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Nomenclature 

symbol meaning dimension 

a probability of excess 1 
lti pre-exponential factor 1 
rj_ relative intrinsic curvature 1 
rll relative parameter-effect curvature 1 
6,_D dependent confidence region 1 
6.1 independent confidence region 1 
€ vector of measurement errors N 
0 vector of unknown parameters or m 

regression variables 
0* true parameter vector m 
0 estimated parameter vector m 
,\i i-th singular value 1 
a, a2 standard deviation and variance, respectively, 

of a normal distribution 
T discrepancies related to the independent variable N 
x2 

i Chi-square distribution with i 
degrees of freedom 

Ci component of i-th measurement (1 :S Ci :S n) 1 
d(0) (unweighted) discrepancy vector N 
D(0) matrix with unweighted discrepancies rxq 
E expectation 
Ei activation energy 1 
Fa(i,j) upper a quantile for Fisher's F-distribution 1 

with i and j degrees of freedom 
H Hessean1 matrix Nxmxm 
J Jacobian matrix Nxm 
Jadd Jacobian matrix due to additional measurements Naddxm 
K number of constraints with respect to the 1 

parameters, 0 
number of independent variables 1 

m number of unknown parameters 1 

1 Many people write Hessian, which does not seem to honour the German mathematician 
Ludwig Otto Hesse (1811-1874) and it is also not consistent (compare e.g. Boolean). 



vi Nomenclature 

symbol meaning dimension 

M moment matrix qxq,2qx2q 
n number of dependent variables 1 
N number of measurements 1 
N(µ, V) Gaussian or normal distribution with mean µ 

and covariance matrix V 
Nadd number of additional measurements 1 
NMC number of Monte Carlo (MC) simulations 1 
p probability 1 
q number of measured components ( q ~ n) 1 
r number of samples ( qr 2:'. N) 1 
R(O) (nonlinear) constraints on the parameters K 
s estimator or estimate of a 1 
t independent variable (for the special case that 1 

l = 1, x is replaced by t) 
V covariance matrix of the measurement errors NxN,qxq 

or 2qx 2q 
Wi weight corresponding to the i-th measurement 1 
X vector of independent, regression or explanatory l 

variables 
y vector of dependent or response variables n 
y' derivative of y with respect to t n 
Yi i-th measured value 1 
y vector of (weighted) discrepancies2 N 

2It should be emphasised here that the discrepancies, di(fJ) = Ye; (x;, fJ)-y; (i = 1 ... , N), 
depend on the parameters and that the residuals are the discrepancies evaluated for the 
estimated values of the parameters, d(B). 



Chapter 1 

Introduction and Outline 

Many processes from (bio-)chemistry, geo-sciences, biology, electrical and me­
chanical engineering or econometrics can be mathematically described by sys­
tems of differential algebraic equations (DAEs). These equations describe the 
dynamical behaviour of the processes under consideration. For example, in the 
case of a chemical reaction, concentrations change in time due to chemical in­
teractions between the substances involved. Then the independent variable is 
time. If the concentrations are not constant over the reactor, we have additional 
space coordinates as independent variables and end up with partial differen­
tial equations (PDEs). This publication will only consider systems with one 
independent variable, except for a single example where a problem described 
by PDEs is reduced to a system of DAEs. The dependent variables -still con­
sidering a chemical reaction- correspond to the concentrations of the chemical 
substances of interest during the reaction. Starting from a given initial situa­
tion, i.e. known values of the state variables at a given initial time, the reaction 
begins. The solution of the model equations gives an approximation for the 
concentrations of the substances in time. With the exception of class room 
examples, models from real-life applications yield equations which have to be 
solved with the use of dedicated numerical software, often in combination with 
powerful hardware. 

The model of interest, the one which gives a satisfactory description of the 
process under consideration, is nearly always the result after a period with 
intensive and extensive communication between the experimentalist and the 
modeller. The evolution of a model takes time and asks for skills and experience 
of both the experimentalists and the mathematical modellers. The research 
described here not only focuses on mathematical tools which make the process 
of modelling less time consuming and more transparent, but -in a number 
of cases- it also reflects this process of interaction between experimentalist 
and mathematician. Further, it deals with the software aspects and actual 
implementation of a computer program which enables the experimentalist to 
investigate the mathematical model easily. 

A mathematical model, or a set of candidate models is based on experience 
and physical insight from the application domain. The model equations are 
set up in such a way that their outcome is in accordance with well established 
facts of the physical process studied. In order to validate models, to discrim-
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inate between models or to calibrate models we need to compare the model 
outcome with measurements. We suppose that the final model gives a suffi­
ciently precise description of the process under consideration, which implies 
that no model errors are present or that they can be neglected. Of course, for 
practical problems this seems an ideal situation and one might think it is a 
naive approach, but the absence of better alternatives and the valuable results 
in many real-life cases justifies this method. We do not believe there a is 'true' 
model, but we assume that it is possible to study a model whose model errors 
are an order of magnitude smaller than the uncertainties in the measurements. 

In the case of parameter estimation or model calibration, we calculate the 
best fitting model from a continuum of models. We consider models which 
are expressed mathematically by systems of differential algebraic equations 
(DAEs) with a certain degree of freedom, expressed by the presence of a set 
of parameters. If we return to the example from chemistry, these parameters 
may correspond with unknown reaction rates or unknown initial concentra­
tions, which cannot be obtained by means of direct observation or from other 
resources. These unknown parameters are computed such that the discrepan­
cies between the theoretical model output and the measured data are minimal 
in some sense: the calculated, theoretical values or model responses should fit 
the measurements. The choice for a certain fitness criterion depends on the 
knowledge and the assumptions about statistical properties of the measure­
ment errors. After fitting the model to the data, not only the final estimates 
of the unknown parameters are of interest, but also information about their 
reliability. When we adjust parameters we have -strictly speaking- a different 
model, but we will not make this distinction throughout this book. We con­
sider two models, M1 and M2, with their corresponding vectors of unknown 
parameters 0 and ¢, respectively, to be the same, if for every choice of 0 there 
exists exactly one¢ such that the models M1(0) and M2(¢) yield the same 
model responses. This means that dim(0)=dim(¢) and that reparametrisation 
via a bijective mapping does not change the model, although it may have other 
consequences, e.g., for the nonlinearity of the parameter estimation problem. 

Model validation, model reduction and model selection is a systematic pro­
cess that eventually leads to the recommendation of one model or a set of 
models that is (i) consistent with the data, (ii) in accordance with well estab­
lished facts concerning the physical process and (iii) not unnecessarily complex. 
In each step of the process the lack of fit is expressed in statistical quantities 
on the basis of which we accept or reject a model, simplify it or choose between 
models. This process is closely related to the design of experiments. If on the 
basis of the available data no decisive answers with respect to model selection 
can be derived, advice with respect to a setup for additional experiments is 
needed. 

Much research has already been carried out to estimate unknown param­
eters by fitting a numerical solution to a set of experimental data. Many 
publications consider the case where the model response can be obtained rel-
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atively easily: the state variables can be written explicitly as function of the 
independent variables and the parameters [Bar74, Rat83, SW88, BW88]. In 
these references, the emphasis is rather on the theoretical and statistical aspects 
than on practical implementation and numerical aspects of nonlinear regression 
with models given by DAEs. The latter case is considered in more detail in 
[Hem72a, Boc85, Sch85]. Although some authors might give slightly different 
definitions, parameter estimation in dynamical systems is essentially the same 
as nonlinear regression where the model is given by a set of DAEs. In cur­
rent literature it seems that there is still a gap between numerical mathematics 
and nonlinear regression analysis. In this book I try to fill this gap partially 
by merging ideas from the whole spectrum of tools and ideas involved in the 
broad field of parameter estimation in nonlinear dynamical systems with an 
accent on normal measurement errors. 

In this first chapter we start with a mathematical formulation of our pa­
rameter estimation problems in DAEs. The measurement errors are assumed 
to be normally distributed, stochastically independent and only present in the 
dependent variables. The variances of the measurement errors are known, or 
known up to a constant of proportionality. Based on fundamental statistics and 
under these conditions we have to minimise the sum of the squared discrep­
ancies between model responses and measurements. This approach is known 
as Ordinary Least Squares ( OLS) estimation. Thereupon, in this chapter we 
present numerical techniques to solve this problem. Two additional sections 
about the statistical background and constraints on the parameters are followed 
by two introductory case studies from biochemistry and population dynamics. 

In Chapter 2 we deal with total least squares (TLS), where the structure 
of the chapter is analogous to the structure of the present chapter on OLS. 
In the case the measurement errors with respect to the independent variables 
are zero or negligible, OLS approaches can be used. If this is not the case, 
the TLS approach should be applied instead. The extensions from OLS to 
TLS are described in Chapter 2. A stable and efficient algorithm to deal with 
TLS estimation is presented, in combination with an overview of the additional 
consequences concerning the statistical background and parameter constraints. 

In the case the measurement errors are known to have a normal distribution, 
but their variances -and therefore the weights- are not known a priori, these 
quantities can be estimated together with the parameters if a few assumptions 
are made. This case with unknown weights, both for OLS and TLS, with 
independent and dependent measurement errors is dealt with in Chapter 3. In 
this chapter we also introduce an algorithm to compute L1-estimates, when 
the sum of the absolute discrepancies has to be minimised. This approach is 
used if the measurement errors come from a Laplace distribution. It is known 
to be more robust -i.e. less sensitive to outliers- than least squares methods. 
This characteristic makes it attractive in combination with a least squares 
approach, as a kind of two-stage method, when no good initial estimates for 
the parameters are available. The first guess for the parameters is improved 
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by minimising the sum of absolute discrepancies, subsequently the resulting 
L1-estimate is used as an initial parameter guess for least squares estimation. 

It should be emphasised that the statistical results concerning the confi­
dence regions for 01S and TLS estimates are obtained by linearisation. For 
most nonlinear problems this gives quite accurate information in a sufficiently 
small neighbourhood of the minimum. But if we restrict ourselves to this infor­
mation from the linearisation it can be very misleading for strongly nonlinear 
problems. It may turn out that the confidence region of interest is no ellipsoid 
at all -as follows from linear theory- but a non-convex and irregular region. 
Therefore we have to verify how accurate the linear approximation is. More in­
formation concerning nonlinearity, bias of the estimates, curvature and related 
topics is found in Chapter 4. 

Chapter 5 deals with optimal experiment design. Given a model, a set of 
estimated parameters and the corresponding confidence regions, it deals with 
the question which additional measurements should be performed to increase 
the reliability of the parameter estimates. Or, given two models, which mea­
surements should be performed to be able to discriminate between the two 
models. 

A variety of case studies, from (bio-) chemistry, physics, econometrics, is 
described in Chapter 6. All case studies have been carried out in collaboration 
with researchers from other disciplines. In most cases they supplied the data 
and a number of possible models. After receiving the first candidate model(s) 
and the data, usually numerous improvements have been made regarding many 
aspects of modelling in order to come up with an appropriate model. · 

The setup and the implementation of the software used for the computations 
is described in Chapter 7. The chapter starts with a description of the way 
problem-dependent input is specified: the format for the mathematical model 
and the experimental data. The software contains computer algebra routines 
for automatic generation of model dependent program parts and numerical 
routines for the solution of the differential algebraic equations, minimisation 
of the fitness criterion and statistical analysis of the computed estimates. The 
DAE solver is geared to solve these model equations in combination with the 
sensitivity equations. A graphical user interface (GUI) has been developed to 
steer through the computation in order to influence the precise formulation 
of the parameter estimation problem during the calculation, and to view the 
numerical results by direct visualisation. 

1.1 Mathematical formulation 
The model equations are given by the system of differential algebraic equations 
(DAEs), 

Ay' =A~~ = f (t, y, 0) , with y(to,0) = Yo(0), (1.1) 
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where t denotes time, 0 is an m-dimensional vector of unknown parameters, 
y(t, 0) is an n-dimensional state vector depending on t and 0, the function 
f (t, y, 0) maps Ii x 11n x 11m into 11n and A is a constant n x n-matrix. In 
the simplest case A is a diagonal matrix with Aii = 1 if the i-th equation is a 
differential equation and Aii = 0 if the i-th equation is algebraic. 

In order to estimate the unknown parameters, a number of measurements, 
say N, are available for the process under consideration. Each measurement is 
characterised by the triple 

i = l, ... ,N, (1.2) 

where Ci indicates which component of the state vector, y, has been measured, 
ti is the time of the measurement and Yi is the measured value. Of course, a 
necessary condition to estimate the unknown parameters is that the number of 
parameters, m, does not exceed the number of measurements, N, i.e. m :SN. 
The solution of (1.1) for the Ci-th component at time ti, which corresponds to 
the i-th measurement, is denoted by Ye; (ti, 0). 

1.2 Fitness criterion 
The fitness criterion depends on the discrepancies between the calculated and 
the measured values. The vector of discrepancies reads: 

(1.3) 

A usual approach is to estimate the unknown parameters such that the (weighted) 
sum of squared discrepancies: 

N 

8(0) = L wfd;(0) , (1.4) 
i=l 

is minimal. The positive weights, Wi, are based on the accuracy of the measure­
ments and have dimension 1/[fii]- In the case the errors in the measurements 
are stochastically independent and normally distributed with standard devia­
tion <Ii, and if we take Wi proportional to 1/ui, weighted least squares yields the 
maximum likelihood estimate (MLE). The value of 0 which minimises (1.4) is 
called the weighted least squares estimate and is denoted by: 0. Summarising: 
In the case of (i) normally distributed and independent measurement errors, 
(ii) the above choice of the weights, and (iii) a negligible measurement error for 
the independent variable, t, minimisation of (1.4) leads to the most likely value 
for the parameter vector, 0. This is discussed in more detail in Chapter 3. 

1.3 Variational equations 
In order to use a gradient-based minimisation procedure and to perform a sta­
tistical analysis we solve, besides the set of DAEs (1.1), also the corresponding 
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set of variational or sensitivity equations with respect to the -unknown param­
eter vector. This leads to an additional set of nm DAEs, written in a compact 
matrix notation as: 

8y(to,0) 
80 

8yo(0) 
80 

(1.5) 

The solution of (1.5) yields the gradient 8y(t,0)/80, which will be used for the 
minimisation of the weighted sum of squared discrepancies (cf. (1.4)) and the 
statistical analysis in Section 1.6. 

If we write down (1.5) explicitly and add (1.1), we obtain the complete 
system of equations to be solved: 

Ay' = f (t, Y, 0) , y(to, 0) = Yo(0) , 
8y' 8/ 8/ 8y 8y(to, 0) 8yo(0) 

A801 = -+--- ae;-801 8y 801 ' 801 

(1.6) 
8y' 8/ 8/ 8y 8y(to,0) 8yo(0) 

A80m -+---
80m 

-
80m 80m 8y 80m ' 

The system of equations (1.6) contains one subsystem of n nonlinear DAEs and 
m subsystems of the same size, which depend nonlinearly on y and linearly on 
8y/80i. The Jacobian of the overall system reads1 : 

8/ 
0 0 

8y 
82 / 82 / 8y 8/ 

0 .. 0 --+--
8y Jae= 801 8y 8y2 801 (1.7) 
0 0 

82 / 82 / 8y 
0 .. 0 

8/ --+--
8y 80m8Y 8y2 80m 

Inspection of (1.7) shows the one-way coupling of the system. Using a 
BDF method to solve the (possibly stiff) system, we can take advantage of 
this structure by first calculating y at each step of the numerical integration 
and subsequently all 8y/80i. We also see that the Jacobian matrix of the 
overall system has the same eigenvalues as 8f/8y, which is the Jacobian of 
the model equations. This means that the variational equations inherit the 
stiffness character of the original equations. 

For purposes which will become clear in Chapter 4, we sometimes need sec­
ond order derivatives of the state variables with respect to the parameters. This 

1To be more precise we need a second Jacobian; the derivative of {1.6) with respect to 
(y' ,8y' /801 , ... , 8y' /80m), which equals Im ® A. This second Jacobian is taken care of in 
the numerical solver and does not influence the inheritance of the stiffness character. 
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leads to an additional set of nm2 DAEs, which can be derived by differentiation 
of (1.5): 

82J 82 f 8y 8 2 f (8y) 2 8f D2 y 
802 + 2 808y 80 + 8y2 80 + 8y 802 ' 

(1.8) 

8 2y(to, 0) 82 yo(0) 

802 802 
with 

The solution of (1.8) corresponds to second order information which can be used 
to investigate the nonlinearity of a parameter estimation problem. It ran also he 
used for the minimisation of the residual sum of squares by Newton's method, 
as will be shown at the end of Section 1.5. Analogously to the derivation of the 
Jacobian in (1.6), we can derive the Jacobian of (1.8). We omit this exercise 
here. Relevant is that it shows that also (1.8) inherits the stiffness character of 
(1.1). 

1.4 Numerical solution of the model equations 
In this section we assume the reader to be familiar with the theory of differential 
algebraic equations and their numerical solution. For the other sections a basic 
understanding of the solution method for the model equations is not necessary 
and it can be regarded as a black box which produces the values Ye, (ti, 0) and 
the corresponding derivatives 8yc, (ti, 0) / 80, and -if required- 82 yc;( ti, 0) / 802 . 

For the actual implementation, knowledge of the numerical solution method 
and the stiffness behaviour of the sensitivity equations is required in order to 
transform an existing DAE solver into a special purpose solver for (1.6). An 
introduction to differential algebraic equations and their numerical solution can 
be found in, e.g., [Gea71, HNW93, HW96]. 

In the case of differential equations, A= In, in general the model equations 
(1.1) are stiff. This is due to the presence of fast and slow phenomena in 
the processes they originate from. For the differential algebraic equations, we 
restrict ourselves to systems of index 1 only. In both cases the equations have 
to be solved by an implicit method. 

The fact that the size of the problems we encountered was relatively small, 
n < 100, and the possibility to solve the variational equations by making 
full use of the same stiffness character, made us decide to choose a numerical 
solution method based on the backward differentiation formulae (BDF). If a 
proper BDF method, with a certain order and step-size strategy is provided to 
solve (1.1) numerically, the same strategy can be used to integrate (1.5) and 
(1.8) numerically. 

When parameter estimation is put into practice the choice of an efficient 
solver for the model and variational equations is of major interest because more 
than 80% of the computation time is used for the integration of these equations. 

The use of the variational equations in combination with the same order 
and step strategy, leads to a faster and more accurate gradient than is possible 
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by finite differences. In practice, generating analytic, derivative functions is no 
impediment as it can be done automatically by a computer algebra package ( we 
use MAPLE V, see [CGG+91]). 

A third alternative to retrieve derivatives is proposed in [BCC+92). This ap­
proach is based on automatic differentiation and deserves further investigation 
in this context. We did not consider this method in this study. 

1.5 Minimisation 
Introducing the vector of weighted discrepancies as the column vector 

(1.9) 

we write the sum of squares (1.4) as 

8(0) =II Y(0) 11 2= yT(0)Y(0) . (1.10) 

For a given value of 0, the vector Y(0) can be computed by numerical integra­
tion of (1.1). The variational equations (1.5) facilitate the calculation of the 
N x m, Jacobian matrix 

8Y(0) ( 8 ) J(0) = ~ = Wi80YcJt;,0) . . 
i=l, ... ,N 

(1.11) 

Minimisation of (1.10) is done by an iterative procedure. Suppose 0 is a 
trial vector and its correction is given by 80. The squared sum of the improved 
parameter vector can be approximated by a quadratic function of 80 

S(0 + 80) yr(e + 80)Y(0 + 80) 

~ (Y(0) + J(0)80)T(Y(0) + J(0)80) (1.12) 

yT(0)Y(0) + 280T JT(0)Y(0) + 80T JT(0)J(0)80. 

The minimum of the quadratic form is given by the normal equations: 

(1.13) 

This formula is the starting point for a Gauss-Newton type method. From 
(1.13) it is clear that the Gauss-Newton procedure fails if the matrix J(0) is 
(almost) singular. A well known remedy is the use of the Levenberg-Marquardt 
method to stabilise the procedure [Mar63, DS83]. This method replaces (1.13) 
by 

(1.14) 

where A is adjusted on the basis of the condition number of the matrix J(0). 
The Levenberg-Marquardt method can be seen as a hybrid method between 
Gauss-Newton and steepest descent. 
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To solve 80 from (1.14), we use the singular value decomposition (SVD) of 
the matrix J(0) defined by 

(1.15) 

where U(0) and V(0) are N x m and m x m unitarian matrices, respectively, 
such that UT(0)U(0) = Im and VT(0)V(0) = V(0)VT(0) = Im. Them x m­
matrix ~(0) is diagonal and contains the singular values in a non-increasing 
order [GV83]. Substitution of (1.15) in (1.14) leads to the following expression 
for the correction of the parameter vector 

(1.16) 

Upon convergence of the Levenberg-Marquardt algorithm we obtain a final or 
least squares estimate of 0, denoted by 0. 

Another possibility to minimise 8(0) is by Newton's method, which needs 
second order derivatives. Therefore, we introduce the N x m x m, Hessean 
matrix: 

( ) 82Yc, (t, 0) 
Hijk 0 = Wi a0ja0k . 

Now, instead of the expansion (1.12), we write: 

8(0 + 80) ~ YT(0)Y(0) + 280T JT(0)Y(0) + 
80T (JT(0)J(0) + YT(0)H(0)) 80. 

(1.17) 

(1.18) 

Deriving 80 from this last expression leads to Newton's method, where the 
Gauss-Newton method and its variants neglect the additional term yT (0)H(0) 
[DS83]. Although the Hessean can be computed via the same order and step 
strategy as explained in Section 1.4, to our experience the additional computa­
tional time does not result in faster or more accurate final estimates. Therefore, 
we stick to the Levenberg-Marquardt method and only use the Hessean in order 
to perform local analyses in the vicinity of 0. 

1.6 Statistical background 
Let the measurement error of the i-th measurement be denoted by Ei. We 
assume that there exists a model which is close enough to reality such that for 
the 'true' parameter vector, 0*, the equation 

is valid or at least gives a close approximation and expresses a reasonable 
and workable assumption. In this section the errors in the measurements are 
considered (i) to be normally distributed, (ii) to have zero expectation and (iii) 
to be stochastically independent. The measurement errors are scaled by their 
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weights such that they get a constant variance2 , a 2 . Notice that this setup of 
scaling the measurement errors can be applied both for absolute and relative 
measurement errors. The (weighted) experimental errors in the measurements 
are given then by Y(0*), as in (1.9). This implies that the covariance matrix 
of the experimental errors is given by: 

(1.19) 

We assume that the matrix J(0) from (1.11) is regular3 • Further, we notice 
that the additional term >..Im in (1.16) is introduced only for stabilisation of 
the numerical minimisation problem; it has no influence on the solution found 
and it does not play a role in the statistical analysis. As a consequence of these 
remarks and (1.19), we may approximate the covariance matrix of !::i.0 = 0* - 0 
by4: 

(1.20) 

which is a linear approximation. Within the order of this approximation, the 
unknown J(0*) can be replaced by J(0) under very general conditions, as de­
rived in [SW88, Section 2.1.2]. All statements below hold exactly if the discrep­
ancies, di(0), are linear in 0, but in the more general case we consider, they 
hold approximately only. Guidelines for the practical use of this approximation 
are given in Chapter 4. 

The vector !::i.0 inherits the normality from Y(0*) as can easily be seen from 
(1.13). As a consequence, the probability density function (pdf) of !::i.0 comes 
close to the normal density: 

pdf(!::i.0) ,:::j 
det(JT(0)J(0)) ( f::i.0T JT(0)J(0)/::i.0) 

( 2) exp - 2a2 . 21ra m 
(1.21) 

In order to perform a local investigation of (1.10) in the vicinity of the least 
squares estimate, 0, we use a linearisation around 0 and the fact that S(0) has 
a minimum at 0 = 0, so that: 

8(0 + !::i.0) yr (0 + !::i.0)Y(0 + !::i.0) 

,::;J yT (0) Y (0) + f::i.0T (VI:2 VT) /::i.0 , (1.22) 

where V = V(0) and I:= I:(0) are introduced in (1.15)). 
Below we give a brief summary of the statistical background, more details 

can be found in Chapter 4. A complete treatment of the basic ideas is found in 

2 In general the separate standard deviations, a;, are approximately known up to an un­
known factor of proportionality. This factor, denoted by 1/a, can be estimated after the 
optimal estimates of the parameters have been calculated. 

3The case when this matrix is singular is discussed in Section 4.6. 
4 Notice here the difference between 80, to express a correction during a minimisation 

process, and 6.0, after the minimisation is completed. 
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textbooks as [Sch59, DS81, BW88]. According to standard statistics, S(0)/a2 

and !J..0T(VE2VT)!J..0/a2 are independent and have X2-distributions with N -
m and m degrees of freedom, respectively. An unbiased estimator of a 2 is given 
by 

s2 = S(0)/(N - m) . (1.23) 

The (1 - a)-confidence region is the ellipsoidal region 

6.0T (V~2VT) 6.0 '.S N: m S(0):Fa(m, N -m) , (1.24) 

where :Fa(m, N - m) is the upper a quantile for Fisher's F-distribution with 
m and N - m degrees of freedom. 

The independent confidence interval for each estimate is given by: 

(1.25) 

with: 

Another quantity often used, but only recommended in combination with in­
dependent confidence intervals, is the dependent confidence interval: 

(1.26) 

with: 

m S(0):Fa(m, N - m) 
N - m (VE2VT)ii 

The reader is referred to Figure 1.1 for a graphical interpretation. The princi­
pal axes of the ellipsoidal confidence region coincide with the column vectors 
in the matrix V. The distance from the origin to the ellipse along the l-th 
principle axis (the l-th column of V) is proportional to the reciprocal of the 
l-th singular value. This means that a small singular value gives rise to a large 
confidence region in the direction of the corresponding column vector of V. The 
independent confidence interval of the i-th parameter (1.25) coincides with the 
projection of the ellipsoidal region on the i-th parameter axis. The intersec­
tion of the ellipse with the i-th parameter axis yields the dependent confidence 
interval (1.26). 

In literature (see for instance [BW88, page 6]) attention is paid to the 
(1 - a) marginal confidence region. Considering only these intervals for the 
parameters might be misleading, because it does not take into account the 
correlation between the parameters. This is demonstrated in [DS81, page 95] 
in the case of an elongated confidence region whose principal axes are not along 
the axes in the parameter space. In our approach, the ratio of 6.1 0i and 6.D 0i 
indicates this correlation. This ratio is used in Section 6.1. 7. 
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Figure 1.1: Graph of a 2-dimensional intersection of the ellipsoidal region from 
(1.24), centred at 0. 

1. 7 Parameter constraints 
For many practical reasons restrictions may occur with respect to the parame­
ters to be estimated (e.g. reaction constants are always non-negative). Many of 
the simpler linear restrictions can be taken into account by a reparametrisation, 
but that is not always possible or even desirable. 

Suppose we have K restrictions for the m unknown parameters. The' re­
strictions are, in general, nonlinear and denoted by Ri(0) ~ 0 for i = 1, ... , K, 
or 

R(0) ~ 0, (1.27) 

where R( 0) is a K-dimensional vector function. The restrictions imply that a 
subset of the m-dimensional parameter space is excluded. This yields a con­
strained minimisation problem. To solve it, we start the numerical procedure 
as if we were dealing with the unconstrained case (starting with an initial 
0 s.t. R(0) ~ 0) which results in a 80 according to (1.16). Then we check 
whether after the correction the constraints are still fulfilled: R(0 + 88) ~ 0. 
When some of the constraints are violated, there will be a non-empty sub­
set Z = {i1, ... ,ik} C {l, ... ,K}, such that Ri(0) > 0 for j E Zand k is 
the number of violated or active constraints. We end up with a constrained 
minimisation problem stating: minimise S(0) as introduced in (1.4) under the 
conditions Rj(0) = 0 for j E Z. 

The first step in solving this constrained minimisation problem is the de­
termination of the above mentioned subset Z. The second step consists of the 
computation of the k x m matrix B defined as: 

8Ri­
(B)J1 = 80/ . (1.28) 
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For notational convenience we introduce a k-dimensional vector r(O) which con­
tains all the vector elements Ri; (0) for j E {1, ... , k }. If we write down the 
normal equations with linearised constraints and denote the Lagrange multipli­
ers by q, we get: 

(1.29) 

Making use of the SVD of J, that was already required in the method of 
Section 1.5, we can easily implement additional parameter constraints in the 
minimisation procedure. Again we use the Levenberg-Marquardt method to 
solve the extended nonlinear system. This leads to the correction: 

where the Lagrange multipliers, q, are given by: 

q = ( BV (:E2 + .u,,,)-1 (Bvf)- 1 x 

( BV (:E2 + .U,,,)-1 :EUTY(O) - r(0)) . 

(1.30) 

(1.31) 

Substitution of (1.31) in (1.30) yields a correction, 60, which satisfies the lin­
earised constraints. It may take some iterations to fulfill all, nonlinear re­
strictions. Numerical experiments showed that 2 or 3 iterations are usually 
sufficient. Having found the solution of the constrained minimisation problem, 
we check the direction of the gradient to be sure that no local minimum is 
found in the interior; we double-check if all the equality constraints are needed. 

In practice, given the constraints (1.27), computer algebra is used to gen­
erate the FORTRAN code needed to evaluate the matrix B in (1.28). 

1.8 A case study from biochemistry 
To illustrate the approach explained in the preceding sections, we consider a 
simple example in this section. More complex, real-life problems are discussed 
in Chapter 6. 

We consider a simple enzymatic reaction, which is a building block for many 
biochemical processes [Hem72a]. It is given by the chemical equations: 

E+S 

C 

C, 

E+P. 

The state variables in the reaction scheme are the concentrations of the en­
zyme, [E], substrate, [S], and complex, [C]. The concentration of the product, 
[Pl, is not of interest in this context and therefore not a state variable. The 
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mathematical description of the problem is given by: 

d[S] 
dt 

d[C] 
dt 

[E] + [C] = 
ki[E][S] - k2[C] - ks[C] , 

[Eo] +[Co). 

Chapter 1 

(1.32) 

The initial values are [So) = 1.0, [Co) = 0.0 and [Eo) = 1.0, the vector of 
unknown, positive parameters is 0T = (k1, k2 , ks). The data are generated 
artificially, by adding a normally distributed, independent measurement error, 
with zero expectation and fixed variance, to the simulation results of [CJ. The 
resulting complex concentrations are given in Appendix l.A. As a consequence 
of the error structure, we take all weights equal in this estimation problem. 
The initial parameter vector, 0ini, the final estimate, 0, the corresponding sum 
of squared discrepancies (cf. (1.4)) and the confidence limits (~1 0 from (1.25)) 

) 

are given in Table 1.1. Together with the data, the numerical solution of the 
DAEs from (1.32) for 0ini and 0, is shown in Figure 1.2. 

0ini 0 ~10 

k1 6.0 0.683 0.076 
k2 0.8 0.312 0.068 
ks 1.2 0.212 0.005 

8(0) 0.848 0.00051 

Table 1.1: Initial and final parameter values for the case study of Section 1.8 
plus ~ 1 0 from (1.25). · 

1. 9 A case study from population dynamics 
Another classical example originates from population dynamics. It describes 
two species with a predator-prey relation. Mathematically the model is de­
scribed by the Lotka- Volterra equations: 

dy1 
= 

dt 
dy2 
dt 

k1Y1 - k2Y1Y2 , with 

ksY1Y2 - k4y2 , with 

Y1(to) = Y1,o , 

Y2(to) = Y2,o . 

(1.33) 

(1.34) 

The rates k1 - k4 are the parameters to be estimated. A frequently used 
model adaptation is made by setting the parameters k2 and ks equal to each 
other. The related estimation problem, with three parameters, is known as 
Barnes' problem and shows up in literature many times as a test example 
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Figure L2: The calculated concentrations of the complex ([Cl) for the initial 
(left graph) and final parameter vector (right graph) and the measurements 
(+). 

[Hem 72b, EW95, HK93, Wik97]. The corresponding measurements can be 
found in Appendix LB. 

The initial values of the state variables, y1,o and y2,0 , are known, but we 
do not have an indication about their accuracy. We can consider them either 
as accurate initial conditions or as parameters to be estimated. In the second 
case we add the given initial values to the measured data. Consequently, we 
consider four different models to fit the measurements. Statistical tests are 
performed to discriminate between the candidate models. 

When the initial values, Y1,o and y2 ,0 , are considered as unknown parame­
ters, and k2 and k3 are assumed to be two separate, independent parameters, 
this model fits the data better than the other models which can be derived from 
(L33) and (L34), because the other models can be considered as a special case 
of this model. With an F-ratio test (Appendix LC) it can be decided whether 
one model fits significantly better than another. It answers the question: does 
an increase of the number of parameters lead to a sufficient improvement of 
the residual sum of squares, S(B)? 

The degrees of freedom and the corresponding least squares sums for the 
various models are given in Table L2. 

From this table we can choose m = 6 pairs of models, 5 of them can be 
compared by the F-ratio test of the first part of Appendix LC. The pair {II,III} 
is compared by making use of the super-model I. The 5 pairwise comparisons 
lead 4 times to a rejection of the null-hypothesis, the F-test on {I,II} did not 
reject the null~hypothesis. This means that, on the basis of the measurements 
of Table 1.4, model II is preferred to the other models. 



16 Chapter 1 

Variant parameters df. (N -m} S(O) 
(I) Y1,o, Y2,o, k1, k2, ka, k4 22-6 0.05185 
(II) k1 , k2, ka, k4 20-4 0.05592 
(III) Y1,o, Y2,o, k1, k2, k4 (k2 = ka) 22-5 0.1017 
(IV) k1,k2,k4 (k2 = ka) 20-3 0.1645 

Table 1.2: The parameters, degrees of freedom and the least squares sum for 
the four proposed variants of the predator-prey model from (1.33) and (1.34). 

Concluding remarks 
In this chapter we gave an outline of an approach to solve parameter estimation 
problems in systems of differential algebraic equations. Besides the model 
equations, which describe the process studied and depend on the unknown 
parameters, we integrate the corresponding sensitivity equations numerically 
for an initial guess of the parameter vector. The result forms the input for the 
minimisation problem, for which we calculate a correction for the parameter 
vector. For the corrected value the model and sensitivity equations are solved. 
This iterative process leads to an optimal fit between the model and the data, 
and the corresponding parameters. After the minimisation the vicinity of the 
final parameter estimates is investigated in order to derive confidence regions. 

The model and variational -or sensitivity- equations are solved numerically 
by a BDF method, which fully exploits the stiffness character of the variational 
equations. For the minimisation we use a Levenberg-Marquardt method. 

The solution method described has been implemented and can be applied 
in many sciences where mathematical modelling of time dependent processes is 
involved. The introductory case studies in this chapter give an impression of the 
usefulness of the approach. More complicated case studies take up Chapter 6. 

Appendix LA 
The data (N = 20) corresponding to the example of Section 1.8 contain simu­
lated values of the complex concentration, with additive, mutually independent 
errors from a normal distribution. A sequence (C]i and the corresponding ti 
are given in Table 1.3. 

Appendix 1.B 
The data, corresponding to Barnes' problem in Section 1.9, for the measured 
values of the prey and predator fractions, Yi,i and y2,i, respectively, are given 
in Table 1.4 and taken from [HK93]. The measurements at t = 0.0 do not 
contribute to the number of measurements, N, if the corresponding values are 
taken as the initial conditions. 
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- -
time (ti) [C]i time (ti) [CL 

1.0 0.32 11.0 0.18 
2.0 0.38 12.0 0.16 
3.0 0.38 13.0 0.15 
4.0 0.36 14.0 0.13 
5.0 0.33 15.0 0.13 
6.0 0.30 16.0 0.11 
7.0 0.28 17.0 0.10 
8.0 0.25 18.0 0.09 
9.0 0.23 19.0 0.07 

10.0 0.20 20.0 0.06 

Table 1.3: Measurements of the complex concentration ([Cl) corresponding to 
(1.32). 

time (ti) Yl,i Y2,i time (ti) Yl,i Y2,i 
0.0 1.0 0.30 3.0 0.5 0.30 
0.5 1.1 0.35 3.5 0.6 0.25 
1.0 1.3 0.40 4.0 0.7 0.25 
1.5 1.1 0.50 4.5 0.8 0.30 
2.0 0.9 0.50 5.0 1.0 0.35 
2.5 0.7 0.40 

Table 1.4: Measurements of prey and predator fractions corresponding to (L33) 
and (1.34). 

Appendix LC 
We refer to [Rat83] for an introduction to the statistical tests which should be 
performed and which will help the modeller to decide whether the number of 
parameters can be reduced or what model should be chosen. When we have 
one set of N measurements and two models with approximately the same fit, 
the model with the fewer parameters is preferred for further investigation. The 
above notion of 'approximately' is made more precise in the remainder of this 
appendix. 

Suppose we have two solutions coming from different models 

y(t, 0) and z(t, </>). (1.35) 

We use ny and mo for the dimension of y and 0, respectively. Similarly, the 
dimensions of z and </> are denoted by nz and mq,. In general, different models 
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describing the same physical process have different numbers of state variables 
and parameters. The only restriction is that the vectors y and z both contain 
the state variables for which measurements are available. 

Both models have their optimal estimates of the parameters and corre­
sponding residual sums of squares: 0, ¢, 8(0) and 8(¢). From the normality 
assumption with respect to the measurement errors, and assuming that the 
optimal estimates of the parameters are close to the true parameter values, we 
know that the residual sums of squares are approximately X2-distributed: 

8(0)/a2 ~ XJv_m 9 and 8(¢)/a2 ~ XJv_m,t, . 

It is important to note that the two ratios are dependent, which implies that 
we cannot perform an F-ratio test straightaway. First, we will consider the case 
where one model say, z(t, ¢) is a submode! of y(t, 0). This means that me > mq, 
and that there exist me - mq, restrictions hi ( 0) = 0, such that y( t, 0), when it 
is restricted by h(0) = 0, has the same input/output behaviour as z(t, ¢) for 
the observable state variables. Second, we will give an outline of the approach 
for the case one model is not a submode! of the other one. At the end, we will 
give an approach which is applicable in both cases, but is more restrictive with 
respect to N. 

In the first case we test the hypothesis: Ho : h(0) = 0. Therefore, we 
consider the ratio (8(¢)-8(0))/a2 , where a2 is the variance of the measurement 
error. This ratio, which is always positive, is independent of 8(0)/a2 . Now we 
introduce: 

X = (8(¢) - _!(0))/(me - mq,) ~ F(m - m N - m ) 
8(0)/(N - me) e </>, e ' 

(1.36) 

where F(p, q) denotes Fisher's F-distribution with p and q degrees of freedom, 
respectively. From the characteristics of an F-distribution we know: 

and 

E(X) = N -me ' 
N-me -2 

(for: N - me > 2) 

P (X :S Fa(me - mq,, N - me))= 1- a, 

where Fa(me -mq,, N -me) is the upper a quantile for Fisher's F-distribution 
(see e.g. [MGB74]). Notice that the expectation of X does not depend on 
me - mq,. When the two models have about the same performance, X will 
be close to its expectation. The F-ratio test states that whenever X exceeds 
Fa(me - mq,,N - me), the null-hypothesis, Ho: h(0) = 0, should be rejected. 
If this is the case, then 8(¢) is significantly larger than 8(0), the model which 
corresponds to z(t, ¢) should be rejected in favour of the model which corre­
sponds to y( t; 0). When we refer to the F-ratio test in this book, we mean 
this test, unless stated otherwise. Furthermore, we want to stress again that 
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all statements about stochastic behaviour of our statistics hold approximately 
and are exact only for models which are linear in 0. 

In the second case, neither y(t, 0) is a submode! of z(t, 0) nor vice versa. 
Here, we construct a super-model, u( t, 'ljJ), such that u( t, 'ljJ) under the con­
dition ho ( 'ljJ) = 0 or hq, ( 'ljJ) = 0 coincides with y( t, 0) or z( t, </>), respectively. 
Because both y(t, 0) and z(t, </>) are submodels of u(t, '1/J), we return to the first 
case and compare the models y(t, 0) and z(t, </>), by performing the tests with 
Ho : ho('I/J) = 0 and Ho : h¢(7P) = 0. If one of the two null-hypotheses is 
rejected, then the submode! corresponding to the non-rejected null-hypothesis 
is preferred. In all the other cases no conclusion can be drawn. 

An approach which is applicable in both cases, if N 2: 2 max(mo, mq,) + 2 
consists of splitting the data into two disjunct subsets of sizes N(l) and N(2), 
such that N(l) + N(2) = N and min(N(l), N(2)) 2: max(mo, m¢) + 1. Then we 
fit the model y(t, 0), to the first subset of data, which leads to the estimate 
9<1) and the corresponding partial, residual sum S(1)(0(1))- Analogously, we 

derive 0(2), ¢(l), ¢(2) and the corresponding partial, residual sums. The null­
hypothesis states that the two models perform equally well. Now, we perform 
two F-ratio tests with: 

S(1)(0(1))/(N(l) - mo) 
X12 = ~ , 

' S(2)(<P(2))/(N(2) - m¢) 

and 

_ S(2) (9<2)) / (N(2) - mo) 
X21 - ~ .. 

' S(1)(¢(1))/(N(l) - m¢) 

Consequently, the probabilities: 

P (:F (N l N ) ::; X1,2::; :J",,_(N(l) -mo,N(2) -m¢)) , 
~ (2) - mq,, (1) - mo 2 

and 

P (:F (N l N ) ::; X2,1 ::; :J",,_ (N(2) - mo, N(l) - m¢)) , 
~ (1) - mq,, (2) - mo 2 

both equal 1 - a. At a confidence level of, at least, 1 - 2a we reject the 
null-hypothesis if one of the F-tests, based on X1,2 or X2,1, rejects the null­
hypothesis in favour of one of the two models and the other test does not 
contradict this, more precisely: 

( X1,2 > :F ~ (N(l) - mo, N(2) - m¢) I\ X2,1 2: :F (N l N ) ) 
~ (1) - mq,, (2) - mo 

V (1.37) 

( X1,2 2: :F (N l N ) I\ X2,1 > ;:,,_ (N(2) - mo, N(l) - m¢)) 
~ (2) - mq,, (1) - mo 2 
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or 

( X1,2 < :F (N l N ) /\ X2,1 ~ :Ff (N(2) - me, N(1) - me/>)) 
f (2) - me/>, (1) - me 

V (1.38) 

( X1,2~F1(N(l)-me,N(2)-mcf>)AX2,1<:F (N l N )) . 
f (1) - me/>, (2) - me 

H (1.37) is true then z(t, </J) is chosen in favour of y(t, 0), the opposite happens 
if (1.38) is true. 



Chapter 2 

Parameter Estimation by Total 
Least Squares 

2.1 Introduction 
In this chapter we introduce a stable and efficient approach to estimate un­
known parameters in nonlinear models where the measurements are affected 
by noise, not only in the dependent, but also in the independent variables. 
The technique, where also the error in the independent variable is consid­
ered, is known as the total least squares ( TLS) approach or errors in variables 
method (EVM) 1 • A formal, mathematical extension from ordinary (weighted) 
least squares (OLS) to total least squares (TLS) is found in Section 2.2. Special 
attention is paid to the consequences of the error structure of the measurements 
on the parameter estimates in Section 2.3. We restrict ourselves to indepen­
dent and normally distributed measurement errors whose variances are known 
or known up to a constant of proportionality. In Section 2.4 we discuss the 
possibility of adding nonlinear restrictions with respect to the location of the 
unknown parameters and of adding error margins to the independent variables. 
A discussion of the case where the variances are unknown or dependences be­
tween the measurement errors exist is given in Chapter 3. 

Linear TLS problems are discussed in, e.g., [GV83, VPR96], which focus 
on the numerical linear algebra aspects. Nonlinear problems are discussed 
in a more theoretical context and with an accent on the statistical context 
in, for example, [Ful87, Gle90], whereas [ST85, BBS87] focus on the numerical 
aspects and implementation. This last reference uses the expression orthogonal 
distance regression. A more complete overview of the topic can be found in the 
conference proceedings [BF90]. 

The confidence regions based on the TLS-estimators are not discussed in 
literature, but will be taken care of in this chapter. With respect to the nu­
merical implementation we will follow a general approach and extend it to the 
case where parameter constraints and bounds on the measurement errors of 
the independent variable are given. 

1 Some texts use the expression orthogonal least squares and abbreviate it by OLS. This 
might lead to confusion, because the same abbreviation is also used for ordinary least squares 
( cf. Chapter 1). 
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Figure 2.1: A model curve and two measurements: an example where ordinary 
least squares may be unsatisfactory. 

In the situation of Figure 2.1 the assumption of an error in the dependent 
variable, combined with the steep part of the model curve, makes the lack of 
fit related to the second measurement apparently more significant than the 
lack of fit related to the first measurement. If we apply the O1S approach 
here, then only the vertical discrepancies ( the dashed lines) are taken into 
account and both discrepancies will contribute equally to the fitness criterion 
(1.4) (assuming equal weights). In many problems from various applications 
the experimentalist will state that the lack of fit in the right measurement is 
more significant than the lack of fit in the left measurement. These intuitive 
reasonings lead to a fitness criterion which is more general than OLS. 

2.2 Mathematical description of TLS 

In most situations one focuses on the case where measurement errors are 
stochastically independent, come from a normal distribution, and have zero 
mean and known variance. Further, the errors in the measurements corre­
sponding to the independent variables are assumed to be zero or negligible. 
The approach needed under these conditions -ordinary least squares- was de­
scribed in Chapter 1. 

In the case when the measurement errors related to the independent vari­
ables are significant we need the more general TLS approach. Using OLS in 
such cases is called the naive approach in [Gle90] and leads to biased, inconsis­
tent estimators. For some applications, e.g., curve fitting, O1S may not even 
lead to an estimate, whereas TLS does. 

As we want to consider a possible measurement error with respect to the 
independent variable, t, we have to adapt our notation for a measurement as 
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given in (1.2). Now a measurement is denoted by the triple: 

i = l, ... ,N, (2.1) 

where, the measured time, t;, replaces the actual time of the measurement, t;, 
the symbols c; and y; have the same meaning as in (1.2). The fitness criterion 
of (1.4), is not appropriate any more, because the error int; may be significant 
and -more importantly- t; is not known. The naive approach would be to 
replace t; by t; and use a least squares criterion. 

For the measurement errors in time, li (i = 1, ... , N), which are assumed 
to be N(O, (r) distributed and stochastically independent, we write: 

(2.2) 

where the actual or true times of the measurements, ti, are not known. The 
discrepancies related to the independent variable are denoted by Ti, such that 
for the true model T* = (Ti, ... , TN) T = ( -6, ... , -lN) T. An estimator of the 
error in time is denoted by 7'. As a consequence, the discrepancy between the 
measured value and the theoretical value of a dependent variable now depends 
on 0 and T: 

(2.3) 

After adding weights, the expression we want to minimise reads: 

N 

S(0, T) = L w; { d; (0, Ti) + v;Tl} . (2.4) 
i=l 

Here, Wi is a weighting factor for the i-th measurement and v; represents a 
weighting factor, with dimension [y/t], which indicates the relative importance 
of Ti compared to d;. At this stage we assume the weights, Wi and vi, to be 
known a priori. 

For convenience we introduce the following notation: 

9i(v) 

g(v) 

S(v) 

z 

{ wi(Yc; (t; + Ti, 0) - Yi) = Widi(0, Ti) , 
vi-N wi-N Ti-N ' 

ffi_(m+N) --t ffi.2N 

' = gT(v)g(v) , 
dg 
dv. 

i = l, ... ,N, 
i = N + l, ... , 2N, 

This notation is used to describe a numerical procedure to minimise S(v). The 
computation of the discrepancies and sensitivities is performed by the same 
means as in Chapter 1, with the only difference that the evaluations take place 
at t; + Ti. The initial estimate, Vini, equals (0ini, 0, ... , O)T, where 0ini is the 
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initial guess for the parameters as introduced in Chapter 1, for Tini we take 
its expected zero vector. At this stage, we can focus on the computation of 
an optimal solution by numerical means. In principle, this can be done by 
the Gauss-Newton method. In each iteration we compute a correction for v, 
denoted by 8v, from the normal equations 

(2.5) 

In order to compute 8v efficiently and to investigate the differences with the 
minimisation from Section 1.5, we analyse the 2N x (m + N)-matrix A by 
partitioning this matrix as: 

with: 

(J)ij 

(C)ij 

8gi 8ye; (t; + Ti, 0) 
80· = Wi 80· 

J J 

(i = l, ... ,N, j = 1, ... ,m), 

8gi 8ye; (t; + Ti, 0) - = Wi------ ' 
8Tj 8Tj 

(i = 1, ... ,N, j = 1, ... ,N), 

8gi+N ,: 
- 8-- = UijViWi , 

Tj 

( i = 1, ... , N , j = 1, ... , N) , 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where 8ij is the Kronecker delta: 

8·. = { 1 if i = j , 
' 1 0 otherwise. 

If a BDF method is used to solve the model equations (1.1) numerically, the 
entries of C are retrieved easily. A closer look at C and D shows that these 
matrices are both diagonal. Substitution of (2.6) in (2.5) and partitioning g(v) 
into its two components, g9 (v) and g7 (v), both of length N, yields: 

( 1;;; D{:002 ) ( !! ) = - ( 1;; ~ ) ( ;:~:~ ) . (2.10) 

Because of the diagonal structure of the matrices C and D, it is obviously 
easiest to start with the lower half of (2.10) and compute the correction: 

(2.11) 

which, after substitution in the upper half of (2.10), leads to the expression for 
80: 

JT(I - C(D2 + C 2 )-1 C)J80 = -JT [I - C(D2 + C2)-1 C] g°(v) + 
JTC(D 2 + c2 )-1 Dg7 (v) . (2.12) 
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In order to get a more convenient notation we introduce the diagonal N x N­
matrix T such that: 

followed by introducing: 

J 
h 

TJ, 

Tg°(v) - r-1c (D 2 + C2)-l Dg7 (v) . 

(2.13) 

(2.14) 

(2.15) 

With this notation we simply express the normal equations for 80 ( cf. (1.13)) 
by: 

JT]80 = -JTh. (2.16) 

Notice that TLS reduces to OLS if C vanishes. Equation (2.16) can be solved by 
the Levenberg-Marquardt method as described in Chapter 1, which only needs a 
slight adaptation. After computing 80 from (2.16), by making an SVD of J, the 
result is substituted into (2.11) to obtain 87. Thus, the Levenberg-Marquardt 
method is not applied to (2.5), but to the smaller problem (2.16), which has 
the same size as the problem in the OLS case. The matrix multiplication to 
obtain J and the substitution which has to be made to calculate 87 are marginal 
computations compared to computing 80 from (2.16). This means that TLS 
takes about the same amount of computational time as OLS and is therefore 
solved in an efficient way. Furthermore, the numerical solution is similar to the 
solution of the OLS approach and therefore the stability and the convergence 
are the same as for OLS. 

Notice that in the derivation of the above formulae we assume the weights, 
Wi and vi, to be known a priori. 

2.3 Statistical background 
In this section we assume the measurement errors in the independent and de­
pendent variables, 7* and d(0*, 7*) respectively, to be stochastically indepen­
dent, normally distributed and scaled by their weights in such a way that the 
covariance matrix is given by: 

(2.17) 

where v* contains the true parameter values. This assumption means that the 
standard deviation of every measurement error is proportional to the reciprocal 
of its weight, i.e. a; = a /w; and (; = a/ ( v;w;). This is a matter of scaling 
and we need these conditions to ensure that the total least squares estimate 
coincides with the maximum likelihood estimate (MLE) as discussed in more 
detail in Chapter 3. 
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Minimisation of S ( v) leads to a final estimate of the unknown parameters v, 
denoted by v. Combining the normal equations from (2.10) and the covariance 
matrix of the measurement errors (2.17) leads to the approximate covariance 
matrix of 6.v = v* - v: 

(JT J)-1 
-(C2 + D2)-lCJ (JT 1rl (2.18) 

_ (JT J)-l JTC(C2 + D2)-1 ) 

(C2 + D2)-l [1N + CJ ( JT J)-1 JTC(C2 + D2)-l] , 

where the last expression only contains known inverses. As in (1.22) we perform 
a local investigation of the sum of squares in the vicinity of the final estimate, 
v, by using a linear approximation for g(v + 6.v): 

S(v + 6.v) gT(v + 6.v)g(v + 6.v) 

~ gT(v)g(v) + 6.vTzTz6.v, (2.19) 

where the matrix Z is given in (2.6) and evaluated at v. 
At this point we apply standard statistics as in Section 1.6, but have 

to be careful about counting the degrees of freedom. The criterion to be 
minimised, S(v), is the sum of 2N squared discrepancies. At the minimum 
dS(v)/dv = 0 holds, which leads to N + m restrictions. As a result, S(v)/a2 

and 6.vT zr Z 6.v / a2 have X2-distributions with N - m and N + m degrees of 
freedom, respectively. The confidence region at level a is the ellipsoidal region 

(2.20) 

where :Fo:(N +m, N-m) denotes the upper a quantile for Fisher's F-distribution 
with N + m and N - m degrees of freedom. From this last result, which is an 
extension of the standard linear regression theory, individual confidence regions 
for each estimate can be calculated as in (1.25) and (1.26), respectively. 

An approximately unbiased estimator of a2 is given by 

s2 = S(v)/(N - m) . (2.21) 

2.4 Total least squares with parameter constraint 
In this section we study the case where, in addition to the minimisation crite­
rion, a set of ·constraints with respect to v is given. The approach to handle 
this situation is an extension of Section 1. 7. Using the notation of Section 2.2 
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with respect tog, v and S(v), we state the constrained minimisation problem 
as: 

mingT(v)g(v) , under the condition: R(v)::; 0, (2.22) 
II 

with: R: JR(m+N) ➔ IRK denoting K nonlinear constraints. We assume R(v) 
to be differentiable with respect to v. We start the numerical procedure in the 
case of constrained minimisation as if we were dealing with the unconstrained 
case (starting with an initial estimate of v satisfying the constraints R(v) ::; 0), 
which results in a 8v. Then we check if, after a correction of v, the constraints 
are still satisfied: 

R(v + 8v) ::; 0 . 

If this is the case, we do not have to worry about the restrictions and continue 
with the next iteration as if it were an unconstrained minimisation problem. If 
some of the K constraints are violated, there will be a subset Z = { i1 , ... , ik} C 
{1, ... , K}, such that Ri > 0 (j E Z), where k denotes the number of active 
constraints. 

After determining the subset Z, we compute the k x m matrix B1 and the 
k x N matrix B2 , defined as: 

8Ri- 8Ri 
(B1)il = ao/ and (B2\1 = ar/ . (2.23) 

In the software these matrices are derived automatically via a computer al­
gebra package (we used MAPLE). For notational convenience we introduce a 
k-dimensional vector r(v) which contains all vector elements Rj for j E Z. If 
we write down the normal equations with linearised constraints and denote the 
Lagrange multipliers by q, we obtain: 

( 
JT J JTC BT ) ( 80 ) ( JT g0(vi ) 
CJ D2 + C2 B! 8r = - Cg°(v) + D~7 (v) . 
B1 B2 0 q r(v) 

(2.24) 

In the remainder of this section we show how (2.24) can be solved by making 
use of the special structure of the matrices of these normal equations and of 
preparatory computations with respect to J. We start by writing 8r explicitly: 

8r = -(D2 + c2 )-1 (Cg°(v) + Dg7 (v) + CJ80 + B[ q) ' 
and substitute this in the first row of equation (2.24): 

-JTC(D2 + c2)-1 (Cg°(v) + Dg7 (v) + CJ80 + B[ q) + 
JT J80 + Bi q = -JT g°(v), 

which can be rewritten as: 

JT(IN - C(D2 + c2)-lC)J80 = -JT(IN - C(D2 + c2)-lC)l(v) + 

(2.25) 

(2.26) 

JTC(D2 + c2)-1 Dg7 (v) + (JTC(D2 + c2)-1 B[ - Bi) q. (2.27) 
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Using the matrices T and J, and h as from (2.13)-(2.15), we find: 

80 = - (JTJ)-1 (Jrh + {Bf - JTC(D2 + C2)-1 Bf} q) , 

Chapter 2 

(2.28) 

where the SVD of JT J is available, because we started as if we were dealing 
with the unconstrained case and therefore had to solve (2.16) already. 

Finally, pre-multiplying the equations (2.25) and (2.28) by B2 and B1 re­
spectively, adding the two results and eliminating 80 via (2.28), we can use the 
last row of equation (2.24) to obtain: 

[ {B1 - B2(D2 + c2)-1CJ}(JT J)-1 

{ Jrc(D2 + c2)-1 Bf - Bi} - B2(D2 + c2)-1 Bi] q 

{ Bi - B2(D2 + C2)-1CJ} (Jr J)-1 I'h+ 

B2(D2 + c 2)-1[C/\11) + DgT(v)] - r(v) . 

(2.29) 

The last equation is solved to obtain q, its size is governed by the number 
of violated constraints, k. For most applications this number is small, which 
means that the Lagrange multipliers, q, can be solved easily and fast from 
system (2.29), e.g., by a QR-decomposition. After the computation of q, the 
correction 80 can be computed by (2.28) and 8r from (2.25). As in the OLS 
case, at the end a set of equations with the size of the number of violated 
constraints has to be solved. For the TLS case we have marginal extra work 
for extra multiplications and additions, the time consuming parts, solving q 
from (2.29) and performing the SVD of an N x m-matrix stay the same for the 
OLS and the TLS approach. 

2.5 Conclusions 
In this chapter we presented an approach for parameter estimation in nonlinear 
models, where not only the measurement errors in the dependent, but also in 
the independent variables have to be taken into account. This approach is 
known as the total least squares (TLS) method in contrast to the ordinary least 
squares (OLS) approach, where the measurement errors in the independent 
variables are neglected. We showed how to deal with nonlinear restrictions 
with respect to the unknown parameters and error bounds of the independent 
variables. Special attention was paid to confidence regions of the final estimates. 

The TLS approach is more general than the OLS approach and it reduces 
to OLS in a natural way, if the weighted errors in the independent variable are 
negligible. The increase in the computational effort for the TLS approach is 
marginal compared to the OLS approach. 
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Maximum Likelihood Estimators 

3.1 Introduction 
In this chapter we give a more detailed description of the statistical back­
ground for parameter estimation in nonlinear models, also known as nonlinear 
regression. The fitness criteria used in nonlinear regression depend on the as­
sumptions and knowledge about the measurement errors. From the probability 
density function of the measurement error the maximum likelihood estimates 
of the parameters can be derived. For the case with independent and nor­
mally distributed measurement errors in the dependent variables, we discuss 
the link between least squares and maximum likelihood criteria in the Sec­
tions 3.2 and 3.3. An outline of the actual optimisation of these criteria by 
numerical means, when the variances of the measurement error are unknown, 
is considered in Section 3.4. A theoretical outline concerning dependent mea­
surement errors with an unknown covariance matrix is given in Section 3.5, the 
consequences for actual computation are highlighted in Section 3.6. 

Maximum likelihood methods for the case when the measurement errors . 
are normally distributed and also present in the ·independent variable are dis­
cussed in Section 3.7. When the measurement errors come from a Laplace -or 
double exponential- distribution, the sum of absolute discrepancies should be 
minimised. Section 3.8 gives the necessary background and an elegant way to 
deal with the practical implementation. Concluding remarks can be found in 
Section 3.9. 

Throughout this chapter, we assume that an accurate approximation of the 
solution of the model and its variational equations, y( t, 0) and 8y( t, 0) / 80 ( cf. 
(1.6)) is available and we do not bother about the precise formulation of the 
model. 

3.2 Least squares criterion 
The most straightforward way to measure the fitness between the model and 
the measurements is the sum of squared discrepancies: 

N N 

8(0) = L)Yc;(ti,0) - 'fh)2 = L~(0) = dT(0)d(0), (3.1) 
i=l i=l 
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where d(0) = (d1(0),d2(0), ... ,dN(0))T. 
Assuming that all measurement errors, ci, are mutually independent and 

come from a normal or Gaussian distribution, with zero mean and variance a2 , 

i.e. ci ~ N(O, a 2 ), the vector of measurement errors reads: c = (c1, c2 , ••• , cN )T, 
with covariance matrix 

(3.2) 

The discrepancies, d(0) E .!RN, depend on the parameter vector. When the 
true parameter vector, 0*, is substituted, the discrepancies coincide with the 
measurement errors: 

By residuals we mean the discrepancies evaluated for the estimated parameter 
vector, d(0). The probability density function for the assumed structure of the 
measurement errors, is given by: 

We want to determine 0 in such a way that the probability density is max­
imal, i.e. the most likely 0, for a given data set. From the probability density 
function we can define the likelihood function as: 

(3.4) 

For convenience and convention we take the logarithm of the likelihood function 
(LLF): 

(3.5) 

The likelihood function (and its logarithm) reaches its maximum, if 8(0) 
in (3.1) is minimal because of (3.2). This means that the maximum likeli­
hood (ML) estimate of 0 coincides with its least squares (LS) estimate. As a 
consequence, the last sentence can be expressed as 

~ def . . ~ def 
0ML =. {0J.C(0) 1s maximal}= 0Ls = {018(0) is minimal} , 

where ~ indicates an estimate. 
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3.3 Weighted least squares criterion 

3.3.1 A priori known weights 

31 

In the case some a priori knowledge about the accuracy of the measurements 
is available and this accuracy is not constant over the components of the state 
vector or even differs for two measurements of the same component, an adapta­
tion of the criterion function has to be made. The expression for S(0) in (3.1) 
is changed by adding positive weights, Wi (i = 1, ... , N), which leads to a sum 
of weighted squared discrepancies (1.4). The weights are taken in such a way 
that more accurate measurements correspond to bigger weights. 

If we assume again that the errors are independent and come from a Gaus­
sian distribution with non-constant variance, ci ~ N(O, at), the corresponding 
logarithm of the likelihood function reads: 

N N N (d·)2 
ln.C(0) = - 2 ln(2n) - ~ln(ai) - ½ ~ a: . (3.6) 

After comparing (1.4) and (3.6), we see that their estimates coincide if and only 
if, the weights are proportional to the reciprocal of the standard deviations: 

(3.7) 

which connects weighted least squares and maximum likelihood estimates for 
the case of non-constant variances. 

If the measurement errors are dependent and the covariance matrix is 
known, c ~ N'(O, V), with V a symmetric, non-diagonal, positive definite 
N x N-matrix, we use a more general LLF instead of (3.5): 

(3.8) 

whose maximum coincides with the minimum of: 

(3.9) 

Due to the properties of V, the matrix v- 1 can be decomposed by Cholesky 
factorisation, such that v- 1 = LT L, where Lis a lower triangular matrix. With 
this matrix L, the problem can be transformed into a least squares problem, 
almost similar to the one in Chapter 1. In literature, the minimisation of (3.9) 
is known as the generalised least squares (GLS) problem. 

3.3.2 Unknown weights 
In most practical situations the standard deviations of the measurement errors, 
ai, are unknown. Furthermore, it is impossible to estimate all these standard 
deviations, in addition to the unknown parameters, 0. We exclude the possibil­
ity of a systematic error, so that the expectation of the measurement error is 
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assumed to vanish. The best that can be done is to assume -that the measure­
ment errors come from the same distribution if they correspond to the same 
component of the state vector .1 This means that besides the unknown param­
eters we estimate as many standard deviations as different components, Ci in 
(1.2), have been measured. 

We introduce q as the number of measured components, q ~ n, and r as the 
number of samples. A set of measurements for different components, ci, taken 
at the same time and under the same experimental conditions builds a sample. 
We define the r x q matrix D(0) containing the discrepancies, d1(0), in such a 
way that each column is associated with one measured component and each row 
corresponds to one sample. We adapt the notation of (3.1) correspondingly and 
use a double subscript for the entries of the matrix D(0) instead of the single 
index we use for d1(0). The entry Di;(0) corresponds to the j-th measurement 
of the i-th sample. Notice that some entries of the matrix D(0) may be empty, 
because it may happen that N < qr. At these empty entries we put a zero. 
Thus, there is a one-to-one correspondence between d1(0) (l = 1, ... , N), and 
the N non-zero entries in the matrix D(0). 

With the matrix D(0) we introduce the q x q matrix M(0), given by: 

M(0) = DT(0)D(0) . (3.10) 

In literature ([Bar74, page 64]), M(0) is known as the moment matrix. Al­
though both D(0) and M(0) depend on the unknown parameter vector 0, we 
will not always express this dependence in the notation. 

Until Section 3.5 we are dealing with stochastically independent measure­
ment errors. This, together with the assumption that the deviations, ai, are 
the same for each measured component, turns V into a diagonal, q x q-matrix, 
with Vii= al, i = 1, ... ,q. 

The introduction of M and V results in a shorthand notation for the 
weighted sum of squares. Instead of (1.4), we get: 

S(0) = Tr(V-1 M) , (3.11) 

where Tr denotes the trace of a matrix. Starting with the special case where 
the same components are measured in each sample and hence N = qr, we will 
conclude with the more general case at the end of this section. For this special 
case the probability density function reads: 

p(y1,---,YNl0) = (rr(21r)T) (rrfI (:..)½) exp(-½Tr(V-1M)) 
J=l J=l i=l 33 

(21r) -r· (rr (:..) ~) exp(-½Tr(v-1 M)) 
J=l 33 

= (21r)=F (det(v-1))~ exp(-½Tr(v-1M)). (3.12) 

1 This is the approach for absolute measurement errors, in the case of relative measurement 
errors the situation is identical after scaling the measurement errors. 
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The corresponding log likelihood function equals: 

ln C(0) 

(3.13) 

Differentiation with respect to the unknown variances of the LLF from the last 
equation gives: 

8(lnC(0)) = -2Vr·· + 2Vl 2_ 't,v;i' 
BVjj JJ JJ i=l 

which vanishes iff: 

Inspection shows that the resulting stationary point corresponds to a maximum. 
The last equation yields an estimator of the variances, which is consistent, but 
biased. Consistency is easy to show; when N-+ oo, then also r-+ oo, because 
q is finite and bounded by n, and finally, by the law of large numbers: 

where '-0J is the true variance. As an approximately unbiased and consistent 
estimator we take, according to [Bar74, page 195]: 

~ 1 ~ 2 1 
Vii = r(l - m/N) ~ DiJ = r(l - m/N) MJi . 

i=l 

(3.14) 

this estimator is perfectly unbiased if the expectation of the matrix M is pro­
portional to V*. The adaptation in the denominator expresses that the degrees 
of freedom are spread over the separate entries of the estimator. With respect 
to the last equation a special remark should be made. To estimate the diagonal 
matrix V* we use the diagonal entries of M. For the estimator, 0, the residual, 
D(0)ij, is expected to come from a normal distribution with zero expectation, 
and variance aJ. Therefore, the off-diagonal entries Mij (0) ( i -:fi j) are expected 
to have a zero expectation and a variance rat aJ, if the measurement errors are 
independent. These characteristics can be used to test whether the combina­
tion of the model chosen and the assumption of the independent measurement 
errors is feasible. 

The result (3.14) holds only if°all measured components are the same over 
the samples, N = qr. For the more general case we introduce the variables ri 
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to denote the number of measurements in the j-th column of D CI:j=1 ri = N). 
Then, the LLF reads 

(3.15) 

its derivative with respect to V:u vanishes if: 

(3.16) 

The corresponding approximately, unbiased, consistent estimate of the vari­
ances is -analogous to (3.14)- given by 

~ 1 ~ 2 

½i = r·(l-m/N) ~Dii. 
J i=l 

(3.17) 

Notice that the summation runs over r entries, because of the zeros substituted 
in the matrix D. Substitution of (3.17) in (3.15) gives: 

1 ~ Tj (1 - N) ~ D~-
2 ~ ": D?. ~ ZJ • 

j=l L.n=l ZJ i=l 

(3.18) 

Only the third term in the right-hand side of (3.18) depends on 0, which means 
that we can restrict ourselves to minimising: 

(3.19) 

From (3.19) we see that we have to minimise the geometric mean of the esti­
mated deviations of the measurement error, where we omit the factor 1/(rj (1-
m/N)). Another interpretation is to consider an N-dimensional box in the 
data space. This box is centred at the expected model responses and has edges 
parallel to the coordinate axes. The length of the edge parallel to the l-th 

coordinate axis is proportional to JI:~=l D;i, where the j-th column of D 

corresponds with the measured component Ct. Minimising the volume of this 
box is expressed by (3.19). In the next section we describe how to perform this 
minimisation. 
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3.4 Numerical computation (independent case) 
To compute the maximum likelihood estimates for 0 in the case of indepen­
dent measurement errors and unknown weights, the expression (3.19) should 
be minimised. This might be done by any general purpose minimisation rou­
tine. Newton's method would be a straightforward procedure if accurate initial 
estimates would be available, but problems are expected due to the strong non­
linear behaviour of this criterion. Another disadvantage of direct minimisation 
of (3.19) is the fact that its first and second derivatives, which might be re­
quired by the minimisation routine, lead to more complex expressions than 
in the case of, for example, ordinary least squares. In order to obtain the 
estimates we introduce an alternative iteration procedure which is a slightly 
modified least squares approach. Therefore, it is easy to adapt an existing 
approach as described in Chapter 1, where no adaptations for the derivatives 
have to be made. The alternative approach proves to be applicable, efficient 
and stable in all practical cases. 

The proposed approach to find a minimum of (3.19) is an iterative proce­
dure. The process starts with the solution of the model and variational equa­
tions as described in Chapter 1 for a given initial estimate of the parameter 
vector, Bini, and possibly additional constraints on the parameter vector as also 
introduced in that chapter. During the iterative process this computation is 
repeated with different weights, which depend on 0 in the way as given below. 

In order to explain the successive computations we use the iteration index 
k. At the k-th step of the minimisation procedure the parameter vector is given 
by O(k), so that 0(0) = Bini and Dij(B(k)) denotes the corresponding discrepan­
cies, which are known after computing the model responses. Estimates of the 
variances at this stage are given by: 

(3.20) 

which is the biased estimate from (3.16). Notice that the biased and the ap­
proximately unbiased estimates for V* only differ by a proportionality factor, 
which has no influence on the final estimate of 0. If the weights in (1.4) are 
chosen as in (3.7) and we take (3.20) as the estimate for o-J, the corresponding 
weighted sum of squares, cf. (3.11), reads: 

(3.21) 

Now we continue the procedure as if in (3.21) only the discrepancies, and not 
the variances, depend on 0. I.e., we compute a new O(k+l) for an adapted set of 
weights, Wj ;, 1/&j(O(k)). A correction for 0(k), denoted by §0(k), is accepted, 
if it leads to an improvement of the sum of squares with the delayed or frozen 
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weights: 

S(0<k+ 1 l) ·= ~ 1 ~ n2.(0<k+1l) < N 
· ~ &~(0(k)) ~ iJ ' 

J=l J i=l 

(3.22) 

where 

After a successful correction, the weights are updated and the next iteration 
is performed. For the iterative minimisation we use the Levenberg-Marquardt 
algorithm as in Section 1.5. 

Thus by introducing a weighted least squares problem of type (1.4), where 
the weights lag behind over the iteration steps, we manage to create a process 
for minimising (3.19). In the remainder of this section we show that the itera­
tion from (3.22) leads to the minimisation of (3.19) at a superlinear convergence 
rate. 

Theorem 3.4.1 The value 0, corresponding to a stationary point of S(0) of 
the iteration process (3.22) minimises the value £(0) in (3.19). Moreover, if 
the residual is sufficiently small and if the derivatives 82 yc)802 (ti, O(k)) and 
83yc)803 (ti, 0(k)) exist for all k steps of the iteration, then the rate of conver­
gence of (3.22) is superlinear. 

Proof: First we consider the iterative process as described in (3.22). For 
the correction we get an expression which is common for such processes as: 

(3.23) 

where W(O(k)) is an m x m-matrix and, depending on the local minimisation 
method, equal to or approximating the Hessean, (82 S/802 )(0(k)) and Z(O(k)) an 
approximate gradient vector (8S/80)(0(kl). Because we 'freeze' the variances, 
in our algorithm the first derivative of (3.22) with respect to 0 equals: 

q I r 8Dii 
Z(0) = L &2 L 2Dwao . 

j=l J i=l 

(3.24) 

The gradient of (3.19) reads: 

(3.25) 

Upon convergence of (3.23), the correction 80(k) vanishes, and therefore, also 
the difference in the weights vanishes. This implies that the expression r i / L~=l I 
in the right-hand side of (3.25) equals 1/&J and, thus, the zeros of (3.25) coin­
cide with those of (3.24). 
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In order to investigate the convergence rate of the iterative procedure, we 
introduce: 

F(0) = w-1 (0)Z(0) , 

so that the converged parameter vector, 0, is characterised by Z(0) = 0. We 
denote the error in the k-th iteration step by: 

e(k) = 0 - 9(k) . 

For the errors the following recursive relation holds: 

e(k+l) = e(k) - ( F(0) - F(0(k))) . 

Expanding this relation for small lle(k) II, we find: 

lle(k+l) - (1- F'(0(k))) e(k)II = 0 (lle(k)ll2) ' 

where: 

(3.26) 

F'(0(kl) = dF(0) (0(kl) = w-1(0(kl)w(0(kl) + dw-1(0) (0(kl)z(0(kl) 
M M . 

If 0(k) in limit goes to 0, the gradient Z(0(k)) vanishes and therefore, F'(0(k)) in 
limit goes to the identity matrix. This means that the process has a superlinear 
convergence rate. D 

Remark 3.4.1 Because £(0) > 0, the derivatives (3.25) and (3.24) have iden­
tical signs and therefore the functions S(0) and £(0) have the same type of 
stationary points. 

Remark 3.4.2 If the matrix W does not contain second order derivatives of 
Ye; (t, 0) with respect to 0, as in the case of Gauss-Newton type methods, then 
the restriction on the third derivative of Ye; (t, 0) with respect to 0 becomes 
redundant. 

3.5 Dependent measurement errors 
In the case of dependent measurement errors with unknown dependences, we 
consider a full, symmetric positive definite, q x q covariance matrix V. Whereas, 
in the case of independent measurement errors only the q entries on the diagonal 
have to be estimated, for the dependent case q(q + 1)/2 entries are unknown. 
These unknown quantities come in addition to the m unknown parameters of 
the vector 0. 

Again, we start with the special case that all measured components are the 
same over the samples, qr= N, the corresponding LLF can be rewritten from 
(3.13) as follows: 

ln£(0) = -Nin ( v121r) - pn(det(V)) - ½Tr(v- 1 M). (3.27) 
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Notice that depending on the statistical assumptions, V is either a q x q­
or an N x N-matrix, the corresponding LLFs are given by (3.13) and (3.8), 
respectively. In order to differentiate (3.27) with respect to the entries of the 
matrix V, we summarise the following results (see [Bar74, pages 294-296]): 

8det(A) 
(A- 1)jidet(A), (3.28) 

8A;i 

8Tr(BATC) 
(CB);j , (3.29) 

8A;i 
aA-1 

A-IA-1 __ kl_ = (3.30) 
8A;i - ki jl · 

Now the second term in (3.27) can be differentiated with respect to V by 
using the result (3.28). The derivative of the last term in (3.27) with respect to 
V can be obtained by combining (3.29) and (3.30). The result of differentiating 
(3.27) with respect to the covariance matrix reads: 

8(ln£(0)) = _.?::v-1 1v-1 Mv-1 av 2 + 2 . 

This expression vanishes if: 

1 
V=-M. 

r 

(3.31) 

(3.32) 

The last expression gives a consistent, but biased estimator of the covariance 
matrix. Analogous to (3.14), a less biased estimator is given by: 

~ 1 
V = r(l - m/N) M . (3.33) 

If we substitute this estimator of the covariance matrix in the LLF (3.27) we 
obtain: 

ln £(0) -J¥- ln(21r) - ; ln ( ( r _ ~/q) q det(M)) - ½Tr((r - m/q)Iq) 

J¥- ln ( N2;1rm) - ; ln(det(M)) + ½(m - N) . 

Maximising this expression with respect to 0 is equivalent to minimising: 

l(0) = det(M) . (3.34) 

Due to the relation between the moment matrix, M, and the estimator of 
the covariance matrix, V (cf. (3.33)), we see that minimising (3.34) leads to 
minimising the volume of an N-dimensional box in the data space. In the case 
of independent measurement errors, the edges of this box are parallel to the 
coordinate axes in the data space. In the case of dependent measurement errors 
the box will have a different orientation. If the covariance matrix is not known, 
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we minimise the volume of the this box. The minimisation is done, not only 
by adapting the lengths of the edges, but we also allow the box to rotate in the 
data space. 

Analogous to the case of independent measurement errors, we consider the 
case where qr exceeds N. To this end we introduce the matrices V;, i = 1, ... , r. 
The matrix V;, corresponding to the i-th sample, can be derived from the 
covariance matrix, V, by omission of the j-th row and the j-th column for each 
j which has not been measured in the i-th sample. The resulting likelihood 
function equals 

(3.35) 

and its logarithm 

r 

ln.C(0) = -f ln(21r) - ½ L ln(det(V;)) - ½Tr(V-1 M) . (3.36) 
i=l 

Minimisation of one of these two expressions is not essentially more difficult 
than the minimisation of (3.34), but when the method is implemented in an 
algorithm the non-equal sample sizes should be taken into account. 

3.6 Numerical computation (dependent case) 
In the case of dependent measurement errors, instead of (3.19), we have to 
minimise (3.34), which is the determinant of a full, symmetric positive definite 
matrix. Its dimension equals the number of measured components of the state 
vector, y( t, 0). Essentially this minimisation is realised by a method analogous 
to the technique introduced in Section 3.4. We introduce an approach with 
a delayed covariance matrix and show that this leads to the minimisation of 
(3.34). 

The optimal parameters are computed by an iterative procedure. Starting 
at k = 0 and an initial guess for the parameters, 0(0) = 0ini, we solve the 
model equations, calculate the discrepancies, di(0(0)), and form the matrix M 
as described in (3.10). 

At the k-th step of the iterative minimisation, the estimate of the covariance 
matrix is given by 

(3.37) 

For the final estimates of the parameters it makes no difference if we use a biased 
or an approximately unbiased estimate for the covariance matrix, because the 
minimisation is not affected by multiplying M(0(k)) with a scalar. During an 
iteration step the estimate of the covariance matrix, V(0(k)), is frozen. We 



40 Chapter 3 

compute a corrected parameter vector, 9(k+1) = 9(k) + 80~k), such that the 
adapted LLF: 

In .C(0(k+l)) = -lf ln(21r) - i In ( det ( V(0(k)))) -

½Tr (v- 1 (0(k))M(0(k+l))) 

is maximal, which is the same as minimising: 

s(0<k+i)) = Tr (v- 1(0<k))M(0<k+1))) 

q q r 

= LL (v-1 (0(k))) .. I:Du(0(k+l))D1j(0(k+l)). 
i=l j=l iJ l=l 

(3.38) 

Instead of minimising the determinant of a matrix as in (3.34), we have 
transformed the problem into a least squares problem as in (3.9). The addi­
tional computation consists of a Cholesky factorisation of V(0(k)) and calcu­
lation of its inverse. This computation is not prohibitive, because the matrix 
V(0(k)) is small for practical cases (we did not encounter real-life problems 
with q ~ 10). Further, the matrix is expected to have the larger entries to 
be found on the diagonal due to the expected small dependences between the 
measurement errors. 

In the remainder of this section we will prove that S(0(k+l)) of (3.38) has 
the same stationary points as £(0) of (3.34). 

Theorem 3.6.1 The iterative procedure, consisting of a sequence of quadratic 
minimisation problems for S(0(k+l)), as described in (3.38) and the minimisa­
tion of ln£(0) from (3.34) reach their stationary points for identical values of 
0. The rate of convergence of the iterative procedure is superlinear, under the 
same conditions as in Theorem 3.4.1. 

Proof: We consider the gradients of lnS(0) and ln£(0). 
(3.34) and the use of (3.28) yields: 

8lnl(0) 
80 = 

t t 8ln(det(M)) 8Mii = 
i=l j=l 8Mij 80 

8In(det(M)) 
80 

Differentiation of 

(3.39) 

The same procedure for (3.38) by making use of (3.29), where it is kept in mind 
that the matrix V is kept fixed in every step of the iteration and therefore does 
not depend on 0, leads to: 

8lnS(0) _ 8Tr (v-1 M) 
80 - 80 

8Tr (V-1 M) 8M _ 
= 8M 80 -

q q 8M 
LL (v-i )ij 8/ = 
i=l j=l 

q q r 8D · 2LL (v-1)ij L 8;' D1j. 
i=l j=l l=l 

(3.40) 
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Upon convergence of the iterative procedure, the correction and therefore the 
lag of V(O(k)) vanish. As a consequence the matrices M from (3.39) and Vin 
(3.40), are the same up to a scalar factor. This means that the zeros of the 
derivatives coincide, which completes the first part of the proof. 

The proof of the superlinear convergence rate is completely analogous to 
the proof of Theorem 3.4.1 and is therefore omitted. D 

3.7 MLE and total least squares 
In the previous sections we showed under which conditions an ordinary (weighted) 
least squares approach (OLS) yields maximum likelihood estimates, and how 
to deal with an unknown covariance matrix. A more general approach for the 
case a measurement error is also present in the independent variable (TLS) is 
described in this section. 

The notation here is adopted from Section 2.2 and will be extended in 
Section 3.7.2 in order to deal with a more general situation. We start in Sec­
tion 3.7.1 with independent measurement errors and a priori known weights. 
Unknown weights are considered in Section 3.7.2. In Section 3.7.3, we assume 
independence of the measurement errors and finally in Section 3. 7.4 we consider 
dependent measurement errors. 

3.7.1 A priori known weights 
First we investigate the probability density corresponding to TLS and derive a 
condition under which a TLS estimate coincides with the MLE. In Chapter 2 
we assumed that the measurement errors are scaled by their weights such that 
they all may be considered as coming from a N(O, a2 ) distribution. Here we 
drop this assumption and start with: 

E:i = -di(0*, rt) ~ N(O, al) } 
~i = -rt ~ N(O, ('f) 
E(e:i, ~i) = 0 

E(e:i,e:i) = E(~i,~i) = 0 

(i = l, ... ,N). 

(i,j = l, ... ,N and i =/=j) 

Taking this error structure into account, the corresponding probability density 
reads: 

p(f]i, ... ,YN, t1, ... , tNl0, r) 

_ ( 1 ) J¥- IIN 1 ( 1 LN (Ye, (4 + Ti, 0) - Yi) 2 ) - - -exp --
2n a· 2 a 2 

i=l i i=l • 

( 1 )J¥- N 1 ( N 2) 
x 2n IT ~ exp -½ L T; 

i=l (, i=l (, 

_ ( 1 ) N ITN 1 ( 1 ~ { df(0, r) T[ }) - - --exp - 2 ~ 2 +2 
2n i=l ai(i i=l ai (i 

(3.41) 
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Analogous to Section 3.3.1, we consider the log likelihood function, LLF: 

~ 1 ~ { £E ( 0 T) T?, } 
ln(.C(0,T)) = -Nln(21r) - ~ln(ai(i) - 2 ~ 'ai + (f · (3.42) 

Inspection of (2.4) and (3.42) shows that their estimates for 0 and T coincide 
iff: 

and (3.43) 

which is in accordance with the result of (3.7). The relation of (3.43) shows un­
der which conditions the sum of total least squares and the maximum likelihood 
function lead to the same estimates. 

3.7.2 Unknown weights (TLS) 
If the weights are not a priori known, we have to adapt our notation with 
respect to the discrepancies. As in Section 3.3.2. we construct the r x q-matrix 
D. In the same way as D contains the discrepancies for measurements related 
to the dependent variables, we introduce an r x q-matrix \J!, which contains 
the discrepancies for the independent variable, Ti. The corresponding moment 
matrix (cf. (3.10) for the OLS case) becomes the 2q x 2q matrix: 

(3.44) 

For the same reasons as explained in Section 3.3.2 we assume that variances and 
covariances do not depend on the time of the measurement, but depend only 
on the measured component. The 2q x 2q covariance matrix, whose diagonal 
elements represent the variances, is denoted by V. The non-diagonal elements 
of V represent the covariances of the measurement errors. 

After this introduction of the matrices M and V, the maximum likelihood 
function can be written as: 

(3.45) 

The maximum likelihood estimates (MLEs) are those values of 0 and T which 
maximise this expression. 

3. 7 .3 Independent measurement errors 
For unknown weights and independent measurement errors the covariance ma­
trix, V, is diagonal and its elements are given by: ar, ... , a;, (r, ... , (;. The 
likelihood function in this case is given by: 
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and the corresponding LLF reads: 

ln.C(0,-r) = -Nln(21r) + t,rln (a:(J 
q (1 r 1 r ) _1~ -~n?.+-~w?. 

2 L.., a~ L.., iJ (2 L.., iJ 
j=l J i=l J i=l 

(3.46) 

Computing the maximum of this expression with respect to the variances, a; 
and (J, we get the most likely variances: 

2 V E;=l D;j . {1 } ai = ii = r , J E , ... , q , (3.47) 

and 

2 E;=l \Jl;j } 
(i = Vq+j,q+i = r , j E {l, ... ,q . (3.48) 

Substitution of (3.47) and (3.48) in equation (3.46) leads, after some rewriting, 
to: 

(3.49) 

which is the final criterion function we have to minimise. For the actual min­
imisation we follow the same strategy as described in Section 3.4. 

3. 7 .4 Dependent measurement errors 
Now we drop the assumption with respect to the independence of the measure­
ment errors, although we still assume a normal distribution. Consequently, 
we now have a full and unknown covariance matrix. Therefore, besides the m 
unknown parameters from the vector 0, and N measurement errors in the in­
dependent variable, denoted by the vector -r, a matrix with q(2q + 1) unknown 
entries has to be estimated. 

The general likelihood function (for full matrices V) was given by (3.45). 
For convenience we take the corresponding LLF to maximise: 

ln.C(0,-r) = -Nln(21r) - ¥ln(det(V)) - ½Tr(V- 1M). (3.50) 

Annihilating the derivative with respect to the elements of the matrix V, we ob­
tain the most likely covariance matrix. Differentiation yields, the same formula 
as (3.31) -but now with an extended meaning-: 

8ln.C = _!:.y-1 .!.y-1Mv-1 av 2 + 2 , (3.51) 
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which vanishes for V = ¼ M . In order to obtain the final estimates, 8 and r, we 
substitute V =¼Min the MLE of (3.45). Consequently, we have to minimise: 

C = det(M). 

As in Section 3.6 the minimisation can be achieved by an iterative process, 
where the covariance matrix lags behind. 

3.8 L1-optimisation and Laplace distribution 
At the end of this chapter we consider the case where the measurement errors 
come from a double exponential or Laplace distribution. For convenience we 
only consider weights that are a priori known. 

The probability density function corresponding to measurement errors from 
a Laplace distribution is given by: 

(3.52) 

which leads to the LLF: 

(3.53) 

Thus, the corresponding function to minimise is: 

N 

8(0) = L Wildi(0)1 , (3.54) 
i=l 

where the weights are positive and the discrepancies are as defined in (3.1). 
The estimates of (3.54) and (3.53) coincide if and only if ai = a /wi, where 
a is a proportionality factor. The same relation between the weights and the 
deviations was also derived in (3. 7) in the case of normal measurement errors. 
It shows that measurement errors from a Laplace distribution lead to an L1 -
optimisation problem. 

A method which uses the fitness criterion (3.54) is known to be less sensi­
tive to outliers. This property is called robustness in statistical terminology. 
The main disadvantage of (3.54) is the discontinuity of the derivative. As 
a consequence, these methods generally require more sophisticated numerical 
techniques. 

An alternative fitness criterion, which is also more robust than weighted 
least squares is the Huber M-estimator [Hub81, HW94]. This estimator is 
defined as the minimum of: 

N 

T(0) = L t/;(widi/v) , (3.55) 
i=l 
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where v is a scaling factor and 

lxl ~ 1, 
lxl > i. 

45 

This alternative formulation is differentiable, but second order derivatives do 
not exist for x = ±l. This means that, e.g., Newton's method cannot be used 
and the actual minimisation contains many checks on the bounds of 'lj)(widi/v). 
Therefore, this approach via (3.55) is less straightforward than a least squares 
criterion, although numerically easier to tackle than (3.54). 

We want to combine the best of both methods: a method which is not too 
sensitive to outliers and can be implemented easily. To our opinion a simple 
and reliable remedy can be used here. We use a similar technique as introduced 
earlier in this chapter, when we used delayed weights. For the computation of 
L1 estimates we introduce an iterative process. First, we rewrite (3.54) as: 

(3.56) 

Subsequently, we start an iterative procedure and freeze the denominator, 
which leads to: 

(3.57) 

This iterative process converges at a superlineai rate. The derivation of this 
convergence rate is similar as in Theorem 3.4.1 and hence is omitted. The 
minimisation problem of (3.56) can be solved with a standard least squares 
minimisation routine, such as Gauss-Newton or Levenberg-Marquardt. The 
denominator of (3.57) needs some special care to avoid numerical instabilities. 
We choose to add a threshold value to the denominator in order to prevent 
division by zero. Consequently, weighted discrepancies which are smaller than 
this threshold, inliers, get a smaller weight. This is not a reason for concern 
because the contribution of these inliers to the sum of absolute discrepancies 
is marginal, with or without this threshold. 

3.9 Conclusions 
In this chapter we presented maximum likelihood estimates (MLEs) for mea­
surement errors from a Gaussian and a Laplace distribution. We explained the 
links with least squares, total least squares and L 1 -optimisation, under different 
assumptions about the knowledge and the structure of covariance matrix. 

Numerical methods were introduced to calculate these estimates. They ap­
pear to be stable and are attractive because of their good convergence proper­
ties and relatively simple implementation once a reliable algorithm for weighted 
least squares is available. 
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In the case the error structure is a priori known in detail, it is a valuable 
exercise to neglect this information on the error structure and to investigate if, 
e.g., the a posteriori calculated (estimated) covariance matrix is in agreement 
with the one a priori known. Discrepancy between the expected and estimated 
structure of the measurement errors is a good starting point for model adapta­
tions or a review on the statistical assumptions with respect to the measurement 
errors. 



Chapter 4 

Nonlinear Regression, Bias and 
Curvature 

4.1 Overview of the chapter 

In this chapter we give an overview of some aspects of the theory of nonlinear 
regression, which have practical relevance when physical models are calibrated. 
Not only the computation of the parameter estimates, but also the statistical 
properties of the corresponding estimator depend -besides the error structure 
of the measurements- heavily on the nonlinearity of the regression problem. In 
this chapter we discuss the consequences of nonlinearity when a least squares 
estimation criterion is used. 

We start with a short overview of the theory for linear regression in Sec­
tion 4.2. From this overview we will look into the differences between the linear 
and nonlinear case. Sections 4.3 and 4.4 contain a number of approaches to 
quantify the nonlinearity of a regression problem. Bias measures for the param­
eters contain information about the separate parameters, but do not indicate 
whether this nonlinearity can be reduced by a reparametrisation. The curva­
ture measures of Section 4.4 make a distinction between intrinsic and parameter 
dependent nonlinearity. 

Nonlinearity measures can be derived by either analytic means or by com­
putationally intensive means. We will compare their performances and discuss 
the advantages and disadvantages of both approaches. The choice of a cer­
tain approach depends also on the underlying model and the time it takes to 
calculate an accurate model response. 

We conclude this chapter with a collection of related problems such as sam­
pling techniques on and graphical representations of levelsets in Section 4.5, and 
the consequences of parameter constraints on level sets and over-parametrisation 
in Section 4.6. 

In this chapter we assume that not only accurate approximations of y(t, 0) 
and 8y( t, 0) / 80 are available, but also sufficiently accurate approximations of 
82 y(t, 0)/802 . The latter will be used to derive analytic measures for the extent 
of nonlinearity. 
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4.2 Linear Regression 
A thorough overview of the theory of linear regression can be found in standard 
texts as, e.g., [DS81, Rao73, Sch59, Seb77]. We just give a brief overview with 
the aim to introduce the necessary notation: 

• t E JR is the regressor, explanatory or independent variable, 

• y E ]Rn is the vector of response or dependent variables, 

• () E ]Rm is the vector of unknown parameters to be estimated. 

The fact that we deal with one independent variable only is not a restriction; 
t can be replaced by an x E JR1 without further consequences. In the case of 
linear regression, the regression function is linear in the unknown parameters, 
0, written as: 

y(t,0) = X(t) 0, (4.1) 

where X is an n x m-matrix independent of 0, but depending -possibly non­
linearly- on t. 

A set of measurements is denoted by triples as in (1.2). For the true pa­
rameter vector, ()*, we have 

i = 1, ... ,N, (4.2) 

with Ci ~ N(O, an and independent of Cj (for i f- j) 1 , and Xe, (ti) is the,Ci-th 
row of X, evaluated at ti. Notice that N 2: m is a necessary condition in order 
to be able to determine an estimator for all m parameters. The weighted least 
squares estimate, 0, minimises the weighted sum of squared discrepancies. The 
corresponding criterion reads: 

N 

8(0) = L w; (Xe; (ti)() - f}i)2 = yT (0)Y(0) , (4.3) 
i=l 

where Y ( 0) is an N -dimensional vector containing the weighted discrepancies. 
The derivative of (4.3) with respect to() equals: 

as= 28YT(0)Y(0) = 2JTY(0) 
80 80 ' 

(4.4) 

with the elements of the Jacobian, J, given by: 

i=l, ... ,N, j=l, ... ,m. 

The minimum of ( 4.3) is attained for 0, the solution of the normal equations: 

(4.5) 

1In Section 3.3.1 we showed that the more general case, e ~ N(O, V), where V is a 
symmetric, positive definite matrix, can be reduced to this generic case. 
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Clearly, Rank( J) = m is a sufficient condition to estimate all unknown pa­
rameters. In the statistics literature, e.g. [Seb77], this property is known as 
identifiability. For linear regression, local and global identifiability coincide, 
because the Jacobian matrix, J, is independent of 0. Furthermore, there exist 
no local optima but exactly one global solution, 0, which minimises (4.3). 

If Rank( J) = m and N > m, an estimator of the variance of the measure­
ment error, a2 , is given by: s2 = 8(0)/(N - m). Notice here that in most 
practical cases the statistical properties are not known exactly, but assumed 
to have an error structure as in Section 1.6. The variance of the measurement 
error is not known. The following properties can be derived, [SW88], with E 
denoting the expectation: 

E(0) 

cov(0) 

E ( 8(0) ) = a2 , 
N-m 

0* 
' 

E ( (0 - E(0)) (0 - E(0)) T) 

(4.6) 

(4.7) 

E ( (JT J)-1 JTyyT J (JT J)-1) = a2 (JT J)-l (4.8) 

Which implies: 

From ( 4.6) and ( 4. 7), we see that the estimators for 0* and a2 are unbiased in 
the linear case. Further, we need the following properties. 

Theorem 4.2.1 Under the conditions Ei ~ N(O, a2 ) and Rank(J) = m, the 
following properties hold: 

1.) 0-0* ~N(o,a2 (JTJ)- 1) 

2.) 8(0)/a2 ~ X2 (N - m) ; 

3.) 0 is statistically independent of s2 ; and 

4.) (8(0:) - 8(0))/m ~ F(m N _ m) 
8(0)/(N - m) ' ' 

(4.9) 

where X2 (N -m) and F(m, N - m) indicate the Chi-square distribution with 
N -m degrees of freedom and Fisher's F-distribution with m and N-m degrees 
of freedom, respectively. 
Proof: See Seber and Wild [SW88, page 24]. D 
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The m x m-matrix -;;,z ( JT J) is the so-called Fisher information matrix. A 
direct consequence of 

S(0*) - S(0) = (0 - 0*)T JT J(0 - 0*) ' 

and (4.9) is: 

(0 - 0*)T JT J(0 - 0*) 
----2---~F(m,N-m). 

ms 

Consequently, a (1 - o:) confidence region for 0* is given by: 

{0* : (0 - 0*)T JT J(0 - 0*) ~ ms2 :F0 (m, N - m)} . 

(4.10) 

(4.11) 

(4.12) 

For a geometric interpretation of the ellipsoidal confidence region, we refer 
to the last paragraph of Section 1.6. 

The remainder of this chapter is devoted to nonlinear regression. In the 
case of nonlinear regression the difference in (4.10) is not exact any more, but 

contains higher order terms, 0 (110 - 0* 11 3). This has consequences for the esti­

mators and their confidence regions. Another main difference is the possibility 
of having many local minima in the nonlinear case. As a consequence, good 
initial estimates of the unknown parameters are indispensable to determine the 
optimal estimate efficiently. 

4.3 Biased estimators 
In the case of linear regression ( 4. 7) holds, which means that 0 is an unbiased 
estimator of the true parameter vector, 0*. In nonlinear regression the least 
squares estimator (LSE) is not always unbiased and the difference E(0) - 0* is 
called the bias. To obtain insight in the meaning of the bias we start with an 
analytic computation of the bias. The cases where exact bias measures can be 
calculated analytically originate from carefully constructed examples and not 
from real life case studies, so we need other means to investigate the bias in a 
general setting. Besides the exact calculation of the bias we study two other 
methods, namely the Monte Carlo method and the bias measure of Box, to 
approximate the bias. Both these methods only yield approximate values for 
the bias, but they have the advantage that they are applicable in more general 
cases. In Sections 4.3.2 and 4.3.3 we discuss these methods and investigate 
their accuracy by applying them to the example introduced in Section 4.3.1. 

4.3.1 Analytic result 
In this section we look into the topic of bias by means of an exploratory example 
of a nonlinear regression problem. This example is constructed in such a way 
that the bias can be calculated analytically. The analytic result is compared 
with the approximate results of the following sections. 
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Example 
We consider the model 

y(t,0) = ln(0 + ln(t)), (4.13) 

where 0 is the parameter to be estimated. For reasons which will become clear 
later, we take all N measurements at one fixed value: f > 0. The additional 
parameter constraint reads: 0 > - ln(f). The simulated measurements are 
denoted by: (1, f, Yi), (i = 1, ... , N) and the corresponding weights, wi in (1.4), 
are taken equal. For convenience, the expectation of the measured values is 
scaled to 1, which means that Yi = 1 + ci (i = 1, ... , N), with ci ~ N(O, a2 ) 

and 0* = e - ln(f). 
The model of (4.13) and the chosen experimental design enable us to write 

an explicit expression for the optimal parameter: 

0 = exp (y) - ln(f) , 

First, we get: 

0- 0* = eii - e, 

and hence the bias of 0 equals: 

or, its complete expression: 

N 
'h- l'°'_ wit y = N ~ Yi . 

i=l 

E(0-0*) = (eY - e) --2 exp - y 2 dy ~ 100 
_ ~ ( N(--1)2) 

_ 00 21ra 2a 

100 fN (- N(y-1)2 ) _ = -oo V ~ exp y - 2a2 dy - e 

(4.14) 

(4.15) 

(4.16) 

= 100 /N exp (- N { y - ( l + ~) r) exp (1 + ~) dy - e 
_ 00 V~ 2a2 2N 

= e ( exp ( ;; ) - 1) . ( 4.17) 

Therefore, in this example 0 is a biased estimate of 0*. The magnitude of this 
bias is shown-in Table 4.1 for different values of a2 /N. ◊ 
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4.3.2 Monte Carlo 
The purpose of this section is to motivate and to explain our Monte Carlo 
(MC) method. The method is demonstrated by making use of the example of 
Section 4.3.1. The MC-result is compared with the exact result from (4.17). 

The method is used here to approximate the bias of an estimator. The bias 
can only be calculated analytically if an explicit relation between the estimator 
and the measurements exists as in (4.14). This is more of an exception than a 
rule, so we need alternative ways to approximate the bias. 

Before the MC-method can start we need an experimental design, {ci, ti}, 
and an estimate of the unknown parameters, 0, and an estimate of the variance2 , 

s2 • Then we perform repetitive perturbations of the model outputs Ye. (ti, 0), 
(i = 1, ... , N) and repeat this N Mc times. In the case the measurement errors 
are independent and normally distributed, the perturbations are sampled from 
the same distribution. Each set of N artificial, simulated measurements has a 
corresponding least squares estimate (LSE). In the case the model is linear in 
its parameters, the N Mc corresponding LSEs will also have a normal distribu­
tion (see Theorem 4.2.1). In the nonlinear case, normality tests, e.g. via sample 
moments or the Kolmogorov-Smirnov test, on these LSEs give an indication 
of the nonlinearity of the regression problem and should be compared with 
nonlineari9-" information obtained by means of other methods. If we use the 
estimates 0 and s2 for 0* and a 2 , respectively, the i-th artificial measurement 
of the j-th MC simulation reads: 

(i=l, ... ,N, j=l, ... ,NMc), (4.18) 

with: 

8f ~ N(O, s2 ) • 

In statistics literature this MC procedure is called parametric bootstrap [Efr79]. 
Every set of simulated measurements leads to a corresponding least squares 
estimate, denoted by: Bi. The mean of these N Mc estimates is denoted by 

0. The difference between 0 and 0 is the bootstrap estimate of the bias. The 
accuracy of the corresponding estimator depends on -besides the model and 
the experimental design- the number of estimates, N Mc. As an approximate 
(1 - a)-confidence region_for 0 is given by (4.12), the same relation, given the 

estimate, can be used for 0, with s2 replaced by s2 / N Mc. When we perform, for 
instance, N Mc runs, the individual confidence regions of the bias are ~ 
times smaller than the individual confidence regions of the final estimate. This 
seems accurate enough for the bias, but this is not true. First, for the bias 

we consider the difference, 0 - 0, given the estimate, 0. Second, the bias 
reveals information with respect to the nonlinearity of the parameter estimation 
problem, because the bias is used for another purpose than the final estimates, 
it requires a different accuracy. 

2 Of course we use 0*, E(Yc. (ti, 0*)) or a 2 , if these quantities are known. 



Nonlinear Regression, Bias and Curvature 53 

:,._ 

If we return to the example of Section 4.3.1 the conditional variance for 0 
given 0 can be estimated by: 

(
"'-) T -1 s2 e2s2 

var 0 = (J J) y;;- = N N , 
MC MC 

because 0* is known we take the true parameter instead of its estimate, 0. The 
results of the MC-method, the corresponding N Mc 's and the comparisons with 
the analytic results of ( 4.17) are shown in Table 4.1 for various ratios of a2 and 
N. 

a2/N anal. ( 4.17) NMC 0-0* 
1.0 X lOO 1.763x10° 1.0 X 103 1.718x10° 
1.0 X 10-l 1.394X10-l 1.5 X 104 1.391X10-l 
1.0 X 10-2 1.363x10-2 1.6 X 105 1.392x10-2 

1.0 X 10-3 1.359x10-3 1.6 X 106 1.326x10-3 

Table 4.1: Bias estimates for the model problem of ( 4.13), calculated by analytic 
means, cf. (4.17) and the MC-method. 

The MC-results are in close correspondence with the analytic results, al­
though to our experience many simulations had to be performed to obtain 
accurate approximations. The choice of N Mc is made in such a way that the 
relative error between the true and the estimated bias is less than 5%. The 
number of MC runs might become a serious bottleneck for more complex mod­
els due to huge CPU times for model evaluations. If this is the case, we can 
approximate the bias as outlined in the next section. 

4.3.3 Bias measure of Box 
A useful bias measure was introduced by Box in [Box71]. We only give the 
formula of this bias measure, for details and the derivation the reader is referred 
to the original paper. For this bias measure we need the Jacobian, J (cf. 
(1.11)), and the Hessean, H (cf. (1.17)). The bias measure according to Box, 
abbreviated by BB, is defined by: 

2 
BB(0) = -a (JT J)-1 JT z, (4.19) 

2 
where z is the N-dimensional vector: 

Z = ( Tr ( H1.. ( JT J)-1) , Tr ( H2 .. ( JT J)-l) , · · · , Tr ( HN .. ( JT J)-l)) T, 

and Hi.., the i-th site of H, is an m x m matrix. In (4.19) the matrices J 
and H are evaluated at 0. From (4.19) it is obvious that BB(0) vanishes for 
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linear models. When we calculate BB(0) for the example from Section 4.3.1, 
we obtain: 

2 

BB(0) = ;N (0 + ln(l)) . (4.20) 

Another way to look at ( 4.20) is to substitute the true parameter value, 0* = 
e - ln(l), for 0. This substitution yields: 

2 

BB(0*) = ~ 
2N' 

(4.21) 

which is a first term of the Taylor expansion of ( 4.17). The results are listed 
in Table 4.2. 

The expectation of (4.20) reads: 

E(BB(0)) =E(;;(0-0*+e)) = ;; (E(0-0*)+e), (4.22) 

which gives the relation between the true bias and the bias measure of Box. 
The values of the expected bias measure of Box, using the exact biases, are 
given in Table 4.2. This table indicates that in this example the quadratic 
approximation of the bias measure of Box is acceptable, if u 2 / N is an order of 
magnitude smaller than e. 

u2 /N anal. (4.17) BB(0*) (4.21) E ( BB(0)) 

1.0 X lOO 1.763x10° 1.359x10° 2.241 X 10° 
1.0 X 10-l l.394x10-l 1.359X10-l 1.429 X 10-l 
1.0 X 10-2 1.363x10-2 1.359x10-2 1.366 X 10-2 

1.0 X 10-3 l.359x10-3 1.359x10-3 1.360 X 10-3 

Table 4.2: Bias measures of Box (4.19) for the model problem (4.13). 

4.4 Curvature measures 
The bias measures as they have been derived in the previous sections give only 
a limited amount of information about the nonlinearity. When they indicate 
that the bias is negligible, we do not need additional information to proceed 
the investigation of the nonlinearity. If this is not the case, we want to ex­
plore the nonlinearity in more detail. First, we give a short overview of the 
curvature measures proposed by Bates and Watts [BW88], we highlight the 
problems whfch might be encountered in nonlinear regression, and we show 
how to recognise them and to deal with them. 
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It is important to keep in mind that the expression 'measure of nonlinearity' 
can be misleading when only second order information is used. Although we 
will follow the literature here, it would be better to call the existing measures: 
measures of quadraticity. A model that is cubic in its parameters, could be 
called linear according to the measures of Bates and Watts. 

To get more insight into the essential differences between linear and non­
linear regression and in order to describe measures for nonlinearity we have to 
introduce the notion of solution locus. Each set of N measurements can be 
regarded as one point in an N-dimensional data space. The solution locus, 
is the m-dimensional manifold in the data space, containing all possible, the­
oretical model responses for all possible 0. In the case the dimension of the 
solution locus is (locally) less than m, the problem is (locally) non-identifiable, 
for more details on identifiability the reader is referred to [WP97]. The orthog­
onal projection of the point, which corresponds to the actual measurements, 
onto the solution locus leads to the LSE, 0. Notice that the solution locus 
does not depend on the measurements, Uh}, but only on the model outcome, 
y(t, 0), and the experimental design, { ci} and { ti}. The nonlinearity of the 
model-experiment combination can be expressed in terms of the curvature of 
the solution locus. 

Let us first give an example in order to illustrate the solution locus. 

Example 
Suppose that we have a chemical reaction where two substances, A and B, are 
involved, and the reaction scheme is given by: 

A~ B. 

When we assume first order reaction kinetics and the reaction starts at to, the 
differential equation describing this chemical reaction reads: 

di~] = -k[A] , scaling: [A] such that: [A](to) = [A]o = 1 , 

we obtain [A](t) = e-kt. From now on the unknown parameter k is written as 
0 := k 2:'. 0. 

We assume that two measurements have been performed at t = l and 
t = 2. Using the notation (1.2), N = 2 and the experimental data are given 
by {(1, 1,111), (1, 2, 112)}. We have a two-dimensional data space and a one­
dimensional solution locus, given by the parametric form: 

( ~:J!~::; ) = ( :::0 ) , with: 0 2:'. 0. (4.23) 

The data space containing the solution locus is shown in Figure 4.1. Thus, the 
solution locus contains all theoretical model responses for the given experimen­
tal design. Each complete set of N measurements corresponds to a single point 
in the data space. For a given set of experimental data the LSE is determined 
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Figure 4.1: Plot of data space and solution locus, cf. (4.23). 

by orthogonal projection onto the solution locus. If the weights in (1.4) are not 
constant, then the axes of the data space should be scaled by the corresponding 
weights. In our case, taking w1 = w2 = 1, the sum of squared discrepancies 
reads: 

(4.24) 

and the LSE, 0, can be obtained by an orthogonal projection. The discrepancy 
vector, Y(0), connects the measurements to the solution locus, and 8Y(0)/80, 
is the tangent plane of the solution locus. From (4.4) we see that these two 
quantities are orthogonal, if S(0) has a vanishing gradient. 

Taking the derivative of ( 4.24) with respect to 0 and setting it equal to zer.o 
leads to the implicit equation describing 0 as a function of Y1 and Y2: 

~ ~ 

-30 ( 1 - ) -0 1 - Q e + 2 - Y2 e - 2Y1 = • 

The surface representing this relation is given in Figure 4.2 

(4.25) 

◊ 

After the example we return to the general notation. The solution locus, ( cf. 
(4.23)), is now denoted by: 

(4.26) 
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0 

Figure 4.2: Plot of the surface describing the least squares estimate, 0, by a 
given pair of measurement, y1 and y2 , as expressed by (4.25). 

where 

for: i = l, ... ,N. 

Obviously, linearity of the model leads to a linear solution locus. In order to get 
an impression of the nonlinearity of the solution locus we consider an arbitrary 
straight line in the parameter space through 0, denoted by: 

0(/3) = 0 + /3h , Of.hEllr, /3Eli. 

The model transforms this straight line into a curved line on the solution locus: 

'f/h (/3) = rJ(0 + /3h) . 

In literature this curve is called the lifted line. This is a straight line if the 
model is linear in 0. The tangent to the lifted line at 0 is given by 

d'f/;/3(/3) I = 1]h(O) = J(0)h . 
f3=0 
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This means that the columns of the Jacobian matrix, J, span the tangent plane 
of the solution locus. The second derivative (the 'acceleration of a particle 
travelling along the lifted line'): 

ijh(O) = hT Hh , 

is an N-dimensional vector, which can be split into two parts, ij = ij1_ + r;II. 
One part, denoted by ij1_, corresponds to the acceleration perpendicular to 
the tangent plane. The other part, r;II, denotes the acceleration in the tangent 
plane. From these second derivatives we compute the curvatures of the solution 
locus. The normal curvature in direction h is defined as: 

(4.27) 

This normal curvature equals the reciprocal of the radius of the circle which 
osculates the solution locus in the direction of rJh at 'T/(0). This curvature 
measure is a characteristic of the solution locus, determined by the model 
y(t,0), the choice of h, and the experimental design {ci,x;}. 

The curvature derived from the tangential acceleration 

(4.28) 

is called the parameter-effect curvature in the direction h. 
Before we explore the meaning of these curvatures, we make them scale 

invariant. Because multiplication of the model responses by a factor, say "', 
leads to a curvature which is 1 /"' times the original one, the curvatures are 
scaled by the standard radius (cf. [BW88, page 242]), 

p = ✓ N: m S(0) = sv'm. (4.29) 

Notice that p2 is also used in the denominator of (4.12). This standard radius 
depends on S(0) and decreases if the model fits the data better. The relative 
(scale invariant) curvatures are defined by: 

1- K1_ 
'Yh = hP and (4.30) 

The relative normal curvature is a measure for the deviation between the solu­
tion locus and its tangent plane. The (1- o:) confidence region from (4.12) is a 
disc with radius pJFa(m, N - m) on the tangent plane, centred at 'T/(0). If the 
radius of the smallest circle osculating the solution locus is at least twice as big 
as the radius of the (1-o:) confidence region, i.e.: 'Yf; < 1/(2JFa(m, N - m)) 
for all directions h, then the relative deviation between the tangent plane to 
the osculating circle is less then 13.4%. The planar assumption is very likely 
if this inequality holds. The relative parameter-effect curvature measures the 
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distortion of a rectangular grid in the parameter space into a non-rectangular 
grid on the solution locus due to the mapping of (4.26). 

From now on we always use the relative curvature measures, 'Yh, and there­
fore omit the adjective relative. The parameter-effect curvature can, contrary 
to the normal curvature, be decreased by an appropriate reparametrisation. 
For this reason the normal curvature is also known as the intrinsic curvature. 
Further we want to emphasis that a study of the parameter-effect curvature and 
a possibly appropriate reparametrisation are only constructive if the intrinsic 
curvature is sufficiently small. 

In order to calculate both curvatures we consider the QR-decomposition of 
the Jacobian matrix: 

J= QR= Q ( ~) ' 

where Q is an orthonormal, N x N-matrix and R is an upper triangular, m x m­
matrix. The matrix R is used for a linear coordinate transformation in the 
parameter space 

¢ := R(0-0). 

Notice, that a linear transformation will not affect the measures of nonlinearity, 
so it makes no difference whether we study the nonlinearity measures with 
respect to 0 or ¢. Here we assume that Rank( J) = m in a vicinity of 0, 
which means that the problem is locally identifiable. The consequences for the 
case Rank(J) < m are discussed in Section 4.6. Consequently, the inverse of 
R exists. When we now consider the derivatives of 'T/ with respect to ¢ and 
denote the corresponding Jacobian by J,t,, we get: 

J,t, = :; l,t,=o = :~ l0=0 :: 1¢=0 = Q ( ~ ) fi-l = Q ( 10 ) . (4.31) 

This means that the first m columns of Q contain an orthonormal basis of the 
tangent plane, d'f/(</J)/d</J. If we denote fi- 1 by L, the second derivatives of 'T/ 
with respect to ¢, i.e. the Hessean after the linear transformation, turn into: 

(H,t,)n = d2'f/i(¢) =ff d2'f/i(0) d0v d0q ' 
1 d</Jjd</Jk q=l p=l d0pd0q d</Jj d¢k 

or using a notation with the sites of Has introduced in (4.19): 

(H,t,)i .. = LT H; .. L . 

(4.32) 

(4.33) 

Now we are going to split the m x m vectors of length N with second derivatives 
into a tangent and a normal part. Therefore we multiply this matrix, H,t,, by 
QT: 

N 

(A)ijk ~ L Qft (H,t,)ljk (4.34) 
l=l 
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The 'upper' part of A, Aijk for i, j, k = 1, ... , m, also called the first m sites 
of A, contain entries with respect to parameter-effect curvature and the last 
N - m sites contain intrinsic curvature information, denoted by All and A J_, 

respectively. An advantage of the transformation becomes clear if we take a 
vector, say g, from the rotated parameter space in such a way that II g II= 1, 
then II 'T/Lg II also equals 1. And therefore we obtain, by using (4.30), (4.33) 
and (4.34): 

1-L =II (gTH¢9) 11 II P =II gT A 11 9 II P (4.35) 

and 

(4.36) 

From the two relative curvatures, we denote the corresponding maxima as: 

rll 

max "'J_ 
llgll=l I Lg ' 

max,y 11 
llgll=l Lg ' 

and the corresponding vector in the rotated parameter space by gj_ and gll, 
respectively. An algorithm for this maximisation is proposed in [BW80]. 

If both rj_ and rll do not exceed l/(2JF0 (m, N - m)) the nonlinearity of 
the parameter estimation problem is marginal and the linear theory can be ap­
plied. To be sure at this point it is still recommended to compare these results 
with other measures. In the case rj_ is too large, then CPU intensive methods 
are needed to sample in the vicinity of 0 to retrieve confidence regions. Another 
option is when rll exceeds the corresponding F-value, then a reparametrisation 
might give some decrease of the nonlinearity. For this purpose we transform gll 
linearly from the rotated parameter space into the original 0-space: hll = Lgll. 
The entries of hll which differ substantially from zero, indicate that the corre­
sponding parameters should be considered for a reparametrisation. The choice 
of the reparametrisation depends on the experience and intuition of the user, 
the nonlinearity measures indicate only which parameters are candidates for a 
reparametrisation in order to reduce the parameter-effect curvature. Examples 
of a successful reparametrisation are given in the example below and, for a 
practical case study, in Section 6.1. 

Example 

We return to the example described by (4.23) and assume that the measure­
ments are known, say: y1 = 0.61 and Y2 = 0.46. Equation ( 4.25) leads to 
0 = 0.411. These measurements are also needed to scale the curvatures. Sub­
stitution in (4.29) leads to: p = 0.0532. The scaled Jacobian and Hessean 
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are 

= t-12.46 ) -16.53 ' 
12.46 

= 33.06 ) . 

Subsequently we compute the QR decomposition of the Jacobian: 

J =QR= Q ( R ) _ ( -0.602 0.799 ) ( 20.70 ) 
0 - -0. 799 -0.602 0 . 

Because L = fl- 1 = 0.0483, the Hessean with respect to the transformed 
parameters reads: 

H - LTHL - 0 0483 ( 12.46 ) 0 0483 - ( 0.0291 ) 
<P - - • 33.06 . - 0.0772 

Finally, we get the matrix which contains both curvatures: 

A= QTH = ( -0.0791 ) 
<P 0.0232 

The absolute value of the first and the second entry of this matrix correspond 
with ,,,11 and 1'.L, respectively. Note that 1/(2J.F0 _05 (1, 1)) = 0.0394, which 
means that there is a strong nonlinearity in the parameter-effect part. 

If we use the reparametrisation: 

(4,37) 

the corresponding acceleration array reads: 

A = ( 0.0308) 
1/; -0.0232 

We see that the parameter-effect curvature decreases (which was the aim). The 
intrinsic curvature stays unaffected as expected from the theory. ◊ 

In the case that p becomes larger, the intrinsic and the parameter-effect curva­
ture will also increase due to (4.30). The quantity pis introduced to scale the 
error, which is dependent on neither the model nor the experimental design. 
When we have a look at Figure 4.1, it is obvious that if 0 increases (and p is 
kept constant), the curvatures also increase. 

The normal (non-relative) curvature ( 4.27) corresponds with the radius of 
the circle which osculates the solution locus. If the measurements coincide with 
the centre of the osculation circle, the problem becomes locally non-identifiable. 
This can happen even if "Y"F; < 1/(2J.Fa(m, N - m)). 
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4.5 Investigation of levelsets 
In this section we give a collection of guidelines which are valuable to investi­
gate the significance of the ellipsoidal confidence region (4.12) based on a linear 
approximation. The guidelines have a heuristic character, but contribute in our 
point of view to get a better insight into the nonlinearity of a regression prob­
lem. The extent of the correspondence between the approximated levelsets and 
the true levelsets is related to the nonlinearity of the regression problem. The 
guidelines vary from retrieving rough information about this correspondence in 
a cheap way up to more sophisticated and time consuming approaches to in­
vestigate the levelsets more precisely. Information about the nonlinearity from 
other sources can be integrated with these guidelines. The sum of squared 
discrepancies for an ellipsoidal (1 - a)-levelset is denoted by S0 and equals: 

S0 = S(B) (1 + _!!!__F0 (m, N - m)) . 
N-m 

For a first exploration we compute the sum of squared discrepancies at the 
intersections of the ellipsoid with the parameter axes (see (1.26)) and compare 
the corresponding sums of squared discrepancies with the value S0 for differ­
ent values of a. This can be repeated for the tips of the ellipsoid. For each 
confidence level we obtain 4m sums of squares, denoted by sa,i, i = 1, ... , 4m. 
The deviation from linearity can be expressed by 

a ✓L.-i':1 (S" - 3a,i)2 

µ = 2vm,S(0) ' 

which is scale invariant, corrected for the number of points on the ellipse and 
zero in the linear case. 

Instead of taking only 4m points at the intersections and the tips of ellipsoid, 
we can take an arbitrary number of points on the ellipse and calculate the 
corresponding µ". The points can be either sampled randomly on the ellipse 
or positioned on the ellipse in a regular way. The computation of such a regular 
positioning on a sphere is discussed in [PSS97], the extension to an ellipse is 
straightforward. 

Starting from Na points on the ellipse, denoted by 0a,i, we can perform 
a line search along the line through 0 and oa,i, in order to retrieve (Ja,i, s.t. 
S({)a,i) = S 0 • The resulting points, (Ja,i (i = 1, ... , N 0 ), should be projected 
on all {0;,0j}-planes (1::; i < j::; m) and compared with the corresponding, 
projected ellipse. Similar to µ 0 , we can derive another heuristic measure of 
nonlinearity: 

a ✓L.,~"1 110a,i - (Ja,ill2 

w = v'NallBII ' 
which is, as µ°', scale invariant, corrected for the number of points on the ellipse 
and zero in the linear case. 
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A straightforward approach is to use a grid in the parameter space around 
0, calculate the corresponding sum of squares, make iso-plots of all the (';) in­
tersections with the { 0i, 0i }-planes and compare the results with the ellipsoidal 
regions which were expected on the basis of the linear theory. The disadvan­
tage is that the computation time grows exponentially with m, although a 
priori knowledge about the nonlinearity of certain parameters can be used to 
refine the grid in the direction of these parameters. An example of an iso-plot 
and the comparison with an ellipsoidal region is given in Section 6.1.7. 

For all the methods it is important to keep in mind that for the purpose of 
visualisation not only the intersections with {0i,0j}-planes (1 '.Si < j '.Sm) 
should be considered, but also the projection on such planes. To demonstrate 
the last sentence we can think of a banana-shaped levelset whose intersections 
with the { 0i, 0i }-planes are almost ellipsoids and only the projection will reveal 
the banana-shape of the levelset. For this reason it also not recommended to 
sample points in {0i,0j}-planes only, because sampling points over the whole 
parameter space might reveal additional information. Here it is important to 
remark that when m grows the projected points of a more dimensional ellipse 
concentrate more at the centre of the projected ellipse. This is a disadvantage 
as long as we are interested in the contours of levelsets and their graphical 
representation. 

4.6 Parameter constraints and redundancy 
In this section we will give a short outline concerning active parameter con­
straints and the consequences for the confidence region. At the end of this 
section we highlight a few topics with respect to parameter redundancy, which 
is related to over-parametrisation and non-identifiability. 

The (1-o:)-confidence region indicates the area that has probability (1-o:) 
to cover the true parameter, 0*. In this section we will assume implicitly that 
0* fulfills the constraints (1.27), i.e.: R(0*) '.S 0. In the case that none of 
the (m - 1)-dimensional manifolds Ri(0) = 0 (i = 1, ... , K) intersects the 
confidence region, this confidence region stays unchanged. 

In the case when there is such an intersection a number of steps have to 
be made. First, we concentrate on the physical interpretation of this situation. 
E.g., when a reaction rate tends to zero, we have to perform statistical tests 
in order to decide whether this reaction is insignificant, and as a consequence 
the corresponding parameter and restriction can be omitted. Then the model 
is adjusted and fit to the data again. Second, if it turns out that a restriction 
intersecting the confidence region does not have such a consequence in the 
proper formulation of the model, then the area 

01 = {0JS(0) '.S S0 I\ R(0) '.SO} 

still has a probability of (1 - o:) that it covers 0*. 
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When a parameter estimation problem is non-identifiable in the linear case 
we have 

Rank(J) < m ¢? 360 -f. OIS(B + 60) = S(0) , 

where 60 E Ker(J) and 0 is a non-unique point in the parameter space which 
minimises S ( 0). The rank of J, denoted by m J , determines how many param­
eters can be estimated from the parameter estimation problem. 

When J is singular we can still retrieve the corresponding singular value 
decomposition (cf. (1.15)) of J, such that A1 2: A2 2: ... 2: AmJ > 0 and 
Am +I = ... =Am= 0. The last m - mJ columns of V span the kernel of J. 

J 

The parameter transformation 

(4.38) 

leads to 

J = dY(0) = dY(</>) d</> = J vr 
0 d0 d</> d0 <I> ' 

and as a result: 

Jf Jq, = ~2. 

After the parameter transformation of ( 4.38), the parameters <Pm + 1 , ... , <Pm 
J 

can be deleted from the model equations. The remaining parameters are called 
the principal components, the corresponding Jacobian has full rank and the 
parameters are uncorrelated. 

In practical situations the true rank of a matrix is not an appropriate mea­
sure due to expected numerical truncation errors. Therefore, we consider the 
E-rank or 'numerical rank' of a matrix, see [GV83, page 176]. This E-rank of 

J{0), m,,J, equals the largest i such that Ai > EA1 . For parameter estimation 
problems a choice of E between 10-3 and 10-5 is sufficient. 

If both ''({;: and ')'~ are smaller than 1/(2JFa(m, N - m)), the regression 
problem is assumed to be close to linear and the linear approximation for 
the level sets is assumed to be valid. To be more sure we check whether 
this quadratic information is in accordance with heuristic techniques from Sec­
tion 4.5. If this check is positive we can perform the parameter transformation 
(4.38) in the vicinity of 0 for the mentioned values of E. 

4. 7 Concluding remarks 
In this chapter we started with a brief overview of linear regression, which 
was followed by a summary of the differences between linear and nonlinear 
regression. Special attention was paid to ways to quantify the nonlinearity of 
a regression problem. Some of the approaches to derive nonlinearity measures 
require a huge amount of model evaluations, which make them less appropriate 
in the case the model equations consist of a set of DAEs. 



Nonlinear Regression, Bias and Curvature 65 

The nonlinearity measures can be used to obtain a clue with respect to a 
reparametrisation or an educated sample strategy in the parameter space. Var­
ious aspects of nonlinear regression are illustrated by examples in this chapter 
or related to the case studies of Chapter 6. 
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Chapter 5 

Optimal Experiment Design 

5.1 Introduction 
In the previous chapters we have focused on parameter estimation, model dis­
crimination and the corresponding statistical analyses, all on the basis of a 
given, fixed set of measurements. If the results from the statistical analyses are 
insufficient to discriminate between two models or give rise to large, unwanted 
confidence regions of the parameters, we need additional measurements in order 
to obtain a decisive answer or more precise estimates. A third goal for future 
experiments could be the reduction of the nonlinearity of a regression problem. 
Except for a simple example we will not deal with this topic, although it is a 
promising and targeting topic for future research. 

Parameter estimation is an initial step towards a more thorough investiga­
tion of the model. Optimal experiment design studies the issue of how to plan 
future experiments in order to obtain a maximum of information. The kind of 
information depends on the motivation of a more thorough investigation and 
is specified mathematically in this chapter. 

Section 5.2 directs to a more precise, mathematical formulation of the topic. 
A method to get a clear insight at a glance into the dependencies between the 
state variables and the parameters is presented in Section 5.3. The Sections 
5.4 and 5.5 contain an outline on optimal experiment design (OED) in order 
to reduce the size of the confidence regions and to discriminate between differ­
ent models, respectively. A relation with nonlinearity is given in Section 5.6. 
Concluding remarks are found in Section 5.7. 

Again the model responses are denoted by Ye, (ti, 0), where the pairs { Ci, ti} 
(i = 1, ... , N) specify the experimental design. As before in Chapter 4, we 
assume that the Jacobian and the Hessean -or their numerical approximations­
exist for the given experimental design. 

5.2 Problem formulation 
In the first paragraphs of this section we focus on the problem formulation 
for the case that a model has been selected and we want to reduce the size 
of the confidence region for the parameters. The last part of this section is 
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devoted to a more precise formulation of optimal experiment design for model 
discrimination purposes. 

Besides the model equations, we assume the presence of either a good esti­
mate for the unknown parameters or a set of measurements that can be used 
to estimate these unknowns. It is more a rule than an exception that some 
entries of 0 cannot be estimated with acceptable reliability. In such cases it is 
of major interest to put effort in the design of future experiments in order to 
reduce the uncertainty in the estimators of these parameters. A schematic flow 
chart of a model investigation and the position of optimal experiment design 
is given in Figure 5.1. 

Model response 
fits data? 

All parameters within 11--@-- sati_sfactory confidence 
regions? 

Perform extra 
measurements 

Can the reliability of the 
parameters be improved by 
additional measurements? 

:statistic; 1 
Analyses 1 L ___ _ 

1
1 
Opti~i;xperi--1 
mental design I L ______ J 

Figure 5.1: Schematic representation of a model investigation, where optimal 
experiment design is used to increase the reliability of the estimators of the 
parameters. 

Here we encounter one of the motivations for optimal experiment design. 
Given a set of parameters and the reliability of the corresponding estimators, 
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what additional experiments should be performed to increase this reliability 
in a well defined sense? This is a bit of a paradoxical task in the nonlinear 
case, because the parameters with their uncertainty also influence the optimal 
experiment design. Consequently, the optimal experiment design is based on 
the current estimates and might turn out to be far from optimal when the 
estimates change after having performed additional measurements. 

The sum of squares to be minimised and its N x m Jacobian are denoted 
as in (1.10) and (1.11), respectively. In the case N < m the approach as it 
will be presented in the following sections is still applicable; 0 is then one of all 
possible least squares estimates or an estimate based on other information. 

If the nonlinearity measures are sufficiently small (cf. Section 4.4), then the 
ellipsoidal region of (1.24), which is only a linear approximation, shows close 
correspondence with the true confidence region. Therefore, investigating J(0) 
yields a reliable basis to retrieve an optimal experiment design with the aim to 
reduce the confidence regions of 0. 

Design criteria are mathematical functions, that depend on an experimental 
design. On the basis of these criteria one design can be judged better than 
another design. The reliability of the parameters depends on the size and the 
orientation of this ellipsoidal region. As a consequence, design criteria can be 
expressed as geometrical properties of the ellipsoidal region as will be shown in 
Section 5.4. 

Another motivation for optimal experiment design is brought up in this 
chapter. If we want to discriminate between two models, which both fit the . 
data, and we cannot discriminate on the basis of the available data, then infor­
mation from the newly designed experiments should enable us to perform the 
discrimination between the given models. 

5.3 Parameter - state variable dependence 
In the majority of the parameter estimation problems not all unknown parame­
ters can be estimated within acceptable bounds. Before we continue we should 
make the expression 'acceptable' more precise. From a naive point of view one 
might come up with the idea that, after calculating the individual confidence 
regions of each parameter, these confidence regions should be smaller in size 
than some predefined value, given a certain confidence level. This is not a good 
approach and we will try to explain this in the next paragraph. 

One of the main goals of parameter estimation is to obtain a reliable model 
to study the physical process under consideration by performing simulations. 
This means that we should focus on the state variables which are of interest for 
physical reasons and how they relate to the separate parameters. Parameters 
which do not have great influence on the simulation results of the state variables 
of interest, do not need tight confidence limits and vice versa. Whether a 
confidence region is acceptable depends on the points of interest of the modeller. 

This section introduces an approach to investigate parameter-state variable 
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dependences by deriving quantities which describe the influence of a change in 
the j-th parameter on the i-th state variable. Reasoning in the reverse direction 
leads to the proposition that these quantities also indicate to which extent 
measurements of the i-th state variable lead to more accurate estimators of 
the j-th parameter. In the reverse case this quantity is corrected by the weight 
which corresponds to the i-th state variable. As in Section 3.3.2, we will assume 
that the variances of the measurement errors -and therefore the corresponding 
weights in (1.4)- are equal if they correspond to the same component of the 
state vector, y(t,8). 

In order to represent the information on the interactions clearly, we con­
struct a labelled, bipartite graph G = (P, L), where Pis a set of vertices and L 
a set of edges connecting the elements of P. The set of vertices can be divided 
into two disjunct sets, Pi and P2 , containing the n dependent state variables 
and m parameters, respectively. Consequently, the graph will have a maximum 
of mn edges. The edge (Yi, ei) is an element of the set L, if the corresponding 
dependence is non-zero. 

Figure 5.2: Graph to represent the dependences between state variables and 
parameters. 

The labels, expressing the magnitude of the sensitivity of the j-th parameter 
on the i-th state variable, are defined as: 

(5.1) 
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where the ratio 0i/maxt IYi(t,0)1 is added to make the dependencies scale in­
variant, and [to, l,0 d] is the time interval of the experiment. The derivatives 
oyi/803 are also called sensitivities. The pairwise dependences can be mea­
sured in many ways, we take the LP-norm, with 1 :Sp :S oo. 

Apart from the quantification of the sensitivity of the i-th state variable on 
the j-th parameter, the labels as defined in (5.1) also have a reverse interpre­
tation if they are corrected with the corresponding deviations. The correction 
reads: 

(5.2) 

The corrected label, :zj_f), indicates the influence of measurements of the i-th 
state variable on the j-th parameter. 

The entry :zj_f) can be seen as a scale invariant average over [to, t. 0 d] of 
all possible entries which might show up in the j-th column of the Jacobian 
(cf. (1.11)) after performing a measurement of the i-th component. 

Remark 5.3.1 If the matrix z(P) has a row whose elements are all zero, then 
the corresponding state variable is not dependent on any of the parameters. 
Measurements of these components will not contribute to more reliable esti­
mates of the parameters. 

Remark 5.3.2 If the matrix z(P) has a column whose elements are all zero, 
then the corresponding parameter will have no influence on the model responses 
and can therefore not be estimated. 

Example 
In the case of the Barnes' problem (cf. Section 1.9 and Appendix LB), we have: 

0 = (0.861, 2.079, l.815f , 

t E [0, 6] , 

maxy1(t,0) 1.112, 
t 

maxy2(t,0) 0.585. 
t 

After computing and integrating the sensitivities, we construct the matrix z(P). 

The result for p = 2 reads: 

z<2> = ( o.394 1.015 o.879 ) 
0.835 1.118 0.575 ' 

(5.3) 

where we see that the biggest entries are in the second column, i.e. related to 
02 = k2 . The estimates are calculated with equal weights and 10 measurements 
of each component. When we consider the SVD (cf. (1.15)) of the correspond­
ing Jacobian, the first column of V equals (-0.371, 0. 746, -0.553)T, which is 
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in agreement with the above results. From the matrix z(2), we also see that 
y1 is more sensitive to changes in k3 and y2 is more sensitive to changes in k1. 

Both conclusions are a bit surprising if we look into the equations and see that 
y~ and y~ only depend indirectly on k3 and k1 , respectively. ◊ 

5.4 OED and improved confidence regions 
In this section the target of optimal experiment design is to plan future experi­
ments in such a way that the reliability of the parameter estimators, determined 
on the basis of previous and future experiments, will be optimal in some, math­
ematically well-defined sense. In order to study the reliability of the estimators 
we investigate the Jacobian of the regression problem, the design criteria de­
pend on this matrix. To determine J in the case of linear regression we do not 
need a good estimate of 0. This is contrary to the nonlinear case, where we 
will need a good estimate for 0, in order to make a useful linearisation. 

We assume that N measurements are already available and the correspond­
ing least squares estimate is denoted by 0. (For optimal experiment design N 
may equal zero. In that case, 0 is an initial guess.) 

Besides the N known measurements, we assume that a finite number of 
additional measurements, Nadd, will be performed in the future. The final 
(N + Nadd) x m Jacobian is denoted by 

(5.4) 

and .X 1 , ... , .Xm are its positive, singular values in non-increasing order as in 
(1.15). 

5.4.1 Design criteria 
For different values oft,, E (-oo, +oo], different design criteria can be distin­
guished, which are denoted by iJ,,,, ( JT ]) . If J has full rank: 

and in the case J is singular: 

t,, = +oo' 
t,, f. { -oo, 0, +oo} , 

ti,= 0' 
ti,= -00' 

t,, = +oo' 
t,, E]O, +oo[ , 
t,, E [-oo, O] . 

(5.5) 

(5.6) 
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The determinant and trace of a matrix are abbreviated by Det and Tr, re­
spectively. The design criterion, W '" has special names for certain values of 
/<i,; 

• D-optimal (/<i, = 0). 
Here we maximise the determinant of the matrix JT J, which is equivalent 
to minimising the volume of the ellipsoidal confidence region (4.11). A 
disadvantage of this choice of /<i, is the chance of constructing 'thin and 
elongated' confidence regions. 

• A-optimal (/<i, = -1). 
This choice of /<i, is equivalent to minimising the variance of I:;~1 0i. 

• E-optimal (/<i, = -oo). 
In this case we maximise the smallest singular value, .Xm, which means 
that we want to construct the ellipsoidal region in the parameter space 
as 'sphere-shaped' as possible. 

In the case we are only interested in a subset of the parameters, because these 
parameters influence the simulation results of the state variables of interest, 
then we pre-multiply the Jacobian with a IDA x m-matrix (mA < m) in order 
to zoom in on the more important parameters. The corresponding designs 
are known as DA-, AA- and EA-design, the extensions to these designs are 
straightforward. More details with respect to design criteria may be found in 
[Loh93, Sil80]. 

Now, the final optimisation problem is to maximise w,.(JT ]) over Nadd 
additional measurements, with Nadd fixed. So we have to determine: 

max w,.(JT J) , 
c,,t;(i=N+l, ... ,N+Nadd) 

(5.7) 

and possible additional restrictions, which express experimental limitations: 

Y1(ci,ti,Nadd) =~ 00 } 
( t N ) (i = N + l, ... , N + Nadd) . 

g2 Ci, i, add 

The maximum exists due to the facts that t E [to, tend] and Ci and Nadd are 
finite. In the next section we will show how to deal with the maximisation of 
the criterion function. 

5.4.2 Repeated design 
We assume that N is greater than zero and that every additional measurement 
has an experimental design such that for each j = N + l, ... , N + Nadd, there 
is at least one i = l, ... ,N, which meets: {ci,ti} = {cj,tj}- After Nadd 
additional measurements have been performed, wi measurements under the 
i-th ( i = 1, ... , N) experimental design are available: 

N 

LWi = N + Nadd and Wi ~ l . (5.8) 
i=l 
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After the introduction of the diagonal matrix n, such that (D)ii wi, the 
overall Jacobian can be written as: 

- I 
J = n2 J . (5.9) 

• In the case of a repeated D-design we have to optimise: 

N 

max det(JT ]) = max det(JTW J) = det(JT J) max IT Wi. 
W1, ... ,WN W1, ... ,WN W1, .. ,,WN 

i=l 

When we take the restrictions of (5.8) into account the maximum is at­
tained if Wi = 1 + Nadd/N. Because Wi is an integer and, in general, 
1 + Nadd/N is not, some of the w;'s have to be rounded off in such a way 
that ( 5.8) is still fulfilled. 

• In the case of a repeated A-optimal design we have to compute 

max Tr(JT J) max Tr(JTW J) 
Wt,, .. ,WN W1, ... ,WN 

N m 

max LWi L (Jij) 2 
Wt,•••,WN i=l j=l 

which is a linear, integer programming problem. Adding the restric­
tions of (5.8) leads to the following strategy. Determine i* such that 
I:;'2=1 ( Ji. i )2 is maximal and for the frequencies we get 

Wi = { Nadd: l if: i = i* ' 
otherwise. 

If there is not a unique i*, any integer combination of the i* 's will do. 

• In the case of a repeated E-optimal design it is not possible to find a 
useful relation between the choice of wi and Am, because the SVD of J 
can be completely different from the SVD of J. A good solution is to 
determine the optimal repeated design by a sequential design as will be 
explained in the next section. 

Definition 5.4.1 By an improved E-design we mean that Am-q > Am-q, 
where q E { 0, 1, ... , m - 1} is the largest integer such that Am-q = Am-q+l = 
... =Am. 

Theorem 5.4.1 If no improvement of the repeated E-design can be made: 
Am-q = Am-q, then Am-q = Am-q = ... = Am = 0. 



Optimal Experiment Design 75 

Proof: If a repeated design leads to an improved E-design, the repeated design 
with Wi = 2 (i = 1, ... , N) leads to an improvement. The Jacobian after adding 
this design reads: 

0 0 ) 
. 0 J = 2J. 

0 WN 

The singular value decomposition of this Jacobian equals: 

j = ut:zvr' 
with I;2 = 21:2 and U, 1: and vr come from the SVD of the original Jacobian, 
J. When there is no improvement, it means that Am-q = jm-q and by using 
the SVD of J we also have jm-q = 2Am-q• □ 

5.4.3 Sequential design 
The optimisation problem (5.7) is not solved directly, but we solve a slightly 
different problem. For this purpose, we take Nadd equal to one, solve the 
minimisation problem and repeat this until some stopping criterion is fulfilled. 
Such approach is called sequential design [Fed72, page 173]. 

Sequential designs are much more attractive from a computational point 
of view, while asymptotically, Nadd ➔ oo, optimal sequential designs approach 
optimal nonsequential designs [Fed72]. The consequences for the design criteria 
as introduced in Section 5.4.1 in the case of sequential design are listed below, 
where .Tadd is a 1 x m-matrix. 

• In the case of sequential D-design we have to maximise: 

Det(JT J) Det(JT J + f[,idJadd) 

Det(JT J)(l + Jadd(JT J)-1 f,;dd) , (5.10) 

as a function oft and CN+i • Maximising this determinant, by making use 
of the SVD of J leads to: 

• Sequential A-design leads to maximising: 

Tr(JT J) Tr(JT J + f[,idJadd) 

Tr(JT J) + Tr(J~dJadd) 

(5.11) 

(5.12) 

again as a function of the design variables t and CN+i· The maximum of 
this sum of traces is attained at the same point as: 

(5.13) 
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• For the sequential E-design, where we want to improye the design by a 
max-min criterion on the singular values of the Jacobian, we have the 
following results. 

Theorem 5.4.2 In the case of E-design, the criterion function is, after adding 
one additional measurement, bounded by 

.T. • 
Am-q-1 2::: '1f_oo(J J) = Am-q 2::: Am-q , (5.14) 

where q is taken as in Definition 5.4.l. 

Proof: The additional row can be expressed in the columns of V: 

m 

J'!tld = L ,Bi¼ . 
i=l 

The matrix JT J can then be written as: 

(5.15) 

where the i, j-th entry of them x m-matrix Breads ,Bi,Bj. Because the matrix V 
is orthogonal, the eigenvalues of JT J are the same as those of :E2 + B. Further, 
the matrix :E2 is diagonal and B has rank l. Now the proof is easily completed 
by making use of the pages 433-434 of Golub and Van Loan, [GV83]. D 

Remark 5.4.1 A consequence of Theorem 5.4.2 is that the number of singular 
values of the Jacobian one wants to increase is equal to the minimal number of 
additional measurements to be performed in order to achieve this. 

Remark 5.4.2 If .Bm-q = ... = .Bm = 0, then there is no improvement of the 
E-design. In the next theorem we show that the reverse is also true. 

Theorem 5.4.3 If no improvement for the sequential E-design can be con­
structed then .Bm-q = ... = .Bm = 0. 

Proof: The first part of the proof deals with the restrictive case where q = 0, 
i.e. Am-1 > Am, and is proved by contradiction. Therefore, .>.m = Am and we 
assume that .Bm -f 0. In the second part we deal with the case where q > 0. 

If A~ is an eigenvalue of JT J, it is also an eigenvalue of :E2 + B (cf. (5.15)). 
This means that: 

,81.Bm-l 

.B~-1 + A~-1 - A~ 

.Bm-1.Bm 

is singular. By the assumption .Bm -f 0, we can take the i-th row and subtract 
,Bi/ .Bm (i = 1, ... , m -1) times them-th row. The determinant of the resulting 
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matrix equals /3;,. TI::~1 (A7 - A~) and should be zero, which completes the 
contradiction. 

For the case q > 0 the contradiction is constructed by assuming that at 
least one f3i -:/- 0 (i = m - q, ... , m) and that A~-q should have an algebraic 
multiplicity of q + 1 in the characteristic polynomial of ~ 2 + B. □ 

Remark 5.4.3 In the case no improvement of the sequential E-design can be 
constructed, then any nonsequential design will fail. 

Theorem 5.4.4 If f3m-q = ... = f3m = 0, then Am-q = ... = Am = 0. 

Proof: By Theorem 5.4.3 we know that f3m-q = ... = f3m = 0 implies that no 
improvement of the E-design exists. By assuming that Am-q = ... = Am > 0 we 
get the contradiction by using Theorem 5.4.1 and stating that then a repeated 
design with Wi = 2 (i = 1, ... , N) would have given an improvement of the 
E-design. D 

Remark 5.4.4 Intuitively one might think that a design which leads to a 
maximal l/3m I is an optimal sequential E-design. This is not true, which can be 
demonstrated by a simple counter example. Suppose that the Jacobian reads: 

J-(2 0) - 0 1 

and we can either take a sequential design with: Ji~~ = (10, 10) or Ji!~= (0, 2). 
For the first design we get: Ai1) = 14.23 and A~1) = 1.58, and for the second 

design: Ai2) = v'5 = 2.24 and A~2) = 2. 

Now we can only state that for an optimal sequential E-design /3i -:/- 0 for at 
least one i = m - q, .. . , m, but we did not manage to find a sufficiently simple 
relation between J, or its SVD, and Jadd· As far as we can see we need a SVD 
of ~ 2 + B for every candidate of Jadd, which is an infeasible approach. 

From a computational point of view the sequential A-design is very attrac­
tive, because -contrary to sequential D- and sequential E-optimal design- an 
update of the singular value decomposition is not needed after adding a mea­
surement. Sequential A-design is related to a workable expression, (5.11), and 
is therefore more attractive than sequential E-design. In practice the optimisa­
tion can be performed by a program for Lipschitzian global optimisation such 
as one whose implementation is described in [Pin95]. When the model equa­
tions are given by a set of DAEs, we choose a regular grid in time, solve the 
model and sensitivity equations, and store the corresponding solutions for each 
grid point. This approach significantly reduces the computation time of the 
DAE solver during the optimisation. 
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5.5 OED and model discrimination 
As in Appendix LC we have two models, y(t, 0) and z(t, ¢), and their corre­
sponding estimates 0 and¢, respectively. We order the vectors y and z, such 
that their first k entries, correspond to the common, observable state vari­
ables. If we cannot discriminate between two models on the basis of an F-ratio 
test from Appendix LC, then we want to perform additional measurements 
in order to obtain a decisive result. In the case of a sequential design it is a 
straightforward way to compute: 

max IYi(t,0) - Zi(t,¢)1. 
i={l, ... ,k },tE[to,tend] 

For a design where this absolute difference is maximal, it is not expected that 
the change in S(0) - S(¢) is maximal after adding the corresponding measure­
ment. The absolute difference should be corrected with the variances of Yi(t, 0) 
and Zi(t, ¢) in such a way that it is unlikely for the additional measurement to 
end up right between the two model responses. The derivation of the variance 
of Yi(t, 0) after a measurement has been added is given by: 

var(yi(t,0)) = E (Yi(t,0) - E(yi(t,0)))2 

ss E (t, By~~;'\0, -0;))' 
ff ay;~'. 0) ay~~;°) E ( (01 - 01 )(01 - 0i)) 
j=l l=l J 

,,8y~i0) (JT J)-'(81/~eir . 
The inverse of JT J can be computed easily, because the SVD of J is available 
and we may use the relation (recall that B = {3/JT as in (5.15)): 

( JT J)-1 = V (~2 + B)-1 vr = V (~-2 - ~-2 {3{3T~-2) vr . 
1 + f3T~-2{3 

The derivation of var(zi(t, ¢)) is identical. Thus, the criterion for model dis­
crimination amounts to: 

max 
i = {1, ... ,k} 

t E [to' tend] 

Yi(t,0) - µ✓var(yi(t,0)) - zi(t,¢) - µ✓var(zi(t,0)) 
if: Yi(t, 0) > Zi(t, ¢) , 

Zi(t, ¢) - µ var(zi(t, 0)) - Yi(t, 0) - µ✓ var(yi(t, 0)) 

if: Yi(t, 0) < Zi(t, ¢) , 
whereµ should be positive. 

(5.16) 
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5.6 OED and nonlinearity 
Here we only give an indication of experimental design for the reduction of the 
nonlinearity of the regression problem. This topic is much more difficult than 
the OED dealt with above and hardly touched in literature, but targeting for 
future research. Reduction of the nonlinearity through experimental design is 
only of interest if neither the planar assumption (cf. Section 4.4) holds, nor a 
reparametrisation of the model reduces the nonlinearity. If both requirements 
are met, we want to perform Nadd additional measurements in such way that 
the resulting max(r.1, rll) is minimal. 

In the case of a repeated design with wi = w (i = 1, ... , N), both ll?Jhll and 
lliihll (cf. Section 4.4) will be a factor yW larger and due to (4.27) and (4.28), 
both the normal curvature and the parameter-effect curvature become a factor 
..Jw smaller. 

A more thorough investigation would be desirable, but goes beyond the 
reach of this publication. We will end this section by a simple example where 
we compute two designs, one for the reduction of the nonlinearity and one for 
an increase of the reliability of the parameters. It turns out that these two 
designs are incompatible. 

Example 
We return to the example of Section 4.4, y(t,0) = exp(-0t). We have per­
formed already two measurements at t 1 = 1 and t 2 = 2, and want to perform 
one additional measurement at t3 • The Jacobian, with this additional mea­
surement, reads: 

Because of the size of JT J, the A-, D- and E-optimal design coincide and equal 
t3 = 1/0. Computation of the nonlinearity measures and minimising them 
leads to t3 = 0, which is not a surprise if we look at the model equations. Ex­
cept that this choice reduces the nonlinearity, it does not give any additional 
information related to the estimate. ◊ 

5.7 Concluding remarks 
In this chapter we give an outline of optimal experiment design. The topic of 
OED is relevant when the parameters are estimated, but some questions with 
respect to the model are not sufficiently resolved. Answers to these questions 
are relevant to improve the accuracy of model simulations, to discriminate be­
tween different models or to reduce the nonlinearity of the regression problem. 

We introduced a method to quantify the dependencies between parameters 
and state variables, and to represent them in a clear way. Then it is shown that 
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these dependencies are also of interest for the design of futu_re experiments. If 
we want to improve the reliability of the parameter estimators, we have different 
mathematical criteria to determine whether an experimental design is optimal 
in a well defined sense. Depending on the criterion, we derived the related 
D-, A- or E-optimal design for a repeated and for a sequential design. For the 
so-called E-design, it turned out to be difficult to determine the corresponding 
optimal design, although we managed to derive a number of results which are 
of practical interest in this context. 

Experimental design in order to discriminate between models is also con­
sidered. For this aspect not only the maximal absolute differences between the 
model responses are of interest, but also the corresponding variances. A rela­
tion between experimental design and nonlinearity of the regression problem is 
also given in this chapter. However, here still many open questions for research 
exist. By means of an example we showed that different design criteria may 
give rise to incompatible designs. 
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Case Studies 

In this chapter we apply the techniques from Chapters 1 to 5 to solve a number 
of real-life problems which originate from a wide range of application areas. 
The problems were solved in close cooperation with scientists working in these 
application areas, because, for the evaluation of the many possible models, a 
good domain knowledge about the problem studied is indispensable. For a 
fruitful and efficient cooperation some of this knowledge is also required for the 
modeller, whereas, some mathematical background is needed for the scientist 
who is interested in a good mathematical model of the process he/she studies. 
Such multi-disciplinary cooperation requires a good interaction and it is our 
experience that efficient means of communication are prerequisite if the parties 
are working at geographically distant locations. 

Each section in this chapter deals with a different problem. The problem in 
Section 6.1 was provided by an industrial partner and describes the formation 
of resins. Two examples from bio-chemistry on blood coagulation and plant cell 
growth are discussed in Sections 6.2 and 6.3, respectively. Section 6.4 describes 
a problem from Akzo Nobel research, where besides the parameter estimation 
problem also various steps of the modelling process are outlined. Another case 
study from the same research department is given in Section 6.5. It describes 
water penetration in an aramide yarn, which is modelled by a I-dimensional 
PDE. Section 6.6 is devoted to an example from macroeconomic time series and 
compares the performance of existing ARMA and SETAR methods, with less 
general models which have fewer parameters. In the last section, 6. 7, we solve 
a complex parameter estimation problem from chemical engineering, known 
from literature [BDB86], and compare our results with those from this paper. 

6.1 Production of resins 

6.1.1 Introduction 
In this section we present a study on parameter estimation in the field of resin 
production. The model describes a mechanism of methylolation of melamine 
by formaldehyde. The methylolation is reversible, nine methylol melamines 
can be identified. Condensation is not considered. For details on this chemical 
process we refer to [GHW66]. 
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The mathematical model of the chemical process contain~ a set of 12 dif­
ferential algebraic equations (DAEs) and 16 unknown parameters; 8 series of 
measurements are available, performed under different initial conditions and 
at different temperatures. To estimate the unknown parameters we apply the 
strategy as described in Chapter 1. With the available measured data, 12 of 
the 16 unknown parameters could be estimated within acceptable statistical 
bounds. In this study we show the effects of a reparametrisation of the model. 

6.1.2 Reaction mechanism 
A schematic representation of the chain of reactions of interest is given in 
Figure 6.1. In this figure we give a label, 'a'-'k', to each chemical component of 
interest; formaldehyde is represented by an 'o' and has no label. The meaning 
of the labels is given in Table 6.1. 

label symbol full name 
a melSol solid melamine 
b melAq dissolved melamine 
C mon mono-methylol melamine 
d di N ,N' -di-methylol melamine 
e NN N,N-di-methylol melamine 
f tri N ,N' ,N"-tri-methylol melamine 
g NNN N,N,N'-tri-methylol melamine 
h tet N ,N ,N' ,N" -tetra-methylol melamine 
i NNNN N ,N ,N' ,N'-tetra-methylol melamine 
j pen penta-methylol melamine 
k hex hexa-methylol melamine 

Table 6.1: Labels, symbols and full names of the chemical components. 

Most reactions in the model involve the binding and loosening of formalde­
hyde. The reaction rates which correspond to the binding have a positive sub­
script. Negative subscripts indicate the reverse reaction rates. The subscript 
of a reaction rate is 2 when the binding of formaldehyde is next to another 
formaldehyde element and 1 otherwise ( when the binding is on a free stick of 
A, see Figure 6.1). 

The reaction mechanism between melamine in its solid and dissolved form 
(labeled 'a' and 'b' respectively, in the figure) is unknown. This causes a less 
straightforward modelling of the process. The adaptations and assumptions we 
made to overcome this inconvenience are discussed Section 6.1.5. 

For cyclic chemical reaction parts the product of the reaction rates corre­
sponding to the clockwise part should equal the product of the reaction rates 
anti-clockwise. From the reaction scheme we see that this condition is fulfilled 
automatically. 
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Figure 6.1: Scheme of the chain of reactions involved in the reversible methy­
lolation of melamine by formaldehyde. The labels 'a'-'k' are explained in Ta­
ble 6.1. 

6.1.3 Experiments performed 
Eight series of measurements were performed under different initial conditions 
and at different temperatures. During each series, at a sequence of times, a 
sample of the reaction volume was taken, in which the formaldehyde concen­
tration and the concentrations of the components with the labels 'b' to 'k' 
were measured. Each measurement gives the value of the concentration of one 
chemical component at a specific time, i.e. at each point of time we have 11 
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measurements. The total number of measurements (N) equals 583. 

6.1.4 Model equations 
Each differential equation in the mathematical model corresponds to a changing 
concentration of a chemical species. The derivation of the equations is based 
on straightforward second order reaction kinetics and on conservation of mass. 

For illustration we focus on the formation, i.e. the change of concentra­
tion per unit of time, of mono-methylol melamine (label 'c') out of dissolved 
melamine (label 'b') and formaldehyde. This production depends on k1 , on the 
concentrations of formaldehyde and dissolved melamine and on the number of 
possibilities for the binding of formaldehyde to dissolved melamine. In this case 
there are six places where the formaldehyde can be bound. The reverse reaction 
depends on k_1 , and on the concentration mono-methylol melamine and water. 
For this reverse step we only have one possibility for the loosening. Following 
these rules for the reaction kinetics and denoting the formaldehyde concentra­
tions with [PM], the water concentration with [H2 O] and the concentration of 
a methylol melamine by its symbol (see Table 6.1) inside square brackets, we 
can derive the differential equations for all the species with the labels 'c' to 
'k', as well as for formaldehyde and water. The resulting differential equations 
read: 

d[FM] 
dt 

d[H20] 
dt 

d[mon] 
dt 

d[NN] 
dt 

d[di] 
dt 

d[NNN'] 
dt 

-ki[FM] (6[melAq] + 4[mon] + 2[di]+ 

4[NN] + 2[NNN'] + 2[NNN' N']) -

k2[FM] ([mon] + 2(di] + 3(tri] + [NNN']+ 
2(tet] + [pen]) + 

k-1(H20] ([mon] + 2(di] + 3(tri] + [NNN']+ 
2(tet] + [pen]) + 

k-2(H20] (2(N.N] + 2[NNN'] + 2(tet]+ 

4[NNN' N'] + 4[pen] + 6[hex]) , 
_ d[FM] 

dt 

6k1[FM][melAq] + 2k-i[H20](di] + 2k-2[H20](NN] -

(6.1) 

(6.2) 

4ki[FM][mon] - k2[FM][mon] - k_i[H20][mon] , (6.3) 

k2[FM][mon] + k-1[H20][NNN'] -

4k1[FM][NN] - 2k-2(H20](N.N], (6.4) 

4ki(FM][mon] + 3k-i[H20][tri] + 2k-2[H20](NNN'] -

2ki[FM][di] - 2k2[FM](di] - 2k_i[H20](di] , (6.5) 

4ki[FM][NN] + 2k2[FM][di] + 4k-2[H20][NNN' N'] + 

2k_i[H20](tet] - k2[FM][NNN'] - 2ki[FM][NNN'] -

2k-2[H20][NNN'] - k_i[H20](NNN'] , (6.6) 
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d[tri] 
2ki[FM][di] + 2k-2[H20][tet] - k2[FM][tri] -

dt 
3k-1[H20][tri], (6.7) 

d[NNN'N'] 
k2[FM][NNN'] + k_i[H20][pen] - 2ki[FM][NNN' N'] -

dt 
4k-2[H20][NNN' N'] , (6.8) 

d[tet] 
3k2[FM][tri] + 2ki[FM][NNN'] + 4k-2[H20](pen] -

dt 
2k2[FM][tet] - 2k-2[H20][tet] - 2k_i[H20][tet] , (6.9) 

d[pen] 
2k2[FM][tet] + 2ki[FM][NNN' N'] - k_i[H20][pen] -

dt 
4k-2[H20][pen] + 6k-2[H20][hex] - k2[FM][pen] , (6.10) 

d[hex] 
k2[FM][pen] - 6k-2[H20][hex] . (6.11) 

dt 

The concentrations are given in mol/kg, the time, t, in minutes and-hence- all 
reaction rates, ki, in kg/(mol min). These reaction rates, which are not known 
a priori, are the parameters to be estimated. We assume that the change of the 
reaction volume due to the dissolvation of solid melamine may be neglected. 

From the measurements we know that the temperature was not the same 
for all experiments. Therefore we account for a temperature dependence in the 
reaction rates by Arrhenius' law: 

i E {-2,-1,1,2}. (6.12) 

Here ai is a pre-exponential factor, Ei the activation energy, R the gas constant 
and T the temperature (in Kelvin). By taking into account this temperature 
dependence, the number of unknown parameters is doubled. 

To solve the set of differential equations (6.1)-(6.11), we need a set of cor­
responding initial conditions. These conditions describe the concentrations of 
the species of interest at the beginning of an experiment. We may assume that 
all initial concentrations are zero, except for water, formaldehyde and dissolved 
melamine (label 'b'). 

6.1.5 Treatment of the melamine concentrations 
We already mentioned that the reaction mechanism between solid and dissolved 
melamine is unknown. This means that we are not able to derive an equation re­
lating the concentrations of these species. On the other hand the concentration 
of dissolved melamine appears in the set of differential equations, which means 
that this concentration is indispensable for solving the differential equations. 
For each sample taken during the reaction also the concentration of dissolved 
melamine has been determined. To obtain this concentration at the interven­
ing time intervals we used a linear interpolation between the corresponding two 
subsequent measured concentrations of dissolved melamine. 



86 Chapter 6 

This leads to a total of 11 differential equations, (6.1)-(6.11), and an alge­
braic equation due to the linear interpolation of the dissolved melamine con­
centration. The input file for the model equations, as it will be used by the 
splds program [EHS95], is found in Appendix 6.A, at the end of this chapter. 

6.1.6 Parameter estimation 
The resulting system of differential algebraic equations (DAEs) contains eight 
unknown parameters (o:i and Ei) due to Arrhenius' law. For each series of ex­
periments, besides these eight unknowns we also do not know the precise initial 
concentration of formaldehyde. Because we have eight series of measurements, 
we get eight extra unknown parameters: [FMi(to)] , i E {1, ... , 8}. 

For a convenient shorthand notation we introduce a 16-dimensional parame­
ter vector 0 and a 12-dimensional state vector, y(t, 0) of varying concentrations, 
depending on t and 0, as: 

0 = ( o:1,E1,o:-1,E-1,o:2,E2,o:-2,E-2,[FM1(to)l,[FM2(to)l, (6.13) 

[FM3(to)], [FM4(to)], [FM5(to)], [FM6(to)], [FM1(to)], [FMs(to)] l, 

y ( [melAq], [FM], [H20], [man], [NN], [di], 

[NNN], [tri], [NNN N], [tet], [pen], [hex] l. 
(6.14) 

The system of differential algebraic equations and the corresponding initial 
conditions are now denoted by: 

dy 
E dt = f(t, Y, 0) , y(to, 0) = y0 (0) , (6.15) 

where E is a diagonal, 12 x 12 matrix, with (E) 11 = 0 and (E)ii = 1 for 
i E {2, ... , 12}. This matrix E accounts for the distinction between differential 
and algebraic equations. The vector function f : JR x JR12 x JR16 -+ JR12 contains 
the information with respect to the linear interpolation (first component) and 
the differential equations for y2, ... , y12 (the right-hand sides of (6.1)-(6.11)). 
For details see Appendix 6.A. 

6.1. 7 Reparametrisation and results 
The initial estimates for the pre-exponential factors and the activation ener­
gies (based on literature [GHW66]) and the initial formaldehyde concentrations 
(given by the experimentalists) are listed in Table 6.2. To obtain a better scal­
ing of the numerical problem it is preferable to have the parameters within 
approximately the same order of magnitude. To achieve this we take the log­
arithm of the pre-exponential factors, o:i, and we scale the activation energies 
by a factor 1/1000, Ei = E;/1000. The scaled initial parameter estimates are 
listed in the second column of Table 6.3. 

After the above scaling, the first numerical runs were performed by the ap­
proach described in Chapter 1. The results are reported in Table 6.3. A typical 
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parameter value parameter value 

a1 l.35x1014 FM1 (to) 8.41 
E1 9.8 X104 FM2(to) 7.61 
a_1 3.98x108 FM3(to) 5.60 
E_1 6.8 x104 FM4(to) 5.58 
a2 l.66x1015 FM5(to) 4.80 
E2 1.2 X105 FM6(to) 4.81 
a_2 8.91x109 FM1(to) 4.80 
E_2 9.0 Xl04 FMs(to) 5.58 

Table 6.2: Initial estimates for the unknown parameters. 

initial final independent dependent 
est. est. confidence confidence 

(0ini) (0) regions (6.1 0) regions (Av 0) 
ln(a1) 32.54 20.17 5.12 0.0728 

E1 98.00 65.38 14.0 0.198 
ln(a-1) 19.80 24.81 20.5 0.469 

E-1 68.00 91.27 57.7 1.32 
ln(a2) 35.05 14.17 21.8 0.261 
E2 120.00 51.03 59.7 0.717 
ln(a-2) 22.91 9.126 32.2 0.407 
E_2 90.00 47.61 88.4 1.13 
FM1 8.41 8.745 0.622 0.582 
FM2 7.61 8.536 0.609 0.578 
FM3 5.6 5.097 0.607 0.604 
FM4 5.58 6.098 0.712 0.701 
FM5 4.8 4.671 0.766 0.760 
FM6 4.81 4.724 0.768 0.752 
FM1 4.8 5.383 0.694 0.686 
FMs 5.58 6.065 0.702 0.683 
S(0) 336.6 14.76 

Table 6.3: Initial estimates and final estimates of 0 plus confidence regions ( cf. 
(1.25) and (1.26) with a = 0.05). 

result is shown in Figure 6.2. The corresponding graphs of the calculated con­
centrations and the measured values of N ,N' ,N" -tri-methylol melamine (label 
'f' in Figure 6.1) during the second experiment and penta-methylol melamine 
(label 'j') during the eighth experiment for the initial and final parameter values 
are shown. 
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Figure 6.2: Measured ('x') and computed concentrations of N,N1,N''-tri­
methylol melamine (label 'f') during the second experiment (left) and the 
penta-methylol melamine (label 'j') during the eighth experiment (right), for 
the initial (top) and final (bottom) parameter values from Table 6.3. 

The results from Table 6.3, with respect to the sum of squares and the 
corresponding graphs are satisfactory; the numerical solution fits the measure­
ments within reasonable bounds. However, the confidence regions for the pre­
exponential factors and the activation energies are not satisfactory. The singu­
lar values and the columns of matrix V are shown in Figure 6.5. Inspection of 
the singular values (cf. Eq. (1.15)) shows that four of them are extremely small, 
see Figure 6.5. The corresponding singular vectors, the last four columns of 
V, can be identified with pairs {ln(o:i),.Ei}, for i E {-2,-1,1,2}. The same 
holds for the four largest singular values. This means that an intersection of 
the ellipsoidal region with the {ln(o:i), .Ei}-plane gives an elongated ellipse, of 
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Figure 6.3: Level sets of the sum of squared discrepancies intersected with the 
{ln(a1), .Ei}-plane, before the reparametrisation of (6.16). 

which the principal axes are rotated with respect to the coordinate axes. The 
presence of elongated ellipsoidal regions can also be seen from the ratios of the 
independent and dependent confidence regions. This indicates that for each 
pair {ln(ai), .Ei}, only one parameter can be estimated accurately after an ap­
propriate reparametrisation of either ln(ai) or Ei. A plot of the intersection of 
the iso-curves of the sum of squared discrepancies with the {ln(a1 ), .E1 }-plane is 
given in Figure 6.3. The elongated shapes in this figure are in accordance with 
what was expected after the linear investigation. Additional information comes 
from asymmetry in the north-west and south-each direction of this figure. This 
indicates the presence of nonlinear effects. In the remainder of this section we 
will show that this is due to parameter-effect curvature (cf. Section 4.4). 

A well known reparametrisation for the pre-exponential factor (see [BDB86, 
Wat94]) is found by introducing a reference temperature, T0 . It leads to the 
formulation: 

ki(T) (-E-) aiexp R;: 
(-E-(1 1)) aiexp -t- T - To i E {-2,-1,1,2}, (6.16) 

with: 

_ (-Ei) ai = ai exp RTo 
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The temperature To should be close to the temperatures d1:1ring the experi­
ments. An appropriate choice for To is the average temperature over all the 
performed experiments. Note that the reparametrised pre-exponential factors, 
ai, represent the reaction rates, ki, at T = T0 • The results after this repara­
metrisation are given in Table 6.4 for To = 333K. 

initial final independent dependent 
estimates estimates confidence confidence 

(0ini) (0) regions (!j.10) regions ( tf' 0) 
ln(a1) -2.74 -3.376 0.134 0.073 

E1 98.00 65.33 14.0 7.38 
l~(a-1) -4.68 -8.047 0.65 0.467 
E_1 68.00 91.91 57.2 38.3 
l~(a2) -8.15 -4.181 0.621 0.261 

E2 120.00 54.23 61.4 25.1 
l~(a-2) -9.49 -7.986 0.893 0.405 
E_2 90.00 53.03 88.9 38.2 
FM1 8.41 8.743 0.621 0.582 
FM2 7.61 8.534 0.608 0.578 
FM3 5.6 5.097 0.607 0.604 
FM4 5.58 6.097 0.712 0.702 
FMs 4.8 4.672 0.766 0.760 
FMa 4.81 4.723 0.768 0.752 
FM1 4.8 5.382 0.694 0.686 
FMs 5.58 6.065 0.703 0.683 
8(0) 335.7 14.77 

Table 6.4: Initial and final estimates of 0, plus confidence regions (cf. (1.25) and 
(1.26) with a= 0.05), after reparametrisation of the pre-exponential factor. 

This reparametrisation does not change the model responses; the sum of 
squares and, except for ai, the estimated parameter values are unaffected. 
Only the confidence regions of the reparametrised parameters improve. In­
spection of the singular values shows again that four of them are extremely 
small. The essential difference with the results from Table 6.3 is that now the 
last four columns of the matrix V can be identified with the activation energies, 
Ei, i.e. the parameters which are the least well determined. This means that 
the longest principal axis of the elongated ellipse is rotated towards the Ei-axis 
by the reparametrisation. Level sets of the sum of squared discrepancies in the 
{ln(a1), .Ei}-plane are shown in Figure 6.4. In this figure we see almost perfect 
ellipses which indicates that the problem is close to linear in its parameters af­
ter the reparametrisation of (6.16). According to the linear approximation (cf. 
(4.12)) with a-= 0.05 we get: 8(0) = 8(0) (1 + m/(N - m).ro.os(m, N - m)) = 
15.47. Comparison of the dependent confidence region of Table 6.4 and the 
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Figure 6.4: Level sets of the sum of squared discrepancies intersected with the 
{ln(a1), .Ei}-plane, after the reparametrisation of (6.16). 

intersections of the ellipse for S(0) = 15.47 in Figure 6.4 give a close correspon­
dence; the distance from the centre of the ellipse to the intersections with the 
parameter axes are 0.074 and 7.21 for ln(ai) and .E1 , respectively. 

The available measurements were carried out at temperatures between 323K 
and 353K. In order to estimate the parameters Ei more accurately, additional 
measurements are required which span a wider range of temperatures. 

6.1.8 Conclusions 
In this section we applied the parameter estimation approach as described in 
Chapter 1 to 5 to a real-life problem from reaction kinetics in order to estimate 
unknown reaction rates and unknown initial concentrations. The experiments 
were performed at different temperatures, which made it necessary to use Ar­
rhenius' law to describe the reactions rates. The unknown initial concentrations 
and pre-exponential factors could be determined, with an accuracy which was 
satisfactory to the experimentalists. For that purpose, however, we needed 
a reparametrisation of the pre-exponential factor. However, due to the small 
range of the temperatures for which experimental data were available, it was 
not possible to estimate the activation energies accurately. 

The reparametrisation reduces the parameter-effect curvature and the inter­
section in Figure 6.4 is in full agreement with the results from linear statistics. 
Another advantage of the reparametrisation, which was encountered during the 
numerical experiments, is the decrease of the number of steps in the minimisa-
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Figure 6.5: The squared entries of the 16x 16-matrix V are matched on a grey 
scale. The black squares indicate small values, the white squares represent 
values close to 1. The columns correspond with the singular values in decreasing 
order. The logarithms of the corresponding singular values are shown in a 
histogram at the lower part of the picture. The rows in the matrix correspond 
with the various parameters in the order given by (6.13). 
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tion routine. 
This example illustrates the strength of the method, which yields the capa­

bility to decide for which parameters sufficient information is available in order 
to perform an accurate estimation procedure. The visualisation as shown in 
Figure 6.5 turns out to be a convenient aid to see immediately the structure of 
the relevant information from the singular value decomposition. 
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6.2 Modelling of blood coagulation t _ 
This section describes the mathematical modelling of a part of the blood coag­
ulation mechanism. The model includes the activation of factor X by a purified 
enzyme from Russel's Viper Venom (RVV), factor V and prothrombin, and also 
comprises the inactivation of the products formed. 

In this study we assume that in principle the mechanism of the process is 
known. However, the exact structure of the mechanism is unknown, and the 
process still can be described by different mathematical models. These models 
are put to test by measuring their capacity to explain the course of dnithrom­
bin generation as observed in plasma after recalcification in presence of RVV. 
The mechanism studied is mathematically modelled as a system of differential­
algebraic equations (DAEs). Each candidate model contains some freedom, 
which is expressed in the model equations by the presence of unknown param­
eters. For example, reaction constants or initial concentrations are unknown. 
The goal of parameter estimation is to determine these unknown parameters 
in such a way that the theoretical (i.e., computed) results fit the experimental 
data within measurement accuracy and to judge which modifications of the 
chemical reaction scheme allow the best fit. 

We present results on model discrimination and estimation of reaction con­
stants, which are hard to obtain in another way. 

6.2.1 Introduction 
One of the problems encountered in the study of a complicated biochemical 
process like thrombin generation in plasma, is that neither the reaction mecha­
nism nor the reaction constants and initial concentrations are precisely known. 
The knowledge on the reaction mechanism of the process is obtained mainly 
through experiments on isolated parts of the system. The elements of the sys­
tem, i.e. the clotting factors and their interactions, are separated from blood 
plasma and their interaction is studied under circumstances that are necessarily 
not precisely identical to those under which they cooperate in plasma. In fact 
it is not even known whether the reaction scheme that we deduce from such 
experiments is indeed the one operative in plasma. There may exist unknown 
factors or reactions, and reactions that have been shown to be possible in prin­
ciple may not occur in reality. An example of this is the fact that factor Xa 
can activate factors V and VIII under experimental circumstances, but that 
this reaction does not seem to play a role in clotting plasma [MT90]. Also 
the reaction conditions in plasma are different from those used for the study 
of the interaction of isolated factors. They may even be unsuitable for the 
study of such interactions. The kinetic parameters of activation of factor V 
by thrombin, e.g., cannot be measured directly in plasma because the presence 

t This section results from joint work with H.C. Hemker (Department of Biochemistry, 
University Ma.astricht) and P.W. Hemker (CWI, Amsterdam) and will be submitted in an 
almost identical form. 
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of natural thrombin inhibitors renders it impossible to achieve a fixed enzyme 
concentration. 

We introduce mathematical model validation and parameter estimation as 
a possible solution to these problems. In this procedure, on basis of the existing 
biochemical knowledge, a probable reaction mechanism is postulated. This is 
transformed into a set of differential-algebraic equations, which contains un­
known parameters. These parameters correspond with the reaction constants 
and initial concentrations of the reactants, both approximately known from 
previous experiments and used as an initial guess for the parameters to be es­
timated. Then, one or more results of the reaction process are monitored, e.g. 
the course of thrombin concentration in plasma in time after triggering of the 
coagulation process, and the parameters in the model are adapted to obtain 
an optimal fit. Different hypothetical reaction mechanisms can be tested in 
parallel to see which one results in a better fit. If the best fit leads to improb­
ably large discrepancies between the computed and the experimental results, 
the model is adapted and the validation process is repeated. 

In this case study we briefly indicate this process of model derivation and 
validation. In fact, the process consists of checking a long sequence of improving 
models, adapted during the process for a wide range of reasons. The final 
model should not only lead to a satisfactory fit, but should also be simple, 
in accordance with established facts, and -preferably- it should not contain 
an unreasonably large number of parameters. In order to validate the many 
models and to estimate the corresponding parameters, an interactive software 
package for parameter estimation on a fast computer is an indispensable tool. 
Such a computer program, called splds [EHS95] and partially constructed by 
two of the authors, was available to carry out the necessary computations. 

The model we consider here describes thrombin formation, a part of the 
blood coagulation process, by a system of differential-algebraic equations. The 
variation in time of the concentrations of each reactant is described by a ( dif­
ferential) equation. The chain of reactions which leads to thrombin starts with 
the activation of factor X by RVV, followed by the activation of factor V, the 
production of prothrombinase in the presence of phospholipid and the activa­
tion of prothrombin. We also take into account the inactivation of the factor 
Xa by anti-thrombin III (ATIII) and the inactivation of thrombin by ATIII 
and a 2-macroglobulin (a2M). 

A description of the experiments used is given in Section 6.2.2, followed 
by a derivation of the reaction mechanism in Section 6.2.3. The step from 
reaction mechanism to mathematical equations is given in Section 6.2.4. The 
parameter estimation process is briefly described in Section 6.2.5. The results 
and conclusions are given in Sections 6.2.6 and 6.2.7, respectively. 

6.2.2 Experimental data 
In order to obtain the required data, four experiments were performed, which 
resulted in four series of measurements. The output of the system used for our 
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tests was the course ofthrombin-like amidolytic activity. This activity is caused 
by two types of molecules: thrombin itself and the thrombin-a2 macroglobulin 
complex (briefly denoted as Ila and Ila - a 2M respectively, in the reaction 
scheme, Figure 6.6). 

The data were obtained as follows. To 240 µl of defibrinated plasma, in 
which the clotting factors are contained, we add 3.6 µl of a suspension of 
procoagulant phospholipids (1 µM) and 80.4 µl of a solution of RVV. This 
concentration of RVV was halved in the subsequent experiments. The thrombin 
generation process was started at t = 0 by addition of 36 µl of CaCh (100 mM). 
At different time intervals, more frequently in the initial phase of the reaction 
and less frequently at the end, we took 0.01 ml samples from the reaction 
mixture and added it to 0.49 ml of a solution of the chromogenic substrate 
S2238 (0.5 mM) in a buffer that contains the Ca! chelating agent EDTA in 
order to stop further thrombin generation. Thrombin and a 2M-thrombin split 
the yellow-coloured para-nitroaniline from S2238. After 2 min. this reaction is 
stopped by adding citric acid and the colour is measured and used to determine 
the thrombin activity in the sample. Time measurements for the thrombin 
generation are made automatically and samples are taken until a stable end 
level of amidolytic activity is observed. This takes about 15 minutes. 

6.2.3 Reaction mechanism 
At this point we first present a commonly accepted reaction sequence for throm­
bin generation in Figure 6.6. Thereafter we describe three possible variants as 
found in [Hem93]. In this section the reaction mechanism and its alternatives 
are given in a schematic way. In Section 6.2.4 we give a more precise descrip­
tion by deriving differential equations. This is followed by an overview of the 
motivation and selection criteria involved in choosing one set of equations in 
favour of its alternatives. 

In the reaction schemes the coagulation factors are denoted by their Ro­
man numbers, the subscript 'a' indicates their activated form, 'PL' and 'PT' 
denote phospholipid and prothrombinase, respectively. 'ATIII' and 'a2 M' (anti­
thrombin III and armacroglobulin) are responsible for inactivation of the fac­
tors Ila and Xa. 

In the scheme of Figure 6.6, the activation of X by RVV, (reaction r 1 ), leads 
to Xa, followed by its inactivation by ATIII (r2). Next, factor V is activated 
by Ila (r3). The factors Xa, Va and PL produce PT in a reversible association 
(r4 and r 5). Subsequently, thrombin (Ila) is formed out of prothrombin (II), 
either in the presence of PT ( r6) or of Xa ( r1). Finally, Ila is inactivated either 
by a 2 M or by ATIII (r8 and r 9 , respectively). 

In this study we show that the above scheme is suitable to explain the ex­
perimental results. It summarises the present common knowledge, but it is not 
necessarily complete and/or unique. We also investigate a number of possible 
alternatives. One such alternative concerns the formation of prothrombinase 
(PT), not in a trimolecular reaction but as a sequence of bimolecular reactions 
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Figure 6.6: The reaction scheme for the part of the blood coagulation studied. 

(Figure 6.7). Two other alternatives are given in the Figures 6.8 and 6.9. In 

~V8 -PL 

PL~ 

~X-PL + 
a 

Figure 6.7: The alternative reaction scheme to account for prothrombin forma­
tion. 

the former we account for the existence of the intermediate meizothrombin that 
in itself has amidolytic activity [BTH+95], in the latter we account for the ex­
istence of an intermediate form of the a 2M-thrombin complex [MFG92]. All 
proposed alternatives are more complex than the reaction mechanism we start 
with in Figure 6.6. By 'more complex' we mean that it has more state variables 
and more intermediate reactions, which implies that they are likely to fit better 
because there are more degrees of freedom available. In Section 6.2.5 we will 
derive model equations from the reaction schemes and judge by statistical tests 
if an increase of the complexity of the model leads to a significant improvement 
of the fit between the calculated model responses and the observed data. 
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Figure 6.8: The alternative reaction mechanism for the formation of thrombin 
by the introduction of an intermediate reactant, meizothrombin (ml Ia)-

Figure 6.9: The alternative reaction mechanism for thrombin inactivation by 
a 2 M. Here we assume that I I a a 2 M transforms further into an amidolytic less 
active form, mIIaa2M. 

6.2.4 Model equations 

From the four reaction schemes as they are introduced in Section 6.2.3, mathe­
matical model equations were derived. It is obvious that the schemes presented 
lead to different sets of equations. But also from a single reaction scheme vari­
ous sets of alternative mathematical model equations can be derived. As an ex­
ample we consider the reaction r 1 , which is present in all four reaction schemes. 
The concentrations of the chemical species are given in nM and indicated by 
'[ ]'; the time, t, is given in minutes. The dimension of the reaction constants 
are derived from these units. The change in time of the concentration of factor 
X can be given by the well-known Michaelis-Menten relation: 

d[X] = -ri = _ kcatx · [X] · [RVV] (6_17) 
dt kmx + [X] 

Although we know from literature that this relation is likely to be valid, it 
may be replaced by closely related expressions. In cases where kmx » [X] or 
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kmx « [X], expression (6.17) transforms respectively into the alternatives 

r1 = kk1 · [X] · [RVV] , 

with kk1 ~ kcatx /kmx or 

r1 = kk2 · [RVV] , 

(6.18) 

(6.19) 

with kk2 ~ kcat x. Both alternatives have one parameter less than the Michaelis­
Menten relation and, depending on the ratio kmx /[X], they can replace (6.17) 
without loss of accuracy. A third possible alternative reads: 

(6.20) 

which follows from (6.18), when RVV-dependence is negligible. Similar alter­
natives exist for the other reactions. Together, this leads to a large number of 
candidate models. 

From all these candidates we select that model ( or subset of models, if the 
statistical tests do not lead to a decisive answer) which, (i) is in accordance 
with established knowledge in the field, (ii) is devoid of irrelevant steps ( cf. 
the Michaelis-Menten reaction mentioned above), and (iii) fits the phenomena 
observed. 

In Section 6.2.5 we will highlight the process of parameter estimation and 
deal with model validation. In the last part of the present section we give the 
set of model equations which was chosen from the candidates on the basis of the 
criteria (i)-(iii). This set is one of the possible mathematical representations 
for the scheme given in Figure 6.6. and as such it is an example of the many 
possible systems of DAEs. In addition, it describes the connection with the 
experiments. 

The selected system of equations reads: 

d[X] 
-r1' (6.21) 

dt 
d[Xa] 

r1 - r2 - r 4 + r5 , (6.22) 
dt 
d[V] 

-r3' (6.23) 
dt 

d[Va] 
= r3 - r4 + r5 , (6.24) 

dt 
d[PL] 

-r4+r5, (6.25) 
dt 

d[PT] 
r4 - r5 , (6.26) 

dt 
d[IJ] 

= -r6 - r1, (6.27) 
dt 

d[IIa] 
r6 + r1 - rs - rg , (6.28) 

dt 
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d[Ilaa:2M] 
rg ' (6.29) 

dt 
AmAct [Ila]+ 0.556 · [Ilaa:2M] , (6.30) 

r1 
kcatx · [X] · [RVV] 

(6.31) 
kmx + [X] 

r2 kixa · [Xa] , (6.32) 

r3 
kcatv · [V] · [Ila] 

(6.33) 
kmv + [V] 

r4 kpr ·[Va]· [Xa] ·[PL], (6.34) 

r5 kpL ·[PT], (6.35) 

r6 
kcatu · [II] · [PT] 

(6.36) 
kmu + [II] 

r1 
kcat2 · [II] · [X a] 

(6.37) 
km2 + [II] 

rs kiuaa2 M · [Ila] , (6.38) 

rg kiuaATIII · [Ila] . (6.39) 

The concentration of RVV is supposed to be constant during each experi­
ment. However, it should be noted that [RVV] differs for the different exper­
iments. The inactivation of Ila and Xa in the presence of ATIII and a:2M is 
modelled by first order reactions (r2, rs and r 9 ). This implies that the concen­
trations of these inhibitors do not occur in the equations. 

The available measurements concern the amidolytic activity, which is ex­
pressed as the equivalent amount of thrombin (nM). This means that, in addi­
tion to the equations describing the chemistry, an equation for the amidolytic 
activity should be added. This equation is given in (6.30). It takes into account 
that the amidolytic activity does not only depend on the activity of thrombin 
(Ila), but also on the activity of the thrombin inactivated by a:2M (Ilaa:2M). 
It is known from [Hem93] that the inactivated form shows an activity of 55.6% 
of the active thrombin. 

In addition to the system of nine differential equations (6.21)-(6.29), we 
need the same number of initial conditions. At the start (t = 0), the initial 
concentrations of all state variables are zero, except for [PL], [II], [V] and [X]. 

6.2.5 Parameter estimation and model validation 
The system of equations (6.21)-(6.39) contains 13 reaction constants. None of 
these constants nor the initial concentrations of the coagulation factors [II], 
[V] and [X] are known exactly, but they are assumed to be constant for each 
experiment. These 13 reaction constants, plus the three unknown initial condi­
tions, are the quantities we want to determine; the unknown parameters. We 
summarise these parameters in Table 6.6. From the current literature we know 
upper and lower bounds for the concentrations of the clotting factors in normal 
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plasma: i.e. (750nM,2200n.M) for II, [10nM,30n.M] for V and [70nM,200n.M] for 
X. 

The parameters are estimated in such a way that the model responses fit 
the measurements in a least squares sense. Besides the estimates, confidence 
regions for the parameters are derived. For more details about the numerical 
solution of the model equations, minimisation of the least squares criterion, 
and the confidence regions, the reader is referred to Chapter 1. 

To get more insight in our process of model discrimination, we compare 
each of the four options, (6.17)-(6.20), in combination with the reactions r 2 to 
r9 from Figure 6.6 as they are described in (6.32)-(6.39). The expressions for 
r 2 to r9 are obtained by a similar process of selection and validation as we will 
describe below. 

Under the assumption of (6.32)-(6.39) we immediately reject option (6.20), 
because it implies that RVV has no influence on the reaction scheme, which is 
not in agreement with the experiments. 

Under the assumption of (6.32)-(6.39), with one of the options (6.17), (6.18) 
or (6.19) we compare the corresponding model performances shown in Table 6.5. 
From this table it is obvious that the first alternative performs better than 

r1 m df S(0) 
(6.17) 16 104 6287x103 

(6.18) 15 105 7020x104 

(6.19) 15 105 1005x105 

Table 6.5: Comparison for the three remaining options (6.17), (6.18) and (6.19). 
We show the number of parameters (m), the degrees of freedom (df= N - m: 
the number of measurements minus the number of parameters) and the least 
squares sum (S(0)). 

the other two, if we take only S(0) into account. In order to decide if one 
model performs significantly better than another, we use the F-ratio test (see 
Appendix LC). To apply this test to the three remaining options for r 1 , we 
take the reaction scheme from Figure 6.6 and r 2 to r9 as in (6.32)-(6.39). The 
relevant data for the F-ratio test are given in Table 6.5. The test of a significant 
difference between (6.17) and (6.18) consists of constructing a super-model 
with: 

( kcatx ) 
r1 = kmx + (X] + kk1 (X] · [RVV] . (6.40) 

The residual sum in case of the super-model is equal to 6091, which is needed 
to compute the quantities (cf. (1.36)): 

X = (6287 - 6091)/1 = 3 3 4 
6091/103 . l ' 

(6.41) 



102 Chapter 6 

in order to compare (6.40) with (6.17), and 

y = (70201- 6091)/2 = 542.056 
6091/103 ' 

(6.42) 

to do the same for (6.40) and (6.18). We need to compare X with the upper 
quantile Fo.o5 (1, 103) = 3.93 and Y with the upper quantile Fo.os(2, 103) = 
3.08. The bound for Y is exceeded which means that the model with (6.17) 
accounts significantly better for the phenomena observed. Therefore, r1 from 
(6.18) is rejected. Similarly (6.19) is rejected, because it performs even poorer, 
as can be seen from Table 6.5. 

Also, the other models which are derived from alternative schemes described 
in the Figures 6.7, 6.8 and 6.9, have been tested. All these alternatives give rise 
to models with more state variables and more parameters. However, following 
the same strategy none of them turned out to perform significantly better. 

6.2.6 Results 
An initial estimate for the parameters consists of an educated guess from the 
existing biochemical literature ([Hem93] and references therein). These initial 
values are given in Table 6.6. The final estimates, and the corresponding con­
fidence regions are also listed in this table. For details on the statistics, the 
reader is referred to Section 1.6. The sum of squared residuals for the initial 
estimates was 2.40 x 107, after minimisation it was reduced to 6.287 x 103 . 

The measurements (120 in total and 30 for each experiment) and the model 
responses for the final estimates of the parameters are given in Figure 6.10. The 
plots show a very acceptable fit between the computed and measured values, 
i.e. a fit within the measurement accuracy, which means that the model gives 
a sufficiently accurate description of the measured quantities. 

The independent and dependent confidence regions as they are listed in the 
fourth and fifth column of Table 6.6 show that by far not all the parameters 
can be estimated within reasonable accuracy. From the singular value decom­
position of the covariance matrix of the parameters (see Sections 1.5 and 1.6), 
we can deduce that with the current model and the available measurements 5 
parameters (or combinations of parameters) can be estimated with acceptable 
accuracy. By making use of other chromogenic substrates, additional measure­
ments for Va and Xa can be obtained in order to estimate more parameters 
more accurately. 

The parameter km2 tends to become small during the parameter estimation 
procedure and the idea came up to replace the corresponding reaction, r7 ( cf. 
(6.37)), with kks · [Xa], in order to reduce the number of parameters by one. 
The corresponding model gave negative results for the concentration of factor 
II, which is a consequence of adapting r1 ( the inequality [II] » km2 did not 
hold on the whole time interval), and was therefore rejected. 

The term r1 is inevitable, because without this term the production of 
thrombin will not even start. This can be seen from the reaction scheme of 
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para- initial final independent dependent 
meter est. est. confidence confidence 

(0ini) (0) regions ( 6.1 0) regions (6.D 0) 

kcatx 5.00x103 2.391x102 5.301x103 l.963x101 

kmx 4.00x102 2.365x101 5.776x102 6.335x10° 
kixa 2.50X10-l 4.531x10° l.408x101 3.667X10-l 
kpT l.00x10-1 l.229x102 3.117x105 4.152x101 

kpL l.00x101 8.014x102 2.032x106 2.711 x102 

kcatv l.4Qx101 7.844x10° 2.166x103 l.862x10° 
kmv 7.2Qx101 l.497x102 4.261x104 3.666x101 

kcatu 2.00x103 4.387x101 8.678x102 2.956x10° 
km11 2.10x102 6.225x101 2.147x102 2.073x101 

kcat2 2.30x10° l.240X101 2.596x102 9.15Qx10-l 
km2 5.8Qx101 6.148x10-2 2.937x101 l.63Qx101 

kiuaATIII l.30x10° 7.859x10-l 5.794x10-l 4.423x10-2 

kiuaa2M l.50x10° l.762X10-l 4.61lx10-2 2.673x10-2 

Xini l.33x102 8.125x101 l.729x103 7.556x10° 
¼ni l.67x101 6.712x10° l.663x102 5.821X10-l 
Ilini l.33x103 5.093x102 2.677x102 2.112X101 

8(0) 2.40x107 6.287x103 

Table 6.6: Initial guess and final estimates for the parameters and their confi­
dence regions. 

Figure 6.6 and the fact that the initial concentrations of Ila and Va are zero. 
Before the start of the experiments the expectation of the biochemists was that 
the activation of prothrombin (II) would be mainly performed by prothrombi­
nase (PT) and that the contribution of Xa would be marginal here. In other 
words: r1 would be small compared to r 6 and therefore (after initiating the 
reaction) could be neglected after a few seconds. By investigating the separate 
contributions to the thrombin production for r 6 and r 7 during the simulations, 
we found that the contribution of r 7 is about 50% of the production by r6 and 
therefore not negligible. This conclusion should, however, be strictly limited 
to the case of RVV as a factor X activator and not be extrapolated to other 
experimental setups. 

Although the results of Table 6.6 may look poor with respect to the confi­
dence regions, it appears that with the current data we were able to discriminate 
between many models in a systematic way and to come up with a model which 
fits the observations satisfactorily. 

6.2. 7 Conclusions 
In this study we compare a number of possible reaction schemes which describe 
part of the blood coagulation mechanism. For each scheme mathematical model 
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Figure 6.10: Plots of the measurements ('+') and the model responses for the 
final estimates of the parameters from Table 6.6 over the 4 experiments with 
decreasing concentrations of RVV. 

equations have been derived and parameters have been estimated in order to 
obtain a best fit with a set of experimental data. Depending on the complexity 
of the model, and the quality of the fit, judged by the statistical criteria, we 
were able to discriminate between many candidate models. The final model is 
compact, meets the established knowledge in the field and fits the measurements 
satisfactorily. A large number of more compact models were rejected on the 
account of the measurements. More sophisticated models were rejected because 
the increase of complexity did not account for a sufficient improvement of the 
fit. 

With the final model selected not only its parameter estimates are pre­
sented, which are optimal in a least squares sense with respect to the available 
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data, but also the corresponding confidence regions. Additional experiments 
can make the confidence regions smaller, while on the other hand they may 
also lead to a more complex model in favour of one of the alternatives which 
had to be rejected in this study. 

In this sense the presented model can be a good starting point for ongoing 
research and may show its value when more experimental data are available. 
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6.3 Production by plant cells in suspensiont 
Symphytum officinale L. cells were grown in Erlenmeyer flasks at four different 
temperatures: 15, 20, 25 and 30°C. A mathematical model of the culture 
growth is presented. The intracellular and extracellular products are considered 
in separate equations. An interrelation between fresh weight, dry weight and 
viability is considered in the balances. The model includes a description of the 
changes in time of wet and dry biomass, cell viability, substrate concentration 
and polysaccharide concentration, both intra- and extracellular. The model 
was tested by fitting the numerical results to the data obtained. 

6.3.1 Introduction 
Cell suspension cultures are of industrial interest because of their potential 
for the controlled synthesis of high price natural products that are found only 
in plants, and are usually obtained by extraction from the whole plant tis­
sue. There are only few commercial processes for the production of plant cell 
metabolites in suspension culture. One of the obstacles in the scale-up of such 
processes is the lack of adequate kinetic descriptions of the phenomena involved 
in mathematical terms. Mathematical models are useful for predicting the be­
haviour and determining the optimum operating conditions for a process with 
a minimum of experiments on large scale, which are very expensive. For the 
case of a batch process, a mathematical model should be able to predict the 
time-course of the culture in the bioreactor. Such models have proved to be 
very successful in microbiological processes. The models proposed range from 
very simple unstructured ones, which are able to predict only the variations 
of biomass in time (Fra89, MA95) to complex structured models describing 
the variation of many of the components in the cell, their interaction and the 
formation of products (SD83). 

The description of plant cells in suspended cultures presents some particu­
larities which complicate the description of the system in mathematical terms. 
One of them is the existence of nonviable cells in proportions much higher than 
in usual microbial cultures. A satisfactory description must therefore include 
the balance of viable and nonviable cells in the bioreactor, as well as the product 
formation. Several structural models have been proposed for the description of 
plant cells (Pol86, Wei89]. Bailey and Nicholson (BN89) proposed the ratio of 
fresh weight to viable dry weight to express the susceptibility of cells to shear 
stress and to relate the loss of cell viability to this ratio. They fitted their 
model to the production of alkaloids by cells of Catharantus roseus. 

Some polysaccharides have therapeutic properties (GR86, Neu90) and are 
an important commodity in the food industry (WB73). There are some reports 

t This section results from joint work with Ruha Glicklis and Jose Merchuk (Program of 
Biotechnology, Department of Chemical Engineering, Ben Gurion University of the Negev, 
Beer Sheva, Israel) and has been published in an almost identical in Biotechnology f3 Bio­
engineering, 57, pp. 732-740, 1998. 
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of polysaccharide (PS) accumulation in liquid media of plant cells in suspension 
[BKMA74, HPD87]. The extracellular polysaccharide (EPS) is either similar 
to [BKMA74] or different from the cell wall PS [YS77]. Differences in the com­
position of EPS were found among cells of different species [BKMA 7 4]. Cells 
of Phleum pratense were shown to secrete fructans to the medium [HPD87]. 
Becker et al. [BHA64] reported that EPS production paralleled the growth of 
cells of Acer pseudoplatanus in batch cycle. As far as we know, no one has 
characterised further the kinetics of PS production in cell suspensions. 

In this case study, a mathematical model for PS production in a cell sus­
pension of Symphytum officinale L. is presented, making use of the elements of 
expansion and lysis phase as proposed by Bailey and Nicholson [BN89]. The 
intracellular and extracellular products are considered in separate equations. 
Furthermore, the interrelation between fresh weight, dry weight and viability 
is considered in the balances. The unknown parameters of the mathematical 
model were evaluated by fitting its results to experimental data obtained in 
cultures grown in Erlenmeyer flasks (at four different temperatures). The state 
variables of the mathematical model include the measured quantities (i.e. con­
centrations of substrate, fresh and dry weight, intracellular and extracellular 
PS, and cell viability). 

6.3.2 Materials and methods 
The S. officinale cell suspension was initiated from callus and was grown in MS 
medium [MS62], supplemented with 0.2 mg/ L 2,4-Dichlorophenoxyacetic acid, 
0.2 mg/ L kinetin, 100 mg/ L p-chlorophenoxyacetic acid, and 30 g / L sucrose. 
The pH was adjusted to 5.8. Cultures were subcultured every 17 days using a 
10% (v/v) inoculum and maintained in 250 mL Erlenmeyer flasks containing 
100 mL. Cultures were incubated in the dark at 25°C on a shaker at 150 rpm. 

Observation under a microscope of the samples taken showed that during 
the first stage of the culture most of the population were single separate cells, 
with some pairs and trios. After the tenth day the number of those formations 
increased and some clumps of a slightly larger size could be seen as well, of the 
order of ten cells. Some chains of four-five cells could be seen. Nevertheless, 
most of the cells stayed single. 

Every 2-3 days, cells were harvested from three Erlenmeyer flasks and fil­
tered by buchner funnel. The filtrate was kept for sugar and PS determination. 
After determining the fresh weight, viability was determined by flourocein di­
acetate dying [Wid72]. Dry weight was determined by placing samples in an 
oven and maintained at 70°C for 10 hours. 

For determining intracellular polysaccharide (Pi), dry cells were ground 
with a pestle and mortar and extracted first by boiling in de-ionised water for 
10 min and then by stirring for 3 h at room temperature. Cell debris was 
removed by centrifugation at 1000 rpm. The supernatant as well as the filtrate 
(extracellular fluid) of each fresh cell harvest, for the extracellular polysaccha­
ride (P2 ) determination, were frozen at -18°C and then dried by lyphilysation. 
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Tanins were removed by 2% PbS04 and after centrifugation at 5000 rpm extra 
lead was removed by 1 % oxalic acid, followed by another centrifugation at 5000 
rpm. The supernatant was frozen and lyphilysed once more. The dry material 
was dissolved in 2 mL of de-ionised water and polysaccharides were precipi­
tated in 10% ( v / v) ethanol after storage for overnight at 4 ° C. Pellets were 
lyphilysed and weighted for the determination of intracellular and extracellular 
polysaccharides. 

Sucrose concentration was evaluated by colorimetric measurement of reduc­
ing sugars after hydrolysis [ CK86]. 

6.3.3 Model development 

Conceptual Model 

s 
"rolyai■ 

---•P• 

Figure 6.11: Schematic representation of the model assumed for cell growth 
and polysaccharide production. 

The structured kinetic model initially proposed, accounting for growth, cell 
expansion and lysis, polysaccharide formation, secretion and hydrolysis in the 
medium, is shown schematically in Figure 6.11. Viable cells consume the sub­
strate present in the medium, and may either produce new viable cells, trans­
form into nonviable cells or undergo lysis. The nonviable cells are generated 
from the viable cells, and disappear due to lysis. It is assumed that only vi­
able cells produce PS. Furthermore, substrate consumption for maintenance is 
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neglected, and therefore only viable cells consume sucrose, for both biomass 
generation and product synthesis. Viability (V) is defined as the fraction of 
cell dry weight that is viable (FDA staining), and takes values between O and 
1. The model considers that the cell lysis causes decay in nonviable dry weight 
and viable dry weight at different rates, both being expressed by first order 
kinetics with constants kd, k~. Polysaccharide is synthesised inside the viable 
cells and is secreted to the medium, where it is partially hydrolysed. The pro­
duction rate of polysaccharide may be proportional to the growth rate (growth 
associated product) or independent of it. Both possibilities were considered 
and it was concluded that in the present case the polysaccharide production 
rate is growth associated. 

Biomass balance: 

The balance on viable dry weight is written as follows: 

(6.43) 

It considers that dry mass is produced at a specific growth rate which can be 
expressed by a Monod type kinetics with constants µmax and ks. The second 
term in Eq. (6.43) represents the transfer of viable cells to nonviable cells at 
a rate which is first order in viable cell concentration, and second order in the 
following ratio defined by Bailey and Nicholson [BN89]: 

(6.44) 

which is supposed to be an indication of cell size expansion, assuming all cells 
are of the same dry weight. The mentioned authors found that this kinetic form 
gave the best fit for their data. The same was found for the data presented 
here. The third term in Eq. (6.43) represents the consumption of the viable 
dry weight by lysis at a rate which is first order in the viable dry weight. 

Nonviable dry weight is generated from the viable dry weight, as shown in 
Eq. (6.43), and is lost by lysis with first order kinetics, which yields: 

dXnd ( 2 , "at"= ki Xtf Xvd) Xvd - kdXnd • (6.45) 

The total dry weight is the sum of the viable dry weight (Xvd) and nonviable 
dry weight (Xnd): 

dXd = [µmaxS V _ k V _ k' (l _ V)] X 
dt ks+ S d d d ' (6.46) 

where viability is defined as the ratio of viable dry weight and dry weight: 

(6.47) 
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Substrate balance: 
Given the initial composition of the medium, sucrose is the limiting substrate. 
It has been suggested [UIFN7 4], that immobilised invertase on the cell wall 
catalyses the hydrolysis of sucrose into glucose and fructose, which are absorbed 
into the cell. 

The product synthesis rate can be considered growth associated. As a 
consequence, Eq. (6.48) describes the conversion of S into dry weight with a 
constant yield Ysx and into polysaccharide according to a Monod type kinetics. 
It is assumed that no sucrose is consumed for maintenance: 

dS = _ µmaxS Xvd 1 + k4P2Xvd (6.48) 
dt (ks+S) Ysx kp+P2+S2/kc 

The first term in the rate equation is the consumption for growth appearing in 
Eq. (6.43), divided by the yield, and the second term represents the production 
of S by hydrolysis of polysaccharide product in the medium, which will be 
justified in the next paragraphs. There is no need to account here for the 
consumption of S for A synthesis, since in this growth-associated scheme Ysx 
accounts for all substrate consumption. 

Intracellular polysaccharide balance: 
It is assumed that the A concentration results from a balance between for­
mation rate and the secretion to the medium. Polysaccharide concentration 
inside the cell will increase with a rate that is proportional to the growth rate 
of biomass. Assuming that substrate transfer into the cell is not limiting, so 
that S concentration inside the cell is the same as in the bulk of the medium: 

Ysp µmaxS Xvd 
T(PS synthesis) = Ysx ks + S (6.49) 

Equation (6.49) is given in mass of polysaccharide produced referred to the 
whole volume of the culture. 

The rate of secretion of polysaccharide to the medium was assumed to be 
proportional to two factors: 1) To the difference between the actual concen­
tration of polysaccharide inside the cell and its concentration in the medium. 
2) To the interfacial area of the cells. Assuming that the interfacial area is 
proportional to the fresh cell concentration, Xi (which will be close to reality 
if the distribution of cell aggregates is constant), and that it is proportional to 
the reciprocal of its size (which is represented by X, Eq. (6.44)), the rate of 
polysaccharide secretion can be expressed as follows: 

dA [Ysp µmaxS / ] 
dt --- - ka(l -P2 Pi) Xvd + 

Ysx ks+ S 

[y;P µmaxS '( / )] 
Ysx k's+ S - ka 1- P2 A Xnd , (6.50) 

where the second term of the right-hand member represents the parallel phe­
nomenon in the nonviable cells. 
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Extracellular polysaccharide balance: 
The secretion process is responsible for the transfer of polysaccharide from the 
cell to the medium. The first term in Eq. (6.51) represents the polysaccharide 
transferred from the cells. It is assumed that the accumulated polysaccharide 
is partially hydrolysed in the medium in order to supply glucose for mainte­
nance. This parallels the phenomenon that occurs in the intact plant where 
polysaccharide is hydrolysed by polysaccharide hydrolase enzyme to rebuild 
the plant in the growth season [EJ68]. When the sucrose level is too high, the 
fraction hydrolysis is inhibited. The second term in Eq. (6.51) represents the 
polysaccharide hydrolysis with constants k4, kp and kc for growth, saturation 
and inhibition respectively. This type of inhibition kinetic had been suggested 
by Andrews [And68] for microbial cultures. Consequently we have 

dP2 , k4P2Xvd 
-d =ka(l - P2/Pi)Xvd + ka (1- P2/Pi)Xnd - k S2/k . (6.51) 

t p+P2+ C 

Fresh biomass balance: 
Increase in fresh weight is due to both cell growth and expansion. Knowledge 
of Xi is not required by the equations modeling the growth of the cells, but 
is needed to model product synthesis and excretion. The experiments run in 
our laboratory showed that for all the temperatures and both in flasks and 
bioreactor, Xd would level off after certain period, and then decrease. This 
coincides with a sharper decrease in viability. The fresh weight, on the other 
hand, keeps increasing continuously. This seems to indicate that a relationship 
exists between cell viability and expansion. 

It was found that the expression used by Bailey and Nicholson [BN89]: 

dX1 dV 
dt = zv xd + dtxd X (6.52) 

where Z is a constant, allowed a satisfactory fit of our experimental data, 
and was used to provide the link between dry and fresh biomass. After some 
algebraic manipulation, Eq. (6.60), as shown later, is obtained. 

6.3.4 Experimental results and final model confirmation 
The model as derived for this case study and the corresponding measurements 
built a parameter estimation problem which can be solved by the techniques 
as introduced in Chapter 1 to 5. The process of parameter estimation for 
optimal fitting of the experimental results did not only render the numerical 
values which allow the mathematical modeling the culture growth. It was 
also instrumental in evaluating the proposed model. The first conclusion that 
could be obtained from the mathematical model was that the production of 
polysaccharides was a growth associated process. When the optimal value 
obtained for a parameter was very small, an F-ratio test (see Appendix LC) 
was performed in order to decide whether the parameter could be omitted. If a 
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parameter can be omitted without a significantly poorer fit,_ it was considered 
as an indication that the model itself had to be modified in this respect, and 
that the parameter had to be eliminated from the formulation. All the Monod 
type kinetics proposed initially were finally replaced by first order kinetics, 
without affecting the fit. In the case of the growth rate an actual first order 
specific reaction rate with respect to both Xvd and S can be defined, with a 
maximal growth rate µmaxa• Since ks » S, it is related to the parameters of 
the initial model as follows: 

µmaxa =µmax/ks ~ µmax/(ks + S) • 

Similarly, for polysaccharide hydrolysis to S, since kp » [P2 + S 2 /kc]: 

k4a = k4/kp ~ k4/(kp + P2 + S 2 /kc) . 

(6.53) 

(6.54) 

The value of the decay constant for viable cells, kd, was found to be negligi­
ble at low temperatures. As a consequence the term of consumption of cells 
could be eliminated in the balance of viable cells in Eq. (6.43). This is not just 
a simplification of the mathematical formulation, but -more importantly- an 
indication on the mechanism of the process. In particular, this indicates that 
viable cells are much more resistant to shear stress and other environmental 
damages, and mainly nonviable cells undergo lysis in the culture at low temper­
ature. In addition to this, the results of the parameter optimisation done with 
the model suggest that the nonviable cells do not take part in the production 
of polysaccharide product (Y;P = 0; ka' = 0). 

The final model, after all modifications, can be formulated as: 

dXvd 
[(µmaxaS) - ki(Xtf Xvd)2 - kd] Xvd , (6.55) = dt 

dXnd 
kiXvd(XJ / Xvd) 2 , (6.56) = dt 

dS 
[k4aP2 - (µmaxaS)/Ysx] Xvd , (6.57) = dt 

dP1 
[(µmaxaS)(Ysp/Ysx) - ka(l - P2/ Pi)] Xvd , (6.58) = dt 

dP2 
[ka(l - P2/ Pi) - k4aP2] Xvd , (6.59) = dt 

dX1 = Z Xvd + [Xnd(µmaxaS Xvd - kiXvd(Xt/Xvd)2 - kdXvd)-
dt 

Xvd(kiXvd(X1/ Xvd) 2 - kdXnd)] Xtf(XdXvd), (6.60) 

V Xvd/Xd, (6.61) 

Xd = Xvd+Xnd. (6.62) 

Measurements for the state variables: S, X1, Xd, Pi, P2 and V, taken 
at different temperatures are available. The parameters to be estimated are: 
µmaxa, ki, kd, ka, k40 , Ysx, Zand Ysp• As fitness criterion we took the sum of 
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squared discrepancies ( recall ( 1.4)). The weights are proportional to the accu­
racy of the measurements, as indicated by the error bars in Figures 6.12-6.151 . 

The choice for the weights will be highlighted at the end of this section. The 
optimal parameter values at each temperature, the independent and dependent 
confidence regions (cf. (1.25) and (1.26), respectively) for a: = 0.05 are shown 
in the Tables 6.8-6.11. 

Figure 6.12 shows model response curves and experimental data for S. offi­
cinale culture growth at 30°0. The top part of Figure 6.12 shows the profiles of 
sucrose S, and fresh biomass X f. For S and X f the mean of three experimental 
measurements and the standard deviations are shown. The curves correspond 
to the model responses, evaluated for the optimal, i.e. estimated values of the 
parameters as shown in Table 6.8. The descent of the sucrose concentration 
and the increase of the wet biomass are closely fit by the model. 

The middle part of Figure 6.12 displays the experimental and calculated pro­
files of dry biomass concentration Xd, the concentration of viable dry biomass 
Xvd and the concentration of nonviable dry biomass Xnd, at 30°0. A strong 
decrease in the concentration of viable dry biomass is seen after 20 days. As will 
be seen in the following graphs, this effect diminishes at lower temperatures. 
The model follows this trend with a satisfactory fit. The viability, Eq. (6.47), 
is represented in the bottom graph of Figure 6.12, together with the concen­
tration of both intracellular and extracellular polysaccharide. The figure shows 
that a decrease in both Pi and P2 is observed, starting approximately at the 
same time as the decrease in viability. 

The graphs of Figure 6.13 display similar results of experiments run at 
25°0 and the corresponding calculated profiles. In a similar way the results 
corresponding to 20°0 and 15°0 are shown in the graphs of the Figure 6.14 
and 6.15, respectively. In all of these cases the mathematical model is able 
to represent adequately the experimental results. An exception is the curve 
representing the substrate concentration S in the runs at 15°0, in the first 
part of the experiment (till approximately 15 days). This seems to be due 
to an experimental error, since there is no reason for an actual increase of 
sucrose in the medium. The optimal values found for the constants of the 
kinetic model are shown, together with the corresponding statistical data, in 
Tables 6.9 to 6.11 for 25°0, 20°0 and 15°0, respectively. 

Comparing the profiles of the state variables, it can be seen that as the 
culture temperature decreases, the rate of decrease of sucrose decreases. The 
final concentration of wet biomass is higher at higher temperature. 

The decrease in cell viability is strongly related to temperature. The higher 
the temperature, the larger the loss in viability. At 15°0 almost no losses are 
detected during the culture period. This can be appreciated not only in the 
graph of viability, but also in the profiles of biomass. 

1 For Xnd and Xvd no measurements are available. The position of corresponding markers 
in the figures is based on (6.61) and (6.62), but does not influence the estimation process. 
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Figure 6.12: Measurements and op­
timal fit ( cf. Table 6.8) of sucrose 
S and fresh biomass XI (top), dry 
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Xvd and nonviable dry biomass Xnd 

(middle), cell viability V, intracel­
lular polysaccharide concentration 
Pi and extracellular polysaccharide 
concentration P2 (bottom) at 30°C. 
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Figure 6.13: Measurements and op­
timal fit (cf. Table 6.9) of sucrose 
S and fresh biomass XI (top), dry 
biomass Xd, viable dry biomass 
Xvd and nonviable dry biomass Xnd 

(middle), cell viability V, intracel­
lular polysaccharide concentration 
Pi and extracellular polysaccharide 
concentration P2 (bottom) at 25°C. 
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Figure 6.15: Measurements and op­
timal fit ( cf. Table 6.11) of su­
crose S and fresh biomass X f (top), 
dry biomass Xd, viable dry biomass 
Xvd and nonviable dry biomass Xnd 

(middle), cell viability V, intracel­
lular polysaccharide concentration 
Pi and extracellular polysaccharide 
concentration P2 (bottom) at 15°C. 
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The decision with respect to the weights was taken by thr experimentalists 
on the basis of the error bars and their knowledge on the experimental setup 
and equipment used. The weights they came up with and are used throughout 
this case study, are given in Table 6.7. 

We used both these weights and estimated weights as described in Sec­
tion 3.4. We still assume the measurement errors to be independent. The 
estimated weights are given in Table 6.7, where it can be seen that, except 
for an unimportant factor of about 10, the weights are close to each other. 
The parameters, estimated in this way, show a close correspondence to the 

Component Exp. weight MLE weight 
s 0.03 0.39 

X1 0.01 0.11 
Xd 0.1 2.3 
A 3.0 28.3 
P2 3.0 62.6 
V 3.0 30.1 

Table 6. 7: Weights for each measured component derived by the experimental­
ists and calculated as in Section (3.4). 

estimates we had already ( within the dependent confidence regions) and the 
changes in plots of the response variables were marginal. The alternative ap­
proach needed 11 iterations to converge, where the approach from Chapter 1 
needed 10 iterations. 

6.3.5 Conclusions 
Comparison of experimental data of growth Symphytum officinale L. cells in 
Erlenmeyer flasks at four different temperatures showed excellent agreement 
with a mathematical model proposed. The model describes changes in time of 
wet and dry biomass, cell viability, substrate concentration and PS concentra­
tion, both intra- and extracellular. The model assumed that the production of 
polysaccharides is growth associated. Furthermore, the analysis of the mathe­
matical model led to the conclusion that the nonviable cells are not active in 
product formation, and that mainly nonviable cells undergo lysis during the 
growth of the culture. 

The model as presented is a very useful tool for simulation of growth of 
plant cells cultures and polysaccharide synthesis rate. The comparison of a 
weighted least squares approach with a MLE approach with unknown weights 
showed a close agreement. This means that, if no a priori knowledge about the 
measurement error would have been used, it would not have affected the final 
answers significantly. In other words: the a priori error assumption matches 
the a posteriori error structure. 
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Nomenclature used in Section 6.3 

ka Secretion constant in the viable cells (gP * gX- 1 * day- 1 ). 

ka' Secretion constant in the nonviable cells (gP * gX- 1 * day- 1 ). 

kc Inhibition constant (gS2 * gP- 1 * L- 1 ). 

kd Decay constant (day- 1 ). 

k; Mortality constant (day- 1 ). 

kp Product hydrolysis saturation constant (gP * L- 1 ). 

ks Growth saturation constant(gS * L- 1 ). 

k4 Specific product hydrolysis rate (gS * gx- 1 * day- 1 ). 

k4a Specific product hydrolysis rate, final model (L * gx- 1 * day- 1 ). 

A Intracellular polysaccharide concentration per volume of culture (g * L - l). 
A Extracellular polysaccharide concentration per volume of culture (g * L- 1 ). 

S Sucrose concentration (g * L- 1 ). 

V Viability(-). 
Xd Dry weight (g * L- 1 ). 

Xnd Nonviable dry weight (g * L- 1 ). 

X vd Viable dry weight (g * L - 1 ) . 

Xi Fresh weight (g * L- 1 ). 

Ysx Biomass yield (gXd * gS- 1 ). 

Ysp Production yield in the viable cells (gP * gs- 1 ). 

Y;P Production yield in the nonviable cells (gP * gS- 1 ). 

Z Expansion coefficient (day- 1 ). 

µmax Specific growth rate ( da y- 1 ). 

µmaxa Specific growth rate, final model (L * gs- 1 * day- 1 ). 

X Size parameter, given by Equation (6.44) (-). 

Parameters Units Value Ind.conf.reg. Dep.conf.reg. 

µmaxa X103 L · gs-I · day-I 8.227 2.251 0.724 
ki X105 day-I 3.6 2.1 1.0 
kd XI03 day-I 23.96 42.24 6.277 
ka XI02 gP · gX-I · day-1 4.217 2.943 1.824 
k4a X103 L · gx- 1 • day-I 10.33 7.361 1.706 
Ysx gXd · gS-1 0.398 0.232 0.036 
z day-1 1.473 0.363 0.196 
Ysp gP. 9s-I 0.062 0.023 0.004 

Table 6.8: Optimal parameters for Erlenmeyer flasks culture at 30°C. 
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Parameters Units Value Ind.conf.reg. Dep.conf.reg. 

µmaxa X103 L · gs- 1 · day- 1 8.093 3.523 1.090 
ki X105 day- 1 11.7 7.1 2.8 
kd X103 day- 1 3.378 74.91 9.179 
ka X102 gP · gx- 1 · day- 1 3.930 4.433 2.299 
k4a XI03 £ · gx-1 · day- 1 13.59 15.96 3.40 
Ysx gXd. gs- 1 0.372 0.355 0.047 
z day- 1 1.722 0.633 0.304 
Ysp gP · gS- 1 0.060 0.39 0.062 

Table 6.9: Optimal parameters for Erlenmeyer flasks culture at 25°C. 

Parameters Units Value Ind.conf.reg. Dep.conf.reg. 

µmaxa Xl03 L · gS- 1 · day- 1 7.470 6.594 1.884 
ki X 105 day- 1 12.2 15.6 9.4 
kd X103 day- 1 0.000 120.7 21.24 
ka X102 gP · gx- 1 • day- 1 2.000 0.000 0.000 
k4a X103 L · gx- 1 • day- 1 1.04 8.87 4.02 
Ysx gXd · gS- 1 0.318 0.531 0.106 
z day- 1 1.050 0.699 0.476 
Ysp gP · gS- 1 0.042 0.022 0.007 

Table 6.10: Optimal parameters for Erlenmeyer flasks culture at. 20°C. 

Parameters Units Value Ind.conf.reg. Dep.conf.reg. 

µmaxa Xl03 L · gS- 1 • day- 1 2.933 3.757 0.344 
ki X105 day- 1 4.5 4.9 2.9 
kd Xl03 day- 1 0.000 78.10 0.841 
ka x102 gP · gx- 1 · day- 1 1.298 2.086 0.841 
k4a X103 L · gX- 1 • day- 1 0.000 6.429 1.590 
Ysx gXd · gs- 1 0.327 0.582 0.037 
z day- 1 0.675 0.341 0.234 
Ysp gP · gS-1 0.042 0.034 0.006 

Table 6.11: Optimal parameters for Erlenmeyer flasks culture at 15°C. 
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6.4 ZLA-kinetics 
In this section we discuss a problem which originates from the Akzo Nobel 
research laboratory in Arnhem, The Netherlands. A slightly different model 
describing the same chemistry is also a part of the test set for IVP solvers 
[LSV96]. The names of the chemical compounds are fictitious. Due to the 
origin of this problem no background on the chemistry is given. 

6.4.1 Description of the chemical reactions 
In the process under consideration two chemical components, denoted by FLB 
and ZHU, are mixed under an inflow of carbon dioxide. The product of interest 
remaining at the end of the reaction is ZLA. The reaction mechanism, as given 
by Akzo Nobel, reads: 

2FLB+ ½CO2 -4 FLBT+ H20, 

ZLA+FLB .JS.+ FLBT+ZHU, +--'-
k2 

FLB + 2ZHU + CO2 ~ LB + nitrate , 

FLB+ZHU +:=t FLB.ZHU, 

FLB.ZHU + ½ CO2 ~ ZLA+H20. 

The mechanism of (6.66) is assumed to describe a fast equilibrium: 

[FLB.ZHUj 
Ks= [FLB] * [ZHU] 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

The square brackets denote the concentration of a species in mol / l. We iden­
tify the concentrations [FLB], [ CO2], [FLBT], [ZHU], [ZLA] and [FLB.ZHUJ 
with the time dependent state variables y1 , ... , y6 . The reaction rates to be 
estimated, k1 , k2, k3, k4 and K, are denoted by the vector 0. The fast equilib­
rium is taken care of in Section 6.4.2. For this case study we will not focus on 
the process of model discrimination and validation, therefore we only give the 
resulting reaction kinetics: 

r1 01 * Yt * vY2, (6.69) 

r2 02 * Y3 * Y4 , (6.70) 

r3 05 * Yl * Y5 ' (6.71) 

r4 03 * Y1 * yJ , (6. 72) 

r5 04 * y~ * vY2. (6.73) 

Besides the above reaction mechanism, there is an inflow of carbon dioxide 
(given in ml/min): 

Fin= 22400 * Vr* klA * (p(~2) - [CO2]). (6.74) 
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Here we introduced the following abbreviations: Vr: reaction volume; klA: mass 
transfer coefficient; H: the Henry constant (=737 bar* l/mol) and p(C02) 
denotes the partial carbon dioxide pressure. Vr, H and p( CO2) are a priori 
known constants; klA is estimated in the parameter estimation procedure. 

6.4.2 Problem description of ZLA-kinetics 
Combining the reaction scheme (6.63)-(6.67) with kinetics from (6.69)-(6.73), 
the evolution of the process is described by the system of differential equations: 

y~ - 2r1 + r2 - r3 - r 4 , (6.75) 

y; = -½r1 -r4 - ½rs +Ft'n, (6.76) 

y~ = r1 - r2 + r3 , (6.77) 

y~ -r2 + r3 - 2r 4 , (6.78) 

y~ r2 - r3 + rs , (6.79) 

y~ = -rs. (6.80) 

As a consequence of the fast equilibrium from (6.68), which becomes Ks = 
y5/(Y1Y4), one of the differential equations for either Y1, Y4 or Y6 can be replaced 
by an algebraic equation representing this fast equilibrium. 

The measurements performed yield data on the inflow of carbon dioxide, cf. 
(6.74), at a sequence of times. This inflow is given in ml/min and the resulting 
change of the carbon dioxide concentration due to this inflow, Ftn from (6.76), 
is given in: mol/(l * min). The relation between these two quantities is: 

F* Fin 
in = 22400 * Vr 

(6.81) 

The inflow of carbon dioxide, Fin, is described by an additional state variable: 
Y1, therefore (6.74) is rewritten as: Combining the equations (6.74) and (6.81) 
we obtain the algebraic equation: 

Y1 = 22400 * Vr* klA * (p~2) - y2) . (6.82) 

Furthermore, by (6.81) and (6.82) equation (6.76) can be rewritten as: 

(6.83) 

The initial concentrations for Y1, y4 and Y6 are given to be 0.804, 0.367 
and 0.000, respectively, but in view of the fast equilibrium of (6.66) we better 
take 0.804 - 01, 0.367 - 01 and 01 as their initial values. Due to the choice of 
y5(0) = 01 as a free parameter, the equilibrium constant Ks depends on this 01 
(cf. (6.68)). Taking Ks as a parameter and deriving the initial concentrations 
for Y1, y4 and Y6 leads to unnecessary complications. 
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The unknown parameters in the process are the entries of the vector 0 E JR 7 : 

0T = (k1 , k2, k3, k4, K, klA, Y6(0)f, 

where all parameters are positive and an additional restriction is given for the 
last parameter; 07 ::; 0.367. An initial guess for the parameters to be estimated 
was available from Akzo Nobel. The initial values for the state variables are: 

y(O) = (0.804 - 01, 0.00123, 0, 0.367 - 01, 0, 01, of. 
At this point we completed the formulation of a parameter estimation problem. 

6.4.3 Parameter estimation results for ZLA-kinetics 
The initial model, used as the starting point for the numerical investigation, is 
given by (6.75), (6.77)-(6.80), (6.82) and (6.83). With this model the parame­
ters k1 and k2 tend to zero ( < 10-10). From an F-ratio test (see Appendix LC) 
it was clear, that, with the available data and this model, k1 and k2 can be 
omitted. 

The final model, i.e. the above model after omission of k1 and k2 , gives a 
satisfactory fit within measurement accuracy, although it might be argued that 
the fit at the end of the time interval is a bit poor (see Figure 6.16). Much 
effort was put in an investigation to improve the modelling of this tail, however, 
without success. Later, experimentalists reported that it is nearly impossible 
to keep experimental conditions constant, and -according to their judgement­
the 'poor' fit towards the end of the time interval is likely to be a consequence 
of these varying experimental conditions. This means that no effort should be 
put in improving the fit at the end of the time interval as long as additional 
data are not available from experiments with constant experimental conditions. 

In Table 6.12 the final estimates of the parameters are presented. For the 
sum of squared discrepancies (cf. (1.4)) all weights are set equal to 1.0, due to 
the assumed absolute measurement error. In the third and fourth column of 
this table the sizes of the independent and dependent confidence regions ( cf. 
(1.25) and (1.26), with a= 0.05) are reported. These sizes show that not all the 
parameters can be estimated with the desired accuracy. By desired we mean 
the accuracy the experimentalists wanted for reliable simulations. This means 
that additional measurements should be performed in order to obtain more 
accurate estimates. At the same time the sizes of the independent confidence 
regions are all smaller than the estimated parameters, which is something we 
rarely encountered in parameter estimation problems from real-life applications 
before additional measurements were performed ( cf. the other case studies in 
this chapter). Apart from that, we were able to reject a couple of alternative 
models with the available measurements. For instance, at the beginning it was 
not known whether (6.66) should be considered as a fast equilibrium or as a 
reaction of the form: 

FLB + ZHU 8 FLB.ZHU. 
ke 
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However, it appears that this alternative leads to a better fi~, the improvement 
was not sufficient to reject the null-hypothesis (cf. Appendix LC). Therefore, 
the model with the fast equilibrium assumptions was to be preferred. We will 
omit the F-ratio test here. 

Parameters Value Ind.conf.reg. Dep.conf.reg. 

k3 1.221 x101 8.271x10° 3.961x10-l 
k4 8.6l6x10-2 2.071x10-2 2.708x10-3 

K 1.022x10-l 4.51lx10-2 1.911x10-2 

klA 1.063x10° 3.532x10-l 1.730x10-l 
Y6(0) 3.599x10-l 1.924x10-3 1.401x10-4 

Table 6.12: Optimal parameters for ZLA-kinetics plus statistics after setting k1 
and k2 equal to 0. The least squares estimate of y6 (0) with more digits reads: 
0.359903, which is close to the corresponding upperbound. 

75 

t 
Y1 

0.v+-------.------..-----~---~ 
0.0 time (t) ➔ 180 

Figure 6.16: The data and the model responses for the carbon dioxide inflow, 
Y1(t, 0), are plotted for the optimal parameter values of Table 6.12. 
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For this case study we also computed the matrix z<2) from (5.1) in order to 
have a closer look into the parameter - state variable dependencies, the matrix 
is given by: 

0.028 0.033 0.007 0.002 2.745 
0.073 0.076 0.013 0.062 6.074 
0.999 1.123 0.236 0.066 81.657 

z<2) = 0.432 0.272 0.045 0.014 23.281 
1.151 1.224 0.483 0.066 97.963 
0.413 0.255 0.042 0.013 35.979 
0.291 0.301 0.051 0.045 24.234 

where the columns correspond to k1 , k2 , k3, k4, K, klA and Y6(0), and the rows to 
y1 , ... , Y1. The biggest entries are present in the last column, which means that 
a small relative change of the parameter y6(0) will affect the model responses 
of y3-y7 considerably. The last row corresponds to the measured component, 
y7, its entries are in accordance with the results of Table 6.12. In order to 
decrease the confidence regions of k3 and k4 additional measurements for y3 
and y5 should be performed. Such a design will also improve the reliability of 
K, but to a smaller extend. A design which focuses on the parameter with the 
relative biggest dependent confidence region, klA, does not exist. 

6.4.4 Conclusions and remarks for further research 
In the sections on ZLA-kinetics we managed to derive a model which fits the 
data and matches the available knowledge on this subject in this area of re­
search. On the basis of the available data we were able to reject various, more 
complex models. The final model is compact and gives insight into the physi­
cally relevant aspects of the process. 

In Section 6.4.3 we already saw that the results of parameter estimation and 
statistical analyses did not lead to accurate estimates for all parameters. This 
is due to the fact that the measurements only concern a single component of 
the state vector (Y1(t)). We showed which state variables should be measured 
during additional experiments to reduce the confidence regions. Additional 
measurements can also lead to a more complex model to be used in order to 
obtain a better insight into the investigated process. 
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6.5 Water penetration in an aramide yarn t 
In this section we study the mathematical modelling of water penetration in 
an aramide yarn. A model with only diffusion is compared with two models 
containing additional terms due to proposed chemistry during the absorption. 
The chemistry part models the binding of water in the yarn by either first and 
second order reaction kinetics, or a fast equilibrium. As a result we have three 
models with unknown parameters related to the diffusion, the reaction rates and 
the initial conditions of the yarn. The parameters are fitted to measurements 
of the weight of the yarn during the water absorption. Two of the three models 
could be rejected while the remaining model could be simplified without fitting 
significantly worse. 

6.5.1 Introduction to the problem 
We consider a long, thin and cylindrical yarn with length L, which is, after a 
long stay in a drying oven, put on a precision balance in a conditioned humid 
room. Here the yarn absorbs water from the surrounding air, it causes an in­
crease of the yarn's weight, which is measured frequently during the absorption. 
After about 15 hours when the absorption is marginal the measurements stop. 

The underlying physical process of the water absorption can be seen as a 
combination of diffusion and a reaction mechanism. The latter one describes a 
mechanism of water bound in open places inside the yarn. 

6.5.2 Proposed models 
Because the yarn is homogeneous we consider a section of the yarn with unit 
length. The model describing diffusion and a reaction mechanism for the bind­
ing of the water reads: 

au 
v7 · (DVu) - k1u(ca - w) + k2w, (nx)0, tend]) (6.84) = at 

aw 
k1u(ca - w) - k2w, (nx)0, tend]) (6.85) = at 

u(x, t) =_ auo , (anx]0, tend]) (6.86) 

u(x,0) = w(x,0) = 0. (n) (6.87) 

Due to cylindrical symmetry n can be taken as the disc from a cross section 
of the yarn with radius R. The symbols u and w denote the concentrations 
in [g/l] of the free and bound water, respectively. The quantity Ca denotes 
the concentration of places in the yarn where water can be bound and is yarn 
specific. (From (6.85) and the initial condition w(x, 0) = 0, it can be seen that 
w(x, t) will never exceed Ca.) The numbers ki (i E {1, 2}) correspond to the 
reaction rates and a is a proportionality constant. The diffusion coefficient, D E 

R1 , is assume9- to be constant throughout the yarn and due to the symmetry, 

t Work carried out in cooperation with R. van der Hout (Akzo Nobel Research, Arnhem). 
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we can rewrite (6.84) as a I-dimensional PDE, where r E (0, R] is the spatial 
coordinate, as: 

(6.88) 

(6.89) 

Besides the model as introduced in (6.84)-(6.87) we introduce a model which 
contains the assumption that the chemical reaction is much faster than the 
diffusion. This means that we can consider a steady state instead of (6.85): 

k1u(ca - w) - k2w = 0, 

or 

k1CaU CaU 
w=---

k1 u + k2 - u + K ' 
(6.90) 

with K = k2/k1 • Substitution of (6.90) in the original problem formulation 
(6.84)-(6.87) leads to: 

a ( cau ) 
at u+ u+K 

u(R, t) 

u(r,0) 

= D a ( au) 
-;:ar rar 

= au0 , 

w(r,0) = 0. 

((0, R] x ]0, tend]) 

(]O, tend]) 
(0) 

(6.91) 

(6.92) 

(6.93) 

In the subsequent sections we will refer to (6.84)-(6.87) as the original model 
and (6.91)-(6.93) as the simplified model. In Section 6.5.4 the performances of 
both models will be compared. 

The parameters to be estimated are D, Ca, a and, depending on the model, 
k1 and k2 , or K. The parameters have to be estimated by fitting the numerical 
solution of the model to the measurements. During the experiments the weight 
of the yarn has been measured very precisely. The weight of the 'dry' yarn 
(after it comes from the drying oven) is denoted by W0 . The weight after the 
yarn has been in the conditioned wet room for t hours reads: 

W(t) = Wo + 211-L foR (u(r, t) + w(r, t)) rdr , (6.94) 

where Lis the length of the yarn. In case the simplified model is taken, (6.90) 
has to be substituted in (6.94). 

For the yarn the titer ( this is the weight per 10 000 m), the density, p, and 
the initial weight, W0 , of the yarn are given. From these known quantities 
the radius, R, and the length, L, can be computed easily. Although the initial 
weight is known quite accurately, it will be considered as an unknown parameter 
later on, because this quantity contains a measurement error. Of course, if 
the estimated initial weight differs seriously from the measured initial weight, 
special attention should be paid. 
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6.5.3 Numerical implementation 
For the numerical solution of the partial differential equations (PDEs) we used 
a method of lines in combination with a BDF solver for the resulting set of 
ordinary differential equations (ODEs). For the space discretisation we used 
the conservative form, with grid refinement in space towards the border and 
the centre of the yarn. The number of grid points is taken in such a way that 
the change of the solution after subsequent refinements is less than 1%. To our 
experience 15 spatial grid points are sufficient. After deriving the set of ODEs, 
the problem can easily be put in the splds format (see [EHS95]). 

The weight of the yarn, (6.94), is computed by a trapezoidal rule. Sub­
sequently the unknown parameters are estimated by a least squares fit of the 
model responses to the measurements. The use of least squares estimation tech­
niques is based on the assumption that the measurement errors are independent 
and normally distributed. The independence of the measurement errors plays 
an important role in Section 6.5.4 during the process of model discrimination. 
Three models will be considered for the model discrimination and data for one 
yarn during one experiment are available. 

6.5.4 Model discrimination and parameter estimation 
As a starting point for the model it is interesting to consider a simple diffusion 
equation without chemistry and fast equilibria. If we take (6.84)-(6.87) and 
set k1 = k2 = Ca = 0.0, the result is an equation with only diffusion and the 
remaining unknown parameters are: D, a and Wo. The optimal fit for such a 
model is given in Figure 6.17. From this poor fit·we can immediately see that 
the effect of diffusion only is not enough to describe the physical phenomenon. 

3.5 

3.2-+-----------~ 
0.0 time (t) ➔ 16.0 

Figure 6.17: Optimal fit in case the physical process is modelled with only 
diffusion, i.e., (6.84)-(6.87), with k1 = k2 = Ca = 0.0. 

The next step in the model discrimination process is to check whether the 
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assumption about the fast equilibrium as proposed in (6.90) is valid. The result 
after fitting (6.84)-(6.87) to the data is plotted in the left graph of Figure 6.18. 
The corresponding residual sum is equal to 9.888 x 10-5 . If we repeat this 
numerical exercise with (6.91)-(6.93), then we obtain a residual sum of 1.828 x 
10-3 and an optimal fit as shown in the right graph of Figure 6.18. Testing 
the null-hypothesis K = k2 /k1 (cf. (6.90)) by means of the F-ratio test from 
Appendix LC leads to a rejection, which means that the assumption of a fast 
equilibrium does not hold. 

3.5 

3.2-+------------~ 

0.0 time (t) ➔ 16.0 

3.5 

t 
W(t) 

3.2-+------------~ 

0.0 time (t) ➔ 16.0 

Figure 6.18: Optimal fit in case of general chemistry (6.84)-(6.87) (left) and · 
the result with the fast equilibrium assumption (6.90) (right). 

Inspection of the graphs of Figure 6.18 provides a clue to another test. If the 
proposed model comes close to the true model and the estimated parameters 
come close to the true parameters, then the discrepancies get close to the 
measurement errors. The measurement errors are assumed to be stochastically 
independent, a test on the number of sign changes of the residuals in the graph 
at the right-hand side of Figure 6.18 will also reject the assumption of the fast 
equilibrium. 

The optimal parameters corresponding to the model of (6.84)-(6.87), and 
the corresponding independent and dependent confidence regions, AI 0 and 
Av 0, respectively (cf. Section 1.6) are given in Table 6.13. From this table 
we may conclude that only W0 and Ca can be estimated with a reasonable 
accuracy; for all other parameters AI 0i is at least one order of magnitude big­
ger than the corresponding estimated value. The result that only 2 out of 6 
unknown parameters can be estimated within reasonable accuracy seems a bit 
of a disappointment, in particular if we know that the parameter W0 was al­
ready known quite accurate before the parameter estimation started. However, 
things turn better if we become aware that by the computation we were able 
to distinguish between models and that we are now able to indicate how much 
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(J 1f t:l fJ f1D {J -

D l.401x10-1 2.760x10-6 2.573x10-9 

a 5.906X101 l.176x103 5.060X10-l 
Wo 3.275x10° 6.546xio-3 3.838x10-4 

Ca 6.857x10-2 l.526x10-2 2.678x10-4 

k1 7.024x102 l.407x104 l.159x101 

k2 9.091x10-ll 5.618x10-2 l.627x10-3 

S(8) 9.888x10-5 

Table 6.13: Optimal parameter values and corresponding statistics for the pa­
rameters of model (6.84)-(6.87), which correspond to the left graph of Fig­
ure 6.18. 

information can be retrieved from the measurements. 
When we consider the value of k2 in Table 6.13, we see that this value is 

close to zero. This means, according to the model equations, that once free 
water is bound, the reverse process is very slow. We can go further and check 
whether the inverse process is essential. To be more precise, we want to test 
the null hypothesis Ho : k 2 = 0.0 versus the alternative H1 : k2 > 0.0. With 
the theory from Appendix l.C and the residual sums of squared residuals from 
the Tables 6.13 and 6.14, we can derive easily that the null hypothesis Ho is 
not rejected (N = 94). 

(J 1f 1:11 (J f1D{J 

D l.401x10-1 2.482x10-6 2.388x10-9 

a 5.906X101 l.06lx103 4.710x10-l 
Wo 3.275x10° 5.956x10-3 3.583xio-4 

Ca 6.857x10-2 7.519x10-3 2.503x10-4 

k1 7.024x102 l.275x104 l.079x101 

S(8) 9.897x10-5 

Table 6.14: Optimal parameter values and corresponding statistics for the pa­
rameters of model (6.84)-(6.87) after fixing k2 to zero. 

6.5.5 Conclusions 
From this case study it turned out that water penetration in an aramide yarn 
cannot be described by diffusion only. Further, if we add a reaction mechanism 
to describe the binding of water inside the yarn, then this process cannot be 
considered as a fast equilibrium. The reaction part which describes loosening of 
the water is not essential in the process. Finally, 5 parameters remain to model 
the penetration. These parameters cannot be estimated within an acceptable 
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accuracy on the basis of the available data. Additional measurement from 
other similar yarns will hardly give any additional information, because -except 
for k1 - all the other parameters depend on the structure of the yarn. More 
accurate results are expected from experiments with different humidities in the 
conditioned room, u0 , and yarns with the same structure but different radii. 
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6.6 Macroeconomic time series 

6.6.1 Introduction 
This section concerns a case study from econometrics. We consider Indian 
macroeconomic time series of currency notes in circulation between January 
1970 and March 1985. These monthly data are taken from [Ray88]. In econo­
metric sciences such series are studied by means of lillear autoregressive moving 
average (ARMA) and nonlinear methods, e.g. self-exciting threshold autore­
gressive (SETAR) methods. For an introduction on such methods see e.g. 
[BD87]. ARMA and SETAR methods are applied to the above mentioned 
currency data in [BG97], in order to model the macroeconomic process and to 
retrieve reliable predictions. In this section we use another approach to account 
for the data by deriving a family of candidate models, which are continuous 
and given by algebraic equations only. These models are fitted to the data in a 
least squares sense. The best fitting model is used for prediction purposes over 
the period April 1985 till March 1986. These predictions are compared with 
the real data from that period and also with the predictions given in [BG97]. 

6.6.2 Derivation of candidate models 
Direct inspection of the data (see Figure 6.19) gives already an indication for 
the type of models we want to endeavour. The data show the presence of an 
exponential growth with a periodic perturbation due to seasonal effects. Three 
straightforward ways to combine the periodic behaviour with the exponential 
growth are an additive, multiplicative or exponential relationship, as given in 
the following formulae: 

y(t) a+fsin(dt+e)+bexp(ct), 

y(t) a+ b(f + sin(d t + e)) exp(c t} , 
y(t) = a+ bexp(c t(f + sin(d t + e))) . 

(6.95) 

(6.96) 

(6.97) 

Here t denotes the time (in months), y is the amount of currency notes in 
circulation and a to f are parameters which are estimated by fitting the model 
to the given data. From the sum of squares for the best fit of each model, as 
given in Table 6.15, it can be derived by an F-ratio test that the additive model 
fits significantly poorer (a < 0.05) than the other two. From the same test 
it cannot be decided whether the multiplicative model performs significantly 
better than the exponential model. 

A closer look at the data of Figure 6.19 shows that the periodic component 
is not symmetric, but tends towards a saw-tooth shape. The saw-tooth can 
mathematically be expressed by the series: 

(6.98) 
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Model Sum of squares 

Additive (6.95) 3.083 X 107 

Multiplicative (6.96) 1.967 X 107 

Exponential (6.97) 2.122 X 107 

Table 6.15: Sum of squared discrepancies for the models (6.95)-(6.97). 

Due to the decrease which is steeper than the increase in every periodic cycle 
we replace the periodic term in any of the models (6.95)-(6.97) by a finite 
subsequence of (6.98) with Nst terms. Due to the freedom with respect to Nst, 
we obtain many models which can be tested and compared. We fit the additive, 
multiplicative and exponential models for different numbers of Nst. Because 
the fits become poor for Nst > 6, we stop increasing N 8 t further. 

From the investigated models, the model which gave smallest sum of squared 
discrepancies reads: 

( ~ ( . ) sin ( d t + e) ) 
y(t)=a+b f+f:1.-1•+1 i exp(ct). (6.99) 

As before, the additive model performed significantly poorer, but the multi­
plicative model with the smallest least squares did not fit significantly bet­
ter than multiplicative models with N 8 t :S 5, or the exponential model with 
N 8 t :S 4. Another approach to choose N 8 t is to consider it as an integer pa­
rameter and change the problem into a mixed integer minimisation problem. 
However, the solution of such a problem is beyond the scope of this book. · 

The estimated parameter values corresponding to model (6.99) are given in 
Table 6.16, the corresponding model responses are given by the solid line in 
Figure 6.19 and the corresponding sum of squares equals: 1.788 x 107 . 

Parameters Value Ind.conf.reg. Dep.conf.reg. 

a 2.127x103 4.278x102 8.437x101 
b 6.184x101 2.Q32Xl01 5.523Xl0-l 
C l.359x10- 2 7.662x10-4 5.9O9x10-5 

da 5.256Xl0-l 5.615x10-3 l.25Ox10-3 

e -3.971x10-l 8.343x10-l l.859x10-l 

f 2.863Xl01 8.99Ox10° 2.556x10-l 

Table 6.16: Optimal parameters for model (6.99) fitted to measured currency 
notes in circulation. 

a Note that 21r/12 = 0.523599 ... 
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0.0+-----------~----------, 
0.0 time (t) ➔ 100 185 

Figure 6.19: The data (indicated by '+') and the model responses from 
Eq. (6.99) for the currency notes in circulation for the optimal parameter values 
of Table 6.16. 

6.6.3 Comparison of prediction results 
One of the targets of fitting the models or using ARMA or SETAR methods is 
their use for prediction purposes. On the basis of the monthly measurements 
(January 1970 till April 1985) we predict the currency notes for the period May 
1985 till March 1986. For the ARMA and SETAR methods this is done and 
described in [BG97], we compare their results with predictions based on (6.99) 
and the parameters of Table 6.16. The results of these three methods are given 
in Table 6.17. 

The differences between the second and third column of Table 6.17 have 
been discussed in [BG97], where the authors stress that the SETAR outcome 
is sensitive to the choice of the delay and the threshold value in this model. 
This means that their results are not found in a straightforward manner, but 
the method contains additional freedom which was used to improve the fits. 
The predictions of the SETAR model are better than the results of (6.99), but 
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Month Obs. values ARMA discr. SE TAR discr. (6.99) discr. 
April 1985 24129 86.0 129.7 -211.5 
May 24852 47.0 194.6 -366.2 
June 24775 258.9 514.7 385.1 
July 23755 542.2 619.3 656.8 
August 23357 608.7 827.9 114.0 
September 23036 722.1 1183.0 983.9 
October 23783 1035.6 1463.0 908.1 
November 24486 647.7 1124.7 518.6 
December 24454 900.8 1314.3 1242.1 
January 1986 24364 1227.0 1613.3 1827.1 
February 24823 1237.1 1574.6 1839.0 
March 25519 1132.6 1228.8 1887.9 

Sum of sq. 7.885x106 1.451x107 1.466x107 

Table 6.17: Observed values, and the discrepancies between the predicted and 
the observed values with three different prediction methods for the period April 
1985-March 1986. 

the difference is marginal and far from significant. 
In this comparison it should be added that the best fitting SETAR model 

uses 12 parameters compared to 6 for the multiplicative model. On the other 
hand, the SETAR models can be used in a wider context than the model we 
deduced from inspecting the data. The method we followed is easy to use and 
as shown here competitive in this case study from literature, although it might 
be less appropriate in situations with more complex data sets. 

6.6.4 Concluding remarks 
In this case study we compared ARMA and SETAR methods with a simpler 
model we derived from the data by inspecting them. The model as described 
here is competitive with the SETAR method in predicting currency notes, while 
at the same time it needs less parameters and is easier to use. Our derivation 
of the model requires some experience and insight in the data and the result 
is a bit of a special purpose model, which cannot be used for an arbitrary 
time series. The effort to derive a model as we did is worth considering if 
many predictions have to be made or the process is studied thoroughly. For an 
exploratory study ARMA or SETAR models are favourite. 
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6. 7 The DOW problem 
6. 7 .1 Introduction 
This problem was originally formulated by the Dow Chemical Company and 
studied already by various researchers in the 80's. A number of solutions to 
this problem from five different research groups is presented and compared in 
[BDB86]. 

The model is described by a system of 10 stiff differential-algebraic equa­
tions (DAEs) and contains 9 unknown parameters to be estimated. Besides the 
model we have three sets of data from a batch reactor. The sets differ by initial 
concentrations and temperatures. The error structure of the data is not a priori 
known. We assume that the measurement errors are normally distributed. Fur­
ther, it is likely that, due to the way the measurements were constructed, their 
errors are correlated. Measurement of four chemical compounds are available. 

The purpose here is to use the same problem as a case study for our pa­
rameter estimation approach. First, we compute the estimates taking the 4 x 4 
covariance matrix V (cf. (3.11)) (i) equal to the identity matrix, (ii) diago­
nal with unknown entries (Section 3.3.2) and (iii) a full matrix with unknown 
entries (Section 3.5). Second, we compare our results with those reported in 
(BDB86]. Third, we compare the parameter estimates obtained when taking a 
full or a diagonal covariance matrix. Finally, we drop the model assumptions 
as they are in the original formulation, formulate a more general model and 
compare the corresponding results with those from the original model. 

6. 7 .2 Description of the problem 
For the formulation of the problem we refer to (BDB86] and restrict ourselves 
to giving the set of DAEs. Although many model assumptions are present, we 
did not look into the validity of these assumptions. The reader interested in the 
chemical background of the equations and the related assumptions is referred 
to the original article 2 . 

The model is mathematically expressed by 6 differential and 4 algebraic 
equations. As in Chapter 1, the state variables are denoted by y and depend 
on time and the unknown parameters. 

dy1 
-k2Y2Ys (6.100) 

dt 
dy2 

-k1Y2Y6 + k-1Y10 - k2Y2Ys (6.101) 
dt 

dy3 
k2Y2Ys + k1Y4Y6 - ½k-1y9 (6.102) 

dt 
dy4 

-k1Y4Y6 + ½k-1y9 (6.103) 
dt 

2 The cited article contains two mistakes in the DAEs on page 31: there, the first minus 
sign in the right-hand of both equation (3) and (5) should be omitted. 
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dy5 
k1Y2Y6 - k-1Y10 (6.104) 

dt 
dy5 

-k1YB[Y2 + Y4] + k_i[y10 + ½Yg] (6.105) = dt 
Y1 -[Q+] +Y6 +ys +yg +Y10 (6.106) 

Ys 
K2Y1 

K2 +Y1 
(6.107) 

yg 
K3y3 

(6.108) 
K3 +Y1 

K1Y5 (6.109) Y10 
K1 +Y1 

The unknown parameters k_1, k1 and k2 are assumed to be temperature 
dependent via Arrhenius' law, which yields three extra parameters: 

ki = ai exp(-Ed(RT)) , i E {-1,1,2}. (6.110) 

Here ai, given in [ mol/ ( kg *hrs)], is the pre-exponential factor and Ei, [ cal/mo~ 
is the activation energy. 

Summarising, we have nine parameters, given by the vector 0 = [0:1, E1, 
o:2, E2 , o:_1, E_1, K1, K 2 , K3]. The vector of state variables corresponding 
to the chemical compounds under consideration is y = [HA, BM, HAEM, AB, 
MBMH, ~, W, A-, AB~, MB~]. The quantity [Q+] in equation (6.106) 
is a concentration which is assumed to be constant during the reactions. 

The initial conditions read: 

y5(0) = 0.0, 

Y6(0) = [Q+j = 0.00131 , 

Y1(0) = ½ (-K2 + ✓Ki +4K2Y1(0)) 

Ys(0) Y1(0) , 

yg(0) 0.0, 

Y10 (0) 0.0. 

The initial condition y9 (0) is not consistent with the initial data of the second 
and third experiment, but the DAE solver will correct this immediately. The 
initial guess for the unknown parameters, Bini, provided by the Dow description, 
reads: 

0:1 2.0E13, 

E1 2.0E3, 

0:2 2.0E13, 

E2 = 2.0E3, 

a_1 4.3E15, 
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2.0E3, 

l.0E-17, 

l.0E-11, 

l.0E-17, 

where Ki, i E {1, 2, 3} is given in: [mol/kg]. 
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As in Section 6.1 we take the logarithm of the pre-exponential factor, divide 
the activation energies by 1000 and use the reparametrisation from (6.16). The 
values of Ki (i E {1, 2, 3}) also lead to the decision to replace these parameters 
by their logarithms. This completes the model specification of the parameter 
estimation problem. 

6.7.3 Data 
The available data originate from three different experiments. During each 
experiment the temperature is constant, while from experiment to experiment 
the temperatures vary (40, 67 and 100°C). During the experiment, data from 
four different components are observed; three species are measured and the 
measured values are adjusted according to a conservation law. The value of 
the fourth data point is derived by making use of an additional relation. This 
history with respect to the origin of the data make it likely that the 'measure­
ments' are correlated. Therefore, we will estimate -apart from the 9 unknown 
parameters- a 4 x 4 covariance matrix as explained in Section 3.5. 

From the estimated covariance matrix we will investigate the dependence 
of the measurement errors. We will also compare the results obtained by a full 
covariance matrix, with those for a diagonal covariance matrix. 

6.7.4 Results 
First case: V is the identity matrix 
By making this choice for the covariance matrix, we neglect the information 
about the history of the data. Nevertheless we start this way as a first ex­
ploration of the model. The OLS estimates and the corresponding confidence 
regions are given in Table 6.18, the optimal fits are shown in Figure 6.20. 

In the comparison of Biegler et al. [BDB86], only one research group used 
ordinary least squares, but they considered 3 measured components, 8 param­
eters and 3 ODEs. Their residual sum equals 0.233, which is not significantly 
different from the result reported in Table 6.18. The estimated parameters and 
the corresponding fits of this group are in close correspondence with the results 
given here. However, this group did not give the corresponding confidence 
regions. 

The confidence regions in Table 6.18 are satisfactory, except for ln(ii_ 1 ) 

and ln(Ki) (i = 1, 2, 3). Taking into account the equations for y8 , y9 and 
y1o ((6.107)-(6.109)) and the size of Ki (i = 1,2,3), it is no surprise that the 
parameters ln(Ki) (i = 1, 2, 3) cannot be estimated accurately. 
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final independent dependent 
est. confidence confidence 
(0) regions ( 6.1 0) regions (6.v 0) 

ln(a1) -0.8134 3.9371x10-l 5.7949x10-2 

E1 18.5632 2.O815x10° 4.8385x10-l 
l~(a2) -1.1331 l.6464x10-l 3.142Ox10-2 

E2 18.8592 6.2497x10-l 2.78O7x10-l 
ln(a-1) -12.0012 l.6649x103 l.1487x10-l 

E-1 26.1344 l.7712x10° l.O214x10° 
ln(K1) -37.2129 2.1014x 107 3.8612x10-2 
ln(K2) -28.0053 2.1015x 107 l.1486x10-l 
ln(K3) -37.5920 2.1014x107 3.9349x10-2 

8(0) 0.3958 

Table 6.18: Final estimates of 0 for the case V = 14 plus confidence regions (cf. 
(1.25) and (1.26), with a= 0.05). 

Our confidence regions can be compared with the confidence regions re­
ported for other choices of V as found below. 

Second case: V is diagonal and unknown 

Here we estimate both the weights and the parameters as described in Sec­
tion 3.3.2. The most likely weights, 1/&i in (3.22), are: 

W = (31.4258, 23.3746, 28.8777, 41.1157)T. 

We see immediately that the weights are all of the same order of magnitude, 
which means that no big changes with respect to the optimal parameters and 
the corresponding fits are expected. The parameters and the confidence regions 
are given in Table 6.19. The graphs of these fits are not shown because they 
are almost identical to those in Figure 6.20. 

Instead of (3.19) we consider: 

(6.111) 

which makes no difference for the minimisation, but the result can be inter­
preted geometrically: the outcome of (6.111) equals the volume of a box in the 
data space, whose edges equal the estimated standard deviation of the corre­
sponding measurement error. The (natural) logarithm of this volume, where 
E!=l Tj = 339, is -1157.2. 

In [BDB86] three research groups considered this estimation problem with 
an unknown diagonal covariance matrix with four regressed components. How-
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Figure 6.20: Optimal fits for y1 to y4 during the first experiment at 40°C for 
the case V = [4. 

ever, these groups took different values for the heteroscedasticity. The het­
eroscedasticity, denoted by 'Yi E (0, 2], is a measure for the influence of the 
relative and the absolute error. It is O in the case of absolute and 2 in the 
case of relative measurement errors. One research group in (BDB86] also es­
timated the heteroscedasticities. The two other groups chose 'Yi (i = 1, ... , 4) 
equal to O or 1, respectively. The calculations in this section are performed 
assuming absolute measurement errors. Comparison of our results with the 
results with zero heteroscedasticities showed a close correspondence with re­
spect to the fits and the parameters. We encountered different values for the 
computed confidence regions. However, the paper does not give an explanation 
how the reported values were obtained. Also the results obtained by the group 
which took all heteroscedasticities equal to one are close to our results. The 
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final independent dependent 
est. confidence confidence 
(0) regions (1),,.1 0) regions ( f),,.n 0) 

l~(cii) -0.8048 3.9362x10-l 5.4678x10-2 

E1 18.6136 2.OO27x10° 4.5443X10-l 
l~(a2) -1.1409 l.7147x10-l 3.301Ox10-2 

E2 18.8057 6.5829X10-l 2.9119x10-l 
l~(a_i) -22.4686 6.13O3x107 l.1671X10-l 
E_1 25.7828 l.6628x10° l.O453x10° 
ln(K1) -47.2453 5.7088x107 3.5545x10-2 

ln(K2) -27.6020 l.4595x107 1.1671 X 10-l 
ln(K3) -47.6189 5.7O89x107 3.5957x10-2 

Table 6.19: Final estimates of 0 for the case Vis diagonal and unknown, plus 
confidence regions (cf. (1.25) and (1.26), with a= 0.05). 

confidence regions by this group are also in accordance with our results 

Third case: V is full and unknown 
Here we follow the approach from Section 3.6, estimating the parameters by 
minimising the determinant of the moment matrix (cf. (3.10)). It should be 
noted that in this case the measured components are not the same for all 
samples, N < qr. Therefore, we first compute the moment matrix, and then 
we divide the entry Mij by the number of samples containing measurements 
related to both Dli and D1j (l = 1, ... , r). The resulting matrix is a biased 
estimator of the covariance matrix. The bias has no influence on the parameter 
estimates. Finally, we minise the square root of the determinant of this biased 
covariance matrix, again after correcting for the non-constant samples. 

The biased estimate of the covariance matrix reads: 

[ 

1.0556·10-03 

v = 1.2911-10-03 
-8.6404·10-04 
-2.0152 -10-04 

1.2917-10-03 
1.9221-10-03 

-4.0993-10-04 
- 7.5342. 10-04 

-8.6404 · lo-04 
-4.0993. 10-04 

1.1618·10-03 
-4.1305 -10-04 

-2.0152·10-04 j 
-7.5342·10-04 
-4.1305·10-04 

5.7076-10-04 

This matrix shows that independence of the measurement errors is unlikely, 
due to the fact that the matrix is not even diagonal dominant. 

The optimal parameters and the corresponding confidence regions are given 
in Table 6.20, the corresponding fits do not differ significantly from the plots 
given in Figure 6.20. 

The (natural) logarithm of the volume of the corresponding box in the 
dataspace (cf. (6.111)) equals -1361.8, which is an improvement -as expected­
of the result with a diagonal covariance matrix. However, the estimated pa­
rameters and their confidence regions do not change considerably from one case 
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final independent dependent 
est. confidence confidence 
(0) regions (~1 0) regions (~v 0) 

l~(ch) -0.7892 2.5698x10-l 5.5065x10-2 

E1 18.6555 l.5277x10° 4.5556X10-l 
ln(ci2) -1.1509 l.5588x10-l 3.8189x10-2 

E2 18.7500 7.5025X10-l 3.3533x 10-1 
ln(a_i) -22.2395 3.3500x107 l.2862x10-l 

E-1 25.4406 l.6515x10° l.1621x10° 
ln(K1) -47.2155 3.6002x107 3.5108x10-2 

ln(K2) -27.8259 l.5265x107 l.2862X10-l 
ln(K3) -47.5814 3.6002x107 3.5237x10-2 

Table 6.20: Final estimates of 0 for the case V is full, symmetric and unknown, 
plus confidence regions (cf. (1.25) and (1.26), with a= 0.05). 

to the other. We can state that the estimates and the corresponding confidence 
regions are not sensitive to the three choices of V we made. 

In Biegler et al. [BDB86] only one group performs the regression with a 
full covariance matrix. However, they only consider two regressed components, 
which is an oversimplification of the problem and makes comparison irrelevant. 

6. 7 .5 More general model equations 
In the article by Biegler et al. ([BDB86]), many assumptions -with respect to 
the rapid acid-base reactions, k_2 = 0, k3 = k1 and k_3 = 1/2k_1- are already 
made. The authors motivate this by stating that a more general model would 
have too many parameters that cannot be estimated. This is true, but to our 
opinion it is a more general approach to start with a model which contains less 
assumptions and more parameters. Such an approach should be a starting point 
for a step by step process of checking assumptions, eliminating parameters and 
making model simplifications. 

A schematic representation of the reactions without the additional assump­
tions reads: 

k1 
M-+BM -t MBM-+----

k-1 
k2 

A-+BM -t ABM-+----
k-2 
k3 

M-+AB -t ABM-+----
k_3 

k4 
MBM-+H+ MBMH -t 

+----
k_4 
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k5 
A-+H+ HA --t 

+----
k_5 

ka 
ABM-+H+ HABM --t 

+----
k-a 

The mathematical model corresponding to the above scheme yields: 

d[HA] 
= -k5[HA] + k_5[A-][H+] 

dt 
d[BM] 

= -ki[M-][BM] + k_1[MBM-] -
dt 

k2[A-][BM] + k_2[ABM-] 

d[HABM] 
= -k6[H ABM] + k-6[ABM-][H+] 

dt 
d[AB] 

= -k3[M-][AB] + k_3[ABM-] 
dt 

d[MBMH] 
= -k4[MBMH] + k_4[MBM-][H+] 

dt 
d(M-J 

= -k1[M-][BM] + k_1[MBM-] -
dt 

k3[M-][AB] + k_3[ABM-] 
d[H+] 

= k5[HA] - k_5[A-][H+] + 
dt 

k4[MBMH] - k_4[MBM-][H+] + 
k6[H ABM] - k_6[ABM-][H+] 

d[A-J 
= -k2[A-][BM] + k_2[ABM-] + 

dt 
k5[HA] - k_5[A-][H+] 

d[ABM-J 
= k2[A-][BM] - k_2[ABM-] + 

dt 
k3[M-][AB] - k_3[ABM-] + 
k6[HABM] - k_6[ABM-][H+] 

d[MBM-] 
= ki[M-][BM] - k_i[M BM-] + 

dt 
k4[MBMH] - k_4[MBM-][H+] 

141 

(6.112) 

(6.113) 

(6.114) 

(6.115) 

(6.116) 

(6.117) 

(6.118) 

(6.119) 

(6.120) 

(6.121) 

For the all reaction rates ki (i = ±1, ... , ±6) we have an Arrhenius' relation 
as in (6.110). Further, we reparametrised the pre-exponential factor as in 
(6.16). The results of the regression with this more general model for the case 
V = [4 are given in Table 6.22 and Figure 6.21. The residual sum equals 0.2352 
(with N - m = 339 - 24 degrees of freedom) which is significantly better than 
0.3958 (with N - m = 339 - 9) from Table 6.18, because the corresponding 
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ratio: 

X = (0.3958 - 0.2352)/(24- 9) = 14_34 . 
0.2352/(339 - 24) 

and the corresponding upper quantile, Fo.05(15, 315), equals 1.70. 
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We will also perform the F-ratio test as introduced at the end of Appendix 
LC. The residual sums after the data have been split are listed in Table 6.21. 
As in Appendixl.C we compute the ratios: 

Ni= 167 N2 = 172 
m1= 24 0.06695 0.1561 
m2= 9 0.1223 0.2682 

Table 6.21: Residual sums for the models (6.112)- (6.121) with 24 parameters 
and (6.100)-(6.109} with 9 parameters when the data are split in two disjunct 
sets. 

X = 0.06695/(167 - 24) = 0 2845 
1'2 0.2682/(172-9) . ' 

and 

0.1561/(172- 24) 
X2'1 = 0.1223/(167 - 9) = 1.3626 . 

For the lowerbound corresponding to X1,2 at a confidence level of 0.95, we get 
1/ Fo.0125(163,143) = 0.6929 and the upper bound for X1,2, i.e. Fo.0125 (148,158), 
equals 1.4379. These results (cf. (l.38))are in accordance with the results we 
obtained from the other test. 

6.7.6 Concluding remarks 
In this section we solve the problem reported in [BDB86] in various ways and, 
where possible, we compare our results with the results in this article. With 
respect to the fitness criterion three different situations have been studied: the 
covariance matrix is (i) the identity matrix, (ii) diagonal with unknown entries 
and (iii) full with unknown entries. The estimated entries for an unknown 
diagonal covariance matrix were all of the same order of magnitude. For a full 
covariance matrix we find that this matrix was not diagonal dominant and, 
thus, it is likely that the measurement errors are correlated, as was expected 
from the description how they were generated. 

In general, our fits and the parameter results are in correspondence with 
the results of [BDB86]. The more general case of a full 4 x 4-matrix (which 
takes dependence of the measurement errors into account) was not dealt with 
in that article. However, our results with respect to the parameters and the 
fits led to marginal changes for the different choices of V. 
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Figure 6.21: Experimental ( x) and numerical results obtained through (6.112)­
(6.121), V = [4 and the parameters of Table 6.22. 

When we drop the assumptions proposed in the original formulation of the 
problem and solve the regression problem with a general model, we get a fit 
which is significantly better. Howerer, the problem is poorly conditioned. 
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final independent dependent 
est. confidence confidence 
(9) regions (t:l 0) regions (6.v 0) 

ln(a1) 9.7790 2.0566x104 4.3305x10-2 

1n(E1) 36.5900 1.2971x105 3.7914X10-l 
1n(a2) 1.0223 1.1435x10-l 3.7432x10-2 

ln(E2) 18.9920 9.5607x 10-1 3.3461x10-l 
ln(aa) 4.9937 2.5584x101 4..4374xio-~ - -

ln(Ea) 16.3235 1.7288x102 3.8994x10-l 
ln(a-1) 17.9814 2.7403x104 4.3313 X 10-2 

ln(E-1) 27.4450 1.4187x105 3.7924x10-l 
ln(a-2) 10.2130 2.3841x104 4.0345 XlO-l 

ln(E-2) 28.1234 1.1722x105 3.3370x10° 
ln(a-a) 12.1521 2.3834x104 4.1852 x10-2 

ln(E-a) 12.5168 1.1720x105 3.6596X10-l 
ln(a4) -4.0824 9.9917x10-l 6.1516x10-2 

ln(.E4) 20.2311 4.9609x10° 5.8733x10-l 
ln(as) -1.1080 4.7799x10-l 8. 7616 X 10-2 

ln(Es) 14.0946 2.6856x10° 7.9105x10-l 
ln(a5) 7.9283 3.2564x104 4.3690x10-2 

ln(.E5) 10.4588 2.7917x105 3.8273X 10-l 
1n(a_4) 30.6320 1.3157x104 4.3311x10-2 

ln(.E_4) 4.6011 7.0823x104 3.7922x10-l 
ln(a-s) 20.7319 2.6032x103 5.7788x10-l 

ln(E-s) 13.5023 2.3525x104 4.9884 XlOO 
ln(a-6) 42.5718 3.0832x104 4.3690 Xl0-2 

ln(E-6) 0.3731 3.2713x105 3.8273 XlO-l 
S(fJ) 0.2352 

Table 6.22: Final estimates of fJ and their confidence regions for the model of 
(6.112)-(6.121). The corresponding fits are found in Figure 6.21. 
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Appendix 6.A 

This appendix contains an example model file as it is needed for the parameter 
estimation program, splds ([EHS95]). In fact, the model file shown was used for 
the resin problem of Section 6.1. The lines starting with an "#" are comment 
lines. Other model files used for the problems described in this book, and files 
containing the experimental data used are available from the author. 

# declaration part 

Variables :=[me1Aq,FM,H20,mon,NN,di,NNN,tri,N4,tet,pen,hex]; 
Parameters:=[fa1,E1,fam1,Em1,fa2,E2,fam2,Em2, 

FM1,FM2,FM3,FM4,FM5,FM6,FM7,FM8]; 
Constants :=[temp,R,tt0,tt1,mel0,mel1,begin, 

iFM1,iFM2,iFM3,iFM4,iFM5,iFM6,iFM7,iFM8]; 

# initial settings 

Cdef aul t [ temp] := 323; 
Cdefaul t [R] := 8.34; 
Cdefault [tt0] := 0.0; 
Cdefault [tt1] := 5.0; 
Cdefaul t [mel0] := 0.12; 
Cdef aul t [me11] := 0.124; 
Cdefault[begin]:= 1.0; 
Cdefault[iFM1] := 1.0; 
Cdef aul t [iFM2] := 0.0; 
Cdefault [iFM3] := 0.0; 
Cdefault [iFM4] := 0.0; 
Cdefault [iFM5] := 0.0; 
Cdefaul t [iFM6] := 0.0; 
Cdef aul t [iFM7] := 0.0; 
Cdef aul t [iFM8] := 0.0; 

# scaling factor and reference temperature 

fac :=1000.0; 
Tref:=333; 

# for the reparametrisation 

RT1:=1.0/C[temp]-1.0/Tref; 
RT2:=1.0/C[temp]-1.0/Tref; 
RT3:=1.0/C[temp]-1.0/Tref; 
RT4:=1.0/C[temp]-1.0/Tref; 

# reparametrised reaction rates 
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k1 := exp(-P[fa1 ]-P[E1 ]•fac/C[R]•RT1); 
km1:= exp(-P[fam1]-P[Em1]•fac/C[R]•RT2); 
k2 := exp(-P[fa2 ]-P[E2 ]•fac/C[R]•RT3); 
km2:= exp(-P[fam2]-P[Em2]•fac/C[R]•RT4); 

# for the linear interpolation for dissolved melamine 

melbeg:= C[melO]; 
melend:= C[meli]; 

# the corresponding algebraic equation (g[melAq]=O). 
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g[melAq] := melbeg+(melend-melbeg)•(t-C[tt0])/(C[tt1]-C[tt0])-Y[me1Aq]; 

# the differential equations 

f [FM] 

f [H20] 
f [mon] 

f[NN] 

f [di] 

f [NNN] 

f [tri] 

f[N4] 

f [tet] 

f [pen] 

f [hex] 

:= -k1•Y[FM]•(6.0•Y[me1Aq] + 4.0•Y[mon] + 2.0•Y[di] + 
4.0•Y[NN] + 2.0•Y[NNN] + 2.0•Y[N4])­

k2•Y[FM]•(Y[mon] + 2.0•Y[di] + 3.0•Y[tri] + 
Y[NNN] + 2.0•Y[tet] + Y[pen]) + 

km1•Y[H20]•(Y[mon] + 2.0•Y[di] + 3.0•Y[tri] + 
Y[NNN] + 2.0•Y[tet] + Y[pen]) + 

km2•Y[H20]•(2.0•Y[NN] + 2.0•Y[NNN] + 2.0•Y[tet] + 
4.0•Y[N4] + 4.0•Y[pen] + 6.0•Y[hex]); 

:= -f[FM]; 
·= 6.0•k1 •Y[FM]•Y[me1Aq]+2.0•km1•Y[H20]•Y[di]+ 

2.0•km2•Y[H20]•Y[NN]-4.0•k1 •Y[FM]•Y[mon]­
k2 •Y[FM]•Y[mon]-km1•Y[H20]•Y[mon]; 

:= k2•Y[FM]•Y[mon]+km1•Y[H20]•Y[NNN]-
4.0•k1•Y[FM]•Y[NN]-2.0•km2•Y[H20]•Y[NN]; 

:= 4.0•k1•Y[FM]•Y[mon]+3.0•km1•Y[H20]•Y[tri]+ 
2.0•km2•Y[H20]•Y[NNN]-2.0•k1•Y[FM]•Y[di]-
2.0*k2*Y[FM]•Y[di]-2.0•km1*Y[H20]•Y[di]; 

·= 4.0•k1*Y[FM]•Y[NN]+2.0•k2•Y[FM]•Y[di]+ 
4.0•km2•Y[H20]•Y[N4]+2.0•km1*Y[H20]•Y[tet]­
k2*Y[FM]•Y[NNN]-2.0•k1•Y[FM]•Y[NNN]-
2.0•km2•Y[H20]•Y[NNN]-km1•Y[H20]•Y[NNN]; 

:= 

:= 

:= 

:= 

:= 

2.0•k1•Y[FM]•Y[di]+2.0•km2•Y[H20]•Y[tet]-
3.0•k2•Y[FM]•Y[tri]-3.0•km1•Y[H20]•Y[tri]; 
k2•Y[FM]•Y[NNN]+km1•Y[H20]•Y[pen]-
2.0*k1*Y[FM]*Y[N4]-4.0*km2*Y[H20]*Y[N4]; 
3.0•k2•Y[FM]•Y[tri]+2.0•k1•Y[FM]•Y[NNN]+ 
4.0•km2•Y[H20]•Y[pen]-2.0•k2•Y[FM]•Y[tet]-
2.0•km2•Y[H20]•Y[tet]-2.0•km1*Y[H20]•Y[tet]; 
2.0•k2•Y[FM]•Y[tet]+2.0•k1•Y[FM]•Y[N4]-
km1 *Y [H20] *Y [pen] -4. O•km2*Y [H20] *Y [pen]+ 
6.0•km2•Y[H20]•Y[hex]-k2•Y[FM]•Y[pen]; 
k2•Y[FM]•Y[pen]-6.0*km2*Y[H20]•Y[hex]; 
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# initial conditions (different for every series) 

YStart[melAq]:=0.12*C[iFM1]+0.14*C[iFM2]+0.11*C[iFM3]+ 
0.17*C[iFM4]+0.25*C[iFM5]+0.3*C[iFM6]+ 
0.15*C[iFM7]+0.17*C[iFM8]; 

YStart [FM] : =P [FM1] *C [iFM1] +P [FM2] *C [iFM2] +P [Ft-13] *C [iFM3] + 

YStart [H20] 
YStart [mon] 
YStart[NN] 
YStart [di] 
YStart [NNN] 
YStart [tri] 
YStart[N4] 
YStart [tet] 
YStart [pen] 
YStart [hex] 

P[FM4]*C[iFM4]+P[FM5]*C[iFM5]+P[FM6]*C[iFM6]+ 
P[FM7]*C[iFM7]+P[FM8]*C[iFM8]; 

:=34.0; 
:=0.0; 
:=0.0; 
:=0.0; 
:=0.0; 
:=0.0; 
!=0;0; 
:=0.0; 
:=0.0; 
:=0.0; 
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# used to estimate the relative error during the numerical integration 

YSize[melq]:=10.0; 
YSize[FM] :=10.0; 
YSize [H20] : =10. 0; 
YSize[mon] :=10.0; 
YSize[NN] :=10.0; 
YSize[di] :=10.0; 
YSize[NNN] :=10.0; 
YSize[tri] :=10.0; 
YSize[N4] :=10.0; 
YSize[tet] :=10.0; 
YSize[pen] :=10.0; 
YSize[hex] :=10.0; 

# lower bounds for the unknown parameters 

ParMin [fa1] :=0.0; 
ParMin[E1] :=0.0; 
ParMin [fam1] :=0.0; 
ParMin [Em1] :=0.0; 
ParMin [fa2] :=0.0; 
ParMin[E2] :=0.0; 
ParMin[fam2] :=0.0; 
ParMin [Em2] :=0.0; 
ParMin [FM1] :=0.0; 
ParMin [FM2] :=0.0; 
ParMin [FM3] :=0.0; 
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ParMin[FM4] :=0.0; 
ParMin[FM5] :=0.0; 
ParMin[FM6] :=0.0; 
ParMin[FM7] :=0.0; 
ParMin[FM8] :=0.0; 

# upper bounds for the unknown parameters 

ParMax [fa1] 
ParMax[E1] 
ParMax [f am1] 
ParMax [Em1] 
ParMax[fa2] 
ParMax[E2] 
ParMax[fam2] 
ParMax[Em2] 
ParMax [FM1] 
ParMax [FM2] 
ParMax [FM3] 
ParMax [FM4] 
ParMax [FM5] 
ParMax [FM6] 
ParMax [FM7] 
ParMax [FM8] 

:=5.48; 
:=196000/fac; 
:=9.36; 
:=136000/fac; 
:=16.3; 
:=240000/fac; 
:=18.98; 
:=180000/fac; 
:=16.82; 
:=15.22; 
:=11.2; 
:=11.16; 
:=9.6; 
:=9.62; 
:=9.6; 
:=11.16; 
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Appendix 6.B 

This appendix contains an example taken from a part of a data file as it is 
needed for the parameter estimation program, splds ([EHS95]). The data file 
goes with the model file as given in Appendix 6.A. We only show the parts of 
the data file which are relevant to get insight into the preparation of a more 
complex data file and will not fill the pages with all the measurements. 

# 

# Name of the data file, start at t=O.O and initiation of the constants 
# 

DATASET testDSM 
START 0.0 exp1 
CONSTANT temp 323.0 
CONSTANT R 8.34 
CONSTANT melO 0.12 
CONSTANT me11 0.124 
CONSTANT ttO 0.0 
CONSTANT tt1 5.0 
CONSTANT iFM1 1.0 
CONSTANT begin 1.0 
# 

# Measurements for the various species, e.g. FM can be replaced by the 
# the number 2; its position in the list variables. 
# 
0.0 FM 8.14 
5.0 FM 8.754 
5.0 mon 0.230 
5.0 NN 0.223 
5.0 di 0.291 
5.0 NNN 0.56 
5.0 tri 0.181 
5.0 N4 0.031 
5.0 tet 0.123 
5.0 pen 0.0007 
5.0 hex 0.00011 
# 
# Handling of the first discontinuity at t=5.0, name of the experiment 
# part is prt11 and setting of the constant for this exp. part. 
# 

CONTINUE 5.00 prt11 
CONSTANT melO 0.124 
CONSTANT me11 0.132 
CONSTANT ttO 5.0 
CONSTANT tt1 15.0 
CONSTANT iFM1 1.0 
CONSTANT begin 0.0 
15.0 FM 4.810 
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15.0 mon 0.287 

# 
# end of the first experiment, start of the second experiment 
# 
120.0 pen 
120.0 hex 
STOP 120.01 
START 0.0 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
CONSTANT 
0.0 FM 

0.570 
0.065 

exp2 
temp 

R 

melO 
mel1 
ttO 
tt1 
iFM2 
begin 

9.26 

323.0 
8.34 
0.14 
0.141 
0.0 
5.0 
1.0 
1.0 

# end of the 8th experiment and the data file. 
# 

120.0 pen 0.214 
120.0 hex 0.012 
STOP 120.01 

Chapter 6 



Chapter 7 

Software Design and 
Implementation 

7.1 Introduction 
A substantial part of the work in this PhD-project is spent on the development 
of a tool for parameter estimation. As a result we have built a program package 
called splds, · which is the acronym of' simulation and parameter Identification in 
dynamical systems'. This program enables the user to (1) simulate dynamical 
systems, (2) to validate models, (3) to estimate unknown parameters in such 
systems when additional data from experiments about the system are known 
and (4) to get information about the reliability of the model and the estimated 
parameters. In order to make the software convenient to use, we extended the 
number of requirements by adding that the four above points should be realised 
in an environment that (5) is interactive, (6) is easy to use and (7) shows the 
results by direct visualisation. 

In this chapter we give a description of the structure of the software, the ma­
jor considerations that were taken into account and the decisions we made with 
respect to the construction of the software. By dynamical systems we mean 
systems of semi-explicit differential algebraic equations (DAEs), as introduced 
in (1.1). In Section 7.2 we will give an outline of the design principles of the 
software, whereas its structure is presented in Section 7.3. The model equations 
are provided by the user via the modelfile. This file should meet certain speci­
fications as discussed in Section 7.4. The experimental data are made available 
through the datafile, the corresponding characteristics and specifications of this 
file can be found in Section 7.5. 

After the model dependent parts (model and data) have been explained, 
we concentrate in Section 7.6 on the algebraic engine, which puts the modelfile 
into appropriate subroutines. The filter which takes care of handling the data 
is outlined in Section 7.7. Section 7.8 is devoted to the numerical engine: the 
part which contains numerical routines for solving the model and variational 
equations, optimising the criterion function and performing statistical analyses. 
The graphical user interface (GUI) and the database manager are the topics 
of the Sections 7.9 and 7.10, respectively. The last section of this chapter, 
Section 7.11, contains concluding remarks. 
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7.2 Design principles of the application splds 
The main purpose of the program is to solve a parameter estimation prob­
lem. I.e., the program can be used to validate mathematical models of phys­
ical (chemical, biological, biochemical etc.) processes and compute the values 
of unknown parameters that appear in the description of these processes ( cf. 
Chapter 6 and e.g. [BS92, BDB86, Hem72b]). Of course, in order to determine 
such parameters, an unambiguous description of the model describing the pro­
cess should be available. In addition, sufficient experimental data are needed, 
and we assume that such data are available. 

We assume that the process can be modelled by a system of ordinary differ­
ential equations ( ODEs) or a system of differential algebraic equations (DAEs). 
In fact, we assume that the process is described by an initial value problem 
(IVP) for a system of differential equations: 

dy 

dt 
y(to, 0) 

J(t,y,0), 

Yo(0), 

or, including the algebraic equations, by the system 

du 
dt 

0 

u(to, 0) 

f(t, u, v, 0), 

g(t, u, v, 0), 

uo(0). 

(7.1) 

(7.2) 

Here the vector y(t,0) = ( ~~!:!? ) represents the variables in the model, 

which describe the state of the system fort > t0 • In the case of the differential 
algebraic equations the vector y(t, 0) comprises two parts, u(t, 0) and v(t, 0). 
For each state variable in the first part, u(t, 0), a differential equation is avail­
able. For each remaining variable an algebraic equation is given. Of course, all 
state variables in y(t, 0) are a function of time, t ~ t0 , and they depend on the 
(unknown) parameters 0. The function y(t, 0) is called the state vector, as it 
describes the state of the physical process at time t. 

To make the description of the program easier in this chapter we slightly 
adapt the notation of Chapter 1. In this chapter we write fi(t,y,0) (1 :'.S 
i '.S nodq), for a differential equation and 9j(t,y,0) (1 :'.S j '.S noaq)1, for an 
algebraic equation. With this notation we do not have to introduce the diagonal 
matrix A of (1.1). This has certain advantages when specifying the model in 
Section 7.4. The notation ui(t,0) for a differential variable and Vj(t,0) for an 
algebraic variable such that y(t,0) = (u(t,0),v(t,0))T suggests that the order 
of the differential and algebraic variables is fixed. However, as in the model 
description the elements of the state vector are not numbered but identified 

1Throughout· this chapter we use the typewriter font for reserved names, that are usually 
denoted by a single symbol in mathematical notation. 
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by names, the ordering is not relevant. Also the order of the differential and 
algebraic variables is not substantial. 

In the description below, also the symbols for the dimensions n, m, N and 
Kare replaced by noq, nop, nabs and nosid, respectively. The dimensions of 
u(t,0) and v(t,0) (cf. (7.2)) are denoted by nodq and noaq, respectively, such 
that nodq + noaq = noq. The system of ODEs, (7.1), can be seen as a special 
case of the system of DAEs, with noaq = 0. 

To solve the differential equations, an initial vector u(t0 , 0) should be given. 
The program requires to provide a complete initial state y(t0 , 0). If algebraic 
equations are present (noaq > 0), this initial state should (approximately) sat­
isfy the conditions determined by these algebraic conditions. The initial state, 
y(t0 , 0), i.e. the state vector at t = t0 , may depend on the parameter vector 0. 
The number of noq initial values (independent initial relations) determines a 
unique solution of the system of DAEs (ODEs). 

symbol meaning dimension 
t time, the independent variable 1 
y the state vector, y = ( u, v) T noq (n) 
u the vector of state variables for which a differential nodq 

equation is given ( a part of y) 
V the vector of state variables for which no differen- noaq 

tial equation is given ( a part of y) 
0 the vector of unknown parameters nop (m) 
C a vector of known constants noc 

f a vector function oft, y and 0, that describes the nodq 
rate of change of u with respect to t. 

g a vector function oft, y and 0, that describes the noaq 
algebraic relations between the components of y. 

Yo the initial condition of the DAEs (possibly de- noq (n) 
pending on 0) 

R the (possibly nonlinear) constraints on 0 nosid (K) 

Table 7.1: Summary of the symbols in the model (between brackets in the last 
column the symbols as used in Chapter 1) 

The initial-value problem (7.1) or (7.2) is supposed to give a relevant math­
ematical description of the process under consideration. The set of equa­
tions (7.2), together with its initial values and possible constraints for the 
parameters, we call the model. Generally, we assume that lower and upper 
bounds for the unknown parameters are known, i.e. the parameter vector sat­
isfies: 
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Often there are additional constraints for the unknown pa.rameters, as intro­
duced in (1.27). The dimension of the vector R(0) is nosid. 

Besides a vector of unknown parameters we introduce a vector of known 
constants. This vector is denoted by C and has dimension noc. These con­
stants are used for known quantities, that are constant during some part of the 
experiment, but may vary over different parts of the experiment. More details 
about the use of these constants are given in Section 7.4. 

Starting the parameter estimation program, the user gets control over this 
application by means of the graphical user interface (GUI). This means that 
the user gets some kind of a dashboard on the computer screen, and by moving 
the mouse and clicking the buttons he can steer the actions of the program. 
The GUI will show the results and it will take care of proper file management, 
call the necessary numerical routines and show the solution by visualisation on 
the screen. 

- Before a numerical experiment can be- performed, the user has to supply 
the model and the measurements. This information should be provided on two 
files: the modelfile and the datafile. The modelfile contains a description of 
the DAEs plus the initial values and the restrictions on the parameters, the 
datafile contains the measurements. 

7 .3 Structure of the software 
In order to get a maintainable piece of software, the structure of splds is mod­
ular. In Figure 7.1, we show a schematic view ofits separate parts. The parts 
are discussed in the following sections. 

The kernel of the system is the numerical engine, which performs all numer­
ical computations: it integrates the system of DAEs, performs the optimisation 
and analyses the final estimate statistically. This part of the system is written 
in FORTRAN. In order to solve a parameter estimation problem, subroutines 
are required to specify the problem. Of course, these subroutines are different 
for each model. Hence, these subroutines are generated automatically by a sep­
arate module, the algebraic engine, which is written in the MAPLE V language. 
This module only requires the description of the problem: model equations, 
initial conditions and optional restrictions on the parameters. By computer 
algebra, the algebraic engine derives the required formulae and generates the 
corresponding FORTRAN subroutines. Thus, it delivers the model-dependent 
part of the FORTRAN source for the numerical engine. The source description 
of the model equations, together with the initial conditions and the parameter 
constraints are provided by the user and put into the modelfile. In order that 
the algebraic engine will be able to handle this information properly, it should 
satisfy a number of specifications that are described in Section 7.4. 

Besides the model description, the numerical engine requires the data from 
the experiments. Such data should also be given on a separate file, called 
datafile, according to certain specifications that are described in Section 7.5. 
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These data are checked for consistency and prepared for the numerical engine 
by another module called the filter. This filter is partly written in NAWK (for 
text handling) and partly in FORTRAN. Necessary data from the model to give 
a proper interpretation of the data on the datafile are provided by the algebraic 
engine to the filter through the file names. 

After a check on the consistency of the experimental data, the data are 
stored in the database, ready for use by the numerical engine. 

A third module in the system is the graphical user interface, or GUI. The 
tasks of this module can be divided into two parts: (i) interaction of the user 
with the system to steer the computational process and (ii) visualisation of 
results from the numerical engine. 

The communication between the different modules described above is taken 
care of by a fourth module, the database manager. By means of exchanging 

. special messages, it regulates the flow of data between the database and the 
other modules. Section 7.10 gives a brief description of the database manager. 

The modular structure has two additional advantages. First, separate mod­
ules can run at different machines and second, the application without the GUI 
is still of use when no machine with sophisticated graphics facilities is available. 
At this moment the GUI only runs, in combination with a UNIX operating sys­
tem and X-windows, on a Silicon Graphics machine, while all the other parts 
can be run on almost every machine which has MAPLE and a FORTRAN77 com­
piler. 

7.4 The modelfile 
The modelfile contains the mathematical description of the process that will be 
analysed. In this section we describe how the model should be specified in the 
modelfile. 

The modelfile is written in the MAPLE language and it will be interpreted by 
the MAPLE program. This means that the user has the disposal of the complete 
MAPLE language to express his problem in a mathematical form. However, 
generally only a very small part of the language is necessary to specify the 
differential(-algebraic) equations, the initial conditions and the few other data 
that are necessary to formulate the model. 

First, we specify the contents of the modelfile as far as it will be understood 
by the algebraic engine. This is done by enumerating the building parts of the 
modelfile and by indicating whether the parts are obligatory or optional. Sec­
ond, we give a template of the modelfile in Table 7.3. Besides the typical lines 
that are found in the modelfile, the user is free to use additional MAPLE lan­
guage to help the mathematical formulation of the problem. As in Section 7.2 
the typewriter font is used to indicate reserved words, Table 7.2 contains a 
list of these words and some of their properties. 

The lines that appear in the modelfile are used in order to: 
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model.f )-E-----1 algebraic engine 
1-------------s~ 

numerical engine B 61ter.f (!~ 6lter.awk 

database manager 

GUI 

Figure 7.1: The structure of the application. 

Chapter 7 

1. Define the list of state variables as Variables. This list corresponds 
to the names of the components of the state vector, y(t, 0). Instead of 
the variables y1 , ... , Ynoq, the user is free to choose names that are more 
meaningful for the problem at hand. 

The names of the actual variables ( e.g. vari, 1 :::; i :::; noq) are free for the 
user to choose. The number of variables, noq, is known to the program 
by the length of the list Variables. 

2. Define the list of unknown parameters as Parameters, this list cor­
responds with the vector 0. The names of the parameters ( e.g. par j , 
1 :::; j :::; nop) are free for the user to choose, but they should be different 
from the variable names. The number of parameters, nop, is known to 
the program by the length of the list Parameters. 

3. Define optionally a list of constants as Constants. The length of this 
list will be identified as noc. The list contains the names for constants, 
introduced by the user, and gives the opportunity to identify quantities 
that have a fixed value for one (part of an) experiment, but that may be 
different (but still fixed) in another (part of the) experiment. 

The names of the actual variables are free for the user to choose, but they 
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should be different from the parameter and variable names. 

If such constants are introduced in the modelfile, each constant should 
be initialised by the user with a (default) value. For each constant (e.g. 
named conk) this is done by assigning a value to Cdefault[conk]. In 
the datafile the user will have the opportunity to overwrite these values 
with different values for particular (parts of) experiments. In Section 7.5 
we shall see how these constants can be used. 

4. Define optionally a list ~f constraints as SideConditions that should 
be satisfied by the parameter values. The length of this list will be iden­
tified by nosid. The list contains a name for each constraint of the form 
Ri(0) :'.S 0, that is specified by the user (see (1.27)). Besides these addi­
tional (possible nonlinear) constraints that are specified by the user, we 
have constraints of the form 

to indicate a feasible box region of the parameters. 

All names introduced in the above lists should be unique names, appear­
ing only once in all four lists. 

5. Define the right-hand sides, f (t, y, 0), of the differential equations 
in (7.1) or (7.2), by assigning an algebraic expression (depending on 
the available Y [ vari], P [parj], and C [conk]) to the array elements 
f [varl], for 1 :'.S 1 :'.S nodq. 

6. Define the algebraic equations, g( t, y, 0) = 0, of the DAEs by assigning 
an algebraic expression ( depending on the available Y [ var i] , P [par j J , 
and C [conk]) to the array elements g [ varl], for nodq + 1 :'.S 1 :'.S noq. 

7. Define the initial states, y0 (0), in (7.1) or (7.2) by assigning an algebraic 
expression ( depending on P [par j] , and C [conk]) to the array element 
YStart [ vari] , for 1 :'.S i :'.S noq. It is necessary to assign expressions to 
all possible YStart [ vari] , for 1 :'.S i :'.S noq. 

If the user forgets one of the above, required assignments, he will receive 
an error message. More assignments are optional. In the case that an 
optional specification is omitted, the program will use a default setting 
as given in Table 7.2. 

8. Determine the nop-dimensional rectangle in parameter space, where the 
unknown parameter vector resides. In the modelfile lower- and upper­
bounds for the parameter values can be given. Therefore arrays ParMin 
and ParMax are introduced, for which 

ParMin[parj] :'.S 0j :'.S ParMax[parj]; j = 1, • • •, nop. 
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If no values for ParMin and ParMax are specified, the default values 
ParMin[parj] = 0 and ParMax[parj] = 1 are assumed, for j = 1, · · ·, nop. 

9. Define 
the additional constraints, that were introduced in SideCondi tions. 
These additional (possibly nonlinear) constraints in the parameter space 
are specified by assigning the expressions R(0), as in equation (1.27), to 
the array of expressions R [sidl], with 1 = 1, • • ·, nos id, where the in­
dex sidl is the name in the list of the 1-th parameter constraint. We 
call these additional constraints side conditions. Such expressions only 
depend on the unknown parameters P [par j] and the known constants 
C[conk]. 

10. Indicate the order of magnitude for the components in the state vector, 
so that 

max jyi(t, 0)1 ~ YSize[vari]; i = 1, · · ·, noq. 
t,0 

These YSize-values are used for scaling purposes only and play a mi­
nor role in the computations. If no YSize is specified, its elements are 
assumed to be equal to 1.0. 

A modelfi.le template 
In Table 7.3 we give a template of the MAPLE-text on the modelfile. 
The choice of most names used in the MAPLE text are at the user's dis­
cretion, except for the reserved words as listed in Table 7.2. In this 
table, var1, vari, varnoq, par1, parj, parnop, con1, conk., connoc, 
sid1, sidl and sidnosid, are names that can be selected by the user; 
RHSexpressionj, ALGexpressioni are algebraic expressions depending on the 
independent variable t, the dependent variables Y[vari], the parameters 
P[parj], and the constants C[conk] (with i=1, ... ,noq, j=1, ... ,nop, 
k=1, ... ,noc). The RHSexpressionj corresponds with fi(t,y,0), (j = 
1, ... , nodq), and describes the right hand side of the j-th differential equa­
tion. The i-th algebraic equation, 9i(t, y, 0), (i = 1, ... , noaq), is represented 
by ALGexpressioni. For all i = 1, ... , noq, INITexpressioni corresponds with 
the initial condition, Yi(t0 , 0), of the i-th component of the differential-algebraic 
equations, and it may depend on P [parj] and C [conk]. The assignments to 
Cdefault, Ysize, ParMin and ParMax are expressions for numerical values 
(floating or fixed point numbers). 

Besides the standard constraints, Bruin ~ 0 ~ Bmax, additional model con­
straints with respect to the unknown parameters can be added at the end of 
the modelfile. These side conditions, which are allowed to be nonlinear, are 
supplied in the form R [sidl] : = SIDEexpressionl (with 1=1, ... ,nosid). 
Here, SIDEexpressionl is an algebraic expression, depending on the unknown 
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. 

Reserved name 

Variables 
Parameters 
Constants 
SideConditions 
t 
y 
p 

C 
f 
g 
R 

YStart 
YSize 

ParMin 

ParMax 

Cdefault 

a list of names 
btable of variables 

Assignment Default value 

yes 
yes 
optional 
optional 
no 
no 
no 
no 
yes 
for DAEs 
optional R[sidl] =-1. 0, 

· (1 :'.ST:'.S nosid) 

yes 
optional YSize[vari]=1.0, 

(1 :'.S i :'.S noq) 
optional ParMin[parj]=0.0, 

(1 :'.S j :'.S nop) 
optional ParMax[parj]=1.0, 

(1 :'.S j :'.S nop) 
optional Cdefault[conk]=0.0, 

(1 :'.S k :'.S noc) 

ctable of expressions, depending on Y, P and C 
dtable of expressions, depending on P and C 
etable of floating point numbers 
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Type in 
MAPLE 

list a 

list a 

list a 

list a 

name 
table b 

table b 

table b 

table c 

table c 

tabled 

tabled 
table e 

table e 

table e 

table e 

Table 7.2: Summary of reserved names and default values in the modelfile 

parameters P [parj] and the known constants C [conk], representing the ex­
pression R1(0), the l-th component in equation (1.27). The number of side con­
ditions (nosid) corresponds with the dimension of R(0). We assume, as we do 
for INITexpressioni, that SIDEexpressionl is (MAPLE-) differentiable with 
respect to 0. For RHSexpressionj and ALGexpressioni we assume (MAPLE-) 

differentiability with respect to 0 and toy. 

A complete example of a modelfile is found in Appendix 6.A. 
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Variables:=[var1,vari,varnoq]; 
Parameters:=[par1,parj,parnop]; 
Constants:=[con1,conk,connoc]; 
SideConditions:=[sid1,sidl,nosid]; 
Cdefault[con1] := constant!; 
Cdefault[conk] := constantk; 
Cdefault[connoc] := constantnoc; 
f[var1]:= RHSexpression1; 
g[vari]:= ALGexpressioni; 
f[varj]:= RHSexpressionj; 
g[noq] := ALGexpressionnoq; 
YStart[var1]:= INITexpression1; 
YStart[vari] := INITexpressioni; 
YStart[varnoq] := INITexpressionnoq; 
YSize[var1] := ysize1; 
YSize[vari] := ysizei; 
YSize[varnoq] := ysizenoq; 
ParMin[par1] := parmin1; 
ParMin[parj] := parminj; 
ParMin[parnop] := parminnop; 
ParMax[par1] := parmax1; 
ParMax[parj] := parmaxj; 
ParMax[parnop] := parmaxnop; 
R[sid1] := SIDEexpression1; 
R[sidl]:= SIDEexpressionl; 
R[sidnosid] := SIDEexpressionnosid; 

Table 7.3: The template of a modelfile. 

7.5 The datafile 

Chapter 7 

The datafile contains the measured values (observations) obtained from the 
process studied. From equation (1.2) we see that the measured value, fh, is 
related to the point in time ti and the component ci of the state vector, 1 ::; 
Ci ::; noq. In the datafile all information about a single measured value should 
be given on one single line. So the data part of the simplest datafile consists 
of nobs lines, with on each line three numbers: ti, Ci and Yi• The numbers 
ti and Yi are floating point numbers, Ci is an integer that corresponds with 
the ci-th variable in the list of variables. This integer can also be replaced by 
the corresponding symbolic name that appears in the list Variables. The lines 
corresponding with a single experiment should appear in the order of increasing 
(more precisely: nondecreasing) ti. 
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A single experiment 
In the simplest possible datafile, the data part is preceded by two lines: (1) a 
line containing some identification of this data set: an arbitrary string of at 
most 24 characters, and (2) a line containing only the word START and the 
value t0 • This obligatory line denotes that the initial value problem starts at 
t = to. The data part is closed by a single line, containing the word STOP and 
the value for tend, the time at which the initial value problem ends. 

If the user wants to provide a weight Wi for the weighted sum of squares 
(1.4), he can do this by adding the real number Wi as the 4-th number on the 
line for the i-th observation. If no weight is specified, it has the same effect as 
Wi = 1.Q. 

In case the user wants to skip a measurement, he can inactivate the mea­
surement by putting a O as the 5-th number at the end of the corresponding 
line. We give this number the name active. The default setting is 1, which 
means that the measurement is active, i.e. is taken into account during the 
computation. 

Multiple experiments 
Another important option is to take several experiments into account for the 
same model and the same parameters, but possibly with different values of 
the model constants as given in constants. In this manual we use the word 
experiment for a sequence of observations (measurements) ordered in time. 
In case of a parameter estimation problem with a series of experiments the 
user should provide a series of data parts, each of which is preceded by a line 
containing the value t0 (to denote that a new initial value problem is considered, 
starting at t = t0 ). In order to specify what values for the constants are used, 
the restart line can be immediately preceded by a number of lines which contain 
the word CONSTANT, the constant's name, and the constant's value. 

In this way, a datafile can contain measurements from many different exper­
iments corresponding to the same modelfile. If some constants change from one 
experiment to the other, the corresponding measurements have to be separated 
by a constant block. 

It is also possible to change the model constants at distinct values tcont 
within the range of integration, to < tcont < tend· At such times, tcont, a dis­
continuity in the process of the experiment occurs and the change of constants 
is specified in the datafile: e.g. an amount of a certain reactant is added during 
the experiment or the temperature changes. So, each experiment may consist of 
different, distinct periods, where the constants have fixed values. Such periods 
during experiments are called experiment parts. 

At the beginning of every experiment the constants are set equal to their 
default values from the modelfile and adaptation will be made after every ap­
pearance of a constant-line in the datafile. 



162 Chapter 7 

Datafile syntax 
Summarising we find the following syntax for the information on the datafile. 

DATA_FILE: identificationJine ; EXPERIMENT _BLOCK 
EXPERIMENT_BLOCK: EXPERIMENT [; EXPERIMENT_BLOCK] 
EXPERIMENT: START _PART [ ; CONTINUATION ] ; stop_line 
CONTINUATION: CONTINUATION_PART [ ; CONTINUATION ] 
START _PART: start_line [ ; CONST _PART ] ; DATA_PART 
CONTINUATION_PART: continue_line [ ; CONST _PART] ; DATA_PART 
CONST _PART: constantsJine [ ; CONST _PART] 
DATA_PART: data_line [ ; DATA_PART] 
identification_line: DATASET , data-set-name 
starUine: START , to [. experiment-name] 
continue_line: CONTINUE , tcont 
sfopJine: STOP , tend 

constantsJine: CONSTANT , conk , bJ 
dataJine: ti , Ci , fh [ , Wi [ , 0 I 1 ]l 
commenUine: #, a sequence of characters ending with carriage retur 

In this syntax description, ';' means 'followed on the next line by', 
',' means 'followed on the same line by','[]' means 'optional', 
and 'I' means 'or'. 

ti, Yi, Wi and bJ are floating point numbers; 
Ci, is a natural number; 
Ci can be replaced by vari from the list Variables ; 
conk is an element from constants in the model. 

data-set name and experiment name are sequences of at most 24 characters. 
The binary flag (Oil) on the data line denotes that the observation is active. 
All data lines in an experiment block, following a "START ; t0 ; name" -line, 
should be ordered in time such that i < j => ti ::S; tj. Also the possible tcont 
should satisfy this ordering. Any such sequence beginning with a t0 is called 
an experimental sequence and can be identified by an experiment-name. 

A partial example of a datafile, containing the essential parts, is given in 
Appendix 6.B. 

7. 6 Algebraic Engine 
A modelfile which satisfies the specification of Section 7.4 can be used as input 
for the algebraic engine. A schematic overview of the interaction of the alge­
braic engine with its environment and its position in the overall application is 
given in Figure 7.1. The algebraic engine generates the model-dependent part 
of the numerical engine. These model-dependent parts are written to the file 
model.f This file contains FORTRAN subroutines for the evaluation of: (i) the 
differential algebraic equations (1.1), (ii) their derivatives with respect to the 
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state variables and the parameters (cf. (1.6)), (iii) the initial conditions, (iv) 
their derivatives with respect to the parameters, (v) the discontinuities within 
the experiments, (vi) the restrictions on the parameters and (vii) their deriva­
tives with respect to the parameters ((1.27) and (1.28), respectively). The 
choice here for FORTRAN is motivated by the fact that its use is widely spread 
and can be easily integrated with robust, public domain numerical software 
routines. Both arguments make it available for a broader group of users. A 
disadvantage of FORTRAN is the memory allocation, which should be handled 
via hard upperbounds which have to be adjusted manually if the problem sizes 
exceed an a priori chosen maximum. 

The other part of the output of the algebraic engine is the file names. This 
file contains the number of variables, parameters, constants and restrictions 
and their corresponding, user supplied names. The numbers of each of them 
are of interest for the array bound checks of the memory allocation. The names 
will be checked with the names of the constants and variables which are present 
in the datafile, and transferred to the database afterwards. 

7.7 Filter 
The purpose of the filter is twofold. First, it checks whether the datafile matches 
the modelfile. Second, it puts the measurements in the database. For the first 
purpose we start with checking the format of the data file; whether it meets the 
specifications of Section 7.5. Subsequently, we use the file names, which was 
created by the algebraic engine, to check the consistency between the modelfile 
and the datafile. All the constants and state variables in the datafile should be 
present in the modelfile. This part of the filter is written in NAWK. 

For the second purpose, another part, filter.!, is written and checks the array 
bounds for the number of measurements, experiment-parts and experiments. 
If one of these bounds is exceeded this filter gives an error message and the 
bounds for the memory allocation should be adapted. If the filter handles 
the datafile without error messages, then the information from the datafile is 
properly located in the central database. 

7.8 Numerical engine 
The numerical engine takes care of (i) the computation of an approximate 
solution of the model equations and the corresponding variational equations, 
1.1 and 1.5, respectively, (ii) minimising the criterion function (e.g. (1.4), (2.4), 
(3.11) or (3.54)) and (iii) performing statistical analyses and investigate the 
nonlinearity, cf. Section 1.6 and Chapter 4. 

The numerical engine can be divided into two parts; (i) a part which depends 
on the parameter estimation problem and (ii) a problem-independent part. The 
problem-dependent part, model.f, comes from the algebraic engine as described 
in Section 7.6 and is linked together with the model-independent part of the 



164 Chapter 7 

numerical engine. The result is a binary program which performs the numerical 
work. Due to its tasks, the numerical engine is the most CPU time consuming 
part of the whole application. 

The problem-independent part also has a modular structure in itself for the 
same reasons as the whole application has a modular structure. The separate 
parts of the numerical engine will be highlighted in the subsequent paragraphs. 
The measurements and constants from the datafile, which are necessary for the 
numerical engine, are obtained via the central database manager. 

A special BDF solver, which exploits the stiffness structure of the varia­
tional equations as described in Section 1.3, forms one of the modules of the 
numerical engine. This solver uses the model dependent part, model.f, for eval­
uation of the right-hand sides of (7.1) or (7.2) and their derivatives. During 
the calculation, not only the model responses which correspond to the mea­
surements are calculated, but also model responses for visualisation purposes 
are calculated. Every time the initial value problem is solved for a vector of 
parameters these results are sent to the GUI via the DB manager for direct 
visualisation. 

After the BDF solver calculated the discrepancies (1.9) and the Jacobian 
(1.11) for a given value of 0, the Levenberg-Marquardt minimisation routine 
(Section 1.5) will do one step in this iterative process in order to find an im­
proved parameter vector which gives a smaller value for the least squares cri­
terion, subsequently the model and variational equations will be solved with 
this improved parameter vector. Iterative procedures for total least squares, 
maximum likelihood or £ 1 -estimates will be dealt with in a similar way. · The 
minimisation part also uses the model dependent part, model./, for evaluation 
of the parameter constraints (1.27) and their derivatives (1.28). 

Upon convergence of the Levenberg-Marquardt algorithm, linear statistical 
analyses in the vicinity of the calculated optimal estimated parameter vector, 
0, as described in Section 1.6, are performed. Intersections of the ellipsoidal 
confidence with the parameter axes, as shown in Figure 1.1, can be studied via 
the GUI in combination with the corresponding SVD decomposition. 

Derivation of nonlinearity measures as described in Chapter 4 is another 
part of the numerical engine. One of the options is to compare ellipsoidal 
regions, as they can be derived from linear theory, with the corresponding 
results from Monte Carlo simulations. This and the other nonlinearity measures 
are tools to enable the user to investigate the nonlinearity of the problem under 
consideration. 

7.9 Graphical user interface (GUI) 
The graphical user interface (GUI) is designed in order (i) to make the whole 
application interactive in an easy way and (ii) to have the option to view 
the results immediately during the computation. The first item covers start­
ing/stopping a computation, adjust input parameters of the numerical routines 
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(accuracy, maximum number of iterations), change upper and lowerbounds for 
the parameters to be estimated, change the modelfile or the datafile. The sec­
ond item concerns the visualisation of graphs of the best fit at that moment of 
the computation, follow a track in the parameter space during the minimisation 
and graphical representation of results of the statistical analysis. 

The part of the GUI which is relevant for the user is a 'dashboard' with but­
tons, scroll-down menus, viewers and sliders to enable the user to steer easily 
through the options and be able to use the software with hardly any instruc­
tions. It is also designed to change the problem formulation slightly, adapt the 
numerical accuracies, view numerical results, without typing long command 
lines, but pushing these buttons with the mouse and opening submenu's in­
stead. This idea makes it much faster and easier to perform the many tasks 
due to immediate interfering with the computational process, without typing 
and without consulting the manual, because the user interf~g is partially s(tlf _ 
explaining. 

The results from the model investigations are visualised on the screen im­
mediately and can be stopped by the user at any moment in order to change 
the initial parameters or its bounds, adjust numerical accuracy, adapt the data 
or even switch to a more sophisticated model. C.T.H. Everaars built the GUI, 
more details about the concept and the realisation can be found in (EHS95]. 

7.10 Database manager 

This central part of splds takes care of the communication between the different 
parts of the software package. By means of events it regulates the flow of data 
between the database and the other modules or satellites. 

A copy of all data that can be communicated between the different modules 
is put in the database. Therefore all information is stored double, which not 
only minimises communication when multiple processors are used, but also 
forms a backup if one of the parts stops or communicated data get lost due to 
external errors. Besides, it stores actual numerical results from the numerical 
engine and it delivers them to the GUI for visualisation, if required. 

The content of the database is grouped on behalf of their characteristics 
and communication frequencies. For instance, tasks -a special kind of commu­
nicated data- for the numerical engine from the GUI are put in one group. The 
content of each group can be changed by at least one module and this changed 
content is of interest for at least one other part. The database manager takes 
care of a proper administration of these events. 

The database manager is designed by R. van Liere, the general concept of 
this manager can be found in [Lie92, WL96], for more technical details see 
[LW96]. 
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7.11 Concluding remarks 
In this chapter we started by giving a list of requirements for a parameter esti­
mation tool, the relevance for such a tool is motivated by problems encountered 
in experimental sciences as described in Chapter 6. From these requirements we 
derived a top-bottom design for a modular setup of the software. The choices 
and decisions we made at the various stages and levels of the design have been 
motivated throughout the chapter. With respect to the input of the program 
-the model and the data- we gave detailed and precise specifications to obtain 
an unambiguous formulation. Much attention is paid to error detection in the 
program input. 

Problem-depended software is generated automatically, by using computer 
algebra, and merged with numerical routines needed to solve parameter esti­
mation problems in dynamical systems. The tool is completed with a graphical 
user interface which makes it interactive, easy to use and enables the user to 
see the numerical results immediately. The data communication between the 
different modules is taken care of by a database manager. This choice for the 
communication keeps the overall application modular and enables the user to 
run different modules on different machines. 
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