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Chapter 1 

General introduction 

This book is devoted to estimation problems in statistics. In particular 

we study the asymptotic performance of certain estimators - defined as 

minimizers of certain loss functions - under purely metric assumptions 

on the parameter space. The nature of the statistical problem may be 

nonparametric, i.e. the parameter space is allowed to be infinite dimen

sional. In the statistical analysis an important role is played by the 

metric structure of the parameter space as described by its metric en

tropy numbers. These numbers occur in classical approximation theory 

and modern probability theory. In the next chapter we give their formal 

definition and present some examples. 

By now it is a well-known phenomenon in mathematical statistics 

that there exists a large class of estimators with good statistical prop

erties for the unknown parameter of interest, provided it belongs to a 

"nice" (pseudo) metric space. At this point, "nice" should be under

stood in terms of small entropy numbers. We refer to the work of Le 

Cam [25], [26], Ibragimov & Has'minskii [22] and Birge [4]. On the other 

hand it follows from the work of Birge & Massart [5] and Van de Geer 

[45] that estimators, which seem reasonable at first sight- such as maxi

mum likelihood estimators -, can have suboptimal rates of convergence 

or can even be inconsistent if the entropy numbers are too large. 

Let us focus on the classical situation of estimating a finite dimen

sional parameter. This will be the topic of Chapter 3. Let X1, X2, ... 

be a sequence of independent, identically distributed (i.i.d.) random 
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variables with common probability measure P E 'P. From the first n 

observations we construct the empirical measure Pn. This measure 

puts mass 1/n at each observation Xi, i = 1, ... , n. The signed measure 

y'ri,(Pn - P) will be denoted by En. We wish to estimate the true value 

00 of a parameter 0 E 8 C ]Rk; 00 is assumed to be an interior point of 

8 which uniquely minimizes the deterministic quantity 

M(0) =jg(·, 0) dP, (1.1) 

over all 0 E 8, where Pis the true underlying probability measure. The 

M-estimator of 0o, which we denote by On, is implicitly defined as the 

minimizer of 

/ 
1 n 

Mn(0) = g(·,0)dPn = - Lg(Xi,0), 
n i==l 

(1.2) 

the empirical counterpart of M. The function g is sometimes called the 

contrast function. In the classical situation 'P ={Po: 0 E 8}, 

g(x, 0) = -log fo(x), -oo < x < oo 

where Jo is the density of P0 with respect to the Lebesgue measure, and 

0n is the maximum likelihood estimator. However, we also have models 

in mind where 0 describes only some aspect of P rather than specifying 

P completely. Under the assumption that there exists a linear expansion 

of g(·, 0) in a vicinity of 0o, i.e. 

g(·, 0) = g(·, 0o) + (0 - 0o)' ~(-) + 10 - 0olr(·, 0) (1.3) 

such that 

(i) J ~2 dP < oo 

(ii) the empirical process {Jr(·, 0) dEn 0 E 8} is stochastically 

equicontinuous at 0o, 

Pollard proved asymptotic normality of the M-estimator 0n. The stochas

tic equicontinuity assertion means that 
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for every sequence On which converges to 00 in probability. Pollard 

showed that this condition is- implied by certain entropy conditions on 

{r(·, 0) : 0 E 8} {cf. Pollard [35], p. 150, Lemma 15). 

We obtain more general results if we allow the contrast function g 

to depend on the unknown probability measure P. This more complex 

case has been studied by for instance Stute [38]. He investigated the 

related problem where 0o is now given as the (unique) root of 

J g(0, F, x) dF(x) = 0, (1.4) 

where F is the distribution function associated with P. A natural esti

mator for 0o is any 0n E 8 which approximately solves 

J g(0,Fn,x)dFn(x) =0 (1.5) 

within o(l/n). Here Fn is the empirical distribution function. 

The initial goal of the present author was to give a new and shorter 

proof of the asymptotic normality of this estimator as considered by 

Stute, by using more recent probabilistic results of the theory of empiri

cal processes. Moreover, it turned out that the formulation of the prob

lem can be generalized. In fact we consider a function , : 8 x P -+ IR 

with the property that ,(0, P) is minimal for 0 = 0o with P being 

the true probability measure. We establish asymptotic normality of 0n, 
which minimizes the empirical contrast 

(1.6) 

over 0 E 8. We shall need a kind of stochastic differentiability of the 

empirical process vnb( ·, P) - ,( ·, Pn)) as the main condition for the 

proof of this result. We shall proceed by arguing that this condition can 

be checked by empirical process methods involving entropy assumptions. 

In nonparametric statistical problems the "entropy approach" has 

turned out to be quite fruitful. Especially nonparametric maximum like

lihood estimation has received much attention during the last decade. 

Again, let Xi, X2, ... be i.i.d. random variables taking values in a mea

surable space (X, A) with common probability measure P. The available 
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infoq:nation we qave of P is that it belongs to some family of probability 

measures 'Pon (X, A). In addition, suppose that every Q E 'Pis dom

inated by some a-finite measure µ. The induced densities are denoted 

by 

dQ 
J(x) = dµ (x). 

It can be shown ( cf. Van de Geer [42]) that the following relation holds 

true 

2 A /, n,A H (Jo, fn) ~ 2 [ -f, - 1) d(Pn - P). 
/o>O 0 

(1. 7) 

Here 

is the squared Hellinger distance between two densities, f O = dP / dµ 

is the true density and fn is the nonparametric maximum likelihood 

estimator which maximizes the likelihood 

over f = dQ/dµ, Q E P. As a consequence of the strong law of large 

numbers, 

(1.8) 

for any density J. If this convergence holds uniformly inf = dQ / dµ, Q E 

'P, it is easily seen from (1.7) that the nonparametric maximum likeli

hood estimator is Hellinger consistent, i.e H(j, Jo) ~ 0. Uniform 

convergence of Pn - P over classes of functions has been studied exten

sively in the theory of empirical processes nowadays. As a result, we 

can formulate Hellinger consistency in terms of metric conditions on the 

class of densities. Second, we point out that the rate of convergence 

follows from a more precise analysis involving the modulus of oscillation 

of the empirical process fto>O ([! / Jo]112 - 1) d(Pn - P). 
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The last part of this study ( Chapters 4, 5 and 6) is confined to a 

related topic, viz. nonparametric regression estimation. In this case 

we have n independent observations (Xi, Yi), i = 1, ... , n. The Yi are 

related to the Xi by a regression model 

(1.9) 

The random variables ci are viewed as disturbances in the model (1.9) 

and they are small in the sense that lEci = 0 and lEc[ < oo. Knowledge 

about the unknown regression function g is expressed by writing g E g, 
where g is some known class of functions. For instance we might assume 

that g is a linear, smooth or just a monotone function. At the moment 

we do not dwell on the various possible choices for Xi, i = 1, ... , n. 

They may be random or deterministic. 

We shall consider the nonparametric least squares estimator. This 

estimator is defined implicitly as the minimizer of the sum of squares 

n 

L)Yi - g(Xi))2 
i=l 

and is denoted by g. The statistical behavior of this estimator has been 

studied by Nemirovskii et al. (cf. [31], [32]). They restrict themselves 

to the classical Sobolev spaces. Van de Geer (cf. [39],[40]), however, 

considers spaces g which satisfy certain metric entropy conditions with

out using any analytical properties. These spaces include the Sobolev 

spaces as treated in [31],[32]. 

We shall follow Van de Geer's approach in this study. Parallel to 

inequality ( 1. 7) we have in the regression setting 

(1.10) 

where 

is the squared L2 (Pn) distance between two functions f and g. For the 

moment suppose X1, X2, ... are i.i.d. with common probability measure 
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P. Again b:y virtue of the. strong law of large numbers, 

(1.11) 

for g E L1(P), and a uniform version of (1.11) would entail consistency 

of the least squares estimator (in the L2(Pn) metric). Gine & Zinn (cf. 

[14]) proved that the uniform strong law of large numbers 

:~811 gd(Pn -P)I a.s> 0 (1.12} 

is equivalent to the envelope condition 

/ suplgl dP < oo 
gEQ 

(1.13) 

and a certain entropy condition on Q. The envelope assumption (1.13) 

is unfortunately rather restrictive. It even excludes the classical linear 

model 

with a, f3 E Ill, IEc:i = O, IEc:1 < oo. Van de Geer established L2(P) 

consistency without assuming this restrictive envelope condition on Q. 

To formulate her result, we need some more notation. Define for each 

g EQ, 

g 
f = J(u) = 1 + llull2' 

with !lull~ = J g2 dP. Next, let C > 0 and 

{ 
C iff>C 

(f)c = -C if f < -C 
f otherwise 

Under an entropy assumption on the class of rescaled functions (f)c 

and provided 

lim sup / / 2 J { If I > C} dP = 0, 
C➔oo /E:F 

the least squares estimator is L2 (P) consistent. 
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We shall establish a similar result but under a different set of condi

tions. In particular, we do not need the uniform integrability assump

tion. Second, we are interested in the necessity of our metric assump

tions. In other words, how good is this metric approach in fact? 

The organization of the third part of the book is as follows. In 

Chapter 4 we consider consistency issues. More specifically, necessary 

and sufficient entropy conditions will be derived for consistency of the 

nonparametric least squares estimator. 

Rates of convergence will be the topic in Chapter 5. We recall Van 

de Geer's result ( cf. [ 41]) that more restrictive entropy conditions entail 

rates of convergence, provided the errors fulfill an exponential moment 

condition. We show that the rates of convergence are optimal for nor

mally distributed disturbances Ei- But situations where this restriction 

on the errors fails, will be discussed as well. 

Finally, we present some asymptotic distribution theory for the least 

squares estimator in Chapter 6. In particular, we prove asymptotic 

normality of the squared empirical L2 (Pn) norm of the least squares 

estimator. 

But first we set out with an overview of some results of the theory 

of empirical processes, which will be needed in this work. 
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Chapter 2 

Empirical process theory 

We introduce the entropy numbers and discuss their role in the theory of 

empirical processes. The purpose of this chapter is to provide the reader 

with mathematical tools, which will be frequently used in the remainder 

of this work. We present some of the main results of the theory of 

empirical processes as developed by Dudley, Vapnik & Cervonenkis, Gine 

& Zinn, Pollard and others. For an overview of this area, we refer to 

Van der Vaart & Wellner [49]. Another recent review with emphasis 

on the statistical applications is the forthcoming monograph by Van de 

Geer [46]. 

2.1 Covering numbers 

Let (T, d) be a pseudo metric space. This means that d possesses the 

properties of a distance except that it does not necessarily distinguish 

between two different elements, so d(s, t) = 0 need not imply s = t. The 

diameter of Tis denoted by .6. = -6.(T), i.e . 

.6. = sup {d(s, t) : s, t ET}, 

possibly infinite. Let To be a subset of T. 

Definition 2.1 Let 8 > 0. A set Sa is called a 8-covering net for Ta 

if and only if for every element t E To there exists an element s E So 

satisfying d(s, t) :S 8. Equivalently, To ~ UsEs0 B(s, 8) with B(s, 8) = 
{t ET: d(s,t) :S 8}. 
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We say a pseudo metric space is totally bounded if there exists a finite 

<5-covering net for every <5 > 0. (To, d) is compact if and only if it is both 

complete and totally bounded. 

Definition 2.2 Let 8 > 0. Denote by N(8, d, To) the 8-covering number 

of To, defined as the smallest number of closed balls needed to cover To 

or equivalently, the cardinality of the smallest 8-covering net. The <5-

entropy number or metric entropy of To is defined by 

H(8, d, To)= log [N(8, d, To)]. 

Clearly these numbers are decreasing in 8. Metric entropy describes 

an important geometric feature of To. It can be viewed as a measure of 

how totally bounded (To, d) is. The smaller this number relative to its 

diameter, the more "airy" the space. Another way to measure the size 

or "thickness" of (To, d) is by means of its 8-packing numbers. 

Definition 2.3 Let 8 > 0. Denote by D(8, d, To) the 8-packing num

ber of To, defined as the largest number m for which there exist points 

ti, ... , tm E To with d(ti, tj) > 8 for i f= j. The 8-capacity number is 

given by 

C(8, d, To) = log [D(8, d, To)]. 

These two concepts are essentially the same in view of the following 

relation between covering and packing numbers 

8 
N(8, d, To) ~ D(8, d, To)~ N(2, d, T0 ) 8 > 0, (2.1) 

which has been proved by Kolmogorov & Tichomirov [23]. 

If there exists an ordering on T, a more refined way to describe the 

metric geometry of (To, d) is by the so-called entropy with bracketing. 

Define Tf ( 8) as the smallest set for which each element t E To can 

be sandwiched between two 8-separated elements of Tf ( 8), i.e. for each 

t E To there exist-tL, tu E Tf (8) with d(tL, tu)~ 8 and tL ~ t ~ tu. Let 

NB ( 8, d, To) be the cardinality of Tf ( 8); the logarithm of this number 
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is called the 5-entropy with bracketing number. Generally this entropy 

with bracketing number is larger than the ordinary metric entropy. 

Let us end this section by presenting some examples of pseudo metric 

spaces. It is often rather difficult to compute entropy numbers, but 

for many interesting spaces good approximations of these numbers are 

available. 

Example 2.1 (Sobolev spaces) For every k = (k1 , ... , kn) E INn, de

fine the differential operator Dk by 

Dk _ 8k1 + ... +kn 
- k k ' 

8X11 ,,, 8Xnn 

Let :F be the class of real valued, continuous functions on the the unit 

cube sn in m,n possessing uniformly bounded partial derivatives of order 

k ~ p, i.e. for some constant C1 independent of f, 

max maxlDkf(x)I ~ C1. 
k1 + ... +kn:s;P xESn 

Moreover the p-th order partial derivatives of each f satisfy a Lipschitz 

condition of order a (0 <a~ 1), i.e. there exists a C2 > 0 independent 

of f such that 

for all x, y E sn and all k E INn with k1 + ... +kn = p. Under the 

uniform metric p(f, g) = maxxESn lf(x) - g(x)I, it is known that (cf. 

Kolmogorov & Tichomirov (23)) the entropy of this class is of the order 

H(8, p, :F) ::::: 5-nfq, q = p + a. 

We use the convention f ::::: g if there exist positive constants C1 and 

C2 such that C1lfl ~ 191 ~ C2lfl- For dimension n = 1, we define the 

smoothness of a function by 

Jp(f) = fo1 1J(p)(x)l2dx. 

One can show ( cf. Birman & Solomjak (6] ) that 

H ( 8, P, { f : [O, 1] ➔ (-C, C] : Jp (f) ~ C}) ::::: 5-l/p. 
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Example 2.2 Let f be a continuous function on [O, 1] and b.(J, x, t) be 

the second difference of f at x with increment t, i.e. 

b.(f, x, t) = f(x + 2t) - 2f(x + t) + J(x). 

Set 

w(f, 8) = max lb.(!, x, t)I. 
ltl:So, xE[0,1-2t] 

For a strictly increasing function 1/J, we define the set A-rp of all continuous 

functions J: [O, 1] ➔ IR with maxxE[0,1] lf(x)I ~Kand w(J, 8) ~ 1/;(8). 

If log(l/1/;(8)) ~ 1/8 and M(8) = L~o'l/J(2-i8) < oo, then the order of 

H(8,p,A-rp) is at most 1/M-1(8) under the uniform metric p. Moreover 

if 1/J is concave and strictly increasing, H ( 8, p, A"P) is of order at least 

1/1/;-1(8). See Clements [7]. 

Example 2.3 (VC-classes) Let C be a collection of measurable sub

sets of a measurable space (S, S). We say that C is a polynomial class 

or VG-class (named after Vapnik-Cervonenkis) if there exists a discrimi

nating polynomial p such that for every N E 1N and every subset A C S 

with cardinality N, there are at most p(N) distinct subsets of the form 

An C with C E C. Thus C picks out only p(N) from the 2N possible 

subsets. 

A collection C shatters a finite set Co if every subset of Co takes the 

form Co n C with C E C. If a collection C can not shatter every set of N 

points, then it can be shown (see e.g. Pollard [35] ) that C is a VC-class 

and the degree of the discriminating polynomial is less than N. 

The most familiar example of a VC-class is the collection of quad

rants (-oo, t], t E JRk. The class of sets {g ~ O} with g ranging over 

a finite dimensional vector space is another example of a VC-class ( cf. 

Pollard [35]). 
VG-classes have many known properties, for instance the classes 

{Cc: CE Ci}, {C1 n C2: C1 E C1,C2 E C2}, {h(C): CE C1} for any 

VG-classes C1,C2 and any function hon S, still possess the VG-property. 

As a consequence quite large classes can be built from elementary VC

classes. 
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Let Q be a probability measure on the space (S, S) and let Pr(Q) 

be the U(Q) pseudo norm on S. Then we have the following entropy 

bound for any VC-class C, 

(
l)r(V-1) 

N (8,pr(Q),C) -5, Kv 8 , (2.2) 

where K v is a constant only depending on V, the smallest integer for 

which no set of V points can be shattered by C (cf. Van der Vaart & 

Wellner [49]). This means that the 8-covering number of a VC-class has 

a polynomial growth in 1/6. 

The graph of a function f : S ➔ IR is defined as the set 

G(J) = {(x, t) I O -5, t -5, f(x) or f(x) -5, t -5, O}. 

We call a collection of functions :Fa VG-graph class if the graphs { G (!) : 

f E :F} form a VC-class in S x IR. The natural envelope F of F is defined 

as the pointwise supremum of IJI, F(s) = supfEF lf(s)I. If FE U(Q), 

then we find an upper bound for VC-graph classes, similar to (2.2); the 

6-covering number grows polynomially in 1 / 6. See for instance Pollard 

[35] or Van der Vaart & Wellner [49]. 

Another interesting result is that given the bound 

N (6IIFll2,P2(Q), :F) -5, C (}) v, 0 < 8 < 1 

the entropy of the sequentially closed convex hull of F satisfies 

(
1)2V/(V+2) 

H(6IIFll2,P2(Q),conv(F))-5, Kc,v 8 , 0 < 8 < 1, 

where IIFll2 denotes the L 2(Q) pseudo norm of the envelope F of F. 

As a consequence of this, by taking :F = U[o,t), t ~ O}, we find for the 

class g of functions of bounded variation, which are uniformly bounded 

by 1, the entropy bound 

for every probability measure Q. We refer to Birman & Solomjak [6], 

Ball & Pajor [2] and Van de Geer [42]. 
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2.2 G.aussian processes 

Gaussian processes form a fundamental part of probability theory. For 

an arbitrary index set T, a random process Z = { Zt : t E T} is called 

Gaussian if each finite dimensional projection (Zt1 , ••• , Ztm) is normally 

distributed. We call {Zt : t E T} centered if IEZt = 0 for each t E T. 

The covariance structure 

completely specifies the distribution of a centered Gaussian process Z. 

This makes the L2 pseudo distance, defined by 

dz(s, t) = (IE(Zs - Zt) 2) 112 , s, t ET 

a natural metric on T. 

We put llz(t)\lr = suptET lz(t)I for any family of numbers z(t) in

dexed by T. In many situations we are interested in the behavior of 

supt \Ztl• The entropy numbers N(8, dz, T) as a measure of the mas

siveness of T, are quite useful for this purpose. However the quantity 

IIZ(t)\\r need not be a random variable. We avoid these measurability 

problems by assuming T is countable. The following result is known in 

the literature as Sudakov's minorization. 

Theorem 2.1 Let { Zt : t E T} be a centered Gaussian process. Then 

for some numerical constant C > 0, we have 

IEI\Ztllr ~ Csup8jH(8,dz,T). 
8>0 

(2.3) 

An upper bound for IE\\Zt!lr is given next in the following theorem 

of Dudley [9]. 

Theorem 2.2 Let Z = {Zt : t E T} be a centered Gaussian process. 

Then for some numerical constant C > 0, we have 

(2.4) 

where D. = SUPs,tET dz(s, t). Moreover Z has a version with almost all 

sample paths Zt = Z(w, t) bounded and uniformly continuous on (T, dz), 

provided the entropy integral on the right in (2.4} is finite. 
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Proofs of Theorems 2.1 and 2.2 are given in e.g. Ledoux & Talagrand 

[27]. Later on we shall see that (2.4) holds for more general processes 

satisfying a certain Lipschitz condition. 

2.3 Subgaussian processes 

Let (T, d) be a pseudo metric space. A stochastic process Z = { Zt : t E 

T} is called subgaussian if 

(2.5) 

holds true for all s, t E T and x > 0. The constants 2 and 1/2 in 

the definition are irrelevant; they may be replaced by different positive 

constants. In many applications one is interested in local suprema of 

random processes. Let to ET, 8 > 0 and T(8) = {t ET I d(t, to) ~ 8}. 

Under nice behavior of the entropy numbers of (T, d), the following the

orem states that the tails of the probability distribution of the quantity 

IIZtllT(6) decrease exponentially fast. The proof is almost the same as 

the proof of Theorem 3.3 in Van de Geer [41). 

Theorem 2.3 Let Z = {Z(t) : t E T} be a subgaussian process with 

continuous sample paths. Then for some numerical constant K > 0, we 

have 

for 

Proof. Set 8k = 2-k8, T(O) = {to} and let T(k) be a minimal 8k-covering 

net for T(8), k = 1, 2, .. .. By continuity of the sample paths, we may 

write 

00 

Z(t). - Z(to) = L ( Z(fCk)) - Z(t<k-l))) , 
k=l 
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where t(k) E T(k) with d(t, t<k)) s Ok for each t E T(o). Next, we define 

_ ! (12JiJH(ok,d,T(o)) v'k) k-1 2 
'T/k - 2 max 2kxo ' 2k E ' - ' ' ... 

with E = Ek=:12-kJk. For x ~ 12v'28-2 Ek=18k✓H(ok,d,T(o)), the 

series Ek=i 'f/k S 1, which implies 

n> { IIZ(t) - Z(to) llr(o) > x82 } S 
00 

S L n> { IIZ(t(k)) - Z(t<k-l)) IIT(6) > 'f/kX02 }. 

k=l 

Observe what has happened: the supremum is now taken over only 

at most N(ok, d, T(o)) • N(ok-I, d, T(8)) s {N(8k,d, T(8))}2 elements. 

Hence 

n> { IIZ(t) - Z(to)llr(o) > x82 } S 

S 2 f: exp ( 2H(8k, d, T(o)) - 1~ 22kr,lo2x2 ) S 
k=l 

S 2 :E exp (- 3
1
622kr,l82x2) S 2 :E exp (- 3

1
6o2x2 E-2k) , 

k=l k=l 

where we used the subgaussian property of each single Zt, the definition 

of 'f/k and the fact that d(t(k), t(k-l)) S 8k + 8k-t = 3ok by the triangle 

inequality. Using the crude bound ES 2, the property of the geometric 

series 

00 
(- (xo)2 ) _ exp (- (~)2) 

L exp 12 k - ( xo 2) 
k=l 1 - exp - ( 12 ) 

and the inequality 

(1 - exp(-z))-1 S 1 + 'f/ ~ z ~ log ( 1 ; 'f/), 
for all z > O, 'f/ > 0, we obtain (2.6). Using the monotonicity property 

of the entropy numbers, we may replace the infinite series 

Ek=i okJH(ok, d, T(8)) by the corresponding integral (cf. Pollard [37), 

p. 12). The proof is complete. D 
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Remark 2.1 If the entropy integral J02 J H(xo, d, T( o)) dx makes sense, 

then (T(o), d) is totally bounded. Hence there exists a sequence of count

able dense subsets converging to T(o). Because of the exponential de

crease for the differences IZ(s) - Z(t)I, we can apply the Borel-Cantelli 

lemma to show that {Z(t) : t E T(o)} has uniformly continuous sample 

paths with probability one. 

Suppose the stochastic process Z fulfills a first order Lipschitz con

dition 

IZ(s) - Z(t)I ~ ad(s, t), s, t ET (a.s.) {2.8) 

Then the chaining can be stopped after finitely many steps and hence 

the entropy integral condition can be slightly weakened. Problems for 

the entropy numbers H(o, d, T) typically arise in the neighborhood of 

o=O. 

Corollary 2.1 Let Z = {Z(t) : t E T} be a subgaussian process with 

continuous sample paths and let (2.8) hold true for some a> 0. Then 

for some numerical constants K1, K2, K3 > 0, we have 

for 

12 . I log ( 1 +EE). XO~ K2 y H(ow, d, T(o)) dw V K3 
· x6/4a 

Proof. Define Ok= 2-ko as before and set 

{ xo2 } L = inf k : ok ~ 20 . 

Then by the triangle inequality we have with probability one 

L 

(2.10) 

IZ(t) - Z(to)I ~ Jz(t<L)) - Z(t)J + L lz(t<k)) - Z(t<k-I))I 
. k=l 

02 L 
< ~ + L Jz(t<k)) - Z(t<k-1))J. 

2 k=l 
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Co{lsf;lqQE;lP.tJy WE;? h~v:e .. 

IP {IIZ(tr- z(to)llr(o) ~ x62}::; 

S 'f Il' { llz(tC•>) - Z(tC•-•>)llrcaJ :;,: ~• x:2}. 
for all sequences 'f/k satisfying Ef=1 'f/k ::; 1. Define 'f/k as in the proof of 

the previous theorem and proceed in the same way. The claim follows. 

□ 

This result is included in Van de Geer [45] although no proof of the 

corollary is provided. Because both results of this section will be of 

importance in this book, e.g. to derive rates of convergence for the least 

squares estimator in nonparametric regression, we have included their 

full proofs. 

2.4 Orlicz norms 

Let Z = {Z(t) : t E T} be a random process indexed by some pseudo 

metric space (T, d). We have already seen in Section 2.2 that for Gaus

sian processes almost sure boundedness and continuity of the sample 

paths Z(w, t) in (T, d) could be stated in terms of metric entropy con

ditions. Also the interesting quantity 1E suptET I Z ( t) I can be estimated 

using the metric entropy of (T, d). For the same reasons as in Section 

2.2, we restrict our attention to countable T. Here, we shall generalize 

these results to stochastic processes satisfying a Lipschitz condition in 

some Orlicz space. Let us therefore recall the definition of such spaces. 

Definition 2.4 ( Orlicz space) Let 1/J be a convex, increasing function 

on JR+ with 1/J(O) = 0 and limx➔oo 1/J(x) = oo, a so-called Young func

tion. 

An Orlicz space L¢ = L¢(S1,A,IP) is the vector space of all random 

variables X on the probability space (S1, A, IP), for which 

JE'ljJ ('!I) < oo, holds, for some c > 0. 
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Remark 2.2 We mention some properties of these spaces. 

• With respect to the norm 

IIXll1/J = inf [c > O: lEVJ (l~I) < 1], 

L1/J forms a Banach space. 

(2.11) 

• Since a Young function VJ is convex, we have as a result of Jensen's 

inequality 

It is now not difficult to see that L1/J c £ 1 . 

• If we take VJ(x) = xP, 1 ::; p < oo, the Orlicz space L1/J is just the 

usual V. If VJ(X) = exp(xP)-1, then a bound in the corresponding 

Orlicz norm is stronger than in the V-norm. 

In the next theorem, we study random processes {Z(t) t E T} 

satisfying a Lipschitz condition in £1/1, i.e. for some C > 0 

IIZ(s) - Z(t)ll1/J :S Cd(s, t), (2.12) 

where the norm is defined in (2.11). Obviously, for any sequence random 

variables Xi, ... , Xn, 

holds and similarly we have a bound for general Orlicz norms. Under 

some regularity on VJ, i.e. 

limsupVJ(x)VJ(Y)/VJ(xy) < oo, (2.13) 
x,y➔oo 

the following is true (cf. Van der Vaart & Wellner [49]): 

II m~ IXilll :s; K1/JVJ- 1(n) m~ IIXillit,, 
1:Si:Sn 1P 1:Si:Sn 

where K1/J is a constant depending only on VJ· This and a chaining 

argument are the main ingredients of the following theorem. In contrast 

to Theorem 2.2, we estimate the Lit, norm of suptET IZ(t)I rather than 

its £ 1 norm. 
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Theo:rem 2.4 Let X = { Xt : t E T} be a process with continuous 

sample paths and increments controlled by (2.12). Let 'I/; fulfill condition 

(2.13). Then for some constant Ct/; 

(2.14) 

where ~ is the diameter of the set T. 

Proof. See for instance Pollard [37], Ledoux & Talagrand [27], Van der 

Vaart & Wellner [49]. □ 

With the aid of Theorem 2.4 and the basic Markov inequalities, it 

is an easy matter to derive probability bounds for suprema of general 

stochastic processes satisfying the Lipschitz condition (2.12) in the Orlicz 

space Lt/;· For any random variable Zin Lt/;, we have 

IE'l/;(IZI/C) 1 
IP {IZI > z}::; 1/;(lzl/C) ::; 1/;(lzl/C) (2.15) 

for C > IIZII¢, since 'I/; is increasing. In particular, if 'I/; is an exponential 

function, the tail of Z decreases exponentially fast. It can be shown, 

essentially by an argument based on Fubini's theorem, that the converse 

of this is also valid. 

Lemma 2.1 Let X be a random variable satisfying 

IP(IXI > x) ::; K exp (-CxP) Vx> 0 

and some constants K, C > 0 and p 2: 1. Then 

IIXII¢::; (1 ~ KrlP. 
Proof. See Van der Vaart & Wellner [49]. □ 

Gaussian as well as subgaussian random processes are included in 

Theorem 2.4 as will be illustrated in the following examples. 
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Example 2.4 (Gaussian processes) Let '1/;(x) = exp(x2) - 1. Let 

{Xt : t ET} be a centered Gaussian process, parametrized by (T, d), 

where 

( 2) 1/2 d(s, t) = dx(s, t) = lEIXs - Xtl . 

Write for simplicity Z = X 8 - Xt, u 2 = u2 (Z). Then clearly Z is 

N(0, u 2) distributed. As · 

100 _l exp (-!z2 (-2 (~ - _l ))) dz 
-oo ../'iiru 2 c2 2u2 

C 

we have 

so that (2.12) is satisfied. 

Example 2.5 (Subgaussian processes) Let Xt be subgaussian ran

dom variables, i.e. 

Then (2.12) is again satisfied. To see this, apply Lemma 2.1 with the 

constants C, Kand p chosen as follows: 1/C = 2d2 (s, t), K = 2, p = 2. 

It follows that 

2. 5 Empirical processes 

Let Xi, ... , Xn be independent, identically distributed random variables 

defined on some probability space (0, A, JP) with values in (S, S, P). The 

empirical measure Pn is usually defined by 

l n 
Pn = - LOX;, n E IN, 

n i=l 
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where 80 is the Dirac measure at point a. Let :F be a collection of mea

surable, real valued, P-integrable functions on (S, S). We are interested 

in the empirical process · 

l n 
f f--t ../ii,(Pn - P)(f) = .Jii, ~ (!(Xi) - lEpf(Xi)), f E :F, n ~ l. 

We agree :F will be permissible in the sense of Pollard [35] in order to 

cope with measurability problems. 

2.5.1 Maximal inequalities 

We are often interested in the (local) behavior of the empirical process 

{(Pn - P)(f) : f E :F}. For instance, in probability theory it is the 

main ingredient of the proofs of uniform laws of large numbers and 

functional central limit theorems. As a result, it plays an important 

part in nonparametric statistics. 

Let :Fn C :F. We are interested in obtaining sharp bounds for 

(2.16) 

In general, the theory in Sections 2.2 - 2.4 can not be applied but similar 

results hold true under conditions on :Fn. 

It has become a standard argument in the theory of empirical pro

cesses to symmetrize the process Pn - P, then to introduce additional 

randomness and finally to study the new process conditionally on the 

old randomness. First we present the Symmetrization lemma as given 

in Pollard [35]. Slightly different versions can be found in e.g. Gine & 

Zinn [15]. 

Lemma 2.2 (Symmetrization lemma) Let {Z(t) : t ET} and {Z(t) : 

t ET} be independent stochastic processes sharing an index set T. Sup

pose there exist constants /3 > 0 and a> 0 such that IP{I.Z(t)I Sa}~ /3 
for every t E T. Then 
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Proof. See Pollard [35]. □ 

Using this lemma we find, provided Var(J(X1)) S n82 /8 for all f E 

IP{;dr.l/ fd(Pn-P)I >8} s4IP{;dnl/ fdP~1 > 1} (2.17) 

with 

(2.18) 

where the signs CTi are independent random variables with IP { CTi = -1} = 
IP { CTi = 1} = 1 /2 and are independently chosen of the observations 

X1, ... , Xn. In e.g. Pollard [35] this has been worked out in full detail. 

The sequence CTi is called a Rademacher sequence. Note that condition

ally on the stochastic vector (Xi, ... , Xn), the symmetrized empirical 

process { .jii,Pg(J) : f E Fn} is subgaussian with respect to the L2 (Pn) 

pseudo norm by Hoeffding's inequality: 

Lemma 2.3 (Hoeffding's inequality) Let Zi be independent random 

variables with ai S Zi S bi. Then, for all ..\ > 0, 

IP{l~(Zi-IEZi)I > .x} S 2exp (-2..\2/~(bi-ai)2). 

Proof. See Hoeffding (21]. □ 

Moreover y'nPg has continuous sample paths in the L2 (Pn) pseudo 

norm. This follows from the Cauchy-Schwarz inequality 

(2.19) 

This has important consequences because it allows us to apply the theory 

developed in Sections 2.3 and 2.4. We summarize these results in the 

following lemmas. 

Lemma 2.4 The symmetrized empirical process { y'nPg(f) : f E F} 

with Pg given by {2.18) is, conditionally on X1, ... , Xn, subgaussian 

with respect to the L 2 (Pn) pseudo norm and almost all sample paths are 

continuous. 
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Proof. The subgaussian property is implied by Lemma 2.3 and the 

continuity of the sample paths follows from (2.19). □ 

Lemma 2.5 Let :Fn C :F and V; = supfE:Fn Var(f(Xi)). Then, for all 

c5 > Vn2./2/ y'ri,, and for some constant C > 0, independent of n, 

where 1Ex is the expectation with respect to X = (X1, ... , Xn), dn is the 

L2(Pn) pseudo norm and ~n is the diameter of :Fn with respect to dn. 

In the special case where :Fn = {J E :FI dn(J, Jo) '.S c5} with Jo E :F, 

we have for some numerical constants "-1, "-2, "-3 > 0, 

IP{;~ I/ (f - Jo) d✓nP~12 xy'ri,82
1 x} ::; 

:S 2(1 + c) exp(-K-1x2nc52) (2.21) 

for 

xy'ri,8 2 "-212 _ ✓ H(8t, dn, :Fn) dt V "-3 log ( l + c). 
x6/4✓6 € 

Proof. Because V; < n82 /8, we can apply Lemma 2.2. Consequently, 

(2.17) is true. This implies the symmetrization step in (2.20). By 

Lemma 2.4, the conditions of Theorem 2.4 hold true for the index set :Fn, 

pseudo metric dn, conditional empirical process J f dyn,Pg, and Young 

function '1/J(x) = exp(x2)-1. Hence the conclusion of Theorem 2.4 holds. 

Applying the Markov inequality (2.15), we obtain (2.20). 

The second assertion (2.21) is a direct consequence of Corollary 2.1. 

□ 

Another possible strategy to obtain upper bounds for (2.16) employs 

Bernstein's inequality and entropy with bracketing instead of Hoeffding's 
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inequality and random entropy. We refer to the work of Alexander [1], 
Birge & Massart [5], Van de Geer [44], Ossiander [33] for details. 

2.5.2 Glivenko Cantelli classes 

We call a class :F C £ 1(P) a Glivenko-Cantelli class (or a P-Glivenko

Cantelli class) if the empirical measure Pn tends to the theoretical prob

ability measure P with probability one, uniformly in :F, i.e 

sup _!_ t (!(Xi) - lEpf(Xi))I ~ 0. 
/E:F n i=l 

(2.22) 

Necessary for this convergence is the existence of an P-integrable enve

lope F for :F. Recall that the envelope is defined by 

F(s) = sup lf(s)I
/E:F 

Theorem 2.5 Suppose sup/E:F J Ill dP < oo. Necessary and sufficient 

conditions for :F being a Glivenko-Cantelli class are 

I FdP < 00 and H(o,d;,i,:F) ~ 0 for all O > 0, 

where 

is the L 1(Pn) pseudo distance between two functions. 

Proof. See Gine & Zinn [14]. D 

2.5.3 Donsker classes 

{2.23) 

Assume :F C L 2(P) and sup/E:F lf(s) - J f dPI < oo for every s E S. 

The empirical process En = yn(Pn - P) is a mapping from n into 

R.00 (:F), the space of all bounded, real valued functions on :F, equipped 

with the supremum norm II · 11:F• By definition, a P-Donsker class :F 

fulfills the Functional central limit theorem, i.e. there exists a centered 

Gaussian process G such that 

lE*</> (En)--+ 1E¢(G) 
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for every bounded, continuous, real valued function <p on £00 (:F). Here 

lE* denotes the outer expectation. By the Finite dimensional central 

limit theorem, the covariance matrix of the limiting Gaussian process 

G = G(P) is given by 

lEG(f)G(g) = J fgdP- J f dP · J gdP, f,g E :F. 

A P-Donsker class is characterized by an asymptotic equicontinuity con

dition. 

Theorem 2.6 Assume sup/E.r J Iii dP < oo. Then :F is P-Donsker if 

and only if (:F, d2) is totally bounded and for each E > 0 there is some 

'f/ > 0 such that 

limsuplP { sup I ~-ted(Xi)I > c} < c, 
n➔oo /EFT/ V n i=l 

(2.24) 

where :F'f/ = {!- g I f,g E :F, d2(f,g) < r,} is a class of differences, ei 
is a Rademacher sequence, and d2 the L 2(P) pseudo distance, i.e. 

d2(f, g) = (/ (f - g) 2 dP )112 

Proof. See Dudley (9], (10]. □ 

The fact that we assumed sup/E.r J Ill dP < oo allows us to take the 

simpler £ 2 ( P) pseudo distance instead of the pseudo metric Tp (f, g) = 
d2 (f - J f dP, g- Jg dP). Using the techniques outlined in Section 2.5.1, 

sufficient conditions can be formulated in terms of the random entropy 

numbers in L2 (Pn), Usually an uniform entropy integral condition is 

given to ensure the .asymptotic tightness condition (2.24). 
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Part II 

Finite dimensional 
problems 
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Chapter 3 

Estimating a parameter 
Euclidean spaces 

• 
Ill 

In this chapter we investigate the asymptotic behavior of the root of 

a general parametric random equation and of the statistic defined by 

minimization of a stochastic process. We shall mainly use techniques 

inherited from the theory of empirical processes. Another important 

tool will be the notion of Hadamard differentiability of functionals. We 

apply our results to M- and R-estimation. Minimum distance estimators 

will also be discussed. 

3.1 Introduction 

Let 'P be a collection probability measures defined on a measurable space 

(S, S). We have independent, identically distributed (i.i.d.) observations 

X 1, ... , Xn with a common distribution P E P at our disposal. We are 

interested, not so much. in this entire unknown probability measure, but 

only in the true value 0o of some finite dimensional parameter 0. It is 

not necessary that P is completely specified by 0o, For instance, we have 

in mind the case that 0 is a location parameter. 

In this chapter we investigate the asymptotic behavior of estimators 

0n for 0o. Two closely related sit:uations will be considered. In the first, 

developed in the next section, one assumes that the parameter of interest 

is implicitly given as the solution of some equation M(0) = 0. Obviously 
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the function M will depend on P and we emphasize this dependence by 

writing M(0) = -y(0; P)_. The empirical probability measure is defined 

by Pn = n-1 Li=l Ox;• We obtain the empirical counterpart of M by 

plugging in Pn for P, i.e. Mn(0) = -y(0; Pn), One then searches an 

estimator On which solves the equation Mn(0) = 0. In Section 3.3, 0o is 

given as the value at which some function M reaches its minimum. 

There is a considerable literature available for special cases, espe

cially the case where M has the simple form 

M(0) = -y(0;P) = I g(·,0) dP 

{M-estimation). See for instance Heesterman & Gill [20] and Pollard [35]. 

More general situations, including L- and R-estimation and Cramer

von Mises estimation, are treated - among others - in Fernholz [12] and 

Stute [38]. Infinite dimensional parameter spaces in the context of M

estimation are discussed in a recent paper of Van der Vaart [48]. 

The aim of this chapter is to study the asymptotic behavior of the 

statistical error On - 0o under simple conditions on M and Mn, The 

notion of stochastic equicontinuity will be appropriate in Section 3.2, 

whereas stochastic differentiability will be the key in Section 3.3. Ex

amples will be given to clarify how empirical process theory can be used 

for checking these properties. 

3.2 Estimation equations 

Let X 1, ... , Xn be an i.i.d. sequence with probability measure P E P 

and let 0 = 0(P) be a parameter taking values in 8 c JRk. By 00 

we denote the true value of the parameter. We consider some function 

'Y : 8 x P --+ JRk and abbreviate -y(0; P) by M(0). We impose the 

following conditions on M: 

(Al) M(0) = 0 if and only if 0 = 0o; 

(A2) Mis a local homeorphism at 00 ; 

(A3) Mis differentiable at 00 with a non-singular derivative M' at 00 . 
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Let Pn be the empirical probability measure based on X1, ... , Xn and 

1 (0; Pn) = Mn(0). We consider sequences Bn for which 

(3.1) 

and assume 

(A4) There actually exist solutions Bn such that (3.1) holds true. 

We consider y'n(Mn - M) as a random process in 100 (8), the space of 

all real valued bounded functions on 8. This space is equipped with the 

uniform metric II · 11- Before we give restrictions on y'n(Mn - M), we 

recall the concept of stochastic equicontinuity. 

Definition 3.1 (stochastic equicontinuity) Let (T, d) be a pseudo

metric space and let { Zn ( t) : t E T} be a stochastic process, indexed by 

T. A sequence {Zn} is called stochastically equicontinuous at to E T, 

iff \/'f/ > 0 and \/c > 0 there exists a neighborhood V of to for which 

limsup1P {sup IZn(t) - Zn(to)I > 'f/} ::; c. 
n-+oo tEV 

Equivalently { Zn} is called stochastically equicontinuous at to E T, if for 
p p 

any Tn --+ to, we have IZn(Tn) - Zn(to)I --+ 0. 

We make the following assumptions on On= y'n(Mn - M): 

(A5) lln-1/ 2onll ➔ 0 in probability; 

(A6) On is stochastically equicontinuous at 0o; 

(A7) on(0o) converges in distribution to some probability measure L = 
L(0o; P). 

Theorem 3.1 Under the conditions Al, ... ,A 7, we have 

r,::: ~ V I 1 yn(0n - 0o) --+ -(M (0o))- · L. (3.2) 
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. - - 1 
Pro~f. We first prove consistency of On for which Mn(On) = Op(n-2). 

Using the uniform convergence A5, we have 

(3.3) 

Since the function Mis a local homeorphism at the solution Oo of M(O) = 
0, we have 

• -1 • P -l On= M (M(On))-+ M (0) = Oo. 

The remainder of the proof is due to Van der Vaart [48]. As a conse

quence of A3, we have 

(3.4) 

Because On is stochastically equicontinuous at Oo and On ~ Oo, we 

have On(On) = on(Oo) + Op(l) = Op(l). This and (3.3) imply M(On) = 
1 • 1 

Op(n-2) and therefore we derive l0n - Ool = Op(n-2). Hence we only 

need to investigate ./nM(On)-

M(On) = -(Mn - M)(On) + Mn(On) 

- -(Mn - M)(On) + (Mn - M)(Oo) - (Mn - M)(Oo) + Mn(On) 

where we used in the last step that On is stochastically equicontinuous at 

Oo ( condition A6.). Finally we use the weak convergence A 7 to complete 

our proof. D 

Remark 3.1 In full generality it is difficult to make a statement about 

the existence of a solution On of the estimation equation Mn ( 0) = 0. Let 

Cb(e) be the space of all bounded, continuous functions one, equipped 

with the uniform metric II · II- In case both M and Mn are in Cb(0), 

there exists a solution On with probability tending to one by the following 

reasoning. 

Let m : e -+ JRk be continuous and inside the ball B(M, e) for 

some e > 0. Consider the mapping xi--+ x - mo M- 1(x), which maps 
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the Euclidean ball B(O, c) continuously into itself. By Brouwer's fixed 

point theorem, there exists at least one Xm E B(O, c) such that Xm = 
Xm - mo M-1(xm). Since Mn E Cb(8) and IP{IIMn - MIi > c}--+ 0 for 

every c > 0, 

IP {Mn(On) = o}--+ 1, as n--+ 00. 

This argument can be found in Heesterman & Gill [20]. 

M is a local homeorphism at 00 if, by definition, M is continuous 

on a small neighborhood of 00 and has a continuous inverse on a small 

neighborhood of M(00 ) = 0 E JRk. A sufficient condition is that Mis 

continuous and one-to-one and the domain 8 is compact. Unfortunately 

in many cases Mn <t C(8) and it is not so obvious that the parameter 

space to be considered is a priori compact. Often, but not always, see 

e.g. Example 3.1 and 3.2, this is implied by assumption A5. 

Remark 3.2 The proof of Theorem 3.1 is in the spirit of Stute [38], 

although in that paper the more explicit integral type of estimation 

equation is considered, viz. 

i(0,F) = f 1/;(x,0,F)dF(x) 

where Fis the probability distribution function associated with P. Stute 

assumes a smoothness property (Frechet differentiability) of VJ in its 

third variable F. As we shall soon see, this kind of differentiability can 

be replaced by the weaker form of Hadamard differentiability. 

Remark 3.3 For a different approach to the asymptotic behavior of 

On - 0o, we refer to e.g Fernholz [12], Heesterman & Gill [20], Van der 

Vaart & Wellner [49], who make use of the concept of Hadamard differ

entiability. 

Definition 3.2 (Hadamard differentiability) Let X and Y be normed, 

linear 

spaces. A function f : Xo C X --+ Y is called Hadamard differentiable at 
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x E X, tangentially at H C X, iff there exists a linear, bounded function 

/~ : X -+ Y such that 

(3.5) 

for all tn-+ 0 and all hn-+ h with h EH and x + tnhn E Xo for all n. 

Define Z = Z(8,ffik) C l00 (8,ffik) as the space of all bounded 

maps from 8 into m,k containing at least one zero. On this space we 

consider the functional <p : Z -+ e which supplies a solution 0z = <f>(z) 

to a given z E Z, i.e. z(<f>(z)) = 0 for every z E Z. It can be shown 

under Al, A2 and A3 that this functional <p is differentiable at M, in 

the sense of Hadamard, tangentially to the subspace Zo consisting of all 

functionals in Z which are continuous at 0o, The derivative is given by 

d<f>(M) • h = -(M'(00))-1 • h(00 ). A proof can be found in Heesterman 

& Gill (20). Suppose an converges weakly in the sense of Hoffmann

J0rgensen to L in l00 (8) and in addition assume that L has continuous 

sample paths at 0o, then an application of the generalized delta method 

for linear spaces yields the same conclusion as Theorem 3.1. 

Remark 3.4 Often the limit L is a normal distribution. Let F be 

a class of functions such that F C L2 (P) for all P E P. On this 

space F we define the variance pseudo norm ( denoted by Tp) under 

P E P. Let l 00 (F) be the space of all bounded, real valued functions 

on F (equipped with the sup-norm) and let UC(F, Tp) be the subspace 

of all uniformly continuous ( with respect to Tp), real valued functions 

on F. Suppose now that ,(0, ·) : P-+ ill, is Hadamard differentiable at 

PEP, tangentially to UC(F, Tp) and uniformly in 0. In particular we 

have 

-y(0, Pn) = ,(0, P) + d-y(0, P) · (Pn - P) + Rn(0; P), 

uniformly in 0, where 

sup 1Rn(0, P)I = Op ( n-1!2) 
0E0 

and d,(0, P) is a bounded linear operator on UC(F, Tp ). In this situa

tion, condition A5 is fulfilled if sup0Ee ld-y(0, P)(Pn - P)I ~ 0 and for 
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assumption A6 we need stochastic equicontinuity of d,(0, P)En at 0o, 

with En = ,/n(Pn - P). If :Fis P-Donsker, then En converges weakly 

to a P-Brownian bridge E in l 00 (:F) with IP{E E UC(:F, Tp)} = 1. Be

cause d1 (0o, P) is a bounded linear operator on UC(:F, Tp ), condition 

A 7 holds true. 

We shall illustrate the results obtained so far by checking A5 - A 7 

in the following examples. 

Example 3.1 (M-estimation) Consider ,(0, P) = J 'lj;(0, ·) dP. We 

define g(·) = 'lj;(0, ·) and in particular we set go(·) = 'lj;(0o, ·). Endow 

the set g = {'lj;(0, •) : 0 E 8} with the L2(P) pseudo metric. We give 

sufficient entropy conditions on g which imply assumptions A5 - A7. 

Condition A5 is fulfilled if and only if Q is a Glivenko-Cantelli class. 

Next we check that ,/n(Mn - M) is stochastically equicontinuous at 0o, 

which is assumption A6. For this matter, we define 

Q(8) = {g - go: Ilg- goll2 S 8}, gn(8) = {g - go: Ilg - golln,2 S 8}, 

where II · 112 denotes the L 2(P) pseudo metric and II · lln,2 the L 2 (Pn) 

pseudo metric. Then after the usual symmetrization tricks, described in 

Section 2.5.1, one gets 

IPL:~~) I/ gdEnl > E:} S (3.6) 

S 4IP { sup I/ gdE~, >~}+IP {g(8) g gn(28)}, 
gEQn(28) 

where En = ,/n(Pn - P), E~ = ,fii,P~, and P~ is the signed empirical 

measure as defined in Section 2.5.1. For some constant C'I/J > 0, we 

obtain after an application of Lemma 2.5, 
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where IEx denotes the expectation with respect to (X1, ... ,Xn), and 

H2(8, Pn, g) the d-entropy with respect to II · lln,2 of the class g. If 

8 fo1 J H2(48x, Pn, gn(28)) dx J,. 0 for 8 J,. O, 

uniformly in n, the right-hand side in (3.7) tends to zero. Hence the 

first term on the right in (3.6) can be made arbitrarily small. 

Set 1l = {I - g : f, g E g}. We want the second term on the right in 

(3.6) to be asymptotically negligible, i.e. 1P {g(8) ~ 9n(28)} ➔ 1. For 

this purpose, it is sufficient to show that 1l2 is a Glivenko-Cantelli class. 

Assume G = sup9Eg IYI is P-square integrable and note that 

and IIGlln,2 a.s~ IIGll2 < oo. Hence 1l2 is a Glivenko-Cantelli class if 

H2(8, Pn, g)/n ~ 0 for all 8 > 0. 

Condition A 7 is a mere application of the classical central limit the

orem. 

Example 3.2 (R-estimation) Let e be a subset in IR and let D = 
D[-oo, oo] be the space all right continuous functions with left-hand 

limits on Ill. As usual, we equip IR with the Euclidean and D with the 

uniform metric. Let X 1 , ... , Xn be i.i.d. real valued random variables 

with a continuous, strictly increasing distribution function F satisfying 

F(x) = 1- F(20o - x), x E JR. 

Define .:Y : 0 x Do ➔ JR by 

where J : IR ➔ IR is a strictly increasing, continuously differentiable 

score function and the domain Do C D is given by Do = { G E D : 

JI dGI ~ 3} . Note that the assumption of .:Y(Oo, F) = 0 entails that 

fl J(x) dx = 0 (for example J(x) = 2x - 1). We have that M(0) = 
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-y(0, F) is a local homeorphism at 00• In different notation, the mapping 

(3.8) becomes 

'Y(0, P) = f J (! 98,x(Y) dP(y)) dP(x), 

where 98,x(Y) = (1(-oo,xj(Y) + I(29-x,oo)(Y) )/2. Now, put g = foo,x : 
0 E 8, x E Ill} and consider the class P as a subset of l 00 (Q). We 

define the Q-indexed empirical process as En = -/n(Pn - P). Since g 
is a Donsker class, we have En converges weakly to a Gaussian process 

E in l00 (Q). We have M(0) = J J (f go,.(Y) dP(y)) dP and Mn(0) = 
J J (f Yo,.(y) dPn(Y)) dPn. We show in Lemma 3.1 that the following 

linear expansion holds 

uniformly in 0 with 

d"((0; P) · En ~ f En99 · J'(Pgo,.) dP + f J(Pg9,.) dEn 

= Ln,1(8) + Ln,2(8) (say). 

This representation is according to Stute (38], p.229. Fernholz [12] treats 

a slightly different functional for which she proves compact differentia

bility at {Bo, F). 

We are now in a position to check assumptions A5 - A 7 of Theorem 

3.1. 

Since En ==> E in l00 (Q), we have by the continuous mapping theo

rem IIEnllg ==> IIEllg as well and therefore we have by Slutsky's lemma 

that II (Pn - P) Ilg ~ 0. If the derivative J' is bounded, we obtain after 

a dominated convergence argument that lln-112 Ln,i lie ~ 0. 

Consider the following transformation 

h9(x) = J (! 99,x(Y) dP(y)) = J([F(x) + 1- F(20- x)]/2) 

and define 1l = {h9 : 0 E 8}. Notice that h9 is bounded and is an 

element of Do. In the literature (cf. Birman & Solomjak [6] and Example 

2.3) the upper bound 

{3.10) 
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is available for the class of such functions. As a re~ult of (3.10) and 

the fact that 1l is uniformly bounded, 1l satisfies the Glivenko-Cantelli 

property so JJn-1/ 2 Ln,211~ ~ 0, too. Hence Jd,(0, P)(Pn - P)I ~ 0, 

uniformly in 0, i.e. condition A5 is fulfilled. 

Let us check condition A6. See e.g. Stute (38), where a chaining 

argument is used. However, the compactness assumption on 8 used in 

that paper is unnecessary. One may prove this as follows. Observe that 

IIJ(Pgo,.) - J(Pgo0,.)ll2 = 0(10- 0ol), 

provided Fis differentiable. As a result, the map 0 i-+ ho(x) is continu

ous. By the entropy bound (3.10), 

Invoking Lemma 2.5, we can conclude that Ln,2(0) is stochastically 

equicontinuous at 00 . 

Stochastic equicontinuity of En (20 - x) = Enl(-oo,28-x] and conti

nuity of F and J' guarantee that 

is stochastically equicontinuous as well. Assumption A6 now follows 

from (3.9). 

As En converges weakly to a Gaussian process and d1 (0o; P) is a 

bounded, linear transformation, condition A 7 follows immediately from 

the classical CLT. Therefore 

..Jii,(On -0o) = -(l/M'(0o))di(0o,F)(En) + op(l) 

has in the limit a normal distribution with zero mean. 

We still have to prove (3.9). 

Lemma 3.1 Let J : [-2, 2] ➔ IR be an increasing map with a con

tinuous, bounded derivative J'. Then i as given in (3.8} is Hadamard 
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differentiable at F, uniformly in 0. The derivative is given by 

d7(0, F) · h = (3.11) 

t jm,[h(x) - h(20 - x)]J' ( F(x) + l ~ F(20 - x)) dF(x) + 

+ Jm, J ( F(x) + 1 ~F(20 - x)) dh(x), 

where the integral with respect to h is defined via integration by parts 

if h is not of bounded variation. Recall that the domain was given by 

Do = {F E D : J ldFJ ~ 3} and the tangent space is {h E D : h is 

uniformly continuous and bounded}. 

11·11 Proof. Let hn ....:.:...:.+ h and tn -+ 0 as n -+ oo. Set 

1 
Yn(x, 0) = 2 [(F + tnhn)(x) + 1 - (F + tnhn)(20 - x)], and 

1 
z(x, 0) = 2 [F{x) + 1 - F(20 - x)]. 

Since hn ~ h and tn -+ 0, we have Yn -+ z, uniformly in both x and 

0. We define Fn = F + tnhn and let us consider only perturbations 

Fn E Do. In particular we have llzJI ~ 1 and IIYnll ~ 2. Check that 

i(0,F + tn::) -:Y(0,F) - t j[hn - hn(20- ·)]J' (z(·,0)) dF -

-J J (z(x, 0)) dhn(x) =I+ II, 

where 

I= I [ J(yn(·, 0)\~ J(z(•, 0)) _ hn - hn2(20 - ·) J'(z(·, 0))] dF; 

II= J [J(yn(x, 0)) - J(z(x, 0))] dhn(x). 

Since J is continuously differentiable, we have 

J(yn(x,0)) = J(z(x,0)) + t;(hn(x) -hn(20- x))J'(ijn(x,0)), 

with Yn(x, 0) between Yn(x, 0) and z(x, 0). Therefore Yn(x, 0) -+ z(x, 0), 

uniformly in x and 0. Moreover J' is uniformly continuous and bounded 
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on the compact interval [-2, 2] so that J'(ijn(x, 0)) ➔ J'(z(x, 0)) as 

n ➔ oo, uniformly in x _and 0. 

We have 

Ill ~ I/ (hn(x) - hn (20 - x )) · (J' Wn(x, 0)) - J' (z(x, 0)) dF(x) I 
< 2llhn - hl!IIJ'II f I dFI + llhll · IIJ'(ijn) - J'(z)II · f I dFI 

➔ 0. 

Next, we show that III! ➔ 0 as n ➔ oo. We have 

!Ill = I/ [J(yn(x,0)) - J(z(x,0)] dhn(x)I 

- ~ I/ [hn(x) - hn(20 - x)] J'(iJn(x, 0)) d(Fn - F)(x)I-

After two applications of the triangle inequality, we see it is enough to 

prove that 

I/ h(x)J'(z(x, 0)) d(Fn - F)I ➔ 0. 

Now, since h E D, there exists for any c: > 0 a step function h with 

a finite number of jumps (say L) and l!h - hll :Sc:. Also FED, and we 

approximate this function by a step function F with L' < oc jumps such 

that !IF - FIi :S c5. We abbreviate [F(x) + 1 - F(20 - x)]/2 by z(x, 0). 

Notice that J, = J'(z) is again a step function and for every 0 E e, we 

can use the same approximation function F. We have as a result of the 

triangle inequality 

I/ h(x)J'(z(x,0))d(Fn -F)(x)I :S (3.12) 

:S 1/[h(x) - h(x)]J'(z(x,0))d(Fn -F)(x)I + 

+ I/ h(x)[J'(z(x,0)) - J'(z(x,0))] d(Fn - F)(x)\ + 

+ I/ h(x)J'(z(x,0)) d(Fn - F)(x)\. 

Observe that 

If h(x)[J'(z(x, 0)) - J'(z(x, 0))] d(Fn - F)(x) I 

:::; 11h11 · IIJ'(z) - J'(z)II · j I d(Fn - F)I 
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and 

The last term on the right of (3.12) tends to zero by using arguments 

similar to those used by Gill [13], p. 110,111, using partial integration 

If hJ'(z(-,0))d(Fn - F)I ~ 2llhll · lll'll · IIFn - FIi + 

+IIFn - F)II · {iiJ'il · 2Lllhll + llhll · 2L'lil'II}. 

It can be shown that the integral J h(20-x)J'(ijn(x,0)) d(Fn -F) tends 

to zero as well for n ➔ oo, by repeating the same arguments. This 

completes our proof. □ 

3.3 Minimization problems 

We assume that the functional ,(·, P) is now uniquely minimized by 

some 00 , an interior point of our parameter space 0. As before, we 

abbreviate 1(-,P) and 1 (·,Pn) by M(·) and Mn(·) respectively. 

We impose the following conditions on M: 

(Cl) 0o = argmineE0 M(0) lies in the interior of 0; 

(C2) M has a unique minimum at 0o; 

(C3) Mis twice differentiable at 0o with a non-singular second derivative 

Vat 0o. 

Whereas in Section 3.2 the key to the solution lay in the notion of 

stochastic equicontinuity, we shall need stochastic differentiability here. 

Definition 3.3 { stochastic differentiability) Let { Zn ( t) : t E T} 

be a stochastic process, indexed by T C JRk. A sequence Zn is called 

stochastically differentiable at to E T with derivative Wn iff Vry > 0 and 

Ve > 0 there exists a neighborhood V of to for which 

1. IP { I Zn(t) - Zn(to) - (t - to)'Wn I } < 
1msup sup I I > 'r/ _ c. 
n➔oo tEV t - to 
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Equivalently, a sequence Zn "is called stochastically differentiable with 

derivative Wn atto ET iff for any Tn ~ to, we have IZn(Tn)-Zn(to)

(Tn - to)'Wnl = Op(lrn -tol)-

We impose the following conditions on the stochastic part: 

(C4) Mn(0n) ~ info Mn(O) + Op(l/n); 

(C5) IIMn - MIi -+ 0 in probability; 

(C6) an = ,Jn(Mn - M) is stochastically differentiable with derivative 

Wn at Oo, i.e. 

an(0) = an(Oo) + (0 - Oo)'Wn + Op(l0 - 0ol) near 0o; 

V (C7) Wn--+ W = W(Oo;P). 

Theorem 3.2 Under conditions C1, ... ,C7, we have ,Jii,(0n - Oo) ..I!..+ 
-v-1w(Oo)-

Proof. Consistency can be proved in the following way. Using the 

minimization properties of Oo and 0n, we have 

By condition C5, 1Mn(0n)-M(0n)I ~ 0. Invoke (3.13) and conditions 
A p 

Cl and C2 to see that On--+ Oo. 

By the stochastic differentiability assumption C6, we have 

(3.14) 

and from the deterministic differentiability C3 assumption we obtain 

,(0, P) - ,(Oo, P) = ~(0 - 0o)'V(0 - Oo) + o(IO - 0ol 2). (3.15) 

Consequently we have 

1 (0, Pn) - ,(Oo, Pn) = n-112(0- Oo)'Wn + ~(0 - 0o)'V(0 - Oo) + 

+op(n-112 10 - Ool + 10 - 0ol2 ). (3.16) 
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With a fairly straightforward generalization of the proof of Theorem 

5 in Pollard [35], p. 141, the asymptotic distribution follows. For the 

sake of completeness we provide the full proof. First we reparametrize 

in such a way that 00 equals zero and V equals the identity matrix in the 

new parametrization. Continue the proof by noting that C4 and (3.16) 

imply 

The random vector Wn is of order Op(l) since it converges weakly to 
A 1 

the random vector W. Conclude that 0n = Op(n-:l). We can therefore 

write representation (3.16) as 

The same simplification holds true for any sequence in e with values of 
1 A / order Op(n-2). In particular, by replacing 0n by -n- 1 2Wn, we find 

(3.19) 

1 
since, with probability tending to one, -n-2Wn is a point of 8 as 0o 

is an interior point. Subtracting (3.19) from (3.18) and using C4, we 

obtain 

As a direct consequence of this, we have n½On = -Wn + Op(l). Finally, 

we transform back to the old parametrization and obtain 

yn,(0n - 0o) -V-1Wn + Op(l) 

~ -v-1w. 

The theorem is proved. □ 
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Remark 3.5 This theorem generalizes the result about M-estimation 

obtained by Pollard (cf: [35]), where the function M(O) = J g(O, ·) dP. 

Pollard assumes that g has the following expansion near 80 

g(O, ·) = g(Oo, ·) + (8 - 80).6.(·) + 18 - 8olR(8, ·). 

Observe that stochastic differentiability of an is guaranteed under suit

able entropy conditions on {R(O, •) : 8 E 8} which imply stochastic 

equicontinuity of the process ✓-ii, f R( 8, •) d( Pn - P) at 80. This is the 

same requirement as in (35]. 

Let us finish with a corollary concerning asymptotic normality of 

the normalized sequence .Jn(On - 80). We assume that the consistency 

On -4 80 has already been established, so that we may drop the require

ment Mn -4 M in 100 (8). Apart from this, the following corollary is 

an obvious consequence of (3.16). 

Corollary 3.1 Let On be a random sequence in 8 converging in prob

ability to 80 at which M ( ·) has its minimum. Suppose the following 

conditions are satisfied. 

• 80 is an interior point of 8; 

• -y is Hadamard differentiable at P, in particular we have 

where Rn(O) = Op(l) for every 8 E 8; 

• d-y(O; P) · En is stochastically differentiable at 80; 

• Rn(O) - Rn(Oo) = Op(IO - 801) near 80; 

• -y(O, P) is twice differentiable at 80 with non-singular second deriva

tive V. 

Then the random sequence .Jri,(On - 80) is asymptotically normal. 
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In the remainder of this chapter, we present some examples to il

lustrate the results. We shall mainly check the uniform convergence 

condition C5 and the stochastic differentiability assumption C6. 

Example 3.3 (minimum distance estimation) Let P = {Pe : 0 E 

8} be a collection probability measures on the real line and let F = 
{ Fe : 0 E 8} be the set of distribution functions associated with P. Fn 

is the empirical distribution function. Consider an estimator Bn, which 

minimizes the Cramer-von Mises distance d(Fn, F0J between Fn and 

F0n, where 

Notice that in d2(Fn, F0J the integration is with respect to Fn and not 

with respect to F0n, which is perhaps more common. See the discussion 

in Stute [38] and the references given in that paper for the advantage of 

this method. We are interested in 0o, the minimizer of d2 (F, Fe), and 

assume that the true underlying F belongs to :F, i.e. F = Fe0 -

Set i(0, G) = f(G - Fe) 2 dG and define the "derivative" di(0, F) at 

F in the direction Fn - F by 

di(0, F)(Fn - F) = 2 / (F - Fe)· (Fn - F) dF + J (F - Fe) 2 d(Fn - F). 

Notice that i(0, Fn) can be written as 

i(0, Fn) = J (Fn - Fe)2 dFn 

j[(Fn - F) + (F - Fe)]2 d[F + (Fn - F)] 

= i(0, F) + di(0, F)(Fn - F) + Rn,(0), 

where the remainder Rn ( 0) is given by 

As in Example 3.2, we abbreviate the ordinary empirical process by 

En = y'n(Fn - F). Since Fis a uniformly bounded Glivenko-Cantelli 

class, lldi(·,F)(Fn -F)II ~ 0 and IIRn(·)II __£_,, 0. Hence condition CS 

holds true. 
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Let us check the stochastic differentiability conditioµ C6. For this 

purpose, it will be convenient to assume that the distribution functions 

Fo are uniformly differentiable, 

IIF(·,0) -F(·,0o) - (0-0o)d(·)II = o(IO- 0ol), near Oo, 

for some fixed function d E D[-oo, oo]. Then it follows straightfor

wardly that 

d.:Y(0, F) · En - d.:Y(0o, F) ·En= -2(0 - 0o) f dEn dF + Op(l0 - 0ol) 

and 

IRn(O) - Rn(Oo)I = j-2n-½ / (F(·, 0) - F(·, Oo))En d(Fn - F)I = 

= j-2n-½(O-Oo) f dEnd(Fn - F)I + Op(n-½IO-Ool) 
1 

= op(n- 2 IO - 0ol). 

Hence an(0) = Jn[.:Y(O, Fn)-.:Y(O, F)] is stochastically differentiable with 

derivative 

Wn = -2 f d · En dF, 

and V = 2 J d 2 dF. Consequently, y'n(On - 0o) is asymptotically nor

mal. 

Example 3.4 A more general and complicated case is obtained by in

troducing a continuously differentiable weight function J. We now con

sider 

M(O) = .:Y((0, F) = f J(F) • (F - F8)2 dF. (3.20) 

Define 

d.:Y(O; F) · (Fn - F) f (Fn - F) · J1(F)(F - Fo)2 dF + 

+2 J (Fn - F) · J(F)(F - Fo) dF + 

+ f J(F)(F - Fo) 2 d(Fn - F). (3.21) 
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The empirical function Mn is given by 

i(0, Fn) f J(Fn)(Fn - F0)2 dFn 

j J(Fn)([F - F0] + [Fn - F])2 d(F + [Fn - Fl) 

= j J(Fn)(F - F0) 2 dF + 2 / J(Fn)(Fn - F)(F - F0) dF 

+ j J(Fn)(Fn - F)2 dFn + j J(Fn)(F - F0) 2 d(Fn - F) 

+2 / J(Fn)(Fn - F)(F - F0) d(Fn - F) 

and the remainder Rn(0) by 

j [J(Fn) - J(F) - J'(F)(Fn - F)] (F - F0) 2 dF + 

2 / [J(Fn) - J(F)](Fn - F)(F - F0) dF + j J(Fn)(Fn - F) 2 dFn + 

j [J(Fn) - J(F)](F - F0) 2 d(Fn - F) + 

2 / J(Fn)(Fn - F)(F - F0) d(Fn - F). 

We shall briefly verify conditions C5 and C6. Since the class F 2 = 
{F2 : FE F} is a Glivenko-Cantelli class, and provided both J(F) and 

J'(F) are P-integrable functions, we have di((0, F) · (Fn - F) ~ 0 

uniformly in 0. Also IIRnll ~ 0, whence JIMn - Mil ~ 0. If F(·,0) 

is uniformly differentiable as before, we easily obtain Rn(0) - Rn(0o) = 
Op(J0 - 001). Again under the assumption that F00 = F, we find 

Wn = -2 / J(F) · ~ · EndF; 

V = 2 / J ( F) · ~ 2 dF. 

Remark 3.6 (Non i.i.d. formulations) Theorems 3.1 and 3.2 can 

easily be extended to non-i.i.d. situations. This is mainly due to the 

fact that the uniform law of large numbers, stochastic equicontinuity 

and - differentiability allow a more general formulation. See for instance 

Pollard [37]. 

53 



As an example we discuss parametric, non-linear regression. Let Xi 

be elements in some space S and let ci be independent random variables 

with zero means and finite variances u;, i = 1, ... , n. Let g = {go : S ➔ 

IR: 0 E 8} be a class of functions, indexed by 8, an open subset in IRk. 

We observe l'i = go0 (xi) + ci, with 0o E 8. In addition, we assume that 

the following local linear approximation at 0o exists, 

go(·)= go0 (-) + (0- 0o)'~(-) + 10- 0olre(·). (3.22) 

The parameter 00 can be consistently estimated by the least squares 

estimator 0n, which minimizes 

1 n 2 
Mn(0) = - I: (l'i - go(xi)) . 

n i=l 

Let dn be the empirical L2 (Pn) pseudo metric on g, based on x1, ... , Xn, 

i.e. 

We use the short-hand notation dn(0, 0) = dn(go, g0). Suppose there 

exist k1 , k2 > 0 such that for every 0, 0 E 8, 

The same condition is used in Wu [57]. It entails that (cf. (3.15) ) 

Let us verify condition C5. 

(3.23) 

The first term on the right in (3.23) is asymptotically negligible under a 

uniform moment condition on the sequence ci- The second term on the 

right in (3.23) tends to zero, uniformly in 0, under the entropy condition 

H(8, dn, Qn(P) )/n ➔ 0 \/8 > 0 \Ip> 0, 
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with On (p) = {g E g : dn (g, go) ::::; p}. This will be proved in the next 

chapter, Corollary 4.3, under _some additional assumptions on Ei-
1 

Condition C6 is verified if the stochastic process n-2 Ef=1 Eiro(xi) 

is stochastically equicontinuous at 0o. Define 'R, = {ro : 0 E 0} and 

R(p) = {ro E 'R,: 10 - 0ol < p} and suppose 'R, is uniformly bounded. 

Then we have by means of Theorem 2.4 

where co= co(R),ci = c1(C) are some finite, positive constants. Pro

vided Ei are uniformly square integrable and under entropy conditions 

on R(p), property C6 is fulfilled. 

For Condition C7 we have to verify the Lindeberg condition for 
1 

n- 2 Li=l EiD.(xi)-
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Part III 

Regression analysis 
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Chapter 4 

Consistency 

In the three remaining chapters we consider nonparametric regression. 

Suppose we have n independent observations satisfying the regression 

model 

( 4.1) 

where the errors satisfy 

(4.2) 

the design Xn = { x1 , ... , Xn} is a subset of lRn x k and the regression 

function go : lRk -+ lR is unknown and to be estimated from the data. 

If the regression function is known up to a finite dimensional param

eter, the method of least squares is usually employed to estimate this 

unknown quantity. In a nonparametric setting of smooth functions, ker

nel estimators are a popular choice for estimation of g0 , owing to their 

relatively easy implementation and minimax properties. 

We express our a priori knowledge of the regression function by 

go E Y, (4.3) 

where g is a known class of functions. 

The estimator of go will be any random variable fJ that minimizes 

the sum of squares over g up to a constant 'T/n -+ 0, i.e. 
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With some abuse of terminology, we call g a least squares estimator 

(LSE). If 1Jn = o(l/n), we can ignore 1Jn without affecting our results. 

Henceforth we assume that the infimum in ( 4.4) is attained and 1Jn = 0 

for all n. 

It should be stressed that in cases where only little information about 

g0 is available, in other words where g is too large, {J may simply inter

polate between the Yi, and we obtain inconsistent estimators. In such 

cases other estimation procedures should be considered. In the context 

of least squares, one could think about sieved and penalized least squares 

estimators. 

Model (4.1) has been studied extensively. The least squares estima

tor has also been investigated for particular choices of the design, i.i.d. 

errors and Sobolev classes g (cf. Nemirovskii et al. [31] and [32]). Van 

de Geer was the first to put the problem in a more general perspective by 

imposing entropy conditions on the set g rather than requiring smooth

ness properties. Here, we follow the same approach. To avoid making 

assumptions concerning the design Xn, we shall consider metrics based 

on the design and formulate asymptotic properties like consistency and 

rates of convergence in these metrics. 

At this point, let us introduce some notation used in the remainder 

of the book. We define the empirical measure Pn by 

where 8x is the Dirac measure at point x E JRk. I.e. this measure puts 

mass 1/n at each element of Xn, The V(Pn) pseudo norm on JRk is 

denoted by II· lln,p, thus 

ll!lln,p = { (J lf(x)IP dPn(x))l/p = (¼ E%c1 lf(xi)IPr/p 
max1:-::;i:-::;n If (xi) I 

if 1 :s; p < oo; 

if p = 00. 

Let dn,p(f,g) = llf - glln,p be its induced V(Pn) pseudo metric, with 

1 :s; p :s; oo for any function f and g. Of particular interest is the case 

p = 2 as we shall formulate our results in their final form in the L2 (Pn) 

metric. This metric has been chosen for mathematical convenience. For 
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the sake of brevity, if not specified differently, II· lln and dn(f,9) will 

always denote the L2(Pn) pse~do norm and distance respectively. 

For any family of numbers z(9) indexed by Q, we put llz(9)1ig -
sup9Eg lz(9)I. The canonical envelope of g will be denoted by G, i.e. 

G(x) = sup j9(x)I, x E JRk. 
gEQ 

The a-covering numbers in LP(Pn) are denoted by Np(o, Pn, Q) -

N(o, dn,p, Q) and the associated entropies are given by Hp(o, Pn, Q) -

log[Np(o,Pn,Q)] for each o > 0. 

In addition to deterministic design, we shall allow randomness in the 

selection of the design points too (cf. Section 4.2 and Section 5.4). In this 

case the observation points Xi are assumed to be i.i.d. random variables 

with common probability distribution P, all independent of the distur

bances Ei- Moreover, we shall require J 9~ dP < oo, i.e. 90 E L2(P). 

Note that Pn is now a random measure, to wit the empirical distribu

tion, associated with the theoretical distribution P. The randomness of 

Pn has consequences for the covering numbers; they will be random as 

well. The L 2(P) pseudo norm and metric will be denoted by II· IIP and 

dp(·, ·) respectively. In order to avoid measurability problems - which 

may arise for uncountable classes g - we make the blanket assumption 

that g is permissible in the sense of Pollard [35]. 

The asymptotic behavior of the least squares estimator can be inves

tigated using techniques which are described in Chapter 2. To see this, 

note that 

n n n 
L (Yi -.g(xi))2 ~ L (l'i- 9o(xi))2 = I:c;, (4.5) 
i=l i=l i=l 

or equivalently, 

n n 

L (g(xi) - 9o(xi))2 ~ 2 L ci(g(xi) - 9o(xi)), (4.6) 
i=l i=l 

under the assumption that the true regression function 90 does indeed 

belong to the set g. From the last inequality, it is immediately clear 
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that asymptotic behavior of the difference II.§ - uolln is governed by the 

empirical process 

The probabilistic results concerning empirical processes which are given 

in Chapter 2, turn out to be very useful in the proofs. 

In Chapters 4, 5 and 6 of this book, it is our aim to provide a system

atic and unified study of the general regression problem (4.1) under the 

constraint (4.3). In particular, we are interested in the connection be

tween asymptotic properties of the least squares estimator and entropy 

numbers ( of subsets) of g. 
The remainder of this chapter is concerned with consistency issues. 

There is a considerable literature for cases where g is a subset of a 

Sobolev space. Van de Geer (cf. [39)) introduced the concept of (ran

dom) entropy numbers in L2 (Pn) in the regression model (4.1) and gave 

sufficient conditions for establishing consistency. Our main concern will 

be to investigate the necessity of these entropy conditions. It will turn 

that in an appropriate setting, consistency is completely characterized 

by local entropy numbers. This clearly demonstrates the crucial role of 

entropy considerations in regression problems. 

Most articles about least squares estimation discuss sufficient condi

tions for consistency and only few authors have dealt with their necessity. 

Wu (cf. [57)) considered the case of non-linear (parametric) regression, 

where g(·) = g(0, •) is parametrized by 0 E 0 C ]RN_ There it is shown 

that under the assumption of i.i.d. disturbances £i with an a.e. positive 

and absolutely continuous density and with finite Fisher information, 

the existence of a consistent estimator 0(Y1, ... , Yn) of 0 for all 0 E 0 

implies that nd~(0, 0) ➔ oo as n ➔ oo for all 0 #- 0, where dn(0, 0) 

denotes the L2 (Pn) pseudo distance between g(·,0) and g(·,0). Under 

assumptions on the model, this turns out to be a sufficient condition 

too. 

Once consistency has been established, the next question is how fast 

this convergence turns out to be, i.e. the rate of convergence will be 
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examined. Under the hypothesis that the disturbances Ei are almost 

Gaussian, and the entropy numbers of g intersected with shrinking balls 

in L2 ( Pn) with common center 9o and radius proportional to c5n ➔ 0 

behave like nc5~, Van de Geer proved that the rate of convergence will 

also be c5n, i.e. II§ - 9olln = Op(c5n)- In many cases, this is the best rate 

one can achieve. 

In Chapter 5, we give a detailed account of the rates of convergence. 

Upper and lower bounds will be derived and also the role of the error 

distributions will be discussed. Related work has been done by Birge & 

Massart ( cf. [5]) and Shen & Wong ( cf. [55], [56]). The main difference 

is that their approach is based on entropy with bracketing. 

Finally some asymptotic distribution theory concerning the least 

squares estimator g will be presented in chapter 6. 

4.1 The envelope case 

We start with introducing an i.i.d. regression model with stochastic 

design. 

Model 1. 

Ii= 9o(Xi) + oEi (i = 1, ... ,n). (4.7) 

• Xi are i.i.d. with probability distribution P on IR\ 

• Ei are i.i.d. with probability distribution K on IR and 1Ec1 = 0 

and 1Ec? = l; 

• X1, ... , Xn, c1, ... , En are independent; 

Nate that o2 ~ 0 is the variance of the error e = a · E. 

Consistency is the weakest requirement for any reasonable estimator. 

In the case of least squares estimation, a natural way to measure the 

distance between the least squares estimator g and 90 is by means of the 

L2(Pn) pseudo norm. We shall now define some concepts of consistency. 
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Definition 4.1 (Consistency) 

• A sequence of estimators {On} of go is called L2(Pn)-consistent if 

IIOn - uolln,2 ➔ 0 in probability; 

• A sequence of estimators {On} of go is called strongly L2(Pn)

consistent if 

II On - Yo lln,2 ➔ 0 almost surely. 

L2{P)-consistency and strong L2 (P)-consistency are defined in a similar 

way. 

For finite Q, L2{Pn)-consistency is easy to establish, and more gen

erally we can show that if g is essentially not too large, O is a L2(Pn) 

consistent estimator of g0 • In Theorem 4.1 we shall make precise what is 

meant by "essentially not too large". Notice that go minimizes S(g) = 
IE{Y - g(X)}2 and that O minimizes Sn(g) = n-1 Ef=dJ'i - g(Xi)}2, 

the empirical counterpart of S(g). By the strong law oflarge numbers, 

Sn(9) a.s> S(g), for any fixed g E L2(P). If this convergence is uniform 

in g then L2 (Pn)-consistency is not hard to prove. We state a set of 

sufficient conditions which can be found in Van de Geer [39]. 

Proposition 4.1 Consider regression model 1. Suppose the following 

conditions are satisfied: 

J G2 dP < oo (envelope condition), (4.8) 

where G = sup9Eg 191 (pointwise) is the canonical envelope of class g, 

and 

1 p 
-H2(0, Pn, Q) -+ 0 for all o > 0 (entropy condition). (4.9) 
n 

Then O is both strongly L2(Pn) and strongly L2(P) consistent. 

The link with the theory of empirical processes will have become 

clear by now, since almost sure convergence of empirical processes uni

formly over general classes g is one of the main topics in this field of 
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probability theory. Indeed the entropy and envelope conditions ( 4.8) 

and (4.9) ensure that g is a Glivenko-Cantelli class, i.e. 

II/ gd(Pn -P)t ~ O. (4.10) 

A natural question is whether the converse of Proposition 4.1 holds 

true. The answer is negative because parametric linear regression is a 

counterexample: (4.8) is not satisfied, yet the least squares estimator is 

consistent. Example 4.1 below shows that even if GE L2(P), condition 

( 4.9) is not necessary for consistency. 

Example 4.1 Let c1 be a Rademacher variable, 1.e. 1P { c1 = -1} = 
1P { c1 = 1} = 1 /2. Indeed this variable fulfills the required properties 

lEc1 = 0 and IEc? = 1. Suppose go = 0 and that Q = {IA : A E B}, 

where Bis the collection of all Borel sets. Then (4.8) is met with G = 1, 

but (4.9) fails. 

For fJ = l the consistency fails because straightforward computation 

yields 

n 

d;(§,go) = n- 1 ~I{ci = 1} a.s. 1/2. 
i=l 

Notice however that for O < fJ < 1/2, we have g = go, so g is cer

tainly consistent. Hence condition ( 4.9) is sufficient but not necessary 

for L2(Pn) consistent least squares estimators. 

We learn from Example 4.1 that there actually exist situations where 

consistency holds true only for some special values of (j. This phe

nomenon is undesirable. If G E L2 (P) and if we require consistency 

for all fJ, necessary and sufficient entropy conditions can be established 

relatively easily. However, as already pointed out by Van de Geer [39], 

this envelope assumption is far too stringent in most cases. 

Theorem 4.1 Consider regression model 1. Assume G E L2 (P). The 

following two statements are equivalent: 

dn(fl, go) ~ 0 for all fJ E 1R 

n-1 H2(8, Pn, Q) -£+ 0 for all 8 > 0. 
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Before we prove this result, let us introduce some notation. Define 

for all functions g E g, 

1 n 
mn(g) = yn ~ E:i (g(Xi) - go(Xi)), 

Ln(g;CT) = 2CTn- 112mn(g) -d;(g,go). 

The least squares estimator g has the following property: 

Ln([J; CT) = supLn(g; CT) 
gEQ 

(4.13) 

because minimizing Sn (g) is evidently the same as maximizing Ln (g; CT) 

over g E Q. 

Proof of Theorem 4.1. The implication (4.12) ==> (4.11) has been 

proved in Van de Geer [39]. Therefore we only have to prove the necessity 

part (4.11) ==> (4.12). We first show that 

sup ln-1/2mn(g)I a.s ➔ 0. 
gEQ 

(4.14) 

We begin by noting that the joint distribution of { mn (g) : g E g, n E IN} 

is independent of CT. Also, regardless of whether CT is positive or negative, 

As dn (g, go) a.s ➔ 0, the Cauchy-Schwarz inequality implies that 

Hence, by the definition of the LSE we have 

supLn(g; CT) a.s) 0. 
gEQ 

Clearly, 
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and 

Combining this with (4.15) we find that for every a E IR, 

and ( 4.14) follows, to wit 1-l = { c(g - go) I g E Q} is a Glivenko-Cantelli 

class. This collection has a square integrable envelope H = 2lclG, 

Let Q be the product measure P x K and let Qn be the empirical 

measure based on (Xi, Ei), i = 1, ... , n. We shall show that 1-l is a 

Q-Glivenko-Cantelli class implies that g is a P-Glivenko-Cantelli class. 

Because IEc2 = 1, there exists a number O < 'T/ < oo for which 1r0 := 

IP{ld > r,} > 0. 

Define the measure Pn as a discrete measure, which assigns mass 1/n 

to Xi if and only if lei I > r,. The random variable Nn = I:i=l I { lei I > 'T/} 
counts the values for which this holds true. Since 

it follows that n-1 H2(8/r,, Pn, Q) ~ 0 for all 8 > 0. Observe that Pn 
and (Nnfn)PNn have the same conditional distribution, given E1, ... En. 

Moreover, by the strong law of large numbers, we have Nn/n a.s. no, 

Consequently, n-1 H2( Jn/Nn8/r,, PNn, Q) ~ 0 for all 8 > 0, and as a 

result n-1 H2(8, Pn, Q) ~ 0 for every 8 > 0 as well. This proves the 

theorem. □ 

Remark 4.1 In case the Ei form an orthogaussian sequence, the last 

part of the proof of Theorem 4.1 can be simplified by means of The

orem 2.1. Note that mn(g) now is a centered Gaussian process. As a 

consequence of Sudakov's lower bound (Theorem 2.1), we have 
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where the expectation on the right is taken with respect to pn, the n

fold product measure of P. Hence by Chebyshev's inequality, we find 

for any a > 0, o > 0, 

IP {JH2(8,Pn, Q) > m/n} :5 (Cs8a)-11Esup _!_ t ci (g(Xi) - go(Xi)). 
gEQ n i=l 

Application of the Cauchy-Schwarz inequality yields 

s~pIE ( ¾ t, c~) · IE ( l t, (2G(Xi))2) 

= 4IEG2 (X1) < oo. 

By elementary arguments (see e.g. Billingsley [3], p.348), lln- 112mn(g)llg 

is uniformly integrable. Hence the almost sure convergence (4.14) im

plies convergence in mean of lln- 112mn(g)llg. The global entropy condi

tion follows from Chebyshev's inequality above. 

Remark 4.2 Since GE £ 2(P), the entropy assumption (4.12) is equiv

alent with H1(8,Pn,9) = Op(n) for all 8 > 0 (cf. Theorem 2.5). As 

a result, Theorem 4.1 can also be stated in terms of L 1(Pn) entropy 

numbers. 

Remark 4.3 Example 4.1 shows that it is essential to require the con

sistency ( 4.11) for all a E IR. 

It should be noted that negative values for a are needed to conduct 

the proof of Theorem 4.1. Alternatively, we could assume symmetric 

errors ci, i.e. IP{c1 E B} = IP{-c1 E B} for every Borel set B, and 

consider only positive a. 

It has become apparent that minimizing the sum of squares Sn ( ·) 

over a Glivenko-Cantelli class produces an £ 2 (Pn)-consistent estimator, 

whereas essentially larger classes will give inconsistency. There is one 

unpleasant detail: the assumption G E L2(P) is very restrictive. It 

even rules out the familiar case of parametric linear regression. The 

following lemma reveals, however, that at least every subclass of g with 

a P-square integrable envelope should be a Glivenko-Cantelli class, as 

is the case for linear regression. 
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Lemma 4.1 Consider model 1. Suppose dn(fJ,go) a.s> 0 for all a E IR. 

Then for every subclass g* C g with envelope G* E L2 (P) and go E Q*, 

we have that Q* is a Glivenko-'Cantelli class. 

Proof of Lemma 4.1. From the almost sure convergence (4.16), we 

have 

sup Ln(g) ~ 0 
gEQ* 

since Q* C g. Repeat the same arguments as in the proof of Theorem 

4.1 with g and G replaced by g* and G* respectively. □ 

Remark 4.4 The uniform convergence II Jg d(Pn - P) Ilg a.s> 0 is cer

tainly not necessary for obtaining consistent least squares estimators. 

We only mention that by a result due to Van de Geer the conditions 

in Proposition 4.1 can be relaxed considerably. By introducing scaled 

versions f = f(g) = g/(1 + 119112) of g E Q, it is possible to circumvent 

the envelope restriction and strong L 2 (P) consistency is established. See 

Van de Geer [39], Theorem 1.2, p.590. 

4.2 Main result 

We would like to extend Theorem 4.1 and Lemma 4.1 by dropping the 

envelope assumption. Since the restriction that G is in L 2(P) is a nec

essary condition for characterizing the Glivenko-Cantelli property of a 

class g, we lose a powerful tool when using the empirical process ap

proach. Nevertheless, it appears that such conditions are indeed unnec

essary technical restrictions, although the standard results of the theory 

of empirical processes are no longer applicable. Moreover, the entropy 

conditions can also be weakened. 

In contrast with the previous section, we consider the case of fixed 

design, in other words we assume that Pn is a deterministic measure. We 

emphasize this by using lower case characters x1, ... , Xn for the design. 

The stochastic counterpart where X1, X2, ... are i.i.d. follows directly 

because no restrictions on the design are imposed apart from the entropy 

69 



assumptions. 

Model 2. 

. . JRk • xi, x2, ... 1s a sequence m ; 

(4.17) 

• ci are i.i.d. with probability distribution K on IR, IEc1 = 0 and 

IEc~ = 1; 

• 90 E Q. 

The first result of this section shows that under certain entropy con

ditions consistency of the least squares estimator follows. Instead of 

considering the entropy of the entire space g, the entropy of the subset 

Qn(R) = {g E g: dn(g, go) SR} 

is what really counts. This is a consequence of the fact that dn(9, go) 

is almost surely bounded for all n sufficiently large. Indeed from the 

minimizing property 

we have in particular Sn(§) S Sn(go) (cf. (4.5)). Rewriting this in

equality gives d~(g,go) S 2lan-112mn(fJ)I (cf. (4.6)). Application of 

the Cauchy-Schwarz inequality yields dn([J,go) s 21a1Jn- 1 'Ei=l er a.s) 

2lal. 

Theorem 4.2 Consider regression model 2. The entropy condition 

(4.18) 

implies strong L2 (Pn)-consistency of the least squares estimator. 

The necessity of (4.18) is captured in the following theorem. We 

need an additional assumption on the distribution of the disturbances 
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Theorem 4.3 Consider model 2. Assume that the error-distribution K 

contains no atoms. If we hav_e 

dn(fl, go) ~ 0 Va E IR, 

then the local entropy numbers fulfill (4.18). 

(4.19) 

Combination of Theorem 4.2 and Theorem 4.3 obviously yields 

Corollary 4.1 Consider model 2. In addition, assume that the distri

bution of E1 contains no atoms. The following statements are equivalent: 

1. dn(fl, go) ~ 0 Va E IR; 

2. dn(fl,go) a.s. 0 Va E IR; 

Proof. The implication (3) ➔ (2) is given Theorem 4.2, (2) ➔ (1) is 

obvious and (1) ➔ (3) follows from Theorem 4.3. D 

The remainder of this section is devoted to the proofs of our results. 

We set out with a probabilistic result, concerning an exponential up

per bound for the supremum of the empirical process mn (g) over the 

subspace Yn(R), R > 0. 

Lemma 4.2 (exponential bound for bounded random variables) 

Let lei I be almost surely bounded by C > 0. Then the local entropy 

condition ( 4 .18) implies 

IP { sup Jn-112mn(g)I > a} :S 2exp (-1 ;~2 ) 
gE9n(R) 

(4.20) 

for n 2: no(C, R, a). 

Proof. From Hoeffding's inequality (Lemma 2.3), we have for each 

g E L2(Pn) 

{ -1/2 } ( 1 na2 
) IP In mn(g)I 2: a :S 2exp - 2 C2d~(g,go) . (4.21) 
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Let {gi}~1 be the minimal a/(2C)-covering net of gn(R) with respect 

to the L1(Pn)-distance, so M = N1 ( (a/2C), Pn, gn(R)) and for every 

g E gn(R) there exists a g* E {gi} such that (1/n) Ef=1 lg(xi)-g*(xi)I ~ 
1 

a/(2C). But then n-2lmn(g) - mn(g*)I ~ (a/2) holds, since Ei are 

bounded by C. By virtue of the triangle inequality, we have 

IP{ sup ln-112mn(Y)I > a} 
gEQ.,(R) 

= IP{ sup ln-1l2mn(g) - n-112mn(g*) + n-112mn(g*)I > a} 
gEQ.,(R) 

~ IPL~rM ln-1/2mn(Yi)I > i} 
~ 2exp (H1( 2~,Pn,gn(R))- ~;~2) 

~ 2exp (-~;~2) 

for n ~ n(C,R,a). □ 

Proof of Theorem 4.2. We have to prove the consistency for all 

CT E JR. Fix a E JR. From the inequality Ln(fl; a) ~ Ln(go; CT) and the 

Cauchy-Schwarz inequality, 

This inequality and the almost sure convergence n-1 Ef=1 c~ ~ 1 im

ply that dn(fl,go) ~ 4l<TI almost surely for all sufficiently large n, and 

that 

d~([/,go) ~ sup 2l<TI · ln- 112mn(Y)I, 
gEOn( 41111) 

Hence it is enough to show that supgEOn(R) ln-112mn(Y)I a.s} 0 for all 

R>O. 

Truncation device. 

The error terms c1 , ... , en are generally not bounded. Therefore we 

need a truncation device in order to use Lemma 4.2. In general, let C 
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be positive and define 

Obviously IE{ c1 )c = 0, and IE( c1 - ( c1 )c )2 can be made arbitrarily small 

by talcing C sufficiently large. 

On the set Bn = {n-1 Ef=1(ci - {ci)c)2 < (a/2R)2} we have 

by the Cauchy-Schwarz inequality. Notice that by Kolmogorov's strong 

law of large numbers 

and for C sufficiently large, we have 

2 1 ( a ) 2 
IE(c1 - (ci}c) < 2 2R . 

Thus for fixed positive numbers a and R, 

IP{limsupB~} = 0. 
n➔oo 

Next, we derive after an application of the triangle inequality that 

IP {limsup sup ln- 112mn(9)1 > a} (4.24) 
n➔oo gEQn(R) 

~ IP {limsup sup I_! f (ci)c (g(xi) - 9o(xi))I > ~} + 
n➔oo gEQn(R) n i=l 2 

+IP{limsupB~}. 
n➔oo 

As a result of the exponential bound {4.20), 

Application of the Borel-Cantelli lemma completes the proof. □ 
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Proof of Theorem 4.3. Fix R > 0. The Cauchy-Schwarz inequality 

yields 

p 
Therefore, for all a E IR, we have sup9Eg Ln (g; a) ---t 0, and since 

{}n(R) Cg also supgEQn(R) Ln(g; a) ~ 0. Next, notice that 

Hence for every a E IR, 

It follows that supgn(R) ln-112mn(9)1 ~ 0. By the Cauchy-Schwarz 

inequality, 

( ) 
2 ( ( l n ) 1/2 ) 

2 

supIE sup 1n-1l2mn(g)I ~ sup IE - I>r . R = R2 . 
n gEQn(R) n n i=l . 

This implies that supgEQn(R) ln-112mn(9)1 is uniformly integrable, and 

hence 

IE sup ln- 112mn(9)1 ---+ 0. 
gEQn(R) 

Symmetrization device. 

(4.25) 

Let c; be independent copies of Ei and let Ti be a Rademacher 

sequence (cf. Section 2.5), independent of the sequences Ci and er 
(i = 1, ... , n). Note that the probability distribution of the quantity 

sup9E9n(R) ln-1 I:i=l (ci - c7)(g(xi) - go(xi))I is the same as the one of 

sup9Egn(R) ln-1 I:~1 Ti(Ei-E:}(g(xi)-go(xi))I- Hence by (4.25) and the 

triangle inequality we obtain 

IE sup l!fri(Ei-E:}(g(xi)-go(xi))l ➔ 0, (4.26) 
gEQn(R) n i=l 
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and therefore, by Markov's inequality, 

1E ( sup _!_ f, Ti (ci _:_ c;} (g(xi) - go(xi)) I £i - c;, 1 ~ i ~ n) 
gEQn(R) n i=l 

p 
-+0. (4.27) 

Let Qn be the empirical probability measure based on (xi, £i - c;), 

i.e. it puts mass 1/n at each (xi,£i - c;). Set J(xi,£i - ct;g) = 
(ci - c;) (g(xi) - go(xi)) with g E 9n(R), and :Fn(R) = {!(·, ·; g) : g E 

9n(R)}. By Corollary 4.14 in Ledoux & Talagrand [27], p.116, we find 

that (4.27) implies n-1H2(c5,Qn,:Fn(R)) ~ 0 for all c5 > 0. 

Let gA = {g1 , ..• ,gn} be a maximal set in 9n(R) (a priori possibly 

with infinite cardinality) such that the L1(Pn)-distance between every 

pair in gA is larger than 2c5, i.e. 

f lg - YI dPn > 28 for each g,g E gA, g-=/- g. (4.28) 

By the regularity condition on the error distribution, there exists an 

'f/ > 0 such that IP{lc - c*I ~ 'fl} ~ c52 /(4R2). Then we have almost 

surely, for large n 

/ le - c*ll(g - g)(x)I dQn(x, c - c*) ~ 

~ 'f/ [! lg - 91 dPn - f l(g - g)(x)II{lc - c*I ~ 'fl} dQn(x, c - g*)] ~ 

[ ( 
l n ) 1/2] ~ 'f/ f lg - YI dPn - 2R ;i ~ I { lei - c; I ~ 'f/} > 

~ 'f/ [/ lg - YI dPn - 2RJ2IP{lc - c*I ~ 'fl}] ~ 
~ ,,,c5. 

Consequently, by the relation (2.1) between packing and covering num

bers and the maximality property of packing numbers, we obtain almost 

surely for n large 

N1(2c5,Pn,9n(R)) ~ D1(2c5,Pn,9n(R)) = l9AI ~ 

D1 ('f/c5, Qn, :Fn(R)) :s; N2('f/c5/2, Qn, :Fn(R)). 

As a result, (4.18) holds true. This concludes the proof. □ 
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Remark 4.5 The technical condition on the error distribution K (it 

should contain no atoms) can be replaced by assuming that €1 is sym

metric around 0 in combination with 1P(c1 = 0) = 0. This follows from 

the proof of Theorem 4.3 by noting that in this case c1 and Tc1 have 

the same distribution, where ,,- is an independent Rademacher variable. 

As a result we can skip the symmetrization device and invoke the re

sult of Ledoux & Talagrand directly. Moreover, it suffices to require the 

consistency (4.19) only for a> 0 (cf. Remark 4.3). 

It should be noted that Theorem 4.3 and Corollary 4.1 can be stated 

in terms of L2(Pn) entropy conditions as well. This observation parallels 

Remark 4.2. 

Corollary 4.2 The following statements are equivalent: 

H1(8, Pn, Qn(R)) = o(n) for all 8 > 0, R > 0; (4.29) 

H2(8, Pn, Qn(R)) = o(n) for all 8 > 0, R > 0. (4.30) 

Proof. The relation (4.30) ==> (4.29) follows from dn,1 (!, g) ~ dn,2U, g). 

As a result of Theorem 4.2, the L1 (Pn) entropy condition ( 4.29) im

plies the consistency (4.19) of the least squares estimator in the regres

sion problem. In case the error distribution in our regression problem 

is standard normal, we shall prove that the consistency (4.19) implies 

(4.30). For K = N(O, 1), mn(,) is a centered Gaussian process. This 

property makes it feasible to apply Sudakov's lower bound (Theorem 

2.1), yielding 

for some numerical constant C > 0. The local entropy condition ( 4.30) 

in L2 (Pn) now follows from (4.25). Thus we have proved that in the 

regression model with Gaussian errors, the entropy statements (4.29) 

and (4.30) are the same. Since these statements do not depend on Ei, 

but solely on the metric structure of Qn(R), the result follows. □ 
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4.3 Some extensions 

We shall briefly discuss some possible extensions. First we note that 

in applications of nonparametric regression, the parameter space often 

depends on the number of observations n. Second, the design points may 

form a triangular array Xnl, •.. , Xnn rather than a sequence x1, x2, ... 

. Extension of our results in these directions is straightforward, due to 

the power of the methods borrowed from empirical process theory ( cf. 

Van de Geer [40] and Pollard [37]). We omit further details. 

4.3.1 The heteroscedastic case 

Consider model 2 (deterministic design) where the errors are indepen

dent, but not necessarily identically distributed. In particular, we dis

cuss the so-called heteroscedastic case. 

Model 3. 

(4.32) 

. . IR,k • x1, x2, ... 1s a sequence m ; 

• €i are independent with probability distributions Ki on IR; IEci = 
0, IEcf = a}, (i = 1, ... ,n), and there exists m > 2 such that 

• 9o E Q. 

supIElcilm < oo 
i21 

We wish to extend Corollary 4.1 to cover this model 3 also. 

(4.33) 

A closer look at the proof of Theorem 4.2 reveals that a crucial step 

is the almost sure convergence 

lim limsup .!_ t (ci - (ci)c)2 = 0 
C-too n-too n i=l 

a.s., (4.34) 

where (ci)c is defined as in (4.23). This enables us to employ the trun

cation device as Lemma 4.2 holds true for any sequence of random vari

ables, provided they are independent and uniformly bounded. 
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As far as the necessity of the entropy condition is concerned ( cf. The

orem 4.3), only formula_ (4.29) needs modification. To be more precise, 

the averages 

need to be small for small 'f/ > 0 and for n sufficiently large. It is quite 

obvious that we need a fraction of the observations .s1 , ... , en larger than 

'f/ > 0 to obtain knowledge about J jg(x)I dPn(x) from J lg(x).sl dQn(x, .s). 

Corollary 4.3 Consider regression model 3. Suppose that the sequence 

1 n 
ln('f/) := - L IP{lci - ct! < 'f/} 

n i=l 

(4.35) 

is equicontinuous at 'f/ = 0. Then the following two statements are equiv

alent 

dn(§, go) a.s} 0 Va E JR; 

n-1H1 (c5,Pn,9n(R))---+ 0 Vc5 > O,R > 0. 

(4.36) 

(4.37) 

Proof. The proof will parallel that of the one given in full detail for the 

i.i.d. situation. For this reason we concentrate on the differences. 

Sufficiency part. We now have almost surely dn(§, go) S 4jaj maxi::;n jail 

for n sufficiently large. Because the .Si are uniformly square integrable 

in view of (4.33), there exists C > 0 such that 

2 1 ( a ) 2 ~~11E(ci - (.si)c) S 2 2R , 

where (ci)C is given by formula (4.23). From e.g. Petrov [34], we see 

that (4.34) holds. Hence for the event Bn = {n-1 ~f=1 (.si - (.si)c)2 S 
(a/2R)2}, we have 

1P{limsupn➔oo Bn} = 1, and the truncation device can be performed 

successfully. Since Hoeffding's inequality (4.21) holds true for indepen

dent, not necessarily identically _distributed random variables, the re

mainder of the proof parallels the proof of Theorem 4.2. 

Necessity part. The reasoning for model 2 remains valid, apart from the 

78 



fact that H1('5,Qn,.rn(R)) = o(n) for all R > 0, t5 > 0 yields the same 

statement with eJn and .rn(R) replaced by Pn and 9n(R). But since we 

have 

the result follows immediately from formula (4.29) and condition (4.35). 

D 

4.3.2 Sieves 

We now focus our attention on "sieved" least squares estimation which 

may be useful in situations where the class g is too large in the sense 

that the entropy condition (4.18) is not met. Minimizing the sum of 

squares 

n 

Sn(g) = n-1 :~:)~ - g(xi))2 

i=l 

over the entire class g may lead to an inconsistent estimate. This prob

lem can be overcome by taking approximating spaces g ( n) which do 

satisfy the entropy condition (4.18). The least squares estimator ob

tained by this procedure will be written as g to distinguish it from g. 
Since go is not necessarily an element of g(n), we define gt) as the 

projection of g0 on g(n); the approximating error will be denoted by 

On = IIYo - gt) lln• Observe that by the triangle inequality we have 

Ilg - Yolln ~ Ilg - gt)lln - On, Due to the minimizing property of g, we 

find that, for each 1/ > 0, 

It is now easily seen that consist~ncy can be established under a slight 

modification of the entropy condition (4.18), where we replace g by its 

approximating class g(n), provided the sequence On converges to zero. 
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Observe the trade-off between the approximation error and the size of 

the class g(n). For consistency issues, it is enough to assume that On = 
o(l). However, if one is interested in the rate of convergence, the matter 

becomes more delicate. One can prove that if H2(on, Pn, g~n) (Ron)) ::=:: 

no!, the approximation error On should be of order O(on) if the desired 

rate is Ilg - golln = Op(On). See Van de Geer [45] for details. 

4.3.3 Uniform consistency 

In this subsection we shall work within the regression framework with 

deterministic design, but - in contrast with the preceding sections - we 

employ a different notion of consistency. We shall state our results in 

terms of the more restrictive uniform L2(Pn) consistency. This is in the 

spirit of related work of Birge [4} and lbragimov & Has'minskii [22]. Let 

us formulate the definition of uniform consistency. 

Definition 4.2 Let (9, d) be a pseudo-metric space. A sequence of es

timators On is called uniformly d-consistent if and only if for each c > 0 

limsupsup Po { d(0n, 0) > c} = 0. 
n➔oo oee 

A sufficient entropy condition for uniform L2 (Pn) consistency of the 

least squares estimator can be established relatively easily. For this 

matter we define 

Qn(g;R) = {h E g: dn(g,h) ~ R}, g E Q, R > 0. 

Theorem 4.4 Consider model 3 with u = 1. Uniform L2 (Pn) consis

tency of the least squares estimator is implied by the uniform entropy 

condition 

supH1(0, Pn, Qn(g; R)) = o(n), Vo> 0, VR > 0. 
gE(i 

(4.38) 

Proof. We follow the steps of the proofs of Theorem 4.2 and Corollary 

4.3. First note that we still have dn(g,g) ~ 2 (n-1 Ei=l en 112 , where 

the right-hand side is independent of g. 
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Second, the maximal inequality (4.20) can easily be extended in the 

uniform sense 

supIP9 { sup jn- 112mn(h)j > a} ~ 2exp (-1 ;~2 ) 
gEQ hEQn(g;R) 

by exploiting the uniformity property of the entropy condition (4.38). 

Finally, we remark that the truncation device as used in the proof of 

Theorem 4.2 can be implemented without change since it is solely based 

on the sequence e1, ... , En. 

With these modifications we can argue as in the proofs of Theorem 

4.2 and Corollary 4.3. □ 

For some special regression models, the necessity of the entropy con

dition (4.38) follows from Fano's lemma (see e.g. Ibragimov & Has'minskii 

[22], Birge [4), Devroye [8]). 

Lemma 4.3 (Fano's Lemma) Let p(l), ... , p(J) be J probability mea

sures on a measurable space ( X, A). Let X be a random variable with 

probability measure P E { p(l), ... , p(J)}. Then for any decision rule 

1/;: X ➔ {1,2, ... ,J} we have 

. J-2 E Li,j K(P(i), p(j)) + log 2 
m~ IPi{'l/;(X) # i} ~ 1- l (J l) , (4.39) 
19~J og -

where K(P(i), p(j)) is the Kullback-Leibler information, defined by 

K(p(i),p(j)) = { flog(dp(i)jdP(j)) dP(i) if p(i) ~<P(j), 
+oo otherwise. 

Consider model 2 with the Ei normally N(O, 1) distributed. Con

sequently, the vector (Y1, ... , Yn) is normally distributed. We denote 

the probability measure of (Y1, ... , Yn) by P9 , emphasizing the depen

dence on the regression function g. In this case we can compute the 

Kullback-Leibler number of P9 and Ph explicitly. We find 
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n 

= L (g(xk) - h(xk))2 /(2a2 ) = nd~(g, h)/(2a2 ), 

k=l 

where cp denotes the standard normal density. 

For 8 > O, R > 0, let g~25) (g; R) = {g1, ... , 9m} be a set of points in 

Yn(g;R) with dn(9i,9j) > 28, i =/- j, where m = D2(28,Pn,Yn(g;R)) is 

the 28-packing number of 9n(g; R) with respect to dn, Obviously, 

sup1P9 {Ilg - Ylln > 8} = sup sup 1P / { II/ - flln > 8} (4.40) 
gEQ gEQ JEQn(g;R) 

sup max 1PJ {II! -flln > 8}. 
gEQ,m(g)2:3 JEQf8\g;R) 

> 

For any estimator J of the unknown function f we define 

'lj;(Yi, ... , Yn) = { f* ~ Y~25\g; R) if IJJ -_J*lln ~ 8; 
arbitrary otherwise. 

It now follows easily from (4.40) and Lemma 4.3 that 

sup1P9 {II.§ - gJln > 8} 2: (4.41) 
gEQ 

2: sup max IP f {'1j;(Y1, ... , Yn) -:/= f} 
gE9,m(g)2:3 fEQJ,28 )(g;R) 

2n(R/a)2 + log2 
>1- inf 

gEQ,m(g)2:3 log(D2(28,Pn,Yn(g;R)) -1) 

4n(R/a)2 + 2log2 
>1- inf 
- gEQ,m(g)2:3 log (D2(28, Pn, Yn(g; R))) · 

The relation (2.1) between covering and packing numbers yields 

A • 4n(R/a)2 + 2log2 
sup1P9 {Ilg - glln > 8} 2: 1- mf H (28 P, g ( · R))' (4.42) 
gEQ gE9,m(g)2:3 2 , n, n 9, 

These considerations yield the following result. 

Theorem 4.5 Consider model 2. Let Ei be N(0, 1) distributed. If for 

every 8 > 0, 

limsupsupIP9 {II§ - gJln > 8} = 0 Va> 0, (4.43) 
n➔oo gEQ 

then the uniform entropy condition (4.38) must be satisfied. 
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Proof. If no g E g exists with m(g) 2: 3, then ( 4.38) is trivially satisfied 

in view of (2.1). Otherwise, if the LSE is consistent in the strong sense 

that the left-hand side of ( 4.42) tends to zero, the entropy numbers 

should satisfy 

limsup sup (4.44) 
n-+oo gEQ,m(g)?_3 

Since (4.43) holds for all a> 0 and the left-hand side in (4.44) is inde

pendent of a, the result follows. D 

83 



84 



Chapter 5 

Rates of convergence 

In the previous chapter we have dealt with consistency issues of the least 

squares estimator in various regression models. The natural continuation 

of our study is to investigate the rate of convergence of a consistent 

least squares estimator. In other words, the purpose is to find metric 

conditions on g which guarantee the existence of sequences n-1/ 2 < 
8n ➔ 0 such that 

limsuplimsupIP {dn(.§,go) 2'.: R8n} = 0. 
R➔oo n➔oo 

This chapter will be entirely devoted to this question. 

5.1 Upper bounds 

In the parametric case, i.e. the case where g can be parametrized by 

some subset 8 of the Euclidean space IR,k, the normalized sequence 

y'ri,(O - 00) typically has a limiting Gaussian distribution, where g(·) = 
g( 0, •) and g0 ( ·) = g( 0o, •). Thus the parametric least squares estimator 

converges with the optimal rate n-1/ 2 under certain regularity condi

tions. It is well-known that if we try to estimate an infinite dimensional 

parameter, the problem usually becomes harder and as a result the con

vergence is in general slower; the rate is of order n-0 , a < 1/2. In 

the nonparametric regression context, for instance, the rate is of order 

n-1/3, if the regressors are monotone functions bounded in supremum 

norm by a constant. Another familiar example is the class of smooth 
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functions where the rate depends on the number of derivatives. More 

specifically, let g be defined as the set of all functions g : [O, 1] -+ [O, 1] 

with J!(g) = J(gCm)(;) )2 dx s J < oo, where g(m) denotes them-th 

derivative of g. The entropy for this class is considered in Birman & 

Solomjak [6] and their result implies that the rate of convergence is of 

order n-m/(2m+l), which is the case for kernel estimators as well. 

Whereas the local entropy numbers H2(c5, Pn, Qn(R)) determine the 

consistency of the least squares estimator, the speed of convergence fol

lows from the behavior of the entropy integral 

and n-1/ 2 S 8n-+ 0. As a rule of thumb, H2(xR8n, Pn, Qn(R8n)) ::::: nc5; 

implies II.§ - golln = Op(8n) {cf. Van de Geer [41]). It should be noted 

that we restrict ourselves to subgaussian errors at this point. A rough 

argument is as follows. From inequality (4.6), we see it is sufficient to 

consider the behavior of n-1/ 2 Li=l Ei(g(xi)-go(xi)). If the disturbances 

Ei are subgaussian, it can be shown that the process 

is subgaussian with respect to the L2 (Pn) pseudo norm. This means 

that the tails of 

lln-1/ 2 t Ei(g - g0)(xi)II 
i-1 9n(Rt>n) 

decrease exponentially fast by virtue of Theorem 2.3. 

First we restate a modification of Van de Geer's result. We consider 

a deterministic design and heteroscedastic errors. 

Theorem 5.1 (Van de Geer [41]) Consider model 3 with a= 1. Sup

pose the Ei are uniformly subgaussian, i.e. there exists a constant >. > 0 

such that 

sup IE exp (>.c;) < oo. 
i>l 
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Furthermore, assume that there exist a sequence t5n with n-1/ 2 ~ t5n ..!- 0 

as n ➔ oo, and an integer no_ such that 

1. /,2 JH2(xRt5n, Pn, Qn(Rt5n)) dx O 
1m sup sup _ r,;:; = , 
R➔oo n~no R6n/(8s) Ry nt5n 

(5.2) 

with s = supi~l jail, Then we have 

In fact, for some constants y;,i > 0 (i = 1, 2) not depending on n and R, 

(5.3) 

for n ~ no and R ~ Ro. 

At this point, several remarks are in order. 

Remark 5.1 First of all, note that the region of integration in (5.2) is 

[Rt5n/(8s), 2], rather than [O, 2] as in Van de Geer [41]. In Van de Geer 

[45], the integration is over the former interval, but no proof is given. 

Although in many interesting cases, the integration may be extended to 

[O, 2] without influencing the result, this observation is relevant as there 

exist situations where the entropy integral diverges, due typically to the 

behavior of the entropy numbers in the vicinity of x = 0 (see Birge & 

Massart [5], Van de Geer [45]). 

Second, it follows from Birge & Massart [5], Wong & Shen ([55], [56]) 

that (5.1) can be slightly relaxed by assuming 

suplEexp (>.l.sil) < oo, 
i>l 

(5.4) 

at the price of stronger conditions on g, viz. local entropy with brack

eting and uniform boundedness restrictions on Q. However, it is clear 

that (5.1) and (5.4) are too strong in many cases, in particular if g can 

be approximated by finite dimensional sieves arbitrarily well. See Van 

de Geer [45] for details. In this context, we note that virtually no mo

ment assumptions are needed in least deviation regression ( cf. Birge & 

Massart [5], Van de Geer [41]). 
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Finally, we emphasize that the result (5.3) holds uniformly in go E 9, 

provided the entropy condition (5.2) is valid uniformly in g0 E Q. Thus 

(5.1) and 

l. /,2 JH2(xR8n,Pn,9n(g;R8n))dx O 1msup sup sup ----------- = 
R➔oo n~no gEQ R6n/(Bu) R.Jii,8n 

imply that 

limsupsuplP 9 {Ilg - glln 2: R8n} = 0. 
R,n➔oo gEQ 

Under normality assumptions on the errors, E:i g N(O, a2), and Fano's 

Lemma (see Section 4.3.3, Lemma 4.3) we get some insight in the neces

sity of these entropy conditions. More specifically, for each R 2'. L 2'. 1, 

we have 

5.1.1 Proof of Theorem 5.1 

For reasons of completeness, we prove Theorem 5.1. Moreover, the struc

ture of the proof resembles that of Theorems 5.2 and 5.4. 

Proof of Theorem 5.1 Take 8n as defined in Theorem 5.1. From (4.6), 

we have for every integer l > 1 that 

lP { Ilg - 9olln 2: i8n} ::; 

::; lP {sup 3_ t E:k(g(xk) - go(xk)) - Ilg - 9oll~ 2: o}, 
g n k=l 

where the supremum is taken over all functions in 9 with Ilg - golln > 
218n, and hence 

(5.5) 
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where the supremum is taken over all functions in g with 2J 8n ::; Ilg -
9olln ::; 2j+l8n, and mn(g) is defined in Section 4.1. From Propositions 

5.1 and 5.2 below, it follows that for some p 2:'. 1, 

Hence mn(·) is a subgaussian process with respect to dn. Moreover, by 

the Cauchy-Schwarz inequality, we have a.s. 

We can now apply the maximal inequality stated in Corollary 2.1 on the 

probabilities Pj, which yields (5.3). D 

Remark 5.2 The main ingredient of the proof of Theorem 5.1 is the 

maximal inequality for the empirical process mn ( ·) ( Corollary 2.1). It 

should be emphasized that the perhaps more common maximal inequal

ity in Theorem 2.4 leads to slightly more stringent entropy conditions. In 

fact, if we appeal to Theorem 2.4, the upper bound on the probabilities 

Pj becomes 

To ensure that the series Ef=-1 Pj is still convergent, we need a slightly 

stronger assumption on the local entropy numbers than in Theorem 5.1, 

VIZ. 

for some a < 1. 

Finally we show that under assumption (5.1) the empirical process 

{mn(g) : g E 9} is subgaussian with respect to the L2 (Pn) pseudo norm. 

A similar result is given in Kuelbs [24] with a more complicated proof. 
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Proposition 5.1 Let X be a random variable with 

for some constants ), > 0 and A ~ 1. Then 

( 2A,B2 ) 1E exp(,BX) ::; exp ->,-

holds for every ,B > 0. 

Proof. Since for all t > 0, JP(IXI > t) ::; Aexp(->.t2) holds, we have 

for all integers m ~ 2, 

1EIXlm = fo 00 lP{IXlm > t} dt::; A fo 00 exp (->.t2lm) dt 

= A>,-m/2r (; + 1). 
Note that r 2 (9'- + 1) ::; r(m + 1) by Cauchy-Schwarz. The following 

inequalities are now self-evident. 

Finally, invoke the inequality 1 + (1 + y'x)(exp(x) - 1) ::; exp(2x) for 

x > 0, to obtain the result. D 

Proposition 5.2 Let X 1, ... , Xn be independent random variables with 

IEXi = 0 and IE exp ( >.Xl) ::; A, i = 1, ... , n 
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for some constants .A > 0 and A 2'. 1. Let a1, ... , an E IR, and write 

I/all = {Ei=l an½. Then 

Ill {It aiXi 2'. t} ~ 2exp (- 8:it:112 ) · 

Proof. Using the independence of the Xi and the previous proposition, 

one obtains 

Hence 

IP{~ aiXi > t} ~ exp ( 2A:
2 

l!all 2 - {3t). 

Choose {3 = ..Xt/4Alla/l 2 • □ 

5.2 Non subgaussian disturbances 

The regression model with deterministic design and heteroscedastic er

rors (model 3) will be considered. In Section 5.1, the restriction (5.1) 

was imposed on the disturbances. We shall establish a trade-off between 

the information of the errors, given in terms of the number of moments, 

and the size of the class of regressors, given by local entropy conditions. 

The subgaussian property of the process 

and therefore the exponential decrease of its tails in sup-norm, is no 

longer guaranteed if the errors E:i have only finite moments IElcilk for 

k ~ m. Under more stringent entropy conditions than (5.2), we still 

obtain a rate of convergence, but generally this rate is inferior to the 

rate obtained under restriction (5.1). 

Although the unconditional process mn(·) may fail to be subgaus

sian, we can show that the symrp_etrized version is subgaussian condi

tionally on c1, ... , en. This observation and a maximal inequality yield 

the following result. 
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Theorem 5.2 Consider model 3 with CT = 1. Let m > 2 such that 

- supIElcilm < oo . 
. i~l 

(5.6) 

Suppose that there exist a sequence 8n with n-112 ~ 8n ,!.. 0 as n ➔ oo, 

and an integer no such that 

1. 1a2 x-lfPJH2(xR8n,Pn,Qn(R8n)}dx O 
1m sup sup 1 = 
R➔oo n~no O y'n(R8n)l+i> 

(5.7) 

for all 1 ~ p < m/2. Moreover, let the class g be uniformly bounded. 

Then we have for all a > 0, 

limsuplimsupIP { dn(9,9o) > R8!-0t} = 0. 
R➔oo n➔oo 

Proof. Let 8n be defined as in Theorem 5.2 and set v~ = max1:s;i:s;n ul. 
For all g E Q with dn(g, go) ~ R8n, R > 0, we have 

Var ( mn(g) ) < v~ < ( Vn ) 2 

~(g,go) - ~(g,go) - R8n ' 

and hence by Chebyshev's inequality, we have 

v2 v2 1 
IP {lmn(Y)I > ynx} ~ (xR)~n8~ ~ (x~)2 ~ 2 

for xR > v'2 supi~l CTi ~ v'2vn, Let Ei be independent copies of ci and 

define 

After an application of Lemma 2.2, we find that 

IP { sup lmn(g)I > !vn} < (5.8) 
dn-(g,go)~R6n ~(g, go) - 2 -

< 2IP { sup lmn(g) - mn(g)I > !vn}. 
- dn(g,go)~R6n ~(g,go) - 4 

Let r1, ... , r n be a Rademacher sequence, independent of c1, ... , en. 

Observe that E:i - Ei is equal in distribution to ri(ci - Ei) by symmetry. 

Therefore we may bound the probability in (5.8) further by 

IP { sup lmn(g)I > !vn} < 4IP { sup lm~(g)I > !vn} 
dn(g,go)~R6n ~(g,go) - 2 - dn(g,go)~R6n ~(g,go) - 8 ' 
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where m~ (g) is defined by 

Let Qn be the discrete measure which puts mass 1/n at each pair (xi, fi) 

and define h(xi,Ei;g) = Eig(xi) with g E Q, and 1in(R6n) = {h(·,·;g): 

g E Qn(R6n)}, R > 0. An application of Lemma 2.3 yields 

Hence, conditionally on the vector (c1, ... , En), the symmetrized process 

{ m~ (g) : g E Q} is subgaussian with respect to the L2 ( Qn) pseudo 

norm. We can not apply the maximal inequality in Theorem 2.3 directly. 

However, for positive constants C, c, and c, we can derive from its proof 

that, conditionally on c1 , ... , En, 

JP { sup lm~(g)j > >.(R6n)2 I f1, ... ,fn} ~ 
gE9n(R6n) 

~ C exp (-c>.2n(R6n)2 ) , (5.9) 

for 

where .6.n is the diameter of the set 1in(R6n)-

Next, we replace the entropy of the set 1in(R6n) in (5.10) by an 

entropy of gn(R6n)- We may assume without loss of generality that 

sup9E9 11Ylloo ~ 1 since g is uniformly bounded. Observe that by Holder's 

inequality for 1 < p < m/2 

< 
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Put Sn(P) = ( n-1 Li=I IE.s}P)11P, 1 < p < m/2. Thus we have almost 

surely for all 1 < p < m/2 and large n, 

(5.11) 

since n-1 :E~1 [c;P - IEc;P] converges almost surely to zero for all 1 < 
p < m/2 under assumption (5.6). Combination of (5.7), (5.9), (5.10) 

and (5.11) entails by the same arguments as in the proof of Theorem 5.1 

the desired rate of convergence. □ 

Remark 5.3 Observe the interplay between moment requirements on 

ci and entropy conditions on(}. The more moments k = 2p we require 

ci to possess, the higher the speed of convergence of the least squares 

estimator. It is interesting to see that for k = oo, when every moment 

of ci is finite and we are almost in the subgaussian case, the entropy 

conditions (5.2) and (5.7) are almost the same. We illustrate this by 

two examples. 

Example 5.1 (monotone functions) Consider the class g of mono

tone functions on the real line, uniformly bounded by some finite con

stant. If we compute the entropy of this class with respect to the L2 (Pn) 

pseudo norm, it turns out that 

In case the disturbances are subgaussian, it is well-known (see Van de 

Geer [41]) that the rate of convergence is 

This also follows from Theorem 5.1. However, if we only know that the 

disturbances are i.i.d. with IEh 12P < oo, then Theorem 5.2 yields that 

IIY - Yo lln = 0 P ( n - 3:+2 ) • 

Indeed, we see that for p-+ oo, the rate behaves like n-1/ 3 . 

94 



Example 5.2 (smooth functions) Next, we consider classes of func

tions g which satisfy the entropy bound 

This assumption is fulfilled, for instance, by the class of all k-times 

differentiable functions g : [O, 1] -+ [O, 1] with J [g(k)(x)J2 dx bounded 

above by a finite constant. By Theorem 5.2 

II§ - 9olln = Op ( n-2kp!~k+P) 

for i.i.d. errors satisfying IElc112P < oo. If condition (5.1) is met, how

ever, we find that the L2 (Pn) distance between g and go is of order 

n-k/(2k+l). Note that n-kp/(2pk+2k+p) converges to the optimal rate 

n-k/(2k+l) asp-+ oo. 

5.3 Lower bounds 

So far, we have not discussed lower bounds for the rates of convergence. 

In this section we show that at least in some interesting situations, The

orem 5.1 yields optimal rates. 

For O < 8 < 2R8n, g E g, we typically encounter the entropy behav

ior 

( 5.12) 

Then the rule of thumb H2(8n, Pn, Qn(g; R8n)) ::=:: n8;;, is solved by 8n = 
1 1 

n- 2+v. The following theorem states that this rate n- 2+v is the best 

one can obtain. But first we have to make precise what is meant by an 

optimal rate. Recall that an estimator g converges with rate 8n if 

lim suplimsuplP {llfJ - 9olln > L8n} = 0. 
R➔oo n➔oo 

We call such a rate optimal if 

liminflP {llfJ - !iolln > an8n} > 0 
n➔oo 

for every sequence an -I- 0 as n -+ oo. 
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Theorem 5.3 Consider model 3 with a = l. Suppose ci are Gaussian 

.N(0, o-l) random variables, where 

inf al> 0 and 
i~l • 

2 supai < oo, 
i~l 

and assume (5.12} holds true. Then for all sequences an -l- 0, 

liminflP {dn(9,9o) > O!nn- 2~v} > 0. 
n➔oo 

(5.13) 

1 
Proof. Let '5n = n - 2+v. The entropy bound (5.12) and the Gaussian 

distribution of ci entail that Zn(R'5n) ~ 0, with 

and since Zn(R) is uniformly integrable, we also have convergence in 
2-V 2 mean. Let us now prove that 1EZn(R'5n) ::=:: n-2-t5n· 

Using Sudakov's lower bound (Theorem 2.1), which is feasible by the 

normality assumption on the errors, we find by (5.12), 

1E sup mn (g) > 
gEgn(R6n) 

C supxJ H2(x, Pn, Qn(R'5n)) 
x>O 

> CR'5n✓ H2(R'5n, Pn, Qn(R'5n)) 

By Dudley's upper bound (Theorem 2.2) 

1E sup mn(g) < c fo02™n JH2(x,Pn,Qn(R'5n))dx 
gEgn(Ron) 

(5.14) 

< CR'5n fo2 JH2(xR'5n,Pn,Qn(R'5n))dx 

= CR 2-t y'n'5~. (5.15) 

It now follows from (5.14) and (5.15) that indeed IEZn(R'5n) ::=:: R 2
-./ '5~. 

Consequently, with probability tending to one, we find that 

sup9egn(r5n) Ln(g) = 0('5~) for r E (0, ro) and some ro > 0. On the 

other hand we have, with probability tending to one, for each sequence 

O!n -l- 0, that sup9egn(on5n) Ln(g) = o('5~). Since the LSE maximizes 

Ln, it is clearly impossible that g lies within the ball Qn(an'5n) with 

probability tending to one. □ 
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5.4 Stochastic design 

In this section we shall consider the case of stochastic design. Let 

Xi, ... , Xn be i.i.d. random variables with common probability mea

sure P on m,k. The results derived in the previous paragraph can easily 

be restated for the stochastic case. Since the sequence X1, X2, ... is no 

longer deterministic, the entropies involved in Theorem 5.1 are stochas

tic. For this matter, we define the random variables 

ur = Jg JH2(xR8n, Pn, Qn(R8n)) dx R > 0 = l 2 (5 16) 
""n,R ../n8nR , - ' n ' '... . 

Recall that 8n .J,. 0 and n8~ ~ 1 as n -+ oo. If there exists a deterministic 

sequence { aR}, aR .J,. 0 as R -+ oo such that 

limsuplP { LJ {Wn,R > aR}} = 0, for some Ro> 0, 
n➔oo R=Il-0 

it follows from the proof of Theorem 5.1 that 119- Yolln = Op(dn), 

Next, since we are dealing with random measures, one might ask 

if the theoretical distances show similar behavior. To cope with this 

question, we need an adequate link between these related distances. We 

recall the following lemma which can be found in Pollard [35]. 

Lemma 5.1 Let :F be a permissible class of functions with (f J2 dP) ½ S 

6 and llflloo S 1 for each f in :F. Then 

IP { ''.;!' (/ / 2 dPn) ! > 85} :,; 4IE[N,(5, Pn, :F) exp(-n52) A !]. (5.17) 

Proof. See Pollard [35], p. 31. D 

We shall use a slight modification of this lemma to get rid of the 

mathematical expectation in (5.17). Define 

Q(R) = {g E g: Ilg - 90112 s R}' R = 1, 2, ... 

and 

An,j = { H2(j8n, Pn, Q(j8n)) S nd!j2} 
An= nj~1An,i· 
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Lemma 5.2 Suppose g is uniformly bounded by 1. Then we have for 

On > 0 with n8~ 2 1 and On .J,. 0 as n -t oo, L 2 1 and constants 

c, C > 0, 

where An is defined previously in {5.18}. 

Proof. Let P~ be an independent copy of Pn. Because we have 

IP {-l- (/ 92 dP') ½ < 2} > l - IEJ g2 dP~/11911~ = ~ 
119112 n - - 4 4' 

we can apply Lemma 2.2 with c = 14, a= 2 and (3 = 3/4, whence 

f g2dPn 2 
{ 

I } IP mp >16 < 
IIYll2>Lon ( f 92 dP ) -

(5.19) 

4 1 2 2 2 ,2 { I 1 11 } -IP sup 1 9 dPn - g dPn > 14 . 
3 IIYll2>Lon (f 92 dP) 2 (/ ) (/ ) 

A closer look at the proof of Lemma 5.1 reveals that, using the same 

notation as in Lemma 5.1 where llflloo S 1 and 111112 S 8, the following 

bound holds true with Cn = {H2(8, ![Pn + P~],:F) S nf }, 

(5.20) 

Use that the independent measures Pn and P~ have the same distribution 

and invoke the relation 

If we peel the event {119112 2 L8n} into countably many small annuli 
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and transform inequality (5.20) to the present setting with 8 = 2i8n, we 

see that (5.19) can be bound~d further by 

J 2 dP. 2 
1P sup g n > 16 < { 

t } 

JlgJl2>L6,. ( I g2 dP ) -

~31P { sup l 1 (/i dPn) ½ - (/i dP~) ½I> 12, An}+ 
llgll22::u,. (J g2 dP) 2 

+;1P{A~} S 

4 
00 

{ 3 L 1P sup_ 
j=jo Jlgl12~2J6,. 

+;1P{A~} s 

S 4 f exp(-22i-1n8~) + ;JP{A~}, 
J=Jo 

whence the result follows. D 

Now we are in a position to prove the following result. 

Theorem 5.4 Consider model 1 with u fixed. Suppose that the sequence 

E:1, E:2, • • • is uniformly subgaussian, and that g is uniformly bounded by 

B > 0. Let 8n > 0 with n-1/ 2 S 8n ..!- 0 as n--+ oo. Finally, assume that 

l. 1P { LJoo { Jg JH2(xR8n,Pn, Q) dx }} O 1msup . r.;;1. R > O:R = 
n➔oo R=Ro y nun 

(5.21) 

for a deterministic sequence { o:R}, o:R ..!- 0 as R--+ oo. Then we have 

Proof. We only prove the second result, because the rate for II§ -
golln follows fairly straightforward from Theorem 5.1 as explained in the 

beginning of this section. 

Without loss of generality we take the constants u = 1 and B = 1. 

Since Sn (go) - Sn (g) is maximized over the set g by the LSE g, we 

have for L ~ Ro 
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with 

and 

Pi2) = JP { sup 1/(g - go)2 d(P - Pn) - ~1/g - goll~12'. o}. 
llg-goll2>Un 

By the peeling device as used in the proofs of Theorem 5.1 and Lemma 

5.2, we can write 

00 

p(l) < ]P {BC}+~ p(l) 
L - n L., J 

j=l 

with 

J g2 dPn 2 
{ 

1 } 

IIYll2>Un ( f g2 dP ) -
Bn = sup < 16 , 

and 

< ]P { sup l2n- 112mn(g)I 2'.1(2j8n)2, 
2i- 1on:::;llg-goll2:::;2i On 

< lP { sup l2n- 112mn(g)I 2'. !(2i8n)2 }. 
Ilg-go I In :::;24+i On 4 

Arguing as in the proof of Theorem 5.1, we see that 

00 

L PJ1) ~ 3 exp ( -Kl2n8;) 
j=l 

for some K > 0. An application of Lemma 5.2 implies that 

limsupn L➔oo lP{B~} = 0. Therefore it remains to prove an adequate 

upper b~und for the probabilities Pi2). 

Note first of all that, using llglloo ~ 1, 

( J(g - go)2dPn) -lll ll-2 
Var Ilg - goll~ ~ 4n g - go 2 . 
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Hence by Chebyshev's inequality 

IP { f (g - go)2 dPn > ! } < 26-2£( 82)-1 < 2-1 
Ilg - goll~ 4 - n n - ' 

for all g E Q satisfying Ilg - goll2 ~ L8n and L = 4, 5, .... By Lemma 

2.2, it follows that 

p},2) < 2IP { sup J(g - go)2 d(Pn - P~) > ! } 
llg-goll2>Lon Ilg - goll~ - 4 

< 4IP { J (g - go) 2 dPR > 1 } 
sup II 11 2 - - ' llg-goll2>Lon g - go 2 16 

where P~ is an independent copy of Pn and PR is the symmetrized em

pirical measure. 

Using the peeling argument once more we obtain 

Pl2) < 4IP { sup J (g - go) 2 ~PR ~ _!_} 
llg-goll2>Lon Ilg - goll2 16 

< 4 1: IP sup (g - go )2 dP~ ~ n , Bn 
00 

{ f (21-115 )2 } 
j=l v- 1on<llg-goll2<2i8n 16 

+4IP{B~} 

< 4IP {B~} + 

+4 I: IP { sup / (g - go) 2 dP~ ~ _!_(21- 18n) 2 } 
j=l llg-golln<2i+4 on 16 

< 4IP {B~} + 

+4I:IP{ sup j(g-go) 2 dP~~_!_(21- 18n) 2 }, 
j=l ll(g-go)2lln<2i+48n 16 

where we used llglloo :::;: 1 in the last inequality. Observe that 

H2 ( v'128, Pn, { (g - go)2 : g E Q}) :::;: H2(8, Pn, Q) for all 8 > 0. 

Conclude from Lemma 2.5 and the entropy condition (5.21) that also 

Pl2) ➔ 0 for n ➔ oo, L ➔ oo. □ 

Remark 5.4 In Van de Geer [40] a special case of Theorem 5.4 is 

treated. The main difference is that a different kind of entropy ( en

tropy with bracketing) is used to facilitate the change from the empirical 

L 2(Pn) to the theoretical L 2(P) distance. 
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In Van de Geer (42] and Wegkamp [52] similar techniques to switch 

between these related distances are used in the context of nonparametric 

likelihood estimation. 
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Chapter 6 

Some asymptotic 
distribution theory 

The lack of a stochastic expansion for the nonparametric least squares 

estimator, which is due to its implicit definition, makes it difficult to 

obtain pointwise asymptotic results, such as the pointwise convergence 

an (g(x) - go(x)) ...E+ N(O, 1), 

where an are normalizing constants. 

Central limit theorems (CLT's) for monotone regression functions are 

well-known. See e.g. Leurgans (28], where it is shown that a suitably 

normalized version of the least squares estimator converges in distribu

tion to a normal law, pointwise. Groeneboom (cf. [16], [18]) proved 

asymptotic normality of the Grenander estimator pointwise and in £ 1 , 

which is related to our least squares estimating problems. 

In this chapter we shall prove two different central limit theorems. 

The first one concerns the asymptotic distribution of the squared L2(Pn) 

norm of the least squares estimator in regression model 3, i.e. 

uniformly in x, with <P(x) the standard normal distribution function, 

and an normalizing constants. We shall restrict attention to the classical 

Sobolev spaces. 
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In Section 6.2 we consider a partial linear model and prove asymp

totic normality of the estimator of the parametric component. The 

design variables Xi = (XP), xJ2l) are stochastic and take values in 

[O, 1] x [O, 1]. The regression function evaluated at Xi takes the form 

We impose smoothness conditions on the function f. In general, one 

has to use a smoothness penalty on the sum of squares for consistent 

least squares estimation. However, under additional restrictions on f, 
this appears to be unnecessary. 

6.1 A CLT for the empirical norm of the LSE 

We focus again on the regression model with deterministic design and 

heteroscedastic disturbances, which agrees with model 3 with a = l. 

The aim is to prove that the distribution of 

is Gaussian in the limit. We first present an informal discussion why 

this may be true. 

Recall that the process Sn(g), g E g is given by 

(6.1) 

If g is an open subset of some vector space B, then we must have 

ddSn([J+th)I =0 VhEB. 
t t=O 

Computing this Gateaux derivative at g in the direction h gives us 

'lf;(g; h) = 1. Sn(g + th) - Sn(g) 
1m-------

t➔O t 

E!:\1 ¼ t [-2 (Yi - g(xi)) h(xi) + th2(xi)] 
i=l 

l n 
- -2- L [ci + (go(xi) - g(xi)] h(xi) 

n i=l 
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for J h2 dPn < oo. As a result, we obtain the following identity 

(6.2) 

If we choose the direction h = g + go, then we find 

The left-hand side can be rewritten as 

If n-1 Ef=1 a-;g5(xi) converges, then, as a consequence of the central 

limit theorem, Z2 is asymptotically Gaussian. We know under which 

circumstances Z1 ~ 0. Namely, we have to show that II§- go lln --+ 0 in 

probability, and that the process mn(g) = n-1/ 2 Ef=1 Ei(g(xi) - go(xi)) 

is stochastically equicontinuous at go with respect to dn. The latter can 

be derived by means of the maximal inequalities of Chapter 2. 

Unfortunately, in regression problems, g is often not open and g may 

lie on the boundary of g. It is reasonable to assume that go is an interior 

point. For convex g, one may hope that 

(1 - a)§+ ago+ t(g + go) E Q (6.3) 

for special small choices a and t. In a different context of maximum 

likelihood estimation, the same idea of taking a convex combination has 

been applied successfully earlier by Van de Geer (cf. [43]). If (6.3) holds, 

we can actually establish 

We shall consider a special class for which this convexity argument holds 

true. To be more specific, we take the following Sobolev space 

g = {g: [O, 1]--+ IR, llglloo ~ Ci, llgllrv ~ C2}, (6.5) 
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where C1 and C2 are known positive constants and 11 · lloo and 11 · llrv are 

the supremum and the total variation norm on g respectively. Recall 

that the total variation. norm is defined by 

IIYllrv = sup { t lg(xi) - g(xi-dl xo < x1 < ... < Xn, Xi E (0, 1]}. 
i=l 

Our assumption that g0 is an interior point of g should be understood 

in terms of the metrics involved, i.e. both IIYollrv < C2 and IIYolloo < C1 

hold true. 

Theorem 6.1 Consider model 3 with a = 1. Assume that go is an 

interior point of the class g as defined in (6.5), and 

liminf llgolln > 0, 
n➔oo 

and that the errors c1, E:2, ••. fulfill condition (5.1). Then we have 

(6.6) 

Remark 6.1 Theorem 6.1 is valid for many more classes than the one 

considered. For instance, the result holds true for the Sobolev space 

We prove that (6.4) is satisfied and that the process mn(·) is stochas

tically equicontinuous at g0 with respect to dn. The latter follows from 

suitable entropy conditions. To show (6.4), we need entropy conditions 

as well as technical conditions on g to ensure that (6.3) holds for a and 

t small enough. 

Other consequences of the identity (6.2) are obtained by choosing 

different directions h. For instance, take h = I and suppose n-1 Li=l a; 
converges. As a consequence of (6.2), we find 
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which is equivalent with 

where £i = Yi - g(xi) are the estimated residuals. 

6.1.1 Proof of Theorem 6.1 

We need two lemma's. 

Lemma 6.1 (rates of convergence) Under the conditions of Theo

rem 6.1, we have 

Proof. Note that H2(8, Pn, g) ~ 1/8 (cf. Example 2.3). The first 

assertion follows from Theorem 5.1. The second assertion follows from 

the relation 

IP { sup n- 1!2mn(g) >Lo;}+ 
9n(Rtin) 

+IP {llfl - 9olln > R8n}, 

the first assertion and Theorem 2.3. D 

Lemma 6.2 Under the conditions of Theorem 6.1, identity (6.4) is 

true. 

Proof. Consider for each element g E Q the following convex combina

tion 

9o. = (1 - a)g + ago, 0 ~a~ 1. 

For notational convenience, we write h(g) = g + go and 9o.,t = gc,. + th(g) 

with t E IR. Also, h = h(g), flo. = (1 - a)g + ago, and flo.,t = flo. + th. 

Without loss of generality we assume that the constants C1 and C2 

appearing in the definition of the class g both equal one. Moreover, since 

the function 9o is an interior point of Q, we assume I I 9o 11 00 ~ 1 / 2. Note 
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that IIYa,tlloo < 1 for a = 4ltl sufficiently small. The same arguments 

can be repeated with the sup-norm replaced by the total variation norm 

to prove that IIYa,t llrv < 1 for a = 4ltl sufficiently small. 

We have 

Choose 

A Er=1 (Yi - Ya(xi)) h(xi) 
tn = A • 

E~1 h2 {xi) 

Then (6.7) with t and g replaced by in and g reads 

Sn(Ya,tJ - Sn(fla) = (6.8) 

= - ( ¾ t, (y; -Ya(x;)) h(x;)) 
2 

/ ¾ t, h2 (x;) 

= -( ~ t, [E; + (I - a)(go - §)(x,)] h(x;)) 
2 

/ ¾ t, i.2(x;) 

Since g minimizes Sn (g), we have 

Sn(9a,iJ - Sn([Ja) ~ Sn(Y) - Sn(fla) = 

= 2a! t(Yi - g(xi) )(go(xi) - g(xi)) - a 2 ! t (go(xi) - g(xi)) 2 

n i=I n i=I 

= 2a! t Ei(go(xi) - g(xi)) + (2a - a 2 ) ! t (go(xi) - [J(xi) )2 • 

n i=l n i=I 

Now Lemma 6.1 implies further that 

Sn(fla,iJ - Sn(fla) ~ -2an-112mn(g) + (2a - a 2 )d~ (g, go) = 
= Op(a8;). (6.9) 

Moreover, since 

1 n A l n 2 - L h2 (xi) = - L (2go(xi) + (g - go)(xi)) = 4ll9oll; + Op(8;), 
n i=l n i=l 
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by the central limit theorem and Lemma 6.1, and 

by the Cauchy-Schwarz inequality, we have tn = Op(n- 113 ). 

Set &n = 4linl = Op(n- 113 ), then we find from (6.8) and (6.9) 

Because, as already noted n-1 Li=l c:Ji(xi) = Op(n- 1!2 ), we obtain 

from (6.10) that also n- 1 Li[92 (xi) - g5(xi)] = Op(n-1/ 2). But then 

tn = Op(n- 112 ) and (6.10) becomes now 

The proof of the lemma is complete. □ 

Now, we can prove Theorem 6.1, since by Lemma 6.1 we have 

l n 2 n 
- }:c:i(g(xi)-go(xi)) + - LEi9o(xi) 
ni=l ni=l 

~ t Ei9o(xi) + Op(n-213 ). 

n i=l 

Invoke (6.4), proved in Lemma 6.2, and the CLT to conclude (6.6). □ 

6.2 Partial linear models 

6.2.1 The model 

We consider the following regression model 

Yi= g(Xi) + Ei, (i = 1, ... ,n), 

where 
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• the observation points Xi are i.i.d. two dimensional ri:tndom vari

ables with mass concentrated on the unit square, i.e. IP{X E 

[0, 1] x [0, 1]} = 1. We write X = (X(l), x(2)) and assume that 

(6.12) 

• the disturbances ci are i.Ld. centered random variables with 

1E exp ( >.ci) < oo (6.13) 

for some constant >. > 0. Moreover we assume that Xi and ci are 

independent. 

• the regression function g consists of a linear part and a smooth 

part, 

(6.14) 

Here 0 E JR and f E F, with 

F = {f: [0, l] -+ JR, llf lloo :SC, J~{f) '.S C1}, 

where 

In the sequel we write 

g = {g: [0, l] x [0, l]-+ JR, g(x1,x2) = 0x1 + f(x2) I 0 E JR, f E F}. 

Throughout we assume that the unknown regression function g = go is 

an interior point of the parameter space Q, in the sense that Illa 11 00 < C 

and Jm(Jo) < C1• 

This model is also investigated in Mammen & Van de Geer [30]. 

In that paper the unknown regression function g is estimated by the 

penalized least squares estimator, which means that 
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is minimized over all g E g where C' is unknown. However, if this 

constant is known, one can take An = 0; the minimization has just 

become a least squares estimation problem and one does not have to cope 

with the technicalities involved in the choice of the smoothing parameter 

An. Note that the class g is small enough in the sense that it fulfills 

the entropy conditions of Theorem 4.2. Consequently, the least squares 

estimator g(x1, x2) = 0x1 + i(x2) is consistent. 

Theorem 6.2 (consistency and rates) Consider the partial linear 

model described above. We have 11§ - golln ~ 0 and II§ - goll2 a.s> 

0. Also Iii - foll2 a.s) 0 and 10 - 0al a.s. 0. In fact, II§ - golln = 
Op(n-m/(2m+l)). 

Proof. In order to apply Theorem 4.2, we have to compute the entropy 

of the class 9n(R). By a result of Kolmogorov & Tichomirov [23], 

H00 (8, Pn,F) = 0(8-lfm). 

Since n-1 Li=ilXP)J2 ~ IE[X(1)]2 and 11111 00 S C, there exists some 

R' > 0, depending on Rand C, such that 101 s R' almost surely for n 

large enough. Note that 

for every 8 > 0 and for large n. As a result we have H00 (8, Pn, 9n(R)) = 
0(8-lfm). Theorem 4.2 asserts that II§ - golln ~ 0 and the rate 

n-m/(2m+l) follows from Theorem 5.1. Because the entropy bounds 

are valid with probability one, the fact that the design X1, ... , Xn is 

stochastic does not cause any problem. See the discussion in Section 

5.4. 

The L2(P)-convergence II§ - goll2 ~ 0 follows from Theorem 3.1.2 

in Van de Geer [40]. 

Note that g(X) can be decomposed into two orthogonal parts 

g(X) = [f(x(2l)+0IE(x(1l I x(2l)] + [0(x(1l-IE(xUl I x(2l))]. 
Since IIX(1) - IE ( x(I) I x(2)) ll2 > 0, we also have almost sure conver

gence of the components 10 - 0al a.s. 0 and Iii - foll2 a.s. 0 separately. 

□ 
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6.2.2 Asymptotic normality 

Having obtained rates ofconvergence, we proceed by showing asymptotic 

normality of yri,(0 - 00). We shall employ the same arguments as in 

the proof of Lemma 6.2 in Section 6.1. We exploit the fact that Sn(·) 

is minimized at g and we consider a special direction h(X) = x(l) -

1E ( x(1) I x(2)). 

Theorem 6.3 Consider the model described in Subsection 6.2.1. In 

addition, assume Jm {lE ( x(l) I x(2))) < oo. We have 

(6.15) 

Proof. First we prove 

Define 9o. as in the proof of Lemma 6.2, i.e. 

9o. = (1 - a)g + ago (0 Sa S 1) 

and take 9o.,t = 9o. + th, with t E IR, where the direction h is given by 

h(X) = x(1) - 1E ( x(1l I x(2l) . 

Now it is crucial that §o.,t E g for sufficiently small a and t. Since 

go lies in the interior of 9, we may assume that llfolloo S C/2 and 

JmUo) s C'/2. Using the fact that Jm (1E(x(l) I x(2l)) < 00 and 

l]E ( x(i) I x(2) )I s 1 with probability one, we conclude that 

9o.,t(X) + th(X) = [ (1 - a)0 + t + a00] x(1l + 

+ [(1 - a)J(x(2l) + afo(x(2l) - tlE (x(l) I x(2l)] E Y 

for 4lt1 = a min [ C, C', Jm { 1E ( x(l) I x(2l)) ] . 

Next, notice that 
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by the strong law of large numbers. Choose 8n = n-m/(2m+l). Since 

11§- golln = Op(8n) and llmn(p)llgn(R6n) = Op (n1l28~), it follows that 

! tc:i (g(Xi) - go(Xi)) = Op (8~). 
n i=l 

Finally, 

by the Cauchy-Schwarz inequality and 

by the CLT. The same arguments leading to (6.4) in the proof of Lemma 

6.2, may be used to prove (6.16). 

Set l(X(2); 0; f) = 0IE(X(1) I X(2)) + /(X(2)), and k(X; 0; f) = 
l(X(2))h(X). Note that 

g (x(1),x(2)) = 0x(1) + /(x(2)) = 0h(X) + l(x(2);0;!). 

We can express (6.16) by 

(6.17) 

We only have to prove that the second term on the right of (6.17) can 

be neglected in our analysis to obtain (6.15). 

To see this, note that IEk(X; 0; f) = 0 and Ilk(·; 0; f)-k(•; 0o; fo)ll2 ~ 
0, since both 10 - Ool a.s ➔ 0 and llf - foll2 a.s. 0 by Theorem 6.2. The 

entropy bound on smooth classes as used in the proof of Theorem 6.2 

ensures that for all 'f/ > 0 there exists 8 > 0 such that 

1P { sup 1/(k(•; 0; f) - k(•; 0o; Jo) d(Pn - P)I > ~} 5, 'f/· 
llk(·;O;f)-k(·;Oo;/0)1129 V n 

This completes the proof of Theorem 6.3. □ 
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