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Chapter 1 

Introduction 

Technological improvements have produced sequential processors that run 
thousand times faster than a few decades ago, but still many scientific and 
engineering problems cannot be solved on today's fastest supercomputer: 3 
dimensional fluid dynamic models, non-linear finite element computations, 
real-time video processing, etc. Other large problems, like weather forecasting 
and blood flow analysis, can only be solved by simulation and approximation. 
This involves huge amounts of computation to obtain acceptable results; for 
better results, more computation is required. 

The ever increasing demand for processing power is the driving force for the 
development of parallel processing. Although the speed of processors has been 
steadily increasing, it roughly doubles every four years, engineering constraints 
and physical effects such as the finite speed of light make it more difficult to 
speed up the fastest processors through hardware technology improvements 
alone. In addition, the important development of Very Large Scale Integration 
(VLSI) technology, which allows tens to hundreds of thousands of transistors 
on one single chip, has reversed "Grosh 's law" that states that the most powerful 
uniprocessor ha'- the best price/performance ratio [Ein-Dor85]. A parallel 
computer built out of a collection of small processors is more cost effective 
than an uniprocessor system since the pay-off for increased construction effort 
on a silicon chip is less than linear. 

1.1 Parallel computers 

A parallel computer consists of a (large) number of processing elements that co
operate to solve a single problem. The actual construction of parallel computers 
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was already started around 1970 with pioneering projects like the ILLIAC IV 
at NASA and C.mmp from Carnegie-Mellon University. A wide variety of 
parallel computers has been designed and implemented since. 

An important characteristic of parallel computers is how control is organ
ised in the machine: either each processor executes its own program, or all 
processors receive the same instructions from a central source. These two 
possibilities are named MIMD and SIMD, respectively, from a classification 
made by Flynn [Flynn72), see Table 1.1. The conventional "van Neumann" 
processor is viewed as a Single Instruction stream operating on a Single Data 
stream (SISD). A first step towards parallel computing consists of introducing 
Multiple Data streams (SIMD), and a second step adds Multiple Instruction 
streams (MIMD). 

Single Instruction 
Multiple Instruction 

Single Data 
SISD (van Neumann) 
MISD 

Multiple Data 
SIMD (vector, array) 
MIMD (multiprocessors) 

Table 1.1: Flynn's taxonomy of computer architectures. 

In SIMD computers, also known as array or vector computers, all proces
sors simultaneously apply the same instruction to different (local) data. This 
type of machine is suitable for applications like image processing that perform 
the same operation on many data values ( e.g., inverting all pixels of a picture). 
These machines are built out of simple, but numerous, processing elements; 
for example, the Connection Machine CM-1 can contain up to 65,536 (216) 

1-bit processors. 

MIMD is seen as a more general approach since the individual control 
of each processor allows for the exploitation of irregular parallelism. Most 
research is concentrated on MIMD parallel computers, as is the remainder of 
this book. 

MIMD parallel computers can be divided into two categories based on 
whether or not physically shared memory is included in the architecture. In 
shared-memory multiprocessors each processor can access all memory cells 
with ordinary read/write instructions, which move data from/to a location in the 
global address space. In distributed-memory multicomputers each processor 
can only access a part of the memory directly, and needs some other way to 
access 'remote' data, for example, message passing. Figure 1.1 illustrates the 
basic machine architecture of both categories. 
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0 00 Interconnection Network 

Interconnection Network 

Figure 1.1: Shared- and distributed-memory parallel machines. 

1.1.1 Shared-memory multiprocessors 

The interconnection network that links processors and memories together is 
the key factor in the overall performance of a multiprocessor. In the simplest 
case all processors are connected to a single bus, along with a memory module. 
When reading or writing data, a processor issues a normal memory request on 
the bus; during the bus transaction other processors that want to access memory 
are blocked until the current transaction has finished. This time sharing of the 
single bus severely limits the performance: with a few processors, say 8, the 
bus will be completely saturated. Therefore each processor is usually given a 
cache as shown in Figure 1.2. 

0000 
Memory 

Bus 

Figure 1.2: a multiprocessor with a single bus and caches. 

The caches maintain copies of frequently accessed data values so that most 
memory requests of a processor can be satisfied locally without accessing the 
system bus. This effectively reduces the traffic on the single bus, so the number 
of processors can be increased, say up to 32, before the bus saturates. Caches 
introduce a memory consistency problem where caches contain different values 
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Figure 1.3: A multiprocessor with an omega network. 

for the same memory location. For example, if both processors 1 and 2 read 
the contents of memory location m into their cache, and processor 1 modifies 
it subsequently, then the next read of location m by processor 2 gets the old 
stale value. This cache coherence problem can be solved, for example, by 
having the caches constantly snoop (i.e. monitor) the bus. Whenever a read or 
write is observed of a location that has been cached locally, the cache takes an 
appropriate action like invalidating the cache entry [Sweazy86, Stenstrom90). 
Such solutions, however, require additional hardware or decrease performance, 
or both. 

Although caches alleviate bus saturation somewhat, large multiprocessors 
require a more sophisticated processor-memory interconnection network that 
provides parallel access paths to memory. The omega network in Figure 1.3 
is the prime example of an interconnection switch where several processors 
can access different memory modules in parallel; in the best case the omega 
network can service all processors simultaneously. However, if multiple pro
cessors issue a reference to the same memory module, contention in the network 
arises and delays are incurred; in the worst case the performance of the omega 
network is even lower than that of a single bus because of the multiple switch
ing delays. This problem, known as "hot spot contention" [Pfister85], has been 
addressed by the NY Ultracomputer project [Gottlieb83]: a network switch 
combines multiple references to the same memory location into one request. 
This reduces network congestion, but at the expense of increased hardware 
complexity. 
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A fundamental problem of all multistage switching networks is that con
necting n processors ton memory modules (as n/2 rows of log2n switches), 
requires nf2*log2n switches. Furthermore each memory reference has to 
cross 2*log2n switches. This makes it difficult and expensive to build multi
processors with large number of processors; for example, a 1024 node machine 
requires 5,120 switching elements. 

1.1.2 Distributed-memory multicomputers 

In contrast to multiprocessors, distributed-memory multicomputers are straight
forward to build since each processor-memory pair is more or less independent 
of the others. The processing elements communicate via message passing, 
which causes the interconnection hardware to be of relatively low significance 
for system performance: data is efficiently transported in large chunks, as op
posed to individual words in case of multiprocessors, and typical applications 
are programmed as a set of coarse grained tasks so context switches to hide 
transport delays can be tolerated. Furthermore the large software overhead to 
handle a message is larger than the actual transmission time in the network. 
Therefore a simple bus-like interconnection network, such as a local area 
ethernet, provides already enough capacity to construct large multicomputers 
(up to ca. 100 nodes). Of course, the single bus will inevitably become a 
bottleneck when increasing the number of processing elements or decreasing 
the application's grainsize, so many multicomputers have been built already 
with a collection of point-to-point connections; Figure 1.4 shows the popular 
(Transputer) grid and hypercube networks. 

I I I I 

Figure 1.4: Grid and hypercube multicomputers. 

A grid is less difficult to program than a hypercube and can be packed 
more densely since it has only four external connections. The hypercube has 
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the advantage that the network diameter (i.e. the maximum distance between a 
processor and any other) grows logarithmically with the number of processors. 
This advantage, however, is rather small since measurements on advanced 
networks have shown that the message passing overhead in software makes all 
communication costs equal; it is virtually as expensive to communicate with a 
neighbour as with a processor at the other side of the network [Bokhari92]. 

1.2 Parallel programming 

The introduction of parallel computers has aggravated the software crisis that 
already existed for sequential computers. The programmer not only has to 
devise a suitable algorithm to solve a particular problem, but the additional 
complexity of synchronisation and communication between co-operating pro
cessors has to be mastered as well to take advantage of the computing power 
offered by parallel computers. Efforts to hide parallel computers from the 
user by having the compiler automatically extract the parallelism from an 
application have not been proved successful for general MIMD computers. 

Two basic approaches to writing parallel software can be distinguished: 
the shared data model that matches with the shared-memory multiprocessors, 
and the message passing model that matches with the distributed-memory mul
ticomputers. Both approaches require the user to explicitly handle parallelism 
in the application program. 

1.2.1 Shared data; the evolution 

Although difficult to build, shared memory multiprocessors are a commercial 
success since they are fairly easy to program. All processes can access the 
whole shared memory, so sharing of data structures and variables is straight
forward. This allows for easy and flexible communication between processors 
since when one process updates some variable and another reads it afterwards, 
the underlying hardware automatically returns the value just stored. The pro
grammer only has to be concerned with synchronising the activities of the 
co-operating processors to avoid inconsistencies. Fortunately, many standard 
synchronisation techniques developed for sequential multi-tasking comput
ers, like semaphores and monitors, can be applied directly for programming 
multiprocessors. 

The powerful shared-data model facilitates an easy evolution of sequential 
code to parallel code by means of well-understood principles of managing 
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concurrency. For example, many dusty-deck FORTRAN applications can be 
parallelised by changing for-loops into forall-loops where the iterations are 
processed concurrently by different processors. 

1.2.2 Message passing; the revolution 

The lack of shared data in distributed-memory multicomputers prevents the 
re-use of old software, and forces programmers to essentially develop new 
applications from scratch. The difficulties are that data has to be explicitly 
distributed over the memory modules in the multicomputer, and that the com
munication between co-operating processors has to be done by hand through 
sending/receiving messages. 

In the basic case, the programmer is provided with low-level send and 
receive primitives to communicate with direct neighbours as, for example, 
in Occam on Transputer systems. Although these primitives suffice to pro
gram a multicomputer, the programmer is bothered with difficult issues like 
the buffering and routing of messages. Therefore several software packages 
( e.g., EXPRESS and CSTools [Hellberg92]) have been developed that take 
care of the nitty-gritty details of message passing, and provide the user with 
communication between arbitrary processes in the multicomputer. 

The remote procedure call mechanism [Birre1184] abstracts even further 
from the hardware by making communication look like an ordinary procedure 
call. Instead of executing the procedure locally, a stub routine gathers the 
parameters in a message, and sends it to the remote processor; another stub 
routine unpacks the message and performs the actual procedure call, finally 
the reply is transported back to the original processor through both stubs. 
Although this scheme hides the message passing from the user, it is usually not 
completely transparent: for example, passing pointers as parameters is often 
forbidden, hence the user has to know whether a procedure is invoked locally 
or remotely. 

To achieve good performance on distributed-memory multicomputers, the 
programmer has to carefully distribute code and data over the processor
memory pairs so that communication requirements are minimalised. Un
fortunately, few tools exist to assist the programmer in this task. 

1.2.3 Distributed shared memory; best of both? 

Various researchers have proposed to combine the programming ease of shared
memory with the construction ease of distributed-memory by simulating a 
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global shared address space on top of a multicomputer. In these distributed 
shared-memory machines, a process on any processor can access memory 
anywhere in the system through ordinary read/write instructions, but while 
references to local memory are satisfied immediately, references to data located 
on another processing element are intercepted and incur considerable delay 
since messages have to be exchanged with the owning processing element to 
access the remote data. The handling of remote references is done transparently 
by low level system software, so the user is presented with the impression 
of shared memory on a distributed-memory multicomputer. Because of the 
difference in access time of local and remote data, distributed shared-memory 
machines are also known as NUMA (Non-Uniform Memory Access) machines 

Distributed shared-memory machines differ largely in the way remote ref
erences are handled, and in the granularity of access to shared data. The 
Cm* [Swan77] represents one end of the spectrum: each memory reference 
is checked in the micro code of the MMU, and messages carrying one data 
word are sent over a backplane bus in case of remote references. Remote 
references take about ten times as long as local ones, and the programmer is 
solely responsible for achieving good performance by placing code and data 
appropriately in the machine. The page-based scheme of Li and Hudak [Li89] 
is at the other extreme and uses standard virtual memory techniques. The 
global address space is partitioned into fixed size pages, which are distributed 
over the processing elements in the system. A reference to a non-resident page 
causes the hardware to generate a page fault as usual, but now the operating 
system fetches the page from the owning processing element, instead of from 
disk. To reduce thrashing, read-only pages may be replicated at many pro
cessing elements, but writable pages must reside at one processing element for 
consistency. 

A disadvantage of the above hardware based schemes is that hardly ever 
the right amount of data is transported: one word is too small, and a page (say 
4Kbyte) is usually too large. Therefore intermediate designs like Orea [Bal90] 
and Linda [Carriero89] have been proposed that support the sharing of variable 
sized objects. The programmer has to define these shared data objects, and 
controls the granularity of sharing. Now the compiler provides the illusion 
of shared memory by generating special code to access shared objects. For 
example, shared objects in Orea are replicated, and updates are compiled into 
broadcast messages to keep the copies consistent. 

It remains to be seen whether or not the distributed shared memory 
paradigm will defeat the raw message passing model for programming large 
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scale distributed memory multicomputers. The simple familiar shared-memory 
programming model is a definite win, but the performance is still a weak point. 
Although a high-level distributed shared memory application will probably 
never match the performance of a hand-coded message-passing equivalent, 
the rapid improvement in efficiency indicates that distributed shared mem
ory implementations will reach acceptable performance for all but the most 
time-critical applications in the near future. 

1.3 Functional programming 

A grand challenge for computer scientists is to domesticate the power of parallel 
computers by providing a suitable high-level programming environment that 
hides the nasty details to the ordinary user (i.e. application programmer). 
Ideally a programmer has only to conceive a parallel algorithm, which will be 
automatically compiled and executed on the specific parallel computer at hand. 
Of course this automatic high-level approach looses on execution efficiency in 
comparison to hand-crafted low-level programming, but history has shown that 
performance costs are often less important than the ease (i.e. productivity) of 
programming. For example, assembly programming is nowadays considered 
to be a necessary evil to squeeze out the last drop of performance; in 99% of 
all cases the high-level language compiler does its job good enough to satisfy 
the average user. From a user's perspective the ideal parallel programming 
language should: 

• offer a high-level of abstraction to master software complexity. 
• support the shared-memory parallel programming view, which is much 

closer to sequential programming than message-based parallel program
ming. 

• hide low-level issues like communication and process synchronisation. 
• be easy to reason about, i.e. have clear semantics, so programs can be 

proven correct. 
• run transparently on a range of hardware configurations (portability). 
• perform reasonably efficient. 

Modem functional programming languages meet many items on this list of 
requirements because of a number of essential features that will be discussed 
below. 

First of all, functional languages provide means to program at a high level 
of abstraction so the programmer does not have to take lots of technical details 
into account. For example, a programmer may allocate huge numbers of data 
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structures without ever releasing storage of structures that are no longer in use; 
the underlying garbage collector automatically reclaims unused memory space 
and thus frees the programmer from the finite memory constraint. As another 
example, the support of higher-order functions allows the programmer to treat 
functions as ordinary values although the bare hardware only supports simple 
data types like integers and floating point numbers. 

Higher-order functions and lazy evaluation, which will be studied in depth 
in Chapter 2, are two concepts that improve the modularisation of software 
since they can be used to 'glue' program components together in ways that 
are not supported by modular imperative languages like Modula-2 and Ada, as 
argued in [Hughes89]. This is an important advantage of functional program
ming languages since writing well-structured modularised programs is the key 
to software engineering. In addition, the strong polymorphic typing of many 
functional languages reduces the development effort of software as well. 

Secondly, functional languages are well known for their referential trans
parency: a particular expression always denotes the same value independent 
of the context where it is evaluated. This is a consequence of the lack of 
assignment that prohibits the expression evaluation to have side-effects. This 
not only avoids a major source of programming errors, but it makes functional 
programs much easier to reason about for humans as well as programs. In 
particular compilers benefit from the lack of destructive updates since that 
greatly simplifies the data dependency analysis. 

The lack of destructive updates guarantees that any set of expressions can be 
computed in parallel without destroying the correctness of the programs' result. 
It is, of course, not beneficial to execute an expression in parallel if the amount 
of computation does not outweigh the overhead costs. Unfortunately it is too 
difficult for a compiler to work out the grainsize of an arbitrary expression, 
so the user has to denote which expressions are worthwhile to be evaluated 
in parallel. This is, however, all that is required to run a functional program 
on a parallel computer: because of the clean semantics the runtime support 
system can take care of low-level issues like load-balancing, communication, 
and process synchronisation without further assistance of the user. 

The referential transparency of functional programming languages facili
tates a simple parallel programming environment where the user only has to 
place a few annotations in the source code to obtain parallel execution; the 
low-level details of parallel programming are hidden from the user through 
the accompanying runtime support system. This approach retains all the ad
vantages of sequential functional programming (e.g., high-level abstractions, 
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ease of reasoning, and expressive power) and is highly portable since only the 
runtime system has to be ported when upgrading to a new machine. 

Despite all advantages listed above, functional programming languages 
have not (yet) been generally employed to program parallel computers be
cause of several reasons. Until recently, the lack of fast implementations on 
conventional processors has hampered acceptance, but now state-of-the-art 
functional language compilers generate object code whose quality approaches 
that of standard compilers for imperative languages. For example, measure
ments in [Smetsers91] show that often execution times are within a factor three 
of comparable C programs, but the memory usage is still orders of magnitude 
higher. The latter is caused by the lack of destructive updates, which forces 
data structures (arrays) to be copied to create new versions even when only 
one element has to be modified. A lot of ongoing research is directed at devel
oping methods to detect at compile-time whether or not an update can be done 
in-place. Two promising approaches are the usage of monads [Wadler90] and 
the concept of unique types [Smetsers93]. 

A more serious and fundamental problem is the drawback of referential 
transparency: it is impossible to express non-determinacy in (pure) functional 
languages. This severely limits the interactive usage, for example, how should 
keyboard interrupts be modeled in a functional operating system? Debugging 
is another open problem: lazy semantics imply a control flow that bears little 
resemblance to the logical structure of a program, hence, imperative debugging 
strategies like tracing and break-pointing are of no great use. 

1.4 The EIT Reduction Machine projectt 

The EIT Reduction Machine project is a joint effort of the University of 
Amsterdam (UvA) and the University of Nijmegen (KUN) aimed at the devel
opment of an efficient functional language implementation on large scalable 
parallel computers. The project tackles some of the fundamental and practi
cal problems of functional languages on parallel machines as outlined above, 
and builds on the experience gaiaed with the APERM prototype of the Dutch 
Parallel Reduction Machine project [Hertzberger89, Barendregt87]. 

The APERM machine was designed to study the feasibility of parallel 
reduction machines. Applications are programmed in a lazy functional lan
guage augmented with an annotation to denote divide-and-conquer parallelism. 

t Supported by the European Institute of Technology, grant nr EIT 1-88. 
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These applications are automatically scheduled for execution on the APERM 
architecture that consists of a number of processor local-memory pairs in
terconnected through dual ported memories for high-speed data communica
tion. Measurements showed that the processor to memory connection in the 
APERM prototype was heavily under utilised: typically less than 10% usage 
[Hartel88b]. Therefore the HyperMachine, as shown in Figure 1.5, includes 
shared-memory multiprocessors to improve the price/performance ratio of the 
hardware. 

Interconnection Network 

Memory Memory 

Figure 1.5: HyperM architecture. 

The HYbrid Parallel Experimental Reduction Machine (HyperM), which 
forms the back-bone of the EIT project, is thus the successor of the APERM 
prototype and comprises both shared- and distributed-memory. At the top
level, HyperM is configured as a distributed-memory machine: a number of 
clusters with local memory interconnected by a high speed network; at the 
bottom level, each cluster itself is a multiprocessor that consists of a few 
processors connected to a shared memory. 

Applications for the HyperMachine are programmed in a standard func
tional language that has been augmented with a single primitive to denote 
parallelism. This primitive is called the sandwich annotation [Vree89] and is 
based on the divide-and-conquer paradigm. The user (recursively) divides the 
initial problem into independent sub tasks that can be solved in parallel. The 
compiler and runtime support of HyperM take care of distributing, scheduling, 
and synchronising the divide-and-conquer tasks across the machine. A large 
class of problems can be expressed directly as divide-and-conquer programs, 
while transformational methods have been developed to handle synchronous 
process networks as well [Vree90]. 

The runtime support system (RTS) of H yperM is responsible for exploiting 
the two-level memory hierarchy of the machine in a transparent way; the 
programmer regards HyperM as a divide-and-conquer machine with a single 
global data store. To simplify the complex resource management task, the 
RTS is split into two parts: the inter cluster RTS that distributes tasks over 
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clusters and handles communication on the interconnection network, and the 
intra cluster RTS that handles task scheduling and storage management inside 
one shared-memory cluster. To minimise interaction between the two parts, 
tasks are classified into two categories: large jobs that may be allocated at any 
cluster in the HyperMachine, and small threads that are limited to one cluster. 
The RTS classifies each task based on a grainsize measure that is provided by 
the programmer as part of the sandwich annotation; a single threshold value 
suffices to distinguish jobs and threads. 

1.5 WYBERT 

The research objective addressed in this book is to show that it is possible 
to efficiently implement functional languages on parallel machines, which is 
reflected in the acronym WYBERT that stands for "Would You Believe Efficient 
Reduction Today?". The question is not answered in a general setting, but in 
the context of the EIT Reduction Machine project: WYBERT is the name of 
the intra cluster runtime support system of the HyperMachine. Because of 
the clear separation of concerns between the inter and intra cluster runtime 
support system, WYBERT is essentially the runtime support system for a 
functional language implementation on shared-memory multiprocessors based 
on the divide-and-conquer paradigm. 

The WYBERT system takes advantage of the regular parallel structure 
of annotated divide-and-conquer applications that unfold into a set of inde
pendent sub problems. These logically independent sub problems, however, 
can share expressions at the graph reduction level. To avoid inconsistencies, 
parallel graph reduction systems usually equip graph nodes with locks to en
force mutual exclusive access. In contrast, WYBERT adopts the APERM 
approach of evaluating shared redexes in advance, which eliminates the exis
tence of shared writable data. The so called sandwich reduction strategy was 
originally developed for distributed memory systems and has been adjusted to 
match the different requirements for execution on shared-memory multipro
cessors. Several transformations have been developed to overcome the effects 
of the additional eager reduction, but these transformations are only needed in 
exceptional cases. 

Forcing the parallel tasks to be independent at the graph reduction level 
has a number of advantages: , 

• Graph reduction can proceed without locking data that resides in shared 
memory. This can boost performance for certain applications in com-
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parison to general parallel implementations of functional languages that 
do require mutual exclusive access of some parts of the shared data, as 
will be discussed in Chapter 6. The performance advantage increases for 
multiprocessors with larger numbers of processors. 

• Each parallel task can garbage collect its own part of the heap without 
global synchronisations since the lack of writable shared data prohibits the 
implicit exchange of pointers between parallel tasks. For efficiency, a novel 
storage management scheme allocates private heaps of parallel tasks such 
that each task can run an ordinary sequential two-space copying garbage 
collector. An additional advantage is that by limiting the maximum task 
size, the runtime support system can use a small time-shared buffer as 
to-space instead of reserving half of the available memory needed by a 
traditional global two-space copying garbage collector. 

• Stacks of parallel tasks can be efficiently allocated on a single stack per 
processor to avoid the burden of managing an unknown number of variable
sized stacks. The special WYBERT scheduler takes care of the extra 
constraint that a runnable task in the stack may not execute until all tasks 
above of it have finished. 

Considerable effort has been put in the development of a working implemen
tation to measure the effects of these advantages of the WYBERT approach. 
This work includes the development of a new code generator. 

as part of a functional language compiler that generates efficient code 
containing handles for the WYBERT runtime support system. 

The main contributions of this book are the design and implementation 
of a system that supports the efficient parallel execution of functional pro
gramming languages on shared-memory systems. The key to success is the 
sandwich divide-and-conquer primitive that produces independent tasks in a 
shared memory environment. The WYBERT design exploits this fine property 
by supporting lock-free graph reduction and including two new storage man
agement optimisations for efficient allocation of stack and heap space. Mea
surements on a four node shared memory multiprocessor show that WYBERT 
outperforms the common spark-and-wait parallel implementation technique of 
lazy functional languages. 

1.6 Outline 

Chapter 2 provides an introduction to functional programming and its main 
implementation technique: graph reduction. The fundamental concepts of 
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functional programming, higher order functions and lazy evaluation, are stud
ied in considerable detail since these are the key concepts that complicate the 
efficient implementation. 

Chapter 3 gives a comprehensive survey of parallel implementations of lazy 
functional languages. It discusses fundamental issues raised when extending 
sequential graph reduction to parallel machines: the need to support a global 
address space, generation and control of parallelism, and resource control. This 
discussion provides the basis for the comparison of nine recent designs and 
prototype implementations of parallel functional language implementations 
that concludes the chapter. 

In Chapter 4 the design of the WYBERT approach to parallel graph reduc
tion on shared memory is presented. It discusses the impact of the divide-and
conquer primitive that reduces some expressions in advance to eliminate the 
existence of shared writable data. The resulting independent task structure is 
exploited in the storage management of WYBERT. Two new algorithms for 
efficient allocation of stack and heap space are discussed in detail including 
some performance effects obtained by simulation. 

Chapter 5 discusses the FCG code generator for the FAST compiler front 
end [Hartel91a] that 'knows' about the operational semantics of the sand
wich primitive and supports compacting garbage collection schemes. The 
FAST/FCG compiler generates quality code that compares well to other com
pilers for functional languages. The compiler, in combination with a set of 
library routines that implement the runtime support system of WYBERT (i.e. 
task scheduling and storage management), has been used to experiment on a 
prototype implementation of the HyperM architecture. 

Chapter 6 describes the performance of WYBERT as measured using one 
Motorola HYPERmodule that consists of four MC88000 processors equipped 
with caches connected to 64Mbytes of shared memory. The performance of 
WYBERT is compared to the standard parallel implementation technique based 
on spark-and-wait annotations. In addition detailed performance graphs, as 
produced by a separate monitoring tool, are analysed to show where individual 
applications spend their execution time. 

The book concludes with Chapter 7 that summarises the most important 
aspects of the WYBERT design (Chapter 4) in relation to the measured imple
mentation results (Chapter 6). 





Chapter 2 

Functional programming and 
its implementation 

Functional programming languages are referentially transparent, which gives 
them simple semantics. Since the original development of Lisp by Mc
Carthy [McCarthy60], the design of functional programming languages has 
focused on increasing the expressive power of the functional model, while 
preserving the simple semantics. Modem functional languages like LML, Mi
randa, and Haskell are three examples of this trend; in addition to the basic 
features of (pure) Lisp, they provide higher order functions, lazy evaluation, 
abstract datatypes, equations/pattern matching, and static polymorphic type
checking. This chapter gives a short introduction to functional programming 
and briefly discusses the issues that are relevant for the parallel implementa
tion as will be described in Chapter 3. The reader is referred to [Hudak89] 
for a detailed survey. Higher order functions and lazy evaluation are stud
ied in depth since these features require special implementation techniques 
like graph reduction to be executed efficiently on stock hardware. Elabo
rated discussions of the functional programming style and reasoning can be 
found in standard textbooks like Bird and Wadler [Bird88] or Field and Harri
son [Field88]. All example programs are given in the Miranda t programming 
language [Tumer85, Tumer90]. 

Functional programming languages are founded on the sound mathematical 
basis of the lambda calculus [Barendregt84]. Throughout their evolution, 
functional languages have kept with pure mathematical principles without any 
compromise. This has resulted in a pure declarative style of programming, 

tMiranda is a trademark of Research software Ltd. 
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with emphasis on what to compute, and not on how to compute it. For example, 
the following Miranda definition of the factorial function 

fac n = 1 
= n * fac(n-1) 

if n=O 
if n>O 

closely resembles the pure mathematical definition 

facn - . { 1 (n = 0) 
- n*fac(n-1) (n>O) 

The functional program does not describe precisely how to compute the fac
torial as efficient as possible on stock hardware as is common practice when 
coding in imperative languages like C [Kemighan78]: 

fac(n) 
int n; 
{ 

int f; 

f = 1; 
while (n>O) { 

f .- f*n; 
n = n-1; 

} 
return(f); 

} 

A consequence of the declarative style of programming is that functional 
language compilers have to work harder than their imperative counterparts 
to generate efficient machine code, but in return it is much easier to ap
ply program transformations, because "equals may always be replaced by 
equals" [Hudak89]. For example, in the following expression: 

1/foo + foo 
where 

foo = fac 481 

the function application 'f ac 4 81' may be substituted for both occurrences 
of foo without changing the value of the expression. In general this is not 
the case in imperative languages where side effects can cause subsequent uses 
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of foo to yield different values depending on the effects of the statements in 
between. 

2.1 Reduction 

A functional program can be considered a set of equations that are to be used to 
simplify a given expression (i.e. to solve a problem). This process of replacing 
expressions with equal, but simpler expressions is called reduction, and each 
simplification is called a reduction step. Reduction proceeds by repeatedly 
selecting a reducible expression that matches the left-hand side of an equation 
and replacing the redex with the right-hand side of the equation. For example, 
the functional program: 

square (1+2) 
where 

square x = x * x 

can be reduced as follows: 

square ( 1 + 2 ) ==> square 3 ==> 3 * 3 ==> 9 

Reduction stops when no more simplifications can be applied to the expression 
that has reached its normal form and does not contain redexes anymore. The 
above sequence of reduction steps is not the only one possible to evaluate the 
expression 'square ( 1 + 2 ) ': 

square (1+2) ==> 
==> 

(1+2)*(1+2) ==> 
3*3 ==> 

3*(1+2) 
9 

Although this second reduction sequence takes one more step than the first 
sequence it yields the same value (' 9 '). This is an important consequence of 
the Church-Rosser properties of the underlying lambda calculus: any order in 
which reduction rules are applied yields the same normal form, provided that 
the reduction sequence terminates. The string representation of the expressions 
caused the second reduction order to reduce the subexpression '1 + 2' twice. 
This "loss of sharing" could lead to an exponential amount of recomputation. 
Section 2.5 discusses the normal-order graph reduction strategy that has best 
termination properties, and represents expressions as graphs to minimise the 
number of reduction steps (i.e. to avoid the duplication of redexes). 
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2.2 Values and expressions 

The pure lambda calculus deals with function definitions and function appli
cations and nothing else. Even basic constants such as integers have to be 
represented as functions. Although this simplicity has appealing advantages 
in a theoretical framework, it makes programming awkward and error prone. 
Therefore practical functional languages include 'syntactic sugar' to denote 
constant values and simple expressions. For example, in Miranda characters 
are denoted with surrounding quotes ('a', 'b', etc.), and integers can be 
combined into expressions with the usual set of infix and prefix operators. 

In addition to basic data values, data constructors are provided to group 
logically related values together. These data constructors resemble records in 
Pascal or structures in C, and can be defined by the programmer as part of an 
algebraic datatype. The following example specifies a datatype that represents 
complex numbers and some operations: 

complex::= C num num 

i = C 0.0 1.0 
cadd (Craia) (Crbib) =C (ra+rb) (ia+ib) 
cmul (Craia) (Crbib) =C (ra*rb-ia*ib) (ra*ib+ia*rb) 

A complex number is specified as a data constructor named C that has two fields 
to hold the real and imaginary parts. To unravel their arguments, the function 
definitions of cadd and cmul use a notational convenience called pattern
matching. Patterns may be used to match arbitrarily nested and complex 
parameters, and constants can be used to select specific parameter values. For 
example the factorial function can be defined with pattern-matching as follows: 

fac 0 = 1 
fac n = n * fac (n-1), if n>0 

The boolean guard 'n>O' is needed to limit the definition of the factorial to non
negative parameter values. If it would be omitted the expression' f ac ( 3-7 ) ' 
would not raise an exception, but cause an infinite computation with undefined 
behaviour. 

The advantage of abstract datatypes is that the programmer may use the 
functions over the datatype without "knowing" the underlying implementation. 
Languages such as Miranda and Haskell include facilities to create abstract 
datatypes, whose implementation details can be explicitly hidden from the 
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user. For example, the user of the datatype complex can perform complex 
computations by using the supplied operations without knowing of the exact 
data representation (i.e. data constructor C): 

i_square = cmul ii 

A powerful property of algebraic datatypes is that they can be used to specify 
recursive datatypes like lists and trees. 

num list::= NIL I CONS num num list 

length NIL 0 
length (CONS n 1st)= 1 + length 1st 

The I -symbol denotes that an algebraic datatype is constructed out of several 
elements; a list of numbers is either the empty list, denoted by NIL, or is a 
number paired with the remainder of the list, which is another element of type 
num_list. The data constructors NIL and CONS are used by the function 
length to distinguish the two cases. Since it would be awkward to have to 
define a list for each basic type, algebraic datatypes may be parameterised: 

list* ::= NIL I CONS* list 

num list 
bool list --

-- list num 
list bool 

length NIL = 0 
length (CONS x 1st)= 1 + length 1st 

1st= CONS 1 (CONS 2 (CONS 3 NIL)) 

The *-symbol denotes a type variable that may be instantiated with an arbitrary 
type as in the declarations of num_list and booLlist. Now the function 
length operates on the polymorphic type list and can be used to compute 
the length of any kind of list since length does not access the individual list 
elements. In contrast, the function that sums all elements of a list can only be 
used for lists of numbers despite the syntactical resemblance with the length 
function: 

sum NIL 0 
sum (CONS n 1st)= n + sum 1st 
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2.2.1 Lists 

Since lists are frequently used in typical functional programs, the Miranda 
language provides a built in notation for lists: [ ] denotes the empty list ( cf. 
NIL), and the colon (:) serves as an infix pair constructor (cf. CONS). Thus 
the example list 1st can be written as: 

1st= 1 : 2 : 3 : (] 

An even more convenient notation is allowed by enumerating a list inside 
square brackets as a sequence of elements separated by commas: 

1st = [l,2,3] 
1st' = ( 1.. 3] 

The shorthand notation used to declare list 1st' specifies an arithmetic se
quence of values. This notation is frequently used in combination with list 
comprehensions since it is the prime means to specify repetition. List com
prehension, also known as ZF expressions [Turner81], is the most powerful 
notation to specify lists and stems from the mathematical set notation. For 
example, the following expression computes all squares of the prime numbers 
in the range 1 to 100: 

[n*n I n <- [l •. 100]; prime n] 

It closely resembles the following mathematical set description: 

{n x n In E {1, ... , 100}, prime(n)} 

The prime predicate can be defined with a list comprehension as well: 

prime n = (divisors n = [l,n]) 
where 

divisors n = [d I d<-(1 •. n]; n mod d = O] 

A prime number is only divisible by 1 and itself, but it seems like a waste to 
compute the complete list of divisors of n since as soon as the first non-trivial 
divisor d has been found, n is known to be not a prime number. Fortunately 
this is exactly what happens under lazy evaluation, which will be explained 
in Section 2.4, since the lists are compared element wise and the comparison 
stops when two unequal elements have been found. 
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2.3 Higher order functions 

A fundamental concept of modem functional languages is that functions are 
first-class citizens: functions may be passed as arguments, returned as results, 
and stored in data structures just as ordinary data values like integers. A 
function that takes a function as an argument, or delivers one as a result, is 
referred to as a higher-order function. Traditional imperative languages like 
Pascal and C barely support higher-order functions: functions may be passed 
as parameters, but it is impossible to create 'new' functions at runtime by 
partially applying a function to some arguments. The ability to construct new 
functions out of existing ones provides great abstractive power to the user, 
and is commonly used in mathematics. The differential operator, for example, 
is a higher-order function that takes a function as argument and returns its 
derivative as the result. 

This mathematical definition can be straightforwardly expressed in a Miranda 
program as follows: 

diff f = f' 
where 

f' X = (f (x+h) - f X) / h 
h = 0.0001 

Note that this definition of diff crudely approximates the true derivative 
since it takes the limit by fixing h to a small constant; a better definition that 
employs a sequence of ever decreasing values will be presented in section 2.4. 
The important aspect of the example is that diff returns as its result a func
tion, which is composed out of already existing functions(£, +, -, and /). 
The expression 'diff square' approximates the function f(x) = 2 x x 
and can be used in more complex expressions. For example, the expression 
' ( diff square) O' yields an approximation to the derivative of square 
in point 0: 0. 0001. Since 'diff square' yields a function, it can be dif
ferentiated again: the expression ' ( ( diff ( diff square) ) 0' yields 
2 • 0 as an approximation to the second derivative of square in point 0. 

An implicit way to create new functions is to partially apply a function 
to a number of arguments that is less than the arity of the function. This 
technique is known as currying, after the logician H.B. Curry, and can be used 



24 Chapter 2. Functional programming and its implementation 

to specialise functions by fixing parameter values. For example, suppose that 
the binary function der iv is used to compute the derivative of a function in 
a given point. 

deriv f x = (f (x+h) - f x) / h 
where 

h = 0.0001 

The expression 'deriv square O' yields the same value as the expression 
' ( di ff square ) 0' since it can be shown that for any function f and 
point x the following equation holds: deriv f x = ( diff f) x. The 
function der iv can be specialised to compute the derivatives of a specific 
function f by currying: 'der iv f' is a valid expression, and is equivalent to 
'diff f', i.e. it represents the derivative off. In essence the declaration of 
der iv may be thought of as syntactic sugar for di ff. 

Higher-order functions increase the expressive power of functional lan
guages in comparison to languages that do not support functions as first class 
values. In addition, higher order functions can be used to gain modularity 
by glueing program parts together as argued by Hughes [Hughes89]. Higher
order functions can be defined to abstract out the common functional behaviour 
(i.e. the glue) of a program. For example, suppose that the functions sum and 
prod are defined to add and multiply the elements of a list as follows: 

sum [ l = 0 
sum (x:xs) = X + sum xs 

prod [ l = 1 
prod (x:xs) = X * prod xs 

Both functions use a similar pattern to traverse the list and compute the result. 
This behaviour can be abstracted by introducing a higher-order function named 
foldr that captures the common parts and carries two parameters to account 
for the 0/1 and+/* variable elements: 

foldr op val [] val 
foldr op val (x:xs) = op x (foldr op val xs) 

Note that the infix operators have been replaced with a binary function pa
rameter named op. The sum and prod definitions may now be changed 
into: 
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sum = foldr (+) 0 
prod= foldr (*) 1 
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The (+)-notation is Miranda syntax to convert an infix operator into an ordi
nary binary function. The foldr abstraction can be re-used for many other 
functions, for example, to test whether all elements in a list of booleans evaluate 
to true: 

alltrue = foldr (&) True 

For example, the expression 'al 1 true [True, False, True, True] ' 
evaluates to False. 

2.4 Lazy evaluation 

Programming languages that provide non-strict semantics only evaluate those 
parts of the specified computation that are strictly needed to compute the final 
result of the program. This enables the programmer to define and use 'infinite' 
datastructures without causing the program to run forever as would be the case 
in traditional imperative languages. The class of non-strict languages includes 
many functional and logic programming languages. Such non-strict functional 
languages are usually called lazy functional languages, where the term lazy 
evaluation denotes the corresponding non-strict evaluation order. 

An important advantage of lazy functional languages is that the program
mer is freed from concerns about the evaluation order of expressions, and may 
separate data from control: it is possible to structure a program as a generator 
that constructs a large number of possible answers, and a selector that inspects 
only a few ones when determining the final answer. The increased power to 
modularise programs is probably the most important benefit oflazy evaluation. 

Evaluating a functional program consists of repeatedly replacing a redex 
with the corresponding right-hand side of the matching equation. Frequently, 
however, the program contains multiple redexes and some strategy is needed 
to select the next redex to be reduced. Although it is guaranteed that all 
reduction strategies yield the same value upon termination, strategies differ 
in the number of reduction steps needed to compute the program result and 
termination behaviour. Two important reduction strategies are illustrated by 
the following example: 

square (square (1+2)) 
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Normal-order reduction always selects the leftmost outermost redex to be 
reduced: 

square ( square ( 1+2)) ===} square ( 1+2) * square ( 1+2) 

Applicative-order reduction selects the leftmost innermost redex: 

square ( square ( 1 + 2 ) ) ===} square ( square 3 ) 

The normal-order strategy is used for lazy evaluation, while applicative or
der corresponds with the traditional evaluation mechanism of (imperative) 
programming languages. The difference can be seen when expressions are 
evaluated that involve functions with non-strict arguments. A function is strict 
in some argument if the function result is undefined whenever it is called with 
an undefined expression for that argument. 

inf= inf+ 1 

The expression 'inf' is undefined since its evaluation causes an infinite se
quence of reduction steps: 

inf ===} inf+l ===} (inf+l)+l ===} ( (inf+l)+l)+l 
===} 

Nevertheless the following example that includes inf can be handled by 
normal-order reduction. The trick is to use inf in a non-strict context such as 
provided by const: 

canst 3 inf 
where 

canst c x = c 
inf= inf+ 1 

Normal-order reduction terminates after one reduction step since it immedi
ately invokes the reduction rule for const: 

canst 3 inf ===} 3 

Applicative-order reduction, on the other hand, first reduces the argument 
expressions of the const function and starts reducing inf: 



2.4. Lazy evaluation 

const 3 inf ==> const 3 ( inf+ 1 ) 
==> const 3 ( ( inf+l) +1) 
==> 
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Since no expression is reduced unless the value is needed to compute the final 
answer, the normal-order reduction strategy of lazy functional languages re
lieves the programmer of explicitly stating the evaluation order of expressions: 
the programmer only has to describe what to compute. This allows for a pro
gramming style, known as circular programming [Bird84], where values may 
be declared before computed. Johnsson shows in [Johnsson87] how circular 
programming can be exploited, for example, in parsing with attribute gram
mars. Any attribute grammar can be straightforwardly translated into a set of 
functions, one function for each production rule, that state how each attribute 
has to be computed. These functions can be used for parsing immediately: 
lazy evaluation automatically evaluates the attributes in the right order. 

2.4.1 Infinite datastructures 

Lazy evaluation allows the programmer to specify infinite data structures (lists) 
and guarantees termination if only a finite number of elements is needed to 
compute the program's result. The following example returns the list with the 
first hundred prime numbers: 

take 100 [x I x<-nats; prime x] 
where 

nats = from 1 

from n = n from (n+l) 

take n [] = [ ] 
taken (x:xs) = [], if n=0 

= x: take (n-1) xs, otherwise 

The list comprehension takes the infinite list of natural numbers (nats) and 
tests for each element whether it is prime or not. If not evaluated lazily, the 
program would diverge, but now the program properly stops after listing the 
first hundred prime numbers, since take deletes the computation of remaining 
primes when its counter drops to zero. This example demonstrates a typical 
coding style found in many lazy functional programs: a producer generates an 
infinite stream (list) of values, which is connected to a consumer selecting the 
appropriateil;ems. 
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As a second example, we will derive a better definition for the diff 
function that differentiates continuous functions. The mathematical formula 
specifies that the derivative is the limit of a series of approximations, hence, 
the diff function can be declared as follows: 

diff f = f' 
where 

f' x = lim [(f(x+h) - f(x))/h I h <- approx O] 

The functions limand approx still need to be defined. Note that the number 
of approximations is not known in advance since it depends on the required 
accuracy and the rate at which the function f converges. Therefore we will 
construct an infinite list of approximations, and have the 1 im function decide 
when an accurate value has been computed. 

approx x = [x+dx I dx <- repeat (/2) l] 
repeat f x = x: repeat f (f x) 

The expression 'repeat ( /2) 1' constructs the decreasing sequence 1, 
1/2, 1/ 4, ... by repeatedly halving the start value; the shorthand notation 
' ( I 2 ) ' denotes the function 'halve x = x/ 2 '. Taking the limit of the list 
of approximated derivatives can be accomplished by comparing the relative 
difference between two successive values: 

lim (a:b:lst) = b, if abs(a/b-1) <= eps 
= lim (b:lst), otherwise 

where 
eps = le-17 

The lazy evaluation mechanism has allowed us to stay close to the mathemat
ical description and separate the concerns of generating approximations and 
controlling the accuracy of the result, while these have to be merged into one 
thread of control for strict languages like C: 
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double deriv( f, x) 
double f(), x; 
{ 

} 

double xl, x2, h, fx, eps; 

eps = le-17; 
fx = f (x); 
x2 = 0; 
h = 1.0/1024; 
do { 

xl = x2; 

I* avoid recornputation */ 
I* so test fails initially*/ 

x2 = (f(x+h) - fx) / h; 
h = h/2; 

} 
while abs(xl-x2) > abs(eps*xl)); 
return( x2); 

29 

Note that the C program contains explicit code to avoid the recomputation 
of J(x) since the C compiler cannot infer in general that function f has no 
side-effects. Because functional languages are side-effect free, the compiler 
automatically performs these kind of optimisations, for example, the expression 
'approx O' is shared by all derivatives in a program. 

Another advantage of the producer-consumer programming style is that 
both components (i.e. the lim and approx function) can easily be re-used 
in other programs or replaced by improved versions. 

2.4.2 Stream programming 

Lazy streams (lists) as supported by normal-order reduction provide powerful 
means to structure software: a large program can be composed of a number of 
processes interconnected by lazy streams. Such a stream process repeatedly 
consumes some elements from its inputs and produces a new output value. The 
processes may be glued together by an arbitrarily complex network of streams, 
and lazy evaluation takes care of selecting the appropriate process to produce a 
new stream value. The producer-consumer diff function is a simple example 
that consists of two processes connected by a single stream. An interesting 
example of a process network is the description of an elementary flip-flop 
circuit as shown belowt: 

tReproduced from [Muller93] with permission of the author. 
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Set 
Q 

Set Reset Q Qb 
1 1 Q Qb 
0 1 1 0 
1 0 0 1 

Reset 
Qb 0 0 1 1 

Note that the flip-flop circuit contains a cyclic interconnection structure. It is, 
however, not necessary to worry about the cycles since lazy evaluation will 
do the trick. Therefore the diagram can easily be formulated as a functional 
program according to the Kahn principle [Kahn74]: First, label every stream 
in the network with a unique identifier. Then write down an equation for each 
stream, defining its value in terms of processes (functions) and other streams. 

flip_flop set reset= q 
where 

q = nand set qb 
qb = nand reset q 

A nand process takes two streams of signals as input and combines them into 
one output stream. Signals traveling through a nand gate incur some delay, 
which is made explicit in the following function definition of nand that starts 
by producing two undetermined values ('X'). 

signal : : = X H L 

nand as bs = X X (nand_op as bs) 

nand_op (H:xs) (H:ys) = L nand_op XS ys 
nand_op (L:xs) (y:ys) = H nand_op XS ys 
nand_op (x:xs) (L:ys) = H nand_op XS ys 
nand_op (x:xs) (y:ys) = X nand_op XS ys 

This basic flip-flop can be combined with other gates and circuits to form ar
bitrary complex digital circuits. Another important application area of stream 
programming is in writing interactive software in pure functional languages. 
Early functional languages like Lisp include primitives to perform 1/0 like 
read and write system calls, but this violates the fundamental referential trans
parency principle and makes it difficult to reason about such opaque programs. 
Lazy streams can be used as follows to preserve the referential transparency 
when handling 1/0: 
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Whenever the program needs to perform an 1/0 operation it "sends" a request 
message to the operating system (OS) on its output stream and "waits" for the 
response ( e.g., the contents of a file) on its input stream. This set up makes the 
functional program referential transparent since given a stream of responses 
(i.e. input) the program always produces the same list of requests (i.e. output) 
no matter when the program is executed since all state handling is performed 
outside the program by the OS. Although the complete system (program + OS) 
is not referentially transparent, the program benefits from all the advantages 
like ease of reasoning and optimising program transformations. 

Stream processing is not only an important concept for sequential pro
gramming, but it can be exploited as a parallel programming paradigm as well 
(see Chapter 3). 

2.5 Graph reduction 

The normal-order reduction strategy of lazy functional languages has optimal 
terminating properties: if a normal form exists then normal-order reduction will 
derive it. Unfortunately, naive implementation of normal-order reduction is 
inefficient since often redexes become duplicated. For example, the reduction 
of the expression 'square ( 1 + 2 ) ' takes four steps: 

square (1+2) ==> (1+2)*(1+2) ==> 3*(1+2) 
==> 3*3 ==> 9 

The leftmost outermost selection procedure of normal-order reduction forces 
the subexpression '1 + 2' to be reduced twice. The "loss of sharing" is caused 
by the string representation of the expressions, and can lead to an exponen
tial amount of recomputation. Nevertheless several (parallel) functional lan
guage implementations have been designed with normal-order string reduction 
[Mag679, Kluge83]. 

To overcome the copying inefficiency of normal order string reduction, 
Wadsworth [Wadsworth71] proposed to represent expressions as graphs such 
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that pointers to arbitrary redexes can be copied freely without duplicating 
work; whenever a redex is reduced, the result is shared by all pointers to the 
redex. This key idea of graph reduction makes the implementation of normal 
order reduction, or lazy evaluation, a practical technique. The reduction of the 
square example now uses the optimal number of reduction steps: 

===} ===} ===} 9 

The @-symbol denotes function application; a unary function is applied to 
some argument. An expression that consists of a function applied to multiple 
arguments is handled by currying: a chain of function application nodes ap
plies the function to all the arguments, one by one. For example, the expression 
'+ 1 2' is interpreted as short hand for ' ( ( + 1 ) 2 ) ', hence two @-nodes 
are required, where the ' ( + 1 ) ' expression denotes the function that incre
ments its argument by one. This curried graph representation of expressions 
incorporates higher order functions without any difficulty since now functions 
can be passed around as ordinary pointers, and can be instantiated by adding 
application nodes. 

In the following example the higher order function twice takes two 
arguments. The first argument is a function (inc) that is applied twice to the 
second argument (2), which may be another function. 

twice inc 2 
where 

twice f x = f (f x) 
inc = (+) 1 

Note that the increment function inc is specified as a curried application 
of the built in addition operator ( + ) . The graph reduction of the term 
'twice inc 2' proceeds as follows: 
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A ===? 

.lA 
===? 

1A .✓, 2 
twice inc inc 2 A 2 

+ 1 

===? r3 ===? 4 

✓, 
+ 1 

A lazy graph reducer repeatedly performs the following steps: (1) find the 
leftmost outermost redex, (2) reduce the redex by instantiating the function 
body (i.e. build a graph), (3) update the root of the redex with the constructed 
graph. 

Finding the next redex in step (1) starts by going down the left branch of 
each application node from the root until a function name is encountered. While 
unwinding the application spine the pointers to the application nodes are saved 
on a stack for subsequent use when rewriting the redex. After the unwind, the 
reducer checks whether the redex is an application of a function that evaluates 
its argument(s), like +, and tests if these so called strict arguments(s) have 
already been evaluated. If necessary the graph reducer recursively invokes 
itself to evaluate strict arguments before calling the function to rewrite the 
redex. At runtime the stack is used as with imperative languages, except that 
stackframes are not created at once, but instead are incrementally constructed 
when unwinding the spine. 

The rewrite step (2) is important for the overall performance, and depends 
on the efficiency of instantiating a function body with the actual parame
ters. In [Tumer79a] Turner published an implementation method based on 
combinatorial logics that was far more efficient at building graphs than the 
customary environment-based implementations derived from the SECD ma
chine [Landin64]. A functional program is compiled into a small fixed set 
of elementary functions that only combine arguments without referring to 
other (global) identifiers. These simple functions are called SKI combina
tors, and the corresponding rewrite rules are incorporated as instructions of an 
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abstract reduction machine. The next major efficiency improvement was to 
compile the program into application specific combinators, which are called 
super combinator [Hughes82]. This idea has been successfully implemented 
in the G-machine [Johnsson84, Augustsson84]. A program is first transformed 
through lambda lifting into a set of super combinators, which are then compiled 
into native assembly code for efficiency. 

The update of the root application node of the redex in step (3) is needed to 
maintain the sharing of delayed computations. As a side-effect the references 
to the remaining graph nodes of the original redex are discarded, but the 
nodes cannot be reclaimed straight away since they might be referenced from 
other parts of the global computation graph. A garbage collector is needed 
to properly handle shared nodes when reclaiming garbage nodes in the heap. 
The presence of cycles in the computation graph complicates the garbage 
reclamation process [ Cohen81]. 

To increase the performance of the basic graph reduction mechanism, 
the functional language compilers use numerous optimisations to avoid the 
construction and interpretation of graphs. For example, if the result of a single 
rewrite is an application spine then the graph reducer will immediately unwind 
the spine. Hence, the construction of the spine in the graph can be avoided 
altogether by pushing the arguments on the stack, and calling the function at 
the bottom of the spine directly. 

For large applications lazy functional language implementations use much 
more (heap) memory than their imperative counterparts despite strictness anal
ysis and other high-level compiler optimisations. At the low implementation 
level, space requirements can be cut down: tags can be encoded in a few bits 
in the pointer to the object instead of in the object itself (Chapter 5), and often 
chains of application nodes can be encoded in one vector apply node. These 
variable length vectors, however, complicate the allocation and reclamation 
of nodes in the heap. Reference counting or mark&scan garbage collectors 
have difficulty accommodating variable length vectors, so compacting garbage 
collectors that move live data into one contiguous block are used in general. 
To efficiently support garbage collection, several abstract graph reduction ma
chines contain multiple stacks to separate heap pointers from other stack items 
like return addresses and basic data values (integers, floating point numbers, 
etc.). Multiple stacks are more difficult to manage, and the alternative is either 
to tag all values or to record the pointer positions in each stack frame. 

A comprehensive description of the basic graph reduction principles and 
optimised implementation techniques can be found in [Peyton Jones87b]. 
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2.5.1 Strictness analysis 

Strictness analysis is an important optimisation technique that determines for 
each function which parameter values are needed to compute the result. As a 
consequence the strict arguments of a function may be evaluated safely before 
calling the function without violating the lazy evaluation semantics. Thus 
strictness analysis allows the compiler to use efficient call-by-value semantics 
for certain parameters instead of call-by-need semantics that forces the con
struction of graphs. This dramatically increases performance of lazy functional 
languages, for example, [Hartel91 b] reports up to 92% reduction in claimed 
heap nodes when switching strictness analysis on. 

A function is strict if the result cannot be computed when its argument 
value is undefined. Formally 

A function f is strict iff f 1- = 1-

The special 1--symbol (called "bottom") denotes a non-terminating computa
tion like the function inf defined as inf = inf+ 1. The job of the compiler 
is to determine for each function whether the above condition holds or not. Nu
merous (formal) strictness analysis methods have been devised [Abramsky87], 
but in essence these program analysis techniques may be thought of as propa
gating information through a syntax tree. For example, consider the strictness 
analysis of the following function: 

divide x y = NaN, 
= x/y, 

if y=O I I return exception 
otherwise 

The corresponding syntax tree is shown in Figure 2.1. The strictness analysis 
of divide can be performed by propagating information of the form "needs 

Figure 2.1: Syntax tree of function divide. 
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1 1 

Yl~ = NaN / 

1/ ~ 1/ ~ 
Y O X Y 

Figure 2.2: Strictness analysis of argument y. 

y" and "may not needy" up through the tree. The result is shown in Figure 2.2, 
where 1 denotes "needs ... " and O denotes "may not need ... ". The analysis 
shows that f is strict in y since the equality operator is strict in both arguments 
and the conditional expression of the if-statement is always executed. However, 
f is not strict in x since x is only used if the test fails in the conditional, see 
Figure 2.3. 

1 ° 

Yl~ = NaN / 

1/ ~ 1/ ~ 
Y O X Y 

Figure 2.3: Strictness analysis of argument x. 

The exact rules of how information propagates through the syntax tree are 
dependent on the operational behaviour of the basic operators and language 
constructs. Handling of non-recursive function calls is straightforward: first 
analyse the called function, then propagate information on strict arguments 
positions in the tree. 

Recursive functions, which are frequently used, severely complicate strict
ness analysis since information is required that is being computed. The solution 
is to compute a number of successive approximations incorporating more re-
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fined information at each step. At first we assume that no information about 
the function itself is known (all arguments are non-strict) and propagate this 
information through the syntax tree to find a subset of the strict arguments. 
This information is used in a second traversal to find more strict arguments. 
The process is repeated until all strict arguments have been detected. Correctly 
determining the limit (or fixed point) of the successive approximations is a 
difficult and time consuming problem [Peyton Jones87b, Hughes90]. 

Although the above outlined strictness analysis methods determine which 
arguments are needed, the compiler must not completely reduce expressions at 
such strict argument positions since in case of datastructures it is not specified 
which components are needed, if any component is needed at all. For example, 
to test whether a list is empty, it satisfies to check that the list contains at least 
one element or not, but the value of the first element is not requested and 
must not be computed to preserve lazy semantics. Therefore the compiler may 
evaluate expressions to head normal form on strict arguments positions, but 
not to normal form. An expression is in head normal form if the corresponding 
root node in the graph is a constructor node, i.e. anything but an application 
node (redex). An expression is in normal form when the corresponding graph 
does not contain any redexes. 

More powerful analysers extend their domain to account for strictness in
side datastructures as well. The evaluation transformer model of strictness 
analysis [Bum91 ], for example, takes the needed structure of list-type expres
sions into account as well. Some functions like length and append require 
their (first) argument to be in spine normal form, that is the complete structure 
of the list is needed to compute their result. Others like sum even need the 
values of the individual elements, so whenever calling sum the argument ex
pression may be evaluated to normal form in advance. Although this provides 
the compiler with more opportunities to pass the parameters by value instead 
as pointers to unevaluated expressions in the graph, the analysis time increases 
dramatically because the algorithmic complexity is exponentially proportional 
to the number of strictness properties (i.e. domain elements). 

2.6 Summary 

The short tutorial on functional programming and its implementation pre
sented in this chapter provides the essential background information needed to 
comprehend the difficulties of functional language implementation on parallel 
machines, which is the topic of this book. The next chapter discusses the fun-
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damental issues raised when extending graph reduction to parallel machines, 
and surveys a number of actual parallel implementations. The remainder of the 
book, chapters 4 to 6, describes the WYBERT approach to parallel execution 
of functional programs on shared-memory multiprocessors. 



Chapter3 

Parallel implementations of lazy 
functional languages 

Since functional languages are referential transparent, they are good candidates 
for programming parallel machines. The lack of side effects guarantees that 
any (parallel) computation order yields the same result (assuming termination). 
In principle the compiler can extract the parallelism from the program, and 
schedule it for execution on a given parallel machine. The accompanying run
time support system dynamically handles the resource allocation of individual 
computation grains: it allocates memory (garbage collection) and processing 
power (load balancing), and performs inter-processor communication. Thus, 
functional languages offer the prospect of releaving the programmer from the 
difficult task of parallelising a program. The compiler and RTS do the job for 
the programmer automatically. 

The automatic extraction of parallelism in functional programs is based on 
properties of primitive operators and strictness analysis. For example, consider 
the expression El + E2; the strict semantics of + allows for parallel execu
tion of the expressions El and E2. Unfortunately, the implicit parallelism 
results in fine grain computations, which are difficult to execute efficiently 
on todays parallel hardware; even on shared memory multiprocessors, which 
offer low latency communications, the synchronisation of the huge number of 
fine grain computations results in a performance bottleneck. Some approaches 
try to enlarge the grainsize of the basic computations by automatic complexity 
analysis of expressions, see for example [Goldberg88c]. However, the usage 
of higher order functions and lazy evaluation, which are two key features for 
modular programming [Hughes89], severely limits the scope and impact of 
these compiler optimisations. 
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To overcome the problems associated with fine grain parallelism, a number 
of hardware architectures especially designed for executing parallel functional 
programs have been proposed [Mag679, Darlington81, Watson88, Waite91]. 
These designs typically support fast context switches to overcome communi
cation delays when fetching "remote" arguments, and include packet switched 
communication protocols to transport the basic data unit (i.e. a graph node) 
as efficient as possible. Many of these designs have been inspired by devel
opments in data-flow machines, but they never caught on since by the time 
they had been constructed -if constructed at all- the conventional-processor 
based implementations could use more advanced VLSI technology and clearly 
outperformed the special designs. 

Instead of pursuing the "Holy Grail" of compiler derived implicit paral
lelism, recent research in parallel implementation of functional languages has 
taken a pragmatic approach. The programmer is required to explicitly annotate 
expressions that are worth to be evaluated in parallel. Then the runtime sup
port system takes over and automatically schedules the resulting parallel tasks 
for execution and manages the machine resources (memory, processors, and 
communication). Thus in contrast to many imperative parallel programming 
languages, the programmer is only responsible for parallelising the algorithm, 
and does not have to handle low level issues like task placement, storage 
allocation, communication, and access control of shared data. 

An important goal of many research programs is to show that the highly ab
stract parallel functional programming model can be implemented efficiently 
on stock hardware (in particular MIMD machines). The best results have been 
obtained for strict functional languages, which do not support lazy evaluation, 
like various LISP derivations: Multilisp [Halstead Jr84], QLisp [Gabriel84], 
and Mul-T [Kranz89]. Most notably are the results of the SISAL implementa
tion that runs on a Alliant vector processor and outperforms the parallelising 
FORTRAN compiler on several large scientific applications [Cann92]. The ef
ficient parallel implementation of lazy functional languages, however, is more 
difficult. The first prototype implementations on real parallel machines have 
been constructed, but few performance results for significant applications have 
been published. 

This chapter looks at the parallel implementation issues of lazy functional 
programming languages; it focuses on the runtime support system since that is 
responsible for managing resources and parallelism in the machine. Section 3.1 
discusses fundamental issues raised when extending sequential graph reduction 
to parallel machines: global (virtual) address-space support, generation and 
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control of parallelism, storage management, and scheduling. Note that many 
of these problems also show up in parallel implementations of programming 
languages in general, but the discussion is limited to the scope of parallel graph 
reduction. Next, a number of recent designs and prototype implementations of 
parallel lazy functional languages is reviewed regarding these general issues; 
early parallel lazy functional language implementations have been described 
in [Treleaven82, Kennaway83, Vegdahl84]. Finally, a comparison between the 
surveyed machines is made in Section 3.3. 

3.1 Parallel graph reduction 

Graph reduction, as briefly discussedin the previous chapter, has been widely 
accepted as an efficient implementation method for lazy functional languages 
[Peyton Jones87b]. It is suitable for execution on parallel systems since the 
Church-Rosser property of the underlying lambda calculus guarantees that any 
reduction order yields the same result upon termination. In particular, several 
redexes may be rewritten concurrently, and the global (serialised) order in 
which the reductions are actually performed has no effect on the program's 
final result. This property allows a collection of graph reducers to rewrite 
redexes in parallel. 

To the runtime support system (RTS), each graph reducer is a process 
(thread) that consists of a code segment, one or more stacks, and a large heap 
memory. The heap is shared by all graph reducers and has to be garbage 
collected occasionally by the RTS when the graph reducers run out of shared 
heap space. The RTS also has to schedule the graph reducers for execution on 
the parallel machine, and allocate memory for each reducer. The generation of 
parallelism and the cooperation between the multiple reducers is usually of no 
concern to the RTS because this is dealt with inside the graph reducers; all task 
synchronisation/communication is implicitly regulated through the program 
graph. 

The following discussion of fundamental issues in parallel graph reduction 
systems does not cover 1/0 since the systems are targeted as compute engines 
connected to some host that handles the user interface: an expression is down 
loaded from the host, execution starts, and finally the result is transported back, 
hence, any standard communication protocol suffices. 
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3.1.1 Generating parallelism 

To efficiently exploit the Church-Rosser property of graph reduction, care has to 
be taken to select the appropriate redexes for parallel execution since otherwise 
the graph reducers will rewrite redexes that are not needed to compute the 
program's final result. In the worst case, the superfluous execution of an infinite 
sequence of reductions results in a situation where all graph reducers are busy 
and fail to terminate properly. To avoid any waste of computing resources only 
expressions that are certainly needed may be evaluated in parallel ( conservative 
parallelism); speculative parallelism [Burton85] is not considered since it is 
too difficult to manage. The selection of needed redexes for parallel execution 
is performed either by the compiler automatically, or by the programmer 
explicitly through annotations. 

Compiler derived parallelism 

Whenever a function is applied to a strict argument (see Section 2.5.1), the 
argument may safely be evaluated in parallel with the execution of the function 
body since at some execution point the argument value is needed to compute 
the function's result. Thus a strictness analyser, which is employed by the 
(sequential) compiler to transform call~by-need into call-by-value, also can 
derive the information needed to support conservative parallelism. 

Unfortunately the effectiveness of strictness analysis methods is hampered 
by the usage of higher-order functions and data structures, as explained in 
Chapter 2. As a consequence the number of strict arguments that can be de
rived in a reasonable amount of compilation time is limited. Worse, however, 
is that the resulting parallel computations are fine grained: a single addition, 
one function call, etc. Efforts to automatically increase the grainsize have not 
been successful as will be discussed in Section 3.1.5. Fine grain parallelism 
is difficult to implement efficiently since overheads like scheduling, data com
munication, and context switching should be as small as possible, which calls 
for special hardware support. 

Annotated parallelism 

To overcome the problems associated with fine-grain parallelism, the program
mer often has to assist the compiler by inserting annotations in the program 
source to explicitly denote coarse-grain expressions suitable for parallel exe
cution. Two classes of annotations can generally be distinguished: skeletons 
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and fork-primitives. They differ in the flexibility provided to the user and the 
amount of knowledge required from the user. 

Skeletons provide the user with a high-level abstraction of a particular par
allel programming paradigm like the divide-and-conquer or replicated-worker 
model [Darlington91]. The user just has to structure his program to fit one of 
the supported skeletons, and call the corresponding runtime support function 
to obtain parallel execution. The rigid control structure of the skeletons allows 
for efficient implementation on various parallel systems. 

The Caliban annotation language [Kelly89, Cox92] supports a rather flex
ible skeleton: the process network, which consists of an arbitrary number of 
concurrent processes connected by (lazy) streams. Although the network de
scription may be parameterised, for example by the number of processors, the 
description has to be compile-time static. This assures that an efficient fully
static distribution of the computation on the machine can be accomplished. 

Fork primitives provide an unconstrained low-level method to start (spark) 
the evaluation of an arbitrary expression by putting a marker on it. The pro
grammer has to take care to only annotate needed expressions, otherwise the 
program may incur superfluous computations or even fail to terminate. The 
following example shows a parallel merge sort algorithm where the annota
tion ' { ! } ' expresses that recursive sorts of the left and right halves may be 
computed in parallel: 

sort[] [] 
sort [x] [ x] 
sort list= merge {!}(sort L) {!}(sort R) 

where 
(L,R) = split list 

At runtime, a call of sort with a list of more than one element results in the 
creation of two tasks, which are placed in the global task pool that is consulted 
by idle processors looking for work. After sparking the child tasks, the parent 
continues execution, and when it requires the value of a sparked expression 
while the child task is still computing, the parent calls the RTS to block itself. 
When the child completes the evaluation and has updated the graph with the 
result, it notifies the RTS that the parent has become executable again. When 
the parent task is resumed, it starts with fetching the wanted result value from 
the graph. To avoid a sequence of expensive block/resume operations when 
the parent accesses the results of several child tasks in a row, a counter can be 
used to resume the parent only when the last child has completed. 
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Examples of fork primitives are the futures in parallel LISP systems 
[Halstead Jr84], and the spark constructs in parallel graph reduction imple
mentations [Peyton Jones87b]. These fork primitives give the user fine control 
over the parallel execution of a program, but require intimate knowledge about 
the underlying runtime support software and hardware architecture to obtain 
efficient execution. Some parallel implementations even force the programmer 
to resolve resource allocation issues like task scheduling and data communi
cation. In the para-functional programming system [Hudak86], for example, 
the programmer has to specify on which processor a parallel task should be 
evaluated. 

Most research in parallel implementations of functional programming lan
guages is based on the low-level fork annotation since it provides coarse grain 
tasks as opposed to the fine grains of compiler derived parallelism. In addition 
fork primitives offer greater flexibility than the high-level skeletons; skeletons 
can be provided easily as library functions built out of fork primitives, but 
the other way round is much more difficult, if not impossible. Henceforth we 
will refer to the method of forking tasks and explicit waiting for results as the 
spark-and-wait model. 

3.1.2 Global address-space support 

Conceptually the spark-and-wait model of parallel graph reduction consists 
of a number of graph reducers that repeatedly rewrite redexes in parallel in 
different parts of the shared program graph. The activities between the reducers 
are coordinated in the RTS through a global task pool, which contains pointers 
to needed expressions in the graph, and the blocking/resumption mechanism 
discussed above. 

The shared program graph in combination with a lazy evaluation mech
anism complicates the implementation of functional languages on parallel 
machines, since tasks can easily share delayed computations that still have 
to be evaluated and updated. In case of the merge sort example, the redex 
'sort [ 4, 3, 2, 1]' is rewritten as follows: 
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✓, ===} A 
sort [4,3,2,l] / /~ 

'sort A 
mer{e A send ""' 

sort @------@._ 

/ 1/"' frst sp 1 t [ 4, 3, 2, 1] 

The ! -symbols mark the two expressions that have been sparked for parallel 
execution. The frst and send primitives are inserted by the compiler to 
extract the L and R lists from the data structure (i.e. tuple) that will be returned 
by the split function. Note that the 'split [ 4, 3, 2, 1]' redex is shared 
by the two parallel tasks. Therefore special measures must be taken since 
otherwise the redex will be reduced twice, or worse, a task can read the 
partially updated root node of the redex and chaos results. 

The presence of shared redexes in the global program graph requires spe
cial access protocols both on shared-memory and distributed-memory parallel 
machines, while the implementations on distributed memory machines are also 
faced with the problem of supporting a logically global address space. 

Shared memory 

The class of physically shared-memory parallel machines fits the spark-and
wait parallel graph reduction model very well: only the access of shared 
redexes has to be regulated. The usual solution is to slightly modify the 
sequential graph reducer. Each application node is extended with a lock (bit), 
which has to be acquired by a graph reducer before the fields of the node may 
be accessed. This solves the consistency problem. To avoid the duplication 
of work, each graph reducer marks the spine of application nodes it visits as 
"under reduction". Whenever a graph reducer requires the value of such a 
node, it blocks itself by linking its descriptor on a waiting list associated with 
that node. The update of a redex becomes slightly more complicated since the 
reducer has to check the waiting list and wakeup all suspended reducers so 
they can resume their computations. 

The graph reducer encounters the overhead of setting and releasing a lock 
for every application node it processes, even though in practice only a small 
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number of application nodes is shared. Measurements in [Hartel88b] report 
that typically 3-14% of the application nodes are shared in a Turner-combinator 
implementation [Tumer79a]. It is possible to avoid some of the overhead by 
using a new kind of application node to denote non-shared application nodes 
that need not to be updated, hence, that need not to be locked. The classification 
of application nodes can either be done statically at compile time through 
update/sharing analysis [Peyton Jones92] or dynamically at run time by (one
bit) reference counting [Stoye84]. It is not clear, however, how successful 
these techniques are, and in particular whether the performance gain of the 
reduced locking and updating outweighs the overhead of reference counting. 

Distributed memory 

An important design issue is how to map the shared-data view of the spark
and-wait graph reduction model onto the message-passing based distributed 
memory machines. Two basic approaches can be taken: 1) a transparent layer 
of software on top of the bare hardware provides the graph reducers a single 
uniform addressable (virtual) address space, 2) the graph reducer is modified 
to explicitly deal with "remote pointers", which have to be dereferenced by 
sending a message to the processor that holds the data. 

Global virtual address space As discussed in Chapter 1, Shared Virtual 
Memory [Li89] has been developed to provide the user with a single global 
address space on distributed systems. It uses virtual memory techniques to 
intercept references to remote data and fault in the data by sending a message to 
the owning processor. Since the handling of inter processor communication is 
performed transparently by the operating system, the user program is presented 
the impression of operating on a shared memory machine. 

Shared Virtual Memory has not been used directly as an implementation 
platform for functional languages because the granularity of a page is far too 
large: graph reducers operate on nodes that occupy a few bytes, not 4Kbyte, 
so pages bounce back and forth between processors when graph reducers 
repeatedly update different nodes that reside on the same page. This behaviour 
is known as false sharing. The distributed functional language implementations 
that do support a global virtual address space, like the Flagship machine 
[Watson88] and PACE [Waite91], operate on graph nodes instead of pages. 
These designs contain special hardware to map globally addressed nodes onto 
locally cached copies. 
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To avoid the duplication of work, shared redexes must reside only at one 
processor; shared redexes may not be copied on external requests, but have to 
be reduced first, or moved to the requesting processor instead. Furthermore, 
application nodes have to be locked and marked "under reduction" as in the 
case of true shared memory implementations. 

Remote pointers Most distributed functional language implementations in
corporate some kind of "remote pointer" to refer to data that resides on a 
remote machine. The graph reducer has to be able to recognise these remote 
pointers,. and whenever it needs the value associated with a remote pointer it 
sends a message to the owning machine. When the reply comes back, the graph 
reducer creates a local copy of the value, and continues ordinary execution. To 
hide the communication delay, the graph reducer does not wait for the reply, 
but immediately continues with the evaluation of another task. 

The servicing of external requests for local graph nodes is not trivial. Basic 
data values like integers and floating point numbers can be returned as is, but 
data constructors have to be checked for local pointers. These local pointers 
have to be converted to "remote pointers". The request for a redex is even 
more complex since sending a copy back results in the duplication of work. 
Therefore, the redex is reduced to head normal form first, before the computed 
value is sent back to the requester. To guarantee consistency between graph 
reduction and message handling, either all redexes should be protected by 
locks, or the runtime support system can translate requests into high priority 
tasks that are enqueued for ordinary processing. In the latter case, only the 
access of the task pool has to be controlled by locks since effectively tasks are 
never de-scheduled partly during a graph update. Still all application nodes 
must be marked "under reduction" to avoid the duplication of work since an 
active task can trigger the evaluation of an application node that already was 
being reduced by a suspended task on the same processor. 

The scheme above guarantees the sharing of computations, but the resulting 
data may be freely copied throughout the whole machine. In particular several 
copies of the same data can reside at one machine as caused by multiple 
dereferences of the same remote pointer: each request results in a new local 
copy of the remote data. This situation arises, for example, when processing 
a list of queries on a remote database where the root of the database is copied 
for each query. Precious bandwidth and memory are wasted. The solution 
is to use one level of indirection: upon receipt a remote pointer is stored in 
a local indirection node, whose address is passed to the graph reducer. This 
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local pointer may be duplicated at will since when the graph reducer fetches 
the remote value, it overwrites the indirection node, and all references then 
share the same copy. 

Communication between tasks is a weak point because data is transported 
a graph node at the time. Firstly, it is more efficient to send large messages that 
contain several graph nodes since the software overhead and communication 
delay are incurred only once, and less bandwidth is consumed. Secondly, 
sharing inside complex structured data is lost; for example, when fetching a 
remote cycle the local copy unfolds into an infinite list since each request returns 
a copy that refers to the original remote cycle. A potential improvement is to 
answer external request messages by transporting the complete graph rooted 
at the requested node. Wrapping up the graph into one message, however, 
is quite complicated as sharing should be maintained. Redexes must not be 
copied, but should be left at the owning processor. It is not clear whether this 
overhead can be tolerated, especially since the lazy evaluation mechanism is 
unlikely to force the evaluation oflarge data structures at once, so probably only 
small graphs are available for transport anyway. The PABC machine design 
[van Groningen92] incorporates such a copy policy, but no measurements are 
available yet. 

To avoid the communication problems caused by shared redexes, the 
APERM machine [Vree89] normalises shared data before sparking tasks. In 
return for sacrificing some laziness, APERM can safely copy a complete sub
graph of a task to a remote processor since it does not contain any (shared) 
redexes. Thus all 'remote' data is transported in one message, instead of a node 
at the time. This copy approach reduces communication overhead, and allows 
for local garbage collection since inter-processor graph references do not exist. 
To enhance performance it is proposed to construct a graph transporter unit in 
hardware that wraps a graph into a single message and sends it to a remote 
node; it is conceivable that with minor extensions this unit can be used for 
local garbage collection ( copying) as well. 

3.1.3 Storage management 

Closely related with the global address-space support is the storage man
agement system, which allocates storage for graph reducers in the parallel 
machine. A graph reducer uses two kinds of dynamic storage: one or more 
stacks and a single shared heap. The heap is used to allocate graph nodes 
and is shared between all graph reducers, while each stack is accessed by one 
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graph reducer only. The storage management system partitions the available 
physical memory into heap and stack space, and controls the allocation and 
deallocation of storage in both spaces. 

Stack management 

The graph reducer uses at least one stack to hold the arguments of nested 
function calls, but often multiple stacks are used to ease garbage collection by 
separating heap pointers from other stack items like return addresses and basic 
data values (integers, floating point numbers, etc.). The depth of the stacks 
varies considerably during reduction, while the maximum depth is generally 
unknown at compile time. Since the number of sparked tasks is also unknown 
beforehand, the storage management system has to accommodate an arbitrary 
number of stacks, whose size changes dynamically. 

A straightforward solution is to equip each task with small stacks initially, 
and enlarge a stack each time it overflows. This approach has been taken, for 
example, in the PABC machine, where stacks are allocated as ordinary heap 
objects. On stack overflow, a new larger stack is allocated in the heap, the 
contents of the old stack is copied to the fresh one, stack pointers are adjusted, 
and reduction continues. The old stack space is reclaimed automatically by 
the garbage collector, but in return the (live) stacks have to be copied on each 
compaction of the heap. The amount of space added on each stack reallocation, 
controls the balance between the number of reallocations and the amount of 
wasted memory. As reported in (Kesseler91 ], an increase of just 10% "seems 
to work quite well" (on one Transputer). 

An alternative solution found in many parallel graph reduction machines 
is to replace the monolithic stack by a linked list of stack frames, which are 
allocated in the heap. The size of each stackframe can be determined statically 
at compile time as described in (Lester89b ], so stack overflow inside a frame 
never occurs, hence, costly reallocations are not needed. Like with the previous 
approach, deallocated stack frames are automatically reclaimed by the garbage 
collector, which is more expensive than re-using space on a conventional stack. 
Another disadvantage is that the locality in references to heap allocated stack 
frames is less than with a conventional stack outside the heap, which gives a 
performance penalty in parallel systems equipped with caches and on systems 
with fast local memory like the Transputer. Unfortunately, no measurements 
are available to quantify the exact costs of allocating stack frames in the heap. 
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Heap management 

The distributed management of the global heap is difficult since graph reduc
ers consume large quantities of heap space to allocate graph nodes with a 
short average life-time, so a garbage collector has to be invoked to reclaim 
the storage that is no longer referenced by the program graph. Research in 
garbage collection has a long history, and many different algorithms have been 
designed [ Cohen81]. Three important classes of garbage collection algorithms 
can be distinguished: reference counting, mark&scan, and copying collectors. 
The copying collectors are most suitable for modem style graph reducers since 
these algorithms facilitate the fast allocation of variable sized, but small, nodes 
by compacting the live data into one consecutive block; a node allocation just 
amounts to advancing the free space pointer by the size of the node. Another 
advantage of the copying collectors is that they only traverse live data, which 
usually accounts for just a small fraction of the total heap space. In addition, 
copying collectors smoothly handle cycles in the program graph in contrast 
to reference counting collectors. Cycles can be banned from the graph, but 
at the expense of efficiency (unrolling) and expressive power (no cyclic data 
structures): for example, the elegant circular programming style [Bird84] 
can not be supported. Efficient copying garbage collection algorithms for 
parallel graph reduction machines are quite different for shared-memory and 
distributed-memory implementations. 

Shared memory Since shared memory multiprocessors consist of a rela
tively small number of processors in general, it is viable to synchronise all 
processors when a garbage collection is needed. Once the processors have 
stopped, an ordinary sequential copying collector can reclaim all garbage 
[Augustsson89b], but with a minor adaptation all processors can participate: 
before inspecting a (live) node, the node has to be locked to properly han
dle sharing. This straightforward method is, for example, used in Multilisp 
[Halstead Jr84] and GAML [Maranget91 ]. 

Instead of having all processors collect garbage in parallel, it is also possible 
to arrange for one copying collector to work in parallel with multiple graph 
reducers (mutators). The method of concurrent garbage collection as described 
in [ Appel88] uses virtual memory hardware to synchronise the collector and the 
mutators. When the mutators run out of free space, they copy their root nodes 
to to-space. Then the collector marks all pages in to-space as inaccessible to 
the mutators, and starts to scan the nodes in to-space to find references to live 
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nodes in from-space. Whenever the collector has scanned a page in to-space, 
it marks the page as accessible to the mutators. When the collector starts 
scanning, the mutators immediately continue with ordinary graph reduction. 
If a mutator tries to reference an object that resides on a not-yet-processed page, 
the hardware generates an access-violation trap. This triggers the collector to 
handle that page immediately, after which the mutator resumes execution. 

Distributed memory The inherent global nature of copying garbage collec
tors makes them unsuitable for distributed systems for two reasons: 

1. All processors have to synchronise before garbage collection can start 
since nodes will be moved during the compaction phase; global synchro
nisation is expensive on large machines. 

2. A message has to be sent for each remote pointer to learn the new location 
of that object; this results in a burst of data transport, which severely 
stresses the communication network. 

Therefore the early distributed functional language implementations/designs 
have resorted to reference counting algorithms. 

Distributed reference-counting garbage collectors show good locality since 
the bulk of increment and decrement operations are performed on graph nodes 
that reside in the processor's local memory. Only the copying and deletion of 
remote pointers require inter-processor communication. A serious constraint 
for large distributed systems is that the communication network must preserve 
the message ordering since the interchange of an increment and decrement 
message can lead to the incorrect reclamation of a graph node. The weighted 
reference counting technique [Bevan87, Watson87a] tackles this problem, and 
decreases the number of messages as well, by maintaining a weight with each 
pointer. The summed weights of all pointers to an object equals the reference 
count in that object, always. When a pointer is duplicated, the original weight 
is split between the two resulting pointers without the need to increment the 
reference count, hence, no message has to be sent. When a pointer is discarded, 
the reference count has to be decremented by the weight, and a message has 
to be sent in case of a remote pointer. Since weighted reference counting only 
uses decrement messages, the communication network may deliver messages 
in any order. 

Unfortunately, reference counting has several disadvantages: 1) recla
mation of cyclic structures is cumbersome [Brownbridge85, Hughes83]; 2) 
variable sized nodes are poorly supported; 3) the performance is less than 
that of copying collectors [Hartel90]. To overcome these problems, Lester 
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[Lester89a], has devised a composite approach: local garbage is reclaimed 
through copying, while weighted reference counting is used to handle global 
garbage. When a processor runs out of free space, it starts a copying collector 
to reclaim the garbage nodes in its local heap. Two indirection tables are 
used to handle remote pointers. The input-indirection table contains a (local 
address,reference count) tuple for each node that is accessible from another 
processor. The collector processes all entries with a non-zero reference count, 
and updates the local addresses when compacting live data in the heap. The 
input table is an array located at a fixed address, so the compaction is trans
parent to the external references on remote processors. The output-indirection 
table contains an entry for each remote pointer to a node that resides on another 
processor: a global address and a weight. The output table is implemented 
as a linked list. This list is traversed after each compaction to find remote 
pointers that are no longer in use, and decrement messages are sent to the 
owning processors. 

Lester's composite algorithm elegantly integrates the locality of weighted 
reference counting with the efficiency of copying collection, but it can not 
handle cycles that span multiple processors. Rudalics [Rudalics86] presents a 
similar composite approach, but it uses a copying algorithm at the global level 
instead. This algorithm deals with global cycles at the expense of complex 
global processor synchronisation. 

3.1.4 Task scheduling 

The second important task of the runtime support system, besides memory 
management, is the distribution of work in the parallel machine. Each sparked 
task has to be scheduled for execution on a specific processor, or conversely, 
each processor has to be assigned a task when it becomes idle. For statically 
structured applications, scheduling decisions can be determined at compile 
time, but usually tasks are scheduled dynamically by the runtime support 
system. The dynamic scheduling of tasks on a parallel machine, also known 
as load-balancing, is a general problem that has received wide attention. 

From a theoretical point of view, and if communication delays are ne
glected, any list scheduling policy will do since the resulting parallel execution 
time never exceeds twice the optimal execution time [Graham69]. (A list 
scheduling policy, or work-conserving scheduling discipline, is one that never 
leaves a processor idle when there is a runnable task available somewhere.) 
Furthermore, for applications with a high average level of parallelism, these 
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scheduling policies achieve good processor utilisation as well; in [Eager89] 
it is shown that under any work-conserving scheduling discipline the proces
sor utilisation is at least A/(n + A - 1), where n denotes the number of 
processors and A denotes the average parallelism of the application (i.e. the 
speed-up factor on a machine with an unbounded number of processors and no 
communication delay). 

Despite their nice theoretical properties, in practice list scheduling policies 
do not qualify for controlling large parallel machines for two reasons. First, 
a list scheduler needs global knowledge to maintain the invariant that no 
processor may be idle if there is a runnable task available somewhere. Hence, 
the creation and termination of each task has to be announced globally, which 
leads to network congestion in distributed systems, and to memory contention 
in shared memory systems. Secondly, only large tasks should be selected 
for remote evaluation in order to overcome data transportation costs; it is 
better to let a processor run idle than to allocate a task whose computational 
requirements do not outweigh the communication costs. Both for shared
memory and distributed-memory implementations it is important to employ 
a scheduling policy that achieves good spatial locality in combination with a 
high degree of processor utilisation. 

Shared memory 

In small shared memory systems, schedulers that operate on a single shared 
task pool are conceivable, but such a simple solution will not scale when 
adding more processors. For example, in the Buckwheat implementation 
[Goldberg88b] measurements showed that the access contention for the global 
pool slightly degraded absolute performance when going from 7 to 8 processors 
running in parallel. Buckwheat successfully employed a two-level queue 
structure to reduce contention; clusters of processors share a primary queue 
that overflows into the secondary queue, which is accessible to all processors in 
the multiprocessor. This arrangement also enhances locality since processors 
first access the primary queue before resorting to the secondary queue, hence, 
most tasks are allocated inside a cluster. This is important for large shared 
memory multiprocessors that have non-uniform memory access times. For 
example, in a bus based multiprocessor whose processors are equipped with 
caches, it is advantageous to execute a child task on the same processor as its 
parent since part of the data already resides in the local cache, hence, cache 
misses are avoided in comparison to remote execution. 
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Preemptive scheduling of tasks, which bounds worst-case behaviour, is 
not employed in parallel graph reduction implementations on shared memory 
machines, although occasionally tasks have to be stopped in a consistent state 
to participate in a global garbage collect. Task migration, on the other hand, is 
used by most implementations; when a blocked task becomes runnable after 
the requested value has been evaluated, it can be resumed at any processor 
since its state (i.e. the stack) resides in shared memory, but for performance 
it is better to resume execution at the original processor since (part of) the 
context of the task still resides in the cache. 

Distributed memory 

In large distributed systems it is not possible to use a central scheduler that 
controls all task allocations since it would become a bottleneck. Therefore 
scheduling decisions have to b~ taken locally based on incomplete information 
of the global system state. One solution is to use programmer annotations to 
control the task placement decisions [Hudak86]. Most distributed functional 
language implementations, however, provide automatic scheduling. 

A popular distributed scheduling algorithm is called diffusion scheduling 
[Goldberg88a]. Each processor maintains an estimate of its own workload and 
communicates this to its direct neighbours on regular intervals. If the processor 
detects that its own load is significantly higher than of some neighbour, it off
loads some local tasks to that neighbour to balance the system load. As 
a consequence, work 'diffuses' across the parallel machine from busy parts 
towards lightly loaded parts. Satisfactory results are obtained for moderately 
sized machines, even though the workload estimate is usually based on the 
number of runnable tasks, not the actual computational demands. 

A strong disadvantage of diffusion scheduling for large scale systems is 
that work spreads slowly across the machine: one hop at the time. Especially 
at the initial stage, when most processors are idle, it is important to allocate 
(large) tasks far away from their origin. That, however, requires global knowl
edge about the system state, which can not be maintained accurately at all 
processors. Hierarchical schedulers combine complete local information with 
general global knowledge by placing a tree shaped control structure on the ma
chine: Processors are grouped into clusters, clusters are grouped into domains, 
etc. Each scheduler in the hierarchy maintains some global information about 
its sub-domains, and is authorised to move tasks between sub-domains. In the 
Hyper Machine, tasks are scheduled at different levels according to their work 
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estimates as provided by programmer annotations [Hofman92a]; this assures 
that only large tasks, which generate lots of work, incur high transportation 
costs. 

Like in shared-memory implementations, distributed schedulers do not 
preempt tasks once they have started execution to avoid consistency problems 
in the heap. Task migration is also not supported since wrapping up the task 
state is complicated, and migration is only beneficial if no freshly sparked 
tasks are available. The latter situation can be circumvented by generating a 
lot more tasks than the number of processors in the parallel machine. Sparking 
tasks is not for free, so it might be better to keep machines idle for a short time 
instead of generating too many tasks. 

3.1.5 Controlling parallelism 

Although generating many tasks eases the load-balancing of the parallel ma
chine and leads to high processor utilisation, it is not for free. There is always 
some overhead associated with the sparking of a task, so tasks must have 
some controlled minimal size that outweighs the overhead. Furthermore, the 
number of tasks should be controlled too because uncontrolled breeding of 
tasks exhausts the machine resources: task pools overflow, heaps fill up, etc. 
Ideally, an application unfolds into one large task per processor, which can be 
evaluated independently in local memory, before the results are combined into 
the final solution. In practice, of course, this ideal is rarely accomplished, but 
effective strategies have been devised to control the grainsize and the number 
of tasks in parallel graph reduction systems. 

Grain size 

The minimal amount of work of individual tasks has to exceed a given value 
to overcome the overhead costs associated with sparking: 

• The expression has to be constructed as a graph, which is more expensive 
than call-by-value evaluation. 

• The task descriptor has to be placed in a task pool so it can be scheduled 
for execution. 

• The task has to be transported in case of remote execution. 
• A new graph reducer has to be started, i.e. a context switch occurs, when 

the task is scheduled for execution. 
• The list of waiting reducers has to be signaled to resume execution when 

the task has been evaluated. 
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Efforts have been undertaken to have the compiler determine automatically 
through complexity analysis whether a task is big enough to justify the spark. Of 
course, heuristics have to be used since the problem is undecidable in general, 
for example, expressions can depend on input data. Goldberg [Goldberg88c] 
handles recursive function calls and the invocation of higher order functions by 
assigning an infinite cost to them. Unfortunately, this approximation assigns 
an infinite cost to most tasks encountered, so few sparks are avoided in practice. 
Compile-time complexity analysis seems incapable of generating coarse-grain 
tasks; it can merely enlarge the small grain size of automatically derived 
parallelism with a small amount. 

Like with generating parallelism, the programmer has to do the job. Insight 
in the algorithmic complexity of the application allows the programmer to place 
spark annotations at large expressions only. For example, in the merge-sort 
program the list is recursively divided into two halves until the empty list 
results; each division creates two more parallel tasks. The sparking of these 
tasks is denoted with the ' { ! } '-annotation in the code below. It is rather 
straightforward to stop sparking tasks when the length of the list falls below 
some threshold: 

sort[] 
sort [x] 
sort list 

[ ] 
[X] 

= if (#list> 37) 
merge {!}(sort L) {!}(sort R) 

else 
merge (sort L) (sort R) 

where 
(L,R) = split list 

Some fine tuning based on performance measurements is needed to determine 
a suitable cut-off threshold. To avoid the overhead of repeatedly computing the 
complexity measure at each recursive invocation, two versions of the function 
are used: a parallel version that sparks tasks for complex calls, and jumps to 
the efficient sequential version without sparks/tests otherwise. A disadvantage 
of this optimisation is that once a task switches to sequential code it will never 
spark a task again, even when the load drops to zero in the future. 

Number of tasks 

To avoid exhaustion of machine resources, the number of tasks has to be 
controlled as well as the grain size. The cut-off strategy of the previous 
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section can be refined to take the machine load into account to stop sparking 
when enough parallel tasks have been created. In Qlisp, for example, the 
programmer is provided with a set of primitives that return system parameters 
like the number of processors, and the queue depth (i.e. the number of runnable 
tasks on a processor) [Pehousek89]. A more sophisticated solution is to have 
the runtime support system decide whether or not to spark a task based on 
the programmer's complexity information that indicates the amount of work 
involved in evaluating that task. In case of merge sort the time needed to sort a 
list is in the order of nlogn operations, where n is the length of the list. Hence, 
we can use the length of the list as a rough indication of the grainsize of a task: 

sort[] 
sort [x] 

[ ] 
= [x] 

sort list= merge {!sz}(sort L) {!sz}(sort R) 
where 

(L,R) = split list 
sz = #L 

The { ! sz} annotation provides the complexity measure to the runtime support 
system, which can combine this information with system parameters like the 
processor load to control dynamically the number of tasks by inhibiting sparks. 
The HyperM scheduler [Hofman92a] uses programmer complexity annotations 
to assist allocation decisions. 

The GRIP machine [Peyton Jones89] takes a radically different approach 
to avoid flooding the system with tasks: it discards tasks when the task pool 
fills up. To guarantee that the work of the discarded tasks will eventually 
be done, the GRIP machine uses the evaluate-and-die model of parent-child 
synchronisation that differs slightly from the spark-and-wait model discussed 
in section 3.1.1: When a parent needs the value of a child task that has not 
started evaluation yet, it does not block itself as usual, but rather evaluates the 
expression itself. The child task becomes an orphan and can be discarded. 
As a consequence, tasks may be deleted from the spark pool without further 
notification since the parent task will always try to evaluate the associated 
expression itself later on. Likewise, access of the global task pool is not 
protected by a lock since loosing and/or duplicating a few tasks does no harm 
as can be seen from the preliminary performance measures in [Hammond91 ]. 

If the runtime support system has no means to control the sparking of 
tasks, as is the case in many parallel functional language implementations, the 
dynamic number of tasks in the machine can still be regulated by a scheduling 
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heuristic. We discuss a heuristic that works particularly well for divide-and
conquer applications. 

Figure 3.1: divide-and-conquer task structure. 

Divide-and-conquer applications unfold into a tree shaped task control 
structure with worker tasks at the leafs. If the task selected for execution is the 
most recently sparked task, then the tree is explored in a depth-first strategy; 
conversely, if the least recently task is scheduled, the tree is traversed breadth
first. The depth-first exploration (LIFO) requires the least amount of resources 
since it minimises the number of waiting control tasks, while the breadth-first 
strategy (FIFO) maximises parallelism. The Manchester dataflow machine 
used this observation to throttle the parallelism by dynamically switching 
between breadth-first and depth-first schedulers for low and high work loads, 
respectively [Ruggiero87]. 

Many parallel graph reduction machines have incorporated the throttling 
idea. A straightforward implementation on shared memory systems uses a 
linked list for the task pool with a scheduler that employs a LIFO access policy. 
This simple strategy minimises resource usage since it traverses the task tree in 
a global depth-first like order, but it does not take any locality considerations 
into account and produces schedules with many synchronisation points. A 
global LIFO scheduling on a four node machine of the divide-and-conquer 
application in Figure 3.1 is shown in Figure 3.2 where the nodes are labeled 
with the processor number. Note that all 15 parents have a remote child. 

Figure 3.2: Processor assignment by global LIFO scheduler on a four node 
machine. 
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An improved method, which can also be used in distributed implementa
tions, maintains a local task pool at each processor. Processors schedule their 
tasks in a LIFO order, but when running idle a processor steals a task from 
another processor's task pool in FIFO order. This strategy enhances efficiency 
since, after a short initialisation phase, processors evaluate different sub trees 
in depth first order, and minimal communication and synchronisation between 
processors is needed because only large tasks will be stolen, see Figure 3.3 
where only three tasks are exported. 

4 

Figure 3.3: Processor assignment by local-LIFO/steal-FIFO scheduler on a 
four node machine. 

The "Lazy Task Creation" method [Mohr91] even takes this idea further 
and avoids some of the sparking overhead. During ordinary execution, tasks 
are not sparked, but evaluated eagerly instead (LIFO); each task invocation 
leaves a frame on the call stack, where execution continues once the task has 
been evaluated. When a processor becomes idle, it lazily creates some task by 
stealing the oldest continuation frame (FIFO) from a busy processor, which 
involves patching the original frame to store the computed value in a place 
holder. The idle processor "continues" the original execution, and eventually 
synchronises on the place holder when it needs the task value. Stealing a 
continuation is more expensive than allocating a task, but these costs are only 
incurred when work is actually requested, while tasks are created in large 
numbers to avoid scheduling anomalies in advance. Preliminary performance 
results for Mul-T implementations show that "lazy task creation" performs 
better than ordinary spark-and-wait [Mohr91]. 

3.2 Survey 

In this section we discuss a number of recent parallel graph reduction machines; 
early parallel graph reduction machines have been described in [Treleaven82, 
Kennaway83, Vegdahl84]. We review the most important design decisions 
taken in each machine regarding the issues raised in the previous section: 
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generating parallelism, global address-space support, storage management, 
task scheduling, and controlling parallelism. The selected parallel machines 
have been implemented on a wide range of hardware configurations. First, 
three shared memory machines are presented: <v,G>, AMPGR, and GAML. 
Then, four distributed machines are discussed: Flagship, PAM, HDG, and 
PABC. The latter three are all Transputer based implementations. Finally, we 
present two hybrid machines built out of shared memory clusters: GRIP and 
HyperM. A comparison of these nine parallel machines is given in Section 3.3. 

3.2.1 <v,G> 

The <v,G>-machine [Augustsson89b] is a parallel graph reducer for shared 
memory multiprocessors, and has been implemented on a 16-node Sequent 
Symmetry. It is an extension of the sequential G-machine implementation for 
Lazy ML [Augustsson84, Johnsson84], and supports the spark-and-wait model 
of parallel graph reduction; the programmer has to insert spark annotations in 
the LML source to denote opportunities for parallel execution. 

The <v,G>-machine is based on one global address space as directly 
supported in hardware by the Sequent, which does include caches but no local 
memory per processor. The Sequent's ability to use any memory cell as a 
lock has been exploited to enforce mutual exclusive access on vector apply 
nodes, which are called FRAME nodes. These FRAME nodes are used in 
the <v,G>-machine to implement the calling stack as a linked list of frames 
in the heap instead of one monolithic stack as in the sequential G-machine. 
Each FRAME holds a delayed computation: a function code pointer, the right 
number of arguments, and some free space for temporary variables that are 
needed when the function is invoked. The FRAME sizes can be computed at 
compile time except when higher order functions are involved, in which case 
FRAMEs need to be extended occasionally at run time through allocating a 
new frame and overwriting the old one with an indirection node. 

The original <v,G>-machine contains a straightforward heap management 
policy. Each graph reducer allocates large chunks (i.e. pages) of memory until 
heap space exhausts. Then a sequential garbage collector (GC) is invoked to 
reclaim heap space, after which reduction continues. Even with this simplistic 
scheme it is noted that "nevertheless GC seldom exceeds 30% of the total 
time." Recently an enhanced version of the Appel-Ellis-Li concurrent collector 
[Appel88] has been incorporated, which is capable of deleting speculative tasks 
as well [Rojemo92]. 
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Each processor maintains a local run queue of executable processes. If the 
run queue is empty, a task is taken from the global task pool, and a process 
is created for it. The global task pool is not guarded with a lock to reduce 
overhead, so tasks may be lost occasionally. No work is lost since the evaluate
and-die model is employed; the parent task will check and evaluate the child 
itself in case of a loss. As a consequence, on average 10% of a processor's 
time is spent on task management overhead. 

No provisions to control the grainsize or number of tasks are included 
in the <v,G>-machine; the programmer is solely responsible for controlling 
parallelism. The reported performance results for small annotated programs 
like nfib and 8-queens show speed-up over the pure sequential G-machine 
implementation: speedups range between 5 and 11 on the 16 processor Sequent 
Symmetry. The level-off in the speedup curves is attributed to bus contention, 
which might be caused by the poor locality of stacks allocated as linked lists 
in the heap. 

3.2.2 AMPGR 

The Abstract Machine for Parallel Graph Reduction [George89] is another 
shared memory implementation based on the sequential G-machine. A pro
totype implementation has been constructed for the BBN Butterfly multipro
cessor, which consists of a number (15) of processing elements (MC68020 + 
4Mbyte memory) interconnected through a delta network. Each processor can 
access transparently all memory in the whole machine, but local references are 
at least five times faster than references to remote memory. Therefore locality 
considerations have been taken into account in the AMPGR design. 

The AMPGR machine, unlike the <v,G>-machine, is driven by compiler 
derived parallelism based on strictness analysis. The compiler inserts explicit 
spark instructions in the G-code whenever it can derive that a particular ex
pression is needed; corresponding wait instructions are generated prior to the 
actual usage of the expression. To overcome the synchronisation overheads 
associated with large numbers of fine-grain tasks, many sparks are evaluated 
in-line without placing a description in the global task pool according to the 
following observations: 

1. No evaluation is required for an expression in head normal form; no task 
is generated. 

2. It is profitable to execute one child at home; the first spark inside a 
function is always neglected, so the reducer will evaluate the expression 
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itself after the other tasks have been sparked. 
3. The total number of tasks should be limited; when the fixed sized task 

pool overflows, tasks are evaluated immediately. 
Once the machine has reached a stable state, i.e. the task pool is full, the 
computation switches automatically to sequential execution; the only overhead 
incurred is the checking of in-line conditions. 

To avoid contention, a two-level scheduling strategy is employed with local 
pools spilling over into a centralised pool. It has been found that the local pools 
should be small, 2 to 4 tasks, to keep all processors busy. The heap allocation 
is also distributed: a graph reducer first tries to allocate a chunk of heap space 
in the local memory, before looking for available space on remote processing 
elements. The AMPGR, however, does not include a garbage collector! For 
efficiency, each processor has been allocated a single stack in local memory; 
whenever a task has to be suspended, its context on the stack is saved in the 
heap, so the stack can be used by another task. 

A running implementation on the BBN Butterfly has been constructed 
that shows good speed-ups, which is credited to the not so "blazingly fast" 
sequential implementation. 

3.2.3 GAML 

The GAML machine [Maranget91] is the third shared memory implementa
tion that is based on the sequential G-machine. It is closely related to the 
<v,G>-machine since it also relies on programmer annotated parallelism, 
uses comparable compiler technology, employs the same scheduling strategy, 
and runs on similar hardware as well: the Sequent Balance (8 processors). 
Therefore we restrict ourselves to discussing the main differences between 
GAML and its relative the <v,G>-machine. 

To reduce the overhead associated with synchronising multiple reducers 
in a shared address space, the GAML design includes a new node type to 
denote possibly shared nodes. Only these nodes have to be locked and marked 
"under reduction" by the graph reducer, while ordinary application nodes can 
be accessed as efficient as in the sequential G-machine. 

In contrast to the <v,G>-machine, GAML does not use a linked list of 
call frames, but incrementally allocates large chunks of stack space. When the 
stack shrinks the linked chunks are explicitly deallocated. To keep the number 
of stacks manageable, the sequential G-machine stacks are merged into one, 
hence, there is only one real stack per task. 
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The heap is managed through a parallel copying garbage collector. If a 
processor runs out of heap space, it enters a wait loop until all processors have 
stopped with graph reduction. Then the heap is compacted by all processors 
in parallel. Graph nodes are locked to maintain sharing and to guarantee 
correctness. Performance results measured on an eight processor system show 
that the absolute number of garbage collects hardly increases in comparison to 
sequential execution. The amount of time spent in garbage collection, however, 
more than triples because of blocked tasks whose stacks have to be processed 
as well. 

The programmer does not have any direct control on the number of tasks, 
but the compiler automatically inserts code to decide whether or not to spark 
new tasks. The decision is based on a crude measure of the system load called 
'ForkNow'. At present the runtime support system sets 'ForkNow' to true 
when the task pool is emptied, and sets it to false when the task pool fills up. 

The GAML implementation achieves relative speed-ups between 3.3 and 
5.8 for small benchmark programs. 

3.2.4 Flagship 

The Flagship machine [Watson86, Watson87b, Watson88] builds on experience 
gained with the Manchester Dataflow project [Gurd85] and the ALICE machine 
[Darlington81 ]. Flagship's architecture, however, bears little resemblance to its 
predecessors since it consists of closely coupled processor memory structures 
connected through a delta network instead of a shared memory machine with 
processors connected to memories through a multi-stage network. Although 
the Flagship machine has a distributed architecture, it provides a single global 
address space to the application program. 

The Flagship machine supports fine-grain parallelism. The program is 
represented as a collection of packets, which may be processed in parallel; a 
packet is similar to a vector apply node and contains a function with some 
arguments. Computation is controlled by a set of packet rewrite rules, which 
are program derived combinators, translated to efficient imperative code. A 
packet may be rewritten when all of its strict arguments reside in the local packet 
store. Separate concurrent processes take care of fetching remote arguments 
and creating local copies; special hardware is included that transparently maps 
global addresses to locally cached copies for the packet rewrite unit. The 
parallelism in fetching and rewriting of packets, ensures that communication 
latency can be tolerated as long as the application contains enough parallelism 
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to keep the processor busy meanwhile; note the resemblance with pipe-lined 
processors where operands are fetched prior to the instruction execution. 

The packet rewriting mechanism as described in [Watson87b] does not use 
a call stack to evaluate subexpressions since that would give unacceptable high 
context switch times. Instead the rewritable packet (i.e. redex) is written back 
to the store as a suspended packet, and new packets are created to evaluate 
the subexpressions. The storage management in the Flagship machine is thus 
concerned only with the heap (packet store). Weighted reference counting 
[Watson87a] is used as the primary means of garbage collection since it pro
vides good intra-processor locality of reference. Occasionally a distributed 
mark-and-scan algorithm [Derbyshire90] is used to reclaim the cyclic graphs 
that are left over by the reference counting collector. 

To prevent the machine from being flooded with too many fine-grain tasks, 
the Flagship design includes two task pools per processor: the active packet 
queue and the holding stack. During ordinary execution rewritable packets 
are placed in the active packet queue or sent to a remote processor, while the 
holding stack is used when the machine gets flooded with packets. 

The dynamic load balancing of the machine is supported by the delta com
munication network that propagates load information as well. When a packet 
is sent into the network for remote execution, it will be routed automatically 
to the least busy processor, after which the load information is adjusted. Al
though this approach with feedback balances the load evenly, it does not take 
locality considerations into account, hence, often remote copying is needed 
since packets are not routed to the processor which holds their strict argu
ments. Therefore each packet is sent with a preferred processor number, but 
the system software overrules the preference when the load distribution gets 
too uneven. 

A multiprocessor emulator consisting of MC68020s interconnected via a 
custom-designed switching network is under construction. 

3.2.5 PAM 

The Parallel Abstract Machine (PAM) [Loogen89] is the first of three dis
tributed functional language implementations for Transputer systems. The 
local memory structure is reflected in the graph reducer, which distinguishes 
two addressing modes: local and remote. The message handling to support 
remote pointers is handled by a separate communication unit that operates 
concurrently with the graph reducer. The communication unit is also respon-
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sible for distributing tasks to other processors (load balancing). The reducer 
and communication unit are implemented as separate Occam processes that 
are scheduled automatically by the Transputer hardware. The PAM is driven 
by annotated parallelism in the source program, and the graph reducer hands 
freshly sparked tasks to the communication unit for scheduling. 

The PAM uses the evaluation-transformer model of graph reduction for 
efficiency, but not for automatic parallelisation: the programmer has to annotate 
the program source. Each task node, which represents a complete function 
application, includes additional space for a value and a pointer stack, so that 
the call stack can be implemented as a linked list of activation records, and no 
special stack management is needed. Pure weighted reference counting is used 
to reclaim all garbage nodes in the (global) heap; special decrement messages 
are transmitted to update reference counts on remote processors. 

The PAM uses a simple diffusion scheduling strategy to distribute tasks 
over the machine: whenever a processor is idle, it queries its direct neighbours 
for work. Although tasks will never be executed more than one hop from their 
originating processor, references to graph nodes can spread across the entire 
machine. A static routing scheme is used to transfer messages that fetch remote 
data. The programmer is solely responsible for controlling the grainsize and 
number of tasks in the machine; no handles are provided by PAM. 

The performance results reported in [Loogen89] are based on a prototype 
implementation where PAM's abstract machine instructions are interpreted by 
an Occam program. Since then an improved version of the compiler has been 
constructed that generates Transputer assembly directly, but no results have 
been published yet. Good speedups have been measured with the interpreter 
based implementation, although some benchmark applications suffered from 
superfluous communication overhead to fetch multiple copies of the same 
remote graph node. 

3.2.6 HDG 

The Highly Distributed Graph-reduction (HOG) machine [Kingdon91] is an
other distributed functional language implementation for Transputer machines, 
which is also based on the evaluation-transformers graph reduction model. Un
like the PAM, the HOG-machine is based on compiler-derived parallelism and 
its prototype implementation is more sophisticated. 

The graph reducer stack is implemented as a chain of activation frames; the 
analysis technique of Lester [Lester89b] is used to compute the maximum size 



66 Chapter 3. Parallel implementations of lazy functional languages 

of each record in advance. Garbage nodes in the heap are reclaimed with the 
composite weighted-reference-counting/copying collector [Lester89a], which 
only uses reference counts for inter-processor references. To support this 
garbage collector, the sequential graph reducer has been extended with two 
special node types: output indirections that point to remote nodes and carry 
a weight, and input indirections that hold the reference count of a local node. 
An extra advantage of output indirections is that once an indirection has been 
overwritten with the remote value, all local copies share that same value. This 
saves bandwidth in comparison to systems like PAM that do not use output 
indirections, and have to fetch multiple copies. 

The task distribution is regulated by two task pools per processor: The 
migratable pool holds freshly sparked tasks, while the active pool holds re
sumed tasks that have become executable again after waiting for the result of 
another task. If the active pool is empty then a task from the migratable pool 
is selected in LIFO-order for execution. If the migratable pool is empty too 
then a direct neighbour is asked for work. Only tasks from the migratable pool 
are exported (FIFO order) since their state consists of just one vector apply 
node. This scheme amounts to diffusion scheduling where tasks may only 
be executed one hop away from their originating processor. Apart from the 
LIFO/FIFO selection of migratable tasks, no provisions are made to control 
parallelism by the runtime support system, despite the programmer's lack of 
control on the compiler-derived tasks. 

A four-node Transputer implementation has been constructed and used 
for small benchmark programs. The results show that the costs of fine-grain 
parallelism are rather high: the purely sequential nfib program runs 1. 7 times 
as fast as its parallel counterpart on one processor. The relative speedups are 
surprisingly good: up to 3.6 on four processors. It remains to be seen whether 
the fine-grained approach scales to "real" applications on large machines. 

3.2.7 PABC 

The Parallel ABC (PABC) machine [Nocker91b] is an abstract machine being 
designed for parallel graph reduction on distributed memory systems. It builds 
on the sequential ABC machine [Smetsers91 ], and is used as an intermediate 
target machine for implementing Concurrent CLEAN [Nocker91a]. A proto
type implementation for a 64 node Transputer machine is under construction, 
but not all issues discussed in Section 3.1 have been addressed yet. Therefore, 
we limit the discussion to some distinguishing features of the PABC machine. 
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Like most parallel implementations, the spark-and-wait annotation has to 
be used to denote parallel tasks in the PABC machine. In addition, the program
mer has to explicitly control task allocation as well by adding annotations to 
the source program [Achten91]. The programmer specifies on which processor 
a new task should run by means of a set of built-in predicates. For example, 
tasks can be placed at a neighbour, a random processor, or the processor that 
holds a specific graph node. 

For efficiency the graph transport between processors is not on a per node 
basis, but rather with a sub-graph at a time. Before transmission, the graph is 
copied into a message buffer, so that it can be transported as a single packet. 
Maintaining sharing in the transported graph complicates the copy algorithm 
[van Groningen92]. 

The parallel graph reducer uses two stacks per task. These stacks are 
allocated in a fixed-sized block growing in opposite directions. On overflow, 
the stack pair is reallocated (i.e. copied) to a larger block; this apparent 
inefficient solution has been proven satisfactory in a simulator. The heap will 
probably be managed by composite reference-counting/local-copying garbage 
collector as devised by Lester. 

Preliminary performance results for a 16 Transputer implementation have 
been published [Kesseler92]. 

3.2.8 GRIP 

The GRIP (Graph Reduction In Parallel) machine is a purpose-built shared 
memory multiprocessor for executing functional programs [Peyton Jones87a, 
Peyton Jones89, Hammond91 ]. The hardware consists of up to 20 boards, 
each holding four processors and one Intelligent Memory Unit (IMU), inter
connected by a single fast packet-switched bus (Futurebus). An IMU consists 
of memory and a microprogrammable data engine that supports graph reduc
tion at a higher level than simple read and write instructions of conventional 
memory. It performs allocation of variable-sized heap cells, garbage col
lection, locking of shared nodes, and task scheduling. The IMUs together 
constitute a uniform accessible shared memory. Each processor (MC68020) 
is also equipped with a floating point co-processor and a private local memory 
(lMbyte) that has to be addressed separately and can not be accessed from 
outside. 

To take full advantage of GRIP's hardware architecture, the graph reducers 
use part of the local memory attached to each processor as a cache for the 
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global heap that resides in the IMUs. Whenever a global node is accessed, 
a local copy is created first, and subsequently used. Copying redexes might 
duplicate work, so the IMU sets a lock bit when a node is fetched for the first 
time, and automatically attaches tasks to a waiting list on subsequent fetches. 
When the node is updated, the waiting tasks are placed in the task pool, which 
is managed by the IMU. 

New nodes are allocated in the local memory, not in the IMU. Only when 
a global node is updated with a local node, a copy of the entire local sub graph 
is created in the global heap. This flushing mechanism prevents the creation 
of global pointers to local nodes, so that the local garbage can be reclaimed 
autonomously. When the local heap fills up, a part of the local graph nodes is 
flushed to the global heap to create new free space. Global garbage is reclaimed 
by the IMUs in parallel after the reducers have been suspended. 

Stacks are allocated in the local heap as (large) fixed sized nodes; if a stack 
overflows, a new stack segment is allocated and linked to the old one. When 
the stack shrinks again the new stack segment is discarded, and execution 
continuous with the old one. The stack of a blocked task is moved to global 
memory when the processor runs out of local space. 

Each processor maintains a local task pool to record expressions that might 
be evaluated in parallel. When the system load is low enough, some tasks are 
exported to an IMU while flushing the corresponding expressions to the global 
heap as well. Based on the system load, which is sampled once per millisecond, 
the IMUs employ a LIFO (high load) or FIFO (low load) scheduling policy. 

To control the excessive generation of parallel tasks, two throttling mech
anisms are employed at runtime: 1) the spark rate controls the maximum 
number of tasks a processor is allowed to create in one tick, 2) when the global 
number of tasks exceeds the spark cutoff level, all processors refrain from 
creating tasks. Preliminary performance results on an 18 processor prototype 
show that a LIFO scheduling policy in combination with spark cutoff throttling 
reaches acceptable performance on fine-grained applications: nfib loses only 
a factor of two in comparison to perfect linear speedup. 

3.2.9 HyperM 

The HYbrid Parallel Experimental Reduction Machine (HyperM) is the suc
cessor to the distributed memory machine developed by the Dutch Parallel 
Reduction Machine project [Hertzberger89, Barendregt87]. The HyperM ar
chitecture [Barendregt92] contains a number of clusters interconnected by a 
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high speed network, where each cluster consists of a few processors connected 
to a shared memory. The shared memory clusters have been included to in
crease performance, while retaining the scalability of the original APERM 
design. The parallel graph reduction inside the clusters is the research topic 
of this thesis and is discussed fully in Chapter 4; this overview of the HyperM 
machine includes only the main results. 

Unlike the previous parallel machines, the HyperMachine is programmed 
with a single divide-and-conquer skeleton named sandwich. Many applica
tions, however, can be expressed either directly or through transformation as 
divide-and-conquer programs [Vree90]. To enforce the efficient execution of 
coarse grain tasks, the sandwich skeleton eagerly reduces all shared data be
tween tasks to normal form before sparking them for parallel execution. This 
effectively eliminates all problems related to shared redexes as they do not 
exist. Therefore tasks can be copied safely to remote clusters without duplicat
ing work, and graph nodes in shared memory can always be accessed without 
locking for exclusive access. A disadvantage of the sandwich is the eager 
semantics that might lead to non-termination. At the moment the programmer 
is responsible for assuring that only needed expressions will be evaluated in 
parallel. This is usually no problem for plain divide-and-conquer algorithms, 
otherwise the programmer can often transform the non-terminating application 
into a terminating equivalent program by a set of rules described in Chapter 4.2. 

The programmer is required to give a complexity-measure of each task 
in the sandwich skeleton, for example, the length of the list in the merge 
sort program. This grainsize information allows the runtime support system 
to regulate the minimal grainsize according to the system load by inhibiting 
sparks of tasks that are too small. In addition, work can be classified into 
two categories: coarse grain tasks that may be allocated at any cluster, and 
threads that are limited to one cluster and therefore can exploit shared memory. 
The coarse grain tasks are scheduled on the parallel machine by a hierarchi
cal scheduler [Hofman92a] that uses the grainsize information to determine 
heuristically how far away a task may be allocated. This has the advantage that 
work spreads faster over the machine than with distributed scheduling policies 
like diffusion scheduling, where tasks may only travel one hop. 

The sandwich reduction strategy allows for efficient storage management 
in the HyperMachine. Tasks are copied entirely to remote clusters and do not 
contain remote pointers, hence, garbage can be collected locally in each cluster. 
Each thread in a shared memory cluster is provided with a private heap, which 
is managed by a two-space copying garbage collector independent of other 
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threads [Langendoen92b]. This is possible because the sandwich limits inter 
thread pointers to child-ancestor pointers; there are no external root pointers 
into the private heap of a thread. The threads in HyperM time-share one 
common to-space so only a small fraction of the heap is wasted, not half the 
heap as in case of general parallel copying garbage collectors. 

The tree structure of divide-and-conquer algorithms allows for all tasks on 
one processor to share one single call stack by stacking their state on top of each 
other. Only the task on top of the processor stack can execute, but simulation 
studies have shown that this constraint hardly decreases performance in case 
of a LIFO/FIFO scheduling policy [Hofman92b]. Thus HyperM's storage 
manager allocates a: single large fixed-sized stack per processor on start up. 

At this moment a single cluster consisting of four MC88000 RISC pro
cessors and 64Mbyte of shared memory is running, and real speedups over 
a sequential version have been measured for small benchmark programs like 
nfib and 8queens. 

3.3 Comparison 

The discussion of the nine parallel graph reduction machines has been sum
marised in Table 3.1. Most machines can be classified as either shared memory 
or as distributed memory machines, except for GRIP and HyperM that combine 
the two memory types. GRIP is constructed as a shared memory machine, but 
each processor is equipped with private local memory as well. HyperM on the 
other hand, is constructed as a distributed memory processor where each pro
cessing element consists of a cluster of CPUs connected to a shared memory. 
The Flagship design is classified as a distributed-memory machine, although 
it provides a uniform accessible address space through special hardware that 
transparently maps global data to locally cached copies. 

The three Transputer-based distributed-memory machines (PAM, HDG, 
and PABC) provide a global address space in software through remote pointers, 
which are interpreted specially by the graph reducers. The distributed memory 
architecture of HyperM is not visible to the graph reducers since tasks are 
copied as self contained sub-graphs to remote processors, hence, graph reducers 
never need to fetch data outside their cluster; inside a cluster the shared memory 
provides a single global address space. The GRIP-machine is the only shared
memory machine that has a non-uniform address space: the graph reducer 
distinguishes pointers into its local memory, which can not be accessed by 
other processors, from pointers into global shared memory. This complicates 
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System architecture 
hardware type address space 

<v,G> Sequent Symmetry shared memory global 
AMPGR BBN Butterfly shared memory global 
GAML Sequent Balance shared memory global 
Flagship Custom VLSI distributed memory global 
PAM Transputers distributed memory remote pointers 
HDG T800-25 Transputers distributed memory remote pointers 
PABC T800-25 Transputers distributed memory remote pointers 
GRIP MC68020s with IMUs shared ( + local) memory global ( + local) 
HyperM MC88000(4x) clusters distr. ( + shared) memory global (copies) 

Parallelism 
source grainsize control # tasks control 

<v,G> spark-and-wait cut off fixed sized pool 
AMPGR compiler in-lining (by compiler) fixed sized pool 
GAML spark-and-wait cut off (load info) fixed sized pool 
Flagship compiler - -
PAM spark-and-wait cut off -
HDG compiler ( eval. transf.) - -
PABC low level annotations cut off -

GRIP spark-and-wait cut off spark rate + cut off 
HyperM divide&conquer skeleton cut off automatic cut off 

Resource management 
scheduling stack heap (garb.coll.) 

<v,G> global LIFO linked frames concurrent copying 
AMPGR two-level LIFO save/restore -
GAML global LIFO stack/task parallel copying 
Flagship diffusion, LIFO/FIFO - Weight.RC+mark-scan 
PAM diffusion linked frames Weight.RC 
HDG diffusion, LIFO/FIFO linked frames copying + Weight.RC 
PABC annotations stack/task + reallocation copying + Weight.RC 
GRIP local + global LIFO linked segments copying (local+global) 
HyperM hierarchical, LIFO/FIFO processor stack + ToS copying per task 

Table 3.1: Comparison of parallel graph reduction machines. 
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the graph reducer since it has to cope (flush) local nodes to global memory 
when updating global nodes. 

In general the problems associated with shared redexes are handled by 
locking to enforce mutual exclusive access, and marking to avoid duplication 
of work. The HyperMachine is an exception since it employs a reduction 
strategy that eagerly normalises shared data before sparking tasks. Several 
designs have taken measures to reduce the locking overheads: 

GAML An additional node type has been introduced to denote (potentially) 
shared application nodes; hence, ordinary application nodes do not need 
to be locked. 

GRIP Locking is performed transparently to the graph reducer by the Intelli
gent Memory Unit (IMU); hence, only global redexes are locked. 

PAM External requests for local data are handled by placing descriptors in 
the task pool. The single graph reduction unit processes one task at the 
time, hence, no locking is required at all. 

HDG Graph rewrites are made atomic by inhibiting interrupts in critical sec
tions. 

The AMPGR, Flagship, and HDG machines are driven by compiler derived 
parallelism, while the others require programmers to annotate expressions suit
able for parallel execution. In the latter case the programmer is also responsible 
for keeping a minimal grainsize that outweighs the sparking overheads. The 
AMPGR automatically increases the grainsize of the compiler-derived fine
grain tasks by in-lining the first spark inside every function. The Flagship and 
HDG machines have no provisions to control the grainsize of their compiler 
derived parallelism. 

To control the number of tasks in the parallel machine, most schedulers 
employ a LIFO/FIFO allocation policy that achieves good results for divide
and-conquer applications. In addition, the <11,G>, AMPGR, GAML, and 
GRIP machines limit the number of tasks by discarding tasks in case of excess 
parallelism. Tasks may be discarded safely since the parent task will eventually 
reduce the discarded task itself ( evaluate-and-die model). 

Scheduling is of particular importance since it is the prime means to control 
the resource demands and locality in (remote) references of the application. 
The locality in particular has a large effect on performance, especially in 
distributed memory machines where the number of messages to resolve inter
processor references should be kept low to avoid communication congestion. 
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In some shared memory machines (i.e. AMPGR and GRIP) a two-level sched
uler is used to achieve locality: tasks are usually placed in a local task pool 
associated with the sparking processor; when this pool fills up, tasks are spilled 
over to a global task pool. Diffusion scheduling algorithms, which limit tasks 
to travel only one hop from their originating processor, are employed by sev
eral distributed memory machines. To avoid the slow spreading of work under 
diffusion scheduling, and enhance locality even further, the HyperMachine 
uses a hierarchical scheduler; a user-annotated complexity measure indicates 
at which scheduling level a task may be handled, i.e. how far away the task 
may be allocated. The PABC machine takes the approach of having the user 
control the task allocation through program annotations. 

The complexity of supporting an arbitrary number of dynamically sized 
stacks in a parallel graph reduction machine, has resulted in several designs that 
use a linked list of call frames in the heap instead: <v,G>, PAM, and HDG. In 
GRIP a linked list of segments is used; each segment holds a number of stack 
frames. The PABC machine allocates fixed sized blocks as stack space, and 
reallocates the stack to a larger block on overflow. Both AMPGR and HyperM 
use a single stack per processor that is used by all graph reduction tasks 
allocated to one processor. The AMPGR machine saves a task's state in the 
heap when it blocks to await the result of another task, when execution resumes 
the state is restored on the processor stack. HyperM does not save/restore state, 
but leaves it on the· processor stack; the processor stack is used as a stack of 
stacks, and the scheduler is constrained to schedule only the Top-of-Stack 
(ToS) task for execution. 

Copying garbage collectors are used in most machines because of their ef
ficiency and ability to allocate variable sized nodes. In (small) shared memory 
machines it is possible to let all processors synchronise when running out of 
free space, then either all processors participate in copying live data (GAML) 
or one processor collects garbage while the others continue graph reduction 
( <v,G> ). To avoid global synchronisations and reduce inter processor traffic, 
the early distributed memory machines (Flagship and PAM) use weighted refer
ence counting to reclaim garbage. Recent designs (HOG and PABC) combine 
weighted reference counting to handle inter-processor references with copying 
collectors to reclaim local garbage fast. The GRIP machine also uses two 
garbage collectors: plain copying to reclaim garbage in each local memory, 
and real-time compaction to reclaim garbage in the (global) IMUs. The Hy
perMachine assigns a private heap to each task, and reclaims garbage for each 
task individually with a copying collector. 
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3.3.1 Performance 

Performance measurements are necessary to make a quantitative comparison 
between the parallel graph reduction machines. Ideally a standard benchmark 
of large 'real' parallel functional programs should be evaluated on each ma
chine, but no such benchmark exists (yet): we have to look at measurements 
of small toy programs instead. Unfortunately, few results are actually reported 
for each machine and, worse, different algorithms have been used to solve the 
same problem. Only the notorious nf ib program, a one-liner to compute 
the number of function calls per second, has been coded in similar style and 
measured on most parallel reduction machines. 

machine processor sequential parallel(l) parallel(#proc) speed-up 
AMPGR 68020 16Mhz 1.3 Knfib/s 19 Knfib/s (15) -/ 15 
Flagship I 
PAM Transputer 20Mhz 1.3 Knfib/s 15 Knfib/s (12) -/12 
<v,G> 80386 16Mhz 64 Knfib/s 43 Knfib/s 320 Knfib/s (15) 5/8 
GRIP 68020 16Mhz 36 Knfib/s 36 Knfib/s 188 Knfib/s (6) 5.2 / 5.2 
GAML NS 32032 19 Knfib/s 12 Knfib/s 69 Knfib/s (8) 3.6 / 5.8 
HDG Transputer 25Mhz 27 Knfib/s 17 Knfib/s 59 Knfib/s ( 4) 2.2 / 3.5 
PABC Transputer 25Mhz 207 Knfib/s 1795 Knfib/s (16) -/ 8.7 
HyperM MC88000 25Mhz 1520 Knfib/s 1500 Knfib/s 6000 Knfib/s ( 4) 3.9 / 4.0 

Table 3.2: Nfib ratings for various functional language implementations. 

Table 3.2 lists the nfib ratings for the surveyed machines as published in 
various articles. The column labeled 'sequential' presents the results for a 
pure sequential graph reducer on one processor. The next column shows the 
ratings for a parallel graph reducer that sparks tasks and incurs other overheads 
like locking to support parallel execution. Comparing the two columns shows 
that, except for GRIP and HyperM, parallelism does not come for free: more 
than 30% overhead costs are incurred. The GRIP machine does not loose 
performance since the locking actions are performed in parallel by the IMUs, 
and the hand-annotated nfib program produces just 32 coarse grain tasks so 
negligible task management overhead is incurred. The HyperM also uses 
coarse grain tasks, which explains why it only incurs a 1 % loss due to task 
creation overhead. 

The column labeled 'parallel(#proc)' presents the maximum nfib rating 
measured on the machine, the number of processors is included in parenthe
sis. Finally, the last column provides the real speed-up over the sequential 
implementation, as well as the relative speed-up over a parallel run on a single 



3.4. Conclusions 75 

processor. Note that only the slowest sequential implementations reach per
fect linear speed-up, while others suffer from a loss in efficiency due to task 
management overhead. 

It is impossible to draw any sensible conclusion about important design 
issues taken in each machine from the absolute nfib ratings of Table 3.2 since 
the bare hardware performance differs greatly. The relative speed-ups provide 
no fair comparison either since it is rather easy to speed-up slow sequential 
implementations, but it is far more difficult to speed-up state-of-the-art graph 
reduction. 

3.4 Conclusions 

The lack of a comprehensive benchmark of parallel functional programs and 
corresponding performance measurements makes it impossible to draw con
clusions about the impact of important design decisions like memory allocation 
policy, task scheduling, etc. Therefore, we conclude by signaling some trends 
observed in the surveyed parallel machines (see Table 5.2). 

Most machines are driven by explicit parallelism though annotations in 
the program source; only the Flagship and HDG machine exploit implicit 
parallelism detected by the compiler. The general spark-and-wait annotation is 
always used in combination with explicit grain size control by the programmer. 
This trend of having the programmer annotate parallelism and control grainsize 
contrasts sharply with the initial interest in functional languages: early parallel 
machines described in [Treleaven82, Kennaway83] all try to exploit the implicit 
parallelism of functional programs without any user assistance. 

The current set of parallel implementations of lazy functional languages, 
however, do still require less user assistance than their imperative counterparts 
since task scheduling and storage management are automatically handled by 
the runtime support system. Each machine uses its own unique set of resource 
management policies, but in case of heap management most designs include a 
two-space copying garbage collector adapted for parallel processing. 

To catch up on the performance of non-functional competitors like object
oriented based systems, many researchers follow the advice of [Vrancken90] 
and concentrate on advancing sequential compilation technology. This trend is 
likely to change future parallel implementations of functional languages since 
fast implementations are rather sensible to runtime support overhead costs. 





Chapter 4 

WYBERT: graph reduction on 
shared memory 

Shared-memory multiprocessors are suitable targets for parallel functional 
language implementations since these architectures support the parallel graph 
reduction model in hardware. Multiple reducers can straightforwardly rewrite 
redexes in the shared program graph, provided that application nodes are 
equipped with locks to avoid two graph reducers rewriting the same redex. This 
"natural" fit between parallel graph reduction and shared-memory multiproces
sors eases the parallel implementation of functional languages in comparison 
to distributed-memory machines, see Chapter 3, but at the cost of scalability 
since only a limited number of processors can execute in parallel in a shared 
memory multiprocessor without saturating the bus to memory. To push the 
point of saturation as far as possible, the WYBERT approach to parallel graph 
reduction on shared memory multiprocessors employs the cache local to each 
processor to its full extent. When the performance needs exceed the capacities 
of one shared memory multiprocessor, several WYBERT machines can be 
grouped together to constitute a HyperMachine as described in Section 1.4. 

The usage of WYBERT as a building block for a scalable distributed mem
ory HyperMachine shows through in several aspects of the design such as the 
generation of coarse-grain parallelism through explicit user annotations. Sec
tion 4.1 presents an overview of the basic decisions taken to achieve high per
formance on shared-memory multiprocessors, while the later sections contain 
in-depth discussions of the most important design aspects of WYBERT: pro
cess synchronisation (Section 4.2), task scheduling (Section 4.3), and storage 
management (Section 4.4). Implementation details and performance results of 
the integrated WYBERT system will be presented in chapters 5 and 6. 
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4.1 Design considerations 

The rapid improvements in sequential implementation techniques of func
tional programming languages, a hundredfold increase in execution speed in 
five years, has prompted for a strict separation between graph reduction and 
parallelism in WYBERT. This assures that new reduction mechanisms can be 
incorporated for parallel execution in WYBERT with minimal implementation 
effort. The software of WYBERT is constructed as a set of graph reducers 
executing ordinary sequential code that occasionally calls the runtime support 
system to handle parallel activities like task scheduling. Such a high-level 
interface at the function call level implies some overhead, but the separa
tion of parallelism and graph reduction has already proven itself in practice: 
WYBERT started out with an interpreter based on SKI-combinator reduction, 
and ended up with a state-of-the-art compiler generating code that runs about 
30 times as fast. 

The WYBERT runtime support system (RTS) is designed for an abstract 
multiprocessor constructed out of processors with local caches connected to 
shared memory. Cache considerations are explicitly included in the design 
of WYBERT because of their importance on the overall performance. For 
example, for memory bounded applications like graph reduction, caches can 
effectively reduce the number of requests issued on the global connection to 
shared memory. Thus, the effective exploitation of caches makes it possible 
to include more processing elements without saturating the shared memory 
bottleneck in the multiprocessor. 

The performance and portability considerations above, combined with 
the "external" requirements from the HyperMachine have led to a design 
that differs considerably from other parallel graph reduction implementations 
for shared-memory machines as discussed in Chapter 3. The difference is 
the choice to only support the high-level divide-and-conquer paradigm for 
generating parallel tasks instead of the more general low-level spark-and-wait 
model. This divide-and-conquer skeleton named sandwich has been taken 
directly from the preceding APERM prototype machine. The corresponding 
evaluation mechanism, however, has been refined for usage on shared-memory 
machines as well, see Section 4.2. The advantage of supporting the divide
and-conquer skeleton is that the RTS can exploit the restricted parallelism to 
efficiently manage the machine resources. 
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4.1.1 Divide-and-conquer parallelism 

Functional programming languages provide abundant implicit parallelism, but 
the fine-grain nature does not match with stock hardware. For example, to take 
full advantage of the caches the grain size of a task should be large enough to 
overcome the initial cold start misses that fetch the working set into the cache. 
Since automatic grainsize enlargement is too difficult (see Section 3.1.5), the 
user must explicitly annotate in the program source the expressions that are 
worthwhile to be evaluated in parallel. To limit the amount of process synchro
nisation, as well as for the user's convenience, WYBERT does not support the 
general low-level fork annotation (spark-and-wait parallelism), but is driven 
by the sandwich skeleton based on the divide-and-conquer paradigm; typical 
divide-and-conquer programs partition a given problem into parts that can be 
solved independently of each other, hence, process synchronisation is only 
required at the beginning/end of a part. The minimal process synchronisation 
behaviour of coarse-grain divide-and-conquer applications allows for efficient 
execution on both large distributed memory machines (APERM and HyperM) 
and shared memory multiprocessors (WYBERT). The programmer is respon
sible for controlling the grainsize of individual tasks so that management 
overhead can be tolerated. 

A large class of applications can be programmed with straightforward 
divide-and-conquer parallelism, while transformational methods have been 
developed to cover synchronous process networks and pipeline parallelism 
as well [Vree90, Langendoen91a]. Programs with irregular communication 
patterns like 'the sieve of Eratosthenes', however, can not be handled with 
the sandwich annotation. The following program shows how, for example, 
the merge sort algorithm can be expressed as a parallel divide-and-conquer 
algorithm: 

psort [ ] [ ] 

psort [ X] = [ X] 
psort list = sandwich merge (psort L) (psort R) 

where 
(L,R) = split list 

When the function psort is applied to a list (list), that list is recursively 
subdivided into ever smaller lists until the trivial case of the empty or singleton 
list is met. At each invocation of psort the sandwich annotation creates 
two new tasks to sort the left and right halves of the list, which are then 
combined by the merge function into one result. The parallel sort program, 
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however, generates far too many tiny tasks to achieve acceptable performance 
on a parallel machine. For efficient execution the parallel tasks should satisfy 
the following constraints: 

(a) The result of a task should be needed to compute the final program's 
result. This condition rules out speculative parallelism, and assures that 
no processing power is wasted in computing useless values. 

(b) The cost to evaluate a task should outweigh the overheads of allocating 
the task at a remote processor. This guarantees that parallel execution 
on an idle processor is faster than sequential execution locally. 

(c) The task has to be self contained, that is tasks may not share delayed 
computations that still have to be evaluated (i.e. suspensions/closures). 
This allows a task to execute independently without any synchronisation 
with other active tasks. 

The programmer can rather easily fulfill conditions (a) and (b), but it is con
siderably more difficult to meet condition (c) because of the lazy evaluation 
mechanism that often creates a large number of shared suspended computa
tions. For example, the psort function can be improved to generate tasks 
with a minimal grainsize by switching to the sequential msort code when the 
length of the argument list falls below some threshold: 

threshold= 481 

psort [l [] 
psort [x] = [x] 
psort list= msort list, if #list< threshold 

sandwich merge ( psort L) ( psort R) , otherwise 
where 

(L,R) = split list 

Note, however, that the parallel tasks are not independent since L and R share 
the common computation 'split list'. It is possible to explicitly force 
the normalisation of L and R by inserting Miranda's system function seq, 
but this approach is tedious and error prone for large applications. Therefore 
WYBERT includes a special reduction strategy for the sandwich annotation that 
automatically normalises task arguments to create independent tasks according 
to condition ( c ). 
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Since this book discusses the implementation issues we do not go into 
greater detail of how to write parallel programs with the sandwich annota
tion; the reader is referred to the original work performed within the DPRM 
project [Vree89], which has shown that the hard part is controlling the grain 
size, not the insertion of the sandwich annotation. 

4.1.2 The FRATS reduction strategy 

As already pointed out in Chapter 3 parallel graph reduction is complicated 
by the existence of shared redexes that have to be updated for efficiency. In 
general the problem of keeping graph nodes consistent in shared memory is 
solved by extending the individual nodes with a lock field to enforce mutual 
exclusive access. In some cases it is possible to encode the lock in the node 
tag without any space overhead, but the disadvantage of these implicit task 
synchronisations is the negative impact on runtime performance. Besides the 
overhead of acquiring and releasing locks, the traffic on the global bus increases 
since each lock operation has to show through from the local cache to all other 
caches to guarantee consistency. Measurements reported in Chapter 6 show 
that applications waste up to 50% of their execution time in locking overheads. 

Instead of curing the problem of shared redexes, the FRATS reduction 
strategy avoids it altogether by adopting APERM's idea of eagerly normalising 
shared data before sparking parallel tasks [Hartel88a, Vree89]: shared redexes 
simply do not exist. The sandwich annotation provides an explicit handle to 
the FRATS (First Reduce Arguments Then Share) reduction strategy to control 
shared redexes. All potentially shared redexes are "squeezed" out of the tasks 
by evaluating the function bodies and their corresponding arguments to normal 
form, as will be explained in Section 4.2. Therefore tasks executing in parallel 
can only share read-only data, hence, tasks may execute independently of each 
other without locking of graph nodes or any other low-level synchronisations; 
for distributed systems, tasks can be copied safely to remote processors without 
duplicating work. 

At runtime a divide-and-conquer application programmed with the sand
wich annotation (recursively) unfolds into a tree shaped task structure with 
independently executing leaf tasks. Both the scheduler and storage manage
ment of WYBERT take advantage of this regular task structure. 
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4.1.3 Task scheduling 

A straightforward scheduler of "sandwich" tasks on a shared memory multi
processor uses a global pool of executable tasks where processors store newly 
created tasks and fetch work when running idle. This straightforward schedul
ing policy is known as list scheduling [Graham69]. However, to take advan
tage of the tree-shaped task structure of divide-and-conquer programs, and to 
avoid the bottle-neck of the global task pool when scaling to large machines, 
WYBERT uses the LIFO/FIFO scheduling variant of the Manchester throttle 
mechanism (Section 3.1.5). Each processor maintains a local task pool, where 
other processors may steal work when running idle. After a short initialisation 
phase, each processor executes its part of the application's divide-and-conquer 
tree in depth first order. As a result this scheduling policy exploits the caches 
very well since the most recently created task is scheduled first, and that task 
is most likely to find (part of) its data set in the cache. 

The LIFO/FIFO scheduler has been adapted to support fast context switch
ing and efficient stack management. The depth-first traversal of the task tree 
allows all tasks that execute on the same processor to share one reduction stack, 
the processor stack, as a stack of stacks. At start up, a task sets its private stack 
pointer to the current top of the processor stack. If the task executes a sandwich 
and blocks to await the results of its children, the task leaves its local state on 
the processor stack, and the next fresh task starts to allocate its stack on top of 
the blocked task, etc. When a blocked task has received the results of all its 
children, it becomes executable again, but that task may only resume execution 
after all tasks on top of it have finished, otherwise it could overwrite the state 
of other tasks. 

The Top-of-Stack (ToS) scheduling constraint can lead to a loss of all 
parallelism in rare cases. Results in Section 4.3, however, show that for a 
benchmark of divide-and-conquer applications negligible processing power is 
wasted by idling processors. The advantage of the ToS scheduler is the usage 
of a single stack per processor, which is easy to manage in comparison to the 
general problem of supporting a private stack per task whose maximum depth 
is unknown in advance (see Section 3.1.3). 

4.1.4 Local garbage collection 

It is already difficult to implement garbage collection correctly for sequential 
graph reduction, but it is even more difficult for a shared memory multipro
cessor that features one global address space and several parallel reducers. 



4.1. Design considerations 83 

Efficient stop-and-go garbage collection algorithms like mark&scan and two
space-copying traverse the complete graph to identify all live nodes. This 
forces a total synchronisation of all graph reducers in the multiprocessor be
cause as soon as one graph reducer runs out of free space, all other graph 
reducers have to be stopped before the (global) collector can safely reclaim the 
garbage. The interrupted graph reducers have to leave the graph in a consistent 
state for the garbage collector, which complicates the graph reducer design. 
For these reasons distributed garbage collection per processor is preferred. 

Although the FRATS reduction strategy guarantees read-only access of 
shared live data, which facilitates local graph reduction, it does not pose any 
restrictions on accessing garbage! In particular, FRATS does not prohibit that 
two child tasks both delete a reference to the same shared node, which forces the 
tasks to synchronise to determine the new status (live or garbage) of that node. 
As a consequence reference counting algorithms disqualify as local garbage 
collectors since they require a lock per node in the graph to enforce mutual 
exclusive access. Local garbage collection based on stop-and-go algorithms, 
however, is possible for the leaf tasks of the divide-and-conquer task tree. 

Leaf tasks can refer to shared data that has been generated by some common 
ancestor task, but this data will never be updated because it has already been 
normalised. The lack of updates of shared nodes makes it impossible for 
tasks to make references to freshly created "local" nodes of other active tasks, 
hence, pointers between active tasks do not exist. This observation allows 
for the efficient stop-and-go garbage collection of a leaf task without the need 
to consult other tasks for incoming pointers. The storage management of 
WYBERT incorporates local garbage collection as follows: 

• At the start of its execution a task is provided with a private heap. 

• During execution a task runs a two-space-copying collector ( or any other 
stop-and-go collector) on its private heap to reclaim garbage whenever 
it runs out of free nodes. 

• When a task executes a sandwich it is suspended and its heap may not 
be garbage collected since (active) offspring can refer to nodes in it. 

• At the end of its execution the task's heap is appended to the heap of its 
parent. 

The two-space-copying garbage collection algorithm [Cheney70] has the ad
vantage over the mark&scan algorithm that it can easily handle variable sized 
nodes, which are commonly used in modern graph reducers. 



84 Chapter 4. WYBERT: graph reduction on shared memory 

Besides the advantage of avoiding complex synchronisations between all 
processors during a global garbage collect, WYBERT's local garbage collec
tion method with private heaps does not need to reserve half of the available 
memory for the to-space: all processors can time share one common to-space. 
If the size of a task is bounded to M/p, which is reasonable if memory of 
size M is to be equally partitioned among the parallel tasks executing on p 
processors, then the overhead is reduced to a fraction M / (p + l). The restric
tion that just one processor can collect its garbage at any time does not limit 
performance much since a single garbage collector already consumes a large 
fraction of the memory bandwidth. 

4.1.5 Evaluation method 

The remaining sections of this chapter discus in detail the most important design 
aspects of WYBERT: The FRATS reduction strategy [Langendoen91b], ToS 
scheduling [Hofman92b], and local garbage collection [Langendoen92b]. The 
feasibility of each aspect is assessed individually by simulating the behaviour of 
a set of benchmark programs; performance results of the integrated WYBERT 
system will be presented in Chapter 6. The set of benchmark programs used 
in this chapter is listed in Table 4.1, but not all programs are used in every 
simulation for historical reasons. 

Programs are written in the lazy functional programming language Miranda 
and annotated with the sandwich construct to explicitly denote divide-and
conquer parallelism. The number of lines of source code (without comments 
and blank lines) is included in Table 4.1 to indicate which programs are "toys" 
and which are "realistic". 

To evaluate the WYBERT system we have built simulation tools and a 
prototype implementation on real hardware (see Chapter 6). In this chapter the 
following two simulators are used: 

SIS The oldest simulator is based on an extended interpreter of the lazy func
tional language SASL [Turner79b], which is a predecessor of Miranda. 
A program is compiled into a set of combinators that includes a special 
sandwich combinator. The simulator starts interpreting the combinator 
graph until it reaches a sandwich combinator. Then squeezes the task 
arguments to normal form, simulates the parallel task execution by se
quential evaluation, and registers task specific properties like number of 
reduction steps, size of task graph, etc. The resulting task description file 
is used to compute the speed-up on an ideal parallel machine (unlimited 
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program #lines description 
NFIB 11 The notorious program that counts the number of function 

calls needed to compute the 35-th Fibonacci number. 
COINS 16 A program that computes all ways in which 2.79 can be 

paid with coins of value 2.50, 1.00, 0.25, 0.10, 0.05 and 
0.01; a list of coins for each possibility is printed. 

QUEENS 29 A divide and conquer solution to the 10-queens problem 
[Langendoen91a]. 

MSORT 30 Mergesort on a list of 1024 elements (sin 1, ... , sin 1024). 
osoRT 24 Quicksort on a list of 1024 elements (sin 1, ... , sin 1024). 
DET 43 Computes the determinant of a matrix by straightforward 

recursive decomposition; a (sub) matrix is represented as a 
list of lists. 

FFT 95 Fast Fourier Transform on a vector of 512 points 
[Hartel92]. 

WANG 100 Wang's algorithm for solving a tri-diagonal system oflinear 
equations. The matrix is divided into fixed blocks, the 
algorithm consists of two parallel passes ( elimination and 
fill-in) on the blocks [Wang81]. 

15-PUZZLE 109 Abranch and bound program to solve the 15-puzzle. The it
erative deepening search strategy (IDA*) is used [Glas92]. 

SCHED 132 A program to find the optimal schedule of a set of tasks 
on a number of processors. Implemented as a parallel tree 
search algorithm [Vree89]. 

COMP-LAB 207 An image processing application that labels all four con-
nected pixels into objects with a unique label [Stout87, 
Embrechts90]. 

WAVE 230 A mathematical model of the tides in the North Sea. Con-
sists of a sequence of iterations that updates matrix parts 
in parallel [Vree89]. 

RANGE 368 A program to answer a set of queries on a database that 
is divided in separate parts. Each lookup is performed in 
parallel [Hartel89]. 

Table 4.1: The Divide & Conquer benchmark applications 
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amount of memory, no synchronisation costs, no bus contention, etc.). 
This SIS (Sandwich In SASL) simulator has been used for evaluating 
FRATS (Section 4.2) and ToS (Section 4.3). 

MiG The second simulator is based on compiled code as generated by the 
FAST/FCG compiler of Chapter 5. The compiler inserts monitoring 
code that traces the memory references made by the application. The 
address trace generation is executed under control of the stripped version 
of the MiG simulator [Muller93], which is developed to study cache co
herency and bus saturation effects of parallel functional programs. The 
multiprocessor simulator assigns fixed costs to executed instructions, 
loads, and stores. Semaphore primitives are fully simulated to get realis
tic synchronisation behaviour. The runtime support system of WYBERT 
is not part of the MiG simulator and is included as an ordinary part of 
the application program. The RTS code, however, has been augmented 
to collect statistics like memory usage of the benchmark programs. 

The MiG simulator produces more accurate results than the SIS simulator since 
it is based on a model of instructions instead of "reduction steps" and because it 
takes contention on semaphores into account. Even though the MiG simulator 
does not considers caching effects, it has been measured that the simulator 
provides accurate execution times for the benchmark programs within a 15% 
range of the actual measured times on a SUN 4/690. 

4.2 FRATS: A parallel reduction strategy 

The purpose of the FRATS reduction strategy is to remove the low-level de
pendencies between parallel tasks annotated by the sandwich construct, so 
they can be computed independently. This is accomplished by normalising 
the shared data before sparking the task for parallel execution. The runtime 
behaviour of a parallel application under FRATS shows a tree of indepen
dent tasks that only synchronise at the beginning/end of their execution. This 
sparse synchronisation structure allows for efficient implementation on shared 
memory multiprocessors. 

The FRATS reduction strategy is a refinement of the sandwich reduction 
strategy for the APERM distributed memory machine [Hartel88a, Vree89]. An 
arbitrary expression is sequentially reduced to normal form until an application 
of the sandwich primitive is encountered. 
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sandwich G task1···taskn 
where 

taski = Fi ai1 · · · aim, 
and 

Fi and G are arbitrary functions 

Then the following steps are taken: 
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1. All shared expressions are "squeezed" out of the tasks. This means that 
the function bodies Fi and their corresponding arguments ~1 · • • ciimi 

are each evaluated to normal form. 

2. A set of tasks is sparked to evaluate the arguments of G: task1 

taskn to normal form and in parallel. 

3. Upon termination of all tasks from step 2, the function G is invoked with 
the computed argument values. Then normal order reduction resumes. 

The squeeze in step 1 ensures that the tasks sparked in step 2 do not share 
any redex. Hence, these tasks cannot modify any part of the graph accessible 
by others. On exit, however, each child task returns its result by updating 
the corresponding root redex in the parent graph (i.e. an argument of G), but 
since the parent task is suspended until step 3 this does not cause a consistency 
problem. The squeeze, combined with suspending the parent, guarantees that 
active tasks only share read-only data, hence, graph nodes in shared-memory 
can always be accessed without locking for exclusive access. 

The difference between FRATS and the original sandwich reduction strat
egy for APERM is that expressions at function positions (i.e. the expressions 
Fi) are also reduced to normal form in step 1. APERM can live with some 
shared redexes at the expense of superfluous work when shared redexes get 
copied to remote processors. For WYBERT, however, a single shared redex is 
enough to cause inconsistencies, and cannot be tolerated. 

A disadvantage of the FRATS reduction strategy is that the squeeze in step 
1 deviates from the standard lazy evaluation mechanism, which might lead 
to non-termination in the worst case. To avoid any superfluous computation 
the functions G and Fi from the sandwich definition have to be "extremely" 
strict in all their arguments. It is not enough to demand strictness in the usual 
sense of needing a head normal form, since FRATS will completely evaluate 
those arguments to normal forms to squeeze out all shared redexes. When the 
sandwich annotation is used with a non-strict function G or Fi then evaluation 
under FRATS results in evaluation of unneeded expressions, and sometimes 
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non-termination. This problem can be solved by program transformation as 
will be shown in the next section. 

4.2.1 Termination through transformation 

In functional programs datastructures like lists are often used as glue between 
modules that result from functional decomposition. Two modules connected 
in a producer-consumer relation can communicate via an infinite datastructure 
because of lazy evaluation semantics as shown in Chapter 2. Such an infinite 
producer causes problems when it is present in a task argument without the 
consumer as in the following example: 

sandwich join (consumer infinite_producer) 

If no special measures are taken, FRATS starts to completely evaluate the 
datastructure to squeeze out all shared redexes, and will never terminate as the 
datastructure is infinite. Fortunately a mechanical transformation suffices to 
change a non-terminating program under FRATS into a terminating one. With
out loss of generality we may assume that infinite computations/datastructures 
are defined by the application of a recursive function to one single data value. 

infinite 
rec_fun par 

rec fun value 
. • . rec fun ... 

If infinite is used by a task in a sandwich construct, then the redex 
'rec_fun value' will be evaluated by FRATS, which results in a non
terminating evaluation. Note that FRATS reduces the arguments of a task 
separately. This property can be used to prevent the evaluation of an offending 
redex: the function and value part should be placed in different arguments of 
the task. This causes FRATS to reduce both parts independently without any 
problems since the offending redex has been removed. Of course the trans
formed task has to restore the original redex by applying the function to its 
argument value during execution. 

This solution is called value-lifting since the value part of an offending 
redex will be lifted out as an additional task argument. 

Value-lifting: Let fun be a function definition that contains an 
infinite computation denoted by 'rec_fun value'. Take out 
value as an extra parameter of fun and replace all occurrences of 
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fun with' fun value'. Repeat lifting until the value appears 
as a task argument inside a sandwich annotation. 
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The correctness and termination property of this transformation follow directly 
from the close correspondence with lambda lifting [Peyton Jones87b]. In the 
following example the function bin computes a binomial coefficient and uses 
the sandwich annotation to compute three factorials in parallel. The definition 
of factorial is based on the equation facn = l * 2 * ... * n; it takes a list of the 
first n natural numbers and uses the higher order function prod to multiply 
them. 

from n 
prod 
nats 
fac n 
bin n p 

= n : from (n+l) 
= foldr (*) 1 
= from 1 

prod (taken nats) 
= sandwich form (fac n) (fac p) (fac (n-p)) 

where 
form fn fp fn_p = fn / (fp * fn_p) 

The FRATS reduction strategy squeezes all three tasks. In addition to evalu
ating arguments n, p, and n-p, the function fac will be reduced to normal 
form as well. This requires processing the function definition of fac, which 
contains a reference to the list of natural numbers nats. FRATS starts to eval
uate the list to normal form since otherwise the three sandwich tasks would 
use and evaluate elements of nats in parallel. The reduction of nats to 
normal form never succeeds since the 'from 1' expands into an infinite list. 
The value-lifting transformation breaks this redex into independent parts by 
lifting the value 1 (as parameterv) through nats and fac inside the sandwich 
annotation: 

nats v 
fac v n 
bin n p 

from v 
= prod (taken (nats v)) 
= sandwich form (fac 1 n) (fac 1 p) (fac 1 (n-p)) 

where 
form fn fp fn_p = fn / (fp * fn_p) 

Now the transformed program can be safely executed since the squeeze pro
cesses the from and 1 as individual components in different task arguments 
instead of as a redex 'from 1' in a single argument. The evaluation of each 
task starts by creating its own infinite list of natural numbers by applying the 
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value 1 to function nats. As a consequence (part of) the list nats will be 
computed three times, once for each factorial computation. In essence the 
value-lifting transformation provides each independent task with its own set of 
infinite datastructures, hence sharing between tasks is impossible. In principle 
the performance loss could be severe, but the analysis in section 4.2.4 shows 
that it is negligible for the benchmark programs. As an optimisation, it is not 
always necessary to perform value-lifting on recursive data: repeating patterns 
like ones below are compiled to finite cycles in the program graph. 

ones = 1 : ones 

Cycles won't be unrolled into infinite lists because FRATS records which 
nodes have already been visited during a squeeze. This also prevents multiple 
scans of shared data between tasks. After the squeeze the graph cycle does not 
contain any redexes and can be safely shared between parallel tasks. 

4.2.2 Curried functions 

The usage of curried functions complicates the recognition of infinite data
structures in the program source because they can generate such expressions 
at runtime. 

range ab 
trouble p 

take (b-a+l) (from a) 
= . • sandwich foe ( . . ( range p) .. ) .. 

For example, the function range returns the list ' [ a, a+ 1 , ••• , b] ' by 
taking a prefix of the infinite list ' [ a , a+ 1 ••• ] ' as generated by the ex
pression 'from a'. The definition of range can be seen as two processes 
connected through a list: a producer part 'from a' and a consumer part 
'take ( b-a+l) '. Evaluation of the term 'trouble 13' results in FRATS 
evaluating the curried function 'range 13' to normal form. In a fully lazy 
implementation this leads to the instantiation of the producer 'from 13' be
cause it only depends on the first parameter (a) of range. The consumer part, 
of course, cannot proceed without the second parameter (b ). Hence, FRATS 
will continue to completely evaluate the infinite list ' [ 13, 14, ..• ] '. 

Curried functions themselves can unfold into infinite datastructures. The 
previous producer and consumer of range can be merged into one function 
definition: 
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range ab=[], if (a>b) 
a: range (a+l) b, otherwise 

Although it looks as if range does not contain an infinite producer, the 
term 'range 13' again represents an infinite datastructure. Note that the 
subexpression 'range (a+ 1 ) ' does not depend on parameter band therefore 
can be evaluated as soon as parameter a is present. This is made explicit by 
performing fully lazy lambda-lifting [Hughes82] on the range definition, 
which results in: 

range a = rangeO a (range (a+l)) 
rangeO a next b = [], if (a>b) 

a: next b, otherwise 

Squeezing all redexes out of the expression 'range 13' results in an infinite 
chain of curried functions rangeO: 

range 13 = rangeO 13 (range 14) 
rangeO 13 (rangeO 14 (range 15)) 
rangeO 13 (rangeO 14 (rangeO 15 (range 16))) 

As with static infinite datastructures we can use the value-lifting transformation 
to enforce termination by breaking the dynamically generated redex. With the 
range examples we could lift pout of the redex 'range p' in the definition 
of trouble. For curried functions, however, a simpler transformation is 
possible. 

Order changing 

A fundamental observation about the range examples is that the consumer 
part of the definition 'take ( a-b+ 1 ) ' could not be initiated because it 
lacked a parameter while the producer of the infinite datastructure did have 
enough arguments to be evaluated. A simple reversal of the parameters suffices 
to make the producer dependent on the lacking parameter of the consumer: 

range ab rev_range b a 
rev_range b a= take (b-a+l) (from a) 
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Now itis impossible thatthe term 'range 13' generates the redex 'from 13' 
because it needs the parameter b to "call" function rev _range. This is due 
to the underlying semantics of functional languages. Again sharing is lost, but 
this transformation does not suffer the performance loss of dragging an extra 
parameter around as with the value-lifting transformation. To minimise loss 
of sharing we should not modify the general definition of range but just the 
calls that cause non-termination of FRATS's squeeze phase. This can easily 
be accomplished by inserting the higher order function delay at those places 
in the program source: 

delay fa b = converse f b a 
converse f b a= fa b 

The function delay will only call f when all arguments are present. Hence, 
the usage of delay with the range examples will prevent the squeeze from 
evaluating 'range p': 

trouble p = .. sandwich foo ( .. (delay range p) .. ) .. 

Cycle naming 

As with ordinary datastructures, the squeeze of a curried function can result in 
an infinite chain of one repeated curried function: a partial application of the 
same function and arguments. For example, the evaluation of the higher order 
function map applied to one argument. 

map f [] = [ ] 
map f (h:t) = f h: map ft 

Again we will perform fully lazy lambda lifting for clarity: 

map f mapO f (map f) 

mapO f next[] = [] 
mapO f next (h:t) f h: next t 

The squeeze of the expression 'map sqrt' will result in an infinite repeating 
chain: 
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map sqrt= mapO sqrt (map sqrt) 
= mapO sqrt (mapO sqrt (map sqrt)) 
= mapO sqrt (mapO sqrt (mapO sqrt (map sqrt))) 

When this chain is represented as a cycle in the graph, FRATS 's squeeze does 
terminate and no program transformation is necessary, just as with the ones 

example. In general, however, compilers do not generate code to create a 
cycle, but code to build a fresh node with the same curried application. This 
requires a program transformation to stop FRATS from endlessly building 
new partial applications. Unfortunately, a little help from the programmer 
is needed to get the desired cycle in the graph: explicitly naming the cycle 
through a local function definition suffices. The following definition of map 
forces the compiler to generate code that constructs a cycle at runtime. An 
extra advantage is that the local function mf has one parameter less than the 
original map, which results in fewer reduction steps. 

map f = mf 
where 

mf [ ] 
mf ( h: t) 

[ ] 
f h: mf t 

The class of cyclic unfolding functions is relatively large because in functional 
programs functions often carry some global state around in parameters, which 
rarely changes. 

4.2.3 Transformation methodology 

Whenever the FRATS reduction strategy causes problems, either superfluous 
computation or non-termination, the programmer has to apply one of the trans
formations described before. Value-lifting is the most general transformation 
and can always be applied, but it is also the most drastic one because usually 
a large number of function definitions have to be changed to lift the "value" 
to sandwich-level. The other two transformations operate on a single function 
definition, but can only be applied in a limited number of cases. In general the 
programmer should proceed in the following way: 
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1. Locate the offending redex (say R). 

2. Determine if Risa curried function (say 'fun val') 

yes If fun makes a direct call to itself with an unchanged parameter 
(val) then perform Cycle-naming else perform Order-changing 
on fun's definition. 

no Apply Value-lifting on R. 

The difficult part is finding the redex R in the first step, the rest can be done auto
matically by some software tool. At the moment, however, all transformations 
have to be applied by hand. 

4.2.4 Performance consequences 

In general FRATS's eager reduction strategy, to squeeze out shared redexes, 
will result in superfluous computation when a task is not strict in all its argu
ments. This requires a modification of the program to delay the computation 
by applying a transformation (value-lifting, order-changing, or cycle-naming) 
from section 4.2.1. If several tasks share a computation that needs to be 
transformed, sharing will be lost since the transformation causes each task to 
compute a private version during execution. To quantify the performance con
sequences of FRATS, superfluous computation and loss of sharing, we have 
analysed six programs of the parallel functional benchmark suite (Table 4.1): 
QSORT, FFT, WANG, SCHED, WAVE, and RANGE. 

total amount of execution [ reduction steps] I 
program lazy APERM FRATS transf +FRATS 

QSORT 558,387 558,429 558,408 426,320 
FFT 437,197 441,275 00 423,674 
WANG 121,273 121,524 00 121,166 
SCHED 191,934 194,773 207,455 198,706 
WAVE 236,362 238,637 236,603 231,630 
RANGE 9,871,499 10,640,802 00 7,789,470 

Table 4.2: Benchmark results of SIS simulator 

The first run of the benchmark with the SIS-simulator of Section 4.1.5 
was performed without any squeezing of arguments to measure the pure run 
length of the programs. The results are listed in the column labeled "lazy" of 
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program transformations 
QSORT cycle-naming (2x) 
FIT cycle-naming (2x) 
WANG cycle-naming (2x) 
SCHED order-changing (1 x) 
WAVE cycle-naming (2x) 
RANGE cycle-naming (5 x) + value-lifting (1 x) 

Table 4.3: Applied transformations 

Table 4.2. These values will be used as a reference to derive the amount of su
perfluous computation encountered by the other reduction strategies. The next 
column labeled "APERM" contains the results of using the APERM reduction 
strategy. Comparison with the first column shows that only the RANGE program 
incurs non-negligible superfluous computation (8% ). The FRATS reduction 
strategy is more strict than APERM since it also reduces the expressions at 
the function position of a task. This shows in the third column in table 4.2 
where three applications fail to terminate under FRATS. The SCHED program 
takes considerably more reduction steps, whereas the other two need some
what fewer steps than under APERM. This last decrease is caused by a small 
optimisation in FRATS that only squeezes n- l sandwich arguments, whereas 
APERM processes all arguments. 

Next the cycle-naming transformation was applied to each benchmark pro
gram. As a result all transformed programs do terminate under FRATS. In 
addition SCHED and RANGE needed a value-lifting and an order-changing trans
formation respectively to limit superfluous computations. Especially RANGE 

was sensitive to superfluous computations because the queries did not cover 
the whole database, which would be completely evaluated by FRATS without 
any transformation. The applied transformations are listed in Table 4.3, and it 
shows that only a small number was needed. 

The final performance of the transformed programs is listed in the last col
umn of Table 4.2 labeled "transf+FRATS". A remarkable observation is that all 
programs except scHED require fewer reduction steps than the original version. 
This is due to the cycle-naming transformation which uses a local function 
with one parameter less. The implementation of SASL (bracket abstraction, 
see (Tumer79a]) is very sensitive to the number of parameters: worst case 
execution time is exponentially proportional to the number of parameters. It 
is also the cause of the decreased performance of scHEn: order-changing was 
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speed-up 
program lazy APERM FRATS 

QSORT 3.58 3.51 4.81 
FIT 4.55 3.83 4.09 
WANG 4.46 4.07 4.14 
SCHED 12.14 9.76 11.23 
WAVE 1.85 1.82 1.84 
RANGE 3.91 1.90 1.85 

Table 4.4: Parallel performance compared to column "lazy" in table 4.2 

applied to a function with six parameters whose last one needed to be swapped 
with the first. This parameter shuffle is completely responsible for the incurred 
overhead. 

Although the benchmark results show that a few transformations suffice to 
avoid unnecessary computations, the squeeze of shared data by FRATS might 
severely reduce the parallelism of an application. Therefore we have looked at 
the speed-ups on an ideal parallel machine (oo processors, no task set-up time) 
as computed by the SIS-simulator. Table 4.4 contains these computed opti
mistic parallel speed-ups for the benchmark under various reduction strategies. 
It shows that FRATS performs slightly better than APERM in most cases and 
approaches the ideal values in the "lazy" -column. In case of osoRT FRATS even 
outperforms the original program because of the cycle-naming transformation. 
The disappointing performance of the RANGE application is a simple loss of 
parallelism caused by the normalisation of the database before the parallel 
queries. Further research is needed to improve FRATS performance in this 
case. 

The results of the benchmark programs as measured by the SIS simulator 
show that with a few program transformations tasks can be made independently 
of each other so locking at the level of graph-reduction is unnecessary. Elimi
nating shared redexes in advance only causes minor superfluous computation 
and does not significantly serialise execution (i.e. lower speed-ups), hence, 
all benefits are for free. The following sections will discuss two high-level 
optimisations that can be applied in scheduling and in memory management 
because of the task independence as enforced by FRATS. 



4.3. Top-of-Stack scheduling 97 

4.3 Top-of-Stack schedulingt 

A straightforward scheduler of "sandwich" tasks on a shared memory multi
processor uses a global pool of executable tasks where processors store newly 
created tasks and fetch work when running idle. This straightforward schedul
ing policy is known as list scheduling [Graham69]. Although applications 
under list scheduling never execute more than twice as long as under an op
timal scheduler, list scheduling has two practical disadvantages. First, the 
global pool eventually becomes a bottle-neck when scaling to large machines; 
the Buckwheat implementation already suffered from contention conflicts with 
8 processors [Goldberg88b]. Second, an idle processor always fetches a task 
from the global pool without considering whether the task is large enough to 
outweigh the communication costs: (part of) the task's data has to be trans
ferred from the cache of the processor that created it to the cache of the idle 
processor. Currently, the latter disadvantage is of no concern for WYBERT 
since the programmer is required to enforce a minimal grain size of each task 
(sandwich constraint (b) on page 80). 

WYBERT is solely based on divide-and-conquer parallelism, so we can 
use the local-LIFO/steal-FIFO scheduling variant of the Manchester throttle 
mechanism (Section 3.1.5) where each processor maintains a local task pool. 
Processors schedule their local tasks in LIFO order, but steal a task from another 
processor's pool in FIFO order when running idle. After a short initialisation 
phase, each processor executes its part of the application's divide-and-conquer 
tree in depth first order. This scheduling policy exploits the caches very well 
since the most recently created task is scheduled first, and that task is most 
likely to find (part of) its data set in the cache. 

Whenever a task executes a sandwich primitive to spark new tasks for (par
allel) execution, this task becomes blocked until all its children have finished. 
While the parent task is blocked the associated processor is used to process 
some other task ready for execution. Hence, a sandwich primitive causes a 
context switch in the processor: the state of the current task has to be saved, 
and the state of the new task has to be loaded. To minimise context-switch 
time the graph reducer usually allocates a private stack for each task so that 
only the top-of-stack pointer needs to be saved/restored instead of the complete 
contents. The price for this optimisation is that an arbitrary number of stacks 
has to be accommodated instead of a single stack per processor; a single stack 
is much cheaper to manage, see Section 3.1.3 for details. 

tThis section represents joint work with Rutger Hofman. 
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The LIFO/FIFO scheduler described above has been adapted to combine 
a fast context switch time with the advantage of a single stack per processor; 
the depth-first traversal of the task tree allows all tasks that execute on the 
same processor to share one reduction stack, the processor stack, as a stack of 
stacks. At start up, a task sets its private stack pointer to the current top of 
the processor stack. If the task executes a sandwich and blocks to await the 
results of its children, the task leaves its local state on the processor stack, and 
the next fresh task starts to allocate its stack on top of the blocked task, etc. 
When a blocked task has received the results of all its children, it unblocks and 
can resume execution. An unblocked task, however, may only be selected for 
execution after all tasks on top of it have finished, otherwise it could overwrite 
the state of other tasks. 

The ToS scheduling policy of WYBERT maintains on each processor a 
list of tasks ready for execution and a stack of blocked tasks. Whenever the 
scheduler is requested to select a new task for execution, it first checks whether 
or not the blocked task on top of the local stack has become ready for execution. 
If the topmost task is ready then it is selected to resume execution, otherwise 
the local task list is inspected. If the list is non-empty then the task in front is 
selected for execution (LIFO policy), otherwise the ToS scheduler inspects the 
pools of the other processors in a cyclic manner until it has found a non-empty 
task list. It steals the last task in that list (FIFO policy) and returns the task for 
execution at the local processor. Sparking a task amounts to simply inserting 
the fresh task in front of the local task list. 

Although the ToS scheduler does not support task preemption nor task 
migration for efficiency, the scheduling policy is deadlock free for the follow
ing reasoning. Suppose a parallel divide-and-conquer application under ToS 
reaches a deadlock situation. Let T be the youngest of all (blocked) tasks, that 
is, T started execution after all other tasks. Since T is the youngest task it 
can not be waiting for an even younger child task, hence, T is a runnable task 
blocked by some other task Tl lying above it on the same processor stack. 
This implies, however, that Tl started execution after T, which contradicts 
the assumption that T was the youngest task, hence, deadlock is not possible 
under ToS. Thus, the ToS constraint can only cause poor performance as is 
shown in the next section. 
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4.3.1 Worst case behaviour 

A list scheduling (LS) policy obeys the constraint that idle processors and 
executable tasks do not coexist. This means, that a processor that finishes 
its task must immediately select another from the (global) list of executable 
tasks. The policies in LS differ in their selection criterion from such a list. All 
LS policies have a good performance [Graham69); the parallel execution time 
never exceeds twice the optimal execution time if communication delays are 
neglected. This bound holds for arbitrary precedence relations between tasks 
and arbitrary execution times of the tasks. In practice list schedulers perform 
much better on average than the factor two worst case bound. 

Distributing the global task pool of LS by equipping each processor with 
a local pool preserves the valuable list scheduling property; when a processor 
runs out of local tasks, it starts polling the others to find an executable task, 
hence, no processor will run idle as long as there is an executable task some
where in a local task pool. To minimise memory usage, a processor manages 
its local pool in LIFO order, but tasks are stolen in FIFO order from a remote 
pool to minimise data communication. Since both this LIFO/FIFO scheduling 
policy and LS preserve the list scheduling property, they do not differ from a 
theoretical point of view. Of course, the improved locality in the schedules 
gives better cache hit rates for LIFO/FIFO than for pure LS, hence, absolute 
performance is increased. 

The Top-of-Stack (ToS) scheduler of WYBERT violates the list scheduling 
property since it restricts the scheduling of re-awakened tasks, i.e. tasks that 
have become executable again after all children have terminated. The state of 
suspended tasks is stacked on top of each other, so at any time only the top-most 
task may be selected for execution. If the top most task still awaits the result 
of some child task, it effectively blocks the execution of all tasks below. As a 
consequence some processor might run idle in presence of an executable task 
because that task is not on top of a processor stack. This situation is illustrated 
by the following simple example. 

We use a synthetic application that executes two sandwich primitives to 
create the task structure depicted in Figure 4.1. All task execution times are 
1 step except for task 4, which takes 4 steps. In Figure 4.2 we show a possible 
ToS schedule on two processors. This task schedule takes 8 steps under ToS, 
while the equivalent LS schedule takes 7 steps; join task 7 has to continue 
execution on processor 1 because its corresponding fork task 2 was scheduled 
on processor 1, hence, the execution of task 4 blocks the resumption of join 
task 7 until t = 6, while processor 2 runs idle. 



100 Chapter 4. WYBERT: graph reduction on shared memory 

Figure 4.1: A task graph. Tasks are labeled with a task number (above) and an 
execution time (below the task node). 
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Figure 4.2: A ToS schedule of the task graph of Figure 4.1. 

The performance degradation in this example is not significant, but a 
worst-case task graph can be constructed where all parallelism is lost. On a p 
processor machine, it can be arranged to let an application deposit p large join 
tasks at a single processor that have to be executed sequentially because of the 
ToS constraint, while an ordinary LS policy could schedule these p tasks to 
run in parallel. Details of this contrived worst case application can be found 
in [Hofman93]; here we will only give the ratio of execution times of ToS (w) 
and LS (wo) for brevity: 

~ _ ptjoin + 2p + 2 

Wo ljoin+2p+2 
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The ratio approaches p for large join tasks (tjoin -t oo ), which means practi
cally all parallelism is lost, irrespective of the number of processors. 

4.3.2 Performance from Simulation Studies 

The performance consequences for the scheduling worst case caused by ToS 
are horrendous. However, there may be a notable discrepancy between worst 
case performance and "practical" performance. Therefore we have conducted 
a number of simulations to evaluate the practical consequences of ToS. The 
performance simulator takes a task graph description and models the execution 
under a specific scheduling policy on a range of shared memory multiproces
sors: with 2, 4, 8, and 16 processors. The supported scheduling policies are LS, 
LIFO/FIFO, ToS, and Gl-ToS (Global-ToS). Gl-ToS, like LIFO/FIFO, is an in
termediate scheduling discipline between LS and ToS: it is the combination of 
a global task list and stack per processor (ToS constraint). The distinguishing 
properties of the four scheduling are tabulated below: 

II global task list I local task lists I 
stack 
per LS LIFO/FIFO 
task 
stack 
per Gl-ToS ToS 

processor 

The performance simulator does not take locality effects into account so we 
do not expect a large difference between LS and LIFO/FIFO. 

The Divide & Conquer applications benchmark 

To start with, we will evaluate the performance consequences for the kind of 
applications WYBERT is designed for: parallel Divide & Conquer algorithms. 
We have made use of the SIS simulator and the following benchmark applica
tions: COINS, QUEENS, MSORT, FFT, WANG, SCHED, and COMP-LAB, see Section 4.1.5. 

Some applications are "toy" programs, others are "real world" programs. 
The corresponding characteristics of the task graph descriptions are listed in 
Table 4.5; time is expressed in the number of reduction steps, i.e. the number of 
executed Turner combinators. Average parallelism is the maximum speed-up 
that can be achieved with an unlimited number of processors [Eager89). Note 
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average sequential average average average 
parallelism steps fork task mid task join task 
[Eager89] X 1000 steps steps steps 

COINS 246.1 53,643 339 39,903 60 
QUEENS 82.2 2,106 73 1,295 10 
MSORT 5.0 455 755 1,240 1,579 
FFT 5.3 466 3,666 3,424 255 
WANG 16.7 5,039 1,275 38,107 1,235 
SCHED 56.8 2,188 1,672 7,014 3 
COMP-LAB 19.2 169,399 48,264 22,538 263,932 

Table 4.5: Properties of the applications of the Divide & Conquer benchmark 

that MSORT and, notably, coMP-LAB are the applications that have non-negligible 
work in the join tasks, so these applications may cause higher ToS degradation 
than the others. 

For efficiency tasks are created only when their grain size exceeds some 
application-specific threshold. The conditional forking has been explicitly 
indicated by the programmer. The threshold value is chosen such that the 
computational demand of leaf tasks considerably exceeds the overhead for 
task creation (which is set to 250 steps). As a typical example, in Table 4.6 we 
show the speed-up obtained for the various applications on an 8-node shared 
memory machine. 

Inspection of the speed-up figures on all machines shows that LIFO/FIFO, 
LS, and ToS yield similar performance, while Gl-ToS tends do less well for 
most applications; in case of COMP-LAB Gl-ToS performs on average 28% worse 
than plain LS. This corresponds to our intuitive remark that large execution 
times of join tasks, as is the case for COMP-LAB can seriously affect the overall 
performance. The reason that ToS does not suffer from scheduling constraints 
with the COMP-LAB application can be explained as follows. ToS degradation 
occurs when executing tasks block resumption of otherwise executable join 
tasks. This means that the blocker is not a descendant of the blocked join task, 
because otherwise it would not be executable. Therefore it is necessary for 
ToS blocking that a task from another fork-join subgraph is allocated at the 
processor under consideration. Local task lists favour execution of complete 
subgraphs: processors put newly created tasks into their local task list, and 
whenever they finish their current task, they first look in their local list for a 
new task. In this manner, processors have a strong preference for execution 



4.3. Top-of-Stack scheduling 103 

LS LIFO/FIFO ToS Gl-ToS 

COINS 7.7 7.8 7.8 7.5 
QUEENS 7.1 7.1 7.1 7.0 
MSORT 3.5 3.5 3.5 3.3 
FFT 3.7 3.7 3.7 3.7 
WANG 6.2 6.0 6.0 6.1 
SCHED 7.1 7.1 7.2 7.0 
COMP-LAB 7.3 7.3 7.3 4.0 

Table 4.6: Speed-ups on the 8-node shared memory machine 

of their own offspring. LIFO management of the private task list causes a 
depth-first traversal of the task subgraph springing from the current task, so 
tasks will be evaluated together with all their offspring by one processor unless 
some stealing occurs. Tasks are stolen by another processor only when such a 
processor runs out of work: it has either completed its part of the task graph, 
or the join tasks it owns are all blocked. The task that is stolen, is the least 
recently created task (in other words, stealing is done in FIFO manner). Typical 
divide-and-conquer applications repeatedly decompose a problem into smaller 
sub problems, hence, chances are high that the stolen old task represents a 
considerable amount of work since the "local" task tree is traversed in depth
first order. This means that the stealing processor will be satisfied for a long 
time, so FIFO stealing lowers the number of allocations to other processors. 
These aspects, local task lists, LIFO list management and FIFO stealing, work 
together to limit allocation to another processor, which reduces the chance of 
blocking executable tasks. 

We want to compare the performance of the task list policies, independent 
of the number of processors and application. Therefore the speed-up figures 
were geometrically averaged (see [Fleming86]) over the architectures. The 
comparison shows that LS, LIFO/FIFO, and ToS achieve equal speed-ups, 
while Gl-ToS performs 5% less than the others. Thus although the ToS con
straint can reduce performance (cf. Gl-ToS), the local task lists effectively 
prevent blocking tasks from degrading performance. 

Synthesised fork-join task graphs 

We found that most Divide & Conquer applications in the benchmark are 
suitable for ToS scheduling because their join tasks are small in execution 
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steps, or the applications have a very regular task graph: the exception is 
COMP-LAB but only for the Gl-ToS scheduling strategy. This does not give 
much information about the applications for which ToS performs poorly. The 
following properties induce ToS degradation: 

• non-negligible execution times of the join tasks 
• irregular task structure (it must be a fork-join graph, of course, but not 

entirely symmetrical in its forking) 
• irregular join task execution times 

Finding enough applications that have these properties is hard. Therefore, we 
synthesised 70 task graphs using random generators 

• for deciding whether a (non-join) task will fork or not 
• for determining the execution time of the join tasks; these times follow a 

uniform distribution to obtain a large spreading 
A description of the synthesised task graphs is given in Table 4. 7. 

Class average average average sequential 
number of join task parallelism steps 

tasks steps X 1000 
I 1400± 2100 980± 80 30 ± 40 1400 ± 2100 
II 1400 ± 1800 4990 ± 270 22± 25 3000 ± 4000 
III 1600± 2200 25100± 2900 23 ± 28 14000 ± 20000 

Table 4.7: Characteristics of the synthesised tasks. Values were drawn from 
several uniform distributions, so spreading is high. The fork tasks and leaf 
tasks all take 1000 steps. 

The average execution time of the join tasks is either equal to the average 
execution steps of fork tasks and leaf tasks ( class I), or 5 times this average 
(class II), or 25 times this average (class III). COMP-LAB, the one application 
that (sometimes) suffers from ToS degradation, has such a ratio of 8.4. Inside 
each synthesised class the applications differ in the total number of tasks. 
Applications where join tasks execute on average for 5 times as long as fork 
tasks and leaf tasks are rare; applications where the join tasks take 25 times as 
long are even less likely. The reason we included them, is because we expect 
to find performance degradation for ToS for this type of application if it is to 
be found at all except by careful construction, as we did for our worst case 
performance example. 

The applications were run on the same architectures as the Divide & 
Conquer benchmark. Performance of the policies is derived from the speed-up 
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figures in the same way: geometrically averaged speed-ups were calculated 
per architecture and per application, and performance figures are normalised 
to LS= 1. The applications are collected into three groups, distinguished by 
different average join task steps. The performance figures we present in 
Table 4.8 are averages for these three groups. 

LS LIFO/FIFO ToS Gl-ToS 

I 1 1.00 0.99 0.91 
II 1 0.99 0.97 0.80 
III 1 1.00 0.99 0.71 

Table 4.8: Averaged speed-ups relative to LS for the synthesised tasks. 

The expectations on ToS behaviour prove to be correct for the Gl-ToS 
scheduling policy. The applications of class I, where join tasks on average 
take as many execution steps as fork tasks and leaf tasks, show a performance 
degradation of 9%. Compare this to the application MSORT, where the join tasks 
also on average take as long as leaf tasks. The essential difference must be 
the irregularity of execution times of the join tasks. For the applications of 
class II, the degradation is worse: 19%. For the applications of class III, the 
performance difference mounts to 29% for Gl-ToS. This performance degra
dation, however, is not as bad as one would expect; such a virtually random 
allocation of join tasks to processors might as well result in performance close 
to the worst case. 

Again the ToS strategy, which uses local task lists per processor, performs 
much better than the global Gl-ToS policy and only suffers a minor performance 
degradation for all application classes in comparison to LS and LIFO/FIFO: less 
than2%. This is in accordance with our findings from the Divide & Conquer 
benchmark. 

The results in this section have shown that the top-of-stack constraint does 
not lead to performance degradation in practice. The simulated execution 
of the benchmark programs do not show any performance degradation for 
ToS in comparison to LS and LIFO/FIFO schedulers. Even the synthesised 
applications with large join tasks do not show any degradation that approaches 
the worst case of loosing all parallelism. These results that divide-and-conquer 
applications can make efficient use of a single stack per processor, while 
exploiting the caches in the multiprocessor by traversing local parts of the task 
tree in depth-first order. 
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4.4 Memory management for parallel taskst 

An important property of logic, object-oriented, functional, and other high
level programming languages is their automatic management of dynamically 
allocated storage. The language support system provides the user with a 
virtually unlimited amount of storage by running a garbage collector to reclaim 
storage that is no longer in use. The efficiency of the garbage collector is 
important for the application's performance, especially when the underlying 
computational model (e.g., graph reduction) often allocates small pieces of 
memory that are used only for a short time. 

From the three classes of garbage collection algorithms (reference count
ing, mark&scan, and copying collectors), the copying collectors perform best 
on systems with considerably more memory than the amount of live data 
[Hartel90]. There are two reasons for the better performance: 1) they only 
traverse live data, which usually accounts for only a small fraction of the to
tal heap space, while mark&scan coUectors access every heap cell twice, 2) 
copying collectors compact the live data into one consecutive block, which 
facilitates the fast allocation of (variable sized) nodes by advancing the free 
pointer instead of manipulating a linked list of free cefls and managing the 
referen:ce counts. 

Cheney's two-space copying collection algorithm [Cheney70J is the basis 
of many (parallel) copying garbage collectors. The available heap space is 
divided into two equal parts: the from-space and the to-space. During normal 
computation new nodes are allocated in from-space by advancing the free
space pointer through the from-space. When the heap space in the from-space 
has been consumed, all live nodes are evacuated (i.e. copied) to the empty 
to-sp'aCe by the garbage collector. 

I global data II from-space I to-space I 
i flip i 

I global data II to-space I from-space I 

Figure 4.3: Memory layout for two-space collector 

The evacuation starts with copying the nodes in from-space that are ref
erenced by root pointers in the global data area, which contains for example 
the call stack. Then the nodes in to-space are scanned for pointers to objects 
in from-space that still have to be copied. This process is repeated until the 

tThis section represents joint work with Henk Muller. 
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to-space contains no more references to nodes in from-space. The strict sep
aration of global data and the heap allows the collector to efficiently detect 
with one compare instruction whether a pointer refers to a node in from-space 
or not. After evacuating all live nodes, the roles of the two semi spaces are 
flipped, and ordinary computation is resumed. 

A straightforward adaptation of a copying collector to run on a multi
processor is to let all processors participate in a global evacuation operation: 
processors allocate large blocks of storage in the shared global heap, and if one 
processor detects the exhaustion of the (global) from-space, it synchronises 
with the other processors to start garbage collection. The evacuation of live 
nodes proceeds with all processors scanning parts (pages) of the to-space in 
parallel. To handle possibly shared data objects, processors lock each individ
ual node in from-space when inspecting its status and, if necessary, copying 
it to to-space. This method is, for example, used in MultiLisp [Halstead Jr84] 
and GAML [Maranget91 ]. 

To reduce the locking overhead of the above method, the Par log implemen
tation described in [Crammond88] partitions the heap among the processors, so 
that each processor can collect its own part of the heap. Whenever a processor 
handles a remote pointer to a live node in another part of the heap, it places a 
reference to the pointer in the corresponding processor's Indirect Pointer Stack 
(IPS). After a plain evacuation operation, each processor scans its IPS buffer, 
which contains (new) roots into its private heap, updates the pointers to point 
to copies in to-space, and continues with scanning the new objects in to-space. 
Now only the IPSes have to be guarded with locks instead of each heap object. 

A rather different approach to use copying collectors on parallel multipro
cessors is described in [ Appel88]: one processor reclaims all the garbage, while 
the others proceed with their normal computational work. The synchronisa
tion between the collector and the other processors (mutators) is accomplished 
through standard hardware for virtual memory. When the evacuation of live 
nodes starts, the collector copies all root nodes to the to-space, and marks the 
virtual memory pages of the to-space as inaccessible to the mutators. Then 
the mutators immediately resume execution in the to-space, while the collector 
scans the to-space page by page for references to nodes in from-space that 
still have to be evacuated. Whenever the collector has finished a page of the 
to-space, it makes that page accessible to the mutators. If a mutator tries to 
access an object in a not-yet-scanned page in to-space, the hardware generates 
an access violation trap. This triggers the collector to handle the referenced 
page immediately, after which the mutator resumes execution. 
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A common disadvantage of the above copying garbage collection algo
rithms for multiprocessors are that they waste half of the shared heap, which 
is reserved for the to-space, and that they require global synchronisation oper
ations. The inherently global nature of these algorithms also raises efficiency 
problems when scaling to large (hierarchical) shared-memory multiprocessors: 
the single virtual memory collector cannot keep up with many mutators, while 
the parallel scan of the other algorithms overloads the memory bandwidth. 

4.4.1 Local copying garbage collection 

The WYBERT scheme for copying garbage collectors on shared-memory mul
tiprocessors provides each parallel task with its own heap and performs garbage 
collection per task locally without any global synchronisation with other tasks 
or processors. This approach is attractive since it avoids global synchronisa
tion and cooperation of processors, while the reserved amount of to-space can 
be reduced by limiting the maximum heap size of a task and time-sharing a 
common to-space. Collecting a task, however, requires access to all global 
root pointers into the local heap. Recording all roots pointing from outside 
into the heap of some task is a space and compute intensive task in general, 
especially when tasks can exchange arbitrary data including heap pointers. 
This makes the scheme of collecting garbage per task unattractive for general 
parallel processing since each and every communication has to be checked for 
cross pointers. 

The fork-join task structure of our divide-and-conquer parallelism allows 
efficient incorporation of the above local copying collector scheme in a shared
memory multiprocessor. At runtime a divide-and-conquer application (recur
sively) unfolds into a tree shaped task structure, see Figure 4.4(a). Each task 
is provided with a "private" part of the shared heap where it allocates storage 
during its execution. Interior tasks (1, 2, and 3) are suspended during the 
execution of their child tasks, so only leaf tasks (4, 5, 6, and 7) can reclaim 
their garbage locally. 

The garbage collection of a leaf task with a two-space copying collector 
requires the allocation of a contiguous to-space and access to all root pointers 
into the private heap. The latter requirement is hard to fulfil in general, but the 
divide-and-conquer model causes the leaf tasks to execute without any external 
interaction, hence, a leaf task cannot pass a pointer to any other active task; 
there are no pointers between tasks 4 and 5 in Figure 4.4(b ). The absence of 
communication between leaf tasks, however, does not rule out data sharing 
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(a) (b) 

Figure 4.4: fork-join tree (a) with limited inter-task pointers (b). 

since tasks can execute different subproblems that contain pointers to shared 
data in common ancestor heaps. For example, tasks 4 and 5 can share data that 
resides in the heap of task 2, or even in task 1. Since the FRATS reduction 
strategy normalises the shared data in advance, that data is read-only and will 
not be updated, hence, tasks cannot pass pointers through their ancestor's heap. 
As a consequence pointers from interior tasks to leaf tasks do not exist; for 
example, there are no pointers from task 2 to either task 4 or task 5 as shown 
in Figure 4.4b. 

Since the divide-and-conquer paradigm limits the inter-task pointers to 
references to ancestor data, there are no "external" root pointers into the heap 
of a leaf task. This allows the garbage of a leaf task to be reclaimed with 
a local sequential copying collector, which only scans the task's call stack 
for root pointers. Note the resemblance with generation scavenging garbage 
collectors [Liebermann83] where often the youngest generation ( cf leaf tasks) 
is collected, but not the older generations ( cf interior tasks). 

Scattered heaps 

To accommodate an arbitrary number of tasks, heap memory is allocated in 
variable sized blocks. Whenever a task runs out of memory it invokes the 
garbage collector to reclaim space no longer in use. When the amount of live 
data approaches the blocksize the garbage collector allocates a block twice the 
current size on the next collection. This assures that a private heap is always 
a single block, so an ordinary sequential two-space copying collector can be 
used for leaf tasks. 
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(a) 

(b) 1[:::><=J 

Figure 4.5: Storage layout with inter-task pointers. 

We would like to use the same copying collector for interior tasks, which 
after all become a leaf task when resuming execution because all offspring 
has already ended their execution. Upon termination a child task links it 
private heap containing the result to the parent's heap. As a consequence 
the parent is no longer a single sequential block, but consists of a number 
of blocks scattered throughout the shared memory. The traditional sequential 
copying garbage collector can not be used to collect scattered such heaps since 
it is impossible to distinguish pointers to objects in from-space and pointers 
to global (ancestor) data with a single compare instruction. For example, 
suppose the fork-join tree of Figure 4.4a has been laid out in memory as shown 
in Figure 4.5a. After leaf tasks 4 and 5 have terminated and linked their heap to 
the parent task, task 2 resumes execution and the storage configuration changes 
to 4.5(b ); the heap of task 2 is no longer contiguous. 

When task 2 runs out of free space, it allocates a to-space at the right of task 
7 and starts evacuating the live nodes. The search for pointers to live nodes 
in the heap of task 2 is complicated by the presence of heap 1, which breaks 
the simple memory layout of Figure 4.3 where global data and the from-space 
each have a contiguous address space. Note that task 2's internal pointers 
from the right part to the left part or vice versa must be distinguished from the 
inter-task pointers to 1. In principle the problem of distinguishing global and 
local data can be solved by means of a lookup table that records the owner 
of each storage block, but this would degrade performance because of extra 
memory references and table management overhead. Instead we will use a 
virtual address space to allocate storage such that task heaps never interleave 
with ancestor heaps. 
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The Basic Allocation Scheme, BAS 

To support efficient evacuation of live data in scattered parent heaps, it is 
sufficient to enforce that a task's private heap is allocated to the right of all 
its ancestor heaps. This causes a strict separation of the task's (scattered) 
private data and its global ancestor data, so pointers can be classified with 
one instruction as in the sequential case. The basic allocation scheme (BAS) 
accomplishes the strict separation by always allocating a new heap at the right 
of the most recently allocated one. Virtual memory hardware is used to relocate 
the released physical space of the from-space to the right end after a garbage 
collect. 

The basic scheme results in a window of physical memory moving from 
left to right through the virtual address space. The example in Figure 4.6 
illustrates the scheme. When task 2 resumes execution in 4.6( d), its scattered 
heap encloses the heap of task 3, but this has no effect on the garbage collector 
since task 2 to does not refer to data of task 3; it only refers to data of task 1. 

w 

(a) 

w 

(b) 

w 

(c) 

w l 
(d) C><I 

Figure 4.6: BAS: (a) initial configuration, (b) after collecting 4, (c) after 
collecting 7 and 6, ( d) after resuming 2. 

The window with available physical memory (W) has to be at least as 
large as the size of the largest private heap since tasks allocate their to-space 
in the window when collecting garbage. By limiting the maximum task size, 
we significantly lower the 50% waste of memory reserved for to-space of the 
(sequential) copying collectors since tasks can time-share W as a common to-
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space. The costs of this limit are that large tasks have to collect their garbage 
more often. Note that we can control this space-time trade-off by adjusting the 
value of the maximum task size. It suffices to reserve a 1/(p+ 1) fraction of 
the total memory size on a multiprocessor with p processors, sop large tasks 
can execute in parallel. If the shared to-space is a bottleneck, which we do not 
expect in (small) shared memory systems, a pool of to-spaces can be provided. 

When the window W has completely moved to the right and all virtual 
address space has been consumed, a global action is required to reclaim the 
unused holes in the virtual address space that have resulted from the local 
garbage collects. To preserve the ordering between the tasks, the virtual space 
is compacted by sliding the private heaps to the left. Besides adjusting the 
page tables, all physical pages have to be scanned for pointers to objects in 
virtually "moved" pages, so they can be relocated to their new positions. This 
expensive compaction method limits the usefulness of the storage allocation 
scheme to systems where the virtual address space greatly exceeds the size of 
the physical memory because then compactions are rarely needed. 

The Virtual Allocation Scheme, VAS 

We can improve the basic memory management's rapid consumption of the 
virtual address space by reusing holes on the fly. Holes in the virtual address 
space can be freely reused for new private heaps as long as the task ordering is 
preserved: tasks must be allocated to the right of their ancestors. Thus, instead 
of always allocating memory at the right end, the Virtual Allocation Scheme 
(VAS) allocates a task's heap in the lowest free part of the virtual address space 
that lies to the right of the task's parent. 

VAS works well for the common case of a divide-and-conquer application 
that unfolds into a task tree with small interior tasks and big leaf tasks. After 
the interior control tasks have divided the work into independent components, 
the leaf tasks run for a long time to compute the partial solutions. Under the 
basic storage allocation scheme these leaf tasks move to the right each time 
the garbage collector is invoked, but under VAS these tasks remain in a small 
part of the virtual address space. A leaf task that needs to allocate a to-space 
can usually reuse the most recently released from-space of another task since 
there are no allocation constraints between leaf tasks; the only constraints are 
between interior tasks and leaf tasks. 

Figure 4.7 shows the effects of VAS for the same example as with the 
basic scheme in Figure 4.6. Now the positions of leaf tasks 4, 5, 6, and 7 just 
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Figure 4.7: VAS: (a) initial configuration, (b) after collecting 4, ( c) after 
collecting 7 and 6, ( d) after resuming 2. 

permute, but do not shift to the right. In comparison with the basic scheme, 
the VAS administration is slightly more complicated since it has to record the 
holes in the virtual address space and the position of each task's parent. 

The Circular Allocation Scheme, CAS 

Both previous storage allocation schemes use paging hardware to implement 
a large virtual address space. Obviously, this limits their applicability to 
multiprocessors with such hardware support, while those schemes also need 
a considerable amount of memory to store the page table. For example, 
the complete page table for a 4 Gbyte virtual address space on a MC88000 
architecture with 4Kbyte pages occupies 4 Mbytes of physical memory. In 
addition the usage of a page as the unit of storage results in wasted heap 
space due to internal memory fragmentation. This has a strong effect on 
parallel applications that unfold into a large task tree where each interior task 
occupies a private page of memory that is only partially filled with useful data. 
Both sources of memory loss are tackled by the following allocation scheme 
that allocates storage in a virtual address space, but does not require paging 
hardware at all. 

The Circular Allocation Scheme (CAS) uses a fixed translation scheme 
to map virtual addresses onto physical addresses. The upper bits of a virtual 
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Figure 4.8: Circular Address Space 

address are simply replaced by zeros to obtain the physical address. This gives 
a virtual address space that is wrapped circularly through the physical address 
space, see Figure 4.8. The "ghost" images of tasks 1, 2, and 3 cause a repeated 
pattern of holes in the virtual address space that extends right of the physical 
space. 

The CAS strategy uses the same allocation policy as VAS: a task's heap is 
allocated at the lowest available virtual address above the task's parent. Unlike 
VAS, however, CAS has to skip over the ghost images when looking for a 
free hole. For example, if task 3 wants to extend its heap with another two 
contiguous pages to the right of task 2, then CAS cannot allocate it directly 
after its own heap, but has to allocate it in the large hole after the ghost image 
of task 1 as depicted in Figure 4.9. 

Figure 4.9: CAS after extension of task 3. 

Observe that the holes in the virtual address space are just a repetition of the 
physical holes. To take advantage of this redundancy by recording the status 
of the physical space only, the CAS strategy regards virtual addresses as the 
concatenation of a cycle-counter (most significant bits) and a base address in 
the physical space (least significant bits): addr = cycle:base. When allocating 
storage to the right of a parent task located at address cycle:base, CAS first 
tries to locate a suitable hole at the right of the base in physical memory. If 
CAS succeeds then it returns cycle:hole as the start address of the new storage 
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block, else CAS increases the cycle counter and starts looking at the beginning 
of the physical memory and returns ( cycle+ 1) :hole on success. 

If the CAS strategy fails to allocate a large contiguous block due to external 
memory fragmentation, the scattered free space has to be compacted by sliding 
the tasks down to the left. This compaction only adjusts the base parts of 
pointers, but it is more expensive than with the two previous schemes since 
all data has to be copied as well. In the previous example compaction is 
needed when task 3 in Figure 4.9 wants to allocate 3 pages to perform garbage 
collection. The compacted memory layout is shown in Figure 4.10. 

Figure 4.10: CAS after sliding compaction 

Note that the sliding compaction has not compressed the virtual space, so 
an even more complex compaction method is needed when CAS runs out of 
the virtual address space: all cycle parts of pointers have to be cleared which 
requires a permutation of the tasks in physical memory to preserve the task 
ordering in the virtual address space. 

The advantages of the CAS strategy are that there is no need to maintain the 
page tables since the address mapping is fixed; in fact it can be implemented 
in hardware by cutting the upper address pins of the processor! The fixed 
mapping also implies that CAS is not bound to the usage of pages, so heaps 
can have arbitrary sizes to avoid (internal) memory fragmentation. The CAS 
strategy, however, can only compete with the VAS strategy if both physical 
and virtual compaction operations are rarely needed. 

4.4.2 Evaluation 

To evaluate the performance of the three above mentioned memory allocation 
strategies, we have studied their behaviour by running a set of benchmark 
programs on the MiG multiprocessor simulator. In particular we are interested 
in the amount of memory wasted due to memory fragmentation, and the usage 
of the virtual address space. For CAS the number of physical compactions 
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program runtime # tasks mem. usage # garb.coll. 
QUEENS 1.4 165 325,121 172 
FFT 1.5 15 1,846,985 36 
15-PUZZLE 28.0 24,625 28,045,720 24,736 
COMP-LAB 1.6 465 1,178,347 476 
WAVE 1.7 41 197,072 61 

Table 4.9: Benchmark programs; the simulated runtimes in seconds are for 
BAS on a 4 processor system; the memory usage is the number of words (32 
bits) claimed in the heap. 

is also important information. Table 4.9 lists some characteristics of the five 
benchmark programs. 

Three different versions of the runtime support system have been con
structed, implementing the BAS, VAS and CAS storage allocation schemes. 
When tasks run out of heap space, they double their heap size if enough global 
memory is available, otherwise the garbage collector is invoked. When a task 
finishes, its result is compressed by invoking the garbage collector, after which 
the unused heap space is returned to the global pool. In this pilot implemen
tation we have not directly made use of virtual memory hardware, but rather 
simulated the allocation schemes with one large chunk of physical memory. 
This suffices to collect the statistics about the memory consumption of the 
benchmark programs. 

BAS 

At first, we study the behaviour of the basic allocation scheme of Section 4.4.1, 
which always allocates new storage at the right end of the virtual memory space. 
Table 4.10 summarises the results of the benchmark programs for the basic 
scheme with 1024 word (= 4Kbyte) pages. The column labeled "physical" 
lists the maximal amount of heap words in use at any moment in time during 
the execution of the application. This number does not include code and 
static data that are located in separate segments, nor does it include the space 
needed for the page tables, but it does account for the memory fragmentation 
inside pages. The second column contains the highest virtual address used by 
the application, and it shows that the simplistic basic scheme consumes large 
quantities of virtual memory space. The 15-PuzzLE, for example, allocates 200 
times as much virtual space as physically needed. 
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program physical virtual claim rate 
QUEENS 77,824 1,443,839 1.04 Mw/s 
FIT 1,261,568 3,917,823 2.67 Mw/s 
15-PUZZLE 726,016 142,187,519 5.13 Mw/s 
COMP-LAB 208,896 4,738,047 2.89 Mw/s 
WAVE 49,152 804,863 0.47 Mw/s 

Table 4.10: Memory allocation statistics of the BAS strategy. 

The ratio between virtual and physical memory usage depends strongly 
on the application's input parameters and cannot be used as a meaningful 
characteristic in general. Instead we have listed the application's claim rate (in 
Mwords/second) that shows how fast virtual memory is consumed. The high 
claim rate of the 15-ruzzLE is partly caused by the large number of tasks, which 
results in considerable memory fragmentation inside pages. The claim rate 
indicates how frequently a compaction of the virtual address space is needed. 
In our benchmark, the claim rates are limited to maximal ca. 5 Mwords/second, 
so an application can execute in a 1 Gword virtual address space for at least 
200 seconds without a compaction on a system with four 20 MIPS processors. 
A 16 node processor system will (if the program has enough parallelism) 
consume the same virtual space in roughly 50 seconds. A compaction would 
take approximately 1 second per Mbyte of physical memory. 

VAS 

The results of using the VAS strategy are shown in Table 4.11. In comparison 
with the basic scheme, the benchmark applications under VAS use slightly 
more physical memory, but the virtual memory consumption has been sig
nificantly reduced to within a factor 2 of the application's physical memory 
requirement. Therefore an application is unlikely to need an expensive com
paction to compress the virtual memory space, hence, the compaction operation 
probably does not have to be implemented at all. 

The simulator records the allocation overheads, like managing the list of 
free pages, of the memory management schemes. The differences, however, 
are marginal and only account for ca. 0.5% of the total execution time in the 
usual case that no compactions are needed. Since this is below the accuracy 
of the MiG simulator we can not draw any sensible conclusions out of this 
number. 
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program physical virtual 
QUEENS 80,896 105,471 
FFT 1,261,568 1,572,863 
15-PUZZLE 849,920 898,047 
COMP-LAB 234,496 517,119 
WAVE 49,152 73,727 

Table 4.11: Performance statistics of the VAS strategy. 

CAS 

First we have run the benchmark programs under CAS with the same pagesize 
(1024 words) as the basic and VAS strategies. The results in Table 4.12 show 
the number of compactions to recover from physical memory fragmentation 
besides the physical and virtual memory usage 

program physical virtual compacts 
QUEENS 76,800 159,743 14 
FFT 1,261,568 1,703,935 0 
15-PUZZLE 775,168 803,839 0 
COMP-LAB 241,664 492,543 4 
WAVE 49,152 73,727 0 

Table 4.12: CAS performance, pagesize 1024 words. 

The difference in physical memory usage under CAS in comparison to 
VAS is caused by their difference in allocation time, which results in different 
task scheduling decisions. The scheduler has a rather large influence on the 
amount of physical memory in use since it decides about the shape of the 
expanded task tree in core (breadth first vs. depth first). The virtual memory 
usage under CAS exceeds the physical memory usage only by a small factor, 
just like for VAS. Note that only the QUEENS and coMP-LAB applications perform 
compactions to compress the physical memory space. 

Next we ran run CAS with a small pagesize of32 words to lower the internal 
memory fragmentation The results are depicted in Table 4.13. Some programs 
need more physical and virtual memory; only the QUEENS and 15-PUZZLE benefit 
from the small pagesize. The increase is caused by the internal overhead to 
administrate the linked list of heap blocks. The "wasted" space forces the 
large tasks to allocate another block just before finishing their computation, 
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program physical virtual compacts 
QUEENS 49,760 109,759 9 
FFT 1,586,176 2,359,295 0 
15-PUZZLE 467,072 1,066,655 1 
COMP-LAB 245,792 452,671 4 
WAVE 60,000 134,143 10 

Table 4.13: CAS performance, pagesize 32 words. 

and since tasks double their heapsize when running out of storage only a small 
fraction is actually used. 

The number of compactions listed in the performance results is a worst 
case value since the applications have been simulated on a multiprocessor with 
the minimum amount of physical memory needed by the specific application. 
Adding about 50% extra memory decreases the number of compactions to zero 
in all cases. Thus the CAS scheme performs well if the amount of physical 
memory in the shared-memory multiprocessor is somewhat larger than the 
absolute minimum required by the application. 

Stressing the allocation schemes 

The benchmark results for VAS and CAS show that the applications can be 
efficiently executed in a surprisingly small virtual address space. This is 
a consequence of the scheduler traversing the fork-join tree in a depth-first 
manner, hence at any moment the allocation strategies only have to satisfy 
a logarithmic number of the task allocation constraints ( depth of the tree). 
To test the limits of the allocation schemes we therefore created a synthetic 
application, called !»pine, that unfolds into a degenerated tree: a linear list. The 
spine of interior tasks forces the allocation schemes to allocate new tasks at 
the right end. The results for a spine of length 512 on a 4 processor system 
with 1024 word pages are presented in Table 4.14. 

The synthetic spine program allocates virtual address space somewhat 
faster than the benchmark applications: a claim rate of 8.6 Mwords/second 
versus 5.1 for the 15-PuzzLE. The large difference in virtual address consumption 
between the basic scheme and VAS is caused by leaf tasks that have allocated 
address space far beyond the growing spine: whenever such a leaf task finishes 
its computation, the garbage collector is invoked to compress the result and 
the reclaimed space at the right of the spine can be reused for new tasks. The 
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strategy physical virtual comp claim rate 
BAS 393,216 17,105,919 - 8.6 Mw/s 
VAS 393,216 2,117,631 - 1.1 Mw/s 
CAS 393,216 793,599 27 0.4 Mw/s 

Table 4.14: Performance statistics of spine. 

CAS strategy needs even less virtual address space because of the 27 physical 
compactions: they also reclaim the virtual address space that resides in the 
currently highest cycle. The need for compactions, however, is probably a 
disadvantage because of the additional performance costs for CAS. 

The total amount of virtual space claimed by the spine program can be 
made arbitrarily large by increasing the length of the spine, but the moderate 
claim rate limits the virtual compaction frequency to a low value for all three 
memory management strategies. 

4.5 Discussion 

The WYBERT design for graph reduction on shared memory multiproces~ors 
differs considerably from the other parallel implementations of functional 
languages on shared memory multiprocessors: <v,G>, AMPGR, and GAML. 
First, WYBERT only supports the high-level divide-and-conquer skeleton (the 
sandwich annotation) for generating parallel tasks instead of the general spark
and-wait model. This limits the class of applications, but many problems fit 
the divide-and-conquer paradigm directly or can be mechanically transformed. 
Second, the complication of shared redexes in the global address space is 
avoided by the FRATS reduction strategy, which eagerly evaluates shared data 
before sparking parallel tasks so shared redexes do not exist. As a consequence 
there is no need to lock application nodes in the heap to enforce consistency 
in face of updates as in the general case of parallel graph reduction on shared 
memory multiprocessors. 

A potential disadvantage of FRATS is that it evaluates unneeded expres
sions, but the discussion in Section 4.2 has shown that the problem of superflu
ous computation can be handled by applying a few program transformations. 
These transformations were demonstrated to be both successful and necessary: 
three out of six benchmark programs did not terminate when executed under 
FRATS, whereas all transformed programs ran to completion without any sig
nificant overhead. At the moment these transformations have to be applied by 
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hand, but the application of the important cycle-naming transformation can eas
ily be automated: the compiler can find the super set of (recursive) invocations 
of curried functions with unevaluated parameters without any difficulty. 

The divide-and-conquer parallelism combined with the FRATS reduction 
strategy results in a tree-shaped task graph with independently executing 
coarse-grain leaf tasks. Remember that the grain size has to be controlled 
explicitly by the programmer. WYBERT takes advantage of the runtime ap
plication behaviour in its storage management policy: 

• Garbage collection is performed per leaf task individually instead of hav
ing all processors synchronise when running out of free space. Besides 
omitting the need for low-level synchronisation during garbage collec
tion, the to-space of the copying collector can be time-shared between 
multiple processors to reduce the fraction of wasted space: 1/(p + 1) 
instead of 1/2 when memory is equally divided among p processors. 
Note that the maximum task size is limited by the selected size of the 
to-space. 

The usage of a sequential copying collector for resumed tasks requires 
a storage manager that allocates the scattered heap of a task to never 
interleave with an ancestor heap. The benchmark results in Section 4.4 
for three such storage management schemes show that this can be effi
ciently accomplished with virtual memory hardware provided that the 
size of the virtual address space is three times as large as the amount of 
physical memory in the multiprocessor. 

• The stack for graph reduction is not allocated one per task, but one per 
processor. All tasks executing on a processor share the same stack, and 
fork tasks leave their context on the processor stack until all children 
have terminated. This provides efficient stack-based graph reduction 
and fast context switching, but constrains the scheduler since only the 
top-most task on the processor stack may execute. 

The WYBERT scheduler is not hampered by the ToS constraint as shown 
in Section 4.3. The worst case of loosing all parallelism is never ob
served for the benchmark programs: ToS performs on average within 
2% of the general list scheduling policies. To effectively use the caches, 
the ToS scheduler employs local tasks pools per processor managed in 
LIFO order. This causes a depth first traversal of independent subtrees, 
scheduling the lastly created task whose context still resides in the cache 
first. In addition, the depth first order minimises the resource usage and 
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number of active tasks as well. When running out of work, processors 
steal (large) tasks in FIFO order to minimise synchronisation overhead. 

Thus each task is provided with a private heap and executes on top of the 
shared processor stack in contrast to general spark-and-wait systems where 
tasks claim nodes in the shared heap and own a private stack. 

Based on the studies presented in this chapter we conclude that WYBERT is 
a feasible design. To asses the absolute performance of WYBERT in compari
son to other implementations we have constructed a prototype implementation, 
which will be discussed in the following chapters. Note that it is impossible 
to give an accurate prediction of the performance by means of a high level 
simulation model since the fundamental advantage of avoiding the locking of 
graph nodes requires a study at the memory-access level. 



Chapter 5 

The FAST/FCG compilert 

To test out the WYBERT design for parallel graph reduction on shared memory 
multiprocessors in practice, considerable effort has been put in the develop
ment of a prototype implementation. The goal of achieving high absolute 
performance, not merely perfect speed-ups, requires the usage of a state-of
the-art compiler. This chapter describes the code generator of the FAST/FCG 
compiler, which has been designed to meet the requirements of compiled graph 
reduction in general and WYBERT in particular. For example, the code gen
erator is targeted towards a copying garbage collector and tags all data values 
such that pointers and basic values can be quickly distinguished. To keep 
the FAST/FCG compiler as general as possible, most WYBERT specific code 
has been hidden in the runtime support system; only the sandwich annotation 
is handled as a special case: the compiler generates code to squeeze task 
arguments and then call a RTS function to spark the tasks for parallel execu
tion. This approach is possible because of the clear separation between graph 
reduction (compiler) and parallelism (RTS) in the WYBERT design. 

In comparison to ordinary imperative compilers, a functional language 
compiler has to take care of all the extra expressiveness that such a lan
guage offers. A popular method for compiling functional languages is to 
make maximal use of existing imperative compiler technology by construct
ing a front end that translates a functional program into imperative code (e.g., 
C) [Schulte91, Peyton Jones92]. Higher order functions and lazy evaluation are 
typically handled by support functions that manipulate heap allocated closures 
holding a function identifier and some arguments. The quality of the generated 
code heavily depends on the front end's strictness analysis that minimises the 

tThis chapter represents joint work with Pieter Hartel. 
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inefficient usage of these closures. Although the "generate-C" method requires 
minimal implementation effort, the C-compiler hampers performance of the 
resulting object code because it prohibits control over pointers that are stored 
in the processor's registers and stack. This control is crucial for two reasons: 

• Efficient garbage collection algorithms like two-space copying and gen
eration scavenging require all pointers into the heap to be known to the 
garbage collector because objects are moved and pointers have to be 
adjusted accordingly. 

• Frequently accessed pointers like the pointer to the start of free heap 
space should be stored in global registers. 

For maximal performance the code generator needs intimate knowledge of 
the location of pointers on the calling stack and in registers. Therefore sev
eral functional language compilers have adopted the do-it-yourself method of 
generating assembly code directly [Johnsson84, Loogen89, Smetsers91]. This 
alternative approach gives total control over all pointers and the processor, but 
it goes against the grain of the lazy implementor because now we have to deal 
with important low-level issues like register allocation and code scheduling, 
while this can be done perfectly well, and probably better, by (part of) an 
existing C compiler. Besides implying extra work, this "generate-assembly" 
method looses on portability as well, since C compilers are available for almost 
any type of computer. 

Our compiler combines the advantages of both previous approaches: it 
compiles down to a level where it has control over the location of pointers 
and then uses part of the C compiler to generate object code. We have made 
use of the existing FAST front end [Hartel91a], which includes an advanced 
strictness analyser. The front end translates a functional program into a severely 
restricted subset of C, which is called Functional C, with standard call-by
value semantics. Since pointers are passed as ordinary parameters, direct 
compilation of Functional C results in code that cannot be used in combination 
with moving garbage collectors. Therefore the Functional C Code Generator 
(FCG) compiles the FAST output further to code (KOALA) that uses an explicit 
call stack, which brings all pointers under control of the garbage collector. 

source ~ . ~ I I ~ object --+ FAST --+Funcllonal-C--+ FCG -+KOALA--+ translator --+C--+ gee --+ d 
program co e 

Figure 5 .1: Compiler structure. 
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The complete compiler is organised as a pipe-line of four programs: 
1 The Fast front end translates functional programs to Functional C, thereby 

making the functional expressiveness explicit by inserting calls to support 
functions as with the "generate-C" approach. 

2 The FCG code generator compiles the FAST output to the KOALA as
sembly frame work that supports features like register allocation and code 
scheduling. 

3 The third phase translates the KOALA code into low-level C. 
4 Finally the GNU gee compiler is used to generate the actual object code. 

The reason for translating KOALA into C is twofold: portability and reuse 
of existing compiler technology. A disadvantage of this approach is the poor 
compilation speed. If this becomes a problem, a future release of the translator 
should directly interface with the intermediate code level of the GNU gee 
compiler. 

Before discussing the FCG code generator in detail in Section 5.4, a short 
description of the FAST front end, KOALA assembler, and graph representa
tion is given to introduce the source and target language of the code generator. 
The chapter concludes with a comparison of FAST /FCG and other competitive 
compilers for lazy functional programming languages. 

5.1 The front end 

The FAST compiler, which has been developed at Southampton University, 
forms the first stage in our compiler pipe-line. It accepts programs written in 
a small lazy functional language called Intermediate. Intermediate is similar 
to the functional language Miranda, providing higher order functions, lazy 
evaluation, and pattern matching in function definitions. Intermediate does not 
support Miranda's operator overloading, arbitrary precision numerals, "offside 
rule", and module system. 

Function definitions in Intermediate have the form of a set of recursive 
equations with the possibility to express list pattern matching on function 
arguments. [ ] represents the empty list and the cons operator is denoted by 
the colon (: ). The language is higher order, curried, and lazy. 

The function append in Figure 5.2 gives an example of an Intermediate 
program. It uses list pattern matching on its first argument to decide whether 
to recurse on the tail of the list, or to return the second argument. 

The FAST compiler produces as output equivalent Functional C programs 
with call by value semantics. Functional C serves as the source language 
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append[] ys = ys 
append (x:xs) ys x: append xs ys 

Figure 5.2: Append in Intermediate. 

for the back end and is essentially a subset of C, see the syntax given in 
Figure 5.3. The main restrictions are directly related to the functional style of 
programming: single assignment of local variables, no global variables, and 
if-then-else as the only control structure. Functional C supports only one type, 
namely ptr, which may be a basic value or a pointer into the heap, and relies 
on the primitive functions to correctly interpret their operands. For example, 
add_i operates on integers, while and_b uses booleans. As a consequence all 
types in Functional C must have the same size; therefore data structures are 
represented as a pointer to a sequence of fields in the heap. 

The Functional C code for append as shown in Figure 5.4 has essentially 
the same structure as the program in Figure 5.2. There are three important 
differences: firstly the implicit laziness of the Intermediate version is now 
explicit in the form of the calls to the library functions reduce and vap (for 
vector application). The latter builds a suspension of a function (append in this 
case) in the heap, and the former evaluates a previously built suspension. Thus 
all functions present in Figure 5.4 can safely and efficiently be called with call 
by value semantics, as is the usual case in C programs. The second difference 
between figures 5.2 and 5.4 is, that pattern matching and other list operations 

program 

function 

decl 

body 

.. - function1 · · · functionp 

.. - ptr id(id 1, · · · , id f) decl { decl body} 

.. - ptr idi, · · · , idd; 

.. - assignment ; body 
I return expr ; 
I if (expr) {bodyt} else {bodye} 

assignment .. - id= expr 

expr .. - id(expr1, · · ·, expre) 
id[num] /* array subscription*/ 
id 

Figure 5.3: Functional C. 
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ptr append( x_xs, ys) 
ptr x_xs, ys; 
{ 

} 

ptr x, xs; 

if( null(x_xs)) { 
return reduce(ys); 

} 
else { 

x = x_xs[O]; I* head *I 
xs = x_xs[l]; /*tail*/ 
return cons(x,vap(prel_append,xs,ys)); 

} 

ptr prel_append( vap) 
ptr vap; 
{ 

return append(reduce(vap[l]),vap[2]); 
} 

Figure 5.4: Append in Functional C. 
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are now compiled into calls to library routines, such as head, cons, and null 
for taking the head of a list, constructing a list, and testing for an empty list 
respectively. 

The third difference, which is not apparent from the example, is that 
statements in Functional C are explicitly ordered, which is indicated by the 
sequencing';', while expressions in a lazy functional program are implicitly 
ordered by their dependencies. The dependencies that have been discovered 
by the compiler do not require interpretation at runtime. 

The presence of calls to reduce requires runtime interpretation of the graph 
that resides in the heap; the argument of reduce points to a closure in the heap 
that has to be evaluated to head normal form. This is a much less efficient way 
of evaluating an expression than obeying straight sections of C code. The FAST 
compiler makes strenuous attempts to avoid interpreting the graph whenever 
possible, so there are far fewer occurrences of reduce than a naive front end 
would generate. This streamlines the underlying evaluation mechanism, and 
the compiler employs a host of other analyses to further improve the quality 
of the generated code. 
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The FAST compiler generates Functional C code based on the principle 
that the callee decides what form its arguments should have. Some functions 
require arguments that are evaluated, while other arguments may be passed 
as is. The null test for example is strict in its argument, because null needs 
to inspect the argument to see whether or not it represents the end of a list. 
The function cons on the other hand does not need to know anything about 
its arguments as it merely combines them into a new data object. Based 
on information about primitive functions, the strictness analysis phase of the 
compiler works out that append is strict in x_xs but not strict in ys. 

A second principle, which is inherent to lazy evaluation, is that every func
tion when it is actually called (as opposed to being embedded in a suspension), 
will return an evaluated object. Append must therefore call reduce explicitly 
to guarantee that when returningys, this parameter has actually been evaluated 
to head normal form. 

The principle that the callee decides on the form of its arguments has an 
interesting consequence for the organisation of the generated code. Returning 
to Figure 5.4, we see that functions are not embedded directly in a suspension, 
but via another "prelude" function, which in the case of append is preLappend. 
When a suspension is evaluated, the prelude function first calls reduce for every 
strict argument before calling the function proper. Prel_append ensures that the 
strict first argument is indeed evaluated before entering append. The non-strict 
second argument is merely passed on. 

As an optimisation the compiler generates prelude functions specialised 
towards each call site, so when it is actually known at compile time that a 
particular argument has the required form, no redundant calls to reduce are 
made. A function may be partially applied, in which case the prelude function 
assumes that the as yet missing arguments will eventually be supplied in 
unevaluated form. 

5.2 The assembler 

The KOALA assembler forms the last stage in the compiler pipe-line. It 
serves as the target for the FCG code generator, and is presented first to give 
a better understanding of the optimisations employed in the code generator as 
described in Section 5.4. KOALA is a high-level "assembly" frame work that 
provides a simple abstract machine suitable for graph reduction. It resembles 
the G-machine [Johnsson84], and consists of a CPU, an unlimited number of 
registers, a stack, and memory. KOALA's instructions are listed in Figure 5.5. 
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fetch n reg 
push id 
pop reg 
dupn 
squeeze nm 

store regsrc regaddr 

load reg addr reg dest 

label lbl 
branch iddst 

bfalse lbl 
jfalse reg lbl 
fun name 
call fun 
return 
move idsrc reg 

alu op id1 · · · idn reg 
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fetch then-th stacked value into register reg (n ~ 1). 
push id on the stack; id refers to a register or constant. 
pop the value on top of the stack into register reg. 
duplicate the n-th stacked value on top of the stack. 
slide down the top n elements of the stack, squeezing out 
them below. 

store the contents of reg src in memory at the location 
specified in reg addr. 
load one word at location reg addr from memory into 
register reg dest. 

instruction label (pseudo instruction). 
unconditional branch; iddst is (the contents of) a register 
or a label. 
pop boolean from the stack and branch to lbl if it is false. 
jump if the boolean value in register reg is false. 
function entry point (pseudo instruction). 
branch to functionfun. 
return to caller; pop return address from the stack. 
move idsrc to register reg; idsrc refers to a register or 
constant. 

parameterised n-operand instruction: reg= op id1 · · · idn 
op is a basic alu operation: add, mul, etc. 
idi is either a constant or a register. 

Figure 5.5: KOALA's instruction set. 

The KOALA stack is used to implement the function call mechanism: 
parameters are passed via the stack and the local state of a function is saved on 
the stack when calling a (recursive) function. The return address is passed as 
an extra parameter that will be used as branch destination on function return. 
This simple calling sequence does not include a frame pointer, so each function 
has to squeeze the call stack into a proper state before returning to its caller. If 
the result value is returned via a register then this amounts to just popping some 
items off the stack; this is cheaper than maintaining a frame pointer, which has 
to be saved and restored on function calls. To support easy integration into a 
parallel implementation, we have restricted KOALA to one single stack that 
combines the multiple stacks found in other abstract reduction machines ( see 
Section 3.1.3). 
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For simplicity the heap can only be accessed via basic load and store 
instructions that transfer one word between a register and memory. In particular 
there are no high level instructions to allocate heap cells because the FCG 
code generator will perform certain optimisations on heap bound checks like 
inlining and clustering that would make those tests redundant inside the allocate 
instruction. 

The minimal set of control instructions provides enough functionality to 
implement the function call/return sequence and the if-then-else construct 
present in Functional C. The remaining instructions that do the actual arithmetic 
computations, logical operations, etc. are provided by the alu instruction, 
which takes the specific operation as it first argument. 

The description of the KOALA instruction set contains no notion of data 
types; every item is regarded as some value that fits into a word of the underlying 
machine, which corresponds both to Functional C's uniform usage of the ptr 
type, and to a simple bit pattern at machine level. The ALU functions decide 
how to interpret the bit pattern, as an integer, boolean, floating point number, 
etc. The unlimited number of (virtual) registers makes KOALA different from 
traditional assemblers. 

5.2.1 Implementation 

All KOALA instructions that manipulate the stack, like push and pop, can be 
expanded straightforwardly into a few kernel instructions (alu + load/store), 
which operate with a fixed top-of-stack register. The subset of KOALA that 
then remains, matches with the traditional intermediate code of imperative 
compilers like the three-address code described in [Aho86). Unfortunately 
not many compilers are capable of reading-in some intermediate code file, let 
alone that there exists a universally agreed upon format. Therefore we have 
taken the detour of translating KOALA back to C, which will then (again) be 
translated into some intermediate code by the C compiler itself. 

A nuisance with using C as a sophisticated assembly language is that 
standard C does not support code labels properly: it forbids the usage of labels 
in expressions. This makes it impossible to directly push a (C) label as return 
address on the stack (i.e. store it in memory). The work-around is to use one 
level of indirection: KOALA labels are encoded as integers, and branches are 
translated to indirect gotos: 
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KOALA C 
label lbl lbl: 

branch lbl goto lbl; 
branch reg dest = reg; goto jump; 

jump: switch (dest) { 
case 0: goto lbl O• _, 
case 1: goto lbl 1. 

- I 

} 

Note that only branches with a register target suffer this indirection. Exam
ination of SPARC assembly code showed that such an indirect branch expands 
into 9 machine instructions. Hand patching of indirect to direct jumps in the 
assembly code of the function-call intensive nfib benchmark program, reduces 
the runtime to 70%. For "real" programs that contain large basic blocks, how
ever, the difference will be considerably less. Functional programs tend to have 
longer basic blocks than imperative programs because of the lazy semantics 
that cause the construction of complicated graph structures that represent local 
definitions in (large) where clauses. 

Our KOALA-in-C implementation translates a complete KOALA program 
into one single C function. This stresses most C compilers since they usually 
generate code for a procedure at once, but in return our method produces 
"globally" optimised code. It is, of course, possible to disassemble KOALA 
into C style functions, but this would introduce inefficiencies like maintaining 
an explicit pointer stack for the garbage collector. Experience with the SUN 
and GNU C-compilers has shown that the SUN compiler with optimisations 
enabled gives up on large programs due to swapping problems, while the 
GNU compiler on the contrary executes faster with optimisations asserted than 
without. 

The generated object code for the SPARC matches well with the KOALA 
source; in particular the GNU C compiler manages to assign KOALA's virtual 
registers to the spare processor's physical registers without spilling values to 
the C stack. 

5.3 Graph representation 

Both the graph reducer and the garbage collector operate on (pointers to) 
objects allocated in the heap. Their efficiency depends on the encoding of 
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pointers and objects, hence, it is important that the data representation scheme 
supports the different requirements: 

garbage collection: The storage management of WYBERT is based on a two
space copying garbage collector [Cheney70]. The collector scans the 
call stack for root pointers to live objects in the heap, hence, the collector 
has to be able to distinguish between pointers (to objects in the heap) 
and other data types: basic data values like integers, return addresses, 
etc. Since the collector copies all live objects into the empty semi-space 
to compact the graph, the collector has to know the size of each object 
and the location of all pointer fields within an object. 

graph reduction: The reducer allocates heap objects not only to hold data 
structures like lists, but also to hold suspended computations. When 
accessing components of heap allocated objects, the reducer must as
sure that the pointer refers to an evaluated object, not to a suspension. 
Therefore the reducer has to check for a delayed computation at runtime 
whenever it dereferences a pointer in a non-strict context (for the first 
time). 
The graph reducer assumes that programs are correctly typed, so the re
ducer never has to determine the type of an object. This slight restriction 
rules out untyped languages such as LISP and SASL, but saves a large 
amount of runtime checks and boosts performance [ Appel89]. 

The requirement of the garbage collector to be able to distinguish pointers 
from other data is rather a nuisance since either all data has to be tagged or 
the compiler has to generate information about the layout of each and every 
object type and stack frame. The latter solution has the advantage that no tag
handling is required, but it complicates matters considerably. For example, the 
spineless tagless G-machine [Peyton Jones92) incorporates a special pointer 
stack and generates garbage collection information for each object type. For 
convenience we have adopted the tag-it-all solution and the performance results 
in Section 5.5 show that the tag handling overhead can be kept small. 

The pointer/data classification of the garbage collector does not match well 
with the reducer's test whether a heap pointer refers to a suspension or a data 
object; pointers should be further classified into two categories: constructor 
and application pointers. Thus in total three data types should be efficiently 
recognizable. To avoid wasting a whole word of memory for a two-bit tag 
value, the tag is encoded in the least significant bits of the pointer or data. In 
case of pointers, the tag bits come for "free" since heap objects have to be 
aligned on four byte boundaries in memory anyway. Another advantage is that 



5.3. Graph representation 133 

Pointer Type Description 
xx:xxl Basic Basic data types like integers and floating point numbers are 

encoded in the pointer itself; xx:xx represents the 31-bit value. 

xxxl0 Cons xxx00 points to a data Constructor whose first (header) field 
provides additional type information: 
header type description 
yyyOO 1. The list constructor consists of a head and 
yyy 1 O 1st a tail field. The tail is the first(!) field and 

points to either another list constructor 
(case yyyl0) or a vector apply node (case 

yyy0J curried 
yyy00). 
Curried function nodes hold a function 
identifier (code pointer)and a number of 
arguments that is less than the function's 
arity. yyy (= cccas) contains three bit
fields that encode attributes associated 
with the curried node: 

ccc 20 bits code address 
a 5 bits function arity 
s 5 bits #arguments in the node 

xxx00 YAP xxx00 points to a Vector APply node; the header field is used 
to distinguish between two types: 
header type description 
yyyOO 1. . A function application has two fields: the 

app 1cat10n . . 
yyy10 first field contams the function part that 

points to either another YAP node (case 
yyy00) or a curried function ( case yyy 10), 
while the second field holds the argument 
that can be of any type. 

yyy0J suspension A suspended function is encoded just like 
a curried function, but the number of ar
guments is equal to the function's arity. If 
the size field is O then the node represents 
a Constant Applicative Form (CAF). 

Figure 5.6: Data representation. 
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the graph reducer does not have to make a memory reference to inspect the tag 
as is the case for data representation schemes that encode the tag in the object. 

A schematic overview of the data representation of the WYBERT prototype 
implementation is presented in Figure 5.6. The graph reducer can easily check 
if a data object is in head normal form by inspecting whether the two least 
significant bits of the pointer to the object are set to zero or not. The garbage 
collector only has to test the lowest bit to recognise a pointer. 

All heap objects are encoded as a sequence of tagged words. The size of 
the object, which is needed by the copying garbage collector, is included in 
the first word of an object that serves as a header field. This header contains 
some additional information about application nodes for the graph reducer as 
well: the code address of the function's entry point, and the function's arity. 
The arity is needed to test whether a curried function is applied to enough 
arguments or not. In the latter case a new, but larger, curried function has to be 
returned. The size, arity, and code-address are encoded in one field for space 
efficiency. Furthermore these headers are encoded as basic values, i.e. the 
least significant bit is set to 1, so that the garbage collector will automatically 
skip them when scanning moved nodes for pointers into live data. 

The data representation scheme has been optimised to avoid the header 
field for two important object types: lists and unary function applications. 
The first field of an application node points to either another application node 
(yyy00) or a curried function node (yyy 10). In both cases the lower tag bits of 
the first field serve to distinguish the node from a vector apply node that starts 
with a header (yyy0J). Likewise the tail of a list can only point to another list 
(yyy 10) or application (yyy00), so it can serve as a header field too; the head of 
a list cannot be used for this purpose since it might contain a basic value, which 
has the same tag as the header info! As a result the list and unary function 
application nodes occupy two words instead of three. 

To preserve the sharing of delayed computations, the graph reducer updates 
a vector apply node with its result. However, since the tag is encoded in the 
pointer to the node, the reducer cannot change the type of the node to, say, 
basic value. Therefore the reducer overwrites the first (header) field with the 
identity function and stores the result in the second field. To avoid the overhead 
of a function call on subsequent uses, the reducer recognises the indirection 
nodes especially and simply fetches the previously computed value. The 
garbage collector reduces the overhead even further by updating the pointers 
to indirection nodes with the result value during the scan of live data nodes. 

A second type of indirection node has been used to support the squeeze 
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operation of the FRATS reduction strategy. These normalised indirection 
nodes signal objects (data structures and partial function applications) that 
have been fully evaluated to normal form. Whenever the squeeze detects such 
a normal indirection it returns immediately, while in case of a plain indirection 
node the "value" has to be inspected for pointers to yet unevaluated suspension 
nodes. If two tasks share a large data structure (e.g., a matrix) the usage 
of normalised indirection nodes saves the (second) redundant traversal of the 
shared data structure. During ordinary execution the two types of indirection 
nodes are handled completely similar. 

In comparison with data representation schemes that do not use pointer 
bits to encode tags, but always include a tag in an object, our method has two 
advantages: First, the graph reducer saves memory references since it does not 
have to fetch tags from memory to decide whether an argument has already 
been evaluated or not. Secondly, the nodes are encoded as space efficient as 
possible, which reduces the number of garbage collections, and improves cache 
locality as well. The disadvantages of our scheme are the usage of indirection 
nodes and the tagging/masking of basic data values, but the performance results 
in Section 5.5 show that the overheads are not significant. 

5.4 The code generator 

The back end forms the middle stage in the compiler pipe-line, and translates 
Functional C code into KOALA assembly. The main objectives of the FCG 
code generator are to allocate frequently accessed pointers into registers for 
efficiency and to make all heap pointers accessible during garbage collection. 
The former requirement amounts to allocating the start-of-free-space and end
of-heap pointers into fixed KOALA registers, while the latter is accomplished 
by saving all local state on the KOALA stack on function calls. Since data 
values are tagged, the garbage collector can easily identify all root pointers 
that reside on the KOALA stack. 

In Figure 5. 7 the following three compilation schemes are used to show 
how FCG implements the function-call mechanism in KOALA: 

K[function] The top-level scheme generates code for a function definition. 

'R.[body] p d The 'Return scheme generates code to return the value produced 
by body, where dis the current depth of the stack frame, and p 

is an association list (symbol table) that maps variables to their 
location in the frame. 
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~ :: function-> [instr] 
'R :: body-> [instr] 
£ :: expr-> [instr] 

Chapter 5. The FASTIFCG compiler 

(0) K:[ptr fun(id,,- · ·,idn) de] { de] body}] = fun fun_n+ 1; 
R[body] [<cont,n>,<id1,n-l>,- · ·,<idn,0>] (n+l) 

(1) R[id = expr; body) pd =£[expr] pd 
R[body) (<id,d>:p) (d+l) 

(2) R[retum expr;J p d =£[expr) pd 
£[cont] p (d+l) (stack return address) 
squeeze 2 d; 
return; 

(3) R[if (expr) {bodyt} else {bodye}] pd= t:[expr) pd 
bfalse !bl; 
R[bodyt] pd 
label !bl; 
R[bodyeJ pd 

(fresh label) 

(4) £[fun(expr,, · · ·, exprn)) pd 

(5) £[id[n]) pd 

(6a) £[id) [· · ·, <id,p>, · · ·] d 
(6b) £[id) pd 

=£[exprn] pd 

£[expr,] p ( d+n-1) 
£[!bl] p (d+n); (stack fresh label) 
call fun_n+ 1; 
label lb!; 

= t:(field(id,'WORDSIZE*n')] pd 

=dup (d-p); (variable) 
= push id; (global name) 

Figure 5.7: FCG's compilation rules to KOALA instructions. 

l'[expr] pd The expression scheme generates code to compute the head 
normal form of expr. It puts (a pointer to) the value on top of 
the stack. 

When calling a function the caller constructs a call-frame by evaluating the 
parameter expressions one by one on top of the stack and pushing a return 
address. Then a jump is made to the function entry point, see rule (4) in 
Figure 5.7. When the callee has computed the result, it fetches the return 
address from the stack and removes its call frame from the stack with the 
squeeze instruction, while leaving the result on top of the stack, see rule (2). 
The presence of the return address as an extra parameter is made explicit in 
rule (0) where the identifier cont(inuation) is inserted in the symbol table. 
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According to the syntax of Functional C (Figure 5.3), assignments to 
local variables only occur at the beginning of basic blocks. This restriction 
guarantees that whenever an assignment is encountered, the call stack contains 
only parameters and variables, but no anonymous temporary expressions. Rule 
(1), which compiles the assignment statement, therefore simply extends the 
call frame by calling the £ scheme and records the location in the association 
list (p) for compilation of the remainder. This contrasts with the common 
technique of allocating space for all local variables at once at the function 
entry. Our method of not allocating complete call frames at the function entry 
has several advantages: 

• There is no need to initialise variables on function entry to keep the 
garbage collector from chasing arbitrary pointers placed on the stack 
sometime earlier. Omitting the initialisation might (and will!) lead to a 
crash of garbage collectors that move objects since it is possible to find 
an old pointer (to a deallocated object) on the stack that now points in 
the middle of a new object. 

• The size of the stack frames is usually smaller because variables are 
allocated on demand. If a function calls another function then only 
variables that have already been assigned are saved on the stack and no 
space is wasted for variables that will be assigned when control returns. 
Furthermore, if the then and else branch of an if-statement use a different 
number of variables then the actual number of variables is saved in each 
branch when calling a function instead of the maximum number. 

• It is easier to optimise a stack without "holes". 

Rule (3) in the compilation schemes handles the if-then-else control flow 
construct of Functional C; note that both branches use the Return scheme to 
compute the function result, hence no additional trailing code is necessary. 
The array subscript is syntactic sugar for the field primitive, which loads a 
word from the heap at the location specified by the base and offset arguments, 
rule (5). Finally, rule (6) handles the evaluation of identifiers. It distinguishes 
between two types: variables, which are to be found on the call stack, and 
global names that refer to (constant) functions. 

The K, n, and £ compilation schemes generate a subset of the KOALA 
instruction set: only the pure stack instructions (i.e. the ones that do not have 
register operands) are being used. This is a consequence of using Functional 
C, which contains no built-in operators, but calls primitive functions instead. 
These primitives are directly coded in KOALA and exercise the remainder of 
the KOALA instructions (e.g., alu, load, and store). 
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The usage of the FCG compilation schemes of Figure 5.7 in combination 
with the KOALA-to-C translator results in poor runtime performance of the 
generated object code. The C compiler, which is used in the final stage in 
our compiler pipeline, does not "understand" the meaning of KOALA's stack 
instructions and faithfully compiles every push and dup instruction to loads 
and stores. The C compiler cannot properly optimise basic blocks by keeping 
temporary stacked values in registers. To make full use of the C compiler's 
optimisation capabilities, we therefore present some optimisation schemes that 
transform the FCG's stack code into a form that is amenable to optimisations 
by the C compiler; of great importance are those optimisations that replace 
stack instructions by register moves. 

To illustrate the effects of the various optimisations, we will use the append 
function (Figure 5.4) as an example throughout the remainder of this section. 
A quantitative analysis of the various optimisations is provided in Section 5.5. 
The unoptimised compiler schemes of Figure 5.7 produce the following code 
for append: 

fun append_3; dup 2; label L3; push #4; 
push LO; dup 4; 
call null - 2; push L4; 

label LO; bfalse Ll; call field 3; 
dup 3; label L4; dup s; 
push L2; dup 2; 
call reduce - 2; push prel_append; 

label L2; dup 2; push LS; 
squeeze 2 3; call vap_4; 
return; label LS; dup 3; 

label Ll; push #0; push L6; 
dup 3; call cons 3 · ' push L3; label L6; dup 4 · ' call field 3· 

' squeeze 2 s; 
return; 

5.4.1 Tail call optimisation 

Both branches of the if-then-else construct in append end by returning the 
value of a function call (reduce, and cons respectively). The corresponding 
KOALA code evaluates the function call, reorders the stack frame, and returns 
the (unmodified) result. At runtime this results in reduce/cons jumping back 
to append, squeezing the call stack, and jumping back to append's caller. The 
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(2a) 'R.[retum fun(expr1, · · ·, exprn);] pd= t:[exprn] pd 

t:(expr1] p (d+n-1) 
&[cont] p (d+n) (stack return address) 
squeeze (n+ 1) d; 
branch fun_n+I; 

Figure 5.8: FCG compilation rule for tail calls, to be inserted before rule 2 in 
Figure 5.7. 

sequence of jump-to-caller instructions can be collapsed into one by reordering 
the stack frame before the (tail) call, and passing append's return-address on to 
the primitive call. This can easily be accomplished by extending the R scheme 
to include a special case as shown in Figure 5.8. 

The effect of rule (2a) can be seen in the following code; revision bars 
indicate the difference with the naive code: 

fun append_3; dup 2; 
push LO; 
branch null 2; 

label LO; bfalse Ll; 
dup 3; 
dup 2; 
squeeze 2 3; 
branch reduce_2; 

label Ll; push #0; 
dup 3; 
push L3; 
call field 3; 

label L3; push #4; 
dup 4; 
push L4; 
call field 3; 

label L4; dup 5; 
dup 2; 
push prel_append; 
push LS; 
call vap_4; 

label LS; dup 3; 
dup 5; 
squeeze 3 5; 
branch cons_3; 

5.4.2 Compile-time stack simulation 

To improve the KOALA code by introducing registers we need to simulate 
the stack at compile time. Then it will be possible to replace matching push 
and pop/fetch/dup instructions by (register) moves inside basic blocks. Basic 
blocks are delimited by fun, call, branch, and return instructions. 

In contrast with the tail-call optimisation, we do not enhance the basic 
FCG compilation schemes, but provide an Assembly scheme that will be used 
as an optimising filter on KOALA code. This approach has the advantage that 
it is much easier to pass the stack on to the following instruction than in the 
£ scheme where we would need an attribute grammar to do so. Besides the 
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stack :: [value] 
A : : [instr] -+ stack -+ [stack] -+ [instr] 

A[fun name; code] SE = label name; A[code] £ (S:E) 
A[push id; code) SE = A[code] (id:S) E 
A(pop reg; code) (v1 :S) E = move v1 reg; A[code] SE 
A[pop reg; code) £ E = pop reg; A[code] £ E 
A[dup n; code] (v1:· · ·:Vn:S) E = move Vn reg,,,".; A[code) (reg,,e":v1:· · ·:vn:S) E 
A[dup n; code] SE = fetch (n-#S} reg,,ew; A[code] (regnew:S) E 
A[squeeze nm; code] (v1:· · -:vn+m:S) E = A[code] (v1:· · ·:vn:S) E 
A[squeeze nm; code] (v1 :· · -:vn:S) E = squeeze O (m-#S}; A[code] (v1:· · -:vn :£) E 
A[squeeze nm; code] SE = squeeze (n-#S} m; A[code] SE 
A[bfalse lbl; code) (v1 :S) E = jfalse v1 lbl; A[code] S (S:E) 
A[bfalse lbl; code) £ E = bfalse lbl; A[code] £ (c:E) 
A[branchftm; code] (v1 :· · ·:v. :c:)(S' :E) = push v,; ···push v1; branchftm; A[code] S' E 
A[calljun; code] (v1:· · ·:v,:c:) E = pushv,; · · · pushv1; branchjun; A[code] c: E 
A[retum; code) (v1 :v2:c:) (S' :E) = push v2; branch v1; A[code] S' E 
A[retum;code) (v1:£)(S1 :E) =branchv1;A[code) S' E 
A[Instr; code) S E = Instr; A[code] S E 
A[c:] s E = C 

Figure 5.9: Compile-time stack optimisation. 

instruction stream and the (simulated) stack the A scheme in Figure 5.9 takes 
an environment argument to record the lexical scope. 

When translating the dup instruction the A scheme first checks whether 
the referenced stack item is present in the simulated stack or not. In the latter 
case a fetch instruction is issued to load the value from the physical stack into 
a fresh (virtual) KOALA register (regnew), Otherwise the value is copied into 
a fresh register to avoid aliasing problems (see next section). In general the 
A scheme contains multiple rules for one KOALA instruction depending on 
whether the instructions arguments are present in the simulated stack or not. 

An important invariant of the calling sequence in the A scheme is that 
parameters are passed on the physical KOALA stack. Therefore the A scheme 
flushes the simulated stack to the KOALA stack with a sequence of push 
instructions when calling a function (see the rules for branch and call). The 
same holds for returning a result. 

The Environment argument is used to handle the if-then-else construct of 
Functional C. Since the syntax of Functional C guarantees that each conditional 
brancp terminates with a return statement, the lexical scope structure is a simple 
tree. The FCG compilation schemes traverse this tree in a fixed order (i.e. then 
before else), hence, we can record the lexical scopes with a stack. When the 
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A scheme enters the then branch, it stacks the current (simulated) stack for 
the else branch; the beginning of the then branch is marked by the bfalse 
instruction. When the A scheme enters the else branch it pops the saved stack 
from the environment argument; the end of the then part is marked by a return 
or branch. 

The A scheme uses the K, scheme from Figure 5.7 (augmented with Fig
ure 5.8) as follows: A [K [prog]] cc. Compiling the append example results 
in registers being used, but the net effect is zero since the basic blocks do not 
contain any real work; just setting up stack frames to call functions does not 
benefit from register optimisations when parameters are passed on the stack. 
The new append code does not contain revision bars since it has changed too 
much: 

label append; fetch 2 RO; label L3; fetch 3 R4; 
push RO; push #4; 
push LO; push R4; 
branch null; push L4; 

label LO; bfalse Ll; branch field; 
fetch 3 Rl; label L4; fetch s RS; 
fetch 1 R2; fetch 1 R6; 
squeeze 0 3; push RS; 
push Rl; push R6; 
push R2; push prel_append; 
branch reduce; push LS; 

label Ll; fetch 2 R3; branch vap; 
push #0; label LS; fetch 3 R7; 
push R3; fetch 4 RB; 
push L3; squeeze 1 s; 
branch field; push R7; 

push RB; 
branch cons; 
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5.4.3 Inlining of primitive functions 

A first solution to make the simulated stack of the A scheme more effective, is 
to enlarge the basic blocks by inlining some of the primitive functions. Many 
of these primitives map to a single alu instruction, if the operands are available 
in registers. The following example shows the typical coding style of such 
primitives for the null and field primitives: 

fun nulL2; 
pop regre,; 
pop regus,; 
alu eq regus, NIL reg,es,; 
push regies,; 
branch reg,,,; 

fun field-3; 
pop reg,e,; 
pop regbase; 
pop regaff; 
alu add regbase regaff regadd,-; 
load regaddr regval; 
push reg ... 1; 
branch regre,; 

Figure 5.10: Null and field primitives in KOALA. 

Inlining the primitive code in the KOALA instruction stream directly does 
not work for two reasons. Firstly, registers used in the primitives have to 
be renamed to avoid name clashes (a conversion). Secondly, the A scheme 
interprets the primitive 's trailing branch instruction as a basic block marker, 
and flushes the Simulated stack to memory, which reduces the benefits of 
the compile-time stack simulation. Therefore the additional inlining rules in 
Figure 5.11 use the a-converted-body() function that renames registers and 
strips the fun pseudo, the first pop and the last branch instruction of the 
primitive code. The second rule handles the tail call of a primitive function. 

A(push lbl; call inline_prim; label lbl; code) SE 
A[a-converted-body(inline_prim ); code) S E 

A[dup c; squeeze nm; branch inline_prim; code] S E 
A[a-converted-body( inline_prim ); 

dup (c + 1); squeeze 2 (m + n - 1); return; code] SE 

Figure 5 .11: Rules for inlining primitive functions, to be added to those in 
Figure 5.9. 

The append function greatly benefits from inlining the null and field prim
itives. In reality all of the simple primitives are inlined, but this is not shown 
here for brevity. 
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label append;fetch 2 RO; 
move RO RlO; 

label Ll; 

alu eq RlO NIL Rll; 
jfalse Rll Ll; 
fetch 3 Rl; 
fetch 1 R2; 
squeeze O 3; 
push Rl; 
push R2; 
branch reduce; 
fetch 2 R3; 
move R3 R20; 
move #0 R21; 
alu add R20 R21 R22; 
load R22 R23; 
fetch 2 R4; 
move R4 R30; 
move #4 R31; 
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alu add R30 R31 R32; 
load R32 R33; 
fetch 3 RS; 
move R33 R6; 
push R23; 
push R33; 
push RS; 
push R6; 
push prel_append; 
push LS; 
branch vap; 

label LS;fetch 3 R7; 
fetch 4 RB; 
squeeze 1 5; 
push R7; 
push RB; 
branch cons; 

The apparent redundant data movement between registers will be handled by 
the KOALA assembler (i.e. the C compiler), and is of no concern for the 
A scheme. The basic blocks can be enlarged even further by inlining user 
functions. this could be done by the A scheme (two passes), but the FAST 
front end is already capable of inlining user functions. 

5.4.4 Parameters passed in registers 

Now that we have used the simulated A stack to optimise stack instructions 
inside basic blocks, we would like to extend the scheme to optimise parameter 
passing between functions as well. This is attractive since the callee can use its 
arguments directly from registers instead of loading them from the (physical) 
stack first. Such register parameters still have to be saved on the stack if the 
callee itself calls another function, except when it makes a tail call (:;:::j 25% 
of all calls). Quite often functions terminate by replying a value directly, in 
which case the parameters do not have to be saved at all. In general passing 
parameters in registers extends the basic blocks across function calls until the 
first sub function call and thereby provides more opportunity to optimise stack 
instructions. 

The calling sequence will be changed as follows: parameters are passed 
in "global" registers, while the caller will save its internal state (arguments + 
locals) on the stack. When the caller resumes execution it will not restore the 
internal state in registers immediately, but rather fetch values from the stack 
on demand. This lazy scheme is advantageous after function calls if not all of 
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A[fun namen; code) SE = label name; 
A[code] (param1:· · ·:paramn:c:) (S:E) 

A[branchfun_n; code] (v1:· · •:vn:c:) (S':E) = move v1 param1; · · · ; move Vn paramn; 
branchfun; 
A[code] s' E 

A[branchfun_n; code] (v1:· · •:v,:c:) (S':E) = move Vt paramt; · · ·; movev. param,; 
pop param,+1; ···;pop paramn; 
branch fun; 

A[retum; code] (v1 :v2:c:) (S' :E) 
A[retum; code] (v1:c:) (S':E) 

A[code] S' E 
= push VnHS; ... ; push Vn+ t; 

move Vt param1; ···;move Vn paramn; 
branchfun; 
A[code) (reply:c:) E 

= move Vt param1; •••;move v. param,; 
pop param,+ 1 ; · · ·; pop paramn; 
branchfun; 
A[code] (reply:c:) E 

= move v2 reply; branch v1; A[code) S1 E 
= pop reply; branch Vt; A[code] S' E 

Figure 5 .12: Calling sequence with parameter registers, replaces corresponding 
rules in Figure 5.9. 

the internal state is used. A function result is also passed in a global register 
instead of on the stack. 

Figure 5.12 implements the new calling sequence and replaces the fun, 
branch, call, and return rules in the previous A schemes. On function entry 
the simulated stack is no longer empty, but is loaded with the global parameters. 
On function exit, the result is moved to the reply register and control is passed 
back to the caller. A tail call (i.e. a branch instruction) is translated to a 
sequence of instructions that moves the call parameters (from the simulated 
stack) into the global paraffli registers; if not all parameters reside on the 
simulated stack then the remainder has to be fetched from the physical stack 
with pop instructions. Making a function call is slightly more complicated 
than the tail call case: if all parameters reside on the simulated stack then the 
additional stacked values (i.e. locals) have to be saved on the physical stack 
before transferring the parameters to their global registers, else the lacking 
parameters have to be fetched from the physical stack as with the tail call. 
The code after the call proceeds with a simulated stack that contains just the 
result value. If a reference is then made to the saved state, the A scheme will 
automatically fetch it from the physical stack. Now the code for append looks 
much better: 
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label append;move param2 RO; 
move RO RIO; 

label Ll; 

alu eq RlO NIL Rll; 
j false Rll Ll; 
move param3 Rl; 
move paraml R2; 
move R2 paraml; 
move Rl param2; 
branch reduce; 
move param2 R3; 
move R3 R20; 
move #0 R21; 
alu add R20 R21 R22;label 
load R22 R23; 
move param2 R4; 
move R4 R30; 
move #4 R31; 
alu add R30 R31 R32; 
load R32 R33; 

5.4.5 Life-time analysis 

move param3 R5; 
move R33 R6; 
push param3; 
push param2; 
push paraml; 
push R23; 
push R33; 
move L5 paraml; 
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move prel_apnd param2; 
move R6 param3; 
move R5 param4; 
branch vap; 

L5;fetch 2 R7; 
fetch 3 RB; 
squeeze O 5; 
move RB paraml; 
move R7 param2; 
move reply param3; 
branch cons; 

The above calling sequence can be improved on two major points: 

1. If after a function call the KOALA code makes multiple references to 
the same stack location, the A scheme will generate the same number 
of fetch instructions since the simulated stack is empty. One fetch 
instruction and some register moves provide the same functionality. 

2. When calling a function, the A scheme blindly saves all local state on 
the physical stack, but often some stack locations will not be referenced 
in the remainder of the code. See for example the previous append code 
where after the vap call only two of the five saved values are being used. 

Redundant loads from the stack can be avoided by adding another argument to 
the A scheme that records the status of the physical stack: if an item is fetched 
from the stack then its register is remembered. 
The avoidance of saving dead variables is more difficult. Fortunately, the FAST 
front end has the ability to output pseudo function calls for a reference counting 
garbage collector, where they are used to increment or decrement the reference 
count of objects. The A scheme can take advantage of the increment/decrement 
pseudo functions by maintaining a life count with each item on the stack. When 
calling a function, only those stack items with a positive count have to be saved 
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on the physical stack. A slight complication with this scheme is that the one
to-one correspondence between FCG's simulated stack locations and the actual 
physical location can no longer be maintained since we must not create holes 
in the stack, but in return we can reuse the stack locations of variables that 
were saved before and have died since the last function call. 

We have constructed a new Optimal scheme that incorporates both im
provements mentioned above. Since this O scheme is a straightforward ex
tension of the previous A scheme, we have not provided a listing. The final 
append code no longer saves the unused locals when calling vap: 

label append;move param2 RO; 
move RO RlO; 

label Ll; 

alu eq RlO NIL Rll; 
jfalse Rll Ll; 
move param3 Rl; 
move paraml R2; 
move R2 paraml; 
move Rl param2; 
branch reduce; 
move param2 R3; 
move R3 R20; 
move #0 R21; 
alu add R20 R21 R22; 
load R22 R23; 
move param2 R4; 
move R4 R30; 
move #4 R31; 
alu add R30 R31 R32; 

label 

load R32 R33; 
move param3 RS; 
move R33 R6; 
push paraml; 
push R23; 
move LS paraml; 
move prel_apnd param2; 
move R6 param3; 
move RS param4; 
branch vap; 

LS;fetch 1 R7; 
fetch 2 RS; 
squeeze O 2; 
move RS paraml; 
move R7 param2; 
move reply param3; 
branch cons; 

If the above KOALA code is translated into C and fed to the GNU gee 
compiler, all redundant register moves are eliminated from the append code. 
The generated assembly code for a SPARC processor is given below: 



5.5. Performance 147 

_append: cmp %12,10 
bne Ll 

!param2 ==NIL? 

11: 

LS: 

nop 
b reduce 
mov %10,%12 
ld [ %12 J, %14 
st %13,(%11] 
st %14,(%11-4] 
add % 11 , - 8 , % 11 
mov %10,%14 
ld [%12+4],%10 
sethi %hi(_prel_apnd),%12 
or %lo(_prel_apnd),%12,%12 
b _vap 
mov 20,%13 
ld [%11+8],%12 
ld [ %11+4 J, %13 
add %11,8,%11 
b cons 
mov %14,%10 

!branch delay slot 
!call reduce 
!move param3 param2 
!load head-field of param2 
!push paraml 
!push R23 
!adjust stack pointer 
!move param3 param4 
!load tail-field of param2 
!load address of 
!function _prel_apnd 
!call _vap, use delay slot 
!put return addr in paraml 
!fetch 2 pararnl 
!fetch 1 param2 
!squeeze 0 2 
!call _cons, use delay slot 
!move reply pararn3 

5.5 Performance 

To assess the runtime performance effects of the optimisations described in 
the previous sectiori, we have run a set of benchmark programs several times 
on a SUN 4/690. The majority of programs are sequential versions of the 
benchmark programs of Chapter 4.5: FFT, WANG, 15-PUZZLE, SCHED, COMP-LAB, and 
WAVE (see Table 4.1 on page 85). In addition the following three other serious 
applications have been used: 

program 
SOLID 

TYPE CHECK 

TRANSFORM 

#lines 
605 

360 

834 

description 
Point membership classification algorithm of solid 
modeling library for computational geometry 
[Davy92]. 
Polymorphic type checking of a set of function 
definitions and printing of the type signatures 
[Peyton Jones87b, Chapter 9]. 
Transformation of 9 programs represented as syn
chronous process networks into master/slave style 
parallel programs [Vree92]. 
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naive +inline +stack +tailc +params +life/death 
FFT 2.3 1.7 1.2 1.1 1.0 1.0 
WANG 8.8 6.3 4.9 4.6 4.1 4.0 
15-PUZZLE 36.9 21.9 15.6 14.5 12.1 11.9 
SCHED 34.9 23.8 16.0 13.5 12.0 11.4 
COMP-LAB 6.9 4.6 3.2 3.0 2.7 2.5 
WAVE 3.9 2.4 1.7 1.6 1.4 1.3 
SOLID 38.5 24.7 16.5 15.7 14.7 14.0 
TYPE CHECK 45.8 28.4 19.0 16.4 14.0 13.2 
TRANSFORM -1- -1- 3.9 3.5 3.2 3.2 

-1- GNU compiler runs out of memory. 

Table 5.1: Execution time [sec] under various compiler optimisations. 

The programs have been timed on a UNIX system using /bin/time, taking 
the sum of user and system time as the total execution time. Each program has 
been run 10 times in a row, on a quiet system, taking the best execution time 
as shown in Table 5.1. 

The column marked naive contains the results for code that was produced 
by FCG with the straightforward K, R, and£ schemes from Figure 5.7. The 
following columns list the results for adding the optimisations of the previous 
section one by one to the naive version: inlining of primitives, stack simu
lation, tail call optimisation, parameter registers, and life-time analysis. For 
example, the +t column presents the results for FCG with the basic schemes, 
the rule to inline primitives (Figure 5 .11 ), the stack simulation of the A scheme 
(Figure 5.9), and the additional rule for tail calls (Figure 5.8). 

As can be seen from the results, the optimisations improve the performance 
of the compiled code considerably. The largest difference is reached for the 
TYPECHECK program: the optimal (+life/death) version runs 3.5 times as fast as 
the naive version. The WANG program shows the smallest improvement under 
the various optimisations: only a factor 2.2. As is apparent from the results, the 
inlining of the primitive functions and stack optimisation are of vital importance 
for generating quality code, while the additional exploitation of registers has a 
surprisingly low effect of less than 25% performance increase. Note, however, 
that it is rather difficult to assess the effects of individual optimisations by 
comparing two columns in Table 5 .1; the various optimisations effect each 
other, for example, the results of simulating the argument stack at compile 
time heavily depend on the inlining of primitive operations, otherwise all 
arguments have to be passed via the stack and nothing is gained at all. 
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To judge the absolute performance of the code generated by FCG, we 
have made a comparison with several other state-of-the-art lazy functional 
language compilers: the Concurrent Clean compiler from Nijmegen Univer
sity [Nocker91a, Smetsers91], the LML compiler developed at Chalmers Uni
versity [ Augustsson89a, Augustsson90], the Haskell compilers of Chalmers 
University and Glasgow University, and the original code generator for the 
FAST compiler [Hartel91b]. To avoid the tedious and error prone work of 
converting the Miranda programs into the other languages the FAST front end 
has been adapted to either produce an executable or, depending on a compiler 
switch, a Haskell, LML, or Clean source program. Considerable effort has been 

· put in generating "equivalent" programs for those languages, see [Hartel93]. 

Table 5.2 lists the execution times of the benchmark programs compiled 
by each of the six compilers. All figures are the minimum user+system time of 
10 runs of the executable with 16 Mbyte heap space on a quiet UNIX system. 

language Clean FAST FCG LML Haskell 
compiler Chalmers Glasgow 
version 0.8.1 29 3 0.998 0.998 0.10 

Compilation speed in lines per minute real time 
minimum * 354 74 13 126 69 29 
maximum * 1113 191 173 291 216 99 

Execution time in seconds 
FFT 10.8 2.0 * 1.0 2.2 5.1 4.1 
WANG * 2.9 9.9 4.1 4.5 4.6 3.3 
15-PUZZLE 11.3 40.5 11.8 16.2 13.3 * 9.5 
SCHED 18.8 -2- *11.6 17.2 18.2 11.4 
COMP-LAB * 2.4 6.3 2.6 2.9 3.8 3.2 
WAVE 9.4 3.7 * 1.3 7.8 17.8 12.9 
SOLID 17.1 28.8 *14.3 26.7 21.3 -1-
TYPECHECK *12.5 33.9 13.6 15.4 16.2 13.1 
TRANSFORM 4.0 6.9 * 3.1 3.3 3.4 3.7 

* Best execution time. 
-1- segmentation fault in the compiler. 
-2- runs out of heap space. 

Table 5.2: Benchmark results showing execution times in seconds for runs 
with 16Mb of heap space on a SUN 4/690 with 64Mb of real memory and 
64Kb cache. 



150 Chapter 5. The FAST/FCG compiler 

In addition the compilation speed is reported in lines per minute real time; for 
each compiler the minimum and maximum speed is reported, as found over 
the whole range of benchmark programs. Each row bears one asterisk, which 
marks the best result for that particular row. This shows that it depends to 
some extent on the application which compiler generates the fastest code. 

The comparison between FCG and FAST is especially interesting since 
both compilers use the same front end that generates Functional C. In contrast to 
FCG, the FAST compiler directly feeds Functional C to the GNU C-compiler; 
to achieve acceptable performance, a header file is included that contains 
macro definitions for simple primitives like integer addition, null test, etc. The 
benchmark results show that the unoptimised FCG version ( column naive in 

. Table 5.1) generates code that runs at similar speed as programs compiled by 
FAST, while the optimised FCG compiler (Table 5.2) generates code that runs 
two to three times as fast as FAST. This is a rather surprising result since FAST 
does not reclaim garbage and FCG generates extra code to manipulate tag bits 
that are present in each data value to support garbage collection. Apparently 
this overhead is of no great importance since FCG also outperforms the other 
state-of-the-art compilers on most programs. 

The exceptional performance of FCG (and FAST) on the FFT and WAVE 

programs is caused by the efficient array support through built-in primitives. 
Although both applications use the Haskell style arrays [Hudak92], the LML 
and Haskell(!) implementations just outperform the Clean programs that use 
lazy lists, but do not match performance of the FCG array primitives. For the 
other benchmark applications, which do not use arrays, the difference in code 
quality generated by various compilers is much smaller. 

The FAST, FCG and Glasgow Haskell compilers generate C programs, 
while the remaining compilers generate assembly directly. It is interesting to 
note that using C as a portable high-level assembler does not mean generating 
bad code. Considerable optimisation and tuning, however, is required to pro
duce C programs that the C compiler properly understands. Apparently the 
Glasgow Haskell compiler has not reached the level of sophisticated optimi
sations presented in Section 5.4 because of the complexity of the full Haskell 
language. Unfortunately, using a C compiler instead of an assembler to pro
duce object code increases compilation time significantly. This is especially 
true for the FCG compiler that generates one C function containing all "as
sembly" code. Note that this approach also rules out separate compilation. 
The Clean compiler generating native assembly is much faster than all other 
compilers. 
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5.6 Conclusions 

We have built an efficient, portable, functional language compiler that supports 
moving garbage collectors with minimal effort. This has been accomplished 
by reusing large parts of existing compiler technology: the FAST front end for 
making lazy evaluation explicit, and the C compiler for generating optimised 
code. 

The FCG code generator consists of two passes that are described with 
simple transformation schemes. The first basic scheme describes a recursive 
descent parser that generates code for a pure stack machine. This code is 
optimised by the second scheme that makes a linear scan over the code to 
combine matching stack instructions into register based equivalents. Both 
schemes can be combined into one attribute grammar, but that would make 
the optimisation scheme far more difficult to understand since the inherently 
sequential state information flow has to be propagated indirectly through the 
parse tree. 

The performance results of a benchmark of functional programs, show that 
the optimisations have a large effect; the difference between naive code and 
the optimised version ranges between a factor 2.2 and 3.4. The comparison 
between the FAST compiler, which does not perform garbage collection, and 
FCG, which includes a copying collector, shows that FCG outperforms FAST 
on all benchmark programs. The benchmark results of the Clean, LML, and 
Haskell state-of-the-art compilers show that FCG generates quality code that 
often performs best, especially if arrays are being used, but at the price of low 
compilation speed. 

Because of the clear separation between graph reduction and parallelism 
in the WYBERT design and the tagged data representation of graph nodes, the 
FCG compiler can be used without change to generate code for execution on 
a parallel machine. 





Chapter 6 

Experimental resultst 

This chapter provides measurements of the performance of the integrated 
WYBERT system on real hardware. The performance results of a set of 
benchmark programs is used to asses the significance of the advantages of 
the WYBERT approach. For example a comparison with a standard parallel 
implementation technique shows the performance gain obtained by not locking 
nodes in shared memory during ordinary graph reduction. The effects of 
the special resource management policies of WYBERT are analysed by a 
performance monitoring tool that provides a detailed cost break down of the 
execution time of an application. 

Benchmark programs written in Miranda and annotated with the sand
wich construct are compiled with the FAST/FCG compiler (Chapter 5) and 
linked with a straightforward implementation of the runtime support system 
as discussed in Chapter 4. Then the object code is down-loaded for execution 
onto a Motorola HYPERmodule that consists of four MC88100 RISC proces
sors, equipped with 32Kbyte caches each, connected to 64 Mbytes of shared 
memory (see Figure 6.1 ). The combination of a state-of-the-art compiler with 
advanced hardware gives us today's fastest parallel implementation of a lazy 
functional language as already stated in the survey of Chapter 3. 

A number of experiments have been conducted to study the individual 
impact in the WYBERT system of the FRATS reduction strategy, LIFO/FIFO 
scheduling, storage management (BAS vs. VAS), and garbage collection. To 
easily compare the various design alternatives, these experiments work with 
small input sets for the following seven benchmark programs: NFJB, QUEENS, 
DET, WANG, 15-ruzzLE, COMP-LAB, and wAvE; for a short description see Table 4.1 

tThis chapter represents joint work with Henk Muller. 
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on page 85. At the end of this chapter, a set of large input parameters is used 
to show the behaviour of these benchmark programs in a realistic setting by 
giving a detailed break down of the execution costs. Table 6.1 lists the key 
properties of the benchmark programs for both parameter sets. 

Simple divide-and-conquer applications like NFIB and QUEENS unfold into a 
plain tree shaped task structure. Multi pass applications generate a chain of 

small large 
task structure av par node claim av par node claim 

NFIB tree 75.9 0.011 Mb 198.9 0.03 Mb 
QUEENS tree 69.2 1.3 Mb 97.7 37Mb 
DET 2-d spine 51.5 8.0Mb 89.8 750Mb 
WANG chain, length 2 11.6 11.7 Mb 11.9 67Mb 
15-PUZZLE chain, length 3 29.7 18.3 Mb 49.7 318 Mb 
COMP-LAB chain, length 2 9.4 5.6Mb 14.5 72Mb 
WAVE chain, length n 5.6 23.3 Mb 5.0 211 Mb 

Table 6.1: Benchmark properties for small and large input sets. 
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successive unfolding/folding task trees; WANG, 15-PuzzLE, and COMP-LAB generate 
a chain of fixed length, while WAVE generates a chain of length "number-of
iterations". The average parallelism in Table 6.1 indicates the useful paral
lelism of an application; it is the maximum speed-up that can be achieved with 
an unlimited number of processors [Eager89]. The amount of space allocated 
for graph nodes in the heap is given in the columns marked "node claim". 

6.1 FRATS reduction strategy 

The FRATS reduction strategy for the sandwich annotation squeezes shared 
redexes out before sparking tasks for parallel execution. As a consequence 
tasks do not share redexes in the heap at runtime, so locking of graph nodes 
is unnecessary. Garbage can be collected per task and reduction stacks can be 
merged efficient! y into one stack per processor ( see Chapter 4 ). A disadvantage 
of FRATS is that the eager evaluation of potentially shared expressions might 
result in superfluous, or even non terminating, computations. This problem 
is solved by applying program transformations as shown in Section 4.2. The 
current set of benchmark programs has been fine-tuned* and therefore incur 
neglectable squeeze overhead as will be shown in Section 6.5.4. 

The SIS simulator used in Section 4.2 does not take low-level details into 
account, and thus cannot determine WYBERT's benefit of not locking each 
and every application node during graph reduction. To measure the costs of 
locking, we have constructed another parallel implementation of the sandwich 
annotation based on the common spark-and-wait model. This implementation 
will be described in the next section, and is used in Section 6.1.2 to quantify the 
advantage of FRATS over parallel implementation methods of lazy functional 
languages that use locking. 

6.1.1 Spark-and-wait implementation 

The general spark-and-wait model for generating and managing parallel tasks 
has been described in Section 3.1. l. Instead of rewriting the complete set of 
benchmarks to replace the sandwich annotation by spark-constructs, the spark
and-wait model is implemented as another library of runtime support functions. 
The spark-and-wait implementation of the sandwich construct does not squeeze 
task arguments, but protects application nodes of concurrent access through 
the xmem-instruction of the MC88100 processor; whenever the graph reducer 

*Thanks to Rutger Hofman. 
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needs to evaluate a delayed computation it atomically exchanges the function 
pointer in the suspension node with a pointer to the wait function. If another 
reducer tries to evaluate the same suspension node, it automatically invokes 
this wait function, which suspends the current task and returns control to the 
scheduler. Instead of placing the suspended task on a waiting list associated 
with the suspension node, the spark-and-wait scheduler employs a polling 
mechanism: whenever the scheduler looks for work it first checks whether or 
not the top-of-stack task has become unblocked because the suspension node 
has been overwritten by an indirection node holding the requested value. 

Since the task expressions are not specially marked, the graph reducer 
automatically invokes the execution of a not yet evaluated task whenever it 
needs that task's value, i.e. the evaluate-and-die model is being used (see 
Section 3.1.5). When handing out a task for execution, the spark-and-wait 
scheduler first removes tasks from the ready pool whose corresponding graph 
node has already been overwritten to avoid initialisation overhead. Often the 
task value has already been computed (by the parent), or some reducer has 
already started the evaluation; in the first case the graph node is overwritten 
by an indirection node, while in the latter case the node is overwritten by the 
wait-function description. Because of the difference in task synchronisation 
and the presence of shared redexes, spark-and-wait programs running under 
control of the standard ToS scheduler can deadlock; the task dependency graph 
is not restricted to a tree as in case of WYBERT, but has an arbitrary acyclic 
shape. Therefore the ToS scheduler of WYBERT has been adapted to select a 
ready task somewhere in the stack, and to copy the context on top of the stack 
before resuming execution. The copy costs are small since measurements have 
shown that the context of a task is between 8 and 163 words for the benchmark 
programs. 

Time has prohibited to implement a global garbage collector for the spark
and-wait implementation, so all experiments have been arranged to run without 
a single collect for both the sandwich and spark-and-wait implementation. 

6.1.2 Sandwich versus spark-and-wait 

The benchmark programs with small input sets have been used to compare 
WYBERT, which squeezes shared redexes in advance, with the spark-and-wait 
implementation that locks shared redexes as part of the graph reduction process. 
The measurements reported in Table 6.2 give the ratio of execution times of the 
WYBERT implementation over the spark-and-wait implementation. It shows 
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#processors 
1 2 3 4 

NFIB 1.00 0.99 1.01 0.99 
QUEENS 1.00 1.00 0.99 1.00 
DET 0.87 0.87 0.79 0.74 
WANG 0.86 0.75 0.68 0.58 
15-PUZZLE 0.93 0.89 0.84 0.78 
COMP-LAB 0.96 0.82 0.76 0.75 
WAVE 0.93 0.64 0.57 0.49 

Table 6.2: The ratio of WYBERT versus spark-and-wait execution times. 

that for programs that rarely use lazy evaluation, like NFIB and QUEENS, the 
small number of xmem instructions has only a small impact on the difference 
in execution time of both implementations (i.e. a ratio of 1.0). However, 
for large applications like WANG and 15-PuzzLE, which often invoke suspended 
computations stored in the heap, the avoidance of locking is substantial. For 
example, the WAVE program under WYBERT takes half the execution time of 
its spark-and-wait counterpart on the full HYPERmodule. 

When increasing the number of processors, the gain in performance of 
WYBERT by eliminating locking overhead increases in comparison to the 
spark-and-wait implementation. The locking of graph nodes in case of spark
and-wait on a multiple processor system does not only affect the performance 
of the local processor as they execute additional instructions, but influences 
the others as well. Each xmem instruction writes the new value through the 
cache resulting in additional contention on the shared bus. Furthermore all 
caches have to "snoop" this write to maintain cache coherency and keep their 
cached data consistent. Whenever a cache snoops a memory transaction it 
stalls the processor read or write since it cannot look up the status of two 
addresses in parallel, hence, a single xmem instruction effectively slows down 
each processor in the shared-memory machine. The slow down is not a simple 
function of the number of executed xmem instructions, since the effect of 
contention on the memory bus and the impact of snooping depend on the exact 
state of the complete system when an xmem is executed. Therefore we have 
not listed the number of xmem instructions per processor, but only the overall 
effect on execution time. The spark-and-wait implementation does suffer from 
the slow down caused by xmem instructions as can be seen in the measurements 
as given in Table 6.2. For example, WYBERT performs 22% better than spark-
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Figure 6.2: Speed-up curves for WYBERT and spark-and-wait. 

and-wait for the 15-PuzzLE on a four processor system, while it only performs 
7% better on a single node configuration. 

WYBERT itself suffers also from external cache requests since each miss 
of a local processor results in a memory transaction that has to be snooped 
by all other caches in the system for consistency. This effect can be seen in 
Figure 6.2 where the speed-up curves have been drawn for two typical applica
tions. The speed-up is computed with respect to the single processor execution 
time including task management overhead. All measurements exclude the 
time to down-load an executable and initialise the input data set. The QUEENS 

program uses few heap nodes and therefore issues a modest number of xmem 
instructions. As a consequence the QUEENS application shows the same perfect 
linear speed-up for both WYBERT and spark-and-wait. The 15-PUZZLE that uses 
a large number of heap cells shows just a speed-up of 3.2 under WYBERT 
on four processors. This is caused by cache conflicts between processor and 
memory accesses, and by sequential execution inherent to the functional pro
gram itself. Section 6.5 .4 provides measurements of the percentage of idle 
time for several applications. 

6.2 Scheduling 

The ToS scheduler of WYBERT allows for efficient stack allocation: all tasks 
assigned to one processor share a single processor stack, which is used as 
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a stack of stacks. As only the topmost task on the stack can execute, the 
scheduler is limited in selecting a task for execution. In Section 4.3 it was 
shown by simulation that the Top-of-Stack (ToS) constraint has little impact on 
performance in comparison to general list scheduling policies. To verify these 
positive findings, the ToS scheduler of WYBERT has been modified to account 
for what fraction of execution time is spent running idle while some task 
ready for execution is blocked because of the ToS constraint. Measurements 
showed that less than 0.5% of the execution time is lost on the four processor 
HYPERmodule implementation, hence, we have not bothered to build a parallel 
implementation with a stack per task model. 

#processors 
1 2 3 4 

NFIB 1.00 1.01 1.00 1.01 
QUEENS 1.00 1.01 1.00 1.01 
DET 1.00 1.01 1.02 1.00 
WANG 1.00 1.00 1.01 1.00 
15-PUZZLE 1.00 1.00 1.00 1.01 
COMP-LAB 1.00 0.91 0.99 0.97 
WAVE 1.00 0.98 0.98 1.02 

Table 6.3: The execution-time ratio ofToS with local versus global task pools. 

The simulation studies of ToS behaviour in Section 4.3 show that a sched
uler based on a local task pool at each processor has advantages over a scheduler 
using a single global task pool shared by all processor. The default setting of 
the WYBERT scheduler is to use local task pools, but it can be changed to 
using a single global task pool. The hypothesis that a local task pool strategy 
outperforms a single global pool is not supported by the experimental results 
as listed in Table 6.3. The ratio of execution times is always close to 1.0, which 
indicates that both scheduling policies have similar performance. Sometimes 
the local pools give the best results; sometimes a global pool performs best. 
This can also be seen in the two example speed-up curves in Figure 6.3. Ap
parently the potential improvement in task scheduling does not outweigh the 
costs of maintaining multiple task lists, at least for small multiprocessors. 

A difference between scheduling with local and global task pools, which 
does not show in the average performance results, is the variation in execution 
times measured over a number of runs. In case of the local task pool strategy 
execution times measured on the prototype are equal for different runs of the 



160 Chapter 6. Experimental results 

4 ~-----,,------,-----, 4 ~----,------.-----, 

3.5 

3 

2.5 

2 

1.5 
Local lists --+-

3.5 

3 

2.5 

2 

1.5 

Global list -+- - 1 

COMP-LAB 

Local lists --+
Global list -+- -

0.5 ---~-------~ 0.5 -------~----
1 2 3 4 1 2 3 4 

Number of processors Number of processors 

Figure 6.3: Speed-up curves for ToS with local and global task pools. 

same application, but for the global task pool different execution times are 
measured for identical application runs. This shows that the behaviour of 
the global scheduling policy is rather dependent on which processor acquires 
access to the global pool first in case of conflicts on the single semaphore. This 
results in a highly unpredictable assignment of tasks to processors, while the 
local task pools give rise to rather deterministic schedules. This "predictable" 
behaviour of scheduling with local pools is an advantage for debugging and 
performance modelling. 

The experiments do not show a performance advantage of local tasks pools 
over a single global pool, but it can be expected that the shared pool becomes 
a bottleneck in large shared-memory multiprocessors. The advantage of local 
task pools has been observed in the SIS simulation studies of Section 4.3, but it 
requires a larger machine than the four node HYPERmodule to confirm these 
findings in practice. 

6.3 Storage management 

To support efficient local garbage collection, the WYBERT storage manager 
allocates memory blocks such that the heap blocks of a task never interleaves 
with those of its ancestors (see Section 4.4). Therefore garbage of a task 
can be reclaimed with an ordinary two-space compacting garbage collector 
that operates independently of other tasks and processors. In Section 4.4 
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three memory management policies have been presented that enforce the strict 
separation of heaps: BAS, VAS, and CAS. The Basic Allocation Scheme 
simply allocates a new block above the last allocated block in the virtual 
addresses space without reusing any of the blocks freed after a garbage collect. 
To make better use of the of virtual address space, the Virtual Allocation 
Scheme reuses virtual addresses space on the fly by allocating a new block in 
the first free address range above the heap of the task's parent. The Circular 
Allocation Scheme operates analogous to VAS but implements virtual address 
space entirely in software by explicitly controlling the most significant address 
bits. 

#processors 
1 2 3 4 

NFIB 1.00 1.00 1.00 1.00 
QUEENS 1.00 1.00 1.00 1.00 
DET 1.04 1.06 1.08 1.07 
WANG 1.02 1.03 1.03 1.04 
15-PUZZLE 1.03 1.05 1.06 1.08 
COMP-LAB 1.02 1.03 1.01 1.02 
WAVE 1.02 1.03 1.02 1.02 

Table 6.4: Performance ratio of VAS versus BAS memory allocation. 

The simple BAS strategy rapidly consumes virtual address space and can
not handle large applications like the experiments that will be described in 
Section 6.5.4. The problem can be solved by implementing a complex vir
tual address space compactor, but this is an expensive operation. The MiG 
simulations have shown that VAS does not need such compactions if the vir
tual address space (2 Gbyte) is at least three times the physical amount of 
memory (64 Mbyte). CAS always needs compactions to recover from frag
mentation. For these reasons the VAS strategy has been chosen as the memory 
management policy for WYBERT. 

To support the choice of VAS over BAS, we have implemented both strate
gies, without virtual address space compaction, using the MC88200 combined 
MMU and cache chip. Again the benchmark programs with small input sets 
have been used to compare both memory management policies, since BAS can 
not handle applications that claim more than 2 Gbyte of virtual address space. 
According to the MiG simulation studies, the VAS strategy is somewhat more 
expensive than BAS as can be seen in Table 6.4: the additional bookkeeping 
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Figure 6.4: Speed-up curves for VAS and BAS policies. 

results in up to 8% difference in execution time (15-PUZZLE). The comparison, 
however, holds only for these small applications since BAS would incur sig
nificant overhead to compact its address space in case of large programs. A 
compaction of the virtual address space requires the relocation of all pointers, 
hence, the total amount of physical space in use (max. 64 Mbytes) has to be 
read and written. This will take approximately 10 seconds for each 50 seconds 
of computation time. 

Two example speed-up curves are shown in Figure 6.4. The speed-up 
curves for DET show that the VAS overhead increases for larger number of 
processors. This indicates that the central bookkeeping ( e.g., page table main
tenance) is a bottleneck in the current (unoptimised) implementation. 

To minimise memory fragmentation, VAS has been adapted to allocate 
memory in blocks whose size is smaller than the hardware dictated 4Kbyte 
page size. The additional book keeping, however, is not for free as can bee 
seen in Table 6.5 where the execution times of the benchmark for varying block 
sizes are compared to the standard case of 4Kbyte that equals the hardware 
supported page size. None of the applications benefit from small block sizes. 
Apparently, the advantage of less memory fragmentation does not outweigh 
the additional overhead in bookkeeping. 

For "real" divide-and-conquer applications with coarse grain tasks (see 
Section 6.5.4), the number of (waiting) tasks is small. Hence, the amount of 
space wasted due to fragmentation is small, so VAS can be used with a large 
block size (i.e. 4Kbyte) to limit the allocation overhead. 
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block size [bytes] 
256 512 lK 2K 4K 

NFIB 1.00 1.00 1.00 1.00 1.00 
QUEENS 1.01 1.00 1.00 1.00 1.00 
DET 2.25 1.56 1.23 1.05 1.00 
WANG 1.58 1.22 1.07 1.02 1.00 
15-PUZZLE -1- 1.48 1.24 1.10 1.00 
COMP-LAB 1.21 1.09 1.04 1.00 1.00 
WAVE -1- 1.09 1.04 1.02 1.00 
-1- shortage of heap memory because 

of excessive bookkeeping. 
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Table 6.5: Performance ratio of VAS for various block sizes vs. standard 
4Kbyte page size. 

6.4 Garbage collection 

Garbage collection is an important aspect of practical functional language 
implementations, be it sequential or parallel, since graph reduction allocates 
new heap cells at a high speed. Even the 64 Mbyte of shared memory in the 
prototype machine is consumed in less than a minute real time by an average 
benchmark application. 

The VAS storage management strategy of WYBERT allocates heaps such 
that leaf tasks can collect their garbage independently of other tasks and proces
sors. This avoids the need for a system-wide synchronisation of all processors 
to join in a global garbage collect where individual nodes have to be locked to 
maintain sharing and enforce consistency. Another benefit of WYBERT is that 
tasks can time share a common to-space, so not half the available memory has 
to be reserved for the to-space buffer, but only one fifth. Hence more memory 
can be used for graph reduction: 48 Mbyte instead of only 30 Mbyte. To min
imise the performance degradation when several processors attempt to garbage 
collect at the same time, the busy-wait loop on the semaphore that guards the 
single to-space has been explicitly coded to test the semaphore before trying 
to grab it with an xmem instruction. This results in an instruction loop that 
repeatedly reads the semaphore value without modifying it, hence, the value 
will be cached locally at each busy-waiting processor without causing traffic 
on the memory bus, so active processors can proceed at full speed. 
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To measure the garbage collection overhead in WYBERT, we compared 
a version of the runtime support system with and a version without garbage 
collection. In case of garbage collection the available heap space has been 
set to a value 20% above the absolute minimum needed to run to completion. 
This assures that a "reasonable" number of garbage collects is performed. 
In Section 6.5.4 the garbage collection overhead will be given for realistic 
applications that have the full 64 Mbyte of the HYPERmodule at their disposal. 

#processors 
1 2 3 4 

NFIB 1.00 1.00 1.00 1.00 
QUEENS 1.00 1.00 1.00 1.00 
DET 1.02 1.01 1.00 0.98 
WANG 1.08 1.09 1.11 1.11 
15-PUZZLE 1.03 1.02 1.00 0.98 
COMP-LAB 1.07 1.09 1.00 1.03 
WAVE 1.25 1.25 1.32 1.23 

Table 6.6: Ratio of execution times of applications with and without (local) 
garbage collection. 

Both the numbers in Table 6.6 and speed-up curves in Figure 6.5 show that 
garbage collection overhead is small for all programs except WAVE. In some 
cases the version with garbage collection even outperforms the implementation 
without. This is most likely caused by caching effects; the garbage collector 
compacts live data into a contiguous block of heap space, hence, improves 
spatial locality. 

The WAVE program shows exceptional behaviour in comparison to the other 
applications: 25% - 32% increase in execution time when garbage collection 
is performed. This is caused by the shared to-space in combination with the 
regular task structure of the WAVE program itself. The program unfolds into sub 
problems of equal length and behaviour. All four processors receive a task, 
start reducing, and at roughly the same moment decide that it is necessary to 
perform a local garbage collection. The single to-space, however, serialises the 
garbage collections, which could be performed in parallel with graph reduction 
otherwise, and results in processors running idle. Once the processors are 
running out of phase the remaining garbage collects do not clash anymore; 
modifying the program to spark fewer tasks would increase the execution time 
since fewer garbage collects would occur in parallel with graph reduction. 
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Figure 6.5: Speed-up curves for applications with and without garbage collec
tion. 

The number of to-spaces can be adjusted in the runtime support system, 
trading memory space for (potential) blocking on a to-space. Table 6. 7 shows 
that the WAVE program performs even worse when the single to-space is replaced 
by four to-spaces to remove the garbage collection bottleneck. This decrease 
in performance is caused by the increased number of collects needed because 
of less available heap space. Only in case of two to-spaces, the WAVE program 
benefits from parallel garbage collections. 

I WAVE I 1.~0 
2 3 4 

0.97 1.29 1.38 

Table 6. 7: Relative performance of WAVE with multiple to-spaces. 

6.5 Execution profiling 

In previous sections various design aspects of WYBERT have been studied 
individually by comparing execution times of alternative solutions. To deepen 
our understanding of individual application behaviour, a profile tool has been 
developed for the WYBERT system that measures where an application spends 
its execution time. During execution each processor maintains a global status 
field describing the current activity, which is sampled each millisecond by the 
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boot-1/0 processor via the common VME bus (see Figure 6.1). When the 
program has completed execution, the sampled status data, which has been 
buffered in 2 Mbyte internal memory on the boot-1/0 card, is transmitted 
via ethemet to the host for analysis. Currently, the following activities are 
monitored: 

user The processor is executing user code, i.e. it is performing graph 
reduction. 

rts The processor is executing WYBERT's runtime support code for 
scheduling (ToS) and memory allocation (VAS). 

gc The processor is running the two-space copying garbage collector. 
idle The processor is busy waiting for either a new task to arrive, or the 

termination of a child task on another processor. 
The potential perturbation of the system behaviour caused by the profiler is 
very small: one memory write per system call to record the status change 
and one memory read per millisecond on the VME bus to sample the current 
status. Therefore the effect of this low resolution profiling on the system can 
safely be neglected. In the sequel a number of example execution profiles 
will be presented that plot activity versus time of some typical programs. The 
aggregate cost break-down for the complete benchmark with realistic input 
sets will be provided in Section 6.5.4. 

6.5.1 Queens· 

The first example profile plot is of the QUEENS program, see Figure 6.6. The 
QUEENS program is a representative of the class of easy parallelisable applica
tions, which includes the NFIB and DET programs also. The program unfolds 
through some levels of recursion into a task tree with coarse grain leaf tasks. 
These coarse grain tasks take up the major part of execution time and can be 
scheduled for execution on one of the four processors without any constraint. 
Hence, the QUEENS program achieves a speed-up of 3.94 on the four processor 
Hypermodule. 

An execution profile consists of two parts: the processor activity graphs 
and the system activity graphs. The processor activity graphs (the top four 
plots in Figure 6.6) show the status of each processor during the execution 
of the application: user, rts, gc, or idle. All processors start off idle, then 
grab a task and start reducing (state= user) invoking system calls to allocate 
more memory or to get the next task (state = rts). The system calls appear 
in the processor activity graphs as spikes between the user and rts activity 
lines. Near the end processors 1 and 3 run idle because no more new tasks are 
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Figure 6.6: Execution profile of QUEENS: activity vs. time. 

sparked; the application suffers slightly from load imbalance because of tasks 
with unequal lengths. 

Note that none of the processor activity graphs shows any garbage col
lection taking place. This is caused by the nature of the QUEENS program in 
combination with the 1 ms sampling rate of the performance monitor. By 
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default the garbage collector is called upon termination of each task to reclaim 
its garbage, but in case of QUEENS the collector is finished in a few instructions 
since the result value is a plain integer: no live data has to be copied to to-space 
at all. Therefore the state change from rts to gc and back is not detected by 
the performance monitor, hence, no spikes in the processor activity graphs of 
Figure 6.6. 

The system activity graphs of an execution profile (e.g., the four bottom 
plots in Figure 6.6) show the summed totals of all processors for each activity. 
For example, the plot marked "idle" shows the number of idle processors 
during the execution; near the end of the QUEENS program the efficiency of the 
system slightly decreases since processors 1 and 3 are running idle. The "gc" 
plot does not show any activity, but for larger applications the plot alternates 
between zero and 25 % ( one processor) because of the single to-space. 

The percentages listed at the right of each plot in the execution profile, 
give the (average) fraction of execution time spent in the corresponding state. 
For example, processor O has been busy executing user code for 99.9%, but on 
average the whole system has spent 98.5% of its time in user code. The QUEENS 

program behaves nicely since only 1.4% of the total execution time is wasted 
to processors running idle. 

6.5.2 Wang 

The execution profile of WANG is shown in Figure 6. 7. Wang's method of solving 
a tri-diagonal system of linear equations consists of two elimination phases. 
This can be observed in the execution profile: after 9 seconds processor O runs 
idle since all tasks of the first phase have been allocated for execution. When 
all processors have finished their last task of phase one, the root processor 
prepares the computations for the next phase. This takes little time, so all 
processors immediately start processing Phase 2 tasks to finish the application. 
The strict synchronisation halfway is clearly visible in the system plot for idle 
time (see bottom plot in Figure 6.7). 

In each parallel phase the algorithm splits the problem into twelve inde
pendent components, which are scheduled as three consecutive tasks on each 
processor. When a tasks is finished the RTS compacts the result by running 
the garbage collector, as can be seen by the dips in the processor activity plots 
in Figure 6.7. Each task is of similar length, so after the first four tasks have 
been reduced to normal form, their processors have to compete for access to 
the single to-space in order to run the garbage collector. This shows up in 
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Figure 6.7: Execution profile of WANG: activity vs. time. 

the execution profile: the system "gc" plot shows four consecutive garbage 
collects and the processor-activity plots show waiting in the state rts. From the 
execution profile, it can be determined that processor O collects first, followed 
by 1, 2, and 3 respectively. Note that the time to perform a garbage collect 
increases for each of the processors because of contention on the memory bus. 
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When processor 0 collects its garbage all others are waiting and do not use 
the memory bus; when processor 3 collects garbage all others have started the 
execution of a new task generating traffic on the memory bus. 

After the evaluation of the second set of four tasks, the processors do not 
compete again for the garbage collector because the first conflict has shifted 
them out of phase. Processor 3 still needs more time to collect its garbage 
than processor 0, see the system "gc" plot, even though now the three other 
processors perform graph reduction in both cases. This small surprise is most 
likely caused by the context switch that occurs when starting to reduce a new 
task: the new task generates a large number of so called cold start misses to 
fetch the working set into the cache causing additional traffic on the memory 
bus in comparison to the effects of the stationary misses of the finishing tasks 
processor 0 competes with few stationary misses of the graph reducers running 
in parallel, while processor 3 competes with the cold start misses of graph 
reducers "loading" the working set of their new tasks into the cache. Thus 
processor 0 incurs fewer access collisions on the memory bus, hence it takes 
less time to collect garbage than processor 3. The third round of garbage 
collects takes roughly equal time at all four processors because of low traffic 
on the memory bus; processors are either running idle or performing graph 
reduction with a working set that completely resides in the cache. 

The garbage collection behaviour described above is also present in the 
second phase of the Wang algorithm. 

6.5.3 Wave 

The WAVE program is a typical scientific application that models the behaviour 
of some physical system by simulation. It uses the finite element computation 
method to determine the water heights in a model of the North Sea. In a number 
of consecutive time steps the new state is computed based on the interactions 
with neighbouring grid points as recorded in temporary matrices holding the 
physical properties of interest. This iterative behaviour results in a chain task 
structure as displayed in Figure 6.8. 

The WAVE application shown in the execution profile of Figure 6.9 iterates 
three time steps, computing three state matrices at each iteration, which results 
in 9 computation phases of 64 parallel tasks each. These 9 phases can be 
identified in the execution profile by looking at the system idle state, which 
shows 9 dips indicating all processors are busy. During each phase a consider
able number of short garbage collections takes place, except for one particular 
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Figure 6.8: Chain task structure of WAVE. 

collection halfway through the execution of WAVE that takes 1.3 seconds real 
time and leaves 3 processors running idle. Another waste of computing cycles 
is caused by the global synchronisation after each parallel phase. The effec
tive parallelism of WAVE is restricted by the sequential parts in the algorithm 
that limit the maximum speed-up. The efficiency, however, can be raised by 
increasing the problem size. 

The global garbage collection on processor 2 is performed on behalf of 
the sixth incarnation of the root task just before sparking the parallel tasks 
of Phase 7. After each parallel phase the root task continues processing with 
the new state matrices as computed by the child processes, while the previous 
state matrices have. become obsolete. The accumulating garbage of "dead" 
state matrices can only be reclaimed when the root task is active; during each 
parallel phase the root task may not be collected locally since active children 
refer to matrices in the heap of the ( suspended) root task. Therefore the 
RTS employs the heuristic that whenever the root task executes a sandwich 
and occupies more than 75% of the total heap space, the root has to reclaim 
garbage before sparking any new tasks. In case of the WAVE program, more 
than 800 Kbytes of live data (three 256 x 256 matrices with floating point 
numbers) have to be processed by the copying garbage collector, which takes 
1.3 seconds. To reduce the garbage collection time, a number of approaches 
are possible. We discuss three of these alternatives. 

First, the moment at which the root task invokes the garbage collector 
can be controlled by specifying a different threshold value for the default of 
75% heap occupancy. Changing this limit, however, does not really help for 
WAVE since the size of the live data between each phase is large and constant. 
The WAVE program represents an important class of scientific applications, 
hence, additional effort is needed to decrease the impact of this global garbage 
collection bottleneck. 
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Figure 6.9: Execution profile of WAVE: activity vs. time. 

Second, a straightforward possibility to decrease collection time is to use a 
garbage collector that runs in parallel on all processors (see Section 4.4). The 
additional overhead of synchronising parallel collection and bus contention, 
however, severely limits the reduction in garbage collection time; the usage of 
locks is expensive (WYBERT performs better than spark-and-wait with locks, 
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see Section 6.1) and garbage collection slows down a factor of two because 
of bus contention (see WANG'S gc profile plot in Figure 6.7). Therefore the 
( estimated) reduction in garbage collection time is too small to remove the 
global bottleneck. 

Third, in the particular case of iterative methods, the programmer "knows" 
which data (i.e. state matrix) becomes obsolete in the following cycle. Thus, 
instead of reclaiming the unused space with an ordinary garbage collector, the 
matrix can be re-used immediately in the next iteration as a place holder for 
the result matrix. This approach known as update analysis has recently been 
used with success for first order functional languages [Cann92], and efforts 
have been undertaken to incorporate this in compilers for lazy higher-order 
languages as well [Bloss89]. 

6.5.4 Performance characteristics 

This section presents the overall performance characteristics of the benchmark 
programs. The overhead of squeezing arguments and task handling has been 
measured on a single processor. Only WANG (5%) and 15-ruzzLE (18%) show 
increased execution times when the sandwich annotation is used; the other 
coarse-grain divide-and-conquer applications do not suffer any transformation 
loss. Unlike the experience with the SIS-simulator, none of the applications 
caused FRATS to get lost in a non-terminating reduction sequence. This 
is a consequence of the FAST/FCG compiler that does not perform fully 
lazy lambda lifting, hence, curried functions like 'map square' can not be 
reduced and do not expand into infinite chains as in case of the SIS interpreter. 

The example execution profiles of the QUEENS, WANG, and WAVE programs 
have shown that the monitoring tool as implemented in the prototype machine 
provides valuable insight into which application property determines perfor
mance: load imbalance in case of QUEENS, global synchronisation in case of 
WANG and WAVE. To obtain accurate measurements and study realistic applica
tion behaviour, the input parameters of the benchmark programs are set to large 
values. The resulting execution profiles have been summarised in Table 6.8 as 
a cost break-down of system activity: the average idle, gc, rts, and user time 
are reported for each application. 

The column labeled seconds in Table 6.8 gives the seconds real time 
needed to execute the application on the four node HYPERmodule under a 
ToS scheduler with local task pools, the Virtual Allocation Scheme (VAS) for 
storage management, and local garbage collection. The remaining columns 
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!runtime [sec]ispeed-upllidle [%]lgc [%]lrts [%Jluser [%]I 

NFIB 55 4.0 0.5 0.0 0.0 99.5 
QUEENS 160 3.9 1.2 0.0 0.2 98.6 
DET 71 3.2 0.8 0.0 6.8 92.4 
WANG 19 2.4 6.3 5.0 8.4 80.3 
15-PUZZLE 54 2.7 6.7 1.5 17.1 74.7 
COMP-LAB 28 2.6 24.3 4.2 4.1 67.4 
WAVE 133 2.4 26.4 8.7 3.4 61.5 

Table 6.8: Execution cost break-down for benchmark applications (large). 

show in percentages where an application has spent its time as measured by 
the profiler. 

The test NFIB program performs very good: it reaches an efficiency of over 
99% on the four node machine. It consumes hardly any heap space and does 
not suffer from load imbalance. It is the "perfect" application to demonstrate 
system performance. The DET program is another test program since it does 
not spend time in garbage collection just like NFIB and QUEENS. In contrast to the 
others, DET claims a considerable number of heap cells (7% rts time) but the 
resident graph size is small so each garbage collect takes no time. The overall 
efficiency is good since 93% of the execution time is spent in user code. 

Of the remaining serious applications, which do show garbage collection 
activity, the WANG program performs best: 80% efficiency on four processors. 
The execution cost break-down shows similar ratios as in the example execution 
profile on page 169. The idle time is caused by the synchronisations halfway 
and at the end of the program, while the rts time is partly spent in spinning 
on the lock of the single to-space. The 15-PuzzLE spent twice as much time 
in the runtime support system (17%) because it generates many fine-grain 
tasks. These small tasks incur the rather large initialisation overhead by the 
RTS causing the efficiency to drop to 75% (i.e. a speed-up of 3 on the four 
processor prototype machine). 

Both the COMP-LAB and WAVE program suffer from a large fraction of idle time 
(25% ). In case of COMP-LAB this is caused by a single synchronisation phase 
where individual join tasks, which combine the results of two child tasks, 
compute for a relatively long time. In case of WAVE, the iterative nature causes 
a sequence of global synchronisations leading to a severe loss of efficiency. 
As remarked before, a large fraction of the sequential thread of execution is 
taken by the global garbage collects needed to reclaim "dead" state of previous 
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# processors 
2 3 4 

NFIB 1.00 1.00 1.00 
QUEENS 1.00 1.00 1.00 
DET 0.96 0.92 0.87 
WANG 0.94 0.85 0.75 
15-PUZZLE 0.97 0.93 0.89 
COMP-LAB 1.00 0.98 0.96 
WAVE 0.99 0.99 0.98 

Table 6.9: Performance degradation caused by bus contention. 

iterations. A special purpose collector can reduce this overhead considerably, 
and decrease the idle time to something like 15% (extrapolation of the WAVE 

execution profile). 
There are several causes for the non-linear speed-ups reported in Table 6.8. 

First, some applications suffer from load-imbalance and sequential execution 
as can be inferred from the column that gives the percentage of idle time. 
Second, applications can spend a significant amount of time in blocking on 
semaphores (state rts), for example, to acquire the shared to-space. Third, 
memory bound applications suffer from contention on the bus to shared mem
ory. This performance degradation caused contention has not been measured 
separately, and is included as part of the reported user time. To estimate the 
contention effects, Table 6.9 lists the ratio of user time fraction on a single 
processor over the fraction user time measured for multiple processors. These 
ratios show that WANG looses 25% performance on the four processor HYPER
module due to bus contention. The slight contention loss for COMP-LAB and WAVE 

indicates that their low speed-ups are caused completely by processors running 
idle. 

The profile results of the seven benchmark programs with large input pa
rameters show that the divide-and-conquer paradigm is suitable for efficient 
implementation and parallel execution of lazy functional programming lan
guages on shared memory multiprocessors. Multi pass applications like COMP

LAB and WAVE, however, perform poorly because of the functional framework 
that forces a global synchronisation to pass information between "processes 
with state". 





Chapter 7 

Conclusions 

The ever increasing demand for computing power is the driving force for 
the development of parallel processing. Building large parallel machines is 
relatively easy as can be seen from commercially available systems like the 
CM-5 and MasPar-2 which include thousands of processors. Programming 
parallel computers, however, is far more difficult and is an important field of 
research. The grand challenge for many computer scientists is to develop a 
suitable high-level programming environment that hides the low-level details 
of parallelism from the ordinary user. 

Many different (parallel) programming languages have been developed for 
writing applications to run on parallel machines, but most language designs 
concentrate on raw application performance rather than ease-of-use. Func
tional programming languages contain a number of key properties that support 
general purpose parallel programming: 

• Lazy evaluation and higher-order functions provide a high-level of ab
straction to master software complexity. 

• The referential transparency of functional programs provides simple se
mantics, so programs are easy to reason about and applicable to optimising 
transformations. 

• Functional programming languages naturally support the shared-memory 
view of parallel programming. The user does not have to explicitly send 
messages to remote processors, but can communicate through (logically) 
shared data objects. Parallelism is obtained by annotating the program to 
indicate which expressions are suitable candidates for parallel execution. 

A disadvantage of functional programming languages is the execution speed 
that is significantly lower than that of traditional imperative programming 
languages. The FAST/FCG compiler used in the WYBERT prototype imple-
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mentation, whose code-generator has been described in detail in Chapter 5, 
generates state-of-the-art code as was shown by an extensive comparison with 
other lazy functional language compilers. Considerable effort has be put in the 
development of the FAST/FCG compiler since the user needs high absolute 
performance, not merely good speed-ups; parallelising overhead is rather easy 
in comparison to getting speed-up out of an efficient implementation. 

The parallel implementation of a lazy functional language is not as straight
forward as it seems at first sight. The belief that "the lack of side effects allows 
for easy parallel implementations" does not hold in general; even though the 
programmer can not ( ab )use assignments in a functional language as in impera
tive languages, the underlying computational model of graph reduction heavily 
depends on updates of delayed computations to maintain sharing. Lazy eval
uation without updates (i.e. string reduction) is hopelessly inefficient. To 
guarantee correctness in face of parallel access, the shared updatable redexes 
are usually protected by locks to enforce mutual exclusion. For certain classes 
of applications, however, the referential transparency can be exploited for par
allel programming by automatic transformation. For example, applications 
specified as a parallel synchronous network can be automatically transformed 
into efficient divide-and-conquer programs, see [Vree92]. 

The WYBERT implementation discussed in this book uses a different 
method to handle updatable redexes present in parallel graph reduction systems 
on shared-memory multiprocessors. Instead of protecting shared redexes, the 
FRATS reduction strategy avoids their existence by eagerly evaluating all 
shared data between tasks before sparking them for parallel execution. This 
approach is feasible because WYBERT is based on an explicit divide-and
conquer annotation to express parallelism, so the compiler and runtime support 
are in control of task creation and synchronisation. An important advantage of 
WYBERT is that the banishment of shared redexes obviates the need for locks 
on application nodes. 

The comparison between WYBERT and the spark-and-wait model on the 
HYPERmodule shared-memory multiprocessor presented in Section 6.1 shows 
that the avoidance of locking is beneficial for the divide-and-conquer bench
mark applications. The advantage is not only gained by omitting several 
instructions when invoking a delayed computation stored in the heap, but 
primarily by reducing the number of transactions on the memory bus. This 
pays off in case of multiple processors since then the number of wasted cache 
cycles due to bus contention and snooping each others locking actions is sig
nificantly reduced. In case of the WAVE program WYBERT runs twice as fast 
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as the spark-and-wait implementation that uses the xmem instruction of the 
MC88100 processor for locking application nodes. The benefit will be even 
larger for shared-memory multiprocessors with more than four processors. 

A disadvantage of squeezing task arguments to banish shared redexes is that 
the deviation of the standard lazy evaluation mechanism might lead to super
fluous or even non-terminating computations. Experience with the benchmark 
applications, however, has shown that the eager semantics of the squeeze does 
not raise problems in practice. The set of program transformations given in 
Section 4.2 has only been used for the fully lazy SIS simulator; no transforma
tions were necessary for the compilation based experiments in Chapter 6. The 
experimental results measured on the four processor HYPERmodule show that 
the squeeze overhead pays off in performance: WYBERT without locking of 
application nodes is 25% - 50% faster than spark-and-wait with locking for the 
realistic benchmark applications. 

The regular parallelism of the sandwich divide-and-conquer skeleton under 
the FRATS reduction strategy allows for two additional optimisations in the 
runtime support system of WYBERT: 1) argument stacks of tasks can be 
allocated on a single stack per processor instead of a stack per task, 2) garbage 
can be collected per individual leaf task without synchronisation of other tasks 
or processors. Both memory management optimisations are not possible in 
case of the general spark-and-wait model. 

The optimal depth first traversal of the divide-and-conquer task tree can be 
mapped efficiently on a stack-based context switching mechanism. All tasks 
assigned to a specific processor share one reduction stack, the processor stack, 
as a stack of stacks. At start up, a task sets its private stack pointer to the 
current top of the processor stack. If the task executes a sandwich and needs 
to block to await the results of its children, the task leaves its local state on 
the processor stack, and the next fresh task starts to allocate its stack on top of 
the blocked task, etc. When a blocked task has received the results of all its 
children, it becomes executable again, but that task may only resume execution 
after all tasks on top of it have finished, otherwise it could overwrite the state of 
other tasks. Theoretically, this Top-of-Stack (ToS) scheduling constraint can 
lead to a severe loss parallelism as shown in Section 4.3, but the experimental 
results in Chapter 6 show that the ToS constraint does not lead to scheduling 
anomalies in practice. 

In contrast to ToS, scheduling policies used in other parallel implementa
tions of functional languages as discussed in 3.1.3 either give up stack based 
reduction or have a rather large context switch time. The <v,G>, HDG, 
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and PAM implementations allocate their reduction stack as a linked list of 
stack frames in the heap. Besides the additional overhead of heap allo
cation and link manipulation, it destroys the strong cache locality of stack 
accesses [Langendoen92a]. The GRIP and PABC implementations allocate 
a fixed-length stack for each new task increasing the initialisation overhead, 
and forcing stack checks to enlarge the stack on overflow. The advantage of 
WYBERT's ToS scheduler is the combination of stack based reduction with 
fast context switching. 

The second storage management optimisation is the local garbage collec
tion of leaf tasks. Instead of synchronising all reducers in the multiprocessor 
to join in a global garbage collect, the WYBERT system assigns a private heap 
to each task and reclaims garbage per task independently of other tasks and 
processors. This approach is possible because the FRATS reduction strategy 
guarantees that no shared updatable redexes exist, hence, no task can obtain 
a reference into the private heap of another active task. When a task termi
nates, the private heap containing the result value is joined to the heap of the 
parent task. In order to efficiently collect such scattered parent heaps with an 
ordinary two-space copying garbage collector, WYBERT employs a memory 
management strategy that allocates ( chunks of) private heaps such that the 
heap of a task never interleaves with the heap of its ancestors. The Virtual 
Allocation Scheme (VAS) uses the hardware support for virtual memory of 
the MC88200 MMU/cache chip to prevent interleaving by allocating a private 
heap in the first available virtual address range above the task's parent. The 
experiments in Chapter 6 have shown that the VAS policy, in accordance with 
the results of the MiG simulator in Section 4.4, can handle large application 
without running out of virtual address space. Furthermore VAS is reasonably 
efficient in comparison to the simpler BAS policy that can only handle small 
programs: just 8% slower in the worst case 

The advantage of local garbage collection is that by limiting the maximum 
task size the amount of memory reserved as to-space can be decreased. By 
default WYBERT reserves ! of the available heap memory as a time-shared to
space, leaving ~ for the graph reducers. In contrast, a global garbage collector 
needs ½ the memory for garbage collection. In return for the additional heap 
space, which reduces the number of garbage collects, tasks under WYBERT 
occasionally have to wait for another task using the single to-space. Exper
iments have shown that such waiting occurs for perfect divide-and-conquer 
applications that generate sub problems of equal size like WANG and WAVE. In
creasing the number of to-spaces, however, does not boost performance at 
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all because the reduction of available heap space forces additional garbage 
collects. In case of WAVE, increasing to two to-spaces gives 3% better overall 
performance, but with four to-spaces performance drops with 38%. 

The detailed performance measurements of benchmark applications with 
large parameter values, as reported in Section 6.5.4, show a considerable 
difference in performance: efficiency on the four processor HYPERmodule 
ranges from 62% for WAVE to 99% for QUEENS. The low efficiency of WAVE 

is caused by the iterative nature of the application of this typical scientific 
simulation model. After several iteration steps, the amount of accumulated 
garbage in the root has become so large that a (global) garbage collection 
is necessary. Because of the large state matrix, this takes considerable time 
and stretches the bottleneck of sequential execution. The divide-and-conquer 
paradigm, which forces global synchronisations to communicate information 
between "processes", in combination with local garbage collection per task 
results in rather poor performance for iterative algorithms. Switching to global 
garbage collection does not solve the problem because of reducing the amount 
of available heap space (38% decrease in performance when using four to
spaces ), but switching to spark-and-wait is no solution either because of the 
additional overhead of locking (50% decraese in performance). Therefore 
additional research is needed to find a practical solution. 

The tools for parallel programming used and developed during the research 
described in this book have proven to be of great value. In particular the MiG 
simulator offers a good platform for debugging runtime support software in a 
deterministic environment; unlike with real hardware, bugs can be reproduced 
by simply running the program again with the same input parameters. The 
monitoring tool that samples the multiprocessor state is another useful tool, 
which has been heavily used to explain the runtime behaviour of the application 
benchmark. Both the MiG simulator and monitoring tool do not depend on 
specific functional language properties and can be used for other parallel 
programming language implementations as well. 

The performance measurements in Chapter 6 have shown that lock-free 
graph reduction in combination with an efficient context switching mechanism 
(ToS) and local storage management (VAS) provides a highly efficient im
plementation for the parallel execution on shared-memory multiprocessors of 
divide-and-conquer applications written in a lazy functional language. 
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