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Preface 

The Dutch Network of Operations Research (in Dutch LNMB) is an interuniversity or­
ganization, in which all universities in the Netherlands and the Centre for Mathematics 
and Computer Science at Amsterdam (CWI) participate. It was founded on July 1, 1987. 
The LNMB is a national graduate network. The PhD students in OR are expected to 
participate in the education program, which consists of courses, colloquia and workshops. 
An other function of the LNMB is to be a forum of all scientific OR-workers. There is a 
board in which each university is represented. 

During the November meeting of the board, we discussed what to do with the tenth 
anniversary of our network. One of the suggestions was to compose a book with contri­
butions of those, who were involved in the LNMB, particularly the former PhD-students 
and some of the members of the LNMB. The major objective was to present the research 
done by young OR researchers in the Netherlands. We are very glad that many of them 
responded enthusiastically. 

The book contains over forty contributions and covers a broad spectrum of Operations 
Research. After an introduction on the origin of the network, written by the first director 
Wim Klein Haneveld, the first part is devoted to Combinatorial Optimization and Discrete 
Mathematics, with a review paper by Karen Aardal, Stan van Hoese!, Jan Karel Lenstra 
and Leen Stougie. The second part, on Stochastic Operations Research, starts with a 
retrospective view, composed by Henk Tijms. The third part concerns Game Theory. Stef 
Tijs and Koos Vrieze wrote a paper on the contribution in game theory of the Netherlands 
during the past decade. This book covers also some papers on OR-applications. These are 
collected in part four with a review by Rommert Dekker. In part five of this book some 
other articles are gathered, e.g. a short survey on semidefinite programming by Etienne 
de Klerk, Kees Roos and Tamas Terlaky. The book is concluded with a review of the 
activities of the LNMB during this first decade. 

Our editorial tasks were much alleviated by the efforts of Eric Bakker. He did a mar­
vellous job by unifying all kinds of TeX styles and by converting Word, Wordperfect and 
other files into TeX. We are very grateful to him. We also wish to thank CWI, who pub­
lished this book and made it available at a reasonable price. Last, but not least, we wish 
to express our gratitude to the authors of this book. 

Lodewijk Kallenberg 
Wim Klein Haneveld 
Koos Vrieze 

May 1997 
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On the origin and first decade of the LNMB 

Wim Klein Haneveld 
Chairman LNMB 

E-mail: w.k.klein.haneveld@eco.rug.nl 

Some day in 1988 I got up early, to find myself at seven o'clock in the morning in the 
Oude Boteringestraat, downtown Groningen. There I joined the rector magnificus and other 
officials of the University of Groningen. A bus took us to the Ministry of Education in 
Zoetermeer, where university officials from all over the Netherlands were invited to be in­
formed about the minister's decision on the financing of a number of so-called 'aio-networks'. 
I was a little nervous, because one of the proposals was the LNMB program, the National 
Network of Mathematics of Operations Research in the Netherlands. Every now and then 
some delegates left, and others came in the conference room. When the LNMB was dis­
cussed, the waiting room became almost empty, because all universities participated in this 
initiative. Ten minutes later congratulations were collected, since the minister granted the 
complete starting subsidy we asked for! This happy day marked the end of a sometimes 
chaotic period of creating a new way of cooperation in the Dutch OR-community. 

What is this all about? As is well-known, the discipline 'Operations Research' owes 
its name to the successful application of mathematical models for solving logistic planning 
of military operations in World War II. After the war, complex planning problems in in­
dustry, government, and agriculture were analyzed with mathematical models, too, often 
under the name 'Management Science'. By using the possibilities of the computer, already 
at an early stage, OR developed quickly. Countless models and methods for project plan­
ning, production planning and scheduling, maintenance, replacement, allocation, routing 
and transportation, physical distribution, inventory, investments, telecommunication, and 
congestion are the result. Since the sixties, all universities in the Netherlands including the 
Technical Universities and the Agricultural University founded chairs in OR, under a variety 
of names. OR is typically interdisciplinary, as can be seen from the fact, that it is included 
in curricula of mathematics, econometrics, engineering, and business economics, and its con­
tribution ranges from mathematical abstraction to practical application. 

In the early seventies, several OR groups existed in the Netherlands. One of the first peo­
ple, who realized that more was needed, and who did something about it, was Gijs de Leve. 
Together with Jan Karel Lenstra he made a traveling salesman tour through the country. As 
a result we have, each year from 1976 on, an 'International Conference on the Mathematics 
of Operations Research', organized by the Centrum voor Wiskunde en Informatica. Foreign 
distinguished speakers report on promising research areas, and in due time, the Lunteren 
environment inspired the OR-people in the Netherlands to become an informal but lively 
OR-community. 

In the early eighties the Dutch government introduced the so-called aio-system: Ph.D.­
students were given a new name, 'assistent-in-opleiding' (aio) or 'onderzoeker-in-opleiding' 
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( oio ), and a new status. In order to promote the development of corresponding graduate pro­
grams, some possibilities were created for initial funding. The existence of an OR-community 
appeared to be very instrumental. Although on every sub-area of OR, as stochastic OR, com­
binatorial optimization, mathematical programming, and game theory the research level in 
the Netherlands was internationally competitive, every separate group was rather small. 
However, all over the country we were large enough for a common graduate program. And 
that was precisely what was aimed at in the spring of 1987, resulting in the formal start of 
the LNMB, July 1987. 

In the past ten years it appeared that the program is very successful. All Ph.D.-students 
in OR participate in common courses in Utrecht, and in workshops all over the country. They 
have the opportunity to learn from expert researchers on all important sub-areas. Of course, 
the thesis is extremely important. Nevertheless, the LNMB provides the young scientists an 
orientation on actual developments in the whole of the discipline, and this feature can hardly 
be underestimated. Moreover, one of the side effects is, that all over the country beginning 
OR-researchers know each other, and so the juniors are not working on isolated islands any 
more, but they are part of the OR-community. It is characteristic in this respect, that the 
international workshops of the LNMB have been integrated in the Lunteren conferences. 

Up to now, the LNMB organized 38 courses, 16 workshops, 175 colloquia for 231 aio's/ 
oio's, and more than 80 dissertations have been finished, and many more are coming. In 
this book you will find overviews of the development of several areas in mathematics of OR, 
together with a number of research topics dealt with by alumni of the network. As can 
be seen, a wide range of subjects and approaches are presented. The alumni graduated at 
mathematical faculties, both at general universities and technical universities, and at eco­
nomic faculties. In spite of the broad background they share a high level of modeling and 
mathematical expertise. 

Foreign guests, giving a colloquium in Utrecht, or presenting a lecture in Lunteren, are 
amazed, and often a little jealous of the LNMB. Indeed, we have the advantage to be a small 
country in terms of traveling time. On the other hand, many counterexamples show, that 
it is far from obvious that individual research groups are willing to cooperate, even if their 
physical distance is small. I am proud that the OR-community in the Netherlands is able 
to deal with its common interests. This does not mean that no effort is needed to realize 
the goals. One needs people who feel it as a personal responsibility to make things work. In 
the early days Jan Karel Lenstra acted as an inspiring and efficient chairman. Much work 
was done by Suwarni Bambang Oetomo. She not only had to deal with rapidly changing 
workloads, but she also had to solve many practical problems, related to an organization in 
statu nascendi. After a period of improvisation, the network matured under the leadership 
of Lodewijk Kallenberg, assisted by Gonnie Ooms-Woudstra. 

Today, the LNMB is an established organization. Beginning aio's usually do not realize 
that it ever started. Together with the Netherlands Society of OR (NGB) it is recognized 
as the national forum on OR. I hope and expect that this added value will continue in the 
future. 

2 



Part I 

Combinatorial Optimization 
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A Decade of Combinatorial Optimization 

Karen Aardal 
Utrecht University 

E-mail: aardal@cs.ruu.nl 

Stan van Hoesel 
University of Maastricht 

E-mail: s. vanhoesel@ke.unimaas.nl 

Jan Karel Lenstra 
Eindhoven University of Technology; CWI, Amsterdam 

E-mail: jkl@win.tue.nl 

Leen Stougie 
University of Amsterdam 
E-mail: leen@fee.uva.nl 

Abstract 

This paper offers a brief overview of the developments in combinatorial optimization 
during the past decade. We discuss improvements in polynomial-time algorithms for 
problems on graphs and networks, and review the methodological and computational 
progress in linear and integer optimization. Some of the more prominent software 
packages in these areas are mentioned. With respect to obtaining approximate solutions 
to NP-hard problems, we survey recent positive and negative results on polynomial­
time approximability and summarize the advances in local search. 

1 Introduction 

Combinatorial optimization is involved with models and methods for optimization over 
discrete choices. It is rooted in the theory of linear programming, and has strong links 
with discrete mathematics, probability theory, algorithmic computer science, and complexity 
theory. Some problems in the area are relatively well understood and admit solution to 
optimality in polynomial time. Many others are NP-hard, and one is forced to go one of 
three ways. Either one chooses an enumerative method that is guaranteed to produce an 
optimal solution. Or one applies an approximation algorithm that runs in polynomial time. 
Or one resorts to some type of heuristic search technique, without any a priori guarantee in 
terms of solution quality or running time. 

In the past decade we have seen significant progress on all these fronts. Network flow 
algorithms became more efficient, and so did algorithms for linear and convex optimization. 
For the hard problems, advances in polyhedral techniques extended the realm of true 
optimization methods. Performance bounds that can - or probably cannot - be met in 
polynomial time were tightened. And there has been a surge in the development of local 
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search approaches. Remarkable aspects were the use of randomization in the design and 
analysis of algorithms, and the attention paid to on-line planning models. 

Two developments outside the area stimulated research in combinatorial optimization. 
First, the continued increase in computing power strengthened the need for efficient 
algorithms. The ability to handle bigger problems made the distinction between low and 
high order running times more pronounced and diminished the power of brute force. Second, 
at the application side, there has been an increasing confidence in the practical potential of 
optimization techniques. Large and difficult real-world problems that were out of reach ten 
years ago are now being solved. Notable examples occurred in airline crew scheduling, train 
timetabling, time-constrained vehicle routing, telecommunication network design, frequency 
allocation, VLSI layout synthesis, and statistical disclosure control. 

Combinatorial optimization has established itself as a mature discipline of scientific interest 
and practical relevance. The selection of topics and references presented below has been 
governed by space constraints and personal bias. We apologize for all omissions. 

2 Graphs and networks 

Major improvements in running times of algorithms for specific graph related problems have 
been obtained during the last ten years. We highlight a few here. Quite a number of these 
results have been obtained via randomized algorithms, for which we refer to the book by 
Motwani and Raghavan [39]. 

Much research on designing faster algorithms for the maximum flow problem and the 
minimum cost flow problem was initiated by the work of Tardos [49], who found the first 
strongly polynomial algorithm for the minimum cost flow problem. Scaling of the input 
parameters and prefixing flows are the main ingredients of most of these new algorithms, but 
the design of efficient data structures has also had an important impact. For a network with 
n nodes and m arcs, the best known strongly polynomial algorithms for finding a maximum 
flow and a minimum cost flow have running times O(nm log n) and O(m log n(m + n log n)), 
respectively. A thorough treatment of these results is given by Ahuja et al. [6]. This book also 
describes improvements in solution times for problems such as shortest path and matching 
problems. 

The minimum cut problem of finding a minimum weight set of arcs in a network whose 
removal would disconnect the network is dual to the maximum flow problem. Recently, new 
algorithms have been developed for this problem that do not exploit this duality. Nagamochi 
and Ibaraki [40], for instance, use edge contraction in their algorithm. Randomized edge 
contraction, introduced by Karger and Stein [32], leads to the fastest algorithm so far. An 
overview of these algorithms with a computational study is given by Chekuri et al. [17]. 

Interesting results have been obtained in determining polynomially solvable subclasses 
of generally NP-hard problems. Robertson and Seymour [45] proved an old conjecture of 
Wagner: for each set of graphs that is closed under taking minors, there exists a finite set of 
graphs that are forbidden to be minors of any graph in the set. This obstruction set can be 
enormously large, but its finiteness allows Robertson and Seymour to prove the existence of 
a polynomial-time algorithm for determining the tree-width of any graph in a class that 
is known to contain graphs of bounded tree-width only. The proof is non-constructive, 
and the algorithm may involve a large constant (of the order of the number of forbidden 
minors). Bodlaender [15] gives a good overview of the techniques involved together with 
some applications. 

Next to these classical graph problems, there are several problems in planning and 
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scheduling that can be viewed as problems on graphs. One well-studied problem of this kind 
is the uncapacitated lot sizing problem. In 1958 Wagner and Whitin proposed an O(T2 ) 

dynamic programming algorithm, where T is the number of time periods in the planning 
horizon. It lasted more than thirty years before a better algorithm was found. In the early 
1990's three groups simultaneously developed algorithms with running time O(T log T); see 
[5], [24], [52]. 

Important for the implementation of graph related algorithms is the availability of software 
packages. The most prominent software library is LEDA, A Library of Efficient Datatypes 
and Algorithms, developed by Melhorn and Nii.her [38]. It is implemented by a c++ class 
library, and incorporates many efficient data structures and algorithms. LEDA is available 
at ftp: //ftp .mpi-sb .mpg. de in directory pub/LEDA. 

3 Linear optimization 

The main developments in linear optimization have sprouted from the work of Karmarkar 
[33], who started a wave of research on so-called interior point methods. Both theoretical 
and practical advances were accomplished over the past ten years, and by now some interior 
point methods are competitive with the celebrated simplex method. An interesting overview 
and discussion of the use of simplex and interior point methods can be found in the ORSA 
Journal on Computing 6.1 (1994). The book by Roos et al. [46] gives a comprehensive 
treatment of interior point methods for linear optimization. Interior point methods have also 
been developed for convex optimization problems. The application of interior point type 
methods to semidefinite optimization has led to results that have proved particularly useful 
in the design of approximation algorithms for certain combinatorial optimization problems; 
see Section 5. 

A new line of research is the development of randomized algorithms for the search of an 
optimal basic feasible solution. The main open question here is if there exist randomized 
algorithms that solve linear optimization problems in strongly polynomial expected running 
time. Though this question has not been resolved yet, major steps have been taken. 
The fastest randomized algorithm is due to Kalai [31], and has expected running time 

O(n2m + b~logm), where n is the number of variables, m the number of constraints, 
and b a constant independent of the input. It is in essence a randomized simplex algorithm. 
For a review of research in this direction we refer to Chapter 9 of the book by Motwani and 
Raghavan [39]. 

With respect to deterministic simplex algorithms, many improvements in practical 
performance have been achieved. Many of these improvements have been implemented in 
the state-of-the-art software package CPLEX [21]. CPLEX also contains an interior point 
method. 

To enhance user-friendliness of software for linear and integer optimization, modeling lan­
guages that allow for representation of variables and constraints in a set-based format are 
very useful. Leading computer packages for modeling are AMPL [25] and AIMMS [14]. 

4 Integer optimization 

The most commonly used technique for solving (mixed) integer programs is still branch­
and-bound. The quality of the available upper and lower bounds on the optimal value of 
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the considered instance is the decisive factor for success of this tree search technique. A 
lower bound on the optimal value (assuming a minimization problem) is obtained from a 
relaxation of the integer program. In the past ten to fifteen years attention has shifted from 
Lagrangian relaxation to linear programming relaxation, since the latter type of relaxation 
can be strengthened more easily by using cutting planes. Combining cutting planes and 
Lagrangian relaxation usually causes convergence problems. Moreover, good LP solvers, such 
as CPLEX, that allow for addition of rows are nowadays available. 

The theory of cutting planes in the form of valid inequalities that define facets of the 
convex hull of feasible solutions to an instance, was mainly developed prior to this past 
decade. During the past ten years, however, an enormous amount of more problem specific 
results have been obtained. Moreover, surprisingly large instances have been solved using 
a mixture of cutting plane algorithms and branch-and-bound. For recent surveys we refer 
to Aardal and Van Hoese! [l], [2], and to Chapter 3 of [22). Similar developments have 
been attained for column generation methods, which can be viewed as dual to cutting plane 
techniques. For a survey we refer to Barnhart et al. [11]. 

A new development of the last decade is the theoretical quality analysis of cutting planes. 
Negative results for some classes of cutting planes have been reported by Goemans [26). He 
evaluated the worst-case improvement resulting from adding several of the known classes of 
facets for the traveling salesman polytope to the subtour polyhedron, i.e., the set of vectors 
satisfying the so-called subtour elimination constraints. 

Another surprising theoretical result in polyhedral combinatorics is due to Lovasz and 
Schrijver [37], who developed an algorithm for obtaining a sequence of tighter and tighter 
relaxations of integer 0-1 programs. The algorithm iterates the following steps. First, each 
constraint of the considered problem is multiplied by each variable Xj and its complement 
1 - x j (j = 1, ... , n). The resulting quadratic program is then linearized by replacing the 
nonlinear terms x,xj by new variables Yii· This linear formulation is finally projected onto 
the space of the original variables. Lovasz and Schrijver showed that this procedure needs 
to be repeated at most n times before the convex hull of feasible solutions is obtained. Balas 
et al. [10] showed that it is sufficient to multiply each constraint by a single variable Xj and 
its complement at a time. 

For branch-and-bound algorithms powerful and quite flexible software packages have been 
developed. We mention MINTO [47] and ABACUS [50]. MINTO contains more tools such 
as preprocessing and generic valid inequalities, whereas ABACUS has the advantage that it 
is written in c++. 

Apart from the further development of existing solution techniques, also two new 
techniques for integer optimization received much attention in the last decade. The first 
algorithm we mention, developed by H.W. Lenstra [35], is older than ten years, but served 
as an inspiration for further developments. Lenstra's algorithm was developed to show that 
the problem of determining whether the polyhedron K = { x E )Rn : Ax :<; b} contains an 
integer vector x, can be solved in polynomial time if n is fixed. First, the algorithm finds 
a transformation r such that the polyhedron r K has a "spherical" appearance. If the basis 
of the lattice r'lZ,n has short and near-orthogonal vectors, then the membership problem 
can be solved recursively by branching on a number of parallel hyperplanes. The number of 
such hyperplanes can be proved to be bounded by a constant depending only on n. For any 
lattice such a basis exists and can be found in polynomial time starting from an arbitrary 
basis by using basis reduction; see Lenstra et al. [34]. Lovasz and Scarf [36] designed a 
"generalized" basis reduction algorithm, which works directly on the polyhedron instead 
of using approximations such as Lenstra does. The advantage of their method is that less 
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information is lost, the disadvantage is that it uses considerably more computational steps. 
Cook et al. [20] implemented the Lovasz-Scarf algorithm and solved some previously unsolved 
integer programming problems. Barvinok [12] generalized Lenstra's result and proved that 
the number of integral points in a polyhedron can be counted in polynomial time if the 
dimension is fixed. 

Another new technique, based on the theory of Grabner bases, was already known in 
computational algebraic geometry, and was introduced for solving integer optimization 
problems by Conti and Traverso [19]. It amounts to translating the integer programming 
problem into an algebraic membership problem. The Grobner bases are used to guide 
the generalized division that decides the membership. Advances in applicability of these 
methods are due mainly to Thomas [51]. Their current practical power is restricted by the 
size of the Grobner bases, which is large for most problems. Due to their structure such 
methods have advantages over other more conventional IP methods in solving stochastic 
integer programming problems; see Schultz et al. [48]. Computer packages for computing 
Grobner bases are available, e.g., CoCoa [16] and MACAULAY [13]. 

5 Polynomial-time approximation 

As an alternative to solving NP-hard combinatorial optimization problems to optimality, 
which may be very time consuming, a stream of research has concentrated on designing 
polynomial-time algorithms that aim at good approximations for such problems. A widely 
accepted quality measure of such approximations is the performance guarantee, i.e., an 
upper bound on the ratio between the approximate solution value and the optimal one. A 
comprehensive and up-to-date survey of the theory of approximation algorithms is provided 
in the book edited by Hochbaum [28]. 

Some of the major achievements in this field are based on a combination of relaxation 
and randomization. Goemans and Williamson (see [27] and Chapter 11 of (28]) designed 
approximation algorithms that solve appropriately chosen relaxations of mathematical 
programming formulations of the considered combinatorial problems, and then round the 
obtained solution in a randomized way. The rounding can be derandomized yielding 
deterministic approximation algorithms. In particular, Goemans and Williamson use 
semidefinite optimization relaxations to design algorithms with very good performance 
guarantees for the problem of finding a maximum cardinality cut in a graph and the problem 
of finding the maximum number of simultaneously satisfiable clauses in a Boolean expression 
with at most two literals per clause. 

A remarkable result was obtained by Arora [8]. He developed a polynomial-time 
approximation scheme for the traveling salesman problem (TSP) in the Euclidean space. 
Here we notice that Christofides' algorithm of 1976 [18], with its performance guarantee of 
3/2, is still the best polynomial approximation algorithm for the TSP whose distances are 
symmetric and satisfy the triangle inequality. 

Apart from the above positive sounds on approximation, there has also been a 
breakthrough on the negative side, in the sense of non-approximability of optimal solutions 
of some problems. Papadimitriou and Yannakakis [42] defined a class of maximization 
problems for the purpose of distinguishing problems whose optimal solutions are hard to 
approximate within arbitrarily small ratio. This class called MAXSNP has a two-sided 
polynomial reduction defined on it under which it is closed. Given a Boolean expression 
in conjunctive normal form, the problem MAXSAT of finding a truth assignment to the 
variables that satisfies the maximum number of clauses is complete for this class. 
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Arora et al. [9] gave a strong justification for investigating these concepts. They showed that 
there cannot exist a polynomial-time approximation scheme for MAXSAT unless P = NP. 
The proof is based on an alternative definition of NP in terms of randomized certificate 
verification based on fingerprinting methodology. This important result implies that for any 
MAXSNP-complete problem there must be a threshold value strictly greater than 1 on the 
achievable polynomial-time performance guarantee. For an overview of specific results in this 
direction, we refer to Chapter 10 of [28]. 

In sequencing and scheduling, techniques based on linear programming and rounding 
led to surprising performance guarantees for the off-line and on-line minimization of total 
(weighted) completion time on a single machine and on parallel machines, and for the 
minimization of makespan on parallel machines subject to communication delays. An 
investigation of the complexity of finding very short schedules yielded lower bounds on 
the polynomial-time approximability of several scheduling problems, including the job shop 
scheduling problem. For specific results and references, we refer to Chapter 12 of [22]. 

The previous paragraphs concerned the worst-case approach to approximation. A 
complementary approach is average-case or probabilistic analysis, a research field that started 
more than twenty years ago. The main developments in this field during the last decade 
were based on discovering the possibility to exploit existing results from probability theory. 
Empirical process theory provided tools for the analysis of the optimal solution value of a 
series of number problems; see Piersma [43]. Martingale theory allowed for relatively elegant 
asymptotic characterizations of optimal solution values of several problems; see Rhee and 
Talagrand [44]. Finally we mention the rather complete probabilistic analysis of bin-packing 
algorithms, presented in Chapter 2 of [28]. 

Next to these developments for optimization problems, a breakthrough in approximation 
was accomplished for counting problems, again based on randomization. Counting 
combinatorial stru_ctures such as the number of Hamiltonian cycles in a graph is obviously 
harder than just deciding on the presence of the structure. Jerrum et al. [30] showed the 
equivalence between approximate counting and approximate sampling for a wide class of 
combinatorial structures. Building on work by Aldous [7], they use Markov chains to simulate 
random (uniform) sampling of the structures, and proved that these "mix rapidly". As a 
first result Jerrum and Sinclair [29] devised a fully polynomial randomized approximation 
scheme (FPRAS) for counting perfect matchings in dense graphs, whose vertices have degree 
at least half of the total number of vertices. The non-dense graph case is still open. Another 
prominent result in this direction is an FPRAS for computing volumes of convex bodies by 
Dyer et al. [23]. A series of subsequent papers have given schemes with increasingly better 
running times. For an overview we refer to Chapter 12 of [28]. 

6 Local search 

For many years heuristic search approaches have been used throughout science and 
engineering. Their performance was generally considered to be satisfactory, partly based 
on experience, partly based on a belief in some physical or biological analogy, which was not 
always supported by familiarity with what has been achieved in mathematics. 

Still, in the past decade local search has reinforced its position as a standard approach 
in combinatorial optimization. Problem size or lack of analytical insight may prohibit the 
application of true optimization algorithms. Polynomial-time approximation algorithms may 
give inferior solutions, and their performance bounds, if they can be obtained at all, may 
be meaningless in practice. Local search is a robust way to obtain good solutions to real 
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problems in reasonable time. 
Simulated annealing has established itself as a relatively straightforward technique that 

performs very well when given enough time. Tahu search requires more tuning but often 
less running time. Genetic algorithms are not known to perform well in a pure form, even 
when problem solutions allow a natural string representation, but hybrid forms in which 
offspring are subjected to iterative improvement are promising. Neural networks have many 
applications, which, however, seem to fall outside the realm of optimization. 

Many aspects of local search are discussed in the book edited by Aarts and Lenstra [3]. 
We see three main lines of advance. First, a theory of the computational complexity and 
performance analysis of local search is now emerging; see Chapters 2 and 3 of [3]. Second, 
neighborhoods embodying problem-specific knowledge and data structures supporting 
incremental computations are being used in rather sophisticated implementations. Third, 
some of the more successful search strategies are hybrids, which combine local search with 
a constructive method, with tree search or, again, with local search. The shifting bottleneck 
procedure for job shop scheduling of Adams et al. [4] is a constructive rule that reoptimizes 
partial schedules along the way. The shop scheduling algorithms of Nowicki and Smutnicki 
(see, e.g., [41] and Chapter 11 of [3]) apply tabu search and jump back to previously 
considered promising but rejected moves; many other combinations of local search and tree 
search have been proposed. Johnson's iterated Lin-Kernighan algorithm for the TSP (see 
Chapter 8 of [3]) is a nested form of local search, which applies 4-exchanges to local optima 
resulting from variable-depth search. 
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Consider the following situation. A mechanic has to repair a number of cars. For each 
car we know the time at which it is brought to the garage, the time the mechanic needs to 
repair it, and the time at which its repair should be finished. The mechanic can only repair 
one car at the same time, and it seems that time is running out on him. We are looking for 
a schedule for the mechanic in which the number of cars that are not ready at the agreed 
time is minimal. 

This is a classical example of a single-machine scheduling problem: the mechanic is the 
machine. Sequencing and scheduling is concerned with the allocation of jobs to machines 
with a restricted availability and capacity. A schedule specifies for each job by which machine 
and at what time it is processed. We are looking for a schedule with minimal cost, where 
the cost of a schedule is defined as some function of the job completion times. The variety 
of properties of jobs, machines, and objective functions leads to huge amount of different 
scheduling problems. For many of these problems, we do not know a fast algorithm that 
solves the problem at hand to optimality; this is even true for problems with only one 
machine, like the one described above. 

We analyze solution methods for single-machine scheduling problems. We can formulate a 
single-machine scheduling problem as an integer linear programming problem, i.e., a problem 
with a given linear objective function that we have to minimize subject to a number of linear 
constraints, where the variables are allowed to attain integral values only. A simple example 
of such a problem is the following. Find the solution (x, y) that minimizes x - lOy over the 
set of points (x, y) that satisfy x 2'. 0, 5x - 4y 2'. 0, and 5x + 4y :S 20 (these are the linear 
constraints), where x and y are integral (these are the integrality constraints). The set of 
feasible solutions to this problem, i.e., the set containing all (x, y) satisfying the constraints 
mentioned above, is depicted in Figure 1. The set of all points (x,y) satisfying the linear 
constraints corresponds to the bold triangle and its interior. Because of the integrality 
constraints, the set of feasible solutions is equal to the set of dots in the interior and on the 
boundary of the triangle. 

In the thesis, we discuss different ways to formulate a single-machine scheduling problem 
as an integer linear programming problem. The solution methods that we study are based 
on a time-indexed formulation. We assume that the planning period is divided into T time 

'This is the summary of the PhD thesis with the same title, which is based on research conducted at 
Eindhoven University of Technology 
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Figure 1: The set of feasible solutions. 

periods and that the processing of a job always starts at the beginning of such a time period. 
For job j and period t, the variable Xjt signals if job j is started in period t, i.e., Xjt equals 
1 if job j is started in period t and O otherwise. 

We study the set of feasible solutions of the integer linear programming problem given 
by the time-indexed formulation. In general, solving an integer linear programming problem 
is hard. If we omit the integrality constraints, then we obtain a linear programming problem, 
which is called the LP-relaxation; a linear programming problem can be solved easily, for 
example by the simplex method. 

Removing the integrality constraints extends the set of feasible solutions. In the example 
depicted in Figure 1, the set of feasible solutions of the LP-relaxation is the bold triangle and 
its interior, whereas the set of feasible solutions of the integer linear programming problem 
consists of the dots inside and at the boundary of this triangle. In most situations, the 
optimal solution of the LP-relaxation will not be integral, i.e., it will be fractional. In case 
we find a fractional solution, we know that the objective value of each integral solution is 
greater than or equal to the objective value of this solution. The optimal value of the LP­
relaxation is hence a lower bound on the optimal value of the integer linear programming 
problem. To improve this lower bound, we add to the LP-relaxation linear constraints, which 
exclude fractional solutions of this relaxation but which are satisfied by all integral solutions. 
Therefore, such constraints are called valid inequalities. In the example depicted in Figure 1, 
y ::; 2 is a valid inequality. Figure 2 shows that this inequality cuts off a part of the triangle. 
For this reason such inequalities are also called cutting planes. 

We are especially interested in valid inequalities that are necessary in the description of 
the convex hull of the set of integral solutions. Such valid inequalities are called facets. In 
Figure 2 the convex hull of the set of integral solutions is indicated by the dotted triangle. 
On the x-axis, the edge of this triangle coincides with one of the edges of the bold triangle. 
The facets are given by the edges of the dotted triangle. If all facets are added to the LP­
relaxation, then the optimal solution is guaranteed to be integral. However, for a problem 
that cannot be solved easily, finding the complete set of facets is also hard. 

We study facets for single-machine scheduling problems that are modelled by the time­
indexed formulation, where we extended the set of feasible schedules to get a full-dimensional 
polytope. We consider facets with right-hand sides 1 and 2, i.e., facets of the form E a1tXjt ::; 

1 and E a1tXjt ::; 2. We derive a number of structural properties of these facets. From these 
properties, it follows that all facets with right-hand side 1 are contained in one class of valid 
inequalities. Since all inequalities in this class are indeed facet-defining, all facets with right-
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Figure 2: A valid inequality and the convex hull of the set of integral solutions. 

hand side 1 are characterized in this way. The structural properties of facets with right-hand 
side 2 lead to three classes of valid inequalities containing all facets. Most valid inequalities 
in these classes were unknown. We show which of the valid inequalities in these three classes 
are facets. In this way, we have characterized all facets with right-hand side 2. We show 
that under mild conditions the characterized facets also define facets for the convex hull of 
the original set of feasible solutions. 

The next step is to investigate how the characterized facets can be used to solve single­
machine scheduling problems. As the number of characterized facets is rather large, it is 
impractical to add them all to the LP-relaxation simultaneously. For this reason, we proceed 
in the following way. First, we solve the LP-relaxation. If the solution is not integral, we look 
within the set of characterized facets for inequalities that are violated by the current solution. 
Then we add some of these violated inequalities, i.e., cutting planes, to the LP-relaxation. 
The current solution is no longer feasible for the resulting linear programming problem. We 
solve this linear programming problem; if the solution is fractional, we again add violated 
inequalities. This process is repeated, either until we have found an integral solution, or 
until we cannot find any more violated inequalities. The identification of inequalities that 
are violated by a given fractional solution is called separation. In the thesis, we derive 
separation algorithms for the characterized facets with right-hand sides 1 and 2. Although 
the addition of cutting planes does not always lead to finding integral solutions, the lower 
bound obtained from the LP-relaxation is strongly improved. 

If we cannot find any more inequalities that are violated by our fractional solution, we 
apply branch-and-bound. In a branch-and-bound algorithm, the problem is divided into 
subproblems by partitioning the set of feasible solutions (this is the branching part). For 
each subproblem we determine a lower bound on the objective value of any solution of this 
subproblem (this is the bounding part). If a feasible integral solution with value less than 
or equal to this lower bound is known, then the subproblem can be skipped from further 
consideration, because it cannot have a solution that is better than the best known solution 
so far. In the branch-and-bound algorithm we use the lower bound obtained by the addition 
of cutting planes to the LP-relaxation. A branch-and-bound algorithm in which such kind 
of lower bounds are used is called a branch-and-cut algorithm. The performance of the 
branch-and-cut algorithm is influenced by the way in which the problem is partitioned into 
subproblems, by the order in which these subproblems are analyzed, and by the quality of the 
feasible integral solutions that are generated through a primal heuristic. Another important 
issue is which of the identified violated inequalities are actually added to the LP-relaxation. 
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Different possibilities lead to different variants of the branch-and-cut algorithm. We tested 
different variants and we present the computational results of these tests. 

The computational results show that the time-indexed formulation provides very strong 
lower bounds. However, because of the large number of constraints and variables, the com­
putation of these lower bounds requires large linear programs to be solved, which takes a 
lot of computation time. For this reason, we study a method which has especially been 
composed to solve linear programming problems with a large number of variables. This 
method proceeds as follows. First, we apply Dantzig- Wolfe decomposition. This results in 
a formulation with fewer constraints, but with many more variables. The large number of 
variables does not pose a problem, since it can be handled by using column generation. In 
a column generation algorithm we consider a restricted problem, in the sense that only a 
subset of the variables is included; the other variables are implicitly fixed at zero. After solv­
ing the restricted problem, we check if variables outside the restricted problem are needed 
to improve the current solution. This check is performed by solving the so-called pricing 
problem. If such variables are identified, we add them to the restricted problem, and the pro­
cedure is repeated. We show that for our formulation solving the pricing problem amounts 
to determining the shortest path in a network. This implies that the pricing problem can 
be solved efficiently, which is very important for the performance of the column generation 
algorithm. Our computational results show that especially for larger problem instances the 
LP-relaxation of the time-indexed formulation can be solved considerably faster by column 
generation. We also discuss the combination of column generation and the addition of cut­
ting planes, and the combination of column generation and branch-and-bound. We give 
computational results based on a preliminary implementation of the combination of column 
generation and the addition of violated inequalities. 
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1 Introduction 

We have developed a tool with which we can derive bounds on subsets of vertices in a graph 
satisfying some distance property, in terms of the (Laplace) eigenvalues of the graph. The 
significance of such a bound is obvious when the related problem is NP-complete, and the 
determination of a good solution will be computationally hard, for instance, when we bound 
the sizes of two sets of vertices at some given distance, or in particular, when we bound the 
size of two equally large sets of vertices with no edges in between. 

When we are dealing with a relatively easy problem, like the determination of the diame­
ter of a graph, a bound in terms of (some of) the eigenvalues of the graph can still be useful. 
Of course, when given a graph, we should not compute its eigenvalues, and then derive the 
diameter bound, when it is much easier to find the diameter explicitely with a polynomial­
time algorithm. However, sometimes we do not know the full structure of a graph, while we 
may have some information about its eigenvalues. This is for example the case with so-called 
Ramanujan graphs, graphs which are known to have good expanding properties ( cf. [9]), 
and which therefore can be used to build good (and large) information networks (cf. [l]). 

In this paper we consider undirected graphs. The Laplace eigenvalues of such a graph 
are the eigenvalues of the associated Laplace matrix Q, which is a square matrix with rows 
and columns labelled by the vertices of the graph, defined by Qxx = dx, and Qxy = -Axy 
for x ,I y, where dx is the vertex degree of x, and Axy denotes the number of edges between 
x and y. The Laplace matrix is a positive semidefinite matrix. 

The results in this paper are mainly from [3] and [4] (see also Chapter 5 of the author's 
thesis [2]). 

2 The tool 

Let Pm be the set of polynomials p with real coefficients of degree m such that p(O) = 1. 
Our main tool will be the following theorem. 

Theorem 1 [4] Let G be a connected graph on v vertices with r + 1 distinct Laplace eigen­
values O = 00 < 01 < ... < 0,. Let m be a nonnegative integer and let X and Y be sets 
of vertices, such that the distance between any vertex of X and any vertex of Y is at least 
m + 1. Then 

IXIIYI < m1"n 2(0) max p ; . 
(v - IXl)(v - IYI) - pEPm i-#0 
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First of all, this implies that the diameter of a graph is at most r, otherwise we would be 
able to find nonempty sets X and Y at distance r + l, and a polynomial p E Pr which is 
zero at the r nonzero eigenvalues, giving an upper bound zero, contradicting the theorem. 

Using the theory of uniform approximations of continuous functions we were able to 
rewrite the upper bound as ( cf. (3]) 

( )

-2 

min max p2(0;) = max L II --0;_ 
pEPm ,,eo TC{l, ... ,r},ITl=m+l jETiET\{j} j0j - 0;j 

3 Sets of vertices at given distance 

A second application of the theorem now gives a bound on the number of vertices at distance 
r (hence at extremal distance) from an arbitrary vertex. 

Theorem 2 {3} Let G be a connected graph on v vertices with r + l distinct Laplace eigen­
values O = 00 < 01 < ... < 0r. Let x be an arbitrary vertex, and let k, be the number of 
vertices at distance r from x. Then 

k < __ v__ ~ II ~ 
r - 1 + ~, where ' = fto i,'O,j l0i - 0;j. 

Of course we should note that computing the number of vertices at distance r can be done 
in polynorrnal time. 

It is, however, not hard to show that deciding whether there exist two equally large sets 
of vertices of size K- with no edges in between (disconnected vertex sets) is an NP-complete 
problem (cf. (5, problem GT24]). From our tool we derive that 

l 01 
K-<-v(l--) 

- 2 0r ' 

by using the polynomial p(z) = 1 - 8/.:8r. Haemers (6] used this method to derive a bound 
due to Helmberg, Mohar, Poljak and Rend! [8] on the bandwidth of a graph. Note that 
computing the bandwidth is also an NP-co 

A similar problem is to find two sets of vertices of size K-r which are at (extremal) distance 
r. Here we find that 

K-r ~ _v_, where 1 = L II 
1 + I j-#0 i,'O,j 

A related problem is the problem of finding two sets of vertices with no edges in between 
( disconnected vertex sets) such that the product of the sizes of these sets is maximized. This 
problem has an application in information theory and is studied by Haemers (7]. By using 
Theorem 1 he finds that 

~ 1 01 
_max y I.I\ 11r I~ -v(l - -0 ). 

X,Yd1sconnected 2 r 

We should note that all bounds mentioned so far are attained by infinitely many graphs. 
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4 The diameter 

To obtain a bound on the diameter d( G) of a graph G we shall not solve the maximization 
problem in the upper bound of Theorem 1, but a relaxation of this problem. Instead of 
evaluating the polynomials at the discrete values 01, . .. , Br, we evaluate them at the interval 
[01, Br], so that for the upper bound we find 

The solution of the relaxation can be described in terms of Chebyshev polynomials ( cf. [10]). 
T, (•,+ei-2•) 

The polynomial Cm(z) = ; (~) where Tm(z) = cosh(mcosh-1 (z)), solves the problem, 
m Br-81 

thus giving the following diameter bound. 

Theorem 3 [4} Let G be a connected noncomplete graph on v vertices with smallest nonzero 
Laplace eigenvalue 01 and largest Laplace eigenvalue Br, then 

We shall apply this bound to Ramanujan graphs. These are regular graphs, say of degree 
k, for which . max lk - 0;1 :::,; 2.,,lk="T ( cf. [9]). Now it follows from Theorem 3 that for a 

i:0<8i<2k 
nonbipartite Ramanujan graph G on v vertices we have 

d(G) 2log2(v -1) 
< log( k - 1) + l 

(and for bipartite Ramanujan graphs we obtain a similar bound after applying an improved 
diameter bound for bipartite graphs ( cf. [4])), which means that a Ramanujan graph has a 
small diameter, since the upper bound is approximately twice a (trivial) lower bound for the 
diameter of any k-regular graph on v v 

The diameter bound of Theorem 3 also has an interesting application in coding theory. 
Using the coset graph of a linear code, it gives a bound for the covering radius of the code 
in terms of its dual weights (cf. [4]). 
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Abstract 

In this paper I give an overview of my PhD thesis, entitled Algorithms for Graphs of 
Small Treewidth (ISBN 90-393-1528-0). This thesis was completed under supervision of 
Dr. Hans Bodlaender and Prof. Dr. Jan van Leeuwen in the Department of Computer 
Science at Utrecht University. 

1 Introduction 

Many real-life problems can be modeled as optimization or decision problems on graphs. 
Unfortunately, many graph problems that model real-life problems are NP-hard, meaning 
that there are (probably) no efficient algorithms which solve these problems. A way of 
overcoming this disadvantage is to discover a special structure in the graphs modeling the 
real-life problem which may help in finding a more efficient algorithm for the problem. For 
instance, the input graphs may have a special structure that assures that the problem at hand 
is easy to solve. Another possibility is that the problem can be decomposed into subproblems, 
and that the structure of the input graphs assures that some of these subproblems are easy 
to solve. This might help in finding a more efficient algorithm that computes an optimal 
solution for the complete problem, or in finding an efficient algorithm that computes a good 
approximation of the optimal solution. 

One suitable structure is the tree-structure: it appears that many graph problems that 
are hard in general, are efficiently solvable on trees, often by applying dynamic programming 
on the tree. For most practical cases however, the class of trees is too limited. Therefore, 
we consider extensions of the class of trees which are more useful in practice, namely the 
classes of graphs of treewidth at most k and pathwidth at most k, for any positive integer k. 
Intuitively, the treewidth of a graph measures the resemblance of the graph to a tree: the 
smaller the treewidth, the larger the resemblance. 

Definition 1 [10]. Let G = (V, E) be a graph. A tree decomposition TD of G is a pair 
(T, X), where T = (I, F) is a tree, and X = { X; I i E I} is a family of subsets of V, one for 
each node of T, such that 

• for every edge { v, w} E E, there is an i E / with v E X; and w E X;, and 

*This research was supported by the Foundation for Computer Science (S.I.O.N) of the Netherlands 
Organization for Scientific Research (N.W.O.). 
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• for all i, j, k E I, if j is on the path from i to k in T, then X; n Xk ~ X1. 

The width of a tree decomposition ((I, F), {X; Ii EI}) is max;E/ IX;! - 1. The treewidth of 
a graph G is the minimum width over all possible tree decompositions of G. 

An example of a graph G of treewidth two and a tree decomposition TD of width two of the 
graph is given in Figure 1. A tree decomposition is depicted as a tree in which each node i 
contains the vertices of X;. 

Definition 2 [11]. A path decomposition of a graph is a tree decomposition with the extra 
restriction that the tree is a path. A graph has pathwidth at most k if there is a path 
decomposition of the graph of width at most k. 

The graph depicted in Figure 1 has pathwidth three, and a path decomposition PD of width 
three of G is also depicted in Figure 1. 

G 

~ !Ll?g 
j i h 

PD 

Figure 1: A graph G of treewidth two and pathwidth three, a tree decomposition TD of 
width two of G, and a path decomposition PD of width three of G. 

Many (hard) problems can be solved efficiently on graphs of small treewidth, using the 
tree-like structure of the graphs. For instance, a large class of problems can be solved 
efficiently by applying dynamic programming on a tree decomposition of small width of the 
graph. These algorithms usually work on rooted tree decompositions of small width with 
0( n) nodes. Examples of problems that can be solved efficiently on graphs of small treewidth 
by using the dynamic programming approach are MAX INDEPENDENT SET, TRAVELING 
SALESMAN, CHROMATIC NUMBER, and MIN DOMINATING SET. These problems can all be 
solved in O(n) time sequentially and in O(logn) time in parallel with O(n/ logn) processors 
(the algorithms are exponential in the treewidth of the graph). To solve problems this 
way, it is necessary to find a tree decomposition of small width of the given graph first. 
Fortunately, for each positive integer k, there is a linear time algorithm which, given a graph, 
finds a tree decomposition of width at most k of the graph, if one exists (this algorithm is 
again exponential in k) [3]. In parallel, the problem can be solved in O(log2 n) time with 
O(n/ log2 n) processors on an EREW or CRCW PRAM [4]. 

It appears that many graph problems have practical instances in which the input graphs 
have small treewidth. Also, many (practical) graph problems require that the treewidth or 
pathwidth of the input graph is small. 

Unfortunately, many algorithms solving problems on graphs of small treewidth are only 
efficient in theory: the running time of the algorithms is usually exponential in the treewidth 
of the graph. This means that if the input graph is only of moderate size, and the bound 
on the treewidth is six or more, then in the running time of the algorithm, the factor that 
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is exponential in the treewidth is likely to overtake the factor that is polynomial in the size 
of the graph. This holds e.g. for the algorithms for finding a tree or path decomposition of 
width at most k of a given graph, if one exists (k constant). 

The goal of the thesis is to give efficient sequential and parallel algorithms for several 
problems on graphs of small treewidth or pathwidth. We consider both graph problems which 
require that the treewidth or pathwidth of the input graph is bounded by some constant, 
and graph problems which are hard on general graphs, but have more efficient solutions on 
graphs of small treewidth or pathwidth. The aim is to design algorithms which are not only 
theoretically efficient, but are also efficient in practical applications. The thesis comprises 
two subjects: DNA physical mapping and reduction algorithms. 

2 DNA Physical Mapping 

In the thesis, we consider two problems which originate from molecular biology and are 
known as sequence reconstruction problems that occur in DNA physical mapping. In both 
problems, the input consists of k copies of a DNA string that are fragmented, and for each 
pair of fragments, either it is known that they overlap, or it is known that they do not overlap, 
or nothing is known about their overlap. In one of the problems, we additionally have the 
information that all fragments have the same length. There is no explicit information on 
the order of the fragments in the DNA string, or on the copy from which each fragment 
originates. The problem is to recover the complete overlap information of the fragments, 
and with this, the order of the fragments in each copy of the DNA string. 

The input of the problems is modeled as graph G = (V, E) and an extra set of edges F: 
the vertices of the graph represent the fragments, and for each two vertices in V, there is an 
edge between u and v in E if we know that the corresponding fragments overlap, and there 
is an edge between u and v in F if the corresponding fragments possibly overlap, i.e. are 
not known not to overlap. The complete overlap information can again be represented by 
a graph. This graph must be an interval graph or a unit-interval graph in which the clique 
size is at most k. 

Definition 3. A graph G = (V, E) is an interval graph if there is a function <I> which maps 
each vertex v E V to an interval on the real line, such that for each u, v E V with u =p v, 

<I>(u)n<I>(v)#0 ¢c} {u,v}EE. 

The function <I> is called an interval mapping. 
An interval graph G is called a unit-interval graph graph there is an interval mapping 

for G in which all intervals have the same length. 

The two sequence reconstruction problems can be modeled as follows. 

INTERVALIZING SANDWICH GRAPHS (ISG) 

Instance: A graph G = (V, Ei), a set E2 of edges with E 1 <:::; E 2 , a positive integer k. 
Question: Is there an interval graph G = (V, E) such that E 1 <:::; E <:::; E2 , and G has no 
cliques of size more than k? 

UNIT-INTERVALIZING SANDWICH GRAPHS (UISG) 

Instance: A graph G = (V, Ei), a set E2 of edges with E 1 <:::; E 2 , a positive integer k. 
Question: Is there a unit-interval graph G = (V, E) such that E 1 <:::; E <:::; E2, and G has no 
cliques of size more than k? 
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For fixed k, the problems are denoted by k-ISG and k-UISG, respectively. 
It is known that if, for any k, G = (V, Ei) and E2 form a yes-instance of k-ISG or k-UISG, 

then G has pathwidth at most k - l [6]. 
In the thesis, we consider k-ISG and k-UISG. We resolve the complexity of k-ISG for all 

fixed integers k ~ 2: we give a linear time algorithm for 2-ISG, a quadratic algorithm for 
3-ISG, and we show that k-ISG is NP-complete if k ~ 4. Furthermore, we give an O(n+m) 
time algorithm for 3-UISG (where m = IE2 1). There is an algorithm for k-UISG which uses 
O(nk-I) [9]. Our algorithm improves on this result for the case that k = 3. 

The algorithms for 3-ISG and 3-UISG heavily rely on the fact that yes-instances have 
pathwidth at most two: a complete characterization of graphs of pathwidth at most two is 
given first. After that, this characterization is used to give the algorithms for 3-ISG and 
3-UISG. The algorithms first check whether the input graph has pathwidth at most two, and 
if so, they use the structure of the graph to solve 3-ISG and 3-UISG, respectively. 

3 Reduction Algorithms 

A reduction algorithm is an algorithm which can be used to solve decision or optimization 
problems of which the input is a graph. A reduction algorithm is based on a finite set of 
reduction rules and a finite set of graphs. Each reduction rule describes a way to modify a 
graph locally. 

An example of a reduction rule is given in Figure 2: a reduction rule consists of a pair 
of graphs, each with a set of distinguished vertices, called terminals. Both graphs have the 
same set of terminals. A reduction is an application of a reduction rule on a graph G: if 
a reduction rule (H1 , H2 ) is applied to a graph G, then a subgraph G1 isomorphic to H 1 is 
taking in G, such that only the terminal vertices may have edges to vertices outside of G1 . 

Then G1 is replaced by a subgraph isomorphic to G2 , such that corresponding terminals are 
mapped to the same vertices (see Figure 2 for an example). 

Figure 2: An example of a reduction ruler= (H1 , H2), and an application of r to a graph 
G, resulting in graph G'. 

The idea of a reduction algorithm is to solve a decision problem by repeatedly applying 
reduction rules on the input graph until no more rule can be applied. If the resulting graph 
is in the finite set of graphs, then the algorithm returns true, otherwise it returns false. Hence 
the set of reduction rules and the finite set of graphs are problem specific. 

In a sequential algorithm, all reductions are performed subsequently, but in a parallel 
reduction algorithm, non-interfering reductions can be performed at the same time. 

It turns out that for many decision and optimization problems, it is possible to generate a 
set of problem specific reduction rules, and with this set, the problem can be solved efficiently 
on graphs of small treewidth, both sequentially and in parallel. The sequential algorithms 
take O(n) time. The parallel algorithms take O(lognlog*n) time with O(n/(lognlog*n) 
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processors on an EREW PRAM, or O(logn) time with O(n/logn) processors on a CRCW 
PRAM (log* n denotes the amount of times we have to replace n by the value of log n in 
order to get a value that is at most one. For all practical values of n, log* n :S 5.). The sets 
of problem specific reduction rules can be generated from a description of the problem in 
monadic second order logic {note that this generated set only depends on the problem, but 
may be rather large). 

An advantage of reduction algorithms is that they are easy to implement: the difficulty 
of a problem is hidden in the design of the problem specific set of reduction rules, and not 
in the reduction algorithm itself. Another advantage of reduction algorithms over other 
algorithms on graphs of small treewidth is that a reduction algorithm works directly on the 
input graph, and hence no tree decomposition of small width of the graph is needed. As the 
running times of the algorithms for finding a tree decomposition of small width of a graph 
are not efficient in practice, this makes reduction algorithms potentially more practical {if 
the set of reduction rules is not too large). 

In the thesis, we present the basic theory on reduction algorithms and we show that 
reduction algorithms can be used to solve large classes of decision and optimization problems 
on graphs of bounded treewidth, thus giving a comprehensive overview of results presented 
in [1, 2, 4]. 

One drawback of reduction algorithms is that they only solve decision and optimization 
problems. For decision problems, the algorithms only return 'yes' or 'no', but they do not 
return a solution for the problem if the answer is 'yes'. Similarly, for optimization problems, 
only the optimal value is returned, but no optimal solution of the problem is returned. In the 
thesis, we extend the theory of reduction algorithms to constructive reduction algorithms, 
which also return an (optimal) solution for the problem at hand, if one exists. 

The constructive reduction algorithms consist of two phases. In the first phase, an 
ordinary reduction algorithm is applied. If the reduced graph is not a yes-instance, then 
false is returned. Otherwise, the second phase is started. In the second phase, first a 
solution is constructed for the small graph. After that, the reductions that are applied in 
the first phase are undone one by one, in reversed order. Each time a reduction is undone, 
the solution of the current graph is reconstructed into a solution of the new graph. This 
eventually terminates with the original input graph and a solution for this graph. In case of 
an optimization problem, this solution is optimal. 

In the thesis, we show that the theory of constructive reduction algorithms can be applied 
to a large class of constructive decision and optimization problems on graphs of bounded 
treewidth, and the resulting algorithms run in the same time as the ordinary reduction 
algorithms. These results again show how the problem specific set of reduction rules can be 
generated from the problem description, and how the reconstruction algorithm in phase 2 
can be done. 

There are a number of problems on graphs of bounded treewidth for which the technique 
of constructive reduction algorithms can not be applied directly, i.e. we know no algorithm to 
generate a set of reduction rules with a reconstruction algorithm, from a problem description. 
For two of these problems, we show in the thesis that they can be solved with the constructive 
reduction technique anyhow. This results in new, parallel algorithms which are more efficient 
than previous algorithms for these problems. The first problem is concerned with series­
parallel graphs. 

Definition 4. A series-parallel graph is a triple (G, s, t), where G is a multigraph, and s 
and tare distinct vertices of G, for which one of the following conditions holds 

• G consists of one edge between s and t, 
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• (G, s, t) can be obtained by a series composition of two series-parallel graphs (G,, s,, t,) 
and (G2, s2 , t2), i.e. G is obtained by taking the disjoint union of G1 and G2, and then 
identifying t1 with s2 and lettings= s1 and t = t2. 

• (G, s, t) can be obtained by a parallel composition of two series-parallel graphs (G 1, s 1 , t 1 ) 

and (G2, s2 , t2), i.e. G is obtained by taking the disjoint union of G1 and G2, and then 
identifying s1 with s2 and t 1 with t2, and lettings= s1 = s2 and t = t 1 = t2. 

A series-parallel graph can be decomposed into series and parallel compositions. An sp-tree 
is a tree which reflects such a decomposition. 

The problem we consider is the problem of checking whether a given triple (G, s, t) is a 
series-parallel graph, and if so, constructing an sp-tree for (G, s, t). We show that, with the 
technique of constructive reduction algorithms, this problem can be solved in O(logm log* m) 
time with O(m/(logmlog* m)) processors on an EREW PRAM, and in O(logm) time with 
O(m/ logm) processors on a CRCW PRAM (where m denotes the number of edges of the 
graph). To this end, we explicitly give a set of 18 reduction rules, and we show that, with 
this set, series-parallel graphs can be recognized, and in the second phase of the algorithm, 
an sp-tree can be reconstructed when the reductions are undone. The algorithm improves 
in efficiency on the parallel algorithms of (5, 7, 8]. 

The second problem is the problem of finding a tree decomposition of width at most 
two of a graph, if one exists. This problem is closely related to the problem of recognizing 
series-parallel graphs, since any series-parallel graph has treewidth at most two. We again 
use the technique of constructive reduction algorithms: we extend the set of reduction rules 
for series-parallel graphs with five extra rules, and we show that this set can be used to 
recognize graphs of treewidth at most two. We also show how, in the second phase of the 
constructive reduction algorithm, a tree decomposition of width at most two of the graph can 
be maintained. This algorithm runs in O(lognlog*) time with O(n/(logn log* n)) processors 
on an EREW PRAM, and in O(logn) time with O(n/ logn) processors on a CRCW PRAM. 
It improves in efficiency on the algorithm of [4], which uses O(log2 n) time with O(n/ log2 n) 
operations, both on an EREW and a CRCW PRAM. 
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In the public sector and certain industries where operations are ongoing 24 hours a day, 
employees work in shifts, usually of 8 hours in length with a 30 minute break. The shifts, 
assigned to an employee, are currently based on a 40-hour working week. The (40-hour) ros­
ters are often handmade and the result of years of planning experience. When the workload 
was cut down to 38-hour, people continued to work 40 hour/week, and extra free time was 
assigned to each employee (the so called ATV or ADV). The planners continued to work 
with the existing 40-hour rosters. 

Lately, a considerable number of corporations in business and the public sector in the 
Netherlands agreed to start a 36-hour working week. At the same time that the further cut 
back in working hours was negotiated, national labor laws were updated and became more 
severe with respect to shift length and shift sequencing. Many existing 40-hour roster are 
in conflict with the new laws. Besides, when working 36 hours, every employee will get too 
much time off in a 40-hour roster and too many shifts will be unfilled. 

The planners are thus faced with the problem to design new, more complex rosters. The 
complexity is increased due to stricter labor laws and because, over the years, there is an 
increasing need for rosters that consider social aspects (such as day care, car pooling and 
working part-time). This has resulted into an awareness of OR techniques to support the 
rostering process and a need for decision support systems that will help the planners with 
their task. 

In this paper we will describe such a complex workforce rostering problem for a detention 
center in Amsterdam. Although the mathematical models and techniques used are not new, 
it will give the reader insight into the state of the art of planning systems that are now 
used in practice. For security reasons we cannot give results, or describe every detail of the 
application. 

2 Problem formulation 

The workforce at the detention centre can be considered to be a homogeneous group such 
that every person can perform every task. The workforce is fixed, there are no temporary 
employees allowed because the work demands a proper training and every employee must get 
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a background security check. The employees should in principle be assigned to one particular 
unit, but can be assigned to other units when needed. 

The current 40-hour roster is cyclic, such that everyone has the same roster over time. 
The roster consists of N weeks and is made for N employees. Employee 1 is assigned to week 
schedule 1 in week 1, to week schedule 2 in week 2 and so on. In week N+l the employee 
is again assigned to week schedule 1. The N week schedules together assure that all tasks 
on each day are done. The new roster must assure that every person works approximately 
36 hours a week and it should also be cyclic. The planners asked for a roster that plans an 
employee off-duty during one weekend and on-duty during the next. 

In the 40-hour roster, the tasks are combined into usual shift types, like a morning shift, 
an evening shift etc. The shift lengths are not fixed as long as there is a 30 minute overlap 
between successive shifts for a transfer of the shift. Each shift type is filled multiple times. 
For the detention center a critical new rule is that an employee has at least 11 hours rest 
between two shifts. This means that after a late shift, ending at say 11 pm, the employee 
cannot be assigned to a morning shift before 10 am. In the old roster it was common practice 
to combine a late shift with an early morning shift. 

In the standard approach to shift scheduling the first step is to determine the required 
manpower at each hour of the day, and to define shifts that will accomodate the demand. 
However, the workload of each unit depends on the workforce assigned to the centre by the 
government rather than on the tasks. When more personnel is assigned to a unit there can 
be more activities leading to an increase in the tasks for the workforce. The shift lengths 
and shift types are thus determined by the workforce. It was decided to maintain the shift 
types of the 40-hour roster and to adjust the start and end time of the shifts to assure a 
36-hour working week. The planners where advised to consider a systematic procedure to 
determine shifts from a given formation of personnel. 

The second crucial step in the planning proces is to define a two-week working schedule. 
This schedule starts on a free Sunday, assigns exactly two shifts during the middle weekend 
and ends with a free Saturday. Successive two-week schedules thus have the required property 
that an employee is off-duty one weekend and on-duty the next. The labor laws concerning 
the succession and sequencing of shifts within the two-week schedules are recorded in a 
computer program. This computer program can check if a given two-week schedule satisfies 
the labor laws. It can also generate all feasible two-week schedules. Each schedule contains 
a combination of shifts that assure a 36-hour working week and that satisfies the labor laws. 
For our application all the feasible schedules, approximately 40.000) were generated and 
stored in a binary file. 

When combining these schedules into rosters only a few more labor laws needed to be 
checked (like an uninterrupted rest of 60 hours within an 9 day sequence). Most labor laws 
are satisfied in the feasible two-week schedules. The roster problem then becomes to find 
an optimal combination of the (two-week) schedules into a cyclic roster for all personnel in 
a working unit. The units are not completely independent ( they share for instance the task 
of isolation cells duty), but for the planning proces a simple preprocessing of the common 
tasks will suffice to make the units independent. 

The objective criteria for an optimal roster are not evident. Since the detention centre has 
a government assigned workforce, it is not neccessary to minimize the number of employees 
to perform all tasks. The rosters are solely evaluated by social aspects, such as the spread of 
the off days, the number of early shifts during a week, et cetera. The planners thus need an 
interactive roster generating system, that can distinguish between popular and less popular 
schedules. A decision support system should thus find one or more feasible schedules under 
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social restrictions. 
In the literature on shift scheduling, the roster problem is often formulated as a Gener­

alized Set Partitioning problem: 

subject to 

n m 

min I:Cixi + L d;s; 
j=l i=l 

n 

I:a;jXj + s; = b; 
j=l 

i=l, ... ,m 

Xj, S; 2: 0 integer j = 1, ... , n; i = 1, ... , m. 

with m tasks, n schedules and 

Cj costs for schedulej 

d; cost for choosing dummy schedule i 

{ 
1 if schedule j covers shift i 

a;i 2 if schedule j covers shift i twice (once every week) 
0 otherwise. 

b; number of schedules that must include shift i 

Xj number of times that schedule j is selected 

s; number of times that dummy schedule i is selected. 

The dummy schedule i consists of shift i only. The inclusion of the dummy schedules assures 
a feasible solution, albeit with very high cost. The model assumes that a selection out of n 
schedules is determined that covers the number of times that every specific shift is needed. 
When all cost Cj are equal the model searches for a feasible solution only. A scoring system 
can be introduced to distinguish between the schedules. Schedules with non popular aspects, 
for instance with one day on-duty between two days off-duty, get a low score. 

3 Solution methods for Cyclic Shift Scheduling 

Mathematical models for workforce scheduling have been developed for many applications 
like nurse scheduling [14, 15), crew scheduling for airlines [13] and mass public transport 
[2, 3, 8], telephone operator scheduling [11]. 

While most of the early approaches to workforce scheduling are heuristic, with the in­
creasing computational power, exact planning algorithms can be applied that better solve 
larger and more complicated planning problems. Exact models for shift scheduling are based 
on assignment problems [1] or on set covering/ set partitioning problems [4, 6, 10]. In this 
note we have showed that our application also falls within the framework of set covering and 
we will follow the well known approach to solve the LP relaxation and search for a feasible 
solution in the neighborhood of the LP solution. 

The Generalized Set Partitioning problem could be routinely solved when the size is 
reasonable. However, the number of columns (schedules) can be up to 40.000 (or more!) 
and the model is too large to be solved by standard methods. Crainic and Rousseau [4] 
suggested a column generation method for the airline crew scheduling problem, where a 
subset of columns (schedules) was considered. This method became popular in the early 
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90's when Desrochers and Soumis [5, 6] applied the same technique to the Urban Transit 
Crew Scheduling Problem. 

The basic idea of the method is to start with a small subset of schedules, further referred 
to as Basic Set, and to solve the LP relaxation of the restricted GSP problem. Based 
on reduced cost manipulations columns (schedules) are added to the Basic Set. The LP 
relaxation of the restricted GSP is repeatedly solved until optimality of the LP relaxation of 
the GSP problem itself has been established. 

Earlier column reduction methods were of a subjective nature, based on economic or social 
criteria. In particular, a set of all feasible columns is generated, and then reduced through 
rejection of specific columns or column features. For the detention centre all feasible columns 
are also generated, but instead of reducing the set of columns, a subset of columns is selected 
and then extended. 

Apart from the issue of finding a good Basic Set, the quality of the LP relaxation as 
a lower bound for the solution value of the GSP problem and the issue of finding a good 
feasible integer solution are important. 

3.1 The LP relaxation 

A feasible solution is only found when the Basic Set contains enough schedules to cover every 
shift. Also, there should be enough schedules such that "overcovering", that is unnecessary 
multiple covering of a single shift is avoided. The generation of feasible schedules can be 
enumerative or, when we do not want to generate all feasible schedules, it can be based on 
a priority principle of the following type 

P;1 = bkj with k = i mod 7 if i > 7 
nij 

and P;1 is a performance measurement for task j on day i, n;1 counts the number of times 
that task j on day i belongs to a generated schedule, and bkj is the number of times that 
task j on day k should be covered. In the process of generating schedules for the Basic Set 
the priorities are adjusted. New schedules are chosen based on the highest priority scores. 
Of course the labor laws are checked in the generation of the basic schedules. 

The Basic Set is extended with schedules that are added based on the ideas of the column 
generation method described by Desrochers and Soumis. When the solution method stops 
it returns an optimal solution of the LP relaxation of the GSP problem. The Basic Set has 
been extended with a number of columns (schedules). The LP relaxation provides us with 
a lower bound to the solution value of the (integer) GSP problem. 

From the literature ([9, 12]) it is well known that the LP relaxation yields a good lower 
bound for Set Covering and Set Partitioning problems. It seems sensible to apply the LP 
relaxation for the determination of a good Basic Set and for a good lower bound. Lagrangean 
relaxation can also be used to derive a lower bound for the solution value of the GSP problem. 
However, a well known consequence of the strong duality theorem of linear programming is 
that Lagrangean relaxation yields (at best) the same bound. 

3.2 A Feasible Integer Solution 

The GSP model with a fixed Basic Set, such as is determined by the LP relaxation, can be 
solved using standard solvers such as CPLEX. For the detention centre, there was a need 
for a decision support system that was independent of a costly solver. 
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Wedelin [17] suggests a very simple iterative search algorithm based on a Lagrangean dual 
approach with cost pertubation for 0-1 integer linear programming problems to generate a 
good feasible 0-1 solution. The Basic Set of the optimal solution of the LP relaxation is used 
with the generation of a feasible 0-1 solution. This method has been succesfully applied in 
the Carmen system for airline crew scheduling and is used by major airlines in Europe. 

The GSP problem is given with decision variables that are integer, and not only restricted 
to O and 1. The solution of the 0-1 GSP is of course a solution for the general GSP. The 
method can easily be adjusted to allow a specific schedule more than once in the feasible 
integer solution by adding copies of the selected schedules to the Basic Set and generating a 
new 0-1 solution. 

For the detention centre, the units have the same schedules and size. All feasible schedules 
are generated, a total of 40.000 schedules, on a Pentium 100 Mhz. PC in 500 seconds. The 
schedules are stored in a binary coded file and 150 randomly selected schedules are added to 
an initial Basic Set. The file was preprocessed several times after consulting the planners, 
who qualified some schedule structures as unacceptable. Currently, the resulting rosters are 
being evaluated with the planners. The size of the set of feasible schedules will diminish 
with every roster that is shown to the planners since unacceptable (two-week) schedules are 
observed rather than unacceptable rosters. 

4 Conclusions and further research 

With so many corporations shifting to the 36-hour labor week the need for decision sup­
port systems is enormous. The method has also succesfully been applied at the GG&GD 
Rotterdam (16] and at a dutch security firm (with ORTEC consultants, [7]). For all the 
applications we noticed that the complexity of the labor laws and social requirements make 
it almost impossible to work without computer support. Even checking the validity of the a 
given roster is a job not eagerly done by planners, since it consist of checks over long periods 
and of many different rules. 

The decision support systems need to be specially developed for each profession, since 
labor laws and union treaties are quite diverse. For each application we started with a 
computer program that checks the feasibility of generated rosters and schedules. The basic 
approach using shift scheduling based on column generation seems to be very suitable. 

Further research is currently done in two directions. First with a increasing number of 
people working part-time, the rosters need to be more flexible. Scheduling two or more part­
timers in a single full-time job forces them to divide the off-duty days among each other. 
Also, the part-time hours need to be a fixed portion of a full-time job (like 0.5, or 0.75) while 
in practice there is a wide range in part-time working hours. Preferably, the part-timers 
will take shifts from the existing full-time roster and combine them into several full-time 
jobs. Secondly, the new labor laws also complicate exchanging shifts between employees and 
filling shifts for employees that are sick or on leave. Apart from developing new rosters that 
allow maximum flexibility in shift exchange and back up shifts, there is also a great need for 
decision support systems that help decide who to call for back up when an employee is sick 
or on leave. 
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On the graph parameters of Colin de Verdiere* 
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1 Introduction 

Let M = m;,1 be a real-valued symmetric matrix with nonpositivc off-diagonal entries and 
with arbitrary diagonal entries. Recall that M is called reducible if the index set of M can 
be partitioned into two sets / and J such that m;,i = 0 for all i E / and j E J. A matrix M 
is called irreducible if M is not reducible. If M is irreducible then as a consequence of the 
Perron-Frobenius theorem (by looking to the matrix cl - M for large c) we have that the 
smallest eigenvalue A of Mis simple (it has multiplicity 1) and the corresponding eigenvector 
belonging to A can be chosen to have all entries positive. Let us state this consequence in a 
more graph theoretical framework. To the matrix M we can associate a graph G(M) with 
vertex set the index set of M and with between two vertices i and j an edge if m;,1 fc 0. Then 
irreducible means that the graph is connected. If the graph is not connected then we can find 
a matrix M such that the largest eigenvalue has multiplicity at least 2. So information of 
the multiplicity of the smallest eigenvalue of matrices M with G(M) = G gives information 
about the graph G, namely connectedness of the graph. 

More information of the graph can be obtained by not only looking to the smallest 
eigenvalue but by looking also to the smallest but one. By adding an appropiate diagonal 
matrix we may assume that the smallest but one eigenvalue is equal to 0. 

Let G be a graph with vertex set {1, ... , n} and let Og denote the set of all real-valued 
symmetric matrices M = (m;,1) with 

i m;,i < 0 if ij is an edge, m;J = 0 if ij is not an edge and i fc j, and 

ii M has 1 negative eigenvalue. 

So m;,; E JR. We do not assume that G is connected. 
What information about the graph can we get if we know that corank(M) ~ t for each 

M E Og? Although the full answer of this question is not known there are some results. In 
fact we will see that there is an intriguing connection between the maximum corank attained 
by a matrix M E Og and the topological structure of the graph G. What follows is extracted 
from [8]. 

*This research was supported by the Netherlands Organization for Scientific Research (N.W.O.) 
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2 The parameter µ( G) 

For any vector x, let supp(x) denote the support of x (i.e., the set { ilxi =/c 0} ). Moreover 
we denote the positive support by SUPP+(x) := {ilxi > 0} and the negative support by 
supp_ (x) := {ilxi < 0}. 

If x E IR.n and I ~ V, then x1 denotes the subvector of x induced by the indices in I. 
Similarly, if M is an n x n matrix and I, J ~ V, then M1xJ denotes the submatrix of M 
induced by row indices in I and column indices in J. 

Theorem 2.1 Let G be a connected graph and let M E Og. Let x E ker(M) and let I and 
J be two components of G[supp+(x)]. Then there is a y E ker(M) with supp+(Y) = I and 
supp_(y) = J, such that YI and YJ are scalar multiples of x1 and XJ respectively. 

(1) 

Proof. Let K := supp_(x). Since mi,j = 0 if i EI, j E J, we have: 

M1x1X1 + M1xKXK = 0, 
MJxJXJ + MJxKXK = 0. 

Let z be an eigenvector of M with negative eigenvalue. By the Perron-Frobenius theorem 
we may assume z > 0. Let 

(2) 

Define y E IR.n by: Yi := Xi if i E /, Yi := ->.xi if i E J, and xi := 0 if i (/. I U J. By (2), 
zT y = zf x1 - >.z; XJ = 0. Moreover, one has (since mi,j = 0 if i E I and j E J): 

yTMy = yjM1x1Y1 +yJMJxJYJ = 

(3) xf M1x1X1 + >.2x}MJxJXJ = 
- xf M1xKXK - >.2x}MJxKXK :S 0 

(using (1)), since M1xK and MJxK are nonpositive, and since x1 > 0, XJ > 0 and XK < 0. 
Now zT y = 0 and yT My :S 0 imply that My = 0 (as M is symmetric and has exactly 

one negative eigenvalue, with eigenvector z). Therefore, y E ker(M). 
People familiar with differential geometry will see that this theorem is analogous to the 

Courant nodal theorem [7]. 
We say that a vector x E ker(M) has minimal support if x is nonzero and if for each 

nonzero vector y E ker(M) with supp(y) ~ supp(x) one has supp(y) = supp(x). We have 
the following consequence of Theorem 2.1. 

Corollary 2.la Let G be a connected graph and let ME Og. Let x E ker(M) have minimal 
support. Then G[supp+(x)] and G[supp_(x)] are connected. 

A graph G is called planar if the graph can be drawn in the plane such that no two edges 
cross. A graph G is called outerplanar if the suspension on G is planar, that is, G is planar 
and all vertices of G are incident with one face. 

Theorem 2.2 Let G be a path. Then each M E Og has corank(M) :S 1. 

Theorem 2.3 Let G be a 2-connected outerplanar graph. Then each M E M has corank(M) :S 
2. 
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Theorem 2.4 Let G be a 3-connected planar graph. Then for each M E Og, corank(M) :::'. 3. 

Proof We assume that G is embedded into the plane. Let v1 be a vertex of G. Let Vz 

and v3 be vertices of G which are adjacent to v1 and such that v1, v2 , V3 are incident with 
the same face F of G. Assume that there exists a matrix M E Og with corank(M} > 3. Let 
x E ker(M) be a nonzero vector with xv, = 0 for i = 1, 2, 3. We may assume that x has 
minimal support. 

Since G is 3-connected there exists 3 pairwise disjoint paths Pi, P2 , P3 , where each P; 
starts in a vertex wi (/. supp(x) adjacent to at least one vertex in supp(x), and ends in v;. 
Each vertex v (/. supp(x) adjacent to some vertex in supp+(x) is also adjacent to some vertex 
in supp_(x) and conversely. So each w; is adjacent to at least one vertex in supp+(x) and 
at least one vertex in supp_(x). 

By Corollary 2.la, supp+(x) and supp_(x) can be contracted to one vertex each. Delete 
all vertices of G not contained in supp(x) or in any P; and contract each P; to one vertex. 
Add a vertex in the face F and edges from v1, v2 , v3 to this new vertex. The resulting 
graphs is still planar. But this graphs contains a K3,3-minor, a contradiction, hence we have 
corank(M) ::; 3. 

A graph is called fl.at if the graph can be embedded into 3-space such that for each circuit 
C of the graph there exists a homeomorph of an open disc D. with boundary the circuit C, 
such that D. is disjoint from G. For flat graphs we have the following theorem due to L. 
Lovasz and A. Schrijver[l2]. 

Theorem 2.5 Let G be a 4-connected fl.at graph. Then for each ME Og, corank(M) ::; 4. 

Some remarks are needed here. First Theorem 2.3 is not true if we remove the condition 
that G is a 2-connected graph. In fact corank(M) can be arbritrary high as the following 
example shows. Take G := K 1,n, the bipartite graph with one vertex of degree n and n 
vertices of degree 1. Let M := (m;,j) be the matrix with m;,i = -1 if ij is an edge, m;,; = 1 
if i is the vertex of degree n, and m;,; = 0 if i is a vertex of degree 1. Then M E Og, as M 
has only one negative eigenvalue of mulitplicity 1. However corank(M) = n - 1. The same 
applies to Theorem 2.4. For this, look to the graph G := K2 ,n-

Secondly, are the reverse statements of Theorem 2.3 and Theorem 2.4 true? More pre­
cisely, if G is not outerplanar, does there exist a matrix AI E Og with corank(M) > 2, and, 
if G is not planar, does there exist a matrix M E Og with corank(M) > 3? 

Let us first look to the second remark. In [5, 6, 4], Y. Colin de Verdiere defined a property, 
which he called the Strong Arnol'd Hypothesis[!], for operators. To state this property we 
must introduce some basic concepts of differential geometry applied to matrices. 

Let S\,11 denote the submanifold of all real-valued symmetric n x n matrices with corank 
k, and let TMS\,11 denote the tangent space of S\,11 at matrix M. The normal space of S\,11 
at M is the space of all real-valued symmetric n x n matrices X with M X = O; we denote 
this space by NMS\,11· Note that we use the inner product defined by A· B = Tr(AB). 

Let TMOg denote the tangent space of Og at M. So TMOg is the space of all real-valued 
symmetric n x n matrices K = (k;,i) with k;,i = 0 if ij is not an edge and i cf. j. The normal 
space of Og at Mis denote by NMOg, and is the space of all real-valued symmetric n x n 
matrices with K = (k;,i) with k;J = 0 if i = j and i and j are adjacent. 

A matrix M E Og is said to fulfill the Strong Arnol'd Hypothesis if the linear span of 
TMS\,11 and TMOg is the whole space of all real-valued symmetric n x n matrices. This is 
what mathematicians working in differential topology would call transversality, and is some 
kind of general position property, slightly pertubating the submanifolds does not change the 
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intersection of the two submanifold dramatically. This in contrast to the case where the two 
submanifold do not intersect transversally in which case it is always possible to find a small 
pertubation which changes the intersection of the two submanifolds dramatically. 

Instead of looking to the maximum corank of any matrix M E Og, we now look to the 
maximum corank of any matrix M E Og with the additional condition that M fulfills the 
Strong Arnol'd Hypothesis. This number is denoted by µ(G) and was discovered by Y. Colin 
de Verdiere[5, 6]. So for any graph G, µ(G) ~ t if and only if corank(M) ~ t for any matrix 
M E Og fulfilling the Strong Arnol'd Hypothesis. 

It is not difficult to check whether a matrix does fulfill the Strong Arnol'd Hypothesis. 
The following criterion is given in [5, 6]. 

Proposition 2.6 A matrix M E Og fulfills the Strong Arnol'd Hypothesis if and only if for 
each symmetric n x n matrix A there is a matrix B E T MOg such that xT Ax = xT Bx for 
each x E ker(M). 

Here is another criterion [11]. 

Proposition 2.7 A matrix M E Og fulfills the Strong Arnol'd Hypothesis if and only if 
there is no nonzero symmetric matrix X = ( x;,i), with x;,; = 0 and x;,i = 0 if i and j are 
adjacent in G, such that MX = 0. 

The matrix M = ( m;,j) E 0,1:;=.\ with m;,j = -1 if ij is an edge, m;,; = 1 if i is the vertex 
of degree n, and m;,; = 0 if i is a vertex of degree one, does not fulfill the Strong Arnol'd 
Hypothesis if n > 3, as also follows from the following proposition. 

Proposition 2.8 Let G be a graph. Let M E Og fulfill the Strong Arnol'd Hypothesis, and 
let x E ker(M). If G[supp+(x)] has more than one component, then G[supp+(x)] has only 
two components and G[supp_(x)] has only one component. 

The fact that M does not fulfill the Strong Arnol'd Hypothesis also follows from the 
following important property of µ(G). Proofs of it can be found in [5, 6, 8, 10]. First we 
need some definitions. 

Let e be an edge of G = (V, E). Then the graph obtained by deleting e is the graph 
G' := (V, E \ { e}). If e is not a loop, then the graph obtained by contracting e is the graph 
obtained by deleting e and identifying the ends of e. A minor of a graph arises by a series 
of deletions and contractions of edges of G and deletions of isolated vertices. A minor of a 
graph G is called a proper minor if the minor is not equal to G. A class C of graphs is closed 
under taking minors and isomorphism if for each G E C also all its minors belong to C. A 
graph G is called a forbidden minor for C if G does not belong to C. A graph G is called a 
minimally forbidden minor for C if G does not belong to C but each proper minor of G does 
belong to C. 

By the well-quasi ordering theorem of Robertson and Seymour[l4], for each class C of 
graphs closed under taking minors, there exists a finite collection :F of minimally forbidden 
minors for a class C closed under taking minors and isomorphisms. 

The important property of µ(G) is 

Theorem 2.9 !JG' is a minor of G then µ(G') ~ µ(G). 
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So the class of graphs G with µ( G) :S t is closed under taking minors. Since, by definition, 
the class of graphs G with µ( G) :S t is closed under taking isomorphisms, there is a finite 
collection Fu of minimally forbidden minors for the class of graphs with µ( G) > t. 

Note that, since K 1,n is a minor of a 2-connected outerplanar graph, µ(K1,n) :S 2. Thus, 
the matrix M := (m;,j) with m;,j = -1 if ij is an edge, m;,; = 1 if i is the vertex of degree 
n, and m;,; = 0 if i is a vertex of degree 1, does not fulfill the Strong Arnol'd Hypothesis. 

The minimally forbidden minors for a graph being a path are K 1,3 and K 3 . The mini­
mally forbidden minors for the class of outerplanar graphs are K2,3 and K 4 • By the Wag­
ner/Kuratowski theorem, the minimally forbidden minor for the class of planar graphs are 
K3,3 and K5. 

Theorem 2.10 µ(K1,3 ) = 2, µ(K3 ) = 2, µ(K2,3) = 3, µ(K4 ) = 3, µ(K3,3) = 4 and µ(K5) = 
4. 

Since maximally outerplanar graphs (these are graphs such that addition of any edge 
would make the graph non-simple or not outerplanar) are 2-connected, and, since maximally 
planar graphs are 3-connected, we have: 

Theorem 2.11 A graph is outerplanar if and only if µ(G) :S 2. 

and 

Theorem 2.12 A graph is planar if and only if µ(G) :S 3. 

In [13], Robertson, Seymour and Thomas showed that there are seven minimally forbid­
den minors for the class of flat graphs. The set of these seven graphs is called the Petersen 
family (one of the graphs of the Petersen family is the Petersen graph). 

For flat graphs we have: 

Theorem 2.13 A graph is fiat if and only if µ(G) :S 4. 

It is however not true that maximally flat graphs are 4-connected. However, in [11], Van 
der Holst, Lovasz and Schrijver showed the invariance of the Colin de Verdiere parameter 
under clique sums, which shows that a minimal counterexample to Theorem 2.13 must be 
4-connected. 

A graph His a subgraph of G if V(H) ~ V(G) and E(H) ~ E(G). Let G1 and G2 be 
subgraphs of G. If VG= VG 1 u VG2 , EG = EG1 u EG2 , and S := VG 1 n VG2 induces a 
clique in G1 and G2, then G is called a clique sum of G1 and G2. 

Let t := max{µ(G1), µ(G2)}. For any U ~ VG, let N(U) denote the set of vertices in 
VG\U that are adjacent to at least one vertex in U. Let Kt+3 \A denote the graph obtained 
from Kt+3 by deleting the edges of a triangle in Kt+J· (A triangle is a subgraph isomorphic 
to K 3 .) Then: 

Theorem 2.14 If µ(G) > t, then µ(G) = t+ 1 and we can contract two or three components 
of G - S so that the contracted vertices together with S form a Kt+3 \ A. 

Let v be a vertex of degree 3. A graph G' is obtained from G by applying a YA-operation 
on v if G' is obtained from G by deleting vertex v and connecting the neighbours of v by 
edges. A graph G' is obtained from G by applying a AY-operation if G' is obtained from 
G by deleting the edges of a triangle and adding a new vertex to the graph and connecting 
this new vertex to all vertices of the triangle. 

From Theorem 2.14 we get the following corollary: 
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Corollary 2.14a Let v be a vertex of degree 3 in G. Let G' be the graph obtained from G 
by applying a Y~-operation on v. Then: 

(i) If the graph, obtained from G by deleting v and its neighbours, is connected andµ( G) 2'.: 
4 then µ(G') 2 µ(G). 

(ii) If µ(G) 2 5 then µ(G') 2'.: µ(G). 

Another proof not using Theorem 2.14 is given by Bacher and Colin de Verdiere in [2]. 
There they also showed: 

Theorem 2.15 Let G' be obtained from G by a ~Y-operation. Then µ(G') 2'.: µ(G). 

Corollary 2.14a and Theorem 2.15 imply that the set of graphs G obtained from K6 by 
applying ~Y- and Y ~-operations, all have µ(G) = 5. In [13], Robertson, Seymour and 
Thomas showed that the minimally forbidden minors for the class of flat graphs are the 
set of graphs obtained from K6 by applying ~Y- and Y ~-operations. So graphs G with 
µ(G) :S 4 are flat graphs. What remains open is the question whether flat graphs G have 
µ(G) :S 4. 

3 The parameter ,,\( G) 

Let G be a graph and let M E Og fulfill the Strong Arnol'd Hypothesis. Let x E ker(M). 
Recall that by Proposition 2.8, G[supp+(x)] can have at most two components, and, if 
G[supp+(x)] has two components, then G[supp_(x)] has only one component. Define a 
new graph parameter ).(G) as follows: ).(G) is the largest d E N for which there exists a 
d-dimensional subspace X of !Rv such that: 

( 4) for each nonzero x EX, G[supp+(x)] is a nonempty connected graph. 

We will see that although ).(G) is not always equal to µ(G), .\(G) seems to be very close to 
µ(G) and in fact ).(G) can be used to compute µ(G). 

Here is an equivalent characterization of ).(G). A subset Hof !Rd is called a halfspace if 
H = { x E !Rd I er x > 0} for some nonzero c E !Rd. A function </> : V --+ !Rd is called a valid 
representation if 

(5) for each halfspace H ofIRd, the set </>- 1(H) is nonempty and induces a connected 
subgraph of G. 

Then ). ( G) is equal to the largest d E N such that there exists a valid representation </> : 

V--+ !Rd. 

Theorem 3.1 /JG' is a minor of G then ).(G') :S ).(G). 

In [9], Van der Holst, Laurent and Schrijver showed: 

Theorem 3.2 ).( G) :S 1 if and only if G is a forest. 

Theorem 3.3 ).( G) :S 2 if and only if G has no K 4 -minor. 

Theorem 3.4 ).(G) :S 3 if and only if G has no K5 - and no V8 -minor. 
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Since K5 and Vs are forbidden minors for the class of planar graphs (as K3,3 is a minor 
of Vs), Theorem 3.4 tells us that A(G) :<; 3 if G is a planar graph. Similarly, Theorem 3.3 
tells us that A(G) :<; 2 if G is an outerplanar graph. 

Lovasz and Schrijver[12] showed: 

Theorem 3.5 /JG is a flat graph then A(G) :<; 4. 

The proof uses a theorem on antipodal links, which can be regarded as an extension of 
Borsuk's antipodality theorem. 

A classification of the graphs G with A(G) :<; 4 is not known to the author. 

4 Another graph parameter 

Let Mg be the set of all real-valued symmetric matrices M = (m;,i) with m;,j = 0 if ij is not 
an edge and i ,/ j. The Perron-Frobenius theorem does not hold for these kind of matrices; 
i.e. it is not always true that the multiplicity of the smallest eigenvalue is 1, as M = (m;,1) 

with m;,j = 1 for each i, j shows that the multiplicity of the smallest eigenvalue of a matrix 
of M,1;1 can be as large as n - l. But the question here is to characterize for each t E N those 
graphs G for which the multiplicity of the smallest eigenvalue is at most t. By adding an 
appropiate diagonal matrix to M, the question becomes to characterize for each t E N those 
graphs G for which the corank of each positive semi-definite matrix M E Mg is at most t. 
(A positive semi-definite matrix Mis a matrix with xTMx 2'. 0 for all vectors x.) 

Theorem 4.1 Let G be a tree. Then each positive semi-definite matrix M E Mg has corank 
at most 1. 

A proof of this theorem is given in [4]. See also [8] for a proof. 

Theorem 4.2 Let G be a 2-connected graph which is the dual of an outerplanar graph. Then 
each positive semi-definite matrix M E Mg has corank at most 2. 

See [8] for a proof. 
A k-clique tree is a graph of the form Kk x T with T a tree. So a !-clique tree is just a 

tree. Theorem 4.2 can be stated as follows. 

Theorem 4.3 Let G be a 2-connected graphs which is a minor of a 2-clique tree. Then each 
positive semi-definite matrix ME Mg has corank at most 2. 

Also for matrices M E Mg there is some kind of Courant nodal theorem. 

Theorem 4.4 Let M E Mg be positive semi-definite. Let x E ker(M) have minimal sup­
port. Then G[supp(x)] is connected. 

Without the condition that G is 2-connected, Theorem 4.2 is not true. Also for matrices 
M E Mg we can define the notion of Strong Arnol'd Hypothesis. In [3], Colin de Verdiere 
introduced the parameter v( G) which he defined as the largest co rank of any matrix M E Mg 
fulfilling the Strong Arnol'd Hypothesis. For v(G) we have: 

Theorem 4.5 v(G) :<; 1 i/ and only if G is a forest, that is, if G is a minor of a I-clique 
tree. 

Theorem 4.6 v( G) :<; 2 i/ and only if G is a minor of a 2-clique tree. 

For v(G) :<; 3, it is not true that G is a minor of a 3-clique tree, as Vs is not a minor of 
a 3-clique tree. 
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Abstract 

We address the single-machine problem of scheduling n independent jobs subject to 
target start times. Target start times are essentially release times that may be violated 
at a certain cost. The goal is to minimize an objective function that is composed of 
total completion time and maximum promptness, which measures the observance of 
these target start times. We show that in case of a linear objective function the problem 
is solvable in O(n4 ) time if preemption is allowed or if total completion time outweighs 
maximum promptness. 

1 Introduction 

A production company has to deal with the traditional conflict between internal and external 
efficiency of the production. Internal efficiency is the efficient use of the scarce resources. It 
results in a cost reduction and hence in possibly more competitive prices or higher profits. 
External efficiency is achieved by meeting the conditions superimposed by external relations. 
Clients, for instance, insist on product quality, short delivery times, and in-time delivery, 
among other things. Compromising product quality is playing with fire, but many a com­
pany tries to get away with late deliveries. After all, a good due-date performance may be 
achieved only in case of putting work out, overwork, frequent setups, or high setup costs. 
Unfortunately, many companies do not realize that a better planning may accomplish the 
same. This type of external efficiency, between the company and its clients, is actually 
downstream; it is the extent by which the company successfully copes with the requirements 
on the demand side. 

We also distinguish upstream external efficiency. This is the extent by which the company 
successfully copes with the conditions on the supply side. A company, for instance, negotiates 
on the prices and delivery times of raw material. In order to achieve a higher internal 
efficiency, but especially a better due date performance, it may be worthwhile to pay a 
higher price to get the raw material sooner. 

There exist several single-machine scheduling models of the trade-off between internal 
and downstream external efficiency. Van Wassenhove and Gelders (1980), for instance, 
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consider a model for making the trade-off between work-in-process inventories and due date 
performance; see also Hoogeveen and Van de Velde (1995). Schutten, Van de Velde, and 
Zijm (1996) consider a batching problem for balancing out utilizing machine capacity against 
due date performance. Single-machine problems seem to be oversimplified models, but the 
study of these models makes sense, if we think of a company as a single-machine shop, or if 
there is a single bottleneck. What is more, single-machine models serve as building-blocks 
for solving complex scheduling problems. 

In this paper, we study a single-machine scheduling model for striking a rational balance 
between internal and upstream external efficiency. Our model specification is as follows. 
A set of n independent jobs has to be scheduled on a single machine that is continuously 
available from time zero onwards and that can process at most one job at a time. Each 
job Jj (j = 1, ... , n) requires processing during a positive time Pj and has a target start 
time Sj. Without loss of generality, we assume that the processing times and target start 
times are integral. A schedule er specifies for each job when it is executed while observing 
the machine availability constraints; hence, a schedule er defines for each job lj its start 
time Sj(cr) and its completion time Cj(cr). The promptness Pj(cr) of job Jj is defined as 
Pj(cr) = s1 - Sj(cr), and the maximum promptness is defined as Pmax(cr) = max1:<,i:<,n Pj(cr). 
We note that the maximum promptness Pmax(cr) equals the maximum earliness Emax(cr) = 
maX1:<,j:<,n(dj - C1(cr)) if each 11 has a due date d1 for which Sj = dj - pj and if interruption 
of job processing is not allowed. 

The problem we consider is to schedule the jobs so as to minimize total completion time 
'2:,'J=1 Cj and maximum promptness Pmax simultaneously. Total completion time '2:,'J=1 C1 is 
a measure of the work-in-process inventories as well as the average leadtime. Hence, it is a 
performance measure for internal efficiency as well as downstream external efficiency. 

Maximum promptness measures the observance of target start times. If it is positive, 
then it signals an inefficiency: at least one job is scheduled to start before its target start 
time. Generally, this is possible only if we are willing to pay a penalty. In case the target 
start times are derived from the delivery times of raw material, then this penalty is actually 
the price of a speedier delivery. In case the target start times are derived from the completion 
times of the parts in the preceding production stage, then this penalty may be an overwork 
bonus to expedite the production. If the maximum promptness is negative, then it signals 
a slack, which implies that we may increase the deadlines that are used in the preceding 
production stage. 

It is important to realize that the target start times are actually release times that may 
be violated at a certain cost. In this sense, our problem comes close to the well-studied 
single-machine problem of minimizing total completion time subject to release times; see for 
instance Lenstra, Rinnooy Kan, and Brucker (1977) and Ahmadi and Bagchi (1990). 

We now give a formal specification of our objective function. We associate with each 
schedule er a point (L.j=I Cj(cr), Pmax(cr)) in R2 and a value F('2:,'J=1 Cj(cr), Pmax(cr)). The 
function F : l1 -+ R, where l1 denotes the set of all feasible schedules, is a given composite 
objective function that is nondecreasing in either of its arguments; this implies that for any 
two schedules er and 7r with Lj=I C1(cr) ~ Lj=l Cj(1r) and Pmax(cr) ~ Pmax(1r) we have that 
F(Lj=l C,(cr), Pmax(cr)) ~ F(Lj=l C1(1r),Pmax(1r)). Our problem is then formulated as 

n 

min{F(I.:; Ci(cr), Pmax(cr)) I CT E !1}. 
j=l 

Extending the three-field notation scheme of Graham, Lawler, Lenstra, and Rinnooy Kan 
(1979), we denote this problem by lllF(Lj=I C1,Pmax)- The special case in which the func­
tion Fis linear is denoted by llla1 Lj=I C1 + a2Pmax, where a1 2 0 and a2 2 0. 
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In comparison to single-criterion problems, there are few papers on multicriteria schedul­
ing problems. We refer to Dileepan and Sen (1988) and Hoogeveen (1992) for an overview 
of problems, polynomial algorithms, and complexity results. 

This paper is organized as follows. In Section 2, we make some general observations 
and outline a generic strategy for solving the lllF(I::'J=1 Ci,Pmax) problem. We also point 
out that lllF(I::'J=1 Ci> Pmax) as well as its preemptive version llpmtnjF(I::'J=1 Cj, Pmax), in 
which jobs may be interrupted and resumed later on, are NP-hard in the strong sense. In 
Section 3, we consider the linear variant llpmtnla1 LJ=I Ci+ a 2Pmax, Our main results are 
that 1 lpmtnla1 Lj=I cj + a2Pmax and, in the case that °'I 2: a2, also llla1 Lj=I cj + a2Pmax 
are solvable in O(n4 ) time. 

2 General observations 

The fundamental question is whether the lllF(I::'J=1 Ci> Pmax) problem is solvable in poly­
nomial time for any given function F that is nondecreasing in its arguments. The first 
observation we make is that this is so, if we can identify all the so-called Pareto optimal 
schedules in polynomial time. 

Definition 1 A schedule a E n is Pareto optimal with respect to the objective functions 
(I::J=1 Cj,Pmax) if there exists no feasible schedule 1r with either Lj=I Ci(1r) S Lj=I Ci(a) 
and Pmax(1r) < Pmax(a), or LJ=I Ci(1r) < LJ=I Ci(a) and Pmax(1r) S Pmax(a). 

Once the Pareto optimal set, that is, the set of all schedules that are Pareto optimal with 
respect to the functions (Lj=I Cj, Pmax), has been determined, the lllF(I::J=1 Ci, Pmax) prob­
lem can be solved for any function F by computing the cost of each Pareto optimal point 
and taking the minimum. Hence, if each Pareto optimal schedule can be found in polynomial 
time and the number of Pareto optimal schedules is polynomially bounded, then the problem 
is solvable in polynomial time. 

We start with analyzing the two single-criterion problems that are embedded within 
lllF(I:;J=l Cj, Pmax), that is, lllPmax and 111 Lj=I Ci. The lllPmax problem is clearly mean­
ingless, since we can improve upon each solution by inserting extra idle time at the beginning 
of the schedule. Hence, we impose the restriction that machine idle time before the process­
ing of any job is prohibited, that is, all jobs are to be scheduled in the interval [O, Lj=I pJ 
It is easily checked that in case of a given overall deadline D > Lj=I Pi the optimal schedule 
is obtained by inserting D - LJ=I Pi units of idle time before the start of the first job. In the 
three-field notation scheme, the no machine idle time constraint is denoted by the acronym 
nmit in the second field. The llnmitlPmax problem is solved by sequencing the jobs in order 
of non-decreasing target start times Sj. The 11 I Lj=I Ci problem is solved by sequencing the 
jobs in order of non-decreasing processing times Pi (Smith, 1956). Let now MT ST be an 
optimal schedule for the llnmitlPmax problem in which ties are settled to minimize total 
completion time; MTST is the abbreviation of minimum target start time. In addition, let 
S PT be an optimal schedule for the 11 I Lj=I Ci problem, in which ties are settled to minimize 
maximum promptness; SPT is the abbreviation of shortest processing time. It then follows 
that P;;,,.. ::; Pmax(a) ::; Pmax(SPT) and Lj=I CJ ::; Lj=I Cj(a) ::; Lj=I Cj{MTST) for any 
Pareto optimal schedule a, where Pmax and Lj=l CJ denote the outcome of the respective 
single-criterion problems. 

Consider any Pareto optimal schedule a; let (Pmax(a), Lj=I Cj(a)) be the corresponding 
Pareto optimal point. By definition, a solves the problems llPmax S Pmax(a)I Lj=I Ci and 
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11 Lj=l Cj :::; Lj=I C1(a)IPmax; the notation Pmax :::; Pmax(a) in the second field means 
that we impose Pmax :::; Pmax(a) as an extra constraint that each feasible schedule has to 
satisfy. Hence, if we know some Pmax value P that may correspond to a Pareto optimal 
point, then we can determine the corresponding schedule a and Lj=I C1 value by solving 
llPmax :::; Pl LJ=I C1. Since any given value Pmax induces for each job Ji a release date 
ri = max{0,s1 - Pmax}, we have to solve a problem of the form lirJI LJ=I Ci. A generic 
strategy for solving the bicriteria problem is then to solve this type of problem for all Pmax 
values that may correspond to a Pareto optimal point and evaluate the function F for all 
the resulting combinations (Pmax, Lj=I C1)- Lenstra, Rinnooy Kan, and Brucker (1977), 
however, show that the llr1i LJ=I C1 problem is NP-hard in the strong sense. 

We therefore make the additional assumption that preemption of jobs is allowed, that is, 
the execution of any job may be interrupted and resumed later on. This assumption implies a 
crucial relaxation of the original problem; it has both positive and negative aspects. To start 
with the positive part: we can apply the generic approach now, since the ljpmtn, r1I LJ=I Ci 
problem is solvable in O(nlogn) time by Baker's algorithm (Baker, 1974): always keep the 
machine assigned to the available job with minimum remaining processing time. Note that 
this algorithm always generates a schedule without machine idle time if Pmax 2: P;;.,.x. The 
disadvantage is that we lose the equivalence that existed between the maximum promptness 
criterion and the maximum earliness criterion in case Sj = d1 - Pi· This is so, since a given 
value Emax induces an earliest completion time for each job, not a release date. 

Another crucial issue with respect to the applicability of the generic approach concerns 
the number of Pareto optimal points. Unfortunately, this number can grow arbitrarily large 
in general, since each value Pmax:::; Pmax(SPT) corresponds to a Pareto optimal point, as we 
are allowed to preempt at any point in time, not just at the integral points. Seemingly, this 
is another disadvantage of allowing preemption, but this problem complicates the nonpre­
emptive version as well, since idle time can be inserted in any amount. The above implies 
that we can obtai~ a series of 2n consecutive Pareto optimal points with Pmax values that 
are multiples of 2-n. Using the result by Schrijver (see Hoogeveen, 1996) that the prob­
lem of minimizing an arbitrary function F( x, y) that is nondecreasing in both arguments 
over 2n consecutive integral y values is NP-hard in the strong sense, we conclude that 
llpmtnlF(I:,1=1 Cj,Pmax) and lllF(I:,7=1 Cj,Pmax) are NP-hard in the strong sense. 

To deal with this infinite number of Pareto optimal points, we assume from now on that the 
composite objective function is linear; we can then limit ourselves to the subset of the set of 
Pareto optimal schedules that contains an optimal solution to the 1 lpmtnla1 LJ=l C1+a2 P max 
problem for any a 1 2: 0 and a 2 2: 0. We define this set as the set of extreme schedules. 

Definition 2 A schedule a E n is extreme with respect to (LJ=I C1, Pmax) if it corresponds 
to a vertex of the lower envelope of the Pareto optimal set for (Lj=I C1, Pmax)-

If the extreme set can be found in polynomial time and if its cardinality is polynomially 
bounded, then the llla1 LJ=I Ci+a2 Pmax problem is solved in polynomial time by computing 
the cost of each extreme point and taking the minimum. 

We start by analyzing the special case in which machine idle time before the processing 
of any job is prohibited; we later show that any instance of the general problem can be dealt 
with by reformulating it as an instance of the problem with no machine idle time allowed. 
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3.1 No machine idle time allowed 

Recall that if machine idle time is not allowed, then all jobs are processed in the interval 
[0, L,i=I Pi]- Hence, we only have to consider Pmax values in the interval [P:,,.., Pmax(SPT)], 
and for each Pmax value P in this interval, Baker's algorithm provides an optimal schedule 
for the corresponding lh,pmtnj L,i=I Ci problem that does not contain idle time; let u(P) 
denote this schedule and let (P, L,i=I Ci(u(P))) denote the point in )R2 corresponding to it. 

The problem is of course to distinguish between an extreme schedule and an ordinary 
Pareto optimal schedule. By definition, the schedule u(Pmax) is extreme if increasing Pmax 
by some E > 0 yields a smaller decrease in L,i=I Ci than a decrease of Pmax by the same 
amount E would cost. 

To illustrate the impact of an increase of Pmax, consider the following two-job example 
with p1 = 10, p2 = 5, s 1 = 0, and s2 = 10. We have that P:,,.. = 0 and the corresponding 
Lj=I Cj value amounts to 25. If we increase Pmax, nothing happens until it becomes advan­
tageous to preempt job l; this is the case for Pmax = 5. Then, until Pmax = 10, we gain Eon 
LJ=I Cj by increasing Pmax by Ei the value Pmax = 10 allows the SPT schedule. 

From this example, we conclude that a schedule can only be extreme if a complete inter­
change has occurred in u(P), where an interchange is defined to be a complete intercliange 
if there are two jobs Ji and Ji such that Ji is started before J; in u(P - E), whereas J; is 
started before J; in u(P). 

Lemma 1 If P > P:,,.., then the point (P, L,i=I C;(u(P))) can be extreme only if a complete 
interchange has occurred in u(P). □ 

The next step is to determine the Pmax values P such that their corresponding points 
(P,I:'J= 1 C;(u(P))) satisfy this necessary condition. Given a pair of jobs J; and J; with 
Pi > Pi and J; started before Jj in u(P), we have to increase the upper bound on Pmax 
such that J; can start at time Si(u(P)). This will lead to a complete intercliange of J, 
and J; in u(P1 ), unless J, itself is started at an earlier time in the schedule u(P1 ), where 
P 1 = s; - S,(u(P)) is the value of the upper bound on Pmax that makes Jj available at time 
S,(u(P)). It is not possible to determine beforehand whether J, gets started earlier when the 
upper bound on Pmax is increased from P to P 1 J,, except for one situation: J, is executed 
between the start and completion time of a preemptive job Jk. In that case, increasing the 
upper bound on Pmax will first lead to a uniform shift forward of J, and J1 at the expense of 
Jk; the complete interchange of J, and Ji cannot take place before a complete interchange 
has taken place between Jk and both J, and Jj. 

Algorithm I exploits these observations to generate each point ( P, L,i=I Cj ( u( P max)) for 
which a complete interchange in u(P) may take place. The variable ai (j = 1, ... , n) signifies 
the increase of the current Pmax value necessary to let a complete interchange involving Ji 
and some successor take place. 

Algorithm I 
Step 0. Let P = P:,,... 

Step 1. Let T <- 0 and aj <- oo for j = 1, ... , n; determine u(P) through Baker's rule. 

Step 2. Let Jk be the job that starts at time Tin u(P). Consider the following two cases: 
(a) Jk is a preempted job. Then ak is equal to the length of this portion of Jk. Set T <­

Ck(u(P)). 

(b) Jk is not a preempted job. Then ak <- min{si-P-Sk(u(P)) I Ji EV}, where V denotes 
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the set of jobs Ji for which si - P > Sk(CT(P)) and Pi > Pk· Set T <- Ck(CT(P)). 

Step 3. If T < Lj=I Pi, then go to Step 2. 

Step 4. Put P <- min1:,;i:,;n ai + P. 

Step 5. If P = Pma,(SPT), then stop; otherwise go to Step 1. 

Theorem 1 Algorithm I generates all Pmax values P for which a complete interchange has 
taken place in the corresponding schedule CT(P). 

Proof. Suppose that a complete interchange of the jobs J; and Ji with p; > Pi took place 
in the schedule CT(P), where P was not detected by Algorithm I. Hence, S;(CT(Proa,)) must 
have been ignored in Step 2, which could have happened only in Step 2(a): J; is started 
between the start and completion time of some preempted job Jk, This, however, conflicts 
with the earlier observation that the interchange of J; and Ji has to wait until Jk has been 
interchanged with both J; and Ji· □ 

As remarked before, the algorithm may generate too many P max values P: in some of the 
schedules CT(P) not a complete interchange has taken place. This is due to Step 26. There we 
implicitly assumed that the part of the schedule before Jk, which was defined as the job to be 
interchanged, would remain scheduled before Jk, that is, that Jk itself would not be started 
earlier. This is not necessarily the case, however, since an increase of the upper bound on P max 

may cause Jk to move forward at the expense of some job J1 with p1 > Pk, where the increase 
of the upper bound is not large enough to allow a complete interchange; Jk will preempt J1 
then. Nevertheless, we now prove that the number of values Pmax generated by Algorithm I 
is polynomially bounded, thereby establishing that llpmtn, nmitla1 Lj=I Cj + a 2Pmax is 
polynomially solvable. We define for a given schedule CT the indicator function b;j( CT) as 

if C;(u) :S: Sj(CT) and p; > Pi, 
otherwise. 

We further define ll.i(CT) as Li=I b;;(CT) plus the number of preemptions of Ji, and we let 
ll.(CT) = E'J=1 lij(CT). 

Theorem 2 Let P 1 be the Proa, value that is found by Algorithm I when applied to CT(P), 
where P is any Proa, value determined by Algorithm I. We then have that li(CT(P1)) < 
ll.(CT(P)). 

Proof. As explained above, one of the following three things has happened in CT(P1 ) m 
comparison to CT(P): 

(i) a preemption has been removed (Step 2a); 

(ii) two jobs not in SPT-order have been interchanged (successful Step 2b); 

(iii) a new preemption has been created ( unsuccessful Step 2b). 

All three cases have a negative effect on the value of fl., as is easily checked (in the third case 
we do create an extra preemption (effect +1), but this pair of jobs is no longer in the wrong 
order (effect -2)). Hence, we only have to show that there are no moves possible that have 
an overall positive effect on the value of fl.. The candidates for such a move are a switch of 
two jobs from SPT order to LPT order and the addition of an extra preemption. We first 
investigate the effect of the 'wrong' switch. 

Suppose that there are two jobs J, and Ji with p; > Pi such that J; succeeds Ji in CT(P), 
whereas the order is reversed in CT(P 1 ). Since Baker's algorithm prefers Ji to J, if both 
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u(P) k j 

k J k 

Figure 1: 'WRONG' SWITCH 

jobs are available, Ji starts earlier in u(P1 ) than Jj in u(P), which means that the execution 
of (apart of) some job Jk is postponed until J; is completed. See Figure 1 for an illustration. 

It is easily checked that we have Ll(u(P)) = 4 and Ll(u(P 1 )) = 3. All we have to do is to show 
is that the situation depicted in Figure 1 is worst possible for this configuration. It is sufficient 
to prove that Ji is available at time Ci( u(P 1 ) ), that is, Sj - P 1 ::; Ci( u(P1 )) = si - P 1 + p;; if 
so, Baker's algorithm will prefer it to Jk, since the remainder of Jk has length at least equal 
to Pi· Hence, we have to show that SJ ::; Si+ Pi• As Ji did not preempt Jk in u(P), we must 
have Si - P + p; ~ Ck(u(P)) ~ Sj - P, where the last inequality follows from the availability 
of Ji at time Ck(u(P)). Since the smaller job is available as soon as the larger job involved 
in the wrong switch is completed, the increase of ,5ij is compensated for by the decrease of 
Oki· Moreover, job Jk cannot trigger a set of nested wrong switches, where we mean with a 
set of nested wrong switches that u(P) and u(P1 ) contain the subschedules Jk, Jj, Ji, Jh and 
Jh, Ji, Jj, Jk with Pi < Pi < Ph < Pk· 

Now consider the situation that the number of preemptions of a job Jk increases. Hence, 
there must be a job J; with Pi < Pk that succeeds Jk in u(P) but not in u(P1 ), which move 
decreases the .6. function by one. D 

Corollary 1 If preemption is allowed, then the number of extreme schedules with respect to 
(Pmax, Lj=I Cj) is bounded by n(n - 1) + l. 

Proof. We have that .6.(u) ::; n(n - 1) for any schedule CT. Application of Theorem 2 yields 
the desired result. D 

It is easy to construct an instance for which Algorithm I determines O(n2) different Pmax 
values. We have not found an example with O(n2) extreme points yet. 

Corollary 2 The llpmtn, nmitla1 Lj=I Cj + a2Pmax problem is solvable in O(n4 ) time. □ 

Theorem 3 If a 1 = a 2 , then there exists a nonpreemptive optimal schedule for the 
llpmtn, nmitla1 Lj=I Cj + a 2Pmax problem. If a 1 > a 2, then any optimal schedule for the 
llpmtn, nmitla1 Lj=I Cj + a 2Pmax problem is nonpreemptive. 

Proof. Suppose that the optimal schedule contains a preempted job. Start at time O and 
find the first preempted job J; immediately scheduled before some nonpreempted job Jj, 
Consider the schedule obtained by interchanging job Ji and this portion of job J;. If the 
length of the portion of job Ji is E, then Pi is increased by E, while Cj is decreased by L 

As a 1 = a 2, the interchange does not increase the objective value. The argument can be 
repeated until a nonpreemptive schedule remains. In case a 1 > a 2 such an interchange would 
decrease the objective value, contradicting the optimality of the initial schedule. D 
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3.2 The general case 

We now drop the no machine idle time constraint. Obviously, if total completion time out­
weighs maximum promptness, then the insertion of machine idle time before the processing 
of any job makes no sense. Hence, we have the following. 

Corollary 3 If a 1 ~ a2, then llla1 Lj=I Ci+ a 2Pmax is solvable in O(n4 ) time. □ 

If a 1 < a 2 , then the insertion of idle time may decrease the value of the objective func­
tion. We now show that we can solve the llpmtnla1 Lj=I Ci+ a 2Pmax problem by using 
Algorithm I, which was initially designed for solving llnmit,pmtnja1 Lj=I Ci + a 2Pmax. 

Suppose that a 1 and a 2 are given. Define q = a 2/ a 1. If q > n, then it is always 
advantageous to decrease Pmax, which implies that the execution of the first job will be 
delayed for ever and ever. To prevent unbounded solutions, we therefore assume that q S n. 
A straightforward computation then shows that in any optimal schedule at least L n - q + l J 
jobs are scheduled before the first incidence of idle time. The smallest value Pmax(q) for 
maximum promptness that leads to such a schedule is readily obtained. Moreover, no optimal 
schedule with P max ~ P::.U.x contains idle time. Therefore, we need to consider the case 
Pmax(q) S Pmax S P;,ax only. 

Consider any instance I of 1 lpmtn ia1 Lj=I Ci + a2P max; let a( P max) denote any optimal 
schedule for I of llri,pmtnlECi for any Pmax with Pmax(q) S Pmax S P::.ax and ri = 
max{0,si - Pmax}-

We create a very large job J0 that is available from time 0 onwards to saturate a(Pmax) 
by filling in J0 in the periods of idle time. In fact, J0 is so large that Baker's rule prefers each 
job in I to it; the choices so= Pmax(q) and Po= P::U.x - Pmax(q) + max1:,i:,nPi + 1 ensure 
such a saturation for any Pmax(q) S Pmax S P::.V.x• Let I' denote the instance I to which Jo 
is added. Due to the choice of p0 and s0 , we have that no optimal schedule for the instance I' 
of llnmit,pmtnla1 Lj=I +a2Pmax contains machine idle time, and moreover, that by simply 
removing J0 and leaving the rest of the schedule intact we obtain an optimal schedule for the 
original instance I of ljpmtnja1 Lj=I +a2Pmax. After all, we have that Co = E'J=oPi and 
that Po< Pmax for any value of Pmax• Hence, instead of solving llpmtnla1 Lj=I Ci+ a2Pmax 
for I, we solve llnmit,pmtnla1 Lj=O Ci+ a2Pmax for I'. This approach provides us with the 
extreme points for (E'J=1 Ci,Pmax) with Pmax(q) S Pmax S P::U.x· If q is unknown, then we 
obtain all bounded extreme points by running the above procedure with q = n; this choice 
of q corresponds to the smallest value Pmax(q) that may correspond to a bounded extreme 
point. 

As the number of extreme points is at most equal to n( n + l) + 1 ( we have n + l jobs now), 
and as each Pmax value that corresponds to an extreme point is determined by Algorithm I, 
the llpmtnla1 Lj=I Ci+ a 2Pmax problem is solved in O(n4) time. 

Finally, we wish to mention two important special cases of our problem. These are the 
case that promptness is assumed to be nonnegative, that is, Pi= max{si - Si,O}, and the 
case that there is a given externally determined upper bound on Pmax• Either case can be 
dealt with by simply adjusting the objective function, and our algorithm can be used to 
solve the problem after the boundary points have been determined. 
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Abstract 

We consider an extension of the Traveling Salesman Problem (TSP), for which 2 edge-disjoint 

Hamiltonian cycles of minimum total length are required. The problem is denoted as the Peripatetic 

Salesman Problem (PSP). The associated polytope can be seen as the union of two Traveling 

Salesman polytopes. with an additional edge-disjointness constraint for each edge in the graph 

under consideration. We give necessary and sufficient conditions under which a facet-inducing 

inequality for the TSP polytope can be lifted to a facet-inducing inequality for the PSP polytope. 

As almost all facet-inducing inequalities for the TSP polytope that are known to date satisfy these 

conditions, a 1arge family of facet-inducing inequalities for the PSP polytope is determined at once. 

Furthermore, the dimension of the polytope is derived as well as the facet-inducing property of the 

edge-disjointness constraints. 

1 Introduction 
Consider the problem how to determine K edge-disjoint Hamiltonian cycles of minimum 
total length. The problem was first mentioned by Krarup (1975) who gave it the name 
K-Peripatetic Salesman Problem (K-PSP). It is not surprising that already for K = 2 the 
K-PSP is NP-hard. 

Applications of the K-PSP arise in the area of data communication networks, where 
one wants to increase the reliability of the network while minimizing total costs. Whereas 
a common application of the Traveling Salesman Problem is to connect the components on 
a chip by a minimum costs cycle, the K-PSP connects these components by K edge-disjoint 
cycles, thereby reducing the potential damage in case of a link failure. 

Furthermore consider a working floor in a facility were several manned or unmanned 
,·ehicles have to pickup and deliver goods at prespecified points, while at the same time the 
total traveled distance has to be minimized. If the routes of all vehicles start and finish at 
a fixed point and if pairwise disjointness of the routes is required, for instance to prevent 
collisions, then the problem can be modeled as a K-PSP. 

We will focus on the 2-PSP, simply denoted as the PSP. A branch and bound algorithm 

* Current address: PA Consulting Group, Beneluxlaan 905, 3526 KK Utrecht 

** Corresponding author 
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for it is given by De Kort (1993), and solvable cases are given by De Brey and Volgenant 
(1996). Clearly, any solution to the PSP can be seen as two TSP solutions coupled by 
edge-disjointness constraints. We will exploit this relationship and the extensive research 
on the TSP polytope to derive interesting results for the PSP polytope. So we can consider 
the analysis to come as a special case of the more general situation: when we couple integer 
polyhedra, what can we say about the polyhedra that arise. Balakrishnan, Magnanti and 
Mirchandani (1996) consider this question in the context of so called overlay optimization 
problems to obtain worst case bounds of heuristics for these problem types. 

In this article we will use the following facet identification or separation problem: 
Given a vector x and a polytope Q, then either determine that x E Q or 
find a facet-inducing inequality ax :S a 0 of Q such that ax > a 0 . 

Several authors (Grotschel et al. (1985), Padberg and Rao (1981)) have independently 
shown that - apart from some technical details - we can optimize in polynomial time if 
and only if we can solve the separation problem in polynomial time for any vector x of 
appropriate dimension. Due to the NP-hardness of the TSP and PSP it is very unlikely 
that the separation problem can be solved in polynomial time for any real valued x . 
With respect to the TSP however, a few classes of facet-inducing inequalities (trivial, 
subtour elimination, comb and clique tree inequalities) suffice to develop a branch and 
bound or branch and cut procedure able to solve large TSP instances, see e.g., Grotschel 
and Holland (1991) or Padberg and Rinaldi (1991). Much larger instances can be solved 
than by a branch and bound algorithm based on the 1-tree relaxation, see Held and Karp 
(1970). 

In Section 1.1 some notation is introduced and Section 1.2 provides a brief overview 
of relations between the TSP and the PSP polytope. The relations are helpful to prove 
the main result in Section 2 consisting of two theorems that state necessary and sufficient 
conditions under which a facet-inducing inequality for the TSP can be lifted to a facet­
inducing inequality for the PSP polytope. Almost all facet-inducing inequalities known 
to date for the TSP polytope satisfy the specified conditions so that a large family of 
facet-inducing inequalities for the PSP polytope is determined at once. In Section 3 we 
prove that the edge-disjointness constraints are facet-inducing for the PSP-polytope as 
well. Concluding remarks are given in Section 4. 

1.1 Notation 
The notation to be used is similar to that of several other authors see, e.g., Grotschel 
and Padberg (1985). Matrices and sets are denoted by capitals (A, B), vectors by bold 
characters (a, b, a, fJ) and scalars by conventional characters (a, b). 
For the following properties we assume (A,b) to be a minimum equation system for Q. 
(1) dim(Q) + rank(A, b) = dim(Q) + rank(A) = m. 
(2) An inequality ax :S a 0 , with a E Rm\{O} is valid with respect to Q if 

Q ~ {x E nr I ax :Sao}, 

A valid inequality ax :S a 0 defines a face F of Q if F = Q n { x E Rm I ax = a 0 } =/. 0, 
and the face is proper if in addition Ff= Q. In practice one says that ax :S a 0 induces 
a proper face of Q whenever there exist two vectors x 1 , x 2 E Q such that ax1 < a 0 

and ax2 = ao. 
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(3) A valid inequality ax:::; ao, a E lRm\{O}, is said to be facet-inducing if and only if 
(i) ax:::; a 0 defines a proper face and there exist dim(Q) affine independent vectors 

in Q that satisfy ax = ao. 
Or, as for instance indicated by Nemhauser and Wolsey (1988), if and only if 

(iia) ax :::; ao defines a proper face of Q and 
(iib) for any inequality /3x :::; /30 that is valid for Q and for which the following Inclusion 

Property holds: 

{ x E Q I ax = ao} ~ { x E Q I /3x = /3o 

there exist a vector A of appropriate dimension and a scalar µ > 0 such that 

/3 = AA + µa and /3o = Ab + µao. 

Proving the facet-inducing property of an inequality using (i) is called the direct method, 

while the indirect method is based on (ii). In our terminology the phrase 'ax:::; a 0 defines 
a face or facet' is equivalent to 'the pair (a, ao) defines a face or facet respectively'. 

In modeling the TSP and the PSP we denote an edge between vertex i andj bye= [i,j]; 
G = (V, E, c) represents an undirected graph, where V, with IVI = n, is the set of the 
vertices in G. The set E, with IEI = m, denotes the edges in G and c = (ce)ixm the weights 
assigned to all edges. Only complete graphs will be considered, i.e., m = l/2n(n - 1). 

With respect to the TSP we define the incidence vector of a solution as the vector y 

with elements Ye such that Ye = l if edge e is in the solution and 0 otherwise. The set <!S 
denotes the collection of the incidence vectors y representing a TSP solution in G. 

With respect to the PSP, the two Hamiltonian cycles that represent the solution are 
denoted by Hk, k E {1, 2}. For n < 5 the solution space is empty; for n = 5 only the trivial 
solution exists containing all edges, although there are 12 combinations of two Hamiltonian 
cycles for this set of edges. We denote by x(k) the incidence vector of Hk for k = {l, 2}. 
Then a PSP solution consists of a pair of {0, l}m vectors, each corresponding with one 
Hamiltonian cycle. We assume n ~ 6. The set 'lJ denotes the collection of incidence vectors 
x = (x(l),x(2)) representing a PSP solution in G. Note that a single vector of dimension 
m is not suited to model the PSP, since it is not sufficient to point out the edges in a PSP 
solution. Given this set of edges in the PSP solution, that can be seen as a 4-regular graph 
we are faced with the determination of two Hamiltonian cycles, an NP-complete problem, 
see De Kort {1992). 

1.2 Relations between the TSP and PSP polytope 
If Conv{S} denotes the convex hull of a set S C JR2m then the symmetric Peripatetic 

Salesman polytope is defined as Q'J, = Conv{x E {0, 1 pm I x E 'lJ} so that the PSP is 
equivalent to 

min{cx(l) + cx(2) Ix E Q'J,}. 

The degree constraints of the PSP, denoted as Ax(k) = 2 for k = l, 2, are nonredundant 
as the matrix 
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has rank 2n. This result enables to derive an upper bound for dim( Qp ): 

Qp <;;; {x = (x(l),x(2)) E 1R2m I Ax(k) = 2 for k = 1,2}, 

so that dim(Qj',) 5:: 2m - 2n = n(n - 3). De Kort (1992) showed how to construct 
2(m - n) + l PSP solutions with the property that the corresponding incidence vectors 
can be used to obtain a nonsingular matrix with 2(m - n) + 1 rows and columns. This 
result implies that dim( Qj',) = 2( m - n) and that the degree constraints form a minimum 
equation system for Qp. 

For any valid inequality a(l)x(l)+a(2)x(2) 5:: a 0 of Qj',, it can be assumed that a(k) is 
non-negative fork E {1, 2}. (If not we lift the elements of a(k), and a 0 while maintaining 
the inequality.) 

The symmetric Traveling Salesman polytope is defined as QT = Conv{y E {O, l}m I 
y E (!5} so that the TSP is equivalent to 

min{cy I y E Qr}. 

Grotschel and Padberg (1979a) derived the dimension of QT: dim(QT) = 1/2n(n- 3), for 
n ? 3. As a result the degree constrajnts, represented as Ay = 2, are a minimum equation 
system for QT. 

The following properties show the relation between Qp and QT. Assume that n is large 
enough and that (a(l),a(2))? 0. 

• If x = (x(l), x(2)) E Qp then y = x(k) EQT fork E {1, 2}. 
• If a(l)x(l) + a(2)x(2) 5:: a 0 , is a valid inequality for Qj', then fork E {1,2} there 

exists an a~ 5:: a 0 such that a(k)y 5:: a~ is a valid inequality for QT. 
• If (a,a0 ) induces a proper face or a facet of QT then ((a,O),a0 ) induces a proper face 

ofQ'J,. 
An interesting question related to the latter property is: under which conditions can a 
facet-inducing inequality for QT be lifted to yield a facet-inducing inequality for Q'J,? Thls 
question is the main topic of Section 2. 

2 TSP facets for the PSP polytope 
Two theorems will be given, each of which states necessary and sufficient conditions under 
which the pair ( ( a, 0), a 0 ) is facet-inducing for Q'J,, given that ( a, a 0 ) is facet-inducing for 
QT. The second theorem is best suited for practical purposes since the given conditions 
are easier to check. 

Theorem 2.1 
Suppose that the pair (a, a 0 ) is facet-inducing for QT; let n? 6. 
Fork E {1,2}, ax(k) 5:: ao is facet-inducing for Qp if and only if 
• ax(k) 5:: a 0 induces a proper face of Qp, 
• for any inequality (3x S (30 , (3 = ((3(1),(3(2)), that is valid for Qp and for which the 

Inclusion Property holds: 

{x E Q'p I ax(k) = ao} <;;; {x E Q'p I (3x = f3o}, 
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there exist for h = 3 - k, a vector (-\(k), ,\(h)) E JR2n and a positive scalarµ such 
that 

(fi(k), fi(h)) = (-\(k), -\(h)) ( i 1) + µ(a, 0) 

Po = -\(k)2 + -\(h)2 + µao. 

(2.1) 

Proof Follows from the indirect proof method (5 ii) stated in Section 1.1. □ 

Distinction has to be made between facet-inducing inequalities that satisfy and those 
that violate the given conditions. The facet-inducing property of (a, a 0 ) for Q!j, implicates 
that ax(k) :S:: a 0 , k E {1, 2}, induces a proper face of Q'J,. The following theorem deals 
with the second condition. 

Theorem 2.2 
Suppose (a,ao) is facet-inducing for Q!j,. If n 2: 7 and k E {1,2} then ax(k) :S:: ao is 
facet-inducing for Q'J, if and only if there does not exist a vector -y 2: 0, -y # 0 such 
that for h = 3 - k, ax(k) + -yx(h) :S:: a 0 is a valid inequality for Q'J,. 

Proof Only the case k = 1 will be handled, as for the case k = 2 the proof is similar. 
Let fi(l)x(l) + /3(2)x(2) :S:: Po represent a valid inequality for Q'J,. First it will be 

shown that if 

{x E Q'}, I ax(l) = ao} ~ {x E Q'J, I fix= /3o}, 

a vector -\(1) E ]Rn exists as well as aµ E JR+ and a PJ E JR such that 

(/1(1), PJ) = (-\(l)A + µa, -\(1)2 + µa 0 ). 

Suppose on the contrary that for c1 f c2 

(2.2) 

(a) there exists a yJ E Q!j, with ayJ = a 0 , fi(l)yJ = CJ, so that for all zJ E Q!j,, edge­
disjoint from y 1 : fi(2)zJ = Po - c1 and 

(b) there exists a y 2 E Q!j, with ay2 = ao, fi(l)y2 = c2, so that for all z2 E Qr, edge-
disjoint from y 2 : /1(2)z2 = Po - c2. · 

It can be shown (see De Kort 1992) that /1(2) can be written in some special form under 
assumption (a) and a different form under assumption (b ), which leads to a contradiction. 
Then it follows·that fi(l) is a combination of the degree constraints and a, which proves 
(2.2). 

Note that the latter result can directly be obtained when a vector z E Q!j,, edge-disjoint 
from yJ and y2, exists: in this case Po - CJ = fi(2)z # /30 - c2 when assumptions (a) and 
(b) would both be valid. 

Now suppose that only for -y 2: O, -y f O a vector -\(2) E ]Rn exists with 

(/3(2), /3o - PJ) = (-\(2)A + i, -\(2)2). 

Theorem 2.1 indicates that this is equivalent to the assumption that ax(l) '.::'. a 0 is not 
facet-inducing for Q'J,. From the validity of fix '.::'. Po and the definition of (/1(1), /1(2)) 
it follows that µax(l) + -yx(2) :S:: µa 0 is valid for Q'J,. Defining -y = -y/µ establishes the 
if-part of the proof. 
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To prove the theorem the other way around, assume that there is a vector 1 2: 0, 1 c/ 0 
and I not a multiple of the degree constraints, such that for all x E Q'j, : ax(l) +,x(2) S 
ao, then ax(l) = a 0 implicates 1x(2) = 0. Thus for all x = (x(l),x(2)) E Q'j, the 
equation ax(l) = ao implicates: 

(>.(l)A + a)x(l) + (.X(2)A + 1 )x(2) = ao + (.\(1) + .\(2))2. 

Choosing (,8(1 ), ,85) = ( .\(1 )A +a, ,\(1 )2 +a0 ) and (,8(2), ,BJ) = ( .\(2)A +,, ,\(2)2) violates 
(2.1), so that ax(l) S a 0 is not facet-defining for Q'j,. □ 

Theorem 2.2 holds for n 2: 7, as for n = 6 the number of edges in E is insufficient 
to guarantee edge-disjointness when executing the 2-opt or 3-opt operations as described. 
The facet-inducing property of a given class with respect to Q} can be checked by complete 
enumeration. 

Remark 2,1 Clearly not every facet-inducing inequality of Q1j, can be lifted to yield a 
facet-inducing inequality for Q'J,. For n 2: 6, the constraint Ye S 1 is facet-inducing for QT. 
Nevertheless, x,(k) S 1 does not define a facet for Q'j,: choose in Theorem 2.1 ,Bx S ,Bo 
as the edge-disjointness constraints x.(1) + x.(2) S 1. This inequality is valid for Q'j, and 
satisfies the Inclusion Property but violates (2.1). Equivalently we can define in Theorem 
2.2 (a,ao) such that ax(l) Sao represents one or more constraints x.(k) S 1. Then 
choosing 1 = a proves that x.(k) S 1 is not facet-defining for Q'j,. It will be shown in 
Section 3 that the edge-disjointness constraints are facet-inducing for Q'j,. 
Remark 2.2 Since the proofs of the Theorem 2.1 and 2.2 are given in general terms, 
we expect them to be applicable to other combinatorial optimization problems as well. 
For instance additional insight might be gained into the relation between the Minimal 
Spanning Tree polytope and the Edge-disjoint Spanning Trees polytope along this way. 
Descriptions of these polytopes are obtained by combining matroid and polyhedral theory. 

We conclude this section with results that follow by applying Theorem 2.2. 

Corollary 2.3 Fork E {1, 2} the inequalities given in (1) - (5) beneath are facet-inducing 
for Q'j,. We give the reference where the analogue ( detailed) result for QT can be found. 
(1) The non-negativity constraints for n 2: 6 (Griitschel and Padberg, 1979a). 
(2) The subtour elimination constraints n 2: 6 (Griitschel and Padberg, 1979b). 
(3) The comb inequalities n 2: 6 (Griitschel and Padberg, 1979b ). 
( 4) The clique tree inequalities n 2: 11 (Griitschel and Pulleyblank, 1986). 
(5) The simple crown inequalities n 2: 8 (Naddef and Rinaldi, 1992). 

Proof Consider a simple crown inequality, to be denoted as - I:. c.x.(k) S -c0 ; let 
k E {1, 2} and define h = 3 - k. For any x(k) EQT with - I:. c.x.(k) = -c0 there exists 
anx(h) E Q1j, such that (x(k),x(h)) E Q'j, and such that there is an edge ewithx,(k) = 0, 
x,(h) = 1. Choosing 1, > 0 and 'Ye= 0 otherwise, gives - I:. c.x.(k) + I;, 1,x,(h) > c0 • 

The existence of a vector x(k) with -I;.c,x,(k) = -c0 is guaranteed by the facet­
inducing property of the simple crown inequality with respect to Qr- Then the facet­
inducing property for Q'j, follows from Theorem 2.2. 

The proofs for the classes (1) - (4) are similar. With respect to (1) - (3) and n = 6, 
complete enumeration is suitable to prove the facet-inducing property of the concerning 
inequalities. □ 
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Exploiting a lifting theorem, Naddef and Rinaldi (1992) have shown that for QT a simple 
crown inequality can be generalized to an extended crown inequality which is facet-inducing 
for QT. Cornuejols et al. (1985) introduced the path inequalities in studying the Graphical 
Traveling Salesman polytope. Naddef and Rinaldi (1988) utilized these inequalities to 
derive new facets for the TSP polytope. Boyd and Hartman have shown independently 
in unpublished work that the chain inequalities, introduced by Padberg and Hong (1980), 
are facet-inducing for QT. Whether these facets for QT can be lifted to yield facets for 
Q'p requires further research. 

3 Additional facets for the PSP polytope 
In this section we will use Lemma 3.1 to give a sketch of the proof that the edge-disjointness 
constraints are facet-inducing for Q'p: 

Lemma 3.1 (Harary, 1969, p. 89) 
Let G = (V, E) be the complete graph on n vertices and let r denote some integer. 

(a) If n = 2r + 1, then r edge-disjoint Hamiltonian cycles T( l), ... , T( r) exist in G, such 

that E = LJ~=I T(i) 
(b) If n = 2r, then there exist r - l edge-disjoint Hamiltonian cycles T( l ), ... , T( r - l) and 

one perfect I-matching M, edge-disjoint from any cycle such that E = LJ~:: T(i)UM. 

Theorem 3.2 For n ;:=: 6 the edge-disjointness constraints xe(l) +xe(2) ~ 1 induce facets 
of Q'p. 

The proof of the theorem is rather technical. A sketch of the proof is provided here. The 
interested reader is referred to De Kort (1992) for further details. 
First note that dim(Q'p) ~ n(n - 3), as stated in Section 1.2. We define dn = n(n - 3) 
and construct dn PSP solutions that satisfy an arbitrary edge-disjointness constraint with 
equality and such that the associated incidence vectors form a dn X dn submatrix of full 
rank. Then it follows from property 3(i) in Section 1.1 that xe(l) + x.(2) ~ 1 is facet­
inducing for Q'p. 

To obtain the PSP solutions with the required properties we use Lemma 3.1 to construct 
r edge-disjoint cycles on n - 2 vertices if n is odd and r - 1 cycles and a perfect matching 
on n - 2 vertices if n is even. Next these cycles are extended to PSP solutions in such a 
way that the corresponding matrix of incidence vectors has rank dn. 

4 Concluding remarks 
The presented material suffices to develop a branch and cut algorithm of the type that 
has been proven to be very successful for the Traveling Salesman Problem - see De Kort 
(1992). A typical branch and cut procedure for the PSP combines a fast LP solver with 
a facet identification procedure and a branching scheme. The initial LP problem consists 
of the degree constraints together with non-negativity and edge-disjointness constraints. 
Enumerating the branch and cut search tree a large set of facet-inducing inequalities is 
obtained which can be added to the LP problem. 

Further research can be done in determining additional facets for the PSP polytope 
that are of the form a(l)x(l) + a(2)x(2) ~ a 0 , a(l),a(2) i- 0, rather then of the form 
ax(k) ~ ao, k E {1,2}. 
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1 Introduction 

When I started the quest for a PhD-thesis at Maastricht University in June 1990, I joined a 
group of researchers focusing on combinatorial aspects of problems arising in flexible manu­
facturing systems. Their efforts culminated in a series of publications, and eventually theses 
[Spieksma, (1992)), [Oerlemans, (1992)], [Klundert, (1996)), on different topics concerning 
scheduling and set-up problems in the highly automated environment of flexible manufac­
turing systems. In general, for production systems like these, it is extremely difficult to 
schedule the processing of every part in the right time on the right machine with the right 
tools. Therefore, it could be advantageous to split up the production process into smaller 
and relatively independent subprocesses, just to make the tooling, loading, and scheduling 
problems more tractable. So, I started studying the possibilities of forming production cells. 
The choice of applying polyhedral techniques was based on the observation that these tech­
niques are efficient for other partitioning problems. Furthermore, they were in line with 
ongoing research within our group. 

However, the central topic of my thesis was not cell formation, but the relations between 
polyhedra. The reason is that the formation of cells is not just one grouping problem, but it 
entails a wide variety of slightly different problems. For example, sometimes we have to take 
into account additional constraints; limits on the number of groups, the number of machines 
in one group, the number of parts in one group; pairs of machines that have to be in the 
same group; the possibility to buy additional machines; or alternative ways to process a part. 
It is easy to extend this list. Clearly, the value of deriving theoretical results for a specific 
problem is dependent on the possibility to transform those results into useful information 
about variants of the original problem. As a consequence the emphasis of the study shifted 
from the formation of production cells towards relating polyhedra. Some interesting results 
were derived on the strength of inequalities, the projection of polyhedra, and generalized 
lifting procedures (see [Oosten, (1996))). 

In the remainder of this contribution, I will try to give an impression of the nature of my 
thesis. First, in the next section, we will discuss the cell formation problem. In Section 3 
a mathematical programming formulation for the cell formation problem is presented. This 
model can be used to derive strong bounds on the optimal value of the problem. Such bounds 
could prove useful, e.g. to assess the quality of heuristic approaches, or to develop an exact 
algorithm for the problem. The model was the starting point for the polyhedral approach. 
As an example of relating polyhedra to each other, in the final section we will use generalized 
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lifting techniques to extend the basic model to a variant of the cell formation problem, that 
is getting a lot of attention lately: concurrent engineering. 

2 The Cell Formation Problem 

Due to increasing international competition and fastidiousness of customers, manufactur­
ers are forced from mass production to the production of a larger product mix. To meet 
these new requirements, it is very important to have the ability to produce many small 
volume batches consisting of complex parts in a short production period. This leads to 
an increased complexity of the management task, increased investments in inventory and a 
decreased efficiency of mass production systems. To maintain high efficiency levels, it is an 
accepted strategy to adopt a group technology philosophy, and to organize a large portion 
of the manufacturing system into cells [Schonberger, (1982), Hyer and Wemmerlov, (1989)]. 
A group technology cell consists of a number of machines located close to each other ( a 
machine group) and geared for the manufacturing of a number of similar parts (a part fam­
ily). To boost efficiency, tooling, loading and scheduling decisions within each cell should 
be made (almost) independently of the other cells. This requires that machine groups and 
part families be identified on basis of their interrelations, so that a minimum of interference 
occurs between the cells. Intercell relations can be dealt with in various ways. Transport­
ing a part during its production process complicates the scheduling and controlling of the 
cells to a considerable extent. Instead of intercell movements, some other options can be 
considered like extending the number of machines of a certain type (machine duplication), 
allowing. parts to be rerouted, reviewing the design of the bottleneck pants, or even transfer­
ring the production of a part to another production line (part subcontracting). For each of 
these options, heuristics or exact algorithms have been designed. Most of these approaches, 
however, assume that a decomposition of the production system into cells has already been 
determined. Here, we will exclusively deal with the problem of forming such cells. 

The data for the cell formation problem is commonly assumed to be summarized in the 
machine-part incidence matrix A = [a,j], where a,j = 1 if part j has to be processed on 
machine i and a;j = 0 otherwise. More generally, the elements of A could• also represent the 
processing time required by each part on each machine, or some other numerical data; the 
models to be discussed here also apply to this situation, with only slight modifications. A 
'natural' machine-part grouping is expected to emerge when the rows and columns of the 
incidence matrix are reordered in a proper way. In that case the diagonal blocks should be 
relatively 'filled' compared to the other blocks, as illustrated in table below. In this exam­
ple, deleting the element (1, 2) and adding the element (5, 6) would result in a perfect block 
diagonal structure. 

part-+ 
11 1 2 3 4 5 6 

mach 1 1 0 1 0 0 3 1 l 0, 0 0 0 
! 2 0 1 1 0 0 1 1 1 1 l 0 0 0 

3 1 0 0 1 0 0 2 0 0 1 1 1 0 
4 0 0 0 0 1 0 5 0 0 1 l 0 0 
5 0 1 0 0 0 4 0 0 0 0 0 1 

Table 1 Example of near block diagonalization by permutation of rows and columns 

The ones outside the diagonal blocks ('exceptions') represent intercell relations and should 
be avoided as much as possible. On the other hand, it is also undesirable to have zeroes in 
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the diagonal blocks ('voids') or in other words to have a part and a machine in the same cell 
when they are not directly related. Informally stated, the cell formation problem consists in 
minimizing some combination of the number of exceptions and of voids. We now proceed to 
define the problem more formally. 

A matrix X = [x;j] is called block diagonal if there exists a partition R 1 , •. • , Rk, Rk+1 of 
its row-set and a partition C1 , .•. , Ck, Ck+I of its column-set such that X;j -f O if and only 
if, for some 1 '.S I '.S k, i E R1 and j E C1 (notice that, to be very precise, we should say that 
Xis block diagonal up to permutations of its rows and columns). 

When X is a block diagonal machine-part incidence matrix, we interpret the partition 
of its rows and columns as describing the formation of k cells, where the /-th cell consists of 
the machines in R 1 and the parts in C1 (l = 1, ... , k). The machines in Rk+1 and the parts 
in Ck+I are not included in any cell; in many applications Rk+ 1 and Ck+1 may be assumed 
empty. 

If A and X are machine-part incidence matrices of the same dimension and X is block 
diagonal, then we say that element (i,j) is an exception of A (with respect to X) if ll;j = 1 
and X;j = O; we call (i,j) a void of A (with respect to X) if a;j = 0 and Xij = 1. 

The cell formation problem can be abstracted into the following block diagonalization 
problem: 

given an incidence matrix A and a function/ ( ., . ), find a block diagonal incidence 
matrix X of same dimension as A which minimizes J(A,X). 

The function/(.,.) is meant to give a measure of the distance, or dissimilarity, between A 
and X. It may for instance compute some weighted combination of the number of exceptions 
and voids. 

To round off this discussion, it should be noticed that the block diagonalization model 
has many potential applications outside of the group technology framework discussed above. 

3 A New Mathematical Programming Model 

Consider again the formulation of the block diagonalization problem: the problem consists 
in determining a 'close' approximation of the M x P machine-part incidence matrix A by a 
0 - 1 block diagonal matrix X. In view of this formulation, it is very natural to choose as 
decision variables the elements of X, with their obvious interpretation: 

{ 
= 1 if machine i and part j are in the same cell, 

x,1 for i E {1, ... ,M} and J E {l, ... ,P} 
0 otherwise. 

Proposition 3.1 The block diagonal incidence matrices correspond exactly to the integer 
solutions of the system {1)-(2) : 

X;j + Xhj + Xik - Xhk '.S 2 

Jori,h E {1, ... ,M} andj,k E {1, ... ,P} 

0 '.S x;1 '.S 1 i E {1, ... ,M},j E {l, ... ,P} 

Proof: Omitted. 

(1) 

(2) 

D 

Some limited computational experience seems to indicate that this system provides a useful 
description of the set of all block diagonal matrices. This impression has been confirmed by 
a variety of interesting theoretical results (see [Oosten, (1996)]). 
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In studying the model, it is useful to think of an alternative formulation of the 
block diagonalization in graph theoretic terms; we use the graph theoretic terminology of 
[Bondy and Murty, (1976)]). Every M x P binary matrix X can be viewed as the adjacency 
matrix of a bipartite graph G(X) with vertex set {l, ... , M} U {l, ... , P}; there is an edge 
{i,j} between vertices i E {l, ... ,M} and j E {l, ... ,P} if and only if X;j = 1. Recall 
that a bipartite graph on the vertex set Vi U Vi is called complete bipartite if it contains 
all possible edges between Vi and V2 , i.e. if its edge set is Vi x Vi- It is easy to see that a 
matrix X is block diagonal if and only if each connected component of G(X) is a complete 
bipartite graph. So, the block diagonalization problem can be interpreted as the problem of 
approximating a given bipartite graph G by a disjoint union of complete bipartite graphs on 
the same vertex set as G. 

As an illustration, Figure 1 shows the graph associated with the incidence matrix dis­
played in Table 1. Notice that deleting the edge (1, 2) from this graph and adding the 
edge (5, 6) would produce three complete bipartite components, associated with the three 
diagonal blocks of the corresponding matrix. 

The inequalities (1) have an obvious interpretation in graph theoretic terms: if all compo­
nents of G(X) are complete bipartite, and if three edges { i, j}, { i, k} and { h,j} are present 
in G(X), then {h,k} must also be an edge. This interpretation suggests to refer to (1) as 
the square inequalities. 

machines parts 

3 1 

1 4 

5 2 

2 3 

4 6 

5 

Figure 1 Example of a graph representation of machine-part relations 

4 Concurrent Engineering 

Suppose now that we have to adapt our model, because we are given an extra opportunity: for 
some part there is an alternative production plan, requiring a different set of machines. This 
is not an unusual scenario. The problem of having to choose between different production 
plans for a part is known in literature as concurrent engineering, see for a more thorough 
discussion of this topic [Ham et al, (1985)]. 

To start with a simple case, assume there are only two machines and two parts. Let part 
1 have a set of production plans, and let S1 = { 1, ... , s1} be the index set of these plans. 
Now, for each production plan there is a binary variable p1 E { 0, 1} that has value one if 
and only if production plan I is chosen. Assuming we can choose at most one production 
plan, we have: I:ies, p1 '.S 1. We also need more x-variables for part 1, with an extra index 
per process plan: x\i has value one if and only if machine i and part j are in the same cell, 
and production plan I is in use. 

First, we take only one process plan into consideration: s1 = 1. Let P be the convex 
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hull of all feasible solutions. Then the equality p1 = 1 defines a face F of P, and for this 
face {1)-(2) forms a minimal facial description. We can lift each of these inequalities with 
respect to p1 • Since the dimension gap between P and F is one, ordinary sequential lifting 
suffices to derive facet defining inequalities for P. Lifting the square inequalities, we derive: 

l -p1 + x11 + X12 + x~l - X22 ::; 1 
x11 + X12 - X~l + X22 ::; 2 

-p1 + x11 - X12 + X~l + X22 ::; 1 
-x11 + X12 + x~l + X22 ::; 2 

Now let us make the case more interesting, and bring into consideration the second 
process plan: s1 = 2. We interprete P as the face of a larger polytope Q, the convex hull 
of all feasible solutions for two process plans, that is induced by intersecting Q with the 
subspace defined by the equality p2 = 0. This equality does not induce an equality system, 
since the dimension gap between Q and P is three. An inequality system is for example: 
p2 = 0, xf 1 = p2 , and x~1 = p2• Then L is the lifting set of the inequality 

a(p2 - 0) + /3(x~1 - p2) + ,(x~l - p2) - p1 + x;l + X12 + X~1 - X22 ::; 1. 

l a E JR 
L= /3 EJR 

'Y E JR 

,-a-/3 ::; 0 
,-/3 ::; 0 
,-a ::; 0 
'Y ::; 1 l 

The polyhedron L has two extreme points: {0,0,0) and (1,1,1). These correspond to 
respectively the following inequalities: 

-p1 + x;l + X12 + X~l - X22 ::; 1 

and 

The first one could have been derived by applying ordinary sequential lifting, but without 
the guarantee that it defines a facet of Q. The second one is due to extended lifting. The 
second type of inequalities give some extra insight that leads to a useful generalization. Let 
S1 be the index set of concurrent project plans for part I. Then, the following inequality 
is facet defining for the polytope that is the convex hull of the feasible solutions of the 
concurrent engineering cell formation problem: 

- :~::>~ + 1:XL + L x~i + x;'k - xik ::; 1 
leT, teT, IET, 

for all n E Sk, for all Tit;;; Si such that Ti fc 0, for all h,i E {l ... M}, for all j,k E 
{l ... N}. We refer to this class of inequalities as concurrent square inequalities. Although 
this is an exponential class of inequalities, it is easy to see that the separation problem is 
polynomial solvable. 

Acknowledgement: The author wishes to express his gratitude towards the LNMB for 
supporting his PhD research. 
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Abstract 

We prove that determining Haemers's rank bound is NP-hard by giving a reduction 
from the 3-colorability problem to the problem of deciding whether or not the Haemers 
bound is equal to three. 

This article is based on [16] and on Chapter 6 of my dissertation [15]. 

1 Introduction 

Let G be a graph with vertex set V(G) = {1,2, ... ,n}. The chromatic number of G, 
which we denote by x(G), is the minimum number of colors needed to color the vertices of 
G, such that the two endpoints of any edge have different colors. To determine the chromatic 
number of a general graph is a difficult (NP-hard) problem. Even the problem of deciding 
whether a graph is 3-colorable or not is already NP-complete (cf. (6, 3, 14]). A trivial lower 
bound on the chromatic number of G is the clique number of G (denoted by w(G)), that 
is, the number of vertices in a largest complete subgraph of G. Clearly these w(G) vertices 
must be colored differently in every legal coloring of G. Also the problem of determining the 
clique number of a general graph is NP-hard (cf. (6, 3, 14]). 

In 1979 Lovasz (11] (See also (10, 12]) introduced for each graph a number O(G) (the 
Lovasz bound), with the following property: 

w(G) :S: O(G) :S: x(G). 

(G denotes the complementary graph of G.) In (7] it is proved that O(G) can be calculated 
(or, in fact approximated, since O(G) doesn't need to be rational) by the ellipsoid method in 
polynomial time. This implies for instance that for perfect graphs (these are graphs for which 
for all its subgraphs the chromatic number and the clique number are equal) the chromatic 
number and the clique number can be determined in polynomial time. 

Let A be an n x n-matrix (over some field) with all diagonal elements non-zero and with 
A;j = 0 if i and j are adjacent in G. If a matrix satisfies these conditions, we say that the 
matrix fits G1 • Clearly rank(A) 2: w(G), since A has a diagonal matrix of size w(G), with 
non-zero diagonal entries, as a submatrix. On the other hand, there exists a matrix A that 

1This definition of a matrix fitting a graph is the same as by Haemers in (9], although in that paper the 
condition that A;; = 0 if i and j are adjacent should be read as A;; = 0 if i and j are not adjacent to be 
consistent with the rest of the paper. 
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fits G for which rank(A) = x(G). Indeed, let G be colored with x(G) colors and define the 
matrix A by 

A,_ := { 1 if i and j are in the same color class, 
J O otherwise, 

then A fits G and rank(A) = x(G). So the minimum rank over all matrices fitting G is also 
a number between the clique number and the chromatic number of G. This number was 
introduced by Haemers ([8, 9]) and we will refer to it as the Haemers bound. 

The Lovasz bound and the Haemers bound were both introduced as an upper bound for 
the so-called Shannon capacity of a graph (cf. [17]), a concept which we will not further 
discuss here. Using his bound, Lovasz [11] could prove that the pentagon had Shannon 
capacity equal to -./5, solving a problem that was open for over twenty years. Since Lovasz 
had no examples of graphs for which his bound was provable larger than the Shannon 
capacity, he raised the question whether or not his bound was equal to the Shannon capacity. 
This problem was solved by Haemers [8, 9] by introducing his rank bound. Although the 
Haemers bound is worse for most graphs, it is sometimes (much) better than the Lovasz 
bound showing that the Lovasz bound is not always equal to the Shannon capacity. 

A drawback of the Haemers bound is its definition. It is defined as the minimum over all 
fields of the minimal possible rank of a matrix over this field fitting G. For this reason it is 
not easy to work with. In this article we will introduce some interesting classes of matrices 
fitting a graph over some fixed field. Of course these classes should be defined in such a 
way that the smallest rank in these classes is at most the chromatic number of the graph. 
Examples of suitible classes are the following: 

A3(G,F) .- {A E pnxnlA fits G} 

A2(G,F) .- {A E A3(G,F)IA symmetric} 

A1(G,F) .- {A E A2(G,F)IA;; = l}. 

A question that arises is: What is the complexity of determining the minimum rank of 
a matrix fitting a graph G if the field and the class of matrices over which the minimimum 
should be taken are given? This is the main problem we concentrate on in this paper. For 
any class A of matrices over F we introduce the following number: 

R(A) := min{rank(A)IA E A}. 

In the next section we will show that for some small finite fields for some of the classes 
mentioned above the minimal rank in this class is equal to three if and only if the graph is 
3-colorable. This means that for these classes determining the Haemers bound is NP-hard. 
This suggests that for all relevant classes of matrices fitting a graph determining the smallest 
rank in this class is NP-hard. In the last section we will prove this. 

2 Minimal rank and the chromatic number 

We start with two trivial remarks that inspired our first approach of determining the com­
plexity of determining the Haemers bound. It turns out that for some finite fields F, the 
number R(A.(G, F)) is equal to the chromatic number of G if this chromatic number is 
small. First of all we trivially have for any field F: 

R(A;(G,F)) = 1 ¢,} x(G) = l. 
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and since for odd cycles we have that R(A;(G, F)) = 3, also 

R(A;(G, F)) = 2 tj- x(G) = 2 

for any field F. If for some field F we can prove that also 

R(A;(G,F)) = 3 tj- x(G) = 3 

then we immediately get that for this field F determining the minimal rank of all matrices 
in A;(G,F) is NP-hard. In fact it is enough to prove this equivalence for a class of graphs 
for which the 3-colorability problem is still NP-complete such as planar graphs or graphs 
containing a triangle (see for instance [4]). 

For finite fields it turns out to be relatively easy to verify whether or not the above 
relation holds. We will illustrate this by proving the relation for the class A1 ( G, 1F7 ). 

Theorem 2.1 

R(A1(G,1F1)) = 3 tj- x(G) = 3, 

Proof: Let G be a graph for which the class A1 ( G, IF1) contains a rank-3 matrix, A say. Then 
A contains a non-singuler principal submatrix A11 of rank three and A can be partitioned 
as follows: 

A = ( 111 A 1:2 A ) = ( AA~~ ) Ai"/ ( An I A12 ) 
12 12 11 12 12 

Because A11 , and hence A;:}, is symmetric en non-singular, we can decompose A;:} as follows: 

I B'T ( 
1 

1 ) B' if det A;:"l is a square, 

A-I - 1 

11- (1 ) B'T 1 
3 

B' if det Ai/ is not a square. 

Hence there are two possibilities: 

for some 3 x n-matrix B, or 

A= BT ( l 1 
3

) B 

for some 3 x n-matrix B. 
In both cases there is only a_ limited number of possibilities for the columns of B. If 

we consider opposite columns as the same, we have 21 possibilities for the first case and 28 
possibilities for the second case. In the worst case, every zero in the matrix A corresponds 
with an edge and all vertices should be colored differently if and only if the corresponding 
columns are orthogonal. Without loss of generality we may assume that vertices whose 
corresponding columns are the same or opposite are colored the same since the inner product 
of these columns is unequal to zero. 

Define the graph f 1 as the graph with vertex set the 21 possible columns for the first case 
(with the standard inner product), two vertices being adjacent if and only if the columns 
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are orthogonal and the graph r 2 as the graph with vertex set the 28 possible columns of the 
second case (the non-standard inner product), two vertices being adjacent if and only if the 
columns have inner product zero. The maximal chromatic number of any graph for which 
there exists a rank-3 matrix in A1(G, IA) is equal to largest chromatic number of f1 and f2. 

f 1 turns out to be the line graph of the Heawoodgraph and is distance-regular (cf. [2]). 
An alternative definition is the following: Take as vertices the flags (incident point-line pairs) 
of the Fano plane, two flags being adjacent whenever they contain the same point or the 
same line. The 3-colorability problem reduces to the question if we can partition the 21 flags 
of the Fano plane into 3 sets of 7 flags each, such that each point and each line occurs in 
one of the flags of each set. Since there is a circulant line-point incidence matrix of the Fano 
plane (for instance with top row (ll01000)) such a partition is possible. f 2 is the Coxeter 
graph, the distance-regular graph on 28 vertices with degree 3. By Brooks' theorem [1] it is 
3-colorable. 

■ 
Using the same method we can also prove the following equivalences: 

Theorem 2.2 Let G be any graph, then 

R(A1(G,IF2)) = 5 <=> x(G) = 5, 

R(A1(G,1Fa)) = 4 <=> x(G) = 4, 

R(A1(G,IF's))=3 <=> x(G)=3, 

R(A1(G, IF1)) = 3 <=> x(G) = 3, 

R(A2(G,IF'a)) = 3 <=> x(G) = 3. 

Let G be a graph with w( G) = 3 then 

Let G be a graph with w( G) = 5 then 

II 

Since the 3-colorability problem for graphs is NP-complete, also if G is restricted to have a 
triangle (see for instance [4]) we get the following result: 

Corollary 2.3 Determining the Haemers bound is NP-hard if we restrict to one of the fol­
lowing classes: A,(G, F) for i = 1 and F = IF'q with q E {2, 3, 5, 7, 9} and for i = 2 and F = 
IF'a. ■ 

Unfortunately, in this way we can prove for only a few of the defined classes of matrices 
fitting a graph that the problem of deciding whether they contain a matrix of rank equal to 
three or not is NP-complete, but the results suggest that the problem is NP-complete for all 
classes A;( G, F) over finite fields. 
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Figure 1: The graph H,; 

3 A reduction from 3C to RANK-3 

In this section we prove th;.~ for all relevant classes of matrices fitting a graph G it is NP­
hard to check whether or not ifi. contains a matrix of rank eqm.l. to 3. More pncisely, let for 
some fixed field F and any graph G, A(G) be acla.swof matrias over F, fittingG, such that 
it contains a matrix of rank xfG). Define the l&llowmg problem: 

Name: RANK-3. 

Input: A graph G. 

Question: Does A( G) contain a matrix of rank 31 

Then 

Theorem 3.1 RANK-9 is NP-hard. 

Proof: Consider the 3-Coloration problem, (3C), which is defined as follows: 

Name: 3C. 

Input: A graph G. 

Question: Is x( G) ~ 3? 

It is proved in [4] (see also [3, 14]) that 3C is an NP-complete problem. We show that 3C is 
polynomially reducible to RANK-3. 

Let G = (V, E) with vertex set V = {1, 2, ... , n} be the input I to the JC-problem. First 
we construct a graph /(I) such that /(I) is 3-colorable if and only if G is. Secondly we 
prove that /(I) is 3-colorable if and only if A(f(I)) contains a rank-3 matrix fitting /(/). 

In order to construct the graph /(/), introduce for ea.ch unordered pair of vertices from 
G, i and j with i < j say, four extra vertices a;;, b;;, c;; and d;; and nine extra edges such 
that these nine edges form the graph H;; as shown in Figure 1. So, apart from a possible 
edge between i and j, H;; is the induced subgraph of /(J) on the vertices i,j,a;;,b;;,e;; and 
d;;. So /(J) has !VI+ 2n(n - 1) vertices and IEI + in(n - 1) edges. 

Notice that there are essential two different valid 3-colorings of H;;, one with color classes 
{{i,e;;},{a;;,d;;},{b;;,j}} and one with color classes {{i,j},{a;;,e;;},{b;;,b;;}}, so for one 
3-coloring i and j get different colors and for the other coloring i and j are colored the same. 
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* 0 0 * 0 0 * 0 0 0 0 * 
0 * 0 0 * 0 aii 0 * . 0' * · 0 0 
0 0 * 0 0 * b;j 0 0 * 0 * 0 

* 0 0 * ·o 0 C;j 0 * 0 * 0 0 
0 * 0 0 * 0 d;, 0 •:o * 0 '* 0 
0 0 * '-o 0 '* J *·O 0 0"0 * I 

Fig1fre 2: · 'Til.J- t w,f types'offankis ·fuatriceir fitting<IH,j 1, 

It follows that J(J) is 3°~6Yorai5Ie\f .trid 'diily'ff <'.ns sinbe a valid'3-to1oring ·off0J)indu~s a<~, 
3-coloring of G and _a 3-colodng of G'cin alwafslie completed to a v'illid 3-coloring for J(IJ. 

H is an exercise to check that for.any field th'ere lre 1:!ssentili.lly-inly two different types 
o( matrices of rank '3 fitting H;j correspotidirig to the two· di:ffeien(3°ccilori'trgs of H,j · These 
two types are shown in Figure 2 where" a * denotes a non-zero fikld elemen.t. The first one, 
corresponds·to the coloring with tolor classes { { i;,e;j}, { aii, d,;}, {!b,;,j}} and the second one 
to the coloring with color classes {{ i, j}\ { a,;, c;J}, { b,/;-d,;}}. 'l'he row vectors of vertices 
from the same 'color class are scalar multiples of each other. · 

Finally "'.'e show thatf(/) i~ 3-colora~l~'ffartd only if .A.(/(1)) contains a matrix of rank 
3. First of ali, by assumption 'ACf(l)) 'contains a matrixlof'iank 3 if f(J) is 3-colorable. 
Now assume that there exists a rank-3 ,rnatrjx, M say, fitting f(l). We prove that f(J) is 
3-colorable is follows: Denote the 1-dimensional subspace of (M} spanned by the row vector 
of vertex i by V;. We show that there'are only three different spaces v; inducing a 3-coloring 
of G that can be completed to a 3-toloring off([). 

Let for each i ¥, j E { 1, 2, ... , n} if; (j) be the 2-dimensional subspace of ( M} spanned by 
the row vectors of the vertices from H,; that are not in V;, then clearly ( M) = V; EB H, (j). For 
any j different from i the coordinate corresponding to i of all vectors in H,(j) is zero, while 
thi~ coordinate is non-zero for ~ach non-zero vector from V;. So H,(j) is the 2-dimensional. 
subspace of. (M) consisting of all vectrirs for which the· coordinate corresponding to vertex 
i is zero .. It follows that H,(j) is indepehdent of j whith defines for any i a 2-dimensional 
subspace H, of (M). 

Since for any two vertices i and j we.have a subgraph H,j, the two 1-dimensional subspaces 
lt\ a!/-d ½_are the sarrie if arid. only if H, =. Hj. If V; ,f VJ then V; c Hj and ½ c H,, so if V; =/ 
½ t,hen allVk different frorri v; arid ½ are in the· 1 °dirrtensional subspace H,n H;, so there are 
only three different V; 's. ■ 

' . 

Corollary,3..2 The RANK-3 problem is NP-complete for all the classes A;(G,F) (i 
1, 2, 3) with F a finite field. 

Remark 3.1 In_ {15}it is proved that RANK-3 is still NP-complete if restricted to planar 
graphs or to planar unit disc graphs. 

Remark 3.2 In {13} the authors remarked that "It seems to be difficult to· find the smallest 
. dimension in which a given graph G has an orthonormal representation." (in JRd provided 
with the standard inner product). It follows from the above theorems that if the problem of 
deciding whether or not a (planar) graph has an orthonormal representation in F 3 is in NP 
(which is the case if F is finite), it is NP-complete. 
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1 Prelude 

Frits C.R. Spieksma 
Department of Mathematics 

Maastricht University 
E-mail: spieksma@math.unimaas.nl 

Monday, February 1, 1988. This day was the first day of the first course for Ph. D. students 
organized by the LNMB; it was also the first day of my" AIO"-ship at the Department of 
Mathematics at Maastricht University. Hence, one could say that a lustrum for the LNMB 
marks at the same time a lustrum for myself as a researcher. Perhaps because of this I feel 
somewhat attached to the LNMB and am grateful for this opportunity to contribute to the 
lustrum book. 

2 Introduction 

The standard framework of worst-case analysis is usually as follows: imagine you're given 
this large instance (say I) of a difficult (=NP-hard) problem (say a minimization problem) 
with not much time to solve it. So using some guidelines you think reasonable (the simple 
heuristic H) you construct a feasible solution (H(I)) with a certain cost (c(H(I)). And 
then, in some cases, one.can produce the following statement: 

c(H(I)) ::,; a· OPT(I) for some a E R, for all I, (1) 

where OPT(I) denotes the optimal value associated to instance I. 
At very first sight, it may seem that magic was needed to produce such a statement: how 

else can one say "for all T' without enumerating all instances and running the heuristic on 
it? Well, when you get down to it, magic is perhaps not the right word describing how such 
a statement can be produced, but it sometimes feels that way when writing it down. 

Let me spend a few words concerning terminology. The validity of (1) implies that a 
is an upper bound for the worst-case ratio of the heuristic H with respect to the problem 
considered. When, in addition to this, an instance I can be exhibited for which the heuristic 
actually delivers a solution with value a• OPT(I), a can be called the worst-case ratio (or 
the ratio for short). 

Not surprisingly, this contribution deals with the worst-case analysis of a simple heuristic 
for a difficult problem. In Section 3 I describe a certain k-dimensional assignment problem 
and a heuristic, and I discuss the results known sofar ( which are succinctly summarized in 
the title). Section 4 introduces a basic observation, which is used in Section 5 to deduce, 
for the special case k = 5, two inequalities and an LP-model. This model enables us to 
construct, for the case k = 5, a tighter upper bound for the ratio than currently known. 
Section 6 indicates that this approach can be generalized to arbitrary k. 
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3 A difficult problem, a simple heuristic, and the re-
sults known sofar 

3.1 A difficult problem 

Let k 2:: 2 be an integer, and let K = {l, ... ,k}. Given is a complete k-partite graph 
G = (V = Uf=1 V,, E) with l½I = n for all/ E K. I will sometimes refer to the vertices of a 
set V, as vertices of color/. For each u E V;,v E v;,i,j E K,i =f j, there is a nonnegative 
cost Cuv E IR associated to the corresponding edge { u, v} E E. These costs are not arbitrary: 
apart from being nonnegative, I assume that the so-called triangle inequality holds, that is: 

c.,.+cvw 2:: Cuw for all u E V;, v E v;, w E V,, and for all i,j, l E K, i =f j, i =f l, j =f l.(2) 

Define a clique C C V as a set of vertices such that JC n V,J = 1 for all I E K. The cost of 
a clique is defined as Lu,vec c,, •. The problem is now to find a partition of Vinton disjoint 
cliques C1, •.. , C,. such that the sum of the costs of the cliques is minimal. This problem 
is called the k-dimensional assignment problem with clique costs (k-DAPC). Notice that for 
k = 2 the problem boils down to an assignment problem. 

3.2 A simple heuristic 

Given a large instance of this problem with not much time to solve it, what can one do? An 
idea is the following: specify a sequence of the k colors, and repeatedly assign the vertices of 
color i to the sets of vertices consisting of vertices of colors 1, ... , i - 1, for i = 2, ... , k. The 
total cost of assigning a particular vertex of color i to a particular set of vertices of colors 
1, ... , i - 1 is taken to be the sum of the costs of the i - 1 edges between the vertex of color 
i on the one hand, and eacli of the other i - 1 vertices on the other hand. So the algorithm 
consists of solving iteratively n - l assignment problems. 

In order to describe this algorithm more formally, let V, = { v11, ... , v,,.} for all / E K. 
Here is the heuristic Hk: 

Step 1: Choose a sequence, say 1, 2, ... , k. 

Step 2: Set P; = { v1;} for j = 1, ... , n. Set I = 1. 

Step 3: While l < k do 

1: For all i,j = l, ... ,n, compute 8;; = LweP, Cw,v1+1,,· 

ii: Find an optimal assignment A between the vertices of ½+1 and the partial 
cliques P;, j = 1, ... , n with respect to the cost function 8. 

iii: Extend the partial cliques P; according to the assignment, that is for each 
{P;,v1+1,;} EA set P; := P; U {v1+1,;}. 

1v: I:= I+ 1. 

Step 4: The cliques are now formed by P; for j = 1, ... , n. Stop. 

3.3 The results known sofar 

Two chapters of my thesis (Spieksma [3]) are devoted to (variants of) k-DAPC: Chapter 3, 
co-authored with Yves Crama (published as [2]) shows that 3-DAPC is NP-hard, presents 
the heuristic H 3 and proves the second number in the title as the ratio for this heuristic 
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applied to 3-DAPC. Chapter 4 of my thesis, co-authored with Hans-Jurgen Bandelt and 
Yves Crama (published as [l]) presents the heuristic Hk of Subsection 3.2, proves that ½k is 
an upper bound for the ratio, (or in other words shows that: 

(3) 

and proves that ¥ is the ratio for 4-DAPC. For k ~ 5 it is unknown what the worst-case 
ratio of Hk with respect to k-DAPC is. 

Let me add here that in [l] a heuristic is presented of polynomial complexity (albeit with 
a larger complexity than Hk) which achieves a ratio of 2 - f for all k ~ 2, thus a heuristic 
with a worst-case ratio bounded by 2 for all k ~ 2. 

Finally, the reader may wonder whether there are practical applications which motivate 
the study of this heuristic for k-DAPC with k ~ 5. The answer is no; not that I'm aware of. 
The best reason I can give for looking into this is curiosity concerning the series 1, ~' lf-, ... 
Where does it go, and is there perhaps a closed formula which describes these ratios? Perhaps 
disappointingly, these questions will remain unanswered at the end of this contribution. 

4 An observation 

The following notation will be used. Given an instance of k-DAPC, let F denote an optimal 
solution, and let H denote a solution found by Hk. Define for all i,j E K,i < j: 

F;j := {{ u, v} I u E V., v E ½, u and v are contained in a clique from F}, 

dl := L C,.v, 
{u,v}EF;, 

H;; := {{u,v} I u EV., v E ½, u and v are contained in a clique from H}, and 

dff := L C,.v-
{u,v}EH;, 

More generally, given a solution S to k-DAPC, let for all i,j E K, i < j: 

S;j := {{ u, v} I u E V., v E ½, u and v are contained in a clique from S}, and 

df; := L C,.v-
{u,v}ES,, 

Also, I use: 

i-1 

d.,; := L d;,; for all i = 2, ... , k. 
j=I 

A crucial observation for the analysis which follows is the following one. Consider solution 
H found by the heuristic Hk. Given H, let us construct an alternative solution as follows. 
Choose a color i, i < k. Reassign the vertices of Vk to the partial cliques according to how 
in an optimal solution to this instance of k-DAPC the vertices of Vk and V. are matched 
together. Call this solution S. Due to the fact that the heuristic finds an optimal matching 
between Vi and the partial cliques, we have the following inequality: 
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c(Hk) = d~2 + d~3 + ... + d~k :'.S d~2 + d~3 + ... + d~k-1 + d;,k. 

Since dfk = df;, by construction, and since dfk ::S df; + df;, for all j =J i by the triangle 
inequalities (2), we obtain the following observation: 
Observation: 

c(Hk) :'.S d~2 + d~3 + ... + d:k-l + df; + df; + ... + drk-l + (k - l)d~, 

for all i = 1, ... , k - 1. 

5 The case k = 5 

(4) 

This section consists of three subsections. In each of the first two, an inequality is deduced. 
In the final subsection I use these inequalities in an LP-model to obtain a tighter upperbound 
than predicted by (3) for the case k = 5. 

5.1 Inequality 1 

Lemma 1 

Proof: 
We can derive this inequality as follows. Obviously: 

c(H5 ) = d~2 + d~3 + d~4 + d~s- (5) 

Now consider iteratively each of the following inequalities, substitute it in (5), and proceed: 

1: d:5 :::; d~4 + 4df5 • 

This follows from Inequality (4) with k = 5 and i = 4. 

2: 2d~4 ::S 2d~3 + 6df4. 

This follows from Inequality (4) with k = 4 and i = 3. 

3: 3 H 3 H F 
2d•,3 ::S 2d•,2 + 3d23• 

This follows from Inequality (4) with k = 3 and i = 2. 

4: 3 H 3 H F 
i•,3 ::S 2d•,2 + 3d13• 

This follows from Inequaltity (4) with k = 3 and i = 1. 

5: 4d~2 ::S 4d:2 • 

Trivial. 

□ 
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5.2 Inequality 2 

Lemma 2 

Proof: 
As before we can derive this inequality as follows. Obviously: 

c(H5) = d:2 + d:3 + d:4 + d:s- (6) 

Now consider iteratively each of the following inequalities, substitute it in (6), and proceed: 

D 

H 4( F F F) 1 H 2( H H) 1: d.,s :S 3 dis+ d2s + d35 + 3d•,4 + 3 d.,3 + d.,2 . 

This follows by summing Inequality (4) with k = 5 for i = 1, 2, 3, and dividing it by 3. 

4H 4F 8 H H) 
2: 3d.,4 :S 3d.,4 + 9(d.,3 + d0 ,2 • 

3: 

4: 

This follows by summing Inequality (4) with k = 4 for i = 1, 2, 3, and dividing it by 3. 

23 H 23 F F 
gd•,3 '.S g(d.,2 + dd. 

This follows by summing Inequality (4) with k = 3 for i = 1 and 2, and dividing it by 
2. 

23 dH < 23 dF 
9 •,2 - 9 .,2· 

Trivial. 

5.3 An LP-model 

How to use the two inequalities from Lemma's 1 and 2 from the previous subsections to obtain 
a better upperbound for the ratio than 5/2 as predicted by (3)? I am going to construct a 
linear combination of these two inequalities and next, using the triangle inequalities df; :S 
dfi + df'; for i,j, l = 1, ... , 5 (which hold due to inequalities (2)), I intend to minimize 
the largest coeffficient of some df; term. Obviously, the largest coefficient in the resulting 
inequality determines an upper bound for the ratio. The problem of minimizing the largest 
coefficient can be casted into an LP-framework in the following way. Consider the following 
decision variables: 

• z;j: coefficient of df; in resulting inequality; i,j = 1, ... , 5, i < j, 

• X;j1: coefficient of triangle inequality df; :S dfi + df'; for i,j, l = 1, ... , 5, i < j, l f= i, l f= 
J, 

• a 1 : coefficient of inequality of Lemma 1, and 

• a 2 : coefficient of inequality of Lemma 2. 

Here is the LP-model called LP-5-DAPC: 
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(LP- 5 - DAPC) minimize w 

subject to 

46 
Z12 = 4a1 + g°'2 - X123 - X124 - X12s + X132 + X142 + X152 + X231 + X241 + X251, (7) 

23 
Z13 = 30<1 + g°'2 - X132 - X134 - X135 + X123 + X143 + X153 + Xz31 + X34J + X351, (8) 

4 
Z15 = 3°'2 - X1s2 - X153 - X154 + X12s + X135 + X145 + X2s1 + X351 + X451, (10) 

4 
Z34 = 6a1 + 3 a2 - X34J - X342 - X345 + X134 + X143 + X234 + X243 + X354 + X453, (14) 

4 
Z35 = 3 a2 - X35J - X352 - X354 + XJ35 + X153 + X235 + X253 + X345 + X453, (15) 

Z45 = 4a1 - X451 - X452 - X453 + X145 + X154 + X245 + Xz54 + X345 + X354, (16) 

w 2: Zij for all i,j = 1, ... ,5,i < j, 

a1 + a2 = 1, and 

all variables 2: 0. 

An explanation of the constraints of LP-5-DAPC is as follows. Consider equality (7). In this 
equality the coefficient of df; in the final inequality (z12) is determined. Now, obviously z12 
must be equal to the linear combination of the inequalities of Lemma's 1 and 2 restricted to 
the term df; (4a1 + 1Jla2) plus a term which indicates the "usage" of triangle inequalities in 
which d('; occurs. There are three triangle inequalities with df2 appearing on the left-hand 
side, namely df2 ::; df3 + df3, df2 ::; df4 + df4 and df2 ::; df5 + df5, so the corresponding 
x-variables have coefficient -1, and there are six triangle inequalities with df2 appearing on 
the right-hand side (this is easily verified), so the corresponding x-variables have coefficient 
l. In fact, each of the equalities (8)-(16) can be explained in a similar way. The remaining 
constraints of LP-5-DPAC are straightforward. 

Solving this model yields w = 2.301471 and hence the following statement can be pro­
duced (cf. (1)) 

c(H5)::; 2.301471. OPT(I) for all I. 

Notice that the upperbound for the ratio of H 5 with respect to 5-DAPC has decreased from 
2.5 (see Inequality (3)) to 2.301471. 
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6 Discussion 

My approach has focused exclusively on 5-DAPC. In order to generalize this approach to 
other values of k, one should be able to generalize the inequalities deduced in Lemma's 1 and 
2. It turns out that this is possible, however, it seems out of the scope of this contribution 
to state these inequalities and prove their validity for general k. However, I couldn't resist 
constructing the corresponding LP's for k = 6 and 7 and solve them. It turned out that in 
each case there was an improvement (compared to (3)) of the upperbound for the ratio. So 
here is a table with the current best upper bounds for ratio's of heuristic Hk for k-DAPC 
fork= 5,6 and 7. 

k-DAPC Upper bound for ratio 
k=5 2.301471 
k=6 2.699225 
k=7 3.062519 
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Part II 

Stochastic Operations Research 
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Stochastic Operations Research: A Retrospective 
View 

H.C. Tijms 
Dept. of Econometrics 

Free University Amsterdam 
E-mail: tijms@econ.vu.nl 

Abstract 

This paper gives an overview of the contributions of young Dutch researchers to the field 
of stochastic operations research in the last decade. In particular, the contributions to 
the area of queueing, reliability and Markovian control are reviewed. 

1 Introduction 

Stochastic Operations Research has gone the last ten years through a flourishing-period 
of activity. In the last decade many significant contributions to the field have been made 
by several applied probability groups in the Netherlands. As has been recognized by the 
international research community in stochastic operations research, the scope of the influence 
of the Dutch contributions exceeds by far the size of the country. Partly this succes can be 
explained by the stimulating environment of cooperation between the several research groups. 
Cooperation that is reflected as well in the joint teaching program for PhD students in the 
LNMB. The purpose of this paper is to present a review of the main contributions made in 
the last ten years by junior researchers of the LNMB to the field of the stochastic operations 
research. The review will concentrate on contributions in the following areas: 

a. Queueing 

b. Reliability and Maintenance 

c. Markov Decision Processes. 

In each of these areas important contributions have been made by young Dutch researchers. 

2 Queueing 

The application of the mathematical theory of queues to performance analysis of practical 
problems has been much hampered by the computational untractability of the analytical 
results. However, since the early 1980's much progress has been made to the development 
of generally applicable and computationally tractable algorithms. Most of the algorithmic 
breakthroughs deal with multi-dimensional queueing processes. Such processes naturally 
arise in modern applications in computer, telecommunication and flexible manufacturing 
systems. 
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2.1 Product-form solutions 

An important contribution of queueing network theory is that, under certain conditions, it is 
possible to obtain a simple exact solution for the joint distribution of the queue lengths at the 
various nodes in the form of a product-form solution. Important new insights in the product­
form theory are provided by the studies of Boucherie (1992) and Smeitink (1992), where the 
first study also deals with product-form networks with positive and negative customers. 
The latter product-form networks have recently gained much interest in the performance 
analysis of reource request and allocation models. In general an obstacle for the practical 
application of product-form theory remains the computation of the normalization constant 
in the product-form solution because of the huge number of the states involved. Tractable 
algorithms for the computation of the normalization constant can only be given for special 
cases. 

2.2 Compensation approach 

The compensation approach has been developed by Adan (1991) for a class of two-dimensional, 
homogeneous random walks on the integer grid in the positive quadrant of the plane, where 
transitions to the north, north-east and east are not allowed. The development of this 
approach was motivated by the famous shortest-queue problem. The main idea of the com­
pensation approach is 

( a) characterize a set of product-form solutions which satisfy the equilibrium equations for 
the interior states 

(b) try to construct a linear combination of these product-form solutions such that the 
equilibrium equations for the boundary states are also satisfied. 

In addition to the shortest-queue problem, the compensation approach has been successfully 
applied to other problems as well including the multi-programming queue and the 2 x 2 
clocked buffered switch of an interconnection network. In Van Houtum (1994) the compen­
sation approach has been generalized to multi-dimensional random walks. 

2.3 Power-series algorithm 

The power-series algorithm is another numerical approach that can be used for multi­
dimensional random walks, but its scope of application is actually much wider. The method 
was first developed by Hooghiemstra et al (1986) and later expanded by Blanc (1993) and 
his PhD students Van der Mei (1995) and Van den Hout {1996). It is based on power-series 
expansions of the state probabilities in terms of some parameter, usually the load of the sys­
tem in queueing applications. The coefficients of the power-series expansions are computed 
by a recursive scheme. The power-series algorithm is a flexible method which is applicable 
to a wide class of multi-dimensional queueing systems including polling systems. In polling 
models several users compete for service by a single server who switches from one queue to 
another in order to provide service. This is a rich class of models having many practical 
applications. Many new insightful results for polling-systems are obtained in the studies 
of Groenendijk {1990) and Borst (1994). In addittion to polling models other examples of 
models to which the power-series algorithm can be applied include load-balancing models, 
coupled-processor models and parallel-processor models. The power-series algorithm works 
quite well for these multi-dimensional queueing models. However, in general convergence 
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properties and error estimates of the algorithm are still unknown. An interesting extension 
of the power-series algorithm to controlled Markov chains is given by Passchier (1996) who 
applied the algorithm to a controlled tandem queue amongst others. 

2.4 Geometric-tail approach 

The compensation approach and the power-series approach both have the nice feature that 
an infinite state space need not be truncated by brute-force. In practical applications brute­
force truncations usually lead to very large state spaces and thus to very large computing 
times. Another approach that avoids brute-force truncation is the geometric-tail approach 
advocated in Tijms (1994). This approach has been successfully applied in the studies 
of Gouweleeuw (1996) and Van Eenige (1996) to a variety of discrete-time queueing sys­
tems. The geometric-tail approach was developed for one-dimensional infinite-state Markov 
chains. This simpleminded approach reduces the infinite set of equilibrium equations to a 
finite but small system of linear equations by using the geometric tail behaviour (if any) of 
the state _probabilities. As a consequence of this tail behaviour, the numerical analysis of 
finite-capacity queues is sometimes easier through the analysis of the corresponding infinite­
capacity queue when a proportionality relation holds between the state probabilities in the 
finite-capacity and infinite-capacity models, see Gouweleeuw (1996). The geometric-tail ap­
proach can sometimes also be applied to two-dimensional Markov chains whose state space is 
a semi-infinite strip in the plane and whose one-step transition probabilities satisfy a certain 
homogeneity condition. Then, by basic result from the theory of linear difference equations, 
the state probabilities of the interior states can be written as a finite linear combination 
of geometric distributions. The characterization of the state probabilities by Adan (1991) 
in his compensation approach is a natural extension of this result. In the two-dimensional 
model of the compensation approach both state variables are unbounded. 

2.5 Large-deviations technique 

It is only recently that the technique of large deviations has become an important tool to 
analyse queueing systems. The technique is used to estimate very small probabilities of 
"rare" events such as packet-loss in high-speed networks. The method finds expressions 
for rare event probabilities in queueing models which are the basis for the development of 
algorithms for executing quick simulation. The main idea of the approach is 

(a) from large deviations the statistical behaviour of the system leading to the rare event 
is derived 

(b) a twisted probability model of the system is constructed such that the rare event 
becomes most likely, and 

(c) analytical verification that the variance reduction obtained in the simulation is asymp-
totically optimal. 

Important contributions to rare event analysis and quick simulation for communication net­
works have been made in the study of Mandjes (1996). The contributions include rare 
event analysis for large communication systems with general Markov fluid sources, buffer 
and bandwidth allocation in ATM networks and call blocking in ATM networks. Similar 
models stemming from telecommunication applications were analysed in Awater (1994) by 
using more classical methods such as eigenvalue analysis. 
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2.6 Complex-function methods 

Techniques from complex function theory have been used- fol' a long time to obtain. ana­
lytical results for queueing systems. These results are often: in the form of transforms. It 
is widely recognized that the transforms are useful to do asym:ptotic analysis, but it was 
believed for a. long time that the transforms are not useful' fut calculating· numerical: values. 
The conventional wisdom has been, that computation of! complex roots and, the inversion of 
Laplace transforms. are difficult and numerically: illrposedi pcol>lems. However the studies 
of Regterschol! (.1986), De· Klein (198&): andi Van. 0mmeren, (1989) show that for a broad 
class of queueing systems solution teclmiqµes from complex function theory such as Wiener­
Hopf factorization lead to efficient an& numerically staole· algorithms, Amongst others the 
Wiener Hopf technique can be successfully used to solve-the versatile single-ser.ver queueing 
model with Markov modulated arrivals. That modelis frequently used-in telecommunication 
applications. Many instances of the usefulness of numerical· inversion. methods for solving 
queueing systems are given in Gouweleeuw (1996). 

3 Reliability and Maintenance 

In the past numerous papers have appeared on reliability and availability analysis of re­
p.airable sy:stems with standby redundancy. Nearly all' of these papers. dealt with steady­
state availability, that is, the long-run fraction of time the system is available. Hardly any 
attention was paid to interval: availability, that is, the probability distribution of the avail­
ability of the system over a given but finite period of time. Transient. availability analysis 
is very important for practical applications, e.g. computer systems are sold with a gaur.an,­
teed. availability over a limited period: 0£ time and oil and gas contracts. guarantee minimum 
levels of oil and gas deliveries over a certain period of time. Recently, practically useful 
approximations for interval availability distributions have been. obtained in the studies of 
Van der Heijden (1992) and Smith (1997). The results obtained for the k-out-of0 n model 
with cold or hot standby do not involve the ususal assumption of exponentially distributed 
life times and repair times. The approximations in Smith (1997) have the nice feature that 
the computation times do not explode when k and n increase. 

Besides the performance analysis of, reliability systems there has been done quite some 
research in recent years on maintenance optimization models with multiple components. 
Cleaatly, maintenance has a strong impact on reliability. Apart from improving system per­
formance by preventive maintenance, considerable cost reductions can be achieved when 
preventive actions are made. Optimal decision rules and heuristic rules for the maintenance 
of various multi-component systems, have been developed in the studies. Smeitink (1992), 
Vanneste (1992) and Wildeman (1996). An important model in the study of Smeitink (1992) 
is the model for r.anking of maintenance activities in multi-component systems when there 
is only a limited opportunity for doing preventive maintenance. The studies of Vanneste 
(1992) and Wildeman (1996) deal amongst others with a maintenance model for coordinat­
ing maintenance activities and use Markov decision theory to obtain (sub)optimal rules for 
this model. 

4 Markov Decision Processes 

In the past decade there has been an impressive continuation of the research in the fields. of 
Markov decision processes (MDP). The theoretical aspects of MDP are continuously stim-
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ulated by new practical applications such as in the field of telecommunication and mainte­
nance optimization. Markov decision methods were used in the studies of Vanneste (1992) 
and Awater (1994) to develop algorithms for specific applications in these fields. However, 
fundamental contributions to the theory of MDP were also made in the last decade. Con­
trolled queueing models are particularly suited for showing MDP results. In the study of 
Spieksma ( 1990) new results are obtained for establishing the optimality of threshold policies 
in a variety of queueing systems with constrained admission control. In addition this study 
deals with the fundamental problem of ergodicity conditions in multi-dimension Markov 
chains with a view towards applications in queueing networks. The thesis of Koole (1992) is 
mainly concerned with scheduling problems of queues: to which servers should customers be 
assigned and to which queues should servers be assigned? Using dynamic programming the 
solution of an optimal control rule is established for a variety of queueing models including 
the practically important model with Markov driven arrivals. A relatively new development 
in Markov decision theory is the study of problems with partial information. Again such 
models are inspired by design problems in telecommunication. Contrary to MDP with full 
information, little is known about the existence and the form of optimal control rules. In 
the thesis of Loeve (1994) this question is addressed, where in particular much attention is 
paid to the so-called periodic policies for which the same decision prescription returns pe­
riodically. The thesis of Loeve (1994) also develops algorithms to compute optimal control 
rules and applies these algorithms to a variety of queueing models with partial information 
or decentralized control. Such models are becoming increasingly important in real-world 
applications. Undoubtedly, much further research on Markov decision models with partial 
information or decentralized control will be seen in the future. 
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Abstract 

We study the receiving part (RIWU) of an interworking unit between ATM and DQDB 
networks carrying traffic in the direction ATM-to-DQDB. For connectionless (CL) traf­
fic, two operating modes are possible: cell-to-slot interworking and frame interworking. 
Models are developed for the buffer occupancy in both of these modes, specifically tak­
ing into account the variable service rate available to the RIWU due to other traffic 
on the DQDB bus. In the cell-to-slot mode, the CL part of the RIWU is modelled as 
a fluid buffer with Markov modulated input and service processes roughly describing 
the burstiness of the cell arrival process and variations in the available bus capacity. In 
the frame interworking mode, we consider separately the read-in and read-out stages 
of the RIWU, the main emphasis lying in the read-out stage. The bandwidth sharing 
of the DQDB bus is described by a head-of-line processor sharing (PS-HOL) discipline. 
The models are used for the numerical studies of the buffer size required to guarantee 
a given maximum _allowed loss probability. 

1 Introduction 

We consider the network scenario depicted in Fig. 1 where ATM and DQDB networks are 
connected by an interworking unit (IWU). Such an IWU has been designed and implemented 
by the RACE 2032 project COMBINE. The IWU consists of two unidirectional (DQDB-to­
ATM and ATM-to-DQDB) parts called the sending and the receiving interworking unit 
(SIWU and RIWU), respectively. This paper concerns modelling of the operation of the 
RIWU for connectionless (CL) traffic. Problems related to the SIWU have been covered 
e.g. in [l]. Results of both of these studies have been presented in a COMBINE deliverable 
[2]. 

On the ATM side, the CL traffic is carried in a separate CL overlay network set up using 
semipermanent virtual paths (VP) as its links and CL servers (CLS) as its nodes. There are 
several incoming VPs connected to the CLS but only one between the CLS and the RIWU. 

On the DQDB side, there are several stations connected to the buses (one for each 
direction), the RIWU being one of them. The other stations generate background traffic 
sharing the bandwidth of the bus with the traffic from the RIWU, according to the DQDB 
queue arbitrated (QA) access mechanism. The access delay for CL cells (segments) is not 
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Figure 1: Physical model of a CL-network over ATM interconnected to a DQDB network 
through a RIWU. 

guaranteed due to fluctuations in the number of requests for transmission from other DQDB 
stations. 

On the frame level, the service rate as seen by the RIWU is variable. A buffer in the RIWU 
is required to accommodate incoming CL traffic bursts to the stochastically varying available 
bus capacity. Specifically, our aim in this paper is to analyse the content distribution of the 
RIWU buffer for dimensioning purposes. The interworking of CL traffic can be realized in 
two different modes: in cell-to-slot interworking ATM cells are directly converted to DQDB 
segments and in frame interworking full frames are first reassembled in the RIWU before 
being again segmented and forwarded to the DQDB. We develop models for both of these 
modes. An important feature in these models is that they take into account the variable 
service rate available to the RIWU on the DQDB bus, due to the bandwidth sharing with all 
other sources using the same bus. We do not explicitly consider the influence of connection 
oriented (CO) traffic on the handling of CL traffic. This influence cal'I be approximately 
taken into account by subtracting the rate of CO traffic from the speed of the DQDB bus. 
The models for the -two interworking modes will be presented and analysed separately in 
sections 2 and 3. · 

Main conclusions are given in section 4. 

2 Cell-to-Slot RIWU 

2.1 Model description 

In cell-to-slot interworking the RIWU receives cells from the ATM network and puts these 
cells on the DQDB-bus, according to the DQDB QA access mechanism. The cell stream is 
modulated by the frame arrival process. Thus, on the frame level, it is natural to model 
the RIWU as a fluid buffer with Markov modulated input and service rates. The modulated 
service rate models the non-constant capacity of the DQDB-bus available for the RIWU. 
During periods in which the arrival rate is larger than the service rate, cells ("fluid") can be 
buffered. The capacity of the buffer is finite and will be denoted by B. Cells that cannot be 
buffered, due to lack of buffer space, are lost. Now, the problem is to find, for given input 
and service parameters, the minimal buffer size B such that the cell loss probability is less 
than a certain value P1oss• 

To get a manageable (but still useful) model we assume that both the input and service 
processes are of on-off type. The choice of on-off arrivals is reasonable when frames arrive 
at the RIWU with fixed rate on a single incoming VP. The unit of time is chosen such that, 
in the on-state, the arrival rate is equal to 1. The service rate (in the on-state) is denoted 
by c. This parameter is also called slow-down factor. 
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In addition, the lengths of the off and on states of the arrival (service) process are assumed 
to be exponentially distributed with means 1/ )q (1/ ,\2 ) and 1/ µ 1 (1/ µ 2), respectively. The 
parameters of the service process, ,\2 and µ 2 , are specifically chosen to account for the 
influence of the background load on the RIWU. The choice is based on the assumption that, 
on the frame level, a DQDB bus with many stations operates according to the Processor 
Sharing (PS) discipline (see subsection 3.2). More precisely, the mean and the squared 
coefficient of variation of the time to serve a frame are chosen to be equal to the corresponding 
quantities in the PS queue. For a background load Pbg the mean and the squared coefficient 
of variation of the service time in the PS queue are given by (L/C)/(1 - Pbg) and (2 + 
Pb9 )/(2 - Pbg), respectively, see e.g. [3]. Here L/C is the service time of a frame with average 
size L at full bus rate C (available to the CL traffic). The analysis in the next subsection, 
however, holds for general service parameters ,\2 , µ 2 . 

2.2 Analysis 

We follow closely the analysis of a similar model of a two-stage production line given in [4]. 
Describe the state of the system by the triple (a, b, x), with a the state of the arrival process 
( a = 0 means "off'' , a = l means "on"), b the state of the service process ( b = 0 means 
"off", b = l means "on") and x the buffer occupancy. Now, we consider the behaviour of the 
system during a regeneration cycle with the regeneration points defined as the entrances in 
state (0, 1, 0). Let Pr be the expected number of cells transmitted on the DQDB-bus during 
a regeneration cycle and T the expected cycle length. Then the cell loss probability Pioss is 
given by: 

(1) 

where Pr/Tis the throughput and ,\if (,\1 + µi) is the offered traffic. 
In fact Pr and T can be seen as costs per cycle. Define a(x), f3(x), 1(x) and 8(x) as the 

costs per unit of time in state (1,0,x), (0, l,x), (0,0,x) and (1, l,x), respectively. Then, if 
a(x) = /3(x) = 1 (x) = 8(x) = 1, for 0 :c:; x :c:; B, the expected cost per cycle is equal to T. 
If a(x) = 1(x) = 0 and f3(x) = 8(x) = c, for 0 < x :c:; B, and a(0) = .B(0) = 1 (0) = 0, 
8(0) = min(l, c), then the expected cost per cycle is equal to Pr. 

To derive the expected cost per cycle, Cr, we introduce the functions/(·), g(·), h(·) and 
I(·) as follows. Let f (x) be the expected cost until the end of the cycle if the system is in 
state (1,0,x), 0 :c:; x :c:; B. The functions g(x), h(x), l(x) are defined analogously for the 
case that the system is in state (0, 1, x), (0, 0, x), (1, 1, x), respectively. Now, the expected 
cost per cycle can be written as 

(2) 

To determine the functions /, g, h and I divide the costs into the costs during the first small 
time interval A and the costs during the rest of the cycle, and let A ➔ 0. This leads to the 
following set of differential equations: 

-f'(x) 
cg'(x) 

0 

(c- l)l'(x) 

a(x) - (,\2 + µi)f(x) + µ1h(x) + A2l(x), 0 :c:; x < B, 

/3(x) - (,\1 + µ2)g(x) + µ2h(x) + A1l(x), 0 < x < B, 

1 (x) - (,\1 + A2)h(x) + ,\if(x) + A2g(x), 0 :c:; x :c:; B, 
8(x) - (µ1 + µ2)/(x) + µ1g(x) + µd(x), 0 < x < B. 
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The boundary conditions obtained from (3), (4) and (6) are, respectively, 

0 

0 

0 

0 

a(B) - (-~2 + µi)J(B) + µ1h(B) + >.2l(B), 
g(0), 
<5(B) - (µ1 + µ2)l(B) + µ1g(B) + µ2f (B), c S: 1, 

<5(0) - (µ1 + µ2)l(0) + µ1g(0) + µ2f (0), c ~ 1. 

(7) 
(8) 
(9) 

(10) 

Substitution of (5) into (3) and (4) leads, together with (6), to a set of three first order linear 
differential equations in the functions J, g and l with boundary conditions (7), (8) and (9) 
or (10). Assuming c =p l, this set can be written in matrix form as 

J'(x) = c(x) + Af(x), (11) 

where f(x) := (J(x),g(x),l(x}f and f'(x) := (J'(x),g'(x),l'(x)f. The matrix A and the 
vector c(x) are given by 

(A+- -~ ->.2 2 A1+A2 A1+A2 

A !~ -¼ (>.1 + A~+t) 

h l C AJ +A2 C , 

.E2,_ .1':1.... -~ c-1 c-1 c-1 

(12) 

( I I )T c(x) = -u(x) - A1+A2 -y(x), ;: (,B(x) + A1":A2 -y(x)), c-1 <5(x) . (13) 

The special case c = 1 can be shown (see [4]) to reduce to the solution of a simple first order 
linear differential equation and will not be considered here. 

The general solution of the homogeneous equation (cf. (11)) is given by C1e 1 +C2e2eP2x + 
C3e 3ePax, where the Pi and e; (i = 1, 2, 3) are the different eigenvalues and corresponding 
eigenvectors of the matrix A and the C; ate arbitrary constants (note that p1 = 0 =p P2, p3 
and e 1 = (1, 1, lf). In the special case , A+' = c, A+' the eigenvalues P2 and p3 are 

Al µ1 A2 µ2 

degenerate (equal). We shall not consider this case here; more about the analysis of this 
case can be found in [4]. 

For the cases a(x) = ,B(x) = -y(x) = <5(x) = 1 (to determine T) and u(x) = -y(x) = 0, 
,B(x) = <5(x) = c (to determine Pr) c(x) is independent of x. So, the solution of the 
inhomogeneous equation (cf. (11)) can be obtained in a standard way by using the solution 
of the homogeneous equation and the boundary conditions (7), (8) and (9) or (10). 

2.3 Results on buffer dimensioning 

The analysis of the fluid flow model described in the previous section yields explicit results 
for the overflow probability Pioss, for a given buffer capacity B. We have determined the 
allowed normalized load p0 = p0/(l - pb9) of the RIWU (p0 is the partial load) as a function 
of the buffer capacity for a predefined loss level Pioss = 10-4. (Note that in this section 
we are dealing with cell loss probabilities; the corresponding frame loss probabilities will be 
larger, but in general they will be of the same order of magnitude). We have investigated 
the influence of the slow-down factor c and the background load Pbg· Fig. 2 contains results 
for four cases which correspond to background load Pbg = 0, 0.6 and slow-down factor 
c = 0.1, 0.8. The results show a knee in the curves at p0 = 0.6 - 0.7, i.e. a load up to 60 
or 70 percent can be achieved with relatively small buffers, but from that point on little can 
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Figure 2: Allowed load at Piass = 10-4 as a function of the buffer size in the CL part of the 
cell-to-slot RI\\'{;. 

be gained with adding extra buffer space (note that this does not hold for the "optimistic" 
case with Pby = 0 and c = 0.8). 

Further, it is seen from the results in Fig. 2 that for a large slow-down factor (c = 0.8) the 
influence of the background load on the results is relatively large: the buffer space required 
to allow a load of 0.7 increases from 4 for the case with Pby = 0 to 24 for the case Pbg = 0.6. 
For the case c = 0.1 this influence is much smaller, but still considerable: for allowed load 0.7 
the required buffer space for Pby = 0, 0.6 is 23 and 36, respectively. From the typical knee 
in the curves in Fig. 2 we conclude first that in general there is no sense in trying to achieve 
higher allowed loads than 0.7. Further, it is concluded that it is hardly possible to choose 
a (generally) proper value for the buffer space in the RI\Vli without further specifications 
w.r.t. the background load and the slow-down factor. However, as a small slow-down factor 
represents the worst case and a background load of Pbg = 0.6 on the DQDB network seems 
to be reasonable. it is recommended to choose the buffer size around 25-30 frames. With a 
mean frame length of 1500 bytes this is equivalent to 45 kbytes. 

2.4 Further considerations 

As we concluded from the numerical results, the required buffer space depends considerably 
on the slow-down factor c. This slow-down factor is mainly determined by the sum of the 
rates of the incoming VPs and the total rate of the CO traffic (the latter rate is subtracted 
from the DQDB-bus speed; hence it determines the maximum rate available for CL traffic) . 
. -\t this moment it is not clear what the practical values are. At least it seems that a slow 
down factor of less than 1 is rather conservative. 

In our model we made the assumption that frames arrive as separate cell bursts (the 
·'on-periods") with exponentially distributed intervals (the "off-periods"). In practice a cell 
burst may consist of several (interleaved) frames and frames may arrive in parallel when the 
RI\\T has two or more incoming VPs for CL traffic. In these cases more buffer space is 
required (in fact the required buffer space is linear in the mean number of frames contained 
in a single burst). 
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3 Frame RIWU 

In the frame interworking mode, the buffer of the RIWU consists logically of two separate 
stages, the read-in stage and the read-out stage. Physically, though, there is only a single 
buffer. Its content distribution can be calculated as the sum of the contents of the read-in 
and the read-out stages, which are approximately independent, cf. [1]. 

Our goal is to obtain the required buffer size of the RIWU such that the probability of 
frame loss, Piass, is smaller than 10-4 _ It depends, among other things, on the type of CLS, 
i.e. whether the CLS has buffers and the frames are reassembled in it or not. It also depends 
on the way memory is organised in the RIWU. The basic alternatives are static, dynamic 
and fully dynamic memory allocations, corresponding to a fixed maximum frame length 
reservation for each frame, reservation according to the actual frame size and reservation 
and release of memory as the cells flow in and out (cf. [l, 2]). 

First we briefly present the results for the content distribution of the read-in stage, 
which rely on standard queueing theory and new results for the distribution of the amount of 
required work in the M / M /1 processor sharing queue. The emphasis of this section, however, 
is on the results for the content distribution of the read-out stage taking the background 
load on the DQDB network into account. Finally we combine these results to obtain the 
required total buffer size including both stages. 

3.1 Analysis of read-in stage 

We assume that over each path to the CLS frames arrive according to a Poisson process and 
that the total arrival rate of frames destined for the RIWU is >.. Further, all lengths of all 
frames coming to the CLS are exponentially distributed with mean L. Let pvP denote the 
load on the output VP of the CLS, i.e. 

VP >.L 
P = Gout' 

(14) 

where Gaut denotes the capacity (speed) of the VP between the CLS and the RIWU. Besides 
the load p VP and the memory organisation, the content distribution of the read-in stage de­
pends on the characteristics of the CLS. We will consider two cases: a CLS with (practically) 
no buffers and no reassembly of frames and a CLS with buffers which reassembles frames 
before forwarding them to the RIWU. 

CLS without buffers and no reassembly of frames. In this case the frames are transmitted 
on the output VP in parallel (interleaved). Since the CLS has (virtually) no buffers, it must 
send out frames at the same speed as it receives them. Thus, assuming that all frames arrive 
at the same speed Gin, at most m = Gout/Gin frames can be sent out simultaneously. In this 
case the distribution pin of the number of frames in the read-in phase at the RIWU equals 
the distribution of the number of frames in an M/M/m/m queue (representing the output 
buffer of the CLS) with arrival rate >. and mean service time £/Gin· Due to the fact that 
frames are sent out independently of each other, the content distribution of the read-in stage 
for the three different memory organisations can be directly obtained from pin. 

CLS with frame buffering and reassembly. Next we consider the case of a CLS with buffers 
which reassembles frames. Now the number of frames which are in the read-in phase at the 
RIWU depends on the service strategy of the output buffer of the CLS. Extreme cases are 
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FIFO and PS disciplines. In the former there is at most one frame in the read-in phase, 
namely the one that is being sent by the CLS. In the latter all frames at the CLS that 
are destined to the RIWU are being transmitted simultaneously and thus are in the read-in 
phase at the RIWU. 

We only consider the PS case (the FIFO case being trivial). The distribution pin of the 
number of frames in the read-in phase at the RIWU now equals the distribution of the number 
of frames in an M/M/1 processor sharing queue with load pvP given by (14). The content 
distribution of the read-in stage for the static memory organisation can be obtained directly 
from pin. The content distribution for the dynamic (fully dynamic) memory organisation 
corresponds to the distribution of the total amount of required work (finished work) in the 
M / M /1 processor sharing queue. Explicit expressions for these distributions are derived in 
[2] (Vol II, Appendix D). 

3.2 Analysis of read-out stage 

To model the read-out stage, the QA access mechanism of the DQDB bus is assumed to 
approximate (on the frame level) an ideal head-of-line processor sharing (PS-HOL) discipline 
described e.g. in [5, 6]. If n stations are transmitting simultaneously, each of them gets one 
nth of the total bus capacity C (available to the CL traffic). The discrete time version 
of the model has been used in [7] to study mean packet delays in a symmetrically loaded 
multi-priority DQDB system. 

Let us call the RIWU station O and denote the number of other stations by N. We assume 
that frames enter the output buffer of the RIWU according to a Poisson process with rate 
Ao and that the other stations together generate frames according to a Poisson process with 
rate Abg (background traffic). The lengths of all frames are exponentially distributed with 
mean L. As before, we denote the load generated by the RIWU and the other stations by 
Po = AoL/C and Pbg = Ab9 L/C, respectively, and the total load by Ptot =Po+ Pbg· Further, 
let P'!i denote the steady state distribution of the number of frames, K, in the read-out 
stage at the RIWU in a system with N other stations. 

The total number of frames in the whole DQDB system behaves clearly as in an ordinary 
M/M/1 queue: the stationary distribution is geometric with parameter Ptot· In addition, the 
number of frames at each of the N + 1 stations obviously constitute a (N + 1)-dimensional 
Markov process. Unfortunately, there seems to be no closed form solution for the station­
ary probabilities even in the simplest case N = 1 and p0 = Pbg· For any finite value of 
N the distribution p';/ can, in principle, be obtained by numerically solving the forward 
Kolmogorov equations of the Markov process but the computational complexity becomes 
large when N > 1. However, in the case N = oo the state of the system is described by the 
number of frames at the RIWU and the total number of background frames, resulting in a 
two-dimensional Markov process. 

Using successive overrelaxation (see e.g. [8]) we were able to obtain prut and p':::,t. The 
content distribution of the read-out stage for the different memory organisations can be 
easily obtained from pout. 

Worst case considerations. Before presenting the numerical results we wish to deduce the 
worst case background traffic conditions for the read-out buffer content with respect to the 
number of other stations, the distribution of the background load among these stations and 
the level of the background load. 

First, one can easily show that, for given values p0 and Pbg and a symmetric distribution 
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of the background load over the other stations, p';l is smaller in distribution than p::;!1 for all 
N ~ 0. Thus, assuming an infinite number of other stations represents a worst case scenario 
for the loss probability in the RIWU. Note that the assumption of an infinite number of 
other stations implies that the transmission of each background frame starts immediately 
on the DQDB network and that p'::,1 does not depend on the distribution of the background 
load over the other stations. 

Second, one may ask how a given total background load Pbg should be distributed among 
a finite number, N, of background stations to get highest losses. By heuristic arguments one 
can deduce that a symmetrically loaded system is worst in this sense. In fact, an asymmetric 
load is roughly equivalent to a symmetrical load with a reduced number of background 
stations. For instance, the extreme case where the background load is concentrated on a 
single station is precisely the symmetric case with N = 1. The conclusion then follows from 
the preceding result. 

Third, the most tricky question is how the background Pbg load affects the losses for fixed 
normalized load Po and N (with a symmetric background system). Note that the total load 
Ptot = Po + Pb9 (1 - Po) changes with Pbg• We use again heuristic reasoning and consider 
the behaviour of the average queue length for three different background loads. First, when 
Pbg = 0 the RIWU queue is an M/M/1 queue with the load Po= Po· Next, when 

- sym - N'po 
Pbg - Pbg -def l + N'po (15) 

the system is completely symmetric (including the RIWU): Po = pbg/N. In this case the 
mean queue length, E(K'!lfflj, of the RIWU read-out buffer is same as the mean total queue 
length of the whole DQDB system divided by N + 1 or, as is easily verified, 

(16) 

i.e. the mean queue length of an M / M /1 queue with load 'po. Finally, consider the system 
with a higher background load Pbg = N/(N + 1) > p;7:". In this case the load of the RIWU 
is Po = 'iio/(N + 1). Now, if the service rate of the RIWU were C/(N + 1) (constant), 
the system would be equivalent to an M/M/1 queue with load (N + l)Po = Po· But as a 
minimum service rate C/(N + 1) is always guaranteed by the PS-HOL discipline, this must 
be an easier case than M/M/1 queue with load 'po. 

By the continuity, these observations suggest that, starting from Pbg = 0, the mean queue 
length first increases with Pbg, then returns to the same level when Pbg = p;;m, and continues 
to decrease with higher background loads. This behaviour is verified by simulation results 
shown in Fig. 3, where (E(K] - E[K•Ym])/E[K•!lffl] is plotted against Po for three different 
values of background load, Pbg = 0.1, 0.3, 0.5 with a) N = 1 and b) N = 3. Note that e.g. in 
the case N = 1 the curves Pbg = 0.1 and 0.3 indeed cross level O close to the theoretical 
crossing points of (15) Po = 1/9 ::::::: 0.11 and 3/7 ::::::: 0.43, respectively. The curve Pbg = 0.5 
stays below level O in the case N = 1 as it should as the load N/(N + 1) was deduced to be 
an easier case than an M/M/1 queue with load p0 • 

Thus for any finite value of N and given Po there is a worst case Pbg < p:;m. In the limit 
N ➔ oo the upper bound tends to one, p;;m ➔ 1. We conjecture that in this limit the buffer 
requirement increases with increasing background load (worst case Pbg tends to 1) for all 'po. 
An indication of this behaviour is given by Fig. 3. 

Numerical results. In Fig. 4a the maximum allowed normalized load Po of the RIWU is 
plotted as a function of the buffer size. The number of background stations N is varied, 
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Figure 3: (E[K] - E[Ksym])/E[Ksym] as a function of the normalized load of the RIWU with 
different background loads and number of background stations: a) N = 1, b) N = 3 . 

. V = 1. 2. 3, x, the background load being fixed Pbg = 0.6 and symmetric. The results for 
the intermediate values N = 2 and 3 were obtained using Monte Carlo simulation_ As we 
deduced earlier. the buffer requirement becomes greater as the number of stations increases. 

In Fig. 4b the maximum allowed normalized load p0 is plotted as a function of the buffer 
size for different Pbg with N = x ( reflecting the worst case). We see that, for a given 
normalized load p0 , the required amount of memory indeed increases with the background 
load Pbg confirming our conjecture. This behaviour can also intuitively be explained by the 
fact that high background loads result in longer periods during which the service capacity 
arnilable to the RI\\T is small compared to the arrival rate of frames, i.e. during these 
periods the RI\VC experiences (over)load. 

It is not possible to dimension the buffer in such a way that a given normalized load 
of, say p0 = 0.8. can be allowed for every possible background load. One has to choose a 
dimensioning point both for p0 and Pbg based on a trade-off with a rapidly increasing buffer 
size if these rnlues are pushed too close to one. 

3.3 Results on buffer dimensioning 

\\'e now obtain the required buffer size of the RIWU for two different CLSs and for the three 
different memory organisations considered. The buffer of the RIWU is dimensioned such that 
in our models Pioss < 10-4 in the following parameter range: pvP < 0.8, Po < 0.7, Pbg < 0.6 
and N = ex:, ( worst case). 

For the CLS with no buffer and no reassembly the required buffer sizes of the RIWU for 
the different memory organisations are: 

Static memory allocation: 83 Lmax 

Dynamic memory allocation: 106 L 
Fully dynamic memory allocation: 87 L 

(763 kbytes) 
(159 kbytes) 
(131 kbytes) 

where we have additionally assumed m < 20 (maximum number of interleaved frames). The 
corresponding numbers for the CLS which buffers frames and uses a processor sharing (PS) 
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Figure 4: _.\!lowed normalized load p0 of the RIWC for P1oss = 10-4 as a function of the 
read-out buffer size: a) N is a parameter and Pbg = 0.6; b) Pbg is a parameter and N = oo. 
Fully dynamic memory allocation is assumed. 

service strategy are: 

Static memory allocation: 73 Lmax 

Dynamic memory allocation: 99 L 
Fully dynamic memory allocation: 77 L 

(671 kbytes) 
(149 kbytes) 
(116 kbytes) 

The numbers in parentheses correspond to a mean frame size L = 1500 bytes and a maximum 
frame size Lmax = 9188 bytes. In all cases the size of the buffer is mainly determined by the 
memory requirement of the read-out stage as can be seen by comparing the results to those 
in Fig. 4. The difference between the two CLS types, however, is due to th() differences in 
the required read-in stage buffers. 

4 Conclusions 

We have analysed the buffer requirements of a RI\\'U carrying CL traffic from an AT11 
network to a DQDB network. Buffer size affects the allowable normalized load, consistent 
with a given loss probability, of the RIWC in relation to the mean bandwidth available 
at the DQDB bus (when CO traffic and the traffic of other stations has been subtracted). 
Increasing the buffer size is only effective up to a certain point determined by the knee in 
the allowable load vs. buffer size curve. This has been used as the basis for dimensioning of 
the buffers. 

Several factors affect the analysis. The main distinction has been made between the 
cell-to-slot and frame operating modes of the RIWU, which lead to different modelling ap­
proaches. In the case of a frame mode RIWC, additionally, the operating mode of the CLS 
as well as the memory organization of the RIWU affect the buffer requirements. All the 
basic cases have been covered by our analysis. 

The main emphasis in this work has been in modelling the effect of the variable capacity 
of the DQDB bus due to the traffic from other sources. We have concluded that worst case 
conditions arise when the number of other sources is very large and their load increases. 

A crucial assumption in the analysis of the models presented in this paper is that of the 
Poissonian frame arrivals .. .\n interesting topic for further research is to study the influence 
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of other {e.g. more bursty) frame arrival processes on buffer requirements of the RIWU. 
Finally, we note that basically the same analysis that has been presented in this paper 
applies to any station attached to the DQDB bus. 
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1 Introduction 

Many queueing problems can be modeled as random walks on a multi-dimensional grid. A 
time-dependent analysis of such models appears to be possible only in rare cases, and even 
then the solutions are quite complicated. Therefore, in this paper attention is focussed upon 
the equilibrium behavior of these models, rather then upon their time-dependent behavior. 

The equilibrium distribution of a random walk on a grid is the solution of a set of equi­
librium equations. These equations can be viewed as difference equations. In the theory of 
differential equations, the continuous analogue of difference equations, a well-known solu­
tion approach is separation of variables (see e.g. Garabedian (11]). This method attempts 
to solve differential equations by constructing sums of product-form solutions. It seems 
natural to investigate whether it is also possible to solve equilibrium equations by sums of 
product-form solutions. And if so, under which conditions are such solutions feasible, and 
which techniques can be used to find such solutions? In the attempts to find sums of product 
forms as solution, three main directions may be distinguished, namely: 

1. Exactly one product form as solution; 

2. A finite sum of product forms as solution; 

3. A countably infinite sum of product forms as solution. 

The first direction is the oldest one. It has also been studied most systematically, see e.g. 
Jackson (14], Gordon and Newell [12], Baskett et al. (5], Kelly (15], Lavenberg and Reiser 
(17] and Van Dijk (9]. In (5) a practical characterization is given of queueing networks with 
a product-form solution. The conditions under which the solution is a single product form 
are rather severe, but, most strikingly, they do not depend on the dimension of the state 
space. This feature makes this product-form approach very important, since it is virtually 
the only more general approach for really complex queueing systems. 

The other directions are newer and may be viewed as a generalization of the first one. 
The results in these directions are less systematic than the first one. This paper aims at 
reviewing some of the particular techniques required for the construction of sums of product 
form solutions. 

An important application in the second direction is the multi-server queue with Erlang 
( or Cox) arrivals and services. Queueing problems of this type can be described as a random 
walk on a multi-dimensional grid which is unbounded in only one direction. In section 2 we 
will show that the queue length distribution can be written as a sum of products. To find 
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this solution we use a direct approach which is based on separation of variables. The third 
direction is based on the compensation approach. This approach has been developed for 
one rather general class of multi-dimensional random walks (unb01111ded in eacli direction) 
and for several related special cases. An important example in this direction is the shortest 
queue problem. In section 3 we will sketch the analysis of this problem to demonstrate the 
basic ideas of the compensation approach. 

2 Finite sum of products: System with Erlang servers 
In this section we study a system with c parallel identical servers and a common queue. The 
service times are Erlang-r distributed with mean r / µ. This means that a service has to go 
through up to r exponential stages, eacli with mean 1 / µ. The service discipline is first-come 
first-served. Jobs arrive according to a Poisson stream with rate A. This system can be 
modeled as a continuous-time Markov process with states n ;:::: (no, n1 , •.• , nc), where no 
is the number of waiting jobs and n; is the number of remaining service stages for server i, 
i = 1, ... , c. So no ranges from Oto oo and n;, i = 1, ... , c, from Oto r, where n; = 0 is only 
possible if no = 0. Note that completion of a service stage at server i leads to a departure if 
n; = 1. The flow diagram for c = 1 is depicted in figure 1. 

Figure 1: Flow diagram for the model with c = 1 

Our aim is to determine the equilibrium probabilities p(n). Once these probabilities are 
known we can compute performance characteristics such as, for example, the mean queue 
length and the mean waiting time. We will show that p(n) can be expressed as a finite sum of 
products of powers. To do so we first introduce some notations and formulate the equilibrium 
equations for p(n) that will be relevant to the analysis. Let e; = (0, ... , 0, 1, 0, ... , 0) have 
c + 1 components, with the one at the same place as n; in n and let 8(n) be 1 if n = r and 
0 otherwise. By equating the rate out of and the rate into state n we obtain 

C C 

p(n)(A + cµ) = p(n - e0)A + I:;p(n + e;)µ(l - 8(n;)) + I:;p(n + e0 - (r - l)e;)µ8(n;), 
i=l i=l (1) 

which is valid for all states n with n0 2: 1. The equations (1) form the inner conditions, 
the equations in states with no = 0 form the boundary conditions. The precise form of the 
boundary conditions is not relevant to the analysis, and therefore it is omitted. 

The approacli to solve the equilibrium equations will be based on separation of variables, 
an elementary approach for the solution of partial differential equations. Below we demon­
strate this approach for a simple problem of conduction of heat (cf. Carslaw and Jaeger [8]). 
Then we will show how the same approach can be used to determine the probabilities p(n). 
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An analogue: Conduction of heat in a thin rod 
Consider the following problem (see also figure 2): 

Uxx - Ut = 0, 

u(0, t) = ux(l, t) = 0, 

u(x,0) = v(x), 

0 < x < 1, t > 0, 

t 2: 0, 

0:-S:x:-S:l. 

(2) 

(3) 

(4) 

The function u(x, t) can be interpreted as the temperature in a thin rod along the interval 
0 ::; x '.S'. 1. The end x = 0 is maintained at zero temperature, while the end x = 1 is isolated 
(no flow of heat). The initial temperature at t = 0 is given by v(x). This problem may be 
solved by first constructing solutions of the form 

u(x, t) = X(x)T(t), (5) 

satisfying (2) and boundary conditions (3). By linearity of (2)-(3) any linear combination 
of solutions in this set satisfies these equations. The next step is to construct a linear 
combination which also satisfies initial condition (4). Substitution of (5) in (2)-(3) yields 

X 

u,(1,1)=0 

u(x, 0) = v(x) U.u-ll,=0 

u(0,t)=0 

Figure 2: Equations for the temperature u(x, t) in a thin rod 

X"(x) T'(t) 
X(x) = T(t) =constant= A, X(0) = X'(l) = 0, 

where A is the separation constant. Only for the values A = Aj = -(j + 1/2)2n2 with 
j = 0, 1, ... these equations have a nontrivial solution, namely 

Uj(x, t) = sin(xM)eA;t_ 

Then the solution of (2)-( 4) can be written as a linear combination of functions in this set, 

00 

u(x, t) = L Cjuj(x, t), 
j=O 

where the coefficients Cj follow from initial condition (4). 
We now return to the queueing problem and try to use the same approach as above. In 

the first step we construct solutions of the form 

(6) 

satisfying the equations (1). In the second step we use these functions to construct a linear 
combination also satisfying the conditions for n0 = 0. Insertion of (6) in (1) yields 

, _ Fo(no - 1), ..[- F;(n; + 1) ( _ '( ·)) ..[- Fo(no + 1) F;(l) '( ·) 
"+cµ- ( "+L.,; ( µ1 un, +L.,; ( )µun,. 

Fo no) i=l F; n;) i=l Fo(no) F; r 
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Considering this equation for n; < r (so 6(n;) = 0) leads to the conclusion that 

Fo(no - 1) 1 
F, ( ) = constant = -, 

o no ao 
no 2: 1, 

F;(n; + 1) 
F;(n;) = constant = a;, n; = 1, ... , T - 1, i = 1, ... , C. 

So the functions F;(n;) are powers of a;. Hence the solutions (6) are of the form 

where the (separation) constants a; have to satisfy 

(7) 

To satisfy this relation for all n; the coefficients of the functions 6(n;) must be zero, so we 
obtain that ao = ar = ... = a;, or equivalently, 

(8) 

with x2 = ... = x~ = 1. Substitution of (8) in (7) yields the following equation for a1: 

(9) 

The condition that the sum of all probabilities p(n) is equal to 1 implies that only products 
with laol < 1, or equivalently, lad < 1 are useful. For each feasible choice of x; it can 
be shown that equation (9) has exactly r roots a 1 with lad < 1 provided the utilization 
condition >.r/µ < c holds. So we find rc products satisfying (1). We label these products 
a0J · · · a~,J, j = 1, . . . , rc. This concludes the first step. In the second step we express p( n) 
as a linear combination of the products in this set. The number of unknown coefficients 
in this linear combination is sufficient to also satisfy the equilibrium equations for states n 
with no = 0. Below we summarize our findings. Rigorous proofs may be found in [4]. 

Theorem 2.1 Provided >.r / µ < c, there exist coefficients c1 such that 

r' 
p(n) = '°' C3·aono_ •• ·an'. ~ ,J c.,3 

j=l 

for all n with n; 2'. 1, i = 1, ... , c. 

Remark 2.2 (Extensions) The approach demonstrated in this section also works in case of 
Erlang distributed interarrival times, see [4]. A similar technique, based on separation of 
variables, has been applied by Bertsimas [7, 6] to solve the Ek/C2 / s and Ck/Cr/ s system, 
respectively. 

Remark 2.3 (Matrix-geometric approach) The equilibrium distribution can also be repre­
sented in a matrix-geometric form (see e.g. chapter 3 in Neuts [19]). There is a close relation 
between Theorem 2.1 and this representation. Namely, the factors a0,1 are the eigenvalues 
of the rate matrix and the products ar,i • • • a~.J are the associated eigenvectors. 
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3 Infinite sum of products: Shortest queue problem 

The system we consider in this section consists of two parallel and identical servers, each 
with its own queue (see figure 3(a)). The service times are exponentially distributed with 
mean 1. Jobs arrive according to a Poisson stream with rate 2p where O < p < 1. On 
arrival a job joins the shortest queue, and if queues have equal length, joins either queue 
with probability 1/2. The stjite of the system can be described by the pair (m, n) where m 
is the length of the shortest queue and n is the difference between the longest and shortest 
queue. The flow diagram is shown in figure 3(b). Let p(m, n) be the equilibrium probability 
for state (m, n). The object in this section is the determination of p(m, n). 

n 

I 

~-. 
I 2p 2p. 

2p 
2p 2 2p 

m 

(a) (b) 

Figure 3: (a) Shortest queue system (b) Flow diagram 

The equilibrium equations are given below. In these equations we have eliminated the 
probabilities p(m, 0) from (11) and (13) by substituting (14)-(15). This is done to simplify 
the presentation. The analysis can now be restricted to the probabilities p(m, n) with n > 0 
satisfying (10)-(13). The equations (14)-(15) may be treated as definition for p(m, 0). 

p(m, n)2(p + 1) 

p(m, 1)2(p + 1) 

p(0, n)(2p + 1) 

p(0, 1)(2p + 1) 

p(m, 0)2(p + 1) 
p(0,0)2p 

p(m - 1, n + l)2p + p(m, n + 1) + p(m + 1, n - 1), 

m>0,n>l, 

p(m - 1, 2)2p + p(m, 2) 
1 

+(p(m, 1)2p + p(m + 1, 1))-­
p + l 

+(p(m -1, 1)2p+ p(m, 1))-P-, m > 0, 
p+l 

p(0,n+l)+p(l,n-1), n>l, 
1 

p(0, 2) + (p(0, 1)2p + p(l, 1))- + p(0, 1), 
p+l 

p(m - 1, 1)2p + p(m, 1), m > 0, 

p(0, 1). 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

The usual approaches to solve the equilibrium equations are based on generating functions 
(see e.g. [16, 10]). In this section we present an approach which directly tries to solve the 
equations. The idea is similar to the one in the previous section. We first try to find a set of 
products amt3n satisfying the inner conditions (10). Then we use the products in this set to 
construct a linear combination which also satisfies the boundary conditions (11)-(13). The 
first part is easy. Substituting amt3n into (10) and then dividing by common factors yield a 
quadratic equation for a and /3 (see figure 4). 
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Lemma 3.1 The product a,m(Jn satisfies (10} if 

(16) 

~ 

Figure 4: Curve (16) characterizing the set of products a,m(Jn satisfying (10) 

The problem we are now facing is different from the one in the previous section. There we 
found a finite set of products satisfying the inner conditions and these products were all used 
to construct the solution. Now we have a continuum of products satisfying (10). How do 
we select the appropriate products from this set? The selection is based on a compensation 
idea (which explains the name of the approach). This idea has an interesting analogue in 
electrostatics, where it is known as the method of images. 

An analogue: Potential problem of conducting spheres 
Consider two non intersecting conducting spheres, whose centers are A and B, their radii 

a and b and their potentials 4>4 and 0, respectively. Suppose that their distance of centers 
is c (see figure 5). Below we show how the potential <I> outside the spheres can be found by 
the method of images (see e.g. Maxwell [18]). 

M>=O 

<l>=<I>, <1>=0 

Figure 5: Potential problem of two non intersecting conducting spheres 

If the spheres did not influence each other (c = oo), then the potential 4> is that of point 
charge o0 = a<I>a located at A. However, since c is finite, the potential does not vanish on 
sphere B. Therefore we place inside sphere B a new point charge (30 at distance Co from 
B on the ray AB, and choose (30 and c0 such that the sum of the potentials of the charges 
o 0 and /30 vanishes on sphere B. Note that the charges must be placed inside the spheres, 
since their potentials must be solutions to the Laplace equation outside the spheres. But, 
by adding charge /30 we alter the potential on sphere A. To keep that potential unaltered 
we again place inside sphere A a point charge o 1 at distance d1 from A on the ray AB, and 
choose o 1 and d1 such that the potential of o 1 and /30 vanishes on sphere A. In doing so we 
altered the potential on sphere B, and so on. We keep on adding point charges inside sphere 
A and B to alternately satisfy the boundary conditions on the two spheres. This results in 
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an infinite sequence of point charges. The value of <Ii outside the two spheres is given by the 
sum of the potentials of these charges. 

We will now use the same approach as above to find the probabilities p( m, n). The 
products c,m(Jn satisfying (10) play the role of the point charges inside the spheres. The 
conditions (11)-(13) on the horizontal and vertical boundary act as the boundary conditions 
on the two spheres. 

The starting solution, which is correct far away from the vertical boundary, is given by 

(17) 

where eto = p2 , /Jo= p2/(2 + p). This solution satisfies the inner conditions (10) and the 
horizontal boundary conditions (11). But it violates the vertical boundary conditions (12). 
Therefore we add a product c1 c,1 /Ji to ( 17) and choose c1, c,1 and (31 with c,1, (31 satisfying 
(16) such that the sum 

p(m, n) = c,;{'(30 + c1aifJ'i 

satisfies (12). But the new term violates the horizontal boundary conditions (11). So we add 
again a product c2a':f.'/J!i and so on. We keep on adding products, each one satisfying (10), 
so as to alternately satisfy the two boundary conditions. This results in an infinite sum of 
products. The sum is a formal solution of the equilibrium equations. What remains is the 
proof of convergence. This can be found in [1, 3]. The conclusion is formulated below. 

Theorem 3.2 There exist products a'('(Jf satisfying {10) and coefficients e; such that the 
equilibrium probabilities p( m, n) can be expressed as 

00 

p(m,n) = I:c;a;"(Jf, m ~ O,n > 0. 
i=O 

Remark 3.3 (Explicit determination of et;, (J;, e;) The a;, (J;, c; mentioned in Theorem 3.2 
can be solved explicitly, see [3]. Hence Theorem 3.2 provides an explicit characterization 
of p(m, n). And based on the expression for p(m, n) similar expressions may be derived for 
performance characteristics, such as the mean waiting time and mean queue lenghts. 

Remark 3.4 (Geneml result) Above we developed an approach to solve the shortest queue 
problem. But what is the scope of this approach? In [2, 3] it has been applied to a class 
of two dimensional Markov processes on the lattice in the positive quadrant of JR.2 . For the 
processes in this class the transition rates are restricted to neighboring states and they are 
constant in the interior points and also constant on each of the axes (see figure 6). It appears 
that the equilibrium probabilities p(m, n) can be expressed as an infinite sum of products, 
which can be found by the compensation approach, provided 

qo,I = ql,I = ql,0 = 0. (18) 

So there may be no transitions in the interior points to the North, North-East and East. 
This result can be extended to processes of dimension 3 or higher (see Van Houtum [13]). 
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obtained via cyclic mappings 

Richard J. Boucherie* 
Department of Econometrics 
Universiteit van Amsterdam 
E-mail: boucheri@fee.uva.nl 

Abstract 

This note shows that the transition matrix of the restriction of a Markov chain to 
a subset A of the state space S can be obtained from the transition matrix of the 
original Markov chain at S if a cyclic mapping can be defined. The transition matrix 
of the restricted process can then be expressed as a sum of terms all obtained from the 
original Markov chain. 

1 Introduction 

Recently, the transient behaviour of Markov chains has regained considerable attention. In 
particular, the transition matrix of queueing networks consisting of infinite-server queues 
has been analyzed in great detail (cf. Massey and Whitt [7]). These results extend previous 
results on these networks (Foley [4], Harrison and Lemoine [5], Kingman [6]) to more general 
arrival and service processes. The result of [4, 5, 6, 7] is that the transition matrix for the 
number of customers present at the stations of a queueing network of infinite-server queues is 
of product-form. In contrast, Boucherie and Taylor [2] show that the results of [7] cannot be 
extended to more general queueing networks: a transient product-form for queueing networks 
with interaction between the queues can be obtained for networks of infinite-server queues, 
only. Therefore, closed form results for more complicated queueing networks require different 
solution concepts. 

Boucherie [1] has shown that the transient distribution of the Engset loss model with s 

servers and N = 2s + 1 sources can be expressed as a sum of two product-form distributions 
arising in the model with N servers instead of s. This note provides a theoretical motivation 
of this result and extends it to sums containing multiple terms. The result of this note 
is particularly useful when the transition matrix for the unconstrained Markov chain at 
state space S can be easily obtained. Then, under the conditions provided in this note, the 
transition matrix for the constrained case with state space A C S can be derived from the 
transition matrix at Sas a sum of terms all obtained from the transition matrix at S. 

'The research of R.J. Boucherie has been made possible by a fellowship of the Royal Netherlands Academy 
of Arts and Sciences. Part of this work was carried out while the author was ERCIM fellow at INRIA Centre 
Sophia Antipolis, France. 
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2 Model and results 

Consider a time-homogeneous, conservative, stable, regular, continuous-time Markov chain 
X = {X(t), t 2 0} at countable state space S, with q-matrix Q = (q(n,n'), n,n' 
E S), where q(n, n) = - Ln';!n q(n, n'). Under these conditions the transition matrix 

P(n",n;t) = P{X(t) = nlX(0) = n"}, n,n" ES, t 2 0, 

is the unique solution of the Kolmogorov forward equations (cf. Chung [3, Theorem II.18.3]), 
for n,n" ES, 

dP(n", n; t) 
dt 

L {P(n",n'; t)q(n',n) - P(n", n; t)q(n, n')}. 
{n'ES, n';!n} 

(1) 

Definition 2.1 (Restriction) The restriction of X to A C Sis the Markov chain XA = 
{XA(t), t 2 0} at state space A with q-matrix QA= (qA(n,n'), n,n' EA) given by 

( ') { q(n, n'), if n # n', 
qA n, n = ( *) .f , - Ln•eA, n•;!nq n,n , 1 n = n. 

(2) 

Note that {XA(t), t 2 0} is conservative, stable and regular. Let PA(n",n;t) denote its 
transition matrix. 

Definition 2.2 (Cyclic mapping) Let {Adk=I, ... ,K be a partition of S: A;nA1 = 0, i # j, 
uf=1 Ak = S. A mapping F : S -+ S is a cyclic mapping of order K of the Markov chain X 
when F has the following properties: 

F is injective and surjective; 

q(n, n') = q(F(n), F(n')), n, n' E S; 

F(Ak)=Ak+i, k=l, ... ,K-1, F(Ax)=A1. 

(3) 
(4) 
(5) 

The following lemma is an immediate result of (3) and (4) above. In combination with (5), 
the lemma shows that the equilibrium distribution on the sets in the partition must be equal 
when X has a cyclic mapping. 

Lemma 2.3 (Equilibrium) If X is ergodic with cyclic mapping F, then the equilibrium 
distribution, ir = (ir(n), n ES), satisfies 

ir=iroF. 

Proof If X is ergodic then the equilibrium distribution exists and is the unique distribution 
that satisfies the global balance equations 

L { ir(n')q(n', n) - ir(n)q(n, n')} = 0, n E S. 
{n'ES, n';!n} 

Insertion of v(n) = 7r(F(n)) into this equation gives, for n ES, 

L {v(n')q(n', n) - v(n)q(n, n')} 
{n'ES, n';!n} 

L { ir(F(n'))q(F(n'), F(n)) - ir(F(n))q(F(n), F(n'))} 
{n'eS. n';!n} 

L { ir(n*)q(n*, n**) - ir(n**)q(n .. , n*)} = 0, 
{n•es, n•;!n"} 
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where n•• E Sis the unique state such that F(n) = n**. Unicity of 1r completes the proof. 
□ 

The following theorem relates the transition matrix of the process restricted to A to the 
transition matrix of the original process. 

Theorem 2.4 Let {Ak}k=I, ... ,K be a partition of S, and let F be a cyclic mapping of order 
K. Assume tha.t for n E A 1 , n' r/. Ai, 

q(n, n') > 0 <==} n' = F(n) or n' = p-1 (n). 

Jf P{X(0) E Ai} = 1, the restriction XA, of X to A1 ha.s transition matrix 

K 

PA,(n",n;t) = I:;P(n",Fk(n);t), n,n" E A1, t ~ 0, 
k=l 

where pk is the k-fold convolution of F with itself. 

(6) 

(7) 

Proof Since XA, is conservative, stable and regular, the transition matrix is the unique 
solution of the Kolmogorov forward equations (1) at A1• Denote Ao:= AK, and F° := pK_ 
Insertion of QA, and PA, into the Kolmogorov forward equations gives for n E A1 , t > 0, 

dPA, (n", n; t) (J} f, dP(n", Fk(n); t) 
dt k=I dt 

K 

~ L L { P(n", n'; t)q(n', Fk(n)) - P(n", Fk(n); t)q(Fk(n),n')} 
k=l {n'eS, n•,!F•(n)} 

~ E L { P(n", n'; t)q(n', F\n)) - P(n", Fk(n); t)q(Fk(n), n')} 
k=l {n'EA•, n',!F•(n)} 
K 

+ L L { P(n", n'; t)q(n', F\n)) - P(n", Fk(n); t)q(F\n), n')} 
k=l n'EAk+l 

K 

+ L L { P(n", n'; t)q(n', Fk(n)) - P(n", Fk(n); t)q(Fk(n), n')} 
k=l n'EAk-1 

K 

= L L { P(n", Fk(n'); t)q(Fk(n'), F\n))-P(n", Fk(n); t)q(Fk(n), F\n'))} 
k=l {n'eA,, n',!n} 

K 

+ L L { P(n", pk+i(n'); t)q(Fk+ 1(n'), Fk(n))-P(n", Fk(n); t)q(Fk(n), Fk+l(n'))} 
k=l n'eA1 

K 

+ L L { P(n", pk-1(n'); t)q(Fk- 1(n'), Fk(n))-P(n", F\n); t)q(Fk(n), pk-1(n'))} 
k=l n'eA, 
K 

<4g/6l L L { P(n", Fk(n'); t)qA, (n', n) - P(n", Fk(n); t)%(n, n')} 
k=l {n'eA,, n',!n} 

K 

+ L { P(n", pk+1(n); t)q(Fk+l(n), Fk(n)) - P(n", Fk(n); t)q(Fk(n), pk+l(n))} 
k=l 
K 

+ L { P(n", Fk-l(n); t)q(Fk- 1(n), Fk(n)) - P(n", Fk(n); t)q(Fk(n), pk-1(n))} 
k=l 
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K 

I; I; { P(n", Fk(n'); t)% (n', n) - P(n", Fk(n); t)% (n, n')} 
k=I {n'EA1, n',fin} 

I; {PA,(n",n';t)qA,(n',n)- PA,(n",n;t)qA,(n,n')}. 
n'EA1 

Normalisation of PA, can easily be verified from (7). D 

It is interesting to observe that under the conditions of Theorem 2.4 at each subset Ak 
the transition matrix converges to the same limit: from Lemma 2.3 

lim P(n", Fk(n); t) = 1r(n), n E A, k = l, ... , K. 
t~oo 

Remark 2.5 In condition (6) transitions from Ak to Ak+i and from Ak to Ak-l are allowed 
only. Observe that these transitions are not required for the statement of Theorem 2.4 to be 
justified. In particular, replacing (6) by 

q(n, n') > 0 <=> n' = F(n) (8) 

allows transitions from Ak to Ak+t but not from Ak to Ak-t· This shows that the result of 
Theorem 2.4 is not a consequence of balance between successive sets. In fact, from the proof 
of Theorem 2.4 it is apparent that (8) is responsible for the terms involving transitions from 
Ak to Ak+1 cancelling in the equality(*)-

Remark 2.6 (Applicability of the result) Theorem 2.4 relates the transition matrix of 
XA to the transition matrix of X. Application of this theorem therefore requires the latter 
transition matrix to be known. A motivation for Theorem 2.4 comes from equilibrium 
analysis of queueing networks, where the equilibrium distribution in the unconstrained case 
is usually much easier to obtain than the equilibrium distribution in the constrained case. 
In the example below, this situation is carried over to the transition matrix: the transition 
matrix of the unconstrained case is of product-form as obtained from [2], which enables the 
evaluation of the transition matrix of the constrained case. 

3 Example 

This section provides an example of the result of Theorem 2.4. In this example the transition 
matrix at S is known to be of product-form. The example considers the case of 2 sets, A 
and AC, but can be extended to multiple sets. First the product-form results are reviewed 
in section 3.1. The example of a transition matrix that is the sum of two product-forms is 
given in section 3.2. 

3.1 A product-form network 

Consider a closed queueing network consisting of M infinite-server queues containing N 
customers. A state of the queueing network is the vector n = (n1 , •.• , nM) with components n, denoting the number of customers present at station i. The state space S of this queueing 
network is 

M 

S = {n E 1Ng,1'iI;n, = N}. 
i=l 
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Let µ; be the service rate at station i. A customer completing service at station i is 
routed to station j with probability Pii· The transition rates are 

(n n') = { n;µ;p;;, n' = n .- e; + e;, 
q ' 0, otherwise, 

(9) 

where e; is the i-th unit vector containing a 1 in place i, zeros elsewhere. 
Assume that the initial distribution of the Markov chain modelling this queueing network 

is P(n"; 0) = l{n" = e1), i.e., initially all customers reside at station 1. From [2], the 
transition matrix is 

P (n" n· t) - NI ITM (ck(t))n• ...!_ 
s ' ' - . I' k=I µk nk, 

n",n ES, (10) 

where {c;(t)}~1 the solution of 

{11) 

with initial conditions Ck{O) = l{k = 1). The product-form transition matrix {10) is de­
termined by an M dimensional differential equation, which substantially reduces the effort 
required for determining this transition matrix. The product-form transition matrix will be 
used in the example below. 

3.2 A sum of two product-forms 

Consider a closed queueing network consisting of M = 2R infinite-server stations which are 
grouped into two clusters, cluster 1 containing stations 1,.;., R, and cluster 2 containing the 
remaining stations. Assume that each cluster has a unique input/output station from which 
customers can route to the other cluster. Let stations R and R + 1 be these input/output 
stations. Let s E IN, and assume that N = 2s + 1 customers are present in the queueing 
network. The assumption on the cluster structure then implies that the routing probabilities 
satisfy 

R 2R 

L Pii = 1, 1 $ i < R, L Pii = 1, R + 1 < i $ 2R. 
i=I j=R+I 

Let A be the state space for the queueing network in which the number of customers at 
cluster 1 is restricted not to exceed s, that is 

R 

A= {n E SI En;$ s}, 
i=l 

then, under the condition N = 2s + 1, S =AU Ac. Further, assume that the service rates 
and routing probabilities are such that 

µ; = µ2R+1-i, Pij = P2R+l-i,2R+l-j, i,j = 1, ... '2R, (12) 

which implies that cluster 2 behaves exactly like cluster 1. 
Define the cyclic mapping, F, of order 2 as 
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that is F(n); = n2R+I-i· It can easily be shown that F satisfies all criteria of Definition 2.2, 
and Theorem 2.4. Therefore, we may now conclude that the transition matrix of the Markov 
chain {XA(t), t 2: O}, at state space A, with transition rates (9) satisfying (12) is given by 

P(n",n;t) = N! IT (ck(t))n• ~ +N! IT (q(t))F(n)•-1- 1, n",n EA, t 2: 0, 
k=I µk nk. k=I µk F(n)k-

where { e;(t)}~1 is determined from the differential equation (11). 
Observe that for R = l the example reduces to the Engset loss model. The assumption 

(12) then implies that the service rate equals the rate at which customers arrive to the 
station. This model was discussed in [l], where the transition matrix was shown to be a sum 
of 2 product-forms. 
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1 Introduction 

Various real-life situations are modelled in a natural way by queueing systems with periodic 
service. In these systems a server is offering service to customers periodically. Figure 1 gives 
an example of a periodic service policy. In this figure the server alternately does not offer 
service for 30 time units and offers service for 10 time units. 

0 30 40 70 80 110 

Figure 1: A representation of a periodic service policy 

Fixed-cycle traffic lights, computer systems with periodic access schemes and periodic 
production rules are three examples of situations that can be modelled by systems with pe­
riodic service. More precisely, for the first example consider a traffic light at an intersection. 
Cars that approach this intersection from a certain direction alternately face red and green 
time periods of fixed duration. In a real-time computer system the capacity for executing 
tasks is shared by different types of tasks. Some of these tasks have strict time-critical re­
quirements. To meet these requirements these tasks have priority and their executions are 
scheduled periodically. So the system's capacity is available to the ordinary tasks periodi­
cally. For the third example consider a machine at a production centre. Every four weeks, 
say, this machine produces a certain type of product for one week. 

Queue lengths and sojourn times are important performance measures, and many other 
performance measures, such as the fraction of customers served in time, can be obtained from 
them. To evaluate queueing systems with periodic service we need techniques for determining 
these performance measures. In the literature both analytical and approximative approaches 
have been applied. 

Typical analytical techniques are the generating-function technique (e.g., Darroch [4] 
and Rubin & Zhang [13]), the use of Laplace-Stieltjes transforms (e.g., Sahin & Bhat [14], 
Schassberger [15], and Ott [11]), and the matrix-geometric approach (e.g., Alfa & Neuts 
[2]). Unfortunately we face both analytical and numerical problems when applying these 
techniques. More specifically, for the generating-function technique an important and well­
known problem is the determination of the solutions of a characteristic equation. Further 
these solutions have to be substituted into a system of regularity conditions. Since these 
solutions may be closely clustered, solving this nearly linearly dependent system can lead to 
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numerical difficulties. The use of Laplace-Stieltjes transforms requires the often difficult task 
of solving integral equations and of inverting these transforms for obtaining explicit results. 
If we want to apply the matrix-geometric approach, we have to solve a polynomial matrix 
equation. Solving this equation may be time consuming when the matrices are large or when 
the utilisation factor is close to one. Furthermore, the size of the matrices involved becomes 
quite large when this approach is applied to queueing systems with periodic service. 

Approximations for the average waiting time or queue length have been derived by, e.g., 
Webster [20], Fischer [7], and Federgruen & Green [6]. However, information about averages 
only is often insufficient for evaluating queueing systems; other performance measures, like 
the fraction of customers served in time, are important too. Furthermore, some of these 
approximations are only valid for a rather limited class of queueing systems with periodic 
service. For instance, some approximations have been derived for the case that the service 
times are deterministic and for the case that the queue length cannot increase during periods 
the server is offering service. 

So both analytical and approximative approaches as found in the literature may not be 
quite suited or may be too limited for analysing and evaluating systems with periodic service. 
This raises the question whether there are useful techniques for analysing and evaluating 
these systems; in particular whether there are techniques for determining the queue-length 
and sojourn-time distribution of customers. In this paper we present two techniques for 
determining the queue-length distribution. The results of these techniques can be used to 
obtain the sojourn-time distribution. 

In the first technique we consider the queue length at certain time instants. This tech­
nique then exploits that, for a broad and important class of arrival-processes and service-time 
distributions, the tail of the stationary queue-length distribution at these instants is asymp­
totically geometric. This technique is a generalisation of the approach in Tijms & Van de 
Coevering [18]. 

For the second technique we derive a periodic system of equations describing the queue-­
length process. Each of these equations is related to Lindley's equation for the D /G /1 
queueing system. The second technique solves this system of equations by a moment­
iteration technique which is based on De Kok [10] and it uses the first two moments of 
the service times only. 

The outline of this paper, which is based on Van Eenige (5], is as follows. In Section 2 
we describe a class of queueing systems with periodic service. For convenience we consider 
the queueing systems in discrete time. In this way the complexity of the analysis is reduced 
considerably. Moreover, it enables us to use probabilistic arguments to obtain the quantities 
of interest. In Section 3 we show that the queue-length process for these systems reduces to 
the study of a Markov chain. The technique exploiting the tail behaviour of the stationary 
distribution of this chain is presented in Section 4. The moment-iteration method is the 
topic of Section 5. A summary, some extensions and the conclusions are given in Section 6. 
It is remarked that we confine ourselves to presenting the results without proofs; the proofs 
can be found in [5]. 

2 Model 

We consider a single-server queueing system in discrete time by dividing the time-axis into 
intervals of equal length. Such an interval is called a slot. Service is offered periodically: there 
is service during on-periods and no service during off-periods. The length of the off-periods 
and of the on-periods are both constant. An off-period and the next on-period together are 
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called a cycle. So the length of a cycle is also constant. The length of an on-period and of 
a cycle are measured in numbers of slots, and denoted by A and C, respectively. The slots 
in a cycle are numbered 1, 2, ... , C. 

In each slot of the cycle exactly one customer is assumed to arrive with probability p, 
where O < p < I, and no customer arrives with probability 1 - p. Arrivals in different slots 
are assumed to be independent. Hence the arrival process of customers is a Bernoulli process 
with parameter p. 

The service times of customers are measured in numbers of slots. The probability gener­
ating function F of a service time is 

B (l-/3)i. 
F(z) = Lb(i) -:=-/3 z', 

i=l 1 z 
0 < /3 < 1, 

where Bis a positive constant and {b(i), i = 1, 2, ... , B} a probability distribution. In other 
words, the service time of a customer consists of i service phases with probability b(i) where 
a service phase is geometrically distributed with parameter /3. We note that this class of 
service-time distributions consists of all finite mixtures of negative binomial distributions 
with the same parameter /3. Mixtures of negative binomial distributions can be used to 
approximate Poisson mixtures arbitrarily close (cf. Steutel & Van Eenige [16]). 

Customers are served in the order of their arrival. The arrival process and service times 
are assumed to be independent. Further, the service of a customer that is interrupted (due 
to an off-period) is resumed where it was interrupted. 

Customer arrivals, and the start and completion of service phases occur at slot bound­
aries. For convenience we assume that the completion of service phases (and hence customer 
departures) occur just before slot boundaries, and that arrivals and the start of a service 
phase occur just after slot boundaries. Further, if the server is idle upon a customer arrival, 
he starts servicing this customer immediately. 

3 Queue-length process 

In this section we study the queue-length process of customers. Once the stationary queue-­
length distribution is known, the sojourn-time distribution can be calculated exactly. For 
the calculation of the sojourn-time distribution we refer the interested reader to Van Eenige 
[5]. 

To analyse the queue-length process of customers we consider the system at the first slot 
boundary of cycles, i.e., at the slot boundaries between two consecutive cycles. Let Xk denote 
the number of service phases at this imbedded time instant for cycle k with k = 1, 2, 3, .... 
Then the stochastic process {Xk, k = 1, 2, 3, ... } is a homogeneous discrete-time Markov 
chain with state space the non-negative integers and with (a possibly random) initial state 
X 1• The stationary transition probabilities PiJ of this chain only depend on i and j only 
through their difference j - i if i ~ A or j ~ C • B ( or both) as is stated in the next lemma. 
Furthermore this lemma gives an explicit characterisation of these probabilities. 

Lemma 1 For i ~ A or j ~ C · B or both, PiJ := qi-i· The shifted probability generating 
function Q(z) := zA I;f~:/ qhzh is given by 

B 

Q(z) = zA(/3 + (1 - /3)/z)A(l - p + p L b(i)zif, 
i=l 
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where the terms (/3 + (l - /3)/z) and (1 - p + pEf=1 b(i)zi) are related to the probability 
generating function of the number of service phases completed in a slot {in an on-period of 
course) and that of the number of service phases arriving in a slot, respectively. 

The probabilities Pi,i that are not contained within Lemma 1, are generally hard to charac­
terise explicitly. However, they can be determined recursively from the one-slot transition 
probabilities as follows. Let Yn denote the number of service phases at the n-th slot bound­
ary in the cycle with n = 1, 2, ... , C, Sn the number of service phases arriving in then-th 
slot of the cycle, and t5n a random variable on { 0, 1} with Pr{ t5n = 1} = 1 - /3. Then the 
following relations are easily deduced 

Y. -{Yn+Sn, n=l,2, ... ,C-A, 
n+l - max{O, Yn + Sn - c5n}, n = C - A+ 1, C - A+ 2, ... , C. 

i,From these relations the remaining transition probabilities Pi,i can be computed, since 
PiJ = Pr{Yc+1 = }IY1 = i}. 

Under the assumption that the Markov chain is irreducible and aperiodic, and that the 
average number of slots work arriving per cycle is strictly less than A (i.e., the service 
capacity per cycle), this chain is ergodic (cf. Pakes [12]) so that it has a unique stationary 
distribution {-irj,j = 0, 1,2, ... }. This stationary distribution is the unique solution to the 
system of equilibrium equations of the Markov chain and to the normalisation equation. 
Using Lemma 1 this system can be written as 

7l"j = 7roPo,j + 7rtPl,j + ... + 1l"A+jPA+j,j, 

7l"j = 1l"j-C-BqC,B + 1l"j-C-B+!qC,B-l + '· · + 1l"j+Aq-A, 

The normalisation equation is as usual 

j=0,l, ... ,C·B-1, 

j ?:_C·B. 

(2) 

(3) 

(4) 

Taking a closer look at equations (3) we notice that they constitute a (C • B + A)-th 
order homogeneous linear difference equation with constant coefficients. So from the theory 
of difference equations (e.g., Henrici [9]) we know that there are C • B + A (not necessarily 
distinct) solutions of the form 7rj = zi to this equation. By linearly combining these solutions 
we may satisfy the equations (2) and (4). However only for solutions zi with izl < 1 the 
coefficient in the linear combination can be non-zero, since otherwise this linear combination 
cannot satisfy the equation (4). By Rouche's Theorem {cf. Titchmarsh [19]) one can show 
that there are exactly C • B such (not necessarily distinct) solutions. 

There are two standard techniques for solving the difference equation and its boundary 
equations. The first directly seeks solutions of the form 7rj = zi and after that uses a linear 
combiaation of the solutions zi with izl < 1 to satisfy the equations (2) and (4). The other 
is the generating-function technique. 

Application of either of these techniques shows that the stationary distribution can ex­
pressed as 

K mk 

7l"j = LL Ak,i]i-1 zk, j = 0, 1, 2, ... , (5) 
k=l i=l 

where zk with k = 1, 2, ... , K are the K distinct solutions inside the unit circle to the 
characteristic equation (corresponding to the difference equation), which is 

(6) 
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where mk denotes the multiplicity of the solution Zk (with m 1 + m2 + · · · + mK = C · B), 
and where the Ak/s denote constants. 

Unfortunately application of these techniques can lead to numerical difficulties. Firstly 
it is in general hard to determine all solutions to the characteristic equation accurately. Sec­
ondly, even if we are able to compute all these solutions accurately, some of them tend to 
be closely clustered so that (after substitution) the system of equations (2) and (4) becomes 
nearly linearly dependent. In general it is however unclear under what conditions and prop­
erties of the model these problems occur. Therefore we present two numerical approaches 
for determining the stationary imbedded queue-length distribution. These two approaches 
appear to be numerically stable. 

4 Geometric-tail technique 

i,From the form (5) of the stationary probabilities it directly follows that the largest solution 
in absolute value to the equation (6) within the unit circle determines the tail behaviour 
of the stationary distribution. As can be proved this solution is the unique solution to this 
equation in the interval (0, 1). This result, the kind of which also appears in the theory of 
branching process (e.g., Athreya & Ney [3]), is presented in the next lemma, where d denotes 
the greatest common divisor of C • B and the powers of z having positive coefficients at the 
right-hand side of equation (6). 

Lemma 2 Let z1, z2, ... , Zc-B be the C · B not necessarily distinct solutions to equation {6} 
inside the unit circle. Exactly one of these solutions {z1, say) lies in the interval (0, 1). 
Furthermore, if d = l then Jzkl < z1 fork = 2, 3, ... , C · B, and if d > l then lzkl = z1 for 
k = 2, 3, ... , d and lzkl < z1 fork= d + l, d + 2, ... , C · B. 

i,From the form (5) and Lemma 2 it can be shown that the tail of the stationary distribution 
is asymptotically 

(7) 

So the unique positive solution to the equation (6) inside the unit circle determines the 
tail behaviour completely. This solution can be computed easily and accurately by, e.g., 
bisection. For numerical stability we suggest to take the logarithm at both sides of equation 
(6) first. Adapting the algorithm in Tijms & Van de Coevering [18] to the cased > l we can 
exploit this behaviour for numerical purposes. 

By the existence of the limit (7) a straightforward approximation is 

j "?. J, (8) 

where J is an integer for which the quotient 7fJ+d/7rJ is (fairly) good approximated by zf. 
So it remains to compute the probabilities 1r0 , 1r1, ... , 7rJ+d-l· These probabilities are the 
unique solution to the system of equilibrium equations for the states j = 0, 1, ... , J + d - l 
and to the normalisation equation, after substituting the approximation (8). 

Clearly the computational effort of this approximation is low and the results are accurate 
if (8) is a good approximation for the quotient 1fJ+d/7rJ for small values of J. It turns out 
that this approximation yields accurate results for relatively small values of J. Moreover, 
this way of 'cleverly' truncating the infinite system of equilibrium equations to a finite one 
is advantageous from a computational point of view and is less sensitive to the utilisation 
of the system than when using simple truncation, as can be seen in Table 1. However, the 
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/3 = 2/3, B = 1, b(l) = 1 /3 = 1/3, B = 2, b(2) = 1 
p C A J,xp lstd T,xp Tstd J,xp lstd T,xp Tstd 

0.75 60 15 20 20 50 60 30 30 70 80 
120 30 20 20 50 60 40 40 80 80 
180 45 30 30 50 60 30 40 70 90 

0.90 60 15 20 20 150 170 30 30 210 230 
120 30 30 30 150 200 40 40 210 200 
180 45 30 30 140 170 40 50 210 220 

0.95 60 15 20 20 300 310 30 30 370 430 
120 30 20 30 280 300 50 40 370 450 
180 45 30 30 270 310 50 40 370 420 

Table 1: The thresholds 1,xp and lstd for the geometric-tail technique and the thresholds T,xp 
and Tstd for the simple truncation in order to compute the average and the standard deviation 
of the number of service phases in the system in six-decimal accuracy for different values of 
the utilisation factor p := p · C · B/(A(l - /3)). 

theoretical foundation of this approximation is still incomplete, so that an appropriate value 
for J has to be determined experimentally. 

Finally notice that the stationary queue-length distribution at other slot boundaries 
in the cycle can be computed from the imbedded queue-length distribution by using the 
equations (1). Further, by the Bernoulli-arrivals-see-time-averages property (cf. Halfin [8]} 
this distribution for the n-th slot boundary in a cycle is also the distribution of the number 
of service phases upon an arbitrary arrival at this slot boundary. With this property we can 
compute the sojourn-time distribution of a customer. 

5 Moment-iteration technique 

The technique exploiting the geometrical tail behaviour of the stationary distribution makes 
a detailed use of the service-time distribution of customers. In practice however, one usually 
has only (approximate) knowledge about the first two moments of this distribution. In this 
section we present a technique for analysing the queue-length process of customers that uses 
only this information. More specifically, we present a technique for approximating the first 
two moments of the queue length and the probability of an empty queue at the start of a 
cycle. 

The starting point for the technique is the equations (1). Let Xk,n denote the number of 
slots work at then-th slot boundary in the k-th cycle with k = l, 2, 3, ... and n = l, 2, ... , C, 
and Sn the number of slots work arriving in then-th slot of the cycle. Then fork = l, 2, 3, ... 
these equations can be rewritten as 

X _ { ){k,n + Sn, n = l, 2, ... , C - A, 
k,n+I - ' 

max{O,Xk,n + Sn -1}, n = C -A+ l,C -A+ 2, ... ,C, 

where Xk,c+1 should be read as Xk+ 1,1. Note that 

C-A 

xk,C-A+I = xk,l + ~ Sn. 
n::::l 
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Equation (9) has a similar form as Lindley's equation which describes the waiting-time 
process in a D JG /1 queueing system. For this system in continuous time De Kok [10] 
develops an efficient moment-iteration algorithm for approximating the stationary waiting­
time distribution. He uses only the first two moments of the service-time distribution. The 
algorithm presented below is an adaptation of this algorithm. In this algorithm it is implicitly 
assumed that we have a procedure for fitting discrete distributions by matching their first 
two moments. After presenting the algorithm we make some remarks on the fitting procedure 
used. 

Let ak,n denote the standard deviation of Xk,n and define (in distribution) 

k = 1, 2, 3, ... and n = 1, 2, ... , C. (11) 

Then from equation (9) we have for n = C - A+ 1, C - A+ 2, ... , C 

Pr{Xk,n+l > 0} = Pr{Xk,n = O}Pr{Sn > l} + Pr{Xk,n > 0}Pr{Yk,n + Sn 2': l}. (12) 

The moment-iteration algorithm proceeds as follows. 

1. Initialisation: Set E{X1,i} = E{Xf,i} = 0 and k := 1, so a 1,1 = 0 and Pr{X1,1 = 0} = 
1. 

2. Iteration: Approximate the first two moments of Xk,C-A+I and Pr{Xk,C'-A+i > 0} from 
(10), using the approximations for the first two moments of Xk,I and for Pr{Xk,l = 0}. 
For n = C - A+ 1, C - A+ 2, ... , C -

(a) compute the approximations for the first two moments of Yk,n using (11); fit a 
discrete distribution to Yk,n by matching these moments in order to approximate 
Pr{Yk,n = 0}; 

(b) compute the approximations for the first two moments of Xk,n+l using (9) and 
the approximation for Pr{Xk,n+l > 0} from (12). 

3. Stopping criterion: Compute the approximation for ak,c+i- If the approximations 
for the differences IE{Xk,c+d - E{Xk-1,c+dl and lak,c+1 - ak-1,c+il are both small 
enough then execute Step 4. Otherwise set k := k + l and Xk,l := Xk-i,c+r, and 
execute Step 2. 

4. Approximation: The first two moments of the stationary imbedded queue-length distri­
bution are approximated by E{Xk,c+d and E{Xf.c+il, and the stationary probability 
that the queue is not empty by Pr{Xk,C'+I > 0}. 

In this algorithm we need a procedure for fitting discrete distributions on the first two mo­
ments. Adan, Van Eenige & Resing [l] present such a (novel) procedure. Firstly, however, 
they answer the question what combinations of mean and coefficient of variation are pos­
sible for discrete distributions concentrated on the non-negative integers. (Notice that all 
the random variables involved in the moment-iteration algorithm assume values in the set 
{ 0, 1, 2, ... } . ) Their procedure for fitting discrete distributions is based on the analogue 
to the procedure for continuous distributions in Tijms [17]. Tijms uses hyperexponential 
and mixtures of two Erlang distributions as distributions for fitting. However, the discrete 
analogues to these distributions do not suffice to cover all the combinations of mean and 
coefficient of variation possible for discrete distributions on the non-negative integers. To 
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cover these combinations Adan, Van Eenige & Resing use four distributions: a Poisson dis­
tribution, and mixtures of two binomial distributions, of two negative binomial distributions 
and of two geometric distributions. For details we refer to their paper [l]. 

In Table 2 we display for several examples the 'exact' values (Ex) and the approximative 
values (MI) from the moment-iteration technique for the probability that the queue is not 
empty (Pr{ X > 0}) at the start of a cycle and for the average number of service phases 
(E{ X}) at the start of a cycle. The 'exact' values are those computed when truncating the 
states j > T with T sufficiently large. This table shows that application of the fitting pro­
cedure mentioned above in the moment-iteration algorithm gives very good approximations. 
Other results, for which we refer to Van Eenige [5], indicate that this procedure yields also 
very good approximations for the tail probabilities of the sojourn-time distribution. Finally 
we remark that our numerical examples indicate that the moment-iteration algorithm always 
terminates. However, we have not been able to prove this yet. 

(3 = 2/3, B = 1 and b(l) = 1 (3 = 1/3, B = 2 and b(2) = 1 
Pr{X > O} E{X} Pr{X > O} E{X} 

p C A Ex MI Ex MI Ex MI Ex MI 
0.75 60 15 0.478 0.485 4.87 4.84 0.429 0.431 2.87 2.90 

120 30 0.387 0.393 3.85 3.97 0.517 0.512 2.14 2.30 
180 45 0.331 0.340 3.18 3.40 0.277 0.288 1.66 1.87 

0.90 60 15 0.755 0.774 18.49 18.28 0.725 0.741 12.00 11.88 
120 30 0.694 0.711 16.95 16.77 0.653 0.669 10.76 10.77 
180 45 0.650 0.666 15.82 15.80 0.604 0.625 9.86 9.99 

0.95 60 15 0.871 0.889 42.02 41.67 0.854 0.876 28.03 27.66 
120 30 0.835 0.859 40.29 39.58 0.811 0.835 26.60 26.11 
180 45 0.808 0.833 38.97 38.22 0.779 0.804 25.52 25.10 

Table 2: The 'exact' and approximative values for the probability of a non-empty queue 
and the average number of service phases at the start of a cycle for different values of the 
utilisation factor p := p • C • B/(A(l - (3)). 

6 Conclusions 

In this paper we presented two numerical techniques for analysing and evaluating the queue­
length process of customers in discrete-time queueing systems with periodic service. In con­
trast with analytical approaches, these techniques appear to be numerically stable. Moreover, 
they yield accurate approximations for the performance measures of interest. Further, these 
techniques are applicable to generalisations of the systems considered here. For instance, 
they allow for multiple on- and off-periods in a cycle, and they can deal with possibilities 
occurring naturally at production centres: the possibility of producing to stock and of work­
ing overtime. Moreover, they can deal with periodically time-dependent Bernoulli arrival 
processes and with service-time distributions that depend on the slot of arrival. Finally it is 
remarked that these techniques are also applicable to other queueing systems, since they only 
exploit the explicit structure of the equilibrium equations ( as in the geometric-tail technique) 
or the relation between the quantities of interest at certain imbedded time instants (as in 
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the moment-iteration method). Hence we expect that they can also be applied successfully 
to other systems. 
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Abstract 

This paper discusses a general method for computing loss probabilities in finite-buffer 
queues. The method is based on a relation between the steady-state probabilities of a 
finite-buffer queue and the corresponding infinite-buffer queue. It is exact for several 
queues of the M/G/1-type, and serves as an excellent approximation for many other 
queueing systems. 

1 Introduction 

In many practical situations, such as manufacturing and telecommunication systems, we 
encounter queueing systems with a finite buffer. A finite-buffer queue is in general more 
difficult to analyze than the corresponding infinite-buffer queue. In principle, any practical 
finite-buffer queueing system can be modelled as a Markov process by incorporating suffi­
cient information in the state space description. When the size of the state space is small, it 
is relatively easy to obtain stationary (and also transient) solutions quickly and accurately 
by means of numerical methods, such as the successive overrelaxation method or iterative 
aggregation/disaggregation methods. In many queueing systems, however, the dimension 
and size of the state space will grow quickly beyond any practical bound. The process of ob­
taining stationary solutions in these cases becomes much more difficult and time consuming. 
This makes it desirable to use approximation methods that are more efficient to implement, 
but still give sufficiently accurate results. 

This paper will focus primarily on a generally applicable approximation method for the 
loss probability of a customer in queueing models with general input. This method is based 
on the relation between a finite-buffer queue and its corresponding infinite-buffer queue. For 
a class of M/G/1 type queues it is known that the state probabilities of the finite-buffer 
and the corresponding infinite-buffer queues are proportional to each other for a limited 
set of states. This proportionality can be explored to derive an exact formula for the loss 
probability of a customer in various finite-buffer M/G/1-type queues. First we will discuss 
and extend the class of queueing systems for which an exact proportionality relation holds 
between the state probabilities of the finite- and the infinite-buffer queue. Second, we will 
show that such a proportionality can serve as an approximating assumption in queueing 
systems in which it does not hold exactly. From this assumption an excellent approximation 
for the loss probability of a customer can be derived. 
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Despite the simplicity of the proportionality relation, its practical application is hampered 
by the fact that the state probabilities of the infinite-buffer queue have to be calculated. 
Although the analysis of an infinite-buffer queue is in general less demanding than the 
analysis of a finite-buffer queue, it is not always possible to obtain stationary solutions for 
infinite-buffer queues. Even the single-server GI/G/1 queue and the multi-server M/G/c 
queue with Poisson arrivals permit no simple analytical solution. There are, however, a 
number of practical queueing models with infinite buffer capacity in which we can obtain 
the generating function of the state probabilities. These generating functions can be inverted 
numerically by means of a discrete version of the fast Fourier transform (FFT) method. 

2 The batch arrival GI/ G / c queue 

Consider the single-arrival GI/ G / cf K + c queue, where the interarrival times of customers 
have a general distribution F(x) with expectation EA= A-1. There are c servers to handle 
service requests and the service time of a customer has a general distribution G(x) with 
expectation ES = µ-1. The system load pis defined as p = A/ µc and we assume that p < l. 
There is a buffer of size K to store incoming customers that find all c servers busy and those 
customers that find the system completely full are rejected and do not influence the system. 
Let 1r; (j = 0, ... , K + c) be the long run fraction of customers finding upon arrival j other 
customers present in the system. Denote by P,0., the long run fraction of customers that 
are lost. Since we consider a single-arrival queue, this loss probability can be calculated by 
P,0., = 7rK+c• The probability 7rK+c can be calculated for various queueing models using the 
embedded Markov chain approach, but this can be computer intensive when done for several 
large buffer sizes. Since it is often less involving to solve the corresponding infinite-buffer 
queue, various approximations for the loss probability of a customer have been developed, 
based on the steady state probabilities of the infinite-buffer queue. Define 1r~00> (j = 0, 1, ... ) 
as the long run fraction of customers finding upon arrival j other customers present in the 
corresponding infinite-buffer GI/ G / c queue. These probabilities are well defined under the 
assumption p < l. 

A well known approximation for the loss probability of a customer is 

00 

pappl _ "°' (oo) 
loaa - L.J 1r; , (1) 

i=K+c 

see e.g. Kleinrock [2]. The right-hand side of this equation can be interpreted as the prob­
ability that K+c or more customers are found upon arrival in the infinite-buffer queue. 
Therefore, this approximation is often referred to as the tail approximation. No theoretical 
and hardly any empirical evidence is presented in the literature to support this approxima­
tion. We will show later that this approximation is not even asymptotically exact and it 
can differ a factor (1 - p)-1 from the exact value of the loss probability as K gets large. 
In fact, in Daigle [3] it was shown numerically that this factor (1 - p)-1 can already be 
obtained for moderate values of the buffer size K. Therefore, it is surprising that even in 
recent literature (e.g. Bruneel [4, pp. 148, 152]) the above equation is used to approximate 
the loss probability of a customer. 

A more refined approximation was presented in Tijms [5] and extended in Gouweleeuw 
[1]. The crucial assumption underlying this approximation is that the probabilities 1r; are 
proportional to 1rY'') for j < K + c and not for j = K + c, that is 

j = 0, ..... , K + c - 1, (2) 
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for some constant 'Y > 0. This proportionality relation is exact for the MfGf I queue, as 
was first shown by Keilson [6] and subsequently, in a more direct way by Cooper [7]. In 
Tijms [5] an alternative proof of this equation is presented, showing that this equation is 
exact for both the MfGfl and the MfMfc queue. This proof uses basic results from the 
theory of regenerative processes together with the fact that the arrival process is memoryless. 
Keilson and Servi [8] present a more general theorem, showing under which conditions the 
state probabilities of two general multivariate Markov chains are proportional. They use this 
elegant theorem to prove that the above relation is exact for the MfGfl queue with server 
vacation. Given this relation, using simple renewal theoretic results, Tijms [5] derived the 
following approximation for the loss probability of a customer: 

(3) 

This approximation is exact for the M f G f If K + I and the M f M f cf K + c queues. 
The above discussion dealt with the case of partial rejection of batches. In a recent 

publication by Gouweleeuw [l] it was shown that the analysis for the partial rejection case 
can easily be extended to the batch arrival queue under the complete rejection strategy. 
Under this strategy an arriving batch whose size exceeds the number of unoccupied places 
in the system is completely rather than partially rejected. The loss probability for the 
case of complete rejection differs significantly from the loss probability for the case of partial 
rejection. It was proven that the approximation is exact for the batch-arrival MX fGflf K +I 
and the M x f M f cf K + c queues, provided that the batch size has a constant value. For an 
extensive numerical investigation of the approximation for those queueing systems for which 
it is not exact, we refer to Gouweleeuw [l]. 

3 Discrete time queues 

The previous section discussed various continuous-time queueing models. However, many 
practical queueing systems such as fixed-cycle traffic lights and ATM-systems in telecom­
munication networks, operate on a discrete-time basis. A discrete-time queueing system is 
characterized by time-slotted and synchronous service. The time axis is divided into inter­
vals ( called time slots) of equal length. Without loss of generality we normalize the length 
of a slot to unit time. We shall refer to the entities which are served as packets. Packets 
are allowed to arrive at any arbitrary time in a slot. Since a new service can only start at 
the beginning of a slot, packets which arrive in a certain slot are eligible for service from the 
beginning of the next slot. The service times are positive multiples of time slots. The packets 
completing service in a certain slot (say slot n) are considered to be leaving the system at 
the end of that slot. This means that such a packet will leave behind those packets that 
arrived in slot n as well as those packets already present at the beginning of slot n. 

A classical example of a discrete-time queueing system is a stream of vehicles approaching 
an intersection controlled by fixed-cycle traffic lights. It takes a unit of time ( a slot) for a 
vehicle to cross the traffic lights. The green and red periods of the traffic lights are assumed to 
be constant. A more recent example of a discrete-time queueing system is an Asynchronous 
Transfer Mode (ATM) system in telecommunication networks. In an ATM network, data 
from various sources is segmented into fixed-size ATM cells and statistically multiplexed 
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to high-speed transmission lines and switches. An extenaive survey of discrete-time models 
used in telecommunication systems can be found in Bruneel and Kim [4]. 

The approximating method that was presented in the previous section can eaaily be 
extended to the class of discrete-time queues. Under a mild asumption on the arrival process, 
it has been proved that the approximation leads to an exact expression for the discrete­
time GI/G/l queue. The approximation is asymptotically exact when the buffer size gets 
large. The derivation of the approximation is similar to that of the continuous-time queue. 
Although the derivation of the approximation is given for renewal input and relies heavily 
on renewal-theoretic arguments, the approximation turns out to· be applicable as well for 
more complicated arrival processes. 

4 Conclusion 

In this paper we have discussed a heuristic for the loss probability of a customer in various 
queueing systems with finite capacity. This heuristic as a simple structure an is a clear im• 
provement over the well known tail approximation. The practical application of the method 
is, however, hampered by the fact that the steady state probabilities of the corresponding 
infinite-buffer queue have to be computed. 
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Abstract 

In this paper we analyse the assignment of customers in a queueing system consisting of a tandem 

of parallel queues. We will present three algorithms, to find good routing policies. These algorithms 

are generally applicable to Markov decision chains with partial information. 

1. Introduction 

In this paper we analyse the assignment of customers in a queueing system consisting of 
a tandem of parallel queues. Customers arrive to the first centre of the system and have 
to be routed to one of two identical exponential servers, each with his own waiting queue. 
When the customer is served, he arrives in the second centre where again he has to be 
routed to one of two identical exponential servers. 
The routing of the customers in a centre may only depend on the numbers of customers 
in the queues of that centre, and not on the numbers of customers in the queues of the 
other centre. Because routing decisions have to be found in both centres, we will call this 
a model with decentralized control. 

We want to find deterministic routing policies, maximizing the discounted throughput 
of customers. From results in [1], we know the optimal routing policy in the second 
centre. By choosing this routing policy fixed, we can use algorithms for models with 
partial information to find good routing policies for customers arriving in the first centre. 

The queueing system is modelled as a Markov decision chain with partial information. 
We will present three algorithms, which are generally applicable to Markov decision chains 
with partial information. 

The outline of the paper is as follows. 
In Section 2, we introduce the queueing model. In Section 3, we describe the algorithms. 
In Section 4, the Markov decision chain and the cost function are given and in Section 5, 
numerical results with the different algorithms are presented. 

* The research of this author has been supported by the Netherlands Organization for Scientific Research 

(N.W.O.). 
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2. Queueing model 

Consider the queueing network of Figure 1. 

centre 1 centre 2 

Figure 1. Tandem of parallel queues 

The queueing network consists of two centres. In each centre there are two identical ex­
ponential servers, each with his own waiting queue. The service rates in the first centre 
are equal to µ1 and in the second centre equal to µ2. Customers arrive to the first centre 
according to a Poisson process with rate >.- and they have to be routed·to-one of the servers. 
When they are served, they go to the second centre, where again· they have to be assigned 
to one of the servers. Customers served in the second centre leave the system. 
We assume all interarrival times and service times to be mutually independent. Further­
more, in each queue the customers are served on. a First In First Out (FIFO) basis. Also, 
there is an initial distribution over the stat.e space given. 

The state of the system is denoted by the 4-tuple (i1, i2, i3 , i4 ) where ii denotes the number 
of customers in the j-th queue in centre l (including customers in service)' if j = 1 or 2, 
and i; denotes the queue length of queue j - 2 in centre 2 if j = 3 or 4. 
For centre i, there exists a capacity N; ( i = l, 2), such that no more customers are accepted 
when there are N; customers present in the centre. Customers, arriving to a full first centre 
are blocked and leave the system. Customers, arriving in a full second centre, return to 
the server they just left and receive another service in the first centre. Because of these 
buffers, it is impossible that the number of customers grows to infinity. However, we only 
use those buffers to be able to compute performance measures for the system, and we make 
those buffers as large as possible to avoid effects caused by their finiteness. In. this model, 
we OJ;J.ly consider values for>. in [O, min{2µ1, 2µ2}) for fixed µ1. and.µ2. 

We are interested in deterministic routing policies for customers in. both centres. The 
routing in a centre may depend only on the numbers of customers in the queues of that 
particular centre. 

It is shown in [1] that an optimal policy for the Markov decision chain with complete 
information will use the Shortest Queue Policy (SQP) in centre 2. This policy assigns 
customers in centre 2 to the shortest queue and in case of equal queues it routes the 
customers with probability ½ to queue 1 and probability ½ to queue 2. In fact, the routing 
in states with equal queue lengths may be chosen arbitrarily. It also follows from the results 
in [1] that the SQP is the optimal policy for centre 2 in case of decentralized control. Hence, 
we fix the policy in centre 2 to the SQP and we apply an algorithm for models with partial 
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information to obtain a good routing policy in centre 1. 
The policy should maximize the discounted throughput of customers given the initial 
distribution. 

Note that, although the numbers of customers in the second centre may not be used, 
implicitly there is some information used about this centre, namely the knowledge of the 
routing policy there. Also the initial distribution over the state space as a whole is known, 
which gives us information about the second centre too. 

3. Algorithms 

In this section we will present three algorithms to compute good policies for Markov 
decision chains with no state information. First, we will describe the notations used for 
Markov decision chains with partial information. 

Consider a Markov decision chain with state space E = {l, 2, ... , N}. The state space 
is partitioned into sets E., s = l, 2, ... , K, such that at each decision moment the only 
information available about the system is the set of the partition in which the state of the 
system is contained (cf. [2], [4)). Thus, an admissible decision rule prescribes the same 
decision for all states in a partition set E, for all s. A Markov policy is called admissible 
if its decision rule at any time point is admissible. 
We assume that the action set in each state is the same, namely, A= {l, 2, ... , M}. 

The transition probabilities when in state i action a is chosen are denoted by Piaj (j 
1, 2, ... , N) and the expected one step cost by c;4 • For the transition matrix and the vector 
of immediate costs when decision rule 1r is chosen, we will write P( 1r) and c( 1r) respectively. 

Hence, P(1r);; = E~1 7r; 4 Piaj and c(1r);. = E~1 7r; 4 Cia. A deterministic decision rule is 
often denoted by f. 

For the vector of expected discounted costs under a stationary policy R = ( 7r, 7r, 7r, ••• ) = 
1r00 , we will use the notation v"'( 1r ), when the discount factor a E [O, 1) is used. It holds 
that ( cf. [6)) v"'( 1r) is the unique solution of 

v"'(1r) = c(1r) + aP(1r)v"'(1r). (1) 

Equivalently, 
(2) 

The initial distribution is given by an N-dimensional vector /3, where JP(initial state is i) = 
/3;. To define the optimal policy, we use the expected total a-discounted cost under a policy 
given the initial distribution. For a stationary policy 1r00 these costs can be computed as 
the inner product of /3 and v"' ( 1r), denoted as 13T v"' ( 1r ). 

The following algorithm is introduced in [2], 

Algorithm 1. 

Choose an initial admissible deterministic decision rule J0 and E > 0. 
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Let x 1 = (3T and choose v1 E ]RN_ 

Define for n = 1, 2, 3, ... : 

t"(s,a)= Lx:'{cia+O:tPiajV'J}, 
1EE, . J=l 

for s = 1,2, ... ,K, a= 1,2, ... ,M. 

For i EE., if r-1 (i) E argminaEA t" (s, a) then 
f" (i) = r-1 (i) Vi EE., 
else f" (i) = a for some a E argminaEA tn (s, a) Vi EE,; 

Here, llxll < e means that lx;I < e for all i. 
If the algorithm stops, then policy (!" )00 is chosen. 

The second algorithm is a policy improvement algorithm, based on Algorithm 1 and on an 
algorithm of Kulkarni and Serin (cf. (4]). 

Algorithm 2. 

1. Choose an initial admissible deterministic decision rule J0 and e > O; 
m = 1. 

2. Let x1 = (3T and choose v1 E lRN. 
Define for n = 1, 2, 3, ... : 

Stop if llxn+I - xnll <€and llvn+I - vnll < €. 
Let v°'(fm) = vn+I and x°'(fm) = xn+I. 

3. Compute the quantities tm( s, a) for s = 1, 2, ... , K and a = 1, 2, ... , M defined by 

Define for s = 1, 2, ... , I<: Am(s) = {a E Al tm (s, a)< O}. 
If Am(s) = 0 for alls, then STOP; 
else 
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Choose ans* for which Am(s*) is nonempty and choose an action a* E Am{s*). 
Define Jm+I by 

4. m = m + 1 and go to step 2. 

ifiEE,.; 

otherwise. 

The third algorithm, which uses branch and bound techniques, is a variant of an algorithm 
developed by Schneeberger [7). 
In the algorithm a decision tree is constructed. Each node corresponds to a set of stationary 
deterministic policies with fixed actions in certain subsets of the partition, in combination 
with a lower bound on the expected costs of the policies in that set. To describe a node, 
a K-dimensional vector dis used together with a lower bound Ld, where d, E AU {0} = 
{0, 1, ... , M} for alls. The component d, prescribes the action to be taken in all the states 
of the s-th set of the partition, E,. When d, = 0, it means there is not yet decided about 
the action in E,. Now the set of possible policies in a node corresponding to a vector d 
is {R = f 00 I f(i) = d, if d, f= 0 and i E E,}. Starting with one node, where d = 0, the 
set of policies is stepwise reduced by choosing a set E, for which d, = 0, and defining 
M new nodes with d, = 1, d, = 2, ... , d, = M, respectively. When this procedure is 
repeated often enough, nodes with d, f= 0 for all s are created, corresponding to precisely 
one stationary deterministic policy. 

For each node, a lower bound of the optimal costs of the policies in that node, can be 
computed. This can be done using policy iteration, while keeping fixed the actions in the 
sets E, where d, f= O. The corresponding algorithm goes in the following way. 

Algorithm to compute a lower bound. 

1. Choose a deterministic admissible decision rule J1 for which f1(i) = d, ifd, f= 0 and 
i EE,; 
m = 1. 

2. v1 := vm; 
Define for n = l, 2, 3, ... : 

Stop if llvn+I - vnll < €. 

Let vm = vn+I. 

3. Find Jm+I, such that 

Jm+l(i) E argminaEA {Cia + a tPiajV'J'} for all i EE, where d, = 0. 
J=! 

4. If f m+I = fm then /3T vm is a lower bound of the costs for the policies corresponding 
to d; 
otherwise m = m + 1 and go to step 2. 
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By using an upper bound of the optimal costs, nodes can be excluded. The last value 
vector found in the computation of a lower bound, say v*, can be used to find an upper 
bound in the following way. For each E., where no action is chosen yet, define for all 
i EE, 

(3) 

Then compute for the resulting admissible policy J the discounted cost vector v"'(f) using 
step 2 of the 'Algorithm to compute a lower bound'. Then, an upper bound of the optimal 
costs is given by f3T v"'(f). 

Now, Nd denotes the node corresponding to d, consisting of the pair (d, Ld), The global 
variable U will denote at each moment an upper bound on the optimal costs and the policy 
(!0 ) 00 denotes the admissible policy corresponding to the upper bound at that moment. 
The algorithm is then as follows. 

Algorithm 3. 

1. Compute with policy iteration the optimal policy and the corresponding discounted 
cost vector v• for the model with full state information and define Lo = /3T v• (use 
the 'Algorithm to compute a lowerbound' with d = 0). 
Denne an admissible policy f° as in formula (3) using v• found by computing the 
lower bound Lo. 
Compute the discounted cost vector v0 corresponding to J0 using step 2 of the 'Algo­
rithm to compute a lower bound', and let U, the upper bound, be denned as /3T v 0 • 

No= {0,Lo}i 
Nodeset = {No}. 

2. Choose Nd E Nodeset with minimal Ld, 
If Ld 2c U, go to step 4, 
otherwise: 

Nodeset = Nodeset -Nd; 
Chooses E {1, 2, ... , K} such that d, = 0. 
Fora= 1,2, ... ,M: 

d, = a; 
Compute the lower bound Ld, 
If Ld SU: 

3. Go to step 2. 

compute a new upper bound U* using the discounted cost vector 
corresponding to Ld and compute the admissible policy f* 
corresponding to U*. 
IfU* s u then J0 = f* and u = u•. 
Nodeset = Nodeset U {Nd}, 

4. Stop : policy j 0 is optimal in the class of deterministic stationary admissible policies 
with discounted costs U. 
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Because of the huge cardinality of the state space for relatively small values of N1 and N2 , 

it is not possible to store transition matrices. Therefore, we compute the non-zero entries 
in these matrices again in each iteration. 

4. Markov decision model 

To apply the algorithms, we have to describe the Markov decision chain corresponding to 
the model of Section 2 (cf. [5]). The state space is the set 

Because we are interested in routing policies for customers in the first centre, only depend­
ing on the numbers of customers in the queues of the first centre, we use the following 
partition of the state space: Eis partitioned into sets E(i,,i,J such that 

The total number of states in this model is 

N, N,-i, N2 N2-ia l 
L L L L l =-(Ni+ l)(N1 + 2)(N2 + l)(N2 + 2). 
i1 =O i2=0 ia=O i4=0 4 

The action space is A = {1, 2}. Action i means that if a customer arrives in centre 1 and 
is accepted, he is routed to queue i. In states where the customer is blocked, the actions 
are dummy actions. 

First, we consider a cost function in which each customer in the system has a holding cost 
of one per time unit. However, when we applied the algorithms, we found that this cost 
function causes a lot of side effects because of the finite buffers. In states with a rather 
full unbalanced first centre, the policies found by the algorithms route customers to the 
longest queue in the first centre. In this way the probability of blocking future customers 
is increased (because of the joint buffer for the two queues). Hence, the total expected 
holding costs are decreased. 
We tried to make the buffers so large that no side effects are caused by their finiteness. 
However, in this model, the state space is very large and therefore, the buffers have to be 
relatively small and blocking effects are caused. These effects can be avoided by giving a 
reward for each customer leaving the system. Because we study models with cost functions 
instead of rewards, we define costs as negative rewards. Then, the algorithms maximize 
the discounted number of departures. 

Note that in an infinite system (system with no restricting buffers), minimizing the dis­
counted holding cost in the system is equivalent to maximizing the discounted number of 
departures. Namely, when the cost rate is 1 per customer per time unit, the holding cost 
in the system at time t is equal to to the number of customers present at time t. 
These costs have to be discounted by the discount factor at time t, a 1, which can be de­
noted by e-bt with b = -ln(a). Indeed, if we denote the number of arrivals up to time t 
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by A(t) and the number of departures up to time t by D(t), then minimizing the expected 
discounted holding cost is equivalent to minimizing 

IE['° e-bt (A(t) - D(t)) dt. (4) 

When there are no finite buffers, IE Jo e-bt A( t) dt is independent of the policy, because 
IEA(t) = >.t for all t and ft' I e-bt >.t I dt < oo. Thus, minimizing ( 4) is the same as 
maximizing 

IE l''" e-bt D(t) dt. 

For each realization T1 , T2 , T3 , •.. with Tk the k-th departure time, it holds that 

100 00 loo e-btD(t) dt = L e-bt dt 
0 k=l T• 

This is exactly ¼ times the reward we would get for receiving a discounted reward of 1 for 
each departure, and this is just the reward function we consider. 

In this model, the transition times (times between decision epochs) in different states may 
have different distributions. For example, in the empty system there is only one possible 
event, namely the arrival of a customer in the first centre. The transition time, the time 
until this event occurs, has an exponential distribution with rate >.. In the state where the 
system is full, the only event which can occur, is the departure of a customer in centre 2. 
This transition time has an exponential distribution with rate µ2 or 2µ 2, respectively when 
there are customers in only one queue or in both queues. 
When the transition times have different distributions, the expected one step costs until the 
next decision epoch have to be calculated separately. Therefore, we use a uniformization 
technique to get a model in which the transition times are exponentially distributed with 
the same parameter for all the states ( cf. [8]). The subsequent states are described by a 
Markov decision chain, to which we will apply the algorithms. In this case, we choose the 
parameter of the uniform exponential distribution equal to the maximal parameter in the 
original model, namely >. + 2µ1 + 2µ2. Thus, in each state all events are possible, namely 
an arrival in the first centre and departures in both queues of both centres. If an event 
occurs which is not possible in reality, a dummy transition takes place (transition to the 
same state). 

Now, some examples of transition probabilities are 

P(i1,i2,ia,i4)a(i1-!,i2,i3+1,i4) = ). + 2: 1
1 + 2µ 2 b(i1 > 0, 

(1 - ~ .i(i3 = i4)). 
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Here, .5( condition 1, condition 2, ... , condition n) is equal to 1 if all conditions are true and 
equal to 0 otherwise. 

Finally, we have to define our expected one step cost. As described before, we have a cost 
of -1 when a customer leaves the system. To compute the one step cost, we have to take 
the discount factor a E [0, 1) into account. Suppose the discount factor in the original 
continuous model to be equal to a. Costs at time t are discounted by a factor a 1 = e-bt 
with b = - ln(a). Now, for a state i EE with a positive number of customers in the first 
queue of centre 2 

00 

c = J e-bx 

0 

is the expected discounted number of departures from this queue. 

When there are customers present in both queues of centre 2, the expected discounted num­
ber of departures from centre 2 until the next decision epoch will be twice the expression 
above. Hence, 

Because the factor µif(>..+ 2µ 1 + 2µ2 + b) is a constant, we take it for simplicity equal 
to 1. This will make no difference in the policy found; the total discounted cost of each 
policy will be multiplied by(>..+ 2µ1 + 2µ2 + b)/µ2, 

5. Numerical results 

In this section we present numerical results found by the algorithms in the Section 3. 

In the model with full information, the optimal routing policy is almost equal to the SQP 
for many different parameter values. Therefore, we expected the optimal routing policy 
in the partial information model to be equal to the SQP. For many parameter values, the 
SQP is indeed optimal. However, in [3] some parameters are given for which the SQP 
is not optimal. We also found this with the algorithms of Section 3. For example, the 
routing policy found by these algorithms deviates from the SQP, when the initial state 
is (1,0,10,10) and the parameters are the following: Ni = 20, N2 = 25, >.. = 0.01, 
µ 1 = µ2 = 1 and a = 0.8991 (this is the discount factor in the discrete time Markov 
decision chain). Indeed, the policy found, turns out to route arriving customers to the first 
queue in states in the partition set Eci,o)• Heuristically, this can be explained as follows. 
Because of the discounting, the initial state has a big influence on the total discounted 
costs. In this state, there is one customer in the first queue of centre 1 and the second 
centre is rather full and balanced. By routing an arriving customer to the first queue in 
centre 1 instead of routing him to the second queue, the arrival of this customer in the 
second centre will be delayed more. Therefore, the second centre will probably be less full 
and less balanced when he finally arrives there, which results in a better routing in the 
second centre. 
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For the initial policy in Algorithm 2, we choose the SQP to reduce the computing times. 
In the cases considered, the SQP is (almost) the optimal policy. Hence, not many policy 
improvements need to be made by the algorithm and the computing time is small. However, 
for other initial policies the computing times can become very large. This can be seen from 
Table 1 ( cf. (5]). 

For several values of the buffer sizes, the computing times are given for three different 
initial policies; the SQP, the policy assigning all customers to the first queue and the 
policy that assigns customers with probability ½ to the first and with probability ½ to the 
second queue (our computer code of Algorithm 2 allows for an initial randomized policy). 
The policies are denoted as 'SQP', 'Queue 1' and 'Bernoulli' respectively. 

N1 N2 Initial policy Computing time 

20 20 SQP 3 hours 
15 15 SQP 1.5 hours 
10 10 SQP 11 minutes 
8 8 SQP 7 minutes 
6 4 SQP 1.5 minutes 

20 20 Queue 1 138.5 hours 
15 15 Queue 1 43 hours 
10 10 Queue 1 3 hours 
8 8 Queue 1 1 hour 
6 4 Queue 1 11 minutes 

15 15 Bernoulli 84.5 hours 
10 10 Bernoulli 6 hours 
8 8 Bernoulli 1.75 hours 
6 4 Bernoulli 21 minutes 

Table 1. Computing times for different initial policies in Algorithm 2. 

The results were found, using a slower computer than in Tables 2 up to 5, thus the 
computing times are not comparable to the other computing times in this section. However, 
it is clear that the computing time becomes very large if the initial policy is not close to the 
optimal one. Algorithm 1 is not influenced by the choice of the initial policy. Furthermore, 
the choices of x 1 and v 1 have very little impact on the computing times. This means that 
the computing time is virtually independent of the initialization of the algorithm. 
Hence, in general models where we have no good guess for the optimal policy, Algorithm 1 
is much faster than Algorithm 2. 

In our implementation of the third algorithm, we use the discounted costs of the SQP 
( computed by iteration of the v-vector) as initial upper bound on the costs. This seems a 
good choice, because we expect the optimal policy to be close to the SQP. 
We also implement the algorithm, such that the order of the sets E, with d, = 0, chosen 
in step 2 of the algorithm, is the following (if possible) : E(o,i), E(l,o), E(o,2), E(2,o), E(i,2), 

Ec2,1), E(o,3), E(3,D), E(l,3), E(J,I)· When the policy is already fixed for the partition sets 
mentioned, the choice is made by choosing the state with the lowest number. We choose 
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to fix the policy first in these states, because these states are close to the initial state and 
are likely to have the biggest influence on the costs. Furthermore, when an action has to 
be chosen in step 2, the action deviating from the SQP is chosen first. This, in the hope 
that the corresponding lower bound is so high that the node is not appended to the tree. 
The computing time for the Algorithm 3 depends very much on the order in which the 
subsets of the partition are chosen to fix the policy there. In general, this algorithm will 
be slowest. 

Numerical results for the three algorithms can be found in the Tables 2 - 5. 
In the tables, we give results for parameters close to the parameters where we found the 
policy to be different from the SQP. The policy SQP' in the tables is defined as the policy 
which chooses action 1 in sets E(i,j) with i :S j and chooses action 2 otherwise. Note, that 
in contrast to the SQP, in sets E(i,i) action 1 is chosen instead of randomizing between 
the two actions. We choose this initial policy because we want to allow only deterministic 
policies in our implementations. 
In all tables, the (discrete time) discount factor a is equal to(>.+ 2µ 1 + 2µ 2)/(>. + 2µ 1 + 
2µ2 + b). 
In the column 'Sets not SQP' ', the entry ( i, j) means that the policy found by the algorithm 
considered, deviates from the SQP' in the subset E(i,j)· 

For E, we use the value 10-10 . 

In Table 2, the results for different >. can be found. The other parameters are N1 = 20, 
N2 = 25, µ 1 = µ 2 = 1 and b = 0.5. The initial distribution vector (:J is chosen as (:J; = 1 if 
i = (1, 0, 10, 10) and zero otherwise. Thus, the initial state is (1, 0, 10, 10). 

). Sets not Cost per 
SQP' time unit 

Algorithm 1 0.005 (0,0), (1,0), (1,1) -17.7721 
Algorithm 2 0.005 (0,0), (1,0), (1,1) -17.7721 
Algorithm 3 0.005 (0,0), (0,3), (1,0), (1,2) -17.7721 

(1,3), (3,0), (5,7) 

Algorithm 1 0.010 (0,0), (1,0), (1,1), (2,2) -17.7941 
Algorithm 2 0.010 (0,0), (1,0), (1,1), (2,2) -17.7941 
Algorithm 3 0.010 (0,0), (1,0), (1,3), (3,0), (5,4) -17.7941 

(5,5), (6,6), (7,7), (8,8), (9,9) 

Algorithm 1 0.015 (0,0), (1,0), (1,1 ), (2,2) -17.8161 
Algorithm 2 0.015 (0,0), (1,0), (1,1), (2,2) -17.8161 
Algorithm 3 0.015 (0,0), (0,3), (1,0), (1,1), (1,3) -17.8161 

(3,0), (3,1), (5,4), (5,5), (6,6) 
(7,7), (8,8), (9,9) 

Algorithm 1 0.020 (0,0), (1,0), (1,1), (2,2) -17.8381 
Algorithm 2 0.020 (0,0), (1,0), (1,1), (2,2) -17.8381 
Algorithm 3 0.020 (0,0), (0,3), (1,0), (1,1), (1,3) -17.8381 

(3,0), (3,1), (5,4), (5,5), (6,6) 
(7,7), (8,8), (9,9) 
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.X Sets not Cost per 
SQP' time unit 

Algorithm 1 0.025 (0,0), (1,0), (1,1), (2,2) -17.8601 
Algorithm 2 0.025 - -17.8600 
Algorithm 3 0.025 (0,0), (0,3), (1,0), (1,1), (1,3) -17.8601 

(3,0), (3,1), (5,4), (5,5), (6,6) 
(7,7), (8,8), (9,9) 

.. 

Algorithm 1 0.030 (0,0), (1,0), (1,1), (2,2) -17.8820 
Algorithm 2 0.030 - -17.8820 
Algorithm 3 0.030 (0,0), (0,3), (1,0), (1,1), (1,3) -17.8820 

(3,0), (3,1), (5,4), (5,5), (6,6) 
(7,7), (8,8), (9,9) 

Algorithm 1 0.035 (0,0), (1,0), (1,1), (2,2) -17.9040 
Algorithm 2 0.035 - -17.9039 
Algorithm 3 0.035 (0,0), (1,0), (1,1), (3,0), (5,4) -17.9040 

(5,5), (6,6), (7,7), (8,8), (9,9) 

Algorithm 1 0.040 - -17.9259 
Algorithm 2 0.040 - -17.9259 
Algorithm 3 0.040 (0,0), (0,3), (1,0), (1,1), (1,3), (5,4) -17.9259 

Algorithm 1 0.045 - -17.9478 
Algorithm 2 0.045 - -17.9478 
Algorithm 3 0.045 (0,0), (1,0), (1,1), (5,4), (5,5), (6,6) -17.9478 

(7, 7), (8,8), (9,9) 

Algorithm 1 0.050 - -17.9697 
Algorithm 2 0.050 - -17.9697 
Algorithm 3 0.050 (0,0), (1,0), (1,1), (2,2), (3,0), (5,4) -17.9698 

(5,5), (6,6), (7,7), (8,8), (9,9) 

Table 2. Results for varying A. 

In Table 3, the results for different µ2 can be found. The other parameters are N1 = 20, 
N2 = 25, .X = 0.005, µ 1 = 1 and b = 0.5. The initial state is (1, 0, 10, 10). 
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µ2 Sets not Cost per 
SQP' time unit 

Algorithm 1 1.25 (0,0), (1,1) -19.4482 
Algorithm 2 1.25 - -19.4482 
Algorithm 3 1.25 - -19.4482 

Algorithm 1 1.5 - -20.9654 
Algorithm 2 1.5 - -20.9654 
Algorithm 3 1.5 - -20.9654 

Algorithm 1 1.75 - -22.3289 
Algorithm 2 1.75 - -22.3289 
Algorithm 3 1.75 - -22.3289 

Algorithm 1 2 - -23.5509 
Algorithm 2 2 - -23.5509 
Algorithm 3 2 - -23.5509 

Table 3. Results for varying µ2 • 

In Table 4, the results for different µ1 can be found. The other parameters are N1 = 20, 
N2 = 25, ,\ = 0.005, µ 2 = 1 and b = 0.5. The initial state is (1, 0, 10, 10). 

µ1 Sets not Cost per 
SQP' time unit 

Algorithm 1 1.25 (0,0), (1,0), (1,1), (2,0) -19.7434 
Algorithm 2 1.25 (0,0), (1,0), (1,1), (2,0) -19.7434 
Algorithm 3 1.25 (0,0), (0,2), (1,0), (1,3) -19.7434 

(2,0), (3,1), (9,9) 

Algorithm 1 1.5 (0,0), (1,0), (1,1), (2,0) -21.7148 
Algorithm 2 1.5 (0,0), (1,0), (1,1), (2,0) -21.7148 
Algorithm 3 1.5 (0,0), (0,2), (0,3), (1,0) -21.7148 

(1,3), (2,0), (2,1), (13,6) 

Algorithm 1 1.75 (0,0), (1,0), (1,1), (2,0), (3,0) -23.6861 
Algorithm 2 1.75 (0,0), (1,0), (1,1), (2,0), (3,0) -23.6861 
Algorithm 3 1.75 * 

Algorithm 1 2 (0,0), (1,0),(1,1 ),(2,0), (3,0), ( 4,0) -25.6575 
Algorithm 2 2 (0,0), (1,0), (1,1), (2,0), (3,0), (4,0) -25.6575 
Algorithm 3 2 * 

Table 4. Results for varying µ1. 

* These entries are omitted because the computing times were too large. 
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The results in Tables 2, 3 and 4 are found on a SGI Challenge R4400SC with 128 Mbyte 
memory and 500 Mbyte swap space. The total of computing times (in hours) needed per 
algorithm for all the problem instances in the tables are 

Table 2 Table 3 Table 4 

Algorithm 1: 4: 03 4: 33 1: 45 

Algorithm 2: 2: 42 2: 59 2: 25 

Algorithm 3: 596: 31 5: 48 > 800: 00. 

In Table 5, the results for different b, thus for different discount factors, can be found. The 
other parameters are N1 = 20, N2 = 25, >. = 0.005 and µ1 = µ2 = 1. The initial state is 
(1, 0, 10, 10). 

b Sets not Cost per 
SQP' time unit 

Algorithm 1 0.6 (0,0), (1,0), (1,1) -15.2436 
Algorithm 2 0.6 (0,0), (1,0), (1,1) -15.2436 
Algorithm 3 0.6 (0,0), (0,3), (1,0), (1,2) -15.2436 

(1,3), (3,0), (5,6) 

Algorithm 1 0.7 (0,0), (1,0), (1,1) -13.3940 
Algorithm 2 0.7 (0,0), (1,0), (1,1) -13.3940 
Algorithm 3 0.7 (0,0), (0,3), (1,0), (1,2), (1,3) -13.3940 

(2,1), (3,0), (3,1), (4,6) 

Algorithm 1 0.8 - -11.9887 
Algorithm 2 0.8 - -11.9887 
Algorithm 3 0.8 - -11.9887 

Algorithm 1 0.9 - -10.8879 
Algorithm 2 0.9 - -10.8879 
Algorithm 3 0.9 - -10.8879 

Algorithm 1 1 - -10.0036 
Algorithm 2 1 - -10.0036 
Algorithm 3 1 - -lll.0036 

Table 5. Results for varying b. 

The results are found on a Silicon Graphics Indy R4000PC with 32 Mbyte memory and 
100 Mbyte swap space. The total of computing times (in hours) needed per algorithm for 
all the problem instances in the table are 

Algorithm 1: 2: 55; 
Algorithm 2: 3: 11; 

Algorithm 3 : 108 : 56. 
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Note, that the policies found by Algorithm 3, are globally optimal. From the tables, we 
see that the policies found by the three different algorithms are almost the same. Hence, 
the policies found by Algorithm 1 and 2 are (nearly) optimal too. In Table 2, for>.= 0.025 
and ,\ = 0.035, we have that Algorithm 1 and 3 find better policies than Algorithm 2 and 
for ,\ = 0.050 Algorithm 3 finds a better policy than the other two algorithms. However, 
the difference in costs is very small. 
From all this, we can conclude that Algorithm 1 finds good, if not optimal, policies in this 
model in a (relatively) short time. 
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Abstract 

Motivated by a practical situation for the production/assembly of Printed Circuit 
Boards, we study a generalized shortest queue system. This system consists of parallel 
servers, which all have their own queue. The system serves several types of jobs, which 
arrive according to Poisson processes. Because of technical reasons, most or all types 
of arriving jobs can only be served by a restricted set of servers. All jobs have the 
same exponential service time distribution, and, in order to minimize its own service 
time, each arriving job joins (one of) the shortest queue(s) of all queue(s) where the 
job can be served. The behavior of the resulting queueing system may be described 
by a multi-dimensional Markov process. Since an analytical solution for this Markov 
process is hard to obtain, we present flexible bound models in order to find the most 
relevant performance measures, viz. the waiting times for each of the job types sepa­
rately and for all job types together. The effectiveness of the flexible bound models is 
shown by some numerical results. 

1 Introduction 

To show the relevance of the queueing system studied in this paper, we first describe a 
queueing situation stemming from a flexible assembly system consisting of a group of parallel 
insertion machines, which have to mount vertical components on Printed Circuit Boards. 
We start the description with explaining how an insertion machine operates. An insertion 
machine mounts vertical components, such as resistors and capacitators, on a Printed Circuit 
Board (PCB) by the insertion head. The components are mounted in a certain sequence, 
which is prescribed by a Numerical Control program. The insertion head is fed by the 
sequencer, which picks components from tapes and transports them in the right order to the 
insertion head. Each tape contains only one type of components. The tapes are stored in 
the component magazine, which may contain 80 tapes, say. Each PCB needs, on average, 
60 different types of components. If a machine has to mount components on a PCB, then 
all the components need to be available on that machine. That means that for all those 
components a tape must be placed in the magazine. So the set of components available on 
the machine completely determines which types of PCBs can be handled. 

In general we have a group of parallel insertion machines which have to process a number 
of different types of PCBs at the same time. Each insertion machine has its own queue, and 
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the PCBs are transported to the insertion machines by an Automatic Conveyor System. In 
Figure 1, we have depicted a system which consists of three insertion machines and which has 
to process three different types of PCBs. The machines are basically similar, but due to the 
fact that they may be loaded with different types of components, the classes of PCB-types 
that can be handled by the machines may be different. In the situation depicted in Figure 
1, machine M 1 can handle PCBs of the types A and B, machine M2 can handle the types A 
and C, and machine lvl3 can handle the types Band C. 

In fact, there are two decision problems: the assignment problem and the routing problem. 
We first describe the assignment problem, which is the major problem. The assignment 
problem concerns how the tapes with components have to be divided among the machines. 
One should try to allocate the tapes with components to the machines such that, for example, 
the waiting times (and/or sojourn times) of the PCBs are minimized. There would be no 
problem if the magazines were big enough to contain all components needed to process all 
types of PCBs. However, in general they can only contain the components needed for a 
small subset of the different types of PCBs. 

In order to solve the assignment problem, we must be able to evaluate the performance 
characteristics of a given assignment of the components to the machines. These performance 
characteristics depend on how the second decision problem, i.e. the routing problem, is 
handled. This problem concerns to which machines the PCBs must be sent upon arrival. 
For an arriving PCB, we must select one of the machines which can handle that PCB. If 
for all types the mounting times are roughly the same, then it is reasonable to select the 
machine with the shortest queue (let ties be broken with equal probabilities); this at least 
(roughly) minimizes the waiting time of the arriving PCB itself, and it may be expected 
that this also roughly minimizes the average waiting time for all PCBs together, provided 
that we are in a balanced situation (i.e. a situation in which each server will have to handle 
the same amount of work on average). Assume that the shortest queue routing is used by 
the Automatic Conveyer System, and that, once arrived in a queue, the PCBs are served in 
a First-Come-First-Served (FCFS) manner. Then we have the following problem: 

Given the shortest queue routing and the FCFS service discipline at each ma­
chine, we want to have an efficient method for the determination of the perfor­
mance characteristics of the flexible assembly system for a given assignment of 
the components to the machines. 

The main performance characteristics we are interested in, are the waiting times for each 
type of PCBs separately and for all PCBs together. It is obvious that an efficient method 
for determining these measures can be exploited for selecting the best possible assignment 
of the components to the machines. 

The assembly of PCBs is often characterized by relatively few job types, large production 
batches and small processing times (see Zijm [13]). Therefore, a queueing model approach 
seems natural. The flexible assembly system can be modeled as a queueing system consisting 
of parallel servers, each with a own queue, and serving several types of jobs, where each job 
upon arrival joins the shortest queue of all queues that can handle this job. We call this 
system a Generalized Shortest Queue System (GSQS). 

Apart from the situation described above, the GSQS is also relevant for many other 
practical situations; for example, in a job shop with a group of identical, parallel machines 
which are loaded with different sets of tools, in a computer system where each information 
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Figure 1: A flexible assembly system consisting of three parallel insertion machines, on which three 
types of PCBs are made. 

file is available on a restricted set of a number of parallel disks and requests for information 
files have to be handled by only one disk, and at a banking office where each clerk is able to 
carry out a restricted set of tasks. Nevertheless, the GSQS has hardly been studied in the 
literature. To our knowledge, the only contribution is made by Adan, Wessels and Zijm [3], 
who, for a simplified situation (see the next paragraph), present rough approximations for 
the waiting times. Further, closely related systems have been studied by Schwartz (10] (see 
also Roque [9]), Green [5] and Hassin and Haviv [6]. 

In this paper, we make the following assumptions for the GSQS (cf. [3]): (i) all jobs 
arrive according to Poisson streams; (ii) the service times are exponentially distributed; 
(iii) the service times are job-independent; (iv) all insertion machines work equally fast. 
The assumptions (ii)-(iv) imply that all service times are exponentially distributed with the 
same parameter. Even under these assumptions, the GSQS constitutes a hard problem. 
The behavior of the GSQS is described by a continuous-time Markov process with multi­
dimensional states where each component denotes the queue length at one of the servers. 
However, because of the shortest queue routing, the structure of the transitions is rather 
complicated and hence an analytical solution seems hard to obtain in general. In fact, 
an analytical solution is only known for the special case with two parallel servers and one 
type of jobs that can be handled by both servers; in this case the GSQS reduces to the two­
dimensional symmetric shortest queue system, for which a generalized product-form solution 
has been derived by using a compensation approach (see [4]). For all other cases, even a 
standard numerical method is not available. Therefore, for the general case of the GSQS, we 
propose to use truncation models which: (i) have a truncated state space with a flexible size 
(i.e. depending on one or more truncation parameters); (ii) can be solved efficiently; (iii) 
lead to upper/lower bounds for the waiting times. Such models are called solvable flexible 
bound models. We shall define one lower bound and one upper bound model. By solving 
these two models for increasing sizes of the truncated state space, we can determine the 
waiting times of the original GSQS as accurately as desired. Numerical results for two series 
of instances will show that this method may work quite well. It is noted that flexible bound 
models previously have been successfully applied to the symmetric shortest queue system 
(with ?'. 2 servers), the symmetric longest queue system and an MIMlc system with critical 
jobs (see (2, 12, l]). 

This paper is organized as follows. In Section 2, we give a precise description of our model 
for the GSQS. Next, in Section 3, we describe the flexible bound models that can be used 
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to determine the waiting times for the GSQS. Finally, in Section 4, we present numerical 
results in order to show the effectiveness of the flexible bound models. For simplicity and 
in order to save space, in the remaining part of this paper we shall restrict ourselves to 
the two-dimensional case, i.e. to a GSQS consisting of two servers. Nevertheless, the whole 
analysis can easily be generalized to the case with two or more servers; for this generalization 
the reader is referred to [11]. 

2 Model 

We consider a GSQS consisting of two parallel servers. For this system we distinguish three 
types of jobs: jobs of type A, which can be served by both servers, jobs of type B, which can 
only be served by server 1, and jobs of type C, which must be served by server 2; see Figure 
2. The jobs of the types A, B and C arrive according Poisson processes with intensities AA, 
AB and Ac (all :;:: 0). The total arrival intensity is denoted by A= AA+ AB+ Ac. All service 
times are assumed to be exponentially distributed with parameterµ= 1. Upon arrival, jobs 
of type B join the queue at server 2, jobs of type C join the queue at server 3, and jobs of 
type A join the shortest queue (if both queues have equal length, then each queue is chosen 
with probability ½). 

The behavior of the GSQS is described by a continuous-time Markov process with states 
(m1, m2), where m; denotes the length of the queue at server i, i = 1, 2 (jobs in service are 
included). So, the state space is equal to 

M = {mlm=(m1,m2)withm;E!Nofori=l,2}. 

In order to obtain an irreducible Markov process, we assume that AA+ AB > 0 and AA+ Ac > 
0. The transition rates are denoted by Qm,n· These rates have been depicted in Figure 3. 

AB 

AC 

Figure 2: The GSQS with two servers and three job types. 

The average workload per server is given by p = A/2. The GSQS obviously can only be 
ergodic if p < 1 and if each of the servers can handle the job type that always has to be 
served by him, i.e. if 

AB < 1, Ac < 1 and A < 2. (1) 

We conjecture that this condition is not only necessary, but also sufficient for the ergodicity. 
This conjecture is based on: (i) the idea that the dynamic shortest queue routing gives a 
better performance than a static routing; (ii) the property that if condition (1) is satisfied, 
then there exists a static routing under which the system is ergodic. The latter property 
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mi­
Figure 3: The transition rate diagram for the GSQS. 

is seen as follows. Under a static routing, upon arrival, a job of type A joins the queue 
at server 1 with some given probability x, 0 :S x :S 1, and it joins the queue at server 2 
with probability 1 - x. Then the two servers behave as two independent MIMI! queues 
with workloads x>.A + >.8 and {1 - x)>.A + >.c, respectively, and the system is ergodic if 
x>.A + >.8 < 1 and {1 - x)>.A + >-c < 1. It may be shown that this latter condition always 
can be satisfied for some choice of x if condition (1) is satisfied. From now on, we assume 
that condition (1) is satisfied. 

The performance measures we are interested in are the mean waiting times W(A), W(B), 

W(C) for each of the job types A, B and C separately and the mean waiting time W for all 
job types together, which is equal to 

It is easily seen that W(B) and w(c) are equal to the mean queue lengths £ 1 and £ 2 at the 
servers 1 and 2, respectively, and that W(A) is equal to the mean Lsq of the length of the 
shortest queue. 

Finally, note that the GSQS is symmetric if >.8 = >.c. For such a system, the ergodicity 
condition (1) reduces to p < 1 and the shortest queue routing used by the jobs of type A 
can be shown to minimize the total number of jobs in the system and hence also the mean 
waiting time W (this may be done by the technique used by Hordijk and Koole [7]). 

3 Solution by flexible bound models 

We now define two truncation models: one leading to lower bounds for the waiting times 
W(A), W(8 ), w(c) and W, and another one leading to upper bounds. 

Since the shortest queue routing in general will cause a drift to the states with equal 
queue lengths, for both the lower and the upper bound model the truncated state space is 
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defined by 

where T1, T2 E IN are so-called threshold parameters. For this choice of the truncated state 
space, there are four types of transitions pointing from states inside M' to states outside M': 

(i} for the states m = (m1, m1 + Ti} E M' with m1 > 0, a service completion at server 1 
occurs with rate µ and leads to a transition from m to state n = m - e1 f/: M'; 

(ii) for the states m = (m2, m2 + T2} E M' with m2 > 0, a service completion at server 2 
occurs with rate tt and leads to a transition from m to state n = m - e2 f/: M'; 

(iii) for the states m = (m1, m1 + T1} E M' with m1 ~ 0, an arrival of a job of type C 
occurs with rate Ac and leads to a transition from m to state n = m + e2 f/: M'; 

(iv) for the states m = (m2, m2 + T2) E M' with m2 ~ 0, an arrival of a job of type B 
occurs with rate AB and leads to a transition from m to state n = m + e1 f/: M'. 

In the lower bound model, these transitions are redirected from the states n to states n' 
which correspond to situations with a smaller number of jobs at one of the two servers. With 
respect to waiting times and queue lengths these states are more attractive. In the upper 
bound model, redirections are made to less attractive states corresponding to situations with 
a larger number of jobs at one of the two servers. 

In the lower bound model, the transitions described under (i) and (ii} are redirected 
to the states n' = n - e2 = m - e1 - e2 E M' and n' = n - e1 = m - e1 - e2 E M', 
respectively. The physical interpretation of these redirections is that a departure of a job 
at a non-empty shortest queue is accompanied by a destruction or killing of one job at the 
other queue. Further, the transitions described under (iii) and (iv) are redirected to the 
states n' = n - e2 = m E M' and n' = n - e1 = m E M', i.e. to the states m itself. The 
physical interpretation of these redirections is that a new job arriving at one of the servers 
is rejected. Because of the physical interpretations, the lower bound model is called the 
Threshold Killing and Rejection (TKR) model. 

In the upper bound model, the transitions described under (i)-(iv} are redirected to 
n' = n + e1 = m, n' = n + e2 = m, n' = n + e1 = m + e1 + e2 and n' = n + e2 :::: m + e1 + e2, 
respectively. The meaning behind the first two types of redirections is that if for one queue 
the difference with respect to the shortest queue has already reached its maximum value, 
then a service completion at the other queue is not accompanied by a departure, and the 
job in service has to be served once more; this is equivalent to saying that then the other 
server is blocked. The meaning behind the latter two types of redirections is that an arrival 
of a new job at a queue for which the difference with respect to the shortest queues has 
already reached its maximum value, is accompanied by the addition of one extra job at each 
of the shortest queues. Hence, the upper bound model is called the Threshold Blocking and 
Addition (TBA) model. 

In Figure 4, we have depicted the redirections for both the lower and upper bound model. 

The TKR model leads to stochastically smaller lengths for the queue at server 1, the 
queue at server 2 and the shortest queue, and hence also to smaller means than obtained 
for the original model. Further, it may be shown that the larger the values of T1 or T2 the 
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Figure 4: The redirections for the TKR and TBA model. For both models, T1 and T2 have been 
taken equal to 3. 

smaller the difference between the queue lengths in the TKR model and the queue lengths 
in the original model. The lower bounds for the mean queue lengths immediately lead to 
lower bounds wJ:i}n(T), Wf~n(T), Wf~n(T) and WTKn(T) for the mean waiting times; 
here T = (T1, T2). Similarly, the TBA model leads to larger queue lengths and waiting 
times. The upper bounds for the mean waiting times are denoted by W+1/A(T), w}1;?A(T), 
W}CJ}A(T) and WrnA(T). A formal proof of all these monotonicity results may be given by 
using the precedence relation method. This method is based on Markov reward theory and 
has been developed in [ll]. 

For both the TKR and TBA model, the steady-state distribution can be determined by 
the matrix-geometric approach, as described in [8]. This enables an efficient computation of 
the corresponding lower and upper bounds for the waiting times; see [ll] for appropriate 
matrix formulae that can be used for this computation. 

4 Numerical results 

In this final section, numerical results for two series of instances are presented in order to 
show how well the waiting times of the original GSQS can be determined by using the bound 
models. The instance with 

p = 0.9, A = 2p, AA = pA with p = 1, An = Ac = 1(1 - p)A 

has been chosen as a basic instance. In the first series, we have varied the value of the 
workload p. In the second series, we have varied the value of the fraction p of jobs that can 
be handled by both servers. 

Since all instances concern symmetric cases, we can take T1 = T2 = T and the waiting 
times w<A), W(B), w<c) and W can be determined by solving the TKR and TBA model 
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I p ll(T) I 
0.1 2 0.0146 0.0006 0.1059 0.0007 0.0603 0.0006 
0.2 3 0.0558 0.0006 0.2282 0.0008 0.1420 0.0007 
0.3 3 0.1281 0.0034 0.3746 0.0043 0.2514 0.0038 
0.4 4 0.2351 0.0030 0.5577 0.0038 0.3964 0.0034 
0.5 5 0.3966 0.0034 0.7977 0.0042 0.5971 0.0038 
0.6 7 0.6468 0.0018 1.1337 0.0021 0.8902 0.0019 
0.7 8 1.0723 0.0039 1.6532 0.0044 1.3628 0.0041 
0.8 11 1.9222 0.0027 2.6142 0.0029 2.2682 0.0028 
0.9 15 4.4516 0.0032 5.2782 0.0033 4.8649 0.0033 
0.95 18 9.4729 0.0048 10.3800 0.0048 9.9265 0.0048 
0.98 23 24.4883 0.0032 25.4495 0.0032 24.9689 0.0032 
0.99 26 49.4939 0.0031 50.4742 0.0031 49.9841 0.0031 

Table 1: The mean waiting times wO and W determined within an absolute accuracy of €abs = 
0.005 for increasing values of p and with A = 2p, AA = A, AB = Ac = A. 

for increasing values of T. Here, for each T, the values of (WJ.'j)R(T) + wJ.1]A(T))/2 and 
£l(Al(T) = (W-}-1}A(T) - wJ.'j)R(T))/2, where T = (T,T), are used as an approximation 
for W(A) and an upper bound for the corresponding absolute inaccuracy; and, similarly for 
w<8 l, w<CJ and W. For each instance, we have determined the smallest value ofT for which 
each of the waiting times was determined within an absolute accuracy Eabs = 0.005. 

The numerical results have been gathered in the Tables 1 and 2. The first column of 
Table 1 denotes the chosen values for p, while the second column depicts the value found for 
T. In the third, fifth and seventh column, we have listed the approximations which for this T 
have been obtained for w<A), W(B) = w(c) (because of the symmetry, also the waiting times 
for the types B and C are equal) and W; and, in the fourth, sixth and eighth column, we 
have listed the upper bounds £l(Al(T), £l(8 l(T) = £l(Cl(T) and il(T) for the corresponding 
absolute inaccuracies. Table 2 consists of the same columns, except that in this table the 
first column denotes the chosen values of p. 

The results in Table 1 show that, as expected, the threshold parameter T which is needed 
to approximate the mean waiting times within the desired absolute accuracy, is increasing 
as a function of the workload p. Further, the results in the Table 2 show that the required 
value for T strongly depends on the strength of the drift to the states with equal queue 
lengths, i.e. to the states on the diagonal. In this table, a smaller value for p corresponds 
to a weaker drift to the states on the diagonal. It follows that the weaker the drift to the 
diagonal, the larger the required value for T. In the extreme case with p = 0.0, in which 
the corresponding SQS-JDP consists of 2 independent Ml Mil queues, T has to be equal to 
85 in order to reach the desired accuracy, while in the other extreme case with p = 1.0, in 
which we have a pure symmetric shortest queue system, T only has to be equal to 8. 

From the values found for T, it may be concluded that the TKR and TBA model only 
lead to tight bounds, if the drift to the states with equal queue lengths is sufficiently strong. 
This will also hold for GSQSs with more than two servers. It is noted that the existence of 
a certain drift to the states with equal queue lengths has been a point of departure when we 
constructed the TKR and TBA model. So, if there is only a weak drift to the states with 
equal queue lengths, then the probability mass will not be concentrated around these states, 
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p T W\AJ .6,\A)(T) W\BJ ,6_(B)(T) w .6.(T) 

0.0 85 4.2648 0.0024 8.9976 0.0046 8.9976 0.0046 
0.1 43 4.3594 0.0038 6.8002 0.0046 6.5561 0.0045 
0.2 29 4.4027 0.0041 6.0435 0.0045 5.7154 0.0044 
0.3 22 4.4266 0.0040 5.6619 0.0042 5.2913 0.0041 
0.4 18 4.4414 0.0033 5.4320 0.0034 5.0357 0.0034 
0.5 15 4.4516 0.0032 5.2782 0.0033 4.8649 0.0033 
0.6 13 4.4589 0.0027 5.1682 0.0028 4.7426 0.0028 
0.7 11 4.4645 0.0034 5.0856 0.0035 4.6509 0.0034 
0.8 10 4.4688 0.0025 5.0212 0.0025 4.5793 0.0025 
0.9 9 4.4722 0.0021 4.9697 0.0021 4.5220 0.0021 
1.0 8 4.4751 0.0022 4.9275 0.0022 4.4751 0.0022 

Table 2: The mean waiting times w<·) and W determined within an absolute accuracy of Eabs = 
0.005 for the GSQS with p = 0.9, A= 2p, AA= pA, AB =Ac= (1 - p)A, and varying p. 

and one should focus on bound models with alternative truncated state spaces. 

The values presented in the Tables 1 and 2 for the mean waiting times itself, also deserve 
some attention. The results in Table 1 show that only a small difference between the waiting 
times for the types B and C and the waiting time for type A is obtained, even for high 
workloads. From the results in Table 2, it follows that the mean waiting time W for all 
job types together is more than proportionally decreasing as a function of the fraction p of 
jobs which can be served by both servers. In fact, a small fraction p of jobs that can be 
handled by both servers, already leads to a considerable reduction for W, compared to the 
situation with p = 0. From this, we can draw the following important conclusion for the 
production of Printed Circuit Boards by the flexible assembly system, as described in Section 
1: In order to obtain small mean waiting times for the given total workload, the assignment 
of the components to the insertion machines should be such that for the resulting GSQS a 
.strong drift to the states with equal queue lengths is obtained. Note that these assignments 
are precisely the ones for which our bound models work well. Hence, after having selected 
a small number of assignments which are expected to have the strong drift to the states 
with equal queue lengths, the bound models can be well used to compute the performance 
for each of the selected assignments, and subsequently the best assignment can be easily 
determined. 

References 

[1] ADAN, I.J.B.F., AND HooGHIEMSTRA, G., The MIMlc with critical jobs. Memorandum 
COSOR 96-20, Eindhoven University of Technology, Dept. of Math. and Comp. Sci., 1996. 

[2] ADAN, I.J.B.F., VAN HoUTUM, G.J., AND VAN DER WAL, J. Upper and lower bounds for 
the waiting time in the symmetric shortest queue system. Annals of Operations Research 48 
(1994), 197-217. 

159 



[3] ADAN, I.J.B.F., WESSELS, J., AND ZIJM, W.H.M. Queueing analysis in a flexible assembly 
system with a job-dependent parallel structure. In Operations Research Proceedings 1988, 
Springer-Verlag, Berlin, 1989, pp. 551 -558. 

[4] ADAN, I.J.B.F., WESSELS, J., AND ZIJM, W.H.M. Analysis of the symmetric shortest queue 
problem. Stochastic Models 6 {1990), 691-713. 

[5] GREEN, L. A queueing system with general-use and limited-use servers. Operations Research 
33 {1985), 168-182. 

[6] HASSIN, R., AND RAVIV, M. Equilibrium strategies and the value of information in a two 
line queueing system with threshold jockeying. Stochastic Models 10 (1994), 415-435. 

[7] H0RDIJK, A., AND K00LE, G. On the assignment of customers to parallel queues. Probability 
in the Engineering and Informational Sciences 6 ( 1992), 495--511. 

[8] NEUTS, M.F. Matrix-Geometric Sol-utions in Stochastic Models. Johns Hopkins University 
Press, Baltimore, 1981. 

[9] ROQUE, D.R. A note on "Queueing models with lane selection". Operations Research 28 
{1980), 419-420. 

[10] SCHWARTZ, B.L. Queueing models with lane selection: a new class of problems. Operations 
Research 22 {1974), 331-339. 

[ll] VAN HoUTUM, G.J. New Approaches for Multi-Dimensional Queueing Systems. Ph.D. Thesis, 
Eindhoven University of Technology, Eindhoven, 1995. 

[12] VAN H0UTUM, G.J., ADAN, l.J.B.F., AND VAN DER WAL, J. The symmetric longest queue 
system. Stochastic Models 13 {1997), 105-120. 

[13] ZIJM, W .H. M. Operational control of automated PCB assembly lines. In Modem Production 
Concepts: Theory and Applications, G. Fandel and G. Zaepfel, Eds. Springer-Verlag, Berlin, 
1991, pp. 146-164. 

160 



Stochastic scheduling with event-based 
dynamic programming 

Ger Koole 
Faculty of Mathematics and Computer Science 

Free Universiteit 
E-mail: koole@cs.vu.nl 

Abstract 

In thls paper event-based dynamic programming is applied to stochastic scheduling 
models. Thls allows us a unified treatment of many different models, among whlch are 
multiple and single server models (with and without feedback), discrete and continuous 
time models, models with controlled and uncontrolled arrivals, etc. 

1 Introduction 

Structural results for optimal policies for queuing models are usually derived in the following 
way. After having formulated the dynamic programming ( dp) value function for a particular 
model, it is shown inductively that this value function satisfies certain properties, from 
which the results are derived. This value function represents either a discrete time model, or 
a continuous time model (through the well-known uniformization technique, first applied in 
Lippman [14]). In this paper we use event-based dynamic programming. Event-based deals 
with event operators, which can be seen as building blocks of the value function. Typically 
we associate an operator with each basic event in the system, such as an arrival at a queue, 
a service completion, etc. Event-based dp focuses on the underlying properties of the value 
and cost functions, and allows us to study many models at the same time. It is explained in 
the next section. 

In this paper we apply event-based dp to stochastic scheduling problems. First we con­
sider single and multiple server models without feedback. Results from Chang et al. [6], 
Hordijk & Koole [7], and Koole & Vrijenhoek [13] are generalized. 

After that we study a single server model with feedback to the other queues. The con­
tinuous time version has already been studied in Nain [15] and Koole [10], the discrete time 
version is the subject of Weishaupt [20]. Their results are slightly generalized; in the cited 
papers only feedback to queues with a lower priority were allowed, we allow also feedback 
to the next higher queue. This model has the following interesting application. One of the 
problems of dynamic programming is the difficulty of working with general distributions. A 
possible solution is the use of phase-type distributions, as in Koole [10]. DFR and IFR distri­
butions are characterized in terms of phase-type distributions, and using the feedback result 
limiting results for G/DFR/1 and G/IFR/1 queues are derived. The single class results can 
also be found in Righter & Shanthikumar [16]. 
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2 Dynamic Programming 

2.1 Event-based dynamic programming 

In this section we formulate the dynamic programming value function in general terms and 
prove some theorems which form the basis of our method. 

We take x E X = JN;;'+I to be our state space. Define operators T0 , ••. , Tk-i, as follows: 

I; 

T;(/1, ... , fi;)(x) = min { e;(x, a)+ LL p/(x,a,y)J;(y) }, 
•EA;(x) i=l yEX 

with f 1 , ••• , Ji. : X --+ lll. A;(x) is called the action set, e;(x, a) the direct costs and p/(x, a,y) 
the transition probabilities. We often take l; = 1, as we will see in the next Sections. An 
important exception however is the uniformization operator for which we need l; > 1. If 
l; = 1 then T; is the standard dp operator, given that p1(x,a,y);::: 0 for all x,a,y, and that 
LyP1 (x,a,y) = 1 (or a, the discount factor) for each pair x and a. (In this case we omit 
the superscript of p.) In applications we choose the event operators as simple as possible, 
by associating one with every possible event in the system. 

The value function Vn+I is constructed from Vn and the operators T; as follows. Assume 
that Vo is given. Define, for n = 0, 1, ... , Vj0l, ... , Vjkl by taking Vjkl = Vn, for j = 
0, ... , k - 1 Vjil = T;(Vjkil, ... , vJk•,l), for some j < k1 , ••• , k1, ::;; k (where the assumption 
that k1 , ... , k1, > j is made to avoid circularity), and Vn+I = vJU>. 

Although this definition is notationally quite burdensome, the intuition is simple: each 
step of the dp consists of the parallel and/or consecutive execution of several events. If 
l; > 1 for some i, then also the determination of which events are to be executed depends on 
the state, the realization, or the action. The central ideas are summarized in the following 
(trivial) theorem. 

Theorem 2.1 Let :F be some class of functions from lN;;' to lll, and Vo E :F. If, for all i, 
for fi, ... , Ji. E :F holds that T';(/1, ... ,A) E :F then Vn E :F for all n. 

In what follows we consider special event operators and show that Td E :F for all i. This 
proves that the value function Vn E :F for all models which can be constructed with the T;. 
We choose :F such that certain structural properties of the optimal control policies can be 
derived from it. 

On the other hand, it is possible to show that Vn as defined can be rewritten in the 
standard MDP formulation, given by 

Wn+I(x) = min {k(x,a) + Lq(x,a,y)Wn(Y)}. 
•EA(x) y 

This allows us to use techniques and results from the theory of MDP's. 
Finally let us consider optimality criteria. Normally we assume that all J/;(x,a,y) ;::: 0 

and that for all i, x and a Ly,;P1(x,a,y) = 1: then Vn represents the total minimal n-stage 
costs, and under certain conditions the policy minimizing Vn as n --+ oo is average optimal. 
These conditions however are non-trivial and should be checked for each model separately, 
unless the state space is finite. If we make the exception that Ly,;Pi(x,a,y) = a, then Vn 
converges (again, under certain conditions) to the minimal discounted costs. Our focus in 
this paper is on the properties of the value function, not on the existence of limiting policies. 
In the case of a finite state space existence is guaranteed for all models. For discounting 
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results from Schiil [17] often provide the necessary existence result; for average costs some 
useful conditions are summarized in Cavazos-Cadena & Sennott [5]. 

Other optimality criteria are also possible. For discrete-time models there are no problems 
to expect when minimizing total finite-stage costs. Other choices are also possible. Take 
for example V0 = C and no further costs in the definition of Vn, n > 0. Then Vn gives the 
minimal expected final costs after n time. Also for continuous time models we can consider 
the costs at say T. This can simply be done by conditioning on the number of jumps of the 
uniformization process {see Ch. 5 of Koole [9] or Koole & Liu [12]). 

2.2 The value function 

In this Subsection we present the operators. 
Notationally we make use of the following conventions: e; denotes the ith unity vector, 

1 ::s; i ::s; m, while e0 is the O vector, each vector {in)equality is taken component wise, I { ... } 
is the indicator function, x+ = x if x 2: 0, 0 otherwise, increasing and decreasing are used in 
the non-strict sense. 

The operators related to the service process are: 
• Tssf(x) = mino$i$m {µ(i)f(x-e;) +{1- µ(i))f(x)}, where the minimization ranges over 

those i with x; > 0. This models a single server that services m parallel queues. Idleness, 
action 0, is always allowed. 

• TMsf(x) = min;,, ... ,i, u::k=l(µ(ik)f(x - e;.)+ (1- µ(ik))f(x))} where Lk I { ik = j} 2: Xj, 

i.e., no more servers can work on a queue than that there are customers in that queue. This 
models s parallel servers. 

• TssFBf(x) = min19$m{L;;'=0 µ(i,k)f(x - e; + ek)} if x f, 0, f(x) if x = 0. Action i 
models again serving queue i. This operator allows feedback to other queues. Note that we 
do not allow idleness if there are customers available. With µ( i, k) we denote the probability 
that a customer in queue i which is being served moves to queue k. Queue O means leaving 
the system. (Recall that e0 was the O vector.) We assume that L~o µ(i, k) = 1 for all i. 

Operators related to arrivals are: 
• TA(iif(x) = f(x + e;), 1 ::s; i ::s; m. This operator models an arrival at queue i. 
• TFsf(x) = Li A; min{f{(x + e;), 1}, with L; A; = 1, and the minimization component­

wise. This models a finite source queue: with probability A; the single class i customer in 
the system arrives, assuming that it is not yet there. 

The direct costs and the discounting are represented by the following operators: 
• Tco,t,f(x) = C(x) + af(x). Here a is the discount factor, thus we often take a E (0, 1], 

with a= 1 representing total costs, but we only need a 2: 0. We often write Tcosts(C, f) to 
indicate that the conditions for f must also hold for C. 

Remember that we had an m + 1 dimensional state space. Component 1 up to m are 
used for the queues, as we saw in the model above, the 0th state component will be used 
for the environment. This environment allows us to model general arrival streams, server 
vacations, etc. For examples see the following subsection. 

• Tenv(o)(fi, ... , f1)(x) = LyENo >.(x;, y) L}=1 tf(x;, y)fj(x•), where x• is equal to x with 
the 0th component replaced by y. This operator models Markov Arrival Processes, which 
are discussed in the next section. 

A special case of Tenv(O) is TuniJ, the uniformization operator, given by 
• Tunif(f1, ... , f1)(x) = Li p(j)fi(x) with p(j) > 0 for all j. This is a convex combination 

of the Ji. The value function of a continuous time model typically has this form, due to the 
uniformization. This technique was first introduced in Lippman [14], and further developed 
in Serfozo [19]. It is the basis of the analysis of most continuous-time Markovian models. 
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An interesting extension of T,nv(o) is 
• Tc,nv(o)(/1,•••,f1)(x) = minaLyeINo.\(x;,a,y)I:}=1qi(x;,a,y)/j(x*). This operator al­

lows for control in the environment. We will not go into details here, but we refer to the 
discussion of MDAP's in [7]. 

2.3 Examples of value functions 

Here we give some examples of value functions. A simple model with arrivals and service 
independent of some environment state (i.e., Poisson arrivals and constant service rates) has 
value function 

Vn+I = Tcosts(C, TuniJ[TA(l)Vn, • •,, TA(m) Vn, TssVn]). 

We could let the arrivals (and also the server completion times) depend on some envi­
ronment state. This can be done with a Markov Arrival Process, which has the property 
that the class of all MAP's is dense in the class of all arrival processes (Asmussen & Koole 
[l]). An MAP consists of a Markov process on the environment states (with transition rates 
.\(x, y)), and event probabilities: if the environment moves from x toy then with probability 
qi ( x, y) an event of type j ( which can be an arrival in a certain class, or a possible service 
completion) occurs. Uniformization of such an MAP leads in a continuous time setting to a 
value function of the form 

where the MDAP is modeled by the operator T,nv(O)· This is the model of Buyukkoc et al. 
[4], for which they show the optimality of the µc rule. If we replace Tss by 1'ssFB then we 
get the model of Section 3 of Nain [15]. If we take TMs then we find the model of Chang et 
al. [6]. 

Also discrete time models can be modeled with event-based dynamic programming. The 
crucial property of discrete time models is that events occur after each other. Choices can 
be made here; we give below the value function of the model of Weishaupt [20]. It is given 
by: 

V. _ T (T [C T (Tb(l,I) Tb(l,m)V. Tb(l,1) Tb(l,m)V. )]) 
n+I - SSFB costs , unif A{!) · ·' A(m) n, · · ·, A{l) ''' A(m) n · 

The uniformization operator represents the arrivals. Thus with probability p(j) a batch of 
customers arrives, with b(j, i) arrivals in queue i. 

3 Models without Feedback 

In this section we study models with service operators Tss or TMs, We define the class of 
functions F as follows. f E F if the following two inequalities hold: 

µ(i)f(x - e;) + (1 - µ(i))f(x) ~ µ(j)f(x - ei) + (1 - µ(j))f(x) 

for all x such that x; > 0 and xi> 0, i < j, and 

f(x) ~ f(x + e;) 

for all x and i. 
The first inequality has a simple interpretation. The terms involved can be found in Tss­

Thus if f E F, then the minimizing action for Tssf consists of serving the customer of the 
lowest class number available, which is called the Smallest Index Policy (SIP) in [7). The 
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second inequality shows that idling is not optimal. It is also readily seen that for TMs the 
servers should be assigned to the group of s servers with the lowest indices. The following 
lemma is the basis for our results, it shows under what conditions Vn E g_ 

Lemma 3.1 The following hold: 

f E F =:> Tssf E F, TA(ii/ E F, 

f E F, µ1 S · · · S µm =:> TMsf E F, 

f E F, A1 S · · · S Am =:> TFsf E F, 

C, f E F =? Tcosts(C, I) E F, 

f1, · • · ,/1 E F =? Tenv(o)(/1, • · • , ft) E F, 

f1, • • •, f1 E F, µI S · · · S µm =? Tcenv(o)(/1, • • •, f1) E F. 

Proof The proof follows by induction, following arguments in [ll], [7] and [13]. □ 

Our results are summarized in the following theorem. 

Theorem 3.2 For value functions consisting of the operators TA(!), ... , TA(m), TFs (with 
A1 S · · · S Am), Tss, TMs (with µ1 S · · · S µm), Tcosts, Tenv(O) and/or Tcenv(O) (with 
A1 s · · · s Am), the SIP is optimal if CE F. 

An extensive study of allowable cost functions can be found in [7]. One of the results is 
that for C of the form C(x) = I:; c;x;, CE Fis equivalent to c; 2 0 and µ 1c1 2 · · · 2 µmcm. 
Thus the SIP serves in decreasing order of µ;e;. This is called the µc rule. If µ 1 S · · · S µm 
then the SIP serves the customers with the least expected processing times, which is called 
LEPT. 

In the following corollary we summarize the results for the main models. 

Corollary 3.3 In the model with: 
independent arrivals and a single server the µc rule is optimal; 
controlled arrivals and multiple servers the µc rule is optimal if it coincides with LEPT; 
a finite source and a single server the µc rule is optimal if A1 S · · · S Am; 
a finite source and multiple servers the µc rule is optimal if it coincides with LEPT and if 

A1 S · · · S Am. 

The result for the first model can also be found in Buyukkoc et al. [4] or Baras et al. [2]. 
The second result can be found in Hordijk & Koole [7], the result for uncontrolled arrivals 
can also be found in Chang et al. [6]. The third result is that of Koole & Vrijenhoek [13], 
the fourth is a generalization of it. 

4 Single-Server Model with Feedback 

We continue with the inequality that we consider for the operator TssFB· We define the 
class of functions g as follows: 

f E g-<=;, "£µ(i,k)f(x - e; + ek) S "£µ(j, k)f(x - ej + ek), 
k k 
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for all x such that x; > 0, Xj > 0, and 1 S: i < j S: m. 
The terms in the inequality can be found in TssFB· Thus if f E Q, then the minimizing 

action for TssFBf consists again of serving the customer of the lowest class number available, 
the SIP. The following lemma is the basis for our results, it shows under what conditions 
Vn E Q. 

Lemma 4.1 If, in the definition ofTssFB, µ is such that, for l S: i S: m, µ(i,k) = 0 for 
0 < k < i - l, then the following hold: 

f, CE g ==} TA(,if E Q, TssFBf E Q, Tcosts(C, f) E Q, Tenv(o)f E Q. 

Proof The proof follows by induction, following arguments in [11] and [10]. We pay at­
tention to the inductive step for the operator TssFB as existing results are extended for this 
operator. 

We have to show, given that f E Q, that 

"'I:,µ(i, k)TssFBf(x - e;+ ek) S: "'I:, µ(j, k)TssFBf (x - ej + ek)-
k k 

Consider the minimizing actions at the right hand side. For each of the states x - ei + ek 
there are two possibilities: either action i is optimal in each state (note that x, > 0), or 
there is a 1 < i with xi > 0 optimal. Note that because of our conditions on µ we have that 
k ~ j. For the rest of the proof we refer to [10]. □ 

Our result can be summarized as follows. 

Theorem 4.2 For value Junctions consisting of the operators TA(I), ... , TA(m), TssFB, Tcosts 
and/or Tenv(o), the SIP is optimal under the following conditions: 
(i) Feedback in TssFB to queues with a lower index number should be restricted to the next 
higher queue; 
(ii) The direct costs C should be such that C E g. 

Let us compare this result with those obtained in the literature. As we saw already in 
the previous section we can deal at the same time with the continuous time model of Nain 
[15] (in [10] an equivalent result is obtained) and the discrete time model of Weishaupt (20]. 
Compared to their results there is a second difference: we allow not only feedback to lower 
indexed queues, but also to the next higher queue. This small difference will allow us in 
the next section to extend substantially the limiting results of Koole [10] for G/IFR/1 and 
G/DFR/1 queues. 

Finally let us look at some special cases of the theorem. First assume that only µ( i, 0) 
and µ( i, i) are non-zero, and that C has the following special form: C ( x) = I:, c,x;. Then 
C E g is equivalent to: 

µ(i,0)C(x -e;) + (1 - µ(i,0))C(x) S: µ(j,0)C(x - ei) + (1- µ(j,0)}C(x), 

which is, due to the special form of C, equivalent to µ( i, 0)c; ~ µ(j, 0)ci. Thus we find again 
the well known µc rule. 

Now consider cost functions which are only functions of the total number of customers 
in the system. Obvious functions are C(x) = lxl or -lxl, corresponding respectively to 
minimizing and maximizing the number of customers in the system, but also C( x) = I { Ix I > 
s} and I { lxl < s} are of interest: they correspond to the probability that there are more 
or less than s customers in the system. Thus for increasing cost functions (such as lxl and 
I{lxl > s}) CE g is equivalent to µ(i,0) decreasing in i, and vice versa. We will use this in 
the next section. 
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5 Phase-Type Distributions and Limit Results 

Based on results in Schassberger [18] it is shown in [10) that any distribution function F can 
be approximated with distributions Fn of the form 

00 

Fn(x) = LfikE!(x), 
k=l 

with /31 = F(l/n) and f3k = F(k/n) - F((k - l)/n) fork> l. E! is the density function of 
a gamma distributed r.v. with k phases and intensity n. 

Thus f3k is the probability of exactly k phases. Another way to construct this r.v. is as 
follows. Define 

{ J,::,_, if Lk=ll /3k < l, 
°'m = 11-L.k=l f3k 

if L;:;.1 f3k = l. 
Let the r.v. Gn be the time until absorption of the following Markov process. The initial 
state is 1. The process rests in each state k an E! (exponentially) distributed amount 
of time, after that absorption takes place with probability °'n, or the system moves to 
state k + l with probability 1 - °'n• This is a special case of a Cox distribution. Because 

/3m = (1 - a1) · · · (1 - °'m-d°'m we see that Fn 4 Gn. 
Now we discuss DFR and IFR distributions, and their relation to phase-type distributions 

of the form Gn, We use the following definition of Barlow & Prochan [3), which is only in 
terms of F(t) = l - F(t) (thus the failure rate itself does not need to exist). 

Definition 5.1 {DFR and !FR) A non-negative distribution function is: 
DFR if F(t + s)/F(t) is increasing int 2 0 with F(t) > 0, for each s 2 0; 
!FR if F(t + s )/ F(t) is decreasing in -oo < t < oo with F(t) > 0, for each s 2 0. 

Examples of IFR (DFR) distributions are distribution with a non-decreasing (non­
increasing) failure rate ( defined by f(t)/1 - F(t), with f the density), assuming that it 
exist for all t. But also F(t) = I{t 2 x}, the deterministic distribution, is IFR, although its 
failure rate does not exist. 

Now we can formulate the result on phase-type distributions: 

Theorem 5.2 If F is DFR {IFR) then °'m is decreasing {increasing) in m, for all n. 

The proof of this theorem can be found in [10). Hordijk & Ridder [8) proved the DFR 
part of this theorem for general Cox distributions. 

A disadvantage of this method is that we need an infinite number of states. We can make 
the state space finite by changing the approximation into 

Fn(X) = 'E /3kE!(x) + (1 - 'E f3k) I:(1 - /3n2 t-l /3n2E~2+k(x). 
k=l k=l k=l 

It is easily checked that the approximation result also holds for this Fn, and that °'k becomes 
constant from k = n 2 on, so that we only need a finite number of states for the representation 
with the a's. 

Now assume that we have a single class of customers, and identify the queues of theorem 
4.2 with the stages of the phase-type distribution. We let customers arrive in queue 1, and 
we take µ(i,0) = a; and µ(i, i + 1) = 1 - a;, i < m, and form= n 2 we take µ(i, i) = 1 - a;, 
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using the finite state approximation given above. At the end of the last section it was shown 
that if C(x) = I{lxl > s}, then µ(i,0) = a; should be decreasing in i, i.e., Fn is DFR. Thus 
to minimize the number of customers, all having the same DFR distribution, the customers 
with the least attained service times (LAST) should be served. Similarly, to maximize the 
number of customers when they have IFR distributions LAST should also be used. Note 
that LAST, in the limit, leads to processor sharing between all the customers which have 
the same minimal attained service time. 

Another possibility is arrivals at queue m = n2, with µ( i, 0) = °'n2+i-i and µ( i, i - 1) = 
1 - °'n2+i-i, i > 1, and µ(1, 1) = 1 - °'n'· The optimal policy serves the customer which 
has the most attained service time (MAST). Note that this is equivalent to non-preemptive 
service. 

All these results hold for all Fn, and therefore also for their limit F. This gives the 
following corollary. These results can also be found in Righter & Shanthikumar [16]. 

Corollary 5.3 The number of customers at any time T in a G/G/1 queue is: 
minimized (maximized) by LAST in case of DFR (!FR) service times; 
minimized (maximized) by MAST in case of !FR (DFR) service times. 

Generalizations can be obtained to different customer classes having different service 
times. As long as feedback occurs to lower numbered queues no problems are to be expected. 
This is the case for DFR (IFR) distributions with positive (negative) holding times; see [10] 
for details. For the other two cases the situation is less clear. As different queues can belong 
to different customer classes, we have no guarantee that a change in phase means a transition 
to the next higher queue. For each case separately the conditions should be checked. 
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Abstract 

This paper focuses on the performance evaluation of queues fed by the worst case 
traffic that can leave the policer. The existing literature is reviewed, and an easily 
computable upper bound on the loss probability is derived. Some numerical examples 
are provided in order to show the strength of this bound. 

1 Introduction 

In recent years, telecommunication networks that use the asynchronous transfer mode (ATM) 
have appeared to be an emergent technology. In ATM systems, contracts are negotiated 
between network and customer. In such a contract the network promises a certain Quality 
of Service (loss, delay), as long as the customer satisfies a number of traffic characteristics. 
In order to enforce that the traffic entering the network meets these requirements, so-called 
Usage Parameter Control ('policing') is performed on the edge of the network. A (stylized 
version of a) typical contract of customer i consists of on the one hand a maximum allowed 
loss fraction t, on the other hand peak Pi and mean rate ri of the regulated traffic, as as well 
as the maximum allowed burst period Ti. 

One node in the ATM network can be seen as a queue fed by a number of sources, all of 
them characterized by their 'triple' (ri,Pi, Ti)- We assume that the system is characterized 
by a (constant) link rate C and a buffer of size B. 

It is generally believed that traffic with deterministic on-periods (or bursts, with length 
Ti) and off-periods, peak rate Pi and mean rate ri is the worst case traffic that can depart 
from the ith UPC regulator, allthough not formally proven [2]. With 'worst case' we mean 
that it essentially maximizes the loss probability, given the parameters (ri,Pi,Ti)- From this 
point of view, it seems logical to base the Call Acceptance Control routine (i.e., the check 
whether or not a new request can be admitted without violating the loss constraint) on 
customers supplying this kind of traffic. 

In view of the above, it is clear that it is essential to have a method for performance 
evaluation of a queue fed by 'worst case input'. Notice that the only stochastic effect is 
the 'random start' of the on-period within the period of the source. However, the model 
has appeared to be notoriously hard to analyze. A number of procedures have already been 

*The author was PhD student at the Vrije Universiteit Amsterdam, during the period 1993-1996, where 
he was supervised by Ad Ridder and Henk Tijms. He followed courses and attended workshops organized 
by LNMB. He currently works at KPN Research, Leidschendam. This work considerably benefited from 
discussions with Maurits de Graaf and Hans van den Berg. Pim van der Stoel was helpful in providing 
numerical results. 

171 



proposed in literature, but they all have their particular deficiencies. The contribution of 
this paper is to develop a technique that copes with all these drawbacks. 

The structure of this paper is as follows. First we evaluate a number of methods that 
are known from literature. Then we found a general, uniform, easily computable bound. We 
end up by giving some numerical results. 

2 Review of proposed methods 

This section reviews and evaluates the existing literature in the field of queues fed by 'worst 
case traffic', and states the properties which a good approximation or bound must satisfy. 

Kvols and Blaabjerg 

Kvols and Blaabjerg [4] consider the discrete-time version of the model, where the sources 
are homogeneous. Then the model is equivalently given, by on-time T, off-time T' and cell 
spacing D (i.e., during bursts, every D time units a cell arrives; in other words: 'D = p-I>). 
The well-known Benes formula [5] then states (assuming that at time t stationary behavior 
is reached) 

p(T+T')-r 

P(Q1 > r) = L P(N(t - s, t) = r + s) P(Q1_, = OIN(t - s, t) = r + s). 
s=I 

Here p ia the load of the multiplexer (N/ D) x T(T + T't1, N(s, t) is the number of arrivals 
from all N sources in time interval [s, t]. It is immediately seen that the following upper 
bound holds: 

p(T+T')-r 

P(Q1>r):S L P(N(t-s,t)=r+s). 
s=l 

Kvols and Blaabjerg numerically show that this upper bound is not very accurate. Apart 
from the upper bound, also an approximation is developed: 

p(T+T')-r 

P(Q1 > r):::; L {P(N(t- s,t) = r + s)-pP(N(t -s,t) = r + s)IX = 1)}, 
s=l 

where X is the stochastic number of cells arriving in interval [t - s - 1, t - s]. In order to 
execute this approximation, some N-fold convolutions have to be calculated. 

The drawbacks of the method presented.by K vols and Blaabjerg are the following: (i) only 
one type of sources is involved, (ii) the method seems to be computationally not very easy 
(convolutions have to be determined), (iii) it is not clear in what region the approximation 
is accurate (for large N for instance?), (iv) only the exceedance probability for infinite buffer 
model is examined, instead of the - for telecommunicatiom,.more relevant - cell loss ratio in 
the finite buffer model. 

Garcia, Barcelo, and Casals 

Garcia, Barcelo, and Casals [3] find an algorithm that gives an upper bound for the survivor 
probability, above refered to as P(Q1 > r). As Kvols and Blaabjerg [4] did, the starting point 
of the analysis is the Benes result. However, now the continuous-time (i.e., fiuia) version 
of the model is considered. In fact, Garcia, Barcelo, and Casals come up with a numerical 
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scheme to calculate the (continuous-time equivalent of the) upper bound found by Kvols and 
Blaabjerg (see above). 

The method has a number of disadvantages: (i) only one type of traffic is assumed, (ii) 
the calculation scheme is computationally demanding with many complicated recursive steps 
to be made, (iii) it provides only an upper bound, without any information about the error 
incurred, (iv) it assumes that the on-period is smaller than the off-period: T < T'. 

Botvich and Duffield 

As can be learnt from the above studies, it seems to be impossible to find closed-form 
expressions for the relevant performance measures; ingeneous numerical schemes providing 
approximations is the best that is achieved up to now. An other angle from which the 
problem can be considered is the development of asymptotic analysis. One key paper in this 
field is by Botvich and Duffield [l]. 

Assume without loss of generality that there are two types of sources; let the total 
number of sources in the model be N, where a fraction a E [O, l] is of type l; N1 := aN and 
N 2 := (l -a)N. Then they scale Band C by the number of sources N to Nb and Ne. Then 
Large Deviations analysis can be performed in order to get the asymptotic relation 

lim _Nl logQ(N,B,C) = -I(b,c), 
N-oo 

where Q(N, B, C) is the exceedance probability of level B. 
The way I(b, c) has to be calculated is the following. A;(t) = pX;(t) is the fluid generated 

by one single source of type i during [O, t], where X;(t) is the on-time in this interval [O, t]. 
Furthermore: 

Mt,;(0) = Eexp(0A;(t)) and J(t,x) := sup[0x -alogMt,1 (0) - (1- a)logMt,2(0)]. 
8 

Then it can be shown that 

lim _Nl logQ(N,B,C) = -supJ(t,b+ct) =: -I(b,c). 
N-oo t~O 

It should be noted that this method is not only appropriate for deterministic on-off sources, 
but under much more general conditions, see the hypothesis mentioned in [l]. 

The distribution of X(t) can be given as follows. First notice that the off-period is given by 
T' := (p - r)r- 1T. Here we assume that T < T', but an analogous reasoning applies to the 
case that T > T'. Three cases can be distinguished: 

• t < T. 

d 0 l t-U 

X(t)= ~-T' 

t-U 
0 
U-T' 
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U E [O,t] 
U E [t,T1 
U E (T',t + T'] 
U E (t+T',T+T'] 

U E (O,t-T] 
UE(t-T,t] 
U E [t,T'] 
U E (T',T+T'] 



• t ~ T'. 
U E (0,t-T] 
U E [t-T,T'] 
U E [T',t] 
U E [t,T+ T'] 

Here U is uniformly distributed on (0, T + T']. This enables the calculation of the moment 

generati11g functions M, ,,( ·) in a straightforward way. 

This method has disadvantages as well: (i) the result obtained is asymptotic in N (con­
sequently, it is not clear whether they hold for relatively small N), (ii) the method only 
yields the asymptotic decay rate of the exceedance probability, (iii) there are no results for 
the loss fraction, allthough it is likely that the same asymptotic result also holds for this 
performance measure. Advantages are that the calculations are not very complex and are 
valid for multiple types of traffic. 

Simonian and Guibert 

Simonian and Guibert [6] consider the same asymptotic regime as Botvich and Duffield [1], 
but they consider the case of one type of sources. Besides the establishment of the above 
asymptotic relation, they find an asymptotic upper bound. This asymptotic bound is again 
based on the Benes result, as follows. 

The probability of interest Q(N, B, C) is bounded by some probability Q*(N, B, C) 
(which Garcia, Barcelo, and Casals approximate). Then it is shown that 

Q*(N,B,C)-JFiexp[NI(b,c)]---> d as N-> oo, 

for some computable number d. The drawbacks of this method are the following: (i) a single 
class is considered, where in practice the multiple types of traffic case is more relevant, (ii) 
the method gives the asymptote of an upper bound, which does not mean that 

Q(N BC)< dexp[-NI(b,c)] 
' ' - -JN 

uniformly in N, (iii) again, no loss rates hut exceedance probablities are examined. 

Elwalid, Mitra, and Wentworth 

In Elwalid, Mitra, and Wentworth [2], as a first step, a worst-case analysis of this model is 
treated: they assume that all bursts arrive simultaneously. Then it is easy to verify that if 
the solution of the following linear program has a solution smaller than C there cannot be 
any loss: 

N N 

min I:; c;, subject to I:;(p; - e;)T; ~ B, 
i=l i=l 

where r; ~ c; ~ p;. The correctness of this statement is an immediate consequence of the 
implication 

{t c; ~ C} => { Buffer contents ~ t(p; -c;)T;} (1) 

Elwalid et al. [2] then assume an additional requirement, namely that the ratio of the 
contribution to the buffer contents by a particular source ( b; = (p; - c;)T;) and its bandwidth 
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consumption (c;) is equal to B/C. Then the problem can be solved explicitly, and yields 
that there is no loss if the sum of the effective bandwidths is not larger than C, where the 
effective bandwidth e; of a source with parameters (r;, p;, T;) is given by 

This is, since its solution satisfies the extra proportionality constraint, an underestimate of 
the real acceptance region. 

In practice, it is not required that there is zero loss, but some small loss fraction £ is 
allowed, typically between 10-5 and 10-9 . In order to allow for such a small loss probability, 
Elwalid et al. [2] propose a statistical multiplexing routine. First they approximate the loss 
probability in the model with buffer B, by the probability of the buffer contents exceeding 
B in the infinite buffer model. Then they show that the a source of type i requires c; only 
a fraction r;/e; of time. So, at a random moment in time the required bandwidth by a type 
i source amounts to c; with probability r;/ e; and is zero else. Reasoning in this way, they 
are able to calculate the probability of the required bandwidth exceeding link rate C; this 
probability is - consequently - an upper bound for the probability of the queueing model 
exceeding level B. 

The great advantages of this method are its intuitive nature, its low complexity, and its 
applicability for the case of multiple types of traffic. However, (i) the model sometimes gives 
a very inaccurate upper bound - orders of magnitude larger than the real probability, as we 
will see in section 4, (ii) again, the buffer level exceedance probability is considered instead 
of the loss rate. 

3 The upper bound 

In this section we shall derive an easily computable upper bound to the loss rate. We first 
examine the homogeneous case: there a cycle has length T + T'. Consider the probability 
of loss during a cycle a(B). Then there must be an s, t (withs < t < s + T + T') such that 

N 

I)A;(t) - A;(s)) 2". C(t - s) + B. 
i==l 

Without loss of generality, we can assume that s = 0. Notice that if there is a t E [O, T + T'] 
with L A;(t) 2". N(ct + b), there must also be an epoch of a burst end Si (with j = 1, ... , N) 
such that EA;(Si) 2". N(cSi + b). More formally: 

a(B) = P ( 3Si,j = 1, ... N, t A;(Si) 2". N(cSi + b)) 

::; tp (tA;(Si) 2". N(cSi + b)) 

:::'. N)f.a.:NP(tA;(Si)2".N(cSi+b)) 

::,'. N max,P(I:A;(t)2".N(ct+b)). 
tE[O,T+T] i=l 
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For all positive O we have, with the Markov inequality, 

( N ) ( M1(0) )N 
p ~ A;(t) ~ N(ct + b) $ exp[O(ct + b)) 

But since this holds for all O > 0, we can also take the infimum over O in the right hand side. 
We finally arrive at 

a(B) $ N max inf exp [-N(O(ct + b)- logM1(0))) 
te[o,T+T'] 9>0 

= Nexp[-N inf sup(O(ct+b)-logM1(0))]. 
te[o,T+T'] B>O 

Now consider the heterogeneous case. Then it can be verified easily that an analogous 
reasoning eventually yields 

a(B) $ f(N) exp [-N inf sup (O(ct + b) - a log M1,1 (0) - (1 - a) logM1,l(O))] , 
te[o,T+T'] B>O 

where f(N) is the number of bursts arriving dul'ing a cycle of this tiueue. The calculation 
of f(N) involves an easy calculation with an lowest e<>mmon divisor. 

Now the fraction 11(B) of fluid lost (duri11g a cycle) can be bounded as follows. With 
'renew.i.l rewll.fd': 

B = E(fluid !?st tluring a cycle) ; 
T/( ) E(fluid a,rrived during a cycle) 

COllditioning yields: 

E(fluid lost during a cycle) = E(fluid lost during an overflow cycle)a(B) 

$ E(fluid arrived during a cycle)o(B), 

implying that 11(B) $ a(B). We already found an upper bound to a(B), so this beund also 
applies to the loss rate 11(B). 

4 Numerical results 

In this section we cpnsider the following examp'lt111. In both t:i!,lles r ,,. 1000 cells/second, 
p .., 4000 cells/second. In the first exam.pie however, T = 4 ms, whereu in the second 
T ""64 ms is used. Notice that w.e in fact conaiaer two homogeneous .c~. 

We compare the results of our method ( and particularly the number of sol,lfees that can 
be connected in order to guarantee a loss rate of 10"'6) with the results that are provided 
by the method that is most commonly used, namely the ,eomputation scheme provi~ by 
[2). The figures display the loss probability as a function of the number of sources, using 
the 'EMW-method' and using the upper bound of section 3. The most striking feature is 
that the difference in sources that can be admitted. In the first example, with target loss 
10-6 , 60 sources can be accepted according to EMW, where even with 80 sources ( which is 
of course the maximum number, due to the stability requirement) the loss rate is still in the 
order ef 10-25 • The other example is less extreme: 37 instead of 33 can be accepted. 
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Abstract 

We consider polling systems in heavy traffic, with general mixtures of exhaustive and 
gated service, and in which the server visits the queues according to a general service 
order table. We derive exact expressions for the expected delay at each of the queues 
(under heavy-traffic scalings), requiring the solution of a set of only M - N linear 
equations, where M is the length of the service order table and N is the number 
of queues. The results lead to new insights into the behavior of polling systems in 
heavy traffic and moreover, suggest simple and fast-to-evaluate approximations for 
the expected delays at each of the queues. Numerical experiments show that the 
approximations are very accurate in practical heavy-load scenarios. 

1 Introduction 

The basic polling system consists of a number of queues attended by a single server which 
visits the queues in cyclic order to render service to the customers waiting at the queues. 
Polling models find many applications in computer-communication systems, and are also 
widely applicable in the areas of maintenance, manufacturing and production. The reader 
is referred to [12, 15) for overviews of the applicability of polling models, and to [14, 16] for 
overviews of the state-of-the-art in the analysis of polling models. In many applications the 
order in which the server visits the queues is not necessarily cyclic. A natural extension to 
cyclic server routing is the so-called periodic server routing, in which the order in which the 
server visits the queues is prescribed by a general service order table (polling table) of finite 
length. 

A detailed exact analysis of polling models is only possible in special cases, and even 
then usually numerical techniques have to be used to determine performance measures of 
interest, like expected waiting times. The ultimate goal of performance modeling and anal­
ysis is to obtain the 'best' possible system performance. The proper operation of the system 
is particularly critical when the system is heavily loaded. However, the efficiency of the 
numerical algorithms may degrade significantly when the system reaches saturation. More­
over, numerical analysis can only to a limited extent contribute to gaining insight into the 
system behavior. Exact expressions provide much more insight into the dependence of the 
performance measures with respect to the system parameters. These observations raise the 
importance of an exact asymptotic analysis of the performance of polling models in heavy 
traffic. 
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In the literature, several papers have been devoted to the determination of the expected 
delay in periodic polling models with N queues and a general polling table of length M. 
Eisenberg [7] and Alford and Muntz [l] use the so-called buffer-occupancy method to derive 
a set of O(M3 ) linear equations to obtain the expected waiting times for models with ex­
haustive and gated service at all queues, respectively. Baker and Rubin [3] use the so-called 
station-time technique to obtain the expected delays in models with exhaustive service at 
all queues, requiring the solution of a set of O(M2 ) linear equations. Recently, an iterative 
numerical technique based on the concept of descendant sets (cf. [11, 6]) has been proposed 
to obtain the moments of the delay. Eisenberg [8] analyzes the waiting times in periodic 
polling systems with exhaustive service at each queue under a variety of stop-and-resume 
rules when the system gets empty. For models with limited-type service disciplines, Blanc 
[4] shows how the so-called power-series algorithm (PSA) may be applied to obtain the main 
performance measures. Van der Mei and Borst [17] show how periodic polling models with 
multiple servers can be analyzed by means of the PSA. The main drawback of each of the 
numerical techniques is that their efficiency degrades significantly when M is large and the 
system is heavily loaded. 

In this paper we show how the expected delays in heavily loaded systems can be obtained 
more efficiently, by exploring heavy-traffic assumptions. We obtain exact expressions for the 
expected delay under heavy-traffic scalings, requiring the solution of a set of only M - N 
linear equations. The asymptotic results suggest approximations for the expected delays in 
heavily loaded systems. Numerical results are presented to show that the approximations 
are accurate in practical heavy-traffic scen<l,rios. For compactness of the presentation, details 
of the proofs of the various results are omitted. 

In section 2 the model is described and some notation is introduced. In section 3 we give 
some preliminary results. In section 4 we obtain exact expressions for the expected delay 
under heavy-traffic scalings, and discuss some implications of the results. In section 5 we 
propose and test a simple and fast-to-evaluate mean waiting-time approximation. 

2 Model Description 
Consider a system consisting of N infinite-buffer queues, Qi, ... , QN. Customers arrive at 
Q; according to a Poisson arrival process with rate A;. The total arrival rate is denoted 
by A = '[;~1 A;. The service time of a customer at Q; is a random variable B;, with 
finite first and second moments b; and bl2>. The first two moments of l!,n arbitrary service 
time are denoted by b = '[;~1 A;b;/ A and 0<2> ., E_~1 A,bl2l / A. The lwi.d offered to Q, is 
Pi = A;b;, and the total offered lo.i.d is equq], to p a;, I:;;;,1 p,. A single server inapect.s the 
queues periodically according to a gener1l polling table of finite length M, described by a 
mapping T: {l, ... , M} -+ {l, ... , N}, which is used such that the server visits the que~es 
periodically in the order T(l), T(2), ... , T(M), T(l), T(2),, ... Following the approach in (3], 
a unique pseudo-queue will be associated with each entry in the polling table. Denote by 
PQk the pseudo-queue associated with the k-th entry in the polling table; its corresponding 
queue has index T(k). Customers which arrive at QT(k) and are served at PQk are referred 
to as type-k customers. The moments at which the server arrives at PQk are referred to as 
the polling instants at PQk. Define a service period at PQk as the time between a polling 
instant at PQk and its successive departure from PQk. The service at each pseudo-queue is 
either according to the gated policy or the exhaustive policy. Under the gated policy only 
the type-k customers present at PQk at the polling instant at PQk are served; customers 
which arrive at PQk while it is being served are not served during the current visit period. 
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Under the exhaustive policy the server visits PQk until it is empty. We allow mixed service 
policies, e.g. exhaustive service at PQ 1 and PQ4 , and gated service at PQ 2 and PQ3 . For 
ease of the discussion, we assume that pseudo-queues corresponding to the same queue have 
the same service strategy. Define E := { i : Q; is served exhaustively} and G := { i : Q; is 
served according to the gated policy}. At each queue the customers are served on a FIFO 
basis. After completing service at PQ; the server proceeds to PQ,+ 1 , incurring a switch-over 
period whose duration is an independent random variable R;. The first two moments of R; 
are denoted by r; and rl2). Denote the first moment of the total switch-over time in a cycle 
by r = :[;~1 r;, and the second moment by r( 2) = I:;;';!:1 rl2l + :[;~=I L,;tj r,rj. It is assumed 
throughout that r > 0. 

All interarrival times, service times and switch-over times are assumed to be mutually 
independent and independent of the state of the system. A necessary and sufficient condition 
for the stability of the system is p < 1 [9]. In the sequel, it is assumed that this condition is 
satisfied, and that the system is in steady state, unless indicated otherwise. 

Denote by Wk the delay incurred by an arbitrary customer at Qk- Our main interest is in 
the behavior of E[Wk], the expected delay at Qk, in heavy traffic. Throughout, E[Wk] will l;>e 
considered as function of p; to be specific, we assume that the arrival rates are parametrized 
as A; = a,p, where relative arrival rates a, remain fixed. It is known that when p j 1, all 
queues become instable and herice, E[Wk] tends to infinity for all k (cf. (9]). Although a 
rigorous proof has not been found in the literature, we assume that E[Wk] has a first-order 
pole at p = 1: fork= l, ... ,M, 

E[Wk] = ~ + o((l - p)- 1 ), (p j 1), 
1-p 

(1) 

where o((l - pJ-1 ) stands for a function of p which becomes negligible compared to (1- p)-1 

when p j l. Based on equation (1), the analysis will be oriented towards the determination 
of 

wk= Jim (1 - p) E[Wk], k = 1, ... , M, 
pfl 

(2) 

the scaled expected delay at Qk, also referred to as the heavy-traffic residue of E[Wk] at 
p = l. In words, wk indicates the rate at which E[Wk] tends to infinity as p j l. We denote 
by W{Q the waiting time of a customer which is served at PQk- Similar to the definitions 
above, denote by w[Q the heavy-traffic residue of E[W{Q]. 

Finally we introduce some notation. Let T,j be the entry in the polling table corresponding 
to the next visit to Qi after a departure from PQ,, and let u,j be the entry corresponding 
to the last visit to Qi prior to an arrival of the server at PQ, (i = 1, ... , M, j = 1, ... , N). 
Moreover, let z,j := 1 if PQ,+1 , ... , PQi do not correspond to Qr(i) and j ,/ i, while Zij := 0 
in all other cases. le stands for the indicator function on the event E. 

3 Preliminaries 

Let Xk be the steady-state number of customers at PQk at a polling instant at PQk and 
let Vi be the steady-state duration of a visit period of the server to PQk (k = 1, ... , M). 
For a customer served at PQk, we define the waiting time at PQk to be the time between 
its arrival in the system (at QT(k)) and the moment at which the customer starts service at 
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PQk- The expected waiting time at PQk can be expressed in terms of the first two moments 
of xk as follows ( cf. [13]): 

E[WPQ] _ Var[Xk] + (E[Xk]) 2 
- E[Xk] (l + ) (T(k) E G), (3) 

k - 2)..T(k)E[Xk] PT(k) ' 

and 

E[W{Q] = Var[Xk] + (E[Xk]) 2 - E[Xk] + >,.T(k)bf(k) , (T(k) EE). 
2,\T(kjE[Xk] 2(1 - PT(k)) 

( 4) 

Thus, to obtain the expected waiting time at PQk, we need to quantify E[X.] and Var[Xk]­
In 3.1 we discuss how E[Xk] can be obtained by solving a set of linear equations. In 3.2 we 
discuss how the Descendant Set Approach (DSA) can be used to obtain Var[X.]. 

3.1 Determination of E[Xk] 

To obtain an expression for E[Xk], it is convenient to relate E[X.] to E[Vk], the expected 
duration of a visit to PQk. Simple balancing arguments show that: fork= 1, ... , M, 

E[V.] = 'PT(k)E[Xk], where <p; := b; (i E G), b; (. E) cp;:=-1-- zE . 
-p; 

(5) 

The variables E[V.], and hence E[Xk], can be obtained by solving the following set of linear 
equations (cf. also [5]): fork= 1, ... , M, 

(6) 

where l := Uk T(k), the entry corresponding to the last visit to Q,(k) prior to PQk. Balancing 
the flow of customers at Qk in and out of the system during one cycle of the server along 
the queues implies: for i = 1, ... , N, 

r L E[Vm]=p;-. 
m:T(m)=i l - P 

(7) 

One may verify that equations {6)-(7) lead to a set of M - N simultaneous linear equations 
for E[V.] and hence for E[Xk]- Since the analysis will be devoted to heavy-traffic behavior 
of the system, we note that equations (6)-(7) imply that E[Vk] and E[Xk] have a first-order 
pole at p = 1. Therefore, we define: for k = 1, ... , M, 

vk := lim (1 - p)E[V.], Xk := lim (1 - p)E[Xk], 
pfl pfl 

(8) 

referred to as the heavy-traffic residues of E[V.] and E[Xk], respectively. Using equations 
(6)-(8) it follows that the variables vk (k = 1, ... , M) are (uniquely) determined by the 
following set of equations: for k = 1, ... , M, 

Vk = >,.T(k)'PT(k) r __ I:/+11 Vj + vil{T(l)EG}] ' L Vm = p;r (i = 1, ... 'N). (9) L m:T{m)=i 

Note that in (9) the parameters >,.T(k), 'PT(k) and p; have to be evaluated at p = 1. The 
computation of the variables Vk (k = 1, ... , M), requires the solution of a set of M - N 
linear equations. Using (5) it follows that once Vk is known, Xk is given by Xk = Vk/'PT(k)· 
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3.2 The Descendant Set Approach 

The Descendant Set Approach (DSA) classifies the customers in a polling system into two 
classes. An originator is a customer which arrives during a switch-over period, and a non­
originator is a customer which arrives during the service of another customer. For a tagged 
customer C, the so-called children set of C is the set of customers arriving to the system 
during the service of C; the descendant set of C is recursively defined to consist of C, its 
children (if any) and the descendants of its children. To determine the moments of the delay 
of customers arriving at a fixed PQk, the DSA concentrates on the determination of Xk(P), 
defined as the number of customers at PQk present at an arbitrary, but fixed, polling instant 
P at PQk, P is referred to as the reference point at PQk. The main idea of the DSA is the 
observation that each of the Xk(P) type-k customers present at PQk at Pis a descendant of 
exactly one originator, and that the descendant sets of the originators evolve independently. 
Therefore, the DSA concentrates on an arbitrary type-i customer served at PQ, and on 
calculating the number of type-k descendants it has at P. 

The DSA considers the Markov process embedded at the polling instants of the system. 
To this end, we number the successive polling instants as follows. Let PM,o be an arbitrary 
polling instant at PQM, and for i = M - 1, ... , 1, let P,,o be recursively defined as the 
polling instant at PQ; prior to P,+1,0• In addition, for c = 1, 2, ... , we define P;,c to be the 
last polling instant at PQ; prior to P,,c-l, i = 1, ... , M. We consider a tagged customer C,,c 
whicli is present at PQ; at P,,c· Define A(i,c),k to be the number of type-k descendants C;,c 
has at Pk,O· In this way, A(i,c),k can be viewed as the contribution of C,,c to Xk(A,0). If we 

define °'(i,c),k = E[A(i,c),k] and a[f.~),k = E[A(i,c),k(A(i,c),k - 1)], then E[Xk) and Var[Xk) can 
be expressed as follows ( cf. [ll]): 

E[Xk) =tr; E [. L. AJO'.(r;,,c),k + . L. AjO'.(r;,,c-1),k] , 
i=l c=O J:Ti 1>i ;:-r11 :'.51 

(10) 

and 

(ll) 

The variables °'(i,c),k and a[:.~),k can be computed recursively. To this end, note that the 
contribution to Xk(Pk,o) of the tagged customer C;,c is equal to the total contribution to 
Xk(Pk,o) of its children. This observation leads to the following set of recursive relations (for 
the case of gated service at PQ,): fork= 1, ... , M, c = 0, 1, ... , 

(12) 

and 

(T(i) E G). (13) 

For the case of exhaustive service at PQ;, similar expressions can be obtained in a straightfor­
ward manner. The initial conditions are given by °'(k,o),k := 1; °'(i,0),k := 0 (i = k+ 1, ... , M); 
°'(i,-1),k := 0 (i = 1, ... , k - 1). Starting with these initial values, all coefficients °'(i,c),k and 

a\f_}c),k can be recursively determined according to (12) and (13). 
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For the analysis, we also need to conduct the recursion in a different way: rather than 
carrying it out via the children of a given customer, we carry it out via the so-called im­
mediate parents of the descendants. We consider again a tagged customer C;,c present at 
PQ; at P;,c, and try to find the contribution of C;,c to Xk(Pk,o). To this end, we consider 
the most recent polling instants of PQ; prior to Pk,o, denoted by Pj,j = 1, ... , M; thus, 
P;• = P;,o for j = 1, ... , k - 1, and P;• = P;,1 for j = k, ... , M. We recursively derive the 
contribution of C,,c to Xk(A,o) as function of the contribution of C;,c to X;(P;). A crucial 
observation is that the distribution of the contribution of C;,c to X;(P;*) is identical to that 
of A(i,c),j for j = 1, ... , k-1, and to that of A(i,c-l)J for j = k, ... , M. To relate the number 
of descendants of C,,c at Pj to the number of type-k descendants of Ci,c at Pk,o, we observe 
that each type-k customer Ck,o at Pk,o has arrived during the sub-busy period generated by 
exactly one customer CJ present at Pj for some j =I, ... , k-1, where I= 11'k T(k), the entry 
corresponding to the last visit to QT(k) prior to a visit of the server to PQ,.. CJ is referred 
to as the immediate parent of Ck,O• Note that if T(j) E G, then the sub-busy period gener­
ated by CJ is just the service of CJ itself, and that in case T(j) E E, the sub-busy period 
generated by CJ is an M/G/1 busy period (with arrival rate and service-time distribution 
corresponding to those of QT(j))- To relate the number of descendants of Ci,c at Pj to the 
number of type-k descendants of C;,c at Pk,o, we observe that CJ (j = I, ... , k - 1) is the 
immediate parent of on the avei:age AT(k)d,,. type-k customers at P1t,o, where d,;k := b; for 
j E G, and d;k := I{T(kJ,mb; / ( 1 - P;) for j E E ( k = 1, ... , M). These observations lea.cl to 
the following recursive relations: for c = 0, 1, ... , 

k-1 
O!(i,c),k = AT(k) E [d;kO(i,c),j/{j<k} + d;kO(i,c-1),j/{j~k}], 

j=I 
(14) 

whene I = a,. T(k)· The initial conditions are given by O(i,o),i := l; ac,,,o),l, := 0. (k = 
l, ... 'i - l); O(i,-1),~ := 0 (k = i + i, ... ,M). 

It is useful to express the recursive relation (12) in matrix notation. To this end, for 
i = l, ... ,M, c = 0,1, ... , let a(•,c),k be the vector whose i-th element is a(i,c),k for i = 
k, ... , M, and O(i,c-1),k for i = 1, ... , k-1. For i = 1, ... ,M, let P; be the M by M matrix, 
whose (j,k)-th element equals /{j=k} for j :/; i, while the (i,r;;)-th element equals ~(i)Aj if 
T(i) E G, and /{;,t,T(i)}A;~(iJ/(1 - PT(i)) if T(i) E E, and all other components of the i-th 
row are 0. If we define fork= l, ... ,M, Mk= Pk···PMPi ···Pk-l, then the recursive 
relations (12) can be expressed as follows: for k = 1, ... , M, 

(15) 

To write equations (14) in matrix notati.G>n, for i, = 1, ... ,.M, c = 0, 1, .... ,. let &{:i.J:),· be the 
vector whose k-th element is a(,,c:),k fork .a l, ... ,,i, and lll(i,c-l},t. fOf k = i+ 1, .... ,M. 
Fork:= 1, ... , M, let Pk be the M by M matri~ whose, (i,j)-th element eq:ua:ls l{i=j} for 
i 'f' k1 while the ( k, j)-th element ofJ\ is given by AT(k)d;k for j = I, ... , k- l, and alt other 
components of the k-th row are 0. If we define, for i = 1, ... , M, M, = P; • • • P1PN • • • P·;+1 , 

then relations (14) and the initial condition can be expressed as follows: for i = 1, ... , M, 

(16) 

4 Analysis 

The variables a(,,c),k are fully determined by both sets of relations (15) and (16). More 
precisely, both (15) and (16) constitute a set of homogeneous difference equations of the first 
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order. From the literature on difference equations it is well-known that the variables °'(i,c),k 

can be solved directly if the eigenvalues and eigenvectors of Mk (M,) are known. In general, 
however, the eigenvalues and eigenvectors of Mk (Mi) are unknown for p < 1. However, 
to analyze the system behavior in the limiting case p j 1, there is no need to obtain all 
eigenvalues and eigenvectors of Mk (or M,) and then let p j 1. More precisely, since E[Xk] 
and Var[Xk] are known to tend to infinity when p j 1, it follows from (10) and (11) that the 
heavy-traffic behavior of E[Xk] and Var[Xk] is determined by the dominant tail behavior of 

the sequences { °'(i,c),k, c = 0, 1, ... } and { ai7.~),k• c = 0, 1, ... }, which appears to be relatively 
simple. 

The following property decomposes the matrices (Mk)" and (M,)" into two parts, one of 
these parts becomes dominant as c gets large ( cf. [2]): 

Lemma 1 
The matrices Mk and M, have respective maximal eigenvalues I and -y which are real-valued, 
positive, have multiplicity 1, and have associated right and left eigenvectors uk, wk, and u.,, 
w,, respectively. If these are normalized so that u;f wk= u;f l = 1, u; w, = u;l = 1, then 

(17) 

where there exist I{< oo and 1 (0 < 'y < 1 , -y), such that all entries of (Rk)" and (R.;)" are 
strictly smaller than K'yc (i, k = 1, ... , M). 

Lemma 2 
( 1) If p < 1, then 1 , ')" < 1, and if p = 1 then 1 = ')" = 1. 
(2) If p = 1, then Uk is proportional to b = (br(i), ... , bT(M)) fork= 1, ... , M. 
(3) If p = 1, then u., is proportional to x = (x 1 , .•• ,xM) Jori= 1, .. . ,M. 

Part 1 implies that the sequence {a(i,c),k,c = 0,1, ... } converges to O for p < 1, and to 

a (positive) constant for p = 1. It is readily verified that the sequence { a\7:c),k• c = 0, 1, ... } 
converges to O for p < 1, and to a linearly increasing function for p = 1. Parts 2 and 3 give 
the ratios between the limiting values of the sequence { °'(i,c),k, c = 0, 1, ... } for p = 1 among 
different values of i and k. 

Lemma 3 
Fori,j,k,l = l, ... ,M, 

Part 1 follows directly from Lemmas 1 and 2, using the continuity of eigenvectors and eigen­
values as function of p (10]. Part 2 can then be obtained by straightforward manipulations. 
Lemmas 1-3 lead to the following result. 

Theorem 1 

(l) lim E[Xk] _ xk. 
PTI E[Xz] - x, , (19) 

Note that the first summation at the right-hand side of ( 11) has a first-order pole at p = 1, 
while the second summation has a second-order pole at p = 1. Hence, the second summation 
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dominates the first summation when the system reaches saturation. Combining this obser­
vation with equations (3) and ( 4) leads to the following e xpression for the ratios between 
the scaled expected waiting times at pseudo-queues. 

Theorem 2 (Ratios between scaled expected waiting times at pseudo-queues) 
Fork,l=l, ... ,M, 

wfq - Xk(l + PT(k)l{T(k)EG))/>.T(k) - vk(l + PT(k)l{T(k)EG))/>-r(k)'PT(k) 

w;q - x1(l + PT(l)l{T(l)EG))/ AT(l) - v1(l + PT(l)J{T(l)EG})/ Ar(l)'PT(l) · 
(20) 

The waiting times at the pseudo-queues can be related to the waiting times at the queues by 
conditioning on 1rj, defined as the fraction of customers which arrive at QT(i) that are served 
at PQj (j = 1, ... , M). Using this definition, it is readily seen that: for j = 1, ... , M, 

(21} 

where the second equality follows from (9). Hence, for i = 1, ... , N, 

L 7rjwfq = J_ L Vj(vfq · 
j,T(j)=i p;r j,T(j)=i 

Wi == (22) 

Combining (22) and Theorem 2 leads to the following expression for the ratios between the 
scaled expected waiting times at the queues. 

Theorem 3 {Ratios between scaled expected waiting times at queues) 
Fori,j=l, ... ,N, 

w; = ri;//p~ ~H(k)=i v~, where T/k := 1 + Pk ( k E G), T/k := 1 - Pk ( k E E). (23) 
Wj T/j Pj k,T(k)=j Vk 

Based on Theorem 3, the scaled expected waiting times are known up to some unknown 
scaling factor. This scaling factor can easily be obtained by using the pseudo-conservation 
law for the model under consideration ( cf. [5]), an exact expression for a specific weighted 
sum of Lhe expected waiting times. By applying some straightforward algebraic manipula­
tions, we obtain the following relation: 

Theorem 4 
Fori=l, ... ,N, 

(ri;/ i) LH(k)=i vi C 

I:f=,1 ( T/j /Pi) Lk,T(k)=i vi ' 

where C is the right-hand side of (24). 

(25) 

Note that all terms in Theorems 2-4 corresponding to arrival rates and loads at the queues 
have to be evaluated at p = 1. 

In the special case of cyclic server routing, we have M = N, Vk = pkr (k = 1, ... , N), 
and the right-hand side of (24) is given by C = b(2 ) /2b + r[l - LiEE p; + LiEG pf], so that 
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w, = CTJ;/ I:;1 PjT/j, which corresponds to the result obtained in [18]. 

Theorem 4 provides new insights into how the expected waiting times depend on the system 
parameters. 

First, we observe that wk depends on the service time distributions only through b(2) /2b, 
the ratio between the first two moments of the service time of an arbitrary customer, rather 
than on the (first two) moments of the individual service times. 

Second, Wk also depends on the switch-over times only through r, the first moment of 
the total switch-over time per cycle of the server along the queues. To this end, note that 
it follows from (9) that Vk is a linear function of r. Moreover, simple arguments show that 
in the limiting case p j 1 the quantity C in Theorem 4, which stands for the heavy-traffic 
residue of the expected amount of waiting work in the system, also depends on the individual 
switch-over times only through r. In fact, since vk is linear in r, it is easy to verify that the 
right-hand side of (24) is the sum of a constant (i.e., b(2) /2b) and a linear function in r. 

The observed insensitivities are not generally valid for stable systems (i.e., p < 1 ). Appar­
ently, the dependencies of the expected waiting times on the distributions of the individual 
service times and switch-over times vanish when the system reaches saturation. 

5 App:r:oximation 

Theorem 4 implies that in heavy load the expected waiting times can be approximated by 
equation (25), divided by 1 - p (see equation (1)). This is equivalent to approximating the 
ratios between the expected waiting times by the right-hand side of (23). One may question 
the practicality of 'heavy traffic', in the sense of 'how heavy should the traffic be' to make 
the approximation (23) work well. To demonstrate this issue, we consider a system with the 
following parameters: N = 4; M = 8; T = (1,2,1,3,4,2,1,3); G = {1,4}; E = {2,3}; the 
ratio between the arrival rates is 5 : 1 : 1 : l; the service times are exponentially distributed 
with means b1 = 1, b2 = 1, b:i = 5, b4 = 1; the switch-over times are exponentially distributed 
with means r; = 0.05 for i E {1,2,3,4,5,6,7} and r8 = 5. The system is therefore very 
asymmetrical in the arrival rates, service times and switch-over times. 

Table 1 below shows the values of the ratio 8k(P) := E[Wk]/E[W1] (k = 2,3,4) for 
different values of p. The 'limit' in Table 1 represents the results in the limiting case, 
obtained from (23) and (9). To measure the accuracy of the approximation, the relative 
difference between 8k(P) and 8k(limit), i.e., the 'exact' ratio in the limiting case, 

(26) 

is indicated in parentheses. We used the numerical technique in [6] to determine the expected 
waiting times. Note that the computation time required to obtain the results for the higher 
values of p in Table 1 was in the order of several minutes, while the results for the 'limit' 
case were obtained in less than a second (on a SUN SPARC 4 work station). 
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p 82(P) 8a(p) 84(p) 
0.50 1.023 (9.9) 1.009 (75.5) 1.596 (25.3) 
0.60 0.991 (6.4) 0.895 (55.7) 1.629 (23.8) 
0.70 0.967 (3.9) 0.780 (35.7) 1.680 (21.4) 
0.80 0.952 (2.3) 0.681 (18.4) 1.772 (17.1) 
0.90 0.943 (1.3) 0.610 (6.1) 1.922 (10.1) 
0.95 0.938 (0.8) 0.588 (2.3) 2.021 (5.4) 
0.98 0.934 (0.3) 0.579 (0. 7) 2.089 (2.2) 
0.99 0.933 (0.2) 0.577 (0.3) 2.113 (1.1) 
limit 0.931 0.575 2.137 

Table 1. Ratios between the expected waiting times as function of the load. 

The results in Table 1 shows that the accuracy of the approximations increases when 
the load increases, as expected. The accuracy of the approximation for given p varies from 
queue to queue. In the worst case, the relative error is less than 20% for p = 0.80 and is 
about 10% for p = 0.90. This implies that for most practical cases the approximation can 
be used with good confidence; this implication stems from the fact that in practice heavy 
load is the main region of interest. We emphasize that the example presented here is very 
asymmetrical in the arrival rates, the service rates and the switch-over times, and that the 
approximations are considerably more accurate in most cases. 
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1 Introduction 

Research in inventory theory is often focused on either deterministic or stochastic prob­
lems. For the deterministic problems optimal solutions, heuristics and complexity results 
are important issues. For the stochastic problems optimal strategies, subclasses of strate­
gies, heuristics and bounds on average cost are of interest. From a practical point of view 
both types of models are too restrictive. Deterministic models lack the notion of uncertainty 
in demand, in supply or within the system itself. Stochastic models, on the other hand, 
are often complicated and therefore difficult to comprehend. Moreover, incorporating de­
terministic variables complicates the model even more. Dealing with real world problems a 
combination of deterministic and stochastic models is needed. In practice, one settles for 
deterministic models and incorporates uncertainty by, for example, creating safety stocks. 

In my thesis I studied the behaviour of deterministic models in stochastic systems. Not 
only cost aspects are considered, but also the usefulness of the information obtained from 
these models. Unfortunately, an optimal or heuristic solution of a stochastic model generates 
only a decision given the current state of the system and gives no information about actions 
that will be taken in later periods. Also, additional information about future demand is 
neglected, for example, orders of special customers. To incorporate such information or 
to generate information on future actions deterministic models are needed. These models 
should take into account the stochastic nature of the system. 

Common practice for solving a complex stochastic inventory system is to separate the 
problem into a deterministic lot-size problem using forecasts for the stochastic variables 
during a finite number of periods on one hand and a problem of determining safety stocks 
on the other hand, see for example Schneeweiss (1986). The procedure of updating forecasts 
and solving these problems periodically is referred to as a rolling horizon procedure and 
consists of the following three basic steps: 

1. Forecast the outcomes of the relevant stochastic variables, usually the demand, during 
a planning horizon of N periods; 

2. Determine an ordering schedule for the next N periods, and safety stocks; 

3. Implement the decision for the first period in the stochastic system. 

'This is a summary of a PhD thesis with the same title 
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At the time of the next decision new demand information is added to maintain a constant 
planning horizon and old information is updated. For each step different choices can be made, 
for example, we can use expected demand 11.'l a forecast or overestimate the demand; various 
procedures may exist to solve the deterministic problem and to determine safety stocks; and 
finally, we can analyse and adjust the d~cision for the first period before implementing it in 
the system. All in all, the behaviour of the rolling horizon procedure in a stochastic system 
can be influenced in numerous ways. 

How can we evaluate the effectiveness of this approach? An important criterion is the 
average cost performance in the long-run. The average cost can be obtained by simulation 
experiments, or sometimes analytically, and can be compared with the cost of an optimal or 
an alternative strategy or with a lower bound on the minimal cost. However, these strategies 
are often based on the assumption of identical and independent distributed demand per 
period. Relaxation of this a.<;sumption, for instance, by introducing time-dependent demand, 
growing demand or dependency between demand for several products, often complicates a 
problem such that alternatives are (almost) impossible to obtain. In that cMe, applying a 
rolling horizon procedure is the only practical approach. 

Another aspect that hM received more and more attention in recent years is the stability 
of the generated schedules. Stability is especially important when information about future 
replenishments is used for production planning and personnel scheduling at the supplier. At 
the time of a decision a deterministic schedule is generated. Due to the stochMtic nature 
of the demand and due to the fact that new demand information is incorporated the timing 
and sizes of future replenishments may be different from the previous schedule. Frequent 
adjustments of the schedules is undesirable and is referred to 11.'l system nervousness. A 
change in size is often regarded as less costly than a change in timing. Carlson et al. 
( 1979) introduced penalty costs for changing the timing of replenishments in a rolling horizon 
approach for single~product problems; see Jensen (1992) for different meMures of system 
nervousness. 

In my thesis rolling horizon procedures are examined for three types of inventory systems: 
single- and multi-product and multi-retailer systems. Given a certain system, we examine 
some alternatives; based on cost Mpects and system nervousness we choose those that suit 
best. Furthermore, the influence of the planning horizon is examined. Sometimes negative 
effects of the planning horizon can be eliminated by changing the solution method or by 
solving a different deterministic problem. In this outline we describe the approach for single­
product systems. 

2 Single-product systems 

We considered the most elementary single-product problem under periodic review: given 
a fixed setup cost k, unit holding cost h for each unit in stock at the end of a period 
and stochastic demand per period d with known pdf, determine an optimal replenishment 
strategy, that minimises the long-run average cost. Orders arrive after a fixed lead time of L 
periods. Furthermore, we Msume that a minimal inventory level s- is required to maintain 
a certain service level and demand not satisfied directly from stock is backordered. 

Order decisions are based on the economic inventory s at the start of a period, that is, the 
inventory on hand plus on order minus on backorder. If the economic inventory falls below 
s- then it has to be replenished. That is, the reorder level is sufficient to satisfy demand in 
the next L + 1 periods according to some service level constraint. 

It is well known that for the described inventory systems an ( s-, S)-strategy is optimal. 
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Under such a strategy the economic inventory is only ordered up to level S when it has 
fallen below the reorder level 8-. So, the decision for the stochastic system x = S - s for 
s < 8- and x = 0 otherwise. For this strategy we can derive some useful properties based 
on renewal theory, see Tijms (1986). The expected order size Q(8-, S) and expected reorder 
interval T( 8-, S) are given by 

QV,S) = S-8- + (c2 + l)µ/2 

TV,S) = QV,S)/µ 

with µ the expected demand and c2 the coefficient of variation. Note that, although the 
strategy is applied in period review systems, the expected reorder interval is in general not 
an integral value. 

2.1 Rolling horizon procedure 

Given the current state of a single-product system s, the rolling horizon procedure should 
generate a decision x for the stochastic system. When no additional information is available, 
a usual way of setting the deterministic demand is: d1 = 8- and dt = µ for t > l. The 
demand d1 represents the total requirement in the first L + l periods, the lead time plus 
review time. Every review period the decision x is determined by solving 

mm 
X 

such that 

N 

I)k8(Xt) + hlt} 
t;J 

It = It-I+ Xt - dt, t = l, ... , N, 

It,Xt 2'. 0, t = l, ... ,N, 

Io= s, x = X1, 

with Xt denoting the replenishment decision and It the ending inventory of period t. This 
problem is known as the Wagner-Whitin problem (1958), for which several solution proce­
dures are developed. 

This approach has some major advantages. First of all, it not only gives a decision for 
the current period (x = X1 ), but also a replenishment schedule for the next N - l periods. 
Secondly, all kind of information about future demand can be incorporated in the demand 
forecasts dt. For example, orders that are placed in advance or seasonal demand. And finally, 
the procedure is very natural and requires no complex solution procedures. 

When we look at the resulting strategy and the replenishment schedule for the next 
periods more carefully, than we notice some strange behaviour. The first drawback of this 
approach is that the choice of the planning horizon in combination of the solution method can 
influence the decision for the first period. Or in other words, the resulting strategy depends 
not only on the cost and demand structure, but also on how the deterministic problem is 
solved. An increase of the planning horizon can lead to an increase in the amount ordered 
in the first period. Suppose the deterministic problem is also solved for Io 2'. d1 , that is 
s 2'. 8-. In advance, it is known that X 1 = 0. So, solving the deterministic problem only 
gives adjusted replenishments for next periods. But, even when demand is as expected these 
replenishment can differ from the last scheduled replenishments, in timing as well as in size. 
This effect is entirely due to the solution method in combination with the planning horizon. 

Secondly, regardless of the solution method the resulting strategy is of the following 
type: ifs< 8- then order x = (s- - s) + (r - 1)µ with r denoting the scheduled reorder 
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interval, otherwise do not order. Only the reorder interval depends on the chosen solution 
method. The next scheduled replenishments are multiples of µ and are often of size rµ. 
However, with (1) the expected reorder interval for this (s-, SJ-strategy (S = s- + (r -1)µ) 
is only integral for c2 = 1. So, in general the expected reorder interval is not equal to the 
scheduled reorder interval r. For distribution functions with small coefficient of variation 
( c2 < 1 ), the next replenishment is frequently triggered earlier than scheduled and the size 
of the replenishment is smaller than scheduled. As a consequence, schedules are frequently 
adjusted and are therefore unsuitable for further planning activities. 

2.2 Reducing system nervousness 

Both described effects can be considered as system nervousness. The first effect can be 
eliminated by choosing a proper solution method. With this respect, the optimal solution 
method is no longer suitable, but one can choose the Silver-Meal heuristic instead. The 
Wagner-Whitin procedure can only be used when the formulation the deterministic problem 
is changed. In van der Sluis (1993) we show that allowing for positive ending inventory 
in period N leads to a stable procedure. The essence is that the deterministic model only 
considers total cost in N periods, while the solution is implemented in a system that is 
focused on minimising long run average cost. 

The second disadvantage of the rolling horizon procedure, the difference in expected and 
scheduled reorder interval, can be eliminated by adjusting the decision for the current period 
based on cost and stability considerations. One approach is to change order-up-to levels by 
specifying the deterministic demand in a different way. Note that the reorder interval r 
may change as well. Or alternatively, given the deterministic schedule X (e.g. order every 
r periods), the decision for the first period can be adjusted before implementing it in the 
stochastic system .. With (1) is easy to see that an increase of X 1 by (1 - c2)µ/2 leads to 
an integral expected reorder interval, that is equal to the scheduled interval. The long run 
average cost of both the standard approach and the adjusted approach is within 2% of the 
cost of an optimal strategy. Based on cost considerations both approaches are suitable, but 
adjusting the order gives a more stable replenishment schedule. 

3 Multi-product systems 

The rolling horizon approach is often the only suitable approach for complex inventory 
systems. For example, multi-product systems where co-ordination of replenishments makes 
sense due to the cost structure: a joint setup cost k0 is incurred when at least one product 
is ordered and an individual setup cost k; for each product ordered. The joint setup cost 
can be seen as cost of the mode of transpor-tation, independent of the quantity ordered. It 
is well known that for such a cost structure co-ordinated replenishment leads to lower costs 
compared to independent replenishment of each product. 

For deterministic problems with constant demand simple cycle policies are proposed. 
Such policies prescribe replenishments at constant intervals of time and the quantity ordered 
of each product is sufficient to last for an integer multiple of this basic interval. The structure 
of an optimal strategy can be very complex, even for systems with only a few products. When 
the basic interval is restricted to integral value, an optimal cycle policy can easily be found. 

For deterministic problems with time-varying demand Arkin et al. (1989) proved that this 
joint replenishment problem is NP-complete. Several single-pass heuristics are suggested. 
These heuristics determine replenishment periods and lot sizes on a period by period basis. 
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The solution for an n-period problem are used to obtain a solution for the (n + 1)-period 
problem by increasing the last replenishment or by triggering a new replenishment in period 
n + l. The heuristics schedule replenish-ments as if the problem continues forever. An 
important advantage of these methods is the linear running time in the number of planning 
periods and in the number of products. Furthermore, the decision for the first period is 
independent of the choice of the planning horizon. The quality of the solution, however, 
may be poor. 

Better solutions can be found by using multi-pass heuristics. Given a replenishment 
schedule for N periods the schedule is iteratively improved by changing the timing of joint 
replenishments. For a large set of test problems the solutions found by multi-pass heuristics 
are within 2% of the minimal cost and for more than 80% of the test problems an optimal 
solution is found. However, the decision for the first period depends on the choice of the 
planning horizon. 

For stochastic systems under continuous review research has been focused on finding 
an (S, c, s)-strategy, the so-called can-order strategy, first introduced by Balinthy (1964). 
Such a strategy is characterised by three parameters s;, c; and S; for each product i with 
s; :::; c; :::; S;. When the inventory level of a product falls to or below its reorder levels; an 
order is placed and every other product with inventory level at or below its can-order level e; 

is included. All products included in the order are replenished up to their order-up-to level 
S;. However, an optimal strategy within the class of (S, c, s )-strategies does not have to be 
the one that minimises the average costs. In general finding this cost minimising strategy 
is almost impossible. In case of periodic review only for problems with two products an 
optimal strategy can be found. For larger problems no algorithm is known to obtain an 
optimal overall strategy or an optimal can-order strategy. 

We have implemented a rolling horizon procedure in the same way as for the single­
product systems. That means, for each product i the deterministic demand is defined as 
d;1 = s;- and d;, = µ; for t > 1, starting inventory 1;0 is set at s;, the economic inventory 
and decisions x; are obtained by solving a joint replenishment problem using a single-pass 
heuristic. Simulating a stochastic system using this approach shows that the next replenish­
ment is frequently triggered earlier than scheduled. This is no surprise. Suppose the second 
replenishment is scheduled in period r and m products are included. When for each product 
a is the probability of triggering a replenishment before period r, then the probability that 
the system replenishes in or after period r is (1 - ar. With for instance a = 0.2 and 
m = 10, (1 - ar = 0.1. So, this probability is already small for reasonable values of a and 
m and replenishing in period r - 1 or r - 2 is more likely. 

Early replenishments often cause all scheduled replenishments to be put forward and 
therefore (joint) setup costs are more frequently incurred than scheduled. The cost of an 
early replenishment, referred to as nervousness cost, can be estimated. Furthermore, the 
probability of an early replenishment can be decreased by increasing the current replen­
ishment. This leads to higher inventory until the next scheduled replenishment, but lower 
nervousness cost. We developed an iterative procedure to increase the current replenishment 
based on a trade off between additional inventory cost and nervousness cost. 

Computational results show that when in a rolling-horizon environment the adjustment 
procedure is used the long-run average costs are reduced considerably. Cost reductions 
between 1.8% and 7.6% have been obtained. In case of low joint setup cost the approach 
even outperforms the can-order strategy. For problems with higher joint setup cost there 
is a marginal cost difference between the two approaches, except for a few instances the 
can-order strategy gives better results, however, the cost difference is less than 2%. 
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The poor performance of the standard rolling-horizon approach is caused by the large 
number of early replenishments. In same cases more than 90% of all replenishments were 
put forward. This number reduced to 23% when the adjustment procedure was used. As 
a consequence the total number of replenishments per 100 periods for this specific instance 
reduced from 48 to 36 (in both cases 33 scheduled). This behavior is observed for all test 
problems; a reduction of the number of replenish-ments between 15% and 30%. So we can 
conclude that the adjustment procedure reduces the number of early replenishments and 
therefore reduces the system nervousness. 

4 Concluding remarks 

Applying a rolling horizon procedure in a stochastic system requires some caution. Using the 
standard approach, that is, using expected demand as demand forecast, leads to a nervous 
system. Scheduled reorder intervals are seldom realised and also order sizes are frequently 
adjusted. The schedules are therefore inconvenient for further planning. It is important to 
examine the cause of this nervousness. First of all, a solution method should be used that 
is independent of the planning horizon. This avoids build-in nervousness. Secondly, the 
consequences of an early replenishment should be determined. Often early replenishments 
lead to unused inventory and are almost never compensated by late replenishments. Finally, 
its is useful to have insight in the structure of the solution for deterministic problems with 
constant demand. 

In my thesis this approach is also applied in multi-retailer systems. These systems are 
related to the multi-product systems, in the sense that co-ordination of the replenishments 
of the retailers leads to lower costs at the central depot. An additional complicating factor 
analysing these systems is the organisation of the distribution system: a push or pull system. 
In the former, retailers order independently at the depot. The depot only has insight in the 
inventory levels at all retailers and uses this information for its own replenishments. In 
the latter, replenishment decisions for the retailers are made at the depot simultaneously. 
Also, safety stock calculations for this type of system are more complicated. The main 
conclusion for these systems is that increasing the decision obtained by a standard rolling 
horizon procedure leads to lower average cost and less nervous systems and hence more useful 
replenishment schedules. 

References 

ARKIN, E., D. JONEJA AND R. ROUNDY (1989). Computational complexity of unca­
pacitated multi-echelon production planning problems. Operations Research Letters 8, 
61-66. 

AXSATER, S., CH. SCHNEEWEISS AND E. SILVER, eds. (1986). Multi-Stage Production 
Planning and Inventory Control, Springer Verlag, Berlin. 

BALINTHY, J .L. (1964). On a Basic Class of Multi-Item Inventory Problems. Management 
Science 10, 287-297. 

CARLSON, R.C, J.V. JucKER AND D.H. KROPP (1979). Less Nervous MRP-systems: 
A Dynamic Economic Lot-Sizing Approach. Management Science 25, 754- 761. 

196 



JENSEN, T. (1992). Measurement of Planning Stability in Material Coordination Sys­
tems. In Proceedings Seventh International Working Seminar on Production Eco­
nomics, Igls/Innsbruck. 

ScHNEEWEISS, CH. (1986). Some Modelling Theoretic Remarks on Multi-Stage Produc­
tion Planning. In Axsiiter et al. ( 1986), 1-8. 

SLUIS, E. VAN DER (1993). Heuristics for Complex Inventory Systems, Thesis Publishers, 
Amsterdam. 

TUMS, H.C. (1986). Stochastic Modelling and Analysis: A Computational Approach, 
Wiley, New York. 

WAGNER, H.M. AND T.M. WHITIN (1958). Dynamic version of the Economic Lot Size 
Model. Management Science 5, 89-96. 

197 





Maintenance policies for complex systems 
S.G. Vanneste 

1. Introduction 

Shell International Oil Products 
Amsterdam 

E-mail: s.g.vanneste@siop.shell.nl 

The reliability of production systems and the quality of products have become important 
issues in today's industry. It is realized that quality and reliability directly affect the 
competitiveness of the firm and that a good preventive maintenance program can have a 
major impact on them. While a few decades ago, maintenance was considered a necessary 
evil, today it has become an important business function. Factors that contributed to this 
growing importance are the increased levels of automation, the increased complexity of 
products and equipment, the trend towards Japanese management philosophies and the 
need for a stringent cost control. 

In many firms, as well as in public works (roads, bridges, railways) and defense, 
the maintenance budget accounts for a significant portion of the total operating costs, 
thus necessitating an effective and efficient allocation. Moreover, the consequences of 
breakdowns in terms of opportunity cost ( e.g. production losses) may be very large and 
even surpass the maintenance budget in magnitude. 

In this thesis we analyse preventive maintenance policies for complex systems. For 
many systems, the costs of breakdowns are much higher than the maintenance or replace­
ment costs in case the unit has not yet failed. In view of the fact that the risk of failure 
usually increases with age or use, one may wonder whether, and at what age or condition, 
it is economically justified to replace a particular component or group of components pre­
ventively. As it turns out that the optimal policy may have a fairly irregular structure, 
which makes it difficult to implement, we focus attention on policies which are easy to char­
acterize. We analyse the (near-)optimality of this type of policies and develop algorithms 
and approximations to evaluate them and to find the best policy, within a selected class. 
In contrast with the early literature, which considered maintenance optimisation issues 
for single unit systems, we consider systems which are composed of multiple components, 
whether or not in relation to the production environment. 

Along with the analysis of new and existing models, we develop an analytical frame­
work to deal with practical maintenance situations. This framework includes models and 
serves as a concept for using them in practice. The framework is applied to several indus­
trial cases. 

2. The classical age replacement model 

The classical age replacement model serves as a reference point for the models presented 
in this thesis. Consider a piece of equipment which is subject to (stochastic) failures. The 

1 This is a summary of a PhD thesis with the same title 
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unit can be replaced by a new one, either preventively or correctively (upon failure). The 
following assumptions are made: 

1. The equipment is operating continuously during its lifetime 
2. Repair times are negligible 
3. The planning horizon is infinite 
4. Every new piece of equipment has identical characteristics 
5. Only replacement costs are considered 
6. The objective is to minimize the long-run costs of replacement 

Furthermore we assume that the lifetime of the unit is a random variable with known 
distribution function F( · ). The following replacement policy is applied: the unit is replaced 
t units of time after the last replacement or upon failure, whichever occurs first. The cost 
of preventive replacement is Cp and corrective replacement Cf. 

Define a cycle as the time between two consecutive replacements ( either preventive 
or corrective). It follows from renewal theory that the expected costs per unit time equal 
the expected cost per cycle divided by the expected length of a cycle. Elaborating the last 
two quantities yields the following formula for the average costs g( t): 

g(t) = cp(l t- F(t)) + c1F(t). 

f(l - F(s))ds 
0 

The general shape of g( t) as a function oft is shown in Figure 1. The function is decreasing 
on the left hand side of the minimum and increasing on the right hand side. A function 
with this property is called a unimodal function. The minimum of the function yields the 
optimal preventive age-limit. By imposing an appropriate cost structure, the model can 
also be used to study availability issues. 

This model gives a simple and lucid description of a typical situation found in replace­
ment. The model is fairly general, robust and easy to use. Due to these properties, it is a 
successful and widely used model. 

g(ti 

Figure 1.1 Shape of the average cost function 

In the thesis we study systems consisting of one or several identical components in a 
series configuration. The components are subject to failures, and it is assumed that the 
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system cannot work satisfactorily if one of the components has failed. Therefore, a failure 
is followed by a corrective maintenance activity (CM), which restores the state of the failed 
component. To avoid a frequent occurrence of a failure there is the option of performing 
preventive maintenance (which is assumed to be less costly). The additional costs associ­
ated with preventive maintenance (PM) have to be balanced with the cost savings related 
to the prevented failures. When the system is composed of several components, additional 
savings may result from a so-called group (or system) replacement. It is usually cheaper 
to replace (or maintain) all components at one time than separately. The probabilistic 
nature of the failure behaviour under a certain preventive maintenance policy calls for a 
mathematical model, so that we can analyse critical performance measures and find the 
optimal maintenance policy in terms of minimal long term average costs. 

When we speak of complex technical systems, composed of several parts, we can 
think of the maintenance of a highway or railway, the piers of a bridge or a couple of 
generators, providing a factory or hospital with energy, but also on critical components 
of equipment or vehicles ( e.g. a series of bolts, see Chapter 6). The major characteristics 
are that the components deteriorate over time (in the sense that the probability of failure 
increases), and that there are costs associated with PM and CM. We use the terms 'unit' 
and 'component' interchangeably. 

As an example, consider the maintenance of a particular part of the road. In practice 
it is convenient to divide this part up into several sections, which correspond to components 
in our system. When a serious crack in the asphalt arises in a particular section, we can 
speak of a failure, which calls for a reconstruction of that section. The probability of a 
crack increases with the age of the asphalt. Therefore, by timely adding a new layer, whicl1 
is less costly than a complete reconstruction, the bursting can be prevented (this can be 
regarded as a preventive maintenance action in our model). 

Thus we need information on the cost associated with the maintenance activity and 
on the deterioration process. Three cost parameters are required: the cost of preventive 
and corrective maintenance on component level and the cost of a group replacement. It is 
assumed that PM is less costly than CM and that a group replacement is less costly than 
the number of components times the cost of a separate replacement. With respect to the 
deterioration process we distinguish two cases: the age case and the condition case. The 
age case refers to the situation that the age of the component determines the probability 
of failure. In this case we need the lifetime distribution of the time to failure for our 
model. In the condition case we assume that the component can be in a number of states, 
representing its condition. From a state we may either move to a higher state or to the 
breakdown state (failure), after a stochastic amount of time. More specifically, we assume 
that the sojourn times in each state are exponentially distributed. What we then need is, 
for each state, the mean sojourn time in that state, and the failure rate associated with that 
state. We note that for our purpose, these two cases are mathematically closely related. 
The deterioration of different components is supposed to be stochastically independent. 

3. Single-unit systems 

In Chapter 2 we formulate a generalization of the standard age-replacement model, which 
we presented in the previous section. In practice, the repair facility is often not available at 
any time. Therefore, we consider the case that the repairs are restricted to opportunities 
generated by a Poisson process and compare this to the situation that the repair facility 
is continuously available. Furthermore, we allow for a very general type of repair. The 
repair times have a general distribution, and the repair is allowed to be imperfect, that is 
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the state after maintenance is not necessarily perfect, but may be an inferior state with a 
certain probability. Thus, we account for possible human errorB or other factors that may 
lead to the (near) occurrence of failures as a result of PM. 

The assumption of imperfect repair in combination with a repair facility which is not 
continuously available, gives rise to an interesting phenomenon. Contrary to intuition, the 
age limit for preventive. maintenance under opportunistic maintenance is possibly higher 
than in case the repair facility is continuously available. 

We model the system by a. general Markov chmn. Although we formulate the model 
as a single-unit model, the system may physically consist of several parts. We show for 
example how. a two-component standby system can be analysed with this model. The 
general representation implies that the results apply as well to the case of condition-based 
deterioration. It is assumed that thee unit can. be in a finite.·number of states w.hich either 
represent (possibly discretized) ages or conditions. 

As in the standard age-replacement model, the decision problem can be formulated 
as follows: in which state (or age) should we start preventive maintenance? From a 
theoretical analysis of the model it follows that the optimal maintenance policy can be 
characterized by a single number ( called the control limit), denoting the level above which 
PM is required, and below which the system is left alone. Moreover, it can be shown that 
the long-run average costs under a fixed control limit policy as a function of the control 
limit are unimodal (cf. Figure 1). 

We present efficient procedures. to calculate the average cost under a fixed policy and 
to compute the optimal policy. These procedures are easily implemented on a PC and 
yield quick solutions. 

4. Two-component systems_ 

In order to analyse multi-component systems we drop our generalizations for the single­
unit case. Like in the standard age-replacement case, we assume that the repair times are 
negligible, that repairs are perfect and that the repair facility is continuously available. 
Also, our analysis of the two-component system in Chapter 3 is restricted to the age­
cas&. For each age-combination we now have four options: replace component 1, replace 
2, replace both and leave the system alone. One may wonder whether the optimal policy 
still has a nice structure, which is easy to characterize. This appears not to be the case. 
The optimal policy may have a rather complicated structure. An example of a counter­
intuitive property is the following: it may happen that when component 1 has age 2, say, 
and component 2 age 6, it is optimal to replace component 2, but when both units are one 
time-unit older (3 and 7, respectively) it is optimal to replace none. 

However, numerical investigations show that there is a class of policies, which is easy 
to characterize, and at the same time close to optimality. This is the class of so-called 
( n, N)- policies, which are a kind of generalized control-limit policies. A ( n, N)-policy 
prescribes to replace a component preventively as soon as it reaches the age N, but also 
when the age n (:S N) has been reached at an epoch at which the other component is due to 
replacement (because of failure or having reached the preventive age-limit N) The latter 
type of replacement is called an opportunistic replacement. From extensive numerical 
investigations with various lifetime-distributions and cost parameters, we may conclude 
that the best ( n, N)-policy is in general very close to optimality (less than 1 % deviation 
in average cost). For this reason, we further analysed the class of (n, N)-policies and 
developed an efficient procedure to evaluate the average cost under a fixed ( n, N)-policy. 
This procedure was used as a building block in a heuristic procedure to find the "optimal" 
values of n and N. 



5. Multi-component systems. 

From the perspective of maintenance actions a component can be in four possible states. 
One is the failed state, which requires a corrective replacement. Another is the bad state, 
which calls for a preventive replacement. Yet another is the good state, where no mainte­
nance is required. And finally a component can be in a doubtful ( or intermediate) state, 
which does not call for a preventive replacement on itself, but if some maintenance activity 
is performed on other components in the system, it may be worthwhile to maintain the 
current one as well (since it is relatively cheap). This idea is used in our analysis of a 
system composed of arbitrarily many components. 

One of the group replacement policies that we consider is the following: the whole 
system is replaced if, upon replacement of a single component, there are more than K 
components in the doubtful state, where K is a control parameter. 

First we consider the case, that the transition behaviour among the four aggregated 
states is comparable to the behaviour of a condition based deterioration process as it was 
described in the beginning of this subsection. That is, the sojourn times in the states good 
and intermediate are exponentially distributed, and we can move from good to doubtful 
and from good to down, and from intermediate to bad and from intermediate to down 
(the states bad and down are instantaneous states, since a replacement is carried out upon 
entrance, and the required time is negligible). For this case, we derive explicit and easily 
computable formulas for the long run average cost per unit time, the fraction of preventive 
and corrective replacements as well as the mean time between two system replacements. 

Approximations for these quantities are derived for the case that the components 
deteriorate with age. To match the ages with the aggregated states, we introduce two 
critical parameters r and R, and associate an age between O and r with good, between r 
and R with doubtful, and above R with bad. Combining the results for the exponential 
model with heuristics, decomposition arguments and results for the one-component system, 
we are able to develop an approximation for the average cost under a policy characterized 
by the parameters r, R and K. The resulting approximation is insightful and easily 
implementable on a PC, yielding quick solutions with an accuracy up to 5%. 

6. Interaction with production 

In production situations the preventive maintenance does not only depend on the deterio­
ration of the machines, but also on the state of the production. In Chapter 2 we therefore 
allowed that repairs were performed (or started) at opportunities. Here we go a step fur­
ther. We consider a system which is composed of a machine followed by a buffer and which 
is part of a flow-shop production line. The buffer is used to build up safety-stocks in case 
the machine is halted. The content of the buffer can be used as indicator whether or not to 
start preventive maintenance on a given machine, because it determines to what extent a 
machine stop can be covered by delivering from the buffer. We analyse the optimal policy 
as a function of both the age of the machine and the content of the buffer and present 
an efficient algorithm to compute several performance measures for a class of sub-optimal 
policies. 

7. A decision making and analysis framework 

In order to use models in a practical situation one needs an analytical framework in which 
they can take part. Such a framework is discussed in Chapter 6. In that chapter we discuss 
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a systematic framework to improve the maintenance function. We present an eight phase 
appproach in which effectiveness and efficiency are improved in a continual improvement 
program. Models are used in the efficiency phase. Furthermore we show how information 
procedures fit into the concept and discuss an application of the concepts, including some 
models, at a concrete factory. 
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1 Introduction 

Game theory is a mathematical theory. Its aim is to model decision situations where two or 
more parties have strategic interaction, and to develop and to analyse solution concepts. A 
party can be a person, a firm, a political party, a nation, etc .. Many of the game theoretical 
models stem from situations of economic interaction. Both at the micro-economic level and 
at the macro-economic level abundant examples can be found where strategic behavior is 
essential. Game theory delivers the tools, comprising ideas about what is called a solution 
and about how the decision situation should be strategically played by the parties. 
It is generally acknowledged that game theory started with the fundamental book 'Theory 
of Games and Economic Behavior' (1944) by John von Neumann and Oskar Morgenstern. 
Their main motivation comes from the following phrase (p. 31). 

We wish to find the mathematically complete principles which define rational behavior 
for the participants in a social economy and to derive from them the general charac­
teristics of that behavior. 

Already from the beginning of the development of game theory it was clear that two main 
branches should be discerned, namely noncooperative games and cooperative games. Ob­
viously in noncooperative games the players have not the possibility or no incentive to 
cooperate with each other in order to derive joint profit. Noncooperative game theoretical 
models presume that the strategical moves of the players are taken simultaneously and in­
dependently. However each players outcome depends on the collection of strategical moves 
of all the players. 
In cooperative games the assumption is made that any subset of players can form a coalition 
which has a certain strength or worth. The main question in cooperative game theory 
concerns a fair division of the worth of the grand coalition, taking into account the strength 
of all the su bcoali tions. 
Not long after the appearing of the book of Von Neumann and Morgenstern, the main lines 
of development of game theory were set by four recent Nobel prize winners, namely John 
Nash (1994), Reinhard Selten (1994), John Harsanyi (1994) and William Vickrey (1996) of 
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which the last one died from a heart attaque a few days after the announcement. Nash 
(1950) introduced the concept of equilibrium point as a solution method for noncooperative 
games and still nowadays Nash-equilibria are recognized as the most appropriate solution 
idea for such games. Selten (1975) extended the equilibrium concept to multi-move decision 
situations. He argued that it makes sense not only to anticipate on rational behavior of the 
opponents but on irrational behavior as well. He introduced the concepts of perfect equilib­
ria and subgame perfectness which can be considered as refinement concepts with respect to 
Nash-equilibria. Harsanyi (1967), motivated by problems of arms control, proposed models 
for decision situations with incomplete information. Before that the rules of the games in­
cluded that all players know all the data of the game and games with incomplete information 
were considered to be unsolvable. Harsanyi introduced for games with incomplete informa­
tion the concept of Bayesian-Nash equilibrium, a method based on statistical techniques. 
The present information-economy in which crucial incomplete information or knowledge is 
continuously updated can be seen as being formed by the work of Harsanyi. Finally Vickrey 
approached game theory from the economic side. He was very much interested in incentives 
related to asymmetric information, like public economies with as central question how far 
should a government influence or control economic markets. Though less mathematically 
rigorous, Vickry introduced many game theoretical concepts in a qualitative sense, some of 
them even before they were "discovered" by the mathematicians. 
Besides the roles of these four Nobel prize winners one should not underestimate the historical 
contributions of other researchers of which Lloyd Shapley and Robert Aumann should be 
especially mentioned. 

2 Developments 1n the Netherlands 

Game theory in the Netherlands started with Stef Tijs. In 1975 he finished his Ph.D. Thesis 
"Semi-infinite and infinite matrix games and bimatrix games" at the Catholic University 
at Nijmegen. Already in 1987 about 15 researchers in game theory were affiliated to Dutch 
universities and 12 of them straightforwardly branched from Tijs. The state of the art of game 
theory in the Netherlands in 1987 can be found in a book dedicated to the 5O-th anniversary 
of Tijs in which contributions are presented by his students (Peters and Vrieze(1987)). 
After 198,7 a turbulent development in game theory took place. The number of workers in 
the field largely increased, not only in the Netherlands but all over the world. Partly this 
is due to a revolution in economic theory where more and more game theory is accepted as 
delivering the toolbox for explanations of economic behavior. Of course, the above mentioned 
Nobel prize to game theorists increased the status of the field. Presently in the Netherlands 
more than 30 researchers, among which 6 at a professor level, in game theory are active and 
moreover one can argue whether certain researchers in economics are in fact game theoretists. 
In the past 10 years more than 20 Ph.D. Theses in game theory appeared in the Netherlands. 
In the next section most of them will be mentioned. Another 8 till 10 dissertations will be 
finished in the near future. Numerous papers appeared in respected international journals. 
At the organisational side we can mention the editorial activities for international journals 
by Eric van Damme, Hans Peters, Stef Tijs and Koos Vrieze. Further, Stef Tijs is the editor 
of a Kluwer book series on Theory and Decisions in which 15 books appeared during the 
past decade, either directly concentrated on fields in game theory or related via economic 
decision situations. Recently 3 international conferences were organized (Tilburg, 1991 (Van 
Damme), Maastricht, 1996 (Peters), Twente 1996 (Driessen, Hoede, Faigle)) and next year 
a fourth one is planned (Maastricht, 1998 (Vrieze)). Also since 1982 a monthly game theory 
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seminar is organized by Tijs. 

3 Developments in Noncooperative Games 

A noncooperative two-person game can be characterized by a four-tuple < A, B, r1,r2 >, 
where A and B are the nonempty strategy sets of player 1 and player 2 respectively and 
where rk : A x B -> IR is the payoff function of player k, k = 1, 2. Generally, the players 
are allowed to randomize their strategies, that is they may select a strategy according to a 
probability measure on their available set of strategies. When IAI is finite, such a probability 
measure is just a probability vector in a finite dimensional Euclidian space and when IAI is 
infinite the probability measure is assumed to be defined on a given probability space. Let x 

denote a randomized strategy for player 1 and let y denote a randomized strategy for player 
2. rk(x,y) will denote the expectation of rk(a, b) with respect to x and y. 
The generally accepted solution method for non-cooperative games is the Nash-equilibrium. 
A Nash-equilibrium is defined as a pair of strategies (x, y), such that none of the players 
has a unilateral incentive for a deviation: 

r1(x,y) 2': r1 (x,y),'v'x 

r2 (x,y) 2". r2(x,ff), 'v'fj 

In the early eighties the structure of the set of Nash equilibria for bimatrix games (the case 
where both (A) and (B) are finite) were extensively studied by Jansen (1981, 1987). Van 
Damme studied games in extensive form and bimatrix games and he succeeded in connecting 
most of the refinement concepts of Nash-equilibria (Van Damme, 1987). In the thesis of 
Borm (1990) some remaining gaps in the properties of the refinement concepts were filled 
and furthermore he deriyed specific results in case IAI = 2 and IB/ = n E IN. In the thesis of 
Jurg (1993) a thorough study is done for perfect and proper equilibria and refinements there­
of£. Recently the long lasting question whether any bimatrix game possesses a quasi-strict 
equilibrium (already suggested by Harsanyi in 1973) was solved by Norde (1994). 
Kohlberg and Mertens (1986) introduced a stability concept which leads to a selection of a 
set of equilibria which satisfy certain properties. Vermeulen, in his thesis (1996), studied ex­
tensively this stability concept and several variations of the original definition. He succeeded 
in defining the essential properties of the set-valued solution concepts for non-cooperative 
games. 
It appears as if the at temps to refine the set of equilibria to one single point have temporarily 
reached an endpoint by the introduction of the stable set. Peleg and Tijs (1996) introduced 
the consistency principle for games in strategic form. Norde, Potters, Reijnierse and Ver­
meulen (1996) were able to prove that there do not exist consistent equilibrium selections 
and consistent refinements. It is by no means overdone to say that in the past 15 years Dutch 
researchers have had great influence on the developments of the general theory of equilibria 
of noncooperatieve-games and many of the characterizing properties were elucidated in our 
own surroundings. 
In a thesis, which opens new horizons, Hurkens (1995) relaxed the rules of a noncooperative 
game situation. He allowed the players to make strategical moves like commitments and 
communications. He considered sets of solutions instead of one point solutions. Among 
other results he showed that so-called persistent sets or "closed under rational behaviour" 
sets are appropriate for games in an evolutionary context. Further he derived unexpected 
results where he allowed players to burn part of their fortune, which appeared to be equivalent 
of buying communication lines at a high prize. 
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4 Developments in Stochastic Games 

Stochastic games are dynamic games that evolve along a discrete time path. At any decision 
moment the players have to play a game identical with a static noncooperative game with 
the extension that the strategy choices determine a probability distribution according to 
which the next state (again a noncooperatieve game) is chosen, etc .. Usually the infinite 
horizon model is studied and the evaluation criteria for an infinite stream of payoffs normally 
concentrate on discounted rewards or limiting average rewards defined respectively as 

00 

vf (x,y) = L ,Bnr;; (x,y) ,8 E (0,1) 
n=O 

ak (x,y) = liminf-N1 I>i: (x,y) 
N-oo n=O 

One should be aware of the fact that here x and y, rather than one shot strategies, denote 
rules that prescribe the players how to play the game along the infinite time path. 
The first Dutch thesis came from Vrieze (1983) in which a complete study of the zero-sum 
case (r1 + r 2 = 0) was elaborated. For non-zero sum stochastic games, especially for the 
limiting average criterion, the existence of Nash-equilibria is not yet known,and no doubt 
presently this is one of the most challenging open problems in game theory. In the thesis of 
Thuijsman (1989) a new idea based on threat stretegies is introduced. That idea is later on 
exploited and until now all existence results for Nash-equilibria for subclasses of stochastic 
games can be founded on the concepts of threat strategies. The fundamental result in this 
ares can be found in a paper of Vrieze and Thuijsman (1989). Stochastic games can be 
seen as extension of Markov Decision Problems to the competitive case. This viewpoint has 
recently been worked out in the first book on stochastic games by Filar and Vrieze (1997). 
A promising new branche in the area of stochastic games is introduced in Joosten (1996), 
in which he studies stochastic games where the game parameters change over time. For 
instance a game with vanishing action is defined as a game where a player will forget an 
action in case he does not make use of it for a sufficiently long time. In Joosten, this one 
and related stochastic games with changing parameters are solved. 
Passchier (1996) explored the application of stochastic games to light traffic control in which 
he knew to exploit optimally the similarities between stochastic games and Markov Decision 
Problems. 

5 Developments in Cooperative Games 

The theory of cooperative games is based on the idea of a characteristic function. Let N be 
the set of players, then any subset S C N is called a coalition and a characteristic function 
is a function v: 

v: 2N-+ IR, 

that is, to every coalition S, a real number is associated reflecting the strength of that 
coalition. The main goal of the theory of cooperative games is to define and motivate 
solution concepts in which v (N), the worth of the grand coalition, is divided among the 
players in a relatively fair way. Interesting work in this area is done by Driessen published 
in his book (1988) in which he connects several of the existing solution concepts and studies 
the properties of a new one, the r-value, introduced by Tijs. In the thesis of Derks (1991) it 
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was shown how certain classes of games can be seen to be polyhedral cones, which enabled 
him to give easy proofs and more understanding of the different properties for many classes 
of cooperative games. 
In the thesis of Otten (1995) several characterizations of solution concepts are given. Some of 
them apply to NTU-games, where the "utility" is no longer transferable between the players. 
Finally, we want to mention the work of Curiel. In cooperation with Potters and Tijs she 
introduced the idea of combinatorial games. In combinatorial optimization several classical 
problems like travelling salesman, minimum cost spanning tree, assignment problems, etc., 
are studied in a one-person sense, that is, there is only one optimizer. In practice often 
more parties at least jointly influence the interaction and the outcome. When the worth of a 
coalition has to be computed, this coalition can be considered to be one unified player that 
has to optimize a certain type of combinatorial optimization problem. In the thesis of Curiel 
(1988) this idea is applied for the first time in a systematic way. In the next section we will 
see that several studies followed this approach. See also Curiel (1997). 
Nowadays it is widely recognized that cooperative game theory has a broad range of appli­
cation. Especially with respect to schemes of costs allocation cooperative game theory offers 
convincing tools as was already shown by Littlechild ( ? ). More recently, applications to 
allocation of reduction measures in order to abate the environmental pollution were worked 
out (Van der Ploeg and De Zeeuw (1994), Toi (1996)). Further, in a paper of Van den 
Nouweland, they report about profit allocation in games constructed from cooperation of 
phoning in planes. 
In the classical cooperative game model it is assumed that there is unrestricted communi­
cation between the players. Evidently, in practice this is not always the case and recently 
this phenomenon is tried to express in game theoretical terms in the thesis of Van den 
Nouweland (1993). She modelled communication restriction by a communication graph. As 
solution concepts she proposed the Myerson value and the position value. In general these 
two values are hard to compute, however Van den Nouweland developed elegant algoritm 
for several subclasses of communication games. 
In the algorithmic sphere the work of Reijnierse (1995) should be mentioned. He has devel­
oped methods to compute the nucleolus. The emphasis of his work lies in TU-games and 
besides the algorithmic results he defined properties that make solution concepts unique and 
he showed all kind of relations between the different solutions. 

6 Developments in Combinatorial Games 

In a short period of time four dissertations appeared around this subject. In the preceding 
section we already motivated this area. In Kuipers (1994) numerous classical combinatorial 
optimization problems are studied in a game setting. For instance the travelling salesman 
games (especially routing games), the minimum cost spanning tree game (represented as an 
information graph game) and assignment games. The main results concern existence and 
properties of the anti-core and anti-nucleolus. "Anti" because the characteristic function has 
the meaning of costs and obviously players prefer the lesser costs. In the work of Kuipers the 
properties of the underlying combinatorial structure were fully exploited in computational 
schemes or other aspects of the solution concepts. Aarts (1994) mainly concentrated on 
minimum cost spanning tree games. For several special cases he derived new and useful 
results. Also Veltkamp (1995) concentrated on minimum cost spanning tree games. However 
in his thesis the emphasis lies on the axiomatic characterization of different solution concepts 
for different instances of the games. Obviously, a good characterization shows whether a 
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concept is applicable in the light of the combinatorial properties of the decision problem. 
Hamers (1995) explored sequencing games in which several agents want to use one machine 
that can only serve one agent at a time. The obvious question concerns the sequence of the 
agents that determine the order in which they are served, taking into account all kind of cost 
structures. Hamers compared several solution methods and derived many new properties. 
In 1993 a special issue of ZOR (now MMOR) was edited by Borm and Tijs, dealing with 
games, graphs and O.R.. 

7 Developments in Bargaining Games 

Bargaining theory can be seen as part of cooperative game theory, where the utility is not 
transferable. When N players are involved an N-dimensional set is defined an element of 
which has to be appointed, where component k is associated the player k, k = 1, 2, ... , N. 
In the thesis of Peters (1986) the relations between several solution concepts for bargaining 
games were studied. In his book, Peters (1992) worked out the axiomatic characterizations 
for the different solution concepts, where the axioms refer to intuitive appealing properties. 
Especially he studied non-symmetrical extensions of the classical solutions like Nash solutions 
and Kalai-Smorodinski solutions. 
Houba (1994) studied a few extensions of the classical bargaining model. For a three player 
situation the rules of the game allow just two players to cooperate. He derived many ax­
iomatic characterizations for solutions of such games. Further he studied bargaining games 
motivated by policy making decision situations. The main feature of this type of games con­
cerns the fact that the players can influence the outcome in case of a disagreement leading 
to additional strategical aspects. 

8 Developments in Social Choice Theory 

Social Choice is about making decision in a societal surrounding. The preference relations 
among the alternatives of the players determine the choice behavior. In Wakker (1986, 1989) 
the main assumption concerns the fact that the set of alternatives can be structured as a 
cartesian product. Any component refers to a specific aspect of the alternative. Wakker 
obtains many mathematical properties of this type of decision problems. In Storcken (1989) 
the ordering of the alternatives reflected in the preference relations, stand central. His goal is 
to derive possibility theorems for the different models related to different assumptions on the 
orderings. In fact, his work can be considered as the first cohesive approach for the study of 
possibility theorems. In Van der Ste! (1993) voting schemes are studied in which all players 
call one alternative and next a voting rule determines the alternative chosen. He derives 
many new results with respect to the concept of strategy-proof choices, which are choices 
that are non-manipulative. Finally in Otten (1995) effectivity functions for social choices are 
studied. Effectivity functions define sets of alternatives that are reachable for coalitions of 
players in the sense that they are able to veto alternatives outside this set. Many interesting 
results about effectivity functions can be found in Otten. 
Monsuur (1994) studied choice problems, where alternatives are ordered by pairwise com­
parison with respect to importance, preference, dominance, quality, etc .. The idea is to come 
to a priority list of the alternatives based on these pairwise comparisons. Further, Monsuur 
studied circularity measures for tournaments. 
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9 Conclusions 

From the above it might be clear that the contribution of the Dutch researchers to the 
developments of game theory is overwhelming. Nearly all the fields of game theory are 
covered and many new and appealing ideas and results come from our country. Together 
with Israel and the United States, The Netherlands is one of the leading countries in game 
theory. Obviously, the researchers do the job and they need to possess the mathematical 
level to apply their creativity. It is in this respect that the activities of the National School 
of Operations Research (LNMB) tremendously contributed to the fundamental knowledge 
of our young bright newcomers. In the same spirit, we need to mention our counterpart in 
economics, the National School of Quantitative Economics (NAKE), that performs a similar 
excellent job as the LNMB. We are quite sure that without the continuous endeavours of 
these two Schools to maintain the outstanding level of our young researchers, the Netherlands 
would never have reached their present position. 

10 References 

Aarts H. (1994), Minimum cost spanning tree games and set games, Ph.D. Thesis, University 
Twente. 

Borm P. (1990), On game theoretic models and solution concepts, Ph.D. Thesis, Catholic 
University Nijmegen. 

Curiel I. (1988), Cooperative game theory and applications, Ph.D. Thesis, Catholic University 
Nijmegen. 

Curiel I. {1997), Cooperative Game Theory and Applications, Kluwer Academic Publishers, 
Dordrecht. 

Derks .J. (1991), On polyhedral cones of cooperative games, Ph.D. Thesis, Maastricht 
University. 

Driessen T. (1988), Cooperative games, solutions and applications, Kluwer Academic Pub­
lishers, Dordrecht. 

Feltkamp V. (1995), Cooperation in controlled network structures, Ph.D. Thesis, Ti/burg 
University. 

Filar F. and O.J. Vrieze (1997), Competitive Markov Decision Processes, Springer Verlag, 
New York. 

Hamers H. (1995), Sequencing and Delivery Situations, a game theoretic approach, Ph.D. 
Thesis, Ti/burg University. 

Harsanyi {1967), Games with incomplete information played by Baysian players, Managed 
Science 14, part I, II and III, pl5g-J82, p320-334, p486-502. 

Houba H. {1994), Game theoretic models of bargaining, Ph.D. Thesis, Tilburg University. 

Hurkens .J.P.M. (1995), Games, rules and solutions, Ph.D. Thesis, Ti/burg University. 

Jansen M.J.M. {1981), Maximal Nash subsets for bimatrix games, Nav.Res. Log. Quart. 
28, p147-151. 

213 



Jansen M.J.M. (1981), Regular equilibrium points of bimatrix games, OR Spektrum 9, p81-
92. 

Joosten R. (1996), Dynamics, equilibria and values, Ph.D. Thesis, Maastricht University. 

Jurg P. (1993), Some topics in the theory of bimatrix games, Ph.D. Thesis, Catholic Uni­
versity Nijmegen. 

Koh/berg E. and J.F. Mertens (1986), On Strategic stability of equilibria, Econometrica 54, 
p1003-1031. 

Kuipers J. (1994), Combinatorial methods in cooperative game theory, Ph.D. Thesis, Maas­
tricht University. 

Littlechild S.C. and G.F. Thompson (1977), Aircraft landing fees: A game theory approach, 
Bell J. Economics 8, pl86-204. 

Nash J. (1950), Equilibrium points in n-person games, Proc. Nat. Ac. of Science USA 36, 
p48-49. 

Otten G.J. (1995), On decision making in cooperative situations, Ph.D. Thesis, Ti/burg 
University. 

Passchier 0. (1996), The theory of Markov games and queueing control, Ph.D. Thesis, State 
University Leiden. 

Peleg B. and S.H. Tijs (1996), The consistency principle for games in strategic form, [.J.C. T 
25, pl3-34. 

Peters H. (1986), Bargaining game theory, Ph.D. Thesis, Catholic University Nijmegen. 

Peters H. {1992), Axiomatic bargaining game theory, Kluwer Academic Publishers, Dor­
drecht. 

Peters H. and Vrieze O.J. (1987), Surveys in game theory and related topics, CW[ Tract 39, 
Amsterdam. 

Reijnierse H. (1995), Games, graphs and algorithm, Ph.D. Thesis, Catholic University Ni­
jmegen. 

Se/ten R. {1915), Reexamination of the perfectness concept/or equilibrium points in extensive 
games, I.J.G.T. 4, p25-55. 

Storcken T. (1989), Possibility theorems for social welfare functions, Ph.D. Thesis Tilburg 
University. 

Thuijsman F. (1989), Optimality and equilibria in stochastic games, Ph.D. Thesis, Maas­
tricht University. 

Toi R. {1996), A Decision analytic treatise of the enhanced greenhouse effect, Ph.D. Thesis, 

Free University Amsterdam. 

Tijs S.H. (1975), Semi-infinite and infinite matrix games and bimatrix games, Ph.D. Thesis, 
Catholic University Nijmegen. 

Van Damme E. {1981), Stability and perfection of Nash equilibria, Springer Verlag, Berlin. 

Van den Nouweland (1993), Games and graphs in economic situations, Ph.D. Thesis, Ti/burg 
University. 

214 



Van den Nouweland A., P. Borm, W. van Go/stein Brouwers, R. Groot Bruinderink, S.H. 
Tijs (1996), A game theoritic approach to problems to telecommunicating, Management Sci­
ence 42, p294-303. 

Van der Ploeg F. and A. de Zeeuw (1992}, International aspects of pollution control, Envi­
ronmental and Resource Economics 2, p117-139. 

Van der Stel H. {1993}, Strategy-proof voting schemes on Euclidian spaces, Ph.D. Thesis, 
Maastricht University. 

Vermeulen D. {1996), Stability in non-cooperative game theory, Ph.D. Thesis, Catholic Uni­
versity Nijmegen. 

Von Neumann J. and 0. Morgenstern {1944), Theory of Games and Economic Behavior, 
Princeton University Press, Princeton. 

Vrieze O.J. {1983), Stochastic games with finite state and action Spaces, Ph.D. Thesis, Free 
University Amsterdam. 

Vrieze O.J. and F. Thuijsman (1989), On equilibria in repeated games with absorbing states, 
I.J.G.T. 18, p293-310. 

Wakker P.P. {1986}, Representations of choice functions, Ph.D. Thesis, Tilburg University. 

Wakker P.P. {1989), Additive representations of preferences, Kluwer Academic Publishers, 
Dordrecht. 

215 





On "Dynamics, Equilibria, and Values"* 

Reinoud Joosten 
Maastricht University 

E-mail: rjoosten@rnerit.unirnaas.nl 

The thesis forms a compilation of results on dynamics, evolution and (un)learning in eco­
nomics and noncooperative game theory, as well as on a topic in cooperative game theory. 
The thesis consists of four chapters which can be read independently. Here, I will briefly 
describe the frameworks of the four chapters, the contributions in the theory, and possible 
connections between the chapters. 

The chapter called 'Economic adjustment processes1 ', treats a model from mathematical 
economics in the theoretical framework of an exchange economy. An economic equilibrium 
is a special situation, where the demand equals the supply on the market of each commodity. 
The prices of the commodities play a prominent role in establishing both the level of the 
demand and the level of the supply of each commodity. The price vector associated with 
an economic equilibrium is called an equilibrium price vector. The following three questions 
are traditionally regarded as important. Does there exist an equilibrium price vector? Can 
an equilibrium price vector be reached by adjusting prices of commodities starting from 
a situation where the demand does not equal the supply for each commodity, and if so, 
how? Can an equilibrium price vector be computed or approximated, and if so, how? These 
questions motivate the contributions in this chapter. 

Firstly, a new price adjustment process is presented, which reaches an equilibrium price 
vector from any given initial price vector in an arbitrary exchange economy. An excess 
demand function determines for each vector of prices the difference between the demand 
for and the supply of each commodity in the exchange economy. The so-called successive 
tatonnement process of Walras [1874], the simultaneous tatonnement process of Samuelson 
[1947] and large classes of generalizations thereof£ (see e.g., Arrow & Hahn [1971]) are known 
to converge to an equilibrium price vector, if the excess demand function satisfies conditions 
such as Revealed Preferences or Gross Substitutability of all commodities. The problem 
is, however, that the class of excess demand functions is quite large and the conditions on 
the excess demand functions guaranteeing convergence to an equilibrium price vector of the 
price adjustment processes just mentioned, are generally regarded as rather strong. 

A price adjustment process (or computational process in this framework) is called univer­
sally convergent if it converges to an equilibrium price vector for an arbitrary excess demand 
function. A price adjustment process is called globally convergent if it is universally con­
vergent and if it may be started in an arbitrary price vector. The price adjustment process 
presented in this chapter is globally convergent. The path followed by the price adjustment 
process from the initial price vector to the equilibrium price vector, allows for an attractive 
economic interpretation. For any price vector on the path namely, it holds that if the price 
of a commodity is higher than its initial value, then the excess demand of this commodity is 

'This is a summary of the PhD thesis Joosten [1996b] with the same title 
1Chapter 2 is based on Joosten & Talman [1993] and Joosten & Talman [1995]. 
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maximal, moreover if the price of a commodity is lower than its initial value, then the excess 
demand of this commodity is minimal. 

Secondly, we contribute a new variable dimension restart algorithm to compute an equilib­
rium price vector in an arbitrary exchange economy. This computational process is globally 
convergent as well, in the sense that it terminates with arbitra,rily accurate approximation of 
an equilibrium price vector for an arbitra,ryexcess demand function, while being started in an 
arbitra,ry price vector. The problem of finding an equilibrium price vector for an exchange 
economy is a so-called zero-point problem. Hence, it may also be applied to solve other 
problems which can be (re)formulated as a zero-point problem. Furthermore, the variable 
dimension restart algorithm may be applied in order to approximate the path followed by 
the globally convergent price adjustment process presented in the same chapter. 

Thirdly, we derive an 'intersection theorem'. Intersection theorems a.re frequf!lntly used 
to prove the existence of equilibrium points in game theory, economics, or to prove existence 
of solutions to mathematical programming problems. The intersection theorem derived in 
this chapter may be used to prove the existence of an economic equilibrium in an exchange 
economy. 

The chapter called 'Evolution of populations and strategiesi•, contains two models. The 
first model describes the evolution of the composition of a population with several subgroups 
having (genetically) predetermined strategies, assuming that a process of 'Darwinian' selec­
tion takes place. Fitness, the crucial driving force of the evolutionary selection process, is 
determined by the predetermined strategies employed by all subgroups and the composition 
of the population. The composition of the population is ( assumed to be) characterized by 
a vector of population shares, i.e., a vector consisting of the relative frequencies of the sub­
groups in the population . The evolutionary selection process favors the fitter subgroups 
over the less fit ones. This is formalized in the model as follows. Under the selection process 
any subgroup using a strategy giving a higher-than-average fitness, increases its share in the 
population, any subgroup using a strategy giving a lower-than-average fitness, decrecl.!les its 
share in the population, and any subgroup using a strategy giving average fitness, has its 
population share unchanged. At any point in time, the changes in the composition of the 
population are driven by differences in fitness levels among the subgroups given the strate­
gic environment as mentioned, and this strategic environment changes in general when the 
composition of the population changes. 

The second model in Chapter 3 describes the evolution of a population consisting of 
several subgroups as well, but instead of having genetically predetermined strategies for 
each subgroup, the strategies change in general in this new setup. The model describes 
namely how the subgroups adapt their strategies in order to improve their payoffs in a given 
strategic environment. We interpret the strategical adjustment processes of the subgroups 
as learning dynamics. The learning dynamics belong to the same large class of evolutionary 
dynamics as examined in the first model in this chapter. The second model in Chapter 
3 may lead to rather high-dimensional and complex dynamics as it is necessary how to 
describe the evolution of the composition of the population, as well as the evolution of the 
strategies employed by the subgroups, given the strategic environment. Again, the strategic 
environment is not static, but changes in general as the composition of the population 
changes and the subgroups alter their strategies. 

As equilibrium concepts in these evolutionary models, we use the concept of saturated 
equilibrium Hofbauer & Sigmund [1988], and two new 'evolutionary stability' concepts gen­
eralizing the evolutionarily stable strategy of Maynard Smith & Price [1973]. These general-

2Chapter 3 is based on Joosten [1995] and Joosten [1996a]. 
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izations of the evolutionarily stable strategy (ESS) are the evolutionarily stable equilibrium 
and generalized evolutionarily stable state. The former equilibrium concept is to be regarded 
as a dynamic generalization of the ESS, the latter concept as a static generalization. For 
large classes of 'plausible' evolutionary dynamics examined in the chapter, the saturated 
equilibrium, the evolutionarily stable equilibrium and the generalized evolutionarily stable 
state are rest points. 

The three evolutionary equilibrium concepts are examined with respect to dynamic (sta­
bility) properties, and relations to fixed point concepts known from the analysis of dynamical 
systems are shown. A fixed point is called stable if the dynamic system remains close to the 
fixed point for any sufficiently small perturbation of the dynamic system, forever. A fixed 
point is called asymptotically stable if it is stable and the dynamic system eventually returns 
to the fixed point for any sufficiently small perturbation. For given evolutionary dynamics, 
each evolutionarily stable equilibrium is an asymptotically stable fixed point by conception. 
The Euclidean distance forms a Lyapunov function with respect to the dynamics near the 
evolutionarily stable equilibrium, implying that the Euclidean distance to the evolutionar­
ily stable equilibrium decreases monotonically in time on any trajectory sufficiently nearby. 
Each generalized evolutionarily stable state is an asymptotically stable fixed point of the 
replicator dynamics. Moreover, it is shown that any stable fixed point must be a saturated 
equilibrium, hence every fixed point which is not a saturated equilibrium is unstable. Fur­
thermore, it is shown that if evolutionary dynamics converge from the interior of the state 
space, then they converge only to a saturated equilibrium. 

For several standard models, each saturated equilibrium corresponds to a Nash equilib­
rium, and vice versa. In the same branch of models, each generalized evolutionarily stable 
state corresponds to an ESS, and vice versa. So, one may question the independence of the 
new evolutionary equilibrium concepts. However, we have established that the one-to-one 
relationships of the equilibrium conepts for the standard models just mentioned, do not ex­
tend to all models in an evolutionary framework. The main message is that evolutionary 
and learning processes lead to the saturated equilibrium and its refinements such as the 
evolutionarily stable equilibrium and the generalized evolutionarily stable state. These need 
not necessarily coincide with the Nash equilibrium and its refinements such as the evolu­
tionarily stable strategy. Examples are provided highlighting discrepancies between these 
end-products of myopic evolutionary dynamics on one hand, and the equilibrium concepts 
known from (evolutionary) game theory on the other. 

Connections between Chapters 2 and 3 are surprising. From a mathematical viewpoint, 
evolutionary dynamics may be interpreted as a price adjustment process in a pure exchange 
economy with normalized prices. In line with this analogy, several fixed point concepts for 
evolutionary dynamics correspond with fixed point concepts for price adjustment processes. 
For example, the aforementioned saturated equilibrium corresponds with the Walras equi­
librium. Several algorithms to compute a Walras equilibrium in pure exchange economies, 
can also be used to compute a saturated equilibrium for a deterministic evolutionary model. 
For instance, the algorithm presented in Chapter 2 may be used to compute a saturated 
equilibrium if the evolutionary system fulfills a condition called permanence. 

The chapter called 'Changing payoffs or action sets3 ', contains two models where the 
payoffs to the players, or their action sets, may change during the play of the game. In the 
first model of Chapter 4, two-player repeated games with vanishing actions are studied. In 
such a game, the number of actions which each player possesses, may decrease as a direct 

3Chapter 4 is largely based on Joosten, Peters & Thuijsman (1994a], and Joosten, Peters & Thuijsman 
(1995]. 
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result of how the play develops. If namely, an action has not been used by a player for 
a certain number of consecutive stages of the play, then this action is removed from this 
player's action set. This phenomenon of losing an action is referred to as 'unlearning by 
not doing'. The two-person games that may arise from 'unlearning by not doing' form a 
special class of stochastic games (Shapley [1953a]) with finite state and action spaces. We 
show existence of solutions to several classes of zero-sum, as well as general-sum games with 
vanishing actions, by giving explicit Nash equilibria and optimal strategies for the limiting 
average reward criterion. 

In the second model of Chapter 4, we investigate aspects of changing payoffs by means 
of differential games. Two players receive streams of payoffs, a fixed amount of which is 
to be invested in two activities by each player. Each player has one activity of which the 
payoff only depends on his investment into that activity. The other activity depends not 
only on his investment into this activity, but also on the investment of the other player in 
this activity. Assuming that both players wish to maximize their infinite stream of payoffs, 
Nash equilibria and optimal open-loop strategies are derived. 

The chapter called 'Egalitarianism, potentials, and values4 ', deals with a topic in coop­
erative game theory. One of the questions which we try to answer is: How should possible 
gains, or costs, made by a group of cooperating players, be allocated? A 'value' for a co­
operative game with transferable utility can be regarded as a division-rule of the gains or 
costs made by a group of cooperating agents. A straightforward manner of dividing the 
gains or costs made by a group of cooperating agents is to divide them equally among all 
members of the group. The corresponding value is called the egalitarian value as obviously 
all agents are treated the same. A prominent example of a value solution is the Shapley value 
(Shapley [1953b]), which has applications in the social sciences beyond economics and game 
theory. For instance, the Shapley value has been applied to quantify the power of agents in 
committees or parliaments. 

Our contribution is motivated by a wish to devise a value incorporating a notion of 
egalitarianism. We do this by assuming that null-players, i.e., players who do not contribute 
anything to any coalition, i.e., a subset of the player set, in the game, receive a fraction a of 
the per-capita 'income' in the situation where all players cooperate. This may come about by 
voluntary contributions to some fund, or by some form of taxation of the total income, which 
are then to be redistributed evenly among all agents. Thus, the parameter a reflects the 
prevailing level of egalitarianism or solidarity. We consider values that satisfy this condition, 
called a-egalitarianism, and several other 'reasonable' properties. This leads to axiomatic 
characterizations of a class of values, the 'a-egalitarian Shapley values'. We proceed by 
giving several other axiomatic characterizations of each a-egalitarian Shapley value. As it 
turns out, any a-egalitarian Shapley value is a(n a-dependent) linear combination of the 
Shapley value and the egalitarian value. 

We take the idea of 'taxing and redistributing' further to derive more general classes 
of values depending on a tuple of parameters. For this purpose, we make use of so-called 
'potentials'. A potential in this context is a map which attributes to every game a unique 
real number (see e.g. Hart & Mas-Cole!! [1989]). Given a tuple of parameters, we define a 
potential and connect to this potential a unique value as follows. Each player in the game 
receives his marginal contribution to the potential of the game, under such a value. We 
examine relations between restrictions on the tuple of parameters and several properties of 
the value which is determined by this tuple of parameters. 

4 Part of Chapter 5 is based on Joosten, Peters, and Thuijsman (19946]. 
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Abstract 

In this paper we consider the equal gain splitting rule and the split core. Both are 
solution concepts for sequencing situations and were introduced by Curiel, Pederzoli 
and Tijs (1989) and Hamers, Suijs, Tijs and Borm {1994) respectively. Our goal is a 
characterization of these solution concepts using consistency properties. However, to do 
this we need a more subtle look at the allocations assigned by both solution concepts. In 
the current definitions they assign aggregated allocations, i.e. only the total reward is 
assigned to each agent. To use consistency in sequencing situations, aggregated solution 
concepts do not provide sufficient information. What we need is a further specification 
of this total reward of an agent. Therefore we introduce so called non-aggregated 
solution concepts. A non-aggregated solution concept assigns a vector to each agent, 
in some way representing the specification of his total reward. Consequently, a non­
aggregated solution concept assigns to each sequencing situation a matrix instead of a 
vector. In this paper we introduce the non-aggregated counterparts of the equal gain 
splitting rule and the split core and characterize them using consistency. 

1 Introduction 

Consistency properties arise in both cooperative and non-cooperative game theory. For 
surveys we refer to Thomson (1990} and Driessen (1991} for the first and Peleg and Tijs 
(1996}, Peleg, Potters and Tijs (1996} and Norde, Potters, Reijnierse and Vermeulen (1996} 
for the latter. Roughly speaking, a solution concept is called consistent if renegotiation of 
the subsolution by subcoalitions on the basis of the same solution concept applied to an 
intuitively appealing reduced situation, will lead to the same suboutcome. 

A property closely related to consistency is converse consistency. This property appeared 
in Peleg (1985} in characterizing the core. The main idea behind converse consistency is the 
following. Given a situation on an agent set N and a solution concept, if it is the case that 
the prescribed outcomes for the reduced situations on all appropriate subsets of agents fit in 
the sense that each player receives the same payoff in each reduced situation in which he is 
involved, the corresponding payoff (if feasible) should be prescribed by the solution concept 
for the original non-reduced situation. 

For the class of combinatorial optimization situations consistency and/or converse con­
sistency has already appeared in assignment situations (Owen (1992}}, flow situations (Rei­
jnierse, Masch/er, Potters and Tijs (1994}) and minimum cost spanning tree situations 
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(Feltkamp, Tijs and Muto (1994)). In this paper we deal with consistency properties of 
solutions for one machine sequencing situations. 

In one-machine sequencing situations a finite number of agents are lined up in front of 
a single machine, with each agent having exactly one job that has to be processed on this 
machine. Further each agent incurs costs for every time unit he is in the system. One 
problem arising from these situations is how to determine the processing order of the jobs 
which minimizes total costs. This problem was solved by Smith {1956) in case all cost 
functions are linear. 

For the class of one machine sequencing situations Curiel, Pederzoli and Tijs (1989) de­
fined combinatorial optimization games called sequencing games. Moreover, they introduced 
the Equal Gain Splitting (EGS) rule, which assigns to each sequencing situation a vector 
that is in the core of the corresponding sequencing game. They characterized this rule using 
an efficiency, dummy, switch and equivalence property. 

The split core, introduced by Hamers, Suijs, Tijs and Borm {1994), is a generalization 
of the EGS rule and assigns to each sequencing situation a non-empty subset of the core of 
the corresponding sequencing game. They provide a characterization of the split core using 
efficiency, the dummy property and a kind of monotonicity. 

In this paper we give characterizations of the EGS rule and the split core using certain 
consistency properties. However, to achieve these characterizations, we have to take a more 
subtle look at the allocations assigned by both solution concepts. Usually these allocations 
are aggregated. But here we will consider non-aggregated allocations corresponding to both 
solution concepts. In the current definitions they assign aggregated allocations, i.e. only 
the total reward is assigned to each agent. To use consistency in sequencing situations, 
aggregated solution concepts do not provide sufficient information. What we need is a 
further specification of this total reward of an agent. Therefore we introduce so called non­
aggregated solution concepts. A non-aggregated solution concept assigns a vector to each 
agent, in some way representing the specification of his total reward. Consequently, a non­
aggregated solution concept assigns to each sequencing situation a matrix instead of a vector. 
In this paper we introduce the non-aggregated counterparts of the equal gain splitting rule 
and the split core and characterize them using consistency. 

The paper is organized as follows. One machine sequencing situations are formally de­
scribed in section 2. We also recall the definitions of the aggregated EGS rule and the 
aggregated split core and introduce their non-aggregated counterparts. In section 3 effi­
ciency, symmetry and consistency are used to characterize the non-aggregated Equal Gain 
Splitting rule and efficiency, consistency and converse consistency are used to characterize 
the non-aggregated split core. 

2 Sequencing and solution concepts 

In a one machine sequencing situation a finite number of agents, each having one job, are 
lined up in front of a single machine, waiting for their jobs to be processed. We denote by 
N ~ N the finite set of agents and n the number of agents. Further, we describe the queue 
formed by the agents with a bijection a- : N -> {1, 2, ... , n }, where a-( i) denotes the position 
of player i in the queue. Particularly we denote by a-0 the initial order of the agents and with 
IIN the set of all such bijections a-. Without loss of generality we may assume that a-0 (i) = i 
for all i E N. The processing time p; is the time the machine needs to process the job of 
agent i. Finally we assume that agent i has an affine cost function c; : R+ -> R+ defined by 
c;(t) = a;t + (3; with a; > 0 and (3; ER+· So c;(t) are the costs for agent i when he spends 
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t time units in the system. 
A sequencing situation as above is denoted by (N,p,a,u0 ), where N <;;; N, p = (p;);eN E 

R:, a= (a;);eN ER: and <To: N-+ {1,2, ... ,n}. The vector /3 = (/3;);eN ER: repre­
senting fixed costs is omitted in the description of a sequencing situation since these costs 
are independent of the positions of the agents in the queue. In the remainder we denote 
with SEQ the set of all sequencing situations with player set any finite subset of the natural 
numbers. For ease of notation an element of SEQ is denoted with r(N), where N is the set 
of agents. 

Given the processing order of the jobs <T : N -+ {l, 2, ... , n} the completion time of 
job i equals C( <T, i) = Lj:u(j)Su(i) p1 and the costs incurred by player i equal e;( C( u, i)) = 
a;C(u,i) + /3;. By rearranging the agents the total costs can be reduced. Smith (1956) 
showed that the total costs are minimal if the agents are placed in decreasing order with 
respect to a;fp;. In the remainder of this paper we call such a cost minimizing order an 
optimal order. 

The Equal Gain Splitting (EGS) rule of a sequencing situation r(N) is for all i E N 
defined by 

1 1 
EGS;(r(N)) = - L 9;j(r(N)) + - L 9ki(f(N)) 

2 j:uo(i)$uo(j) 2 k:uo (k)$uo(i) 

where 9;j(r{N)) = max(O,p;a1 - p1a;) represents the gain agents i and j can obtain if 
agent i is directly in front of agent j. An optimal order can be obtained from the initial 
order by consecutive switches of neighbours i and j with YiJ(f(N)) > 0. The EGS rule then 
divides the gain obtained with a neighbour switch equally among both agents involved in 
the neighbour switch. Note that the EGS rule only assigns the final payoff to each agent. So 
the allocation corresponding with the EGS rule is aggregated. Curiel et al. {1989} showed 
that for every sequencing situation (N,p, a, u0 ) the EGS rule results in a core allocation of 
the corresponding sequencing game. 

Based on a generalization of the EGS rule Hamers et al. {1994) introduced the split core 
of a sequencing game. The split core consists of all gain splitting allocations. One obtains a 
gain splitting allocation by dividing the gain obtained with a neighbour switch not equally 
but arbitrarily among the agents involved in the neighbour switch. Formally, a gain splitting 
allocation of f(N) is defined for all i E N and all A E A by 

GS/(r(N)) = 
j:uo(i)$uo(j) k:uo(k)$uo(i) 

with A= {{A;1};,jeNIO :S A;1 :S 1}. Then the split core of a sequencing situation f(N) is 
equal to 

SPC(r(N)) = {GSA(r(N))I.X EA}. 

Hamers et al. {1994) showed that the split core is a subset of the core. Moreover, if 
A;1 = 1/2 for all i,j E N we have GSA(r(N)) = EGS(r(N)). Finally, note that the split 
core is a set of aggregated allocations. 

Example 2.1 Let N = {1,2,3}, p = (1,1,1), a= (1,2,4) and u0 (i) = i for all i EN. 
It follows that 912(r(N)) = 1, 913(r(N)) = 3 and 923(r(N)) = 2 . Then GSf(f(N)) = 
-X12 + 3.X13, GSi(I'(N)) = (1 - -X12) + 2.X23 and GS;(r(N)) = 2(1 - .X23 ) + 3(1 - .X 13) with 
0 :S .X;i :S 1 for all i,j EN. In particular EGS(r(N)) = (2, 3/2, 5/2). 
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We will now define solution concepts on sequencing situations in a slightly different 
manner. Instead of assigning an aggregated allocation of the total cost savings, we assign 
to each sequencing situation a non-aggregated allocation. In this context, non-aggregated 
means that a specification of the total reward an agent obtains is assigned to that agent. More 
formally, a non-aggregated solution ¢, is a map assigning to each sequencing situation r(N) E 
SEQ a matrix WE R~xN, where an element W;j of W represents the non-negative gain 
assigned to agent i for cooperating with a.gent j. The aggregated allocation corresponding 
with a solution W can be found by multiplying W with the vector e = (1, 1, ... , l)T E RN. 
Now we can define the non-aggregated counterparts of the Equal Gain Splitting rule and the 
split core. 

The non-aggregated Equal Gain splitting solution -E(JS assigns to each sequencing situ­
ation r(N) E SEQ a solution E(JS(r(N)) E: R~xN such that 

E(JS(r(N))·· _ { lg;j(r(N)), if uo(i)::; uo(j) 
'' - 2gj;(r(N)), if uo(i) :C:: uo(j) 

for all i, j E N. Note that the allocation £0S(r( N)) • e is equal to the equal gain splitting 
allocation EGS(r(N)). 

Example 2.2 Take the sequencing situation of example 2.1. The optimal order for this 
situation is 3,2,1. The gain splitting matrix EQS(r(N)) and the corresponding allocation 
equal respectively 

[ 
o 1/2 3/2 l 

EQS(r(N)) = 1/2 0 1 
3/2 1 0 

EQS(r(N)) · e = [ 3~2 l 
5/2 

The non-aggregated split core S'PC assigns to each sequencing situation r(N) E SEQ a 
non-empty subset S'PC(r( N)) ~ R~xN such that for each gain splitting matrix QS(r( N)) E 
S'PC(r(N)) 

QS(r(N));- + QS(r(N)) ·; = { 9ii(r(N)), !f uo(9 ::; uo(!) 
' ' 9i;(r(N)), 1f uo(i) :C:: uo(J) 

for all i,j EN. An allocation corresponding with an element QS(r(N))) E S'PC(r(N)) 
equals QS(r(N)) • e and is an element of the split core SPC(r(N)). This is easily checked 
by taking 

A;·= { QS(r(N)));i/9;i(r(N)), if uo(i) < u0(j) and 9ij(r(N)) > 0 
' 0, otherwise 

for all i,j EN and substituting in expression (1). We conclude this section with another 
example. 

Example 2.3 Take the sequencing situation of example 2.1. The optimal order for this 
situation is 3,2,1. Then the split core SPC(r(N)) equals 

S'PC(r(N)) = { [ 1 -OA12 A~2 ~::] 10::; A;j::; 1, i,j E {1,2,3}) 
3 -.Xia 2 - A2a 0 

Note that the set of allocations {W • elW E S'PC(r(N))} coincides with the split core 
SPC(r(N)). 
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3 Axiomatizations of the SPC and £9S solutions 

In this section we characterize both the non-aggregated split core SPC and the non-aggregated 
£9S rule. For these axiomatizations we need the notions of connected coalitions and reduced 
sequencing situations. A coalition S is connected if for all i,j E S and all k E N with 
u0(i) < u0(k) < u0(j) it holds that k E S. The set of all non-empty connected coalitions 
with respect to the initial processing order u0 is denoted with con(u0 ). 

A sequencing situation reduced to a connected coalition S is the sequencing situation 
remaining when the agents outside coalition S are left out of consideration. The situation 
which remains is described by r(Nls) = (S,ps,as,ug) with ps = (p;);es,as = (a;);es and 
uJ E Ils, where the latter is such that for all i,j ES it holds that uJ(i) < uJ(j) whenever 
u0(i) < u0(j). We will clarify this with the following example. 

Example 3.4 Take N = {l, 2, 3, 4, 5},p = (1, 2, 2, 1, 3), a = (1, 1, 3, 2, 7) and u0 (i) = i for 
all i E N. Note that the total cost savings are maximal when the jobs are processed in the 
order 5,4,3,1,2. The coalition S = {2,3,4} is a connected coalition. This situation reduced 
to Sis the situation with S = {2,3,4},ps = (2,2,1),as = (1,3,2) and uJ(2) = l,uJ(3) = 
2,u5(4) = 3. 

Let 1/; be a non-aggregated solution concept that assigns to each r(N) E SEQ a matrix 
1/;(r(N)) E RfxN and let a denote an optimal order for r(N). For the characterization 
of the non-aggregated equal gain splitting solution £9S we introduce the following three 
properties. 

(i) Efficiency : 1/; is efficient if for all r( N) E SEQ it holds that 

L 1/;(r(N));j = L c;(C(uo, i)) - L c;(C(a, i)). 
i,jEN iEN iEN 

(ii) Symmetry : 1/; is called symmetric if for all r(N) E SEQ the matrix 1/;(r(N)) E 
Rf xN is symmetric. 

(iii) Consistency : Let r(N) E SEQ. Then 1/; is called consistent if for all r(N) E SEQ 
and all S E con(uo) different from N it holds that 1/;(r(N))ls = 1/;(r(Nls)), where 
1/;(r(N))ls is the matrix with all columns and rows of members outside S deleted. 

Efficiency means that exactly the maximal total cost savings is allocated over the agents. 
Symmetry tells us that the gain two agents can obtain by cooperating is divided equally 
among both of them. Consistency of a solution concept means that subcoalitions obtain 
the same outcome if they renegotiate the (sub)solution on the basis of the same solution 
concept to an intuitively appealing reduced situation To explain consistency more specific 
for sequencing situations we use the following example, based on the situation described in 
example 3.4. 

In this situation we have N = {1,2,3,4,5}, p = (1,2,2,1,3), a= (1,1,3,2,7) and 
uo(i) = i for all i EN. Next, consider the coalition S = {2,3,4}. The members of S form 
a connected coalition. Hence, the agents in coalition S can rearrange their processing order 
without the cooperation of agents outside S. This problem can be considered as a reduced 
sequencing situation (S,ps,as,ug) with agents S = {2,3,4}, ps = (2,2,1), as= (1,3,2) 
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and ag(i) = i - 1 for all i ES. Note, however, that the agents outside Shave not left the 
queue. But since all cost functions are affine, the processing times of the agents in front 
of coalition S do not influence the cooperation of coalition S. Hence, we may consider the 
initial order ag ( i) = i - 1, ( for all i E S) in the above reduced situation instead of the order 
~ = i, (for all i E S), which describes the real positions of the members of S in the initial 
processing order a 0 • The allocation assigned by the non-aggregated t:QS rule then equals 
for this reduced situation 

1 [o 4 3] t:QS(r(Nls)) = - · 4 0 1 
2 3 1 0 

(2) 

We will now show that for coalition S = {2,3,4} and the non-aggregated t:QS solution 
consistency is indeed satisfied in this example. For the situation with agent set N the 
non-aggregated t:QS allocation equals 

1 
t:QS(r(N)) = - · 

2 

0 0 1 1 4 
0 0 4 3 11 
1 4 0 1 5 
1 3 1 0 1 
4 11 5 0 

The reduced matrix t:QS(r(N))ls can then be found by deleting the columns and rows 
of agents outside S of the matrix t:QS(r(N)), that is deleting columns 1 and 5 and rows 1 
and 5. The resulting matrix equals fQS(r(S)). Hence, the allocation of the gain obtained 
by coalition S is not influenced by the agents 1 and 5. 

Why only reductions to connected coalitions are considered is a result of the model 
introduced in Curiel et al. {1989). In this paper the authors introduce cooperative games 
which correspond with the sequencing situations described in section 2. In these games two 
members of a coalition S can only cooperate if the agents standing between them in the 
processing order are also members of this coalition, that is, coalition S is connected. As a 
consequence, connected coalitions are the only coalitions which have to be considered. 

We will now state our characterization of the non-aggregated t:QS solution. 

Theorem 3.5 The t:QS solution is the unique solution satisfying efficiency, symmetry and 
consistency. 

PROOF: First we will show that £QS satisfies these properties. Therefore let r(N) E SEQ 
be a sequencing situation and denote with a an optimal order for r(N). Symmetry follows 
from the definition of t:QS. Efficiency follows from 

L t:QS(r(N)),; = 
i,jEN i,j:uo(i)<uo(i) iEN iEN 

Finally, for consistency it is again sufficient to show that for all connected coalitions 
SE con(a0 ) we have g,;(r(Nls)) = g,;(r(N)) for all i,j ES. This follows from the fact that 
ag(i) < ag(j) if and only if a0 (i) < a 0(j) for all i,j ES and all SE con(a0 ). 

The reverse will be proved with induction on the number of agents. Let 1jJ be a non­
empty solution concept satisfying symmetry, efficiency and consistency. If INI = 1 efficiency 
yields 1jJ(r(N)) = t:QS(r(N)) = [O] for all r(N) E SEQ. Now assume that 1jJ = t:QS for 
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all INI < m. Take INI = m and choose r(N) E SEQ. Reducing r(N) to S = N\{a01(1)} 
and S = N\{a01(n)} respectively, applying consistency and using the induction hypothesis 
yields 

1P(r(N)) _ 1P(r(N)) _ { ½Yii(r(N)), if ao(i):::; ao(j) 
11 - 1' - ½9j;(r(N)), if a0 (i) 2:: ao(j) 

for all pairs (i,j) =/- (1, n) and (i,j) =/- (n, 1). Efficiency and symmetry then gives 

1P(r(N)hn = 1P(r(N))nl = { t91n(r(N)), !f O"o(l) :::; ao(n) 
29n1(r(N)), 1f O'o(l) 2:: ao(n) 

Hence, 1P(r(N)) = £9S(r(N)) for all r(N) E SEQ. D 

Before we turn to the characterization of the non-aggregated split core, we show that the 
properties in theorem 3.5 are logically independent. First consider the solution assigning to 
each sequencing situation the null matrix. It is obvious that this solution is not efficient 
but satisfies symmetry and consistency. As we will show later, a non-aggregated Gain 
Splitting solution with fixed {>.;j }i,jEN satisfies efficiency and consistency but not necessarily 
symmetry. Finally, the solution concept assigning to each sequencing situation r(N) E SEQ 
the matrix W(I'(N)) with 

W(I'(N))ij = { s Lk,IEN 9k1(r(N)) ;! ~ #; (3) 

satisfies efficiency and symmetry but violates consistency. 
For the characterization of the non-aggregated split core, let IP be a non-aggregated 

solution concept that assigns to each I'(N) E SEQ a non-empty subset of R~xN and let a­
denote an optimal order for r(N). Consider the following three properties for IP• 

(i) Efficiency : IP is efficient if for all r(N) E SEQ and all WE 1P(I'(N)) it holds that 

(ii) Consistency : Let r(N) E SEQ. Then IP is called consistent if for all r(N) E SEQ, 
all SE con(a0 ) and all WE 1P(r(N)) it holds that Wis E 1P(r(Nls)), where Wis is 
the matrix W with all columns and rows of agents not in S deleted. 

(iii) Converse consistency : IP is conversely consistent if for all W E R~xN and all 
r(N) E SEQ with Li,jENwij = LieNc;(C(ao,i)) - LiENc;(C(u,i)) the following 
statement is true. If Wis E 1P(r(Nls)) for all connected coalitions SE con(a0 ) different 
from N then WE 1P(I'(N)). 

The efficiency property states that exactly the maximal total cost savings are allocated 
over the agents. For the multifunction case, consistency can also be seen as a stability 
condition. To see this, consider again the situation described in example 3.4. Next, reduce 
this sequencing situation to the connected coalition S = {2, 3, 4}. The non-aggregated split 
core equals for this reduced situation 
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Although the allocations differ for the several choices of A23, .X24 , .X3., the total which is 
allocated to coalition S is constant and equal to 8. So a possible allocation QS(f(N)) E 
SPC(r(N)) will only be accepted by coalition S if the total cost savings assigned to the 
agents of S for cooperating with members of S is not less than 8. The consistency property 
guarantees that coalition S gets exactly 8. Hence, coalition: S will a-ccept an allocation 
satisfying, consistency. For the split core this propetty. is satisfied for coalition S in this 
example. This can easily be checked by computing, the total cost savings assigned by the 
non-aggregated split core to agents in S for cooperating with other agents in S. The split 
core equals 

SPC(f(N)) = l [ L ~X23, il:a i~4
- E~is ]· 1 i'; E [?, l],\ ~•! e ~ ]' 

A14 3X24 ,X34 0 A45 .. l; = - ij, l,J E 

4X1s ll.X2s 5X3s .X4s 0 

and the total cost savings for coalition S equals L;,;es QS(f( N) );; = 8 for all QS(f( N)) E 
SPC(f(N)). 

So a consistent solution concept assigns to each connected coalition exactly the gain this 
coalition can obtain in its reduced situation. Thus, consistency guarantees a form of stability 
which differs from the stability guaranteed by the core of a cooperative game. Because the 
core consists of allocations for which each coalition, connected or not, gets at least the gain 
this coalition can obtain without the cooperation of agents outside this coalition. 

Finally, converse consistency means that when each allowed reduced matrix of a feasible 
matrix (that is, the maximal cost savings are allocated over the agents) is an element of the 
solution of t'he corresponding reduced situation, then this gain splitting matrix must also be 
an element of the solution of the non-reduced situation. Note that for sequencing situations 
only reductions to connected coalitions are allowed. 

With the three crlorementioned properties we can characterize the non-aggregated, split. 
core. 

Theorem 3.6 The non-aggregated split core SPC is the unique non-empty solution satis­
fying efficiency, consistency and converse consistency. 

PROOF: w~ will first show that SPC satisfies all three properties. Therefore, let f(N) E 
BEGJ and let u be an optimal order for r(N). Take W E SPC(f(N)). Efficiency follows 
from 

L ~j = L g;;(r(N)) = Ee;(C(uo,i))-Ee;(C(u,i)). 
i,jEN i,j:uo(i)<uo(j) iEN iEN 

Next, consider consistency. From the definition of the non-aggregated split core S'PC, 
it is sufficient to show that for all connected coalitions S E con(u0 ) we have g;;(f(Nls)) = 
g;;(f(N)) for all i,j ES. But this follows from ug(i) < ug(j) if and only if u0(i) < u0 (j) for 
all i,j E Sand all SE con(u0 ). 

For converse consistency, take f(N) E SEQ and a solution W E R~xN such that 
Li,jEN W;; = LieN e;(C(uo, i))-EieN c;(C(u, i)). Reducing the situation to s = N\ { u;1 (1)} 
and S = N\{u~n)} respectively and using Wis E S'PC(f(Nls)) and 9ii(r(Nls)) = g;;(r(N)) 
for all i,j ES and all SE con(u0 ) gives 

W. + W-· = { 9ii(r(N)), if u0(i) :S uo(j) 
' 3 31 9;;(r(N)), if uo(i) ~ uo(j) 
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for all pairs (i,j) c/ (1, n) and (i,j) c/ (n, 1). Efficiency then implies that 

W W. _ { 91n(r(N)), if uo(l) :S u0(n) 
In+ nl - 9ni(r(N)), if uo(l) 2': O"o(n) 

Hence, WE SPC(r(N)). 
So we are left to prove that if a non-empty solution satisfies these three axioms this 

solution concept must be the split core SPC. Therefore take a non-empty solution concept 
IP satisfying efficiency, consistency and converse consistency. We prove by induction to the 
number of agents that IP = SPC. Take /NI = 1 and let r(N) E SEQ. Efficiency implies 
that 1P(r(N)) = SPC(r(N)) = [O]. So for /NI= 1 we have IP= SPC. 

Now suppose that IP= SPC for /NI< m. Take /NI= m and let f(N) E SEQ. Let WE 
IP(r(N)), then consistency of IP implies that Wis E 1P(r(Nls)) for all connected coalitions 
S E con(u0 ) with S i N. Using the induction hypothesis yields Wis E SPC(f(Nls)). 
Applying the converse consistency of SPC gives W E SPC(f(N)). Hence, 1P(r(N)) ~ 
SPC(r(N)) for all f(N) E SEQ. Interchanging the roles of IP and SPC yields SPC(f(N)) ~ 
1P(f(N)) for all f(N) E SEQ, so IP= SPC, which proves the result. D 

To conclude this paper we will show that these properties are logically independent. As 
showed before, the set-valued solution { £QS} satisfies all properties but converse consis­
tency. The solution assigning to each sequencing situation the null matrix satisfies both 
consistency properties but not efficiency. And finally, the solution concept defined in (3) 
satisfies efficiency and converse consistency and violates consistency. 
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Abstract 

In thls paper we discuss the main existence results on optimality and equilibria in 
two-person stochastic games with finite state and action spaces. Several examples are 
provided to clarify the issues. 

1 The Stochastic Game Model 

In this introductory section we give the necessary definitions and notations for the two-person 
case of the stochastic game model and we briefly present some basic results. In section 2 we 
discuss the main existence results for zero-sum stochastic games, while in section 3 we focus 
on general-sum stochastic games. In each section we discuss several examples to illustrate 
the most important phenomena. 

It all started with the fundamental paper by Von Neumann (1928] in which he proves the so 
called minimax theorem which says that for each finite matrix of reals A = [a,j]~1,'.i=1 there 
exist probability vectors x = (xi, x2 , ••• , xm) and ii= (fi1 , fi2 , ••. , fin) such that for all x and 
y it holds that1 xAfi:::; xAy :::; xAy. In other words: maxx miny xAy = miny maxx xAy. 
This theorem can be interpreted to say that each matrix game has a value. A matrix game 
A is played as follows. Simultaneously, and independent from each other, player 1 chooses 
a row i and player 2 chooses a column j of A. Then player 2 has to pay the amount a,j 

to player 1. Each player is allowed to randomize over his available actions and we assume 
that player 1 wants to maximize his expected payoff, while player 2 wants to minimize the 
expected payoff to player 1. The minimax theorem tells us that, for each matrix A there is a 
unique amount val(A), which player 1 can guarantee as his minimal expected payoff, while 
at the same time player 2 can guarantee that the expected payoff to player 1 will be at most 
this amount. 

Later Nash (1951] considered then-person extension of matrix games, in the sense that 
all n players, simultaneously and independently choose actions that determine a payoff for 
each and every one of them. Nash [1951] showed that in such games there always exists at 
least one (Nash-)equilibrium: a tuple of strategies such that each player is playing a best 
reply against the joint strategy of his opponents. For the two-player case this boils down to 
a "bimatrix game" where players 1 and 2 receive a,; and b,; respectively in case their choices 

1 Note that we do not distinguish row vectors from column vectors. In the matrix products this should 
be clear from the context. 
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determine entry ( i ,j). The result of Nash says that there exist x and ii such that for all x 

and y it holds that xAy 2'. xAy and xBy 2'. xBy, where A = [ai1] and B = [bi1] are finite 
matrices of the same size. 

Shapley [1953] introduced dynamics into game theory by considering the situation that 
at discrete stages in IN the players play one of finitely many matrix games, where th-e choices 
of the players determine a payoff to player 1 (by player 2) as well as a stochastic transition 
to go to a next matrix game. He called these games "stochastic games", which brings us to 
the topic of this paper. Formally, a two-person stochastic game with finite state and action 
spaces can be represented by a finite set of matrices A 1, A 2, ... , A' corresponding to the set 
of states S = {1,2, ... ,z}. Fors ES matrix A' has size m, x n, E IN x IN and entry (i,j) 
of A• contains: 

a) a payoff rk(s, i,j) E IR for each player k E {l, 2} 

b) a transition probability vector p(s, i,j) = (p(lls, i,j),p(2js, i,j), ... , p(zjs, i,j)) where 
p(tis, i,j) is the probability of a transition from s tot whenever entry (i,j) of A' is 
selected. 

Play can start in any state of S and evolves by players independently choosing actions in and 
jn of A••, where Sn denotes the state visited at stage n. In case r1(s,i,j) + r2(s,i,j) = 0, 
the game is called zero-sum, otherwise it is called general-sum. In zero-sum games players 
have strictly opposite interests, since they are paying each other. 

A strategy for a player is a rule that tells him for any history hn = ( s 1 , i1 , j1, s2, i2, j2, ... , 
Sn-1,in-l,jn-1,sn) up to stage n, what mixed action to use in state Sn at stage n E IN. 
Such behavior strategies will be denoted by 1r for player 1 and by u for player 2. 

For initial state s and any pair of strategies ( 7r, u) the limiting average reward and the 
.8-discounted reward, .BE (0, 1), to player k E {l, 2} are respectively given by 

(1) 

(2) 

where SnJn,Jn are random variables for the state and actions at stage n. Let ·/(1r,u) and 
-Y¾(1r, u) denote vectors of rewards with coordinates corresponding to the initial states. 
A stationary strategy for a player consists of a mixed action for each state, to be used when­
ever that state is being visited, regardless of the history. Stationary strategies for player 
1 are denoted by x = (xi, x2, ... , x,), where x, is the mixed action to be used in state s. 
For player 2's stationary strategies we write y. A pair ( x, y) of stationary strategies deter­
mines a Markov-chain (with transition matrix) P(x,y) on S, where entry (s,t) of P(x,y) is 
p(tjs, x., y,) = L~'1 Lj~I x,( i)p(tjs, i, j)y,(j). If we use the notation rk(x, y) = (rk(l, x1 , y1), 

rk(2,x2,Y2), ... ,rk(z,x,,y,)) with rk(s,x.,y,) = EZ::1 LJ~I x,(i)rk(s,i,j)y,(j) then 

(3) 

where I is the identity matrix, and 

(4) 

with 

(5) 
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It is well-known ( cf. Blackwell [1962]) that 

Q(x,y)P(x,y) = Q(x,y) 

Q(x,y) = lim1111 (1-/3)(/ -f3P(x,y))- 1 

and hence (3), (4) and (7) give 

·l(x, y) = lim1111 ,¾(x, Y) 

(6) 

(7) 

(8) 

Notice that (5) and (6) imply that row s of Q(x, y) is the unique stationary distribution 
for the Markov chain P(x, y) starting in state s. A stationary strategy x is called pure if 
#{ i : x,( i) > 0} = 1 for all s. Pure stationary strategies shall be denoted by f and g for 
players 1 and 2 respectively. It is well-known (cf. Hordijk et al. [1983]) that, when playing 
against a fixed stationary strategy, a player always has a pure stationary best reply: 

(9) 

Obviously, for player 2's best replies an analogon of (9) holds. 
Finally, we wish to mention one more type of strategies, namely Markov strategies. These 

are strategies that, at any stage of play, prescribe actions that only depend on the current 
state and stage. Thus, the past actions of the opponent are not being taken into account. 
Strategies for which these choices do depend on those past actions shall be called history 
dependent. 

2 Zero-sum Stochastic Games 

In zero-sum stochastic games it is customary to consider only the payoffs to player 1, which 
player 1 wishes to maximize and player 2 wants to minimize. Since in the sequel we also 
consider the zero-sum situation where player 2 is the maximizer and player 1 the minimizer, 
we shall incorporate the player number in the definitions of value and optimal strategies. 
Thus, for k = 1, 2, the k-zerosum game is the stochastic game determined by player k's 
payoffs, where player k is maximizing his reward while the other player is minimizing player 
k's reward. 

In his ancestral paper on stochastic games Shapley [1953] shows 

V/3 3vb 3xb,Yb \:/1r,u [,b(xb,u) ~vb~ ,b(1r,yb)] (10) 

The vector vb is called the /3-discounted 1-value and the strategies xb, Yb are called stationary 
/3-discounted optimal strategies in the 1-zerosum game. Shapley's proof is based on the 
observation that vb is the unique solution of the following system of equations: 

(11) 

where val denotes the matrix game value operator. 
Everett [1957] and Gillette [1957] were the first to consider undiscounted rewards. Everett 

[1957] examined recursive games, which can be defined as stochastic games where the only 
non-zero payoffs can be obtained in absorbing states, i.e. states that have the property that 
once play gets there, it remains there forever. Although optimal strategies need not exist for 
such games, Everett [1957] shows that for each recursive game the limiting average value v1 

exists, and can be achieved by using stationary e:-optimal strategies x!, y;. Precisely: 

3v1 Ve: > 0 3x!, Y! \:/1r, u [,1(x!, u) + d, ~ v1 ~ 11( 1r, Y!) - d,] (12) 
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Here 1, denotes the vector (1, 1, ... , 1) in IR2 • 

Example 2.1 

Consider the following recursive game. 

To explain this notation: Player 1 chooses rows; player 2 chooses columns; for each entry 
the above diagonal number is the payoff to player 1 and the below diagonal number is the 
state at which play is to proceed; in case of a stochastic transition we write the transition 
probability vector at this place. 

States 3 and 4 are absorbing and obviously states 1 and 2 are the only interesting initial 
states. For this game the limiting average value is v1 = (1, -1, 1, -1). For player 1 a 
stationary limiting average c:-optimal strategy is given by ((1 - c:,c:), (1, 0)) for states 1 and 
2 respectively (clearly, in states 3 and 4 he can only choose the one available action). As 

1 1-,,/Fp -i+Fiii ) can be verified using (11), the ,8-discounted value is vfJ = ( fJ , ~,1,-1 and 
for player 1 the unique stationary ,8-discounted optimal strategies are given by playing Top, 

his first action, with probability l-fJ'- l-fJ' in state 1 as well as in state 2. 
(J-fJ'-(J 1-(J' 

An elementary proof for Everett's [1957] result is given by Thuijsman & Vrieze {1992], 
where for the recursive game situation a stationary limiting average c:-optimal strategy is 
constructed from an: arbitrary sequence of stationary .Bn-discounted optimal strategies, with 
limn-oo .Bn = l. 

Example 2.2 

This famous game is the so called big match introduced by Gillette [1957]. 

2 3 

For this game the unique stationary ,8-discounted optimal strategies are given by xb = 
( 2:,1i' ~) and Y1 = (½,½)for players 1 and 2 respectively, and vb= ½ for initial state l. 
However, it was not clear for a long time, whether or not the limiting average value would 
exist. The problem was that against any Markov strategy for player 1 and for any c: > 0 
player 2 has a Markov strategy such that player 1 's limiting average reward is less than c:. 
On the other hand, player 2 can guarantee that he has to pay a limiting average reward of 
at most ½, but he cannot guarantee anything less than ½- Hence there is an apparent gap 
between the amounts the players can guarantee using only Markov strategies. The matter 
was settled by Blackwell & Ferguson [1968], who formulated, for arbitrary c > 0, a history 
dependent strategy for player 1 which guarantees a limiting average reward of at least ½ - c 
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against any strategy of player 2. This history dependent limiting average €-optimal stratey 
is of the following type. At stage n suppose that play is still in state 1 where player 2 has 
chosen left l(n) times, while he has chosen right r(n) times. Then, player 1 should play 
Bottom (his second action) with probability c:2(1 -c:l(n), where k(n) = max{0, l(n)-r(n)}. 

Later, this result on the big match was generalized by Kohlberg [1974], who showed that 
every repeated game with absorbing states has a limiting average value. A repeated game 
with absorbing states is a stochastic game in which, just like in the big match, all states but 
one are absorbing. 

Finally, by an ingeneous proof Mertens & Neyman [1981] showed that for every stochastic 
game the limiting average value exist. Their proof exploits the remarkable observation by 
Bewley & Kohlberg [1976] that the _B-discounted value as well as the stationary .8-discounted 
optimal strategies can be expanded as Puiseux series in powers of 1- .B. For example, for the 
above big match we have that x1 = (1, 0)+(-1, 1)(1-.B)+(l, -1)(1-.8)2 +(-l, 1)(1-_8)3 + ... 

Apart from these general results, specially structured stochastic games have been ex­
amined. We already discussed recursive games and repeated games with absorbing states, 
but we should also mention the following classes: irreducible/unichain stochastic games 
( cf. Rogers [1969], Sobel [1971], Federgruen (1978]), i.e. stochastic games for which for any 
pair of stationary strategies the related Markov chain is irreducible/unichain; single con­
troller stochastic games ( cf. Parthasarathy & Raghavan [1981]), i.e. games in which the 
transitions only depend on the actions of one and the same player for all states; switching 
control stochastic games (cf. Filar [1981], Vrieze et al. [1983]), i.e. games with transitions 
for each state depending on the action of only one player; perfect information stochastic 
games (cf. Liggett & Lippman [1969]), where in each state one of the players has only one 
action available; stochastic games with additive rewards and additive transitions ARAT ( cf. 
Raghavan et al. [1985]), i.e. there are r;,rtp1 ,p2 such that rk(s,i,j) = rt(s,i) + r~(s,j) 
and p(s,i,j) = p1 (s,i) + p2 (s,j) for all s,i,j; stochastic games with separable rewards and 
state independent transitions ( cf. Parthasarathy et al. [1984]), i.e. there are r!, r!, Pa such 
that rk(s,i,j) = r!(s) + rt{i,j) and p(s,i,j) = Pa(i,j) for all s,i,j. All these classes admit 
stationary limiting average optimal strategies. Later, in Thuijsman & Vrieze [1991, 1992] 
and in Thuijsman [1992] new (and far more simple) proofs were provided for the existence of 
stationary solutions in several of these classes. Characterizations, in terms of game proper­
ties, for the existence of stationary limiting average optimal strategies are provided in Vrieze 
& Thuijsman [1987], Filar et al. [1991] and Thuijsman [1992]. 

Before closing this section on optimality we mention the result by Tijs & Vrieze [1986] 
(also see Vrieze [1987]) who show that for every stochastic game there is for each player a 
non-empty set of initial states for which a stationary limiting average optimal strategy exists. 
This proof relies on the Puiseux series work by Bewley & Kohlberg [1976]. A new and direct 
proof for the same result is given in Thuijsman & Vrieze [1991], Thuijsman [1992]. A detailed 
study of the possibilities for limiting average optimality by means of stationary strategies 
can be found in Thuijsman & Vrieze [1993], while in Flesch et al. [1996b] it is shown that the 
existence of a limiting average optimal strategy implies the existence of stationary limiting 
average c:-optimal strategies. 

3 General-sum Stochastic Games 

One of the first persons to examine non-zerosum stochastic games was Fink [1964], who 
showed the existence of stationary _B-discounted equilibria for stochastic games: 

V.B ~x,y \/1r, a- [,M1r, y):::; ,Mx,y) and ,J(x,a-):::; ,J(x, y)] (13) 
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Since, by its definition, for the zero-sum situation an equilibrium can only consist of a pair of 
optimal strategies, the big match (cf. example 2.2) immediately shows that limiting average 
equilibria do not always exist. Where we introduced c:-optimal strategies for the zero-sum 
case, we now have to introduce c:-equilibria for the general-sum case. A pair of strategies 
(ir.,o-,) is called a limiting average c:-equilibrium (c: > 0) if neither player 1 nor player 2 can 
gain more than c: by a unilateral deviation. To. put it precisely 

\fir, o- [•y1 ( ir, o-,) :S: -y1( ir., o-,) + d. and ·/( ir., o-) :S: 1 ( ir., o-,) + d.] (14) 

The existence of limiting av:erage c:-equililnia for. arbitrary generalssum stochastic games has 
not yet been established. Neither do we know of any counterexample to their existence. The 
most general results on the existence of equilibria are the following. First it was observed that 
in every stochastic game there is a non-empty set of initial states for which c:-equilibria exist 
(cf. Thuijsman & Vrieze [1991], Thuijsman [1992] or Vieille [1993]). Our proof of this result 
was based on ergodicity properties of a converging sequence of stationary /9n-discounted 
equilibra, with liIDn-oo /9n = 1. However, the equilibrium strategies are of a behavioral type: 
at all stages players must take into account the history of past moves of their opponent. 
Nevertheless, a side-result of this approach was a simple and straightforward proof for the 
existence of stationary limiting average equilibria for irreducible/unichain stochastic games 
(which was earlier derived by Rogers [1969], Sobel [1971], Federgruen [1978]). 

Concerning the (simultaneous) existence of limiting average c:-equilibria for all initial 
states, sufficient conditions have been formulated in Thuijsman [1992], which are based on 
propeities of a converging sequence of stationary /9n-discounted equilibra, with limn-oo /9n = 
1, while in Thuijsman & Vrieze [1997] quite general sufficient conditions have been formulated 
in terms of stationary strategies, and of observability and punishability of deviations. We call 
this the threat approach, since the players are constantly checking after each other, and any 
"wrong" move of the opponent will immediately trigger a punishment. Thus the threats are 
the stabilizing force in the limiting average equilibria. Using this threat approach existence of 
c:-equilibria has been shown for repeated games with absorbing states ( cf. Vrieze & Thuijsm;3,n 
[1989], where a prototype threat approach is being used), as well as for stochastic games 
with state independent transitions (cf. Thuijsman [1992]), as well as for stochastic games 
with three states ( cf. Vieille [1993]), as well as for stochastic games with switching control 
(cf. Thuijsman & Raghavan [1997]), an.d existence of pure 0-equilibria has been shown for 
stochastic games with additive rewards and additive transitions (ARAT, cf. Thuijsman & 
Raghavan [1997]), which includes the perfect information games. 

We remark that previous to our threat approach for none of these classes, the existence 
of limiting average c:-equilibria was known, even though the zero-sum solutions had been 
derived a long time ago. Also note that even for perfect information stochastic games 
stationary limiting average equilibria generallly do not exist, although for the zero-sum case 
pure stationary limiting average optimal strategies are available (cf. Liggett & Lippman 
[1969]). Example 3.2 below will illustrate this point. 

For recursive repeated games with absorbing states (cf. Flesch et al. [1996a]) and for 
ARAT repeated games with absorbing states (cf. Evangelista et al. [1997]) the existence of 
stationary limiting average c:-equilibria has been shown (without threats). 

We conclude this paper with three very special examples. In example 3.1 we examine 
a repeated game with absorbing states for which there is a gap between the /3-discounted 
equilibrium rewards and the limiting average equilibrium rewards. In example 3.2 we discuss 
a perfect information stochastic game which does not have stationary limiting average ,:;­
equilibria, but where the only equilibria known to us, are of the threat type. In example 3.3 
we discuss a three person recursive repeated game with absorbing states for which the only 

238 



limiting average equilibria consist of cyclic Markov strategies. This is very remarkable since, 
in that game, neither history dependent nor stationary limiting average £-equilibria do exist. 

Example 3.1 

00 
2 3 

This is an example of a repeated game with absorbing states, where play remains in the initial 
state 1 as long as player 1 chooses Top, but play reaches an absorbing state as soon as player 
1 ever chooses Bottom. Sorin [1986) examined this example in great detail. The 1-zero-sum 
and 2-zero-sum limiting average values (for initial state 1) are given by (v1,v2 ) = (½,f). 
Clearly then, there can be no stationary limiting average £-equilibrium, because against any 
stationary strategy of player 1, player 2 can get at least 1, and by doing so player 1 would get 
0 < v1 , which he can always achieve by playing limiting average £-optimal in the I-zero-sum 
game. However, for each pair in Conv{(½, 1), (f, f)}, where Conv stands for convex hull, 
Sorin [1986] gives history dependent limiting average £-equilibria that yield this pair as an 
equilibrium reward. Besides, he shows that any limiting average £-equilibrium corresponds 
to a reward in Conv{(½, 1), (f, f)}, while all fi-discounted equilibria yield (½, f). Although 
this observation suggests that the limiting average general-sum case can not be approached 
from the fi-discounted general-sum case, by studying this example Vrieze & Thuijsman [1989] 
discovered a general principle to construct, starting from any arbitrary sequence of stationary 
fin-discounted equilibria with limn-00 fin = 1, a limiting average £-equilibrium. 

Example 3.2 

2 3 4 

This game is a recursive perfect information game for which there is no stationary limiting 
average £-equilibrium. One can prove this as follows. Suppose player 2 puts positive weight 
on Left in state 2, then player l's only stationary limiting average £-best replies are those 
that put weight at most 2~, on Top in state 1; against any of these strategies, player 2's 
only stationary limiting average c:-best replies are those that put weight O on Left in state 2. 
So there is no stationary limiting average £-equilibrium where player 2 puts positive weight 
on Left in state 2. But there is neither a stationary limiting average £-equilibrium where 
player 2 puts weight O on Left in state 2, since then player 1 should put at most 2c: weight 
on Bottom in state 1, which would in turn contradict player 2's putting weight O on Left. 
Following the construction of Thuijsman & Raghavan [1997), where existence of limiting 
average 0-equilibria is shown for arbitrary n-person games with perfect informtion, we can 
find an equilibrium by the following procedure. Take a pure stationary limiting average 
optimal strategy f1 for player 1 (this exists by Liggett & Lippman [1969)); let g1 be pure 
stationary limiting average optimal for player 2 in the 1-zero-sum game; let g2 be a pure 
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stationary limiting average best reply for player 2 against / 1 in the 2-zero-sum game (which 
exists by (9)). Now define 9* for player 2 by: play 92 unless at some stage player 1 has ever 
deviated from playing /1, then play g1. Here, f1 = (1,0) = 92 and 91 = (0, 1). Now it can 
be verified that (!1 , 9*) is a limiting average equilibrium. 

Example 3.3 

T 

B 

L 

F 
N 

R 

This is a three-person recursive repeated game with absorbing states, where an asterisk in 
any particular entry denotes a transition to an absorbing state with the same payoff as in 
this particular entry. There is only one entry for which play will remain in the non-trivial 
initial state. One should picture the game as a 2 X 2 X 2 cube, where the layers belonging 
to the actions of player 3 (Near and Far) are represented separately.. As before, player 1 
chooses Top or Bottom and player 2 chooses Left or Right. The entry (T, L, N} is the only 
non-absorbing entry for the initial state: H'emre, as long as play is in. the initial state the 
only possible history is the one where entry (T, L, N) was played at all pr.evious stages. This 
rules out the use of any non-trivial history dependent strategy for this game. Therefore, 
the players only have Markov strategies at their disposal. In Flesch et al. [199'i'.) it is shown 
that, although (cyclic) Markov limiting average 0-equilibria exist for this game, there are no 
stationary limiting average e-equilibria. Moreover, the set of all limiting average equilibria 
is being characterized completely. An example of a Markov equilibrium for this game is 
(1r,u,r), where 1r is defined by: at stages 1, 4, 7, 10, ... play T with probability½ and at 
all other stages play T with probability 1. Similarly, u is defined by: at stages 2, 5, 8, 11, 
. . . play L with probability ½ and at all other stages play L with probability 1. Likewise, 
T is defined by: at stages 3, 6, 9, 12, . . . play N with probability ½ and at all other stages 
play N with probability 1. The limiting average reward corresponding to this equilibrium is 
(1,.2, 1). 
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1. Introduction 
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Generally speaking, game theory deals with the analysis of situations in which a number 
of people, each of them having his own interest in the outcome of the situation, must 
decide what to do. In the area of non-cooperative game theory these people (the players) 
are supposed to be unable or unwilling to commit themselves to taking specific actions in 
the given situation (the game). This non-cooperative character of the players forces us to 
search for solutions of the game that are self-enforcing. 

In their paper of 1986 Kohlberg and Mertens argued that a convincing self-enforcing solu­
tion must necessarily satisfy a number of conditions. A solution that is designed to meet all 
conditions is called a stability concept. They also showed that such a concept is inevitably 
set-valued. Since then a number of stability concepts have been proposed. Although there 
is nowadays a wide variety of stability concepts, the two that are most commonly known 
are the ones defined by Mertens (1989) and Hillas (1990). 

In this paper the general framework is introduced first. Then some of the conditions 
proposed by Kohlberg and Mertens are reviewed. Finally some of the results concerning 
the stability concepts of Mertens and (especially) Hillas are given. 

2. The name of the game 

Each of the players has a finite number of choices in the particular type of non-cooperative 
game considered in this paper. Further, the players are supposed to make their choices 
simultaneously. (To put it a little differently, no player has any information concerning 
the choices of the other players when he has to make his own choice.) After these choices 
are made, each player receives a payoff. The obvious goal of any player of the game is to 
obtain a payoff that is as high as possible. Such a game is usually called a one-shot game, 
or normal form game. 

Example 1. If there are two players involved in the game, we can represent a normal 
form game by what is called a bimatrix. For example, 

[
(1,2) (0,0)] 

(0,0) (0,0) 

is a 2 X 2-bimatrix game. Player I (the row player) has to choose between the first and the 
second row, player II (the column player) between the first and the second column. The 
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choices of the players determine an entry of the bimatrix. If for instance player I chooses 
his first row and player II chooses the first column, we end up in the entry (1, 2). The 
first number is the payoff to player I, so he gets one guilder. Similarly, player II gets two 
guilders. <l 

In order to give a general definition, let n be a positive natural number. The player 
set {l, ... , n} of an n-person normal form game r (from now on simply called a game) is 
denoted by N. Each player j E N is assumed to have a finite set Ai of (pure) strategies and 
a payoff function Uj: A := IL A; -> JR. Thus, using the shorthand notation u = ( u;)ieN, 
the game can be written as r = (A, u). 

Given a gamer= (A, u), a player, say j E N, can decide to randomize between the choices 
in Ai that are available to him. The game that results when randomization is explicitly 
allowed is called the mixed extension of r. In this paper we will simply identify the game 
r with its mixed extension. 

In the mixed extension each player i E N is assumed to choose a mixed strategy Xi := 
(x;a)aeA, from the set fi.(A;) of probability distributions on Ai. So, the coordinates of 
Xi are not negative and their sum equals one. Given the strategy profile x := (xi)ieN of 
choices of the players, player j calculates his expected payoff as follows. A pure strategy 
profile a= (a;);eN E A is played with probability Ili Xia;· So, player j expects to get a 
payoff equal to Uj(X) := I::aeA n. Xia;Uj(a) when X is played. Clearly, the payoff function 
of this mixed extension is a function from the set AA := fli ti.(A;) of (mixed) strategy 
profiles to JR. 

E:ic;ample 2. A mixed strategy of player I in the bimatrix game of example 1 can be 
writte11 as (p, 1 - p) for 0 ::::; p ::::; l. Playing such a strategy (p, 1 - p) means that the first 
row is chosen with probability p and the second one with probability 1 - p. Pl.wing (1, 0) 
obviously means that the first row is chosen with certainty. <l 

The central issue in this paper is the search for a 'reasonable' solution for each game. 
This means that we need to answer two questions. First of all, what do we mean by a 
solution? Secondly, what do we consider to be a 'reasonable' solution? The first question 
answered in the following definition. We specifically allow sets of st,ategy profiles in the 
solution, because the conditions for 'reasonable' selutions in the next section necessarily 
yield set-valued solutions as we will see in example 6. 

Defluition I. A solution a is a rule that assigns to each game r a collection a(r) of 
(usually closed and non-empty) subsets of the space of strategy profiles of the game r. 
The elements of a(r) are called the so/u,tion set~ of the game r. 

Example 3. The map r that assigns the collection { { x} I x is a strategy profile of r} 
to a g,ame r is a solution by definition. However, this is not a very 'reasonable' one. If we 
look for instance to the game of example 1, it is clear that the strategy pair ((0, 1), (1,0)) 
is not a good deal for player I. If he agrees to play this profile his payoff will be zero, while 
he will get one if he decides to play (1, 0) instead (provided that player II will stick to the 
agreement). <1 

Thus, we need to specify what 'reasonable' means for a solution. And, although this 
question does not seem to pose too much problems, it turns out to be a very difficuJt one 
indeed. In the next section we will give some examples of possible answers to this question. 
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3. Requirements for solutions 

Usually in non-cooperative game theory 'reasonable' is interpreted as what is called 'self­
enforcing'. A set of strategy profiles of a given game is called self-enforcing if no player 
of the game wishes to deviate to a strategy profile outside the set once it has been agreed 
not to play any of the profiles outside this set. Such a condition is obviously necessary 
for a solution set of a non-cooperative game, since the players are not obliged to stick to 
any agreement as we supposed in the model. So, the motivation to do so anyway must 
lie within the agreement itself. The first natural formalization of self-enforcingness is the 
equilibrium concept introduced by Nash in 1952. 

Definition 2. For a gamer= (A, u), let (x / y;) denote the strategy profile where player 
i uses the strategy Yi E .6.(A;) and his opponents use the strategies in x ED.A, For player 
i and a strategy profile x 

is the set of best replies of player i against x. A strategy profile in the set 

is also called a best reply against x. A (Nash) equilibrium is a strategy profile x that is a 
best reply against itself. In other words, x must be an element of /3(x). The associated 
solution assigns to each game r the collection { { x} / x is an equilibrium of r}. 

At first sight, equilibria seem to catch the spirit of self-enforcingness quite nicely. After 
all, each player plays 'as good as he can' (i.e., a best reply) given the strategy choices of 
his opponents in a Nash equilibrium. However, some Nash equilibria are not as convincing 
as we would expect a 'reasonable' solution to be. This will be explained in the next 

Example 4. First note that the strategy pair ((0, 1), (0, 1)) is a Nash equilibrium of the 
bimatrix game in example 1. This is evident, once we realize that any strategy of player I 
(player II) is a best reply against the strategy (0, 1) of player II (player I). 
However, suppose that player II plays a given strategy ( q, 1 - q ). Then the expected payoff 
of player I is q when he plays his first row, while he will get zero when he plays his second 
row. So, playing (1, 0) will always give him at least the payoff he gets when he plays 
(0, 1), the above-mentioned equilibrium strategy. For this reason (0, 1) is called a weakly 
dominated strategy. <I 

For this reason attempts have been made in the past to find methods to eliminate 'bad' 
equilibria like the one in the above example. The idea was to refine the collection of 
equilibria of a game to a smaller set of acceptable equilibria by imposing extra conditions. 
Probably the two most notorious examples of such refinements of the Nash equilibrium 
solution are perfect equilibria defined by Selten (1975) and proper equilibria defined by 
Myerson (1978). 

Traditionally, a definition of a refinement was given, after which one tried to prove that 
it did not suffer from flaws like the one described above. Unfortunately all refinements 
introduced so far have their own specific shortcomings. 

In their seminal paper of 1986, Kohlberg and Mertens broke with this tradition. They 
first composed a list of (initially seven) properties they thought to be essential for any 
reasonable solution. After that they tried to find a solution that satisfies all of their 
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requirements. Although it lies outside the scope of this contribution to describe all seven 
requirements in detail, we will describe some of them. 

EXISTENCE This basic requirement states that every game should have at least one 
solution set. 

ADMISSIBILITY The admissibility of a strategy profile can be seen as a natural strength­
ening of the notion of undominatedness. The requirement states that, given a game, any 
strategy profile in any solution set of the game should be admissible, and in particular not 
use (weakly) dominated strategies. 

Example 4 shows that Nash equilibria are not always admissible since, as is already said, 
weakly dominated strategies are not used in admissible profiles. On the other hand, it is 
a well-known fact that perfect equilibria are admissible (see the Appendix for a precise 
definition of perfect equilibria and admissibility). We will nevertheless show that perfect 
equilibria do not satisfy the next requirement. 

DELETION OF A BAD STRATEGY The philosophy behind this requirement is as follows. 
Suppose that a player of a game has a 'bad' pure strategy, for instance a dominated one. 
Then it is first of all reasonable to suppose that this strategy is not used in any solution 
set of that game, like we did in the previous requirement. One can however take the 
argument even further. Since every opponent of this player know3 that the pure strategy 
under consideration is a bad one, the opponents also know that the player will never use 
his bad strategy. Thus one might argue that any solution set of the game should also be 
a solution set of the game that results when the bad strategy is eliminated from the set of 
pure strategies of the player in question. 

Example 5. We will show that perfect equilibria do not survive the deletion of a weakly 
dominated strategy. Consider the 2 x 3-bimatrix game 

f= [(1,2) 

(1, 1) 

(1,1) 

(0,0) 
(0,1)]. 
(1,0) 

The strategy pair ((0, 1 ), (1, 0, 0)) is perfect since the sequence (( ¼, 1-¼ ), (1- ¾, ¼, j ))kEIN 
is ¾-perfect and converging to ((0, 1), (1, 0, 0)). Now note that the third column is dom­
inated by the first column for player IL The game that results from the deletion of the 
third column is 

r' = [(1, 2) 
(1, 1) 

(1, 1)]. 

(0,0) 
Furthermore, ((0, 1), (1,0)) is the strategy pair in this new game that corresponds to the 
original strategy pair ((0, 1), (1, 0, 0)). However, playing the second row has now become a 
weakly dominated strategy for player I. Hence, the strategy pair cannot be perfect, since a 
perfect equilibrium is admissible, and does therefore not use a weakly dominated strategy. 
<I 

INVARIANCE In general, invariance means that 'similar' games should have the 'same' 
solution sets. In this case, the similarity of two games refers to the deletion of pure 
strategies of one (large) game that are duplicates of other (possibly mixed) strategies. The 
iteration of this deletion process yields a second (smaller) game. The formal connection 
between these two games is given in 

Definition 3. Let r = (A,u) and r' = (B,v) be two games. A map f = (f;);eN from 
b,.B to b,.A is called a reduction map from r' tor if for every player i, 
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(1) f;: ~(B;)---> ~(A;) is linear and onto and 
(2) Vj = Uj O I. 
The two games r and f' are similar in the sense that for every player j and every strategy 
Zj E ~(Bi) of this player in the game f', the strategy /i(zj) gives him the same payoff in 
r as z i does in f', no matter what the other players do ( using the functions /; to transform 
their strategies from one game to the other). The two games do however have different 
strategy spaces. So, now the problem is, what do we mean by the 'same' solution sets? 
This question can be answered as follows. 

Definition 4. A solution a is called invariant if for any pair of games r and f', and 
any reduction map / from f' to r we have 

and 

a(f) = {/(S) I SE a(f')} 

r 1(T) = LJ{s E a(f') I /(S) = T} for all T E a(r). 

These equalities state that every solution set of the larger game f' projects (via /) onto a 
solution set of the smaller game r and, moreover, that every strategy profile of the larger 
game that projects into a solution set T of the smaller game is an element of a solution 
set S of the larger game that projects onto T. 

4. Stable sets 

The main problem of Kohlberg and Mertens was that in 1986 no solution was known that 
satisfied all of their requirements. Thus, the central question in their paper was: 

DOES THERE EXIST A SOLUTION THAT SATISFIES ALL REQUIREMENTS? 

A solution that is designed to satisfy all requirements is usually called a stability concept. 
The solution sets of such a concept are called stable sets. 

Although Kohlberg and Mertens did not manage to find a stability concept that satisfies 
all requirements, at least two observations can be made concerning the way they searched 
for one. First of all they showed that their requirements inevitably led to a set-valued 
solution. 

Example 6. Consider the game r introduced in example 5. Let S be a solution 
set of this game according to some solution a satisfying all requirements. We will show 
that S contains at least two strategy profiles. To this end, note that, by existence and 
admissibility, 

{((1, 0), (1, 0))} 

is the unique solution set off', since playing the first row ( column) is the only undominated 
strategy of player I (player II). Thus, since a satisfies the deletion of a bad strategy by 
assumption, the set S must contain the strategy pair ((1, 0), (1, 0, 0)). However, the same 
line of reasoning applied to the deletion of the ( dominated) second column shows that S 
must also contain ((0, 1), (1, 0, 0)). For this particular reason solutions are allowed to be 
set-valued in this paper. <1 

Secondly, they introduced a specific method to generate stability concepts. Roughly speak­
ing, they constructed for every gamer a neighborhood of 'perturbed games' and then said 
that a set of strategy profiles of r is stable if for any possible perturbation there is at least 
one strategy profile in the set that survives the perturbation. 
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Formally, let r = (A, u) be a game. Let P be a set of 'perturbed games', equiped with 
some metric d. It is assumed that each perturbed game r' E P has a non-empty set E(r') 
of equilibria and that r is an element of P. 

Definition 5. A closed set SC .6.A is called a P-set of the gamer if for any neighbor­
hood V of S there exists a number 8 > 0 such that E(r') n Vis not empty if d(r, r') < 8. 

Remark. The sets satisfying this condition are not themselves called stable since, for 
example, .6.A also satisfies the condition. The sets that will actually be called stable also 
need to be sufficiently small. The selection of sufficiently small P-sets can be done in 
various ways. 

Obviously, the resulting stability concept depends on the choices of the specific set P and 
the metric d. Using a variation on this theme Mertens (1989) was able to construct a 
stability concept that did indeed satisfy all requirements. 

Example 7. In 1990 Hillas also introduced a stability concept. He first identified a 
gamer= (A, u) with its best reply correspondence /3: .6.A-,,,6.A defined by 

/3(x) := Jl/3;(x). 

The set of perturbed games was chosen to be the collection C of all compact- and convex­
valued upper hemicontinuous (uhc) correspondences <p: .6.A-,,.6.A-
It is not difficult to show that /3 is such a correspondence. So, the game r is indeed an 
element of C given the above identification. Further, for a correspondence <p EC, the set 
of fixed points fix(<p) := {x E .6.A Ix E .<p(x)} of <p serves as the set of equilibria of the 
'perturbed game' <p. Tliis is in agreement with tlie identification of r with /3, since fix(/3) 
equ11,ls the set of equilibria of r. 
The metric on C is based on the Hausdorff dist/1,Ilce dH with, for X, Y C .6.A, 

dH(X, Y) := inf{c: > 0 IX C B,(Y) and Y c B,(X)}. 

Then the pointwise Hausdorff metric d on C is defined by 

Now a closed set SC .6.A is called a C-set of the gamer if for any neighborhood V of S 
there exists a number 8 > 0 such that fix(<p) n Vis not empty if d(/3,<p) < 8. Finally, a 
C-set that is minimal (w.r.t. set inclusion) withiil- the collection of C-sets is called stable 
in tlie seµse of Hillas. <1 

Results. Hillas (1990) showed that the solutioµ that assigns to each game fits collection 
r(r) of stable sets in the sense of Hillas satisfies EXISTENCE, ADMISSIBILITY and, moreover 
BACKWARD INDUCTION and CONNECTEDNESS. Later on Hillas and I were able to prove 
that it also satisfies a strong variant of DELETION OF A BAD STRATEGY. 

In my thesis a certain type of stable sets is introduced whose definition stays closer to 
known game theoretic notions while it satisfies the same requirements. Looking back, 
this is not so surprising, since Hillas, Jansen, Potters and I were able to prove that both 
definitions yield the same stability concept. Using this equivalence we also showed each 
stable set the sense of Mertens contains a stable set in the sense of Hillas. 

I also managed to construct a counterexample for the INVARIANCE of this stability concept. 
The example moreover shows that this is not due to Hillas' particular choice C of perturbed 
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games. It is merely caused by the choice of minimal C-sets as final solution sets. The 
following selection method however does yield an invariant solution. 

Let r be a game and let S be a C-set of this game. Let us call S extendable if, for all games 
r' and all reduction maps f from r' tor, the set f- 1(S) is a C-set of r'. 
Now a non-empty and closed set S of strategy profiles of r is called stable if it is extendable, 
connected and consists entirely of perfect equilibria. It can be shown that this solution 
satisfies all requirements of Kohlberg and Mertens. 

5. Appendix 

Definition of admissibility. Let r = (A, u) be a game. A strategy profile z in .6.A 
is called completely mixed if all coordinates Zia are positive. For player i, a strategy Yi 

is an admissible best reply against a strategy profile x if there is a sequence (xk)kElN of 
completely mixed strategy profiles converging to x such that Yi is a best reply against xk 
for all k. 
Now we say that a solution u satisfies admissibility if, for every gamer, every solution set 
S in u(f) and every strategy profile x in S, the strategy Xi is admissible for every player 
!. 

Definition of perfect equilibria. Let T/ > 0 and let x E .6.A be a completely mixed 
strategy profile. Then x is called TJ-perfect if for all players i E N and for all a E Ai we 
have that Xia ::; T/ whenever a is not a best reply against x. 
A strategy profile x E .6.A is called perfect if there exist a sequence (TJk)kEIN of positive real 
numbers converging to zero and a sequence (xk)kEIN of strategy profiles in .6. converging 
to x, such that xk is T/k-perfect for all k. 
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1 Introduction 

In this paper we present a short overview of applications of operations research (OR) in 
the Netherlands over the years 1985-1997. We concentrate on those areas where scientific 
research was the basis for the application. We do not want to report on each individual 
application, instead we focus on some main areas. The selection of applications may be 
somewhat subjective, since the author can not overview every company in the Netherlands. 
The idea is to give an overview about the developments going on. In that sense this paper 
builds on earlier reviews of the use of OR in the Netherlands. 

Several publications document the history of the use of OR in the Netherlands. The first 
ten years (up to 1968) were described in a pocket-book edited by Lombaers et al. [4]. In 
1981 a compilation of articles was published giving an overview of the use of OR in industry, 
transportation, banks and hospitals (ref. (3]). Slightly later, in 1983, a large compilation of 
successes and failures of OR was published [2] to celebrate the first 25 years of the section 
Operations Research of the Dutch Society for Statistics and OR (VVS). The most recent 
publication describing a number of applications of OR in detail is the book by Fortuin et al. 
(l]. We incorporate it here since many of the applications are Dutch. 

To understand the role of OR in practice we first discuss the state of OR groups in 
companies and knowledge centres. This limitation is somewhat unfortunate since OR is 
also applied outside these groups. Yet the identification of an application as belonging to 
operations research is often related to the fact that its originates from an OR group or 
that it is purchased from an OR oriented company. In the following section we discuss the 
information-technological developments which stimulated the use of OR in the last decade. 
Subsequently we discuss a number of areas to which OR has had a substantial contribution. 
We conclude with a general discussion on applications of OR and the opportunities which 
lie ahead. 

2 Operations research groups in the Netherlands 

Operations research groups existed both in companies and knowledge institutes. We will 
briefly discuss each of them. 
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2.1 Companies 

Roughly speaking, operations research groups existed only in large companies or in small 
companies specialized in OR. 

Separate OR groups could be found in large manufacturing companies, like Shell, Hoog­
ovens and Philips, in banks, like ABN-AMRO, ING and RABO, in the post and telecom­
munication company KPN, in the main airline KLM and in the container transhipment 
company ECT. 

Shell had both a research group in their Amsterdam laboratory and a consulting group 
in their Central Office in The Hague. Whereas over the years the latter got a more com­
puter science profile, the first was reduced in size. Philips privitized their OR, logistics and 
statistics department (CQM). Also at the Dutch steelworks Hoogovens the OR group was 
threatened to be dissolved. These developments can be understood from the general busi­
ness climate, in which companies were concentrating on their core business and in which 
staff groups were under pressure. In contrast with the preceding decade in which many blue 
collar workers lost their jobs, it was now the turn of the white collar workers. Concluding we 
can say that the OR groups in most manufacturing companies were under severe pressure. 

OR in the banks survived, although some banks merged. For example Amro merged with 
ABN and the NMB bank was taken over by the ING group. The RABO group still has some 
OR people in their subsidiary Rabofacet. 

At KLM and at the other Dutch airlines operations research was increasingly used in 
many areas, like flight planning, crew rostering, revenue management and aircraft main­
tenance. Not all OR was done in-house, large parts were contracted out to specialized 
companies. At container transhipment company ECT the OR group grew in size, mainly 
because of their move to automated container terminals which required quite sophisticated 
quantitative planning and control methods. The transportation sector thus showed to be a 
healthy area for OR. 

OR did not flourish in the large consulting or software companies, like CMG, BSO-Origin, 
Cap Gemini or KPMG. Although these hired quite some OR graduates, none of these had 
a separate OR group or was developing special OR products. Most of these companies were 
either consulting, body shopping or concentrating on the much larger market of information 
systems. The few OR people in these companies were often acting under the flag of logistic 
consultants. One small logistic consultancy group with a substantial OR content is the 
former Nedlloyd subsidiary Logion, which has recently been taken over by NEI. Another 
recent exception worth mentioning is the Baan Info Systems company. Once her enterprise 
wide information system Triton became very popular, the company realized that providing 
more intelligence in her planning and scheduling modules is attractive. An OR group is 
presently being formed consisting of some recent PhD's in production planning and inventory 
control. 

The few specialized OR companies flourished: we name Ortec Consultants, the Centre 
for Quantitative Methods (CQM), Paragon Decision Technology, Beyers and Partners, Point 
Logic Systems and AKB. The first is the largest specialized OR company in the Netherlands, 
doing applications in many areas, like planning and scheduling in the oil business (SHELL), 
vehicle routing, crew rostering and finance. It grew in these 10 years from 20 to 70 peo­
ple. The CQM group was formerly a Philips department. Although it had a difficult time 
during its privitization it managed to grow afterwords. Many PhDs in OR found a job in 
that company. Some other companies worth mentioning are Paragon Decision technology, 
which developed a Windows-based algebraic modelling system for linear programming (the 
AIMMS package) and AKB which has a long reputation in OR and presently markets a 
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vehicle routing package. Finally, the two smallest companies are the Dutch subsidiary of 
Beyers and Partners, who is specialised in production planning, cutting systems, and mar­
kets an in-house developed LP package (OMP) and Point Logic Systems who specializes in 
marketing optimization. 

The conclusion of this overview is that there is certainly a market for OR. Apart from 
some exceptions this market seems to be best served by specialized companies with OR as 
their core business. These companies are able to grow substantially and are even able to 
compete on the world market with their products. 

2.2 Professional organization 

The Dutch Society for Statistics and Operations Research (VVS) is the professional organ­
isation for operations researchers. The section solely devoted to this area (NGB, formerly 
called SOR) had about 500 members, about half of which were academics. After some in­
crease since 1983, membership stabilized and decreased slightly thereafter. The NGB has 
always been active in promoting applications of OR by stimulating reviews like the one from 
Lombaers et al. (1968) and the one by Tilanus et al. (1983). Several applications are docu­
mented in her journals Statistica Neerlandica and Kwantitatieve Methoden. Issue 48 of the 
latter gives an overview of OR in logistics. 

2.3 Universities and knowledge centres 

Operations research curricula existed at almost all universities and hardly at any other 
higher educational institutes (the so-called HBO's). Only at one HBO institution a busi­
ness oriented mathem<l,tics curriculum was given (bedrijfswiskunde). The OR curricula were 
either in the mathematics department or the economics faculty. In the latter case OR was 
incorporated in the econometrics study and configured under the names 'besliskunde' or 
'bedrijfseconometrie'. In every university there was at least one chair in OR and in some 
two (all technical universities). OR was also done in the management science departments 
and in one mechanical engineering department (TUT). Student numbers were heavily drop­
ping in the mid nineties, even when the economy boomed and many positions were available. 
The national network of operations research (LNMB) offered a quite successul educational 
program. Most research at the universities was concentrated in the so- called "onderzoekss­
cholen". Unfortunately, OR was scattered among many of them: both in mathematical 
schools, like the Stieltjes institute and the MRI, as well in discrete mathematics (EIDMA), 
in economic oriented schools, like CENTER and the Tinbergen Institute and finally in two 
logistic oriented schools, TRAIL and BETA. Primary funding for research from the govern­
ment showed a slow but steady decrease over the decade. Although the national science 
foundation (NWO) saw its budget increased, the overall funding from the government de­
creased. As a result more and more funding was obtained from companies. Pure research 
had to be very good to remain unaffected by these financial pressures. 

Only one knowledge centre did have an OR group. This was the TNO institute for 
defense research (FEL-TNO) in the Hague. Quite some people were active in various areas, 
including search and detection strategies, radar scheduling, military logistics ( distribution 
optimization), spare parts control, as well as civil applications like maintenance optimization. 
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3 Information and computer environment 

Developments in information technology and computer hardware in the last decade were 
very favorable for operations research. The speed of the most popular personal computers, 
introduced in the eighties, rose from 10 Mhz in 1987 to about 166 MHz, with a halving of 
the price. The RAM memory for such a computer increased from 1 to 16 Mb. Workstations 
saw similar increases in speed and performance. These two computer types were especially 
useful for OR and much larger problems could be tackled. Algorithmic research also led to 
faster algorithms. In case of the simplex method for example, speed increases of a factor 100 
were obtained over the decade. 

The whole society also became computer minded and software development became a 
more mature technology. The advantage for OR was that finally a structured environment 
arose, with accurate information which is a must for optimization. It does not make sense 
to put much effort in optimization if the underlying information is not reliable. Software 
development also became more professional. Several tools were developed for prototyping, 
software testing and libraries of reusable programs were marketed. Both the PC and the 
workstation platform allowed for graphical user interfaces, which was an essential element 
of decision support systems. Finally, software platforms became standardized, e.g. the 
Windows environment for the PC, which allowed software vendors to regain their investments 
over many users. 

Other information technological means yielded a wealth of accurate data. Bar code 
readers were helpful in warehouses and retail shops. Electronic payments could well be reg­
istered and serve as input data for optimization. Communication technology also became 
computerized, allowing precise information of telephone traffic. Moreover, these comput­
erized environments often required automatic decision making procedures, e.g. to route 
telephone calls or to schedule and route automatic guided vehicles. Each one required quite 
sophisticated operations research methods. 

4 Applications areas 

A traditional application area of Operations Research is production and logistics. Within 
this area one may distinguish between production planning and scheduling, inventory man­
agement, distribution optimization and vehicle routing. A related but more general problem 
area is timetabling and (crew) rostering. Apart from the manufacturing industry, Opera­
tions Research is increasingly important for the service industry, viz. telecommunication, 
transportation and finance. Closely related is the medical sector in which OR has also played 
a role. We conclude with a discussion on maintenance optimization and reliability. 

4.1 Production planning and scheduling 

Production planning and scheduling has been a popular area in operations research. The 
impact on practice, however, is limited, because the necessary information-technological 
infrastructure and problem structuring is not yet estabilished in many companies. Shell has 
been among the first companies to apply linear programming in its refinery planning and 
scheduling, starting already in the sixties. Since that time quite some research has been 
done. In practice the refinery scheduling was integrated in the overall refinery information 
system, to ensure more up to date information. Several advances were made on nonlinear 
problems, like multi-period blending. 
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In many other companies planning and scheduling was less structured and the extent to 
which OR was used varied from company to company. The popular Manufacturing Resource 
Planning (MRP) systems which were introduced in many companies did not use any OR 
models to support planning or scheduling, despite all the research carried out in this area. 
The couple of applications done by e.g. Beyers and Partners, Ortec Consultants and AKB 
were often developed for a specific company and separate from the MRP packages. Notewor­
thy is the success of Beyers and Partners in a specific subarea, viz. cutting problems for the 
cardboard, plastic, steel and paper industry. Research on production concepts in relation 
with industry was done at the Technical Universities of Eindhoven (Bertrand, Wijngaard 
and van Donselaar) and Twente (Zijm). From the latter a shopfloor scheduling decision 
support system emerged, from which much is to be expected. 

The ultimate goal of the research in this area is to incorporate the OR methods in 
the standard planning and scheduling packages around and in particular in the many MRP 
systems. The move by Baan Info Systems to start an OR group gives rise to high expectations 
in this respect. 

4.2 Distribution: location and network optimization 

A main strategic problem with distribution optimization is the design and analysis of a 
distribution network. The purpose of such a network is to bring the finished goods from 
production plants to customers. The main questions to be answered are: (i) how many 
layers to use, e.g. european, national or regional distribution centres, (ii) where to locate 
these distribution centres and (iii) which customers to supply from which distribution centre. 

These problems are tackled by the location/ allocation models within Operations Re­
search. Apart from some small applications, we like to mention the Strategic Location Al­
location Model (SLAM) which was used by the beer company Heineken in her international 
distribution network and which was developed together with the Erasmus Universities man­
agement science department (Van Nunen). This model was successfully applied in several 
countries. 

4.3 Distribution: vehicle routing 

Vehicle routing has been a successful area for operations research. Already in the early 
eigthies programs were developed with which trucks could be routed more efficiently. Several 
companies in the Netherlands (among which Ortec and AKB) developed such programmes. 
Also at the universities and at the Centre for Mathematics and Computer Science (CWI) re­
search was done in this area (Lenstra, Savelsbergh). Soon the area became more established, 
extending the original routing problem (which was already computationally hard to solve) 
with time windows and other constraints. The success of the packages also depended on a 
good user interface and the upcoming of more graphical oriented computer systems (PC's and 
workstations) was welcomed. There was some variety between companies: routing gasoline 
trucks appeared to be much more difficult (because of the need for special loading algorithms) 
than trucks delivering packages. Also the average number of drops per trip appeared to be 
a distinguishing variable. Nowadays there is a trend to extend the routing systems with a 
dynamic allocation of the trips (real-time scheduling) and to take more detailed information 
on traffic (like traffic congestion) into account. A drawback to be mentioned was that each 
implementation required quite dedicated software and that the savings per implementation 
were interesting, but not overwhelming. 
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4.4 Inventory management 

The famous Economic Order Quantity (EOQ) formula for the optimum order size is one of 
the first known applications of Operations Research. It was already developed in the first 
decade of this century. Its application in practice only came off the ground in the seventies 
when computerized inventory management systems were introduced. Before that time people 
had problems with the square root and a story even goes that one administration office, which 
had to implement the EOQ formula, found it that difficult that they changed the square 
root by a division through 2, since that gave the same outcomes in case the number to be 
dealt with is 4. Today, the EOQ formula is presumably the most applied and misapplied 
formula of OR and it can be found in almost every inventory management system. Other 
simple results of OR, like the expression for the safety stock in case of normally distributed 
leadtime demands, are also widely applied. The more sophisticated optimization behind 
many inventory models, however, has hardly found application. This may be due to the 
complexity of the optimization, to the fact that it is not that clear when which optimization 
model should be used or finally to a lack of theory on how all kind of practical issues should 
be incorporated. Cases done by the Technical University of Eindhoven (De Kok), however, 
show that substantial savings may be obtained in this area. A recent decision support system 
developed at the CERN's warehouse is promising. Finally, we would like to mention that 
several OR techniques are used in warehouse management systems for e.g. order picking. 

4.5 Timetabling, crew rostering and scheduling 

Another area in which OR managed to penetrate was timetabling and personnel rostering. 
The best known example is the timetable of the Dutch Railways. In the early eighties several 
attempts had been made to generate this timetable by a computer, but only in the nineties 
initial successes were booked. The first success in the OR/computer science area was a 
program, called Reisplanner, with which for couple of stations the fastest route could be 
determined. This program was successfully marketed to the general public. Pioneering in 
in the Netherlands was the CWI (Schrijver) who tackled the problem of determining which 
trains should travel when. Later on, the Erasmus University (Zwaneveld, Kroon), together 
with Railned tackled the problem of the train routing at stations (which route to tack to 
enter/leave a station, which platform to take) in a deterministic way. Stochastic delays were 
tackled by University of Amsterdam (Van Dijk). This work is not yet finished, it is however, 
that promising that decision support systems are being built. Next to this example major 
work was done on crew rostering and manpower scheduling, especially with the airlines. A 
last interesting example is the roster of the soccer competition which was made using OR 
methods (Schreuder and Telgen). 

4.6 Telecommunication and queueing 

With the privitization of the Dutch telecom market several new developments were initiated. 
As a result their was much interest in telecom network design, both in a deterministic as well 
as in stochastic way. Queueing research peaked in the eighties, but most research was more 
methodologically rather than application oriented. Nevertheless, applications were done in 
many projects, ranging from manpower planning in call centres to queueing disciplines in 
postal offices (Van Dijk). The techniques needed and the projects appeared to be much more 
mature compared to some time ago. 
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4.7 Finance 

Also in the finance area operations research had its impact. Its role however, was often hid­
den. For example, one can use quadratic programming to determine the optimal investment 
portfolio. A major development in this decade was the so-called asset-liability management, 
in which assets of pension funds and insurance companies were matched with their liabilities 
as to determine a good investment portfolio. In the mid nineties most pension funds were 
applying such studies which made use of econometric analysis of the economy, simulation, 
scenarios and heuristic optimization. In another branch of finance like option pricing, much 
applied probability theory was used. Major developments came from within those within the 
finance community with a strong mathematical/econometric background. The OR commu­
nity only lately realized the importance of this area in which their are also major challanges 
for optimization. Finally, a pure OR project worth mentioning in banks is cash management. 
Stimulated by a wealth of data from automated teller machines, projects were carried out 
to determine optimal cash inventories and to reduce money transportation costs and risks. 

4.8 Medical decision making 

This appeared to be a fruitful area for application of OR. Health budgets were under high 
pressure because of many reasons. In several areas decisions had to be made on the use of 
new and expensive technology (technology assessment) and on introducing wide scale pre­
ventive programs (screening). This all called for a well structured and well-founded decision 
making. Here practical statistics went hand-in-hand with quantitative models to support 
decision making. Several groups flourished at the universities, especially at the Erasmus 
University (Habbema). Areas investigated concerned screening of cervical cancer, breath 
cancer, prostate cancer as well as clinical decision making (on e.g. replacement of heart 
valves) and infectuous desease control. Outcomes of the research directly influenced public 
decision making. The AIDS epidemic proved to be a very interesting area for quantitative 
researchers. 

4.9 Maintenance and reliability 

Even in maintenance and reliability there was a significant contribution of OR. Shell (Schor­
nagel, Van der Heijden and Groenendijk) did for many years research on methods to predict 
system availability from reliability data on individual units, to be used in their evaluation 
of potential designs of production systems. Several new stochastic methods were invented 
and some PhD's were obtained in this area. OR was also used to optimize maintenance 
during operations and several decision support systems found their way in this technique­
oriented discipline, both for mechanical equipment as well as for civil structures like highways 
(Dekker, Vanneste, Van Rijn and Van Harten). 

5 General discussion 

OR was founded in World War II with a problem oriented perspective. Its theoretical foun­
dations were laid in the fifties. The most important model, the linear programming model 
and the simplex algorithm were invented in 1947-49 and further developed in the 50ies. 
First OR courses at universities were given in the sixties. At the same time large companies 
started OR groups. The whole field entailed big promises. Some people envisaged that all 
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decision making in a factory would one day be done using a big company model. 

A disappointment came in the seventies, although at that time OR reached a peak at 
the universities, where at each university one or two professors in OR were appointed. OR 
could not solve all problems. It took much time to do the studies, data was often lacking, 
reality was more complex than the models could handle and it was difficult to convince the 
management of the outcomes of the studies. Finally, there were little tools to get the results 
from OR implemented in practice. Articles appeared with titles like: the future of OR is 
passed (Ackoff [5]). At the same time alternative approaches came forward, like expert or 
knowledge based systems. From hindsight one may conclude that society was not yet ripe 
for a widescale application of OR, nor was its theory enough developed to tackle the often 
complex practical problems. The whole technological infrastructure which we have now, had 
to be created. 

In the mid eighties there came again an upward trend. The technological push assisted 
OR in many ways as is argued in section 3. The high hopes from the sixties, however, 
remained lost, but OR managed to have an impact on society and optimism was regained 
(Rinnooy Kan [6]). 

Although real life problems are often large and complex with a lot of uncertainty, we 
should strive to formulate general problem definitions like the LP problem, the G/G/1 
queueing problem and the location problem. These can then be studied in isolation and 
after some time major results can be obtained. 

We should take time in this respect. Once we make some progress both in algorithmic 
aspects and in problem specific modelling and analysis we can also expect for many more 
applications, as the problems driven by technology and automation will ask for them. 
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1 Introduction 

Environmental issues have come to play an important role in the decision making processes 
of agriculture, trade and industry. The obligation to reduce waste and to control emissions 
affects decisions on e.g. production planning, logistics, and inventory control. On the other 
hand, the international nature and the complexity of many environmental problems make it 
virtually impossible to base policy decisions on intuition and simple methods. 

These developments have stimulated us to investigate the possibilities of incorporating en­
vironmental issues in 'traditional' Operational Research (OR) applications, and the possi­
bilities of using OR models and techniques in Environmental Management (EM) problems. 
Two research questions structure this exploration of the integration of Operational Research 
and Environmental Management: 

1. How can Operational Research models and methods be adapted to include environ­
mental issues? 

2. To which degree can Operational Research models and methods be used to solve envi-
ronmental problems? 

Section 2 describes the framework we developed to show how environmental issues and 
economic decision making interact in two ways. Section 3 gives two examples of including 
environmental issues in OR applications, whereas Section 4 gives two examples of using OR 
models to solve environmental problems. Section 5 concludes with a summary of the main 
results. 

2 Framework 

We describe the development of a framework to show how environmental issues and economic 
processes can interact in two ways: 

•This is a summary of a PhD thesis with the same title 
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1. Impact of environmental issv.es on the sv.pply chain: Environmental issues play a role 
in the routine activities of firms. Decisions on e.g. production planning, logistics, and 
inventory control will change due to legal requirements or consumer pressures to reduce 
waste and emissions. Therefore, there is a need to adapt OR tools such as production 
planning algorithms, location models and routing heuristics in order to deal adequately 
with a new situation requiring 'green supply chain modelling'. 

2. Impact of economic activities on the environmental chain: The amount of waste and 
the level of emissions caused by the supply chain can result in a number of serious 
environmental pollution problems, such as global warming and acid rain. Frequently, 
these environmental problems are international and complex. The interaction between 
OR and EM can result in a clear formulation of the headlines of these problems and 
in new insights in the impacts of alternative policy measures. 

Figure 1 shows the degrees of the integration of OR and EM with respect to supply chain 
modelling and environmental chain modelling. 
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The sv.pply chain comprises the extraction of raw materials, production, distribution, use 
of goods and waste collection. In general, changes within the supply chain are necessary 
to reduce the amount of waste and emissions, and the use of non-renewable resources. We 
structure the discussion around a hypothetical shift from an end-of-pipe approach (waste 
management), via recovery management (e.g. recycling) towards a source-oriented approach 
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of pollution prevention: 

l. waste management 
In the first degree of integration, environmental issues ( waste and emissions) influence 
only the final processes in the supply chain, i.e. distribution, product use and waste 
disposal. Economic activities that have to be developed or adapted are e.g. the 
distribution of hazardous waste and the selection of appropriate locations for disposal 
sites and incinerators. Emissions to air and water are in most cases reduced through 
end-of-pipe techniques. 

2. recovery management 
On the intermediate level of integration, production is also subject to change because 
of environmental issues. Recovery management aims at postponing the generation of 
waste and lengthening the life time of products by means of recycling and reuse. This 
requires manufacturers to feel responsible for their products after consumer use and 
to consider ways to increase the use of recycled materials. It requires changes in both 
process and product design. 

3. preventive management 
Prevention is the key-issue in the final stage of integration. The objective of pollu­
tion prevention is to avoid the use of materials whose acquisition and transformation 
are environmentally damaging. Environmental burdens associated with a product or 
process have to be quantified. Evaluation studies of this assessment are in general 
complex and expensive. 

In the environmental chain, emissions and waste are transported and transformed and result 
in water, air, and soil pollution with damaging effects to the environment. We structure 
the discussion around a hypothetical shift from single pollutant/single effect abatement 
policies, via a regional orientation towards a global, integral approach that can cope with 
a.o. multipollutant transboundary problems: 

l. local orientation 
At this level, local problems (e.g. soil pollution, smog) can be solved by local solutions 
(end-of-pipe technologies). Measures to abate emissions reduce environmental effects 
at the end of pipe without influencing economic activities (flue gas desulfurization, low 
NOx burners). 

2. regional orientation 
Emissions and waste disposal cause effects on ecosystems and human health. These 
environmental effects depend largely on the geographic distribution and movement of 
damaging components. Therefore, environmental policy evolves towards an approach 
that can cope with the effects of emissions on all components of the environment (soil, 
water and air). 

3. global orientation 
General indicators of the effects on ecosystems and human beings are developed, rather 
than focusing on effects of a single pollutant on a single species. An example is the 
concept of critical loads in acidification policy, i.e. the highest deposition of an acidify­
ing compound that will not lead to long-term harmful effects. The intention of policy 
makers at this level is to use an integrated approach for global problems. 
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3 Integration of Environmental Management in Oper­
ational Research 

Incorporating environmental issues in OR models can vary from just changing one parameter 
to complete new problem formulations. Two examples are given to show why incorporating 
environmental issues (and knowledge from Environmental Management) enriches the working 
area of Operational Research. The first example deals with the distribution and disposal of 
waste as an illustrative example of waste management. The second example deals with the 
environmental impacts of raw materials in product blending, as an illustrative example of 
preventive management. 

Example 1 describes an extension of the classical location problem {Brandeau and Chiu, 
1989). The location problem deals with the design of an 'optimal' distribution structure of 
plants, based on a trade-off between fixed costs of plants and variable costs of the trans­
portation of products between plants and clients. Environmental issues play a role if waste, 
generated during production, has to be disposed of at waste disposal units. This situation 
occurs for example in agriculture (transportation of manure), and in nuclear power stations 
(transportation of nuclear waste). The question is then how to design an efficient distri­
bution structure which simultaneously takes into account the location of plants and waste 
disposal units {WDUs) (see Figure 2). 

Transport of products Transport of waste 

X 

locations for plants locations for WDUs 

customers 

Figure 2: Product and waste flows 

This problem has a very close relation to the traditional location models. Therefore, classical 
solution approaches such as linear programming round-off heuristics, lagrangean relaxations 
and greedy-like heuristics perform rather well. However, results indicate that problem­
specific solution approaches require less computation time or give better bounds. 

Example 2 describes an extension of the classical blending problem (Winston, 1991). The 
blending problem concerns the composition of a raw materials blend such that the costs of 
the raw materials are minimal and the blend satisfies all quality conditions of the product. 
Apart from having a good-quality product, it is also important to sell an environmentally 
friendly product. The environmental quality of e.g. margarine depends on the environmental 
quality of the raw materials, i.e. the growing of the crops, the production of crude oil, refining 
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and processing of the oils and transportation (see Figure 3). Life cycle analysis is used as a 
method to identify the environmental burden of these processes (SETAC, 1993). To weigh the 
environmental quality of the raw materials against the costs of raw materials, multiple criteria 
analysis is used (Zahedi, 1986). The environmental index is a one-dimensional parameter, 
that can be used to find the optimal blend of an environmentally friendly product using 
single-objective or multi-objective linear programming. 

Soy bean oil Maize germ oil Palm oil 

Agriculture 

Transportation 
~-.L--~ 

Oil production 

Transportation 
~-~-~ 

Oil refinery 

Figure 3: Relevant processes for the environmental quality of margarine 

The outcomes of the study show that when sufficient reliable data are available, the method is 
capable of ranking different alternatives on their environmental performance. The obtained 
environmental index is rather robust for the opinions of decision makers. Summarizing, 
this methodology study is a first step towards using environmental information in product 
development. 

4 Integration of Operational Research in Environmen­
tal Management 

We present two examples that show why the knowledge of OR will be useful in environmental 
problem solving. Example 3 deals with the Dutch manure problem which is a local problem. 
Example 4 deals with environmental policy making for the recycling of European paper as 
an example of a regional approach to environmental problems. 

Example 3 describes the mineral excess problem in the Netherlands. After World War 
II the agricultural sector in the Netherlands experienced an explosive growth. Especially 
intensive livestock has increased enormously ( e.g. the number of pigs increased from almost 
2 million in 1950 to 15 million in 1993). This growth, together with specialisation and excess 
minerals in fodder, led to excess minerals in soil, water and air, leading to eutrophication 
and acidification. A local approach towards this problem consists of fodder adjustments, 
emission-poor stables, covered storage, and application measures. Beforehand, it is hard to 
tell which combination of measures is the most effective and efficient, due to the complexity 
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of the problem (see Figure 4). 
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Figure 4: Abatement measures in the mineral cycle 

Operational Research can play a role both in structuring the problem and determine strate­
gies for various environmental standards. In this example, linear programming is used to 
find suitable measures for the different parts of the Netherlands. 

In Example 4 we discuss the issue of paper recycling in Europe. Recycling of waste paper 
will reduce the environmental impacts of the pulp and paper industry. Is maximal paper 
recycling the best policy (from an environmental point of view and from an economic point 
of view) or should other possibilities such as waste paper incineration for energy recovery 
be considered? (see Figure 5). To explore this question, we use a combination of life cycle 
analysis and optimization. A linear network flow model helps to find answers to questions 
such as: what is the optimal collection rate of waste paper, and what is the optimal share of 
recycled pulp in paper furnish such that total environmental impact of the paper and pulp 
industry in Europe is minimized. This is an example of the use of OR models in a regional 
orientation. 

266 



IMPORT 

VIRGIN PULP 
PRODUCTION 

sulphate bl. 

sulphate unbl. 

sulphite bl. 

TMPbl. 

PRODUCTION 

recycled pulp 

IMPORT 

PAPER 
CONSUMPTION 

long~term 
consumption 

sewage 
losses 

collection 
losses 

PAPER RECYCLING WASTEPAPER 
-------------------< COLLECTION 

INCINERATION/STORAGE 

Figure 5: Network flows in the paper recycling problem 

This example illustrates that dealing with regional problems requires an integrated modelling 
approach using optimization models, economic models, and physical models. Operational 
Research can be effective for the policy debate on the reduction of environmental pollution. 
A multiobjective approach accomodates dealing with different opinions. 

5 Conclusions 

The growing number of examples of dealing with environmental issues within the field of 
Operational Research can be classified using a framework consisting of two approaches: the 
supply chain approach and the environmental chain approach. In both approaches there is 
a shift from local, corrective, end-of-pipe policies to global, preventive policies. 

In general, we conclude that the first phase in the shift from corrective policy towards 
preventive policy generates a rather straightforward use of all kinds of Operational Research 
applications. The intermediate phase in this shift describes more complicated and adapted 
models (and methods). The final stage in the shift will probably be reached in the near 
future. Here, OR has to integrate with related sciences to be able to use tools like life cycle 
analysis, economic input-output modelling and system analysis. 
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Abstract 

This paper is a summary of my PhD-thesis Investment evaluation with respect to com­
mercial uncertainty, prepared at the University of Groningen, Department of Econo­
metrics, and defended on January 26, 1996 (Broens, 1995). 

Investment planning 

In the investment planning of a company, the following actions are comprehended: 

a. the search for the desirability of extensions in the technical equipment of the company, 
like capacity expansion; 

b. in case changes are desired, the generation of useful alternatives as to the future layout 
of the technical equipment such that commercial objectives will be better served; 

c. the evaluation of the alternatives and the selection of the best option. 

Changes in the technical equipment are supposed to be indicated if it is expected that in 
future the production planning will not be able to fulfill all requirements following from the 
then existing commercial contracts. 

Robustness and flexibility 

While preparing for an uncertain future, a planner can choose two strategic directions: 
robustness and flexibility, conform the two survival strategies under uncertainty presented 
by the classical fable about the oak and the reed (La Fontaine, 1985). In analogy, we 
distinguish two investment planning archetypes. The flexible planning strategy implies late 
and cautious commitments, making no firm plans until all necessary information is available 
and changing its direction as often as it seems right. In a robust planning strategy, the 
planner commits him- or herself completely to an investment plan, making sure that the 
plan covers enough future scenarios to be acceptable, so that the plan can be executed as 
was decided from the start. The difference between the two planning archetypes resembles 
the distinction, made in stochastic programming theory, between here-and-now and wait­
and-see decision problems. In the case of a robust planning strategy, there is no difference 
between the primal commitments and the final plan describing the desired end-state. In 
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addition, the robustness of an investment plan is defined as the degree to which it covers the 
future commercial scenarios which are considered as realistic. 

In our view, flexibility is primarily a property of the planning process, whereas a robust 
planning is robust merely because its plans are robust. Of course, real planning processes 
make the best of both worlds. A purely robust planning might lead to unacceptable over­
capacity. A flexible planning promises to deliver tailor-made solutions but it may lead to 
an unacceptable degree of 'planning nervousness' as a result of constantly changing insights. 
And what is more, long investment lead times and political involvements often force the 
planner to early commitments. Though in some cases flexibility of the planning method 
might lessen the need for robustness of the plan, in most situations a certain robustness 
of the plan is well-grounded. In a sense, robustness and flexibility are complementary: one 
should have the planning as flexible as possible, but, once commitments are made, one should 
make them as robust as necessary. 

The abovementioned definitions of flexibility and robustness are not indisputable. The 
'robustness indicator' developed by Rosenhead (1989), according to the above definitions, 
expresses an aspect of planning flexibility. On the other hand, for instance the 'flexibility 
index' developed by Swaney and Grossmann (1985), describes the robustness of a given 
design. 

Worst case approaches go a long way in the right direction, except for the 'minimax 
regret' approach, in which to our opinion the 'ex post optimal profit' plays too heavy a 
role. All worst case or minimax approaches pursue 'satisfactory results' under all possible 
futures. In our opinion this is a rather limited tool in long term planning. First of all, 
too much attention is given to the so called 'worst case' scenario, and all other information 
about future uncertainties is spoilt. Now it may be true that the planner has at his disposal 
a kernel of scenarios which he has to tackle at all cost. For these scenarios a worst case 
approach is appropriate. But mostly there is a large grey field of futures which are not very 
probable. That is, a planner would like to tackle these scenarios as well, but not at all cost. 
Cost and robustness criteria have to be balanced. 

Investment objectives 

Robustness can be defined as the insensitivity of conclusions to deviations from assumptions. 
Commercial robustness of investment plans can be defined as the ability to meet many 
different (relevant) commercial futures. There are no reported examples of the explicit use 
of commercial robustness measures in investment planning procedures. Based on some polls 
among large English companies in the eighties, refering to their investment planning, Pike 
( 1982) reports the use of financial variables like: 

- net present value, 

- internal rate of return, 

- payback period 

or 'risk appraisal techniques' like: 

- shortening the payback period, 

- raising the required rate of return, 

- sensitivity analysis, 
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- 'probability analysis' 

Although in the first part of the eighties, trends went towards more 'sophisticated' techniques 
like stochastic risk calculations, later trends showed a tendency towards scenario-wise analy­
sis. Many respondents found risk techniques too much demanding in the sense of information 
and time, and too little rewarding in the sense of reliable results. 

In management science theory, some examples can be found of robustness measures 
applied to planning problems. In fact, in stochastic programming each decision model aims 
at robustness. In these models it is avoided to give uncertain parameters one specific value, so 
that the optimal solutions do not depend on the choice of the specific parameter value. Some 
authors identify the traditional two-stage recourse approach in general with the name robust 
optimization. In a stricter sense, robust stochastic programming models are characterized 
by the property that only partial information on the probability distribution or the risk 
assessment is needed. Sengupta (1991) names mean-variance analysis, well-known from 
portfolio analysis, as a way to generate robust decisions. A nice example of this interpretation 
can be found in Paraskevopoulos (1991). In the same sense, Sengupta argues that the use 
of stochastic dominance leads to robustness: the best choice according to this criterion is 
optimal for a large class of utility functions. In a more direct sense, the minimax approach 
of stochastic programming, see Zackova (1966) or Klein Haneveld (1986), can be called 
robust, since it bases its definition of optimality upon the worst case in the large class of 
all distributions compatible with the partial information on the distribution. A worst-case 
approach for decision problems under uncertainty based on a predefined set of parameter 
values rather than distribution functions, leads to well-known problems like maximin utility, 
minimax loss or minimax regret optimizations, see Sengupta (1991). 

Kouvelis et al. (1992) study robust optimization of production facility layout planning. 
They use a variation of the minimax (relative) regret criterion. They relate the robustness 
of a facility layout decision to the resulting material handling cost, which is a direct function 
of the future facility layout and the uncertain future commercial circumstances. The regret 
under a certain plan and commercial future, is defined as the material handling cost minus 
the minimal material handling cost that could have been realized, would the commercial 
scenario have been known beforehand. Kouvelis et al. call a layout alternative robust if, 
under all possible scenarios, the regret is less than a prespecified percentage of the 'complete 
information' optimum. 

Rosenhead (1989) directly addresses the investment problem under uncertainty. He par­
ticularly distinguishes between initial commitments and the final technical equipment con­
figuration to arrive at. The final configuration, called the 'investment plan', depends both 
on the initial commitments and on later commitments. Rosenhead defines the robustness of 
any initial commitment to be the number of 'acceptable' investment plans with which it is 
compatible, expressed as the ratio of the total number of acceptable plans. Occasionally this 
robustness is split out for several future scenarios. Rosenhead, contrary to our clear distinc­
tion between robustness and flexibility, interpretes robustness as 'a particular perspective on 
flexibility'. 

Many of robust optimisation approaches, like the mean-variance optimization, try to 
diminish the sensitivity of the optimum of a certain primary goal, like future profit, for 
variations in the uncertain parameters. In case of high uncertainty however there is no need 
for a robust optimum, but for optimal robustness. That is, we are interested in the use of 
robustness measures as investment criteria. Worst case approaches go a long way in the right 
direction, but they pursue satisfactory results under all possible futures. This is a rather 
limited tool in long term planning. A heavy weight is put on the worst case scenario, all 
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other information about future uncertainties is spoilt. It may be that a planner has at his 
disposal a kernel of scenarios to be tackled all cost, justifying a worst case approach. But 
mostly there is a grey area of future scenarios which the planner likes to meet, but not at 
all cost. Costs and robustness criteria have to be balanced. 

Robustness and risk 

Closely related to the concept of robustness is the concept of risk. It measures the expected 
loss due to undesirable outcomes. In terms of the investment planning problem, risk is 
the expected value of the loss due to the occurence of an infeasible commercial scenario. 
In general, the larger the robustness, the smaller the risk. Contrary to robustness, risk 
addresses the possibility of an undesirable future. It depends on the investment plan, the 
uncertain commercial future, and also on the loss connected to undesirable outcomes. Since 
risk depends also on the loss function, it is essentially different from robustness. The two 
types of measures are complementary: both serve to describe the value of a given investment 
plan, represented by its commercial scope, with respect to the uncertain commercial future. 

The commercial scope 

Let the future short term planning problem, which is to be facilitated by the investments 
under study, be given by linear restrictions on the production decision variables y, which 
are a function of the uncertain commercial future, described by the vector s, and of the 
investment plan, described by the vector x: 

Find a y E IRn such that Ky:::; Ls+ Mx 

where: y E IRn is the vector of production decision variables, 
s E !Rn, is a vector representing the commercial scenario, 
x E JRn• is a vector of investment decision variables 

(1) 

The matrices K, Land M have row dimension m, with n < m, n, « m and nx « m. It 
is assumed that the vector s of commercial variables is known when the production plan y 
has to be made. On the other hand, in the investment problem, where the decision on the 
investment vector x is at stake, the value of s is uncertain. 

An investment plan x is robust if it enables a feasible short term planning under 'enough' 
'realistic' commercial future scenarios. To formalise this, we define the commercial scope 
S(x) as the set of scenarios s which, together with investment alternative x, yield a feasible 
production planning problem. 

For a given vector x of investment decisions the set of scenarios defined by 

S(x):={sEIRn'l3yEIRn Ky::,;Ls+Mx} (2) 

is called the commercial scope of the investment x. 

Using Farkas's lemma it can be shown (Broens, 1995; Broens and Klein Haneveld, 1996) 
that for linear production planning restrictions, the set S(x) is a polyhedron described by a 
finite number of induced linear constraints on s: 

S(x) = {s E IRn, I TI(Ls + Mx) 2: O} 
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for some finite matrix IT with the property ITK = 0. More general, any closed convex set 
can be described by a number of such linear constraints, although in general this number is 
not finite. 

Given x and s, the production planning problem is feasible ifs E S(x). Commercial sce­
narios are called feasible under x if they are in S(x). The commercial scope represents the 
technical capabilities of the physical system, in terms of commercial variables. Any robust­
ness measure is the result of a confrontation of the uncertainty of the commercial variables s 

with the commercial scope of the investment decision. Since the scope is multidimensional, 
in general different robustness measures can be applied beside each other. 

Measuring feasibility of a scenario 

It is rather unusual to consider feasibility as a property of model parameters rather than of 
a decision. It may seem unwise to measure feasibility of a problem by varying its parameters 
rather than its decision variables, but in long term planning this may be the only thing to 
do: if the future turns out to be infeasible, building new capacity on the spot is impossible, 
the only alternative is to allow for stockouts. 

It is easily tested whether a given scenario sis feasible or not under x. To measure its 
degree of feasibility, one could study how far it may change into a specific fixed direction d 
without losing feasibility. The distance of scenario s to the boundary of the scope S(x) in 
the direction d is referred to as the directional scope of x at s in the direction of d, denoted 
as Sd(x; s, d): 

supaEIR {a Is+ ad E S(x)} = 
SUPyEIR", oEIR {a I Ky - aLd:::; Ls+ Mx} 
inf~Er{1r(Ls+Mx)l1rK=0, 1rLd=-l, 1r2':0} 

(3) 

Apart from degenerate cases, the boundary point s = s + a 0 d lies on exactly one facet of 
S(x). It is easily proved that the optimal value a 0 of (3) defines the boundary points+ ad 
of the scope, whereas the optimal solution 1r0 of the dual problem gives the nonredundant 
induced constraint -1r 0 Ls :::; 1r0 M x defines a facet of the scope. 

Such directional searches are applied in practice, when an investment planner, given a 
plan x and some scenarios, may ask, how many contracts of a certain type could be attracted 
in addition to s. In linear programming theory these line searches are a proved technique 
to identify nonredundancy among a number of linear inequalities (Kuhn, 1956; Telgen et al, 
1983; Boender et al, 1991). 

Global measures 

To judge an investment plan on its robustness, one could formulate a number of interesting 
scenarios, and demand that they are all feasible. One step beyond is made in an interesting 
study by Swaney and Grossmann (1985). They define two vectors of 'expected positive' and 
'negative deviations', Ask and !:ism respectively. They furthermore define a block formed 
polyhedron T(a) as 

T(a) := {s Is - a· !:ism:::; s:::; s0 - a· Ask} 

Now they define a robustness index (they say 'flexibility index') F(x) as the largest value of 
a such that this block is completely inside S(x), in other words as the optimal value of: 

sup { a I T(a) ~ S(x)} 
o~O 
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Now call the vertices of the blockformed polyhedron T(l) 

j = 1, ... , J = 2n, 

Since S(x) is convex, F(x) can be found as the optimal value to: 

that is, as the minimum of a set of directional scopes. The index j for which the minimum 
is attained is a relatively risky direction. Swaney and Grossmann (1985), and Pistikopoulos 
and Grossmann (1989), use this index as an overall measure of investment robustness, to be 
balanced with investment cost. 

A more natural way to quantify uncertainty with respect to the commercial scenario s of 
a future year is to assume that it is an unknown realization of a random vector s(w), of which 
one is willing to specify a probability distribution. By computing expected values a global 
assessment of the adequacy of the scope is achieved, especially regarding the commercial 
uncertainty which is explicitly incorporated. 

As a global measure of the robustness of the investment alternative x serves the reliability 
of x, defined as the probability that the realization of s(w) will be feasible: 

Pr{s(w) E S(x)} = E(f1(s(w),x)) 
. { 1 ifs E S(x) 

w1thfi(s,x)= 0 t" . o 11erw1se 
(4) 

This robustness measure is also known as customer reliability or (expected) service level. 
In practical situations, one may not have a complete list of the induced constraints 

on s determining S(x), but only a subset of induced constraints. For any such subset 
Jc;;;; {l, ... , I}, the probability that these constraints are met, 

is an upperbound on the reliability. This holds a forteriori for each constraint separately. 
Additionally, more detailed information about the scope is given by expected directional 

scopes. The expected distance that separates a feasible s(w) from infeasibility in a certain 
direction gives a clear view of the scope for future marketing policy and of the ability 
to absorb unexpected developments that are not incorporated in the specified probability 
distribution. The expected directional scope under x in the direction d is given by: 

E{Sd(x; s(w), d) I s(w) E S(x)} = Eh(s(w), x; d)/ E(f1(s(w), x)) 

"th f ( ·d) ·= { Sd(x;s,d) ifs E S(x) 
wi 2 8 ' x, · 0 ifs ~ S(x) 

(5) 

Conclusion 

If uncertainty about essential data increases, the uncertainty more and more grows to be 
a decision criterion itself. Under high uncertainty, decision-makers do not aim at optimal 
profits, but instead will pursue a guarantee for 'doing well enough' in most or all possible 
cases. In that case, criteria like robustness, risk and flexibility get predominant. They should 
be weighed against each other, and the expected investment costs. 
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In particular the robustness criterion is only little applied. The scope approach forgets 
about profit for a while, but instead defines 'doing well enough' simply by feasibility of some 
restrictions. And these restrictions are subsequently projected on the space of uncertain 
parameters. In this space, the robustness discussion can be featured more directly than in 
the space of traditional planning criteria like profit or net present value, in terms of what 
really should be discussed: the assumptions concerning the commercial uncertainty. 

Commercial data are more than only an expression of expectations with respect to a 
completely exogenous environment. In most situations, the company itself has some influence 
on this environment. Marketing plans tend to colour the commercial data, as they are 
handed over to the investment planners. The interaction between plans and uncertainty is 
often complex and politically loaded. If the investment planners communicate back their 
knowledge of the commercial scope, which they developed as a result of the analysis of 
the commercial data, this gives the marketeers the opportunity to judge the investment 
alternatives with an eye on their future plans. Furthermore, especially the directional scope 
gives information about 'weak' and 'strong spots' in the commercial environment. This can 
give rise to a more differentiated information gathering or to preventive commercial actions. 
Thus, the commercial scope is a means for the communication between the investment 
planning and marketing departments. It is especially suited to feedback essential information 
to the marketing departments. 

Experiments (Broens and Klein Haneveld, 1996) showed that particularly the induced 
constraints are very useful to describe the facets of the scope. In this way a very direct and 
complete description of all robustness aspects could be achieved. If the number of constraints 
or production decision variables is large, the commercial scope can still be usefully analysed 
using induced constraints that follow from a heuristic boundary search: the complexity of 
the scope does not seem to increase rapidly in these dimensions. However, if the number 
of uncertain variables increases, it gets increasingly difficult to perform a broad analysis, 
extensively describing all aspects of the scope. More efforts are needed and more data 
are generated, which are increasingly less surveyable. For greater numbers of uncertain 
variables, one should to concentrate on either a smaller number of 'key uncertainties', or 
a smaller number of global scope measures like risk, reliability and perhaps the directional 
scope in one or two important directions. 
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Abstract 

We consider a robotic flowshop model in which a single robot is responsible for the 
transportation of parts between machines and the amount of time that a part spends 
on a machine must be comprised in some predefined interval. The objective is to find 
a feasible schedule with minimal cycle time. Many researchers have proposed nonpoly­
nomial solution methods for a variety of closely related robotic flowshop scheduling 
problems. This paper provides a proof that a basic version of this problem is strongly 
NP-Complete. 

1 Introduction 

One of the offsprings of the Just In Time production philosophy was the introduction of so 
called One-Worker Multiple-Machine lines, in which several machines are encircling a single 
operator. Typically, in the highly repetitive manufacturing environments of Just In Time 
implementors, all products, or parts, enter the line at an input or input/output station, 
and require processing on every machine in a prescribed order that is identical for all parts. 
Finally, the parts are delivered at the output (or input/output) station. The Just In Time 
emphasis on eliminating inventory demanded that in such a production cell, inventory may 
only be kept at the input/output station(s). As the automation of production advanced, 
the operator in the center of the cell, who performed materials handling activities, machine 
setups and quality inspection, has often been replaced by a single robot. The resulting pro­
duction cell, is often referred as robotic flowshop (see Figure 1). Scheduling problems in such 
cells have become known as robotic flowshop scheduling problems, robotic cell scheduling 
problems, and crane or hoist scheduling problems. Such a robotic flowshop can be viewed 
as a small fully automated, and therefore unmanned, manufacturing system, moreover such 
small production systems are the building blocks of larger automated manfacturing systems. 
As such, an understanding of the problems arising when planning, scheduling and controling 
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Figure 1: A 3-machine robotic flowshop 

the activities in a robotic flowshop are a prerequisite for efficiently operating many large and 
expensive automated manufacturing systems. The volumes required to earn back the high 
purchasing costs of such automated manufacturing systems can often only be achieved when 
producing for a world wide market, such as the automobile industry or consumer electronics. 
Typically, these markets are characterized by heavy cost based competition, which poses 
high demands on production efficiency. 

The automation of manufacturing in general has led to a variety of problems in which 
not only the scheduling of different subsystems (e.g. materials handling systems, tool han­
dling systems, flexible machines), but also the interactions of these subsystems with other 
subsystems are crucial for the overall production efficiency. Scheduling problems in which 
the coordination between several automated systems is important have therefore received 
considerable attention lately in the operations research and, more specifically, scheduling lit­
erature. The recently widely investigated robotic flowshop scheduling problems (see Asfahl 
[1985], Crama and Van de Klundert [1994], Hall et al [1994], Sethi et al [1992], Levner et 
al [1996], Lei and Wang [1994] and the references therein) form a family of such scheduling 
problems, in which the interaction between the materials handling system and the machines 
processing the parts determines the production efficiency. 

In the next section we describe a basic scheduling problem that has been widely inves­
tigated and contains many related problems as a special case. Further we briefly review in 
section 2, the literature on this problem. In Section 3 we show that the problem is strongly 
NP-Complete, which provides justification for the nonpolynomial and/or approximate solu­
tion methods proposed by several authors. 

2 Robotic flowshop Scheduling Models 

To formalize and make precise our description of robotic flowshops, we introduce first some 
notation. \Ve consider robotic flowshops in which there is an input station I or M0 and 
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a separate output station O or Mm+I· Further, there are m machines M1 , ••• ,Mm. All 
machines M1 , ... , Mm can contain only one part at a time, and hence when a machine has 
finished processing a part, the robot must unload it before the machines starts processing 
the next one. The robot can only carry one part at a time. Every part becomes available 
at M0 , and requires processing on every machine M;, i = 1, ... , m, in increasing order of the 
the indices of the machines. Finally, each part must be delivered at the output device Mm+I. 
There are no buffers in the fiowshop, which yields that each part that is between the input 
and output stations is either at some machine or being carried by the robot. The robot 
performs four types of operations. As already mentioned, it unloads parts from machines. 
When a part is unloaded, it is carried to the next machine, and subsequently loaded there. 
Finally, the robot will be repositioned to be ready to unload another machine et cetera. 

Since we are interested in establishing a NP-Completeness proof, we consider a problem 
that is general enough to contain several widely investigated problems as a special case, but 
at the same time contains the properties that are widely considered to be characteristic for 
robotic fiowshop scheduling problems. Further we are of course interested in identifying the 
'easiest' problem variation that is already strongly NP-Complete. 

As a first step, we therefore restrict the analysis to the case where all parts are identical, 
i.e. have the same processing requirements. Notice that this eliminates entirely the part 
sequencing decisions that constitute a classical fiowshop scheduling problem. The resulting 
complexity is in the robot sequencing, and its interaction with the machines. A second 
restriction concerns the robot and the sequence of operations that it executes. From the 
problem description given above, it should be clear that the robot executes subsequences 
of operations unload machine M;, carry the part to machine M;+I, load M;+i• After such 
a subsequence the robot is repositioned to start such a subsequence again et cetera. This 
leads to the following definition: 

Definition 1 The sequence of robot moves 

1. Unload M;, 

2. Travel ( with the just unloaded part) from M; to M;+1 , 

3. Load M;+1 

is called (robot) activity A; for i = 0, ... , m. 

It is not hard to see that not every sequence of activities constitutes a feasible sequence of 
operations for the robot to execute. For example, the robot cannot perform A; immediately 
after completing A;, since machine M; is still empty. 

Definition 2 An infinite sequence 7r of activities Ao, .. . , Am is called a feasible robot move 
sequence if, 

1. the robot never has to unload any empty machine, 

2. the robot never has to load any loaded machine. 

Since production efficiency in repetitive manufacturing environments is usually measured 
in terms of cycle times or (equivalently) throughput rates, we choose as objective to minimize 
cycle time. This yields that we are interested in the performance of the fiowshop in a steady 
state, long run, situation. For practical purposes, it is not feasible to specify explicitly all the 
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operations that the robot must perform in the long run. Instead, it is customary to prescribe 
some 'short' sequence of robot moves that the robot executes repeatedly, and we consequently 
restrict the analysis to cycle times that can be achieved when repeatedly executing certain 
classes of short sequences. In fact, all research presented in the open literature restricts the 
analysis to repetitively executing a finite robot move sequence. Since each machine must be 
loaded and unloaded when the flowshop is in operation, a short robot move sequence that is 
to be repeatedly executed must contain each activity at least once. Sequences in which each 
activity is executed exactly once form the simplest repeatable sequences: 

Definition 3 A 1-unit cycle is a sequence of activities Ao, ... , Am in which each activity 
occurs exactly once and which constitutes a feasible robot move sequence when executed 
repeatedly. 

Thus, each 1-unit cycle is a permutation of the activities A0 , Ai, ... , Am. Interestingly, 
the converse statement is, in general, also true, i.e. 

Theorem 1 (Lieberman and Turksen (1981], Sethi et al. (1992]) Every permutation of the 
activities Ao, Ai, ... , Am is a 1-unit cycle. 

Since we are interested in the long run behavior of the f!owshop, we assume in the 
remainder that we are free to specify the initial loaded/unloaded state of the machines. This 
yields specifically that we do not have to assume that the flowshop is initially empty. 

To complete the problem statement, we continue the description of the f!owshop. We 
require that the travel distances for the robot between machines M;, M; are given by means 
of a symmetric distance matrix D, whose elements .5;; satisfy the triangle equality: 

D;j + i5;k = D;k, for O ::S i < j < k :S m + 1. 

This equality models that the robot travels ( or rotates) at constant speed along a trajec-
tory. Further, there is a loading and unloading time E; for each machine M;, i = 0, ... , m + 1. 

The processing requirements of the (identical) parts on machine M;, i = 1, ... , m are 
given by means of processing windows [L;, U;]: these requirements mean that each part must 
spend at least L; time units and at most U; time units on machine M;. Such processing 
requirements naturally arise for instance in a manufacturing situation where the parts have 
to undergo some chemical treatment that may last neither too short nor too long ( see e.g. 
Philips and Unger (1988], Lei (1993]). Further, the more common situation where a part may 
reside at a machine arbitrary long after it has been processed can be modelled by setting 
U; = oo, i = 1, ... , m. (Hal! et al [1994}, Sethi et al [1992}, Crama and Van de Klundert 
(19941). Finally, yet another special case arises when the parts are required to be unloaded 
as soon as they finish processing, see e.g. Levner et al. (1996]. This can be modeHed by 
setting L; = U;, i = 1, ... , m. 

A general problem description is now as follows: 

Definition 4 Robotic Flowshop Scheduling Problem (RFSP): 

INPUT: D, E;, [L;, U;] (i = 0, ... , m + 1), integer Z. 

QUESTION: Is there a 1-unit cycle which when repeatedly executed yields a cycle time of 
at most Z. 
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In the remainder of the paper we will show the RFSP to be strongly NP-complete. 
Notice that proving NP-completeness for the identical parts case implies NP-completeness 
for the case were parts may have different processing requirements. To our knowledge, 
this is the first NP-completeness proof that incorporates a realistic distance matrix. An 
earlier completeness proof of Lei and Wang [1989] assumed for example non-zero travel time 
between M; and M;. That the modelling of the distance matrix is of major importance, can 
be concluded from results of Crama and Van de Klundert [1994] and Levner et al. (1996] 
who provide polynomial algorithms for the cases where U; = +oo, and L; = U; resp., that 
exploit the triangle equality property of the robot travel times. 

To formalize the cycle time minization objective, we define 

Definition 5 A schedule S is defined as a specification of starting times for each load and 
unload operation. More specifically, we denote by S(l,i,t) (S(u,i,t)) the time at which the 
t-th loading (unloading) of machine M; starts in schedule S (i = 0, ... , m, t EN). 

The reader should notice that it not trivial to find a feasible schedule once the order in 
which the activities are to be executed is known, since the schedule has to respect the lower­
and upperbounds of the processing windows. Notice also that this yields that not every 
1-unit cycle is feasible for every problem instance. In addition, it is far from trivial to find a 
schedule with minimum cycle time once the 1-unit cycle is known. For this reason, researchers 
have commonly restricted the analysis to the special case where the robot executes a cyclic 
schedule, namely a so called !-periodic schedule. 

Definition 6 A schedule Sis !-periodic if there exists a constant Cs such that S(l,i,t + 
1) - S(I, i, t) = Cs and S(u, i, t + l) - S(u, i, t) = Cs for all i = 0, ... , m + 1, t E N. 

Obviously the cycle time of a !-periodic schedule S equals Cs. Notice that the execution of 
a !-periodic schedule forces the robot to repeat a 1-unit cycle, to be called ir(S). Without 
loss of generality, assume that the 1-unit cycle start with activity A0 . Then, S is feasible if 
the following relations are satisfied (Lei (1993]): 

If A;_ 1 precedes A; in ir(S), then 

S ( u, i, t) - S ( l, i, t) - t; 2: L;, 

S(u, i, t) - S(l, i, t) - t; :SU;. 

On the other hand, if A; precedes A;_1 in ir(S), then 

S(u, i, t) + Cs - S(I, i, t) - t; 2: L;, 

S(u,i,t) + Cs - S(l,i,t)- t; :SU,. 

The robot must be allowed enough time to perform each activity: 

S(u, i, t) + t; + ,\,;+1 :S S(I, i + 1, t). 

Furthermore, if Ak is the activity succeeding Ai in ir(S) then 

S(l,j + 1, t) + tj+l + 8i+I,k :S S(u, k, t), 

and, if A1 is the last activity in ir(S), and Ak the first, 

S(l,j + 1,t) + t 1+1 +81+1,k :S S(u,k,t) + Cs. 
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As Lei [1993) observed, the optimal cycle time can be computed in polynomial time once 
1r is known, since minimizing Cs subject to (1) - (7) yields a linear programming problem. 
Now, for each 1r1, let C,,, be the minimum long run cycle time attainable by a schedule S 
satisfying (1) - (7) such that 1r(S) = 1r1• Then, RFSP boils down to determining whether 
there is a 1-unit cycle 1r for which C,, $ Z. 

We finish this section by reviewing the literature in which this problem and closely 
related ones are addressed. The problem was introduced by Philips and Unger [1976). They 
formulate the problem as an integer linear program, and solve some instances using standard 
software. Lieberman and Turksen [1981) formulate several related problems, e.g. problems 
in which there is more than one robot or problems in which the cell is not restricted to 
be a flowshop. Song et al. [1993) propose heuristics to find the optimal k-unit feasible 
robot move sequence for the no-wait version of this problem. In Lei [1993), the problem of 
minimizing the cycle time for a given permutation of the activities is shown to be solvable 
in O(m2 log m log B), where B depends linearly on the input parameters. Lei and Wang 
[1994), Armstrong, Lei and Gu [1994) and Hanen and Munier [1994) discuss branch & bound 
procedures for RFSI and alike. In Lei, Armstrong and Gu [1993), and in Lei and Wang 
[1991), heuristic procedures for a similar problem with multiple robots are given. For a more 
general overview of materials handling related scheduling problems in robotic cells we refer 
to Crama [1995) and van de Klundert [1996). 

3 The NP-Completeness proof 

Theorem 2 RFSP is strongly NP-Complete. 

Proof. Membership in NP follows from (1) - (7) (see e.g. Lei [19931). We show its com­
pleteness by giving a reduction from the Bin Packing Problem to RFSP. 

Bin Packing : 

INPUT : Finite set V = { v1 , ... , vq} of items, a size s(v;) E z+ for each v;, i = 1, ... , q, 
positive integer K $ q and a positive integer B. 

QUESTION: Is there a partition of V into disjoint sets Vi, ... , VK such that the sum of the 
sizes of the items in each V; is B or less? 

Consider an instance of the Bin Packing problem and assume without loss of generality 
that s(v;) $ B for i = 1, ... , q. We construct an instance of RFSP as follows. There 
are m = 2q + 1 + 2K machines. The processing windows of the machines M1 , ... , MK 

and machines M2q+K+2, ... , M2q+2K are [(4q + 2K + 3)B, (4q + 2K + 3)B). The processing 
window of M2q+2K+1 is [(4q + 2K + 2)B, (4q + 2K + 2)B). The windows of the machines 
MK+2;+1, i = 0, ... ,q are [O, +oo). Finally the windows of the machines MK+ 2;, i = 1, ... ,q 
are [s(v;), s(v;)). The loading and unloading times f; are all equal to 0. The travel time 
between two adjacent machines equals B. 

The following claim will be useful in the remainder of the proof : 

Claim 1 For all O $ i < K, if A; precedes A+1 then activities Ai, j ~ 2q + K + i + 2 cannot 
be performed between the execution of A; and A+i• 
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Proof. The processing window of machine M,+1 is [(4q + 2K + 3)B, (4q + 2K + 3)B], and 
hence ( 4q + 2K + 3)B time units after loading the machine it must be unloaded. To perform 
an activity with index at least 2q + K + i + 2 the robot must travel to machines with index 
at least 2q + K + i + 3. Travelling to machine with index at least 2q + K + i + 3 and back 
between the execution of A, and A,+1 , requires at least 2 x (2q + K + 2)B > ( 4q + 2K + 3)B 
time, causing the schedule to be infeasible. ■ 

Claim 2 There is a I-periodic schedule with cycle time ( 4q + 2K + 4 )KB+ ( 4q + 3K + 4 )B 
if and only if the bin packing instance is a yes instance. 

Proof. To prove the claim, we first show that the activities 

Ao, ... , AK, A2q+K+2, ... , A2q+2K+1 

must be in some specific order in every permutation that denotes a solution with the 
desired cycle time. Without loss of generality we may assume Ao to be the first activity in 
the permutation. We claim activities Ao to AK are in order of their index in every feasible 
solution. Suppose not: let i E { 1, ... , K - 1} be the smallest index for whicli A,+1 precedes 
A; (notice that i =/ 0). We consider two cases : 

1. A 2q+2K+i is scheduled before A;. Let A;,j ~ i be the activity such that A2q+2K+1 takes 
place between Aj-l and Ai. It follows from the Claim 1 that the schedule is infeasible. 

2. A 2q+2K+I is scheduled after A;. This implies that between the execution of A; in some 
iteration of the schedule and the execution of A;+1 in the next execution of the schedule 
the robot must perform A 2q+2K+i and Ao in that order. It follows again that the total 
travel time between A, and A;+1 causes the schedule to be infeasible. 

Thus activities A0 , ••• , AK must indeed be in increasing order of their index. It is also 
straightforward to check that A 2q+K+i, A 2q+K+2, ... , A2q+2K+i must occur in this order in 
any feasible schedule (if A 2q+K+i+I is performed before A 2q+K+i, then the travel time from 
the machine M 2q+K+i+1 to M0 and back exceeds the processing window of M2q+2K+i+1). 

Let Ao start at time 0. Considering the processing windows of machines M1 , ... , MK 

we can derive that the robot cannot start performing activity A;, i = 1, ... , K before time 
(4q+2K +3)iB +iB. More specifically, AK cannot be started before (4q+2K +3)K B +KB. 
It can also be concluded from Claim 1 that A 2q+2K+I cannot take place before AK since 
otherwise the schedule would be infeasible. Combining these two observations leads to the 
conclusion that the total cycle time must be at least (4q + 2K + 3)KB +KB+ (2q + K + 
l)B + B + (2q + 2K + 2)B = (4q + 2K + 4)KB + (4q + 3K + 4)B. Thus we have proved 
that this quantity (see Claim 2) is a lowerbound on the cycle time. 

Claim 1 implies that A 2q+K+!+i cannot precede A; in any solution, for i = 1, ... , K. We 
are now going to show that A 2q+2K must precede AK in every schedule having the desired 
cycle time. First of all, observe that A 2q+2K+i cannot precede AK. Hence if A2q+2K is 
scheduled after AK, it is either scheduled between AK and A 2q+2K+I or after A 2q+2K+1• In 
the latter case, the schedule was shown above to be infeasible. Thus A2q+2K is scheduled 
between AK and A 2q+2K +1 . Now the total cycle time is at least the sum of the following 
time periods : 

1. The interval from Ao to the start of AK, execution of AK and travel time to machine 
M 2q+2K : taking time (4q + 21( + 4)K B + B + (2q + 2K - K)B, 
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2. perform A2q+2K, and wait or do something else until machine M2q+2K+I has finished 
processing: B + (4q + 2/{ + 2)B, 

3. Unload M2q+2K+I, bring the part to the output device and travel back to the input 
device to start the next execution of A0 : B + (2q + 2K + 3)B. 

This would result in a total cycle time of at least (4q + 2K + 4)K B + B + (2q + 2K -
K)B+B+(4q+2K +2)B+B+(2q+2K +3)B > (4q+2K +4)KB+(4q+3K +4)B. Now, 
since Claim 1 implies that A 2q+2K cannot precede AK-I, we know that activities AK-I, AK 
and A2q+2K are in the order AK-1,A2q+2K,AK. It is easy to check that A2q+2K-1 cannot be 
scheduled between AK-I and AK too. Moreover, since A2q+2K-t cannot be scheduled before 
AK-2, as results from Claim 1, and cannot be scheduled after A2q+2K, it must be scheduled 
between AK_ 2 and AK-I· An inductive argument then establishes that A2q+2K-, takes place 
between AK-i-I and AK-,· Hence we conclude that in any schedule that achieves the desired 
cycle time, the activities A0 , ••• , AK, A2q+2K+1, ... , A 2q+2K+I must be performed in the order 

The remainder of the proof is now to show how the other activities must be plugged 
in, so that a schedule with the desired cycle time is obtained if one exists, and that such a 
schedule exists if and only if the bin packing instance is a yes instance. 

We make three observations : 

1. AK+2,_1 and AK+2,, i = 1, ... , q must always occur consecutively in every feasible 
permutation, since s(v,):::; B. 

2. All the trajectories traveled between the end of A, and the start of A,+1, i = 0, ... , K -
1, can be traveled only twice, since otherwise the processing window of M;+1 is violated. 
This implies that we cannot schedule any activities between A2q+K+i and A, for i = 
l, ... ,K. 

3. None of the activities A; with index K + 1 :::; i :::; K + 2q can be scheduled after 
A2q+2K+1 since otherwise the cycle time will be too large. 

Together, these three observations imply that we must schedule K + 1 sets of pairs of consec-
utive activities between A; and AK+2q+i+t, for i = 0, ... , K. The total travel time between 
loading M,+1 in A; and unloading M;+1 in A,+1, i = 0, ... , K - 1 amounts (4q + 2K + 2)B. 
In view of the processing windows, this leaves us B time to perform pairs of activities 
AK+2i+1,AK+2i+2- Between any such pair of activities the robot must wait s(v,+1) time. 
Furthermore, we cannot schedule any activities after the execution of AK, because of the 
processing window of M2q+2K+I· Thus, a !-periodic schedule with the desired cycle time 
exists if and only if the numbers s(v;) can be partitioned into K sets each having weight no 
more than B. This proves Claim 2. 11 

Instead of focusing directly on schedules, we have in this paper attempted to make clear 
the distinction between 1-unit cycles and !-periodic schedules. Notice now that, in the in­
stances created in the reduction, only !-periodic schedules can lead to cycle times equal to 
the lowerbound specified in Claim 2, which is a requirement for a yes-instance. We conclude 
that not only the problem of finding the optimal !-periodic schedule, but even our more 
general statement of RFSP is strongly NP-complete. II 
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In conclusion, it is worth mentioning that the minimum cycle time attainable by a I-unit 
cycle can be strictly larger than the minimum cycle time attainable by any robot move se­
quence (Lei (1995]). Very little is known however about the cycle times of non I-unit cycles, 
and the reduction in cycle time that can be attained through executing more complex robot 
move sequences. 
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Abstract 

This thesis presents a scenario based optimisation model to analyze the investment policy and funding 

policy for pension funds, talcing into account the development of the liabilities in conjunction with the eco­

nomic environment. Such a policy will be referred to as an asset liability management (ALM) 
policy. 

The model has been developed to compute dynamic ALM policies that: 

- guarantee an acceptably small probability of underfunding, 

- guarantee sufficiently stable future contributions, 

- minimise the present value of expected future contributions by the plan sponsors. 

1. Problem Description 

Pension Funds 

A pension fund will be considered to be an institute that has been set the task to make 
benefit payments to people that have ended their active career. The payments to be made 
to the retirees must be in accordance with the benefit formulae that prescribe the flow of 
payments to which each participant in the fund is entitled. The word participant will 
be used to refer to all members of the pension fund: active members as well as inactive 
members. 

In general, the pension fund has two sources to fund its liabilities: revenues from its 
asset portfolio (investment income and appreciation of the value of the portfolio) and 
contributions to the fund. Contributions are, by definition, made by the sponsor of the 
fund. The sponsor can be the employer, the active participants, or a combination thereof. 
Thus, at given points in time, the value of the assets of the fund is increased by receiving 
contributions and by appreciation of the value of invested assets and it is decreased by 
making benefit payments. It is the responsibility of the pension fund to balance this process 

This is a reprint of chapter 1, Introduction and Summary, of the author's Phd thesis Asset Liability 

Management for Pension Funds (Erasmus University, 1995). 
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in such a way that the fund meets the solvency standards in force, and that all benefit 
payments, now and in the future, can be made timely. 

Important decisions that determine whether or not the pension fund will manage to fulfil 
its tasks are the level of contributions and the allocation of assets over asset classes in 
which the fund is willing to invest. This allocation is referred to as the asset mix. 

These decisions cannot be made freely. The level of contributions has to be set in such 
a way that the sponsor of the fund is able and willing to pay them. This constraint is 
often reflected by a maximum level of contributions as a percentage of the costs of wages. 
Moreover, it is customary that annual hikes in contribution, again, as a percentage of the 
costs of wages, may not exceed a given level. 

In principle, the fund is not restricted in its choice of asset mix. However, there are widely 
accepted perceptions of acceptable asset mixes which, in practice, result in upper and lower 
bounds on the percentage of assets to be invested in each asset category. Moreover, one 
has to heed constraints that are implied by the size and liquidity of the capital markets 
of interest, relative to the value of the securities that one would want to trade in a given 
period of time. 

It depends on the ratio of income from contributions and revenues from the investment 
portfolio which decision, contribution level or asset allocation, is the more important one. 
In general, the higher the degree to which the pension fund has matured, i.e., the larger 
the percentage of participants who have ended their active career, the greater the relative 
impact of the investment decisions. 

Although the way in which the level of future benefit payments will be determined is 
given by the benefit formulae, the actual level is uncertain. It is subject to the development 
of the characteristics of the participants which are determined by future career paths, life 
and death etc. The major source of uncertainty that affects the level of future benefit 
payments to be made by many Dutch pension funds, is the future development of price 
inflation and wage inflation: at retirement, the level of old age pension is usuaily 70% of 
the final salary. This pension includes a state pension to a fixed amount. It follows that 
pension rights of active participants that have been earned over past years of service will 
be increased by wage inflation. The benefits of inactive participants are often indexed with 
price inflation. 

Once the value of assets proves to be insufficient to make benefits payments that are due, 
it is in general too late to take any measures to strengthen the financial position of the 
fund. To avoid this potential problem, the regulating authorities, in The Netherlands the 
Insurance Chamber have formulated solvency requirements for pension funds. They 
see to it that, at the end of each year, the pension fund has accumulated a level of assets 
that is sufficient to fund its liabilities. 

It seems only natural to require the present value of assets to be at least as high as the 
present value of liabilities. However, the investment returns as well as the level of future 
benefit payments are uncertain. As a consequence, it is unclear what the minimal present 
value of assets is that is sufficient to fund future benefit payments. Neither the present 
value of assets nor the present value of liabilities can be determined by a universally 
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accepted method. In this monograph, the assets will be valued against their market 
prices. The valuation of liabilities is the domain of the actuary. Our ALM approach 
can be used in conjunction with any actuarial method of valuing liabilities. Nevertheless, 
to appreciate the problem of ALM, it is useful to have some background in actuarial 
principles. The present value of liabilities is usually determined by computing the 
present value of the expected future benefit payments. Given the characteristics of the 
current participants in the fund, the expected development of the characteristics (based 
on mortality tables, invalidity chances etc.) is computed. In conjunction with the benefit 
formulae, this development serves to compute the expected annual benefit payments for the 
planning period. Then, the present value of the liabilities can be obtained by discounting 
this flow of expected benefits. The discount rate that is used to compute the present value 
of the liabilities is often referred to as the actuarial rate. In The Netherlands, the annual 
actuarial rate that is commonly used to discount liabilities is 4%. 

It is tempting to take a clear stand in the ongoing debate on the appropriate level of 
the actuarial rate. This discussion is frequently blurred by the fact that a substantial 
portion of the liabilities of Dutch pension funds stems from indexation of future benefits 
with price inflation and/or wage inflation. However, the indexation is usually conditional 
on the financial position of the pension fund. An actuarial rate equal to 4% can be 
considerd high if it is used to discount indexed liabilities: one would have to realise an 
investment return equal to 48% annually over the past 50 years. On the other hand, if the 
benefit formulae do not contain any indexation promises, then a 4% discount rate seems 
to be rather low: over the past 50 years, an investor could easily have secured an average 
return on investments of 6%, without superb investment timing and without having to 
accept significant price risk or credit risk. 

In the sequel, we shall not distinguish between conditional and unconditional liabilities. 
Liabilities will refer to the sum of conditional and unconditional liabilities. Thus, if 
the benefit formulae contain conditional indexation promises, our ALM approach will aim 
for a policy that enables one to make indexed benefit payments. As a consequence, one 
would expect that the minimum funding levels that follow from solutions to our ALM ap­
proach will generally exceed the minimum levels that are implied by solvency requirements 
which have been formulated solely on the basis of unconditional promises. 

ALM Policy 

A starting point for the analysis is the present state of a pension fund, defined by its 
actuarial and financial situation ( asset value, premium reserve, level of benefit payments 
etc.), the benefit formulae and/or contribution formulae and the characteristics of the 
participants. 

A good ALM strategy consists of investment decisions and decisions on the level of con­
tributions that result in a desirable risk/reward structure with respect to the financial 
development of a pension plan. It minimises the cost of funding while safeguarding the 
pension fund's ability to meet its liabilities. The fund should be able to make all benefit 
payments timely, without becoming underfunded. Given these requirements, the present 
value of contributions to the fund should be minimised and contributions may be raised 
only modestly from one year to the next. Unfortunately, even an impeccable implemen­
tation of an excellent ALM policy cannot guarantee that all liabilities can be met under 
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all circumstances. For example, when liabilities are indexed with inflation, exceptional 
situations may occur, in which inflation rates become so high that it is impossible to meet 
all liabilities, other than by raising contributions to a fantastic level. Since inflation rates 
can become very high over extended periods of time, one has to accept that there is a 
probability that the pension fund cannot meet its funding requirements. This probability 
is referred to as the probability of underfunding. To account for the fact that one 
cannot expect a pension fund to meet solvency standards under all circumstances, the 
solvency requirement has to be posed as a chance constraint. I.e., the ALM policy should 
ensure that the probability of becoming underfunded does not exceed a given level. 

Neither asset mixes nor levels of contribution will be fixed for the entire planning period. 
Instead, decisions will be revisited when warranted by newly emerged circumstances, such 
as a changes in the funding level and altered perceptions of the future development of 
the world. However, stability requirements on the ALM policy may imply that one can 
only deviate so far from decisions that have been made in the past. These observations 
show that current decisions and future decisions cannot be made independently. 
Therefore, an ALM policy should consist of decisions to be made now and sequences of 
decisions to be made in the future. Future decisions should be conditional on the situation 
that has emerged at the time of decision making. Current decisions should anticipate on 
the ability to adjust decisions later on. Furthermore, to the extent to which they restrict 
choices in the future, they should reflect a correct trade-off of shorter term effects and 
longer term effects. Such a policy is referred to as a dynamic policy. 

Defined Benefit Plan3 and Defined Contribution Plan3 

In the above description of the ALM problem, is has been assumed that the benefit for­
mulae are given, whereas the contributions to the fund are to be determined. This is the 
case with benefit defined pension plans. In contrast with this type of pension plan, a 
contribution defined plan is characterised by fixed contribution formulae and uncertain 
benefit payments. Although the models and illustrations in this thesis assume a defined 
benefit pension plan, the approach that we present is also suited to determine investment 
policies for defined contribution plans. 

2. Modelling an Uncertain Future by Scenarios 

One of the central issues in ALM modelling, is the way in which uncertainty is modelled. 
Here, uncertainty will be modelled by a large number of scenarios, each of which reflects a 
plausible development of the environment within which ALM decisions have to be made. 
More specifically, future environments will be reflected by states of the world, which are 
defined by the level of actuarial reserve, the level of benefit payments, the level of costs of 
wages and the return on each of the asset classes over the previous period. These states 
of the world are independent of the decisions to be made with respect to asset mix and 
contribution policy. They are defined completely by factors that are exogenous to the 
decision model. A path through consecutive states of the world will be referred to as a 
scenario. 

After generating a large set of scenarios, it is assumed that this set is a reasonable rep­
resentation of the uncertain future: the model assumption is made that one of these 
paths will materialize. The uncertainty is still preserved in that the decision maker does 
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Figure 1 A Scenario Structure for ALM 

not know yet which scenario describes the true future states of the world. 

Scenario Structure 

In order to model a multistage decision process with recourse, the states must be structured 
so that they can reflect the notion of time and the principle of information being revealed 
as time goes by. The desired information structure and the notion of time are ensured by 
imposing the tree shape scenario structure as depicted ih Figure 1. 

At point in time 0, there is only one state of the world: the state that can currently be 
observed. Given this state of the world there are many states of the world which could 
emerge by the end of period. Which one of them actually materializes will be known only 
at time. In general, given state of the worlds at time t, there are many states at time t + l 
which succeed ( t, s) with positive probability. This reflects the uncertainty regarding the 
future environment. At any point in time, the history by which the prevailing state of the 
world was reached is known: the scenarios are structured so that each node has a unique 
predecessor. 

Statistics of endogenous and exogenous state variables, such as the probability of under­
funding and the expected surplus, play an important role in the ALM model. In order to 
compute these statistics, the scenarios have to be equipped with a probability structure 
on which the statistics can be defined. This structure should specify the probability of 
each state of the world to occur; unconditional, as well as conditional on the state of the 
world that has prevailed at the preceding point in time. 

Consistency and Variety 

The scenarios should be generated in such a way that future states of the world are con­
sistent, i.e., stochastic and deterministic relationships between state variables at each 
point in time should be reflected correctly, subsequent states of the world should reflect 
the intertemporal relationships between state variables, and the variety of the states 
of the world should suffice to capture all future circumstances that one would want to 
reckon with. The scenario generator that is presented in chapter 4 satisfies these require-
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ments. The ALM model that we propose, however, can be used in conjunction with any 
scenario generator that meets the requirements that have been specified above. For exam­
ple, one could choose to employ a model that is based on economic theory, instead of the 
time series model that has been included in our scenario generator. 

A noteworthy special case of reflecting sufficient uncertainty is the requirement that the 
scenarios may not allow for arbitrage opportunities. I.e., they may not include any 
states of the world in which it is possible to compose investment portfolios at price zero 
which have positive probability of a positive pay out, and which never have a negative 
pay out. In reality these opportunities will not occur to an extent that it is possible to 
exploit them systematically in an ALM policy. Therefore a realistic model should not 
allow for arbitrage. Section 4.3.2 has been devoted to this subject. There, it is proven that 
the continuous probability distribution of states of the world that underlies our scenario 
generator does not allow for arbitrage opportunities. Moreover, for finite sample sizes, an 
algorithm is given that eliminates all arbitrage opportunities, if any, by extending a sample 
of given size by one well chosen state of the world. 

3. The Position of our ALM Approach in the Literature 

Chapter 2 contains an extensive discussion of publications on ALM for pension funds. 
Here, we shall restrict ourselves to a short characterisation of the main types of models, 
after which we shall position our approach relative to the existing methods. 

One of the criteria that will be used to classify ALM approaches is whether or not the 
approach is dynamic. Dynamic models can be employed to compute policies that consist 
of actions to be taken now, and sequences of reactions to future developments. In contrast 
with dynamic models, static models do not make optimal use of the opportunity to 
react to future circumstances. Static decisions do not anticipate on the ability of making 
recourse decisions. As a consequence, the employment of static models may lead to: 

- current decisions that do not reflect a correct trade-off between short term effects and 
longer term effects, 

- current decisions that are extremely conservative because the ability to reduce risks in 
the future, when necessary, is neglected. This will cause the costs of funding to turn out 
unnecessarily high. 

Still, most of the models that are currently being used for ALM decision support are static. 
This is probably caused by the fact that the computational effort to formulate and solve 
dynamic models for realistic problem sizes is large in comparison with static models. If 
computationally feasible, however, one should prefer a dynamic model. 

Many ALM publications are based on mean-variance analyses of the surplus of a pension 
fund at a given horizon, taking into account stochastic liabilities. The trade-off between risk 
and reward, in this approach, is usually quantified as the trade-off between the expected 
level of the surplus at a given horizon and the standard deviation thereof. One of the main 
drawbacks of standard deviation as a measure of risk is that it does not distinguish between 
returns higher than expected and returns lower than expected. Chance constrained 
programming offers an alternate to quantifying risk by standard deviation which does not 
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suffer from this shortcoming. One defines the probability that a certain event will happen 
as a function of the model's decision variables. The probability of undesirable situations 
to occur can then be bounded by including constraints on the value of the associated 
statistics. To facilitate tractability, chance constrained models are usually presented in 
combination with the assumption that exogenous stochastic parameters, e.g., the growth 
of liabilities and investment returns, follow a probability distribution that is convenient 
from a computational point of view. 

More recently published models on ALM are stochastic programming models. These 
models can be used to compute dynamic ALM strategies that are based on a set of scenarios 
which reflect the future circumstances that one wants to take into account. In principle, 
these scenarios can be based on any stochastic process that is considered to be appropriate 
to describe the environment for ALM decisions. 

We propose a mixed integer stochastic programming model. It has the desirable 
properties of the aforementioned stochastic programming models in the sense that it can 
be employed to determine dynamic ALM policies that are based on scenarios, which can 
reflect any set of assumptions that one chooses to make on future circumstances. In 
contrast with the stochastic programming models that were mentioned earlier, our ALM 
model includes binary variables that enables one to count the number of times that a 
certain event happens. This possibility has been used to formulate chance constraints 
that are based on the probability distribution of states of the world that follows from the 
scenarios. In the case of ALM, this property is used to model and to restrict the probability 
of underfunding: at the planning horizon, as well as at intertemporary points in time. The 
choice has been made to sacrifice the ability to compute optimal solutions to problems 
of small sizes. Instead, we have opted for developing a heuristic by which good solutions 
can be computed to problems, the size of which suffices to model realistic problems. The 
main characteristics of the models that have been discussed in this section are presented 
in Table 1. 

Table 1. A Classification of ALM Approaches 

approach dynamic or explicitly consider realistic 
static probability of asswnptions on 

underfunding probability 
distributions 

mean-variance models static no no 

chance constrained static yes no 
programming 

stochastic dynamic no yes 
programming 

our aooroach dynamic yes yes 

To conclude, let us summarize the properties which an ALM model should satisfy: The 
model should be suitable to determine a dynamic ALM strategy, consisting of an invest-
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ment strategy and a contribution policy, which account for the development of liabilities. 
Decisions to be made now should anticipate on the ability to make state dependent de­
cisions in the future. They should be the result of a trade-off between short term 
effects and long term effects. Risk must be reflected by the probability of under­
funding and the magnitude of deficits when they occur. The model should accommodate 
the employment of realistic probability distributions of exogenous random variables, and, 
finally, the model should be feasible from a computational point of view. 

To our knowledge, the ALM approach that is presented here, is the first one that meets all 
these requirements. Computational results, obtained on realistic problem instances, which 
are presented in summary in section 7, corroborate the theoretical notion that this type of 
model is superior to models that have been presented in the literature which do not meet 
all of the aforementioned requirements. 

4. A Scenario Generator for Asset Liability Management 

We have described the technical properties that the scenario structure should have, in 
order to serve as a framework within which dynamic ALM strategies can be analyzed and 
optimised. Let us now turn to the question as to what set of scenarios can serve as a 
reasonable representation of the future. 

Different policy makers may consider different factors to be of interest to their ALM deci­
sions. They may choose to base their policy on different assumptions and these assumptions 
should be reflected by the scenarios. Therefore, our ALM approach has been designed in 
such a way that it can be used in conjunction with any scenario generator that satisfies 
the conditions that have been stated in 4.2. 

Figure 2 pictures the scenario generator that has been used to obtain the computational 
results that are reported in chapter 7. A time series model is employed to generate 
future developments of price inflation, wage inflation and returns on stocks, 
bonds, cash and real estate in such a way that means, standard deviations, auto­
correlations and cross correlations between state variables are consistent with historical 
patterns. Given the benefit formulae and all relevant data on the participants ( e.g. civil 
status, age, gender, salary, earned pension rights, medical status, social status), a Markov 
model is employed to determine the future development of each individual that currently 
participates in the pension fund. For an employee, for example, it is determined whether 
he remains alive, retires, resigns, gets disabled and/or is promoted to another job cate­
gory on an annual basis. These transitions are determined by probabilities which depend 
on characteristics of the individuals such as age, gender and employee-category. Addi­
tional promotions and the recruitment of new employees are determined in line with the 
intended personnel policy. 

Given the development of wage inflation, the career of each employee in each future state 
of the world and the current reward system, the cost of salaries, the level of benefit 
payments and the actuarial value of the liabilities can be computed for each state 
of the world. 

All information to describe states of the world is now available: investment returns on all 
asset classes have been obtained from the time series model, the administrative software 
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Figure 2 A Scenario Generator for ALM 

has generated the corresponding cost of wages and, to conclude, the actuarial software has 
provided the corresponding levels of benefit payments and actuarial reserves. Notice, that 
the scenario generator has been structured in such a way, that consistency between state 
variables within a state, as well as consistency between states of the world is preserved. 

Once the scenarios have been generated, the following information is available for each 
state of the world: 

- the level of benefit payments, 
- the level of the actuarial reserve, 
- the level of the costs of wages, 
- the return on each of the asset classes over the preceding period of time. 

Furthermore, the scenario structure implies that it is also known for each state 

- what the preceding state of the world has been, 
- which states of the world are possible successors, and what the probability is that they 
will emerge, given the current state. 

All information that is contained in the scenarios is independent of ALM decisions. They 
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are the subject of the next section. 

5. A Dynamic Optimisation Model for Asset Liability Manage­
ment 

Chapter 3 presents an optimisation model that determines an ALM policy that consists 
of an asset mix and a contribution level for each state of the world. These decisions also 
determine the level of asset value and, in combination with the exogenously given level of 
liabilities, the funding level in each state of the world. The decisions in all states of the 
world are made simultaneously. This allows for a trade-off between longer term effects and 
shorter term effects, as well as for a trade-off between the outcome of decisions in different 
future states of the world. 

The model has been developed to compute dynamic ALM policies that: 

- guarantee an acceptably small probability of underfunding, 
- guarantee sufficiently stable future contributions, 
- minimise the present value of expected future contributions by the plan sponsors. 

Because the probability of underfunding is an important concept in ALM and because it 
can be modelled in many ways which have substantial implications for its interpretation, 
we shall discuss it at more length in the following paragraph. 

The Probability of Underfunding 

The probability of underfunding has been defined on the set of scenarios. For example, 
suppose that there are 100 states of the world, each of which succeeds a given state of the 
world with probability 1/100, then the probability of underfunding, when starting from 
the given state of the world is equal to 1/100 times the number of succeeding states in 
which underfunding occurs. In general, if a maximum probability of underfunding equal 
to 1lr" is considered to be acceptable, then this is reflected by constraints which ensure 
that for each state of the world, the probability of being succeeded by a state in which 
underfunding occurs, is less than or equal to 11t". The probability of underfunding has 
been modelled in such a way that: 

1. The model can account for any probability distribution that can be reflected by the 
scenarios. That includes distributions that are specified implicitly, such as the distribution 
of liabilities which may be given by benefit formulae in the form of computer programmes. 

2. Probabilities of underfunding are endogenous to the model. 

3. Probabilities of underfunding are taken into account explicitly, at intertemporal 
points in time, as well as at the planning horizon. 

U nderfv.nding 

What would happen when a situation of underfunding occurs ? It is not clear what would 
happen in practice. In our model, however, it will be assumed that a remedial payment is 

296 



made which is precisely sufficient to restore the required funding level. The remedial 
contributions are included in the costs of funding. Thus, the probability of underfunding, 
as well as the magnitude of deficits when they occur are taken into account. The structure 
of the model can accommodate other assumptions with respect to measures to be taken 
in situations of underfunding as well. Alternative reactions that can be accommodated 
include remedial contributions to be made during a prespecified number of years until the 
desired funding level has been restored and, entirely or partially, failing to meet conditional 
indexation promises. 

In summary, the ALM model that will be presented in chapter 3 can be used to compute 
ALM strategies which specify investment decisions and contribution levels to be set under a 
wide range of future circumstances. The decisions are made in such a way that the present 
value of expected contributions to the fund is minimal, subject to raising sufficiently stable 
annual contributions and the probability of underfunding at the end of each year being 
acceptably small when starting from the current situation, as well as from all future states 
of the world that the policy makers of the pension fund choose to take into account. 

6. Computational Complexity 

The proposed ALM model is a mixed integer linear problem, the size of which increases 
exponentially with the number decision moments. As a consequence, it is very difficult 
to solve the model to optimality for realistic problem sizes. Therefore, chapters 5 and 6 
have been devoted to the development of a heuristic by which a good, but not necessarily 
optimal, solution to the ALM model can be obtained. 

Chapter 5 presents a special case of the general scenario structure that has been presented 
earlier. Using this new structure, a heuristic can be used to compute good solutions to the 
ALM model. The heuristic consists of a backward procedure and a forward procedure. In 
the backward procedure, a sequence of two stage problems is solved; one for each point 
in time at which state dependent decisions can be made. The solutions to these problems 
serve to specify desirable situations of the pension fund in each state of the world. However, 
the two stage problems have not been formulated in such a way that it is always feasible to 
determine an ALM strategy that results in attaining the desirable situations in all states 
of the world. Therefore, the backward procedure is followed by a forward procedure. 
The latter consists of solving a one period model for each state world. Given decisions 
at preceding points in time, it minimises deviations from the desired situations that have 
been obtained from the backward procedure, subject to the constraints that the ALM 
policy should satisfy. The computational effort to solve the ALM model by means of the 
heuristic is proportional to the number decision moments. 

The computational effort for each point in time is dependent on the number of states of 
the world that has to be taken into account. The fewer states of the world the smaller the 
computational effort to solve the models. Thus, the fewer the better. On the other hand, 
the number of states of the world should be sufficiently large to represent the underlying 
continuous probability distribution. In chapter 6, a variance reduction technique, im­
portance sampling, will be employed to reduce the number of states of the world that is 
required to obtain a sufficiently accurate representation of underlying continuous proba­
bility distribution of states of the world. 
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7. Computational Experiments 

Chapter 7 presents results of computational experiments with the ALM model. In order 
to obtain insight in the behaviour of the model on realistic problem instances, it has been 
applied to the data of a Dutch pension fund with an actuarial reserve in excess of 16 
billion Dfl. and approximately 1,020,000 participants of which 240,000 are still in their 
active career. 

One would expect ALM decisions for a wealthy pension fund to be .different from those for 
a thinly funded pension fund. Therefore, three settings have been selected, which differ in 
the initial funding level and in the amount by which annual contributions may be raised 
from one year to the next: 

Setting 1: a low initial funding level and a low maximum increase of contributions, 

Setting 2: a high initial funding level and a high maximum increase of contributions, 

Setting 3: the initial funding level to be determined by the ALM model in such a way that 
costs of funding are minimised subject to satisfying the solvency constraints 
with moderate maximum increases of contribution. 

In all settings, the probability of underfunding was allowed to be at most 5% in each year. 
The cost figures in·Table 2 and Table 3 are presented in min. Dfl. 

Table 2. Summary of computational results from the ALM model 

Initial asset mix Underfunding 
Setting PV Total 

Cash Stocks Property Bonds PV remedial Average costs 
contributions probability 

I 66 21 13 0 699 10.6% 23,002 

2 52 44 4 0 19 0.4% 25,356 

3 0 100 0 0 42 0.6% 24,682 

In order to compare the results that are shown in Table 2 to other approaches, static 
decision rules have been determined to specify time and state dependent contribution 
levels, in combination with optimal static asset mixes. These results are presented in 
Table 3. As can be verified from the tables, the results from the dynamic ALM model 
are superior in all settings. In setting 1, because it does not violate solvency constraints 
as much as the static model. In settings 2 and 3 in which both models present feasible 

298 



Table 3. Summary of computational results from static decisions 

Initial asset mix Underfunding 
Setting PY Total 

Cash Stocks Property Bonds PY remedial Average costs 
contributions probability 

1 49 18 33 0 24,340 21.8% 22,906 

2 35 28 31 6 1276 2.3% 30,063 

3 14 52 32 2 827 1.9% 27,099 

policies, the present value (PY) of the costs of funding is lower. Moreover, the present 
values of remedial contributions to be made when the static policy is pursued are 20 to 60 
times as high as those that are associated with the dynamic policy from the ALM model. 
In order to assess the extent to which the results from the ALM model are due to its 
dynamic character, the results have been compared to results from a model that makes 
optimal time dependent and state dependent decisions, taking into account a horizon of 
one year. This comparison indicates that the results from the ALM model are largely 
determined by its dynamic character. 

The computational results which are presented in more detail in chapter 7, provide the 
following insights with respect to the ALM approach presented in this monograph. 

1. Dynamic ALM strategies lead to current decisions that are different from decisions to 
be made when following a static policy. 

2. In comparison to the static models, the employment of the ALM model has resulted 
in strategies of which the costs of funding are lower, the probabilities of underfunding 
are substantially smaller and the magnitude of deficits, reflected by the costs of remedial 
contributions, has been reduced dramatically. 

3. The favourable outcome of the comparison of policies determined by the ALM model 
with policies determined by static decisions, are to a major extent due to: 

- the fact that probabilities of underfunding at intertemporal points in time as well 
as at the planning horizon are endogenous to the model and have been modelled 
explicitly, and 

- the dynamic character of the ALM model which enables the policies to react to 
situations that have emerged at the time of decision making and to reflect a correct 
trade-off between their longer term effects and their short term effects. 
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1 Introduction 

In the last decade a new class of models was proposed for aggregate production planning 
deviating from more traditional models both in the performance criterion used as in the 
modelling approach taken. Typically, traditional models taking into account capacity re­
strictions in order to support decision making in production planning are deterministic 
cost models formulated as a mathematical program. Examples of this modelling approach 
are the Economic Lot Sizing Problem (ELSP), the Capacitated Lot Sizing Problem (CLSP), 
the Continuous Setup Lot sizing Problem (CSLP) and the Discrete Lot sizing and Schedul­
ing Problem (DLSP). A review of these models is given by Salomon [9]. In the newer 
approach, in stead of the total average costs, manufacturing lead time is considered as 
performance measure and concepts of queueing theory are used to introduce stochasticity 
into the planning models. Karmarkar [4] was one of the first to advocate these stochastic 
lead time models. Generally, three basic motives can be distinguished that ground this 
new approach: 

• The performance criterion: costs versus physical measures 
The lion's share of all models proposed to support tactical production planning are cost 
models. Time-phased production quantities have to be determined in such way that 
the total costs are minimized. Apart from the physical decision variables, production 
quantities and workforce (time), such models need values for parameters as the cost of a 
setup and the cost of holding one item one time unit in stock. It practice it is difficult to 
determine appropriate values for these cost factors in an unambiguous way. For instance, 
the setup cost factor often is used to express the costs of capacity restrictions (non-zero 
setup times). As Karmarkar [4] states, these costs cannot be considered fixed, because 
they are dependent on the current state of the manufacturing system, for instance the 
work load. Because physical measures as the manufacturing lead time or the total 
amount of work-in-process are a direct consequence of capacity restrictions, they can be 
considered as alternative measures of manufacturing performance. 

• The modelling approach: Deterministic versus stochastic models 
Most aggregate production planning models are deterministic models. These capaci­
tated models consider a bottleneck in the production chain to construct an appropriate 
production plan. A typical property of constrained deterministic models is that the 
constraint is allowed to be binding, i.e. all time available for production can be used for 
setups or product transformation. However, at high levels of utilization, uncertainties in 
the job arrival process and the production process will result in congestion. In practice 

This paper is a summary of the thesis 'Lead Time Performance in Manufacturing Systems 
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the long queueing delays resulting from these congestion phenomena frequently can be 
observed. In contrast queueing models can account for the queueing delays ;uid the 
queueing inventory. 

• Competitive advantage: Price versus time 
Traditionally, the price and quality of a product had the major impact on its competitive 
advantage. However, in the last decade time became a competitive weapon (Stalk, [10]). 
For all kinds of make-to-order businesses, the advantage of quick delivery will he obvious. 
In addition, as the Japanese successes in the late eighties showed, the time-to-market 
can be of overriding importance with regard to the success of product innovation. 

2 Lead time as performance criterion 

The recent reversal of managements perception of long manufacturing lead times from 
a necessity to resolve conflicts between various jobs requiring the same resources, to a 
daemon that can affect a firms competitive position seriously, can be regarded as a drive 
to manage lead time more explicitly. Several advantages of considering lead time as a 
measure of manufacturing performance can be mentioned: 

• Manufacturing lead time will be the determinant of a firm's profitability and market 
share in a time based competition environment. 

• Short manufacturing lead times allow for a quick response to changes in customer de­
mand. Demand forecasts have to cover a shorter time horizon and in this way the 
probability of schedule changes decreases. 

• A decreased time-to-market for product innovations gives a firm the great opportunity 
to offer technically more sophisticated products. In an early stage a large market share 
can be picked and possibly product standards can be dictated to competitors. 

• Shortening lead' times will decline work-in-process inventories ('zero inventory') and 
stimulate a high inventory turn-over rate. Eventual product deterioration (perishability, 
fashion) is driven back. 

• Shorter lead times will reduce the a.mount of safety stocks needed in make-to-stock pro­
duction more than proportionally. The amount of safety stock depends on the variance 
and the mean values of the lead time and the demand rate. In general, a decrease in lead 
time will go along with a decrease in the lead time variance. Both effects will reduce 
the amount of safety stock needed. In addition, a smaller average lead time requires a 
shorter horizon of demand forecasts. Demand estimates become worse for longer plan­
ning horizons, so by shortening the lead time the variance in the demand estimates due 
to forecast errors decreases. 

• In for instance MRP-systems, safety times in stead of safety stocks are often used as 
a buffer against forecast errors. These safety times engender early production order 
releases as protection against variance in completion times and will in this way increase 
work-in-process inventory. In correspondence with determining safety stocks, lead time 
reduction will lead to shorter safety times. 

• The length of the cash flow cycle is decreased when the time between the expenditures 
for resources and material and the revenues is shortened. 

• The delay between fabrication and inspection is shortened, allowing for a quicker re­
sponse to quality problems. 

• Lead times easily fit within the MRP-context. Taking lead times as performance measure 
will enable joint decision making on lot sizes and lead time values for the construction 
of an MPS. 
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• Lead time data are elementary for due date setting. The variability in lead time estimates 
causes a trade-off between setting a close due date that may not be met, and a due date 
far away that will cause an increase of average work-in-process. 

• By taking lead time as performance measure at a tactical decision stage a more direct 
hierarchical approach is obtained: sequencing and scheduling rules are based on lead 
time related quantities as completion times and due dates. 

• Lead time is an easily understood performance measure for shop floor workers. Their 
daily observations on problems that slow up the throughput rate can help to improve 
the performance of the production process. 

Although some factors mentioned above cannot be quantified accurately, it may appear 
that lead time related measures can be appropriate measures of manufacturing perfor­
mance. 

3 The modelling approach 

In the thesis a single machine in a job shop is considered. Different products have to 
be processed on the machine and change-overs will be needed between production of the 
different batches. Batches arriving at the production facility queue up in front of the 
machine when the machine is busy. The waiting batches are processed in the order they 
arrived. A batch will be transported to the next production stage not until the whole 
batch has been processed. 
The manufacturing lead time of a batch at the single machine will be measured from the 
time the batch arrives at the production facility until the whole batch has been processed 
and released for transportation. 

In modelling this situation, the basic modelling principles proposed by Karmarkar, Kekre 
and Kekre [6] are followed. The production facility is modelled as a queueing system. 
Considering a queueing system additional assumptions have to be made on: 

• The arrival process 
It is assumed that the interarrival times of the batches at the production facility are 
negative exponentially distributed. The basic idea to substantiate this assumption is 
that the superposition of a large number of independent batch arrival streams can be 
approximated by a Poisson process. 
When the arrivals at the processing center originate from a large number of overlapping 
and uncoordinated product flows this assumptions is not unreasonable. In Chapter 6 of 
the thesis the justification of this assumption in various situations and its influence on 
model outcomes, is discussed in more detail. This assumption of Markovian arrivals is 
common in multi-item queueing models of production facilities, see Axsiiter and Olhager 
[1], Cohen and Lee [2], Jonnson and Silver [3], Karmarkar [4], Karmarkar, Kekre and 
Kekre [5], [6], Zipkin [13]. 

• The service process 
In order to avoid superfluous complexity both the item-dependent setup times and the 
item-dependent processing rates are taken constant. It is assumed that every time the 
processing of a new batch is started a setup is executed, even when the next batch 
occasionally is of the same type as the one just finished. 

• The selection discipline 
The jobs in the queue are processed according to a First-Come, First-Served (FCFS} 
rule. It should be noted that Last-Come, First-Served (LCFS) and the Random Order 
(RO) rule will result in the same average queueing delay although the total distribution 
of the queueing delay will differ in those three cases. 
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We take T; as the total average lead time for item i, W as the average queueing delay, n 
as the number of item types,µ; as the demand rate for item i, p; as the processing rate 
for item i, T; as the setup time for item i, q; as the batch size for item i and q = 11, ... qn. 
For an M/G/1 queueing system the Pollackzek-Khintchine formula can be used to derive 
expressions for the average queueing delay and the average total lead time for item i, 
respectively: 

4 The analysis 

'°'n e.;. ( 2 2r· 1 2) 
L...ti 91 T; + ~q; + j;fqi 

W(q) = . ' 
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In Chapters 3 of the thesis the expression for the average queueing delay is analysed. This 
chapter sets out to find analytical expressions for the optimal batch sizes and the minimal 
expected queueing delay that results from optimal batching. Finding a wieldy, simple 
expression for the minimal expected queueing delay as a function of parameters is difficult 
for the general multi-item case. Yet, this is required if one wishes to study the impact of 
changes of problem parameters on the minimal expected queueing time in an analytical 
tractible manner. In chapter 3 a lower bound on the minimal expected queueing delay is 
derived that: 
• is a wieldy, simple algebraic expression in input parameters such as setup times, pro­

duction rates and demand rates; 
• is shown to be very tight through extensive numerical experiments; 
• is shown to share with the minimal expected queueing delay several structural properties 

concerning the dependency on setup times and concerning capacity expansion; 
• in particular captures the concave dependency of the expected queueing delay on setup 

times; 

The ingenuousness of these expressions in the setup times and utilization levels of the 
different items, allows an interpretation in terms of product variety and product flexibility. 
In addition, it is shown how this bound can be used as an approximation of the minimal 
expected queueing delay in order to support decision making on setup time reduction and 
capacity expansion. 

The final part of Chapter 3 is devoted to the setup utilization ( the fraction of available 
production time spent on executing setups) as production planning and control tool. A 
characteristic feature of the model introduced in Chapter 3 is that at optimal batch sizes 
setup utilization is maximal for the case that the setup times for all items are equal. This 
model property is used to derive a simple rule-of-thumb that gives the maximal setup 
utilization, see also Kuik and Tielemans [12]. In practice, these kind of rules can be used 
to guide multi-item batching decisions. 

As is shown in the definition of T; given above, the total manufacturing lead time of a 
batch is computed by adding the setup time and the real processing time of a batch to 
the queueing delay. In this way an item type dependent total lead time is obtained. The 
average lead time can be defined by taking a weighted average over the item types. The 
weighting factors can be defined on the basis of total work-in-process inventory or total 
inventory cost considerations. In Chapter 4 of the thesis, the average lead time is taken 
as performance criterion for batching decisions. For the case that the setup times and 
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the quotient of the weighting factor and the productive utilization, are item independent, 
exact closed form analytical expressions can be found. However, when these conditions 
do not hold one has to rely, again, on approximation techniques. Two approaches are 
compared. In the first approach, the results of Chapter 3 are used by quantifying the 
influence of a batching decision based on queueing delay minimization on total average 
lead time performance. As can be expected this approach is satisfying for high levels of 
total utilization but won't suffice for low utilization levels. The second approach uses the 
relative insensitivity of the optimal solution for small changes in the total setup utilization, 
to derive an approximate expression for the minimal average lead time. On the basis of a 
large numerical test it is shown that this approximation performs well for high as well as 
low utilization levels (average deviation less than 0.5 %). 

Especially in due date bargaining and safety stock determination, also the variability of 
the manufacturing lead time will be important. In Chapter 5 of the thesis, it is studied 
how batch sizes influence the variance in the lead time for the case of identical items. The 
difference between the batch size that minimizes the variance on the one hand and the 
batch size that minimizes the queueing delay or the time in system on the other hand 
can mount to 100% for extremely low levels of utilization but disappears asymptotically 
for utilization levels approaching 1. The difference between the minimal variance and the 
variance that occurs at a batching decision based on time in system analysis, diverges for 
a total utilization level approaching zero. The analogue difference applying a batching 
decision based on queueing delay minimization is bounded to 18.5% for a utilization level 
approaching zero. For an increasing utilization level, the difference between the minimal 
variance and the variance at batch sizes that minimize the queueing delay or the total time 
in system, decreases and asymptotically disappears. 

Chapter 6 discusses one of the basic assumptions of the model. As was stated above in 
a queueing model an assumption has to be made on the arrival processes of the batches 
at the production facility. In Chapters 3-5 of the thesis, it is assumed that the batches 
arrive according to a Poisson process. Although this assumption is quite common and 
is reasonable in many cases, instances may occur where this assumption is less proper. 
In Chapter 6 the single item case is considered, where the batches arrive according to an 
Erlang distribution with the batch size as shape parameter. A well-performing closed form 
analytical approximation is derived for the total time in system that can be used easily to 
calculate the optimal batch size and the minimal lead time. The difference in outcomes 
between the models using the Erlang and the Poisson arrival pattern is huge, see also 
Tielemans and Kuik [12]. 

5 Discussion 

Of course, some shortcomings of the models studied in the thesis can be identified. Future 
research is needed to investigate the influence of these limitations on the model outcomes 
and to determine the urge of model adaptations or extensions. 

In a dynamic environment with rapidly changing demand patterns or product mixes, the 
applicability of stationary queueing models will be restricted. In literature a very small 
amount of studies can be found that consider a queueing system with a time-dependent 
arrival rate. However, these studies do not give (approximate) expressions for the time­
varying queueing delay. So, simulation studies will be needed to check the performance 
of the stationary queueing models in situations with time-varying demand, for instance 
seasonal demand. 
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The results in Chapter 6 indicate, by studying a simple single item case, that the modelling 
of the job arrival process has a major impact on the model solutions. So it will be interesting 
to investigate also for the multi-item case the impact of different job arrival processes on 
model outcomes. To this end simulation studies can be executed, or the heavy traffic 
approximation for the waiting times in an GI/G/1 queueing systems can be used as a 
basis for an -analytical study. 

As already was mentioned above also the selection discipline that determines which job will 
be processed after the machine becomes idle, influences the average queueing delay. So also 
the relationship between the minimal average queueing delay and the different selection 
disciplines is an interesting research topic. Especially, it will be valuable to extend the 
study of Kekre [7], in which the impact of a look-ahead selection rule on the average 
minimal queueing delay is investigated for the homogeneous items case, to the case of 
heterogeneous items. 

The models discussed so far take into account only a single capacity restriction, namely 
the total available production time. However, in practice, also restrictions on, for instance 
tool- or manpower availability can occur. These additional constraints certainly will erode 
the lead time performance. It will be interesting to get insight into the order of magnitude 
of this reduction in performance. 
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1. Introduction 

Almost any system or technical installation in our society is subject to failure of one 
or more of its components. Failures may severely affect system performance. Nowadays 
people become more and more convinced of the fact that the influence of failures on system 
performance is not just to be taken for granted. By adjusting system configuration, by 
introducing preventive maintenance schemes, and by improving component quality, major 
improvements on system performance can be achieved. 

To assess the impact of various design proposals, or to choose the best from a number of 
proposals, systematic quantitative methods are needed. Since component failure behaviour 
is random in nature, stochastic mathematical models have been developed for this purpose. 

This chapter contains a summary of the authors PhD thesis, which is a further contribution 
to the development and refinement of such models. The remainder of this chapter contains 

• An example illustrating the importance of mathematical modelling, 

• An description of the main drivers of the performance of repairable systems, and 

• An overview of the results presented in the thesis. 

2. Importance of Mathematical Modelling 

The importance of mathematical modelling of repairable systems is illustrated by a simple 
example showing the impact of redundancy on the availability of a production system. 
Consider a single-machine system which has to provide service continuously. The machine 
is subject to failure, and the average lifetime of the machine is assumed to be equal to ten 
months. Repair of a broken machine takes two weeks (half a month) on average. Now, the 
fraction of time during which this single-machine system is not available to provide service 
(the unavailability of the system) is equal to 0.5 / (10 + 0.5) * 100 = 4.8 percent. 

This chapter contains a summary of the author's PhD thesis "Performance Analysis of Repairable Sys­

tems", 1993, Tilburg University, ISBN 90-9006121-5. The research has been carried out at CW! (Centre of 

Mathematics and Computer Science), Amsterdam (1988-1993), and at Koninklijke/Shell- Laboratorium, 

Amsterdam ( 1990-1991). 
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Compare this system with a so-called 1-out-of-2 cold standby SYJ!tem: a second machine is 
acquired, which is put into operation as soon as the first .mRChine fails and is sent to the 
repair facility. So, the overall system stays 'up' at failure of the :first machine. At repair 
completion, the :first machine takes the standby position .until the ,second machine fails.and 
is sent to the repair facility, and so -On. The system breaks down only when both ma.chines 
are in a failed condition. 

It is clear that the system with redundancy performs better than the system without re­
dundancy. However, the remaining question is how muck bett,er doe'$ the second system 
perform r Assuming that life and repair times are exponentially distributed, further math­
ematical analysis shows that the average length of a system up-period is increased from 
10 months to 210 months. The unavailability of the system hi now equal to 0.5 / (210 + 
0.5) * 100 = 0.2 percent. This implies a reduction of the llllaVllil:ability of more than 95 
percent! 

Mathematical models are an excellent tool for comparing various design alternatives and 
their impact on system performance. This statements holds even in situations where it 
is difficult to obtain precise estimates of the distributions of life- and repairtimes. For 
instance, in our example, even if the average lifetime of a component deviates strongly 
from ten months, the model will still provide us with the insight that addition of a second 
machine enormously improves the performance of the system. 

3. Drivers of Performance of Repairable Systems 

A repairable system is defined as: 'a system which, after failure to perform at least one of 
its required functions, can be restored to performing all of its required functions by any 
method, including full system replacement'. 

One or more performance criteria should be selected to determine how well the system i8 
functioning. The system may be judged with respect to production throughput, effective­
ness, reliability, availability, safety, or some general cost/reward function. The reliability of 
a system is defined as the probability that the system will function without failure during 
a certain specified period of time. The availability of a system is the probability that the 
system is functioning at a certain point in time (point availability), or the fraction of time 
during which the system is functioning over a certain time interval (interval availability; 
the system is allowed to be non-functioning once in a while). 

System performance is mainly driven by: 

• Failure mechanisms, 

• System configuration, and 

• Maintenance. 

3.1. Failure mechanisms 

During operation components may fail or, more generally, the system may enter a certain 
state of degradation. Failure mechanisms can be broadly grouped in overstress mechanisms 
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and wearout mechanisms, because failures are due to a complex set of interactions between: 

• Stresses to which the system is exposed, either externally or internally, and 

• Materials / elements of the system. 

An obvious way to improve system performance is by replacing components by more reli­
able (more expensive) ones. 

3.2. System configuration 

System performance may be even more strongly improved by adjusting the configuration. 
In our example we have seen already the great impact of redundancy. Similar improvements 
can hardly be obtained by installation of better components, or by application of preventive 
maintenance policies (however sophisticated such policies may be). 

Various configurations of the components of a system exist. The most familiar ones are: 
series, parallel redundancy, and standby redundancy. Combinations are possible as well. 

Series configuration can only be used in a situation with highly reliable components: the 
entire system breaks down as soon as one of the individual components breaks down. 

Parallel redundancy is often applied in process industry, where several machines perform 
the same task. At breakdown of one machine, the remaining machines will take over the 
failed machine's contribution, such that the entire production process will hardly ever be 
fully disturbed. Another example of parallel redundancy is provided by the engines of 
an airplane. If one engine fails, the airplane will still be able to safely reach the ground 
operated by its remaining engine(s). 

Standby redundancy is often applied to systems which have a critical function to their 
environment. Such systems are not allowed to be in a down-state for a substantial period 
of time, because of safety or continuation reasons. One should think of power generators 
in a hospital, cooling-water pumps in a nuclear power-station, critical computer systems 
(e.g. in a space shuttle), and brakes of a high-speed train (TGV). 

Systems with redundancy are much more reliable than systems without redundancy, be­
cause the system will only break down when its components are in a failed state all at the 
same time. 

Note that the incorporation of redundancy should be considered mainly during the design 
phase of the system. It will be more difficult and expensive to consider installation of 
redundant components later on. 

3.3. Maintenance 

A maintenance policy determines parameters such as the intervals ( measured in operational 
or calendar time) between system inspections, the age of the components at which they 
have to be replaced by new ones, and the critical value of some prognostic characteristic 
of the interior state of the system. 
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In the example the simplest type of maintenance has been applied, which is corrective 
maintenance: repair is carried out after failure of a component. The only direct way to 
improve system performance with respect to corrective maintenance is by adjusting the 
repair rate. 

Instead of waiting for components to break down, one might use preventive maintenance: 
by replacing or revising components before failure, one might prevent a system from sud­
denly breaking down, thereby avoiding high corrective maintenance costs or long and 
expensive down-periods. Preventive maintenance of single components may be time-based 
(e.g. periodical), age-based (e.g. if component lifetime exceeds a certain threshold value), 
or condition-based (e.g. if too much vibration is observed). In some situations it is cost­
effective to apply group-maintenance. For instance, at failure of a single light-bulb in a 
large building, this bulb is correctively replaced by a new one. However, since it is unde­
sirable (economically or organizationally) to meet with too much corrective replacements, 
one might decide to replace all bulbs by new ones either if the number of corrective replace­
ments in a fixed time period exceeds a certain threshold value, or at a regular time-base. 
Another example of group maintenance is found when an entire (sub-)system is replaced 
at first failure of one of its components. Here one might think of a gear-box of a crane. At 
failure of only a minor bearing, which takes quite some time to replace, one cannot afford 
to keep the crane out of operation for such a long time. Therefore the entire g~ar-box of the 
crane is replaced by a new or revised one. The gear-box is moved to a. repair shop where 
the failed bearing is replaced (possibly together with some other components subject to 
wear) - not affecting the functioning of the crane. 

Prev,entive maintenance is usually carried. out during planned time intervals on a. regular 
time base (e.g. during a yearly system shutdown: campaign type maintenance). Addition­
ally, it is often applied during sudden breakdown of the system ( opportunity maintenance). 

Usually, for a given system configuration, one tries to choose the maintenance policy such 
that the system performance is optimized. However, there should not be a strict separation: 
during system design phase (when the configuration isdetermined) the future maintenance 
scheme should be taken into account already. 

4. Overview of the Thesis 

We have analyzed models with various assumptions on failure mechanisms, system config­
uration and maintenance policies. 

4.1. Parallel Queueing Systems with Serv;er Breakdown and Repair 

In Chapter 2 we present a queueing model that can be used. to study the influence of 
machine breakdown and limited repair capacity on the performance of a system that has 
to provide service continuously.We consider a system consisting of a number of stations, 
each serving its own stream of customers. The servers of the stations are subject to 
breakdown. Broken servers are repaired by a joint repair facility with a limited number of 
repairmen. With this model various design issues can be investigated such as the number 
of repairmen that is needed to maintain a pool of machines, or the number of machines 
that can be assigned to a certain crew of repairmen. 
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Our model is a two level combination of reliability theory and queueing theory. At level 1 
the servers and the repairmen constitute an ordinary machine repair model (a well-known 
model in reliability theory). At level 2 customers are served by servers that are subject 
to breakdown. Interaction between broken servers at the repair facility (level 1) influences 
the behaviour of the queue lengths at the various stations (level 2). 

An exact matrix-geometric solution is given for the steady-state distribution of the num­
ber of customers present at a particular station. The matrix-geometric method has great 
modelling flexibility and allows for several generalizations of the model. Since the matrix­
geometric method may become rather time- and memory-consuming, stochastic decompo­
sitions are employed to obtain simple and accurate approximations. 

From sensitivity analysis we conclude that it is important to take down-periods of the 
server explicitly into account, even when approximating the model. Furthermore, the 
queue length of a service station subject to server breakdown is heavily influenced by the 
speed at which customers pass this station, whereas the queue length of a station without 
server breakdown is not ( customers move faster when both interarrival and service times 
are shorter). 

4.2. A Two-Machine Repair Model with Variable Repair Rate 

Chapter 3 considers the optimal control of the repair rate for a two-unit standby system 
with one repairman. The repairman works either at a fast or at a slow rate. In the 
literature, the direct control of the repair rate in machine repair models is considered by 
several authors. They all assume that the repair rate depends only on the number of 
broken units. We assume the repair rate to depend on the actual amount of work that 
is to be performed as well. The model is formulated as a semi-Markov decision process. 
From the corresponding optimality equations conclusions are derived on the structure of 
the optimal policy which minimizes long-run average costs. If there are no fixed costs 
associated with overall system breakdowns, then the optimal policy is a two- dimensional 
control limit rule (also called threshold policy). If fixed costs are incurred every time the 
system breaks down, then the optimal policy is not necessarily of control limit type. This 
is illustrated by an example where a four- region policy is the optimal one. Furthermore, 
we present several performance measures for this system controlled by a two-dimensional 
control limit rule. 

4.3. A Two-Unit Standby System with Markovian Degrading Units 

In Chapter 4, again we study a two-unit standby system with a single repair facility. How­
ever, there is much more detail in this model as compared to the model in Chapter 3. 
Instead of two simple units which are either functioning or non-functioning, we consider 
two Markovian degrading units: the units themselves can be considered as complex fault 
tolerant configurations consisting of many (not necessarily identical) components; under 
the absence of repair the condition of the working unit deteriorates according to a con­
tinuous time Markov process. Next to corrective repair of a unit (after failure) we have 
the option of preventive repair (before failure). Repair times depend on the actual state 
of the unit. Preventive repair on the working unit is carried out according to a control 
limit rule. For several variations of this model we study the distribution of the lengths 
of the up- and down-periods of the system, by applying a regenerative approach and by 
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using results from Markov decision theory. Such measures give much more information 
about the performance of a system, than average measures s:uch as the long-run average 
availability. Apart from the cold standby structure the emphasis on tt'ansient analy!lis is 
a major point of difference with existing literatw-e. 

4.4. Bounds for the Interval Availability Distribution 

Chapter 5 considers the numerical EWaluatioo of the probability distribution of the interval 
availability of a two-state single-rompooent system. This distribution is bown to be given 
by an infinite summation of convolutions. In Chapter 5 we present bOffllds that can be used 
to truncate the infinite summation properly. We also present computational schemes for 
the case that both the lengths of up- tmd down-periods are distributed according to mixed 
Erlang distribution functions. The mixed Erlang distribution is not fl'illy determined by its 
mean and variance. Therefore it is a useful distribution for sensitivity analysis. The interval 
availability distribution of a single-component system can be used to obtam approximations 
of the interval availability distribution of more general systems, for mstance the ones that 
are studied in Chapters 3 and 4. 

4.-o. Transient Failure Behaviour of Repairable Systems 

Chapter 6 contains the results of the work done during a sill-month visit of the author to 
Koninklijke/Shell-Laboratorium, Amsterdam (KSLA). In this chapter we investigate the 
failure behaviour of repairable systems over a finite time interval, as well as the influence 
of various preventive maintenance policies. Due to a great difference in time scale we 
ignore repair times. The repairable sys'tem is modelled as a stochastic point proces&. Our 
approach is mainly based on techniques from renewal theory. The failure behaviour is 
studied by counting the number of failures and replacements that occur during finite time 
intervals. Since with each component failure or preventive replacement a certain amO\mt 
of work is related, the techniques presented in this chapter are of direct use fort he analysis 
of maintenance workload. 

The results of this chapter provide major advances in analyzing repairable systems, pat­

tk1:1larly by avoiding the usual steady state assumption and by incorporating the effects, of 
preventive maintenance. The techniques presented in this chapter have been implemented 
in a PC-software package (EMMA) that has been developed at KSLA for the systematic 
assessment of minimum manning le~lis, for existing and future oil-production installations. 
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OR-consultants at CQM: Make Optimization Work! 

Dick den Hertog and Benjamin Jansen 
CQM b.v., P.O. Box 414 

1 Introduction 

5600 AK Eindhoven 
The Netherlands 

E-mail: denhertog@cqm.nl 
E-mail: jansen@cqm.nl 

Make optimization work. That is the mission we stand for as OR-consultants at the Center 
for Quantitative Methods (CQM b.v.). After obtaining a PhD-degree in mathematics, and in 
the possession of the LNMB certificate, we both decided for an OR-job strongly emphasizing 
applications of OR. We did, and do, this in the belief that OR models and techniques are 
helpful in a lot of situations, for a large diversity of customers and organizations. This 
diversity, and the strong focus on OR, led us to CQM. In our contribution to this book we 
like to describe our life as OR-consultants at CQM (Section 2). We will give a sketch of the 
typical projects we are carrying out, where OR is really required to help solve the customer's 
problem (Section 3). Our theoretical academic background (including the LNMB courses) 
is indispensable and of great value for our consultancy practice (Section 4). Since several 
years, discussions have been going on the value of OR in business applications. We will give 
examples to show the great value worth of OR in practice! Important positive developments 
will be pointed out. It is now the challenge both for OR-practitioners and OR-academics to 
exploit these chances (Section 5). We will end with some words of thanks to LNMB. 

2 Center for Quantitative Methods ( CQM) 

CQM, located in Eindhoven, is a consultancy bureau that provides services to industry and 
government in solving technical and organizational problems. In most cases quantitative 
models and methods from the disciplines statistics and OR form the base of the CQM 
contribution. 

CQM was founded in 1979 as a consultancy bureau within Philips. Since 1993 CQM is 
independent of Philips by a management-buyout. At this moment CQM employs a team 
of approximately 40 professionals with a scientific background in statistics and OR. They 
consider the conversion of high-grade knowledge and experience in practical results as a 
challenge. CQM aims to be a top bureau in Europe in its own field and with its specific 
approach. During the past 18 years, CQM gained experience in over 1. 700 projects. CQM's 
projects take place in research, development, production, distribution, service, finance a.nd 
marketing. 

317 



3 Some of our typical OR-projects 

The focus of the OR-group of CQM is on the following four, what we call, Product Market 
Combinations: 

• vehicle routing and container management 

• time-tabling 

• design optimization 

• strategic physical distribution. 

In all these areas we try to focus on the OR-contribution as much as possible. Our 
mission is summarized in the slogan "Make Optimization work". We are experts in making 
optimization models and algorithms. However, it is not our prime objective to make a 
model that has nice theoretical properties, or for which we can design a polynomial time 
(approximation) algorithm. If possible, this is fine of course. However, the most important 
task we stand for is to develop a model that incorporates all the relevant practical aspects of 
the problem in such a way that a solution to the model is also meaningful in practice. Given 
this constraint, we try to make an algorithm that performs as good and as fast as possible. 
However, given the short time span most customers like their problem to be tackled it is 
often not possible to develop and implement the best algorithm we can think of. A trade off 
between quality and invested time has to be made each time. 

"Make optimization work" also means that we use a diversity of techniques from opti­
mization, without having one favorite method we solve all problems with. The knowledge of 
and experience in how to apply linear and nonlinear optimization, local search, tabu search, 
simulated annealing, genetic algorithms, neural networks, has evolved in our studies, cus­
tomer projects, internal projects, keeping up to date with scientific literature, and contacts 
with universities and research institutes. 

Of course in many projects the optimization part itself is not sufficient for a successful 
project, but we avoid carrying out work which does not fit with our OR-expertise. For such 
work other experts can be found, who can do it faster and better. To give some examples: 

• in principle we will not develop (user) interfaces ourselves; 

• we do not build database applications; 

• we will not do the general logistics or management consultancy. 

A consequence of this choice is that we often collaborate with third parties. 
To give some examples of our projects: 

• Optimization module in EVO Ritplan package. The Dutch 'Ondernemersorganisatie 
voor logistiek en transport' (EVO) is a branch organization for companies involved 
in transportation, with about 40000 members in The Netherlands. Some years ago, 
its IT-department developed an administrative package to support the planning and 
routing of vehicles. At a given moment EVO asked us to develop an optimization 
module, which was missing up till then. The module should be able to solve vehicle 
routing problems with a heterogeneous fleet, various capacity constraints, multiple time 
windows, and many other constraints. We could focus on the speed and efficiency of the 
optimization-algorithm, since the user interface was already developed. Moreover, and 



not less important, EVO has a good insight in all the practical issues and constraints, 
and a wide network of prospective customers! In this way a very effective tool has been 
developed, which is used by many companies in the Netherlands. 

• Customized vehicle routing planning software For a very large distributor with a spe­
cial vehicle routing situation, a customized vehicle routing planning system has been 
developed in close cooperation with a software company. Again, we focused on the 
modeling and algorithms, the software company focused on the user interface, the 
database, the interface with existing databases, and so on. Moreover, the question was 
not whether we could build such a system, but whether we could build it in 6 weeks. 
The client was very satisfied with the result, and was surprised that we were able to 
develop such a system in a relatively short time. 

• Automatic time-tabling In the same way as the EVO Ritplan package, we recently 
developed an optimization kernel for the school time-tabling software package Roost­
erfact, which is in use at about 350 secondary schools in the Netherlands. For these 
schools just an automatic time-tabling routine would have been of little value, for 
instance since links with administration-systems are required. 

• Strategic distribution project together with a logistics consultancy bureau. Recently, 
a project has been carried out for a multi-national to improve its distribution layout 
and way-of-working. In this project we carried out the quantitative modeling work, in 
close cooperation with logistics consultants from another bureau, who looked at the 
qualitative and organizational aspects. This cooperation appeared to be extremely 
fruitful, since our expertises are complementary. 

• Design Optimization projects In recent years many projects have been carried out 
in the area of Design Optimization, where we improve and speed up the design of 
new products and processes. The techniques underlying these applications are from 
nonlinear programming and statistics. Naturally, a cooperation between the statistics 
and OR departments of CQM takes place. 

In all projects we focus on the OR-aspects of the problem as much as possible. This has 
several advantages. 

• We are experts in OR, not in making interfaces or in logistics, to give some examples. 
Working with a multi-disciplinary team with experts from these diverse fields will result 
in optimal quality. 

• After finishing the project it is clear for the client what our special OR-contribution 
is. In the future he can easier detect when our OR-assistance is necessary for him. 

• By concentrating on the OR-contribution in a project, we can concentrate on following 
the new OR-developments. 

• Cooperating with other consultancy firms or IT-companies often makes the acquisition 
process easier. 

• It is easier to get highly qualified OR-employees, since the contents of the projects are 
real OR! 
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4 The advantages of a profound academic background 

Before working as consultants at CQM, we both have carried out research on a rather 
theoretical subject ("Interior Point Methods"). Still we believe that this profound theoretical 
background is indispensable for our consultancy work. Not that we use the specific specialist 
knowledge we built up on the PhD-subject, but we use a lot of other things we learned during 
our PhD-period: 

• an open mind for getting acquainted with and/or developing new ideas and techniques 

• a broad knowledge of available models and methods 

• a wide entrance in the literature, as well as a network in universities. 

Although some people told us (and this is told hitherto) that "in practice you do not need all 
these difficult OR-methods, your common sense is enough", we discovered that the contrary 
is true! We can say that almost in each project these "difficult OR methods" were necessary, 
and were essential in the improvements we established. Of course this is also due to CQM's 
focusing on the OR-core ("make optimization work"). 

In this context also the LNMB courses were of great value for us. In this way also 
the OR-fundamentals for other OR-fields than the subject of the PhD-study were learned. 
Moreover, we got contacts with OR-researchers and OR-practitioners, which are very useful 
in our consultancy practice. 

To say it in other words: we do not see our theoretical research in the past and our 
current practical consultancy work as two different and separated worlds. Of course there 
are differences, but the one cannot breathe without the other. 

Another advantage of a profound OR background is that because of having an easier 
entrance in the literature and a good overview of the OR field and many contacts with 
OR-researchers, we are able to find the right track of solution at an early stage, and avoid 
developing (parts of) models and methods which have already been developed. 

However, it is true that some other extra capabilities are necessary for applying OR­
consultancy successfully for customers. Communicative skills and a feeling for practical 
solutions are also essential. But, in our view starting with a profound analytical OR back­
ground is more important than with a good education in consultancy. If the basic attitude 
is OK, the consultancy capabilities can be acquired by "learning by doing" and by courses. 
However, learning the OR-theory and methods while working as a consultant is very difficult. 

5 Challenges for the OR community 

In our daily consultancy practice we observe that OR becomes more and more important. In 
our view the most important reason for this are the developments in Information Technology 
(IT). Both on the hardware as on the software side rapid developments have been going on 
in the past 10 years, and is still in progress. This has both direct and indirect implications 
for OR. 

The development of information systems in many companies nowadays has several effects 
that are important for OR. Since a lot of information is available in such systems, people 
are asking for added value. They want more than just the administrative, controlling and 
accounting functionality of the information system: data should become information, and 
information should be used to optimize processes. Optimization, data warehousing, and 
decision support are becoming more and more important. On the other hand, an argument 
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often used against OR that its models cannot be fed with realistic data, has become weaker 
due to the availability of huge amounts of data. This also makes it easier to use OR in 
the decision support on tactical and strategic level, as one of the conditions for OR-success 
( data) is being fulfilled. To give an example: OR is more and more used for determining the 
network layout and the strategic physical distribution. The need for a quantitative approach 
is recognized by customers as well as management consultants. The OR contribution is really 
worthwhile since we can use detailed information on orderline level, instead of aggregate 
estimates. 

Developers of standard information systems also recognize the need to improve their sys­
tems by incorporating functionalities that use the data. Planning modules, routing modules, 
rostering functions are being included. An important example are the developments in the 
Enterprise Resource Planning software, playing a very important role in both large and small 
size companies. The producers (especially the larger ones as SAP, Oracle and Baan) now see 
the value of OR, and try to implement OR functionalities in their software. These are not 
just add-ons that are nice to have, but fundamental and essential to have. We think that 
this development will give a great impulse to OR-practitioners and researchers. 

Evidently, faster personal computers having more internal memory and disk space have 
opened the way to solving larger OR-models much faster than before. For instance, solving 
realistic vehicle routing problems with many practical constraints (multiple time windows, 
heterogeneous fleet, various capacity constraints, etc.) can be done within minutes (example: 
1200 clients, 75 vehicles in 20 minutes). As a second example, scenario models can be fed 
with realistic data up to the level of orderlines. That this may require over 100MB internal 
memory makes clear that such models would be out of the question even a few years ago. 
Here we think that it is quite important that personal computers have these capabilities 
nowadays. Many people have such a computer on their desk, and are acquainted using it. 
This makes the acceptance of OR models much better, than when it has to be done on a 
'black box' as a main frame. Using computers every day have made people more accustomed 
to facts, numbers and statistics, which leads to a positive position towards quantitative, 
fact-based OR techniques. For developers of OR-models the introduction of user friendly 
optimization packages (e.g. AIMMS, AMPL) has made their job easier. The development 
time in OR-projects is shorter, more possibilities are available, user interfaces can be built 
quite easily. For users of OR-models, working with applications in one of these packages is 
very convenient. Also, in spreadsheet packages like EXCEL and Quattro Pro OR-algorithms 
have been included, and can sometimes be of much help. 

Playing a role in this lively environment is challenging for this. It is the task of the 
OR-community to convince (potential) customers that a quantitative approach adds value 
to business just as a qualitative approach. As well, it is a challenge to make automated 
planning and optimization modules not just nice to have, but to make them that useful that 
they become the core of planning systems. 

A good Public Relation for OR is especially now very important, since there are a lot 
of opportunities. We hope that in the near future more people (especially the managers) 
will know the capabilities of OR, when to use OR or when to call for an OR-consultant, 
just as now they know where and when to call for a management or a logistics consultant. 
This is also the drive of the Nederlandse Genootschap voor Besliskunde (Dutch Society of 
Operations Research) for their 'PRomotOR' activities. Examples of their activities are: 
publishing in newspapers, non-OR journals, magazines, and handbooks, etc. In this way the 
NGB tries to promote OR in the Netherlands. 

Also, we like to get more people involved: people in industry, researchers and students at 
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universities, but also very importantly students at secondary schools. For the latter, basics 
of OR are incorporated in their mathematics curricula, but we doubt that they are made 
clear that and how these techniques can be used many diverse practical problems. Recently, 
two price contests have been out in the Netherlands: material routing by NS, CWI and 
traveling salesman in New York by CMG, TUE and De Telegraaf. More of those initiatives 
are highly welcome. 

6 To LNMB 

To end our contribution we like to congratulate the LNMB with its 10th anniversary. We 
thank LNMB for its contribution to our OR-education through courses as well as workshops. 
For the first author an LNMB workshop on the role of OR in practice was a great stimulus 
to go for applying OR after finishing his PhD thesis. We hope LNMB will also be playing 
an active and constructive role in coming years and continue its activities for many years. 
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Abstract 

Semidefinite programming (SDP) is one of the fastest developing branches of math­
ematical programming. The reason is twofold: efficient solution algorithms for SDP 
have come to light in the past few years, and SDP finds applications in combinatorial 
optimization and engineering. In this short survey we show how SDP duality theory 
can be used to prove classical results, and review the development of interior point 
algorithms for SDP. 

1 Introduction 

One could easily be led to believe that the field of semidefinite programming (SDP) originated 
in this decade. A glance at a bibliography of SDP papers indeed indicates an explosion of 
research effort, starting around 1991. A closer look reveals that interest in this class of 
problems is somewhat older, and dates back to the 1960's (see e.g. (6]). A paper on SDP 
from 1981 is descriptively named Linear Programming with Matrix Variables (11], and this 
apt title may be the best way to introduce the problem. 

The goal is to minimize the inner product 

(C,X) := Tr (CX), 

of two n x n symmetric matrices, a constant matrix C and a variable matrix X, subject to 
a set of constraints, where "Ir' denotes the trace (sum of diagonal elements) of a matrix. 1 

The first of the constraints are linear: 

(A;,X)=b;, i=l, ... ,m, 

"Some authors prefer to use the term 'optimization' instead of 'programming'. 
1This inner product corresponds to the familiar Euclidean inner product of two vectors - if the columns of 

the two matrices C and X are stacked to form vectors vec(X) and vec(C), then vec(C)T vec(X) = Tr (CX). 
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where the A;'s are given symmetrix matrices, and the b;'s given scalars. Up to this point, 
the stated problem is merely a linear programming (LP) problem with the entries of X as 
variables. We now add the convex, nonlinear constraint that X must be symmetrix positive 
semidefinite, denoted by X t 0. 2 The convexity follows from the convexity of the cone of 
positive semidefinite matrices. The problem under consideration is therefore 

~n {Tr (CX) : Tr (A;X) = b; (i = 1, ... , m), X t O} 

The Lagrangian dual of our problem takes the form 

The weak duality theorem therefore implies that Tr ( C X) - bT y ~ 0 for all feasible so­
lutions. Equality holds at optimality if both problems have feasible sets with nonempty 
interiors (strong duality) (see e.g. (51). The duality theory for SDP is weaker than that of 
LP. Difficulties associated with general convex programming can occur if the strict feasibil­
ity condition is not met; thus a problem can be solvable although its Lagrangian dual is 
infeasible, or both problems can be solvable but with a positive duality gap at optimality. 

SDP problems are of interest for a number of reasons, including 

• SOP contains important classes of problems as special cases; 

• important applications exist in combinatorial optimization and engineering; 

• efficient solution strategies have emerged in the past few years (explaining the resur­
gence in research interest). 

Each of these considerations will be discussed briefly. The discussion will be such as to limit 
the overlap with previous surveys. We will mainly focus on recent developments of interior 
point methods for SOP, and on the usefulness of SOP duality theory as a technique of proof. 

An excellent survey by Vandenberghe and Boyd (58] deals with basic theory, diverse applica­
tions, and potential reduction algorithms (up to 1995). Two more recent surveys which focus 
more on applications of SDP in combinatorial optimization are by Alizadeh (2] and Ramana 
and Pardalos (48]. The former also deals with interior point methodology, whilst the latter 
contains surveys of geometric properties of the SDP feasible set (so-called spectrahedra), as 
well as complexity and duality theory. 

2 Special cases of SDP 

If the matrix X is restricted to be diagonal, then the requirement X t O reduces to the 
requirement that the diagonal elements of X must be nonnegative. In other words, we once 

2By definition, for symmetric X one has X t O if zT X z ~ 0, Vz E JR", or equivalently, if all eigenvalues 
of X are nonnegative. 
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again have an LP problem. Optimization problems with convex quadratic constraints are 
likewise special cases of SDP.3 This follows from the well-known Shur complement trick: if 

for an invertible A, then the matrix 

Shur := C - BT A-I B 

is called the Shur complement of A in X. One has 

X >- 0 if and only if A >- 0 and Shur >- 0 

If A >- 0, then X t O if and only if Shur t 0. 

It follows that we can represent the quadratic constraint 

by the semidefinite constraint 

In the same way, we can represent the second order cone, llxll2 ::; o:::i=l x;)2, by 

Another nonlinear example which arises frequently is 

. {(cTx)2 } 
mm <fl" x : Ax 2: b , 

where it is known that ~ x > 0 if Ax 2: b. An equivalent SDP problem is:4 

0 0 diag (Ax - b) 

Several problems involving matrix norm or eigenvalue minimization may be stated as SDP's. 
An extensive list of such problems may be found in [58]. A simple example is the classical 
problem of finding the largest eigenvalue Amax(A) of a symmetric matrix A. The key ob­
servation here is that t 2: Amax(A) if and only if tI - A t 0. The SDP problem therefore 
becomes 

min{t: tl-At0, tEIR}. 

An SDP algorithm for this problem is described in [26]. 

3This includes the well-known convex quadratic programming (QP) problem. 
4 We use the notation 'diag' as follows: for a matrix X, diag (X) is the vector obtained by extracting the 

diagonal of X; for a vector x, diag (x) is the diagonal matrix with the coordinates of x as diagonal elements. 
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3 Applications in combinatorial optimization 

General quadratic optimization problems allow SDP relaxations. The key observation is that 

for a given matrix Q and vector x. The rank one matrix X = xxT is positive semidefinite. 
We can therefore relax the condition X := xxT to X t 0. This relaxation is originally due 
to Shor [53]. 

Combinatorial optimization problems can in turn be written as quadratic optimization prob­
lems. The condition x; E { ~ 1, 1} is equivalent to xf = 1, for example. 

Lovasz and Schrijver [35] considered the generic combinatorial problem 

qma•=max{xTQx: x;E{-1,l}{Vi)} 

and suggested the relaxation 

q=max{Tr(QX): diag(X)=e, XtO}. 

For this general relaxation Nesterov [42] recently proved that 

. 4-ir() q - <.l.?. </"ax - <f"" ?. -11'- q - <J. 

(1) 

(2) 

where (qmin, qma•) is the range of feasible objective values in (1), and (q, q) is the range of 
feasible values in the relaxation problem (2). Moreover, a random feasible solution x to (1) 
can be computed from the solution to the relaxation. The expected objective value of x, say 
E(x), satisfies5 

qmax-E(x) 4 
---~.-<-. qmax _ qrrun 7 

For specific problems this bound can be improved. The showcase example is the maximal cut 
problem, i.e. the problem of finding a cut of maximal weight through a graph with weighted 
edges. In a pioneering article, Goemans and Williamson [21] proved that q ::::; l.14qma• 
in this case. They moreover devised a randomized algorithm which produces a cut with 
expected value greater than 0.878qma". Similar improvements were also reported in [21] for 
satisfiability problems. 

The SDP relaxations are not always useful, though. Cases where the SDP relaxation is no 
stronger than the usual LP relaxation are reviewed in [48]. 

SDP offers more than just a numerical tool to generate lower and upper bounds on optimal 
values. It also provides a technique of proof via duality theory. We consider the classical 
sandwich theorem, and give a proof (which is new to the best of our knowledge) using strong 
duality theory. The theorem relates three characterizing numbers of a graph: the colouring 
number6 x(G), the maximal clique number7 w(G), and the Lovasz number 0(G), which will 
be defined presently. 

5The same bounds were obtained by Ye [60] for the 'box-constrained' problem where x, E {-1, 1} is 
replaced by -1 :S x, :S 1 in problem(!). 

6 Number of colours needed to colour all vertices so that no two adjacent vertices share the same colour. 
7The cardinality of the maximal clique (connected subgraph). 
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For a graph G = (V, E), a maximal clique is a subset C C V with 

Vi,j E C(i 'F j) : {i,j} EE, 

such that ICI is maximal. The Lovasz number O(G) can be defined8 as the optimal value of 
the SOP relaxation (see [34, 231): 

subject to 

:, {i,j} ft E (i 'F j) l 
X t 0. 

Tr (X) 

The sandwich theorem states the following. 

Theorem 3.1 (Lovasz's Sandwich Theorem) For any graph G = (V, E) one has 

w(G) $ O(G) $ x(G). 

Proof: 

(3) 

(4) 

In order to prove the first inequality of the theorem, let xe denote a 0-1 vector which defines 
a clique C of size kin G, i.e: 

{ 
1 ifiEC 

(xe); = 0 otherwise. 

It is easy to check that the rank one matrix 

1 T X := -xexe 
k 

is feasible in (4) with objective value 

T 1 ( T )2 k2 e Xe = k e xe = k = k. 

We therefore have w( G) $ 0( G), which is the first part of the sandwich theorem. The second 
part is to prove O(G) $ x(G). To this end, we write down the Lagrangian dual of the SDP 
relaxation ( 4) to obtain 

O(G) = min,\ (5) 

subject to 

Y + eeT j ,\] l 
Y;; 0, {i,j} E E.(i ,f. j) 

Y;; 0, i EV. 

(6) 

8Strictly speaking, the definition given here is of the Lovasz number of the complement of G (nodes in 
the complement of G are connected if and only if they are not connected in G). 
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Given a colouring of G with k colours, we must constuct a feasible solution for (6) with 
>.. :S k. Such a colouring defines a partition V = u7=1 C; where the C;'s are subsets of nodes 
sharing the same colour. In other words, the C; 's must be disjoint stable sets (co-cliques). 
Now let 1; = IC;! and define 

M; := k(L.,, - J,,.), i = 1, ... ,k, 

where I-,, is the (,; x 1;) identity matrix, and J,,, the all-one matrix of the same size. 

We will show that the block diagonal matrix 

(7) 

is feasible in (6) if>.. = k. By construction, Y satisfies the last two constraints in (6). We 
must still show that Y + eeT j kl, i.e. the largest eigenvalue of Y + eeT must be at most k. 

The Raleigh-Ritz theorem states that for any symmetric matrix A, one has: 

(8) 

It follows that the maximal eigenvalue of Y is given by 

(9) 

Moreover one has Amax(M;) = k, so that (9) yields Amax(Y) = k. The eigenvector corre­
sponding to k is orthogonal to the all-one vector e. To see this, note that Y x = >..x implies 

-k(,; - 1) L Xj = >.. L Xj, i = 1, ... , k, 
jECi jECi 

so that I:ieC, Xj = 0 (i = 1, ... , k) if>.. > 0. In particular, eT x = 0 from which it follows 
that k is also an eigenvalue of Y + eeT. Assuming that k is not the largest eigenvalue of 
Y + eeT, then the largest eigenvalue must have an eigenspace orthogonal to the eigenspace 
of k. The orthogonal complement of the eigenspace of k is spanned by the vectors 

( ) ·- l 1 if j E C, 
Xci j .-

Q otherwise, 

where i = 1, ... , k. The maximal eigenvalue of Y + eeT can therefore be computed from (8): 

m:,x { xT (Y + eeT) x : x E span {xc,, ... , xc.}, llxll = 1} 

mg,x { xTY x + ( eT x )2 : x = t a;xc., t ,;af = 1} 
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Substituting the expression for x, and using the construction of Y simplifies this to 

,\max(Y+eeT) = m~x{-kta~(,;-1;)+(t,,a)
2

: t,,a~=l} 
k + mg,x {-k 't,(an,)2 + ('t,,,a,) 2 

: 't,,,a~ = 1}. 
1=1 i=l 1=1 

The expression in brackets is nonpositive, since it is of the form 

-kzT z + (eT z) 2 $ -kzT z + (llellllzll)2 = -kzT z + kllzll 2 = 0, 

where z; = an,, (i = 1, ... , k). This leads to the contradiction ,\max (Y + eeT) $ k. 

We conclude that ,\max (Y + eeT) = k, as required. □ 

Moreover, we have given a proof of the equivalence of two different definitions of O(G) via 
(3) and (5).9 

4 Engineering applications 

The richest field of application of SDP is currently system and control theory. The standard 
reference for these problems is Boyd et al. [10]. Introductory examples are given in [58] and 
[45]. 

An application which receives less attention is structural design, where the best known SDP 
problem involves optimal truss10 design. Two variants are: 

1. minimize the weight of the structure such that its fundamental frequency remains 
above a critical value; 

2. minimize the worst-case compliance ('stored energy') of the truss given a set of forces 
which the structure has to withstand. 

The second of these problems allows another nice application of SDP duality theory. The 
problem may be stated as 

Displacement formulation 

min mil.Xxff,, j = l, ... ,k 
t,xl,···,Xk ] 

subject to 

( f,t,b,b[)xi !,, j=l, ... ,k 
1=1 

m 

2:t, = V, t ~ 0, 
i=l 

9These and other equivalent definitions of 0( G) are discussed in [23]. 
10 A truss is here defined as a structure of bars which connect a fixed ground structure of nodes. The 

design is fixed once the sizes of the bars have been decided. 
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where the t;'s are the bar volumes ( design variables), aOid the,}; 's are t~ set of f~es whi:€.h 
the truss has to withstand. The displ,acement of the l;l.(:)ies. stl:b.j~t to ~ f; is giveu, l!,,y 
the vector x;. The fixed vectors b; depend omly c.>n, the I:a~11 o_i t~ ~ a.ad; c.>Jit th,e. 
material properties (Young moduli,), oi the- 'ti>a,i;i,. T~ fu,ll;t ~01iW!b~t ~equires equllil>d\l!fn 
of the structure and the second fix.es ~t&; tQt~ v~.. The Qb~tive ii, to ~ the 
ffl>rst-ca:re• ~pwwce .. 

The name 'displacement• io~~lill lit~~ the dl$J,}l,a,c~ V~@.~l@ ~; .. f.~o~ ~­
gineering co.a.fflicm1,tion~ the pro}:>,lel!lili JinaY a.li;Q. be stat~ b¥· ~ tb.e ~~ i,11; the ba,i;i; as 
variables. 

B..-~- ~taui;m 

lft;~~t~ 
li>.O 

subject to 

m 

Ii ::::;. E/3.ib· ' . 1, j = l, ..... ,k 
i=.l 

t; 2:: 0, i= l, ... ,m 
{3;; = 0 if t; = 0, i = 1, ... ,m, j = l, ... ,k, 

where /3;; is proportional to the reactioll force in bar i due to J;. T~ second consbll.i~t 
simply requires. static equilibrium, i.e. a 'balance of forces'. 

From a purely mathematical point of view it is far from obvious that the two formulations 
are equivalent. This equivalence can be shown using SDP duality. We will sketch the p{oof 
here. Using the Shur complement trick, the displacement formulation can be written as an 
SDP problem (for details, see [121). 

SDP reformulation of the displacement formulatiol\ 

minr 

!!ubject to 

[~ fl l 
( I:;?;1 t;b;br) 

t 0, j=l, ... ,k 

m 

Et; V, t 2='. 0. 
i=l 

The equivalence proof is now done in three steps: 

1: write down the dual of the SDP reformulation and simplify it; 

2: obtain the dual of the resulting problem from Step 1; 

3: reduce the problem obtained in Step 2 to the 'bar forces' formulation. 
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This sequence of steps is described detail in [41]. A survey of these and related formulations is 
given in [12], with emphasis on SDP formulations. Other structural design problems which 
may be formulated as SDP's include sandwich plate design [8], optimization of variable 
thickness sheets [51], and minimal compliance design with optimized materials [49]. Good 
reviews of interior point methods in truss topology design are Bends!lle et al. [9], and Jarre 
et al. [28] (see also [7]). 

Other engineering applications of SDP include: VLSI transistor sizing, pattern recognition 
using ellipsoids, and logarithmic Chebychev approximation (see [58]). 

5 Efficient solution strategies 

Bearing the links between LP and SDP in mind, it may come as little surprise that interior 
point algorithms for LP have been successfully extended to SDP. 

The field of interior point methods for LP more or less started with the famous paper by 
Karmarkar [30] in 1984, and in the following decade more that a thousand papers appeared 
on this topic. Some recent review papers include [20] and [26]. Several new books on the 
subject have also appeared recently, including [50] and [59]. 

The first extension of interior point algorithms from LP to SDP was by Nesterov and Ne­
mirovskii [43], and independently by Alizadeh [l] in 1991. Nesterov and Nemirovskii actually 
considered a more general class of convex optimization problems, where the nonlinearity is 
'banished' to·a convex cone, like X?:: 0. They show that such conic optimization problems 
can be solved by sequential minimization techniques, where the conic constraint is discarded 
and a barrier term is added to the objective. Suitable barriers are called self-concordant. 
These barriers go to infinity as the boundary of the cone is approached, an can be minimized 
efficiently by Newton's method. 11 The function 

lbar(X) = -logdet(X) 

is such a barrier for the cone of semidefinite matrices. Using this barrier, several classes of 
algorithms may be formulated which have polynomial worst-case iteration bounds for the 
computation of f-optimal solutions. 

5.1 Logarithmic barrier methods 

Primal log-barrier methods use Newton's method to solve a sequence of problems of the form 

min{Tr(CX)-µlogdet(X): Tr(A;X)=b;(i=l, ... ,m)} 
X 

where the parameter µ is sequentially decreased to zero. Such algorithms were analysed by 
Faybusovich in [17, 18] and later by other authors in [24] and [4]. Note that the condition 
X?:: 0 has been replaced by adding a 'barrier term' to the objective. 12 The condition X?:: 0 

11 The definition of self-concordant barriers is omitted here; a well-written introductory text is [27]. 
12This idea actually dates back to the 1960's and the work of Fiacco and McCormick [19]; the implications 

for complexity theory only became clear almost three decades later. 
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is maintained by controlling the Newton process carefully - large decreases of µ necessitate 
damped Newton steps (see e.g. [4]), while small updates allow full Newton steps (see e.g. 
[24]). 

Following the trend in LP, so-called primal-dual methods soon became more popular. These 
methods minimize the duality gap 

Tr (CX)- bTy = Tr (XS) 

and employ the combined primal-dual barrier function 

/pd:= -(logdet(X) + logdet(S)) = -logdet(XS). 

This means that a sequence of problems of the following form are solved 

min{Tr(XS)-µlogdet(XS): Tr(A,X)=b,(i=l, ... ,m), f:y,A,+S=C}. (10) 
~~ w 

The first order optimality conditions for (10) are 

Tr (A,X) = b,, ; = l, ... ,m I 
E~1Y,A, +s = C 

(11) 
XS = µI 

x,s >- 0. 

This system has a unique positive definite solution pair, denoted by X(µ) >- 0 and 
S(µ) >- 0.13 Primal-dual log-barrier methods solve the system (11) approximately, fol­
lowed by a reduction inµ. Ideally, the goal is to obtain primal and dual steps ax and as, 
respectively, which satisfy X + ax t 0, S + as t O and 

Tr (A,aX) 

E~1 ay;A, + as 

(X + aX)(S + as) 

= 

= 

= 

0, i = l, ... ,m 

0 (12) 

µ[. 

The last equation is nonlinear, and primal-dual methods differ with regard to how it is 
linearized. Moreover, care must be taken that the solution matrices ax and as are sym­
metrical. Zhang [61] suggested to replace the nonlinear equation by 

where the matrix L determines the symmetrization strategy. Some popular choices for L are 
listed in Table 1. The proof of the existence and uniqueness of each of the resulting search 
directions was done by Shidah et al. in [52].14 Other properties (such as scale-invariance) 
are compared by Todd et al. in [56]. 

13These solutions give a parametric representation of a smooth curve, called the central path, which tends 
to the analytic center of the primal-dual optimal sets asµ - 0. This was proved by Goldfarb and Scheinberg 
in [22]. 

14For L = I uniqueness is not always guaranteed; a sufficient condition for uniqueness is XS+ SX t 0. 
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L 

[x½ (x½sx½)-½ x½r 
x-½ 
s½ 
I 

Reference 

:\'.esterov and Todd [44]: 

\lonteiro [38], Kojima et al. [33]; 

\lonteiro [38], Helmberg et al. [25], Kojima et al. [33]: 

Alizadeh. Haeberley and Overton [3]; 

Table I: Choices for the linearization matrix L. 

1 1 

The conspicious entry L = [x½ (x½sx½r' x½r in Table I warrants some comment. 

Nesterov and Todd [44] showed15 that for each pair X >-- 0, S >-- 0 there exists a matrix D 
such that 

Jt:r(D)X = S. 

It can be shown that f{,~r(D) is the linear operator which satisfies f{,~r(D) : X >-> D-1 X D-1 • 

It follows that X = DSD, from which it easily follows that D = L2. In this way we obtain 
the symmetric primal-dual scaling L-1 X L-1 = LS L. This symmetry explains the usefulness 
of D in symmetrization. 

Algorithms differ in how µ is updated, and how the symmetrized equations are solved. 
Methods with use large reductions ofµ followed by several damped Newton steps are called 
long step (or large update) methods. These are analysed in [29], [38], and [55]. 

:Vlethods which use dynamic updates of µ include the popular predictor-corrector methods. 
References include [3, 31, 32, 46, 54]. Other dynamic µ-updates are described in [14]. Su­
perlinear convergence properties of predictor-corrector schemes are studied in [31, 37]. 

5.2 Primal-dual potential reduction methods 

These algorithms are based on the potential function 

¢(X, S) = (n + v.Jri)Tr (XS) - logdet(XS)-nlogn, 

where v c". 1. In order to obtain a polynomial complexity bound it is sufficient to show that 
¢ can be reduced by an absolute constant at each iteration [57]. A survey of algorithms 
which achieve such a reduction is given in [58]. 

15This result was proved in the more general setting of optimization problems where the variable is 
restricted to a self-dual cone which allows a special type of self-concordant barrier, namely self-scaled barriers. 
The interested reader is referred to [44]. 
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5.3 Affine-scaling methods 

The primal affine-scaling direction for SDP minimizes the primal objective over an ellipsoid 
which is inscribed in the primal feasible region. Surprisingly, Muramatsu [39] has shown that 
an algorithm using this search direction may converge to a non-optimal point, regardless of 
which step length is used. This is in sharp contrast to the LP case, and shows that extension 
of algorithms from LP to SDP cannot always be taken for granted. 

Two primal-dual variants of the affine scaling methods were extended by De Klerk et al. 
in [15] from LP to SDP. These algorithms minimize the duality gap over ellipsoids in the 
scaled primal-dual space, where the matrix L = D½ is used for the scaling. The primal-dual 
method fails if either of the scalings L = X½ or L = S½ from Table 1 is used [40]. 

5.4 Infeasible start methods 

Several infeasible start algorithms have been suggested. A review of traditional big-M initial­
ization strategies may be found in [58]. One of the first infeasible-start predictor-corrector 
algorithms was by Potra and Sheng [46]. Other references include [31, 37]. 

The idea of embedding the SDP problem in a self-dual problem with known feasible starting 
point was investigated for SDP in [13] and [36]. A solution of the self-dual embedding gives 
information about the solution of the original problem. This analysis was extended in [16] 
to include pathological cases caused by the weaker duality theory of SDP (as compared to 
LP). In the latter case the stronger ELSD (extended Lagrange-Slater) dual problem is used 
in the embedding. These duals have better properties than the usual Lagrangean duals, and 
were formulated by Ramana [47]. 

6 Further information 

An up-to-date list of publications dealing with SDP may be found in the semidefinite pro­
gramming homepage, maintained by Christolph Helmberg. The address is 

http://www.zib-berlin.de/~bzfhelmb/semidef.html 

Available SDP software can also be accessed via this address. 
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1 Introduction 

Many problems can be posed as mathematical programming problems, i.e. problems in which 
an objective function, that depends on a number of decision variables, has to be optimized 
subject to a set of constraints: 

maximize f(x) 

subject to x E S. 

The field of global optimization generally restricts itself to problems where the objective 
function f and constraints describing the feasible region S are nonlinear, and the number of 
decision variables is finite ( thus S ~ llln). In this chapter we will further restrict ourselves 
to the case where the objective and constraint functions are continuous, and where S is a 
compact body. 

When a global optimization problem possesses some special structure, e.g. it is a quadratic 
programming problem, a concave minimization problem, the objective function is Lipschitz 
continuous with knowU: Lipschitz constant, etc. special purpose algorithms can be constructed 
that use this special structure. These algorithms will usually be deterministic methods, i.e., 
methods that do not involve stochastic concepts. Often a convergence guarantee can be 
provided. See for example Horst and Tuy [9] or Horst and Pardalos [8]. 

In the absence of a special (known) stn1cture, it is common to resort to a stochastic 
approach to the problem. Examples of stoch~tic methods for global optimization are Mul­
tistart and Multi Level Single Linkage (see e.g. Rinnooy Kan and Timmer [18, 19]); (Pure) 
Random Search methods (see e.g. Solis and Wets [25]); and the Random Function approach 
(see e.g. Kushner [11], Boender [4] and Mockus [13]). In this chapter we will focus on another 
type of method, namely Simulated Annealing. 

Simulated Annealing is a sequential random search technique. That is, it proceeds by 
sequentially generating (feasible) points to the problem according to some scheme. In par­
ticular, this scheme is designed to avoid getting trapped in local optima by accepting, in 
addition to transitions corresponding to an improvement in function value, also transitions 
corresponding to a deterioration. These deteriorations make it possible to move away from 
local optima and explore the feasible region S in its entirety. In this chapter we will describe 
how Simulated Annealing naturally emerges from a class of conceptual algorithms, called 
Adaptive Search algorithms, which in turn is a generalization of the Pure Adaptive Search 
algorithm. We will also present convergence results for particular Simulated Annealing al­
gorithms. For more details we refer to Romeijn [20], and Romeijn and Smith [22, 21]. 
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2 Pure Adaptive Search 

The Pure Random Search (PRS) algorithm is a well-known method that proceeds simply by 
randomly generating a number of points in the feasible region S, and estimates the global 
optimum by choosing the best of these points in terms of objective function value. Even 
though it is very inefficient in practice (the expected number of iterations necessary to obtain 
some level of accuracy grows exponentially in the problem dimension n ), it does possess the 
desirable property that the global optimum will be found with probability one if the sample 
size grows to infinity. 

The Pure Adaptive Search (PAS) algorithm (see Patel, Smith, and Zabinsky [14] and 
Zabinsky and Smith [26]) differs from the PRS algorithm in t.hat it forces improvement in 
each iteration. In PAS, an iteration point is generated from the uniform distribution on 
the subset of points that are improving with respect to the previous iteration point. More 
formally, the algorithm reads: 

Pure Adaptive Search (PAS) 

Step 0. Set k = 0 and yo = -oo. 

Step 1. Generate Xk+l uniformly distributed in Sk+l = {x ES: f(x) > yk}. 

Step 2. Set Yk+i = f(xk+ 1). Increment k and return to Step 1. 

Zabinsky and Smith [26] have shown that, for a large class of global optimization problems, 
the expected number of iterations needed by PAS to obtain a certain level of solution accuracy 
grows at most linearly in the dimension of the problem. This result suggests there is hope for 
an efficient random search method for global optimization. In fact, several random search 
algorithms have already reported empirical linearity in dimension for optimizing quadratic 
functions (see e.g. Schrack and Borowski [23], Schumer and Steiglitz [24], and Solis and Wets 
(25]). Unfortunately, in practice, we encounter some difficulties when trying to implement 
the Pure Adaptive Search algorithm: 

1. Constructing the improving region 

2. Generating a point uniformly distributed in Sk. 

We could try to avoid these difficulties by using the acceptance-rejection method for gener­
ating a point in Sk. However, by using this implementation of Step 1 of the algorithm, we 
obtain the PRS algorithm mentioned above. This implementation is inefficient due to the 
fact that the number of trial points in each PAS iteration necessary to find a point in Sk 
increases exponentially in the dimension of the problem. 

The Adaptive Search method attempts to avoid this by, instead of generating uniform 
points in S, generating points from a nonuniform distribution that assigns larger probability 
to the improving region sk. 
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3 Adaptive Search 

3.1 The algorithm 

We start with a family of probability distributions II = { 7l"Ti T E T} over S, where T C 
Ill.Li {oo}. Assume that oo ET, and let ,r00 = cp, the uniform distribution on S. We assume 
that each member of this family satisfies the following assumption: 

Assumption 3.1 For all T :s; T' (T, T' ET), and all O :s; u :s; v 

where 
Su= {x ES: f(x) > f* - u}. 

This assumption means that, if we condition on being in any level set Sv, the distribution 
of the objective function value under distribution 7l"T for X stochastically dominates the 
distribution of f(X) under ,rT, for all T :s; T'. Now consider the following generalization of 
the PAS algorithm: 

Adaptive Search (AS) 

Step 0. Set k = 0, To = oo, and Yo = J •. 

Step 1. Generate x from the distribution 7l"T• over S. If f(x) > Yk, set Xk+i = x. Otherwise, 
repeat Step 1. 

Step 2. Set Yk+i = f (xk+t) and set the parameter Tk+1 = r(yk+t), where T is a T-valued 
nonincreasing function. Increment k and return to Step 1. 

An important advantage of this algorithm is that we need only to sample from the feasible 
region S, instead of from a nested set of smaller level sets of f. The price we have to pay 
for this is that the distribution from which we have to sample is not simply the uniform 
distribution, and can change during the course of the algorithm. 

Note that if we choose ,rT = cp for all T, then the AS algorithm reduces to the PAS 
algorithm, where every iteration is implemented using the acceptance-rejection method. In 
other words, effectively this yields the PRS algorithm. However, for the general case we 
can influence the number of trial points necessary in Step 1 by an appropriate choice of the 
parameter Tin Step 2 (where this choice will depend on the particular shape of the distri­
butions ,rT). We will refer to the parameter T as the temperature parameter. A particular 
choice of temperature parameters (Tk; k = 0, I, ... ) is called a cooling schedule. We allow the 
cooling schedule to be adaptive, i.e. we allow the temperature Tk in iteration k to depend on 
the function value in the previous iteration. More formally, the cooling schedule is given by a 
nonincreasing function r which is a measurable function from[/., f*] to T. The temperature 
Tk is then given by Tk = r(f(Xk)). 

It can be shown that the number of iterations of AS is stochastically less than the number 
of iterations of PAS, and thus also bounded by a linear function in the problem dimension 
n. 
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3.2 The generating distribution 

It will prove useful to further restrict the family distributions 'lrT beyond satisfying assump­
tion 3.1. In particular, we will choose 'lrT to be of the following general form: 

1rT(B) = kDT(x)<()(dx) 

where 8s is the Borel u-field on S, and where 

for all BE 8s 

9T(x) = hT(f(x)). 

Under the following condition on the functions hT, the corresponding family II satisfies 
assumption 3. 1. 

Assumption 3.2 For all T :5 T' (T, T' ET), 

is a nondecreasing Junction. 

Recall that 1r 00 = <(), i.e. h00 = 1. Thus, assumption 3.2 implies that each of the functions 
hT is nondecreasing, by choosing T' = oo. 

3.3 The cooling schedule 

As noted before, we can use the cooling schedule as a tool for influencing the number of 
points that have to be generated in an iteration to obtain an improving point. In particular, 
we would like to choose the temperature parameter Tk in every iteration of the AS algorithm 
in such a way that the expected number of trial points needed to generate a point in Sk is 
small. This leads to the definition of the 

Adaptive Search cooling schedule 
Choose the next temperature Tk so that the probability of generating an improvement under 
'lrT• is ( at least) 1 - o. 

If we choose the temperatures according to this cooling schedule, the expected number 
of trials in each iteration is (at most) equal to l~a' independent of the dimension d of the 
problem. In principle, it is possible to compute a temperature T( u; o) according to the 
Adaptive Search cooling schedule, i.e. such that 'lrT(u;a)(Su) 2'. 1 - o for o E (0, l]. However, 
in practice this will be an extremely difficult task. In the next section, we will present a 
cooling schedule that, either exactly or asymptotically, satisfies this condition, for a specific 
choice of the hT's and for some classes of optimization problems. 

4 Simulated annealing 

Simulated annealing originated from an analogy with the physical annealing process of find­
ing low energy states of a solid in a heat bath (see Metropolis et al. [12]). Pincus [16] 
developed an algorithm based on this analogy for solving discretizations of continuous global 
optimization problems. Most of the other applications to date have been to discrete combi­
natorial optimization problems (see e.g. Kirkpatrick, Gelatt and Vecchi [10], Aarts and Korst 

344 



[I], and Aarts and Van Laarhoven [2]). Formulations of the simulated annealing algorithm 
for continuous optimization have also been proposed (see e.g. Bohachevsky, Johnson and 
Stein [5], Corana et al. [6] and Dekkers and Aarts [7]). 

Consider a family of distributions { irr; TE (0, oo]} from the type as discussed above, i.e. 
such that assumption 3.1 is satisfied. Assume that the functions hr defining the densities of 
the distributions irr (for T > 0) satisfy the following assumption: 

Assumption 4.1 For every f. ::; u < v ::; /*, 

. hr(u) 
hm-h () =0. 
TIO TV 

Under this assumption the distribution irr will, for small T, "concentrate near the global 
maximum" of the global optimization problem. More formally, for all f > 0, limr10 irr(S,) 
= l. 

Now assume that we are given a Markov kernel R(·,·), the selection Markov kernel, on 
(S,88 ). Here Bs denotes the Borel a-field on S. Thus, for each x ES, R(x, ·) is a probability 
measure on (S, Bs) and for each BE Bs, R(·, B) is a measurable function. We are also given 
a cooling schedule T = (rk; k = 0, 1, ... ) on (S,Bs). By this we mean that for each k, Tk is 
a measurable function from Sk+ 1 to [0,oo]. The Simulated Annealing Algorithm with state 
space S, with objective function f, with selection Markov kernel Rand with cooling schedule 
r, constructs a sequence of states X 0 ,X1 , .• . , a sequence of candidate points Yi,½, ... and 
a sequence of temperatures T0 , T1 , •.• iteratively, according to the following algorithm: 

Simulated Annealing 

Step 0. Choose x 0 E S and t0 E (0, oo]. Set k = 0. 

Step 1. Select Yk+I according to the probability distribution R(xk, · ). 

Step 2. Set 
with probability /31.(xk,Yk+i) 
otherwise 

Step 3. Increment k and return to Step l. 

The acceptance probability /3r(x, y) of accepting a next candidate pointy, given that the 
current state is x and the current temperature is T, is given by 

. ( hr(f(y))) 
/3r(x,y) = mm I, hr(f(x)) . 

Note that the cooling schedule is more general than in the previous section. There the 
temperature was only allowed to change in improving iterations, and was a function of only 
the best function value found so far. 

We will now state sufficient conditions under which the sequence of function values 
(f(Xn); n = 0, 1, ... ) converges in probability to f*: 

Cl. The set Sis compact. Furthermore, for all t > 0, r.p( {x ES: f(x) > f* - t}) > 0. 
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C2. The selection Markov kernel R is absolutely continuous (with respect to cp) and the 
corresponding density is uniformly bounded away from zero. That is, 

R(x,B) = k r(x,y)cp(dy) 

with infx,yEsr(x,y) > 0. 

C3. For every open subset Gin S, R(x, G) is continuous in x. 

C4. For every choice of initial state x0 and initial temperature t0 , the sequence of temper­
atures (Tn; n = 0, 1, ... ) converges to zero in probability. 

The following theorem is due to Belisle [3], who proved the result for a specific choice of 
the functions hT and under a slightly more restrictive set of conditions. 

Theorem 4.2 (cf. Belisle [3]) Let f be a function defined on a compact set S. Let X1 , 

X2 , ... be the sequence of states induced by the simulated annealing algorithm with selection 
Markov kernel R and with cooling schedule T. Assume that conditions Cl to C4 are satisfied. 
Let f* = supxES f(x). Then, for every set of initial conditions (x0 , t 0 ) the sequence of 
function values (f(Xk); k = 0, 1, ... ) converges in probability to f*. 

5 The Hide-and-Seek algorithm 

In the previous section the Markov kernel R was arbitrary, subject to conditions C2 and 
C3. In this section we will make the additional assumption that the Markov chain defined 
by R converges in total variation to cp. In that case, the sequence of points generated by 
the Simulated Annealing algorithm at a fixed temperature T converges in total variation 
to 7rT. Now let us return to the restricted cooling schedule of the form Tk(x0, ... , xk) = 
r(max099 f(x;)) for some function T. Then we see that each of the points corresponding 
to a record value of the sequence of function values generated by the Simulated Annealing 
algorithm is approximately distributed according to 7rT for some value of T. In other words, 
the resulting algorithm, called Hide-and-Seek, can be seen as an approximate implementation 
of the Adaptive Search algorithm. Using the result that the number of iterations of the AS 
algorithm is at most linear in the problem dimension n, we may hope that the number of 
temperature changes of the Simulated Annealing algorithm is linear in dimension as well, 
for a certain class of global optimization problems. 

Following Pincus [15] from this point on we make the following choice for the functions 
hT, characterizing the generating distributions: 

ey/T 

hT(Y) = JS ef(x)/T cp( dx )" 

It is easy to check that this choice for hT satisfies all assumptions previously made. Note 
that the distribution 7rT with this density is the Boltzmann distribution with parameter T 
commonly used in other Simulated Annealing algorithms. For some special cases, we can 
now specify the Adaptive Search cooling schedule, either exactly or asymptotically: 

Special cases 
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CASE 1. LINEAR PROGRAMMING. 

If f is linear, S is a full-dimensional polytope and the optimal solution is unique 
and nondegenerate, then 

f*-y 
r(y)=---

11-a(d, 1) 

Alternatively, if f is linear, S is the boundary of a full-dimensional polytope, and 
the optimal solution is unique an nondegenerate, then 

f*-y 
r(y) = --,--,----,-

1'1-a( d - 1, 1) 

CASE 2. CONVEX MAXIMIZATION. 

If f is convex and S is a full-dimensional polytope ( or the boundary of a full­
dimensional polytope), then we get asymptotically the same cooling schedules as 
in case 1 above. 

CASE 3. CONCAVE MAXIMIZATION. 

If f is a strictly concave quadratic function, and S is a level set of f, then we 
obtain the following cooling schedule: 

r(y) = f*- y 
,1-a( d/2, 1) 

(1) 

If we can approximate f by a (strictly concave) quadratic function, using a second 
order Taylor expansion, then (1) can be used as an approximation of the desired 
cooling schedule. Also, if the Hessian of f exists and is negative definite at the 
global optimum, then (1) asymptotically is the desired cooling schedule. 

6 Concluding remarks 

In this chapter we have derived the Simulated Annealing algorithm as an approximate im­
plementation of a conceptual class of Adaptive Search algorithms enjoying a number of 
attractive properties. This derivation provides not only a more rigorous motivation for the 
Simulated Annealing algorithm, compared to the common motivation from the analogy with 
a physical annealing process. In addition, it quite naturally suggests a solution to one of the 
problems that is usually encountered when implementing simulated annealing, namely the 
choice of the cooling schedule to be used. 

A remaining question for future research is to analyze the complexity of the Simulated 
Annealing algorithm as developed above. A first step in this direction has recently be made: 
Reaume [17] showed that the Adaptive Search algorithm, as well as the Simulated Annealing 
algorithm, can be implemented in polynomial time for convex programming problems. 
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1 Introduction 

In my thesis [Vaessens, 1995] a particular scheduling problem has been studied, called the 
generalized job shop scheduling problem. Scheduling problems occur in situations where a set 
of activities has to be performed by a set of scarce resources [Baker and Su, 1974]. Scheduling 
theory is concerned with the optimal assignment of these resources to the activities over time. 
Its applications can be found in various areas like production planning, personnel planning, 
computer system control, and time tabling. Over the past decades, scheduling theory has 
been the subject of extensive research. Most attention has been paid to machine scheduling 
problems, in which the resources are usually called machines and the activities operations. 
The main restriction is that a machine can perform at most one operation at a time. 

To solve a practical scheduling problem by mathematical means it is necessary to abstract 
a model from it. This abstraction must capture the essential elements of the practical 
problem in the sense that it should be possible to convert a solution obtained for the model 
into a solution of comparable quality for the practical problem. A major disadvantage of 
most models considered in the literature is that they are either too simple to reflect reality 
or too complex to be quickly solvable. The model introduced in my thesis intends to reduce 
this gap. 

The remainder of this paper is organized as follows. Section 2 describes the generalized 
job shop scheduling problem in more detail. Since the problem is hard to solve, we studied 
approximative solution methods, and local search methods in particular. Section 3 gives 
a quick introduction in local search and neighborhood functions. Section 4 describes some 
neighborhood functions that could be used when applying local search to the generalized job 
shop scheduling problem. It also describes some features of these neighborhood functions. 
Finally, Section 5 gives some conclusions. 

2 The generalized job shop scheduling problem 

The generalized job shop scheduling problem ( GJSSP) generalizes the models that have 
been studied in the literature in several ways. The most important extension of the model 
relaxes the requirement that each operation has to be processed by a single machine, which 
is known in advance, in two different ways. First, we allow an operation to be performed by 
one machine out of a given operation-dependent set of machines. Second, we allow that an 
operation may need the simultaneous cooperation of several machines. Combining these two 
features leads to a model, in which for each operation some machine sets are given, each of 
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which is capable of processing the operation. The selection of one such machine set for each 
operation is now part of the scheduling problem. Furthermore, arbitrary precedences between 
operations are included. On the other hand, only one optimality criterion is considered: the 
minimization of the maximum completion time. 

The model of the GJSSP can now be described more formally. Given are a set of opera­
tions and a set of machines. For each operation, a collection of machine sets is given; each of 
these machine sets is capable of processing the operation. For each operation and each of its 
machine sets, a processing time is given. Furthermore, a binary precedence relation is given 
on the set of operations. A precedence between two operations denotes that the processing 
of the second operation cannot start before the processing of the first operation has been 
finished. Each operation is assumed to be available at time O; furthermore, no preemption 
of operations is allowed. 

A schedule consists of two parts: an assignment of operations to machine sets and an 
assignment of operations to time intervals. Obviously, given the assignment of operations 
to machine sets, it is sufficient to know the starting time of each operation. A schedule 
is called feasible if each operation is processed by one of its machine sets for the required 
duration of time, if at any time instant no machine takes part in the processing of more 
than one operation, if the precedences are satisfied, and if each starting time is nonnegative. 
Our goal is to find a feasible schedule that minimizes the maximum completion time over all 
operations. 

To find an optimal schedule it is sufficient to look at left-justified schedules. A feasible 
schedule is called left-justified if it is not possible to complete any operation earlier such that 

• each operation is processed by the same machine set, and 

• on each machine the processing order remains the same. 

For a given schedule there exists a unique left-justified schedule in which each operation 
is processed by the same machine set and in which the processing order on each machine 
remains the same. This left-justified schedule can be obtained from the original one by 
starting all operations as early as possible, that is, by shifting them to the left on a time­
axis. 

Assume for each operation a machine set has been chosen. Then each feasible schedule 
defines a unique order of the operations on all machines. On the other hand, each (feasible) 
order of the operations on all machines defines a unique left-justified schedule. Therefore, 
there is a one-to-one correspondence between the order of the operations on all machines and 
a left-justified schedule. So, a schedule can also be defined by the choice of a machine set for 
each operation and the order of the operations on the machines, and by defining its length 
by the length of the corresponding left-justified schedule. Note that choices for the order on 
one machine may imply forced choices for the order on other machines. If one would choose 
the reversed order of such a forced choice, the resulting schedule would be infeasible. In 
the remainder of this paper we will give a schedule by the choice of a machine set for each 
operation and the choice of the order of operations on all machines. 

An operation is called critical in a given schedule when the length of the schedule increases 
if the duration of the operation is increased by one time unit (while leaving machine orderings 
and chosen machine sets unchanged). 
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3 Local search and neighborhood functions 

Since the introduction of local search methods by Bock [1958] and Croes [1958], a large 
variety of local search algorithms has been proposed. Basically, local search algorithms work 
as follows. Starting from an initial solution, the algorithm visits a sequence of solutions. Each 
solution in the sequence is obtained from a previous one by making slight modifications. 
The art of finding good local search algorithms is to make good choices for the type of 
modifications and for the solution that should be modified. The aim is to finally find solutions 
that have a good quality. 

To describe this more formally some notions have to be introduced. A minimization 
problem is specified by a class of problem instances, each of which is implicitly specified by a 
triple (S, X, !). Here, the solution space Sis the set of all (feasible) solutions, the cost space 
X is a totally ordered set of all possible cost values, and the cost function f is a mapping 
f: S ➔ X. The optimal cost fopt of an instance is defined by fopt = min{J(s)is ES}, and 
the set of optimal solutions is denoted by Sopt = { sESlf (s) = f 0 pt}. The objective is to find 
some solution Sopt E S 0 p1. 

A neighborhood function N is a mapping N: S ➔ P(S), which specifies for each s ES a 
subset N(s) of S of neighbors of s. A neighborhood function defines which modifications 
to a solution are allowed to make in a local search algorithm. A solution s ES is called a 
local minimum with respect to N if f(s) 5,f(t) for all tEN(s). Furthermore, to distinguish 
between local minima and elements of Sopt, we call the latter ones global minima. 

An interesting property of neighborhood functions is connectivity. This property ex­
presses to which extent solutions can be reached from an initial solution when making a 
sequence of transitions in which each next solution is a neighbor of the previous one. 

To be more specific we have to introduce several notions. For a neighborhood function 
N: S ➔ P ( S) we define the set AN as 

AN= {(x,y) Ix E S,y E N(x)}. 

So AN contains pairs of solutions for which the second solution is a neighbor of the first solu­
tion. The directed graph (] N = ( S, AN) is called the neighborhood graph corresponding to N. 
A neighborhood function N is called strongly connected if the corresponding neighborhood 
graph is strongly connected (so there is a directed path in the neighborhood between any 
two solutions). A neighborhood function N is called optimum connected if for each solution 
there exists a path to an optimal solution in the corresponding neighborhood graph. Note 
that each strongly connected neighborhood function is also optimum connected. 

The extent to which a neighborhood function is connected has consequences for local 
search algorithms. For instance, if a given neighborhood function is not optimum connected, 
then there are solutions for which no sequence of transitions leads to an optimal solution. 
In this case any local search algorithm that starts with such an initial solution and makes 
only transitions to neighboring solutions is unable to find an optimal solution. On the other 
hand, there exist local search algorithms, for instance the standard simulated annealing 
algorithm [Van Laarhoven, 1988], that asymptotically converge to an optimal solution if the 
neighborhood function is optimum connected. 

4 Neighborhood functions for the GJSSP 

A neighborhood function for the GJSSP must be capable of modifying the chosen machine 
set for an operation, and it must be capable of changing for a given operation the order 
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relative to other operations that have a machine in common with the given operation in 
their chosen machine set. For the most elementary neighborhood function that satisfies 
these conditions a neighbor is obtained as follows: first, choose an operation and delete it 
from all machine orderings; next, assign to this operation a (possibly different) machine set; 
finally, insert this operation in the machine orderings corresponding to the new machine set, 
such that the resulting schedule is feasible. We assume that a solution cannot be a neighbor 
of itself, so that at least the machine orderings of a schedule and each of its neighbors are 
different. 

One can think of several variants of this elementary reinsertion neighborhood function. 
First, we introduce a variant M, in which an operation is reinserted on an arbitrary machine 
set, such that no other reinsertion on that machine set gives a smaller length. Next, we 
introduce a third variant N3 , in which an operation is reinserted in the best way with the 
best machine set possible. 

Note however, that a neighbor obtained by reinserting a non-critical operation does have 
a critical path that is at least as Jong as the critical path of the current schedule. The reason 
for this is that the critical path of the current schedule remains present in such a neighbor. 
So it may be profitable to consider only neighbors that are obtained by reinserting critical 
operations of the current schedule. We will denote the neighborhood functions corresponding 
to N 1, N2 , and N3 in which only critical operations may be reinserted by N{, NJ, and Nf, 
respectively. 

In my thesis it is described how feasible neighbors can be found efficiently, since this 
becomes more difficult when the machine set of an operation has been changed. It is also 
described how a best insertion, given the machine set, can be determined efficiently. 

5 Connectivity of neighborhood functions 

In the following we discuss the connectivity of the neighborhood functions introduced above. 
A summary of the results has been depicted in Figure 1. The sign + denotes that a neigh­
borhood function is strongly (s.c.) or optimum connected (o.c.) and the sign - that it is 
not. Arrows denote that a result for the connectivity of one neighborhood function implies 
a result for the connectivity of a second neighborhood function. Bold circles denote results 
that are not implied by other results. 

It is not difficult to show that the neighborhood function N1 is strongly connected and 
therefore also optimum connected. To prove this result we have to show that we can construct 
a sequence of subsequent neighboring schedules from a given initial schedule to a given final 
schedule. We construct this sequence in two stages. In the first stage we modify the chosen 
machine sets into the machine sets of the given final solution; here, we do not pay attention 
to the order of the operations. In the second stage the machine set assignment remains the 
same for all operations and only the machine orderings are modified in such a way that the 
resemblance with the final schedule increases. The most difficult part of the proof is to show 
that each schedule constructed is a feasible one. 

We leave it as an excercise for the reader that in general the neighborhood function N2 is 
not optimum connected and thus not strongly connected either. This also implies that N3 is 
not optimum connected, nor strongly connected. The proof proceeds by defining an instance 
of the GJSSP and an initial schedule of this instance (which of course is not optimal), such 
that every sequence of best insertions on an arbitrarily chosen machine set does not lead to 
an optimal schedule. An instance with only eight operations and one possible machine set 
for each operation will do the job. 
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Figure 1: Connectivity of various neighborhood functions. 

\"ow we consider the neighborhood functions in which only critical operations may be 
reinserted. As a consequence of the previous result the neighborhood functions N2 and NJ 
are in general not optimum connected nor strongly connected. So the only neighborhood 
function that remains to be studied is N{. It can be easily shown that that this neighborhood 
function is in general not strongly connected. .-\.11 instance with two machines and one 
operation with a large processing time on the first machine and two operation with a very 
small processing time on the second machine will do. There are two possible schedules, but 
the critical path is defined by the operation on the first machine. So the two schedules 
cannot be reached from each other. An instance due to Van Laarhoven [1988] shows that 
it is also impossible to prove connectivity from any initial schedule to a schedule that is 
identical on the critical path of a given final schedule. However, it can be shown that Nf is 
optimum connected by constructing a sequence of neighboring schedules from an arbitrary 
initial schedule to an optimal schedule [Vacssens, 1995]. 

6 Conclusions 

\·arious elementary neighborhood functions for the generalized job shop scheduling problem 
have been studied. Application of local search algorithms may show different results for the 
various neighborhood functions. For neighborhood functions that are strongly or optimum 
connected local search algorithms have the ability of reaching an optimal schedule when 
started from an arbitrary initial schedule. With other neighborhood functions an optimal 
schedule is not always reachable. However. the latter neighborhood functions may lead to a 
faster conwrgence to a schedule of good quality. Computational results should be obtained 
to wrify the rnlidity of these theoretical statements. Furthermore, it should be investigated 
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whether more complicated neighborhood functions can lead to good results at the expense 
of small amounts of compution time. Research in this direction should be motivated by the 
fact that the application of complicated neighborhood functions have been very successful 
for the ordinary job shop scheduling problem (see also (Vaessens, 1995]). 
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Abstract 

We review convex approximations for stochastic programs with simple integer recourse. 
Both for the case of discrete and continuous random variables such approximations are 
discussed, and representations as continuous simple recourse problems are given. 

1 Introduction 

In this paper we review results on convex approximations for certain stochastic programming 
models with mixed-integer variables. It summarizes part of my PhD thesis [13], which was 
written while I held an AIO position (supervisors W.K. Klein Haneveld and L. Stougie) 
financed by the LNMB. 

Before presenting the simple integer recourse model, we first give a brief introduction to 
stochastic (linear) programming ( see e.g. [4, 10]). 

1.1 Stochastic programming 

We consider a two-stage stochastic linear programming model with integer recourse. Such 
a model is at the intersection of two different branches of mathematical programming. On 
the one hand some of the model parameters are random, which places the problem in the 
field of stochastic programming. On the other hand some decision variables are required to 
be integers, so that this model also belongs to the field of integer programming. 

Stochastic linear programming models arise from linear programming models if some of 
the parameters are random. For example, consider the linear program 

min{cx: Ax= b, x E Ill~}, 

with c E llln, b E Jllm and A E Jllmxn_ In many practical situations the model builder is 
uncertain about the values of (some of) the parameters (c, A, b). In stochastic programming 
this uncertainty is modeled by replacing (some of) the fixed parameters by random variables 
whose probability distribution is assumed to be known. However, such a model is no longer 
well-defined. Therefore, additional specifications have to be made to get a meaningful model. 
One way to do this is as follows. Given a decision vector x, for any realization of (c,A,b) 
one can compute the value ex and the size of the infeasibility b - Ax. It is assumed that in 
addition to the original model a penalty function v is used that transforms the infeasibility 
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b - Ax into a cost comparable with the objective function ex. Thus, taking the eicpectation 
over all realizations of the random parameters ( c, A, b), one computes the eicpected value of 
ex+ v(b - Ax) which is taken as the criterion for minimization. 

In stochastic linear programming it is common practice to define the function v as the 
value function of a second linear program, which has the fafeasibilities b - Ax in the right­
hand side of the constraints. The variables of this linear program represent so-called recourse 
actions. By using them the feasibility is restored afterwards, so to speak, at certain cost. 
Therefore the second linear program usually is called the second-stage problem, and the 
corresponding stochastic linear programming problem is called a model with recourse. Fa­
miliar stochastic linear programming models have continuous recourse. By this we mean, 
that the recourse variables are continuol:Is variables. In 11his paper we deal with stochastic 
linear programs with integer recourse. The ,property which sets these models apart, is that 
the recourse variables are integer variables. 

Integer linear programs are NP-hard, which causes serious additional problems on top of 
those already present in solving stochastic programs with continuous recourse. Indeed, given 
a choice of the decision variables x, for each realization of the random parameters we have to 
solve an integer problem in order to compute the expected value of cx+v(b-Ax). Thus, it is 
clear that solving stochastic linear programs with general integer recourse by straightforward 
computation is impossible for any non-trivial problem size. Instead, we need structural 
properties of specific models in order to formulate more sophisticated solution strategies. In 
Section 2 we give an overview of relevant properties of the so-called simple integer recourse 
model, which will be defined in Section 1.2. In Sections 3 and 4 we use these properties to 
construct convex approximations. 

We motivate our interest in stochastic linear programs with integer recourse by a small 
example problem. 

Example 1.1 A fii:m needs to plan its production for the next period. In principle, this 
production must be large enough to meet the uncertain demand that becomes known only 
after the production has taken place. If the quantity produced falls short of the actual 
demand then the only possibility left is to buy a number of units from a competing firm, 
·since every demand has to be satisfied. The objective is to minimize the total expected cost. 

We assume that the production cost of one unit is 1, whereas the buying price at a 
competing firm equals 4 per unit. Moreover, we assume that the probability distribution 
of the demand is known: it is equal to 1000 with probability 0.9 and equal to 1300 with 
probability 0.1. The problem is: how many items should the be produced? 

Below we will compare the optimal solutions of two models for this problem. First we 
assume that the firm can buy any quantity it needs from a competitor, which is represented 
in the model by a continuous recourse variable. In the second formulation it is assumed 
that only batches of a fixed size can be bought. Due to this additional assumption the latter 
model has an integer second-stage problem: the recourse variable now represents the number 
of batches that are bought to compensate for a shortage. 

The optimal production quantity for the first model is 1000. If the demand turns out to 
be 1300, then 300 units have to be bought. Hence, the total expected cost is 1120, which 
consists of production cost 1000 and expected cost due to buying of (1/10) · 4 · 300 = 120. 

Next we assume that only batches of size 250 can be bought. The price per unit remains 
the same, so that the price per batch is 1000. The optimal solution of this integer recourse 
problem is to produce 1050 units. Now one batch has to be bought in case the demand is 
1300, so that the total expected cost is 1150, consisting of production cost 1050 and expected 
recourse cost (1/10) · 1000 · 1 = 100. 
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Finally, suppose that we choose to ignore the integer structure of the second-stage prob­
lem in the computations for the latter model. Then we obtain the solution of the continuous 
recourse model, that is, to produce 1000 units. However, the actual expected cost of this 
solution is 1000 + (1/10) · 1000 · 2 = 1200, since we have to buy two batches if demand turns 
out to be 1300 units. We see that this solution is non-optimal by a margin of 50. <I 

1.2 Simple integer recourse 

The simple integer recourse model with fixed technology matrix is defined as 

i~f { ex + Q( x) : Ax = b, x E Ill~'} , 

where the expected value function Q is 

Q(x) = Ee v((-Tx), 

and v is the value function of the second-stage problem 

y+ 2: s, 
y- 2: -s, 
y+,y- E Z+'}, s E Illm'. 

(1) 

Here c, A, b, ( q+, q-) and Tare vectors/matrices of the appropriate size, q+, q- 2: 0, q+ +q- > 
0, and ( is a random vector in Rm'. 

As suggested by the name, this model has the same structure as the well-known simple 
continuous recourse model, in which the second-stage decision variables y = (y+, y-) are non­
negative reals. The expected value function of the latter problem is Lipschitz continuous and 
convex, so that in principle (i.e., disregarding possible difficulties in evaluating the integrals) 
it can be solved efficiently by standard techniques from mathematical programming, see [9]. 
Several special purpose algorithms exist, see e.g. [l, 4, 10, 14]. The expected value function 
of the integer problem lacks these favorable properties in general. For an overview of the 
field of stochastic integer programming we refer to [11, 12]. 

Using separability which is due to the simple recourse structure, Q is completely charac­
terized by the one-dimensional generic function Q, given by 

where q+, q- E Ill, with q+, q- 2: 0, q+ + q- > 0 ( is a random variable, and f s l + 
max{0, fsl}, lsJ- = max{0,-lsJ}, s E Ill. 

2 Preliminary results 

The results in this section are quoted from [8] and [13] where the reader is referred to for 
proofs. 

Theorem 2.1 Let Q be the one-dimensional expected value function of an integer simple 
recourse program, defined as 

z E Ill, 

where q+, q- 2: 0, q+ + q- > 0, and ( is a random variable with finite expected value µ, 
and with right continuous cumulative distribution function ( cdf) F( s) = Pr{ ( :S s} and left 
continuous cdf F(s) =Pr{(< s}, s E Ill. Then 
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(a) For all z ER, 

00 00 

Q(z) = q+ LPr{e > z + k} +q:- I:Pr{e < z- k}. 
k=O k=O 

Moreover, the corresponding one-dimensional continuous simple recourse expected 
value function Q, given by 

z ER, 

provides a convex lower bound as well as a convex upper bound for Q: 

For every a E [O, 1) the restriction of Q to a+ :Z is convex. 

(b) Let z1 ::; z2 • Then 

00 

-q+ L Pr{ Z1 + k < e ::0: Z2 + k} 
k=O 

+ q- L Pr{ Z1 - k ::0: e < Z2 - k}. 
k=O 

In particular, for n E {l, 2, ... } it holds, for all z ER, 

n-1 n 

Q(z + n) - Q(z) = -q+ L(l - F(z + k)) + q- L F(z + k). 
k=O k=I 

(c) If(a,b) c R is an interval of length more than one such that Pr{a < e < b} = 0, then 
Q is semi-periodic with period 1 and slope 1 = -q+ Pr{e >a}+ q- Pr{e < b} on the 
interval [a, b] n R. That is, if z1 E [a, b], z2 E [a, b], z1 - z2 = n E Z, then 

In particular, if Pr{ e < {} = 0 for some { > -oo then Q is semi-periodic with period 
1 and slope -q+ on (-oo,{J. Similarly, if Pr{e > e} = 0 for some"(< +oo then Q is 
semi-periodic with period 1 and slope q- on ["(, oo ). 

(d) Suppose that e is continuously distributed with probability density function (pdf) f. 
Then Q is continuous on R. If the pd[ f has a finite total variation Ill If then Q is even 
Lipschitz continuous with a Lipschitz constant that is at most max{q+, q-}(1+ Ill If /2). 
In that case Q has left and right derivatives everywhere, and Q is differentiable at z E R 

if f is continuous at z + k far all k E :Z. Then 

00 00 

Q'(z) = -q+ Lf(z+ k) +q- Lf(z- k), z ER. 

Left and right derivatives are obtained from this expression by replacing f by its left 
and right-continuous version, respectively. 

(e) Suppose that e is discretely distributed with support=:. Then the function Q is lower 
semicontinuous, and the set of all discontinuity points of Q is given by =: + :Z. In 
particular, 
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(i) Q is continuous from the left but not from the right in all points of (='.+?l)\(='.-?l+)· 
If z is such a discontinuity point then lim,v Q( z) - Q( z) = q- Pr{ e E z - ?l+}. 

(ii) Q is continuous from the right but not from the left in all points of (='.-?l) \(3+7l+)­
If z is such a discontinuity point then Q(z) - lim,1, Q(z) = -q+ Pr{e E z + ?l+}-

(iii) Q is neither continuous from the left nor continuous from the right in all points of 
(3 + ?l+) n (3 - ?l+)- If z is such a discontinuity point then lim,1, Q(z) - Q(z) = 
q- Pr{e E z - ?l+} and Q(z) - lim,1, Q(z) = -q+ Pr{e E z + ?l+}- In pa.rticula.r 
this is true for all z E 3. In between two successive points in ='. + 7l the function 
Q is constant. 

(f) Let Qc be a convex function on Ill. such that Q ::; Qc::; Q + max{ q+, q-}. Then 

s E Ill., 

is a cdf, and for all z E Ill. 

Here, 1P is any random variable with cdf W, and c = ( q+ c2 + q- ci)( q+ + q-), where 
C1 = lim,__00 (Qc(z) - Q(z)) and C2 = lim,_00 (Qc(z) - Q(z)). D 

Note that part (f) implies that we can solve simple integer recourse problems (at least 
approximately) by algorithms developed for continuous simple recourse problems. 

3 The convex hull 

In this section we outline an algorithm that determines the convex hull of Q for the case 
that e follows a discrete distribution with finitely many mass points. For details we refer to 
[5, 6]. 

We assume here that e is a discrete random variable with support 3 = {l1, ... ,eP}, and 
also that the mass points are ordered, that is, e1 < e2 < ... < eP. Then, by Theorem 2.1, 
the function Q is a finite, lower semicontinuous function that is discontinuous at all points 
of 'Doo = Uf=i{ e· + ?l}. Moreover, Q is semi-periodic with period 1 on the intervals (-oo, e1] 
and [eP, oo), with slope -q+ and q-, respectively. 

The crucial observation to make is that, due these properties, the convex hull of the 
function Q depends simply and solely on the points (d, Q(d)), d E 'D00 • It follows that the 
convex hull of Q is equal to the convex hull of the piecewise linear function QP1, specified by 
the points (d,Q(d)), d E 1)00 • The points where the slope of QP1 changes will be called the 
knots. 

Now we can apply an algorithm known as the Graham scan (see [3]), which determines 
the convex hull of a piecewise linear function f. Let f~ and f~ denote the left and right 
derivative of f. Obviously, a necessary condition for a knot i to be on the convex hull is 
that f~(d')::; f~(i). Consequently, if this condition is not satisfied then we may eliminate 
the knot d', and redefine the function f on [d•-1, i+I] as the linear function connecting the 
points (d'- 1 ,f(d•-1)) and (i+1,f(d'+1)). It is easy to see that by repeating this procedure 
until all knots satisfy the condition mentioned above, eventually we end up with the convex 
hull of the function f. 

Of course, this algorithm only terminates in finite time if only a finite number of knots 
has to be to considered. For the function QP1 finiteness of the initial set of knots is due to its 
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semi-periodicity on the intervals (-oo, e] and [e, oo}, which implies that the convex hull 
Q .. is affine on (-oo,e - 1] and [e + 1,oo) with slopes -q+ and q-, respectively. Thus, 
we only need to determine the convex hull of QP1 restricted to [e-1,er + 1] which depends 
only on knots in the set V = V00 n[e -1, er+ 1), which is finite indeed. It is straightforward 
to extend this function defined on [e - 1, ep + l] to the convex hull of QP1 on JR. 

Note that Graham's scan uses only one-sided derivatives. To compute these derivatives, 
we only need to know the difference between function values in neighboring discontinuity 
points of Q. Let d1 < al be any two such points. Then it follows from Theorem 2.1 (b) that 

p 

Q(d2 )-Q(d1 ) = -q+E{Pr{e=ei}:d2 Et-z+} 
i=l 

p 

+q-E{Pr{e=e;} :d1 Et+z+}· 
i=l 

We see that computing the required function differences is merely a matter of book-keeping: 
no function values have to be calculated. For each discontinuity point we simply have to 
record by which mass point(s) it is generated, which comes at virtually no extra effort while 
constructing the set V. 

So far, Q** is determined up to a constant. By Theorem 2.1 (f) this information is 
sufficient to determine the distribution of the random variable if; that replaces e in the 
equivalent continuous simple recourse formulation. Since Q** is piecewise linear, it follows 
that if; is a discrete random variable with mass points if;; that correspond to the knots of Q**. 
Moreover, Pr{i/; =if;;}= Si /(q+ + q-), where Si is the increase of the slope of Q** at if;i. It 
remains to compute the constant c as defined in Theorem 2.1 (f). We use that Q** equals Q 
at each of its knots. Hence, 

C = Q(ij;;) - (q+ E,t,(i/;-ij;i)+ + q- E,t,(i/;-iJ;T)' 

where if;; is an arbitrary point in the support of if;. This is the only time that we actually 
calculate a function value of Q. 

An extended version of this algorithm, which uses that Q is semi-periodic on [e\ei+i], 
i = 1, ... ,p- 1, is strongly efficient (see [2]). 

4 Convexity by perturbation of the distribution 

In this section we consider convex approximations of Q for the case that e is a continuous 
random variable. The idea is to replace the distribution of e by a distribution such that the 
function Q is convex. A complete description of the class containing all distributions with 
this property is given in [7]. 

Definition 4.1 For a E [O, 1) and F a cdf of a random variable, the a-approximation Fa of 
F is defined as the piecewise linear function generated by the restriction of F to the lattice 
a + Z. That is, for any s E a + Z, 

Fa(s) = F(s) + (s - s) (F(s + 1) - F(s)), s E [s,s + 1]. 

Since Fa is continuous and non-decreasing with limH-oo Fa(s) = 0 andlim,_00 Fa(s) = 1, 
it is a cdf itself. If e is a random variable with cdf F, any random variable ea with cdf Fa 
will be called an a-approximation of e, Notice that ea has a pdf even if e does not. 

For the calculus with a-approximations we need the following generalization of the con­
cepts of integer round down and integer round up. 
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Definition 4.2 Fors E Ill. and a E [0, 1), the round down and the round up of s with respect 
to a + Z is defined as, respectively, 

lsJ"' max{a+k:a+k:::;s, kEZ} 

rslo, min{a+k:a+k::::s, kEZ}, 

i.e., ls Jo,= ls - aj + a and r slo, = rs - al+ a. 

For example, l2,1Jo.9 = 1.9 and r-3lo.6 = -2.4. Notice that for alls E Ill., a E [0,1), we 
have that ls Jo,::::: s::::: rsla• In particular, ifs E a+z then ls Jo,= s = rslo,, and ifs</. a+z 
then ls J"' < s < rs l"' = ls J a + 1. Obviously, the usual integer round down and round up 
correspond to the case a = 0. 

The next lemma gives formulae for the a-approximation F"' of F and its pdf la• 

Lemma 4.1 Let F be the cdf of a random variable. For a E [0, 1), its a-approximation is 
the cdf Fa given by 

s E Ill.. 

The right-continuous version fa of the pd[ of Fa is given by 

s E Ill.. 

D 

Below we discuss a-approximations Q"' of the function Q. We give a uniform bound 
on the error IQa - QI for the case that the pdf f satisfies some mild regularity conditions, 
denoted as f E :F. See [7] for details. 

Theorem 4.1 Let~ be a continuous random variable with pd[ f. For all a E [0, 1), let ~a 
be an a-approximation of r For each a E [O, 1) define 

z E Ill., 

where q+, q- :2: 0, q+ + q- > 0. Then 

(a) For each a, the function Qa is convex. It is related to the function Q(z) = q+ Er~ -
zl+ + q-El~ - zJ- by the equation 

so that Qa is the piecewise linear function that coincides with Q at all points a+ k, 
k E Z. 

item{(b)} Assume that the pd[ f E :F. Then, for all z E Ill., 

where l~lf denotes the total variation off. In particular, if the pd[ f is unimodal 
then 

where v is the mode of the distribution. 
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(c) Let, for a and (J different numbers in [O, 1), eafJ be the random variable that is equal 
to ea or efJ, each with probability 1/2. It has a piecewise constant pdf lafJ given by 
!ah)= Ua(s) + ffJ(s))/2, s E Im.. Then Qah) = q+ Erea{j - zl+ + q- Elea{j - zJ-, 
z E Im., is a piecewise linear convex function. If f E F and in addition it holds 
lo - /JI = 1/2, then 

(d) 

Vz E Im.. 

Moreover, this uniform error bound can not be reduced by using other convex combi­
nations of pd[ of type fa• 

where 1Pa is a random variable with cdf 

The function Qa{J has a similar representation in terms of a random variable IPafJ with 
cdf Wa{j = (Wa + W{J)/2. □ 

We see that the function Qa c.q. Q,,fJ is equal (up to a constant) to the one-dimensional 
expected value function of a continuous simple recourse problem, and that the distribution 
of its right-hand side random variable ip,, c.q. IPafJ can be computed directly from the 
distribution of e. 
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1. General information 
In 1986, the two-phase structure of academic education was introduced in the Netherlands. 
The first phase of the undergraduate education consists of a four year programme, followed 
by an optional second phase of another four years in which a student can take one's 
doctoral degree by writing a dissertation. During this second phase the PhD students 
are expected to attend graduate courses. The LNMB takes care of this education in the 
field of Operations Research. The graduate education programme consists of eight courses 
scheduled in two years, two annual workshops and approximately 16 colloquia a year. 

In this review the following abbreviations are used: 

CWI : Centre for Mathematics and Computer Science Amsterdam 
EUR : Erasmus University Rotterdam 
KUB : Tilburg University 
KUN : Catholic University Nijmegen 
LUW : Agricultural University of Wageningen 
RUG : Groningen University 
RUL : Leiden University 
TUD : Delft University of Technology 
TUE : Eindhoven University of Technology 
UM : Maastricht University 
UT : University of Twente 
UU : Utrecht University 
UvA : University of Amsterdam 
VU : Free University Amsterdam 

As of 1988 38 courses were given. These courses were attended by 228 students. On the 
average each student took 3. 7 courses. Therefore, the total number of participations was 
846. Below an overview is given of these 228 persons. 
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Total Dissertations 1 PhD students2 Dropouts3 Others4 

EUR 32 12 14 5 1 
KUB 28 16 11 0 1 
KUN 4 3 1 0 0 
LUW 9 2 1 1 5 
RUG 17 7 6 0 4 
RUL 5 3 1 0 1 
TUD 34 2 4 2 26 
TUE 26 12 10 2 2 
UM 17 8 6 0 3 
UT 23 11 9 0 3 
UvA 17 6 6 2 3 
uu 6 1 1 0 4 
vu 10 5 0 0 5 

TOTAL 228 88 70 12 58 

2. The courses 

In each semester two courses are offered. Currently 38 courses have been given. The next 
summary shows the courses which were given in the period spring 1988 until spring 1997. 

Spring 1988 
Sl: Stochastic Operations Research 1 

Lecturers : Tijms (VU) and van der Duyn Schouten (KUB) 
Participants : 22 

Cl: Combinatorial Optimalization 1 
Lecturers : Kolen (UM) and Lenstra (TUE/CWI) 
Participants : 21 

Fall 1988 
Ml: Theory of Mathematical Programming 

Lecturers : Klein Haneveld (RUG) and Ponstein (RUG) 
Participants : 23 

C2: Combinatorial Optimalization 2 
Lecturers : Kolen (UM) and Schrijver (CWI/UvA) 
Participants : 28 

Spring 1989 
M2: Techniques of Mathematical Programming 

Lecturers : de Jong (TUE) and Lootsma (TUD) 
Participants : 22 

Taken a doctoral degree. 
2 PhD students working on their dissertation. 
3 Students who stopped their PhD study. 
4 Other participants, e.g. twaio's (an education of two years), undergrade students or PhD students not in 

OR, but in a related area. 
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Spring 1989 
Gl: Game Theory 

Lecturers 
Participants 

Fall 1989 

Tijs (KUB) and Vrieze (UM) 
21 

Al: Artificial Intelligence and Operations Research 
Lecturers : Aarts (TUE), Hummel (New York) and van Hee (TUE) 
Participants : 26 

Sl: Stochastic Operations Research 1 
Lecturers Tijms (VU) and van Dijk (VU) 
Participants : 20 

Spring 1990 
S2: Stochastic Operations Research 2 

Lecturers : van der Wal (TUE) and Wessels (TUE) 
Participants : 17 

Cl: Combinatorial Optimalization 1 
Lecturers Kolen (UM) and Lenstra (TUE/CWI) 
Participants : 20 

Fall 1990 
Ml: Theory of Mathematical Programming 

Lecturers : Evers (TUD), van Maaren (TUD) and Klein Haneveld (RUG) 
Participants : 24 

C2: Combinatorial Optimalization 2 
Lecturers Schrijver (CWI/UvA) and Stougie (UvA) 
Participants : 24 

Spring 1991 
M2: Techniques of Mathematical Programming 

Lecturers : de Jong (TUE) and Lootsma (TUD) 
Participants : 22 

Gl: Game Theory 
Lecturers 
Participants 

Fall 1991 

: Tijs (KUB), van Damme (KUB) and Vrieze (UM) 
: 21 

A2a: Optimalization and Finance 
Lecturer : Vorst (EUR) 
Participants : 25 

A2b: Simplicial Algorithms 
Lecturer : Talman (KUB) 
Participants : 25 

Sl: Stochastic Operations Research 1 
Lecturers Tijms (VU) and van der Duyn Schouten (KUB) 
Participants : 27 

371 



Spring 1992 
S2: Stochastic Operations Research 2 

Lecturers : van der Wal (TUE) an.d Boxma (CWI/KUB) 
Participants : 27 

Cl: Combinatorial Optimalization 1 
Lecturers : Kolen (UM) and Lenstra (TUE/CWI) 
Participants : 35 

Fall 1992 
Ml: Theory of Mathematical Programming 

Lecturers : van Maaren (TUD) and Klein Haneveld (RUG) 
Participants : 20 

C2: Combinatorial Optimalization 2 
Lecturers : Schrijver (CWI/UvA) and Stougie (UvA) 
Participants : 30 

Spring 1999 
M2: Techniques of Mathematical Programming 

Lecturers : Roos (TUD) and Lootsma (TUD) 
Participants : 20 

G 1: Game Theory 
Lecturers 
Participants 

: Tijs (KUB), van Damme (KUB) and Vrieze (UM) 
: 21 

Fall 1999 
Sl: Stochastic Operations Research 1 

Lecturers : Tijms (VU) and Kallenberg (RUG/RUL) 
Participants : 21 

Cl: Combinatorial Optimalization 1 
Lecturers : Gerards (CWI) and Stougie (UvA) 
Participants : 19 

Spring 1994 
S2: Stochastic Operations Research 2 

Lecturers : Wessels (TUE) and Boxma (CWI/KUB) 
Participants: 21 

C2: Combinatorial Optimalization 2 
Lecturers : Lenstra (TUE/CWI), van Hoese! (EUR) and Stougie (UvA) 
Participants : 27 

Fall 1994 
A3a Reliability Theory and Maintenance 

Lecturers : van der Duyn Schouten (KUB) and Dekker (EUR) 
Participants : 36 

A3b: Production Management 
Lecturers : de Kok (TUE) and Zijm (UT) 
Participants : 36 
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Fall 1994 
Ml: Theory of Mathematical Programming 

Lecturers van Maaren (TUD) and Klein Haneveld (RUG) 
Participants : 31 

Spring 1995 
M2: Capita Selecta Mathematical Programming 

Lecturers : Roos (TUD), Terlaky (TUD) and Lootsma {TUD) 
Participants : 13 

Gl: Game Theory 
Lecturers 
Participants 

Borm (KUB), Tijs {KUB), van Damme (KUB) and Vrieze {UM) 
14 

Fall 1995 
Sl: Stochastic Operations Research 1 

Lecturers : Tijms (VU) and Kallenberg (RUG/RUL) 
Participants : 17 

Cl: Combinatorial Optimalization 1 
Lecturers : Gerards (CWI) and Kern (TU) 
Participants : 19 

Spring 1996 
S2: Stochastic Operations Research 2 

Lecturers : Wessels (TUE) and Boxma (CWI/KUB) 
Participants : 15 

C2: Combinatorial Optimalization 2 
Lecturers Lenstra (TUE/CWI), van Hoese! (EUR) and Stougie (UvA) 
Participants : 18 

Fall 1996 
A4a: Randomized Algorithms 

Lecturer : Stougie {UvA) 
Participants : 31 

A4b: Distribution and Logistics 
Lecturers : Lenstra (TUE) and Dekker (EUR) 
Participants : 33 

Ml: Theory of Mathematical Programming 
Lecturers : Balder {UU) and van Maaren (TUD) 
Participants : 25 

Spring 1997 
M2: Mathematical Programming 2 

Lecturers : Roos (TUD) and Terlaky (TUD) 
Participants : 18 

Gl: Game Theory 
Lecturers 
Participants 

: Borm (KUB) and Vrieze (UM) 
: 12 
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Number of PhD students which attended the courses (by university) 

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997* TOTAL 

CWI 11 13 10 9 8 2 2 2 6 1 64 
EUR 9 7 12 11 8 16 25 8 16 4 116 
KUB 5 4 4 10 13 9 14 6 8 6 79 
KUN 2 0 0 5 8 0 0 2 2 1 20 
LUW 10 2 0 1 5 3 3 0 0 0 24 
RUG 10 4 14 6 4 0 4 5 3 0 50 
RUL 4 2 2 6 6 3 1 0 2 2 28 
TUD 14 23 8 2 17 13 22 9 6 2 116 
TUE 8 2 10 20 20 8 13 5 18 9 113 
UM 8 8 6 5 6 4 9 15 7 0 68 
UT 3 10 10 5 12 5 10 4 5 3 67 
uu 0 0 0 1 0 5 3 0 3 0 12 
UvA 3 5 7 2 5 7 6 7 10 1 53 
vu 7 9 2 1 0 6 5 0 5 1 36 

TOTAL 94 89 85 84 112 81 117 63 91 30 846 

3. The workshops 

Each year The LNMB organizes two workshops. The first workshop was held in December 
1989. Below a survey is presented of the 18 workshops which were organized up until now 
with a list of the speakers and the topics of their papers. 

Maastricht (December 1989} 
Filar (University of Maryland) 
Kelly (University of Cambridge) 
Mohring (Technical University of Berlin) 
Rockafellar (University of Washington) 

Groningen (May 1990) 
Anthonisse (AKB-ORES) 
Boender (EUR) 
Dik (Volvo Car, Helmond) 
Hordijk (RUL) 
Kallenberg (RUL) 
van Laarhoven (CQM, Philips, Eindhoven) 
Telgen (UT) 
Vorst (EUR) 
Wijngaard (TUE) 

Amsterdam ( December 1990) 
Maschler (Hebrew University) 
Schweitzer (University of Rochester) 
Wolsey (CORE) 
Wets (University of California) 

* only the spring courses 
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: Stochastic OR 
: Combinatorial Optimization 
: Optimization Theory 

: Case study OR 
: Case study OR 
: Case study OR 
: Markov decision theory 
: Markov decision theory 
: Case study OR 
: Case study OR 
: Case study OR 
: Case study OR 

: Game Theory 
: Network of Queues 
: Polyhedral Combinatorics 
: Variational Problems 



Eindhoven ( June 1991) 
The topic of this workshop was Local Search. The following lectures were given: 

Aarts (Philips, Eindhoven/TUE) : Neural Networks 
Johnson (AT&T Bell Labs) : Implementation Issues 
Kern (UT) : Probabilistic Analysis 
Kolen (UM) : Genetic Algorithms 
van Laarhoven (CQM, Philips, Eindhoven) : Simulated Annealing 
Lenstra (TUE) : Introduction 
Papadimitriou (Mass. Institute of Technology) : Computational Complexity 
Savelsbergh (TUE) : Local Search in Graphs 

Lunteren ( January 1992) 
Grotschel (Konrad-Zuse Centre, Berlin) 
Robinson (University of Wisconsin) 
Stidham Jr (University of North Carolina) 
Dyer (University of Leeds) 
Fisher (University of Pennsylvania) 
Gibbens (University of Cambridge, UK) 
Rousseau (University of Montreal) 

Tilbury (May 1992} 
Curiel (University of Maryland, Baltimore) 
van der Laan (VU) 
Owen (Naval Postgrad. School, Monterey) 
Peters (UM) 
Storcken (KUB) 
Talman (KUB) 

Lunteren ( December 1992} 
Evstigneev (Academy of Sciences, Moscou) 
Goemans (Mass. Institute of Technology) 
Keeney (University of Southern California) 
Lemarechal (INRIA, Le Chesnay) 
Liebling (Institute of Technology, Lausanne) 
Steele (University of Pennsylvania) 
Weber (University of Cambridge, UK) 

Delft (May 1993} 
Ben-Tal (Technion, Haifa) 
Grauer (University of Siegen) 
Kallenberg (RUG/RUL) 
Lootsma (TUD) 
Nesterov (Academy of Sciences, Moscou) 
Roos (TUD) 
Terlaky (TUD) 

375 

: Combinatorial Optimization 
: Variational Problems 
: Control of Queues 
: Probabilistic Analysis 
: Two OR applications in Industry 
: Communication Networks 
: Crew scheduling 

: Sequencing Games 
: Bimatrix Games 
: Production Games 
: Collective Decisions 
: Collective Decisions 
: Simplicial Algorithms 

: Stochastic Models 
: LP relaxations for CO 
: Decision Analysis 
: Convex Optimization 
: Some Applications of OR 
: Probability and comput. problems 
: Stochastic Scheduling 

: Nonlinear programming 
: Distributed Computing 
: Mean-variance in MDP's 
: Production Allocation 
: Decomposition Methods 
: Interior Point Methods 
: Implementation Issues 



Lunteren (January 1994) 
Bixby (Rice University/CPLEX) 
Coffman Jr. (AT&T Bell Labs, Murray Hill) 
Diaconis (Harvard University) 
Fourer (Northwestern University, Evanston) 
Frank (Eotvos Lorand University, Budapest) 
Jornsten (Norwegian School of Economics) 
Latouche (University of Brussels) 
Peleg (Hebrew University of Jerusalem) 

: Computational State of the Art for LP 
; Stochastic Matching Theory 
: Geometry and Markov Chains 

Design of Modeling Languages 
: Combinatorial Optimization 
: Applications in Oil Industry 
: Markovian Models 
: Game Theory 

During this conference there also was a Mini Symposium on "Modelling and Optimization" 
with contributions by Bixby, Fourer and Jornsten. 

Twente (May 1994) 
Abate (AT&T Bell Labs, Warren) 
Blanc (KUB) 
Choudhury (AT&T Bell Labs, Holmdel) 
Kern (UT) 
Neuts (University of Arizona, Tuczon) 
de Smit (UT) 
Turan (University of Illinois, Chicago 
van de Velde (UT) 
Whitt (AT&T Bell Labs, Warren) 
Zijm (UT) 

Lunteren (January 1995) 
Asmussen (Aalborg University) 
Cook (University of Bonn) 
Cornuejols (Carnegie Mellon University) 
Federgruen (Columbia University) 
Sobel (State University of New York) 
Wallace (University of Trondheim) 

Queueing Theory 
Queueing Theory 
Queueing Theory 
Complexity of Cost Allocation 
Queueing Theory 
Queueing Theory 
On-line scheduling 
On-line scheduling 
Queueing Theory 
Manufacturing Systems 

Stochastic Models 
Computational Aspects of CO 
Balanced Matrices 
Inventory Theory 

: Structure in Stochastic Models 
: Stochastic Programming 

The Mini Symposium had as topic: "Management for Distribution and Vehicle-Routing". 
Contributions were given by Dekker (EUR), Federgruen (Columbia University), van der 
Ham (Europe Combined Terminals, Rotterdam) and Paixao (University of Lisboa). 

Rotterdam ( October 1995) 
Axsater (University of Lund) 
Boender (EUR) 
Dekker (EUR) 
Fleischmann (University of Augsburg) 
de Kok (TUE) 
Salomon (EUR) 
St"ahly (University of St. Gallen) 
Tiishaus (University of St. Gallen) 
Vorst (EUR) 

Lunteren (Januari 1996) 
Aarts (TUE) 
Kannan (Carnegie Mellon University) 
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: Inventory Control 
Asset Liability Management 
Distribution Systems 
Freight Traffic Networks 
Installation Stock Models 

: Production and Inventory 
: Distribution of Dairy Products 

Location Analysis 
: Investment Horizons 

Neural Networks and CO 
Learning Theory and OR 



Shanthikumar (University of California) 
Shwartz (Technion, Haifa) 
Wagner (Universitiit Konstanz) 
Ye (University of Iowa) 

: Dynamic Resource Allocation 
: Large Deviations 
.: Combinatorial Problems 
: Interior Point Methods 

There was a Mini-Symposium on "New Software Developments for Real-World Decision 
Problems". The lectures were given by Bisschops (Paragon Decision Technology, Haarlem) 
and Cornelissens (Beyers Innovative Software, Brasschaat). 

A Tn8terdam ( June 1996) 
Fiat (Tel Aviv University) 
Fu (University of Maryland) 
Leonardi (University of Roma) 
Nobel (VU) 
Ridder (VU) 
Wiiginger (Graz University of Technology) 

Lunteren (Januari 1997) 
Goldberg (NEC Research Institute, Princeton) 
Nemirowski (Technion, Haifa) 
Papadimitriou (University of California) 
Schmidt (University of Ulm) 
Sorin (Ecole Polytechnique, Paris) 
Weiss (University of Haifa) 

On-line problems 
Simulation and Perturbation 
On-line Routing 
Control of Queues 

: Simulation of Rare Events 
: On-line Scheduling 

HOT Priority Queues 
IPM in Convex Programming 
On-line Algorithms 

: Queueing Theory 
: Repeated Games 
: Fluid Models for Queueing Networks 

The Mini-Symposium on "OR for Financial Markets" was given by Dempster (University 
of Cambridge), Dert (ABN-AMRO Bank, Amsterdam) and Salomon (Rabo Bank, Zeist). 

Leiden ( June 1997) 
Altman (INRIA, Sophia-Antipolis) 

Feltkamp (University of Alicante, Spain) 
Gaujal (INRIA, Sophia-Antipolis) 

Hamers (KUB) 
Hordijk (RUL) 

Kallenberg (RUL) 
Koole (VU) 
Puterman (University of British Columbia) 
Thomas (University of Edinburgh) 

Vrieze (UM) 

4. Dissertations 

: Multimodularity and Sequential 
Optimization 
Combinatorial Games 
Multimodularity and Sequential 
Optimization 
Combinatorial Games 

: Multimodularity and Sequential 
Optimization 
Markov Decision Problems 
Control of Queuing Systems 
Markov Decision Problems 
Parallel Computations for Markov 
Decision Problems 
Competitive Markov Decision 
Problems 

Below the dissertations written by the PhD students of the LNMB are listed distinguished 
by university. Together with the title of the doctoral thesis, the candidate's name, the 
date, and the promotor( s) are mentioned. 
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Agricultural University Wageningen (LUW) (2 dissertations) 

BLOEMHOF-RUWAARD, JACQUELINE (03-06-96), Integration of Operational Re­
search and Environment (van Beek/ van Wassenhove). 

HUIRNE, RUUD (18-12-90), Computerized management support for swine breeding farms 
(van Beek) 

Eindhoven University of Technology (TUE) (12 dissertations) 

ADAN, NO (19-11-91), A compensation approach for queueing problems (Wessels/Zijm). 

AKKER, MARJAN VAN DEN (21-12-94), LP-based solution methods for single-machine 
scheduling problems (Lenstra). 

EENIGE, MICHEL VAN (17-09-96), Queueing systems with periodic service (Wessels). 

EIJL, CLEOLA VAN (14-06-96), A polyhedral approach to the discrete lot-sizing and 
scheduling problem (Lenstra). 

HOOGEVEEN, HAN (07-02-92), Single-machine bicriteria scheduling (Lenstra) 

HOUTUM, GEERT-JAN VAN (07-02-95), New approaches for multi-dimensional queueing 
systems (Wessels/Zijm). 

SOL, MARC (08-11-94), Column generation techniques for pickup and delivery problems 
(Lenstra). 

VAESSENS, ROB (22-09-95), Generalized job-shop scheduling: complexity and local 
search (Lenstra/ Aarts ). 

VELTMAN, BART (18-05-93), Multiprocessor scheduling with communication delays 
(Lenstra). 

VERRIJDT, JOS {30-01-97), Design and control of service part distribution systems 
(de Kok). 

WENNINK, MARC (15-09-95), Algorithmic support for automated planning boards 
(Lenstra). 

ZWIETERING, PIETER (15-04-94), The complexity of multi-layered perceptrons 
(Wessels/ Aarts). 

Erasmus University Rotterdam (EUR) (12 dissertations) 

BARROS, ISABELLE DE (26-01-95), Discrete and fractional programming techniques for 
location models (Rinnooy Kan). 

CHEN, BO (09-06-94), Worst case performance of scheduling heuristics (van Wassenhove). 

DERT, CEES (30-11-95), Asset Liability Management for Pension Funds; a multi-stage 
chance constrained programming approach (Rinnooy Kan/Boender). 

GROMICHO, JOAQIUM (26-01-95), Quasiconvex optimization and location models 
(Rinnooy Kan). 

MELO, TERESA (17-10-96), Stochastic Lot-Sizing in Production Planning (Dekker). 

ROMEIJN, EDWIN (03-09-92), Global optimization by random walk sampling methods 
(Rinnooy Kan/Boender). 

SMITH, MARCEL (10-04-97), On the availability of failure prone systems (Dekker). 

TIELEMANS, PETER (28-03-96), Lead Time Performance in Manufacturing Systems 
(van Nunen). 
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VERBEEK, PETER (30-05--91), Learning about decision support systems: two case stud­
ies on manpower planning in an airline (Kolen/Rinnooy Kan). 

VLIET, ANDRE VAN (16-02-95), Lower and Upper Bounds for On-line Packing and 
Scheduling Heuristics (Rinnooy Kan). 

VLIET, MARIO VAN (06-06-91), Optimization of manufacturing system design 
(Rinnooy Kan/Boxma). 

WILDEMAN, RALPH (10-10-96), The Art of Grouping Maintenance (Dekker). 

Free University Amsterdam (VU) ( 5 dissertations) 

BOUCHERIE, RICHARD (21-05-92), Product-Form in Queueing Networks 
(Van Dijk/Tijms). 

GOUWELEEUW, FRANK (28-11-96), A General Approach to Computing Loss Proba­
bilities (Tijms ). 

MANDJES, MICHEL (03-12-96), Rare Event Analysis of Communication Networks 
(Tijms). 

OMMEREN, JAN-KEES (15-06-89), Asymptotic analysis of queueing systems (Tijms). 

SMEITINK, ERIC (16-04-92), Stochastic models for repairable systems (Tijms). 

Leiden University (RUL) (3 dissertations) 

KOOLE, GER (24-06-92), Stochastic Scheduling and Dynamic Programming 
(Hordijk). 

LOEVE, ANNEKE (22-03-95), Markov decision chains with partial information (Hordijk). 

PASSCHIER, OLAF (13-11-96), The theory of Markov games and queueing control 
(Hordijk). 

Nijmegen University (KUN) (3 dissertations) 
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Summary (by year and by university) 

1991 1992 1993 1994 1995 19$6 1997 TOTAL 

EUR 2 1 0 1 4 3 1 12 
KUB 1 2 3 l 6 3 0 16 
KUN 0 0 1 0 2 0 0 3 
LUW 1 0 0 0 0 l 0 2 
RUG 1 3 0 0 3 0 0 7 
RUL 0 l 0 0 1 1 0 3 
TUD 0 1 0 0 0 1 0 2 
TUE 1 1 1 3 3 2 1 12 
UM 1 1 0 1 0 & 0 8 
UT 0 0 2 4 1 3 1 11 
UvA 0 1 2 1 1 1 0 6 
uu 0 0 0 0 0 0 1 1 
vu 1 2 0 0 0 2 0 5 

TOTAL 8 13 9 11 21 22 4 88 
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