in Section V2. 

Lemma 8.4. Let X be a locally compact space ef finite cohomologi,cal dimension with an action ef 
G = Z/2, and let M be a G-module. The fallowing conditions are equivalent. 

(i) The Hochschild-Serre spectral sequence 

Ej,q = H-P(G,Hq(X,M)) =;, Hp+q(X; G,M) 

is trivial. 
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(ii) The Hochschild-Serre spectral sequence 

EJq = H-P( G, Hq(X, M(l))) ⇒ Hp+q(X; G, M(l)) 

is trivial. 
(iii) The edge morphisms 

and 

are smjective.for every q 2 0. 

PROOF. This follows from the discussion above. 

Finally, we will record a few technical lemmas for later use. 

□ 

Lemma 8.5. Let X be a nice, finite-dimensional, compact connected space with an action ef 
G = Z / 2, and let A = Z or Z / 2. The differentials ef the spectral sequence 

E}q = H-P( G, Hq(X, A))=;, Hp+q(X; G, A) 

having source Ep,o are trivial.for any p:::; 0, r 2 2, if and on?J if X G i= 0. 

PROOF. Suppose X G i= 0. Then there is an equivariant mapping j: pt ........, X, which 

induces an isomorphism H0 (pt,A) :::+ H0(X,A) = A, since X is compact and 

connected. The statement is now easily proved by examining the morphism of spectral 

sequences induced by j. 
Conversely, if X G = 0, then H _2 ( X; G, A) = 0, so in particular 

Since for any r 2 2 the differentials with target E-:_ 2,0 have source E;_2,1_, = 0, there is 

a non-trivial differential with source E-:_ 2,0 for some r 2 2. D 

Lemma 8.6. Let X be a connected cohomological manifold ef dimension d with an action ef 
G = Z/2, and let A= Z or Z/2. The differentials ef the spectral sequence 

EJq = H-P( G, Hq(X, A)) ⇒ Hp+q(X; G, A) 

having target E p,d are trivial.for any p :::; 0, r 2 2, if and on?J if X G =/- 0. 

PROOF. Since the natural mapping HP(G,Hd(X,Z))........, HP(G,Hd(X,Z/2)) = 
Z/2 is injective for p > 0, it is sufficient to prove the statement for A = Z/2. Let 

µx E Hd(X; G,Z/2) be the equivariant fundamental class. Then EJd i= EM if and 

only if µx n rl = 0 in Hd-p( X; G, Z/ p ). By Theorem 7 .4, we have that p(µx) = 0 

ifand only if xc = 0, which implies by Proposition 7.1 that µx n rl =/- 0 for p > d if 
and only if X G =/- 0. □ 
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For the lemmas below we introduce for a compact G -space X the notation 

where f. isinducedbytheconstantmapping X---+ pt. In other words, H,(Xc, Z/2)0 is 

the direct sum of the groups H; ( X c, Z/2) for i > 0 plus the subgroup of Ho ( X c, Z/2) 
generated by pairs of points. Observe that p[Hq(X; G,Z/2)] C H,(Xc,z/2) 0 for 

every q > 0, since f. op= po f. and Hq(pt; G, Z/2) = 0 for q > 0. We also write 

Heven(Xc ,Z/2)0 = Heve~(XG ,Z/2) n H,(Xc ,Z/2)0 . 

Lemm.a 8. 7. Let X be a nice,finite-dimensional compact connected G -space with X G i= 0. The 

mapping 

is surjective if and only if the composite mapping 

zs zero. 

PROOF. Using Lemma 8.5, we see from the Hochschild-Serre spectral sequence and 

Lemma 8.2 that p induces an isomorphism 

where F. is the filtration corresponding to the Hochschild-Serre spectral sequence. The 

lemma now follows from the fact that in the following commutative diagram the rows 

are exact and the vertical arrows are surjective. 

Lemm.a 8.8. Let X be a nice,finite-dimensional compact connected G -space. The mapping 

Peven: H2(X; G,Z)---+ Heven(Xc,Z/2) 0 

is surjective if and only if the composite mapping 

zs zero. 

PROOF. Similar to the proof of Lemma 8. 7. 

□ 

□ 
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Lemma 8.9. Let X be a nice,finite-dimensional, connected G -space with X c -=/- 0. The mapping 

is swjective. Moreover, the mapping 

is swjective if and onry if the composite mapping 

zs zero. 

PROOF. Similar to the proofofLemma 8. 7. □ 

9. Examples 

The examples of spaces with an involution collected in this section serve several 

purposes: they illustrate the rather abstract theory developed in this chapter, they should 

give an idea of the techniques involved in calculating equivariant cohomology, and they 

will be used in later chapters. The reader will not be surprised that all but one have 

their roots in real algebraic geometry, and even this one (Example 9 .1) will be used later 

(in Example IV5.9). 

When the Hochschild-Serre spectral sequence converging to Hq( X; G, Z) is non

trivial, a diagram of the level(s) having nontrivial differentials will be given. In such 

diagrams all trivial differentials will be omitted, and all groups that are known to be 

trivial will be denoted by 0. For every n E Z the groups Ep,q with p + q = n, which are 

all subquotients of the group Hn ( X; G, Z), will be connected with a dotted line. Note 

that in all examples the G -space under consideration is compact and connected, so 

H 0 ( X, Z) = Z with trivial G-action, hence 

if k = 0 

if k > 0 is odd 

if k > 0 and k is even. 

Example 9.1. Let X be the circle S 1 with a fixed point free involution. We then 

have that the involution is orientation preserving so G acts trivially on H 2 ( X, Z). In 

particular, for every k ~ 0 we have 

if k = 0 

if k is odd 

if k > 0 and k is even. 
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From Lemma 8.5 and Lemma 8.6 we see that the E 2-level of the Hochschild-Serre 

spectral sequence is given by the diagram below. 

0 

~ 
0 H 2 ( G, Ho(X, Z)) 0 

We see that Hn(X; G,Z) '.::c:' Z ifn = 0 or l, and Hn(X; G,Z) is zero for n < 0, 

which is not surprising in view of Proposition 6.2, since X / G is again homeomorphic 

to S 1 • 

Example 9.2. Let X be a nonsingular projective curve defined over R of genus g, 

and assume that X (R) has s > 0 connected components. This means that X (R) is 

homeomorphic to a disjoint union of s copies of S 1 . Note that G = Gal(C/R) acts 

via an orientation reversing involution on the Riemann surface X ( C), so for k 2'. 0 we 

have 

It is well-known that 

if k is even 

if k is odd 

Since X (R) -=/=- 0, the Hochschild-Serre spectral sequence is trivial by Lemma 8.5 and 

Lemma 8.5. In other words, Xis a Z-GM-variety. Counting dimensions Corollary 8.3 

gives us that 

(64) 

(65) 

H 1 ( G, H 1 (X(C), Z)) '.::c:' (Z/2)5- 1 

H 2 ( G, H 1 (X(C),Z)) '.::c:' (Z/2)5- 1 

Combining this information we get that 

lo 
zg EB Z/2 

Hq(X(C); G,Z) '.::c:' 
ZEB (Z/2)5- 1 

(Z/2)5 

if q 2'. 2, 

if q = 1, 

if q = 0, 

if q < 0. 

The mapping p: Hq(X(C); G,Z)-----+ H.(X(R),Z/2) can be used to get some 

more insight in the structure of Hq(X(C); G,Z). Let us, as an example, consider 
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H 0 ( X ( C); G, Z). We have the following commutative diagram with exact rows. 

0-----+ F1 H0 (X(C); G,Z)-----+ H0 (X(C); G,Z)-----+ H0 (X(C),Z)-----+ 0 

Ip lp l 
0 ---t H0 (X(R),Z/2)0 --+ H0 (X(R),Z/2) __ __, Z/2 -----+ 0 

Note that 

and 

Ho(X(R),Z/2) 0 ~ (Z/2)5- 1, 

so the isomorphism (64), which we obtained purely by counting dimensions, is in fact 

canonically given by the isomorphism 

F;Ho(X(C); G,Z) ~ H0 (X(R),Z/2)0 

in the diagram. More geometrically we can describe this isomorphism in the following 

way. It can be checked that every class in "( E F1 H 0 ( X ( C); G, Z) is of the form 

"f=[A]nry, 

where 77 E H 1(G,Z(l)) is the nontrivial class, and[,\] E H 1(X(C); G,Z(l)) is the 

fundamental class of an oriented loop ,\ C X ( C) on which G acts via an orientation 

reversing involution. Then the fixed point set of,\ consists of two points, Pi and ~ in 

X (R), and p('Y) = p(,\) = [ Pi] + [ ~] E H0 ( X (R), Z/2); see Figure 1 for an example 
of the situation on a curve of genus 3 with X(R) having 2 connected components. 

X(R) 
• ·:···-----.•.. . ···: 

--<=.:::::::-- ..... ~ 
"•!··----------·· 

FIGURE 1 

Example 9.3. Let X be a nonsingular, geometrically irreducible, projective curve over 

R of genus g with X(R) = 0. Then the G = Gal(C/R)-space X(C) depends, up to 
equivariant homeomorphisms, only on the genus g. 

If g is even, X(C) is homeomorphic to the topological surface depicted in Figure 2 
with the G -action given by reflection in the origin. 
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■ ■ ■ -.....:::-- ■ ■ ■ 

g/2 holes 

Fm URE 2. A curve of even genus without real points 

We see that H 1 (X(C), z)a '.::::'. zg and Hk( G, H 1 (X(C),Z)) = 0 for k > 0, so 

for r -=I= 3 every differential on the E '-level of the Hochschild-Serre spectral sequence 

converging to H, ( X ( C); G, Z) is trivial, since either the source or the target is zero. 

The groups Hk( G, H2(X(C),Z)) and Hk( G, H0 (X(C),Z)) are as in the case ofa 

curve with X (R) nonempty (see the previous example), and it follows from Lemma 8.5 

(or Lemma 8.5) that on the E 3-level the Hochschild-Serre spectral sequence is given by 

the following diagram. 

o. ·o ·o. H1(X,z)a 

~. 

0 H 2(G,Ho(X,Z)) 0 Ho(X,z)G 

If g is odd, on the other hand, then X ( C) is equivariantly homeomorphic to the 

surface depicted in Figure 3 with the G -action again given by reflection in the origin. 

■ ■ ■ ■ ■ 

(g - l ) / 2 holes 

Fm URE 3. A curve of odd genus without real points 

We then have H 1 ( X ( C), Z) G '.::::'. zg, like in the case g even, but now we see from 

the picture that for k > 0 we have 
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and using the fact that Hq(X(C),Z) = 0 for q < 0 since X(R) = 0, we see that all 

nontrivial differentials of the Hochschild-Serre spectral sequence occur at the E 2-level, 

which is given by the diagram below. Note the difference with the case when g is even. 

Example 9.4. Let X be a complete, nonsingular, geometrically irreducible surface 

defined over R such that H 1 ( X ( C), Z) = 0. By the non-degeneracy of the intersection 

product in homology, and the fact that H3 (X(C),Z) is torsion-free, we have that 

H 3(X (C), Z) = 0 as well. Note that the action of G = Gal(C/R) on X (C) preserves 

the orientation. Using Lemma 8.5 and Lemma 8.6 it is easy to see that Xis a Z-GM
variety if and only if X (R) -=/- 0. Note in particular that if X (R) -=/- 0, we have for any 

q :::; 0 an isomorphism 

(66) 

whereas p induces for any q :::; 0 an isomorphism 

(67) 

These isomorphisms have played an important role in the study of real rational surfaces 

(i.e. nonsingular projective surfaces X defined over R such that Xe is birationally 

isomorphic to P~) and real K3-surfaces (see for example [Si] and [Ma2]). 

If X (R) = 0, then Hq(X (C); G, Z) = 0 for q < 0, so we see that the only nontrivial 

differentials of the Hochschild-Serre spectral sequence converging to H, ( X ( C); G, Z) 
can be found on the E 3-level, which is given by the following diagram. 

0 H 2(G,H4(X,Z)) 0 H4(X,zt 

0 0 0 0 

f-
H 3 ( G, H2 (X, Z)) H 2 ( G, H2 (X ,Z)) H 1( G, H2(X,Z)) H2(X,z)c 

~ 
0 0 0 

0 H 2 ( G, H0 (X,Z)) 0 H0 (X,z)c 
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The final example, inspired by [Si, §V.4], is a surface which has real points, but 

which is not Z-GM. 

Exaniple 9.5. Let X be a nonsingular, projective, geometrically irreducible surface 

defined over R with X (R) =/- 0 admitting a ruling defined over R. By this we mean a 
ruling in the strict sense, not a birational ruling, so there is a nonsingular, projective, 
geometrically irreducible curve C defined over R, and a morphism p: X -+ C defined 

over R, such that for every complex point P E C(C) the fibre Xp is isomorphic to Pi] 
(c£ [BPV, §V.4]). This implies that for any real point P E C(R) the fibre Xp is either 

isomorphic to Pi or to the real conic { X6 + x~ + x~ = 0}, which has no real points. 
Clearly we have that for any two points P, P' lying in the same connected component 

of C(R), that the fibres Xp and XP' are isomorphic over R. Hence X(R) is an 
S 1-bundle over some, but not necessarily all connected components of C(R). In fact, it 

is not hard to construct for any triple (g, s, t) satisfying the conditions g + I 2: s 2: t 2: 0 
an explicit ruling p: X -+ C defined over R, with the genus of C equal to g, the 
number of connected components of C (R) equal to s and the number of connected 
components of X(R) equal tot. 

Using the fact that the projection p induces isomorphisms 

p*: H 1(X(C),Z) ~ H 1(X(C),Z) 

and 

we have by Poincare duality and Example 9.2 that 

H 1( G, H1 (X(C,Z)) :::::.(Z/2)5-1 :::::. H 1( G, H3 (X(C),Z)) 

H 2 ( G, Hi (X(C,Z)) :::::.(Z/2Y-1 :::::. H 2( G, H3(X(C),Z)). 

Since H2 ( X ( C), Z) :::::. Z2, we have that 

4s - 2::::; dim H 1 ( G, H.(X,Z)) + dim H 2( G, H.(X,Z))::::; 4s. 

By the above description of X(R) we have that dim H.(X(R),Z/2) = 4t. It follows 
from Corollary 8.3 that X is a Z-GM-variety if and only ifs = t. 

In the case t < s this result does not completely determine the Hochschild-Serre 
spectral sequence. For example, it does not give the information we will need in 
Example IY.5.3. In order to determine the spectral sequence completely, we will 
use some more geometry and the methods developed in earlier sections. First, we 

will consider the G-action on the group H2(X(C),Z), which is generated by the 
fundamental class F of a fibre and the image S of the fundamental class of C ( C) under a 

section Cc -+ Xe defined over C. Observe that we can represent F by the fibre X p over 
areal point PE C(R), hencea(F) = -F. On the other hand, the intersection product 

in homology gives (F, F) = 0 and (F, S) = 1. Since (F,a(S)) = (a(F), S) = -1, 
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this means that F and ( 1 - er) S are two linearly independent G-anti-invariant elements 

in H2(X(C),Z). Since H2(X(C),Z) '::::' Z2, this means that G acts on H2(X(C),Z) 
via multiplication by ( -1). 

If t < s, we can find a PE C(R) such that Xp(R) = 0. Taking the equivariant 

fundamental class [XP] E H2(X(C); G,Z(l)) represented by Xp(C), we see that on 

the one hand e( [ X p]) = F, but on the other hand p( [ X p]) = 0 by Theorem 7. 4. This 

means that, still assuming t < s, the class of the section Sis not in the image of the edge 

morphism 

e: H2(X(C); G,Z(l))-, H2(X(C),z(1)t, 

since an element EE e- 1(S) would satisfy ([Xp],E) = 1, by equation (44) but this 

contradicts equation (54). 
The cokernel of the edge morphism 

e: Hi(X(C); G,Z) _, H 1(X(C),z)c 

is isomorphic to (Z/2)s-t. Using the projection p: X-, C, it can be shown that this 

cokernel is generated by the fundamental classes of (non-equivariant) loops A C X ( C) 
such that p induces a homeomorphism between A and a connected component of 

C(R) not dominated by a connected component of X(R). Similarly, it can be shown 

that the cokernel of the edge morphism 

e: Hi(X(C); G,Z(l)) _, H1(X(C),Z(l))c 

is isomorphic to (Z/2) s-t, and generated by the fundamental classes of(non-equivariant) 

loops A C X ( C) such that p induces a homeomorphism between A and a loop 

Ac C C ( C) on which G acts via an orientation reversing involution, such that at least 

one of the two fixed points of Ac is contained in a connected component of C(R) not 
dominated by a connected component of X (R). 



CHAPTER IV 

The equivariantcycle map 

Using the theory developed in Chapters II and III we will define the equivariant 

cycle map into Borel-Moore homology, and we will show that both the real and 

the complex cycle map of Section I.5 factorize via this equivariant cycle map. For 

nonsingular varieties, Poincare duality transforms the homological cycle map into a 

cohomological cycle map, and in Section 2 it is shown that this map coincides with 

Krasnov's equivariant cycle map. In Section 3 we will see that the factorization of the 

real cycle map via the equivariant cycle map puts severe restrictions on the groups 

H;g ( X (R), Z/2). In Section 4 the kernel and image of the equivariant cycle map are 

analyzed for the case of divisors on nonsingular complete varieties, and in Section 5 

we will see how we can use equivariant homology for studying Question 3 of the 

Introduction. 

1. Definition and basic properties 

Let V be an algebraic variety over R of dimension k. If V is nonsingular, then 

V(C) is a 2k-dimensional topological manifold with a natural orientation induced by 

the complex structure. Since V ( C) is locally equivariantly homeomorphic to an open 

(not necessarily connected) G-subset of Ck, the G-action preserves the orientation if k 

is even and it reverses the orientation if k is odd. Hence the orientation determines a 

fundamental class µ v E H2k ( V ( C); G, Z( k)). If V is singular, we proceed as in [BH] 

(see Section I.5). Let V,(C) C V(C) be the set of singular points, and let Vr(C) be the 

complement of V,(C) in V(C). Then V,(C) is of cohomological dimension~ 2k - 2, 

and we see from the Hochschild-Serre spectral sequence that Hn(V,(C); G,Z(k)) is 

83 



84 IV THE EQUIVARIANT CYCLE l'v1AP 

zero for n > 2k - 2, so the exact sequence 

(68) ··· _, H2k(V,(C); G,Z(k)) _, H2k(V(C); G,Z(k)) _, 

_, H2k(V,(C); G,Z(k)) _, H2k-1(V,(C); G,Z(k)) _, · · · 

shows that 

H2k( V(C); G,Z(k)) ~ H2k( V,(C); G,Z(k)), 

and we define µv E H2k( V(C); G,Z(k)) to be the inverse image of the fundamental 

class of V,(C). 
Let i: V '-------+ X be the inclusion of a k-dimensional subvariety. We define 

clx(V) = i,µv E H2k(V(C); G,Z(k)), 

which gives us for every k an equivariant rycle map 

The image of clx is denoted by 

and we omit the X in the notation clx if confusion is unlikely. 

Theorem I.I. LetX beanalgebraicvarietydefinedoverR.Letclc: ~(X)-> H2k(X(C),Z) 
and clR: ~(X)-, Hk(X(R),Z/2) be the usual rycle maps into Borel-Moore homology. For 

every k ~ 0 the fallowing diagram is commutative 

PROOF. It follows from the definitions that for any k-dimensional variety V over R 
we have e(µv) = µv(c), so the functoriality of the edge morphism e implies that 
de= e o cl: ~(X) _, H2k(X(C),Z). 

In order to prove that pk o cl = cl R it is sufficient to prove that for any k-dimensional 

variety V over R we have Pk(µv) = µv(R)· From the commutative diagram 

H2k(V(C); G,Z(k))--+ H2k(V,(C); G,Z(k)) 

P2k l P2k l 

and Theorem III. 7. 4 we see that pk(µ v) maps to the fundamental class of V, (R) under 
the restriction mapping, hence pk(µ v) is the fundamental class of V (R). D 
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A straightforward equivariant adaptation of Lemma 19.1.2 in [Fu] shows that for a 

proper morphism f: X - Y of algebraic varieties over R 

(69) clyof.=J.oclx, 

where J.: .2i:(X) - .2i:( Y) is the proper push-forward. 
For the following lemma, recall that ~R-alg(X) denotes the group of k-cycles that 

are real algebraically equivalent to zero (see Definition 1.1.5). 

Lemma 1.2. Let X be an algebraic variety defined over R. For every k 2'.: 0 the equivariant cycle 

map cl: .2i:(X) - H 2k(X(C); G,Z(k)) vanishes on ~R-alg(X). 

PROOF. Let C and V C X x C be as in Definition 1.1.5, and let t0 and t1 be two 

points in the same connected component of C(R). Vis reduced and irreducible. Let 

LC C(R) be a closed line segment connecting t0 and t1• Let VL = 1-1(L) C V(C), 
then the mapping cp: VL - X(C) induced by the projection V - Xis proper and 
cp.clvJVi,) = clx(Vi.), where clvJVi.) E H2k(VL; G,Z(k)) denotes, of course, the 
image of cl ( v;J E H2k ( v;1; G, Z( k)) under the mapping induced by the inclusion 

Vi, c......+ VL . It is therefore sufficient to prove that cl vL ( JJ;0 ) = cl vL ( Ji';1 ) • 

Let [t;] E H't11 /C(C); G,Z(l)) be the class that maps to the class oft; E 

Ho ( t;; G, Z) under the Poincare duality mapping 

Ho(t;; G,Z). 

Using the fact that the edge morphism e2k: H2k( Ji';, (C); G, Z(k)) - H2k( JJ;,(C), Z) 
is injective, we see from [Fu, Lemma 19.1.3] that cl( v;J = µv n f*[t;] for i E {O, 1 }. 
This implies that 

cl vJ v;J = µv n j*w;, 

where w; is the image of [ t;] under the mapping 

H't11 /C(C); G,Z(l)) - Hz(C(C); G,Z(l)). 

Now w0 = w1 since L is connected, and it follows that cl vL ( JJ;0 ) = cl vL ( JJ;1 ) • D 

Since ::zt(X) C ~R-alg(X) the lemma implies in particular, that the cycle map is 

well-defined modulo rational equivalence, so we get a homopmorphism 

which we denote by cl as well. 

2. The equivariant cycle map into cohomology 

If X is nonsingular of dimension n, Poincare duality enables us to define an 
equivariant cycle map cl x into cohomology. For every k 2'.: 0 we define cl x by the 
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following diagram. 

It is easy to check that this definition is equivalent to the original definition of the cycle 

map in equivariant cohomology given in [Kr2]. 

If we put di = (3k o cl x, we get the following diagram. 

(70) 

Using the fact that cl~ = Pk o clx by Theorem 1.1, and that Pm(clx( V)) is zero in 
Hm(X(R),Z/2) form> k = dim V, the commutativity of this diagram follows from 

the compatibility of p and /3 with cap-product. 
As was mentioned in the Introduction, the result that f3k o cl x is the usual real 

cycle map in cohomology is originally due to V.A. Krasnov ([Kr4, Th. 4.2]). However, 

the proof given here is quite different, in the sense that it does not use any involved 

techniques from algebraic geometry. On the other hand, Krasnov's approach does give 
a precise description of the total image /3(cl x (Z)) E H*(X(R), Z/2) in terms of the 

Steenrod squares of di ( Z); I have not considered this question here. 
Since clx is well-defined on CH.(X), we see that clx is well-defined on CH*(X). 

Moreover, by [Kr2, Prop. 2.1.3] we have 

hence 

clx([V] · [W]) = clx(V) nclx(W) = clx(V) ·clx(W) 

for cycles V, Won X. 

3. Topological restrictions on the image of the real cycle map 

In this section we will see that the factorization of the real cycle map via the 
equivariant cycle map puts severe restrictions on its image H:/g(X(R), Z/2). It follows 

from Theorem 1.1 that H:/g(X(R), Z/2) is contained in the image of the mapping 
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which is in many cases not sU1jective, as can be seen from the example below. Since the 

mapping Pk is compatible with equivariant homeomorphisms, this is a restriction of a 

purely topological nature. For example, we will see that for any abelian variety A defined 

over R of which A(R) is not connected, the image of H2 (A(C); G,Z(l)) under P1 

is not the full group H 1(A(R),Z/2). This means, that there is a proper subgroup 

M ~ H1(A(R),Z/2), which does not depend on the algebraic structure of A, and 

which contains Htg(A (R), Z/2). Or, to be precise, for any algebraic variety Y defined 

over R admitting an equivariant homeomorphism 

cp: A(C)-.'.::+ Y(C), 

we have that Htg(Y(R),Z/2) c cp,M. 
It should be stressed, however, that this restriction does depend on the topology of 

X ( C) as a G-space, not only on the topology of X (R). Consider, for example, a K3-

surface X with X(R) homeomorphic to a pair of tori. Then X(R) is homeomorphic 

to the real part A (R) of an abelian surface A of which A (R) has 2 connected 

components. However, for such X we have that H2 ( X ( C); G, Z( 1)) maps surjectively 

onto H 1 ( X (R), Z/2) (c£ Example III.9.4), so there is no topological restriction on the 

subgroup Htg. In fact, it follows from [Ma2, Th. 5. 7] that we may choose an X as 

above actually having Htg(X(R),Z/2) = H1(X(R),Z/2). Of course, H~Ig is very 

small for a sufficiently general K3-surface Xg over R with Xg(R) as above (see [Ma2, 

Cor. 5.8] for a more precise statement), but contrary to the case of the abelian surface, 

this has nothing to do with the topology of Xg, but only with its algebraic structure. 

Example 3.1. By definition, an abelian variety X over R is a complete geometrically 

irreducible group variety defined over R. In particular, X (R) -:/=- (/J since X (R) contains 

the zero-element. Let X be an abelian variety over R of dimension n. It is a classical 

fact from the theory of real abelian varieties that X ( C) is equivariantly homeomorphic 

to a product of the form 

C (1J c(1J c(2J (2) Ti1X···XT X X···X X X···XC n-s 1 s I s , 

where each T;, is a torus S 1 x S I with G acting on T;, via exchanging the factors, each 

cp) is a circle with trivial G -action and each cF) is a copy of the unit circle in the 

complex plane with the G -action given by complex conjugation. In particular, X (R) is 
homeomorphic to the disjoint union of2 5 copies of then-torus. 

It follows from a Kunneth-type theorem that H,(X (C); G, Z/2) is isomorphic to 

the tensor product 

H,( Ti; G, Z/2) ® · · · ® H,( Tn-,; G ,Z/2) ® H,( di); G, Z/2) ® · · · 

· · · ® H.( c,Pl; G,Z/2) ® H.( ci2); G,Z/2) ® · · · ® H.( c,{2); G,Z/2). 

For i = 1, ... , n - s, let ?p; E Ho( T;,; G, Z/2) be the class of a point in T/ and 

let T; E H2 ( T;,; G, Z( 1)) be the fundamental class. For i = 1, ... , s, and j = 1, 2 let 
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'P)J) E Ho( c/Jl; G, Z (j - 1)) be the class of a point in the fixed point set of c/Jl and 

let 1,;1) E H 1 ( cUl; G, Z(j - 1)) be the fundamental class of C/11. Then for all i we 

have that p( '1/);) is the class of a point, p( T;) is the fundamental class of 1'; c. For all 

i, j we have that p((();1)) is the class of a point and p('y}Jl) is the fundamental class 

of the fixed point set of c/Jl. Hence for all i the image of H. ( T;; G, Z/ 2) under p is 

generated by p( 'lj};) and p( T;); the image of H.( cUl; G, Z/2) under pis generated by 
p( (())1)) and p( 1'ij) )for all i, j. 

We deduce that a basis for pk[( H2k(X (C); G, Z/2) )] is given by the image under 

p of the set of classes of the form 

(1) (1) (2) (2) D 
t1 X .. · X t X C X .. · X C X C X · .. X C n 'l1 n-s 1 s l s 'I , 

where D 2: 0, r, is the nontrivial element in H 1 ( G, Z( 1)), t; = '1/); or T; and c\Jl = ((); 
or 1'ij) subject to the following restrictions. Let A be the number of indices i such 

that t; = T;, let B be the number of indices i such that c; 1l = 1'/1), and let C be the 

number of indices i such that c;2l = 1';2). We require that 2A + B + C - D = 2k and 

A+ B = k. 
This implies that for any k 2: 0 we have that 

k s (n-s)(s)(s) dimz;2 Pk(H2k(X(C); G,Z/2)) = .t'oc~s k- B B C , 

which gives an upper bound 

that is highly non-trivial when k » 0 and s » 0, since 

dimz;2 Hk(X(R);Z/2) = 2s G) • 
In the preceding example our knowledge of the structure of the G -space X ( C) 

enabled us to give a geometrical construction of a basis for the image of pk. In general 

this is not so simple. However, for a complete nonsingular X we may use the homological 

intersection products on the equivariant homology of X ( C) and the ordinary homology 

of X(R). The we can put topological restrictions on the subgroup Hfg(X(R),Z/2) 
by constructing certain classes in the homology group of complementary dimension. In 

order to make this precise, we need some definitions. 

Definition 3.2. Let X be an algebraic variety defined over R. For any k 2: 0 we define 

the subgroup ofHk( X (R), Z/2) of potentialf:y algebraic homology classes to be 
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We also define 

H{~ 1; 2)(X(R),Z/2) = /3k ({w E H 2k(X(C); G,Z(k)): /3m(w) = 0for m < k}), 

Ht 112\X(R), Z/2) = Pk ( {1, E Tor(H2k(X(C); G, Z(k))) : Pmb) = 0 form> k}), 

and 

Here Tor ( M) denotes the torsion subgroup of an abelian group M. 

The notation Hf5' 1/ 2) is chosen to indicate that intuitively Hf!-. 1/ 2)(X(R),Z/2) 

should be thought of as the classes representable by k-dimensional subspaces of X (R) 
that are fixed point sets of oriented G-equivariant subspaces of X ( C) of dimension at 

least 2k. When X is geometrically irreducible and nonsingular of dimension n, then 

Poincare duality gives isomorphisms H{~ 112 /X (R), Z/2) '.:::'. H,\~112\x (R), Z/2) and 

Ht>i;2i(X(R), Z/2) '.:::'. H~:=1!2)(X(R), Z/2). 
Note that fork= 0,1 the condition 

is automatically satisfied by every w E H 2k(X (C); G, Z(k) ), and, similarly, when n is 

the dimension of X, and k = n or n - 1, the condition 

Pm ( 'Y) = 0 for m > k 

is automatically satisfied by every 'YE H 2k(X (C); G, Z(k) ), hence we have fork= 0,1 
that 

(71) Hf 1/ 2)(X(R),Z/2) = Pn-kH2(n-k)(X(C); G,Z(n - k)), 

and 

Proposition 3.3. Let X be a geometrically irreducible algebraic variety over R. 

(i) For any k 2: 0 we have 

H;g(X(R),Z/2) C Hl:Sl/2\X(R),Z/2). 

(ii) .lf X is complete, H;g( X (R), Z/2) is orthogonal to H{> 112/ X (R), Z/2) for the cap 
product pairing. 

(iii) .lf X is complete, nonsingular and of dimension n, H;g(X(R),Z/2) is orthogonal to 

Hl:=! 12 ) ( X (R), Z/2)for the intersection pairing in homology. 
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PROOF. (i) It is easily seen from the definition of the equivariant cycle map that any 

"( E H;/ ( X ( C); G, Z( k)) has the property that Pm ("I) = 0 for m > k, so the statement 
follows from the fact that cl R = pk o cl. 

(ii) For 'Y E H2k(X (C); G, Z(k)) and w E Tor ( H 2k( X (C); G ,Z(k))) we have 

('Y,w) = 0, so (p('Y),/3(w)) = 0 by equation (49). Now observe that if Pm("/) = 0 

form> k and f3"'(w) = 0 form< k, then (p('Y),fJ(w)) = (pk('Y),(Jk(w)), hence 

Hf;I/2\X(R), Z/2) is orthogonal to H(>i;2/X (R), Z/2) for the cap product pairing, 
and the statement follows from the previous statement. 

(iii) This follows immediately from the previous statement and the definition of the 

intersection pairing in homology. 

□ 

The third part of the proposition can be thought of as a topological generalization 

of the following result ofW Kucharz. 

Corollary 3.4 (W Kucharz). For any complete, nonsingular, geometrically irreducible variery X 

over R if dimension n the subgroup Htg(X(R),Z/2) C Hk(X(R),Z/2) is orthogonal to 

cl R ( f!l',,~~ ( X)) C H n-k ( X (R), Z / 2) with respect to the intersection product in homology. 

PROOF. Since the real cycle map clR sends -2;,~gk(X) into H~::t)(X(R),Z/2), this is 

an immediate consequence of Proposition 3.3. D 

Remark 3.5. It should be said that a direct proof of Corollary 3.4, usmg the 

compatibility modulo 2 between the real cycle map and the intersection product 

of algebraic cycles is not hard either (see [Ku, Th. 3]). In fact, in Kucharz' approach the 

group f!l',,~gk ( X) can be replaced by the group -2;,~k ( X) of cycles numerical(y equivalent to 

zero (see [Fu, Def 19.1]). Observe that clR sends 2';~f1(X) into H,\::t12 \X(R),Z/2) 

if f!l',,~f1(X) is the kernel of the cycle map~----+ Hk(X(C),Q). This is a famous 

conjecture (cf [Fu, 19.3.2]). 

The results of Section 4 imply that in fact not only for the trivial cases k = 0, n 

we have an equality clR ( f!l',,~gk ( X)) = H,:::t\ X (R), Z/2), but also for case k = 1, 

if H2(X(C),Z) torsionfree (or if we replace algebraic equivalence by numerical 

equivalence, since then f!l',,0~f1(X) is the kernel of the cycle map~----+ Hk(X(C),Q) 
by [Mat]). Hence, for these k Proposition 3.3 is not really an improvement over 

Corollary 3.4. However, in the intermediate dimensions the image of f!l',,~gk(X) under 

clR is not known in general. In the case of an arbitrary abelian variety X, for 

example, the only thing we can be sure about (for k -/- n) is that the image of 

2',,~gk(X) in Hn-k(X(R),Z/2) contains the intersection of k different classes from 

clR ( 2',,~~ (X)) = H~::; 12 ) (X (R), Z/2). Therefore, when Xis an abelian variety such 

that the real part has 2s connected components, Corollary 3.4 only gives (fork-/- n) an 
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upper bound 

as was derived in [Ku, Th. 3]. For large s and k this bound is considerably weaker then 

the upper bound given in Example 3.1. 

4. The cycle map in codimension 1 

In complex algebraic geometry the cycle map for divisors on a complete nonsingular 

variety X is well-understood. The kernel consists exactly of the cycles algebraically 

equivalent to zero and the image consists of the subgroup of Hodge classes in the 

second integral cohomology group. In this section we will see that for a complete 

nonsingular variety over R the equivariant cycle map has similar properties. All results 

are straightforward corollaries of a result by V.A. Krasnov that the equivariant cycle map 

can be interpreted as the connecting morphism in the long exact sequence associated 

to an equivariant version of the well known short exponential sequence of complex 

geometry. 
Let us fix a complete, nonsingular, geometrically irreducible variety X over R. Then 

X ( C) can be considered as a complex analytic manifold with an antiholomorphic 

involution, and tlan, the sheaf of germs of analytic functions on X ( C), has the natural 

structure of a G -shea£ We have a short exact sequence of G -sheaves 

which induces a long exact sequence 

(73) .. · -t H 1 (X(C); G,Z(l)) -t H 1 (X(C); G,tlan) -t 

-t H 1 (X(C); G, tJ:U) -t H 2(X(C); G,Z(l)) -t H 2 (X(C); G, (Jan) -t .. · 

By [Kr2, Prop. 1.1.1] we may identify H 1 ( X ( C); G, o:n) with the group of equivariant 

isomorphism classes of holomorphic line bundles on X ( C) with an antiholomorphic 

involution compatible with the involution on the base space. By the GAGA-principle 

this group is isomorphic to the group of equivariant isomorphism classes of complex 

algebraic line bundles on Xe with a C-antilinear involution compatible with the 

complex conjugation on Xe, and from the remarks made in Section I.3 we then see 

that we have a canonical isomorphism 

We also have a natural isomorphism Pic(X) with CH1(X), and the connecting 

morphism of the long exact sequence (73) then corresponds to the equivariant cycle 
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map cl: CH1(X)---+ H2(X(C); G,Z(l)) by [Kr2, Prop. 1.3.1]. In order to describe 

the image, we define the subgroup 

HI·1(X(C); G,Z(l)) C H 1(X(C); G,Z(l)) 

to be the inverse image of the Hodge (1, 1 )-classes H 1•I ( X(C), C) under the composite 

mappmg 

Theorem 4.1 (VA. Krasnov). !f X is a complete, nonsingular, geometrically irreducible variety 

over R, the equivariant cycle map in codimension 1 fits into an exact sequence 

0---+ HI (X(C),Z(l))c ---+ H 1 (X(C), o'an)c---+ Pic(X) 

---+ HI,I(X(C); G,Z(l))---+ 0. 

PROOF. In view of the above discussion it is sufficient to prove that the image of 
HI (X (C); G, Z( 1)) ---+ HI (X (C); G, o'an) is precisely HI (X (C), Z(l )) c and the 

kernel of H 2(X (C); G, Z(l)) ---+ H 2(X (C); G, o'an) is precisely H 1•1 ( X (C); G, Z( 1) ). 
This is easily deduced from the analogous statements in complex geometry since the 

edge morphisms of the Hochschild-Serre spectral sequence induce for every k 2 0 an 
isomorphism 

and the edge morphism 

is surjective. 

Corollary 4.2. Let X be a complete, nonsingular, geometrically irreducible variety over R. 

(i) The kernel ef the equivariant cycle map 

is precisely the group 2'la1g ( X) ef cycles real algebraically equivalent to zero. 

□ 

(ii) The group 2'la1/X)/ 2;!t(X) is the largest divisible subgroup ef CHI (X). T¼ have an 

isomorphism 

2';_a1g(X)/ 2;~1(X) ~ (R/Z)q, 

where q = dimR HI (X, o'x ). 

PROOF. Since H 1(X(C),Z) is a lattice in H 1(X(C),o'an), we have that the image 
of H 1 (X (C), Z(l )) G is a lattice in H 1 (X (C), o'an) G ~ HI ( X, o'x ). Hence, writing 

P = H 1 (X(C), o'an)G / H 1 (X(C), Z(l))G, considered as subgroup of Pic(X), it is 

sufficient to show that the image of 2'la,/ X) in Pie ( X) is P. 



4. THE CYCLE MAP IN CODIMENSION I 93 

Comparing the equivariant exponential sequence with the complex exponential 

sequence, it is not hard to check that the image of P under the base change 

homomorphism n*: Pic(X) -----t Pic(Xc) is (1 + a) Pic0 (Xc), and that n* is injective 
on P (this last fact also follows from Corollary I.2.2). Since (1 + a) Pic 0 (Xc) is the 

image of the composite mapping Pic0 (Xc) ~ Pic(X) ~ Pic(Xc), we see that 

P = n.(Pic0 (Xc)), which is precisely 2'1L1g(X)/ 2.'.!t(X) by Lemma I.1.6. D 

Remark 4.3. The above result shows that for varieties over R the group of cycles real 

algebraically equivalent to zero plays a role similar to the role played by the group of 

cycles algebraically equivalent to zero in complex algebraic geometry. 

On a theoretic level Theorem 4.1 and Theorem 1.1 completely solve the question 

of determining Hlg(X(R),Z/2) for a nonsingular complete variety X over R. To be 

precise, we obtain a description of the image of the cycle map cl R in codimension 1 

purely in terms of equivariant cohomology and the Hodge decomposition. 

Corollary 4.4. When X is a complete, nonsingular, geometrical(y irreducible variery over R, 

In particular, if H 2 ( X, {Jx) = 0, we have 

hence 

where n is the dimension of X. 

PROOF. Immediate from Theorem 4.1. The statement on homology follows from 

diagram (70). D 

When Xis a real rational surface, Corollary 4.4 and Lemma III.8.9 imply the result 

of R. Silhol that Htg = H 1 ([Si, Th. III.3.4]). For real Enriques surfaces the image 

of P1 is determined in Chapter V, but for most varieties X very little is known about 

the mapping p1 (or (3 1 ). Moreover, when H 2 (X, ti x) -/=: 0, we not only need to know 
the mapping (3 1, but we also need a convenient description of H 1•1 (X (C); G, Z( 1 )) in 

order to describe Hlg(X(R), Z/2). When Xis an abelian variety over R,J. Huisman 
shows how to compute Hlg in [Hu2]. Although he does not use the language of 

equivariant cohomology, his results are not hard to translate. For arbitrary X with 

H2 ( X, ti x) -/=: 0, a precise description of H lg( X (R), Z/2) will be very hard to give. It 
should be possible, however, to use Corollary 4.4 in order to describe the behaviour of 

Hlg under deformations and to generalize the results for real K3-surfaces obtained by 
F. Mangolte in [Ma2]. 
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5. Divisors over C and divisors over R 

Using the description of the structure of Pie ( X) given in Theorem 4 .1 we are able to 

answer the questions of Section I.2 concerning the mapping n*: Pic(X) -+ Pic(Xe) G 

in terms of the equivariant cohomology of X. Recall, that for a complete, nonsingular, 

geometrically irreducible variety X over R the mappingn*: Pic(X)-+ Pic(Xe)G is an 

isomorphism when X (R) is nonempty. However, the induced mapping n* : NS( X) -+ 

NS( Xe) G need not be surjective. This problem will be treated first. Another problem, 

the surjectivity of n* : Pie ( X) -+ Pie (Xe) G when X (R) is empty, was already solved 

in Corollary I.2.5 in terms of the algebra of the function field of X. In this section 

Propositions 5.6 and 5. 7 give a criterion of a topological-analytical nature which is far 

less elegant but easier to apply in general. Moreover, the approach of Propositions 5.6 

and 5.7 might also be useful determining the image ofn*: CHk(X)-+ CHk(Xe) for 

k > I. It must be said, however, that apart from the case of zero-cycles this remains 

extremely complicated for k > 1, not the least because then even the structure of 

CHk (Xe) is very mysterious. 

Proposition 5.1. When X is a complete, nonsingular, geometrically irreducible variety over R, 

n* NS(X) =NS(Xe)G n e(H2 (X(C); G,Z(l))). 

PROOF. We have thatNS(Xe)-::::: H 1,1(X(C),Z) and, by Theorem 4.1, n* NS(X) is 

the image of H 1,1 (X(C); G, Z(l)) under the edge morphism e. □ 

In particular, NS(X) -::::: NS(Xe)G when the edge morphism e maps surjectively 

onto H 2 ( X ( C), Z( I)) G, so we get the following result, which was already conjectured 

by R. Silhol (private communication). 

Corollary 5.2. When X is a complete, nonsingular, geometrically irreducible Z-GM-variety, 

Example 5.3. Let X-+ C be a conic bundle over a curve as in Example III.9.5 with 

X (R) nonempty, but having less connected components than the real part C (R) of the 

base curve. We then have that 

Pie( X) = Pie( Xe) G, 

but on the other hand, 

NS(X)-/- NS(Xe)G, 

since the Neron-Severi group of Xe is isomorphic to H 1(X(C),Z(l)), whereas we 
saw in Example III.9.5 that the edge morphism 
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has cokernel Z/2. This means that the mapping 

NS(X) - NS(Xa)G 

95 

has cokernel Z/2, and in fact this cokernel is generated by the class of a section 

Cc <--+ Xe defined over C. 

Now we turn to the question concerning the mapping 1r* : Pie ( X) - Pie ( X a) G for 
a complete, nonsingular variety X with X(R) = 0. Then the mapping 1r* is injective, 

by Corollary I.2.2, but by Corollary I.2.5 it is surjective if and only if -1 is not a sum of 
two squares in the function field of X. From Theorem 4.1 and a close inspection of the 

Hochschild-Serre spectral sequence of X with coefficients in Z( l) we can find criteria 
that are often easier to handle. 

We will split the problem into two parts. Since Pic0 (X) is by definition the inverse 

image of Pie O ( X a) G under the mapping 1r*, we see that 1r* : Pie ( X) - Pie ( X a) G is 
surjective if and only if the induced mappings 

Pic0 (X) - Pic0 (Xc)G 

and 

NS(X) = Pic(X)/Pic0 (X) - Pic(Xc)G /Pic0 (Xc)G 

are surjective. 

First, let us treat the easy case, namely the case that Pic0(Xct is a divisible group. 
It is well-known that the divisibility of Pic0 (Xc)G is equivalent to the condition that 

H 2 ( G, H 1 (X (C), Z)) = 0. Then the mapping 1r* o 1r,: Pic0 (Xc) G - Pic0 (Xc) G is 
surjective, since it is multiplication by 2. This means that Pic0 (X) = Pic0 (Xc)G. On 
the other hand, applying cohomology of G to the short exact sequence 

0 - Pic0(Xc) - Pic(Xc) - NS(Xa) - 0 

we see that Pic(Xc) G / Pic0(Xc) G ~ NS(Xa) G, so we obtain the following result. 

Corollary 5.4. Let X be a complete, nonsingular, geometrically irreducible variety over R such that 
Pie O ( X a) G is divisible. Then 

Pic(X) = Pic(Xc) G 

if and only ijNS(Xa) G = H 1•1 (X (C), Z( l)) G is contained in the image of the edge morphism 

e: H 2(X(C); G,Z(l)) - H 2(X(C),Z(l))G. 

PROOF. By the above discussion we have that Pic(X) = Pic(Xc)G if and only if 

NS(X) = NS(Xa) G, so the statement follows from Proposition 5.1. D 

Example 5.5. When X is a real rational surface with X(R) = 0, we see in Exam
ple III. 9 .4 that the edge morphism 

e: H 2(X(C); G,Z(l)) - H 2(X(C),Z(l))G. 
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is not surjective. Since NS(Xc) = H 2 (X (C), Z), Corollary 5.4 implies that 

Pie( X) # Pie( Xe) G, 

and -1 is a sum of two squares in the function field of X, which gives yet another proof 
of the result of Parimala and Sujatha (see [PS] and [CT]).· 

On the other hand, for a real K3-surface X with X(R) # 0, we still have that 

e: H2(X(C); G,Z(l))-+ H 2(X(C),Z(l))G. 

has cokernel Z/2, but now H 2(X,6'x) # 0, so NS(Xc) # H2(X(C),Z), and 
Corollary 5. 4 does not imply that Pie ( X) # Pie ( X c) G. In fact, from the theory of 
moduli of real K3-surfaces (see [Si, Ch. VIII], or [Ma2]), we see that Corollary 5.4 

implies that the set of isomorphism classes 

forms a countable union of irreducible real analytic subspaces of codimension I in the 

moduli space of real nonsingular quartics in Pi having no real points. 

When Pic0 (Xc)G is not divisible, the criteria we obtain are of an even more 

technical nature, but Examples 5.8 and 5.9 show that they are quite easily applied in 
concrete situations. 

Proposition 5.6. Let X be a complete, nonsingular, geometrically irreducible variety over R. The 
mapping 

Pic0 (X)-+ Pic0 (Xc)G 

is surjective if and only if the differential 

di' 1 : H 1( G, H 1(X(C),Z(l)))-+ H 3 ( G, H 0 (X,Z(I))) 

ef the Hochschild-Serre spectral sequence is zero. 

PRooF. Let P* H 2 ( X ( C); G, Z( 1)) be the filtration associated to the Hochschild
Serre spectral sequence. We have an exact sequence 

0-+ P 1 H 2(X(C); G,Z(l)) ~ 
d'·' 

-+ H 1(G, H 1(X(C),Z(l)) ~ H 3 (G, H0 (X(C),Z(I))) 

Applying Galois cohomology to the exact sequence 

(74) 0-+ H 1(X(C),Z(I))-+ H 1(X(C), 6'an)-+ Pic0 (Xc)-+ 0 

we get the exact upper row of the following diagram. 

H 1(X(C), 6'an)G----+ Pic0 (Xc)G ----+ H 1( G, H 1 (X(C),Z(I))) ----+ 0 

II rr' r Cr 
H 1 (X(C), 6'an)G -------+ Pic0 (X) _ __, P 1 H 2 (X(C); GZ(l)) -------+ 0 
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The exact bottom row is derived from the exact sequence of Theorem 4 .1 and it can 

be checked that the diagram is commutative. It follows immediately that 7r* maps 

surjectively onto Pic0 (Xc) G if and only ifc is surjective. D 

Proposition 5. 7. Let X be a complete, nonsingular, geometrically irreducibl,e variety over R. The 

mapping 

is suijective if and only if the differential 

df'2 : Ef'2 ---, H 3( G, H 0 (X(C), Z(l))) 

ef the Hochschild-Serre spectral sequence is zero when restricted to 

Ef·2 n H 1•1(x(c),z). 

Here the intersection ef groups is defined by considering Ef·2 C Ef'2 = H 2 ( X ( C), Z( 1)) G as a 

subgroup ef H2(X(C),Z). 

PROOF. Applying Galois cohomology to the short exact sequence 

Q---, Pic0 (Xc)---, Pic(Xc)---, H 1•1(X(C),Z(l))---, 0 

we get the exact top row of the commutative diagram 

(75) 

Pic0 (Xc)G---+ Pic(Xc)G---+ H 1•1 (X(C),Z(l))G ~ H 1 ( G,Pic 0 (Xa)) 

rr'I rr'I e\ i 
Pico(X) _ ____, Pic(X)---+ H1,1 (X(C); G,Z(l)) ------; 0 

F 1 H2(X(C); G,Z(l)) 

where the exact bottom row is derived from the exact sequence of Theorem 4 .1. The 

long exact sequence of Ga.lois cohomology associated to the short exact sequence (7 4) 

gives us an isomorphism 

Moreover, the following diagram can be shown to be commutative. 

H 1•1(X(C),Z(l))G 8 H 1(G,Pic0 (Xc)) 

II J°-2 ~ 1 
H 1•1(X(C),Z(l))G ~ H 1(G, H 1(X(C),Z(l))) 

Here df '2 denotes the restriction of the differential of the Hochschild-Serre spectral 

sequence to H 1•1 (X(C), Z(l))G. Hence we have an isomorphism 

Kerb~ Kerd0•2 = E 0•2 n H 1•1(X(C) Z) - 2 3 , , 
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so the exact sequence 

Hl,l(X(C); G,Z(I)) --+ E30,2 n Hl,l(X(C),Z) ~ H3(G, Ho(X(C),Z(I))) 
O--+ F 1 H 2(X(C); G,Z(I)) 

implies that in diagram (7 5) we have Im e = Ker 8 if and only if df '2 restricted to 

E~'2 n H 1,1(X(C),Z) is zero □ 

Example 5.8. For a nonsingular projective, geometrically irreducible curve X over R 
of genus g with X (R) = 0 the calculations of Example III.9.3 immediately give the 

classical result that if g is even, we have 

Pic0 (X) = Pic0 (X)G, 

NS(X)-=/ Pic(Xc)G /Pic0 (Xc)G, 

and if g is odd we have 

Pic0 (X)-=/ PicG (Xt 

NS(X) = Pic(Xc)G /Pic0 (Xc)G. 

Example 5.9. Let A be an abelian variety of dimension d defined over R, and let X 

be a nontrivial principal homogeneous space for A. This means that X is a variety over 

R with X (R) = 0, admitting an isomorphism 

<p: Xc~Ac 

defined over C with the property that the complex conjugation CTx on X(C) is related 

to the complex conjugation CT A on A ( C) via the formula 

where ta is translation by a 2-torsion element a in the connected component of A (R) 
containing zero. 

It can be checked, using the universal covering Cd--+ A(C), that there is a loop 

A C A (R), passing through O and a and stable under the translation ta, in such a way 

that the restriction mapping 

is surjective. This means that CT x induces a fixed-point free involution on <p- 1 (A) C 

X(C), and the restriction mapping 
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is again surjective. Letting G = Z/2 act on X ( C) and>. via O".J;, we have a commutative 
diagram 

H 1(X(C); G,Z) ~ H 1(X(C),Zf 

l l 
We saw in Example III.9.1 that the edge morphism C>. is not surjective, so from the 

diagram we see that ex is not surjective, and by Proposition 5.6 we may conclude that 

Pic0 (X) -=J. Pic0 (Xc)G, 

so in particular Pie ( X) -=J. Pie ( X c) G, and -1 is a sum of two squares in the function 

field of X. 

Note that H 2 ( X, tJ x) -=J. 0, but this fact does not interfere like in the case of K3-

surfaces in Example 5.4, since the difference between Pic(X) and Pic(Xc) G is already 

found on the Pic0 -level. 

Remark. The paper [vH2] is based on the results in this section. 





CHAPTER V 

Algebraic cycles and topology of real 

Enriques surfaces 

An algebraic variety Y over R will be called a real Enriques suiface if Ye = Y ® C is 
a complex Enriques surface. When Y is a complex Enriques surface, it is well-known 

that H 2 ( Y ( C), Z) is generated by the fundamental classes of the complex curves on 

Y, so when Y is an Enriques surface defined over R, it is tempting to expect that 

similarly we have Htg( Y (R), Z/2) = H 1 ( Y (R), Z/2). However, this equality only 

holds if every connected component of the real part of Y is orientable; otherwise Htg 

is of codimension l in H 1 ( Y (R), Z/2). See Theorem l.2 for a precise statement. The 

equivariant cycle map plays an important role in the proof of Theorem l .2. 

The results of Section 1 also contain information about the Hochschild-Serre 

spectral sequences of a real Enriques surface. Section 2 is completely devoted to these 

spectral sequences. The necessary and sufficient conditions for a real Enriques surface 

Y to be a GM-variety (see Section III.8) were found in [DK2]; in Section 2 we will 

determine necessary and sufficient conditions for Y to be Z-GM. See Theorem 2.9. 

This chapter is based on the paper [MvH], written by F. Mangolte and mysel£ In 

that paper the results of Section 2 were also used for computing the Brauer group of a 

real Enriques surface, and recently, Sujatha and I have used these results for computing 

the Witt groups of real Enriques surfaces in the paper [SvH]. I have omitted these 

computations, since I felt they did not quite fit into the theme of this work. 

1. Algebraic cycles 

First a few more words about the topology of real Enriques surfaces. Consider the 

following two classification problems: 

101 
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- classification of topological types of algebraic varieties Y over R (the manifolds Y ( C) 

up to equivariant diffeomorphism), 

- classification of topological types of the real parts Y (R). 
For real Enriques surfaces the two classifications have been investigated by Nikulin in 

[Ni2]. The topological classification of the real parts was completed by Degtyarev and 

Kharlamov, who give in [DKl] a description of all 87 topological types. For now it 

will be sufficient to know that that the real part of a real Enriques surface Y need not 

be connected and that a connected component V of Y (R) is either a nonorientable 

surface of genus :::; 11 or it is homeomorphic to a sphere or to a torus. 

Crucial in every study of real Enriques surfaces is the fact that a real Enriques 

surface admits an unramified double covering X ___, Ye defined over C by a complex 

K3-surface X. Since X ( C) is simply connected, X ( C) is the universal covering space of 

Y ( C) and H 1 ( Y ( C), Z) = Z/2. This covering can be constructed using the canonical 

line bundle of Ye, which is 2-torsion in the Picard group. Since the canonical line 

bundle is defined over R, the covering can be defined over R as well. In other words, 

the complex conjugation a on Y(C) can be lifted to the covering X(C), and this can 

be done in two different ways. Hence we can give X the structure of a variety over R 
in two different ways, which we will denote by X 1 and X 2• We will denote the image of 

X1(R) in Y(R) under the projection by Yi and the image of X2(R) by Y2 . Both Y1 

and Y2 consist of connected components of Y (R) and Y (R) is the disjoint union of Y1 

and Y2. Following [DKl] we will call Yi and Y2 the two halves of Y(R), even though 

Yi and Y2 need not be homeomorphic or even have the same number of connected 

components. The connected components of X 1 (R) and X 2 (R) are orientable, as is the 

case for the real part of any real K3-surface. If a connected component of a half Y; is 

orientable, then it is covered by two components of X;(R), which are interchanged by 

the covering transformation of X. A nonorientable component of Y; is covered by one 

component of X;(R); this is the orientation covering. 

The first homology group H 1 ( Y ( C), Z) of a complex Enriques surface is isomor

phic to Z/2, and the second homology group H 2 ( Y(C),Z) of a complex Enriques 

surface is isomorphic to Z10 EB Z/2, and the torsion part is generated by the first Chern 

class of the canonical line bundle of Y. Since for an H 2 ( Y ( C), tJh) = 0 (see [BPV, 

V23]), we see by Corollary IV4.4 that for a real Enriques surface Y we have that 

Htg( Y (R), Z/2) is the image of the mapping 

In order to determine the image of CT2 it will be helpful to define CT 1 by 

Observe that CT2 = CT 1 o ( n17), where 17 is the nontrivial element in H 1 ( G, Z( 1)). 
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Lemma I.I. ForarealEnriquessurfa-ce Y thecodimensionefima.2 in H 1( Y(R),Z/2) does 

not exceed I . 

PROOF. We may assume that Y (R) =/=- 0. By Lemma III.8.9, a.1 is surjective. Since 

a.2 = a.1 o (nry), it is sufficient to remark that we have an exact sequence 

□ 

Proposition 1. 1. Let Y be a real Enrique~ surface. A clawy E H 1 ( Y (R), Z / 2) is contained 

in the image ef a.2 if and on!Ji if 

deg('y n w1 ( Y (R))) = O, 

where w1 ( Y (R)) E H 1 ( Y (R), Z/2) is the.first Stiefel-Whitney class ef Y (R). 

PROOF. Again we may assume that Y (R) =/=- 0. Denote by O the subspace of 

H1 ( Y (R), Z/2) consisting elements 'Y that satisfy deg( 'Y n w1 ( Y (R))) = 0. 
If Y(R) is orientable, w 1 ( Y(R)) = 0 and n = H 1 ( Y(R), Z/2). Furthermore, we 

have a surjective morphism 

where the X 1 and X2 are the two real K3-surfaces covering Y (see the beginning of this 

section). This morphism fits in a commutative diagram 

H2(X1(C); G,Z(l)) E9 H 2(X2(C); G,Z(l)) __, H2(Y(C); G,Z(l)) 

,,;1 EB<>:21 l <>2 

H1(X1(R),Z/2)E9H1(X2(R),Z/2) __, Hi(Y(R),Z/2) 

Here the a.;;: Hn(X1 (C); G, Z(n - 1 )) ---+ H1 (X1 (R), Z/2) are defined in the same 

way as an. As H1 (X(C),Z) = 0 forarealK3-surface X, itfollowsfromLemmaIII.8.9, 
that a.[1 and a.[2 are surjective, which implies the surjectivity of a.2. In other words, 

Ima.2 = 0. 
Now assume that Y (R) is nonorientable. Then w 1 ( Y (R)) =/=- 0, and by the 

non-degeneracy of the cap product pairing codim n = 1. First we will prove that 
Im a.2 C 0. Let K E Pie ( Y) be the canonical class of Y. Then de ( K) generates 
the torsion of H 2( Y(C),Z), and, as for any algebraic variety over R, we have 

that cla(K) = w1(Y(R)) E H 1(Y(R),Z/2). This implies that, in the notation of 

Section IV3, w1(Y(R)) is an element of H(>I/2i(Y(R),Z/2) and since Ima.2 = 
Hi912\ Y (R), Z/2) by equation (71), the arguments of the proofofProposition IV3.3 
show that Im a.2 is orthogonal to w 1 ( Y (R)) for the intersection pairing, hence 
Im a.2 C 0. Lemma 1.1 now gives us that Im a.2 = 0. □ 

Since H~g( Y (R), Z/2) = Im a.2 we immediately get the following result. 
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Theorem 1.2. Let Y be a real Enriques suiface. A class "( E H 1 ( Y (R), Z/2) can be 
represented by an algebraic cycle if and on!J if 

In particular, if every connected component ef the real part Y (R) is orientable, 

H~g( Y(R),Z/2) = H1 ( Y(R),Z/2). 

Otherwise, 

PROOF. This is an immediate consequence of Proposition 1.1 and the fact that 

H~g(Y(R),Z/2)=1ma2. □ 

2. Galois-Maximality 

The aim of this section is to describe which Enriques surfaces are Z-GM-varieties 
and/ or GM-varieties in terms of the orientability of the real part and the distribution 

of the components over the halves. See the introduction for the definition of Galois
Maximality and Section 1 for the definition of 'halves'. 

The proof of Theorem 2.9 will consist of a collection of technical results and 
explicit geometric constructions of equivariant homology classes. For completeness we 

also consider the parts of Theorem 2.9 concerning coefficients in Z/2, although these 
results can be easily extracted from [D K2]. 

By Lemma 111.8.4 it is sufficient to study the edge morphisms of the Hochschild
Serre spectral sequences with coefficients in Z/2, Zand Z(l). In order to distinguish 
them easily, we will use the following notation. 

et: Hk(X(C); G,Z) - Hk(X(C),zt 

e-;;: Hk(X(C); G,Z(l)) - Hk(X(C),Z(I))c 

ek: Hk(X(C); G,Z) - Hk(X(C),z)G 

LeD1D1a 2.1. Let Y be a real Enriques suiface with Y (R) -:/- 0. Then 

(i) for any p E {O, 2, 3, 4 }, e;1- is surjective onto Hp( Y (C), Z(k)) G, 

(ii) for any p E {O, 3, 4 }, ep is surjective onto Hp( Y (C), Z/2) G. 

PROOF. This is easy to see from the Hochschild-Serre spectral sequences, using 
Lemma III.8.5 and Lemma 111.8.6. D 

Corollary 2.2. Let Y be a real Enriques suiface with Y (R) -:/- 0. Then Y is Z-GM if and 
on!Jif ei/- is surjectiveonto H1 ( Y(C),Z(k))G fork= 0, 1. Moreover, Y is GMifandon!J if 
e1 and e2 are surjective onto H1 ( Y ( C), Z/2) G, resp. H2 ( Y ( C), Z/2) G. 
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Lemma 2.3. Let Y be a real Enriques surface with Y (R) =/- 0. !f e2 is not suryective onto 
H2 ( Y ( C), Z/2) c, then e1 is not suryective onto H1 ( Y ( C), Z/2) G. 

PROOF. By Poincare duality we see that if e2 is not surjective onto H2 ( Y (C), Z/2) G, 

then e2 is not surjective onto H 2( Y (C), Z/2) c by the Poincare duality isomorphism. 

Let us assume that e2 is not surjective. Then it can be seen in the Hochschild-Serre 

spectral sequence that there exists an w E H 1 ( Y ( C); G, Z/ 2) such that e1 ( w) =/- 0, but 

(3(w) = 0. 
Now suppose e1 is surjective onto H1(Y(C),Z/2)c, then there exists a 'YE 

H 1(Y(C); G,Z/2) such that 

This means that ('Y, w) =/- 0, but this contradicts 

('Y,w) = (p('Y),(3(w)) = (p('Y) no)= 0. 

Hence e1 is not surjective. 

Proposition 2.4. Let Y be a real Enriques suiface with Y (R) =/- 0. Then 

(i) Y is Z-GM if and on{y if eT and e1 are nonzero. 

(ii) Y is GM if and on{y if e1 is nonzero. 
(iii) !f e1 is zero then eT and e1 are zero. In particular, if Y is Z-GM, then Y is also GM. 

PROOF. If Y is an Enriques surface, 

□ 

so et1- and e1 are surjective if and only if they are nonzero. By Lemma 2.3, e2 is 

surjective if e1 =/- 0, so we obtain the first two assertions from Corollary 2.2. The last 

assertion follows from the commutative diagram 

H1(Y(C); G,Z(k)) 
+/-

--2-+ H 1 ( Y(C),Z(k)) 

1 1 
H1(Y(C); G,Z/2) ~ H 1 ( Y(C),Z/2) 

□ 

Lemma 2.5. Let Y be a real Enriques surface with Y (R) =/- 0. Then eT = 0 if and on{y if 
Y (R) is orientable. 

PROOF. We know from Proposition 1.1, that a 2 is surjective if and only if Y (R) is 

orientable. Since H 1 ( Y(C), Z) = Z/2, we have that the mapping H 1 ( Y (C), z)c ~ 
H 2 ( G, H 1 ( Y ( C), Z)) is an isomorphism, so Lemma III.8.9 gives us that a 2 is 

surjective if and only if eT = 0. □ 
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Lemma 2.6. !f the two halves Yi and Y2 ef a real Enriques surface Y are nonempty, then 

e1 # 0. 

PROOF. Let X be the K3-covering of Ye, let T be the deck transformation of this 

covering and denote by u 1 and u2 the two different involutions of X ( C) lifting the 

involution O' of Y(C). Let X;(R) be the set of fixed points under O'; and let p; be a 

point in X;(R) for i = 1, 2. 

Let l be an arc in X ( C) connecting p1 and P2 without containing any other 

point of X 1(R) or X2(R). Then the union L of the four arcs l, u1(l), u2(l), T(l) is 

homeomorphic to a circle, and we have that T( L) = L. This implies that the image ,\ 

of L in Y ( C) is again homeomorphic to a circle; we choose an orientation on >.. 
Now G acts on ,\ via an orientation reversing involution, so ,\ represents a class 

[>.] in H 1 ( Y (C); G, Z( I)). Since X (C) -----+ Y (C) is the universal covering, and the 

inverse image of ,\ is precisely L, hence homeomorphic to a circle, the class of ,\ is 

nonzero in H 1 ( Y (C), Z), so e1 ([>.]) -::/ 0. □ 

Lemma 2. 7. !f exactly one ef the halves Y1, Y2 ef a real Enriques surface Y is empty, then 

e1 = 0 if and only if Y (R) is orientable. 

PROOF. If e1 = 0, we have eT = 0 by Proposition 2.4 and then Y (R) is orientable 

by Lemma 2.5. Conversely, if Y (R) is orientable and X2(R) = 0, then X1 (R) -----+ 
Y(R) is the trivial double covering, so it induces a surjection H*(X1(R),Z/2) 0 -----+ 
H,(Y(R),Z/2) 0 , where H*(-,Z/2) 0 denotes the kernel of the homomorphism 

induced by the constant mapping, see page 75. Since H 1 (X (C), Z/2) = 0, the mapping 

p: H 2(X1 (C); G,Z/2)-----+ H,(X1 (R), Z/2) 0 is surjective by Lemma III.8.7. Now the 

functoriality of p with respect to proper equivariant mappings implies that 

P2: H2( Y(C); G,Z/2)-----+ H.( Y(R),Z/2) 

is surjective, and Lemma III.8. 7 then gives that e1 is zero. □ 

Lemma 2.8. !f exactly one ef the halves Yi, Y2 ef a real Enriques surface Y is empty, then 
e 1 -::/ 0 if and only if Y (R) has components ef odd Euler characteristic. 

PROOF. Assume Y2 = 0. By Lemma III.8.8, it suffices to show that 

Peven: H2( Y(C); G,Z)-----+ Reven( Y(R),Z/2) 0 

is surjective if and only if Y (R) has no components of odd Euler characteristic. 

Although Y (R) need not be orientable, we can apply the K3-covering as in the 

previous lemma and prove that the image of Peven contains a basis for the subgroup 

Ho( Y (R), Z/2) n Reven ( Y (R), Z/2)0, so Peven is surjective if and only if 

pz: H2(Y(C);G,Z)-----+ H2(Y(R),Z/2) 

is surjective. We will use that H 2 ( Y (R), Z/2) is generated by the fundamental classes 

of the connected components of Y (R). 
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Pick a component V of Y (R). If V is orientable, it gives a class in H 2 ( Y ( C); G, Z), 
which maps to the fundamental class of V in H2 ( Y (R), Z/2). Now assume V is 

nonorientable. Let [ V] be the fundamental class of Vin H2 ( Y (R), Z/2), let [ V] G be 

the class represented by Vin H2( Y (C); G, Z/2), and let 'Y = J([ V] G) be the Bockstein 

image in H 1 ( Y (C); G, Z(l)). Then p2(1) = p2 ([ V] c) = [ V] by equation (59), so [ V] 

is in the image of H 2 ( Y (C); G, Z) under P2 if and only if e1 ('Y) = 0. 

From the construction of"( we see that e 1 ('Y) = i, O ( [ V]), where i : V ---+ Y ( C) is 

the inclusion and J([ V]) E H 1 ( V, Z) is the Bockstein image of[ V]. Therefore e1 ('Y) 
can be represented by a circle.:\ embedded in V. Since X (C) ---+ Y (C) is the universal 

covering, e1('Y) is zero if and only if the inverse image L of.:\ in X(C) has two 

connected components. Let W be the component of X 1 (R) covering V. Then Wis 

the orientation covering of V and L C W. If V has odd Euler characteristic, then it 

is the connected sum of a real projective plane and an orientable compact surface. We 

see by elementary geometry that L is connected. If V has even Euler characteristic, it 

is the connected sum of a Klein bottle and an orientable compact surface, and we see 

that L has two connected components. D 

The main result of this section now follows immediately. 

Theorem 2.9. Let Y be a real Enriques suiface with nonempty real part. 

(i) Suppose the two halves Yi and Y2 are nonempty. Then Y is GM. Moreover, Y is Z-GM if 

and on/y if Y (R) is nonorientable. 
(ii) Suppose one of the halves Yi or Y2 is empty. Then Y is GM if and on/y if Y (R) is 

nonorientable. Moreover, Y is Z-GM if and on/y if Y (R) has at least one component of odd 
Euler characteristic. 

PROOF. By Proposition 2.4, the first part of the theorem follows from Lemma 2.5 

and Lemma 2.6, and the second part of the theorem follows from Lemma 2.7 and 

lemma2.8. D 

There are examples ofall cases described in the above theorem ( see [DK 1, Fig. 1]). 

Remark 2.10. The Hochschild-Serre spectral sequence of a real Enriques surface 

has been computed independently by VA Krasnov in [Kr5]. He applies the results 

only to the calculation of the Brauer group, not of Htg. For the edge morphism e1 
he gets a different result; in his calculations he assumes that when S is any compact 

nonorientable connected topological surface, and r is the generator of the 2-torsion in 

the first homology group, then w 1 ( S) n r =/- 0 in H 0 ( S, Z/2). However, this only holds 

when the Euler characteristic of Sis odd. 





CHAPTER VI 

Real algebraic cycles on complex projective 

varieties 

If we identify cN with R 2N, then to any ( quasi-)affine complex algebraic variety V 
of dimension d corresponds in a natural way a real algebraic variety of dimension 2d in 
the sense of [BCR], which we denote by VR, Since each complex morphism V--+ V' 
can be considered as a real algebraic morphism VR --+ Vi{, and all complex algebraic 
varieties consist of affine pieces glued together, this construction extends in a natural 

way to arbitrary complex algebraic varieties X, and we obtain XR, the underl)!ing real 
algebraic structure ef X. In this section we will study for a nonsingular complex variety X 

the group H~g( XR, Z/2), which can be considered as the subgroup of H 1 ( X, Z/2) 
consisting of cohomology classes represented by real Zariski-closed subspaces of X of 

codimension 1. 
The reader will have observed that the notations in this chapter will not be 

completely consistent with the other chapters. The notation XR is chosen in order 
to emphasize the fact that XR is essentially nothing more than X equipped with a 

finer Zariski-topology. Moreover, instead of H 1(X(C),Z/2) the slightly less precise 

notation H 1 (X, Z/2) is used in order to emphasize that H~g(XR, Z/2) is a subset of 
H 1 (X, Z/2). In particular, XR is not an algebraic variety defined over Ras defined in 

Section I. l. 
The key result will be Theorem 1.5, which states that H~g(XR, Z/2) is isomorphic 

to H~g(Alb(X)R, Z/2), where Alb(X) is the Albanese variety of X. This means that 
we can apply the methods for computing the H~g of real abelian varieties, as developed 

by J. Huisman. This will be treated in Section 2. In Section 3 the theory developed in 
the first two sections will be used to prove more explicit results; the most important are 

Theorem 3.2 and Theorem 3.6. 

This chapter is based on the paper [vHl]. The present proof of Theorem 1.5 is 
shorter and more of a cohomological nature than the proof given in the original paper. 
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1. The Weil restriction 

For the Proof of Theorem 1.5 we will use a complexification !!£ of XR (i.e., a variety 

!!£ over R with !!£ (R) biregularly isomorphic to XR as a real algebraic variety) of a 

very special form. In particular, !!£ ( C) will be homeomorphic to the product V x V of 

a topological space V with itself, and the action of G = Gal ( C /R) = { 1, a-} on !£ ( C) 
will then be given by a-( v, w) = ( w, v). 

Before constructing !!£, we will first establish some topological facts about varieties 

of this form. Let Y be a nonsingular, complete variety over R with Y (C) equivariantly 

homeomorphic to a product V x V as above. Observe that the diagonal embedding 

V <--t V x V induces a homeomorphism V ~ V (R). 
For i = 1, 2, let p;: Y ( C) ---t V be the projection on the ith factor. Since 

H 0 ( Y(C),Z) and H 1( Y(C),Z) are torsion-free, the Ktinneth theorem gives us 

natural isomorphisms 

(76) 

and 

(77) H 2 ( Y ( C), Z) '.:::'. pt H 2 ( V, Z) EB (Pt H 1 ( V, Z) ® p; H 1 ( V, Z)) EB p; H 2 ( V, Z). 

Since the G -action on H* ( Y ( C), Z) exchanges P'i H* ( V, Z) and p2 H* ( V, Z), we see 

from the complex (I) that for every k > 0 we have 

(78) 

and 

(79) Hk(G,H 2 (Y(C),Z)) '.:::'. Hk(G,ptH 1(V,Z)@p;H 1(V,Z)). 

We will denote PI H 1( V,Z) ® P2H 1( V,Z)) C H 2 ( Y(C),Z) by c2( Y). 
Since for every complete, nonsingular variety Y over R with Y (R) nonempty the 

Albanese mapping 

av: Y ---t Alb( Y) 

induces a G -equivariant isomorphism 

we see from equation (78) and the description of the structure of abelian varieties over 

R given in [Si] that Alb ( Y) ( C) is equivariantly homeomorphic to a product of the 

form V' x V', and the Albanese mapping induces an isomorphism 

(80) 

This isomorphism will be a crucial one. 
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Lemma 1.1. Let Y be a complete nonsingular geometrical(y irreducible algebraic variety defined 

over R, with Y ( C) equivariantry homeomorphic to the product V x V ef two copies ef a topological 

space with the G-action given by IT( v, w) = ( w, v ). The Albanese mapping induces for every k > 0 

an isomorphism 

PROOF. This is an immediate consequence of the isomorphisms (79) and (80). D 

Proposition 1.2. Let Y beasinl.emmal.l. TheAlbanesemappingay inducesanisomorphism 

a'y: H/21;2) (Alb( Y)(R), Z/2) _:::-, Hi21;2i ( Y (R), Z/2). 

PROOF. By Equation (72) we have that 

Hi2i/2)( Y(R),Z/2) = (31 H 2( Y(C); G,Z(l)). 

The mapping /3 1 factorizes via the homomorphism 

H 2 ( Y(C); G,Z(l)) ~ F 2 H 3 ( Y(C); G,Z), 

which is surjective, since it is a special case of(62). Therefore it is sufficient to prove that 
the Albanese mapping induces an isomorphism 

a'y: F 2 H 3(Alb( Y)(C); G,Z) ..'.::', F 2 H 3 ( Y(C); G,Z). 

Since H 2( G, H 1 (Alb( Y)(C), Z)) = H 2 ( G, H 1 ( Y (C), Z)) = 0, the horizontal ar
rows of the following commutative diagram are isomorphisms. 

F 2H 3 (Alb( Y)(C); G,Z)---+ H 1( G, H 2(Alb( Y)(C),Z(l))) 

lay lay 

Hence the proposition follows from Lemma 1.1. 

□ 

Corollary 1.3. With Y as in Lemma I.I, the group H/2112 / Y (R), Z/2) is precisery the 
image ef the reduction modulo 2 mapping 

r: H 1( Y(R),Z)-+ H 1( Y(R),Z/2). 

In particular, H;ig( Y (R), Z/2) C Im r. 

PROOF. Since Alb( Y) is an abelian variety over R with a connected set ofreal points, 
we see from Example IV3. l that the mapping 

/3 1 : H 2 (Alb( Y)(C); G,Z(l))-+ H 1(Alb( Y)(R),Z/2) 

is surjective, so 
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and the proof now follows from the fact that the product structure of Y ( C) implies that 

the Albanese mapping induces an isomorphism 

□ 

Let us go back to the situation where X is a complete nonsingular irreducible 

variety defined over C and XR is the underlying real algebraic structure of X. Let X'fl/ 

be the Weil restriction of X with respect to the field extension C /R. For a full discussion 

of the Weil restriction in real algebraic geometry, the reader is referred to [Hul, § 1.4]. 

For us it will be sufficient to know that X 'fl/ is an algebraic variety defined over R, 
determined by the fact that the complexification X 1f/ ® C is isomorphic to the product 

X X x<T with Galois action given by er( X ,y) = ( crx 1 (y)' er( X)). Here xa is the corgugate 
variety of X, which is formally defined up to isomorphism by the commutative diagram 

x~x<T 

l l 
c~c 

where er x is an isomorphism of schemes and er is complex conjugation. When X 

is projective and defined by homogeneous equations Ji = 0, fi. = 0, ... , J,, = 0, the 

conjugate variety xa is of course defined by the equations ft= 0, f{ = 0, ... , J,,a = 0, 

where each ft is obtained by applying complex conjugation to the coefficients of f;. 
We have an isomorphism of real algebraic varieties 

given by x f-----) ( x, er x ( x)). 
Since a morphism c.p: X ------, Y induces canonically a morphism c.pa: xa ------, ya, 

it gives us a morphism 'P"f//, and we see that the Weil restriction is a functor. By slight 

abuse of notation, the corresponding mapping X 1f/ (R) ------, Y 1f/ (R) of underlying real 

algebraic structures will again be denoted by c.p. 
Since X(C) and xa(c) are homeomorphic, we see that Lemma 1.1, Proposi

tion 1.2, and Corollary 1.3 apply to the case Y = X'fl/. In particular, Corollary 3.5 in 
[vHl], which states that 

is a direct consequence of the topological product structure of X ,'f/ ( C), whereas the 

proof in ibid. needs the fact that the product decomposition X 1f/ ® C c::: X x xa is an 

isomorphism of algebraic varieties. 
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Of course, this algebraic product structure is indispensable in the proof of the main 
theorem below, since it implies that the Kiinneth decomposition 

H 2(X:w, Z) ~ Pt H 2(X, Z) EB pt H 1 (X ,Z) ® p;H 1 (X", Z) EB p;H2(X", Z). 

actually gives a direct sum of Hodge structures. In particular, when we write 

the Albanese mapping induces an isomorphism 

(81) a~"#': c1,1 (Alb(X):w) _:, c 1,1 (X:w ). 

Lemma 1.4. Let X be a complete nonsingular irreducible variery over C. The Albanese mapping 

ax : X -" Alb X induces an isomorphism 

Theorem 1.5. Let X be a complete nonsingular irreducible algebraic variery over C. The Albanese 

mapping ax : X -'> Alb X induces an isomorphism 

a~: H~g(Alb(X)R, Z/2) _:, H~g(XR, Z/2). 

PROOF. Since XR = X:w(R), we have 

by Theorem IV 4 .1. Hence the theorem follows from Lemma 1. 4 by the same arguments 
as used in the proofof Proposition 1.2. □ 

Remark 1.6. Actually, although the representability of the Picard functor is not used 

in the present proof of Theorem 1.5, this proof is not as far from the original proof 
in [vHl] as might seem at first sight. Recall, that the group of algebraic correspondences 

between two complex algebraic varieties X 1 and X2 is defined to be the quotient group 

It can be checked that the complex cycle map induces an isomorphism Corr( X, X") -=:'., 

Cl, 1 ( X), hence the isomorphism (81) is equivalent to the classical isomorphism 

(82) Corr(Alb X,Alb X") ~ Corr(X, X") 

of which a proof was given in lac. cit. using the representability of the Picard functor. 

Then the original proof of the statement of Theorem 1.5 proceeds by using the fact 

that we may identify Pic(X:w) with Pic(X x X")G and that the real cycle map 
Pic(X x X")G ~ H 1(X1//(R),Z/2) factorizesviaasurjection 

(83) 

(c£ [vHl]). 
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2. Computational methods 

In this section we will see how we can compute H~g(XR,Z/2) for a complete 

nonsingular irreducible complex algebraic variety X from its period lattice Ax = 
H 1 (X ,Z)/torsion C H 0 (Dx )* c::: Cg_ We adapt a method of Huisman for computing 

H~g(A(R),Z/2) for an arbitrary abelian variety A defined over R (see [Hul]) to 

the special case of A = X JP. The special structure of X 1f/ will allow us to make 

some essential simplifications. Huisman's method relies on the Appell-Humbert Theorem 

describing line bundles on abelian varieties. See [Mu] or [LBJ for proofs and details. 

Let A be a lattice in Cg. Let £ (Cg, A) be the additive group of hermitian forms 

H on Cg, such that Im H is integral on A and let S I be the multiplicative subgroup 

z EC: lzl = 1 of C*. An Appell-Humbert datum for (Cg,A) is a pair (a, H) where 

H E £ (Cg, A) and a is a homomorphism A ----, S I such that if E = Im H, then 

Let AH(Cg, A) be the group of Appell-Humbert data with multiplication 

Then the Appell-Humbert Theorem says, that if Cg/ A is an abelian variety, Pic(Cg / A) 

is canonically isomorphic to AH (Cg, A). Canonically in the sense that if f: Cg/ A ----, 

Ck/ A' is a homomorphism of abelian varieties, induced by the C-linear mapping 
F: Cg----, Ck, and 2 E Pic(Ck / A') corresponds to (a, H), then j*2 corresponds to 

(a o F, Ho (F x F)) E AH(Cg,A). 

Using the Appell-Humbert Theorem and the isomorphism (82) we will describe 

Corr(X, xa-)G and the mapping '1/Jx,r: Corr(X, xa-)G----, H~g(XR,Z/2) induced 

by the real cycle map clR, for any complete, nonsingular, irreducible complex variety 

X. For sake of clarity, we will first determine Corr(Xi, X:f) for varieties X 1, X2 

having period lattices A I C cg,, resp. A2 C cgz. Using the canonical isomorphism 

Corr( X 1, X:f) c::: Corr(Alb X 1, Alb X:f) (of which the isomorphism (82) is a special 

case) we will consider Corr(X1, xn as subgroup of AH(cg, X Cg2 ,A1 X kn. From 

the definitions of correspondences it is immediate, that then Corr( X 1, Xf) is given by 

{(a, H): H((u,O), (u',O)) = H((O, v), (0, v')) = 0 for u, u' E cg,, v, v' E Cg2 , 

and a( (A1, Az)) = ( - 1 )1m H((.\, ,0),(0,,\2 )) for all (A1, Az) E A1 X A'n. 
Observe that if(a, H) E Corr(X1, X:f), then a is completely determined by H. 

We will now be able to obtain a convenient description of Corr( X 1, X:f) in terms 

of matrices. Fix a basis ,Jej" of A I and a basis J£;; of A2 • From these bases we construct in 

the obvious way a basis If: of A I x A2. If multiplication by i of CgJ is given by the matrix 
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Mi with respect to Xj considered as R-basis ofCgJ for j = 1,2, then 

is the matrix of multiplication by i in cgi X cg, with respect to fff. 
Now if (a, H) E Corr(X1, Xf) and E = Im H then E is skew-symmetric and 

E( ()'I, 0), (X1, 0)) = E( (0, >.2 ), (0, >.;)) = 0, so the matrix representation of E with 

respect to the basis fff, which we denote by E,e, is of the form: 

where A E z2g1 x 2g, and A T is its transpose. Since E (iv, iw) = E ( v, w), we also have 

This means, that if ( a, H) E Corr( X 1, Xf) and E = Im H, then the representa

tion of E with respect to g is of the form 

where A E z2g1 x 2g2, such that - M ;r A M 2 = A. On the other hand, if an E 

is of the above form, there is a unique pair (a, H) E Corr(X, XO') such that 

ImH = E. Namely, we define H(v,w) = E(iv,w) +iE(v,w) and 0:((>.1,A2)) = 
( -1 )Im H(()q ,0),(0,,\2 )) . 

In particular, if we take X 1 = X 2 = X, and of course Xi = Je;; = X, M 1 = M 2 = 
M, etc., we see that Corr(X, XO') is isomorphic to the additive group of matrices 
{ A E z2gx 2g: - MT AM = A}. Using the interpretation of M as multiplication by i, 

we get a description independent of the choice of X. 

Lemma 2.1. .ut X be a complete nonsingular irreducible complex algebraic variety with 

rank H 1 ( X, Z) = 2g, and let A C Cg be its period lattice. The group Corr ( X, X") is 
canonically isomorphic to the additive group fJiJ (Cg, A) ef real-valued bilinear farms B : Cg x Cg --+ 

R, such that B assumes integral values on A and such that B (iv, iw) = - B ( v, w). 

In order to determine Corr ( X, X (T) c we will investigate the action of G on 

Pic(Alb(X)-w). Identifying Alb(Xh-/ with the complex torus Cg x Ct/Ax A", we 

see, that the involution Tx: X1f/ --+ X1f/ is induced by the C-antilinear mapping 

Tg: cg x cg ---) cg x cg 

(x,y) r-7 (y, x). 
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Then from a simple computation we deduce that the action of G = { 1, u} on 
AH(Cg x Cg, A x A") is given by (a, H)" = (a", H"), where a"(>.) = u(a( Tg(>.)) ), 
and H"(v, w) = u(H(Tg(v), Tg(w))). 

If I is the 2g x 2g identity matrix, then Tg is given by the matrix 

with respect to the basis cf, so a straightforward computation shows, that if (a, H) E 
Corr( X, X") G, then the matrix of E ~ Im H with respect to cf has the form 

with A E z2gx 2g, such that -MT AM= A and AT = A. Conversely, any such E 
determines a unique pair ( a, H) in Corr( X, X") G. 

Lemma 2.2. Let X be a complete nonsingular irreducible complex algebraic variety, with period 
lattice AC Cg. Then Corr(X, X")G is canonically isomorphic to the subgroup Y(Cg,A) ef 
f,?J (Cg, A) consisting ef the bilinear farms that are symmetric. 

Remark 2.3. We can actually associate a C-bilinear form B': Cg x Cg ---+ C to any 

B E f,?J (Cg, A) by defining 

B'(v, w) := B(iv, w) + iB(v, w). 

Since every C-bilinear form on Cg of which the imaginary part takes integral values on 

A is of this type, we get descriptions of Corr( X, X") and of Corr( X, X") G that are 
even more in the spirit of the Appell-Humbert Theorem: 

If X is a complete nonsingular irreducible complex algebraic variety with period 

lattice A C Cg, then the group Corr( X, X") is canonically isomorphic to the group 
f,?Jc (Cg, A) of C-bilinear forms B on Cg such that Im B takes values in Z on A. 

Moreover, Corr(X,X")G is canonically isomorphic to the subgroup Yc(Cg,A) C 
f,?Jc(Cg, A) containing all the symmetric C-bilinear forms in f,?Jc(Cg, A). 

If X c::c Ct/ A is abelian, then the identification of H 1 ( X, Z) with A yields, by the 

Universal Coefficient Theorem, an identification of H 1 ( X, Z/2) with the Z/2-vector 

space Hom(A,Z/2) of homomorphisms from A to Z/2. In a similar way we identify 

H 1(Xt//(R),Z/2) with the Z/2-space Hom(Re(A x A"),Z/2), where Re(A x A") 
denotes the fixed part of A x A" under Tg. 

Under these identifications the isomorphism 

p'x: H 1(X1//(R),Z/2)---+ H 1(X,Z/2), 

induced by the canonical homeomorphism p x : X R ---+ X 1// (R), is the dual of the group 

isomorphism 



2. COMPUTATIONAL METHODS 117 

Since X 1f/ (R) is connected for the strong topology, we conclude from [Hu l], that if 

we write Z/2 = { -1, 1}, then the homomorphism 

'l/Jx"fl/: Corr(X,Xa)G----+ H 1(X1f/(R),Z/2) 

is given by 

Corr(x,xa)G ----+ Hom(Re(A x Aa),Z/2) 

(o:, H) I-+ o:IRe(AxA") 

For arbitrary complete nonsingular X we can consider 

Hom(A,Z/2)-::::: Hom(H1 (X, Z)/torsion,Z/2) c::: H 1(X,Z) © Z/2 

as a subspace of H 1 (X, Z/2). This subspace contains HJg(XR, Z/2) by Corollary 1.3, 

and we get the following recipe for the computation of HJg(XR, Z/2). 
Proposition 2.4. Let X be a complete nonsingular irreducible complex algebraic variety with.first 

Betti number 2g, and let A C Cg be the period lattice ef X. The composite homomorphism 

Y(O,A)----+ Corr(X, Xa)G----+ Hom(Re(A x Aa),Z/2)----+ Hom(A,Z/2) 

is given by 

Y(Cg,A) ----+ Hom(A,Z/2) 

B 1--+ {A 1-+ B(>.., >..) mod 2}. 

The image ef this mapping is canonical(y isomorphic to H Jg ( X R, Z / 2). 

Now suppose Xis isomorphic to a product X 1 x · · · x Xn of(not necessarily simple) 

abelian varieties, we will need for later use some information on Corr( X, xa) in terms 

of the factors of the product. Let gj be the dimension of Xj and let A j be its period 

lattice for j = 1, ... , n. Choose a basis X; of A j for each j and let Mj be the matrix 

of multiplication by i with respect to Xy. From the X;· we construct in the obvious way 

a basis X for the period lattice A 1 x · · · x An of X. It is easy to see, that we get an 
isomorphism 

gg(cgi X · · · X Cg",A1 X · · · X An)".:::'. 

{ (
~

11 
·.·.. ~'") · B E zZg,xZg, and - MT B M = B } 

• • • • 1) l lj j I) 

Bnl Bnn 

In particular, if all A j are the same we get, with a slight abuse of notation, the 

following description. 

Lemma 2.5. Let A c Cg is a lattice. Then 

~in) 
Bnn 
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On the other hand, we will be interested in the case where Corr( X;, X'J) = 0 for 

i-/ j. We observe, that the condition -M{ B;1M 1 = B;1 implies that Bij is the matrix 

associated to an element Sf E Corr(X;, X'J), so the following is obvious. 

Lemma 2.6. For j = 1, ... , n let X 1 be a complex abelian variety ef dimension g1 with period 

lattice A 1, such that Hom(X;, X'J) = {O} far i-/ j. Then 

Y(C'' x x C'·,A, x x A,)~ { C ',, ;.) • 81 E J'(C'',A1)} 

Finally we will compare Y"(Cg, Ai) and Y"(Cg, A2) for abelian varieties Xi and X2 
of dimension g with period lattices Ai, resp. A2 , that admit an isogeny f : Xi -+ X 2. 

Then j is given by a C-linear isomorphism 

F: cg - cg 

that maps A1 into A2 and induces an isomorphism 

F®id: Ai ®Q-+ A2 ®Q. 

Also, F defines a pull-back mapping F*: 5"'(0, A2 ) -+ Y"(Cg, Ai) given by 

F*(S)(v, w) = S(F(v), F(w)) 

for S E 5"' (Cg, A2), v, w E Cg. The following lemma is easy to check; it will be 

important in the next section. 

Lemma 2. 7. With the above notation, the pull-back 

F*: 5"'(0, A2)-+ Y"(Cg, Ai) 

induces an isomorphism 

3. Concrete results 

As a first application, we will show, that we can construct complex varieties with 

'prescribed topological and real algebraic first cohomology groups. For this, we will use 

a variant of the Lefschetz Theorem on hyperplane sections. 

Lemma 3.1. Let X be a d -dimensional nonsingular complex subvariery ef P'c and let H C P'c 
be a hyperplane, such that X' = X n H is again nonsingular. .lf d 2'. 3, then the inclusion 
z : X n H -+ X induces isomorphisms 

i*: Hi(X,Z) - Hi(x',Z) 

i*: Hi(X,Z/2)-+ Hi(x',Z/2) 

i*: H~g(XR,Z/2)-+ H;ig(X~,Z/2). 
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PROOF. The first two homomorphisms are isomorphisms by the Lefschetz Theorem 

on hyperplane sections (see [Mi]). Let us to prove that the last homomorphism is an 

isomorphism. 

Since the mapping i.: H1 (X', Z) ---+ H1 (X, Z) is an isomorphism, we see that 

the induced mapping z: Alb(X') ---+ Alb Xis an isomorphism. By Theorem 1.5 this 

implies that i*: H~g(XR, Z/2)---+ H~g(X~, Z/2) is an isomorphism. D 

Now we know all the obstructions for the construction of projective complex 

algebraic varieties of dimension 2 2 with prescribed first cohomology groups. 

Theorem 3.2. Given the integers d, a, g, h with d 2 2, the.following conditions are equivalent: 
(i) There exists a nonsingular complex prqjective variety X ef dimension d, such that 

(ii) 0 ::; a ::; 2g ::; h 

dimz;2 H 1(X,Z/2) = h 

dimz;2 H~g(XR,Z/2) = a 

rank H 1(X,Z) = 2g. 

PROOF. (i) ==} (ii) This follows from Corollary 1.3 and the fact, that complex algebraic 

varieties always have an even first Betti number. 

(ii)==} (i) For i = 0, 1, 2, let Ei be an elliptic curve with H;1g((E;)R,Z/2) = i 
(see [BKl ]), then of course dimz;2 H 1 ( E;, Z/2) = rank H 1 ( E;, Z) = 2. Let Y be an 

Enriques surface; then it is well-known that H 1 ( Y, Z/2) = Z/2 and H 1 ( Y, Z) = 0, 

so we have by Corollary 1.3 that H~g( YR, Z/2) = 0. Taking the product of a right 

number of copies of the E; and Y, we construct a nonsingular complex projective 

variety X' satisfying all the conditions on cohomology. If the dimension of X is too 

small, we take the product of X' and a number of copies of Pb in order to obtain X. If 

the dimension is too large, Lemma 3.1 allows us to lower the dimension by repeatedly 

taking smooth hyperplane sections of X', which is always possible by Bertini's Theorem 

[Ha, Theorem II.8.18]. D 

It is not known whether the statement of Theorem 3.2 with the extra condition 

h = 2g holds for d = 1, i.e., for complex curves. Some results in this direction are given 

in [BK 1]. The following example shows, that in any case there is for every g a projective 

complex algebraic curve C of genus g such that Htg((C)R,Z/2) = H 1(C,Z/2) = 
z;fg. 
Example 3.3. Fix a g > 0. We define C to be the nonsingular irreducible projective 

complex curve that has a Zariski-open subset isomorphic to the affine plane curve given 

by the equation 
y2 = X _ X2g+2. 

Then C is defined over R and its real part C(R) is a Zariski-closed subset of CR, 

homeomorphic to a circle for the strong topology. Let <.p be the automorphism of C 
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given by (x,y) f----+ ((2g+1x,(4g+2Y), where (k = exp(21ri/k). We put Vo= C(R) and 

TJc = ,l( Vo) fork= 1, ... ,2g. 

The two-sheeted covering 7r: C --+ Pb is branched in the points 1, ( 2g+t, ... , Ci;+t 
and 0. From the theory of complex analytic functions we know that the two branches 

of J x - x2g+2 in, say, 2 E Pb can be extended analytically to Pb\ 1r(LJ~:o f'!c). In 

particular, C - LJ~:o f'!c is homeomorphic to two copies of the open disk. Since each 

f'!c is homeomorphic to a circle, and nf=o T'!c consists of one point, the theory of cell 

complexes tells us that the fundamental classes of Vo, ... , Vzg generate Hi ( C, Z/2). 

Finally, we we will investigate to what extent the structure of the endomorphism 

ringofan abelian variety X puts upper bounds on the dimension of HJg(XR, Z/2). We 

have by [BK 1, Th. 1.2] that a simple complex abelian variety X of dimension g with 

HJg(XR, Z/2) = H 1 (X, Z/2) is of CM-type, i.e., its ring of endomorphisms End(X) 

is a free Z-module ofrank 2g (cf [Mu]). 
Our aim is a generalization of this result to arbitrary abelian varieties. Recall that 

an arbitrary complex abelian variety will be said to be of CM-type if it is isogenous to a 

product of simple abelian varieties of CM-type. In order to ease the notation, we define 

Note that the surjection (83) implies that 

(84) d(X) S Corr(X,Xu), 

and recall the classical fact that for any two complex abelian varieties X 1 and X2 we have 

that the group Corr(X1, X2) is equal to the group Hom(X1, X2) of homomorphisms 

between X 1 and X2. 

If X is a simple abelian variety, then rank Hom( X, Xu) is either O or equal 

to rankEnd(X), so then indeed equation (84) gives us that if H11g{XR,Z/2) = 
H 1 (X, Z/2), then X is of CM-type. Much more complicated is the case when X 
is not simple. Then we have that X is isogenous to a product of the form 

X"' X (Xu)µ' X · · · X X"" X (Xu)µ,, I I n n , 

where all X; are simple abelian varieties of dimension gi with X; not isogenous to Xj 
or X'J if i c/=- j, µ; = 0 if X; is isogenous to xr and V; :::: µ; for all i. Then we have that 

rankCorr(X,Xu)G =rankCorr(IliX,"' x (Xr)µ',Il;(Xr)"' x Xf')G,whichcanbe 

very big if the vi are large enough, so then the above bound on d ( X) is not very useful. 

However, if X is actually isomorphic to such a product, we see by a direct computation, 

using the results of Section 2, that d(X) S I,;rankEnd(X;). Hence if Xis not of 

CM-type, then d(X) < 2g = dimz;2 H 1(X,Z/2). 
The key result that will allow us to obtain non-trivial bounds on d ( X) for every 

X in a given isogeny class of abelian varieties not of CM-type, is the lemma below, 

which has kindly been provided by H.W Lenstra, Jr. We will fix some notation first. 
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Let V be a finite dimensional vector space over Q. Let A C V be a finitely generated 

Z-module. Let Y be a collection of symmetric bilinear forms B : V x V --+ Q, such 

that B(>-.., X) E Z for>-.., XE A. We define 

c:: Y --+ Homz(A,Z/2) 
B e-+ {>-.. e-+ B(>-.., >-..) mod 2}. 

Let L(c:(Y)) be the Z/2-linear span of c:(Y) in Homz(A,Z/2). If K is a field 
containing Q and B is a bilinear form on V, then by BK we denote the bilinear form 

( V 0 K) x ( V 0 K)--+ K given by BK(v 0 k, v' 0 k') = kk' B(v, v'). 

Lemma 3.4. Let K / Q be a number field . .[f U C V 0 K is a K -linear subspace, such that 

BK( u, u) = Ofer all u E U and all B E Y, then dimz;2 L(c:(Y)) ::; dimQ V - dimK U. 

PROOF. Let F2 be an algebraic closure ofZ/2. Let E: Y--+ Homz(A,F2) be the 
mapping induced by c, and let L ( E ( Y)) be the linear span over F 2 of the image of E. 

Of course, dimF2 L(t(Y)) = dimz;2 L(c:(Y)). 
Now we will construct a principal ideal domain A C K, such that K is the quotient 

field of A and such that the reduction map Z--+ Z/2 exten'ds to a ring homomorphism 

p: A--+ F2. 

We choose a prime ideal p of tfK, the ring of integers of K, that lies over (2) CZ and 
we take for A the localization of (j K at p (but if (j K already is a principal ideal domain, 

we can even take A = tfK)- Then we define p by choosing an embedding of A/pA in 

Fz. 
Putting AA = A 0 A, we see that BK(>-.., X) E A if B E Y and>-.., X E AA, so the 

following mapping extends E. 

EK: Y --+ HomA(AA,F2) 
B f-+ {>-.. f-+ J~p(~B-K (~>-..-, >-..~))}' 

where ✓ is the inverse of the field automorphism x e-+ x2 of F 2 and the A-module 
structure on F2 is the one induced by p. 

The restriction map HomA (AA, F2) --+ Homz(A, F 2) induced by the inclusion 

A CAA, maps EK(Y) bijectively onto t(Y), so dimF2 L(c:K(Y)) = dimF2 L(t(Y)), 
and we will prove the lemma by showing that 

dimF2 L(c:K(Y))::; dimK V 0 K - dimK U. 

Since U n AA is in the kernel of all /3 E HomA (AA, F2) that are of the form 

/3 = EK ( B) for some B E Y, we can write EK as a composition 

The finitely generated A-module AA/( Un AA) is contained in the K-vector space 
( V 0 K) / U, so it is torsion-free. Since A is a principal ideal domain, this implies that 
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AA/( Un AA) is isomorphic to Ak for some k :s; dimK( V ® K)/ U, and we see that 

which finishes the proof. 

Proposition 3.5. Let X be a complex abelian variety ef dimension g, isogenous to a product 

with notations and conventions as above. Let 

Then d(X) :s; 2g- Lir'i· 

2v;g; 

V; 

0 

if X; is not isogenous to Xf 
if0 < rankHom(X;, Xr) < 2g; 

ijrankHom(X;, Xr) = 2g; 

□ 

PROOF. Let AC Cg be the period lattice of X. By Proposition 2.4 and the previous 

lemma, it is sufficient to find a number field K and a K-vector space U C A ® K of 

dimension L 1'i such that BK(u, u) = 0 for all u E U and all B E Y(Cg, A). 

The isogeny induces an isomorphism A ® Q ~ TI;( A~' x (A'[)µ,) ® Q, and by 

Lemma 2.7 an isomorphism Y(Cg,A) ® Q~ Y(Cg,TI;At x (A'[)µ,)® Q, where 

A; is the period lattice of X; for i = I, ... , n. By Lemma 2.6, we have 

so if we have number fields K; and K;-vector spaces U; C (At x (A'[)µ,) ® K; of 
dimension "I· such that BK (u u) = 0 for all u E U and all B E Y(c(v,+µ,,)g,, Av,, x 

Jl i ' l ' n 

(A~)µ,), we prove the proposition by taking for Ka number field containing all K; and 

for Uthe product TI; U; ®K, K. 

Let us fix an i E { 1, ... , n} with 1'; =/- 0. If X; is not isogenous to Xf, then 
Hom(X;, Xr) = {0}, since X; is simple, so Corr(X;, Xr) = {0}, hence £6(Cg,, A;)= 

{0} by Lemma 2.1. Therefore, by Lemma 2.5, £B(cv,g,, At) = {0}, and we may take 

K; = Qand U; = At ®Q. 
If Hom(X;, Xr) =/- {0}, then X; is isogenous to Xf, soµ;= 0. In this case we 

deduce from Lemma 2.5, that we can take U; = W"' C A? ® K; if we have a number 

field K; and a one-dimensional subspace W C A; ® K; such that BK; ( w, w') = 0 for any 

BE £6'(Cg,,A;) and any w, w' E W. In order to find such a K; and W, we take a Z
basis {B1 , ••• , Bk} of £B(cg,,A;) with k = rankCorr(X;, Xr) = rankHom(X;, Xr). 
Observe that we just need one nonzero element w C A; ® Qsatisfying the homogeneous 

quadratic equations B 1 ( w, w) = 0, ... , Bk ( w, w) = 0, where Qis the algebraic closure 

of Q. Since k < 2g; = dimQ A; ® Q, such a w exists. D 
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The bounds in the above proposition are far from being sharp in many cases, but 
they are sufficient for generalizing the result from [BK 1], that for a complex elliptic 

curve E without complex multiplication we have that H;ig( ER, Z/2) =/= H 1 ( E, Z/2) 
(see Th. 1. 7 in loc. cit.). 

Theorem 3.6. !f X is an complex abelian variety with 

H~g(XR,Z/2) = H 1(X,Z/2) 

then Xis efCM-type. 

PROOF. Immediate from Proposition 3.5. □ 

Corollary 3. 7. There are, up to isomorphism, only countably many complex abelian varieties X 

having H;ig(XR,Z/2) = H 1(X,Z/2). 

PROOF. From the description of the isogeny classes of simple complex abelian varieties 

of CM-type in !Mu] we easily deduce that there are only countably many complex 
abelian varieties X of CM-type. D 

Corollary 3.8. Let X be a complete, nonsingular complex algebraic variety with 

H~g(XR,Z/2) = H 1(X,Z/2). 

Then H 1(X,Z/2) = H 1(X,Z) @Z/2 and Alb X isefCM-type. 

PROOF. The first part follows from Corollary 1.3 and the second part follows from 
Theorem 1.5. D 

If Xis a curve, then H 1(X,Z/2) is always equal to H 1(X,Z) @Z/2 and the 

Albanese variety of X is the Jacobian variety Jae X, so the previous corollary proves 
Conjecture 1.15 of [BK 1]. 

Corollary 3.9. Let C be an irreducible nonsingular projective complex curve with 

H~g(CR,Z/2) = H 1(C,Z/2). 

h Then Jae C is efCM-type. 

Using the Torelli Theorem and the fact, that any complex abelian variety X admits, 

up to isomorphism, only a finite number of principal polarizations (see [NN]), we get 

for complex curves the analogue of Corollary 3. 7. 

Corollary 3.10. There are, up to isomorphism, only countably many irreducible nonsingular 

projective complex curves C with H;ig( CR, Z/2) = H 1 ( C, Z/2). 

For curves of genus 2 a stronger result than Corollary 3.9 is obtained by a direct use 
of Proposition 3.5. 

Corollary 3.11. Let C be an irreducible nonsingular projective complex curve ef genus 2 with 

dimz;2 H11g( CR, Z/2) > 2. 

Then]ac C is ef CM-type. 
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PROOF. Eithe.r Jae C is simple or it is isogenous to the product of two elliptic curves 

E 1 x E2• In the first case we apply inequality (84) and the fact that if X is a simple 

abelian variety of dimension g, then the rank of End( X) divides 2g, hence the rank 

of Hom( X, xa) divides 2g. In the second case it is well-known, that we may choose 

E 1 = E 2, since we can construct a nontrivial element w E Corr ( E 1 , E 2) using the 

image of C C Jae C in E I x E 2, and w induces an isogeny between E I and E 2• Then 

the result follows from Proposition 3.5. D 

The existence ofinfinitely many non-isomorphic curves C of genus 2 with d ( C) = 4 

is proven in [BK l]. Together with the corollary, this implies that the set of isomorphism 

classes of irreducible nonsingular projective complex curves of genus 2 with d ( C) > 2 

is countably infinite. However, no examples of the case d ( C) = 3 are known for genus 

2. 
Using similar methods as in Example 3.3, we see that a nonsingular projective 

complex curve C determined by an equation of the form y 2 = ( x3 - l) ( x3 - a) with 

0 < a< 1, has d( C) 2 2. Since different values of a give non-isomorphic curves, we 

see that the set of isomorphism classes of irreducible nonsingular projective complex 

curves C of genus 2 with d ( C) = 2 is uncountable, so the statment of Corollary 3 .11 

does no longer hold if'> 2' is replaced by '2 2'. 
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Notations 

K 

XK 

R 

C 

.2'k(X) 
_2'k(X) 

f. 
J* 
7r 

.2';a1(X) 

div(j) 

~aig(X) 

~R-alg(X) 

xu 
x"/1" 
CHk(X) 

cHi0\x) 
CHiO)a(X) 

CHk(X) 

NS(X) 

f. 
J* 
Hk(G,M) 

div(D) 

Pic(X) 

Pic0 (Xc) 

PicOa(X) 

algebraic closure of the field K, 7 

algebraic variety with the ground field extended to K, 7 

field of real numbers, 7 

field of complex numbers, 7 

group of k-dimensional algebraic cycles, 8 

group of algebraic cycles of codimension k, 8 

proper push-forward of algebraic cycles, 8 

flat pull-back of algebraic cycles, 8 

canonical mapping from Xe-+ X, 8 

algebraic cycles rationally equivalent to zero, 8 

divisor of a function, 9 

algebraic cycles algebraically equivalent to zero, 9 

algebraic cycles real algebraically equivalent to zero, 10 

conjugate complex variety, 10 

Weil restriction with respect to the field extension C/R, 10 

Chow group in dimension k, 11 

cycle classes algebraically equivalent to zero, 11 

cycle classes real algebraically equivalent to zero, 11 

Chow group in codimension k, 11 

Neron-Severi group, 11 

proper push-forward of cycle classes, 11 

flat pull-back of cycle classes, 11 

cohomology of the group G, 11 

Weil divisor associated to a Cartier divisor, 14 

Picard group, 14 

line bundles algebraically equivalent to zero, 15 

line bundles real algebraically equivalent to zero, 15 
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Pic0 (X /R) 

cl~, cl~c' clC 

cll,clR 

Htl(X(C),Z) 

Htg(X(R),Z/2) 

clx, cl 

1r: X---+X/G 
xc ex 
A-9JtoD 

A-9JtoDc 

A-9JtoD(X) 

A-9JtoDc(X) 

Hom(.4,JY) 

Homc(.4,JY) 

f. 

J* 
I'(X,-) 

.fi 

I'c(X,-) 

ffew 

ft'omA (..4, JY) 
rG 
lndG § 

CoindG § 

C(2l) 

c+(2t) 

c-(2l) 

Cb(2l) 

C*(2l) 

K* (2l) 
Tf1 

Hom• (:Ji'", 12•) 

D*(2l) 

RF, RPF 

LF, LpF 

J' 

NOTATIONS 

Picard variety, 16 

complex cycle map in homology, 18 

real cycle map in homology, 19 

homology classes represented by complex algebraic cycles, 19 

homology classes represented by real algebraic cycles, 19 

equivariant cycle map in homology, 20 

quotient mapping for a space X with a (left) G-action, 22 

fixed point set of a G -space X, 22 

category of A-modules, 22 

category of G-A-modules, 22 

category of sheaves of A-modules on X, 22 

category of G -sheaves of A-modules on X, 22 

non-equivariant homomorphisms, 22 

equivariant homomorphisms, 22 

direct image of sheaves, 23 

inverse image of sheaves, 23 

global sections functor, 23 

direct image with proper supports, 24 

global sections with compact support, 24 

sheaf restricted to W, 24 

sheaf oflocal homomorphisms, 24 

G -invariant subgroup functor, 25 

induced G -module, 28 

co-induced G -module, 29 

category of complexes of objects from 2l, 29 

category of bounded below complexes of objects from 2l, 29 

category of bounded above complexes of objects from 2l, 29 

category of bounded complexes of objects from 2l, 29 

any of C (2l), Ch(2l), c+ (2l), or c-(2l), 30 

homotopy category corresponding to C*(2l), 30 

translation functor, 30 

complex of homomorphisms of complexes, 31 

derived category corresponding to K* (2l), 32 

arrow of a quasi-isomorphism, 32 

right derived functor, 33 

left derived functor, 34 

right adjoint to Rf,,, 41 
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(,',w) 

O'rx(A) 
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(,',,,') 

/3 
p 

Bx 
M(k) 

Hf112\X(R),Z/2) 

2;,1:'.'r(x) 
O'an 

VR 

Alb(X) 
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equivariant cohomology, 46 

equivariant cohomology with support in W, 46 

cohomology of the group G , 46 

equivariant Borel-Moore homology, 46 

pull-back of cohomology groups, 47 

proper push-fotward of Borel-Moore homology groups, 48 

restriction of Borel-Moore _homology to an open subspace, 48 

cup product, 50 

cap product, 51 

cap product pairing, 52 

orientation sheaf of a cohomology manifold, 52 

( equivariant) fundamental class of X, 53 

Gysin map in cohomology, 54 

cup product pairing in cohomology, 54 

intersection pairing in Borel-Moore homology, 54 

fixed-point map in cohomology, 63 

fixed-point map in Borel-Moore homology, 63 

equivariant Thom class, 67 

G-module with twisted G-action, 68 

potentially algebraic homology classes, 88 

algebraic cycles numerically equivalent to zero, 90 

sheaf of analytic functions, 91 

underlying real algebraic structure of a complex variety, I 09 

Albanese variety, 110 

Albanese mapping, 110 

algebraic correspondences, 113 
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abelian variety, 16, 87, 93, 114 

of CM-type, 120, 123-124 
principal homogeneous space, 98-99 

adjoint functors, 25-29 

adjoints of derived functors, 39-40 

Albanese variety, 110 

algebraic correspondences, 113 

algebraic cycle, 8 

algebraic equivalence, 9-10, 90 

real, see real algebraic equivalence 
algebraic variety 

over R, 8 

over a field K, 7 
real, see real algebraic variety 

Appell-Humbert Theorem, 114 

Borel-Moore homology, 18 

cap product, 49-52 

pairing, 52, 54, 63, 103 
Cartier divisor, 14 

principal, 14 

Chow group, 11 

CM-type, see abelian variety of CM-type 

co-induced G-module, 29 

cohomological dimension, 3 7 
strict, 37 

cohomology manifold, 52, 66 

cohomology of groups, 11, 46 

complex, 29 

bounded,29 

bounded above, 29 

bounded below, 29 

double, 30 
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complex multiplication, see abelian variety 

of CM-type 
conic bundle, see ruled surface 
cup product, 49-52 

pairing, 54, 68 
cycle class, 11 

cycle map, 18-20 

complex, 18, 84 
equivariant, 20, 83-86 

into cohomology, 85-86 

real, 19, 84 

derived category, 32 

derived functor, 33 

divisibility of CH1o)R ( X), I 7 

divisor, 14-16, see also Cartier divisor, see also 

Weil divisor 
of a function, 9 

divisor class, 12-13, 14 

Enriques surface, 93, 101-107 

equivariant 
Borel-Moore homology, 45-47 

cohomology, 45-47 

functor, 22 

fundamental class, 66-67 

sheaf, see G -sheaf 
Thom class, 67 

exponential sequence, 91 

flat sheaf, 39 

free action, 58 

fundamental class, 18, 70 
equivariant, see equivariant fundamental 

class 
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G-sheaf, 22 
Galois-Maximal, see GM-variety 

geometrically irreducible, 7 

GM-variety, 70, 104 
Z-GM-variety, 71, 104 

Gysin map, 54, 68 

halves 

of an Enriques surface, 102 
Hochschild-Serre spectral sequence, 55-57, 

70-74, 95, 104 

hypercohomology, 52 

induced G-module, 28 

intersection 
of algebraic cycles, 11, 86, 90 

pairing in homology, 54, 68, 89--90 

KS-surface, 80, 93, 96, 102 

Leray spectral sequence, 58 

line bundle, 14-17 
localization, 57-61 

Neron-Severi group, 11 
nice G -space, 62 

numerical equivalence, 90 

orientation, 52, 66 
orientation sheaf, 52 

orientation preserving action, 53 
orientation reversing involution, 70 
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