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Chapter 1 

Introduction 

This introduction consists of two parts. The first part is a historical introduc­
tion to the subject of the tract. The second part briefly describes the contents 
of the chapters of this tract (more elaborate descriptions of the chapters can be 
found in the introductions of the chapters). The aim of this tract is to study 
the probabilistic and analytic aspects of the Umbral Calculus. Therefore, the 
contents of this tract have little overlap with the existing books on Umbral 
Calculus ([60, 161, 163, 134, 209, 202]), which mainly stress the combinatorial 
and algebraic aspects of the Umbral Calculus. An interesting book with the 
same emphasis as the present tract is [91]. 

I have tried to make this tract as self-contained as possible. I have added 
Mathematical Reviews references to the items in bibliography at the end of 
this tract. 

Historical introduction 

There are quite a number of well-known sequences of polynomials, e.g. those 
attached to the names of Hermite, Legendre, Laguerre and many others. These 
sequences can be described in several ways. E.g., they can be described by 
generating functions, as solutions to differential equations, by orthogonality 
relations or by recurrence relations. The subject of this tract is a class of 
sequences of polynomials (qn)nEN defined by the following functional equations 

n 

qn(x + y) = L qk(x) qn-k(Y) (n=0,1, ... ) (1.1) 
k=O 

A sequence of polynomials that satisfies ( 1. 1) is called a sequence of polynomials 
of convolution type. These sequences are closely related to the sequern:;es of 
polynomials of binomial type introduced by Rota (see [162] and [210]), i.e. 
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sequences of polynomials (Pn)nEN satisfying 

(n=0,l, ... ) (1.2) 

The sequence (xn)nEN is of binomial type by the Binomial Theorem, which 
explains the name binomial type. Obviously, (qn)nEN is of convolution type if 
and only if (n! qn)nEN is of binomial type. Thus these two types are essentially 
the same. I have chosen to work with sequences of polynomials of convolution 
type instead of sequences of polynomials of binomial type because convolution 
is a fundamental operation in analysis and probability theory. The binomial 
convolution appearing in (1.2) has advantages when dealing with certain com­
binatorial problems (see [162]). 
An extension of the class of sequences of polynomials of binomial/convolution 
type is the class of Sheffer sequences (sn)nEN, whose convolution type version 
is defined by 

n 

sn(x +y) = L Sk(x)qn_k(y) (n=0,l, ... ) (1.3) 
k=O 

for some fixed sequence (qn)nEN of convolution type. The class of Sheffer se­
quences includes (amongst others) the Hermite, Bernoulli and Laguerre poly­
nomials (more examples can be found in [29, 2oi, 235]). 
The history of Sheffer sequences goes back to 1880 when Appell studied se­
quences (an)nEN of polynomials satisfying Dan = n an-1 (D is the differentia­
tion operator). Appell showed that these sequences satisfy 

(n = 0, 1, ... ) (1.4) 

These sequences are called Appell sequences nowadays (see [32, Chapter 6], 
[72], [202, Chapter 4], [210, Section 13] or [215]). The Hermite polynomials 
form an Appell sequence. 
The next major step was taken by Sheffer, whose work on difference equations 
led him in 1939 to generalize the Appell polynomials (see [217] or [72, p. 25]). 
Sheffer called his generalization polynomial sets of type zero; they are the Shef­
fer sequences defined by (1.3). The same class of polynomials was introduced 
in 1941 by Steffensen [227] (see also [220, 219, 227, 228, 229, 226]). There do 
exist even more general classes of polynomials such as Brenke sequences. These 
classes will not be considered in this tract; the interested reader is referred to 
the papers [8, 7, 20, 28, 29, 33, 36, 39, 40, 44, 49, 56, 57, 107, 108, 121, 122, 176]. 
A very elegant theory of Sheffer sequences is due to Rota and co-authors (see 
[162, 210]). These two papers are part of a series of papers on combinatorics, 
namely: [208, 69, 162, 109, 9, 81, 80, 210, 82, 30]. The Rota theory uses 
linear operators on the vector space of polynomials ( cf. [209, Foreword]) and 
is therefore of a purely algebraic nature. It also provides a rigorous foundation 
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for the Umbral Calculus (also called Blissard Calculus, see e.g. (23, 113, 185]). 
The systematic nature of the Rota theory easily yields numerous identities 
for special polynomials (see [202, Chapter 4] or (210]). The Rota theory of 
operators rests on earlier work by Pincherle, Steffensen, Toscano and Curry 
(70, 72, 180, 246]). 
An extended and polished form of the Rota theory can be found in (202]. There 
have been several attempts to generalize the Rota theory. In particular, Roman 
has extended the Rota theory to include many sequences of polynomials that 
are not Sheffer sequences, e.g. Jacobi polynomials (see [201]) or q-polynomials 
(see (202, Section 6.4] or [203]). Roman remarks in (202, Section 6.1] that his 
ideas go back to 1936 ((246]), but he forgets to mention the work of Viskov (see 
[242]). Viskov has even an extension of the Rota theory including all sequences 
of polynomials (see (243,244], cf. [139, 138, 154]). Cholewinski has adapted the 
Rota theory to Bessel functions (see [60]). Grabiner has extended the Roman 
theory to classes of entire functions (see (111, 112]). An application of operator 
calculus to hypergeometric functions can be found in [240]. 
For other generalizations of the Rota theory, see [13, 15, 16, 17, 18, 19, 34, 36, 
37, 39, 40, 53, 54, 63, 51, 52,103,104,119,133,136,135,149,145,147,148, 
146, 150, 158, 177, 178, 186, 197, 196, 204, 238, 239, 247, 248]. 

There is a wide range of applications of the Rota theory, e.g. statistics ( [164, 
168, 170]), combinatorics ((79, 114, 137, 162, 167, 169, 174, 173, 175, 189, 193, 
194, 195, 198, 208, 223, 249, 250]), approximation theory ((123, 129, 241, 159, 
219, 234]), recurrence relations ([41, 166, 165, 171, 206, 205]), physics ((25, 26, 
89, 88, 91, 115, 116, 117, 252]), algebraic topology ((187, 188, 191, 190, 192]) 
and stochastic processes ((50, 222, 224]). 

A survey of the Umbra} Calculus with over 400 references can be obtained in 
electronic form through the Electronic Journal of Combinatorics: 

http://ejc.math.gatech.edu:8080/Journal/Surveys/index.html 

Contents of this tract 

Chapter 2 is an introduction to the Rota Umbra} Calculus. It is shown that 
if (qn)nEN is a sequence of polynomials of convolution type, then qn(x) = 
:r;;=O g~* ~; for some sequence (gn)nEN with Yo = 0. This aspect is only 
implicitly present in the work of Rota. However, it will be shown in Chapter 2 
that the coefficient sequence (gn)nEN is important for the theory of polynomials 
of convolution type. The section on cross sequences and Steffensen sequences 
brings together several results scattered in the literature. 
Chapter 3 contains a miscellany of applications of the Umbral Calculus. Topics 
covered include finite probability distributions, combinatorial identities, expo­
nential families, approximation operators, orthogonal polynomials, semigroups 
of probability measures, and integral representations of shift-invariant opera­
tors. These sections are partly based on (75, 77]. 
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Chapter 4 starts with some general Banach algebra theory. This theory is used 
to obtain a new, unified treatment of existence problems for logarithms. This 
treatment is applied to polynomials of convolution type and yields analytic 
results on the generating function of sequences of polynomials of convolution 
type. Moreover, a two-sided analogue of polynomials of convolution type is 
introduced and studied. This section extends the results of [73). 
The first sections of Chapter 5 consider central limit theorems for the coeffi­
cients of polynomials of convolution type as in [48, 55, 96, 97, 222, 224]. Results 
by Stam ([222, 224] are extended to the case of non-negative coefficients. The 
last section of Chapter 5 concerns an application of the theory of Chapter 4 to 
the theory of infinitely divisible probability measures on N. It is shown that 
the Banach algebra techniques used in the literature (in particular, those by 
Chover, Ney and Wainger [61)) can be simplified considerably. Moreover, we 
give a simple proof of a result by Embrechts and Hawkes [87) on subexponential 
sequences. 



Chapter 2 

Umbra! Calculus 

This chapter is an introduction to Rota's Umbral Calculus as presented in [210]. 
For reasons explained in the introduction, we use polynomials of convolution 
type instead of binomial type. 
Rota and his co-authors used operators together with formal power series in 
their papers [162, 210]. Although a rigorous foundation of formal power series 
exists (see e.g. [172]), we prefer to use operators only to develop the basic 
theory (see Section 2.2). More important, however, is our emphasis in this 
chapter on the coefficient sequence (Definition 2.1.11). The coefficient sequence 
is only implicitly present in [210]. Another feature of our approach is the use 
of elementary operator methods. 

In Section 2.1 we study the system of convolution equations that defines the 
polynomials of convolution type. Sections 2.2 and 2.3 are an introduction to 
delta operators and polynomials of convolution type. The concept of polyno­
mials of convolution type is generalized to Sheffer polynomials in Section 2.4 
and to cross and Steffensen sequences in Section 2.5. Examples are included 
to illustrate the theory; systematic presentations of examples can be found in 
[202, Chapter 4] and [235]. 

Contents of Chapter 2 

2.1 A convolution equation. 

2.2 Basic polynomials and delta operators. 

2.3 Explicit formulas for polynomials of convolution type. 

2.4 Sheffer sequences. 

2.5 Cross sequences and Steffensen sequences. 
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Notation and conventions 

The degree of a polynomial, notation: degp, is defined as usual, however, the 
degree of a nonzero constant is defined to be zero and the degree of the zero 
polynomial is defined to be -1. 
N is defined to be the set {O, 1, 2, ... }. 
The vector space of polynomials with coefficients in some fixed commutative 
ring, is denoted by P. The commutative rings that we will use are the reals, 
the integers and the complex numbers. 

2.1 A convolution equation 

In this section we study the following system of equations: 

n 
fn(X + Y) = L fk(x) fn-k(Y) (n=0,1, ... ), (2.1) 

k=O 

where each fn (n E N) is defined on a semigroup S and takes values in a 
commutative ring R. This general setting enables us to prove the necessary 
results for all semigroups of interest to us ( the reals, the positive reals, the 
natural numbers, etc.) at the same time. 

These equations come up at several places: 

• transition probabilities of stochastic processes ([126]): let N(t)t?.O be a 
stationary stochastic process with independent increments. If f n(x) = 
P(N(x) = n), then (2.1) follows by conditioning N(x + y) on N(x). For 
further references, see [1, pp. 111-116] and [3, Chapter 12]) 

• semigroups of convolution operators on sequence spaces: let (Tt)t>O be 
a semigroup of convolution operators on some Banach space X of one­
sided sequences. Then (Ttx)n = :z:::;=O fk(t) Xn-k for some sequence of 
functions Un)nEN and (2.1) follows from the semigroup property. 

• combinatorics: let f n ( x) denote the number of functions with some speci­
fied property ( e.g., injectivity) from an n-element set to an x-element set. 
Then (2.1) follows by partitioning an x + y-element set into two disjoint 
sets (see [162]). 

All bounded solutions for S = R = (0, oo) have been determined in [126], where 
(2.1) is related to transition probabilities of a stationary stochastic process with 
independent increments. It turns out that the solutions are given by so-called 
compound Poisson processes. A general study of the system of equations (2.1) 
was undertaken by Aczel and collaborators (see e.g. [2], [3, Chapter 12],[4]). 
We give a less general self-contained treatment which suffices for our purposes. 
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Definition 2.1.1 A sequence Un)nEN of functions on a semigroup S and tak­
ing values in a commutative ring R is a sequence of functions of convolu­
tion type if Un)nEN satisfies (2.1) for all n EN and all x, y ES. If each fn is 
a polynomial, then Un)nEN is a sequence of polynomials of convolution 
type. 

The interpretation of (2.1) in terms of transition probabilities of compound 

Poisson processes suggests that f n must be of the form e-h I;~=O g~* t~. 
Before we continue to determine the general solution of (2.1), we define the 
numbers g~* and give some properties. 

Definition 2.1.2 Let a = (an)nEN and (3 = (f3n)nEN be sequences in a com­
mutative ring R. The convolution a* (3 is the sequence defined by (a* f3)n := 

L~=O ak f3n-k · 
If k EN, then ab is defined recursively as follows: a 0* := (80,,)nEN (8on is the 
Kronecker delta) and a(k+l)* := ab * a. 
For sake of brevity, we will write a~* instead of ( ab )n. 

Remarks 2.1.3 Let a= (an)nEN be a sequence in a commutative ring R. 
a) If I;~=O anzn is a formal power series, then a~* is the coefficient of zn in 

(I;~=O an zn)k. In other words, 

b) It follows directly from Definition 2.1.2 that ah = a and a 2* =a* a. 
c) Note that the convolution operation is commutative and associative. As­
sociativity implies ai* * ai* = a(i+j) * for all 'i, j E N. In particular, taking 
j = k - i, we obtain 

(O~i~k). (2.2) 

d) Let us prove the useful fact that a~* is a polynomial in a 0, ... , an for 
all k 2: 1 and all n E N. We proceed by induction on k. The statement 
holds for k = l. Suppose by induction that the statement is true at k. Then 

(k+l) * " 00 k* . 1 . 1 . Th' 1 h a,, = L.m=O am an-m 1s a po ynomia m ao, ... , an. 1s competes t e 
proof. 
It follows that, if /30,/31, ... ,f3N is a finite sequence in R, then (3~* is well­
defined for n ~ N and all k E N. 
e) Formula (2.1) is a system of convolution equations, because it says that 
Un(x + y))nEN is the convolution of the sequences Un(x))nEN and Un(Y))nEN· 
If (an)nEN and (bn)nEN are sequences of functions of convolution type, then 
Un)nEN, defined by fn(x) := I;~=O ak(x) bn-k(x) for all x E S, is also a 
sequence of functions of convolution type, since convolution is an associative 
and commutative operation. 
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Remark 2.1.4 If (o:n)nEN is a sequence of non-negative real numbers such 
that E:=o O:n = 1, then o:~* has the following probabilistic interpretation. Let 
Xi, i = 1, 2, ... be independent identically distributed random variables on 
some probability space (0., P, :F) with P(Xi = n) = O:n for i = 1, 2, ... and 
n E N. Define sk := X1 + ... + xk (k = 1, 2, ... ). Using Remark 2.1.3a, 
it is easy to see that P(Sk = n) = o:~*. Suppose o:o = 0. It follows from 
P(Sk = k) = P(X1 =,X2 = ... = Xk = 1) that o:t* = (o:1)k, If k > n, then 
P(Sk = n) = 0, since P(Xi ~ 1) = 1 for i = 1, 2, .... Hence, o:~* = 0 if k > n. 

Formula (2.2) can be interpreted as conditioning on Si, i.e. 

00 00 

P(Sk = n) = L P(Sk = n n Si= m) = L P(Si = m) P(Sk-i = n - m). 
n=0 n=0 

The following lemma shows that the two properties mentioned in Remark 2.1.4 
are also true under a more general condition. 

Lemma 2.1.5 Let (o:n)nEN be a sequence in a commutative ring such that 
o:o = 0. Then: 

a) a~* =0ifk>n (k,nEN). 

b} a~* = (o:1)n for all n EN. 

c} a~* is a polynomial in 0:1, ... , O:n-1 for 2 S k Sn (k, n EN). 

Proof: a) We apply induction on k. The statement is true fork= 0. Suppose 
by induction that the statement is true at k. Then o:~~m = 0 for k + 1 > n 

d > 1 H {k+l)* '°'oo k* k* 0 · 0 an m _ . ence, O:n = L.,n=O O:m o:n-m = o:o o:n = since o:o = . 
b) We apply induction on n. The statement is true for n = 0, since o:8* = 1 
by definition. Suppose by induction that o:~* = (o:1)n. It follows from a) and 

0 th t (n+l)* '°'n+l n* n* ( )n+l O:o = a O:n+l = L.,m=0 O:m O:n+l-m = 0:1 O:n = 0:1 · 
c) We proceed by induction on k. The statement is true fork= 2, since a:;* = 
L~=O O:i O:n-i• Suppose by induction that the statement is true at k. Then 
D 1 (2 2) . ld (k+l)* '°'oo h h' h 1 "'n-k k* .rormu a . y1e s O:n = L.,n=O O:m o:n-m, w IC equa S L.,m=l O:m o:n-m 
since o:o = 0 and o:~~m = 0 form> n - k by a). D 

We are now ready to derive the general form of sequences of functions of con­
volution type (Definition 2.1). 

Lemma 2.1.6 Let Uo,U1, ... ,UN be elements of a commutative ring R. Let 
ho, h1, ... , h iv be functions from a semigroup S to R such that for fixed x, y E 
s, 

n 

hn(X + y) = L hk(x) hn-k(Y) 
k=O 
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for all n = 0,l, ... ,N. Define fn(x) := :EZ=o g~* hk(x) (n = 0,l, ... ,NJ. 
Then 

n 

fn(X + Y) = L /k(x) fn-k(Y) 
k=O 

for all O ~ n ~ N. 

Proof: This follows from direct substitution and the following form of (2.2): 

n 
~ gi* g3* = g(i+j)• L.J k n-k n · 
k=O 

D 

Lemma 2.1. 7 Let Un)nEN be a sequence of functions of convolution type from 
a semigroup S to a commutative ring n. 

a) If Jo = 0, then f n = 0 for all n EN. 

b} If S = (0, oo) and fo(x) = 0 for some x, then fn = 0 for all n EN. 

Proof: a) Follows directly by induction on n. 
b) We apply induction on n. It follows immediately from fo(x+y) = fo(x) fo(Y) 
that f 0(t) = 0 for all t ~ x and that fo(x/2) = 0. Iterating this argument yields 
fo(t) = 0 for all t > 0. Suppose by induction that we proved that f m = 0 for 
all m < n. Then fn(t) = fn(½t + ½t) = :EZ=o fk(½t) fn-k(½t) = 0 for all 
t> 0. □ 

Theorem 2.1.8 Let S C C be a semigroup and let n be a subset of C that is 
closed under addition and a group with respect to multiplication. Suppose A is 
an algebra of functions S ---+ n such that 

• the only non-zero solutions in A to the equation f(x + y) = f(x) + J(y) 
are f(x) = ex with c En. 

• the only non-zero solutions in A to the equation f ( x + y) = f ( x) f (y) are 
f(x) = eax with a En. 

Then Un)nEN is a sequence of functions of convolution type in A if and only if 
there exist a En and a sequence (gn)nEN inn with 90 = 0, such that 

n k 

fn(x) = eax Lg~* ~! 
k=O 

for all n EN .and all x ES. 

Proof: '<=' This follows from Lemma 2.1.6 with hn(x) = xn /n!. 
'=>' If Jo = 0, then fn = 0 for all n E N by Lemma 2.l.7a and the theorem 
holds with 9n = 0 for all n E N. We therefore assume that Jo =/=- 0. 
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Since f 0 (x + y) = J0 (x)Jo(Y) for all x,y ES and Jo EA, there exists a ER 
such that fo(x) = eax_ Define (Pn)nEN by Pn(x) := e-ax fn(x). Note that 
(Pn)nEN is a sequence of functions of convolution type in A too. 
We now use induction on n in order to show that there exists a sequence (gn)nEN 

k 

in R such that Pn(x) = LZ=o g~• :, for all n EN. Note that convolutions of 
finite sequences are well-defined by Remark 2.l.3d. 

If n = 0, then Po(x) = 1 = gg• ~~ for all x. Since P1 EA and P1(x + y) = 
Po(x)p1(Y) + P1(x)po(Y) = P1(x) + P1(Y), it follows that P1(x) = p1(l) x. So 

P1(x) = g~• ~~ + g}* ~; = g1x, if g1 is defined to be p1 (1). 
Suppose that we have go, g1, ... , 9n-l ( n > 1) in R such that go = 0 and 

Pm(x) = L;:'=0 g;;; :; form< n. It follows from (2.1) that Pn is a solution of 
the following linear functional equation in p: 

n-1 

p(x + y) - p(x) - p(y) = L Pk(x) Pn-k(Y) 
k=l 

for all x, y E S. 
It follows from Lemma 2.1.6 that p, defined by p(x) := LZ=o g~• :; , is a 
solution in A of this functional equation. Thus (Pn - p) ( x + y) = (Pn - p )( x) + 
(Pn -p)(y) for all x, y ES. Hence, there exists c ER such that (Pn -p)(x) = ex 
for all x ES. Set 9n := c. Since g~• (1 < k:::; n) can be expressed in terms of 

g1,g2, ... ,9n-l by Remark 2.l.3d, we have Pn(x) = LZ=o g~• :; . D 

Theorem 2.1.9 The assumptions of Theorem 2.1.8 are satisfied in the follow­
ing cases: 

• A = measurable functions, S = N, Z, JR\, (0, oo) or <C, and R = l!R, (0, oo) 
or <C 

• A = locally bounded functions, S = N, Z, llR, (0, oo) or <C, and R 
l!R, (0, oo) or <C 

• A= polynomials, S = N, Z, l!R, (0, oo) or <C, and R = l!R, (0, oo), or <C. 

Proof: It follows from [3, Remark below Theorem 4, p. 56], [3, Proposition 1, 
p. 53 and remark below Theorem 4, p. 56] and [3, Proposition 1, p. 53 and 
remark below Theorem 4,p. 56] that the assumptions of Theorem 2.1.8 are 
satisfied in these cases. 

Remarks 2.1.10 a) Note that the proof of Theorem 2.1.8 shows that Theo­
rem 2.1.8 also holds for finite sequences of functions of convolution type ( cf. 
Remark 2.l.3d ). 
b) It follows from Theorem 2.1.8 that if (qn)nEN is a sequence of polynomi­
als of convolution type, then 9n = q~(0). Thus (qn)nEN determines (gn)nEN· 
Conversely, (gn)nEN determines (qn)nEN by Lemma 2.1.6. Hence, there is a 
one-to-one correspondence between sequences (qn)nEN of polynomials of con­
volution type and sequences (gn)nEN with go = 0. 
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c) It follows from Theorem 2.1.8 that the convolution property of coefficients 
of polynomials of binomial type mentioned in [207, Proposition 4.3]) is nothing 
else than formula (2.2) in disguise. 
d) It is possible to give a purely algebraic proof of Theorem 2.1.8 in case 
Un)nEN is a sequence of polynomials. The method of proof is similar to the 
idea employed in the proof of Theorem 2.l.12c. 

We now present some general properties of sequences of polynomials of convo­
lution type. 

Definition 2.1.11 Let (qn)nEN be a sequence of polynomials of convolution 
type. The coefficient sequence of (qn)nEN is the sequence (gn)nEN such that 

( ) - °"n k* ::ek qn X - L..,k=0 gn kf· 

The following theorem describes the interplay between a sequence of polyno­
mials of convolution type and its coefficient sequence. Other results have been 
obtained by Niederhausen, see [164, 167]. 

Theorem 2.1.12 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN· Then: 

a) degqn :Sn for all n EN. 

b) degqn = n for all n EN if and only if g1 -1- 0. 

c) if g1 = 0, then deg qn :S [n/2] for all n E N. In this case, deg qn = [n/2] 
for all n E N if and only if g2 -1- 0 and g3 -1- 0. 

d) the following formal generating function relation holds: 

CX) 

L qn(x) tn = ex g(t), (2.3) 
n=0 

where g(t) = I:::"=o gn tn. 

e) qo = 1 and qn(O) = 0 for n ~ l. 

Proof: a) This follows directly from Theorem 2.1.8. 
b) This follows directly from Theorem 2.1.8 and Lemma 2.l.5b. 
c) We apply induction on n. It follows from Theorem 2.1.8 that the statement 
is true for n = 0 and n = 1. 
Suppose by induction that degqm :S [m/2] for all m < n (n ~ 2). If degqn > 
[n/2], then qn(x) = I:f=o akxk (N > [n/2], aN -1- 0). Moreover, (2.1) yields 

N n 

L ak(2xl = qn(2x) = L qk(x)qn-k(x). 
k=0 
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Using the induction hypothesis and the inequality [½] + [n2k] ::; [~] (0 ::; 
k ::; n) , we see that the coefficient of xN on the left-hand side equals aN2N, 

whereas the coefficient of xN on the right-hand side equals 2aN, This leads 
to N = l since aN -::j: 0, which contradicts N > [n/2] 2::: 1. We conclude that 
deg qn ::; [n/2]. This proves the first assertion. 
For the second assertion, we note that the last line of Remark 2.1.3a easily yields 
g~z = (g2l and g~k+l = k(g2)k-l g3, since go= 91 = 0. Hence, degqn = [n/2] 
for all n E N if and only if 92 -::/= 0 and g3 -::/= 0. 
d) Using Theorem 2.1.8 and Lemma 2.1.5a we have 

~qn(x)tn = ~~ g!* :: tn = ~ (~g!* tn) :: =exg(t)_ 

e) By definition, gg* = l. Thus Theorem 2.1.8 yields qo = l. It follows 
from Lemma 2.1.5a that g~* = 0 for n 2::: 1. Hence, qn(O) = 0 for n 2::: 1 by 
Theorem 2.1.8. □ 

Remarks 2.1.13 
a) Theorem 2.1.12c yields the following extension of Lemma 2.1.5a: if go = 
g1 = 0 , then g~* = 0 fork> [n/2]. 
b) An example of a sequence of polynomials of convolution type with degqn = 
[n/2] is the sequence of polynomials defined by the generating function 

00 

~ qn(x) zn = ex(log(l + z) - z). 

n=O 

These polynomials appear in combinatorics (see [199, p. 73]). It follows from 
Theorem 2.1.12c that degqn = [n/2] for all n EN. 
c) It is possible to extend Theorem 2.1.12c to the case go = ... = gk = 0. As 
an illustration, let us consider the following example due to Daniel Loeb. Fix 

k EN. Take 9n = Onk for all n EN. Then qn(x) = :1~; if k divides n, and 0 
otherwise. 

We conclude this section with an extension of a theorem due to Markowsky 
(see [154, Theorem 4.4]). 

Theorem 2.1.14 Let (an)nEN be a sequence in a commutative ring R such 
that ao = l. Then for each sequence (xn)nEN in R \ {O} there exists a unique 
sequence of polynomials of convolution type (qn)nEN such that qn(xn) = an for 
all n EN. 

Proof: Uniqueness is clear, since qn(xn) = an determines the values of qn(k Xn) 
for all k E N (use (2.1)). Existence can be shown inductively as follows. By 
Theorem 2.1.8, it suffices to find a sequence (gn)nEN in R with g0 = 0 such 

that qn(x) = L~=O g~* ~: for all n EN. Suppose 9k has been found for each 
k < n. By Lemma 2.1.5c, g~* is a polynomial in g1 , ... , 9n-l for 2 ::; k ::; n. 

"'n k x: _ This means that we can choose 9n such that L..Jk=O gn * kT - an. This proves 
existence. □ 



2.2 Basic polynomials and delta operators 19 

2.2 Basic polynomials and delta operators 

In this section we link polynomials of convolution type to a certain kind of linear 
operators on polynomials, following and extending the exposition of the U mbral 
Calculus in [162, 210]. Our emphasis on operator methods yields simpler proofs 
than in [162] and [210]. The key theorems of this section are Theorems 2.2.15, 
2.2.17 and 2.2.19 which describe the relation between delta operators and poly­
nomials of convolution type. 
Most proofs are new or modifications of existing proofs. 

Let ( qn)nEN be a sequence of polynomials of convolution type with deg qn = n 
for all n E N. Then (qn)nEN is a basis for the vector space P of polynomials 
with coefficients in some field K of characteristic zero. Hence there exists a 
unique linear operator Q on P with Qqn = qn-I, n ?:". 1 and Qq0 = 0. The 
Rota Umbral Calculus is based on this operator. It turns out that this operator 
is shift-invariant (see Definition 2.2.2 and Theorem 2.2.19). 

Definition 2.2.1 The shift-operator E 0 is defined by (Eap)(x) := p(x + a) 
(p E p ). 

Definition 2.2.2 An operator T on P zs called shift-invariant if EaT 
T Ea for all a. 

Examples 2.2.3 Examples of shift-invariant operators include: 

a) the identity operator I. 

b) the differentiation operator D. 

c) the operators Ea of Definition 2.2.1. 

d) the forward difference operator E 1 - I. 

e) the backward difference operator I - E-1 . 

f) the Abel operators DEa. 

g) the Laguerre operator L , defined by 

h) the Bernoulli operator J , defined by 

lx+l 

(Jp)(x) := x p(t) dt 

Remark 2.2.4 If 5 is an invertible shift-invariant operator on P , then its in­
verse 5-1 is also shift-invariant, since 5-1 Ea= 5-1 Ea55- 1 = 5-15E"5-1 = 
Ea 5-1 for all a. 
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Definition 2.2.5 A linear operator Q on P is called a delta operator if Q 
is shift-invariant and Qx is a nonzero constant. 

Examples 2.2.6 Examples of delta operators include b, d, e, f and g from 
Examples 2.2.3, but not a, c and h. 

It is a remarkable fact that every linear shift-invariant operator has a Taylor­
like expansion in terms of an arbitrary delta operator (see Theorem 2.2.22). 
We start by proving this expansion theorem for the differentiation operator D, 
because this yields simple proofs for properties of shift-invariant operators. 

Theorem 2.2.7 {[210, Theorem 2]) Let D be the differentiation operator 
and define qn(x) = "': for all n E N. Then T is a linear shift-invariant n. 
operator on P if and only if 

00 

T = L (Tqk)(O) Dk. 
k=0 

Proof: '~' Note that the infinite sum is in fact a finite sum when applied to 
a polynomial and thus is a well-defined operator on P. Shift-invariance of T 
follows from shift-invariance of D. 
'=>' Since (qn)nEN is a basis for P, it suffices to verify the result for Tqn for 
all n EN. Using the Binomial Theorem, we obtain (Tqn)(a) = (EaT qn) (0) = 
(TEaqn)(O) = (L;=O qn-k(a)Tqi.) (0) = (L;;':o (Tqk)(O)Dkqn) (a) for all 
n E N and all a. 

Examples 2.2.8 
a) Consider the shift-invariant operator Ea. Theorem 2.2. 7 yields 

Hence, p(x + a) = (Eap)(x) = L;:':o (Dk p)(x) ~~ for all p E P, which is 
Taylor's Formula. 
b) Consider the Laguerre operator of Example 2.2.3e. Since fork 2: 1 we have 

( Xk) /oo -t tk-l 
L kl (0) = - Jo e (k _ l)! dt = -1, 

00 

it follows that L = - L Dk = D(D - n-1 . 

k=0 
c) Consider the Bernoulli operator of Example 2.2.3f. Since 

J ( :: ) (0) = 11 :~ dt = (k: 1)!' 

00 Dk 
it follows that J = L --­

k=0 (k + 1)!. 
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We now derive some corollaries from Theorem 2.2.7. The first corollary is 
an extension of [210, Propositions 1 and 2, p. 687]. Recall that the degree 
of a nonzero constant is defined to be zero and that the degree of the zero 
polynomial is defined to be -1. 

Corollary 2.2.9 a) If T is a linear shift-invariant operator on P, then there 
exists a non-negative integer n(T) such that deg Tp = max{ -1, degp - n(T)} 
for all p E P. The null space of T equals the set of polynomials with degree less 
than n(T). 
b) If Q is a delta operator, then degQp = max{-1,deg(p) -1} and the null 
space of Q equals the set of constant polynomials. 

Proof: a) By Theorem 2.2.7, we have T = L~o akDk for some sequence 
( an)nEN• It follows from deg Dkp = max{ -1, deg(p) - k} that if we set n(T) := 
min{k EN : ak =f. O}, then degTp = max{-1,deg(p) -n(T)} for all p E P. 
Thus Tp = 0 if and only if degp < n(T). 
b) By definition, Q x is a nonzero constant. Thus a) implies that deg Qp = 
max{ -1, deg(p) - 1} for all polynomials p E P. □ 

Remarks 2.2.10 a) The converse of Corollary 2.2.9a is not true. Fix m E N. 
We construct a linear, non shift-invariant operator Ton P such that degTp = 
max{-1, deg(p) - m} for all p E P. 
Define a linear operator Ton P by Txk := 0 if k < m, Txm := 1, Txm+l := ½x 
and Txk := xk-m if k 2: m + 2. Clearly degTp = max{-1, deg(p) - m} 
for all p E P. Then (TE1 )xm+l = T(x + 1r+1 = I:;;'=1;i1 (mt) Txk = 
T (xm+l + (m + l)xm) = ½ x + m + 1 and (E1T) xm+l = ½ (x + 1). Thus 
m = -½, which is impossible since m E N. We conclude that T is not shift­
invariant. 
For more information on the structure of linear shift-invariant operators on P, 
see Remark 2.2.22. 
b) Erik Thomas has pointed out to me that Corollary 2.2.9 can be used to 
find all translation-invariant linear subspaces of P. A linear subspace L of 
P is translation-invariant if Ea L C L for all a. Translation-invariant linear 
subspaces are important in harmonic analysis. 
The following result is somewhat stronger: if Lis a linear subspace and Eb LC 
L for some b =f. 0, then Lis either one of the trivial subspaces {O} or P, or there 
exists n E N such that L = Pn, where Pn is the set of all polynomials with 
degree not exceeding n. The proof runs as follows: let p E L be arbitrary and 
let m be the degree of p. Consider the linear shift-invariant operator Eb - I. 
Since (Eb - I) x = b =f. 0, it follows that Eb - I is a delta operator. It follows 
from Corollary 2.2.9b that deg ((Eb - I)k) p = m - k for O :s; k :s; m. By 
linearity, Pm CL. Suppose L =/- {O} and define n := sup{degplp E L}. The 
above argument yields that L = Pn if n < oo and that L = P if n = oo. 
Conversely, Pn is translation-invariant for each n EN. 

Corollary 2.2.11 ([210, Corollary 1]) Let T be a linear shift-invariant op­
erator on P. Then the following are equivalent: 
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a) T is invertible. 

b) Tl :f 0. 

c) degp = degTp for all p E P. 

Proof: 'a ⇒ b' The null space of an invertible linear operator consists of O only, 
so Tl :f 0. 
'b ⇒ c' Since Tl :f 0, it follows from Corollary 2.2.9a that degp = degTp for 
all p E P. 
'c ⇒ a' It suffices to prove that T is injective and surjective. If p, q E P and 
p :f q, then T(p - q) :f O since deg(p - q) 2: 0. Moreover, degp = degTp 
implies that (Txn)nEN is a basis for P. Hence, Tis surjective. D 

Corollary 2.2.12 ([210, Corollary 4]) Any two linear shift-invariant oper­
ators on P commute. 

Proof: All linear shift-invariant operators can be represented as a formal power 
series in the differentiation operator D by Theorem 2.2. 7. Since the action 
of these operators on a polynomial only involves finitely many terms of their 
expansions, the result follows. D 

The polynomials qn(x) = "'~ appeared in the proof of Theorem 2.2.7. These n. 
polynomials have the properties q0 = 1, Dqn = qn-l and qn(0) = 0 for n > 0. 
Moreover, they are of convolution type by the Binomial Formula. We will now 
show that for every delta operator there exists a sequence of polynomials with 
analogous properties (see Theorems 2.2.15, 2.2.17 and 2.2.19). 

Definition 2.2.13 Let Q be a delta operator. A sequence (qn)nEN of polyno­
mials is a basic sequence for Q if: 

1. qo = 1 

2. qn(0) = 0 if n 2'. 1 

3. Qqn = qn-1 if n 2'. 1. 

Remarks 2.2.14 a) It follows from (1), (3) and Corollary 2.2.9b that degqn = 
n for all n E N. 
b) Note that properties (1) and (2) of Definition 2.2.13 are satisfied by each 
sequence (qn)nEN of polynomials of convolution type by Theorem 2.1.12e. 
c) If (qn)nEN is a sequence of polynomials of convolution type with degq1 = 1 
and T is a linear operator on P such that Tqn = qn_ 1for n 2: 1, then T is 
shift-invariant since TEYqn = T o:::;==O qn-k(Y) qk) = I::;==1 qn-k(Y) qk-1 = 
I:~;:~ qn-1-h(y)qh =EYqn-1 = EYTqn. Hence, bylinearity,TEY = EYT. 

Theorem 2.2.15 ([210, Proposition 3]) There is a unique basic sequence 
for every delta operator. 
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Proof: Let Q be an arbitrary delta operator. It follows from Theorem 2.2.7 
and Corollary 2.2.9b that there exists a sequence (an)nEN with a1 -::j:. 0 such 
that Q = I:~1 akDk . By Remark 2.2.14a, we must construct polynomials 
qn of degree n. By (1) of Definition 2.2.13, q0 = 1. Suppose by induction 
that qn-1 = EZ:-t an-1,kxk has been constructed. Since deg qn = n, qn must 
be of the form EZ=o an,kXk. Because qn(O) = 0 by (3) of Definition 2.2.13, 
an,0 must be zero. Substitution of Q = I:~1 akDk into Qqn = qn-1 and 
comparing coefficients yields the following system of equations: 

an-1,n-1 a1 nan,n 

an-1,n-2 = a1(n - l)an,n-1 + a2n(n - l)an,n 

Because a 1 -::j:. 0 this system of equations has a unique solution. This proves 
uniqueness and existence. □ 

Explicit formulas for the calculation of basic sequences will be discussed in 
Section 2.3. 

Examples 2.2.16 
a) The differentiation operator D has basic sequence (~; )nEN' 

b) The forward difference operator E 1 - I has basic sequence ( (:)) nEN' where 

( x) := x(x - 1) ... (x - n + l) 
n n! 

are the lower factorials. 
c) The backward difference operator I -E-1 has basic sequence ( ("'+:-1) )nEN' 

where 

( x + n - l) := x(x + 1) ... (x + n -1) 
n n! 

are the upper factorials . 

d) The Abel operator DEa has basic sequence - 1 , the Abel (
2:(2: na)''- 1 ) 

n. nEN 
polynomials . 

Theorem 2.2.17 ([210, Theorem 11) The basic sequence of a delta operator 
is a sequence of polynomials of convolution type. 

Proof: Let Q be a delta operator with basic sequence (qn)nEN . According to 
Definition 2.1.1 we have to prove 

n 

qn(X + Y) = L qk(x) qn-k(Y) (2.4) 
k=0 
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for all n EN and all x, y (cf. Remark 2.1.lOb). We proceed by induction on n. 
The case n = 0 is trivial because qo = 1. 
Suppose by induction that (2.4) has been proved for m < n. Fix y. It follows 
from Definition 2.2.5 that QEYqn = EYQqn = EYqn-l• Hence, 

n 

EYqn-l - L qk qn-I-k(Y) = 0. 
k=O 

Corollary 2.2.9b implies that EYqn - I:;=O qk qn-k(Y) is a constant. So qn(x + 
y) = c + qk(x) qn-k(y). Taking x = 0 yields c = 0, since qn(0) = 1 for n ~ 1. 
Because y was arbitrary, we obtain qn(x+y) = I:;=O qk(x) qn-dY) for all x, y. 

□ 

Remark 2.2.18 Theorem 2.2.17 shows that the polynomials appearing in Ex­
amples 2.2.16 are of convolution type. This yields the following formulas: 

a) 

b) 

c) 

d) 

(the well-known Binomial Formula). 

(this is the Vandermonde convolution formula, see e.g. [200, p. 8]). 

This formula is equivalent to the Vandermonde convolution formula, since 

("'+z-1) = (-l)k(-t). 

(x + y)(x + y - nat-1 = t G) x (x - ka)k-l y (y - (n - k)at-k-l 
k=O 

(this is the Abel generalization of the Binomial Formula, see e.g. [200, 
p. 18]). 
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The following theorem is a converse to Theorems 2.2.15 and 2.2.17. 

Theorem 2.2.19 ([210, Theorem 1]) Let (qn)nEN be a sequence of polyno­
mials of convolution type such that deg q1 = 1. Then there exists a unique delta 
operator Q with basic sequence (qn)nEN• 

Proof: By Theorem 2.1.8, there exists a sequence (gn)nEN such that qn(x) = 
E;=O g!* ~~ for all n EN. Thus 91 =/= 0, because degq1 = 1 and q1(x) = g1x. 
By Theorem 2.l.12b, degqn = n for all n EN. Therefore (qn)nEN is a basis for 
P. Since (qn)nEN is a basis for P , there exists a unique linear operator Q on 
P such that Qqn = qn-1 (n 2: 1) and Qqo = 0. Since deg q1 = 1, it follows that 
Qx is a nonzero constant. Shift-invariance of Q follows from Remark 2.2.14c. 

□ 

Remarks 2.2.20 a) It is essential in Theorem 2.2.19b that deg q1 = 1. If 
degq1 =/= 1, then q1 = 0 by Theorem 2.1.8 and no delta operator Q with 
Qq1 = qo can exist by Corollary 2.2.9b since qo = 1. 
b) Let (qn)nEN be a sequence of polynomials of convolution type. As remarked 
in the beginning of this chapter, the Rota theory of polynomials of convolution 
type depends on the delta operator Q that maps qn to qn-1• Yang remarks 
in [253] that the linear operator on P that maps qn to qn+l ( the so-called 
Roman shift) is in some cases more useful than the delta operator. For more 
information on the Roman shift, see [202, Section 3.6]. 

We conclude this section with the general Expansion Theorem ( cf. Theo­
rem 2.2.7). 

Theorem 2.2.21 (Polynomial Expansion Theorem) Let Q be a delta op­
erator with basic sequence (qn)nEN• Then 

00 

p = L (Qkp)(O) qk 
k=0 

for all p E P. 

Proof: Let p E P be arbitrary and let n be the degree of p. By Remark 2.2.14a, 
there exist constants Ck such that p = E;=O Ck qk. It follows that Qrp = 
E;=r Ck qk-r for O :'.5: r :'.S n. Evaluating at zero yields Cr = (Qrp)(0) since 
qk(0) = 0 fork 2: 1. Hence, p = E~o (Qkp)(0) qk. □ 

Theorem 2.2.22 (Operator Expansion Theorem, [210, Theorem 2]) 
Let T be a linear shift-invariant operator on P and let Q be a delta operator 
with basic sequence (qn)nEN• Let (gn)nEN be the coefficient sequence of (qn)nEN• 
Then: 

00 

a) T = L (Tqk)(0)Qk 
k=0 
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b) In particular, if (gn)nEN is the coefficient sequence of (qn)nEN , then D = 
I::;:"=0 gnQn and Q = I::;:"=0 gnDn where I:::'."=o gntn is the composition 
inverse of the formal power series I:::'."=o gntn. 

Proof: a) Let p E P be arbitrary with degree n. Applying Lemma 2.2.21 
to EYp, we obtain TEYp = I:;=O (QkEYp)(O)Tqk = I:Z=o (Qkp)(y)Tqk, 
Hence, (Tp)(y) = (EYTp)(O) = (TEYp)(O) = I:Z=o (Tqk)(O) (Qkp) (y) = 
I:~o (Tqk)(O) (Qkp) (y) for all y. This completes the proof, since p is ar­
bitrary. 

b) It follows from qn(x) = I:Z=o g~* ~~ that (Dqn)(O) = Yn for all n E N. 
Thus a) yields D = I::;:"= 0 (Dqn)(O)Qn = I:::'."=o gnQn. Since go= 0, the formal 
power series I:::o Yn tn has a compositional inverse (see e.g. [172]). 

Remarks 2.2.23 a) We implicitly used the Isomorphism Theorem 2.3.1 in the 
proof of Theorem 2.2.22b. 
b) Fix an arbitrary delta operator Q with basic sequence ( qn)nEN • We know 
from Remark 2.2.14a that (qn)nEN is a basis for P. Let T be an arbitrary linear 
shift-invariant operator on P. Consider the infinite matrix ( aij )i,j with entries 
a;1, where Tq1 = I::o aij qi, Theorem 2.2.22a yields 

00 j j 

Tqj = ~)Tqn)(O)Qnqj = 2)Tqn)(O)qj-n = 2)Tqj-i)(O)qi, 
n=0 n=0 

Hence, a;1 = (Tqj-i)(O). Thus a;,1 = ai+k,J+k for all k E N, i.e. Tis a Toeplitz 
operator on P. 
c) There also exists Operator Expansion Theorems for more general operators 
than shift-invariant operators. The coefficients of these expansions are polyno­
mials in x rather than constants (see [76, 139]). 

Examples 2.2.24 a) We want to expand the differentiation operator D in 
powers of the forward difference operator E 1 - I. The basic sequence of E 1 - I 
is ( (~)) nEN' so 

D = t ( DG)) (0) (E1 _ I)k = t (-lr-\E1 _ Il. 
k=0 k=0 

This is a classical formula for numerical differentiation. 
b) Consider the shift operator Ea. Expanding Ea in powers of E 1 - I yields 

Ea= f G) (El -Jl. 
k=0 

This is Newton's forward difference interpolation formula. 

We conclude this section with a few remarks on linear functionals. In [202, 207] 
the Umbral Calculus is presented in terms of linear functionals instead of linear 
operators as in this section. The following theorem describes the relationship 
between linear functionals and operators on P. 
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Theorem 2.2.25 a) The map p -+ (Tp)(O) is a linear functional on P for 
every linear operator T on P. 
b) If A is a linear functional on P, then there exists a linear shift-invariant 
operator Q on P such that Ap = (Qp)(O). 

Proof: a) This follows directly from the linearity of T. 
b) Let Q be the shift-invariant operator defined by 

An easy calculation shows that Axn = (Q xn)(O) for all n E N. Since the 
powers xn span P, this completes the proof. D 

2.3 Explicit formulas for polynomials of convo­
lution type 

In this section we derive some explicit formulas for polynomials of convolution 
type and we discuss the problem of connection coefficients. 
Whereas we avoided the use of formal power series in Section 2.2, we can 
hardly do so in this section. The reason is that formal power series makes 
computations considerably easier. 

We start with showing that the ring of formal power series and the ring of 
linear shift-invariant operators on P are isomorphic. 

Theorem 2.3.1 {Isomorphism Theorem = [210, Theorem 31) Let Q be 
any delta operator on P. The map AQ defined by 

is an isomorphism between the ring of formal power series and the ring of linear 
shift-invariant operators on P. 

Proof: It is clear from Theorem 2.2.22a that AQ is linear and injective. It 
follows from the Expansion Theorem 2.2.22a that AQ is surjective. Hence, 
we only need to show that AQ (f g) = AQ(f) AQ (g) for all formal power series 
f and g. Let f(t) = }:~0 ak tk and g(t) = }:~0 bk tk be arbitrary formal 
power series. Let (qn)nEN be the basic sequence of Q (Theorem 2.2.15). By 
Remark 2.2.14, (qn)nEN is a basis for P, hence it suffices to prove AQ(fg) qn = 
AQ(f) AQ(g) qn for all n E N. Since (ck Qk) qn = :E;=O Ck qn-k, we have 
AQ(fg) qn = ((a*b)*q)n and AQ(f) AQ(g) qn = (a*(b*q))n, where a= (an)nEN, 
b = (bn)nEN and q = (qn)nEN• Thus AQ(fg) qn = AQ(f) AQ(g) qn follows from 
associativity of the convolution operation (Remark 2.l.3c). □ 



28 U mbral Calculus 

The proof of the next corollary shows once more that Theorem 2.3.1 is useful 
( cf. Remark 2.2.23a). Corollary 2.3.2 will be used in Section 3.3 for computing 
moments of discrete distributions. 

Corollary 2.3.2 Let Q be a delta operator with basic sequence (qn)nEN and let 
(gn)nEN be the coefficient sequence of ( qn)nEN • Let g be the formal power series 
defined by g( t) := "E,";=0 gntn. Then r_:=o k qk (a) Qk = a Ecr. g' ( Q) Q. 

Proof: Fix an arbitrary a. Using the formal generating function of Theo­

rem 2.l.12d we obtain "E,~0 kqk(a)tk = t-!ft, ("E.:=o qk(a)tk) = t-!ft,eag(t) = 
aeag(t) g'(t) t. Theorem 2.3.1 now yields 

00 L kqk(a) Qk = aeag(Q) g'(Q) Q = a Ecr. g'(Q) Q 
k=O 

(the last equality follows from Theorem 2.2.22b and Example 2.2.8a). □ 

We now present explicit formulas for basic sequences of delta operators. For­
mulas a) through d) of Theorem 2.3.6 were already known to Steffensen (see 
[227, Sections 2 and 3]; see also [210, Theorem 4]). 

Definition 2.3.3 If Tis a linear operator on P, then its Pincherle derivative 
T' is defined by T' := TK - KT where the linear operator K is defined by 
(xp)(x) := xp(x) for all x and all polynomials p E P. 

The Pincherle derivative was introduced by Pincherle in [179, Section 56]. 

We now derive some elementary properties of the Pincherle derivative. 

Lemma 2.3.4 

b) The Pincherle derivative of a linear shift-invariant operator on P zs a 
linear shift-invariant operator on P. 

c) The Pincherle derivative of a delta operator is an invertible shift-invariant 
operator on P. 

d) If T and S are linear shift-invariant operators on P , then (TS)' 
T' S+TS'. 

Proof: a) Since 'Ji is a linear operator on P, it suffices to prove a) for the 
polynomials :~ . We have 
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Hence, T' = I::o ( i + 1) ai+ 1 Di, since K is a linear operator on P. 
b) This follows directly from a) and Theorem 2.2.7. 
c) By Theorem 2.2.7 and Corollary 2.2.9b we have Q = L~=O bk Dk with 
b1 f. 0. We get from a) that Q' = I::o ( i + 1) bi+l Di. Hence, Q' is invertible 
by Corollary 2.2.11. 
d) This follows from (TS)'= T SK-KT S = (T SK-TKS)+(TKS-KT S) = 
TS'+T'S. □ 

Lemma 2.3.5 ([210, Proposition 41) For every delta operator Q there ex­
ists a unique invertible shift-invariant operator U on P such that Q = DU. 

Proof: By Theorem 2.2.7 and Corollary 2.2.9b, we have Q = L~=l bk Dk with 
b1 f. 0. Define U by U := L~o bk+t Dk , so Q = DU. The invertibility of U 
follows from Corollary 2.2.llb, since b1 f. 0. Uniqueness of U follows from the 
expansion of Q and U in powers of D. □ 

The operator U that appears in the statement of Theorem 2.3.6 is the operator 
whose existence is assured by Lemma 2.3.5. 

Theorem 2.3.6 Let Q be a delta operator with basic sequence (qn)nEN and let 
(gn)nEN be the coefficient sequence of ( qn)nEN • Let U be the unique invertible 
shift-invariant operator such that Q = DU. Then the following formulas hold 
for n 2': 1: 

a) n!qn=(Q'u-n-l)(xn) 

b) n! qn = (U-n) (xn) _ (U-n)' (xn-1) 

c) n!qn = (KU-n) (xn-l) 

d) nqn = (x(Q')-1)qn-1 (Rodrigues Formula) 

e) nqn(x) = X I:;=O k gk qn-k(x). 

Proof: Since D' = I, we have Q' u-n-t xn = (DU)' u-n-t xn = ((D' U + 
DU') u-n-t) xn = ((U + DU') u-n-t) xn = (U-n + DU' u-n-t) xn = 
u-n xn + U' u-n-1 D xn = u-n xn - (U-n)' xn-1 = u-n xn - (u-n K -
Ku-n) xn-t = (Ku-n) xn-t , so the right-hand sides of a), b) and c) are 
identical. Since Q has a unique basic sequence by Theorem 2.2.15, it suffices to 
note that (K u-n xn-l) (0) = 0 and ( Q Q' u-n-t) :~ = (DU Q' u-n-t) :~ _ 

(Q' u-n D) :~ = (Q' u-n) (~"_-1; 1 for n 2': 1. This proves a), b) and c). 
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By Lemma 2.3.4c, Q' is invertible. Thus it follows from a) that (~"._-1;, 

((Q')-1 un) qn-i(x) for n 2 2. By c), 

xn-1 
nqn(x) = (xu-n) (n -1)! = (xu-n(Q')- 1 un) qn-1(x) = (x(Q')- 1 ) qn-1(x) 

for n 2 2. This proves d), since the case n = 1 follows from Lemma 2.3.4a and 
Theorem 2.2.22b. 
In order to prove e) we write nqn£x) = I:~~~ ckqk(x). Using d) and Lemma 
2.2.21 we obtain 

( k qn(x)) ) ( k ')-1 ( t 1 )( ) Ck= Q n -X- (0 = Q (Q qn-1)(0) = ( Q )- qn-1-k O = 

(n - k) ( qn-~(x)) (0) = (n - k) gn-k• 

This completes the proof. □ 

Remark 2.3. 7 It follows from the Rodrigues Formula that the Roman shift, 
i.e. the linear operator that takes qn to qn+I can be explicitly expressed as 
(n + 1) x (Q')-1 (cf. Remark 2.2.20b). The name Rodrigues Formula comes 
from the theory of orthogonal polynomials (see e.g. [58, 186]). An example of 
a classical Rodrigues Formula can be found in Example 2.3.8e. 

Examples 2.3.8. We consider the delta operators of Examples 2.2.6 and use 
Theorem 2.3.6 to calculate the corresponding basic sequences (cf. Examples 
2.2.16). 
a) Consider the differentiation operator D. It is clear that D' = I and that 
U = I, since D = DI. Thus Theorem 2.3.6a yields qn(x) = :~. 
b) Consider the forward difference operator E 1 - I. Then ( E 1 - I)' = ( E 1)' = 

( eD)' (use Theorem 2.2.22a) = eD (use Lemma 2.3.4a) = E 1. Thus Theo­

rem 2.3.6d yields qn(x) = ~E-1qn_ 1(x). Since q0 = 1, induction on n yields 
( ) _ ("') ·- x(x-1) ... (x-n+l) qn X - n .- n! . 

c) Consider the backward difference operator I - E-1 . In the same way as in 
b) we now find that qn(x) = ("'+~-1) := x(x+I)-Jx+n- 1)_ 
d) Consider the Abel operator DEa for some fixed a. Obviously U = Ea, so 

u-n = E-na for all n EN. Thus Theorem 2.3.6c yields qn(x) = x(x-~~)n-,. 

e) Consider the Laguerre operator L of Example 2.2.3g. We will show that 
the basic sequence of the Laguerre operator is the sequence of Laguerre poly­
nomials L~-l). We know from Example 2.2.8b that L = - I:~o Dk = 
D (D - J)-1, hence U = (D - J)-1 in this case. Thus Theorem 2.3.6c yields 

q (x) - ,,n (D - I)n xn-l - "-'n (-l)k (n-l) "'k Since ex D (e-x p) -
n - n! . - L.,k=l k-1 k! • -

ex ( e-x p' - e-xp) = (D - I) (p), we may write 

qn(x) = xn ex Dn (e-x xn-1) 
n! 
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which is the classical Rodrigues formula for the Laguerre polynomials L~-l). 

The formula L qn = qn-l is the recurrence formula q~ = q~-l - qn-I, since 
L = D(D -I)- 1 . Since L' = -(D -I)-2 , Theorem 2.3.6d yields nqn(x) 
-x (D - I)2 qn-l (x). 

We conclude this section with a discussion of umbral operators. Umbral oper­
ators play an important role in the connection-constant problem which will be 
discussed below. 
Umbral operators were introduced by Rota to give a rigorous foundation to the 
so-called classical Umbral Calculus (also called Symbolic Calculus or Blissard 
Calculus). For more information on umbral operators, see [210, pp. 705-706], 
[102], [130], [202). For more information on the classical Umbral Calculus we 
refer to [23, 113). 

Definition 2.3.9 An umbral operator Tis a linear operator on P such that 
there exist basic sequences (rn)nEN and (vn)nEN with Trn = Vn for all n EN. 

It is important to have basic sequences in Definition 2.3.9, since this implies 
deg rn = deg Vn = n for all n EN by Remark 2.2.14. Hence, both (rn)nEN and 
(vn)nEN are bases for P. 
Some important properties of umbral operators are listed in Theorem 2.3.11, 
which is an extension of [210, Proposition 1)). The following theorem is impor­
tant for our proof of Theorem 2.3.11. 

Theorem 2.3.10 Let Q be a delta operator with basic sequence (qn)nEN and 

let the sequence (Pn)nEN be given by Pn = I:;=O an,k qk. Then (Pn)nEN is a 
sequence of polynomials of convolution type if and only if there exists a sequence 

h'n)nEN such that ,o = 0 and an,k = 1~* for all k and n. Moreover, 1'n = 
(Q Pn)(O). 

Proof: '¢:' This follows from Lemma 2.1.6. 
' ⇒ ' We construct the sequence ( ,n)nEN by induction. Set ,o = 0. It follows 
from PI (0) = 0 and Theorem 2.l.12b that either PI = 0 or deg P1 = deg q1 = l. 
Hence, there is a unique 1 1 such that p1 = 11 q1 . Suppose by induction that 
1'k has been constructed for k < n such that Pm = ,t:,.* qk for m < n. Since ,o = 0, Lemma 2. l.5c yields that 1~* is a polynomial in 11, ... , 1'n-1 for 
2 ::; k ::; n. Thus we can choose in such that Pn(l) = I:;=O 1~* qk(l). It 
follows from Lemma 2.1.6 that Pn(m) = I:;=O 1~* qk(m) for all m EN. Thus ._,n h . d ._,n k* 1 . 1 Pn = L.,k=0 1'n qn, smce Pn an L.,k=0 In qk are po ynorma s. 
The last statement follows from Q qn = qn-l and qn(O) = 0 for n ;:::: l. D 

In [103], Garsia and Joni study equivalence classes whose elements are se­
quences of polynomials (Pn)nEN of the form Pn = I:;=O 1~* qn, where (qn)nEN 
is an arbitrary fixed sequence of polynomials. Representations of the form 
qn = I:;=o ,~* ("'+z-1) are used in Section 5.3 in the context of renewal the­
ory. This idea is due to Stam ([222)). 
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The following theorem describes the basic properties of umbral operators. As 
an introduction to parts d), e) and g), we let Q and P be delta operators with 
basic sequence (qn)nEN, (Pn)nEN respectively. Let T be the umbral operator 
that maps rn to qn for all n E N. This leads to the following commutative 
diagram. 

Q 
qn ----+ qn-1 

1 r- 1 lr 
p 

Pn----+ Pn-1 

We immediately read off that P = T Q r-1 . 

Theorem 2.3.11 Let T be an umbra[ operator. Then: 

a) T is invertible. 

b) T is shift-in variant if and only if T = I. 

c) If (Pn)nEN is an arbitrary sequence of polynomials of convolution type, 
then (T Pn)nEN is also of convolution type. 

d) If (qn)nEN is the basic sequence of the delta operator Q, then (T qn)nEN 
is the basic sequence of the delta operator T Q r-1 . 

e) If Q is a delta operator with basic sequence (qn)nEN , then TQnr- 1 

pn, where P is the delta operator of the basic sequence (T qn)nEN. 

f) The map S - TS r-1 is an automorphism of the sequence of linear 
shift-invariant operators on P. 

g) The map Q - T Q r-1 is an automorphism of the sequence of delta 
operators on P. 

Proof: Let (rn)nEN and ( Vn)nEN be basic sequences such that T rn = Vn. Let 
R and V be the delta operators of (rn)nEN , ( vn)nEN respectively. 
a) Since deg rn = deg Vn = n for all n EN, Tis invertible by Corollary 2.2.11. 
b) IfT is shift-invariant, then Corollary 2.2.12 yields Rvn = RTrn = T Rrn = 
Trn-1 = Vn-1 for n 2: 1. Hence, rn = Vn for all n EN, since both (rn)nEN and 
( Vn)nEN are basic sequences for R. 
c) By Theorem 2.3.10, there exists a sequence hn)nEN such that 'Yo = 0 and 
Pn = I:;=O ,1~* rk. Thus T Pn = I:;=O ,1~* Vk and Theorem 2.3.10 implies 
that (T Pn)nEN is of convolution type. 
d) We know from c) that (T qn)nEN is of convolution type. Since q1 = 91 x, we 
have deg (T q1) = 1. Thus (T qn)nEN is a basic sequence by Theorem 2.2.19b. 
Because (T Q y-l) (T qn) = T qn-1 for n 2: 1, T Q r-1 is a linear shift­
invariant operator on P by Theorem 2.2.19a. Moreover, T Q r- 1 xis a nonzero 
constant, since deg (T q1 ) = 1. Hence, T Q r- 1 is a delta operator. 
e) This follows from d) and T Q r- 1 = T Qn y- 1 . 
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f) Let S be an arbitrary linear shift-invariant operator on P. By Theorem 
2.2.22a, there exist constants an such that S = L~=O an Dn. Then e) yields 
TS T-1 = L~=O an Dn. Hence, TS T-1 is a linear shift-invariant operator 
on P. Injectivity of S --+ TS T-1 follows from a). We now want to prove 
surjectivity. Let W be an arbitrary shift-invariant operator on P. Since T-1 is 
also an umbral operator, it follows that S := T- 1 WT is a linear shift-invariant 
operator that satisfies T ST- 1 = W. 
g) It follows from a) and d) that Q --+ T Q T- 1 is an injective homomorphism 
of the sequence of delta operators in itself. Surjectivity follows as in the proof 
off). □ 

For a probabilistic interpretation of umbral operators we refer to Section 3.5. 

Now that we know how to calculate basic sequences, we are ready to discuss 
the problem of connection coefficients. The problem of connection coefficients 
consists of finding numbers an,k such that Pn = L~=O an,k qk where (Pn)nEN 
and (qn)nEN are sequences of polynomials with deg Pn = deg qn = n for all 
n E N. Note that the connection coefficients are the coefficients of the basis 
change (Pn)nEN to (qn)nEN (cf. [94]). 

If (qn)nEN is a basic sequence and pis an arbitrary polynomial, then the con­
nection coefficients can be calculated with Lemma 2.2.21. 

Example 2.3.12 Consider the polynomials (n;) which are not of convolution 
type (e.g, the convolution identity of Definition 2.1.1 is not satisfied for n = 2 
and y = ½ ). Since 

Lemma 2.2.21 yields the following expansion in terms of the basic polynomials 
(:) of Example 2.2.16b: 

If both (Pn)nEN and (qn)nEN are sequences of polynomials of convolution type, 
then the Rota theory gives the following elegant answer ( cf. [162, p. 202]). 

Theorem 2.3.13 Let P and Q be delta operators with basic sequences (Pn)nEN, 
(qn)nEN respectively. Let T be the umbral operator defined by T qn := x: for 

all n EN. Then the constants an,k (k, n EN), defined by Pn := L~=O a::k qk, 
are uniquely determined as follows. The polynomials rn, defined by rn(x) := 

k 

L~=O an,k ~! , are the basic polynomials of the delta _operator T P T- 1 . More-
over, if P = I::1 a; Q', then T P T- 1 = I::1 a; D'. 
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Proof: It follows from Theorem 2.3.lld that T P r-1 is a delta operator with 
basic sequence (T Pn)nEN• Since Tn = T Pn for all n E N, (rn)nEN is the 
basic sequence of T pr-1. For the last statement, note that T py-1 = D 
by Theorem 2.3.lld, since T Qn = "'~. The last statement now follows from n. 
Theorem 2.3.lle. □ 

A different description of the connection coefficients is given in Theorem 2.3.10. 
Other descriptions of connection coefficients can be found in [99]. 

Examples 2.3.14 a) We want to express the lower factorials in terms of upper 
factorials of Example 2.2.16c, i.e. we want to calculate coefficients an,k such 

that (~) = LZ=o an,k ("'+Z- 1). We apply Theorem 2.3.13 with P = E 1 - I, 
Q = I - E-1 (of course, we could also apply Lemma 2.2.21). Let T be the 
umbral operator defined by T ("'+:- 1) = :~ for all n E N. Theorem 2.2.22a 

yields P = L:'=o (P ("'+:-l)) (0) Qn L:'=l Qn. Hence, it follows from 
Theorems 2.3.lld and 2.3.lle that ' 

00 00 

n=l n=l 

Thus the coefficients an,k are the coefficients of the polynomials Qn ( -x), where 
(qn)nEN are the Laguerre polynomials of Example 2.3.8e. 
Another relation between these polynomials is(~)= (-lt (-x:n-1). 

b) We want to derive duplication formulas for the Laguerre polynomials Qn 

of Example 2.3.8e. Fix a and define polynomials Pn by Pn(x) := qn(ax) for 
all x. Let W be the umbral operator defined by W xn := an xn. Note that 
W Qn = Pn· It follows from Theorem 2.3.lld that (Pn)nEN is the basic sequence 

of the delta operator P, defined by P := W L w- 1 = a-1 D (a-1 D - I)-1 . 

Theorem 2.3.13 yields that the connection coefficients of (Pn)nEN and (qn)nEN 

are the coefficients of the basic sequence of the delta operator T pr- 1 , where 
T is the umbral operator defined by T Qn ·- :~ for all n E N. By Theo­
rem 2.2.22a, 

00 00 

k=O k=l 

and the last statement of Theorem 2.3.13 yields 

00 

T py-l = a- 1 L (1- a-l)n-l Dn = D (al+ (l-a)D)- 1 . 

n=l 
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It follows from Theorem 2.3.6c that the basic sequence (rn)nEN of T pr-1 is 
given by 

~ (al + (1 - a) Dt xn-1 = ~ ~ (n) ak (1 - a)n-k nn-k xn-1 = 
n n - 1! n L k n - 1! 

k=O 

~ (n) k n-k xk-1 ~ (n - 1) k n-k xk 
L k a (1 - a) k - 1! = L k - 1 a (1 - a) ,J· 
k=l k=l 

Putting everything together yields the following duplication formula for the 
Laguerre polynomials of Example 2.3.8e: 

2.4 Sheffer sequences 

Most properties of a basic sequence (qn)nEN essentially depend only on the 
property Qqn = qn-1 (cf. Definition 2.2.13). Thus it seems plausible that the 
theory of basic sequences can be extended under weaker conditions. This is 
indeed the case, as the theory of Sheffer sequences shows (see [202, Chapter 2] 
or [210, Section 5]). In this section we will slightly generalize the Rota notion 
of Sheffer sequence. 

Definition 2.4.1 Let Q be a delta operator. A sequence of polynomials (sn)nEN 
is called a wide sense Sheffer sequence for Q if: 

1. so is constant 

2. Qsn=Sn-1,n=l,2, .... 

If moreover so =I- 0, then (sn)nEN is called a strict sense Sheffer sequence 
for Q. 

The definition of Sheffer sequence in [210] is (apart from a factor n!) what we 
have called strict sense Sheffer sequence. 
Note that if (sn)nEN is a Sheffer sequence in the strict sense then, by Corol­
lary 2.2.9b, deg Sn = n for all n E N. 

Theorem 2.4.2 Let Q be a delta operator. A sequence (wn)nEN, which is not 
identically zero, is a wide sense Sheffer sequence for Q if and only if there exist 
an NE N and a strict sense Sheffer sequence (sn)nEN for Q such that Wn = 0 
for n < N and Wn = Sn-N for n 2'.: N. 

Proof: '{::' Clearly wo is constant and Q Wn = Wn-l for all n 2'.: 1. 
'=>' If w0 is a nonzero constant, then there is nothing to prove. Assume that 
wo = 0. Let N := min { n : Wn =/:- 0}. Then w N is a (nonzero) constant by 
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Corollary 2.2.9b since QwN = WN-1 = 0. Define (sn)nEN by Sn := Wn+N• 
Then (sn)nEN is a strict sense Sheffer sequence for Q. □ 

Theorem 2.4.2 seems to indicate that the notion of wide sense Sheffer sequence 
is not very useful. However, we will see nice applications of this notion in the 
proofs of Corollary 2.4.10 and Theorem 3.3.2. 

It follows from Theorems 2.2.19 and 2.4.2 that a sequence of polynomials can 
be a Sheffer sequence of either type for at most one delta operator. 

Examples 2.4.3 a) Strict sense Sheffer polynomials for the differentiation op­
erator D are called Appell polynomials. They were studied by Appell in [10]. 
Examples of Appell polynomials include the Hermite polynomials Hn, defined 
by 

'foHn(x)zn =exp (xz - ~z2), 

and the Bernoulli polynomials En, defined by 

It follows directly from their generating functions or from Theorem 2.4.4d that 
these polynomials are Appell polynomials, i.e. D Hn = Hn-1 and D En = 
En-1 for n 2 L We will see at the end of this section that the Hermite 
and Bernoulli polynomials belong to the class of Wick polynomials, which is a 
subclass of the Appell polynomials. 
b) The Laguerre polynomials of order a are strict sense Sheffer sequences for 
the Laguerre operator of Example 2.2.3g. The Laguerre polynomials of Exam­
ple 2.3.8e are the Laguerre polynomials of order a = -1 ( cf. [202, p. 108]). 

Both types of Sheffer sequences satisfy a convolution-like equation (see Theo­
rem 2.4.4b below). 

Theorem 2.4.4 Let Q be a delta operator with basic sequence (qn)nEN· Then 
the following are equivalent: 

a) (wn)nEN is a wide sense Sheffer sequence for Q. 

n 

b) wn(x + y) = L wk(x) qn-k(Y) for all n EN and all x, y. 
k=O 

n 

c) Wn = L Wk(0) qn-k for all n EN. 
k=O 

n 

d) there exists a sequence (an)nEN such that Wn = L ak qn-k for all n EN. 
k=O 
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Proof: a=> b' Fix an arbitrary x. Applying the Polynomial Expansion Theo­
rem 2.2.21 to E"' Wn we obtain 

oo n 

E"'wn = L (Qi E"'wn) (0)qi = L Wn-i(x)qi, 
i=O i=O 

since deg Wn ~ n. Hence, it follows that 

n n 

Wn(x + y) = L Wn-i(x) qi(Y) = L Wk(x) qn-k(Y) 
i=O 

for all x and y, since x is arbitrary. 
'b => c' This follows by setting x = 0. 
'c => d' Take ak := wk(0). 

k=O 

'd{=a' Note that w0 is constant because w0 = a 0 q0 = a0 • If n ~ 1, then 
Qwn = Q (I:;=O ak qn-k) = I:;;;;t ak qn-1-k = Wn-1· Hence, (wn)nEN is a 
wide sense Sheffer sequence for Q. □ 

Remarks 2.4.5 a) Theorem 2.4.4 also holds for strict sense Sheffer sequences 
if we add the condition w0 # 0 to b) and c) and if we add the condition a0 # 0 
to d). 
b) If (qn)nEN is merely a sequence of polynomials of convolution type instead 
of a basic sequence (cf. Remark 2.2.20a), then b), c) and d) of Theorem 2.4.4 
are still equivalent and Corollary 2.4.6 below also holds. 

Corollary 2.4.6 Let (wn)nEN be a wide sense Sheffer sequence for the delta 
operator Q with basic sequence (qn)nEN· Let (gn)nEN be the coefficient sequence 
of (qn)nEN• Then the following formal generating function identity holds: 

Proof: This follows directly from Theorems 2.1.13d and 2.4.4c. □ 

The following theorem describes the difference between wide sense and strict 
sense Sheffer sequences (of a delta operator Q with basic sequence (qn)nEN) 
in terms of the linear operator A on P, defined by Aqn := Sn. It follows 
directly from Theorem 2.2.22a that A= L~o sk(0) Qk (cf. the proof of [210, 
Corollary 1]). We also give a description of strict sense Sheffer sequences in 
terms of delta operators and functionals in the style of [202, 207]. We first need 
a lemma. 

Lemma 2.4. 7 Let A be a linear functional such that A 1 # 0 and let Q be a 
delta operator on P. There exists a unique sequence of polynomials (Pn)nEN 
with deg Pn = n for all n E N such that A Qk Pn = 8nk for all k, n E N, where 
8nk denotes the Kronecker delta. 
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Proof: Existence follows in the same way as in the proof of Theorem 2.2.15. 
In order to prove uniqueness, consider another sequence (.Pn)nEN such that 
A Qk Pn = A Qk Pn for all k, n E N. Suppose there is an n E N such that 
Pn =/= Pn· Let /i, be the degree of Pn - Pn· Then Q' (Pn - Pn) is a non-zero 
constant, which contradicts A Qk (Pn - Pn) = 0. □ 

Theorem 2.4.8 Let Q be a delta operator with basic sequence (qn)nEN• Let 
(sn)nEN be a sequence of polynomials and define the linear operator A on P by 
A qn := Sn for all n E N. Then: 

a) (sn)nEN is a wide sense Sheffer sequence for Q if and only if A is shift­
invariant. 

b} ([210, Proposition 1]) (sn)nEN is a strict sense Sheffer sequence for Q 
if and only if A is shift-invariant and invertible. 

c) ( sn)nEN is a strict sense Sheffer sequence for Q if and only if there exists 
a linear functional A on P such that A 1 =/= 0 and A Qk Sn = Dnk for all 
k,n EN, where Dnk denotes the Kronecker delta. 

d} If (sn)nEN is a strict sense Sheffer sequence, then Ap = A-1p(0) for all 
p E P, where A is as in a). 

Proof: a) ' ⇒' Since (qn)nEN is of convolution type, we have for ally 

A EY qn = A (t qk(Y) qn-k) = t qk(Y) Sn-k = EY Sn= EY A qn. 
k=O k=O 

Hence, by linearity, AEY = EY A for ally. 
'¢::' Corollary 2.2.9a and so = Aq0 =Al together imply that s0 is constant. 
Using Corollary 2.2.12 we see that Q Sn = QA qn = A Q qn = A qn-l = Sn-l 
for n 2:: 1. 
b) ' ⇒' Shift-invariance follows from a). By Corollary 2.2.9b, deg Sn = n for all 
n E N. Hence, A is invertible by Corollary 2.2.11. 
'¢::' We need only prove that s0 =/= 0 because of a). This follows from Corol­
lary 2.2.11 and so= Aq0 , since A is invertible. 
c) ' ⇒' Define the linear functional A by A Sn = Don• Because so is a nonzero 
constant, we have A 1 =/= 0. Moreover, since shift-invariant operators com­
mute by Corollary 2.2.12, it follows that A Qk Sn = A Qk A qn = A A Qk qn = 
Do,n-k = Dnk. 
'¢::' Define the polynomials rn by rn := Q Sn+l (n EN). Then AQk (Q Sn+1) = 
Dk+l,n+l = Dk,n• By the uniqueness part of Lemma 2.4.7, we have Q sn+l = Sn 
for all n E N. Thus ( sn)nEN is a strict sense Sheffer sequence. 
It follows froin A Qk Sn = A Sn-k = Dnk with k = 0 that A Sn = Don. Since 
A- 1 sn(0) = qn(0) = Don by Definition 2.2.13 and degsn = n for all n EN, the 
results follows. □ 

The operator A of the above theorem is called invertible operator. 
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Corollary 2.4.9 Let (sn)nEN be a strict sense Sheffer sequence for the delta 
operator Q with basic sequence (qn)nEN and invertible operator A. Let (gn)nEN 
be the coefficient sequence of ( Qn )nEN and let g be the formal power series defined 
by g(t) := E:=o 9n tn. Then the following formal generating function identity 
holds: 

00 

Lsn(x)tn = f(g(t))exg(t), 
n=O 

where A= J(D). 

Proof: Define s(t) := E:=o sn(x)tn. It follows from Theorem 2.2.22a that 
A = E:=o sk(O) Qk. Hence, by the Isomorphism Theorem 2.3.1, we have 
A = s(Q). Since g0 = 0, the formal power series is invertible (w.r.t. to 
composition, cf. [172]). Hence, there exists a formal power series f such that 
s =fog. By Theorem 2.2.22b, we have A= f(g(Q)) = J(D). The result now 
follows from Corollary 2.4.6. □ 

Corollary 2.4.10 Let Q be a delta operator with basic sequence (qn)nEN• 

aJ The sequence (sn)nEN defined by sn(x) := (n + 1) Qn+i(x) (x =/- OJ and 
X 

sn(O) := (n + 1) (Qn+i)'(O) is a strict sense Sheffer sequence. 

bJ The sequence (wn)nEN defined by Wn(x) := n qn(x) (x =/- OJ and wn(O) := 
X 

nq~(O), is a wide sense Sheffer sequence. 

cJ The sequence (sn)nEN defined by Sn := (qn+i)' is a strict sense Sheffer 
sequence. 

dJ The sequence (wn)nEN defined by wn(x) := q~ is a wide sense Sheffer 
sequence. 

eJ (NiederhausenJ The sequence (sn)nEN defined by 

x -an-b 
Sn(x) := b Qn(x - b) 

x-

is a strict sense Sheffer sequence. 

Proof: a) Recall that qn(O) = 0 for n ~ 1 by Theorem 2.l.12e). Then (sn)nEN 
is a strict sense Sheffer sequence by Theorem 2.4.8b, since Sn = (Q')-1 qn by 
Theorem 2.3.6d. 
b) This follows from a) and Theorem 2.4.2. 
d) It follows from Theorem 2.4.8a that (wn)nEN is a wide sense Sheffer sequence. 
c) By Theorem 2.2.22b, D Qn+i = E;!t 9k Qn-k• Thus so = g1 =/- 0 and 
(sn)nEN is a strict sense Sheffer sequence by Theorem 2.4.4 or Remark 2.4.5. 
e) First note that (E-b Qn)nEN is a strict sense Sheffer sequence by Theo-

rem 2.4.8b. By b) and Theorem 2.4.8a, ( n qn£~~b)) nEN is a wide sense Sheffer 
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sequence. Since linear combinations of wide sense Sheffer sequences are wide 
sense Sheffer, the decomposition 

shows that (sn)nEN is a wide sense Sheffer sequence. A closer look at the 
decomposition reveals that deg Sn = n, thus ( sn)nEN is even a strict sense 
Sheffer sequence. D 

We now extend the Expansion Theorems 2.2.21 and 2.2.22 to strict sense Sheffer 
sequences. 

Theorem 2.4.11 Let (sn)nEN be a strict sense Sheffer sequence with delta 
operator Q and let A be the linear operator on P defined by A qn := Sn. 

a) For all p E P, we have 

p = L (A-l Qkp)(O) Sk. 

k=O 

b) If T is a linear shift-invariant operator, then 

00 

T = L (Tsk(O)) A~ 1 Qk 
k=O 

Proof: a) Apply Theorem 2.2.21 top = A ( A- 1 p) and use shift-invariance. 
b) Apply Theorem 2.2.22 to T = A- 1 (AT) and use shift-invariance. □ 

Theorem 2.4.8 enables us to generalize Theorem 2.3.10 to strict sense Sheffer 
sequences. A generalization to wide sense Sheffer sequences is not possible (see 
Remark 2.4.13). 

Theorem 2.4.12 Let Q be a delta operator with basic sequence (qn)nEN· Let 
(sn)nEN be a strict sense Sheffer sequence for Q and let A be the linear operator 
on P defined by A qn := Sn. The following are equivalent for a sequence ( r n )nEN 
of polynomials: 

a) (rn)nEN is a strict sense Sheffer sequence and there exists a basic sequence 
(Pn)nEN such that rn = Apn for all n EN. 

b) there exists a sequence hn)nEN with ,o = 0 and 11 =/- 0 such that rn = 
I:;=O ,~* Bk for all n E N. 

Proof: 'a ⇒ b' Since (Pn)nEN is a basic sequence, Theorem 2.3.10 yields the 
existence of a sequence ( ,n)nEN with ,o = 0 such that Pn = I;;=O ,~• qk, for 
all n E N. Since deg PI = l (Remark 2.2.14), we have 11 =/- 0. Since A qn = Sn 

for all n EN, it follows that rn = Apn = I:Z=o 11~* Bk for all n EN. 
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'b => a' Define polynomials Pn (n E N) by Pn := I;;=O ,!* qk. Since ,o = 0 
and ,1 f=. 0, it follows from Theorem 2.3.10 and Theorem 2.2.19 that (Pn)nEN 
is a basic sequence. Moreover, it is obvious that Apn = rn for all n E N since 
A qn = Sn. It follows from Theorem 2.4.8b that ( rn)nEN is a strict sense Sheffer 
sequence. □ 

Remark 2.4.13 There exists no analogue of Theorem 2.4.12 for wide sense 
Sheffer sequences (rn)nEN• First of all, it is necessary that (sn)nEN is a strict 
sense Sheffer sequence: if (qn)nEN is not a basic sequence, then the operator A 
need not exist (cf. Remark 2.1.13b). Suppose (sn)nEN is a strict sense Sheffer 
sequence and rn = I;;=O ,!* Sk for all n E N. If 11 f=. 0, then (rn)nEN is 
a strict sense Sheffer sequence by Theorem 2.4.12. If 11 = 0, then the proof 
of Theorem 2.1.12c yields that deg rn ::;; [n/2] for all n E N. It follows from 
Theorem 2.4.2 that (rn)nEN cannot be a wide sense Sheffer sequence. 

As a corollary to Theorem 2.4.12, we now derive a Rodrigues Formula for strict 
sense Sheffer sequences (cf. Theorem 2.3.6d). This form of the Rodrigues 
Formula is due to Avramjonok (see [13]). 

Theorem 2.4.14 (Avramjonok) Let Q be a delta operator with basic se­
quence (qn)nEN• Let (sn)nEN be a strict sense Sheffer sequence for Q and let A 
be the linear operator on P defined by A qn := Sn for all n E N. Then we have 

(2.5) 

Proof: By Theorem 2.3.6d, we have nqn(x) = x (Q')- 1 qn_1(x) for all n 2:: 
1 and all x. Writing qk = A-1 Aqk (k = n -1,n), we obtain nsn(x) = 
Ax (Q')-1 A-1 Sn-1(x). By the definition of Pincherle derivative, we may 
write Ax= xA + A'. Substituting this into the expression for nsn(x), we 
obtain the result. □ 

We conclude this section with a probabilistic subclass of Appell polynomials. 

Definition 2.4.15 Let X be a random variable with finite moments of all or­
ders. The Wick polynomial sequence associated to X is the unique sequence 
(Pn)nEN of polynomials satisfying: 

1. Dpn = Pn-1 for n 2:: 1 

where D denotes the differentiation operator and 80n the Kronecker delta. 

Since A, defined by A(p) := E p(X) is a linear functional on P such that Al = 1, 
it follows from Lemma 2.4.7 with Q = D and Theorem 2.4.8 that (Pn)nEN is a 
(well-defined) strict sense Sheffer sequence. 

Wick polynomials occur in quantum mechanics and in probability theory. In 
the latter case, they are used for noncentral limit theorems (see e.g. [12, 106]). 
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Theorem 2.4.16 Let X be a random variable with distribution function F 
such that its moment generating function J:':"= ezt dF(t) is analytic on some 
disc in the complex plane. Then the Wick polynomials (Pn)nEN associated to 
X possess the following generating function: 

Proof: let A be the linear operator on P defined by A xf acn := Pn for all 
n EN. First note that by Theorem 2.2.22a, we have A= I:;;;'=0 Pk(O) Qk. and 
By Theorems 2.2.7 and 2.4.lOd, we have 

The result now follows from Theorem 2.3.1 and Corollary 2.4.6, since un­
der the conditions of the theorem the moment generating function equals 
1:::=o E(Xn) :~. D 

Examples 2.4.17 1. If X is distributed according to the standard normal 
distribution, then its moment generating function equals e½ 22 • Thus the 
Wick polynomials for the standard normal distribution are the Hermite 
polynomials ( cf. Example 2.4.3a). 

2. If Xis distributed according to the uniform distribution on [O, 1], then its 
moment generating function equals ( ez - l) / z. Thus the Wick polyno­
mials for the uniform distribution on [O, 1] are the Bernoulli polynomials 
(cf. Example 2.4.3a). 

The standard theory of Wick polynomials can be derived easily from the theory 
of this section ( cf [12, 106]). 

We conclude this section by remarking that Al-Salam and Verma have gen­
eralized Sheffer sequences by considering sequences of polynomials satisfying 
Qsn = Sn-r (r EN) for a delta operator Q (see [7]). 

2.5 Cross sequences and Steffensen sequences 

In the previous section we extended the notion of basic sequence by relaxing one 
of the defining properties. In this section we extend the notion of basic sequence 
by adding an_ extra parameter. This extra parameter comes in naturally for 
basic sequences connected to probability distributions. E.g., for the Poisson­
Charlier polynomials this extra parameter is the parameter of the underlying 
Poisson distribution and for the Hermite polynomials it is the variance of the 
underlying zero-mean normal distribution. This section unites and extends 
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the results of [183], [202, Section 5.3], [210, Section 8] and [38]. New is the 
introduction of semigroups of shift-invariant operators. 

In this section we assume that the polynomials are defined on IR and have 
real coefficients. We also assume that each sequence of polynomials (Pn)nEN 
satisfies deg Pn = n. Unlike the previous section, there is no use in considering 
weak and strong versions of cross or Steffensen sequences. 

Definition 2.5.1 A sequence of polynomials (q!,-Xl) is said to be a cross 
nEN 

sequence if 

a) (q!,-Xl) is a sequence of polynomials for fixed A. 
nEN 

b} 

n 

qJ.-X+µl(x + y) = L ql.\](x) q~~k(y) (2.6) 
k=O 

for all n EN and all x,y,A,µ E IR. 

It is obvious that any sequence of polynomials with (formal) generating function 
of the form 

00 

Lq!,-Xl(x)tn = e.Ah(t) A(t)exg(t) 

n=O 

is a cross sequence. Also note that (qJ.-Xl) is Sheffer for fixed .A and that 
nEN 

(q!,-Xl(x)) is a cross sequence in the variable .A with parameter x. 
nEN 

We now wish to give a characterization of cross sequences in terms of shift­
invariant operators. Since this involves (semi-)groups of shift-invariant opera­
tors, we digress a little bit by studying these semigroups. 

Definition 2.5.2 A family (Tt)t>O of linear shift-invariant operators on P is 
a semigroup if Ts+t = T. Tt for alls, t > 0. 

Theorem 2.5.3 If (Tt)t>O is a semigroup of linear shift-invariant operators 
on P, then Tt is invertible for all t > 0 and hence, (Tt)t>O can be extended to 
a group (Tt)tEIR· 

Proof: It follows from Corollary 2.2.9a that there exist non-negative integers 
n(t) such that deg(Ttp) = max{-1, deg(p) - n(t)} for all t > 0 and all p E P. 
The semigroup property implies that n(s + t) = n(t) + n(s) for all s,t > 0. 
Hence, n(t) = 0 for all t > 0, since n(t) is integer-valued for all t > 0. Thus Tt 
is invertible for all t > 0 by Corollary 2.2.11. Define To:= I and Tt := (T-t)- 1 
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for all t < 0. Then (Tt)tEIR is a group, since obviously Ts+t = Ts Tt for all 
s, t E lRL □ 

We now expand the operators Tt into powers of D as in Theorem 2.2. 7 and 
study the coefficients of these expansions. 

Theorem 2.5.4 Let (Tt)t>O be a semigroup of linear shift-invariant operators 
on P and let the functions an(n EN) be defined by Tt = L~=O an(t) Dn for all 
t > 0 and all n E N. Then: 

a) the sequence ( an)nEN is a sequence of functions of convolution type. 

b) if ( an)nEN is a sequence of measurable functions, then there exists a linear 
shift-invariant operator T on P such that Tt = etT for all t > 0 and 
(Tt)t>O can be extended to a group (Tt)tEIR· 

Proof: a) This follows from 

00 

L an(s + t) Dn = Ts+t = Ts Tt = 
n=O 

00 00 oo n 

m=O r=O n=Ok=O 

for all s, t > 0. 
b) By Theorem 2.1.8, the measurability of an implies that there exist an a E lit 

and a sequence of real numbers (gn)nEN such that an(t) = eat I:;=O g~* t"· 
Define the linear shift-invariant operator T on P by T := al + I:~1 gk Dk. 
Then 

eat(~ fo gr :/m Dr) = eat ~ ar(t) Dr= Tt, 

Moreover, we may extend (Tt)t>O to a group (Tt)tec by setting Tt := etT for 
all t EC. □ 

The operator T of Theorem 2.5.4 is called infinitesimal generator of the 
semigroup (Tt)t>O in standard semigroup theory. 

The following theorem describes when the functions an of the above theorem 
are measurable. 

Theorem 2.5.5 Let (Tt)t>O be a semigroup of linear shift-invariant operators 
on P and let the functions an(n EN) be defined by Tt = L~=O an(t) D 11 for all 
t > 0 and all n E N. Then the following are equivalent: 
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a) the functions an are continuous. 

b} the functions an are measurable. 
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c) limt!O (T•;-1 p) (x) = Tp(x) for all p E P and all x E llR, where T is the 
infinitesimal generator of (Tt)t>O. 

d} limt!O (Ttp)(x) = p(x) for all p E P and all x E llR. 

Proof: 'a => b' This is trivial, since continuous functions are measurable. 
'b => c' By Theorem 2.5.4, we have 

lim Tt - I p(x) = lim etT - I p(x) = lim ! ~ (tTf p(x) = Tp(x), 
t!0 t t!0 t t!0 t L., 

n=l 

since there are only finitely many nonzero terms in the summation. 
'c => d' This is trivial. 
'd => a' Note that (Tt xn)(O) = z:=;=O ak(t) (Dk xn)(O) = an(t) for all t > 0 
and all n E N. Hence, limt!O an(t) exists for all n E N. Now Theorem 2.5.4a 
and Remark 2.1.lOg yield that an is continuous for all n E N. D 

We now return to cross sequences. The following theorem characterizes cross 
sequences as the orbit of a basic sequence under a group of shift-invariant 
operators. 

Theorem 2.5.6 {[210]) A sequence (qJ.>-l) is a cross sequence if and only 
nEN 

if there exists a delta operator Q with basic sequence (qn)nEN and a group of 

shift-invariant operators (Tt)tEIR such that qh>.] = T>. qn, 

Proof: '=>' If (qJ.>-l) is a cross sequence, then it follows from (2.6) and 
nEN 

Theorem 2.2.19 that (qJ?l) is of convolution type with delta operator Q, 
nEN 

say. Moreover, by setting µ = 0 in (2.6) we see that for fixed .A, (qJ.>-1) is 
nEN 

a Sheffer sequence with delta operator Q and invertible operator T>., say. In 
order to show that (Tt)tEIR is a group of linear operators, it suffices to show that 

T,>.+µ qn = T,>. Tµ qn, By Theorem 2.4.4 and Remark 2.4.5a, we have qJ.>-1(x) = 

z:=;=O q~>.~k(O)qk(x). Since T,>.qn = qJ.>-l, it follows from Theorem 2.2.22a that 

T>. = E~o ql>.] (0) Qk. Now T,>.+µ qn = T>. Tµ qn follows from (2.6) with x = 0. 

'~' First note that since T>. is an invertible shift-invariant operator, (q!;1) 
nEN 

is a strict sense Sheffer sequence for fixed .A. Hence, 

n 

EY q}.>-l(x) = L ql>.](y) qn-k(x). 
k=0 

Applying the shift-invariant operator Tµ to both sides of the last equation, we 

obtain that (qJ.>-l) is a cross sequence. □ 
nEN 
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Theorem 2.5. 7 Let (qL"l) be a cross sequence. Then each polynomial p 
nEN 

can be expanded as 

00 

p = L (T,\ Q) (0) qL"l (2.7) 
n=O 

where Q and (qn)nEN are as in Theorem 2.5.6. 

Proof: This follows directly from Theorem 2.4.11, since (qL"l) is a Sheffer 
nEN 

sequence for fixed A. □ 

Examples 2.5.8 Examples of cross sequences include: 

a) (Hermite polynomials): Q = D, T,\ = e-½ ,\ D 2 (see [202, pp.87-97] 

for more details). The more general cross sequence with T,\ = e-A Dm 
is studied in [183]. Their formulas follow directly from the results of 
Section 2.4 and 2.5. E.g., the Rodrigues Formula for Sheffer sequences 
(Theorem 2.4.14) yields 

sn(x) XSn-1(x)+mADm-leADm xn-l 

X Sn-l (x) + m A nm-l Sn-l (x) 

X Sn-1(x) + m A Sn-m(x), 

which is [183, Formula (5.2)]. 

b) (Bernoulli polynomials): Q = D, T" = (eD -1)/D)-,\ = (D/(eD -
1)),\ (see [202, pp. 93-100] for more details). 

c) (Euler polynomials): Q = D, T,\ = ((eD + 1)/2)-,\ (see [202, pp. 
101-106] for more details. 

d) (Poisson-Charlier polynomials): Q = eD - 1, T,\ = e-,\ (eD - l). 
This differs a factor An from the ordinary definition of Poisson-Charlier 
polynomial (see [202, pp. 119-122] for more details). 

e) (actuarial polynomials): Q = log(l - D), T,\ = (1- D),\ (see [202, pp. 
123-125] for more details). 

Definition 2.5.9 A sequence of polynomials (s~l) is said to be a Stef-
nEN 

fensen sequence if 

a) (sL"l) is a sequence of polynomials for fixed A. 
nEN 
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b) there exists a basic sequence (qn)nEN such that 

n 

s~+µl(x + y) = L sl"1(x) q~2k(y) (2.8) 
k=O 

for all n EN and all x,y,,\,µ E JR. 

Theorem 2.5.10 Let (s~1) be a sequence of polynomials for fixed,\. Then 
nEN 

the following are equivalent: 

a) (s~1) is a Steffensen sequence 
nEN . 

b) there exists a cross sequence (qh"1) and an invertible shift-invariant 
nEN 

operator A such thats~] = Aqh>.] for all n EN 

c) there exists a group (Tt)tEIR of linear shift-invariant operators and a Shef­

fer sequence (sn)nEN such thats~] = T>. Sn. 

Proof: 'a=} b' Setting,\= x = 0 in (2.8) we see that s\!'1 = I:;=O s~1(0)q~2k. 

Note that sh0l =J. 0, since (s~1) is Sheffer. Hence, s\!'1 = Aqh>.], where A is 
nEN 

the invertible linear shift-invariant operator defined by A := L~o sl01 (0) Qk. 
'b =} c' This follows directly from Theorem 2.5.6. 
'c ::} a' By Theorem 2.5.6, we have 

This concludes the proof. □ 

Example 2.5.11 As an example of a Steffensen sequence we mention the La­
guerre polynomials Q = D/(D - I), A= I - D, T>. = (I - D)" (see [202, pp. 
108-113] for more details). 

Theorem 2.5.12 Let (s~1) be a Steffensen sequence. Then each polyno-
nEN 

mial p can be expanded as 

00 

p = L (AT>. Q) (0) s~l (2.9) 
n=O 

where Q and {qn)nEN are as in Theorem 2.5.10. 

Proof: This follows directly form Theorem 2.4.11, since (s~1) is a Sheffer 
nEN 

sequence for fixed ,\. □ 
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Theorem 2.5.13 ((38]) If (s~1) is a Steffensen sequence and O'n is a 
nEN 

sequence of real numbers, then (stn1) is a Sheffer sequence if and only if 
nEN 

there exists real numbers a and /3 such that O'n =a+ {3n. 

Proof: By Theorem 2.5.10, there exists a Sheffer sequence (sn)nEN for some 
delta operator Q and a group of linear shift-invariant operators (Tt)tEIR such 
h [>.] T H Q [a+/3n] QT T T [a+,B(n-1)] t at Sn = >. Sn- ence, Sn = a+,Bn = a+,BnSn-1 = ,a Sn-1 • 

In other words, (s~+/3nl) is Sheffer for the delta operator T_,e Q. For the 
nEN 

converse, see (38]. □ 

Example 2.5.14 For the Laguerre polynomials (L~1) , it is easy to com-
nEN 

pute that Lt-nJ(>,) is the n th Poisson-Charlier polynomial of Example 2.5.8d. 



Chapter 3 

Applications of the U mbral 
Calculus 

In this chapter we present a miscellany of new applications and new results 
concerning Umbral Calculus and polynomials of convolution type. 
In Section 3.1 all sequences of polynomials of convolution type are determined 
such that qn(l) = c for all n 2: 1. Section 3.2 shows how the theory of Chapter 
2 yields identities with binomial coefficients. Moreover, a new proof of a result 
by G. Labelle on polynomials of convolution type is given. In Section 3.3 prob­
ability distributions arising from polynomials of convolution type are studied. 
The calculation of moments of these distributions (which is of importance for 
approximation theory) will be calculated using the operator methods of Chap­
ter 2. A simplified proof of the classification of orthogonal Sheffer polynomials 
is presented in Section 3.4. In Section 3.5 polynomials of convolution type 
are related to semigroups of probability measures. It transpires that in this 
context umbral composition can be interpreted as subordination. It is shown 
in Section 3.6 that each shift-invariant operator can be written as an integral 
operator. As a corollary, a characterization of Sheffer sequences due to Shef­
fer is obtained. This representation is shown to be connected with moment 
problems. Finally, in Section 3. 7 we study natural exponential families from 
an umbral point of view. It is shown that the variance function of a natural 
exponential family is intimately related to the delta operator of its associated 
Sheffer sequence. In fact, we will see that the classification of natural exponen­
tial families with quadratic variance function coincides with the classification 
of orthogonal Sheffer polynomials of Section 3.4. We will also see how natural 
exponential families are related to exponential operators appearing in approx­
imation theory. 

Contents of Chapter 3 

3.1 Polynomials with Qn(l) = c for n 2: 1. 



50 Applications of the U mbral Calculus 

3.2 Applications to combinatorial identities. 

3.3 Discrete probability distributions. 

3.4 Orthogonal Sheffer polynomials 

3.5 Moment sequences 

3.6 Shift-invariant operators and integral operators 

3. 7 Natural exponential families 

3.1 Polynomials with qn(l) = c for n > 1. 

In this section we determine all sequences (qn)nEN of polynomials of convo­
lution type such that qn(l) = c for n ~ 1. Recall from Theorem 2.1.14 that 
polynomials of convolution type are determined by the numbers qn(l). 

Theorem 3.1.1 If (qn)nEN is a sequence of polynomials of convolution type 
such that qn(l) = c for n ~ 1, then 

Proof: First not.e that there exists a unique sequence of polynomials of convo­
lution type such that qn(l) = c for n ~ 1 by Theorem 2.1.14 with Xn = 1 for all 
n E N. Both ( (~) ( c - 1 t) nEN and ( ("'!n)) nEN are of convolution type (see Re­
mark 2.2.18), so their convolution is also of convolution type by Remark 2.l.3e. 
Since L~o (c - l)k (1!:.kk) = c for all n ~ 1, the theorem follows. □ 

Remarks 3.1.2 a) Another way of proving Theorem 3.1.1 is to use gener­
ating functions: 

00 00 1 '°' qn(l) Zn= 1 + c '°'Zn= 1 + ~ = (1 + (c - 1) z) --. 
L..,, L..,, 1-z 1-z 
n=O n=O 

The theorem now follows by observing that 

and 

b) It follows f~om a) that 
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with f(z) = tz ) . If 0 < c < 1, then f is a probability generating 
l+c-lz 

function and (n! qn)nEN is a sequence of polynomials of binomial type with the 
renewal property in the terminology of [224]. 

Examples 3.1.3 : a) If c = 1, then qn(x) = ('•+:-1) (see Example 2.2.16c). 

b) If c = 2, then qn(x) = t G) (x:: ~ k), the Mittag-Leffler polynomials 
k=O 

(see [202, p. 75-76] note that the calculation on p. 76 contains an error). 

3.2 Applications to combinatorial identities 

In this section an identity for convolutions of sequences of numbers (in some 
field of characteristic zero K) will be derived. Moreover, the theory of polyno­
mials of convolution type of Chapter 2 will be used to calculate convolutions 
of such sequences. This will yield combinatorial identities. 

Theorem 3.2.1 Let (,Bn)nEN be a sequence in some field of characteristic 

zero. The r-fold convolution of the sequence ( nil ,B~n+l)*) nEN is the sequence 

( n~r ,B~n+r)*) . In particular, the following holds for 1 ~ i,j ~ n: 
nEN 

Proof: If ,80 = 0, then ,B;:'* = 0 for all m > n by Lemma 2.l.5a. Therefore 
we may suppose that ,Bo =/= 0. Consider the operator T := E~o .Br Dr on P. 
It follows from Corollary 2.2.11 that T is invertible. Define U := r-1 and 
consider the delta operator Q := DU with basic sequence (qn)nEN• It follows 

from Theorem 2.1.8 that qm(x) = EZ'=o g~ ~;. Since u-m = E~o ,B;!'* Dr, 
Theorem 2.3.6c yields 

X X m-1 m-l m-1 

( ) U m --- = ..=.. "" ,Bm* Dr X = 
qm x = m - ( m - 1) ! m L.,.; r ( m - 1) ! 

r=O 

m-1 m-1-r m k-1 m k k 
"" ,am* X X "" ,am* X "" ,am* X 
L.,.; r (m -1- r)! = m L.,.; m-k (k - 1)! = L.,.; m m-k k!" 
r=O k=l k=l 

Comparing coefficients of qm yields g~ = ,a;:::_k for 1 ~ k ~ m. Setting k = r 
and m = n + r yields the first statement. 

The second statement follows from the first statement and Remark 2.l.14c. D 

Using Lagrange inversion, Steutel derived a similar convolution identity and 
some extensions (see [232]). 
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Theorem 3.2.1 in itself yields interesting identities. However, more insight can 
be obtained by relating Theorem 3.2.1 to a non-abelian group structure on the 
set of sequences of polynomials of convolution type introduced by G. Labelle 
(see [140, Proposition 1]). We first need a lemma. The proof of Lemma 2.2.2 
was shown to the author by Piet Bruinsma. 

Lemma 3.2.2 Let P be a polynomial in two variables with coefficients in some 
field K of characteristic zero such that P(l, m) = 0 for all l, m E N. Then 
P=0. 

Proof: Denote the coefficients of P by aij, i.e. P(x,y) = L~j=O aijxiyi. 
Consider the matrix P, defined by P(i,j) := aij, acting on Kn+I_ For each 
l, m EN, we have (1, l, ... , ln) P ((1, m, ... , mn)l) = 0. It follows directly from 
Vandermonde's determinant that the vectors (1,l, ... ,ln)t, l = 1, ... ,n, are 
a basis for Kn+l. Hence, (1, m, ... , mn)t belongs to the kernel of P for each 
m E N. Therefore P is the zero matrix and P = 0. □ 

The following theorem was proved for basic sequences in [210, Proposition 4]. 
An extension to sequences of polynomials of convolution type was given in [140, 
Proposition 2]. We present here a new proof based on Theorem 3.2.l. 

Theorem 3.2.3 If (qn)nEN is a sequence of polynomials of convolution type, 

then for all a both (-+"' qn(x + na)) and (-+"' qn(-x - na)) are se-
. x na nEN x na nEN 

quences of polynomials of convolution type. 

Proof: If a = 0, then there is nothing to prove. If q0 = 0, then the result follows 
from Lemma 2.1.7. Suppose q0 -/:- 0 and a -/:- 0. It follows from (2.1) that 
(rn)nEN, defined by rn(x) := qn(ax) for all n EN, is a sequence of polynomials 

• X 
of convolut10n type. It follows from Theorem 2.1.8 that Pn(x) := --rn(x+n) 

x+n 
is a polynomial in x for all n EN. Define f3n := rn(l) for all n EN. It follows 
from (2.1) that (3~* = rn(k) for all k, n EN. Fix an arbitrary n EN. Define the 
polynomial Pin two variables by P(x,y) := Pn(x + y) - Lj=O Pj(x)Pn-j(y). 
It follows from Theorem 3.2.1 that P(l,m) = 0 for all l,m EN. By Lemma 
3.2.2, P = 0. Since n was arbitrary, it follows that (Pn)nEN is a sequence of 
polynomials of convolution type. By Remark 2.1.lOb we have for all u, v: 

n 

u+v 
---qn(a(u + v) +an)= 
u+v+n 

~ U V 
L.., --k qk(au + ak) k qn-k(av + a(n - k)). 
k=O U + V + n -

Multiplying the numerators and denominators of the above identity with a and 
taking x = ua and y = va, we obtain for all x, y: 

x+y 
---- qn(x + y +an)= 
x +y + na 
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n 

" X ( y ) ~ -k- qk x + ak) ( k) qn-k(Y + a(n - k) . k=O x + a y + n - a 

Thus, (-+"' qn(x + na)) is a sequence of polynomials of convolution type. 
"' na nEN 

For the second statement note that (un)nEN, defined by un(x) := qn(-x) for all 
n EN, is a sequence of polynomials of convolution type by Theorem 2.1.8 and 
Remark 2.1.lOb. Applying the first statement to (un)nEN instead of (qn)nEN 
yields the second statement. □ 

Examples 3.2.4 a) If qn(x) = :~, then .,;na qn(x + na) = x (x + na)n-l /n!, 
the n th Abel polynomial. 
If qn(x) =(:),then .,;na qn(x + na) is called the n th Gould polynomial. 

Remark 3.2.5 It is possible to derive Theorem 3.2.3 from [210, Proposition 4] 
in case the coefficients are real or complex. This proof is due to Aart Stam 
(private communication). Let (qn)nEN be a sequence of polynomials of convo­
lution type. If Ul # 0, then degqn = n for all n EN by Theorem 2.l.12a and 
the result follows from Theorem 2.2.19 and [210, Proposition 4]. If g1 = 0, then 
we define a sequence of complex numbers (hn)nEN by hn := Un if n # 1 and 
h1 := c(c # 0). Then (hn)nEN is the coefficient sequence of a sequence (rn)nEN 
of polynomials of convolution type with degrn = n for all n EN. Letting c go 
to zero and applying Lemma 2.l.5c, we obtain the desired result. 

For examples of identities arising from Theorem 3.2.3, see Examples 3.2. 7. 

We now use Theorem 2.3.10 to calculate convolutions of scalar sequences. 

Theorem 3.2.6 Let (,Bn)nEN be a sequence in some field of characteristic zero 
with ,80 = 0 such that the following holds: there exists sequences of polynomials 
of convolution type (Pn)nEN and (qn)nEN such that /3n = an,1 for all n E N, 
where the numbers an,k are defined by Pn = I:;=O an,k qk. Then ,B~* = an,k 
for all k,n EN. 

Proof: This follows directly from Theorem 2.3.10. □ 

Examples 3.2.7 a) Consider the basic sequence((:) )nEN of Example 2.2.16b. 

By definition ([199, p. 33]), (:) = I:;=O *'s(n,k)~;, where the numbers 
s(n, k) are the Stirling numbers of the first kind. If 9n := s(n, 1)/n! = 
(-1t-1 /n, then g~* = s(n, k) by Theorem 3.2.6. Thus Remark 2.l.3c yields 
after some simplifications: 

G) s(n, k) = to (:) s(m, i) s(n - m, k - i). 

Similar identities can be obtained for the signless Stirling numbers of the first 
kind and the Stirling numbers of the second kind. 
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Applying Theorem 3.2.3 we obtain the following identity for Gould polynomials 
(see e.g., [210, Section 12]): 

x + y (x + y - an) = 
x +y - an n 

~ x (x - ak) y (y - a( n - k )) 
t:fi x-ak k y-a(n-k) n-k · 

A similar identity holds for the upper factorials of Example 2.2.16c. 

The sequence of polynomials (--x- (x -an)) is the basic sequence of 
x - an n nEN 

the operator E 0 (E - I) (cf. [210, Section 12]). Since 

Lemma 2.2.21 yields 

~ _x (x - ak) (-a( n - k )) = (x - an) . 
L., x - ak k n - k n 
k=O 

The above identity can also be obtained by noting that (("'~an)) nEN is a Sheffer 
sequence for the delta operator E 0 (E - I) (Definition 2.4.1) and by applying 
Theorem 2.4.4. For a generalization of this identity, see [210, p. 736]. 
b) Consider the basic sequence ( :~) nEN. Then Theorem 3.2.3 yields another 
proof of the Abel generalization of the Binomial Formula (cf. Remark 2.2.18d). 

c) Consider g(z) = ½ ( 1 - (1 - 4z)½), the generating function of the Catalan 

numbers Cn = ¾ (2:~1
2 ) (n ~ 1). It is not easy to calculate convolutions of 

the Catalan numbers directly. Consider the compositional inverse of g. This is 
f ( z) = z - z2 . Let Q be the delta operator D - D 2 . It follows from Theorem 
2.2.22b that Q is the delta operator of the basic polynomials (qn)nEN whose 
coefficient sequence is the sequence of Catalan numbers. Theorem 2.3.6 yields 

_!_ ~ (n + k - l) 1 xn-k = ~ (2n -i - 1) 
n L., k (n-l-k)! L., n-i · 

k~ ~O 

Thus, C~* = ¾ (2n,;_\- 1) for 1::; k:::; n (cf. the approach in [174]). Note that 
the Catalan numbers are related to the Bessel polynomials introduced by Krall 
and Frink (see [202, sect. 4.1.7, pp. 78--79]). 
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3.3 Discrete probability distributions 

In this section we study discrete probability distributions that arise from a 
general construction with polynomials of convolution type. These distribu­
tions arise as conditional distributions and in approximation theory (references 
are given below). We will show how to use Umbral Calculus for computing mo­
ments of these distributions. The approaches of [74] and [241] are presented. 

Let (qk)kEN be a sequence of polynomials of convolution type with real coeffi­
cients. Fix n, a, and /3 such that 

1. n2:1 

2. qn(a+/3)/0 

3. (qk(a) qn-k(/3))/(qn(a + /3) 2: 0 

4. a f O 

5. /3 f O. 

Denote by r::,/3 the probability distribution on {O, 1, ... , n} with 

(3.1) 

Examples 3.3.1 Examples of probability distributions of the form (3.1) in­
clude: 

k 

a) If qk(x) = t, and a,/3 EN, then 

pa,/J{k} = (n) (-°' )k (-/3 )n-k 
n k a+/3 a+/3 

Hence, r::,/3 is the binomial distribution with parameters n and a/(a + 
/3). 

b) If qn(x) = (~) and a,/3 EN, then 

pa,/J{k} = (~) (n~k) 
n (a!/3) 

Hence, if a, /3 are positive integers, then r::,/3 is the hypergeometric dis­
tribution with parameters n, a, and /3. 

Hence, r::,/3 is the P6lya-Eggenberger distribution (see [128, Chapter 9, 
Section 4]). 
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d) If qn(x) = x(x - an)n-l (a< 0) and a,/3 > 0, then P;::,{3 is the quasi­
binomial distribution (see [65]). 

We now calculate the first moment of the distribution p;::,{3 defined above. By 
definition, the first moment of P;::,{3 equals 

Theorem 3.3.2 Let p;::,{3 be the probability distribution defined in (3.1). Then 
the first moment of P;::,{3 equals na/(a + (3). 

Proof: We give two proofs. 
First proof: define the wide sense Sheffer sequence (wk)kEN by wk(x) := 
kx-1 qk(x) (see Example 2.4.lOa). Applying Theorem 2.4.4b to (wk)kEN yields 
I:Z=o ka-1 qk(a)qn-k(/3) =(a+ /3)- 1 nqn(a + /3). Hence, the first moment 
equals na/(a + (3). 
Second proof: define the linear operator Ton P by Tqm := I:;=O k qk(a) qm-k 
for all m E N. Then the first moment of p;::,{3 equals (Tqn)(/3)/qn(a + /3). It 
follows from the Expansion theorem 2.2.22 that T = I::=0 (Tqm)(0) Qm = 
I::=o m qm (a) Qm, which equals a E°' g' ( Q) Q by Corollary 2.3.2. We there­
fore have (Tqn)(/3) = (aE°' I:Z=o kgk qn-k) (/3). By Theorem 2.3.6e, the first 
moment of P;::,{3 equals na/(a + (3). □ 

Remark 3.3.3 The formula for the first moment of P;::,{3 is formula 17 of [140]. 
The proof in [140] uses formal generating functions. The proofs of Theorem 
3.3.2 are therefore new proofs of this formula. 

If I::'=o gn zn has a positive radius of convergence, gn 2 0 for all n E N and 
both a and /3 are non-negative real numbers, then a probabilistic proof of 
Theorem 3.3.2 is possible. Take e > 0 such that 1::'=o gn en < oo. Let X 

and Y be independent random variables with P(X = k) = ek qk(a) e-ag(e) 

and P(Y = h) = eh qh(/3) ef3g(e). It follows from Theorem 2.l.12d that 

1:r=O P(X = k) = L~o P(Y = k) = 1. Then 

P(X = k IX+ y = n) = P(X = k)P(Y = n- k) = qk(a)qn-k(/3). 
P(X+Y=n) qn(a+/3) 

Suppose a and /3 are rational. Then there exist r, s E N and M E IB such 
that a= r/M and /3 = s/M. Define random variables Xi(i = 1, ... ,r + s) 

by P(Xi = k) = ek qk(l/M) e-g(e)/M_ The convolution property of the 
polynomials qk implies that X has the same distribution as X1 + ... + Xr and 
that Y has the same distribution as Xr+l + .... +Xr+s• Since E(X1 + ... +Xr+s I 
X + Y = n) = E(X + Y I X + Y = n) = n, we have E(X I X + Y = n) = 
rn/(r+s) = an/(a+f3). The general case where a and /3 are real follows from 
a continuity argument. 
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A characterization of probability distributions of the type P(X = k I X + Y = 
n) can be found in (110]. There are examples of polynomials of convolution 
type such that Qk(a) Qn-k(/3))/qn(a + (3) = P(X = k I X + Y = n) yields 
known distributions. For the Abel polynomials X (x - anr-1 /n! see (65], for 
the Gould polynomials from Example 3.2.4b) (cf. (210, Section 12]), see (125]. 
For applications of these probability distributions, we refer to (64, 66, 67]. 

We can now calculate the second moment of p;:,{3. As is often the case with 
discrete distributions, it is easier to calculate descending factorial moments than 
moments (cf. [128, p. 19]). We use the idea of the second proof of Theorem 
3.3.2. 

Theorem 3.3.4 Let p;:,{3 be the probability distribution defined in 3.1. Then 
the second factorial moment of p;:,{3 equals 

Proof: Define the linear operator Von P by V Qn := Z:::Z=o k(k -1) Qk(a) Qn-k 
for all n E N. Then the second descending factorial moment of p;:,{3 equals 
((Vqn)(f3))/qn(a + (3). It follows from the Expansion Theorem 2.2.22 that 

00 00 

The formal generating formula 2.1.12d yields 

oo d2 L n(n -1) Qn(o:) zn = z2 dz2 eag(z) = a z2 eag(z) { g"(z) + a (g'(z))2}. 
n=O 

It follows from the Isomorphism Theorem 2.3.1 that 

Since g(Q) = D by Theorem 2.2.22b, we have eo:g(Q) =Eaby Example 2.2.8a. 
Putting everything together yields the result. □ 

The following method of calculating moments is adapted from (241], where it 
is used in the context of approximation operators (cf. (182]). These operators 
are defined for continuous functions on (0, 1] by 

where (qn)nEN is a sequence of polynomials of convolution type with Qn(x) 2: 0 
on (0, 1]. For obvious reasons, it is important to calculate the action of these 
operators for f(x) = xm (m EN), which is nothing but computing the moments 
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of the distribution defined by (3.1). More information on Umbral Calculus and 
approximation theory can be found in Subsection 3.7.2. 

The Manole approach in [241] rests on the following lemmas. Note that For­
mula (3.3) only holds for m ~ n ( cf. [241]). 

Lemma 3.3.5 ([241, Lemma 1]) Let Q be a delta operator with basic se­
quence (qn)nEN• Then we have for all m ~ n: 

n 

(PQr = L S(m,k)PkQk, (3.3) 
k=O 

where P = x(Q')- 1 and S(m,k) denotes the Stirling number of the second 
kind. 

Proof: It suffices to check that both sides of (3.3) agree when applied to qn for 
all n EN. 
First note that by Theorem 2.3.6d, we have P qn = ( n + l) qn+I for all n E 
N. Hence, (P Q)m qn = nm qn. By definition, the connection constants for 
expressing xm in terms of the lower factorials1 (x)n = x (x - 1) ... (x - k + l) 
are the Stirling numbers of the second kind, i.e. xm = I:;:'=0 S(m,k) (x)k. 
Since fork~ m ~ n we have pk Qk qn = pk qn-k = (n)k qn, it follows that 

This concludes the proof, since n was arbitrary. □ 

Lemma 3.3.6 ((241, Lemma 2]) Let P;:,/3 be the probability distribution de­
fined in 3.1. Then the £th moments of P;:,/3 equals 

£ 
1 '°' k {3 (a /3) L,; S(£,k)P E qn(a+/3). 

qn + k=O 

(3.4) 

Proof: Let T be the linear operator on P defined by T := x (Q')- 1 Q. It follows 
from Theorem 2.3.6d (Rodrigues Formula) that T qn = n qn. Hence, 

~ kt qk(a) qn-k(/3) = ( TR ~ qn-k(/3) qk) (a) = (TR E 13 qn) (a). 

Now note that T = PQ, where P := x (Q')- 1 . Substituting Formula (3.3) into 
the last expression, we obtain the result. □ 

Formula (3.4) is too general to be used for direct computations. The following 
theorem presents a simplification of the special m = 2 of Formula 3.4, which 
is suitable for computations. Note that P is not shift-invariant and does not 
commute with shift-invariant operators. 

1There is a disagreement in notation for the lower factorials between combinatorics and 
special functions. We follow the convention of combinatorics. 
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Theorem 3.3. 7 (Manole ( [241])) Let P::,{3 be the probability distribution 
defined in 3.1. Then the second moment of P::,f3 equals 

(3.5) 

Proof: It follows from x2 = x + x(x - 1) that the Stirling numbers of the 
second kind satisfy S(2, 0) = 0 and S(2, 1) = S(2, 2) = 1. In the rest of the 
proof we will repeatedly use the Rodrigues Formula (Theorem 2.3.6d). Since 
shift-invariant operators commute by Corollary 2.2.12, we may rewrite P Ef3 
as x Ef3 ( Q' )- 1 which yields 

Writing .,:f3 = 1 - ~' we obtain the following convenient version of (3.6): 

(3.7) 

Using first (3.7) and then (3.7), we find that 

P2 Ef3 qn-2(x) = P ((n - 1) Ef3 qn-1 (x) - (3 Ef3 (Q')-1 qn-2(x)) 

- n (n - 1) ~ qn(x + (3) - x(3 Ef3 (Q')-2 qn-2(x) 
X + I-' 

= n (n - 1) ~ qn(x + (3) - x(3 (Q')-2 qn-2(x + (3). 
X + /J 

Substituting the above into (3.4), we obtain the desired result. □ 

Examples 3.3.8 We now compute the second (factorial) moments of the prob­
ability distributions discussed in Examples 3.3.1. 
a) For the binomial distribution with parameters n and a/(a + (3), we have 

k 

qk(x) = t,, Q = D and g(z) = z. Thus Formula (3.2) yields that the second 
descending factorial moment of P::,f3 equals n(n -1) (a/(a + (3)))2. 
b) For the hypergeometric distribution with parameters n, a and (3, we have 
qk(x) = m, Q = E 1 - I and g(z) = log(l + z). It follows that g'(Q) = 
(I +Q)-1 = (E1 )-1 = E-1 and that g"(Q) = -(I +Q)-2 = -(E1 )-2 = -E-2. 
Thus Formula (3.2) yields that the second descending factorial moment of P::,{3 
equals 

a (a: (3)-l ( (-Ea-2 + a E"-2) Q2 (:)) ((3) = 

. (a + (3)-I (a + (3 - 2) a ( a - 1) 
a(a-1) n n- 2 =n(n-l)(a+fJ)(a.+(3-l)" 

c) For the P6lya-Eggenberger distribution, we have qk(x) = ("'+;-1), Q = I -
E-1 and g(z) = - log(l-z). It follows that g'(Q) = (J-Q)-1 = (E-1 )-1 = E 1 
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and that g"(Q) = (I -Q)-2 = (E1 )-2 = E-2 . Thus Formula (3.2) yields that 
the second descending factorial moment of P;:,/3 equals 

a (a+ 1) 
n ( n - 1) -( a-+-{3)--'-(-a_+_fJ_+_l) 

d) For the quasi-binomial distribution we have qk(x) = x (x - ak)k-l /k! and 
Q = D Ea. Since there does not exist a closed formula for g( z), we cannot use 

Formula (3.2). By Lemma 2.3.4a, we have Q' = eaD (1 + aD) = Ea (1 + aD) 
and thus 

(Q')-1 (n _ l) qn-1 
X 

(Q')-l (x - (n - l)a)n-2 

(n - 2)! 

Now Formula (3.5) yields that the second moment of P;:,/3 equals 

n-2 · 
n2 _a __ n! a {3 (-a)n- 2 '°' (-a (x .- na))' 

a+ {j (a+ {3) (a+ {j - na)n-l L.., i! 
i=O 

The trivial relation E(X (X -1)) = E(X2 ) - E(X), the above formula imme­
diately yields that the second factorial moment of P;:,/3 equals 

n-2 · 
( a I a{j n-2 L(-a(x-na))' 

nn-1)--f.l-n.( {3)( {j ) _ 1 (-a) .1 a + /J a + a + - na n i. 
i=O 

3.4 Orthogonal Sheffer polynomials 

In this section we show how to use the Umbral Calculus for finding all orthogo­
nal Sheffer polynomials2 • By Favard's Theorem (see e.g. [58, Theorem 4.4]), a 
polynomial sequence ( sn)nEN is orthogonal if and only if it satisfies the following 
three-term recurrence relation for n 2'. 0: 

(3.8) 

where s1 = 0, so is a non-zero constant, and en an an-l > 0 for n 2'. 1. We must 
be careful with normalizations when dealing with Sheffer sequences, because if 

2 All Sheffer polynomials are orthogonal in the sense that they are orthogonal with respect 
to some functional (see [210, Section 9]). 
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(sn)nEN is Sheffer, then (Ansn)n>O need not be Sheffer. Hence, we must use 
the non-monic form (3.8). 
The following theorem shows the relation between the three-term recurrence re­
lation (3.8) and differential equations for the delta operator and shift-invariant 
operator of a Sheffer sequence. These differential equations are to be under­
stood in the Pincherle sense (cf. Definition 2.3.3). 

Theorem 3.4.1 Let (sn)nEN be a Sheffer sequence with delta operator Q and 
invertible operator A. If (sn)nEN satisfies the three-term recurrence relation 
(3.8), then 

Q' = __!_I+ (~ _ bo) 
ao a1 ao 

A' = bo A+ s_AQ. 
ao ao 

(3.9) 

(3.10) 

If conversely Q' = d1 + d2Q + d3Q2 and A' = d4A + d5AQ, then (sn)nEN 
satisfies the following three-term recurrence relation: 

Proof: We make extensive use of the Operator Expansion Theorem 2.4.11 and 
of the fact that qn(O) = 0 for n ~ 1, where (qn)~EN is the basic sequence of Q. 
In particular, 

T' = L [T' Sk]:i:=O AQk 
k=O 

where T' is the Pincherle derivative of the operator T. Notice that 

(3.11) 

It will be convenient to adopt the convention that qk = 0 and Sk = 0 fork < 0. 
Assume that (sn)nEN satisfies the three-term recurrence relation (3.8). We first 
apply (3.11) to T = A', which yields 

00 

A' L [Axsk].,=o A Qk 
k=O 
00 1 L - [A (sk+l + bk Sk + cksk-1) ].,_0 AQk 
k~% -

00 1 
= °2:-(qk+1(0)+bkqk(O)+ckqk-1(0)) AQk 

k=O ak 

boA+S.AQ. 
ao ao 
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We now apply (3.11) to T = (AQ)'. 

AQ' + A'Q (AQ)' 
00 

00 

Now we eliminate A' in the last equation by using the invertibility of A and 
Formula (3.10): 

AQ' +A'Q 

AQ' 

Q' 

Conversely, assume that Q' = d1 + d2Q + d3Q2 and A' = d4A + d5AQ. We 
apply the Polynomial Expansion Theorem 2.4.lla to xsn, which yields 

n+l 
XSn L [AQkxsnt=o Sk 

k=0 
n+l 
L [(AQk)t snL=o Sk 
k=0 
n+l 

= L {((A'Qk)+kAQk-lQ')sn(O)}sk 
k=0 
n+l 
L { A' Sn-k (0) + AQ' Sn-k+l (0)} Sk 
k=0 
n+l 
L {(d4A + d5AQ) Sn-k(O)+ 
k=0 
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n+l 

L {d4 qn-k(0) + d5 qn-k-1(0)+ 
k=O 

d1 qn-k+l (0) + d2 qn-k(0) + d3 qn-k-1 (0)} Sk 

= 
d4 d5 d1 d2 d3 
n! Sn+ (n _ l)! Sn-1 + (n + l)! Sn+l + n! Sn+ (n _ l)! Sn-1 

= (d3 + d5) Sn-1 + d2Sn + d1sn+1 

Since d1 =fa 0, this means that (sn)nEN satisfies a three-term recurrence relation 
of the form (3.8). D 

Solving the differential equations for Q and A, we find all orthogonal Sheffer 
polynomials. Thus, we have a new proof of the Meixner classification of or­
thogonal Sheffer polynomials (see [157] for the original proof, cf. [5, 57, 100, 
132, 141, 206, 202]). The advantage of our proof is that it is a constructive 
proof based on first principles of the Umbral Calculus. A generalization of the 
Meixner classification was obtained by Al-Salam in [6], where itis shown that 
the Meixner result remains true even if we consider the more general class of 

polynomials with generating function eQ(x, t), where Q(x, t) is a polynomial 
in x and a power series in t. 

It is an open problem to determine which Sheffer sequences are orthogonal with 
respect to a Borel measure in the complex plane, cf. [210, p. 751]. Two such 
sequences are the polynomials xn /n!, which are orthogonal with respect to arc 
length on the unit circle, and the lower factorial polynomials (see [153] and 
references therein). All Sheffer sequences orthogonal on the unit circle have 
been classified by Kholodov (see [132]). 

3.5 Moment systems 

In the work ofFeinsilver (e.g. [89, 90, 91]; see also [117]) sequences (Pn)nEN of 
polynomials appear that satisfy 

(3.12) 

where (µt)t?.O is a convolution semigroup of probability measures (usually in­
duced by a stochastic process with stationary independent increments). It 
follows directly from the Binomial Formula that Formula (3.12) implies 

(3.13) 

In this section we will study when a sequence (Pn)nEN satisfying (3.13) admits 
a representation of the form (3.12). We will show that representations of the 
form (3.12) are related to umbral operators (cf. Section 2.3) and to moment 
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sequences of infinitely divisible probability measures. Moreover, the relation be­
tween umbral composition and subordination of probability measures is pointed 
out. Representations of the form (3.12) by groups of complex Borel measures 
or by convolution semigroups of probability measures with support in [O, oo) 
are also studied. At the end of this section we present some explicit examples. 

This section is based on [75]. 

Definition 3.5.1 Let (µtk,~o be a collection of complex Borel measures on the 
real line. 

Ifµ.* µt = µ.+t for alls, t ~ 0 (where * denotes convolution), then (µt)t?.O is 
a said to be a convolution semigroup. 

If J~00 f(x) dµt(x) is a measurable function oft for each bounded continuous 
function f on the real line, then (µt)t?.O is said to be weakly measurable. 

If J~00 f(x) dµt(x) converges to J~00 f(x) dµo(x) for each continuous function 
f on the real line with compact support and µt(lffi.) converges to µ 0 (JIB.) as t goes 
to zero, then (µt)t?_O is said to be weakly continuous. 

Lemma 3.5.2 Let µ and v be probability measures on the real line. Ifµ* v 
has finite moments of all orders, then both µ and v have finite moments of all 
orders. 

Proof: The definition of Lebesgue integrals implies that µ * v has finite abso­
lute moments of all orders. Let r be a positive integer. By the definition of 
convolution, 

1_: IW d(µ * v)(t) = 1_: 1_: Ix+ Ylr dµ(x)dv(y) < oo. 

Hence, J~00 Ix+ Ylr dµ(x)) < oo, µ-a.e. in y. Since 

lxlr :::; 2rlx + Ylr + 2rlYlr, 
it follows that 1_: lxlr dµ(x) < oo. 

Likewise we see that v has a finite absolute moment of order r. □ 

The following theorem shows that convolution semigroups of measures generate 
umbral operators (cf. Definition 2.3.9). 

Theorem 3.5.3 Let (µt)t?_O be a weakly measurable convolution semigroup of 
complex Borel measures on the real line having finite moments of all orders and 
let (Pn)nEN be a sequence of polynomials of convolution type. If µt(lffi.) = l for 
all nonnegative t, then (qn)nEN is also a sequence of polynomials of convolution 
type, where 
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Proof: The sequence (qn)nEN is well-defined since (µt)t>O has finite moments 
of all orders. We verify that (qn)nEN is of convolution type: 

1_: 1_: t Pk(x) Pn-k(Y) dµs(x) dµt(Y) = t qk(s) qn-k(t). 

If p0 (0) = 0, then Pn = 0 for all n and there is nothing to prove. If Po(O) -1- 0, 
then p0 = 1 and we have qo = 1 because µt(li) = 1. Moreover, since (µt)t?.O is 
weakly measurable, the functions qn are Borel measurable. It now follows from 
Theorem 2.1.8 that (qn)nEN is a sequence of polynomials. D 

Remark 3.5.4 The linear operator U, defined by Up(t) := f~00 p(x) dµt(x), 
is an umbral operator in the sense of Definition 2.3.9. We will see in Corol­
lary 3.5.11 which umbral operators can be represented in this way. 

The following two theorems describe necessary and sufficient conditions for the 
existence of convolution semigroups of probability measures. 

Definition 3.5.5 A complex-valued function f on the real line is negative 
definite if 

n n 

L Ck = 0 implies L CjCkf(sj - sk) :::; 0 
k=l ~k=l 

for all nonnegative sequences s1, ... , Sn and all complex sequences c1, ... , Cn. 

A real-valued C 00 -function f on (0, oo) is said to be a Bernstein function if 

f 2:'. 0 and ( - 1 l Dk f 2:'. 0 for all integers k 2:'. 1 

Theorem 3.5.6 If a continuous real-valued function f on the real line is neg­
ative definite and satisfies f(0) = 0, then there exists a weakly continuous 
semigroup (µt)t?.O of probability measures on the real line such that for all real 
y 

e-tf(y) = 1_: e-ixy dµt(x) 

Proof: This follows from [24, Chapter 2, Theorem 8.3 and Corollary 8.6]. □. 

The following theorem is the analogue of Theorem 3.5.6 for convolution semi­
groups of probability measures on [0, oo). 

Theorem 3.5. 7 If a real-valued function f on (0, oo) is a Bernstein function 
and satisfies f(0) = 0, then there exists a weakly continuous semigroup (µt)t>o 
of probability measures on [O, oo) such that for all positive y -
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Proof: See [24, Chapter 2, Theorem 9.18 and Remark 9.19]. □ 

We now investigate which sequences of polynomials of convolution type admit 
a representation of the form (3.12), i.e. can be represented as moment systems 
in the terminology of Feinsilver (see [89, 91, 117]). Our first theorem relates 
negative definiteness of -g to representability as moment system. 

Theorem 3.5.8 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN. Suppose that 

CX) 

1. L 9nZn has a positive radius of convergence 
n=O 

2. the function x - -g( -ix) has a continuous, negative definite extension 
to the real line. 

Then there exists a weakly continuous convolution semigroup (µt)t?.O of proba­
bility measures on the real line such that for t ~ 0 

qn(t) = 1_: :~ dµt(x) 

Proof: It follows from g0 = 0, condition 2) and Theorem 3.5.6 that there exists 
a weakly continuous semigroup (µt)t:;,,_ 0 of probability measures such that 

1_: e-ixy dµt(x) =ig(-iy) 

for all real y. It follows from condition 1) that there exists r > 0 such that g is 
analytic for lzl < r. Thus by [151, Theorem 7.1.1] 

1_: ezx dµt(x) = ig(z) 

for lzl < r. Since g is analytic, it follows from [151, Corollary 1 to The­
orem 2.3.1] that each µt has finite moments of all orders. Moreover, [151, 
Corollary 2 to Theorem 2.3.1]) yields 

ig(z) = 1_: ezx dµt(x) = ~ (/_: :~ dµt(x)) zn 

l ex, xn 
for lzl < r. It now follows from Theorem 2.l.12d that qn(t) = -ex, n! dµt(x). 

□ 

We will see in Theorem 4.4.10 that condition 1) is equivalent to: there exists 
r > 0 such that for all t > 0 

00 

L lqn(t)lrn < 00. 

n=O 

Of course, there is a corresponding result for probability measures on [O, oo ). 
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Theorem 3.5.9 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN· Suppose that 

00 

1. L gnzn has a positive radius of convergence 
n=O 

2. the function x 1-+ -g( -x) has an extension to a Bernstein function on 
(0, oo). 

Then there exists a weakly continuous convolution semigroup (µt)t?.O of proba­
bility measures on [O, oo) such that for t 2: 0 

Proof: The proof is analogous to the proof of Theorem 3.5.8 ( use Theorem 3.5. 7 
instead of Theorem 3.5.6). □ 

A sequence (qn)nEN of polynomials of convolution type is determined by the 
numbers qn(l) by Theorem 2.1.14. The following theorem gives a necessary 
and sufficient condition on the numbers n! qn(l) for the representation of The­
orem 3.5.8 to hold. 

Theorem 3.5.10 Let (qn)nEN be a sequence of polynomials of convolution 
type. There exists a weakly continuous convolution semigroup (µt)t>O of prob­
ability measures on the real line such that qn ( t) = f ~00 :~ dµt ( x f for t 2: 0 
if and only if ( n! qn ( 1) )nEN is the moment sequence of an infinitely divisible 
probability measure on the real line. 

Proof: " ⇒" This follows from n! qn(l) = J~00 xn dµ1(x), since µ1 is clearly 
infinitely divisible. 
"<:=" Let µ be an infinitely divisible probability measure with moment sequence 
(n! qn(l))nEN· By [93, Chapter 9, Section 5, Theorem 2], there exists a weakly 
continuous convolution semigroup of probability measures (µt)t?.O on the real 
line such that µ1 = µ. It follows from Lemma 3.5.2 that each probability mea­
sure µt has finite moments of all orders. Thus Theorem 3.5.3 implies that the 
sequence (hn)nEN, defined by hn(t) = J~00 :~ dµt(x) is a sequence of polyno­
mials of convolution type. This sequence is determined by the numbers hn(l) 
by Theorem 2.1.14. Hence, hn = qn for all n, since hn(l) = qn(l). D 

As a corollary we now describe when an umbra! operator ( cf. Definition 2.3.9) 
can be represented as an integral operator. This representation differs from 
the integral operator representation for shift-invariant operators in Section 3.6, 
since umbra! operators are never shift-invariant (except for the identity opera­
tor) by Theorem 2.3.llb. 
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Corollary 3.5.11 Let Ube an umbra[ operator. Then there exists a semigroup 
(µt)t?.O of probability measures on the real line such that 

(Up) (t) = 1: p(x) dµt(x) 

if and only if ( (U xn) (1) )nEN is the moment sequence of an infinitely divisible 
probability measure. 

Proof: Define qn = U":-,~. Since U is an umbral operator, it follows that (qn)nEN 
is a sequence of polynomials of convolution type. The result now follows from 
Theorem 3.5.10. D 

The following theorem relates umbral operators to subordination of convolu­
tion semigroups of probability measures. For another relation between umbral 
operators and subordination, see [222]. 

Theorem 3.5.12 Let (µt)t?_O and (vt)t?_O be weakly measurable convolution 
semigroups of probability measures and let (Pn)nEN and (qn)nEN be the associ­
ated sequences of polynomials of convolution type, i.e. Pn ( t) = J~= ":-,~ dµt ( x) 

and qn ( t) = J~= ":-,~ dvt ( x). Let U be the umbra[ operator that maps ":-,~ to Pn 
and define polynomials r n by r n = U qn. Then 

where (Pt)t?_O is the convolution semigroup subordinated to (vt)t?.O by means of 
(µt)t?_O · 

Proof: This follows from 

where 1: dµt(x) llx is the probability measure resulting from subordinating 

to ( lit )t?_O by means of (µt )t?_O ( cf. [24, Section 9.20]). D 

The following theorem states when a sequence of polynomials of convolution 
type is generated by a group of complex Borel measures on the real line. 

Definition 3.5.13 A group (µt)tEIR of probability measures on the real line is 
said to be strongly continuous if the operators f 1--; f * µt form a strongly 
continuous group on L1 ( -oo, oo). 
A complex Borel measure µ on the real line is said to be invertible , if there 
exists a complex Borel measure II on the real line such that µ * 11 = l5o, where 
l5o is the point mass at 0. 
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Theorem 3.5.14 Let (qn)nEN be a sequence of polynomials of convolution 
type. There exists a strongly continuous group of complex Borel measures 
(µt)tEIR such that 

qn(t) = 1-: :: dµt(x) 

if and only if (n! qn(l))nEN is the moment sequence of an invertible complex 
Borel measure on the real line with total mass one. 

Proof: ' ⇒' This follows from n! qn(l) = J.":°00 xn dµ1 (x ). Note that µ1 is invert­
ible, since (µt)tEIR is a group. 
'<=' Let µ be an invertible complex Borel measure with moment sequence 
(n! qn(l))nEN· It follows from [95] there exists a strongly continuous convo­
lution group of complex Borel measures (Jtt)tEIR on the real line such that 
µ1 = µ and µt(R) = 1. It follows from Theorem 3.5.3 that (hn)nEN, defined 
by hn(t) = J.":°00 :~ dµt(x), is a sequence of polynomials of convolution type. 
This sequence is determined by the numbers hn(l) by Theorem 2.1.14. Hence, 
hn = qn for all n, since hn(l) = qn(l). D 

We conclude this section with examples of sequences of polynomials of convo­
lution type that are moment systems. 

Examples 3.5.15 Explicit examples of sequences of polynomials of convolu­
tion type that are moment systems include: 

1. Take µt = lit. Then 

oo k 

2. Take µt = L e-t :, 8k (Poisson semigroup). Then 
k=O 

loo n 1 00 tk -t 00 tk kn 
X -t n e , 

qn(t) = 1 dµt(x) = 1 Le k'k = - 1 L -k,-
, -00 n. n. k=O . n. k=O . 

The ratio test yields that this series converges absolutely for all real t. 
The series 

t oo tk kn 
e- Lk! 

k=O 

is known as the Dobinski Formula for the exponential polynomials (see 
[202, p. 66] and [152]). 

3. Take dµt(x) = l(o,oo)(x) r~t) xt-l e-x dx (Gamma-semigroup). Then 

{oo xn {oo xn+t-1 -x I'(n + t) (t + n - 1) 
qn(t) = }_oo n! dµt(x) = Jo n! r(t) e dx = I'(t)n! = n 
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4. Take dµt(x) = ~ e-x2 f2t dx (Brownian semigroup). 
v21rt 

Then qn(t) = 0 if n is odd and for n even we have 

- _l_ 100 xn -x2 /2t - tn/2 
qn(t) - \i21rt -oo n! e dx - 2n/2 (n/2)! 

Note that the degree of qn is less than n. 

3.6 Shift-invariant operators and integral oper­
ators. 

Theorems 2.2.7, 2.2.22 and 2.4.llb show that shift-invariant operators can be 
represented by power series. In this section we prove that each shift-invariant 
operator can be represented as a random shift, i.e. as an integral operator. This 
representation will be used to give a new proof of a characterization theorem 
for Sheffer polynomials ( due to Sheffer) which characterizes Sheffer sequences 
as shifted moments of a complex Borel measure on the real line. This section 
is based on [75]. 

The following lemma is essential. 

Lemma 3.6.1 (Boas) For each sequence (an)nEN of complex numbers, there 
exist infinitely many complex Borel measures µ on the real line such that 

(P6lya) Among these measures are discrete measures and absolutely continu­
ous measures. 

Proof: Boas and P6lya stated their results for real sequences (see [27] and 
[181]). Our lemma follows immediately from their results by considering real 
and imaginary parts. □ 

If µ is a complex Borel measure on the real line having finite moments of all 
orders, then 

(Tp)(x) = 1-: p(x + y) dµ(y) 

defines a linear shift-invariant operator on the space of polynomials. The con­
verse is also true as the following theorem shows (cf. [223, formula 13]. 

Theorem 3.6.2 If T is a linear shift-invariant operator, then there exists a 
complex Borel measure µ on the real line such that for all polynomials p 

(Tp)(x) = 1-: p(x + y) dµ(y). 
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Proof: By the Expansion Theorem 2.2.7, we have 

By Lemma 3.6.1, there exists a complex Borel measureµ on the real line such 
that (Txk) (0) = f~00 yk dµ(y) . Define the linear shift-invariant operator V 
by (Vp)(x) = f~00 p(x + y) dµ(y) for all polynomials p. Then 

It follows from the Expansion Theorem 2.2.7 that T = V. □ 

Note that if T =/= 0 is a non-invertible shift-invariant operator, then there does 
not exist a non-negative Borel measure such that (Tp)(x) = f~00 p(x+y) dµ(y) 
for all polynomials p. Indeed, this would imply Tl = 0, since Tl =/= 0 is 
equivalent to invertibility. Hence, µ(lffi.) = 0. Since µ =I= 0 it follows that µ 
cannot be a non-negative Borel measure. 

Examples 3.6.3 We present some explicit examples of representations of lin­
ear shift-invariant operators. Let 80 be the point mass at 0. Recall that the 
measure µ of Theorem 3.6.2 is not unique. 

Linear shift-invariant operator Measure µ of Theorem 3.6.2 

Identity operator 80 

Laguerre operator 80 - e-t dt 

Weierstrass operator _1_ e-t2 /2 dt 
v"iir 

The Weierstrass operator is the invertible operator of the Hermite polynomials 
(cf. Example 2.4.3a. 

Remark 3.6.4 The proof of Theorem 3.6.2 show that the existence of abso­
lutely continuous measures for the identity operator, the differentiation op­
erator, and the shift operators Ea, are equivalent to the following moment 
problems: 

l. identity operator: 1_: dµ(y) = 1, 1_: yn dµ(y) = 0 for n > 0. 

2. differentiation operator: 1_: y dµ(y) = 1, 1_: yn dµ(y) = 0 for n =/= l. 

3. shift-operator Ea: 1_: yn dµ(y) = an. 
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As Erik Thomas showed to me (private communication), it is possible to solve 
these moment problems explicitly using the theory of tempered distributions. 

We now use Theorem 3.6.2 to prove a characterization theorem for Sheffer 
polynomials due to Sheffer (see [218, Theorem 2]). 

Theorem 3.6.5 (Sheffer) A sequence ( sn)nEN of polynomials is a strict sense 
Sheffer sequence with basic sequence ( qn)nEN if and only if there exists a complex 
Borel measure µ on the real line such that µ(lRl.) =/- 0 and 

for all n EN. 

Proof: '-¢:::' The operator A, defined by (Ap)(x) = f~00 p(x + y) dµ(y) is an 
invertible linear shift-invariant operator on P. Clearly Sn = Aqn and hence, 
deg Sn= n. Moreover, so =/- 0 since qo = 1 and µ(lRl.) =/- 0. Thus (sn)nEN is a 
strict sense Sheffer sequence by Theorem 2.4.8b. 
'⇒' If (sn)nEN is a strict sense Sheffer sequence, then the linear operator A, 
defined by Aqn = sn, is shift-invariant by Theorem 2.4.8b. Thus Theorem 3.6.2 
yields a complex Borel measureµ such that (Ap)(x) = f~00 p(x + y) dµ(y) for 

all polynomials p. In particular, sn(x) = Aqn(x) = f~00 qn(x + y) dµ(y) for 
all n. Moreover, µ(lRl.) = so(0) =/- 0. D 

The formal moment generating function of the measure µ in Theorem 3.6.5 is 
equal to the formal power series I::=o sn(0) tn (see [218, Corollary on p. 742]). 
The following integral representation for Hermite polynomials 

H () = _l_ 100 (x+y)n -y2/2d 
nX ~ 1 e y 

y 21r -oo n. 

is an illustration of Theorem 3.6.5. 

We now show that linear functionals can be represented by integrals ( cf. The­
orem 2.4.8). 

Theorem 3.6.6 Let A be a linear functional on P. Then there exists a complex 
Borel measure µ on the real line such that 

Ap= I:p(x)dµ(x) 

for all polynomials p. 

Proof: Define (an)nEN by A~~ := an. Define the linear operator T on P by 

T := I::=o an nn. Since (T ~~ )(0) = an for all n E N, we conclude that 
Ap = (Tp)(0) for all p E P. The theorem now follows from Theorem 3.6.2 D 
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The above theorem can be used to prove another characterization theorem for 
Sheffer polynomials. This theorem was proved by Thorne for Appell poly­
nomials (see [236]) and extended by Sheffer to Sheffer polynomials (see [218, 
p. 744]). 

Theorem 3.6.7 (Thorne-Sheffer) A sequence (sn)nEN of polynomials such 
that deg Sn = n is a Sheffer sequence if and only if there exist a delta operator 
Q and a complex Borel measure µ on the real line such that µ(Ji) # 0, µ has 
finite moments of all orders, and 

Proof: '=>' By Theorem 2.4.8c, there exist an invertible linear functional A 
(i.e., Al -:p 0) and a delta operator Q such that AQk Sn = Dnk. By Theo­
rem 3.6.6, there exists a complex Borel measure µ on the real line such that 
Ap = f ~00 p(y) dµ(y). Hence, 

1_: (Qksn) (x)dµ(x) = Dkn• 

'<=' This follows directly from Theorem 2.4.8c, since pf-+ f~00 p(x) dµ(x) is an 
invertible linear functional on P. □ 

3. 7 Exponential families 

Exponential families of probability measures play a traditional role in statistics 
(dating back to the thirties) because of their nice estimation properties (see 
e.g. [221]). However, recently exponential families appear as the cornerstone 
of the important class of generalized linear models (see [78] for an excellent 
introduction). In [160], Morris studied natural exponential families on the real 
line. He showed that there are six classes of natural exponential families with 
quadratic variance function (i.e. where the variance is a polynomial of degree 
at most two). In this section we study natural exponential families in light of 
expansions of their density function in terms of Sheffer polynomials. The delta 
operator of the associated Sheffer sequence will be shown to relate directly to 
the variance function of natural exponential family. Using slightly different ter­
minology, Feinsilver proved [89, Chapter 4] that a natural exponential family 
has a quadratic variance function if and only if the corresponding Sheffer poly­
nomials are orthogonal. This result immediately follows from our approach to 
natural exponential families ( cf. Section 3.4). It is interesting to note that the 
Morris classification was discovered a few years earlier in approximation theory 
by May (see [156] and for generalizations [124]). We discuss the relation be­
tween exponential families and exponential approximation operators. We also 
indicate how our approach differs from the approach in [124, 156]. 

This section is based on [77]. 
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3. 7.1 Natural exponential families 

We begin by recalling the definition of a natural exponential family. Our no­
tation closely follows [144]. 
Let v be a measure on the real line. We assume that v is not concentrated in 
one point. 
Let the Laplace transform of v be given by 

L(0) = I: exe dv(x). (3.14) 

We define 0 to be the interior of the set { 0 E JIB. I L( 0) < oo}. If 0 is non-empty, 
then the natural exponential family generated by vis the set of probability 
distributions of the form 

Po(A) = L exe - k(e) dv(x), (3.15) 

where k is the cumulant of v, i.e. k(0) := logL(0), and 0 E 0. We will see 
later that different v may generate the same natural exponential family. Since 
k(0) = 1ogL(0), we have 

ek(0) = I: ex0 dv(x). 

It follows by differentiating (3.16) with respect to 0 that 

k'(0) = I: xdPo(x). 

(3.16) 

(3.17) 

Differentiating (3.16) twice with respect to 0 and using (3.17), we obtain 

k"(0) = I: (x - k'(0)) 2 dP0 (x). (3.18) 

Let Mv be the range of k', i.e. Mv = k'(0). Since k is strictly convex on 0 by 
the Holder inequality3 , k' : 0 ---+ Mv is a bijection. Its inverse will be denoted 
by 

'¢ : Mv ---> 0. 

This means that we may reparametrize the densities with respect to v in (3.15) 
as 

cp(m, x) = ex'l/J(m) - k('l/;(m)). (3.19) 

Using the reparametrization of (3.19), we now come to the following important 
definition. 

3 If O < A. < l, then k(A0 + (l - A)0 = log (1~
00 

eABx e(l - A)lx dv(x)) < 

log ( (f ~00 eex dv(x)) ,\ (f ~00 elx dv(x)) !-,\) = Ak(0) + (1 - A)k(O. Note that the in­

equality is strict, since v is not concentrated in one point. 
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Definition 3. 7 .1 Let { Po I 0 E 0} be the natural exponential family generated 
by a measure v. The function V., : M., - Ji defined by V.,(m) = J~00 (x -
m )2 c,o( m, x) dv( x) is called the variance function of { Po I 0 E 0}. 

A natural exponential family is uniquely determined by its variance function 
together with the domain of the variance function ((160]). In the theory of 
generalized linear models, the variance function is called the link function 
((78]). The link function is essential for estimating purposes. 
Before we continue, we give an example in order to illustrate the notions intro­
duced above. 

Example (Poisson family) Consider a Poisson distribution with parameter 
e-00n · e-00n enlog0 

0, i.e. Pr(k) =--,-for n = 0, 1, 2, .... Writing--,-= 1 0 , we see 
n. n. 1 e og 

n.e 
that {Po I 0 E (0, oo)} is a natural exponential family generated by the discrete 
measure v{ n} = 1/n!, n = 0, 1, 2, ... where Po is Poisson(log0) distributed. An 

easy calculation shows that k(0) = e8 , 0 = lRl, 1/J(m) = logm, M., = (0, oo), 
and V.,(m) = m. We see that the standard change from 0 to the so-called 
natural parameter log0 (cf. [78) is nothing but our reparametrization (3.19). 
The following lemma is crucial to our approach. 

Lemma 3. 7 .2 If ( Po I 0 E 0) is a natural exponential family, then there exist 
a real number t and a natural exponential family { Po 10 E e} generated by a 
measure µ such that 

1. Po(A) = Po(A + t) 

2. 1_: xdµ(x) = 0 

3. 0 E 0 

4. k'(O) = o 

5. V,.(m) = V.,(m + t). 

Proof: First note that { P0 I 0 E 0} is also generated by the measure e80 x dv( x) 

for any 0o E 0 and that the corresponding parameter set 0 equals 0 - 00 • In 
particular, 0 E 0. Now define the measure µ by dµ(x) = dv(x + k'(0)). It 
follows from (3.17) that k'(O) = 0. Moreover, easy calculations shows that (1) 
and (5) hold with t = k'(0). □ 

Example (Poisson family continued) Let µ be the measure obtained by 
shifting the generating measure v one unit (= k'(0)) to the left, i.e. µ{n} = 
1/(n + 1)!, n = -1,0, 1,2, .... An easy calculation yields thatµ is of mean 

zero, 0 = lRl, k'(0) = e0 - 1, M,, = (-1, oo), k'(O) = 0, and V,,(m) = m + 1. 
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Thus we may and will assume without loss of generality that (Pe I 0 E 0) 
satisfies the extra conditions of the above Lemma. By well-known properties of 
Laplace transforms, k and 'lj; are analytic functions in a neighbourhood of zero. 
Hence, we may expand (3.19) into a power series in m for m E Mv. It follows 
from (3.15) and (3.17) that k'(0) = 0. Moreover, since vis not concentrated in 
one point, it follows from (3.18) that k"(0) -1- 0. Thus, 'lj;(0) = 0 and 1/J'(0) -1- 0, 
which implies that Sn is a polynomial of degree exactly n. The associated 
Sheffer polynomials of a natural exponential family are the polynomials 
(sn)nEN defined by 

00 

cp(m, x) = ~ sn(x) mn, (3.20) 
n=O 

where 'P is defined by (3.19). 

The following theorem relates the variance function of a natural exponential 
family to the delta operator of its associated Sheffer sequence. 

Theorem 3. 7.3 Let { Pe I 0 E 0} be a natural exponential family generated by 
a measure v with associated Sheffer sequence (sn)nEN (thus we assume without 
loss of generality that the extra conditions of Lemma 3. 7.2 hold). Let Q = q(D) 
be the delta operator and A = f(D) be the invertible operator of (sn)nEN• 
Then q'(D) = Vv(q(D)) and f'(D) = q(D) f(D). Moreover, f is the Laplace 
transform of v. 

Proof: It follows from equations (3.19) and (3.20) and Corollary 2.4.9 that 
q(D) = 'lj;- 1 (D) = k'(D). Thus, by equation (3.18) and the definition of 
variance function, we arrive at q'(D) = k"(D) = Vv(k'(D)). For the second 

statement, note that by Corollary 2.4.9 we have f(D) = ek(D). Hence, f'(D) = 
k'(D) ek(D) = q(D) f(D). The last statement follows from k(0) = log L(0) and 
Equation (3.14). □ 

We now are ready to prove the classification result mentioned in the introduc­
tion. The original proof is in [89]), another proof of this result can be found in 
[143, Theorem 4.1]. The merit of our proof is that it explains why the result is 
true. 

Theorem 3. 7 .4 (Feinsilver) The variance function of a natural exponential 
family is quadratic if and only if the associated Sheffer polynomials are orthog­
onal. 

Proof: Combine Theorems 3.7.3 and 3.4.1. □ 
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3.7.2 Natural exponential families and approximation 
theory 

In this subsection we show that exponential families appear in disguise in ap­
proximation theory4 • An important consequence of this is that the results of 
(156, 123, 124] are of importance for the statistics literature (in particular, 
it turns out that many of the results in (160] were predated by the above­
mentioned papers). We will also see how our approach differs from the approach 
in [123, 124, 156] (apart from different terminology). 

We begin with recalling the basics of exponential-type approximation operators, 
following the exposition in (156] (see also (123, 124]). We slightly change the 
notation in order to be able to compare directly. 

Let W ( ,\, m, x) be the kernel of an exponential-type operator, i.e. W ( ,\, m, x) 
is a generalized function5 such that 

W(,\,m,x) I: W(,\,m,x)dx 

8 
am W(,\,m,x) 

> 

= 

0 

1 

,\ 
p(m) W(,\,m,x) (x - m), 

(3.21) 

(3.22) 

(3.23) 

where p is analytic and positive on an interval on the real line. The correspond­
ing positive approximation operator is defined by 

(S>-./)(t)= I: W(,\,t,x)f(x)dx. (3.24) 

It is shown in (124, Corollary 3.2] that any solution of the partial differential 
equation (3.23) (together with the normalization condition (3.22)) is of the 
form 

( 1m X -y ) 
W(,\,m,x) = exp ,\ e p(y) dy C(,\,x). (3.25) 

The normalization condition (3.22) yields that exp ().. f:(m) y/p(y) dy) is the 

Laplace transform of C(,\, x), where g(m) = fem 1/p(y) dy. In other words, for 
fixed ,\, the W ( ,\, m, x) form a natural exponential family generated by dv( x) = 
C(,\,x) (cf. formulas (3.15) and (3.19)) such that 'lj;(m) = fem ,\/p(y)dy. 

4On April 29, 1992, Gerard Letac delivered a beautiful lecture on natural exponential 
families at a one-day conference in Leuven, Belgium. This subsection arose out of remarks 
made on that occasion by Mourad Ismail. 

5 In fact, one would like to say that W( >., m, x) is the density function of a random variable. 
However, since we don't want to exclude random variables with discrete parts, we have to 
resort to generalized functions. 
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Conversely, let { P0 I 0 E 0} be the natural exponential family generated by 
a measure v. Consider the reparametrization (3.19). Define the functions 
W(-\,m,x) by 

W(-\,m,x) := ex'lj;(,\m) - k('lj;(,\m))_ 

Since 'lj; = k- 1 , it follows that 

'I/J'(m) = 1/(k"('I/J(m)) 

and 
(k('lj;(m))' = m/(k"('I/J(m)). 

Hence, the functions W(,\, m, x) defined by (3.26) satisfy 

{) ,\ 
om W(,\, m, x) = k"('I/J(m)) (x - m). 

(3.26) 

Note that k"('I/J) is the variance function of {P0 I 0 E 0} by (3.19) (i.e. it is the 
p appearing in (3.23)). 

We have thus obtained a complete correspondence between kernels of exponen­
tial-type approximation operators and natural exponential families. Hence, we 
have shown that the classification problems for exponential-type approximation 
operators and natural exponential families are equivalent. However, we now 
want to point some differences between the approach in [123, 124, 156] and 
our approach. Cast in our terminology, Ismail and May expand the moment 
generating function of v and invert Laplace transforms, while we expand the 
densities with respect to v in (3.15) and solve differential equations. As a conse­
quence, the polynomial sequences that correspond to approximation operators 
as in [123] differ from our polynomial sequences. Thus although the classifi­
cations yield the same probability distributions, they yield different associated 
polynomial sequences. 

3.7.3 Quadratic variance functions 

In this section we use the results of the previous sections to present the clas­
sification for natural exponential families with quadratic variance function in 
full detail. 

Theorem 3. 7.3 tells us that we must solve the differential equations (3.9) and 
(3.10) in order to obtain all exponential families with quadratic variance func­
tion. Note that since Q = q(D) is a delta operator, we must have q(O) = 0 and 
q'(O)-/- 0. Since A'= AQ and A is invertible, it follows that log(A- 1 A')= Q. 
Hence, 

a(D) = exp (j q(D) dD). (3.27) 

Note that the integration constant must be equal to zero, since a(t) is the 
Laplace transform of a mean zero distribution. 

Under these conditions, we find the following natural exponential families: 
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Normal distribution 

If the variance function is constant, then Q' = a with a > 0. Hence, Q = 

aD. Now (3.27) yields that A= eaD2 / 2. Thus, the corresponding natural 
exponential family is generated by a normal distribution with mean zero and 
variance a for a > 0. The associated Sheffer polynomials are the Hermite 
polynomials of variance a ([202, p. 87 ff.]). 

Poisson distribution 

If the variance function is a polynomial of degree one, then Q' = a + (3Q. 

Thus, Q = a ( ef3~ - 1) and A = exp (~ (½ ef3D - D)) · Thus, the 

corresponding family is the Poisson family. The associated Sheffer polynomials 
are the Poisson-Charlier polynomials (see Section 2.5 or cite[p. 119 ff.]Rom9). 

Gamma distribution 

If the variance function is a polynomial of degree two with two identical roots, 

then Q' = a ( Q-(3)2 • Hence, Q =· (3 D + i(a (3) and A = ef3D (1 + a(3D)1f a. 

Thus, the corresponding natural exponential family is the gamma distribution 
family. The associated Sheffer polynomials are the Laguerre polynomials of 
variance a ([202, p. 108 ff.]). 

Binomial distribution 

If the variance function has two different positive roots, then the corresponding 
natural exponential family is the binomial distribution family. The associated 
Sheffer polynomials are the Krawtchouk polynomials ([202, p. 125-126]). 

Negative binomial distribution 

If the variance function has two different negative roots, then the corresponding 
natural exponential family is the negative binomial distribution family. The 
associated Sheffer polynomials are a subclass of the Meixner polynomials of the 
first kind ([202, p. 125-126]). 

Hyperbolic distribution 

If the variance function has two complex conjugate roots, then the associated 
Sheffer polynomials are a subclass of the Meixner polynomials of the second 
kind ([202, p. 126]). The corresponding natural exponential family is generated 
by the hyperbolic distribution (see [144]). 
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Conclusion 

A few final remarks on generalizations are in order. The approach of this 
section is not restricted to natural exponential families with quadratic variance 
function. For example, it could be used to obtain a classification of natural 
exponential families with cubic variance function as in [144] (in [124] no attempt 
is being made to obtain a complete classification). Letac and Mora state that it 
seems hard to obtain classifications of natural exponential families with higher 
order polynomial variance functions. In light of our approach, this is probably 
related to the fact that the differential equations Q' = V ( Q) are hard ( resp. 
impossible) to solve explicitly when V is a polynomial of degree more than 
three ( resp. four). 

A more interesting direction is to generalize our approach to natural exponential 
families generated by multivariate distributions ([59, 129, 143, 14]). 



Chapter 4 

Banach algebras 

Existence of logarithms of functions is needed in several parts of mathematics. 
E.g., in the theory of entire functions of a complex variable one needs that if f 
is a non-vanishing entire function, then there exists an entire function g such 

that f(z) = eg(z) for all z E C. In probability theory the following analogous 
result is essential for the theory of infinitely divisible probability measures: if f 
is a non-vanishing complex-valued continuous function on llR, then there exists 
a continuous function g such that f(x) = eg(x) for all x E IR (see e.g. [62, 
Chapter 7]). 

These results are well-known, but their proofs use ad-hoc methods. The 
following theorem is not well-known and no elementary proof is known: if 
f(z) = E:"=o anzn is such that E:"=o ianl < oo and f(z) =f. 0 for lzl ~ 1, 
then there exists a function g(z) = E:"=o bnzn such that I::"=o lbnl < oo and 

f(z) = eg(z) for all lzl ~ 1. We will apply this theorem in Section 4.4, where 
convergence problems concerning polynomials of convolution type will be stud­
ied. The theorem is also useful in prediction theory, see [21, Theorem 4.1] or 
[237, Theorem 6]. 

In this chapter a unified approach is presented to these and related results. 
The approach, which seems to be new, uses only elementary Banach algebra 
techniques and is presented in Section 4.1. Sections 4.2 and 4.3 contain appli­
cations of the results of Section 4.1. E.g., the three results mentioned above are 
Theorems 4.2.11, 4.2.7 and 4.2.2. We apply the results of Sections 4.2 and 4.3 
to obtain new analytical results on polynomials of convolution type in Section 
4.4 and central limit theorems in Chapter 5. The reader should consult [111] or 
the survey [112] for other applications of Banach algebra theory to polynomials 
of convolution type. Finally, in Section 4.5 a two-sided analogue of functions 
of convolution type is introduced and studied. 

This chapter is an extended version of [73]. 
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Banach algebras 

4.5 Applications to two-sided sequences of functions of convolution type. 

4.1 General Banach algebra techniques 

The purpose of this section is to set up the Banach algebra machinery for the 
approach mentioned in the introduction of this chapter. At the end of this 
section, a new discussion of the Arens-Royden theorem can be found. 

We begin with a review of the basics of Banach algebra theory. Chapter 18 of 
[213] is recommended as a quick introduction to Banach algebra theory. 

A Banach algebra B is a complex Banach space that also possesses a multi­
plication (it is important that B is a vector space over <C , see [212, Remarks 
10.4]). This multiplication must obey the distributive and associative law and 
must satisfy the inequality llxyll ::; llxll llYII for all x, y E B. A Banach algebra 
B such that xy = yx for all x, y E B is said to be commutative. An important 
example of a commutative Banach algebra is the Banach algebra C(K.) of con­
tinuous complex-valued functions on a compact Hausdorff space K.; addition 
and multiplication are defined pointwise. The norm of C(K,) is the supremum 
norm. 

An element u E B is called unit element or identity of B if xu = ux = x 
for all x E B and !lull = 1 (the last requirement can be weakened, see e.g. 
[212, Theorem 10.2]). It follows from elementary algebra that at most one unit 
element exists. If a Banach algebra has no unit element, then a unit element can 
be adjoined (see [142] for a detailed account of the relations between a Banach 
algebra without unit element and the Banach algebra obtained by adjoining a 
unit element). 
Let B be a Banach algebra with unit element u. An element x E Bis invertible 
if there exists a y E B such that xy = yx = u. The set of all invertible elements 
of B will be denoted by inv B. We equip inv B with the norm topology inherited 
from B. Equipped with this topology inv B is a topological group. 
Continuous linear functionals are important in the theory of Banach spaces . 
Their role is taken over by complex homomorphisms in the Banach algebra 
case. A complex homomorphism of a Banach algebra is a not identically 
zero continuous linear multiplicative map from the Banach algebra into <C. The 
set of complex homomorphisms of a Banach algebra B is called the maximal 
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ideal space of B and will be denoted by M. The name maximal ideal space 
is explained by the fact that there is a one-to-one correspondence between 
maximal ideals of B and null spaces of complex homomorphisms of B (see [212, 
Theorem 11.15]). If Bis a commutative Banach algebra with unit element, then 
M =/:- 0 (see [142, Theorem 3.3.2]). We will consider elements of the maximal 
ideal space as complex homomorphisms. We equip the maximal ideal space M 
with the Gelfand topology, i.e. the topology of pointwise convergence. This 
makes M into a compact Hausdorff space ([212, Theorem ll.9a]). Complex 
homomorphisms are useful in deciding the invertibility of an element as can be 
seen from Theorem 4.1.2. 

The following theorem gives an explicit example of a maximal ideal space. 

Theorem 4.1.1 Let K be a compact Hausdorff space. The complex homomor­
phisms of C(K) are the point evaluations on K. Moreover, the maximal ideal 
space of C(K) with its Gelfand topology is homeomorphic to K. 

Proof: See [212, Example 11.13a] or [83, Proposition 2.3]. □ 

Theorem 4.1.2 Let B be a Banach algebra with unit element. Then x E inv B 
if and only if A(x) =/:- 0 for all A EM . 

Proof: See [212, Theorem 11.5c] or [213, Theorem 18.17c]. □ 

Let B be a Banach algebra with unit element u. Define expB to be the subset 
of B consisting of those x E B such that x = eY for some y E B. Here eY is 
defined by eY := I;;::"=0 fi for all y E B, where e0 := u. It is easy to see that 
this series converges in the norm topology for all y E B. 

Remarks 4.1.3 Let B be a Banach algebra with unit element u. 

a) It follows from eY e-Y = u for all y E B (see [35, Lemma 1.4.1]), that 
exp BC inv B. 
b) If x E Band llx - ull < 1, then x E exp B (see [35, Lemma 1.4.2]). In 
particular, x E inv B. 
c) It holds true that inv B is open in B (see [212, Theorem 10.12]). 
d) The following inequality holds true for all x E B and all t E IC: 

Let T be a topological space. A subset U of Tis connected if U = 0 1 U 0 2 

where 01 and 0 2 are disjoint open subsets of U, then 0 1 = 0 or 02 = 0 (see 
e.g. [84, Chapter 5]. A component of U is a connected subset of U which 
is not contained in a larger connected subset of U. Note that components are 
relatively closed ([84, Chapter 5, Theorem 3.2]), that components of open sets 
in a locally connected space ([84, Chapter 5, Definition 4.1]) are open ([84, 



84 Banach algebras 

Chapter 5, Theorem 4.2]) and that continuous images of connected sets are 
connected ([84, Chapter 5, Theorem 1.4]). Note that a union of non-disjoint 
connected sets is again connected ([84, Chapter 5, Theorem 1.5]). 

We saw above that if B is a Banach algebra with unit element, then inv B is 
a topological group with the relative norm topology. Let 91 be the component 
of inv B that contains the unit element of B. 

Theorem 4.1.4 Let B be a commutative Banach algebra with unit element u. 
Then exp B = 91 . In particular, exp B is closed in inv B. 

Proof: An elementary proof of the first statement can be found in [35, Theo­
rem 1.4.3]. The second statement follows from the first statement, since com­
ponents are relatively closed. D 

Theorem 4.1.4 is difficult to use, since there is no general way to calculate 91 . 

For the algebras that will be discussed in Section 4.2, this problem will be 
solved by using the following theorem. 

Definition 4.1.5 Let T be a topological space and a, b E T. A path from 
a to b in T is a continuous function f : [O, 1] -t T such that f(O) = a and 
f (1) = b. 

Theorem 4.1.6 Let B be a commutative Banach algebra with unit element u. 
Then x E exp B if and only if x E inv B and there is path f in inv B from au 
to x for some a E C \ {0}. 

Proof: ' ⇒' By definition there exists y E B such that x = eY. Then F, defined 
by F(t) := iY , is a path in inv B from u to eY = x. 
'<:=' Let g be an arbitrary path in C \ {O} from 1 to a . Then h, defined 
by h(t) := g(t)u, is a path in inv B from u to au. Therefore F, defined by 
F(t) := h(2t) for O:::; t:::; ½ and F(t) := f(2t - 1) for ½ :::; t:::; 1, is a path in 
inv B from u to x. It follows from the continuity of F that F([O, 1]) is connected. 
Hence F([O, 1]) U 91 is connected, since u E F([O, 1]) n 91. Because 91 is the 
largest connected subset of inv B that contains u, we have F([O, 1]) C 9 1 . It 
follows in particular that x = F(l) E 9 1 , hence x E exp B by Theorem 4.1.4. 

□ 

Remarks 4.1. 7 a) Theorem 4.1.6 implies that 91 is a path-component of inv B 
(see [84, Section 5.5]). This also follows from Theorem 4.1.4, since inv B is lo­
cally path-connected (because it is an open subset of a normed linear space) 
and in a locally path-connected space components and path-components coin­
cide ([84, Chapter 5, Theorem 5.5]). Note that in general path-connectedness 
is stronger than connectedness ([84, Chapter 5, Theorem 5.3]). 
b) Theorems 4.1.4 and 4.1.6 are false when B is not commutative. E.g., let 
B(H) denote the Banach algebra of all bounded linear operators on a Hilbert 
space H. Then inv B(H) is connected ([212, Theorem 12.37]), but need not be 
equal to exp B(H) ([212, Theorem 12.38]). 
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The following theorem describes the form of the components of inv B. Recall 
that xexp B := {xy: y E exp B}. 

Theorem 4.1.8 Let B be a commutative Banach algebra with unit element u. 
Then the components of inv B are of the form xexp B with x E inv B. 

Proof: Let C be a component of inv B. Take an arbitrary element x EC. The 
continuous image x-1c of C is connected and contains u. Hence, x- 1c c 
exp B which implies that C C xexp B. In order to prove the other inclusion, 
note that xexp Bis a connected subset of inv B (since it is the continuous image 
of a connected set by Theorem 4.1.4) that contains x. Hence, xexp BC C. □ 

In order to obtain further results on exp B and inv B, we need to discuss the 
Gelfand transform. This is necessary in those cases where Theorem 4.1.6 does 
not help us. The idea behind the Gelfand transform is to transfer problems in a 
Banach algebra (e.g., the calculation of 91 ) to a canonically associated Banach 
algebra of the form C(/(), i.e. a Banach algebra of continuous functions. The 
advantage of this procedure is that Banach algebras of continuous functions 
are simpler to work with. 
If x E B, then we define a continuous function x on M (the maximal ideal 
space of B by x(A) := Ax for all A EM. The function xis called the Gelfand 
transform of x. Note that the Gelfand topology is the weakest topology that 
makes all functions x continuous (see [142, Corollary 3.3.1]). The Gelfand 
transform maps B onto a subalgebra B of C(M). The image of the algebra B 
under the Gelfand transform, equipped with the supremum norm, need not be 
a closed subalgebra of C(M). 
When B = L 1 (Ii), then the Gelfand transform is nothing but the Fourier 
transform (see e.g. [213, Chapter 18]). However, this is not a typical example 
for the sequel since L 1 (Ii) is a Banach algebra without unit. 

The following two theorems show that the Gelfand transform is useful for our 
purposes. 

Theorem 4.1.9 Let B be a commutative Banach algebra with unit element 
u and let x be an arbitrary element of B. Then x E inv B if and only if 
x E inv C(M). 

Proof: Note that M with its Gelfand topology is a compact Hausdorff space 
([212, Theorem 11.9a]). It follows from Theorems 4.1.1 and 4.1.2 that x E 

inv C(M) if and only if x(A) =/= 0 for all A EM. By Theorem 4.1.2, x E inv B 
if and only if A(x) =/= 0 for all A E M The theorem now follows from the 
definition of x. □ 

The usual proof of Theorem 4.1.9 (see e.g. [83, Proposition 2.34]) uses the 
correspondence between maximal ideals and complex homomorphisms. 

The following theorem is an analogue of Theorem 4.1.9 for exp B. 
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Theorem 4.1.10 Let B be a commutative Banach algebra with unit element 
u and let x be an arbitrary element of B. Then x E exp B if and only if 
x E exp C(M). 

Proof: ' ⇒' Let y E B be such !_!iat x = eY. Since the Gelfand transform is 

continuous, it follows that x = eY. Hence, x E exp C(M). 
's:=' See [101, Chapter 3, Corollary 6.2]. D 

The proof of Theorem 4.1.10 in [101] uses holomorphic functions. Since the 
statement of Theorem 4.1.10 is a topological statement (cf. Theorem 4.1.4), it 
seems appropriate to prove Theorem 4.1.10 in a purely topological way. Un­
fortunately, I have not been able to find a topological proof of Theorem 4.1.10. 

We are now able to say something more about the Gelfand transform. The 
following corollary shows that the image of a Banach algebra under the Gelfand 
transform is a special kind of subalgebra of C(M) (cf. [212, Theorem 10.18]). 

Corollary 4.1.11 Let B be a commutative Banach algebra with unit element 
u. The Gelfand transform maps distinct components of inv B into distinct 
components of inv C(M). 

Proof: Let y, z E inv B arbitrary. Suppose that fl and z are in the same com­
ponent of inv C(M). An application of Theorem 4.1.8 to the Banach algebra 

C(M) yields that fl E zexp C(M), so (~) = fl z-1 E exp C(M). It follows 
from Theorem 4.1.10 that yz- 1 E exp B, soy E z exp B. Hence, y and z are in 
the same component of inv B by Theorem 4.1.8. 0 

We conclude this section with a discussion of the Arens-Royden Theorem on 
the structure of inv B/exp B. It follows directly from Theorem 4.1.8 that 
there exists a one-to-one correspondence between inv B/exp Band the compo­
nents of inv B. The Arens-Royden Theorem says that the algebraic quotient 
group inv B/exp B (with multiplication as binary operation) is isomorphic to 
H1 (M,Z), the first Cech cohomology group of M. Thus the Arens-Royden 
Theorem expresses inv B/exp Bin terms of the maximal ideal space M of B. 
The original proofs of Arens and Royden can be found in [11] and [211]; another 
(elegant) proof is in [101, Corollary 7.4, p. 91]. Following a suggestion of Dou­
glas (see [83, Chapter 2]) , we state the theorem in terms of 1r1 (M), the first 
cohomotopy group of M (definition below). It is proved in [120, Chapter 11, 
Theorem 7.1] that 1r1 (M) and H 1(M,Z) are isomorphic. 

Definition 4.1.12 Let K, be a topological space and let f,g : K, - V C C be 
continuous functions. A homotopy in V off with g is a continuous function 
H: [0, 1] x K, - V such that H(0, z) = f(z) and H(l, z) = g(z) for all z EK. 
If moreover K, is compact and Hausdorff, then the first cohomotopy group 
1r1 ( K) is defined to be the group of homotopy equivalence classes of continuous 
maps from K, to {z : Jzl = 1}. The group operation of 1r1 (K) is pointwise 
multiplication. 
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We now prove the special case B = C(K) of the Arens-Royden Theorem. This 
special case is due to Bruschlinsky and Eilenberg (see [43l and [85]). Our proof 
is inspired by the proof of [83, Theorem 2.18l. 

Theorem 4.1.13 If K is a compact Hausdorff space, then inv C(K)/ exp C(K) 
and 7r1 (K) are isomorphic groups. 

Proof: We define a homomorphism H from inv C(K)/exp C(K) to 7r1 (K) as 
follows. Let [fl be an element of inv C(K)/exp C(K). Then H([J]) is defined 
to be the homotopy equivalence class off /Iii , where f is any representative 
of [fl. Note that H is a well-defined homomorphism, since it follows from 
Theorem 4.1.6 that the elements of inv C(K)/exp C(K) are homotopy equiv­
alence classes of continuous maps from K into C \ 0. Since it is obvious that 
H is surjective, it only remains to prove that H is injective. Suppose that 
H([f]) = H([g]). Let f,g be representatives of [fl, [ul respectively. Since f and 
f /Iii are homotopic, it follows that f and g are homotopic. Hence, [fl= [gl. 

□ 

We conclude this section with a few words on the general case of the Arens­
Royden Theorem. In view of Theorem 4.1.13, it suffices to show that 

inv B/exp B ~ inv C(M)/exp C(M), 

where M is the maximal ideal space of B. It follows from Corollary 4.1.11 that 
the canonical map induced by the Gelfand transform is an injective homomor­
phism from inv B/exp B into inv C(M)/exp C(M). The difficult point is to 
prove surjectivity. For a proof of surjectivity using holomorphic calculus, see 
[101, Chapter 3, Theorem 7.2l. 

For more information on cohomology and Banach algebras, we refer to the 
survey articles by Johnson and Taylor in [25ll. 

4.2 Algebras with contractible maximal ideal 
space 

In this section Theorem 4.1.6 will be applied to some explicit Banach algebras. 
We thus obtain among other things a simple proof of a theorem due to Borsuk 
(see Theorem 4.2.8). 

Notation V := {z EC: lzl < l}; V := {z EC: lzl::; l}. 

For later use we prove the following uniqueness lemma. 

Lemma 4.2.l a) Let K be a connected topological space. Suppose that g and 
h are complex-valued continuous functions on K such that g( a) = h( a) 

for some a EK and that eg(z) = eh(z) for all z EK. Then g(z) = h(z) 
for all z EK. 
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b) Let B be a Banach algebra of absolutely summable sequences with com­
ponent-wise addition and convolution as multiplication. If x, y E B and 
x = eY, then Yn is uniquely determined for n 2: 1 and Yo is determined 
by Xo = eYO. In particular, if (qn)nEN is a sequence of polynomials of 
convolution type with coefficient sequence (gn)nEN and there exists h E B 

with ho= 0 such that (qn(to))nEN = etoh, then hn = togn for all n EN. 

Proof: a) It follows from eg(z) = eh(z) that g(z) = h(z) + 21rik(z) with 
k(z) E Z. Hence, k is a continuous integer-valued function on K, with k(a) = 0. 
Since the continuous image of K, is connected, we must have k = 0. 
b) Define ,'o := 0 and 1'n := Yn for n 2: 1. Then x = eY is equivalent to 

k, 

x 0 = eYo and Xn = eY0 I:~=O ~ for n 2: 1. We will now show by induction 
on n that Yn is uniquely determined by xo, ... , Xn, The case n = 1 is clear, 
since x1 = eYo 1'l = x 0 y1 (note that x 0 i- 0). Suppose by induction that 
the statement is true at n. It follows from Lemma 2.l.5b and Lemma 2.l.5c 
that 1'~+1 is a polynomial in ,'1, ... , 1'n with coefficients not depending on 
hn)nEN for 2 :::; k :s; n + 1. Since 1'n = Yn for n 2: 1, the induction hypothesis 
implies that Yn+l is uniquely determined by xo, ... , Xn+l. Because (qn)nEN is a 

k 

sequence of polynomials of convolution type, we have qn(x) = I:~=O g~* :, for 

all n E N and go = 0 by Theorem 2.1.8. Since ho = 0 and (2n)nENqto = etoh, 
the argument used above yields hn = t 0 gn for all n E N. D 

4.2.1 Algebras of summable sequences 

Let (an)nEN be a sequence of positive numbers satisfying ao = 1 and an+m :s; 
O'.nO'.m for all n, m E N. Let J!i (a) be the Banach algebra of all complex se­
quences x = (xn)nEN such that II xll1,a := I:~=O anlxnl < oo. Addition in 
l!i ( a) is defined component-wise, multiplication is defined to be convolution. 
The complex homomorphisms of l:'i(a) are of the form A2 (x) = I:~=O XnZn with 
lzl:::; eP, where p := limn->oo n-1 logan (see [105, Section 19, pp. 116-120]). If 
p = -oo, then the only complex homomorphism of l:'i(a) is Ao(x) = xo. 
The unit element of £1,a is the sequence (1, 0, 0, ... ). 
If an= 1 for all n EN, then £1(a) is the usual Banach algebra £1 of absolutely 
summable sequences. 

Theorem 4.2.2 {x E £1(a): L~=oXnZn i- 0for all lzl :s; eP} = inv £1(a) = 
exp £1(a). 

Proof: The first equality follows from Theorem 4.1.2. 
For the second equality we only need to prove inv £1(a) C exp £1(a) by Re­
mark 4.l.3a. Let x E inv £1(a) be arbitrary. Then I:~=O XnZn i- 0 for 
all lzl :::; eP. Hence, in particular x 0 i- 0. Define f : [0, l] - £1(a) by 
f(t) := (tnxn)nEN· It follows from dominated convergence that lirnt->s llf(t) -
J(s)ll1,a = 0. Hence, f is a path in inv £1(a) from xou to x. Theorem 4.1.6 
now yields x E exp £1(a). D 

For an extension of Theorem 4.2.2, see Theorem 4.3.9. 
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4.2.2 Algebras of continuous functions 

Let K, be a compact Hausdorff space. Denote by C(JC) the Banach algebra 
of continuous functions on K, with pointwise addition and multiplication (see 
[212, Example ll.13a]). The norm on C(K,) is the supremum norm, denoted by 
llfll 00 • The unit element of C(K,) is the function that is identically one. 
We will prove that if K, is contractible to a point (see Definition 4.2.3 below), 
then an analogue of Theorem 4.2.2 holds for C(K,). 

Definition 4.2.3 Let K, be a topological space. A contraction of K, to zo E K, 
is a continuous mapping H : [O, 1] x K, -+ K, such that H(0, z) = zo and 
H(l, z) = z for all z E K,. If there exists a contraction of K, to some point of 
K,, then K, is said to be contractible. 

Examples 4.2.4 a) Any disc z E (C: lzl :$ r is contractible: take H(t, z) = tz. 
b) If a, b E lll, then [a, b] is contractible: take H(t, x) =a+ t(x - a). 
c) The set (C \ (-oo,0] is contractible: take H(t,reilfJ) :=(tr+ l -t)eit1.p_ 

Theorem 4.2.5 If K, is a contractible compact Hausdorff space, then we have 
inv C(K,) = exp C(K,). In particular, if K, is a contractible compact subset 
of (C and f is a non-vanishing continuous function on K,, then there exists a 

continuous function g on K, such that f(z) = eg(z) for all z EK,. Moreover, g 
is analytic in those points in which f is analytic. If f(a) = 1 for some point 

a EK,, then there is unique continuous function g on K, such that f(z) = eg(z) 
for all z EK, and g(a) = 0. 

Proof: It follows from Remark 4.l.3a that exp C(K,) C inv C(K,). Let f E 
inv C(K,) be arbitrary and let H be an arbitrary contraction of K, to a EK,, say. 
By the uniform continuity off and H, limt--+s llf(H(t, .)) - f(H(s, .))lloo = 0. 
Hence F, defined by F(t) := f(H(t, .)), is a path in inv C(K,) from f(a)u to f. 
Now Theorem 4.1.6 yields f E exp C(K,). 
If f is analytic at z0 , then for all z sufficiently close to z0 , we have g(z) = ( + 
log { 1 + f(z}~~~zo)} , where log denotes the principal branch of the logarithm 

and ( denotes some number such that e() = f(z0 ). Thus g is analytic in z0 • 

The last statement follows directly from Lemma 4.2.la. D 

Remarks 4.2.6 a) Theorem 4.2.5 also holds if each component of K, is compact 
and contractible or if K, is the union of an increasing sequence of compact 
contractible Hausdorff spaces. 
b) Theorem 4.2.5 also holds for compact subsets of (C if contractibility of K, 
is weakened to connectedness of (C \ K, ([45, Corollary 4.33]). I have not been 
able to find a simple proof of this result with the methods of this chapter ( cf. 
Remark4.2.9). 
The so-called topologist's sine-curve (see e.g. [245, pp. 44-45]) is an example 
of a compact connected subset of (C with connected complement which is not 
contractible (this example was shown to me by Jan van Mill). It follows from 
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the Alexander Duality Theorem ([245, Chapter 11]) that if JC is a compact 
contractible subset of (C , then both JC and (C \ JC are connected. 
c) Jan van Mill also pointed out to me that if JC is a compact connected subset 
of (C with connected complement, then it follows from [31, Theorem 7.6, p. 322], 
that there exists a decreasing sequence (Kn)nEN of compact contractible subsets 
of (C such that /(, = nnEN Kn . Using this result, we can easily prove the 
extension of Theorem 4.2.5 mentioned in b) as follows: let f be an arbitrary 
non-vanishing continuous function on JC. By the Tietze Extension Theorem 
([213, Theorem 20.4]), f has a continuous extension F on C. Suppose there is 
a sequence (zn)nEN such that Zn E Kn and F(zn) = 0 for all n EN. Since each 
Kn is compact, there exists a convergent subsequence (znk)kEN whose limit zo 
belongs to nnEN Kn = JC. Hence, f(zo) = F(zo) = limn-->oo F(zn) = o, which 
contradicts that f is non-vanishing. Thus we have shown that there exists an 
N E N such that F( z) =/- 0 for all z E JC N. Now the result follows by applying 
Theorem 4.2.5 to KN and F. 
d) The following example shows that contractibility of JC is not a necessary 
condition in Theorem 4.2.5. Let JC be a finite set with at least two elements 
and equip JC with the discrete topology. Then JC is a compact topological space, 
which is not contractible. It is easy to see that inv C(JC) = exp C(JC). 
The Banach algebra £00 of bounded complex sequences is a more sophisticated 
example. The norm on £00 is the supremum norm. Addition and multiplica­
tion are defined pointwise. It follows from general properties of the Cech-Stone 
compactification (see e.g. [101, Theorem 8.3, p. 17] or [142, p. 90]) that the 
Banach algebras £00 and C(,BN), where ,BN denotes the Cech-Stone compactifi­
cation of N, are isomorphic. Note that ,BN is not contractible, since each n E N 
is an isolated point of ,BN. We will now show that inv C(,BN) = exp C(,BN) by 
showing that inv £00 = exp £00 • It is clear that (xn)nEN E inv £00 if and only 
if infnEN lxnl > 0. Let (xn)nEN E inv foo be arbitrary. Choose Yn E (C such 
that eYn = Xn and Imyn E [0, 2pi] for all n EN. Then (Re Yn)nEN E foo, since 
0 < infnEN lxnl ~ supnEN lxnl < 00. Thus (Yn)nEN E £00 and (xn)nEN E exp £00 • 

The special case JC = [a, b] (a, b E l!R) of Theorem 4.2.5 and the following 
theorem are important in probability theory, see e.g. [62, Chapter 7]. 

Theorem 4.2. 7 Let f be-. a non-vanishing continuous function on llR such that 
f(0) = 1. Then there exists a unique continuous function g on llR such that 

f(x) = eg(x) for all x E llR and g(0) = 0. 

Proof: It follows from Theorem 4.2.5 and Example 4.2.4b that there exists for 
each n E N a unique continuous function 9n such that e9n = f on [-n, n] 
and gn(0) = 0. By Lemma 4.2.la, gn = gm on [-n, n] if m > n. Hence, the 
function g, defined by g(x) := 9n(x) if lxl ~ n, is well-defined, continuous, 

satisfies f(x) = eg(x) for all x E l!R, and g(0) = 0. Uniqueness follows from 
Lemma 4.2. la. □ 

If JC is an arbitrary compact subset of (C , then the following theorem due to 
Borsuk (see e.g. [45, Theorem 4.24]) states which continuous functions on JC 



4.2 Algebras with contractible maximal ideal space 91 

have continuous logarithms. Our proof, which is new, follows from the simple 
observation that if f, g E C(K) and there exists a homotopy in C \ 0 off with 
g, then there is a path in inv C(JC) (with respect to the norm topology) from f 
tog. 

For the definition of homotopy appearing in the following theorem, see Defini­
tion 4.1.12. 

Theorem 4.2.8 (Borsuk) Let K be a compact subset of C and let f : K --t 

C \ 0 be continuous. Then the following statements are equivalent: 

1. there exists a homotopy in C \ 0 of f with a constant function. 

2. there exists a continuous function g: K --t C such that f(z) = eg(z) for 
all z EK. 

3. f has an extension to a continuous function F: C --t C \ 0. 

Proof: We will prove 1 ¢:? 2 and 2 ¢:? 3. 

'l => 2' Let H be a homotopy off in C \ 0 with a constant a. By the uniform 
continuity of H on K, we have limt-+s IIH(t, .) - H(s, .)ll 00 = 0. Hence, H is a 
path in inv C(K) from f to au. Now 2) follows from Theorem 4.1.6. 

'2 => l' If g is any function as in 2), then H, defined by H(t, z) := e(1 - t)g(z), 
is a homotopy in C \ 0 of f with the constant function 1. 
'2 => 3' Let g be any function as in 2). By the Tietze Extension Theorem ([213, 
Theorem 20.4]), g has a continuous extension G on C. Obviously, the function 

eG is a non-vanishing continuous extension of f to C. 
'3 => 2' Since K is compact, there exists r > 0 such that KC {z EC: lzl Sr}. 
By Example 4.2.4a and Theorem 4.2.5, there exists a continuous function g 

such that F(z) = eg(z) for all lzl Sr. □ 

Remark 4.2.9 If K is a compact connected subset of C with connected com­
plement, then every non-vanishing continuous function on K satisfies 1) of 
Theorem 4.2.8 (Robbert Fokkink pointed out to me that this is a special case 
of the Alexander Duality Theorem ([245, Chapter 11]); there seems to be no 
direct simple proof of this special case). Hence, every non-vanishing continuous 
function on K has a continuous logarithm (cf. Remark 4.2.6b). 

For topological proofs of the theorems on continuous functions in this section, 
see [45, Chapter IV] (uses homotopy) or [98, Chapter 1] (uses covering spaces). 

4.2.3 Algebras of holomorphic functions 

Let Ar (r > 0) be the Banach algebra of all continuous functions on {z EC: 
lzl S r} that are holomorphic on z EC: lzl < r. The norm is the supremum 
norm. If r = 1, then we write A for A1 . The algebra A is known as the disc 
algebra. 
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Theorem 4.2.10 If f E Ar does not vanish on {z EC: lzl::; r}, then there 

is a g E Ar such that f(z) = eg(z) for all lzl::; r. 

Proof: We can use Theorem 4.2.5 or proceed as follows: the complex homo­
morphisms of Ar are point evaluations on { z E C : lzl ::; r} ([213, proof of 
Theorem 18.18]). Hence f E inv Ar and F, defined by F(t)(z) := f(tz), is 
a path in inv Ar from f(O) u to f. We conclude from Theorem 4.1.6 that 
f E exp A- □ 

Using the same trick as in the proof of Theorem 4.2.7, we now extend Theo­
rem 4.2.10 to entire functions, i.e. functions holomorphic on C. 

Theorem 4.2.11 Let f be a non-vanishing entire function such that f (O) = l. 
Then there exists a unique entire function g such that f ( z) = eg(z) for all z E (C 

and g(O) = 0. 

Proof: Applying Theorem 4.2.10 to the Banach algebras An (n E N) and the 
restrictions f n off to z E (C : lzl ::; n, we obtain holomorphic functions 9n on 

z EC: lzl < n such that gn(O) = 0 and e9n(z) = fn(z) for all lzl < n. It 
follows from Lemma 4.2.la that the function g, defined by g(z) := gn(z) for 

lzl ::; n, is well-defined. Clearly g is entire, g(O) = 0, and f(z) = eg(z) for all 
z EC. Uniqueness follows from Lemma 4.2.la. □ 

4.3 Algebras on the unit circle 

In this section we will derive analogues of Theorem 4.2.5 for C('lr), where 11' := 
{z EC : lzl = 1}, and the Wiener algebra. These results will be used to prove 
Theorem 4.3.9, which is essential for Section 4.4. 

Let us have a closer look at inv C('lr) before stating and proving the correct 
analogue of Theorem 4.2.5. Note that 11' is not contractible (see [42]) and that 

Theorem 4.2.5 is not true for K, = 11' • E.g, ei0 E inv C('lr), but ei0 (/_ exp C('lr) 
(see [42]). 
Let f E inv C('lr) be arbitrary. Then f can be identified with a non-vanishing 
continuous function on [-1r, 1r]. Hence, by Theorem 4.2.5 there exists a r_p E 
C([-1r, 1r]) such that 

Moreover, if r_p1,r_p2 E C([-1r,1r]) both satisfy the above equation, then an ap­
plication of Lemma 4.2. la to K, = [-1r, 1r], a = -1r, g( 0) := r_p1 ( 0) - r_p1 ( -1r) + 
r_p2 ( -1r) and h( 0) := r_p2 ( 0) yields r_p1 ( 1r) - r_p1 ( -1r) = r_p2 ( 1r) - r_p2 ( -1r). Thus the 
following notion is well-defined: 
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Definition 4.3.1 Let f be a non-vanishing complex-valued continuous func­
tion on {z : lzl = R}. Then ind (J), the index of f, is defined to be 
(27ri)-1 cp(7r) - cp(-7r) where cp is any continuous function on [-71", 7r] satisfying 
f(ReiO) = ecp(O) for all 0 E [-7r,7r]. 

Lemma 4.3.2 If f and g are non-vanishing complex-valued continuous func­
tions on {z : lzl = R} , then ind (J) E Z and ind (Jg)= ind (f) + ind (g). 

Proof: Let cp and, be such that J(ReiO) = ecp(O) and g(ReiO) = e"Y(O) for all 

0 E [-71", 7r]. Since e'P( -11") = e'P( 11") , it follows that cp( 11") - cp( -11") is a multiple 
of 27l"i. Hence, ind f E Z. 
The second statement follows from ind (Jg) = (cp + 1 )(7r) - (cp + 1 )(-11") = 
cp(7r) - cp(-11") + (,(7r) - 1 (-7r)) = ind (f) + ind (g). □ 

We can now state the analogues of Theorem 4.2.5 alluded to in the introduction 
of this section. 

Theorem 4.3.3 Let f E C('.11') be arbitrary. Then the following are equivalent: 

a) f E exp C('.II'). 

b} f E inv C('.II') and for all n EN there exists g E C('.11') such that gn = f. 
c) f E inv C('.II') and ind (f) = 0. 

Proof: 'a⇒b' It follows from Remark 4.l.3a that f E inv C('.11'). If f = eh, then 

g := eh/n satisfies gn = f. 
'b⇒c' Suppose ind (f) =/- 0. Taken> lind (f)I and let g be such that gn = f. 
Since nind (g) = ind (gn) = ind (f), it follows that ind (g) (/. Z, which is 
absurd. 
'c⇒a' Let g be a continuous function such that f(eiO) = eg(O) for all 0 E 

[-7r,7r]. It follows from ind (f) = 0 that g(7r) = g(-11"). Hence G, defined by 
G(eiO) := g(0), belongs to C('.11') and f = eG. □ 

It was mentioned in the introduction of this section that eiO (/. exp C('.11'). This 

follows directly from Theorem 4.3.3, since ind (eiO) = 1. 

The following theorem describes the components of inv C('.11'): 

Theorem 4.3.4 Define C,. := {J E inv C ('.II') I ind (f) = k} for all k E Z. The 
components of inv C('.11') are precisely the sets C,.. 

Proof: It is clear that the sets C,. form a partition of inv C('.11'). Note that 
exp C('.11') is a component by Theorem 4.1.4 and that C0 = exp C('.11') by The­
orem 4.3.3. Thus the theorem holds for k = 0. Define for each k E Z the 
map F,. by (F1cf)(eit) := eitk f(eit). It follows from ind (eitk) = k and 
ind (Jg)= ind (f) + ind (g) that F,. maps Co onto C,.. Moreover, it is easy to 
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see that Fk is an isometry. Hence, the sets Ck are homeomorphic to Co, and 
we are done. D 

Theorem 4.3.4 enables us to prove that 71"1 ('f), the fundamental group of 'f, 
is isomorphic to Z (a theorem appearing in every introductory textbook on 
algebraic topology, see e.g. [155, Chapter 12, Section 5]). The fundamental 
group of 'f consists of all homotopy equivalence classes of continuous maps f : 
[O, 1] -+ 'f such that f(O) = f(l) = 1. The group operation is defined as follows: 
if [!] and [g] are homotopy equivalence classes of continuous maps with the 
above mentioned properties, then [Jog] is the map defined by (f og)(t) := J(2t) 
for O =:; t =:; ½ and (f o g)(t) := g(2t - 1) for ½ =:; t =:; 1. This group operation 
is well-defined, since it does not depend on the choice of the representatives f 
and g of [fl, [g] respectively (see e.g. [155, Chapter 5]). Define H : 71"1 ('f) -+ Z 
as follows. If[!] E 7r1 ('f) has representative f, define H([f]) := ind (F), where 

F is defined by F(ei8) := J(½ + 0/(27r)). This definition does not depend 
on the choice of the representative f: if f and g are homotopic, then the 
corresponding functions F and G are also homotopic, hence have the same 
index by Theorems 4.1.6 and 4.3.4. It follows from Lemma 4.3.2 that His a 
homomorphism and it follows from Theorems 4.1.6 and 4.3.4 that His injective. 
Hence, H is an isomorphism, since H is clearly surjective. We conclude that 
the fundamental group of 'f is isomorphic to Z. 

The Wiener algebra W consists of all continuous functions on 'f := { z E 
(C: lzl = 1} that can be expanded as absolutely convergent Fourier series (see 
[212, Example ll.13b]). 
Addition and multiplication are defined pointwise; the norm is defined by 

II L:=-oo an einBII := L:=-oo lanl• Note that the algebra l\(Z) of abso­
lutely summable two-sided sequences is isometric to W. The elements of W 
are precisely the Gelfand transforms of elements of £ 1 ( Z). 
The complex homomorphisms of W are of the form Az(a) = L:=-oo an zn 
for some z E 'f (see e.g. [83, Theorem 2.57] or [142, Section 4.6]). Thus 
Theorem 4.1.2 yields that the invertible elements of W are precisely those 
elements of W that do not vanish on 'f (see e.g. [213, Lemma 11.6]). This is a 
famous theorem due to Wiener; the Banach algebra proof indicated above ( due 
to Gelfand) was one the first successes of Banach algebra theory. 
Since the canonical bijection z -+ Az is a continuous map from the compact set 
'f onto the compact Hausdorff set M(W) (in its Gelfand topology), it follows 
that 'f and M(W) are homeomorphic ( cf. [212, Section 3.8]). The analogue of 
Theorem 4.2.5 for the Wiener algebra W can be found in [46]. We state this 
result as Theorem 4.3.5 and remark that the proof in [46] uses a special case 
of the deep Wiener-Levy Theorem ([212, Theorem 10.27]). 

Theorem 4.3.5 Let f E W be arbitrary. Then the following are equivalent: 

a) f E exp W. 

b) f E inv W and for all n E N there exists g E C('f) such that gn = f. 
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c) f E inv W and ind (f) = 0. 

Proof: 'a⇒b' It follows from Remark4.l.3a that f E inv W. If f = eh, then 
g := eh/n satisfies gn = f. 

'b⇒c' Suppose ind (f) =/: 0. Taken > lind (f)I and let g be such that gn = f. 
Since n ind (g) = ind (gn) = ind (f) by Lemma 4.3.2, it follows that ind (g) (/:_ Z, 
which is absurd. 
'c⇒a' First note that f E inv C('.ll'). By Theorem 4.3.3, there exists h E C('.ll') 
such that f(z) = eh(z) for all z E 11'. Define H : M(W) -+ C by H(Az) = 
h(z). Then HE C(M(W)), since M(W) and 11' are homeomorphic. Moreover, 

J(Az) = Az(f) = f(z) = eh(z) = eH(z) = (eH) (Az) for all z E 11'. Thus 

f E exp M(W) and Theorem 4.1.10 yields that f E exp W. □ 

Remark 4.3.6 The proof of c⇒a of Theorem 4.3.5 implicitly contains the 
trivial result that if X and Y are homeomorphic compact Hausdorff spaces, 
then C(X) and C(Y) are isometric Banach spaces. The converse is also true 
and known as the Banach-Stone Theorem (see e.g. [22; Theorem 3, p. 130]). 

Theorem 4.3. 7 Define Wk := {f E inv WI ind (f) = k} for all k E Z. The 
components of inv W are precisely the sets Ck. 

Proof: The proof is identical to the proof of Theorem 4.3.3. □ 

We conclude this section with a result (Theorem 4.3.9) which will be essential 
for one of the main theorems of this chapter (Theorem 4.4.1). Theorem 4.3.9 
is an extension of Theorem 4.2.2. 

Lemma 4.3.8 Let f,g E inv C('.ll') be such that lf(z) - g(z)I < lf(z)I for all 
z E 11'. Then ind (f) = ind (g). 

Proof: The assumptions imply that jl - g(z)/ f(z)I < 1 for all z E '11'. Hence, 
Ill - g(z)/ f(z)II < 1 since '11' is compact. By Remark 4.l.3b, g/ f E exp C('ll') 
and Theorem 4.3.3 yields ind (g / f) = 0. It follows from Lemma 4.3.2 that 
ind (g) = ind (f) + ind (g/ f) = ind (f). □ 

For notation of the following theorem, see Subsection 4.2.1. 

Theorem 4.3.9 Let x E i\(a) be arbitrary. Define t : '11' -+ C by t(z) 
I::::'=o Xn ( zePf for all z E '11'. Then the following are equivalent: 

a) t(z) =/: 0 for all z E '11' and ind t = 0. 

b) x E inv £1(0:). 

c) x E exp £1(0:). 
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Proof: 'a ⇒ b' Define (r (0 < r < 1) on D by ( 1.(z) := ((rz). Since ( is a 
non-vanishing continuous function on 11', there exists 8 > 0 such that 8 < I(( z) I 
for all z E 11'. If r < 1 is close enough to 1, then l((z) - (r(z)I < 8 < l((z)I for 
all z E 11'. By Lemma 4.3.8, ind ((r) =ind(()= 0 (restrict (r to 11'). Now the 
Argument Principle ([45, Corollary 5.86, p. 179]) yields that I::=o x 11 z11 -1- 0 
for lzl :::; reP. Since r can be arbitrarily close to 1, I::=o x 11 z 11 -1- 0 for lzl < eP. 
Hence, x E inv £1 (o:) by Theorem 4.2.2. 
'b ⇒ c' This follows from Theorem 4.2.2. 
'c ⇒ a' Since x E exp £1 (o:), we have I::=o x11 zn -1- 0 for all lzl :::; eP. A similar 
use of the Argument Principle as above yields that ind ( = 0. D 

4.4 Applications to polynomials of convolution 
type 

In this section we will study the analytical behaviour of the following generating 
function for polynomials of convolution type (Theorem 2.l.12d): 

00 L qn(t) Zn= i g(z), ( 4.1) 
n=O 

where g( z) denotes the formal power series I:%°=o gk zk. 
In particular, we will study absolute convergence and radius of convergence of 
the left-hand side of (4.1). 

Notation If (qn)nEN is a sequence of polynomials of convolution type, we will 
write 'l/;(t, z) := I::=o qn(t) zn whenever this series converges absolutely. 
We write g for the coefficient sequence (gn)nEN of ( qn)nEN and q( t) for ( qn)nENt. 

For the notation in the following theorem we refer to Subsection 4.2.1. 

Theorem 4.4.1 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence g = (gn)nEN· Let (o:n)nEN be a sequence of positive 
numbers satisfying o:o = 1 and O:n+m :::; O:n O:m for all n, m E N. Then the 
fallowing are equivalent: 

a) g E £1,a• 

b) There exists M > 0 such that llq(t)ll1,a < eltl M for all t EC. 

c) limtLO llq(t)ll1,a = 1. 

d) limsuptLO llq(t)ll1,a < 2. 

e) There are 8 > 0 and to E (0, 8) such that q(t) E £1,a for all t E (0, 8) and 
'l/;(to, z) -1- 0 if lzl = eP. 
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f) There is to E <C \ {0} such that q(to) E l\a and 'lj.;(to, z) -::/= 0 for all 
lzl ~ eP. 

g) There is to E <C \ {0} such that q(to) E t\,a and q(-to) E i'1,a• 

Moreover, if one of these conditions holds, then (4- 1) holds and both series in 
( 4 .1) con verge absolutely for all t E (C and all I z I ~ eP. 

Proof: 'a ⇒ b' We first show that ( i g) n = qn ( t) for all n E N. Since the coor­

dinate functionals of £1,a are continuous, we have ( et g) n = ( L~=O tkk() n = 
""'oo (tk gk) _ ""'oo k* tk _ ""'n k* tk _ ( ) £ 11 1'-T N b) L.,k=O ~ n - L.,k=O 9n kl - L.,k=O 9n kl - qn t or a n E l"l. ow 
follows from Remark 4.l.3d. 
'b ⇒ c' This follows from q0 = l and ao = 1. 
'c ⇒ d' This is trivial. 
'd ⇒ e' It follows that there exists to such that llq(t)-ulli,a < 1 for all t E [0, to]. 
In particular, q(to) E exp £1,a by Remark 4.l.3b. The statement now follows 
from Theorem 4.2.2. 
'e ⇒ f' Since (qn)nEN is a sequence of polynomials of convolution type, we 
have'lj.;(u+v,z) = 'lj.;(u,z)'lj.;(v,z) ifu,v,u+v E [0,8) and lzl =eP. Hence, 
'lj.;(t,z)-::/= 0 for all t E (0,8) and all lzl = eP by [118, Theorem 4.17.1, p. 144]. 
Recall from Lemma 4.3.2 that the index of a non-vanishing continuous function 
on '.II' (Definition 4.3.1) is always an integer. If ind 'lj.;( t,.) -::/= 0 for some t E (0, 8), 
then ind 'lj.;(t/n, .) (/. Z for n large enough by Lemma 4.3.2, which is impossible. 
Hence Theorem 4.2.2 and Theorem 4.3.9 imply that for all t E (0, 8), 'lj.;(t, z) -::/= 0 
if lzl ~ eP. 
'f ⇒ g' Since qo(to) -::/= 0, there exists a unique sequence (ak)kEN such that 
I::;=O qk(to) an-k = Don for all n E N. By Theorem 4.2.2, (ak)kEN E i'1,a• 
Using the defining property of convolution type we see that a1,, = qk(-t0 ) for 
all k EN. Hence, q(-to) E i'1,a• 
'g ⇒ a' It follows from the defining property of polynomials of convolution type 
that q(-to) = q(to)- 1. Hence, q(to) E inv (£1,a) and by Theorem 4.2.2, there 

exists a sequence b = (bn)nEN E i'1,a with bo = 0 such that q(to) = eb. It 
follows from Lemma 4.2.lb that bn = to 9n for all n EN, which implies g E i'1,a• 

The last statement follows from Theorem 2.1.8, since b) allows us to interchange 
summations. □ 

Remarks 4.4.2 a) It follows from the proof of 'a ⇒ b' that M 
suffices in b). 
b) If f) or g) hold, then (4.1) implies that they hold for all t E <C. 
c) If 9n = 0 for n even and gr/. i'1,a, then q(t) r/. i'1,a for any t-::/= 0 since in this 
case qn(-t) = (-1r qn(t). 
d) For an alternative proof of 'e ⇒ f' see Remark 4.5.4a. 
e) We may weaken condition d) of Theorem 4.4.1 to d': 'there is t E <C \ {0} 
such that llq(t)lli,a < 2', since obviously c ⇒ d' ⇒ g. 
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Corollary 4.4.3 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN• If there exists M,8 > 0 such that lqn(t)I:::; 
M for all t E (0, 8), then I:::o 9n zn converges absolutely for lzl < 1. 

Proof: Fix an arbitrary r with 0 < r < 1. Define O'.n := rn. Since limt10 qn(t) = 
0 for n 2 1 by Theorem 2.l.12e, it follows from dominated convergence that 
limtlO llq(t)ll1,a = 1. Thus Theorem 4.4.1 c ⇒ a implies that I:~=O 9n zn con­
verges absolutely for lzl :::; r. Since r was arbitrary, it follows that I:~=O 9n zn 
converges absolutely for lzl < 1. D 

The converse of Corollary 4.4.3 is not true. E.g., take 9n = n for all n E N. 
Then lqn(t)I 2 g1 ltl = n ltl. It is an open problem to find necessary and 
sufficient conditions on (gn)nEN that insure that I:~=O lqn(t)I < oo for all t E C 
or for all t E (0,oo). 

We now prove an analogue of Theorem 4.4.1 for strict sense Sheffer sequences 
(see Section 2.4). We write s(t) for (sn(t))nEN· 

The following lemma is needed for the proof of Theorem 4.4.5. 

Lemma 4.4.4 Let x(t) = (xn(t))nEN (t > 0) and x = (xn)nEN be sequences in 
£1,a• lflimtlO llx(t)ll1,a = llxll1,a and limno Xn(t) = Xn for all n EN, then 
limno llx(t) - xlli,a = 0. 

Proof: Let E > 0 be arbitrary. Choose k EN such that llxll1,a-llA xll1,a < 1:/5, 
where Pkx := (x0 ,x1, ... ,xk,0,0, ... ). Chooses> 0 such that llx(t)lli,a < 
llxlli,al + 1:/5 and IIA x(t)ll1,a > IIA xll1,a - 1:/5 for 0 < t < s. If 0 < t < s, 
then llx-x(t)ll1,a = II Pk x - x(t)ll1,a + 11(1 -Pk) x - x(t)ll1,a :::; 1:/5 + II(/ -
A) xll1,a + 11(1 - Pk) x(t)ll1,a :::; E/5 + E/5 + llx(t)ll1,a - IIPk x(t)lli,a :::; 
21:/5 + llxll1,a + 1:/5 - IIA xll1,a + 1:/5 :::; E. D 

Theorem 4.4.5 Let ( sn)nEN be a strict sense Sheffer set for a delta operator Q 
with basic set (qn)nEN• Let g = (gn)nEN be the coefficient sequence of (qn)nEN· 
Let (an)nEN be a sequence of positive numbers satisfying ao = l and O'.n+m :::; 
O'.n O'.m for all n, m E N. Then the following are equivalent: 

a) g E £1,a and s(0) E inv f!i,a-

b) s(0) E invf1,a and there exists M > 0 such that e-tM lls(0)lli,a < 
lls(t)lli,a :::; iM lls(0)ll1,a fort> 0. 

c) s(0) E invf1,a and limtlO lls(t)lli,a = lls(0)ll1,a• 

d) g E £1,a and s(t) E invf1,a for some t EC\ {0}. 

Moreover, if one of these conditions holds, then 

00 00 

n=O n=O 

for all t EC and all lzl:::; eP. 
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Proof: We will use that by Theorem 2.4.4, s(t) = s(0) * q(t), where * denotes 
convolution. 
'a ::} b' It follows from Theorem 4.4.1 that llq(t)lli,a :$ iM for all t > 0. 

Hence, lls(t)ll1,a :$ et M lls(0)lli,a• For the other inequality, note that s(0) = 
s(0) * q(t) * q(-t) = s(t) * q(-t). Hence, for t > 0 we have lls(0)ll1,a :$ 

lls(t)ll1,a llq(-t)ll1,a :$ lls(t)ll1,a i M · 
'b ::} c' This is trivial. 
'c ::} d' By Remark 4.1.3b, inv f1,a is open. Since limt!O sn(t) = sn(0) for 
all n E N, Lemma 4.4.4 yields limt!O lls(t) - s(0)ll1,a = 0. In particular, 
s(t0 ) E inv £1,a for some t0 > 0. Moreover, q(to) = s(to) * s(o)-1 E inv f1,a­
Now Theorem 4.4.1 yields g E f1,a-
'd::} a' It follows from Theorem 4.4.1 that q(-t) E inv £1,a. Hence, s(0) E 
inv f1,a, since s(0) = s(t) * q(-t). · 

The last statement follows from s(t) = s(0) * q(t) (Theorem 2.4.4) and Theo­
rem 4.4.1). □ 

We now return to Theorem 4.4.1. We will try to obtain convergence results on 
(4.1) with weaker conditions on (Un)nEN• 

The Banach algebra TA consists of all one-sided sequences (an)nEN of com­
plex numbers such that f(z) := I::=~n zn is analytic on V and can be 
extended to a continuous function on V. Addition is defined component­
wise, multiplication is defined to be convolution. The norm on TA is de­
fined by ll(an)nENl!T A := suplzl<l II:::o an znl. Note that if (an)nEN E 
TA and f(z) := I::=oanzn, then the Maximum Modulus Theorem yields 
ll(an)nENIIT A = suplzl<l lf(z)I = suplzl9 lf(z)I = suplzl=l Jf(z)J (here we 
denoted the extension of f to V also by J) . The space TA is isometric to the 
disc algebra A studied in Subsection 4.2.3). 

Theorem 4.4.6 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence g = (gn)nEN. Then the following are equivalent: 

a) g ET A. 

b} There are t EC\ {0} and 8 > 0 such that q(t) ET A and l1P(t, z)I > 8 for 
all z EV. 

c} There exists t E C \ {0} such that q(t) E TA and q(-t) ET A. 

If a), b} or c} holds, then : 

d} q(t) ETA for all t EC and l1P(t, z)J > 8(t) > 0 for all z EV. 

e) (4.1} holds for all t E C and all z EV. 

f) There exists M > 0 such llq(t)IIT A :$ eltl M for all t E C. 
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g) limt10 llq(t)llr A= 1. 

Proof 'a ⇒ b' Fix an arbitrary r with O < r < l. Define O:n (n E N) by 
O:n := rn. Then Theorem 4.4.1 a ⇒ e together with the last statement of 

Theorem 4.4.1 imply that 'lj;(t,z) = ig(z) for all t EC and all z with lzl < r. 

Since r was arbitrary, it follows that 'If;( t, z) = i g(z) for all t E C and all 
z EV. Hence, q(t) ET A for all t EC since etg ET A. The second statement 

of b) also follows from 'If;( t, z) = i g(z). 
'b ⇒ c' Since qo(t) =/- 0, there exists a unique sequence (ak)kEN such that 
I:;=O qk(t) an-k = Don for all n EN. It follows Theorem 4.2.10 that q(t) E 
exp TA. Hence, in particular q(t) E inv TA and (an)nEN E TA. Using the 
defining property of convolution type, we see that ak = qk(-t) for all k E N. 
Hence, q(-t) ET A. 
'c ⇒ a' It follows from Theorem 4.2.10 that q(t) E exp TA. Thus there exists 
(bn)nEN ET A with bo = 0 such that '1/J(t, z) = exp (I::=o bn zn) for all z EV. 
It follows from Lemma 4.2.lb that bn = t 9n for all n E N. Hence, g E TA. 

Statements d) and e) follow from the proof of a ⇒ b. In order to prove f), 

note that e) implies llq( t) llr A :S eltl ll9llr A. Finally, lim inft1o llq( t) llr A ~ 
liminft10 l'I/J(t,O)I = qo(t) = 1 and f) implies that limsuptlO llq(t)llrA :S 1. 
Hence, limno llq(t)llr A = l. □ 

Remark 4.4. 7 It is an open problem whether property f) of Theorem 4.4.6 
implies any of the properties a), b) or c). 

The next theorem gives a sufficient condition for boundedness of the coefficient 
sequence (gn)nEN in terms of (qn)nEN• 

Theorem 4.4.8 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN· If limt10 qn(t) = 0 uniformly inn= 1, 2, ... 

and limtlO qn?) = 9n uniformly in n = 1, 2, ... , then (gn)nEN is a bounded 
sequence. 

Proof: Suppose (gn)nEN is unbounded. Choose 8, 0 < 8 < 1 such that lqn(t)I :S 
1 and I qn?) - 9nl :S 1 for O < t < 8. Choose N such that l9NI > 4/8. 

Then lqN( ½8)1 = I qNHo) ½81 ½819N + ( qNHo) - 9N) I > ½8l9NI 

½oiqNHo) -gNI ~2-½8 > 1½. Thiscontradictsthechoiceof8. □ 

Note that the converse of Theorem 4.4.8 does not hold. E.g. take 9n = l for 
all n EN. Then g;,* = n - land qn(t) ~ ½ (n - 1) t2 . 

We now study the relation between the radii of convergence of L~=O qn(t) zn 
and L~=O 9k zk, where (gn)nEN is the coefficient sequence of (qn)nEN· 



4.4 Applications to polynomials of convolution type 101 

00 

Ry .- radius of convergence of L 9k zk. 
k=O 

00 

Pt ·- radius of convergence ofL qn(t) zn. 
n=O 

M .- {z lzl < Pt and 'lf;(t, z) = 0}. 

Vt ·- inf { lzl : z E Nt} if Nt =f=. 0, Vt := Pt if Nt = 0. 

We start our discussion with some examples. 

Examples 4.4.9 a) qn(t) = ":,~ : Pt = R 9 = oo for all t EC. 

b) qn(t) = (!) : R 9 = 1, Pt= oo fort EN, Pt= 1 fort</. N. 
c) qn(t) = t(t - an)n-I /n!: Pt= R 9 = (jaje)- 1 (use Stirling's Formula). 

Note that Po = oo because qn(0) = 0 for n 2:'. 1. 
It follows from Theorem 4.4.1 a ⇒ b that R 9 :s; Pt for all t E C. The examples 
suggest that R 9 = Pt for all except countably many t. Theorem 4.4.1 g ⇒ a 
shows that it is not possible that both Pt > R 9 and P-t > R 9 . The following 
theorem shows that the zeros of the functions 'lf;(t, .) determine R 9 • Moreover, 
it enables us to prove the important property stated as Theorem 4.4.lOe. This 
property will play an important role in the rest of this section and in Section 4.5. 

Theorem 4.4.10 Let (qn)nEN be a sequence of polynomials of convolution 
type. Then: 

a) If R 9 = 0, then Pt= 0 for all t EC\ {0}. 

b) If R 9 = oo, then Pt= oo for all t EC. 

c) If O < R 9 < oo, then R 9 = Vt for all t E (C \ {O}. In particular, Vt = v. 
for all t,s EC\ {0} and 'lf;(t,z) =f=. 0 for all t E (C and all lzl < R 9 • 

d} There are at most countably many t E (C such that Pt > R 9 . 

e) If lzl < Pt for uncountably many t EC, then 'lf;(t, z) =f=. 0 for all t EC. 

Proof: a) Suppose Pt =f=. 0 for some t =f=. 0. Since 'lf;(t, 0) = 1 there is a 8, 
0 < 8 < Pt, such that l'l/J(t, z)I > 0 for lzl :s; 8. Now Theorem 4.4.1 f ⇒ a with 
O'n = 5n implies that (gn)nEN E f'1(a), hence R 9 2:'. 8 > 0. 
b) This follows from Theorem 4.4.1 a ⇒ b. 
c) Let t E C \ {0} be arbitrary. We first prove R 9 :s; Vt. If lzl < R,9 , then 
(gn)nEN E f'1(a) with O'n = lzln. It follows from Theorem 4.4.1 that 'lf;(t, z) = 
ig(z) =f=. 0 for !zl < R 9 • Hence, R 9 :s; Vt. 
The reverse inequality R 9 2:'. Vt follows from Theorem 4.4.1 f ⇒ a. 
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d) First recall that an analytic function can have at most finitely many zeros 
on a compact set ([213, Corollary to Theorem 10.18, p. 226]). Suppose that 
Ps > R 9 for some s EC\ {O}. We first prove that 'lj;(s, .) has at least one zero on 
lzl = R 9 • If 'lj;(s, z) =I- 0 for all lzl = R 9 , then '1/,J(s, z) =I- 0 for all lzl < R 9 +77 for 
some 77 > 0 since Ps > R 9 • Thus v. > R 9 , which is impossible by c. Therefore 

we may write 'lj;(s, z) = J.(z) rr~=l (1- ajztj with 11/ajl = Rg and rj EN, 
j = 1, ... , k. There exists 8 > 0 such that 'lj;(s, .) has finitely many zeros on 
{ z : R9 :S I z I :S R 9 + 8 < Ps}. Hence ls is a non-vanishing analytic function on 
lzl < R 9 + 81 for some 81 > 0. Since J.(O) = 1, Theorem 4.2.10 yields a unique 

analytic function h such that h(O) = 0 and J.(z) = eh(z) for lzl < R 9 + 81. 

Hence, 'lj;(s, z) = exp { h(z) + I:;~=l rj log (1 - aj z)} for lzl < R 9 , where log 

denotes the principal branch of the logarithm on C\ (-oo, OJ. By Lemma 4.2.la 

and Theorem 4.4.1, h(z) + I:;~=l rj log(l - aj z) = sg(z) for lzl < R 9 • It 
follows that · 

'lj;(t, z) exp { tf, h(z) + tf, t, r; log(! -a; z)} 

k 

exp (t/sh(z)) IT (1-a1 z)r;t/s 
j=l 

for all t E C and all lzl < R 9 . We conclude from the analyticity of h on 
lzl < R9 + 81, that Pt> R 9 if and only if t/s EN. 
e) It follows from d) that lzl < R 9 , hence 'lj;(t, z) =I- 0 by c). □ 

4.5 Two-sided sequences of functions of convo­
lution type 

In this section we will study a two-sided analogue of sequences of polynomials 
of convolution type. 

Definition 4.5.1 Let (qn)nEZ be a two-sided sequence of Lebesgue measurable 
functions on [O, oo) such that not all functions qn are identically zero. Then 
(qn)nEZ is said to be a two-sided sequence of convolution type if 

00 

L lqk(t) qn-k(s)I < oo for alls, t 2'. 0 
k=-oo 

and 
00 

qn(t + s) = L qk(t) qn-k(s) for alls, t 2'. 0. 
k=-oo 
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Notation We write cp(t, z) := E::'=-oo qn(t) zn whenever this series con­
verges absolutely. Note that cp(t + s, z) = cp(t, z) cp(s, z). 

Contrary to the one-sided case, due to convergence problems there seems to 
be no algebraic theory for two-sided sequences of convolution type. Therefore 
our policy is to impose several analytical conditions on cp(t, z) and study the 
consequences. Note that (Jn)nEZ, where Jn is the Bessel function of the first 
kind of index n, is an example of a two-sided sequence of convolution type ( cf. 
[184, Section 62, Theorem 39]). 

For later use we state the following lemma. 

Lemma 4.5.2 If (cn)nEZ is a two-sided sequence of complex numbers and 

(cnRn)nEZ E l1(Z) for some R > 0, then E::'=-oo E~o tr-c~* Rn converges 

absolutely for all t E C. In particular, E~o tr" c~* converges absolutely for all 
t EC. 

Proof: This follows from 

□ 

We begin with demanding cp(t, .) to be an invertible element of the Wiener 
algebra W, i.e. cp(t, z) =/- 0 for all z E 'Jl' (see Section 4.3). 

Theorem 4.5.3 Let (qn)nEZ be a two-sided sequence of convolution type. If 
cp(t, .) E inv W for all t ~ 0, then there exists an h E W such that cp(t, z) = 
i h(z) for all lzl = 1. In particular, there exists a two-sided sequence (zn)nEN E 

l1(Z) such that qn(t) = E;:0 ht ti"· 
Proof: Define cp1 by cp1 (t,0) := cp(t,ei8 ) (t ~ 0,0 E lffi.). The measurability of 
cp(.,z) and [118, Corollary to Theorem 4.17.3, p. 145] or [3, Theorem 4, p. 56] 
yield the existence of complex numbers x(0) (0 E lffi.) such that 

'P1(t,0)/cp1(t,0) = exp (tx(0)) (4.2) 

We now show that ind cp(t, .) = 0 for all t ~ 0. Recall from Lemma 4.3.2 that 
the index of a non-vanishing continuous function on 'Jl' is always an integer. If 
ind cp(to, .) =/- 0 for some to ~ 0, then ind cp(to/n, .) <I. Z for n large enough by 
Lemma 4.3.2, which is impossible. It follows from Theorem 4.3.5 that there 
exist functions 1(t, .) E W with 1(t, 1) = 0 such that 
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cp1(t,0)/cp1(t,0) = exp (-y(t,ei8)). (4.3) 

Define continuous functions i'(t, .) on Jm. by i'(t, 0) := -y(t, ei8). We get from 
(4.2) and (4.3): 

i'(t, 0) = t x(0) + k(t, 0) 21ri 

with k(t,0) E Z. From (4.4) with t = 1 we get 

i'(t,0) = Vi(l,0) + k(t,0) -tk(l,0)21ri 

(4.4) 

(4.5) 

From (4.5), the continuity of-y(t, .) and-y(t,0) = 0 we obtain k(t,0)-tk(l,0) = 
0. Hence, 

cp1(t,0)/cp1(t,0) = e(ti'(l, 8)). (4.6) 

From (4.6) and the measurability of cp1(t,0): 

cp1 (t, 0) = exp {at+ ti'(l, 0)}. (4.7) 

Setting ho := a and letting hn be then th Fourier coefficient of-y(l, .), we arrive 

at cp(t, ei8 ) = exp { t I::=-oo hn ein8 } with I::=-oo lhnl < oo. D 

Remarks 4.5.4 a) Using Theorem 4.5.3 we caii give an interesting proof of 
Theorem 4.4.1 e =} f: extend the sequences (qn)nENt to elements of f\(Z) 
by setting qn(t) = 0 for n < 0. By Theorem 4.5.3, there exists a sequence 
( Cn)nEZ E /\ (Z) such that 

oo { oo } oo . 00 tk 
n~oo qn(t) ein0 = exp t n~oo Cn ein0 = n~oo ein0 ~ k! c~* 

(Lemma 4.5.2 allows us to change the order of summation). Unicity of Fourier 
coefficients yields: 

oo tk oo tk L k!c~*=Oforn<O;L k!c~*=qn(t)forn2::0 (4.8) 
k=O k=O 

Because (4.8) holds for all t 2:: 0, we must have Cn = 0 for n < 0. Hence, 
I::=oqn(t)zn = exp {tI::=ocnzn} -=J-0 for all lzl S l. 

b) It follows from cp(t,ei8) = exp {t I::=-oo hnein8} that for alls 2:: 0 

00 

lim '°" lqn(t) - qn(s)I = 0 
t~s L-t 

n=-oo 

(4.9) 

If we weaken the assumptions of Theorem 4.5.2 by allowing cp(t, .) to vanish, 
then (4.9) still holds for alls> 0 by [118, Theorem 9.3.1, p. 280]. 
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Notation If O <a< b < oo, then A(a,b) ·- {z E (C: a< lzl < b} and 
A(a, b) := {z EC: a::; lzl::; b}_-

We denote the Banach algebra of all Laurent series that converge absolutely 
on A(a, b) by Wa,b·- Addition and multiplication are the usual addition and 
multiplication of series. The norm on Wa,b is defined by II I::=-oo Xn znll := 

max{I::=-oo lxnlan, L:=-oo lxnlbn}. 
It is easy to see that Wa,b is complete and that the polynomials in z and 1/ z 
are dense in Wa,b• 
The unit element of Wa,b is the Laurent series with xo = l and Xn = 0 for 
n/0. 

Lemma 4.5.5 The complex homomorphisms of Wa,b are point evaluations on 
A(a,b). 

Proof: Let A E M(Wa,b) be arbitrary. From IIAII = 1 ([212, Proposition 10.6 
and Theorem 10.7]) we infer for the polynomial z that IA(z)I::; band IA(l/z)I::; 
IIAII llz-1 11 = llz-1 11 = a- 1. Since l/z is inverse to z, IA(z)I = 1/IA(l/z)I 2: a. 
Thus A( z) = z0 for some zo E A( a, b). Hence, if p is a polynomial in z and 1 / z, 
then A(p) = p(A(z)) = p(z0 ). Since the polynomials in z and 1/z are dense in 
Wa,b, we conclude that A(J) = J(zo) for every J E Wa,b• □ 

Theorem 4.5.6 Let a, b E IIR (0 < a < b) and let (qn)nEZ be a two-sided 
sequence of convolution type. If <p(t, .) E inv Wa,b for all t 2: 0, then there 
exists a Laurent series I::=-oo Yn zn E Wa,b such that 

.f. ll A( b) I . l ( ) - "'00 k* tk Jor a z E a, . n particu ar, qn t - L.Jk=O Yn kf· 

Proof: Let r E [a, b] be arbitrary. Then <p(t, r ei8 ) # 0 for 0 E [-1r, 1r]. By 
Theorem 4.5.3 there exists (cn(r))nEZ E f!i(Z) such that 

(4.10) 

Define Yn(r) := cn(r)r-n. Then (gnrn)nEZ E i\(Z). We will now prove 
that Yn(r) does not depend on r. By Lemma 4.5.2, we may change the order 

of summation in (4.10) which yields qn(t) = I:;;o=O Yn(r)h ti"· Since r was 
arbitrary and the right-hand side series defines a holomorphic function oft, we 
conclude that Yn(r) does not depend on r. Define Yn := Yn(a). Hence qn has 
the form indicated above. Moreover, (gn rn )nEZ E £ 1 (Z) for all r E [a, b] and 
thus (4.10) yields <p(t, z) = exp { t I::=-oo Yn zn} for all z E A(a, b). □ 

We now set out to prove the analogue of Theorem 4.5.6 for the open annulus. 
It turns out that two-sided sequences of convolution type possess a property 
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that is analogous to the property for polynomials of convolution type as ex­
pressed in Theorem 4.4.lOe. This property is stated in Theorem 4.5.8; the 
above mentioned analogue of Theorem 4.5.6 is Theorem 4.5.9. 

Lemma 4.5. 7 Let (gn)nEZ be an arbitrary double-sided sequence of complex 
numbers such that L:::='=-cx, gn zn converges absolutely on the open annulus 

A( a, b). Define qn ( t) := L~=O g~• t" for t E [O, oo). Then ( qn)nEZ is a 
two-sided sequence of convolution type. If z E A(a, b), then L:::='=-cx, qn(t) zn 
converges absolutely and does not vanish. 

Proof: It follows from Lemma 4.5.2 that qn (n E Z) is well-defined and that 
L:::='=-cx, qn(t) zn converges absolutely on A(a, b). Hence, 

ex, ex, ex, t k 

L qn(t)zn = L Lg~• k! Zn= 
n=-cx, n=-cx, k=O 

D 

Theorem 4.5.8 Let a, b E l1l (0 < a < b) and let (qn)nEZ be a two-sided 
sequence of convolution type. If rp( t, z) converges for all z E A( a, b) and all 
t 2 0, then rp(t, z) =/. 0 for all t 2 0 and all z E A(a, b). 

Proof: Suppose there are to > 0 and zo E A(a, b) such that rp(to, zo) = 0. 
It follows from [118, Theorem 4.17.1, p. 144], that rp(t, z0 ) = 0 for all t > 
0. Choose c, d with a s; c < I z0 I < d s; b such that rp( t0 , z) =/. 0 for all 
t > 0 and all z E A(c, lzol) LJ A(lzol,d). This is possible since the functions 
rp( t,.) are analytic and not identically zero. Choose c1, c2, d1 and d2 with 
c < c1 < c2 < lzol and lzol < d1 < d2 < d. An application of Theorem 4.5.6 
to the functions qn on A(c1,c2) yields a sequence (gn)nEN of complex num-

k 

hers such that qn(t) = L~=O g~• tf· An application of Theorem 4.5.6 to the 
functions qn on A(d1,d2) yields a sequence (hn)nEN of complex numbers such 

k 
that qn(t) = L~=O h~* h- Differentiating with respect to t and substituting 
t = 0, we obtain gn = hn for all n E Z. This implies that L:::='=-cx:, gn zn con­

verges for all z E A( c1, c2) LJ A( d1, d2), hence for all z E A( c1, d2). It follows 
from Lemma 4.5. 7 that rp( to, z) =/. 0 for all z E A( ci, d2), which contradicts 
rp(to, zo) = 0. D 

Theorem 4.5.9 Let a, b E l1l (0 < a < b) and let (qn)nEZ be a two-sided 
sequence of convolution type. Suppose rp( t, z) converges absolutely for all t 2 0 
and all z E A( a, b). Then there exists a Laurent series L~=-cx, gn zn that 

absolutely converges on A( a, b) and satisfies rp( t, z) = exp { t L~=-cx, gn zn} 
for all t 2 0 and for all z E A( a, b). In particular, rp( t, z) does not vanish on 

A(a, b) and qn(t) = L~=O g~• t"· 



4.5 Two-sided sequences of functions of convolution type 107 

Proof: It follows from Theorem 4.5.8 that c.p(t, z) -:j:. 0 for all t ~ 0 and all 
z E A(a, b). Applying Theorem 4.5.6 to Wa+l/n,b-1/n for all n EN such that 
a + 1/n < b - 1/n, we obtain Laurent series hn E Wa+l/n,b-1/n such that 
c.p(t,z) = exp (thn(z)). Since exp (thn(z)) = exp (thm(z)) for all t E [0,oo) 
on a circular region, hn(z) = hm(z) for all z in their common domain by 
Lemma 4.2.la. Hence, all the Laurent series hn are identical. If we set g := h1, 

then g converges absolutely on A( a, b) and c.p( t, z) = i g( z) for all t E C and 
all z E A(a, b). □ 

We denote the Banach algebra of all Laurent series that are absolutely conver­
gent on A(a, b) and have a continuous extension to A(a, b) by .Ca,b• Addition 
and multiplication are defined pointwise. The norm is the supremum norm of 
the function corresponding to the Laurent series. Since the limit of a uniformly 
convergent sequence of continuous (holomorphic) functions is again continuous 
(holomorphic), .Ca,b is complete. The unit element of .Ca,b is the Laurent series 
with Xo = 1 and Xn = 0 for n -:j:. 0. 

Lemma 4.5.10 The complex homomorphisms of .Ca,b are point evaluations on 
A(a,b). 

Proof: It suffices to show that the polynomials in z and 1/ z are dense in .Ca,b, 
since we can then copy the proof of Lemma 4.5.5. If E:'=-oo an zn E .Ca,b, 

then E:'=o an zn and E~~-oo an zn can be approximated uniformly on A( a, b) 
by polynomials in z, polynomials in 1/ z respectively. This shows that the 
polynomials in z and 1/ z are dense in .Ca,b• □ 

Theorem 4.5.11 Let a,b E Jm. (0 < a < b) and let (qn)nEZ be a two-sided 
sequence of convolution type. If c.p( t, z) E inv .Ca,b for all t ~ 0, then there 

exists an h E .Ca,b such that c.p(t, z) = i h(z) for all t ~ 0 and all z E A(a, b). 

In particular, Qn(t) = E;:°=0 g~* ti"· 
Proof: First note that Theorem 4.5.9 implies the existence of a Laurent series 

h which absolutely converges on A( a, b) and satisfies c.p( t, z) = i h( z) for all 
z E A(a, b). 
Choose c, d such that a < c < d < b. Consider all 0 < .X < 1 such that .Xc > a. 
Write <.p>.(t, z) := c.p(t, .Xz) for these .X. It follows from Theorem 4.5.6 that 
<.p>.(1, .) E exp Wc,b C exp .Cc,b• Since c.p(l, .) E inv .Cc,b and lim>.n <.p>.(1, .) = 
c.p(l, .)in.Cc,b, the second statement of Theorem 4.1.4 implies that c.p(l, .) E 
exp .Cc,b• In a similar way we see that c.p(l, .) E exp .Ca,d• It follows from 
Lemma 4.2.la that c.p(l, .) E exp .Ca,b, i.e. there exists an H E .Ca,b such that 

c.p(l, z) = e(z) for z E A(a, b). It follows from Lemma 4.2.la that H and h 
differ by a constant. We conclude that h E .Ca,b• 
For the last statement, see the end of the proof of Theorem 4.5.6. □ 
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Chapter 5 

Central limit theorems and 
infinite divisibility 

In this chapter we study random variables Yn ( n E N) with probability gen­
erating function qn(>.x)/qn(>.), where (qn)nEN is a sequence of polynomials of 
convolution type with coefficient sequence (gn)nEN• For an interpretation of 
the random variables Yn in terms of a compound Poisson process, see [222]. 
Canfield [47, 48] proved a central limit theorem for (Yn)nEN in case g(z) := 
I:::'=o Un zn belongs to a class of entire functions including polynomials (see 
also [55, 216]). A central limit theorem for (Yn)nEN in case g has a dominant 
logarithmic singularity on its circle of convergence can be found in [96, 97]. 
Stam [225] used renewal theory to obtain a central limit theorem. Moreover, 
in [222] he obtained.results on the asymptotic behaviour of qn(x)/qn(l). The 
main purpose of this chapter is to extend the results of [224]. 
Applications of these central limit theorems to asymptotic enumeration can be 
found in [47, 48, 96, 97, 214]. 
This chapter is organized as follows. Section 5.1 gives some auxiliary results 
that will be needed for the proof of the central limit theorem in Section 5.4. 
In Section 5.2 we determine the asymptotics of the polynomials qn when g 
converges absolutely on its circle of convergence. In Section 5.3 we introduce 
the renewal approach to central limit theorems of [224] and show that his 
central limit theorem is a special case of the results of Section 5.4. Section 5.4 
contains a central limit theorem for the case that g has a dominant logarithmic 
singularity on its circle of convergence. Finally, Section 5.5 deals with infinitely 
divisible probability measures on N. Using Sections 4.1 and 5.2, we give a new 
proof for a result of Embrechts and Hawkes [87] on the asymptotic behaviour 
of an infinitely divisible probability measure on N and its Levy-measure. 
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5.5 Infinitely divisible measures on N. 

5.1 Preliminaries 

This section contains several results that will be used in the next sections. For 
sake of brevity, we do not state these results in their most general form. 

Lemma5.1.1 a) If x > I, then ( ("'+:-1)) nEN is an increasing sequence. 

b} If O < x < I, then (("'+:-1))nEN is a decreasing sequence. 

Proof: This follows from ("'+n-l) / ("'+n-2) = :i:+n-l = I + :i:-1 . 
n n-1 n n □ 

Lemma 5.1.2 If an := (A logn)112 , then for all A, z > 0 and all k EN: 

hm e anz · =e• . _ · (Aez/an+n-k-I) (A+n-k-1)-l 1.z2 
n--+oo n - k n - k 

For fixedz > 0, e-anZ e,ez/a:!t-k-l) (H:=z-1f 1 is uniformly bounded for 
all n, k E N with O ::; k < n. 

Proof: We first prove the assertion for k = 0. Note that 

e-anZ cez/ann+ n - I) C + :-1)-1 = 

n-
1 ( A ) e-anz ez/an IT I+~ ( ez/an _I) . 

j=l + J 

After taking logarithms it suffices to prove 

{ 
n-

1 
( A ) } 1 J.!..1! z / an - Un z + ~ log 1 + A + j ( ez / an - I) = 2 z2. 

Expanding first the logarithms and then the exponential functions into Taylor 
polynomials, we obtain 
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t ~ (ezfan _ 1)) _ t ½ 2 (~)
2 

(ezfan _ 1)2, 
j=O .A+ J j=O (1 + 0n,j) .A+ J 

with 0 < 0n,j < ,\~j ( ez / an - 1) for n -t oo. The last term vanishes as 

n -too, because I::,o (,\~j) 2 converges and limn-+<x, z/an = 0. Now we 

expand the first term as 

Since t A= a!+ 0(1), it follows that 
j=O +J 

This completes the proof for k = 0. Because 

(A ez fan + n - k - 1) (.A + n - k - 1)---l 
n-k n-k 

.A+ n - k (A ezfan + n - (k - 1) - 1) (.A+ n - (k - 1) - 1)---l 
ez / an + n _ k n - ( k - 1) n - ( k - 1) - 1 ' 

induction on k yields the first assertion. 
For the second assertion note that ezf an < ezf an-k e-anz < e-an-kZ 

- ' - ' 
and that ("'+:---1) < (Y+:---1) for 0 < X < y. Hence, e-anZ("e'1":~~-k-l) ::; 

e-an-kZ ("ezfan-k+n-k-1) D 
n-k . 

Lemma 5.1.3 For all A EC\ {-1, -2, ... }, we have limn-+oo ("+:-1) n 1-,\ = 
1 

r(A)" 

P f. s· ("+n-1) - r(n + .A) r 1 \ "'\ { } roo. mce n - r(n + 1) r(.A) 1or a 1 A E IL, -1, -2, ... , the result 

follows from [68, sect. 27). □ 

Lemma 5.1.4 If A> 0 and (A - l)o: > -1, then 

f (.A +_i-)" ::; C ml+ (1 - .A)o:, 
j=O J 

where C depends on A and a. 
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Proof: Since A > 0 and (A - l)a > -1, Lemma 5.1.3 yields I:;:0 c•+J-)°' = 
1 + I:;:o C,+J-)°' ~ 1 + C1 I:;:o jP--l)a. If (A - l)a::::: 0, then 

If -1 < (A - l)a < 0, then 

m J,m-+l 
1 + C ~ J•(>.-l)a < 1 + C t(>.-l)a dt < C m 1+(>.-l)a. lL..., _ 1 _ 3 

j=O 1 

□ 

We conclude this section with a useful lemma on convergence of moment gen­
erating functions. 

Lemma 5.1.5 Let a, b E IB be arbitrary with a < b. If Fn (n E N) and F are 
probability distribution functions on the real line such that 

lim 100 
ezx dFn(x) = 100 

ezx dF(x) 
n---->oo 

-CX) -CX) 

for all z E (a, b), then Fn converges weakly to F .as n-+ oo. 

Proof: If a < 0 < b, then the result for arbitrary distribution functions fol­
lows from the proof of [71, Theorem 3]. Suppose 0 is not an interior point of 
(a, b). We will reduce this case to the case a < 0 < b. Choose an arbitrary 

( E (a,b). Define measures dGn by dGn(x) := elx dFn(x) for all n E N 

and define dG by dG(x) := elx dF(x). Then limn---->oo J.':o evx dGn(x) = 

limn----, 00 J~00 e(v + ()x dFn(x) = J~00 e(v + ()x dF(x) = J~00 evx dG(x) for 
all v E (a - (, b- (). Since a - ( < 0 < b- (, it follows that limn__, 00 Gn(x) = 
G(x) for all continuity points x of G. Since elx is continuous, it follows that 
limn__, 00 Fn(x) = F(x) for all continuity points x of F. Because Fn and Fare 
probability distribution functions, it follows that Fn converges weakly to F as 
n-+ oo. □ 

5.2 Asymptotics when g converges on its circle 
of convergence 

Let (qn)nEN be a sequence of polynomials of convolution type with coeffi­
cient sequence (gn)nEN• In this section we study the asymptotic behaviour 
of qn(x)/qn(l) as n-+ oo in case L~=O 9n zn converges absolutely on its circle 
of convergence. If 9n ::::: 0 for all n E N, then the polynomials qn have non-

k 
negative coefficients by Lemma 2.1.5, since qn(x) = I:;=O g~* ~! by Theorem 
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2.1.8. Hence, qn(x)/qn(l) is the probability generating function of a discrete 
random variable. Stam [222, Theorem 4] has shown that in this case the only 
possible limit distribution without centering and scaling is a Poisson distribu­
tion shifted 1 to the right. We will extend this result to the case where the 
numbers 9n need not be non-negative. Of course, in this case qn(x)/qn(l) need 
not be a probability generating function. The Banach algebra approach to 
subexponential distributions of [61] will be used and extended. 

We start with stating and extending the results from [61] needed for the sequel. 
Recall that N = {0, 1, ... }. 

Definition 5.2.1 Let (µn)nEN be a sequence of complex numbers such that 

1. limn__,<XJ µ~* / µn = c exists and is finite 

2. limn--><XJ µn+l / µn = 1 / r exists and is positive 

3. µn > 0 for all n E N 

4 '\""'<XJ n . Lm=oµnr < 00. 

Define 

and 
Uo := {(vn)nEN C <C I lim v,./ µn = 0}. 

n-->oo 

Condition 3) of definition 5.2.1 is missing in [61]. However, the proofs in [61] are 
not valid unless condition 3) is added. It is not clear how to remove condition 
3). 
For more information on sequences satisfying the conditions of Definition 5.2.1, 
see [86, sect. 2]. For example, it can be shown that c = 2 L~=D µn rn (see [86, 
Theorem 2.8]). 

Parts a, band c of the following theorem are taken from [61]; parts d and e are 
new. 

Theorem 5.2.2 a) UL and U0 are Banach algebras when equipped with co-
ordinatewise addition, convolution as multiplication and norm llvll := 

M supnEN Vn/ µn I, where M := u µ~• / µn. The sequence 1, 0, 0, ... is the 
unit element u of both UL and Uo. 

b) If A is a complex homomorphism of U0 , then there exists >. E { z E <C : 
lzl :::; r} such that A(v) = L~=D Vn An for all v E Uo. 

c} If A is a complex homomorphism of UL, then there exists>. E {z E <C: 
lzl :::; r} such that A(v) = L~=D Vn >.n for all v E UL. 

d} inv U0 = exp Uo. 
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Proof: a) See [61, Lemma l]. 
b) See [61, Lemma 2]. 
c) See [61, Lemma 3]. 
d) The inclusion exp U0 C inv U0 follows from Remark 4.1.3a. Let v E inv Uo 
be arbitrary. Define F: [0, 1] - inv Uo by F(t) := (tn vn)nEN• It follows from 
b) and Theorem 4.1.2 that F( t) E inv Uo for all t E [0, 1]. We now show that F 
is continuous. Ifs, t E [0, 1], then IIF(s)-F(t)II = M supnEN l(sn -tn) Vn/µnl• 
Since limn-,cxi vn/µn = 0, it follows that limn-+oo IIF(s) - F(t)II = 0. Hence, 
v E exp U0 by Theorem 4.1.6 since v0 -1- 0. 
e) The inclusion exp UL C inv UL follows from Remark 4.1.3a. Let v E inv UL 
be arbitrary. By c) and theorem 4.1.2, :E::'=o Vn zn -1- 0 for all lzl :::; r. In 
particular, v0 -1- 0. Thus, the Gelfand transform v of v belongs to inv C(M). 
Since M is homeomorphic to { z E <C : I z I :::; r}, it follows from Theorem 4.2.5 
that II E exp C(M). By theorem 4.1.10, v E exp UL. □ 

Remark 5.2.3 If v E inv UL and limn-+oo vn/ µn -1- 0, then F : [0, 1] - inv Uo, 
defined by F(t) := (tn vn)nEN, is continuous for 0 :::; t < 1 but discontinuous 
at t = 1. Thus the method of proof for Theorem 5.2.2d does not work for 
Theorem 5.2.2e. 

The following theorem gives sufficient conditions for the convergence as n - oo 
of qn(x)/qn(l). If the polynomials qn have non-negative coefficients, then 
qn(x)/qn(l) is the probability generating function of a discrete random variable 
Yn. Convergence of qn(x)/qn(l) for all x E (0, 1] implies convergence in distri­
bution of the random variables Yn by the continuity theorem for probability 
generating functions (see [92, sect. XI.6]). 
Theorem 5.2.4 was proved in [222] for qn with non-negative coefficients ( cf. 
Remark 5.2.5a). 

Theorem 5.2.4 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN such that Ra, the radius of convergence of 
:E;:'=0 gn zn, is finite and positive. If an xo -1- 0 exists such that: 

1. qn(xo) > 0 for all n EN 

2. lim qn(2 xo) / qn(xo) exists and is finite 
n-+oo 

00 

4. :z= qn(:I'.o)n; < oo 
n=O 

00 

5. L qn(xo)zn -1- 0 for lzl = R 9 , 

n=O 
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00 

then L lunl n; < 00 and 1.!...~ qn(x)/qn(l) = xe<x - l)g('R.g) for all XE IC. 
n=O 

Proof: By definition of convolution type, the sequence (qn(2 xo))nEN is the 
twofold convolution of (qn(xo))nEN• Define µn := qn(xo). It follows from 
Theorem 5.2.2 that UL and U0 are Banach algebras. It follows from Theorem 
4.4.1 with On = n; that I:::'=o µn Zn =/:- 0 for lzl :s; 'R.g. Hence, (µn)nEN E 
inv UL by Theorem 5.2.2c and (µn)nEN E exp UL by Theorem 5.2.2e. It follows 
from Lemma 4.2.1 and Theorem 4.4.1 that (gn)nEN E UL. Obviously, also 
(xgn)nEN E UL for all x E IC and therefore (qn(x))nEN E UL for all x E IC. 
Now (61, Lemma 5] implies that limn_, 00 qn(k)/qn(l) = k e(k - l)g('R.g) for all 
k EN. Hence, 

lim qn(k/m) = lim qn(k/m) qn(l/m) = ~ e((k/m) _ 1) g(R.9 ) 

n->oo qn(l) n->oo qn(l/m) qn(l) m 

for all k,m EN. By continuity, limn->oo qn(x)/qn(l) = xe(x - l)g('R.g) for all 
x 2:': 0. Applying the theorem to (qn(ax))nEN for suitable a with lal = 1, we 

obtain limn_,00 qn(x)/qn(l) = xe(x - l)g('R.g) for all x E IC. D 

Remark 5.2.5 a) Let us compare Theorem 5.2.4 with (222, Theorem 4]. The 
conditions in the Stam theorem are: Yn 2:': 0 for all n E N,g1 =/:- 0 (since (qn)nEN 
is a basic sequence; cf. Theorems 2.2.17 and 2.l.12b), 'R.9 < oo, I:::'=oYn n; < 
oo and the existence of a nonzero limit of qn(x)/qn(l) for O ::; x < l. In 
particular, these conditions imply 1), 2), 4) and 5) of Theorem 5.2.4 for xo = ½­
It follows from (86, Theorem 2.8 and Lemma 2.10] that 3) is also satisfied for 
x0 = ½- Hence, Theorem 5.2.4 is more general than the Stam theorem. 
b) It is shown in (222, Theorem 3] that if Yn 2:': 0 for all n E N, then g('R.9 ) = oo 
implies liminfnEN qn(x)/qn(l) = 0 for O ::; x < l. Thus, g('R.9 ) < oo is 
necessary for the existence of a nonzero limit for qn(x)/qn(l). Since the proof 
of Stam uses non-negativity in an essential way, it is not clear whether the 
above also holds in the general case. 
c) It is possible to avoid the continuity argument at the end of the proof of 
Theorem 5.2.4 when Un > 0 for n 2:': 1. In order to do so, first note that 
limn->oo qn(x)/gn =/:- 0 for all x =/:- 0 (cf. the proof of Theorem 5.5.4). This 
allows us to write limn->oo qn(x)/qn(l) = limn->oo qn(x)/gn limn->oo Yn/qn(l). 
It follows from (86, Theorem 2.9iv] that g~* ~ 2gn (n -t oo). Moreover, 
limn_,00 Yn/Yn+l = 'R.9 by (86, Theorem 2.8 and Lemma 2.10]. Now consider 
the Banach algebra UL with µn = Yn• The theorem now follows from (61, 
Formula (2)] with rp(z) = exz (cf. (61, Remark 2]). 

Example 5.2.6 We now apply Theorem 5.2.4 to the Abel polynomials x (x -
ant- 1 /n! with a< 0. It follows from Remark 2.1.lOc that Yn = (-ant- 1 /n!. 
Thus 

,,., 1· Yn 1· ,.._,9 = Im -- = Im 
n->oo Yn+l n->oo 

( I ln-1 )-1/n 
ann! = (lale)-1 
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and 
00 

n=O 

Moreover, a simple computation yields 

Together with Theorem 5.2.4 this yields g(R9 ) = -a-1 . Thus we obtain 
'i;"""'OO nn-1 
L.,n=O -, - = 1. n.en 

5.3 Renewal theory 

In the previous section we considered limit behaviour without centering or 
scaling of random variables with probability generating function qn(x)/qn(l). 

k 

We used the representation qn ( x) = I:Z=o g~• ~! and studied the behaviour 
of I::::'=o gn zn. In [224] Stam introduced the idea to use the representation 
qn(x) = I:Z=o J!* ("'+z-1) (cf. Theorem 2.3.10 and Example 2.2.16c) for 
studying limit behaviour with centering and scaling. The polynomials ("'+~-l) 
have interesting properties. Firstly, ("'+~-l) is the probability generating func­
tion of the number of cycles in a random permutation of {1, ... , n} and satisfies 
a central limit theorem (see [92, Chapter X.6b], [214, Chapter 5, Theorem 1.1] 
or apply Lemmas 5.1.2 and 5.1.5). Secondly, the sequence (("'+~-1))nEN is 
the unique sequence of polynomials of convolution type with qn(l) = 1 for all 
n E N (see Theorem 3.1.1). The purpose of Sections 5.3 and 5.4 is to extend 
the results of [224] to the case where f n is not necessarily non-negative. 

The following theorem shows the connection of the Stam approach with renewal 
theory. 

Theorem 5.3.1 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN and let Un)nEN be the unique sequence of 
complex numbers such that qn(X) = I:Z=o J!* ("'+z-l). Let Rt, Rg be the 
radius of convergence of f(z) = I::::'=o fn zn, g(z) = I::::'=o gn zn respectively. 
Then: 

a) qn(l) = I:Z=o f!* 

b} gn = LZ=l f!* 

c) Jo= O; fn = -qn(-l) for n 2: 1 

d) f n 2: 0 for all n E N ⇒ gn 2: 0 for all n E N 

e) the following formal generating function identity holds: 

00 

~ qn(x)zn = (l - f(z))-x 
n=O 
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f) 'R9 = min{lzl: lzl S 'R1 and f(z) = 1} 

g) L:'=o Ifni 'Rj < oo and L:'=o f n zn f=. 1 for all izl S 'R1 if and only if 
'R1 = 'Rg and L:'=o lun n; < 00. 

h) If there exists 0 with 101 < 'R1 such that L:'=o f n 9n = 1, then 'R9 < 'R1 
and L:'=o lun n; = 00 

i) lfL:'=o Ifni 'Rj < oo, L:'=o fn Zn f=. 1 for lzl < 'RJ and if L:'=o fn 9n = 
1 for some 0 with 101 = 'R1, then 'R9 = 'R1 and L:'=o lunl n; = oo. 

Proof: Recall that ( ("'+:-1)) n N is a sequence of polynomials of convolution 
type by Example 2.2.16c and ~heorem 2.2.17. Thus existence and uniqueness 
of Un)nEN follows from Theorem 2.3.10. 
a) This follows from qn(x) = LZ=o f!* ("'+Z- 1) with X = 1. 

b) We have 9n = (D qn)(0) = LZ=o f!* Dk ( ("'+z-l)) (0) = LZ=l f!* · 

c) This follows from (kk2) = 0 fork 2: 2(k EN) and (\2) = -1 fork= 1. 
d) This follows directly from b). 
e) This follows from L:'=o ("'+:-1) zn = L:'=o (~"') (-z)n = (1-z)-"'. 
f) First suppose 'R1 = 0. If 'R9 > 0, then c) and Theorem 4.4.10 imply that 
'R1 > 0. Hence, 'R1 = 0 implies 'R9 = 0. Now suppose 'R1 > 0. Note that 

f(z) = 1 - e-g(z) for izl < min{'R1, 'R9 ). Hence, 'R9 S min{lzl : lzl S 'R1 
and f(z) = 1}. If f(z) f=. 1 for lzl S r < R1, then by Theorem 4.2.10 
there exists a unique analytic function G on lzl S r such that G(O) = 0 and 

f(z) = 1-e-G(z). It follows from Lemma 4.2.1 with JC= {z EC: lzl Sr} 
and a= 0 that G = g. Thus, 'R,9 2: r. Since r was arbitrary, if follows that 
'R9 2: min{lzl: lzl S 'R1 and f(z) = 1}. 
g) '⇒' Part f) implies that 'R1 = 'R,9 • It follows from theorem 3.2.2 with 
an = 'Rj that (Don - fn)nEN E exp i\(a). Since f = 1 - e-9, lemma 3.2.1 
implies that (gn)nEN E i\(a). 
'<=' This follows from f = 1- e-9. 
h) It follows from part f) that 'Rf < 'R9 and that L:'=o f n 9n = 1 for some 
0 with 101 = 'Rg. Suppose L:'=o lunl n; < 00. Then limz-+9,lzl<9 f(z) = 

1 - e-9(9) f=. 1, which contradicts f(0) = 1. 
i) It follows from part f) that 'R1 = 'R9 • Suppose L:'=o lunl n; < oo. Since 

L:'=o If nl 'Rj < oo, we have limz-+9,lzl<9 L:'=o f n 9n = 1- e-g(9) f=. 1, which 
contradicts L:'=o f n 9n = 1. D 

Remark 5.3.2 a) The converse of Theorem 5.3.ld is not true: consider e.g. 
qn(x) = :~. Thus the set of sequences of polynomials of convolution type with 
f n 2: 0 for all n E N is a proper subset of the set of sequences of polynomials 
of convolution type with 9n 2: 0 for all n E N. This corresponds to the fact 
in probability theory that the class of compound geometric distributions is a 
proper subclass of the class of compound Poisson distributions. 
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b) From theorem 5.4.1 we see that if fn ?'.: 0 for all n EN, then (qn(l))nEN is 
an extended renewal sequence (see [Sta3, p. 185]). 
c) If fn ?'.: 0 for all n E N, then: 'f(Rt) < 1 ⇒ R 9 = Rt and g(R9 ) < oo' ; 
'f(Rt) = 1 ⇒ R 9 = Rt and g(R9 ) = oo' and 'f(Rt) > 1 or Rt= oo ⇒ R 9 < 
Rt and g(R9 ) = oo'(cf. Theorems 5.3.lg and 5.3.lh). 

In [224] the usual renewal theory conditions are assumed. We now show that 
these conditions on Un)nEN imply that I::=o 9n zn has a dominant logarithmic 
singularity on its circle of convergence. This explains why the centering and 
scaling constants of the central limit theorem in [224] do not depend on Un)nEN 
( cf. [224, p. 191, last paragraph]). An extension of the central limit theorem 
in [224] will be given in Section 5.4. 

Theorem 5.3.3 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN and let Un)nEN be the unique sequence of 
complex numbers such that qn(x) = I::=o f!* (x+z- 1). Let Rt, R 9 be the 
radius of convergence of I::=o f n zn, I::=o 9n zn respectively. Suppose that: 

1. 0 < R 9 < oo and limrjR 9 Re g(r) = +oo 

00 

2. L nlqn(-l)IR; < oo 
n=O 

00 

3. I:-nqn(---'l)R; -I- 0 
n=O 

00 

4- L-qn(-l)zn /-1 for lzl = 1,z -l-1. 
n=O 

Then there exists a sequence of polynomials (rn)nEN of convolution type with 
coefficient sequence (hn)nEN such that 

00 

b) L lrn(x)I < oo for all x E (C 

n=O 

00 

c) L lhnl < oo 
n=O 

d) g(R9 z) = -.Cog(l - z) + h(z) for lzl < l. 

Mm,ovec, J'.m00 q.(l) R; ~ (t:;-n q.(-1) 1c;)"' 00 

and L l9n R; - n-1
1 < 

n=O 
00. 
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Proof: First note that 2) implies E:=o lqn(-l)IR; < oo. Hence, 

Define the sequence (,Bk)kEN by ,Bk:= E:k+l -qi(-l)R~. Thus ,Bo= 1 and 
it follows from 2) that (,Bk)kEN E £1. We now show that E~o ,Bk zk =/- 0 for 
lzl :'.S 1. If lzl :'.S 1 and z =/- l, then 

00 00 00 

L ,Bkzk = L zk L -qi(-l)Rt = 
k=O 

00 ~1 00 i 1 " ." k" .z-L., -qi(-l) R~ L, z = L, -qi(-l) R~ z _ l = 
i=l k=O i=l 

1 ~ . . 1 ( ~ ·) l-z t;-:qi(-l)R~(z'-l)= l-z 1- ~qi(-l)(R9 z)' , 

since E:o -qi(-1) R~ = 0 and qo = 1. Thus 4) implies E~o ,Bk zk =/- 0 for 

lzl = 1, z =/- l. Moreover, since E:o qi(-1) (R9 z)i = e-g(Rgz) for lzl < 1, 
we have E:=o ,Bk zk =/- 0 for lzl < 1. Finally, we get from 3) that 

00 00 00 

L ,Bk= L L -qi(-l)Rt = 
k=O k=O i=k+l 

t ~ -qi(-l)Rt = t-qi(-l)Rt i = ( 1 - ~ -qi(-1) Rt i) =/- 0. 

We conclude that E~o ,Bk zk =/- 0 for lzl :'.S 1. Since ,Bo = 1, it follows from 
Theorem 4.2.2 with an = 1 that there exists a sequence bn)nEN E £1 such 
that 'Yo = 0 and E~o ,Bk zk = exp (E:=o 'Yn zn) for lzl :'.S 1. Define hn by 
hn := --yn for all n E N and write h(z) = E:=o hn zn. Let (rn)nEN be the 
sequence of polynomials of convolution type with coefficient sequence (hn)nEN, 

i.e. rn(x) = EZ=o h~* ~~. It follows from E~o ,Bk zk = (l - z)-1 e-g(Rgz) 

that eg(Rgz) = (1- z)-1 eh(z). Since g0 = 0, we have g(R9 z) = -log(l -

z) + h(z) for lzl < 1. Hence, n; qn(x) = EZ=o rk(x)("'+:=Z- 1). This proves 
a) through d). 
For the remaining statements, observe that n; qn(l) = EZ=o rk(l). Since 
E~o ,Bk zk = E:o -qi(-1) R~ i , it follows that 

J~ 'R; q.(1) - t, r,(1) - ,--y(l) - (t.-n q.(-1) 'R;) _, 

Finally, it follows from g(R9 z) = - log(l-z)+h(z) for lzl < 1 and (hn)nEN E £1 
that E:=O lun n; - n-1 1 < 00. □ 
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Remark 5.3.4 a) If Un)nEN is a probability distribution and g.c.d { n 2 1 : 
fn f=- O} = 1, then I:::o fn zn f=- 1 for lzl = 1, z f=- 1 (see [131, Theorem 3.6.1]). 
Thus if Un)nEN is a probability distribution, then condition 4) of Theorem 5.3.3 
is implied by aperiodicity of Un)nEN, since fn = -qn(-1) for n 2 1 by Theorem 
5.3.lc (cf. [224]). 

b) The statement limn->oo qn ( 1) n; = (I::::"=o -n qn ( -1) n;) -l is an extension 
of the Discrete Renewal Theorem ( cf. [93, Chapter 11]). 

We now apply the previous theorems to obtain a theorem similar to [224, 
Theorem 4] (recall that fn = -qn(-1) for n 2 1 by Theorem 5.3.lc). 

Theorem 5.3.5 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN · Suppose that: 

00 

1. the power series g(z) = L 9n zn has a positive, finite radius of conver-
n=l 

gence Ry and lim Re g( r) = +oo 
rjR 9 

00 

2. Lnlqn(-l)IR; < 00 

n=O 

00 

3. L-nqn(-l)R;f=-o 
n=O 

00 

4- L-qn(-l)zn f=-1 for lzl = 1,z f=-1. 
n=O 

Then limn->oo qn(x)/qn(l) = 0 for lxl < 1. 

Proof: It follows from Theorem 5.3.3 that n; qn(x) = I:;=O rk(x) (x+~=!-1) 
with (rn(x))nEN E inv £1 for all x EC. If lxl < 1, then limn->oo (x+~-1) = 0 
by Lemma 5.1.3. It follows from dominated convergence that 

Ln (X + n - k - 1) 
lim rk(x) k = 0. 

n--tcx:i n -
k=O 

Moreover, limn->oo n; qn(l) = I::::"=o rn(l) f=- 0 since (rn(l))nEN E inv £1. 
Hence, limn->oo qn(x)/qn(l) = 0 for lxl < 1. D 

5.4 Logarithmic singularities 

In this section we prove a central limit theorem for random variables ypl with 
probability generating function qn(>..x)/qn(>..), where (qn)nEN is a sequence of 
polynomials of convolution type with coefficient sequence (gn)nEN such that 
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L~=O gn zn has a dominant logarithmic singularity on its circle of convergence. 
We derive our central limit theorem from the asymptotic behaviour of qn. Sim­
ilar results have been obtained by Flajolet and Soria (see [96, 97]). Contrary 
to Flajolet and Soria, we do not use contour integration. Instead, our method 
relies on simple estimates and a Banach algebra theorem from Chapter 4. Con­
sequently, our conditions on g are different (probably incomparable) from those 
in [96, 97]. Note that the function R in [96, Definition on p. 169] should satisfy 

R(z) = K + o ((log(l - z/p))-1 ) instead of R(z) = K + o(l) (see [97, p. 11]). 

We start with determining the asymptotic behaviour of qn(x)/qn(l). This 
asymptotic behaviour will be used in Theorem 5.4.3 to obtain a central limit 
theorem. 

Theorem 5.4.1 Let (qn)nEN be a sequence of polynomials of convolution type 
with coefficient sequence (gn)nEN. Suppose that the R 9 , the radius of conver­
gence of g(z) = L~=O gn zn is positive and finite. Define (hn)nEN by hn := 
n; gn -n-1 and let (rn)nEN be the sequence of polynomials of convolution type 
with coefficient sequence (hn)nEN· 

x-1 00 

If I:~=O lrn(x)I < oo for all x > 0, then n; qn(x) ~ ;(x) L rk(x) as n - oo 
k=0 

for fixed x 2: l. If moreover r n ( x) = 0( n -l) as n - oo for a fixed x with 
x-1 00 

0 < x < 1, then n;q;.,,(x) ~ ;(x) L rk(x) as ri - oo. 
k=0 

Proof: The definition of hn implies that R;qn(x) = I:;=o rk(x) (x+:=z-1) for 
all n EN. 

I. X ~ l 

By Lemma 5.1.3, limn-+oo ("'+:=z- 1) n 1-x = 1/f(x) for fixed k with O S k S 
n. Since X 2: 1, c•+:=z-1) n 1-x S ("'+:- 1) n 1-x S C1 by Lemmas 5.1.la 

and 5.1.3. Since L~=O lrn(x)I < oo, dominated convergence yields n; qn(x) ~ 
nx-l /f(x) L~=O rk(x) as n - oo. 

II. 0 < x < l 

We first evaluate limn-+oo n 1-x I:l~il ("'+:=z- 1). If ks [n/2], then n 1-x s 
21-x (n - k)l-x and n 1-x ("'+:=z-1) is uniformly bounded by Lemma 5.1.3. 

H 1. "°'(n/2] ( ) 1-x (x+n-k-l) ~oo ( )/f( ) b d · ence, lmn-+oo wk=0 rk X n n-k = Wk=0 Tk X X y om1-
nated convergence. We are done if we prove that 

lim nl-x 
n--+oo 
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Fix an a with 1 <a< (l -x)-1 . Applying Lemma 5.1.4 and Holder's inequal­
ity, we obtain 

n 

< 
k=[n/2]+1 

nl-:z: ( ) 
1-1/a ([ / 2] ) 1/a t h(x)ll+l/(a-1) t e + ~ - 1) °' 

k=[n/2]+1 i=O J 
< 

( ) 
1-1/a 

C1 nl-:z: t h(x)ll/(a-1) h(x)I [n/2]'"-1+1/a 

k=[n/2]+1 . 
< 

( ) 
1-1/a t h(x)I nlfa 

k=[n/2]+1 
< 

( ) 
1-1/a 

C3 t h(x)I 
k=[n/2]+1 

o(l) 

as n--. oo. □ 

If in Theorem 5.4.1, (rn)nEN satisfies additional conditions as positivity or 
monotonicity, then Theorem 5.4.1 can be obtained from Tauber theorems ( cf. 
[93, Chapter 8.5]). 

The next theorem is a central limit theorem for a sequence of random variables 

(YPl)nEN, where ypl has probability generating function qn(>..x)/qn(>..). For 

an interpretation of ypl in terms of a compound Poisson process, see [222]. 

For examples of combinatorial interpretations of Y2l, see Examples 5.4.5. We 
first need a lemma. 

Lemma 5.4.2 If ( qn)nEN is a sequence of polynomials of convolution type such 
that ~::o lqn(x)I < oo for all x > 0, then limt-+s lqn(t) - qn(s)I = 0 for all 
s > 0. 

Proof: Consider the separable Banach algebra f!i with convolution as multipli­
cation. Define f : (0, oo) --. f!i by f(t) := (qn(t))nEN· Since the polynomials 
qn are of convolution type, we have f(u + v) = f(u) * f(v) for all u,v > 0. If 
y = (Yn)nEN E (f!i)* =£=,then < ft), y >= ~::o qn(t)yn. Thus, f is weakly 
measurable in £1 according to [118, Definition 3.5.4] and strongly measurable 
by [118, Corollary 2, p. 73]. The theorem now follows from [118, Theorem 
9.3.1]. 

Theorem 5.4.3 Let (qn)nEN be a sequence of polynomials of convolution type 
with non-negative coefficients and with coefficient sequence (gn)nEN. Define 
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(hn)nEN by hn := n; gn -n-1 and let (rn)nEN be the sequence of polynomials of 
convolution type with coefficient sequence (hn)nEN· Suppose that R 9 , the radius 
of convergence of g(z) = I::=ognzn, is finite and positive and suppose that 

I::=o lrn(x)I < oo for all x > 0. Let the random variable yf) have probability 
generating function qn(>..x)/qn(>..) for each n E N. Then the distribution of 

(YP>->.. logn) (>.. logn)-1/ 2 converges to the standard normal law for all>.. 2: 1. 
If O < >.. < 1 and rn(x) = O(n-1 ) uniformly in a real neighbourhood of>.. as 

n--> oo, then the distribution of (Yr(") - >.. logn) (>.. logn)-1/ 2 converges to the 
standard normal law. 

Proof: Write an := (>.. logn) 112 . Because yP,) has probability generating 

function qn(>..x)/qn(>..), (},.P,) - >.. logn) (>.. logn)-1/ 2 has moment generating 

function qn ( >..ez/an) e-anz /qn(>..). By Lemma 5.1.5, it suffices to prove 

limn---+oo qn ( >..ez/an) e-anz /qn(>..) = e½ 2 2 for all z > 0. 

Recall that in both cases (>.. 2: 1 and 0 < >.. < 1) we have 

00 

lim n 1-,\ n; qn(>..) ='"""' rk(>..) 
n~ex> L...., 

k=O 

by Theorem 5.4.1. Thus it suffices to prove 

lim nl-,\Rnq (>..ez/an) e-anz = e½z2 _1_ ~ r (>..) 
n---+oo g n r(>..) L.._,; k • 

k=O 

where 

() -a z (>..ez/an+n-k-1) (>..+n-k-1)-I 
'Pnk Z := e n 

n-k n-k 

l..\~1 

We now write 

where 
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and 

By Lemma 5.1.2, we have limn--+oo 'Pnk(z) = e½ z 2 for fixed k with OS k Sn. 
For,\ 2: 1 and O $ k $ n, n1-,\ $ (n-k) 1-", thus nl-,\ (,\+:=z-1) is uniformly 
bounded in n and k with O S k S n by Lemma 5.1.3. Applying Lemma 
5.1.2 and the dominated convergence theorem, we obtain limn--+oo T2(n) = 
e½ z 2 d.\) I:~o rk(A). Since 'Pnk(z) is uniformly bounded by Lemma 5.1.2, we 
have 

by Theorem 5.4.2. 

II. O < -X < 1 

We first evaluate limn--+oo n 1-,\ I:t!;1 rk(Aez/an) (,\+:=z-1) 'Pnk(z). If k $ 

[n/2], then nl-,\ s 21-,\ (n-k) 1-", thus nl-,\ (,\+:=z-1) is uniformly bounded 
by Lemma 5.1.3, By Lemma 5.1.2, 'Pnk(z) is uniformly bounded. Hence, 

by Theorem 5.4.2 and 

by dominated convergence. We are done if we prove that 

lim n 1-.\ 
n->oo 

Fix an a with 1 < a < (1- ,X)-1 • Applying Lemma 5.1.4 and Holder's inequal-
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ity, we obtain 

< 

< 

< 

< 

Using Theorem 5.4.2, we see that 

□ 

Remark 5.4.4 If in Theorem 5.4.1 or 5.4.3 we have (hn)nEN E t\ and hn = 
O(n-1 ), then rn(x) = O(n-1 ) uniformly in an interval around,\ (.\ > 0) as 
n -+ oo as the following proof shows. Consider the algebra O of all sequences 
a E £1 such that lanl = O(n-1 ) with componentwise addition and convolution 
as multiplication. Equipped with norm II a II:= II a Iii + u nlanl, this algebra 
becomes a Banach algebra. Hence, rn(x) = O(n-1 ) for all x E C. We now 
set out to prove the uniform O(n-1 ) property. Define (bn)nEN by bn := lhnl 
and let ( vn)nEN be the unique sequence of polynomials of convolution type 
with coefficient sequence (bn)nEN• Hence, if µ > A and 0 < x ::; µ, then 
rn(x)::; Vn(x)::; Vn(µ)::; Cµn-1. 

Examples 5.4.5 a) It follows from Remark 5.4.4 that the following sequences 
of polynomials satisfy the conditions of Theorems 5.4.1 and 5.4.3 ((gn)nEN is 
the coefficient sequence of (qn)nEN and g(z) = I::"=o Yn zn): 

1. the derangement polynomials with g(z) = - log(l - z) + z (this solves 
the open problem of [47, p. 20]). These polynomials count the number 
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of cycles in derangements, i.e. permutations without cycles of length 
one. Thus P(Y2) = k) is the probability that a random derangement of 
{1, ... , n} has k cycles. 

2. the polynomials with g(z) = - log(l - z) + z + ½ z2. These polynomials 
count the number of connected components in 2-regular graphs. Thus 
P(YJ1l = k) is the probability that a random 2-regular graph with n 
points has k components ( cf. [96, pp. 17 4-175]). 

The other examples given in [96, pp. 173-175] also satisfy the conditions of 
Theorems 5.4.1 and 5.4.3. 

b) Consider the Mittag-Leffler polynomials of Example 3.l.3b with g(z) = 
-log(l - z) + log(l + z) (see also [202, p. 75]). Here P(YJ½l = k) is the 
probability that a random permutation of {1, ... , n} without cycles of even 
length has k cycles. Note that the polynomials of convolution type associated 
to log(l + z) are the polynomials (:). It follows from Raabe's convergence 
test that L:=o I(:) I < oo for x > 0. In the terminology of Theorem 5.4.3, 
the Mittag-Leffler polynomials are an example of a sequence of polynomials 
such that L:=o lrn(x)I < oo for all x > 0 and L:=o lhnl = oo (cf. Remark 
5.4.4). The uniform O(n-1) condition necessary for Theorem 5.4.3 follows from 

n (:) = X I (x-lt:'.~-:::_~n-1)) I :'.S; X for O :'.S; x < 1. 

c) Consider the polynomials qn with g(z) = z - log(l - z2). We will show that 
the asymptotic behaviour of qn is different for even n and odd n. We have 

n ( X) x2n-2k 
q2n(x) = L ~ (-l)k (2n - 2k)! 

k=O 

and 
n (-x) k x2n+l-2k 

q2n+i(x)=~ k (-l) (2n+l-2k)!' 

S. ""'00 "'2n - 1 ( X -x) d ""'00 "'2n+1 - 1 ( X -x) [ L mce L.m=O (2n)! - 2 e +e an un=O (2n+l)! - 2 e -e , 86, emma 

2.2.] and Lemma 5.1.3 yield q2n(x) ~ ';,~:;½(ex+ e-x) and q2n+1(x) ~ 
½ (ex - e-x). In spite of the different asymptotic behaviour, there exists a 
central limit theorem (same proof as Theorem 5.3.2). 

5.5 Infinitely divisible probability measures on 
N 

In this section we show that using the Banach algebra theory developed in 
Chapter 4 and Section 5.2, it is possible to give a more transparent proof of 
the main result of [87]. The proofs in [87] use Banach algebra results from [61]. 
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Definition 5.5.1 A probability generating function P is said to be infinitely 
divisible if for all k 2'. 1 there exists a probability generating function Pk such 
that P = (Pkl-

For more information on infinitely divisible probability measures, see [93, Chap­
ter 17] and [230, 233]. 

We now consider infinitely divisible probability measures on N. It follows from 
the Levy-Hincin representation (see [93, Chapter 17, Section 2] or [151, Theo­
rem 5.5.1]; for a proof using Choquet theory see [127]) that ifµ is a probability 
measure on N with infinitely divisible probability generating function, then 
there exists a measure v on N ( the Levy-measure) such that 

~ µn zn = exp {-A+ t Vk zk} (5.1) 

As an illustration of the Banach algebra theory of Chapter 4, we now prove the 
Levy-Hincin theorem for infinitely divisible probability generating functions. 
For a simple real analysis proof of this theorem, see [92, Section 12.2]. 

Lemma 5.5.2 Let P(z) = L:=oPn zn be an infinitely divisible probability gen­
erating function. Ther,, L:=o Pn zn =/- 0 for lzl S 1. 

Proof: It follows from [151, th. 5.3.1] that L:=o Pn zn =/- 0 for lzl = 1. Since P 
is infinitely divisible, Lemma 4.3.2 yields that ind P = 0. Hence, the Argument 
Principle ([45, Corollary 5.86]) yields that L:=o Pn zn =/- 0 for lzl S 1. D 

For another proof of Lemma 5.5.2, combine [151, th. 5.3.1] and [151, th. 8.4.1] 
( cf. [232, p. 5]). 

Theorem 5.5.3 Let P(z) = L:=o Pn zn be an infinitely divisible probability 
generating function. Then there exists a sequence (vn)nEN in Ii. such that Vn 2'. 0 
for all n 2'. 1 and such that L:=o Vn < oo and P(z) = exp {L:=o Vn zn} for 
lzl s 1. 

Proof: It follows from Lemma 5.5.2 that L:=o Pn zn =/- 0 for all lzl S 1. It 
follows from Theorem 4.2.2 with an = 1 that there exists a sequence (vn)nEN E 
f\ such that P(z) = exp {L:=o Vn zn}. We now set out to prove that Vn 2'. 0 
for n 2'. 1. Let (qn)nEN be the sequence of polynomials of convolution type with 
coefficient sequence (0, vi, v2, ... ). Thus, qn(l) = e-vo Pn for all n EN. Since 
P is infinitely divisible, there exists for each integer k 2'. 2 a sequence ( an)nEN 
of non-negative numbers such that a~* = Pn· It easily follows by induction 
on k that each ( an)nEN is unique except for ao. Thus infinite divisibility of 
P implies that qn(l/k) 2: 0 for all k,n EN. Since (qn)nEN is a sequence of 
polynomials of convolution type, Theorem 2.1.8 or Remark 2.1.lOf implies that 
Vn 2'. 0 for all n E N. D 
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We now give a proof of the Embrechts-Hawkes result on tails of infinitely di­
visible probability measures on N. 

Theorem 5.5.4 ({87, Theorem 1]) Let p be a probability measure on N with 
infinitely divisible probability generating function and Levy measure v. Define 
ao := -1 and ak := Vk / >. ( k 2". 1), where >. := I::=l Vk. Suppose that PI =I- 0 
and an -:j:. 0 for n large enough. Then the following are equivalent: 

{i) a;* ~ 2 an and an+l ~ an ( n -+ oo) 

{ii) p;* ~ 2pn andpn+l ~ Pn (n-+ oo) 

{iii} Pn ~>.an and an+l ~ an (n -+ 00 ). 

Proof: Note that by the Levy-Hincin representation (5.1) and the choice a 0 = 
->./>. = -1, we have p = e>-a, where p = (Pn)nEN and a= (an)nEN• 
'(ii) => (i)' We use the Banach algebra UL of Definition 5.2.1 with µn = Pn• 
First note that Pn =/:- 0 for all n E N by applying [231, Corollary on p. 813] or 

by using Lemma 2.l.5b to show that for n 2". 1 we have e>. Pn = I:Z=l a~* 2". 
af* = (a1)n =en~ (pi)n/n! > 0. 
It follows from Lemma 5.5.2 that I::=o Pn zn =/:- 0 for all lzl :::; 1. Thus 
(Pn)nEN E exp UL by Theorem 5.2.2e. Hence, (an)nEN E UL, In particu­
lar, limn->oo an/Pn = L exists. We now show that L -:j:. 0. If L = 0, then the 
fact that Uo is a Banach algebra implies that limn->oo a~* /Pn = 0 for all k E N. 

By continuity, limn->oo Pn/Pn = 0 because e>.a = p. Since this is absurd, we 
conclude that L =I- 0. Thus, · 

1. an+l 1. an+l 1. Pn+l 1. Pn l 1m -- = 1m -- 1m -- 1m - = . 
n--+oo Gn n--+oo Pn n--+oo On 

It remains to prove that a;* ~2an ( n -+ oo). This follows from [86, Theo­
rem 2.9iv]. 
'(i) => (iii)' Using mathematical induction on k, it follows that a~* ~ kan 
(n -+ oo) (see (61, Lemma 5]). It follows from (87, Lemma 2] or (86, The­
orem 2.9iii] that for each c > 1 there exists a positive constant A such that 
a~* :::; A ck an for all k, n E N. Thus we may apply the dominated convergence 

theorem to Pn/an = e->. I::_1 ~ ~; (this equality follows from (5.1)). We 
conclude that Pn ~ >.an (n -+ oo). 
'(iii)=> (ii)' Use the real analysis proof of [87, Theorem 1]. □ 

Remark 5.5.5 a) The proof of '(i) => (iii)' in [87] contains some misprints, 
especially Formula (12). 
b) For a version of Theorem 5.5.4 on lzl :::; r, see [87, Theorem 2]. 
c) The Banach algebra method works well for probability measures on N, since 
the maximal ideal space of the Banach algebra involved has a simple structure 
(see Theorem 5.2.2c). It is possible to derive analogues of Theorem 5.5.4 for 
probability measures on Z (cf. (61, pp. 267-268]). 
The Banach algebra of all complex Borel measures on Jm. is much more compli­
cated (see however [95]). 
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