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Preface

The Dutch Network of Operations Research (in Dutch LNMB) is an interuniversity or-
ganization, in which all universities in the Netherlands and the Centre for Mathematics
and Computer Science at Amsterdam (CWI) participate. It was founded on July 1, 1987.
The LNMB is a national graduate network. The PhD students in OR are expected to
participate in the education program, which consists of courses, colloquia and workshops.
An other function of the LNMB is to be a forum of all scientific OR-workers. There is a
board in which each university is represented.

During the November meeting of the board, we discussed what to do with the tenth
anniversary of our network. One of the suggestions was to compose a book with contri-
butions of those, who were involved in the LNMB, particularly the former PhD-students
and some of the members of the LNMB. The major objective was to present the research
done by young OR researchers in the Netherlands. We are very glad that many of them
responded enthusiastically.

The book contains over forty contributions and covers a broad spectrum of Operations
Research. After an introduction on the origin of the network, written by the first director
Wim Klein Haneveld, the first part is devoted to Combinatorial Optimization and Discrete
Mathematics, with a review paper by Karen Aardal, Stan van Hoesel, Jan Karel Lenstra
and Leen Stougie. The second part, on Stochastic Operations Research, starts with a
retrospective view, composed by Henk Tijms. The third part concerns Game Theory. Stef
Tijs and Koos Vrieze wrote a paper on the contribution in game theory of the Netherlands
during the past decade. This book covers also some papers on OR-applications. These are
collected in part four with a review by Rommert Dekker. In part five of this book some
other articles are gathered, e.g. a short survey on semidefinite programming by Etienne
de Klerk, Kees Roos and Tamas Terlaky. The book is concluded with a review of the
activities of the LNMB during this first decade.

Our editorial tasks were much alleviated by the efforts of Eric Bakker. He did a mar-
vellous job by unifying all kinds of TeX styles and by converting Word, Wordperfect and
other files into TeX. We are very grateful to him. We also wish to thank CWI, who pub-
lished this book and made it available at a reasonable price. Last, but not least, we wish
to express our gratitude to the authors of this book. :

Lodewijk Kallenberg
Wim Klein Haneveld
Koos Vrieze

May 1997
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On the origin and first decade of the LNMB

Wim Klein Haneveld
Chairman LNMB
E-mail: w.k.klein.haneveld@eco.rug.nl

Some day in 1988 I got up early, to find myself at seven o’clock in the morning in the
Oude Boteringestraat, downtown Groningen. There I joined the rector magnificus and other
officials of the University of Groningen. A bus took us to the Ministry of Education in
Zoetermeer, where university officials from all over the Netherlands were invited to be in-
formed about the minister’s decision on the financing of a number of so-called ‘aio-networks’.
I was a little nervous, because one of the proposals was the LNMB program, the National
Network of Mathematics of Operations Research in the Netherlands. Every now and then
some delegates left, and others came in the conference room. When the LNMB was dis-
cussed, the waiting room became almost empty, because all universities participated in this
initiative. Ten minutes later congratulations were collected, since the minister granted the
complete starting subsidy we asked for! This happy day marked the end of a sometimes
chaotic period of creating a new way of cooperation in the Dutch OR-community.

What is this all about? As is well-known, the discipline ‘Operations Research’ owes
its name to the successful application of mathematical models for solving logistic planning
of military operations in World War II. After the war, complex planning problems in in-
dustry, government, and agriculture were analyzed with mathematical models, too, often
under the name ‘Management Science’. By using the possibilities of the computer, already
at an early stage, OR developed quickly. Countless models and methods for project plan-
ning, production planning and scheduling, maintenance, replacement, allocation, routing
and transportation, physical distribution, inventory, investments, telecommunication, and
congestion are the result. Since the sixties, all universities in the Netherlands including the
Technical Universities and the Agricultural University founded chairs in OR, under a variety
of names. OR is typically interdisciplinary, as can be seen from the fact, that it is included
in curricula of mathematics, econometrics, engineering, and business economics, and its con-
tribution ranges from mathematical abstraction to practical application.

In the early seventies, several OR groups existed in the Netherlands. One of the first peo-
ple, who realized that more was needed, and who did something about it, was Gijs de Leve.
Together with Jan Karel Lenstra he made a traveling salesman tour through the country. As
a result we have, each year from 1976 on, an ‘International Conference on the Mathematics
of Operations Research’, organized by the Centrum voor Wiskunde en Informatica. Foreign
distinguished speakers report on promising research areas, and in due time, the Lunteren
environment inspired the OR-people in the Netherlands to become an informal but lively
OR-community.

In the early eighties the Dutch government introduced the so-called aio-system: Ph.D.-
students were given a new name, ‘assistent-in-opleiding’ (aio) or ‘onderzoeker-in-opleiding’



(oio), and a new status. In order to promote the development of corresponding graduate pro-
grams, some possibilities were created for initial funding. The existence of an OR-community
appeared to be very instrumental. Although on every sub-area of OR, as stochastic OR, com-
binatorial optimization, mathematical programming, and game theory the research level in
the Netherlands was internationally competitive, every separate group was rather small.
However, all over the country we were large enough for a common graduate program. And
that was precisely what was aimed at in the spring of 1987, resulting in the formal start of

the LNMB, July 1987.

In the past ten years it appeared that the program is very successful. All Ph.D.-students
in OR participate in common courses in Utrecht, and in workshops all over the country. They
have the opportunity to learn from expert researchers on all important sub-areas. Of course,
the thesis is extremely important. Nevertheless, the LNMB provides the young scientists an
orientation on actual developments in the whole of the discipline, and this feature can hardly
be underestimated. Moreover, one of the side effects is, that all over the country beginning
OR-researchers know each other, and so the juniors are not working on isolated islands any
more, but they are part of the OR-community. It is characteristic in this respect, that the
international workshops of the LNMB have been integrated in the Lunteren conferences.

Up to now, the LNMB organized 38 courses, 16 workshops, 175 colloquia for 231 aio’s/
oio’s, and more than 80 dissertations have been finished, and many more are coming. In
this book you will find overviews of the development of several areas in mathematics of OR,
together with a number of research topics dealt with by alumni of the network. As can
be seen, a wide range of subjects and approaches are presented. The alumni graduated at
mathematical faculties, both at general universities and technical universities, and at eco-
nomic faculties. In spite of the broad background they share a high level of modeling and
mathematical expertise. :

Foreign guests, giving a colloquium in Utrecht, or presenting a lecture in Lunteren, are
amazed, and often a little jealous of the LNMB. Indeed, we have the advantage to be a small
country in terms of traveling time. On the other hand, many counterexamples show, that
it is far from obvious that individual research groups are willing to cooperate, even if their
physical distance is small. I am proud that the OR-community in the Netherlands is able
to deal with its common interests. This does not mean that no effort is needed to realize
the goals. One needs people who feel it as a personal responsibility to make things work. In
the early days Jan Karel Lenstra acted as an inspiring and efficient chairman. Much work
was done by Suwarni Bambang Oetomo. She not only had to deal with rapidly changing
workloads, but she also had to solve many practical problems, related to an organization in
statu nascendi. After a period of improvisation, the network matured under the leadership
of Lodewijk Kallenberg, assisted by Gonnie Ooms-Woudstra.

Today, the LNMB is an established organization. Beginning aio’s usually do not realize
that it ever started. Together with the Netherlands Society of OR (NGB) it is recognized
as the national forum on OR. I hope and expect that this added value will continue in the
future.
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A Decade of Combinatorial Optimization

Karen Aardal
Utrecht University
E-mail: aardal@cs.ruu.nl

Stan van Hoesel
University of Maastricht
E-mail: s.vanhoesel@ke.unimaas.nl

Jan Karel Lenstra
Eindhoven University of Technology; CWI, Amsterdam
E-mail: jkl@win.tue.nl '

Leen Stougie
University of Amsterdam
E-mail: leen@fee.uva.nl

Abstract

This paper offers a brief overview of the developments in combinatorial optimization
during the past decade. We discuss improvements in polynomial-time algorithms for
problems on graphs and networks, and review the methodological and computational
progress in linear and integer optimization. Some of the more prominent software
packages in these areas are mentioned. With respect to obtaining approximate solutions
to NP-hard problems, we survey recent positive and negative results on polynomial-
time approximability and summarize the advances in local search.

1 Introduction

Combinatorial optimization is involved with models and methods for optimization over
discrete choices. It is rooted in the theory of linear programming, and has strong links
with discrete mathematics, probability theory, algorithmic computer science, and complexity
theory. Some problems in the area are relatively well understood and admit solution to
optimality in polynomial time. Many others are NP-hard, and one is forced to go one of
three ways. Either one chooses an enumerative method that is guaranteed to produce an
optimal solution. Or one applies an approximation algorithm that runs in polynomial time.
Or one resorts to some type of heuristic search technique, without any a priori guarantee in
terms of solution quality or running time.

In the past decade we have seen significant progress on all these fronts. Network flow
algorithms became more efficient, and so did algorithms for linear and convex optimization.
For the hard problems, advances in polyhedral techniques extended the realm of true
optimization methods. Performance bounds that can — or probably cannot — be met in
polynomial time were tightened. And there has been a surge in the development of local



search approaches. Remarkable aspects were the use of randomization in the design and
analysis of algorithms, and the attention paid to on-line planning models.

Two developments outside the area stimulated research in combinatorial optimization.
First, the continued increase in computing power strengthened the need for efficient
algorithms. The ability to handle bigger problems made the distinction between low and
high order running times more pronounced and diminished the power of brute force. Second,
at the application side, there has been an increasing confidence in the practical potential of
optimization techniques. Large and difficult real-world problems that were out of reach ten
years ago are now being solved. Notable examples occurred in airline crew scheduling, train
timetabling, time-constrained vehicle routing, telecommunication network design, frequency
allocation, VLSI layout synthesis, and statistical disclosure control.

Combinatorial optimization has established itself as a mature discipline of scientific interest
and practical relevance. The selection of topics and references presented below has been
governed by space constraints and personal bias. We apologize for all omissions.

2 Graphs and networks

Major improvements in running times of algorithms for specific graph related problems have
been obtained during the last ten years. We highlight a few here. Quite a number of these
results have been obtained via randomized algorithms, for which we refer to the book by
Motwani and Raghavan [39)].

Much research on designing faster algorithms for the maximum flow problem and the
minimum cost flow problem was initiated by the work of Tardos [49], who found the first
strongly polynomial algorithm for the minimum cost flow problem. Scaling of the input
parameters and prefixing flows are the main ingredients of most of these new algorithms, but
the design of efficiént data structures has also had an important impact. For a network with
n nodes and m arcs, the best known strongly polynomial algorithms for finding a maximum
flow and a minimum cost flow have running times O(nmlogn) and O(mlog n(m + nlogn)),
respectively. A thorough treatment of these results is given by Ahuja et al. [6]. This book also
describes improvements in solution times for problems such as shortest path and matching
problems.

The minimum cut problem of finding a minimum weight set of arcs in a network whose
removal would disconnect the network is dual to the maximum flow problem. Recently, new
algorithms have been developed for this problem that do not exploit this duality. Nagamochi
and Ibaraki [40], for instance, use edge contraction in their algorithm. Randomized edge
contraction, introduced by Karger and Stein [32], leads to the fastest algorithm so far. An
overview of these algorithms with a computational study is given by Chekuri et al. [17].

Interesting results have been obtained in determining polynomially solvable subclasses
of generally NP-hard problems. Robertson and Seymour [45] proved an old conjecture of
Wagner: for each set of graphs that is closed under taking minors, there exists a finite set of
graphs that are forbidden to be minors of any graph in the set. This obstruction set can be
enormously large, but its finiteness allows Robertson and Seymour to prove the existence of
a polynomial-time algorithm for determining the tree-width of any graph in a class that
is known to contain graphs of bounded tree-width only. The proof is non-constructive,
and the algorithm may involve a large constant (of the order of the number of forbidden
minors). Bodlaender [15] gives a good overview of the techniques involved together with
some applications.

Next to these classical graph problems, there are several problems in planning and



scheduling that can be viewed as problems on graphs. One well-studied problem of this kind
is the uncapacitated lot sizing problem. In 1958 Wagner and Whitin proposed an O(T?)
dynamic programming algorithm, where T is the number of time periods in the planning
horizon. It lasted more than thirty years before a better algorithm was found. In the early
1990’s three groups simultaneously developed algorithms with running time O(T log T'); see
(5], [24], [52].

Important for the implementation of graph related algorithms is the availability of software
packages. The most prominent software library is LEDA, A Library of Efficient Datatypes
and Algorithms, developed by Melhorn and Naher [38]. It is implemented by a C++ class
library, and incorporates many efficient data structures and algorithms. LEDA is available
at ftp://ftp.mpi-sb.mpg.de in directory pub/LEDA.

3 Linear optimization

The main developments in linear optimization have sprouted from the work of Karmarkar
[33], who started a wave of research on so-called interior point methods. Both theoretical
and practical advances were accomplished over the past ten years, and by now some interior
point methods are competitive with the celebrated simplex method. An interesting overview
and discussion of the use of simplex and interior point methods can be found in the ORSA
Journal on Computing 6.1 (1994). The book by Roos et al. [46] gives a comprehensive
treatment of interior point methods for linear optimization. Interior point methods have also
been developed for convex optimization problems. The application of interior point type
methods to semidefinite optimization has led to results that have proved particularly useful
in the design of approximation algorithms for certain combinatorial optimization problems;
see Section 5.

A new line of research is the development of randomized algorithms for the search of an
optimal basic feasible solution. The main open question here is if there exist randomized
algorithms that solve linear optimization problems in strongly polynomial expected running
time. Though this question has not been resolved yet, major steps have been taken.
The fastest randomized algorithm is due to Kalai [31], and has expected running time

O(n*m + bV™°8" log m), where n is the number of variables, m the number of constraints,
and b a constant independent of the input. It is in essence a randomized simplex algorithm.
For a review of research in this direction we refer to Chapter 9 of the book by Motwani and
Raghavan [39].

With respect to deterministic simplex algorithms, many improvements in practical
performance have been achieved. Many of these improvements have been implemented in
the state-of-the-art software package CPLEX [21]. CPLEX also contains an interior point
method.

To enhance user-friendliness of software for linear and integer optimization, modeling lan-
guages that allow for representation of variables and constraints in a set-based format are
very useful. Leading computer packages for modeling are AMPL [25] and AIMMS [14].

4 Integer optimization

The most commonly used technique for solving (mixed) integer programs is still branch-
and-bound. The quality of the available upper and lower bounds on the optimal value of



the considered instance is the decisive factor for success of this tree search technique. A
lower bound on the optimal value (assuming a minimization problem) is obtained from a
relaxation of the integer program. In the past ten to fifteen years attention has shifted from
Lagrangian relaxation to linear programming relaxation, since the latter type of relaxation
can be strengthened more easily by using cutting planes. Combining cutting planes and
Lagrangian relaxation usually causes convergence problems. Moreover, good LP solvers, such
as CPLEX, that allow for addition of rows are nowadays available.

The theory of cutting planes in the form of valid inequalities that define facets of the
convex hull of feasible solutions to an instance, was mainly developed prior to this past
decade. During the past ten years, however, an enormous amount of more problem specific
results have been obtained. Moreover, surprisingly large instances have been solved using
a mixture of cutting plane algorithms and branch-and-bound. For recent surveys we refer
to Aardal and Van Hoesel [1], [2], and to Chapter 3 of [22]. Similar developments have
been attained for column generation methods, which can be viewed as dual to cutting plane
techniques. For a survey we refer to Barnhart et al. [11].

A new development of the last decade is the theoretical quality analysis of cutting planes.
Negative results for some classes of cutting planes have been reported by Goemans [26]. He
evaluated the worst-case improvement resulting from adding several of the known classes of
facets for the traveling salesman polytope to the subtour polyhedron, i.e., the set of vectors
satisfying the so-called subtour elimination constraints.

Another surprising theoretical result in polyhedral combinatorics is due to Lovasz and
Schrijver [37], who developed an algorithm for obtaining a sequence of tighter and tighter
relaxations of integer 0-1 programs. The algorithm iterates the following steps. First, each
constraint of the considered problem is multiplied by each variable z; and its complement
1—z; (j = 1,...,n). The resulting quadratic program is then linearized by replacing the
nonlinear terms z;z; by new variables y;;. This linear formulation is finally projected onto
the space of the original variables. Lovasz and Schrijver showed that this procedure needs
to be repeated at most n times before the convex hull of feasible solutions is obtained. Balas
et al. [10] showed that it is sufficient to multiply each constraint by a single variable z; and
its complement at a time.

For branch-and-bound algorithms powerful and quite flexible software packages have been
developed. We mention MINTO [47] and ABACUS [50]. MINTO contains more tools such
as preprocessing and generic valid inequalities, whereas ABACUS has the advantage that it
is written in C++.

Apart from the further development of existing solution techniques, also two new
techniques for integer optimization received much attention in the last decade. The first
algorithm we mention, developed by H.W. Lenstra [35], is older than ten years, but served
as an inspiration for further developments. Lenstra’s algorithm was developed to show that
the problem of determining whether the polyhedron K = {z € R" : Az < b} contains an
integer vector z, can be solved in polynomial time if n is fixed. First, the algorithm finds
a transformation 7 such that the polyhedron 7K has a “spherical” appearance. If the basis
of the lattice 7ZZ™ has short and near-orthogonal vectors, then the membership problem
can be solved recursively by branching on a number of parallel hyperplanes. The number of
such hyperplanes can be proved to be bounded by a constant depending only on n. For any
lattice such a basis exists and can be found in polynomial time starting from an arbitrary
basis by using basis reduction; see Lenstra et al. [34]. Lovész and Scarf [36] designed a
“generalized” basis reduction algorithm, which works directly on the polyhedron instead
of using approximations such as Lenstra does. The advantage of their method is that less



information is lost, the disadvantage is that it uses considerably more computational steps.
Cook et al. [20] implemented the Lovész-Scarf algorithm and solved some previously unsolved
integer programming problems. Barvinok [12] generalized Lenstra’s result and proved that
the number of integral points in a polyhedron can be counted in polynomial time if the
dimension is fixed.

Another new technique, based on the theory of Grobner bases, was already known in
computational algebraic geometry, and was introduced for solving integer optimization
problems by Conti and Traverso [19]. It amounts to translating the integer programming
problem into an algebraic membership problem. The Grobner bases are used to guide
the generalized division that decides the membership. Advances in applicability of these
methods are due mainly to Thomas [51]. Their current practical power is restricted by the
size of the Grobner bases, which is large for most problems. Due to their structure such
methods have advantages over other more conventional IP methods in solving stochastic
integer programming problems; see Schultz et al. [48]. Computer packages for computing
Grobner bases are available, e.g., CoCoa [16] and MACAULAY [13].

5 Polynomial-time approximation

As an alternative to solving NP-hard combinatorial optimization problems to optimality,
which may be very time consuming, a stream of research has concentrated on designing
polynomial-time algorithms that aim at good approximations for such problems. A widely
accepted quality measure of such approximations is the performance guarantee, i.e., an
upper bound on the ratio between the approximate solution value and the optimal one. A
comprehensive and up-to-date survey of the theory of approximation algorithms is provided
in the book edited by Hochbaum [28].

Some of the major achievements in this field are based on a combination of relaxation
and randomization. Goemans and Williamson (see [27] and Chapter 11 of [28]) designed
approximation algorithms that solve appropriately chosen relaxations of mathematical
programming formulations of the considered combinatorial problems, and then round the
obtained solution in a randomized way. The rounding can be derandomized yielding
deterministic approximation algorithms. In particular, Goemans and Williamson use
semidefinite optimization relaxations to design algorithms with very good performance
guarantees for the problem of finding a maximum cardinality cut in a graph and the problem
of finding the maximum number of simultaneously satisfiable clauses in a Boolean expression
with at most two literals per clause.

A remarkable result was obtained by Arora [8]. He developed a polynomial-time
approximation scheme for the traveling salesman problem (TSP) in the Euclidean space.
Here we notice that Christofides’ algorithm of 1976 [18], with its performance guarantee of
3/2, is still the best polynomial approximation algorithm for the TSP whose distances are
symmetric and satisfy the triangle inequality.

Apart from the above positive sounds on approximation, there has also been a
breakthrough on the negative side, in the sense of non-approximability of optimal solutions
of some problems. Papadimitriou and Yannakakis [42] defined a class of maximization
problems for the purpose of distinguishing problems whose optimal solutions are hard to
approximate within arbitrarily small ratio. This class called MAXSNP has a two-sided
polynomial reduction defined on it under which it is closed. Given a Boolean expression
in conjunctive normal form, the problem MAXSAT of finding a truth assignment to the
variables that satisfies the maximum number of clauses is complete for this class.



Arora et al. [9] gave a strong justification for investigating these concepts. They showed that
there cannot exist a polynomial-time approximation scheme for MAXSAT unless P = NP.
The proof is based on an alternative definition of NP in terms of randomized certificate
verification based on fingerprinting methodology. This important result implies that for any
MAXSNP-complete problem there must be a threshold value strictly greater than 1 on the
achievable polynomial-time performance guarantee. For an overview of specific results in this
direction, we refer to Chapter 10 of [28].

In sequencing and scheduling, techniques based on linear programming and rounding
led to surprising performance guarantees for the off-line and on-line minimization of total
(weighted) completion time on a single machine and on parallel machines, and for the
minimization of makespan on parallel machines subject to communication delays. An
investigation of the complexity of finding very short schedules yielded lower bounds on
the polynomial-time approximability of several scheduling problems, including the job shop
scheduling problem. For specific results and references, we refer to Chapter 12 of [22].

The previous paragraphs concerned the worst-case approach to approximation. A
complementary approach is average-case or probabilistic analysis, a research field that started
more than twenty years ago. The main developments in this field during the last decade
were based on discovering the possibility to exploit existing results from probability theory.
Empirical process theory provided tools for the analysis of the optimal solution value of a
series of number problems; see Piersma [43]. Martingale theory allowed for relatively elegant
asymptotic characterizations of optimal solution values of several problems; see Rhee and
Talagrand [44]. Finally we mention the rather complete probabilistic analysis of bin-packing
algorithms, presented in Chapter 2 of [28].

Next to these developments for optimization problems, a breakthrough in approximation
was accomplished for counting problems, again based on randomization. Counting
combinatorial structures such as the number of Hamiltonian cycles in a graph is obviously
harder than just deciding on the presence of the structure. Jerrum et al. [30] showed the
equivalence between approximate counting and approximate sampling for a wide class of
combinatorial structures. Building on work by Aldous [7], they use Markov chains to simulate
random (uniform) sampling of the structures, and proved that these “mix rapidly”. As a
first result Jerrum and Sinclair [29] devised a fully polynomial randomized approximation
scheme (FPRAS) for counting perfect matchings in dense graphs, whose vertices have degree
at least half of the total number of vertices. The non-dense graph case is still open. Another
prominent result in this direction is an FPRAS for computing volumes of convex bodies by
Dyer et al. [23]. A series of subsequent papers have given schemes with increasingly better
running times. For an overview we refer to Chapter 12 of [28].

6 Local search

For many years heuristic search approaches have been used throughout science and
engineering. Their performance was generally considered to be satisfactory, partly based
on experience, partly based on a belief in some physical or biological analogy, which was not
always supported by familiarity with what has been achieved in mathematics.

Still, in the past decade local search has reinforced its position as a standard approach
in combinatorial optimization. Problem size or lack of analytical insight may prohibit the
application of true optimization algorithms. Polynomial-time approximation algorithms may
give inferior solutions, and their performance bounds, if they can be obtained at all, may
be meaningless in practice. Local search is a robust way to obtain good solutions to real
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problems in reasonable time.

Simulated annealing has established itself as a relatively straightforward technique that
performs very well when given enough time. Tabu search requires more tuning but often
less running time. Genetic algorithms are not known to perform well in a pure form, even
when problem solutions allow a natural string representation, but hybrid forms in which
offspring are subjected to iterative improvement are promising. Neural networks have many
applications, which, however, seem to fall outside the realm of optimization.

Many aspects of local search are discussed in the book edited by Aarts and Lenstra [3].
We see three main lines of advance. First, a theory of the computational complexity and
performance analysis of local search is now emerging; see Chapters 2 and 3 of [3]. Second,
neighborhoods embodying problem-specific knowledge and data structures supporting
incremental computations are being used in rather sophisticated implementations. Third,
some of the more successful search strategies are hybrids, which combine local search with
a constructive method, with tree search or, again, with local search. The shifting bottleneck
procedure for job shop scheduling of Adams et al. [4] is a constructive rule that reoptimizes
partial schedules along the way. The shop scheduling algorithms of Nowicki and Smutnicki
(see, e.g., [41] and Chapter 11 of [3]) apply tabu search and jump back to previously
considered promising but rejected moves; many other combinations of local search and tree
search have been proposed. Johnson’s iterated Lin-Kernighan algorithm for the TSP (see
Chapter 8 of [3]) is a nested form of local search, which applies 4-exchanges to local optima
resulting from variable-depth search.

References

[1] K. Aardal, C.P.M. van Hoesel (1996). Polyhedral techniques in combinatorial optimization I:
Theory. Statist. Neerlandica 50, 3-26.

[2] K. Aardal, S. van Hoesel (1995). Polyhedral Techniques in Combinatorial Optimization II:
Computations, Report UU-CS-1995-42, Utrecht University.

[3] E.H.L. Aarts, J.K. Lenstra (eds.) (1997). Local Search in Combinatorial Optimization, Wiley,
Chichester.

[4] J. Adams, E. Balas, D. Zawack (1988). The shifting bottleneck procedure for job shop
scheduling. Management Sci. 34, 391-401.

[5] A. Aggarwal, J.K. Park (1993). Improved algorithms for economic lot size problems. Oper. Res.
41, 549-571.

[6] R.K. Ahuja, T.L. Magnanti, J.B. Orlin (1993). Network Flows; Theory, Algorithms, and
Applications, Prentice Hall, Englewoord Cliffs.

[7] D.J. Aldous (1981). Random walks on finite groups and rapidly mixing Markov chains.
Séminaire de Probabilités X VII, Lecture Notes in Mathematics 986, Springer, New York, 243-
297.

[8] S. Arora (1996). Polynomial time approximation schemes for Euclidean PST and other
geometric problems. Proc. 37th Annual Symp. Foundations of Computer Science, 2-11.

[9] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy (1992). Proof verification and hardness
of approximation problems. Proc. 33rd Annual Symp. Foundations of Computer Science, 14-23.

11



[10] E. Balas, S. Ceria, G. Cornuéjols (1993). A lift-and-project cutting plane algorithm for mixed
0-1 programs. Math. Programming 58, 295-324.

[11] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance (1994). Branch-
and-price: column generation for solving huge integer programs. In: J.R. Birge, K.G. Murty (eds.).
Mathematical Programming: State of the Art 1994, University of Michigan, Ann Arbor, 186-207.

[12] A.IL Barvinok (1994). A polynomial time algorithm for counting integral points. Math. Oper.
Res. 19, 769-779.

[13] D. Bayer, M. Stillman. MACAULAY: A Computer Algebra System for Algebraic Geometry,
Available by anonymous ftp from zariski.harvard.edu.

[14] J. Bisschop, R. Entriken (1993). AIMMS: The Modeling System, Available at
http://wuw.paragon.nl/aimms220.html.

[15] H.L. Bodlaender (1993). A tourist guide through treewidth. Acta Cybernet. 11, 1-21.

[16] A. Capani, G. Niesi (1995). CoCoa User’s Manual, Release 3.0b, Edition 1995, Department of
Mathematics, University of Genova.

[17] C.S. Chekuri, A.V. Goldberg, D.R. Karger, M.S. Levine, C. Stein (1996). Ezperimental study
of minimum cut algorithms, Technical report, NEC Research Institute, Princeton.

[18] N. Christofides (1976). Worst-case analysis of a new heuristic for the travelling salesman
problem, Report 388, GSIA, Carnegie Mellon University.

[19] P. Conti, C. Traverso (1991). Buchberger algorithm and integer programming. Proceedings of
AAECC 9, New Orleans, Lecture Notes in Computer Science 539, Springer, Berlin, 130-139.

[20] W. Cook, T. Rutherford, H.E. Scarf, D. Shallcross (1993). An implementation of the
generalized basis reduction algorithm for integer programming. ORSA J. Comput. 5, 206-212.

[21] CPLEX Optimization, Inc. (1994). Using the CPLEX callable library, Version 3.0.

[22] M. Dell’Amico, F. Maffioli, S. Martello (eds.) (1997). Annotated Bibliographies in
Combinatorial Optimization, Wiley, Chichester.

[23] M.E. Dyer, A.M. Frieze, R. Kannan (1991). A random polynomial algorithm for approximating
the volume of convex bodies. J. Assoc. Comput. Mach. 38, 1-17.

[24] A. Federgruen, M. Tzur (1991). A simple forward algorithm to solve general dynamic lot sizing
models with n periods in O(nlogn) or O(n) time. Management Sci. 37, 909-925.

[25] R. Fourer, D.M. Gay, B.W. Kernighan (1993). AMPL: A Modeling Language for Mathematical
Programming, Duxbury Press.

[26] M.X. Goemans (1995). Worst-case comparison of valid inequalities for the TSP. Math.
Programming 69, 335-349.

[27] M.X. Goemans, D.P. Williamson (1994). .878-Approximation algorithms for MAX CUT and
MAX 2SAT. Proc. 26th Annual ACM Symp. Theory of Computing, 422-431.

[28] D.S. Hochbaum (ed.) (1996). Approzimation Algorithms for NP-Hard problems, PWS
Publishing Company, Boston.

12



[29] M.R. Jerrum, A. Sinclair (1988). Approximating the permanent. SIAM J. Comput. 18, 1149
1178.

[30] M.R. Jerrum, L.G. Valiant, V.V. Vazirani (1986). Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43, 169-188.

[31] G. Kalai (1992). A subexponential randomized simplex algorithm. Proc. 2{th Annual ACM
Symp. Theory of Computing, 475-482.

[32] D.R. Karger, C. Stein (1993). An O(n?) algorithm for minimum cuts. Proc. 25th Annual ACM
Symp. Theory of Computing, 757-765.

[33] A.V. Karmarkar (1984). A new polynomial-time algorithm for linear programming.
Combinatorica 4, 373-395.

[34] A.K. Lenstra, H.W. Lenstra, Jr., L. Lovasz (1982). Factoring polynomials with rational
coefficients. Math. Ann. 261, 515-534

[35] H.W. Lenstra, Jr. (1983). Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538-548. .

[36] L. Lovész, H.E. Scarf (1992). The generalized basis reduction algorithm. Math. Oper. Res. 17,
751-764.

[37] L. Lovész, A. Schrijver (1991). Cones of matrices and set-functions and 0-1 optimization. SIAM
J. Optimization 1, 166-190.

[38] K. Mehlhorn, S. Naher (to appear). The LEDA Platform of Combinatorial and Geometric
Computing, Cambridge University Press, Cambridge.

[39] R. Motwani, P. Raghavan (1995). Randomized Algorithms, Cambridge University Press, New
York.

[40] H. Nagamochi, T. Ibaraki (1992). Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM J. Discrete Math. 5, 54-66.

[41] E. Nowicki, C. Smutnicki (1996). A fast taboo search algorithm for the job shop problem.
Management Sci. 42, 797-813.

[42] C.H. Papadimitriou, M. Yannakakis (1991). Optimization, approximation, and complexity
classes. J. Comput. System Sci. 28, 425-440.

[43] N. Piersma (1993). Combinatorial Optimization and Empirical Processes, Tinbergen Institute
Research Series 52, Amsterdam.

[44] W.T. Rhee, M. Talagrand (1989). Martingale inequalities, interpolation and NP-complete
problems. Math. Oper. Res. 14, 91-96.

[45] N. Robertson, P.D. Seymour (1996). Graph minors XV: giant steps. J. Combin. Theory Ser.
B 68, 112-148.

[46] C. Roos, T. Terlaky, J.P. Vial (1997). Theory and Algorithms for Linear Optimization: An
Interior Point Approach, Wiley, Chichester.

[47) M.W.P. Savelsbergh, G.C. Sigismondi, G.L. Nemhauser (1994). Functional description of
MINTO, a Mixed INTeger Optimizer. Oper. Res. Lett. 15, 47-58.

13



[48] R. Schultz, L. Stougie, M.H. van der Vlerk (1995). Solving stochastic programs with integer
recourse by enumeration: a framework using Grébner basis reductions, Discussion paper TI 95-

216, Tinbergen Institute, Amsterdam.

[49] E. Tardos (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica
5, 247-255.

[50] S. Thienel (1995). ABACUS, A Branch-And-CUt System, PhD thesis, Institut fiir Informatik,
Universitdat zu Koln, Germany.

[51] R.R. Thomas (1995). A geometric Buchberger algorithm for integer programming. Math. Oper.
Res. 20, 864-884.

[52] A. Wagelmans, S. van Hoesel, A. Kolen. Economic lot sizing: an O(nlogn) algorithm that
runs in linear time in the Wagner-Whitin case. Oper. Res. 40, S145-S156.

14
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Consider the following situation. A mechanic has to repair a number of cars. For each
car we know the time at which it is brought to the garage, the time the mechanic needs to
repair it, and the time at which its repair should be finished. The mechanic can only repair
one car at the same time, and it seems that time is running out on him. We are looking for
a schedule for the mechanic in which the number of cars that are not ready at the agreed
time is minimal.

This is a classical example of a single-machine scheduling problem: the mechanic is the
machine. Sequencing and scheduling is concerned with the allocation of jobs to machines
with a restricted availability and capacity. A schedule specifies for each job by which machine
and at what time it is processed. We are looking for a schedule with minimal cost, where
the cost of a schedule is defined as some function of the job completion times. The variety
of properties of jobs, machines, and objective functions leads to huge amount of different
scheduling problems. For many of these problems, we do not know a fast algorithm that
solves the problem at hand to optimality; this is even true for problems with only one
machine, like the one described above.

We analyze solution methods for single-machine scheduling problems. We can formulate a
single-machine scheduling problem as an integer linear programming problem, i.e., a problem
with a given linear objective function that we have to minimize subject to a number of linear
constraints, where the variables are allowed to attain integral values only. A simple example
of such a problem is the following. Find the solution (z,y) that minimizes z — 10y over the
set of points (z,y) that satisfy z > 0, 5z — 4y > 0, and 5z + 4y < 20 (these are the linear
constraints), where = and y are integral (these are the integrality constraints). The set of
feasible solutions to this problem, i.e., the set containing all (z, y) satisfying the constraints
mentioned above, is depicted in Figure 1. The set of all points (z,y) satisfying the linear
constraints corresponds to the bold triangle and its interior. Because of the integrality
constraints, the set of feasible solutions is equal to the set of dots in the interior and on the
boundary of the triangle.

In the thesis, we discuss different ways to formulate a single-machine scheduling problem
as an integer linear programming problem. The solution methods that we study are based
on a time-indezed formulation. We assume that the planning period is divided into T' time

*This is the summary of the PhD thesis with the same title, which is based on research conducted at
Eindhoven University of Technology
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Figure 1: The set of feasible solutions.

periods and that the processing of a job always starts at the beginning of such a time period.
For job j and period ¢, the variable z;, signals if job j is started in period t, i.e., z;; equals
1 if job j is started in period t and 0 otherwise.

We study the set of feasible solutions of the integer linear programming problem given
by the time-indexed formulation. In general, solving an integer linear programming problem
is hard. If we omit the integrality constraints, then we obtain a linear programming problem,
which is called the LP-relazation; a linear programming problem can be solved easily, for
example by the simplex method.

Removing the integrality constraints extends the set of feasible solutions. In the example
depicted in Figure 1, the set of feasible solutions of the LP-relaxation is the bold triangle and
its interior, whereas the set of feasible solutions of the integer linear programming problem
consists of the dots inside and at the boundary of this triangle. In most situations, the
optimal solution of the LP-relaxation will not be integral, i.e., it will be fractional. In case
we find a fractional solution, we know that the objective value of each integral solution is
greater than or equal to the objective value of this solution. The optimal value of the LP-
relaxation is hence a lower bound on the optimal value of the integer linear programming
problem. To improve this lower bound, we add to the LP-relaxation linear constraints, which
exclude fractional solutions of this relaxation but which are satisfied by all integral solutions.
Therefore, such constraints are called valid inequalities. In the example depicted in Figure 1,
y < 2 is a valid inequality. Figure 2 shows that this inequality cuts off a part of the triangle.
For this reason such inequalities are also called cutting planes.

We are especially interested in valid inequalities that are necessary in the description of
the convez hull of the set of integral solutions. Such valid inequalities are called facets. In
Figure 2 the convex hull of the set of integral solutions is indicated by the dotted triangle.
On the x-axis, the edge of this triangle coincides with one of the edges of the bold triangle.
The facets are given by the edges of the dotted triangle. If all facets are added to the LP-
relaxation, then the optimal solution is guaranteed to be integral. However, for a problem
that cannot be solved easily, finding the complete set of facets is also hard.

We study facets for single-machine scheduling problems that are modelled by the time-
indexed formulation, where we extended the set of feasible schedules to get a full-dimensional
polytope. We consider facets with right-hand sides 1 and 2, i.e., facets of the form ¥ a;,zj, <
1 and ¥ aj,z; < 2. We derive a number of structural properties of these facets. From these
properties, it follows that all facets with right-hand side 1 are contained in one class of valid
inequalities. Since all inequalities in this class are indeed facet-defining, all facets with right-
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Figure 2: A valid inequality and the convex hull of the set of integral solutions.

hand side 1 are characterized in this way. The structural properties of facets with right-hand
side 2 lead to three classes of valid inequalities containing all facets. Most valid inequalities
in these classes were unknown. We show which of the valid inequalities in these three classes
are facets. In this way, we have characterized all facets with right-hand side 2. We show
that under mild conditions the characterized facets also define facets for the convex hull of
the original set of feasible solutions.

The next step is to investigate how the characterized facets can be used to solve single-
machine scheduling problems. As the number of characterized facets is rather large, it is
impractical to add them all to the LP-relaxation simultaneously. For this reason, we proceed
in the following way. First, we solve the LP-relaxation. If the solution is not integral, we look
within the set of characterized facets for inequalities that are violated by the current solution.
Then we add some of these violated inequalities, i.e., cutting planes, to the LP-relaxation.
The current solution is no longer feasible for the resulting linear programming problem. We
solve this linear programming problem; if the solution is fractional, we again add violated
inequalities. This process is repeated, either until we have found an integral solution, or
until we cannot find any more violated inequalities. The identification of inequalities that
are violated by a given fractional solution is called separation. In the thesis, we derive
separation algorithms for the characterized facets with right-hand sides 1 and 2. Although
the addition of cutting planes does not always lead to finding integral solutions, the lower
bound obtained from the LP-relaxation is strongly improved.

If we cannot find any more inequalities that are violated by our fractional solution, we
apply branch-and-bound. In a branch-and-bound algorithm, the problem is divided into
subproblems by partitioning the set of feasible solutions (this is the branching part). For
each subproblem we determine a lower bound on the objective value of any solution of this
subproblem (this is the bounding part). If a feasible integral solution with value less than
or equal to this lower bound is known, then the subproblem can be skipped from further
consideration, because it cannot have a solution that is better than the best known solution
so far. In the branch-and-bound algorithm we use the lower bound obtained by the addition
of cutting planes to the LP-relaxation. A branch-and-bound algorithm in which such kind
of lower bounds are used is called a branch-and-cut algorithm. The performance of the
branch-and-cut algorithm is influenced by the way in which the problem is partitioned into
subproblems, by the order in which these subproblems are analyzed, and by the quality of the
feasible integral solutions that are generated through a primal heuristic. Another important
issue is which of the identified violated inequalities are actually added to the LP-relaxation.
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Different possibilities lead to different variants of the branch-and-cut algorithm. We tested
different variants and we present the computational results of these tests.

The computational results show that the time-indexed formulation provides very strong
lower bounds. However, because of the large number of constraints and variables, the com-
putation of these lower bounds requires large linear programs to be solved, which takes a
lot of computation time. For this reason, we study a method which has especially been
composed to solve linear programming problems with a large number of variables. This
method proceeds as follows. First, we apply Dantzig- Wolfe decomposition. This results in
a formulation with fewer constraints, but with many more variables. The large number of
variables does not pose a problem, since it can be handled by using column generation. In
a column generation algorithm we consider a restricted problem, in the sense that only a
subset of the variables is included; the other variables are implicitly fixed at zero. After solv-
ing the restricted problem, we check if variables outside the restricted problem are needed
to improve the current solution. This check is performed by solving the so-called pricing
problem. If such variables are identified, we add them to the restricted problem, and the pro-
cedure is repeated. We show that for our formulation solving the pricing problem amounts
to determining the shortest path in a network. This implies that the pricing problem can
be solved efficiently, which is very important for the performance of the column generation
algorithm. Our computational results show that especially for larger problem instances the
LP-relaxation of the time-indexed formulation can be solved considerably faster by column
generation. We also discuss the combination of column generation and the addition of cut-
ting planes, and the combination of column generation and branch-and-bound. We give
computational results based on a preliminary implementation of the combination of column
generation and the addition of violated inequalities.
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1 Introduction

We have developed a tool with which we can derive bounds on subsets of vertices in a graph
satisfying some distance property, in terms of the (Laplace) eigenvalues of the graph. The
significance of such a bound is obvious when the related problem is NP-complete, and the
determination of a good solution will be computationally hard, for instance, when we bound
the sizes of two sets of vertices at some given distance, or in particular, when we bound the
size of two equally large sets of vertices with no edges in between.

When we are dealing with a relatively easy problem, like the determination of the diame-
ter of a graph, a bound in terms of (some of) the eigenvalues of the graph can still be useful.
Of course, when given a graph, we should not compute its eigenvalues, and then derive the
diameter bound, when it is much easier to find the diameter explicitely with a polynomial-
time algorithm. However, sometimes we do not know the full structure of a graph, while we
may have some information about its eigenvalues. This is for example the case with so-called
Ramanujan graphs, graphs which are known to have good expanding properties (cf. [9]),
and which therefore can be used to build good (and large) information networks (cf. [1]).

In this paper we consider undirected graphs. The Laplace eigenvalues of such a graph
are the eigenvalues of the associated Laplace matrix @, which is a square matrix with rows
and columns labelled by the vertices of the graph, defined by Q.. = d,, and Q,, = —A,y
for z # y, where d, is the vertex degree of z, and A, denotes the number of edges between
z and y. The Laplace matrix is a positive semidefinite matrix.

The results in this paper are mainly from [3] and [4] (see also Chapter 5 of the author’s
thesis [2]).

2 The tool

Let P, be the set of polynomials p with real coefficients of degree m such that p(0) = 1.
Our main tool will be the following theorem.

Theorem 1 [{] Let G be a connected graph on v vertices with r + 1 distinct Laplace eigen-
values 0 = 0y < 0, < ... < 6,. Let m be a nonnegative integer and let X and Y be sets
of vertices, such that the distance between any vertex of X and any vertez of Y is at least

m+ 1. Then

IX1|Y] . 2
—_— <L ).
oo IXD (= 7)) = sei g (@)
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First of all, this implies that the diameter of a graph is at most r, otherwise we would be
able to find nonempty sets X and Y at distance r + 1, and a polynomial p € P, which is
zero at the r nonzero eigenvalues, giving an upper bound zero, contradicting the theorem.

Using the theory of uniform approximations of continuous functions we were able to
rewrite the upper bound as (cf. [3])

-2
0;
min max p*(6;) = max .
PEPm  i#0 TC{l,...r}|Tl=m+1 JEETIEYI‘\-I{]} 16; — 6;]

3 Sets of vertices at given distance

A second application of the theorem now gives a bound on the number of vertices at distance
r (hence at extremal distance) from an arbitrary vertex.

Theorem 2 [3] Let G be a connected graph on v vertices with r + 1 distinct Laplace eigen-
values 0 = 0y < 0; < ... < 0.. Let = be an arbitrary vertez, and let k, be the number of
vertices at distance r from z. Then

v 0;
= where’y:Z H |—01—_—0‘l

1+ i#0 i#0,j

k. <

IR

y—

Of course we should note that computing the number of vertices at distance r can be done
in polynomial time.

It is, however, not hard to show that deciding whether there exist two equally large sets
of vertices of size x with no edges in between (disconnected vertex sets) is an NP-complete
problem (cf. [5, problem GT24]). From our tool we derive that

l 01
<3 (1—5)

by using the polynomial p(z) = 9 [6] used this method to derive a bound
due to Helmberg, Mohar, Poljak and Rendl [8] on the bandwidth of a graph. Note that
computing the bandwidth is also an NP-co

A similar problem is to find two sets of vertices of size , which are at (extremal) distance
. Here we find that

< ,where’y Z H

KT
J#0 i#0,j |i 'l

A related problem is the problem of finding two sets of vertices with no edges in between
(disconnected vertex sets) such that the product of the sizes of these sets is maximized. This
problem has an application in information theory and is studied by Haemers [7]. By using
Theorem 1 he finds that
1 [/
max \JIXIIV] < 201 - 2)

XY disconnected

We should note that all bounds mentioned so far are attained by infinitely many graphs.
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4 The diameter

To obtain a bound on the diameter d(G) of a graph G we shall not solve the maximization
problem in the upper bound of Theorem 1, but a relaxation of this problem. Instead of
evaluating the polynomials at the discrete values 6, ..., 0,, we evaluate them at the interval
[61,06,], so that for the upper bound we find

i %(8;) < mi ?
min max p'(6:) < min - max  p’(2).

The solution of the relaxation can be described in terms of Chebyshev polynomials (cf. [10]).

Or+6y ~22
The polynomial Cp,(2) = —T';L(g—:__%'—)) where T,,(z) = cosh(m cosh™(z)), solves the problem,
m(5, =6,

thus giving the following diameter bound.

Theorem 3 [{] Let G be a connected noncomplete graph on v vertices with smallest nonzero
Laplace eigenvalue 0, and largest Laplace eigenvalue 8,, then

cosh™(v — 1)

cosh"l(—l—"'—’-gr_g1 )

d(G) < +1

We shall apply this bound to Ramanujan graphs. These are regular graphs, say of degree
k, for which v.nga'fz,‘Ik —0;| <2vk—1 (cf. [9]). Now it follows from Theorem 3 that for a

nonbipartite Ramanujan graph G on v vertices we have

2log2(v —1)

4C) < Togk =1

+1
(and for bipartite Ramanujan graphs we obtain a similar bound after applying an improved
diameter bound for bipartite graphs (cf. [4])), which means that a Ramanujan graph has a
small diameter, since the upper bound is approximately twice a (trivial) lower bound for the
diameter of any k-regular graph on v v

The diameter bound of Theorem 3 also has an interesting application in coding theory.
Using the coset graph of a linear code, it gives a bound for the covering radius of the code
in terms of its dual weights (cf. [4]).

References

(1] F. Bien, Constructions of telephone networks by group representations, Notices A.M.S.
36 (1989), 5-22.

[2] E.R. van Dam, Graphs with few eigenvalues - an interplay between combinatorics and
algebra, CentER dissertation series 20, Thesis, Tilburg University, 1996.

(3] E.R. van Dam, Bounds on special subsets in graphs, eigenvalues and association
schemes, J. Alg. Comb. (to appear).

[4] E.R. van Dam and W.H. Haemers, Eigenvalues and the diameter of graphs, Linear
Multilin. Alg. 39 (1995), 33-44.

21



[5] M.R. Garey and D.S. Johnson, Computers and intractibility: a guide to the theory of
NP-completeness, Freeman, San Francisco, 1979.

[6) W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228
(1995), 593-616.

[7] W.H. Haemers, Disconnected vertex sets and equidistant code pairs, Electronic J. Com-
binatorics 4 (1997), R7 (at URL http://www.combinatorics.org).

[8] C. Helmberg, B. Mohar, S. Poljak and F. Rendl, A spectral approach to bandwidth and
separator problems in graphs, Linear Multilin. Alg. 39 (1995), 73-90.

[9] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988),
261-277.

[10] T.J. Rivlin, Chebyshev polynomials (2nd ed.), Wiley, New York, 1990.

22



Algorithms for Graphs of Small Treewidth*

Babette de Fluiter
University of Utrecht
E-mail: babette@cs.ruu.nl

Abstract

In this paper I give an overview of my PhD thesis, entitled Algorithms for Graphs of
Small Treewidth (ISBN 90-393-1528-0). This thesis was completed under supervision of
Dr. Hans Bodlaender and Prof. Dr. Jan van Leeuwen in the Department of Computer
Science at Utrecht University.

1 Introduction

Many real-life problems can be modeled as optimization or decision problems on graphs.
Unfortunately, many graph problems that model real-life problems are NP-hard, meaning
that there are (probably) no efficient algorithms which solve these problems. A way of
overcoming this disadvantage is to discover a special structure in the graphs modeling the
real-life problem which may help in finding a more efficient algorithm for the problem. For
instance, the input graphs may have a special structure that assures that the problem at hand
is easy to solve. Another possibility is that the problem can be decomposed into subproblems,
and that the structure of the input graphs assures that some of these subproblems are easy
to solve. This might hélp in finding a more efficient algorithm that computes an optimal
solution for the complete problem, or in finding an efficient algorithm that computes a good
approximation of the optimal solution.

One suitable structure is the tree-structure: it appears that many graph problems that
are hard in general, are efficiently solvable on trees, often by applying dynamic programming
on the tree. For most practical cases however, the class of trees is too limited. Therefore,
we consider extensions of the class of trees which are more useful in practice, namely the
classes of graphs of treewidth at most k and pathwidth at most k, for any positive integer k.
Intuitively, the treewidth of a graph measures the resemblance of the graph to a tree: the
smaller the treewidth, the larger the resemblance.

Definition 1 [10]. Let G = (V, E) be a graph. A tree decomposition TD of G is a pair
(T, X), where T = (I, F) is a tree, and X = {X; | i € I} is a family of subsets of V, one for
each node of T, such that

b4 UieI Xi = V7

e for every edge {v,w} € E, there is an i € I with v € X; and w € X;, and

*This research was supported by the Foundation for Computer Science (S.I.O.N) of the Netherlands
Organization for Scientific Research (N.W.0.).
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e for all ¢,j,k € I, if j is on the path from i to k in T, then X; N X C Xj.

The width of a tree decomposition ((I, F), {X; | i € I}) is max;¢s | X;| — 1. The treewidth of
a graph G is the minimum width over all possible tree decompositions of G.

An example of a graph G of treewidth two and a tree decomposition T'D of width two of the
graph is given in Figure 1. A tree decomposition is depicted as a tree in which each node 2
contains the vertices of Xj.

Definition 2 [11]. A path decomposition of a graph is a tree decomposition with the extra
restriction that the tree is a path. A graph has pathwidth at most k if there is a path
decomposition of the graph of width at most k.

The graph depicted in Figure 1 has pathwidth three, and a path decomposition PD of width
three of G is also depicted in Figure 1.

A O O AL DD D@D @D

Figure 1: A graph G of treewidth two and pathwidth three, a tree decomposition 7D of
width two of G, and a path decomposition PD of width three of G.

Many (hard) problems can be solved efficiently on graphs of small treewidth, using the
tree-like structure of the graphs. For instance, a large class of problems can be solved
efficiently by applying dynamic programming on a tree decomposition of small width of the
graph. These algorithms usually work on rooted tree decompositions of small width with
O(n) nodes. Examples of problems that can be solved efficiently on graphs of small treewidth
by using the dynamic programming approach are MAX INDEPENDENT SET, TRAVELING
SALESMAN, CHROMATIC NUMBER, and MIN DOMINATING SET. These problems can all be
solved in O(n) time sequentially and in O(logn) time in parallel with O(n/logn) processors
(the algorithms are exponential in the treewidth of the graph). To solve problems this
way, it is necessary to find a iree decomposition of small width of the given graph first.
Fortunately, for each positive integer k, there is a linear time algorithm which, given a graph,
finds a tree decomposition of width at most k of the graph, if one exists (this algorithm is
again exponential in k) [3]. In parallel, the problem can be solved in O(log?n) time with
O(n/ log® n) processors on an EREW or CRCW PRAM [4].

It appears that many graph problems have practical instances in which the input graphs
have small treewidth. Also, many (practical) graph problems require that the treewidth or
pathwidth of the input graph is small.

Unfortunately, many algorithms solving problems on graphs of small treewidth are only
efficient in theory: the running time of the algorithms is usually exponential in the treewidth
of the graph. This means that if the input graph is only of moderate size, and the bound
on the treewidth is six or more, then in the running time of the algorithm, the factor that
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is exponential in the treewidth is likely to overtake the factor that is polynomial in the size
of the graph. This holds e.g. for the algorithms for finding a tree or path decomposition of
width at most & of a given graph, if one exists (k constant).

The goal of the thesis is to give efficient sequential and parallel algorithms for several
problems on graphs of small treewidth or pathwidth. We consider both graph problems which
require that the treewidth or pathwidth of the input graph is bounded by some constant,
and graph problems which are hard on general graphs, but have more efficient solutions on
graphs of small treewidth or pathwidth. The aim is to design algorithms which are not only
theoretically efficient, but are also efficient in practical applications. The thesis comprises
two subjects: DNA physical mapping and reduction algorithms.

2 DNA Physical Mapping

In the thesis, we consider two problems which originate from molecular biology and are
known as sequence reconstruction problems that occur in DNA physical mapping. In both
problems, the input consists of k£ copies of a DNA string that are fragmented, and for each
pair of fragments, either it is known that they overlap, or it is known that they do not overlap,
or nothing is known about their overlap. In one of the problems, we additionally have the
information that all fragments have the same length. There is no explicit information on
the order of the fragments in the DNA string, or on the copy from which each fragment
originates. The problem is to recover the complete overlap information of the fragments,
and with this, the order of the fragments in each copy of the DNA string.

The input of the problems is modeled as graph G = (V, E) and an extra set of edges F":
the vertices of the graph represent the fragments, and for each two vertices in V, there is an
edge between u and v in E if we know that the corresponding fragments overlap, and there
is an edge between u and v in F if the corresponding fragments possibly overlap, i.e. are
not known not to overlap. The complete overlap information can again be represented by
a graph. This graph must be an interval graph or a unit-interval graph in which the clique
size is at most k.

Definition 3. A graph G = (V, E) is an interval graph if there is a function ® which maps
each vertex v € V to an interval on the real line, such that for each u,v € V with u # v,

Q(u)N®v)#0 < {u,v}ekE.

The function @ is called an interval mapping.
An interval graph G is called a unit-interval graph graph there is an interval mapping
for G in which all intervals have the same length.

The two sequence reconstruction problems can be modeled as follows.

INTERVALIZING SANDWICH GRAPHS (ISG)

Instance: A graph G = (V, E}), a set E, of edges with E; C E,, a positive integer k.
Question: Is there an interval graph G = (V, E) such that E; C E C E,, and G has no
cliques of size more than k?

UNIT-INTERVALIZING SANDWICH GRAPHS (UISG)

Instance: A graph G = (V, E\), a set E, of edges with E;, C E», a positive integer k.
Question: Is there a unit-interval graph G = (V, E) such that E; C E C E,, and G has no
cliques of size more than k7
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For fixed k, the problems are denoted by k-ISG and k-UISG, respectively.

It is known that if, for any k, G = (V, E}) and E, form a yes-instance of k-ISG or k-UISG,
then G has pathwidth at most k — 1 [6].

In the thesis, we consider k-ISG and k-UISG. We resolve the complexity of k-ISG for all
fixed integers k > 2: we give a linear time algorithm for 2-ISG, a quadratic algorithm for
3-ISG, and we show that k-ISG is NP-complete if £ > 4. Furthermore, we give an O(n +m)
time algorithm for 3-UISG (where m = |E|). There is an algorithm for k-UISG which uses
O(n*¥~1) [9]. Our algorithm improves on this result for the case that k = 3.

The algorithms for 3-ISG and 3-UISG heavily rely on the fact that yes-instances have
pathwidth at most two: a complete characterization of graphs of pathwidth at most two is
given first. After that, this characterization is used to give the algorithms for 3-ISG and
3-UISG. The algorithms first check whether the input graph has pathwidth at most two, and
if so, they use the structure of the graph to solve 3-ISG and 3-UISG, respectively.

3 Reduction Algorithms

A reduction algorithm is an algorithm which can be used to solve decision or optimization
problems of which the input is a graph. A reduction algorithm is based on a finite set of
reduction rules and a finite set of graphs. Each reduction rule describes a way to modify a
graph locally.

An example of a reduction rule is given in Figure 2: a reduction rule consists of a pair
of graphs, each with a set of distinguished vertices, called terminals. Both graphs have the
same set of terminals. A reduction is an application of a reduction rule on a graph G: if
a reduction rule (H,, H,) is applied to a graph G, then a subgraph G, isomorphic to H; is
taking in G, such that only the terminal vertices may have edges to vertices outside of G.
Then G, is replaced by a subgraph isomorphic to G5, such that corresponding terminals are
mapped to the same vertices (see Figure 2 for an example).

H, H,
1 1 ¢
r 2? —)z}
3 3

Figure 2: An example of a reduction rule r = (H;, H,), and an application of r to a graph
G, resulting in graph G'.

The idea of a reduction algorithm is to solve a decision problem by repeatedly applying
reduction rules on the input graph until no more rule can be applied. If the resulting graph
is in the finite set of graphs, then the algorithm returns true, otherwise it returns false. Hence
the set of reduction rules and the finite set of graphs are problem specific.

In a sequential algorithm, all reductions are performed subsequently, but in a parallel
reduction algorithm, non-interfering reductions can be performed at the same time.

It turns out that for many decision and optimization problems, it is possible to generate a
set of problem specific reduction rules, and with this set, the problem can be solved efficiently
on graphs of small treewidth, both sequentially and in parallel. The sequential algorithms
take O(n) time. The parallel algorithms take O(lognlog* n) time with O(n/(lognlog® n)
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processors on an EREW PRAM, or O(logn) time with O(n/logn) processors on a CRCW
PRAM (log" n denotes the amount of times we have to replace n by the value of logn in
order to get a value that is at most one. For all practical values of n, log*n < 5.). The sets
of problem specific reduction rules can be generated from a description of the problem in
monadic second order logic (note that this generated set only depends on the problem, but
may be rather large).

An advantage of reduction algorithms is that they are easy to implement: the difficulty
of a problem is hidden in the design of the problem specific set of reduction rules, and not
in the reduction algorithm itself. Another advantage of reduction algorithms over other
algorithms on graphs of small treewidth is that a reduction algorithm works directly on the
input graph, and hence no tree decomposition of small width of the graph is needed. As the
running times of the algorithms for finding a tree decomposition of small width of a graph
are not efficient in practice, this makes reduction algorithms potentially more practical (if
the set of reduction rules is not too large).

In the thesis, we present the basic theory on reduction algorithms and we show that
reduction algorithms can be used to solve large classes of decision and optimization problems
on graphs of bounded treewidth, thus giving a comprehensive overview of results presented
in [1, 2, 4].

One drawback of reduction algorithms is that they only solve decision and optimization
problems. For decision problems, the algorithms only return ‘yes’ or ‘no’, but they do not
return a solution for the problem if the answer is ‘yes’. Similarly, for optimization problems,
only the optimal value is returned, but no optimal solution of the problem is returned. In the
thesis, we extend the theory of reduction algorithms to constructive reduction algorithms,
which also return an (optimal) solution for the problem at hand, if one exists.

The constructive reduction algorithms consist of two phases. In the first phase, an
ordinary reduction algorithm is applied. If the reduced graph is not a yes-instance, then
false is returned. Otherwise, the second phase is started. In the second phase, first a
solution is constructed for the small graph. After that, the reductions that are applied in
the first phase are undone one by one, in reversed order. Each time a reduction is undone,
the solution of the current graph is reconstructed into a solution of the new graph. This
eventually terminates with the original input graph and a solution for this graph. In case of
an optimization problem, this solution is optimal.

In the thesis, we show that the theory of constructive reduction algorithms can be applied
to a large class of constructive decision and optimization problems on graphs of bounded
treewidth, and the resulting algorithms run in the same time as the ordinary reduction
algorithms. These results again show how the problem specific set of reduction rules can be
generated from the problem description, and how the reconstruction algorithm in phase 2
can be done.

There are a number of problems on graphs of bounded treewidth for which the technique
of constructive reduction algorithms can not be applied directly, i.e. we know no algorithm to
generate a set of reduction rules with a reconstruction algorithm, from a problem description.
For two of these problems, we show in the thesis that they can be solved with the constructive
reduction technique anyhow. This results in new, parallel algorithms which are more efficient
than previous algorithms for these problems. The first problem is concerned with series-
parallel graphs.

Definition 4. A series-parallel graph is a triple (G, s,t), where G is a multigraph, and s
and t are distinct vertices of G, for which one of the following conditions holds

o G consists of one edge between s and ¢,
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e (G, s,t) can be obtained by a series composition of two series-parallel graphs (G, s1, t1)
and (G, 52, t2), i.e. G is obtained by taking the disjoint union of G; and Gs, and then
identifying t; with s, and letting s = s; and t = t,.

e (G, s,t) can be obtained by a parallel composition of two series-parallel graphs (Gy, s1,t1)
and (Gy, s2, t2), i.e. G is obtained by taking the disjoint union of G; and G2, and then
identifying s; with sy and ¢; with ¢,, and letting s = 5, = sp and t = t; = t5.

A series-parallel graph can be decomposed into series and parallel compositions. An sp-tree
is a tree which reflects such a decomposition.

The problem we consider is the problem of checking whether a given triple (G, s,t) is a
series-parallel graph, and if so, constructing an sp-tree for (G, s,t). We show that, with the
technique of constructive reduction algorithms, this problem can be solved in O(log m log* m)
time with O(m/(logmlog* m)) processors on an EREW PRAM, and in O(logm) time with
O(m/ logm) processors on a CRCW PRAM (where m denotes the number of edges of the
graph). To this end, we explicitly give a set of 18 reduction rules, and we show that, with
this set, series-parallel graphs can be recognized, and in the second phase of the algorithm,
an sp-tree can be reconstructed when the reductions are undone. The algorithm improves
in efficiency on the parallel algorithms of [5, 7, 8].

The second problem is the problem of finding a tree decomposition of width at most
two of a graph, if one exists. This problem is closely related to the problem of recognizing
series-parallel graphs, since any series-parallel graph has treewidth at most two. We again
use the technique of constructive reduction algorithms: we extend the set of reduction rules
for series-parallel graphs with five extra rules, and we show that this set can be used to
recognize graphs of treewidth at most two. We also show how, in the second phase of the
constructive reduction algorithm, a tree decomposition of width at most two of the graph can
be maintained. This algorithm runs in O(logn log*) time with O(n/(log n log* n)) processors
on an EREW PRAM, and in O(logn) time with O(n/logn) processors on a CRCW PRAM.
It improves in efficiency on the algorithm of [4], which uses O(log?n) time with O(n/ log®n)
operations, both on an EREW and a CRCW PRAM.
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1 Introduction

In the public sector and certain industries where operations are ongoing 24 hours a day,
employees work in shifts, usually of 8 hours in length with a 30 minute break. The shifts,
assigned to an employee, are currently based on a 40-hour working week. The (40-hour) ros-
ters are often handmade and the result of years of planning experience. When the workload
was cut down to 38-hour, people continued to work 40 hour/week, and extra free time was
assigned to each employee (the so called ATV or ADV). The planners continued to work
with the existing 40-hour rosters.

Lately, a considerable number of corporations in business and the public sector in the
Netherlands agreed to start a 36-hour working week. At the same time that the further cut
back in working hours was negotiated, national labor laws were updated and became more
severe with respect to shift length and shift sequencing. Many existing 40-hour roster are
in conflict with the new laws. Besides, when working 36 hours, every employee will get too
much time off in a 40-hour roster and too many shifts will be unfilled.

The planners are thus faced with the problem to design new, more complex rosters. The
complexity is increased due to stricter labor laws and because, over the years, there is an
increasing need for rosters that consider social aspects (such as day care, car pooling and
working part-time). This has resulted into an awareness of OR techniques to support the
rostering process and a need for decision support systems that will help the planners with
their task.

In this paper we will describe such a complex workforce rostering problem for a detention
center in Amsterdam. Although the mathematical models and techniques used are not new,
it will give the reader insight into the state of the art of planning systems that are now
used in practice. For security reasons we cannot give results, or describe every detail of the
application.

2 Problem formulation
The workforce at the detention centre can be considered to be a homogeneous group such

that every person can perform every task. The workforce is fixed, there are no temporary
employees allowed because the work demands a proper training and every employee must get
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a background security check. The employees should in principle be assigned to one particular
unit, but can be assigned to other units when needed.

The current 40-hour roster is cyclic, such that everyone has the same roster over time.
The roster consists of N weeks and is made for N employees. Employee 1 is assigned to week
schedule 1 in week 1, to week schedule 2 in week 2 and so on. In week N+1 the employee
is again assigned to week schedule 1. The N week schedules together assure that all tasks
on each day are done. The new roster must assure that every person works approximately
36 hours a week and it should also be cyclic. The planners asked for a roster that plans an
employee off-duty during one weekend and on-duty during the next.

In the 40-hour roster, the tasks are combined into usual shift types, like a morning shift,
an evening shift etc. The shift lengths are not fixed as long as there is a 30 minute overlap
between successive shifts for a transfer of the shift. Each shift type is filled multiple times.
For the detention center a critical new rule is that an employee has at least 11 hours rest
between two shifts. This means that after a late shift, ending at say 11 pm, the employee
cannot be assigned to a morning shift before 10 am. In the old roster it was common practice
to combine a late shift with an early morning shift.

In the standard approach to shift scheduling the first step is to determine the required
manpower at each hour of the day, and to define shifts that will accomodate the demand.
However, the workload of each unit depends on the workforce assigned to the centre by the
government rather than on the tasks. When more personnel is assigned to a unit there can
be more activities leading to an increase in the tasks for the workforce. The shift lengths
and shift types are thus determined by the workforce. It was decided to maintain the shift
types of the 40-hour roster and to adjust the start and end time of the shifts to assure a
36-hour working week. The planners where advised to consider a systematic procedure to
determine shifts from a given formation of personnel.

The second crucial step in the planning proces is to define a two-week working schedule.
This schedule starts on a free Sunday, assigns exactly two shifts during the middle weekend
and ends with a free Saturday. Successive two-week schedules thus have the required property
that an employee is off-duty one weekend and on-duty the next. The labor laws concerning
the succession and sequencing of shifts within the two-week schedules are recorded in a
computer program. This computer program can check if a given two-week schedule satisfies
the labor laws. It can also generate all feasible two-week schedules. Each schedule contains
a combination of shifts that assure a 36-hour working week and that satisfies the labor laws.
For our application all the feasible schedules, approximately 40.000) were generated and
stored in a binary file.

When combining these schedules into rosters only a few more labor laws needed to be
checked (like an uninterrupted rest of 60 hours within an 9 day sequence). Most labor laws
are satisfied in the feasible two-week schedules. The roster problem then becomes to find
an optimal combination of the (two-week) schedules into a cyclic roster for all personnel in
a working unit. The units are not completely independent (they share for instance the task
of isolation cells duty), but for the planning proces a simple preprocessing of the common
tasks will suffice to make the units independent.

The objective criteria for an optimal roster are not evident. Since the detention centre has
a government assigned workforce, it is not neccessary to minimize the number of employees
to perform all tasks. The rosters are solely evaluated by social aspects, such as the spread of
the off days, the number of early shifts during a week, et cetera. The planners thus need an
interactive roster generating system, that can distinguish between popular and less popular
schedules. A decision support system should thus find one or more feasible schedules under
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social restrictions.
In the literature on shift scheduling, the roster problem is often formulated as a Gener-
alized Set Partitioning problem:

n m
min Y c;z; + Y disi
j=1 i=1

subject to
n
Za,-jzj+s,~=b,- i=1,...,m
=1
zj,5; > Ointeger j=1,...,n;i=1,...,m.

with m tasks, n schedules and

¢; = costs for schedulej

d; = cost for choosing dummy schedule 7
1 if schedule j covers shift i

ai; = { 2 if schedule j covers shift ¢ twice (once every week)
0 otherwise.

b; = number of schedules that must include shift 2

z; = number of times that schedule j is selected

s; = number of times that dummy schedule 7 is selected.

The dummy schedule i consists of shift i only. The inclusion of the dummy schedules assures
a feasible solution, albeit with very high cost. The model assumes that a selection out of n
schedules is determined that covers the number of times that every specific shift is needed.
When all cost c; are equal the model searches for a feasible solution only. A scoring system
can be introduced to distinguish between the schedules. Schedules with non popular aspects,
for instance with one day on-duty between two days off-duty, get a low score.

3  Solution methods for Cyclic Shift Scheduling

Mathematical models for workforce scheduling have been developed for many applications
like nurse scheduling [14, 15], crew scheduling for airlines [13] and mass public transport
[2, 3, 8], telephone operator scheduling [11].

While most of the early approaches to workforce scheduling are heuristic, with the in-
creasing computational power, exact planning algorithms can be applied that better solve
larger and more complicated planning problems. Exact models for shift scheduling are based
on assignment problems [1] or on set covering/ set partitioning problems [4, 6, 10]. In this
note we have showed that our application also falls within the framework of set covering and
we will follow the well known approach to solve the LP relaxation and search for a feasible
solution in the neighborhood of the LP solution.

The Generalized Set Partitioning problem could be routinely solved when the size is
reasonable. However, the number of columns (schedules) can be up to 40.000 (or more!)
and the model is too large to be solved by standard methods. Crainic and Rousseau [4]
suggested a column generation method for the airline crew scheduling problem, where a
subset of columns (schedules) was considered. This method became popular in the early
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90’s when Desrochers and Soumis [5, 6] applied the same technique to the Urban Transit
Crew Scheduling Problem.

The basic idea of the method is to start with a small subset of schedules, further referred
to as Basic Set, and to solve the LP relaxation of the restricted GSP problem. Based
on reduced cost manipulations columns (schedules) are added to the Basic Set. The LP
relaxation of the restricted GSP is repeatedly solved until optimality of the LP relaxation of
the GSP problem itself has been established.

Earlier column reduction methods were of a subjective nature, based on economic or social
criteria. In particular, a set of all feasible columns is generated, and then reduced through
rejection of specific columns or column features. For the detention centre all feasible columns
are also generated, but instead of reducing the set of columns, a subset of columns is selected
and then extended.

Apart from the issue of finding a good Basic Set, the quality of the LP relaxation as
a lower bound for the solution value of the GSP problem and the issue of finding a good
feasible integer solution are important.

3.1 The LP relaxation

A feasible solution is only found when the Basic Set contains enough schedules to cover every
shift. Also, there should be enoﬁgh schedules such that ”overcovering”, that is unnecessary
multiple covering of a single shift is avoided. The generation of feasible schedules can be
enumerative or, when we do not want to generate all feasible schedules, it can be based on
a priority principle of the following type

Pij=lﬁwithk=imod7ifi>7
Tij
and P; is a performance measurement for task j on day 7, n;; counts the number of times
that task j on day i belongs to a generated schedule, and by; is the number of times that
task j on day k should be covered. In the process of generating schedules for the Basic Set
the priorities are adjusted. New schedules are chosen based on the highest priority scores.
Of course the labor laws are checked in the generation of the basic schedules.

The Basic Set is extended with schedules that are added based on the ideas of the column
generation method described by Desrochers and Soumis. When the solution method stops
it returns an optimal solution of the LP relaxation of the GSP problem. The Basic Set has
been extended with a number of columns (schedules). The LP relaxation provides us with
a lower bound to the solution value of the (integer) GSP problem.

From the literature ([9, 12]) it is well known that the LP relaxation yields a good lower
bound for Set Covering and Set Partitioning problems. It seems sensible to apply the LP
relaxation for the determination of a good Basic Set and for a good lower bound. Lagrangean
relaxation can also be used to derive a lower bound for the solution value of the GSP problem.
However, a well known consequence of the strong duality theorem of linear programming is
that Lagrangean relaxation yields (at best) the same bound.

3.2 A Feasible Integer Solution

The GSP model with a fixed Basic Set, such as is determined by the LP relaxation, can be
solved using standard solvers such as CPLEX. For the detention centre, there was a need
for a decision support system that was independent of a costly solver.
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Wedelin [17] suggests a very simple iterative search algorithm based on a Lagrangean dual
approach with cost pertubation for 0-1 integer linear programming problems to generate a
good feasible 0-1 solution. The Basic Set of the optimal solution of the LP relaxation is used
with the generation of a feasible 0-1 solution. This method has been succesfully applied in
the Carmen system for airline crew scheduling and is used by major airlines in Europe.

The GSP problem is given with decision variables that are integer, and not only restricted
to 0 and 1. The solution of the 0-1 GSP is of course a solution for the general GSP. The
method can easily be adjusted to allow a specific schedule more than once in the feasible
integer solution by adding copies of the selected schedules to the Basic Set and generating a
new 0-1 solution.

For the detention centre, the units have the same schedules and size. All feasible schedules
are generated, a total of 40.000 schedules, on a Pentium 100 Mhz. PC in 500 seconds. The
schedules are stored in a binary coded file and 150 randomly selected schedules are added to
an initial Basic Set. The file was preprocessed several times after consulting the planners,
who qualified some schedule structures as unacceptable. Currently, the resulting rosters are
being evaluated with the planners. The size of the set of feasible schedules will diminish
with every roster that is shown to the planners since unacceptable (two-week) schedules are
observed rather than unacceptable rosters.

4 Conclusions and further research

With so many corporations shifting to the 36-hour labor week the need for decision sup-
port systems is enormous. The method has also succesfully been applied at the GG&GD
Rotterdam [16] and at a dutch security firm (with ORTEC consultants, [7]). For all the
applications we noticed that the complexity of the labor laws and social requirements make
it almost impossible to work without computer support. Even checking the validity of the a
given roster is a job not eagerly done by planners, since it consist of checks over long periods
and of many different rules.

The decision support systems need to be specially developed for each profession, since
labor laws and union treaties are quite diverse. For each application we started with a
computer program that checks the feasibility of generated rosters and schedules. The basic
approach using shift scheduling based on column generation seems to be very suitable.

Further research is currently done in two directions. First with a increasing number of
people working part-time, the rosters need to be more flexible. Scheduling two or more part-
timers in a single full-time job forces them to divide the off-duty days among each other.
Also, the part-time hours need to be a fixed portion of a full-time job (like 0.5, or 0.75) while
in practice there is a wide range in part-time working hours. Preferably, the part-timers
will take shifts from the existing full-time roster and combine them into several full-time
jobs. Secondly, the new labor laws also complicate exchanging shifts between employees and
filling shifts for employees that are sick or on leave. Apart from developing new rosters that
allow maximum flexibility in shift exchange and back up shifts, there is also a great need for
decision support systems that help decide who to call for back up when an employee is sick
or on leave.
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1 Introduction

Let M = m,; be a real-valued symmetric matrix with nonpositive off-diagonal entries and
with arbitrary diagonal entries. Recall that M is called reducible if the index set of M can
be partitioned into two sets I and J such that m;; =0 for all ¢ € I and j € J. A matrix M
is called irreducible if M is not reducible. If M is irreducible then as a consequence of the
Perron-Frobenius theorem (by looking to the matrix ¢cI — M for large c) we have that the
smallest eigenvalue ) of M is simple (it has multiplicity 1) and the corresponding eigenvector
belonging to A can be chosen to have all entries positive. Let us state this consequence in a
more graph theoretical framework. To the matrix M we can associate a graph G(M) with
vertex set the index set of M and with between two vertices i and j an edge if m; ; # 0. Then
irreducible means that the graph is connected. If the graph is not connected then we can find
a matrix M such that the largest eigenvalue has multiplicity at least 2. So information of
the multiplicity of the smallest eigenvalue of matrices M with G(M) = G gives information
about the graph G, namely connectedness of the graph.

More information of the graph can be obtained by not only looking to the smallest
eigenvalue but by looking also to the smallest but one. By adding an appropiate diagonal
matrix we may assume that the smallest but one eigenvalue is equal to 0.

Let G be a graph with vertex set {1,...,n} and let Og denote the set of all real-valued
symmetric matrices M = (m; ;) with

i m;; <0if ij is an edge, m;; = 0 if 45 is not an edge and i # j, and
ii M has 1 negative eigenvalue.

So m;; € R. We do not assume that G is connected.

What information about the graph can we get if we know that corank(M) < t for each
M € Og? Although the full answer of this question is not known there are some results. In
fact we will see that there is an intriguing connection between the maximum corank attained
by a matrix M € Og and the topological structure of the graph G. What follows is extracted
from (8].

*This research was supported by the Netherlands Organization for Scientific Research (N.W.0.)
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2 The parameter py(G)

For any vector z, let supp(x) denote the support of z (i.e., the set {i|z; # 0}). Moreover
we denote the positive support by supp.(x) := {iJx; > 0} and the negative support by
supp- (x) := {iJx; < 0}.

If x € R® and I C V, then z; denotes the subvector of z induced by the indices in I.
Similarly, if M is an n x n matrix and I,J C V, then M;,; denotes the submatrix of M
induced by row indices in I and column indices in J.

Theorem 2.1 Let G be a connected graph and let M € Og. Let z € ker(M) and let I and
J be two components of G[supp4(x)]. Then there is a y € ker(M) with supp.(y) =1 and
supp-(y) = J, such that y; and y; are scalar multiples of x; and z; respectively.

Proof. Let K := supp_(x). Since m;; =0if i € I, j € J, we have:
(1) Mixrzr + Mixkzg =0,
Mjyszy+ Mk =0.

Let z be an eigenvector of M with negative eigenvalue. By the Perron-Frobenius theorem
we may assume z > 0. Let

z,T:c 1

2 A= .
) e

Define y € R* by: y; :=z;ifi € I, y; := —Az; if 1 € J,and z; :=0if i g TU J. By (2),
2Ty = 2Fz; — A\zTz; = 0. Moreover, one has (since m;; = 0if i € I and j € J):

v "My = yf My + Y5 Myxoys =
(3) l‘TM[x[.?I[ + AZZ’I‘;M_])(JIJ =

T 2,.T
—1‘1M1xK.’IJK — A Z'JMJ)(K.’L‘K S 0

(using (1)), since Myxx and M,y are nonpositive, and since z; > 0, z; > 0 and zg < 0.

Now 2Ty = 0 and y" My < 0 imply that My = 0 (as M is symmetric and has exactly
one negative eigenvalue, with eigenvector z). Therefore, y € ker(M).

People familiar with differential geometry will see that this theorem is analogous to the
Courant nodal theorem [7].

We say that a vector z € ker(M) has minimal support if z is nonzero and if for each
nonzero vector y € ker(M) with supp(y) C supp(x) one has supp(y) = supp(x). We have
the following consequence of Theorem 2.1.

Corollary 2.1a Let G be a connected graph and let M € Og. Let x € ker(M) have minimal
support. Then G[suppy(x)] and G[supp_(x)] are connected.

A graph G is called planar if the graph can be drawn in the plane such that no two edges
cross. A graph G is called outerplanar if the suspension on G is planar, that is, G is planar
and all vertices of G are incident with one face.

Theorem 2.2 Let G be a path. Then each M € Og has corank(M) < 1.

Theorem 2.3 Let G be a 2-connected outerplanar graph. Then each M € M has corank(M) <
2.
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Theorem 2.4 Let G be a 3-connected planar graph. Then for each M € Og, corank(M) < 3.

Proof. We assume that G is embedded into the plane. Let v; be a vertex of G. Let v,
and vz be vertices of G which are adjacent to v, and such that v;, ve, v3 are incident with
the same face F' of G. Assume that there exists a matrix M € Og with corank(M) > 3. Let
z € ker(M) be a nonzero vector with z,, = 0 for ¢ = 1,2,3. We may assume that z has
minimal support.

Since G is 3-connected there exists 3 pairwise disjoint paths P, P», P;, where each P;
starts in a vertex w; & supp(x) adjacent to at least one vertex in supp(x), and ends in v;.
Each vertex v ¢ supp(x) adjacent to some vertex in supp; (x) is also adjacent to some vertex
in supp-(x) and conversely. So each w; is adjacent to at least one vertex in suppy(x) and
at least one vertex in supp_(x).

By Corollary 2.1a, supp;(x) and supp-(x) can be contracted to one vertex each. Delete
all vertices of G not contained in supp(x) or in any P; and contract each P; to one vertex.
Add a vertex in the face F' and edges from v;,v,,v3 to this new vertex. The resulting
graphs is still planar. But this graphs contains a K3 ;-minor, a contradiction, hence we have
corank(M) < 3.

A graph is called flat if the graph can be embedded into 3-space such that for each circuit
C of the graph there exists a homeomorph of an open disc A with boundary the circuit C,
such that A is disjoint from G. For flat graphs we have the following theorem due to L.
Lovasz and A. Schrijver[12].

Theorem 2.5 Let G be a 4-connected flat graph. Then for each M € Og, corank(M) < 4.

Some remarks are needed here. First Theorem 2.3 is not true if we remove the condition
that G is a 2-connected graph. In fact corank(M) can be arbritrary high as the following
example shows. Take G := K ,, the bipartite graph with one vertex of degree n and n
vertices of degree 1. Let M := (m; ;) be the matrix with m;; = —1 if 45 is an edge, m;; = 1
if 7 is the vertex of degree n, and m;; = 0 if ¢ is a vertex of degree 1. Then M € Og, as M
has only one negative eigenvalue of mulitplicity 1. However corank(M) = n — 1. The same
applies to Theorem 2.4. For this, look to the graph G := Kj,,.

Secondly, are the reverse statements of Theorem 2.3 and Theorem 2.4 true? More pre-
cisely, if G is not outerplanar, does there exist a matrix M € Og with corank(M) > 2, and,
if G is not planar, does there exist a matrix M € Og with corank(M) > 37

Let us first look to the second remark. In [5, 6, 4], Y. Colin de Verdiére defined a property,
which he called the Strong Arnol’d Hypothesis[1], for operators. To state this property we
must introduce some basic concepts of differential geometry applied to matrices.

Let S, denote the submanifold of all real-valued symmetric n x n matrices with corank
k, and let TpS, denote the tangent space of S\ at matrix M. The normal space of S\
at M is the space of all real-valued symmetric n x n matrices X with M X = 0; we denote
this space by NpS, . Note that we use the inner product defined by A - B = Tr(AB).

Let T)Og denote the tangent space of Og at M. So T);Og is the space of all real-valued
symmetric n X n matrices K = (k; ;) with k; ; = 0 if 45 is not an edge and 7 # j. The normal
space of Og at M is denote by NjOg, and is the space of all real-valued symmetric n x n
matrices with K = (k;;) with k;; = 0if ¢ = j and ¢ and j are adjacent.

A matrix M € Og is said to fulfill the Strong Arnol’d Hypothesis if the linear span of
TmS\,) and Ty Og is the whole space of all real-valued symmetric n x n matrices. This is
what mathematicians werking in differential topology would call transversality, and is some
kind of general position property, slightly pertubating the submanifolds does not change the
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intersection of the two submanifold dramatically. This in contrast to the case where the two
submanifold do not intersect transversally in which case it is always possible to find a small
pertubation which changes the intersection of the two submanifolds dramatically.

Instead of looking to the maximum corank of any matrix M € Og, we now look to the
maximum corank of any matrix M € Og with the additional condition that M fulfills the
Strong Arnol’d Hypothesis. This number is denoted by 1(G) and was discovered by Y. Colin
de Verdiere[5, 6]. So for any graph G, u(G) < t if and only if corank(M) < t for any matrix
M € Og fulfilling the Strong Arnol’d Hypothesis.

It is not difficult to check whether a matrix does fulfill the Strong Arnol’d Hypothesis.
The following criterion is given in [5, 6].

Proposition 2.6 A matric M € Og fulfills the Strong Arnol’d Hypothesis if and only if for
each symmetric n x n matriz A there is a matriz B € TyyOg such that 2T Az = 2T Bz for
each z € ker(M).

Here is another criterion [11].

Proposition 2.7 A matric M € Og fulfills the Strong Arnol’d Hypothesis if and only if
there is no nonzero symmetric matriz X = (z;), with z;; = 0 and z;; = 0 if i and j are
adjacent in G, such that MX = 0.

The matrix M = (m;;) € Ok, with m;; = —1if ij is an edge, m;; = 1if i is the vertex
of degree n, and m;; = 0 if ¢ is a vertex of degree one, does not fulfill the Strong Arnol’d
Hypothesis if n > 3, as also follows from the following proposition.

Proposition 2.8 Let G be a graph. Let M € Og fulfill the Strong Arnol’d Hypothesis, and
let © € ker(M). If G[supp4(x)] has more than one component, then G[supp,(x)] has only
two components and G[supp-_(x)] has only one component.

The fact that M does not fulfill the Strong Arnol’d Hypothesis also follows from the
following important property of u(G). Proofs of it can be found in [5, 6, 8, 10]. First we
need some definitions.

Let e be an edge of G = (V, F). Then the graph obtained by deleting e is the graph
G':= (V,E\ {e}). If e is not a loop, then the graph obtained by contracting e is the graph
obtained by deleting e and identifying the ends of e. A minor of a graph arises by a series
of deletions and contractions of edges of G and deletions of isolated vertices. A minor of a
graph G is called a proper minor if the minor is not equal to G. A class C of graphs is closed
under taking minors and isomorphism if for each G € C also all its minors belong to C. A
graph G is called a forbidden minor for C if G does not belong to C. A graph G is called a
minimally forbidden minor for C if G does not belong to C but each proper minor of G does
belong to C.

By the well-quasi ordering theorem of Robertson and Seymour[14], for each class C of
graphs closed under taking minors, there exists a finite collection F of minimally forbidden
minors for a class C closed under taking minors and isomorphisms.

The important property of p(G) is

Theorem 2.9 If G’ is a minor of G then pu(G') < u(G).
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So the class of graphs G with 4(G) < t is closed under taking minors. Since, by definition,
the class of graphs G with u(G) < t is closed under taking isomorphisms, there is a finite
collection F, of minimally forbidden minors for the class of graphs with u(G) > t.

Note that, since K , is a minor of a 2-connected outerplanar graph, p(K1,) < 2. Thus,
the matrix M := (m;;) with m;; = —1 if ij is an edge, m;; = 1 if i is the vertex of degree
n, and m;; = 0 if ¢ is a vertex of degree 1, does not fulfill the Strong Arnol’d Hypothesis.

The minimally forbidden minors for a graph being a path are K; 3 and K3. The mini-
mally forbidden minors for the class of outerplanar graphs are K,3 and K4. By the Wag-
ner/Kuratowski theorem, the minimally forbidden minor for the class of planar graphs are
K. 3,3 and K, 5.

Theorem 2.10 u(K13) = 2, p(Kz) = 2, u(Ka23) = 3, u(Kq) = 3, p(K33) = 4 and p(Ks) =
4.

Since maximally outerplanar graphs (these are graphs such that addition of any edge
would make the graph non-simple or not outerplanar) are 2-connected, and, since maximally
planar graphs are 3-connected, we have:

Theorem 2.11 A graph is outerplanar if and only if u(G) < 2.
and
Theorem 2.12 A graph is planar if and only if u(G) < 3.

In [13], Robertson, Seymour and Thomas showed that there are seven minimally forbid-
den minors for the class of flat graphs. The set of these seven graphs is called the Petersen
family (one of the graphs of the Petersen family is the Petersen graph).

For flat graphs we have:

Theorem 2.13 A graph is flat if and only if u(G) < 4.

It is however not true that maximally flat graphs are 4-connected. However, in [11], Van
der Holst, Lovéasz and Schrijver showed the invariance of the Colin de Verdiére parameter
under clique sums, which shows that a minimal counterexample to Theorem 2.13 must be
4-connected.

A graph H is a subgraph of G if V(H) C V(G) and E(H) C E(G). Let G; and G; be
subgraphs of G. If VG = VG, UVG,, EG = EG, U EG,, and S := VG, N VG, induces a
clique in G; and Go, then G is called a clique sum of G; and G,.

Let ¢t := max{u(G1), #(G2)}. For any U C VG, let N(U) denote the set of vertices in
VG\U that are adjacent to at least one vertex in U. Let K;;3\ A denote the graph obtained
from K,.3 by deleting the edges of a triangle in K;,3. (A triangle is a subgraph isomorphic
to K3.) Then:

Theorem 2.14 If u(G) > t, then u(G) = t+1 and we can contract two or three components
of G — S so that the contracted vertices together with S form a K3\ A.

Let v be a vertex of degree 3. A graph G’ is obtained from G by applying a Y A-operation
on v if G’ is obtained from G by deleting vertex v and connecting the neighbours of v by
edges. A graph G’ is obtained from G by applying a AY-operation if G’ is obtained from
G by deleting the edges of a triangle and adding a new vertex to the graph and connecting
this new vertex to all vertices of the triangle.

From Theorem 2.14 we get the following corollary:
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Corollary 2.14a Let v be a vertez of degree 3 in G. Let G' be the graph obtained from G
by applying a Y A-operation on v. Then:

(i) If the graph, obtained from G by deleting v and its neighbours, is connected and p(G) >
4 then u(G') > u(G).
(4) If u(G) > 5 then u(G') > u(G).

Another proof not using Theorem 2.14 is given by Bacher and Colin de Verdiére in [2].
There they also showed:

Theorem 2.15 Let G' be obtained from G by a AY -operation. Then p(G') > u(G).

Corollary 2.14a and Theorem 2.15 imply that the set of graphs G obtained from Kg by
applying AY- and Y A-operations, all have u(G) = 5. In [13], Robertson, Seymour and
Thomas showed that the minimally forbidden minors for the class of flat graphs are the
set of graphs obtained from Kjg by applying AY- and Y A-operations. So graphs G with
1(G) < 4 are flat graphs. What remains open is the question whether flat graphs G have
u(G) < 4.

3 The parameter A\(G)

Let G be a graph and let M € Og fulfill the Strong Arnol’d Hypothesis. Let € ker(M).
Recall that by Proposition 2.8, G[supp.(x)] can have at most two components, and, if
G[supp4(x)] has two components, then G[supp-(x)] has only one component. Define a
new graph parameter A\(G) as follows: A\(G) is the largest d € N for which there exists a
d-dimensional subspace X of RV such that:

(4) for each nonzero z € X, G[supp4(x)] is a nonempty connected graph.

We will see that although A(G) is not always equal to u(G), A(G) seems to be very close to
#(G) and in fact A\(G) can be used to compute u(G).

Here is an equivalent characterization of A(G). A subset H of R? is called a halfspace if
H = {z € R? | ¢’z > 0} for some nonzero c € R%. A function ¢ : V — R? is called a valid
representation if

(5) for each halfspace H of RY, the set ¢! (H) is nonempty and induces a connected
subgraph of G.

Then A(G) is equal to the largest d € N such that there exists a valid representation ¢ :
V — R4

Theorem 3.1 If G’ is a minor of G then A(G') < A(G).
In [9], Van der Holst, Laurent and Schrijver showed:

Theorem 3.2 A\(G) <1 if and only if G is a forest.

Theorem 3.3 A\(G) < 2 if and only if G has no Ky-minor.

Theorem 3.4 A\(G) < 3 if and only if G has no Ks- and no Vg-minor.
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Since K5 and Vj are forbidden minors for the class of planar graphs (as K33 is a minor
of V3), Theorem 3.4 tells us that A(G) < 3 if G is a planar graph. Similarly, Theorem 3.3
tells us that A(G) < 2 if G is an outerplanar graph.

Lovész and Schrijver[12] showed:

Theorem 3.5 If G is a flat graph then A\(G) < 4.

The proof uses a theorem on antipodal links, which can be regarded as an extension of
Borsuk’s antipodality theorem.
A classification of the graphs G with A(G) < 4 is not known to the author.

4 Another graph parameter

Let Mg be the set of all real-valued symmetric matrices M = (m; ;) with m; ; = 0 if ¢j is not
an edge and 7 # j. The Perron-Frobenius theorem does not hold for these kind of matrices;
i.e. it is not always true that the multiplicity of the smallest eigenvalue is 1, as M = (m; ;)
with m; ; = 1 for each i, j shows that the multiplicity of the smallest eigenvalue of a matrix
of My, can be as large as n— 1. But the question here is to characterize for each ¢ € N those
graphs G for which the multiplicity of the smallest eigenvalue is at most ¢. By adding an
appropiate diagonal matrix to M, the question becomes to characterize for each ¢t € N those
graphs G for which the corank of each positive semi-definite matrix M € Mg is at most ¢.
(A positive semi-definite matrix M is a matrix with z7 Mz > 0 for all vectors z.)

Theorem 4.1 Let G be a tree. Then each positive semi-definite matriz M € Mg has corank
at most 1.

A proof of this theorem is given in [4]. See also [8] for a proof.

Theorem 4.2 Let G be a 2-connected graph which is the dual of an outerplanar graph. Then
each positive semi-definite matriz M € Mg has corank at most 2.

See [8] for a proof.
A k-clique tree is a graph of the form Kj x T with T a tree. So a 1-clique tree is just a
tree. Theorem 4.2 can be stated as follows.

Theorem 4.3 Let G be a 2-connected graphs which is a minor of a 2-clique tree. Then each
positive semi-definite matriz M € Mg has corank at most 2.

Also for matrices M € Mg there is some kind of Courant nodal theorem.

Theorem 4.4 Let M € Mg be positive semi-definite. Let x € ker(M) have minimal sup-
port. Then G[supp(x)] is connected. :

Without the condition that G is 2-connected, Theorem 4.2 is not true. Also for matrices
M € Mg we can define the notion of Strong Arnol’d Hypothesis. In [3], Colin de Verdiére
introduced the parameter v(G) which he defined as the largest corank of any matrix M € Mg
fulfilling the Strong Arnol’d Hypothesis. For v(G) we have:

Theorem 4.5 v(G) < 1 if and only if G is a forest, that is, if G is a minor of a 1-clique
tree.

Theorem 4.6 v(G) < 2 if and only if G is a minor of a 2-clique tree.

For v(G) < 3, it is not true that G is a minor of a 3-clique tree, as Vj is not a minor of
a 3-clique tree.
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Abstract

We address the single-machine problem of scheduling n independent jobs subject to
target start times. Target start times are essentially release times that may be violated
at a certain cost. The goal is to minimize an objective function that is composed of
total completion time and maximum promptness, which measures the observance of
these target start times. We show that in case of a linear ob jective function the problem
is solvable in O(n*) time if preemption is allowed or if total completion time outweighs
maximum promptness.

1 Introduction

A production company has to deal with the traditional conflict between internal and external
efficiency of the production. Internal efficiency is the efficient use of the scarce resources. It
results in a cost reduction and hence in possibly more competitive prices or higher profits.
FEzternal efficiency is achieved by meeting the conditions superimposed by external relations.
Clients, for instance, insist on product quality, short delivery times, and in-time delivery,
among other things. Compromising product quality is playing with fire, but many a com-
pany tries to get away with late deliveries. After all, a good due-date performance may be
achieved only in case of putting work out, overwork, frequent setups, or high setup costs.
Unfortunately, many companies do not realize that a better planning may accomplish the
same. This type of external efficiency, between the company and its clients, is actually
downstream; it is the extent by which the company successfully copes with the requirements
on the demand side.

We also distinguish upstream external efficiency. This is the extent by which the company
successfully copes with the conditions on the supply side. A company, for instance, negotiates
on the prices and delivery times of raw material. In order to achieve a higher internal
efficiency, but especially a better due date performance, it may be worthwhile to pay a
higher price to get the raw material sooner.

There exist several single-machine scheduling models of the trade-off between internal
and downstream external efficiency. Van Wassenhove and Gelders (1980), for instance,
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consider a model for making the trade-off between work-in-process inventories and due date
performance; see also Hoogeveen and Van de Velde (1995). Schutten, Van de Velde, and
Zijm (1996) consider a batching problem for balancing out utilizing machine capacity against
due date performance. Single-machine problems seem to be oversimplified models, but the
study of these models makes sense, if we think of a company as a single-machine shop, or if
there is a single bottleneck. What is more, single-machine models serve as building-blocks
for solving complex scheduling problems.

In this paper, we study a single-machine scheduling model for striking a rational balance
between internal and upstream external efficiency. Our model specification is as follows.
A set of n independent jobs has to be scheduled on a single machine that is continuously
available from time zero onwards and that can process at most one job at a time. Each
job J; (7 = 1,...,n) requires processing during a positive time p; and has a target start
time s;. Without loss of generality, we assume that the processing times and target start
times are integral. A schedule o specifies for each job when it is executed while observing
the machine availability constraints; hence, a schedule o defines for each job J; its start
time Sj(o) and its completion time C;(o). The promptness P;(o) of job J; is defined as
P;(0) = s; — Sj(0), and the maximum promptness is defined as Ppax(0) = max;<j<n Pi(0).
We note that the maximum promptness Pnax(0) equals the mazimum earliness Emax(0) =
maxi<;<n(dj — Cj(0)) if each J; has a due date d; for which s; = d; — p; and if interruption
of job processing is not allowed.

The problem we consider is to schedule the jobs so as to minimize total completion time
Y7=1 C; and maximum promptness Pray simultaneously. Total completion time Y7, C; is
a measure of the work-in-process inventories as well as the average leadtime. Hence, it is a
performance measure for internal efficiency as well as downstream external efficiency.

Maximum promptness measures the observance of target start times. If it is positive,
then it signals an inefficiency: at least one job is scheduled to start before its target start
time. Generally, this is possible only if we are willing to pay a penalty. In case the target
start times are derived from the delivery times of raw material, then this penalty is actually
the price of a speedier delivery. In case the target start times are derived from the completion
times of the parts in the preceding production stage, then this penalty may be an overwork
bonus to expedite the production. If the maximum promptness is negative, then it signals
a slack, which implies that we may increase the deadlines that are used in the preceding
production stage. :

It is important to realize that the target start times are actually release times that may
be violated at a certain cost. In this sense, our problem comes close to the well-studied
single-machine problem of minimizing total completion time subject to release times; see for
instance Lenstra, Rinnooy Kan, and Brucker (1977) and Ahmadi and Bagchi (1990).

We now give a formal specification of our objective function. We associate with each
schedule o a point (T}, Cj(0), Pnax(0)) in ®* and a value F(¥}; Cj(9), Puax(c)). The
function F': @ — R, where Q denotes the set of all feasible schedules, is a given composite
objective function that is nondecreasing in either of its arguments; this implies that for any
two schedules o and 7 with 3-7_; C;(0) < X7, Cj(7) and Prax(0) < Prax(7) we have that
F(372, Ci(0)s Pmax(0)) < F(X7-; C(7), Pmax(7)). Our problem is then formulated as

n
min{F(Z C;i(0), Pmax(0)) |0 € 2}.
j=1
Extending the three-field notation scheme of Graham, Lawler, Lenstra, and Rinnooy Kan
(1979), we denote this problem by 1||F(37-; Cj, Pmax)- The special case in which the func-

=1
tion F is linear is denoted by 1||ay £%.; C; + @2 Prmax, where aq > 0 and a; > 0.
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In comparison to single-criterion problems, there are few papers on multicriteria schedul-
ing problems. We refer to Dileepan and Sen (1988) and Hoogeveen (1992) for an overview
of problems, polynomial algorithms, and complexity results.

This paper is organized as follows. In Section 2, we make some general observations
and outline a generic strategy for solving the 1||F(X7_; C;, Pmax) problem. We also point
out that 1||F(X7_; Cj, Pmax) as well as its preemptive version 1|pmin|F(X7_; Cj, Pnax), in
which jobs may be interrupted and resumed later on, are N'P-hard in the strong sense. In
Section 3, we consider the linear variant 1|pmin|a; 37_; C; + @2 Pnax- Our main results are
that 1|pmin|a; 37-; C; + a2 Pmax and, in the case that cq > ag, also 1|y X7 Cj + a2 Pax
are solvable in O(n*) time.

2 General observations

The fundamental question is whether the 1||F(¥}.; C;, Pmax) problem is solvable in poly-
nomial time for any given function F that is nondecreasing in its arguments. The first
observation we make is that this is so, if we can identify all the so-called Pareto optimal

schedules in polynomial time.

Definition 1 A schedule o € ) is Pareto optimal with respect to the objective functions
(X7-1 Cj, Pmax) if there exists no feasible schedule = with either Y7, Ci(n) < 7., Ci(o)
and Proax(T) < Prmax(0), or 7 Ci(7) < i1 C(0) and Paax(7) < Prax(0).

Once the Pareto optimal set, that is, the set of all schedules that are Pareto optimal with
respect to the functions (X7, Cj, Pmax), has been determined, the 1||F(37_, C;, Pmax) prob-
lem can be solved for any function F by computing the cost of each Pareto optimal point
and taking the minimum. Hence, if each Pareto optimal schedule can be found in polynomial
time and the number of Pareto optimal schedules is polynomially bounded, then the problem
is solvable in polynomial time.

We start with analyzing the two single-criterion problems that are embedded within
U|F(X%21 Cjs Prax), that is, 1| Pmax and 1{] 3%, C;. The 1|| Pnay problem is clearly mean-
ingless, since we can improve upon each solution by inserting extra idle time at the beginning
of the schedule. Hence, we impose the restriction that machine idle time before the process-
ing of any job is prohibited, that is, all jobs are to be scheduled in the interval [0,37_; p;]-
It is easily checked that in case of a given overall deadline D > Y°7_, p; the optimal schedule
is obtained by inserting D — }_7_; p; units of idle time before the start of the first job. In the
three-field notation scheme, the no machine idle time constraint is denoted by the acronym
nmit in the second field. The 1|nmit|Pnax problem is solved by sequencing the jobs in order
of non-decreasing target start times s;. The 1|| 7, C; problem is solved by sequencing the
jobs in order of non-decreasing processing times p; (Smith, 1956). Let now MTST be an
optimal schedule for the 1|nmit|Pyayx problem in which ties are settled to minimize total
completion time; MT ST is the abbreviation of minimum target start time. In addition, let
SPT be an optimal schedule for the 1|| °7_, C; problem, in which ties are settled to minimize
maximum promptness; SPT is the abbreviation of shortest processing time. It then follows
that Pr. < Pmax(0) < Prax(SPT) and 37, C; < 7, Ci(o) < 0, C5(MTST) for any
Pareto optimal schedule o, where Ppax and Y7, C; denote the outcome of the respective
single-criterion problems.

Consider any Pareto optimal schedule o5 let (Pmax(c), 7= Cj(0)) be the corresponding
Pareto optimal point. By definition, o solves the problems 1|Prax < Prax(0)| 7=, C; and
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113721 C5 £ X321 Ci(0)| Pmax; the notation Prmax < Pmax(0) in the second field means
that we impose Ppax < Pmax(0) as an extra constraint that each feasible schedule has to
satisfy. Hence, if we know some Pp., value P that may correspond to a Pareto optimal
point, then we can determine the corresponding schedule o and Y7, C; value by solving
1|Pmax < P| 7, Cj. Since any given value Prax induces for each job J; a release date
r; = max{0,s; — Pnax}, We have to solve a problem of the form 1|r;| 7_; Cj. A generic
strategy for solving the bicriteria problem is then to solve this type of problem for all Ppax
values that may correspond to a Pareto optimal point and evaluate the function F for all
the resulting combinations (Pmax, Y g-; Cj). Lenstra, Rinnooy Kan, and Brucker (1977),
however, show that the 1|r;| ©7_, C; problem is N'P-hard in the strong sense.

We therefore make the additional assumption that preemption of jobs is allowed, that is,
the execution of any job may be interrupted and resumed later on. This assumption implies a
crucial relaxation of the original problem,; it has both positive and negative aspects. To start
with the positive part: we can apply the generic approach now, since the 1|pmtn,r;| 27, C;
problem is solvable in O(nlogn) time by Baker’s algorithm (Baker, 1974): always keep the
machine assigned to the available job with minimum remaining processing time. Note that
this algorithm always generates a schedule without machine idle time if Pnax > Py,,. The
disadvantage is that we lose the equivalence that existed between the maximum promptness
criterion and the maximum earliness criterion in case s; = d; — p;. This is so, since a given
value Epax induces an earliest completion time for each job, not a release date.

Another crucial issue with respect to the applicability of the generic approach concerns
the number of Pareto optimal points. Unfortunately, this number can grow arbitrarily large
in general, since each value Ppax < Prax(SPT) corresponds to a Pareto optimal point, as we
are allowed to preempt at any point in time, not just at the integral points. Seemingly, this
is another disadvantage of allowing preemption, but this problem complicates the nonpre-
emptive version as well, since idle time can be inserted in any amount. The above implies
that we can obtain a series of 2" consecutive Pareto optimal points with Py, values that
are multiples of 27*. Using the result by Schrijver (see Hoogeveen, 1996) that the prob-
lem of minimizing an arbitrary function F(z,y) that is nondecreasing in both arguments
over 2" consecutive integral y values is NP-hard in the strong sense, we conclude that

l|pmtn|F(7-; Cj, Pmax) and 1||F(}.; Cj, Pmax) are N'P-hard in the strong sense.

3 The linear variant 1|pmtn|a; £}_; C; + a2 Prax

To deal with this infinite number of Pareto optimal points, we assume from now on that the
composite objective function is linear; we can then limit ourselves to the subset of the set of
Pareto optimal schedules that contains an optimal solution to the 1|pmin|a; 3°7_; Cj+cz Pmax
problem for any a; > 0 and a; > 0. We define this set as the set of eztreme schedules.

Definition 2 A schedule o € Q is extreme with respect to (37, Cj, Pmax) if it corresponds
to a vertez of the lower envelope of the Pareto optimal set for (L7, Cj, Pmax)-

If the extreme set can be found in polynomial time and if its cardinality is polynomially
bounded, then the 1|y 37, Cj+ a3 Pmax problem is solved in polynomial time by computing
the cost of each extreme point and taking the minimum.

We start by analyzing the special case in which machine idle time before the processing
of any job is prohibited; we later show that any instance of the general problem can be dealt
with by reformulating it as an instance of the problem with no machine idle time allowed.
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3.1 No machine idle time allowed

Recall that if machine idle time is not allowed, then all jobs are processed in the interval
[0,7-, pj]. Hence, we only have to consider Pnax values in the interval [P}, Pmax(SPT)],
and for each Ppayx value P in this interval, Baker’s algorithm provides an optimal schedule
for the corresponding 1|r;, pmin| -7, C; problem that does not contain idle time; let o(P)
denote this schedule and let (P, }_, C;(o(P))) denote the point in ®? corresponding to it.

The problem is of course to distinguish between an extreme schedule and an ordinary
Pareto optimal schedule. By definition, the schedule o(Ppax) is extreme if increasing Ppax
by some € > 0 yields a smaller decrease in }_7_; C; than a decrease of Pnax by the same
amount € would cost.

To illustrate the impact of an increase of Py, consider the following two-job example
with p; = 10, p, = 5, s; = 0, and s; = 10. We have that P}, = 0 and the corresponding
%=1 C; value amounts to 25. If we increase Prmax, nothing happens until it becomes advan-
tageous to preempt job 1; this is the case for Ppax = 5. Then, until Ppax = 10, we gain € on
Y 7=1 C; by increasing Prax by ¢€; the value Prna, = 10 allows the SPT schedule.

From this example, we conclude that a schedule can only be extreme if a complete inter-
change has occurred in o(P), where an interchange is defined to be a complete interchange
if there are two jobs J; and J; such that J; is started before J; in o(P — €), whereas J; is
started before J; in o(P).

Lemma 1 If P > P;,,, then the point (P, Y7_, Cij(o(P))) can be eztreme only if a complete
interchange has occurred in o(P). O

The next step is to determine the P, values P such that their corresponding points
(P, X%, Cij(o(P))) satisfy this necessary condition. Given a pair of jobs J; and J; with
pi > p; and J; started before J; in o(P), we have to increase the upper bound on Prax
such that J; can start at time S;(o(P)). This will lead to a complete interchange of J;
and J; in o(P?'), unless J; itself is started at an earlier time in the schedule o(P'), where
P! = s; — S;(c(P)) is the value of the upper bound on Py, that makes J; available at time
Si(a(P)). It is not possible to determine beforehand whether J; gets started earlier when the
upper bound on P,y is increased from P to P! J;, except for one situation: J; is executed
between the start and completion time of a preemptive job Ji. In that case, increasing the
upper bound on P,y will first lead to a uniform shift forward of J; and J; at the expense of
Ji; the complete interchange of J; and J; cannot take place before a complete interchange
has taken place between Ji and both J; and J;.

Algorithm I exploits these observations to generate each point (P, Y7_; C;(0(Pmax)) for
which a complete interchange in o(P) may take place. The variable a; (j = 1,...,n) signifies
the increase of the current Pnayx value necessary to let a complete interchange involving J;
and some successor take place.

Algorithm I
Step 0. Let P = P%,..

Step 1. Let T « 0 and a; « oo for j = 1,...,n; determine o(P) through Baker’s rule.

Step 2. Let Ji be the job that starts at time T in o(P). Consider the following two cases:
(a) Ji is a preempted job. Then ay is equal to the length of this portion of Ji. Set T' «—
Ci(a(P)).

(b) Jk is not a preempted job. Then ax < min{s; — P — Si(c(P))|J; € V}, where V denotes
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the set of jobs J; for which s; — P > Si(o(P)) and p; > pr. Set T — Ci(o(P)).
Step 3. If T < 7., pj, then go to Step 2.

Step 4. Put P « min;<j<n a; + P.

Step 5. If P = Ppax(SPT), then stop; otherwise go to Step 1.

Theorem 1 Algorithm I generates all P,y values P for which a complete interchange has
taken place in the corresponding schedule o(P).

Proof. Suppose that a complete interchange of the jobs J; and J; with p; > p; took place
in the schedule o(P), where P was not detected by Algorithm I. Hence, S;(0(Pnax)) must
have been ignored in Step 2, which could have happened only in Step 2(a): J; is started
between the start and completion time of some preempted job J;. This, however, conflicts
with the earlier observation that the interchange of J; and J; has to wait until J; has been
interchanged with both J; and J;. [m}

As remarked before, the algorithm may generate too many Ppa, values P: in some of the
schedules o(P) not a complete interchange has taken place. This is due to Step 2b. There we
implicitly assumed that the part of the schedule before Ji, which was defined as the job to be
interchanged, would remain scheduled before Ji, that is, that Ji itself would not be started
earlier. This is not necessarily the case, however, since an increase of the upper bound on Ppayx
may cause J}, to move forward at the expense of some job J; with p; > p, where the increase
of the upper bound is not large enough to allow a complete interchange; J; will preempt J;
then. Nevertheless, we now prove that the number of values Puax generated by Algorithm I
is polynomially bounded, thereby establishing that 1|pmtn,nmit|a; 37, C; + o2 Pmax is
polynomially solvable. We define for a given schedule o the indicator function 6;;(o) as

6:’]’(0) - { 27 if C,'(O') < Sj(a) and Pi > Pj»

0, otherwise.

We further define Aj(o) as 3%, é;;(o) plus the number of preemptions of J;, and we let
A(o) = 7= Aj(0).

Theorem 2 Let P! be the Puax value that is found by Algorithm I when applied to o(P),
where P is any Pmax value determined by Algorithm I. We then have that A(c(P')) <
A(o(P)).

Proof. As explained above, one of the following three things has happened in o(P!) in
comparison to o(P):

(1) a preemption has been removed (Step 2a);
(ii) two jobs not in SPT-order have been interchanged (successful Step 2b);

(iii) a new preemption has been created (unsuccessful Step 2b).

All three cases have a negative effect on the value of A, as is easily checked (in the third case
we do create an extra preemption (effect +1), but this pair of jobs is no longer in the wrong
order (effect —2)). Hence, we only have to show that there are no moves possible that have
an overall positive effect on the value of A. The candidates for such a move are a switch of
two jobs from SPT order to LPT order and the addition of an extra preemption. We first
investigate the effect of the ‘wrong’ switch.

Suppose that there are two jobs J; and J; with p; > p; such that J; succeeds J; in o(P),
whereas the order is reversed in o(P!). Since Baker’s algorithm prefers J; to J; if both
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a(P) k j i

o(PY) k i j k

Figure 1: ‘WRONG’ SWITCH

jobs are available, J; starts earlier in o(P?) than J; in o(P), which means that the execution
of (a part of) some job Jj is postponed until J; is completed. See Figure 1 for an illustration.

It is easily checked that we have A(o(P)) = 4 and A(o(P')) = 3. All we have to do is to show
is that the situation depicted in Figure 1 is worst possible for this configuration. It is sufficient
to prove that J; is available at time C;(o(P?')), that is, s; — P! < Ci(o(P?)) = s; — P* +p;; if
so, Baker’s algorithm will prefer it to Jj, since the remainder of Ji has length at least equal
to pi. Hence, we have to show that s; < s; 4+ p;. As J; did not preempt Ji in o(P), we must
have s; — P+ p; > Ci(o(P)) > s; — P, where the last inequality follows from the availability
of J; at time Ci(co(P)). Since the smaller job is available as soon as the larger job involved
in the wrong switch is completed, the increase of §;; is compensated for by the decrease of
bki. Moreover, job Ji cannot trigger a set of nested wrong switches, where we mean with a
set of nested wrong switches that o(P) and o(P!) contain the subschedules Jx, J;, J;, Ji and
Iy Jiy I, Jk with pj < pi < pp < pi.

Now consider the situation that the number of preemptions of a job Ji increases. Hence,
there must be a job J; with p; < p; that succeeds Jj in o(P) but not in o(P'), which move
decreases the A function by one. m]

Corollary 1 If preemption is allowed, then the number of extreme schedules with respect to

(Prmax» gy Cj) is bounded by n(n — 1) + 1.

Proof. We have that A(c) < n(n — 1) for any schedule . Application of Theorem 2 yields
the desired result. m]

It is easy to construct an instance for which Algorithm I determines O(n?) different Ppax
values. We have not found an example with O(n?) extreme points yet.

Corollary 2 The 1|pmin, nmit|a; 35—, Cj + ag Puax problem is solvable in O(n*) time. O

Theorem 3 If oy = a3, then there ezists a nonpreemptive optimal schedule for the
1pmtn, nmit|en 71 C; + a2 Prax problem. If ey > a3, then any optimal schedule for the
l|pmtn, nmit|a; 35 C; 4 g Pax problem is nonpreemptive.

Proof. Suppose that the optimal schedule contains a preempted job. Start at time 0 and
find the first preempted job J; immediately scheduled before some nonpreempted job J;.
Consider the schedule obtained by interchanging job J; and this portion of job J;. If the
length of the portion of job J; is €, then P; is increased by €, while C; is decreased by e.
As a; = ay, the interchange does not increase the objective value. The argument can be
repeated until a nonpreemptive schedule remains. In case a3 > a3 such an interchange would
decrease the objective value, contradicting the optimality of the initial schedule. O
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3.2 The general case

We now drop the no machine idle time constraint. Obviously, if total completion time out-
weighs maximum promptness, then the insertion of machine idle time before the processing
of any job makes no sense. Hence, we have the following.

Corollary 3 If o1 > ay, then 1||ay X3, C; + 02 Prax 15 solvable in O(n*) time. O

If @ < oy, then the insertion of idle time may decrease the value of the objective func-
tion. We now show that we can solve the 1|pmin|a; Y7, Cj + oz Pmax problem by using
Algorithm I, which was initially designed for solving 1|nmit, pmtn|ey 37_; C; + @2 Prax-

Suppose that a; and a; are given. Define ¢ = az/a;. If ¢ > n, then it is always
advantageous to decrease Pp,,, which implies that the execution of the first job will be
delayed for ever and ever. To prevent unbounded solutions, we therefore assume that ¢ < n.
A straightforward computation then shows that in any optimal schedule at least |n — g+ 1]
jobs are scheduled before the first incidence of idle time. The smallest value Ppax(gq) for
maximum promptness that leads to such a schedule is readily obtained. Moreover, no optimal
schedule with Py, > Pr,. contains idle time. Therefore, we need to consider the case
Proax(q) £ Prmax < Py only.

Consider any instance T of 1|pmtn|a; 1}, C; + @2Pmax; let 0(Prmax) denote any optimal
schedule for T of 1|rj,pmtn|Y. C; for any Ppax With Ppax(q) < Pmax < Pi, and 15 =
max{0,s; — Ppax}-

We create a very large job Jy that is available from time 0 onwards to saturate o(Ppax)
by filling in Jp in the periods of idle time. In fact, Jy is so large that Baker’s rule prefers each
job in T to it; the choices so = Pnax(q) and po = P, — Pmax(g) + maxi<j<n p; + 1 ensure
such a saturation for any Prax(q) < Pmax < Pr,. Let I’ denote the instance T to which Jo
is added. Due to the choice of py and sg, we have that no optimal schedule for the instance I’
of 1|nmit, pmtn|ay 3}, +02Pmax contains machine idle time, and moreover, that by simply
removing Jy and leaving the rest of the schedule intact we obtain an optimal schedule for the
original instance T of 1|pmin|a; Y7 +0 Payx. After all, we have that Co = 7o p; and
that Fo < Pray for any value of Pray. Hence, instead of solving 1|pmin|cy 37, Cj + 2 Pmax
for Z, we solve 1|nmit, pmin|a; ¥7_o Cj 4 03 Puax for I'. This approach provides us with the
extreme points for (37_; Cj, Pmax) With Pmax(¢) < Prax < Pha,. If ¢ is unknown, then we
obtain all bounded extreme points by running the above procedure with ¢ = n; this choice
of ¢ corresponds to the smallest value Ppax(q) that may correspond to a bounded extreme
point.

As the number of extreme points is at most equal to n(n+1)+1 (we have n+1 jobs now),
and as each P,y value that corresponds to an extreme point is determined by Algorithm I,
the 1|pmin|a; T7-; Cj + azPmax problem is solved in O(n*) time.

Finally, we wish to mention two important special cases of our problem. These are the
case that promptness is assumed to be nonnegative, that is, P; = max{s; — S;,0}, and the
case that there is a given externally determined upper bound on Ppay. Either case can be
dealt with by simply adjusting the objective function, and our algorithm can be used to
solve the problem after the boundary points have been determined.

References

[1] R. Ahmadi, U. Bagchi (1990). Lower bounds for single-machine scheduling problems.
Naval Res. Log. Quart. 37, 967-979.

52



(9]

(10]

(11]

(12]

K.R. BAKER (1974). Introduction to Sequencing and Scheduling, Wiley, New York.

P. DILEEPAN AND T. SEN (1988). Bicriterion static scheduling research for a single
machine. Omega 16. 53-39.

M.R. GAREY AND D.S. JOHNSON (1979). Computers and Intractability: a Guide to
the Theory of NP-Completeness. Freeman, San Francisco.

R.L. GraHaM. E.L. LAwLER. J.K. LENSTRA, AND A.H.G. RINNOOY KAN
(1979). Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. Annals of Discrete Mathematics 3, 287-326.

J.A. HOOGEVEEN (1992). Single-machine bicriteria scheduling, PhD Thesis, CWI,
Amsterdam.

J.A. HOOGEVEEN (1996). Minimizing maximum promptness and maximum lateness
on a single machine. Mathematics of Operations Research 21, 100-114.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1995). Minimizing total completion
and maximum cost simultaneously is solvable in polynomial time, Operations Research
Letters 17, 205-208.

J.K. LENSTRA, A .H.G. RINNOOY KAN, AND P. BRUCKER (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics 1, 343-362.

M. SCHUTTEN, S.L. VAN DE VELDE, AND W.H.M. ZuM (1996). Single-machine
scheduling with release dates. due date, and family setup times, Management Science
42, 1165-1174.

W.E. SMITH (1956). Various optimizers for single-stage production. Naval Research
Logistics Quarterly 1, 59-66.

L.N. VAN WASSENHOVE AND F. GELDERS (1980). Solving a bicriterion scheduling
problem. European Journal of Operational Research 4, 42-48.

53






A facet preserving extension of
the Traveling Salesman polytope

Jeroen de Kort* and Ton Volgenant**
Faculty of Economics and Econometrics
Institute of Actuarial Science and Econometrics
University of Amsterdam
E-mail: jeroen.de.kort@pa-consulting.com tonv@fee.uva.nl

Abstract

We consider an extension of the Traveling Salesman Problem (TSP), for which 2 edge-disjoint
Hamiltonian cycles of minimum total length are required. The problem is denoted as the Peripatetic
Salesman Problem (PSP). The associated polytope can be seen as the union of two Traveling
Salesman polytopes., with an additional edge-disjointness constraint for each edge in the graph
under consideration. We give necessary and sufficient conditions under which a facet-inducing
inequality for the TSP polytope can be lifted to a facet-inducing inequality for the PSP polytope.
As almost all facet-inducing inequalities for the TSP polytope that are known to date satisfy these
conditions, a iarge family of facet-inducing inequalities for the PSP polytope is determined at once.
Furthermore, the dimension of the polytope is derived as well as the facet-inducing property of the

edge-disjointness constraints.

1 Introduction.

Consider the problem how to determine K edge-disjoint Hamiltonian cycles of minimum
total length. The problem was first mentioned by Krarup (1975) who gave it the name
K-Peripatetic Salesman Problem (K-PSP). It is not surprising that already for K = 2 the
K-PSP is NP-hard.

Applications of the K-PSP arise in the area of data communication networks, where
one wants to increase the reliability of the network while minimizing total costs. Whereas
a common application of the Traveling Salesman Problem is to connect the components on
a chip by a minimum costs cycle, the K-PSP connects these components by K edge-disjoint
cycles, thereby reducing the potential damage in case of a link failure.

Furthermore consider a working floor in a facility were several manned or unmanned
vehicles have to pickup and deliver goods at prespecified points, while at the same time the
total traveled distance has to be minimized. If the routes of all vehicles start and finish at
a fixed point and if pairwise disjointness of the routes is required, for instance to prevent
collisions, then the problem can be modeled as a K-PSP.

We will focus on the 2-PSP, simply denoted as the PSP. A branch and bound algorithm

* Current address: PA Consulting Group, Beneluxlaan 905, 3526 KK Utrecht

*x Corresponding author
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for it is given by De Kort (1993), and solvable cases are given by De Brey and Volgenant
(1996). Clearly, any solution to the PSP can be seen as two TSP solutions coupled by
edge-disjointness constraints. We will exploit this relationship and the extensive research
on the TSP polytope to derive interesting results for the PSP polytope. So we can consider
the analysis to come as a special case of the more general situation: when we couple integer
polyhedra, what can we say about the polyhedra that arise. Balakrishnan, Magnanti and
Mirchandani (1996) consider this question in the context of so called overlay optimization
problems to obtain worst case bounds of heuristics for these problem types.

In this article we will use the following facet identification or separation problem:

Given a vector x and a polytope @, then either determine that x € @ or

find a facet-inducing inequality ax < aq of @ such that ax > ay.
Several authors (Groétschel et al. (1985), Padberg and Rao (1981)) have independently
shown that — apart from some technical details — we can optimize in polynomial time if
and only if we can solve the separation problem in polynomial time for any vector x of
appropriate dimension. Due to the NP-hardness of the TSP and PSP it is very unlikely
that the separation problem can be solved in polynomial time for any real valued x .
With respect to the TSP however, a few classes of facet-inducing inequalities (trivial,
subtour elimination, comb and clique tree inequalities) suffice to develop a branch and
bound or branch and cut procedure able to solve large TSP instances, see e.g., Grotschel
and Holland (1991) or Padberg and Rinaldi (1991). Much larger instances can be solved
than by a branch and bound algorithm based on the 1-tree relaxation, see Held and Karp
(1970).

In Section 1.1 some notation is introduced and Section 1.2 provides a brief overview
of relations between the TSP and the PSP polytope. The relations are helpful to prove
the main result in Section 2 consisting of two theorems that state necessary and sufficient
conditions under which a facet-inducing inequality for the TSP can be lifted to a facet-
inducing inequality for the PSP polytope. Almost all facet-inducing inequalities known
to date for the TSP polytope satisfy the specified conditions so that a large family of
facet-inducing inequalities for the PSP polytope is determined at once. In Section 3 we
prove that the edge-disjointness constraints are facet-inducing for the PSP-polytope as
well. Concluding remarks are given in Section 4.

1.1 Notation

The notation to be used is similar to that of several other authors see, e.g., Grotschel
and Padberg (1985). Matrices and sets are denoted by capitals (A, B), vectors by bold
characters (a, b, @, f) and scalars by conventional characters (a, b).

For the following properties we assume (A,b) to be a minimum equation system for Q.
(1) dim(Q) + rank(4,b) = dim(Q) + rank(A4) = m.

(2) An inequality ax < ag, with & € R™\{0} is valid with respect to @ if

QC{xeR™|ax < ag}.
A valid inequality ax < o defines a face Fof Qif F=QN{x € R™ | ax = ag} # 0,
and the face is proper if in addition F' # Q. In practice one says that ax < ag induces

a proper face of ) whenever there exist two vectors x!,x? € Q such that ax! < ag
and ax? = ay.
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(3) A valid inequality ax < ag, a € R™\{0}, is said to be facet-inducing if and only if
(i) ax < aq defines a proper face and there exist dim(Q) affine independent vectors
in @ that satisfy ax = ay.
Or, as for instance indicated by Nemhauser and Wolsey (1988), if and only if
(iia) ax < aq defines a proper face of @ and
(iib) for any inequality Ax < B, that is valid for @ and for which the following Inclusion
Property holds:

{xeQ|ax=a} C{xeQ|Bx=70
there exist a vector A of appropriate dimension and a scalar g > 0 such that
B=AA+pa and By = Ab+ pay.

Proving the facet-inducing property of an inequality using (i) is called the direct method,
while the indirect method is based on (ii). In our terminology the phrase ‘ax < agp defines
a face or facet’ is equivalent to ‘the pair (a, ap) defines a face or facet respectively’.

In modeling the TSP and the PSP we denote an edge between vertex ¢ and j by e = [1, j];
G = (V, E,c) represents an undirected graph, where V, with |V| = n, is the set of the
verticesin G. The set E, with |E| = m, denotes the edges in G and ¢ = (c. )1 xm the weights
assigned to all edges. Only complete graphs will be considered, i.e., m = 1/2n(n — 1).

With respect to the TSP we define the incidence vector of a solution as the vector y
with elements y, such that y. = 1 if edge e is in the solution and 0 otherwise. The set &
denotes the collection of the incidence vectors y representing a TSP solution in G.

With respect to the PSP, the two Hamiltonian cycles that represent the solution are
denoted by Hg, k € {1,2}. For n < 5 the solution space is empty; for n = 5 only the trivial
solution exists containing all edges, although there are 12 combinations of two Hamiltonian
cycles for this set of edges. We denote by x(k) the incidence vector of Hy for k = {1,2}.
Then a PSP solution consists of a pair of {0,1}™ vectors, each corresponding with one
Hamiltonian cycle. We assume n > 6. The set B denotes the collection of incidence vectors
x = (x(1), x(2)) representing a PSP solution in G. Note that a single vector of dimension
m is not suited to model the PSP, since it is not sufficient to point out the edges in a PSP
solution. Given this set of edges in the PSP solution, that can be seen as a 4-regular graph
we are faced with the determination of two Hamiltonian cycles, an NP-complete problem,
see De Kort (1992).

1.2 Relations between the TSP and PSP polytope

If Conv{S} denotes the convex hull of a set S C R?2™ then the symmetric Peripatetic
Salesman polytope is defined as Q% = Conv{x € {0,1}?™ | x € P} so that the PSP is
equivalent to

min{ex(1) +cx(2) | x € Qp}.

The degree constraints of the PSP, denoted as Ax(k) = 2 for k = 1,2, are nonredundant
as the matrix

(3 %)
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has rank 2n. This result enables to derive an upper bound for dim(Q%):
Q% C {x=(x(1),x(2)) e R*™ | Ax(k) =2 for k=1,2},

so that dim(Q3) < 2m — 2n = n(n — 3). De Kort (1992) showed how to construct
2(m — n) + 1 PSP solutions with the property that the corresponding incidence vectors
can be used to obtain a nonsingular matrix with 2(m — n) + 1 rows and columns. This
result implies that dim(@Q%) = 2(m — n) and that the degree constraints form a minimum
equation system for Q%.

For any valid inequality a(1)x(1)+a(2)x(2) < ap of @}, it can be assumed that a(k) is
non-negative for k € {1,2}. (If not we lift the elements of a(k), and ay while maintaining
the inequality.)

The symmetric Traveling Salesman polytope is defined as QF = Conv{y € {0,1}™ |
Yy € 6} so that the TSP is equivalent to

min{cy |y € Q%}.

Grotschel and Padberg (1979a) derived the dimension of Q% : dim(Q%) = 1/2n(n — 3), for
n > 3. As a result the degree constraints, represented as Ay = 2, are a minimum equation
system for Q7.
The following properties show the relation between Q% and Q7. Assume that n is large
enough and that (a(1),a(2)) > 0.
o If x = (x(1),x(2)) € Q% then y = x(k) € Q% for k € {1,2}.
o If a(1)x(1) + a(2)x(2) < ag, is a valid inequality for Q% then for k € {1,2} there
exists an af < aq such that a(k)y < of is a valid inequality for Q.
e If (a, @) induces a proper face or a facet of @} then ((a,0), ap) induces a proper face
of Q3.
An interesting question related to the latter property is: under which conditions can a
facet-inducing inequality for Q% be lifted to yield a facet-inducing inequality for @3? This
question is the main topic of Section 2.

2 TSP facets for the PSP polytope

Two theorems will be given, each of which states necessary and sufficient conditions under
which the pair ((a, 0), ag) is facet-inducing for Q%, given that (a, ag) is facet-inducing for
Q%. The second theorem is best suited for practical purposes since the given conditions
are easier to check.

Theorem 2.1
Suppose that the pair (a, aq) is facet-inducing for Q%; let n > 6.
For k € {1,2}, ax(k) < aq is facet-inducing for @% if and only if
e ax(k) < ap induces a proper face of Q%,
o for any inequality 8x < By, 8 = (B8(1),8(2)), that is valid for Q3 and for which the
Inclusion Property holds:

{x € Qp | ax(k) = a0} C {x € @ | Bx = fo},
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there exist for A = 3 — k, a vector (A(k), A(h)) € R?" and a positive scalar u such

that
A0
(800, 0 = 000, 3w) (5 ) +(a,0)
(2.1)
Bo = A(k)2 + A(h)2 + pao.
Proof Follows from the indirect proof method (5 ii) stated in Section 1.1. O

Distinction has to be made between facet-inducing inequalities that satisfy and those
that violate the given conditions. The facet-inducing property of (a, aq) for Q% implicates
that ax(k) < aqg, k € {1,2}, induces a proper face of @%. The following theorem deals
with the second condition.

Theorem 2.2
Suppose (a, ag) is facet-inducing for Q3. If n > 7 and k € {1,2} then ax(k) < aq is
facet-inducing for Q% if and only if there does not exist a vector v > 0, v # 0 such
that for h = 3 — k, ax(k) + vx(h) < aq is a valid inequality for Qp.
Proof Only the case k¥ = 1 will be handled, as for the case k¥ = 2 the proof is similar.
Let B(1)x(1) + B(2)x(2) < Bo represent a valid inequality for @%. First it will be
shown that if

{x € Q@ | ox(1) = a0} € {x € @B | Bx = fo},
a vector A(1) € R" exists as well as a 4 € RY and a 8} € R such that
(B(1),88) = (A(1)A + e, \(1)2 + pua). - (2:2)

Suppose on the contrary that for ¢; # ¢,

(a) there exists a y! € Q% with ay! = aqg, S(1)y! = c1, so that for all z! € QF, edge-
disjoint from y*: B(2)z! = fp — ¢; and

(b) there exists a y2 € Q% with ay? = ao, B(1)y? = c3, so that for all 22 € QF, edge-
disjoint from y?: B(2)z? = 8y — c;. )

It can be shown (see De Kort 1992) that 8(2) can be written in some special form under

assumption (a) and a different form under assumption (b), which leads to a contradiction.

Then it follows that 8(1) is a combination of the degree constraints and «, which proves

(2.2).

Note that the latter result can directly be obtained when a vector Z € Q%, edge-disjoint
from y! and y?, exists: in this case Ay — ¢; = B(2)% # Bo — ¢, when assumptions (a) and
(b) would both be valid.

Now suppose that only for 4 > 0, 4 # 0 a vector A(2) € R™ exists with

(B(2), B0 = B3) = (M(2)A +4,X(2)2).

Theorem 2.1 indicates that this is equivalent to the assumption that ax(1) < aq is not
facet-inducing for @Q%. From the validity of fx < f, and the definition of (8(1), 5(2))
it follows that pax(1) + 4x(2) < pag is valid for @p. Defining v = 4/p establishes the
if-part of the proof.
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To prove the theorem the other way around, assume that there is a vector y > 0, v # 0
and 7 not a multiple of the degree constraints, such that for all x € Q% : ax(1)+vx(2) <
ag, then ax(1) = ap implicates yx(2) = 0. Thus for all x = (x(1),x(2)) € Q% the
equation ax(1) = ao implicates:

(AM1)A + a)x(1) + (A(2)A +7)x(2) = a0 + (A(1) + A(2))2.

Choosing (8(1), 82) = (A(1)A+a, A(1)2+ap) and (8(2), 82) = (M(2)A+7, A(2)2) violates
(2.1), so that ax(1) < aq is not facet-defining for Q%. 0
Theorem 2.2 holds for n > 7, as for n = 6 the number of edges in E is insufficient
to guarantee edge-disjointness when executing the 2-opt or 3-opt operations as described.
The facet-inducing property of a given class with respect to Q% can be checked by complete
enumeration.

Remark 2.1 Clearly not every facet-inducing inequality of Q% can be lifted to yield a
facet-inducing inequality for @%. For n > 6, the constraint y. < 1 is facet-inducing for Q%.
Nevertheless, z.(k) < 1 does not define a facet for @%: choose in Theorem 2.1 fx < By
as the edge-disjointness constraints z(1) + z.(2) < 1. This inequality is valid for @3 and
satisfies the Inclusion Property but violates (2.1). Equivalently we can define in Theorem
2.2 (a,aq) such that ax(1) < ao represents one or more constraints z.(k) < 1. Then
choosing v = a proves that z.(k) < 1 is not facet-defining for Q. It will be shown in
Section 3 that the edge-disjointness constraints are facet-inducing for @%.

Remark 2.2 Since the proofs of the Theorem 2.1 and 2.2 are given in general terms,
we expect them to be applicable to other combinatorial optimization problems as well.
For instance additional insight might be gained into the relation between the Minimal
Spanning Tree polytope and the Edge-disjoint Spanning Trees polytope along this way.
Descriptions of these polytopes are obtained by combining matroid and polyhedral theory.

We conclude this section with results that follow by applying Theorem 2.2.

Corollary 2.3 For k € {1,2} the inequalities given in (1) - (5) beneath are facet-inducing
for Q3. We give the reference where the analogue (detailed) result for Q% can be found.
(1) The non-negativity constraints for n > 6 (Grotschel and Padberg, 1979a).

(2) The subtour elimination constraints n > 6 (Grotschel and Padberg, 1979b).

(3) The comb inequalities n > 6 (Grotschel and Padberg, 1979b).

(4) The clique tree inequalities n > 11 (Grotschel and Pulleyblank, 1986).

(5) The simple crown inequalities n > 8 (Naddef and Rinaldi, 1992).

Proof Consider a simple crown inequality, to be denoted as — Y, cez.(k) < —co; let
k € {1,2} and define h = 3 — k. For any x(k) € Q% with — " cczc(k) = —co there exists
an x(h) € Q% such that (x(k),x(h)) € Q% and such that there is an edge & with z;(k) = 0,
zg(h) = 1. Choosing vz > 0 and . = 0 otherwise, gives — 3, ceze(k) + 3., Yeze(h) > co.

The existence of a vector x(k) with — Y, ceze(k) = —co is guaranteed by the facet-
inducing property of the simple crown inequality with respect to @Q%. Then the facet-
inducing property for Q% follows from Theorem 2.2.

The proofs for the classes (1) - (4) are similar. With respect to (1) - (3) and n = 6,
complete enumeration is suitable to prove the facet-inducing property of the concerning
inequalities. O
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Exploiting a lifting theorem, Naddef and Rinaldi (1992) have shown that for @% a simple
crown inequality can be generalized to an eztended crown inequality which is facet-inducing
for Q%. Cornuéjols et al. (1985) introduced the path inequalities in studying the Graphical
Traveling Salesman polytope. Naddef and Rinaldi (1988) utilized these inequalities to
derive new facets for the TSP polytope. Boyd and Hartman have shown independently
in unpublished work that the chain inequalities, introduced by Padberg and Hong (1980),
are facet-inducing for @%. Whether these facets for Q% can be lifted to yield facets for
Q% requires further research.

3 Additional facets for the PSP polytope

In this section we will use Lemma 3.1 to give a sketch of the proof that the edge-disjointness
constraints are facet-inducing for Q%:

Lemma 3.1 (Harary, 1969, p. 89)

Let G = (V, E) be the complete graph on n vertices and let r denote some integer.

(a) If n = 2r + 1, then r edge-disjoint Hamiltonian cycles T(1),...,T(r) exist in G, such
that E = U, T(3)

(b) If n = 2r, then there exist r —1 edge-disjoint Hamiltonian cycles T'(1),...,T(r—1) and
one perfect 1-matching M, edge-disjoint from any cycle such that E = U,:ll TE)UM.

Theorem 3.2 For n > 6 the edge-disjointness constraints z¢(1)+z.(2) < 1 induce facets
of Q.

The proof of the theorem is rather technical. A sketch of the proof is provided here. The
interested reader is referred to De Kort (1992) for further details.

First note that dim(Q%) < n(n — 3), as stated in Section 1.2. We define d, = n(n — 3)
and construct d, PSP solutions that satisfy an arbitrary edge-disjointness constraint with
equality and such that the associated incidence vectors form a d,, X d,, submatrix of full
rank. Then it follows from property 3(i) in Section 1.1 that z(1) + z.(2) < 1 is facet-
inducing for Q%.

To obtain the PSP solutions with the required properties we use Lemma 3.1 to construct
r edge-disjoint cycles on n — 2 vertices if n is odd and r — 1 cycles and a perfect matching
on n — 2 vertices if n is even. Next these cycles are extended to PSP solutions in such a
way that the corresponding matrix of incidence vectors has rank d,.

4 Concluding remarks
The presented material suffices to develop a branch and cut algorithm of the type that
has been proven to be very successful for the Traveling Salesman Problem - see De Kort
(1992). A typical branch and cut procedure for the PSP combines a fast LP solver with
a facet identification procedure and a branching scheme. The initial LP problem consists
of the degree constraints together with non-negativity and edge-disjointness constraints.
Enumerating the branch and cut search tree a large set of facet-inducing inequalities is
obtained which can be added to the LP problem.

Further research can be done in determining additional facets for the PSP polytope
that are of the form a(1)x(1) + a(2)x(2) < ag, a(1),a(2) # 0, rather then of the form
ax(k) < ag, k € {1,2}.
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A Polyhedral Approach to Grouping Problems
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1 Introduction

When I started the quest for a PhD-thesis at Maastricht University in June 1990, I joined a
group of researchers focusing on combinatorial aspects of problems arising in flexible manu-
facturing systems. Their efforts culminated in a series of publications, and eventually theses
[Spieksma, (1992)], [Oerlemans, (1992)], [Klundert, (1996)], on different topics concerning
scheduling and set—up problems in the highly automated environment of flexible manufac-
turing systems. In general, for production systems like these, it is extremely difficult to
schedule the processing of every part in the right time on the right machine with the right
tools. Therefore, it could be advantageous to split up the production process into smaller
and relatively independent subprocesses, just to make the tooling, loading, and scheduling
problems more tractable. So, I started studying the possibilities of forming production cells.
The choice of applying polyhedral techniques was based on the observation that these tech-
niques are efficient for other partitioning problems. Furthermore, they were in line with
ongoing research within our group.

However, the central topic of my thesis was not cell formation, but the relations between
polyhedra. The reason is that the formation of cells is not just one grouping problem, but it
entails a wide variety of slightly different problems. For example, sometimes we have to take
into account additional constraints; limits on the number of groups, the number of machines
in one group, the number of parts in one group; pairs of machines that have to be in the
same group; the possibility to buy additional machines; or alternative ways to process a part.
It is easy to extend this list. Clearly, the value of deriving theoretical results for a specific
problem is dependent on the possibility to transform those results into useful information
about variants of the original problem. As a consequence the emphasis of the study shifted
from the formation of production cells towards relating polyhedra. Some interesting results
were derived on the strength of inequalities, the projection of polyhedra, and generalized
lifting procedures (see [Oosten, (1996)]).

In the remainder of this contribution, I will try to give an impression of the nature of my
thesis. First, in the next section, we will discuss the cell formation problem. In Section 3
a mathematical programming formulation for the cell formation problem is presented. This
model can be used to derive strong bounds on the optimal value of the problem. Such bounds
could prove useful, e.g. to assess the quality of heuristic approaches, or to develop an exact
algorithm for the problem. The model was the starting point for the polyhedral approach.
As an example of relating polyhedra to each other, in the final section we will use generalized
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lifting techniques to extend the basic model to a variant of the cell formation problem, that
is getting a lot of attention lately: concurrent engineering.

2 The Cell Formation Problem

Due to increasing international competition and fastidiousness of customers, manufactur-
ers are forced from mass production to the production of a larger product mix. To meet
these new requirements, it is very important to have the ability to produce many small
volume batches consisting of complex parts in a short production period. This leads to
an increased complexity of the management task, increased investments in inventory and a
decreased efficiency of mass production systems. To maintain high efficiency levels, it is an
accepted strategy to adopt a group technology philosophy, and to organize a large portion
of the manufacturing system into cells [Schonberger, (1982), Hyer and Wemmerlév, (1989)].
A group technology cell consists of a number of machines located close to each other (a
machine group) and geared for the manufacturing of a number of similar parts (a part fam-
ily). To boost efficiency, tooling, loading and scheduling decisions within each cell should
be made (almost) independently of the other cells. This requires that machine groups and
part families be identified on basis of their interrelations, so that a minimum of interference
occurs between the cells. Intercell relations can be dealt with in various ways. Transport-
ing a part during its production process complicates the scheduling and controlling of the
cells to a considerable extent. Instead of intercell movements, some other options can be
considered like extending the number of machines of a certain type (machine duplication),
allowing parts to be rerouted, reviewing the design of the bottleneck parts, or even transfer-
ring the production of a part to another production line (part subcontracting). For each of
these options, heuristics or exact algorithms have been designed. Most of these approaches,
however, assume that a decomposition of the production system into cells has already been
determined. Here, we will exclusively deal with the problem of forming such cells.

The data for the cell formation problem is commonly assumed to be summarized in the
machine-part incidence matriz A = [ai;], where a;; = 1 if part j has to be processed on
machine 7 and a;; = 0 otherwise. More generally, the elements of A could: also represent the
processing time required by each part on each machine, or some other numerical data; the
models to be discussed here also apply to this situation, with only slight modifications. A
’natural’ machine-part grouping is expected to emerge when the rows and columns of the
incidence matrix are reordered in a proper way. In that case the diagonal blocks should be
relatively ’filled’ compared to the other blocks, as illustrated in table below. In this exam-
ple, deleting the element (1,2) and adding the element (5,6) would result in a perfect block
diagonal structure.

part = |1 2 3 4 5 6 1 4]2 3 6|5
mach 1 110100 31 110 0 01]0
! 2 011001 11 1|1 0 00
3 100100 2070 0|1 1 110

4 000010 510 0|1 1 0]0

5 011000 40 0[0 0 Of1

Table 1 Example of near block diagonalization by permutation of rows and columns

The ones outside the diagonal blocks (’exceptions’) represent intercell relations and should
be avoided as much as possible. On the other hand, it is also undesirable to have zeroes in
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the diagonal blocks (’voids’) or in other words to have a part and a machine in the same cell
when they are not directly related. Informally stated, the cell formation problem consists in
minimizing some combination of the number of exceptions and of voids. We now proceed to
define the problem more formally.

A matrix X = [z;;] is called block diagonal if there exists a partition Ry,..., Rk, Rk of
its row-set and a partition Ci,...,C}, Ci41 of its column-set such that z;; # 0 if and only
if, for some 1 <1 < k,i € R, and j € C; (notice that, to be very precise, we should say that
X is block diagonal up to permutations of its rows and columns).

When X is a block diagonal machine-part incidence matrix, we interpret the partition
of its rows and columns as describing the formation of k cells, where the I-th cell consists of
the machines in R; and the parts in C; (! = 1,...,k). The machines in Ry, and the parts
in Ci41 are not included in any cell; in many applications Riy; and Ci4; may be assumed
empty.

If A and X are machine-part incidence matrices of the same dimension and X is block
diagonal, then we say that element (z,7) is an ezception of A (with respect to X) if a;; =1
and z,;; = 0; we call (¢,7) a void of A (with respect to X) if a;; =0 and z;; = 1.

The cell formation problem can be abstracted into the following block diagonalization
problem:

given an incidence matrix A and a function f(.,.), find a block diagonal incidence
matrix X of same dimension as A which minimizes f(A4, X).

The function f(.,.) is meant to give a measure of the distance, or dissimilarity, between A
and X. It may for instance compute some weighted combination of the number of exceptions
and voids.

To round off this discussion, it should be noticed that the block diagonalization model
has many potential applications outside of the group technology framework discussed above.

3 A New Mathematical Programming Model

Consider again the formulation of the block diagonalization problem: the problem consists
in determining a ’close’ approximation of the M x P machine-part incidence matrix A by a
0 — 1 block diagonal matrix X. In view of this formulation, it is very natural to choose as
decision variables the elements of X, with their obvious interpretation:

= 1 if machine ¢ and part j are in the same cell,
Ti; fOI‘iE{1,...,M}a.l’ldj€{1,...,P}

= 0 otherwise.

Proposition 3.1 The block diagonal incidence matrices correspond ezactly to the integer
solutions of the system (1)-(2) :

Tij+ Th; + Tik — The S 2

fori,he{l,...,M} and j, k€ {1,...,P} (1)
ngli,‘jsl iE{l,...,M},jE{l,...,P} (2)
Proof: Omitted. o

Some limited computational experience seems to indicate that this system provides a useful
description of the set of all block diagonal matrices. This impression has been confirmed by
a variety of interesting theoretical results (see [Oosten, (1996)]).
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In studying the model, it is useful to think of an alternative formulation of the
block diagonalization in graph theoretic terms; we use the graph theoretic terminology of
[Bondy and Murty, (1976)]). Every M x P binary matrix X can be viewed as the adjacency
matrix of a bipartite graph G(X) with vertex set {1,...,M} U {1,..., P}; there is an edge
{i,7} between vertices : € {1,...,M} and 5 € {1,...,P} if and only if z;; = 1. Recall
that a bipartite graph on the vertex set V; UV, is called complete bipartite if it contains
all possible edges between V; and V,, i.e. if its edge set is V; X V;. It is easy to see that a
matrix X is block diagonal if and only if each connected component of G(X) is a complete
bipartite graph. So, the block diagonalization problem can be interpreted as the problem of
approximating a given bipartite graph G by a disjoint union of complete bipartite graphs on
the same vertex set as G.

As an illustration, Figure 1 shows the graph associated with the incidence matrix dis-
played in Table 1. Notice that deleting the edge (1,2) from this graph and adding the
edge (5,6) would produce three complete bipartite components, associated with the three
diagonal blocks of the corresponding matrix.

The inequalities (1) have an obvious interpretation in graph theoretic terms: if all compo-
nents of G(X) are complete bipartite, and if three edges {z,;}, {¢,k} and {h,j} are present
in G(X), then {k, k} must also be an edge. This interpretation suggests to refer to (1) as
the square inequalities.

machines parts
3 1
1 4
5 2
2 3
4 6
\ 5

Figure 1 Example of a graph representation of machine-part relations

4 Concurrent Engineering

Suppose now that we have to adapt our model, because we are given an extra opportunity: for
some part there is an alternative production plan, requiring a different set of machines. This
is not an unusual scenario. The problem of having to choose between different production
plans for a part is known in literature as concurrent engineering, see for a more thorough
discussion of this topic [Ham et al, (1985)].

To start with a simple case, assume there are only two machines and two parts. Let part
1 have a set of production plans, and let S; = {1,...,s1} be the index set of these plans.
Now, for each production plan there is a binary variable p' € { 0,1} that has value one if
and only if production plan [ is chosen. Assuming we can choose at most one production
plan, we have: Y5, p' < 1. We also need more z-variables for part 1, with an extra index
per process plan: xfj has value one if and only if machine ¢ and part j are in the same cell,
and production plan !/ is in use.

First, we take only one process plan into consideration: s; = 1. Let P be the convex
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hull of all feasible solutions. Then the equality p! = 1 defines a face F' of P, and for this
face (1)-(2) forms a minimal facial description. We can lift each of these inequalities with
respect to p'. Since the dimension gap between P and F is one, ordinary sequential lifting
suffices to derive facet defining inequalities for P. Lifting the square inequalities, we derive:

“pl + 1‘%1 + Z12+ zél — T2
.‘L‘h + T2 — Z;l + T2

—p' + 2} — Tz + T4 + T
_I}l + T2 + Z;l + T2

ININININ
[CRE O

Now let us make the case more interesting, and bring into consideration the second
process plan: s; = 2. We interprete P as the face of a larger polytope @, the convex hull
of all feasible solutions for two process plans, that is induced by intersecting @ with the
subspace defined by the equality p? = 0. This equality does not induce an equality system,
since the dimension gap between @ and P is three. An inequality system is for example:
p? =0, 22, = p?, and =2, = p?. Then L is the lifting set of the inequality
a(p’ = 0) + B(zly — p*) + (25 — P) = P' + ol + 22+ 2y — 2 < 1.

a €ER s

L={ B €R

—a—
-8
v €ER -«

RLR R R
INIAINIA
—o oo

The polyhedron L has two extreme points: (0,0,0) and (1,1,1). These correspond to
respectively the following inequalities:

—p1 + :t%l + 12 + :1:;1 —z9<1
and
—p' —p tah el bty +rd —2n<l

The first one could have been derived by applying ordinary sequential lifting, but without
the guarantee that it defines a facet of Q. The second one is due to extended lifting. The
second type of inequalities give some extra insight that leads to a useful generalization. Let
S; be the index set of concurrent project plans for part I. Then, the following inequality
is facet defining for the polytope that is the convex hull of the feasible solutions of the
concurrent engineering cell formation problem:

=2 p+ Y at y ah ek — el <1
l€T; l€T; I€T;
for all n € Sk, for all T; C S; such that T; # 0, for all k,i € {1... M}, for all j,k €
{1...N}. We refer to this class of inequalities as concurrent square inequalities. Although
this is an exponential class of inequalities, it is easy to see that the separation problem is
polynomial solvable.

Acknowledgement: The author wishes to express his gratitude towards the LNMB for
supporting his PhD research.
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Determining Haemers’ rank bound is NP-hard
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Abstract

We prove that determining Haemers’s rank bound is NP-hard by giving a reduction
from the 3-colorability problem to the problem of deciding whether or not the Haemers
bound is equal to three.

This article is based on [16] and on Chapter 6 of my dissertation [15].

1 Introduction

Let G be a graph with vertex set V(G) = {1,2,...,n}. The chromatic number of G,
which we denote by x(G), is the minimum number of colors needed to color the vertices of
G, such that the two endpoints of any edge have different colors. To determine the chromatic
number of a general graph is a difficult (NP-hard) problem. Even the problem of deciding
whether a graph is 3-colorable or not is already NP-complete (cf. [6, 3, 14]). A trivial lower
bound on the chromatic number of G is the clique number of G (denoted by w(G)), that
is, the number of vertices in a largest complete subgraph of G. Clearly these w(G) vertices
must be colored differently in every legal coloring of G. Also the problem of determining the
clique number of a general graph is NP-hard (cf. [6, 3, 14]).

In 1979 Lovész [11] (See also [10, 12]) introduced for each graph a number §(G) (the
Lovasz bound), with the following property:

w(G) < 0(@) < x(G).

(G denotes the complementary graph of G.) In [7] it is proved that (G) can be calculated
(or, in fact approximated, since §(G) doesn’t need to be rational) by the ellipsoid method in
polynomial time. This implies for instance that for perfect graphs (these are graphs for which
for all its subgraphs the chromatic number and the clique number are equal) the chromatic
number and the clique number can be determined in polynomial time.

Let A be an n x n-matrix (over some field) with all diagonal elements non-zero and with
A;; =0if ¢ and j are adjacent in G. If a matrix satisfies these conditions, we say that the
matrix fits G!. Clearly rank(A) > w(G), since A4 has a diagonal matrix of size w(G), with
non-zero diagonal entries, as a submatrix. On the other hand, there exists a matrix A that

!This definition of a matrix fitting a graph is the same as by Haemers in [9], although in that paper the
condition that A;; = 0 if i and j are adjacent should be read as A;; = 0 if i and j are not adjacent to be
consistent with the rest of the paper.
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fits G for which rank(A) = x(G). Indeed, let G be colored with x(G) colors and define the
matrix A by

A= 1 if 7 and j are in the same color class,
Y71 0 otherwise,

then A fits G and rank(A) = x(G). So the minimum rank over all matrices fitting G is also
a number between the clique number and the chromatic number of G. This number was
introduced by Haemers ([8, 9]) and we will refer to it as the Haemers bound.

The Lovasz bound and the Haemers bound were both introduced as an upper bound for
the so-called Shannon capacity of a graph (cf. [17]), a concept which we will not further
discuss here. Using his bound, Lovéasz [11] could prove that the pentagon had Shannon
capacity equal to /5, solving a problem that was open for over twenty years. Since Lovisz
had no examples of graphs for which his bound was provable larger than the Shannon
capacity, he raised the question whether or not his bound was equal to the Shannon capacity.
This problem was solved by Haemers [8, 9] by introducing his rank bound. Although the
Haemers bound is worse for most graphs, it is sometimes (much) better than the Lovész
bound showing that the Lovdsz bound is not always equal to the Shannon capacity.

A drawback of the Haemers bound is its definition. It is defined as the minimum over all
fields of the minimal possible rank of a matrix over this field fitting G. For this reason it is
not easy to work with. In this article we will introduce some interesting classes of matrices
fitting a graph over some fixed field. Of course these classes should be defined in such a
way that the smallest rank in these classes is at most the chromatic number of the graph.
Examples of suitible classes are the following:

As(G,F) = {A€ F™|Afits G}

Ay (G, F) = {A€ A3(G, F)|A symmetric}
A(G,F) = {A€ A(G,F)|Ai=1}.

A question that arises is: What is the complexity of determining the minimum rank of
a matrix fitting a graph G if the field and the class of matrices over which the minimimum
should be taken are given? This is the main problem we concentrate on in this paper. For
any class A of matrices over F' we introduce the following number:

R(A) := min{rank(A)|A € A}.

In the next section we will show that for some small finite fields for some of the classes
mentioned above the minimal rank in this class is equal to three if and only if the graph is
3-colorable. This means that for these classes determining the Haemers bound is NP-hard.
This suggests that for all relevant classes of matrices fitting a graph determining the smallest
rank in this class is NP-hard. In the last section we will prove this.

2 Minimal rank and the chromatic number

We start with two trivial remarks that inspired our first approach of determining the com-
plexity of determining the Haemers bound. It turns out that for some finite fields F', the
number R(A;(G, F)) is equal to the chromatic number of G if this chromatic number is
small. First of all we trivially have for any field F:

R(A(G,F)) =1 & x(G) = 1.
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and since for odd cycles we have that R(A;(G, F)) = 3, also
RAi(G, F))=2& x(G)=2

for any field F. If for some field F' we can prove that also
R(A(G,F)) =3 & x(G) =3

then we immediately get that for this field F' determining the minimal rank of all matrices
in A;(G, F) is NP-hard. In fact it is enough to prove this equivalence for a class of graphs
for which the 3-colorability problem is still NP-complete such as planar graphs or graphs
containing a triangle (see for instance [4]).

For finite fields it turns out to be relatively easy to verify whether or not the above
relation holds. We will illustrate this by proving the relation for the class A, (G, IF7).

Theorem 2.1

R(A(G, ) =3 & x(G)=3,

Proof: Let G be a graph for which the class A, (G, IF7) contains a rank-3 matrix, A say. Then
A contains a non-singuler principal submatrix A;; of rank three and A can be partitioned

as follows: A |
A A
A= 11 12 ):( “)A"‘ A | A
(A famadar) = () 47 (a1 42)

Because A;;, and hence A7}, is symmetric en non-singular, we can decompose A} as follows:

1
BT ( 1 ) B' if det A7} is a square,
- 1
An1 = 1
BT ( 1 ) B' if det A7} is not a square.
3

Hence there are two possibilities:
A=B"B

1
A=BT 1 B
3
for some 3 x n-matrix B.

In both cases there is only a limited number of possibilities for the columns of B. If
we consider opposite columns as the same, we have 21 possibilities for the first case and 28
possibilities for the second case. In the worst case, every zero in the matrix A corresponds
with an edge and all vertices should be colored differently if and only if the corresponding
columns are orthogonal. Without loss of generality we may assume that vertices whose
corresponding columns are the same or opposite are colored the same since the inner product
of these columns is unequal to zero.

Define the graph I'; as the graph with vertex set the 21 possible columns for the first case
(with the standard inner product), two vertices being adjacent if and only if the columns

for some 3 x n-matrix B, or
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are orthogonal and the graph I'; as the graph with vertex set the 28 possible columns of the
second case (the non-standard inner product), two vertices being adjacent if and only if the
columns have inner product zero. The maximal chromatic number of any graph for which
there exists a rank-3 matrix in A;(G, IF7) is equal to largest chromatic number of I'; and T';.

T'; turns out to be the line graph of the Heawoodgraph and is distance-regular (cf. [2]).
An alternative definition is the following: Take as vertices the flags (incident point-line pairs)
of the Fano plane, two flags being adjacent whenever they contain the same point or the
same line. The 3-colorability problem reduces to the question if we can partition the 21 flags
of the Fano plane into 3 sets of 7 flags each, such that each point and each line occurs in
one of the flags of each set. Since there is a circulant line-point incidence matrix of the Fano
plane (for instance with top row (1101000)) such a partition is possible. T'; is the Coxeter
graph, the distance-regular graph on 28 vertices with degree 3. By Brooks’ theorem [1] it is
3-colorable.

]
Using the same method we can also prove the following equivalences:
Theorem 2.2 Let G be any graph, then
R(A(G,IF3)) =5 & x(G) =5,
R(A(G,F5)) =3 & x(G)=3,
R(Al(G, F7)) =3 & X(G) =3,
R(A;(G, FF3)) =3 & x(G)=
Let G be a graph with w(G) = 3 then
R(A(G, FFg)) =3 & x(G)=3.
Let G be a graph with w(G) = 5 then
R(A(G,IF3) =5 & x(G)=5.
[}

Since the 3-colorability problem for graphs is NP-complete, also if G is restricted to have a
triangle (see for instance [4]) we get the following result:

Corollary 2.3 Determining the Haemers bound is NP-hard if we restrict to one of the fol-
lowing classes: A;(G,F) fori=1 and F = IF, with q € {2,3,5,7,9} and fori =2 and F =
F;;. |}

Unfortunately, in this way we can prove for only a few of the defined classes of matrices
fitting a graph that the problem of deciding whether they contain a matrix of rank equal to
three or not is NP-complete, but the results suggest that the problem is NP-complete for all
classes A;(G, F') over finite fields.
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a;; & j

Figure 1: The graph H;;

3 A reduction from 3C to RANK-3

In this section we prove that for all relevant classes of matrices fitting a graph G it is NP-
hard to check whether or not it comtains a matrix of rank equal to 3. More precisely, let for
some fixed field F and any graph &, A(G) be aclass of matrices over F, fitting G, such that
it contains a matrix of rank x(&). Define the fllowimg problem:

Name: RANK-3.

Input: A graph G.

Question: Does A(G) contain a matrix of rank 37
Then

Theorem 3.1 RANK-3 is NP-hard.

Proof: Consider the 3-Coloration problem, (3C), which is defined as follows:
Name: 3C.

Input: A graph G.
Question: Is x(G) < 37

It is proved in [4] (see also [3, 14]) that 3C is an NP-complete problem. We show that 3Cis
polynomially reducible to RANK-3.

Let G = (V, E) with vertex set V = {1,2,...,n} be the input I to the 3C-problem. First
we construct a graph f(I) such that f(I) is 3-colorable if and only if G is. Secondly we
prove that f(I) is 3-colorable if and only if A(f(I)) contains a rank-3 matrix fitting F().

In order to construct the graph f(I), introduce for each unordered pair of vertices from
G, i and j with ¢ < j say, four extra vertices a;j, bij, ¢i; and d;; and nine extra edges such
that these nine edges form the graph H;; as shown in Figure 1. So, apart from a possible
edge between i and j, H;; is the induced subgraph of f(I) on the vertices 1, , i, bij, ¢ij and
dij. So f(I) has |V| + 2n(n — 1) vertices and |E| + 2n(n — 1) edges.

Notice that there are essential two different valid 3-colorings of H;;, one with color classes
{{é,¢;},{aij» di;}, {bi;,7}} and one with color classes {{i,7},{aij, ci;}, {bij. bij } }, so for one
3-coloring 7 and j get different colors and for the other coloring and j are colored the same.
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il 00 x 00 t|*%°0 00 0 x|
a;; {0 * 00 %« 0 a;|0 % 0t %00
bij |00 + 0 0 %[ b;|0 0 %0 % 0.
cii[* 00 +°0°0| ¢;|0 % 0% 00]
dij{0 * 00 =0 dj|0=07%°0 % 0f .
F10°0 *"0 0 x| j[*°000°0 *f ,

Figti’ré?: "Thé 'tv‘v&'fy;se's"sof:fank:a ‘fmtﬁm fittingH;; -

It follows that f([) is 3-colorablé if arid \rsnly if G'is since a valid'3- cabring of f(I) induces a’
3-coloring of G and a 3-coloring of G czfn always be compléted to'a v“dhd 3-coloring for 'f(I): <’

It is an exercise to check that for any field-theré aréessentially dnly two different types: -
of matrices of rank 3 fitting H;; cotreapording to' the two dlfferenbf 3-colormgs of H;j." These
two types are shown in Figure 2 wheré’a * denotes a rion-zero field element. The first one-
correspondsto the coloring with color classés {{z, €5}, {ai;,di;}, {bij, j}} and the second one
to the coloring with color classes {{i,i}; {a,,,c,,} {b;,-;d;j}} The row ‘vectors of vertices -
from ‘the same ‘color class are scalar multlplm of each otheéf: -

Finally we show that f(I) is 3-colorable’if and only if .A( f(I)) contains a matrix of rank
3. First of all, by assumptiofl A(F(I)) ‘contalns a matrix'of Fank 3 if f(I) is 3-colorable. -
Now assume that there exists a rank-3 matrix, M say, fitting f(I). We prove that f(I) is
3-colorable as follows: Denote the 1- dimensional subspace of (M) spanned by the row vector
of vertex i by V.. We show that there'are only three different spaces V; inducing a 3-coloring
of G that can be completed to a 3-coloring of f(I).

Let for each i # j € {1,2,...,n} H; (]) be the 2-dimensional subspace of (M) spanned by
the row vectors of the vertices from H;; that are not in V;, then clearly ( V= V;®H;(j). For
any j different from i the coordinate corresponding to 7 of all vectors in H;(j) is zero, while
this coordinate is non-zero for each non-zero vector from V;. So H;(j) is the 2-dimensional-
subspace of (M) consisting of all vectors for which the' coordinate corresponding to vertex
i is zero. It follows that H; () is mdependent of j which defines for any ¢ a 2-dimensional-
subspace H; of( ).

Since for any two vertices i and j wé havé a subgraph H;;, the two 1-dimensional subspaces
V; and V; arethesamelfandonlylfH H; IfV;#V; then'V; C H; and V; C H;,s0if V; #
V then a.ll V;. different from V; and V; are in the1- dlmensmnal subspace H; ﬂH i, S0 there are
only three different V;’s. ‘ ]

édrl"(o'lla‘l:‘;}.zﬁlhTh‘e»RANK;f? problem is NP-complete for all the classes A;(G,F) (i =
1,2,3) with F a finite field.

ﬁemal:k 3.1 In [15] it is proved that RANK-3 is still NP-complete if restricted to planar
graphs or to planar unit disc graphs.

Remark 3.2 In [13] the authors remarked that "It seems to be difficult to find the smallest
dimension in which a given graph G has an orthonormal representation.” (in IR® provided
with the standard inner product). It follows from the above theorems that if the problem of
deciding whether or not a (planar) graph has an orthonormal representation in F* is in NP
(which is the case if F is finite), it is NP-complete.
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1 Prelude

Monday, February 1, 1988. This day was the first day of the first course for Ph. D. students
organized by the LNMB; it was also the first day of my ” AIO”-ship at the Department of
Mathematics at Maastricht University. Hence, one could say that a lustrum for the LNMB
marks at the same time a lustrum for myself as a researcher. Perhaps because of this I feel
somewhat attached to the LNMB and am grateful for this opportunity to contribute to the
lustrum book.

2 Introduction

The standard framework of worst-case analysis is usually as follows: imagine you’re given
this large instance (say 7) of a difficult (= A"P-hard) problem (say a minimization problem)
with not much time to solve it. So using some guidelines you think reasonable (the simple
heuristic H) you construct a feasible solution (H(Z)) with a certain cost (c(H(Z)). And
then, in some cases, one-can produce the following statement:

¢(H(Z)) <a-OPT(Z) for some a € R, forall I, (1)

where OPT(Z) denotes the optimal value associated to instance Z.

At very first sight, it may seem that magic was needed to produce such a statement: how
else can one say "for all 7" without enumerating all instances and running the heuristic on
it? Well, when you get down to it, magic is perhaps not the right word describing how such
a statement can be produced, but it sometimes feels that way when writing it down.

Let me spend a few words concerning terminology. The validity of (1) implies that o
is an upper bound for the worst-case ratio of the heuristic H with respect to the problem
considered. When, in addition to this, an instance Z can be exhibited for which the heuristic
actually delivers a solution with value a - OPT(Z), a can be called the worst-case ratio (or
the ratio for short).

Not surprisingly, this contribution deals with the worst-case analysis of a simple heuristic
for a difficult problem. In Section 3 I describe a certain k-dimensional assignment problem
and a heuristic, and I discuss the results known sofar (which are succinctly summarized in
the title). Section 4 introduces a basic observation, which is used in Section 5 to deduce,
for the special case k = 5, two inequalities and an LP-model. This model enables us to
construct, for the case k£ = 5, a tighter upper bound for the ratio than currently known.
Section 6 indicates that this approach can be generalized to arbitrary k.
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3 A difficult problem, a simple heuristic, and the re-
sults known sofar

3.1 A difficult problem

Let k¥ > 2 be an integer, and let K = {1,...,k}. Given is a complete k-partite graph
G = (V = ULV, E) with || = n for all I € K. I will sometimes refer to the vertices of a
set V; as vertices of color I. For each u € V;,v € V},1,j € K,i # j, there is a nonnegative
cost ¢,y € IR associated to the corresponding edge {u,v} € E. These costs are not arbitrary:
apart from being nonnegative, I assume that the so-called triangle inequality holds, that is:

CuytCow = Cuy for all u € V,,v € V;,w € V, and for all 7,5,1 € K,i # j,i # 1,5 # 1.(2)

Define a clique C C V as a set of vertices such that |[C NVj| =1 for all | € K. The cost of
a clique is defined as ¥, ,ec Cuv- The problem is now to find a partition of V into n disjoint
cliques C},...,C, such that the sum of the costs of the cliques is minimal. This problem
is called the k-dimensional assignment problem with clique costs (k-DAPC). Notice that for
k = 2 the problem boils down to an assignment problem.

3.2 A simple heuristic

Given a large instance of this problem with not much time to solve it, what can one do? An
idea is the following: specify a sequence of the k colors, and repeatedly assign the vertices of
color : to the sets of vertices consisting of vertices of colors 1,...,i—1,fori =2,...,k. The
total cost of assigning a particular vertex of color i to a particular set of vertices of colors
1,...,2—1 is taken to be the sum of the costs of the i — 1 edges between the vertex of color
i on the one hand, and each of the other : — 1 vertices on the other hand. So-the algorithm
consists of solving iteratively n — 1 assignment problems.

In order to describe this algorithm more formally, let V; = {vp,...,v,} for all l € K.
Here is the heuristic H*:

Step 1: Choose a sequence, say 1,2,...,k.
Step 2: Set P; = {v;} for j=1,...,n. Set I = 1.
Step 3: While ! < k do
i: Forall 4,5 =1,...,n, compute 6; = Zuep; Cwugn,-

ii: Find an optimal assignment A between the vertices of Vi4; and the partial
cliques P;, j =1,...,n with respect to the cost function é.

iii: Extend the partial cliques P; according to the assignment, that is for each
{P;,vi41:} € A set P;:= P; U {viy1,}.
ive i=14+1.
Step 4: The cliques are now formed by P; for j = 1,...,n. Stop.

3.3 The results known sofar

Two chapters of my thesis (Spieksma [3]) are devoted to (variants of) k-DAPC: Chapter 3,
co-authored with Yves Crama (published as [2]) shows that 3-DAPC is N'P-hard, presents
the heuristic H® and proves the second number in the title as the ratio for this heuristic
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applied to 3-DAPC. Chapter 4 of my thesis, co-authored with Hans-Jirgen Bandelt and
Yves Crama (published as [1]) presents the heuristic H* of Subsection 3.2, proves that 1k is
an upper bound for the ratio, (or in other words shows that:

o(H*) < %k - OPT for all k > 2), (3)

and proves that %2 is the ratio for 4-DAPC. For k > 5 it is unknown what the worst-case
ratio of H* with respect to k-DAPC is.

Let me add here that in [1] a heuristic is presented of polynomial complexity (albeit with
a larger complexity than H*) which achieves a ratio of 2 — % for all k > 2, thus a heuristic
with a worst-case ratio bounded by 2 for all £ > 2.

Finally, the reader may wonder whether there are practical applications which motivate
the study of this heuristic for &-DAPC with & > 5. The answer is no; not that I’m aware of.
The best reason I can give for looking into this is curiosity concerning the series 1,2, B
Where does it go, and is there perhaps a closed formula which describes these ratios? Perhaps
disappointingly, these questions will remain unanswered at the end of this contribution.

4 An observation

The following notation will be used. Given an instance of k-DAPC, let F' denote an optimal
solution, and let H denote a solution found by H*. Define for all 7,5 € K,i < j:

F;; .= {{u,v} | v € Vi, v € V;, u and v are contained in a clique from F},

F
dij = E Cyv),
{HN}EF-‘;

H;; := {{u,v} |u €V, ve YV, uand v are contained in a clique from H}, and
H . _
dj; == Z Cyy-

More generally, given a solution S to k-DAPC, let for all ¢,5 € K,i < j:

Sij == {{u,v} |u €V, v €V, uand v are contained in a clique from S}, and

S
dj= 3 cu.
{u,v}€S;;

Also, I use:
i-1
de ;= Zdivi foralli=2,...,k.

i=1

A crucial observation for the analysis which follows is the following one. Consider solution
H found by the heuristic H*. Given H, let us construct an alternative solution as follows.
Choose a color 7,7 < k. Reassign the vertices of V; to the partial cliques according to how
in an optimal solution to this instance of k-DAPC the vertices of V; and V; are matched
together. Call this solution S. Due to the fact that the heuristic finds an optimal matching
between Vi and the partial cliques, we have the following inequality:
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c(HYY=df,+d+ .. +df, <dll,+d +.. . +dl,_ +d5,.
Since d, = df, by construction, and since dj, < dﬁ + df, for all j # i by the triangle
inequalities (2), we obtain the following observation:
Observation:

cHYY <dfy+d + . +d +d d 4+ dl (k- 1)dE, (4)
foralli=1,...,k—1.

5 The case k=5

This section consists of three subsections. In each of the first two, an inequality is deduced.
In the final subsection I use these inequalities in an LP-model to obtain a tighter upperbound
than predicted by (3) for the case k = 5.

5.1 Inequality 1

Lemma 1 o(H®) < 4d%, + 3(dF, + dF,) + 6d5, + 4d%;.
Proof:
We can derive this inequality as follows. Obviously:
o(H®) = d, + dfy + af, + dli;. (5)
Now consider iteratively each of the following inequalities, substitute it in (5), and proceed:
1: df, < d¥, +4dk;.
This follows from Inequality (4) with k =5 and 7 = 4.
2: 24¥, < 2d%; + 6d%,.
This follows from Inequality (4) with k =4 and i = 3.
3 3
3: §d§3 < 5df’_2 + 3d%,.
This follows from Inequality (4) with £k =3 and 7 = 2.
3 3
4: §d§3 < Ed?ﬂ + 345,
This follows from Inequaltity (4) with k=3 and ¢ = 1.
5: 4d¥, < 4df,.
Trivial.
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5.2 Inequality 2

46 23 4 4
Lemma 2  o(H®) < Sdiy + (i + dig) + 3(diy + dzy + d3a) + 3(dis + i + dg).
Proof:
As before we can derive this inequality as follows. Obviously:
c(H®) = d¥, + df; + df, + d¥. (6)

Now consider iteratively each of the following inequalities, substitute it in (6), and proceed:

4 1 2
1: dfls < g(alf5 +dfs + df) + 5d{’_4 + 5(«1{{3 +df).
This follows by summing Inequality (4) with k = 5 for ¢ = 1,2, 3, and dividing it by 3.
4 4 8
2 gdf{4 < §df:4 + 5(‘1{{3 +dlh).
This follows by summing Inequality (4) with k = 4 for ¢ = 1, 2,3, and dividing it by 3.
23 23
3: 3df{,, < g(df,2 +dfy).
This follows by summing Inequality (4) with £ = 3 for ¢ = 1 and 2, and dividing it by
2.
4: ?gdf{z < %}-df 2¢
Trivial.

[m]

5.3 An LP-model

How to use the two inequalities from Lemma’s 1 and 2 from the previous subsections to obtain
a better upperbound for the ratio than 5/2 as predicted by (3)? I am going to construct a
linear combination of these two inequalities and next, using the triangle inequalities df;- <
df + df; for i,5,1 = 1,...,5 (which hold due to inequalities (2)), I intend to minimize
the largest coeffficient of some df‘; term. Obviously, the largest coeflicient in the resulting
inequality determines an upper bound for the ratio. The problem of minimizing the largest
coefficient can be casted into an LP-framework in the following way. Consider the following
decision variables:

o z;: coeflicient of dﬁ in resulting inequality; ¢,7 = 1,...,5, ¢ < j,

o z;;: coefficient of triangle inequality df';- < df';+df;j fori,j,l=1,...,5, i <j,l#4,l#
Js

e o;: coeflicient of inequality of Lemma 1, and

e ay: coefficient of inequality of Lemma 2.

Here is the LP-model called LP-5-DAPC:
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(LP — 5~ DAPC) minimize w

subject to
46
213 =4y + ?012 — T123 — T124 — T125 + T132 + T142 + T1s2 + T231 + Toa1 + T2s1, U]
23
213 = 30y + ‘é‘az — T332 — T134 — Z135 + Z123 + T143 + 153 + To31 + Taa + Tas1, (8)
4
714 = 302 — T2 ~ T143 ~ T1as + Z124 + ZT134 + T154 + Toa1 + Taa + Tas1s 9
4
215 = 5012 — T152 — T153 — T154 + T125 + T135 + T145 + Tas1 + T3s1 + Tas1, (10)
23
223 = 3oy + ?0‘2 — Ty31 — Taa4 — Ta3s + T123 + T132 + To43 + Tosa + Tagz + Tasz,  (11)
4
24 = 50!2 — Taq1 — T243 — T245 + T124 + T142 + Ta34 + T2s4 + Taaz + Tys2, (12)
4
%25 = 302 = To51 T9s3 — Tasa + T125 + T1s2 + T23s + Taas + Tasz + Tas2, (13)
4
234 = 6oy + 502 — Taq1 — T342 — T345 + T134 + T143 + T234 + T243 + T354 + Tass, (14)
4
235 = 502 — Z351 — T3s2 — T3s4 + T135 + T153 + T23s + T2s3 + T345 + T4s3, (15)
245 = 40y — Z451 — Tys2 — Tas3 + T1as + Tisa + Taas + Tasg + Tass + Tasa, - (16)

w>zj; foralli,j=1,...,5i<j,
a; +ay =1, and
all variables > 0.

An explanation of the constraints of LP-5-DAPC is as follows. Consider equality (7). In this
equality the coefficient of df, in the final inequality (212) is determined. Now, obviously 212
must be equal to the linear combination of the inequalities of Lemma’s 1 and 2 restricted to
the term dF, (4a; + %az) plus a term which indicates the "usage” of triangle inequalities in
which dF, occurs. There are three triangle inequalities with d¥, appearing on the left-hand
side, namely df, < df, + df,, df, < df, + d5, and df, < dfy + d5;, so the corresponding
z-variables have coefficient -1, and there are six triangle inequalities with df, appearing on
the right-hand side (this is easily verified), so the corresponding z-variables have coefficient
1. In fact, each of the equalities (8)-(16) can be explained in a similar way. The remaining
constraints of LP-5-DPAC are straightforward.

Solving this model yields w = 2.301471 and hence the following statement can be pro-
duced (cf. (1))

c(H®) < 2.301471 - OPT(Z) for all T.

Notice that the upperbound for the ratio of H® with respect to 5-DAPC has decreased from
2.5 (see Inequality (3)) to 2.301471.
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6 Discussion

My approach has focused exclusively on 5-DAPC. In order to generalize this approach to
other values of k, one should be able to generalize the inequalities deduced in Lemma’s 1 and
2. It turns out that this is possible, however, it seems out of the scope of this contribution
to state these inequalities and prove their validity for general k. However, I couldn’t resist
constructing the corresponding LP’s for £ = 6 and 7 and solve them. It turned out that in
each case there was an improvement (compared to (3)) of the upperbound for the ratio. So
here is a table with the current best upper bounds for ratio’s of heuristic H* for k-DAPC
for k = 5,6 and 7.

k-DAPC | Upper bound for ratio
k=5 2.301471
=6 2.699225
k=17 3.062519
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Abstract
This paper gives an overview of the contributions of young Dutch researchers to the field
of stochastic operations research in the last decade. In particular, the contributions to
the area of queueing, reliability and Markovian control are reviewed.

1 Introduction

Stochastic Operations Research has gone the last ten years through a flourishing-period
of activity. In the last decade many significant contributions to the field have been made
by several applied probability groups in the Netherlands. As has been recognized by the
international research community in stochastic operations research, the scope of the influence
of the Dutch contributions exceeds by far the size of the country. Partly this succes can be
explained by the stimulating environment of cooperation between the several research groups.
Cooperation that is reflected as well in the joint teaching program for PhD students in the
LNMB. The purpose of this paper is to present a review of the main contributions made in
the last ten years by junior researchers of the LNMB to the field of the stochastic operations
research. The review will concentrate on contributions in the following areas:

a. Queueing
b. Reliability and Maintenance
c. Markov Decision Processes.

In each of these areas important contributions have been made by young Dutch researchers.

2 Queueing

The application of the mathematical theory of queues to performance analysis of practical
problems has been much hampered by the computational untractability of the analytical
results. However, since the early 1980’s much progress has been made to the development
of generally applicable and computationally tractable algorithms. Most of the algorithmic
breakthroughs deal with multi-dimensional queueing processes. Such processes naturally
arise in modern applications in computer, telecommunication and flexible manufacturing
systems.
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2.1 Product-form solutions

An important contribution of queueing network theory is that, under certain conditions, it is
possible to obtain a simple exact solution for the joint distribution of the queue lengths at the
various nodes in the form of a product-form solution. Important new insights in the product-
form theory are provided by the studies of Boucherie (1992) and Smeitink (1992), where the
first study also deals with product-form networks with positive and negative customers.
The latter product-form networks have recently gained much interest in the performance
analysis of reource request and allocation models. In general an obstacle for the practical
application of product-form theory remains the computation of the normalization constant
in the product-form solution because of the huge number of the states involved. Tractable
algorithms for the computation of the normalization constant can only be given for special
cases.

2.2 Compensation approach

The compensation approach has been developed by Adan (1991) for a class of two-dimensional,
homogeneous random walks on the integer grid in the positive quadrant of the plane, where
transitions to the north, north-east and east are not allowed. The development of this
approach was motivated by the famous shortest-queue problem. The main idea of the com-
pensation approach is

(a) characterize a set of product-form solutions which satisfy the equilibrium equations for
the interior states

(b) try to construct a linear combination of these product-form solutions such that the
equilibrium equations for the boundary states are also satisfied.

In addition to the shortest-queue problem, the compensation approach has been successfully
applied to other problems as well including the multi-programming queue and the 2 x 2
clocked buffered switch of an interconnection network. In Van Houtum (1994) the compen-
sation approach has been generalized to multi-dimensional random walks.

2.3 Power-series algorithm

The power-series algorithm is another numerical approach that can be used for multi-
dimensional random walks, but its scope of application is actually much wider. The method
was first developed by Hooghiemstra et al (1986) and later expanded by Blanc (1993) and
his PhD students Van der Mei (1995) and Van den Hout (1996). It is based on power-series
expansions of the state probabilities in terms of some parameter, usually the load of the sys-
tem in queueing applications. The coefficients of the powet-series expansions are computed
by a recursive scheme. The power-series algorithm is a flexible method which is applicable
to a wide class of multi-dimensional queueing systems including polling systems. In polling
models several users compete for service by a single server who switches from one queue to
another in order to provide service. This is a rich class of models having many practical
applications. Many new insightful results for polling-systems are obtained in the studies
of Groenendijk (1990) and Borst (1994). In addittion to polling models other examples of
models to which the power-series algorithm can be applied include load-balancing models,
coupled-processor models and parallel-processor models. The power-series algorithm works
quite well for these multi-dimensional queueing models. However, in general convergence
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properties and error estimates of the algorithm are still unknown. An interesting extension
of the power-series algorithm to controlled Markov chains is given by Passchier (1996) who
applied the algorithm to a controlled tandem queue amongst others.

2.4 Geometric-tail approach

The compensation approach and the power-series approach both have the nice feature that
an infinite state space need not be truncated by brute-force. In practical applications brute-
force truncations usually lead to very large state spaces and thus to very large computing
times. Another approach that avoids brute-force truncation is the geometric-tail approach
advocated in Tijms (1994). This approach has been successfully applied in the studies
of Gouweleeuw (1996) and Van Eenige (1996) to a variety of discrete-time queueing sys-
tems. The geometric-tail approach was developed for one-dimensional infinite-state Markov
chains. This simpleminded approach reduces the infinite set of equilibrium equations to a
finite but small system of linear equations by using the geometric tail behaviour (if any) of
the state probabilities. As a consequence of this tail behaviour, the numerical analysis of
finite-capacity queues is sometimes easier through the analysis of the corresponding infinite-
capacity queue when a proportionality relation holds between the state probabilities in the
finite-capacity and infinite-capacity models, see Gouweleeuw (1996). The geometric-tail ap-
proach can sometimes also be applied to two-dimensional Markov chains whose state space is
a semi-infinite strip in the plane and whose one-step transition probabilities satisfy a certain
homogeneity condition. Then, by basic result from the theory of linear difference equations,
the state probabilities of the interior states can be written as a finite linear combination
of geometric distributions. The characterization of the state probabilities by Adan (1991)
in his compensation approach is a natural extension of this result. In the two-dimensional
model of the compensation approach both state variables are unbounded.

2.5 Large-deviations technique

It is only recently that the technique of large deviations has become an important tool to
analyse queueing systems. The technique is used to estimate very small probabilities of
"rare” events such as packet-loss in high-speed networks. The method finds expressions
for rare event probabilities in queueing models which are the basis for the development of
algorithms for executing quick simulation. The main idea of the approach is

(a) from large deviations the statistical behaviour of the system leading to the rare event
is derived

(b) a twisted probability model of the system is constructed such that the rare event
becomes most likely, and

(c) analytical verification that the variance reduction obtained in the simulation is asymp-
totically optimal.

Important contributions to rare event analysis and quick simulation for communication net-
works have been made in the study of Mandjes (1996). The contributions include rare
event analysis for large communication systems with general Markov fluid sources, buffer
and bandwidth allocation in ATM networks and call blocking in ATM networks. Similar
models stemming from telecommunication applications were analysed in Awater (1994) by
using more classical methods such as eigenvalue analysis.
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2.6 Complex-function methods

Techniques from complex function theory have been used: for a long time to obtain ana-
lytical results for queueing systems. These results are often in the form of transforms. It
is widely recognized that the transforms are useful to do asymptotic analysis, but it was
believed for a long time that the transforms are not useful for calculating numerical: values.
The conventional wisdom has been: that computation of complex roots and: the inversion of
Laplace transforms are difficult and numerically. ill-posed: problems. However the studies
of Regterschot (1986), De Klein (1988): and: Van. Ommeren: (1989) show that for a broad
class of queueing systems solution techniques from complex function theory such as Wiener-
Hopf factorization lead to efficient and' numerically stable algorithms. Amongst others the
Wiener Hopf technique can be successfully used to solve the versatile single-server queueing
model with Markov modulated arrivals. That model is frequently used in telecommunication
applications. Many instances of the usefulness of numerical inversion. methods for solving
queueing systems are given in Gouweleeuw (1996).

3 Reliability and Maintenance

In the past numerous papers have appeared on reliability and availability analysis of re-
pairable systems with standby redundancy. Nearly all' of these papers dealt with steady-
state availability, that is, the long-run fraction of time the system is available. Hardly any
attention was paid to interval availability, that is, the probability distribution of the avail-
ability of the system over a given but finite period of time. Transient availability analysis
is: very important for practical applications, e.g. computer systems are sold with a gauran-
teed: availability over a limited period: of time and oil and gas contracts guarantee minimum
levels of oil and gas deliveries over a certain period of time. Recently, practically useful
approximations for interval availability distributions have been. obtained in the studies of
Van der Heijden (1992) and Smith (1997). The results obtained for the k-out-of-n model
with cold or hot standby do not involve the ususal assumption of exponentially distributed
life times and repair times. The approximations in Smith (1997) have the nice feature that
the computation times do not explode when k and n increase.

Besides the performance analysis of reliability systems there has been done quite some
research in recent years on maintenance optimization models with multiple components.
Cleazly, maintenance has a strong impact on reliability. Apart from improving system per-
formance by preventive maintenance, considerable cost reductions can be achieved when
preventive actions are made. Optimal decision rules and heuristic rules for the maintenance
of various multi-component systems, have been developed in the studies Smeitink (1992),
Vanneste (1992) and Wildeman (1996). An important model in the study of Smeitink (1992)
is the model for ranking of maintenance activities in multi-component systems when there
is only a limited opportunity for doing preventive maintenance. The studies of Vanneste
(1992) and Wildeman (1996) deal amongst others with a maintenance model for coordinat-
ing maintenance activities and use Markov decision theory to obtain (sub)optimal rules for
this model.

4 Markov Decision Processes

In the past decade there has been an impressive continuation of the research in the fields of
Markov decision processes (MDP). The theoretical aspects of MDP are continuously stim-
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ulated by new practical applications such as in the field of telecommunication and mainte-
nance optimization. Markov decision methods were used in the studies of Vanneste (1992)
and Awater (1994) to develop algorithms for specific applications in these fields. However,
fundamental contributions to the theory of MDP were also made in the last decade. Con-
trolled queueing models are particularly suited for showing MDP results. In the study of
Spieksma (1990) new results are obtained for establishing the optimality of threshold policies
in a variety of queueing systems with constrained admission control. In addition this study
deals with the fundamental problem of ergodicity conditions in multi-dimension Markov
chains with a view towards applications in queueing networks. The thesis of Koole (1992) is
mainly concerned with scheduling problems of queues: to which servers should customers be
assigned and to which queues should servers be assigned? Using dynamic programming the
solution of an optimal control rule is established for a variety of queueing models including
the practically important model with Markov driven arrivals. A relatively new development
in Markov decision theory is the study of problems with partial information. Again such
models are inspired by design problems in telecommunication. Contrary to MDP with full
information, little is known about the existence and the form of optimal control rules. In
the thesis of Loeve (1994) this question is addressed, where in particular much attention is
paid to the so-called periodic policies for which the same decision prescription returns pe-
riodically. The thesis of Loeve (1994) also develops algorithms to compute optimal control
rules and applies these algorithms to a variety of queueing models with partial information
or decentralized control. Such models are becoming increasingly important in real-world
applications. Undoubtedly, much further research on Markov decision models with partial
information or decentralized control will be seen in the future.
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Abstract

We study the receiving part (RIWU) of an interworking unit between ATM and DQDB
networks carrying traffic in the direction ATM-to-DQDB. For connectionless (CL) traf-
fic, two operating modes are possible: cell-to-slot interworking and frame interworking.
Models are developed for the buffer occupancy in both of these modes, specifically tak-
ing into account the variable service rate available to the RIWU due to other traffic
on the DQDB bus. In the cell-to-slot mode, the CL part of the RIWU is modelled as
a fluid buffer with Markov modulated input and service processes roughly describing
the burstiness of the cell arrival process and variations in the available bus capacity. In
the frame interworking mode, we consider separately the read-in and read-out stages
of the RIWU, the main emphasis lying in the read-out stage. The bandwidth sharing
of the DQDB bus is described by a head-of-line processor sharing (PS-HOL) discipline.
The models are used for the numerical studies of the buffer size required to guarantee
a given maximum allowed loss probability.

1 Introduction

We consider the network scenario depicted in Fig. 1 where ATM and DQDB networks are
connected by an interworking unit (IWU). Such an IWU has been designed and implemented
by the RACE 2032 project COMBINE. The IWU consists of two unidirectional (DQDB-to-
ATM and ATM-to-DQDB) parts called the sending and the receiving interworking unit
(SIWU and RIWU), respectively. This paper concerns modelling of the operation of the
RIWU for connectionless (CL) traffic. Problems related to the SIWU have been covered
e.g. in [1]. Results of both of these studies have been presented in a COMBINE deliverable
2]

On the ATM side, the CL traffic is carried in a separate CL overlay network set up using
semipermanent virtual paths (VP) as its links and CL servers (CLS) as its nodes. There are
several incoming VPs connected to the CLS but only one between the CLS and the RIWU.

On the DQDB side, there are several stations connected to the buses (one for each
direction), the RIWU being one of them. The other stations generate background traffic
sharing the bandwidth of the bus with the traffic from the RIWU, according to the DQDB
queue arbitrated (QA) access mechanism. The access delay for CL cells (segments) is not
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Figure 1: Physical model of a CL-network over ATM interconnected to a DQDB network
through a RIWU.

guaranteed due to fluctuations in the number of requests for transmission from other DQDB
stations.

On the frame level, the service rate as seen by the RIWU is variable. A buffer in the RIWU
is required to accommodate incoming CL traffic bursts to the stochastically varying available
bus capacity. Specifically, our aim in this paper is to analyse the content distribution of the
RIWU bufler for dimensioning purposes. The interworking of CL traffic can be realized in
two different modes: in cell-to-slot interworking ATM cells are directly converted to DQDB
segments and in frame interworking full frames are first reassembled in the RIWU before
being again segmented and forwarded to the DQDB. We develop models for both of these
modes. An important feature in these models is that they take into account the variable
service rate available to the RIWU on the DQDB bus, due to the bandwidth sharing with all
other sources using the same bus. We do not explicitly consider the influence of connection
oriented (CO) traffic on the handling of CL traffic. This influence can be approximately
taken into account by subtracting the rate of CO traffic from the speed of the DQDB bus.
The models for the two interworking modes will be presented and analysed separately in
sections 2 and 3. '

Main conclusions are given in section 4.

2 Cell-to-Slot RIWU
2.1 Model description

In cell-to-slot interworking the RIWU receives cells from the ATM network and puts these
cells on the DQDB-bus, according to the DQDB QA access mechanism. The cell stream is
modulated by the frame arrival process. Thus, on the frame level, it is natural to model
the RIWU as a fluid buffer with Markov modulated input and service rates. The modulated
service rate models the non-constant capacity of the DQDB-bus available for the RIWU.
During periods in which the arrival rate is larger than the service rate, cells (“fluid”) can be
buffered. The capacity of the buffer is finite and will be denoted by B. Cells that cannot be
buffered, due to lack of buffer space, are lost. Now, the problem is to find, for given input
and service parameters, the minimal buffer size B such that the cell loss probability is less
than a certain value Pj,g,.

To get a manageable (but still useful) model we assume that both the input and service
processes are of on-off type. The choice of on-off arrivals is reasonable when frames arrive
at the RIWU with fixed rate on a single incoming VP. The unit of time is chosen such that,
in the on-state, the arrival rate is equal to 1. The service rate (in the on-state) is denoted
by c¢. This parameter is also called slow-down factor.
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In addition, the lengths of the off and on states of the arrival (service) process are assumed
to be exponentially distributed with means 1/A; (1/)A;) and 1/p; (1/p2), respectively. The
parameters of the service process, A\, and u,, are specifically chosen to account for the
influence of the background load on the RIWU. The choice is based on the assumption that,
on the frame level, a DQDB bus with many stations operates according to the Processor
Sharing (PS) discipline (see subsection 3.2). More precisely, the mean and the squared
coefficient of variation of the time to serve a frame are chosen to be equal to the corresponding
quantities in the PS queue. For a background load ps, the mean and the squared coefficient
of variation of the service time in the PS queue are given by (L/C)/(1 — pss) and (2 +
Pbg)/ (2 — pog), respectively, see e.g. [3]. Here L/C is the service time of a frame with average
size L at full bus rate C (available to the CL traffic). The analysis in the next subsection,
however, holds for general service parameters Ay, .

2.2 Analysis

We follow closely the analysis of a similar model of a two-stage production line given in [4].
Describe the state of the system by the triple (a, b, z), with a the state of the arrival process
(a = 0 means “off”, a = 1 means “on”), b the state of the service process (b = 0 means
“off”, b = 1 means “on”) and z the buffer occupancy. Now, we consider the behaviour of the
system during a regeneration cycle with the regeneration points defined as the entrances in
state (0,1,0). Let Pr be the expected number of cells transmitted on the DQDB-bus during
a regeneration cycle and T the expected cycle length. Then the cell loss probability P,s is
given by:
Pr/T
A/ (A + )’

where Pr/T is the throughput and A /(A; + p) is the offered traffic.

In fact Pr and T can be seen as costs per cycle. Define a(z), 8(z), v(z) and d(z) as the
costs per unit of time in state (1,0,z), (0,1,z), (0,0,z) and (1,1, z), respectively. Then, if
a(z) = B(z) = v(z) = é(z) =1, for 0 < z < B, the expected cost per cycle is equal to T.
If a(z) = v(z) = 0 and B(z) = 6(z) = ¢, for 0 < z < B, and a(0) = B(0) = v(0) = 0,
4(0) = min(1, ¢), then the expected cost per cycle is equal to Pr.

To derive the expected cost per cycle, Cr, we introduce the functions f(-), g(-), h(-) and
[(-) as follows. Let f(z) be the expected cost until the end of the cycle if the system is in
state (1,0,z), 0 < = < B. The functions g(z), h(z), l(z) are defined analogously for the
case that the system is in state (0,1,z), (0,0, z), (1,1, z), respectively. Now, the expected
cost per cycle can be written as

6(0) Mo A
=20 4B o)+
T AL+ p2 AL+ p2 ©) A

Ppss = 1 (1)

1

1(0). 2
S10) @
To determine the functions f, g, h and [ divide the costs into the costs during the first small
time interval A and the costs during the rest of the cycle, and let A — 0. This leads to the
following set of differential equations:

=f(@) = a(@)—- Ao+ m)f(z) + mh(z) + Xl(z), 0<z<B, (3
cg'(z) = B(z) = (M + p2)g(z) + p2h(z) + Ail(z), 0<z<B, (4)

0 = (z) = (M + A)h(z) + A f(T) + Aag(z), 0<z< B, (5)
(c=1l(z) = 8(z) = (1 + p2)l(z) + tg(z) + p2f(z), 0<z<B. (6)
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The boundary conditions obtained from (3), (4) and (6) are, respectively,

0 = a(B)~ (A2 +m)f(B) + mh(B) + Xl(B), ()
0 = g(0), (8)
0 = &(B) ~ (m+p2)l(B) + mg(B) + p2f(B), c<1, 9)
0 = 6(0) = (m + p2)l(0) + p1g(0) + p2f(0), c=1. (10)

Substitution of (5) into (3) and (4) leads, together with (6), to a set of three first order linear
differential equations in the functions f, g and ! with boundary conditions (7), (8) and (9)
or (10). Assuming c # 1, this set can be written in matrix form as

f(@) = c(z) + Af(2), (11)

where f(z) := (f(z),9(z),l(z))T and f'(z) := (f'(z),¢'(z),"(z))7. The matrix A and the
vector ¢(z) are given by

Aap daps
A2 + /\1:-;2 —)\1:-;2 —X
A 4 A A
A = —ll; )&114-;2 —-% (/\1 + )ql+§2) _t;L ? (12)
B2 ou _ (patp2)
c-1 c—-1 c—1
T
c(z) = (~a(z) - 25 (), 1(B@)+:257(2), E6(@) (13)

The special case ¢ = 1 can be shown (see [4]) to reduce to the solution of a simple first order
linear differential equation and will not be considered here.

The general solution of the homogeneous equation (cf. (11)) is given by C\e; + Cyeze”?* +
Csese”®, where the p; and e; (i = 1,2,3) are the different eigenvalues and corresponding
eigenvectors of the matrix A and the C; are arbitrary constants (note that p; = 0 # po, p3
and e; = (1, 1, 1)T). In the special case »\—1’\4'}:3 = c;‘—z—’f‘—‘; the eigenvalues p, and p; are
degenerate (equal). We shall not consider this case here; more about the analysis of this
case can be found in [4].

For the cases a(z) = 8(z) = y(z) = §(z) = 1 (to determine T) and a(z) = v(z) = 0,
B(z) = 6(z) = c¢ (to determine Pr) ¢(z) is independent of z. So, the solution of the
inhomogeneous equation (cf. (11)) can be obtained in a standard way by using the solution
of the homogeneous equation and the boundary conditions (7), (8) and (9) or (10).

2.3 Results on buffer dimensioning

The analysis of the fluid flow model described in the previous section yields explicit results
for the overflow probability P, for a given buffer capacity B. We have determined the
allowed normalized load fo = po/(1 — psy) of the RIWU (pg is the partial load) as a function
of the buffer capacity for a predefined loss level P,,;, = 107%. (Note that in this section
we are dealing with cell loss probabilities; the corresponding frame loss probabilities will be
larger, but in general they will be of the same order of magnitude). We have investigated
the influence of the slow-down factor ¢ and the background load py,. Fig. 2 contains results
for four cases which correspond to background load p,, = 0, 0.6 and slow-down factor
¢ = 0.1, 0.8. The results show a knee in the curves at gy = 0.6 — 0.7, i.e. a load up to 60
or 70 percent can be achieved with relatively small buffers, but from that point on little can
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Allowed load vs. buffer size
| "

Figure 2: Allowed load at P, = 10~* as a function of the buffer size in the CL part of the
cell-to-slot RIWTU.

be gained with adding extra buffer space (note that this does not hold for the “optimistic”
case with pyg = 0 and ¢ = 0.8).

Further, it is seen from the results in Fig. 2 that for a large slow-down factor (¢ = 0.8) the
influence of the background load on the results is relatively large: the buffer space required
to allow a load of 0.7 increases from 4 for the case with pyy = 0 to 24 for the case py, = 0.6.
For the case ¢ = 0.1 this influence is much smaller, but still considerable: for allowed load 0.7
the required buffer space for p,, = 0, 0.6 is 23 and 36, respectively. From the typical knee
in the curves in Fig. 2 we conclude first that in general there is no sense in trying to achieve
higher allowed loads than 0.7. Further, it is concluded that it is hardly possible to choose
a (generally) proper value for the buffer space in the RIWU without further specifications
w.r.t. the background load and the slow-down factor. However, as a small slow-down factor
represents the worst case and a background load of p,y = 0.6 on the DQDB network seems
to be reasonable. it is recommended to choose the buffer size around 25-30 frames. With a
mean frame length of 1500 bytes this is equivalent to 45 kbytes.

2.4 Further considerations

As we concluded from the numerical results, the required buffer space depends considerably
on the slow-down factor ¢. This slow-down factor is mainly determined by the sum of the
rates of the incoming VPs and the total rate of the CO traffic (the latter rate is subtracted
from the DQDB-bus speed; hence it determines the maximum rate available for CL traffic).
At this moment it is not clear what the practical values are. At least it seems that a slow
down factor of less than 1 is rather conservative.

In our model we made the assumption that frames arrive as separate cell bursts (the
“on-periods”) with exponentially distributed intervals (the “off-periods”). In practice a cell
burst may consist of several (interleaved) frames and frames may arrive in parallel when the
RIWTU has two or more incoming VPs for CL traffic. In these cases more buffer space is
required (in fact the required buffer space is linear in the mean number of frames contained
in a single burst).
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3 Frame RIWU

In the frame interworking mode, the buffer of the RIWU consists logically of two separate
stages, the read-in stage and the read-out stage. Physically, though, there is only a single
buffer. Its content distribution can be calculated as the sum of the contents of the read-in
and the read-out stages, which are approximately independent, cf. 1].

Our goal is to obtain the required buffer size of the RIWU such that the probability of
frame loss, P, is smaller than 107, It depends, among other things, on the type of CLS,
i.e. whether the CLS has buffers and the frames are reassembled in it or not. It also depends
on the way memory is organised in the RIWU. The basic alternatives are static, dynamic
and fully dynamic memory allocations, corresponding to a fixed maximum frame length
reservation for each frame, reservation according to the actual frame size and reservation
and release of memory as the cells flow in and out (cf. [1, 2]).

First we briefly present the results for the content distribution of the read-in stage,
which rely on standard queueing theory and new results for the distribution of the amount of
required work in the M/M/1 processor sharing queue. The emphasis of this section, however,
is on the results for the content distribution of the read-out stage taking the background
load on the DQDB network into account. Finally we combine these results to obtain the
required total buffer size including both stages.

3.1 Analysis of read-in stage

We assume that over each path to the CLS frames arrive according to a Poisson process and
that the total arrival rate of frames destined for the RIWU is A. Further, all lengths of all
frames coming to the CLS are exponentially distributed with mean L. Let p"? denote the
load on the output VP of the CLS, i.e.

AL
vp _ AL
4 =t

where C,y; denotes the capacity (speed) of the VP between the CLS and the RIWU. Besides
the load p"* and the memory organisation, the content distribution of the read-in stage de-
pends on the characteristics of the CLS. We will consider two cases: a CLS with (practically)
no buffers and no reassembly of frames and a CLS with buffers which reassembles frames
before forwarding them to the RIWU.

(14)

CLS without buffers and no reassembly of frames. In this case the frames are transmitted
on the output VP in parallel (interleaved). Since the CLS has (virtually) no buffers, it must
send out frames at the same speed as it receives them. Thus, assuming that all frames arrive
at the same speed Cj,, at most m = C,y;/Cip, frames can be sent out simultaneously. In this
case the distribution p'™ of the number of frames in the read-in phase at the RIWU equals
the distribution of the number of frames in an M/M/m/m queue (representing the output
buffer of the CLS) with arrival rate A and mean service time L/C;,. Due to the fact that
frames are sent out independently of each other, the content distribution of the read-in stage
for the three different memory organisations can be directly obtained from p™.

CLS with frame buffering and reassembly. Next we consider the case of a CLS with buffers
which reassembles frames. Now the number of frames which are in the read-in phase at the
RIWU depends on the service strategy of the output buffer of the CLS. Extreme cases are
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FIFO and PS disciplines. In the former there is at most one frame in the read-in phase,
namely the one that is being sent by the CLS. In the latter all frames at the CLS that
are destined to the RIWU are being transmitted simultaneously and thus are in the read-in
phase at the RIWU.

We only consider the PS case (the FIFO case being trivial). The distribution p™™ of the
number of frames in the read-in phase at the RIWU now equals the distribution of the number
of frames in an M/M/1 processor sharing queue with load p** given by (14). The content
distribution of the read-in stage for the static memory organisation can be obtained directly
from p™. The content distribution for the dynamic (fully dynamic) memory organisation
corresponds to the distribution of the total amount of required work (finished work) in the
M/M/1 processor sharing queue. Explicit expressions for these distributions are derived in
[2] (Vol 11, Appendix D).

3.2 Analysis of read-out stage

To model the read-out stage, the QA access mechanism of the DQDB bus is assumed to
approximate (on the frame level) an ideal head-of-line processor sharing (PS-HOL) discipline
described e.g. in [5, 6]. If n stations are transmitting simultaneously, each of them gets one
nth of the total bus capacity C (available to the CL traffic). The discrete time version
of the model has been used in [7] to study mean packet delays in a symmetrically loaded
multi-priority DQDB system.

Let us call the RIWU station 0 and denote the number of other stations by N. We assume
that frames enter the output buffer of the RIWU according to a Poisson process with rate
Ao and that the other stations together generate frames according to a Poisson process with
rate Ay, (background traffic). The lengths of all frames are exponentially distributed with
mean L. As before, we denote the load generated by the RIWU and the other stations by
po = AoL/C and pyy = Ay L/C, respectively, and the total load by pt = po + pse- Further,
let p%* denote the steady state distribution of the number of frames, K, in the read-out
stage at the RIWU in a system with IV other stations.

The total number of frames in the whole DQDB system behaves clearly as in an ordinary
M/M/1 queue: the stationary distribution is geometric with parameter p;;. In addition, the
number of frames at each of the N + 1 stations obviously constitute a (N + 1)-dimensional
Markov process. Unfortunately, there seems to be no closed form solution for the station-
ary probabilities even in the simplest case N = 1 and py = py,. For any finite value of
N the distribution p3¥* can, in principle, be obtained by numerically solving the forward
Kolmogorov equations of the Markov process but the computational complexity becomes
large when N > 1. However, in the case N = oo the state of the system is described by the
number of frames at the RIWU and the total number of background frames, resulting in a
two-dimensional Markov process.

Using successive overrelaxation (see e.g. [8]) we were able to obtain p¢*t and p%. The
content distribution of the read-out stage for the different memory organisations can be
easily obtained from p°t.

Worst case considerations. Before presenting the numerical results we wish to deduce the
worst case background traffic conditions for the read-out buffer content with respect to the
number of other stations, the distribution of the background load among these stations and
the level of the background load.

First, one can easily show that, for given values po and pyy and a symmetric distribution
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of the background load over the other stations, p%* is smaller in distribution than p*, for all
N 2> 0. Thus, assuming an infinite number of other stations represents a worst case scenario
for the loss probability in the RIWU. Note that the assumption of an infinite number of
other stations implies that the transmission of each background frame starts immediately
on the DQDB network and that p2* does not depend on the distribution of the background
load over the other stations.

Second, one may ask how a given total background load ps4 should be distributed among
a finite number, N, of background stations to get highest losses. By heuristic arguments one
can deduce that a symmetrically loaded system is worst in this sense. In fact, an asymmetric
load is roughly equivalent to a symmetrical load with a reduced number of background
stations. For instance, the extreme case where the background load is concentrated on a
single station is precisely the symmetric case with N = 1. The conclusion then follows from
the preceding result.

Third, the most tricky question is how the background ps, load affects the losses for fixed
normalized load gy and N (with a symmetric background system). Note that the total load
Prot = Po + pog(l — Po) changes with p,,. We use again heuristic reasoning and consider
the behaviour of the average queue length for three different background loads. First, when
Pog = 0 the RIWU queue is an M/M/1 queue with the load pp = fp. Next, when

NG
Pog = Doy =def TI?VO,% (15)
the system is completely symmetric (including the RIWU): py = ppy/N. In this case the
mean queue length, E[K*¥™], of the RIWU read-out buffer is same as the mean total queue
length of the whole DQDB system divided by N + 1 or, as is easily verified,

sym) _ __ PO

Bl = 2 (16)
i.e. the mean queue length of an M/M/1 queue with load py. Finally, consider the system
with a higher background load py, = N/(N +1) > p;2™. In this case the load of the RIWU
is po = po/(N + 1). Now, if the service rate of the RIWU were C/(N + 1) (constant),
the system would be equivalent to an M/M/1 queue with load (N + 1)py = py. But as a
minimum service rate C/(N + 1) is always guaranteed by the PS-HOL discipline, this must
be an easier case than M/M/1 queue with load go.

By the continuity, these observations suggest that, starting from py = 0, the mean queue
length first increases with oy, then returns to the same level when py, = pp2", and continues
to decrease with higher background loads. This behaviour is verified by simulation results
shown in Fig. 3, where (E[K] — E[K*¥™])/E[K*¥™] is plotted against gy for three different
values of background load, py, = 0.1, 0.3, 0.5 with a) N = 1 and b) N = 3. Note that e.g. in
the case N = 1 the curves p, = 0.1 and 0.3 indeed cross level 0 close to the theoretical
crossing points of (15) pp = 1/9 = 0.11 and 3/7 = 0.43, respectively. The curve p,, = 0.5
stays below level 0 in the case N =1 as it should as the load N/(N + 1) was deduced to be
an easier case than an M/M/1 queue with load .

Thus for any finite value of N and given py there is a worst case py, < gy . In the limit
N — oo the upper bound tends to one, gy — 1. We conjecture that in this limit the buffer
requirement increases with increasing background load (worst case py, tends to 1) for all pq.
An indication of this behaviour is given by Fig. 3.

Numerical results. In Fig. 4a the maximum allowed normalized load Fo of the RIWU is
plotted as a function of the buffer size. The number of background stations N is varied,
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-0.

Figure 3: (E[K] - E[K*¥™])/E[K*¥™] as a function of the normalized load of the RIWU with
different background loads and number of background stations: a) N =1, b) N =3.

V = 1.2.3, o0, the background load being fixed p,, = 0.6 and symmetric. The results for
the intermediate values N = 2 and 3 were obtained using Monte Carlo simulation. As we
deduced earlier, the buffer requirement becomes greater as the number of stations increases.

In Fig. 4b the maximum allowed normalized load gy is plotted as a function of the buffer
size for different p,, with N = oc (reflecting the worst case). We see that, for a given
normalized load py, the required amount of memory indeed increases with the background
load ps, confirming our conjecture. This behaviour can also intuitively be explained by the
fact that high background loads result in longer periods during which the service capacity
available to the RIWTU is small compared to the arrival rate of frames, i.e. during these
periods the RIWU experiences (over)load.

It is not possible to dimension the buffer in such a way that a given normalized load
of. say po = 0.8, can be allowed for every possible background load. One has to choose a
dimensioning point both for o and p,, based on a trade-off with a rapidly increasing buffer
size if these values are pushed too close to one.

3.3 Results on buffer dimensioning

We now obtain the required buffer size of the RIWTU for two different CLSs and for the three
different memory organisations considered. The buffer of the RIWU is dimensioned such that
in our models Py,s; < 107 in the following parameter range: p'F < 0.8, pp < 0.7, pyy < 0.6
and .V = oo (worst case).

For the CLS with no buffer and no reassembly the required buffer sizes of the RIWU for
the different memory organisations are:

Static memory allocation: 83 Loya: (763 kbytes)
Dynamic memory allocation: 106 L (159 kbytes)
Fully dynamic memory allocation: 87 L (131 kbytes)

where we have additionally assumed m < 20 (maximum number of interleaved frames). The
corresponding numbers for the CLS which buffers frames and uses a processor sharing (PS)

101



Allowed load vs. buffer sire ' Allowed load vs. buffer size

Figure 4: Allowed normalized load gy of the RIWU for P, = 107 as a function of the
read-out buffer size: a) V is a parameter and pyy = 0.6; b) ps, is a parameter and N = oo.
Fully dvnamic memory allocation is assumed.

service strategy are:

Static memory allocation: 73 Lmar (671 kbytes)
Dynamic memory allocation: 99 L (149 kbytes)
Fully dynamic memory allocation: 77 L (116 kbytes)

The numbers in parentheses correspond to a mean frame size L = 1500 bytes and a maximum
frame size L., = 9188 bytes. In all cases the size of the buffer is mainly determined by the
memory requirement of the read-out stage as can be seen by comparing the results to those
in Fig. 4. The difference between the two CLS types, however, is due to the differences in
the required read-in stage buffers.

4 Conclusions

We have analysed the buffer requirements of a RIWU carrying CL traffic from an ATM
network to a DQDB network. Buffer size affects the allowable normalized load, consistent
with a given loss probability, of the RIWU in relation to the mean bandwidth available
at the DQDB bus (when CO traffic and the traffic of other stations has been subtracted).
Increasing the buffer size is only effective up to a certain point determined by the knee in
the allowable load vs. buffer size curve. This has been used as the basis for dimensioning of
the buffers. .

Several factors affect the analysis. The main distinction has been made between the
cell-to-slot and frame operating modes of the RIWU, which lead to different modelling ap-
proaches. In the case of a frame mode RIWU, additionally, the operating mode of the CLS
as well as the memory organization of the RIWU affect the buffer requirements. All the
basic cases have been covered by our analysis.

The main emphasis in this work has been in modelling the effect of the variable capacity
of the DQDB bus due to the traffic from other sources. We have concluded that worst case
conditions arise when the number of other sources is very large and their load increases.

A crucial assumption in the analysis of the models presented in this paper is that of the
Poissonian frame arrivals. An interesting topic for further research is to study the influence
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of other (e.g. more bursty) frame arrival processes on buffer requirements of the RIWU.
Finally, we note that basically the same analysis that has been presented in this paper
applies to any station attached to the DQDB bus.
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1 Introduction

Many queueing problems can be modeled as random walks on a multi-dimensional grid. A
time-dependent analysis of such models appears to be possible only in rare cases, and even
then the solutions are quite complicated. Therefore, in this paper attention is focussed upon
the equilibrium behavior of these models, rather then upon their time-dependent behavior.

The equilibrium distribution of a random walk on a grid is the solution of a set of equi-
librium equations. These equations can be viewed as difference equations. In the theory of
differential equations, the continuous analogue of difference equations, a well-known solu-
tion approach is separation of variables (see e.g. Garabedian [11]). This method attempts
to solve differential equations by constructing sums of product-form solutions. It seems
natural to investigate whether it is also possible to solve equilibrium equations by sums of
product-form solutions. And if so, under which conditions are such solutions feasible, and
which techniques can be used to find such solutions? In the attempts to find sums of product
forms as solution, three main directions may be distinguished, namely:

1. Exactly one product form as solution;
2. A finite sum of product forms as solution;
3. A countably infinite sum of product forms as solution.

The first direction is the oldest one. It has also been studied most systematically, see e.g.
Jackson [14], Gordon and Newell [12], Baskett et al. [5], Kelly [15], Lavenberg and Reiser
[17] and Van Dijk [9]. In [5] a practical characterization is given of queueing networks with
a product-form solution. The conditions under which the solution is a single product form
are rather severe, but, most strikingly, they do not depend on the dimension of the state
space. This feature makes this product-form approach very important, since it is virtually
the only more general approach for really complex queueing systems.

The other directions are newer and may be viewed as a generalization of the first one.
The results in these directions are less systematic than the first one. This paper aims at
reviewing some of the particular techniques required for the construction of sums of product
form solutions.

An important application in the second direction is the multi-server queue with Erlang
(or Cox) arrivals and services. Queueing problems of this type can be described as a random
walk on a multi-dimensional grid which is unbounded in only one direction. In section 2 we
will show that the queue length distribution can be written as a sum of products. To find
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this solution we use a direct approach which is based on separation of variables. The third
direction is based on the compensation approach. This approach has been developed for
one rather general class of multi-dimensional random walks (unbounded in each direction)
and for several related special cases. An important example in this direction is the shortest
queue problem. In section 3 we will sketch the analysis of this problem to demonstrate the
basic ideas of the compensation approach.

2 Finite sum of products: System with Erlang servers

In this section we study a system with ¢ parallel identical servers and a common queue. The
service times are Erlang-r distributed with mean r/u. This means that a service has to go
through up to r exponential stages, each with mean 1/u. The service discipline is first-come
first-served. Jobs arrive according to a Poisson stream with rate A. This system can be
modeled as a continuous-time Markov process with states n = (no,ns,...,n.), where ng
is the number of waiting jobs and n; is the number of remaining service stages for server i,
i=1,...,c Songranges from 0 to co and n;, 1 = 1,... ,¢, from 0 to r, where n; = 0 is only
possible if ng = 0. Note that completion of a service stage at server i leads to a departure if
n; = 1. The flow diagram for ¢ =1 is depicted in figure 1.

Figure 1: Flow diagram for the model with ¢ =1

Our aim is to determine the equilibrium probabilities p(n). Once these probabilities are
known we can compute performance characteristics such as, for example, the mean queue
length and the mean waiting time. We will show that p(n) can be expressed as a finite sum of
products of powers. To do so we first introduce some notations and formulate the equilibrium
equations for p(n) that will be relevant to the analysis. Let e; = (0,...,0,1,0,...,0) have
¢+ 1 components, with the one at the same place as n; in n and let §(n) be 1 if n = r and
0 otherwise. By equating the rate out of and the rate into state n we obtain

p(n)(A +cu) = p(n — e) A + ip(n +e;)p(l —6(n)) + ip(n +ey— (r— l)ei),ué(n,»)(,)
i=1 i=1 1

which is valid for all states n with ng > 1. The equations (1) form the inner conditions,
the equations in states with ny = 0 form the boundary conditions. The precise form of the
boundary conditions is not relevant to the analysis, and therefore it is omitted.

The approach to solve the equilibrium equations will be based on separation of variables,
an elementary approach for the solution of partial differential equations. Below we demon-
strate this approach for a simple problem of conduction of heat (cf. Carslaw and Jaeger (8]).
Then we will show how the same approach can be used to determine the probabilities p(n).
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An analogue: Conduction of heat in a thin rod
Consider the following problem (see also figure 2):

Ugr — U = 0, 0<z<1,t>0, 2)
u(0,t) = u(1,¢t) =0, t>0, (3)
u(z,0) = v(z), 0<z<l1 (4)

The function u(z,t) can be interpreted as the temperature in a thin rod along the interval
0 <z < 1. The end = = 0 is maintained at zero temperature, while the end z = 1 is isolated
(no flow of heat). The initial temperature at ¢t = 0 is given by v(zx). This problem may be
solved by first constructing solutions of the form

u(z,t) = X (z)T(t), ()

satisfying (2) and boundary conditions (3). By linearity of (2)-(3) any linear combination
of solutions in this set satisfies these equations. The next step is to construct a linear
combination which also satisfies initial condition (4). Substitution of (5) in (2)-(3) yields

X

1 u(1,0)=0

u(x,0)=v(x) Uee =14, =0

u(0,1)=0

Figure 2: Equations for the temperature u(z,t) in a thin rod

))(("((zx)) = -T%j)— = constant = )\, X(0)=X'(1) =0,

where X is the separation constant. Only for the values A = ); = —(j + 1/2)%n? with
j=0,1,... these equations have a nontrivial solution, namely

u;(z,t) = sin(zy/—);)eM".

Then the solution of (2)-(4) can be written as a linear combination of functions in this set,

00
u(x, t) = Z Cj’llj(l', t)1
=0
where the coefficients c; follow from initial condition (4).
We now return to the queueing problem and try to use the same approach as above. In
the first step we construct solutions of the form

p(’n) = FO(nO)Fl(nl) cee Fc(nc) (6)

satisfying the equations (1). In the second step we use these functions to construct a linear
combination also satisfying the conditions for ny = 0. Insertion of (6) in (1) yields

Fyno—1),  <~F(n+1) e oo+ D R(1)
Fotrg) 2 Ry P00+ T R )

i=1

Adcp=

i=1
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Considering this equation for n; < r (so é(n;) = 0) leads to the conclusion that

Fq -1 1
—i@———) = constant = —, ng > 1,
Foy(no) Qo
Fi(n; +1 .
M:constant:a,-, n=1,...,r=1,1=1,...,c
Fi(ny)

So the functions F;(n;) are powers of ¢;. Hence the solutions (6) are of the form

Nc

p(n) = ag°---age,

where the (separation) constants a; have to satisfy

A < £ o
A== +3 aip+ (= - Dapd(ny). (M
@ o i=1 &
To satisfy this relation for all n; the coefficients of the functions d(n;) must be zero, so we
obtain that ag = o] = ... = af, or equivalently,
=0, =T, = L0, )
with z§ = ... = z7 = 1. Substitution of (8) in (7) yields the following equation for o;:
A c
/\+c,u=E+a1u+Z:c,-a1u. 9)
1 i=2

The condition that the sum of all probabilities p(n) is equal to 1 implies that only products
with |ag| < 1, or equivalently, |a;| < 1 are useful. For each feasible choice of z; it can
be shown that equation (9) has exactly r roots a; with || < 1 provided the utilization
condition Ar/p < c holds. So we find 7¢ products satisfying (1). We label these products
ag%---aps,j =1,...,7° This concludes the first step. In the second step we express p(n)
as a linear combination of the products in this set. The number of unknown coefficients
in this linear combination is sufficient to also satisfy the equilibrium equations for states n
with ng = 0. Below we summarize our findings. Rigorous proofs may be found in [4].

Theorem 2.1 Provided A\r/p < c, there ezist coefficients c; such that
<
p(n) =3 cjop5- - afs
=1

forallm withn; > 1,i=1,... ,c.

Remark 2.2 (Eztensions) The approach demonstrated in this section also works in case of
Erlang distributed interarrival times, see [4]. A similar technique, based on separation of
variables, has been applied by Bertsimas (7, 6] to solve the E;/C,/s and Cy/C,/s system,
respectively.

Remark 2.3 (Matriz-geometric approach) The equilibrium distribution can also be repre-
sented in a matrix-geometric form (see e.g. chapter 3 in Neuts [19]). There is a close relation
between Theorem 2.1 and this representation. Namely, the factors ap ; are the eigenvalues

of the rate matrix and the products a7; - - - a5 are the associated eigenvectors.
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3 Infinite sum of products: Shortest queue problem

The system we consider in this section consists of two parallel and identical servers, each
with its own queue (see figure 3(a)). The service times are exponentially distributed with
mean 1. Jobs arrive according to a Poisson stream with rate 2p where 0 < p < 1. On
arrival a job joins the shortest queue, and if queues have equal length, joins either queue
with probability 1/2. The state of the system can be described by the pair (m, n) where m
is the length of the shortest queue and n is the difference between the longest and shortest
queue. The flow diagram is shown in figure 3(b). Let p(m, n) be the equilibrium probability
for state (m,n). The object in this section is the determination of p(m,n).

n
1

NN

2p
2p 2 2

(a) ®)
Figure 3: (a) Shortest queue system (b) Flow diagram

The equilibrium equations are given below. In these equations we have eliminated the
probabilities p(m, 0) from (11) and (13) by substituting (14)—(15). This is done to simplify
the presentation. The analysis can now be restricted to the probabilities p(m,n) with n > 0
satisfying (10)-(13). The equations (14)-(15) may be treated as definition for p(m, 0).

p(m,n)2(p+1) = p(m—-1,n+1)2p+p(m,n+1)+p(m+1,n-1),
m>0,n>1, (10)
p(m —1,2)2p+ p(m,2)

1
+(p(m,1)2p+ p(m + 1,1)) ——
(p(m, D)2+ p(m +1,1)) =

p(m,1)2(p+1)

+(p(m - 1,1)2p + p(m, 1));—5_—1, m >0, (11)

p(0,n)(2p+1) = p(O,n+1)+p(l,n—1), n>1, (12)
PO.1)(20+1) = p(0.2)+ 60,12+ p(1, 1)1 +2(0.1), (13)
p(m,0)2(p+1) = p(m—1,1)2p+ p(m,1), m >0, (14)
p(0,0)2p = p(0,1). (15)

The usual approaches to solve the equilibrium equations are based on generating functions
(see e.g. [16, 10]). In this section we present an approach which directly tries to solve the
equations. The idea is similar to the one in the previous section. We first try to find a set of
products o™ (" satisfying the inner conditions (10). Then we use the products in this set to
construct a linear combination which also satisfies the boundary conditions (11)—(13). The
first part is easy. Substituting ™" into (10) and then dividing by common factors yield a
quadratic equation for a and 3 (see figure 4).
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Lemma 3.1 The product o™pB" satisfies (10) if

aB2(p+1) = %2p+ off? + 2. (16)

i
Figure 4: Curve (16) characterizing the set of products ™" satisfying (10)

The problem we are now facing is different from the one in the previous section. There we
found a finite set of products satisfying the inner conditions and these products were all used
to construct the solution. Now we have a continuum of products satisfying (10). How do
we select the appropriate products from this set? The selection is based on a compensation
idea (which explains the name of the approach). This idea has an interesting analogue in
electrostatics, where it is known as the method of images.

An analogue: Potential problem of conducting spheres

Consider two non intersecting conducting spheres, whose centers are A and B, their radii
a and b and their potentials ®, and 0, respectively. Suppose that their distance of centers
is ¢ (see figure 5). Below we show how the potential ® outside the spheres can be found by
the method of images (see e.g. Maxwell [18]).

a AD=0 b
Al {B
oy o 4 Bo

=9, ®=0

Figure 5: Potential problem of two non intersecting conducting spheres

If the spheres did not influence each other (¢ = co), then the potential ® is that of point
charge ap = a®, located at A. However, since c is finite, the potential does not vanish on
sphere B. Therefore we place inside sphere B a new point charge (, at distance ¢y from
B on the ray AB, and choose (3, and ¢, such that the sum of the potentials of the charges
ap and [y vanishes on sphere B. Note that the charges must be placed inside the spheres,
since their potentials must be solutions to the Laplace equation outside the spheres. But,
by adding charge B, we alter the potential on sphere A. To keep that potential unaltered
we again place inside sphere A a point charge «; at distance d; from A on the ray AB, and
choose a; and d, such that the potential of &, and B, vanishes on sphere A. In doing so we
altered the potential on sphere B, and so on. We keep on adding point charges inside sphere
A and B to alternately satisfy the boundary conditions on the two spheres. This results in
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an infinite sequence of point charges. The value of ® outside the two spheres is given by the
sum of the potentials of these charges.

We will now use the same approach as above to find the probabilities p(m,n). The
products a™(" satisfying (10) play the role of the point charges inside the spheres. The
conditions (11)—(13) on the horizontal and vertical boundary act as the boundary conditions
on the two spheres.

The starting solution, which is correct far away from the vertical boundary, is given by

p(m,n) = o' By (17)

where ag = p?, Bo = p?/(2 + p). This solution satisfies the inner conditions (10) and the
horizontal boundary conditions (11). But it violates the vertical boundary conditions (12).
Therefore we add a product c;a*S} to (17) and choose ¢, a; and 8, with o, 6 satisfying
(16) such that the sum

p(m,n) = o B + 1o By

satisfies (12). But the new term violates the horizontal boundary conditions (11). So we add
again a product c;a*3y and so on. We keep on adding products, each one satisfying (10),
so as to alternately satisfy the two boundary conditions. This results in an infinite sum of
products. The sum is a formal solution of the equilibrium equations. What remains is the
proof of convergence. This can be found in [1, 3]. The conclusion is formulated below.

Theorem 3.2 There exist products o*B! satisfying (10) and coefficients ¢; such that the
equilibrium probabilities p(m,n) can be ezpressed as

o0
p(m,n):Zcia;" . m>0,n>0.
. =0

Remark 3.3 (Ezplicit determination of o, B, ¢;) The a4, B;, ¢; mentioned in Theorem 3.2
can be solved explicitly, see [3]. Hence Theorem 3.2 provides an explicit characterization
of p(m,n). And based on the expression for p(m,n) similar expressions may be derived for
performance characteristics, such as the mean waiting time and mean queue lenghts.

Remark 3.4 (General result) Above we developed an approach to solve the shortest queue
problem. But what is the scope of this approach? In [2, 3] it has been applied to a class
of two dimensional Markov processes on the lattice in the positive quadrant of R?. For the
processes in this class the transition rates are restricted to neighboring states and they are
constant in the interior points and also constant on each of the axes (see figure 6). It appears
that the equilibrium probabilities p(m,n) can be expressed as an infinite sum of products,
which can be found by the compensation approach, provided

g1 =q11=q10=0. (18)
So there may be no transitions in the interior points to the North, North-East and East.
This result can be extended to processes of dimension 3 or higher (see Van Houtum [13]).
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On the transition matrix of Markov chains
obtained via cyclic mappings
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Abstract

This note shows that the transition matrix of the restriction of a Markov chain to
a subset A of the state space S can be obtained from the transition matrix of the
original Markov chain at S if a cyclic mapping can be defined. The transition matrix
of the restricted process can then be expressed as a sum of terms all obtained from the
original Markov chain.

1 Introduction

Recently, the transient behaviour of Markov chains has regained considerable attention. In
particular, the transition matrix of queueing networks consisting of infinite-server queues
has been analyzed in great detail (cf. Massey and Whitt [7]). These results extend previous
results on these networks (Foley [4], Harrison and Lemoine [5], Kingman [6]) to more general
arrival and service processes. The result of [4, 5, 6, 7] is that the transition matrix for the
number of customers present at the stations of a queueing network of infinite-server queues is
of product-form. In contrast, Boucherie and Taylor [2] show that the results of [7] cannot be
extended to more general queueing networks: a transient product-form for queueing networks
with interaction between the queues can be obtained for networks of infinite-server queues,
only. Therefore, closed form results for more complicated queueing networks require different
solution concepts.

Boucherie [1] has shown that the transient distribution of the Engset loss model with s
servers and N = 2s+ 1 sources can be expressed as a sum of two product-form distributions
arising in the model with N servers instead of s. This note provides a theoretical motivation
of this result and extends it to sums containing multiple terms. The result of this note
is particularly useful when the transition matrix for the unconstrained Markov chain at
state space S can be easily obtained. Then, under the conditions provided in this note, the
transition matrix for the constrained case with state space A C S can be derived from the
transition matrix at S as a sum of terms all obtained from the transition matrix at S.

*The research of R.J. Boucherie has been made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences. Part of this work was carried out while the author was ERCIM fellow at INRIA Centre
Sophia Antipolis, France.
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2 Model and results

Consider a time-homogeneous, conservative, stable, regular, continuous-time Markov chain
X = {X(¢), t > 0} at countable state space S, with g-matrix @ = (¢(n,n’), n,n’
€ §), where ¢(n,n) = — ¥125 ¢(n, n’). Under these conditions the transition matrix

P(n",n;t) = P{X(t) =n|X(0)=n"}, n,n" €S, t>0,

is the unique solution of the Kolmogorov forward equations (cf. Chung [3, Theorem I1.18.3]),
forn,n”" € S,

dP(n",n;t
—(‘—h’————) = > {P(n",n';t)g(n’,n) — P(n",n;t)q(n,n’)}. o))
{n'eS, n'#n}
Definition 2.1 (Restriction) The restriction of X to A C S is the Markov chain X, =
{Xa(t), t > 0} at state space A with g-matrix @, = (ga(n,n’), n,n’ € A) given by
¢(n,n’), if n#n,
n,n’) = o e 2
94 ) { — Lnvea, n*#n ¢(n,n*), if n=n' @
Note that {Xa(t), ¢t > 0} is conservative, stable and regular. Let P4(n”,n;t) denote its
transition matrix.
Definition 2.2 (Cyclic mapping) Let {A;}s=1,. x be a partition of S: A;NA; =0,i# j,

UK Ay = S. A mapping F : S — S is a cyclic mapping of order K of the Markov chain X
when F has the following properties:

F is injective and surjective; (3)
q(n,n") = ¢(F(n),F(n')), n,n'€S; 4)
F(Ak)=Ak+11 k=1,...,K-1, F(AK)=A1' (5)

The following lemma is an immediate result of (3) and (4) above. In combination with (5),
the lemma shows that the equilibrium distribution on the sets in the partition must be equal
when X has a cyclic mapping.

Lemma 2.3 (Equilibrium) If X is ergodic with cyclic mapping F, then the equilibrium
distribution, = = (w(n), n € S5), satisfies

m=mokF.

Proof If X is ergodic then the equilibrium distribution exists-and is the unique distribution
that satisfies the global balance equations

> {r(n)g(n’,n) —m(n)g(n,n’)} =0, neS.
{n’eS, n'#£n}
Insertion of v(n) = w(F(n)) into this equation gives, forn € S,

>~ {v(n)g(n’,n) - v(n)q(n,n")}

{n’es, n'#n}

Q@ ¥ {r(F@)g(F(n), F(n) - n(F(n))g(F(n), F(n'))}

{n’eSs, n'#£n}

2 > {r(n*)g(n*,n**) — 7(n**)g(n**,n*)} = 0,

{n*€Ss, n*#£n**}
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where n™ € S is the unique state such that F(n) = n**. Unicity of = completes the proof.
a

The following theorem relates the transition matrix of the process restricted to A to the
transition matrix of the original process.

Theorem 2.4 Let {Ai}x=1,. x be a partition of S, and let F be a cyclic mapping of order
K. Assume that forn € A;, n’ € Ay,

g(n,n’) >0 <= n'=F(n) or n'=F~(n). (6)
IfP{X(0) € A1} = 1, the restriction X4, of X to A, has transition matrix
K
P4 (n",n;t) = 3" P(n", F*(n);t), n,n" € Ay, t >0, )
k=1
where F* is the k-fold convolution of F with itself.

Proof Since X,, is conservative, stable and regular, the transition matrix is the unique
solution of the Kolmogorov forward equations (1) at A;. Denote Ao := Ak, and F? := FX,
Insertion of Q4, and Py, into the Kolmogorov forward equations gives for n € A;, t > 0,

dPy, (n”,n;t) (7) K dP(n", F¥(n);t)

LT @

dt =
(0] s k k k '
= X {P(",n;t)g(n’, F¥(n)) — P(n", F*(n); t)g(F*(n),n")}
k=1 {n’eS, n'#£Fk(n)}
K
@ {P(", 0 t)g(nt, F¥(m)) — P(n", F*(n); t)g(F*(n), ')}
k=1 {n'€Ax, n'#F%(n)}

+
M=

> {P(",n;t)g(n’, F*(n)) — P(n", F¥(n); t)g(F*(n),n')}

n'€Ak4

> {P(",n;t)g(n’, F*(n)) — P(n", F¥(n); t)g(F*(n),n’)}

n'€Ax_;

x
Il
-

+
M=

=
1}
-

[
M=

{P(n", F*(n'); t)g(F*(n'), F*(n))— P(n", F*(n); t)g(F*(n), F*(n"))}

x
I

1 {n'€A;, n'#n}

+
M=

> {P@", F*'(n'); t)g(F*(n'), F*(n))— P(n", F¥(n); t)g(F*(n), F**'(n"))}

1n‘eA;

> {P(@", F*= (n'); t)g(F*~*(n'), F¥(n)) - P(n", F*(n); t)g(F*(n), F**(n"))}

n'eA;

x
I

+
M=

a
I
-

=
=
©

M=

) P(n", F*(n);t)g, (', ) = P(n", F*(n); t)q4, (n, ')}

1{n’eA,, n'#n}

+ Y {P(", F**'(n);t)q(F**}(n), F¥(n)) — P(n", F*(n); t)g(F*(n), F**(n))}
k=1

=

5 (P, P ) )a(F ), () ~ Pla, P () a(F(n), P ()
k=1
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—
X

K

> X {Pm",Fn);t)ga(n',n) - P(n", F*(n);t)ga, (n,n')}
k=1 {n'€A,, n'#£n}

QY {(Pa (0,05 t)ga (0, n) — Py (n",n;t)g, (n,0)} .

n’eA;

Normalisation of Py, can easily be verified from (7). o

It is interesting to observe that under the conditions of Theorem 2.4 at each subset A
the transition matrix converges to the same limit: from Lemma 2.3

‘l_i.rgP(n",F"(n);t) =w(n), n€eA k=1,...,K.

Remark 2.5 In condition (6) transitions from A to Ax4+; and from Ay to Ax—; are allowed
only. Observe that these transitions are not required for the statement of Theorem 2.4 to be
justified. In particular, replacing (6) by

q(n,n’) > 0 < n' = F(n) )

allows transitions from Ag to A4 but not from Ag to Ax_q. This shows that the result of
Theorem 2.4 is not a consequence of balance between successive sets. In fact, from the proof
of Theorem 2.4 it is apparent that (8) is responsible for the terms involving transitions from
Ay to Ag4 cancelling in the equality ().

Remark 2.6 (Applicability of the result) Theorem 2.4 relates the transition matrix of
X4 to the transition matrix of X. Application of this theorem therefore requires the latter
transition matrix to be known. A motivation for Theorem 2.4 comes from equilibrium
analysis of queueing networks, where the equilibrium distribution in the unconstrained case
is usually much easier to obtain than the equilibrium distribution in the constrained case.
In the example below, this situation is carried over to the transition matrix: the transition
matrix of the unconstrained case is of product-form as obtained from [2], which enables the
evaluation of the transition matrix of the constrained case.

3 Example

This section provides an example of the result of Theorem 2.4. In this example the transition
matrix at S is known to be of product-form. The example considers the case of 2 sets, A
and A°, but can be extended to multiple sets. First the product-form results are reviewed
in section 3.1. The example of a transition matrix that is the sum of two product-forms is
given in section 3.2.

3.1 A product-form network

Consider a closed queueing network consisting of M infinite-server queues containing N
customers. A state of the queueing network is the vector n = (ny,...,ny) with components
n; denoting the number of customers present at station :. The state space S of this queueing
network is

M

i=1
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Let p; be the service rate at station i:. A customer completing service at station i is
routed to station j with probability p;;. The transition rates are

" _ n;p;p;j, n’ =n-—e; + e,-,
g(m,n') = { 0, otherwise, )

where e; is the i-th unit vector containing a 1 in place i, zeros elsewhere.

Assume that the initial distribution of the Markov chain modelling this queueing network
is P(n";0) = 1(n” = e;), i.e., initially all customers reside at station 1. From [2], the
transition matrix is

Pty =M (D) L wines, 20 10
Snvn))"‘ H Lk nk!, nvne E] = Y, ( )

where {c;(t)}¥, the solution of

1 dck(t)

pe  di

M
= Z{Cx(t)P:k—Ck(t)Pln}y k= 11"'1Ma (11)

i=1

with initial conditions cx(0) = 1(k = 1). The product-form transition matrix (10) is de-
termined by an M dimensional differential equation, which substantially reduces the effort
required for determining this transition matrix. The product-form transition matrix will be
used in the example below.

3.2 A sum of two product-forms

Consider a closed queueing network consisting of M = 2R infinite-server stations which are
grouped into two clusters, cluster 1 containing stations 1,..., R, and cluster 2 containing the
remaining stations. Assume that each cluster has a unique input/output station from which
customers can route to the other cluster. Let stations R and R + 1 be these input/output
stations. Let s € IN, and assume that N = 2s + 1 customers are present in the queueing
network. The assumption on the cluster structure then implies that the routing probabilities
satisfy

R 2R
Zp.g:l, 1<i<R, Ep,'j=1, R+1<i<2R.
j=1 j=R+1
Let A be the state space for the queueing network in which the number of customers at
cluster 1 is restricted not to exceed s, that is

R
A={neS| Y n<s},

=1

then, under the condition N = 2s + 1, S = AU A°. Further, assume that the service rates
and routing probabilities are such that

Ki = H2R41-i> DPij = P2R+1-i2R+1-j» &J =1,...,2R, (12)

which implies that cluster 2 behaves exactly like cluster 1.
Define the cyclic mapping, F', of order 2 as

F(n) = F(nl,...,nm) = (an,‘..,nl),

119



that is F(n); = nygy1-:. It can easily be shown that F satisfies all criteria of Definition 2.2,
and Theorem 2.4. Therefore, we may now conclude that the transition matrix of the Markov
chain {X4(¢), ¢t > 0}, at state space A, with transition rates (9) satisfying (12) is given by

M (c(t)\™ 1 Moo (t)) T 1
P(n",n;t) = N! (c—"(—-) — 1N (_) , n,ne€A, t>0,
o =MIET) M IG) Faa z

where {c;(t)}}, is determined from the differential equation (11).

Observe that for R = 1 the example reduces to the Engset loss model. The assumption
(12) then implies that the service rate equals the rate at which customers arrive to the
station. This model was discussed in [1], where the transition matrix was shown to be a sum
of 2 product-forms.
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Queueing systems with periodic service

M.J.A. van Eenige
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1 Introduction

Various real-life situations are modelled in a natural way by queueing systems with periodic
service. In these systems a server is offering service to customers periodically. Figure 1 gives
an example of a periodic service policy. In this figure the server alternately does not offer
service for 30 time units and offers service for 10 time units.

0 - 30 40 70 80 110

Figure 1: A representation of a periodic service policy

Fixed-cycle traffic lights, computer systems with periodic access schemes and periodic
production rules are three examples of situations that can be modelled by systems with pe-
riodic service. More precisely, for the first example consider a traffic light at an intersection.
Cars that approach this intersection from a certain direction alternately face red and green
time periods of fixed duration. In a real-time computer system the capacity for executing
tasks is shared by different types of tasks. Some of these tasks have strict time-critical re-
quirements. To meet these requirements these tasks have priority and their executions are
scheduled periodically. So the system’s capacity is available to the ordinary tasks periodi-
cally. For the third example consider a machine at a production centre. Every four weeks,
say, this machine produces a certain type of product for one week.

Queue lengths and sojourn times are important performance measures, and many other
performance measures, such as the fraction of customers served in time, can be obtained from
them. To evaluate queueing systems with periodic service we need techniques for determining
these performance measures. In the literature both analytical and approximative approaches
have been applied.

Typical analytical techniques are the generating-function technique (e.g., Darroch [4]
and Rubin & Zhang [13]), the use of Laplace-Stieltjes transforms (e.g., Sahin & Bhat [14],
Schassberger [15], and Ott [11]), and the matrix-geometric approach (e.g., Alfa & Neuts
[2]). Unfortunately we face both analytical and numerical problems when applying these
techniques. More specifically, for the generating-function technique an important and well-
known problem is the determination of the solutions of a characteristic equation. Further
these solutions have to be substituted into a system of regularity conditions. Since these
solutions may be closely clustered, solving this nearly linearly dependent system can lead to
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numerical difficulties. The use of Laplace-Stieltjes transforms requires the often difficult task
of solving integral equations and of inverting these transforms for obtaining explicit results.
If we want to apply the matrix-geometric approach, we have to solve a polynomial matrix
equation. Solving this equation may be time consuming when the matrices are large or when
the utilisation factor is close to one. Furthermore, the size of the matrices involved becomes
quite large when this approach is applied to queueing systems with periodic service.

Approximations for the average waiting time or queue length have been derived by, e.g.,
Webster [20], Fischer [7], and Federgruen & Green [6]. However, information about averages
only is often insufficient for evaluating queueing systems; other performance measures, like
the fraction of customers served in time, are important too. Furthermore, some of these
approximations are only valid for a rather limited class of queueing systems with periodic
service. For instance, some approximations have been derived for the case that the service
times are deterministic and for the case that the queue length cannot increase during periods
the server is offering service.

So both analytical and approximative approaches as found in the literature may not be
quite suited or may be too limited for analysing and evaluating systems with periodic service.
This raises the question whether there are useful techniques for analysing and evaluating
these systems; in particular whether there are techniques for determining the queue-length
and sojourn-time distribution of customers. In this paper we present two techniques for
determining the queue-length distribution. The results of these techniques can be used to
obtain the sojourn-time distribution.

In the first technique we consider the queue length at certain time instants. This tech-
nique then exploits that, for a broad and important class of arrival-processes and service-time
distributions, the tail of the stationary queue-length distribution at these instants is asymp-
totically geometric. This technique is a generalisation of the approach in Tijms & Van de
Coevering [18].

For the second technique we derive a periodic system of equations describing the queue-
length process. Each of these equations is related to Lindley’s equation for the D/G/1
queueing system. The second technique solves this system of equations by a moment-
iteration technique which is based on De Kok [10] and it uses the first two moments of
the service times only.

The outline of this paper, which is based on Van Eenige [5], is as follows. In Section 2
we describe a class of queueing systems with periodic service. For convenience we consider
the queueing systems in discrete time. In this way the complexity of the analysis is reduced
considerably. Moreover, it enables us to use probabilistic arguments to obtain the quantities
of interest. In Section 3 we show that the queue-length process for these systems reduces to
the study of a Markov chain. The technique exploiting the tail behaviour of the stationary
distribution of this chain is presented in Section 4. The moment-iteration method is the
topic of Section 5. A summary, some extensions and the conclusions are given in Section 6.
It is remarked that we confine ourselves to presenting the results without proofs; the proofs
can be found in [5].

2 Model

We consider a single-server queueing system in discrete time by dividing the time-axis into
intervals of equal length. Such an interval is called a slot. Service is offered periodically: there
is service during on-periods and no service during off-periods. The length of the off-periods
and of the on-periods are both constant. An off-period and the next on-period together are
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called a cycle. So the length of a cycle is also constant. The length of an on-period and of
a cycle are measured in numbers of slots, and denoted by A and C, respectively. The slots
in a cycle are numbered 1,2,...,C.

In each slot of the cycle exactly one customer is assumed to arrive with probability p,
where 0 < p < 1, and no customer arrives with probability 1 — p. Arrivals in different slots
are assumed to be independent. Hence the arrival process of customers is a Bernoulli process
with parameter p.

The service times of customers are measured in numbers of slots. The probability gener-
ating function F' of a service time is

B i
Fe) = 250 (11__‘—‘%> 4 0<B<l,

where B is a positive constant and {b(¢),i = 1,2,..., B} a probability distribution. In other
words, the service time of a customer consists of 7 service phases with probability b(i) where
a service phase is geometrically distributed with parameter 5. We note that this class of
service-time distributions consists of all finite mixtures of negative binomial distributions
with the same parameter 3. Mixtures of negative binomial distributions can be used to
approximate Poisson mixtures arbitrarily close (cf. Steutel & Van Eenige [16]).

Customers are served in the order of their arrival. The arrival process and service times
are assumed to be independent. Further, the service of a customer that is interrupted (due
to an off-period) is resumed where it was interrupted.

Customer arrivals, and the start and completion of service phases occur at slot bound-
aries. For convenience we assume that the completion of service phases (and hence customer
departures) occur just before slot boundaries, and that arrivals and the start of a service
phase occur just after slot boundaries. Further, if the server is idle upon a customer arrival,
he starts servicing this customer immediately.

3 Queue-length process

In this section we study the queue-length process of customers. Once the stationary queue-
length distribution is known, the sojourn-time distribution can be calculated exactly. For
the calculation of the sojourn-time distribution we refer the interested reader to Van Eenige
(5].

To analyse the queue-length process of customers we consider the system at the first slot
boundary of cycles, i.e., at the slot boundaries between two consecutive cycles. Let X denote
the number of service phases at this imbedded time instant for cycle £ with £k =1,2,3,....
Then the stochastic process {X,k = 1,2,3,...} is a homogeneous discrete-time Markov
chain with state space the non-negative integers and with (a possibly random) initial state
X,. The stationary transition probabilities p; ; of this chain only depend on i and j only
through their difference j —i if ¢ > A or j > C - B (or both) as is stated in the next lemma.
Furthermore this lemma gives an explicit characterisation of these probabilities.

Lemma 1 Fori > A or j > C - B or both, pij := g;_i. The shifted probability generating
function Q(z) = 24 L5844 g, 2" is given by

B
Q(2) = 2A(B+ (L-B)/2)* (1 —p+pY_b(1)7)C,

i=1
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where the terms (8 + (1 — 8)/2) and (1 — p+ pX2,b(i)7") are related to the probability
generating function of the number of service phases completed in a slot (in an on-period of
course) and that of the number of service phases arriving in a slot, respectively.

The probabilities p; ; that are not contained within Lemma 1, are generally hard to charac-
terise explicitly. However, they can be determined recursively from the one-slot transition
probabilities as follows. Let Y;, denote the number of service phases at the n-th slot bound-
ary in the cycle with n = 1,2,...,C, S, the number of service phases arriving in the n-th
slot of the cycle, and 6, a random variable on {0,1} with Pr{d, = 1} = 1 — 3. Then the
following relations are easily deduced

Y, — Yn+Sn, Tl—_-l,2,...,C“A, (1)
"7 max{0,Y,+ S5, -6}, n=C—-A+1,C-4+2,...,C.

(From these relations the remaining transition probabilities p;; can be computed, since
pij = Pr{Yo = j|lY1 =1}

Under the assumption that the Markov chain is irreducible and aperiodic, and that the
average number of slots work arriving per cycle is strictly less than A (i.e., the service
capacity per cycle), this chain is ergodic (cf. Pakes [12]) so that it has a unique stationary
distribution {m;,j = 0,1,2,...}. This stationary distribution is the unique solution to the
system of equilibrium equations of the Markov chain and to the normalisation equation.
Using Lemma 1 this system can be written as

Tj = MoPo,j + MPrs + o+ TasiPariyy  J=61,...,C-B-1, (2
T; = Tj-c-BqC.B + Tj—c.B+14c-B—1 + *** + Tjraq-4, Jj=>C-B. (3)

The normalisation equation is as usual
o <]
Z iy j = 1. (4)
=0

Taking a closer look at equations (3) we notice that they constitute a (C - B + A)-th
order homogeneous linear difference equation with constant coefficients. So from the theory
of difference equations (e.g., Henrici [9]) we know that there are C - B + A (not necessarily
distinct) solutions of the form 7; = 27 to this equation. By linearly combining these solutions
we may satisfy the equations (2) and (4). However only for solutions 2/ with |z] < 1 the
coefficient in the linear combination can be non-zero, since otherwise this linear combination
cannot satisfy the equation (4). By Rouché’s Theorem (cf. Titchmarsh [19]) one can show
that there are exactly C - B such (not necessarily distinct) solutions.

There are two standard techniques for solving the difference equation and its boundary
equations. The first directly seeks solutions of the form r; = 27 and after that uses a linear
combination of the solutions 27 with |z| < 1 to satisfy the equations (2) and (4). The other
is the generating-function technique.

Application of either of these techniques shows that the stationary distribution can ex-
pressed as

K m . .
=33 i, §=0,1,2,..., (5)
k=1i=1
where z; with & = 1,2,..., K are the K distinct solutions inside the unit circle to the

characteristic equation (corresponding to the difference equation), which is

2B =gop+qoprz+ - +qoazC B4, (6)
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where my denotes the multiplicity of the solution z; (with m; +my + -+ +mg = C - B),
and where the A ;’s denote constants.

Unfortunately application of these techniques can lead to numerical difficulties. Firstly
it is in general hard to determine all solutions to the characteristic equation accurately. Sec-
ondly, even if we are able to compute all these solutions accurately, some of them tend to
be closely clustered so that (after substitution) the system of equations (2) and (4) becomes
nearly linearly dependent. In general it is however unclear under what conditions and prop-
erties of the model these problems occur. Therefore we present two numerical approaches
for determining the stationary imbedded queue-length distribution. These two approaches
appear to be numerically stable.

4 Geometric-tail technique

(From the form (5) of the stationary probabilities it directly follows that the largest solution
in absolute value to the equation (6) within the unit circle determines the tail behaviour
of the stationary distribution. As can be proved this solution is the unique solution to this
equation in the interval (0,1). This result, the kind of which also appears in the theory of
branching process (e.g., Athreya & Ney [3]), is presented in the next lemma, where d denotes
the greatest common divisor of C - B and the powers of z having positive coefficients at the
right-hand side of equation (6).

Lemma 2 Let z),2,...,2¢c.p be the C - B not necessarily distinct solutions to equation (6)
inside the unit circle. Ezactly one of these solutions (z), say) lies in the interval (0,1).
Furthermore, if d = 1 then |z < z; for k =2,3,...,C - B, and if d > 1 then |z| = z for
k=2,3,...,d and || < z; fork=d+1,d+2,...,C-B.

(From the form (5) and Lemma 2 it can be shown that the tail of the stationary distribution
is asymptotically
. Tjtd d

lim 24 = 24, 7

Jim = =a (7
So the unique positive solution to the equation (6) inside the unit circle determines the
tail behaviour completely. This solution can be computed easily and accurately by, e.g.,
bisection. For numerical stability we suggest to take the logarithm at both sides of equation
(6) first. Adapting the algorithm in Tijms & Van de Coevering [18] to the case d > 1 we can
exploit this behaviour for numerical purposes.

By the existence of the limit (7) a straightforward approximation is
7rj+d = Zfﬂ'j’ ] Z ']7 (8)

where J is an integer for which the quotient 7;,4/7; is (fairly) good approximated by 2¢.
So it remains to compute the probabilities mg,7),...,ms1q4-1. These probabilities are the
unique solution to the system of equilibrium equations for the states j =0,1,...,J+d—1
and to the normalisation equation, after substituting the approximation (8).

Clearly the computational effort of this approximation is low and the results are accurate
if (8) is a good approximation for the quotient 7.4/, for small values of J. It turns out
that this approximation yields accurate results for relatively small values of J. Moreover,
this way of 'cleverly’ truncating the infinite system of equilibrium equations to a finite one
is advantageous from a computational point of view and is less sensitive to the utilisation
of the system than when using simple truncation, as can be seen in Table 1. However, the
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B=2/3,B=1b(1)=1 B=1/3,B=20b(2) =1
P C A Jezp J, std Ten:p Tstd Jezp J std Te::p Tstd
0.75 60 15 20 20 50 60| 30 30 70 80

120 30 20 20 50 60| 40 40 80 80
180 45| 30 30 50 60| 30 40 70 90
090 60 15| 20 20 150 170 | 30 30 210 230
120 30} 30 30 150 200 40 40 210 200
180 45| 30 36 140 170 | 40 50 210 220
095 60 15} 20 20 300 310 30 30 370 430
120 30| 20 30 280 300 50 40 370 450
180 45| 30 30 270 310 50 40 370 420

Table 1: The thresholds Jozp and Jyq for the geometric-tail technique and the thresholds Teyp
and Tyyq for the simple truncation in order to compute the average and the standard deviation
of the number of service phases in the system in siz-decimal accuracy for different values of
the utilisation factor p:=p-C - B/(A(1 - B)).

theoretical foundation of this approximation is still incomplete, so that an appropriate value
for J has to be determined experimentally.

Finally notice that the stationary queue-length distribution at other slot boundaries
in the cycle can be computed from the imbedded queue-length distribution by using the
equations (1). Further, by the Bernoulli-arrivals-see-time-averages property (cf. Halfin [8])
this distribution for the n-th slot boundary in a cycle is also the distribution of the number
of service phases upon an arbitrary arrival at this slot boundary. With this property we can
compute the sojourn-time distribution of a customer.

5 Moment-iteration technique

The technique exploiting the geometrical tail behaviour of the stationary distribution makes
a detailed use of the service-time distribution of customers. In practice however, one usually
has only (approximate) knowledge about the first two moments of this distribution. In this
section we present a technique for analysing the queue-length process of customers that uses
only this information. More specifically, we present a technique for approximating the first
two moments of the queue length and the probability of an empty queue at the start of a
cycle.

The starting point for the technique is the equations (1). Let Xj , denote the number of
slots work at the n-th slot boundary in the k-th cycle with K = 1,2,3,...and n=1,2,...,C,
and S, the number of slots work arriving in the n-th slot of the cycle. Then for k =1,2,3,...
these equations can be rewritten as

Xin + Sy n=12...,C— A,

X = ~ 9
bt { max{0,Xx,+ S, —1}, n=C-A+1,C-A4+2,...,C, ©)
where Xy ¢ should be read as Xi,,,;. Note that
c-A
Xic-ar1=Xip + Y Sn. (10)
n=1
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Equation (9) has a similar form as Lindley’s equation which describes the waiting-time
process in a D/G/1 queueing system. For this system in continuous time De Kok [10]
develops an efficient moment-iteration algorithm for approximating the stationary waiting-
time distribution. He uses only the first two moments of the service-time distribution. The
algorithm presented below is an adaptation of this algorithm. In this algorithm it is implicitly
assumed that we have a procedure for fitting discrete distributions by matching their first
two moments. After presenting the algorithm we make some remarks on the fitting procedure
used.

Let ok, denote the standard deviation of X, and define (in distribution)

Yin 2 (XknlXkn>0)—1, k=1,2,3,...andn=1,2,...,C. (11)
Then from equation (9) we have forn =C - A+1,C-A+2,...,C
Pr{Xint1 > 0} = Pr{Xs, = O}Pr{S, > 1} + Pr{X¢n > 0}Pr{Yin + S, > 1}.  (12)
The moment-iteration algorithm proceeds as follows.

1. Initialisation: Set E{X,} = E{X?,} =0 and k :=1, 50 011 =0 and Pr{X;; =0} =
1.

2. Iteration: Approximate the first two moments of Xy c- a+1 and Pr{Xy c_a+1 > 0} from
(10), using the approximations for the first two moments of X ; and for Pr{Xj, = 0}.
Forn=C—-A+1,C-A+2,...,C )

(a) compute the approximations for the first two moments of Y, using (11); fit a
discrete distribution to Yk, by matching these moments in order to approximate
Pl‘{Yk'" = 0},

(b) compute the approximations for the first two moments of Xy n; using (9) and
the approximation for Pr{Xj n+; > 0} from (12).

3. Stopping criterion: Compute the approximation for orc41. If the approximations
for the differences |E{Xk c1+1} — E{Xk-1,c+1}| and |ok,c+1 — 0k-1,c4+1] are both small
enough then execute Step 4. Otherwise set k¥ := k + 1 and Xj; := Xi_1,c41, and
execute Step 2.

4. Approximation: The first two moments of the stationary imbedded queue-length distri-
bution are approximated by E{Xy ¢4} and E{X} ;,,}, and the stationary probability
that the queue is not empty by Pr{X; ¢, > 0}.

In this algorithm we need a procedure for fitting discrete distributions on the first two mo-
ments. Adan, Van Eenige & Resing [1] present such a (novel) procedure. Firstly, however,
they answer the question what combinations of mean and coefficient of variation are pos-
sible for discrete distributions concentrated on the non-negative integers. (Notice that all
the random variables involved in the moment-iteration algorithm assume values in the set
{0,1,2,...}.) Their procedure for fitting discrete distributions is based on the analogue
to the procedure for continuous distributions in Tijms [17]. Tijms uses hyperexponential
and mixtures of two Erlang distributions as distributions for fitting. However, the discrete
analogues to these distributions do not suffice to cover all the combinations of mean and
coefficient of variation possible for discrete distributions on the non-negative integers. To
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cover these combinations Adan, Van Eenige & Resing use four distributions: a Poisson dis-
tribution, and mixtures of two binomial distributions, of two negative binomial distributions
and of two geometric distributions. For details we refer to their paper [1].

In Table 2 we display for several examples the ’exact’ values (Ex) and the approximative
values (MI) from the moment-iteration technique for the probability that the queue is not
empty (Pr{X > 0}) at the start of a cycle and for the average number of service phases
(E{X}) at the start of a cycle. The ’exact’ values are those computed when truncating the
states § > T with T sufficiently large. This table shows that application of the fitting pro-
cedure mentioned above in the moment-iteration algorithm gives very good approximations.
Other results, for which we refer to Van Eenige [5], indicate that this procedure yields also
very good approximations for the tail probabilities of the sojourn-time distribution. Finally
we remark that our numerical examples indicate that the moment-iteration algorithm always
terminates. However, we have not been able to prove this yet.

B=2/3, B=1landb(l)=1 B=1/3, B=2and b(2)=1
Pr{X > 0} E{X} Pr{X > 0} E{X}
p C A Ex MI Ex MI Ex MI Ex MI
0.75 60 15|0.478 0.485 4.87 484 |0.429 0.431 287 290
120 30}0.387 0393 3.85 3.97 |0.517 0.512 2.14 2.30
180 45]0.331 0.340 3.18 3.40 |0.277 0.288 1.66 1.87
090 60 15|0.755 0.774 18.49 18.28 | 0.725 0.741 12.00 11.88
120 30| 0.694 0.711 16.95 16.77 | 0.653 0.669 10.76 10.77
180 45| 0.650 0.666 15.82 15.80 | 0.604 0.625 9.86 9.99
095 60 15]0.871 0.889 42.02 41.67 | 0.854 0.876 28.03 27.66
120 30| 0.835 0.859 40.29 39.58 | 0.811 0.835 26.60 26.11
180 45 0.808 0.833 3897 38.22 | 0.779 0.804 25.52 25.10

Table 2: The ’exact’ and approzimative values for the probability of a non-empty queue
and the average number of service phases at the start of a cycle for different values of the
utilisation factor p:=p-C - B/(A(1 - B)).

6 Conclusions

In this paper we presented two numerical techniques for analysing and evaluating the queue-
length process of customers in discrete-time queueing systems with periodic service. In con-
trast with analytical approaches, these techniques appear to be numerically stable. Moreover,
they yield accurate approximations for the performance measures of interest. Further, these
techniques are applicable to generalisations of the systems considered here. For instance,
they allow for multiple on- and off-periods in a cycle, and they can deal with possibilities
occurring naturally at production centres: the possibility of producing to stock and of work-
ing overtime. Moreover, they can deal with periodically time-dependent Bernoulli arrival
processes and with service-time distributions that depend on the slot of arrival. Finally it is
remarked that these techniques are also applicable to other queueing systems, since they only
exploit the explicit structure of the equilibrium equations (as in the geometric-tail technique)
or the relation between the quantities of interest at certain imbedded time instants (as in
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the moment-iteration method). Hence we expect that they can also be applied successfully
to other systems.

References

[1] I. Adan, M. van Eenige, and J. Resing (1995), Fitting discrete distributions on the first
two moments, Probability in the Engineering and Informational Sciences 9, pp. 623-632.

[2] A.S. Alfa and M.F. Neuts (1995), Modelling vehicular traffic using the discrete time
Markovian arrival process, Transportation Science 29, pp. 109-117.

[3] K.B. Athreya and P.E. Ney (1972), Branching Processes, Springer-Verlag, Berlin.

[4] J.N. Darroch (1964), On the traffic-light queue, Annals of Mathematical Statistics 35,
pp. 380-388.

[5] M.J.A. van Eenige (1996), Queueing Systems with Periodic Service, Ph.D. thesis, Eind-
hoven University of Technology.

[6] A. Federgruen and L. Green (1986), Queueing systems with service interruptions, Op-
erations Research 34, pp. 752-768.

[7] M.J. Fischer (1977), Analysis and design of loop service systems via a diffusion approx-
imation, Operations Research 25, pp. 269-278.

[8] S. Halfin (1983), Batch delays versus customer delays, The Bell System Technical Jour-
nal 62, pp. 2011-2015.

[9] P. Henrici (1968),' Discrete Variable Methods in Ordinary Differential Equations, John
Wiley & Sons, New York.

[10] A.G. de Kok (1989), A moment-iteration method for approximating the waiting-time
characteristics of the GI/G/1 queue, Probability in the Engineering and Informational
Sciences 3, pp. 273-287.

[11] T.J. Ott (1984), On the M/G/1 queue with additional inputs, Journal of Applied Prob-
ability 21, pp. 129-142.

[12] A.G. Pakes (1969), Some conditions for ergodicity and recurrence of Markov chains,
Operations Research 17, pp. 1058-1061.

(13] I. Rubin and Z. Zhang (1988), Message delay analysis for TDMA schemes using
contiguous-slot assignments, Proceedings of the IEEE International Conference on Com-
maunications 1988, Philadelphia, pp. 418-422.

[14] 1. Sahin and U.N. Bhat (1971), A stochastic system with scheduled secondary inputs,
Operations Research 19, pp. 436-446.

[15] R. Schassberger (1974), A broad analysis of single server priority queues with two in-
dependent input streams, one of them Poisson, Advances in Applied Probability 6, pp.
666-688.

129



[16] F.W. Steutel and M.J.A. van Eenige (1996), Note on the approximation of distributions
on Z, by mixtures of negative binomial distributions, Memorandum COSOR 96-13, De-
partment of Mathematics and Computing Science, Eindhoven University of Technology,
(to appear in Stochastic Models 13, (1997)).

[17] H.C. Tijms (1986), Stochastic Modelling and Analysis: A Computational Approach,
John Wiley & Sons, New York.

(18] H.C. Tijms and M.C.T. van de Coevering (1991), A simple numerical approach for
infinite-state Markov chains, Probability in the Engineering and Informational Sciences
5, pp. 285-295.

[19] E.C. Titchmarsh (1960), The Theory of Functions (second ed.), Oxford University Press,
London.

[20] F.V. Webster (1958), Traffic signal settings, Road Research Technical Paper No. 39,
Road Research Laboratory, Department of Scientific and Industrial Research, Her
Majesty’s Stationery Office, London.

130



A general approach to computing loss
probabilities in finite-buffer queues
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Abstract

This paper discusses a general method for computing loss probabilities in finite-buffer
queues. The method is based on a relation between the steady-state probabilities of a
finite-buffer queue and the corresponding infinite-buffer queue. It is exact for several
queues of the M/G/1-type, and serves as an excellent approximation for many other
queueing systems.

1 Introduction

In many practical situations, such as manufacturing and telecommunication systems, we
encounter queueing systems with a finite buffer. A finite-buffer queue is in general more
difficult to analyze than the corresponding infinite-buffer queue. In principle, any practical
finite-buffer queueing system can be modelled as a Markov process by incorporating suffi-
cient information in the state space description. When the size of the state space is small, it
is relatively easy to obtain stationary (and also transient) solutions quickly and accurately
by means of numerical methods, such as the successive overrelaxation method or iterative
aggregation/disaggregation methods. In many queueing systems, however, the dimension
and size of the state space will grow quickly beyond any practical bound. The process of ob-
taining stationary solutions in these cases becomes much more difficult and time consuming.
This makes it desirable to use approximation methods that are more efficient to implement,
but still give sufficiently accurate results.

This paper will focus primarily on a generally applicable approximation method for the
loss probability of a customer in queueing models with general input. This method is based
on the relation between a finite-buffer queue and its corresponding infinite-buffer queue. For
a class of M/G/1 type queues it is known that the state probabilities of the finite-buffer
and the corresponding infinite-buffer queues are proportional to each other for a limited
set of states. This proportionality can be explored to derive an exact formula for the loss
probability of a customer in various finite-buffer M/G/1-type queues. First we will discuss
and extend the class of queueing systems for which an exact proportionality relation holds
between the state probabilities of the finite- and the infinite-buffer queue. Second, we will
show that such a proportionality can serve as an approximating assumption in queueing
systems in which it does not hold exactly. From this assumption an excellent approximation
for the loss probability of a customer can be derived.
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Despite the simplicity of the proportionality relation, its practical application is hampered
by the fact that the state probabilities of the infinite-buffer queue have to be calculated.
Although the analysis of an infinite-buffer queue is in general less demanding than the
analysis of a finite-buffer queue, it is not always possible to obtain stationary solutions for
infinite-buffer queues. Even the single-server GI/G/1 queue and the multi-server M/G/c
queue with Poisson arrivals permit no simple analytical solution. There are, however, a
number of practical queueing models with infinite buffer capacity in which we can obtain
the generating function of the state probabilities. These generating functions can be inverted
numerically by means of a discrete version of the fast Fourier transform (FFT) method.

2 The batch arrival GI/G/c queue

Consider the single-arrival GI/G/c/K + ¢ queue, where the interarrival times of customers
have a general distribution F'(z) with expectation EA = A~1. There are c servers to handle
service requests and the service time of a customer has a general distribution G(z) with
expectation ES = p~1. The system load p is defined as p = A/pc and we assume that p < 1.
There is a buffer of size K to store incoming customers that find all ¢ servers busy and those
customers that find the system completely full are rejected and do not influence the system.
Let 7; (j =0,...,K + c) be the long run fraction of customers finding upon arrival j other
customers present in the system. Denote by P, the long run fraction of customers that
are lost. Since we consider a single-arrival queue, this loss probability can be calculated by
Pioss = Titc- The probability mx4. can be calculated for various queueing models using the
embedded Markov chain approach, but this can be computer intensive when done for several
large buffer sizes. Since it is often less involving to solve the corresponding infinite-buffer
queue, various approximations for the loss probability of a customer have been developed,
based on the steady state probabilities of the infinite-buffer queue. Define 7r§°°) (7=0,1,...)
as the long run fraction of customers finding upon arrival j other customers present in the
corresponding infinite-buffer GI/G/c queue. These probabilities are well defined under the
assumption p < 1.
A well known approximation for the loss probability of a customer is

00
Pt = 3 ), 1)
j=K+c
see e.g. Kleinrock [2]. The right-hand side of this equation can be interpreted as the prob-
ability that K+c or more customers are found upon arrival in the infinite-buffer queue.
Therefore, this approximation is often referred to as the tail approximation. No theoretical
and hardly any empirical evidence is presented in the literature to support this approxima-
tion. We will show later that this approximation is not even asymptotically exact and it
can differ a factor (1 — p)~! from the exact value of the loss probability as K gets large.
In fact, in Daigle [3] it was shown numerically that this factor (1 — p)~! can already be
obtained for moderate values of the buffer size K. Therefore, it is surprising that even in
recent literature (e.g. Bruneel [4, pp. 148, 152]) the above equation is used to approximate
the loss probability of a customer.
A more refined approximation was presented in Tijms [5] and extended in Gouweleeuw
[1]. The crucial assumption underlying this approximation is that the probabilities w; are
proportional to 1r§-°°) for j < K 4+ c and not for j = K + ¢, that is

,r],=7,,§.°°>, 7=0,...,K +c—1, @)
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for some constant 4y > 0. This proportionality relation is exact for the M/G/1 queue, as
was first shown by Keilson [6] and subsequently, in a more direct way by Cooper [7]. In
Tijms [5] an alternative proof of this equation is presented, showing that this equation is
exact for both the M/G/1 and the M/M/c queue. This proof uses basic results from the
theory of regenerative processes together with the fact that the arrival process is memoryless.
Keilson and Servi (8] present a more general theorem, showing under which conditions the
state probabilities of two general multivariate Markov chains are proportional. They use this
elegant theorem to prove that the above relation is exact for the M/G/1 queue with server
vacation. Given this relation, using simple renewal theoretic results, Tijms [5] derived the
following approximation for the loss probability of a customer:

(1=p) 3 =
P = — 5 —. 3)
1-p S o™
j=K+c

This approximation is exact for the M/G/1/K + 1 and the M/M/c/K + c queues.

The above discussion dealt with the case of partial rejection of batches. In a recent
publication by Gouweleeuw [1] it was shown that the analysis for the partial rejection case
can easily be extended to the batch arrival queue under the complete rejection strategy.
Under this strategy an arriving batch whose size exceeds the number of unoccupied places
in the system is completely rather than partially rejected. The loss probability for the
case of complete rejection differs significantly from the loss probability for the case of partial
rejection. It was proven that the approximation is exact for the batch-arrival MX /G/1/K +1
and the MX /M/c/K + ¢ queues, provided that the batch size has a constant value. For an
extensive numerical investigation of the approximation for those queueing systems for which
it is not exact, we refer to Gouweleeuw [1].

3 Discrete time queues

The previous section discussed various continuous-time queueing models. However, many
practical queueing systems such as fixed-cycle traffic lights and ATM-systems in telecom-
munication networks, operate on a discrete-time basis. A discrete-time queueing system is
characterized by time-slotted and synchronous service. The time axis is divided into inter-
vals (called time slots) of equal length. Withdut loss of generality we normalize the length
of a slot to unit time. We shall refer to the entities which are served as packets. Packets
are allowed to arrive at any arbitrary time in a slot. Since a new service can only start at
the beginning of a slot, packets which arrive in a certain slot are eligible for service from the
beginning of the next slot. The service times are positive multiples of time slots. The packets
completing service in a certain slot (say slot n) are considered to be leaving the system at
the end of that slot. This means that such a packet will leave behind those packets that
arrived in slot n as well as those packets already present at the beginning of slot n.

A classical example of a discrete-time queueing system is a stream of vehicles approaching
an intersection controlled by fixed-cycle traffic lights. It takes a unit of time (a slot) for a
vehicle to cross the traffic lights. The green and red periods of the traffic lights are assumed to
be constant. A more recent example of a discrete-time queueing system is an Asynchronous
Transfer Mode (ATM) system in telecommunication networks. In an ATM network, data
from various sources is segmented into fixed-size ATM cells and statistically multiplexed
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to high-speed transmission lines and switches. An extensive survey of discrete-time models
used in telecommunication systems can be found in Bruneel and Kim [4].

The approximating method that was presented in the previous section can easily be
extended to the class of discrete-time queues. Under a mild asumption on the arrival process,
it has been proved that the approximation leads to an exact expression for the discrete-
time GI/G/1 queue. The approximation is asymptotically exact when the buffer size gets
large. The derivation of the approximation is similar to that of the continuous-time queue.
Although the derivation of the approximation is given for renewal input and relies heavily
on renewal-theoretic arguments, the approximation turns out to be applicable as well for
more complicated arrival processes.

4 Conclusion

In this paper we have discussed a heuristic for the loss probability of a. customer in various
queueing systems with finite capacity. This heuristic as a simple structure an is a clear im-
provement over the well known tail approximation. The practical application of the method
is, however, hampered by the fact that the steady state probabilities of the corresponding
infinite-buffer queue have to be computed.
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Abstract

In this paper we analyse the assignment of customers in a queueing system consisting of a tandem
of parallel queues. We will present three algorithms, to find good routing policies. These algorithms
are generally applicable to Markov decision chains with partial information.

1. Introduction

In this paper we analyse the assignment of customers in a queueing system consisting of
a tandem of parallel queues. Customers arrive to the first centre of the system and have
to be routed to one of two identical exponential servers, each with his own waiting queue.
When the customer is served, he arrives in the second centre where again he has to be
routed to one of two identical exponential servers.

The routing of the customers in a centre may only depend on the numbers of customers
in the queues of that centre, and not on the numbers of customers in the queues of the
other centre. Because routing decisions have to be found in both centres, we will call this
a model with decentralized control.

We want to find deterministic routing policies, maximizing the discounted throughput
of customers. From results in [1], we know the optimal routing policy in the second
centre. By choosing this routing policy fixed, we can use algorithms for models with
partial information to find good routing policies for customers arriving in the first centre.

The queueing system is modelled as a Markov decision chain with partial information.
We will present three algorithms, which are generally applicable to Markov decision chains
with partial information.

The outline of the paper is as follows.

In Section 2, we introduce the queueing model. In Section 3, we describe the algorithms.
In Section 4, the Markov decision chain and the cost function are given and in Section 5,
numerical results with the different algorithms are presented.

The research of this author has been supported by the Netherlands Organization for Scientific Research
(N.W.0.).
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2. Queueing model

Consider the queueing network of Figure 1.

<>

centre 1 centre 2

Figure 1. Tandem of parallel queues

The queueing network consists of two centres. In each centre there are two identical ex-
ponential servers, each with his own waiting queue. The service rates in the first centre
are equal to g1 and in the second centre equal to p;. Customers arrive to-the first centre
according to a Poisson process with rate A and they have to be routed:to:-one of the servers.
When they are served, they go to the second centre, where again they have to be assigned
to one of the servers. Customers served in the second centre leave the system.

We assume all interarrival times and service times to be mutually independent. Further-
more, in each queue the customers are served on a First In First Out (FIFO) basis. Also,
there is an initial distribution over the state space given.

The state of the system is denoted by the 4-tuple (41, ¢, ¢3,24) where ¢; denotes the number
of customers in the j-th queue in centre 1 (including customers in service) if j = 1 or 2,
and ¢; denotes the queue length of queue j — 2'in centre 2 if j = 3 or 4.

For centre ¢, there exists a capacity N; (¢ = 1,2), such that no more customers are accepted
when there are N; customers present in the centre. Customers, arriving to a full first centre
are blocked and leave the system. Customers, arriving in a full second centre, return to
the server they just left and receive another service in the first centre. Because of these
buffers, it is impossible that the number of customers grows to infinity. However, we only
use those buffers to be able to compute performance measures for the system, and we make
those buffers as large as possible to avoid. effects caused by their finiteness. In. this model,
we only consider values for A in [0, min{2u;,2u,}) for fixed y; and ;.

We are interested in deterministic routing policies for customers in, both centres. The
routing in a centre may depend only on the numbers of customers in the queues of that
particular centre.

It is shown in [1] that an optimal policy for the Markov decision chain with complete
information will use the Shortest Queue Policy (SQP) in centre 2. This policy assigns
customers in centre 2 to the shortest queue and in case of equal queues it routes the
customers with probability 1 to queue 1 and probability % to queue 2. In fact, the routing
in states with equal queue lengths may be chosen arbitrarily. It also follows from the results
in [1] that the SQP is the optimal policy for centre 2 in case of decentralized control. Hence,
we fix the policy in centre 2 to the SQP and we apply an algorithm for models with partial
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information to obtain a good routing policy in centre 1.
The policy should maximize the discounted throughput of customers given the initial
distribution.

Note that, although the numbers of customers in the second centre may not be used,
implicitly there is some information used about this centre, namely the knowledge of the
routing policy there. Also the initial distribution over the state space as a whole is known,
which gives us information about the second centre too.

3. Algorithms

In this section we will present three algorithms to compute good policies for Markov
decision chains with no state information. First, we will describe the notations used for
Markov decision chains with partial information.

Consider a Markov decision chain with state space E = {1,2,...,N}. The state space
is partitioned into sets Ey, s = 1,2,..., K, such that at each decision moment the only
information available about the system is the set of the partition in which the state of the
system is contained (cf. [2], [4]). Thus, an admissible decision rule prescribes the same
decision for all states in a partition set E, for all s. A Markov policy is called admissible
if its decision rule at any time point is admissible.

We assume that the action set in each state is the same, namely, A = {1,2,..., M}.

The transition probabilities when in state ¢ action a is chosen are denoted by pis;j ( =
1,2,...,N) and the expected one step cost by c;,. For the transition matrix and the vector
of immediate costs when decision rule 7 is chosen, we will write P(7) and ¢() respectively.

Hence, P(7);; = Ef{__l TiaPiaj and ¢(m);q = Ef_f__l TiaCia- A deterministic decision rule is
often denoted by f.
For the vector of expected discounted costs under a stationary policy R = (w,m,,...) =

7, we will use the notation v*(r), when the discount factor a € [0,1) is used. It holds
that (cf. [6]) v*(n) is the unique solution of

v¥(7) = ¢(n) + aP(m)v*(x). (1)

Equivalently,
v (r) = (I - aP(m)) (). @

The initial distribution is given by an N-dimensional vector 8, where IP(initial state is i) =
Bi. To define the optimal policy, we use the expected total a-discounted cost under a policy
given the initial distribution. For a stationary policy m° these costs can be computed as
the inner product of 8 and v*(7), denoted as STv*(x).

The following algorithm is introduced in [2],

Algorithm 1.

Choose an initial admissible deterministic decision rule f° and e > 0.
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Let z! = BT and choose v' € RY.
Define forn =1,2,3,...:
N
t" (s,a) = Z z7 < Cia + ame-u;' )
i€E, j=1
fors=1,2,...,K,a=12,...,M.
For i € E,, if f*~1(i) € argmin,¢ 4 t" (s, a) then
fr@) = ()i € B,
else f" (i) = a for some a € argmin,c 4 t" (s,a) Vi € E,;
2" = BT + azP (f)
v = o(f7) +aP (7)o
Stop if |z™*! — z*|| < € and ||v**! —v?| < e
Here, ||z|| < € means that |z;| < € for all <.

If the algorithm stops, then policy (f™)* is chosen.

The second algorithm is a policy improvement algorithm, based on Algorithm 1 and on an
algorithm of Kulkarni and Serin (cf. [4]).

Algorithm 2.

1. Choose an initial admissible deterministic decision rule f° and e > 0;
m=1.

2. Let 2! = A7 and choose v! € RN.
Define forn =1,2,3,...:

o™ = BT + az"P(f™);
v = c(f™) +aP (Fm)o";

Stop if ||z™*! — z"|| < € and [Jo"t! —v"|| < e.
Let U"’(f'") = ™t and :l:a(f"') = gntl,

3. Compute the quantities t™(s,a) for s =1,2,...,K and a = 1,2,..., M defined by
i€E,

N
t™ (s,a) = Z Tia(f™) {Ciu +azpiajv;‘x (f™) =i (fm)}-
j=1

Define for s =1,2,...,K : A™(s) = {a € A| t™(s,a) < 0}.
If A™(s) =0 for all s, then STOP;

else
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Choose an s* for which A™(s*) is nonempty and choose an action a* € A™(s*).
Define f™+! by
a* ifi € Eg;
fm+l(i) —

f™(:) otherwise.
4. m=m+1 and go to step 2.

The third algorithm, which uses branch and bound techniques, is a variant of an algorithm
developed by Schneeberger [7].

In the algorithm a decision tree is constructed. Each node corresponds to a set of stationary
deterministic policies with fixed actions in certain subsets of the partition, in combination
with a lower bound on the expected costs of the policies in that set. To describe a node,
a K-dimensional vector d is used together with a lower bound Ly, where d, € AU {0} =
{0,1,..., M} for all s. The component d, prescribes the action to be taken in all the states
of the s-th set of the partition, E,. When d, = 0, it means there is not yet decided about
the action in E,. Now the set of possible policies in a node corresponding to a vector d
is {R= f*| f(i) = ds ifd, # 0 and ¢ € E,}. Starting with one node, where d = 0, the
set of policies is stepwise reduced by choosing a set E, for which d, = 0, and defining
M new nodes with d; = 1,ds = 2, ..., d; = M, respectively. When this procedure is
repeated often enough, nodes with d, # 0 for all s are created, corresponding to precisely
one stationary deterministic policy.

For each node, a lower bound of the optimal costs of the policies in that node, can be
computed. This can be done using policy iteration, while keeping fixed the actions in the
sets E, where dy # 0. The corresponding algorithm goes in the following way.

Algorithm to compute a lower bound.

1. Choose a deterministic admissible decision rule f! for which f!(i) = d, if dy # 0 and
1€ Ea;'
m=1.

2. vl =™
Define forn =1,2,3,... :

V™ = c(f) + P (f7) 0"

Stop if |[v™t! — v <.
Let v™ = v+l

3. Find f™*1, such that

N
F™(E) € argmingey § cia + @ Zp;.,jv;‘ for all © € E, where d, = 0.
=1

4. If fm*+1 = f™ then fTv™ is a lower bound of the costs for the policies corresponding
to d;
otherwise m = m + 1 and go to step 2.
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By using an upper bound of the optimal costs, nodes can be excluded. The last value
vector found in the computation of a lower bound, say v*, can be used to find an upper
bound in the following way. For each E;, where no action is chosen yet, define for all

1€ E,
: N
f(i) = argmin, ¢ 4 { z (c,-,, +a Zpiajv;) } . 3)
j=1

1€EEs

Then compute for the resulting admissible policy f the discounted cost vector v*(f) using
step 2 of the ’'Algorithm to compute a lower bound’. Then, an upper bound of the optimal
costs is given by ATve(f).

Now, N, denotes the node corresponding to d, consisting of the pair (d, Lg). The global
variable U will denote at each moment an upper bound on the optimal costs and the policy
(£°)°° denotes the admissible policy corresponding to the upper bound at that moment.
The algorithm is then as follows.

Algorithm 3.

1. Compute with policy iteration the optimal policy and the corresponding discounted
cost vector v* for the model with full state information and define Ly = Tv* (use
the ’Algorithm to compute a lowerbound’ with d = 0).

Define an admissible policy f° as in formula (3) using v* found by computing the
lower bound L.

Compute the discounted cost vector v° corresponding to f° using step 2 of the ’Algo-
rithm to compute a lower bound’, and let U, the upper bound, be defined as 5Tv°.
Ny = {Oa LO}; :

Nodeset = {Ny}.

2. Choose N4 € Nodeset with minimal Lg.
IfLq > U, go to step 4,
otherwise :

Nodeset = Nodeset —Ny;
Choose s € {1,2,...,K} such that d, = 0.
Fora=1,2,...,M:

ds = a;
Compute the lower bound L.
KL, <U:

compute a new upper bound U* using the discounted cost vector
corresponding to Ly and compute the admissible policy f*
corresponding to U*.

KU*<U then f' = f* and U = U*.

Nodeset = Nodeset U {N4}.

3. Go to step 2.

4. Stop : policy f° is optimal in the class of deterministic stationary admissible policies
with discounted costs U.
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Because of the huge cardinality of the state space for relatively small values of N; and N,
it is not possible to store transition matrices. Therefore, we compute the non-zero entries
in these matrices again in each iteration.

4. Markov decision model

To apply the algorithms, we have to describe the Markov decision chain corresponding to
the model of Section 2 (cf. [5]). The state space is the set

E= {(i17i27i37i4) € ]N4

i1+ <Ny
i3+ia SN2 [~

Because we are interested in routing policies for customers in the first centre, only depend-
ing on the numbers of customers in the queues of the first centre, we use the following
partition of the state space: E is partitioned into sets E(;, i,) such that

E(il.iz) = {(il,ig,ig,i4) e IN* ’ 13+14 <N, } ,when 21,7, € IN and 7; + ¢, < N;.

The total number of states in this model is

N, Ny—i;y N, Nz—ig

Y Y= i(N1 1)V +2)(Ns + 1)(Ns +2).

i1=0 i3=0 i3=0 iq=0

The action space is A = {1,2}. Action ¢ means that if a customer arrives in centre 1 and
is accepted, he is routed to queue i. In states where the customer is blocked, the actions
are dummy actions.

First, we consider a cost function in which each customer in the system has a holding cost
of one per time unit. However, when we applied the algorithms, we found that this cost
function causes a lot of side effects because of the finite buffers. In states with a rather
full unbalanced first centre, the policies found by the algorithms route customers to the
longest queue in the first centre. In this way the probability of blocking future customers
is increased (because of the joint buffer for the two queues). Hence, the total expected
holding costs are decreased.

We tried to make the buffers so large that no side effects are caused by their finiteness.
However, in this model, the state space is very large and therefore, the buffers have to be
relatively small and blocking effects are caused. These effects can be avoided by giving a
reward for each customer leaving the system. Because we study models with cost functions
instead of rewards, we define costs as negative rewards. Then, the algorithms maximize
the discounted number of departures.

Note that in an infinite system (system with no restricting buffers), minimizing the dis-
counted holding cost in the system is equivalent to maximizing the discounted number of
departures. Namely, when the cost rate is 1 per customer per time unit, the holding cost
in the system at time t is equal to to the number of customers present at time ¢.

These costs have to be discounted by the discount factor at time t, a!, which can be de-
noted by e~ with b = —In(a). Indeed, if we denote the number of arrivals up to time ¢
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by A(t) and the number of departures up to time ¢ by D(¢), then minimizing the expected
discounted holding cost is equivalent to minimizing

*© —bt
]E/O e P (A(t) — D(t)) dt. (4)

When there are no finite buffers, IE ]:o e % A(t) dt is independent of the policy, because
[EA(t) = At for all t and f;° | e™®At | dt < co. Thus, minimizing (4) is the same as
maximizing

E / et D(t) dt.
0

For each realization T;,T3, T3, ... with T} the k-th departure time, it holds that

/ eD(t) dt = Z/ e dt
0 k=1"T:
= % Ze“"T".
k=1

This is exactly } times the reward we would get for receiving a discounted reward of 1 for
each departure, and this is just the reward function we consider.

In this model, the transition times (times between decision epochs) in different states may
have different distributions. For example, in the empty system there is only one possible
event, namely the arrival of a customer in the first centre. The transition time, the time
until this event occurs, has an exponential distribution with rate A. In the state where the
system is full, the only event which can occur, is the departure of a customer in centre 2.
This transition time has an exponential distribution with rate p or 2u,, respectively when
there are customers in only one queue or in both queues.

When the transition times have different distributions, the expected one step costs until the
next decision epoch have to be calculated separately. Therefore, we use a uniformization
technique to get a model in which the transition times are exponentially distributed with
the same parameter for all the states (cf. [8]). The subsequent states are described by a
Markov decision chain, to which we will apply the algorithms. In this case, we choose the
parameter of the uniform exponential distribution equal to the maximal parameter in the
original model, namely A + 2p; + 2u2. Thus, in each state all events are possible, namely
an arrival in the first centre and departures in both queues of both centres. If an event
occurs which is not possible in reality, a dummy transition takes place (transition to the
same state).

Now, some examples of transition probabilities are

A . .
P(iy,iziais)a(in,iz+1,is,is) = YT om T2, 2 + 202 8(a=2, i1 +13 < Nyp);

o . . ) .
P(irinsisia)a(in=1,iz,ia+1,is) = m 8(iy >0, 13 +14 < Na, i3 < i4)

(13 8 = ia)).
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Here, 6(condition 1, condition 2,...,condition n) is equal to 1 if all conditions are true and
equal to 0 otherwise.

Finally, we have to define our expected one step cost. As described before, we have a cost
of —1 when a customer leaves the system. To compute the one step cost, we have to take
the discount factor a € [0,1) into account. Suppose the discount factor in the original
continuous model to be equal to a. Costs at time ¢ are discounted by a factor at = e~
with b = —In(a). Now, for a state i € E with a positive number of customers in the first
queue of centre 2

oo

_ —bz K2 —(M+2p142p2)z
c= e —_— /\ + 2 + 2 [ L H2 d:t
/ ,\+2u1+2#2( H1 #2)

0
I o S
/\+2u1+2[12+b

is the expected discounted number of departures from this queue.

When there are customers present in both queues of centre 2, the expected discounted num-
ber of departures from centre 2 until the next decision epoch will be twice the expression
above. Hence,

C(iy,iz,i3,i4)a = —C (5(13 > 0) +5(i4 > 0)) .

Because the factor pa /(A + 2p1 + 2p2 + b) is a constant, we take it for simplicity equal
to 1. This will make no difference in the policy found; the total discounted cost of each
policy will be multiplied by (A + 2p1 + 2pg + b)/p2.

5. Numerical results

In this section we present numerical results found by the algorithms in the Section 3.

In the model with full information, the optimal routing policy is almost equal to the SQP
for many different parameter values. Therefore, we expected the optimal routing policy
in the partial information model to be equal to the SQP. For many parameter values, the
SQP is indeed optimal. However, in [3] some parameters are given for which the SQP
is not optimal. We also found this with the algorithms of Section 3. For example, the
routing policy found by these algorithms deviates from the SQP, when the initial state
is (1,0,10,10) and the parameters are the following : N; = 20, N, = 25, A = 0.01,
p1 = pp = 1 and a = 0.8991 (this is the discount factor in the discrete time Markov
decision chain). Indeed, the policy found, turns out to route arriving customers to the first
queue in states in the partition set E(; o). Heuristically, this can be explained as follows.
Because of the discounting, the initial state has a big influence on the total discounted
costs. In this state, there is one customer in the first queue of centre 1 and the second
centre is rather full and balanced. By routing an arriving customer to the first queue in
centre 1 instead of routing him to the second queue, the arrival of this customer in the
second centre will be delayed more. Therefore, the second centre will probably be less full
and less balanced when he finally arrives there, which results in a better routing in the
second centre.
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For the initial policy in Algorithm 2, we choose the SQP to reduce the computing times.
In the cases considered, the SQP is (almost) the optimal policy. Hence, not many policy
improvements need to be made by the algorithm and the computing time is small. However,
for other initial policies the computing times can become very large. This can be seen from

Table 1 (cf. [5]).

For several values of the buffer sizes, the computing times are given for three different
initial policies; the SQP, the policy assigning all customers to the first queue and the
policy that assigns customers with probability % to the first and with probability % to the
second queue (our computer code of Algorithm 2 allows for an initial randomized policy).
The policies are denoted as 'SQP’, ’Queue 1’ and 'Bernoulli’ respectively.

N, N, Initial policy Computing time
20 20 sSQP 3 hours
15 15 SQP 1.5 hours
10 10 sSQP 11 minutes
8 8 SQP 7 minutes
6 4 sSQP 1.5 minutes
20 20 Queue 1 138.5 hours
15 15 Queue 1 43 hours
10 10 Queue 1 3 hours
8 8 Queue 1 1 hour
6 4 Queue 1 11 minutes
15 15 Bernoulli 84.5 hours
- 10 10 Bernoulli 6 hours
8 8 Bernoulli 1.75 hours
6 4 Bernoulli 21 minutes

Table 1. Computing times for different initial policies in Algorithm 2.

The results were found, using a slower computer than in Tables 2 up to 5, thus the
computing times are not comparable to the other computing times in this section. However,
it is clear that the computing time becomes very large if the initial policy is not close to the
optimal one. Algorithm 1 is not influenced by the choice of the initial policy. Furthermore,
the choices of ! and v! have very little impact on the computing times. This means that
the computing time is virtually independent of the initialization of the algorithm.

Hence, in general models where we have no good guess for the optimal policy, Algorithm 1
is much faster than Algorithm 2.

In our implementation of the third algorithm, we use the discounted costs of the SQP
(computed by iteration of the v-vector) as initial upper bound on the costs. This seems a
good choice, because we expect the optimal policy to be close to the SQP.

We also implement the algorithm, such that the order of the sets E, with d, = 0, chosen
in step 2 of the algorithm, is the following (if possible) : Eo 1), E(1,0), £(0,2)> E(2,0)s E(1,2)s
E(2,1), E0,3): E@3,0), E(1,3), E(3,1)- When the policy is already fixed for the partition sets
mentioned, the choice is made by choosing the state with the lowest number. We choose
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to fix the policy first in these states, because these states are close to the initial state and
are likely to have the biggest influence on the costs. Furthermore, when an action has to
be chosen in step 2, the action deviating from the SQP is chosen first. This, in the hope
that the corresponding lower bound is so high that the node is not appended to the tree.
The computing time for the Algorithm 3 depends very much on the order in which the
subsets of the partition are chosen to fix the policy there. In general, this algorithm will
be slowest.

Numerical results for the three algorithms can be found in the Tables 2 - 5.

In the tables, we give results for parameters close to the parameters where we found the
policy to be different from the SQP. The policy SQP' in the tables is defined as the policy
which chooses action 1 in sets E; j) with ¢ < j and chooses action 2 otherwise. Note, that
in contrast to the SQP, in sets E; ;) action 1 is chosen instead of randomizing between
the two actions. We choose this initial policy because we want to allow only deterministic
policies in our implementations.

In all tables, the (discrete time) discount factor « is equal to (A + 2p; + 2p2)/(A + 241 +
2u2 + b).

In the column ’Sets not SQP' ’, the entry (i, j) means that the policy found by the algorithm
considered, deviates from the SQP' in the subset E; ;).

For €, we use the value 10710,

In Table 2, the results for different A can be found. The other parameters are N; = 20,
N, =25, y; = pa =1 and b = 0.5. The initial distribution vector 3 is chosen as §; = 1 if
i =(1,0,10,10) and zero otherwise. Thus, the initial state is (1,0, 10, 10).

A Sets not Cost per

SQP' time unit

Algorithm 1 | 0.005 (0,0), (1,0, (1,1) 17.7721
Algorithm 2 | 0.005 (0,0, (1,0), (1,1) 17.7721
Algorithm 3 | 0.005 (0,0), (0,3), (1,0, (1,2) -17.7721

(1,3), (3,0), (5,7)

Algorithm 1 | 0.010 (0,0), (1,0, (1,1), (2,2) -17.7941
Algorithm 2 | 0.010 (0,0, (1,0, (1,1), (2,2) -17.7941

Algorithm 3 | 0.010 | (0,0), (1,0), (1,3), (3,0), (5:4) | -17.7941
(5’5)7 (6’6)7 (777)’ (8’8)7 (919)

Algorithm 1 | 0.015 (0,0), (1,0), (1,1), (2,2) -17.8161
Algorithm 2 | 0.015 (0,0), (1,0), (1,1), (2,2) -17.8161
Algorithm 3 | 0.015 | (0,0), (0,3), (1,0), (1,1), (1,3) | -17.8161
(3,0), (3,1), (5:4), (5,5), (6,6)
(1,7, (8:8), (9,9)

Algorithm 1 0.020 (0,0), (1,0), (1,1), (2,2) -17.8381

Algorithm 2 | 0.020 (0,09, (1,0), (1,1), (2,2) -17.8381

Algorithm 3 | 0.020 | (0,0), (0,3), (1,0), (1,1), (1,3) | -17.8381

(3,0, (3,1), (5,4), (5,5), (6,6)
(7,7), (8,8), (9,9)
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A Sets not Cost per

SQP' time unit
Algorithm 1 0.025 (0,0), (1,0), (1,1), (2,2) -17.8601
Algorithm 2 0.025 — -17.8600
Algorithm 3 0.025 (0,0), (0,3), (1,0), (1,1), (1,3) -17.8601

(3’0)’ (371)7 (574)7 (5’5)7 (6’6)
(7.7), (88), (9.9)

Algorithm 1 | 0.030 (0,0), (1,0), (1,1), (2,2) -17.8820
Algorithm 2 | 0.030 — -17.8820
Algorithm 3 | 0.030 (0,0, (0,3), (1,0), (1,1), (1,3) -17.8820

(3’0)7 (371)7 (5’4)7 (575)7 (676)
(777)7 (878)7 (9’9)

Algorithm 1 | 0.035 (0,0), (1,0), (1,1), (2,2) -17.9040
Algorithm 2 | 0.035 — -17.9039
Algorithm 3 | 0.035 (0,0), (1,0), (1,1), (3,0), (5,4) -17.9040
(5,5), (6,6), (7,7), (8,8), (9,9)
Algorithm 1 | 0.040 — -17.9259
Algorithm 2 | 0.040 — -17.9259
Algorithm 3 | 0.040 | (0,0), (0,3), (1,0, (1,1), (1,3), (5,4) | -17.9259
Algorithm 1 | 0.045 — -17.9478

Algorithm 2 | 0.045 — -17.9478
Algorithm 3 | 0.045 | (0,0), (1,0, (1,1), (5,4), (5,5), (6,6) | -17.9478
(7,7), (8,8), (9,9)

Algorithm 1 | 0.050 — -17.9697
Algorithm 2 | 0.050 — -17.9697
Algorithm 3 | 0.050 | (0,0), (1,0), (1,1), (2,2), (3,0), (5,4) | -17.9698
(5,5), (6,6), (7,7), (8,8), (9,9)

Table 2. Results for varying A.

In Table 3, the results for different p; can be found. The other parameters are N; = 20,
Ny =25, A = 0.005, gy =1 and b = 0.5. The initial state is (1,0, 10, 10).
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) Sets not Cost per

SQP’ time unit

Algorithm 1 | 1.25 | (0,0), (1,1) | -19.4482
Algorithm 2 1.25 — -19.4482
Algorithm 3 1.25 — -19.4482
Algorithm 1 1.5 — -20.9654
Algorithm 2 1.5 — -20.9654
Algorithm 3 1.5 — -20.9654
Algorithm 1 1.75 —_ -22.3289
Algorithm 2 1.75 — -22.3289
Algorithm 3 1.75 — -22.3289
Algorithm 1 2 — -23.5509
Algorithm 2 2 — -23.5509
Algorithm 3 2 — -23.5509

Table 3. Results for varying pua.

In Table 4, the results for different y; can be found. The other parameters are N; = 20,
N, =25, X =0.005, g2 = 1 and b = 0.5. The initial state is (1,0, 10, 10).

1 Sets not Cost per

SQP’ time unit

Algorithm 1 1.25 (0,0), (1,0), (1,1), (2,0) -19.7434

Algorithm 2 1.25 (0,0), (1,0), (1,1), (2,0) -19.7434

Algorithm 3 1.25 (0,0), (0,2), (1,0), (1,3) -19.7434

(2,0), (3,1), (9,9)

Algorithm 1 1.5 (0,0), (1,0), (1,1), (2,0) -21.7148

Algorithm 2 | 1.5 (0,0), (1,0), (1,1), (2,0) -21.7148

Algorithm 3 1.5 (0,0), (0,2), (0,3), (1,0) -21.7148

(173)’ (2’0)7 (2)1)’ (1376)

Algorithm 1 1.75 (0,0), (1,0), (1,1), (2,0), (3,0) -23.6861

Algorithm 2 1.75 (0,0), (1,0), (1,1), (2,0), (3,0) -23.6861
Algorithm 3 1.75 *

Algorithm 1 2 (0,0), (1,0),(1,1),(2,0), (3,0), (4,0) -25.6575

Algorithm 2 2 (0,0), (1,0), (1,1), (2,0), (3,0), (4,0) -25.6575
Algorithm 3 2 *

Table 4. Results for varying pu;.

* These entries are omitted because the computing times were too large.
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The results in Tables 2, 3 and 4 are found on a SGI Challenge R4400SC with 128 Mbyte
memory and 500 Mbyte swap space. The total of computing times (in hours) needed per
algorithm for all the problem instances in the tables are

Table 2 Table3 Table 4
Algorithm 1 : 4:03 4:33 1:45
Algorithm 2 : 2:42 2:59 2:25
Algorithm 3: 596:31 5:48 > 800 : 00.

In Table 5, the results for different b, thus for different discount factors, can be found. The
other parameters are Ny = 20, N, = 25, A = 0.005 and p; = p = 1. The initial state is
(1,0,10,10).

b Sets not Cost per

SQP' time unit

Algorithm 1 | 0.6 (0,0, (1,0), (1,1) -15.2436
Algorithm 2 | 0.6 (0,0), (1,0), (1,1) -15.2436
Algorithm 3 | 0.6 (0,0, (0,3), (1,0), (1,2) -15.2436

(173)7 (3’0)’ (576)

Algorithm 1 0.7 (0,0), (1,0), (1,1) -13.3940
Algorithm 2 | 0.7 (0,0), (1,0), (1,1) -13.3940

Algorithm 3 | 0.7 | (0,0), (0,3), (1,0), (1,2), (1,3) | -13.3940
: (2,1), (3,0), (3,1), (4,6)

Algorithm 1 0.8 — -11.9887
Algorithm 2 0.8 — -11.9887
Algorithm 3 0.8 — -11.9887
Algorithm 1 0.9 — -10.8879
Algorithm 2 0.9 —_ -10.8879
Algorithm 3 0.9 — -10.8879
Algorithm 1 1 — -10.0036
Algorithm 2 1 — -10.0036
Algorithm 3 1 — -10.0036

Table 5. Results for varying b.

The results are found on a Silicon Graphics Indy R4000PC with 32 Mbyte memory and
100 Mbyte swap space. The total of computing times (in hours) needed per algorithm for
all the problem instances in the table are

Algorithm 1 : 2: 55;
Algorithm 2 : 3:11
Algorithm 3: 108 : 56.
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Note, that the policies found by Algorithm 3, are globally optimal. From the tables, we
see that the policies found by the three different algorithms are almost the same. Hence,
the policies found by Algorithm 1 and 2 are (nearly) optimal too. In Table 2, for A = 0.025
and X = 0.035, we have that Algorithm 1 and 3 find better policies than Algorithm 2 and
for A = 0.050 Algorithm 3 finds a better policy than the other two algorithms. However,
the difference in costs is very small.

From all this, we can conclude that Algorithm 1 finds good, if not optimal, policies in this
model in a (relatively) short time.
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Abstract

Motivated by a practical situation for the production/assembly of Printed Circuit
Boards, we study a generalized shortest queue system. This system consists of parallel
servers, which all have their own queue. The system serves several types of jobs, which
arrive according to Poisson processes. Because of technical reasons, most or all types
of arriving jobs can only be served by a restricted set of servers. All jobs have the
same exponential service time distribution, and, in order to minimize its own service
time, each arriving job joins (one of) the shortest queue(s) of all queue(s) where the
job can be served. The behavior of the resulting queueing system may be described
by a multi-dimensional Markov process. Since an analytical solution for this Markov
process is hard to obtain, we present flexible bound models in order to find the most
relevant performance measures, viz. the waiting times for each of the job types sepa-
rately and for all job types together. The effectiveness of the flexible bound models is
shown by some numerical results.

1 Introduction

To show the relevance of the queueing system studied in this paper, we first describe a
queueing situation stemming from a flexible assembly system consisting of a group of parallel
insertion machines, which have to mount vertical components on Printed Circuit Boards.
We start the description with explaining how an insertion machine operates. An insertion
machine mounts vertical components, such as resistors and capacitators, on a Printed Circuit
Board (PCB) by the insertion head. The components are mounted in a certain sequence,
which is prescribed by a Numerical Control program. The insertion head is fed by the
sequencer, which picks components from tapes and transports them in the right order to the
insertion head. Each tape contains only one type of components. The tapes are stored in
the component magazine, which may contain 80 tapes, say. Each PCB needs, on average,
60 different types of components. If a machine has to mount components on a PCB, then
all the components need to be available on that machine. That means that for all those
components a tape must be placed in the magazine. So the set of components available on
the machine completely determines which types of PCBs can be handled.

In general we have a group of parallel insertion machines which have to process a number
of different types of PCBs at the same time. Each insertion machine has its own queue, and
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the PCBs are transported to the insertion machines by an Automatic Conveyor System. In
Figure 1, we have depicted a system which consists of three insertion machines and which has
to process three different types of PCBs. The machines are basically similar, but due to the
fact that they may be loaded with different types of components, the classes of PCB-types
that can be handled by the machines may be different. In the situation depicted in Figure
1, machine M) can handle PCBs of the types A and B, machine M, can handle the types A
and C, and machine M3 can handle the types B and C.

In fact, there are two decision problems: the assignment problem and the routing problem.
We first describe the assignment problem, which is the major problem. The assignment
problem concerns how the tapes with components have to be divided among the machines.
One should try to allocate the tapes with components to the machines such that, for example,
the waiting times (and/or sojourn times) of the PCBs are minimized. There would be no
problem if the magazines were big enough to contain all components needed to process all
types of PCBs. However, in general they can only contain the components needed for a
small subset of the different types of PCBs.

In order to solve the assignment problem, we must be able to evaluate the performance
characteristics of a given assignment of the components to the machines. These performance
characteristics depend on how the second decision problem, i.e. the routing problem, is
handled. This problem concerns to which machines the PCBs must be sent upon arrival.
For an arriving PCB, we must select one of the machines which can handle that PCB. If
for all types the mounting times are roughly the same, then it is reasonable to select the
machine with the shortest queue (let ties be broken with equal probabilities); this at least
(roughly) minimizes the waiting time of the arriving PCB itself, and it may be expected
that this also roughly minimizes the average waiting time for all PCBs together, provided
that we are in a balanced situation (i.e. a situation in which each server will have to handle
the same amount of work on average). Assume that the shortest queue routing is used by
the Automatic Conveyer System, and that, once arrived in a queue, the PCBs are served in
a First-Come-First-Served (FCFS) manner. Then we have the following problem:

Given the shortest queue routing and the FCFS service discipline at each ma-
chine, we want to have an efficient method for the determination of the perfor-
mance characteristics of the flezible assembly system for a given assignment of
the components to the machines.

The main performance characteristics we are interested in, are the waiting times for each
type of PCBs separately and for all PCBs together. It is obvious that an efficient method
for determining these measures can be exploited for selecting the best possible assignment
of the components to the machines.

The assembly of PCBs is often characterized by relatively few job types, large production
batches and small processing times (see Zijm [13]). Therefore, a queueing model approach
seems natural. The flexible assembly system can be modeled as a queueing system consisting
of parallel servers, each with a own queue, and serving several types of jobs, where each job
upon arrival joins the shortest queue of all queues that can handle this job. We call this
system a Generalized Shortest Queue System (GSQS).

Apart from the situation described above, the GSQS is also relevant for many other
practical situations; for example, in a job shop with a group of identical, parallel machines
which are loaded with different sets of tools, in a computer system where each information
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Figure 1: A flexible assembly system consisting of three parallel insertion machines, on which three
types of PCBs are made.

file is available on a restricted set of a number of parallel disks and requests for information
files have to be handled by only one disk, and at a banking office where each clerk is able to
carry out a restricted set of tasks. Nevertheless, the GSQS has hardly been studied in the
literature. To our knowledge, the only contribution is made by Adan, Wessels and Zijm (3],
who, for a simplified situation (see the next paragraph), present rough approximations for
the waiting times. Further, closely related systems have been studied by Schwartz [10] (see
also Roque [9]), Green [5] and Hassin and Haviv [6].

In this paper, we make the following assumptions for the GSQS (cf. [3]): (i) all jobs
arrive according to Poisson streams; (ii) the service times are exponentially distributed;
(iii) the service times are job-independent; (iv) all insertion machines work equally fast.
The assumptions (ii)-(iv) imply that all service times are exponentially distributed with the
same parameter. Even under these assumptions, the GSQS constitutes a hard problem.
The behavior of the GSQS is described by a continuous-time Markov process with multi-
dimensional states where each component denotes the queue length at one of the servers.
However, because of the shortest queue routing, the structure of the transitions is rather
complicated and hence an analytical solution seems hard to obtain in general. In fact,
an analytical solution is only known for the special case with two parallel servers and one
type of jobs that can be handled by both servers; in this case the GSQS reduces to the two-
dimensional symmetric shortest queue system, for which a generalized product-form solution
has been derived by using a compensation approach (see [4]). For all other cases, even a
standard numerical method is not available. Therefore, for the general case of the GSQS, we
propose to use truncation models which: (i) have a truncated state space with a flexible size
(i.e. depending on one or more truncation parameters); (ii) can be solved efficiently; (iii)
lead to upper/lower bounds for the waiting times. Such models are called solvable flezible
bound models. We shall define one lower bound and one upper bound model. By solving
these two models for increasing sizes of the truncated state space, we can determine the
waiting times of the original GSQS as accurately as desired. Numerical results for two series
of instances will show that this method may work quite well. It is noted that flexible bound
models previously have been successfully applied to the symmetric shortest queue system
(with > 2 servers), the symmetric longest queue system and an M|M|c system with critical
jobs (see (2, 12, 1]).

This paper is organized as follows. In Section 2, we give a precise description of our model
for the GSQS. Next, in Section 3, we describe the flexible bound models that can be used
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to determine the waiting times for the GSQS. Finally, in Section 4, we present numerical
results in order to show the effectiveness of the flexible bound models. For simplicity and
in order to save space, in the remaining part of this paper we shall restrict ourselves to
the two-dimensional case, i.e. to a GSQS consisting of two servers. Nevertheless, the whole
analysis can easily be generalized to the case with two or more servers; for this generalization
the reader is referred to [11].

2 Model

We consider a GSQS consisting of two parallel servers. For this system we distinguish three
types of jobs: jobs of type A, which can be served by both servers, jobs of type B, which can
only be served by server 1, and jobs of type C, which must be served by server 2; see Figure
2. The jobs of the types A, B and C arrive according Poisson processes with intensities A4,
Ag and Ac (all > 0). The total arrival intensity is denoted by A = A4 + Ag + Ac. All service
times are assumed to be exponentially distributed with parameter 4 = 1. Upon arrival, jobs
of type B join the queue at server 2, jobs of type C join the queue at server 3, and jobs of
type A join the shortest queue (if both queues have equal length, then each queue is chosen
with probability ).

The behavior of the GSQS is described by a continuous-time Markov process with states
(m1, mg), where m; denotes the length of the queue at server i, 1 = 1,2 (jobs in service are
included). So, the state space is equal to

M = {m|m=(my,my) withm; € IN; for i = 1,2} .

In order to obtain an irreducible Markov process, we assume that Ay+Ap > 0 and Ag+ )¢ >
0. The transition rates are denoted by ¢, ». These rates have been depicted in Figure 3.

A B

aohgoAe NE(W)

NE(W)
Figure 2: The GSQS with two servers and three job types.

The average workload per server is given by p = A/2. The GSQS obviously can only be
ergodic if p < 1 and if each of the servers can handle the job type that always has to be
served by him, i.e. if

A <1, A\¢ <1 and X < 2. (1)
We conjecture that this condition is not only necessary, but also sufficient for the ergodicity.
This conjecture is based on: (i) the idea that the dynamic shortest queue routing gives a

better performance than a static routing; (ii) the property that if condition (1) is satisfied,
then there exists a static routing under which the system is ergodic. The latter property
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Figure 3: The transition rate diagram for the GSQS.

is seen as follows. Under a static routing, upon arrival, a job of type A joins the queue
at server 1 with some given probability z, 0 < z < 1, and it joins the queue at server 2
with probability 1 — z. Then the two servers behave as two independent M|M|1 queues
with workloads zAs + Ap and (1 — z)A4 + Ac, respectively, and the system is ergodic if
ZAa+ Ap < 1 and (1 — z)A4 + Ac < 1. It may be shown that this latter condition always
can be satisfied for some choice of z if condition (1) is satisfied. From now on, we assume
that condition (1) is satisfied.

The performance measures we are interested in are the mean waiting times WA WwiB)
W) for each of the job types A, B and C separately and the mean waiting time W for all
job types together, which is equal to

A4 AB) 2O
= 2 _wA Z_w®B Z_wi(©)
\ w h\ w X Wi,

It is easily seen that W(B) and W(©) are equal to the mean queue lengths L; and L, at the
servers 1 and 2, respectively, and that W(4) is equal to the mean Ly, of the length of the
shortest queue.

Finally, note that the GSQS is symmetric if A\p = A\c. For such a system, the ergodicity
condition (1) reduces to p < 1 and the shortest queue routing used by the jobs of type A
can be shown to minimize the total number of jobs in the system and hence also the mean
waiting time W (this may be done by the technique used by Hordijk and Koole [7]).

3 Solution by flexible bound models

We now define two truncation models: one leading to lower bounds for the waiting times
WA W®B W) and W, and another one leading to upper bounds.

Since the shortest queue routing in general will cause a drift to the states with equal
queue lengths, for both the lower and the upper bound model the truncated state space is
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defined by
M = {TTL e M I m = (ml,mg), my < my+T) and my < my +T2} ,

where T},T, € IN are so-called threshold parameters. For this choice of the truncated state
space, there are four types of transitions pointing from states inside M’ to states outside M":

(i) for the states m = (my,m; + T;) € M’ with m; > 0, a service completion at server 1
occurs with rate p and leads to a transition from m to state n =m —e; & M’;

(ii) for the states m = (my, mo + To) € M’ with my > 0, a service completion at server 2
occurs with rate u and leads to a transition from m to state n =m — e, & M’;

(iii) for the states m = (my,m; +T1) € M’ with m; > 0, an arrival of a job of type C
occurs with rate A\c and leads to a transition from m to state n = m + e, & M’;

(iv) for the states m = (mg,my + T) € M' with my > 0, an arrival of a job of type B
occurs with rate Ag and leads to a transition from m to state n =m 4+ e, € M'.

In the lower bound model, these transitions are redirected from the states m to states n’
which correspond to situations with a smaller number of jobs at one of the two servers. With
respect to waiting times and queue lengths these states are more attractive. In the upper
bound model, redirections are made to less attractive states corresponding to situations with
a larger number of jobs at one of the two servers.

In the lower bound model, the transitions described under (i) and (ii) are redirected
tothe states n’ = n—-e =m-—e; —ea € M andn' =n—e =m—e —e € M,
respectively. The physical interpretation of these redirections is that a departure of a job
at a non-empty shortest queue is accompanied by a destruction or killing of one job at the
other queue. Further, the transitions described under (iii) and (iv) are redirected to the
statesn' =n—e,=m € M'and n’ =n —e; = m € M’, i.e. to the states m itself. The
physical interpretation of these redirections is that a new job arriving at one of the servers
is rejected. Because of the physical interpretations, the lower bound model is called the
Threshold Killing and Rejection (TKR) model.

In the upper bound model, the transitions described under (i)-(iv) are redirected to
n=n+e=m,n' =n+e=m,n' =n+e =m+e +eandn =n+e=m+e; +ey
respectively. The meaning behind the first two types of redirections is that if for one queue
the difference with respect to the shortest queue has already reached its maximum value,
then a service completion at the other queue is not accompanied by a departure, and the
job in service has to be served once more; this is equivalent to saying that then the other
server is blocked. The meaning behind the latter two types of redirections is that an arrival
of a new job at a queue for which the difference with respect to the shortest queues has
already reached its maximum value, is accompanied by the addition of one extra job at each
of the shortest queues. Hence, the upper bound model is called the Threshold Blocking and
Addition (TBA) model.

In Figure 4, we have depicted the redirections for both the lower and upper bound model.

The TKR model leads to stochastically smaller lengths for the queue at server 1, the
queue at server 2 and the shortest queue, and hence also to smaller means than obtained
for the original model. Further, it may be shown that the larger the values of T} or T; the
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Threshold Killing and Rejection Threshold Blocking and Addition

Figure 4: The redirections for the TKR and TBA model. For both models, T} and T> have been
taken equal to 3.

smaller the difference between the queue lengths in the TKR model and the queue lengths
in the original model. The lower bounds for the mean queue lengths immediately lead to
lower bounds WERR(T), WD (1), Wia(T) and Wrkr(T) for the mean waiting times;
here T = (T1,T,). Similarly, the TBA model leads to larger queue lengths and waiting
times. The upper bounds for the mean waiting times are denoted by W}’;’A(T), WT(%)A @),
W}(’,;)A (T) and Wrpa(T). A formal proof of all these monotonicity results may be given by
using the precedence relation method. This method is based on Markov reward theory and
has been developed in [11].

For both the TKR and TBA model, the steady-state distribution can be determined by
the matriz-geometric approach, as described in [8]. This enables an efficient computation of
the corresponding lower and upper bounds for the waiting times; see [11] for appropriate
matrix formulae that can be used for this computation.

4 Numerical results

In this final section, numerical results for two series of instances are presented in order to
show how well the waiting times of the original GSQS can be determined by using the bound
models. The instance with

p =109, A= 2p Ag = p/\withpz—;-, Ap = A¢ = %(l—p))\

has been chosen as a basic instance. In the first series, we have varied the value of the
workload p. In the second series, we have varied the value of the fraction p of jobs that can
be handled by both servers.

Since all instances concern symmetric cases, we can take T; = T, = T and the waiting
times W), W(B) W(C) and W can be determined by solving the TKR and TBA model
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o T w AT | wB  ABXT) w A(T)
0.1 2| 00146 0.0006 | 0.1059 0.0007 | 0.0603 0.0006
0.2 3| 0.0558 0.0006 | 0.2282 0.0008 | 0.1420 0.0007
0.3 3| 01281 0.0034 | 0.3746 0.0043 | 0.2514 0.0038
0.4 4| 02351 0.0030 | 0.5577 0.0038 | 0.3964 0.0034
0.5 5| 0.3966 0.0034 | 0.7977 0.0042 | 0.5971 0.0038
0.6 7| 0.6468 0.0018 | 1.1337 0.0021 | 0.8902 0.0019
0.7 8| 1.0723 0.0039 | 1.6532 0.0044 | 1.3628 0.0041
0.8 | 11| 1.9222 0.0027 | 2.6142 0.0029 | 2.2682 0.0028
09 [ 15| 4.4516 0.0032 | 52782 0.0033 | 4.8649 0.0033
0.95 || 18 | 9.4729  0.0048 | 10.3800 0.0048 | 9.9265 0.0048
0.98 || 23 | 24.4883  0.0032 | 25.4495 0.0032 | 24.9689 0.0032
0.99 || 26 | 49.4939  0.0031 | 50.4742 0.0031 | 49.9841 0.0031

Table 1: The mean waiting times W() and W determined within an absolute accuracy of egps =
0.005 for increasing values of p and with A =2p, Ay = A\, Ap = A¢c = A.

for increasing values of T. Here, for each T, the values of (Wi p(T) + W5, (T))/2 and
AN(T) = (W, (T) — WEDr(T))/2, where T = (T, T), are used as an approximation
for W(4) and an upper bound for the corresponding absolute inaccuracy; and, similarly for
W®B), W and W. For each instance, we have determined the smallest value of T' for which
each of the waiting times was determined within an absolute accuracy €gs = 0.005.

The numerical results have been gathered in the Tables 1 and 2. The first column of
Table 1 denotes the chosen values for p, while the second column depicts the value found for
T. In the third, fifth and seventh column, we have listed the approximations which for this T'
have been obtained for W4, W(B) = W(C) (because of the symmetry, also the waiting times
for the types B and C are equal) and W; and, in the fourth, sixth and eighth column, we
have listed the upper bounds A® (T"), A® (T) = AC)(T) and A(T) for the corresponding
absolute inaccuracies. Table 2 consists of the same columns, except that in this table the
first column denotes the chosen values of p.

The results in Table 1 show that, as expected, the threshold parameter T' which is needed
to approximate the mean waiting times within the desired absolute accuracy, is increasing
as a function of the workload p. Further, the results in the Table 2 show that the required
value for T strongly depends on the strength of the drift to the states with equal queue
lengths, i.e. to the statcs on the diagonal. In this table, a smaller value for p corresponds
to a weaker drift to the states on the diagonal. It follows that the weaker the drift to the
diagonal, the larger the required value for T. In the extreme case with p = 0.0, in which
the corresponding SQS-JDP consists of 2 independent M|M|1 queues, T has to be equal to
85 in order to reach the desired accuracy, while in the other extreme case with p = 1.0, in
which we have a pure symmetric shortest queue system, T only has to be equal to 8.

From the values found for T', it may be concluded that the TKR and TBA model only
lead to tight bounds, if the drift to the states with equal queue lengths is sufficiently strong.
This will also hold for GSQSs with more than two servers. It is noted that the existence of
a certain drift to the states with equal queue lengths has been a point of departure when we
constructed the TKR and TBA model. So, if there is only a weak drift to the states with
equal queue lengths, then the probability mass will not be concentrated around these states,
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p [T WA AWE) T wB ABT)] w  AT)
0.0 || 85 [ 4.2648 0.0024 | 8.9976 0.0046 | 8.9976 0.0046
0.1 | 43 |4.3594 0.0038 | 6.8002 0.0046 | 6.5561 0.0045
0.2 || 29 [ 4.4027 0.0041 | 6.0435 0.0045 | 5.7154 0.0044
0.3 || 22 | 4.4266 0.0040 | 5.6619 0.0042 | 5.2913 0.0041
0.4 || 18 | 4.4414 0.0033 | 5.4320 0.0034 | 5.0357 0.0034
0.5 || 15 | 4.4516 0.0032 | 5.2782 0.0033 | 4.8649 0.0033
0.6 || 13 | 4.4589 0.0027 | 5.1682 0.0028 | 4.7426 0.0028
0.7 || 11 | 4.4645 0.0034 | 5.0856 0.0035 | 4.6509 0.0034
0.8 || 10 | 4.4688 0.0025 |5.0212 0.0025 | 4.5793 0.0025
09 9]44722 0.0021 |4.9697 0.0021 | 4.5220 0.0021
10| 844751 0.0022 |4.9275 0.0022 | 4.4751 0.0022

Table 2: The mean waiting times W() and W determined within an absolute accuracy of €gps =
0.005 for the GSQS with p = 0.9, A =2p, Ag = pA, Ap = A¢c = (1 — p)A, and varying p.

and one should focus on bound models with alternative truncated state spaces.

The values presented in the Tables 1 and 2 for the mean waiting times itself, also deserve
some attention. The results in Table 1 show that only a small difference between the waiting
times for the types B and C and the waiting time for type A is obtained, even for high
workloads. From the results in Table 2, it follows that the mean waiting time W for all
job types together is more than proportionally decreasing as a function of the fraction p of
jobs which can be served by both servers. In fact, a small fraction p of jobs that can be
handled by both servers, already leads to a considerable reduction for W, compared to the
situation with p = 0. From this, we can draw the following important conclusion for the
production of Printed Circuit Boards by the flexible assembly system, as described in Section
1: In order to obtain small mean waiting times for the given total workload, the assignment
of the components to the insertion machines should be such that for the resulting GSQS a
strong drift to the states with equal queue lengths is obtained. Note that these assignments
are precisely the ones for which our bound models work well. Hence, after having selected
a small number of assignments which are expected to have the strong drift to the states
with equal queue lengths, the bound models can be well used to compute the performance
for each of the selected assignments, and subsequently the best assignment can be easily
determined.
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Abstract

In this paper event-based dynamic programming is applied to stochastic scheduling
models. This allows us a unified treatment of many different models, among which are
multiple and single server models (with and without feedback), discrete and continuous
time models, models with controlled and uncontrolled arrivals, etc.

1 Introduction

Structural results for optimal policies for queuing models are usually derived in the following
way. After having formulated the dynamic programming (dp) value function for a particular
model, it is shown inductively that this value function satisfies certain properties, from
which the results are derived. This value function represents either a discrete time model, or
a continuous time model (through the well-known uniformization technique, first applied in
Lippman [14]). In this paper we use event-based dynamic programming. Event-based deals
with event operators, which can be seen as building blocks of the value function. Typically
we associate an operator with each basic event in the system, such as an arrival at a queue,
a service completion, etc. Event-based dp focuses on the underlying properties of the value
and cost functions, and allows us to study many models at the same time. It is explained in
the next section.

In this paper we apply event-based dp to stochastic scheduling problems. First we con-
sider single and multiple server models without feedback. Results from Chang et al. [6],
Hordijk & Koole [7], and Koole & Vrijenhoek [13] are generalized.

After that we study a single server model with feedback to the other queues. The con-
tinuous time version has already been studied in Nain [15] and Koole [10], the discrete time
version is the subject of Weishaupt [20]. Their results are slightly generalized; in the cited
papers only feedback to queues with a lower priority were allowed, we allow also feedback
to the next higher queue. This model has the following interesting application. One of the
problems of dynamic programming is the difficulty of working with general distributions. A
possible solution is the use of phase-type distributions, as in Koole [10]. DFR and IFR distri-
butions are characterized in terms of phase-type distributions, and using the feedback result
limiting results for G/DFR/1 and G/IFR/1 queues are derived. The single class results can
also be found in Righter & Shanthikumar [16].
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2 Dynamic Programming

2.1 Event-based dynamic programming

In this section we formulate the dynamic programming value function in general terms and
prove some theorems which form the basis of our method.
We take z € X = INI*! to be our state space. Define operators Tp, . .., k-1, as follows:

I )
Ti(fir- fi)(2) = min {e(z,0)+ 30 ¥ pll@a,0)f;0)},

J=1yeX

with fi,..., fi, : X — R. Ai(z) is called the action set, ¢;(z, a) the direct costs and pi(z,a,y)
the transition probabilities. We often take I; = 1, as we will see in the next Sections. An
important exception however is the uniformization operator for which we need I; > 1. If
l; = 1 then T; is the standard dp operator, given that p'(z,a,y) > 0 for all z,a,y, and that
>, P (z,a,y) =1 (or a, the discount factor) for each pair z and a. (In this case we omit
the superscript of p.) In applications we choose the event operators as simple as possible,
by associating one with every possible event in the system.

The value function V;4; is constructed from V, and the operators T; as follows. Assume
that Vo is given. Define, for n = 0,1,..., VO, ...,V by taking V¥ = V,, for j =
0,...., k=1 VO =TV, ..., V,fk")), for some j < ki, ..., ki; <k (where the assumption
that ky,...,k, > j is made to avoid circularity), and V,4; = V.

Although this definition is notationally quite burdensome, the intuition is simple: each
step of the dp consists of the parallel and/or consecutive execution of several events. If
l; > 1 for some i, then also the determination of which events are to be executed depends on
the state, the realization, or the action. The central ideas are summarized in the following
(trivial) theorem.

Theorem 2.1 Let F be some class of functions from INT' to R, and Vo € F. If, for all i,
for fi,..., fi, € F holds that T;(f1,..., fi,) € F then V, € F for all n.

In what follows we consider special event operators and show that T;f € F for all 2. This
proves that the value function V, € F for all models which can be constructed with the T;.
We choose F such that certain structural properties of the optimal control policies can be
derived from it.

On the other hand, it is possible to show that V, as defined can be rewritten in the
standard MDP formulation, given by

Waii(2) = min {k(z,a) + L a(z,0,9)Walo)}

This allows us to use techniques and results from the theory of MDP’s. .

Finally let us consider optimality criteria. Normally we assume that all p}(z,a,y) > 0
and that for all ¢, z and a &, ; p!(z,a,y) = 1: then V, represents the total minimal n-stage
costs, and under certain conditions the policy minimizing V,, as n — oo is average optimal.
These conditions however are non-trivial and should be checked for each model separately,
unless the state space is finite. If we make the exception that Zy,]—p{;(z,a,y) = a, then V,
converges (again, under certain conditions) to the minimal discounted costs. Our focus in
this paper is on the properties of the value function, not on the existence of limiting policies.
In the case of a finite state space existence is guaranteed for all models. For discounting
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results from Schal [17] often provide the necessary existence result; for average costs some
useful conditions are summarized in Cavazos-Cadena & Sennott [5].

Other optimality criteria are also possible. For discrete-time models there are no problems
to expect when minimizing total finite-stage costs. Other choices are also possible. Take
for example Vo = C and no further costs in the definition of V,,, n > 0. Then V,, gives the
minimal expected final costs after n time. Also for continuous time models we can consider
the costs at say T. This can simply be done by conditioning on the number of jumps of the
uniformization process (see Ch. 5 of Koole [9] or Koole & Liu [12]).

2.2 The value function

In this Subsection we present the operators.

Notationally we make use of the following conventions: e; denotes the ith unity vector,
1 <1 < m, while ep is the 0 vector, each vector (in)equality is taken componentwise, I{...}
is the indicator function, z+ = z if £ > 0, 0 otherwise, increasing and decreasing are used in
the non-strict sense.

The operators related to the service process are:

o Tssf(z) = minocicm{p(?) f(z —e;) +(1—p(i)) f(z)}, where the minimization ranges over
those ¢ with z; > 0. This models a single server that services m parallel queues. Idleness,
action 0, is always allowed.

o Tysf(a) = ming,.. {Sios((ie)f(2 — )+ (1= w(ie)) £ (2))} where Ty I{is = } > 5,
i.e., no more servers can work on a queue than that there are customers in that queue. This
models s parallel servers.

o Tssppf(z) = mimcicm{Tio p(6, k) f(z — i + ex)} if z # 0, f(z) if £ = 0. Action ¢
models again serving queue i. This operator allows feedback to other queues. Note that we
do not allow idleness if there are customers available. With x(7, k) we denote the probability
that a customer in queue ¢ which is being served moves to queue k. Queue 0 means leaving
the system. (Recall that ey was the 0 vector.) We assume that Y- u(¢, k) = 1 for all <.

Operators related to arrivals are:

o Tyi)f(z) = f(z + ), 1 < i < m. This operator models an arrival at queue 1.

o Trsf(z) = ¥y himin{f((z + e:),1}, with 3; \; = 1, and the minimization component-
wise. This models a finite source queue: with probability \; the single class i customer in
the system arrives, assuming that it is not yet there.

The direct costs and the discounting are represented by the following operators:

o T.ousf(z) = C(z) + af(x). Here o is the discount factor, thus we often take « € (0,1],
with @ = 1 representing total costs, but we only need o > 0. We often write Teo5t5(C, f) to
indicate that the conditions for f must also hold for C.

Remember that we had an m + 1 dimensional state space. Component 1 up to m are
used for the queues, as we saw in the model above, the Oth state component will be used
for the environment. This environment allows us to model general arrival streams, server
vacations, etc. For examples see the following subsection.

o Tonu()(f1s-- -+ fi)(Z) = Tyene A(#i,y) They (i, ) fi(z*), where z* is equal to z with
the O0th component replaced by y. This operator models Markov Arrival Processes, which
are discussed in the next section.

A special case of Tenv(o) is Tunif, the uniformization operator, given by

o Tunis(f1,.--, fi)(z) = £; p(j) fi(z) with p(j) > 0 for all j. This is a convex combination
of the f;. The value function of a continuous time model typically has this form, due to the
uniformization. This technique was first introduced in Lippman [14], and further developed
in Serfozo [19]. It is the basis of the analysis of most continuous-time Markovian models.
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An interesting extension of Teny (o) is
o TCenu(O)(fh I EEE] fl)(z) = mina EyGINo ’\(xi»avy) Z;=1 qJ(:L',', a,y)fj(x'). This operator al-
lows for control in the environment. We will not go into details here, but we refer to the

discussion of MDAP’s in [7].

2.3 Examples of value functions

Here we give some examples of value functions. A simple model with arrivals and service
independent of some environment state (i.e., Poisson arrivals and constant service rates) has
value function

Vn+1 = costs(cv Tunif[TA(l)Vm cee 7TA(m)Vn7 TSSVn])~

We could let the arrivals (and also the server completion times) depend on some envi-
ronment state. This can be done with a Markov Arrival Process, which has the property
that the class of all MAP’s is dense in the class of all arrival processes (Asmussen & Koole
[1]). An MAP consists of a Markov process on the environment states (with transition rates
A(z,y)), and event probabilities: if the environment moves from = to y then with probability
¢ (z,y) an event of type j (which can be an arrival in a certain class, or a possible service
completion) occurs. Uniformization of such an MAP leads in a continuous time setting to a
value function of the form

Vas1 = Teosts(C, Tenu(0)[Ta) Vs - - - » Tagm) Vo TssVal),

where the MDAP is modeled by the operator Teny(0). This is the model of Buyukkoc et al.
[4], for which they show the optimality of the uc rule. If we replace Tss by Tssrp then we
get the model of Section 3 of Nain [15]. If we take Tjss then we find the model of Chang et
al. [6]. )

Also discrete time models can be modeled with event-based dynamic programming. The
crucial property of discrete time models is that events occur after each other. Choices can
be made here; we give below the value function of the model of Weishaupt [20]. It is given
by:

Vn+1 = TSSFB(Tcoaulcy Tuni/(T‘:((ll')l) e T,l;((l,,,:;)‘/n) ey :((’1‘;) e ,:((If'n")')vn)])

The uniformization operator represents the arrivals. Thus with probability p(j) a batch of
customers arrives, with b(j,7) arrivals in queue .

3 Models without Feedback

In this section we study models with service operators Tss or Tpss. We define the class of
functions F as follows. f € F if the following two inequalities hold:

p(@) f(z = e) + (1 = p(@)) f(z) < p(G)f(z —€) + (1 — p(5))f(2)
for all z such that z; >0 and z; >0, ¢ < j, and
f(z) < f(z+ &)

for all z and .

The first inequality has a simple interpretation. The terms involved can be found in Tss.
Thus if f € F, then the minimizing action for Tss f consists of serving the customer of the
lowest class number available, which is called the Smallest Index Policy (SIP) in [7]. The
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second inequality shows that idling is not optimal. It is also readily seen that for Thss the
servers should be assigned to the group of s servers with the lowest indices. The following
lemma is the basis for our results, it shows under what conditions V, € G.

Lemma 3.1 The following hold:
feF=Tssf € F, Tawyf € F,

FEF, m < S ppm=>Tusf €F,
feF, M< - < A= Trsf € F,
C,f € F = T.oas(C, f) € F,
fireos L € F = Tonuo)(f1s---» i) € F,
foooo s IEF, 1 £ Lt = Toenvio)(f1,---, f1) € F.

Proof The proof follows by induction, following arguments in [11], [7] and [13]. a

Our results are summarized in the following theorem.

Theorem 3.2 For value functions consisting of the operators Taq),...,Tam), Trs (with
)‘l S S /\m); TSS; TMS (wzth 1238 S S ﬂm),v Tcoslsy Tenu(o) and/or TCeml(O) (wzth
A <2 < Ap), the SIP is optimal if C € F.

An extensive study of allowable cost functions can be found in [7]. One of the results is
that for C of the form C(z) = ¥; ¢;z;, C € F is equivalent to ¢; > 0 and p1c; > -+ > pmCp-
Thus the SIP serves in decreasing order of p;c;. This is called the pc rule. If py < -+ < pm
then the SIP serves the customers with the least expected processing times, which is called

LEPT.

In the following corollary we summarize the results for the main models.

Corollary 3.3 In the model with:

independent arrivals and a single server the pc rule is optimal;

controlled arrivals and multiple servers the uc rule is optimal if it coincides with LEPT;
a finite source and a single server the pc rule is optimal if \; < -+ < Ap;

a finite source and multiple servers the uc rule is optimal if it coincides with LEPT and if
M < S A

The result for the first model can also be found in Buyukkoc et al. [4] or Baras et al. [2].
The second result can be found in Hordijk & Koole [7], the result for uncontrolled arrivals

can also be found in Chang et al. [6]. The third result is that of Koole & Vrijenhoek [13],
the fourth is a generalization of it.

4 Single-Server Model with Feedback

We continue with the inequality that we consider for the operator Tssrp. We define the
class of functions G as follows:

FE€G & Y ulik)f(z — e +er) < Y ui, k) f(z — e + ),
k k
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for all z such that z; >0,z; >0,and 1 <1< j <m.

The terms in the inequality can be found in Tsspp. Thus if f € G, then the minimizing
action for Tsspp f consists again of serving the customer of the lowest class number available,
the SIP. The following lemma is the basis for our results, it shows under what conditions

V. €G.

Lemma 4.1 If, in the definition of Tsspp, p is such that, for 1 < i < m, u(i, k) =0 for
0 < k <t—1, then the following hold:

f)C €EGg= TA(x)f € g7 TSSFBf € g, Tcasts(cv f) € ga Tenu(O)f €g.

Proof The proof follows by induction, following arguments in [11] and [10]. We pay at-
tention to the inductive step for the operator Tssrp as existing results are extended for this
operator.

We have to show, given that f € G, that

Y u(i, k)Tssppf(z — e+ ex) < Y p(j, k)Tssraf(z — €; + ex).
% %

Consider the minimizing actions at the right hand side. For each of the states x —e; + ex
there are two possibilities: either action ¢ is optimal in each state (note that z; > 0), or
there is a | < ¢ with z; > 0 optimal. Note that because of our conditions on yx we have that
k > j. For the rest of the proof we refer to [10]. a

Our result can be summarized as follows.

Theorem 4.2 For value functions consisting of the operators Taq), - -, Ta(m), TssrB, Teosts
and/or Teny(0), the SIP is optimal under the following conditions:

(1) Feedback in Tsspp to queues with a lower index number should be restricted to the next
higher queue; 8

() The direct costs C should be such that C € G.

Let us compare this result with those obtained in the literature. As we saw already in
the previous section we can deal at the same time with the continuous time model of Nain
[15] (in [10] an equivalent result is obtained) and the discrete time model of Weishaupt [20].
Compared to their results there is a second difference: we allow not only feedback to lower
indexed queues, but also to the next higher queue. This small difference will allow us in
the next section to extend substantially the limiting results of Koole [10] for G/IFR/1 and
G/DFR/1 queues.

Finally let us look at some special cases of the theorem. First assume that only x(z,0)
and p(i,1) are non-zero, and that C has the following special form: C(z) = ¥; ¢;z;. Then
C € G is equivalent to:

p#(5,0)C(z =€) + (1 = p(5,0))C(z) < p(5,0)C(z — €;) + (1 — p(5,0))C(2),

which is, due to the special form of C, equivalent to u(,0)c; > p(7,0)c;. Thus we find again
the well known pc rule.

Now consider cost functions which are only functions of the total number of customers
in the system. Obvious functions are C(z) = |z| or —|z|, corresponding respectively to
minimizing and maximizing the number of customers in the system, but also C(z) = I{|z| >
s} and I{|z| < s} are of interest: they correspond to the probability that there are more
or less than s customers in the system. Thus for increasing cost functions (such as |z| and
I{|z| > s}) C € G is equivalent to u(i,0) decreasing in 7, and vice versa. We will use this in
the next section.
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5 Phase-Type Distributions and Limit Results

Based on results in Schassberger [18] it is shown in [10] that any distribution function F' can
be approximated with distributions F, of the form

Fu(e) = 3> BEX(2),
k=1

with By = F(1/n) and B¢ = F(k/n) — F((k —1)/n) for k > 1. E¥ is the density function of
a gamma distributed r.v. with k phases and intensity n.
Thus B is the probability of exactly k£ phases. Another way to construct this r.v. is as

follows. Define
. ={l—§mmrf,— i SES B <1,

1 if Sp5 B = 1.

Let the r.v. G, be the time until absorption of the following Markov process. The initial
state is 1. The process rests in each state k an E! (exponentially) distributed amount
of time, after that absorption takes place with probability a,, or the system moves to
state k + 1 with probability 1 — a,. This is a special case of a Cox distribution. Because
Brn=0—-e) (1 = ap_)a, we see that F, 4 G,.

Now we discuss DFR and IFR distributions, and their relation to phase-type distributions
of the form G,. We use the following definition of Barlow & Prochan [3], which is only in
terms of F\(t) = 1 — F(t) (thus the failure rate itself does not need to exist).

Definition 5.1 (DFR and IFR) A non-negative distribution function is:
DFR if F(t + s)/F(t) is increasing in t > 0 with F(t) > 0, for each s > 0;
IFR if F(t + s)/F(t) is decreasing in —oo < t < oo with F(t) > 0, for each s > 0.

Examples of IFR (DFR) distributions are distribution with a non-decreasing (non-
increasing) failure rate (defined by f(t)/1 — F(t), with f the density), assuming that it
exist for all . But also F(t) = I{t > z}, the deterministic distribution, is IFR, although its
failure rate does not exist.

Now we can formulate the result on phase-type distributions:

Theorem 5.2 If F is DFR (IFR) then a,, is decreasing (increasing) in m, for all n.

The proof of this theorem can be found in [10]. Hordijk & Ridder (8] proved the DFR
part of this theorem for general Cox distributions.

A disadvantage of this method is that we need an infinite number of states. We can make
the state space finite by changing the approximation into

F,(z) = :EﬂkE,'f(x) +(1- nZﬁk) i(l - ﬁﬂz)k_lﬂan:2+k(z).

k=1 k=1

It is easily checked that the approximation result also holds for this Fy,, and that a; becomes
constant from k = n? on, so that we only need a finite number of states for the representation
with the a’s.

Now assume that we have a single class of customers, and identify the queues of theorem
4.2 with the stages of the phase-type distribution. We let customers arrive in queue 1, and
we take u(2,0) = o; and p(i,i+1) = 1 — a;, ¢ < m, and for m = n? we take p(z,1) =1 — o,
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using the finite state approximation given above. At the end of the last section it was shown
that if C(z) = I{|z| > s}, then u(i,0) = o; should be decreasing in 1, i.e., F;, is DFR. Thus
to minimize the number of customers, all having the same DFR distribution, the customers
with the least attained service times (LAST) should be served. Similarly, to maximize the
number of customers when they have IFR distributions LAST should also be used. Note
that LAST, in the limit, leads to processor sharing between all the customers which have
the same minimal attained service time.

Another possibility is arrivals at queue m = n?, with p(¢,0) = a,241-; and p(4,1 — 1) =
1 — apz41-;, ¢ > 1, and p(1,1) = 1 — ay2. The optimal policy serves the customer which
has the most attained service time (MAST). Note that this is equivalent to non-preemptive
service.

All these results hold for all F,, and therefore also for their limit F. This gives the
following corollary. These results can also be found in Righter & Shanthikumar [16].

Corollary 5.3 The number of customers at any time T in a G/G/1 queue is:
minimized (mazimized) by LAST in case of DFR (IFR) service times;
minimized (mazimized) by MAST in case of IFR (DFR) service times.

Generalizations can be obtained to different customer classes having different service
times. As long as feedback occurs to lower numbered queues no problems are to be expected.
This is the case for DFR (IFR) distributions with positive (negative) holding times; see [10]
for details. For the other two cases the situation is less clear. As different queues can belong
to different customer classes, we have no guarantee that a change in phase means a transition
to the next higher queue. For each case separately the conditions should be checked.
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Performance of queues with ‘worst case input’
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Abstract

This paper focuses on the performance evaluation of queues fed by the worst case
traffic that can leave the policer. The existing literature is reviewed, and an easily
computable upper bound on the loss probability is derived. Some numerical examples
are provided in order to show the strength of this bound.

1 Introduction

In recent years, telecommunication networks that use the asynchronous transfer mode (ATM)
have appeared to be an emergent technology. In ATM systems, contracts are negotiated
between network and customer. In such a contract the network promises a certain Quality
of Service (loss, delay), as long as the customer satisfies a number of traffic characteristics.
In order to enforce that the traffic entering the network meets these requirements, so-called
Usage Parameter Control (‘policing’) is performed on the edge of the network. A (stylized
version of a) typical contract of customer ¢ consists of on the one hand a maximum allowed
loss fraction ¢, on the other hand peak p; and mean rate r; of the regulated traffic, as as well
as the maximum allowed burst period T;.

One node in the ATM network can be seen as a queue fed by a number of sources, all of
them characterized by their ‘triple’ (ry, pi, T;). We assume that the system is characterized
by a (constant) link rate C and a buffer of size B.

It is generally believed that traffic with deterministic on-periods (or bursts, with length
T;) and off-periods, peak rate p; and mean rate r; is the worst case traffic that can depart
from the ith UPC regulator, allthough not formally proven [2]. With ‘worst case’ we mean
that it essentially maximizes the loss probability, given the parameters (r;, p;, T;). From this
point of view, it seems logical to base the Call Acceptance Control routine (i.e., the check
whether or not a new request can be admitted without violating the loss constraint) on
customers supplying this kind of traffic.

In view of the above, it is clear that it is essential to have a method for performance
evaluation of a queue fed by ‘worst case input’. Notice that the only stochastic effect is
the ‘random start’ of the on-period within the period of the source. However, the model
has appeared to be notoriously hard to analyze. A number of procedures have already been

*The author was PhD student at the Vrije Universiteit Amsterdam, during the period 1993-1996, where
he was supervised by Ad Ridder and Henk Tijms. He followed courses and attended workshops organized
by LNMB. He currently works at KPN Research, Leidschendam. This work considerably benefited from
discussions with Maurits de Graaf and Hans van den Berg. Pim van der Stoel was helpful in providing
numerical results.
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proposed in literature, but they all have their particular deficiencies. The contribution of
this paper is to develop a technique that copes with all these drawbacks.

The structure of this paper is as follows. First we evaluate a number of methods that
are known from literature. Then we found a general, uniform, easily computable bound. We
end up by giving some numerical results.

2 Review of proposed methods

This section reviews and evaluates the existing literature in the field of queues fed by ‘worst
case traffic’, and states the properties which a good approximation or bound must satisfy.

Kvols and Blaabjerg

Kvols and Blaabjerg [4] consider the discrete-time version of the model, where the sources
are homogeneous. Then the model is equivalently given, by on-time T, off-time 1" and cell
spacing D (i.e., during bursts, every D time units a cell arrives; in other words: ‘D = p~1’).
The well-known Benes formula [5] then states (assuming that at time ¢ stationary behavior
is reached)

o(T+T')—r
P@>r)= 3 P(N(ts,t) =r+8)P(@, = OIN(t—8,6) =7 +5).

s=1

Here p is. the load of the multiplexer (N/D) x T(T +T")~!, N(s,t) is the number of arrivals
from all N sources in time interval [s,¢]. It is immediately seen that the following upper

bound holds:
o(T+T")—r

P(@Q:>r)< 3 P(N(t—s,t)=r+s).
s=1
Kvols and Blaabjerg numerically show that this upper bound is not very accurate. Apart
from the upper bound, also an approximation is developed:

o(T+T')~r
B@>r)~ Y {P(N(Et-st)=r+s)—pP(N(Et—s,t)=r+s)X=1)},

s=1

where X is the stochastic number of cells arriving in interval [t — s — 1,t — s]. In order to
execute this approximation, some N—fold: convelutions have to be calculated.

The drawbacks of the method presented by Kvols and Blaabjerg are the following: (i) only
one type of sources is involved, (ii) the method seems to be computationally not very easy
(convolutions have to be determined), (iii) it is not clear in what region the approximation
is accurate (for large N for instance?), (iv) only the exceedance probability for infinite buffer
model is examined, instead of the - for telecommunications more relevant — cell loss ratio in
the finite buffer model.

Garcia, Barcel6, and Casals

Garcia, Barceld, and Casals [3] find an algorithm that gives an upper bound for the survivor
probability, above refered to as P(Q: > r). As Kvols and Blaabjerg [4] did, the starting point
of the analysis is the Bene§ result. However, now the continuous-time (i.e., fluid) version
of the model is considered. In fact, Garcia, Barceld, and Casals come up with a numerical
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scheme to calculate the (continuous-time equivalent of the) upper bound found by Kvols and
Blaabjerg (see above).

The method has a number of disadvantages: (i) only one type of traffic is assumed, (ii)
the calculation scheme is computationally demanding with many complicated recursive steps
to be made, (iii) it provides only an upper bound, without any information about the error
incurred, (iv) it assumes that the on-period is smaller than the off-period: T' < T".

Botvich and Duffield

As can be learnt from the above studies, it seems to be impossible to find closed-form
expressions for the relevant performance measures; ingeneous numerical schemes providing
approximations is the best that is achieved up to now. An other angle from which the
problem can be considered is the development of asymptotic analysis. One key paper in this
field is by Botvich and Duffield [1].

Assume without loss of generality that there are two types of sources; let the total
number of sources in the model be N, where a fraction a € [0,1] is of type 1; N; := aN and
N :=(1—a)N. Then they scale B and C by the number of sources N to Nband Nc. Then
Large Deviations analysis can be performed in order to get the asymptotic relation

. 1
I\}I—Iorolo —1\7 logQ(NyB7C) = —I(b,C),

where Q(N, B, C) is the exceedance probability of level B.

The way I(b,c) has to be calculated is the following. A;(t) = pX;(t) is the fluid generated
by one single source of type i during [0, t], where X;(¢) is the on-time in this interval [0, ¢].
Furthermore:

M, ;(0) = Eexp(0A;(t)) and J(t,z):= sup[fz — alog M;1(6) — (1 — a)log M;2(6)].
0
Then it can be shown that

lim -l—-log Q(N,B,C) = —sup J(t,b+ ct) =: —I(b,c).
N—oo N >0

It should be noted that this method is not only appropriate for deterministic on-off sources,
but under much more general conditions, see the hypothesis mentioned in [1].

The distribution of X(t) can be given as follows. First notice that the off-period is given by
T' := (p— r)r~!T. Here we assume that T < T”, but an analogous reasoning applies to the
case that T > T". Three cases can be distinguished:

e t<T.
t-U Uelot
a)0 Uelt,T]
XO=y v-1 vet+1
t UVelt+T,T+T
e T<t<T.
Uel0,t-T)
a)t=-U Uet-T,
X®=9 o Uel,T]

U-T Ue[l',T+T]
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T Uelo,t-T]
t-U Uelt-T,7
t-T" UelT't]

U-T Uel,T+T)

X(t) 2

Here U is uniformly distributed on [0,T + 7"]. This enables the calculation of the moment
generating functions M, ;(-) in a straightforward way.

This method has disadvantages as well: (i) the result obtained is asymptotic in N (con-
sequently, it is not clear whether they hold for relatively small N), (ii) the method only
yields the asymptotic decay rate of the exceedance probability, (iii) there are no results for
the loss fraction, allthough it is likely that the same asymptotic result also holds for this
performance measure. Advantages are that the calculations are not very complex and are
valid for multiple types of traffic.

Simonian and Guibert

Simonian and Guibert [6] consider the same asymptotic regime as Botvich and Duffield [1],
but they consider the case of one type of sources. Besides the establishment of the above
asymptotic relation, they find an asymptotic upper bound. This asymptotic bound is again
based on the Benes result, as follows.

The probability of interest Q(N,B,C) is bounded by some probability @*(N, B,C)
(which Garcia, Barceld, and Casals approximate). Then it is shown that

Q*(N,B,C)VN exp[NI(b,c)] — d as N — oo,

for some computable number d. The drawbacks of this method are the following: (i) a single
class is considered, where in practice the multiple types of traffic case is more relevant, (ii)
the method gives the asymptote of an upper bound, which does not mean that

dexp[-N1I(b,c)]
Q(N,B,C) < —JN

unifermly in N, (iii) again, no loss rates but exceedance probablities are examined.

Elwalid, Mitra, and Wentworth

In Elwalid, Mitra, and Wentworth [2], as a first step, a worst-case analysis of this model is
treated: they assume that all bursts arrive simultaneously. Then it is easy to verify that if
the solution of the following linear program has a solution smaller than C there cannot be
any loss:

N N

min Zc;, subject to Z(p; -¢)T: < B,

=1 i=1
where r; < ¢; < p;. The correctness of this statement is an immediate consequence of the
implication

N N
{E ¢ < C} = {Buffer contents < Z(p; - c;)T;} (1)

i=1 i=1
Elwalid et al. [2] then assume an additional requirement, namely that the ratio of the
contribution to the buffer contents by a particular source (b; = (p; —¢;)T;) and its bandwidth
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consumption (¢;) is equal to B/C. Then the problem can be solved explicitly, and yields
that there is no loss if the sum of the effective bandwidths is not larger than C, where the
effective bandwidth ¢; of a source with parameters (r;, p;, T;) is given by

(oo (o)
¢;:=max | 7;,p; (1 + ——) ) .
CT;

This is, since its solution satisfies the extra proportionality constraint, an underestimate of
the real acceptance region.

In practice, it is not required that there is zero loss, but some small loss fraction € is
allowed, typically between 10~¢ and 10~°. In order to allow for such a small loss probability,
Elwalid et al. [2] propose a statistical multiplexing routine. First they approximate the loss
probability in the model with buffer B, by the probability of the buffer contents exceeding
B in the infinite buffer model. Then they show that the a source of type i requires ¢; only
a fraction r;/c; of time. So, at a random moment in time the required bandwidth by a type
i source amounts to ¢; with probability r;/c; and is zero else. Reasoning in this way, they
are able to calculate the probability of the required bandwidth exceeding link rate C; this
probability is — consequently — an upper bound for the probability of the queueing model
exceeding level B. ’

The great advantages of this method are its intuitive nature, its low complexity, and its
applicability for the case of multiple types of traffic. However, (i) the model sometimes gives
a very inaccurate upper bound - orders of magnitude larger than the real probability, as we
will see in section 4, (ii) again, the buffer level exceedance probability is considered instead
of the loss rate.

3 The upper bound

In this section we shall derive an easily computable upper bound to the loss rate. We first
examine the homogeneous case: there a cycle has length T + T". Consider the probability
of loss during a cycle a(B). Then there must be an s,t (with s <t < s+ T + T") such that

N
S (Ai(t) — Ai(s)) > C(t—s) + B.

i=1

Without loss of generality, we can assume that s = 0. Notice that if thereis a t € [0,T + 1]
with Y A;(t) > N(ct +b), there must also be an epoch of a burst end S; (with j =1,...,N)
such that 3~ A;(S;) > N(cS; + b). More formally:

N
Ot(B) = P (35_,,] = 1,.. .N,ZA,‘(SJ‘) 2 N(CS]' +b))

=1

IA

% P (fj Ai(S;) = N(cS; + b))

j=1 i=1

IN

N
Nj;r&fNP (Z; Ai(S;) > N(cS; + b))

IA

N
N . P (Z Ai(t) > N(ct + b)) .

i=1
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For all positive § we have, with the Markov inequality,
N N
My()
(1) > <| — .
P (S a0z ma+n) < (ot

But since this holds for all § > 0, we can also take the infimum over 6 in the right hand side.
We finally arrive at

a(B) £ N inf exp [~ N(6(ct + b) — log M;(6))]

max
te[0,T+7)6>0

Nexp [—N te[ol,rTl-fl-T'] il;}g (0(ct + b) — log Mt(ﬂ))] .

Now consider the heterogeneous case. Then it can be verified easily that an analogous
reasoning eventually yields

in
te[0,T+T'] >0

a(B) < f(N)exp [——N f sup (0(ct + b) — alog M;1(0) — (1 — a)log Mt,,(o))] ,
where f(N) is the number of bursts arriving during a cycle of this queue. The calculation
of f(N) involves an easy calculation with an lowest common divisor.

Now the fraction 7(B) of fluid lost (during a cycle) can be bounded as follows. With
‘renewal reward’:
E(fluid lost during a cycle)

n(B) = E(fluid arrived during a cycle)’

conditioning yields:

E(fluid lost during a cycle) E(fluid lost during an overflow cycle)a(B)

E(fluid arrived during a cycle)e(B),

IAN

implying that 7(B) < a(B). We already found an upper bound to o(B), so this bound also
applies to the loss rate n(B).

4 Numerical results

In this section we consider the following examples. In both cases r = 1000 cells/second,
p = 4000 cells/second. In the first example however, T = 4 ms, whereas in the second
T = 64 ms is used. Notice that we in fact consider two homogeneous cases.

We compare the results of our method (and particularly the number of sources that can
be connected in order to guarantee a loss rate of 107%) with the results that are provided
by the method that is most commonly used, namely the computatien scheme provided by
[2]. The figures display the loss probability as a function of the number of sources, using
the ‘EMW-method’ and using the upper bound of section 3. The most striking feature is
that the difference in sources that can be admitted. In the first example, with target loss
1078, 60 sources can be accepted according to EMW, where even with 80 sources (which is
of course the maximum number, due to the stability requirement) the loss rate is still in the
order of 10725, The other example is less extreme: 37 instead of 33 can be accepted.
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Abstract

We consider polling systems in heavy traffic, with general mixtures of exhaustive and
gated service, and in which the server visits the queues according to a general service
order table. We derive exact expressions for the expected delay at each of the queues
(under heavy-traffic scalings), requiring the solution of a set of only M — N linear
equations, where M is the length of the service order table and N is the number
of queues. The results lead to new insights into the behavior of polling systems in
heavy traffic and moreover, suggest simple and fast-to-evaluate approximations for
the expected delays at each of the queues. Numerical experiments show that the
approximations are very accurate in practical heavy-load scenarios.

1 Introduction

The basic polling system consists of a number of queues attended by a single server which
visits the queues in cyclic order to render service to the customers waiting at the queues.
Polling models find many applications in computer-communication systems, and are also
widely applicable in the areas of maintenance, manufacturing and production. The reader
is referred to [12, 15] for overviews of the applicability of polling models, and to [14, 16] for
overviews of the state-of-the-art in the analysis of polling models. In many applications the
order in which the server visits the queues is not necessarily cyclic. A natural extension to
cyclic server routing is the so-called periodic server routing, in which the order in which the
server visits the queues is prescribed by a general service order table (polling table) of finite
length.

A detailed exact analysis of polling models is only possible in special cases, and even
then usually numerical techniques have to be used to determine performance measures of
interest, like expected waiting times. The ultimate goal of performance modeling and anal-
ysis is to obtain the best’ possible system performance. The proper operation of the system
is particularly critical when the system is heavily loaded. However, the efficiency of the
numerical algorithms may degrade significantly when the system reaches saturation. More-
over, numerical analysis can only to a limited extent contribute to gaining insight into the
system behavior. Exact expressions provide much more insight into the dependence of the
performance measures with respect to the system parameters. These observations raise the

importance of an exact asymptotic analysis of the performance of polling models in heavy
traffic.
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In the literature, several papers have been devoted to the determination of the expected
delay in periodic polling models with N queues and a general polling table of length M.
Eisenberg [7] and Alford and Muntz [1] use the so-called buffer-occupancy method to derive
a set of O(M?3) linear equations to obtain the expected waiting times for models with ex-
haustive and gated service at all queues, respectively. Baker and Rubin [3] use the so-called
station-time technique to obtain the expected delays in models with exhaustive service at
all queues, requiring the solution of a set of O(M?) linear equations. Recently, an iterative
numerical technique based on the concept of descendant sets (cf. [11, 6]) has been proposed
to obtain the moments of the delay. Eisenberg [8] analyzes the waiting times in periodic
polling systems with exhaustive service at each queue under a variety of stop-and-resume
rules when the system gets empty. For models with limited-type service disciplines, Blanc
[4] shows how the so-called power-series algorithm (PSA) may be applied to obtain the main
performance measures. Van der Mei and Borst {17] show how periodic polling models with
multiple servers can be analyzed by means of the PSA. The main drawback of each of the
numerical techniques is that their efficiency degrades significantly when M is large and the
system is heavily loaded.

In this paper we show how the expected delays in heavily loaded systems can be obtained
more efficiently, by exploring heavy-traffic assumptions. We obtain exact expressions for the
expected delay under heavy-traffic scalings, requiring the solution of a set of only M — N
linear equations. The asymptotic results suggest approximations for the expected delays in
heavily loaded systems. Numerical results are presented to show that the approximations
are accurate in practical heavy-traffic scenarios. For compactness of the presentation, details
of the proofs of the various results are omitted.

In section 2 the model is described and some notation is introduced. In section 3 we give
some preliminary results. In section 4 we obtain exact expressions for the expected delay
under heavy-traffic scalings, and discuss some implications of the results. In section 5 we
propose and test a simple and fast-to-evaluate mean waiting-time approximation.

2 Model Description

Consider a system consisting of N infinite-buffer queues, @1, ...,Qx. Customers arrive at
@: according to a Poisson arrival process with rate ;. The total arrival rate is denoted
by A = Zf_’__l Ai. The service time of a customer at @); is a random variable B;, with
finite first and second moments b; and bfz). The first two moments of an arbitrary service
time are denoted by b = ¥¥ \b;/A and 6@ = YN A4 /A. The load offered to Q; is
pi = Aib;, and the total offered load is equal to p = Zf‘;l pi. A single server inspects the
queues periodically according to a general polling table of finite length M, described by a
mapping T : {1,...,M} — {1,..., N}, which is used such that the server visits the queues
periodically in the order T(1), T'(2),...,T(M),T(1),T(2),. ... Following the approach in [3],
a unique pseudo-queue will be associated with each entry in the polling table. Denote by
PQ the pseudo-queue associated with the k-th entry in the polling table; its corresponding
queue has index T'(k). Customers which arrive at Qr() and are served at PQy are referred
to as type-k customers. The moments at which the server arrives at PQ) are referred to as
the polling instants at PQj. Define a service period at PQ; as the time between a polling
instant at PQ and its successive departure from PQ;. The service at each pseudo-queue is
either according to the gated policy or the exhaustive policy. Under the gated policy only
the type-k customers present at PQj at the polling instant at PQj are served; customers
which arrive at PQy while it is being served are not served during the current visit period.
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Under the exhaustive policy the server visits PQ; until it is empty. We allow mixed service
policies, e.g. exhaustive service at PQ; and PQy, and gated service at PQ, and PQ;. For
ease of the discussion, we assume that pseudo-queues corresponding to the same queue have
the same service strategy. Define £ := {i : Q; is served exhaustively} and G := {i : Q; is
served according to the gated policy}. At each queue the customers are served on a FIFO
basis. After completing service at PQ); the server proceeds to PQ;41, incurring a switch-over
period whose duration is an independent random variable R;. The first two moments of R;
are denoted by r; and r,(2). Denote the first moment of the total switch-over time in a cycle
by r = =¥, 7, and the second moment by r? = M, rEZ’ + Zgﬂ
throughout that r > 0.

All interarrival times, service times and switch-over times are assumed to be mutually
independent and independent of the state of the system. A necessary and sufficient condition
for the stability of the system is p < 1 [9]. In the sequel, it is assumed that this condition is
satisfied, and that the system is in steady state, unless indicated otherwise.

Denote by W, the delay incurred by an arbitrary customer at Q. Our main interest is in
the behavior of E[W}], the expected delay at Q, in heavy traffic. Throughout, E[W;] will be
considered as function of p; to be specific, we assume that the arrival rates are parametrized
as A; = a;p, where relative arrival rates a; remain fixed. It is known that when p 1 1, all
queues become instable and hence, E[W;] tends to infinity for all k (cf. [9]). Although a
rigorous proof has not been found in the literature, we assume that E[Wj] has a first-order
poleat p=1:for k=1,...,M,

YigjTirj- 1t is assumed

EWi = 725 +o((1=p)), (211) e

where o((1 — p)~!) stands for a function of p which becomes negligible compared to (1 —p)~*

when p T 1. Based on.equation (1), the analysis will be oriented towards the determination
of

we=lim (1= p) E[W], k=1,..., M, )
P

the scaled expected delay at @y, also referred to as the heavy-traffic residue of E[Wj] at
p = 1. In words, w; indicates the rate at which E[W,] tends to infinity as p T 1. We denote
by W: 9 the waiting time of a customer which is served at PQj. Similar to the definitions
above, denote by wj @ the heavy-traffic residue of E[W{9).

Finally we introduce some notation. Let 7;; be the entry in the polling table corresponding
to the next visit to Q; after a departure from PQ;, and let o;; be the entry corresponding
to the last visit to @; prior to an arrival of the server at PQ; : =1,...,M, j=1,...,N).
Moreover, let z;; := 1 if PQi41,. .., PQ; do not correspond to Qr(;y and j # ¢, while z;; := 0
in all other cases. I stands for the indicator function on the event E.

3 Preliminaries
Let X) be the steady-state number of customers at PQ; at a polling instant at PQ; and
let Vi be the steady-state duration of a visit period of the server to PQy (k = 1,...,M).

For a customer served at PQy, we define the waiting time at PQy to be the time between
its arrival in the system (at Q7)) and the moment at which the customer starts service at
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PQy. The expected waiting time at PQj can be expressed in terms of the first two moments
of X} as follows (cf. [13]):

Var[Xi] + (E[Xi])* - E[X4]

PQy _
EW: "1 = 27 () B[ X

(1 + PT(lc))a (T(k) € G)v (3)

and

VarlXy] + (B(XW) - EX] Az b,
2A7 (k) E[Xi] 21 - prwy)’

Thus, to obtain the expected waiting time at PQy, we need to quantify E[X}] and Var[X].
In 3.1 we discuss how E[X}] can be obtained by solving a set of linear equations. In 3.2 we
discuss how the Descendant Set Approach (DSA) can be used to obtain Var[X}].

EW ) =

(T'(k) € E). (4)

3.1 Determination of E[X}]

To obtain an expression for E[X}], it is convenient to relate E[Xy] to E[Vi], the expected
duration of a visit to PQy. Simple balancing arguments show that: for k =1,..., M,

. b; .
E[Vil = ory E[Xi], where pi:=bi (i€ G), oi:=1— P (i€ E). ()
The variables E[V], and hence E[X}], can be obtained by solving the following set of linear
equations (cf. also [5]): for k=1,..., M,

k-1
E[Vi] = Argyer( ['Z (ri + E[V3]) + ri + EVilizgyecy | » (6)
=141
where [ := o} T(x), the entry corresponding to the last visit to Q) prior to PQ;. Balancing
the flow of customers at Q)i in and out of the system during one cycle of the server along
the queues implies: for i =1,..., N,

> ElVal=pig (7)

m:T(m)=i
One may verify that equations (6)-(7) lead to a set of M — N simultaneous linear equations
for E[Vi] and hence for E[X}]. Since the analysis will be devoted to heavy-traffic behavior

of the system, we note that equations (6)-(7) imply that E[Vi] and E[X}] have a first-order
pole at p = 1. Therefore, we define: for k =1,..., M

)

ve :=lim (1 = p)E[Vi], z¢:=lim (1 - p) E[X4], (8)

referred to as the heavy-traffic residues of E[Vi] and E[X}], respectively. Using equations
(6)-(8) it follows that the variables vx (k = 1,..., M) are (uniquely) determined by the
following set of equations: for k =1,..., M,

k=1
vk = AT(k)PT(k) [,E v + vII(T(l)eG}:l » 2 vm=pr(i=1...,N). (9)
j=1+1 m:T(m)=i

Note that in (9) the parameters Arg), w1 and p; have to be evaluated at p = 1. The
computation of the variables vy (k = 1,..., M), requires the solution of a set of M — N
linear equations. Using (5) it follows that once vy is known, zj is given by =i = vi/wr (k).
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3.2 The Descendant Set Approach

The Descendant Set Approach (DSA) classifies the customers in a polling system into two
classes. An originator is a customer which arrives during a switch-over period, and a non-
originator is a customer which arrives during the service of another customer. For a tagged
customer C, the so-called children set of C is the set of customers arriving to the system
during the service of C; the descendant set of C is recursively defined to consist of C, its
children (if any) and the descendants of its children. To determine the moments of the delay
of customers arriving at a fixed PQy, the DSA concentrates on the determination of X;(P),
defined as the number of customers at PQ); present at an arbitrary, but fixed, polling instant
P at PQy. P is referred to as the reference point at PQ,. The main idea of the DSA is the
observation that each of the X;(P) type-k customers present at PQ; at P is a descendant of
exactly one originator, and that the descendant sets of the originators evolve independently.
Therefore, the DSA concentrates on an arbitrary type-i customer served at PQ; and on
calculating the number of type-k descendants it has at P.

The DSA considers the Markov process embedded at the polling instants of the system.
To this end, we number the successive polling instants as follows. Let Ppso be an arbitrary
polling instant at PQys, and for ¢ = M —1,...,1, let P,o be recursively defined as the
polling instant at PQ); prior to Py;0. In addition, for ¢ = 1,2,..., we define P;. to be the
last polling instant at PQ); prior to Pi.—1,7=1,..., M. We consider a tagged customer C; .
which is present at PQ; at P;.. Define A;), to be the number of type-k descendants C;
has at Pro. In this way, Ak can be viewed as the contribution of C; to X;(Py ). If we
define oi )k = E[A(i)k] and ag)c)’k = E[A}i o x(Agik — 1)], then E[X}] and Var[X}] can
be expressed as follows (cf. [11]):

M )
EXi =3 ") | 2 Nempakt Do Amenk| (10
i=1 c=0 |jimi; > FETRS

and

2
Var[Xk] = Egl(r?) - <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>