


CWI Tracts 

Managing Editors 

K.R. Apt (CWI, Amsterdam) 

M. Hazewinkel (CWI, Amsterdam) 

J.M. Schumacher (CWI, Amsterdam) 

N.M. Temme (CWI, Amsterdam) 

Executive Editor 

M. Bakker (CWI Amsterdam, e-mail: Miente.Bakker@cwi.nl) 

Editorial Board 

W. Albers (Enschede) 

M.S. Keane (Amsterdam) 

J.K. Lenstra (Eindhoven) 

P.W.H. Lemmens (Utrecht) 

M. van der Put (Groningen) 

A.J. van der Schaft (Enschede) 

H.J. Sips (Delft, Amsterdam) 

M.N. Spijker (Leiden) 
H.C. Tijms (Amsterdam) 

CWI 

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

Telephone + 31- 20 592 9333 

Telefax + 31- 20 592 4199 

URLhttp://www.cwi.nl 

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science. 



Nonparametric estimation 
for a windowed 

line-segment process 

B.J. Wijers 



1991 Mathematics Subject Classification: 60XX (Statistics), 62XX (Probability theory 
and stochastic processes). 
ISBN 90 6196 474 1 
NUGl-code: 811 

Copyright @1997, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



Contents 

Introduction 

1 The models 
1. 1 The one-dimensional line segment process 

1.1.1 The hospital model .. 
1.1.2 Missing data problem ....... . 
1.1.3 Identification . . . . . . . . . . . . 
1.1.4 The likelihood and the definition of the NPMLE . 
1.1.5 Existence and uniqueness of the NPMLE .. 
1.1.6 EM-algorithm and self-consistency equations 
1.1.7 The sieved NPMLE ........ . 

1.2 The two-dimensional line segment process 
1.2.1 The model ............. . 
1.2.2 
1.2.3 
1.2.4 
1.2.5 
1.2.6 

The window W is a circle . . . . . 
Identification in the case W is a circle 
The likelihood, the NPMLE, in the case W is a circle . 
W is an arbitrary convex window . . . . . . . . . . . . 
The likelihood, the NPMLE, in the case W is arbitrary convex . 

2 Consistency 
2.1 General idea ....................... . 
2.2 Consistency in the one-dimensional case . . . . . . . . 

2.2.1 Proof of consistency in the one-dimensional case 
2.2.2 Three propositions and a lemma . . . . 
2.2.3 Proof of two propositions of chapter 1 . . . . . . 

2.3 Consistency in the two-dimensional circle case . . . . . 
2.3.1 Proof of consistency in the two-dimensional circle case 

3 Efficiency 
3.1 General notion of efficiency. 

3.1.1 Donsker class .... 
3.1.2 Efficiency theory . . 

3.2 Efficiency theorem for an NPMLE . 
3.3 Efficiency of NPMLE of linear parameters in convex models 
3.4 The assumptions . . . . . . . . . . . . . . . . . . . . . . . . 

1 

5 
5 
5 
7 

11 
19 
20 
23 
25 
27 
27 
31 
38 
39 
40 
44 

47 
48 
49 
54 
58 
65 
66 
68 

75 
75 
75 
77 
80 
82 
87 



ii 

3.5 The parameters to he estimated . . . . . . . . . . . . . 
3.5.1 The parameter b,1'1(Pv) = Z(t) ........ . 
3.5.2 The paramete~ 1'2(._Pv) = Z ........ :.. ... . 
3.5.3 Efficiency of (Zn, Zn) implies efficiency of (Fn, l'n) . 

3.6 The score opera.tor Av and the information opera.tor Iv .. 
3.7 Calculation of lv1(x, - Z(t)) ............... . 

3.7.1 lnvertihilityof lv(h,)(:i:) = x,(:i:) for :i: ~ 2R .. 
3.7.2 lnvertihilityof lv(h,)(z) = x,(:i:) for :i: E [0,2R) 

3.8 The Donsker class condition . . . . . . . . . . 
3.8.1 llrvllv and llsvllv are hounded •.... 
3.8.2 The boundedness of 11(1-Bv)-1/llv . 
3.8.3 Sv and Tv are hounded operators . . . 
3.8.4 The score opera.tor Av is a. hounded opera.tor w.r.t. 11 · llv-norm 
3.8.5 The determinants Dv and Qv are continuous in V 
3.8.6 Verification of the Donsker class condition 

3.9 The II · IIPv •convergence conditions . . . . . . . . . . . 
3.9.1 Calculating l(Z,t)-l(Zn,t) . ......... . 
3.9.2 Verification of the II • IIPv •convergence condition 

3.10 The determinant Qv 'F O and assumption I ..... . 
3.10.1 Some remarks a.bout the determinant Qv .. . 
3.10.2 The assumption g(2R) > 0 and d(2R, 2R) > 0 

3.11 Calculation of Iv1(e - Z) ............. . 
3.12 Efficiency proof for the one-dimensional case ... . 

3.12.1 The parameters (W, W) to he estimated .. 
3.12.2 Calculation of lv1(i., - W(t)) ....... . 
3.12.3 One-dimensional case versus two-dimensional case . 

4 Open problems 
4.1 Suggestion to solve the T and 2R singularity ..... . 

4.1.1 Regrouping in the one-dimensional case .... . 
4.1.2 Regrouping in the two-dimensional 'circle-case' . 

4.2 Non-homogeneous Poisson point process . . . . . 
4.2.1 .\(t) is unknown if t ~ 0 and O otherwise . 

4.3 Non-convexity of the window W . . . . 
4.4 A conjecture: the determinant Qv ~ 1 . . . . . . 

Bibliography 

Index 

88 
89 
90 
91 
92 
93 
93 
96 

102 
103 
105 
108 
109 
111 
115 
116 
117 
120 
121 
121 
121 
124 
127 
128 
130 
133 

135 
135 
136 
142 
142 
143 
144 
145 

147 

151 



Introduction 

Imagine that you are in a tunnel of a coal~mine. On the walls around you, you see cracks of 
all different lengths and in all kinds of directions. One supposes that the lengths of the cracks 
are an indicator of rock strength and can be used to assist in deciding the sizes of pillars to 
support the tunnel of the mine. Therefore, we are interested in the distribution of the crack 
length, because the distribution function tells us with which probability we will find cracks 
of a certain length. The motivation for the problem comes from geologists from the CSIRO 
Division of Applied Geomechanics (Laslett, 1982a,b). 

H we want to estimate the crack length distribution we need data. Looking at a wall of 
the tunnel, we will see something like Figure 0.1. We observe the cracks within some window 

Figure 0.1: line segment process observed through W. 

W. In this case the window is for instance one of the walls of the tunnel. Some of the lengths 
of the cracks are totally observed, others partially. A crack that hits the edge of the window 
is partially observed. The real length of the crack is beyond our visual field. The cracks in 
the window will be interpreted as a two-dimensional line segment process observed through 
a window W. The cracks are the line segments of the process. When we only observe part 
of a given crack, we say it is censored. The length of the visible portion we call a censored 
observation. 



2 Introduction 

For each line segment in the window our data consists of: its (possibly censored) length, 
its direction and its position in the window. These observations will be used to construct 
a nonparametric maximum likelihood estimator (NPMLE) of the distribution function of 
the length of the line segments (the crack length distribution). We assume that lengths 
and directions are independent. Roughly speaking nonparametric means that we put no 
restrictions on the distribution function we want to estimate and the maximum likelihood 
estimator is that estimator that gives the highest probability of occurrence to the data. 

Why do we bother about the censoring? It is possible to construct estimators of the crack 
length distribution based on the uncensored observations only, but it turns out that not using 
the censored observations is throwing away valuable information. A censored observation of 
length i does not give us the true length :,; of the line segment, but nevertheless it tells us that 
:,; ;?: i and this means it includes information about the probability of being a line segment 
that is greater or equal to i. If experiments are expensive, it is not possible to generate 
more uncensored data if you are not satisfied with the data that is offered to you. Then, 
in the search for a good estimator, one is more or less forced to take the censored data into 
account. In the line segment processes studied in this book we show that the NPMLE of the 
distribution function of the length of the line segments, based on the uncensored and censored 
data, is in some sense the best estimator among all other estimators (efficiency). 

Another application of a two-dimensional line segment process is described by Chung(1989, 
1990): the storage of nuclear waste in a vault in a stable geological rock formation such as the 
granitic plutons in the Canadian Shield. The rock mass surrounding the vault acts as a natural 
barrier between the nuclear waste and the biosphere. However the ground water system 
contaminated with the waste migrates through the rock mass and reaches the biosphere. So 
the fracture system in the rock plays an important role. The fractures are approximately 
linear planes in nature, and we can only see linear lines on the surface of the rock mass. 
These lines form a two-dimensional line segment process and are possibly partially censored 
(by soil and vegetation). (For a picture see Gi11(1994) p. 182). 

In order to understand the two-dimensional case we start by analysing a simpler special 
case: a one-dimensional line segment process observed in an interval. If one considers the 
rectangular window in Figure 0.1 and all line segments are horizontal, then one obtains the 
one-dimensional case. 

As a possible application of the one-dimensional line segment problem we consider the 
following so-called 'hospital model', Laslett(1982a). Suppose that in a one-dimensional line 
segment process we want to estimate the distribution function of the length of the line seg
ments. Suppose we observe the process in an interval (0, -r) (this is the window W), so there 
will be line segments that are censored. The edges 0 and -r can censor a line segment at the 
left-hand side or the right-hand side. For instance the line segments could be the periods 
between arrival and departure of patients in a hospital and the time interval ( 0, -r) is the 
period we are able to observe them. If the arrival time of a patient is before time 0, then the 
exact location of the arrival time is unknown. Also the exact locations of departure times 
after time -r are unknown. Now we have four kinds of observations. For a patient arriving 
before time 0 and departing after time -r, we observe the sojourn time from time 0 to time 
-r (double censored). The parts of the line segment (the sojourn time) from the arrival time 
to time 0 and from time -r to the departure time, are not observed. For a. patient arriving 
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before time 0 and departing in the time interval (0, r ), we observe the sojourn time from 
time 0 to the departure time (single end censored left-hand side). For a patient arriving and 
departing within the time interval (0, r), we observe the whole sojourn time ( uncensored). 
Finally for a patient arriving within the time interval (0,r) and departing after timer, we 
observe the sojourn time from the arrival time to timer (single end censored right-hand side). 
These observations are the available data for the estimation of the distribution function of 
the sojourn times and form the one-dimensional line segment process observed in the interval 
(0, r). 

Let the line segment lengths be distributed with distribution function F; let µ denote the 
mean. Fis the parameter of interest. Let the window W be convex. (Convexity ensures 
that two censored line segments hitting the edge of the window, do not belong to the same 
underlying line segment. This prevents dependence problems in the data.) Another aspect 
next to censoring that plays a non-trivial role in the line segment processes observed through 
a window is the so-called length bias: longer line segments have a bigger chance of getting 
(possibly partially) into the window and being observed. The observed line segments are thus 
not a random sample from the distribution of interest F, but from the length distribution of 
the observed line segments. The same holds for the distribution function, say K, of the angles 
of the line segments. The shape of the window has influence on which directions are more 
likely to be observed. 

The length bias problem can be taken account of by estimating this length distribution 
of the observed line segments and because we will show that there is a 1-1 correspondence 
between F and this length distribution of the observed line segments, we can always turn 
back to our parameter of interest F. 

In chapter 1 we give a formal introduction to the one- and two-dimensional line segment 
processes. Firstly we define the one-dimensional case: the line segment process observed in 
an interval (0, r ). Secondly, we formulate the two-dimensional case with convex window W 
and (un)known angle distribution K. Instead of using the parameter F we pose the problems 
in terms of the length distribution of the observed line segments V ( treating the length bias). 
We show that there is a 1-1 correspondence between the two parametrizations. Actually we 
show there is a 1-1 correspondence between (Fl[o,r), µ) and (Vl[o.T), h), because it turns out 
that the distribution of the data only depends on these parameters and they are identified 
by it. We derive the log likelihood-function. Because our model is not dominated we define 
the NPMLE of (V,h) following Kiefer and Wolfowitz(1956). We use the EM-algorithm to 
calculate the NPMLE and obtain the so-called self-consistency equations. The existence and 
uniqueness of the NPMLE will be shown. 

There is an important reason why we will use the reparametrization (V, h) of the models. 
Using (V, h) we turned the cases into a special nonparametric missing data problem: missing 
data models where the parameter space is convex and the distribution of the data is linear in 
the parameter. These properties allow us to use powerful special methods to prove consistency 
(chapter 2) and asymptotic normality and efficiency (chapter 3). 

In chapter 2 we prove consistency of the NPMLE: enlarging the sample size implies that 
the estimator gets closer (in supremum norm) to the underlying (V, h). We follow a general 
method first used by Jewell(1982) and more recently by Groeneboom and Wellner(1992). 
Because of the structure of the log likelihood it is essential to make some adjustments to 
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the method. The proof of consistency will be outlined in a general setting and for the one
dimensional case and the two-dimensional case where W is a circle, we work out the proof in 
detail. 

In chapter 3 we show the asymptotic normality and efficiency of the NPMLE of (V, h) (it 
is in some sense the best estimator), using an identity for NPMLE's in the 'convex-linear' 
models of Van der Laan(l993). We show that efficiency of the NPMLE of (V, h) implies 
efficiency of the NPMLE of (F,µ). Again, in the two-dimensional case we restrict attention 
to the case that W is a circle. The proof in the circle case relies on the assumption that the 
determinant Qv of a certain 2 x 2 matrix is unequal to zero. So far we are not able to verify 
the assumption in general, though a reasonable conjecture is that it exceeds 1 for all V ( see 
chapter 4). 

It would be unfair to give the impression that all cases are covered by this book. Only 
for the one-dimensional case and the two-dimensional case where W is a circle, do we give 
all proofs in detail. For the circle, calculations get less complicated and it turns out that the 
distribution function K of the directions of the line segments plays no role in the problem. 
Furthermore we must admit that the efficiency results are obtained under certain conditions 
on the class of underlying distribution functions. In chapter 4 we give a suggestion to get rid 
of some of the assumptions. For the two-dimensional case where W is arbitrary convex and 
the angle distribution K is known, one can copy with more effort most of the proofs. The 
case that Wis arbitrary convex and K is unknown is different. Now one has to study the 
joint NPMLE of (V, h) and K, because we need an estimate of K to get an estimate of our 
parameter of interest (V, h ). 



Chapter 1 

The models 

In this chapter we introduce the one- and two-dimensional line segment processes and explain 
how the data is possibly censored. After choosing a more effective parametrization, we derive 
the distribution functions of the data and determine the likelihood based on the data and show 
how to obtain the (sieved) NPMLE of the underlying distribution of the length of the line 
segments. Section 1.1 deals with the one-dimensional problem observed through an interval 
(0, r] and in section 1.2 we find the two-dimensional case observed through a convex window 
w. 

In the two-dimensional case we need to introduce a distribution function K of the angles 
of the line segments. It turns out that in the case that W is a circle the distribution function 
K (known or unknown) does not play any role in our search for a 'nice' estimator of the 
distribution of the length of the line segments. We will see that with some more effort the 
case that Wis arbitrary convex with known K can be treated like the 'circle-case'. In section 
1.2.6 a brief remark will be made in case K is unknown. 

Although the one-dimensional line segment process could be considered as a special case 
of the two-dimensional problem, it is certainly not redundant to pay so much attention to 
this case. Actually, as often happens, we reached results in the two-dimensional case through 
the one-dimensional problem and a good understanding of the one-dimensional problem very 
much helps one to foresee the difficulties in the two-dimensional case. 

1.1 The one-dimensional line segment process 

In this section we introduce the one-dimensional line segment process. By J,%, where x $ y 
and x,y E [O,oo) \ {r}, we mean the integral over (x,y], but by J; and JI, where x $ r $ y, 
we mean the integrals over (x,r) and over [r,y] respectively. Thus we have J; dF(u) = 
F(r-)- F(x) and JI dF(u) = F(y)- F(r-). 

1.1.1 The hospital model 

Consider arrival times T; of patients at a hospital enumerated in some way, following a ho
mogeneous Poisson point process on JR. with rate ..\. Associated with each T; is a sojourn 
time X;; and Xi, X2, ... are i.i.d., positive, independent of the Poisson process and have the 
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common distribution function F. We defineµ = f0"" xdF(x). For each patient i we have a 
point (T;,X;) ER x n+. All this defines a point process iii= {(T;,X;): i = 1,2, ... } on 
R x R+ and one can show that iii can also be characterized as a Poisson point process on 
Rx n+ with intensity measure 

p(dt,dx) = AdtdF(x) (1.1) 

(KarHn(1981) p.p. 436-438, Stoyan(l987)). 
Consider a time interval (0, T ). Suppose we only observe those portions of patients' sojourn 

times (partly or completely) overlapping (0, r): i.e. 

(T;,X;) EA= {(t,x) ER x R+ I (t,t+ xJ n (0,r) ::/: 0}. 

For the patients arriving at or before 0 with sojourn times passing 0, we observe pairs (W;, E;), 
where 

W; = min(T; + X;,r), E· = { 1 T; + X; ~ r 
' 0 T; + X; > r 

and for the patients arriving within (0, r) we observe pairs (Z;, D;), where 

Z; = min(X;, T - T;), D·- •- • { 1 X-<r-T.· 
' - 0 X; > r - T;. 

Together, we have four kinds of observations, respectively single end censored (left-hand side) 
(s.e.c.1.), double censored (d.c.), uncensored (u.c.) and single end censored {right-hand side) 
(s.e.c.r.) observations. The observations represent the censored line segments of the one 
dimensional line segment process. A typical realization is given in Figure 1.1, where an open 
dot means that the observation of the line segment (T;, T; + X;J is censored at that side and 
a closed dot means that this is not the case. 

T 

Figure 1.1: line segment process observed in an interval (0, r). 

Let N be the number of points of the Poisson point process c) that fall in the set A. Con
ditioning on N = n, the total number of observed patients ( the total number of patients with 



The one-dimensional line segment process 7 

sojourn times overlapping with (0,r)), we haven independent (possibly partially observed) 
observations in A. N has a Poisson distribution with parameter.\ (r + µ) = fA .\dtdF(x). 
So N provides information about F through the value of µ, but because .\ is unknown the 
information about F contained in N is not useful and this justifies the presumption that 
conditioning on N = n causes no loss of information. 

In the following picture we draw the set A. Note that A = Uf=1 A; and that (T, X) E 

x-axis 

T -axis 

Figure 1.2: representation of set A. 

A; ( i = 1, 2, 3, 4) implies that the observation associated with (T, X) is respectively single end 
censored (left-hand side), double censored, single end censored (right-hand side) and uncen
sored. 

For each (T, X) E A we can construct the observable part of the corresponding line 
segment geometrically. Let (pi, 0) be the vertical projection of (T, X) on the t-axis and let 
(P2, 0) be the point on the t-axis such that the angle of the positive t-axis and the line through 
(T, X) and (P2, 0) is 135°. In other words we have p1 = T (the arrival time) and P2 = T + X 
(the departure time). Now we observe the intersection of the intervals (p1 ,P2) and (0, r). In 
Figure 1.3 we show this for a point (T,X) in A2 and A3• The corresponding line segments 
are drawn below the t-axis. 

1.1.2 Missing data problem 

We know that N, the number of points of the Poisson point process iii that fall in the set 
A, has a Poisson distribution with parameter,\ (r + µ). So if we condition on N = n, then 
the set of points iii n A is distributed like the set of points in an i.i.d. sample of size n with 
probability measure lA(t,x) .\dtdF(x)/(.\ (r +µ))(see (1.1)). This we can write as 

,\ 
lA(t,x) · .\(r + µ) dtdF(x) 
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where 

-
Figure 1.3: constructing observable pa.rt geometrically. 

T+x 1 = lA(t,x) · --dF(x) · --dt 
T+µ T+x 

1 = lA(t,x) · dV(x) • --dt, 
T+X 

T+X 
dV(x) = --dF(x). 

T+µ 

The models 

P2 

(1.2) 

(1.3) 

Note tha.t V is a. distribution function. One sees tha.t we obtain the same probability measure 
if we consider the set of points in a. random sample (T;, X;) of size n on R x R+, where the 
X;'s a.re i.i.d. having the common distribution function V and the T;'s, given X; = x;, a.re 
uniformly distributed on (-x;, T). To get the same kind of observations a.s in section 1.1.1, 
we suppose tha.t 

l A1 , then we observe t; + x; 

A " " " T 
if (T; = t;,X; = x;) E A2 ' ,, ,, ,, t 

3 , ,,, _ i 

A4 , " " " X; 

(s.e.c.l.). 
(d.c.). 
(s.e.c.r.). 
(u.c.). 

The model described in the previous two sentences is a. missing da.ta. model: the observations 
a.re a. function of the (T;,X;)'s, which a.re i.i.d., the X;'s having the distribution function V. 
Note tha.t in the hospital model of section 1.1.1, conditioning on N = n, the X;'s in the 
set of points • n A= {(T;, X;) E • I (T;, X;) E A} no longer ha.ve the common distribution 
function F, from which they a.re originally drawn, hut the distribution function ft ((T + 
u)/(T + µ))dF(u). By (1.2) and (1.3) together with the grouping prescription we see tha.t 
our hospital model ca.n he interpreted a.s a. missing da.ta. problem. 

Let F•·•-c.l., F'1-<·, F•·•-c.r. and Fu.c. he the suhdistrihution functions of the observed length 
of the line segments, where F···( u) stands for the probability of obtaining a. . . . observation 
with a. value :5 u. In Figure 1.4 we show in which set (T;, X;) lies, when (T;, X;) belongs to an 
... observation with a. value :5 u ( u E [O, T) ). The horizontal a.xis is the t-a.xis and the vertical 
a.xis is the x-a.xis. Now it is ea.sy to calculate the subdistribution functions by integrating 
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T 

s.e.c.l. d.c. 

u 

s.e.c.r. u.c. 

Figure 1.4: the sets corresponding to an ... observation :5 u. 

( 1 / ( T + x)) d V ( x) dt over the sets drawn in Figure 1 .4. For instance for Fa.e.c.l. we find 

J.w=u r=O 1 1.w=oo r=-w+u 1 
F•·•·c.l·(u) w=O lt=-w T + w dtdV(w) + w=u lt=-w T + w dtdV(w) 

= 1.w=u ~dV(w) + u 1.w=oo - 1 -dV(w) 
w=O T + W w=u T + W 

and so 
u u 1.=00 1 dF•·•-c.l.(u) = --dV(u)- --dV(u) + --dV(w)du 

r+u r+u w=u r+w 

( u E (0, T) ). For the other suhdistrihution functions we can do similar calculations. We find 

dF•·•·c.1·( u) 1.00 1 = l[or)(u) --dV(w)du 
' u r+w 

= l[o,r)(u) · g(u) du (1.4) 

dFd.c.(u) = 100 w - T dV(w)d.Sr(u) 
r r+w 

= h d.Sr(u) (1.5) 

dF•·•.c.r. ( U) = to 1 l[o,r)(u) u T + w dV(w)du 

= l[o,r)(u) · g(u)du (1.6) 

dFu.c.(u) T-U 
(1.7) = l[o,r)(u) T + u dV(u), 
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where o,,.(u) = 1 if u = T and O elsewhere and where g(·) and hare defined as 

100 1 100 w-T g(x) = --dV(w), h = --dV(w). 
., T+w ,,. T+w 

(1.8) 

For convenience we define 

(1.9) 

and note that dF ... ·0·(u) = 2g(u)du. Furthermore we note that his the probability of being 
double censored. 

When we discuss the likelihood in section 1.1.4 we need the subdistribution functions 
in terms of F too. Therefore we give them here. One can find them by using (1.3) with 
(1.4)-(1.7). We get 

dF•·•·c.1·( u) = 
1- F(u) 

l[o,-r)(u) T + µ du (1.10) 

dFd·0·(u) = 100 1 - F(w) dw do,,.(u) (1.ll) 
,,. T+µ 

dF•·•·0 ·•·( U) = 
I - F(u) 

l[o,-r)(u) T + µ du (1.12) 

dFu.c.(u) T-U 
(1.13) = l[o-r)(u)--dF(u). 

• T+µ 

Note that F•·•·0 •1• and F .... c.r. are the same and so these observations give the same con
tribution to the problem. Or one can say that the edges O and T of the time interval (0, T) 
censor the line segments equally. In fact the departure times T; +X; (i = l, ... ,n) form a 
Poisson point process too, independent of the X;'s. 

Before finishing this section we give some equalities, which belong to the model. We have 
the following equalities: · 

1 = V(T-) + 2Tg(T) + h 
_µ_ [ w = --dV(w) + Tg(T) + h 
T+µ o T+w 

T [ T = --dV(w)+Tg(T) 
T+µ 0 T+w 

and 

/" T-W dV(w)+2 /" g(w)dw+h = 
lo T + w lo 

-f (T-w)dg(w)+2 f g(w)dw+h = 1. 

Furthermore we have 

1 1 1 .. 1 - = - (1- h- V(T-)) + --dV(w) 
T+µ 2T O T+w 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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and with (1.3) we can rewrite (1.18) as 

2T L.,. T-W 
h=l---+ --dF(w). 

T+µ 0 T+µ 
(1.19) 

With (1.14) we express g(x) in terms of V on (0, T) and h: 

g(x) = 1.,. - 1-dV(w)+g(T) 
x T+w 

= [ T~wdV(w)+ 2
1T(l-h-V(T-)). (1.20) 

Note that '(1.14)=(1.15)+(1.16)' and (1.17) can be obtained from Figure 1.2 by integrating 
over At which yields J,I (T-w)/(T+w)dV(w), over A1 and Aa which gives 2J,I g(w)dw, and 
over A2 which gives h. Figure 1.2 gives a nice geometrical interpretation. One sees that h is 
the probability that an observation is double censored ((T;,X;) lies in the set A2), 2Tg(T) is 
the probability that an observation is single end censored and X 2'. T ((T;, X;) lies in the set 
(A1 U A3 ) n {(t, x) E JR x JR+ Ix 2'. T }), µ/(T +µ)is the probability that an observation is an 
observation of a patient arriving before time 0 ((T;,X;) lies in the set A1 U A2) and T/(T + µ) 
is the probability that an observation is an observation of a patient arriving within the time 
interval (0, T) (('.I';, X;) lies in the set A3 U At). 

1. 1.3 Identification 

To avoid confusion we remember that by J:, where x :Sy and x,y E (0,oo) \ {T}, we mean 
the integral over ( x, y], but by J; and JJ, where x :S T :S y, we mean the integrals over 
(x, T) and over [T, y] respectively. Thus we have J; dF(u) = F(T-) - F(x) and JJ dF(u) = 
F(y)- F(T-). 

If we remember (1.4)-(1.7) and (1.10)-(1.13), then with (1.20) we note that the distribu
tion of the data only depends on V ( or F) through V on (0, T) ( or F on (0, T)) and h ( or µ) 
and these two parameters are identified by it. As we already mentioned in the introduction, 
we want to translate the model from the parameters F and µ into the parameters V and h. 

We are interested in distribution functions FE :F, where :Fis the set 

:F = { all distribution functions on [0, oo) with finite mean } . 

Of course the translation Lx T+W 
V(x) = -- dF(w) 

0 T +µ 

does not go from :F to :F, but from :F to :F00 , where :F00 is the set 

:F 00 = { all distribution functions on [0, oo) } . 

One notes that :F C :F00 • We define the set S.,. as 

S.,. = { all subdistribution functions on [0, T) }. 

(1.21) 
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Let P(F,,.) denote the distribution function of the data w.r. t. the parameters ( F, µ) E ST x 
[O, oo). If we define the map mo : :F00 -+ ST x [O, oo) 

mo(G) = ( Gn { 0 wdG(w)) = (F,µ), 

where GTE ST is G restricted to [O,r) (thus GT(x) = G(x) for x E [O,r)), then our model 
M, which is the set of all possible distribution functions of the data and where the set of all 
possible underlying distribution functions is :F, can be described as follows 

M = { P(F,µ) I (F, µ) E mo(:F)}. 

By a certain map 'PT : S., x[O, oo) -+ S., x[O, oo) we will pass from (F, µ) to the parametriza
tion (V, h), where V and F satisfy (1.21) on [O, r). If we denote by P(V,h) the distribution 
function of the data w.r.t. the parameters (V,h) EST x [O,oo), then we can describe our 
model Mas 

M = { P(V,h) I (V, h) E cpT(mo(:F))}. 

Such a reparametrization is only useful if we can go back and forth between the two parametriza
tions in our model M . In other words is there a 1-1 correspondence between m0 (:F) and 
'PT ( mo( :F))? Because of the fact that for both parametrizations the parameters are identifiable 
from the data, there exists such a 1-1 correspondence. 

A natural extension of M would be 

JI= { Pcv,h) I (V, h) E cp.,(mo(:F))}, 

where A stands for the closure of set A. By 8A we mean the boundary of set A, thus 
8A = A\ A, where A stands for the interior of A. The model JI is 'too big'. 

The set mo(:F00 \ :F) consists of elements, which do not belong to a distribution function 
in :F, but to a distribution function with infinite mean. If F E :F00 \ :F, then all data sets 
contain only double censored observations a.s. and the probability of being double censored 
equals h = 1. In this case the translation from F to V gives us V = 0. This implies 

cpT(mo(:Foo \ :F)) = {(O, 1)} 

and we will have that cp.,(m0(:F00 \:F)) C 8cpT(m0(:F)). Surely, there is no 1-1 correspondence 
between mo(:F00 \ :F) and {(O, l)}. 

We will see that the rest of the boundary of cpT(m0(:F)), which does not belong to 
cpT(mo(:F)) itself, is not empty and consists of (V,h), which can be transferred back to an 
(F,µ) EST X [O,oo), but these Fon [O,r) can not be extended to an Fon [O,oo) with mean 
µ. Certainly, this is the case if F(r-) = 1 and J; wdF(w) < µ. This rest of 8cpT(m0(:F)) 
will be denoted by V<· Thus we have 

V< = 8cpT(mo(:F)) \ { {(O, 1)} U cpT(mo(:F))}. 

It will be shown that there is a 1-1 correspondence between V< and :F< = cp;1 (V<), where 
cp;1 stands for the inverse image of 'PT· We conclude that 

cpT(mo(:F)) = Cf'T(mo(:F)) U {(O, 1)} U v<. 
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Let us call ,p,, on cp,,(m0 (F)) and on V< the inverse of cp,,. (We will show that for our 
choice of cp,, this inverse exists). By cp;1 on {(0, 1)} we denote the inverse image of cp,,. In the 
following scheme we summarize the above paragraphs. 

Foo = F u Foo\ F 
! mo ! mo ! mo 

mo(Foo) u F< = mo(F) u mo(Foo \ .r) u F< 

! cp,, i ,fa,, ! cp,, i ,fa,, ! cp,, i ,fa,, ! cp,, t9,;1 ! cp,, i ,fa,, 

cp,,(mo(F)) = cp,,(mo(F)) u {(0, 1)} u v<· 

Now we will fill in this scheme and describe the sets and mappings concretely. We define 
the sets 

F,,,*,< - {(F,µ) IF ES,,,µ E [0, oo), Jo" w dF(w) + r(l - F(r-)) ~ µ} 

F,, - {(F,µ)IFES,,,µE[0,oo),fo"wdF(w)+r(l-F(r-)bµ 

and'=' when F(r-) = 1} 

F< - {(F,µ)IFES,,,µE[0,oo),fo"wdF(w)<µ,F(r-)=l} 

F* - {((F,µ) IFES,,,µ=oo}, 

and the sets 

v,,,*,< - {(V,h) IVE s,,, h E [0,oo), h ~ 1- V(r-)} 
V,, _ {(V, h) I (V, h) EV,,,*,<• h ~ 1 - V(r-) and'=' when h = 0} 

V< - {(V,h) l(V,h)EV,,,*,<,0<h=l-V(r-),h,/1} 

V* _ {(V,h)l(V,h)EV,,,*,<•h=l,V(r-)=0} 

= {(V,h)l(V,h)=(O,l)}. 

It is clear that 

and that we have 
:F',, = F,,,*,< , v,, = v,,,*,<· 

How are the sets F,,, F< and F related? To give an answer we define for this purpose for 
each ( F, µ) E S,, x [0, oo) the following set: 

'R.(F,µ) = {GE FI G(x) = F(x) on [0, r), fo00 wdG(w) = µ} CF. 

One sees that each ( F, µ) E S,, x [0, oo) represents a set of distribution functions in .r. Actually 
we will see that each (F,µ) E F,, represents a nonempty set 'R.(F,µ) in F and one immediately 
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notes that for each (F, µ) E :F< we have 'R(F,,-) = 0. Proposition 1.1.3.1 will give us the answer 
to the question we posed and is formulated as follows: 

and 

u 
(F,i,)ES..x[O,oo) 

'R(F,i,) = u 'R(F,i,) 
(F,i,)E.1'r 

'1:/(F,µ) E :F., : 'R(F,,-) 'F 0. 

(1.22) 

(1.23) 

With the knowledge that mO('R(F,,-)) = {(F,µ)} we have that these two statements immedi
ately imply that 

mo(:F) = U mo('RcF,,-)) = U {(F,µ)} = :F.,. (1.24) 
(F,i,)E.1'r (F,i,)EFr 

With the definition of mo on :F00 \ :F we may write 

(1.25) 

Now we will define the map ip., on 

:F.,,*,< = mo(:Foo) U :F<, 

which we use to pass from (F, µ) to the parametrization (V, h). Furthermore we define the 
map f/,., on 

ip.,(mo(:F) U :Fd, 

which we use to pass back to the parametrization (F,µ). We define 

ip.,(F(·),µ) 

f/,.,(V(•),h) 

_ (t r+wdF(w),l-~+ (" ~dF(w)) 
lo T + µ T + µ lo T + µ 

- Ccv!-),h) L" T !w dV(w), v(V(\h) -T), 
(see also (1.19)) where 

1 L" 1 v(V(•),h) = -(l -h- V(r-)) + --dV(w). 
2r o r+w 

(We keep in mind that v(V(·),h) corresponds with 1/(r +µ)(see (1.18)). 
In proposition 1.1.3.2 we show that ip., and f/,., give a 1-1 correspondence between :F., and 

V.,. In proposition 1.1.3.3 we prove that ip., and f/,, give a 1-1 correspondence between :F< and 
V<· These results with (1.24), (1.25) and the straightforward calculation of ip.,(mo(:F00 \ :F)) 
yields 

and 

ip.,(mo(:F)) = ip.,(:F.) = v. 
ip.,(:Fd = v< 

ip.,(mo(:Foo \:F)) = ip.,({(F,oo) IF ES.,})= {(0,1)} = v*. 



The one-dimensional line segment process 15 

So we have rp,.(mo(Foo) U F<) = V,.,*,< = V,. = rp,.(mo(F)). 
The scheme becomes 

Foo = F u Foo \F 
! mo ! mo ! mo 

mo(Foo) u F< = F,. u F* u F< 

! rp,. t tp,. ! rp,. t t/,,. ! rp,. t tp,. ! rp,. f rp;l ! rp,. t tj,,. 

VT,*,< = v,. u {(O, l)} u v<· 

From now on we describe the model M as 

and use the parametrization (V, h ), because of its earlier mentioned advantages, and know 
that we can change back to ( F, µ) E F,. without difficulties. In our search for the NPMLE we 
will maximize the likelihood over the set V,. = V,.,*,< so the given specified description of the 
larger set could be useful. 

In the remainder of this section we prove the propositions 1.1.3.1 - 1.1.3.3. 

Proposition 1.1.3.1 Using the definitions of the sets and functions from above, we have 
(Ue) and {1.19). 

PROOF: we begin with the first equality in (1.22). It is obvious that we have'::>', because 
for all ( F, µ) we have n(F,µ) C F. Each G e F is an element of n(Fa,Pa), where Fa equals G 
restricted to [O, r) and µa equals the expectation of G. (Note that G E F => 0 :5 µa < oo ). 
So we have 'C' too. 

If we prove F = U(F,µ)E.1'", R(F,µ), then we automatically prove the second equality in (1.22). 
Again, it is obvious that we have'::>'. We know that each GE Fis an element of R(Fa,Pa), 

where Fa(x) = G(x) (on [O,r), thus Fa(r-) = G(r-)) and µa= f:' wdG(w). For Fa and 
µa we note that µa is finite and nonnegative because G E F and we have 

oo > µa = f wdG(w) + 100 wdG(w) 

= f wdFa(w) + 100 wdG(w) 

~ f wdFa(w)+r(l-G(r-)) 

= f wdFa(w) + r(l - Fa(r-)) 

and if Fa(r-) = G(r-) = 1 we have 

foT wdFa(w) = f wdG(w) = fo00 wdG(w) = µa. 
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This proves that (Fa,µa) E :FT and thus GE U(F,,.)eF,'R.(F,µ)· So we have showed 'C'. This 
completes the proof of (1.22). 

To prove (1.23) we take a (F,µ) E :FT. Now we look for a GE :F such that G(x) = F(x) 
on (0,T) and /0

00 wdG(w) = µ. On (0,T) we have to take G(x) = F(x). If F(T-) = 1, then 
we are ready and choose G(x) = 1 on (T,oo). (Note that /000 wdG(w) =µis satisfied). If 
F(T-) < 1, then let us search for a G, which gives mass on [T,oo) only at T and at some 
point b > T. By AG(T) and AG(b) we denote the height of the jump of G at T respectively b. 

If G is a distribution function in :F such that it is an element of 'R.(F,µ), then AG(T) and 
AG( b) have to satisfy 

fo00 wdG(w) = [ wdF(w) + TAG(T) + bAG(b) = µ (1.26) 

fo00 dG(w) = F(T-)+AG(T)+AG(b)=l (1.27) 

under the condition that AG(T) 2'. 0 and AG(b) 2'. 0. Now (1.26) and (1.27) imply 

( T b ) . ( AG(T) ) _ ( µ - J; wdF(w) ) 
1 1 AG(b) - 1-F(T-) . 

Because b > T the inverse of the matrix exists and we have 

= _l_ (µ - r wdF(w)) - _b_ (1 - F(T-)) 
T-b k T-b 

= --1- (µ- r wdF(w)-T(l -F(T-))). 
T - b lo 

(1.28) 

(1.29) 

Now -1/(T-b) > 0 and because (F,µ) E :FT we haveµ- J; wdF(w)-T(l-F(T-)) 2'. 0 and 
thus with (1.29) we conclude that AG(b) 2'. 0. For b-+ oo we have that -b/(T-b)·(l-F(T-)) 
tends to (1- F(T-)) > 0 and 1/(T - b) • (µ - J; wdF(w)) tends to 0. Thus there exists a 
b E ( T, oo) such that AG( T) 2'. 0. This completes the construction of a G E n(F,µ) for a given 
(F, µ) E :FT and proves (1.23). D 

Proposition 1.1.3.2 If we consider the map <f!T on :FT and the map 'PT on Vn then they give 
a 1-1 corTespondence between :FT and VT. 

PROOF: we have indeed that if (V(·),h) = <f!T(F(·),µ) for an (F,µ) E :Fn then VE ST 
because 1"' T+w 

V(x) = --dF(w) 
0 T +µ 

is nondecreasing on (0, T) and J; w dF( w) $ µ implies O $ V( x) $ 1. For h we find with the 
condition in :FT 
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If J; wdF(w) + T (1 - F(r-)) <µ,then we have F(r-) < 1 and we may write 

~> r ~dF(w) 
T + µ lo T + µ 

and this yields 

1,,- 2T l,,- T-W 
h < 1- --dF(w)+ --dF(w) = 1-V(r-). 

o r+µ o r+µ 
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If J; wdF(w) + T (1- F(r-)) =µand thus F(r-) = 1, we get that J; wdF(w) =µand so 
one sees immediately that V( T-) = 1 and h = 0. Note that we defined h in such a way that 
(1.19) holds. So we verified that 'f',,-(.r,,.) ~ V,,.. 

Conversely we have that if (F(·),µ) = tp,,.(V(·), h) for an (V, h) EV,,., then FE S,,. because 

1 /"' 1 
F(x)= v(V(•),h) lo r+wdV(w) (1.30) 

is nondecreasing on [O, T) and 

0 F( ) = 1 /"' 1 dV( ) 
$ x v(V(·),h) lo r+w w 

$ ( r - 1-dV(w))-i ( /"' - 1-dV(w)) $ 1. 
lo T + w lo r + w 

From the definition of v(V(•),h) we get easily with the constraints in V,,. that O < v(V(•),h) $ 
(1/r) and so we have 

0 $ µ = v(V(·),h) -T < oo. 

(Compare the definition ofµ with (1.18)). From (1.30) we get 

r 1 r w-T 
lo (w - r) dF(w) + T = v(V(·), h) lo T + w dV(w) + T 

and this implies 

We have 

f wdF(w)+r(l-F(r-)) 

1 (rW-T ) = v(V(•),h) lo r+wdV(w)+2rv(V(•),h) -r. 

r w - r dV(w) + 2T v(V(•), h) 
lo r+w 

= r w-r dV(w)+(l-h-V(r-))+2r r _l_dV(w) 
lo T + w lo T + w 

(1.31) 

= (1 - h). (1.32) 
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If O $ h < 1 - V{ r-) $ 1, then we get with {1.32) from {1.31) 

/T 1 
lo wdF(w)+r(l-F(r-))< v(V(·),h)-r=µ. 

If h = 1 - V(r-) and thus h = 0 and V(r-) = 1, then we get with {1.32) from {1.31): 
J; wdF(w) + T {1- F(r-)) = µ. Furthermore with {1.30) we derive that F(r-) = 1. So we 
checked that ',OT(VT) ~ :FT. 

By straightforward calculation one shows that 

and 
'PT (t/>iV(•), h)) = (V(•), h). 

This proves that there is a 1-1 correspondence between :FT and VT. □ 

Proposition 1.1.3.3 If we consider the map 'PT on :F< and the map 1PT on V<, then they 
give a 1-1 correspondence between :F< and V<. 

PROOF: {In proposition 1.1.3.2 we showed already that if (V(·),h) = c,oT(F(•),µ) for an 
(F,µ) E :Fn then (V,h) EST x (O,oo). The same for (F,µ)). First we prove c,oT(:F<) ~ V<. 
Let us consider a (F,µ) E :F<· Because of -J; wdF(w) >-µand F(r-) = 1, we have 

2T LT r - w 2T r - µ 
h:: 1- --+ --dF(w) > 1- --+-- =0 

r+µ o r+µ r+µ r+µ 

and thus h > 0 is satisfied. Furthermore we have 

1-V{r-) LT r+w 
_ 1- --dF(w) 

0 T +µ 
2T LT T-W = 1---+ --dF(w)=h 

r+µ o r+µ 

and thus 1 - V ( T-) = h is satisfied. We also know that if h = I, then we would have 

--32:_ = r ~dF(w). 
T + µ lo T + µ 

But because we have J; ( T - w) dF( w) $ T, this can only be true if µ = oo. This contradicts 
the fact that (F, µ) E :F<. Thus we have h ,:j:. l. This proves c,oT(:F<) ~ V<· 

Secondly we prove t/>T(V<) ~ :F<. Let us consider a (V,h) EV<· Because h = 1- V(r-) 
we have that 

and thus 

LT l 
v(V(·),h) = --dV(w) 

o r+w 

1 r 1 
F(r-)=v(V(•),h)Jo r+wdV(w)=l. 

{1.33) 
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Furthermore 0 < h = 1 - V( r-) implies that V( r-) < 1 and with (1.33) we obtain 

r dF( ) l r w dV( ) 
lo w w - v(V(·),h) lo r+w w 

= 1 r r + w dv( ) 1 r T dv( ) 
v(V(•),h)lo r+w w -v(V(·),h)lo r+w w 

1 
= v(V(·),h) V(r-)-r 

1 
< v(V(·),h)-r:µ. 

We have that F(r-) = 1 and J;; wdF(w) <µand this proves t/J.,.(Vd ~ :F<. 
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Of course we have t/J.,. (rp.,.(F(·), µ)) = (F(• ), µ) and rp.,. (tf,.,.(V(· ), h)) = (V(·), h) by straight
forward calculation. This proves the 1-1 correspondence between :F< and V<- □ 

1.1.4 The likelihood and the definition of the NPMLE 
We consider the hospital model of section 1.1.1. If we condition on N = n, the likelihood 
based on the probability that we have the n independent observations (Z; = z;, D; = d;), 
(W; = w;, E; = e;) (i = 1, ... , m;j = 1, ... , I; n =I+ m) is proportional to 

1 m I (loo )1-e, 
(r + µ)n g (dF(z;))d• (1 - F(z;))1-d' }J (1 - F(w;))'' .,. (1 - F(u)) du (1.34) 

(use (1.10)-(1.13)). One must be aware that in the likelihood (1.34) µ in the denominator 
also depends on F. (Note that we haven factors 1/(r +µ),one for each observation). 

Let x1 < X2 < ... < x, be the ordered values of w; and z; for which either e; = 1 or 
d; = 0, 1 (these are the uncensored and single end censored observations) and let </>; and 'Yi be 
the number of the uncensored respectively single end censored values at x;. Instead of using 
the likelihood (1.34) with the distribution function F, where we would have to deal with µ 
in the denominator, we regard our problem as the missing data problem described in section 
1.1.2 and with {1.3) (or (1.4)-(1. 7)) and (1.8) we write (1.34) in terms of V. We get 

lik(V) CC II (dV(x;))</>' (100 
-

1-dV(w))-r, · (1 00 ~dV(w))n-r 
i:l w=:r:, T + W w:..- T + W 

Il (dV(x;))</>i ([ T ~ w dV(w) + g(r)r . hn-r. (1.35) 

Here we introduce the following empirical subdistribution functions on (0, r]: 

F!·0 ·(x) - .!_ # { double censored observations < x} (1.36) 
n -

Ft0 ·(x) - .!_ # { uncensored observations ~ x} (1.37) 
n 

F;·•·0 ·(x) - .!. # { single end censored observations < x}. (1.38) 
n -
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(F•·•· 0 • is defined by (1.9).) From (1.35) we write by formally taking logs the 'log likelihood
function' on V.,. as 

li'(V,h) = [ log (dV(:i:)) • dF,:"·c.(:i:) + k.,. log(g(:i:)) • dF:·•·0 ·(:i:) + log(h) • F:·0·(T), (1.39) 

where (V, h) E V.,. and 

1.,. 1 -
g(x) = --dV(w) + g(T) 

:t: T+W 
(1.40) 

and g( T) is defined by 
V(T=)+2Tg(T) + h = 1 

(compare with (1.14)). 
Now we say that (V,.,ii,.) is a NPMLE of (V,h) in V.,., if 

li'(V, ii) - li'(Vo, ho) :5 li'(V.., ii,.) - li'(Vo, ho) 

for all (V, h) E V.,. and V < Vo, V,. < Vo for a (Vo, ho) E V.,. (for example Vo = ½ (V + V,.)) 
following Kiefer and Wolfowitz(l956) (see also Scholz(l980), Gi11(1989)). When subtracting 
log likelihoods we use the following interpretation: if G and H are measures and G < H, 
then we rewrite 

dG(:i:) dG 
logdG(:i:) - logdH(:i:) = log dH(:i:) = log dH(:i:), 

where (dG/dH)(:i:) is the Radon-Nikodym derivative of G with respect to Hat :i:. 

1.1.5 Existence and uniqueness of the NPMLE 

We state that there exists a nondecreasing step-function on (0, T) with jumps at the uncensored 
and single end censored observations that is a NPMLE (V,., h,.) of (V, h). To see this we use 
(1.35) to note that if one puts mass between the observation points, then one can always 
shift this mass to the nearest observation point on the left and increase the likelihood. (Mass 
between 0 and the first observation point can be shifted to this observation point.) So from 
now we can consider discrete estimators with mass on the observation points only. 

Let I,. contain all the indices of the :i:;'s in :i:1 < :i:2 < ... < :i:, < :i:,+1 = T, which are 
uncensored observations and let I. contain all the indices of the :i:;'s which are single end 
censored observations. We note that the distribution of the length of the s.e.c. observations 
is continuous and therefore we have /,. n I. = 0 with probability 1. In the discrete setting we 
denote by ~V(:i:) the height of the jump of Vat :i:. If we define v; = ~V(x;), then we write 
the loglikelihood formally as 

li'(V,h) =!.LI/>; log(v;)+!. L '"(; log (t-1-v;+g(T)) + n-r •log(h). (1.41) 
n ieI. n ;er, j=i T + x; n 

Now we defines;= v; (j = 1, ... , r), s,+1 =hand s,+2 = 2Tg(T) and we write the loglikelihood 
formally as a function q of s = (s1,s2, ••• ,s,+2): 

r+l (r+2 ) 
q(s) = ~ {3; log ~ o:;; s; , 

•=I J=l 
{1.42) 
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where /3; (i = l, ... ,r+ 1) is defined as 

/3 1 ,1.d; •• ( )l(i=r+l) ; = - · 'f'i • 'Yi • n - r 
n 

and where the a;; ~ 0 are defined as follows: for an observation i ( i = 1, ... , r + 1) we have 
the following three possibilities: 
1) i E lu (there are u.c. observations x;): 

a;;={.ol ifj=i 
if j # i, 

2) i E /, (there are s.e.c. observations x,): 

a,;-1 
0 if j < i 

T + Xj 
if i $ j $ r 

0 if j = r + 1 
1 

ifj=r+2 
2T 

3) i = r + 1 (d.c. observations r): 

a;;={ol ifj=r+l 
ifj#r+l. 

Note that we have for all i: a;; > 0. 

(1.43) 

(1.44) 

(1.45) 

For a matrix M we denote by (M);; the entry in M with the coordinates the i'the row 
and the j'th column. We use (M),. and (M).; to denote the i'th row respectively the j'th 
column and for a vector a we use (a), (or a;) to denote the i'th entry, thus by (Ma), we mean 
the i'th entry of the vector Ma. Now we define the (r + 2) x (r + 2) matrix A: 

(A),; - Oij for i = 1, ... , r and j = 1, ... , r + 2 
(A),+1,; - 0 for j # r + 1 
(A),+1,r+1 - 1 
(A),+2,; - 1 for j = 1, ... , r + 2. 

The matrix A has the following structure: 

* * * 
0 * * 
0 0 * 

0 0 0 
0 0 0 
1 1 

* * 0 * 
* * 0 * 
* * 0 * 

0 
0 
0 

0 * 0 * 
0 0 1 0 
1 1 1 1 
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where the *'s stand for some number. On the diagonal we have nonzero entries. To show that 
A is invertible we show that the rank is r + 2 by using elementary row operations on A to 
obtain a matrix with O's below the diagonal and nonzero elements on the diagonal. Because 
(A)11 > 0 we make with the first row A,+2,l equal to 0. Then (because A22 > 0) we make 
with the second row A,+2,2 equal to 0. We repeat this until all A,+2J (j = 1, ... , r + 1) are 0. 
This proves that rank A is r + 2 and thus A-1 exists. 

We remember that the s;'s that maximize (1.42) represent the mass of V,. at the x;'s 
(i = 1, ... ,r) and s,+1 and S,+2 stand for the mass assigned to respectively hn and 2rgn(r). 
Now q(s) (see (1.42)) will be maximized over the set 

S = { s E R'+2 IE s; = 1, s; ;:: 0} · 

It is obvious that q is concave on S (use (strict) concavity of the log to obtain q(Aso + (1 -
A) s1) ;:: A q(so) + (1 - A) q(s1), with so, s1 ES). It is easy to see that q: S -+ RU {-oo} is 
bounded from above: q(s) $ (r + 1) · log((r + 2) max;,;(a;;)). Furthermore one notes that q 
is continuous on S. The continuity of q on the compact set S guarantees the existence of a 
maximum in our problem. 

Ifwe define I: R'+2-+ RU {-oo} as 

r+l 

/(u) = L {J; log u;, 
i=l 

then we note immediately ({J; > 0) that I is strictly concave on 

where c 2: 0 is a constant. (For each i log u; is strictly concave on Uc and thus l is a sum of 
strictly concave functions on Uc). Thus l is also strictly concave on 

U = A(S) CU1 

((As),+2 = ErI; S; = 1 for alls ES). One easily verifies that 

q(s) = l(As). 

We know already that q has a maximum on S. Now the fact that l is strictly concave on 
U = A(S) and the fact that A is invertible imply that the maximum is unique. 

We know that each s E S corresponds with a subdistribution function V 8 on [0, r ), which is 
a step-function (wit~posstble jumps only at the x;'s) and a ii.;:: 0 such that ii.$ 1-V.(r-) 
(and 2rg8 (r) = 1- h. - V.(r-) 2: 0). So we have that 

{1.46) 

(see section 1.1.3). (Note that the set Vnpmle depends on the sample size). It can happen that 
the NPMLE CVn, hn) which lies in Vnpmle, lies in the boundery of VT but not in VT itself. For 
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example if we have a sample of size 5 consisting of two u.c. observations x1, x2 E [O, T) and 
three d.c. observations T, then we have to maximize 

1, - ll - 31 h 5 ogv1+ 5 ogv2+ 5 og 

subject to the constraints ii1 + ii2 + h = 1 and ii; ~ 0 and h ~ 0. The method of Lagrange 
multipliers gives us v1 = v2 = 1/5 and hn = 3/5. Thus O < hn = 1 - Vn( T-) and hn =/- 1 and 
this implies that (Vn, hn) E V<· Thus the NPMLE does not have to be 'in the model'. 

We have proved the following proposition: 

Proposition 1.1.5.1 The NPMLE (Vn, hn) exists and is unique and lies in Vnpmle CV.,.. 

Because we need some ideas from chapter 2, we will give the proof of the following proposition 
in section 2.2.3. The proposition says that for increasing n the probability that the NPMLE 
lies in the model tends to 1. 

Proposition 1.1.5.2 Suppose that we have g(r) > 0 for the underlying g, then for increasing 
n the probability that the NPMLE (Vn, hn) EV.,. tends to 1. 

1.1.6 EM-algorithm and self-consistency equations 

In this section we will derive the so-called self-consistency equations for the NPMLE (Vn, hn) 
of (V, h) and say something about the EM-algorithm for computing the NPMLE. Although 
most of the machinery in the next paragraph is introduced in chapter 3 ( (differentiable) one
dimensional submode! through V, score operator, score equation), we illustrate here all the 
same how the equations (1.50)-(1.52) can be derived. If one wants to ignore this derivation 
at this time, then one skips the next paragraph. 

Just for the moment we parametrize again with VE :F00 instead of (V, h) EV.,. and thus we 
parametrize the distribution of the data with Pv, VE :F00 instead of P(V,h) with (V, h) EV.,.. 
We denote by Pn the empirical distribution of the data. Let us consider the following class 
of one-dimensional submodels through V: 

f«:' (1 + 0 l(u)) dV(u) 
Vs.i(x) = J000 (1 + 0 l(u)) dV(u)' 

with bounded score l and where O is sufficiently small. Now Vn 9,1 is a dominated family 
of one-dimensional submodels through Vn and because Vn is the NPMLE we have that the 
log likelihood is maximal at 8 = 0. By differentiating the log likelihood along Pv,~ (one-

n 9,1 

dimensional submodels through PVn implied by Vn 9,1 and with score Avn (l), where Ayn is 

the score operator (see section 3.3)) and evaluating at O = 0 we obtain the score equation 

(1.47) 

for all bounded l (which are a score of some differentiable submode! Pv,~ through Pv,~ ). For 
nB,I n 

any missing data model the score operator is given by Ayn (l)(Y) = Eyn (l(X) I Y), where X 
is the variable of interest and Y the data. The score equation becomes 

{1.48) 
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(for heuristical argument see Gi11(1989); for rigorous proof see Bickel et al.(1993) prop. A5.5). 
Especially (1.48) holds for l(X) = l{xs,,}(x)- Vn(x). This provides us with the so-called 

self consistency equation: 

Vn(x) = J Pyn(X$xlY)dPn(Y) 

= !. E PV. (X, $ x I observation i). 
n i=l n 

(1.49) 

Together with the definitions of F;t·0 ·, F:·•·0 ·, F;:·0 • in (l.36)-(1.38) and Yn we get from (1.49) 
that the NPMLE (Vn, hn) of (V, h) satisfies the self-consistency equations 

and 

(1.51) 

(1.52) 

A solution of (1.49) and thus of (1.50)-(1.52) can be computed with the EM-algorithm. 
We already mentioned that we could consider discrete estimators with mass on the observation 
points only. In this discrete setting we mean by dVn(x,) the height of the jump of Vn at x,. 
Thus dVn(x) = 0 if x ¢ {x1 , ••• ,x.}. (Here we use this 'lazy' notation, instead of rewriting 
(1.50)-(1.52) in the discrete notation -1. Vn(x,)). If we replace in the equations (1.50)-(1.52) 

at the left-hand side Vn, hn and Yn by Vn k+I, hn k+I and Yn k+I respectively and if we replace 

at the right-hand side Vn, hn and Yn by Vn k, hn k and Yn k respectively, then we obtain the 
iterative scheme of the EM-algorithm. 

We start with an initial (discrete) estimator (V/, hn °) which puts positive mass at all 

the observation points, h/ and Yn(r)0 • Now we evaluate for k = 0 the expressions at the 

right-hand side of (1.50)-(1.52) with Vn °, hn ° and Yn(r)0 • This is the 'E'-step in the algorithm 

(where the 'E' stands for 'Expectation'; see right-hand side (1.49) ). Defining dV/ (x ), h/ and 

Yn(r)1 by (1.50)-(1.52) (dVn °(x), hn ° and Yn(r)0 at the right-hand side) provides us with a new 
distribution function, which increases the likelihood. This is the 'M'-step in the algorithm 
(where the 'M' stands for 'Maximization'). Wu(1983) (see also Dempster et al.(1977) and 
Turnbull(1976)) shows that the likelihood increases after each iteration and converges to the 
maximum, the NPMLE (Vn, hn), which is in our case unique. 

We make here the remark that if one does not start with an initial estimator that puts 
positive mass at all the observation points, then the EM-algorithm will converge to a solution 
of the self-consistency equations, but not necessarily to the NPMLE. At s.e.c. points where 
the initial distribution gives mass zero, all iterated distributions will give mass zero (see EM
algorithm). Thus if the NPMLE gives positive mass to a point to which the initial distribution 
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gives mass zero, then the algorithm does not converge to the NPMLE {see also Groeneboom 
and Wellner{l992)). 

1.1.7 The sieved NPMLE 
In the previous section we already mentioned the fact that if we start in the EM-algorithm 
with an initial distribution that puts mass zero for instance at the s.e.c. observation points, 
then the algorithm will not necessarily converge to the NPMLE, which is a step-function with 
(possible) jumps at all observation points. But the algorithm will converge to a solution of 
the self-consistency equations. Actually, in the class of discrete distributions with {possible) 
mass at the u.c. observation points only, this solution will maximize the log likelihood. By 
this fact we are able to introduce a new kind of NPMLE-definition: the sieved NPMLE. The 
estimator sieves its observation points: only the u.c. observation points get mass. Of course 
the sieved NPMLE depends on the sieve you choose. Any subset of the observation points 
can be a sieve. 

For the NPMLE (Vn, hn) of (V, h) E V, we know that we only have to consider discrete 
estimators with mass at the observation points only. Of course this is the set Vnpmle defined 
in {1.46). This set of distributions will be dominated by {irr+2, 1/(r + 2)), where irr+2 gives 
mass 1/(r + 2) to the r observation points (in [O, r)) and the same amount of mass is given 
to h = sr+I and 2rg(r) = Sr+2· Therefore if I1r+2 denotes the distribution function of irr+2 
on [O, r), we have that the definition of the NPMLE (Vn, hn) in section 1.1.4 is equivalent to 
the following definition: 

(Vn, hn) = arg _ _max ( lli{V 8, h8 ) - lli{Ilr+2, 1/{r + 2))) {1.53) 
(Va,hs)EVnpmle 

{provided the maximum exists). 
Here the sieved NPMLE is defined as the maximizer of the log likelihood Iii for distribu

tions, which only give mass to the u.c. observation points (and hand 2rg(r)). Now we define 
the set V.,;••• analogue to the set Vnpmle in {1.46). Remember the definition of the set I, in 
section 1.1.5: containing all the indices of the x;'s in x1 < ... < Xr which are s.e.c. observation 
points. Now the set V.,;eve is defined as 

V.,; ••• = {(V8 , h8 ) Is ES, Vi E /, s; = O}, 

where V8 and h8 are defined as in {1.46). (Note that V.,;••• depends on the sample size). Let 
ro be equal to #I •. Then this set is dominated by (er-ro+2, 1/{r - r0 + 2) ), where er-ro+2 
gives mass 1 / { r - r0 + 2) to the r - r0 u.c. observation points {in (0, T)) and the same amount 
of mass is given to h = s,+1 and 2rg( T) = Sr+2• If 3,-,0+2 denotes the distribution function 
of er-ro+2 on [O, T ), we define the sieved NPMLE (Vnhn) as: 

(Vn,hn) = arg _ .!Ilax (lli{V8 ,hs)- lli{Br-ro+2, 1/{r -ro + 2) )) 
(Va,ha)eV.,;0 •• 

(1.54) 

(provided the maximum exists). 
Similarly to what we did for the NPMLE, we can show that the sieved NPMLE exists 

and is unique in V.,; ... and satisfies the self-consistency equations too. We state the next 
proposition: 
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Proposition 1.1. 7.1 The sieved NPMLE(fin, hn) exists and is unique and lies in Vsieve C 'i::\. 

The following statement is proved in section 2.2.3, just as proposition 1.1.5.2. 

Proposition 1.1. 7.2 Suppose that we hav!. g(:) > 0 for the underlying g, then for increasing 
n the probability that the sieved NPMLE (Vn, hn) E V,. tends to 1. 

We note that the propositions 1.1.5.2 and 1.1.7.2 do not say anything about the probability 
that the limit version of the (sieved) NPMLE lies in the model. 

There are several reasons to consider a sieved NPMLE (V.., hn) of (V, h). Firstly, we will 
see that consistency results, which are formulated in chapter 2, hold for the sieved NPMLE 
in all three cases distinguished there of the underlying (V, h). For the NPMLE we can prove 
these results just for two of the three cases. 

Secondly, we will see in the sections 1.2.4 and 1.2.6 that in the two-dimensional line 
segment problem we are not able to show that the NPMLE lies in some discrete class. For 
the discrete setting we know how to use the self-consistency equations as an iterative scheme 
of the EM-algorithm to compute the NPMLE. Thus it might be more convenient to consider 
the sieved NPMLE, for which we know that it lies in a discrete class because we force it to 
be there. 

Thirdly, instead of using the EM-algorithm to compute the sieved NPMLE (fin, hn), we can 
rewrite the self-consistency equations in case of the sieved NPMLE into an iterative scheme, 
which works faster than the EM-algorithm. We write (1.50) as 

dfin(x) = dF,:'·<·(x) 

+J.v="' (Yn(O) -1.w=v- - 1-dfin(w))-l dF:·•·c·(v) · - 1-dfin(x), 
v=O w=O r+w r+x 

which gives us (because fin <:: F,:'·c·) 

Because of (1.51) we have that 1 - hn = F,:'·c·(r) + F:·•-<·(r). This we use to write equation 
(1.19) as 

g (0) = _!_ (Fu.c.(r) + p•·•-<·(r) + r r - x dV. (x)) 
n 2T n n Jo T + X n · (1.56) 

Now (1.55) and (1.56) imply the following iteration scheme: 

dK(x)8"" = 

( 1 - _l_ 1.v="' (bold -1.w=v- - 1-dK(wt°")-t dF:-~·c·(v))-1 dF,:'·<·(x)(l.51) 
r+x v=O w=O r+w + + 

and 

(1.58) 
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Note that Vn (with Un(0)) is the solution that satisfies these equations. The idea is to take a 
value for band compute successively with (1.57) the dK(x;)'s at the uncensored observation 
points. For the computation of dK(x;) we only need the dK(x;)'s with j < i. Now the 
equation (1.58) is used to check if the desirable accuracy E is achieved. Let b be the value 
to he reached. Because lf'•• is a decreasing function of b0 ld we have that bold ~ b implies 
lf'•• $ b $ b01d and b01d $ b implies -ii'"., ~ b ~ b01d. Thus lf'•• ~ b01d implies bold $ b and 
lf'•• $ bold implies bold ~ b. So we can see on which side of b01d we choose our new b. (One 
can use binary-search). Note that if b gets bigger at the right-hand side of (1.57), then dK(x) 
at the left-hand side gets smaller and if dK(w) (w :5 x)at the right-hand side of (1.57) gets 
smaller, then dK(x) at the left-hand side gets smaller. Furthermore if bis very big, then the 
dK(x;)'s are very small and vice versa: a solution will he reached. 

1.2 The two-dimensional line segment process 

In this section we introduce a two-dimensional line segment process observed through a convex 
window W. A lot of the knowledge about the one-dimensional case and the techniques we 
used there, will he useful to get a clear insight in the two-dimensional problem. 

We start in section 1.2.1 with the introduction of the model. To make it easier for under
standing and because of the less complicated computations, we work out the case that W is 
a circle in the sections 1.2.2 - 1.2.4. In the sections 1.2.5 and 1.2.6 we get hack to the general 
case: W is an arbitrary convex window. 

1.2.1 The model 

Consider the following stochastic process: to each point T = (T1 , T2) in a homogeneous 
Poisson point process on R X R with intensity A is assigned a line segment of length X and 
a direction 0, where 0 is measured anti-clockwise relative to West-East. The Xi, X2 , ••• are 
i.i.d., positive and have the common distribution function F(x). We defineµ= f;'° xdF(x). 
The 0 1, 0 2 , ... are i.i.d. and have the common distribution function K(O) (8 E (0, ir)). X and 
0 are independent of each other, of other pairs (X*, 0*) and the underlying point process. 
For each i we have a point (T;, X;, 0;) E R 2 x R+ x (0, ir ). All this defines a point process 
~ on R2 X R+ x (0,ir) and one can show that~ can be characterized as an inhomogeneous 
Poisson point process on R 2 x R+ x [O, ir) with intensity measure 

e(d~dx,d8) = AdtdF(x)dK(O) (1.59) 

(see Karlin(l981) p.p. 436-438, Stoyan(l987)). 
Let W be a convex window in R 2• We only observe those portions of the line segments 

intersecting W. Again we get the same kind of observations: uncensored (u.c.), single end 
censored (s.e.c.) and double censored (d.c.) observations. The observations are the possibly 
censored line segments of the two-dimensional line segment process observed through W. In 
Figure 1.5 we see a typical realization. 

Without loss of generality, we suppose that the southern end of the segments belong to 
the underlying Poisson point process of the T;'s. Now consider the line segments pointing 
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Figure 1.5: line segment process observed through W. 

The Models 

in the direction IJ only in a slice of W parallel to IJ of width dr and length r. Considering 
this slice of W we actual!y have the one-dimensional case of section 1.1 and can express the 
observations in terms of T;, X; and 0; in the same way as there. 

Just as in the one-dimensional case we define the set A as the set in R2 x R+ x (0, ,r) 
such that if a point of~ say (T, X, 0) = (i'; x, IJ) is in A, then the corresponding line segment 
intersects the window W (in other words: is (at least partly) observed in W). So all the points 
of ~ that belong to a line segment that is observed through the window W, are in the set A. 
For each IJ we define the set As as the set of points of A with direction IJ. Furthermore we define 
the set As,; (i = 1, 2, 3) as the subset of As such that if a point of~ say (T, X, 0) = (i'; x, IJ) 
is in As,; then the observation is uncensored (i = 1), single end censored (i = 2) or double 
censored (i = 3). Finally we define the set As,..- as the set of points of A with a direction IJ 
and a length x. Note that we have 

In Figure 1.6 we draw one of the sets As. (Window Was in Figure 1.5). Note that for another 
IJ one gets a different picture. As in the one-dimensional case, for each (T, X, 0) E A we can 
construct its observable part of the line segment geometrically (see section 1.1.1 and Figure 
1.3). 

In Figure 1. 7 we draw a set As,x• Actually, we draw the set A at level x under the angle 
IJ. Let z(IJ) be the greatest distance in Win the IJ direction. In Figure 1.7 (a) we have a 
representation of set As,x if x > z and in (b) if x::; z. In Figure 1.7 (c) and (d) we have this 
for another value of IJ. We see, because of the shape of the window W, that the shapes of 
As and As,x heavily depend on IJ. The numbers 0, 1 and 2 in Figure 1. 7 refer to respectively 
the u.c., s.e.c. and d.c. observations. For instance if (T, X, 0) = (t'; x, IJ) falls in an area with 
number 1, then the observation belonging to this (f, X, 0) is s.e.c. 
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Figure 1.6: representation of a set As. 

(C) 

(d) 

Figure 1.7: representation of .A9,., under different angles 8. 
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Let N be the number of points of the Poisson point process + that fall in the set A. 
Conditioning on N = n, the total number of observed line segments through window W, 
we have n independent (possibly partially observed) observations in A. N has a Poisson 
distribution with parameter 

..\(IWI + µEKdiam(W)) = L ..\dtdF(x)dK(8), 

where IWI is the area of Wand diam(W,8) is the diameter of the window as seen in the 8 
direction and EKdiam(W) is the average diameter (with respect to the distribution K). 

The integral is calculated as follows. For each 0 = 8 and X = x we have to integrate 
..\dtdF(x) dK(8) over the set A,,.,. We fix an origin O and consider infinite straight lines 
which cross the window W, parametrized by the distance of the line to the origin r together 
with the orientation of the line 8. Let r(r, 8) denote the length of the intersection of the line 
under angle 8 and at distance r with the window W. r varies in (r1(8), r2(8)) (see Figure 1.8). 
Now if we integrate ..\dtdF(x) dK(8) over set A,,., we get 

, , , 
, 

, , , 

, , 

, ,,.,.glam(W. It 
, ·. , ·. , ·. 

, , , , , , 

, 

·',, 
, , , , 

Figure 1.8: parametrization of Wunder angle 8. 

1 ..\dtdF(x)dK(8) = ..\ 1••<9> (r(r,8) + x)drdF(x)dK(8) 
.Ae,s •1(9) 

= ..\(IWI +xdiam(W,8))dF(x)dK(8). 

H we integrate this over all values of x and 8 we obtain ..\ (IWI + µ EKdiam(W)). 
Therefore if we condition on N = n, then the set of points + n A is distributed as the 

set of points in an i.i.d. sample of size n with probability measure on R 2 x R+ x (0, 11') (see 
(1.59)) 

~ ..\dtdF(x)dK(8) 
lA(t,x, 9) ..\(IWI + µEKdiam(W)) 

= dV(x) · dJ(8IX = x) · dA(~X = x,8 = 8), (I.60) 
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where 

dV(x) 

dJ(6IX = x) 

dA(nx = x, 0 = 6) 

IWI + xEKdiam(W) dF( ) 
- IWI + µ EKdiam(W) x 

IWI + xdiam(W,6) dK(6) 
- IWI + xEKdiam(W) 

1 ~ i\ 
- IWl+xdiam(W,6)dt•l..4•·•(t,. 

31 

(1.61) 

(1.62) 

(1.63) 

We see that we obtain the same probability measure if we consider a. random sample (T;, X;, 0;) 
of size non ll2 x R+ x [0, ,r ), where the X;'s a.re i.i.d. having the common distribution function 
V and the angles 0; given X; = x; a.re drawn from the distribution J(•IX; = x;) and the T;'s 
given 0; = 6;, X; = x; a.re uniformly distributed over .Ao;,r;• Constructing the observable 
parts of the line segments as a.hove, we get the same kind of observations. Again, as in the 
one-dimensional case, we have described our model as a. missing data. model. 

1.2.2 The window Wis a circle 

Let the window W be a. circle with radius R. Choosing the window W to be a. circle, a. lot of 
calculations will be less complicated a.nd therefore for better understanding of the model we 
work out the 'circle-case' first. We have dia.m(W, 6) = EKdiam(W) = 2R. The probability 
measure (1.60) on R 2 x ll+ x [0, ,r) can be written a.s 

~ .\dtdF(x)dK(6) 1 ~ 
lA(t, x, 6) .\ (IWI + µ 2R) = dV(x) · dK(6) · IWI + x 2R dt · l..49_.(i), (1.64) 

where 

(1.65) 

One notes that the distribution of T given 0 = 6 and X = x has the same factor 1/(IWl+x 2R) 
for a.11 6. Furthermore by (1.65) V does not depend on K (compare this with (1.61) in 
the genera.I case) and we see that dJ(6IX = x) in (1.62) becomes dK(6) meaning that the 
observed angle is distributed according to K a.nd independent of the length X and the position 
T. Because we a.re not interested in the distribution function K, this implies that it is quite 
irrelevant what K is. We ca.n take w .l.o.g. for K a.ny distribution function, for instance a. 
degenerate distribution; a.II line segments have the same angle. 

Let us calculate the subdistribution functions of the data.. In Figure 1.9 we draw set Ao. 
In the 'circle-case' we get for ea.ch 6 the same picture-shape. (Compare with Figure 1.6). 

In Figure 1.10 we draw set Ao,.,, Again, for ea.ch 6 we have the same picture-shape. Figure 
1.10 (a.) is a. representation of Ao,., if x > 2R a.nd (b) if x $ 2R. The'length xis given in the 
picture. One sees (for X = x and 0 = 6) in what a.rea.s T lies to obtain from (T, X, 0) an 
u.c., s.e.c. or d.c. observation (numbers in the a.rea.s a.re respectively 0,1 and 2). 

In Figure 1.11 ( (a.) if x > 2R and (b) if x $ 2R) we draw set Ao,., a.gain. Now one sees (for 
X = x a.nd 0 = 6) in what areas T lies to obtain from (T, X, 0) a.n s.e.c. or d.c. observation 
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Figure 1.9: representation of Ao (W being a circle). 

X :5 u or a u.c. observation X = X = x (respectively the dashed area, the dotted area and 
the lined area). x and u are given in the picture. 

We define the area-integral 0( •) as 

O(x) = 1.v=R JR2 - v2 dv. 
v=JR2 -¼x2 

In Figure 1.12 the area O(x) is drawn (xis the length of the line segment from a to b). 
If X = x (and 0 = 0), the fraction of the area of /41,., for which (T, X, 0) gives a s.e.c. 

observation X :5 u (0 :5 u :5 2R) is given by 

(1.66) 

where 

40(u) + 2uJR2 - ¼u2 

s1(x,u) _ 2 IWl+x 2R 1{.:>u}(u) 

40(x) + 2xJR2 - lx2 

s2(x,u) = 2 IWl+x 2R 4 1{.:s;u}(u). 

If X = x (~d 0 = 0), the fraction of the area of /41,., for which (T, X, 0) gives a d.c. 
observation X :5 u (0 :5 u :5 2R) is given by 

s3(x, u) + s4(x, u), (1.67) 

where 

sJ(x,u) 
x(R- JR2 - ¼u2 ) - 20(u) 

- 2 IWI + X 2R l{.:>u}(u) 

x((R- JR2 - ¼x2 ) - 20(x) 
- 2 IWl+x2R l{xs;u}(u). 
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X 

2 

.x (a) 

X (b) 

Figure 1.10: u.c., s.e.c. and d.c. 'areas' in set Ao,.,. 

Finally, if X = x (and 0 = 8), the fraction of the area of Ao,., for which (T, X, 0) gives an 
u.c. observation X :5 u (0 :5 u :5 2R) is given by 

IWI- 40(x) - 2xJR2 - lx2 

ss(x,u)= IWl+x 2R 4 l{x~u}(u). (1.68) 

Note that it is obvious that the functions s,(*, •) do not depend on 8. We denote by Fu.c., 
F•·•·0 • and Fd.c. the (conditional on N = n) subdistribution functions of respectively the u.c. 
, s.e.c. and d.c. observations X. With (1.66), (1.67) and (1.68) we find (0 :5 u :5 2R) 

F•·•·0·(u) = 1::00 1a::" (s1(x, u) + s2(x, u)) dK(8) dV(x) 

= 1::00 s1(x,u)dV(x) + 1::u s2(x,u)dV(x) 

Fd·0 ·(u) = 1::00 s3(x, u) dV(x) + 1::u s4(x, u) dV(x) 

Fu·0·(u) = 1::u ss(x,u)dV(x). 

Computing the above integrals, provides us with the following expressions for the subdistri
bution functions of the data X (0 :5 u :5 2R) 
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X 

- u.c .. 

- d.c. 

EJ s.e.c. 

Figure 1.11: u.c., s.e.c. and d.c. 'areas' in set A,,.,. 

4✓ R2 - ~u2 g(u) du 

tJ l"'=oo x-u dV(x)du 
2JR2 - ¼u2 .,=u IWI + 2xR 

u 
---,===d(u,u)du 
2JR2 - ¼u2 

IWl-40(u)-2uJR2 - ¼u2 
IWI + 2uR dV(u) 

z(u) 
IWI + 2uR dV(u), 

where g(·) and d(*, ·) are defined as 

100 1 
g(x) - ., IWI + 2wR dV(w) 

d(x,y) - 100 IWj;;wRdV(w) 

The Models 

(1.69) 

(1. 70) 

(1.71) 

(1.72) 

(1.73) 
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Figure 1.12: the area-integral O(x). 

and z(·) as 

z(x) = JWI - 4 O(x) - 2x✓ R2 - ¼x2 • (1.74) 

One sees that g( x) dt = P(T E d(X = s.e.c., X > x) and if y :5 x that d( x, y) dt1 = P(Ti E 
dt1,T2 E U:;:'=.,.As,,.,.X = y,X > x) ((~x,9) E .As,.,), where T = (T1,T2). In Figure 1.13 we 
see over what regions in Ae we integrate (and integrating over all 9) to obtain these densities. 
The lines in Figure 1.13 (a) correspond with g(x) d{ Regions as in Figure 1.13 (b) correspond 
with d(x,y)dti. In Figure 1.13 (b} we see the a.rea belonging to d(2R,0)dt1. 

By symmetry, the possibly censored length .X and type (u.c., s.e.c., d.c.) of each observa
tion is independent of its angle 0. Moreover the distribution of 0 is the original distribution 
K of directions. So if we denote by Fu·0·(·,*), F•.e.c·(·,*) and Fd·0·(·,*) the (conditional on 
N = n) joint subdistribution functions of respectively the u.c. , s.e.c. and d.c. observations 
(.X,0), we have (or calculate with (1.66}, (1.67} and (1.68)} for 0 :5 u :5 2R, 0 :5 T/ < 1r 

dF'·•·0 ·(u, TJ) = dF•·•·0 ·(u) dK(TJ) 
dFd· 0 ·(u, TJ} = dFd.c·(u) dK(TJ} 
dFu.c.(u,TJ) = dFu·0 ·(u)dK(TJ). 

(1.75} 
(1. 76) 

(1. 77) 

That the joint subdistribution functions can be factorized in a pa.rt only depending on V 
(or u) or only depending on K (or TJ) is in general not the case if Wis an a.rbitra.ry convex 
window (compare (1.91)-(1.93)). 
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(a) 

Figure 1.13: the sets in As corresponding to g(x) dt and d(2R, 0) dt1 . 

Before we enter the next section we derive an identity for this model similar to (1.14) 
in the one-dimensional case. Consider in Figure 1.9 the set As,2R. Obviously (since V the 
marginal density of X) if we integrate (1.64) over the part of set As just beneath the level of 
set As,2R and also integrate over all 8, then one obtains the value V(2R- ). If we integrate 
(1.64) over the part of set As drawn in Figure 1.14 (and also integrate over all 8), then we 
get the value 2 IWI g(2R). Integrating (1.64) over the rest of set A, we find 

{2R u 
eo = 2 lo d(2R,u)-,======du. 

o 4✓R2 _ ¼u2 

This can be understood as follows. If c1 is the probability of being a double censored obser
vation X $ 2R and X $ 2R (thus that part of set A that is beneath the level A,,2R (for all 
8) and that belongs to the double censored region), then we have with (1. 70): 

l2R u 
pd,c.(2R) = d(u,u) ~;====du =Co+ C1-

o 2JR2 - ¼u2 

Because we have integrated (1.64) over A, we derived the following equation 

{2R u 
V(2R-) + 2 IWI g(2R) + 2 lo d(2R, u) ✓ du = l. 

o 4 R2 - ¼ u2 
(1.78) 

We can write 

I°" u - 2R I°" 2R - x 
d(2R,x) = 12R IWl+2uRdV(u)+ l2R IWl+2uRdV(u) 
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Figure 1.14: the set in Ao corresponding to 2 IWI g(2R) 

= d(2R,2R) + (2R- x)g(2R). 

So we rewrite equation (1.78) as 

1 = V(2R-) + 2 IWI g(2R) + 2 d(2R, 2R) [R ✓ u du 
o 4 R2 - ¼u2 

+2g(2R) /2R u(2R - u) du 
lo 2✓R2 _ ¼u2 

= V(2R-) + 2 IWI g(2R) + 2Rd(2R, 2R) + (4R2 - IWI) g(2R). 

Now we define h as 

h = 2Rd(2R,2R) (1. 79) 

and finally obtain the identity 

V(2R-) + (IWI + 4R2 ) g(2R) + h = 1. (1.80) 

In Figure 1.15 we draw the area in set Ao that corresponds to h + ( 4R2 - IWI) g(2R). Actually, 
now one reads equation (1.80) straight from the figures. 

With (1.80) we express g(x) and d(x,x) in terms of Von [0,2R) and h 

g(x) = [R IWI ~ 2uR dV(u) + g(2R) 

= ~2R 1 1 
lz IWI + 2uR dV(u) + !WI+ 4R2 {l - V(2R-) - h) (1.81) 
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Figure 1.15: the part of A, that belongs to h. 

12R u-x 1 
d(x,x) = ., IWl+ 2uRdV(u)+ 2Rh+(2R-x)g(2R) 

12R u - x 1 (2R- x) 
= "' IWI + 2uR dV(u) + 2Rh + IWI + 4R2 (l - V(2R-)- h). (1.82) 

Again with (1.69)-(1.71), (1.81) and (1.82) we note that the distribution of the data only 
depends on V on (0, 2R) and h and that the parameters are identified by it. 

1.2.3 Identification in the case W is a circle 

To investigate the relation between the parametrizations (F,µ) and (V,h) one can almost 
copy section 1.1.3 of the one-dimensional case. Here we only give the definitions of 'f'2R and 
VJ2R (see definitions of 'f'T and 'PT): 

( f IWI + 2uR IWI + 4R2 f2R 4R2 - 2uR ) 
'f'2R(F(·),µ) - lo IWI + µ2R dF(u), l - IWI + µ2R + lo IWI + µ2R dF(u) 

'P2R(V(•),h) - Cwt.),h) l IWl~2uRdV(u),2~ Ccvt.)·,h)-IWI})' 

where 11(V(•),h) is defined as 

1 f2R 1 
v(V(·), h) = IWI + 4R2 (1 - h - V(2R-)) + lo IWI + 2uR dV(u). (1.83) 
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Note that v(V(•), h) corresponds with g(O) = 1/(IWI + µ 2R). The spaces :F2R and V2R are 
defined similar to :F, and V,. We define S2R to be the set of all subdistribution functions on 
(0, 2R). Now we define 

:F2R - {(F,µ)IFES2R,µE(O,oo),JgRwdF(w)+2R(l-F(2R-))$µ 
and'=' when F(2R-) = 1} 

V2R - {(V,h)IV E S2R, h E (0,oo), h $1-V(2R-) and'=' when h = 0}. 

The maps cp2R and i/J2R give a 1-1 correspondence between :F2R and V2R• For the same reasons 
as in the one-dimensional case, we rather work in terms of V and h than in terms of F and µ. 

1.2.4 The likelihood, the NPMLE, in the case W is a circle 

Here we give the likelihood (conditioning on N = n) based on n independent observations 
(X;,Li;,0;) = (x;,d;,O;) (Li; = d; = 0, 1,2; 0 for u.c., 1 for _!-e.c. and 2 for d.c.). Let 
x1 < x 2 < ... < x, be the ordered values of the observations X;. Let </>;, 1; and (; be the 
number of respectively the uncensored, single end censored and double censored values at x;. 
Using (1.69)-(1.71), the likelihood becomes proportional to 

II (dV(x;)t; (g(x;)f'; (d(x;,x;)f · II dK(O;). 
i=l 

We are not interested in the (known or unknown) distribution function K. Because in the 
circle-case EKdiam(W) = 2R is known, we have that V (and therefore g(·) and d(·,*)) does 
not depend on K through the transformation (1.65) (compare with (1.61)) and therefore in 
our search for the NPMLE (i:t hn) we use the likelihood proportional to 

lik(V, h) oc II (dV(x;)4>; (g(x;)f'; (d(x;, x;)f, (1.84) 
f=l 

where g(x) and d(x, x) can be expressed in terms of (V, h) (see (1.81) and (1.82)) in V2R. 

From (1.84) we define by formally taking logs the 'log likelihood-function' on V2R as 

{2R 
w(V,h) = lo log(dV(x))dF,:'·c·(x) + [2R log(g( x)) dF•·•-c. ( x) lo n 

+ fR 1og(d(x,x))dFtc·(x), (1.85) 

The empirical subdistribution functions F::·c·, F:·•-c. and F:-<- on (0, 2RJ are defined as in 
(1.36) - (1.38). Now with (1.85) we define the NPMLE (Vn, hn) of the underlying parameters 
analogue to the definition in section 1.1.4. 

Similar to section 1.1.6 we obtain the self-consistency equations for the NPMLE (providing 
its existence) in the circle-case: 

(1.86) 
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{1.87) 

{1.88) 

(Compare these equations with {1.50)-(1.52) in the one-dimensional case). Note that in the 
one-dimensional case hn was estimated by the fraction of the double censored observations. 
We had only one kind of double censored observations there. In the two-dimensional problem, 
this is no longer the case. 

If we look at the likelihood in more detail and consider the factors g( x) and d( x, x ), which 
are expressed in terms of (V,h) in {1.81) and (1.82), then we see in {l.81) that 1/{IWl+2uR) 
(in the first term at the right-hand side) is decreasing in u, so it pays to move mass to the 
left and in {1.82) we have that (u - x)/(IWI + 2uR) (in the first term at the right-hand side) 
is increasing in u and thus for d(x,x) it pays to move mass to the right. This implies that 
we do not have (or there is not) a simple prescription to argue that the NPMLE is a discrete 
estimator with mass on the observation points only. 

Instead of trying to find out how the NPMLE (if it exists) distributes its mass in a 
nondiscrete setting, we avoid this by defining the sieved NPMLE (Vn, hn)- Just as in section 
1.1. 7 we define V.i.ve to be the set of discrete estimators in V2R, which give (possible) mass 
to the u.c. observation points only (and hand g(2R)). Similar to the one-dimensional case 
one can prove the existence and uniqueness of the sieved NPMLE. Let r0 be the number of 
u.c. observation points in [0,2R). The measure ir,0 +2, which gives mass 1/{ro + 2) to all 
u.c. observation points and to h and g(2R), dominates the set Vaieve• If Il,0 +2 denotes the 
distribution function of ir,0 +2 on [0, 2R), then we define the sieved NPMLE (Vn, hn) by 

(Vn,hn)=arg _.!llax (w{V,h)-w(Ilro+2,l/{ro+2))). 
(V,hJe Vsi•v• 

{1.89) 

Starting the EM-algorithm with an initial distribution like ir,0 +2, the algorithm will converge 
to a solution of the self-consistency equations {1.86)-(1.88): the sieved NPMLE {see sections 
1.1.6 and 1.1.7). 

1.2.5 W is an arbitrary convex window 

In section 1.2.2 we derived for the two-dimensional problem the subdistribution functions 
of the data, in section 1.2.3 the parametrization (V,h) versus (F,µ) and in section 1.2.4 
the selfconsistency equations in the case that the window W is a circle. Because of the 
completely unimportant role of (} (and the distribution function K), the calculations there 
are rather straightforward. In this section and the next we try to imitate the derivations 
to obtain similar results in the case that W is an arbitrary convex window. In this section 
we calculate the subdistribution functions of the data and in section 1.2.6 we analyse the 
likelihood. 

We remember the probability measure {1.60l:_ Now we calculate (conditional on N = n) 
the joint subdistribution functions of the data. (X;, ~;, 0;). We define z(O) to be the greatest 
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distance in W in the 8 direction. Of course in the 'circle-case' z(8) equals 2R for all 8 . 
Furthermore we define 

. 
P = maxz(8). 

8 
(1.90) 

Let w1(x,u,8) be the area of the set A,,., for which (T,X,0) = (~x,8) gives a s.e.c. 
observation X :Su (0 :Su :S z(8)). Because Wis convex, there exists a continuous function 
a(·,8) such that 

{ a( u, 8) if X > U 
w1(x,u,8) = ( 8) 'f < a X, I X _ U. 

One can see this from a picture. In the 'circle-case' we have 

a(u,8) = 80(u) +4u✓R2 -¼u2 

(see s1 (*,·) and s2(*,·) in section 1.2.2). 
Let w2(x,u,8) be the area of the set A,,,, for which (T,X,0) = (~x,8) gives a d.c. 

observation X :S u (0 :Su :S z(8)). Again (note that Wis convex) from a picture one sees 
that there exist functions p;(·, 8) and b;(8) (i = 1, 2) such that 

In the 'circle-case' we have b;(8) = 0 and 

or rewritten as 

p;(w,8) = ✓R2 -¼w2 

w 
p;(dw,8) = ----;,===dw 

4yR2 - ¼w2 

if X > U 

if X $ U. 

for all 8 and i = 1, 2. Note that sa(*, ·) and s4(*, ·) in section 1.2.2 can be written like 
w2(x,u,8). 

Let w3(x,u,8) be the area of the set A,,., for which (f,:X,0) = (~x,8) gives an u.c. 
observation X $ u (0 :S u :S z(8)). Note that there exists a function q(x, 8) such that 
wa(x, u, 8) can be written as 

{ o ifx>u 
wa(x, u, 8) = q(~, 8) ·r 

w I X $ U. 

In the 'circle-case' we have 

q(x, 8) = IWI - 40(x) - 2x✓ R2 - ¼x2 

( see ss ( *, ·) in section 1.2.2). 
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Now if X = x and 0 = fJ, one writes down the fractions of the areas of .A,.,, for which 
(T,X,8) = (~x,fJ)givesrespectivelyas.e.c.,d.c. and u.c. observation.X $ u (0 $ u $ z(fJ)). 
We will do this for the s.e.c. case and we obtain 

w1(x, u, fJ) 

IWI + xdiam(W, fJ) = 

Let us calculate F ... ·<·(u, 11): 

F•·•·<·(u, 11) 

1"'=00 1,8=" wi(x,u,fJ) 
= _ IWI d" (W: fJ) 1{8S71}(fJ)dJ(fJIX = x)dV(x) .,_o 8=0 + x 1am , 

1"'=00 1,8=71 a( u, fJ) 
= _ IWI d" (W:fJ)l{oSuS•(8)}(u)dJ(fJIX=x)dV(x) z=u 8-0 + X Jam , 

1=• 18=71 a(x, fJ) 
+ z=0 18=0 IWI + xdiam(W,fJ) l{osuS•(8)}(u)dJ(fJIX = x)dV(x) 

1:,;=oo 1,8=71 a( u fJ) 
= IWI E 'd" (W) l{oSuSz{8)}(u) dK(fJ) dV(x) :i;=u 8=0 + X K Jam 

1=• 1,8=" a(x fJ) + IWI E 'd. (W) l{o<u<z(8)}(u)dK(fJ)dV(x) . .,=o 8=0 +x K Jam - -

This yields 

F ... ·<·(du,d11) 

= a(du,11) 1"'=00 
IWI Eld" (W) dV(x)dK('l) l{o<u<•<71n(u) :i;=u .+XKJam --

a(u,11) 
IWI + uEKdiam(W) dV(u) dK('l) l{osu:9M}(u) 

a(u,11) 
+ IWI + uEKdiam(W) dV(u) dK(11) l{oS•S•('l)}(u). 

Doing similar computations for the other two subdistribution functions, we find 

F•·•·<·(du,d11) 

= a(du, 11) 1::00 IWI + xE:diam(W) dV(x) dK('l) l<osuS•M}(u) 

= a(du,11)g(u)dK('l)l{osuS•(.,)}(u) (1.91) 
pd.c.( du, d11) 

= (PJ(du,11) + 112(du,11)) 

X 1::00 IWI + x~:;am(W) dV(x) dK(11) l{oSuS•(71)}(u) 

= (PJ(du, 11) + P2(du, 11)) d(u, u) dK('l) l{oSuS•('l)}(u) (1.92) 
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Fu·0 ·(du,d71) 

q(u, 11) 
= IWI + uEKdiam(W) dV(u) dK(q) l{o!,u!>•M}(u), 

where g(·) and d(*, ·) are defined similar to {1.72) and (1.73): 

g(x) = [" IWI + wE~diam(W) dV(w) 

d(x,y) = [" IWI + wwE::iam(W) dV(w). 
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(1.93) 

(1.94) 

(1.95) 

Now we try to obtain an identity generalizing (1.80). If we integrate (1.60) over the part 
of set A, beneath the level of set A,.P and integrate over all 8, then we obtain the value 
V(P). If we integrate (1.60) over the part of set AB starting at level A,,P and similarly drawn 
as in Figure 1.14 and integrating over all 8, then we get 2IWI g(P). Note that in this case 
the 'tubes' drawn as in Figure 1.14 do not have to hit each other at level A,,p as in the 
'circle-case'. Finally we integrate (1.60) over the rest of set A, which is that region of the 
double censored observations in A that is above the level A,,p for all 8. We find 

ao - L 1w=oo 18=1r 1u=z(8) IWI W d-:- u (W 8) p;(du,8)dJ(8IX = w) dV(w) 
i=l,2 w=P }9=0 u=b;(8) + W Jam , 

= L /9=" 1u=z(B) d(P,u)p;(du,8)dK(8). 
i=l,2 J,=o u=b;(9) 

We get the equality 
V(P-) + 2 IWlg(P) + ao = l. (1.96) 

Again we derive d(P, x) = d(P, P) + (P - x) g(P) and use this to rewrite (1.96) as 

V(P-) +21Wlg(P) + d(P,P) iE
2

1o::" 1:::(:: p;(du,8)dK(8) 

r'=" 1u=z(9) + g(P)iE2}9=0 u=b;(8)(P-u)p;(du,8)dK(8)=l. 

If we define h as 
f8=.-1u=z(9) 

h = d(P,P) iE2 J,=0 u=b;(B) p;(du,8)dK(8) (1.97) 

and 
fo9=.-1u=z(9) 

a1 = L (P-u)p;(du,8)dK(8), 
i=l,2 8=0 u=b;(9) 

we derived the identity 
V(P-) + (2IWI + ai) g(P) + h = l. (1.98) 

(Compare (1.98) with (1.80)). One verifies that in the 'circle-case' h ~quals 2Rd(2R, 2R) and 
a1 equals 4R2 - IWI. 

For given K one can establish the 1-1 correspondence between the parametrizations (V, h) 
and (F, µ). One can almost copy the definitions of section 1.2.3 to get the corresponding 
expressions in this case and go through section 1.1.3 to convince oneself. 
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1.2.6 The likelihood, the NPMLE, in the case W is arbitrary 
convex 

If we write down the likelihood ( conditioning on N = n) based on n independent observations 
(X;, Ll,, 0,) = (x,, d,, 0,), then the likelihood is proportional to 

II (IWl+:~(x~? (W))
9
' (g(x,))""(d(x,,x,)}" · Il dK(O;), (1.99) 

•=l I K la.ID 1=l 

where x1 < x2 < ... < x, are the ordered values of the observations X; and ¢,;, 'Yi and (, are 
the numbers of respectively the uncensored, single end censored and double censored values 
at x,. One sees the similarity with the 'circle-case', but one must remember that through 
the transformation (1.61) V and therefore g(·) and d(·,*) depend on K. If we write the 
(proportional) likelihood in terms of F and µ (and K) we get 

(IWI + µEKdiam(W))-n II (dF(x,))4'' (1 - F(x,)f" (100 (1 - F(w))dw r fI dK(O,). 
•=1 x, J=l 

Suppose we do not know the distribution function K of the angle 0. So we would like to 
compute F and K by jointly maximizing the likelihood above. Unfortunately this does not 
decompose into separate maximization problems for F and K, but we can think of a natural 
iterative scheme. Firstly, we determine F given K by maximizing 

(IWI + µEKdia.in(W))-n II (dF(x,)) 91' (1- F(x,)fl' (100 (1 - F(w))dw )". 
t=l z, 

This is something we already know how to handle (just use (1.99) with known K which is 
similar to the 'circle-case'). Secondly, we determine K given F by maximizing 

n 

(IWI + µ EKdiam(wn-n TI dK(O,). 
j=l 

Lok(l994) shows that the NPMLE Kn of K for given F can be expressed as 

where Ln(O) = ¼ I::::;r l1o.oi(0.) is the empirical distribution of the observed angles. 
Suppose we know the distribution function K of the angle 0, then EKdia.in(W) is known. 

Now the likelihood, only with factors depending on V (or F), becomes similar to (1.84) and 
one finds for the self-consistency equations for the NPMLE (l\, hn) of (V, h): 

(1.100) 
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and 

hn = d(P,P) L t=P ---1-dF:·c·(u) 
i=l,2 u=O dn( u, U) 

(2 IWI + ai) g.,(P) = 1 - h., - V.,(P), 
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(1.101) 

(1.102) 

where F;.··(-) are the marginal empirical subdistribution functions. The same problems arise 
as in the 'circle-case' in section 1.2.4, if we want to define the NPMLE. Therefore one is 
advised to consider here a sieved NPMLE too. 

Because of the fact that in the 'circle-case' the distribution function K of the angles does 
not play any role in the search for an efficient NPMLE of F and the fact that information 
calculations (chapter 3) and consistency analysis (chapter 2) turn out to be less laborious in 
this case, we stick for the rest of the book to the 'circle-case'. So the two-dimensional case in 
the chapters 2 and 3 will be the 'circle'. We think that with more effort one can imitate the 
analysis in these chapters to obtain similar results for the case that W is arbitrary convex 
and K is known. 
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Chapter 2 

Consistency 

In this chapter we prove consistency results of the (sieved) NPMLE's of chapter 1. In section 
2.1 the proof of consistency is outlined in a general setting and the very few conditions to 
be verified make this proof applicable in other linear convex models where the consistency of 
the (sieved) NPMLE is investigated. In section 2.2 we obtain consistency results in the one
dimensional case. In section 2.3 we do the same for the two-dimensional case. Actually, there 
we prove consistency in the case that W is a circle. The reason that we write down the 'circle
case' is that the formulas are less complicated than in the case that W is an arbitrary convex 
window and one sees immediately the similarity with the one-dimensional case. Furthermore 
in the case that W is an arbitrary convex window, we have to deal with the distribution of 
the angles and thus the problem arises of maximizing the likelihood jointly for V ( or F) and 
K. If K is a known distribution function, we are convinced that section 2.3 can be more or 
less copied to get the consistency results for this case too. 

The proof of consistency in section 2.1 is a generalization of the method described by 
Groeneboom(1991), following Jewell(1982). If <f,(F) denotes the log likelihood function there, 
then the method is based on the fact that 

where F'n is a NPMLE of the underlying distribution function F0 • For our log likelihood 
function we could also write 

where (Vn, hn) is the NPMLE of (V, h ). Evaluating this difference, we encounter terms like 
log((dV/dVn)(x)), which equal -oo when V and Vn are mutually singular, so the inequality 
becomes -oo :5 0, which is completely ininformative. Instead of using the underlying distri
bution function V, we take some convenient empirical counterpart Vn of V (so Vn converges in 
supremum norm to V) and satisfying Vn < Vn, so that the expression (dVn/dVn)(x) is more 
informative. Furthermore we will use the self-consistency equations to get an expression for 
the Radon-Nikodym derivative (dVn/dVn)(x). 

We think the proof of consistency, described in section 2.1, can be applied in other linear 
models such as the random-multiplicative censoring model of Vardi and Zhang(1992). Their 
approach gives not only consistency in the random-multiplicative censoring model, but the 
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whole asymptotic characterization. Trying to use their approach in our line segment models, 
it unfortunately seems to fail. 

For the Tn and T in section 2.1 one reads (Vn, hn) and (V, h) respectively, if one wants the 
connection with our models. We note that V~ is convex and (V, h) -+ P(V,h) is linear (P(V,h) 

is the distribution of the data under (V,h)). (The same for V2R)- In this chapter we use 
sometimes II · 11 1 to denote the II · 11 00 (supremum norm) on the interval I. 

2 .1 General idea 

In this section we write dP instead of dP(x) to get short notation. 
Let T'n be the NPMLE of T, T,. an ad-hoc estimator (or T itself if convenient), PT the 

distribution of the data under the parameter T and P,. the empirical. Assume that T is a 
convex set. 

Suppose PT is linear in T, TE T. We have (because T,. is the NPMLE) 

(2.1) 

where f E [O, 1). We divide the inequality above by f and let fl 0. We find 

J (dPTn _ i) d.P. < O 
d.P.~ n -Tn 

or 

(2.2) 

As n -+ oo, we will try to arrange things that (perhaps on a subsequence only-here we 
will need assumptions on T; for example Tis a set of distribution functions) T,.-+ T00 ET, 
Tn -+ T, Pn -+ PT and try to prove from this 

(2.3) 

Showing (2.3) is the same as saying that inequality (2.2) holds in the limit. However we do 
have 

for all Too ET, with equality iff T00 = T (we assume identifiability: PT = PT~ <==> T = T00 ). 

This follows because 
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is maximal at f = 1. Moreover it equals 

which is concave in t (it is an average of concave functions: log(l + t c) is concave in t, both 
for negative and positive c). Its derivative at f = 0 is therefore nonnegative: so we get 

J ( dPT - 1) dP. > 0 
dPT.. T -

or 

(2.4) 

We want to show that we have'>' in inequality (2.4) if PT ¥- PT.,.· If (dPT /dPT.,.) = oo 
with positive PT probability, then we have immediately 

and PT <f PT .. · In the other case we note that log(l + tc) is strictly concave inf as long as 

and an average of strictly concave functions is strictly concave. So we have strict concavity 
(and hence '>' in inequality (2.4)) unless (dPT /dPT.,.) = 1 with PT -probability 1, which 
implies PT = PT .. · 

Because we have (2.3) and showed that (2.4) holds with'>' if PT ¥- PT.,., we proved that 
we must have PT = PT .. , and so T = T00 • We proved the following theorem 

Theorem 2.1.1 Let Tn be the NPMLE ofT. Let PT be the distribution of the data under the 
parameter T and Pn the empirical. Let Tn be an ad-hoc estimator {or T itself if convenient) 
such that PTn < Pfn. We assume identifiability: PT, = PT, <=> T1 = T2, Let T be a convex 
set of distribution functions. 

If PT is linear in T, TE T, and 

(n-+oo) 

{perhaps on a subsequence only), then T00 = T. So if moreover Tn-+ T00 , we have Tn-+ T. 

2.2 Consistency in the one-dimensional case 

In this section we formulate consistency results for the NPMLE (Vn,hn) of (V, h) in the one
dimensional case introduced in section 1.1. Furthermore we show that these imply similar 
consistency results for the NPMLE (Fn,fi.n) of our original parameters (F,µ). These results 
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are stated in the theorems 2.2.5 and 2.2.7. Theorem 2.2.5 is about the consistency of (V,., h,.) 
and will be proved in section 2.2.1. Theorem 2.2.7 is about the consistency of (F,.,µ,.) and 
follows easily from theorem 2.2.5 and the 1-1 correspondence between the parametrizations 
(V,h) and (F,µ). 

Before we prove our consistency results, we give the following four lemmas, which will be 
frequently used. The first three lemmas give us some conditions, which imply the convergence 
of J: G,.(x)dH,.(x) to 1: G(x)dH(x). Lemma2.2.4 provides us with conditions for proving 
that a weakly convergent sequence of monotone functions, converges uniformly. 

We note that with I:, where z $ y and z,y E [0,r), we mean the integral over (z,y). Of 
course this implies that g- is the integral over (x,y). Remember that with 1; we mean the 
integral over (z, r). 

Lemma 2.2.1 If G,., G, H,. and H are measures on the interval [a, bJ C R such that (i) 
G,.(x)- G(z) - 0 for all x E (a,b) except on a negligleable set w.r.t. Lebesgue measure, (ii} 
IIH,. - Hll 00 - O, (iii) G,. is bounded and of bounded variation uniformly in n and (iv) H is 
absolutely continuous w.r.t. Lebesgue measure and dH(x)/dx is bounded, then 

l G,.(x)dH,.(x)- l G(x)dH(x)-o 

Jorn - oo. 

PROOF: the proof of this lemma is straightforward. We write 

l G,.(x)dH,.(x)- l G(x)dH(x) 

= G,.(b) (H,.(b) - H(b)) 

-G,.(a) (H,.(a) - H(a)) 

-l (H,.(x)-H(x))dG,.(x) 

+ l (G,.(x)- G(x))dH(x). 

Because G,. is bounded uniformly in n (condition (iii)) and because of (ii) we see that the 
first and second term converge to 0. For the third term we have 

ll (H,.(x)- H(z))dG,.(x)I $ IIH,. - Hll00 • l ldG,.(x)j. 

Because of (iii) we have that I: ldG,.(x)I $ c (uniformly inn) for some constant c and thus 
with (ii) we get that the third term converges to 0. With (i), (iii) and (iv) we apply Lebesgue's 
dominated convergence theorem to get the fourth term tending to 0. This proves the lemma. 
□ 

Lemma 2.2.2 If G,., G, H,. and H are measures on the interval [a, b) C R such that (i) 
HG,. - Gll00 -+ 0, (ii} IIH,. - Hll00 -+ 0, (iii} G,. is bounded and of-bounded variation uni
formly in n and (iv) H is of bounded variation, then 

l G,.(x)dH,.(x)- l G(x)dH(x)-+ 0 

for n-+ oo. 
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PROOF: the proof is the same as the proof of lemma 2.2.1 except for the term J: (Gn(x) -
G(x))dH(x). For this term we have now 

ll (Gn(x) - G(x)) dH(x)I $ IIGn - Gll 00 • l ldH(x)I. 

Because of (iv) w~ have that J: ldH(x)I $ c for some constant and thus with (i) we get that 
this term tends to 0. D 

Lemma 2.2.3 The lemmas 2.2.1 and 2.2.2 sti.ll hold if we replace J; by J:-. 
PROOF: replace b by b- in the proofs of the lemma's 2.2.1 and 2.2.2. D 

Lemma 2.2.4 If In and f are cadlag functions on the interval (a, b] C R such that {i) In 
and f are monotone and f is bounded, {ii) fn(x)-+ f(x) for all x E (a, b] (or x E (a, b)) and 
{iii) fn(x-) -+ f(x-) for all x E (a, b], then 

11/n - /ll 00 -+ 0 

for n-+ oo. n11110() can be defined as SUPxe[a,b) 1/(x)I or SUPxe[a,b) 1/(x)l)-

PROOF: let f > 0 be given. Because f is bounded and monotone, f jumps in ( a, b) at most 
at a finite number of points, where the height of the jump is bigger than f. Let this number 
be m and if m #- 0 let these points in (a,b) be x1 < x2 < ... < Xm- We define x0 = a and 
Xm+l = b. Of course x0 and Xm+1 can also be points where / jumps. 

Without loss of generality we assume that / is monotone increasing. Because of mono
tonicity there a.re numbers k; = 2, 3, ... ( i = 1, ... , m + 1) such that ki = 2, 3, ... is the smallest 
number for which 

J(x,_i) + (ki -1) • f ~ /(xi-) 

holds. We construct the sequence Yi; E (a, b] ( i = 1, ... , m + 1; j = 1, ... , k;) such that 

Yi,1 = Xi-I and Yi,k; = Xi 

and for j = 2, ... ,ki -1 we try to find that z; E (xi-t,Xi) such that 

/(z;) =/(xi-I)+ (j -1) • f. 

If such z; exists, then we take Yi,; = z; and if there is not such z;, then / makes a jump at 
some s; E (xi-1, Xi) and we take Yi,; = s;. Because of monotonicity we note that the sequence 
YiJ can be constructed in such a way that Yi,; < Y,+1,i' (j = 1, ... , k,; j' = 2, ... , ki+1) and 
Yi,k; = Yi+1,1 and Yi,;< Yi,;+1- Now we have 

(2.5) 

Because of (ii) and (iii) we have that for all i = 1, ... , m + 1 and for all j = 1, ... , ki - 1 
there exist Mi,; such that for all n ~ M;,; 

(2.6) 
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Because of the monotonicity, (2.5) and (2.6) we get for all x E [y;,;, y,,;+i) that for all n ~ M,,; 

l/n(x) - /(x)I S 2f. (2.7) 

If we define 
M;,. =. max M,J and M.,. =. max M,,., 

J=l, ... ,ki-1 •=1, ... ,m+l 

and note that the intervals [Y,,;, y,,;+1) are a partition of [a, b), then with (2. 7) we have for all 
n ~ M.,. that for all x E [a,b): l/n(x)-/(x)I S 2f. This yields for all n ~ M.,. that 

sup l/n(x)- /(x)I S 2f. 
xe[a,b) 

If we have that fn(b) -+ f(b), then it is easy to take this into account to get the same result 
for SUPxe(a,b) l/n(x)- /(x)I, This proves the uniform convergence of fn to f on [a, b) (or [a, bl). 
D 

After this intermezzo we will formulate the consistency results for the one-dimensional 
line segment process of section 1.1. 

Let To E [O, Tj be such that 
V((To,T)) = 0 (2.8) 

and 
V((To - f, To])> 0 , for all f E (0, To]- (2.9) 

We distinguish the following three cases: 
Case I for the underlying V we have To = T, 

Case II for the underlying V we have To< T and V([T,oo)) > 0, 
Case III for the underlying V we have To< T and V([T,oo)) = 0. 

One notes that the three cases cover all possibilities for V. To prove the consistency results 
we want to use theorem 2.1.1. Unfortunately, in case II we can not apply theorem 2.1.1 for 
the NPMLE at the moment (and indeed consistency is still an open problem), but for the 
sieved NPMLE we can. For case I and III we obtain the consistency results for the NPMLE 
and the sieved NPMLE. We state here the following theorem: 

Theorem 2.2.5 For the sieved NPMLE (and also for the NPMLE in case I and III) (Vn, hn) 
of (V, h) E VT in the one-dimensional case we have that 

hn - h -+ 0 a.s. 

and 

sup jvn(x) - V(x)I-+ 0 a.s. 
xE[O,T-<] 

for all f E (0,T]. 

The theorem is proved in section 2.2.1. Because the sieved NPMLE in case II and the (sieved) 
NPMLE in case III are constant on (To, T), theorem 2.2.5 implies 
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Corollary 2.2.6 For the sieved NPMLE in case II and the {sieved} NPMLE in case III we 
have 

sup jv,.(x) - V(x)I-+ 0 a.s. 
zE[O,T) 

We remember the 1-1 correspondence between (V,h) E VT and (F,µ) EFT in section 
1.1.3. There we had 

v(V(•),h) 
1 r 1 

- 2r(l-h-V(r-))+Jo r+wdV(w) 

= ..!._(1-h-V(r-))+..!...v(r-)+ r l 2 V(w)dw 
2r 2r lo ( r + w) 

= 2
1 (1-h)+ r l 2 V(w)dw. 
r lo (r + w) 

Theorem 2.2.5 gives us V,.(x) -+ V(x) for all x E (O,r). Then by Lesbesgue's dominated 
convergence theorem (or use lemma. 2.2.1) we obtain that 

r 1 )2 V,.(w)dw-+ f,. ( 1 )2 V(w)dw 
lo ( r + w lo r + w 

and so this yields v(V,.(•),h,.)-+ v(V(•),h). Now we have proved consistency ofµ,.: 

Together with 

F() = 1 /"' 1 dV() 
x v(V(·),h) lo r+w w 

= (r+µ) (-1-V(x)+ I"' ( 1 
2 V(w)dw) 

r +x lo r +w) 

and theorem 2.2.5 we obtain easily the following consistency results for the para.meters of 
interest (F, µ), which a.re formulated in the following theorem. (A corollary a.s 2.2.6 can also 
be obtained for F). 

Theorem 2.2. 7 For the sieved NPMLE (and also for the NPMLE in case I and Ill) (F,., µ,.) 
of ( F, µ) E FT in the one-dimensional case we have that 

and 

for all f E (O,r]. 

fin - µ -+ 0 a.s. 

sup IF,.(x) - F(x)I-+ 0 a.s. 
zE[O,T-<) 
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2.2.1 Proof of consistency in the one-dimensional case 

PROOF OF THEOREM 2.2.5: let r0 be as in (2.8) and (2.9). At the moment we do not need to 
discriminate between the three cases for the underlying V and between the NPMLE and the 
sieved NPMLE. We will point out the moments when it is necessary to distinguish between 
the cases. 

By the Glivenko-Cantelli theorem, we have that 

IIFf·0 • - Fd.c.ll[o,TJ-+ 0, IIF:·•·0 • - F•·e.c·ll[o,TJ-+ 0, JjF,:'·0 • - Fu.c.ll[o,TJ-+ 0 (2.10) 

a.s. (n-+ oo) (see (1.10) - (1.13) or (1.4) - (1.7) and (1.36) - (1.38)), where 11 • 11 1 stands for 
the supremum norm on the interval J. With (1.51) we note that 

(the relative frequency of double censored observations) and we immediately see that 

lhn - hi-+ 0 a.s. (n-+ oo). 

(2.11) 

(2.12) 

In order to apply theorem 2.1.1 we start by introducing the elements that play the roles 
of T, Tn, 'I'n and T00 in the theorem (or in section 2.1). Of course (V, h) plays the role of T. 

• The role of Tn: we define 

(2.13) 

and Yn(r) is defined by Vn(r-) + 2rgn(r) + hn = l and 

Yn(x) - 1T - 1 -dVn(w) + Yn(r) (2.14) 
x r+w 

= 1 - hn + _.!_ ((Fu.c.(r) - Fu·c·(x)) - /"' T + W dFu·c·(w)). (2.15} 
2r 2T n n Jo T - W n 

Because of monotonicity (lemma 2.2.4) and the strong law of large numbers, one proves that 

IILX T + w L"' T + w II -- dF,:'"0·(w) - -- dFu·0·(w) -+ 0 
0 T - W O T - W [0,T] 

a.s. (n-+ oo). So together with (2.10) and (2.12) we conclude 

IIYn - Yll[o,T)-+ 0 , IIVn - Vll1o,T)-+ 0 a.s. (n-+ oo). (2.16) 

Furthermore one notes that Yn follows from (Vn, hn) according to (1.40). 
• The role of 'I'n: again let (Vn, hn) denote the (sieved) NPMLE of (V, h) in VT. (V, h) 

is the image of the underlying distribution function V on (0, oo) under the map described in 
section 2.3. For the function g(x) = f;' 1/(r + w) dV(w) we obtain the estimator Yn on (0, r] 

1T l -
Yn(x) = -- dVn(w) + Yn(r), 

x r+w 
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where gn(!) is defined by Vn( T-) + 2Tgn( T) + hn = 1. Here we have again that Yn follows 
from (Vn, hn) according to (1.40). 

• The role of T00 : according to (2.10) we have 

with probability 1 (' ... = u.c., s.e.c. or d.c. '). By the Helly selection theorem we have that for 
some subsequence Vn• of the sequence of functions Vn on [O, T ), there exists a nondecreasing 
right continuous function V00 on (0,T) such that limk ..... oo Vn.(x) = V00 (x) at the continuity 
points of Voo- Of course we have h.n• -+ h00 = h. One defines 

1T 1 
9oo(x) = --dVoo(w) + 9oo(T) 

x T+w 

where g00 (T) is defined by V00 (T) + 2Tg00 (T) + h00 = 1. We see that 

1T 1 ~ 
g,..(x) = --dV,..(w) + g,..(T) 

x T+w 
1-h. 1 ~ 1T 1 ~ 
- 2 n• - -+ V,..(x) + ( )1 V,..(w)dw 

T T X X T+w 

and by the weak convergence of (Vn.,h,..) to (V00 ,h00 = h) we get limk ..... 00 Yn.(x) =goo(x) at 
the continuity points of V00 (or 900 ). One verifies immediately that 900 follows from (V00 , h00 ) 

according to {1.40). 

Since (V,., h,.) is the (sieved) NPMLE we find by (2.2) and (1.4)-(1.7) that 

r d~,. (x) dFu· 0·(x) + r ~n(x) dF•·•·0 ·(x) + h,. $ 1. 
lo dV,. " lo g,.(x) " 

{2.17) 

Following the general consistency proof in section 2.1 (see theorem 2.1.1), we want to show that 
this holds in the limit, possibly after passing to a subsequence. The subsequence (Vn.,hn.), 
we got by the Helly selection theorem, will do. To prove that (2.17) holds in the limit, we 
deal in the following three paragraphs with each case for the underlying V separately. We 
need to control the possible unboundedness of 1/g,.(x). 

• Case I: To= T. We consider the (sieved) NPMLE (Vn, hn) of (V, h). For each a E (0, T) 
we can derive the following bound for 1/gn and l/900 • The estimator Vn gives at least mass 
1/n to uncensored observations, so with (2.9) we get for n large enough 

1 1 
:::--() $ M., -(-) $ M. 
9n X 900 X 

(2.18) 

for all points x E (0, a], where M. 2'. 0 is a constant. 
• Case II: To< T and V((T,oo)) > 0. We consider the sieved NPMLE (V,.,hn) of (V,h). 

We will derive a bound for 1/g,. and l/900 on (0, Tj. The sieved estimator Vn gives only mass 
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to uncensored observations, so (because of (2.8)) in(x) is constant on (ro, r). The same holds 
for V.. and Yn• Because the integrands in (2.I 7) are nonnegative we also have 

and thus we can write 
Yn(r) (F:·•·0·(r) - F:·•·0 ·(ro)) :5 9n(r). 

We know that the left-hand side of this inequality converges to 

y(r)(F•·•·0·(r)- F•·•·0·(r0)) = y(r) · 2 J: y(x)dx. 

Because of V([r, oo)) > 0 this is strictly positive and thus we may conclude that there exists 
a constant c > 0 such that y00(r) ;:: c and for n large enough we have in(r) ;:: c. This and 
the fact that y00 (•) and all in(·) are decreasing imply that for n large enough we get 

I I --<M --<M 
9n(x) - ' Yoo(x) -

(2.19) 

for all points x E [0,r) and M = (I/c). In this case we note that on (ro,r) we have: 
dVn(x) = dVn(x) = dV00(x) = dV(x) = 0 and dF,!'·0·(x) = dFu·0·(x) = O. __ 

• Case III: To < T and V([r, oo)) = 0. We consider the (sieved) NPMLE (Vn, hn) of 
(V,h). For each a E (0,ro) we can give the following bound on I/in and I/y00 • Again the 
estimator Vn gives at least mass 1/n to uncensored observations, so with (2.9) we get for n 
large enough 

(2.20) 

for all points x E (0, a), where M,. ;:: 0 is a constant. In this case we know at the moment 
that on (ro,r) we have: dVn(x) = dVn(x) = dV00 (x) = dV(x) = 0 and y(x) = 0 and 
dF',!'·0 ·(x) = dFu·0·(x) = 0 and dF:·•·0 ·(x) = dF•·•·0·(x) = 0 and hn = h = 0. So in this case we 
can replace the integrals over (0,r) in (2.17) by (0,r0). 

Using (2.18)-(2.20) and the propositions 2.2.2.1 - 2.2.2.3 we prove in lemma 2.2.2.4 in the 
next section that (2.I 7) holds in the limit for all these cases. Here we give a sketch of the 
proof. First of all we need the limit version of dVn/dVn. One verifies that Vn < Vn and by 
the selfconsistency equation (1.50) we can write 

~(x) = r+x (1- _1_ 111=.: ~dF:·•·c·(v)). 
dVn T-X r+x v=D Yn(v) 

(2.21) 

In proposition 2.2.2.1 we present the limit version dV/dV00 of dVn/dVn. Further we note that 
the integrands in (2.17) are nonnegative and thus the inequality still holds when we replace 
the r's by an a E (0, r). Then in proposition 2.2.2.2 we show (along a subsequence) that 

(2.22) 
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for all a in [0, r} in case I and II and in [0, r0 } in case III. Thereupon we prove in proposition 
2.2.2.3 (along a subsequence) that 

f4 ~n(x) dF;·•·<·(x)-+ /4 9(x) dF•·•·c·(x) 
lo 9n(x} lo 9oo(x} 

(2.23} 

for all a in [0, T) in case I and II and in [0, To) in case III. In both proofs we need the 
boundedness statements of 1/gn and 1/ 900 on [0, a] in (2.18)-(2.20}. Because inequality (2.17} 
still holds, when we replace the r's by an a E [0, r}, we get by these convergence properties 
(2.22} and (2.23} a limit version (along a subsequence) for (2.17} with the r's replaced by a. 
In this limit version we let a tend to T in case I and II and to To in case III and by monotone 
convergence we finally prove that (2.17} holds in the limit. The details are worked out in the 
proof of lemma 2.2.2.4. 

Having this result of lemma 2.2.2.4 (thus the condition of theorem 2.1.1 is checked), we 
are almost finished. For each case we only have to gather the obtained outcome and draw the 
corresponding conclusion. 

• Cases I and II: by lemma 2.2.2.4 we find in case I and II that (2.17} holds in the limit: 

r dV (x)dFU.C.(x) + r 9(x) dF'·•-<·(x) + h::; 1. 
lo dV00 lo 9oo(x} 

By theorem 2.1.1 this implies that we have V00 (x) = V(x) on [0,r} and h00 = h (identifia
bility: Pv .. = Pv ~ V00 (x) = V(x) on [0, r}, h00 = h). This proves that outside a set of 
probability 0, each subsequence of the sequence of functions Vn (or Yn) has a weakly conver
gent subsubsequence and all these convergent subsubsequences have the same limit V (or 9). 
So Vn converges weakly to V00 = V along the whole sequence (at the continuity points}. 

If V is continuous on [0, T }, then all x E [0, T) are continuity points of V00 = V. In this 
case we have that Vn.(x) converges to V00 (x) = V(x) for all x E l0,r). 

If Vis discontinuous on [0, r}, then of course we have that Vn.(x} converges to V00 (x) = 
V(x) (and thus Yn.(x) converges to 900 (x} = 9(x)) at all continuity points x E [0, r} of V. By 
(2.21} and (2.13} we have 

Vn(x) = ru=x (1- -1- r=u ~dF;·•-<·(v))-1 dF:·c·(u). 
1-.=o T + U lv=O 9n(v} 

In the proof of proposition 2.2.2.2 we obtain (2.35} on [0,x] (for all x E [0,r}). Because 
we know here that we have 900 = 9 at the continuity points and in S00 we integrate w.r.t. 
Lebesgue measure, we get for the S00 in (2.34}: S00 (x) = (r - x)/(r + x). By (2.35) we have 
IIS;;-1 - S,;:;1 1! 00 -+ 0 on [0,x]. To show that S;;-1 is of bounded variation uniformly inn (on 
[0, x]}, one uses the same argumentation as in the proof of proposition 2.2.2.2, where we do 
this for Sn. We write Vn(x) = ft S;1(u}dF,:'·<·(u} and apply lemma 2.2.3. This gives us the 
fact that Vn(x-} converges to V(x-} = J;- S_;:;1(u) dFu·<·(u} for all x E [0, r). Note that we 
did not prove that Vn(r-) converges to V(r-) in case I. 

For the continuous as well for the discontinuous case we are not able to prove that Vn• ( T-) 
converges to V(r-) in case I, but for each f E (0,r] we have that on [0,r-t]: Vn(x)-+ V(x), 
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Vn(x-)-+ V(x-) and the Vn and V are monotone and Vis bounded. Now we apply lemma 
2.2.4 to obtain IIVn - Vl1 00 -+ 0 on [0, T - f], that is the consistency result in theorem 2.2.5. 

• Case Ill: by lemma 2.2.2.4 we get that for case III the inequality (2.17) holds in the 
limit: 

(2.24) 

where we remember that with J:{0 we mean the integral over (0, To]. To get the consistency 
result of theorem 2.2.5, one copies the proof of the cases I and II above, but now one works 
on the interval [0, To) (or on [0, To] if To is continuity point of V). To obtain the result for 
[0, To] for all V, we have to pay special attention to the point To, if it is a discontinuity point 
of V00 = V. If we prove Vn(To)-+ V00(To) = V(To), thus if V00 (To) = V(To), then we are ready. 

We know already that V00 (x) = V(x) and 900 (x) = g(x) on [0,To). So on [0,To) we have 
that (dV/dV00 ) = 1 and g(x)/900 (x) = 1. We also know that in this case V jumps in To 
to 1 and both V and V00 are monotone increasing. If V00 jumps in To differently, then the 
jump is smaller than the jump of V (and 900 does not jump to 0 in To). This means that 
AV( To)/ A V00 ( To) > 1, where A/ (x) stands for the height of the jump off at x. Of course in 
this case we have AFu.c.( To) = ( T - To)/ ( T + To) AV (To) > 0. If we use these facts to calculate 
the left-hand side of inequality (2.24), then we get 

l To- AV(1,) T - 1, 17"· dFu·<:(x) + 0 • --0 AV(To) + dF•·•·c·(x) + h 
o AV00 (To) T + To o 

AV(To) T - To = Fu.c.(To-) + --- · --AV(To) + F'·•·c·(To) + h. 
AV00 (To) T + To 

All terms are positive. If AV(To)/AV00 (To) = 1, then the left-hand side of (2.24) would 
become Fu.c.(To) + F•·•·c·(To) + h = 1. If AV(To)/ AV00 (To) > 1, then the left-hand side will be 
> 1. This contradicts the inequality (2.24). So V00 (To) must equal V(To) and this completes 
the proof for case III. 

We have proved the theorem. □ 

2.2.2 Three propositions and a lemma 

In this section one finds the propositions 2.2.2.1 - 2.2.2.3 and lemma 2.2.2.4 to which we refer 
in the proof of theorem 2.2.5. 

Proposition 2.2.2.1 On [0, T) in case I and II and on [0, To) in case Ill, we have V < V00 

and 
dV T + x ( l 1v=x l ) -(x) = -- 1- -- --dF•·•·c·(v) , 

dVoo T-X T+x v=O 9oo(v) , 
where dF•·e.c·(v) = 2g(v)dv (see (1.4), (1.7)). 

PROOF: here for all three cases we prove that proposition 2.2.2.1 holds. In the following 
derivation we get the first equality by telescoping. The second equality is obtained by in
tegration by parts of the third term and the integrand of the second term. We start by 



Consistency in the one-dimensional case 59 

writing 

(2.25) 

Now we explain that all these terms tend to 0 if k-> oo. Let x be a continuity point of V00 

in (0, -r) in case I and II and in (0, -ro) in case III. 

• The first term: we define on [0, x] 

(2.26) 

and lu=u 1 
Woo(u) = --dF•·•·0·(v). 

u=O Yoo( V) 
(2.27) 

To Wn.(u) - W00 (u) we apply lemma 2.2.1: Gn• = ((1/gn.) - (l/y00 )), G = 0, Hn = H = 
F•·•·0 ·, a= 0 an b = u. Now (i) follows from the fact that 9n• converges weakly to y00 on the 
continuity points of V00 • That we have (ii) is trivial to see and (iii) follows from (2.18)-(2.20) 
on [0,u] and the fact that the 1/gn's and l/y00 are monotone increasing. (iv) follows from 
the fact that dH(x)/dx = 2y(x) and y(x) is bounded. 

We can do this for each u E [0, x] and thus applying the lemma's 2.2.1 and 2.2.3 we get 

Wn.(u)- W00 (u)-> 0 and Wn.(u-)- W00 (u-)-> 0 
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for all u E [0,x). The W,.. 'sand W00 are monotone increasing and by (2.18)-(2.20) we know 
that W 00 is bounded on [0, x). Now lemma 2.2.4 tells us that 

11w ... - Woolloo-+ 0 on [0,x). (2.28) 

Finally we conclude that the first term in (2.25) tends to Oby applying lemma 2.2.2 (along 
the subsequence): G,. = W,.- W00 , G = 0, dH,.(u) = dH(u) = (l/(r+u))dV00(u), a= 0 and 
b = x. By (2.28) we have (i) and (ii) is trivially satisfied. We use (2.18)-(2.20) and the fact 
that the W,. 's and W 00 are monote to get (iii) on [0, x). Of course V00 is of bounded variation 
aqd thus we have (iv) too. 

• The second term: for the second term we apply lemma 2.2.2: G,. = (1/g,.) • (F:·•-c. -
F•·•·c·), G = 0, dH,.(u) = dH(u) = (l/(r+u))dV00 (u), a= 0 and b = x. By (2.18)-(2.20) and 
(2.10) we have (i) and (ii) is again trivially satisfied. Using (2.18)-(2.20) and the fact that 
the 1/g,.'s are monotone increasing and the fact that the F:·•·c·'s and F•·•·c· are of bounded 
variation, gives us (iii) on [0, x). We have (iv), because V00 is of bounded variation. 

• The third term: because the 1/g,.. 'sand V00 are increasing and V00 is bounded by 1, 
the absolute value of the third term can be bounded by· 

where C = M., in case I and III and G = M in case II ((2.18)-(2.20)). Now one uses (2.10) 
to see that this term tend to 0. 

• The fourth term: because J;(l/g,..(v))dF:tc·(v) is bounded by G • F:tc·(x) $ C, 
where C = M., in case I and II arid C = M in case III ((2.18)-(2.20)) and the fact that 
v,..(x) - Voo(x) tends to 0 for continuity points x of Voo, we get immediately that the fourth 
term tends to 0. 

• The fifth term: in the fifth term we concentrate first on /0"(1/g,..(v))dF:tc·(v). To 
this integral we apply lemma 2.2.1 with G,.. = (1/g,..), G = (1/g), H,. = F:·•·c·, H = F•·•·c·, 
a= 0 and b = u, where u E [0,x). Again by (2.18)-(2.20) on [0,x) and the fact that the 
1/g,.'s are monotone increasing ,we get that G,. is of bounded variation uniformly in n. So 
we have that this integral converges weakly to J; (1/g(v)) dF•·•·c·(v) on (0, x). Together with 
the fact that V,.. - V00 converges weakly to 0, we apply Lebesgue's dominated convergence 
theorem (or lemma 2.2.1) to the fifth term and conclude that this term tends to 0 too. 

• The sixth term: for the sixth term we use lemma 2.2.1 again. We take G,..(u) = 
(1/(r + u)g,..(u)) (V,..(u) - V00(u)), G = 0, H,. = F:·•·c· and H = F•·•·c·, a= 0 and b = x. 
Using the same arguments as above one sees that (i)-(iv) are satisfied. 

We note here that the only place where we need that x is a continuity point of V00 , is the 
sixth term. In the sixth term it is because of the factor (V,..(x) - V00 (x)). The fact that we 
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only know that Vn• converges to V00 (and thus Un• to 900 ) on the continuity points of V00 , 

plays no role in the other terms. 
Now with (2.25) we have that 

F;:t(x) - Fu·<·(x) 

l u="' 1•=u 1 1 ~ + ::::--() dF!tc·(v) · --dVn.(u) 
u=O v=O 9n• V T + U 

fu="' 1•=u - 1-dF•·•·<·(v) · - 1-dV00 (u)-+ 0 
lu=O lv=O 900 (v) T+u 

(2.29) 

for all continuity points x of V00 in [O, T) in case I and II and in [O, To) in case III. Furthermore 
by (1.50) we have 

Vn(x) = F;:·c·(x) + fu="' 1•=u ~dF:·•·c·(v) · - 1-dVn(u). (2.30) 
lu=O v=O 9n(v) T + U 

Together with (2.29) and the fact that Vn• converges weakly to V00 in all the continuity points 
x of V00 , we obtain 

Voc,(x) = Fu·c·(x) + fu="' r=u - 1-dF•·•·0·(v)-1- dV00 (u) (2.31) 
. lu=O lv=O 900 (v) T + U 

at the continuity points x of V00 • Because V00 is cadlag we also have the relation (2.31) for 
x- and x+ and thus for all x in [O, T) in case I and II and in [O, To) in case III. Finally with 
(2.31) and dFu·c·(x) = ((T -x)/(T + x))dV(x) we find 

~dV(x) = (1- -1- 1•="' - 1-dF"·•·c·(v)) dV00 • 

T + X T + X v=O 900 ( V) 

This means that on [O, T) in case I and II and on [O, To) in case III we have V < V00 and 
proposition 2.2.2.1 holds. □ 

Proposition 2.2.2.2 

f d15,• (x) · dF;:t(x)-+ /" dV (x) . dFu·c·(x) 
0 dVn• Jo dV00 

(k-+ oo) 

for all a in [O, T) in case I and II and in [O, To) in case Ill. 

PROOF: let a be in [O, T) in case I and II and in [O, To) in case III. With (2.21) and proposition 
2.2.2.1 we write 

(2.32) 
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We define on [0, a) the following two functions: 

1 
_ 1- --W,.,(x) 

T+x 

- 1 - T ! x W00(x), 

Consistency 

(2.33) 

(2.34) 

where W,., and W00 are defined as in (2.26) and (2.27). One sees that (2.33) is the integrand 
w.r.t: dV,.,(x) of the first term in (2.32) and (2.34) is the integrand w.r.t. dV(x) of the second 
term. 

We apply lemma 2.2.2 to prove that (2.32) tends to 0: G,. = S,., G = Soo, dH,.(x) = 
dV,.(x), dH(x) = dV(x). By (2.28) we get immediately that 

(2.35) 

on [0, a), thus (i) holds. By (2.16) we have that UV,. - Vll00 -+ 0 and thus we have that 
(ii) is satisfied. For (iii) one uses (2.18)-(2.20) and one verifies that the S,.'s are monotone 
decreasing and thus one easily sees that S,. is of bounded variation uniformly in n. Of course 
we have that V is of bounded variation and so we get (iv). Using lemma 2.2.2 along the 
subsequence, we have proved proposition 2.2.2.2. □ 

Proposition 2.2.2.3 

(k-+oo) 

for all a in [0, T) in case I and II and in [0, To) in case III. 

PROOF: in order to prove proposition 2.2.2.3, we write (using telescoping) 

where a is in [0, T) in case I and II and in [0, To) in case III. Again, the two terms tend to 0 if 
k-+ oo. For the first term we use Lebesgue's dominated convergence theorem: g,.(x)-+ g(x) 
and g,.,(x)-+ g00 (x) at the continuity points x of V00 , on [O,a) we have (2.18)-(2.20) and 
dF•·•·•·(x) = 2g(x)dx is a continuous measure. · 

To the second term we apply lemma 2.2.1: G,., = (g,..fg,.,), G = (g/900 ), H,. = F~·•·•· -
F ...... and H = 0. Just as in the proofs of the propositions 2.2.2.1 and 2.2.2.2 one verifies 
again that we have (i), (ii) and (iv). To (iii) we have to pay special attention. To see that G,. 
is of bounded variation uniformly in n ( on [O, al), we note that the g,. 's and g,. are positive and 
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monotone decreasing and 1/'§n is on [O, a] uniformly bounded in n by (2.18)-(2.20). There is 
a D > 0 such that IIYnlloo $ D and llonlloo $Don [O,a). We may write for all n: 

{ ld(;:~:DI 

= { lon~x) dgn(x) - (::(~i>2 dgn(x)I 

/° l /° 9n(x) -
$ lo 9n(x) jdgn(x)I + lo (gn(x))2 jdg.,(x)I 

$ -C · { dgn(x) - C2 • { dgn(x) 

~ C 9n(O) + C2 Dn(O) 
$ (C + C2)D, 

where C = Ma in case I and III and C = M in case II. This proves that Gn is of bounded 
variation on [O,a] uniformly inn. This completes the proof. □ 

With the propositions 2.2.2.1 - 2.2.2.3 we prove the following lemma, which is the key to 
the proof of theorem 2.2.5. It says that the condition in theorem 2.1.1 is satisfied. 

Lemma 2.2.2.4 The inequality (fJ.17} holds in the limit, possibly after passing to a subse
quence. 

PROOF: we split the proof in three parts and at the beginning of each part we mention the 
cases, for which that part is meant. 

• For the cases I, II and Ill: because the integrands in (2.17) are nonnegative we also 
have 

La dVn · La 9n(x) --,<'"(x) dFu.c·(x) + --- dF•·•-<·(x) + hn $ 1 
0 dVn n O 9n(x) n 

(2.36) 

for all a E [O, T). Together with proposition 2.2.2.2 and proposition 2.2.2.3 we obtain from 
(2.36), possibly after passing to a subsequence 

I° dV (x)dFu.c.(x) + /G g(x) dF··•-c·(x) + h $ 1 
lo dVoo lo 9oo(x) 

(2.37) 

for all a E [O, T0 ). The integrands in (2.37) are nonnegative and so letting a converge to To we 
get by monotone convergence 

,.,,.- dV (x)dFu.c.(x) + ,.,,.- g(x) dF•·•·c·(x) + h $ 1. 
lo dV00 lo g00 (x) . (2.38) 

• For the cases I and II: in case I and II the inequality (2.38) gives (2.17) in the limit, 
because To= T and because by ft we mean the integral over (0, T). 

• For case III: of course in case III we also mean by ft the integral over (0, T), but in 
this case we already noted that in (2.17) we could replace (0, T) by (0, To). In (2.38) we have 
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(2.17) in the limit on (0,To) and therefore we need an extra analysis. For convenience we 
define for a E [O, To) 

(Thus in Kn(a) and K(a) we integrate over (0,a) and in Ln(a) over (a,To)). It is easy to see 
that in case III (2.17) can be written as 

(2.39) 

We know that the integrands in (2.17) are nonnegative, thus we immediately have 

(2.40) 

and 0 :5 Ln(To-) :5 1. By the propositions 2.2.2.2 and 2.2.2.3 we have that Kn(a) converges to 
K(a), possibly after passirig to a subsequence. Let nk (k E IN) be this subsequence. Because 
0 :5 Ln(To-) :5 1 there exists a subsubsequence p(k) of nk such that Lp(k)(To-) converges to 
a number L( To-). For this subsubsequence we have that (2.40) converges to 

K(a) + L(To-) :5 1. (2.41) 

Again, the integrands in K(a) are nonnegative and thus letting a converge to To from below 
we obtain by monotone convergence 

(2.42) 

One notes that if To is a continuity point of V, then Ln( To-) = 0 with probability 1 and thus 
L( To-) = 0. The probability of obtaining a s.e.c. observation with X = To is 0, and thus if 
To is a discontinuity point of V, we have with probability 1 that 

Ln(To-) = f~ :~: (x) dFtc·(x) + 0 

D. ~n( To) . .6.Fu.c.(-r; ) 
D.Vn(To) n O' 

where .6.f ( x) means the height of the jump off at x. In the case that To is a discontinuity point 
of V, we have for an increasing sample that the fraction of u.c. observations X = X = To 
is strictly greater than some 8 > 0 with probability 1. Thus for n large enough we have 
..6.Vn(To) > 8 > 0. Furthermore all the points in (To,T) are continuity points of Yoo, because 
on (To,T) Vn and thus V00 are constant. So on this interval we have Vn.(x)--+ V00 (x) and 
because of the rightcontinuity we get Vn.( To) --+ V00 ( T0 ). Furthermore we have that V00 ( To-) 
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exists. If we combine these facts we get that ~v ... (To)-+ ~Voo(To) > 5 > 0 with probability 
1. So along the subsubsequence p(k) we get that Lp(A:)(To-) converges with probability 1 to 

With this definition of (dV/dV00 )(To) (in proposition 2.2.2.1 we had only an expression for 
(dV /dV00)(x) on [O, To) in case III) we proved that (2.17) (thus (2.39)) holds in the limit after 
passing to a subsequence: 

Now we have proved the lemma. □ 

2.2.3 Proof of two propositions of chapter 1 

We promised to prove proposition 1.1.5.2 and 1.1.7.2 in this chapter. Here we give the proof. 
PROOF OF PROPOSITIONS 1.1.5.2 AND 1.1.7.2: for the proof of both propositions we do not 

have to distinguish between the NPMLE and the sieved NPMLE. 
Because we have g(T) > 0 we know by (2.16) that for n large enough g,.(T) ~ c > 0 

for a constant c > 0. Say that this holds for n ~ N. Now let the sample size be n with 
n ~ N and suppose that the biggest observation point x, in [O, T) is s.e.c., then (g,. and g,. are 
right-continuous on (0, T)) on (x., T) we have that g,. and g,. are constant and equal g,.(T) and 
g,.(T) respectively (because g,. and g,. are left-continuous in T). Furthermore we have that 

f !,.(x) dF:·•·0·(x) $ 1 
Jc,.,,,) g,.(x) 

(because the integrands in (2.17) are nonnegative). Thus we obtain 

g,.(T) ~ g,.(T)~F:·•·0·(x,) ~ ~ > 0 
n 

(because g,.(T) ~ c > 0 ~r n ~ N and ~F:·•·0·(x,) is at least !fnJ. This immediately implies 
that O < 2Tg,.(T) = 1- h,. - V,.(T-) and therefore we have (V,.,h,.) EV,. 

The only thing we still have to prove is that the probability that the biggest observation 
point is s.e.c. tends to 1. Because g(T) > 0 we have for each a E (0,T) that the probability 
that in the interval ( a, T) there are observation points tends to 1. Thus we are ready if we can 
show that the probability to have an u.c. observation point in ( a, T) given that the observation 
point lies in (a, T) tends to O if a tends to T. For convenience we suppose that V has a density 
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v (now we can apply the rule of De !'Hospital). Now we have that this limit of the conditional 
probability equals 

lim (J.T ~v(w)dw) • (J.T,~v(w)dw+J.T g(w)dw)-1 

afT a T + W a T + W a 

= lim (~v(a)) • (~v(a)+g(a))-t 
afT T + a T + a 

0 = ----=0. 
0 + g(r-) 

(Of course g(r-) > 0 because g(r) > 0 and g is decreasing). This completes the proof. D 

2.3 Consistency in the two-dimensional circle case 

In this section we formulate consistency results for the sieved NPMLE (V,., h,.) of (V, h) in 
the two-dimensional circle case introduced in section 1.2. Again we show that these imply 
consistency results for (F,., jl,.) of the original parameters ( F, µ ). 

First we refresh our memory. We remember that the functions g( x) and d( x, x) are decreas
ing (see (1.72) and (1.73)). We have that 4JR2 -(l/4)x2 g(x) is the density of the subdistri
bution function of the s.e.c .. observations (see (1.69)) and for the density of the subdistribution 

function of the d.c. observations (see (1.70)) we have that x (2JW - (1/4) x2)-
1 d(x,x). 

Now let 2Ro E (0, 2R) be such that 

V((2Ro, 2R)) = 0 (2.43) 

and 
V((2Ro - i, 2Ro)) > 0 for all i E (0, 2Ro). (2.44) 

We distinguish the following four cases, which cover all (interesting) possibilities for V: 
Case I for the underlying V we have 2Ro = 2R, 
Case II for the underlying V we have 2Ro < 2R and V([2R, oo)) > 0 

and d(2R, 2R) > 0, 
Case Ila for the underlying V we have 2Ro < 2R and V ( (2R, oo)) > 0 

and d(2R, 2R) = 0, 
Case III for the underlying V we have 2Ro < 2R and V ( (2R, oo)) = 0 

and d(2R, 2R) = 0, 
We note that in case Ila we have g(2R) > 0 and d(2R, 2R) = 0. If we remember the 
definitions of g and d( •,•),then we know that these constraints correspond with an underlying 
V which gives positive mass to 2R but no mass to the interval (2R, oo ). Of course there is 
no distribution function Von (0,oo) such that V((2R,oo)) = 0 and d(2R,2R) > 0 and thus 
g(2R) = 0 and d(2R, 2R) > 0. So this case does not have to be considered. 

For the sieved NPMLE ({'n, h,.) we state a consistency result in the following theorem: 

Theorem 2.3.1 For the sieved NPMLE(V,.,h,.) of(V,h) E V2R in the two-dimensional circle 
case we have that 

h,. - h -+ 0 a.s. 
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and 

for all E E (0, 2R]. 

sup !vn(x) - V(x)j-> 0 a.s . 
.,E[0,2R-,) 

The theorem is proved in section 2.3.1. (A corollary as 2.2.6 can also be formulated here). 
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One remembers the functions g(x) and d(x, x) in terms of Von (0, 2R) and h (see (1.81) 
and (1.82)). For the function g we obtain the estimator 9n on (0, 2R]: 

- 12R 1 - -9n(x) = ., IWI + 2uR dVn(u) + 9n(2R), (2.45) 

where 9n(2R) is defined by Vn(2R-) + (IWI + 4R2)gn(2R) + hn = 1. For d(x, x) we get the 
estimator dn(x,x) on (0,2R]: 

- 12R u-x - 1 -
dn(x,x)=., IWl+ 2uRdVn(u)+ 2Rhn+(2R-x)gn(2R). (2.46) 

We have that 9n and dn(·, ·) follow from (Vn, hn) according to (1.81) and (1.82). 
Of course in the one-dimensional case one could prove that sup.,e[o,T-,) l9n(x)-g(x)I tends 

to O a.s. for all EE (0, r]. The proof would be similar to the proof of the following proposition. 
Here we put this result for the two-dimensional circle case in a proposition together with a 
consistency result for Jn ( ·, · ), because we want to emphasize the difference between both 
consistency results; for 9n we have strong consistency on intervals (0, 2R - t] and for dn we 
have strong consistency on the whole interval (0, 2R]. 

Proposition 2.3.2 For the functions 9n( ·) and dn( ·, ·) both defined on (0, 2R], we have 

sup l9n(x) - g(x)I-> 0 a.s. 
"E[0,2R-,] 

for all t E (0, 2R] and we have 

sup jJn(x,x)- d(x,x)I-> 0 a.s .. 
"E[0,2R) 

PROOF: using partial integration we write 

1 - 12R 2R -
9n(x) = IWl+2xR Vn(x)+ " (IWl+2uR)2 Vn(u)du 

1 -
+ IWI + 4R2 Vn(2R-) + 9n(2R) (2.47) 

and 

1 - 12R 1 -
dn(x,x) = 2Rhn-(IWl+2xR) " (IWl+ 2uR)2 Vn(u)du 

+(2R - X) ( IWI : 4R2 Vn(2R-) + 9n(2R)) . (2.48) 
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Theorem 2.3.1 gives us V,.(x) -+ V(x) for all x E [0, 2R). Then by Lesbesgue's dominated 
convergence theorem we obtain that 

l2R 2R - ,2R 2R 
Y,.(x) = J,, (IWI +2uR)2 V,.(u)du-+ Y(x) = },, (IWI +2uR)2 V(u)du 

for all x E [0,2R]. It is obvious that Y,.(x-)-+ Y(x-) holds. We note that the Y,.'s and Y 
are monotone and that Y is bounded, thus we apply lemma 2.2.4 to obtain 

sup IY..(x) - Y(x)I-+ 0. 
,:E(0,2R) 

(2.49) 

Theorem 2.3.1 gives us h,. -+ h and because we have (IWI + 4R2) g,.(2R) = 1 - Ji,. - V..(2R-) 
we get immediately 

1 -
IWI + 4R2 V,.(2R-) + g,.(2R) -+ 

1 
IWI + 4R2 V(2R-) + g(2R). (2.50) 

Now with theorem 2.3.1 together with (2.47)-(2.50) one easily concludes that both statements 
in the proposition hold. (Because of the term (1/(IWI + 2xR)) V,.(x) in (2.47) we have strong 
consistency of g,. only on intervals [0, T - fl}. □ 

We formulate consistency results for the parameters ( F, µ) in the next theorem: 

Theorem Z.3.3 For the sieved NPMLE (F,.,µ,.) of (F,µ) E :F2R in the two-dimensional 
circle case we have that 

µ,. - µ -+ 0 a.s. 

and 
sup li',.(x) - F(x)I-+ 0 a.s. 

:E[0,2R-.:J 

for all f E (0, 2R). 

PROOF: the proof is identical to the proof of theorem 2.2.7 using theorem 2.3.1 and using 
v(V(• ), h) defined in (1.83) and the transformation defined in section 1.2.3. □ 

2.3.1 Proof of consistency in the two-dimensional circle case 

PROOF OF THEOREM 2.3.1: the proof is very similar to the proof of theorem 2.2.5. Here we 
only point out the essential differences. 

To apply theorem 2.1.1 we give here the elements that play the roles of T, T,., T,. and T00 

in the theorem. It is clear that (V, h) plays the role of T. 

• The role of T,.: we define 
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and Yn(2R) is defined by Vn(2R-) + (IWI + 4R2 )gn(2R) + hn = 1 and 

12R 1 
Yn(x) - "' IWI + 2uR dVn(u) + Yn(2R) 

1- hn 1 
= IWl+4R2 + IWl+4R2 

x ( / 2
R 4R2 

- 2uR dF"·<·(u) - (IWI + 4R2 ) {"' - 1-dF,:'·<·(u)). (2.51) 
lo z(u) n lo z(u) 

Monotonicity (lemma 2.2.4) and the strong law of large numbers provides us with the fact 
that 

II {"' j(u) dF,:'·<·(u) - {"' j(u) dF"·<·(u)II -+ 0 
lo z(u) lo z(u) [o,2R] 

(2.52) 

a.s. (n-+ oo), where II· 11 1 stands for the supremum norm on the interval/ and where j(·) is 
any bounded positive function on [O, 2R] (we use j(u) = 4R2 - 2uR and j(u) = 1 in (2.51)). 
Trivially we have hn - h = h - h = 0 -+ 0 ( n -+ oo) and with (2.52) one easily verifies that 

IIYn - gll[o,2R)-+ 0 , IIVn - Vll[o,2R)-+ 0 a.s. (n-+ oo). (2.53) 

One must be aware of the fact that, because of the choice of hn = h ( compare this with the 
choice of hn in the one-dimensional case), Yn(x) could be negative and then Yn(x) will not be 
a good estimate for the density g(x). In fact in that case gn(2R) is negative and that would 
mean that negative mass is assigned to Yn(2R). Then the triple Vn(·) (on (0,2R)), hn and 
(IWI + 4R2 )gn(2R) does not represent a probability measure for the model. By (2.53) we 
know that with probability 1 this problem will not occur for n large enough. 

According to (1.82) we define dn(x,x) to be 

and by (2.53) we get 

lldn - dll[o,2R]-+ 0 a.s. (n-+ oo) 

(one remembers the proof of proposition 2.3.2). We note that Yn and dn(·, •) follow from 
(Vn,hn) according to (1.81) and (1.82). 

• The role of '.fn: let (Vn,hn) denote the sieved NPMLE of (V,h) E V2R. The functions 
Yn(·) and dn(·,·) on (0,2R] are defined in (2.45) and (2.46). We know that Yn and dn(·,·) 
follow from (Vn, hn) according to (1.81) and (1.82). 

• The role of T 00 : by the Helly Selection Theorem we have that for some subsequence 
(Vn • .hn.) of the sequence of (Vn,hn), there exists a nondecreasing right continuous function 
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V00 on (0, 2R) and a h00 such that limk-oo Vn• (x) = V00 (x) at the continuity points of V00 and 
hn• -+ h00 • We define 

12R 1 
Yoo(x) = ., IWI + 2uR dVoo(u) + Yoo(2R) 

where y00 (2R) is defined by V00 (2R-) + (IWI + 4R2 )y00 (2R) + h00 = 1. We write 

and by the weak convergence of ( Vn• , hn•) to ( V 00 , h00 ) we get limk-oo 9n• ( x) = y00 ( x) at the 
continuity points of V00 • The same result is obtained for d00 : limk_oodn.(x,x) = d00 (x,x), 
where d00 (•, ·) is defined as 

12R u-x 1 
d00 (x,x) = ., IWI + 2uR dVoo(u) + 2Rh00 + (2R - x)y00 (2R). 

Again one verifies immediately that y00 and d00 (·, ·) follow from (V00 , h00 ) according to (1.81) 
and (1.82). 

For the sieved NPMLE (Vn, hn) we find by (2.2) 

/2R d~n(x)dF,:'·<·(x) + /2R :n(x) dF,:·•·<·(x) + /2R ~n(x,x) dF!·<·(x) ~ 1. (2.54) 
lo dVn lo Yn(x) lo dn(x,x) 

(This inequality plays the role of inequality (2.17) in the proof of theorem 2.2.5). To prove 
that (2.54) holds in the limit, possibly after passing to a subsequence, we need not only 
to control the possible unboundedness of 1/gn(x), but also the possible unboundedness of 
1/dn(x, x). In the following we find that (2.55)-(2.59) are the analogues of (2.18)-(2.20). 

• Case I: 2Ro = 2R. Using the same arguments as for (2.18) we get for n large enough 
and for each a E (0, 2R) 

1 1 1 1 
:::--() ~ M., --) < M., ---- < M., -- < M. (2.55) 
Yn X Yoo(x - dn(x,x) - doo(x,x) -

for all points x E [0, a], where M. ::::: 0 is a constant. 
• Case II: 2Ro < 2R and V([2R, oo)) > 0 and d(2R, 2R) > 0. Using the same arguments 

as for (2.19) we get for n large enough 

_!__) < M, - 1- < M, ___ I_ < M, I < M (2 56) 
9n(x - 9oo(x) - dn(x,x) - doo(x,x) - · 
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for all points x E [0, 2R] and M is constant. For the last two inequalties in (2.56} we use that 
(2.54} implies that 

fR ':'(x,x) dF:f·c·(x) 
2Ro d,.(x,x) 

(because the integrands in ( 2.54) are nonnegative). We know that in this case d,. ( x, x) is 
constant on (2Ro,2R] (see (2.43)). The same holds for d,.(x,x) and thus we may write 

d,.(2R, 2R) (F:f·0 ·(2R) - F:f·0 ·(2Ro)) ::; d,.(2R, 2R) 

and that the left-hand side of this inequality converges to 

d(2R, 2R)(Fd.c.(2R) - Fd·0 ·(2Ro)) = d(2R, 2R) · fR ✓ u d(u, u) du. 
2Ro 2 R2 _ ¼u2 

Because of d(2R, 2R) > 0 this is strictly positive and therefore we conclude that there is a 
constant c > 0 such that d00 (2R, 2R) ~ c and for n large enough we have d,.(2R, 2R) ~ c. 
This and the fact that d00 ( ·, ·) and the d,.(·, • )'s are decreasing imply the last two inequalities 
in (2.56). 

In this case we note that on (2Ro, 2R} we have: dV,.(x) = dV,.(x) = dV00 (x) = dV(x) = 0 
and dF:· 0 ·(x) = dFu·0·(x) = 0. 

• Case Ila: 2Ro < 2R and V([2R, oo)) > 0 and d(2R, 2R) = 0. Just as in case II we find 
for 1/g,. and l/900 the bound: 

1 <M _l_<M 
g,.(x) - ' Uoo(x) -

(2.57) 

for all points x E [0, 2R] and M is constant. 
The estimator V,. gives at least mass 1/n to uncensored observations, so with (2.44) we 

have for each a E [0, 2Ro) and for n large enough 

___ 1_ < M.' __ l_ < M. 
d,.(x,x) - doo(x,x) -

(2.58) 

for all points x E [0, a], where M. is a constant. 
In this case we note that on (2Ro,2R) we have: dV,.(x) = dV,.(x) = dV00 (x) = dV(x) = 0 

and dF:·0 ·(x) = dFu·0·(x) = 0 and d(x,x) = 0 and dF!·0 ·(x) = dFd·0 ·(x) = 0. In this case we 
can replace the integrals over (0, 2R) in the first and third term of (2.54) by (0, 2Ro]. 

• Case III: 2Ro < 2R and V([2R,oo)) = 0 and d(2R,2R) = 0. Similar arguments as for 
(2.20} give us (for each a E (0, 2Ro}) for n large enough 

1 1 1 1 <M ~() ::;M., -(-) ::;M., ----<M., d ( ) • 
9n X 900 X d,.(x,x) - 00 x,:i: -

(2.59) 

for all points x E (0, a], where M. is a constant. In this case we have on (2Ro, 2R): dV,.(x) = 
dV,.(x) = dV00 (x) = dV(x) = 0 and dF:·0 ·(x) = dFu·0 ·(x) = 0 and g(x) = 0 and d(x,x) = 0 
and dF~·•·0 ·(x) = dF•·•·0 ·(x) = 0 and dF!·0 ·(x) = dFd· 0 ·(x) = 0. Just as in case III of the 
one-dimensional problem we can replace here the integrals over (0, 2R) in (2.54) by (0, 2.Ro]. 
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One verifies that Vn <: Yn and by (1.86) we get 

d~(x) 
dVn 

= IWI + 2xR (1- 1 r= _l_dF······(v) 
z(x) IWI + 2xR J.,=0 ,9n(v) n 

- l 1= ~ dF"·•·( v )) 
IWI + 2xR v=0 d,.(v, v) " 

(2.60) 

(see (2.21)). From now on one imitates the proof of theorem 2.2.5. All the necessary ingredi
ents are found in (2.55)-(2.59) and the propositions 2.3.1.1 - 2.3.1.4 and lemma 2.3.1.5. They 
are the analogues of the propositions 2;2.2.1 - 2.2.2.3 and lemma 2.2.2.4. In (2:54) one deals 
with the term 

in the same way as the term 

D 

In the remainder of this section we give the propositions 2.3.1.1 - 2.3.1.4 and lemma 
2.3.1.5. 

Proposition 2.3.1.1 On [O, 2R) in case I and II and on [O, 2Ro) in case Ila and Ill, we have 
V < V00 and 

dV 
dV

00 
(x) = IWI + 2xR (l 1 J."="' 1 dF•·e.c·(v) 

z(x) - IWI + 2xR 11=0 Uoo(v) 

- l !."="' ~ dFcl·•·( v )) 
IWl+2xR 11=0 d00 (v,v) . 

PROOF: the proof is similar to the proof of proposition 2.2.2.1. One treats the difference 

J.11= x-v cl 1 -
v=O d,.(v, v) dF,.·c·(v) · IWI + 2xR dV,.(x) 

J.11=:r: x-v cl 1 
- v=O doo(v,v) dF .c.(v). IWI + 2xR dVoo(x) 

in the same way as the difference 

J.v=:r: 1 1 -
:::--() dF:·•·c·(v). IWI 2 R dV,.(x) 

v=og,.v +x 

J.v=:r: 1 1 
- -(-) dF•·•·0·(v) • IWI 2 R dVoo(x), 

v=O g00 v + X 

which is similar to the difference in (2.25). D 
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Proposition 2.3.1.2 

(k-+oo) 

for all a in [0, 2R) in case I and II and in [0, 2Ro) in case Ila and III. 

PROOF: the proof is similar to the proof of proposition 2.2.2.2 and one uses the same comment 
as in the proof of proposition 2.3.1.1. D 

Proposition 2.3.1.3 

(k-+ oo) 

for all a in [0, 2R) in case I, II and Ila and in [0, 2Ro) in case III. 

PROOF: the proof is identical to the proof of proposition 2.2.2.3. Just replace T by 2R and 
To by 2Ro and use the corresponding definitions of g(x), g00 (x), 9n(x), F:·•· 0 • and F•·•· 0 •• D 

Proposition 2.3.1.4 

fa ~n.(x,x) dF:t(x)-+ fa d(x,x) dFd.c.(x) 
lo dn• (x, x) lo d00 (x, x) 

(k-+oo) 

for all a in [0, 2R) in case I and II and in [0, 2Ro) in case Ila and III. 

PROOF: the proof is the same as the proof of proposition 2.2.2.3. Just replace T by 2R, To by 
2Ro, g(x) by d(x,x), 9n(x) by dn(x,x), g00 (x) by d00 (x,x), Yn(x) by dn(x,x), F:·•·0 • by F;f· 0 · 

and F .... c. by pd.c .. D 

Lemma 2.3.1.5 The inequality (2.54) holds in the limit, possibly after passing to a subse
quence. 

PROOF: the proof is almost the same as the proof of lemma 2.2.2.4. In case Ila we could 
replace in the first and third term of (2.54) the integral over (0, 2R) by the integral over 
(0, 2Ro). In this case and in this proof (2.38) would become 

1111,,- dV k2R g(x) k2R,,- d(x x) -(x) dFu.c.(x) + --dF•·•·0·(x) + ' dFd.c.(x)::; 1. 
dVoo o g00 (x) o d00 (x, x) 

(2.61) 

In case III we would get for (2.38): 

12R,,- dV k2R,,- g(x) 12R,,- d(x x) -(x)dFu.c.(x)+ --dF•·•·0·(x)+ --' -dFd.c.(x)::; 1. (2.62) 
dVoo o Yoo(x) o d00 (x,x) 

To prove that we can replace 2Ro- by 2R0 (and thus get the integral over (0, 2R0)) we imitate 
the proof of lemma 2.2.2.4 for case III. D 
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Chapter 3 

Efficiency 

In this chapter we prove asymptotic results for the (sieved) NPMLE in the two-dimensional 
circle-case. This we do in the sections 3.5 - 3.11. As mentioned in the introduction the 
results in the two-dimensional circle-case rely on the assumption that the determinant Qv of 
a certain 2 x 2 matrix is unequal to zero. Van der Laan(1993) already studied the asymptotic 
behaviour in the one-dimensional case. Applying the analysis, which we used for the two
dimensional case, to the one-dimensional problem, we discover why this determinant matter 
did not appear here. In the one-dimensional case one can prove that this determinant Qv 2: 1. 
This is shown in section 3.12. 

To obtain the results in this chapter we have to restrict the class of underlying distribution 
functions V. These assumptions are formulated in section 3.4. But before we start with section 
3.4, which is followed by the sections dealing with the one- and two-dimensional cases, we 
begin with a summary of some general efficiency theory in the sections 3.1 - 3.3. Because we 
estimate linear parameters in convex models, we make use of Van der Laan's(1993) identity. 
In section 3.3 we will show that his condition needed to obtain this identity can be changed 
into a condition which is easier to verify. 

3.1 General notion of efficiency 

3.1.1 Donsker class 

Given a probability space (!l, A, P) we define the space L2(P) as 

L2(P) = {f : (!l, A, P) --+ R: / measurable and J /2 dP < oo} 

The set Li(P) will be defined as the set of all elements f E L2(P) with J f dP = 0. We 

endow the spaces with the inner-product norm II/lip= ✓(f,/}p = ✓f f2dP, which makes 
both spaces a Hilbert-space. Let :F C L2(P) and define 

100(:F) = {H : :F--+ R: IIHIIF = sup IH(f)I < oo}. 
/E:F 

We can consider function indexed empirical processes as random elements of /00 (:F) as 
follows. Let X1, ... , Xn be an i.i.d. sample of random elements in a measurable space (!l, .A, P) 
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and let Pn be the empirical measure which puts mass 1/n on each X; (i = 1, ... , n). Now we 
define the following map from a collection :F consisting of measurable functions f : n -> D1 
to D1: 

J-> P,.f = j f dPn. 

One considers Pn = (Pnf : f E :F) as a random element of 100(:F). The :F-indexed empirical 
process is given by 

1 n 
f-, Gnf = ✓,i(P,. - P)f = ✓,i tr (f(X,) - Pf). 

Let f be given such that Pf and P f2 exist, then we have the law of large numbers and the 
central limit theorem: 

If we have 
IIP,. - Plly = sup IP,.f- Pfl-> 0 

/E.1" 
. a.s. , 

where a.s. • means outer almost surely, then we call the class :Fa P-Glivenko Cantelli class. 
This is the uniform version. of the law of large numbers. 

If we have sup/E.1" lf(x) - P fl < oo for every x, then we can regard the empirical process 
G,. = (G,.f : f E :F) as a random element of 100(:F). Now we can talk about convergence of 
G,.==?DG in 100(:F), where G is a tight measurable Gaussian law. If this is true we say that 
the uniform central limit theorem holds for :Fat P. We call a class :F for which the uniform 
central limit theorem holds at P a P-Donsker class. For a more specific discussion we refer 
to Van der Vaart and Wellner(1993) and Dudley(1984, 1985). We call :F Donsker uniformly 
in P E M if this convergence is uniform in P EM (via metrization of '==?D'), for a certain 
set of probability measures M. 

Now let Ik = {(bo = 0,b1],(b1,~], ... ,(bk-2,bk-I],(bk-1,bk = a]} be a disjoint partition of 
the interval I = (0, a] C D1 consisting of k intervals. We define the variation of a function f 
on (0, a] as follows · 

k 

llfliv,o = sup L lf(b;) - f(b,_i)I. 
l1c i=l 

The variational norm II· llv on D[0, a] (the space of cadlag functions on [0, al) is defined by 

llfllv = max (llflloo, llfllv,o) · 

The class of real valued functions on (0, a] C D1 with variational norm II · llv smaller than 
some (fixed) constant M < oo is uniformly Donsker (see Dudley(1987)). Thus the set :FM= 
{f E D[0, a] llfllv < M} is uniformly Donsker. For monotone f one easily obtains the 
inequalities: 

llfllv ~ 211/IL"' 
llflloo ~ llfllv• 

(3.1) 

(3.2) 
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3.1.2 Efficiency theory 

In order to get a more or less self-contained chapter about efficiency, we give here the basic 
theory. This section contains all the definitions and derivations that are needed to build up 
the efficiency theory of section 3.2 and section 3.3. It can be found in Van der Laan(l993) 
sections 1.4 and 2.2. 

We define a model M to be a set of probability measures on (X, B). Let 

M(v)={PEM: P<v}. 

We write p = (dP/dv) for the density of P E M(v) w.r.t. v. The collection of all these 
densities p corresponding with a PE M(v) will be denoted by 'P(v). 

We give the following definition of differentiability: 

Definition 3.1.2.1 A map f-+ p, from [O, l] to 'P(v) is called a differentiable (one- dimen
sional} submode/ of 'P(v) through p if there exists an l E L~(P) with 

j ( ;( ../P< - y'p) - ~ l vP) 2 
dv -+ 0 (3.3) 

ford 0. 

Note that if the integrand in (3.3) converges pointwise to 0, then we would have 

_ f, JP<l,=o _ d I 
l(x) - 1 vP - df log(p,(x)) . 

2 p •=O 

Thus I can be considered as a L2(v) version of the score function of the one-dimensional 
submode! p,. Submodels P, in M with densities p, in 'P(v) for a certain measure v satisfying 
(3.3) are called Hellinger differentiable. 

We write p,,1 E 'P( v) or P,,1 E M ( v) if we mean a one-dimensional differentiable submode! 
of densities (w.r.t. v) or measures respectively, with score las defined in definition 3.1.2.1. 

Now let iJ : M -+ El C D be a parameter and let B be a collection of real valued linear 
mappings b : D -+ R. Given an i.i.d. sample X1 , ••• , Xn from an unknown P E M we want 
to estimate the parameter(}= iJ(P), which is done by an estimator 9n = 9n(X1 ,X2, ... ,Xn)
We have that b(}n : ( X", Bn) -+ R is a measurable map for all b E B. 

The Cramer-Rao lower bound, that bounds the variance of unbiased (over P,,1) estimators 
of biJ(P,,i) at f = 0 from below, is given by 

~(lll~IP. !biJ(P,,i)l,=or (3.4) 

(assuming d/df exists). If we define S(P) to be a class of differentiable submodels of M 
at P, then the variance of unbiased (over the whole set M) estimators of biJ(P) is bounded 
from below by the supremum over S(P) of (3.4). This leads to the so called generalized 
Cramer-Rao lower bound. Because the bound (3.4) depends on the score I through P,,1, the 
supremum is in fact a supremum over the collection of scores corresponding with S(P). We 
will define this collection more precisely 
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Definition 3.1.2.2 A cone S(P) in L5(P) is called a tangent cone at PE M of S(P) if for 
all IE S(P) there exists a differentiable one-dimensional submode/ P,,1 E S(P) CM through 
PE M with score I. 

We remember that a cone C in a vector space over ll is a subset for which the following 
condition holds: if IE C and a ~ 0, then a IE C. Instead of taking the supremum over S(P) 
in the generalized Cramer-Rao lower bound, we can replace it by taking the supremum over 
the tangent space T(P), which we define by: 

Definition 3.1.2.3 For a tangent cone S(P) C L~(P) we define the tangent space T(P) C 
L~(P) as the closure of the linear extension of S(P) within Li(P). 

The existence of the supremum over S(P) of (3.4) will be guaranteed by the following differ
entiability assumption of bd. 

Definition 3.1.2.4 A parameter b{) : M -+ JR is called pathwise differentiable at P E M 
relative to S(P), if there exists a linear mapping ./J : T(P)-+ (D, II· II) such that bJ : T(P)-+ 
JR is continuous and linear and 

1 . 
; (biJ(P,,i) - biJ(P)) - biJ(l)-+ 0 

for all I E S(P). By the Riesz representation theorem there exists a /(P, biJ) E T(P) such 
that 

W(l) = j l(P,biJ)(x)l(x)dP(x). 

The Cramer-Rao lower bound (3.4) equals 

.!_ (W(l)) 2 
_ .!_ (I l(P, biJ)(x) l(x) dP(x)) 2 

n lllllp - n lllllp · 

(3.5) 

With the Cauchy-Schwartz inequality this is maximized over T(P) by I = l(P, biJ) and the 

result is exactly (1/n) lll(P,biJ)I( For this reason we consider P,,b I= /(P,biJ) as the so 
called hardest one-dimensional submode! for estimating biJ(P). (If I(P, biJ) </. S(P), then we 
still think of it as an approximate submode!). Thus /(P, bd) is sometimes called the efficient 
score. The variance of l(P, b{)) is also the optimal asymptotic variance of .,jn(On - {)(P)) for 
so called regular estimators (Van der Vaart, 1988). 

Definition 3.1.2.5 Let bOn be an estimator of b8 = b{)(P) for which we have 

We call bOn a S(P)-regular estimator of bO if for all I E S(P) there exists a P,,1 E M such 
that for fn = 1/ .,/n 
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The smaller we choose S(P) the larger the class of regular estimators (relative to S(P)) 
and the easier it is to verify pathwise differentiability. On the other hand the lower bound 
Var(J(P, In?)) represents a supremum over all Cramer-Rao lower bounds for the one- dimen
sional submodels p,,l and therefore this lower bound can only be attained if S(P) is large 
enough and thus in order to have existence of efficient estimators one has to choose a rich 
enough class S(P) of one-dimensional submodels p,,/. 

We consider asymptotically linear estimators: 

Definition 3.1.2.6 An estimator On of O = t'J(P) is called II · IIB-asymptotically linear with 
influence curve J(P, bt'J) E Ll(P), b E B, if . 

../n(bOn - bO) = ../n(Pn - P)I(P, bt'J) + R..,b, 

where IIR..IIB = supbEB IR..,bl = op(l) and the empirical process J I(P,bt?)d..jn(Pn - P) 
indexed by {J(P, In?) : b E B} converges weakly. 

Theorem 2.12 in Van der Vaart(l988) says that for any regular estimator bOn the limiting 
distribution Lb has a variance which is larger than Var(J(P, bi'J)) and that equality holds iff 
bOn is asymptotically linear with influence curve equal to J(P, In?). One may call this result a 
asymptotic Cramer-Rao bound. This leads to the following definition 

Definition 3.1.2.7 J(P,bt'J) E T(P) is called the efficient influence curve w.r.t. S(P) for 
estimating bt'J(P) in M. 

The convolution theorem tells us that if S(P) is convex, then the limiting distribution Lb 
of a regular estimator bOn equals the sum of N(O, Varp(l(P, In?)) and another independent 
random variable. Now we give the following definition of efficiency of On: 

Definition 3.1.2.8 Let 0, On ED and B be a collection of real valued linear functions on D. 
Assume that On is II · IIB-asymptotically linear with efficient influence curve l(P, In?), b E B. 
Then we say that On is 11 · IIB-efficient. 

Later in this chapter we will prove efficiency of an estimator (Zn,Zn), which is a 1-1 
function of the NPMLE (Vn, hn) of the underlying (V, h) in the two-dimensional line segment 
problem (see section 3.5). Furthermore in section 3.12 we prove efficiency of an estimator 
(Wn, Wn), which is a 1-1 function of the NPMLE (Vn,hn) of the underlyini (Y,h) in the 
one-dimensional case. (The reason why we do not show the efficiency of (Vn, hn) directly 
is the fact that in that case one has to deal with severe singularity problems. We discuss 
this later.) As we remember we obtained (V,h) after some reparametrization of (F,µ). Now 
we want to answer the question if efficiency of the NPMLE (Zn, Zn) (and (Wn, Wn) in the 
one-dimensional case) implies efficiency of the NPMLE (F'n, Jin) o(the original parameters 
(F,µ)? The answer to this question is formulated in theorem 3.1.1. We apply this theorem 
in section 3.5.3 and 3.12.1. 

Let ili : D~ C (D, 11 · 11) -> (E, 11 · 11 1 ), where (D, 11 · 11) and (E, II · 11 1 ) are normed vector 
spaces. Suppose that Dn, Do, D~ CD such that if Gn, GED~ then hn = Jn(Gn-G) E Dn. 
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We say that ~ is compact differentiable if we have that if hn -+ h, h E Do and Do separable 
then 

(3.6) 

for a certain continuous linear mapping d~(G) : Do C (D, 11 ·II)-+ (E, II· 11 1). 

The next theorem gives us that efficiency is preserved under this kind of differentiability 
(Van der Vaart(1991)). 

Theorem 3.1.1 Let B and B1 be a collection of real valued linear functions on vector spaces 
D and E respectively, such that (D, II· 11 8 ) and (E, II· 11 8 .) are normed vector spaces. Let 
~ : D,; C (D, 11 · 11 8 ) -+ (E, 11 · 11 8 ,) be a functional. 

If On E D,; is an 11 · 11 8 -efficient estimator of 8 E D,; and~ is compact differentiable, then 
~(On) is an II· 11 8 ,-efficient estimator of ~(8). 

3.2 Efficiency theorem for an NPMLE 

In this section and the next section we give Van der Laan's approach for linear parameters in 
convex models with some little improvement. 

Let us assume the existence of an (NP)MLE P n and let S(P n) be a class of one-dimensional 
differentiable submodels of M through Pn and let S(Pn) C L5(]Pn) be the tangent cone 
corresponding to this class of submodels. Let T(P n) be the tangent space at P n• 

We suppose that b{) is pathwise differentiable relative to S(P n) at P n with efficient influ
ence curve f(P n, b{J) E T(P n), Let P n,,,1. be a one-dimensional submode! through !P n with 
score In and let P n,<,ln ~ Vn, 

If P n lies in the interior of M, then one obtains, because IP n is NPMLE, that the derivative 
w.r.t. f of the loglikelihood along the submode! IPn,,,1. evaluated in f = 0 equals 0. So we 
have 

1 j log ( dP:~••1• (x)) dPn(x>l,=
0 

= 0. 

By exchanging differentiation and integration this yields 

j ln(x)dPn(x)=0. 

One notes that this holds for a111n E S(IP n) and by the linearity of I -+ J I dPn this also hold 
for Lin(S(P,.)), the linear extension of S(Pn), 

Now if we have f(Pn,b{J) E Lin(S(Pn)), then one can write 

(3.7) 

If f(Pn,b{J) E T(Pn) \ S(Pn), then it might still be possible to prove (3.7) by a continuity 
argument. Actually for the theory below we only need 

(3.8) 

(Compare with the efficient score equation in theorem 3.2.1). Note that because T(P) c 
L~(P), we always have P l(P, M) = 0 and thus for P = P ,.: P ,.l(P ,., bt?) = 0. 
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In Van der Laan(l993) we find the following argument which provides a proof of theorem 
3.2.1. By definition 3.1.2.8 we know that 0,. is II · 11 8 -effi.cient if and only if we have 

bO,. - b0 = j 1(P, W) d(P,. - P) + R..,b, (3.9) 

where IIR..118 = op(l/,/n) and {l(P,W) : b E B} is P-Donsker. One easily sees that 
IIR..ll8 = op(l/,/n) can be weakened to IIR..11 8 = op(ll0,. - 011 8 ) and so we get with (3.9) 
that 110,. - 011 8 = Op(l/ ,/n) + op(ll0,. - 011 8 ). This yields 110,. - 0ll 8 = Op(l/,/n). 

Now if we assume that PJ(IP n, M) = op(l/ ,In, then (3.9) holds if ( and only if) 

:~~ lbOn-bO+ J 1(1Pn,M)dP- J (1(P,fn1)-1(1Pn,M)) d(Pn-P)I 

= op(ll0n - 011B). (3.10) 

If we suppose that there exists a P-Donsker class :F such that 1(P, W) - 1(Pn, W) E :F 
for all b E B with probability tending to 1, then it follows by the II · IIP continuity of the 
limiting sample paths that if supbeB pp(](P, M),J(IPn, W))-> 0 in probability, then we have 
SUPbeB If (1(P, W) - 1(1Pn, M)) d(Pn - P)J = op(l/ ,/n). (Note that 

pp(J,g)2 = j ((f - g) - P(f - g))2 dP ). 

Showing that the sum of the other terms on the left-hand side of equation (3.10) is op(ll0n - 011 8 ) 

gives us (3.9). We obtain the following theorem: 

Theorem 3.2.1 Let X ~ P E M for a model M and let X1 , ••. , Xn be n i.i.d. copies of X. 
Let 0 = i?(P) E D, D a vector space and let B be a certain collection of real valued linear 
mappings on D. Suppose that for each P E M, M (b E B) is path wise differentiable at P 
relative to S(P) with efficient influence function 1(P, bi')). 

Let 0n = i?(IPn), 1Pn EM be an estimator of 0 which satisfies the following conditions: 

Efficient score equation: 

Differentiability condition: 

Empirical process condition: 

Then 0,. is a 11 · 11 8 -asymptotically efficient estimator of 0. 

We know we have 
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Theorem 3.2.2 Sufficient conditions for the empirical process condition in theorem 9.!J.1 
are: 

P-Donsker class condition: 

There ezists a P-Donsker class :F such that l(P, bt7) - l(P,., bt7) E :F 
for all b E B with probability tending to 1, 

pp-consistency: 
sup pp ( i( P, W), l(P ,., W)) -+ 0 in probability . 
bEB 

3.3 Efficiency of NPMLE of linear parameters in con
vex models 

In Van der Laan(1993) we find theorem 3.3.1 where an identity for linear parameters in convex 
models is given. 

Let M be a convex set of probability measures and note that this implies that M(11) 
is convex. We recall that M(11) = {P E M : P ~ 11}. For every Pi E M(P) the 
line tPi + (1 - t)P with E E [O, 1) is a submodel in M through P. H II is a dominating 
measure for P, then the corresponding line EPi + (1- t)p of densities w.r.t. 11 can be given by 
(Pi = dPi/d11 and p = dP/d11): p,,1 = (1 + d)p, where l = (Pi - p)/p. The score is given by 
land if l E L~(P), then p,,1 is Hellinger differentiable because it satisfies (3.3). For efficiency 
calculations a natural class of one-dimensional submodels through P is 

S(P) = { EPi + (1 - t)P, EE [O, 1) : Pi E M(P), ~ E L2(P)} (3.11) 

and in terms of densities this class (3.11) is given by 

{P,,I = (1 + d)p : l = (Pi - p)/p E L~(P), Pi E M(P)}. 

The tangent cone S(P) and the tangent space T(P) are defined as in definition 3.1.2.2 and 
3.1.2.3. 

Now we give theorem 3.3.1: 

Theorem 3.3.1 Suppose that M is a convex model and iJ : M -+ D is linear. Suppose 
P, Pi EM and that b1' is pathwise differentiable at Pi relative to S(Pi) with efficient influence 
curve l ( Pi, ln7) . 

Assume that the fallowing condition holds: 

Identity condition: 

There exists a sequence Pm E M(Pi) with dPm/dPi E L2(Pi) such that 

j i(Pi, W) dPm -+ j i(P1, bd) dP and bd(Pm)-+ bd(P) form-+ co. 
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Then we have the foil owing identity 

lnJ(P)-lnJ(Pi)= j l(Pi,lnJ)d(P-Pi)= j l(Pi,lnJ)dP. 

So for linear parameters in convex models the identity gives us the differentiability condition 
with remainder zero in theorem 3.2.1. One obtains immediately the following theorem: 

Theorem 3.3.2 Let X ~ P E M for a convex model M and let Xi, ... , Xn be n i.i.d. copies 
of X. Let () = iJ(P) E D be a linear parameter, D a vector space and let B be a certain 
collection of real valued linear mappings on D. Suppose that for each P E M, lnJ (b E B) is 
pathwise differentiable at P relative to S(P) with efficient influence function l(P, lnJ). 

Let On = !?(P n), P n E M be an estimator of() (typically the NPMLE) which satisfies the 
following conditions: 

Efficient score equation in theorem 9. 2.1, 
Identity condition in theorem 9.9.1 with P as here and Pi = Pn, 
P-Donsker class condition in theorem 9.2.2, 
pp-consistency in theorem 9.2.2. 

Then On is a II · IIB-asymptotically efficient estimator of(). 

In the identity condition the existence of a sequence Pm had to be shown. Instead of 
constructing or showing the existence of such a sequence Pm, we introduce in theorem 3.3.3 
a II · lip-convergence condition and show that this condition implies not only the identity of 
theorem 3.3.1 but even the pp-consistency. The theorem is formulated as follows 

Theorem 3.3.3 Let X ~PE M for a convex model M and let X1 , ... ,X,. be n i.i.d. copies 
of X. Let () = i?(P) E D be a linear parameter, D a vector space and let B be a certain 
collection of real valued linear mappings on D. Suppose that for each P E M, lnJ (b E B) is 
pathwise differentiable at P relative to S(P) with efficient influence function l(P, lnJ). 

Let 0,. = !?(P ,.), IP,. E M be an estimator of 0. If the following conditions hold: 

11 · lip-convergence conditions: 

(1) 

(2) 

lim sup lll(P,., biJ) - l(P, biJ)llp = 0 (in probability) 
n-oo beB 

lim ll/((1 - E}P,. + EP, lnJ) - l(n> ,., biJ)llp = 0 (a.s.). 
,10 

Then this implies the pp-consistency in theorem 9.2.2 and the identity in theorem 9.9.1. 

PROOF: Firstly, because 
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we have that 

implies 

lim sup Ul(P ,., ln1) - l(P, ln1)11p = 0 (in probability) 
n-oo bEB 

suppp (l(P,ln1),l(P,.,ln1))-+ 0 n-+ oo (in probability). 
6EB 

Efficiency 

Secondly, for convenience we define P(e) = (1-e)P,.+eP and let P~., = ,,P+(l-'l)P(e) 
be the differentiable submode} through P(e) with score 

l - dP - dP(e) _ dP - d((i - e)P,. + eP) 
- dP(e) - d((l - e)J>,. + eP) . 

Note that I is well defined, IE S(P(e)) !;;; Lg. That J ldP(e) = 0 is obvious and from 

Ill = ldP-dP(e)I < ~ 1 
dP(e) - dP(e) + 

dP dP 1 
= d((l - e)J>,. + eP) + 1 ~ edP + 1 =; + l 

we conclude that I is square integrable. Now by linearity of ln1 and because of the pathwise 
differentiability of ln1 at P(e) relative to S(P(e)) we may write 

(1 - e) (ln1(P)- ln1(J>,.)) = ln1(P) - ln1((1 - e)J>,. + eP) 
= ln1(P) - ln1(P(e)) 

= !. (ln1('1P + (1 - 'l)P(e)) - ln1(P(e))) ,, 
1 = ;; (ln1(P~.,) - ln1(P(e))) 

and this yields 

(1 - e)(ln1(P) - ln1(P,.)) = j l(P(e), ln1) l dP(e) 

= j l(P(e),ln1)d(P-P(e)) 

= j l(P(e),ln1)dP 

= j l(P,.,ln1)dP+ j l(P(e),ln1)dP- j l(P,.,ln1)dP 

= j l(P,.,ln1)dP+ j (l(P(e),ln1)-l(P,.,ln1)) dP. (3.12) 

Now if we have that 

lim Ul(P(e),ln1)-l(P,.,ln1)11p = Jim 111((1- e)P,. + eP,ln1)-l(P,.,ln1)11p = 0 (a.s.) 
•10 ,10 

and thus 
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(fl 0), then we immediately obtain from (3.12) the identity 

ln?(P) - ln?(Pn) = J l(Pn, bi?) dP. 

We have proved the theorem. D 
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The preceding argument showed that the II · llrconvergence condition (2) could be weak
ened to 

In most applications if one wants to prove the pp-consistency, then one proves actually the 
II· llp•convergence condition (1), but with a little more effort one mostly obtains (2) too. One 
could replace the II • llrconvergence conditions by the stronger condition: 

(3.13) 

(i = 0, 1) for all sequences f(k) l 0 and Po, P1 E M. It is obvious that (3.13) implies the 
11 · llp·convergence condition. 

Often one is able to derive an inequality like 

(3.14) 

(c constant), where Fk and F0 denote the distribution functions of the measures A and 
P0 respectively. If we take A = Pk (n = k) and Po = P and if we have consistency 
of Fk to Fo, then this provides us with II · llp·Convergence condition (1). If we take Pk = 
(1 - f(k))Pn + f(k)P for f(k) l 0 and Po= Pn and we have consistency of Fk to Fo, then 
we get II · llrconvergence condition (2). In fact for the two-dimensional problem this will be 
done in section 3.9. 

Now with theorem 3.3.3 we can give a slightly improved version of theorem 3.3.2. The 
improvement must be interpreted as avoiding the laborious verification of the identity condi
tion in theorem 3.3.1 and getting through (3.13) or (3.14) the identity and the pp-consistency 
(thus the II· llrconvergence condition) in one move. Theorem 3.3.2 and theorem 3.3.3 imply: 

Theorem 3.3.4 Let X ~PE M for a convex model M and let X 1 , ... ,Xn be n i.i.d. copies 
of X. Let O = i?(P) E D be a linear parameter, D a vector space and let B be a certain 
collection of real valued linear mappings on D. Suppose that for each P E M, bi? (b E B} is 
pathwise differentiable at P relative to S(P) with efficient influence function l(P, in?). 

Let On= i?(Pn), Pn EM be an estimator of O which satisfies the following conditions: 

Efficient score equation in theorem 3. 2.1, 
P-Donsker class condition in theorem 3.2.2, 
II · llrconvergence conditions in theorem 3.3.3 . 

Then On is a II · 11 8 -asymptotically efficient estimator of(). 
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Before finishing this section we want to say something about the calculation of the efficient 
influence function. Consider the model M = {Pv : V E V}, where Vis a convex set. Suppose 
that Vis a convex set of probability measures. Let the mapping V-+ Pv be linear. Thus M 
is convex. 

If V.,1 = d',. + (1 - e)V and e e (0, 1) is a line from V to Vi and Vi < V with score 
l = (dVi -dV)/dV e LMV), then by linearity of V-+ Pv this line gives (assuming dPv,/dPv 
exists and it is square integrable) a submodel Pv.,, = ePv, + (1 - e)Pv with score (dPv, -
dPv )/dPv E LMPv ). Note that this score is linear in l. Now we define the linear score 
operator Av as follows 

Av(l) = dPvd~ dPv 

and denote the adjoint of Av by Ai: 

(Av(l),v)Pv = (l,Ai(v))v, 

for all le T(V) C Li(V) and v e ii(Pv ). The so called information operator Iv is defined 
as Iv= AiAv. If Ii solves Iv/1 = h, then we write Ji= Iv1h even if Ji is not uniquely 
determined by Iv !1 = h, 

Now there is a linear mapping f such that f(V) = 1'( Pv ). Suppose that bf is pathwise 
differentiable at V relative to S(V) with efficient influence function J(V, bf) and suppose 
that 61' is pathwise differentiable at Pv relative to S( Pv) with efficient influence function 
i(Pv, 61'), then we have for all I e S(V) 

(J(V, bf), l)v = ~ (bf(V.,1) - bf(V)) 

= ! (W(Pv.,) - W(P)) e , 

= (l(Pv,W),Av(l))Pv. 

If J(V, bf) lies in the range of the information operator Iv, then we obtain from this 

(Avlv1(](V, bf)), Av(l))pv = (l(Pv, 61'), Av(l))Pv 

for all I E S(V). This implies ( under the condition that J(V, bf) lies in the range of Iv) that 

l(Pv,6") = Aviv1(J(V,bf)). 

We see that calculation of Iv 1 is an important step to find an expression for the influence 
function l(Pv, 61'). By Gi11(1989), Bickel et al.(1993) we know that in missing data models 
the score operator Av : L2(V) -+ L2(Pv) is given by a conditional expectation: 

Av(h)(Y) = Ev(h(X) I Y) 

and the adjoint Ai : L2(Pv)-+ L2(V) of Av by 

Ai(v)(X) = Ev(v(Y) IX). 

For the information operator Iv = AiAv we get then Ev(Ev(h(X) I Y) IX). 

(3.15) 

(3.16) 
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3.4 The assumptions 

In this section we formulate the assumptions that we use to obtain the asymptotic results in 
the next sections. For the two-dimensional circle-case we consider: 

Assumption I: for the underlying distribution function V we have that l/g(2R) and 
1/d(2R,2R) are bounded (or g(2R) > 0 and d(2R,2R) > 0). Because g(x) and d(x,x) are 
decreasing on [0,2R], this is the same as saying: 1/g(x) and 1/d(x,x) are bounded on [0,2R]. 

Assumption II: for the underlying distribution function V we have that the determinant 
Qv of the matrix Nv in (3.70) is unequal to 0. In the sections 3.10.1 and 4.4 we discuss the 
necessity of this assumption. We conjecture that Qv 2: 1 for all V. 

Assumption III: for the underlying distribution function V we have that there is a 
2Ro E [0, 2R) such that V gives no mass to the interval (2Ro, 2R). 

Assumption IV: for the sieved NPMLE Vn of the underlying V we have that Yn(2R-) -+ 

V(2R-) in probability. 

Because of theorem 2.3.1 and the equation Yn(2R-) + (IWI + 4R2 )un(2R) + hn = 1 this 
implies that Un(2R) -+ g(2R). Of course this implies SUPze(o,2R) IVn(x) - V(x)I -+ 0 and 
SUPze(0,2R) lun(x) - g(x)I -+ 0. One notes that if we have assumption III, then the sieved 
NPMLE Vn automatically satisfies assumption IV (compare with corollary 2.2.6). Surely we 
do not need all the four assumptions at the same time: either we use the assumptions 1,11 
and III, or we use the assumptions 1,11 and IV. The first set of assumptions restricts 
the class of underlying distributions V. In the second set of assumptions we must admit that 
we are not pleased with assumption IV, because it assumes something (maybe crucial) of the 
estimator, which we want to investigate. Assumption II is discussed in section 3.10.1 and 4.4. 
To get rid of assumption IV we give a suggestion in section 4.1 and in section 3.10.2 we look 
at assumption I. 

Because in the one-dimensional case we can prove that the determinant Qv is not equal 
to 0, we consider for this case the assumptions: 

Assumption (i): for the underlying distribution function V we have that 1/g(r) is 
bounded. 

Assumption (ii): for the underlying distribution function V we have that there is a 
To E [O, r) such that V gives no mass to the interval (r0 , r). 

Assumption (iii): for the (sieved) NPMLE Vn of the underlying V we have that Vn(r-)-+ 
V( r-) in probability. 
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Assumption (iii) implies SUPxe(o,,) IVn(x )-V(x)I -+ 0 and SUP.re(o,,) IYn(x)-g(x)I -+ 0. We 
use the assumptions (i) and (ii) or we use the assumptions (i) and (iii) (use corollary 
2.2.6). Just as for assumption IV we suggest in section 4.1 an alternative. 

3.5 The parameters to be estimated 

Here we consider the two-dimensional line segment process observed through a circular win
dow. We remember the definition of the set V2R in section 1.2.3. We know that we can 
parametrize the distribution of the data as Pv,h, where (V, h) E V2R• Actually we have 
identifiability: Pv,,h, = Pv2 ,h2 <=> (Vi, h1) = (½, h2)- One writes 

where the subdistribution functions pu.c., p..e.c. and pd.c. are defined as in (1.69)-(1. 71 ). Now 
the model is given by 

M = {Pv,h : (V, h) E V2R}. 

It would be natural to think of estimating the parameter t?(Pv,h) = (V(·),h) where we 
define b1t?1(Pv,h) = V(t) with B = { 61 : t E [O, 2R)} and t?2(Pv,h) = h. It turns out that 
finding the hardest submode! for d(0,0) (see (1.73)) is easier than for h. For each t E [0,2R) 
calculations to obtain the hardest submode! for V(t) are not difficult. Only for V(2R) it is 
ha.rd to do or maybe not possible. This causes troubles to get a uniformity result for V(t), 
t E [O, 2R). To avoid the singularity difficulties at the point 2R we consider the estimation of 
the parameter 

t?(Pv,h) (t?1(Pv,h), d2(Pv,h)) 
_ (Z(·),Z) 

- (1::· IW~~;xR dV(x)' 1::00 

IWI ~ 2xR dV(x)) 

= (Fu.c.(·), d(0,0)), (3.17) 

where z(x) is defined as in (1.74). We define b1t?1(Pv,h) = Z(t) with B = {b1 t E [0,2R)}. 
We immediately see that the parameter !?1 is the subdistribution function of the uncensored 
observations. 

We take for the_second parameter d2(Pv,h) = Z = d(0,0). In section 3.5.2 we will prove 
that the NPMLE Zn is an efficient estimator of Z. In section 3.5.3 we see that the relation 
d(0,0) = (µ/(IWI + 2µR)) gives us the possibility to express fin as a compact differentiable 
mapping in the efficient parameter Zn. This gives us the efficiency of /Ln· Of course one 
could take Z = g(0). In this case one gets similar calculations to section 3.11 of the efficient 
influence curve and the relation g(0) = (1/(IWI + 2µR)) would give us the efficiency of /Ln· 
Note that IWlg(O) is the probability of being a s.e.c.r. or u.c. ( or a s.e.c.l. or u.c.) observation. 

Now let us calculate the efficient influence curves w.r.t. S(Pv,h) for estimating Z(t) and 
Z in M. From now on instead of writing Pv,h with (V, h) E V2R, we write for convenience 
and without loss of generality the distribution function of the data as Pv with V in the set 
of distribution functions on [O, oo ). 
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By (3.15) we know that the score operator Av : LMV) -> L5(Pv) is given by 

Av(l)(X, D, 0) = Ev(l(X) IX, D, 0) 

and its adjoint Ai : L5(Pv)-> L~(V) by 

Ai(11)(X) = Ev('l(X,D,0) IX). 

The information operator Iv : LMV) -> L~(V) is given by 

Iv= Ai Av. 
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If f 1 solves Iv f 1 = f 2 , then we write Ji = Iv1 f 2 even if f 1 is not uniquely determined by 
Iv f 1 = f 2 • From the context it will be clear if this is the case. 

3.5.1 The parameter b1'!91(Pv) = Z(t) 

We define the function Xt to be 

_ z(x) 
x,(x) = IWI + 2xR. l(o,11(x) 

and we note that 

Xt - Z(t) = Xt - j x,(x) dV(x) = Xt - Ev(x,) E L~(V). 

For the moment we assume that Iv 1(Xt - Z(t)) exists. We find for b,rJ1 

~ (b1rJ1(Pv,,,) - b1rJ1(Pv)) 

1 = -; (Z.,1(t) - Z(t)) 

! ( 1x=t 1wtx; R (I+ d(x))dV(x)- 1x=t 
f Jx=O + X Jx=O 

1x=t z(x) 
x=O IWl+2xRl(x)dV(x) 

= j IWj~;xR l(o,t](x)l(x)dV(x) 

(Xt, l)v 
= (x, - Z(t), l)v 

= (AiAviv 1(x,-Z(t)),1\ 

= (Aviv 1(Xt - Z(t)),Av(l))Pv· 

z(x) ) 
IWI + 2xR dV(x) 

(3.18) 

(3.19) 

Assuming that Iv 1(x, - Z(t)) exists, we have proved with (3.19) that Z(t) is pathwise differ
entiable with efficient influence curve 

(3.20) 
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Here we use the notation l(Z, t) instead of l(Pv, b1t71). By l(Z,., t) we mean l(P,., bet71), where 
P,. is the NPMLE of Pv and Z,. is the NPMLE of Z, and we use l(Z,.,t) for l(P,.,bet71), 
where Z,. is the estimator of Z induced by P,.. 

Now we are ready to verify the conditions in theorem 3.3.4 in order to prove that Z,. is a 
II· 11 8 -asymptotically efficient estimator of Z. In section 3.7 we calculate h1 = lv1(x1 - Z(t)) 
and give an expression in lemma 3.7.2.1. One will notice that In section 3.8 we indirectly 
prove that llh1ll00 < oo. In fact this holds for all distribution functions V, thus also for 

- - -1 -h1,. = Iv,. (x1 - Z,.). 

With llh1,.ll00 < oo one easily proves with the calculated expression of Av in section 3.6 that 
l(Z,.,t) = Av},,. has a finite supnorm and is a score in S(P). Now we obtain from (1.47) 

j l(Z,.,t)dP,. = 0 for all t e [0,2R). 

This provides us with the efficient score equation. In section 3.8 we prove the Donsker class 
condition. This is the most difficult condition to be verified. The result is stated in lemma 
3.8.6.1. In section 3.9 we check the II · IIPv •convergence conditions. This is formulated in 
lemma 3.9.2.1 and (3.150) and (3.151). Applying theorem 3.3.4 we proved the following 
theorem: 

Theorem 3.5.1.1 Under the assumptions in section 9.,1 the NPMLE Z,. is a II • Ila· asymp
totically efficient estimator of Z. 

3.5.2 The parameter t92(Pv) = Z 

Here we define the following function 

X 

{(x) = IWI + 2xR' 

One easily verifies that 

!- Z = !- j {(x)dV(x) =!-Ev(!) E L~(V). 

(3.21) 

If we assume for the moment that ly1({ - Z) exists, then we find for the parameter 1'2: 

(3.22) 

Assuming that lv1({ - Z) exists, we obtain with (3.22) that Z is pathwise differentiable with 
efficient influence curve 

(3.23) 

Here we use the notation liZ) instead of f(Pv,17 2). By [(Z,.) ':!e mean f_{P,.,172), where P,. 
is the NPMLE of Pv and Z,. is the NPMLE of Z, and we use J(Z,.) for l(P,., 172), where Z,. 
is the estimator of Z induced by P,.. 

Just as we did for theorem 3.5.1.1, one verifies the conditions in theorem 3.3.4 to obtain 
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Theorem 3.5.2.1 Under the assumptions in section 9.4 the NPMLE Zn is an asymptotically 
efficient estimator of Z. 

In section 3.11 we calculate h = lv1(! - Z) and the result is written down in lemma 3.11.1. 
Compare this calculation with the calculation in section 3.7. To prove the Donsker class 
condition and the II · IIPv-convergence conditions one can almost copy the sections 3.8 and 
3.9. 

3.5.3 Efficiency of (Zn, Zn) implies efficiency of (Fn, fln) 

In section 3.5.1 and section 3.5.2 we showed that the NPMLE (Zn, Zn) is an efficient estimator 
of the underlying ( Z, Z) E D(O, 2R) x JR. Here we will prove that this implies that the NPMLE 
(Fn,iln) is an efficient estimator of the underlying (F,µ) E D(0,2R - €] x ll for every fixed 
€ E (0,2R]. 

Because of the relation 

we have 

and 

dV(x) = IWI + 2xR dF(x) 
IWl+2µR 

1,:=oo X µ 
z = d(O,O) = ,,=o IWI + 2xR dV(x) = IWI + 2µR 

z(x) z(x) 
dZ(x) = IWI + 2xR dV(x) = IWI + 2µR dF(x). 

From these we obtain 

and 

IWIZ 
µ = 1-2RZ 

F(t) = (IWI + 2µR) 1::1 ztx) dZ(x) 

(3.24) 

= (1w1 + 2R 1 ~l!z) ( !g] + 1::1 
;:~:~ Z(x) dx). (3.25) 

We fix an € E (0, 2R]. Now we define 4>1 : (ll, I · I) -+ (ll, I · I) as 

4>i(a) = IWI a 
1-2Ra 

and 4>2 : (D(O, 2R) X ll, II · 110 ) -+ (D(O, 2R - €],II· 11 00 ) as 

_ ( IWla ) (f(t) 1"'=1 z'(x) ) 
4>2(/,a)(t)= IWl+2Rl-2Ra z(t)+ "'=O z2(x/(x)dx, 

where II · llo is defined as 
11(/,a)llo = llflloo + lal

Note that we have (4h(Z, Z), 4> 1(Z, 2)) = (F, µ). 
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Suppose that we have (sn,vn) = vn(Un,an) - (f,a)) ...... (s,v), where Un,an),(f,a) E 
(D(0, 2R) x JR, II · 11 0 ), then one easily checks that for 

( IWI ) (f(t) l"'=t z'(x) ) 
d<l>2(f,a)(s,v)(t) = 2R(l- 2Ra)2 v z(t)+ .,=0 zl(x/(x)dx 

+(1Wl+2R IWla) (s(t) +l"'=t z'(x) s(x)dx) 
1 - 2Ra z(t) :i:=O z2 (x) 

we have 

y'n(<1>2((f,a) + (1/y'n)(sn,vn))(t).:... <1> 2(f,a)(t))-d<1>2(f,a)(s,v)(t) __, 0 (n __, co) 

uniformly in t E (0, 2R - t). Because 

1:z:=2R z'(x) 
~() dx = co, 

x=O Z X 

we must restrict ourselves to the interval (0, 2R- t). (Note that d<l>2(f, a)(s, v) is a continuous 
linear mapping in (s, v)). For <1> 1 one obtains a similar result. 

Applying theorem 3.1.1 we have proved now that the NPMLE F'n = <I>2(Zn, Zn) is a 11 · 11 00 -

eflicient estimator of FE D(0,2R- t) and the NPMLE fin= <1> 1 (Zn) is a efficient estimator 
ofµ. 

3.6 The score operator Av and the information oper
ator Iv 

For the two-dimensional circle problem the score operator Av : L5(V) --, LMPv) is given by 

Av(h)(x,d,O) 

= Ev(h(X) IX= x,D = d,0 = O) 
= h(x) · l(D = 0, 0 = 0) 

1 1"'=00 1 + g(x) .,=; h(x) IWI + 2xR dV(x) • I(D = 1, 0 = 0) 

+ d(;,x) 1::00 

h(x) IWI ~ :xR dV(x) • l(D = 2, 0 = 0). 

The adjoint Ai : L5(Pv) __, L5(V) of Av has the following expression 

Ai(11)(x) 

= Ev(11(X,D,0)IX=x) 
z(x) 19=21r 

IWI + 2xR }9=0 77(x,O,O)dK(O) · l(x < 2R) 

+1w1 1 2 R 19=21< 1i'=:z:A2R a(x)77(x,l,O)dxdK(O) 
+ x }9=0 I'x=o 

+1w1 1 2 R 19=2
" ~i'=:i:AlR b(x)x(x - x)q(x,2,0)dxdK(O), + x }9=0 h=o 
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where z( ·) is defined in ( 1. 74) and a(·) and b( ·) are defined as 

a(x) - 4✓R2 - ~x2 

b(x) 
1 

-
2JR2 - ¼x2 

One checks that 

z'(x) = -2✓R2 _ !_x2 = _!.a(x) 
. 4 2 

(3.26) 

and 
dF'·•·c·(x) = a(x)g(x)dx , dFd.c.(x) = xb(x)d(x,x)dx 

(see (1.69) and (1.70)). Now it is easy to write down the information operator Iv= A'{: Av : 
Li(v) --> Ll(V). We find 

Iv(h)(x) 
z(x) 

= IWI + 2xR h(x). l(x < 2R) 

1 /x=xA2R a( x) 1u=oo 1 _ 
+,w1+2xRl'x=o g(x) u=i' h(u)IWl+2uRdV(u)dx 

1 /i'=rA2R b(x) x(x - x) 1u=00 u - x _ 
+,w1+2xR lr:o d(x,x) u=i' h(u) IWl+2uRdV(u)dx. (3.27) 

3. 7 Calculation of lv1(Xt - Z(t)) 
We know that for a constant c we have Ive= c and thus Iv 1 Z(t) = Z(t) . So we only have 
to look at the equation 

Iv(ht)(x) = x1(x), (3.28) 

where Xi(·) is defined in (3.18) and assuming for the moment that such a function h1 exists. 

3.7.1 Invertibility of Iv(h,)(x) = x,(x) for x ~ 2R 

For x ~ 2R equation (3.28) becomes 

~i'=2R a((~)) 1u~oo h1(u) IWI 1 2 RdV(u)dx 
fx=o g X u=r + u 

1i'=2R b(x) x(x - x) 1u=oo u - x _ 
+ __ dC _) __ h1(u) IWI 2 RdV(u)dx = 0 . 

.,_o x,x u-r + u 

From this we yield 

1i'=2R a(x) 1u=oo 1 _ 
_ (-) _ h1(u) IWI 2 RdV(u)dx r=O g X u=x + U 

1;;=2R b( x) 5:2 1u=oo u - x -
- __ d(- -) _ _ h1(u) IWI 2 R dV(u) dx = O r-0 X,X u-r + U 

(3.29) 
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and 

1;':.2R b(x) x 1"=00 u - x _ 
_ d(- _) _ h1(u) IWI 2 R dV(u) d:r = O. 
:r:=O x,x u=:r: + u 

Before we use the equations (3.29) and (3.30), we define the following operators: 

and 

l)v(h) = 1
u=2R is=u a(x) _ 1 

(-) d:r h(u) IWI 2 R dV(u) 
u=O :r:=O gx + u 

1
u=2R rs=" b(x)x2(u - x) _ 1 

-u=O h=0 d(x,x)· d:rh(u)IWl+2uRdV(u) 

Av(h) 1
u=2R is=u b(x) x( u - x) 1 

- dC- -) dz h(u) IWI 2 R dV(u) u=O :r:=O X,X + U 

av(h) 

/3v(h) 

- 1u=oo h(u) IWI 1 2 R dV(u) 
u=2R + U 

- 1u=oo h(u) IWI u 2 R dV(u) 
u=2R + U 

and we define the functions (i = 1, 2, 3) 

cv,,(x) ki'=2R b( x) 53; _ 
- d(- -) d:r s=s x,x 

ks=2R a(x) _ 
- (-) d:r. 

:r:=:r: g X 

Efliciency 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

The functions CV,i depend on V through the functions g and d. Now by changing the order 
of integration we work out the left-hand side of equation (3.29) in terms of the operators and 
functions above and find the next derivation 

ks=2R a(x) 1"=00 1 -
(-) _ hc(u) IWI 2 RdV(u)d:r 

:r:=O gx u=:r: +u 

ki'=2R b( x) 532 1u=oo u - X -
- d(- -) _ h1(u) IWI 2 R dV(u)d:r 

:r:=O X,X u=:r: + U 

= 1u=oo ~i'=uA2R a((~)) dxh1(u) IWI 1 2 R dV(u) 
u=O h=o g X + u 

1"=00 1i'=uA2R b(x) 532( u - x) _ 1 
- _ d(- _) d:rh1(u)IWI 2 RdV(u) u=O :r:=O x,X + U 

lu=oo ii'=2R a( x) _ 1 = l)v(h1) + (-) dx h1(u) IWI 2 R dV(u) u=2R :r:=O gx + U 

lu=oo 1i'=2R b(x) 532 - u . 
- _ d(--)d:rh1(u)IWI 2 RdV(u) u=2R :r:=O x,x + U 

lu=oo ks=2R b( x) 5;3 - 1 
+ _ _ d(- _) d:r h1(u) IWI 2 R dV(u) u-2R :r:-0 x,x + u 

= l)v(hc) + (cv,4(0) + cv,3(0)) av(h1) - cv,2(0) /3v(hc)-
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We do the same for the left-hand side of equation (3.30) and we find 

With these calculations the equations (3.29) and (3.30) can be written as 

As one notes in (3.33) and (3.34) the operators av and /3v only use the values of h(x) with 
x E (2R, oo ). Here we want to express av(h1 ) and /3v(ht) in integrals which only use values 
of ht(x) with x E (0, 2R). We know that 'llv and Av are operators which only use values of 
h(x) with x E [0, 2R). So we have to solve the system of equations in (3.35). 

Firstly, we note that 1/g(x) and 1/d(x, x) are bounded on (0, 2R) and thus we conclude 
that 

cv,;(0) > 0 (i = 1,2,3,4). 

This yields 
cv,◄ (0) cv,1 (0) > 0. (3.36) 

Secondly, one derives by the Cauchy-Schwartz inequality 

(1'r-=2R b( x) x2 ~) 2 

d( ~ _) dx 
i=O X,X 

= ( ~'x=2R ( b~x~ )½ xL ( b~x~ )½ x½dx)2 
h=o d(x, x) d(x, x) 

l 'x=2R b(x) ~3 - 1'x=2R b(x) - -
$ d(~ _) x dx · d(~ _) x dx 'x=O x,x 'x=O x,x 

cv,a(0) cv,1 (0). 

This yields 
cv,a(0) cv,1(0) - cv,2(0)2 ~ 0. (3.37) 

From (3.36) and (3.37) one concludes that the determinant Dv of the matrix 
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is not equal to 0. Actually, one derives 

Dv = (cv,4(0) + cv,3(0)) cv,1(0) - CV,2(0)2 

= cv,4(0) cv,1(0) + (cv,3(0) cv,1(0) - cv,2(0)2) > 0. 

Now we have showed that the inverse of matrix Lv exists and with (3.35) we can express 
av(ht) and f3v(h 1) as operators whose value only depends on h, restricted to (0, 2R). In other 
words we write them in terms of lltv(h1) and Av(ht). We get 

(3.38) 

From now on we may therefore regard av and f3v as linear operators from D(0, 2R) to R 
defined by (3.38). 

3.7.2 lnvertibility of Iv(ht)(x) = Xt(x) for x E [O, 2R) 

One can write (3.29) and (3.30) as 

and 

(3.39) 

(3.40) 

We use (3.39) and (3.40) to express lv(ht)(x) for x E [O, 2R) in terms of av(h,), f3v(ht) and a 
Volterra integral operator (see Griffel(l981) p.p. 136) which acts on D(0, 2R). For x E [0, 2R) 
we write 

lv(h,)(x) = 
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+IWl:2xR 1::rr-2R :t::) 1.::00 h1(u) IW~~:uRdV(u)dx 

z(x) 
= IWI + 2xR hi(x) 

l /;;=2R a(~) 1.u=oo h1(u) l dV(u)dx 
IWI + 2xR h=,, g(x) u=r IWI + 2uR 

1 rr=2R b(x) x21.u=oo u - X -
+IWl+2xR h=,, d(x,x) u=r hi(u) IWl+2uRdV(u)dx 

IWl:2xR 1::2R ::::: 1.::00 h1(u) IW~~:uRdV(u)dx 

z(x) 
= IWI + 2xR (h,(x) - Bvht(x)) 

1wit;xR c(~) (cv,h) + cv,3(x) - xcv,2(x)) o:v(ht)) 

iwit;xR Ctx) (xcv,1(x)-cv,2(x)) .Bv(ht)) 

z(x) = IWI + 2xR (h1(x) - Bvh1(x) - rv(x) o:v(h1) - sv(x) .Bv(ht)), (3.41) 

where Bv : (D(O, 2R), 11 • 1100 )--+ (D(O, 2R), II · 11 00 ) is defined as 

The operators Bv,, : (D[0,2R), II· 11 00 )--+ (D(0,2R), II· 11 00) (i = 1,2) are given by 

l 1r=2R a(x) 1u=2R 1 _ 
_ -() _ (-) _ h(u) IWI 2 R dV(u)dx 

ZX r=r gx u=r +u 
1 1r=2R b(x) x(x - x) 1u=2R u - X -

- -() -- dC -) -- h(u) IWI 2 R dV(u)dx Z X X-X X,X U.-X + U 

and rv( ·) and sv ( ·) are defined on (0, 2R) as 

rv - rv,1 + rv,2 
1 

sv(x) = z(x) (x cv,1(x) - cv,2(x)), 

where rv,, (i = 1, 2) on (0, 2R) are defined as 

rv,1(x) 
1 

- z(x) cv,4(x) 

1 
- z(x) (cv,3(x)-xcv,2(x)). 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 
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• The inverse of (/ - Bv) 

One easily shows that 

and it is obvious that 

a(x) 

b(x) 

(x - x) 

l 

= O((R2 - ~x2) •) 
4 

= O((R2 -~x2)-½) 
4 

= O((R2 - ix2)) (0 $ x $ x $ 2R). 

Efficiency 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

We assume that 1/g(x) and 1/d(x,x) are bounded on [0,2R). Because g(x) and d(x,x) are 
decreasing functions, this is the same as saying that we assume that 1/ g(2R) and 1/ d(2R, 2R) 
are bounded. Here we define 

(3.53) 

One easily sees that 

(i=l,2,3) (3.54) 

(3.55) 

So we may conclude that 

(3.56) 

and 

1 
z(x) cv,;(x)-xcv,i-1(x) 

1 /i=2R b(x)xi-1(x-x) _ 
z(x) };;=x d(x,x) dx 

= o(d(2;, 2R)) =O(Mv) (i=2,3). (3.57) 

This immediately implies that 

rv,1(x) = O(Mv) , rv,2(x) = O(Mv) (3.58) 

and 
rv(x)=O(Mv) , sv(x)=O(Mv). (3.59) 
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Now we will write Bv as a Volterra integral operator (see Griffel(l981) p.p. 136). By changing 
the order of integration we get 

= 1u=2R (-1 /;;=u a(x) dx) h(u) 1 dV(u) 
u=:t: z(x) ./;=., g(x) IWI + 2uR 

= 1: Kv,1(x,u)h(u)dV(u) 

and 

f"=2R ( 1 /;;=u b(x) x(x - x) _ -) 1 
Bv,2h(x) = } .. =., z(x) }.;= d(x,x) (u-x)dx h(u)IWl+ 2uRdV(u) 

where 

= 1::2
R Kv.2(x, u) h(u) dV(u), 

Kv,1(x, u) 

Kv,2(x,u) 

( Again we note the dependence of K v,, on V through g and d.) We have written Bv,; ( i = 1, 2) 
as a Volterra integral operator. Together with (3.56) and (3.57) we are able to bound Kv.,(x, u) 
(0 $ x $ u $ 2R) by writing 

If we define 

then we have 

Kv(x,u) = Kv,1(x,u) + Kv,2(x,u), 

Bvh(x) = 1::2
R Kv(x,u)h(u)dV(u) 

(3.60) 

(3.61) 

and thus we have written Bv as a Volterra integral operator. With (3.54), (3.55), (3.58), 
(3.59), (3.60) and (3.61) and the definition of Kv(x,u), we conclude that there exists a 
Cv ~ 0 such that 

and 

and 

IKv,1(x,u)I $ Cv, IKv,2(x,u)I $ Cv, IKv(x,u)I $ Cv (0 $ x $ u $ 2R) (3.62) 

lrv,1(x)I $ Cv, lrv,2(x)I $ Cv, lsv(x)I $ Cv 

lcv,;(x)I $ Cv (i = 1,2,3,4). 

(3.63) 

(3.64) 



100 Efficiency 

We note that we have 
Cv = O(Mv). (3.65) 

Because Bv is a Volterra integral operator we have that 

(3.66) 

This proves the existence of the inverse of(/ - Bv) in the space of hounded linear operators 
on ( D(0, 2R), II · 1100 ), being 

00 

(I-Bvr1 = L Bt 
k=O 

and 
II(/ - Bv)-1hll00 :5 exp(Cv · V(2R)) llhll 00 - (3.67) 

For Bv,; (i = 1, 2) we find the same: 

(3.68) 

• The solution h, = h1 + h} of lv(h,) = x,(x) 

Now we want to solve (3.28) for x E (0, 2R). Substituting (3.41) in (3.28) we get the equation 

(I - Bv )h,(x) = rv(x) av(h,) + sv(x) .Bv(h,) + l(o,1)(x). 

We know that rv and sv are in D(0, 2R). This gives us the following equation for h, with 
x E (0,2R): 

h,(x) = rv(x) av(h,) + sv(x) .Bv(h,) + y,(x), 

where fv and sv and y1 in D(0, 2R) are defined as 

fvs(l-Bvr 1rv ' svs(I-Bv)-1sv 

and 
Yt = (I - Bv)-11(0,1)• 

(3.69) 

Because of (3.38) we know that we can write av(h1) and .Bv(h1) as linear operators which 
only use values of h1(x) with x E (0,2R]. Therefore we are allowed to apply av and .Bv on 
both sides of the equation (3.69). We obtain the next system of equations 

( 1 - av(rv) -av(sv) ) . ( av(h1) ) = ( av(y,) ) 
-.Bv(rv) 1 - .Bv(sv) .Bv(h,) .Bv(y,) · 

If the determinant Qv of the matrix 

N =(1-av(rv) -av(sv)) 
v- -.Bv(rv) 1-,Bv(sv) (3.70) 
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is not equal to O, then the inverse Nv -t of matrix Nv exists and we are able to write 

( av(h,) ) 1 ( 1 - ,Bv(sv) av(sv) ) ( av(ff,) ) _ ( Sv(ff1) ) (3_71 ) 
.Bv(ht) = Qv ,Bv(fv) 1 - av(rv) · .Bv(fft) = Tv(fft) · 

Because of the result of (3. 71) we have proved that, if Qv =/ 0, then h, is uniquely 
determined on [O, 2R) by equation (3.69): 

h1(x) = rv(x) Sv(1l1) + sv(x) Tv(ff1) + 11,(x). 

For x :2: 2R the solution h1 (there could be more possibilities) only has to satisfy (3.38). 
Actually, we proved the following lemma. 

Lemma 3.7.2.1 If we assume that 1/g(x) and 1/d(x,x) are bounded on [0,2R] and Qv =/ 0 
and let h~ and h! be defined as 

then 
lv(ht)(x)=x1(x) forallxE[O,oo) 

is equivalent to 

h?(x) = (rv(.i:) SvUlt) + sv(x) Tv(1lt) + ff1(x)) · l[o,2R)(x) 

and h! satisfies 

( av(hD ) _ 1 ( cv,1(0) cv,2(0) ) ( Wv(h~) ) 
.Bv(hD - - Dv cv,2(0) cv,4(0) + cv,3(0) · Av(h~) · 

Here we see why we need assumption II of section 3.4. In the sections 3.10.1 and 4.4 we come 
back to it. 

Something must be said about the existence of h: in lemma 3.7.2.1. Throughout the 
section we assumed the existence of h1 to make the analysis above. The result is formulated 
in lemma 3. 7.2.1. There we state that h: only has to satisfy the given system of equations. 
Does there exist such h: that satisfies this system of equations? The answer is yes. Looking 
for a h: we are actually solving the system of equations 

1::; h!(u) d\ti~u) q1 

1::; uh!(u)d\ti(u) = q2 , 

where q1 and q2 are the constants at the left-hand side of the system of equations in lemma 
3.7.2.1 and d\ti(x) = 1/(IWI + 2xR) · dV(x). If we choose for each x E [2R,oo): h}(u) = 
k · l[x,oo)(u) + I, where ken l are constants then we get 

k · 1::00 
d\ti(u) + /. 1::: d\ti(u) = q1 

k-1u=oo ud\ti(u)+l-1u=oo ud\ti(u)=q2. 
u=x u=2R 
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There exist a k and I iff 

Det(x) = 1v=oo d\1i(u) • l"=oo udVi(u)-1,.=oo ud\1i(u) · l"=oo d\1i(u) 'F 0. 
u=.r u=2R u=:a:- u=2R 

Now if we suppose Det(x) = 0 for all x E [2R,oo), then we obtain by differentiating both 
sides w.r.t. x 

-dVi(x)•l"=oo udVi(u)+xdVi(x)•l"=oo dVi(u)=0 VxE[2R,oo). (3.72) 
v=2R u=2R 

The assumption that g(2R) > 0 means that J::2R dVi(u) > 0 and .f::2°R udVi(u) > 0. Let 
us define c = u::2R udVi(u)/ I::m dl'i(u)). We write (3.72) as 

(-c + x) dVi(x) = 0 Vx E [2R, co). 

If we have that V gives positive mass to more than one point in (2R, co) and thus Vi 
gives positive mass to more than one point in (2R, co), then we get -c + x = 0 for all x, to 
which Vi gives positive mass . This contradicts the assumption and thus the assumption that 
Det( x) = 0 for all x E [2R, co) is not true. Now we have proved that there exists an x such 
that Det(x) =,: 0 and thus there exist constants k and I. This shows the existence of h! in the 
case that V gives positive mass to more than one point in [2R, co). 

In the case that dV(x) > 0 in just one point in [2R,oo), we will not be able to observe 
this feature of the underlying distribution function V. So for estimating Von [0,2R) we 
may assume without loss of generality that V gives positive mass to more than one point in 
[2R, co). Redistributing the mass in [2R, co) (keeping the mean constant) has no effect for 
V on [0, 2R). Estimating the redistributed distribution function on [0, 2R) is the same as 
estimating the original underlying distribution function on [0, 2R). 

3.8 The Donsker class condition 

To prove that there exists a Pv-Don:sker class~ (and am;:: 0) such that J(Z, t)-J(Z,.,t) E ~ 
for all n;:: m and uniformly int with probability tending to 1, it is enough to show that 

sup lli(Z,t)(·,d)-l(Z,.,t)(·,d)llv $ Lv, (3.73) 
t 

(for d = 0, 1, 2) with probability tending to 1, where Lv is some constant (not depending on 
n or t). To find out what we need to obtain this result, we concentrate on l(Z, t) where Z 
varies through V. 

If we have that the score operator Av is a bounded operator w.r.t. the II· llv•norm, such 
that 

IIAv(h)(•,d)II. $ Hv llhllv h E D[0,2R), IIAv(h:)(•,d)llv $ Uv, (3.74) 

where Hv and Uv are constants, then we can write, knowing that Z(t) $ m2 V(2R) (with 
m2 = z(0)/IWI) · 

IIJ(Z,t)(•,d)llv = 11Avlv1(x,-Z(t))(·,d)llv 

= IIAv(h~)(-,d) + Av(h:)(•,d) - Z(t)II. 

$ Hv llh~II. + Uv + m2 V(2R). (3.75) 
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We prove (3.74) in section 3.8.4. 
Now we want to bound llh~II •. By lemma 3. 7.2.1 we know that this can be done if we can 

bound llryll,, llsyll,, ll!i,11,, ISY(!i,)I and ITy(/i,)I. In section 3.8.3 we show that Sy and Ty 
are bounded operators. For the others we need to show that II(/ - By)-1fll. is bounded for 
J = ry,;, J = sy and f = y1• This is done in section 3.8.1 and section 3.8.2. Together with 
(3.75) we find 

lll(Z, t)(•, d)II. $ ni Cy (3 Hy+ 1) +Uy+ m2 V(2R), (3. 76) 

where Cy is also some constant. ( One sees that the right-hand side of the inequality does not 
depend on t). 

The inequality {3.76) holds, under some conditions, for all distribution functions V. So if 
we replace in {3.76) Z by Z,. and V by V,., we get the bound for lll(Z,.,t)(·,d)II.- We will see 
that Cy depends on 1/g(2R) and l/d(2R,2R) and Hy depends on Cy and l/lQyl and l/Dy 
{ where Qy and Dy are the determinants defined in section 3. 7.1 and section 3. 7.2) and Uv 
depends on Cy and Hv. In section 3.8.5 we show the continuity in V of Dv and Qy {thus 
we have 

Dvn -+ Dy , Qvn -+ Qv 

a.s.). This together with the fact that l/g,.(2R) converges to l/g(2R) and l/d,.(2R,2R) 
converges to 1/ d(2R, 2R) a.s., implies that we can bound all the constants depending on V 
and V,. by a constant not depending on n (and t). Finally in section 3.8.6 we show that this 
implies (3.73) (lemma 3.8.6.1). · 

3.8.1 llrvllv and llsvllv are bounded 

Now we will bound llrvll. and llsvll •. We remember the definitions of ry, ry,; (i = 1, 2) and 
sy in {3.45) - (3.48). Knowing that z'(x) = -½ a(x), one derives 

Because g is decreasing, we find that 

{3.77) 

and thus rv,1 is positive and increasing on (0, 2R). Therefore we obtain together with (3.63) 

(3. 78) 

Now we write for i = 2, 3 
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z'(x) 1i':2R b(x) 5:i-l(x - X) -= --- ------dx 
z2(x) :i:=z d(x,x) 

__ 1_ i;=2R b(x) xi-1 dx 
z(x) h=z d(x,x) 

= z2~x) {-z'(x)cv,;(x)+(xz'(x)-z(x))cv,;-i(x)} 

:5 z2~x) {-2Rz'(x)+(xz'(x)-z(x))} CV,i-i(x). 

The last inequality follows from the fact that from cv,;(x);?: 0 and 

b(x) 5:i-1 x b(x) 5:i-1 
2R d(x,x) . 2R :5 2R d(x,x) . l 

we easily get (i = 2, 3) 
0 :5 cv,;(x) :5 2Rcv,;-i(x). 

One verifies that 
z(x) x 

. 0 :5 -2Rz'(x) + 2R (x E [0,2R)) 

and so we get 
0 :5 -2Rz'(x) :5 z(x)-xz'(x) 

and therefore we have 
-2Rz'(x) + (xz'(x)-z(x)) :5 0. 

This yields (i = 2, 3) 

d~ Cc~/cv,;(x)- XCV,i-1(x))) :5 0. 

Now we have proved for rv,2 (i = 3) that 

and for sv (i = 2) that 

Efficiency 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

So we have that rv,2 and sv are monotone functions and rv,2(x) ;?: 0 and sv(x) :5 0. This 
gives us together with (3.63) the following statement 

and thus 

llrv,2llv = llrv,21100 $ Cv 
llsvllv = llsvll 00 :5 Cv 

(3.83) 

(3.84) 

(3.85) 
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3.8.2 The boundedness of ll(I - Bv)-1fllv 

Before we get some results for IIBv,dllv (i = 1, 2), we introduce some short notation. We 
define for a function f E D[O, 2R) the operators 

Jv,d(x) - 1::2R /(u) IWI ~ 2uR dV(u) 

Jv,d(x) - 1:2R f(u) IWJ ~ ;uR dV(u). 

It is easy to see that for f ~ 0 we have 

0 $ Jv,;f(x) $ mo V(2R) 11/11 00 (i = 1, 2), (3.86) 

where mo = max(l/lWI, 2R/IWI) (not depending on V) and both Jv,d and Jv,2' are de
creasing. Furthermore we keep in mind that we have 

11111. $ 211111"" 11/11 00 $ 11/11. if/ is monotone 

and 
11/11. = 11/1100 if f is monotone and / ~ 0 or f $ 0. 

• IIBv,dll. is bounded 

Firstly, we look at the derivative of Bv,d(x) w.r.t. x. We obtain 

d 
dx Bv,d(x) 

Now we can write Bv,1 as 
B Bup sdown 

V,l = V,l + V,l , 

(3.87) 

(3.88) 

where B~f f is increasing and B~?wn / is decreasing. Remember that g( ·) is decreasing. Now 
we have f~r / ~ 0 (so we have th~t Jv,d ~ 0 is decreasing and (3.86) holds) 
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Together with (3.78) this implies that 

IIB~,f Ill. $ mo V(2R) 11/11 00 llrv,111. 
$ mo V(2R) Cv 11/1100 , 

Because B~?wn is monotone and (3.68) and (3.87) hold, we have 

IIB~.~wn /II. $ 2 IIB~~wn /ll 00 

= 2 IIBv,d - B~,f /ll 00 

$ 2 (IIBv,dlloo + IIB~f Jll(X)) 
$ 2 (1 + mo) Cv V(2R) 11/11 00 , 

Now we have obtained the following result for f 2'. 0 

Efficiency 

IIBv,dll. $ IIB~,f Ill.+ 11B~gwn Ill. $ (2 + 3 mo) Cv V(2R) 11/11 00 , (3.89) 

• IIBv,2/11. is bounded 

Let us consider the derivative of Bv,d(x) w.r.t. x. We find 

d 
dx Bv,d(x) 

= ~ (-1- /r=2R b(x) x~x-- x) Jv,d(x) dx) 
dx z(x) J;=r d(x,x) 

z'(x) 1'r=2R b(x) x(x - x) _ _ 1 1=2R b(x) x _ _ 
= -~() _ d(- _) Jv,2/(x) dx + -() _ d(- _) Jv,2/(x) dx 

Z X x=x x, X Z X x=x x, X 

= /( ) (z'(x) (~=2R bd((~ ~2) Jv,2(x) dx - (x z'(x) - z(x)) (~=2R db((~)!) Jv,2(x) dx) . 
Z X };_:r X,X }z_x X,X 

If f 2'. 0 then (3.86) holds and we can actually use the same arguments, which lead to (3.80), 
to prove 

d 
dx Bv,d(x) 2'. 0. 

(Multiply in (3.79) both sides with Jv,d(x)). It is easy to see that for f 2'. 0 we have 
Bv,d $ 0. So we have that Bv,d is monotone and Bv,d $ 0 and together with (3.68) and 
(3.87) we obtain the following result for f 2'. 0 

IIBv,ifll. = IIBv,i/ll 00 $ Cv V(2R) 11/11 00 , (3.90) 

• 11(1- Bv)-1 /11. is bounded 

By (3.43) and (3.44) we know that if f 2'. 0 then Bv,d 2'. 0 and Bv,d $ 0. If we define 

Bv,d = -Bv,d, 



The Donsker class condition 

then for / 2'. 0 we have by (3.90) 

IIBv,2'llv $ Cv V(2R) llfll.,0 

and of course Bv,2' 2'. 0. For notational reasons we define 

Bv,d=Bv,d

Furthermore we define 
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(3.91) 

(3.92) 

It is obvious that m1 Cv V(2R) 2'. Cv V(2R) and so we have for f 2'. 0 by (3.89), (3.90) (or 
(3.91)) that 

11.Bv,dllv $ m1 Cv V(2R) 11/11 00 (i = 1,2). (3.93) 

One easily sees that if f 2'. 0 then 

Bv,;, Bv,;2 • • • Bv,;J 2'. 0 (ii= 1, 2 , j = 1, ... , k). (3.94) 

Because of (3.93) and (3.94) we get immediately 

IIBv,;, Ev,;, · · · Bv,;Jllv ~ m1 Cv V(2R) · IIBv,;2 • • • Bv,;Jll 00 (3.95) 

(i; = 1,2 , j = l, ... ,k). The Volterra structure of Bv,; (i = 1,2) gives us a similar result as 
(3.68): 

- - - (Cv · V(2R)t . . 
IIBv,;, Bv,;2 • • • Bv,;Jll00 $ k! • 11/11 00 ( i; = 1, 2 , J = l, ... , k ). (3.96) 

Now we gathered all the tools to bound II(/ - Bv r 1 fllv• Using (3.88), (3.95) and (3.96) we 
find the next derivation for monotone / and f 2'. 0: 

00 

ll(l-Bv)-1 fllv $ L IIBtfllv 
k=O 

E ll(Bv,d + Bv,2'lllv 
k=O 

= E ll(Bv,d - Bv,2')kllv 
k=O 

$ E E ( 7 ) 11(-1)1 Bv,;, Bv,;2 • • • Bv,;.fllv 
k=O l=O 

(l of the i;'s are 2 (j = 1, ... , k), the oth_ers are 1) 

~~(k) - - -$ llfllv + ~ t;; l IIBv,;, Bv,i2 · · · Bv,;.fllv 

00 
k (k) $ 11/11 00 + m1 Cv V(2R) ti ~ I II.Bv,;2 • • • Bv,;Jll 00 
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00 ,., ( k) (Cv V(2R))k-t 
:5 11/1100 + m1 Cv V(2R) llfllc'° ti ~ l (k -1)! 

00 (C V(2R)),.,_1 
:5 11/1100 + m1 Cv V(2R) 11/1100 ti 2A: v(k- l)! 

:5 (1 + 2m1 Cv V(2R) exp(2Cv V(2R)) · 11/1100 -

Here we define 
Hv,1 = (1 + 2m1 Cv V(2R) exp(2Cv V(2R)) 

and 

Hv,2 = 4 IQv~Dv moci V(2R) (1 + 12 ~v mo Ct V(2R) exp(Cv V(2R))) 

and 

Hv,3 = max (1, 2mo V(2R) g(:R), 2mo V(2R) d(2;, 2R)) · 

We define Hv to be 
Hv = max (Hv,1, Hv,2, Hv,3). (3.97) 

The use of Hv,1, Hv,2, Hv,3 and Hv becomes clear from (3.98), (3.104) and (3.105). We want 
to decrease the number of introduced constants. 

Now we have for monotone f and / ~ 0: 

II(/ - Bv )-1 fllv :5 Hv,1 ll/ll00 :5 Hv llflloo• (3.98) 

3.8.3 Sv and Tv are bounded operators 

Here we will bound the operators Sv and Tv on D[0,2R) (to R) defined by (3.71). Firstly, 
we bound the operators av and /3v on D[0, 2R) (to R) defined by (3.38). We remember the 
definitions of the operators 1lfv and Av on D[0, 2R) in (3.31) and (3.32). With (3.64) one 
verifies that 

For Av we find 

l111v(f)I :5 mo CV,4(0) V(2R) 11/1100 + mo CV,2(0) V(2R) 11/11 00 

:5 2 mo Cv V(2R) 11/11 00 -

IAv(f)I :5 mocv,1(0) V(2R) 11/11 00 :5 moCv V(2R) 11/11 00 -

The constant mo is defined as before: m0 = max(l/lWI, 2R/IWI). Now together with (3.38) 
and (3.64) we obtain 

lav(f)I 
1 

:5 Dv (cv,1(0) l111v(f)I + cv,2(0) IAv(/)1) 

:5 3 ~v mo ci V(2R) llflloo (3.99) 

l/3v(f)I 
1 

:5 Dv (cv,2(0) l111v(f)I + (cv,4(0) + cv,3(0)) IAv(/)1) 

:5 4 ~v mo ci V(2R) llflloo• (3.100) 
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Secondly, we hound llrvlL'°, ll.svll 00 and lliltll 00 - Because of (3. 78), (3.83), (3.84) and (3.67) 
we immediately get 

llrvlloo 

11.svlloo 

lliitlloo 

= ll(J - Bv)-1rvll 00 $ 2Cv exp(Cv V(2R)) 

ll(J - Bv )-1svll 00 $ Cv exp(Cv V(2R)) 

= ll(J - Bv)-1 1(0,1Jll00 $ exp(Cv V(2R)). 

Now with (3.99)-(3.102) we can hound the operators Sv and Tv. We find 

ISv(f)I 
1 

$ IQvl ((1 + IPv(.sv)I) · lav(f)I + lav(.sv)l · IPv(f)I) 

(3.101) 

(3.102) 

(3.103) 

ITv(f)I 

$ 3IQv~DvmoCtV(2R) (1+8 ~vmoCtV(2R)exp(CvV(2R))) IIJll 00 

1 
$ IQvl (IPv(fv )I · lav(f)I + (1 + lav(fv )I)· IPv(f)I) 

$ 4 IQv~ Dv mo ct V(2R) ( 1 + 12 ~v mo ct V(2R) exp(Cv V(2R))) llflloo• 

One remembers the definition of Hv in (3.97). We have for found for f: 

ISv(f)I $ Hv,2 ll!ll 00 $ Hv ll!ll 00 , ITv(f)I $ Hv,2 ll!ll 00 $ Hv llfll 00 - (3.104) 

3.8.4 The score operator Av is a bounded operator w.r.t. 11 · llv-
norm 

In section 3.6 we calculated the score operator Av : Li(V) -+ LMPv ). One easily sees 
that Av(h)(x,d,O) does not depend on Oat all. Therefore from now on we leave out the 
0 in our notation and write Av(h)(x,d). If we restrict ourselves to functions h(x) l[o,2R)(x) 
(h E L2(V)), then one regards Av as a linear operator from D(0, 2R) to D(0, 2R). Note 
that hr(x) = h,(x). l10,2Ri(x). Now we will prove that Av(*)(·,d) : (D(0,2R),ll*llv) -t 

(D(0, 2R), II* llv) is a hounded linear operator (d = 0, 1, 2). 
Now let h E D(0,2R). Firstly we calculate d:;;Av(h)(x,O): 

d:;;Av(h)(x,O) = d:;;h(x). 

This implies 
IIAv(h)(•,O)llv = llhllv• 

Secondly we calculated:;; Av(h)(x, 1): 

d:;;Av(h)(x,l) = 1 1"=2R 1 
d:;; (-) • _ h(x) IWI R dV(x) 

g X 2:=:z: +2x 

- gtx) · h(x) 1w1 ~ 2xR dV(x). 

We know that 1/g(x) is an increasing function, so we have d:;;(1/g(x)) ~ 0. Now one writes 
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This implies (using the fact that 1/g(x) and V(x) are positive and monotone (thus (3.88) 
holds) and the fact that llhll00 $ llhllv) 

IIAv(h)(•, l}llv $ mo V(2R) ~;t llhll 00 + mo IIVllv g(;R) llhll 00 

1 
$ 2mo V(2R) g(2R) llhllv• 

Thirdly one calculates d; Av(h)(x, 2). Similar calculations lead to the following outcome 

1 
lld;Av(h)(•,2)llv .S 2mo V(2R) d(2R, 2R) llhllv• 

We have proved that Av(*)(·,d) is a linear bounded operator ford= 0,1,2 w.r.t. the 
11 • llv-norm and 

IIAv(h)(-,d)llv $ Hv,a llhllv $ Hv llhllv, (3.105) 

where Hv is defined as in (3.97). 
Now we regard Av as an operator on D[0, oo) again. We want to investigate Av(h!)(x,d) 

(again we leave out the IJ). If we calculate Av(M )(i, 0) we find 

Av(h!)(x,0) = h!(x) = 0, 

because i E [0, 2R). It is obvious that 

IIAv(h!)(·,0)llv = 0. 

If we calculate Av( h! )(i, 1) we get ( using (3. 71) in the last equality) 

Av(h!)(x,l) = g(~) 1:;00 
h!{x) IWl: 2xRdV(x) 

1 1"'=00 1 = (~) h,(x) IWI 2 R dV(x) gx .,=2R +x 
1 

= g(i) av(h,) 

1 -= g(i) Sv(y,). 

Because 1/g(x) is a monotone function and because of (3.103) and (3.104) we have 

IIAv(h!)(·, l)llv = IIH,o · ISv(ii,)I $ g(:R) Hv exp(Cv V(2R)). 

If we calculate Av(h!)(x, 2) we obtain (using (3. 71) in the last equality) 

Av(h!)(x,2) = d(;,i) 1:;00 
h!(x) IWi~!xRdV(x) 

= d(;,i) 1::: h,(x) 1wi ~ :xR d,V(x) 

1 i 
= d(x,x) /Jv(h,)- d(i,i) av(h,) 

1 i 
= d(x, x) Tv(ii,) - d(x, x) Sv(jj,). 
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Because 1/(d(x,x) and x/d(x,x) are monotone functions and because of (3.103) and (3.104) 
we have 

1 1 +2R 
IIAv(ht)(·,2)llu $ d(2R, 2R) Hvexp(Cv V(2R)). 

Now we have proved for d = 0, 1, 2 that 

IIAv(h~)(-,d)llv $ Uv, 

where Uv is defined as 

( 1 1 +2R ) 
Uv = max g(2R) Hv exp(Cv V(2R)), d(2R, 2R) Hvexp(Cv V(2R)) . 

3.8.5 The determinants Dv and Qv are continuous in V 

(3.106) 

(3.107) 

Throughout this chapter we introduced several operators and functions depending on the dis
tribution function V. If we replace V by another distribution function Vn and Vn converges for 
instance in supremum norm to V, then what can we say about the convergence of the operators 
and functions which depend on V? Here we mean by llfll 00 the supremum norm on (0, 2R). 
We know that the functions g( x) and d( x, x) depend on V through their definitions and are 
decreasing. We write Yn and dn to mark their dependence of Vn. Throughout this section we 
assume that we have IIVn - Vll00 -+ 0 and also IIYn - gll 00 ~ 0 and lldn(·, ·)- d(·, ·)ll00 -+ 0 
hold. In particular we assume that g(2R) > 0 and d(2R, 2R) > 0. 

• Continuity in V of Dv 

If we consider the functions cv,i (i = 1, 2, 3, 4), then we can write for example for cv,1 : 

lcv.,1(x) - cv,;(x)I $ 

1::2n b(x)xdx·lld),.)- d/..)L -+O. 

One obtains similar results for the other cv,;'s. Now we proved that (i = 1,2,3,4) 

llcv.,; - cv,;ll00 -+ 0 (n-+ oo). 

From (3.108) we get immediately the result for the determinant Dv: 

IDv. - Dvl-+ 0 (n-+ oo). 

(3.108) 

(3.109) 

Remember that we have Dv > 0 for all V and thus also for V = Vn. Now (3.109) implies 
that there exists a Dv,o > 0 such that 

_l_ < _l_ _l_ < _l_ for all n. (3.110) 
Dv - Dv,o ' Dv. - Dv,o 

With (3.56), (3.57) and the proof of (3.108) one easily gets the foilowing result for rv and 
sv: 

llrv. - rv 11 00 -+ 0 

llsv. - svl1 00 -+ 0 

(n-+oo) 

(n-+ oo). 
(3.111) 

(3,112) 
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• Continuity in V of av and /3v 

Now let us consider the operators '11v and Av defined in (3.31) and (3.32). By telescoping 
and using integration by parts we write for Av:· 

Avn(h) - Av(h) 

1
u=2R J;z=u b( x) x( u - x) _ 1 

= _ _ d C _) dx h(u) IWI 2 R d(Vn - V)(u) 
u-0 ,,_o n x,x + U 

+ 1u=2R rz=u (b(x) x~u _:- x) _ b(x) x~u-- x)) dx h(u) 1 dV(u) 
u=O h=o dn(x,x) d(x,x) IWl+2uR 

= (Vn - V)(2R) rz=2R b(x) x(:1:- x) dx h(2R) l 
h=o dn(x, x) IWI + 4R2 

1u=2R , 1z=u b( x) x _ 1 
- _ (vn-V)(u) _ d(--)dxh(u)IWI 2 Rdu 

u-0 x-0 n X, X + U 

+ 1u=2R (Vn - V)( u) 1z=u b( x) x~u _:- x) dx h( u) 2R 2 du 
u=O h=o dn(x,x) (IWI + 2uR) 

1
u=2R 1z=u b(x) x( u - x) _ 1 

- _ (Vn - V)(u) __ d C _) dx IWI 2 R dh(u) 
u-0 ,:-0 n X, X + U 

1
u=2R1z=u.(b(x)x(u-x) b(x)x(u-x)) _ 1 

+ - -- d C -) - dC -) dx h(u) IWI 2 R dV(u). u-0 ,:_Q n x,x X,X + U 

This yields (using (3.64)) 

IAvn(h) - Av(h)I 

( d(0, 0) 
:5 IIVn - Vll 00 dn(2R, 2R) (IWI + 4R2) (2R cv.1(0) - cv,2(0)) i1hii 00 

2Rd(0,0) 
+ dn(2R, 2R) IWI cv,1(0) llhlloo 

{2R)2 d(0, 0) 
+ dn(2R, 2R) 1w12 (2Rcv,1(0) - cv,2(0)) llhlloo 

d(0, 0) 1u=2R ) 
+ dn(2R, 2R) IWI (2Rcv,1(0) - cv,2(0)) u=O ldh(u)I 

+111/d(x,x) - 1/dn(x,x)lloo vi~~) (2Rcv,1(0) - cv,2(0)) llhlloo 

:5 IIVn - Vll 00 dnt~~,iR) max((2R) 2 /IWl 2 , 1/IWI, 2R/IWI) · 2Rcv,1(0) (3 llhll 00 + llhll.) 

+lll/d(x,x)-1/dn(x,x)lloo v,~~) 2Rcv,1(0) llhlloo 

d(O,O) 2 2 
:5 IIVn - Vll 00 dn(2R, 2R) max((2R) /IWI , 1/IWI, 2R/IWI) · 2RCv 4 llhllv 

+111/d(x,x)-1/dn(x,x)lloo vi~~) 2Rcv,1(0) llhlloo• 
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The last term tends to 0 because 111/dn - l/dll 00 tends to 0 and for the first term we note 
that IIVn - Vll 00 tends to 0. Because dn(2R, 2R) converges to d(2R, 2R) > 0, we know that 
l/dn(2R, 2R) is bounded. So if llhllv (and thus llhll 00 ) is bounded one has proved the following 
result: 

IAvn(h) - Av(h)I-+ 0 (n-+ oo) if llhllv < 00. 

Similar arguments are used to prove this result for Wv: 

llllvn(h)- lllv(h)I--+ 0 (n--+ oo) if llhllv < 00. 

By (3.38), (3.108)-(3.114) we obtain easily the next statement: 

la<vn(h) - av(h)I --+ 0 

I.Bvn(h) - ,Bv(h)I-> 0 

• Continuity in V of fv and sv 

(n-> oo) if llhllv < oo 
(n--+ oo) if llhllv < 00. 

(3.113) 

(3.114) 

(3.115) 

(3.116) 

Now let us consider the operators Bv,; (i = 1, 2) defined in (3.43) and (3.44). Again one can 
use the same method as for (3.113) to prove that (i = 1, 2) 

IIBvn,ih - Bv,;hi100 --+ 0 (n--+ oo) if llhllv < 00 

and this implies for our operator Bv defined in (3.42) 

IIBv"h - Bvhll00 -+ 0 (n--+ 00) if llhllv < 00 . (3.117) 

We know that there exist Cv" 2 0 such that (3.62)-(3.64) hold, where V is replaced by Vn 
and 

with 

Mv" = max cn(~R)' dn(2~, 2R)) 

(compare with (3.65) and the definition of Mv in (3.53)). By the knowledge that 9n(2R) 
converges to g(2R) > 0 and dn(2R, 2R) converges to d(2R, 2R) > 0 and the fact that Vn(2R) :=:; 
1 and V(2R) $ 1 and Vn(2R) converges to V(2R), we conclude that there exists a Cv,o 2 0 
and 11 2 0 such that 

and 

with 

Cv $ Cv,o , Cv" $ Cv,o for all n 2 11 

Cv" Vn(2R) $ Cv,o V(2R) for all n 2 '1 , 

Cv,o = O(Mv). 

(3.118) 

(3.119) 

The 11 ensures us that 9n(2R) cf,. 0 and dn(2R, 2R) cf,. 0 for all n 2 11. This and the inequality 
(3.67) imply that we have 

(3.120) 
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Now one writes 

JI(/ - Bvnf1h - (I - Bv)-1hJl 00 = JI([ - Bvn)-1 (Bvn - Bv) (I - Bv)-1hll 00 

:5 exp(Cv,o V(2R)) · ll(Bvn -Bv)!ll00 , 

where f = (I - Bv)-1h. Together with (3.117) we obtain 

II(/ - Bvn)-1 h - (I - Bv )-1 hll 00 -+ 0 (n-+ oo) if llfllu = II(/ - Bv )-1hllu < oo. (3.121) 

For rv we derive 

llrvft - rvll 00 

= II(/ - Bvn)-1rvn - (I- Bvn)-1rv + (I- Bvnf1rv - (I- Bv)-1rvl1 00 

:5 exp(Cv,o V(2R)) llrvn - rvll 00 + 11(1- Bvn)-1rv - (I - Bv)-1rvi1 00 • (3.122) 

By (3.78), (3.83) and (3.98) we know that 

So we have 

II(/ - Bv )-1rvllu = 11(1- Bv )-1(rv,1 + rv,2)llu 

:5 Hv llrv,1IL"' + Hv llrv,211 00 

:5 2HvCv. 

(3.123) 

This implies that (3.121) holds for h = rv and together with (3.111) we get from (3.122) the 
following result: 

llrvft - rvll 00 -+ o (n-+ oo). 

A similar proof can be produced to get 

llsvllu = 11(1 - Bv )-1 svllu :5 Hv Cv 

and 
llsvn - svll 00 -+ 0 (n-+ oo). 

• Continuity in V of Qv 

(3.124) 

(3.125) 

(3.126) 

Now we are ready to prove the continuity in V of the determinant Qv. With (3.99), (3.110), 
(3.118) and (3.119) we may write 

lavn(h)I S 3-D1 mo Ct Vn(2R) llhll 00 :5 3 Dl moci,o V(2R) llhll 00 for all n:::: 11. 
Vn V,O 

This yields (n :::: li) 
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If llhllv < co, then we know that (3.115) holds and together with llh,. - hll 00 -+ 0 we get 

lo<vn(h,.) - av(h)I-+ 0 (n-+ oo) if llh,. - hll00 -+ 0 and llhllv < oo. (3.127) 

For /3v one derives a similar result 

l/3vn(h,.) - /3v(h)I-+ 0 (n-+ oo) if llh,. - hlloo-+ 0 and llhllv < 00. (3.128) 

Applying (3.127) and (3.128) with (3.123)-(3.126) we immediately get for the determinant 

Qv = {1- av(rv))(l-/3v(sv))- av(sv)/3v(rv) 

the following statement: 
IQvn - Qvl-+ 0 (n-+ co). 

(3.129) 

(3.130) 

Remember that we assume Qv 'F 0. Now by (3.130) we know that there exists a Qv,o > 0 
and 12 ~ 0 such that 

1 1 1 1 
-- < - -- < - for all n ~ 12, 
IQvl - Qv,o ' IQvnl - Qv,o 

(3.131) 

The meaning of the 12 is not important. It only ensures us that Qvn 'F 0 for all n ~ 12 • 

3.8.6 Verification of the Donsker class condition 

With all the preparations in the previous sections we will verify the Donsker class condition 
for a sequence V,. described in section 3.8.5 . 

Firstly, we note that with (3.110), (3.118), (3.119) and (3.131) one immediately sees that 
there exist a Hv,o ~ 0 and Uv,o ~ 0 such that 

Hv $ Hv,o , Hvn $ Hv,o for all n ~ m 

and 
Uv $ Uv,o , Uvn $ Uv,o for all n ~ m , 

where m = max(l1,l2) and 

Hv,o=O(Hv), Uv,o=O(Uv). 

(3.132) 

(3.133) 

Secondly, we obtain with (3.98) (knowing that rv,1 , rv,2 and -sv are monotone and posi
tive), (3.104), (3.78), (3.83) and (3.84) that 

llh~llv $ llrvllv ISv(ih)I + llsvllv ITv(ihl + IIY1llv 
$ (11(1 - Bv)-1rv.illv + 11(1 - Bv)-1rv,2llv) ISv(i}1)I 

+11(1- Bv )-I svllv ITv(i}1)I + ll(J - Bv f 1Y1llv . 
$ ni (llrv,dloo + llrv,21100) IIY1lloo + ni llsvlloo IIY1lloo + Hv IIY1lloo 
$ 2 ni Cv + ni Cv + Hv 
= Hv (3Hv Cv + 1). 
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Note that this holds uniformly for t E [0, 2R) (IIY1ll 00 = lllco,1Jll 00 $ 1 for all t E [0, 2R)). 
Furthermore one writes 

0 $ Z(t) $ j~~ V(2R) = m2 V(2R), 

where m2 is defined as m2 = z(0)/IWI, Again this holds uniformly int. 
Thirdly, we obtain with the analysis above and with (3.105) and (3.106) that 

lll(Z, t)(•, d)llv = IIAv lv1(Xt - Z(t))(·, d)llv 

= 11Avlv1(x,)(·,d) - Z(t)llv 

= IIAv (h~ + h!}(-,d) - Z(t)llv 

$ IIAv (h~)(-,d)llv + IIAv (h!)(-,d)llv + Z(t) 

$ Hv llh~llv + Uv + Z(t) 
$ Hi (3 Hv Cv + 1) + Uv + m2 V(2R). 

This yields for all n :::: m 

ll/(Z,t)(-,d)- /(Zn,t)(•,d)llv $ 11/(Z,t)(•,d)llv + ll/(Zn,t)(•,d)llv 

$ Hi (3 Hv Cv + 1) + Uv + m2 V(2R) 

+Ht (3 Hvn Cvn + 1) + Uvn + m2 Vn(2R) 

$ 2(Ht,0 (3Hv,oCv,o+ 1) + Uv,o +m2)-

Again this holds uniformly in t. If we define 

Lv = 2 (Hi,o (3 Hv,o Cv,o + 1) + Uv,o + m2) 

(of course not depending on n and t), then we have proved the following lemma. 

Lemma 3.8.6.1 If we assume thatl/g(x) and 1/d(x,x) are bounded on [0,2R) and Qv =/:- 0 
and if Vn is a sequence distribution functions such that IIVn - Vll 00 ..... 0, lion - 0ll00 ..... 0 and 
lldn(·,·)-d(·,·)1100 ..... 0, then we have Qvn ..... Qv and thus there exists am such that for all 
n :::: m we have Qvn =/:- 0 and 

sup ll/(Z,t)(·,d)- /(Zn,t)(·,d)llv $ Lv 
t 

ford= 0, 1, 2. 

3.9 The II· IIPv-convergence conditions 

In this section we are going to prove the II • IIPv •convergence conditions in the two-dimensional 

'circle'-case. We recall (3.13) and (3.14). In section 3.9.1 we write /(Z, t) - /(Zn, t) as a sum 
of four terms and for each term we prove that we can bound it by a constant times K(n) 
(where l((n) is defined by (3.135); compare K(n) with Pk - Pin (3.13) or (3.14)). In section 
3.9.2 we use the results in section 3.9.1 to conclude that the II • IIPv -convergence condition 
holds. 
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3.9.1 Calculating i(Z, t) - i(Zn, t) 
Let us write down the following derivation 

J(Z, t) - J(Zn, t) 
= Av lv1(x,) - Av,. lv,.1(X1) - Z(t) + Zn(t) 

= Av(hr + h!} - Av,.(hr,. + h!n) - Z(t) + Zn(t) 
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= (Av - Av,.)(hr) + Av,.(hr- hrn) + (Av(h:) - Av,.(h:n)) - (Z(t) - Zn(t))~3.134) 

For convenience we define 

K(n) = max(IIV - v .. 1100 , 111/g - 1/g,.lloo , 111/d(·, ·) - 1/d,.(·, ·)lloo)' 

(thus K(n)-. 0) and 

qv = max ( (2 mo + ( mo + m3 + m4) Cv.o) Hv,o (3 Hv.o Cv,o + 1) , 

(l+2m0Cv,o)qv,1, qv,2, (m2+2((2R) 2/IWI))). 

We start to investigate all terms in (3.134) separately. 

• The term (Av - Av,.)(h~) · 

(3.135) 

(3.136) 

Regard Av(*)(·, d) as a linear operator from (D[0, 2R), II* 1100 ) to (D[0, 2R), II* ll 00 ) (d = 
0, 1, 2), then for f E D[0, 2R) we write the following derivations. 

If d = 0 it is easy. Then we have 

ll(Av -Av,.)(f)(i,d = 0)ll00 = ll011 00 = 0. 

If d = l we write, using integration by parts, 

(Av -Av,.)(f)(i,d = 1) 

= Cc~) -g,.~x)) 1::2
R f(x) IWI ~2xRdV(x) 

1 1"'=2R 1 +-(-) _ f(x) IWI 2 R d(V - V,.)(x) g,.x .,=., +x 

= Cc~) -g,.~x)) 1::2
R f(x) IWI ~ 2xR dV(x) 

1 1 
+ g,.(i) (V - V,.)(2R) f(2R) IWI + 4R2 

- g,.~i) (V - V,.)(i) f(i) IWI ~ 2iR 

1 1"'=2R 1 
--(-) _ (V - V,.)(x) IWI 2 R df(x) g,.x .,=., +x 

1 1"'=2R 2R + 9n(x) :,:='.; (V - V,.)(x) f(x) (IWI + 2xR)2 dx. 
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If we define 

then this yields 

l(Av - Av.)(f)(x,d = 1)1 

(2R)2 

ma= 2mo + 1w12, 

2 
:5 111/g - l/gnll00 11/11 00 mo V(2R) + Yn(2R) IIV - Vnll 00 mo 11/11 00 

Efficiency 

1 r=2R 1 (2R)2 
+ 9n(2R) IIV - Vn)lloo mo J.=; ld/(x)I + 9n(2R) IIV - Vnlloo 1w12 llflloo 

:5 111/g - 1/unlloo llflloo mo V(2R) 
1 

+ Yn(2R) IIV - Vnll 00 (ma 11/11 00 + mo 11/11.) 

:5 mo 111/u - 1/unlloo 11111. 
1 

+ Yn(2R) IIV - Vnll 00 (mo+ ma) 11/11 •. 

For (Av -Av.)(J)(x, d = 2) one carries out similar calculations as ford= 1 and one finds 
that there exists a constant m4 such that we have 

l(Av - Av.)(J)(x, d = 2)1 :5 mo 111/d(·,.) - 1/dn(·,. )lloo 11/11. 
1 

+ dn(2R, 2R) IIV - Vnll 00 m4 llfllv• 

Now we have by the results above, (3.118) and (3.135) that for n ,:: m 

ll(Av - Av.)(/)(·, d)ll 00 :5 (2mo +(mo+ ma+ m4) Cv,o) IIJII. K(n) (3.137) 

Because we showed in section 3.8 that llh~II. :5 Hv,o (3 Hv,o Cv,o + 1 ), one obtains from (3.137) 
with f = h~ and (3.136) (n,:: m) 

ll(Av - Av.)(h~)(-,d)ll00 :5 qv K(n) (3.138) 

(d = 0, 1, 2). 

• The term Av.(hf - h~n) 

Again regarding Av(*)(·, d) as a linear operator from (D[0, 2R), II* 11 00 ) to (D[0, 2R), 11 * 11 00 ) 

(d = 0, 1, 2), one easily sees that 

IIAv(J)( ·, d)ll 00 

1 1 
:5 11/11 00 + g(2R) mo V(2R) 11/11 00 + d(2R, 2R) mo V(2R) 11/11 00 

::; ( 1 + g(;R) mo+ d(2;, 2R) mo) · 11/11 00 • (3.139) 
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(Ford= 0, 1, 2 we get respectively the 1, the m0 {l/g(2R)) and the mo (1/d(2R, 2R))). Now 
{3.139) holds for all distribution functions V, thus also for V = Vn, Because of {3.118) we 
may write for n :2'. m 

IIAv"(/){·,d)ll 00 :5 {1 + 2mo Cv,o) ll!ll 00 , (3.140) 

Furthermore we write 

h~(x) - h~n(x) = fv(x) Sv(!it) - fv"(x) Sv"(iit) + sv(x) Tv(iit) - sYn(x) Tvn(iit). 

With (3.115), (3.116), (3.124), {3.126) and (3.130) and telescoping we immediately get that 
Sv and Tv are continuous in V. We find 

ISvnU)- Sv(f)I--> 0 

ITvnU) - Tv(f)I --> 0 

Together with (3.124) and (3.126) we obtain 

(n--> oo) if llfllv < 00 

{n-->oo) if llfllv<oo. 

llh~ - h~nlloo --> 0 (n--> 00 ). 

(3.141) 

(3.142) 

Actually, with a bit more secretarial administration, one can show that there exists a qv,1 :2'. 0 
such that (n :2'. m) 

ISv"(f) - Sv(J)I :5 qv,1 llfllv K(n) 

ITv"(J) - Tv(J)I :5 qv,1 llfllv K(n) 

Jh~(x)- h~n(x)I :5 qv,1K(n). 

(3.143) 

(3.144) 

(3.145) 

(Note that the right-hand side of inequality {3.145) does not depend on t, because lliitllv :5 
Hv IIY1ll 00 and IIY1ll 00 :5 1 for all t). Finally we obtain with (3.140), (3.145) and (3.136) for 
n:2'.m 

{3.146) 

(d = 0, 1, 2). 

• The term Av(hD - Av"(ht,.) 

Compare the calculations below with the calculations in section 3.8.4. If d = 0 we have 

Av(h:} - AYn(h:n)(x,0) = 0 - 0 = 0. 

If d = 1 we find 
1 1 

= -(-) Sv(iit) - -(-) Sv"(iit) 
9 X 9n X 

c(lx) - g .. ~x)) Sv(iit) 

1 
+-(-) (Sv(tit) - Sv"(iit)). 

9n X 

For d = 2 one get a similar expression. Using (3.118), (3.143), {3'.144) and the fact that 
lli.itllv :5 Hv < oo (Hv of course not depending on t) one finds that there exists a qv,2 such 
that for n :2'. m 

{3.147) 

(d=0,1,2). 
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• The term Z(t) - Z,.(t) 

For the term Z(t)- Z,.(t) we find (using z(x) = -½ a(x)) 

r=1 z(x) 
Z(t) - Z,.(t) = J=0 IWI + 2xR d(V - V,.)(x) 

z(t) r=1 a(x) 
= (V - V,.)(t) IWI + 2tR + J.,=0 (V - V,.)(x) 2(IWI + 2xR) dx 

r=' 2Rz(x) 
+ J.,=0 (V - V,.)(x) (IWI + 2xR)2 dx. 

Because m 2 = z(0)/IWI and a(x) $ 4R, this yields 

IZ(t) - Z,.(t)I S ( m2 + 2 <f;f) IIV - V,.11 00 S qv K(n). 

3.9.2 Verification of the II · IIPv-convergence condition 

(3.148) 

With the help of section 3.9.1 it will be easy to verify the II · IIPv-convergence condition. 
Because of (3.134), (3.138), (3.146), (3.147) and (3.148) we know now that for n ~ m 

ll1(Z, t)(•, d) - l(Z,., t)(•,d)l100 $ 4qv K(n) 

(uniformly int). So we can write 

ll1(Z,t)-l(Z,.,t)11!.v = j (l(Z,t)(x,d)-l(Z,.,t)(x,d})2 dPv(x,d) $ 3(4qv)2 K2(n) 

(3.149) 
and thus we have (see the definition of K(n) in (3.135)) 

sup ll1(Z, t) - l(Z,., t)IIPv 
I 

$ 4v'3qvl((n) 

= 4 v'3 qv max(IIV- v .. 1100 ' 111/g - 1/u .. lloo ' 111/d(·, ·) - 1/d,.(·, ·)llool • 
Together with the results of section 3.8 this proves the following lemma 

Lemma 3.9.2.1 If we assume that l/g(x) and 1/d(x,x) are bounded on (0,2R) and Qv =I 0 
and if V,. is a sequence distribution functions such that IIV,. - Vll 00 -+ 0, Ilg,. - 0ll00 -+ 0 and 
lid,.(·,·)- d(·, ·)ll00 -+ 0, then we have Qv"-+ Qv and thus there exists am such that for all 
n ~ m u,e have Qv" =I O and 

lim sup lll(Z, t) - l(Z,., t)IIPv = 0. 
n-oo t 

If we take in lemma 3.9.2.1 V,. = V,. (and thus g,. = g,., d,. = d,. and Z,. = Z,.), where V,. is 
the NPMLE of section 1.2.4, then we have (because we have consistency: IIV - V,.11 00 -+ 0, 
llu - g,.ll 00 -+ 0 and lid(·,·) - d,.(·, · )1100 -+ 0 a.s. (see section 3.4) 

Jim sup ll1(Z, t) - l(Z,., t)IIPv = 0 a.s. (3.150) 
n-.oo t 
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If we replace in lemma 3.9.2.1 V (but we do not replace the V in Pv; note that we get 
( 3.149) also with a Pv, instead of Pv) by Vn ( with corresponding Zn) and Vn by { 1- ¾) Vn + ¾ V 
(with corresponding Znk), then we have immediately 

lim sup ll/(Zn, t) - /(Znk, t)llp = 0 a.s. 
1:-oo t V 

3.10 The determinant Qv =/:- 0 and assumption I 

3.10.1 Some remarks about the determinant Qv 

{3.151) 

For the existence of a hardest submode! h1 in section 3.7, we had to assume that the deter
minant Qv =/- 0. In this case we can write down the hardest submode! as the solution ht of 
the equation lv(h1)(x) = x1(x) in lemma 3.7.2.l. One has to be sure that the determinant 
Qv =/- 0 for the underlying distribution function V. It could be possible that Qv = 0 is an 
identity of the model for all choices of distribution functions V. Then the entire analysis in 
the previous sections would be worthless. Therefore we have to show that Qv =/- 0 is not an 
empty statement. 

We take a distribution function V such that V(x) = 0 for all x E [0,2R]. In this case we 
have g(x) = g(2R) for all x E [0, 2R] (and g(2R) is assumed to be> 0) and d(x, x) = d(2R, 2R) 
for all x E [0, 2R] (and d(2R, 2R) is assumed to be > 0). One easily checks that the operators 
IJ/v and Av in {3.31) and {3.32) both become the nil-operator. This means that the operators 
av and /3v as operators on D[O, 2R) defined by {3.38) are nil-operator too and so we get 
immediately that Qv = l. This shows that there are distribution functions V for which the 
determinant Qv is not equal to 0. 

If one can only observe within a window with diameter 2R, an underlying distribution 
function V such that V(x) = 0 for all x E (0,2R], is not interesting to estimate. Are there 
distribution functions V with mass on (0, 2R] for which Qv =/- O? Let V be a distribution 
function such that V(x) = 0 for all x E (0, 2R] and let V be an arbitrary distribution function. 
Then Vn = {l - fn)V + fnV, where fn t 0, converges in supnorm to V. By section 3.8.5 we 
know that this implies that Qvn -> Qv. So for n large enough we have that Qvn =/- 0. This 
proves that there exist distribution functions V with mass on [0, 2R] for which Qv =/- 0. 

The assumption Qv =/- 0 is not something that one can easily assume from arguments 
of the underlying V. On the other hand one could imagine that Qv =/- 0 holds for a large 
class of distribution functions V. In section 3.12 we calculate the determinant Qv in the one
dimensional line segment problem and show there that Qv 2:: 1. In section 4.4 we conjecture 
that in the two-dimensional case we also have Qv 2:: 1 for all V. 

3.10.2 The assumption g(2R) > 0 and d(2R, 2R) > 0 

Let us consider the class of distribution functions V for which V(x) = 1 in (e2 ,oo) for an 
e2 < 2R. For a V in this class we can write for g( x) and d( x, x) 
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and one notes that these are the underlying distribution functions V for which g(2R) = 0 and 
d(2R, 2R) = 0. For the information operator Iv we find 

Iv(h)(:i:) 
z(:i:) 

= IWI + 2:i:R h(:i:). 1(:i:::; e2) 

1 /z=" .. a(:i) 1=•• 1 _ 
+ 1w1+2:i:Rh=0 g(:i)....; h(u)IWl+2uRdV(u)d:i: 

1 /';;=z/\q b(:i) :i(:i: - :i) 1u=q U - :i 
+ IWI + 2:i:R h=0 d(:i,:i) u=';; h(u) IWI + 2uR dV(u)d:i. (3.152) 

Again we look at the equation (3.28): lv(h1)(:i:) = x1(:i:), where Xi is defined as in {3.18). If 
we consider the invertibility of Iv(h1)(:i:) = x1(:i:} for :i: 2::: 2R, then one notes immediately 
that lv(h)(:i:) does not depend on the values of h(:i:) for :i: E (e2,oo). So for all functions h1 
and h2 with support on (e2,oo) we have lv(hi) = Iv(h2) = O. 

For the invertibility of lv(h1)(:i:) = x1(:i:) for :i: E (0,e2), we work as follows. Just as we 
did in section 3.7.1, we find for :i: 2::: 2R (actually, for :i: 2::: e2) 

From this we obtain similar equations like (3.29) and (3.30). One derives the equetiou 
(compare with (3.39) and (3.40)) 

1-;;=., a((~)) 1u: .. h1(u)IWI 1 2 RdV(u)d:i 
h=ou:i: .. =., +u 

- (~=., bd((~) ~2) 1~:·· h1(u) 1wi-: R dV(u) di l;,_o :i:, :i: ,._., + u 

= 1-;J=q a(:i) 1"=•• 1 -
- _ (-) _ h1(u)IWI 2 RdV(u)d:i: z=z g:i: u=z + U 

+ (~=•• bd((~~2
) 1~:•• h1(u) IWi-: RdV(u)di (3.153) };,_., z, X ,._., + U 

and 

Together with (3.153) and (3.154) we write for x E (0, e2) (compare with (3.41)) 

z(x) 
Iv(hi)(x) = IWI + 2xR (h1(x) - Bvh1(x)), 

(3.154) 
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where Bv : (D[0, e2], II · 11 00 ) -> (D[0, e2], II · 1100 ) is defined a.s Bvh = Bv,1h + Bv,2h and the 
operators Bv,i : (D[0, e2], II· ll 00 ) -> (D[0, e2), II · ll 00 ) are 

1 1r=•2 a( x) 1.u=e, 1 -
_ -() _ (-) _ h(u) IWI 2 RdV(u)dx zx z=z gx u= +u 

1 1r=•• b(x) x(x - x) 1.u=•• u - x _ _ -() _ dC _) _ h(u) IWI RdV(u)dx. 
Z X z=z X,X u=z +2u 

Now we want to determine the inverse of (I - Bv ). The method in section 3. 7.2 can not 
be used now. Changing the order of integration will not help to find a kernel for which we 
can prove that it is bounded. But we use here the advantage of e2 < 2R. On [0, e2] x (0, e2] 
we have that 

0 < a(y) + b(y) y(y - x) < a(0) + b(e2) e~ _ 
_ ( ) _ ( ) = C < 00. 

Z X Z e2 
Now we prove that 

IBth(x)I $ (c(e\~ x))k llhll00 

We derive for k = l and x E (0, e2] 

IBvh(x)I 

$ IBv,1h(x)I + IBv,2h(x)I 

1 1r=e2 a(x) - -
$ llhll 00 · -() _ (-) g(x)dx zx :z:=z gx 

llhll . _1_ 1:;;=•• b(x) x(x - x) d(- _) d-+ 00 ( ) _ d(- -) x, X X 
Z X z=x X,X 

$ C llhll00 i::·· dx 

$ c(e2 - x) llhll 00 • 

Suppose (3.155) is true for a certain k. We derive for k + l (and x E [0, e2]) 

IBt+ih(x)I 

$ -(1 ) ~~=•• a((~)) ].~:•• IBth(u)I IWI 1 
2 R dV(u) dx 

Z X J;,_,r. g X u-"' + U 

1 1r=•2 b(x)x(x-x) !."=•• k u-x _ 
+-() __ d(- -) __ IBvh(u)I IWI 2 R dV(u)dx 

Z X z-x x, X u-:r + U 

$ llhll00-1_ rr=e, a(~) (c(e2-x)t g(x)dx 
z(x) h=z g(x) k! 

11 h 11 _1_ 1:;;=•• b(x)x(x - x) (c(e2 - x)t d(- _)d-
+ 00 ( ) -- d(- -) k' x,x, X Z X Z-X X,X . 

ck+I rr=•• 
$ llhlloo ~ h=:z: (e2 - xt dx 

= (c(e2 - x))k+I 11h11 
(k+l)! 00 • 

(3.155) 
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Now we showed with induction that (3.155) holds for all k. This provides us with the following 
statement 

IIEthlloo $ (~;;t llhlloo• 

This proves the existence of the inverse of (I - Ev) in the space of bounded linear operators 
on D(O, e2] being (I - Ev )-1 = EZ:go Et and ll(J - Ev )-1hl100 $ exp(ce2) 1ihl1 00 • Now the 
equation Iv(ht)(x) = Xt(x) for x E (O,e2] can be written as 

ht(x) = Yt(x), {3.156) 

where Yt = (I - Ev)-1 l(o,t]• Actually we proved the following lemma {compare with lemma 
3.7.2.1). 

Lemma 3.10.2.1 If we consider the distribution function V for which V(x) = 1 on (e2, oo) 
for an e2 < 2R and let h~ and hl be defined as 

then 
Iv(ht)(x) = Xt(x) for all x E (O,oo) 

is equivalent to 

and we can choose hl = 0 . 

Actually it is not strange to find lemma 3.10.2.1 as the solution of ht. In the case that 
dV(x) = 0 for all x E (2R,oo) we find that av and /3v in section 3.7.1 are the nil-operators 
and thus {3.156) could be expected from (3.69). 

If one wants to check the Dons-ker class condition and the II · IIPv -convergence condition 
in this case, then one goes through the sections 3.8 and 3.9. A lot of the analysis there can 
be skipped. We only have to look at section 3.8.2 and the beginning of section 3.8.4 and one 
has to check {3.121); the continuity of(/- Evf1 in V. In section 3.8.2 one must be aware 
that if one tries to bound {d/dx) E~,f f(x) from above and (d/dx) Ev,d(x) from below, then 
one must use the same technique as we did above to determine the inverse of (I - Ev). This 
provides us with similar efficiency results in the case that g(2R) = 0 and d(2R, 2R) = 0 and 
V(x) equals 1 for an e2 < 2R. 

3.11 Calculation of Iv 1(! - Z) 

In this section we only give the calculation of Iv 1 (~ - Z) which we need for theorem 3.5.2.1. 
The calculation is at some points different to the calculation of Iv 1(Xt - Z(t)) in section 3.7. 

We know that for a constant c we have Ive= c and thus Ii;:1 Z = Z. Therefore we only 
have to concentrate on the equation 

lv(h)(x) = l, 
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assuming for the moment that such a solution h exists. (e as in (3.21)). 
One writes e as 

1 
e(x) = IWI + 2xR (O + x). 

Now we imitate section 3.7.1. For x ~ 2R we get from lv(h)(x) = e(x) with (3.27) the 
following two equations analogous to (3.35) 

( cv,4(0) + cv,3(0) -cv,2(0) ) . ( av(h) ) = _ ( lllv(h) - 0 ) 
-cv,2(0) cv,1(0) /3v(h) Av(h) - 1 · 

(3.157) 

(All the functionals and functions defined as in section 3.7.1). Using the same arguments 
as in section 3.7.1, we get the existence of the inverse of the matrix and get the system of 
equations analogous to (3.38) 

( av(h) ) 
/3v(h) 

(3.158) 

Again we expressed av(h) and f3v(h) as operators which only use the values of h(x) with 
x E [0, 2R). For each choice of h on [0, 2R) one is able to find an h on [2R, oo) such that 
(3.158) holds. (See the remark after lemma 3.7.2.1). 

If we define the operators av and ~v for an f on D[0, 2R) as 

( ~v(f)) = -L-1 ( lllv(f)) +L-1 ( 0) 
f3v(f) V Av(!) V l 

(3.159) 

and we define av and /3v regarded as operators on D[0, 2R) just the same as in (3.38) then 
we get by (3.158) 

( t~::~) = ( p~[~~~) +Lv1 
( ~) = ( fi~[~:~), (3.160) 

where h0 (x) = h(x) · l[o,2R)(x) and h1(x) = h(x) · 1[2R,oo)(x). 
For the invertibility of lv(h)(x) = e(x) for x E [O, 2R) we imitate section 3.7.2. One easily 

checks that the equations analogous to (3.39) and (3.40) (derived from (3.29) and (3.30)) are 

(3.161) 
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and 

(3.162) 

With (3.161) and (3.162) and the definition of Iv in (3.27) we get from lv(h) = !(x) for 
x E [0,2R) 

Iv(h)(x) = z(x) · 
IWI + 2xR h(x) 

1 l=2R a(x) 1.u=oo h(u) 1 dV(u)dx 
IWI + 2xR };=,. g(x) u=:i IWI + 2uR 

+IWI ~ 2xR 1::2
R !~~:; 1::<X> h(u) IW~ ~ :uR dV(u)dx 

X 1:;=2R b(~)! !."=ex> h(u) u-x dV(u)dx 
IWI + 2xR };=,. d(x, x) u=:i IWI + 2uR 

X 

+IWl+2xR 
X 

= IWl+2xR· 
Now from (3.163) we obtain just as in (3.41) 

lv(h)(x) = iwi~!xR (h(x)- Bv(h)(x)-rv(x)av(h)-sv(x),Bv(h)) = 0 

and this yields for x E (0, 2R) 

h(x) = rv(x) av(h1) + sv(x) .Bv(h1). 

(3.163) 

(See section 3.7 for all the definitions). Now we apply av a.nd Pv defined by (3.159) on both 
sides of the equation a.nd we obtain 

( av(h1)) = ( av(rv)av(hI )+av(sv),8v(hI )) +L-I ( 0) 
.Bv(h1) ,Bv(fv) av(h1) + .Bv(sv) .Bv(h1 ) v l 

This yields 

( 1 - av(rv) -av(sv) ) . ( av(hI ) ) = Nv ( av(h1) ) = L-I ( 0) 
-.Bv(rv) 1-,Bv(sv) .Bv(hI ) .Bv(h1) v 1 

and under the assumption that Qv =/: 0 we obtain 

( µ~~::~ ) = Nv1 Ly1 ( ~ ) = ( :~ ) . 
Now we have proved the following lemma.. 
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Lemma 3.11.1 If we assume that 1/g(x) and 1/d(x,x) are bounded on [0,2R] and Qv i 0 
and let h0 and h1 be defined as 

then 

is equivalent to 

and h I satisfies 

Iv(h)(x) = e(x) for all x E [O,oo) 

h0 (x) = fv(x) Sv + sv(x)Tv 

( av(h1) ) 1 ( cv,1(0) cv,2(0) ) ( lltv{h0 ) ) 

f3v(h 1 ) = - Dv cv,i(O) cv,4(0) + cv,a{O) · Av(h0 ) - 1 · 

3.12 Efficiency proof for the one-dimensional case 

The method we used to obtain the efficiency results in the 'circle'-case can also be applied to 
the one-dimensional case. Van der Laan(1993) studied the efficiency in the one-dimensional 
line segment problem, but the proof there is incorrect without the assumptions in section 3.4. 
If we put the proof of the one-dimensional case into the 'general' setting of the proof of the 
two-dimensional case, then we will see why the two-dimensional case is harder to solve. 

In the one-dimensional line segment process the score operator is given by 

Av(h)(x,d) 

= h(x)•l(d=O) 

+ (1_) 1":00 h(x)-1- dV(x) · l{d = 1) gx ,,=,, r+x 

+-d( l ) 1"=00 h(x) =-=.!_ dV(x) · l(d = 2). 
T,T ,:=T T + X 

For the adjoint of the score operator we find 

Ar(ri)(x) 
T-X = --ri(x,O) · l(x < r) 
r+x 

2 1;;=,:AT +-- _ ri(x,l)dx 
r+x ,:=D 

X-T 
+--ri{r,2) · l{x 2'. r). 

r+x 

Thus for the information operator Iv= Ai Av we obtain 

Iv(h)(x) 
T-X = -- h(x) • l(x < r) 
r+x 
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2 1;=.,l\r 1 1"=00 1 +-- --- h(u)--dV(u)dx 
T+X .,=O g(x) u=z T+u 
x-T 1 1"=00 U-T +-- · -d() h(u)--dV(u) · l(x ~ T). T + X T, T u=r T + U 

Recall that the para.meter h in section 1.1.2 equals d(T,T) here. To avoid misunderstanding 
we write throughout this section W = d( T, T) instead of the para.meter h used in chapter 1 
and 2. Again for convenience and without loss of generality we write Pv (V in the set of 
distribution functions on (0, oo)) instead of Pv,1, with (V, h) E Vr, 

3.12.1 The parameters (W, W) to be estimated 

As in section 3.5, we introduce here the para.meters for which we show that the NPMLE is 
efficient. We consider the estimation of the parameter 

t7(Pv) = (t71(Pv),t72(Pv)) 
_ (W(·), W) 

_ (1"'=· !..=.!.dV(x),1"'=00 :...=...!.dV(x)) 
.,=0 T+x =r T+x 

= (F"·0·(·),d(T,T)), 

where we define b1t71(Pv) = W(t) and B = {b1 : t E (0,T)}. (Compare with (3.17)). Again 
we consider the distribution function of the uncensored observations because then we have 
less trouble with the singularity problems at x = T, which occur if one inverts the information 
operator. 

• The parameter b,t71(Pv) = W(t) 

Just as in section 3.5.1, we calculate the pathwise derivative of W(t). If we define the function 
,c1 to be 

T-X 
K1(x) := -- · lco1](X), 

T+x ' 
then we note that 

"' - W(t) = 11:, - j 1C1(x)dV(x) = "1 - Ev(,c1) E L~(V) 

and we get the following equality analogous to (3.19) 

; (W,,1(t) - W(t)) = (Av Iy1(,c1 - W(t)), Av(l)) Pv. 

(3.164) 

(3.165) 

Assuming that lv1(11:1-W(t)) exists, we have with (3.165) that W(t) is pathwise differentiable 
with efficient influence curve 

(3.166) 

In section 3.12.2 we calculate h1 = lv1 (,c1 - W(t)). The calculation must be compared 
with section 3.7 of the two-dimensional case. In lemma 3.7.2.1 we have to assume that the 
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determinant Qv is not equal O to be sure of the existence of h1• In the one-dimensional case 
we are able to prove that this Qv is not equal to 0, therefore this assumption is not needed 
in lemma 3.12.2.1. One verifies the conditions of theorem 3.3.2 or checks the conditions of 
theorem 3.3.4 using section 3.8 and 3.9 (and the proof of theorem 3.5.1.1) to obtain the next 
theorem 

Theorem 3.12.1.1 Under the assumptions in section 9.4 the NPMLEWn is a II· 11 8 - asymp
totically efficient estimator of W. 

• The parameter t? 2(Pv) = W 

We define the function 1 to be 

Again one checks that 

X-T 
1(x) = T + x · l[,,oo)(x). 

1- W = 1- j -y(x)dV(x) = 1 - Ev('Y) E L~(V). 

For the parameter W one finds 

1 . 
; (W,,1 - W) = j 1(x) l(x) dV(x) 

= d(r,r) · Av(l)(r,2) 
(l(d = 2),Av(l))Pv 

= (l(d = 2) - W, Av(I)) Pv, 

showing that W is pathwise differentiable with efficient influence curve 

l(W) = l(d = 2) - w. 

(3.167) 

We know already that the NPMLE Wn equals the fraction of double censored observations 
(see (1.51)). So we get 

1 n 
= - L l(D; = d; = 2) - W 

n i=l 

1 n 

= - L (l(d; = 2) - W) 
n i=l 

j l(W)dPn 

= j l(W)d(Pn - Pv). 

This immediately proves the efficiency of the NPMLE Wn of W. The explicit calculation of 
ly1('Y - W) is not needed. Now we got without any assumption: 

Theorem 3.12.1.2 The NPMLEWn is an asymptotically efficient estimator o/W. 
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• Efficiency of (Wn, Wn) implies efficiency of (Fn, fin) 

Just as in section 3.5.3 one can show that the fact that the NPMLE (Wn, Wn) is an efficient 
estimator of the underlying (W, W) E D(O, T) X IR implies that the NPMLE ( Fn, fin) is an 
efficient estimator of the underlying (F, µ) E D[O, T - E) x R for every fixed EE (0, 2R). 

Here one uses the relation 

to obtain 

and 

r+x 
dV(x) = --dF(x) 

r+µ 

lz=T T- X 2T 
1- W + W(r) = 1-d(r,r) + --dV(x) = --z=o r+x r+µ 

T-X T-X 
dW(x) = --dV(x) = --dF(x). 

r+x r+µ 
From these we get 

2T 
µ= -T 

1-W+ W(r) 

and 
2T (W(t) 1x=t l ) 

F(t)= 1-W+ W(r) T-t + x=O (r-x)2 W(x)dx · 

Now one copies the proof given in section 3.5.3. 

3.12.2 Calculation of Iv 1(Kt - W(t)) 

Again we remember that Ive= c for a constant c and thus lv1(W(t)) = W(t) and therefore 
we only have to concentrate on solving 

lv(ht)(x) = Kt(x), 

assuming for the moment that such a ht exists. (Kt as in (3.164)). 

• lnvertibility of lv(ht)(x) = '-t(x) for x 2: T 

For x 2: T equation (3.168) becomes 

2 r:=T (1_)1u:00 ht(u)-1-dV(u)dx h=o g X u=r r+x 
1 1u=oo U -T 

+(x-r)-d() ht(u)--dV(u)dx=0. 
T, T u=T T + 'U 

This yields (compare with (3.29) and (3.30)) 

2 ~r=T (1_) 1u:oo hi(u)-1-dV(u)dx 
h=o g X u=r T + X 

1 1.u=oo 'U - T 
-T-d() ht(u)--dV(u)di = 0 

T, T u=< T + U 

(3.168) 

(3.169) 
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and 
1 1u=oo U -T 

-d() h1(u)--dV(u)dx=0. 
T,T u=T T + U 

So (3.169) with (3.170) and the assumption that d(r,r) > 0 gives us 

l i'=, 1 1u=oo 1 
~ (~) ~ h1(u)--dV(u)dx = 0 r=O 9 X u=r T+X 

and 

1 u=oo h1(u) ~ dV(u) dx = 0. 
u=, r.+ u 

Now if we define the operator Wv as follows 

lllv(h) = 1u=T (i'=u (1_) dx h(u)-1-dV(u) 
u=O j;,=O g X T+u 

and we define the operators av and /3v as 

and we define 

av(h) 

/3v(h) 

_ 1u=oo h(u)-1-dV(u) 
u=T T+U 

_ 1u=oo h(u)-u-dV(u) 
u=, r+u 

hi'=, 1 
cv(x) = (~) dx, 

r=r g X 

then the equations (3.171) and (3.172) can be written as 

( cv(O) 0 ) . ( av(h,) ) = _ ( '11v(h1) ) 

-T 1 /3v(h,) 0 · 
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(3.170) 

(3.171) 

(3.172) 

(3.173) 

If we assume that 1/g(x) is bounded on [O, r) we have that O < cv(0) < oo and thus the 
determinant Dv of the matrix 

( cv(0) 0 ) 
-T 1 

equals cv(0) 'F O and therefore we may write 

( P~~~:~ ) = - ~v ( ! cv~O) ) · ( Wvtt) ) · (3.174) 

(Compare (3.174) with (3.38)). 

• lnvertibility of lv(h1)(x) = i.1(x) for x E (0,r) 

Here we do the same as in section 3.7.2. One writes (3.171) as 

(;,=,, (l_) 1u:= h1(u)-1-dV(u)dx 
j;,=O g X u=x T + X 

= - (;,=, (1_) 1u:00 h1(u)-1-dV(u)dx. 
fx=r g X u=r T + X 

(3.175) 
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Because of (3.170) and with (3.175) we write for x E [O, T) 

lv(h,)(x) = T-X 
--h,(x) 
T+x 

+-2- fz=M (1_) 1~"° h{u) - 1- dV{u) di 
T+x .h=0 g X ...... T+u 

T-X = --h,(x) 
T+X 

--2 - /ii=T ~ 1~00 h1(u)-1-dV(u)di 
T+x .h=s g(x) u=s T+x 

T-X = --(h1(x)-Bvh1(x)) 
T+x 

T-X 1 
--- • --cv(x)av(h,) 

T+X T-X 
T-X = --(h1(x)- Bvh,(x)-rv(x)av(h,)), 
T+X 

(compare this with {3.41)) where the operator Bv is defined as 

2 1%=T 1 1u=T 1 _ 
Bvh(x)=-- (-) _ h1(u)--dV(u)dx 

T-x ,.=,. gx u=., T+u 

and the function rv on [O, T) is defined as 

1 
rv(x) = --. cv(x). 

T-X 

Now we get for (3.168) the following equation 

(I - Bv )h,(x) = rv(x) av(h,) + l(o,11(x). 

Efficiency 

Similar to section 3.7.2 one proves that(/ - Bv )-1 exists as operator on D[O, T). So we obtain 

h,(x) = fv(x)av(h,) + ii,, 
where fv and ji, in D[O,T) are defined as 

fv = (I - Bv )-1 rv , fit = (I - Bv )-1 l(o,t)• 

(3.176) 

Just as we did in section 3.7.2 we note that we can apply av and /3v (as operators on D[O, T)) 
on both sides of the equation (3.176) and so we get the next system of equations 

( 1- av(fv) 0). ( av(h,)) = ( av(!l,) ) 
-/3v(fv) 1 /3v(h1) /3v(!l,) · 

We see immediately that the operator Bv maps positive functions to positive functions and 
thus (/ - Bv )-1 = Ef:.o Bt maps positive functions to positive functions. Because rv is a 
positive function we have now that rv is a positive function. Furthermore we note that the 
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operator llfv maps positive functions to positive numbers and thus av = -(1/ Dv) IVv maps 
positive functions to negative numbers (remember that Dv > 0). This means that av(rv) is 
a negative number. From this we may conclude that the determinant Qv = 1 - av(rv) of 
the matrix 

Nv = ( 1 - av(rv) 0 ) 
- -,Bv(rv) 1 

is greater or equal to 1 and thus Qv ,f 0. The inverse Ny 1 of Nv exists and so we obtain 

( P~~1:~ ) = dv ( ,a)rv) 1 - a~(rv) ) · ( P~~;;J ) = ( ~~~~:~ ) · (3.177) 

Now we have proved that h1 is uniquely determined on (0, T) by equation (3.176): 

hi(x) = rv(x) Sv(iJ,) + y,(x). 

For x ~ T the solution h1 only has to satisfy (3.174). We get the following lemma (see lemma 
3.7.2.1). 

Lemma 3.12.2.1 If we assume that 1/g(x) is bounded on (0, r] and let hi and h: be defined 
as 

then 
lv(ht)(x) = K 1(x) for all x E (0, oo) 

is equivalent to 

and h! satisfies 

( av(h:) ) ___ l ( 1 0 ) . ( lllv(h~) ) 
.Bv(h:) - Dv T cv(0) 0 · 

3.12.3 One-dimensional case versus two-dimensional case 

One of the reasons why the efficiency proof in the two-dimensional case is more difficult than 
in the one-dimensional case, is the role of the determinant Qv. In the one-dimensional case 
we could prove Qv ,f O using simple properties of the operator Bv and the functionals IVv 
and av. The structure of the determinant in the two-dimensional case is much more complex. 
There we can only prove the existence of a hardest submode!, the existence of h1, if we assume 
that Qv ,f 0. 

If one considers the equations (3.69) (two-dimensional case) and (3.176) (one-dimensional 
case), then one actually sees why the determinant in the two-dimensional case becomes more 
difficult to analyse. Because we have several kinds of double censored observations in the 
two-dimensional case, we get the contribution of sv(x) to the equation (3.69). In the one
dimensional case, because of (3.171) and (3.172) (the double censored observations all take the 
same valuer), this contribution drops out. An explanation could be the fact that in the one
dimensional case the NPMLE of the distribution function of the double censored observations 
(equals the probability of being double censored; the distribution function is degenerate at T 

and equals the para.meter h) is estimated by the fraction of the double censored observations 
and does not depend on the NPMLE V,, of V on [O, T ). 
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In this chapter we briefly discuss some open problems. In sectio~ 4.1 we give a suggestion 
to deal with the singulariti6Cit1T'~~d- 21il 1/o• obtitirt 1the-effi'Jiencyi results in chapter 3 for a 
br9,ad~r_d¥~ pf un,derlying dis.t,ibu~ion _functiol),s.- In sec~~on 4.2the position p~ints follow 
a: 'i!oiii hi:iJ!ig~rid:fo~ ::P.oi!l~oif' )point \5'rbcesi2arl!f it 1s&rrf/; tl'ra1tv 'a1ibthei 'oaf>prb'hl:ih )is• ii&lli~d[Hln) 
st!ttilfif14':::!'~1~a~'stiriiiiitRlni0aKH&£l'tli~1c<fuie~1coWdltU>'ii9on1.t"hfe'~l:f6w'W."'ffr~e"ct'icf!:l41ll1 

we state the conjectuliilflll! ·tlil~ d'kt~ftii&'il'.lt\ ~v,nw'llicIPtothes1h~11in1iiit iui'a:1Y!!i's1in'1bitil~tel:1 

3, is greater or equal to 1 and we base this on some computations of Qv for different choices 
of V. r~?.£J fHHDiH.G:9r1:d.b·<)fi(~ ~.:Hf j ~Ui "g11.it1.uo--r~c;J! f. J .. t~ 

The. two-dimensional case wit~ JC unknown,_ is still 01;>en, put we think. there fs, a l>,Ossibility, 
t\;1~ ,lg_ gUW~"Mo1tl'i~v.k"qgt JJcitlti'~\ctim:tty.1'Tli'l cti'~t I~li~l~1Pru~~tib¥('/r dii):fit~ ;)a' /;fg 
(~tq{&~ J;;[ail~t'®'t4~1i_H~f1 ~ ~«.~;.W~JH~1othH ~~~~\it'\~Ns, '.i~~-~lligJiili~r Ait;rtl~\Y 
t1i~'1h(Qtma.tiot/ca.lc. IationJlrebfi1i;,o6 :tl t ~1/i.iiidn~'iotl~'.Hisdlir'of&;,'il}rti~nsji>n'41: O~frmgh'i' 
th~ii tty1 lJ1'\'litttri~lreiiiit~'iof' ilie tf,Mti i1/¾mfc!liBv~lt<iil.Wd;,\a:lthH~t' liii~li'.r9 tt.is&'t~a~'.'.dI~t 
Laan, 1994). We ha';.~Jof 9i'.¥.1 .. i.-l',tffb• u}.iop of ~h~ data PF:~ = (,Y~IWI + ~- EKdiam(W))'::Pf 
and F -+ IWI + EKg11:1:rn,(lf)',.11:nfl. .~ ~ 1/'F"arel.hn®",whiih 1lleiitii1b~s this', case. 

. ' . i 

4.1 Sug~e~ti~~t ~,?;l?~rE=t ~he T and 2R singularity 
In chapter 2 in the 'o!ie{~ilri.eilsi6n.tl :¢is~. ;.e 'lia~1 seJn thii.t;ic T·::.., ,J,1cm1m. tibt prove con
sistency and therefor~ thi uhifotrifcdrtsi~tehcy results there are related to intervals [O, T - E] 
fqrtr~l!..f,~ ,9, ,J .in!trft,48~Hl~t}11,\~JY~:!0i,:r )1 !ll )~~ ;t"'.<;>:-,?if!Wfl~h~Wl:/.flf;~!erf~~)~~-l~~d(\h~ 
!!1ffil«i,~iw:ltrm-, ~Jm' ~.?}Pt,J?!,h:\)l;0t( h.11rii:n!l, ~~~,fiq~sisJ~Ufii1~~~1tJ,~i; iA,ffi~R~~sl ~ajf<1!P¥riR& 
i.~t!i1'¥~ ~~·1;J;{w;;L,q,.ifi1) ii1PBtt~dr t~,t zYm;~pJf'-j/i¥1~, ~~~1 /lf,~.W.pl~j%~\1Pt1'11n~ 1£R-.al?tieE,~. i~Jx, 
1t-R?1.er,t~e -a-¥t'1ll1~VPP~,Il!.:-~~ftl?P." 3,,4;i1 N,\B?~!!i\i.; ,~Jl~j, tJi~is~mH~~91t~n~!r,8~~ij P,~9X1\aj~1., 
J?rnliWf~~';~r1l ;~~ .~~¾~~: f9;~ ;'!,, ~r,o1:1:d, ~tl18~ ,qf, Mw(jul?,~t;~lyj,p~Ai~f~il?,4~1R°!Jm:i~tifW~, 'v.6t.st\t 
'Y~t,{ ~R,,"1~i\lsei.2r Jnt rrJ1,<>{JA~,11\8V,IDP,,w~s\J~-Jk.jsi,~efiti.?;~,;re ,~X~; jl, ru,gg~~t!f~1P9n',J?, 
sql)',e,.,tJt~,T,,!l;\J~;~fLl!i.~gHJArJtf:·1. '\\•_,fl;,.;, u:. ·;,;,b1 ,,: ·ic,11 ·,,,,·r'.'t ,rnjl •11'(, -· ~·.·D: ... · 

The idea is to regroup the data in such a way that all the observation 88!~,!!!J.!i:,(?:; -:-c,.~1 

( f E (0, r]) which are s.e.c.l. and all the double censored,~~,~vil:~i<>l/- 1Jw,in~~ ,l9~!P.!r¥.rare 
considered to be a new kind of observations. Furthermore all the observation points in [r-f, T) 
which are s.e.c.r. or u.c. are regarded ,toL be ~ µeW\ kind q{ observation. We define a new h, and 

~--·. \ ' ,' '.'. ., \ i .•' '" ,_ ~ ~' 



136 Open problems 

show that the distribution of the data only depends on Von (0, T - i:) and the new parameter 
h., For i: l Owe will have that (V,h,) converges to the original parameters (V,h). Thus for 
£ = 0 the regrouping of the data is the original grouping of the data described in chapter 1. 
We apply all the techniques developed in the chapters 2 and 3 on the new structure to get 
results for the (sieved) NPMLE (Vn,u hn,,) of (V, h,) on the whole interval [O, T - e), because 
by the regrouping of the data we are able to get consistency in T - e. If we concentrate for 
instance on V(T-) (or g(T)), we will have 

Ji.~ Vn,,((T-E)-) -> V((T-E)-) foral!Ee(O,Tj 

limV((T-·E)-) -> V(T-). 
<!O 

A sequence e(n) that converges to O in such a way that 

Vn,,(n)((T-E(n))-)-> V(T-) (n-> oo), 

(and thus Dn,,(n)(T)--+ g(T)) provides us with an estimator (Vn,,(n),hn,<(n)) of (V,h) E VT for 
which we have the consistency results in chapter 2 uniformly on (0, T) and the asymptotic 
results in chapter 3 without the assumptions (ii) and (iii) in section 3.4. 

4.1.1 Regrouping in the one-dimensional case 

Let £ E (0, T] be given. We consider the set of points (T;, X;) in a random sample of size n 
on Rx R+, where the X;'s are i.i.d. having the common distribution function V and the T;'s 
given X; = x;, are uniformly distributed on (-x;, T). (This is the same set up as in section 
1.1.2). Now the data will be grouped differently. For the T; = t; $ 0 we observe pairs (Z;, D;), 
where 

Z; = min(T; + X;, T - e), D-- • •-{ I T.· + X· < T - f 

• - 2 T; + X; > T - e 

and for the T; = t; E (0, T) we observe pairs (Z;, D;), where 

{ 
0 T; + X; $ T, X; ::; T - e 

Z; = min(X;, T -T;, T - e), D; = I T; + X; > T, T; > e 
3 X; > T - £, T; $ f. 

If D; = 0 we call the observation u.c. If D; = I we call the observation s.e.c., if D; = 2 d.c. 
and if D; = 3 we call the observation 'new censored' (n.c.). We note that this grouping of the 
data can be obtained from the grouping in the sections 1.1.1 and 1.1.2 by labeling all the u.c. 
a.rid s.e.c:i-: ob~erv~tio~ points in [r-e, r) with 3 and the s.e.c.l. observ~tions in (r -t:, r)'and 
the d.c. with 2 arid the s.e.c. observation points in (0, T - f) with I a.rid the 11.C. observation 
points in [O, r - E) with 0. Instead of working with the interval (0, T) we now deal with the 
interval (0, T- e). In Figure 4.1 we see in what areas the (T;, X;)'s fall, which belong to a d.c. 
or n.c. observation. · · 

We define h, and k, as follows: 

h, = h + £ g( T - x) dx 
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and 
k, = J.T ~dV(x) + I' g(r - x)dx = ig(r - i). T-, T + x la 

For the subdistribution functions we obtain ( u E (0, T - E)) 

dF:·•·c·(u) = 110,,--,)(u) · g(u)du 
dFtc·(u) = h, d.5T_,( u) 

dF,"·c·(u) 
T-U 

= l[DT-,)(u)--dV(u), 
' r+u 

dF,n·c·(u) = k, d,5T_,(u) 

where g is defined as in (1.8). Here we have the equality 

1 = V((r - i)-) + (2r -i)g(r - i) + h, 

(see (1.14)). We also have 

Open problems 

(4.1) 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

(4.6) 

The subdistribution functions of the data only depend on V on (0, T - i) and h,. Of course, 
just as in (1.20) we can express g(x) in terms of Von (0,r-E) and h, using (4.5): 

g(x) 

and thus indeed with (4.1)-(4.4) and the fact that k, = ig(r-i), we have that the distribution 
of the data only depends on (V, h,). Furthermore it is obvious that for E ! 0 we obtain the 
model with the original grouping described in chapter 1. 

The likelihood becomes 

where the x1 < x2 < ... < x, are the observation points (in [0, T - i)) and <Pi and 'Yi are 
the number of u.c. and s.e.c. observations respectively at x; and r0 is the number of n.c. 
observation points. (see (1.35)). 

By (V,.,., h,.,,) (and g,.,, and k,.,,) we denote the (sieved) NPMLE of (V, h,) (and g and k,). 
In this case (V,.,., h,.,,) satisfies the self-consistency equations: (x E [0, T - i)) 

= dF"·c·(x) + 1•=x - 1 - dF•·•·c·(v) · - 1- dV. (x) 
n,t v=O 9n,c.(v) n,t: T + X n,t: 

= dF,:'t(x) 

+1•=x (1w=T-, - 1-dV,.,,(w) + Yn,,(T - t))-l dF;;:·c·(v) · - 1-dVn,,{x) 
"=O w=" T + W T + X 
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and 

where F;,:,~ stand for the empirical distribution function of F~·-. 
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We hope the reader agrees with the fact that all consistency proofs in section 2.2 can 
be imitated for thJ (sieve<!) NPMLE (Vn,o hn,,) of (V, h,). Actually it is nothing more than 
replacing all the Vn's by Vn,, (all the fin's by ... etc.) and all the h's by h, and at several 
places the r's by r - f and in this case we have to deal with the k,. We explain now that 
we get consistency uniformly on the whole interval [O, r - f). For Vn we could not prove that 
Vn(r-)-+ V(r-), but for Vn,, we can prove Vn,,((r - f)-)-+ V((r - f)-). If we write (2.2) 
(compare with (2.17)) for this model we find 

Again we note that the integrands are nonnegative and thus we also have 

and this implies that fin,,(r-:, f) > 0 (for n large enough). Now one uses (2.21) (or (2.30)) to 
conclude the consistency of Vn,,(r - f) (and thus of Un,,(r - €)). 

To imitate the calculations and derivations in chapter 3, we only need the assumption that 
1/g(r - f} is bounded. Again one only has to change some notation and replace several r's 
by r - f's. Together with the consistency uniformly on [O, r - f) we obtain similar efficiency 
results for the parameters 

(see section 3.12.1). Here we define b1iJ 1 (P(v,h) = W,(t), where B, = {b1 : t E [O,r - f)}. 
The set B = Bo will be defined as B = { b1 : t E [O, r)}. 

Except the condition on g(r - f) we can drop the conditions on Vn(r-) and fin(r), thus 
here on Vn,,((r - f)-) and Un,,(r - f), because of the consistency uniformly on [O, r - f). Of 
course we are only interested in small '€-models', thus it will be enough to assume that for 
the underlying g we have 

g(r - £) > 0 for all f E (O,a) 

for some a and for all these '€-models' we have the above story. 
Now for a fixed f we have efficiency for the (sieved) NPMLE 

(4.7) 
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(uniformly on [0, T - t:)} &l!d for the (sieved) NPMLE hn,<• This implies (using theorem 
3.1.1 or section 3.5.3) that Vn,< is a. II· lls,-asymptotica.lly efficient estimator of V. Of course 
here efficient means efficient among the estimators which only make use of the information 
on (0, T - t:), thus efficient among the estimators, for which the regrouped data. would be 
the 'original' data.. Actually, here regrouping of the data. means throwing a.way information, 
because we ignore the fa.ct that in the original data. we have u.c. and s.e.c. observation points 
in [T - t:,T). So Vn,< will not be efficient (for Von [0,T - t:)) among the estimators which 
make use of a.II the data.. 

To obtain from w.(t) on (0,T - t:) a. statement for W(t) (= Wo(t); see section 3.12.1) 
on [0,T), we only need proposition 4.1.1.1, where we show that there exists a. sequence t:(n) 
such that Vn,<(n)((T - t:(n))-)--+ V(T-). From now on we write Vn,<(n)(T - t:(n)) instead of 
Vn,<(n)((T - t:(n))-). 

Proposition 4.1.1.1 There exists a sequence t:(n)--+ 0 such that in probability we have 

Vn,<(n)((T - t:(n))-)--+ V(T-). 

PROOF: for convenience we assume that the underlying V is continuous and strictly increasing 
on (0, T ). With more effort one proves the statement for the genera.I case. We remember the Vn 
in section 2.2, for which we had consistency uniformly on [0, T): dVn = (T+x)/(T-x) dF,:'"c·(x). 

For a.II k there exists a. Xk E (0, T) such that 

(4.8) 

This implies that 
Xk--+ 0 (k--+ oo). (4.9) 

(We show this later). Let z1c E (0,T) be such that V(T - z1c) = Vk(T-) (exists because of 
continuity V). Because of (4.8) and V being strictly monotone increasing, there exists a. 
y,. E (x,., z1c) such that 

This easily implies that 
1 

0 < Vk(T-)- V(T-y1c) $ k. 
It follows (in the same way that (4.9) followed from (4.8)) that 

y,.--+ 0 (k--+ oo). 

Now because we (4.10) and 

J~ Vm,y.(T -y1c) = V(T - Yk), 

there exists a. m(k) > m(k - 1) such that 

V(T -x,.) $ Vm(kl,v•(T-Yk) :5 V(T - z,.) = Vk(T-). 

( 4.10) 

(4.11) 

( 4.12) 
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Of course by (4.11) we have for i?:: 0 

V(T - Xk) ~ Ym(k)+i,u.(T -yk) ~ Vk(T-). (4.13) 

So we obtain the sequence (m(k),Ykh>i• for which m(l) < m(2) < m(3) < ... and Yk-> 0. 
Now for n = m(k) ton = m(k + 1) --1, we define €(n) = €(m(k) + i) = Yk· So we get the 
sequence 

Ym(l),y1 (T-yi), Ym(l)+t,y1 (T-yi), ... , Ym(2)-t,y1 (T-y1), Ym(2),112(T-Y2), Ym(2)+1,112(T-y2), •·· • 

For this sequence we have (4.12) and (4.13) and thus immediately we get that the sequence 

V,.,,(n)(T - €(n)) = Vm(k)+i,y•(T -yk) 

lies between V( T - xk) and Vk(T-), which both tend to V(T-). This proves the proposition. 
The only thing we still have to prove is (4.9). Suppose (4.9) is not true, then there is a 

subsequence xk, for which xk, -> a #- T ( I -> oo ). Because V is strict monotone we have 
that V(T-)- V(T - a)> 0. We also know that Vi(T-)-> V(T-), thus from (4.8) and the 
continuity of V we obtain that 

We have a contradiction and thus (4.9) must be true. □ 
So we immediately obtain 

Proposition 4.1.1.2 Under the assumption (4. 1) 

W,cni=b1r11(Pv.~ -h ) 
( n,,(n)• n,<(n)l 

is a II · 11 8 -asymptotically efficient estimator of W and hn,<(n) is a asymptotically efficient 
estimator of h. 

Using theorem 3.1.1, this yields 

Proposition 4.1.1.3 Under the assumption (4- 1) we have for each T/ E (0, Tj that Vn,<(n) is 
a II · 11 00 -asymptotically efficient estimator of V E D[O, T - TJ]. 

In practice one wants to have a method to construct a suitable sequence €(n). A suggestion 
would be as follows. We consider the ad hoc estimator 9o,n(T) of g(T): 

- F:·•·c·(T)- F:·•·c·(T - n-(1/3)) 

9o,n(T) = 2n-(t/3) ' 

which has a squared bias and variance of order n-<2l3)_ Now we choose €(n) to be the smallest 
€ such that 

9n,.(T- €) > Yo,n(T) - n-(l/4)_ 

In this way we are sure that for n large enough that 9n,, ( T - €) > 0 because §o,n ( T )- n-(t/4) -> 
g(T) (in probability) (and g(T) > 0) and we are sure that such an €(n) exists because we have 
(using Chebyshov inequality) that P(go,n(T) - n-(t/4) < g(T))-> l. Thus we ensure that our 
ad hoc estimator is between O and g(T). We think that in this way we have €(n) converging 
to O and that the information /(€) (depending on € in the 'regrouped' model) will converge 
to the information /(0) of the original model. 
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4.1.2 Regrouping in the two-dimensional 'circle-case' 

For the two-dimensional 'circle-case' we only give the regrouping. What we did in section 
4.1.1 can be similarly done for this case. Here the regrouping of the data is somehow the 
same as in the one-dimensional case. In Figure 1.11 we have drawn the set A,,.,. H we take 
there u = 2R - E, than for :,; > 2R and for 2R - E $ :,; $ 2R the regrouping is done by calling 
the observations in the white areas of the circles on the left double censored (d.c.) and on 
the right new censored (n.c.). 

Just as in the one-dimensional regrouping, we got rid of the 'sharp' edge in the subset in 
A which belongs to the u.c. observations. Also in this case one shows that the distribution of 
the data only depends on V on (0, 2R- e) and h,. Note that we do not have to regroup within 
the d.c. observations, because for d(:,:, :,: ) ( density of the d.c.) we know that it is consistent 
uniformly on (0, 2R). 

4.2 Non-homogeneous Poisson point process 

In the line segment processes in the previous chapters the points T; in the one-dimensional 
case and the position points T; in the two-dimensional problem, follow a homogeneous Poisson 
point process on respectively R and R x R with rate A. We have seen that the number of 
observed line segments N has a Poisson distribution with parameter respectively A ( T + µ) 
and A(IWI + µEKdiam(W)). We were not concerned about the rate A, though its value 
was unknown. Fortunately by conditioning on N = n, we got rid of the A, because in the 
probability measure it appeared as factor in the nominator and denominator and cancelled 
out. From that moment the (un)known rate A did not play any role in the analysis. 

What will happen if the position points follow a non-homogeneous Poisson point process 
with intensity measure p0 ( di) = A( i) di'! (For convenience we assume that the intensity 
measure has a density w.r.t. the Lebesgue measure). Unfortunately in this case we do not get 
rid of A(i) by conditioning on N = n. In the nominator and denominator of the probability 
measure (conditioning on N = n) the A(i) does not appear as a factor that cancels out. In 
our search for an estimator of V ( or F) we have to find an estimator for A(•) as well. 

Let us consider the one-dimensional line segment process described in section 1.1, but 
instead of the homogeneous Poisson point process with rate A we assume that the position 
points T; follow a non-homogeneous Poisson point process with intensity measure Po(dt) = 
A(t)dt. Just as in section 1.1.1 we note that the points (T;,X;) ER x R+ follow a Poisson 
point process on Rx R+ with intensity measure 

p(dt,dx) = .\(t)dtdF(x). 

In this case the number of observed line segments N has a Poisson distribution with parameter 

S = L A(t)dtdF(x) = 1::00 1~:., A(t)dtdF(x) 

(the set A is defined as in section 1.1.1). We define S(-) on [-T,oo) as 

S(x) = L~., A(t)dt. 
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The lengths of the observed line segments are distributed according to 

dV(x) = St) dF(x) 

and the position points T; given X; = x are distributed according to 

_ A(t) dt 
dA(tlX = x) = 1(-,:,T)(t) · S(x) . 
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If we condition on N = n, then the set of points (T;, X;), that belong to observed line segments, 
are distributed as the set of points in an i.i.d. sample of size n with probability measure on 
ll X 1t+ 

A(t) dtdF(x) 
lA(t,x) · fA A(t)dtdF(x) = dV(x)dA(tlX = x). 

If we write down the subdistribution function of the data, then we find for 0 :5 u :5 T 

dF•·•·c.1·(u) = 1::00 A(u - x) stx) dV(x)du 

dFd·<·(u) ,qu) 1::00 L~:+T A(t)dt stx) dV(x) 

dF•·•·c.r.(u) A(r - u) 1::00 stx) dV(x)du 

dF"·c·(u) L:T-U A(t) dt. stu) dV(u) 

(compare with (1.4) - (1.7)). 
Let us define h similar to the definition of h in section 1.1.1: 

h = 1"'=00 1t=o A(t)dt S(l) dV(x) 
x=T t=-z+T X 

(the probability of being double censored). We can estimate A(t) only on (0,r). Thus the 
A( u - x) in the subdistribution function of F•·•-c.l. can not be estimated, but the A( T - u) in 
F•·•-c.r. can. Because A(t) can only be estimated on (0, r), we are not able to estimate S(x) for 
x E (0,oo) and thus how do we get F(x) back with dF(x) = (S/S(x))dV(x)? The approach 
we used in the homogeneous case seems not to work. 

In the next section we will see that if we restrict the class of possible A(t), we get a familiar 
situation. 

4.2.1 A(t) is unknown if t ~ 0 and O otherwise 

If we assume that A(t) is unknown if t ~ 0 and 0 otherwise, then w~ actually say that there 
are no s.e.c.l. and d.c. observations in the line segment process. In terms of the hospital model 
interpretation this would mean that in some time interval (0, T) we set up an experiment and 
take only into account the patients, which arrive during the time interval (0, T) and observe 
their sojourn time only during the time interval. We obtain only u.c. and s.e.c.r. observations. 
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We will see that in this case the rate at which patients arrive at the hospital, plays no role in 
estimating F on [O, T ). We have 

S= 1::00 L:T ,\(t)dtdF(x)= L:T ,\(t)dt=S(x) 

for all x ~ 0. So we have that the observed line segments are distributed according to 
dV(x) = (S(x)/S)dF(x) = dF(x) and the arrival times T; given X; = x are distributed 
according to dA(tlX = x) = (,\(t) dt/ S) · l(o,T)(t). Conditioning on N = n we write down the 
subdistribution functions of the data (0 $ u $ T ): 

dF"·•·c.r.(u) = ,\(r-u) 1::00 ½dF(x)du 

dFu.c.(u) ½ L:T-u ,\(t) dt • dF(u). 

We know that in this case S does not depend on F. If we drop out all factors depending on 
S( ·) and S, then we obtain the proportional likelihood 

Il (dF(x;)),1>; · ((1 - F(x;))t\ 

which corresponds with the Kaplan-Meier situation. 

4.3 Non-convexity of the window W 

In the two-dimensional case we always assumed that the observation window W was convex. 
This ensured us that two censored line segments hitting the edge of the window did not belong 
to the same underlying line segment. In Figure 4.2 we observe two censored line segments in 
the non-convex window W, that belong to the same underlying line segment. One can not 
regard the two line segments inside the window as two independent observations. One does 
not know whether the observed line segments belong to the same underlying line segment or 
not. On the other hand, in the case that the position points T; follow a homogeneous Poisson 
point process on R 2 with rate ,\, the probability that two points of the underlying Poisson 
point process on R 2 x R+ x [0, ir), say ('i\, X 1 , 0 1 ) = (i;,, xi, 81 ) and (T2, X2, 02) = (i;, x2, 82), 
are such that the angle of the line through the position points T1 and T2 equals 01 = 02 is 0. 
This means that with probability 1 in a non-convex window W we may say that two censored 
line segments, which lie on the same line through these segments, belong to the same line 
segment. It would be nice if we could add the observed lengths together and regard this as 
one observation to obtain eventually a sample of independent observations as in chapter 1 
and then apply the theory we developed in the previous chapters. 

Unfortunately this will not work in general. For instance it is essential that the self
consistency equations for Vn and the empirical distribution of the data obtained in this way, 
are also satisfied by V and the distribution of the data (which depends heavily on the shape 
of the window) and this is certainly not clear. 

An idea is to split the non-convex window into convex pieces and each piece can be 
treated as in the previous chapters. Bot now the data sets belonging to the convex pieces 
are not independent, because a line segment can hit more pieces, therefore the proofs of the 
asymptotic results break down, but the results maybe not. 
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Figure 4.2: window W is not convex. 

4.4 A conjecture: the determinant Qv ~ 1 

In section 3.10 we already made some remarks about the determinant Qv. There we showed 
in the two-dimensional circle-cas~ that the statement Qv ,j= 0 is not an empty statement. We 
need Qv ,j= 0 in the proof for the existence of a hardest submodel h1 in lemma 3.7.2.1. In the 
one-dimensional case one is able to show that Qv = 1 - av(fv) 2 1, using simple properties 
of the operator Bv and the functionals 'Vv and av (see section 3.12.2). 

We must admit that the assumption Qv ,j= 0 in the two-dimensional circle-case for proving 
efficiency, is not satisfying. Compared with the one-dimensional case the structure of the 
determinant in the two-dimensional case is much more complex. In the one-dimensional case 
the determinant equals 

Qv = 1 - av(fv), 

where av and fv are defined as in section 3.12.2. In the two-dimensional case the determinant 
equals 

Qv = 1 - av(fv) - .Bv(sv) + av(rv) .Bv(sv) - av(sv) .Bv(rv ), 

where av, .Bv, fv and sv are defined as in section 3.7.2. In both cases we see immediately 
that if V puts all mass outside the interval [O, T) respectively [O, 2R), then the determinant 
equals 1. In the one-dimensional case we proved that -av(fv) 2 0 and thus the determinant 
is greater or equal to 1 for all V (satisfying: 1/g(x) is bounded on [O, r]). We think that in the 
two-dimensional case -av(fv) - .Bv(sv) + av(fv) .Bv(sv) - av(sv) .Bv(fv) 2 0. Again this 
would mean that Qv 2 1 for all V (satisfying: 1/g(x) and 1/d(x,x) are bounded on [0,2R]). 
The conjecture is based on some computations of Qv for different choices of V, because a 
nice proof as in the one-dimensional case is not available yet and seems hard to find. 



146 Open problems 

Suppose R = 1 and V puts mass on x1 = /(2) and X2 = 2/(2) only; thus on one point in 
the interval (0, 2R] and on one point outside the interval. Now the calculations can be done by 
hand and one finds for the case P(X = x1) = 1/2 and P(X = x2) = 1/2 that Qv ~ 2.940329. 
For the case P(X = x1) = 1/3 and P(X = x2) = 2/3 one finds Qv ~ 2.089088. Decreasing 
the mass at x1 to O and increasing the mass at x2 to 1 one finds a sequence of Qv 's decreasing 
from above to 1. 

If we take R = 1.4 and 

1•-1 . 
P(X = k) = (k ~ l)! exp(-/), k = 1,2,3, ... 

(Poisson(/) on 1, 2, 3, ... ), then we find using the computer 

I = 0.5 2 2.1 5 10 15 
Qv ~ 7.688234 2.335098 2.221792 1.125199 1.002395 1.000033. 

Of course the bigger I is, the more mass of V is placed after 2R and thus the determinant 
tends to 1 (from above) if I tends to infinity. In the following tabel one sees what happens if 
we differ R and fix I = 2: 

R = 1.01 1.44 1.48 1.51 1.52 2.01 5.01 20.01 
Qv ~ 3.08 · 2.28 2.23 6.95 6.90 17.07 1080.87 22868.13. 

We also checked some continuous distribution functions V, for instance the 'Cauchy' dis
tribution on (0, oo) with density 

In this case if we take R = 1.5, then we find that Qv ~ 5.5 and thus greater than 1. For the 
exponential distribution v(x) = A exp(-Ax) we find for R = 1.5: Qv ~ 16 if A= 1, Qv ~ 1.9 
if A = 5 and Qv ~ 1.3 if A = 10. 

One checks that in the computations for the determinant we need to calculate certain 
integrals and for instance (J - Bv r1 • To implement this in a computer program we have to 
discretize the problem. We will not bother the reader with the difficulties and features of the 
computer program we used. For the discrete distribution functions V we could approximate 
the determinant quite well, because we did not need to discretize. In the continuous cases 
we had to discretize the problem and of course the finer the grid was, the more accurate was 
the outcome and the more computer-time was needed. Instead of calculating the determinant 
as exactly as possible, we were satisfied with an underbound. Here we state the following 
conjecture: 

Conjecture 4.4.1 The determinant Qv is equal or greater than 1 for all permitted V. 
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