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Chapter 1 

Preliminaries 

1.1 Nonparametric minimax estimation 

Fisher's works in the 1920s laid the foundations for statistics to become 
a separate discipline of mathematics. During the last 50 years, a large 
part of statistics has finally been incorporated into the rigid framework 
of theoretical mathematics, primarily through the elegant use of measure 
theoretic concepts. At the same time estimation theory has grown, from 
a mathematical technique established in 1806 with the first publication 
on the least squares estimator by Legendre, to become an independent 
topic in statistics. 

In probability theory a random phenomenon is described by a proba­
bility space (n, A, P). The measurable space (n, A) gives its qualitative 
and the measure P its quantitative descriptions respectively. In the the­
ory of probability, the underlying probability space (n, A, P) is assumed 
to be predetermined and one studies its properties. In statistics one 
deals with the converse situation. That is to say, one tries to retrieve 
certain characteristics of the unknown probability space on the basis of 
some observed properties. 

Observation is one of the fundamental notions in statistics. The ob­
servations may be a sample of real valued random variables, a stochastic 
process or of some other nature obtained as a result of a statistical exper­
iment. The general statistical estimation problem is to gain information 
about some features of the underlying probability measure, using the 
observed data. 

Mathematically, the observations are usually interpreted as a sample 
of random elements X1, X2, · · ·, Xn from the probability distribution P 

3 



4 Chapter 1. Preliminaries 

on a measurable space ( X, B). Let X be some metric space and B be its 
Borel a-algebra. Another ingredient of a statistical estimation problem 
is the following formalization of prior knowledge about the distribution 
P - one thinks of Pas ranging over P, a class of distributions on (X, B). 
The class Pis assumed to be known to the statistician and is, in fact, the 
statistical model. Depending on how "big" the class P is, one can speak 
of parametric or nonparametric models. Recently, a class of semipara­
metric models was recognized as intermediate between parametric and 
nonparametric models (see van der Vaart (1988), Bickel et al. (1993)). 

For a long time parametric modeling has been a subject of investiga­
tion. The results that are developed are applied to the problem of fitting 
probability laws to data. A parametric model is usually described by 
assuming that the family of distributions P can be parameterized and 
represented in the form P = {P0, 0 E 8}, where 8 is a subset of a 
Euclidean space. Thus, the problem of retrieving information about P0 
is equivalent to the problem of retrieving information about parameter 
0. 

A disadvantage of parametric modeling is that prior information 
about the underlying probability law is often more vague than any para­
metric family would allow - parametric families are too specific, or "nar­
row". Therefore, parametric modeling may in general not be robust in 
the sense that a slight contamination of the data might lead to wrong 
conclusions. Moreover, the data might be of such a type that there is 
no suitable parametric family that gives a good fit. Under these cir­
cumstances, nonparametric modeling can serve as a good alternative. 
Broadly speaking, nonparametric models are those that are character­
ized only by a qualitative description of the class P. A way to describe 
a nonparametric model is to assume that P = {P0, 0 E 8}, where 8 is 
a subset of an infinite dimensional space. 

The first paper in the area of nonparametric density estimation is 
due to Rosenblatt (1956). Since then, a large amount of literature dedi­
cated to methods for estimating infinite dimensional objects - densities, 
regression functions, spectral densities, distribution functions, failure 
rates, images etc. - has appeared. It should be mentioned though that 
the change-over from parametric to nonparametric modeling has pro­
duced a side effect - the theory of nonparametric estimation still lacks 
coherence and generality: " .. .instead of a single, natural minimax theo­
rem, there is a whole forest of results growing in various and sometimes 
conflicting directions ... " (Donoho et al. (1995)). 
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Traditionally, two types of statistical estimation problem are rec­
ognized: so called regular problems and irregular ( or nonregular). By 
regular problems one understands conventionally problems when one 
wants to estimate a "smooth" functional of the underlying distribution. 
Standard examples of regular estimation problems include estimation of 
the distribution function, mean and median. For other applications, one 
can refer to, among others, van der Vaart (1988), (1991), Groeneboom 
and Wellner (1992), Bickel et al. (1993), Groeneboom (1996). A typical 
feature of regular estimation problems is that Jn-consistent estimation 
is possible, where n denotes sample size. Usually the notion of a regular 
estimation problem is associated with differentiability of the functional 
that is to be estimated (see Koshevnik and Levit (1976), Levit (1978), 
Pfanzagl (1982), van der Vaart (1991)). Another beneficial feature of 
regular models is that a unified and relatively simple treatment of asymp­
totic lower bounds in estimating a differentiable functional is possible. 
The construction of asymptotically exact lower bounds for various risks 
is essentially implemented by classical methods. 

By nonregular problems one understands usually all problems of es­
timating a functional ( of the underlying distribution) of interest which is 
not differentiable. Common examples of nonregular estimation problems 
are density estimation and regression estimation problems. In contrast 
to regular models, estimation theory in nonregular models is more com­
plicated and more varied. There is no single general theorem describing 
lower bounds for the minimax risk (a measure of the complexity of the 
estimation problem) and optimal estimators. The behaviour of the mini­
max risk depends strongly on the model and sometimes on the definition 
of the minimax risk itself. In this book we concentrate on nonregular 
estimation problems, among which density estimation and regression 
estimation problems have a significant place in recent research in non­
parametric statistics. 

The great majority of the estimation problems considered in the lit­
erature fits in the following general model of a statistical experiment. 
Suppose a random element, viewed as an "observation", x(E) and a 
family of probability distributions {PJE)}, indexed by a positive number 
E and the unknown parameter 0 belonging in general to an infinite di­
mensional set e, are given. Suppose x(E) takes its value in a measurable 
space (X(E),u(E)). We wish to estimate the value of a functional f(0) on 
the basis of the observed data, where f : 0 -+ B, B is a metric space 
with the distance function d( ·, ·). In the most general setup one would 
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do this by taking a mapping le(x(e)), le x(e) -+ B. We are going 
to study this problem within the minimax framework and to compare 
estimators on the basis of their risk functions, which implies taking cer­
tain expectations. For that, we will need the measurability of d(Je, J) as 
a function of the observations. Let A be the usual Borel er-field on R. 
Any mapping le : x(e) -+ B such that d(Je, J) is (U(e), A)-measurable 
is called an estimator of l. 

"Solutions of nonasymptotic estimation problems, although an im­
portant task for its own sake, can not serve as a subject of sufficiently 
general mathematical theory" (Ibragimov and Hasminskii ( 1981)) and 
we study the estimation problem in the asymptotic setup as E -+ 0. In 
the case of a sample of n independent observations one can assume, for 
example, E = n-1/ 2 . 

The purpose of the rest of this section is to give a simple introduc­
tion to the nonparametric minimax estimation· problem in a nonregular 
model. We will not pursue generality anymore and restrict ourselves 
to the problems of estimating a regression function and a probability 
density. One can define all the notions below in a general setup if need 
be. 

First we state the problem of density estimation. Given a sequence 
of independent real valued random variables Y1 , Y2, ... , Yn identically 
distributed with common distribution function F such that F has a 
density l with respect to the Lebesgue measure on the real line, we 
want to recover l, using the observed data. 

Now consider the problem of regression function estimation. Let 

be a sample of n independent identically distributed pairs of real valued 
random variables having an unknown distribution. Let a random pair 
(X, Y) have the same distribution as each of sample pairs and one is 
interested in the dependence structure between X and Y. The problem 
of nonparametric regression estimation is to recover the function l ( x) = 
E[YIX = x] on the basis of observations 

Collection ( X 1, ... , X n) is called the design. Note that 

i=l,2, ... ,n, (1.1) 
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where the ei's are independent random variables such that E[ei IXi] = 0. 
If we begin with the model (1.1) and assume further that the joint dis­
tribution of the ei 's is independent of the joint distribution of the Xi's, 
the Xi's are independent identically distributed random variables, the 
ei's are independent identically distributed random variables with zero 
mean, then this model is called the additive regression model. Clearly, 
this is a particular case of the general regression model above and 
f(x) is the regression function. Very often a nonrandom design (i.e. 
(Xi, ... , Xn) is a nonrandom vector) on a bounded interval is considered 
in such models. A common example of nonrandom design is the equidis­
tant one, i.e. the Xi's are nonrandom and equispaced on a bounded 
interval. 

From now on, by the term curve we mean either a regression function 
or a density. The curve f is assumed to belong to a subset 8 of some 
linear space equipped with a metric d(·, ·). Often, 8 is a subset of some 
normed space. We will use the usual notation II· II for this norm. In this 
case d(J,g) = II! - 911-

Now we will assign a specific meaning to the rather loosely formu­
lated "to recover the function". Let w(u), u ER, be a loss function, i.e. 
a nonnegative symmetric function nondecreasing on the positive semi­
axis, satisfying ess inf w < ess sup w. The class of loss functions contains 
many desirable functions, for instance, bounded loss 

w(u) = I{u ~ C} 

for some positive constant C, where J{S} denotes the indicator function 
of set S; squared loss 

w(u) = u2 . 

As a measure of quality of an estimator in introduce the risk function: 

We will call it also just the risk. Here E f denotes the expectation with 
respect to the distribution of the observations given that the true curve 
is J(·) and the positive sequence 1/Jn, whose meaning will be clarified 
later, is a normalizing factor. 

If Rn(in, J) ~ Rn(in, J) for all f E 8 and Rn(in, J) < Rn(in, f) 
for at least one f E 8, then, as is intuitively clear, we say that the 
estimator in is better than in- Unfortunately, common situation is that 
fn is better than in for some curves f E 8 and worse for others, and 
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typically there is no uniformly best estimator in this sense. This suggests 
finding a scalar characteristic of the risk that depends only on in- It 
has already become a tradition in statistics to evaluate performance of 
an estimator by the worst case principle: the quantity 

sup Rn(in, f) 
fE0 

is called the maximal risk of the estimator in over 0. At this point we 
incorporated prior information about f (! E 0) into our consideration. 
The best performance is then the minimax risk: 

where the infimum is taken over all possible estimators. The minimax 
risk expresses the least possible mean loss when the worst case happens 
and, in a way, reflects the complexity of the estimation problem over the 
class e. 

There is another point in support of this setting ~ one would like to 
derive a nonvoid theory of lower bounds in estimation theory. Indeed, 
suppose we wish to estimate a density function fat a point xo, using the 
quadratic loss function (in(xo)- f(xo)) 2 . Taking the infimum of the risk 
over all estimators, we have trivially that inf fn Rn (in, f) 2 0. On the 

other hand, this bound is attained by a dummy estimator in(xo) = a, 
a = f (x0 ), which is absolutely unacceptable for estimating any other 
Ji (xo) -/- a. Taking the supremum over the class 0 before infimum over 
all estimators makes the lower bound nontrivial ( of course, if the class 0 
contains at least two different curves and the loss function is reasonably 
chosen) and, certainly, estimators as above will not attain this bound. 
Another way to build up a nonvoid theory of lower bounds is to restrict 
the class of estimators. For instance, restricting to unbiased estimators 
in the theory of parametric estimation leads to, under some regularity 
conditions, the Cramer-Rao bound for the quadratic risk. 

Note that the minimax risk still depends on the loss function w. 
Specific estimation problems are sometimes best treated with different 
choices of loss function, and the selection of the loss function in such 
cases is governed by mathematical convenience rather than by any other 
arguments. 

The minimax approach provides a solid basis for nonparametric es­
timation theory. In the last two decades, Wald's concept of minimaxity 
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(Wald (1950)) for nonparametric models was developed to fruition by 
Ibragimov and Hasminskii (1980)-(1991), Stone (1980), (1982), (1984), 
(1985), Bretagnolle and Huber (1979), Birge (1983), (1985), (1986), 
(1987) and many others. In a long series of works by many researchers 
worldwide, nonparametric minimax estimation theory has reached ma­
turity and a developed machinery for optimality considerations within 
the minimax framework was built up. The minimax framework consists 
basically in specifying its three ingredients: 

• the model of observations; 

• the functional class 8; 

• the loss function and then the minimax risk. 

A positive sequence 'l/Jn = 'l/Jn(8) is called the minimax rate of con-
vergence of estimation if there exist positive constants C1 C1 (8), 
C2 = C2(8) and an estimator in such that 

liminfi:9.fsupRn(fn,f,C1'l/Jn,w) > essinfw (1.2) 
n➔oo fn fE0 

and 
limsupsupRn(in,f,C2'l/Jn,w) < esssupw. 
n➔oo fE0 

(1.3) 

An estimator in satisfying (1.3) is called asymptotically minimax up to 
rate of convergence. Frequently we will say just rate of convergence or 
optimal rate of convergence instead of "minimax rate of convergence". 

As is easy to see, the rate of convergence is not uniquely defined: 
if 'l/Jn is a rate of convergence, then ¢n 'l/Jn is also a rate of convergence, 
where ¢n is any positive sequence such that 

0 < lim inf ¢n ::=; lim sup ¢n < oo. 
n➔oo n➔oo 

To avoid unnecessary technicalities in definitions, from now on we 
restrict our consideration to loss functions of the form: w ( x) = Ix I q, 

q > 0. In such cases, it is convenient to define the risk function as 

Then a sequence 'l/Jn = 'l/Jn ( 8) is the rate of convergence if there exist 
positive constants C1 = C1(8), C2 = C2(8) and an estimator in such 
that 

(1.4) 
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lim sup sup 1/J;;,q Rn (f n, f) :S: C2. 
n➔oo fE8 

(1.5) 

The problem of best possible estimation in terms of optimal rates of 
convergence has been extensively studied (Stone (1980), (1982), Ibrag­
imov and Hasminskii (1980), (1981), (1982), (1983), (1984a), (1984b) 
(1990), Birge (1983), (1985) Hall (1989), Donoho and Liu (1991), and 
others). It is well to bear in mind that the optimal rates of convergence 
may depend on the risk function. 

Different estimators turn out to be optimal (minimax) in the sense of 
the best rate of convergence in different estimation problems. We men­
tion only some of them: kernel estimators (Hardle and Marron (1985), 
Ibragimov and Hasminskii (1984a), Korostelev (1994)); projection esti­
mators (Ibragimov and Hasminskii ( 1981)), nearest neighbour estima­
tors (Stone (1980), (1982)); spline estimators (Nussbaum (1985), Speck­
man (1985)), wavelet estimators (Donoho et al. (1995), Donoho and 
Johnstone (1994a)). From the practical point of view, estimators based 
on stochastic approximation procedures are very important (Belitser and 
Korostelev (1992), Belitser (1993)). 

There are also works in which the optimal rates of convergence are 
established for dependent observations under some conditions, basically 
for dependence to be decreasing in some way (see Boente and Fraiman 
(1989), Truong and Stone (1992)). 

The possible quality of estimation, in particular the rate of conver­
gence, essentially depends on the nonparametric class 8. To provide 
a reasonable quality of estimation, usually one imposes some uniform 
smoothness condition on functions from the nonparametric class. For 
example, it is not possible to estimate consistently a density at a point 
if this density has a jump at this point. Typically, the definition of 
class involves a parameter which represents some kind of "smoothness" 
amount for the functions from this class. The best possible rate of con­
vergence within which one can estimate the unknown curve depends on 
the "smoothness" in a reasonable way: the "smoother" the class, the 
better the rate one can estimate with. Usually one considers sufficiently 
smooth classes so that the minimax rate converges to zero. Standard 
examples of nonparametric classes described by smoothness conditions 
include the Sobolev class: for some positive Q and integer m 2: 1, 
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the Holder class: for some positive L, integer k ~ 0 and O < /3 :::; 1, 

~(a,L) = {l: ll(kl(x1) -j(kl(x2)I:::; Llx1 - x21/3, x1,x2 ER}, 

where m and a= k + /3 are the smoothness parameters in the Sobolev 
and Holder classes respectively. 

So far we have restricted our consideration to definitions and general 
ideas. To elucidate the introduced notions, we give now two examples 
of estimating a regression function. 

Example 1.1. Consider the additive regression model 

where observations are taken at points 

i - 1 
Xi= Xin = --, 

n-1 
i = 1, ... ,n, 

6, ... , ~n are independent standard (with zero mean and unit variance) 
Gaussian random variables, the unknown regression function l 1s as­
sumed to belong to a mth-order Sobolev class 

W(m, Q) = { l E L2([0, 1]) : fo 1 
(f(m) (x)}2dx:::; Q} 

for some positive Q and integer m ~ 1. Let II · II denote the usual norm 
in L2([0, 1]). As a risk function, we take the so called quadratic risk 

As is shown in Nussbaum (1985), the minimax rate of convergence in 
this problem is the following: 

m 
'lpn = n-2m+l. 

Example 1.2. Suppose we want to estimate a nonparametric regression 
function l(x), 0:::; x:::; 1, on the basis of the observations 

Yi= l(i/n) + ~i, i = 1, ... ,n, 
where 6, ... , ~n are independent Gaussian random variables with zero 
means and variances cr2 . The regression function is assumed a priori to 
belong to the Holder class 

~(a,L) = {l: ll(k)(x1)-l(kl(x2)I:::; Llx1 -x21/3, x1,x2 E [0,1]}, 
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a = k + (3, for some O < f3 ~ 1, L > 0, integer k :2: 0. The estimation 
quality is measured by the normalized sup-norm risk 

where "Pn is a normalizing factor, the loss function w is continuous and 
satisfies 

for some positive constants wo and q. Then the minimax rate of conver­
gence in this problem is shown (see Korostelev (1994), Donoho (1994)) 
to be of the form 

- ( log n) 2a"+1 "Pn -
n 

The common optimal estimators are based on the fact that we know 
the smoothness: the bandwidth for the kernel methods, the number of 
terms for the orthogonal series method etc. In practice, however, the 
amount of smoothness (and other parameters describing the class) is 
never known. So, the problem of finding a data dependent method of 
choosing unknown parameters - a so called adaptive method - is an im­
portant task. There are several methods: cross-validation, generalized 
cross-validation, plug-in. The problem of minimax adaptivity, within 
rate of convergence, with respect to the degree of smoothness was raised 
by Stone (1982). Efromovich and Pinsker (1984) were first to solve this 
problem for Sobolev classes and L2-norm in the problem of filtering a 
signal against the background of a Gaussian white noise process. The 
method is based on adaptive determining optimal damping coefficients in 
an orthogonal series estimator. Similar technique was applied to adap­
tive estimating a square integrable probability density in Efromovich 
(1985). Later their results were improved in Golubev (1987), Golubev 
and Nussbaum (1992), Oudshoorn (1996). In the problem of nonpara­
metric regression function estimation a procedure adaptive within rate 
of convergence was proposed in Hardle and Marron (1985); for a survey 
see Marron (1988), (1989). An interesting and very general adaptation 
method was developed in Lepski (1990), (1991), (1992), further advances 
can be found in Lepski and Spokoiny (1996). 

Another fruitful approach was recently proposed in Donoho and 
Johnstone ( 1994a), ( 1995), Donoho et al. ( 1995) ( see further refer­
ences therein). A wavelet shrinkage method is shown to perform well 
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when estimating a function with inhomogeneous smoothness properties. 
Namely, a log n loss in the rate of convergence yields a "nearly minimax" 
adaptive procedure for the whole scale of Besov classes. 

Up to this point, we have been concerning asymptotic optimality 
only in terms of optimal rates of convergence. On the other hand, in 
many regular estimation problems much stronger results are available: 
not only is shown that y'ri, is an optimal rate of convergence, but optimal 
constants are derived. 

Recall the definition of the optimal rate of convergence (1.4) and 
(1.5). Take now one representative 'l/Jn of possible minimax rates of 
convergence. For this fixed convergence rate, we can define the asymp­
totically best constants in (1.4) and (1.5), i.e. such Ct = Ct(8) and 
Cu= Cu(8) that 

(1.6) 

and 
(1. 7) 

n➔oo 

where rn(8) is the minimax risk over the class 8. The case Ct= Cu= C0 

is of a particular interest. The constant C0 = C0 (8) is optimal in the 
minimax sense for the given nonparametric class 8. The corresponding 
estimator in from (1.5) attaining C0 should be naturally called asymptot­
ically minimax. Then the minimax risk has the following simple asymp­
totic expression: 

as n ➔ oo. 

Clearly, one would like to strengthen the optimal rate results by finding 
the optimal constants when they exist. A further challenging problem 
is to describe the asymptotics of the normalized minimax risk 

when Ct < Cu- The following general definition of the asymptotically 
minimax estimator covers this case as well. An estimator in is called 
asymptotically minimax ( or just minimax) if 

as n ➔ oo, 

where 'l/Jn is the minimax rate of convergence. 
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In the following two examples it has been possible to describe the 
exact asymptotics of the minimax risk. 

Example 1.1 (continuation). In fact, the result of Nussbaum (1985) 
describes also the optimal constant: 

lim i~f sup n 2!~1 Etllfn - f 11 2 = 'Y(m, Q), 
n--+oo fn JEW(m,Q) . 

where 

1 ( m ) 2!~1 
'Y(m, Q) = (Q(2m + 1)) 2m+1 1r(m + l) 

is Pinsker's constant. 

Example 1.2 (continuation). For simplicity sake, consider k = 0 in 
the definition of the class ~ ( a, L), i.e. a = (3. The following result is 
due to Korostelev (1994): 

( 
a ) 

n 2a+l A 

lim i:g.f sup E1w (-1 -) sup lfn(x) - J(x)I = w(Co), 
n--+oo fn JE'>.:,(a,L) ogn o:c:;x::;I 

where the optimal constant 

( 
2°' (a+ 1) °') 2

"
1
+1 Co= La --2-2a 

Recall our observation that the minimax risk can serve, in some 
sense, as a measure of complexity of estimation problem for the whole 
class 8. In practice, however, only one curve is in the background. This 
gives rise to the question how to characterize the difficulty of estimation 
problem contributed solely by this particular curve. A natural way to 
do this is to localize the risk function. To be more precise, let T be 
a topology on the class 8. Introduce the local minimax risk: for a 
neighbourhood VET, 

Suppose now that 'l/Jn is the rate of convergence, V = V(f0 ) is a "suffi­
ciently small" neighbourhood of some curve Jo. Then one is interested in 
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the asymptotic behaviour of 'lj;:;;qrn(V) and finding an estimator achiev­
ing this behaviour asymptotically. Precisely, an estimator f n is called 
locally asymptotically minimax ( or just locally minimax) if for each curve 
f E 8 there exists a neighbourhood Vo 3 f such that for any neighbour­
hood V, f E V ~ Vo ( this is a formal way to say: for any sufficiently 
small neighbourhood of J), 

limsup'lf;:;;,q (sup Rn(!n, J) - rn(V)) = 0. 
n--+oo JEV 

Sometimes we will call such an estimator efficient. If the limit 

exists, then, the constant C0 (Jo), together with the rate of convergence 
'lf;n, describes the exact behavior of the local minimax risk and represents 
the difficulty of the estimation problem at the point Jo. 

1.2 Minimax estimation: a brief survey 

In this section we give a brief review on results in nonparametric statis­
tics concerning the exact asymptotics of the minimax risk. In a number 
of nonparametric estimation problems, recently it has been possible to 
improve the results on best obtainable rates of convergence by finding 
the exact asymptotic value of the minimax risk in the class of all estima­
tors. Presently, the problem of finding the minimax optimal constants 
is of a great interest. 

As far as we know results of such type were obtained only in a lim­
ited number of works. Nevertheless, this does not pretend to be an 
exhaustive account of all works concerning the exact asymptotics of the 
minimax risk, but rather a collection of observations with emphasis on 
some relevant aspects of nonparametric estimation problems. 

Until recently, this kind of minimax estimation problem seemed re­
mote. However, a solution was found by Pinsker (1980) for a filtering 
problem over ellipsoids in Hilbert space. The essence of Pinsker's method 
consists in showing that minimax linear estimators over an ellipsoid are 
asymptotically minimax in the class of all estimators. This technique 
was extended to estimation of a square integrable probability density in 
Efromovich and Pinsker (1982). For the Gaussian white noise model, 
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the result of Pinsker was generalized to the case of regression functions 
with singularities in Oudshoorn (1996). Namely, the unknown regres­
sion function from a Sobolev-type ellipsoid was allowed to have a finite 
but unknown number of jumps. It was shown that properly normal­
ized minimax quadratic risk attains asymptotically Pinsker's constant. 
A generalization of Pinsker's result to general losses can be found in 
Tsybakov (1997). 

The works of Nussbaum (1985), Speckman (1985), Golubev (1991), 
Golubev (1992), Golubev and Nussbaum (1990), Golubev and Nuss­
baum (1992) are dedicated to the regression estimation problem and 
concern minimax risk with squared error loss and smoothness assumed 
in an L2-Sobolev sense. 

In the paper of Speckman (1985) the class of estimators is restricted 
to the linear ones. The best linear estimator is derived and the exact 
minimax rate of convergence is obtained. This minimax estimator is a 
variant of spline smoothing. Some practical aspects have been consid­
ered. For instance, in case the variance of the errors o-2 and the constant 
Q specifying the Sobolev class are unknown, generalized cross-validation 
is shown to give an adaptive estimator which achieves the minimax op­
timal rate under the additional assumption of normality. 

The assumption of normality of the errors was essential in the paper 
of Nussbaum (1985) (see Example 1.1) where the best possible mini­
max constant is obtained. The method of estimation is based on the 
fact that under normality of the errors the minimax linear estimator is 
asymptotically minimax in the class of all estimators. The proposed op­
timal estimator is a smoothing spline. The multidimensional case of this 
problem for the equidistant design has been studied by Golubev (1992). 

The problem of adaptation with respect to the variance o-2, the con­
stant Q and smoothness a was solved by Golubev and Nussbaum (1992). 
The minimax adaptive estimator in this paper is no longer a smoothing 
spline and no longer even linear. 

With regard to the lower asymptotic risk bound, the result of Nuss­
baum was extended to the nonnormal case in the papers of Golubev 
(1991), Golubev and Nussbaum (1990). In Golubev and Nussbaum 
(1990) a nonequidistant design was considered and the noise distribution 
was assumed to be unknown and varying in a shrinking Hellinger neigh­
bourhood of some central measure. The pertaining lower asymptotic 
risk bound is established, based on an analogy with a location model in 
the independent identically distributed case. 
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Schipper (1996) considered the minimax estimation problem of a 
density on the real line, using the mean integrated square error as a 
risk function. The Sobolev and analytic classes were studied. For both 
classes kernel estimators proved to be minimax. The L2-structure of the 
problem allowed to employ a characteristic function technique in the 
derivation of the upper bound and the van Trees inequality in establish­
ing the lower bound for the minimax risk. 

The results of Korostelev ( 1994), Donoho ( 1994), Korostelev and 
Nussbaum (1995) and Schipper (1997) concern L00-loss function and 
L00-smoothness instead of L2. Hence these results can be viewed as the 
L00-analog of the L2-results just mentioned. 

Korostelev (1994) (see Example 1.2) considered a Gaussian regres­
sion model with equidistant design. The unknown regression function 
was from the Holder class on the unit interval with the smoothness pa­
rameter a, 0 < a :s; 1. It was shown that the exact asymptotic minimax 
risk is attained by a certain kernel estimator and minimaxity for the 
risk Ew(1/J~ 1 llfn - !11 00 ) does not depend on (reasonably chosen) loss 
function w(·). 

Donoho (1994) generalized the result of Korostelev to the estimation 
of kth derivatives, k 2:: 0, of a-Lipschitz regression functions for a > 1. 
Also, it is shown that the constants in the asymptotics of the minimax 
risk are the same as the constants arising in certain problems of opti­
mal recovery. The paper makes heavy use of ideas of renormalization 
and optimal recovery. As is mentioned in Donoho (1994), L00-loss has 
special importance in connection with setting fixed-width simultaneous 
confidence bands for an unknown regression function. 

Korostelev and Nussbaum (1995) derived the exact asymptotics of 
the minimax risk in the density estimation problem, by using an inter­
esting approach based on asymptotic equivalence of their model with 
the Gaussian white noise model, for the smoothness parameter a > 1/2. 
By using direct methods, the result of Korostelev and Nussbaum (1995) 
was generalized by Schipper (1997) in the following respects: the loss 
function is allowed to grow exponentially fast, densities from the class 
are allowed to be supported on the whole real line and need not to be 
bounded away from zero, localized version of main result is obtained 
( the exact asymptotic of the local minimax risk is derived and a locally 
minimax estimator is proposed). 

Another type of results was recently initiated by Golubev and Levit 
(1996a) where the problem of estimating values of an analytic density 
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or any of its derivatives at a given point is studied. This problem, being 
in essence nonregular, exhibits a close resemblance with the problem of 
estimating a smooth functional. Namely, locally minimax estimation 
of a density and any of its derivatives at a given point is possible. An 
asymptotically efficient (locally minimax) estimator is proposed. The 
existence of an efficient density estimator leads to a second order effi­
cient estimator of the distribution function in a related class ( cf. also 
Golubev and Levit (1996b)). This approach has been also extended to 
the nonparametric regression model, with an equidistant design, in Gol­
ubev et al. (1996). In this paper, the unknown regression function is 
again assumed to belong to a class of functions analytic in a strip of the 
complex plane around the real axis, and two different types of results 
are given. Firstly, an asymptotically minimax estimator of the regression 
function is presented such that its mth derivative is an asymptotically 
minimax estimator of the mth derivative of the regression function, for 
a broad class of loss functions. Secondly, the same problem is considered 
for L00-norm on a bounded interval. 

1.3 Scope 

In the first chapter we have already presented an elementary introduc­
tion to nonparametric curve estimation and a short overview of relevant 
literature. The subsequent chapters constitute the main content. Let us 
outline the rest of the book. 

A regression model with continuous time, the so called Gaussian 
white noise model, has received much attention in the literature in the 
last few decades. As well as being of interest on its own, the Gaussian 
white noise model, under some conditions, can also serve as a proto­
type for nonparametric regression model and observation model in the 
problem of density estimation. So, on the one hand the white noise 
model can be considered as a mathematical idealization, and on the 
other hand, this model captures the statistical essence of the original 
model and preserves its traits in a pure form. The problem of signal 
recovery in Gaussian white noise is recognized to be a "generic" non­
parametric curve estimation problem. It turns out namely that many 
observation models exhibit asymptotic statistical equivalence with this 
model; for example, in the density estimation (Nussbaum (1996)), re­
gression model (Brown and Low (1996)), in the convolution problem, 
the second order minimax estimation of the distribution function (Gol-
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ubev and Levit (1996b)). However, the equivalence notion has mostly 
been treated informally until recently and the problem of establishing 
the equivalence in a precise sense is a delicate and in general difficult 
task. Recently a serious effort was mounted to make the notion of equiv­
alence formal; see Nussbaum (1996), Brown and Low (1996). We will 
not dwell on this issue, but rather focus on the model itself. 

Pinsker (1980) considered the problem of recovering a signal, in 
Gaussian noise, assuming that the unknown signal belongs to an el­
lipsoid in a Hilbert space. For a class of ellipsoids satisfying certain 
regularity conditions, he derived the asymptotic minimax risk and pre­
sented a linear estimator which proved to be asymptotically minimax. 

In Chapter 2 we consider a generalization of the white noise model, 
namely, we allow the noise to be not necessarily white. We call such 
noise "coloured". We impose some regularity conditions on ellipsoids 
which seem to be more restrictive than those in Pinsker (1980), but our 
derivation of the main results is shorter and more transparent. 

However, the main novelty in that chapter is the derivation of the 
exact asymptotic behaviour of the second order term of the minimax 
risk. It is an interesting and challenging task to study the second order 
asymptotics of the minimax risk in nonparametric nonregular estimation 
problems, and we are not aware of any results of this kind. The problem 
of deriving the second order behaviour of the minimax risk is not just 
of pure mathematical interest - there are estimation problems in which 
it is the second order behaviour that should be studied. For instance, it 
arises naturally in the technically involved problem of the second order 
minimax estimation of the distribution function ( cf. Golubev and Levit 
(1996b)). Indeed, if the series of the coloured noise variances converges 
( the noise is "small"), then the first order asymptotic behaviour is triv­
ial and corresponds to the parametric ( or regular) situation. In such 
cases, only the asymptotic behaviour of the second order term of the 
minimax risk reveals the nonparametric nature of the problem. In any 
case, studying the second order asymptotics enables one to improve the 
accuracy of the estimation and to make the structure of the optimal 
estimator more precise when, for example, there is a class of first order 
optimal estimators, but only a particular choice of the bandwidth for the 
kernel method or the number of terms for the orthogonal series method 
makes an estimator second order optimal. 

We propose a linear estimator and show that this estimator is asymp­
totically minimax up to second order term of the minimax risk. To il-
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lustrate the application of the main results, we give a list of examples, 
including the well known Sobolev and analytic classes for different levels 
of coloured noise. 

The next chapter, where we consider the classical additive regression 
model with equispaced design points, is closely related to the previous 
one. This problem has been actively investigated by Nussbaum (1985), 
Speckman (1985), Golubev (1992), Golubev and Nussbaum (1992) for 
the Sobolev type classes with the smoothness parameter (3. In those 
results the exact asymptotics of the minimax risk was derived in the form 
C0 'ljJ;,,, with the optimal rate of convergence, as a rule, "Pn = n/31(2f3+l) 

and the optimal constant C0 • 

In Chapter 3, we suppose that the unknown regression curve lies in 
an ellipsoid from L2 ( [O, 1]). A distinguishing feature of our main result is 
that it covers a rather general class of ellipsoids. So, the periodic Sobolev 
class and the class of periodic analytic functions can be described as 
certain examples of such ellipsoids. We describe the exact asymptotic 
behaviour of the minimax risk and derive the asymptotically minimax 
estimator. The estimator proves to be a windowed Fourier projection 
estimator, although it can also be represented as a kernel estimator. 
In addition, we discuss the questions of consistency, local minimaxity, 
robust estimation and nonnormality of the noises. 

Our method relies on approximation of the initial nonparametric 
model by a sequence of linear models of dimensions increasing with the 
number of observations. These approximating linear models are inti­
mately related to the observation model from the previous chapter. In 
regard to the methods for deriving lower bounds, we propose a new ap­
proach based on the elementary but rather powerful van Trees inequality. 
This method allows the exact evaluation of the quadratic minimax risk. 
Some practical aspects are considered ~ in several examples, we give the 
exact formulae of the optimal kernels. 

In the last chapter we are concerned with one of the basic problem in 
the theory of nonparametric estimation, the density estimation problem, 
when the observation model is complicated by the presence of censor­
ing. A rich literature is devoted to the random censorship model for 
various estimation problems. The problem of density estimation under 
censoring has long been treated in the literature; see a short overview 
in the last section of Chapter 4. The majority of the proposed den­
sity estimators in the random censorship model is based on the well 
known Kaplan-Meier estimator, an estimator of the distribution func-
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tion. Many interesting aspects of the problem were investigated, ( among 
them, the rates of convergence of certain estimators) and all these stud­
ies led to a better understanding of risk computations for Kaplan-Meier 
based estimators. The issue of optimality of considered estimators with 
respect to the rate of convergence remained open. In a recent paper of 
Liu (1996), a Kaplan-Meier based kernel estimator was shown, under 
some conditions, to be of optimal rate. In Chapter 4 we explore, in the 
density estimation problem, the innovative combination of two concepts: 
the optimality considerations (the minimax approach) and the random 
censorship model. 

In recent work, Golubev and Levit (1996a) considered the problem 
of estimating an analytic density in the model of independent identically 
distributed observations and discovered an interesting phenomenon. It 
turned out that this problem lies on the boundary between regular and 
nonregular problems (a so called regularizable problem) and one can con­
struct asymptotically unbiased and asymptotically efficient estimators of 
the density at a point, with a convergence rate only slightly worse than 
yfn,. So far, there has been no results, to the best of our knowledge, in 
models with a loss of information ( or any other than the model of in­
dependent identically distributed observations), where a certain density 
estimator is found to be minimax. 

Instead of the global minimax risk, we employ the local minimax 
risk as a measure of the quality of an estimator, which yields more 
exact results. We consider both an analytic and a more general class of 
C00 densities. We call this class "infinitely smooth". We describe the 
asymptotic behaviour of the local minimax risk and propose an efficient 
(locally asymptotically minimax) estimator - an integral of a properly 
chosen kernel with respect to the Kaplan-Meier estimator. The methods 
for the two classes we consider proved to be essentially different. Namely, 
there are no efficient estimators with compactly supported kernels in 
the case of analytic functions while in the case of C00 densities such 
estimators do exist. This makes possible applying strong approximation 
results for the Kaplan-Meier estimator in the latter case. For the class 
of analytic functions, the risk computations are more cumbersome and 
relies heavily on the martingale technique. 

We propose a wide class of kernels on which the estimator can be 
based, which turns out to be important in the estimation problem with 
censored observations. Certainly, it is desirable to have kernels with the 
lightest possible tails to reduce the influence of the censoring. It is shown 
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that one can take a compactly supported kernel for the infinitely smooth 
class and a kernel with tails decreasing as exponent of any polynomial 
for the class of analytic functions. 

A certain useful tool, the Approximation Lemma (see Section 4.5), 
plays an important part in the proofs of the main results. It reflects the 
fact that any density from either of the two considered nonparametric 
classes can be approximated by a sequence of smooth functionals with a 
negligible approximation error, thus linking our problem with a regular 
estimation problem. The treatment of the lower bound based on the 
van Trees inequality is in essence similar to that in Golubev and Levit 
(1996a), but is more involved since one has to take into account the 
censoring mechanism. 



Chapter 2 

Minimax filtering over 
ellipsoids 

Suppose a signal J(t) is transmitted over a communication channel with 
Gaussian white noise of intensity E2 during the time interval [O, T]. The 
statistical estimation problem is to recover the signal J(t), based on the 
observation XE(t), 0 :S: t :S: T: 

(2.1) 

where f(t) is an unknown function and assumed to belong to a known 
set e c L2([0, Tl), W(t) is a standard Wiener process. In this chapter 
we will measure the quality of an estimator J(t) by its global squared 
L2-norm risk: 

Elli- !11 2 , 

where II · II denotes the usual L2([0, T])-norm throughout this chapter. 
Under the assumption that the unknown signal belongs to the Hilbert 

space L2([0, Tl), we can reduce this problem to the problem of estimating 
an infinite dimensional parameter 0 E l2. Indeed, let { ¢k, k = 1, 2, ... } 
be an orthonormal basis in L2([0, Tl). Then 

where 

yk = foT ¢k(t)dXE(t), 

0k = foT </Jk(t)f (t)dt, 

23 

(2.2) 

(2.3) 
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So, the ek 's are independent standard Gaussian random variables. 
In this chapter we consider a generalization of the model (2.1): noise 

is not necessarily white. We will call such noise "coloured". 

2.1 "Coloured" Gaussian noise model 

First of all, we assume without loss of generality that T = 1. Consider 
now the following generalization of the model (2.1): 

dXE(t) = f(t)dt + cg(t)dW(t), (2.4) 

where g(t) is some known bounded function. In the same way as in the 
previous section we write the equivalent model: 

(2.5) 

where the Yk 's, 0k 's are defined by (2.2) and (2.3) respectively, {<Pk} is an 
orthonormal basis with the weight function g2(t), the ek's are standard 
Gaussian random variables and 

( 
1 ) 1/2 

ak = lo </J~(t)g2(t)dt 

Another generalization of the model (2.1): 

dXE(t) = f(t)dt + cdW(g(t)), (2.6) 

where g(t) is assumed to be nonnegative, nondecreasing and differen­
tiable. The model (2.5) holds again with Yk 's, 0k 's defined by (2.2) and 
(2.3) respectively, { ¢k} is an orthonormal basis with the weight function 
g'(t), ek's are standard Gaussian random variables and 

( 
1 ) 1/2 

ak = lo </J~(t)dg(t) 

Let us consider one more generalization of the model (2.1): 

dXE(t) = (f * g)(t)dt + cdW(t), (2.7) 
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where* denotes the convolution operation, g(t) is some known function 
such that all its Fourier coefficients with respect to the trigonometric 
basis are nonzero. Then: 

where Yk 's, 0k 's are defined by (2.2) and (2.3) respectively, 9k 's are 
the Fourier coefficients of function g and ~k's are independent standard 
Gaussian random variables. Since coefficients 9k 's are assumed to be 
nonzero, we can reduce this model to model (2.5) by dividing the equality 
above by 9k· 

We could also consider the usual trigonometric basis in the first 
two examples, but then we would have nonzero covariances between 
the Gaussian random variables ~k's. If the covariance ~ is an operator 
in l2 with bounded inverse, then we can transform the observations via 
Y' = ~-l/2Y, Y = (Y1, Y2, ... ), giving new data Y{ = 0~ + E~~' where 
now ~~ 's are independent. 

From now on we study the observation model (2.5). Here erk 's, 
erk 2:: 0, k = 1, 2, ... , are given, ~k's are independent standard Gaussian 
random variables, E > 0 is a small parameter. The unknown infinite­
dimensional parameter of interest 0 = ( 01, 02, ... ) is assumed to lie in an 
l2-ellipsoid 8: 

00 

~ 2 2 8 = 8(Q) = {0: Dak0k:::; Q}, (2.8) 
k=l 

where (ak, k = 1, 2, ... ) is a nonnegative sequence converging to infinity. 
Without loss of generality we let the sequence (ak, k = 1, 2, ... ) be 
strictly positive and monotone. 

The model (2.5), (2.8) was first studied by Pinsker. He considered 
the problem of recovering a signal from an ellipsoid in Gaussian noise 
with spectral density E2 , as E --+ 0, which can be described, in equivalent 
terms, by (2.5), (2.8). In this chapter, developing further the approach of 
Pinsker (1980), we describe the second order behaviour of the minimax 
estimators and the quadratic minimax risk for the model (2.5), (2.8). 
These results are illustrated by a number of examples. 

2.2 Minimax linear estimation 

Let the model of observations be given by (2.5). 
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In this section we investigate the minimax linear risk which will be 
shown later to be asymptotically equal, under some conditions, to the 
minimax risk. Denote x = (xi, x2, ... ) and introduce the class of linear 
estimators: 

Define the risk of a linear estimator 

Rix, 0) = Eoll0(x) - 011 2 (2.10) 

and the minimax linear risk 

(2.11) 

where 11011 2 = I:~1 0f 
To formulate the result about the minimax linear risk, we introduce 

some notations. Let cE be a solution of the equation 

00 

E2 L a~ak(l - cak)+ = cQ (2.12) 
k=l 

and 
00 

dE = dE(e) = E2 L a~(l - cEak)+. (2.13) 
k=l 

Here b+ denotes nonnegative part of b. 
The following theorem describes the minimax linear risk. 

Theorem 2.1. Let cE and dE be defined by (2.12) and (2.13). Then 

infsupRE(x,0) =supinfRE(x,0); 
x 0E0 0E0 x 

the saddle point (x,0) for the problem (2.11) is given by 

Xk = (1 - cEak)+, 

0-2 _ E2a~(l - cEak)+ 
k-

cEak 

and the linear minimax risk satisfies the following equations: 

00 202 
l 2"' ak k r E = dE = sup E L...J 2 2 2 . 

0E0 k=l 0k + E a k 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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Proof. First note that the risk of a linear estimator has the form 

00 

Rc(x, 0) = L ( E2aixi + (1 - xk)20i) . 
k=l 

Since, according to (2.12), 

by (2.18) we have 

00 

Qc; = E2 L criccak(l - ccak)+, 
k=l 

infsupRc(x,0) < supRc(x,0) 
x 0E0 0E0 

00 

< Q sup(l - xk) 2 /ai + L E2aixi 
k~l k=l 

00 

< Qc; + E2 L ai(l - ccak)t 
k=l 

00 

27 

(2.18) 

E2 L ai((ccak(l - ccak)+ + (1 - ccak)t)) 
k=l 
00 

E2 L ai(l - ccak)+ =de. 
k=l 

Note now that the equation (2.12) can be also rewritten as 

so that 0 E 8. Taking into account this and (2.19), we obtain 

which completes the proof of the theorem. 

(2.19) 

□ 
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Remark 2.1. As is indicated in the proof of the theorem, the equation 
(2.12) can be also rewritten as 

Remark 2.2. Due to monotonicity of (ak, k = l, 2, ... ), 

N 

where 

d£ = E2 L O"k(l - c£ak), 
k=l 

One can easily derive explicit formulae for cf and N: 

N = max{z: E2 t O"kak(az -- ak) :SQ}. 
k=l 

Note that (2.21) entails that 

(2.20) 

(2.21) 

(2.22) 

Remark 2.3. The assumption of strict positivity of the sequence { ak} 
does not restrict the generality. Indeed, suppose ak = 0 for some k then 
the relations (2.14) and (2.17) still hold, whereas the saddle point does 
not exist: corresponding Xk = l and ek = 00. In this case (2.14) and 
(2.17) would follow from the inequalities: 

d£ > supR£(x,0) 2'.'. infsupRf(x,0) 
0E8 x 0E8 

> sup inf Rc(x, 0) = d£, 
0E8 x 

where Xk's are defined by (2.15). 

Remark 2.4. The proof of Theorem 2.1 is not constructive. A con­
structive version of this assertion is given in Section A.1, where we elu­
cidate how one can derive the saddle point (x, 0). The equations (2.12), 



2.3 Asymptotically minimax estimation 29 

(2.15) and (2.16) can also be obtained by the Lagrange multiplier method 
for a problem of maximizing a functional 

~ E2ai0i 
~ 02 +E2a2 
k=l k k 

subject to the convex constraint (2.8). 

2.3 Asymptotically minimax estimation 

In this section we investigate the asymptotic behaviour of the minimax 
risk with respect to all possible estimators. 

We define the minimax risk: 

rE = rE(8) = iJ!f supE0IIB - 011 2, 
0 0E0 

where 0 is an arbitrary estimator based on Y = (Y1 , Y2 , ... ). 

(2.23) 

In the proofs of lower bounds we use the van Trees inequality (see 
van Trees (1968), p. 72). Now we describe the version of this inequality 
which we use below. Let dP0(Y), y = (Yi, Y2, ... ), denote the distribution 
of the vector of observations Y = (Yi, Y2, ... ) in (2.5) and <p(Yk, 0k) be 
the marginal (Gaussian) density of Yk. Assume that a prior distribution 
dA(0), 0 = (01,02, ... ), is defined, according to which the 0k are inde­
pendent random variables, with corresponding densities vk(x). Let, for 
all k, vk(x) be absolutely continuous, with finite Fisher information 

Assume also that vk ( x) is positive inside a bounded interval of the real 
line and zero outside it. 

We write E for the expectation with respect to the joint distribution 
of Y and 0. Then, according to the van Trees inequality (cf. Gill and 
Levit (1995) and Golubev and Levit (19966)), the Bayes risk E(0k-0k) 2 

admits a lower bound: 

(2.24) 

where h = c 2a;;2 is the Fisher information about 0k contained in the 

observation Yk and 0k = 0k(Y). 
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Since our setup here is slightly different from those of Theorem A.1, 
Gill and Levit (1995) and Golubev and Levit (1996b), below we sketch 
a short proof of (2.24). Let 

Denote 

B 

A 

a 
80k log (cp(Yk, 0k)vk(0k)) , 

(h -0k. 

y(k) (Y1, · · ·, Yk-l, Yk+l, · · .) , 

0(k) (01, ... , 0k-l, 0k+l, · · .) 

and let dP?\y(k)) and dA(kl(0(k)) respectively be their distributions. 
Use the Cauchy-Schwarz inequality EA2 ~ (EAB) 2 /EB2 . One can 

assume, without loss of generality, that EA2 < oo. Our assumptions 
permit integration by parts: 

J 0k (cp(yk, 0k)vk(0k))' d0k = 0k'P(Yk, 0k)vk(00 - 0k'P(Yk, 0k)vk(0k) 

-J cp(yk, 0k)vk(0k) d0k 

-J cp(yk, 0k)vk(0k) d0k, 

where 0k and 0i are the right and left endpoints of the support of vk, 
respectively. Moreover, 

Therefore, interchanging the order of integration in the following integral 
yields 

EAB I A a 
(0k - 0k) 80k log (cp(yk, 0k)vk(0k)) dPo(y) dA(0) 

J ({h - 0k) ( cp(yk, 0k)vk (0k) )' dyk d0kdP?) (y(k)) dA (k) (0(k)) 

-I 0k (cp(yk, 0k)vk(0k))' d0k dykdP?\y(k)) dA (k) (0(k)) 

J dP0 (y) dA(0) = l. 
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It remains to note that EB2 = Ik + I(vk)-
The next theorem describes the lower bound for the minimax risk. 

The proof of this and the following results of this section will be given 
in the last section of this chapter. 

Theorem 2.2. Let (mk, k = 1, 2, ... ), mk = mk(E), be a nonnegative 
sequence satisfying the condition 

oo ( . oo ) 1/2 

~aimi + /3E (log,;1) ~aimi :SQ, 

for some positive functions TE and /3E such that 

lim/3E = 00, 
E-+0 

(2.25) 

Then the following asymptotic lower bound holds: for any positive fixed 
constant a, 

oo E2a2m2 
rE ~ L 2 k / 2 (1 + o(l)) + 0 (,~) , 

k=l mk + E ak 
E-t 0, (2.26) 

where the minimax risk rE is defined by (2.23). 

To derive a good lower bound, one should, in principle, maximize 
the functional appearing in (2.26) under the restriction (2.25). One can 
show that, under a rather mild condition, this problem is asymptoti­
cally equivalent to the maximization problem (2.17) which has already 
been solved by Theorem 2.1. This implies, in particular, the asymptotic 
equivalence of the minimax risk and the minimax linear risk. However, 
this does not give the second order behaviour of the minimax risk since 
it is not specified how o(l) ➔ 0 as E ➔ 0 (see Remark 2.11). The fol­
lowing theorem is a version of the previous one, refined in the sense of 
the second order behaviour of the minimax risk. 

Theorem 2.3. Let cE and N = NE be defined by (2.12) and (2.21). If 
condition 

holds, then 

rE = E2 t ak - E2 (cE t akak) (1 + o(l)), 
k=l k=l 



32 Chapter 2. Minimax filtering over ellipsoids 

where the minimax risk rE is defined by (2.23). 

The next theorem, although looking quite general, provides exact 
asymptotics of the minimax risk for a more restricted class of ellip­
soids. In particular, it is convenient in applications where the sequence 
(ak, k = l, 2, ... ) is increasing faster than km for any m > 0. Since 
in such cases the limiting behaviour of the minimax linear risk dE typi­
cally does not depend on Q (cf. Examples 2.4-2.5 in the next section), 
this theorem also provides the exact asymptotics of the minimax risk r E. 

In the context of curve estimation this corresponds to estimating "very 
smooth" functions, with rapidly decreasing Fourier coefficients ( cf. Gol­
ubev and Levit (1996b).) 

Theorem 2.4. Let dE and rE be defined by {2.13} and (2.23} respec­
tively. Then 

(2.27) 

Corollary 2.1. Let CE and N be defined by (2.12} and (2.21}. rt 
00 

Lai= T < oo 
k=l 

and 

cE t aiak = o ( f ai) , 
k=l k=N+l 

E-+ 0, 

then the following asymptotic expansion of the minimax risk holds: 

Remark 2.5. There are two terms in the asymptotic expression of the 
minimax risk in Theorem 2.3. They can be either of the same order or 
the second term can be of smaller order than the first. In the latter case 
Theorem 2.3 provides at least two terms of the asymptotic expansion 
of the minimax risk (cf. Example 2.1 below). As is easy to see, in 
Corollary 2.1 the asymptotic expansion of the minimax risk always gives 
both the first and the second order terms. 

Remark 2.6. Note that the lower and upper bounds for the minimax 
risk in Theorem 2.4 are nonasymptotic. 
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Remark 2. 7. If the series of the coloured noise variances converges, as 
in Corollary 2.1, then the first order term of the minimax risk is trivially 
E2 I:%°=1 a~, i.e. it is the same as in the finite dimensional counterparts. 
In such cases, which might be called "subparametric", only the second 
order term of the minimax risk reveals the true nonparametric nature 
of the problem. 

Remark 2.8. Recall that the sequence (ak, k = 1, 2, ... ) was assumed 
positive. The results remain valid under the weaker assumption: ak 2: 0, 
k = 1, 2, .... 

2.4 Examples 

The results presented below illustrate the assertions in the previous sec­
tion. Denote I:~1 a~ = T when this series is convergent. 

Example 2.1. Consider model (2.5), (2.8) with ak = ka, a> 0, a~= 

k8- 1 , a+ 8 > 0. In this case it is easy to prove that cENa ➔ 1 as E ➔ 0. 
Using this and (2.12), one can calculate 

1 

N = ((2a + 8)(a + 8)Q/(m2 )) 20 H (1 + o(l)), 

CE= (aE2 /((2a + 8)(a + 8)Q)) 2"'~0 (1 + o(l)). 

Here we make use of the asymptotic .relation 

M MK,+l L m,,, = (K; + l) (1 + o(l)) as M ➔ oo, K; > -1. 
m=l 

(2.28) 

Now one can easily verify the condition of Theorem 2.3. By applying 
Theorem 2.3, we derive the asymptotics of the minimax risk. 

• Case 8 > 0. The asymptotics (2.28) and relations for N and cE 

yield ( cf. Pinsker ( 1980) for 8 = 1 corresponding to a periodic 
Sobolev function space) 

In this case Theorem 2.3 gives only the first-order term of the 
minimax risk. Note also that although ( at k = 1, 2, ... ) can be 
increasing to infinity, the minimax risk still converges to zero. 
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• Case 8 = 0. By using (2.28) and the asymptotics 

M 

L k- 1 = logM +Ce+ o(l) as M ➔ oo, (2.29) 
k=l 

one obtains 

rf = a-11:2 log1:-1 + 1:2 ( Ce + (2a)- 1 log(2aQ) - a-1 )(1 + o(l)), 

where Ce = 0.5772156 ... is the Euler constant (see, for example, 
Gradshtein and Ryzhik (1980), equation 6.360.2). 

• Case 8 < 0. Using the asymptotic relation 

00 Ml-r;, 

~ m-r;, = --(1 + o(l)) as M ➔ oo, ii> 1, 
LJ t;,-l 

m=M 

we calculate 
2 4a l 8 2a 

rf = E T + 1:2a+8 8- (Q(2a + 8)) 2a+8 (a/(a + 8)) 2a+8 (1 + o(l)). 

Example 2.2. ak = k 0 , a > 0, c,i = k-(l+a). In this case the condition 
of Theorem 2.3 is again satisfied, and 

N (Qa1:-2 / log1:-2 ) 11°(1 + o(l)), 

cf 1:2 log1:-2 (Qa)-1 (1 + o(l)). 

Then by Theorem 2.3, 

rf = E2T - 1:4 (log1:-2) 2a-2Q-1(1 + o(l)). 

Example 2.3. ak = k0 , a > 0, c,i = k-(lH), 8 > a. One calculates 

N = ((8 - a)Q1:-2 ) 110 (1 + o(l)), 

cf = 1:2 ((8 - a)Q)-1 (1 + o(l)). 

With these asymptotic relations, one can show that 

By applying Theorem 2.4, we can obtain only the rate of the second­
order term of the minimax risk: 

where 
lim inf ¢f 2 1 , 

f➔O 
lim sup ¢f ~ 7r2 . 

f➔O 
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Example 2.4. ak = ef3k, /3 > 0, ai = k8- 1. From (2.21) one can see 
that 

(2.30) 

Using (2.12), (2.30) and the asymptotics 

gives 
N = 13-1 1ogE-1 + (2/3)- 1 (1 - 8) loglogE- 1 + 0(1). 

By the last two relations and (2.30), we have 

NO-le ef3(N+l) 

e/- 1 (1 + o(l)) 

< 
N8-lef3 
ef3 _ 1 (1 + o(l)) 

0 ((logE-1)8-1). 

We apply Theorem 2.4 to this example. 

• Case 8 > 1. Since, according to Gradshtein and Ryzhik (1980), 
equation 0.121, 

we calculate 

No No-1 
T + - 2-(1 + o(l)) 

(logc1 )8 (1 - 8)(logc1 )8-1 1oglogc1 

8/38 + 2130 (1 + o(l))' 

and obtain that 
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• Case 8 = 1. In this case we have that Ce r:f=l azak = 0(1), 

N 

L az = N = 13-1 1og€-l + 0(1)' 
k=l 

and therefore, 

• Case O < 8 < 1. One can show that 

where 

is the Riemann zeta function (Gradshtein and Ryzhik (1980), equa­
tion 7.422.2). Using these asymptotics, we obtain 

Consequently, 

• Case 8 = 0. Since, by (2.29), 

N 

LO-Z = logN +Ce+ o(l), 
k=l 

we get 
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• Case 8 < 0. In this case one can verify that 

Therefore, by Corollary 2.1 we have 

Example 2.5. ak = ef3kr, f3 > 0, 0 < r < l, ai = k8- 1 . With the 
asymptotics 

M L m1,,e/3mr = Cref3Mr M1,,+(l-r)+(l + o(l)) as M-+ oo, 
m=l 

where 

one can obtain 

By definition of N, we evaluate 

< CrND-l+(l-r)+ (1 + o(l)) 

0 ( (logE-1) (a-l+(l-r)+)/r) (1 + o(l)). 

Now the asymptotics of the minimax risk may be obtained in the same 
way as in Example 2.4. 

• Case 8 > 0. 

• Case 8 = 0. 
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• Case fi < 0. 

Example 2.6. ak = k°', ai = ef3kr, a, /3, r > 0. Let us establish first 
an upper bound for the minimax risk r€(8) (see (2.23)). Such a bound 
is provided by the minimax linear risk which, according to Theorem 2.1, 
equals dE (see (2.12)-(2.13)). Using the asymptotic expansions (as M--+ 
oo): for 0 < r < l 

M L m°'ef3mr 

m=l 
M 

L m°'e/3m 
m=l 
M L m°'ef3mr 

m=l 

M°'e/3Mr -- + ---c--M1- 2r(l + o(l)) ; (
Ml-r r - l - a ) 

f3r (f3r) 2 

°' /3M ( e/3 ae/3 _1 ) . 
M e e/3 _ 1 - (e/3 - l) 2 M (1 +o(l)) , 

one can solve (2.12)-(2.13), thus obtaining 

CE= (13-1 logE-2ra/r (1 + o(l)), 

dE = Qc;(l + o(l)) = Q (13- 1 1ogE-2r 2°'/r (1 + o(l)). 

The last formula exhibits a distinctive feature of this example, as 
compared to all previous ones. Indeed, analyzing the proof of Theo­
rem 2.1 (cf. inequality (2.19)), one realizes that the term Qc~, contribut­
ing to dE, arises solely as the squared bias term of the linear minimax 
estimator. Thus, only the bias of the estimator contributes to its maxi­
mal risk, up to the first order. 

To show that dE coincides asymptotically with the minimax risk 
r€(8), we choose a prior distribution A on 8 and use the obvious in­
equality r€(8) ~ RE(A), where RE(A) denotes the Bayes risk. Let A be 
a distribution on 8 such that 

with probabilities 1/2 

and 
i =/= N, A-almost surely, 
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where p = (Q/aN) 112 and N = [c;°']. Clearly A(8) = 1, 

p2 = Qa1,/ = Qc~(l + o(l)) = dE(l + o(l)) 

and crJ.r = eflW = c2eo(1). 
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Due to sufficiency considerations, the Bayes risk RE(A) in estimating 
0 is equal to the Bayes risk in estimating 0N, based on the observation 
Y N only. Since 

2 
l. p 0 1m = , 
E➔O VarYN 

it follows (see Ibragimov and Hasminskii (1984c), proof of Lemma 3.2) 
that 

Thus 
rE(e) = Q u,-1 log E-2r 2a/r (1 + o(l) ). 

Remark 2.9. Note that in most cases in Examples 2.4 and 2.5 both 
the first and the second order terms of the minimax risk do not depend 
on the "size" Q of the ellipsoid 8(Q). 

Remark 2.10. Let ak = ak(/3), k = l, 2, ... , be as in Example 2.4 or 
Example 2.5. Define the correspondent hyperrectangle in 12-space: 

The assertions of Examples 2.4 and 2.5 concerning the first order be­
haviour ( also the second order behaviour for the cases 8 = 0 and 8 < 0) 
of the minimax risk remain valid with e = efJ replaced by 1-ifJ· This is 
evident from the following easily verified relation: 

for any Q > 0, /3 > 0, 0 < µ < /3 there exists Q1 > 0 such that 

2.5 Proofs 

Proof of Theorem 2.2. Fix arbitrary 81 and 82 such that O < 81 < 1, 
0 < 82 < 1. Take a positive number R = R( 81, 82) and a probability 
density v(x) = v(x, 81, 82) such that v(x) has support (-R, R), is posi­
tive and continuously differentiable inside this interval, has finite Fisher 
information J(v) and satisfies the following properties: 

EX2 = 1- 81 
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and 
I(v) = fR (v'(x))2 dx ~ 1 + 82, 

1-R v(x) 

where X is a random variable with probability density v(x). Note that 
under the imposed conditions on density v(x) the relation between EX2 

and I(v) is not arbitrary. Indeed, integrating by parts, 

and therefore the inequality 

2 1 
EX 2:: I(v) (2.31) 

should hold, which leads to the following relation between 81 and 82: 

81 
82 2:: 1 - 81 . 

For example, the choice 81 == 8/2 and 82 = 8, with 0 < 8 < 1, will do. 
The inequality (2.31) becomes equality for the standard normal density. 
Thus, for small 81, 82 we should take R so big that we can find a density 
v with support ( - R, R) close enough to the standard normal density 
in order to provide the properties above. Suppose from now on that 
R = R(81, 82) is the smallest possible value for which these properties 
are fulfilled. 

Let mk, k = 1, 2, ... , be sequence satisfying (2.25). Without loss of 
generality we assume that mk > 0, k = 1, 2, .... Indeed, the zero mk 's 
give zero contribution to the lower bound (2.26). Introduce 

vk(x) = vk(x, 81, 82) = m,;1v(m,;1x), k = 1, 2, .... 

These are probability densities with supports ( -Rmk, mkR) respectively 
and if Xk = mkX then Xk is a random variable with density vk(x). We 
have 

m~(l - 81) 

= m,;2 I(v) ~ m,;2(1 + 82). 

(2.32) 

(2.33) 
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Let 0 be distributed according to a prior measure µ such that 0k, k = 
1, 2, ... , are distributed independently with the densities vk(x), k = 
1, 2, ... , respectively. Let E denote the expectation with respect to the 
joint distribution of Y1, Y2, ... and 01, 02, .... 

Since 0 is closed and convex, r€ = inf0Ee sup0Ee E0IIB - 011 2. We 
bound the minimax risk from below as follows: 

r€ = inf supE0ll0 - 011 2 
0Ee 0Ee 

> ir~f { f E0(0k - 0k) 2dµ(0) 
0 le k=l 

. inf { f E0(0k - 0k) 2dµ(0) 
0Esuppµ le k=l 

00 00 

> ir!(E E(0k - 0k) 2 - 4R2µ(0c) L mr 
O k=l k=l 

(2.34) 

Due to the assumptions on probability density vk(x), we can apply 
the van Trees inequality (2.24) to the Bayes risk E(Ok - 0k)2. Thus, by 
(2.24) and (2.33), we obtain 

. f~ E(0' - 0 )2 > ~ E20-imk(l + 82)-1 
1~ ~ k k _ ~ 2 ( ) 1 2 2 . (2.35) 
0 k=l k=l mk 1 +82 - +E O"k 

Recall that l0kl :::; Rmk and E0i = (1 - 81)mk, k = 1, 2, .... There­
fore, we have 

lak(0k - E0i)I :::; aimklR2 - 1 + 811-

Using this relation, the condition (2.25) and the Hoeffding's inequality 
(see Pollard (1984)), we evaluate µ(0c): 

µ(0°) - µ {t,aM > Q} 

µ, {t, a/(0/ - E0/) > Q - t, a/E0/} 

{ (Q - (1 - 81) I:%°=1 aimk) 2 } 
< exp - ( 2 )2 "°'oo 4 4 2 R - 1 + 81 wk=l akmk 
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(2.36) 

where T = 1/ (2(R2 - 1 + 81)2). Now let 81 = 81 ( t:), 82 = 82(t:) depend on 
E and converge to zero as E-+ 0 in such a way (sufficiently slowly) that 
R = Re = R( 81 ( E), 82 ( E)) and T = Tc become functions of E satisfying 

R2,..,p1-+ 0 
€ IE 

for some C1 > 0 and 

as E-+ 0. 
It follows from (2.34), (2.35) and (2.36) that 

00 2 2 2(1 s: ( ))-1 00 ~ E CTkmk + u2 E _ 4R2 (3,r, ~ 2 
L.,; 2(1 s:())-1 2 2 clc L.,;mk 
k=l mk + u2 E + E CT k k=l 

□ 

Remark 2.11. The most detailed analysis of the proof of the theorem 
above shows that in fact the following nonasymtotic assertion can be 
proved. 

Let for any a and b, 0 < a < 0, 0 < b < 1, b 2'. a(l - a)-1 , 

R = R( a, b) denote the same function as in the proof of the theorem. 
Let 8' = ( 8~, 8;, ... ) and 8" = ( 8t, 8~, ... ) be any sequences such that O < 
8~ < 0, 0 < 8? < 1, 8? 2'. 8H1-8n-1, i = 1,2, .... Let (mk, k = 1,2, ... ), 
mk = mk(t:), be a nonnegative sequence satisfying the condition 

00 

L ak(l - 8~)mk 
k=l 
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for some positive function 'YE· Then the following lower bound holds: 

Proof of Theorem 2.3. By Theorem 2.1, we have the following upper 
bound for the minimax risk: 

N N 

(2.37) 

Introduce 

where cE and N = NE are defined by (2.12) and (2.21). Note that aE > 0 
and limE➔O aE = 0 because of the condition of the theorem. Take a 
positive function fJE such that limE➔O fJE = oo and aEfJ!12 -+ 0 as E -+ O; 
for example, we can choose fJE = a;1. 

Take now the sequence 

k = 1,2, ... , 

with 
n = Q-la {Jl/2 
•tE E E l 

and ei defined by (2.16). We now show that the equation (2.25) is 
satisfied for these mk's with 'YE= E. First, by (2.12), note that 

oo N 

L aiei = E2c;1 L aiak(l - cEak) = Q 
k=l k=l 

and 
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Therefore, 

1 ~ 2~2 = --~ ak0k(l + rJE) = Q. 
1 + 'f/E k=l 

Apply now the same reasoning as in Theorem 2.2 to obtain, for suffi­
ciently small E and any fixed a> 0, 

~ E2almf(l + 82(E))-1 4R2 c +n ~ 2 
r > ~ --,,...---"''---'"------""'" - E i ~ mk 

n - k=l mf (1 + 82(E))-l + €2al E k=l ' 
(2.38) 

with C1 > 0 such that R~Ec1 --+ 0 as E--+ 0. Denote 

Substituting the chosen sequence (mt k = 1, 2, ... ), we calculate 

2 00 29~2 
€ ~ ak k 0( °') 

(1 +PE)~ Ol(l + PE)-1 + E2al + E 

N N 

E2 I:d- E2cE I:alak 
k=l k=l 

2 ~ alak(l - cEak) O( °') 
- E CEPE ~ l + E • 

k=l + P£CEak 

From (2.12) it follows that cE can not be of smaller order than E2• Picking 
now some a > 4 and recalling that PE > 0, PE --+ 0 as E --+ 0, and 
0 :::; cEak :::; 1 fork= 1, 2, ... , N (see (2.22)), we conclude that the last 
lower bound, together with upper bound (2.37), proves the theorem. □ 

Remark 2.12. The statement of the theorem remains valid under the 
following weaker condition: there exist a positive constant a0 and posi­
tive function 'YE such that 

€--+ 0, 
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and 

E-+ 0, 

where cE and N = NE are defined by (2.12) and (2.21). Indeed, let 
RE= R(81(E), 82(t:)) be chosen in such a way that R;t:01 -+ 0 as E-+ 0 for 
some C1 > 0. Then substituting the chosen sequence (mi, k = 1, 2, ... ) 
in (2.38), with 'Yfi+a instead of ECi+a, leads to 

Proof of Theorem 2.4- Let mk, k = 1, 2, ... be some sequence of positive 
numbers such that 

00 

I:aimi :SQ, (2.39) 
k=l 

i.e. m = (mk, k = 1,2, ... ) E 0. Introduce 

where vo(x) = I{lxl :S l}cos2(Kx/2). These are probability densities 
with supports [-mk, mk] respectively. It is easy to calculate the Fisher 
information of the distribution defined by the density vk(x): 

(2.40) 
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where Evk denotes expectation with respect to the density vk. 

We select a prior measure dµ(0) such that 0k, k = l, 2, ... , are dis­
tributed independently with densities vk(x), k = l, 2, ... , respectively. 
Since (2.39) provides that suppµ ~ 8, we proceed estimating the mini­
max risk (2.23) from below as follows: 

(2.41) 

In view of (2.40), the inequality (2.24) yields 

A 2 1 
E(0k - 0k) :2:: 2 _ 2 _ 2 _ 2 . 

1f mk +E erk 

From this and (2.41), we have that for any m from the ellipsoid 8 the 
minimax risk r E satisfies 

oo er2m2 / 1r2 
r E > E2 '\' k k . 

- ~ m2/1r2 + E2er2 
k=l k k 

(2.42) 

Using Lemma A.l, one obtains the following lower bound: 

2 ~ erimv1r2 
sup E ~ 2; 2 2 2 

mE0(Q) k=l mk 1f + E erk 
oo 2 2 

2 '\' erkmk 2 sup E ~ 2 2 2 = dE(8(Q/1r )). 
mE0(Q/n:2) k=l mk + E erk 

Combining the last relation with Theorem 2.1 completes the proof. □ 

Proof of Corollary 2.1. The left hand side of the inequality (2.42) does 
not depend on m. Therefore, we can take any m E 8. Now we make use 
of the vector ((h, k = 1,2, ... ) defined by (2.16). Relation (2.20) pro­
vides that 0 E 8. Substituting (h in (2.42), k = l, 2, ... , one calculates 

oo er2 0 2 I 1r2 
E2 '\' k k 

~ 02j1f2 + E2er2 
k=l k k 
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Using now this and (2.22), we obtain that 

Combining the last relation with the condition of the corollary and the 
upper bound (2.37) completes the proof. □ 

2.6 Bibliographic remarks 

Pinsker (1980) initiated the study of minimax estimation procedures for 
the filtration problem in Gaussian noise. In Pinsker (1980) it was shown 
that, for ellipsoids meeting certain regularity conditions, the quadratic 
minimax risk over the ellipsoids 8 coincides asymptotically with the 
minimax risk within the class of linear estimators. A procedure for 
obtaining the minimax linear estimators and evaluating their risks was 
given. This fact allowed the first description of exact asymptotics of the 
minimax risk in nonparametric curve estimation problems. 

The observation model (2.5) arises as the limiting experiment in 
many other estimation problems. This model has been actively pursued 
recently, see Donoho and Johnstone (1994b), Donoho et al. (1990), 
Golubev and Levit (1996b), Golubev and Nussbaum (1990) and further 
references therein. These papers demonstrate amply the importance of 
asymptotic minimax estimators and their practical relevance. 

The results of this chapter are also presented in Belitser and Levit 
(1995) and partly in Belitser and Levit (1994). 
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Chapter 3 

Minimax nonparametric 
• regression 

In this chapter we are concerned with the problem of optimal estima­
tion of a nonparametric regression function. Till recently, the notion of 
asymptotic optimality of an estimator was associated with the optimal 
convergence rate of the risk of this estimator. However, comparing es­
timators just on the basis of the convergence rates of their risks does 
not make it possible to distinguish among estimators optimal in that 
sense. Also from a more practical point of view, such an approach does 
not give a recipe for choosing parameters of the estimator involved: the 
bandwidth for the kernel method, the number of terms for the orthogo­
nal series method, etc. Thus two estimators, optimal in the sense of the 
rate of convergence, can perform in actual applications quite differently. 
The minimax approach becomes more useful if the constants involved 
in the lower and upper bounds are found, especially when these con­
stants happen to coincide. Presently, the problem of finding the exact 
constants is of increasing interest. 

In this chapter we establish the exact asymptotics of the minimax 
risk and propose a kernel type estimator which, under some regularity 
conditions, attains this asymptotics, i.e. it is shown to be asymptotically 
minimax. We illustrate the main results by two examples and discuss 
the consistency questions. 

49 
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3.1 The model 

Consider the problem of estimating a nonparametric regression function 
J(x), x E [O, 1] on the basis of the observations 

(3.1) 

where Ei 's are independent Gaussian random variables with zero mean 
and variance a 2. 

The design is assumed to be equidistant: tin = i/n, i = 1, 2, ... , n. 
For simplicity, the dependence of some variables on subscript n will 
frequently be dropped from notation. 

Let L2 = L2([0, 1]) be the Hilbert space of square-integrable func­
tions on [O, 1] and { <Pk(x), k = l, 2, ... } be its orthonormal trigonometric 
basis, i.e. 

<Pj(x) = v'2sin(21rkx), j = 2k { 
1, j = 1 

v'2cos(21rkx), j = 2k + 1. 

We assume that J(x) E L2[0, l]. Hence it can be represented as follows: 

00 

J(x) = L 0k¢k(x), 
k=l 

1 

where 0k = J J(x)¢k(x)dx. 
0 

Here convergence is meant in L2-sense. 
Let ( ak, k = l, 2, ... ) be a nonnegative numerical sequence. Now we 

define the nonparametric class: 

8 = 8(Q) = {1(-) E L2: f ak0k ~ Q} . (3.2) 
k=l 

We are interested in the asymptotic behaviour of the minimax risk 

. ' 2 
rn = rn(0) = n_if supEtllfn - fll , 

fn e 

where II · II denotes the usual norm in L2([0, l]). Here infimum is taken 
over all estimators and supremum is taken over all regression curves from 
class 8. We recall that an estimator f n is called asymptotically minimax 
if 

' def ' 2 
RnUn) = supEtllfn - JII = rn(8)(1 + o(l)) as n-+ oo. 

e 
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All asymptotic equations in this chapter refer to, unless otherwise spec­
ified, n ➔ oo. 

Our approach is based essentially on "equivalence" of the initial 
nonparametric model to a sequence of linear models of increasing di­
mensions. Here by equivalence of two models we mean that the corre­
sponding minimax risks coincide asymptotically. Namely, with the class 
of regression functions f (x) under consideration, our problem of esti­
mating f ( x) is equivalent to that of estimating an infinite-dimensional 
parameter (0i, i = 1, 2, ... ) based on observations: 

~ 1/2 zi = ei + ei + n- ei , i = 1, 2, ... , n, 

and resembles the estimation problem considered in the previous chap­
ter. Here e1's are Gaussian random variables, Eei = 0, E[e1ek] = a 281k 
(8kl = 1 if k =land 8kl = 0 if k-/- l), the 0i's are "nuisance" parameters, 
which are negligibly small provided f (x) belongs to appropriate classes 
of smooth functions. 

3.2 Minimax consistency 

In this section we employ a different notion of consistency than usually in 
the literature - uniform mean square consistency. We say that estimator 
fn is uniformly mean square consistent (slightly abusing terminology, we 
will call it just consistent) if 

supE1llfn - !11 2 ➔ 0 as n ➔ oo. 
e 

Suppose for the moment that instead of our original model we have 
a little more general one: 

(i) E/s are not necessarily Gaussian, but independent random vari­
ables with zero mean, variance a 2 and finite Fisher information 
IE; 

(ii) fix some orthonormal basis {¢k(x), k = 1, 2, ... } in L2 ([0, 1]) such 
that 

k = 1,2, ... ; 

(iii) the design is not necessarily equidistant, but "uniform" enough to 
satisfy 

lim max 1.6..tknl = 0, 
n---+oo l<k<n 

(3.3) 
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Then the following theorem gives necessary and sufficient conditions 
for the minimax risk to converge to zero. 

Theorem 3.1. Let (i), (ii), (iii) hold. Then if 

liminfrn(8)-+ 0, 
n---+oo 

then ak -+ oo as k-+ oo. Conversely, if ak -+ oo as k -+ oo, then 

liminfrn(8')-+ 0, 
n---+oo 

where 
e' = e'(Q, P) = e(Q) n {!(·) : 11111 2 s P}. 

Proof. The proof of the theorem includes two parts. First we prove that 
if the sequence (ak, k = 1, 2, ... ), does not converge to infinity, then 

liminfrn(8) > 0. 
n---+oo 

Introduce 
liminf ak = A, 

k---+oo 

which is finite since ak f+ oo as k -+ oo. Then there exists a subsequence 
(akz, l = 1, 2, ... ) such that 

For some 0 < E < A denote 

lim ak1 =A. 
l---+oo 

Let N be an N-element subset of A. 
Let m = ( m 1, m2, ... ) be a set of nonnegative numbers such that 

m E 8, mk > 0, k EN and mk = 0, k ft N. Introduce 

where vo(x) is a probability density on the interval [-1, 1] with a finite 
Fisher information 
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such that 
vo(-1) = vo(l) = 0 

and vo(x) is continuously differentiable for !xi < 1. The functions vk(x) 
are probability densities with supports [-mk, mk] respectively. It is 
easy to calculate the Fisher information of the distribution defined by 
the density vk(x): 

I(1/k) = Iom-,;2 . 

It is known that the minimum of J21 (q'(t)) 2q-1 (t)dt over all dif­
ferentiable densities q(t) with support [-1, 1] is attained by function 
q(t) = cos2 (1rt/2) (see Borovkov (1984)). Therefore, one always has 
Io 2 1r2 . 

Define the measureµ on h such that 0k = 0, for k (/. N and 0k, for 
k EN, are distributed independently with densities vk(x) respectively. 
Since by assumption m E 8, the measureµ has suppµ ~ 8. We estimate 
the minimax risk by the Parseval identity from below as follows: 

rn 2 i~f { f E1(0k - 0k)2 dµ(0) 
0 le k=l 

00 

~ A 2 ~ A 2 
i~f ~ E(0k - 0k) 2 i~f ~ E(0k - 0k) . 
e k=l e kEN 

(3.4) 

Here we write E for the expectation with respect to the joint distribution 
• A 2 

of Y1, ... , Yn and 01, 02, .... To estimate E(0k - 0k) , k EN, we apply 
the van Trees inequality (see Theorem A.l): 

A 2 1 
E(0k - 0k) 2 EI(0k) + I(vk) ' kEN, 

where I(0k) is the Fisher information about parameter 0k contained in 
observations Y1, ... , Yn- It is easy to evaluate 

n 

It L 1>1(tin) :::; M 2 Itn. 
i=l 

Recalling that I(vk) = Iom-,;2 , k EN, we obtain 

E(0A - 0 )2 > 1 k N 
k k - l -2 M2J ' E . omk + tn 
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We make use of the last inequality and (3.4): 

1 
rn 2:: L -2 2 · 

, "=.N Iomk + M !En 

Now we choose m = (m1, m2, ... ) E 8 such that 

- { Ql/2 N-1/2(A + E)-1, l EN 
mz - C, l (/_ N. 

(3.5) 

It is easy to verify that m E 8. So, substituting this m in (3.5) results 
m 

The number N can be chosen arbitrarily large and E arbitrarily small. 
Therefore we finally get 

Q 
rn 2:: IoA2 ' 

which proves the first part of the theorem. 

Now we prove the second part of the theorem. Let I { S} denote the 
indicator of set S. Define the following estimator 

N 

fn(x) = fn(x, N) = L 0k¢k(x), 
k=l 

where 

n 

0k = L ¢k(ti)~!J.ti, 
i=l 

i.e. 0k is the projection of 0k on [-P, P]. 
Then, by the Parseval equality and (1.2), 

k=l k=N+l 
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Let us bound, uniformly over 8', each term from above in the right hand 
side of the last inequality. 

First, since ak ➔ oo as k ➔ oo, for any fixed E > 0 one can find N 
large enough to provide the following estimate for the third term: 

00 

sup L 0~ SE. 
fE 8 ' k=N+l 

Next, we obviously have that, as n ➔ 0, 

Var et < a 2 ~ ¢~(ti)(b.tz)2 S CtJ2 max lb.tzl I </>~(x)dx 
~ 1 <l<n 
i=l - -

< Ca2 max lb.tzl ➔ 0. 
l<l<n 

N A 

So, we bound the first term: Lk=l Var Bi S E for sufficiently large n. 
N A 

To evaluate the second term, we note first that sup f E8' Lk=l (E 10l-
0k)2 is finite because both 1011 S P and l0kl S P. Therefore, for any 
E > 0 there exists f E E 8' such that 

N N 

sup L(EJ0k - 0k(f))2 S L(EJe0k - 0k(JE)) 2 + E 

fE 8 ' k=l k=l 

where 0k(JE) = J JE(x)¢k(x)dx. The condition that max1<l<n lb.tzl ➔ 0 
as n ➔ oo implies that the integral sum Lf=1 ¢k(ti)JE(ti)&ti ➔ 0k(JE) 
as n ➔ oo. So, for sufficiently large n we have that 

Thus, for sufficiently large n, we obtain that 

The last relation guarantees that the estimator fn is consistent. □ 
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Remark 3.1. As one can see from the proof of this theorem, the con­
dition 

lim inf ak > 0 
k➔oo 

is necessary for the minimax risk rn to be finite. 

Remark 3.2. Suppose now that we study the problem of the minimax 
estimation over some set S ~ L2. Then, as the proof of the theorem 
above implies, the condition that S has an empty interior is necessary 
for a consistent (over the set S) estimator to exist. In fact, even stronger 
result is true. Let S be isomorphic representation of S in l2, i.e. 

S = {0(1): 0(1) = (01(1),02(!), ... ), f ES}. 

If S = T x B, where Bis infinite dimensional and has nonempty interior 
(in l2-topology), then there are no uniformly mean square consistent 
estimators. 

Remark 3.3. The first assertion of the theorem also holds with 8' in­
stead of 8. Indeed, introduce 

0" - 0"(Q,P) -{!(-) E £2, ~bM '.': min{Q,P}}, 

where bk's are all positive such that b~ = max{at l}. Then if ak f+ oo 
ask ➔ oo, the sequence (bk, k = I, 2 ... ) does not converge to infinity 
either. Further, since 8" ~ 8', applying the theorem to rn(8"), we 
obtain 

3.3 Main results 

As Theorem 3.1 shows, the case ak f+ oo as k ➔ oo is not interesting. 
Therefore we suppose from this point that the sequence (ak, k = I, 2, ... ) 
converges to infinity as k ➔ oo. Furthermore, since only finitely many 
zero ak 's are possible in this case, we suppose without loss of generality 
that this sequence is strictly positive. Indeed, all results below remain 
valid under the weaker condition ak 2:: 0, k = I, 2, ... , with minor mod­
ifications of some proofs. 
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From now on we consider the model we started with. Before we 
formulate the results, let us introduce some notations. Since ak ➔ oo as 
k ➔ oo, the equation 

00 

L o-2ak(l - Cnak)+ = cnQn 
k=I 

(3.6) 

has a unique solution Cn = Cn ( o-2 , 0) > 0. Here x+ denotes the nonneg­
ative part of x. Denote 

I In(o-2 ,0) = {k: 0 :S Cnak < 1}, 

N = Nn(o-2, 0) = card I, 
00 

dn(o-2, 0) = n-1 L o-2 (1 - Cnak)+­
k=l 

(3.7) 

(3.8) 

(3.9) 

Note that in fact I is the set of indices k for which corresponding terms 
in sum (3.6) are nonzero. 

Remark 3.4. Suppose that the sequence (ak, k = 1, 2, ... ) is nonde-
creasing. Then from (3.6) it is easy to see that I= {1, 2, ... , N} and 

I:f=1 ak C - --~~--,--=----
n - Qno--2 + I:f=l ak ' 

where N is the number of nonzero terms in the sum (3.6). One can 
verify that 

N max{k: ak :S c;:;- 1} 

max {z : t(akat - ak) :S Qo--2n}. 
k=l 

(3.10) 

Denote next 

(3.11) 

We introduce also two conditions: 

F1 Fi(o-2): for any"(> 0 1Pnh) = o(cn), 

F2 F2(0-2) : Cn L ak = o (N). 
kEI 

Here en, I and N are defined by (3.6)-(3.8). 
The next two theorems give the lower bounds for the minimax risk. 
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Theorem 3.2. If condition F1 or F2 is fulfilled, then 

rn(8) ~ dn(a2 , 8)(1 + o(l)), 

where dn is defined by {3.6), {3.9). 

Theore-n 3.3. For any dlipsoid 8(Q), 

rn ~ dn(a2, 8(Q/rr2)), 

where dn is defined by {3.6), {3.9). 

Remark 3.5. Consider the topology generated by the following norm: 

where the 9k's are Fourier coefficients of g(·) E L2[0, 1]. If we substitute 
any ball S, S ~ e, of radius Q in the definition of rn instead of e, then 
Theorems 3.2 and 3.3 still hold. The proofs are in essence the same. 
Note that the lower bounds do not depend on the center of the ball S. 

Remark 3.6. Although the lower bound in Theorem 3.3 is worse than 
that in Theorem 3.2, it has the advantage of being nonasymptotic. One 
can apply this bound to the cases when dn does not depend ·on Q at 
least in the first order term. 

Now we construct the estimator which is going to be asymptotically 
minimax for ellipsoids satisfying certain regularity conditions. Define 

n 

f,:1 (x) = L >.i)k<Pk(x), 
k=l 

where 
n 

n-1 L <Pk(i/n)~, 
i=l 

(3.12) 

(3.13) 

(3.14) 

and Cn is defined by (3.6). We see that the estimator /,:1 (x) is a gener­
alized kernel estimator 

n 

f,:1 (x) = L Kn(x, i/n)~, 
i=l 



3.3 Main results 59 

where the kernel Kn(x, i/n) is given by 

n 

Kn(x, i/n) = n-1 I)l - Cnak)+ <Pk(i/n)cpk(x). (3.15) 
k=l 

We introduce conditions under either of which we derive an upper 
bound for the minimax risk: 

00 

L -2 ( -1) max ak+ln =on , 
l<k<n 

- - l=l 

00 

F4 = F4(a2 ) : L a-;;2 = o(dn), 
k=n 

where dn = dn ( a 2 , 8) is defined by ( 3. 6), ( 3. 9). 

Theorem 3.4. If the condition F3 or F4 is fulfilled, then 

where the estimator J/:1 is defined by {3.12)-(3.14} and dn is defined by 
(3.6}, (3.9). 

Remark 3.7. Suppose the Ek's are independent random variables (not 
necessarily Gaussian), all with zero mean and variance a 2 (the Ek's are, 
for example, identically distributed), then Theorem 3.4 remains un­
changed. If the Ek 's are independent random variables, all with zero 
mean, distribution densities PEk ( x) and finite Fisher information 

then Theorems 3.2 and 3.3 still hold with J; 1 in place of a 2 . Thus, only 
for Gaussian errors do the lower and upper bounds coincide asymptoti­
cally. In the general case the lower bound is apparently asymptotically 
exact and the minimax estimator is likely to be no longer linear ( cf. 
Efromovich (1996) for a related model). 

Remark 3.8. Denote Y =(Yi, ... , Yn)T, E = (q, ... , En)T and 
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We rewrite the model (3.1) in vector form: 

00 

Y = L 0k¢k + E. 

k=l 

Now we multiply this equality by ¢f /n, l = l, 2, ... , n. Then, usmg 
Proposition 3.1 in section 3.5, we get: 

~ 1/2 Z1 = 01 + 01 + n - e1 , l = l, 2, ... ,n, 

where (see proof of Theorem 3.4) 

00 

0n = L 0(2l+l)n, 
l=l 

Zz = ¢fY/n and e1 = n-1/ 2 cpf E, 

i.e. e1, l = l, ... , n, are Gaussian random variables with zero means and 
covariances E[e1ek] = r,2Jlk· The regularity conditions (F1 - .r4) imply 
that, as the proofs of Theorems 3.2 and 3.4 show, the original model 
and the model ( cf. Chapter 2) 

Z{=01+n- 1l2e1, l=l,2, ... ,n, 

are asymptotically equivalent in the sense that the best linear estimators 
and the minimax risks for both models coincide asymptotically. Note 
that 

f ( r,:).~ + (1 - ).k) 20i) 
k=l 

appearing in (3.36) is nothing else than the risk of the linear estimator 

k=l,2, ... ,n. 

We immediately conclude from Theorems 3.2 and 3.4 the following 
result. 

Corollary 3.1. Let either of conditions Fi, F2 and either of conditions 
F 3, .r4 be fulfilled. Then 

rn(8) = dn(r, 2 , 8)(1 + o(l)) 

and the estimator J : 1 is asymptotically minimax. 



3.4 Examples 61 

Consider the problem of robust estimation of the unknown regression 
function l(x) E 8. 

Corollary 3.2. Let either of conditions F1, F2 and either of conditions 
:F3, :F4 be fulfilled. Then 

i1_1f sup sup Et,PJfn - /11 2 = dn(o-2 , 8)(1 + o(l)), 
fn 0 p.EII 

where IT is the set of all distributions of noises with zero mean and 
variance o-2 • 

Proof. On the one hand, 

i1_1fsup sup EJ,p.llfn - 111 2 > i1_1f supEtllfn - 111 2 

fn 0 p.EII fn e 

> dn (o-2 , 8)(1 + o(l) ), 

where Pc in the right-hand side is taken to be Gaussian. On the other 
hand, according to Remark 3.7, we have 

i1_1fsup sup EJ,p,llfn - 111 2 < sup sup Et,P<llf:1- 111 2 

fn 0 p.EII 0 p.EII 

< dn(o- 2 , 8)(1 + o(l)), 

where f /:1 is the estimator defined by (3.12)-(3.14). □ 

3.4 Examples 

If an ellipsoid 8 is such that for some positive constant C = C(8) and 
positive decreasing to zero sequence ¢n the asymptotic relation 

rn(8) = C(8)¢~(1 + o(l)) 

holds, then, clearly, ¢n is the rate of convergence and the constant C(8) 
is optimal. We describe below examples where this is the case. 

Example 3.1. Let, for a given o:, o: > 1/2, 

e = e(Q) = { f(-) E £2, ~ k2"(ol, + 0Jk+1) eo Q} . (3.16) 

We have to impose the condition o: > 1/2 in order to ensure 8 satisfies 
conditions F1 and :F3. 
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Corollary 3.3. Let the ellipsoid 8 be defined by (3.16}. Then 

2a 
1 4a ( 2a ) 2a+l 1 2a 

rn=Q2a+1a2a+l a+l (2a+1)2a+1n-2a+1(1+o(l)) 

and the estimator J /:! is asymptotically minimax. 

Proof. Condition :F3 can be verified straightforwardly: 
n oo 

max ~ a-2 ::; 22°' ~(ln)-2°'::; cn-2°' = o(n-1). 
l<k<n~ k+ln ~ 

- - k=l l=l 

We calculate now the asymptotic value of dn. Since in this case N-+ oo, 
it is easy to see from the first equality of (3.10) that cnN°' -+ 1 as n -+ oo. 
Therefore, N = c;;- 11°'(1 + o(l)). The equation (3.6) to define Cn is as 
follows: 

N 

2 L(k°' - Cnk2°') = Qa-2ncn. 
k=l 

Note that here N corresponds in fact to N /2 for N defined by general 
formula (3.8) (or (3.10)). This is more convenient for computations. 

Making use of the asymptotic equality 

M M°'+l 
Lk°' = --1 (1 +o(l)) as M-+ oo, a> -1, 
k=l a+ 

(3.17) 

we obtain the asymptotic relations: 

( 2aa2 ) 2a°'+1 
Cn = (a+ 1)(2a + l)Qn (l + o(l))' 

1 

N = ( (2a + lil:t l)Qn) 2a+1 (l + o(l)). (3.18) 

Using this, (3.9) and again (3.17), we find that 
2a 

2c, 1 1 ( 2aa2 ) 2a+1 
dn = n-2a+1Q2a+l (2a + 1)2a+l -- (1 + o(l)). 

a+l 

Next, one makes sure easily that 8 E :F1: 

"Pnb) = 0 ( exp { --y1n1l(2n+l)}) = o(cn) 

for some ')'1 > 0. Finally, applying Corollary 3.1, we get the statement 
of this corollary. □ 
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Remark 3.9. Let, for a natural number a and f(-) E L2([0, 1]), D 0 f 
denote the derivative of order a in distributional sense, and let 

be the ath order periodic Sobolev space on the unit interval. Then the 
following asymptotic equation holds (cf. Nussbaum (1985) and Golubev 
and Nussbaum (1990)): 

4a: 2a 
')'(a, Q)o- 2a+l n - 2a+l (1 + o(l) ), 

where 8(Q) is defined by (3.16) and 

')'(a, Q) = (Q(2a + 1)) 2a1+1 Cr(a a+ 1)) 21+1 

is Pinsker's constant. Indeed, the upper bound follows from the relation: 

The proof of the lower bound carries through literally since 

N 

L 0k¢k(x) E Wf(Q) if 
k=l 

Thus, the__Eonparametric class (3.16) can be viewed as an extension of 
the class Wf for nonperiodic functions and nonnatural a. 

For the ellipsoid defined by (3.16), it is not difficult to get the fol­
lowing expression for the kernel (3.15): 

Kn(x, i/n) = n-1 ( 1 + 2 t,(1 - c,,k0 ) cos(2~k(x - i/n))) . 

Consider estimator J;! defined by (3.12)-(3.14) with Cn = N;;a, 
where Nn is an arbitrary sequence satisfying (3.18). We claim that this 
estimator is also asymptotically minimax over the class (3.16). Indeed, 
following the proof of Theorem 3.4, one obtains 
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Further, (3.2) and (3.14) imply that 

s~p {:t (n-1o-2 .Ak + (1 - .Ak) 20k)} 
e k=l 

00 

< n- 1 L o-2 .Ak + Q sup(l - .Ak)2 /ak 
k=l k~l 
00 

< n-1 L o-2 (1 - Cnak)! + Qc~. 
k=l 

Combining the last relations and using (3.17), one computes 

Nn 

Rn(f/:1) :'S QN;;2a. + 2n-1 Lo-2(1 - ka.N;;a.) 2 + O(n-1 ) 

k=l 
2a 

2a 1 ( 20'.0"2 ) 2a+l 
n-2a+1(Q(2a+1))2a+1 -- (l+o(l)) 

a+l 
dn(l + o(l)). 

So, we have shown that the estimator J/:1 is asymptotically minimax. 
The necessity of considering this estimator stems from the fact that, for 
the ellipsoid defined by (3.16), in principle one can deduce the formula 
for the kernel corresponding to the estimator J f:1. 

For the ellipsoid (3.16) with a= 1, by routine calculations we obtain 
the expression for the kernel corresponding to the estimator J/:1: 

which is the well known Feier kernel. For a = 2, the kernel of the 
estimator J/:1 is as follows: 

Kn(x, i/n) = 
sin(2Nn1r(x - i/n)) cos(n(x - i/n)) 

2nN~ sin3 (1r(x - i/n)) 
cos(2Nnn(x - i/n)) 

nNnsin2(1r(x -i/n)) · 

As a increases, the calculations become more involved. 
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Example 3.2. For some /3 > 0, let 

8 = {f(·) E L2: f e2f3k(0~k + 0~k+l) ::; Q}. (3.19) 
k=l 

In this case it has been possible to describe the minimax risk up to 
the rate of the second order term. 

Corollary 3.4. Let the ellipsoid 8 be defined by (3.19). Then 

a 2 logn O( _1 ) 
rn = /3n + n (3.20) 

and the estimator J/:! is asymptotically minimax and also second order 
minimax with respect to the rate of convergence. 

Proof. From (3.7) and (3.19) it follows that 

e13 ::; CneN/3 ::; 1. 

Write equation (3.6) for this case: 

N 

2 I:)e/3k - Cne213k) = Qa-2ncn. 
k=l 

The last two relations yield the following asymptotics for N: 

logn 
N= ~ +0(1). 

(3.21) 

According to Theorem 3.3 and the proof of Theorem 3.4, we have 

where 
00 

lc5nl ::; Qa:;; 2 + 2Q L ak2 = 0 ( e-/3n) 
k=n+l 

Further, the asymptotics for N and (3.21) imply that 

2 2 N 
_!!_ L(l - Cne13k) 
n 

k=l 

a 2 logn O( _1 ) 3 ---;;;:- + n . 
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From this and (3.22) we finally obtain 

_ a 2 logn O( _1) 
rn - /3n + n . 

□ 

The first order term of the minimax risk does not depend on the 
"size" Q of ellipsoid e. That is why a stronger result is available. 
Namely, 

Corollary 3.5. Let the ellipsoid e be defined by (3.19}. Then for any 
neighbourhood V ~ e 

• , 2 a 2 logn 1 
n;_1f supE1llfn - ill = /3 + 0(n- ) , 
fn V n 

where the meant topology is generated by the norm defined in Remark 3. 5. 

Proof. Indeed, let S be a ball such that S ~ V. Then, on the one hand, 
according to Remark 3.5, we have 

i1_1fsupE1llfn - 111 2 > 
fn V 

i1_1fsupE1llfn - 111 2 

fn S 

a2;~gn + 0(n-1) 

and, on the other hand, 

i1_1f supE1llfn - 111 2 

fn e 

a 2 logn 0( _1) 
f3n + n . 

□ 

Note that the second order term of the local minimax risk 

certainly depends on neighbourhood V. 
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Remark 3.10. Let the ellipsoid 8 be defined by (3.19). Consider the 
projection estimator J!: defined by (3.12) with 

Ak = { l, 
0, 

where Nn is any positive sequence satisfying the inequality: 

INn - 13-1 lognl :::; (1 - µ)(3- 1 loglogn for some µ > 0 . 

The estimator}!:, while being simpler than the estimator Jf:! above, is 
still asymptotically minimax, i.e. 

If Nn = 13-1 1ogn, then the estimator J!: is asymptotically second order 
mm1max: 

On the other hand, consider the estimator };[? corresponding to the de 
la Vallee Poussin kernel (cf. Ibragimov and Hasminskii (1982)) which is 
estimator (3.12) with 

k:::; Nn/2, 

1 + Nn/2 :::; k :::; Nn, 

k > Nn. 

One can choose the sequence Nn optimally as 

N _ logn 
n - 2(3 . 

It is well known (see Ibragimov and Hasminskii (1982)) that such an es­
timator allows one to obtain the optimal rates, with properly chosen Nn, 
for all nonparametric classes considered above. However, this estimator 
is not asymptotically minimax as one can see by comparing (3.20) to 
the maximal risk of the estimator };? : 



68 Chapter 3. Minimax nonparametric regression 

Corollary 3.6. Let the ellipsoid 8 be defined by (3.19). Then the esti­
mator f !: defined in Remark 3.10 is locally asymptotically minimax and 
adaptive with respect to a 2 . 

Proof. We take for example Nn = 13-1 1ogn and while constructing the 
estimator f !: we need not know a 2 and neighbourhood. Now the state­
ment of this corollary follows from the previous corollary and the ex­
pression for the maximal risk Rn(![). □ 

The kernel corresponding to the estimator f !: has the following form: 

K ( ·; ) _ sin((2Nn + l)1r(x - i/n)) 
nX,in - . 

nsin(1r(x - i/n)) 

3.5 Proofs 

Denote 

Proposition 3.1. 

<Pk+mn { ¢k, m= 2l, l = 1,2, ... 
(-l)n-k+1¢n-k, m = 2l -1, l = 1,2, ... ; 

¢f ¢1 nOkl' 1 :'.S; k :'.S; n, 1 :'.S; l :'.S; n, 

where ¢0 = 0 and 0kt is defined as follows 

We skip the elementary proof of this proposition. 

Proof of Theorem 3.2. The proof of this theorem is closely similar to 
that of corresponding assertions in Chapter 2. We assume that j is an 
estimator with realizations in L2 because otherwise the statement of the 
theorem becomes trivial. Then we have by the Parseval identity: 

00 

rn = ir~/supEtllf - !11 2 = iJ!f sup Et L(0k - 0k) 2 . 
J e 0 e k=l 

(3.23) 
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First we consider a somewhat simpler case: condition F2 is fulfilled. 
Now we repeat the reasoning as in the proof of Theorem 3.1. Let mk, 
k = 1, 2, ... , be a set of positive numbers such that 

00 

L a~m~ :SQ, 
k=l 

i.e. m = (m1 , m 2 , ... ) E 8. Introduce 

vk(x) = (1/mk)vo(x/mk), k = 1, 2, ... , 

where vo(x) is a probability density on the interval [-1, 1] with a finite 
Fisher information Io, 

vo ( -1) = vo ( 1) = 0 

and 110 (x) is continuously differentiable for !xi < 1. Recall that, under 
these conditions, the minimal Fisher information is 1r2 . So, Io 2:: 1r2 . 

The functions vk(x) are probability densities with supports [-mk,mk] 

and the Fisher informations 

respectively. 
Let the measure µ be such that 0k, k = 1, 2, ... , are distributed 

independently with densities vk(x), k = 1, 2, ... , respectively. The as­
sumption m E 8 ensures that supp µ ~ e. 

Write E for the expectation with respect to the joint distribution of 
Y1, ... , Yn and 01, 02, .... From (3.23) it follows that 

rn 2:: i~f { f Ej(0k - 0k) 2dµ(0) = i~f f E(0k - 0k) 2 . (3.24) 
o le k=l o k=l 

To estimate E( 0k - 0k)2 , we apply the van Trees inequality (Theo­
rem A.l): 

(3.25) 

where I(0k) is the Fisher information about parameter 0k contained in 
observations Y1, ... , Yn and 

EI(0k) - f E1 [t 8logp,(~~ J(i/n)) r dvk(0k) 

n 

a-2 L </J~(i/n) = a-2n, 
i=l 
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which follows from Proposition 3.1. Recalling that I(vk) = I0m1;,2, we 
obtain 

We make use of the last inequality and (3.24): 

The inequality (3.26) holds for any m E e. At this point take 

2 o-2 (1 - Cnak)+ 
mk=-----, 

Cnakn 

(3.26) 

(3.27) 

where Cn is defined by (3.6). Now note that equation (3.6) can be also 
rewritten as 

00 

LaimI=Q. (3.28) 
k=l 

So, m E e. Substituting this particularly chosen m in (3.26) results in 

where set I is defined by (3.7). Combining this with (3.9) and condition 
8 E F2, we finally get 

Na2 cnloa2 ~ 
rn > -- - ---L.Jak 

n n 
kEI 

Na2 
= -(1 + o(l)) 

n 
dn(o-2 , 8)(1 + o(l)), 

which proves the first part of the theorem. 

Suppose now that condition Fi is fulfilled. For arbitrary O < 8 < 1 
we can find R0 > 0 and a probability density v0(x) such that v0(x) is 
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positive and continuously differentiable inside the interval ( - R0, R0), 

equals to zero outside this interval, has finite Fisher information I(v0) 
and satisfies the following properties: 

EX2 = 1- 8/2 

and 

I(v0) = {Ro (v:S\x)r dx ~ l + 8, 
1-R8 vo x 

where X is a random variable with probability density v0(x). For a 
complete explanation why it is possible to choose a density with such 
properties, see the proof of Theorem 2.2. 

Introduce for arbitrary mk > 0, k = l, 2, ... , 

These are probability densities with supports (-R0mk, mkRo) respec­
tively and if Xk = mkX then Xk is a random variable with density 
vk(x). We have 

m~(l - 8/2) 

m·,;2 I(v0 ) ~ m;;2 (1 + 8). 

(3.29) 

(3.30) 

Let 0 be distributed according to a prior measure µ such that 0k, k = 
1, 2, ... , are distributed independently with the densities vk(x), k = 
1, 2, ... , respectively. In view of (3.23), we evaluate the minimax risk 

rn > i~f { f E0(0k - 0k) 2dµ(0) 
0 le k=l 

A inf r f E0(0k - 0k) 2dµ(0) 
0Esuppµ le k=l 

00 00 

> i~fLE(0k - 0k) 2 - 4R~µ(8c) L m~. 
B k=l k=l 

(3.31) 

Due to the assumptions on probability density vk(x), we can apply the 
van Trees inequality (3.25) to the Bayes risk E(0k-0k) 2 • Thus, by (3.25) 
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and (3.30), we obtain 

~ A 2 (]'2 ~ mi 
inoJ L; E(0k - 0k) 2: n(l + 6) L; m2 (1 + 6)-1 + u2n-1 . 

k=l k=l k 

(3.32) 

Suppose now that :E%°=1 aimi :S Q, i.e. m = (m1, m2, ... ) E e. 
Then, by (3.29), we have 

00 

= Q- (1-6/2) I:aimi 2: Q6/2. 
k=l 

Using these relations and the Hoeffding's inequality (see Pollard (1984)), 
we evaluate µ(8°): 

µ(0°) = µ {t, al(Ol - E0l) > Q - t, alEOl} 

(3.33) 

where 
(Q6)2 

'Y = 8(RJ -1 + 6/2)2· 

Take now m according to (3.27). Recall that, by (3.28), m Ee. By 
the definition of 'l/Jnb) (3.11), we see that the right hand side of the 
inequality (3.33) becomes 'l/Jn('Y). Therefore, combining (3.31), (3.32) 
and (3.33) gives 

u2 ~ mi 2 ~ 2 
Tn 2: n(l + 6) L,; m2(1 + 6)-1 + u2n-1 - 4R5'l/Jnb) L,; mk. 

k=l k k=l 

(3.34) 

According to the condition e E F1, 

as n -+ oo. From this, (3.9) and (3.27) it follows that, as n -+ oo, 

"Pnb) f u 2 (1 - Cnak)+ 

n k=l Cnak 
00 

= o(l)n-1 L u2(1 - Cnak)+ = o(dn). 
k=l 
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Therefore, substituting now m defined by (3.27) in (3.34) leads to 

as n ➔ oo. Since this inequality holds for any 8 E (0, 1), the theorem 
follows. D 

Proof of Theorem 3.3. Because we do not use any condition of Theo­
rem 3.2 up to (3.26), we invoke the inequality (3.26) with Io = 1r2 . 

Recall that (3.26) holds for any m E 8( Q) and therefore 

a2 oo m2 /1r2 sup - ~ ___ k __ _ 

e(Q) n 0 m2/1r2 + a2n-1 
mE k=l k 

a2 oo m2 

sup - L 2 \ -1 · 
mE8(Q/1r2) n k=l mk + a n 

Finally, applying Lemma A. l with E2 = n - l and ai = a 2 , completes the 
proof of the theorem. □ 

Proof of Theorem 3.4. Since, by (3.12), (3.13), (3.14) and the second 
property of Proposition 3.1, 

where 
n 

0k = E/h - 0k = n-1 L ¢k(m/n)f (m/n) - 0k, 
m=l 

we bound the risk of the estimator j~ as follows: 
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< s~p {t ( ":;'l + (I - A,)2~)} 

+ 2 •~P {t ( (A, - 1 )A,0,ii, + Aliil)} 

+ s~p { f ei} . (3.36) 
e k=n+I 

According to Lemma A.1, the first term of the right hand side of the 
last inequality is exactly dn ( a 2 , 0). For completeness, we give a direct 
evaluation of this term. Rewrite (3.6) in the form 

and notice 

00 

n-1 L a2cnak(l - Cnak)+ = c;Q 
k=l 

00 

Qc; + n-1 L a 2 (1 - Cnak)! 
k=l 
00 

= n-1 L a2((Cnak(l - Cnak)+ + (1 - Cnak)!)) 
k=l 
00 

n-1 L a 2 (1 - Cnak)+ = dn. 
k=l 

Therefore, by (3.9) and (3.14), 

•~P {t ( ":;'l + (I -A,)201)} < Q:~~(1 - A.)2 /al+: t Al 

2 00 

< Qc; + ~ L(l - Cnak)! 
n 

k=l 

(3.37) 

Consequently, it is sufficient to show 

s~p {t ((,\k - l),\k0k0k +Aioi)}= o(dn), (3.38) 
e k=l 

s~p { I: ei} = o(dn). 
k=n+I 
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The last relation follows immediately from the conditions :F3 and F4: 

sup { f 0i} S sup { f 0iai} maxak2 = o(dn). e e k>n k=n+l k=n+l 

Suppose we have the following relations: 

n 

sup L >.iei o(dn), 
e k=l 

Qc; < dn. 

(3.39) 

(3.40) 

Then, taking into account that >..k = (1- cnak)+, we prove (3.38) by the 
Cauchy-Schwarz inequality: 

It remains to show (3.39) and (3.40). The relation (3.40) follows 
immediately from (3.37). Let us prove (3.39). For any k such that 
1 :S: k s n - 1, by Proposition 3.1 and the Cauchy-Schwarz inequality, 
we have 

n 

0k n-1 L <i>k(m/n)f(m/n) - 0k 
m=l 
oo n 

l=l m=l 
oo n 

L 01 n-1 L <!>k(m/n)</>1(m/n) 
l=n+l m=l 
00 

L(0k+2ln + (-l)k+l02ln-k) 
l=l 
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and 

Therefore, 

00 

On = L 0(2l+I)n · 
l=l 

and hence, we arrive to (3.39) by condition F3 

s~p t. Al/ll $ Q ( 2 l~n t •kJ1n) t. A, 
n 

= o(n-1) LAk = o(dn) 
k=l 

or by condition F4 

n n 

sup LA~ 0~ < sup L 0~ 
E> k=l E> k=l 

00 

S 2Q L a-;;2 = o(dn). 
k=n+l 

This completes the proof of the theorem. 

3.6 Bibliographic remarks 

□ 

The nonparametric regression estimation problem was studied by, among 
others, Speckman (1985), Nussbaum (1985), Golubev and Nussbaum 
(1990), Korostelev (1994), Efromovich (1996). 

In the paper of Speckman (1985) the minimax linear estimator is 
a spline. The first result about precise asymptotics of the minimax 
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risk within the class of all estimators in a regression context is due to 
Nussbaum (1985), where normality of the errors was assumed, the non­
parametric class is a Sobolev class and a smoothing spline proved to be 
asymptotically minimax among all estimators. Exact lower bounds for 
the minimax risk were obtained in the paper of Golubev and Nussbaum 
(1990) for nonequidistant designs of observations without assumption 
of normality of the errors. In a recent paper Efromovich (1996) stud­
ied exact asymptotic behaviour of the minimax risk for random design 
nonparametric regression models also without assumption of normality. 
The result of Korostelev (1994) is described in Example 1.2. 

Our treatment of the lower bound is based on the elementary but 
rather powerful van Trees inequality which is due to van Trees (1968). 
For further references and applications of the van Trees inequality see 
Borovkov (1984), Gill and Levit (1995). Another approach for obtaining 
lower bounds based on asymptotic equivalence of the original model and 
the white noise model has been also actively pursued recently, see Brown 
and Low (1996), Nussbaum (1996), Korostelev and Nussbaum (1995). 

The main results of this chapter can be found in Belitser and Levit 
(1996). 
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Chapter 4 

Efficient density estimation 
with censored data 

Suppose one observes a sample from some unknown probability distri­
bution on some measurable space. The general statistical problem in 
this context is to gain information about some features of the underly­
ing distribution, using the observed data. In this respect the problem of 
probability density estimation can be viewed as one of the basic prob­
lems in statistics. By far the most frequently used type of observation 
model is based on a sample of growing size of independent identically 
distributed random variables. It is not however appropriate when the 
observations are incomplete. This is the case, for example, when the ob­
servations have been censored. In real life applications in demography, 
actuarial science, epidemiology, survival analysis and other fields, the 
observations are typically at risk of being censored from the right. In 
such situations, the observation model we study, the so called random 
censorship model, is often a realistic one. 

In this chapter we consider the problem of nonparametric minimax 
density estimation when the observation model is complicated by the 
presence of censoring and the density is assumed to belong to the class 
of "infinitely smooth" functions. 

4.1 Introduction 

Let (X1, Yi), ... (Xn, Yn) be independent identically distributed pairs of 
random variables where X1 and Y1 are independent and have the dis­
tribution functions F and G respectively. We assume also that the dis-

79 
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tribution of X 1 is absolutely continuous with density J. The following 
model is known as random censorship model. We observe only the pairs 
(Zi,-6.i), i = 1,2, ... ,n, with Zi = min(Xi, °Yj) and -6.i = I{Xi:::; °Yj}. In 
survival analysis the Xi's are called survival tinies and the °Yj's censor­
ing times. We suppose F and Gare unknown and our goal is, using the 
observed data, to estimate the density J(x) at a given point x. 

To elucidate the ideas of the results, we give here some heuristic 
arguments. The unknown underlying density J is assumed to belong 
to the class of densities with exponentially decreasing Fourier transfor­
mations - "infinitely smooth" densities. This nonparametric class has 
the advantage that one can treat the problem of estimating J(x) as if a 
smooth functional was to be estimated. In particular, it turns out that 
any density from this nonparametric class can be represented in the 
following asymptotic form (see the Approximation Lemma 4.9 below): 

J(x) = J ¢n(x - y)J(y)dy + O(n-112), as n-+ oo, 

locally uniformly in J in a proper topology, where ¢n (y) is some se­
quence of functions (the exact definitions are given in the next section) 
which we will call kernels, treating this notion in a broader sense than 
is usual in the literature. The local minimax quadratic risk proves to 
be of order (logn) 1/r /n (0 < r :::; 1 and appears later in the definition 
of the nonparametric class) and therefore the remainder term can be 
neglected, while the first term resembles a smooth functional (in fact it 
is a sequence of functionals because of its dependence on n) to which 
one can apply well developed methods for deriving an optimal estimator 
and its asymptotic behavior. 

So, in case there is no censoring one can expect the estimator 

with the empirical distribution function Fn, to be optimal in some sense. 
If for independent identically distributed observations the estimator of 
the density is some functional of the empirical distribution function 
T(Fn), then in the case of censoring one tries usually to use the estima­
tor T(Fn), with the well known Kaplan-Meier estimator Fn(Y) instead 
of the empirical distribution function Fn. Thus, it is natural to propose 
the estimator 

( 4.1) 
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In this chapter, we establish, under conditions that the censoring is 
not too severe and the density belongs to the class of "infinitely smooth" 
functions, the exact limiting behavior of the local minimax risk up to a 
constant. We show also that a kernel type estimator, with a properly 
chosen kernel, is locally asymptotically efficient. We emphasize here that 
the choice of nonparametric class has made this possible. We propose a 
wide class of kernels on which the estimator can be based, which turns 
out to be important in the estimation problem with censored observa­
tions. 

In the definition of our class we have a smoothness parameter r, 
0 < r :S 1. Varying the parameter r, we obtain two essentially different 
cases: 0 < r < 1 and r = 1 which we will call the infinitely smooth 
and the analytic cases respectively. The analytic case has a distinctive 
feature. Namely, it turns out that there are no efficient kernel estimators 
with finitely supported kernels - to estimate efficiently one has to use, 
roughly speaking, all observations within a distance of log n from x, 
due to the phenomenon of the long-range reciprocal memory contained 
in two separated sets of values of an analytic function. However, we 
show that, under a condition that censoring is not too severe, one can 
at least choose a kernel with exponentially decreasing tails. The proof 
of efficiency of the estimator in this case is based on the martingale 
technique. In the infinitely smooth case, there are efficient estimators 
with compactly supported kernels. This facilitates also the use of strong 
approximation results for the Kaplan-Meier estimator in the proof of the 
exact upper bound for the minimax risk. The lower bound for the local 
minimax risk is based on the elementary van Trees inequality in either 
case. 

4.2 Definitions and main results 

In this section we summarize the main results. First we recall in brief 
the notion of efficiency. 

Prior information about an unknown density f is usually formalized 
by assuming f E :F, for some class of densities :F. Suppose now that we 
have some topology on :F. For each neighbourhood V define the local 

minimax risk: 
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where the infimum is taken over all estimators fn- The estimator fn 
is called asymptotically efficient, or just efficient, if for any sufficiently 
small neighbourhood V, for some positive sequence 'l/Jn, 

limsup'l/J:;;,2 (sup E1(fn(x) - J(x)) 2 - rn(V)) = 0 
n-+oo fEV 

while 

Recall that the sequence 'l/Jn is the minimax rate of convergence. Note 
also that one can write lim instead of limsup. 

Denote from now on the Fourier transform of an absolutely integrable 
function f by J: 

J(t) = I eity f(y)dy. 

Define now the nonparametric class F0 of underlying densities. 

Definition 4.1. For given P, S > 0, 0 < r ::; 1 denote 

Remark 4.1. For O < r < l, the functions in F0(P, r) are infinitely 
differentiable, while f:0 (P, 1) is a class of analytic functions. Below we 
describe it more precisely. Let the class Ao = Ao ( Q) consist of functions 
admitting bounded analytic continuation into the strip {y + iu, lul ::; 
8} and J IJ(y + i8)12dy ::; Q < oo. In case there is no censoring the 
nonparametric classes of the type Ao were considered first in Ibragimov 
and Hasminskii (1983), where the minimax rates of convergence in Lp 
were derived. There is a close relationship between the !classes f:0 (P, 1) 
and A 0: for any /3, 0 < /3 < 8, there exist positive constants Q1 and Q2 
such that 

Ao(Q1) ~ Fo(P, 1) ~ Ao-1J(Q2). 

Indeed, if a density f E Ao, then, according to Timan (1963), p. 137, 
the limit 

lim Ref(y + iu) = 9J(Y) 
u-+O 

exists for almost all y and f (y) can be represented as a convolution: 
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Furthermore, because of the relation (see Gradshtein and Ryzhik (1980), 
equation 3.983.1) 

1 / itu h-1 ( 1rU) d 1 
28 e cos 28 u = cash( 8t)' 

' g(t) 
J(t) = cosh(8t)" 

By the Parseval formula, 

and hence the first inclusion holds. The second inclusion follows imme­
diately from the Paley-Wiener theorem (see, for example, Katznelson 
(1976), p. 174). 

Note also that the class :18 is quite broad: the Gauss, Student and 
Cauchy distributions are, among many others, for appropriate 8, in this 
class, as well as their finite mixtures. 

Definition 4.2. Let S8 and U8 = U8(r) be the topologies on F8(P, r) 
induced by the distances 

PsU, g) sup IJ(y) - g(y)I + sup IJ'(y) - g'(y)I +jlf(y) - g(y)I dy, 
y y 

Pu(J,g) = (! exp(28IW)lf(t) - g(t)l 2dt) 
112 + /IJ(y) - g(y)ldy, 

respectively. Let 'To = 'To(r) be any topology on :F8(P,r) such that 
u8 ~ t ~ s8. 

Remark 4.2. U8 is a strong topology - closeness with respect to Pu 
implies, by the formula for the inverse Fourier transform, closeness of all 
derivatives in the uniform topology: for g, h E F8, 

S~p liml(y) - h(ml(y)I < C1 (/ i 2ml§(t) - h(t)l 2dt) 112 

< C2 Pu(g, h). 
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Remark 4.3. S8 and U8 are possible choices of weak and strong topolo­
gies respectively, for which the properties stated in the assertions below 
hold locally uniformly, i.e. for each f E :F8 there exists a neighbourhood 
V (!) such that these properties hold uniformly over this vicinity. In 
fact, in assertions concerning the upper bound for the local minimax 
risk, one need prove the local uniformity only for the topology S8, and 
in assertions concerning the lower bound only for the topology U8. 

In almost every estimation problem with censored data one faces the 
well known unstable behavior of the Kaplan-Meier process y'n(Fn(Y) -
F(y)) (here Fn is the Kaplan-Meier estimator, see definition below) in 
the right tails of F and G. Recall that we are going to use a kernel 
type estimator of the form ( 4.1). Therefore, the lighter are the tails of 
the kernel, the less restrictive conditions on the censoring mechanism 
are needed. On the other hand, it turns out that, in the analytic case 
r = l, one has to use observations distant from x as well as those close 
to x when constructing an efficient estimator for f(x). Loosely, this 
corresponds to the fact that even for y's distant from x the values f (y) 
still carry some information about f(x) - analytic functions have "long 
memory". This is formalized by imposing the following restriction on 
the nonparametric class :i8(P, 1). 

Definition 4.3. For given a, To > 0, k ~ l, denote 

:F8 = :F8(P r) = { i)(P, r), 
' :F8(P, r) n R(To, k, a, G), 

where 

O<r<l 
r = l, 

Here :i8(P, r) is defined by Definition 4.1 and Fis the distribution func­
tion corresponding to the density f. 

Remark 4.4. The restriction on the original class :i8(P, 1) expresses 
the requirement for the censoring mechanism to allow sufficiently large 
observations with positive probability as the number of observations 
tends to infinity. Indeed, for some O < p < l let 

( 
1 

( )) 
1/(2k) -an 

Yn = -log ---- ' 
To log(l -p) 



4.2 Definitions and main results 85 

then 

where Z(n) = max1:Si:Sn Zi. 

Remark 4.5. Without loss of generality we suppose that k is integer. 
Indeed, we will see later that both the upper bound and the lower bound 
for the local minimax risk do not depend on k, nor on a, P and To. 

Definition 4.4. Let Ta be the topology induced by To on F{J. 

Let us establish several conventions throughout this chapter: 

• sometimes we will write F E F{J meaning actually that the corre­
sponding density f E F{J; 

• in the proofs we will denote generic positive constants by C1, C2, ... 
and they are assumed to be different in the proofs of different 
assertions; 

• all symbols O and o correspond to the asymptotics n -+ oo unless 
otherwise specified; 

• if we say that a particular property holds locally uniformly, this 
means that for each f E F{J there exists a neighbourhood V of f 
such that this property holds uniformly over V. 

Now we describe a class of kernels to be used in the construction of 
the estimator. Denote, for some positive b, /3, T, A, m 2'. 0, 

v(y, b, /3) = { A exp ( - (b'-,y')') • -b < y < b 
v(y) (4.4) 

0, y <t (-b, b), 

qr(Y) { V~~~~k 0<r<l 
(4.5) 

e ' r = 1, 

an ( 8 ) = cog n + m log log n) 1 / r an m, ,r 28 (4.6) 

Sn(Y) sn(Y, m, 8, r) = 
sin(any) 

(4.7) 
' 1ry 
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where the constants k, 8, r appear in the definition of the class F8 and 
the constant A is defined by the requirement: 

(4.8) 

The other constants are chosen according to the following conditions: 

(i) the constant b is any fixed number such that b + x < TC, where 
Tc = inf{y: G(y) = 1} and xis the point at which we want to 
estimate the density f; 

(ii) the constant /3 is any fixed number such that /3 / (/3 + 1) > r, where 
r is the parameter in the definition of the class F8; 

(iii) the constant m is any fixed number such that 

m 1 
- > - -1· 
2 r ' 

(iv) the constant Tis any fixed number such that T > 3To/2, where the 
constant To appears in the definition of the class F8(P, 1). 

Note that, Tc is necessarily infinite in case r = 1 (see Remark 4.9 below); 
if x > Tc, then even consistent estimation of J(x) is not possible. Next 
introduce the kernel 

(4.9) 

and define the following estimator 

(4.10) 

where Fn(Y) is the Kaplan-Meier estimator, a well known nonparametric 
efficient estimator of the distribution function F(y): 

( n -. i ) .6.c;J 
F'n(Y) = 1 - IJ 

. n-i+l 
i: Zci)<Y 

(4.11) 

with the convention o0 = 1. Here the Z(i) denote the ordered sequence 
of Zi's and the .6.(i) 's are correspondent indicators. A rich literature is 
devoted to this estimator and its properties (see Andersen et al. (1993) 
and further references therein). 
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Remark 4.6. As is shown in Weits (1993), in case of a Holder type 
class, the Kaplan-Meier estimator is not optimal with respect to the 
convergence rate of the second order minimax risk. The problem of 
the second order efficiency of a smoothed version of the Kaplan-Meier 
estimator for the infinitely smooth class is studied in Belitser (1997). 

Remark 4. 7. Since, by the standard formula for the Fourier transform 
of the product of two functions, 

(4.12) 

4>n(t) is nothing else but a smoothed indicator of [-an, an]- Here* is the 
convolution operation and Is denotes the indicator function of set S. In 
words, convolution of a function with the kernel ¢n in the time domain 
corresponds to thresholding the Fourier transform of the function in the 
frequency domain. 

Note also that the function IJr(t) is even. The asymptotic behavior 
of IJr(t) for 0 < r < 1 and r = 1, as ltl -+ oo, is described in Fedoruk 
(1977), pp. 213-214, 220, 229. We adapt these results in a simplified 
form, suitable for our purposes: for some A1, A2, A3, A4 > 0, 

IIJr(t)I < A1 exp {-A2ltl r,!i}, 0 < r < 1, 

IIJr(t)I < A3 exp {-A4ltl 2i~ 1 }, r = 1. 

(4.13) 

(4.14) 

The constants A1, A2 depend in general on b, f3 and A3, A4 on k and T. 

Denote a I\ b = min{ a, b }. I_? the next theorem the local asymptotic 
performance of the estimator f n with respect to the topology To is es­
tablished. The proofs of the theorems are given in the last section of 
this chapter. 

Theorem 4.1. Let f o E F8 be such that x < TG I\ Tp0 and distribution 
function G is continuous at point x. Then, for any sufficiently small 
neighbourhood V(fo), the relation 

limsup ( n )If EJ(in(x) - f(x)) 2 S c,2(!) 
n----+oo logn r 

holds uniformly over f E V (Jo), where 

c,2(!) = c,2(!, x) = (2<5)1/r:g~ G(x)) 

and the estimator fn(x) is defined by (4-10). 

(4.15) 
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Remark 4.8. In the proof of the theorem we have to assume that the 
constant b from (4.4) is chosen in such a way that x+b ~ Tp0 • Although 
this seems to be rather restrictive at first sight because we do not know 
the density Jo, we can assume this without loss of generality. The point 
is that we can let the constant b depend on n so that bn --+ 0 as n --+ oo. 
Provided bn converges to zero slowly enough, one needs to modify only 
slightly the proof of the Approximation Lemma 4.9. All the other proofs 
remain unchanged. 

Theorem 4.1 gives an upper bound for the local minimax risk (4.2): 
for a sufficiently small neighbourhood V(f0 ) 

limsup (l n )l/ rn(V) ~super(!). 
n-too og n r fEV 

If we can provide a lower bound for the local minimax risk, coinciding 
asymptotically with the upper one, then we clearly determine the asymp­
totic behavior of the local minimax risk. The next theorem describes 
the lower bound for the local minimax risk. 

Theorem 4.2. Let Jo E :F8 be such that x < TG I\ Tp0 and distribution 
function G is continuous at point x. Then, for any sufficiently small 
neighbourhood V (Jo), 

liminf( n)l/ rn(V)2:supcr2(f), 
n-too log n r JEV 

where the local minimax risk rn(V) and cr2 (f) are defined by (4-2) and 
(4.15) respectively. 

Remark 4.9. Note that the condition x < TG I\ Tp is always fulfilled 
in the analytic case r = 1 due to the restriction ( 4.3). Therefore, as is 
apparent from the proof, the statement of the last theorem is valid for 
any neighbourhood V ~ :F8 in the analytic case. 

In view of Theorems 4.1 and 4.2, the estimator fn is efficient. Indeed, 
for each J E :F8 and for any sufficiently small neighbourhood V(f), 

lim (1 n )l/ (sup E1(fn(x) - J(x)) 2 - rn(V)) = 0. 
n-too ogn r JEV 

Moreover, as an immediate consequence of Theorems 4.1 and 4.2, we 
obtain the asymptotic behavior of the local minimax risk. 
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Corollary 4.1. Let Jo E F8 be such that x < Tc I\ Tp0 and suppose 
the distribution function G is continuous at the point x. Then for any 
sufficiently small neighbourhood V(Jo) 

lim ( n )l/ rn(V) = sup a2(J). 
n➔oo log n r JEV 

Remark 4.10. Since a 2 (·) is a continuous functional, this implies also 
that 

lim lim ( n )l/ rn(V) = lim sup a2(J) = a2(Jo). 
V+fo n➔oo log n r V+fo JEV 

Remark 4.11. Note that the smaller a and the bigger are P, k, To in 
the definition of the class F8, the less restrictive is this class, while the 
asymptotic behavior of the local minimax risk in no way depends on a, 
P, k and To. 

Remark 4.12. Compared to the result of Golubev and Levit (1996a) 
in the analytic case (r = 1), we see that the fact of censorship does 
not influence the convergence rate, but it does influence the optimal 
constant. 

Remark 4.13. Since the Kaplan-Meier estimator is asymptotically nor­
mal, it seems plausible that a central limit theorem for the estimator 
fn(x) can be given: 

n 
~ D 2 

Un(x) - J(x)) ➔ N(O,a (J,x)) as n ➔ oo, 

where a2 (J,x) is defined by (4.15). For a related result, see Yang (1994) 
where a central limit theorem for the functional J 'lj;dF is established. 
However we can not apply the methods of Yang (1994) to our functional 
fn(x) directly because the kernel ¢n depends on n. In the case O < r < l, 
one can prove a central limit theorem by using strong approximation 
results for the Kaplan-Meier estimator. This problem will not be treated 
here. 

4.3 Auxiliary results 

In this section we provide technical results which we will need below. 
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Lemma 4.1. Let qr(Y) and <Pn(Y) be defined by (4.5) and (4.9) respec­
tively, and let the function h(y) be continuous at x and satisfy 

J q;(x - y)lh(y)ldy < oo. 

Then, as n ➔ oo, the relation 

J ¢;(x - y)h(y)dF(y) 

h(x)f(x) J ¢;(y)dy + ( h(x)f(x) J ¢;(y)dy) o(l) 

h(x~(x) (1o;6n) l/r + 0 ( (logn)l/r) 

holds locally uniformly in f E :F8. 

Proof. Let us prove the first relation. Let OE(x) = {y: Ix - YI < E} be 
the open interval around x of radius E = En, En ➔ 0, 

1 
--~=o(l) 
E~(logn)l/r 

as n ➔ oo. We have obviously 

J cp;(x - y)h(y)dF(y) - h(x)f(x) J ¢;(y)dy 

{ ¢;(x - y) (h(y)f(y) - h(x)f(x)) dy 
JoE(x) 

+ { ¢;(x - y) (h(y)f(y) - h(x)f(x)) dy. 
l(oc(x))C 

So it is enough to prove that the right hand side of the last identity is 
of order o ((logn) 1lr) locally uniformly. 

According to (4.7) and (4.9), one can bound the function cp;(x - y) 
outside the interval OE(x) as follows: 

cp; ( X - y) ~ q; ( ~ ~ y) . 
7f En 

Therefore, the inequality 

r ¢;(x - y) lh(y)f(y) - h(x)f(x)I dy 
l(oc(x))C 
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< E~2C1 f q;(x - y)(lh(y)I + l)dy 
(O,(x))C 

o ((logn)l/r) 
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holds locally uniformly due to the fact that our topology is stronger than 
the topology induced by the sup-norm (see Definition 4.2). Next, owing 
to this fact again, it is easy to see that 

{ ip~(x - y) (h(y)f(y) - h(x)f(x)) dy = o(l) J ip~(y)dy 
Jo,(x) 

locally uniformly and the first equality is proved. 
To prove the second equality, by (4.7) and (4.8), write 

where an is defined by (4.6). 

Lemma 4.2. The functional 

□ 

1Pn(Y) = 1Pn(Y, x, F) = loo </Jn(X - u)dF(u) (4.16) 

is bounded locally uniformly in F E :F0 and uniformly in y. 

Proof. Denote D1(y) = OE(x) n [y,+oo) = (b1 ,b2), D2(y) = (OE(x)f n 
[y, +oo), where OE(x) is the open interval around x of radius E. Then 
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The second term, the integral over D2 (y), is clearly bounded. For the 
first term, we have that 

< f (x) /, </>n(x - u)du 
D1(y) 

+ /, J'(u*)(x - u)</Jn(x - u)du 
D1(Y) 

< C1 + C2 /, qr(X - u)du S C3 
D1(y) 

locally uniformly because SUPuEO.(x) lf'(u)I is bounded locally uniformly 
(see Definition 4.2) and 

I, 1an(b2-x) q (a-lu) sin u 
</>n(x - u)du = r n du S C4. 

D1(y) an(b1-x) JrU 

Lemma 4.3. As n--+ oo, the relations 

E ( 1Pn(Z(n)) ) 2 

f 1 - F(Z(n)) 

Ej (1Pn(Z(n))) 2 

□ 

hold locally uniformly in FE F8(P, 1), where 1Pn(Y) is defined by {4.16). 

Proof. Denote 

H(y) ~ P 1{Z1 Sy}= 1 - (1 - F(y))(l - G(y)). 

From restriction (4.3) on the nonparametric class F8(P, 1) it follows that 

H(y) S 1 - ae-ToY 
2k 

(4.17) 

for each F from this class. Fix some£ > 0 and notice that for ally S x+1: 

H(y) S H(x + 1:) S 1 - ae-To(x+c)2k = q < 1. 

Further, by condition (iv) and the definition of the kernel function (4.9), 
it is easy to see that, with some constant C1 > 0, 
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for all y 2:: x + E. Besides, we have obviously that 

¢;(y) S a;n-2 • 
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Now, using the Holder inequality and all the inequalities above, we ob­
tain the second assertion of the lemma: 

Ef ( ()0 ¢n(x - y)dF(y)) 
2 

lzcn) 

< EJ 1_: I{Z(n) S y}¢;(x - y)dF(y) 

1_: Hn(y)¢;(x - y)dF(y) 

1_:E Hn(y)¢;(x - y)dF(y) + 1:E Hn(y)¢;(x - y)dF(y) 

< qn1r-2a;F(x + E) + C2 rXJ ( 1 - ae-T0 Y2kr ¢;(x - y)dy 
lx+E 

< qnn-2a; + C3 roo e-3Toy2k ( 1 - ae-Toy2k) n dy 
lx+E 

< C4e-C5n(logn) 2 + c6 foc7 (1 - utdu = O(n-1 ) 

locally uniformly because f (y) is bounded locally uniformly and O < 
C7 s 1. 

To prove the first relation, note that from ( 4.3) 

E ( 1Pn(Z(n)) ) 2 

f l - F(Z(n)) 

( 1Pn(Z(n)) ( { } { })) 2 

EJ l _ F(Z(n)) I Z(n) S X + E + J Z(n) > X + E 

< CsEJ(1Pn(Z(n))) 2 

+ 2a-2EJ ( exp {2To(Z(n))2k} I { Z(n) > x + E} 'lj;;(Z(n))). 

It remains only to show that the second term in the right hand side of 
the last inequality is of order O(n-1) locally uniformly. By the Holder 
inequality and (4.18), we obtain 

EJ ( exp { 2To(Z(n))2k} J { Z(n) > X + E} 'lj;;(Z(n))) 
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< EJ (exp { 2ro(Z(n))2k} I { Z(n) > x + E} f 00 
cp~(x - y)dF(y)) 

lzcn) 

< CgEJ (exp { 2ro(Z(n))2k} I { Z(n) > X + E} f 00 e-3T0 Y2 k dy) 
lzcn) 

< CgEJ roo e-Toy2k dy = Cg I Hn(y)e-Toy2k dy 
lzcn) 

< Cg I ( 1 - ae-roy2k) n e-roy2k dy 

< C10 fo1 (1 - utdu = O(n-1) 

locally uniformly. □ 

Lemma 4.4. Let the function h1 ( u) be an integrable function, let the 
function h2(u) be of bounded variation such that h2(-oo) = 0. Then 

provided at least one of these two integrals exists. 

Proof. Denote 

H1(u) = fu00 
h1(v)dv. 

Integrating by parts twice, we obtain 

J J h1 (u)h1(v)h2(u I\ v)dudv 

J h1(u) (J_!:1(v)h2(v)dv) du+ J h1(u) (fu00
h1(v)h2(u)dv) du 

J h1(u) (- 1-: h2(v)dH1(v)) du+ J h1(u)h2(u)H1(u)du 

J h1(u) (-h2(u)H1(u)) du+ J h1(u) (J_: H1(v)dh2(v)) du 

+ J h1(u)h2(u)H1(u)du 

J h1(u) (J_: H1(v)dh2(v)) du 
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- / (/_: H1(v)dh2(v)) dH1(u) 

/ (H1(u)) 2 dh2(u). 

□ 

4.4 Preliminaries: the Kaplan-Meier estimator 

Our treatment of the upper bound for the minimax risk in the ana­
lytic case relies heavily on the martingale approach to the Kaplan-Meier 
estimator (Gill (1980)). Below we present the necessary preliminaries, 
beginning with a suitable adaptation from Gill (1980). 

Let Nn be the process counting observed Xi's and Y be the process 
giving the number at risk: 

Nn(u) 

Yn(u) = 
ln(u) = 

#{i: zi~u, ~i=l}, 

#{i: zi~u}, 
l{Yn(u) > O}, 

where symbol # denotes the number of elements in a set. Let X(u-) 
denote left hand limit of X at point u and F(y) = 1 - F(y). It is 
known (see, for example, Gill (1980)) that for y such that F(y) < 1 and 
Yn(Y) > 0, i.e. y < TF and y ~ Z(n), 

F'n(Y) - F(y) = (l _ F(y)) !Y (1 - Fn(u-)) ln(u) 
_ 00 (1 - F(u)) Yn(u) 

x (dNn(u) _ Yn(u) dF(u)) 
1- F(u-) 

F(y) !Y (l - Fn(u-)) Jn(u) dMn(u), (4.19) 
-oo (1 - F(u)) Yn(u) 

where Mn(u) is a square integrable martingale with the predictable vari-
ation process 

(M M)( ) = !y Yn(u)(l - F(u)) dF( ) 
' y -oo (l-F(u-))2 u, 

(4.20) 

while ln ( u), Fn ( u-), Yn ( u) are left continuous adapted processes. 
Now we give severa~ technical results which will be needed in the 

proof of the theorems. 
For the following result we refer to Weits (1993). 
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Lemma 4.5. Let 

Then, as n ➔ oo, the relation 

E (1 - Fn(y-)) 2 ln(Y) = l + O(n-2) 
(1 - F(y-)) 2 Yn(Y) nF(y-)G(y-) 

holds uniformly over B and y, y '.S C1. 

The proof of this lemma is essentially contained in the proof of 
Lemma 4 in Wei ts (1993). In the paper of Wei ts Yn/ n corresponds 
to our Yn. 

Lemma 4.6. For all n 2: 2, 

E (Jn(Y)) '.S p(y) (1 - p(y)t-l + (1 - p(y))n/2 + _2_' 
Yn(Y) p(y) np(y) 

where p = p(y) = (1 - F(y-))(1 - G(y-)). 

Proof. Denote 

( Jn(Y)) ~ 1 ( n) l( )n-l µ(n) = µ(n, y) = nE Yn(Y) = ~ l/n l p l - P . 

Reasoning as in Weits (1993), we obtain the following recursive equation 
for µ(n): 

µ.(n) n Y= t ( ( 7 ~ t ) + ( n 7 1 ) ) pl(l - Pt-l + pn 
l==l 
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Certainly µ(n) :::; >.(n), where >.(n) satisfies the following recursive equa­
tion: 

n 
>.(n) = 1 + (1 - p)-->.(n - 1), 

n-l 
n ~ 2, 

with initial condition >.(1) = µ(1) = p. Let C(n) be a solution of the 
corresponding homogeneous equation: 

n 
C(n) = (1- p) n _ 1 C(n - 1), n ~ 2, 

with initial condition C(l) = 1. Obviously, 

C(n) = (1 - Pt-1n. 

Let B(n) be such that >.(n) = C(n)B(n). Then B(n) satisfies 

n - l 1 
B(n) = B(n - 1) + n(l _ p) C(n _ l), n ~ 2, 

with B(l) = p. It is easy to see that 
n 

B(n) = p + L)l - p)l-kk-1 
k=2 

and consequently 
n 

>.(n) = p(l - Pt-1n + n I)1 - Pt-kk-1. 
k=2 

Denote by lcJ the whole part of c. Now we bound the second term in 
the last relation 

n Ln/2J 

L(l - Pt-kk-l < L (1- Pt-k 
k=2 k=l 

n 
1 ~ ( )n-k 

+ln/2J+l 0 l-p 
k=ln/2J+l 

(1 - p)n/2 2 
< ----+-, 

p np 

and hence the claim follows 

µ(n) >.(n) --<--
n n 

< p (l - Pt-1 + (1 - Pt/2 + ~. 
p np 

□ 
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Lemma 4. 7. Let the distribution function G be continuous at the point 
x. Then, as n ➔ oo, the relation 

-l n Ej {Z(n) (c/>n(X -y)F(y) - "Pn(Y))2 
ogn }_00 

X (1 - F'n(y-))2 Jn(Y) F(y)dF(y) 
(1 - F(y-)) 4 Yn(Y) 

< cr2 (f)(l + o(l)) (4.21) 

holds locally uniformly in FE Fa(P, 1), where a2(f) and "Pn are defined 
by (4.15) and (4-16) respectively. 

Proof. By continuity of F(y), we write the the left-hand side of (4.21), 
for some positive 1:, as a sum of two terms 

and 

To evaluate the first term, observe first that by ( 4.17) 

P1{Z1 S X + E} = H(x + 1:) < 1- ae-ro(x+c)2k = q < l, 

(¢n(x - y)F(y) - 7Pn(Y)) 2 < 2¢~(x - y)F2(y) + 2'1jJ~(y) 

< 41T-2a~e-2r(x-y)2k p2(y) 

C1(logn)2e-2r(x-y)2k p2(y) 

< C2(log n)2e-3roy2k p2(y) 

and Jn(Y)/Yn(Y) S 1. Thus, recalling (4.3), we bound the first term as 
follows: 
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uniformly. 

< C2 (log n )2 qn a -1 1_: e-3ToY2k +ToY2k dF (y) 

< C3e-C4n 
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For the second term, we split the integral h into two parts: the 
integral over (-oo, x + E] and the integral over (x + E, Z(n)l• Since for 
y~x+E 

(</Jn(X - y)F(y) - 'l/Jn(Y)) 2 < 2</J?i(x - y)F2(y) + 2'1/J?i(Y) 
< 4(1rE)-2e-2T(x-y)2k p2(y) 

< C5e-3ToY2k p2(y), 

we bound the expectation of the integral over (x + E, Z(n)] merely by 

Thus, 

say. 
To evaluate S2, we make use of (4.3), Lemma 4.6 and (4.17): 
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locally uniformly. Therefore, to complete the proof, it remains only to 
prove that the relation 

holds locally uniformly. 
Since 

uniformly over F0 (P, 1), we have, by (4.9) and Lemma 4.5, that 

S1 = Et I:E (</>n(X - y)F(y) - 'l/Jn(Y)) 2 

X (1 - Fn(y-)) 2 Jn(Y) dF(y) 
(1 - F(y-))3 Yn(Y) 

(4.22) 

< J_x+E (</>n(x - y)F(y) - 'l/Jn(Y))2 dF(y) + 0 ((logn)2n-2) 
_ 00 n(l - F(y)) 2 (1 - G(y-)) 

uniformly. Finally, the last inequality, Lemma 4.1 and 4.2 imply that 

locally uniformly. Thus ( 4.22) is fulfilled and the proof of the lemma is 
complete. □ 

Remark 4.14. In fact, in view of the lower bound, equality holds true 
instead of inequality in the statement of the last lemma. 

Remark 4.15. A similar to the last lemma's assertion can be proved 
in case O < r < 1. The proof is somewhat simpler and relies on the fact 
that in this case kernel <Pn is finitely supported. 

The following result which is due to Lo et al. (1989) gives a repre­
sentation of the Kaplan-Meier estimator as an average of independent 
random variables. First introduce some notations: 

g(y) J_ y dF(u) 
-oo (F(u))2G(u-)' (4.23) 

- P(t) 
t(Zi, f).i, t) = -F(t)g(Zi I\ t) + H(t/{Zi::; t, f).i = l}. 
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Lemma 4.8 (Lo, Mack and Wang (1989)). Let the distribution fun( 
tion F be continuous. Then 

l n 
Fn(Y) = F(y) + - L ~i(Y) + Rn(y), 

n i=l 

where for any T < TF I\ re and any a 2 1 

sup E[Rn(Y)[a = 0 ( (log njnf) 
y~T 

as n-+ oo. 

Remark 4.16. Actually, the result of Lo et al. (1989) concerns the case 
of nonnegative "lifetimes" X 1 , ... , Xn. It is however a straightforward 
matter to extend this to any continuous distribution function F. 

Remark 4.17. Tracing the proof of this lemma, one can show that this 
representation holds locally uniformly over a sufficiently small neigh­
bourhood of any F such that T < re I\ TF, in the topology generated by 
the distance in variation. 

Remark 4.18. Note that uniformly in y :S; T the random variables 
~i (y) 's are bounded, independent and by routine calculations, 

(4.24) 

4.5 Approximation Lemma 

The following lemma is of particular importance. It reflects the fact 
that each function from the class F8 can be approximated with a neg­
ligible error by a sequence of "smooth functionals", which exhibits a 
close resemblance of our density estimation problem with the problem 
of estimating a smooth functional. 

Lemma 4.9 (Approximation Lemma). As n-+ oo, the relation 

holds uniformly over F8. 
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Proof. Recalling Definition 4.3, we obtain the following uniform bound: 

(! <Pn(x - y)dF(y) - J(x)) 2 

= ( 2~ / e-itx(efJn(t) - l)f(t)dt) 
2 

< 2~ / exp{2<>IW}lf (t)l 2dt · 2~ / exp{-2<>IW}l¢n(t) - ll2dt 

< 01 / lefJn(t) - 112 exp{-2<>IW}dt 

< 01 ran lefJn(t) - 112 exp{-2<>IW}dt + 02 r exp{-2<>IW}dt 
1-an }ltl'?_an 

201 loan lefJn(t) - 112 exp{-2<>IW}dt + 0 {n-1) 

since, due to condition (iii), 

{ exp(-28IW)dt 
}ltl'?_an 

21~ exp(-28tr)dt 

= 
1 rXJ (logu) l~r du 

8r lexp{28a;} 28 u2 

exp{-2!a~} (l + o(l)) 
r8a~ 1 

1-r 

2(logn)-r (l + o(l)) 
r (28) 1/rn(logn)m 

0 (n-1). 

Hence it suffices to prove that 

(4.25) 

Since function qr ( u) is even, 

fort E [O, an]- By (4.8), we have also that 

/ qr(u)du = qr(0)21r = 21r. 
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Consider first the case O < r < 1. By using the two last inequalities, 
(4.12) and (4.13), we obtain that, fort E [O, an], 

I (2n)-l (qr * J(-an,an) )(t) -1 I 

I (2n)-l / (I(-an,an))(t - u) - l)qr(u)dul 

(2n)-1 { IJr(u)du 
lit-ui>an 

< 2(2n)- 1 r l11r(u)ldu 
lu>an-t 

< C31~-t exp {-A2u1>!1 } du 

< C4exp {-C5(an - t)1>!1}. (4.26) 

Similar reasoning applies in the case r = 1 by (4.14): fort E [O, anl, 

[(2n)-1 (1Jr * I(-an,an))(t) - 1[ 

< C6 { exp {-A4u2f~1} du 
lu>an-t 

< C7exp {-Cs(an - t) 2f~ 1}. (4.27) 

Recall now the Cr-inequality (see Loeve (1963), p. 155): 

r > 0, (4.28) 

where Cr = 1 or Cr = 2r-l according as r '.S 1 or r > 1. So, in case 
0 < r < 1, we prove (4.25) by combining (4.26) with the Cr-inequality 
and the fact that f3 / (f] + 1) > r ( see condition (ii)): 

loan l¢n(t) - 11 2 exp {-2c5IW} dt 

< CJ loan exp { -2C5(an - t) 1>!1 - 2otr} dt 

Cg loan exp { -2C5t1>!1 - 2o(an - tY} dt 

ran { _iL 
< Cg lo exp -2C5tH1 - 2c5(a~ - tr)} dt 

< Cge-28a;, rX) exp {-2C5u!1 + 2otr} dt = Cio 
lo n(logn)m 
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uniformly. Finally, to prove (4.25) in case r = l, we use (4.27): 

uniformly. 

loan 1¢n (t) - 11 2 exp(-28ltl)dt 

< Ci loan exp { -2C8 (an - t) 2f~1 - 28t} dt 

Cu loan exp { -2C8 t 2f~ 1 - 28(an - t)} dt 

< C11 e-28an fo00 exp {-2C8 t2f~ 1 + 28t} dt 

C12 

n(logn)m 

□ 

Remark 4.19. As one can see from the proof of this lemma, a stronger 
bound on the approximation error is in fact valid. Namely, the relation 

holds uniformly over F0 . Thus, we can make the error of approximation 
smaller by choosing a larger min (4.6). 

Remark 4.20. Certainly, the proof of this approximation property is 
almost trivial if ¢n(Y) = sn(Y), where the function Sn is defined by 
( 4. 7). Let us clarify why this is a bad choice of the kernel function 
for the estimator (4.10). The risk of the estimator is bounded from 
above by a sum of two terms (see the proof of Theorem 4.1) which we 
call the approximation term and the stochastic term. The first term 
is analogous to the bias term in the noncensored case and comes from 
the approximation error. The second term has a stochastic origin and 
is analogous to the variance of an estimator in the noncensored case. 
So, choosing ¢n(Y) = sn(Y) provides a small approximation error, while 
leading to a bigger stochastic term since this function is badly localized 
in the time domain. The idea is to find a proper localizing factor, the 
function qr (y), such that both the stochastic term becomes smaller and 
the approximation property remains valid. 
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4.6 Proofs of Theorems 

Upper bound: proof of Theorem 4.1. The proof consists of two 
parts. First we consider the case O < r < 1. 

Without loss of generality we suppose that the constant bin (4.4) is 
chosen in such a way that x + b < Tp0 I\ Tc; see Remark 4.8. Now using 
integration by parts, Lemma 4.8 (see also Remark 4.17 and (4.24)) and 
the elementary inequality 

0 < 'Y ::; 1, (4.29) 

we have that, uniformly over a sufficiently small neighbourhood of Jo, 

Ej (f c/Jn(X - y)d(Fn(Y) - F(y))) 
2 

Ej (f (Fn(Y) -F(y))dc/Jn(X -y)) 
2 

< (l: 'Yn) ff F(t)F(u)g(u I\ t)d¢n(x - t)d¢n(X - u) 

+ (1 + "(;1) Ej f (Rn(Y)¢~(x - y)) 2 dy 

< (l: 'Yn) ff F(t)F(u)g(u I\ t)d¢n(x - t)d¢n(x - u) 

+ (1 +'Y;1)C1n-2 (logn) 2+2/r, (4.30) 

where g is defined by (4.23) and 'Yn is to be chosen later. We can apply 
Lemma 4.8 because the kernel ¢n(x -y) has finite support [x - b, x + b] 
such that x + b < Tc I\ TF uniformly in a neighbourhood of J0 . 

Tedious but straightforward calculations lead to 

ff F(t)F(u)g(u I\ t)d¢n(x - t)d¢n(X - u) 

f ¢?-i(x - t)dF(t) If = l :__ G(t-) + ¢n(x - t)¢n(x - u)h(t I\ u)dF(u)dF(t), 

where 
h(y) = 1Y dF(u) _ 1 

-oo (F(u))2G(u-) F(y)G(y-). 

By Lemma 4.4, we have 

ff ¢n(x - t)¢n(x - u)h(t I\ u)dF(u)dF(t) 
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/ ([
00 

<Pn(x - u)dF(u)) 
2 

dh(t) 

/ ( 
[ 00 )

2 dG(t-) 
- lt <Pn(x - u)dF(u) F(t)(G(t-))2" 

Therefore, 

Now we evaluate the risk of the estimator (4.10). From the last 
relation, (4.30) and again the elementary inequality (4.29) it follows 
that, uniformly in a neighbourhood of Jo, 

Et (fn(x) - J(x)) 2 

Et (! <Pn(x - y)d(Fn(Y) - F(y)) + / <Pn(X - y)dF(y) - J(x)) 
2 

< (1 + 'Yn) 2 / </>;(x - t)dF(t) + (,;1 + 2 + 'Yn)C1(logn)2+2/r 
n 1 - G(t-) n 2 

+ (1 + ,;1) (/ <Pn(x - y)dF(y) ·- J(x)) 
2 

We choose now 'Yn such that 'Yn -+ 0 and bn(logn)1fr)-1 = o(l) as 
n -+ oo. Using the last relation, Lemma 4.1 and the Approximation 
Lemma 4.9, we obtain that 

n ~ 2 J(x) 
li::=.t~P (logn)lfrEtUn(x) - J(x)) ::; (2o)l/r1r(l - G(x)) 

uniformly over a sufficiently small neighbourhood of J0• 

Now consider the case r = 1. First we provide necessary preliminar­
ies. In view of (4.19), we have 

{Z(n) ~ 

}_
00 

<Pn(x -y)d(Fn(Y) - F(y)) 

{Z(n) <Pn(X - y)F'(y) (1 - F'n(y-)) Jn(Y) dMn(Y) 
}_00 (1- F(y-)) Yn(Y) 

[Z<n) ( [Y (1 - Fn(u-)) Jn(u) ) 
- J_oo <Pn(X -y) }_00 (1- F(u-)) Yn(u/Mn(u) dF(y) 
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+ Fn(Z(n)) - F(Z(n)) .,. (Z ) 
1 - F(Z(n)) 'f/n (n) (4.31) 

because, by integration by parts and again (4.19), 

Since the first term of the right hand side of the relation ( 4.31) is the 
integral of a predictable locally bounded process ( almost all its sample 
paths are locally bounded) with respect to a square integrable martin­
gale with the predictable variation process (4.20), one can represent its 
second moment as follows (see, for example, Gill (1980)): 

(JZ(n) - (1-Fn(y-))Jn(Y) ) 2 

Et _
00 

(</>n(x -y)F(y) -VJn(Y)) (l - F(y-)) Yn(Y) dMn(Y) 

JZ(n) 2 

= Et -oo (</Jn(X -y)F(y) - VJn(Y)) 

(1 - Fn(y-)) 2 ln(Y) -
X (l _ F(y-)) 4 Yn(Y) F(y)dF(y). (4.32) 

Note that Fn(Y) is constant on [Z(n), oo). So, using (4.31), (4.32) 
and (twice) the elementary inequality (4.29), we obtain 

Et (J-: <l>n(x - y)d(Fn(Y) - F(y))) 
2 

(Jz() )2 
::; (1 + 'Yn) Et -oon </Jn(X - y)d(Fn(Y) - F(y)) 
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where 'Yn is to be chosen later. 
Let us bound now the risk of the estimator (4.10) from above. The 

last inequality and the elementary inequality ( 4.29) yield 

E1(fn(x) - f(x)) 2 

Ej (fn(x) - J </>n(x -y)dF(y) + J </>n(X -y)dF(y) - f(x)) 
2 

< (1 + 'Yn) Ej (! </>n(X - y)d(Fn(Y) - F(y))) 
2 

+ (1 +-y;;:1) (/ </>n(x -y)dF(y) - f(x)) 
2 

{Z(n) 2 
< (1 + 'Yn) 3 Ej} _

00 
(</>n(X - y)F(y) - 1Pn(Y)) 

X (1 - Fn(y-))2 Jn(Y) F(y)dF(y) 
(l-F(y-))4 Yn(Y) 

( -1 2) ( 1Pn(Z(n)) ) 2 

+ 'Yn + 3 + 3"fn + 'Yn Ej 1 - F(Z(n)) 

+ ('Y;;:1 + 2 + 'Yn)Ej (1/Jn(Z(n))) 2 

+(1+-y;;: 1 ) (/ ¢n(x-y)dF(y)-f(x))
2 

We choose now 'Yn such that 'Yn-+ 0 and bn logn)- 1 = o(l) as n-+ oo. 
Combining the last relation with Lemmas 4.3, 4. 7 and the Approxima­
tion Lemma 4.9 proves the theorem. □ 

Remark 4.21. In the case O < r < l one can also apply Theorem A.2 
instead of Lemma 4.8. In our case we take Tn = x + b, E = 2. Then we 
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derive relation ( 4.30) as follows: 

Ej (/ <Pn(X - y)d(Fn(Y) - F(y))) 
2 

Ej ( n-1/ 2 / F(y)Wn(g(y))d</>n(X -y) + J Rn(y)d</>n(X -y)) 
2 

< (l: ,n) J J F(t)F(u)g(ul\ t)d</>n(x - t)d</>n(X - u) 

+ (1 + ,~1) Ej (/ Rn(y)d</>n(X -y)) 
2 

and 

Ej (/ Rn(y)d</>n(X - y)) 
2 

< 2EJ J (</>~(x -y)Rn(Y)) 2 I{IRn(Y)I > C1n-1 logn}dy 

+2EJ J (</>~(x -y)Rn(Y)) 2 l{IRn(Y)I::; C1n-1 logn}dy 

C2(log n) 2lr C3(log n) 2+2/r 
< 2 . + 2 . n n 

Lower bound: proof of Theorem 4.2. Let Jo be an arbitrary den­
sity from the neighbourhood V and let Fo be the corresponding distri­
bution function. Consider the following family of densities: 

Je(y) = Je(Y, x, <Pn, Jo) = Jo(y)(l + 0(</>n(X - y) - <f>n(x)), 

where 101 ::; 0n, 

<f>n(x) = J <Pn(x - y)Jo(y)dy 

and </>n(Y) is defined by (4.9) with 

_ ( i; )- (logn-mloglogn) 1/r an - an m, u, r - 26 (4.33) 

instead of an defined by (4.6). Let 0n be such that En::; 0n::; Pn, where 
the positive sequences En and Pn satisfy 

. 1 2 
2 ( )l/ = o(l), Pnn = o(l). 

Enn logn r 

One can choose for example 0n = n-112(logn)-1/(4r)_ 

The proof of the theorem will proceed via the following two claims. 
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Proposition 4.1. For sufficiently large n, !0 EV. 

Proof. Take E > 0 such that Oc(fo) ~ V, where 

Oc(fo) = {J E F8: p(f,fo) < E}. 

We prove now that f0 E Oc(fo) for sufficiently large n where p = Pu 
generates the strong topology U8. 

It is easy to check condition ( 4.3) on the nonparametric class in case 
r = 1: for sufficiently large n, 

i~f { e70Y2
k (1 - F0(y))(l - G(y))} 

= i~f { e70 Y2
k (1 - F0 (y))(l - G(y))} (1 + o(l)) > a 

since Fo E F 8. 

Denote 
'1/J(y) = '1/J(y, x) = fo(y)¢n(x - y). 

First, by the Minkowski inequality, we have 

PuU0,fo) = 101 (/ exp{28IW} li.b(t,x) -¢n(x)/o(t)l 2dt) 112 

+ 101 / lfo(y)(¢n(X - y) - </>n(x))ldy 

< 20n (/ exp{28IW} li.b(t,x)l2dt) 112 

+ 20nl</>n(x)I (/ exp{28IW} l/o(t)l2dt) 112 

+ 0n J lfo(y)(¢n(x - y) - </>n(x))ldy 

< 20n (! exp{28IW} li.b(t,x)l 2dt) 112 + C10n(logn)1lr. 

Since 0n = o(n- 112), it suffices to show that the the first term on the 
right hand side of the last inequality converges to zero as n----+ oo. 

Note that 
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By the generalized Minkowski inequality (Nikol'skii (1975), p. 20)), the 
Cr-inequality (4.28), Definition 4.3 and (4.12), it follows that 

(/ exp{28IW} l'l,b(t,x)l 2dt) 
112 

< C2 (f If exp {51tl'} e'''" fo(t + u)¢n(u)dul
2 dt) 

112 

< C2 / (/lexp{8IW}eixuJo(t+u)¢n(u)l2 dt)
112 

du 

< C2 / (/lexp{81t+ulr}Jo(t+u)exp{8lulr}¢n(u)j2 dt)
112 

du 

< C3 (/ exp{28IW} lfo(t)l2dt) 
112 

/ exp{8lulr} l4>n(u)ldu 

< C4 / exp{8lulr} l4>n(u)ldu 

< C4 (/ exp {28lulr} I (qr* l(-an,an)) (u) 1
2 du) 

112 

= C, (f If exp{5lul'}q,(u - t)I(-a",a")(t)dtl
2 

du) 
112 

< C4 / (/iexp{8lulr}qr(u-t)l(-an,an)(t)l 2du)
112 

dt 

< Cs(/ exp{28IW} l<ir(t)l2dt) 
112 

/ e8lul''1(-an,an)(u)du 

= C5n112 (/ exp {281W} l11r(t)1 2dt) 
112 

since, by (4.33) and (iii), 

2 /exp{8a~} (logu) l~r = - -- du 
8r 1 8 

exp{8a~}a;-r( ( )) 
= '5r 1 + o 1 

2 nl/2(log n)l/r-1 
= r (28)1/r(logn)m/2 (l + o(l)) 

< C1../n. 



112 Chapter 4. Efficient density estimation with censored data 

Now evaluate, by (4.13), 

in case O < r < l and, by (4.14), 

in case r = l. 
Recalling the condition on the 0n, we obtain finally that 

PuU0,fo) ~ C100nn112 + C10n(logn) 1/r 

~ C10pnn112 + C1pn(logn) 1lr = o(l) 

as n ➔ oo. □ 

If Xi is distributed with density fo(y), then the corresponding ob­
servation (Zi, ~i) has the density 

fo(Y, r) = Uo(y)(l - G(y)))7 (g(y)(l - F0(y))) 1-T, r E {O, 1}. 

The following proposition describes the Fisher information 1(0) about 0 
contained in the observation (Z, ~). 

Proposition 4.2. As n ➔ oo, the relation 

1(0) <l;1 E,r [ 8 log ~iz, ~) r = fo(x~G(x) Co2gt r/r (1 + o(l)). 

(4.34) 
holds uniformly in 0, 101 < 0n. 

Proof. By straightforward calculations, 

1(0) E,r [ 8log ~iz, ~) r 
I (</>n(X - y) - ¢n(x))2 fo(y)(l - G(y))dy 

1 + 0(</>n(X - y) - </>n(x)) 

I (f~oo fo(u)(</>n(X - u) - ¢n(x))du) 2 dG(y) 

+ 1 - Fo(y) . 
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Split the second term in the right hand side of the last inequality into 
two parts: the integral over (-oo, x + E] and the integral over (x + E, oo ): 

I (I~oo fo(u)(</Jn(X - u) - ¢n(x))du) 2 dG(y) = J_x+E + roo 
1 - Fe(y) -oo lx+E 

= Ii+h. 

The integral J~00 fo(u)(</>n(x - u) - ¢n(x))du is bounded for y E 
(-oo, x + E] by Lemma 4.2 and the Approximation Lemma 4.9. Obvi­
ously, 

1 - Fe(Y) (1 - F0 (y))(l + o(l)) 

> (1 - F0 (x + c))(l + o(l)) 

for y E (-oo, x + E]. Therefore, the integral Ii is bounded. 
Further note that 

and the function </Jn ( x - y) is bounded for y E ( x --l oo). Therefore, for 
y E (x + E, oo) and sufficiently large n, 

(J~00 fo(u)(</>n(x - u) - ¢n(x))du) 2 

1 - Fe(Y) 

< 

(J; fo(u)(</>n(x - u) - ¢n(x))du) 2 

1 - Fe(y) 

C1 (J; fo(u)du) 2 

1 - Fe(y) 

C1 (1 - Fo(y)) 2 

(1 - Fo(y))(l + o(l)) 
< C2(1 - Fo(y)) :S C2. 

Thus, we obtained that 

I (f~oo fo(z)(</>n(X - z) - ¢n(x))dz) 2 dG(y) _ 
1 - Fe(y) - O(l) 
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uniformly in 0, 101 < 0n. 
According to Lemmas 4.1 and 4.2, it is not difficult to see that 

I (</>n(x - y) - 4>n(x)) 2 fo(y)(l - G(y))dy 
1 + 0(</>n(x - y) - <Pn(x)) 

j </>;(x - y)fo(y)(l - G(y))dy (1 + o(l)) 

- . 1/r 
fo(x)G(x) (logn) (l + o(l)). 

1r 28 

uniformly in 0, 101 < 0n. Relation (4.34) is proved. 

Now we proceed to prove the theorem. Introduce 

□ 

where v0(x) is a probability density on the interval [-1, 1] with finite 
Fisher information 

Io= /_1
1 (vb(x)) 2vo 1(x)dx, 

such that vo ( -1) = vo ( 1) = 0 and vo ( x) is continuously differentiable 
for lxl < 1. The function v(x) is a probability density with support 
[-0n, 0n]. It is easy to calculate the Fisher information of the distribution 
defined by density v(x): 

Applying now the van Trees inequality for the Bayes risk below (Theo­
rem A.l) and Propositions 4.1 and 4.2, we obtain that, for sufficiently 
large n, 

i~f sup Ej(in - f(x)) 2 

fn fEV 
~ 2 > i~f sup E10 Un - fo(x)) 

fn 101:SBn 

> i~ff E10 Un - fo(x)) 2v(0)d0 
fn 

> 
(f (8fo(x)/80) v(0)d0) 2 

n J I(0)v(0)d0 + I(v) 
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or 

> 

> 

Uo(x)</>n(0)) 2 (1 + o(l)) 

n J I(0)v(0)d0 + 100-;; 2 

( fo;x)) 2 Co2gt) 2/r (1 + o(l)) 

- 1/r 
nfo(x;G(x) (1o2gc5n) (1 + o(l)) + IoE-;;2 

fo(x) (logn) l/r (l + o(l)) 
mrG(x) 28 

n fo(x) 2( 
l~~:f (logn)l/rrn(V) 2 (28)1/r1rG(x) = a fo)-
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The function Jo was chosen arbitrarily from the neighbourhood V and 
hence, by the same reasoning, this relation is valid for any function 
f EV: 

liminf ( n )1! rn(V) 2 a 2(!). 
n➔oo logn r 

Therefore 
liminf( n)l/ rn(V)2supa2(!), 
n-too log n r JEV 

which proves the theorem. □ 

4. 7 Bibliographic remarks 

The problem of density estimation under random censorship has been 
treated by a number of authors (see for example Diehl and Stute (1988), 
Mielniczuk (1986), Lo et al. (1989), Hentzschel (1992), Kulasekera 
(1995), Huang and Wellner (1995), Liu (1996)). In Hentzschel (1992) an 
estimator based on the orthonormal system of the Laguerre series on the 
positive line is investigated and under some assumptions the rates of the 
mean integrated square error and the mean square error are obtained. 
In Kulasekera (1995) upper Li-bounds for the kernel-type estimator are 
given for two classes of densities: monotonically decreasing densities on 
[O, oo) and densities which are of bounded variation on [O, l]. For a de­
creasing density function, Huang and Wellner (1995) showed that the 
nonparametric maximum likelihood estimator of the density is asymp­
totically equivalent to the estimator obtained by differentiating the least 
concave majorant of the Kaplan-Meier estimator and established the 
asymptotic distributions of the different estimators at a fixed point. 
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However, in all the above mentioned papers the question of optimal­
ity has not been touched on. In a recent paper Liu (1996) considered 
the general problem of estimating functionals of a distribution F for 
some nonparametric classes defined in terms of the Hellinger modulus of 
continuity. With regard to density estimation, minimax Kaplan-Meier 
based kernel procedures were shown, under some conditions, to be of 
optimal rate and, moreover, within certain lower and upper bounds. 

In the nonparametric minimax estimation context, the notion of 
asymptotic optimality is usually associated with the optimal rate of con­
vergence of the minimax risk. In order to derive the exact asymptotics 
of the minimax risk and to be able to compare the estimators with the 
optimal rate of convergence, one may strengthen the optimal rate results 
by finding optimal constants when they exist. Results about the opti­
mal constants in minimax density estimation have only been obtained in 
a limited number of works for models with independent identically dis­
tributed observations. The majority of authors has considered the global 
minimax risk. However, studying the so called local minimax risk yields 
more exact results. We mention the work of Golubev and Levit (1996a) 
whose results motivated the present study. In the problem of estima­
tion of an analytic density at a given point, with independent identically 
distributed observations, they derived the exact limiting behavior of the 
local minimax risk and proposed an efficient estimator. 

The main results of this chapter can also be found in Belitser (1998a) 
and Belitser and Levit (1997) (cf. also Belitser (1998b)). 



Appendix A 

A.1 A technical lemma 

In this section we present a technical lemma which is just a constructive 
version of Theorem 2.1. We use this lemma also in Chapter 3. A related 
assertion is given in Pinsker (1980), see Lemma 1 in this paper. 

Let (ak, k = 1,2, ... ) and (ak, k = 1,2, ... ) be two positive se­
quence and let ( ak, k = l, 2, ... ) converge to infinity. The following 
ellipsoid is a compact set in l2: 

00 

e = 8(Q) = {0: La~0~ :s; Q}. 
k=l 

Define the functional on the ellipsoid: 

00 

RE(x, 0) = L ( E2a~x~ + (1 - xk)20~) . 
k=l 

Let cE be a solution of the equation 

00 

E2 L a~ak(l - cak)+ = cQ 
k=l 

and 
00 

dE = dE(e) = E2 L a~(l - cEak)+, 
k=l 

where b+ denotes the nonnegative part of b. 

Lemma A.1. Let cE and dE be defined by (A.2) and (A.3). Then 

infsupRE(x,0) = sup inf RE(x,0), 
x BEG 0E8 x 
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(A.l) 

(A.2) 

(A.3) 

(A.4) 
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with the saddle point (x, 0) given by 

and 

Proof. Let us show first that 

00 

(1 - cEak)+, 

E2a~ (1 - cEak)+ 
cEak 

Appendix 

(A.5) 

(A.6) 

sup RE(x, 0) = I>2a~x~ + Q sup(l - xk)2a;,2. (A.8) 
0E0 k=l k::0:1 

Denote the right hand side of (A.8) by RE(x). Clearly, sup0E0 RE(x, 0) :S; 
RE(x). For an arbitrary""> 0, let l be such that 

(1 - xz) 2az2 2 sup(l - Xk) 2a;, 2 - K,. 

k::O:l 

Then by choosing 0 E 8 such that 0f = Qa12 and 0~ = 0, k -:f- l, we get 
RE(x, 0) 2 RE(x) - "", which proves (A.8). 

Define the set 

Xt = {x: sup(l - xk)2a;,2 = t2 }, 
k>l 

Obviously, for any t 2 0, 

00 

inf RE(x) = RE(x(t)) = Qt2 + E2 L a~(l - tak)! ~ SE(t), (A.9) 
Xt k=l 

where xk(t) = (1 - tak)+- Thus, according to (A.9), we have 

Since the function SE(t), t 2 0, is continuous, strictly convex, differen­
tiable and SE(oo) = oo, there exists a unique point in which inft:=::o SE(t) 
is attained. Therefore, from (A.8) and the last relations we have 

(A.10) 
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because S~(cE) = 0 is exactly the equation (A.2) and x(cE) = x. 
From (A.2) it follows that 

Therefore, 

00 

Qc; = E2 L cric£ak(1 - cEak)+. 
k=l 

00 

Qc; + E2 L cri(l - cEak)! 
k=l 

00 

E2 L cri((c£ak(1 - cEak)+ + (1 - cEak)!)) 
k=l 
00 

E2 L cri(l - cEak)+ = dE. 
k=l 

Consider now infx RE(x, 0). It is clear that 

where the infimum is attained for 
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Note that Xk = xk(0k), where the xk's and the Bk's are given by (A.5) 
and (A.6). Therefore, the only feasible saddle point is (x, 0). It follows 
from (A.2) that 0 E 8. Therefore, by direct calculations, 

sup inf RE(x, 0) ~ inf RE(x, 0) = dE. 
0E8 x x 

□ 

A.2 The van Trees inequality 

In this section we give a version of van Trees inequality we use in chap­
ters 2, 3 and 4. This inequality is due to van Trees (1968), for a more 
recent reference see Gill and Levit (1995), where some interesting ap­
plications of this inequality are given. Further applications of the van 
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Trees inequality can be found in Bobrovsky et al. (1987), Klaassen 
(1989), Brown and Gajek (1990), Golubev and Levit (1996a), (1996b) 
and Schipper (1996). 

The van Trees inequality applies to the quadratic Bayes risk in the 
problem of estimating a finite dimensional parameter, while we are in­
terested in nonparametric situations; for example, in estimating a curve 
ranging over a nonparametric class. Therefore, to obtain a reasonable 
lower bound, one has to choose carefully the finite dimensional subfami­
lies in the nonparametric class under consideration. The idea is to select 
the subfamilies of growing dimensions such that the difficulty of the prob­
lem of estimating a parameter of growing dimension is asymptotically 
equal to the difficulty of the original nonparametric estimation problem. 
This requires an understanding how the underlying nonparametric class 
can be best approximated by a finite dimensional subset. 

We follow Gill and Levit (1995). 
Let 8 be a closed interval on the real line and let f (x, 0) be the 

density of a measure Po with respect to the dominating measure µ. 
Further, let 1r be some probability distribution on e with a density >. 
with respect to Lebesgue measure. Suppose that >. and f(x, •) are both 
absolutely continuous, and that >. converges to zero at the endpoints of 
the interval 8. 

Suppose Y is drawn from the distribution 1r, and, conditional on Y = 
0, let Xi, ... , Xn be a sample from the probability distribution Po. We 
write Eo for expectation with respect to the conditional distribution Po, 
and E for expectation with respect to the joint distribution of X 1, ... , Xn 
and Y. Let 0n = 0n(X1, ... , Xn) be any estimator of 0 based on the 
observations. Define the Fisher information for 0 

I(0) = Eo ( 8log£jx, 0)) 2 

and the Fisher information for a location parameter in the distribution 
1T 

I(>.) = E ( 8 lo~:(x)) 2 

Theorem A.1. Suppose that f (x, 0) is absolutely continuous in 0. Sup­
pose further that I(0) is continuous. Then, for any absolutely continuous 
function 'I/; and any estimator 0n, the following relation holds: 

(

A )2 (E'l/;'(Y)) 2 

E 0n - '1/;(Y) ~ nEI(Y) +I(>.). 
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The proof of this theorem can be found in Gill and Levit (1995). 

A.3 An approximation of the Kaplan-Meier es­
timator 

Throughout this section we use the notations from Chapter 4, i.e. F and 
Fn denote the distribution function of "survival times" and the Kaplan­
Meier estimator respectively. 

In the following theorem of Burke et al. (1988) (see also Burke 
et al. (1981)) an approximation of the Kaplan-Meier estimator is given 
in terms of Wiener processes. 

Theorem A.2 (Burke, Csorgo and Horvath (1988)). Let the dis­
tribution function F be continuous and, for each n :2: 1, let Tn = Tn(E) 
be a number such that 

and 

where E is any given positive number. Then on a suitable probability 
space there exists a sequence {Wn(t),O:::::; t < oo}~=l of standard Wiener 
processes such that 

where 

Rn(Y) = Rn(Y, F, G) = (Fn(Y) - F(y)) - n-1/ 2 F(y)Wn(g(y)), 

B1 = B1 ( E) and B2 are some positive constants. 

The proof of this theorem can be found in Burke et al. (1988). 
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