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Nomenclature

meaning

Ci
d()
D(9)

2 5

(2,5)

RS

SN

probability of excess

pre-exponential factor

relative intrinsic curvature

relative parameter-effect curvature
dependent confidence region

independent confidence region

vector of measurement errors

vector of unknown parameters or

regression variables

true parameter vector

estimated parameter vector

i-th singular value

standard deviation and variance, respectively,
of a normal distribution

discrepancies related to the independent variable
Chi-square distribution with 4

degrees of freedom

component of i-th measurement (1 < ¢; < n)
(unweighted) discrepancy vector

matrix with unweighted discrepancies
expectation

activation energy

upper a quantile for Fisher’s F-distribution
with ¢ and j degrees of freedom

Hessean! matrix

Jacobian matrix

Jacobian matrix due to additional measurements
number of constraints with respect to the
parameters, 6

number of independent variables

number of unknown parameters

dimension

SZH)—AHHHH

=3 3

Nxmxm
Nxm
Naddxm

1Many people write Hessian, which does not seem to honour the German mathematician
Ludwig Otto Hesse (1811-1874) and it is also not consistent (compare e.g. Boolean).



Nomenclature

vi
symbol  meaning dimension
M moment matrix q%Xq,2q%2q
n number of dependent variables 1
N number of measurements 1
N(u,V) Gaussian or normal distribution with mean u
and covariance matrix V
Ngodd number of additional measurements 1
Nuyo number of Monte Carlo (MC) simulations 1
D probability 1
q number of measured components (¢ < n) 1
T number of samples (gr > N) 1
R(6) (nonlinear) constraints on the parameters K
s estimator or estimate of o 1
t independent variable (for the special case that 1
I =1, z is replaced by t)
v covariance matrix of the measurement errors NxN,qgxq
or 2qx2q
W; weight corresponding to the i-th measurement 1
x vector of independent, regression or explanatory l
variables
y vector of dependent or response variables n
y derivative of y with respect to ¢ n
Ui i-th measured value 1
Y vector of (weighted) discrepancies? N

21t should be emphasised here that the discrepancies, d;(0) = yc, (zi,8)—y; (i=1...,N),
depend on the parameters and that the residuals are the discrepancies evaluated for the
estimated values of the parameters, d(8).



Chapter 1

Introduction and Outline

Many processes from (bio-)chemistry, geo-sciences, biology, electrical and me-
chanical engineering or econometrics can be mathematically described by sys-
tems of differential algebraic equations (DAEs). These equations describe the
dynamical behaviour of the processes under consideration. For example, in the
case of a chemical reaction, concentrations change in time due to chemical in-
teractions between the substances involved. Then the independent variable is
time. If the concentrations are not constant over the reactor, we have additional
space coordinates as independent variables and end up with partial differen-
tial equations (PDEs). This publication will only consider systems with one
independent variable, except for a single example where a problem described
by PDEs is reduced to a system of DAEs. The dependent variables —still con-
sidering a chemical reaction— correspond to the concentrations of the chemical
substances of interest during the reaction. Starting from a given initial situa-
tion, i.e. known values of the state variables at a given initial time, the reaction
begins. The solution of the model equations gives an approximation for the
concentrations of the substances in time. With the exception of class room -
examples, models from real-life applications yield equations which have to be
solved with the use of dedicated numerical software, often in combination with
powerful hardware.

The model of interest, the one which gives a satisfactory description of the
process under consideration, is nearly always the result after a period with
intensive and extensive communication between the experimentalist and the
modeller. The evolution of a model takes time and asks for skills and experience
of both the experimentalists and the mathematical modellers. The research
described here not only focuses on mathematical tools which make the process
of modelling less time consuming and more transparent, but —in a number
of cases— it also reflects this process of interaction between experimentalist
and mathematician. Further, it deals with the software aspects and actual
implementation of a computer program which enables the experimentalist to
investigate the mathematical model easily.

A mathematical model, or a set of candidate models is based on experience
and physical insight from the application domain. The model equations are
set up in such a way that their outcome is in accordance with well established
facts of the physical process studied. In order to validate models, to discrim-
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inate between models or to calibrate models we need to compare the model
outcome with measurements. We suppose that the final model gives a suffi-
ciently precise description of the process under consideration, which implies
that no model errors are present or that they can be neglected. Of course, for
practical problems this seems an ideal situation and one might think it is a
naive approach, but the absence of better alternatives and the valuable results
in many real-life cases justifies this method. We do not believe there a is ‘true’
model, but we assume that it is possible to study a model whose model errors
are an order of magnitude smaller than the uncertainties in the measurements.

In the case of parameter estimation or model calibration, we calculate the
best fitting model from a continuum of models. We consider models which
are expressed mathematically by systems of differential algebraic equations
(DAEs) with a certain degree of freedom, expressed by the presence of a set
of parameters. If we return to the example from chemistry, these parameters
may correspond with unknown reaction rates or unknown initial concentra-
tions, which cannot be obtained by means of direct observation or from other
resources. These unknown parameters are computed such that the discrepan-
cies between the theoretical model output and the measured data are minimal
in some sense: the calculated, theoretical values or model responses should fit
the measurements. The choice for a certain fitness criterion depends on the
knowledge and the assumptions about statistical properties of the measure-
ment errors. After fitting the model to the data, not only the final estimates
of the unknown parameters are of interest, but also information about their
reliability. When we adjust parameters we have —strictly speaking— a different
model, but we will not make this distinction throughout this book. We con-
sider two models, M; and M,, with their corresponding vectors of unknown
parameters 6 and ¢, respectively, to be the same, if for every choice of 8 there
exists exactly one ¢ such that the models M;(6) and My(¢) yield the same
model responses. This means that dim()=dim(¢) and that reparametrisation
via a bijective mapping does not change the model, although it may have other
consequences, e.g., for the nonlinearity of the parameter estimation problem.

Model validation, model reduction and model selection is a systematic pro-
cess that eventually leads to the recommendation of one model or a set of
models that is (i) consistent with the data, (ii) in accordance with well estab-
lished facts concerning the physical process and (iii) not unnecessarily complex.
In each step of the process the lack of fit is expressed in statistical quantities
on the basis of which we accept or reject a model, simplify it or choose between
models. This process is closely related to the design of experiments. If on the
basis of the available data no decisive answers with respect to model selection
can be derived, advice with respect to a setup for additional experiments is
needed.

Much research has already been carried out to estimate unknown param-
eters by fitting a numerical solution to a set of experimental data. Many
publications consider the case where the model response can be obtained rel-
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atively easily: the state variables can be written explicitly as function of the
independent variables and the parameters [Bar74, Rat83, SW88, BW&88]. In
these references, the emphasis is rather on the theoretical and statistical aspects
than on practical implementation and numerical aspects of nonlinear regression
with models given by DAEs. The latter case is considered in more detail in
[HemT72a, Boc85, Sch85]. Although some authors might give slightly different
definitions, parameter estimation in dynamical systems is essentially the same
as nonlinear regression where the model is given by a set of DAEs. In cur-
rent literature it seems that there is still a gap between numerical mathematics
and nonlinear regression analysis. In this book I try to fill this gap partially
by merging ideas from the whole spectrum of tools and ideas involved in the
broad field of parameter estimation in nonlinear dynamical systems with an
accent on normal measurement errors.

In this first chapter we start with a mathematical formulation of our pa-
rameter estimation problems in DAEs. The measurement errors are assumed
to be normally distributed, stochastically independent and only present in the
dependent variables. The variances of the measurement errors are known, or
known up to a constant of proportionality. Based on fundamental statistics and
under these conditions we have to minimise the sum of the squared discrep-
ancies between model responses and measurements. This approach is known
as Ordinary Least Squares (OLS) estimation. Thereupon, in this chapter we
present numerical techniques to solve this problem. Two additional sections
about the statistical background and constraints on the parameters are followed
by two introductory case studies from biochemistry and population dynamics.

In Chapter 2 we deal with total least squares (TLS), where the structure
of the chapter is analogous to the structure of the present chapter on OLS.
In the case the measurement errors with respect to the independent variables
are zero or negligible, OLS approaches can be used. If this is not the case,
the TLS approach should be applied instead. The extensions from OLS to
TLS are described in Chapter 2. A stable and efficient algorithm to deal with
TLS estimation is presented, in combination with an overview of the additional
consequences concerning the statistical background and parameter constraints.

In the case the measurement errors are known to have a normal distribution,
but their variances —and therefore the weights— are not known a priori, these
quantities can be estimated together with the parameters if a few assumptions
are made. This case with unknown weights, both for OLS and TLS, with
independent and dependent measurement errors is dealt with in Chapter 3. In
this chapter we also introduce an algorithm to compute L!-estimates, when
the sum of the absolute discrepancies has to be minimised. This approach is
used if the measurement errors come from a Laplace distribution. It is known
to be more robust —i.e. less sensitive to outliers— than least squares methods.
This characteristic makes it attractive in combination with a least squares
approach, as a kind of two-stage method, when no good initial estimates for
the parameters are available. The first guess for the parameters is improved
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by minimising the sum of absolute discrepancies, subsequently the resulting
L'-estimate is used as an initial parameter guess for least squares estimation.

It should be emphasised that the statistical results concerning the confi-
dence regions for OLS and TLS estimates are obtained by linearisation. For
most nonlinear problems this gives quite accurate information in a sufficiently
small neighbourhood of the minimum. But if we restrict ourselves to this infor-
mation from the linearisation it can be very misleading for strongly nonlinear
problems. It may turn out that the confidence region of interest is no ellipsoid
at all —as follows from linear theory— but a non-convex and irregular region.
Therefore we have to verify how accurate the linear approximation is. More in-
formation concerning nonlinearity, bias of the estimates, curvature and related
topics is found in Chapter 4.

Chapter 5 deals with optimal experiment design. Given a model, a set of
estimated parameters and the corresponding confidence regions, it deals with
the question which additional measurements should be performed to increase
the reliability of the parameter estimates. Or, given two models, which mea-
surements should be performed to be able to discriminate between the two
models.

A variety of case studies, from (bio-) chemistry, physics, econometrics, is
described in Chapter 6. All case studies have been carried out in collaboration
with researchers from other disciplines. In most cases they supplied the data
and a number of possible models. After receiving the first candidate model(s)
and the data, usually numerous improvements have been made regarding many
aspects of modelling in order to come up with an appropriate model. \

The setup and the implementation of the software used for the computations
is described in Chapter 7. The chapter starts with a description of the way
problem-dependent input is specified: the format for the mathematical model
and the experimental data. The software contains computer algebra routines
for automatic generation of model dependent program parts and numerical
routines for the solution of the differential algebraic equations, minimisation
of the fitness criterion and statistical analysis of the computed estimates. The
DAE solver is geared to solve these model equations in combination with the
sensitivity equations. A graphical user interface (GUI) has been developed to
steer through the computation in order to influence the precise formulation
of the parameter estimation problem during the calculation, and to view the
numerical results by direct visualisation.

1.1 Mathematical formulation

The model equations are given by the system of differential algebraic equations
(DAEs),

/= 49 .
Ay' = A = f(t,y,0) ,  with y(to,0) = yo(6), (L.1)
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where t denotes time, 6 is an m-dimensional vector of unknown parameters,
y(t,0) is an n-dimensional state vector depending on t and 6, the function
f(t,y,0) maps R x R™ x R™ into R™ and A is a constant n X n-matrix. In
the simplest case A is a diagonal matrix with A;; = 1 if the ¢-th equation is a
differential equation and A;; = 0 if the i-th equation is algebraic.

In order to estimate the unknown parameters, a number of measurements,
say N, are available for the process under consideration. Each measurement is
characterised by the triple

(ciathgi) ) 1= 17'-'aN ) (12)

where c¢; indicates which component of the state vector, y, has been measured,
t; is the time of the measurement and 7; is the measured value. Of course, a
necessary condition to estimate the unknown parameters is that the number of
parameters, m, does not exceed the number of measurements, N, i.e. m < N.
The solution of (1.1) for the ¢;-th component at time ¢;, which corresponds to
the i-th measurement, is denoted by y., (¢;,0).

1.2 Fitness criterion

The fitness criterion depends on the discrepancies between the calculated and
the measured values. The vector of discrepancies reads:

d(0) = (e, (t6,6) ~ Ty - (13)

A usual approach is to estimate the unknown parameters such that the (weighted)
sum of squared discrepancies:

N
S6) = wid(0) , (1.4)
=1

is minimal. The positive weights, w;, are based on the accuracy of the measure-
ments and have dimension 1/[y;]. In the case the errors in the measurements
are stochastically independent and normally distributed with standard devia-
tion o;, and if we take w; proportional to 1/0;, weighted least squares yields the
maximum likelihood estimate (MLE). The value of § which minimises (1.4) is
called the weighted least squares estimate and is denoted by: 6. Summarising;:
In the case of (i) normally distributed and independent measurement errors,
(ii) the above choice of the weights, and (iii) a negligible measurement error for
the independent variable, ¢, minimisation of (1.4) leads to the most likely value
for the parameter vector, 6. This is discussed in more detail in Chapter 3.

1.3 Variational equations

In order to use a gradient-based minimisation procedure and to perform a sta-
tistical analysis we solve, besides the set of DAEs (1.1), also the corresponding
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set of variational or sensitivity equations with respect to the -unknown param-
eter vector. This leads to an additional set of nm DAESs, written in a compact
matrix notation as:

ddy _of 9fdy .. Oylto,6) _ 0yo(6)

A%io0 ~ 36 Tay 0 58— 06

(1.5)

The solution of (1.5) yields the gradient dy(¢,6)/d6, which will be used for the
minimisation of the weighted sum of squared discrepancies (cf. (1.4)) and the
statistical analysis in Section 1.6.

If we write down (1.5) explicitly and add (1.1), we obtain the complete
system of equations to be solved:

Ayl = f(t, y,g) ’ y(tO’ 0) = yO(g) )
L0 _ 01 05y By(to,8) _ Oyo(6)
801 691 6y 801 ’ 801 891 ’
: : (1.6)
Lo _ 9f of oy By(to,8) _ Oo(©)
00, 00, Oyob,’ 00, 00,

The system of equations (1.6) contains one subsystem of n nonlinear DAEs and
m subsystems of the same size, which depend nonlinearly on y and linearly on
dy/86;. The Jacobian of the overall system reads’:

g—g 0 .. 0
f 9foy of |
Jac= | 0010y 0y*06, Oy , (1.7)
: 0 . 0
I N o 9of
00,0y Oy? 06, T Oy

Inspection of (1.7) shows the one-way coupling of the system. Using a
BDF method to solve the (possibly stiff) system, we can take advantage of
this structure by first calculating y at each step of the numerical integration
and subsequently all Jy/86;. We also see that the Jacobian matrix of the
overall system has the same eigenvalues as df /8y, which is the Jacobian of
the model equations. This means that the variational equations inherit the
stiffness character of the original equations.

For purposes which will become clear in Chapter 4, we sometimes need sec-
ond order derivatives of the state variables with respect to the parameters. This

1To be more precise we need a second Jacobian; the derivative of (1.6) with respect to
(y',0y' /861,..., 8y’ /80y), which equals I, ® A. This second Jacobian is taken care of in
the numerical solver and does not influence the inheritance of the stiffness character.
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leads to an additional set of nm? DAEs, which can be derived by differentiation
of (1.5):

dody _ &f ,0f dy 8 (dy\® of%

Agiaer = W”aoay%Jra_y?(%) By 36° (1.8)
. &y(to, 6) _ 5yo(6)
with o2 o8

The solution of (1.8) corresponds to second order information which can be used
to investigate the nonlinearity of a parameter estimation problem. It can also he
used for the minimisation of the residual sum of squares by Newton’s method,
as will be shown at the end of Section 1.5. Analogously to the derivation of the
Jacobian in (1.6), we can derive the Jacobian of (1.8). We omit this exercise
here. Relevant is that it shows that also (1.8) inherits the stiffness character of
(1.1).

1.4 Numerical solution of the model equations

In this section we assume the reader to be familiar with the theory of differential
algebraic equations and their numerical solution. For the other sections a basic
understanding of the solution method for the model equations is not necessary
and it can be regarded as a black box which produces the values y., (¢;,0) and
the corresponding derivatives dy,, (t;,8)/86, and —if required— 6%y, (¢;,6)/062.
For the actual implementation, knowledge of the numerical solution method
and the stiffness behaviour of the sensitivity equations is required in order to
transform an existing DAE solver into a special purpose solver for (1.6). An
introduction to differential algebraic equations and their numerical solution can
be found in, e.g., [Gea7l, HNW93, HW96]. :

In the case of differential equations, A = I, in general the model equations
(1.1) are stiff. This is due to the presence of fast and slow phenomena in
the processes they originate from. For the differential algebraic equations, we
restrict ourselves to systems of index 1 only. In both cases the equations have
to be solved by an implicit method.

The fact that the size of the problems we encountered was relatively small,
n < 100, and the possibility to solve the variational equations by making
full use of the same stiffness character, made us decide to choose a numerical
solution method based on the backward differentiation formulae (BDF). If a
proper BDF method, with a certain order and step-size strategy is provided to
solve (1.1) numerically, the same strategy can be used to integrate (1.5) and
(1.8) numerically.

When parameter estimation is put into practice the choice of an efficient
solver for the model and variational equations is of major interest because more
than 80% of the computation time is used for the integration of these equations.

The use of the variational equations in combination with the same order
and step strategy, leads to a faster and more accurate gradient than is possible
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by finite differences. In practice, generating analytic, derivative functions is no
impediment as it can be done automatically by a computer algebra package (we
use MAPLE V, see [CGG191]).

A third alternative to retrieve derivatives is proposed in [BCC192]. This ap-
proach is based on automatic differentiation and deserves further investigation
in this context. We did not consider this method in this study.

1.5 Minimisation

Introducing the vector of weighted discrepancies as the column vector

Y(0) = (widi(6)) ;1. v > (1.9)
we write the sum of squares (1.4) as

SO =Y I*>=YT6)Y (). (1.10)

For a given value of 8, the vector Y () can be computed by numerical integra-
tion of (1.1). The variational equations (1.5) facilitate the calculation of the
N x m, Jacobian matrix

10) = 7 = (wiggree®)) (1.11)

Minimisation of (1.10) is done by an iterative procedure. Suppose € is a
trial vector and its correction is given by §6. The squared sum of the improved
parameter vector can be approximated by a quadratic function of §6

S(6 + 66) YT (8 + 56)Y (8 + 56) ,
(Y (6) + J(6)80)T (Y (8) + J(8)56) (1.12)

YT(0)Y (0) + 2667 JT(0)Y (8) + 66T JT(6)J(6)d6 .

Q

The minimum of the quadratic form is given by the normal equations:
JT(6)J(0)60 = —JT(0)Y(9) . (1.13)

This formula is the starting point for a Gauss-Newton type method. From
(1.13) it is clear that the Gauss-Newton procedure fails if the matrix J(6) is
(almost) singular. A well known remedy is the use of the Levenberg- Marquardt
method to stabilise the procedure [Mar63, DS83]. This method replaces (1.13)
by

(JT(0)J(6) + M\ )60 = —JT(0)Y (6) , (1.14)

where A is adjusted on the basis of the condition number of the matrix J(8).
The Levenberg-Marquardt method can be seen as a hybrid method between
Gauss-Newton and steepest descent.
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To solve 660 from (1.14), we use the singular value decomposition (SVD) of
the matrix J(6) defined by

J@O) =U@xO)VT®), (1.15)

where U(6) and V (f) are N x m and m X m unitarian matrices, respectively,
such that UT(0)U(6) = I, and VT (6)V(0) = V(8)VT(0) = I,,. The m x m-
matrix () is diagonal and contains the singular values in a non-increasing
order [GV83]. Substitution of (1.15) in (1.14) leads to the following expression
for the correction of the parameter vector

86 = —V(0) (Z2(6) + AL,) " SO)UTB)Y (6) . (1.16)

Upon convergence of the Levenberg-Marquardt algorithm we obtain a final or
least squares estimate of 8, denoted by 6.

Another possibility to minimise S(6) is by Newton’s method, which needs
second order derivatives. Therefore, we introduce the N x m x m, Hessean
matrix :

_ azycl' (t,0)
Hijx(0) = wi 00,00, (1.17)
Now, instead of the expansion (1.12), we write:
SO+ ~ YTO)Y(6)+20TJT )Y (0) +
56T (JT(0)J(0) + YT (6)H(6)) 66 . (1.18)

Deriving 46 from this last expression leads to Newton’s method, where the
Gauss-Newton method and its variants neglect the additional term YT (0)H ()
[DS83]. Although the Hessean can be computed via the same order and step
strategy as explained in Section 1.4, to our experience the additional computa-
tional time does not result in faster or more accurate final estimates. Therefore,
we stick to the Levenberg-Marquardt method and only use the Hessean in order
to perform local analyses in the vicinity of 6.

1.6 Statistical background

Let the measurement error of the i-th measurement be denoted by ¢;. We
assume that there exists a model which is close enough to reality such that for
the ‘true’ parameter vector, 6*, the equation

gi = yc;(ti,a*) + &g

is valid or at least gives a close approximation and expresses a reasonable
and workable assumption. In this section the errors in the measurements are
considered (i) to be normally distributed, (ii) to have zero expectation and (iii)
to be stochastically independent. The measurement errors are scaled by their
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weights such that they get a constant variance?, o2. Notice that this setup of
scaling the measurement errors can be applied both for absolute and relative
measurement errors. The (weighted) experimental errors in the measurements
are given then by Y(6*), as in (1.9). This implies that the covariance matrix
of the experimental errors is given by:

E (Y(0")YT(6")) = o?I,, . (1.19)

We assume that the matrix J(8) from (1.11) is regular®. Further, we notice
that the additional term Al in (1.16) is introduced only for stabilisation of
the numerical minimisation problem; it has no influence on the solution found
and it does not play a role in the statistical analysis. As a consequence of these
remarks and (1.19), we may approximate the covariance matrix of Af = 6* — 4@
by*:

-~ ~

E(AGAOT) w o (JT(A)J(éAP))_l =2V 2@O)VT(H) , (1.20)

which is a linear approximation. Within the order of this approximation, the
unknown J(6*) can be replaced by J(f) under very general conditions, as de-
rived in [SW88, Section 2.1.2]. All statements below hold ezactly if the discrep-
ancies, d;(0), are linear in 6, but in the more general case we consider, they
hold approzimately only. Guidelines for the practical use of this approximation
are given in Chapter 4.

The vector Af inherits the normality from Y (6*) as can easily be seen from
(1.13). As a consequence, the probability density function (pdf) of Af comes
close to the normal density:

-~

Ddf(AS) & det(JT(6)J(8)) exp (_MTJT(@)J( )AH). o

(2wo2)m 202

In order to perform a local investigation of (1.10) in the vicinity of the least
squares estimate, 0, we use a linearisation around € and the fact that S(#) has
a minimum at 6 = 6, so that:

SO+00) = YT@+ AO)Y (0 + Ab)
~ YT@O)Y () +A0T (vs2vT) Al , (1.22)
where V = V(8) and = %(8) are introduced in (1.15)).

Below we give a brief summary of the statistical background, more details
can be found in Chapter 4. A complete treatment of the basic ideas is found in

2In general the separate standard deviations, o, are approximately known up to an un-
known factor of proportionality. This factor, denoted by 1/o, can be estimated after the
optimal estimates of the parameters have been calculated.

3The case when this matrix is singular is discussed in Section 4.6.

4Notice here the difference between 66, to express a correction during a minimisation
process, and A#@, after the minimisation is completed.
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textbooks as [Sch59, DS81, BW88]. According to standard statisties, S OV&
and AT (VE2VT)Af/0? are independent and have X2-distributions with N —
m and m degrees of freedom, respectively. An unbiased estimator of o2 is given
by

s2=S5@)/(N-m) . ' (1.23)

The (1 — a)-confidence region is the ellipsoidal region

-~

S(0)Fa(m,N —m) , (1.24)

T 21,T m
A6 (VEV )A&gN

where F,(m, N —m) is the upper a quantile for Fisher’s F-distribution with
m and N — m degrees of freedom.
The independent confidence interval for each estimate is given by:

[@-A’o,-,@+A’o*] , (1.25)

with:

9. — [T 5@ _ —2YTY
) \/N_mS(G)}'a(m,N m) (VE-2VT),. .

Another quantity often used, but only recommended in combination with in-
dependent confidence intervals, is the dependent confidence interval:

[0 - 2760, +276: ], (1.26)
with:

AP — m  S(0)Fu(m,N —m)
AN (vzvTy,

The reader is referred to Figure 1.1 for a graphical interpretation. The princi-
pal axes of the ellipsoidal confidence region coincide with the column vectors
in the matrix V. The distance from the origin to the ellipse along the I-th
principle axis (the I-th column of V') is proportional to the reciprocal of the
I-th singular value. This means that a small singular value gives rise to a large
confidence region in the direction of the corresponding column vector of V. The
independent confidence interval of the i-th parameter (1.25) coincides with the
projection of the ellipsoidal region on the i-th parameter axis. The intersec-
tion of the ellipse with the i-th parameter axis yields the dependent confidence
interval (1.26).

In literature (see for instance [BW88, page 6]) attention is paid to the
(1 — @) marginal confidence region. Considering only these intervals for the
parameters might be misleading, because it does not take into account the
correlation between the parameters. This is demonstrated in [DS81, page 95]
in the case of an elongated confidence region whose principal axes are not along
the axes in the parameter space. In our approach, the ratio of A’6; and A" 6;
indicates this correlation. This ratio is used in Section 6.1.7.
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Figure 1.1: Graph of a 2-dimensional intersection of the ellipsoidal region from
(1.24), centred at 6.

1.7 Parameter constraints

For many practical reasons restrictions may occur with respect to the parame-
ters to be estimated (e.g. reaction constants are always non-negative). Many of
the simpler linear restrictions can be taken into account by a reparametrisation,
but that is not always possible or even desirable.

Suppose we have K restrictions for the m unknown parameters. The re-
strictions are, in general, nonlinear and denoted by R;(#) <0 fori=1,..., K,
or

R(#) <0, - (1.27)

where R(6) is a K-dimensional vector function. The restrictions imply that a
subset of the m-dimensional parameter space is excluded. This yields a con-
strained minimisation problem. To solve it, we start the numerical procedure
as if we were dealing with the unconstrained case (starting with an initial
0 s.t. R(f) < 0) which results in a §0 according to (1.16). Then we check
whether after the correction the constraints are still fulfilled: R(6 + §8) < 0.
When some of the constraints are violated, there will be a non-empty sub-
set Z = {i1,...,ix} C {1,...,K}, such that R;j(#) > 0 for j € Z and k is
the number of violated or active constraints. We end up with a constrained
minimisation problem stating: minimise S(6) as introduced in (1.4) under the
conditions R;(f) =0 for j € Z.

The first step in solving this constrained minimisation problem is the de-
termination of the above mentioned subset Z. The second step consists of the
computation of the k x m matrix B defined as:

OR;,
(B)j1 = 56 (1.28)
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For notational convenience we introduce a k-dimensional vector r(6) which con-
tains all the vector elements R;,(f) for j € {1,...,k}. If we write down the
normal equations with linearised constraints and denote the Lagrange multipli-
ers by q, we get:

JTJ BT o0 JTY (6)
(%" 5)(7)=-("6") (129
Making use of the SVD of J, that was already required in the method of
Section 1.5, we can easily implement additional parameter constraints in the

minimisation procedure. Again we use the Levenberg-Marquardt method to
solve the extended nonlinear system. This leads to the correction:

86 = -V (22 +AL,) " [SUTY(9) + (BV)Tq] , (1.30)

where the Lagrange multipliers, g, are given by:

q = (BV (=2 +a1,)"" (BV)T)_I x
(BV (22 +AL) " SUTY (6) - r(e)) . (1.31)

Substitution of (1.31) in (1.30) yields a correction, 66, which satisfies the lin-
earised constraints. It may take some iterations to fulfill all, nonlinear re-
strictions. Numerical experiments showed that 2 or 3 iterations are usually -
sufficient. Having found the solution of the constrained minimisation problem,
we check the direction of the gradient to be sure that no local minimum is
found in the interior; we double-check if all the equality constraints are needed.

In practice, given the constraints (1.27), computer algebra is used to gen-
erate the FORTRAN code needed to evaluate the matrix B in (1.28).

1.8 A case study from biochemistry

To illustrate the approach explained in the preceding sections, we consider a
simple example in this section. More complex, real-life problems are discussed
in Chapter 6.

We consider a simple enzymatic reaction, which is a building block for many
biochemical processes [Hem72a). It is given by the chemical equations:

E+S C,
C —3y E+P.

e

>
o

The state variables in the reaction scheme are the concentrations of the en-
zyme, [E], substrate, [S], and complex, [C]. The concentration of the product,
[P], is not of interest in this context and therefore not a state variable. The
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mathematical description of the problem is given by:

dls) _

= —klBIS)+ k],

L~ bEs) - kio) - ki), (1.32)
[E]+[C] = [Eo] + (o] .

The initial values are [So] = 1.0, [Co] = 0.0 and [Ep] = 1.0, the vector of
unknown, positive parameters is 87 = (kj, ks, k3). The data are generated
artificially, by adding a normally distributed, independent measurement error,
with zero expectation and fixed variance, to the simulation results of [C]. The
resulting complex concentrations are given in Appendix 1.A. As a consequence
of the error structure, we take all weights equal in this estimation problem.
The initial parameter vector, 8;,;, the final estimate, 0 the corresponding sum
of squared discrepancies (cf. (1.4)) and the confidence limits >(A’ﬁ? from (1.25))
are given in Table 1.1. Together with the data, the numerical solution of the
DAEs from (1.32) for 6;,; and 6, is shown in Figure 1.2.

B;ni ) N
kL |60 |0683 | 0076
k, |08 |0312 |0.068
ks | 1.2 |o0212 |0.005

5(9) | 0.848 | 0.00051

Table 1.1: Initial and final parameter values for the case study of Section 1.8
plus A'6 from (1.25).

1.9 A case study from population dynamics

Another classical example originates from population dynamics. It describes
two species with a predator-prey relation. Mathematlcally the model is de-
scribed by the Lotka- Volterra equations:

dy;

Frl kiyr — k2y1y2 ,  with  y1(to) = 41,0 (1.33)
dy _ . _
rrle k3yiys — kay2 , with ya(to) = 92,0 - (1.34)

The rates k; — k4 are the parameters to be estimated. A frequently used
model adaptation is made by setting the parameters k» and k3 equal to each
other. The related estimation problem, with three parameters, is known as
Barnes’ problem and shows up in literature many times as a test example
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0.51 0.51
1 1
[C] *. [C]
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0.0 time () — 900 0.0 time (£) = 900

Figure 1.2: The calculated concentrations of the complex ([C]) for the initial
(left graph) and final parameter vector (right graph) and the measurements

(+).

[Hem72b, EW95, HK93, Wik97]. The corresponding measurements can be
found in Appendix 1.B.

The initial values of the state variables, y;1,0 and y2 0, are known, but we
do not have an indication about their accuracy. We can consider them either
as accurate initial conditions or as parameters to be estimated. In the second
case we add the given initial values to the measured data. Consequently, we
consider four different models to fit the measurements. Statistical tests are
performed to discriminate between the candidate models. '

When the initial values, y;,0 and ys,, are considered as unknown parame-
ters, and k, and k3 are assumed to be two separate, independent parameters,
this model fits the data better than the other models which can be derived from
(1.33) and (1.34), because the other models can be considered as a special case
of this model. With an F-ratio test (Appendix 1.C) it can be decided whether
one model fits significantly better than another. It answers the question: does
an increase of the number of parameters lead to a sufficient improvement of

~

the residual sum of squares, S(6)?

The degrees of freedom and the corresponding least squares sums for the
various models are given in Table 1.2.

From this table we can choose (3) = 6 pairs of models, 5 of them can be
compared by the F-ratio test of the first part of Appendix 1.C. The pair {ILIII}
is compared by making use of the super-model I. The 5 pairwise comparisons
lead 4 times to a rejection of the null-hypothesis, the F-test on {I,II} did not
reject the null-hypothesis. This means that, on the basis of the measurements
of Table 1.4, model II is preferred to the other models.
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Variant parameters df. (N —m) | S5(8)
¢y Y1,0,Y2,0, k1, k2, k3, k4 22-6 0.05185
(IT) ki, k2, k3, ky 20-4 0.05592
(III) | y1,0,Y2,0, k1, k2, kg (k2 = k3) 22-5 0.1017
(V) | ki, ka, ks (k2 = k3) 20-3 0.1645

Table 1.2: The parameters, degrees of freedom and the least squares sum for
the four proposed variants of the predator-prey model from (1.33) and (1.34).

1.10 Concluding remarks

In this chapter we gave an outline of an approach to solve parameter estimation
problems in systems of differential algebraic equations. Besides the model
equations, which describe the process studied and depend on the unknown
parameters, we integrate the corresponding sensitivity equations numerically
for an initial guess of the parameter vector. The result forms the input for the
minimisation problem, for which we calculate a correction for the parameter
vector. For the corrected value the model and sensitivity equations are solved.
This iterative process leads to an optimal fit between the model and the data,
and the corresponding parameters. After the minimisation the vicinity of the
final parameter estimates is investigated in order to derive confidence regions.

The model and variational —or sensitivity— equations are solved numerically
by a BDF method, which fully exploits the stiffness character of the variational
equations. For the minimisation we use a Levenberg-Marquardt method.

The solution method described has been implemented and can be applied
in many sciences where mathematical modelling of time dependent processes is
involved. The introductory case studies in this chapter give an impression of the
usefulness of the approach. More complicated case studies take up Chapter 6.

Appendix 1.A

The data (N = 20) corresponding to the example of Section 1.8 contain simu-
lated values of the complex concentration, with a(ilgitive, mutually independent
errors from a normal distribution. A sequence [C], and the corresponding t;
are given in Table 1.3.

Appendix 1.B

The data, corresponding to Barnes’ problem in Section 1.9, for the measured
values of the prey and predator fractions, ¥;,; and ¥z ;, respectively, are given
in Table 1.4 and taken from [HK93]. The measurements at ¢ = 0.0 do not
contribute to the number of measurements, N, if the corresponding values are
taken as the initial conditions.
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time (t;) | [C], || time (&) | [C],
1.0 0.32 || 11.0 0.18
2.0 0.38 || 12.0 0.16
3.0 0.38 || 13.0 0.15
4.0 0.36 || 14.0 0.13
5.0 0.33 || 15.0 0.13
6.0 0.30 || 16.0 0.11
7.0 0.28 || 17.0 0.10
8.0 0.25 || 18.0 0.09
9.0 0.23 || 19.0 0.07

10.0 0.20 || 20.0 0.06

Table 1.3: Measurements of the complex concentration ([C]) corresponding to
(1.32).

time (t;) | 91,0 | P2, || time (&) | 91,6 | D2
0.0 1.0 { 0.30 || 3.0 0.5 | 0.30
0.5 1.1 { 0.35 || 3.5 0.6 | 0.25
1.0 1.3 | 0.40 | 4.0 0.7 | 0.25
1.5 1.1 | 0.50 || 4.5 0.8 | 0.30
2.0 0.9 | 0.50 || 5.0 .1 1.0 | 0.35
2.5 0.7 | 0.40

Table 1.4: Measurements of prey and predator fractions corresponding to (1:33)
and (1.34).

Appendix 1.C

We refer to [Rat83] for an introduction to the statistical tests which should be
performed and which will help the modeller to decide whether the number of
parameters can be reduced or what model should be chosen. When we have
one set of N measurements and two models with approximately the same fit,
the model with the fewer parameters is preferred for further investigation. The
above notion of ‘approximately’ is made more precise in the remainder of this
appendix.
Suppose we have two solutions coming from different models

y(t,0) and z(t, d). (1.35)

We use ny and my for the dimension of y and 6, respectively. Similarly, the
dimensions of z and ¢ are denoted by n, and my. In general, different models
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describing the same physical process have different numbers-of state variables
and parameters. The only restriction is that the vectors y and z both contain
the state variables for which measurements are available.

Both models have their optimal estimates of the parameters and corre-
sponding residual sums of squares: 8, ¢, S(6) and S(¢). From the normality
assumption with respect to the measurement errors, and assuming that the
optimal estimates of the parameters are close to the true parameter values, we
know that the residual sums of squares are approximately X2-distributed:

S®)/0* ~ Xy_m, and S(@)/0* ~ Xy_pm, -

It is important to note that the two ratios are dependent, which implies that
we cannot perform an F-ratio test straightaway. First, we will consider the case
where one model say, z(t, ¢) is a submodel of y(¢,0). This means that mg > mg
and that there exist mg — my restrictions h;(6) = 0, such that y(t,6), when it
is restricted by h(f) = 0, has the same input/output behaviour as z(t, ¢) for
the observable state variables. Second, we will give an outline of the approach
for the case one model is not a submodel of the other one. At the end, we will
give an approach which is applicable in both cases, but is more restrictive with
respect to IV.

In the first case we test the hypothesis: Hp : h(6) = 0. Therefore, we

consider the ratio (S($)—5(9)) /o?, where o2 is the variance of the measurement

error. This ratio, which is always positive, is independent of S(#)/a%. Now we
introduce: -

(8(@) = 5@)/(mo —my)
S@)/(N ~my)

~ F(mg —mg, N —my) , (1.36)

where F(p, q) denotes Fisher’s F-distribution with p and ¢ degrees of freedom,
respectively. From the characteristics of an F-distribution we know:

N—mo

(for: N —mg > 2)

and
P(nga(mo—md,,N—mo)) =l-a,

where Fo(mg —mg, N —my) is the upper o quantile for Fisher’s F-distribution
(see e.g. [MGBT74]). Notice that the expectation of X does not depend on
mg — mg. When the two models have about the same performance, X will
be close to its expectation. The F-ratio test states that whenever X exceeds
Fo(mg — mgy, N — mg), the null-hypothesis, Hy : h(#) = 0, should be rejected.
If this is the case, then S ($) is significantly larger than S (@\), the model which
corresponds to z(t, ¢) should be rejected in favour of the model which corre-
sponds to y(t,f). When we refer to the F-ratio test in this book, we mean
this test, unless stated otherwise. Furthermore, we want to stress again that
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all statements about stochastic behaviour of our statistics hold approximately
and are exact only for models which are linear in 6.

In the second case, neither y(t,0) is a submodel of z(t,8) nor vice versa.
Here, we construct a super-model, u(t,1), such that u(¢,%) under the con-
dition hg(p) = 0 or hg(yp) = 0 coincides with y(¢,0) or z(t,¢), respectively.
Because both y(t,0) and z(t, ¢) are submodels of u(t, ), we return to the first
case and compare the models y(¢,0) and z(t, ¢), by performing the tests with
Hp : ho(yp) = 0 and Hp : hg(yp) = 0. If one of the two null-hypotheses is
rejected, then the submodel corresponding to the non-rejected null-hypothesis
is preferred. In all the other cases no conclusion can be drawn.

An approach which is applicable in both cases, if N > 2max(mg,mg) + 2
consists of splitting the data into two disjunct subsets of sizes N(;) and Ny,
such that N(I) + N(z) = N and min(N(l),N(2)) > max(mg,m¢) + 1. Then we
fit the model y(¢,6), to the first subset of data, which leads to the estimate
9(1) and the correspondmg partial, residual sum S(l)(O(l)) Analogously, we

derive 9(2), ¢(1), ¢(2) and the corresponding partial, residual sums. The null-
hypothesis states that the two models perform equally well. Now, we perform
two F-ratio tests with:

= Sﬂ)@l))/ (N(1y — me)
S@)(B2)/ (N —mg)

A C) (B))/(Nz) — mo)
T Sy (@) (Nay —mg)
Consequently, the probabilities:

1
P < X < }-a N —m, ’N ,
(7’“ (Niz) —mg, Ny —mg) = "7 = (Naa) —mg, Nezy — ))

and
(f - 1
2 (N(l) Mme, N(2) m())

both equal 1 — a. At a confidence level of, at least, 1 — 2a we reject the
null-hypothesis if one of the F-tests, based on X or X3, rejects the null-
hypothesis in favour of one of the two models and the other test does not
contradict this, more precisely:

< X2 1 < ]:a (N(g) hd mo,N(l) - m¢)) )

1
X1,2 > Fa(Nqy —me, Ny —mg) A Xp 1 > )
( 12 > Fe(Nay (2) —Mg) A X2 3 (N — g7 Negy = ma)
v (1.37)
’ 1
X AXoq > Fa(Nigy —mg, Npy —m,
( 12 2 F Ny —may Ny —ma) " 224 > PNy = ma. Ny ¢))
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or
1

X < Fea — -

( L2 < Fg(N(2) —mg, N1y — meg) N e < F5(Ney = ma Ny m¢))
% (1.38)
1

X120 < Fa(Nyy—mg, Ny — ANXsq < .

( 1,2 > 2( (1) me (2) m¢) 2,1 ]‘-% (N(l) _ m¢,N(2) _ me))

If (1.37) is true then z(¢, ) is chosen in favour of y(t,8), the opposite happens
if (1.38) is true.



Chapter 2

Parameter Estimation by Total
Least Squares

2.1 Introduction

In this chapter we introduce a stable and efficient approach to estimate un-
known parameters in nonlinear models where the measurements are affected
by noise, not only in the dependent, but also in the independent variables.
The technique, where also the error in the independent variable is consid-
ered, is known as the total least squares (TLS) approach or errors in variables
method (EVM)'. A formal, mathematical extension from ordinary (weighted)
least squares (OLS) to total least squares (TLS) is found in Section 2.2. Special
attention is paid to the consequences of the error structure of the measurements
on the parameter estimates in Section 2.3. We restrict ourselves to indepen-
dent and normally distributed measurement errors whose variances are known
or known up to a constant of proportionality. In Section 2.4 we discuss the
possibility of adding nonlinear restrictions with respect to the location of the -
unknown parameters and of adding error margins to the independent variables.
A discussion of the case where the variances are unknown or dependences be-
tween the measurement errors exist is given in Chapter 3.

Linear TLS problems are discussed in, e.g., [GV83, VPR96], which focus
on the numerical linear algebra aspects. Nonlinear problems are discussed
in a more theoretical context and with an accent on the statistical context
in, for example, [Ful87, Gle90], whereas [ST85, BBS87] focus on the numerical
aspects and implementation. This last reference uses the expression orthogonal
distance regression. A more complete overview of the topic can be found in the
conference proceedings [BF90].

The confidence regions based on the TLS-estimators are not discussed in
literature, but will be taken care of in this chapter. With respect to the nu-
merical implementation we will follow a general approach and extend it to the
case where parameter constraints and bounds on the measurement errors of
the independent variable are given.

1Some texts use the expression orthogonal least squares and abbreviate it by OLS. This
might lead to confusion, because the same abbreviation is also used for ordinary least squares
(cf. Chapter 1).
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Figure 2.1: A model curve and two measurements: an example where ordinary
least squares may be unsatisfactory.

In the situation of Figure 2.1 the assumption of an error in the dependent
variable, combined with the steep part of the model curve, makes the lack of
fit related to the second measurement apparently more significant than the
lack of fit related to the first measurement. If we apply the OLS approach
here, then only the vertical discrepancies (the dashed lines) are taken into
account and both discrepancies will contribute equally to the fitness criterion
(1.4) (assuming equal weights). In many problems from various applications
the experimentalist will state that the lack of fit in the right measurement is
more significant than the lack of fit in the left measurement. These intuitive
reasonings lead to a fitness criterion which is more general than OLS.

2.2 Mathematical description of TLS

In most situations one focuses on the case where measurement errors are
stochastically independent, come from a normal distribution, and have zero
mean and known variance. Further, the errors in the measurements corre-
sponding to the independent variables are assumed to be zero or negligible.
The approach needed under these conditions —ordinary least squares— was de-
scribed in Chapter 1.

In the case when the measurement errors related to the independent vari-
ables are significant we need the more general TLS approach. Using OLS in
such cases is called the naive approach in [Gle90] and leads to biased, inconsis-
tent estimators. For some applications, e.g., curve fitting, OLS may not even
lead to an estimate, whereas TLS does.

As we want to consider a possible measurement error with respect to the
independent variable, ¢, we have to adapt our notation for a measurement as
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given in (1.2). Now a measurement is denoted by the triple:
(cirtisBi) i=1,...,N, (2.1)

where, the measured time, %;, replaces the actual time of the measurement, t;,
the symbols ¢; and J; have the same meaning as in (1.2). The fitness criterion
of (1.4), is not appropriate any more, because the error in #; may be significant
and -more importantly— ¢; is not known. The naive approach would be to
replace ¢; by #; and use a least squares criterion.

For the measurement errors in time, & (i = 1,...,N), which are assumed
to be N(0,¢?) distributed and stochastically independent, we write:

E =t + £i ) (22)

where the actual or true times of the measurements, ¢;, are not known. The
discrepancies related to the independent variable are denoted by 7;, such that
for the true model 7* = (77,...,7%)T = (=&, ..., —€n)T. An estimator of the
error in time is denoted by 7. As a consequence, the discrepancy between the
measured value and the theoretical value of a dependent variable now depends
on @ and T:

di(0, Ti) =Yec; (E; + Ti, 0) - gl . (23)

After adding weights, the expression we want to minimise reads:
N
56,7) =) wi {d}(6,m) +virf} . (2.4)
i=1

Here, w; is a weighting factor for the i-th measurement and v; represents a
weighting factor, with dimension [y/t], which indicates the relative importance
of 7; compared to d;. At this stage we assume the weights, w; and v;, to be
known a priori.

For convenience we introduce the following notation:

(+)

v =
g(v) = w; (Ye; (8 + 73,0) — %) = widi(0,73) , i=1,...,N,
' Vi NW;_NTion » ’i=N+1,...,2N,
gv) RM+N) 5 g2V
Sw) = ¢"(w9w),
dg
Z = i

This notation is used to describe a numerical procedure to minimise S(v). The
computation of the discrepancies and sensitivities is performed by the same
means as in Chapter 1, with the only difference that the evaluations take place
at t; + 7;. The initial estimate, vini, equals (6ins,0,...,0)T, where 6;,; is the
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initial guess for the parameters as introduced in Chapter 1, for 7;,; we take
its expected zero vector. At this stage, we can focus on the computation of
an optimal solution by numerical means. In principle, this can be done by
the Gauss-Newton method. In each iteration we compute a correction for v,
denoted by dv, from the normal equations

ZT7Z6v = -Z%g(v) . (2.5)

In order to compute dv efficiently and to investigate the differences with the
minimisation from Section 1.5, we analyse the 2N X (m + N)-matrix A by
partitioning this matrix as:

Z:(gg), (2.6)

gi  Oye(hi+7:,0)

(N = % = wz———Toj——— , (2.7)
G=1,...,N, j=1,...,m),
R 6g’L _ _6yc,~(fz’+7'i79)
O = go-wAalbrnl), (2.8)
Gi=1,...,N, j=1,...,N),
_ O9un _
(D)” = 6_7’] —(S”’U,,'IUZ , (2.9)

(i=1,...,N, j=1,...,N),
where J;; is the Kronecker delta:
5.1 ifi=3j,
71 0 otherwise.

If a BDF method is used to solve the model equations (1.1) numerically, the
entries of C' are retrieved easily. A closer look at C and D shows that these
matrices are both diagonal. Substitution of (2.6) in (2.5) and partitioning g(v)
into its two components, g’ () and g7 (v), both of length N, yields:

JrJy  JTc 660\ _ JT 0 g’ (v) (2.10)

CJ D?+(C? or )~ C D g () ) - :
Because of the diagonal structure of the matrices C and D, it is obviously
easiest to start with the lower half of (2.10) and compute the correction:

§r = — (D*+C?) 7' [C (J88 + ¢°(v)) + Dg"(v)] , (2.11)

which, after substitution in the upper half of (2.10), leads to the expression for
60:

JI(I-c@*+CcH7IC)Jse = -JT[I-C(D*+C?)1Cl ¢’ (v) +
JTC(D? + C*)~'Dg" (v) . (2.12)
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In order to get a more convenient notation we introduce the diagonal N x N-
matrix T such that:

T? =(I-C(D*+CH»'C), (2.13)

followed by introducing;:

J = TJ, (2.14)
h = Tg’()-T-'C(D*+C?) 'Dg"(v). _ (2.15)

With this notation we simply express the normal equations for 46 ( cf. (1.13))
by:

JTJs0 = —J"h . (2.16)

Notice that TLS reduces to OLS if C vanishes. Equation (2.16) can be solved by
the Levenberg-Marquardt method as described in Chapter 1, which only needs a
slight adaptation. After computing 60 from (2.16), by making an SVD of J, the
result is substituted into (2.11) to obtain §7. Thus, the Levenberg-Marquardt
method is not applied to (2.5), but to the smaller problem (2.16), which has
the same size as the problem in the OLS case. The matrix multiplication to
obtain J and the substitution which has to be made to calculate §7 are marginal
computations compared to computing 60 from (2.16). This means that TLS
takes about the same amount of computational time as OLS and is therefore
solved in an efficient way. Furthermore, the numerical solution is similar to the -
solution of the OLS approach and therefore the stability and the convergence
are the same as for OLS.

Notice that in the derivation of the above formulae we assume the weights,
w; and v;, to be known a priori.

2.3 Statistical background

In this section we assume the measurement errors in the independent and de-
pendent variables, 7* and d(6*,7*) respectively, to be stochastically indepen-
dent, normally distributed and scaled by their weights in such a way that the
covariance matrix is given by:

JEDIEHIR )

where v* contains the true parameter values. This assumption means that the
standard deviation of every measurement error is proportional to the reciprocal
of its weight, i.e. 0; = 0/w; and ¢; = o/(v;w;). This is a matter of scaling
and we need these conditions to ensure that the total least squares estimate
coincides with the maximum likelihood estimate (MLE) as discussed in more
detail in Chapter 3.
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Minimisation of S(v) leads to a final estimate of the unknown parameters v,
denoted by v. Combining the normal equations from (2.10) and the covariance
matrix of the measurement errors (2.17) leads to the approximate covariance
matrix of Av = v* —

Ad AN JTy  Jre \'
E(AVAVT):E(( At ) ( AT ) ) :"2( CJ C?+D? ) =
~ o\ —1
(777)

oy —1 (2.18)
—(C? + D?)-1CJ (JTJ)

(o}

- (JTJ)_1 JTC(C? + D?)~1

~ 1
(C? + D?)~! [IN +CJ (JTJ) JTC(C? + D?)—IJ

where the last expression only contains known inverses. As in (1.22) we perform
a local investigation of the sum of squares in the vicinity of the final estimate,
U, by using a linear approximation for g(v + Av):

S@+Av) = ¢gT([O+Av)g(D+ Av)
~ 9" D)) +AavTZTZAv, (2.19)

where the matrix Z is given in (2.6) and evaluated at ».

At this point we apply standard statistics as in Section 1.6, but have
to be careful about counting the degrees of freedom. The criterion to be
minimised, S(v), is the sum of 2N squared discrepancies. At the minimum
dS(v)/dv = 0 holds, which leads to N + m restrictions. As a result, S(v)/o?
and AvT ZT ZAv/o? have X2-distributions with N —m and N + m degrees of
freedom, respectively. The confidence region at level « is the ellipsoidal region

AVTZT ZAw < x M (D) Fa(N +m, N —m) | (2.20)

where Fo (N+m, N—m) denotes the upper a quantile for Fisher’s F-distribution
with N +m and N — m degrees of freedom. From this last result, which is an
extension of the standard linear regression theory, individual confidence regions
for each estimate can be calculated as in (1.25) and (1.26), respectively.

An approximately unbiased estimator of o2 is given by

2 = S(®)/(N —m) . (2.21)

2.4 Total least squares with parameter constraint

In this section we study the case where, in addition to the minimisation crite-
rion, a set of constraints with respect to v is given. The approach to handle
this situation is an extension of Section 1.7. Using the notation of Section 2.2
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with respect to g,v and S(v), we state the constrained minimisation problem
as:

min g7 (v)g(v) , under the condition: R(r) <0, (2.22)

with: R : R(™N) 5 RK denoting K nonlinear constraints. We assume R(v)
to be differentiable with respect to v. We start the numerical procedure in the
case of constrained minimisation as if we were dealing with the unconstrained
case (starting with an initial estimate of v satisfying the constraints R(v) < 0),
which results in a év. Then we check if, after a correction of v, the constraints
are still satisfied:

Rv+6év)<0.

If this is the case, we do not have to worry about the restrictions and continue
with the next iteration as if it were an unconstrained minimisation problem. If
some of the K constraints are violated, there will be a subset Z = {i3,...,ix} C
{1,...,K}, such that R; > 0 (j € Z), where k denotes the number of active
constraints.
After determining the subset Z, we compute the k£ x m matrix B; and the
k x N matrix Bs, defined as:
OR;, OR;.
(B1)j = 3_0: and (Bs); = a_lj :

(2.23)
i

In the software these matrices are derived automatically via a computer al-
gebra package (we used MAPLE). For notational convenience we introduce a
k-dimensional vector 7(v) which contains all vector elements R; for j € Z. If
we write down the normal equations with linearised constraints and denote the
Lagrange multipliers by ¢, we obtain:

JTJ JTC BT\ [ 60 JT g (v)
cJ D*+cC* B or | =—| C(w)+Dg"(v) |. (2.24)
By B 0 q T(V)

In the remainder of this section we show how (2.24) can be solved by making
use of the special structure of the matrices of these normal equations and of
preparatory computations with respect to J. We start by writing d7 explicitly:

61 = —(D* +C?)~! (C¢°(v) + Dg" (v) + CJ0 + BT gq) , (2.25)
and substitute this in the first row of equation (2.24):
~-JTC(D* + C*)7! (C¢’(v) + Dg" (v) + CJ66 + BT q) +
JTJ60 + BYq=-J"¢%(v) , (2.26)
which can be rewritten as:
JT(In —C(D*+C*H71C)J60 = —JT(In - C(D? +CH)10) g (v) +
JTC(D* +C*)'Dg"(v) + (JTC(D®*+C?*)'Bf —BT)q.  (2.27)
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Using the matrices T and J, and h as from (2.13)-(2.15), we find:
oy —1
3 = — (JTJ) (JT h+{BT — JTC(D* + C?)~'BI} q) , (2.28)

where the SVD of JTJ is available, because we started as if we were dealing
with the unconstrained case and therefore had to solve (2.16) already.

Finally, pre-multiplying the equations (2.25) and (2.28) by B2 and B; re-
spectively, adding the two results and eliminating d6 via (2.28), we can use the
last row of equation (2.24) to obtain: '

[{B1 — By(D* + C?)~LCJ} (JTI)!
{JTC(D*>+C*)7'B] — B} - Bo(D*+C*)™'Bj|q =
{B1 — Bo(D* +C»)~'CI} (JT T 1T ht (2.29)
By(D? + C*)7MCg’(v) + Dg” (v)] — r(v) .

The last equation is solved to obtain ¢, its size is governed by the number
of violated constraints, k. For most applications this number is small, which
means that the Lagrange multipliers, g, can be solved easily and fast from
system (2.29), e.g., by a QR-decomposition. After the computation of g, the
correction 66 can be computed by (2.28) and é7 from (2.25). As in the OLS
case, at the end a set of equations with the size of the number of violated
constraints has to be solved. For the TLS case we have marginal extra work
for extra multiplications and additions, the time consuming parts, solving ¢
from (2.29) and performing the SVD of an N x m-matrix stay the same for the
OLS and the TLS approach.

2.5 Conclusions

In this chapter we presented an approach for parameter estimation in nonlinear
models, where not only the measurement errors in the dependent, but also in
the independent variables have to be taken into account. This approach is
known as the total least squares (TLS) method in contrast to the ordinary least
squares (OLS) approach, where the measurement errors in the independent
variables are neglected. We showed how to deal with nonlinear restrictions
with respect to the unknown parameters and error bounds of the independent
variables. Special attention was paid to confidence regions of the final estimates.

The TLS approach is more general than the OLS approach and it reduces
to OLS in a natural way, if the weighted errors in the independent variable are
negligible. The increase in the computational effort for the TLS approach is
marginal compared to the OLS approach.
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Maximum Likelihood Estimators

3.1 Introduction

In this chapter we give a more detailed description of the statistical back-
ground for parameter estimation in nonlinear models, also known as nonlinear
regression. The fitness criteria used in nonlinear regression depend on the as-
sumptions and knowledge about the measurement errors. From the probability
density function of the measurement error the maximum likelihood estimates
of the parameters can be derived. For the case with independent and nor-
mally distributed measurement errors in the dependent variables, we discuss
the link between least squares and maximum likelihood criteria in the Sec-
tions 3.2 and 3.3. An outline of the actual optimisation of these criteria by
numerical means, when the variances of the measurement error are unknown,
is considered in Section 3.4. A theoretical outline concerning dependent mea-
surement errors with an unknown covariance matrix is given in Section 3.5, the
consequences for actual computation are highlighted in Section 3.6.

Maximum likelihood methods for the case when the measurement errors -
are normally distributed and also present in the independent variable are dis-
cussed in Section 3.7. When the measurement errors come from a Laplace —or
double exponential- distribution, the sum of absolute discrepancies should be
minimised. Section 3.8 gives the necessary background and an elegant way to
deal with the practical implementation. Concluding remarks can be found in
Section 3.9.

Throughout this chapter, we assume that an accurate approximation of the
solution of the model and its variational equations, y(t,6) and dy(t,0)/08 (cf.
(1.6)) is available and we do not bother about the precise formulation of the
model.

3.2 Least squares criterion

The most straightforward way to measure the fitness between the model and
the measurements is the sum of squared discrepancies:

N N
SO) =Y (ve:(ti,0) —%)* = Y d2(6) = dT(8)d(9) , (3.1)
i=1 i=1
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where d(6) = (di1(6),d2(6), ..., dn (6))"

Assuming that all measurement errors, €;, are mutually 1ndependent and
come from a normal or Gaussian distribution, with zero mean and variance o2,
i.e. €; ~ N(0,0?), the vector of measurement errors reads: € = (€1,€2,...,en)7,

with covariance matrix
V = E(eel) = 0?1, . (3.2)

The discrepancies, d(f) € RY, depend on the parameter vector. When the
true parameter vector, 6*, is substituted, the discrepancies coincide with the
measurement errors:

fy]- = yci(ti,ﬁ*) +€&; or d,(0*) = —

By residuals we mean the discrepancies evaluated for the estimated parameter
vector, d(9) The probability density function for the assumed structure of the
measurement errors, is given by:

N ~\2
_ —N | (e, (t:,0) — T
p@1s...,IN0) = (2no?) T exP( 2iz1 (y;,(gz, )~ 5) )

N
= (210" exp (i%@)

= (2102)7F exp (-1dT(6)Vd(9)) . (33)

We want to determine 0 in such a way that the probability density is max-
imal, i.e. the most likely 8, for a given data set. From the probability density
function we can define the likelihood function as:

For convenience and convention we take the logarithm of the likelihood function
(LLF):

InL(9) = In(2m0?) — 1dT(9)V ~1d(9) . (3.5)

The likelihood function (and its logarithm) reaches its maximum, if S(6)

in (3.1) is minimal because of (3.2). This means that the maximum likeli-

hood (ML) estimate of 6 coincides with its least squares (LS) estimate. As a
consequence, the last sentence can be expressed as

B def ~{01£(0) is maximal} = By def {6|S(0) is minimal} ,

where ~ indicates an estimate.
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3.3 Weighted least squares criterion

3.3.1 A priori known weights

In the case some a priori knowledge about the accuracy of the measurements
is available and this accuracy is not constant over the components of the state
vector or even differs for two measurements of the same component, an adapta-
tion of the criterion function has to be made. The expression for S(#) in (3.1)
is changed by adding positive weights, w; (¢ = 1,..., N), which leads to a sum
of weighted squared discrepancies (1.4). The weights are taken in such a way
that more accurate measurements correspond to bigger weights.

If we assume again that the errors are independent and come from a Gaus-
sian distribution with non-constant variance, €; ~ N(0,0?), the corresponding
logarithm of the likelihood function reads:

N N N\ 2
In£(6) = —% In(2m) =) In(o;) = £ > (j—) . (3.6)
=1 t

i=1

After comparing (1.4) and (3.6), we see that their estimates coincide if and only
if, the weights are proportional to the reciprocal of the standard deviations:

o
w; = Z , (37)
which connects weighted least squares and maximum likelihood estimates for
the case of non-constant variances.
If the measurement errors are dependent and the covariance matrix is
known, ¢ ~ N(0,V), with V a symmetric, non-diagonal, positive definite
N x N-matrix, we use a more general LLF instead of (3.5):

In£(8) = —& In(27) — L In(det(V)) — 1dT(0)V~1d(9) , (3.8)
whose maximum coincides with the minimum of:
S) =dT(O)V1d(o) . (3.9)

Due to the properties of V, the matrix V~! can be decomposed by Cholesky
factorisation, such that V—1 = LT L, where L is a lower triangular matrix. With
this matrix L, the problem can be transformed into a least squares problem,
almost similar to the one in Chapter 1. In literature, the minimisation of (3.9)
is known as the generalised least squares (GLS) problem.

3.3.2 Unknown weights

In most practical situations the standard deviations of the measurement errors,
0i, are unknown. Furthermore, it is impossible to estimate all these standard
deviations, in addition to the unknown parameters, §. We exclude the possibil-
ity of a systematic error, so that the expectation of the measurement error is
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assumed to vanish. The best that can be done is to assume that the measure-
ment errors come from the same distribution if they correspond to the same
component of the state vector.! This means that besides the unknown param-
eters we estimate as many standard deviations as different components, ¢; in
(1.2), have been measured.

We introduce ¢ as the number of measured components, ¢ < n, and r as the
number of samples. A set of measurements for different components, ¢;, taken
at the same time and under the same experimental conditions builds a sample.
We define the r x ¢ matrix D() containing the discrepancies, d;(#), in such a
way that each column is associated with one measured component and each row
corresponds to one sample. We adapt the notation of (3.1) correspondingly and
use a double subscript for the entries of the matrix D(6) instead of the single
index we use for di(6). The entry D;;(6) corresponds to the j-th measurement
of the i-th sample. Notice that some entries of the matrix D(#) may be empty,
because it may happen that N < ¢r. At these empty entries we put a zero.
Thus, there is a one-to-one correspondence between d;(#) (I = 1,...,N), and
the IV non-zero entries in the matrix D(6).

With the matrix D(#) we introduce the g x ¢ matrix M (6), given by:

M(6) =DT(6)D(®) . (3.10)

In literature ([Bar74, page 64]), M(0) is known as the moment matriz. Al-
though both D(6) and M () depend on the unknown parameter vector 6, we
will not always express this dependence in the notation.

Until Section 3.5 we are dealing with stochastically independent measure-
ment errors. This, together with the assumption that the deviations, o;, are
the same for each measured component, turns V into a diagonal, ¢ X g-matrix,
with Vi;; =02,i=1,...,q.

The introduction of M and V results in a shorthand notation for the
weighted sum of squares. Instead of (1.4), we get:

S@O) =T (VM) , (3.11)
where Tr denotes the trace of a matrix. Starting with the special case where
the same components are measured in each sample and hence N = gr, we will

conclude with the more general case at the end of this section. For this special
case the probability density function reads:

q

q T 1
[[en HH(%Y exp(—LTx(V-101))

j=1 j=1i=1

]

p(gla ce ,ZENIG)

(2m) ﬁ(%)_ exp(~ L Te(V-1M))

j=1

qr

= (21) 7 (det(V™)) ¥ exp(—LTr(V~1M)) . (3.12)

1This is the approach for absolute measurement errors, in the case of relative measurement
errors the situation is identical after scaling the measurement errors.
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The corresponding log likelihood function equals:

9

InL®) = —qrin(v2n)+ Z Zln ( ) - 1T (V™M)

(&)

q q T
1
-2 | ¢In(27) +§ In(Vj;) | - & FE D% . (3.13)
j=1 j=1 9 i=1

Differentiation with respect to the unknown variances of the LLF from the last
equation gives:

dnL®)  r . 1 <~y
E 7 2ij+2‘/j§;D

which vanishes iff:
I, 1
= ;ZDij = -Mijj .
=1

Inspection shows that the resulting stationary point corresponds to a maximum.
The last equation yields an estimator of the variances, which is consistent, but
biased. Consistency is easy to show; when N — oo, then also r — oo, because
q is finite and bounded by n, and finally, by the law of large numbers:

P([is-vi|>€) =0,  ve>o,

where V% is the true variance. As an approximately unbiased and consistent
estimator we take, according to [Bar74, page 195]:

PN 1
P = i 225 = =™ 14
this estimator is perfectly unbiased if the expectation of the matrix M is pro-
portional to V*. The adaptation in the denominator expresses that the degrees
of freedom are spread over the separate entries of the estimator. With respect
to the last equation a special remark should be made. To estimate the diagonal
matrix V* we use the diagonal entries of M. For the estimator, 0 the residual,
D(G)”, is expected to come from a normal distribution with zero expectation,
and variance 3. Therefore, the off-diagonal entrles M;; (8) (i # j) are expected
to have a zero expectatlon and a variance ro? ], if the measurement errors are
independent. These characteristics can be used to test whether the combina-
tion of the model chosen and the assumption of the independent measurement
errors is feasible.

The result (3.14) holds only if all measured components are the same over
the samples, N = gr. For the more general case we introduce the variables r;
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to denote the number of measurements in the j-th column of D (3_? j=1Ti=N ).
Then, the LLF reads
N 7 1 ~ 1 ¢
In E(G) =—73 ln(27r) - Z ‘5 ln ]] -3 Z V_ DU s (315)
j=1 j=1 I7 =1
its derivative with respect to V;; vanishes if:
1 T
Vij=—) Di. (3.16)
T i=1

The corresponding approximately, unbiased, consistent estimate of the vari-
ances is —analogous to (3.14)- given by

~

1 -
= 2 . 1
VJJ 'I’j(l—m/N);D” (3 7)

Notice that the summation runs over r entries, because of the zeros substituted
in the matrix D. Substitution of (3.17) in (3.15) gives:

In£(8) = —gln(zw)—f_:ﬂln <—~1—m—) Z” In (ZD ) ‘
j—l 2 Tj (l_ﬁ) j=1
%ZZ N ZD : (3.18)

j=1 i=1 ZJ i=1

Only the third term in the right-hand side of (3.18) depends on 8, which means
that we can restrict ourselves to minimising;:

L(0) = f[ (Z ng) 2 . (3.19)

From (3.19) we see that we have to minimise the geometric mean of the esti-
mated deviations of the measurement error, where we omit the factor 1/(r;(1—
m/N)). Another interpretation is to consider an N-dimensional box in the
data space. This box is centred at the expected model responses and has edges
parallel to the coordinate axes. The length of the edge parallel to the I-th

coordinate axis is proportional to 1/Z:=1 ij» where the j-th column of D

corresponds with the measured component ¢;. Minimising the volume of this
box is expressed by (3.19). In the next section we describe how to perform this
minimisation.
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3.4 Numerical computation (independent case)

To compute the maximum likelihood estimates for 6 in the case of indepen-
dent measurement errors and unknown weights, the expression (3.19) should
be minimised. This might be done by any general purpose minimisation rou-
tine. Newton’s method would be a straightforward procedure if accurate initial
estimates would be available, but problems are expected due to the strong non-
linear behaviour of this criterion. Another disadvantage of direct minimisation
of (3.19) is the fact that its first and second derivatives, which might be re-
quired by the minimisation routine, lead to more complex expressions than
in the case of, for example, ordinary least squares. In order to obtain the
estimates we introduce an alternative iteration procedure which is a slightly
modified least squares approach. Therefore, it is easy to adapt an existing
approach as described in Chapter 1, where no adaptations for the derivatives
have to be made. The alternative approach proves to be applicable, efficient
and stable in all practical cases.

The proposed approach to find a minimum of (3.19) is an iterative proce-
dure. The process starts with the solution of the model and variational equa-
tions as described in Chapter 1 for a given initial estimate of the parameter
vector, 0;,;, and possibly additional constraints on the parameter vector as also
introduced in that chapter. During the iterative process this computation is
repeated with different weights, which depend on € in the way as given below.

In order to explain the successive computations we use the iteration index
k. At the k-th step of the minimisation procedure the parameter vector is given
by 6, so that (0 = 6;,; and D;;(8*)) denotes the corresponding discrepan-
cies, which are known after computing the model responses. Estimates of the
variances at this stage are given by:

52(0%)) = 202 @®) (3.20)

Ti =1

which is the biased estimate from (3.16). Notice that the biased and the ap-
proximately unbiased estimates for V* only differ by a proportionality factor,
which has no influence on the final estimate of 8. If the weights in (1.4) are
chosen as in (3.7) and we take (3.20) as the estimate for o7, the corresponding
weighted sum of squares, cf. (3.11), reads:

S@E®) = Z 52 e(k>) Z D% (™) = (3.21)

Now we continue the procedure as if in (3.21) only the discrepancies, and not
the variances, depend on 6. Ie., we compute a new 8(+1) for an adapted set of
weights, w; = 1/5;(0®). A correction for 8%), denoted by 60F), is accepted,
if it leads to an improvement of the sum of squares with the delayed or frozen
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weights:

q

SE*) =" (k))ZD gr+y < N, (3.22)

J=1

where

k1) — g(k) 56

After a successful correction, the weights are updated and the next iteration
is performed. For the iterative minimisation we use the Levenberg-Marquardt
algorithm as in Section 1.5.

Thus by introducing a weighted least squares problem of type (1.4), where
the weights lag behind over the iteration steps, we manage to create a process
for minimising (3.19). In the remainder of this section we show that the itera-
tion from (3.22) leads to the minimisation of (3.19) at a superlinear convergence
rate.

Theorem 3.4.1 The value 8, corresponding to a stationary point of S(6) of
the iteration process (3.22) minimises the value £(#) in (3.19). Moreover, if
the residual is sufficiently small and if the derivatives 8%y., /862 (t;,0*)) and
3y, [063(t;,6) exist for all k steps of the iteration, then the rate of conver-
gence of (3.22) is superlinear.

Proof: First we consider the iterative process as described in (3.22). For
the correction we get an expression which is common for such processes as:

6% = glk+1) _ g(k) — _p=1(g*)) Z(9*)) | (3.23)

where W (6(%)) is an m x m-matrix and, depending on the local minimisation
method, equal to or approximating the Hessean, (825/862)(6*)) and Z(8*)) an
approximate gradient vector (85/96)(*)). Because we ‘freeze’ the variances,
in our algorithm the first derivative of (3.22) with respect to 8 equals:

Z(0) = ZAQZzp,J ae . (3.24)

Jz——

The gradient of (3.19) reads:

az(a) = Z(6) (Z s _—> z,aggj) . (3.25)

1) =1

Upon convergence of (3.23), the correction 66%) vanishes, and therefore, also
the difference in the weights vanishes. This implies that the expressionr;/ Y7 | I
in the right-hand side of (3.25) equals 1 /612- and, thus, the zeros of (3.25) coin-
cide with those of (3.24).
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In order to investigate the convergence rate of the iterative procedure, we
introduce:

FO)=W(0)2(0),

so that the converged parameter vector, 5, is characterised by Z (5) = 0. We
denote the error in the k-th iteration step by:

o =g
For the errors the following recursive relation holds:

elk+1) — (B) _ (F(é) — F(® )) .
Expanding this relation for small ||e(®||, we find:

||e<'°+1> — (1-F(®)) e® H =0 (||e(")||2) , (3.26)

where:

F'(0®) = di—g’)(e(“) =W YW (O®) +
If 9(*) in limit goes to 8, the gradient Z(6*)) vanishes and therefore, F'(§(¥)) in
limit goes to the identity matrix. This means that the process has a superlinear
convergence rate. O

dw—1(9)
T(B("))Z(ﬁ(’“)) .

Remark 3.4.1 Because £(0) > 0, the derivatives (3.25) and (3.24) have iden- -
tical signs and therefore the functions S(f) and £(#) have the same type of
stationary points.

Remark 3.4.2 If the matrix W does not contain second order derivatives of
Ye, (t,6) with respect to 6, as in the case of Gauss-Newton type methods, then
the restriction on the third derivative of y.,(t,0) with respect to § becomes
redundant.

3.5 Dependent measurement errors

In the case of dependent measurement errors with unknown dependences, we
consider a full, symmetric positive definite, ¢ x ¢ covariance matrix V. Whereas,
in the case of independent measurement errors only the g entries on the diagonal
have to be estimated, for the dependent case g(q + 1)/2 entries are unknown.
These unknown quantities come in addition to the m unknown parameters of
the vector 6.

Again, we start with the special case that all measured components are the
same over the samples, gr = N, the corresponding LLF can be rewritten from
(3.13) as follows:

InL@) = N (\/27) — Lin(det(V)) — 1T (V-1M) . (3.27)



38 Chapter 3

Notice that depending on the statistical assumptions, V is either a ¢ x g-
or an N x N-matrix, the corresponding LLFs are given by (3.13) and (3.8),
respectively. In order to differentiate (3.27) with respect to the entries of the
matrix V, we summarise the following results (see [Bar74, pages 294-296]):

8 det(A) _
oh = (4 l)jidet(A), (3.28)
T
@% - (CB)y, (3.29)
ij
oAy} 14
52;; = —AkilAjll. (330)

Now the second term in (3.27) can be differentiated with respect to V' by
using the result (3.28). The derivative of the last term in (3.27) with respect to
V can be obtained by combining (3.29) and (3.30). The result of differentiating
(3.27) with respect to the covariance matrix reads:

8(11:9.;5/(0)) Lty Lyt (3.31)

This expression vanishes if:
1
V==-M. (3.32)
T
The last expression gives a consistent, but biased estimator of the covariance

matrix. Analogous to (3.14), a less biased estimator is given by:

1

V= mM . - (3.33)

If we substitute this estimator of the covariance matrix in the LLF (3.27) we
obtain:

In£(8) = —Yin(2r) — Z1n ((

! 1
) N ) - YT - m/oty)

= &ln (Nz;ﬂm) — ZIn(det(M)) + §(m — N) .

Maximising this expression with respect to 6 is equivalent to minimising;:
L£(0) = det(M) . (3.34)

Due to the relation between the moment matrix, M, and the estimator of
the covariance matrix, V' (cf. (3.33)), we see that minimising (3.34) leads to
minimising the volume of an N-dimensional box in the data space. In the case
of independent measurement errors, the edges of this box are parallel to the
coordinate axes in the data space. In the case of dependent measurement errors
the box will have a different orientation. If the covariance matrix is not known,
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we minimise the volume of the this box. The minimisation is done, not only
by adapting the lengths of the edges, but we also allow the box to rotate in the
data space.

Analogous to the case of independent measurement errors, we consider the
case where gqr exceeds N. To this end we introduce the matrices V;,i =1,...,r.
The matrix V;, corresponding to the i-th sample, can be derived from the
covariance matrix, V', by omission of the j-th row and the j-th column for each
J which has not been measured in the i-th sample. The resulting likelihood
function equals

T

L) = (2r)N/2) (H(det(vi))—%> exp(—3iTr(V-1M)) (3.35)

i=1

and its logarithm

In£(0) = —X In(27) — %iln(det(Vi)) ~1Te(VIM) . (3.36)

i=1

Minimisation of one of these two expressions is not essentially more difficult
than the minimisation of (3.34), but when the method is implemented in an
algorithm the non-equal sample sizes should be taken into account.

3.6 Numerical computation (dependent case)

In the case of dependent measurement errors, instead of (3.19), we have to
minimise (3.34), which is the determinant of a full, symmetric positive definite
matrix. Its dimension equals the number of measured components of the state
vector, y(t,0). Essentially this minimisation is realised by a method analogous
to the technique introduced in Section 3.4. We introduce an approach with
a delayed covariance matrix and show that this leads to the minimisation of
(3.34).

The optimal parameters are computed by an iterative procedure. Starting
at k£ = 0 and an initial guess for the parameters, 8(®) = 6;,;, we solve the
model equations, calculate the discrepancies, d;(8?)), and form the matrix M
as described in (3.10).

At the k-th step of the iterative minimisation, the estimate of the covariance
matrix is given by

T pk)y — L (k)

V(e )_r(l—m/N)M(e ). (3.37)
For the final estimates of the parameters it makes no difference if we use a biased
or an approximately unbiased estimate for the covariance matrix, because the
minimisation is not affected by multiplying M (#*)) with a scalar. During an
iteration step the estimate of the covariance matrix, ‘7(0(“), is frozen. We
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compute a corrected parameter vector, +1) = 9*) 4 §9*) such that the
adapted LLF:

in£@*) = —Nin(2r) - Z1n (det (17(9<k>))) -
LT (V-1(0%) M (6%+))
is maximal, which is the same as minimising:

SEF) = T (V-1(6®)m(6*+D))

q q T
= 33 (716™)) 3" Du(@* )y 6%+Y).  (3.38)
i=1 j=1 Y=

Instead of minimising the determinant of a matrix as in (3.34), we have
transformed the problem into a least squares problem as in (3.9). The addi-
tional computation consists of a Cholesky factorisation of V() and calcu-
lation of its inverse. This computation is not prohibitive, because the matrix
V(0®) is small for practical cases (we did not encounter real-life problems
with ¢ > 10). Further, the matrix is expected to have the larger entries to
be found on the diagonal due to the expected small dependences between the
measurement errors.

In the remainder of this section we will prove that S(6*+1)) of (3.38) has

the same stationary points as £(6) of (3.34).

Theorem 3.6.1 The iterative procedure, consisting of a sequence of quadratic
minimisation problems for S(6(**+1)), as described in (3.38) and the minimisa-
tion of In £(6) from (3.34) reach their stationary points for identical values of
8. The rate of convergence of the iterative procedure is superlinear, under the
same conditions as in Theorem 3.4.1.

Proof: We consider the gradients of InS(f) and In £(d). Differentiation of
(3.34) and the use of (3.28) yields:

dInL() _ Oln(det(M)) _
a6 - 06 -
dln(det(M)) OMi; S,y OMi
;; oM 99 ;;(M )i 5o (339

The same procedure for (3.38) by making use of (3.29), where it is kept in mind
that the matrix V' is kept fixed in every step of the iteration and therefore does
not depend on 6, leads to:

OlnS(H) OTr (V-1M) _ 0Tr (V-1M) oM _

00 00 N oM 09

q g q r

OM;; oDy,
-1 1] _ -1 % .

ZZ(V )i 25~ = 222(1/ )i D g Dij - (3.40)

=1 j=1 i=1 j=1 =1
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Upon convergence of the iterative procedure, the correction and therefore the
lag of V(8*)) vanish. As a consequence the matrices M from (3.39) and V in
(3.40), are the same up to a scalar factor. This means that the zeros of the
derivatives coincide, which completes the first part of the proof.

The proof of the superlinear convergence rate is completely analogous to
the proof of Theorem 3.4.1 and is therefore omitted. ]

3.7 MLE and total least squares

In the previous sections we showed under which conditions an ordinary (weighted)
least squares approach (OLS) yields maximum likelihood estimates, and how
to deal with an unknown covariance matrix. A more general approach for the
case a measurement error is also present in the independent variable (TLS) is
described in this section.

The notation here is adopted from Section 2.2 and will be extended in
Section 3.7.2 in order to deal with a more general situation. We start in Sec-
tion 3.7.1 with independent measurement errors and a priori known weights.
Unknown weights are considered in Section 3.7.2. In Section 3.7.3, we assume
independence of the measurement errors and finally in Section 3.7.4 we consider
dependent measurement errors.

3.7.1 A priori known weights

First we investigate the probability density corresponding to TLS and derive a -
condition under which a TLS estimate coincides with the MLE. In Chapter 2
we assumed that the measurement errors are scaled by their weights such that
they all may be considered as coming from a N/(0,02) distribution. Here we
drop this assumption and start with: '

& = —di(a*,’l'f") ~ ./\/(0,0’12

)

E(Eiagi) =0
E(Ei,ej) = E(&)Ej) =0 (Z,] = la---aN and % #.7)

Taking this error structure into account, the corresponding probability density
reads:

t
t

<

N 1,...,?N|0,T)

N 47 0) — 72
- exp (_% (Ye; (ti + 73,0) — 4i) )

(@, -,

- (&)

»f2
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Analogous to Section 3.3.1, we consider the log likelihood function, LLF:

a2@,7) 12

N N
In(£(6,7)) = —NIn(2n) - Zln(a,(i) -1 { ¢ g + F} . (3.42)

=1 =1 g

Inspection of (2.4) and (3.42) shows that their estimates for § and 7 coincide
iff:

w; = 2 and vw; = (3.43)

ag; Z; ’
which is in accordance with the result of (3.7). The relation of (3.43) shows un-
der which conditions the sum of total least squares and the maximum likelihood
function lead to the same estimates.

3.7.2 Unknown weights (TLS)

If the weights are not a priori known, we have to adapt our notation with
respect to the discrepancies. As in Section 3.3.2. we construct the r X g-matrix
D. In the same way as D contains the discrepancies for measurements related
to the dependent variables, we introduce an r x ¢g-matrix ¥, which contains
the discrepancies for the independent variable, 7;. The corresponding moment
matriz (cf. (3.10) for the OLS case) becomes the 2¢ X 2¢ matrix:

M = [D|¥]T[D|¥] . (3.44)

For the same reasons as explained in Section 3.3.2 we assume that variances and
covariances do not depend on the time of the measurement, but depend only
on the measured component. The 2¢g x 2¢ covariance matrix, whose diagonal
elements represent the variances, is denoted by V. The non-diagonal élements
of V represent the covariances of the measurement errors.

After this introduction of the matrices M and V', the maximum likelihood
function can be written as:

L£(#B,7) = @r)N det(V )7 exp(~1Tx(V M) . (3.45)

The maximum likelihood estimates (MLEs) are those values of § and 7 which
maximise this expression.

3.7.3 Independent measurement errors

For unknown weights and independent measurement errors the covariance ma-
trix, V, is diagonal and its elements are given by: of,...,02,(?,...,(Z. The
likelihood function in this case is given by:

9 T q T r

. 1 1 1
£@,)=(2m)~" (_> exp| —3 {— E Dij2+— E \IJ?.} ,
jl;Il 418 P of & G

J
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and the corresponding LLF reads:

InC(0,7) = —Nln(27r)+zq:rln (L)

1 1 <
Y (Ao tyu). (3.46)
=1 \% iz1 CJ' i=1

Computing the maximum of this expression with respect to the variances, 032
and (]2, we get the most likely variances:

ST D2

a’?:‘/jjzi;l‘-—”, jE{l,---,Q}7 (347)
and
Zr—_: w?- .
G = Variari = ==L, jef{l,....q}. (3.48)

Substitution of (3.47) and (3.48) in equation (3.46) leads, after some rewriting,
to:

q r r
InL(#,7)=) In (Z D3> \11;4’].) , (3.49)
i=1 i=1 i=1

which is the final criterion function we have to minimise. For the actual min-
imisation we follow the same strategy as described in Section 3.4.

3.7.4 Dependent measurement errors

Now we drop the assumption with respect to the independence of the measure-
ment errors, although we still assume a normal distribution. Consequently,
we now have a full and unknown covariance matrix. Therefore, besides the m
unknown parameters from the vector §, and N measurement errors in the in-
dependent variable, denoted by the vector 7, a matrix with ¢(2¢g + 1) unknown
entries has to be estimated.

The general likelihood function (for full matrices V) was given by (3.45).
For convenience we take the corresponding LLF to maximise:

In£(6,7) = —NIn(27) — L In(det(V)) — 3Tx(V ' M) . (3.50)

Annihilating the derivative with respect to the elements of the matrix V', we ob-
tain the most likely covariance matrix. Differentiation yields, the same formula
as (3.31) —~but now with an extended meaning—:

alnL'_'

7 -Vl VviMY T (3.51)
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which vanishes for V = %M . In order to obtain the final estimates, 6 and T, we
substitute V' = -};M in the MLE of (3.45). Consequently, we have to minimise:

£ = det(M) .

As in Section 3.6 the minimisation can be achieved by an iterative process,
where the covariance matrix lags behind.

3.8 Li-optimisation and Laplace distribution

At the end of this chapter we consider the case where the measurement errors
come from a double exponential or Laplace distribution. For convenience we
only consider weights that are a priori known.

The probability density function corresponding to measurement errors from
a Laplace distribution is given by:

N

p(¥1, -, YnI0) = H L exp (—M) , (3.52)

20; ;
=1 ¢ ¢

which leads to the LLF:

In £(8) = Zl (201) — Z s (9” (3.53)

i=1

Thus, the corresponding function to minimise is:-

N
= wildi(9)], (3.54)
i=1

where the weights are positive and the discrepancies are as defined in (3.1).
The estimates of (3.54) and (3.53) coincide if and only if 0; = o/w;, where
o is a proportionality factor. The same relation between the weights and the
deviations was also derived in (3.7) in the case of normal measurement errors.
It shows that measurement errors from a Laplace distribution lead to an Li-
optimisation problem.

A method which uses the fitness criterion (3.54) is known to be less sensi-
tive to outliers. This property is called robustness in statistical terminology.
The main disadvantage of (3.54) is the discontinuity of the derivative. As
a consequence, these methods generally require more sophisticated numerical
techniques.

An alternative fitness criterion, which is also more robust than weighted
least squares is the Huber M-estimator [Hub81, HW94]. This estimator is
defined as the minimum of:

N
T(0) =) v(widi/v), (3.55)
i=1



Maximum Likelihood Estimators 45

where v is a scaling factor and

3T’ lz| <1,

¢(w):{|m|—% lz| > 1.

This alternative formulation is differentiable, but second order derivatives do
not exist for z = 1. This means that, e.g., Newton’s method cannot be used
and the actual minimisation contains many checks on the bounds of ¢ (w;d; /v).
Therefore, this approach via (3.55) is less straightforward than a least squares
criterion, although numerically easier to tackle than (3.54).

We want to combine the best of both methods: a method which is not too
sensitive to outliers and can be implemented easily. To our opinion a simple
and reliable remedy can be used here. We use a similar technique as introduced
earlier in this chapter, when we used delayed weights. For the computation of
L, estimates we introduce an iterative process. First, we rewrite (3.54) as:

- wid}(
s@)=>" ::}Id—((o))l . (3.56)

=1
Subsequently, we start an iterative procedure and freeze the denominator,
which leads to:

N w2 (k) 1 59(k)

i=1

(3.57)

This iterative process converges at a superlinear rate. The derivation of this
convergence rate is similar as in Theorem 3.4.1 and hence is omitted. The
minimisation problem of (3.56) can be solved with a standard least squares
minimisation routine, such as Gauss-Newton or Levenberg-Marquardt. The
denominator of (3.57) needs some special care to avoid numerical instabilities.
We choose to add a threshold value to the denominator in order to prevent
division by zero. Consequently, weighted discrepancies which are smaller than
this threshold, inliers, get a smaller weight. This is not a reason for concern
because the contribution of these inliers to the sum of absolute discrepancies
is marginal, with or without this threshold.

3.9 Conclusions

In this chapter we presented maximum likelihood estimates (MLEs) for mea-
surement errors from a Gaussian and a Laplace distribution. We explained the
links with least squares, total least squares and L;-optimisation, under different
assumptions about the knowledge and the structure of covariance matrix.

Numerical methods were introduced to calculate these estimates. They ap-
pear to be stable and are attractive because of their good convergence proper-
ties and relatively simple implementation once a reliable algorithm for weighted
least squares is available.
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In the case the error structure is a priori known in detail, it is a valuable
exercise to neglect this information on the error structure and to investigate if,
e.g., the a posteriori calculated (estimated) covariance matrix is in agreement
with the one a priori known. Discrepancy between the expected and estimated
structure of the measurement errors is a good starting point for model adapta-
tions or a review on the statistical assumptions with respect to the measurement
€rTors.



Chapter 4

Nonlinear Regression, Bias and
Curvature

4.1 Overview of the chapter

In this chapter we give an overview of some aspects of the theory of nonlinear
regression, which have practical relevance when physical models are calibrated.
Not only the computation of the parameter estimates, but also the statistical
properties of the corresponding estimator depend —besides the error structure
of the measurements— heavily on the nonlinearity of the regression problem. In
this chapter we discuss the consequences of nonlinearity when a least squares
estimation criterion is used.

We start with a short overview of the theory for linear regression in Sec-
tion 4.2. From this overview we will look into the differences between the linear
and nonlinear case. Sections 4.3 and 4.4 contain a number of approaches to
quantify the nonlinearity of a regression problem. Bias measures for the param-
eters contain information about the separate parameters, but do not indicate
whether this nonlinearity can be reduced by a reparametrisation. The curva-
ture measures of Section 4.4 make a distinction between intrinsic and parameter
dependent nonlinearity. '

Nonlinearity measures can be derived by either analytic means or by com-
putationally intensive means. We will compare their performances and discuss
the advantages and disadvantages of both approaches. The choice of a cer-
tain approach depends also on the underlying model and the time it takes to
calculate an accurate model response.

We conclude this chapter with a collection of related problems such as sam-
pling techniques on and graphical representations of levelsets in Section 4.5, and
the consequences of parameter constraints on level sets and over-parametrisation
in Section 4.6.

In this chapter we assume that not only accurate approximations of y(t, §)
and Oy(t,0)/00 are available, but also sufficiently accurate approximations of
0%y(t,0)/06%. The latter will be used to derive analytic measures for the extent
of nonlinearity.
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4.2 Linear Regression

A thorough overview of the theory of linear regression can be found in standard
texts as, e.g., [DS81, Rao73, Sch59, Seb77]. We just give a brief overview with
the aim to introduce the necessary notation:

e t € R is the regressor, explanatory or independent variable,
e y € R™ is the vector of response or dependent variables,
e 6 € R™ is the vector of unknown parameters to be estimated.

The fact that we deal with one independent variable only is not a restriction;
t can be replaced by an z € R! without further consequences. In the case of
linear regression, the regression function is linear in the unknown parameters,
0, written as:

y(t,6) = X (1), (4.1)

where X is an n x m-matrix independent of 6, but depending —possibly non-
linearly- on t.

A set of measurements is denoted by triples as in (1.2). For the true pa-
rameter vector, 8*, we have

Ui = Yo (t:,07) = Xe; (t:)0" +e; s i=1,..,N, (4.2)

with €; ~ N(0,02) and independent of ¢; (for i # j) !, and X, (¢;) is the ¢;-th
row of X, evaluated at t;. Notice that N > m is a necessary condition in order
to be able to determine an estimator for all m parameters. The weighted least
squares estimate, #, minimises the weighted sum of squared discrepancies. The
corresponding criterion reads:

N
SO) =Y w} (X, (t:)0 - 5:)* =YT(O)Y (6) (4.3)

where Y (#) is an N-dimensional vector containing the weighted discrepancies.
The derivative of (4.3) with respect to § equals:

oS oYT(6) T

50 = 2 50 Y(0) =2J"Y(0), (4.4)
with the elements of the Jacobian, J, given by:

(J)ij-—"—‘wchij(ti), t=1,...,N, j=1,....m.

The minimum of (4.3) is attained for 8, the solution of the normal equations:

(JTD)8 = IT (w11, waa, .. ., wnGN)T . (4.5)

IIn Section 3.3.1 we showed that the more general case, ¢ ~ N(0,V), where V is a
symmetric, positive definite matrix, can be reduced to this generic case.
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Clearly, Rank(J) = m is a sufficient condition to estimate all unknown pa-
rameters. In the statistics literature, e.g. [Seb77], this property is known as
identifiability. For linear regression, local and global identifiability coincide,
because the Jacobian matrix, J, is independent of §. Furthermore, there exist
no local optima but exactly one global solution, 8, which minimises (4.3).

If Rank(J) = m and N > m, an estimator of the variance of the measure-
ment error, o2, is given by: s> = S(8)/(N — m). Notice here that in most
practical cases the statistical properties are not known exactly, but assumed
to have an error structure as in Section 1.6. The variance of the measurement
error is not known. The following properties can be derived, [SW88], with E
denoting the expectation:

E(s’) = E (N Y’Zn) =0?, (4.6)
E@®) = 6*, (4.7)

cov(® = E ( (7-£®) (2- E(é))T)
= E((/") 7Yy (7)) =2 (7). (48)

Which implies:
O~ N, 0* (JT)T.

From (4.6) and (4.7), we see that the estimators for * and o2 are unblased in
the linear case. Further, we need the following properties.

Theorem 4.2.1 Under the conditions &; ~ N(0,02) and Rank(J) = m, the
following properties hold:

1) §-0"~N (0,02 (7))
2.) S@)/o%~ X*(N-m) ;

3.) @ is statistically independent of s? ; and

(S(6*) — S(8))/m
4. ~F(m,N —m), 4.9
) S@)/(N —m) ( ) (4.9)

where X2(N —m) and F(m, N — m) indicate the Chi-square distribution with
N —m degrees of freedom and Fisher’s F-distribution with m and N —m degrees

of freedom, respectively.
Proof: See Seber and Wild [SW88, page 24]. O
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The m X m-matrix a%(JTJ ) is the so-called Fisher information matriz. A
direct consequence of

S0*) - SB) =@ -0)TITJB 6%, (4.10)
and (4.9) is:

@—-69TJTJ(0 - 6%)

— ~F(m,N —m) . (4.11)

Consequently, a (1 — a) confidence region for 6* is given by:
{6*: 0 -6)TJTI(O - 6*) < ms®Fo(m,N —m)} . (4.12)

For a geometric interpretation of the ellipsoidal confidence region, we refer
to the last paragraph of Section 1.6.

The remainder of this chapter is devoted to nonlinear regression. In the
case of nonlinear regression the difference in (4.10) is not exact any more, but

contains higher order terms, O (H§ -0 ||3) This has consequences for the esti-

mators and their confidence regions. Another main difference is the possibility
of having many local minima in the nonlinear case. As a consequence, good
initial estimates of the unknown parameters are indispensable to determine the
optimal estimate efficiently.

4.3 Biased estimators

In the case of linear regression (4.7) holds, which means that 6 is an unbiased
estimator of the true parameter vector, *. In nonlinear regression the least
squares estimator (LSE) is not always unbiased and the difference E(6) — * is
called the bias. To obtain insight in the meaning of the bias we start with an
analytic computation of the bias. The cases where exact bias measures can be
calculated analytically originate from carefully constructed examples and not
from real life case studies, so we need other means to investigate the bias in a
general setting. Besides the exact calculation of the bias we study two other
methods, namely the Monte Carlo method and the bias measure of Box, to
approximate the bias. Both these methods only yield approximate values for
the bias, but they have the advantage that they are applicable in more general
cases. In Sections 4.3.2 and 4.3.3 we discuss these methods and investigate
their accuracy by applying them to the example introduced in Section 4.3.1.

4.3.1 Analytic result

In this section we look into the topic of bias by means of an exploratory example
of a nonlinear regression problem. This example is constructed in such a way
that the bias can be calculated analytically. The analytic result is compared
with the approximate results of the following sections.



Nonlinear Regression, Bias and Curvature 51

Example

We consider the model
y(t,0) =In(6 + In(?)) , (4.13)

where 6 is the parameter to be estimated. For reasons which will become clear
later, we take all N measurements at one fixed value: £ > 0. The additional
parameter constraint reads: 6 > —In(f). The simulated measurements are
denoted by: (1,%,%;), (i = 1,...,N) and the corresponding weights, w; in (1.4),
are taken equal. For convenience, the expectation of the measured values is
scaled to 1, which means that J; = 1 +¢; (i = 1,...,N), with &; ~ N(0,02)
and * = e — In(?).

The model of (4.13) and the chosen experimental design enable us to write
an explicit expression for the optimal parameter:

N
6 =exp (§) — In(d) , with § = % Z Ui - (4.14)

First, we get:

~

5~

—0*=eV —e, (4.15)
and hence the bias of 8 equals:
E@-0*)=E (" —¢) , (4.16)

or, its complete expression:

E(@-—o*)— (¥ —e) F ( N(y—1)2>dy
27r02 (g Z )d__e

2
1+ g )} o2
= / 271'02 exp 202 exp (1 + —2——~) dg—e

(exp (2N . (4.17)

Therefore, in this example 8 is a biased estimate of 8*. The magnitude of this
bias is shown in Table 4.1 for different values of o2 /N. o
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4.3.2 Monte Carlo

The purpose of this section is to motivate and to explain our Monte Carlo
(MC) method. The method is demonstrated by making use of the example of
Section 4.3.1. The MC-result is compared with the exact result from (4.17).

The method is used here to approximate the bias of an estimator. The bias
can only be calculated analytically if an explicit relation between the estimator
and the measurements exists as in (4.14). This is more of an exception than a
rule, so we need alternative ways to approximate the bias.

Before the MC-method can start we need an experimental design, {c¢;,t;},
and an estimate of the unknown parameters, 5, and an estimate of the variancg?,
s2. Then we perform repetitive perturbations of the model outputs y., (¢;,6),
(¢=1,...,N) and repeat this N,,, times. In the case the measurement errors
are independent and normally distributed, the perturbations are sampled from
the same distribution. Each set of N artificial, simulated measurements has a
corresponding least squares estimate (LSE). In the case the model is linear in
its parameters, the N,,, corresponding LSEs will also have a normal distribu-
tion (see Theorem 4.2.1). In the nonlinear case, normality tests, e.g. via sample
moments or the Kolmogorov-Smirnov test, on these LSEs give an indication
of the nonlinearity of the regression problem and should be compared with
nonlinearity information obtained by means of other methods. If we use the
estimates 6 and s? for §* and o2, respectively, the i-th artificial measurement
of the j-th MC simulation reads:

W =f.t,0)+8 (G=1,...,N, j=1,...,N,.), (4.18)
with:
& ~ N(0,5°) .

In statistics literature this MC procedure is called parametric bootstrap [Efr79].
Every set of simulated measurements leads to a corresponding least squares
estimate, denoted by: 67. The mean of these N,,. estimates is denoted by

6. The difference between 8 and 8 is the bootstrap estimate of the bias. The
accuracy of the corresponding estimator depends on —besides the model and
the experimental design— the number of estimates, N,,.. As an approximate
(1 — a)-confidence region for g is given by (4.12), the same relation, given the

estimate, can be used for 5, with s? replaced by s?/N,,.. When we perform, for
instance, IV, runs, the individual confidence regions of the bias are 3/N,,.
times smaller than the individual confidence regions of the final estimate. This
seems accurate enough for the bias, but this is not true. First, for the bias
we consider the difference, 6 — 9\, given the estimate, 9. Second, the bias
reveals information with respect to the nonlinearity of the parameter estimation
problem, because the bias is used for another purpose than the final estimates,
it requires a different accuracy.

20f course we use 8%, E(yc; (t;,0*)) or 2, if these quantities are known.
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If we return to the example of Section 4.3.1 the conditional variance for )
given 6 can be estimated by:

s e?s?

é\ = T -1 = —
var( ) (J°J) N. NN’
because 6* is known we take the true parameter instead of its estimate, 6. The
results of the MC-method, the corresponding N,,.’s and the comparisons with
the analytic results of (4.17) are shown in Table 4.1 for various ratios of 02 and
N. '

0%/N | anal. (4.17) | N, o—0
1.0 x 109 | 1.763x10° 1.0 x 10 | 1.718x10°
1.0x 107! | 1.394x107! | 1.5 x 10* | 1.391x107}
1.0 x 1072 | 1.363x1072 | 1.6 x 10® | 1.392x10~2
1.0 x 1073 | 1.359x1073 | 1.6 x 10° | 1.326% 103

Table 4.1: Bias estimates for the model problem of (4.13), calculated by analytic
means, cf. (4.17) and the MC-method.

The MC-results are in close correspondence with the analytic results, al-
though to our experience many simulations had to be performed to obtain .
accurate approximations. The choice of N,,. is'made in such a way that the
relative error between the true and the estimated bias is less than 5%. The
number of MC runs might become a serious bottleneck for more complex mod-
els due to huge CPU times for model evaluations. If this is the case, we can
approximate the bias as outlined in the next section.

4.3.3 Bias measure of Box

A useful bias measure was introduced by Box in [Box71]. We only give the
formula of this bias measure, for details and the derivation the reader is referred
to the original paper. For this bias measure we need the Jacobian, J (cf.
(1.11)), and the Hessean, H (cf. (1.17)). The bias measure according to Box,
abbreviated by BB, is defined by:

A _ =0 po-1op
BB(#) = 5 (J J) J'z, (4.19)
where z is the N-dimensional vector:
T
2= (Tr (B (7)) T (B (479) 7)o T (B, (JTJ)_l)) :

and H; , the i-th site of H, is an m X m matrix. In (4.19) the matrices J
and H are evaluated at 6. From (4.19) it is obvious that BB(#) vanishes for
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~

linear models. When we calculate BB(8) for the example from Section 4.3.1,
we obtain:

BB(9) = % (5 n 1n(t‘)) . (4.20)

Another way to look at (4.20) is to substitute the true parameter value, 6* =
e — In(?), for . This substitution yields:

eo?

2N’
which is a first term of the Taylor expansion of (4.17). The results are listed

in Table 4.2.
The expectation of (4.20) reads:

BB(#*) = (4.21)

2 2 -

E(BB@) =E (2317(0 —6+ e)) = (B@-0+e),  (a22)
which gives the relation between the true bias and the bias measure of Box.
The values of the expected bias measure of Box, using the exact biases, are
given in Table 4.2. This table indicates that in this example the quadratic
approximation of the bias measure of Box is acceptable, if 02 /N is an order of
magnitude smaller than e.

o*/N | anal (417) | BB(6") (4.21) | E(BB®))

1.0 x 10 | 1.763x10° 1.359x10° 2.241 x 10°
1.0 x 107! | 1.394x1071 | 1.359%10~1 1.429 x 1071 |
1.0x 1072 | 1.363x1072 | 1.359x10~2 1.366 x 10~2
1.0 x 1073 | 1.359x1073 | 1.359x10™3 1.360 x 1073

Table 4.2: Bias measures of Box (4.19) for the model problem (4.13).

4.4 Curvature measures

The bias measures as they have been derived in the previous sections give only
a limited amount of information about the nonlinearity. When they indicate
that the bias is negligible, we do not need additional information to proceed
the investigation of the nonlinearity. If this is not the case, we want to ex-
plore the nonlinearity in more detail. First, we give a short overview of the
curvature measures proposed by Bates and Watts [BW88], we highlight the
problems which might be encountered in nonlinear regression, and we show
how to recognise them and to deal with them.
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It is important to keep in mind that the expression ‘measure of nonlinearity’
can be misleading when only second order information is used. Although we
will follow the literature here, it would be better to call the existing measures:
measures of quadraticity. A model that is cubic in its parameters, could be
called linear according to the measures of Bates and Watts.

To get more insight into the essential differences between linear and non-
linear regression and in order to describe measures for nonlinearity we have to
introduce the notion of solution locus. Each set of N measurements can be
regarded as one point in an N-dimensional data space. The solution locus,
is the m-dimensional manifold in the data space, containing all possible, the-
oretical model responses for all possible §. In the case the dimension of the
solution locus is (locally) less than m, the problem is (locally) non-identifiable,
for more details on identifiability the reader is referred to [WP97]. The orthog-
onal projection of the point, which corresponds to the actual measurements,
onto the solution locus leads to the LSE, #. Notice that the solution locus
does not depend on the measurements, {g;}, but only on the model outcome,
y(t,6), and the experimental design, {c;} and {¢;}. The nonlinearity of the
model-experiment combination can be expressed in terms of the curvature of
the solution locus.

Let us first give an example in order to illustrate the solution locus.

Example

Suppose that we have a chemical reaction where two substances, A and B, are
involved, and the reaction scheme is given by:

Ak B.

When we assume first order reaction kinetics and the reaction starts at to, the
differential equation describing this chemical reaction reads:

% = —k[A] , scaling: [A] such that: [A](to) =[A]o =1,

we obtain [A4](t) = e~*t. From now on the unknown parameter k is written as
0:=k>0.

We assume that two measurements have been performed at ¢ = 1 and
t = 2. Using the notation (1.2), N = 2 and the experimental data are given
by {(1,1,%1),(1,2,72)}. We have a two-dimensional data space and a one-
dimensional solution locus, given by the parametric form:

-0
( Zg;z; ) = ( :_29 ) ,  with: §>0. (4.23)

The data space containing the solution locus is shown in Figure 4.1. Thus, the
solution locus contains all theoretical model responses for the given experimen-
tal design. Each complete set of N measurements corresponds to a single point
in the data space. For a given set of experimental data the LSE is determined
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Y1

Figure 4.1: Plot of data space and solution locus, cf. (4.23).

by orthogonal projection onto the solution locus. If the weights in (1.4) are not
constant, then the axes of the data space should be scaled by the corresponding
weights. In our case, taking w; = ws = 1, the sum of squared discrepancies
reads:

S@) = (e —71)" + (e =) =YT(6)Y (6) . L (4.29)

and the LSE, é‘, can be obtained by an orthogonal projection. The discrepancy
vector, Y (), connects the measurements to the solution locus, and 0Y (8)/99,
is the tangent plane of the solution locus. From (4.4) we see that these two
quantities are orthogonal, if S(f) has a vanishing gradient.

Taking the derivative of (4.24) with respect to # and setting it equal to zero
leads to the implicit equation describing 8 as a function of §; and 7o

~

e+t -m)e? -1y, =0. (4.25)

[T

The surface representing this relation is given in Figure 4.2 <

After the example we return to the general notation. The solution locus, (cf.
(4.23)), is now denoted by:

{n® = m®),...,m @) 16 e R} , (4.26)
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)

Figure 4.2: Plot of the surface describing the least squares estimate, 5, by a
given pair of measurement, 7; and y», as expressed by (4.25).

where
7:(0) = ye; (¢,0) , for:i=1,...,N .

Obviously, linearity of the model leads to a linear solution locus. In order to get
an impression of the nonlinearity of the solution locus we consider an arbitrary
straight line in the parameter space through 8, denoted by:

0(8) =0+ Bh , 0£heR™ BER.
The model transforms this straight line into a curved line on the solution locus:
() =n(8 + Bh) .

In literature this curve is called the lifted line. This is a straight line if the
model is linear in #. The tangent to the lifted line at € is given by

dnr(B) PR
"B lpmo m(0) = J(6)h .
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This means that the columns of the Jacobian matrix, J, span the tangent plane
of the solution locus. The second derivative (the ‘acceleration of a particle
travelling along the lifted line’):

in(0) = hTHh ,

is an N-dimensional vector, which can be split into two parts, ij = 7j+ + djll.
One part, denoted by 7+, corresponds to the acceleration perpendicular to
the tangent plane. The other part, 7jll, denotes the acceleration in the tangent
plane. From these second derivatives we compute the curvatures of the solution
locus. The normal curvature in direction h is defined as:

o _ gl
B Yl (4.27)
This normal curvature equals the reciprocal of the radius of the circle which
osculates the solution locus in the direction of 7, at n(f). This curvature
measure is a characteristic of the solution locus, determined by the model
y(t,6), the choice of h, and the experimental design {c;,z;}.
The curvature derived from the tangential acceleration

u” ||
! = lin (4.28)
P ol
is called the parameter-effect curvature in the direction h. i
Before we explore the meaning of these curvatures, we make them scale
invariant. Because multiplication of the model responses by a factor, say k,

leads to a curvature which is 1/ times the original one, the curvatures are
scaled by the standard radius (cf. [BW88, page 242]),

m -~

Notice that p? is also used in the denominator of (4.12). This standard radius

depends on S(8) and decreases if the model fits the data better. The relative
(scale invariant) curvatures are defined by:

vit=Kitp and Al =Klp. (4.30)

The relative normal curvature is a measure for the deviation between the solu-
tion locus and its tangent plane. The (1 — &) confidence region from (4.12) is a
disc with radius p\/F,(m, N — m) on the tangent plane, centred at 7(8). If the
radius of the smallest circle osculating the solution locus is at least twice as big
as the radius of the (1 — ) confidence region, i.e.: yir < 1/(2y/Fa(m, N —m))
for all directions h, then the relative deviation between the tangent plane to
the osculating circle is less then 13.4%. The planar assumption is very likely
if this inequality holds. The relative parameter-effect curvature measures the
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distortion of a rectangular grid in the parameter space into a non-rectangular
grid on the solution locus due to the mapping of (4.26).

From now on we always use the relative curvature measures, 7y, and there-
fore omit the adjective relative. The parameter-effect curvature can, contrary
to the normal curvature, be decreased by an appropriate reparametrisation.
For this reason the normal curvature is also known as the intrinsic curvature.
Further we want to emphasis that a study of the parameter-effect curvature and
a possibly appropriate reparametrisation are only constructive if the intrinsic
curvature is sufficiently small.

In order to calculate both curvatures we consider the ) R-decomposition of
the Jacobian matrix:

J=QR=Q(—’§—),

where @ is an orthonormal, N X N-matrix and Risan upper triangular, m x m-
matrix. The matrix R is used for a linear coordinate transformation in the
parameter space

¢:= RO -0).

Notice, that a linear transformation will not affect the measures of nonlinearity,
so it makes no difference whether we study the nonlinearity measures with
respect to § or ¢. Here we assume that Rank(J) = m in a vicinity of 6,
which means that the problem is locally identifiable. The consequences for the
case Rank(J) < m are discussed in Section 4.6. Consequently, the inverse of
R exists. When we now consider the derivatives of 7 with respect to ¢ and
denote the corresponding Jacobian by Jy, we get:

dpf _dn) d6) —1_ '
d¢ ¢=o_d0 6=5 49|40 Q( )R Q( ) (4.31)

This means that the first m columns of @ contain an orthonormal basis of the
tangent plane, dn(¢)/d¢. If we denote R~! by L, the second derivatives of 7
with respect to ¢, i.e. the Hessean after the linear transformation, turn into:

2
(Hg)ij0 = dni(4) ZZ 4 7:(6) db, d6, (4.32)
q=

Jy =

do;doy d¢>k d6,dé, de; doy ’
or using a notation with the sites of H as introduced in (4.19):
(Hy); =L"H; L. (4.33)

Now we are going to split the m x m vectors of length NV with second derivatives
into a tangent and a normal part. Therefore we multiply this matrix, Hy, by

QT:
N
(A)ijk = Z QZ; (H¢)ljk . (4-34)
=1



60 Chapter 4

The ‘upper’ part of A, A;j; for 4,5,k = 1,...,m, also called the first m sites
of A, contain entries with respect to parameter-effect curvature and the last
N — m sites contain intrinsic curvature information, denoted by All and A+,
respectively. An advantage of the transformation becomes clear if we take a
vector, say g, from the rotated parameter space in such a way that || g ||= 1,
then || 7L, || also equals 1. And therefore we obtain, by using (4.30), (4.33)
and (4.34):

Wy =l (" Hsa)" Il p =l g7 Alg || p (4.35)

and

1
1t =l (9" Hsg) " 1o =Ilg"A* gl p. (4.36)

From the two relative curvatures, we denote the corresponding maxima as:

r+ = ;
lall= 17“
rl = I
lolim TL9

and the corresponding vector in the rotated parameter space by gt and g,
respectively. An algorithm for this maximisation is proposed in [BW80].

If both T+ and T'l do not exceed 1/(21/Fa(m, N — m)) the nonlinearity of
the parameter estimation problem is marginal and the linear theory can be ap-
plied. To be sure at this point it is still recommended to compare these results
with other measures. In the case I'* is too large, then CPU intensive methods
are needed to sample in the vicinity of 8 to retrieve confidence regions. Another
option is when I'll exceeds the corresponding F-value, then a reparametrisation
might give some decrease of the nonlinearity. For this purpose we transform §l!
linearly from the rotated parameter space into the original 8-space: hl = Lgl.
The entries of All which differ substantially from zero, indicate that the corre-
sponding parameters should be considered for a reparametrisation. The choice
of the reparametrisation depends on the experience and intuition of the user,
the nonlinearity measures indicate only which parameters are candidates for a
reparametrisation in order to reduce the parameter-effect curvature. Examples
of a successful reparametrisation are given in the example below and, for a
practical case study, in Section 6.1.

Example
We return to the example described by (4.23) and assume that the measure-
ments are known, say: 7; = 0.61 and §» = 0.46. Equation (4.25) leads to

8 = 0.411. These measurements are also needed to scale the curvatures. Sub-
stitution in (4.29) leads to: p = 0.0532. The scaled Jacobian and Hessean
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are
S et [ -1246
00532 | _ge-0821 | T\ _1653 ) °
H - 1 e—°~411> _ 12.46)
0532 | 40821 33.06 )

Subsequently we compute the QR decomposition of the Jacobian:
P R\ _( —0602 0.799 20.70
J=QR=Q (T) B ( -0.799 —0.602 ) < 0 ) '

Because L = R~! = 0.0483, the Hessean with respect to the transformed
parameters reads:

e 12.46 _ ( 0.0291
Hy = LTHL = 0.0483 ( 3300 ) 00483 = ( (077

Finally, we get the matrix which contains both curvatures:

_ ATg _ [ —0.0791
A=Q Hy = ( 0.0232

The absolute value of the first and the second entry of this matrix correspond

with 4!l and 1, respectively. Note that 1/(2v/Fo.05(1,1)) = 0.0394, which -

means that there is a strong nonlinearity in the parameter-effect part.
If we use the reparametrisation:

Y= e ? , (4:37)

the corresponding acceleration array reads:
0.0308
Av = ( -0.0232 )

We see that the parameter-effect curvature decreases (which was the aim). The
intrinsic curvature stays unaffected as expected from the theory. O

In the case that p becomes larger, the intrinsic and the parameter-effect curva-
ture will also increase due to (4.30). The quantity p is introduced to scale the
error, which is dependent on neither the model nor the experimental design.
When we have a look at Figure 4.1, it is obvious that if 6 increases (and p is
kept constant), the curvatures also increase.

The normal (non-relative) curvature (4.27) corresponds with the radius of
the circle which osculates the solution locus. If the measurements coincide with
the centre of the osculation circle, the problem becomes locally non-identifiable.

This can happen even if i < 1/(2y/Fa(m, N — m)).
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4.5 Investigation of levelsets

In this section we give a collection of guidelines which are valuable to investi-
gate the significance of the ellipsoidal confidence region (4.12) based on a linear
approximation. The guidelines have a heuristic character, but contribute in our
point of view to get a better insight into the nonlinearity of a regression prob-
lem. The extent of the correspondence between the approximated levelsets and
the true levelsets is related to the nonlinearity of the regression problem. The
guidelines vary from retrieving rough information about this correspondence in
a cheap way up to more sophisticated and time consuming approaches to in-
vestigate the levelsets more precisely. Information about the nonlinearity from
other sources can be integrated with these guidelines. The sum of squared
discrepancies for an ellipsoidal (1 — a)-levelset is denoted by S* and equals:

5% = S() (1 + —N—?—n;fa(m, N - m)) :

For a first exploration we compute the sum of squared discrepancies at the
intersections of the ellipsoid with the parameter axes (see (1.26)) and compare
the corresponding sums of squared discrepancies with the value S for differ-
ent values of a. This can be repeated for the tips of the ellipsoid. For each
confidence level we obtain 4m sums of squares, denoted by S*%, i =1,...,4m.
The deviation from linearity can be expressed by

L /T (5o - sy
N ()

which is scale invariant, corrected for the number of points on the ellipse and
zero in the linear case. _

Instead of taking only 4m points at the intersections and the tips of ellipsoid,
we can take an arbitrary number of points on the ellipse and calculate the
corresponding u®. The points can be either sampled randomly on the ellipse
or positioned on the ellipse in a regular way. The computation of such a regular
positioning on a sphere is discussed in [PSS97], the extension to an ellipse is
straightforward.

Starting from N, points on the ellipse, denoted by 6>, we can perform
a line search along the line through 6 and %%, in order to retrieve 6%, s.t.
S(#**) = S«. The resulting points, §%¢ (i = 1,...,N,), should be projected
on all {6;,0;}-planes (1 <1i < j < m) and compared with the corresponding,
projected ellipse. Similar to u®, we can derive another heuristic measure of
nonlinearity:

R T
w" = = R
VN ||6]|

which is, as %, scale invariant, corrected for the number of points on the ellipse
and zero in the linear case.

?




Nonlinear Regression, Bias and Curvature 63

__ A straightforward approach is to use a grid in the parameter space around
0, calculate the corresponding sum of squares, make iso-plots of all the (7) in-
tersections with the {6;, 6;}-planes and compare the results with the ellipsoidal
regions which were expected on the basis of the linear theory. The disadvan-
tage is that the computation time grows exponentially with m, although a
priori knowledge about the nonlinearity of certain parameters can be used to
refine the grid in the direction of these parameters. An example of an iso-plot
and the comparison with an ellipsoidal region is given in Section 6.1.7.

For all the methods it is important to keep in mind that for the purpose of
visualisation not only the intersections with {6;,60;}-planes (1 < i < j < m)
should be considered, but also the projection on such planes. To demonstrate
the last sentence we can think of a banana-shaped levelset whose intersections
with the {6;,0;}-planes are almost ellipsoids and only the projection will reveal
the banana-shape of the levelset. For this reason it also not recommended to
sample points in {6;,6;}-planes only, because sampling points over the whole
parameter space might reveal additional information. Here it is important to
remark that when m grows the projected points of a more dimensional ellipse
concentrate more at the centre of the projected ellipse. This is a disadvantage
as long as we are interested in the contours of levelsets and their graphical
representation.

4.6 Parameter constraints and redundancy

In this section we will give a short outline concerning active parameter con-
straints and the consequences for the confidence region. At the end of this
section we highlight a few topics with respect to parameter redundancy, which
is related to over-parametrisation and non-identifiability. '

The (1 — a)-confidence region indicates the area that has probability (1 — )
to cover the true parameter, 8*. In this section we will assume implicitly that
0* fulfills the constraints (1.27), i.e.: R(6*) < 0. In the case that none of
the (m — 1)-dimensional manifolds R;(#) = 0 (z = 1,...,K) intersects the
confidence region, this confidence region stays unchanged.

In the case when there is such an intersection a number of steps have to
be made. First, we concentrate on the physical interpretation of this situation.
E.g., when a reaction rate tends to zero, we have to perform statistical tests
in order to decide whether this reaction is insignificant, and as a consequence
the corresponding parameter and restriction can be omitted. Then the model
is adjusted and fit to the data again. Second, if it turns out that a restriction
intersecting the confidence region does not have such a consequence in the
proper formulation of the model, then the area

01 = {8]S(6) < S A R(6) < 0}

still has a probability of (1 — a) that it covers 6*.
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When a parameter estimation problem is non-identifiable in the linear case
we have

Rank(J) <m < 360 +#0|S(6 + 66) = S(8) ,

where 60 € Ker(J) and 8 is a non-unique point in the parameter space which
minimises S(6). The rank of J, denoted by m,, determines how many param-
eters can be estimated from the parameter estimation problem.

When J is singular we can still retrieve the corresponding singular value
decomposition (cf. (1.15)) of J, such that Ay > Ay > ... > Ap, > 0 and

/\m1+1 =...= Ay = 0. The last m —m, columns of V span the kernel of J.
The parameter transformation

¢=VT(0-0) (4.38)
leads to
and as a result:

JgJy =32
After the parameter transformation of (4.38), the parameters ¢, +1,-..,%m

can be deleted from the model equations. The remaining parameters are called
the principal components, the corresponding Jacobian has full rank and the
parameters are uncorrelated. . )

In practical situations the true rank of a matrix is not an appropriate mea-
sure due to expected numerical truncation errors. Therefore, we consider the
e—zank or ‘numerical rank’ of a matrix, see [GV83, page 176]. This e-rank of
J(0), m, s, equals the largest i such that A; > eX;. For parameter ‘estimation
problems a choice of € between 10~2 and 1075 is sufficient.

If both ;- and 'y,ll are smaller than 1/(21/F4(m, N — m)), the regression
problem is assumed to be close to linear and the linear approximation for
the level sets is assumed to be valid. To be more sure we check whether
this quadratic information is in accordance with heuristic techniques from Sec-
tion 4.5. If this check is positive we can perform the parameter transformation
(4.38) in the vicinity of € for the mentioned values of e.

4.7 Concluding remarks

In this chapter we started with a brief overview of linear regression, which
was followed by a summary of the differences between linear and nonlinear
regression. Special attention was paid to ways to quantify the nonlinearity of
a regression problem. Some of the approaches to derive nonlinearity measures
require a huge amount of model evaluations, which make them less appropriate
in the case the model equations consist of a set of DAEs.
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The nonlinearity measures can be used to obtain a clue with respect to a
reparametrisation or an educated sample strategy in the parameter space. Var-
ious aspects of nonlinear regression are illustrated by examples in this chapter
or related to the case studies of Chapter 6.
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Chapter 5

Optimal Experiment Design

5.1 Introduction

In the previous chapters we have focused on parameter estimation, model dis-
crimination and the corresponding statistical analyses, all on the basis of a
given, fixed set of measurements. If the results from the statistical analyses are
insufficient to discriminate between two models or give rise to large, unwanted
confidence regions of the parameters, we need additional measurements in order
to obtain a decisive answer or more precise estimates. A third goal for future
experiments could be the reduction of the nonlinearity of a regression problem.
Except for a simple example we will not deal with this topic, although it is a
promising and targeting topic for future research.

Parameter estimation is an initial step towards a more thorough investiga-
tion of the model. Optimal experiment design studies the issue of how to plan
future experiments in order to obtain a maximum of information. The kind of
information depends on the motivation of a more thorough investigation and
is specified mathematically in this chapter.

Section 5.2 directs to a more precise, mathematical formulation of the topic.
A method to get a clear insight at a glance into the dependencies between the
state variables and the parameters is presented in Section 5.3. The Sections
5.4 and 5.5 contain an outline on optimal experiment design (OED) in order
to reduce the size of the confidence regions and to discriminate between differ-
ent models, respectively. A relation with nonlinearity is given in Section 5.6.
Concluding remarks are found in Section 5.7.

Again the model responses are denoted by yc, (;,6), where the pairs {c;,¢;}
(¢ = 1,...,N) specify the experimental design. As before in Chapter 4, we
assume that the Jacobian and the Hessean —or their numerical approximations—
exist for the given experimental design.

5.2 Problem formulation

In the first paragraphs of this section we focus on the problem formulation
for the case that a model has been selected and we want to reduce the size
of the confidence region for the parameters. The last part of this section is
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devoted to a more precise formulation of optimal experiment design for model
discrimination purposes.

Besides the model equations, we assume the presence of either a good esti-
mate for the unknown parameters or a set of measurements that can be used
to estimate these unknowns. It is more a rule than an exception that some
entries of # cannot be estimated with acceptable reliability. In such cases it is
of major interest to put effort in the design of future experiments in order to
reduce the uncertainty in the estimators of these parameters. A schematic flow
chart of a model investigation and the position of optimal experiment design
is given in Figure 5.1.

J"’""‘A“"' P e ]
m@,eﬂ : Parameter {
P Estimation
Al data| Lmaten |
___|adapt/change
model \l,
VT 1
Model response I Model I
@ | fits data? I._Verificatlon I
All parameters within Istatistical |
” satisfactory confidence IAnalyses |
regions? AR |
Can the reliability of the "65565@5 ;r-i-—l

@ parameters be improved by L mental design |

additional measurements?

),

Perform extra
measurements

Figure 5.1: Schematic representation of a model investigation, where optimal
experiment design is used to increase the reliability of the estimators of the
parameters.

Here we encounter one of the motivations for optimal experiment design.
Given a set of parameters and the reliability of the corresponding estimators,
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what additional experiments should be performed to increase this reliability
in a well defined sense? This is a bit of a paradoxical task in the nonlinear
case, because the parameters with their uncertainty also influence the optimal
experiment design. Consequently, the optimal experiment design is based on
the current estimates and might turn out to be far from optimal when the
estimates change after having performed additional measurements.

The sum of squares to be minimised and its N x m Jacobian are denoted
as in (1.10) and (1.11), respectively. In the case N < m the approach as it
will be presented in the following sections is still applicable; 8 is then one of all
possible least squares estimates or an estimate based on other information.

If the nonlinearity measures are sufficiently small (cf. Section 4.4), then the
ellipsoidal region of (1.24), which is only a linear approximation, shows close
correspondence with the true confidence region. Therefore, investigating J (5)
yields a reliable basis to retrieve an optimal experiment design with the aim to
reduce the confidence regions of 6.

Design criteria are mathematical functions, that depend on an experimental
design. On the basis of these criteria one design can be judged better than
another design. The reliability of the parameters depends on the size and the
orientation of this ellipsoidal region. As a consequence, design criteria can be
expressed as geometrical properties of the ellipsoidal region as will be shown in
Section 5.4.

Another motivation for optimal experiment design is brought up in this
chapter. If we want to discriminate between two models, which both fit the
data, and we cannot discriminate on the basis of the available data, then infor-
mation from the newly designed experiments should enable us to perform the
discrimination between the given models.

5.3 Parameter - state variable dependence

In the majority of the parameter estimation problems not all unknown parame-
ters can be estimated within acceptable bounds. Before we continue we should
make the expression ‘acceptable’ more precise. From a naive point of view one
might come up with the idea that, after calculating the individual confidence
regions of each parameter, these confidence regions should be smaller in size
than some predefined value, given a certain confidence level. This is not a good
approach and we will try to explain this in the next paragraph.

One of the main goals of parameter estimation is to obtain a reliable model
to study the physical process under consideration by performing simulations.
This means that we should focus on the state variables which are of interest for
physical reasons and how they relate to the separate parameters. Parameters
which do not have great influence on the simulation results of the state variables
of interest, do not need tight confidence limits and vice versa. Whether a
confidence region is acceptable depends on the points of interest of the modeller.

This section introduces an approach to investigate parameter-state variable
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dependences by deriving quantities which describe the influence of a change in
the j-th parameter on the i-th state variable. Reasoning in the reverse direction
leads to the proposition that these quantities also indicate to which extent
measurements of the i-th state variable lead to more accurate estimators of
the j-th parameter. In the reverse case this quantity is corrected by the weight
which corresponds to the i-th state variable. As in Section 3.3.2, we will assume
that the variances of the measurement errors —and therefore the corresponding
weights in (1.4)- are equal if they correspond to the same component of the
state vector, y(t, ).

In order to represent the information on the interactions clearly, we con-
struct a labelled, bipartite graph G = (P, L), where P is a set of vertices and L
a set of edges connecting the elements of P. The set of vertices can be divided
into two disjunct sets, P, and P,, containing the n dependent state variables
and m parameters, respectively. Consequently, the graph will have a maximum
of mn edges. The edge (y;,0;) is an element of the set L, if the corresponding
dependence is non-zero.

P

y et
1€~ — e b,

Figure 5.2: Graph to represent the dependences between state variables and
parameters.

The labels, expressing the magnitude of the sensitivity of the j-th parameter
on the i-th state variable, are defined as:

a0 { 1 / fone
i] B i ) ten - t
to_gtlgind |yz (t’ 0)| ! 0 Jto

0y:
90,

"dt}%, 5.)




Optimal Experiment Design 71

where the ratio (9\]/ max; |y,~(t,§)l is added to make the dependencies scale in-
variant, and [to,t.,q] is the time interval of the experiment. The derivatives
0yi/06; are also called sensitivities. The pairwise dependences can be mea-
sured in many ways, we take the LP-norm, with 1 < p < oco.

Apart from the quantification of the sensitivity of the i-th state variable on
the j-th parameter, the labels as defined in (5.1) also have a reverse interpre-
tation if they are corrected with the corresponding deviations. The correction
reads:

¢ 1
Eg) det g_iz'(f) ) (5.2)

The corrected label, Ef;’ ), indicates the influence of measurements of the i-th
state variable on the j-th parameter.

The entry Ef]" ) can be seen as a scale invariant average over [to,t.a] of
all possible entries which might show up in the j-th column of the Jacobian
(cf. (1.11)) after performing a measurement of the i-th component.

Remark 5.3.1 If the matrix Z(® has a row whose elements are all zero, then
the corresponding state variable is not dependent on any of the parameters.
Measurements of these components will not contribute to more reliable esti-
mates of the parameters.

Remark 5.3.2 If the matrix Z(P) has a column whose elements are all zero,
then the corresponding parameter will have no influence on the model responses
and can therefore not be estimated.

Example ,
In the case of the Barnes’ problem (cf. Section 1.9 and Appendix 1.B), we have:
= (0.861,2.079,1.815)7
t € [0,6],
max s (t 6 = 1112,

maxya(t, 8 = 0.585.

After computing and integrating the sensitivities, we construct the matrix Z(®).
The result for p = 2 reads:

£0) _ ( 0.394 1.015 0.879 )

0.835 1.118 0.575 (5.3)

where we see that the biggest entries are in the second column, i.e. related to
0 = ko. The estimates are calculated with equal weights and 10 measurements
of each component. When we consider the SVD (cf. (1.15)) of the correspond-
ing Jacobian, the first column of V equals (—0.371,0.746, —0.553), which is
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in agreement with the above results. From the matrix Z(?), we also see that
y1 is more sensitive to changes in k3 and y» is more sensitive to changes in ;.
Both conclusions are a bit surprising if we look into the equations and see that
yi and y5 only depend indirectly on k3 and ki, respectively. <

5.4 OED and improved confidence regions

In this section the target of optimal experiment design is to plan future experi-
ments in such a way that the reliability of the parameter estimators, determined
on the basis of previous and future experiments, will be optimal in some, math-
ematically well-defined sense. In order to study the reliability of the estimators
we investigate the Jacobian of the regression problem, the design criteria de-
pend on this matrix. To determine J in the case of linear regression we do not
need a good estimate of #. This is contrary to the nonlinear case, where we
will need a good estimate for 6, in order to make a useful linearisation.

We assume that N measurements are already available and the correspond-
ing least squares estimate is denoted by 6. (For optimal experiment design N
may equal zero. In that case, 8 is an initial guess.)

Besides the N known measurements, we assume that a finite number of
additional measurements, N,q44, Will be performed in the future. The final
(N + Ngqq) X m Jacobian is denoted by

j=(Jid) , | k(5.4)

and Aq,..., A, are its positive, singular values in non-increasing order as in
(1.15).

5.4.1 Design criteria

For different values of k£ € [—00, +00], different design criteria can be distin-
guished, which are denoted by ¥, (JTJ). If J has full rank:

/\1 ) K= +00 9
1
o 1 iT 7\c\) = _
w770y = GEDN)T s g {ze0,0,beol (5.5)
(Det(JTJ))™ , k=0,
5\m ’ K= —00,
and in the case J is singular:
;\1 ’ K =400,
2T 3 e s WL
V(JT) = (ATe((JTI)M)* , & €]0, 400, (5.6)
0 ) K € [—O0,0] .
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The determinant and trace of a matrix are abbreviated by Det and Tr, re-
spectively. The design criterion, ¥,, has special names for certain values of
K:

e D-optimal (k = 0).
Here we maximise the determinant of the matrix J7J, which is equivalent
to minimising the volume of the ellipsoidal confidence region (4.11). A
disadvantage of this choice of x is the chance of constructing ‘thin and
elongated’ confidence regions.

e A-optimal (k = —1).
This choice of & is equivalent to minimising the variance of Y ;- ;.

e E-optimal (k = —00).
In this case we maximise the smallest singular value, A,, which means
that we want to construct the ellipsoidal region in the parameter space
as ‘sphere-shaped’ as possible.

In the case we are only interested in a subset of the parameters, because these
parameters influence the simulation results of the state variables of interest,
then we pre-multiply the Jacobian with a m4 x m-matrix (m4 < m) in order
to zoom in on the more important parameters. The corresponding designs
are known as D4-, A4s- and E4-design, the extensions to these designs are
straightforward. More details with respect to design criteria may be found in
[Loh93, Sil80].

Now, the final optimisation problem is to maximise ¥.(JTJ) over Noaq
additional measurements, with Na4q fixed. So we have to determine:

max v, (JTJ), (5.7
Ci ,ti(i:N+1,...,N+Nadd)

and possible additional restrictions, which express experimental limitations:
g1(ci,ti,Naga) = 0
g2(CistiyNaga) < 0

The maximum exists due to the facts that t € [to, t..q] and ¢; and Nyq4q are
finite. In the next section we will show how to deal with the maximisation of
the criterion function.

} (i=N+1,...,N+Nadd).

5.4.2 Repeated design
We assume that IV is greater than zero and that every additional measurement
has an experimental design such that for each j = N + 1,..., N 4+ Nyqq, there
is at least one ¢ = 1,...,N, which meets: {c;,t;} = {cj,t;}. After Noaa
additional measurements have been performed, w; measurements under the
i-th (¢ = 1,...,N) experimental design are available:

N

Zwi =N+ Nggqg and w; >1. (5.8)

i=1
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After the introduction of the diagonal matrix 2, such that (Q),, = w;, the
overall Jacobian can be written as:
J=q3J. (5.9)
e In the case of a repeated D-design we have to optimise:
N
max det(J7J) = max det(JTWJ) = det(J7J) max [Jwi.

W1jeesWN W1y sWN Wiy yWN 1
1=

When we take the restrictions of (5.8) into account the maximum is at-
tained if w; = 1 + Ngga/N. Because w; is an integer and, in general,
14 Ngga/N is not, some of the w;’s have to be rounded off in such a way
that (5.8) is still fulfilled.

e In the case of a repeated A-optimal design we have to compute

max Tr(JTJ) = max Tr(JTWJ)
W1y, WN Wiy WN
N m
2
= w1l;n-:2~i;)‘5N ; wi ]:Zl (JZ]) ’

which is a linear, integer programming problem. Adding the restric-
tions of (5.8) leads to the following strategy. Determine i* such that

Z;.nzl (Ji+ j)2 is maximal and for the frequencies we get

Wi = Ngaga +1 if: i =1*,
tT 1 otherwise.

If there is not a unique ¢*, any integer combination of the i*’s will do.

e In the case of a repeated E-optimal design it is not possible to find a
useful relation between the choice of w; and A,,, because the SVD of J
can be completely different from the SVD of J. A good solution is to
determine the optimal repeated design by a sequential design as will be
explained in the next section.

Definition 5.4.1 By an improved E-design we mean that ;\m_q > Am—q,
where ¢ € {0,1,...,m — 1} is the largest integer such that A\p_q = Am—q41 =
.. = Am.

Theorem 5.4.1 If no improvement of the repeated E-design can be made:
Am—q = Am—gy then A,y = Ay = ... = Ay, =0.
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Proof: If a repeated design leads to an improved E-design, the repeated design

withw; =2 (i =1,...,N) leads to an improvement. The Jacobian after adding
this design reads:
w O 0
J=1 o0 . o |J=2J.
0 0 wWN

The singular value decomposition of this Jacobian equals:
J=UxvT |
with 32 = 2%2 and U, ¥ and V7T come from the SVD of the original Jacobian,

J. When there is no improvement, it means that Am—q = ;\m_q and by using
the SVD of J we also have A—g = 2Am—q. O

5.4.3 Sequential design

The optimisation problem (5.7) is not solved directly, but we solve a slightly
different problem. For this purpose, we take N,44 equal to one, solve the
minimisation problem and repeat this until some stopping criterion is fulfilled.
Such approach is called sequential design [Fed72, page 173].

Sequential designs are much more attractive from a computational point
of view, while asymptotically, N,q4 — 00, optimal sequential designs approach
optimal nonsequential designs [Fed72]. The consequences for the design criteria
as introduced in Section 5.4.1 in the case of sequential design are listed below,
where J,4q4 is a 1 X m-matrix.

e In the case of sequential D-design we have to maximise:
Det(JTJ) = Det(JTJ + JLyJada)
Det(JTJ)(1 + Jaaa(JTN1ILE,) , (5.10)

as a function of t and ¢ +;. Maximising this determinant, by making use
of the SVD of J leads to:

max || JeadVETY| - (5.11)

to<t<tend,CN+1
e Sequential A-design leads to maximising:
To(JTT) = Te(JTJ + JhgJada)
Tr(JTJ) + Tr(J3g4add) (5.12)

again as a function of the design variables ¢t and cy+1. The maximum of
this sum of traces is attained at the same point as:

1 Jadall - (5.13)

max
tststend yCN+1
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e For the sequential E-design, where we want to improve the design by a
max-min criterion on the singular values of the Jacobian, we have the
following results.

Theorem 5.4.2 In the case of E-design, the criterion function is, after adding
one additional measurement, bounded by

Am—ge1 > _oo(JTT) = g > Ay » (5.14)
where ¢ is taken as in Definition 5.4.1.

Proof: The additional row can be expressed in the columns of V:
m
J[;';d = ZﬂiVi .
=1

The matrix JTJ can then be written as:
JTI=vE2+BVT, (5.15)

where the 4, j-th entry of the m x m-matrix B reads 8;8;. Because the matrix V'
is orthogonal, the eigenvalues of J7J are the same as those of £2 + B. Further,
the matrix X2 is diagonal and B has rank 1. Now the proof is easily completed
by making use of the pages 433-434 of Golub and Van Loan, [GV83]. 0

Remark 5.4.1 A consequence of Theorem 5.4.2 is that the number of singular
values of the Jacobian one wants to increase is equal to the minimal number of
additional measurements to be performed in order to achieve this.

Remark 5.4.2 If 8,,_4 = ... = B = 0, then there is no improvement of the
E-design. In the next theorem we show that the reverse is also true.

Theorem 5.4.3 If no improvement for the sequential E-design can be con-
structed then Bp,_q = ... = 0, = 0.

Proof: The first part of the proof deals with the restrictive case where ¢ = 0,
i.e. Am—1 > Am, and is proved by contradiction. Therefore, Apm = A, and we
assume that G, # 0. In the second part we deal with the case where ¢ > 0.

If A2, is an eigenvalue of J7J, it is also an eigenvalue of £2 4+ B (cf. (5.15)).
This means that:

Bi+A =X ... BiBma B1Bm
/.Blﬂm—l . : 3,1_1 + /\3n_1 - /\fn /Bm—lﬁm
B1Bm cor Bm—1Bm B2,

is singular. By the assumption §,, # 0, we can take the i-th row and subtract
Bi/Bm (i =1,...,m—1) times the m-th row. The determinant of the resulting
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m—1

(A2 = X\2)) and should be zero, which completes the

matrix equals 82, []
contradiction.

For the case ¢ > 0 the contradiction is constructed by assuming that at
least one 3; # 0 (i = m —gq,...,m) and that A2,_, should have an algebraic

multiplicity of ¢ + 1 in the characteristic polynomial of X2 + B. O

Remark 5.4.3 In the case no improvement of the sequential E-design can be
constructed, then any nonsequential design will fail.

Theorem 5.4.4 If Bpy_g=... =P =0,then App_g = ... = Ay, =0.

Proof: By Theorem 5.4.3 we know that B4 = ... = B = 0 implies that no
improvement of the E-design exists. By assuming that Ap,—g = ... = Ay > O we
get the contradiction by using Theorem 5.4.1 and stating that then a repeated
design with w; = 2 (¢ = 1,...,N) would have given an improvement of the
E-design. |

Remark 5.4.4 Intuitively one might think that a design which leads to a
maximal |Gy, | is an optimal sequential E-design. This is not true, which can be
demonstrated by a simple counter example. Suppose that the Jacobian reads:

2 0
=(5 1)

and we can either take a sequential design with: J. (2121 = (10,10) or J ((2121 =(0,2).

a

For the first design we get: /\§1) = 14.23 and /\gl) = 1.58, and for the second
design: AP = /5 =224 and A = 2.

Now we can only state that for an optimal sequential E-design §; # 0 for at
least one i = m —gq,...,m, but we did not manage to find a sufficiently simple
relation between J, or its SVD, and J,44. As far as we can see we need a SVD
of % + B for every candidate of J,44, which is an infeasible approach.

From a computational point of view the sequential A-design is very attrac-
tive, because —contrary to sequential D- and sequential E-optimal design— an
update of the singular value decomposition is not needed after adding a mea-
surement. Sequential A-design is related to a workable expression, (5.11), and
is therefore more attractive than sequential E-design. In practice the optimisa-
tion can be performed by a program for Lipschitzian global optimisation such
as one whose implementation is described in [Pin95]. When the model equa-
tions are given by a set of DAEs, we choose a regular grid in time, solve the
model and sensitivity equations, and store the corresponding solutions for each
grid point. This approach significantly reduces the computation time of the
DAE solver during the optimisation.
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5.5 OED and model discrimination

As in Appendix 1.C we have two models, y(t,6) and z(t, ¢), and their corre-
sponding estimates 8 and ¢, respectively. We order the vectors y and z, such
that their first k entries, correspond to the common, observable state vari-
ables. If we cannot discriminate between two models on the basis of an F-ratio
test from Appendix 1.C, then we want to perform additional measurements
in order to obtain a decisive result. In the case of a sequential design it is a
straightforward way to compute:

|yi(ta 9) — zi(t, $)| .

For a design where this /@bsolute difference is maximal, it is not expected that
the change in S(8) — S(#) is maximal after adding the corresponding measure-
ment. The absolute difference should be corrected with the variances of y;(t, @)
and 2;(t, 5) in such a way that it is unlikely for the additional measurement to
end up right between the two model responses. The derivation of the variance
of y;(t,0) after a measurement has been added is given by:

~ . o \2
var(y;(t,6)) E (yi(t,o) - E(Z/i(t,o)))

B (z Wi, @))

=1

max
i={1,...,k},t€[to,tena]

Q

o Ayt 0) Byt 9) . R
j=11=1 3HJ a6, ((01 - 0])(01 0[))

~\T
_ ayz(t 0) -1 8yi(ta 0)
el i) ( 90 )

M

The inverse of JTJ can be computed easily, because the SVD of J is available
and we may use the relation (recall that B = 88T as in (5.15)):

e _ B 2_2,3ﬁT2_2
(JT)) " =V (22 + B) ‘VT:V(Z 2—W>VT.

The derivation of var(z;(t, )) is identical. Thus, the criterion for model dis-
crimination amounts to:

yi(t,0) — py/var(yi(t,8)) — z(t, ) — py/var(z:(t,0))

max if: yz(ta é\) > Zi(ta a) )
i={1,... K} 4 (5.16)

t E t 7ten n 7 7 M
o tens] 1 218,8) — iy fvar(a(t,8)) — wi(t, ) — pyfvar(ui(t, )

\ if: yi(t7 0) < zi(t7 ¢) )

where p should be positive.
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5.6 OED and nonlinearity

Here we only give an indication of experimental design for the reduction of the
nonlinearity of the regression problem. This topic is much more difficult than
the OED dealt with above and hardly touched in literature, but targeting for
future research. Reduction of the nonlinearity through experimental design is
only of interest if neither the planar assumption (cf. Section 4.4) holds, nor a
reparametrisation of the model reduces the nonlinearity. If both requirements
are met, we want to perform N,y additional measurements in such way that
the resulting max(I'L, T'l) is minimal.

In the case of a repeated design with w; =w (i = 1,..., N), both ||| and
|l7in|| (cf. Section 4.4) will be a factor y/w larger and due to (4.27) and (4.28),
both the normal curvature and the parameter-effect curvature become a factor
/w smaller.

A more thorough investigation would be desirable, but goes beyond the
reach of this publication. We will end this section by a simple example where
we compute two designs, one for the reduction of the nonlinearity and one for
an increase of the reliability of the parameters. It turns out that these two
designs are incompatible.

Example

We return to the example of Section 4.4, y(t,0) = exp(—6t). We have per-
formed already two measurements at ¢t; = 1 and to = 2, and want to perform
one additional measurement at t3. The Jacobian, with this additional mea-
surement, reads:

~ ~ ~\T
J= (- exp(—8), —2 exp(—28), —t exp(—t30)) .

Because of the size of JTJ, the A-, D- and E-optimal design coincide and equal
t3 = 1/6. Computation of the nonlinearity measures and minimising them
leads to t3 = 0, which is not a surprise if we look at the model equations. Ex-
cept that this choice reduces the nonlinearity, it does not give any additional
information related to the estimate. o

5.7 Concluding remarks

In this chapter we give an outline of optimal experiment design. The topic of
OED is relevant when the parameters are estimated, but some questions with
respect to the model are not sufficiently resolved. Answers to these questions
are relevant to improve the accuracy of model simulations, to discriminate be-
tween different models or to reduce the nonlinearity of the regression problem.

We introduced a method to quantify the dependencies between parameters
and state variables, and to represent them in a clear way. Then it is shown that
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these dependencies are also of interest for the design of future experiments. If
we want to improve the reliability of the parameter estimators, we have different
mathematical criteria to determine whether an experimental design is optimal
in a well defined sense. Depending on the criterion, we derived the related
D-, A- or E-optimal design for a repeated and for a sequential design. For the
so-called E-design, it turned out to be difficult to determine the corresponding
optimal design, although we managed to derive a number of results which are
of practical interest in this context.

Experimental design in order to discriminate between models is also con-
sidered. For this aspect not only the maximal absolute differences between the
model responses are of interest, but also the corresponding variances. A rela-
tion between experimental design and nonlinearity of the regression problem is
also given in this chapter. However, here still many open questions for research
exist. By means of an example we showed that different design criteria may
give rise to incompatible designs.
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Case Studies

In this chapter we apply the techniques from Chapters 1 to 5 to solve a number
of real-life problems which originate from a wide range of application areas.
The problems were solved in close cooperation with scientists working in these
application areas, because, for the evaluation of the many possible models, a
good domain knowledge about the problem studied is indispensable. For a
fruitful and efficient cooperation some of this knowledge is also required for the
modeller, whereas, some mathematical background is needed for the scientist
who is interested in a good mathematical model of the process he/she studies.
Such multi-disciplinary cooperation requires a good interaction and it is our
experience that efficient means of communication are prerequisite if the parties
are working at geographically distant locations.

Each section in this chapter deals with a different problem. The problem in
Section 6.1 was provided by an industrial partner and describes the formation
of resins. Two examples from bio-chemistry on blood coagulation and plant cell
growth are discussed in Sections 6.2 and 6.3, respectively. Section 6.4 describes
a problem from Akzo Nobel research, where besides the parameter estimation -
problem also various steps of the modelling process are outlined. Another case
study from the same research department is given in Section 6.5. It describes
water penetration in an aramide yarn, which is modelled by a 1-dimensional
PDE. Section 6.6 is devoted to an example from macroeconomic time series and
compares the performance of existing ARMA and SETAR methods, with less
general models which have fewer parameters. In the last section, 6.7, we solve
a complex parameter estimation problem from chemical engineering, known
from literature [BDB86], and compare our results with those from this paper.

6.1 Production of resins
6.1.1 Introduction

In this section we present a study on parameter estimation in the field of resin
production. The model describes a mechanism of methylolation of melamine
by formaldehyde. The methylolation is reversible, nine methylol melamines
can be identified. Condensation is not considered. For details on this chemical
process we refer to [GHWG66].
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The mathematical model of the chemical process contains a set of 12 dif-
ferential algebraic equations (DAEs) and 16 unknown parameters; 8 series of
measurements are available, performed under different initial conditions and
at different temperatures. To estimate the unknown parameters we apply the
strategy as described in Chapter 1. With the available measured data, 12 of
the 16 unknown parameters could be estimated within acceptable statistical
bounds. In this study we show the effects of a reparametrisation of the model.

6.1.2 Reaction mechanism

A schematic representation of the chain of reactions of interest is given in
Figure 6.1. In this figure we give a label, ‘a’-‘k’, to each chemical component of
interest; formaldehyde is represented by an ‘o’ and has no label. The meaning
of the labels is given in Table 6.1.

label | symbol | full name

a melSol | solid melamine

b melAq dissolved melamine

c mon mono-methylol melamine

d di N,N’-di-methylol melamine

e NN N,N-di-methylol melamine

f tri N,N’,N"-tri-methylol melamine

g NNN N,N,N’-tri-methylol melamine

h tet N,N,N’,N”-tetra-methylol melamine
i NNN'N' | N,N,N’ )N’-tetra-methylol melamine
j pen penta-methylol melamine

k hex hexa-methylol melamine

Table 6.1: Labels, symbols and full names of the chemical components.

Most reactions in the model involve the binding and loosening of formalde-
hyde. The reaction rates which correspond to the binding have a positive sub-
script. Negative subscripts indicate the reverse reaction rates. The subscript
of a reaction rate is 2 when the binding of formaldehyde is next to another
formaldehyde element and 1 otherwise (when the binding is on a free stick of
A, see Figure 6.1).

The reaction mechanism between melamine in its solid and dissolved form
(labeled ‘@’ and ‘b’ respectively, in the figure) is unknown. This causes a less
straightforward modelling of the process. The adaptations and assumptions we
made to overcome this inconvenience are discussed Section 6.1.5.

For cyclic chemical reaction parts the product of the reaction rates corre-
sponding to the clockwise part should equal the product of the reaction rates
anti-clockwise. From the reaction scheme we see that this condition is fulfilled
automatically.
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© A

Figure 6.1: Scheme of the chain of reactions involved in the reversible methy-
lolation of melamine by formaldehyde. The labels ‘a’-‘k’ are explained in Ta-
ble 6.1.

6.1.3 Experiments performed

Eight series of measurements were performed under different initial conditions
and at different temperatures. During each series, at a sequence of times, a
sample of the reaction volume was taken, in which the formaldehyde concen-
tration and the concentrations of the components with the labels ‘b’ to ‘k’
were measured. Each measurement gives the value of the concentration of one
chemical component at a specific time, i.e. at each point of time we have 11
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measurements. The total number of measurements (V) equals 583.

6.1.4 Model equations

Each differential equation in the mathematical model corresponds to a changing
concentration of a chemical species. The derivation of the equations is based
on straightforward second order reaction kinetics and on conservation of mass.

For illustration we focus on the formation, i.e. the change of concentra-
tion per unit of time, of mono-methylol melamine (label ‘c’) out of dissolved
melamine (label ‘b’) and formaldehyde. This production depends on k;, on the
concentrations of formaldehyde and dissolved melamine and on the number of
possibilities for the binding of formaldehyde to dissolved melamine. In this case
there are six places where the formaldehyde can be bound. The reverse reaction
depends on k_;, and on the concentration mono-methylol melamine and water.
For this reverse step we only have one possibility for the loosening. Following
these rules for the reaction kinetics and denoting the formaldehyde concentra-
tions with [FM], the water concentration with [H50O] and the concentration of
a methylol melamine by its symbol (see Table 6.1) inside square brackets, we
can derive the differential equations for all the species with the labels ‘¢’ to
‘k’, as well as for formaldehyde and water. The resulting differential equations
read:

% = —ki[FM] (6[melAg] + 4[mon] + 2[di]+
4[NN] + 2[NNN'| + 2[NNN'N']) —
ka[FM] ([mon] + 2[di] + 3[tri] + [NNN']+
2[tet] + [pen]) +
k_1[H,O] ([mon] + 2[di] + 3[tri] + [NNN']+
2[tet] + [pen]) +
k_2[H20] (2[NN] + 2[NNN'] + 2[tet]+

A[NNN N + 4[pen] + 6[hea]) , (6.1)

L'Ztof‘—] = 6ki[FM][melAg] + 2k, [H;0][di] + 2k_s[H:O][NN] —
41 [FM][mon)] — ks[FM|[mon] — k—1[H>Ol[mon] , 6.3)

@ = ko[FM[mon] + k_[H;O][NNN'] —

4k1 [FMI[NN] — 2k_o[H, O[N] , (6.4)

dgf] — 4k [FM][mon] + 3k_[HoOl[tri] + 2k_o[H:O][NNN'| —
ks [FM][di] — 2o [FMI[di] — 2k [H>0][di] 6.5)

d[Nd—I:W] —  4ki[FMI[NN] + 2ks[FMI[di] + 4k_o[H>O)[NNN N +

9%k [H20[tet] — kz[FM[NNN'| — 2k, [FM|[NNN'] —
2k_,[H>0|[NNN'] — k_1[H,O][NNN'] , (6.6)
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g%%ﬂ = 2k [FM)[di] + 2k_2[H2O|[tet] — ko[ FM][tri] —
3k_1[HO][tri] 6.7)
d[L]XItE‘V'_] = k[FM|[NNN'] + k_1[H2O][pen] — 2k:[FM][NNN'N'] —
4k_»[H,O][NNN'N'] , (6.8)
% = 3k[FM|[trs] + 2k, [FM|[NNN'] + 4k—2[H>O][pen] —
2kz[FM|[tet] — 2k—2[HOl[tet] — 2k_1[H2O][tet] , (6.9)
d[];e;n] = 2ko[FM][tet] + 2k:[FM|[NNN N']| — k_,[H2O][pen] —
4k_3[H,O|[pen] + 6k—2[H,O][hex] — kz[FM][pen] , (6.10)
% = kz[FM|[pen] — 6k_»[H20][hex] . (6.11)

The concentrations are given in mol/kg, the time, ¢, in minutes and —hence- all
reaction rates, k;, in kg/(mol min). These reaction rates, which are not known
a priori, are the parameters to be estimated. We assume that the change of the
reaction volume due to the dissolvation of solid melamine may be neglected.

From the measurements we know that the temperature was not the same
for all experiments. Therefore we account for a temperature dependence in the
reaction rates by Arrhenius’ law:

ki(T) = o exp ( "), i€{-2,-1,12} (6.12)

RT
Here «; is a pre-exponential factor, E; the activation energy, R the gas constant
and T the temperature (in Kelvin). By taking into account this temperature
dependence, the number of unknown parameters is doubled. '

To solve the set of differential equations (6.1)-(6.11), we need a set of cor-
responding initial conditions. These conditions describe the concentrations of
the species of interest at the beginning of an experiment. We may assume that
all initial concentrations are zero, except for water, formaldehyde and dissolved
melamine (label ‘b’).

6.1.5 Treatment of the melamine concentrations

We already mentioned that the reaction mechanism between solid and dissolved
melamine is unknown. This means that we are not able to derive an equation re-
lating the concentrations of these species. On the other hand the concentration
of dissolved melamine appears in the set of differential equations, which means
that this concentration is indispensable for solving the differential equations.
For each sample taken during the reaction also the concentration of dissolved
melamine has been determined. To obtain this concentration at the interven-
ing time intervals we used a linear interpolation between the corresponding two
subsequent measured concentrations of dissolved melamine.
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This leads to a total of 11 differential equations, (6.1)-(6.11), and an alge-
braic equation due to the linear interpolation of the dissolved melamine con-
centration. The input file for the model equations, as it will be used by the
splds program [EHS95], is found in Appendix 6.A, at the end of this chapter.

6.1.6 Parameter estimation
The resulting system of differential algebraic equations (DAEs) contains eight
unknown parameters (o; and E;) due to Arrhenius’ law. For each series of ex-
periments, besides these eight unknowns we also do not know the precise initial
concentration of formaldehyde. Because we have eight series of measurements,
we get eight extra unknown parameters: [FM;(t0)], i€ {1,...,8}.

For a convenient shorthand notation we introduce a 16-dimensional parame-
ter vector 6 and a 12-dimensional state vector, y(t, §) of varying concentrations,
depending on ¢ and 6, as:

0 = (a,Ey,a 1, E_1,a,Ey,a_, E_,[FM(to)], [FMa(to)],  (6.13)
[FMs(to)], [FMa(to)], [FMs (to)], [FMs(to)], [FMz(to)], [FMs(t0)] )T,

Yy = ( [melAQ]a [FM7 [H2O]7 [mon]a [NIV]’ [d2]7 (6'14)
[NNNY, [tri], INNN' N, [tet], [pen], [hex] )T .

The system of differential algebraic equations and the corresponding initial
conditions are now denoted by:

d
ES = 1(ty,0), y(to,6)=10(0) , (6.15)
where E is a diagonal, 12 x 12 matrix, with (E);; = 0 and (E); = 1 for
i € {2,...,12}. This matrix E accounts for the distinction between differential

and algebraic equations. The vector function f : RxR!? xR!® — R'? contains
the information with respect to the linear interpolation (first component) and
the differential equations for ys,...,y12 (the right-hand sides of (6.1)-(6.11)).
For details see Appendix 6.A.

6.1.7 Reparametrisation and results

The initial estimates for the pre-exponential factors and the activation ener-
gies (based on literature [GHW66]) and the initial formaldehyde concentrations
(given by the experimentalists) are listed in Table 6.2. To obtain a better scal-
ing of the numerical problem it is preferable to have the parameters within
approximately the same order of magnitude. To achieve this we take the log-
arithm of the pre-exponential factors, a;, and we scale the activation energies
by a factor 1/1000, E; = E;/1000. The scaled initial parameter estimates are
listed in the second column of Table 6.3.

After the above scaling, the first numerical runs were performed by the ap-
proach described in Chapter 1. The results are reported in Table 6.3. A typical
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parameter value parameter | value
(a3 1.35x 1014 FM, (to) 8.41
E, 9.8 x10* | FMy(to) 7.61
a_q 3.98x10% | FM;3(to) 5.60
E_, 6.8 x10* | FMy(to) 5.58
(67} ]..66)(1015 FMs(t()) 4.80
E2 1.2 X105 FMﬁ(t()) 4.81
a_o 8.91x10° | FMq(to) 4.80
E_, 9.0 x10* | FMs(to) 5.58

Table 6.2: Initial estimates for the unknown parameters.

initial | final independent | dependent

est. est. confidence confidence

(Bini) | (6) regions (A'6) | regions (A" 9)
In(cq) 32.54 | 20.17 5.12 0.0728
E 98.00 | 65.38 14.0 0.198
In(a_;) | 19.80 | 24.81 20.5 0.469
E_, 68.00 | 91.27 57.7 1.32
In(as) 35.05 | 14.17 21.8 0.261
E» 120.00 | 51.03 59.7 0.717
In(a_s) | 2291 | 9.126 32.2 0.407
E_, 90.00 | 47.61 88.4 1.13
FM, 8.41 | 8.745 0.622 0.582
FM, 761 | 8.536 0.609 0.578
FM; 56 | 5.097 0.607 0.604
FM, 558 | 6.098 0.712 0.701
FM; 48 | 4.671 0.766 0.760
FM, 481 | 4.724 0.768 0.752
FM;, 48 | 5.383 0.694 0.686
FM; 558 | 6.065 0.702 0.683
5(8) 336.6 | 14.76

Table 6.3: Initial estimates and final estimates of 8 plus confidence regions (cf.
(1.25) and (1.26) with a = 0.05).

result is shown in Figure 6.2. The corresponding graphs of the calculated con-
centrations and the measured values of N,N’,N”-tri-methylol melamine (label
‘f” in Figure 6.1) during the second experiment and penta-methylol melamine
(label ‘j’) during the eighth experiment for the initial and final parameter values

are shown.
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Figure 6.2: Measured (‘x’) and computed concentrations of N,N’' ,N"-tri-
methylol melamine (label ‘f’) during the second experiment (left) and the
penta-methylol melamine (label ‘j’) during the eighth experiment (right), for
the initial (top) and final (bottom) parameter values from Table 6.3.

The results from Table 6.3, with respect to the sum of squares and the
corresponding graphs are satisfactory; the numerical solution fits the measure-
ments within reasonable bounds. However, the confidence regions for the pre-
exponential factors and the activation energies are not satisfactory. The singu-
lar values and the columns of matrix V' are shown in Figure 6.5. Inspection of
the singular values (cf. Eq. (1.15)) shows that four of them are extremely small,
see Figure 6.5. The corresponding singular vectors, the last four columns of
V, can be identified with pairs {In(a;), E;}, for i € {—2,—1,1,2}. The same
holds for the four largest singular values. This means that an intersection of
the ellipsoidal region with the {In(a;), E;}-plane gives an elongated ellipse, of
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Figure 6.3: Level sets of the sum of squared discrepancies intersected with the
{In(a1), Er }-plane, before the reparametrisation of (6.16).

which the principal axes are rotated with respect to the coordinate axes. The
presence of elongated ellipsoidal regions can also be seen from the ratios of the
independent and dependent confidence regions. This indicates that for each
pair {In(a;), F;}, only one parameter can be estimated accurately after an ap-
propriate reparametrisation of either In(a;) or E;. A plot of the intersection of
the iso-curves of the sum of squared discrepancies with the {In(a ), E }-plane is
given in Figure 6.3. The elongated shapes in this figure are in accordance with
what was expected after the linear investigation. Additional information comes
from asymmetry in the north-west and south-each direction of this figure. This
indicates the presence of nonlinear effects. In the remainder of this section we
will show that this is due to parameter-effect curvature (cf. Section 4.4).

A well known reparametrisation for the pre-exponential factor (see [BDBS86,
Wat94]) is found by introducing a reference temperature, To. It leads to the

formulation:
. - Ei
Q; exp BT

~ —-FE; (1 1 .
0; exp < 7 (T - To)) , i1€{-2,-1,1,2}, (6.16)

Il

ki(T)

Il

with:

~ -E;
Q; = ; eXp (—EJ'TO)
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The temperature Tp should be close to the temperatures during the experi-
ments. An appropriate choice for Ty is the average temperature over all the
performed experiments. Note that the reparametrised pre-exponential factors,
a;, represent the reaction rates, k;, at T' = Tp. The results after this repara-
metrisation are given in Table 6.4 for Ty = 333K.

initial final independent | dependent

estimates | estimates | confidence confidence

(Bini) ®) regions (A'6) | regions (A" 6)
(@) | -2.74 | -3.376 0.134 0.073
E; 98.00 65.33 14.0 7.38
In(a_;) -4.68 -8.047 0.65 0.467
E_, 68.00 91.91 57.2 38.3
In(as) -8.15 -4.181 0.621 0.261
E, 120.00 54.23 61.4 25.1
In(a—2) -9.49 -7.986 0.893 0.405
E_z 90.00 53.03 88.9 38.2
FM; 8.41 8.743 0.621 0.582
FM, 7.61 8.534 0.608 0.578
FM;3 5.6 5.097 0.607 0.604
FM, 5.58 6.097 0.712 0.702
FM;y 4.8 4.672 0.766 0.760
FMg 4.81 4.723 0.768 0.752
FM; 4.8 5.382 0.694 0.686
FMg 5.58 6.065 0.703 0.683
S@ | 3357 14.77

Table 6.4: Initial and final estimates of §, plus confidence regions (cf. (1.25) and
(1.26) with a = 0.05), after reparametrisation of the pre-exponential factor.

This reparametrisation does not change the model responses; the sum of
squares and, except for a;, the estimated parameter values are unaffected.
Only the confidence regions of the reparametrised parameters improve. In-
spection of the singular values shows again that four of them are extremely
small. The essential difference with the results from Table 6.3 is that now the
last four columns of the matrix V' can be identified with the activation energies,
E;, i.e. the parameters which are the least well determined. This means that
the longest principal axis of the elongated ellipse is rotated towards the E;-axis
by the reparametrisation. Level sets of the sum of squared discrepancies in the
{In(@,), E; }-plane are shown in Figure 6.4. In this figure we see almost perfect
ellipses which indicates that the problem is close to linear in its parameters af-
ter the reparametrisation of (6.16). According to the linear approximation (cf.
(4.12)) with o = 0.05 we get: S(8) = S(8) (1 + m/(N — m)Fo.05(m, N —m)) =
15.47. Comparison of the dependent confidence region of Table 6.4 and the
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Figure 6.4: Level sets of the sum of squared discrepancies intersected with the
{In(ay), E4 }-plane, after the reparametrisation of (6.16).

intersections of the ellipse for S(f) = 15.47 in Figure 6.4 give a close correspon-
dence; the distance from the centre of the ellipse to the intersections with the
parameter axes are 0.074 and 7.21 for In(a;) and E;, respectively.

The available measurements were carried out at temperatures between 323K
and 353K. In order to estimate the parameters E; more accurately, additional
measurements are required which span a wider range of temperatures.

6.1.8 Conclusions

In this section we applied the parameter estimation approach as described in
Chapter 1 to 5 to a real-life problem from reaction kinetics in order to estimate
unknown reaction rates and unknown initial concentrations. The experiments
were performed at different temperatures, which made it necessary to use Ar-
rhenius’ law to describe the reactions rates. The unknown initial concentrations
and pre-exponential factors could be determined, with an accuracy which was
satisfactory to the experimentalists. For that purpose, however, we needed
a reparametrisation of the pre-exponential factor. However, due to the small
range of the temperatures for which experimental data were available, it was
not possible to estimate the activation energies accurately.

The reparametrisation reduces the parameter-effect curvature and the inter-
section in Figure 6.4 is in full agreement with the results from linear statistics.
Another advaritage of the reparametrisation, which was encountered during the
numerical experiments, is the decrease of the number of steps in the minimisa-
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Figure 6.5: The squared entries of the 16x16-matrix V are matched on a grey
scale. The black squares indicate small values, the white squares represent
values close to 1. The columns correspond with the singular values in decreasing
order. The logarithms of the corresponding singular values are shown in a
histogram at the lower part of the picture. The rows in the matrix correspond
with the various parameters in the order given by (6.13).
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tion routine. -

This example illustrates the strength of the method, which yields the capa-
bility to decide for which parameters sufficient information is available in order
to perform an accurate estimation procedure. The visualisation as shown in
Figure 6.5 turns out to be a convenient aid to see immediately the structure of
the relevant information from the singular value decomposition.
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6.2 Modelling of blood coagulation’

This section describes the mathematical modelling of a part of the blood coag-
ulation mechanism. The model includes the activation of factor X by a purified
enzyme from Russel’s Viper Venom (RVV), factor V and prothrombin, and also
comprises the inactivation of the products formed.

In this study we assume that in principle the mechanism of the process is
known. However, the exact structure of the mechanism is unknown, and the
process still can be described by different mathematical models. These models
are put to test by measuring their capacity to explain the course of dnithrom-
bin generation as observed in plasma after recalcification in presence of RVV.
The mechanism studied is mathematically modelled as a system of differential-
algebraic equations (DAEs). Each candidate model contains some freedom,
which is expressed in the model equations by the presence of unknown param-
eters. For example, reaction constants or initial concentrations are unknown.
The goal of parameter estimation is to determine these unknown parameters
in such a way that the theoretical (i.e., computed) results fit the experimental
data within measurement accuracy and to judge which modifications of the
chemical reaction scheme allow the best fit.

We present results on model discrimination and estimation of reaction con-
stants, which are hard to obtain in another way.

6.2.1 Introduction

One of the problems encountered in the study of a complicated biochemical
process like thrombin generation in plasma, is that neither the reaction mecha-
nism nor the reaction constants and initial concentrations are precisely known.
The knowledge on the reaction mechanism of the process is obtained mainly
through experiments on isolated parts of the system. The elements of the sys-
tem, i.e. the clotting factors and their interactions, are separated from blood
plasma and their interaction is studied under circumstances that are necessarily
not precisely identical to those under which they cooperate in plasma. In fact
it is not even known whether the reaction scheme that we deduce from such
experiments is indeed the one operative in plasma. There may exist unknown
factors or reactions, and reactions that have been shown to be possible in prin-
ciple may not occur in reality. An example of this is the fact that factor X,
can activate factors V and VIII under experimental circumstances, but that
this reaction does not seem to play a role in clotting plasma [MT90]. Also
the reaction conditions in plasma are different from those used for the study
of the interaction of isolated factors. They may even be unsuitable for the
study of such interactions. The kinetic parameters of activation of factor V
by thrombin, e.g., cannot be measured directly in plasma because the presence

t This section results from joint work with H.C. Hemker (Department of Biochemistry,
University Maastricht) and P.W. Hemker (CWI, Amsterdam) and will be submitted in an
almost identical form.
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of natural thrombin inhibitors renders it impossible to achieve a fixed enzyme
concentration.

We introduce mathematical model validation and parameter estimation as
a possible solution to these problems. In this procedure, on basis of the existing
biochemical knowledge, a probable reaction mechanism is postulated. This is
transformed into a set of differential-algebraic equations, which contains un-
known parameters. These parameters correspond with the reaction constants
and initial concentrations of the reactants, both approximately known from
previous experiments and used as an initial guess for the parameters to be es-
timated. Then, one or more results of the reaction process are monitored, e.g.
the course of thrombin concentration in plasma in time after triggering of the
coagulation process, and the parameters in the model are adapted to obtain
an optimal fit. Different hypothetical reaction mechanisms can be tested in
parallel to see which one results in a better fit. If the best fit leads to improb-
ably large discrepancies between the computed and the experimental results,
the model is adapted and the validation process is repeated.

In this case study we briefly indicate this process of model derivation and
validation. In fact, the process consists of checking a long sequence of improving
models, adapted during the process for a wide range of reasons. The final
model should not only lead to a satisfactory fit, but should also be simple,
in accordance with established facts, and —preferably— it should not contain
an unreasonably large number of parameters. In order to validate the many
models and to estimate the corresponding parameters, an interactive software
package for parameter estimation on a fast computer is an indispensable tool.
Such a computer program, called spIds [EHS95] and partially constructed by
two of the authors, was available to carry out the necessary computations.

The model we consider here describes thrombin formation, a part of the
blood coagulation process, by a system of differential-algebraic equations. The
variation in time of the concentrations of each reactant is described by a (dif-
ferential) equation. The chain of reactions which leads to thrombin starts with
the activation of factor X by RVV, followed by the activation of factor V, the
production of prothrombinase in the presence of phospholipid and the activa-
tion of prothrombin. We also take into account the inactivation of the factor
Xa by anti-thrombin III (ATIII) and the inactivation of thrombin by ATIII
and ap-macroglobulin (a;M).

A description of the experiments used is given in Section 6.2.2, followed
by a derivation of the reaction mechanism in Section 6.2.3. The step from
reaction mechanism to mathematical equations is given in Section 6.2.4. The
parameter estimation process is briefly described in Section 6.2.5. The results
and conclusions are given in Sections 6.2.6 and 6.2.7, respectively.

6.2.2 Experimental data

In order to obtain the required data, four experiments were performed, which
resulted in four series of measurements. The output of the system used for our
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tests was the course of thrombin-like amidolytic activity. This activity is caused
by two types of molecules: thrombin itself and the thrombin-a; macroglobulin
complex (briefly denoted as II, and II, — asM respectively, in the reaction
scheme, Figure 6.6).

The data were obtained as follows. To 240 ul of defibrinated plasma, in
which the clotting factors are contained, we add 3.6 ul of a suspension of
procoagulant phospholipids (1 pM) and 80.4 ul of a solution of RVV. This
concentration of RVV was halved in the subsequent experiments. The thrombin
generation process was started at ¢ = 0 by addition of 36 u! of CaCl, (100 mM).
At different time intervals, more frequently in the initial phase of the reaction
and less frequently at the end, we took 0.01 ml samples from the reaction
mixture and added it to 0.49 ml of a solution of the chromogenic substrate
$2238 (0.5 mM) in a buffer that contains the Caj chelating agent EDTA in
order to stop further thrombin generation. Thrombin and ayM-thrombin split
the yellow-coloured para-nitroaniline from S2238. After 2 min. this reaction is
stopped by adding citric acid and the colour is measured and used to determine
the thrombin activity in the sample. Time measurements for the thrombin
generation are made automatically and samples are taken until a stable end
level of amidolytic activity is observed. This takes about 15 minutes.

6.2.3 Reaction mechanism

At this point we first present a commonly accepted reaction sequence for throm-
bin generation in Figure 6.6. Thereafter we describe three possible variants as
found in [Hem93]. In this section the reaction mechanism and its alternatives
are given in a schematic way. In Section 6.2.4 we give a more precise descrip-
tion by deriving differential equations. This is followed by an overview of the
motivation and selection criteria involved in choosing one set of equations in
favour of its alternatives.

In the reaction schemes the coagulation factors are denoted by their Ro-
man numbers, the subscript ‘a’ indicates their activated form, ‘PL’ and ‘PT’
denote phospholipid and prothrombinase, respectively. ‘ATIII’ and ‘asM’ (anti-
thrombin IIT and as-macroglobulin) are responsible for inactivation of the fac-
tors II, and X,.

In the scheme of Figure 6.6, the activation of X by RVV, (reaction 7, ), leads
to X,, followed by its inactivation by ATIII (r3). Next, factor V is activated
by I, (r3). The factors X,, V, and PL produce PT in a reversible association
(r4 and r5). Subsequently, thrombin (II,) is formed out of prothrombin (II),
either in the presence of PT (rg) or of X, (7). Finally, II, is inactivated either
by asM or by ATIII (rs and r9, respectively).

In this study we show that the above scheme is suitable to explain the ex-
perimental results. It summarises the present common knowledge, but it is not
necessarily complete and/or unique. We also investigate a number of possible
alternatives. One such alternative concerns the formation of prothrombinase
(PT), not in a trimolecular reaction but as a sequence of bimolecular reactions
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Figure 6.6: The reaction scheme for the part of the blood coagulation studied.

(Figure 6.7). Two other alternatives are given in the Figures 6.8 and 6.9. In

Va-PL + xa

Vo+ X+ pL/ TS~
a” “a \xa.pl, . v/

PT

Figure 6.7: The alternative reaction scheme to account for prothrombin forma-
tion.

the former we account for the existence of the intermediate meizothrombin that
in itself has amidolytic activity [BTH*95], in the latter we account for the ex-
istence of an intermediate form of the asM-thrombin complex [MFG92]. All
proposed alternatives are more complex than the reaction mechanism we start
with in Figure 6.6. By ‘more complex’ we mean that it has more state variables
and more intermediate reactions, which implies that they are likely to fit better
because there are more degrees of freedom available. In Section 6.2.5 we will
derive model equations from the reaction schemes and judge by statistical tests
if an increase of the complexity of the model leads to a significant improvement
of the fit between the calculated model responses and the observed data.
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Figure 6.8: The alternative reaction mechanism for the formation of thrombin
by the introduction of an intermediate reactant, meizothrombin (mIl,).
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Figure 6.9: The alternative reaction mechanism for thrombin inactivation by
as M. Here we assume that II,as M transforms further into an amidolytic less
active form, mII,as M. :

6.2.4 Model equations

From the four reaction schemes as they are introduced in Section 6.2.3, mathe-
matical model equations were derived. It is obvious that the schemes presented
lead to different sets of equations. But also from a single reaction scheme vari-
ous sets of alternative mathematical model equations can be derived. As an ex-
ample we consider the reaction r;, which is present in all four reaction schemes.
The concentrations of the chemical species are given in nM and indicated by
‘[ I’; the time, t, is given in minutes. The dimension of the reaction constants
are derived from these units. The change in time of the concentration of factor

X can be given by the well-known Michaelis-Menten relation:
d[X] — =_k:cat‘x-[X]-[RVV] ' (6.17)

dt kmx + [X ]

Although we know from literature that this relation is likely to be valid, it
may be replaced by closely related expressions. In cases where kmx > [X] or
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kmx < [X], expression (6.17) transforms respectively into the alternatives

r = kki - [X]-[RVV] , (6.18)
with kk; = keatx /kmx or

r = kko - [RVV], (6.19)

with kks = kcatx. Both alternatives have one parameter less than the Michaelis-
Menten relation and, depending on the ratio kmx /[ X], they can replace (6.17)
without loss of accuracy. A third possible alternative reads:

r = kks - [X], (6.20)

which follows from (6.18), when RV'V-dependence is negligible. Similar alter-
natives exist for the other reactions. Together, this leads to a large number of
candidate models.

From all these candidates we select that model (or subset of models, if the
statistical tests do not lead to a decisive answer) which, (i) is in accordance
with established knowledge in the field, (ii) is devoid of irrelevant steps (cf.
the Michaelis-Menten reaction mentioned above), and (iii) fits the phenomena
observed.

In Section 6.2.5 we will highlight the process of parameter estimation and
deal with model validation. In the last part of the present section we give the
set of model equations which was chosen from the candidates on the basis of the
criteria (i)-(iii). This set is one of the possible mathematical representations
for the scheme given in Figure 6.6. and as such it is an example of the many
possible systems of DAEs. In addition, it describes the connection with the
experiments.

The selected system of equations reads:

4x]

& = (6.21)
d[flia] = P —Tyg—T4+7T5, (6.22)

%/] = —r3, (6.23)
iﬂdltql = r3—T4+7T5, (6.24)
% = —Tr4+75, (6.25)
g[—dp—tz]- = r4—7T5, (6.26)
ﬂ(i{tﬂ = —re—r7, (6.27)
d{I1a] = re+rr—T8—"o, (6.28)

dt
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d[IIaasM] S , (6.29)
dt ’ '
AmAct = [I1,]+0.556 - [[Taas M|, (6.30)

_ keatx - [X]-[RVV]
no= kmx +[X] (631
ro = kixe-[Xa], (6.32)
ry = kca;‘r/n-v[‘i] h%[a] ’ (6.33)
re = kpr-[Vd]-[Xd]-[PL], (6.34)
rs = kpy[PT], (6.35)
_ kcat”-[II]-[PT]
e = kmi + 1) (6.36)
_ kcaty - [II] - [Xa]
re = kinQ o (6.37)
rg = kil]a,agM . [IIa] , (638)
r9 = Kirraarrrr-[I1a] . (6.39)

The concentration of RVV is supposed to be constant during each experi-
ment. However, it should be noted that [RVV] differs for the different exper-
iments. The inactivation of II, and X, in the presence of ATIII and asM is
modelled by first order reactions (73, rg and 79). This implies that the concen-
trations of these inhibitors do not occur in the equations. :

The available measurements concern the amidolytic activity, which is ex-
pressed as the equivalent amount of thrombin (nM). This means that, in addi-
tion to the equations describing the chemistry, an equation for the amidolytic
activity should be added. This equation is given in (6.30). It takes into account
that the amidolytic activity does not only depend on the activity of thrombin
(ITa), but also on the activity of the thrombin inactivated by asM (IlaasM).
It is known from [Hem93] that the inactivated form shows an activity of 55.6%
of the active thrombin.

In addition to the system of nine differential equations (6.21)-(6.29), we
need the same number of initial conditions. At the start (¢ = 0), the initial
concentrations of all state variables are zero, except for [PL], [II], [V] and [X].

6.2.5 Parameter estimation and model validation

The system of equations (6.21)-(6.39) contains 13 reaction constants. None of
these constants nor the initial concentrations of the coagulation factors [II],
[V] and [X] are known exactly, but they are assumed to be constant for each
experiment. These 13 reaction constants, plus the three unknown initial condi-
tions, are the quantities we want to determine; the unknown parameters. We
summarise these parameters in Table 6.6. From the current literature we know
upper and lower bounds for the concentrations of the clotting factors in normal
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plasma: i.e. [750nM,2200nM)] for II, [10nM,30nM] for V and [70nM,200nM] for
X.

The parameters are estimated in such a way that the model responses fit
the measurements in a least squares sense. Besides the estimates, confidence
regions for the parameters are derived. For more details about the numerical
solution of the model equations, minimisation of the least squares criterion,
and the confidence regions, the reader is referred to Chapter 1.

To get more insight in our process of model discrimination, we compare
each of the four options, (6.17)-(6.20), in combination with the reactions ry to
r9 from Figure 6.6 as they are described in (6.32)-(6.39). The expressions for
r9 to rg are obtained by a similar process of selection and validation as we will
describe below.

Under the assumption of (6.32)-(6.39) we immediately reject option (6.20),
because it implies that RV'V has no influence on the reaction scheme, which is
not in agreement with the experiments.

Under the assumption of (6.32)-(6.39), with one of the options (6.17), (6.18)
or (6.19) we compare the corresponding model performances shown in Table 6.5.
From this table it is obvious that the first alternative performs better than

rno | m| df S()
(6.17) | 16 | 104 | 6287x103
(6.18) | 15 | 105 | 7020x10*
(6.19) | 15 | 105 | 1005x10°

Table 6.5: Comparison for the three remaining options (6.17), (6.18) and (6.19).
We show the number of parameters (m), the degrees of freedom (df= N — m:
the number of measurements minus the number of parameters) and the least

squares sum (S (5)).

the other two, if we take only S(é\) into account. In order to decide if one
model performs significantly better than another, we use the F-ratio test (see
Appendix 1.C). To apply this test to the three remaining options for r;, we
take the reaction scheme from Figure 6.6 and r2 to 79 as in (6.32)-(6.39). The
relevant data for the F-ratio test are given in Table 6.5. The test of a significant
difference between (6.17) and (6.18) consists of constructing a super-model
with:

kcat x
= | ———= +kk1 ) [X] - [RVV]. .
= (X + b ) [X]- [RVV) (6.40)
The residual sum in case of the super-model is equal to 6091, which is needed
to compute the quantities (cf. (1.36)):

(6287 — 6091)/1

X = 50917103

=3.314, (6.41)
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in order to compare (6.40) with (6.17), and

_ (70201 — 6091)/2
~ 6091/103

to do the same for (6.40) and (6.18). We need to compare X with the upper
quantile Fp05(1,103) = 3.93 and Y with the upper quantile F05(2,103) =
3.08. The bound for Y is exceeded which means that the model with (6.17)
accounts significantly better for the phenomena observed. Therefore, r; from
(6.18) is rejected. Similarly (6.19) is rejected, because it performs even poorer,
as can be seen from Table 6.5.

Also, the other models which are derived from alternative schemes described
in the Figures 6.7, 6.8 and 6.9, have been tested. All these alternatives give rise
to models with more state variables and more parameters. However, following
the same strategy none of them turned out to perform significantly better.

= 542.056 , (6.42)

6.2.6 Results

An initial estimate for the parameters consists of an educated guess from the
existing biochemical literature ([Hem93] and references therein). These initial
values are given in Table 6.6. The final estimates, and the corresponding con-
fidence regions are also listed in this table. For details on the statistics, the
reader is referred to Section 1.6. The sum of squared residuals for the initial
estimates was 2.40 x 107, after minimisation it was reduced to 6.287 x 10%.

The measurements (120 in total and 30 for each experiment) and the model
responses for the final estimates of the parameters are given in Figure 6.10. The
plots show a very acceptable fit between the computed and measured values,
i.e. a fit within the measurement accuracy, which means that the model gives
a sufficiently accurate description of the measured quantities.

The independent and dependent confidence regions as they are listed in the
fourth and fifth column of Table 6.6 show that by far not all the parameters
can be estimated within reasonable accuracy. From the singular value decom-
position of the covariance matrix of the parameters (see Sections 1.5 and 1.6),
we can deduce that with the current model and the available measurements 5
parameters (or combinations of parameters) can be estimated with acceptable
accuracy. By making use of other chromogenic substrates, additional measure-
ments for V, and X, can be obtained in order to estimate more parameters
more accurately.

The parameter kms tends to become small during the parameter estimation
procedure and the idea came up to replace the corresponding reaction, r7 (cf.
(6.37)), with kks - [Xa], in order to reduce the number of parameters by one.
The corresponding model gave negative results for the concentration of factor
I, which is a consequence of adapting r7 ( the inequality [II] > kmy did not
hold on the whole time interval), and was therefore rejected.

The term 77 is inevitable, because without this term the production of
thrombin will not even start. This can be seen from the reaction scheme of
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para- initial final independent | dependent
meter est. est. confidence confidence

(Bins) ®) regions (A’ ) | regions (A" 6)
kcatx 5.00x10° 2.391x102 5.301x103 1.963 x 10t
kmx 4.00x102 | 2.365x10' | 5.776x10? 6.335x10°
kixa 2.50x10~! | 4.531%10° 1.408 x 10! 3.667x107!
kpr 1.00x1071 | 1.229x10%2 | 3.117x10° 4.152x10!
kpL 1.00x10! 8.014x10%2 | 2.032x108 2.711x102
kcaty 1.40x 10! 7.844x10° 2.166 %103 1.862x10°
kmy 7.20x10! 1.497x102 | 4.261x10% 3.666x10"
keat; 2.00x10® | 4.387x10! | 8.678x102 2.956 x10°
kmpr 2.10x10%2 | 6.225x%10! 2.147x102 2.073x10!
kcats 2.30%10° 1.240x10! | 2.596%102 9.150x10!
kmy 5.80x10! | 6.148%10”2 | 2.937x 10! 1.630x10?
kirrearrrr | 1.30x10° | 7.859x10~1 | 5.794x107! 4.423%x1072
Kirraaonr | 1.50x10° | 1.762x107! | 4.611x1072 2.673x10~2
Xini 1.33x102 | 8.125x%10! 1.729x 103 7.556x10°
Vini 1.67x10! 6.712x10° 1.663 x10% 5.821x10~!
I, 1.33x10° 5.093 x 102 2.677x102 2.112x10!
S() 2.40x10” | 6.287x10°

Table 6.6: Initial guess and final estimates for the parameters and their confi-
dence regions.

Figure 6.6 and the fact that the initial concentrations of II, and V, are zero.
Before the start of the experiments the expectation of the biochemists was that
the activation of prothrombin (II) would be mainly performed by prothrombi-
nase (PT) and that the contribution of X, would be marginal here. In other
words: r7 would be small compared to r¢ and therefore (after initiating the
reaction) could be neglected after a few seconds. By investigating the separate
contributions to the thrombin production for ¢ and 77 during the simulations,
we found that the contribution of r7 is about 50% of the production by r¢ and
therefore not negligible. This conclusion should, however, be strictly limited
to the case of RVV as a factor X activator and not be extrapolated to other
experimental setups.

Although the results of Table 6.6 may look poor with respect to the confi-
dence regions, it appears that with the current data we were able to discriminate
between many models in a systematic way and to come up with a model which
fits the observations satisfactorily.

6.2.7 Conclusions

In this study we compare a number of possible reaction schemes which describe
part of the blood coagulation mechanism. For each scheme mathematical model
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Figure 6.10: Plots of the measurements (‘+’) and the model responses for the
final estimates of the parameters from Table 6.6 over the 4 experiments with
decreasing concentrations of RVV.

equations have been derived and parameters have been estimated in order to
obtain a best fit with a set of experimental data. Depending on the complexity
of the model, and the quality of the fit, judged by the statistical criteria, we
were able to discriminate between many candidate models. The final model is
compact, meets the established knowledge in the field and fits the measurements
satisfactorily. A large number of more compact models were rejected on the
account of the measurements. More sophisticated models were rejected because
the increase of complexity did not account for a sufficient improvement of the
fit.

With the final model selected not only its parameter estimates are pre-
sented, which are optimal in a least squares sense with respect to the available
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data, but also the corresponding confidence regions. Additional experiments
can make the confidence regions smaller, while on the other hand they may
also lead to a more complex model in favour of one of the alternatives which
had to be rejected in this study.

In this sense the presented model can be a good starting point for ongoing
research and may show its value when more experimental data are available.
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6.3 Production by plant cells in suspension’

Symphytum officinale L. cells were grown in Erlenmeyer flasks at four different
temperatures: 15, 20, 25 and 30°C. A mathematical model of the culture
growth is presented. The intracellular and extracellular products are considered
in separate equations. An interrelation between fresh weight, dry weight and
viability is considered in the balances. The model includes a description of the
changes in time of wet and dry biomass, cell viability, substrate concentration
and polysaccharide concentration, both intra- and extracellular. The model
was tested by fitting the numerical results to the data obtained.

6.3.1 Introduction

Cell suspension cultures are of industrial interest because of their potential
for the controlled synthesis of high price natural products that are found only
in plants, and are usually obtained by extraction from the whole plant tis-
sue. There are only few commercial processes for the production of plant cell
metabolites in suspension culture. One of the obstacles in the scale-up of such
processes is the lack of adequate kinetic descriptions of the phenomena involved
in mathematical terms. Mathematical models are useful for predicting the be-
haviour and determining the optimum operating conditions for a process with
a minimum of experiments on large scale, which are very expensive. For the
case of a batch process, a mathematical model should be able to predict the
time-course of the culture in the bioreactor. Such models have proved to be
very successful in microbiological processes. The models proposed range from
very simple unstructured ones, which are able to predict only the variations
of biomass in time [Fra89, MA95] to complex structured models describing
the variation of many of the components in the cell, their interaction and the
formation of products [SD83].

The description of plant cells in suspended cultures presents some particu-
larities which complicate the description of the system in mathematical terms.
One of them is the existence of nonviable cells in proportions much higher than
in usual microbial cultures. A satisfactory description must therefore include
the balance of viable and nonviable cells in the bioreactor, as well as the product
formation. Several structural models have been proposed for the description of
plant cells [Pol86, Wei89]. Bailey and Nicholson [BN89] proposed the ratio of
fresh weight to viable dry weight to express the susceptibility of cells to shear
stress and to relate the loss of cell viability to this ratio. They fitted their
model to the production of alkaloids by cells of Catharantus roseus.

Some polysaccharides have therapeutic properties [GR86, Neu90] and are
an important commodity in the food industry [WB73]. There are some reports

t This section results from joint work with Ruha Glicklis and Jose Merchuk (Program of
Biotechnology, Department of Chemical Engineering, Ben Gurion University of the Negev,
Beer Sheva, Israel) and has been published in an almost identical in Biotechnology & Bio-
engineering, 57, pp. 732-740, 1998.
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of polysaccharide (PS) accumulation in liquid media of plant cells in suspension
[BKMA74, HPD87]. The extracellular polysaccharide (EPS) is either similar
to [BKMAT74] or different from the cell wall PS [YS77]. Differences in the com-
position of EPS were found among cells of different species [BKMAT74]. Cells
of Phleum pratense were shown to secrete fructans to the medium [HPD87].
Becker et al. [BHA64] reported that EPS production paralleled the growth of
cells of Acer pseudoplatanus in batch cycle. As far as we know, no one has
characterised further the kinetics of PS production in cell suspensions.

In this case study, a mathematical model for PS production in a cell sus-
pension of Symphytum officinale L. is presented, making use of the elements of
expansion and lysis phase as proposed by Bailey and Nicholson [BN89]. The
intracellular and extracellular products are considered in separate equations.
Furthermore, the interrelation between fresh weight, dry weight and viability
is considered in the balances. The unknown parameters of the mathematical
model were evaluated by fitting its results to experimental data obtained in
cultures grown in Erlenmeyer flasks (at four different temperatures). The state
variables of the mathematical model include the measured quantities (i.e. con-
centrations of substrate, fresh and dry weight, intracellular and extracellular
PS, and cell viability).

6.3.2 Materials and methods

The S. officinale cell suspension was initiated from callus and was grown in MS
medium [MS62], supplemented with 0.2 mg/L 2,4-Dichlorophenoxyacetic acid, -
0.2 mg/L kinetin, 100 mg/L p-chlorophenoxyacetic acid, and 30 g/L sucrose.
The pH was adjusted to 5.8. Cultures were subcultured every 17 days using a
10% (v/v) inoculum and maintained in 250 mL Erlenmeyer flasks containing
100 mL. Cultures were incubated in the dark at 25°C on a shaker at 150 rpm.

Observation under a microscope of the samples taken showed that during
the first stage of the culture most of the population were single separate cells,
with some pairs and trios. After the tenth day the number of those formations
increased and some clumps of a slightly larger size could be seen as well, of the
order of ten cells. Some chains of four-five cells could be seen. Nevertheless,
most of the cells stayed single.

Every 2-3 days, cells were harvested from three Erlenmeyer flasks and fil-
tered by buchner funnel. The filtrate was kept for sugar and PS determination.
After determining the fresh weight, viability was determined by flourocein di-
acetate dying [Wid72]. Dry weight was determined by placing samples in an
oven and maintained at 70°C for 10 hours.

For determining intracellular polysaccharide (P;), dry cells were ground
with a pestle and mortar and extracted first by boiling in de-ionised water for
10 min and then by stirring for 3 h at room temperature. Cell debris was
removed by centrifugation at 1000 rpm. The supernatant as well as the filtrate
(extracellular fluid) of each fresh cell harvest, for the extracellular polysaccha-
ride (P,) determination, were frozen at -18°C and then dried by lyphilysation.
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Tanins were removed by 2% PbSO, and after centrifugation at 5000 rpm extra
lead was removed by 1% oxalic acid, followed by another centrifugation at 5000
rpm. The supernatant was frozen and lyphilysed once more. The dry material
was dissolved in 2 mL of de-ionised water and polysaccharides were precipi-
tated in 10% (v/v) ethanol after storage for overnight at 4°C. Pellets were
lyphilysed and weighted for the determination of intracellular and extracellular
polysaccharides.

Sucrose concentration was evaluated by colorimetric measurement of reduc-
ing sugars after hydrolysis [CK86].

6.3.3 Model development

Conceptual Model
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Figure 6.11: Schematic representation of the model assumed for cell growth
and polysaccharide production.

The structured kinetic model initially proposed, accounting for growth, cell
expansion and lysis, polysaccharide formation, secretion and hydrolysis in the
medium, is shown schematically in Figure 6.11. Viable cells consume the sub-
strate present in the medium, and may either produce new viable cells, trans-
form into nonviable cells or undergo lysis. The nonviable cells are generated
from the viable cells, and disappear due to lysis. It is assumed that only vi-
able cells produce PS. Furthermore, substrate consumption for maintenance is
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neglected, and therefore only viable cells consume sucrose, for both biomass
generation and product synthesis. Viability (V) is defined as the fraction of
cell dry weight that is viable (FDA staining), and takes values between 0 and
1. The model considers that the cell lysis causes decay in nonviable dry weight
and viable dry weight at different rates, both being expressed by first order
kinetics with constants kg, k;. Polysaccharide is synthesised inside the viable
cells and is secreted to the medium, where it is partially hydrolysed. The pro-
duction rate of polysaccharide may be proportional to the growth rate (growth
associated product) or independent of it. Both possibilities were considered
and it was concluded that in the present case the polysaccharide production
rate is growth associated.

Biomass balance:
The balance on viable dry weight is written as follows:

dXvd _ [ BmazS _
dt = [ks+S

ki(Xy/Xva)? - de Xva - (6.43)

It considers that dry mass is produced at a specific growth rate which can be
expressed by a Monod type kinetics with constants piy,q; and ks. The second
term in Eq. (6.43) represents the transfer of viable cells to nonviable cells at
a rate which is first order in viable cell concentration, and second order in the
following ratio defined by Bailey and Nicholson [BN89]:

X = Xf/de , (644)

which is supposed to be an indication of cell size expansion, assuming all cells
are of the same dry weight. The mentioned authors found that this kinetic form
gave the best fit for their data. The same was found for the data presented
here. The third term in Eq. (6.43) represents the consumption of the viable
dry weight by lysis at a rate which is first order in the viable dry weight.

Nonviable dry weight is generated from the viable dry weight, as shown in
Eq. (6.43), and is lost by lysis with first order kinetics, which yields:

dx.
dt"“ = k(X /X0a)? Xod — Ky Xna - (6.45)

The total dry weight is the sum of the viable dry weight (X,4) and nonviable
dry weight (X,q4):

dXq _ BmazSV
dt ks+ S

—kaV —Ky(1=V)| X4, (6.46)

where viability is defined as the ratio of viable dry weight and dry weight:

V= Xya/Xq . (6.47)
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Substrate balance:

Given the initial composition of the medium, sucrose is the limiting substrate.
It has been suggested [UIFN74], that immobilised invertase on the cell wall
catalyses the hydrolysis of sucrose into glucose and fructose, which are absorbed
into the cell.

The product synthesis rate can be considered growth associated. As a
consequence, Eq. (6.48) describes the conversion of S into dry weight with a
constant yield Y;; and into polysaccharide according to a Monod type kinetics.
It is assumed that no sucrose is consumed for maintenance:

9§ _ _Nmaws Xova L ks Py Xyq

dt ~ (ks+S) Yee kp+Po+S%/k.’
The first term in the rate equation is the consumption for growth appearing in
Eq. (6.43), divided by the yield, and the second term represents the production
of S by hydrolysis of polysaccharide product in the medium, which will be
justified in the next paragraphs. There is no need to account here for the
consumption of S for P; synthesis, since in this growth-associated scheme Y,
accounts for all substrate consumption.

(6.48)

Intracellular polysaccharide balance:

It is assumed that the P; concentration results from a balance between for-
mation rate and the secretion to the medium. Polysaccharide concentration
inside the cell will increase with a rate that is proportional to the growth rate
of biomass. Assuming that substrate transfer into the cell is not limiting, so
that S concentration inside the cell is the same as in the bulk of the medium:

Ysp bmasS Xy
T(PS synthesis) = },‘:: HkSTSd . (649)

Equation (6.49) is given in mass of polysaccharide produced referred to the
whole volume of the culture.

The rate of secretion of polysaccharide to the medium was assumed to be
proportional to two factors: 1) To the difference between the actual concen-
tration of polysaccharide inside the cell and its concentration in the medium.
2) To the interfacial area of the cells. Assuming that the interfacial area is
proportional to the fresh cell concentration, Xy (which will be close to reality
if the distribution of cell aggregates is constant), and that it is proportional to
the reciprocal of its size (which is represented by X, Eq. (6.44)), the rate of
polysaccharide secretion can be expressed as follows:

dp _ Ysp /J/mtws
el [YM hs 1S ka(1 — Po/Py)| Xya +
Ys'p Hmams ’
[E Ro+ S —ka'(1 - Pg/Pl)} Xnd , (6.50)

where the second term of the right-hand member represents the parallel phe-
nomenon in the nonviable cells.
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Extracellular polysaccharide balance:

The secretion process is responsible for the transfer of polysaccharide from the
cell to the medium. The first term in Eq. (6.51) represents the polysaccharide
transferred from the cells. It is assumed that the accumulated polysaccharide
is partially hydrolysed in the medium in order to supply glucose for mainte-
nance. This parallels the phenomenon that occurs in the intact plant where
polysaccharide is hydrolysed by polysaccharide hydrolase enzyme to rebuild
the plant in the growth season [EJ68]. When the sucrose level is too high, the
fraction hydrolysis is inhibited. The second term in Eq. (6.51) represents the
polysaccharide hydrolysis with constants k4, k, and k. for growth, saturation
and inhibition respectively. This type of inhibition kinetic had been suggested
by Andrews [And68] for microbial cultures. Consequently we have
dP; kq Py Xya

—f_k — " - nd = 77 . D | a2/5 °
a1 = P/ P)Xua + ka' (1= Po/ Po) Xna = 1=

= (6.51)

Fresh biomass balance:

Increase in fresh weight is due to both cell growth and expansion. Knowledge
of Xy is not required by the equations modeling the growth of the cells, but
is needed to model product synthesis and excretion. The experiments run in
our laboratory showed that for all the temperatures and both in flasks and
bioreactor, X4 would level off after certain period, and then decrease. This
coincides with a sharper decrease in viability. The fresh weight, on the other
hand, keeps increasing continuously. This seems to indicate that a relationship -
exists between cell viability and expansion.
It was found that the expression used by Bailey and Nicholson [BN89):

d—jii=ZVXd+%XdX , (6.52)
where Z is a constant, allowed a satisfactory fit of our experimental data,
and was used to provide the link between dry and fresh biomass. After some
algebraic manipulation, Eq. (6.60), as shown later, is obtained.

6.3.4 Experimental results and final model confirmation

The model as derived for this case study and the corresponding measurements
built a parameter estimation problem which can be solved by the techniques
as introduced in Chapter 1 to 5. The process of parameter estimation for
optimal fitting of the experimental results did not only render the numerical
values which allow the mathematical modeling the culture growth. It was
also instrumental in evaluating the proposed model. The first conclusion that
could be obtained from the mathematical model was that the production of
polysaccharides was a growth associated process. When the optimal value
obtained for a parameter was very small, an F-ratio test (see Appendix 1.C)
was performed in order to decide whether the parameter could be omitted. If a
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parameter can be omitted without a significantly poorer fit, it was considered
as an indication that the model itself had to be modified in this respect, and
that the parameter had to be eliminated from the formulation. All the Monod
type kinetics proposed initially were finally replaced by first order kinetics,
without affecting the fit. In the case of the growth rate an actual first order
specific reaction rate with respect to both X,4 and S can be defined, with a
maximal growth rate pmeze- Since ks > S, it is related to the parameters of
the initial model as follows:

Hmaza = Nmam/kS ~ ,U'ma:c/(kS + S) . (653)
Similarly, for polysaccharide hydrolysis to S, since k, > [Py + S?/k,]:
kio = k4/kp ~ k‘4/(kp + P+ 52/kc) . (654)

The value of the decay constant for viable cells, k4, was found to be negligi-
ble at low temperatures. As a consequence the term of consumption of cells
could be eliminated in the balance of viable cells in Eq. (6.43). This is not just
a simplification of the mathematical formulation, but —more importantly— an
indication on the mechanism of the process. In particular, this indicates that
viable cells are much more resistant to shear stress and other environmental
damages, and mainly nonviable cells undergo lysis in the culture at low temper-
ature. In addition to this, the results of the parameter optimisation done with
the model suggest that the nonviable cells do not take part in the production
of polysaccharide product (Yy, = 0; ka' = 0).
The final model, after all modifications, can be formulated as:

dX
d;d = [(:u‘maxas) - ki(Xf/de)2 - kd] Xod (655)
d‘;(:d = kind(Xf/de)2 s | (6.56)
ds
FT = [ksaPo - (Mmaa:as)/nz] Xovd (6.57)
dP,
d_tl = [(BmazaS)Ysp/Yez) — ka(1 — Py/P1)] Xua (6.58)
dP
5 = lka(l=Py/P) —kiaP) Xoa (6.59)
dXx
d_tf = ZXya+ [Xnd(lffmaa:aS Xvd — kiX,,d(Xf/de)z —kaXya)—
Xoa(kiXva( X5/ Xva)? — k3 Xna)] X/(XaXoa) , (6.60)
V = Xw/Xa, (6.61)
Xi = Xpa+ Xna - (6.62)

Measurements for the state variables: S, Xy, X4, Pi, P» and V, taken
at different temperatures are available. The parameters to be estimated are:
HUmazas ki, Kd, k@, kaa, Ysz, Z and Y,p. As fitness criterion we took the sum of
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squared discrepancies (recall (1.4)). The weights are proportional to the accu-
racy of the measurements, as indicated by the error bars in Figures 6.12-6.15".
The choice for the weights will be highlighted at the end of this section. The
optimal parameter values at each temperature, the independent and dependent
confidence regions (cf. (1.25) and (1.26), respectively) for @ = 0.05 are shown
in the Tables 6.8-6.11.

Figure 6.12 shows model response curves and experimental data for S. offi-
cinale culture growth at 30°C. The top part of Figure 6.12 shows the profiles of
sucrose S, and fresh biomass X;. For S and X the mean of three experimental
measurements and the standard deviations are shown. The curves correspond
to the model responses, evaluated for the optimal, i.e. estimated values of the
parameters as shown in Table 6.8. The descent of the sucrose concentration
and the increase of the wet biomass are closely fit by the model.

The middle part of Figure 6.12 displays the experimental and calculated pro-
files of dry biomass concentration X4, the concentration of viable dry biomass
Xya and the concentration of nonviable dry biomass X4, at 30°C. A strong
decrease in the concentration of viable dry biomass is seen after 20 days. As will
be seen in the following graphs, this effect diminishes at lower temperatures.
The model follows this trend with a satisfactory fit. The viability, Eq. (6.47),
is represented in the bottom graph of Figure 6.12, together with the concen-
tration of both intracellular and extracellular polysaccharide. The figure shows
that a decrease in both P, and P, is observed, starting approximately at the
same time as the decrease in viability.

The graphs of Figure 6.13 display similar results of experiments run at
25°C and the corresponding calculated profiles. In a similar way the results
corresponding to 20°C and 15°C' are shown in the graphs of the Figure 6.14
and 6.15, respectively. In all of these cases the mathematical model is able
to represent adequately the experimental results. An exception is the curve
representing the substrate concentration S in the runs at 15°C, in the first
part of the experiment (till approximately 15 days). This seems to be due
to an experimental error, since there is no reason for an actual increase of
sucrose in the medium. The optimal values found for the constants of the
kinetic model are shown, together with the corresponding statistical data, in
Tables 6.9 to 6.11 for 25°C, 20°C and 15°C), respectively.

Comparing the profiles of the state variables, it can be seen that as the
culture temperature decreases, the rate of decrease of sucrose decreases. The
final concentration of wet biomass is higher at higher temperature.

The decrease in cell viability is strongly related to temperature. The higher
the temperature, the larger the loss in viability. At 15°C almost no losses are
detected during the culture period. This can be appreciated not only in the
graph of viability, but also in the profiles of biomass.

1For X4 and X, 4 no measurements are available. The position of corresponding markers
in the figures is based on (6.61) and (6.62), but does not influence the estimation process.
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S, 0.1°Xt (gfl)

Xd, Xvd, Xnd (g/l)

vV, P1, P2

Time (day)

Figure 6.12: Measurements and op-
timal fit (cf. Table 6.8) of sucrose
S and fresh biomass Xy (top), dry
biomass X4, viable dry biomass
Xya and nonviable dry biomass X4
(middle), cell viability V, intracel-
lular polysaccharide concentration
P, and extracellular polysaccharide
concentration P, (bottom) at 30°C.

S, 0.1°Xf (afl)

Xd, Xvd, Xnd (g/l)

V, P1, P2

s s s L
5 10 15 20 25 30
Time (day)

Figure 6.13: Measurements and op-
timal fit (cf. Table 6.9) of sucrose
S and fresh biomass Xy (top), dry
biomass Xy, viable dry biomass
X4 and nonviable dry biomass X4
(middle), cell viability V, intracel-
lular polysaccharide concentration
P, and extracellular polysaccharide
concentration P, (bottom) at 25°C.
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S, 0.2°Xt (gfl)
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Figure 6.14: Measurements and op-
timal fit (cf. Table 6.10) of su-
crose S and fresh biomass Xy (top),
dry biomass X, viable dry biomass
Xyq and nonviable dry biomass X4
(middle), cell viability V, intracel-
lular polysaccharide concentration
P, and extracellular polysaccharide
concentration P, (bottom) at 20°C.
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Figure 6.15: Measurements and op-
timal fit (cf. Table 6.11) of su-
crose S and fresh biomass X (top),
dry biomass X, viable dry biomass
X4 and nonviable dry biomass X ,,4
(middle), cell viability V, intracel-
lular polysaccharide concentration
P, and extracellular polysaccharide
concentration P, (bottom) at 15°C.
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The decision with respect to the weights was taken by the experimentalists
on the basis of the error bars and their knowledge on the experimental setup
and equipment used. The weights they came up with and are used throughout
this case study, are given in Table 6.7.

We used both these weights and estimated weights as described in Sec-
tion 3.4. We still assume the measurement errors to be independent. The
estimated weights are given in Table 6.7, where it can be seen that, except
for an unimportant factor of about 10, the weights are close to each other.
The parameters, estimated in this way, show a close correspondence to the

Component | Exp. weight | MLE weight
S 0.03 0.39
Xy 0.01 0.11
X4 0.1 2.3
P 3.0 28.3
P, 3.0 62.6
v 3.0 30.1

Table 6.7: Weights for each measured component derived by the experimental-
ists and calculated as in Section (3.4).

estimates we had already (within the dependent confidence regions) and the
changes in plots of the response variables were marginal. The alternative ap-
proach needed 11 iterations to converge, where the approach from Chapter 1
needed 10 iterations.

6.3.5 Conclusions

Comparison of experimental data of growth Symphytum officinale L. cells in
Erlenmeyer flasks at four different temperatures showed excellent agreement
with a mathematical model proposed. The model describes changes in time of
wet and dry biomass, cell viability, substrate concentration and PS concentra-
tion, both intra- and extracellular. The model assumed that the production of
polysaccharides is growth associated. Furthermore, the analysis of the mathe-
matical model led to the conclusion that the nonviable cells are not active in
product formation, and that mainly nonviable cells undergo lysis during the
growth of the culture.

The model as presented is a very useful tool for simulation of growth of
plant cells cultures and polysaccharide synthesis rate. The comparison of a
weighted least squares approach with a MLE approach with unknown weights
showed a close agreement. This means that, if no a priori knowledge about the
measurement error would have been used, it would not have affected the final
answers significantly. In other words: the a priori error assumption matches
the a posteriori error structure.
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Nomenclature used in Section 6.3

ka Secretion constant in the viable cells (gP * gX ! * day™?).

ka' Secretion constant in the nonviable cells (gP * gX ™! * day™?').

ke Inhibition constant (gS* * gP~! * L™1).

ka Decay constant (day~?!).

k; Mortality constant (day™1).

kp Product hydrolysis saturation constant (gP * L™').

ks Growth saturation constant(gS * L™1).

ks Specific product hydrolysis rate (¢S * gX ™! * day™1).

k4o Specific product hydrolysis rate, final model (L * gX ™! * day™").

P Intracellular polysaccharide concentration per volume of culture (g * L™1).
P, Extracellular polysaccharide concentration per volume of culture (g * L™1).
S Sucrose concentration (g L™').

v Viability (-).

X4 Dry weight (g * L™!).

Xnd Nonviable dry weight (g * L™1).

Xovd Viable dry weight (g * L™1).

Xy Fresh weight (g * L™!).

Yoz Biomass yield (gXg4 * gS™1).

Yep Production yield in the viable cells (gP * gS™1).

Ya, Production yield in the nonviable cells (gP * gS~1).
A Expansion coefficient (day™!).

Mmaz  Specific growth rate (day™?).

Wmaze Specific growth rate, final model (L * gS~! * day™?).

X Size parameter, given by Equation (6.44) (-).
Parameters Units Value | Ind.conf.reg. | Dep.conf.reg.

Mmaza X100 | L-gS™1.day™! 8227 | 2.251 0.724
k; x10° day™?! 3.6 2.1 1.0

kq x10% day! 23.96 | 42.24 6.277
ka x102 | gP-gX~!.day™' | 4.217 | 2943 1.824
ksa x10® | L-gX~'-day~! | 10.33 7.361 1.706
Yz 9Xq-9S7! 0.398 | 0.232 0.036
VA day~! 1.473 | 0.363 0.196
Yep gP-gS~! 0.062 | 0.023 0.004

Table 6.8: Optimal parameters for Erlenmeyer flasks culture at 30°C.
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Parameters Units Value | Ind.conf.reg. | Dep.conf.reg.

Mmaze X102 | L-gS~1-day~! 8.093 | 3.523 1.090

k; x10° day~! 11.7 7.1 2.8

kq x10% day~! 3.378 | 74.91 9.179

ka x102 | gP-gX~'-day~' | 3.930 | 4.433 2.299

k4a x10® | L-gX~!-day™' | 13.59 | 15.96 3.40

Yz gXq-gS7! 0.372 | 0.355 0.047

Z day! 1.722 | 0.633 0.304

Yip gP-gS™1 0.060 | 0.39 0.062

Table 6.9: Optimal parameters for Erlenmeyer flasks culture at 25°C.

Parameters Units Value | Ind.conf.reg. | Dep.conf.reg.

Mmaza X102 | L-gS~!-day™! 7.470 6.594 1.884

k; x10° day! 12.2 15.6 94

k4 x10% day™! 0.000 | 120.7 21.24

ka x10%2 | gP-gX~!-day™! | 2.000 0.000 0.000

k4o x10% | L-gX~ 1 -day™! 1.04 8.87 4.02

Yu gXq-9S™! 0.318 | 0.531 0.106

Z day~1 1.050 0.699 0.476

Yo gP-gS~! 0.042 0.022 0.007

Table 6.10: Optimal parameters for Erlenmeyer flasks culture at 20°C.

Parameters Units Value | Ind.conf.reg. | Dep.conf.reg.

Mmaza X10° | L-gS™'-day~! | 2933 | 3.757 0.344
k; x10° day~1 4.5 4.9 2.9

kq x103 day™! 0.000 | 78.10 0.841
ka x102 | gP-gX~'-day=' | 1.298 | 2.086 0.841
kaa x10% | L-gX~1'-day=' | 0.000 6.429 1.590
Yz 9Xq-9S~t 0.327 0.582 0.037
Z day™! 0.675 0.341 0.234
Yo gP - gS-1 0.042 | 0.034 0.006

Table 6.11: Optimal parameters for Erlenmeyer flasks culture at 15°C.
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6.4 ZLA-kinetics

In this section we discuss a problem which originates from the Akzo Nobel
research laboratory in Arnhem, The Netherlands. A slightly different model
describing the same chemistry is also a part of the test set for IVP solvers
[LSV96]. The names of the chemical compounds are fictitious. Due to the
origin of this problem no background on the chemisiry is given.

6.4.1 Description of the chemical reactions

In the process under consideration two chemical components, denoted by FLB
and ZHU, are mixed under an inflow of carbon dioxide. The product of interest
remaining at the end of the reaction is ZLA. The reaction mechanism, as given
by Akzo Nobel, reads:

2FLB+ 1CO; *, FLBT+ HO, (6.63)
ZLA + FLB ké FLBT + ZHU , (6.64)
2
FLB+2ZHU+ CO,; ks, LB+ nitrate , (6.65)
FLB+ ZHU < FLB.ZHU, (6.66)
FLB.ZHU+ 1CO, ks, ZLA+ H,O0 . (6.67)
The mechanism of (6.66) is assumed to describe a fast equilibrium:
[FLB.ZHU)|

Ks= —or—rw-——. .

*= [FLB + [ZHU] (6:68)

The square brackets denote the concentration of a species in mol/l. We iden-
tify the concentrations [FLB], [COs], [FLBT], [ZHU), [ZLA] and [FLB.ZHU)
with the time dependent state variables yi,...,ys. The reaction rates to be
estimated, ki, k2, k3, k4 and K, are denoted by the vector §. The fast equilib-
rium is taken care of in Section 6.4.2. For this case study we will not focus on
the process of model discrimination and validation, therefore we only give the
resulting reaction kinetics:

ro= Oixyix V2, (6.69)
re = Oyxyz3xys, (6.70)
r3 = O5%xy *xys, (6.71)
ra = O3%y; xy3, (6.72)
rs = O4%yEx\/Us . (6.73)

Besides the above reaction mechanism, there is an inflow of carbon dioxide
(given in ml/min):

Fim = 22400  Vix kA + (’Li'{o—"’) - [002]) . (6.74)
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Here we introduced the following abbreviations: Vr: reaction volume; klA: mass
transfer coefficient; H: the Henry constant (=737 bar * [/mol) and p(COs)
denotes the partial carbon dioxide pressure. Vr, H and p(COs) are a priori
known constants; klA is estimated in the parameter estimation procedure.

6.4.2 Problem description of ZLA-kinetics

Combining the reaction scheme (6.63)-(6.67) with kinetics from (6.69)-(6.73),
the evolution of the process is described by the system of differential e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>