

CWI Tracts

Managing Editors

K.R. Apt (CWI, Amsterdam)

M. Hazewinkel (CWI, Amsterdam)

J.M. Schumacher (CWI, Amsterdam)

N.M. Temme (CWI, Amsterdam)

Executive Editor

M. Bakker (CWI Amsterdam, e-mail: Miente.Bakker@cwi.nl)

Editorial Board

W. Albers (Enschede)

M.S. Keane (Amsterdam)

J.K. Lenstra (Eindhoven)

P.W.H. Lemmens (Utrecht)

M. van der Put (Groningen)

A.J. van der Schaft (Enschede)

H.J. Sips (Delft, Amsterdam)

M.N. Spijker (Leiden)

H.C. Tijms (Amsterdam)

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Telephone + 31- 20 592 9333

Telefax+ 31- 20 592 4199

URLhttp://www.cwi.nl

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

Graph reduction on
shared-memory multi processors

K.G. Langendoen

1991 Computing Reviews Classification:

8.3.2 Design Styles: Shared memory
D.1.1 Applicative (Functional) Programming
D.1.3 Concurrent Programming: Parallel programming
D.3.4 Processors: Code generation, Run-time environments
D.4.2 Storage Management: Allocation/deallocation strategies
1.1.3 Languages and Systems: Evaluation strategies

ISBN 90 6196 470 9
NUGl-code: 811

Copyright @1996, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Contents

Acknowledgements

1 Introduction
1.1 Parallel computers

1.1.1 Shared-memory multiprocessors . . .
1.1.2 Distributed-memory multicomputers.

1.2 Parallel programming

1.2.1 Shared data; the evolution
1.2.2 Message passing; the revolution . . .

1.2.3 Distributed shared memory; best of both?
1.3 Functional programming
1.4 The EIT Reduction Machine project

1.5 WYBERT
1.6 Outline

2 Functional programming and its implementation
2.1 Reduction

2.2 Values and expressions .

2.2.1 Lists
2.3 Higher order functions .

2.4 Lazy evaluation

2.4.1 Infinite datastructures
2.4.2 Stream programming

2.5 Graph reduction

2.5.1 Strictness analysis
2.6 Summary

vi

1
1
3

5

6
6

7

7

9

11

13

14

17
19

20
22
23

25

27
29
31

35
37

iv Contents

3 Parallel implementations of lazy functional languages 39
3.1 Parallel graph reduction 41

3.1.1 Generating parallelism 42
3.1.2 Global address-space support 44
3.1.3 Storage management . . 48
3.1.4 Task scheduling 52
3.1.5 Controlling parallelism 55

3.2 Survey 59
3.2.1 <v,G> 60
3.2.2 AMPGR 61
3.2.3 GAML. 62
3.2.4 Flagship 63
3.2.5 PAM. 64
3.2.6 HDG. 65
3.2.7 PABC 66
3.2.8 GRIP. 67
3.2.9 HyperM 68

3.3 Comparison .. 70
3.3.1 Performance 74

3.4 Conclusions 75

4 WYBERT: graph reduction on shared memory 77
4.1 Design considerations 78

4.1.1 Divide-and-conquer parallelism 79
4.1.2 The FRATS reduction strategy . 81
4.1.3 Task scheduling 82
4.1.4 Local garbage collection . . . 82
4.1.5 Evaluation method 84

4.2 FRATS: A parallel reduction strategy 86
4.2.1 Termination through transformation 88
4.2.2 Curried functions 90
4.2.3 Transformation methodology 93
4.2.4 Performance consequences 94

4.3 Top-of-Stack scheduling 97
4.3.1 Worst case behaviour 99
4.3.2 Performance from Simulation Studies . 101

4.4 Memory management for parallel tasks . 106
4.4.1 Local copying garbage collection .. . 108

Contents V

4.4.2 Evaluation . 115
4.5 Discussion 120

5 The FAST/FCG compiler 123
5.1 The front end 125
5.2 The assembler 128

5.2.1 Implementation . 130
5.3 Graph representation . . . 131
5.4 The code generator 135

5.4.1 Tail call optimisation . . 138
5.4.2 Compile-time stack simulation . . 139
5.4.3 Inlining of primitive functions 142
5.4.4 Parameters passed in registers . 143
5.4.5 Life-time analysis . 145

5.5 Performance . 147
5.6 Conclusions .. . 151

6 Experimental results 153
6.1 FRATS reduction strategy 155

6.1.1 Spark-and-wait implementation . 155
6.1.2 Sandwich versus spark-and-wait . . 156

6.2 Scheduling 158
6.3 Storage management . . 160
6.4 Garbage collection . . 163
6.5 Execution profiling . . 165

6.5.1 Queens. . 166
6.5.2 Wang 168
6.5.3 Wave 170
6.5.4 Performance characteristics . 173

1 Conclusions 177

Bibliography 183

Index 197

Acknowledgements

This research covered in this book was performed during my employment at the
University of Amsterdam as member of the EIT Reduction Machine project. I

· like to thank Bob Hertzberger and Wim Vree for providing me the opportunity
to design and implement the runtime support for parallel graph reduction on
shared memory multiprocessors.

Special thanks go to the co-authors and proof-readers of various papers
written at the UvA: Dirk-Jan Agterkamp, Marcel Beemster, Pieter Hartel, Rut
ger Hofman, and Henk Muller. A large part of this book is founded on ideas
and results of collaborative work presented in those papers. The following
people gave useful feed-back on their work as discussed in the survey on
parallel implementations of lazy functional programming languages in Chap
ter 3: Thomas Johnsson (<11,G>), Luc Maranget (GAML), Herbert Kuchen
(PAM), David Lester (HDG), Marco Kesseler (PABC), and Simon Peyton
Jones (GRIP). Frans Kaashoek and Henri Bal did an expert job in spotting
functional jargon throughout the text, and prompted me to clean up the chapter
about the ins and outs of functional programming and its implementation.

The "vrijdag club" lead by Pieter Hartel has proven to be of great value
for trying out conference talks and new ideas. I thank all members for their
interest and critical response on my research activities. Finally I express my
sincere gratitude to everybody involved in the MiG project: Henri Groeneweg
(assembly hacking), Pieter Hartel (compiler support), Rutger Hofman (ap
plication tuning), and Henk Muller (debugging expert). Your collaboration,
support, and advise when implementing the WYBERT system made it possible
to include the necessary hard numbers supporting the efficiency of the design.

Chapter 1

Introduction

Technological improvements have produced sequential processors that run
thousand times faster than a few decades ago, but still many scientific and
engineering problems cannot be solved on today's fastest supercomputer: 3
dimensional fluid dynamic models, non-linear finite element computations,
real-time video processing, etc. Other large problems, like weather forecasting
and blood flow analysis, can only be solved by simulation and approximation.
This involves huge amounts of computation to obtain acceptable results; for
better results, more computation is required.

The ever increasing demand for processing power is the driving force for the
development of parallel processing. Although the speed of processors has been
steadily increasing, it roughly doubles every four years, engineering constraints
and physical effects such as the finite speed of light make it more difficult to
speed up the fastest processors through hardware technology improvements
alone. In addition, the important development of Very Large Scale Integration
(VLSI) technology, which allows tens to hundreds of thousands of transistors
on one single chip, has reversed "Grosh 's law" that states that the most powerful
uniprocessor ha'- the best price/performance ratio [Ein-Dor85]. A parallel
computer built out of a collection of small processors is more cost effective
than an uniprocessor system since the pay-off for increased construction effort
on a silicon chip is less than linear.

1.1 Parallel computers

A parallel computer consists of a (large) number of processing elements that co
operate to solve a single problem. The actual construction of parallel computers

2 Chapter 1. Introduction

was already started around 1970 with pioneering projects like the ILLIAC IV
at NASA and C.mmp from Carnegie-Mellon University. A wide variety of
parallel computers has been designed and implemented since.

An important characteristic of parallel computers is how control is organ
ised in the machine: either each processor executes its own program, or all
processors receive the same instructions from a central source. These two
possibilities are named MIMD and SIMD, respectively, from a classification
made by Flynn [Flynn72), see Table 1.1. The conventional "van Neumann"
processor is viewed as a Single Instruction stream operating on a Single Data
stream (SISD). A first step towards parallel computing consists of introducing
Multiple Data streams (SIMD), and a second step adds Multiple Instruction
streams (MIMD).

Single Instruction
Multiple Instruction

Single Data
SISD (van Neumann)
MISD

Multiple Data
SIMD (vector, array)
MIMD (multiprocessors)

Table 1.1: Flynn's taxonomy of computer architectures.

In SIMD computers, also known as array or vector computers, all proces
sors simultaneously apply the same instruction to different (local) data. This
type of machine is suitable for applications like image processing that perform
the same operation on many data values (e.g., inverting all pixels of a picture).
These machines are built out of simple, but numerous, processing elements;
for example, the Connection Machine CM-1 can contain up to 65,536 (216)

1-bit processors.

MIMD is seen as a more general approach since the individual control
of each processor allows for the exploitation of irregular parallelism. Most
research is concentrated on MIMD parallel computers, as is the remainder of
this book.

MIMD parallel computers can be divided into two categories based on
whether or not physically shared memory is included in the architecture. In
shared-memory multiprocessors each processor can access all memory cells
with ordinary read/write instructions, which move data from/to a location in the
global address space. In distributed-memory multicomputers each processor
can only access a part of the memory directly, and needs some other way to
access 'remote' data, for example, message passing. Figure 1.1 illustrates the
basic machine architecture of both categories.

1.1. Parallel computers 3

0 00 Interconnection Network

Interconnection Network

Figure 1.1: Shared- and distributed-memory parallel machines.

1.1.1 Shared-memory multiprocessors

The interconnection network that links processors and memories together is
the key factor in the overall performance of a multiprocessor. In the simplest
case all processors are connected to a single bus, along with a memory module.
When reading or writing data, a processor issues a normal memory request on
the bus; during the bus transaction other processors that want to access memory
are blocked until the current transaction has finished. This time sharing of the
single bus severely limits the performance: with a few processors, say 8, the
bus will be completely saturated. Therefore each processor is usually given a
cache as shown in Figure 1.2.

0000
Memory

Bus

Figure 1.2: a multiprocessor with a single bus and caches.

The caches maintain copies of frequently accessed data values so that most
memory requests of a processor can be satisfied locally without accessing the
system bus. This effectively reduces the traffic on the single bus, so the number
of processors can be increased, say up to 32, before the bus saturates. Caches
introduce a memory consistency problem where caches contain different values

4 Chapter 1. Introduction

Figure 1.3: A multiprocessor with an omega network.

for the same memory location. For example, if both processors 1 and 2 read
the contents of memory location m into their cache, and processor 1 modifies
it subsequently, then the next read of location m by processor 2 gets the old
stale value. This cache coherence problem can be solved, for example, by
having the caches constantly snoop (i.e. monitor) the bus. Whenever a read or
write is observed of a location that has been cached locally, the cache takes an
appropriate action like invalidating the cache entry [Sweazy86, Stenstrom90).
Such solutions, however, require additional hardware or decrease performance,
or both.

Although caches alleviate bus saturation somewhat, large multiprocessors
require a more sophisticated processor-memory interconnection network that
provides parallel access paths to memory. The omega network in Figure 1.3
is the prime example of an interconnection switch where several processors
can access different memory modules in parallel; in the best case the omega
network can service all processors simultaneously. However, if multiple pro
cessors issue a reference to the same memory module, contention in the network
arises and delays are incurred; in the worst case the performance of the omega
network is even lower than that of a single bus because of the multiple switch
ing delays. This problem, known as "hot spot contention" [Pfister85], has been
addressed by the NY Ultracomputer project [Gottlieb83]: a network switch
combines multiple references to the same memory location into one request.
This reduces network congestion, but at the expense of increased hardware
complexity.

1.1. Parallel computers 5

A fundamental problem of all multistage switching networks is that con
necting n processors ton memory modules (as n/2 rows of log2n switches),
requires nf2*log2n switches. Furthermore each memory reference has to
cross 2*log2n switches. This makes it difficult and expensive to build multi
processors with large number of processors; for example, a 1024 node machine
requires 5,120 switching elements.

1.1.2 Distributed-memory multicomputers

In contrast to multiprocessors, distributed-memory multicomputers are straight
forward to build since each processor-memory pair is more or less independent
of the others. The processing elements communicate via message passing,
which causes the interconnection hardware to be of relatively low significance
for system performance: data is efficiently transported in large chunks, as op
posed to individual words in case of multiprocessors, and typical applications
are programmed as a set of coarse grained tasks so context switches to hide
transport delays can be tolerated. Furthermore the large software overhead to
handle a message is larger than the actual transmission time in the network.
Therefore a simple bus-like interconnection network, such as a local area
ethernet, provides already enough capacity to construct large multicomputers
(up to ca. 100 nodes). Of course, the single bus will inevitably become a
bottleneck when increasing the number of processing elements or decreasing
the application's grainsize, so many multicomputers have been built already
with a collection of point-to-point connections; Figure 1.4 shows the popular
(Transputer) grid and hypercube networks.

I I I I

Figure 1.4: Grid and hypercube multicomputers.

A grid is less difficult to program than a hypercube and can be packed
more densely since it has only four external connections. The hypercube has

6 Chapter 1. Introduction

the advantage that the network diameter (i.e. the maximum distance between a
processor and any other) grows logarithmically with the number of processors.
This advantage, however, is rather small since measurements on advanced
networks have shown that the message passing overhead in software makes all
communication costs equal; it is virtually as expensive to communicate with a
neighbour as with a processor at the other side of the network [Bokhari92].

1.2 Parallel programming

The introduction of parallel computers has aggravated the software crisis that
already existed for sequential computers. The programmer not only has to
devise a suitable algorithm to solve a particular problem, but the additional
complexity of synchronisation and communication between co-operating pro
cessors has to be mastered as well to take advantage of the computing power
offered by parallel computers. Efforts to hide parallel computers from the
user by having the compiler automatically extract the parallelism from an
application have not been proved successful for general MIMD computers.

Two basic approaches to writing parallel software can be distinguished:
the shared data model that matches with the shared-memory multiprocessors,
and the message passing model that matches with the distributed-memory mul
ticomputers. Both approaches require the user to explicitly handle parallelism
in the application program.

1.2.1 Shared data; the evolution

Although difficult to build, shared memory multiprocessors are a commercial
success since they are fairly easy to program. All processes can access the
whole shared memory, so sharing of data structures and variables is straight
forward. This allows for easy and flexible communication between processors
since when one process updates some variable and another reads it afterwards,
the underlying hardware automatically returns the value just stored. The pro
grammer only has to be concerned with synchronising the activities of the
co-operating processors to avoid inconsistencies. Fortunately, many standard
synchronisation techniques developed for sequential multi-tasking comput
ers, like semaphores and monitors, can be applied directly for programming
multiprocessors.

The powerful shared-data model facilitates an easy evolution of sequential
code to parallel code by means of well-understood principles of managing

1.2. Parallel programming 7

concurrency. For example, many dusty-deck FORTRAN applications can be
parallelised by changing for-loops into forall-loops where the iterations are
processed concurrently by different processors.

1.2.2 Message passing; the revolution

The lack of shared data in distributed-memory multicomputers prevents the
re-use of old software, and forces programmers to essentially develop new
applications from scratch. The difficulties are that data has to be explicitly
distributed over the memory modules in the multicomputer, and that the com
munication between co-operating processors has to be done by hand through
sending/receiving messages.

In the basic case, the programmer is provided with low-level send and
receive primitives to communicate with direct neighbours as, for example,
in Occam on Transputer systems. Although these primitives suffice to pro
gram a multicomputer, the programmer is bothered with difficult issues like
the buffering and routing of messages. Therefore several software packages
(e.g., EXPRESS and CSTools [Hellberg92]) have been developed that take
care of the nitty-gritty details of message passing, and provide the user with
communication between arbitrary processes in the multicomputer.

The remote procedure call mechanism [Birre1184] abstracts even further
from the hardware by making communication look like an ordinary procedure
call. Instead of executing the procedure locally, a stub routine gathers the
parameters in a message, and sends it to the remote processor; another stub
routine unpacks the message and performs the actual procedure call, finally
the reply is transported back to the original processor through both stubs.
Although this scheme hides the message passing from the user, it is usually not
completely transparent: for example, passing pointers as parameters is often
forbidden, hence the user has to know whether a procedure is invoked locally
or remotely.

To achieve good performance on distributed-memory multicomputers, the
programmer has to carefully distribute code and data over the processor
memory pairs so that communication requirements are minimalised. Un
fortunately, few tools exist to assist the programmer in this task.

1.2.3 Distributed shared memory; best of both?

Various researchers have proposed to combine the programming ease of shared
memory with the construction ease of distributed-memory by simulating a

8 Chapter 1. Introduction

global shared address space on top of a multicomputer. In these distributed
shared-memory machines, a process on any processor can access memory
anywhere in the system through ordinary read/write instructions, but while
references to local memory are satisfied immediately, references to data located
on another processing element are intercepted and incur considerable delay
since messages have to be exchanged with the owning processing element to
access the remote data. The handling of remote references is done transparently
by low level system software, so the user is presented with the impression
of shared memory on a distributed-memory multicomputer. Because of the
difference in access time of local and remote data, distributed shared-memory
machines are also known as NUMA (Non-Uniform Memory Access) machines

Distributed shared-memory machines differ largely in the way remote ref
erences are handled, and in the granularity of access to shared data. The
Cm* [Swan77] represents one end of the spectrum: each memory reference
is checked in the micro code of the MMU, and messages carrying one data
word are sent over a backplane bus in case of remote references. Remote
references take about ten times as long as local ones, and the programmer is
solely responsible for achieving good performance by placing code and data
appropriately in the machine. The page-based scheme of Li and Hudak [Li89]
is at the other extreme and uses standard virtual memory techniques. The
global address space is partitioned into fixed size pages, which are distributed
over the processing elements in the system. A reference to a non-resident page
causes the hardware to generate a page fault as usual, but now the operating
system fetches the page from the owning processing element, instead of from
disk. To reduce thrashing, read-only pages may be replicated at many pro
cessing elements, but writable pages must reside at one processing element for
consistency.

A disadvantage of the above hardware based schemes is that hardly ever
the right amount of data is transported: one word is too small, and a page (say
4Kbyte) is usually too large. Therefore intermediate designs like Orea [Bal90]
and Linda [Carriero89] have been proposed that support the sharing of variable
sized objects. The programmer has to define these shared data objects, and
controls the granularity of sharing. Now the compiler provides the illusion
of shared memory by generating special code to access shared objects. For
example, shared objects in Orea are replicated, and updates are compiled into
broadcast messages to keep the copies consistent.

It remains to be seen whether or not the distributed shared memory
paradigm will defeat the raw message passing model for programming large

1.3. Functional programming 9

scale distributed memory multicomputers. The simple familiar shared-memory
programming model is a definite win, but the performance is still a weak point.
Although a high-level distributed shared memory application will probably
never match the performance of a hand-coded message-passing equivalent,
the rapid improvement in efficiency indicates that distributed shared mem
ory implementations will reach acceptable performance for all but the most
time-critical applications in the near future.

1.3 Functional programming

A grand challenge for computer scientists is to domesticate the power of parallel
computers by providing a suitable high-level programming environment that
hides the nasty details to the ordinary user (i.e. application programmer).
Ideally a programmer has only to conceive a parallel algorithm, which will be
automatically compiled and executed on the specific parallel computer at hand.
Of course this automatic high-level approach looses on execution efficiency in
comparison to hand-crafted low-level programming, but history has shown that
performance costs are often less important than the ease (i.e. productivity) of
programming. For example, assembly programming is nowadays considered
to be a necessary evil to squeeze out the last drop of performance; in 99% of
all cases the high-level language compiler does its job good enough to satisfy
the average user. From a user's perspective the ideal parallel programming
language should:

• offer a high-level of abstraction to master software complexity.
• support the shared-memory parallel programming view, which is much

closer to sequential programming than message-based parallel program
ming.

• hide low-level issues like communication and process synchronisation.
• be easy to reason about, i.e. have clear semantics, so programs can be

proven correct.
• run transparently on a range of hardware configurations (portability).
• perform reasonably efficient.

Modem functional programming languages meet many items on this list of
requirements because of a number of essential features that will be discussed
below.

First of all, functional languages provide means to program at a high level
of abstraction so the programmer does not have to take lots of technical details
into account. For example, a programmer may allocate huge numbers of data

10 Chapter 1. Introduction

structures without ever releasing storage of structures that are no longer in use;
the underlying garbage collector automatically reclaims unused memory space
and thus frees the programmer from the finite memory constraint. As another
example, the support of higher-order functions allows the programmer to treat
functions as ordinary values although the bare hardware only supports simple
data types like integers and floating point numbers.

Higher-order functions and lazy evaluation, which will be studied in depth
in Chapter 2, are two concepts that improve the modularisation of software
since they can be used to 'glue' program components together in ways that
are not supported by modular imperative languages like Modula-2 and Ada, as
argued in [Hughes89]. This is an important advantage of functional program
ming languages since writing well-structured modularised programs is the key
to software engineering. In addition, the strong polymorphic typing of many
functional languages reduces the development effort of software as well.

Secondly, functional languages are well known for their referential trans
parency: a particular expression always denotes the same value independent
of the context where it is evaluated. This is a consequence of the lack of
assignment that prohibits the expression evaluation to have side-effects. This
not only avoids a major source of programming errors, but it makes functional
programs much easier to reason about for humans as well as programs. In
particular compilers benefit from the lack of destructive updates since that
greatly simplifies the data dependency analysis.

The lack of destructive updates guarantees that any set of expressions can be
computed in parallel without destroying the correctness of the programs' result.
It is, of course, not beneficial to execute an expression in parallel if the amount
of computation does not outweigh the overhead costs. Unfortunately it is too
difficult for a compiler to work out the grainsize of an arbitrary expression,
so the user has to denote which expressions are worthwhile to be evaluated
in parallel. This is, however, all that is required to run a functional program
on a parallel computer: because of the clean semantics the runtime support
system can take care of low-level issues like load-balancing, communication,
and process synchronisation without further assistance of the user.

The referential transparency of functional programming languages facili
tates a simple parallel programming environment where the user only has to
place a few annotations in the source code to obtain parallel execution; the
low-level details of parallel programming are hidden from the user through
the accompanying runtime support system. This approach retains all the ad
vantages of sequential functional programming (e.g., high-level abstractions,

1.4. The BIT Reduction Machine project 11

ease of reasoning, and expressive power) and is highly portable since only the
runtime system has to be ported when upgrading to a new machine.

Despite all advantages listed above, functional programming languages
have not (yet) been generally employed to program parallel computers be
cause of several reasons. Until recently, the lack of fast implementations on
conventional processors has hampered acceptance, but now state-of-the-art
functional language compilers generate object code whose quality approaches
that of standard compilers for imperative languages. For example, measure
ments in [Smetsers91] show that often execution times are within a factor three
of comparable C programs, but the memory usage is still orders of magnitude
higher. The latter is caused by the lack of destructive updates, which forces
data structures (arrays) to be copied to create new versions even when only
one element has to be modified. A lot of ongoing research is directed at devel
oping methods to detect at compile-time whether or not an update can be done
in-place. Two promising approaches are the usage of monads [Wadler90] and
the concept of unique types [Smetsers93].

A more serious and fundamental problem is the drawback of referential
transparency: it is impossible to express non-determinacy in (pure) functional
languages. This severely limits the interactive usage, for example, how should
keyboard interrupts be modeled in a functional operating system? Debugging
is another open problem: lazy semantics imply a control flow that bears little
resemblance to the logical structure of a program, hence, imperative debugging
strategies like tracing and break-pointing are of no great use.

1.4 The EIT Reduction Machine projectt

The EIT Reduction Machine project is a joint effort of the University of
Amsterdam (UvA) and the University of Nijmegen (KUN) aimed at the devel
opment of an efficient functional language implementation on large scalable
parallel computers. The project tackles some of the fundamental and practi
cal problems of functional languages on parallel machines as outlined above,
and builds on the experience gaiaed with the APERM prototype of the Dutch
Parallel Reduction Machine project [Hertzberger89, Barendregt87].

The APERM machine was designed to study the feasibility of parallel
reduction machines. Applications are programmed in a lazy functional lan
guage augmented with an annotation to denote divide-and-conquer parallelism.

t Supported by the European Institute of Technology, grant nr EIT 1-88.

12 Chapter 1. Introduction

These applications are automatically scheduled for execution on the APERM
architecture that consists of a number of processor local-memory pairs in
terconnected through dual ported memories for high-speed data communica
tion. Measurements showed that the processor to memory connection in the
APERM prototype was heavily under utilised: typically less than 10% usage
[Hartel88b]. Therefore the HyperMachine, as shown in Figure 1.5, includes
shared-memory multiprocessors to improve the price/performance ratio of the
hardware.

Interconnection Network

Memory Memory

Figure 1.5: HyperM architecture.

The HYbrid Parallel Experimental Reduction Machine (HyperM), which
forms the back-bone of the EIT project, is thus the successor of the APERM
prototype and comprises both shared- and distributed-memory. At the top
level, HyperM is configured as a distributed-memory machine: a number of
clusters with local memory interconnected by a high speed network; at the
bottom level, each cluster itself is a multiprocessor that consists of a few
processors connected to a shared memory.

Applications for the HyperMachine are programmed in a standard func
tional language that has been augmented with a single primitive to denote
parallelism. This primitive is called the sandwich annotation [Vree89] and is
based on the divide-and-conquer paradigm. The user (recursively) divides the
initial problem into independent sub tasks that can be solved in parallel. The
compiler and runtime support of HyperM take care of distributing, scheduling,
and synchronising the divide-and-conquer tasks across the machine. A large
class of problems can be expressed directly as divide-and-conquer programs,
while transformational methods have been developed to handle synchronous
process networks as well [Vree90].

The runtime support system (RTS) of H yperM is responsible for exploiting
the two-level memory hierarchy of the machine in a transparent way; the
programmer regards HyperM as a divide-and-conquer machine with a single
global data store. To simplify the complex resource management task, the
RTS is split into two parts: the inter cluster RTS that distributes tasks over

1.5. WYBERT 13

clusters and handles communication on the interconnection network, and the
intra cluster RTS that handles task scheduling and storage management inside
one shared-memory cluster. To minimise interaction between the two parts,
tasks are classified into two categories: large jobs that may be allocated at any
cluster in the HyperMachine, and small threads that are limited to one cluster.
The RTS classifies each task based on a grainsize measure that is provided by
the programmer as part of the sandwich annotation; a single threshold value
suffices to distinguish jobs and threads.

1.5 WYBERT

The research objective addressed in this book is to show that it is possible
to efficiently implement functional languages on parallel machines, which is
reflected in the acronym WYBERT that stands for "Would You Believe Efficient
Reduction Today?". The question is not answered in a general setting, but in
the context of the EIT Reduction Machine project: WYBERT is the name of
the intra cluster runtime support system of the HyperMachine. Because of
the clear separation of concerns between the inter and intra cluster runtime
support system, WYBERT is essentially the runtime support system for a
functional language implementation on shared-memory multiprocessors based
on the divide-and-conquer paradigm.

The WYBERT system takes advantage of the regular parallel structure
of annotated divide-and-conquer applications that unfold into a set of inde
pendent sub problems. These logically independent sub problems, however,
can share expressions at the graph reduction level. To avoid inconsistencies,
parallel graph reduction systems usually equip graph nodes with locks to en
force mutual exclusive access. In contrast, WYBERT adopts the APERM
approach of evaluating shared redexes in advance, which eliminates the exis
tence of shared writable data. The so called sandwich reduction strategy was
originally developed for distributed memory systems and has been adjusted to
match the different requirements for execution on shared-memory multipro
cessors. Several transformations have been developed to overcome the effects
of the additional eager reduction, but these transformations are only needed in
exceptional cases.

Forcing the parallel tasks to be independent at the graph reduction level
has a number of advantages: ,

• Graph reduction can proceed without locking data that resides in shared
memory. This can boost performance for certain applications in com-

14 Chapter 1. Introduction

parison to general parallel implementations of functional languages that
do require mutual exclusive access of some parts of the shared data, as
will be discussed in Chapter 6. The performance advantage increases for
multiprocessors with larger numbers of processors.

• Each parallel task can garbage collect its own part of the heap without
global synchronisations since the lack of writable shared data prohibits the
implicit exchange of pointers between parallel tasks. For efficiency, a novel
storage management scheme allocates private heaps of parallel tasks such
that each task can run an ordinary sequential two-space copying garbage
collector. An additional advantage is that by limiting the maximum task
size, the runtime support system can use a small time-shared buffer as
to-space instead of reserving half of the available memory needed by a
traditional global two-space copying garbage collector.

• Stacks of parallel tasks can be efficiently allocated on a single stack per
processor to avoid the burden of managing an unknown number of variable
sized stacks. The special WYBERT scheduler takes care of the extra
constraint that a runnable task in the stack may not execute until all tasks
above of it have finished.

Considerable effort has been put in the development of a working implemen
tation to measure the effects of these advantages of the WYBERT approach.
This work includes the development of a new code generator.

as part of a functional language compiler that generates efficient code
containing handles for the WYBERT runtime support system.

The main contributions of this book are the design and implementation
of a system that supports the efficient parallel execution of functional pro
gramming languages on shared-memory systems. The key to success is the
sandwich divide-and-conquer primitive that produces independent tasks in a
shared memory environment. The WYBERT design exploits this fine property
by supporting lock-free graph reduction and including two new storage man
agement optimisations for efficient allocation of stack and heap space. Mea
surements on a four node shared memory multiprocessor show that WYBERT
outperforms the common spark-and-wait parallel implementation technique of
lazy functional languages.

1.6 Outline

Chapter 2 provides an introduction to functional programming and its main
implementation technique: graph reduction. The fundamental concepts of

1.6. Outline 15

functional programming, higher order functions and lazy evaluation, are stud
ied in considerable detail since these are the key concepts that complicate the
efficient implementation.

Chapter 3 gives a comprehensive survey of parallel implementations of lazy
functional languages. It discusses fundamental issues raised when extending
sequential graph reduction to parallel machines: the need to support a global
address space, generation and control of parallelism, and resource control. This
discussion provides the basis for the comparison of nine recent designs and
prototype implementations of parallel functional language implementations
that concludes the chapter.

In Chapter 4 the design of the WYBERT approach to parallel graph reduc
tion on shared memory is presented. It discusses the impact of the divide-and
conquer primitive that reduces some expressions in advance to eliminate the
existence of shared writable data. The resulting independent task structure is
exploited in the storage management of WYBERT. Two new algorithms for
efficient allocation of stack and heap space are discussed in detail including
some performance effects obtained by simulation.

Chapter 5 discusses the FCG code generator for the FAST compiler front
end [Hartel91a] that 'knows' about the operational semantics of the sand
wich primitive and supports compacting garbage collection schemes. The
FAST/FCG compiler generates quality code that compares well to other com
pilers for functional languages. The compiler, in combination with a set of
library routines that implement the runtime support system of WYBERT (i.e.
task scheduling and storage management), has been used to experiment on a
prototype implementation of the HyperM architecture.

Chapter 6 describes the performance of WYBERT as measured using one
Motorola HYPERmodule that consists of four MC88000 processors equipped
with caches connected to 64Mbytes of shared memory. The performance of
WYBERT is compared to the standard parallel implementation technique based
on spark-and-wait annotations. In addition detailed performance graphs, as
produced by a separate monitoring tool, are analysed to show where individual
applications spend their execution time.

The book concludes with Chapter 7 that summarises the most important
aspects of the WYBERT design (Chapter 4) in relation to the measured imple
mentation results (Chapter 6).

Chapter 2

Functional programming and
its implementation

Functional programming languages are referentially transparent, which gives
them simple semantics. Since the original development of Lisp by Mc
Carthy [McCarthy60], the design of functional programming languages has
focused on increasing the expressive power of the functional model, while
preserving the simple semantics. Modem functional languages like LML, Mi
randa, and Haskell are three examples of this trend; in addition to the basic
features of (pure) Lisp, they provide higher order functions, lazy evaluation,
abstract datatypes, equations/pattern matching, and static polymorphic type
checking. This chapter gives a short introduction to functional programming
and briefly discusses the issues that are relevant for the parallel implementa
tion as will be described in Chapter 3. The reader is referred to [Hudak89]
for a detailed survey. Higher order functions and lazy evaluation are stud
ied in depth since these features require special implementation techniques
like graph reduction to be executed efficiently on stock hardware. Elabo
rated discussions of the functional programming style and reasoning can be
found in standard textbooks like Bird and Wadler [Bird88] or Field and Harri
son [Field88]. All example programs are given in the Miranda t programming
language [Tumer85, Tumer90].

Functional programming languages are founded on the sound mathematical
basis of the lambda calculus [Barendregt84]. Throughout their evolution,
functional languages have kept with pure mathematical principles without any
compromise. This has resulted in a pure declarative style of programming,

tMiranda is a trademark of Research software Ltd.

18 Chapter 2. Functional programming and its implementation

with emphasis on what to compute, and not on how to compute it. For example,
the following Miranda definition of the factorial function

fac n = 1
= n * fac(n-1)

if n=O
if n>O

closely resembles the pure mathematical definition

facn - . { 1 (n = 0)
- n*fac(n-1) (n>O)

The functional program does not describe precisely how to compute the fac
torial as efficient as possible on stock hardware as is common practice when
coding in imperative languages like C [Kemighan78]:

fac(n)
int n;
{

int f;

f = 1;
while (n>O) {

f .- f*n;
n = n-1;

}
return(f);

}

A consequence of the declarative style of programming is that functional
language compilers have to work harder than their imperative counterparts
to generate efficient machine code, but in return it is much easier to ap
ply program transformations, because "equals may always be replaced by
equals" [Hudak89]. For example, in the following expression:

1/foo + foo
where

foo = fac 481

the function application 'f ac 4 81' may be substituted for both occurrences
of foo without changing the value of the expression. In general this is not
the case in imperative languages where side effects can cause subsequent uses

2.1. Reduction 19

of foo to yield different values depending on the effects of the statements in
between.

2.1 Reduction

A functional program can be considered a set of equations that are to be used to
simplify a given expression (i.e. to solve a problem). This process of replacing
expressions with equal, but simpler expressions is called reduction, and each
simplification is called a reduction step. Reduction proceeds by repeatedly
selecting a reducible expression that matches the left-hand side of an equation
and replacing the redex with the right-hand side of the equation. For example,
the functional program:

square (1+2)
where

square x = x * x

can be reduced as follows:

square (1 + 2) ==> square 3 ==> 3 * 3 ==> 9

Reduction stops when no more simplifications can be applied to the expression
that has reached its normal form and does not contain redexes anymore. The
above sequence of reduction steps is not the only one possible to evaluate the
expression 'square (1 + 2) ':

square (1+2) ==>
==>

(1+2)*(1+2) ==>
3*3 ==>

3*(1+2)
9

Although this second reduction sequence takes one more step than the first
sequence it yields the same value (' 9 '). This is an important consequence of
the Church-Rosser properties of the underlying lambda calculus: any order in
which reduction rules are applied yields the same normal form, provided that
the reduction sequence terminates. The string representation of the expressions
caused the second reduction order to reduce the subexpression '1 + 2' twice.
This "loss of sharing" could lead to an exponential amount of recomputation.
Section 2.5 discusses the normal-order graph reduction strategy that has best
termination properties, and represents expressions as graphs to minimise the
number of reduction steps (i.e. to avoid the duplication of redexes).

20 Chapter 2. Functional programming and its implementation

2.2 Values and expressions

The pure lambda calculus deals with function definitions and function appli
cations and nothing else. Even basic constants such as integers have to be
represented as functions. Although this simplicity has appealing advantages
in a theoretical framework, it makes programming awkward and error prone.
Therefore practical functional languages include 'syntactic sugar' to denote
constant values and simple expressions. For example, in Miranda characters
are denoted with surrounding quotes ('a', 'b', etc.), and integers can be
combined into expressions with the usual set of infix and prefix operators.

In addition to basic data values, data constructors are provided to group
logically related values together. These data constructors resemble records in
Pascal or structures in C, and can be defined by the programmer as part of an
algebraic datatype. The following example specifies a datatype that represents
complex numbers and some operations:

complex::= C num num

i = C 0.0 1.0
cadd (Craia) (Crbib) =C (ra+rb) (ia+ib)
cmul (Craia) (Crbib) =C (ra*rb-ia*ib) (ra*ib+ia*rb)

A complex number is specified as a data constructor named C that has two fields
to hold the real and imaginary parts. To unravel their arguments, the function
definitions of cadd and cmul use a notational convenience called pattern
matching. Patterns may be used to match arbitrarily nested and complex
parameters, and constants can be used to select specific parameter values. For
example the factorial function can be defined with pattern-matching as follows:

fac 0 = 1
fac n = n * fac (n-1), if n>0

The boolean guard 'n>O' is needed to limit the definition of the factorial to non
negative parameter values. If it would be omitted the expression' f ac (3-7) '
would not raise an exception, but cause an infinite computation with undefined
behaviour.

The advantage of abstract datatypes is that the programmer may use the
functions over the datatype without "knowing" the underlying implementation.
Languages such as Miranda and Haskell include facilities to create abstract
datatypes, whose implementation details can be explicitly hidden from the

2.2. Values and expressions 21

user. For example, the user of the datatype complex can perform complex
computations by using the supplied operations without knowing of the exact
data representation (i.e. data constructor C):

i_square = cmul ii

A powerful property of algebraic datatypes is that they can be used to specify
recursive datatypes like lists and trees.

num list::= NIL I CONS num num list

length NIL 0
length (CONS n 1st)= 1 + length 1st

The I -symbol denotes that an algebraic datatype is constructed out of several
elements; a list of numbers is either the empty list, denoted by NIL, or is a
number paired with the remainder of the list, which is another element of type
num_list. The data constructors NIL and CONS are used by the function
length to distinguish the two cases. Since it would be awkward to have to
define a list for each basic type, algebraic datatypes may be parameterised:

list* ::= NIL I CONS* list

num list
bool list --

-- list num
list bool

length NIL = 0
length (CONS x 1st)= 1 + length 1st

1st= CONS 1 (CONS 2 (CONS 3 NIL))

The *-symbol denotes a type variable that may be instantiated with an arbitrary
type as in the declarations of num_list and booLlist. Now the function
length operates on the polymorphic type list and can be used to compute
the length of any kind of list since length does not access the individual list
elements. In contrast, the function that sums all elements of a list can only be
used for lists of numbers despite the syntactical resemblance with the length
function:

sum NIL 0
sum (CONS n 1st)= n + sum 1st

22 Chapter 2. Functional programming and its implementation

2.2.1 Lists

Since lists are frequently used in typical functional programs, the Miranda
language provides a built in notation for lists: [] denotes the empty list (cf.
NIL), and the colon (:) serves as an infix pair constructor (cf. CONS). Thus
the example list 1st can be written as:

1st= 1 : 2 : 3 : (]

An even more convenient notation is allowed by enumerating a list inside
square brackets as a sequence of elements separated by commas:

1st = [l,2,3]
1st' = (1.. 3]

The shorthand notation used to declare list 1st' specifies an arithmetic se
quence of values. This notation is frequently used in combination with list
comprehensions since it is the prime means to specify repetition. List com
prehension, also known as ZF expressions [Turner81], is the most powerful
notation to specify lists and stems from the mathematical set notation. For
example, the following expression computes all squares of the prime numbers
in the range 1 to 100:

[n*n I n <- [l •. 100]; prime n]

It closely resembles the following mathematical set description:

{n x n In E {1, ... , 100}, prime(n)}

The prime predicate can be defined with a list comprehension as well:

prime n = (divisors n = [l,n])
where

divisors n = [d I d<-(1 •. n]; n mod d = O]

A prime number is only divisible by 1 and itself, but it seems like a waste to
compute the complete list of divisors of n since as soon as the first non-trivial
divisor d has been found, n is known to be not a prime number. Fortunately
this is exactly what happens under lazy evaluation, which will be explained
in Section 2.4, since the lists are compared element wise and the comparison
stops when two unequal elements have been found.

2.3. Higher order functions 23

2.3 Higher order functions

A fundamental concept of modem functional languages is that functions are
first-class citizens: functions may be passed as arguments, returned as results,
and stored in data structures just as ordinary data values like integers. A
function that takes a function as an argument, or delivers one as a result, is
referred to as a higher-order function. Traditional imperative languages like
Pascal and C barely support higher-order functions: functions may be passed
as parameters, but it is impossible to create 'new' functions at runtime by
partially applying a function to some arguments. The ability to construct new
functions out of existing ones provides great abstractive power to the user,
and is commonly used in mathematics. The differential operator, for example,
is a higher-order function that takes a function as argument and returns its
derivative as the result.

This mathematical definition can be straightforwardly expressed in a Miranda
program as follows:

diff f = f'
where

f' X = (f (x+h) - f X) / h
h = 0.0001

Note that this definition of diff crudely approximates the true derivative
since it takes the limit by fixing h to a small constant; a better definition that
employs a sequence of ever decreasing values will be presented in section 2.4.
The important aspect of the example is that diff returns as its result a func
tion, which is composed out of already existing functions(£, +, -, and /).
The expression 'diff square' approximates the function f(x) = 2 x x
and can be used in more complex expressions. For example, the expression
' (diff square) O' yields an approximation to the derivative of square
in point 0: 0. 0001. Since 'diff square' yields a function, it can be dif
ferentiated again: the expression ' ((diff (diff square)) 0' yields
2 • 0 as an approximation to the second derivative of square in point 0.

An implicit way to create new functions is to partially apply a function
to a number of arguments that is less than the arity of the function. This
technique is known as currying, after the logician H.B. Curry, and can be used

24 Chapter 2. Functional programming and its implementation

to specialise functions by fixing parameter values. For example, suppose that
the binary function der iv is used to compute the derivative of a function in
a given point.

deriv f x = (f (x+h) - f x) / h
where

h = 0.0001

The expression 'deriv square O' yields the same value as the expression
' (di ff square) 0' since it can be shown that for any function f and
point x the following equation holds: deriv f x = (diff f) x. The
function der iv can be specialised to compute the derivatives of a specific
function f by currying: 'der iv f' is a valid expression, and is equivalent to
'diff f', i.e. it represents the derivative off. In essence the declaration of
der iv may be thought of as syntactic sugar for di ff.

Higher-order functions increase the expressive power of functional lan
guages in comparison to languages that do not support functions as first class
values. In addition, higher order functions can be used to gain modularity
by glueing program parts together as argued by Hughes [Hughes89]. Higher
order functions can be defined to abstract out the common functional behaviour
(i.e. the glue) of a program. For example, suppose that the functions sum and
prod are defined to add and multiply the elements of a list as follows:

sum [l = 0
sum (x:xs) = X + sum xs

prod [l = 1
prod (x:xs) = X * prod xs

Both functions use a similar pattern to traverse the list and compute the result.
This behaviour can be abstracted by introducing a higher-order function named
foldr that captures the common parts and carries two parameters to account
for the 0/1 and+/* variable elements:

foldr op val [] val
foldr op val (x:xs) = op x (foldr op val xs)

Note that the infix operators have been replaced with a binary function pa
rameter named op. The sum and prod definitions may now be changed
into:

2.4. Lazy evaluation

sum = foldr (+) 0
prod= foldr (*) 1

25

The (+)-notation is Miranda syntax to convert an infix operator into an ordi
nary binary function. The foldr abstraction can be re-used for many other
functions, for example, to test whether all elements in a list of booleans evaluate
to true:

alltrue = foldr (&) True

For example, the expression 'al 1 true [True, False, True, True] '
evaluates to False.

2.4 Lazy evaluation

Programming languages that provide non-strict semantics only evaluate those
parts of the specified computation that are strictly needed to compute the final
result of the program. This enables the programmer to define and use 'infinite'
datastructures without causing the program to run forever as would be the case
in traditional imperative languages. The class of non-strict languages includes
many functional and logic programming languages. Such non-strict functional
languages are usually called lazy functional languages, where the term lazy
evaluation denotes the corresponding non-strict evaluation order.

An important advantage of lazy functional languages is that the program
mer is freed from concerns about the evaluation order of expressions, and may
separate data from control: it is possible to structure a program as a generator
that constructs a large number of possible answers, and a selector that inspects
only a few ones when determining the final answer. The increased power to
modularise programs is probably the most important benefit oflazy evaluation.

Evaluating a functional program consists of repeatedly replacing a redex
with the corresponding right-hand side of the matching equation. Frequently,
however, the program contains multiple redexes and some strategy is needed
to select the next redex to be reduced. Although it is guaranteed that all
reduction strategies yield the same value upon termination, strategies differ
in the number of reduction steps needed to compute the program result and
termination behaviour. Two important reduction strategies are illustrated by
the following example:

square (square (1+2))

26 Chapter 2. Functional programming and its implementation

Normal-order reduction always selects the leftmost outermost redex to be
reduced:

square (square (1+2)) ===} square (1+2) * square (1+2)

Applicative-order reduction selects the leftmost innermost redex:

square (square (1 + 2)) ===} square (square 3)

The normal-order strategy is used for lazy evaluation, while applicative or
der corresponds with the traditional evaluation mechanism of (imperative)
programming languages. The difference can be seen when expressions are
evaluated that involve functions with non-strict arguments. A function is strict
in some argument if the function result is undefined whenever it is called with
an undefined expression for that argument.

inf= inf+ 1

The expression 'inf' is undefined since its evaluation causes an infinite se
quence of reduction steps:

inf ===} inf+l ===} (inf+l)+l ===} ((inf+l)+l)+l
===}

Nevertheless the following example that includes inf can be handled by
normal-order reduction. The trick is to use inf in a non-strict context such as
provided by const:

canst 3 inf
where

canst c x = c
inf= inf+ 1

Normal-order reduction terminates after one reduction step since it immedi
ately invokes the reduction rule for const:

canst 3 inf ===} 3

Applicative-order reduction, on the other hand, first reduces the argument
expressions of the const function and starts reducing inf:

2.4. Lazy evaluation

const 3 inf ==> const 3 (inf+ 1)
==> const 3 ((inf+l) +1)
==>

27

Since no expression is reduced unless the value is needed to compute the final
answer, the normal-order reduction strategy of lazy functional languages re
lieves the programmer of explicitly stating the evaluation order of expressions:
the programmer only has to describe what to compute. This allows for a pro
gramming style, known as circular programming [Bird84], where values may
be declared before computed. Johnsson shows in [Johnsson87] how circular
programming can be exploited, for example, in parsing with attribute gram
mars. Any attribute grammar can be straightforwardly translated into a set of
functions, one function for each production rule, that state how each attribute
has to be computed. These functions can be used for parsing immediately:
lazy evaluation automatically evaluates the attributes in the right order.

2.4.1 Infinite datastructures

Lazy evaluation allows the programmer to specify infinite data structures (lists)
and guarantees termination if only a finite number of elements is needed to
compute the program's result. The following example returns the list with the
first hundred prime numbers:

take 100 [x I x<-nats; prime x]
where

nats = from 1

from n = n from (n+l)

take n [] = []
taken (x:xs) = [], if n=0

= x: take (n-1) xs, otherwise

The list comprehension takes the infinite list of natural numbers (nats) and
tests for each element whether it is prime or not. If not evaluated lazily, the
program would diverge, but now the program properly stops after listing the
first hundred prime numbers, since take deletes the computation of remaining
primes when its counter drops to zero. This example demonstrates a typical
coding style found in many lazy functional programs: a producer generates an
infinite stream (list) of values, which is connected to a consumer selecting the
appropriateil;ems.

28 Chapter 2. Functional programming and its implementation

As a second example, we will derive a better definition for the diff
function that differentiates continuous functions. The mathematical formula
specifies that the derivative is the limit of a series of approximations, hence,
the diff function can be declared as follows:

diff f = f'
where

f' x = lim [(f(x+h) - f(x))/h I h <- approx O]

The functions limand approx still need to be defined. Note that the number
of approximations is not known in advance since it depends on the required
accuracy and the rate at which the function f converges. Therefore we will
construct an infinite list of approximations, and have the 1 im function decide
when an accurate value has been computed.

approx x = [x+dx I dx <- repeat (/2) l]
repeat f x = x: repeat f (f x)

The expression 'repeat (/2) 1' constructs the decreasing sequence 1,
1/2, 1/ 4, ... by repeatedly halving the start value; the shorthand notation
' (I 2) ' denotes the function 'halve x = x/ 2 '. Taking the limit of the list
of approximated derivatives can be accomplished by comparing the relative
difference between two successive values:

lim (a:b:lst) = b, if abs(a/b-1) <= eps
= lim (b:lst), otherwise

where
eps = le-17

The lazy evaluation mechanism has allowed us to stay close to the mathemat
ical description and separate the concerns of generating approximations and
controlling the accuracy of the result, while these have to be merged into one
thread of control for strict languages like C:

2.4. Lazy evaluation

double deriv(f, x)
double f(), x;
{

}

double xl, x2, h, fx, eps;

eps = le-17;
fx = f (x);
x2 = 0;
h = 1.0/1024;
do {

xl = x2;

I* avoid recornputation */
I* so test fails initially*/

x2 = (f(x+h) - fx) / h;
h = h/2;

}
while abs(xl-x2) > abs(eps*xl));
return(x2);

29

Note that the C program contains explicit code to avoid the recomputation
of J(x) since the C compiler cannot infer in general that function f has no
side-effects. Because functional languages are side-effect free, the compiler
automatically performs these kind of optimisations, for example, the expression
'approx O' is shared by all derivatives in a program.

Another advantage of the producer-consumer programming style is that
both components (i.e. the lim and approx function) can easily be re-used
in other programs or replaced by improved versions.

2.4.2 Stream programming

Lazy streams (lists) as supported by normal-order reduction provide powerful
means to structure software: a large program can be composed of a number of
processes interconnected by lazy streams. Such a stream process repeatedly
consumes some elements from its inputs and produces a new output value. The
processes may be glued together by an arbitrarily complex network of streams,
and lazy evaluation takes care of selecting the appropriate process to produce a
new stream value. The producer-consumer diff function is a simple example
that consists of two processes connected by a single stream. An interesting
example of a process network is the description of an elementary flip-flop
circuit as shown belowt:

tReproduced from [Muller93] with permission of the author.

30 Chapter 2. Functional programming and its implementation

Set
Q

Set Reset Q Qb
1 1 Q Qb
0 1 1 0
1 0 0 1

Reset
Qb 0 0 1 1

Note that the flip-flop circuit contains a cyclic interconnection structure. It is,
however, not necessary to worry about the cycles since lazy evaluation will
do the trick. Therefore the diagram can easily be formulated as a functional
program according to the Kahn principle [Kahn74]: First, label every stream
in the network with a unique identifier. Then write down an equation for each
stream, defining its value in terms of processes (functions) and other streams.

flip_flop set reset= q
where

q = nand set qb
qb = nand reset q

A nand process takes two streams of signals as input and combines them into
one output stream. Signals traveling through a nand gate incur some delay,
which is made explicit in the following function definition of nand that starts
by producing two undetermined values ('X').

signal : : = X H L

nand as bs = X X (nand_op as bs)

nand_op (H:xs) (H:ys) = L nand_op XS ys
nand_op (L:xs) (y:ys) = H nand_op XS ys
nand_op (x:xs) (L:ys) = H nand_op XS ys
nand_op (x:xs) (y:ys) = X nand_op XS ys

This basic flip-flop can be combined with other gates and circuits to form ar
bitrary complex digital circuits. Another important application area of stream
programming is in writing interactive software in pure functional languages.
Early functional languages like Lisp include primitives to perform 1/0 like
read and write system calls, but this violates the fundamental referential trans
parency principle and makes it difficult to reason about such opaque programs.
Lazy streams can be used as follows to preserve the referential transparency
when handling 1/0:

2.5. Graph reduction 31

Whenever the program needs to perform an 1/0 operation it "sends" a request
message to the operating system (OS) on its output stream and "waits" for the
response (e.g., the contents of a file) on its input stream. This set up makes the
functional program referential transparent since given a stream of responses
(i.e. input) the program always produces the same list of requests (i.e. output)
no matter when the program is executed since all state handling is performed
outside the program by the OS. Although the complete system (program + OS)
is not referentially transparent, the program benefits from all the advantages
like ease of reasoning and optimising program transformations.

Stream processing is not only an important concept for sequential pro
gramming, but it can be exploited as a parallel programming paradigm as well
(see Chapter 3).

2.5 Graph reduction

The normal-order reduction strategy of lazy functional languages has optimal
terminating properties: if a normal form exists then normal-order reduction will
derive it. Unfortunately, naive implementation of normal-order reduction is
inefficient since often redexes become duplicated. For example, the reduction
of the expression 'square (1 + 2) ' takes four steps:

square (1+2) ==> (1+2)*(1+2) ==> 3*(1+2)
==> 3*3 ==> 9

The leftmost outermost selection procedure of normal-order reduction forces
the subexpression '1 + 2' to be reduced twice. The "loss of sharing" is caused
by the string representation of the expressions, and can lead to an exponen
tial amount of recomputation. Nevertheless several (parallel) functional lan
guage implementations have been designed with normal-order string reduction
[Mag679, Kluge83].

To overcome the copying inefficiency of normal order string reduction,
Wadsworth [Wadsworth71] proposed to represent expressions as graphs such

32 Chapter 2. Functional programming and its implementation

that pointers to arbitrary redexes can be copied freely without duplicating
work; whenever a redex is reduced, the result is shared by all pointers to the
redex. This key idea of graph reduction makes the implementation of normal
order reduction, or lazy evaluation, a practical technique. The reduction of the
square example now uses the optimal number of reduction steps:

===} ===} ===} 9

The @-symbol denotes function application; a unary function is applied to
some argument. An expression that consists of a function applied to multiple
arguments is handled by currying: a chain of function application nodes ap
plies the function to all the arguments, one by one. For example, the expression
'+ 1 2' is interpreted as short hand for ' ((+ 1) 2) ', hence two @-nodes
are required, where the ' (+ 1) ' expression denotes the function that incre
ments its argument by one. This curried graph representation of expressions
incorporates higher order functions without any difficulty since now functions
can be passed around as ordinary pointers, and can be instantiated by adding
application nodes.

In the following example the higher order function twice takes two
arguments. The first argument is a function (inc) that is applied twice to the
second argument (2), which may be another function.

twice inc 2
where

twice f x = f (f x)
inc = (+) 1

Note that the increment function inc is specified as a curried application
of the built in addition operator (+) . The graph reduction of the term
'twice inc 2' proceeds as follows:

2.5. Graph reduction 33

A ===?

.lA
===?

1A .✓, 2
twice inc inc 2 A 2

+ 1

===? r3 ===? 4

✓,
+ 1

A lazy graph reducer repeatedly performs the following steps: (1) find the
leftmost outermost redex, (2) reduce the redex by instantiating the function
body (i.e. build a graph), (3) update the root of the redex with the constructed
graph.

Finding the next redex in step (1) starts by going down the left branch of
each application node from the root until a function name is encountered. While
unwinding the application spine the pointers to the application nodes are saved
on a stack for subsequent use when rewriting the redex. After the unwind, the
reducer checks whether the redex is an application of a function that evaluates
its argument(s), like +, and tests if these so called strict arguments(s) have
already been evaluated. If necessary the graph reducer recursively invokes
itself to evaluate strict arguments before calling the function to rewrite the
redex. At runtime the stack is used as with imperative languages, except that
stackframes are not created at once, but instead are incrementally constructed
when unwinding the spine.

The rewrite step (2) is important for the overall performance, and depends
on the efficiency of instantiating a function body with the actual parame
ters. In [Tumer79a] Turner published an implementation method based on
combinatorial logics that was far more efficient at building graphs than the
customary environment-based implementations derived from the SECD ma
chine [Landin64]. A functional program is compiled into a small fixed set
of elementary functions that only combine arguments without referring to
other (global) identifiers. These simple functions are called SKI combina
tors, and the corresponding rewrite rules are incorporated as instructions of an

34 Chapter 2. Functional programming and its implementation

abstract reduction machine. The next major efficiency improvement was to
compile the program into application specific combinators, which are called
super combinator [Hughes82]. This idea has been successfully implemented
in the G-machine [Johnsson84, Augustsson84]. A program is first transformed
through lambda lifting into a set of super combinators, which are then compiled
into native assembly code for efficiency.

The update of the root application node of the redex in step (3) is needed to
maintain the sharing of delayed computations. As a side-effect the references
to the remaining graph nodes of the original redex are discarded, but the
nodes cannot be reclaimed straight away since they might be referenced from
other parts of the global computation graph. A garbage collector is needed
to properly handle shared nodes when reclaiming garbage nodes in the heap.
The presence of cycles in the computation graph complicates the garbage
reclamation process [Cohen81].

To increase the performance of the basic graph reduction mechanism,
the functional language compilers use numerous optimisations to avoid the
construction and interpretation of graphs. For example, if the result of a single
rewrite is an application spine then the graph reducer will immediately unwind
the spine. Hence, the construction of the spine in the graph can be avoided
altogether by pushing the arguments on the stack, and calling the function at
the bottom of the spine directly.

For large applications lazy functional language implementations use much
more (heap) memory than their imperative counterparts despite strictness anal
ysis and other high-level compiler optimisations. At the low implementation
level, space requirements can be cut down: tags can be encoded in a few bits
in the pointer to the object instead of in the object itself (Chapter 5), and often
chains of application nodes can be encoded in one vector apply node. These
variable length vectors, however, complicate the allocation and reclamation
of nodes in the heap. Reference counting or mark&scan garbage collectors
have difficulty accommodating variable length vectors, so compacting garbage
collectors that move live data into one contiguous block are used in general.
To efficiently support garbage collection, several abstract graph reduction ma
chines contain multiple stacks to separate heap pointers from other stack items
like return addresses and basic data values (integers, floating point numbers,
etc.). Multiple stacks are more difficult to manage, and the alternative is either
to tag all values or to record the pointer positions in each stack frame.

A comprehensive description of the basic graph reduction principles and
optimised implementation techniques can be found in [Peyton Jones87b].

2.5. Graph reduction 35

2.5.1 Strictness analysis

Strictness analysis is an important optimisation technique that determines for
each function which parameter values are needed to compute the result. As a
consequence the strict arguments of a function may be evaluated safely before
calling the function without violating the lazy evaluation semantics. Thus
strictness analysis allows the compiler to use efficient call-by-value semantics
for certain parameters instead of call-by-need semantics that forces the con
struction of graphs. This dramatically increases performance of lazy functional
languages, for example, [Hartel91 b] reports up to 92% reduction in claimed
heap nodes when switching strictness analysis on.

A function is strict if the result cannot be computed when its argument
value is undefined. Formally

A function f is strict iff f 1- = 1-

The special 1--symbol (called "bottom") denotes a non-terminating computa
tion like the function inf defined as inf = inf+ 1. The job of the compiler
is to determine for each function whether the above condition holds or not. Nu
merous (formal) strictness analysis methods have been devised [Abramsky87],
but in essence these program analysis techniques may be thought of as propa
gating information through a syntax tree. For example, consider the strictness
analysis of the following function:

divide x y = NaN,
= x/y,

if y=O I I return exception
otherwise

The corresponding syntax tree is shown in Figure 2.1. The strictness analysis
of divide can be performed by propagating information of the form "needs

Figure 2.1: Syntax tree of function divide.

36 Chapter 2. Functional programming and its implementation

1 1

Yl~ = NaN /

1/ ~ 1/ ~
Y O X Y

Figure 2.2: Strictness analysis of argument y.

y" and "may not needy" up through the tree. The result is shown in Figure 2.2,
where 1 denotes "needs ... " and O denotes "may not need ... ". The analysis
shows that f is strict in y since the equality operator is strict in both arguments
and the conditional expression of the if-statement is always executed. However,
f is not strict in x since x is only used if the test fails in the conditional, see
Figure 2.3.

1 °

Yl~ = NaN /

1/ ~ 1/ ~
Y O X Y

Figure 2.3: Strictness analysis of argument x.

The exact rules of how information propagates through the syntax tree are
dependent on the operational behaviour of the basic operators and language
constructs. Handling of non-recursive function calls is straightforward: first
analyse the called function, then propagate information on strict arguments
positions in the tree.

Recursive functions, which are frequently used, severely complicate strict
ness analysis since information is required that is being computed. The solution
is to compute a number of successive approximations incorporating more re-

2.6. Summary 37

fined information at each step. At first we assume that no information about
the function itself is known (all arguments are non-strict) and propagate this
information through the syntax tree to find a subset of the strict arguments.
This information is used in a second traversal to find more strict arguments.
The process is repeated until all strict arguments have been detected. Correctly
determining the limit (or fixed point) of the successive approximations is a
difficult and time consuming problem [Peyton Jones87b, Hughes90].

Although the above outlined strictness analysis methods determine which
arguments are needed, the compiler must not completely reduce expressions at
such strict argument positions since in case of datastructures it is not specified
which components are needed, if any component is needed at all. For example,
to test whether a list is empty, it satisfies to check that the list contains at least
one element or not, but the value of the first element is not requested and
must not be computed to preserve lazy semantics. Therefore the compiler may
evaluate expressions to head normal form on strict arguments positions, but
not to normal form. An expression is in head normal form if the corresponding
root node in the graph is a constructor node, i.e. anything but an application
node (redex). An expression is in normal form when the corresponding graph
does not contain any redexes.

More powerful analysers extend their domain to account for strictness in
side datastructures as well. The evaluation transformer model of strictness
analysis [Bum91], for example, takes the needed structure of list-type expres
sions into account as well. Some functions like length and append require
their (first) argument to be in spine normal form, that is the complete structure
of the list is needed to compute their result. Others like sum even need the
values of the individual elements, so whenever calling sum the argument ex
pression may be evaluated to normal form in advance. Although this provides
the compiler with more opportunities to pass the parameters by value instead
as pointers to unevaluated expressions in the graph, the analysis time increases
dramatically because the algorithmic complexity is exponentially proportional
to the number of strictness properties (i.e. domain elements).

2.6 Summary

The short tutorial on functional programming and its implementation pre
sented in this chapter provides the essential background information needed to
comprehend the difficulties of functional language implementation on parallel
machines, which is the topic of this book. The next chapter discusses the fun-

38 Chapter 2. Functional programming and its implementation

damental issues raised when extending graph reduction to parallel machines,
and surveys a number of actual parallel implementations. The remainder of the
book, chapters 4 to 6, describes the WYBERT approach to parallel execution
of functional programs on shared-memory multiprocessors.

Chapter3

Parallel implementations of lazy
functional languages

Since functional languages are referential transparent, they are good candidates
for programming parallel machines. The lack of side effects guarantees that
any (parallel) computation order yields the same result (assuming termination).
In principle the compiler can extract the parallelism from the program, and
schedule it for execution on a given parallel machine. The accompanying run
time support system dynamically handles the resource allocation of individual
computation grains: it allocates memory (garbage collection) and processing
power (load balancing), and performs inter-processor communication. Thus,
functional languages offer the prospect of releaving the programmer from the
difficult task of parallelising a program. The compiler and RTS do the job for
the programmer automatically.

The automatic extraction of parallelism in functional programs is based on
properties of primitive operators and strictness analysis. For example, consider
the expression El + E2; the strict semantics of + allows for parallel execu
tion of the expressions El and E2. Unfortunately, the implicit parallelism
results in fine grain computations, which are difficult to execute efficiently
on todays parallel hardware; even on shared memory multiprocessors, which
offer low latency communications, the synchronisation of the huge number of
fine grain computations results in a performance bottleneck. Some approaches
try to enlarge the grainsize of the basic computations by automatic complexity
analysis of expressions, see for example [Goldberg88c]. However, the usage
of higher order functions and lazy evaluation, which are two key features for
modular programming [Hughes89], severely limits the scope and impact of
these compiler optimisations.

40 Chapter 3. Parallel implementations of lazy functional languages

To overcome the problems associated with fine grain parallelism, a number
of hardware architectures especially designed for executing parallel functional
programs have been proposed [Mag679, Darlington81, Watson88, Waite91].
These designs typically support fast context switches to overcome communi
cation delays when fetching "remote" arguments, and include packet switched
communication protocols to transport the basic data unit (i.e. a graph node)
as efficient as possible. Many of these designs have been inspired by devel
opments in data-flow machines, but they never caught on since by the time
they had been constructed -if constructed at all- the conventional-processor
based implementations could use more advanced VLSI technology and clearly
outperformed the special designs.

Instead of pursuing the "Holy Grail" of compiler derived implicit paral
lelism, recent research in parallel implementation of functional languages has
taken a pragmatic approach. The programmer is required to explicitly annotate
expressions that are worth to be evaluated in parallel. Then the runtime sup
port system takes over and automatically schedules the resulting parallel tasks
for execution and manages the machine resources (memory, processors, and
communication). Thus in contrast to many imperative parallel programming
languages, the programmer is only responsible for parallelising the algorithm,
and does not have to handle low level issues like task placement, storage
allocation, communication, and access control of shared data.

An important goal of many research programs is to show that the highly ab
stract parallel functional programming model can be implemented efficiently
on stock hardware (in particular MIMD machines). The best results have been
obtained for strict functional languages, which do not support lazy evaluation,
like various LISP derivations: Multilisp [Halstead Jr84], QLisp [Gabriel84],
and Mul-T [Kranz89]. Most notably are the results of the SISAL implementa
tion that runs on a Alliant vector processor and outperforms the parallelising
FORTRAN compiler on several large scientific applications [Cann92]. The ef
ficient parallel implementation of lazy functional languages, however, is more
difficult. The first prototype implementations on real parallel machines have
been constructed, but few performance results for significant applications have
been published.

This chapter looks at the parallel implementation issues of lazy functional
programming languages; it focuses on the runtime support system since that is
responsible for managing resources and parallelism in the machine. Section 3.1
discusses fundamental issues raised when extending sequential graph reduction
to parallel machines: global (virtual) address-space support, generation and

3.1. Parallel graph reduction 41

control of parallelism, storage management, and scheduling. Note that many
of these problems also show up in parallel implementations of programming
languages in general, but the discussion is limited to the scope of parallel graph
reduction. Next, a number of recent designs and prototype implementations of
parallel lazy functional languages is reviewed regarding these general issues;
early parallel lazy functional language implementations have been described
in [Treleaven82, Kennaway83, Vegdahl84]. Finally, a comparison between the
surveyed machines is made in Section 3.3.

3.1 Parallel graph reduction

Graph reduction, as briefly discussedin the previous chapter, has been widely
accepted as an efficient implementation method for lazy functional languages
[Peyton Jones87b]. It is suitable for execution on parallel systems since the
Church-Rosser property of the underlying lambda calculus guarantees that any
reduction order yields the same result upon termination. In particular, several
redexes may be rewritten concurrently, and the global (serialised) order in
which the reductions are actually performed has no effect on the program's
final result. This property allows a collection of graph reducers to rewrite
redexes in parallel.

To the runtime support system (RTS), each graph reducer is a process
(thread) that consists of a code segment, one or more stacks, and a large heap
memory. The heap is shared by all graph reducers and has to be garbage
collected occasionally by the RTS when the graph reducers run out of shared
heap space. The RTS also has to schedule the graph reducers for execution on
the parallel machine, and allocate memory for each reducer. The generation of
parallelism and the cooperation between the multiple reducers is usually of no
concern to the RTS because this is dealt with inside the graph reducers; all task
synchronisation/communication is implicitly regulated through the program
graph.

The following discussion of fundamental issues in parallel graph reduction
systems does not cover 1/0 since the systems are targeted as compute engines
connected to some host that handles the user interface: an expression is down
loaded from the host, execution starts, and finally the result is transported back,
hence, any standard communication protocol suffices.

42 Chapter 3. Parallel implementations of lazy functional languages

3.1.1 Generating parallelism

To efficiently exploit the Church-Rosser property of graph reduction, care has to
be taken to select the appropriate redexes for parallel execution since otherwise
the graph reducers will rewrite redexes that are not needed to compute the
program's final result. In the worst case, the superfluous execution of an infinite
sequence of reductions results in a situation where all graph reducers are busy
and fail to terminate properly. To avoid any waste of computing resources only
expressions that are certainly needed may be evaluated in parallel (conservative
parallelism); speculative parallelism [Burton85] is not considered since it is
too difficult to manage. The selection of needed redexes for parallel execution
is performed either by the compiler automatically, or by the programmer
explicitly through annotations.

Compiler derived parallelism

Whenever a function is applied to a strict argument (see Section 2.5.1), the
argument may safely be evaluated in parallel with the execution of the function
body since at some execution point the argument value is needed to compute
the function's result. Thus a strictness analyser, which is employed by the
(sequential) compiler to transform call~by-need into call-by-value, also can
derive the information needed to support conservative parallelism.

Unfortunately the effectiveness of strictness analysis methods is hampered
by the usage of higher-order functions and data structures, as explained in
Chapter 2. As a consequence the number of strict arguments that can be de
rived in a reasonable amount of compilation time is limited. Worse, however,
is that the resulting parallel computations are fine grained: a single addition,
one function call, etc. Efforts to automatically increase the grainsize have not
been successful as will be discussed in Section 3.1.5. Fine grain parallelism
is difficult to implement efficiently since overheads like scheduling, data com
munication, and context switching should be as small as possible, which calls
for special hardware support.

Annotated parallelism

To overcome the problems associated with fine-grain parallelism, the program
mer often has to assist the compiler by inserting annotations in the program
source to explicitly denote coarse-grain expressions suitable for parallel exe
cution. Two classes of annotations can generally be distinguished: skeletons

3.1. Parallel graph reduction 43

and fork-primitives. They differ in the flexibility provided to the user and the
amount of knowledge required from the user.

Skeletons provide the user with a high-level abstraction of a particular par
allel programming paradigm like the divide-and-conquer or replicated-worker
model [Darlington91]. The user just has to structure his program to fit one of
the supported skeletons, and call the corresponding runtime support function
to obtain parallel execution. The rigid control structure of the skeletons allows
for efficient implementation on various parallel systems.

The Caliban annotation language [Kelly89, Cox92] supports a rather flex
ible skeleton: the process network, which consists of an arbitrary number of
concurrent processes connected by (lazy) streams. Although the network de
scription may be parameterised, for example by the number of processors, the
description has to be compile-time static. This assures that an efficient fully
static distribution of the computation on the machine can be accomplished.

Fork primitives provide an unconstrained low-level method to start (spark)
the evaluation of an arbitrary expression by putting a marker on it. The pro
grammer has to take care to only annotate needed expressions, otherwise the
program may incur superfluous computations or even fail to terminate. The
following example shows a parallel merge sort algorithm where the annota
tion ' { ! } ' expresses that recursive sorts of the left and right halves may be
computed in parallel:

sort[] []
sort [x] [x]
sort list= merge {!}(sort L) {!}(sort R)

where
(L,R) = split list

At runtime, a call of sort with a list of more than one element results in the
creation of two tasks, which are placed in the global task pool that is consulted
by idle processors looking for work. After sparking the child tasks, the parent
continues execution, and when it requires the value of a sparked expression
while the child task is still computing, the parent calls the RTS to block itself.
When the child completes the evaluation and has updated the graph with the
result, it notifies the RTS that the parent has become executable again. When
the parent task is resumed, it starts with fetching the wanted result value from
the graph. To avoid a sequence of expensive block/resume operations when
the parent accesses the results of several child tasks in a row, a counter can be
used to resume the parent only when the last child has completed.

44 Chapter 3. Parallel implementations of lazy functional languages

Examples of fork primitives are the futures in parallel LISP systems
[Halstead Jr84], and the spark constructs in parallel graph reduction imple
mentations [Peyton Jones87b]. These fork primitives give the user fine control
over the parallel execution of a program, but require intimate knowledge about
the underlying runtime support software and hardware architecture to obtain
efficient execution. Some parallel implementations even force the programmer
to resolve resource allocation issues like task scheduling and data communi
cation. In the para-functional programming system [Hudak86], for example,
the programmer has to specify on which processor a parallel task should be
evaluated.

Most research in parallel implementations of functional programming lan
guages is based on the low-level fork annotation since it provides coarse grain
tasks as opposed to the fine grains of compiler derived parallelism. In addition
fork primitives offer greater flexibility than the high-level skeletons; skeletons
can be provided easily as library functions built out of fork primitives, but
the other way round is much more difficult, if not impossible. Henceforth we
will refer to the method of forking tasks and explicit waiting for results as the
spark-and-wait model.

3.1.2 Global address-space support

Conceptually the spark-and-wait model of parallel graph reduction consists
of a number of graph reducers that repeatedly rewrite redexes in parallel in
different parts of the shared program graph. The activities between the reducers
are coordinated in the RTS through a global task pool, which contains pointers
to needed expressions in the graph, and the blocking/resumption mechanism
discussed above.

The shared program graph in combination with a lazy evaluation mech
anism complicates the implementation of functional languages on parallel
machines, since tasks can easily share delayed computations that still have
to be evaluated and updated. In case of the merge sort example, the redex
'sort [4, 3, 2, 1]' is rewritten as follows:

3.1. Parallel graph reduction 45

✓, ===} A
sort [4,3,2,l] / /~

'sort A
mer{e A send ""'

sort @------@._

/ 1/"' frst sp 1 t [4, 3, 2, 1]

The ! -symbols mark the two expressions that have been sparked for parallel
execution. The frst and send primitives are inserted by the compiler to
extract the L and R lists from the data structure (i.e. tuple) that will be returned
by the split function. Note that the 'split [4, 3, 2, 1]' redex is shared
by the two parallel tasks. Therefore special measures must be taken since
otherwise the redex will be reduced twice, or worse, a task can read the
partially updated root node of the redex and chaos results.

The presence of shared redexes in the global program graph requires spe
cial access protocols both on shared-memory and distributed-memory parallel
machines, while the implementations on distributed memory machines are also
faced with the problem of supporting a logically global address space.

Shared memory

The class of physically shared-memory parallel machines fits the spark-and
wait parallel graph reduction model very well: only the access of shared
redexes has to be regulated. The usual solution is to slightly modify the
sequential graph reducer. Each application node is extended with a lock (bit),
which has to be acquired by a graph reducer before the fields of the node may
be accessed. This solves the consistency problem. To avoid the duplication
of work, each graph reducer marks the spine of application nodes it visits as
"under reduction". Whenever a graph reducer requires the value of such a
node, it blocks itself by linking its descriptor on a waiting list associated with
that node. The update of a redex becomes slightly more complicated since the
reducer has to check the waiting list and wakeup all suspended reducers so
they can resume their computations.

The graph reducer encounters the overhead of setting and releasing a lock
for every application node it processes, even though in practice only a small

46 Chapter 3. Parallel implementations of lazy functional languages

number of application nodes is shared. Measurements in [Hartel88b] report
that typically 3-14% of the application nodes are shared in a Turner-combinator
implementation [Tumer79a]. It is possible to avoid some of the overhead by
using a new kind of application node to denote non-shared application nodes
that need not to be updated, hence, that need not to be locked. The classification
of application nodes can either be done statically at compile time through
update/sharing analysis [Peyton Jones92] or dynamically at run time by (one
bit) reference counting [Stoye84]. It is not clear, however, how successful
these techniques are, and in particular whether the performance gain of the
reduced locking and updating outweighs the overhead of reference counting.

Distributed memory

An important design issue is how to map the shared-data view of the spark
and-wait graph reduction model onto the message-passing based distributed
memory machines. Two basic approaches can be taken: 1) a transparent layer
of software on top of the bare hardware provides the graph reducers a single
uniform addressable (virtual) address space, 2) the graph reducer is modified
to explicitly deal with "remote pointers", which have to be dereferenced by
sending a message to the processor that holds the data.

Global virtual address space As discussed in Chapter 1, Shared Virtual
Memory [Li89] has been developed to provide the user with a single global
address space on distributed systems. It uses virtual memory techniques to
intercept references to remote data and fault in the data by sending a message to
the owning processor. Since the handling of inter processor communication is
performed transparently by the operating system, the user program is presented
the impression of operating on a shared memory machine.

Shared Virtual Memory has not been used directly as an implementation
platform for functional languages because the granularity of a page is far too
large: graph reducers operate on nodes that occupy a few bytes, not 4Kbyte,
so pages bounce back and forth between processors when graph reducers
repeatedly update different nodes that reside on the same page. This behaviour
is known as false sharing. The distributed functional language implementations
that do support a global virtual address space, like the Flagship machine
[Watson88] and PACE [Waite91], operate on graph nodes instead of pages.
These designs contain special hardware to map globally addressed nodes onto
locally cached copies.

3.1. Parallel graph reduction 47

To avoid the duplication of work, shared redexes must reside only at one
processor; shared redexes may not be copied on external requests, but have to
be reduced first, or moved to the requesting processor instead. Furthermore,
application nodes have to be locked and marked "under reduction" as in the
case of true shared memory implementations.

Remote pointers Most distributed functional language implementations in
corporate some kind of "remote pointer" to refer to data that resides on a
remote machine. The graph reducer has to be able to recognise these remote
pointers,. and whenever it needs the value associated with a remote pointer it
sends a message to the owning machine. When the reply comes back, the graph
reducer creates a local copy of the value, and continues ordinary execution. To
hide the communication delay, the graph reducer does not wait for the reply,
but immediately continues with the evaluation of another task.

The servicing of external requests for local graph nodes is not trivial. Basic
data values like integers and floating point numbers can be returned as is, but
data constructors have to be checked for local pointers. These local pointers
have to be converted to "remote pointers". The request for a redex is even
more complex since sending a copy back results in the duplication of work.
Therefore, the redex is reduced to head normal form first, before the computed
value is sent back to the requester. To guarantee consistency between graph
reduction and message handling, either all redexes should be protected by
locks, or the runtime support system can translate requests into high priority
tasks that are enqueued for ordinary processing. In the latter case, only the
access of the task pool has to be controlled by locks since effectively tasks are
never de-scheduled partly during a graph update. Still all application nodes
must be marked "under reduction" to avoid the duplication of work since an
active task can trigger the evaluation of an application node that already was
being reduced by a suspended task on the same processor.

The scheme above guarantees the sharing of computations, but the resulting
data may be freely copied throughout the whole machine. In particular several
copies of the same data can reside at one machine as caused by multiple
dereferences of the same remote pointer: each request results in a new local
copy of the remote data. This situation arises, for example, when processing
a list of queries on a remote database where the root of the database is copied
for each query. Precious bandwidth and memory are wasted. The solution
is to use one level of indirection: upon receipt a remote pointer is stored in
a local indirection node, whose address is passed to the graph reducer. This

48 Chapter 3. Parallel implementations of lazy functional languages

local pointer may be duplicated at will since when the graph reducer fetches
the remote value, it overwrites the indirection node, and all references then
share the same copy.

Communication between tasks is a weak point because data is transported
a graph node at the time. Firstly, it is more efficient to send large messages that
contain several graph nodes since the software overhead and communication
delay are incurred only once, and less bandwidth is consumed. Secondly,
sharing inside complex structured data is lost; for example, when fetching a
remote cycle the local copy unfolds into an infinite list since each request returns
a copy that refers to the original remote cycle. A potential improvement is to
answer external request messages by transporting the complete graph rooted
at the requested node. Wrapping up the graph into one message, however,
is quite complicated as sharing should be maintained. Redexes must not be
copied, but should be left at the owning processor. It is not clear whether this
overhead can be tolerated, especially since the lazy evaluation mechanism is
unlikely to force the evaluation oflarge data structures at once, so probably only
small graphs are available for transport anyway. The PABC machine design
[van Groningen92] incorporates such a copy policy, but no measurements are
available yet.

To avoid the communication problems caused by shared redexes, the
APERM machine [Vree89] normalises shared data before sparking tasks. In
return for sacrificing some laziness, APERM can safely copy a complete sub
graph of a task to a remote processor since it does not contain any (shared)
redexes. Thus all 'remote' data is transported in one message, instead of a node
at the time. This copy approach reduces communication overhead, and allows
for local garbage collection since inter-processor graph references do not exist.
To enhance performance it is proposed to construct a graph transporter unit in
hardware that wraps a graph into a single message and sends it to a remote
node; it is conceivable that with minor extensions this unit can be used for
local garbage collection (copying) as well.

3.1.3 Storage management

Closely related with the global address-space support is the storage man
agement system, which allocates storage for graph reducers in the parallel
machine. A graph reducer uses two kinds of dynamic storage: one or more
stacks and a single shared heap. The heap is used to allocate graph nodes
and is shared between all graph reducers, while each stack is accessed by one

3.1. Parallel graph reduction 49

graph reducer only. The storage management system partitions the available
physical memory into heap and stack space, and controls the allocation and
deallocation of storage in both spaces.

Stack management

The graph reducer uses at least one stack to hold the arguments of nested
function calls, but often multiple stacks are used to ease garbage collection by
separating heap pointers from other stack items like return addresses and basic
data values (integers, floating point numbers, etc.). The depth of the stacks
varies considerably during reduction, while the maximum depth is generally
unknown at compile time. Since the number of sparked tasks is also unknown
beforehand, the storage management system has to accommodate an arbitrary
number of stacks, whose size changes dynamically.

A straightforward solution is to equip each task with small stacks initially,
and enlarge a stack each time it overflows. This approach has been taken, for
example, in the PABC machine, where stacks are allocated as ordinary heap
objects. On stack overflow, a new larger stack is allocated in the heap, the
contents of the old stack is copied to the fresh one, stack pointers are adjusted,
and reduction continues. The old stack space is reclaimed automatically by
the garbage collector, but in return the (live) stacks have to be copied on each
compaction of the heap. The amount of space added on each stack reallocation,
controls the balance between the number of reallocations and the amount of
wasted memory. As reported in (Kesseler91], an increase of just 10% "seems
to work quite well" (on one Transputer).

An alternative solution found in many parallel graph reduction machines
is to replace the monolithic stack by a linked list of stack frames, which are
allocated in the heap. The size of each stackframe can be determined statically
at compile time as described in (Lester89b], so stack overflow inside a frame
never occurs, hence, costly reallocations are not needed. Like with the previous
approach, deallocated stack frames are automatically reclaimed by the garbage
collector, which is more expensive than re-using space on a conventional stack.
Another disadvantage is that the locality in references to heap allocated stack
frames is less than with a conventional stack outside the heap, which gives a
performance penalty in parallel systems equipped with caches and on systems
with fast local memory like the Transputer. Unfortunately, no measurements
are available to quantify the exact costs of allocating stack frames in the heap.

50 Chapter 3. Parallel implementations of lazy functional languages

Heap management

The distributed management of the global heap is difficult since graph reduc
ers consume large quantities of heap space to allocate graph nodes with a
short average life-time, so a garbage collector has to be invoked to reclaim
the storage that is no longer referenced by the program graph. Research in
garbage collection has a long history, and many different algorithms have been
designed [Cohen81]. Three important classes of garbage collection algorithms
can be distinguished: reference counting, mark&scan, and copying collectors.
The copying collectors are most suitable for modem style graph reducers since
these algorithms facilitate the fast allocation of variable sized, but small, nodes
by compacting the live data into one consecutive block; a node allocation just
amounts to advancing the free space pointer by the size of the node. Another
advantage of the copying collectors is that they only traverse live data, which
usually accounts for just a small fraction of the total heap space. In addition,
copying collectors smoothly handle cycles in the program graph in contrast
to reference counting collectors. Cycles can be banned from the graph, but
at the expense of efficiency (unrolling) and expressive power (no cyclic data
structures): for example, the elegant circular programming style [Bird84]
can not be supported. Efficient copying garbage collection algorithms for
parallel graph reduction machines are quite different for shared-memory and
distributed-memory implementations.

Shared memory Since shared memory multiprocessors consist of a rela
tively small number of processors in general, it is viable to synchronise all
processors when a garbage collection is needed. Once the processors have
stopped, an ordinary sequential copying collector can reclaim all garbage
[Augustsson89b], but with a minor adaptation all processors can participate:
before inspecting a (live) node, the node has to be locked to properly han
dle sharing. This straightforward method is, for example, used in Multilisp
[Halstead Jr84] and GAML [Maranget91].

Instead of having all processors collect garbage in parallel, it is also possible
to arrange for one copying collector to work in parallel with multiple graph
reducers (mutators). The method of concurrent garbage collection as described
in [Appel88] uses virtual memory hardware to synchronise the collector and the
mutators. When the mutators run out of free space, they copy their root nodes
to to-space. Then the collector marks all pages in to-space as inaccessible to
the mutators, and starts to scan the nodes in to-space to find references to live

3.1. Parallel graph reduction 51

nodes in from-space. Whenever the collector has scanned a page in to-space,
it marks the page as accessible to the mutators. When the collector starts
scanning, the mutators immediately continue with ordinary graph reduction.
If a mutator tries to reference an object that resides on a not-yet-processed page,
the hardware generates an access-violation trap. This triggers the collector to
handle that page immediately, after which the mutator resumes execution.

Distributed memory The inherent global nature of copying garbage collec
tors makes them unsuitable for distributed systems for two reasons:

1. All processors have to synchronise before garbage collection can start
since nodes will be moved during the compaction phase; global synchro
nisation is expensive on large machines.

2. A message has to be sent for each remote pointer to learn the new location
of that object; this results in a burst of data transport, which severely
stresses the communication network.

Therefore the early distributed functional language implementations/designs
have resorted to reference counting algorithms.

Distributed reference-counting garbage collectors show good locality since
the bulk of increment and decrement operations are performed on graph nodes
that reside in the processor's local memory. Only the copying and deletion of
remote pointers require inter-processor communication. A serious constraint
for large distributed systems is that the communication network must preserve
the message ordering since the interchange of an increment and decrement
message can lead to the incorrect reclamation of a graph node. The weighted
reference counting technique [Bevan87, Watson87a] tackles this problem, and
decreases the number of messages as well, by maintaining a weight with each
pointer. The summed weights of all pointers to an object equals the reference
count in that object, always. When a pointer is duplicated, the original weight
is split between the two resulting pointers without the need to increment the
reference count, hence, no message has to be sent. When a pointer is discarded,
the reference count has to be decremented by the weight, and a message has
to be sent in case of a remote pointer. Since weighted reference counting only
uses decrement messages, the communication network may deliver messages
in any order.

Unfortunately, reference counting has several disadvantages: 1) recla
mation of cyclic structures is cumbersome [Brownbridge85, Hughes83]; 2)
variable sized nodes are poorly supported; 3) the performance is less than
that of copying collectors [Hartel90]. To overcome these problems, Lester

52 Chapter 3. Parallel implementations of lazy functional languages

[Lester89a], has devised a composite approach: local garbage is reclaimed
through copying, while weighted reference counting is used to handle global
garbage. When a processor runs out of free space, it starts a copying collector
to reclaim the garbage nodes in its local heap. Two indirection tables are
used to handle remote pointers. The input-indirection table contains a (local
address,reference count) tuple for each node that is accessible from another
processor. The collector processes all entries with a non-zero reference count,
and updates the local addresses when compacting live data in the heap. The
input table is an array located at a fixed address, so the compaction is trans
parent to the external references on remote processors. The output-indirection
table contains an entry for each remote pointer to a node that resides on another
processor: a global address and a weight. The output table is implemented
as a linked list. This list is traversed after each compaction to find remote
pointers that are no longer in use, and decrement messages are sent to the
owning processors.

Lester's composite algorithm elegantly integrates the locality of weighted
reference counting with the efficiency of copying collection, but it can not
handle cycles that span multiple processors. Rudalics [Rudalics86] presents a
similar composite approach, but it uses a copying algorithm at the global level
instead. This algorithm deals with global cycles at the expense of complex
global processor synchronisation.

3.1.4 Task scheduling

The second important task of the runtime support system, besides memory
management, is the distribution of work in the parallel machine. Each sparked
task has to be scheduled for execution on a specific processor, or conversely,
each processor has to be assigned a task when it becomes idle. For statically
structured applications, scheduling decisions can be determined at compile
time, but usually tasks are scheduled dynamically by the runtime support
system. The dynamic scheduling of tasks on a parallel machine, also known
as load-balancing, is a general problem that has received wide attention.

From a theoretical point of view, and if communication delays are ne
glected, any list scheduling policy will do since the resulting parallel execution
time never exceeds twice the optimal execution time [Graham69]. (A list
scheduling policy, or work-conserving scheduling discipline, is one that never
leaves a processor idle when there is a runnable task available somewhere.)
Furthermore, for applications with a high average level of parallelism, these

3.1. Parallel graph reduction 53

scheduling policies achieve good processor utilisation as well; in [Eager89]
it is shown that under any work-conserving scheduling discipline the proces
sor utilisation is at least A/(n + A - 1), where n denotes the number of
processors and A denotes the average parallelism of the application (i.e. the
speed-up factor on a machine with an unbounded number of processors and no
communication delay).

Despite their nice theoretical properties, in practice list scheduling policies
do not qualify for controlling large parallel machines for two reasons. First,
a list scheduler needs global knowledge to maintain the invariant that no
processor may be idle if there is a runnable task available somewhere. Hence,
the creation and termination of each task has to be announced globally, which
leads to network congestion in distributed systems, and to memory contention
in shared memory systems. Secondly, only large tasks should be selected
for remote evaluation in order to overcome data transportation costs; it is
better to let a processor run idle than to allocate a task whose computational
requirements do not outweigh the communication costs. Both for shared
memory and distributed-memory implementations it is important to employ
a scheduling policy that achieves good spatial locality in combination with a
high degree of processor utilisation.

Shared memory

In small shared memory systems, schedulers that operate on a single shared
task pool are conceivable, but such a simple solution will not scale when
adding more processors. For example, in the Buckwheat implementation
[Goldberg88b] measurements showed that the access contention for the global
pool slightly degraded absolute performance when going from 7 to 8 processors
running in parallel. Buckwheat successfully employed a two-level queue
structure to reduce contention; clusters of processors share a primary queue
that overflows into the secondary queue, which is accessible to all processors in
the multiprocessor. This arrangement also enhances locality since processors
first access the primary queue before resorting to the secondary queue, hence,
most tasks are allocated inside a cluster. This is important for large shared
memory multiprocessors that have non-uniform memory access times. For
example, in a bus based multiprocessor whose processors are equipped with
caches, it is advantageous to execute a child task on the same processor as its
parent since part of the data already resides in the local cache, hence, cache
misses are avoided in comparison to remote execution.

54 Chapter 3. Parallel implementations of lazy functional languages

Preemptive scheduling of tasks, which bounds worst-case behaviour, is
not employed in parallel graph reduction implementations on shared memory
machines, although occasionally tasks have to be stopped in a consistent state
to participate in a global garbage collect. Task migration, on the other hand, is
used by most implementations; when a blocked task becomes runnable after
the requested value has been evaluated, it can be resumed at any processor
since its state (i.e. the stack) resides in shared memory, but for performance
it is better to resume execution at the original processor since (part of) the
context of the task still resides in the cache.

Distributed memory

In large distributed systems it is not possible to use a central scheduler that
controls all task allocations since it would become a bottleneck. Therefore
scheduling decisions have to b~ taken locally based on incomplete information
of the global system state. One solution is to use programmer annotations to
control the task placement decisions [Hudak86]. Most distributed functional
language implementations, however, provide automatic scheduling.

A popular distributed scheduling algorithm is called diffusion scheduling
[Goldberg88a]. Each processor maintains an estimate of its own workload and
communicates this to its direct neighbours on regular intervals. If the processor
detects that its own load is significantly higher than of some neighbour, it off
loads some local tasks to that neighbour to balance the system load. As
a consequence, work 'diffuses' across the parallel machine from busy parts
towards lightly loaded parts. Satisfactory results are obtained for moderately
sized machines, even though the workload estimate is usually based on the
number of runnable tasks, not the actual computational demands.

A strong disadvantage of diffusion scheduling for large scale systems is
that work spreads slowly across the machine: one hop at the time. Especially
at the initial stage, when most processors are idle, it is important to allocate
(large) tasks far away from their origin. That, however, requires global knowl
edge about the system state, which can not be maintained accurately at all
processors. Hierarchical schedulers combine complete local information with
general global knowledge by placing a tree shaped control structure on the ma
chine: Processors are grouped into clusters, clusters are grouped into domains,
etc. Each scheduler in the hierarchy maintains some global information about
its sub-domains, and is authorised to move tasks between sub-domains. In the
Hyper Machine, tasks are scheduled at different levels according to their work

3.1. Parallel graph reduction 55

estimates as provided by programmer annotations [Hofman92a]; this assures
that only large tasks, which generate lots of work, incur high transportation
costs.

Like in shared-memory implementations, distributed schedulers do not
preempt tasks once they have started execution to avoid consistency problems
in the heap. Task migration is also not supported since wrapping up the task
state is complicated, and migration is only beneficial if no freshly sparked
tasks are available. The latter situation can be circumvented by generating a
lot more tasks than the number of processors in the parallel machine. Sparking
tasks is not for free, so it might be better to keep machines idle for a short time
instead of generating too many tasks.

3.1.5 Controlling parallelism

Although generating many tasks eases the load-balancing of the parallel ma
chine and leads to high processor utilisation, it is not for free. There is always
some overhead associated with the sparking of a task, so tasks must have
some controlled minimal size that outweighs the overhead. Furthermore, the
number of tasks should be controlled too because uncontrolled breeding of
tasks exhausts the machine resources: task pools overflow, heaps fill up, etc.
Ideally, an application unfolds into one large task per processor, which can be
evaluated independently in local memory, before the results are combined into
the final solution. In practice, of course, this ideal is rarely accomplished, but
effective strategies have been devised to control the grainsize and the number
of tasks in parallel graph reduction systems.

Grain size

The minimal amount of work of individual tasks has to exceed a given value
to overcome the overhead costs associated with sparking:

• The expression has to be constructed as a graph, which is more expensive
than call-by-value evaluation.

• The task descriptor has to be placed in a task pool so it can be scheduled
for execution.

• The task has to be transported in case of remote execution.
• A new graph reducer has to be started, i.e. a context switch occurs, when

the task is scheduled for execution.
• The list of waiting reducers has to be signaled to resume execution when

the task has been evaluated.

56 Chapter 3. Parallel implementations of lazy functional languages

Efforts have been undertaken to have the compiler determine automatically
through complexity analysis whether a task is big enough to justify the spark. Of
course, heuristics have to be used since the problem is undecidable in general,
for example, expressions can depend on input data. Goldberg [Goldberg88c]
handles recursive function calls and the invocation of higher order functions by
assigning an infinite cost to them. Unfortunately, this approximation assigns
an infinite cost to most tasks encountered, so few sparks are avoided in practice.
Compile-time complexity analysis seems incapable of generating coarse-grain
tasks; it can merely enlarge the small grain size of automatically derived
parallelism with a small amount.

Like with generating parallelism, the programmer has to do the job. Insight
in the algorithmic complexity of the application allows the programmer to place
spark annotations at large expressions only. For example, in the merge-sort
program the list is recursively divided into two halves until the empty list
results; each division creates two more parallel tasks. The sparking of these
tasks is denoted with the ' { ! } '-annotation in the code below. It is rather
straightforward to stop sparking tasks when the length of the list falls below
some threshold:

sort[]
sort [x]
sort list

[]
[X]

= if (#list> 37)
merge {!}(sort L) {!}(sort R)

else
merge (sort L) (sort R)

where
(L,R) = split list

Some fine tuning based on performance measurements is needed to determine
a suitable cut-off threshold. To avoid the overhead of repeatedly computing the
complexity measure at each recursive invocation, two versions of the function
are used: a parallel version that sparks tasks for complex calls, and jumps to
the efficient sequential version without sparks/tests otherwise. A disadvantage
of this optimisation is that once a task switches to sequential code it will never
spark a task again, even when the load drops to zero in the future.

Number of tasks

To avoid exhaustion of machine resources, the number of tasks has to be
controlled as well as the grain size. The cut-off strategy of the previous

3.1. Parallel graph reduction 57

section can be refined to take the machine load into account to stop sparking
when enough parallel tasks have been created. In Qlisp, for example, the
programmer is provided with a set of primitives that return system parameters
like the number of processors, and the queue depth (i.e. the number of runnable
tasks on a processor) [Pehousek89]. A more sophisticated solution is to have
the runtime support system decide whether or not to spark a task based on
the programmer's complexity information that indicates the amount of work
involved in evaluating that task. In case of merge sort the time needed to sort a
list is in the order of nlogn operations, where n is the length of the list. Hence,
we can use the length of the list as a rough indication of the grainsize of a task:

sort[]
sort [x]

[]
= [x]

sort list= merge {!sz}(sort L) {!sz}(sort R)
where

(L,R) = split list
sz = #L

The { ! sz} annotation provides the complexity measure to the runtime support
system, which can combine this information with system parameters like the
processor load to control dynamically the number of tasks by inhibiting sparks.
The HyperM scheduler [Hofman92a] uses programmer complexity annotations
to assist allocation decisions.

The GRIP machine [Peyton Jones89] takes a radically different approach
to avoid flooding the system with tasks: it discards tasks when the task pool
fills up. To guarantee that the work of the discarded tasks will eventually
be done, the GRIP machine uses the evaluate-and-die model of parent-child
synchronisation that differs slightly from the spark-and-wait model discussed
in section 3.1.1: When a parent needs the value of a child task that has not
started evaluation yet, it does not block itself as usual, but rather evaluates the
expression itself. The child task becomes an orphan and can be discarded.
As a consequence, tasks may be deleted from the spark pool without further
notification since the parent task will always try to evaluate the associated
expression itself later on. Likewise, access of the global task pool is not
protected by a lock since loosing and/or duplicating a few tasks does no harm
as can be seen from the preliminary performance measures in [Hammond91].

If the runtime support system has no means to control the sparking of
tasks, as is the case in many parallel functional language implementations, the
dynamic number of tasks in the machine can still be regulated by a scheduling

58 Chapter 3. Parallel implementations of lazy functional languages

heuristic. We discuss a heuristic that works particularly well for divide-and
conquer applications.

Figure 3.1: divide-and-conquer task structure.

Divide-and-conquer applications unfold into a tree shaped task control
structure with worker tasks at the leafs. If the task selected for execution is the
most recently sparked task, then the tree is explored in a depth-first strategy;
conversely, if the least recently task is scheduled, the tree is traversed breadth
first. The depth-first exploration (LIFO) requires the least amount of resources
since it minimises the number of waiting control tasks, while the breadth-first
strategy (FIFO) maximises parallelism. The Manchester dataflow machine
used this observation to throttle the parallelism by dynamically switching
between breadth-first and depth-first schedulers for low and high work loads,
respectively [Ruggiero87].

Many parallel graph reduction machines have incorporated the throttling
idea. A straightforward implementation on shared memory systems uses a
linked list for the task pool with a scheduler that employs a LIFO access policy.
This simple strategy minimises resource usage since it traverses the task tree in
a global depth-first like order, but it does not take any locality considerations
into account and produces schedules with many synchronisation points. A
global LIFO scheduling on a four node machine of the divide-and-conquer
application in Figure 3.1 is shown in Figure 3.2 where the nodes are labeled
with the processor number. Note that all 15 parents have a remote child.

Figure 3.2: Processor assignment by global LIFO scheduler on a four node
machine.

3.2. Survey 59

An improved method, which can also be used in distributed implementa
tions, maintains a local task pool at each processor. Processors schedule their
tasks in a LIFO order, but when running idle a processor steals a task from
another processor's task pool in FIFO order. This strategy enhances efficiency
since, after a short initialisation phase, processors evaluate different sub trees
in depth first order, and minimal communication and synchronisation between
processors is needed because only large tasks will be stolen, see Figure 3.3
where only three tasks are exported.

4

Figure 3.3: Processor assignment by local-LIFO/steal-FIFO scheduler on a
four node machine.

The "Lazy Task Creation" method [Mohr91] even takes this idea further
and avoids some of the sparking overhead. During ordinary execution, tasks
are not sparked, but evaluated eagerly instead (LIFO); each task invocation
leaves a frame on the call stack, where execution continues once the task has
been evaluated. When a processor becomes idle, it lazily creates some task by
stealing the oldest continuation frame (FIFO) from a busy processor, which
involves patching the original frame to store the computed value in a place
holder. The idle processor "continues" the original execution, and eventually
synchronises on the place holder when it needs the task value. Stealing a
continuation is more expensive than allocating a task, but these costs are only
incurred when work is actually requested, while tasks are created in large
numbers to avoid scheduling anomalies in advance. Preliminary performance
results for Mul-T implementations show that "lazy task creation" performs
better than ordinary spark-and-wait [Mohr91].

3.2 Survey

In this section we discuss a number of recent parallel graph reduction machines;
early parallel graph reduction machines have been described in [Treleaven82,
Kennaway83, Vegdahl84]. We review the most important design decisions
taken in each machine regarding the issues raised in the previous section:

60 Chapter 3. Parallel implementations of lazy functional languages

generating parallelism, global address-space support, storage management,
task scheduling, and controlling parallelism. The selected parallel machines
have been implemented on a wide range of hardware configurations. First,
three shared memory machines are presented: <v,G>, AMPGR, and GAML.
Then, four distributed machines are discussed: Flagship, PAM, HDG, and
PABC. The latter three are all Transputer based implementations. Finally, we
present two hybrid machines built out of shared memory clusters: GRIP and
HyperM. A comparison of these nine parallel machines is given in Section 3.3.

3.2.1 <v,G>

The <v,G>-machine [Augustsson89b] is a parallel graph reducer for shared
memory multiprocessors, and has been implemented on a 16-node Sequent
Symmetry. It is an extension of the sequential G-machine implementation for
Lazy ML [Augustsson84, Johnsson84], and supports the spark-and-wait model
of parallel graph reduction; the programmer has to insert spark annotations in
the LML source to denote opportunities for parallel execution.

The <v,G>-machine is based on one global address space as directly
supported in hardware by the Sequent, which does include caches but no local
memory per processor. The Sequent's ability to use any memory cell as a
lock has been exploited to enforce mutual exclusive access on vector apply
nodes, which are called FRAME nodes. These FRAME nodes are used in
the <v,G>-machine to implement the calling stack as a linked list of frames
in the heap instead of one monolithic stack as in the sequential G-machine.
Each FRAME holds a delayed computation: a function code pointer, the right
number of arguments, and some free space for temporary variables that are
needed when the function is invoked. The FRAME sizes can be computed at
compile time except when higher order functions are involved, in which case
FRAMEs need to be extended occasionally at run time through allocating a
new frame and overwriting the old one with an indirection node.

The original <v,G>-machine contains a straightforward heap management
policy. Each graph reducer allocates large chunks (i.e. pages) of memory until
heap space exhausts. Then a sequential garbage collector (GC) is invoked to
reclaim heap space, after which reduction continues. Even with this simplistic
scheme it is noted that "nevertheless GC seldom exceeds 30% of the total
time." Recently an enhanced version of the Appel-Ellis-Li concurrent collector
[Appel88] has been incorporated, which is capable of deleting speculative tasks
as well [Rojemo92].

3.2. Survey 61

Each processor maintains a local run queue of executable processes. If the
run queue is empty, a task is taken from the global task pool, and a process
is created for it. The global task pool is not guarded with a lock to reduce
overhead, so tasks may be lost occasionally. No work is lost since the evaluate
and-die model is employed; the parent task will check and evaluate the child
itself in case of a loss. As a consequence, on average 10% of a processor's
time is spent on task management overhead.

No provisions to control the grainsize or number of tasks are included
in the <v,G>-machine; the programmer is solely responsible for controlling
parallelism. The reported performance results for small annotated programs
like nfib and 8-queens show speed-up over the pure sequential G-machine
implementation: speedups range between 5 and 11 on the 16 processor Sequent
Symmetry. The level-off in the speedup curves is attributed to bus contention,
which might be caused by the poor locality of stacks allocated as linked lists
in the heap.

3.2.2 AMPGR

The Abstract Machine for Parallel Graph Reduction [George89] is another
shared memory implementation based on the sequential G-machine. A pro
totype implementation has been constructed for the BBN Butterfly multipro
cessor, which consists of a number (15) of processing elements (MC68020 +
4Mbyte memory) interconnected through a delta network. Each processor can
access transparently all memory in the whole machine, but local references are
at least five times faster than references to remote memory. Therefore locality
considerations have been taken into account in the AMPGR design.

The AMPGR machine, unlike the <v,G>-machine, is driven by compiler
derived parallelism based on strictness analysis. The compiler inserts explicit
spark instructions in the G-code whenever it can derive that a particular ex
pression is needed; corresponding wait instructions are generated prior to the
actual usage of the expression. To overcome the synchronisation overheads
associated with large numbers of fine-grain tasks, many sparks are evaluated
in-line without placing a description in the global task pool according to the
following observations:

1. No evaluation is required for an expression in head normal form; no task
is generated.

2. It is profitable to execute one child at home; the first spark inside a
function is always neglected, so the reducer will evaluate the expression

62 Chapter 3. Parallel implementations of lazy functional languages

itself after the other tasks have been sparked.
3. The total number of tasks should be limited; when the fixed sized task

pool overflows, tasks are evaluated immediately.
Once the machine has reached a stable state, i.e. the task pool is full, the
computation switches automatically to sequential execution; the only overhead
incurred is the checking of in-line conditions.

To avoid contention, a two-level scheduling strategy is employed with local
pools spilling over into a centralised pool. It has been found that the local pools
should be small, 2 to 4 tasks, to keep all processors busy. The heap allocation
is also distributed: a graph reducer first tries to allocate a chunk of heap space
in the local memory, before looking for available space on remote processing
elements. The AMPGR, however, does not include a garbage collector! For
efficiency, each processor has been allocated a single stack in local memory;
whenever a task has to be suspended, its context on the stack is saved in the
heap, so the stack can be used by another task.

A running implementation on the BBN Butterfly has been constructed
that shows good speed-ups, which is credited to the not so "blazingly fast"
sequential implementation.

3.2.3 GAML

The GAML machine [Maranget91] is the third shared memory implementa
tion that is based on the sequential G-machine. It is closely related to the
<v,G>-machine since it also relies on programmer annotated parallelism,
uses comparable compiler technology, employs the same scheduling strategy,
and runs on similar hardware as well: the Sequent Balance (8 processors).
Therefore we restrict ourselves to discussing the main differences between
GAML and its relative the <v,G>-machine.

To reduce the overhead associated with synchronising multiple reducers
in a shared address space, the GAML design includes a new node type to
denote possibly shared nodes. Only these nodes have to be locked and marked
"under reduction" by the graph reducer, while ordinary application nodes can
be accessed as efficient as in the sequential G-machine.

In contrast to the <v,G>-machine, GAML does not use a linked list of
call frames, but incrementally allocates large chunks of stack space. When the
stack shrinks the linked chunks are explicitly deallocated. To keep the number
of stacks manageable, the sequential G-machine stacks are merged into one,
hence, there is only one real stack per task.

3.2. Survey 63

The heap is managed through a parallel copying garbage collector. If a
processor runs out of heap space, it enters a wait loop until all processors have
stopped with graph reduction. Then the heap is compacted by all processors
in parallel. Graph nodes are locked to maintain sharing and to guarantee
correctness. Performance results measured on an eight processor system show
that the absolute number of garbage collects hardly increases in comparison to
sequential execution. The amount of time spent in garbage collection, however,
more than triples because of blocked tasks whose stacks have to be processed
as well.

The programmer does not have any direct control on the number of tasks,
but the compiler automatically inserts code to decide whether or not to spark
new tasks. The decision is based on a crude measure of the system load called
'ForkNow'. At present the runtime support system sets 'ForkNow' to true
when the task pool is emptied, and sets it to false when the task pool fills up.

The GAML implementation achieves relative speed-ups between 3.3 and
5.8 for small benchmark programs.

3.2.4 Flagship

The Flagship machine [Watson86, Watson87b, Watson88] builds on experience
gained with the Manchester Dataflow project [Gurd85] and the ALICE machine
[Darlington81]. Flagship's architecture, however, bears little resemblance to its
predecessors since it consists of closely coupled processor memory structures
connected through a delta network instead of a shared memory machine with
processors connected to memories through a multi-stage network. Although
the Flagship machine has a distributed architecture, it provides a single global
address space to the application program.

The Flagship machine supports fine-grain parallelism. The program is
represented as a collection of packets, which may be processed in parallel; a
packet is similar to a vector apply node and contains a function with some
arguments. Computation is controlled by a set of packet rewrite rules, which
are program derived combinators, translated to efficient imperative code. A
packet may be rewritten when all of its strict arguments reside in the local packet
store. Separate concurrent processes take care of fetching remote arguments
and creating local copies; special hardware is included that transparently maps
global addresses to locally cached copies for the packet rewrite unit. The
parallelism in fetching and rewriting of packets, ensures that communication
latency can be tolerated as long as the application contains enough parallelism

64 Chapter 3. Parallel implementations of lazy functional languages

to keep the processor busy meanwhile; note the resemblance with pipe-lined
processors where operands are fetched prior to the instruction execution.

The packet rewriting mechanism as described in [Watson87b] does not use
a call stack to evaluate subexpressions since that would give unacceptable high
context switch times. Instead the rewritable packet (i.e. redex) is written back
to the store as a suspended packet, and new packets are created to evaluate
the subexpressions. The storage management in the Flagship machine is thus
concerned only with the heap (packet store). Weighted reference counting
[Watson87a] is used as the primary means of garbage collection since it pro
vides good intra-processor locality of reference. Occasionally a distributed
mark-and-scan algorithm [Derbyshire90] is used to reclaim the cyclic graphs
that are left over by the reference counting collector.

To prevent the machine from being flooded with too many fine-grain tasks,
the Flagship design includes two task pools per processor: the active packet
queue and the holding stack. During ordinary execution rewritable packets
are placed in the active packet queue or sent to a remote processor, while the
holding stack is used when the machine gets flooded with packets.

The dynamic load balancing of the machine is supported by the delta com
munication network that propagates load information as well. When a packet
is sent into the network for remote execution, it will be routed automatically
to the least busy processor, after which the load information is adjusted. Al
though this approach with feedback balances the load evenly, it does not take
locality considerations into account, hence, often remote copying is needed
since packets are not routed to the processor which holds their strict argu
ments. Therefore each packet is sent with a preferred processor number, but
the system software overrules the preference when the load distribution gets
too uneven.

A multiprocessor emulator consisting of MC68020s interconnected via a
custom-designed switching network is under construction.

3.2.5 PAM

The Parallel Abstract Machine (PAM) [Loogen89] is the first of three dis
tributed functional language implementations for Transputer systems. The
local memory structure is reflected in the graph reducer, which distinguishes
two addressing modes: local and remote. The message handling to support
remote pointers is handled by a separate communication unit that operates
concurrently with the graph reducer. The communication unit is also respon-

3.2. Survey 65

sible for distributing tasks to other processors (load balancing). The reducer
and communication unit are implemented as separate Occam processes that
are scheduled automatically by the Transputer hardware. The PAM is driven
by annotated parallelism in the source program, and the graph reducer hands
freshly sparked tasks to the communication unit for scheduling.

The PAM uses the evaluation-transformer model of graph reduction for
efficiency, but not for automatic parallelisation: the programmer has to annotate
the program source. Each task node, which represents a complete function
application, includes additional space for a value and a pointer stack, so that
the call stack can be implemented as a linked list of activation records, and no
special stack management is needed. Pure weighted reference counting is used
to reclaim all garbage nodes in the (global) heap; special decrement messages
are transmitted to update reference counts on remote processors.

The PAM uses a simple diffusion scheduling strategy to distribute tasks
over the machine: whenever a processor is idle, it queries its direct neighbours
for work. Although tasks will never be executed more than one hop from their
originating processor, references to graph nodes can spread across the entire
machine. A static routing scheme is used to transfer messages that fetch remote
data. The programmer is solely responsible for controlling the grainsize and
number of tasks in the machine; no handles are provided by PAM.

The performance results reported in [Loogen89] are based on a prototype
implementation where PAM's abstract machine instructions are interpreted by
an Occam program. Since then an improved version of the compiler has been
constructed that generates Transputer assembly directly, but no results have
been published yet. Good speedups have been measured with the interpreter
based implementation, although some benchmark applications suffered from
superfluous communication overhead to fetch multiple copies of the same
remote graph node.

3.2.6 HDG

The Highly Distributed Graph-reduction (HOG) machine [Kingdon91] is an
other distributed functional language implementation for Transputer machines,
which is also based on the evaluation-transformers graph reduction model. Un
like the PAM, the HOG-machine is based on compiler-derived parallelism and
its prototype implementation is more sophisticated.

The graph reducer stack is implemented as a chain of activation frames; the
analysis technique of Lester [Lester89b] is used to compute the maximum size

66 Chapter 3. Parallel implementations of lazy functional languages

of each record in advance. Garbage nodes in the heap are reclaimed with the
composite weighted-reference-counting/copying collector [Lester89a], which
only uses reference counts for inter-processor references. To support this
garbage collector, the sequential graph reducer has been extended with two
special node types: output indirections that point to remote nodes and carry
a weight, and input indirections that hold the reference count of a local node.
An extra advantage of output indirections is that once an indirection has been
overwritten with the remote value, all local copies share that same value. This
saves bandwidth in comparison to systems like PAM that do not use output
indirections, and have to fetch multiple copies.

The task distribution is regulated by two task pools per processor: The
migratable pool holds freshly sparked tasks, while the active pool holds re
sumed tasks that have become executable again after waiting for the result of
another task. If the active pool is empty then a task from the migratable pool
is selected in LIFO-order for execution. If the migratable pool is empty too
then a direct neighbour is asked for work. Only tasks from the migratable pool
are exported (FIFO order) since their state consists of just one vector apply
node. This scheme amounts to diffusion scheduling where tasks may only
be executed one hop away from their originating processor. Apart from the
LIFO/FIFO selection of migratable tasks, no provisions are made to control
parallelism by the runtime support system, despite the programmer's lack of
control on the compiler-derived tasks.

A four-node Transputer implementation has been constructed and used
for small benchmark programs. The results show that the costs of fine-grain
parallelism are rather high: the purely sequential nfib program runs 1. 7 times
as fast as its parallel counterpart on one processor. The relative speedups are
surprisingly good: up to 3.6 on four processors. It remains to be seen whether
the fine-grained approach scales to "real" applications on large machines.

3.2.7 PABC

The Parallel ABC (PABC) machine [Nocker91b] is an abstract machine being
designed for parallel graph reduction on distributed memory systems. It builds
on the sequential ABC machine [Smetsers91], and is used as an intermediate
target machine for implementing Concurrent CLEAN [Nocker91a]. A proto
type implementation for a 64 node Transputer machine is under construction,
but not all issues discussed in Section 3.1 have been addressed yet. Therefore,
we limit the discussion to some distinguishing features of the PABC machine.

3.2. Survey 67

Like most parallel implementations, the spark-and-wait annotation has to
be used to denote parallel tasks in the PABC machine. In addition, the program
mer has to explicitly control task allocation as well by adding annotations to
the source program [Achten91]. The programmer specifies on which processor
a new task should run by means of a set of built-in predicates. For example,
tasks can be placed at a neighbour, a random processor, or the processor that
holds a specific graph node.

For efficiency the graph transport between processors is not on a per node
basis, but rather with a sub-graph at a time. Before transmission, the graph is
copied into a message buffer, so that it can be transported as a single packet.
Maintaining sharing in the transported graph complicates the copy algorithm
[van Groningen92].

The parallel graph reducer uses two stacks per task. These stacks are
allocated in a fixed-sized block growing in opposite directions. On overflow,
the stack pair is reallocated (i.e. copied) to a larger block; this apparent
inefficient solution has been proven satisfactory in a simulator. The heap will
probably be managed by composite reference-counting/local-copying garbage
collector as devised by Lester.

Preliminary performance results for a 16 Transputer implementation have
been published [Kesseler92].

3.2.8 GRIP

The GRIP (Graph Reduction In Parallel) machine is a purpose-built shared
memory multiprocessor for executing functional programs [Peyton Jones87a,
Peyton Jones89, Hammond91]. The hardware consists of up to 20 boards,
each holding four processors and one Intelligent Memory Unit (IMU), inter
connected by a single fast packet-switched bus (Futurebus). An IMU consists
of memory and a microprogrammable data engine that supports graph reduc
tion at a higher level than simple read and write instructions of conventional
memory. It performs allocation of variable-sized heap cells, garbage col
lection, locking of shared nodes, and task scheduling. The IMUs together
constitute a uniform accessible shared memory. Each processor (MC68020)
is also equipped with a floating point co-processor and a private local memory
(lMbyte) that has to be addressed separately and can not be accessed from
outside.

To take full advantage of GRIP's hardware architecture, the graph reducers
use part of the local memory attached to each processor as a cache for the

68 Chapter 3. Parallel implementations of lazy functional languages

global heap that resides in the IMUs. Whenever a global node is accessed,
a local copy is created first, and subsequently used. Copying redexes might
duplicate work, so the IMU sets a lock bit when a node is fetched for the first
time, and automatically attaches tasks to a waiting list on subsequent fetches.
When the node is updated, the waiting tasks are placed in the task pool, which
is managed by the IMU.

New nodes are allocated in the local memory, not in the IMU. Only when
a global node is updated with a local node, a copy of the entire local sub graph
is created in the global heap. This flushing mechanism prevents the creation
of global pointers to local nodes, so that the local garbage can be reclaimed
autonomously. When the local heap fills up, a part of the local graph nodes is
flushed to the global heap to create new free space. Global garbage is reclaimed
by the IMUs in parallel after the reducers have been suspended.

Stacks are allocated in the local heap as (large) fixed sized nodes; if a stack
overflows, a new stack segment is allocated and linked to the old one. When
the stack shrinks again the new stack segment is discarded, and execution
continuous with the old one. The stack of a blocked task is moved to global
memory when the processor runs out of local space.

Each processor maintains a local task pool to record expressions that might
be evaluated in parallel. When the system load is low enough, some tasks are
exported to an IMU while flushing the corresponding expressions to the global
heap as well. Based on the system load, which is sampled once per millisecond,
the IMUs employ a LIFO (high load) or FIFO (low load) scheduling policy.

To control the excessive generation of parallel tasks, two throttling mech
anisms are employed at runtime: 1) the spark rate controls the maximum
number of tasks a processor is allowed to create in one tick, 2) when the global
number of tasks exceeds the spark cutoff level, all processors refrain from
creating tasks. Preliminary performance results on an 18 processor prototype
show that a LIFO scheduling policy in combination with spark cutoff throttling
reaches acceptable performance on fine-grained applications: nfib loses only
a factor of two in comparison to perfect linear speedup.

3.2.9 HyperM

The HYbrid Parallel Experimental Reduction Machine (HyperM) is the suc
cessor to the distributed memory machine developed by the Dutch Parallel
Reduction Machine project [Hertzberger89, Barendregt87]. The HyperM ar
chitecture [Barendregt92] contains a number of clusters interconnected by a

3.2. Survey 69

high speed network, where each cluster consists of a few processors connected
to a shared memory. The shared memory clusters have been included to in
crease performance, while retaining the scalability of the original APERM
design. The parallel graph reduction inside the clusters is the research topic
of this thesis and is discussed fully in Chapter 4; this overview of the HyperM
machine includes only the main results.

Unlike the previous parallel machines, the HyperMachine is programmed
with a single divide-and-conquer skeleton named sandwich. Many applica
tions, however, can be expressed either directly or through transformation as
divide-and-conquer programs [Vree90]. To enforce the efficient execution of
coarse grain tasks, the sandwich skeleton eagerly reduces all shared data be
tween tasks to normal form before sparking them for parallel execution. This
effectively eliminates all problems related to shared redexes as they do not
exist. Therefore tasks can be copied safely to remote clusters without duplicat
ing work, and graph nodes in shared memory can always be accessed without
locking for exclusive access. A disadvantage of the sandwich is the eager
semantics that might lead to non-termination. At the moment the programmer
is responsible for assuring that only needed expressions will be evaluated in
parallel. This is usually no problem for plain divide-and-conquer algorithms,
otherwise the programmer can often transform the non-terminating application
into a terminating equivalent program by a set of rules described in Chapter 4.2.

The programmer is required to give a complexity-measure of each task
in the sandwich skeleton, for example, the length of the list in the merge
sort program. This grainsize information allows the runtime support system
to regulate the minimal grainsize according to the system load by inhibiting
sparks of tasks that are too small. In addition, work can be classified into
two categories: coarse grain tasks that may be allocated at any cluster, and
threads that are limited to one cluster and therefore can exploit shared memory.
The coarse grain tasks are scheduled on the parallel machine by a hierarchi
cal scheduler [Hofman92a] that uses the grainsize information to determine
heuristically how far away a task may be allocated. This has the advantage that
work spreads faster over the machine than with distributed scheduling policies
like diffusion scheduling, where tasks may only travel one hop.

The sandwich reduction strategy allows for efficient storage management
in the HyperMachine. Tasks are copied entirely to remote clusters and do not
contain remote pointers, hence, garbage can be collected locally in each cluster.
Each thread in a shared memory cluster is provided with a private heap, which
is managed by a two-space copying garbage collector independent of other

70 Chapter 3. Parallel implementations of lazy functional languages

threads [Langendoen92b]. This is possible because the sandwich limits inter
thread pointers to child-ancestor pointers; there are no external root pointers
into the private heap of a thread. The threads in HyperM time-share one
common to-space so only a small fraction of the heap is wasted, not half the
heap as in case of general parallel copying garbage collectors.

The tree structure of divide-and-conquer algorithms allows for all tasks on
one processor to share one single call stack by stacking their state on top of each
other. Only the task on top of the processor stack can execute, but simulation
studies have shown that this constraint hardly decreases performance in case
of a LIFO/FIFO scheduling policy [Hofman92b]. Thus HyperM's storage
manager allocates a: single large fixed-sized stack per processor on start up.

At this moment a single cluster consisting of four MC88000 RISC pro
cessors and 64Mbyte of shared memory is running, and real speedups over
a sequential version have been measured for small benchmark programs like
nfib and 8queens.

3.3 Comparison

The discussion of the nine parallel graph reduction machines has been sum
marised in Table 3.1. Most machines can be classified as either shared memory
or as distributed memory machines, except for GRIP and HyperM that combine
the two memory types. GRIP is constructed as a shared memory machine, but
each processor is equipped with private local memory as well. HyperM on the
other hand, is constructed as a distributed memory processor where each pro
cessing element consists of a cluster of CPUs connected to a shared memory.
The Flagship design is classified as a distributed-memory machine, although
it provides a uniform accessible address space through special hardware that
transparently maps global data to locally cached copies.

The three Transputer-based distributed-memory machines (PAM, HDG,
and PABC) provide a global address space in software through remote pointers,
which are interpreted specially by the graph reducers. The distributed memory
architecture of HyperM is not visible to the graph reducers since tasks are
copied as self contained sub-graphs to remote processors, hence, graph reducers
never need to fetch data outside their cluster; inside a cluster the shared memory
provides a single global address space. The GRIP-machine is the only shared
memory machine that has a non-uniform address space: the graph reducer
distinguishes pointers into its local memory, which can not be accessed by
other processors, from pointers into global shared memory. This complicates

3.3. Comparison 71

System architecture
hardware type address space

<v,G> Sequent Symmetry shared memory global
AMPGR BBN Butterfly shared memory global
GAML Sequent Balance shared memory global
Flagship Custom VLSI distributed memory global
PAM Transputers distributed memory remote pointers
HDG T800-25 Transputers distributed memory remote pointers
PABC T800-25 Transputers distributed memory remote pointers
GRIP MC68020s with IMUs shared (+ local) memory global (+ local)
HyperM MC88000(4x) clusters distr. (+ shared) memory global (copies)

Parallelism
source grainsize control # tasks control

<v,G> spark-and-wait cut off fixed sized pool
AMPGR compiler in-lining (by compiler) fixed sized pool
GAML spark-and-wait cut off (load info) fixed sized pool
Flagship compiler - -
PAM spark-and-wait cut off -
HDG compiler (eval. transf.) - -
PABC low level annotations cut off -

GRIP spark-and-wait cut off spark rate + cut off
HyperM divide&conquer skeleton cut off automatic cut off

Resource management
scheduling stack heap (garb.coll.)

<v,G> global LIFO linked frames concurrent copying
AMPGR two-level LIFO save/restore -
GAML global LIFO stack/task parallel copying
Flagship diffusion, LIFO/FIFO - Weight.RC+mark-scan
PAM diffusion linked frames Weight.RC
HDG diffusion, LIFO/FIFO linked frames copying + Weight.RC
PABC annotations stack/task + reallocation copying + Weight.RC
GRIP local + global LIFO linked segments copying (local+global)
HyperM hierarchical, LIFO/FIFO processor stack + ToS copying per task

Table 3.1: Comparison of parallel graph reduction machines.

72 Chapter 3. Parallel implementations of lazy functional languages

the graph reducer since it has to cope (flush) local nodes to global memory
when updating global nodes.

In general the problems associated with shared redexes are handled by
locking to enforce mutual exclusive access, and marking to avoid duplication
of work. The HyperMachine is an exception since it employs a reduction
strategy that eagerly normalises shared data before sparking tasks. Several
designs have taken measures to reduce the locking overheads:

GAML An additional node type has been introduced to denote (potentially)
shared application nodes; hence, ordinary application nodes do not need
to be locked.

GRIP Locking is performed transparently to the graph reducer by the Intelli
gent Memory Unit (IMU); hence, only global redexes are locked.

PAM External requests for local data are handled by placing descriptors in
the task pool. The single graph reduction unit processes one task at the
time, hence, no locking is required at all.

HDG Graph rewrites are made atomic by inhibiting interrupts in critical sec
tions.

The AMPGR, Flagship, and HDG machines are driven by compiler derived
parallelism, while the others require programmers to annotate expressions suit
able for parallel execution. In the latter case the programmer is also responsible
for keeping a minimal grainsize that outweighs the sparking overheads. The
AMPGR automatically increases the grainsize of the compiler-derived fine
grain tasks by in-lining the first spark inside every function. The Flagship and
HDG machines have no provisions to control the grainsize of their compiler
derived parallelism.

To control the number of tasks in the parallel machine, most schedulers
employ a LIFO/FIFO allocation policy that achieves good results for divide
and-conquer applications. In addition, the <11,G>, AMPGR, GAML, and
GRIP machines limit the number of tasks by discarding tasks in case of excess
parallelism. Tasks may be discarded safely since the parent task will eventually
reduce the discarded task itself (evaluate-and-die model).

Scheduling is of particular importance since it is the prime means to control
the resource demands and locality in (remote) references of the application.
The locality in particular has a large effect on performance, especially in
distributed memory machines where the number of messages to resolve inter
processor references should be kept low to avoid communication congestion.

3.3. Comparison 73

In some shared memory machines (i.e. AMPGR and GRIP) a two-level sched
uler is used to achieve locality: tasks are usually placed in a local task pool
associated with the sparking processor; when this pool fills up, tasks are spilled
over to a global task pool. Diffusion scheduling algorithms, which limit tasks
to travel only one hop from their originating processor, are employed by sev
eral distributed memory machines. To avoid the slow spreading of work under
diffusion scheduling, and enhance locality even further, the HyperMachine
uses a hierarchical scheduler; a user-annotated complexity measure indicates
at which scheduling level a task may be handled, i.e. how far away the task
may be allocated. The PABC machine takes the approach of having the user
control the task allocation through program annotations.

The complexity of supporting an arbitrary number of dynamically sized
stacks in a parallel graph reduction machine, has resulted in several designs that
use a linked list of call frames in the heap instead: <v,G>, PAM, and HDG. In
GRIP a linked list of segments is used; each segment holds a number of stack
frames. The PABC machine allocates fixed sized blocks as stack space, and
reallocates the stack to a larger block on overflow. Both AMPGR and HyperM
use a single stack per processor that is used by all graph reduction tasks
allocated to one processor. The AMPGR machine saves a task's state in the
heap when it blocks to await the result of another task, when execution resumes
the state is restored on the processor stack. HyperM does not save/restore state,
but leaves it on the· processor stack; the processor stack is used as a stack of
stacks, and the scheduler is constrained to schedule only the Top-of-Stack
(ToS) task for execution.

Copying garbage collectors are used in most machines because of their ef
ficiency and ability to allocate variable sized nodes. In (small) shared memory
machines it is possible to let all processors synchronise when running out of
free space, then either all processors participate in copying live data (GAML)
or one processor collects garbage while the others continue graph reduction
(<v,G>). To avoid global synchronisations and reduce inter processor traffic,
the early distributed memory machines (Flagship and PAM) use weighted refer
ence counting to reclaim garbage. Recent designs (HOG and PABC) combine
weighted reference counting to handle inter-processor references with copying
collectors to reclaim local garbage fast. The GRIP machine also uses two
garbage collectors: plain copying to reclaim garbage in each local memory,
and real-time compaction to reclaim garbage in the (global) IMUs. The Hy
perMachine assigns a private heap to each task, and reclaims garbage for each
task individually with a copying collector.

74 Chapter 3. Parallel implementations of lazy functional languages

3.3.1 Performance

Performance measurements are necessary to make a quantitative comparison
between the parallel graph reduction machines. Ideally a standard benchmark
of large 'real' parallel functional programs should be evaluated on each ma
chine, but no such benchmark exists (yet): we have to look at measurements
of small toy programs instead. Unfortunately, few results are actually reported
for each machine and, worse, different algorithms have been used to solve the
same problem. Only the notorious nf ib program, a one-liner to compute
the number of function calls per second, has been coded in similar style and
measured on most parallel reduction machines.

machine processor sequential parallel(l) parallel(#proc) speed-up
AMPGR 68020 16Mhz 1.3 Knfib/s 19 Knfib/s (15) -/ 15
Flagship I
PAM Transputer 20Mhz 1.3 Knfib/s 15 Knfib/s (12) -/12
<v,G> 80386 16Mhz 64 Knfib/s 43 Knfib/s 320 Knfib/s (15) 5/8
GRIP 68020 16Mhz 36 Knfib/s 36 Knfib/s 188 Knfib/s (6) 5.2 / 5.2
GAML NS 32032 19 Knfib/s 12 Knfib/s 69 Knfib/s (8) 3.6 / 5.8
HDG Transputer 25Mhz 27 Knfib/s 17 Knfib/s 59 Knfib/s (4) 2.2 / 3.5
PABC Transputer 25Mhz 207 Knfib/s 1795 Knfib/s (16) -/ 8.7
HyperM MC88000 25Mhz 1520 Knfib/s 1500 Knfib/s 6000 Knfib/s (4) 3.9 / 4.0

Table 3.2: Nfib ratings for various functional language implementations.

Table 3.2 lists the nfib ratings for the surveyed machines as published in
various articles. The column labeled 'sequential' presents the results for a
pure sequential graph reducer on one processor. The next column shows the
ratings for a parallel graph reducer that sparks tasks and incurs other overheads
like locking to support parallel execution. Comparing the two columns shows
that, except for GRIP and HyperM, parallelism does not come for free: more
than 30% overhead costs are incurred. The GRIP machine does not loose
performance since the locking actions are performed in parallel by the IMUs,
and the hand-annotated nfib program produces just 32 coarse grain tasks so
negligible task management overhead is incurred. The HyperM also uses
coarse grain tasks, which explains why it only incurs a 1 % loss due to task
creation overhead.

The column labeled 'parallel(#proc)' presents the maximum nfib rating
measured on the machine, the number of processors is included in parenthe
sis. Finally, the last column provides the real speed-up over the sequential
implementation, as well as the relative speed-up over a parallel run on a single

3.4. Conclusions 75

processor. Note that only the slowest sequential implementations reach per
fect linear speed-up, while others suffer from a loss in efficiency due to task
management overhead.

It is impossible to draw any sensible conclusion about important design
issues taken in each machine from the absolute nfib ratings of Table 3.2 since
the bare hardware performance differs greatly. The relative speed-ups provide
no fair comparison either since it is rather easy to speed-up slow sequential
implementations, but it is far more difficult to speed-up state-of-the-art graph
reduction.

3.4 Conclusions

The lack of a comprehensive benchmark of parallel functional programs and
corresponding performance measurements makes it impossible to draw con
clusions about the impact of important design decisions like memory allocation
policy, task scheduling, etc. Therefore, we conclude by signaling some trends
observed in the surveyed parallel machines (see Table 5.2).

Most machines are driven by explicit parallelism though annotations in
the program source; only the Flagship and HDG machine exploit implicit
parallelism detected by the compiler. The general spark-and-wait annotation is
always used in combination with explicit grain size control by the programmer.
This trend of having the programmer annotate parallelism and control grainsize
contrasts sharply with the initial interest in functional languages: early parallel
machines described in [Treleaven82, Kennaway83] all try to exploit the implicit
parallelism of functional programs without any user assistance.

The current set of parallel implementations of lazy functional languages,
however, do still require less user assistance than their imperative counterparts
since task scheduling and storage management are automatically handled by
the runtime support system. Each machine uses its own unique set of resource
management policies, but in case of heap management most designs include a
two-space copying garbage collector adapted for parallel processing.

To catch up on the performance of non-functional competitors like object
oriented based systems, many researchers follow the advice of [Vrancken90]
and concentrate on advancing sequential compilation technology. This trend is
likely to change future parallel implementations of functional languages since
fast implementations are rather sensible to runtime support overhead costs.

Chapter 4

WYBERT: graph reduction on
shared memory

Shared-memory multiprocessors are suitable targets for parallel functional
language implementations since these architectures support the parallel graph
reduction model in hardware. Multiple reducers can straightforwardly rewrite
redexes in the shared program graph, provided that application nodes are
equipped with locks to avoid two graph reducers rewriting the same redex. This
"natural" fit between parallel graph reduction and shared-memory multiproces
sors eases the parallel implementation of functional languages in comparison
to distributed-memory machines, see Chapter 3, but at the cost of scalability
since only a limited number of processors can execute in parallel in a shared
memory multiprocessor without saturating the bus to memory. To push the
point of saturation as far as possible, the WYBERT approach to parallel graph
reduction on shared memory multiprocessors employs the cache local to each
processor to its full extent. When the performance needs exceed the capacities
of one shared memory multiprocessor, several WYBERT machines can be
grouped together to constitute a HyperMachine as described in Section 1.4.

The usage of WYBERT as a building block for a scalable distributed mem
ory HyperMachine shows through in several aspects of the design such as the
generation of coarse-grain parallelism through explicit user annotations. Sec
tion 4.1 presents an overview of the basic decisions taken to achieve high per
formance on shared-memory multiprocessors, while the later sections contain
in-depth discussions of the most important design aspects of WYBERT: pro
cess synchronisation (Section 4.2), task scheduling (Section 4.3), and storage
management (Section 4.4). Implementation details and performance results of
the integrated WYBERT system will be presented in chapters 5 and 6.

78 Chapter 4. WYBERT: graph reduction on shared memory

4.1 Design considerations

The rapid improvements in sequential implementation techniques of func
tional programming languages, a hundredfold increase in execution speed in
five years, has prompted for a strict separation between graph reduction and
parallelism in WYBERT. This assures that new reduction mechanisms can be
incorporated for parallel execution in WYBERT with minimal implementation
effort. The software of WYBERT is constructed as a set of graph reducers
executing ordinary sequential code that occasionally calls the runtime support
system to handle parallel activities like task scheduling. Such a high-level
interface at the function call level implies some overhead, but the separa
tion of parallelism and graph reduction has already proven itself in practice:
WYBERT started out with an interpreter based on SKI-combinator reduction,
and ended up with a state-of-the-art compiler generating code that runs about
30 times as fast.

The WYBERT runtime support system (RTS) is designed for an abstract
multiprocessor constructed out of processors with local caches connected to
shared memory. Cache considerations are explicitly included in the design
of WYBERT because of their importance on the overall performance. For
example, for memory bounded applications like graph reduction, caches can
effectively reduce the number of requests issued on the global connection to
shared memory. Thus, the effective exploitation of caches makes it possible
to include more processing elements without saturating the shared memory
bottleneck in the multiprocessor.

The performance and portability considerations above, combined with
the "external" requirements from the HyperMachine have led to a design
that differs considerably from other parallel graph reduction implementations
for shared-memory machines as discussed in Chapter 3. The difference is
the choice to only support the high-level divide-and-conquer paradigm for
generating parallel tasks instead of the more general low-level spark-and-wait
model. This divide-and-conquer skeleton named sandwich has been taken
directly from the preceding APERM prototype machine. The corresponding
evaluation mechanism, however, has been refined for usage on shared-memory
machines as well, see Section 4.2. The advantage of supporting the divide
and-conquer skeleton is that the RTS can exploit the restricted parallelism to
efficiently manage the machine resources.

4.1. Design considerations 79

4.1.1 Divide-and-conquer parallelism

Functional programming languages provide abundant implicit parallelism, but
the fine-grain nature does not match with stock hardware. For example, to take
full advantage of the caches the grain size of a task should be large enough to
overcome the initial cold start misses that fetch the working set into the cache.
Since automatic grainsize enlargement is too difficult (see Section 3.1.5), the
user must explicitly annotate in the program source the expressions that are
worthwhile to be evaluated in parallel. To limit the amount of process synchro
nisation, as well as for the user's convenience, WYBERT does not support the
general low-level fork annotation (spark-and-wait parallelism), but is driven
by the sandwich skeleton based on the divide-and-conquer paradigm; typical
divide-and-conquer programs partition a given problem into parts that can be
solved independently of each other, hence, process synchronisation is only
required at the beginning/end of a part. The minimal process synchronisation
behaviour of coarse-grain divide-and-conquer applications allows for efficient
execution on both large distributed memory machines (APERM and HyperM)
and shared memory multiprocessors (WYBERT). The programmer is respon
sible for controlling the grainsize of individual tasks so that management
overhead can be tolerated.

A large class of applications can be programmed with straightforward
divide-and-conquer parallelism, while transformational methods have been
developed to cover synchronous process networks and pipeline parallelism
as well [Vree90, Langendoen91a]. Programs with irregular communication
patterns like 'the sieve of Eratosthenes', however, can not be handled with
the sandwich annotation. The following program shows how, for example,
the merge sort algorithm can be expressed as a parallel divide-and-conquer
algorithm:

psort [] []

psort [X] = [X]
psort list = sandwich merge (psort L) (psort R)

where
(L,R) = split list

When the function psort is applied to a list (list), that list is recursively
subdivided into ever smaller lists until the trivial case of the empty or singleton
list is met. At each invocation of psort the sandwich annotation creates
two new tasks to sort the left and right halves of the list, which are then
combined by the merge function into one result. The parallel sort program,

80 Chapter 4. WYBERT: graph reduction on shared memory

however, generates far too many tiny tasks to achieve acceptable performance
on a parallel machine. For efficient execution the parallel tasks should satisfy
the following constraints:

(a) The result of a task should be needed to compute the final program's
result. This condition rules out speculative parallelism, and assures that
no processing power is wasted in computing useless values.

(b) The cost to evaluate a task should outweigh the overheads of allocating
the task at a remote processor. This guarantees that parallel execution
on an idle processor is faster than sequential execution locally.

(c) The task has to be self contained, that is tasks may not share delayed
computations that still have to be evaluated (i.e. suspensions/closures).
This allows a task to execute independently without any synchronisation
with other active tasks.

The programmer can rather easily fulfill conditions (a) and (b), but it is con
siderably more difficult to meet condition (c) because of the lazy evaluation
mechanism that often creates a large number of shared suspended computa
tions. For example, the psort function can be improved to generate tasks
with a minimal grainsize by switching to the sequential msort code when the
length of the argument list falls below some threshold:

threshold= 481

psort [l []
psort [x] = [x]
psort list= msort list, if #list< threshold

sandwich merge (psort L) (psort R) , otherwise
where

(L,R) = split list

Note, however, that the parallel tasks are not independent since L and R share
the common computation 'split list'. It is possible to explicitly force
the normalisation of L and R by inserting Miranda's system function seq,
but this approach is tedious and error prone for large applications. Therefore
WYBERT includes a special reduction strategy for the sandwich annotation that
automatically normalises task arguments to create independent tasks according
to condition (c).

4.1. Design considerations 81

Since this book discusses the implementation issues we do not go into
greater detail of how to write parallel programs with the sandwich annota
tion; the reader is referred to the original work performed within the DPRM
project [Vree89], which has shown that the hard part is controlling the grain
size, not the insertion of the sandwich annotation.

4.1.2 The FRATS reduction strategy

As already pointed out in Chapter 3 parallel graph reduction is complicated
by the existence of shared redexes that have to be updated for efficiency. In
general the problem of keeping graph nodes consistent in shared memory is
solved by extending the individual nodes with a lock field to enforce mutual
exclusive access. In some cases it is possible to encode the lock in the node
tag without any space overhead, but the disadvantage of these implicit task
synchronisations is the negative impact on runtime performance. Besides the
overhead of acquiring and releasing locks, the traffic on the global bus increases
since each lock operation has to show through from the local cache to all other
caches to guarantee consistency. Measurements reported in Chapter 6 show
that applications waste up to 50% of their execution time in locking overheads.

Instead of curing the problem of shared redexes, the FRATS reduction
strategy avoids it altogether by adopting APERM's idea of eagerly normalising
shared data before sparking parallel tasks [Hartel88a, Vree89]: shared redexes
simply do not exist. The sandwich annotation provides an explicit handle to
the FRATS (First Reduce Arguments Then Share) reduction strategy to control
shared redexes. All potentially shared redexes are "squeezed" out of the tasks
by evaluating the function bodies and their corresponding arguments to normal
form, as will be explained in Section 4.2. Therefore tasks executing in parallel
can only share read-only data, hence, tasks may execute independently of each
other without locking of graph nodes or any other low-level synchronisations;
for distributed systems, tasks can be copied safely to remote processors without
duplicating work.

At runtime a divide-and-conquer application programmed with the sand
wich annotation (recursively) unfolds into a tree shaped task structure with
independently executing leaf tasks. Both the scheduler and storage manage
ment of WYBERT take advantage of this regular task structure.

82 Chapter 4. WYBERT: graph reduction on shared memory

4.1.3 Task scheduling

A straightforward scheduler of "sandwich" tasks on a shared memory multi
processor uses a global pool of executable tasks where processors store newly
created tasks and fetch work when running idle. This straightforward schedul
ing policy is known as list scheduling [Graham69]. However, to take advan
tage of the tree-shaped task structure of divide-and-conquer programs, and to
avoid the bottle-neck of the global task pool when scaling to large machines,
WYBERT uses the LIFO/FIFO scheduling variant of the Manchester throttle
mechanism (Section 3.1.5). Each processor maintains a local task pool, where
other processors may steal work when running idle. After a short initialisation
phase, each processor executes its part of the application's divide-and-conquer
tree in depth first order. As a result this scheduling policy exploits the caches
very well since the most recently created task is scheduled first, and that task
is most likely to find (part of) its data set in the cache.

The LIFO/FIFO scheduler has been adapted to support fast context switch
ing and efficient stack management. The depth-first traversal of the task tree
allows all tasks that execute on the same processor to share one reduction stack,
the processor stack, as a stack of stacks. At start up, a task sets its private stack
pointer to the current top of the processor stack. If the task executes a sandwich
and blocks to await the results of its children, the task leaves its local state on
the processor stack, and the next fresh task starts to allocate its stack on top of
the blocked task, etc. When a blocked task has received the results of all its
children, it becomes executable again, but that task may only resume execution
after all tasks on top of it have finished, otherwise it could overwrite the state
of other tasks.

The Top-of-Stack (ToS) scheduling constraint can lead to a loss of all
parallelism in rare cases. Results in Section 4.3, however, show that for a
benchmark of divide-and-conquer applications negligible processing power is
wasted by idling processors. The advantage of the ToS scheduler is the usage
of a single stack per processor, which is easy to manage in comparison to the
general problem of supporting a private stack per task whose maximum depth
is unknown in advance (see Section 3.1.3).

4.1.4 Local garbage collection

It is already difficult to implement garbage collection correctly for sequential
graph reduction, but it is even more difficult for a shared memory multipro
cessor that features one global address space and several parallel reducers.

4.1. Design considerations 83

Efficient stop-and-go garbage collection algorithms like mark&scan and two
space-copying traverse the complete graph to identify all live nodes. This
forces a total synchronisation of all graph reducers in the multiprocessor be
cause as soon as one graph reducer runs out of free space, all other graph
reducers have to be stopped before the (global) collector can safely reclaim the
garbage. The interrupted graph reducers have to leave the graph in a consistent
state for the garbage collector, which complicates the graph reducer design.
For these reasons distributed garbage collection per processor is preferred.

Although the FRATS reduction strategy guarantees read-only access of
shared live data, which facilitates local graph reduction, it does not pose any
restrictions on accessing garbage! In particular, FRATS does not prohibit that
two child tasks both delete a reference to the same shared node, which forces the
tasks to synchronise to determine the new status (live or garbage) of that node.
As a consequence reference counting algorithms disqualify as local garbage
collectors since they require a lock per node in the graph to enforce mutual
exclusive access. Local garbage collection based on stop-and-go algorithms,
however, is possible for the leaf tasks of the divide-and-conquer task tree.

Leaf tasks can refer to shared data that has been generated by some common
ancestor task, but this data will never be updated because it has already been
normalised. The lack of updates of shared nodes makes it impossible for
tasks to make references to freshly created "local" nodes of other active tasks,
hence, pointers between active tasks do not exist. This observation allows
for the efficient stop-and-go garbage collection of a leaf task without the need
to consult other tasks for incoming pointers. The storage management of
WYBERT incorporates local garbage collection as follows:

• At the start of its execution a task is provided with a private heap.

• During execution a task runs a two-space-copying collector (or any other
stop-and-go collector) on its private heap to reclaim garbage whenever
it runs out of free nodes.

• When a task executes a sandwich it is suspended and its heap may not
be garbage collected since (active) offspring can refer to nodes in it.

• At the end of its execution the task's heap is appended to the heap of its
parent.

The two-space-copying garbage collection algorithm [Cheney70] has the ad
vantage over the mark&scan algorithm that it can easily handle variable sized
nodes, which are commonly used in modern graph reducers.

84 Chapter 4. WYBERT: graph reduction on shared memory

Besides the advantage of avoiding complex synchronisations between all
processors during a global garbage collect, WYBERT's local garbage collec
tion method with private heaps does not need to reserve half of the available
memory for the to-space: all processors can time share one common to-space.
If the size of a task is bounded to M/p, which is reasonable if memory of
size M is to be equally partitioned among the parallel tasks executing on p
processors, then the overhead is reduced to a fraction M / (p + l). The restric
tion that just one processor can collect its garbage at any time does not limit
performance much since a single garbage collector already consumes a large
fraction of the memory bandwidth.

4.1.5 Evaluation method

The remaining sections of this chapter discus in detail the most important design
aspects of WYBERT: The FRATS reduction strategy [Langendoen91b], ToS
scheduling [Hofman92b], and local garbage collection [Langendoen92b]. The
feasibility of each aspect is assessed individually by simulating the behaviour of
a set of benchmark programs; performance results of the integrated WYBERT
system will be presented in Chapter 6. The set of benchmark programs used
in this chapter is listed in Table 4.1, but not all programs are used in every
simulation for historical reasons.

Programs are written in the lazy functional programming language Miranda
and annotated with the sandwich construct to explicitly denote divide-and
conquer parallelism. The number of lines of source code (without comments
and blank lines) is included in Table 4.1 to indicate which programs are "toys"
and which are "realistic".

To evaluate the WYBERT system we have built simulation tools and a
prototype implementation on real hardware (see Chapter 6). In this chapter the
following two simulators are used:

SIS The oldest simulator is based on an extended interpreter of the lazy func
tional language SASL [Turner79b], which is a predecessor of Miranda.
A program is compiled into a set of combinators that includes a special
sandwich combinator. The simulator starts interpreting the combinator
graph until it reaches a sandwich combinator. Then squeezes the task
arguments to normal form, simulates the parallel task execution by se
quential evaluation, and registers task specific properties like number of
reduction steps, size of task graph, etc. The resulting task description file
is used to compute the speed-up on an ideal parallel machine (unlimited

4.1. Design considerations 85

program #lines description
NFIB 11 The notorious program that counts the number of function

calls needed to compute the 35-th Fibonacci number.
COINS 16 A program that computes all ways in which 2.79 can be

paid with coins of value 2.50, 1.00, 0.25, 0.10, 0.05 and
0.01; a list of coins for each possibility is printed.

QUEENS 29 A divide and conquer solution to the 10-queens problem
[Langendoen91a].

MSORT 30 Mergesort on a list of 1024 elements (sin 1, ... , sin 1024).
osoRT 24 Quicksort on a list of 1024 elements (sin 1, ... , sin 1024).
DET 43 Computes the determinant of a matrix by straightforward

recursive decomposition; a (sub) matrix is represented as a
list of lists.

FFT 95 Fast Fourier Transform on a vector of 512 points
[Hartel92].

WANG 100 Wang's algorithm for solving a tri-diagonal system oflinear
equations. The matrix is divided into fixed blocks, the
algorithm consists of two parallel passes (elimination and
fill-in) on the blocks [Wang81].

15-PUZZLE 109 Abranch and bound program to solve the 15-puzzle. The it
erative deepening search strategy (IDA*) is used [Glas92].

SCHED 132 A program to find the optimal schedule of a set of tasks
on a number of processors. Implemented as a parallel tree
search algorithm [Vree89].

COMP-LAB 207 An image processing application that labels all four con-
nected pixels into objects with a unique label [Stout87,
Embrechts90].

WAVE 230 A mathematical model of the tides in the North Sea. Con-
sists of a sequence of iterations that updates matrix parts
in parallel [Vree89].

RANGE 368 A program to answer a set of queries on a database that
is divided in separate parts. Each lookup is performed in
parallel [Hartel89].

Table 4.1: The Divide & Conquer benchmark applications

86 Chapter 4. WYBERT: graph reduction on shared memory

amount of memory, no synchronisation costs, no bus contention, etc.).
This SIS (Sandwich In SASL) simulator has been used for evaluating
FRATS (Section 4.2) and ToS (Section 4.3).

MiG The second simulator is based on compiled code as generated by the
FAST/FCG compiler of Chapter 5. The compiler inserts monitoring
code that traces the memory references made by the application. The
address trace generation is executed under control of the stripped version
of the MiG simulator [Muller93], which is developed to study cache co
herency and bus saturation effects of parallel functional programs. The
multiprocessor simulator assigns fixed costs to executed instructions,
loads, and stores. Semaphore primitives are fully simulated to get realis
tic synchronisation behaviour. The runtime support system of WYBERT
is not part of the MiG simulator and is included as an ordinary part of
the application program. The RTS code, however, has been augmented
to collect statistics like memory usage of the benchmark programs.

The MiG simulator produces more accurate results than the SIS simulator since
it is based on a model of instructions instead of "reduction steps" and because it
takes contention on semaphores into account. Even though the MiG simulator
does not considers caching effects, it has been measured that the simulator
provides accurate execution times for the benchmark programs within a 15%
range of the actual measured times on a SUN 4/690.

4.2 FRATS: A parallel reduction strategy

The purpose of the FRATS reduction strategy is to remove the low-level de
pendencies between parallel tasks annotated by the sandwich construct, so
they can be computed independently. This is accomplished by normalising
the shared data before sparking the task for parallel execution. The runtime
behaviour of a parallel application under FRATS shows a tree of indepen
dent tasks that only synchronise at the beginning/end of their execution. This
sparse synchronisation structure allows for efficient implementation on shared
memory multiprocessors.

The FRATS reduction strategy is a refinement of the sandwich reduction
strategy for the APERM distributed memory machine [Hartel88a, Vree89]. An
arbitrary expression is sequentially reduced to normal form until an application
of the sandwich primitive is encountered.

4.2. FRATS: A parallel reduction strategy

sandwich G task1···taskn
where

taski = Fi ai1 · · · aim,
and

Fi and G are arbitrary functions

Then the following steps are taken:

87

1. All shared expressions are "squeezed" out of the tasks. This means that
the function bodies Fi and their corresponding arguments ~1 · • • ciimi

are each evaluated to normal form.

2. A set of tasks is sparked to evaluate the arguments of G: task1

taskn to normal form and in parallel.

3. Upon termination of all tasks from step 2, the function G is invoked with
the computed argument values. Then normal order reduction resumes.

The squeeze in step 1 ensures that the tasks sparked in step 2 do not share
any redex. Hence, these tasks cannot modify any part of the graph accessible
by others. On exit, however, each child task returns its result by updating
the corresponding root redex in the parent graph (i.e. an argument of G), but
since the parent task is suspended until step 3 this does not cause a consistency
problem. The squeeze, combined with suspending the parent, guarantees that
active tasks only share read-only data, hence, graph nodes in shared-memory
can always be accessed without locking for exclusive access.

The difference between FRATS and the original sandwich reduction strat
egy for APERM is that expressions at function positions (i.e. the expressions
Fi) are also reduced to normal form in step 1. APERM can live with some
shared redexes at the expense of superfluous work when shared redexes get
copied to remote processors. For WYBERT, however, a single shared redex is
enough to cause inconsistencies, and cannot be tolerated.

A disadvantage of the FRATS reduction strategy is that the squeeze in step
1 deviates from the standard lazy evaluation mechanism, which might lead
to non-termination in the worst case. To avoid any superfluous computation
the functions G and Fi from the sandwich definition have to be "extremely"
strict in all their arguments. It is not enough to demand strictness in the usual
sense of needing a head normal form, since FRATS will completely evaluate
those arguments to normal forms to squeeze out all shared redexes. When the
sandwich annotation is used with a non-strict function G or Fi then evaluation
under FRATS results in evaluation of unneeded expressions, and sometimes

88 Chapter 4. WYBERT: graph reduction on shared memory

non-termination. This problem can be solved by program transformation as
will be shown in the next section.

4.2.1 Termination through transformation

In functional programs datastructures like lists are often used as glue between
modules that result from functional decomposition. Two modules connected
in a producer-consumer relation can communicate via an infinite datastructure
because of lazy evaluation semantics as shown in Chapter 2. Such an infinite
producer causes problems when it is present in a task argument without the
consumer as in the following example:

sandwich join (consumer infinite_producer)

If no special measures are taken, FRATS starts to completely evaluate the
datastructure to squeeze out all shared redexes, and will never terminate as the
datastructure is infinite. Fortunately a mechanical transformation suffices to
change a non-terminating program under FRATS into a terminating one. With
out loss of generality we may assume that infinite computations/datastructures
are defined by the application of a recursive function to one single data value.

infinite
rec_fun par

rec fun value
. • . rec fun ...

If infinite is used by a task in a sandwich construct, then the redex
'rec_fun value' will be evaluated by FRATS, which results in a non
terminating evaluation. Note that FRATS reduces the arguments of a task
separately. This property can be used to prevent the evaluation of an offending
redex: the function and value part should be placed in different arguments of
the task. This causes FRATS to reduce both parts independently without any
problems since the offending redex has been removed. Of course the trans
formed task has to restore the original redex by applying the function to its
argument value during execution.

This solution is called value-lifting since the value part of an offending
redex will be lifted out as an additional task argument.

Value-lifting: Let fun be a function definition that contains an
infinite computation denoted by 'rec_fun value'. Take out
value as an extra parameter of fun and replace all occurrences of

4.2. FRATS: A parallel reduction strategy

fun with' fun value'. Repeat lifting until the value appears
as a task argument inside a sandwich annotation.

89

The correctness and termination property of this transformation follow directly
from the close correspondence with lambda lifting [Peyton Jones87b]. In the
following example the function bin computes a binomial coefficient and uses
the sandwich annotation to compute three factorials in parallel. The definition
of factorial is based on the equation facn = l * 2 * ... * n; it takes a list of the
first n natural numbers and uses the higher order function prod to multiply
them.

from n
prod
nats
fac n
bin n p

= n : from (n+l)
= foldr (*) 1
= from 1

prod (taken nats)
= sandwich form (fac n) (fac p) (fac (n-p))

where
form fn fp fn_p = fn / (fp * fn_p)

The FRATS reduction strategy squeezes all three tasks. In addition to evalu
ating arguments n, p, and n-p, the function fac will be reduced to normal
form as well. This requires processing the function definition of fac, which
contains a reference to the list of natural numbers nats. FRATS starts to eval
uate the list to normal form since otherwise the three sandwich tasks would
use and evaluate elements of nats in parallel. The reduction of nats to
normal form never succeeds since the 'from 1' expands into an infinite list.
The value-lifting transformation breaks this redex into independent parts by
lifting the value 1 (as parameterv) through nats and fac inside the sandwich
annotation:

nats v
fac v n
bin n p

from v
= prod (taken (nats v))
= sandwich form (fac 1 n) (fac 1 p) (fac 1 (n-p))

where
form fn fp fn_p = fn / (fp * fn_p)

Now the transformed program can be safely executed since the squeeze pro
cesses the from and 1 as individual components in different task arguments
instead of as a redex 'from 1' in a single argument. The evaluation of each
task starts by creating its own infinite list of natural numbers by applying the

90 Chapter 4. WYBERT: graph reduction on shared memory

value 1 to function nats. As a consequence (part of) the list nats will be
computed three times, once for each factorial computation. In essence the
value-lifting transformation provides each independent task with its own set of
infinite datastructures, hence sharing between tasks is impossible. In principle
the performance loss could be severe, but the analysis in section 4.2.4 shows
that it is negligible for the benchmark programs. As an optimisation, it is not
always necessary to perform value-lifting on recursive data: repeating patterns
like ones below are compiled to finite cycles in the program graph.

ones = 1 : ones

Cycles won't be unrolled into infinite lists because FRATS records which
nodes have already been visited during a squeeze. This also prevents multiple
scans of shared data between tasks. After the squeeze the graph cycle does not
contain any redexes and can be safely shared between parallel tasks.

4.2.2 Curried functions

The usage of curried functions complicates the recognition of infinite data
structures in the program source because they can generate such expressions
at runtime.

range ab
trouble p

take (b-a+l) (from a)
= . • sandwich foe (. . (range p) ..) ..

For example, the function range returns the list ' [a, a+ 1 , ••• , b] ' by
taking a prefix of the infinite list ' [a , a+ 1 •••] ' as generated by the ex
pression 'from a'. The definition of range can be seen as two processes
connected through a list: a producer part 'from a' and a consumer part
'take (b-a+l) '. Evaluation of the term 'trouble 13' results in FRATS
evaluating the curried function 'range 13' to normal form. In a fully lazy
implementation this leads to the instantiation of the producer 'from 13' be
cause it only depends on the first parameter (a) of range. The consumer part,
of course, cannot proceed without the second parameter (b). Hence, FRATS
will continue to completely evaluate the infinite list ' [13, 14, ..•] '.

Curried functions themselves can unfold into infinite datastructures. The
previous producer and consumer of range can be merged into one function
definition:

4.2. FRATS: A parallel reduction strategy 91

range ab=[], if (a>b)
a: range (a+l) b, otherwise

Although it looks as if range does not contain an infinite producer, the
term 'range 13' again represents an infinite datastructure. Note that the
subexpression 'range (a+ 1) ' does not depend on parameter band therefore
can be evaluated as soon as parameter a is present. This is made explicit by
performing fully lazy lambda-lifting [Hughes82] on the range definition,
which results in:

range a = rangeO a (range (a+l))
rangeO a next b = [], if (a>b)

a: next b, otherwise

Squeezing all redexes out of the expression 'range 13' results in an infinite
chain of curried functions rangeO:

range 13 = rangeO 13 (range 14)
rangeO 13 (rangeO 14 (range 15))
rangeO 13 (rangeO 14 (rangeO 15 (range 16)))

As with static infinite datastructures we can use the value-lifting transformation
to enforce termination by breaking the dynamically generated redex. With the
range examples we could lift pout of the redex 'range p' in the definition
of trouble. For curried functions, however, a simpler transformation is
possible.

Order changing

A fundamental observation about the range examples is that the consumer
part of the definition 'take (a-b+ 1) ' could not be initiated because it
lacked a parameter while the producer of the infinite datastructure did have
enough arguments to be evaluated. A simple reversal of the parameters suffices
to make the producer dependent on the lacking parameter of the consumer:

range ab rev_range b a
rev_range b a= take (b-a+l) (from a)

92 Chapter 4. WYBERT: graph reduction on shared memory

Now itis impossible thatthe term 'range 13' generates the redex 'from 13'
because it needs the parameter b to "call" function rev _range. This is due
to the underlying semantics of functional languages. Again sharing is lost, but
this transformation does not suffer the performance loss of dragging an extra
parameter around as with the value-lifting transformation. To minimise loss
of sharing we should not modify the general definition of range but just the
calls that cause non-termination of FRATS's squeeze phase. This can easily
be accomplished by inserting the higher order function delay at those places
in the program source:

delay fa b = converse f b a
converse f b a= fa b

The function delay will only call f when all arguments are present. Hence,
the usage of delay with the range examples will prevent the squeeze from
evaluating 'range p':

trouble p = .. sandwich foo (.. (delay range p) ..) ..

Cycle naming

As with ordinary datastructures, the squeeze of a curried function can result in
an infinite chain of one repeated curried function: a partial application of the
same function and arguments. For example, the evaluation of the higher order
function map applied to one argument.

map f [] = []
map f (h:t) = f h: map ft

Again we will perform fully lazy lambda lifting for clarity:

map f mapO f (map f)

mapO f next[] = []
mapO f next (h:t) f h: next t

The squeeze of the expression 'map sqrt' will result in an infinite repeating
chain:

4.2. FRATS: A parallel reduction strategy 93

map sqrt= mapO sqrt (map sqrt)
= mapO sqrt (mapO sqrt (map sqrt))
= mapO sqrt (mapO sqrt (mapO sqrt (map sqrt)))

When this chain is represented as a cycle in the graph, FRATS 's squeeze does
terminate and no program transformation is necessary, just as with the ones

example. In general, however, compilers do not generate code to create a
cycle, but code to build a fresh node with the same curried application. This
requires a program transformation to stop FRATS from endlessly building
new partial applications. Unfortunately, a little help from the programmer
is needed to get the desired cycle in the graph: explicitly naming the cycle
through a local function definition suffices. The following definition of map
forces the compiler to generate code that constructs a cycle at runtime. An
extra advantage is that the local function mf has one parameter less than the
original map, which results in fewer reduction steps.

map f = mf
where

mf []
mf (h: t)

[]
f h: mf t

The class of cyclic unfolding functions is relatively large because in functional
programs functions often carry some global state around in parameters, which
rarely changes.

4.2.3 Transformation methodology

Whenever the FRATS reduction strategy causes problems, either superfluous
computation or non-termination, the programmer has to apply one of the trans
formations described before. Value-lifting is the most general transformation
and can always be applied, but it is also the most drastic one because usually
a large number of function definitions have to be changed to lift the "value"
to sandwich-level. The other two transformations operate on a single function
definition, but can only be applied in a limited number of cases. In general the
programmer should proceed in the following way:

94 Chapter 4. WYBERT: graph reduction on shared memory

1. Locate the offending redex (say R).

2. Determine if Risa curried function (say 'fun val')

yes If fun makes a direct call to itself with an unchanged parameter
(val) then perform Cycle-naming else perform Order-changing
on fun's definition.

no Apply Value-lifting on R.

The difficult part is finding the redex R in the first step, the rest can be done auto
matically by some software tool. At the moment, however, all transformations
have to be applied by hand.

4.2.4 Performance consequences

In general FRATS's eager reduction strategy, to squeeze out shared redexes,
will result in superfluous computation when a task is not strict in all its argu
ments. This requires a modification of the program to delay the computation
by applying a transformation (value-lifting, order-changing, or cycle-naming)
from section 4.2.1. If several tasks share a computation that needs to be
transformed, sharing will be lost since the transformation causes each task to
compute a private version during execution. To quantify the performance con
sequences of FRATS, superfluous computation and loss of sharing, we have
analysed six programs of the parallel functional benchmark suite (Table 4.1):
QSORT, FFT, WANG, SCHED, WAVE, and RANGE.

total amount of execution [reduction steps] I
program lazy APERM FRATS transf +FRATS

QSORT 558,387 558,429 558,408 426,320
FFT 437,197 441,275 00 423,674
WANG 121,273 121,524 00 121,166
SCHED 191,934 194,773 207,455 198,706
WAVE 236,362 238,637 236,603 231,630
RANGE 9,871,499 10,640,802 00 7,789,470

Table 4.2: Benchmark results of SIS simulator

The first run of the benchmark with the SIS-simulator of Section 4.1.5
was performed without any squeezing of arguments to measure the pure run
length of the programs. The results are listed in the column labeled "lazy" of

4.2. FRATS: A parallel reduction strategy 95

program transformations
QSORT cycle-naming (2x)
FIT cycle-naming (2x)
WANG cycle-naming (2x)
SCHED order-changing (1 x)
WAVE cycle-naming (2x)
RANGE cycle-naming (5 x) + value-lifting (1 x)

Table 4.3: Applied transformations

Table 4.2. These values will be used as a reference to derive the amount of su
perfluous computation encountered by the other reduction strategies. The next
column labeled "APERM" contains the results of using the APERM reduction
strategy. Comparison with the first column shows that only the RANGE program
incurs non-negligible superfluous computation (8%). The FRATS reduction
strategy is more strict than APERM since it also reduces the expressions at
the function position of a task. This shows in the third column in table 4.2
where three applications fail to terminate under FRATS. The SCHED program
takes considerably more reduction steps, whereas the other two need some
what fewer steps than under APERM. This last decrease is caused by a small
optimisation in FRATS that only squeezes n- l sandwich arguments, whereas
APERM processes all arguments.

Next the cycle-naming transformation was applied to each benchmark pro
gram. As a result all transformed programs do terminate under FRATS. In
addition SCHED and RANGE needed a value-lifting and an order-changing trans
formation respectively to limit superfluous computations. Especially RANGE

was sensitive to superfluous computations because the queries did not cover
the whole database, which would be completely evaluated by FRATS without
any transformation. The applied transformations are listed in Table 4.3, and it
shows that only a small number was needed.

The final performance of the transformed programs is listed in the last col
umn of Table 4.2 labeled "transf+FRATS". A remarkable observation is that all
programs except scHED require fewer reduction steps than the original version.
This is due to the cycle-naming transformation which uses a local function
with one parameter less. The implementation of SASL (bracket abstraction,
see (Tumer79a]) is very sensitive to the number of parameters: worst case
execution time is exponentially proportional to the number of parameters. It
is also the cause of the decreased performance of scHEn: order-changing was

96 Chapter 4. WYBERT: graph reduction on shared memory

speed-up
program lazy APERM FRATS

QSORT 3.58 3.51 4.81
FIT 4.55 3.83 4.09
WANG 4.46 4.07 4.14
SCHED 12.14 9.76 11.23
WAVE 1.85 1.82 1.84
RANGE 3.91 1.90 1.85

Table 4.4: Parallel performance compared to column "lazy" in table 4.2

applied to a function with six parameters whose last one needed to be swapped
with the first. This parameter shuffle is completely responsible for the incurred
overhead.

Although the benchmark results show that a few transformations suffice to
avoid unnecessary computations, the squeeze of shared data by FRATS might
severely reduce the parallelism of an application. Therefore we have looked at
the speed-ups on an ideal parallel machine (oo processors, no task set-up time)
as computed by the SIS-simulator. Table 4.4 contains these computed opti
mistic parallel speed-ups for the benchmark under various reduction strategies.
It shows that FRATS performs slightly better than APERM in most cases and
approaches the ideal values in the "lazy" -column. In case of osoRT FRATS even
outperforms the original program because of the cycle-naming transformation.
The disappointing performance of the RANGE application is a simple loss of
parallelism caused by the normalisation of the database before the parallel
queries. Further research is needed to improve FRATS performance in this
case.

The results of the benchmark programs as measured by the SIS simulator
show that with a few program transformations tasks can be made independently
of each other so locking at the level of graph-reduction is unnecessary. Elimi
nating shared redexes in advance only causes minor superfluous computation
and does not significantly serialise execution (i.e. lower speed-ups), hence,
all benefits are for free. The following sections will discuss two high-level
optimisations that can be applied in scheduling and in memory management
because of the task independence as enforced by FRATS.

4.3. Top-of-Stack scheduling 97

4.3 Top-of-Stack schedulingt

A straightforward scheduler of "sandwich" tasks on a shared memory multi
processor uses a global pool of executable tasks where processors store newly
created tasks and fetch work when running idle. This straightforward schedul
ing policy is known as list scheduling [Graham69]. Although applications
under list scheduling never execute more than twice as long as under an op
timal scheduler, list scheduling has two practical disadvantages. First, the
global pool eventually becomes a bottle-neck when scaling to large machines;
the Buckwheat implementation already suffered from contention conflicts with
8 processors [Goldberg88b]. Second, an idle processor always fetches a task
from the global pool without considering whether the task is large enough to
outweigh the communication costs: (part of) the task's data has to be trans
ferred from the cache of the processor that created it to the cache of the idle
processor. Currently, the latter disadvantage is of no concern for WYBERT
since the programmer is required to enforce a minimal grain size of each task
(sandwich constraint (b) on page 80).

WYBERT is solely based on divide-and-conquer parallelism, so we can
use the local-LIFO/steal-FIFO scheduling variant of the Manchester throttle
mechanism (Section 3.1.5) where each processor maintains a local task pool.
Processors schedule their local tasks in LIFO order, but steal a task from another
processor's pool in FIFO order when running idle. After a short initialisation
phase, each processor executes its part of the application's divide-and-conquer
tree in depth first order. This scheduling policy exploits the caches very well
since the most recently created task is scheduled first, and that task is most
likely to find (part of) its data set in the cache.

Whenever a task executes a sandwich primitive to spark new tasks for (par
allel) execution, this task becomes blocked until all its children have finished.
While the parent task is blocked the associated processor is used to process
some other task ready for execution. Hence, a sandwich primitive causes a
context switch in the processor: the state of the current task has to be saved,
and the state of the new task has to be loaded. To minimise context-switch
time the graph reducer usually allocates a private stack for each task so that
only the top-of-stack pointer needs to be saved/restored instead of the complete
contents. The price for this optimisation is that an arbitrary number of stacks
has to be accommodated instead of a single stack per processor; a single stack
is much cheaper to manage, see Section 3.1.3 for details.

tThis section represents joint work with Rutger Hofman.

98 Chapter 4. WYBERT: graph reduction on shared memory

The LIFO/FIFO scheduler described above has been adapted to combine
a fast context switch time with the advantage of a single stack per processor;
the depth-first traversal of the task tree allows all tasks that execute on the
same processor to share one reduction stack, the processor stack, as a stack of
stacks. At start up, a task sets its private stack pointer to the current top of
the processor stack. If the task executes a sandwich and blocks to await the
results of its children, the task leaves its local state on the processor stack, and
the next fresh task starts to allocate its stack on top of the blocked task, etc.
When a blocked task has received the results of all its children, it unblocks and
can resume execution. An unblocked task, however, may only be selected for
execution after all tasks on top of it have finished, otherwise it could overwrite
the state of other tasks.

The ToS scheduling policy of WYBERT maintains on each processor a
list of tasks ready for execution and a stack of blocked tasks. Whenever the
scheduler is requested to select a new task for execution, it first checks whether
or not the blocked task on top of the local stack has become ready for execution.
If the topmost task is ready then it is selected to resume execution, otherwise
the local task list is inspected. If the list is non-empty then the task in front is
selected for execution (LIFO policy), otherwise the ToS scheduler inspects the
pools of the other processors in a cyclic manner until it has found a non-empty
task list. It steals the last task in that list (FIFO policy) and returns the task for
execution at the local processor. Sparking a task amounts to simply inserting
the fresh task in front of the local task list.

Although the ToS scheduler does not support task preemption nor task
migration for efficiency, the scheduling policy is deadlock free for the follow
ing reasoning. Suppose a parallel divide-and-conquer application under ToS
reaches a deadlock situation. Let T be the youngest of all (blocked) tasks, that
is, T started execution after all other tasks. Since T is the youngest task it
can not be waiting for an even younger child task, hence, T is a runnable task
blocked by some other task Tl lying above it on the same processor stack.
This implies, however, that Tl started execution after T, which contradicts
the assumption that T was the youngest task, hence, deadlock is not possible
under ToS. Thus, the ToS constraint can only cause poor performance as is
shown in the next section.

4.3. Top-of-Stack scheduling 99

4.3.1 Worst case behaviour

A list scheduling (LS) policy obeys the constraint that idle processors and
executable tasks do not coexist. This means, that a processor that finishes
its task must immediately select another from the (global) list of executable
tasks. The policies in LS differ in their selection criterion from such a list. All
LS policies have a good performance [Graham69); the parallel execution time
never exceeds twice the optimal execution time if communication delays are
neglected. This bound holds for arbitrary precedence relations between tasks
and arbitrary execution times of the tasks. In practice list schedulers perform
much better on average than the factor two worst case bound.

Distributing the global task pool of LS by equipping each processor with
a local pool preserves the valuable list scheduling property; when a processor
runs out of local tasks, it starts polling the others to find an executable task,
hence, no processor will run idle as long as there is an executable task some
where in a local task pool. To minimise memory usage, a processor manages
its local pool in LIFO order, but tasks are stolen in FIFO order from a remote
pool to minimise data communication. Since both this LIFO/FIFO scheduling
policy and LS preserve the list scheduling property, they do not differ from a
theoretical point of view. Of course, the improved locality in the schedules
gives better cache hit rates for LIFO/FIFO than for pure LS, hence, absolute
performance is increased.

The Top-of-Stack (ToS) scheduler of WYBERT violates the list scheduling
property since it restricts the scheduling of re-awakened tasks, i.e. tasks that
have become executable again after all children have terminated. The state of
suspended tasks is stacked on top of each other, so at any time only the top-most
task may be selected for execution. If the top most task still awaits the result
of some child task, it effectively blocks the execution of all tasks below. As a
consequence some processor might run idle in presence of an executable task
because that task is not on top of a processor stack. This situation is illustrated
by the following simple example.

We use a synthetic application that executes two sandwich primitives to
create the task structure depicted in Figure 4.1. All task execution times are
1 step except for task 4, which takes 4 steps. In Figure 4.2 we show a possible
ToS schedule on two processors. This task schedule takes 8 steps under ToS,
while the equivalent LS schedule takes 7 steps; join task 7 has to continue
execution on processor 1 because its corresponding fork task 2 was scheduled
on processor 1, hence, the execution of task 4 blocks the resumption of join
task 7 until t = 6, while processor 2 runs idle.

100 Chapter 4. WYBERT: graph reduction on shared memory

Figure 4.1: A task graph. Tasks are labeled with a task number (above) and an
execution time (below the task node).

processor

1
1

0

2 4

3 5 6

2
time

7 8

4 6 8

Figure 4.2: A ToS schedule of the task graph of Figure 4.1.

The performance degradation in this example is not significant, but a
worst-case task graph can be constructed where all parallelism is lost. On a p
processor machine, it can be arranged to let an application deposit p large join
tasks at a single processor that have to be executed sequentially because of the
ToS constraint, while an ordinary LS policy could schedule these p tasks to
run in parallel. Details of this contrived worst case application can be found
in [Hofman93]; here we will only give the ratio of execution times of ToS (w)
and LS (wo) for brevity:

~ _ ptjoin + 2p + 2

Wo ljoin+2p+2

4.3. Top-of-Stack scheduling 101

The ratio approaches p for large join tasks (tjoin -t oo), which means practi
cally all parallelism is lost, irrespective of the number of processors.

4.3.2 Performance from Simulation Studies

The performance consequences for the scheduling worst case caused by ToS
are horrendous. However, there may be a notable discrepancy between worst
case performance and "practical" performance. Therefore we have conducted
a number of simulations to evaluate the practical consequences of ToS. The
performance simulator takes a task graph description and models the execution
under a specific scheduling policy on a range of shared memory multiproces
sors: with 2, 4, 8, and 16 processors. The supported scheduling policies are LS,
LIFO/FIFO, ToS, and Gl-ToS (Global-ToS). Gl-ToS, like LIFO/FIFO, is an in
termediate scheduling discipline between LS and ToS: it is the combination of
a global task list and stack per processor (ToS constraint). The distinguishing
properties of the four scheduling are tabulated below:

II global task list I local task lists I
stack
per LS LIFO/FIFO
task
stack
per Gl-ToS ToS

processor

The performance simulator does not take locality effects into account so we
do not expect a large difference between LS and LIFO/FIFO.

The Divide & Conquer applications benchmark

To start with, we will evaluate the performance consequences for the kind of
applications WYBERT is designed for: parallel Divide & Conquer algorithms.
We have made use of the SIS simulator and the following benchmark applica
tions: COINS, QUEENS, MSORT, FFT, WANG, SCHED, and COMP-LAB, see Section 4.1.5.

Some applications are "toy" programs, others are "real world" programs.
The corresponding characteristics of the task graph descriptions are listed in
Table 4.5; time is expressed in the number of reduction steps, i.e. the number of
executed Turner combinators. Average parallelism is the maximum speed-up
that can be achieved with an unlimited number of processors [Eager89). Note

102 Chapter 4. WYBERT: graph reduction on shared memory

average sequential average average average
parallelism steps fork task mid task join task
[Eager89] X 1000 steps steps steps

COINS 246.1 53,643 339 39,903 60
QUEENS 82.2 2,106 73 1,295 10
MSORT 5.0 455 755 1,240 1,579
FFT 5.3 466 3,666 3,424 255
WANG 16.7 5,039 1,275 38,107 1,235
SCHED 56.8 2,188 1,672 7,014 3
COMP-LAB 19.2 169,399 48,264 22,538 263,932

Table 4.5: Properties of the applications of the Divide & Conquer benchmark

that MSORT and, notably, coMP-LAB are the applications that have non-negligible
work in the join tasks, so these applications may cause higher ToS degradation
than the others.

For efficiency tasks are created only when their grain size exceeds some
application-specific threshold. The conditional forking has been explicitly
indicated by the programmer. The threshold value is chosen such that the
computational demand of leaf tasks considerably exceeds the overhead for
task creation (which is set to 250 steps). As a typical example, in Table 4.6 we
show the speed-up obtained for the various applications on an 8-node shared
memory machine.

Inspection of the speed-up figures on all machines shows that LIFO/FIFO,
LS, and ToS yield similar performance, while Gl-ToS tends do less well for
most applications; in case of COMP-LAB Gl-ToS performs on average 28% worse
than plain LS. This corresponds to our intuitive remark that large execution
times of join tasks, as is the case for COMP-LAB can seriously affect the overall
performance. The reason that ToS does not suffer from scheduling constraints
with the COMP-LAB application can be explained as follows. ToS degradation
occurs when executing tasks block resumption of otherwise executable join
tasks. This means that the blocker is not a descendant of the blocked join task,
because otherwise it would not be executable. Therefore it is necessary for
ToS blocking that a task from another fork-join subgraph is allocated at the
processor under consideration. Local task lists favour execution of complete
subgraphs: processors put newly created tasks into their local task list, and
whenever they finish their current task, they first look in their local list for a
new task. In this manner, processors have a strong preference for execution

4.3. Top-of-Stack scheduling 103

LS LIFO/FIFO ToS Gl-ToS

COINS 7.7 7.8 7.8 7.5
QUEENS 7.1 7.1 7.1 7.0
MSORT 3.5 3.5 3.5 3.3
FFT 3.7 3.7 3.7 3.7
WANG 6.2 6.0 6.0 6.1
SCHED 7.1 7.1 7.2 7.0
COMP-LAB 7.3 7.3 7.3 4.0

Table 4.6: Speed-ups on the 8-node shared memory machine

of their own offspring. LIFO management of the private task list causes a
depth-first traversal of the task subgraph springing from the current task, so
tasks will be evaluated together with all their offspring by one processor unless
some stealing occurs. Tasks are stolen by another processor only when such a
processor runs out of work: it has either completed its part of the task graph,
or the join tasks it owns are all blocked. The task that is stolen, is the least
recently created task (in other words, stealing is done in FIFO manner). Typical
divide-and-conquer applications repeatedly decompose a problem into smaller
sub problems, hence, chances are high that the stolen old task represents a
considerable amount of work since the "local" task tree is traversed in depth
first order. This means that the stealing processor will be satisfied for a long
time, so FIFO stealing lowers the number of allocations to other processors.
These aspects, local task lists, LIFO list management and FIFO stealing, work
together to limit allocation to another processor, which reduces the chance of
blocking executable tasks.

We want to compare the performance of the task list policies, independent
of the number of processors and application. Therefore the speed-up figures
were geometrically averaged (see [Fleming86]) over the architectures. The
comparison shows that LS, LIFO/FIFO, and ToS achieve equal speed-ups,
while Gl-ToS performs 5% less than the others. Thus although the ToS con
straint can reduce performance (cf. Gl-ToS), the local task lists effectively
prevent blocking tasks from degrading performance.

Synthesised fork-join task graphs

We found that most Divide & Conquer applications in the benchmark are
suitable for ToS scheduling because their join tasks are small in execution

104 Chapter 4. WYBERT: graph reduction on shared memory

steps, or the applications have a very regular task graph: the exception is
COMP-LAB but only for the Gl-ToS scheduling strategy. This does not give
much information about the applications for which ToS performs poorly. The
following properties induce ToS degradation:

• non-negligible execution times of the join tasks
• irregular task structure (it must be a fork-join graph, of course, but not

entirely symmetrical in its forking)
• irregular join task execution times

Finding enough applications that have these properties is hard. Therefore, we
synthesised 70 task graphs using random generators

• for deciding whether a (non-join) task will fork or not
• for determining the execution time of the join tasks; these times follow a

uniform distribution to obtain a large spreading
A description of the synthesised task graphs is given in Table 4. 7.

Class average average average sequential
number of join task parallelism steps

tasks steps X 1000
I 1400± 2100 980± 80 30 ± 40 1400 ± 2100
II 1400 ± 1800 4990 ± 270 22± 25 3000 ± 4000
III 1600± 2200 25100± 2900 23 ± 28 14000 ± 20000

Table 4.7: Characteristics of the synthesised tasks. Values were drawn from
several uniform distributions, so spreading is high. The fork tasks and leaf
tasks all take 1000 steps.

The average execution time of the join tasks is either equal to the average
execution steps of fork tasks and leaf tasks (class I), or 5 times this average
(class II), or 25 times this average (class III). COMP-LAB, the one application
that (sometimes) suffers from ToS degradation, has such a ratio of 8.4. Inside
each synthesised class the applications differ in the total number of tasks.
Applications where join tasks execute on average for 5 times as long as fork
tasks and leaf tasks are rare; applications where the join tasks take 25 times as
long are even less likely. The reason we included them, is because we expect
to find performance degradation for ToS for this type of application if it is to
be found at all except by careful construction, as we did for our worst case
performance example.

The applications were run on the same architectures as the Divide &
Conquer benchmark. Performance of the policies is derived from the speed-up

4.3. Top-of-Stack scheduling 105

figures in the same way: geometrically averaged speed-ups were calculated
per architecture and per application, and performance figures are normalised
to LS= 1. The applications are collected into three groups, distinguished by
different average join task steps. The performance figures we present in
Table 4.8 are averages for these three groups.

LS LIFO/FIFO ToS Gl-ToS

I 1 1.00 0.99 0.91
II 1 0.99 0.97 0.80
III 1 1.00 0.99 0.71

Table 4.8: Averaged speed-ups relative to LS for the synthesised tasks.

The expectations on ToS behaviour prove to be correct for the Gl-ToS
scheduling policy. The applications of class I, where join tasks on average
take as many execution steps as fork tasks and leaf tasks, show a performance
degradation of 9%. Compare this to the application MSORT, where the join tasks
also on average take as long as leaf tasks. The essential difference must be
the irregularity of execution times of the join tasks. For the applications of
class II, the degradation is worse: 19%. For the applications of class III, the
performance difference mounts to 29% for Gl-ToS. This performance degra
dation, however, is not as bad as one would expect; such a virtually random
allocation of join tasks to processors might as well result in performance close
to the worst case.

Again the ToS strategy, which uses local task lists per processor, performs
much better than the global Gl-ToS policy and only suffers a minor performance
degradation for all application classes in comparison to LS and LIFO/FIFO: less
than2%. This is in accordance with our findings from the Divide & Conquer
benchmark.

The results in this section have shown that the top-of-stack constraint does
not lead to performance degradation in practice. The simulated execution
of the benchmark programs do not show any performance degradation for
ToS in comparison to LS and LIFO/FIFO schedulers. Even the synthesised
applications with large join tasks do not show any degradation that approaches
the worst case of loosing all parallelism. These results that divide-and-conquer
applications can make efficient use of a single stack per processor, while
exploiting the caches in the multiprocessor by traversing local parts of the task
tree in depth-first order.

106 Chapter 4. WYBERT: graph reduction on shared memory

4.4 Memory management for parallel taskst

An important property of logic, object-oriented, functional, and other high
level programming languages is their automatic management of dynamically
allocated storage. The language support system provides the user with a
virtually unlimited amount of storage by running a garbage collector to reclaim
storage that is no longer in use. The efficiency of the garbage collector is
important for the application's performance, especially when the underlying
computational model (e.g., graph reduction) often allocates small pieces of
memory that are used only for a short time.

From the three classes of garbage collection algorithms (reference count
ing, mark&scan, and copying collectors), the copying collectors perform best
on systems with considerably more memory than the amount of live data
[Hartel90]. There are two reasons for the better performance: 1) they only
traverse live data, which usually accounts for only a small fraction of the to
tal heap space, while mark&scan coUectors access every heap cell twice, 2)
copying collectors compact the live data into one consecutive block, which
facilitates the fast allocation of (variable sized) nodes by advancing the free
pointer instead of manipulating a linked list of free cefls and managing the
referen:ce counts.

Cheney's two-space copying collection algorithm [Cheney70J is the basis
of many (parallel) copying garbage collectors. The available heap space is
divided into two equal parts: the from-space and the to-space. During normal
computation new nodes are allocated in from-space by advancing the free
space pointer through the from-space. When the heap space in the from-space
has been consumed, all live nodes are evacuated (i.e. copied) to the empty
to-sp'aCe by the garbage collector.

I global data II from-space I to-space I
i flip i

I global data II to-space I from-space I

Figure 4.3: Memory layout for two-space collector

The evacuation starts with copying the nodes in from-space that are ref
erenced by root pointers in the global data area, which contains for example
the call stack. Then the nodes in to-space are scanned for pointers to objects
in from-space that still have to be copied. This process is repeated until the

tThis section represents joint work with Henk Muller.

4.4. Memory management for parallel tasks 107

to-space contains no more references to nodes in from-space. The strict sep
aration of global data and the heap allows the collector to efficiently detect
with one compare instruction whether a pointer refers to a node in from-space
or not. After evacuating all live nodes, the roles of the two semi spaces are
flipped, and ordinary computation is resumed.

A straightforward adaptation of a copying collector to run on a multi
processor is to let all processors participate in a global evacuation operation:
processors allocate large blocks of storage in the shared global heap, and if one
processor detects the exhaustion of the (global) from-space, it synchronises
with the other processors to start garbage collection. The evacuation of live
nodes proceeds with all processors scanning parts (pages) of the to-space in
parallel. To handle possibly shared data objects, processors lock each individ
ual node in from-space when inspecting its status and, if necessary, copying
it to to-space. This method is, for example, used in MultiLisp [Halstead Jr84]
and GAML [Maranget91].

To reduce the locking overhead of the above method, the Par log implemen
tation described in [Crammond88] partitions the heap among the processors, so
that each processor can collect its own part of the heap. Whenever a processor
handles a remote pointer to a live node in another part of the heap, it places a
reference to the pointer in the corresponding processor's Indirect Pointer Stack
(IPS). After a plain evacuation operation, each processor scans its IPS buffer,
which contains (new) roots into its private heap, updates the pointers to point
to copies in to-space, and continues with scanning the new objects in to-space.
Now only the IPSes have to be guarded with locks instead of each heap object.

A rather different approach to use copying collectors on parallel multipro
cessors is described in [Appel88]: one processor reclaims all the garbage, while
the others proceed with their normal computational work. The synchronisa
tion between the collector and the other processors (mutators) is accomplished
through standard hardware for virtual memory. When the evacuation of live
nodes starts, the collector copies all root nodes to the to-space, and marks the
virtual memory pages of the to-space as inaccessible to the mutators. Then
the mutators immediately resume execution in the to-space, while the collector
scans the to-space page by page for references to nodes in from-space that
still have to be evacuated. Whenever the collector has finished a page of the
to-space, it makes that page accessible to the mutators. If a mutator tries to
access an object in a not-yet-scanned page in to-space, the hardware generates
an access violation trap. This triggers the collector to handle the referenced
page immediately, after which the mutator resumes execution.

108 Chapter 4. WYBERT: graph reduction on shared memory

A common disadvantage of the above copying garbage collection algo
rithms for multiprocessors are that they waste half of the shared heap, which
is reserved for the to-space, and that they require global synchronisation oper
ations. The inherently global nature of these algorithms also raises efficiency
problems when scaling to large (hierarchical) shared-memory multiprocessors:
the single virtual memory collector cannot keep up with many mutators, while
the parallel scan of the other algorithms overloads the memory bandwidth.

4.4.1 Local copying garbage collection

The WYBERT scheme for copying garbage collectors on shared-memory mul
tiprocessors provides each parallel task with its own heap and performs garbage
collection per task locally without any global synchronisation with other tasks
or processors. This approach is attractive since it avoids global synchronisa
tion and cooperation of processors, while the reserved amount of to-space can
be reduced by limiting the maximum heap size of a task and time-sharing a
common to-space. Collecting a task, however, requires access to all global
root pointers into the local heap. Recording all roots pointing from outside
into the heap of some task is a space and compute intensive task in general,
especially when tasks can exchange arbitrary data including heap pointers.
This makes the scheme of collecting garbage per task unattractive for general
parallel processing since each and every communication has to be checked for
cross pointers.

The fork-join task structure of our divide-and-conquer parallelism allows
efficient incorporation of the above local copying collector scheme in a shared
memory multiprocessor. At runtime a divide-and-conquer application (recur
sively) unfolds into a tree shaped task structure, see Figure 4.4(a). Each task
is provided with a "private" part of the shared heap where it allocates storage
during its execution. Interior tasks (1, 2, and 3) are suspended during the
execution of their child tasks, so only leaf tasks (4, 5, 6, and 7) can reclaim
their garbage locally.

The garbage collection of a leaf task with a two-space copying collector
requires the allocation of a contiguous to-space and access to all root pointers
into the private heap. The latter requirement is hard to fulfil in general, but the
divide-and-conquer model causes the leaf tasks to execute without any external
interaction, hence, a leaf task cannot pass a pointer to any other active task;
there are no pointers between tasks 4 and 5 in Figure 4.4(b). The absence of
communication between leaf tasks, however, does not rule out data sharing

4.4. Memory management for parallel tasks 109

(a) (b)

Figure 4.4: fork-join tree (a) with limited inter-task pointers (b).

since tasks can execute different subproblems that contain pointers to shared
data in common ancestor heaps. For example, tasks 4 and 5 can share data that
resides in the heap of task 2, or even in task 1. Since the FRATS reduction
strategy normalises the shared data in advance, that data is read-only and will
not be updated, hence, tasks cannot pass pointers through their ancestor's heap.
As a consequence pointers from interior tasks to leaf tasks do not exist; for
example, there are no pointers from task 2 to either task 4 or task 5 as shown
in Figure 4.4b.

Since the divide-and-conquer paradigm limits the inter-task pointers to
references to ancestor data, there are no "external" root pointers into the heap
of a leaf task. This allows the garbage of a leaf task to be reclaimed with
a local sequential copying collector, which only scans the task's call stack
for root pointers. Note the resemblance with generation scavenging garbage
collectors [Liebermann83] where often the youngest generation (cf leaf tasks)
is collected, but not the older generations (cf interior tasks).

Scattered heaps

To accommodate an arbitrary number of tasks, heap memory is allocated in
variable sized blocks. Whenever a task runs out of memory it invokes the
garbage collector to reclaim space no longer in use. When the amount of live
data approaches the blocksize the garbage collector allocates a block twice the
current size on the next collection. This assures that a private heap is always
a single block, so an ordinary sequential two-space copying collector can be
used for leaf tasks.

110 Chapter 4. WYBERT: graph reduction on shared memory

(a)

(b) 1[:::><=J

Figure 4.5: Storage layout with inter-task pointers.

We would like to use the same copying collector for interior tasks, which
after all become a leaf task when resuming execution because all offspring
has already ended their execution. Upon termination a child task links it
private heap containing the result to the parent's heap. As a consequence
the parent is no longer a single sequential block, but consists of a number
of blocks scattered throughout the shared memory. The traditional sequential
copying garbage collector can not be used to collect scattered such heaps since
it is impossible to distinguish pointers to objects in from-space and pointers
to global (ancestor) data with a single compare instruction. For example,
suppose the fork-join tree of Figure 4.4a has been laid out in memory as shown
in Figure 4.5a. After leaf tasks 4 and 5 have terminated and linked their heap to
the parent task, task 2 resumes execution and the storage configuration changes
to 4.5(b); the heap of task 2 is no longer contiguous.

When task 2 runs out of free space, it allocates a to-space at the right of task
7 and starts evacuating the live nodes. The search for pointers to live nodes
in the heap of task 2 is complicated by the presence of heap 1, which breaks
the simple memory layout of Figure 4.3 where global data and the from-space
each have a contiguous address space. Note that task 2's internal pointers
from the right part to the left part or vice versa must be distinguished from the
inter-task pointers to 1. In principle the problem of distinguishing global and
local data can be solved by means of a lookup table that records the owner
of each storage block, but this would degrade performance because of extra
memory references and table management overhead. Instead we will use a
virtual address space to allocate storage such that task heaps never interleave
with ancestor heaps.

4.4. Memory management for parallel tasks 111

The Basic Allocation Scheme, BAS

To support efficient evacuation of live data in scattered parent heaps, it is
sufficient to enforce that a task's private heap is allocated to the right of all
its ancestor heaps. This causes a strict separation of the task's (scattered)
private data and its global ancestor data, so pointers can be classified with
one instruction as in the sequential case. The basic allocation scheme (BAS)
accomplishes the strict separation by always allocating a new heap at the right
of the most recently allocated one. Virtual memory hardware is used to relocate
the released physical space of the from-space to the right end after a garbage
collect.

The basic scheme results in a window of physical memory moving from
left to right through the virtual address space. The example in Figure 4.6
illustrates the scheme. When task 2 resumes execution in 4.6(d), its scattered
heap encloses the heap of task 3, but this has no effect on the garbage collector
since task 2 to does not refer to data of task 3; it only refers to data of task 1.

w

(a)

w

(b)

w

(c)

w l
(d) C><I

Figure 4.6: BAS: (a) initial configuration, (b) after collecting 4, (c) after
collecting 7 and 6, (d) after resuming 2.

The window with available physical memory (W) has to be at least as
large as the size of the largest private heap since tasks allocate their to-space
in the window when collecting garbage. By limiting the maximum task size,
we significantly lower the 50% waste of memory reserved for to-space of the
(sequential) copying collectors since tasks can time-share W as a common to-

112 Chapter 4. WYBERT: graph reduction on shared memory

space. The costs of this limit are that large tasks have to collect their garbage
more often. Note that we can control this space-time trade-off by adjusting the
value of the maximum task size. It suffices to reserve a 1/(p+ 1) fraction of
the total memory size on a multiprocessor with p processors, sop large tasks
can execute in parallel. If the shared to-space is a bottleneck, which we do not
expect in (small) shared memory systems, a pool of to-spaces can be provided.

When the window W has completely moved to the right and all virtual
address space has been consumed, a global action is required to reclaim the
unused holes in the virtual address space that have resulted from the local
garbage collects. To preserve the ordering between the tasks, the virtual space
is compacted by sliding the private heaps to the left. Besides adjusting the
page tables, all physical pages have to be scanned for pointers to objects in
virtually "moved" pages, so they can be relocated to their new positions. This
expensive compaction method limits the usefulness of the storage allocation
scheme to systems where the virtual address space greatly exceeds the size of
the physical memory because then compactions are rarely needed.

The Virtual Allocation Scheme, VAS

We can improve the basic memory management's rapid consumption of the
virtual address space by reusing holes on the fly. Holes in the virtual address
space can be freely reused for new private heaps as long as the task ordering is
preserved: tasks must be allocated to the right of their ancestors. Thus, instead
of always allocating memory at the right end, the Virtual Allocation Scheme
(VAS) allocates a task's heap in the lowest free part of the virtual address space
that lies to the right of the task's parent.

VAS works well for the common case of a divide-and-conquer application
that unfolds into a task tree with small interior tasks and big leaf tasks. After
the interior control tasks have divided the work into independent components,
the leaf tasks run for a long time to compute the partial solutions. Under the
basic storage allocation scheme these leaf tasks move to the right each time
the garbage collector is invoked, but under VAS these tasks remain in a small
part of the virtual address space. A leaf task that needs to allocate a to-space
can usually reuse the most recently released from-space of another task since
there are no allocation constraints between leaf tasks; the only constraints are
between interior tasks and leaf tasks.

Figure 4.7 shows the effects of VAS for the same example as with the
basic scheme in Figure 4.6. Now the positions of leaf tasks 4, 5, 6, and 7 just

4.4. Memory management for parallel tasks 113

1213141516171
w

~I (a) 1

lzl3t><Jsl617141
w

6-<:J (b) 1

lzl3l1lst><J614!
w

~I (c) 1

I 1 l213l712N 6l2j
w

t><=::i (c)

Figure 4.7: VAS: (a) initial configuration, (b) after collecting 4, (c) after
collecting 7 and 6, (d) after resuming 2.

permute, but do not shift to the right. In comparison with the basic scheme,
the VAS administration is slightly more complicated since it has to record the
holes in the virtual address space and the position of each task's parent.

The Circular Allocation Scheme, CAS

Both previous storage allocation schemes use paging hardware to implement
a large virtual address space. Obviously, this limits their applicability to
multiprocessors with such hardware support, while those schemes also need
a considerable amount of memory to store the page table. For example,
the complete page table for a 4 Gbyte virtual address space on a MC88000
architecture with 4Kbyte pages occupies 4 Mbytes of physical memory. In
addition the usage of a page as the unit of storage results in wasted heap
space due to internal memory fragmentation. This has a strong effect on
parallel applications that unfold into a large task tree where each interior task
occupies a private page of memory that is only partially filled with useful data.
Both sources of memory loss are tackled by the following allocation scheme
that allocates storage in a virtual address space, but does not require paging
hardware at all.

The Circular Allocation Scheme (CAS) uses a fixed translation scheme
to map virtual addresses onto physical addresses. The upper bits of a virtual

114 Chapter 4. WYBERT: graph reduction on shared memory

Figure 4.8: Circular Address Space

address are simply replaced by zeros to obtain the physical address. This gives
a virtual address space that is wrapped circularly through the physical address
space, see Figure 4.8. The "ghost" images of tasks 1, 2, and 3 cause a repeated
pattern of holes in the virtual address space that extends right of the physical
space.

The CAS strategy uses the same allocation policy as VAS: a task's heap is
allocated at the lowest available virtual address above the task's parent. Unlike
VAS, however, CAS has to skip over the ghost images when looking for a
free hole. For example, if task 3 wants to extend its heap with another two
contiguous pages to the right of task 2, then CAS cannot allocate it directly
after its own heap, but has to allocate it in the large hole after the ghost image
of task 1 as depicted in Figure 4.9.

Figure 4.9: CAS after extension of task 3.

Observe that the holes in the virtual address space are just a repetition of the
physical holes. To take advantage of this redundancy by recording the status
of the physical space only, the CAS strategy regards virtual addresses as the
concatenation of a cycle-counter (most significant bits) and a base address in
the physical space (least significant bits): addr = cycle:base. When allocating
storage to the right of a parent task located at address cycle:base, CAS first
tries to locate a suitable hole at the right of the base in physical memory. If
CAS succeeds then it returns cycle:hole as the start address of the new storage

4.4. Memory management for parallel tasks 115

block, else CAS increases the cycle counter and starts looking at the beginning
of the physical memory and returns (cycle+ 1) :hole on success.

If the CAS strategy fails to allocate a large contiguous block due to external
memory fragmentation, the scattered free space has to be compacted by sliding
the tasks down to the left. This compaction only adjusts the base parts of
pointers, but it is more expensive than with the two previous schemes since
all data has to be copied as well. In the previous example compaction is
needed when task 3 in Figure 4.9 wants to allocate 3 pages to perform garbage
collection. The compacted memory layout is shown in Figure 4.10.

Figure 4.10: CAS after sliding compaction

Note that the sliding compaction has not compressed the virtual space, so
an even more complex compaction method is needed when CAS runs out of
the virtual address space: all cycle parts of pointers have to be cleared which
requires a permutation of the tasks in physical memory to preserve the task
ordering in the virtual address space.

The advantages of the CAS strategy are that there is no need to maintain the
page tables since the address mapping is fixed; in fact it can be implemented
in hardware by cutting the upper address pins of the processor! The fixed
mapping also implies that CAS is not bound to the usage of pages, so heaps
can have arbitrary sizes to avoid (internal) memory fragmentation. The CAS
strategy, however, can only compete with the VAS strategy if both physical
and virtual compaction operations are rarely needed.

4.4.2 Evaluation

To evaluate the performance of the three above mentioned memory allocation
strategies, we have studied their behaviour by running a set of benchmark
programs on the MiG multiprocessor simulator. In particular we are interested
in the amount of memory wasted due to memory fragmentation, and the usage
of the virtual address space. For CAS the number of physical compactions

116 Chapter 4. WYBERT: graph reduction on shared memory

program runtime # tasks mem. usage # garb.coll.
QUEENS 1.4 165 325,121 172
FFT 1.5 15 1,846,985 36
15-PUZZLE 28.0 24,625 28,045,720 24,736
COMP-LAB 1.6 465 1,178,347 476
WAVE 1.7 41 197,072 61

Table 4.9: Benchmark programs; the simulated runtimes in seconds are for
BAS on a 4 processor system; the memory usage is the number of words (32
bits) claimed in the heap.

is also important information. Table 4.9 lists some characteristics of the five
benchmark programs.

Three different versions of the runtime support system have been con
structed, implementing the BAS, VAS and CAS storage allocation schemes.
When tasks run out of heap space, they double their heap size if enough global
memory is available, otherwise the garbage collector is invoked. When a task
finishes, its result is compressed by invoking the garbage collector, after which
the unused heap space is returned to the global pool. In this pilot implemen
tation we have not directly made use of virtual memory hardware, but rather
simulated the allocation schemes with one large chunk of physical memory.
This suffices to collect the statistics about the memory consumption of the
benchmark programs.

BAS

At first, we study the behaviour of the basic allocation scheme of Section 4.4.1,
which always allocates new storage at the right end of the virtual memory space.
Table 4.10 summarises the results of the benchmark programs for the basic
scheme with 1024 word (= 4Kbyte) pages. The column labeled "physical"
lists the maximal amount of heap words in use at any moment in time during
the execution of the application. This number does not include code and
static data that are located in separate segments, nor does it include the space
needed for the page tables, but it does account for the memory fragmentation
inside pages. The second column contains the highest virtual address used by
the application, and it shows that the simplistic basic scheme consumes large
quantities of virtual memory space. The 15-PuzzLE, for example, allocates 200
times as much virtual space as physically needed.

4.4. Memory management for parallel tasks 117

program physical virtual claim rate
QUEENS 77,824 1,443,839 1.04 Mw/s
FIT 1,261,568 3,917,823 2.67 Mw/s
15-PUZZLE 726,016 142,187,519 5.13 Mw/s
COMP-LAB 208,896 4,738,047 2.89 Mw/s
WAVE 49,152 804,863 0.47 Mw/s

Table 4.10: Memory allocation statistics of the BAS strategy.

The ratio between virtual and physical memory usage depends strongly
on the application's input parameters and cannot be used as a meaningful
characteristic in general. Instead we have listed the application's claim rate (in
Mwords/second) that shows how fast virtual memory is consumed. The high
claim rate of the 15-ruzzLE is partly caused by the large number of tasks, which
results in considerable memory fragmentation inside pages. The claim rate
indicates how frequently a compaction of the virtual address space is needed.
In our benchmark, the claim rates are limited to maximal ca. 5 Mwords/second,
so an application can execute in a 1 Gword virtual address space for at least
200 seconds without a compaction on a system with four 20 MIPS processors.
A 16 node processor system will (if the program has enough parallelism)
consume the same virtual space in roughly 50 seconds. A compaction would
take approximately 1 second per Mbyte of physical memory.

VAS

The results of using the VAS strategy are shown in Table 4.11. In comparison
with the basic scheme, the benchmark applications under VAS use slightly
more physical memory, but the virtual memory consumption has been sig
nificantly reduced to within a factor 2 of the application's physical memory
requirement. Therefore an application is unlikely to need an expensive com
paction to compress the virtual memory space, hence, the compaction operation
probably does not have to be implemented at all.

The simulator records the allocation overheads, like managing the list of
free pages, of the memory management schemes. The differences, however,
are marginal and only account for ca. 0.5% of the total execution time in the
usual case that no compactions are needed. Since this is below the accuracy
of the MiG simulator we can not draw any sensible conclusions out of this
number.

118 Chapter 4. WYBERT: graph reduction on shared memory

program physical virtual
QUEENS 80,896 105,471
FFT 1,261,568 1,572,863
15-PUZZLE 849,920 898,047
COMP-LAB 234,496 517,119
WAVE 49,152 73,727

Table 4.11: Performance statistics of the VAS strategy.

CAS

First we have run the benchmark programs under CAS with the same pagesize
(1024 words) as the basic and VAS strategies. The results in Table 4.12 show
the number of compactions to recover from physical memory fragmentation
besides the physical and virtual memory usage

program physical virtual compacts
QUEENS 76,800 159,743 14
FFT 1,261,568 1,703,935 0
15-PUZZLE 775,168 803,839 0
COMP-LAB 241,664 492,543 4
WAVE 49,152 73,727 0

Table 4.12: CAS performance, pagesize 1024 words.

The difference in physical memory usage under CAS in comparison to
VAS is caused by their difference in allocation time, which results in different
task scheduling decisions. The scheduler has a rather large influence on the
amount of physical memory in use since it decides about the shape of the
expanded task tree in core (breadth first vs. depth first). The virtual memory
usage under CAS exceeds the physical memory usage only by a small factor,
just like for VAS. Note that only the QUEENS and coMP-LAB applications perform
compactions to compress the physical memory space.

Next we ran run CAS with a small pagesize of32 words to lower the internal
memory fragmentation The results are depicted in Table 4.13. Some programs
need more physical and virtual memory; only the QUEENS and 15-PUZZLE benefit
from the small pagesize. The increase is caused by the internal overhead to
administrate the linked list of heap blocks. The "wasted" space forces the
large tasks to allocate another block just before finishing their computation,

4.4. Memory management for parallel tasks 119

program physical virtual compacts
QUEENS 49,760 109,759 9
FFT 1,586,176 2,359,295 0
15-PUZZLE 467,072 1,066,655 1
COMP-LAB 245,792 452,671 4
WAVE 60,000 134,143 10

Table 4.13: CAS performance, pagesize 32 words.

and since tasks double their heapsize when running out of storage only a small
fraction is actually used.

The number of compactions listed in the performance results is a worst
case value since the applications have been simulated on a multiprocessor with
the minimum amount of physical memory needed by the specific application.
Adding about 50% extra memory decreases the number of compactions to zero
in all cases. Thus the CAS scheme performs well if the amount of physical
memory in the shared-memory multiprocessor is somewhat larger than the
absolute minimum required by the application.

Stressing the allocation schemes

The benchmark results for VAS and CAS show that the applications can be
efficiently executed in a surprisingly small virtual address space. This is
a consequence of the scheduler traversing the fork-join tree in a depth-first
manner, hence at any moment the allocation strategies only have to satisfy
a logarithmic number of the task allocation constraints (depth of the tree).
To test the limits of the allocation schemes we therefore created a synthetic
application, called !»pine, that unfolds into a degenerated tree: a linear list. The
spine of interior tasks forces the allocation schemes to allocate new tasks at
the right end. The results for a spine of length 512 on a 4 processor system
with 1024 word pages are presented in Table 4.14.

The synthetic spine program allocates virtual address space somewhat
faster than the benchmark applications: a claim rate of 8.6 Mwords/second
versus 5.1 for the 15-PuzzLE. The large difference in virtual address consumption
between the basic scheme and VAS is caused by leaf tasks that have allocated
address space far beyond the growing spine: whenever such a leaf task finishes
its computation, the garbage collector is invoked to compress the result and
the reclaimed space at the right of the spine can be reused for new tasks. The

120 Chapter 4. WYBERT: graph reduction on shared memory

strategy physical virtual comp claim rate
BAS 393,216 17,105,919 - 8.6 Mw/s
VAS 393,216 2,117,631 - 1.1 Mw/s
CAS 393,216 793,599 27 0.4 Mw/s

Table 4.14: Performance statistics of spine.

CAS strategy needs even less virtual address space because of the 27 physical
compactions: they also reclaim the virtual address space that resides in the
currently highest cycle. The need for compactions, however, is probably a
disadvantage because of the additional performance costs for CAS.

The total amount of virtual space claimed by the spine program can be
made arbitrarily large by increasing the length of the spine, but the moderate
claim rate limits the virtual compaction frequency to a low value for all three
memory management strategies.

4.5 Discussion

The WYBERT design for graph reduction on shared memory multiproces~ors
differs considerably from the other parallel implementations of functional
languages on shared memory multiprocessors: <v,G>, AMPGR, and GAML.
First, WYBERT only supports the high-level divide-and-conquer skeleton (the
sandwich annotation) for generating parallel tasks instead of the general spark
and-wait model. This limits the class of applications, but many problems fit
the divide-and-conquer paradigm directly or can be mechanically transformed.
Second, the complication of shared redexes in the global address space is
avoided by the FRATS reduction strategy, which eagerly evaluates shared data
before sparking parallel tasks so shared redexes do not exist. As a consequence
there is no need to lock application nodes in the heap to enforce consistency
in face of updates as in the general case of parallel graph reduction on shared
memory multiprocessors.

A potential disadvantage of FRATS is that it evaluates unneeded expres
sions, but the discussion in Section 4.2 has shown that the problem of superflu
ous computation can be handled by applying a few program transformations.
These transformations were demonstrated to be both successful and necessary:
three out of six benchmark programs did not terminate when executed under
FRATS, whereas all transformed programs ran to completion without any sig
nificant overhead. At the moment these transformations have to be applied by

4.5. Discussion 121

hand, but the application of the important cycle-naming transformation can eas
ily be automated: the compiler can find the super set of (recursive) invocations
of curried functions with unevaluated parameters without any difficulty.

The divide-and-conquer parallelism combined with the FRATS reduction
strategy results in a tree-shaped task graph with independently executing
coarse-grain leaf tasks. Remember that the grain size has to be controlled
explicitly by the programmer. WYBERT takes advantage of the runtime ap
plication behaviour in its storage management policy:

• Garbage collection is performed per leaf task individually instead of hav
ing all processors synchronise when running out of free space. Besides
omitting the need for low-level synchronisation during garbage collec
tion, the to-space of the copying collector can be time-shared between
multiple processors to reduce the fraction of wasted space: 1/(p + 1)
instead of 1/2 when memory is equally divided among p processors.
Note that the maximum task size is limited by the selected size of the
to-space.

The usage of a sequential copying collector for resumed tasks requires
a storage manager that allocates the scattered heap of a task to never
interleave with an ancestor heap. The benchmark results in Section 4.4
for three such storage management schemes show that this can be effi
ciently accomplished with virtual memory hardware provided that the
size of the virtual address space is three times as large as the amount of
physical memory in the multiprocessor.

• The stack for graph reduction is not allocated one per task, but one per
processor. All tasks executing on a processor share the same stack, and
fork tasks leave their context on the processor stack until all children
have terminated. This provides efficient stack-based graph reduction
and fast context switching, but constrains the scheduler since only the
top-most task on the processor stack may execute.

The WYBERT scheduler is not hampered by the ToS constraint as shown
in Section 4.3. The worst case of loosing all parallelism is never ob
served for the benchmark programs: ToS performs on average within
2% of the general list scheduling policies. To effectively use the caches,
the ToS scheduler employs local tasks pools per processor managed in
LIFO order. This causes a depth first traversal of independent subtrees,
scheduling the lastly created task whose context still resides in the cache
first. In addition, the depth first order minimises the resource usage and

122 Chapter 4. WYBERT: graph reduction on shared memory

number of active tasks as well. When running out of work, processors
steal (large) tasks in FIFO order to minimise synchronisation overhead.

Thus each task is provided with a private heap and executes on top of the
shared processor stack in contrast to general spark-and-wait systems where
tasks claim nodes in the shared heap and own a private stack.

Based on the studies presented in this chapter we conclude that WYBERT is
a feasible design. To asses the absolute performance of WYBERT in compari
son to other implementations we have constructed a prototype implementation,
which will be discussed in the following chapters. Note that it is impossible
to give an accurate prediction of the performance by means of a high level
simulation model since the fundamental advantage of avoiding the locking of
graph nodes requires a study at the memory-access level.

Chapter 5

The FAST/FCG compilert

To test out the WYBERT design for parallel graph reduction on shared memory
multiprocessors in practice, considerable effort has been put in the develop
ment of a prototype implementation. The goal of achieving high absolute
performance, not merely perfect speed-ups, requires the usage of a state-of
the-art compiler. This chapter describes the code generator of the FAST/FCG
compiler, which has been designed to meet the requirements of compiled graph
reduction in general and WYBERT in particular. For example, the code gen
erator is targeted towards a copying garbage collector and tags all data values
such that pointers and basic values can be quickly distinguished. To keep
the FAST/FCG compiler as general as possible, most WYBERT specific code
has been hidden in the runtime support system; only the sandwich annotation
is handled as a special case: the compiler generates code to squeeze task
arguments and then call a RTS function to spark the tasks for parallel execu
tion. This approach is possible because of the clear separation between graph
reduction (compiler) and parallelism (RTS) in the WYBERT design.

In comparison to ordinary imperative compilers, a functional language
compiler has to take care of all the extra expressiveness that such a lan
guage offers. A popular method for compiling functional languages is to
make maximal use of existing imperative compiler technology by construct
ing a front end that translates a functional program into imperative code (e.g.,
C) [Schulte91, Peyton Jones92]. Higher order functions and lazy evaluation are
typically handled by support functions that manipulate heap allocated closures
holding a function identifier and some arguments. The quality of the generated
code heavily depends on the front end's strictness analysis that minimises the

tThis chapter represents joint work with Pieter Hartel.

124 Chapter 5. The FAST/FCG compiler

inefficient usage of these closures. Although the "generate-C" method requires
minimal implementation effort, the C-compiler hampers performance of the
resulting object code because it prohibits control over pointers that are stored
in the processor's registers and stack. This control is crucial for two reasons:

• Efficient garbage collection algorithms like two-space copying and gen
eration scavenging require all pointers into the heap to be known to the
garbage collector because objects are moved and pointers have to be
adjusted accordingly.

• Frequently accessed pointers like the pointer to the start of free heap
space should be stored in global registers.

For maximal performance the code generator needs intimate knowledge of
the location of pointers on the calling stack and in registers. Therefore sev
eral functional language compilers have adopted the do-it-yourself method of
generating assembly code directly [Johnsson84, Loogen89, Smetsers91]. This
alternative approach gives total control over all pointers and the processor, but
it goes against the grain of the lazy implementor because now we have to deal
with important low-level issues like register allocation and code scheduling,
while this can be done perfectly well, and probably better, by (part of) an
existing C compiler. Besides implying extra work, this "generate-assembly"
method looses on portability as well, since C compilers are available for almost
any type of computer.

Our compiler combines the advantages of both previous approaches: it
compiles down to a level where it has control over the location of pointers
and then uses part of the C compiler to generate object code. We have made
use of the existing FAST front end [Hartel91a], which includes an advanced
strictness analyser. The front end translates a functional program into a severely
restricted subset of C, which is called Functional C, with standard call-by
value semantics. Since pointers are passed as ordinary parameters, direct
compilation of Functional C results in code that cannot be used in combination
with moving garbage collectors. Therefore the Functional C Code Generator
(FCG) compiles the FAST output further to code (KOALA) that uses an explicit
call stack, which brings all pointers under control of the garbage collector.

source ~ . ~ I I ~ object --+ FAST --+Funcllonal-C--+ FCG -+KOALA--+ translator --+C--+ gee --+ d
program co e

Figure 5 .1: Compiler structure.

5.1. The front end 125

The complete compiler is organised as a pipe-line of four programs:
1 The Fast front end translates functional programs to Functional C, thereby

making the functional expressiveness explicit by inserting calls to support
functions as with the "generate-C" approach.

2 The FCG code generator compiles the FAST output to the KOALA as
sembly frame work that supports features like register allocation and code
scheduling.

3 The third phase translates the KOALA code into low-level C.
4 Finally the GNU gee compiler is used to generate the actual object code.

The reason for translating KOALA into C is twofold: portability and reuse
of existing compiler technology. A disadvantage of this approach is the poor
compilation speed. If this becomes a problem, a future release of the translator
should directly interface with the intermediate code level of the GNU gee
compiler.

Before discussing the FCG code generator in detail in Section 5.4, a short
description of the FAST front end, KOALA assembler, and graph representa
tion is given to introduce the source and target language of the code generator.
The chapter concludes with a comparison of FAST /FCG and other competitive
compilers for lazy functional programming languages.

5.1 The front end

The FAST compiler, which has been developed at Southampton University,
forms the first stage in our compiler pipe-line. It accepts programs written in
a small lazy functional language called Intermediate. Intermediate is similar
to the functional language Miranda, providing higher order functions, lazy
evaluation, and pattern matching in function definitions. Intermediate does not
support Miranda's operator overloading, arbitrary precision numerals, "offside
rule", and module system.

Function definitions in Intermediate have the form of a set of recursive
equations with the possibility to express list pattern matching on function
arguments. [] represents the empty list and the cons operator is denoted by
the colon (:). The language is higher order, curried, and lazy.

The function append in Figure 5.2 gives an example of an Intermediate
program. It uses list pattern matching on its first argument to decide whether
to recurse on the tail of the list, or to return the second argument.

The FAST compiler produces as output equivalent Functional C programs
with call by value semantics. Functional C serves as the source language

126 Chapter 5. The FAST/FCG compiler

append[] ys = ys
append (x:xs) ys x: append xs ys

Figure 5.2: Append in Intermediate.

for the back end and is essentially a subset of C, see the syntax given in
Figure 5.3. The main restrictions are directly related to the functional style of
programming: single assignment of local variables, no global variables, and
if-then-else as the only control structure. Functional C supports only one type,
namely ptr, which may be a basic value or a pointer into the heap, and relies
on the primitive functions to correctly interpret their operands. For example,
add_i operates on integers, while and_b uses booleans. As a consequence all
types in Functional C must have the same size; therefore data structures are
represented as a pointer to a sequence of fields in the heap.

The Functional C code for append as shown in Figure 5.4 has essentially
the same structure as the program in Figure 5.2. There are three important
differences: firstly the implicit laziness of the Intermediate version is now
explicit in the form of the calls to the library functions reduce and vap (for
vector application). The latter builds a suspension of a function (append in this
case) in the heap, and the former evaluates a previously built suspension. Thus
all functions present in Figure 5.4 can safely and efficiently be called with call
by value semantics, as is the usual case in C programs. The second difference
between figures 5.2 and 5.4 is, that pattern matching and other list operations

program

function

decl

body

.. - function1 · · · functionp

.. - ptr id(id 1, · · · , id f) decl { decl body}

.. - ptr idi, · · · , idd;

.. - assignment ; body
I return expr ;
I if (expr) {bodyt} else {bodye}

assignment .. - id= expr

expr .. - id(expr1, · · ·, expre)
id[num] /* array subscription*/
id

Figure 5.3: Functional C.

5.1. The front end

ptr append(x_xs, ys)
ptr x_xs, ys;
{

}

ptr x, xs;

if(null(x_xs)) {
return reduce(ys);

}
else {

x = x_xs[O]; I* head *I
xs = x_xs[l]; /*tail*/
return cons(x,vap(prel_append,xs,ys));

}

ptr prel_append(vap)
ptr vap;
{

return append(reduce(vap[l]),vap[2]);
}

Figure 5.4: Append in Functional C.

127

are now compiled into calls to library routines, such as head, cons, and null
for taking the head of a list, constructing a list, and testing for an empty list
respectively.

The third difference, which is not apparent from the example, is that
statements in Functional C are explicitly ordered, which is indicated by the
sequencing';', while expressions in a lazy functional program are implicitly
ordered by their dependencies. The dependencies that have been discovered
by the compiler do not require interpretation at runtime.

The presence of calls to reduce requires runtime interpretation of the graph
that resides in the heap; the argument of reduce points to a closure in the heap
that has to be evaluated to head normal form. This is a much less efficient way
of evaluating an expression than obeying straight sections of C code. The FAST
compiler makes strenuous attempts to avoid interpreting the graph whenever
possible, so there are far fewer occurrences of reduce than a naive front end
would generate. This streamlines the underlying evaluation mechanism, and
the compiler employs a host of other analyses to further improve the quality
of the generated code.

128 Chapter 5. The FASTIFCG compiler

The FAST compiler generates Functional C code based on the principle
that the callee decides what form its arguments should have. Some functions
require arguments that are evaluated, while other arguments may be passed
as is. The null test for example is strict in its argument, because null needs
to inspect the argument to see whether or not it represents the end of a list.
The function cons on the other hand does not need to know anything about
its arguments as it merely combines them into a new data object. Based
on information about primitive functions, the strictness analysis phase of the
compiler works out that append is strict in x_xs but not strict in ys.

A second principle, which is inherent to lazy evaluation, is that every func
tion when it is actually called (as opposed to being embedded in a suspension),
will return an evaluated object. Append must therefore call reduce explicitly
to guarantee that when returningys, this parameter has actually been evaluated
to head normal form.

The principle that the callee decides on the form of its arguments has an
interesting consequence for the organisation of the generated code. Returning
to Figure 5.4, we see that functions are not embedded directly in a suspension,
but via another "prelude" function, which in the case of append is preLappend.
When a suspension is evaluated, the prelude function first calls reduce for every
strict argument before calling the function proper. Prel_append ensures that the
strict first argument is indeed evaluated before entering append. The non-strict
second argument is merely passed on.

As an optimisation the compiler generates prelude functions specialised
towards each call site, so when it is actually known at compile time that a
particular argument has the required form, no redundant calls to reduce are
made. A function may be partially applied, in which case the prelude function
assumes that the as yet missing arguments will eventually be supplied in
unevaluated form.

5.2 The assembler

The KOALA assembler forms the last stage in the compiler pipe-line. It
serves as the target for the FCG code generator, and is presented first to give
a better understanding of the optimisations employed in the code generator as
described in Section 5.4. KOALA is a high-level "assembly" frame work that
provides a simple abstract machine suitable for graph reduction. It resembles
the G-machine [Johnsson84], and consists of a CPU, an unlimited number of
registers, a stack, and memory. KOALA's instructions are listed in Figure 5.5.

5.2. The assembler

fetch n reg
push id
pop reg
dupn
squeeze nm

store regsrc regaddr

load reg addr reg dest

label lbl
branch iddst

bfalse lbl
jfalse reg lbl
fun name
call fun
return
move idsrc reg

alu op id1 · · · idn reg

129

fetch then-th stacked value into register reg (n ~ 1).
push id on the stack; id refers to a register or constant.
pop the value on top of the stack into register reg.
duplicate the n-th stacked value on top of the stack.
slide down the top n elements of the stack, squeezing out
them below.

store the contents of reg src in memory at the location
specified in reg addr.
load one word at location reg addr from memory into
register reg dest.

instruction label (pseudo instruction).
unconditional branch; iddst is (the contents of) a register
or a label.
pop boolean from the stack and branch to lbl if it is false.
jump if the boolean value in register reg is false.
function entry point (pseudo instruction).
branch to functionfun.
return to caller; pop return address from the stack.
move idsrc to register reg; idsrc refers to a register or
constant.

parameterised n-operand instruction: reg= op id1 · · · idn
op is a basic alu operation: add, mul, etc.
idi is either a constant or a register.

Figure 5.5: KOALA's instruction set.

The KOALA stack is used to implement the function call mechanism:
parameters are passed via the stack and the local state of a function is saved on
the stack when calling a (recursive) function. The return address is passed as
an extra parameter that will be used as branch destination on function return.
This simple calling sequence does not include a frame pointer, so each function
has to squeeze the call stack into a proper state before returning to its caller. If
the result value is returned via a register then this amounts to just popping some
items off the stack; this is cheaper than maintaining a frame pointer, which has
to be saved and restored on function calls. To support easy integration into a
parallel implementation, we have restricted KOALA to one single stack that
combines the multiple stacks found in other abstract reduction machines (see
Section 3.1.3).

130 Chapter 5. The FAST/FCG compiler

For simplicity the heap can only be accessed via basic load and store
instructions that transfer one word between a register and memory. In particular
there are no high level instructions to allocate heap cells because the FCG
code generator will perform certain optimisations on heap bound checks like
inlining and clustering that would make those tests redundant inside the allocate
instruction.

The minimal set of control instructions provides enough functionality to
implement the function call/return sequence and the if-then-else construct
present in Functional C. The remaining instructions that do the actual arithmetic
computations, logical operations, etc. are provided by the alu instruction,
which takes the specific operation as it first argument.

The description of the KOALA instruction set contains no notion of data
types; every item is regarded as some value that fits into a word of the underlying
machine, which corresponds both to Functional C's uniform usage of the ptr
type, and to a simple bit pattern at machine level. The ALU functions decide
how to interpret the bit pattern, as an integer, boolean, floating point number,
etc. The unlimited number of (virtual) registers makes KOALA different from
traditional assemblers.

5.2.1 Implementation

All KOALA instructions that manipulate the stack, like push and pop, can be
expanded straightforwardly into a few kernel instructions (alu + load/store),
which operate with a fixed top-of-stack register. The subset of KOALA that
then remains, matches with the traditional intermediate code of imperative
compilers like the three-address code described in [Aho86). Unfortunately
not many compilers are capable of reading-in some intermediate code file, let
alone that there exists a universally agreed upon format. Therefore we have
taken the detour of translating KOALA back to C, which will then (again) be
translated into some intermediate code by the C compiler itself.

A nuisance with using C as a sophisticated assembly language is that
standard C does not support code labels properly: it forbids the usage of labels
in expressions. This makes it impossible to directly push a (C) label as return
address on the stack (i.e. store it in memory). The work-around is to use one
level of indirection: KOALA labels are encoded as integers, and branches are
translated to indirect gotos:

5.3. Graph representation 131

KOALA C
label lbl lbl:

branch lbl goto lbl;
branch reg dest = reg; goto jump;

jump: switch (dest) {
case 0: goto lbl O• _,
case 1: goto lbl 1.

- I

}

Note that only branches with a register target suffer this indirection. Exam
ination of SPARC assembly code showed that such an indirect branch expands
into 9 machine instructions. Hand patching of indirect to direct jumps in the
assembly code of the function-call intensive nfib benchmark program, reduces
the runtime to 70%. For "real" programs that contain large basic blocks, how
ever, the difference will be considerably less. Functional programs tend to have
longer basic blocks than imperative programs because of the lazy semantics
that cause the construction of complicated graph structures that represent local
definitions in (large) where clauses.

Our KOALA-in-C implementation translates a complete KOALA program
into one single C function. This stresses most C compilers since they usually
generate code for a procedure at once, but in return our method produces
"globally" optimised code. It is, of course, possible to disassemble KOALA
into C style functions, but this would introduce inefficiencies like maintaining
an explicit pointer stack for the garbage collector. Experience with the SUN
and GNU C-compilers has shown that the SUN compiler with optimisations
enabled gives up on large programs due to swapping problems, while the
GNU compiler on the contrary executes faster with optimisations asserted than
without.

The generated object code for the SPARC matches well with the KOALA
source; in particular the GNU C compiler manages to assign KOALA's virtual
registers to the spare processor's physical registers without spilling values to
the C stack.

5.3 Graph representation

Both the graph reducer and the garbage collector operate on (pointers to)
objects allocated in the heap. Their efficiency depends on the encoding of

132 Chapter 5. The FAST/FCG compiler

pointers and objects, hence, it is important that the data representation scheme
supports the different requirements:

garbage collection: The storage management of WYBERT is based on a two
space copying garbage collector [Cheney70]. The collector scans the
call stack for root pointers to live objects in the heap, hence, the collector
has to be able to distinguish between pointers (to objects in the heap)
and other data types: basic data values like integers, return addresses,
etc. Since the collector copies all live objects into the empty semi-space
to compact the graph, the collector has to know the size of each object
and the location of all pointer fields within an object.

graph reduction: The reducer allocates heap objects not only to hold data
structures like lists, but also to hold suspended computations. When
accessing components of heap allocated objects, the reducer must as
sure that the pointer refers to an evaluated object, not to a suspension.
Therefore the reducer has to check for a delayed computation at runtime
whenever it dereferences a pointer in a non-strict context (for the first
time).
The graph reducer assumes that programs are correctly typed, so the re
ducer never has to determine the type of an object. This slight restriction
rules out untyped languages such as LISP and SASL, but saves a large
amount of runtime checks and boosts performance [Appel89].

The requirement of the garbage collector to be able to distinguish pointers
from other data is rather a nuisance since either all data has to be tagged or
the compiler has to generate information about the layout of each and every
object type and stack frame. The latter solution has the advantage that no tag
handling is required, but it complicates matters considerably. For example, the
spineless tagless G-machine [Peyton Jones92) incorporates a special pointer
stack and generates garbage collection information for each object type. For
convenience we have adopted the tag-it-all solution and the performance results
in Section 5.5 show that the tag handling overhead can be kept small.

The pointer/data classification of the garbage collector does not match well
with the reducer's test whether a heap pointer refers to a suspension or a data
object; pointers should be further classified into two categories: constructor
and application pointers. Thus in total three data types should be efficiently
recognizable. To avoid wasting a whole word of memory for a two-bit tag
value, the tag is encoded in the least significant bits of the pointer or data. In
case of pointers, the tag bits come for "free" since heap objects have to be
aligned on four byte boundaries in memory anyway. Another advantage is that

5.3. Graph representation 133

Pointer Type Description
xx:xxl Basic Basic data types like integers and floating point numbers are

encoded in the pointer itself; xx:xx represents the 31-bit value.

xxxl0 Cons xxx00 points to a data Constructor whose first (header) field
provides additional type information:
header type description
yyyOO 1. The list constructor consists of a head and
yyy 1 O 1st a tail field. The tail is the first(!) field and

points to either another list constructor
(case yyyl0) or a vector apply node (case

yyy0J curried
yyy00).
Curried function nodes hold a function
identifier (code pointer)and a number of
arguments that is less than the function's
arity. yyy (= cccas) contains three bit
fields that encode attributes associated
with the curried node:

ccc 20 bits code address
a 5 bits function arity
s 5 bits #arguments in the node

xxx00 YAP xxx00 points to a Vector APply node; the header field is used
to distinguish between two types:
header type description
yyyOO 1. . A function application has two fields: the

app 1cat10n . .
yyy10 first field contams the function part that

points to either another YAP node (case
yyy00) or a curried function (case yyy 10),
while the second field holds the argument
that can be of any type.

yyy0J suspension A suspended function is encoded just like
a curried function, but the number of ar
guments is equal to the function's arity. If
the size field is O then the node represents
a Constant Applicative Form (CAF).

Figure 5.6: Data representation.

134 Chapter 5. The FAST/FCG compiler

the graph reducer does not have to make a memory reference to inspect the tag
as is the case for data representation schemes that encode the tag in the object.

A schematic overview of the data representation of the WYBERT prototype
implementation is presented in Figure 5.6. The graph reducer can easily check
if a data object is in head normal form by inspecting whether the two least
significant bits of the pointer to the object are set to zero or not. The garbage
collector only has to test the lowest bit to recognise a pointer.

All heap objects are encoded as a sequence of tagged words. The size of
the object, which is needed by the copying garbage collector, is included in
the first word of an object that serves as a header field. This header contains
some additional information about application nodes for the graph reducer as
well: the code address of the function's entry point, and the function's arity.
The arity is needed to test whether a curried function is applied to enough
arguments or not. In the latter case a new, but larger, curried function has to be
returned. The size, arity, and code-address are encoded in one field for space
efficiency. Furthermore these headers are encoded as basic values, i.e. the
least significant bit is set to 1, so that the garbage collector will automatically
skip them when scanning moved nodes for pointers into live data.

The data representation scheme has been optimised to avoid the header
field for two important object types: lists and unary function applications.
The first field of an application node points to either another application node
(yyy00) or a curried function node (yyy 10). In both cases the lower tag bits of
the first field serve to distinguish the node from a vector apply node that starts
with a header (yyy0J). Likewise the tail of a list can only point to another list
(yyy 10) or application (yyy00), so it can serve as a header field too; the head of
a list cannot be used for this purpose since it might contain a basic value, which
has the same tag as the header info! As a result the list and unary function
application nodes occupy two words instead of three.

To preserve the sharing of delayed computations, the graph reducer updates
a vector apply node with its result. However, since the tag is encoded in the
pointer to the node, the reducer cannot change the type of the node to, say,
basic value. Therefore the reducer overwrites the first (header) field with the
identity function and stores the result in the second field. To avoid the overhead
of a function call on subsequent uses, the reducer recognises the indirection
nodes especially and simply fetches the previously computed value. The
garbage collector reduces the overhead even further by updating the pointers
to indirection nodes with the result value during the scan of live data nodes.

A second type of indirection node has been used to support the squeeze

5.4. The code generator 135

operation of the FRATS reduction strategy. These normalised indirection
nodes signal objects (data structures and partial function applications) that
have been fully evaluated to normal form. Whenever the squeeze detects such
a normal indirection it returns immediately, while in case of a plain indirection
node the "value" has to be inspected for pointers to yet unevaluated suspension
nodes. If two tasks share a large data structure (e.g., a matrix) the usage
of normalised indirection nodes saves the (second) redundant traversal of the
shared data structure. During ordinary execution the two types of indirection
nodes are handled completely similar.

In comparison with data representation schemes that do not use pointer
bits to encode tags, but always include a tag in an object, our method has two
advantages: First, the graph reducer saves memory references since it does not
have to fetch tags from memory to decide whether an argument has already
been evaluated or not. Secondly, the nodes are encoded as space efficient as
possible, which reduces the number of garbage collections, and improves cache
locality as well. The disadvantages of our scheme are the usage of indirection
nodes and the tagging/masking of basic data values, but the performance results
in Section 5.5 show that the overheads are not significant.

5.4 The code generator

The back end forms the middle stage in the compiler pipe-line, and translates
Functional C code into KOALA assembly. The main objectives of the FCG
code generator are to allocate frequently accessed pointers into registers for
efficiency and to make all heap pointers accessible during garbage collection.
The former requirement amounts to allocating the start-of-free-space and end
of-heap pointers into fixed KOALA registers, while the latter is accomplished
by saving all local state on the KOALA stack on function calls. Since data
values are tagged, the garbage collector can easily identify all root pointers
that reside on the KOALA stack.

In Figure 5. 7 the following three compilation schemes are used to show
how FCG implements the function-call mechanism in KOALA:

K[function] The top-level scheme generates code for a function definition.

'R.[body] p d The 'Return scheme generates code to return the value produced
by body, where dis the current depth of the stack frame, and p

is an association list (symbol table) that maps variables to their
location in the frame.

136

~ :: function-> [instr]
'R :: body-> [instr]
£ :: expr-> [instr]

Chapter 5. The FASTIFCG compiler

(0) K:[ptr fun(id,,- · ·,idn) de] { de] body}] = fun fun_n+ 1;
R[body] [<cont,n>,<id1,n-l>,- · ·,<idn,0>] (n+l)

(1) R[id = expr; body) pd =£[expr] pd
R[body) (<id,d>:p) (d+l)

(2) R[retum expr;J p d =£[expr) pd
£[cont] p (d+l) (stack return address)
squeeze 2 d;
return;

(3) R[if (expr) {bodyt} else {bodye}] pd= t:[expr) pd
bfalse !bl;
R[bodyt] pd
label !bl;
R[bodyeJ pd

(fresh label)

(4) £[fun(expr,, · · ·, exprn)) pd

(5) £[id[n]) pd

(6a) £[id) [· · ·, <id,p>, · · ·] d
(6b) £[id) pd

=£[exprn] pd

£[expr,] p (d+n-1)
£[!bl] p (d+n); (stack fresh label)
call fun_n+ 1;
label lb!;

= t:(field(id,'WORDSIZE*n')] pd

=dup (d-p); (variable)
= push id; (global name)

Figure 5.7: FCG's compilation rules to KOALA instructions.

l'[expr] pd The expression scheme generates code to compute the head
normal form of expr. It puts (a pointer to) the value on top of
the stack.

When calling a function the caller constructs a call-frame by evaluating the
parameter expressions one by one on top of the stack and pushing a return
address. Then a jump is made to the function entry point, see rule (4) in
Figure 5.7. When the callee has computed the result, it fetches the return
address from the stack and removes its call frame from the stack with the
squeeze instruction, while leaving the result on top of the stack, see rule (2).
The presence of the return address as an extra parameter is made explicit in
rule (0) where the identifier cont(inuation) is inserted in the symbol table.

5.4. The code generator 137

According to the syntax of Functional C (Figure 5.3), assignments to
local variables only occur at the beginning of basic blocks. This restriction
guarantees that whenever an assignment is encountered, the call stack contains
only parameters and variables, but no anonymous temporary expressions. Rule
(1), which compiles the assignment statement, therefore simply extends the
call frame by calling the £ scheme and records the location in the association
list (p) for compilation of the remainder. This contrasts with the common
technique of allocating space for all local variables at once at the function
entry. Our method of not allocating complete call frames at the function entry
has several advantages:

• There is no need to initialise variables on function entry to keep the
garbage collector from chasing arbitrary pointers placed on the stack
sometime earlier. Omitting the initialisation might (and will!) lead to a
crash of garbage collectors that move objects since it is possible to find
an old pointer (to a deallocated object) on the stack that now points in
the middle of a new object.

• The size of the stack frames is usually smaller because variables are
allocated on demand. If a function calls another function then only
variables that have already been assigned are saved on the stack and no
space is wasted for variables that will be assigned when control returns.
Furthermore, if the then and else branch of an if-statement use a different
number of variables then the actual number of variables is saved in each
branch when calling a function instead of the maximum number.

• It is easier to optimise a stack without "holes".

Rule (3) in the compilation schemes handles the if-then-else control flow
construct of Functional C; note that both branches use the Return scheme to
compute the function result, hence no additional trailing code is necessary.
The array subscript is syntactic sugar for the field primitive, which loads a
word from the heap at the location specified by the base and offset arguments,
rule (5). Finally, rule (6) handles the evaluation of identifiers. It distinguishes
between two types: variables, which are to be found on the call stack, and
global names that refer to (constant) functions.

The K, n, and £ compilation schemes generate a subset of the KOALA
instruction set: only the pure stack instructions (i.e. the ones that do not have
register operands) are being used. This is a consequence of using Functional
C, which contains no built-in operators, but calls primitive functions instead.
These primitives are directly coded in KOALA and exercise the remainder of
the KOALA instructions (e.g., alu, load, and store).

138 Chapter 5. The FAST/FCG compiler

The usage of the FCG compilation schemes of Figure 5.7 in combination
with the KOALA-to-C translator results in poor runtime performance of the
generated object code. The C compiler, which is used in the final stage in
our compiler pipeline, does not "understand" the meaning of KOALA's stack
instructions and faithfully compiles every push and dup instruction to loads
and stores. The C compiler cannot properly optimise basic blocks by keeping
temporary stacked values in registers. To make full use of the C compiler's
optimisation capabilities, we therefore present some optimisation schemes that
transform the FCG's stack code into a form that is amenable to optimisations
by the C compiler; of great importance are those optimisations that replace
stack instructions by register moves.

To illustrate the effects of the various optimisations, we will use the append
function (Figure 5.4) as an example throughout the remainder of this section.
A quantitative analysis of the various optimisations is provided in Section 5.5.
The unoptimised compiler schemes of Figure 5.7 produce the following code
for append:

fun append_3; dup 2; label L3; push #4;
push LO; dup 4;
call null - 2; push L4;

label LO; bfalse Ll; call field 3;
dup 3; label L4; dup s;
push L2; dup 2;
call reduce - 2; push prel_append;

label L2; dup 2; push LS;
squeeze 2 3; call vap_4;
return; label LS; dup 3;

label Ll; push #0; push L6;
dup 3; call cons 3 · ' push L3; label L6; dup 4 · ' call field 3·

' squeeze 2 s;
return;

5.4.1 Tail call optimisation

Both branches of the if-then-else construct in append end by returning the
value of a function call (reduce, and cons respectively). The corresponding
KOALA code evaluates the function call, reorders the stack frame, and returns
the (unmodified) result. At runtime this results in reduce/cons jumping back
to append, squeezing the call stack, and jumping back to append's caller. The

5.4. The code generator 139

(2a) 'R.[retum fun(expr1, · · ·, exprn);] pd= t:[exprn] pd

t:(expr1] p (d+n-1)
&[cont] p (d+n) (stack return address)
squeeze (n+ 1) d;
branch fun_n+I;

Figure 5.8: FCG compilation rule for tail calls, to be inserted before rule 2 in
Figure 5.7.

sequence of jump-to-caller instructions can be collapsed into one by reordering
the stack frame before the (tail) call, and passing append's return-address on to
the primitive call. This can easily be accomplished by extending the R scheme
to include a special case as shown in Figure 5.8.

The effect of rule (2a) can be seen in the following code; revision bars
indicate the difference with the naive code:

fun append_3; dup 2;
push LO;
branch null 2;

label LO; bfalse Ll;
dup 3;
dup 2;
squeeze 2 3;
branch reduce_2;

label Ll; push #0;
dup 3;
push L3;
call field 3;

label L3; push #4;
dup 4;
push L4;
call field 3;

label L4; dup 5;
dup 2;
push prel_append;
push LS;
call vap_4;

label LS; dup 3;
dup 5;
squeeze 3 5;
branch cons_3;

5.4.2 Compile-time stack simulation

To improve the KOALA code by introducing registers we need to simulate
the stack at compile time. Then it will be possible to replace matching push
and pop/fetch/dup instructions by (register) moves inside basic blocks. Basic
blocks are delimited by fun, call, branch, and return instructions.

In contrast with the tail-call optimisation, we do not enhance the basic
FCG compilation schemes, but provide an Assembly scheme that will be used
as an optimising filter on KOALA code. This approach has the advantage that
it is much easier to pass the stack on to the following instruction than in the
£ scheme where we would need an attribute grammar to do so. Besides the

140 Chapter 5. The FASTIFCG compiler

stack :: [value]
A : : [instr] -+ stack -+ [stack] -+ [instr]

A[fun name; code] SE = label name; A[code] £ (S:E)
A[push id; code) SE = A[code] (id:S) E
A(pop reg; code) (v1 :S) E = move v1 reg; A[code] SE
A[pop reg; code) £ E = pop reg; A[code] £ E
A[dup n; code] (v1:· · ·:Vn:S) E = move Vn reg,,,".; A[code) (reg,,e":v1:· · ·:vn:S) E
A[dup n; code] SE = fetch (n-#S} reg,,ew; A[code] (regnew:S) E
A[squeeze nm; code] (v1:· · -:vn+m:S) E = A[code] (v1:· · ·:vn:S) E
A[squeeze nm; code] (v1 :· · -:vn:S) E = squeeze O (m-#S}; A[code] (v1:· · -:vn :£) E
A[squeeze nm; code] SE = squeeze (n-#S} m; A[code] SE
A[bfalse lbl; code) (v1 :S) E = jfalse v1 lbl; A[code] S (S:E)
A[bfalse lbl; code) £ E = bfalse lbl; A[code] £ (c:E)
A[branchftm; code] (v1 :· · ·:v. :c:)(S' :E) = push v,; ···push v1; branchftm; A[code] S' E
A[calljun; code] (v1:· · ·:v,:c:) E = pushv,; · · · pushv1; branchjun; A[code] c: E
A[retum; code) (v1 :v2:c:) (S' :E) = push v2; branch v1; A[code] S' E
A[retum;code) (v1:£)(S1 :E) =branchv1;A[code) S' E
A[Instr; code) S E = Instr; A[code] S E
A[c:] s E = C

Figure 5.9: Compile-time stack optimisation.

instruction stream and the (simulated) stack the A scheme in Figure 5.9 takes
an environment argument to record the lexical scope.

When translating the dup instruction the A scheme first checks whether
the referenced stack item is present in the simulated stack or not. In the latter
case a fetch instruction is issued to load the value from the physical stack into
a fresh (virtual) KOALA register (regnew), Otherwise the value is copied into
a fresh register to avoid aliasing problems (see next section). In general the
A scheme contains multiple rules for one KOALA instruction depending on
whether the instructions arguments are present in the simulated stack or not.

An important invariant of the calling sequence in the A scheme is that
parameters are passed on the physical KOALA stack. Therefore the A scheme
flushes the simulated stack to the KOALA stack with a sequence of push
instructions when calling a function (see the rules for branch and call). The
same holds for returning a result.

The Environment argument is used to handle the if-then-else construct of
Functional C. Since the syntax of Functional C guarantees that each conditional
brancp terminates with a return statement, the lexical scope structure is a simple
tree. The FCG compilation schemes traverse this tree in a fixed order (i.e. then
before else), hence, we can record the lexical scopes with a stack. When the

5.4. The code generator 141

A scheme enters the then branch, it stacks the current (simulated) stack for
the else branch; the beginning of the then branch is marked by the bfalse
instruction. When the A scheme enters the else branch it pops the saved stack
from the environment argument; the end of the then part is marked by a return
or branch.

The A scheme uses the K, scheme from Figure 5.7 (augmented with Fig
ure 5.8) as follows: A [K [prog]] cc. Compiling the append example results
in registers being used, but the net effect is zero since the basic blocks do not
contain any real work; just setting up stack frames to call functions does not
benefit from register optimisations when parameters are passed on the stack.
The new append code does not contain revision bars since it has changed too
much:

label append; fetch 2 RO; label L3; fetch 3 R4;
push RO; push #4;
push LO; push R4;
branch null; push L4;

label LO; bfalse Ll; branch field;
fetch 3 Rl; label L4; fetch s RS;
fetch 1 R2; fetch 1 R6;
squeeze 0 3; push RS;
push Rl; push R6;
push R2; push prel_append;
branch reduce; push LS;

label Ll; fetch 2 R3; branch vap;
push #0; label LS; fetch 3 R7;
push R3; fetch 4 RB;
push L3; squeeze 1 s;
branch field; push R7;

push RB;
branch cons;

142 Chapter 5. The FAST/FCG compiler

5.4.3 Inlining of primitive functions

A first solution to make the simulated stack of the A scheme more effective, is
to enlarge the basic blocks by inlining some of the primitive functions. Many
of these primitives map to a single alu instruction, if the operands are available
in registers. The following example shows the typical coding style of such
primitives for the null and field primitives:

fun nulL2;
pop regre,;
pop regus,;
alu eq regus, NIL reg,es,;
push regies,;
branch reg,,,;

fun field-3;
pop reg,e,;
pop regbase;
pop regaff;
alu add regbase regaff regadd,-;
load regaddr regval;
push reg ... 1;
branch regre,;

Figure 5.10: Null and field primitives in KOALA.

Inlining the primitive code in the KOALA instruction stream directly does
not work for two reasons. Firstly, registers used in the primitives have to
be renamed to avoid name clashes (a conversion). Secondly, the A scheme
interprets the primitive 's trailing branch instruction as a basic block marker,
and flushes the Simulated stack to memory, which reduces the benefits of
the compile-time stack simulation. Therefore the additional inlining rules in
Figure 5.11 use the a-converted-body() function that renames registers and
strips the fun pseudo, the first pop and the last branch instruction of the
primitive code. The second rule handles the tail call of a primitive function.

A(push lbl; call inline_prim; label lbl; code) SE
A[a-converted-body(inline_prim); code) S E

A[dup c; squeeze nm; branch inline_prim; code] S E
A[a-converted-body(inline_prim);

dup (c + 1); squeeze 2 (m + n - 1); return; code] SE

Figure 5 .11: Rules for inlining primitive functions, to be added to those in
Figure 5.9.

The append function greatly benefits from inlining the null and field prim
itives. In reality all of the simple primitives are inlined, but this is not shown
here for brevity.

5.4. The code generator

label append;fetch 2 RO;
move RO RlO;

label Ll;

alu eq RlO NIL Rll;
jfalse Rll Ll;
fetch 3 Rl;
fetch 1 R2;
squeeze O 3;
push Rl;
push R2;
branch reduce;
fetch 2 R3;
move R3 R20;
move #0 R21;
alu add R20 R21 R22;
load R22 R23;
fetch 2 R4;
move R4 R30;
move #4 R31;

143

alu add R30 R31 R32;
load R32 R33;
fetch 3 RS;
move R33 R6;
push R23;
push R33;
push RS;
push R6;
push prel_append;
push LS;
branch vap;

label LS;fetch 3 R7;
fetch 4 RB;
squeeze 1 5;
push R7;
push RB;
branch cons;

The apparent redundant data movement between registers will be handled by
the KOALA assembler (i.e. the C compiler), and is of no concern for the
A scheme. The basic blocks can be enlarged even further by inlining user
functions. this could be done by the A scheme (two passes), but the FAST
front end is already capable of inlining user functions.

5.4.4 Parameters passed in registers

Now that we have used the simulated A stack to optimise stack instructions
inside basic blocks, we would like to extend the scheme to optimise parameter
passing between functions as well. This is attractive since the callee can use its
arguments directly from registers instead of loading them from the (physical)
stack first. Such register parameters still have to be saved on the stack if the
callee itself calls another function, except when it makes a tail call (:;:::j 25%
of all calls). Quite often functions terminate by replying a value directly, in
which case the parameters do not have to be saved at all. In general passing
parameters in registers extends the basic blocks across function calls until the
first sub function call and thereby provides more opportunity to optimise stack
instructions.

The calling sequence will be changed as follows: parameters are passed
in "global" registers, while the caller will save its internal state (arguments +
locals) on the stack. When the caller resumes execution it will not restore the
internal state in registers immediately, but rather fetch values from the stack
on demand. This lazy scheme is advantageous after function calls if not all of

144 Chapter 5. The FAST/FCG compiler

A[fun namen; code) SE = label name;
A[code] (param1:· · ·:paramn:c:) (S:E)

A[branchfun_n; code] (v1:· · •:vn:c:) (S':E) = move v1 param1; · · · ; move Vn paramn;
branchfun;
A[code] s' E

A[branchfun_n; code] (v1:· · •:v,:c:) (S':E) = move Vt paramt; · · ·; movev. param,;
pop param,+1; ···;pop paramn;
branch fun;

A[retum; code] (v1 :v2:c:) (S' :E)
A[retum; code] (v1:c:) (S':E)

A[code] S' E
= push VnHS; ... ; push Vn+ t;

move Vt param1; ···;move Vn paramn;
branchfun;
A[code) (reply:c:) E

= move Vt param1; •••;move v. param,;
pop param,+ 1 ; · · ·; pop paramn;
branchfun;
A[code] (reply:c:) E

= move v2 reply; branch v1; A[code) S1 E
= pop reply; branch Vt; A[code] S' E

Figure 5 .12: Calling sequence with parameter registers, replaces corresponding
rules in Figure 5.9.

the internal state is used. A function result is also passed in a global register
instead of on the stack.

Figure 5.12 implements the new calling sequence and replaces the fun,
branch, call, and return rules in the previous A schemes. On function entry
the simulated stack is no longer empty, but is loaded with the global parameters.
On function exit, the result is moved to the reply register and control is passed
back to the caller. A tail call (i.e. a branch instruction) is translated to a
sequence of instructions that moves the call parameters (from the simulated
stack) into the global paraffli registers; if not all parameters reside on the
simulated stack then the remainder has to be fetched from the physical stack
with pop instructions. Making a function call is slightly more complicated
than the tail call case: if all parameters reside on the simulated stack then the
additional stacked values (i.e. locals) have to be saved on the physical stack
before transferring the parameters to their global registers, else the lacking
parameters have to be fetched from the physical stack as with the tail call.
The code after the call proceeds with a simulated stack that contains just the
result value. If a reference is then made to the saved state, the A scheme will
automatically fetch it from the physical stack. Now the code for append looks
much better:

5.4. The code generator

label append;move param2 RO;
move RO RIO;

label Ll;

alu eq RlO NIL Rll;
j false Rll Ll;
move param3 Rl;
move paraml R2;
move R2 paraml;
move Rl param2;
branch reduce;
move param2 R3;
move R3 R20;
move #0 R21;
alu add R20 R21 R22;label
load R22 R23;
move param2 R4;
move R4 R30;
move #4 R31;
alu add R30 R31 R32;
load R32 R33;

5.4.5 Life-time analysis

move param3 R5;
move R33 R6;
push param3;
push param2;
push paraml;
push R23;
push R33;
move L5 paraml;

145

move prel_apnd param2;
move R6 param3;
move R5 param4;
branch vap;

L5;fetch 2 R7;
fetch 3 RB;
squeeze O 5;
move RB paraml;
move R7 param2;
move reply param3;
branch cons;

The above calling sequence can be improved on two major points:

1. If after a function call the KOALA code makes multiple references to
the same stack location, the A scheme will generate the same number
of fetch instructions since the simulated stack is empty. One fetch
instruction and some register moves provide the same functionality.

2. When calling a function, the A scheme blindly saves all local state on
the physical stack, but often some stack locations will not be referenced
in the remainder of the code. See for example the previous append code
where after the vap call only two of the five saved values are being used.

Redundant loads from the stack can be avoided by adding another argument to
the A scheme that records the status of the physical stack: if an item is fetched
from the stack then its register is remembered.
The avoidance of saving dead variables is more difficult. Fortunately, the FAST
front end has the ability to output pseudo function calls for a reference counting
garbage collector, where they are used to increment or decrement the reference
count of objects. The A scheme can take advantage of the increment/decrement
pseudo functions by maintaining a life count with each item on the stack. When
calling a function, only those stack items with a positive count have to be saved

146 Chapter 5. The FAST/FCG compiler

on the physical stack. A slight complication with this scheme is that the one
to-one correspondence between FCG's simulated stack locations and the actual
physical location can no longer be maintained since we must not create holes
in the stack, but in return we can reuse the stack locations of variables that
were saved before and have died since the last function call.

We have constructed a new Optimal scheme that incorporates both im
provements mentioned above. Since this O scheme is a straightforward ex
tension of the previous A scheme, we have not provided a listing. The final
append code no longer saves the unused locals when calling vap:

label append;move param2 RO;
move RO RlO;

label Ll;

alu eq RlO NIL Rll;
jfalse Rll Ll;
move param3 Rl;
move paraml R2;
move R2 paraml;
move Rl param2;
branch reduce;
move param2 R3;
move R3 R20;
move #0 R21;
alu add R20 R21 R22;
load R22 R23;
move param2 R4;
move R4 R30;
move #4 R31;
alu add R30 R31 R32;

label

load R32 R33;
move param3 RS;
move R33 R6;
push paraml;
push R23;
move LS paraml;
move prel_apnd param2;
move R6 param3;
move RS param4;
branch vap;

LS;fetch 1 R7;
fetch 2 RS;
squeeze O 2;
move RS paraml;
move R7 param2;
move reply param3;
branch cons;

If the above KOALA code is translated into C and fed to the GNU gee
compiler, all redundant register moves are eliminated from the append code.
The generated assembly code for a SPARC processor is given below:

5.5. Performance 147

_append: cmp %12,10
bne Ll

!param2 ==NIL?

11:

LS:

nop
b reduce
mov %10,%12
ld [%12 J, %14
st %13,(%11]
st %14,(%11-4]
add % 11 , - 8 , % 11
mov %10,%14
ld [%12+4],%10
sethi %hi(_prel_apnd),%12
or %lo(_prel_apnd),%12,%12
b _vap
mov 20,%13
ld [%11+8],%12
ld [%11+4 J, %13
add %11,8,%11
b cons
mov %14,%10

!branch delay slot
!call reduce
!move param3 param2
!load head-field of param2
!push paraml
!push R23
!adjust stack pointer
!move param3 param4
!load tail-field of param2
!load address of
!function _prel_apnd
!call _vap, use delay slot
!put return addr in paraml
!fetch 2 pararnl
!fetch 1 param2
!squeeze 0 2
!call _cons, use delay slot
!move reply pararn3

5.5 Performance

To assess the runtime performance effects of the optimisations described in
the previous sectiori, we have run a set of benchmark programs several times
on a SUN 4/690. The majority of programs are sequential versions of the
benchmark programs of Chapter 4.5: FFT, WANG, 15-PUZZLE, SCHED, COMP-LAB, and
WAVE (see Table 4.1 on page 85). In addition the following three other serious
applications have been used:

program
SOLID

TYPE CHECK

TRANSFORM

#lines
605

360

834

description
Point membership classification algorithm of solid
modeling library for computational geometry
[Davy92].
Polymorphic type checking of a set of function
definitions and printing of the type signatures
[Peyton Jones87b, Chapter 9].
Transformation of 9 programs represented as syn
chronous process networks into master/slave style
parallel programs [Vree92].

148 Chapter 5. The FAST/FCG compiler

naive +inline +stack +tailc +params +life/death
FFT 2.3 1.7 1.2 1.1 1.0 1.0
WANG 8.8 6.3 4.9 4.6 4.1 4.0
15-PUZZLE 36.9 21.9 15.6 14.5 12.1 11.9
SCHED 34.9 23.8 16.0 13.5 12.0 11.4
COMP-LAB 6.9 4.6 3.2 3.0 2.7 2.5
WAVE 3.9 2.4 1.7 1.6 1.4 1.3
SOLID 38.5 24.7 16.5 15.7 14.7 14.0
TYPE CHECK 45.8 28.4 19.0 16.4 14.0 13.2
TRANSFORM -1- -1- 3.9 3.5 3.2 3.2

-1- GNU compiler runs out of memory.

Table 5.1: Execution time [sec] under various compiler optimisations.

The programs have been timed on a UNIX system using /bin/time, taking
the sum of user and system time as the total execution time. Each program has
been run 10 times in a row, on a quiet system, taking the best execution time
as shown in Table 5.1.

The column marked naive contains the results for code that was produced
by FCG with the straightforward K, R, and£ schemes from Figure 5.7. The
following columns list the results for adding the optimisations of the previous
section one by one to the naive version: inlining of primitives, stack simu
lation, tail call optimisation, parameter registers, and life-time analysis. For
example, the +t column presents the results for FCG with the basic schemes,
the rule to inline primitives (Figure 5 .11), the stack simulation of the A scheme
(Figure 5.9), and the additional rule for tail calls (Figure 5.8).

As can be seen from the results, the optimisations improve the performance
of the compiled code considerably. The largest difference is reached for the
TYPECHECK program: the optimal (+life/death) version runs 3.5 times as fast as
the naive version. The WANG program shows the smallest improvement under
the various optimisations: only a factor 2.2. As is apparent from the results, the
inlining of the primitive functions and stack optimisation are of vital importance
for generating quality code, while the additional exploitation of registers has a
surprisingly low effect of less than 25% performance increase. Note, however,
that it is rather difficult to assess the effects of individual optimisations by
comparing two columns in Table 5 .1; the various optimisations effect each
other, for example, the results of simulating the argument stack at compile
time heavily depend on the inlining of primitive operations, otherwise all
arguments have to be passed via the stack and nothing is gained at all.

5.5. Performance 149

To judge the absolute performance of the code generated by FCG, we
have made a comparison with several other state-of-the-art lazy functional
language compilers: the Concurrent Clean compiler from Nijmegen Univer
sity [Nocker91a, Smetsers91], the LML compiler developed at Chalmers Uni
versity [Augustsson89a, Augustsson90], the Haskell compilers of Chalmers
University and Glasgow University, and the original code generator for the
FAST compiler [Hartel91b]. To avoid the tedious and error prone work of
converting the Miranda programs into the other languages the FAST front end
has been adapted to either produce an executable or, depending on a compiler
switch, a Haskell, LML, or Clean source program. Considerable effort has been

· put in generating "equivalent" programs for those languages, see [Hartel93].

Table 5.2 lists the execution times of the benchmark programs compiled
by each of the six compilers. All figures are the minimum user+system time of
10 runs of the executable with 16 Mbyte heap space on a quiet UNIX system.

language Clean FAST FCG LML Haskell
compiler Chalmers Glasgow
version 0.8.1 29 3 0.998 0.998 0.10

Compilation speed in lines per minute real time
minimum * 354 74 13 126 69 29
maximum * 1113 191 173 291 216 99

Execution time in seconds
FFT 10.8 2.0 * 1.0 2.2 5.1 4.1
WANG * 2.9 9.9 4.1 4.5 4.6 3.3
15-PUZZLE 11.3 40.5 11.8 16.2 13.3 * 9.5
SCHED 18.8 -2- *11.6 17.2 18.2 11.4
COMP-LAB * 2.4 6.3 2.6 2.9 3.8 3.2
WAVE 9.4 3.7 * 1.3 7.8 17.8 12.9
SOLID 17.1 28.8 *14.3 26.7 21.3 -1-
TYPECHECK *12.5 33.9 13.6 15.4 16.2 13.1
TRANSFORM 4.0 6.9 * 3.1 3.3 3.4 3.7

* Best execution time.
-1- segmentation fault in the compiler.
-2- runs out of heap space.

Table 5.2: Benchmark results showing execution times in seconds for runs
with 16Mb of heap space on a SUN 4/690 with 64Mb of real memory and
64Kb cache.

150 Chapter 5. The FAST/FCG compiler

In addition the compilation speed is reported in lines per minute real time; for
each compiler the minimum and maximum speed is reported, as found over
the whole range of benchmark programs. Each row bears one asterisk, which
marks the best result for that particular row. This shows that it depends to
some extent on the application which compiler generates the fastest code.

The comparison between FCG and FAST is especially interesting since
both compilers use the same front end that generates Functional C. In contrast to
FCG, the FAST compiler directly feeds Functional C to the GNU C-compiler;
to achieve acceptable performance, a header file is included that contains
macro definitions for simple primitives like integer addition, null test, etc. The
benchmark results show that the unoptimised FCG version (column naive in

. Table 5.1) generates code that runs at similar speed as programs compiled by
FAST, while the optimised FCG compiler (Table 5.2) generates code that runs
two to three times as fast as FAST. This is a rather surprising result since FAST
does not reclaim garbage and FCG generates extra code to manipulate tag bits
that are present in each data value to support garbage collection. Apparently
this overhead is of no great importance since FCG also outperforms the other
state-of-the-art compilers on most programs.

The exceptional performance of FCG (and FAST) on the FFT and WAVE

programs is caused by the efficient array support through built-in primitives.
Although both applications use the Haskell style arrays [Hudak92], the LML
and Haskell(!) implementations just outperform the Clean programs that use
lazy lists, but do not match performance of the FCG array primitives. For the
other benchmark applications, which do not use arrays, the difference in code
quality generated by various compilers is much smaller.

The FAST, FCG and Glasgow Haskell compilers generate C programs,
while the remaining compilers generate assembly directly. It is interesting to
note that using C as a portable high-level assembler does not mean generating
bad code. Considerable optimisation and tuning, however, is required to pro
duce C programs that the C compiler properly understands. Apparently the
Glasgow Haskell compiler has not reached the level of sophisticated optimi
sations presented in Section 5.4 because of the complexity of the full Haskell
language. Unfortunately, using a C compiler instead of an assembler to pro
duce object code increases compilation time significantly. This is especially
true for the FCG compiler that generates one C function containing all "as
sembly" code. Note that this approach also rules out separate compilation.
The Clean compiler generating native assembly is much faster than all other
compilers.

5.6. Conclusions 151

5.6 Conclusions

We have built an efficient, portable, functional language compiler that supports
moving garbage collectors with minimal effort. This has been accomplished
by reusing large parts of existing compiler technology: the FAST front end for
making lazy evaluation explicit, and the C compiler for generating optimised
code.

The FCG code generator consists of two passes that are described with
simple transformation schemes. The first basic scheme describes a recursive
descent parser that generates code for a pure stack machine. This code is
optimised by the second scheme that makes a linear scan over the code to
combine matching stack instructions into register based equivalents. Both
schemes can be combined into one attribute grammar, but that would make
the optimisation scheme far more difficult to understand since the inherently
sequential state information flow has to be propagated indirectly through the
parse tree.

The performance results of a benchmark of functional programs, show that
the optimisations have a large effect; the difference between naive code and
the optimised version ranges between a factor 2.2 and 3.4. The comparison
between the FAST compiler, which does not perform garbage collection, and
FCG, which includes a copying collector, shows that FCG outperforms FAST
on all benchmark programs. The benchmark results of the Clean, LML, and
Haskell state-of-the-art compilers show that FCG generates quality code that
often performs best, especially if arrays are being used, but at the price of low
compilation speed.

Because of the clear separation between graph reduction and parallelism
in the WYBERT design and the tagged data representation of graph nodes, the
FCG compiler can be used without change to generate code for execution on
a parallel machine.

Chapter 6

Experimental resultst

This chapter provides measurements of the performance of the integrated
WYBERT system on real hardware. The performance results of a set of
benchmark programs is used to asses the significance of the advantages of
the WYBERT approach. For example a comparison with a standard parallel
implementation technique shows the performance gain obtained by not locking
nodes in shared memory during ordinary graph reduction. The effects of
the special resource management policies of WYBERT are analysed by a
performance monitoring tool that provides a detailed cost break down of the
execution time of an application.

Benchmark programs written in Miranda and annotated with the sand
wich construct are compiled with the FAST/FCG compiler (Chapter 5) and
linked with a straightforward implementation of the runtime support system
as discussed in Chapter 4. Then the object code is down-loaded for execution
onto a Motorola HYPERmodule that consists of four MC88100 RISC proces
sors, equipped with 32Kbyte caches each, connected to 64 Mbytes of shared
memory (see Figure 6.1). The combination of a state-of-the-art compiler with
advanced hardware gives us today's fastest parallel implementation of a lazy
functional language as already stated in the survey of Chapter 3.

A number of experiments have been conducted to study the individual
impact in the WYBERT system of the FRATS reduction strategy, LIFO/FIFO
scheduling, storage management (BAS vs. VAS), and garbage collection. To
easily compare the various design alternatives, these experiments work with
small input sets for the following seven benchmark programs: NFJB, QUEENS,
DET, WANG, 15-ruzzLE, COMP-LAB, and wAvE; for a short description see Table 4.1

tThis chapter represents joint work with Henk Muller.

154 Chapter 6. Experimental results

VME bus

r-----_-_-_-_-_-_-_-~---_-_-_-___ 7

Ethernet
board

boot,
I/0,
&

monitor
processor

(MC68020)

Ethernet to host computer

1 Monitor
I/0

64 Mbyte Memory

MC88100

_____ _j

HYPERmodule

Figure 6.1: Hardware configuration: VME crate with ethernet board, 1/0
controller, and HYPERmodule.

on page 85. At the end of this chapter, a set of large input parameters is used
to show the behaviour of these benchmark programs in a realistic setting by
giving a detailed break down of the execution costs. Table 6.1 lists the key
properties of the benchmark programs for both parameter sets.

Simple divide-and-conquer applications like NFIB and QUEENS unfold into a
plain tree shaped task structure. Multi pass applications generate a chain of

small large
task structure av par node claim av par node claim

NFIB tree 75.9 0.011 Mb 198.9 0.03 Mb
QUEENS tree 69.2 1.3 Mb 97.7 37Mb
DET 2-d spine 51.5 8.0Mb 89.8 750Mb
WANG chain, length 2 11.6 11.7 Mb 11.9 67Mb
15-PUZZLE chain, length 3 29.7 18.3 Mb 49.7 318 Mb
COMP-LAB chain, length 2 9.4 5.6Mb 14.5 72Mb
WAVE chain, length n 5.6 23.3 Mb 5.0 211 Mb

Table 6.1: Benchmark properties for small and large input sets.

6.1. FRATS reduction strategy 155

successive unfolding/folding task trees; WANG, 15-PuzzLE, and COMP-LAB generate
a chain of fixed length, while WAVE generates a chain of length "number-of
iterations". The average parallelism in Table 6.1 indicates the useful paral
lelism of an application; it is the maximum speed-up that can be achieved with
an unlimited number of processors [Eager89]. The amount of space allocated
for graph nodes in the heap is given in the columns marked "node claim".

6.1 FRATS reduction strategy

The FRATS reduction strategy for the sandwich annotation squeezes shared
redexes out before sparking tasks for parallel execution. As a consequence
tasks do not share redexes in the heap at runtime, so locking of graph nodes
is unnecessary. Garbage can be collected per task and reduction stacks can be
merged efficient! y into one stack per processor (see Chapter 4). A disadvantage
of FRATS is that the eager evaluation of potentially shared expressions might
result in superfluous, or even non terminating, computations. This problem
is solved by applying program transformations as shown in Section 4.2. The
current set of benchmark programs has been fine-tuned* and therefore incur
neglectable squeeze overhead as will be shown in Section 6.5.4.

The SIS simulator used in Section 4.2 does not take low-level details into
account, and thus cannot determine WYBERT's benefit of not locking each
and every application node during graph reduction. To measure the costs of
locking, we have constructed another parallel implementation of the sandwich
annotation based on the common spark-and-wait model. This implementation
will be described in the next section, and is used in Section 6.1.2 to quantify the
advantage of FRATS over parallel implementation methods of lazy functional
languages that use locking.

6.1.1 Spark-and-wait implementation

The general spark-and-wait model for generating and managing parallel tasks
has been described in Section 3.1. l. Instead of rewriting the complete set of
benchmarks to replace the sandwich annotation by spark-constructs, the spark
and-wait model is implemented as another library of runtime support functions.
The spark-and-wait implementation of the sandwich construct does not squeeze
task arguments, but protects application nodes of concurrent access through
the xmem-instruction of the MC88100 processor; whenever the graph reducer

*Thanks to Rutger Hofman.

156 Chapter 6. Experimental results

needs to evaluate a delayed computation it atomically exchanges the function
pointer in the suspension node with a pointer to the wait function. If another
reducer tries to evaluate the same suspension node, it automatically invokes
this wait function, which suspends the current task and returns control to the
scheduler. Instead of placing the suspended task on a waiting list associated
with the suspension node, the spark-and-wait scheduler employs a polling
mechanism: whenever the scheduler looks for work it first checks whether or
not the top-of-stack task has become unblocked because the suspension node
has been overwritten by an indirection node holding the requested value.

Since the task expressions are not specially marked, the graph reducer
automatically invokes the execution of a not yet evaluated task whenever it
needs that task's value, i.e. the evaluate-and-die model is being used (see
Section 3.1.5). When handing out a task for execution, the spark-and-wait
scheduler first removes tasks from the ready pool whose corresponding graph
node has already been overwritten to avoid initialisation overhead. Often the
task value has already been computed (by the parent), or some reducer has
already started the evaluation; in the first case the graph node is overwritten
by an indirection node, while in the latter case the node is overwritten by the
wait-function description. Because of the difference in task synchronisation
and the presence of shared redexes, spark-and-wait programs running under
control of the standard ToS scheduler can deadlock; the task dependency graph
is not restricted to a tree as in case of WYBERT, but has an arbitrary acyclic
shape. Therefore the ToS scheduler of WYBERT has been adapted to select a
ready task somewhere in the stack, and to copy the context on top of the stack
before resuming execution. The copy costs are small since measurements have
shown that the context of a task is between 8 and 163 words for the benchmark
programs.

Time has prohibited to implement a global garbage collector for the spark
and-wait implementation, so all experiments have been arranged to run without
a single collect for both the sandwich and spark-and-wait implementation.

6.1.2 Sandwich versus spark-and-wait

The benchmark programs with small input sets have been used to compare
WYBERT, which squeezes shared redexes in advance, with the spark-and-wait
implementation that locks shared redexes as part of the graph reduction process.
The measurements reported in Table 6.2 give the ratio of execution times of the
WYBERT implementation over the spark-and-wait implementation. It shows

6.1. FRATS reduction strategy 157

#processors
1 2 3 4

NFIB 1.00 0.99 1.01 0.99
QUEENS 1.00 1.00 0.99 1.00
DET 0.87 0.87 0.79 0.74
WANG 0.86 0.75 0.68 0.58
15-PUZZLE 0.93 0.89 0.84 0.78
COMP-LAB 0.96 0.82 0.76 0.75
WAVE 0.93 0.64 0.57 0.49

Table 6.2: The ratio of WYBERT versus spark-and-wait execution times.

that for programs that rarely use lazy evaluation, like NFIB and QUEENS, the
small number of xmem instructions has only a small impact on the difference
in execution time of both implementations (i.e. a ratio of 1.0). However,
for large applications like WANG and 15-PuzzLE, which often invoke suspended
computations stored in the heap, the avoidance of locking is substantial. For
example, the WAVE program under WYBERT takes half the execution time of
its spark-and-wait counterpart on the full HYPERmodule.

When increasing the number of processors, the gain in performance of
WYBERT by eliminating locking overhead increases in comparison to the
spark-and-wait implementation. The locking of graph nodes in case of spark
and-wait on a multiple processor system does not only affect the performance
of the local processor as they execute additional instructions, but influences
the others as well. Each xmem instruction writes the new value through the
cache resulting in additional contention on the shared bus. Furthermore all
caches have to "snoop" this write to maintain cache coherency and keep their
cached data consistent. Whenever a cache snoops a memory transaction it
stalls the processor read or write since it cannot look up the status of two
addresses in parallel, hence, a single xmem instruction effectively slows down
each processor in the shared-memory machine. The slow down is not a simple
function of the number of executed xmem instructions, since the effect of
contention on the memory bus and the impact of snooping depend on the exact
state of the complete system when an xmem is executed. Therefore we have
not listed the number of xmem instructions per processor, but only the overall
effect on execution time. The spark-and-wait implementation does suffer from
the slow down caused by xmem instructions as can be seen in the measurements
as given in Table 6.2. For example, WYBERT performs 22% better than spark-

158 Chapter 6. Experimental results

4~---~-----.-----,

3.5

3

2.5

2

1.5

1

QUEENS

Sandwich-+
Spark-and-wait -+--

3.5

3

2.5

2

15-PUZZLE

Sandwich --
Spark-and-wait -+--

0.5_ ___ .__ __ __, ___ ~ 0.5_ __ __,.__ __ ~---~

1 2 3 4 1 2 3 4
Number of processors Number of processors

Figure 6.2: Speed-up curves for WYBERT and spark-and-wait.

and-wait for the 15-PuzzLE on a four processor system, while it only performs
7% better on a single node configuration.

WYBERT itself suffers also from external cache requests since each miss
of a local processor results in a memory transaction that has to be snooped
by all other caches in the system for consistency. This effect can be seen in
Figure 6.2 where the speed-up curves have been drawn for two typical applica
tions. The speed-up is computed with respect to the single processor execution
time including task management overhead. All measurements exclude the
time to down-load an executable and initialise the input data set. The QUEENS

program uses few heap nodes and therefore issues a modest number of xmem
instructions. As a consequence the QUEENS application shows the same perfect
linear speed-up for both WYBERT and spark-and-wait. The 15-PUZZLE that uses
a large number of heap cells shows just a speed-up of 3.2 under WYBERT
on four processors. This is caused by cache conflicts between processor and
memory accesses, and by sequential execution inherent to the functional pro
gram itself. Section 6.5 .4 provides measurements of the percentage of idle
time for several applications.

6.2 Scheduling

The ToS scheduler of WYBERT allows for efficient stack allocation: all tasks
assigned to one processor share a single processor stack, which is used as

6.2. Scheduling 159

a stack of stacks. As only the topmost task on the stack can execute, the
scheduler is limited in selecting a task for execution. In Section 4.3 it was
shown by simulation that the Top-of-Stack (ToS) constraint has little impact on
performance in comparison to general list scheduling policies. To verify these
positive findings, the ToS scheduler of WYBERT has been modified to account
for what fraction of execution time is spent running idle while some task
ready for execution is blocked because of the ToS constraint. Measurements
showed that less than 0.5% of the execution time is lost on the four processor
HYPERmodule implementation, hence, we have not bothered to build a parallel
implementation with a stack per task model.

#processors
1 2 3 4

NFIB 1.00 1.01 1.00 1.01
QUEENS 1.00 1.01 1.00 1.01
DET 1.00 1.01 1.02 1.00
WANG 1.00 1.00 1.01 1.00
15-PUZZLE 1.00 1.00 1.00 1.01
COMP-LAB 1.00 0.91 0.99 0.97
WAVE 1.00 0.98 0.98 1.02

Table 6.3: The execution-time ratio ofToS with local versus global task pools.

The simulation studies of ToS behaviour in Section 4.3 show that a sched
uler based on a local task pool at each processor has advantages over a scheduler
using a single global task pool shared by all processor. The default setting of
the WYBERT scheduler is to use local task pools, but it can be changed to
using a single global task pool. The hypothesis that a local task pool strategy
outperforms a single global pool is not supported by the experimental results
as listed in Table 6.3. The ratio of execution times is always close to 1.0, which
indicates that both scheduling policies have similar performance. Sometimes
the local pools give the best results; sometimes a global pool performs best.
This can also be seen in the two example speed-up curves in Figure 6.3. Ap
parently the potential improvement in task scheduling does not outweigh the
costs of maintaining multiple task lists, at least for small multiprocessors.

A difference between scheduling with local and global task pools, which
does not show in the average performance results, is the variation in execution
times measured over a number of runs. In case of the local task pool strategy
execution times measured on the prototype are equal for different runs of the

160 Chapter 6. Experimental results

4 ~-----,,------,-----, 4 ~----,------.-----,

3.5

3

2.5

2

1.5
Local lists --+-

3.5

3

2.5

2

1.5

Global list -+- - 1

COMP-LAB

Local lists --+
Global list -+- -

0.5 ---~-------~ 0.5 -------~----
1 2 3 4 1 2 3 4

Number of processors Number of processors

Figure 6.3: Speed-up curves for ToS with local and global task pools.

same application, but for the global task pool different execution times are
measured for identical application runs. This shows that the behaviour of
the global scheduling policy is rather dependent on which processor acquires
access to the global pool first in case of conflicts on the single semaphore. This
results in a highly unpredictable assignment of tasks to processors, while the
local task pools give rise to rather deterministic schedules. This "predictable"
behaviour of scheduling with local pools is an advantage for debugging and
performance modelling.

The experiments do not show a performance advantage of local tasks pools
over a single global pool, but it can be expected that the shared pool becomes
a bottleneck in large shared-memory multiprocessors. The advantage of local
task pools has been observed in the SIS simulation studies of Section 4.3, but it
requires a larger machine than the four node HYPERmodule to confirm these
findings in practice.

6.3 Storage management

To support efficient local garbage collection, the WYBERT storage manager
allocates memory blocks such that the heap blocks of a task never interleaves
with those of its ancestors (see Section 4.4). Therefore garbage of a task
can be reclaimed with an ordinary two-space compacting garbage collector
that operates independently of other tasks and processors. In Section 4.4

6.3. Storage management 161

three memory management policies have been presented that enforce the strict
separation of heaps: BAS, VAS, and CAS. The Basic Allocation Scheme
simply allocates a new block above the last allocated block in the virtual
addresses space without reusing any of the blocks freed after a garbage collect.
To make better use of the of virtual address space, the Virtual Allocation
Scheme reuses virtual addresses space on the fly by allocating a new block in
the first free address range above the heap of the task's parent. The Circular
Allocation Scheme operates analogous to VAS but implements virtual address
space entirely in software by explicitly controlling the most significant address
bits.

#processors
1 2 3 4

NFIB 1.00 1.00 1.00 1.00
QUEENS 1.00 1.00 1.00 1.00
DET 1.04 1.06 1.08 1.07
WANG 1.02 1.03 1.03 1.04
15-PUZZLE 1.03 1.05 1.06 1.08
COMP-LAB 1.02 1.03 1.01 1.02
WAVE 1.02 1.03 1.02 1.02

Table 6.4: Performance ratio of VAS versus BAS memory allocation.

The simple BAS strategy rapidly consumes virtual address space and can
not handle large applications like the experiments that will be described in
Section 6.5.4. The problem can be solved by implementing a complex vir
tual address space compactor, but this is an expensive operation. The MiG
simulations have shown that VAS does not need such compactions if the vir
tual address space (2 Gbyte) is at least three times the physical amount of
memory (64 Mbyte). CAS always needs compactions to recover from frag
mentation. For these reasons the VAS strategy has been chosen as the memory
management policy for WYBERT.

To support the choice of VAS over BAS, we have implemented both strate
gies, without virtual address space compaction, using the MC88200 combined
MMU and cache chip. Again the benchmark programs with small input sets
have been used to compare both memory management policies, since BAS can
not handle applications that claim more than 2 Gbyte of virtual address space.
According to the MiG simulation studies, the VAS strategy is somewhat more
expensive than BAS as can be seen in Table 6.4: the additional bookkeeping

162

4

3.5
DET

3

2.5

2

1.5 ,,. ,,.
"' "' ,,.

" 1

0.5
1

,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,
,,,*"' ,,, ,,, ,,, ,,, ,,, ,. ,. ,. ,. ,.,. ,. ,. ,. ,. ,.

VAS allocation -<>-
BAS allocation -+- -

2 3 4
Number of processors

4

3.5

3

2.5

2

1.5

1

0.5
1

Chapter 6. Experimental results

WAVE

VAS allocation -<>
BAS allocation -+--

2 3 4
Number of processors

Figure 6.4: Speed-up curves for VAS and BAS policies.

results in up to 8% difference in execution time (15-PUZZLE). The comparison,
however, holds only for these small applications since BAS would incur sig
nificant overhead to compact its address space in case of large programs. A
compaction of the virtual address space requires the relocation of all pointers,
hence, the total amount of physical space in use (max. 64 Mbytes) has to be
read and written. This will take approximately 10 seconds for each 50 seconds
of computation time.

Two example speed-up curves are shown in Figure 6.4. The speed-up
curves for DET show that the VAS overhead increases for larger number of
processors. This indicates that the central bookkeeping (e.g., page table main
tenance) is a bottleneck in the current (unoptimised) implementation.

To minimise memory fragmentation, VAS has been adapted to allocate
memory in blocks whose size is smaller than the hardware dictated 4Kbyte
page size. The additional book keeping, however, is not for free as can bee
seen in Table 6.5 where the execution times of the benchmark for varying block
sizes are compared to the standard case of 4Kbyte that equals the hardware
supported page size. None of the applications benefit from small block sizes.
Apparently, the advantage of less memory fragmentation does not outweigh
the additional overhead in bookkeeping.

For "real" divide-and-conquer applications with coarse grain tasks (see
Section 6.5.4), the number of (waiting) tasks is small. Hence, the amount of
space wasted due to fragmentation is small, so VAS can be used with a large
block size (i.e. 4Kbyte) to limit the allocation overhead.

6.4. Garbage collection

block size [bytes]
256 512 lK 2K 4K

NFIB 1.00 1.00 1.00 1.00 1.00
QUEENS 1.01 1.00 1.00 1.00 1.00
DET 2.25 1.56 1.23 1.05 1.00
WANG 1.58 1.22 1.07 1.02 1.00
15-PUZZLE -1- 1.48 1.24 1.10 1.00
COMP-LAB 1.21 1.09 1.04 1.00 1.00
WAVE -1- 1.09 1.04 1.02 1.00
-1- shortage of heap memory because

of excessive bookkeeping.

163

Table 6.5: Performance ratio of VAS for various block sizes vs. standard
4Kbyte page size.

6.4 Garbage collection

Garbage collection is an important aspect of practical functional language
implementations, be it sequential or parallel, since graph reduction allocates
new heap cells at a high speed. Even the 64 Mbyte of shared memory in the
prototype machine is consumed in less than a minute real time by an average
benchmark application.

The VAS storage management strategy of WYBERT allocates heaps such
that leaf tasks can collect their garbage independently of other tasks and proces
sors. This avoids the need for a system-wide synchronisation of all processors
to join in a global garbage collect where individual nodes have to be locked to
maintain sharing and enforce consistency. Another benefit of WYBERT is that
tasks can time share a common to-space, so not half the available memory has
to be reserved for the to-space buffer, but only one fifth. Hence more memory
can be used for graph reduction: 48 Mbyte instead of only 30 Mbyte. To min
imise the performance degradation when several processors attempt to garbage
collect at the same time, the busy-wait loop on the semaphore that guards the
single to-space has been explicitly coded to test the semaphore before trying
to grab it with an xmem instruction. This results in an instruction loop that
repeatedly reads the semaphore value without modifying it, hence, the value
will be cached locally at each busy-waiting processor without causing traffic
on the memory bus, so active processors can proceed at full speed.

164 Chapter 6. Experimental results

To measure the garbage collection overhead in WYBERT, we compared
a version of the runtime support system with and a version without garbage
collection. In case of garbage collection the available heap space has been
set to a value 20% above the absolute minimum needed to run to completion.
This assures that a "reasonable" number of garbage collects is performed.
In Section 6.5.4 the garbage collection overhead will be given for realistic
applications that have the full 64 Mbyte of the HYPERmodule at their disposal.

#processors
1 2 3 4

NFIB 1.00 1.00 1.00 1.00
QUEENS 1.00 1.00 1.00 1.00
DET 1.02 1.01 1.00 0.98
WANG 1.08 1.09 1.11 1.11
15-PUZZLE 1.03 1.02 1.00 0.98
COMP-LAB 1.07 1.09 1.00 1.03
WAVE 1.25 1.25 1.32 1.23

Table 6.6: Ratio of execution times of applications with and without (local)
garbage collection.

Both the numbers in Table 6.6 and speed-up curves in Figure 6.5 show that
garbage collection overhead is small for all programs except WAVE. In some
cases the version with garbage collection even outperforms the implementation
without. This is most likely caused by caching effects; the garbage collector
compacts live data into a contiguous block of heap space, hence, improves
spatial locality.

The WAVE program shows exceptional behaviour in comparison to the other
applications: 25% - 32% increase in execution time when garbage collection
is performed. This is caused by the shared to-space in combination with the
regular task structure of the WAVE program itself. The program unfolds into sub
problems of equal length and behaviour. All four processors receive a task,
start reducing, and at roughly the same moment decide that it is necessary to
perform a local garbage collection. The single to-space, however, serialises the
garbage collections, which could be performed in parallel with graph reduction
otherwise, and results in processors running idle. Once the processors are
running out of phase the remaining garbage collects do not clash anymore;
modifying the program to spark fewer tasks would increase the execution time
since fewer garbage collects would occur in parallel with graph reduction.

6.5. Execution profiling

3.5

3

2.5

2

1.5

15-PUZZLE

WithGC-+
No collect -+- - -

3.5

2.5

2

1.5
With GC -<>

No collect -+- -

0.5 .__ _____ ___ _,__ __ ____, 0.5 .__ ___ .,____ ____ __ ____,

1 2 3 4 1 2 3 4
Number of processors Number of processors

165

Figure 6.5: Speed-up curves for applications with and without garbage collec
tion.

The number of to-spaces can be adjusted in the runtime support system,
trading memory space for (potential) blocking on a to-space. Table 6. 7 shows
that the WAVE program performs even worse when the single to-space is replaced
by four to-spaces to remove the garbage collection bottleneck. This decrease
in performance is caused by the increased number of collects needed because
of less available heap space. Only in case of two to-spaces, the WAVE program
benefits from parallel garbage collections.

I WAVE I 1.~0
2 3 4

0.97 1.29 1.38

Table 6. 7: Relative performance of WAVE with multiple to-spaces.

6.5 Execution profiling

In previous sections various design aspects of WYBERT have been studied
individually by comparing execution times of alternative solutions. To deepen
our understanding of individual application behaviour, a profile tool has been
developed for the WYBERT system that measures where an application spends
its execution time. During execution each processor maintains a global status
field describing the current activity, which is sampled each millisecond by the

166 Chapter 6. Experimental results

boot-1/0 processor via the common VME bus (see Figure 6.1). When the
program has completed execution, the sampled status data, which has been
buffered in 2 Mbyte internal memory on the boot-1/0 card, is transmitted
via ethemet to the host for analysis. Currently, the following activities are
monitored:

user The processor is executing user code, i.e. it is performing graph
reduction.

rts The processor is executing WYBERT's runtime support code for
scheduling (ToS) and memory allocation (VAS).

gc The processor is running the two-space copying garbage collector.
idle The processor is busy waiting for either a new task to arrive, or the

termination of a child task on another processor.
The potential perturbation of the system behaviour caused by the profiler is
very small: one memory write per system call to record the status change
and one memory read per millisecond on the VME bus to sample the current
status. Therefore the effect of this low resolution profiling on the system can
safely be neglected. In the sequel a number of example execution profiles
will be presented that plot activity versus time of some typical programs. The
aggregate cost break-down for the complete benchmark with realistic input
sets will be provided in Section 6.5.4.

6.5.1 Queens·

The first example profile plot is of the QUEENS program, see Figure 6.6. The
QUEENS program is a representative of the class of easy parallelisable applica
tions, which includes the NFIB and DET programs also. The program unfolds
through some levels of recursion into a task tree with coarse grain leaf tasks.
These coarse grain tasks take up the major part of execution time and can be
scheduled for execution on one of the four processors without any constraint.
Hence, the QUEENS program achieves a speed-up of 3.94 on the four processor
Hypermodule.

An execution profile consists of two parts: the processor activity graphs
and the system activity graphs. The processor activity graphs (the top four
plots in Figure 6.6) show the status of each processor during the execution
of the application: user, rts, gc, or idle. All processors start off idle, then
grab a task and start reducing (state= user) invoking system calls to allocate
more memory or to get the next task (state = rts). The system calls appear
in the processor activity graphs as spikes between the user and rts activity
lines. Near the end processors 1 and 3 run idle because no more new tasks are

6.5. Execution profiling 167

proc 3 l::::::::::::::::::::::::::::J:::l::]:::[::::::l:::::::::::::]::::]::::::::::::::]:::::: .:::::[

user 97.5%
rts 0.1%
gc 0.0%
idle 2.4%

proc 2 1·[····]······················~··!] l1.. l [..... l l.1

user 99.9%
rts 0.1%
gc 0.0%
idle 0.0%

proc l" .. I::::::]::::::: [:::::::::::: [:::[::]::::::::::::::::::::::[:::]]] :::::[::::::]::::::::::::::]::::l
user 96.9%
rts 0.1%
gc 0.0%
idle 3.0%

proc O l:::::J:::::::L:::::::::::::U:::::J::::::::::::::::::::::LJ:LL::L::::::::::::::::::::1:::1

user 99.9%
rts 0.1%
gc 0.0%
idle 0.0%

user I ' :.:.l.::: .. ::.:: :: "'.ll.:l.ll···I··:·:•.•···:····•·· ' .. Is

100%

98.5%

0%

100%

rts
11 1111111111 II I 111111111 111 I 1111 I

0.1%

0%

100%

gc 0.0%

0%

idle 1·· 2 100%

1.4%

0%

0.0 5.0 10.0 15.0 20.0 25.0 30.0
[seconds]

Figure 6.6: Execution profile of QUEENS: activity vs. time.

sparked; the application suffers slightly from load imbalance because of tasks
with unequal lengths.

Note that none of the processor activity graphs shows any garbage col
lection taking place. This is caused by the nature of the QUEENS program in
combination with the 1 ms sampling rate of the performance monitor. By

168 Chapter 6. Experimental results

default the garbage collector is called upon termination of each task to reclaim
its garbage, but in case of QUEENS the collector is finished in a few instructions
since the result value is a plain integer: no live data has to be copied to to-space
at all. Therefore the state change from rts to gc and back is not detected by
the performance monitor, hence, no spikes in the processor activity graphs of
Figure 6.6.

The system activity graphs of an execution profile (e.g., the four bottom
plots in Figure 6.6) show the summed totals of all processors for each activity.
For example, the plot marked "idle" shows the number of idle processors
during the execution; near the end of the QUEENS program the efficiency of the
system slightly decreases since processors 1 and 3 are running idle. The "gc"
plot does not show any activity, but for larger applications the plot alternates
between zero and 25 % (one processor) because of the single to-space.

The percentages listed at the right of each plot in the execution profile,
give the (average) fraction of execution time spent in the corresponding state.
For example, processor O has been busy executing user code for 99.9%, but on
average the whole system has spent 98.5% of its time in user code. The QUEENS

program behaves nicely since only 1.4% of the total execution time is wasted
to processors running idle.

6.5.2 Wang

The execution profile of WANG is shown in Figure 6. 7. Wang's method of solving
a tri-diagonal system of linear equations consists of two elimination phases.
This can be observed in the execution profile: after 9 seconds processor O runs
idle since all tasks of the first phase have been allocated for execution. When
all processors have finished their last task of phase one, the root processor
prepares the computations for the next phase. This takes little time, so all
processors immediately start processing Phase 2 tasks to finish the application.
The strict synchronisation halfway is clearly visible in the system plot for idle
time (see bottom plot in Figure 6.7).

In each parallel phase the algorithm splits the problem into twelve inde
pendent components, which are scheduled as three consecutive tasks on each
processor. When a tasks is finished the RTS compacts the result by running
the garbage collector, as can be seen by the dips in the processor activity plots
in Figure 6.7. Each task is of similar length, so after the first four tasks have
been reduced to normal form, their processors have to compete for access to
the single to-space in order to run the garbage collector. This shows up in

6.5. Execution profiling

proc3

proc2

proc 1

proc0

user

gc

r-1.1 .. 1. ~ll.l uu.1. ~l.l..l.. ~.l..l ~.l..l l

r.:'::':::::::::lJ~~::~::::::::Hl~::~::::::::~jl:l::l::::::~~l::l:::::::~l:l::'::::::\

r-:1::l::::::::Y.'.1::'.::::::::!'.l::l:::::::::§l:'.::'.::::::~'.1::l:::::::~l

r-:1::'.::::::::~l::1:::::::::~l::'.:::::::::~Bl:'.::'.::::::~ll::l:::::::~ll:::'.::::::U

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
[seconds]

169

user 87.5%
rts 6.5%
gc 5.8%
idle 0.1%

user 86.7%
rts 5.1%
gc 5.0%
idle 3.2%

user 82.0%
rts 4.0%
gc 4.3%
idle 9.8%

user 84.2%
rts 2.7%
gc 4.0%
idle 9.1%

100%

85.1%

0%

100%

4.6%

0%

100%

4.8%

0%

100%

5.5%

0%

20.0

Figure 6.7: Execution profile of WANG: activity vs. time.

the execution profile: the system "gc" plot shows four consecutive garbage
collects and the processor-activity plots show waiting in the state rts. From the
execution profile, it can be determined that processor O collects first, followed
by 1, 2, and 3 respectively. Note that the time to perform a garbage collect
increases for each of the processors because of contention on the memory bus.

170 Chapter 6. Experimental results

When processor 0 collects its garbage all others are waiting and do not use
the memory bus; when processor 3 collects garbage all others have started the
execution of a new task generating traffic on the memory bus.

After the evaluation of the second set of four tasks, the processors do not
compete again for the garbage collector because the first conflict has shifted
them out of phase. Processor 3 still needs more time to collect its garbage
than processor 0, see the system "gc" plot, even though now the three other
processors perform graph reduction in both cases. This small surprise is most
likely caused by the context switch that occurs when starting to reduce a new
task: the new task generates a large number of so called cold start misses to
fetch the working set into the cache causing additional traffic on the memory
bus in comparison to the effects of the stationary misses of the finishing tasks
processor 0 competes with few stationary misses of the graph reducers running
in parallel, while processor 3 competes with the cold start misses of graph
reducers "loading" the working set of their new tasks into the cache. Thus
processor 0 incurs fewer access collisions on the memory bus, hence it takes
less time to collect garbage than processor 3. The third round of garbage
collects takes roughly equal time at all four processors because of low traffic
on the memory bus; processors are either running idle or performing graph
reduction with a working set that completely resides in the cache.

The garbage collection behaviour described above is also present in the
second phase of the Wang algorithm.

6.5.3 Wave

The WAVE program is a typical scientific application that models the behaviour
of some physical system by simulation. It uses the finite element computation
method to determine the water heights in a model of the North Sea. In a number
of consecutive time steps the new state is computed based on the interactions
with neighbouring grid points as recorded in temporary matrices holding the
physical properties of interest. This iterative behaviour results in a chain task
structure as displayed in Figure 6.8.

The WAVE application shown in the execution profile of Figure 6.9 iterates
three time steps, computing three state matrices at each iteration, which results
in 9 computation phases of 64 parallel tasks each. These 9 phases can be
identified in the execution profile by looking at the system idle state, which
shows 9 dips indicating all processors are busy. During each phase a consider
able number of short garbage collections takes place, except for one particular

6.5. Execution profiling 171

Figure 6.8: Chain task structure of WAVE.

collection halfway through the execution of WAVE that takes 1.3 seconds real
time and leaves 3 processors running idle. Another waste of computing cycles
is caused by the global synchronisation after each parallel phase. The effec
tive parallelism of WAVE is restricted by the sequential parts in the algorithm
that limit the maximum speed-up. The efficiency, however, can be raised by
increasing the problem size.

The global garbage collection on processor 2 is performed on behalf of
the sixth incarnation of the root task just before sparking the parallel tasks
of Phase 7. After each parallel phase the root task continues processing with
the new state matrices as computed by the child processes, while the previous
state matrices have. become obsolete. The accumulating garbage of "dead"
state matrices can only be reclaimed when the root task is active; during each
parallel phase the root task may not be collected locally since active children
refer to matrices in the heap of the (suspended) root task. Therefore the
RTS employs the heuristic that whenever the root task executes a sandwich
and occupies more than 75% of the total heap space, the root has to reclaim
garbage before sparking any new tasks. In case of the WAVE program, more
than 800 Kbytes of live data (three 256 x 256 matrices with floating point
numbers) have to be processed by the copying garbage collector, which takes
1.3 seconds. To reduce the garbage collection time, a number of approaches
are possible. We discuss three of these alternatives.

First, the moment at which the root task invokes the garbage collector
can be controlled by specifying a different threshold value for the default of
75% heap occupancy. Changing this limit, however, does not really help for
WAVE since the size of the live data between each phase is large and constant.
The WAVE program represents an important class of scientific applications,
hence, additional effort is needed to decrease the impact of this global garbage
collection bottleneck.

172 Chapter 6. Experimental results

user 68.7%

proc 3 rts 1.2%
gc 5.0%
idle 25.1%

user 71.7%

proc2 rts 2.0%
gc 15.4%
idle 11.0%

user 62.4%

proc 1 rts 1.8%
gc 5.2%
idle 30.6%

user 69.4%

proc0 rts 1.4%
gc 5.6%
idle 23.5%

100%

user 68.0%

0%

100%

1.6%

0%

100%

gc 7.8% - 0%

100%

idle 22.6%

0%

0.0 2.5 5.0 7.5 10.0 12.5
[seconds]

Figure 6.9: Execution profile of WAVE: activity vs. time.

Second, a straightforward possibility to decrease collection time is to use a
garbage collector that runs in parallel on all processors (see Section 4.4). The
additional overhead of synchronising parallel collection and bus contention,
however, severely limits the reduction in garbage collection time; the usage of
locks is expensive (WYBERT performs better than spark-and-wait with locks,

6.5. Execution profiling 173

see Section 6.1) and garbage collection slows down a factor of two because
of bus contention (see WANG'S gc profile plot in Figure 6.7). Therefore the
(estimated) reduction in garbage collection time is too small to remove the
global bottleneck.

Third, in the particular case of iterative methods, the programmer "knows"
which data (i.e. state matrix) becomes obsolete in the following cycle. Thus,
instead of reclaiming the unused space with an ordinary garbage collector, the
matrix can be re-used immediately in the next iteration as a place holder for
the result matrix. This approach known as update analysis has recently been
used with success for first order functional languages [Cann92], and efforts
have been undertaken to incorporate this in compilers for lazy higher-order
languages as well [Bloss89].

6.5.4 Performance characteristics

This section presents the overall performance characteristics of the benchmark
programs. The overhead of squeezing arguments and task handling has been
measured on a single processor. Only WANG (5%) and 15-ruzzLE (18%) show
increased execution times when the sandwich annotation is used; the other
coarse-grain divide-and-conquer applications do not suffer any transformation
loss. Unlike the experience with the SIS-simulator, none of the applications
caused FRATS to get lost in a non-terminating reduction sequence. This
is a consequence of the FAST/FCG compiler that does not perform fully
lazy lambda lifting, hence, curried functions like 'map square' can not be
reduced and do not expand into infinite chains as in case of the SIS interpreter.

The example execution profiles of the QUEENS, WANG, and WAVE programs
have shown that the monitoring tool as implemented in the prototype machine
provides valuable insight into which application property determines perfor
mance: load imbalance in case of QUEENS, global synchronisation in case of
WANG and WAVE. To obtain accurate measurements and study realistic applica
tion behaviour, the input parameters of the benchmark programs are set to large
values. The resulting execution profiles have been summarised in Table 6.8 as
a cost break-down of system activity: the average idle, gc, rts, and user time
are reported for each application.

The column labeled seconds in Table 6.8 gives the seconds real time
needed to execute the application on the four node HYPERmodule under a
ToS scheduler with local task pools, the Virtual Allocation Scheme (VAS) for
storage management, and local garbage collection. The remaining columns

174 Chapter 6. Experimental results

!runtime [sec]ispeed-upllidle [%]lgc [%]lrts [%Jluser [%]I

NFIB 55 4.0 0.5 0.0 0.0 99.5
QUEENS 160 3.9 1.2 0.0 0.2 98.6
DET 71 3.2 0.8 0.0 6.8 92.4
WANG 19 2.4 6.3 5.0 8.4 80.3
15-PUZZLE 54 2.7 6.7 1.5 17.1 74.7
COMP-LAB 28 2.6 24.3 4.2 4.1 67.4
WAVE 133 2.4 26.4 8.7 3.4 61.5

Table 6.8: Execution cost break-down for benchmark applications (large).

show in percentages where an application has spent its time as measured by
the profiler.

The test NFIB program performs very good: it reaches an efficiency of over
99% on the four node machine. It consumes hardly any heap space and does
not suffer from load imbalance. It is the "perfect" application to demonstrate
system performance. The DET program is another test program since it does
not spend time in garbage collection just like NFIB and QUEENS. In contrast to the
others, DET claims a considerable number of heap cells (7% rts time) but the
resident graph size is small so each garbage collect takes no time. The overall
efficiency is good since 93% of the execution time is spent in user code.

Of the remaining serious applications, which do show garbage collection
activity, the WANG program performs best: 80% efficiency on four processors.
The execution cost break-down shows similar ratios as in the example execution
profile on page 169. The idle time is caused by the synchronisations halfway
and at the end of the program, while the rts time is partly spent in spinning
on the lock of the single to-space. The 15-PuzzLE spent twice as much time
in the runtime support system (17%) because it generates many fine-grain
tasks. These small tasks incur the rather large initialisation overhead by the
RTS causing the efficiency to drop to 75% (i.e. a speed-up of 3 on the four
processor prototype machine).

Both the COMP-LAB and WAVE program suffer from a large fraction of idle time
(25%). In case of COMP-LAB this is caused by a single synchronisation phase
where individual join tasks, which combine the results of two child tasks,
compute for a relatively long time. In case of WAVE, the iterative nature causes
a sequence of global synchronisations leading to a severe loss of efficiency.
As remarked before, a large fraction of the sequential thread of execution is
taken by the global garbage collects needed to reclaim "dead" state of previous

6.5. Execution profiling 175

processors
2 3 4

NFIB 1.00 1.00 1.00
QUEENS 1.00 1.00 1.00
DET 0.96 0.92 0.87
WANG 0.94 0.85 0.75
15-PUZZLE 0.97 0.93 0.89
COMP-LAB 1.00 0.98 0.96
WAVE 0.99 0.99 0.98

Table 6.9: Performance degradation caused by bus contention.

iterations. A special purpose collector can reduce this overhead considerably,
and decrease the idle time to something like 15% (extrapolation of the WAVE

execution profile).
There are several causes for the non-linear speed-ups reported in Table 6.8.

First, some applications suffer from load-imbalance and sequential execution
as can be inferred from the column that gives the percentage of idle time.
Second, applications can spend a significant amount of time in blocking on
semaphores (state rts), for example, to acquire the shared to-space. Third,
memory bound applications suffer from contention on the bus to shared mem
ory. This performance degradation caused contention has not been measured
separately, and is included as part of the reported user time. To estimate the
contention effects, Table 6.9 lists the ratio of user time fraction on a single
processor over the fraction user time measured for multiple processors. These
ratios show that WANG looses 25% performance on the four processor HYPER
module due to bus contention. The slight contention loss for COMP-LAB and WAVE

indicates that their low speed-ups are caused completely by processors running
idle.

The profile results of the seven benchmark programs with large input pa
rameters show that the divide-and-conquer paradigm is suitable for efficient
implementation and parallel execution of lazy functional programming lan
guages on shared memory multiprocessors. Multi pass applications like COMP

LAB and WAVE, however, perform poorly because of the functional framework
that forces a global synchronisation to pass information between "processes
with state".

Chapter 7

Conclusions

The ever increasing demand for computing power is the driving force for
the development of parallel processing. Building large parallel machines is
relatively easy as can be seen from commercially available systems like the
CM-5 and MasPar-2 which include thousands of processors. Programming
parallel computers, however, is far more difficult and is an important field of
research. The grand challenge for many computer scientists is to develop a
suitable high-level programming environment that hides the low-level details
of parallelism from the ordinary user.

Many different (parallel) programming languages have been developed for
writing applications to run on parallel machines, but most language designs
concentrate on raw application performance rather than ease-of-use. Func
tional programming languages contain a number of key properties that support
general purpose parallel programming:

• Lazy evaluation and higher-order functions provide a high-level of ab
straction to master software complexity.

• The referential transparency of functional programs provides simple se
mantics, so programs are easy to reason about and applicable to optimising
transformations.

• Functional programming languages naturally support the shared-memory
view of parallel programming. The user does not have to explicitly send
messages to remote processors, but can communicate through (logically)
shared data objects. Parallelism is obtained by annotating the program to
indicate which expressions are suitable candidates for parallel execution.

A disadvantage of functional programming languages is the execution speed
that is significantly lower than that of traditional imperative programming
languages. The FAST/FCG compiler used in the WYBERT prototype imple-

178 Chapter 7. Conclusions

mentation, whose code-generator has been described in detail in Chapter 5,
generates state-of-the-art code as was shown by an extensive comparison with
other lazy functional language compilers. Considerable effort has be put in the
development of the FAST/FCG compiler since the user needs high absolute
performance, not merely good speed-ups; parallelising overhead is rather easy
in comparison to getting speed-up out of an efficient implementation.

The parallel implementation of a lazy functional language is not as straight
forward as it seems at first sight. The belief that "the lack of side effects allows
for easy parallel implementations" does not hold in general; even though the
programmer can not (ab)use assignments in a functional language as in impera
tive languages, the underlying computational model of graph reduction heavily
depends on updates of delayed computations to maintain sharing. Lazy eval
uation without updates (i.e. string reduction) is hopelessly inefficient. To
guarantee correctness in face of parallel access, the shared updatable redexes
are usually protected by locks to enforce mutual exclusion. For certain classes
of applications, however, the referential transparency can be exploited for par
allel programming by automatic transformation. For example, applications
specified as a parallel synchronous network can be automatically transformed
into efficient divide-and-conquer programs, see [Vree92].

The WYBERT implementation discussed in this book uses a different
method to handle updatable redexes present in parallel graph reduction systems
on shared-memory multiprocessors. Instead of protecting shared redexes, the
FRATS reduction strategy avoids their existence by eagerly evaluating all
shared data between tasks before sparking them for parallel execution. This
approach is feasible because WYBERT is based on an explicit divide-and
conquer annotation to express parallelism, so the compiler and runtime support
are in control of task creation and synchronisation. An important advantage of
WYBERT is that the banishment of shared redexes obviates the need for locks
on application nodes.

The comparison between WYBERT and the spark-and-wait model on the
HYPERmodule shared-memory multiprocessor presented in Section 6.1 shows
that the avoidance of locking is beneficial for the divide-and-conquer bench
mark applications. The advantage is not only gained by omitting several
instructions when invoking a delayed computation stored in the heap, but
primarily by reducing the number of transactions on the memory bus. This
pays off in case of multiple processors since then the number of wasted cache
cycles due to bus contention and snooping each others locking actions is sig
nificantly reduced. In case of the WAVE program WYBERT runs twice as fast

179

as the spark-and-wait implementation that uses the xmem instruction of the
MC88100 processor for locking application nodes. The benefit will be even
larger for shared-memory multiprocessors with more than four processors.

A disadvantage of squeezing task arguments to banish shared redexes is that
the deviation of the standard lazy evaluation mechanism might lead to super
fluous or even non-terminating computations. Experience with the benchmark
applications, however, has shown that the eager semantics of the squeeze does
not raise problems in practice. The set of program transformations given in
Section 4.2 has only been used for the fully lazy SIS simulator; no transforma
tions were necessary for the compilation based experiments in Chapter 6. The
experimental results measured on the four processor HYPERmodule show that
the squeeze overhead pays off in performance: WYBERT without locking of
application nodes is 25% - 50% faster than spark-and-wait with locking for the
realistic benchmark applications.

The regular parallelism of the sandwich divide-and-conquer skeleton under
the FRATS reduction strategy allows for two additional optimisations in the
runtime support system of WYBERT: 1) argument stacks of tasks can be
allocated on a single stack per processor instead of a stack per task, 2) garbage
can be collected per individual leaf task without synchronisation of other tasks
or processors. Both memory management optimisations are not possible in
case of the general spark-and-wait model.

The optimal depth first traversal of the divide-and-conquer task tree can be
mapped efficiently on a stack-based context switching mechanism. All tasks
assigned to a specific processor share one reduction stack, the processor stack,
as a stack of stacks. At start up, a task sets its private stack pointer to the
current top of the processor stack. If the task executes a sandwich and needs
to block to await the results of its children, the task leaves its local state on
the processor stack, and the next fresh task starts to allocate its stack on top of
the blocked task, etc. When a blocked task has received the results of all its
children, it becomes executable again, but that task may only resume execution
after all tasks on top of it have finished, otherwise it could overwrite the state of
other tasks. Theoretically, this Top-of-Stack (ToS) scheduling constraint can
lead to a severe loss parallelism as shown in Section 4.3, but the experimental
results in Chapter 6 show that the ToS constraint does not lead to scheduling
anomalies in practice.

In contrast to ToS, scheduling policies used in other parallel implementa
tions of functional languages as discussed in 3.1.3 either give up stack based
reduction or have a rather large context switch time. The <v,G>, HDG,

180 Chapter 7. Conclusions

and PAM implementations allocate their reduction stack as a linked list of
stack frames in the heap. Besides the additional overhead of heap allo
cation and link manipulation, it destroys the strong cache locality of stack
accesses [Langendoen92a]. The GRIP and PABC implementations allocate
a fixed-length stack for each new task increasing the initialisation overhead,
and forcing stack checks to enlarge the stack on overflow. The advantage of
WYBERT's ToS scheduler is the combination of stack based reduction with
fast context switching.

The second storage management optimisation is the local garbage collec
tion of leaf tasks. Instead of synchronising all reducers in the multiprocessor
to join in a global garbage collect, the WYBERT system assigns a private heap
to each task and reclaims garbage per task independently of other tasks and
processors. This approach is possible because the FRATS reduction strategy
guarantees that no shared updatable redexes exist, hence, no task can obtain
a reference into the private heap of another active task. When a task termi
nates, the private heap containing the result value is joined to the heap of the
parent task. In order to efficiently collect such scattered parent heaps with an
ordinary two-space copying garbage collector, WYBERT employs a memory
management strategy that allocates (chunks of) private heaps such that the
heap of a task never interleaves with the heap of its ancestors. The Virtual
Allocation Scheme (VAS) uses the hardware support for virtual memory of
the MC88200 MMU/cache chip to prevent interleaving by allocating a private
heap in the first available virtual address range above the task's parent. The
experiments in Chapter 6 have shown that the VAS policy, in accordance with
the results of the MiG simulator in Section 4.4, can handle large application
without running out of virtual address space. Furthermore VAS is reasonably
efficient in comparison to the simpler BAS policy that can only handle small
programs: just 8% slower in the worst case

The advantage of local garbage collection is that by limiting the maximum
task size the amount of memory reserved as to-space can be decreased. By
default WYBERT reserves ! of the available heap memory as a time-shared to
space, leaving ~ for the graph reducers. In contrast, a global garbage collector
needs ½ the memory for garbage collection. In return for the additional heap
space, which reduces the number of garbage collects, tasks under WYBERT
occasionally have to wait for another task using the single to-space. Exper
iments have shown that such waiting occurs for perfect divide-and-conquer
applications that generate sub problems of equal size like WANG and WAVE. In
creasing the number of to-spaces, however, does not boost performance at

181

all because the reduction of available heap space forces additional garbage
collects. In case of WAVE, increasing to two to-spaces gives 3% better overall
performance, but with four to-spaces performance drops with 38%.

The detailed performance measurements of benchmark applications with
large parameter values, as reported in Section 6.5.4, show a considerable
difference in performance: efficiency on the four processor HYPERmodule
ranges from 62% for WAVE to 99% for QUEENS. The low efficiency of WAVE

is caused by the iterative nature of the application of this typical scientific
simulation model. After several iteration steps, the amount of accumulated
garbage in the root has become so large that a (global) garbage collection
is necessary. Because of the large state matrix, this takes considerable time
and stretches the bottleneck of sequential execution. The divide-and-conquer
paradigm, which forces global synchronisations to communicate information
between "processes", in combination with local garbage collection per task
results in rather poor performance for iterative algorithms. Switching to global
garbage collection does not solve the problem because of reducing the amount
of available heap space (38% decrease in performance when using four to
spaces), but switching to spark-and-wait is no solution either because of the
additional overhead of locking (50% decraese in performance). Therefore
additional research is needed to find a practical solution.

The tools for parallel programming used and developed during the research
described in this book have proven to be of great value. In particular the MiG
simulator offers a good platform for debugging runtime support software in a
deterministic environment; unlike with real hardware, bugs can be reproduced
by simply running the program again with the same input parameters. The
monitoring tool that samples the multiprocessor state is another useful tool,
which has been heavily used to explain the runtime behaviour of the application
benchmark. Both the MiG simulator and monitoring tool do not depend on
specific functional language properties and can be used for other parallel
programming language implementations as well.

The performance measurements in Chapter 6 have shown that lock-free
graph reduction in combination with an efficient context switching mechanism
(ToS) and local storage management (VAS) provides a highly efficient im
plementation for the parallel execution on shared-memory multiprocessors of
divide-and-conquer applications written in a lazy functional language.

182 Chapter 7. Conclusions

Bibliography

[Abramsky87] S. Abramsky and C. Hankin, editors. Abstract interpretation
of declarative languages. Ellis Horwood, Chichester, England, 1987.

[Achten91] P. Achten. Annotations for load distribution. In H. W. Glaser and
P. H. Hartel, editors, 3rd Implementation of functional languages on parallel
architectures, pages 247-264, Southampton, England. CSTR 91-07, Dept.
of Electr. and Comp. Sci, Univ. of Southampton, England, 1991.

[Aho86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, techniques,
and tools. Addison Wesley, Reading, Massachusetts, 1986.

[Appel88] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection
on stock multiprocessors. In Programming language design and imple
mentation, pages 11-20, Atlanta, Georgia. ACM SIGPLAN notices,23(7),
1988.

[Appel89] A. W. Appel. Runtime tags aren't necessary. Lisp and symbolic
computation, 2(2):153-162, 1989.

[Augustsson84] L. Augustsson. A compiler for lazy ML. In Lisp and func
tional programming, pages 218-229, Austin, Texas. ACM, 1984.

[Augustsson89a] L. Augustsson and T. Johnsson. The Chalmers lazy-ML
compiler. The computer journal, 32(2):127-141, 1989.

[Augustsson89b] L. Augustsson and T. Johnsson. Parallel graph reduction
with the (v,G)-machine. In J. Stoy, editor, 4th Functional programming
languages and computer architecture, pages 202-213, London, England.
ACM, 1989.

184 Bibliography

[Augustsson90] L. Augustsson and T. Johnsson. Lazy ML user's manual.
Programming methodology group report, Dept. of Comp. Sci, Chalmers
Univ. of Technology, Goteborg, Sweden, 1990.

[Bal90] H. E. Bal. Programming Distributed Systems. Silicon Press, Summit
NJ, USA, 1990.

[Barendregt84] H. P. Barendregt. The lambda calculus, its syntax and seman
tics. North Holland, Amsterdam, The Netherlands, 1984.

[Barendregt87] H.P. Barendregt, M. C. J. D. van Eekelen, P.H. Hartel, L. 0.
Hertzberger, M. J. Plasmeijer, and W. G. Vree. The Dutch parallel reduction
machine project. Future generation computer systems, 3(4):261-270, 1987.

[Barendregt92] H. P. Barendregt, M. Beemster, P. H. Hartel, L. 0. Hertzberger,
R. F. H. Hofman, K. G. Langendoen, L. L. Li, R. Milikowski, J.C. Mul
der, and W. G. Vree. Programming clustered parallel reduction machines.
Technical report CS-92-05, Dept. of Comp. Sys, Univ. of Amsterdam, 1992.

[Bevan87] D. I. Bevan. Distributed garbage collection using reference count
ing. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, editors, 1st Par
allel architectures and languages Europe (PARLE), LNCS 258/259, pages
176-187, Eindhoven, The Netherlands. Springer~Verlag, 1987.

[Bird84] R. S. Bird. Using circular programs to eliminate multiple traversals
of data. Acta informatica, 21(3):239-250, 1984.

[Bird88] R. S. Bird and P. L. Wadler. Introduction to functional programming.
Prentice Hall, New York, 1988.

[Birrell84] A. D. Birrell and B. J. Nelson. Implementing remote procedure
calls. ACM transactions on computer systems, 2(1):39-59, 1984.

[Bloss89] A. Bloss. Update analysis and the efficient implementation of func
tional aggregates. In J. Stoy, editor, 4th Functional programming languages
and computer architecture, pages 26-38, London, England. ACM, 1989.

[Bokhari92] S. H. Bokhari and H. Berryman. Complete exchange on a circuit
switched mesh. In Proceedings of SHPCC '92, pages 300-306, Williams
burg, VA. IEEE, 1992.

Bibliography 185

[Brownbridge85] D. R. Brownbridge. Cyclic reference counting for combi
nator machines. In J.-P. Jouannaud, editor, 2nd Functional programming
languages and computer architecture, LNCS 201, pages 273-288, Nancy,
France. Springer-Verlag, 1985.

[Burn91] G. L. Burn. Lazy Functional Languages: Abstract Interpretation
and Compilation. Pitman publishing, London, UK, 1991.

[Burton85] F. W. Burton. Speculative computation, parallelism and func
tional programming. IEEE transactions on computers, C-34(12):1190-
1193, 1985.

[Cann92] D. C. Cann. Retire FORTRAN? a debate rekindled. Communica
tions ACM, 35(8):81-89, 1992.

[Carriero89] N. Carriero and D. Gelernter. Linda in context. Communications
ACM, 32(4):444-458, 1989.

[Cheney70) C. J. Cheney. A non-recursive list compacting algorithm. Com
munications ACM, 13(11):677-678, 1970.

[Cohen81] J. Cohen. Garbage collection of linked structures. ACM computing
surveys, 13(3):341-367, 1981.

[Cox92] S. Cox, S.-Y. Huang, P. H. J. Kelly, J. J. Liu, and F. Taylor. An
implementation of static functional process networks. In D. Etiemble and J .
C. Syre, editors, 4th Parallel architectures and languages Europe (PARLE),
LNCS 605, pages 497-512, Paris, France. Springer-Verlag, 1992.

[Crammond88) J. Crammond. A garbage collection algorithm for shared
memory parallel processors. Journal parallel programming, 17(6):497-522,
1988.

[Darlington81] J. Darlington and M. Reeve. ALICE: A multiple-processor
reduction machine for the parallel evaluation of applicative languages. In
Arvind, editor, 1st Functional programming languages and computer archi
tecture, pages 65-76, Wentworth-by-the-Sea, Portsmouth, New Hampshire.
ACM, 1981.

[Darlington91] J. Darlington, A. J. Field, P. G. Harrison, D. Harper, G. K.
Jouret, P.H. J. Kelly, K. M. Sephton, and D. W. Sharp. Structured parallel
functional programming. In H. W. Glaser and P. H. Hartel, editors, 3rd

186 Bibliography

Implementation of functional languages on parallel architectures, pages
31-51, Southampton, England. CSTR 91-07, Dept. of Electr. and Comp.
Sci, Univ. of Southampton, England, 1991.

[Davy92] J. R. Davy. Using divide and conquer for parallel geometric evalu
ation. PhD thesis, School of Computer Studies, Univ. of Leeds, England,
1992.

[Derbyshire90] M. H. Derbyshire. Mark scan garbage collection on a dis
tributed architecture. Lisp and symbolic computation, 3(2): 135-170, 1990.

[Eager89] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus
efficiency in parallel systems. IEEE Trans. Computers, 38(3):408-423,
1989.

[Ein-Dor85] P. Ein-Dor. Grosch's law revisited: CPU power and the cost of
computation. Communications ACM, 28(2):142-151, 1985.

[Embrechts90] H. Embrechts, D. Roose, and P. Wambacq. Component la
belling on a MIMD multiprocessor. prepublished report, Dept. of Comp.
Sci., Katholieke Universiteit Leuven, Belgium, 1990.

[Field88] A J. Field and P. G. Harrison. Functional programming. Addison
Wesley, Reading, Massachusetts, 1988.

[Fleming86] P. J. Fleming and J. J. Wallace. How not to lie with statistics:
The correct way to summarize benchmark results. Communications ACM,
29(3):218-221, 1986.

[Flynn72] M. J. Flynn. Some computer organizations and their effectiveness.
IEEE transactions on computers, C-21(9):948-960, 1972.

[Gabriel84] R. P. Gabriel and J. McCarthy. Queue-based multi-processing
Lisp. In Lisp and functional programming, pages 25-44, Austin, Texas.
ACM, 1984.

[George89] L. George. An abstract machine for parallel graph reduction.
In J. Stoy, editor, 4th Functional programming languages and computer
architecture, pages 214-229, London, England. ACM, 1989.

[Glas92] J. Glas. The parallelization of branch and bound algorithms in a
functional programming language. Master's thesis, Dept. of Comp. Sys,
Univ. of Amsterdam, 1992.

Bibliography 187

[Goldberg88a] B. Goldberg. Multiprocessor execution of functional pro
grams. International Journal of Parallel Programming, 17(5):425-473,
1988.

[Goldberg88b] B. F. Goldberg. Buckwheat: Graph reduction on a shared
memory multiprocessor. In Lisp and functional programming, pages 40-
51, Snowbird, Utah. ACM, 1988.

[Goldberg88c] B. F. Goldberg. Multiprocessor execution of functional pro
grams. PhD thesis, Dept. of Comp. Sci, Yale Univ., 1988.

[Gottlieb83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L.
Rudolph, and M. Snir. The NYU ultracomupter - designing an MIMD
shared memory parallel computer. IEEE transactions on computers, C-
32(2): 175-189, 1983.

[Graham69] R. L. Graham. Bounds on multiprocessing timing anomalies.
SIAM journal applied mathematics, 17(2):416-429, 1969.

[van Groningen92] J. H. G. van Groningen. Some implementation aspects of
Concurrent Clean on distributed memory architectures. In H. Kuchen and R.
Loogen, editors, 4th International Workshop on the Parallel Implementation
of Functional Languages, pages 403-414, Aachen, Germany. Aachener
lnformatik-Berichte 92-19, RWTH Aachen, Fachgruppe Informatik, 1992.

[Gurd85] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype
dataflow computer. Communications ACM, 28(1):34-52, 1985.

[Halstead Jr84] R. H. Halstead Jr. Implementation of Multilisp: Lisp on a
multiprocessor. In Lisp and functional programming, pages 9-17, Austin,
Texas. ACM, 1984.

[Hammond91] K. Hammond and S. L. Peyton Jones. Profiling strategies on
the GRIP parallel reducer. Internal report 10, Dept. of Comp. Sci, Univ. of
Glasgow, Scotland, 1991.

[Hartel88a] P. H. Hartel. Performance analysis of storage management in
combinator graph reduction. PhD thesis, Dept. of Comp. Sys, Univ. of
Amsterdam, 1988.

[Hartel88b] P. H. Hartel and A. H. Veen. Statistics on graph reduction of SASL
programs. Software-practice and experience, 18(3):239-253, 1988.

188 Bibliography

[Hartel89] P. H. Hartel, M. H. M. Smid, L. Torenvliet, and W. G. Vree. A
parallel functional implementation of range queries. In P. G. M. Apers,
D. Bosman, and J. van Leeuwen, editors, Computing science in the The
Netherlands, pages 173-189, Utrecht, The Netherlands. CWI, 1989.

[Hartel90] P. H. Hartel. A comparison of three garbage collection algorithms.
Structured programming, 11(3):117-127, 1990.

[Hartel91a] P. H. Hartel, H. W. Glaser, and J. M. Wild. Compilation of
functional languages using flow graph analysis. Technical report CSTR
91-03, Dept. of Electr. and Comp. Sci, Univ. of Southampton, England,
1991.

[Hartel91b] P, H. Hartel, H. W. Glaser, and J. M. Wild. On the benefits
of different analyses in the compilation of functional languages. In H. W.
Glaser and P.H. Hartel, editors, 3rd Implementation of functional languages
on parallel architectures, pages 123-145, Southampton, England. CSTR 91-
07, Dept. of Electr. and Comp. Sci, Univ. of Southampton, England, 1991.

[Hartel92] P. H. Hartel and W. G. Vree. Arrays in a lazy functional lan
guage - a case study: the fast Fourier transform. In G. Hains and L. M. R.
Mullin, editors, 2nd Arrays, functional languages, and parallel systems (AT
ABLE), pages 52-66. Publication 841, Dept. d'informatique et de recherche
operationelle, Univ. de Montreal, Canada, 1992.

[Hartel93] P. H. Hartel and K. G. Langendoen. Benchmarking implementa
tions of lazy functional languages. In 6th Functional programming lan
guages and computer architecture, pages 341-349, Copenhagen, Denmark.
ACM, 1993.

[Hellberg92] S. Hellberg, I. Glendinning, and P. Shallow. Tools for paral
lel high performance systems - comparative evaluation. Technical report
SNARC 92-01, Univ. of Southampton, UK, 1992.

[Hertzberger89] L. 0. Hertzberger and W. G. Vree. A coarse grain parallel
architecture for functional languages. In PARLE 1989, LNCS 365/366,
pages 269-285, Eindhoven, The Netherlands. Springer-Verlag, 1989.

[Hofman92a] R. F. H. Hofman and W. G. Vree. Distributed hierarchical
scheduling with explicit grain size control. Future Generation Computer
Systems, 8:111-119, 1992.

Bibliography 189

[Hofman92b] R. F. H. Hofman, K. G. Langendoen, and W. G. Vree. Schedul
ing consequences of keeping parents at home. In Parallel and Distributed
Systems (ICPADS), pages 580-588, HsinChu, Taiwan. National Tsing Hwa
Univ., 1992.

[Hofman93] R. F. H. Hofman. Scheduling and grain size control. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, 1993.

[Hudak86] P. Hudak and L. Smith. Para-functional programming: A paradigm
for programming multiprocessor systems. In 13th Principles of program
ming languages, pages 243-254, St. Petersburg Beach, Florida. ACM, 1986.

[Hudak89] P. Hudak. Conception, evolution, and application of functional
programming languages. ACM Computing Surveys, 21(3):359-411, 1989.

[Hudak92] P. Hudak, S. L. Peyton Jones, and P. L. W. (editors). Report on the
programming language Haskell - a non-strict purely functional language,
version 1.2. ACM SIGPLAN notices, 27(5):1-162, 1992.

[Hughes82] R. J. M. Hughes. Super combinators - a new implementation
method for applicative languages. In Lisp and functional programming,
pages 1-10, Pittsburg, Pennsylvania. ACM, 1982.

[Hughes83] R. J.M. Hughes. The design and implementation of programming
languages. PhD thesis, Oxford Univ, England, 1983.

[Hughes89] R. J. M. Hughes. Why functional programming matters. The
computer journal, 32(2):98-107, 1989.

[Hughes90] R. J.M. Hughes. Compile-time analysis of functional programs.
In D. A. Turner, editor, Research topics in functional programming, pages
117-153, Reading, Massachusetts. Addison Wesley, 1990.

[Johnsson84] T. Johnsson. Efficient compilation of lazy evaluation. In Com
piler construction, pages 58-69, Montreal, Canada. ACM SIGPLAN no
tices,19(6), 1984.

[Johnsson87] T. Johnsson. Attribute grammars as a functional programming
paradigm. In G. Kahn, editor, 3rd Functional programming languages
and computer architecture, LNCS 274, pages 154-173, Portland, Oregon.
Springer-Verlag, 1987.

190 Bibliography

[Kahn74] G. Kahn. The semantics of a simple language for parallel program
ming. In J. L. Rosenfeld, editor, Information processing, pages 471-475,
Stockholm, Sweden. North Holland, 1974.

[Kelly89] P.H. J. Kelly. Functional programming for loosely-coupled multi
processors. Pitman publishing, London, England, 1989.

[Kennaway83] J. R. Kennaway and M. R. Sleep. Novel architectures for
declarative languages. Software and microsystems, 2(3):59-70, 1983.

[Kernighan78] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1978.

[Kesseler91] M. Kesseler. Implementing the PABC machine on Transputers.
In H. W. Glaser and P. H. Hartel, editors, 3rd Implementation of functional
languages on parallel architectures, pages 409-421, Southampton, Eng
land. CSTR 91-07, Dept. of Electr. and Comp. Sci, Univ. of Southampton,
England, 1991.

[Kesseler92] M. Kesseler. Communication issues regarding parallel functional
graph rewriting. In H. Kuchen and R. Loogen, editors, 4th International
Workshop on the Parallel Implementation of Functional Languages, pages
417-435, Aachen, Germany. Aachener Informatik-Berichte 92-19, RWTH
Aachen, Fachgruppe Informatik, 1992.

[Kingdon91] H. Kingdon, D.R. Lester, and G. L. Burn. The HOG-machine:
a highly distributed graph-reducer for a transputer network. The computer
journal, 34(4):290-301, 1991.

[Kluge83] W. E. Kluge. Cooperating reduction machines. IEEE transactions
on computers, C-32(11):1002-1012, 1983.

[Kranz89] D. A. Kranz, R. H. Halstead, and E. Mohr. Mul-t: A high
performance parallel Lisp. In Programming language design and imple
mentation, pages 81-90, Portland, Oregon. ACM SIGPLAN notices,24(7),
1989.

[Landin64] P. J. Landin. The mechanical evaluation of expressions. The
computer journal, 6(4):308-320, 1964.

[Langendoen91a] K. G. Langendoen and W. G. Vree. Eight queens divided:
An experience in parallel functional programming. In J. Darlington and

Bibliography 191

R. Dietrich, editors, Declarative programming, pages 101-115, Sasbach
walden, West Germany. Springer-Verlag, 1991.

[Langendoen91b] K. G. Langendoen and W. G. Vree. FRATS: a parallel re
duction strategy for shared memory. In J. Maluszynski and M. Wirsing,
editors, 3rd Programming language implementation and logic program
ming, LNCS 528, pages 99-110, Passau, West Germany. Springer-Verlag,
1991.

[Langendoen92a] K. G. Langendoen and D. J. Agterkamp. Cache behaviour of
lazy functional programs. In H. Kuchen and R. Loogen, editors, 4th Parallel
implementation of functional languages, pages 33-46, Aachen, Germany.
Aachener lnformatik-Berichte 92-19, RWTH Aachen, Fachgruppe Infor
matik, 1992.

[Langendoen92b] K. G. Langendoen, H. L. Muller, and W. G. Vree. Memory
management for parallel tasks in shared memory. In Y. Bekkers and J.
Cohen, editors, Memory management (IWMM), LNCS 637, pages 165-
178, St. Malo, France. Springer-Verlag, 1992.

[Lester89a] D.R. Lester. An efficient distributed garbage collection algorithm.
In E. Odijk, M. Rem, and J.-C. Syre, editors, 2nd Parallel architectures and
languages Europe (PARLE), LNCS 365/366, pages 207-223, Eindhoven,
The Netherlands. Springer-Verlag, 1989.

[Lester89b] D.R. Lester. Stacklessness: compiling recursion for a distributed
architecture. In J. Stoy, editor, 4th Functional programming languages and
computer architecture, pages 116-128, London, England. ACM, 1989.

[Li89] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM transactions on computer systems, 7(4):321-359, 1989.

[Liebermann83] H. Liebermann and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications ACM, 26(6):419-429,
1983.

[Loogen89] R. Loogen, H. Kuchen, K. Indermark, and W. Damm. Distributed
implementation of programmed graph reduction. In E. Odijk, M. Rem,
and J .-C. Syre, editors, 2nd Parallel architectures and languages Europe
(PARLE), LNCS 365/366, pages 136-157, Eindhoven, The Netherlands.
Springer-Verlag, 1989.

192 Bibliography

[Mag679] G. A. Mago. A network of microprocessors to execute reduction
languages - part I. Journal computer and information sciences, 8(5):349-
385, 1979.

[Maranget91] L. Maranget. GAML: a parallel implementation of lazy ML. In
R. J.M. Hughes, editor, 5th Functional programming languages and com
puter architecture, LNCS 523, pages 102-123, Cambridge, Massachusetts.
Springer-Verlag, 1991.

[McCarthy60] J. McCarthy. Recursive functions of symbolic expressions and
their computation by machine. Communications ACM, 3(4): 184-195, 1960.

[Mohr91] E. Mohr, D. A. Kranz, and R. H. Halstead Jr. Lazy task creation:
A technique for increasing the granularity of parallel programs. IEEE
transactions on parallel and distributed systems, 2(3):264-280, 1991.

[Muller93] H. L. Muller. Simulating computer architectures. PhD thesis,
Dept. of Comp. Sys, Univ. of Amsterdam, 1993.

[N6cker91a] E.G. J.M. H. N6cker, J.E. W. Smetsers, M. C. J. D. van Eeke
len, and M. J. Plasmeijer. Concurrent Clean. In E. H. L. Aarts, J. van
Leeuwen, and M. Rem, editors, 3rd Parallel architectures and languages
Europe (PARLE), LNCS 505/506, pages 202-220, Veldhoven, The Nether
lands. Springer-Verlag, 1991.

[N6cker91b] E.G. J.M. H. N6cker, M. J. Plasmeijer, and S. Smetsers. The
parallel ABC machine. In H. W. Glaser and P. H. Hartel, editors, 3rd
Implementation of functional languages on parallel architectures, pages
351-382, Southampton, England. CSTR 91-07, Dept. of Electr. and Comp.
Sci, Univ. of Southampton, England, 1991.

[Pehousek89] J. D. Pehousek and J. S. Weening. Low-cost process creation
and a dynamic partitioning in Qlisp. In T. Ito and R.H. Halstead Jr, editors,
Parallel Lisp languages and systems, LNCS 441, pages 182-199, Sendai,
Japan. Springer-Verlag, 1989.

[Peyton Jones87a] S. L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie.
GRIP - a high performance architecture for parallel graph reduction. In
G. Kahn, editor, 3rd Functional programming languages and computer
architecture, LNCS 274, pages 98-112, Portland, Oregon. Springer-Verlag,
1987.

Bibliography 193

[Peyton Jones87b] S. L. Peyton Jones. The implementation of functional
programming languages. Prentice Hall, Englewood Cliffs, New Jersey,
1987.

[Peyton Jones89] S. L. Peyton Jones, C. Clack, and J. Salkild. High
performance parallel graph reduction. In E. Odijk, M. Rem, and J.-C. Syre,
editors, 2nd Parallel architectures and languages Europe (PARLE), LNCS
365/366, pages 193-206, Eindhoven, The Netherlands. Springer-Verlag,
1989.

[Peyton Jones92] S. L. Peyton Jones. Implementing lazy functional languages
on stock hardware: the spineless tagless G-machine. Journal functional
programming, 2(2):127-202, 1992.

[Pfister85] G. F. Pfister and V. A. Norton. Hot spot contention and combining
in multistage interconnection networks. IEEE transactions on computers,
C-34(10):943-948, 1985.

[R6jemo92] N. Rojemo. A concurrent generational garbage collector for a
parallel graph reducer. In Y. Bekkers and J. Cohen, editors, Memory man
agement (IWMM), LNCS 637, pages 440-453, St. Malo, France. Springer
Verlag, 1992.

[Rudalics86] M. Rudalics. Distributed copying garbage collection. In Lisp and
functional programming, pages 364-372, Boston, Massachusetts. ACM,
1986.

[Ruggiero87] C. A. Ruggiero and J. Sargeant. Control of parallelism in the
Manchester data flow machine. In G. Kahn, editor, 3rd Functional pro
gramming languages and computer architecture, LNCS 274, pages 1-15,
Portland, Oregon. Springer-Verlag, 1987.

[Schulte91] W. Schulte and W. Grieskamp. Generating efficient portable code
for a strict applicative language. In J. Darlington and R. Dietrich, editors,
Declarative programming, pages 239-252, Sasbachwalden, West Germany.
Springer-Verlag, 1991.

[Smetsers93] J. E.W. Smetsers, E. Barendsen, M. C. J. D. van Eekelen, and
M. J. Plasmeijer. Guaranteeing destructive updatability through a type
system with uniqueness information for graphs. Technical report 93-3,
Dept. of Comp. Sci, Univ. of Nijmegen, The Netherlands, 1993.

194 Bibliography

[Smetsers91] S. Smetsers, E.G. J.M. H. Nocker, J. van Groningen, and M. J.
Plasmeijer. Generating efficient code for lazy functional languages. In
R. J. M. Hughes, editor, 5th Functional programming languages and com
puter architecture, LNCS 523, pages 592-617, Cambridge, Massachusetts.
Springer-Verlag, 1991.

[Stenstr6m90] P. Stenstrom. A survey of cache coherence schemes for multi
processors. IEEE computer, 23(6):12-24, 1990.

[Stout87] Q. F. Stout. Supporting divide-and-conquer algorithms for image
processing. Journal parallel and distributed computing, 4(1):95-115, 1987.

[Stoye84] W. R. Stoye, T. J. W. Clarke, and A. C. Norman. Some practical
methods for rapid combinator reduction. In Lisp and functional program
ming, pages 159-166, Austin, Texas. ACM, 1984.

[Swan77] R. J. Swan, S. H. Fuller, and D. P. Siewiorek. Cm* - a modular,
multimicroprocessor system. Proceedings National Computer Conference,
pages 645-655, 1977.

[Sweazy86] P. Sweazy and A. J. Smith. A class of compatible cache consis
tency protocols and their support by the IEEE Futurebus. In 13th IEEE/ACM
symp. computer architecture, pages 414-423. SIGARCH newsletter,14(2),
1986.

[Treleaven82] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins. Data
driven and demand-driven computer architecture. ACM computing surveys,
14(1):93-142, 1982.

[Turner79a] D. A. Turner. A new implementation technique for applicative
languages. Software-practice and experience, 9(1):31-49, 1979.

[Turner79b] D. A. Turner. SASL language manual. Technical report, Com
puting Laboratory, Univ. of Kent at Canterbury, 1979.

[Turner81] D. A. Turner. The semantic elegance of applicative languages. In
Arvind, editor, 1st Functional programming languages and computer archi
tecture, pages 85-92, Wentworth-by-the-Sea, Portsmouth, New Hampshire.
ACM, 1981.

Bibliography 195

[Turner85] D. A. Turner. Miranda: A non-strict functional language with
polymorphic types. In J.-P. Jouannaud, editor, 2nd Functional program
ming languages and computer architecture, LNCS 201, pages 1-16, Nancy,
France. Springer-Verlag, 1985.

[Turner90] D. A. Turner. Miranda system manual. Research Software Ltd, 23
St Augustines Road, Canterbury, Kent CTl lXP, England, 1990.

[Vegdahl84] S. R. Vegdahl. A survey of proposed architectures for executing
functional languages. IEEE transactions on computers, C-33(12):1050-
1071, 1984.

[Vrancken90] J. L. M. Vrancken and M. J. P. (ed.). Reflections on parallel
functional languages. Technical Report 90-16, Departement of Informatics,
University of Nijmegen, 1990.

[Vree89] W. G. Vree. Design considerations for a parallel reduction machine.
PhD thesis, Dept. of Comp. Sys, Univ. of Amsterdam, 1989.

[Vree90] W. G. Vree. Implementation of parallel graph reduction by explicit
annotation and program transformation. In B. Rovan, editor, Mathemati
cal foundations of computer science, LNCS 452, pages 135-151, Banska
Bystrica, Czechoslovakia. Springer-Verlag, 1990.

[Vree92] W. G. Vree and P.H. Hartel. Fixed point computation for parallelism.
Technical report CS-92-07, Dept. of Comp. Sys, Univ. of Amsterdam, 1992.

[Wadler90] P. L. Wadler. Comprehending monads. In Lisp and functional
programming, pages 61-78, Nice, France. ACM, 1990.

[Wadsworth71] C. P. Wadsworth. Semantics and pragmatics of the lambda
calculus. PhD thesis, Oxford Univ, England, 1971.

[Waite91] M. Waite, B. Giddings, and S. Lavington. Parallel associative
combinator evaluation. In E. H. L. Aarts, J. van Leeuwen, and M. Rem,
editors, 3rd Parallel architectures and languages Europe (PARLE), LNCS
505/506, pages 331-348, Veldhoven, The Netherlands. Springer-Verlag,
1991.

[Wang81] H. H. Wang. A parallel method for tri-diagonal equations. ACM
transactions on mathematical software, 7(2):170-183, 1981.

196 Bibliography

[Watson88] I. Watson, V. Woods, P. Watson, R. Banach, M. Greenberg, and J.
Sargeant. Flagship: A parallel architecture for declarative programming. In
15th IEEE/ACM symp. computer architecture, pages 124-130, Honolulu,
Hawaii. ACM SIGARCH newsletter,16(2), 1988.

[Watson86J P. Watson and I. Watson. Graph reduction in a parallel virtual
memory environment. In J. F. Fasel and R. M. Keller, editors, Graph
reduction, LNCS 279, pages 265-214, Santa Fe, New Mexico. Springer
Verlag, 1986.

[Watson87a] P. Watson and I. Watson. An efficient garbage collection scheme
for parallel computer architectures. In J. W. de Bakker, A. J. Nijman, and
P. C. Treleaven, editors, 1st Parallel architectures and languages Europe
(PARLE), LNCS 258/259, pages 432-434, Eindhoven, The Netherlands.
Springer-Verlag, 1987.

[Watson87b] P. Watson and I. Watson. Evaluation of functional programs on
the Flagship machine. In G. Kahn, editor, 3rd Functional programming
languages and computer architecture, LNCS 274, pages 80-97, Portland,
Oregon. Springer-Verlag, 1987.

Index

<v,G>,60

AMPGR,61
annotation, see parallelism
APERM, 11, 78
application node, 32

BAS, 111, 160

cache coherence, 4
cache performance, 3, 49, 53, 78,

157
CAS, 113
code generation, see FAST/FCG

compiler
computer architecture, 1
consistency, 3, 45, 47, 81, 87
contention, 4, 53, 61, 86, 157, 169,

175
currying, 23

delayed computation, 34, 80
distributed memory, 5
distributed shared memory, 7, 44
divide-and-conquer parallelism, 12,

79

evaluation transformer, 37

FAST/FCG compiler, 123
Flagship, 63
fork primitive, 43

fork-join, see divide-and-conquer
FRATS, 81, 155

reduction strategy, 86
from-space, 106
fully lazy reduction, 90
Functional C, 126
functional programming language

implementation, see graph re
duction

principles, 17-31
properties, 9

GAML,62
garbage collection, see memory

management
global address space, 44, 71
grain size, 55, 71
graph node encoding, 131
graph reduction

parallel, 41-59
sequential, 31-34

GRIP, 67

HDG, 65
head normal form, 37
higher order functions, 23-25
HyperM, 12, 68, 77
HyperMachine, see HyperM

infinite
computation, see non

termination

198

datastructures, 27, 88
inlining, 142

KOALA assembler, 128

lazy evaluation, 25-31
life-time analysis, 145
LIFO/FIFO scheduling, 58, 71, 97,

101

memory management
heap,50,71,82, 106,163,170
stack, 49, 71, 82, 97, 158

MiG, see simulation
multicomputer (distr. memory), 5
multiprocessor (shared memory), 3

nfib ratings, 74
non-termination, 27, 69, 88-93
normal form, 19, 37, 87

PABC, 66
PAM, 64
parallel computers, 1
parallelism

annotations, 42
task control, 55, 71
task creation, 42, 71

parameter passing, 143
performance

WYBERT, 153-175
performance results

FCG compiler, 14 7
machine comparison, 74
profiling, 165
SIS simulator, 94

portability, 9, 124

redex, 19
reduction, 19

Index

applicative-order, 26
graph, see graph reduction
normal-order, 26
string, 31

referential transparency, 10

sandwich annotation, 12, 69, 78,
97,123,155,156

reduction strategy, see FRATS
usage, 79-81,84

scheduling, 52, 71, 97
shared redex, 32, 45, 72, 81, 155
shared-memory, 3
simulation

MiG, 86,115
SIS,84,94, 101

SIS, see simulation
skeleton, 43
SKI combinators, 33
snoop,4
spark, 43
spark-and-wait, 44, 71, 78, 155,

156,178
speed-up, see performance results
spine, 33, 119
squeeze,87
stack simulation, 139
storage management, see memory

management
strictness analysis, 35-37
super combinators, 34

tags, see graph node encoding
tail call optimisation, 138
termination properties, see lazy

evaluation
to-space, 106
ToS scheduling, see WYBERT
transformation

Index

compiler optimisations, 139-
147

cycle naming, 92
divide-and-conquer, 79
order changing, 91
value lifting, 88

two-space copying garbage collec
tor, 106

VAS, 112, 160

WYBERT, 77-122
compiler, 123
design, 78
garbage collection, 82, 106-

120, 163
performance, 74, 153-175
prototype, 153
reduction strategy, 81, 86-96,

155
research objectives, 13
scheduling, 82, 97-105, 158

199

CWI TRACTS

1 D.H.J. Epema. Surfaces with canonical hyperplane
sections. 1984.

2 J.J. Dijkstra. Fake topological Hilbert spaces and
characterizations of dimension in terms of negligi
bility. 1984.

3 A.J. van der Schaft. System theoretic descriptions
of physical systems. 1984.

4 J. Koene. Minimal cost flow in processing networks,
a primal approach. 1984.

5 B. Hoogenboom. Intertwining functions on com-
pact Lie groups. 1984.

6 A.P.W. Bohm. Dataflow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoorn. Algorithms and approximations

for queueing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus.

1984.
10 C.G. van der Laan, N.M. Temme. Calculation of

special functions: the gamma function, the expo
nential integrals and error-like functions. 1984.

11 N.M. van Dijk. Controlled Markov processes; time
discretization. 1984.

12 W.H. Hundsdorfer. The numerical solution of non
linear stiff initial value problems: an analysis of one
step methods. 1985.

13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Analytic spaces and dynamic pro

gramming: a measure theoretic approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infi

nite primes. 1985.
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic par

tial differential operators: a case-study in Fourier
integral operators. 1985.

17 H.M.M. ten Eikelder. Symmetries for dynamical
and Hamiltonian systems, 1985.

18 A.D.M. Kester. Some large deviation results in
statistics. 1985.

19 T.M.V. Janssen. Foundations and applications of
Montague grammar, part l: Philosophy. frame
work, computer science. 1986.

20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalities for stopped Brow

nian motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix.

1986.
23 A.F. Monna. Methods, concepts and ideas in math

ematics: aspects of an evolution. 1986.
24 J.C.M. _Baeten. Filters and ultrafilters over defin

able subsets of admissible ordinals. 1986.
25 A.W.J. Kolen. Tree network and planar rectilinear

location theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Recon

ciling imperative languages and dataflow machines.
1986.

27 A.J.M. van Engelen. Homogeneous zero-
dimensional absolute Borel sets. 1986.

28 T.M.V. Janssen. Foundations and applications of
Montague grammar, part 2: Applications to natu
ral language. 1986.

29 H.L. Trentelman. Almost invariant subspaces and
high gain feedback. 1986.

30 A.G. de Kok. Production-inventory control models:
approximations and algorithms. 1987.

31 E.E.M. van Berkum. Optimal paired comparison
designs for factorial experiments. 1987.

32 J.H.J. Einmahl. Multivariate empirical processes.
1987.

33 O.J. Vrieze. Stochastic games with finite state and
action spaces. 1987.

34 P.H.M. Kersten. Infinitesimal symmetries: a com
putational approach. 1987.

35 M.L. Eaton. Lectures on topics in probability in
equalities. 1987.

36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.).
Proceedings of the first international conference
on industrial and applied mathematics {IC/AM 87).
1987.

37 L. Stougie. Design and analysis of algorithms for
stochastic integer programming. 1987.

38 J.B.G. Frenk. On Banach algebras, renewal mea
sures and regenerative processes. 1987.

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game
theory and related topics. 1987.

40 J.L. Geluk, L. de Haan. Regular variation, exten
sions and Tauberian theorems. 1987.

41 Sape J. Mullender (ed.). The Amoeba distributed
operating system: Selected papers 1984-1987.
1987.

42 P.R.J. Asveld, A. Nijholt {eds.). Essays on con
cepts, formalisms, and tools. 1987.

43 H.L. Bodlaender. Distributed computing: structure
and complexity. 1987.

44 A.W. van der Vaart. Statistical estimation in large
parameter spaces. 1988.

45 S.A. van de Geer. Regression analysis and empirical
processes. 1988.

46 S.P. Spekreijse. Multigrid solution of the steady
Euler equations. 1988.

47 J.B. Dijkstra. Analysis of means in some non
standard situations. 1988.

48 F.C. Drost. Asymptotics for generalized chi-square
goodness-of-fit tests. 1988.

49 F.W. Wubs. Numerical solution of the shallow
water equations. 1988.

50 F. de Kerf. Asymptotic analysis of a class of per
turbed Korteweg-de Vries initial value problems.
1988.

51 P.J.M. van Laarhoven. Theoretical and computa
tional aspects of simulated annealing. 1988.

52 P.M. van Loon. Continuous decoupling transforma
tions for linear boundary value problems. 1988.

53 K.C.P. Machielsen. Numerical solution of optimal
control problems with state constraints by sequen
tial quadratic programming in function space. 1988.

54 L.C.R.J. Willenborg. Computational aspects of sur
vey data processing. 1988.

55 G.J. van der Steen. A program generator for recog
nition, parsing and transduction with syntactic pat
terns. 1988.

56 J.C. Ebergen. Translating programs into delay
insensitive circuits. 1989.

57 S.M. Verduyn Lunel. Exponential type calculus for
linear delay equations. 1989.

58 M.C.M. de Gunst. A random model for plant cell
population growth. 1989.

59 D. van Dulst. Characterizations of Banach spaces
not containing 11 . 1989.

60 H.E. de Swart. Vacillation and predictability prop
erties of low-order atmospheric spectral models.
1989.

61 P. de Jong. Central limit theorems for generalized
multilinear forms. 1989.

62 V.J. de Jong. A specification system for statistical
software. 1989.

63 B. Hanzon. Identifiability, recursive identification
and spaces of linear dynamical systems, part I. 1989.

64 B. Hanzon. Identifiability, recursive identification
and spaces of linear dynamical systems, part II.
1989.

65 B.M.M. de Weger. Algorithms for diophantine
equations. 1989.

66 A. Jung. Cartesian closed categories of domains.
1989.

67 J.W. Polderman. Adaptive control&. identification:
Conflict or conflux?. 1989.

68 H.J. Woerdeman. Matrix and operator extensions.
1989.

69 B.G. Hansen. Monotonicity properties of infinitely
divisible distributions. 1989.

70 J.K. Lenstra, H.C. Tijms, A. Volgenant {eds.).
Twenty-five years of operations research in the
Netherlands: Papers dedicated to Gijs de Leve.
1990.

71 P.J.C. Spreij. Counting process systems. Identifi
cation and stochastic realization. 1990.

72 J.F. Kaashoek. Modeling one dimensional pattern
formation by anti-diffusion. 1990.

73 A.M.H. Gerards. Graphs and polyhedra. Binary
spaces and cutting planes. 1990.

74 B. Koren. Multigrid and defect correction for the
steady Navier-Stokes equations. Application to
aerodynamics. 1991.

75 M.W.P. Savelsbergh. Computer aided routing.
1992.

76 0.E. Flippo. Stability, duality and decomposition in
general mathematical programming. 1991.

77 A.J. van Es. Aspects of nonparametric density es
timation. 1991.

78 G.A.P. Kindervater. Exercises in parallel combina
torial computing. 1992.

79 J.J. Ladder. Towards a symmetrical theory of gen
eralized functions. 1991.

80 S.A. Smulders. Control of freeway traffic flow.
1996.

81 P.H.M. America, J.J.M.M. Rutten. A parallel
object-oriented language: design and semantic
foundations. 1992.

82 F. Thuijsman. Optimality and equilibria in stochas
tic games. 1992.

83 R.J. Kooman. Convergence properties of recurrence
sequences. 1992.

84 A.M. Cohen (ed.). Computational aspects of Lie
group representations and related topics. Proceed
ings of the 1990 Computational Algebra Seminar at
CW/, Amsterdam. 1991.

85 V. de Valk. One-dependent processes. 1994.
86 J.A. Baars, J.A.M. de Groot. On topological and

linear equivalence of certain function spaces. 1992.
87 A.F. Manna. The way of mathematics and mathe

maticians. 1992.
88 E.D. de Goede. Numerical methods for the three

dimensional shallow water equations. 1993.

89 M. Zwaan. Moment problems in Hilbert space with
applications to magnetic resonance imaging. 1993.

90 C. Vuik. The solution of a one-dimensional Stefan
problem. 1993.

91 E.R. Verheul. Multimedians in metric and normed
spaces. 1993.

92 J.L.M. Maubach. Iterative methods for non-linear
partial differential equations. 1994.

93 A.W. Ambergen. Statistical uncertainties in poste
rior probabilities. 1993.

94 P.A. Zegeling. Moving-grid methods for time
dependent partial differential equations. 1993.

95 M.J.C. van Pul. Statistical analysis of software re
liability models. 1993.

96 J.K. Scholma. A Lie algebraic study of some inte
grable systems associated with root systems. 1993.

97 J.L. van den Berg. Sojourn times in feedback and
processor sharing queues. 1993.

98 A.J. Koning. Stochastic integrals and goodness-of
fit tests. 1993.

99 B.P. Sommeijer. Parallelism in the numerical inte
gration of initial value problems. 1993.

100 J. Molenaar. Multigrid methods for semiconductor
device simulation. 1993.

101 H.J.C. Huijberts. Dynamic feedback in nonlinear
synthesis problems. 1994.

102 J.A.M. van der Weide. Stochastic processes and
point processes of excursions. 1994.

103 P.W. Hemker, P. Wesseling (eds.). Contributions
to multigrid. 1994.

104 I.J.B.F. Adan. A compensation approach for queue
ing problems. 1994.

105 0.J. Boxma, G.M. Koole (eds.). Performance eval
uation of parallel and distributed systems - solution
methods. Part 1. 1994.

106 O.J. Boxma, G.M. Koole (eds.). Performance eval
uation of parallel and distributed systems - solution
methods. Part 2. 1994.

107 R.A. Trompert. Local uniform grid refinement for
time-dependent partial differential equations. 1995.

108 M.N.M. van Lieshout. Stochastic geometry models
in image analysis and spatial statistics. 1995.

109 R.J. van Glabbeek. Comparative concurrency se
mantics and refinement of actions. 1996.

110 W. Vervaat (ed.). Probability and lattices. 1996.
111 I. Helsloot. Covariant formal group theory and some

applications. 1995.
112 R.N. Bol. Loop checking in logic programming.

1995.
113 G.J.M. Koole. Stochastic scheduling and dynamic

programming. 1995.
114 M.J. van der Laan. Efficient and inefficient estima

tion in semiparametric models. 1995.
115 S. C. Borst. Polling Models. 1996.
116 G.D. Otten. Statistical test limits in quality control.

1996.
117 K.G. Langendoen. Graph Reduction on Shared

Memory Multiprocessors. 1996.
118 W.C.A. Maas. Nonlinearrl00 control: the singular

case. 1996.

MATHEMA T/CAL CENTRE TRACTS
I T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Samplingfrom a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes,
part I: model and method. 1964.
4 G. de Leve. Generalized Markovian decision processes,
part II: probabilistic background. 1964.
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
IO E.M. de Jager. Applications of distributions in mathematical
physics. l 964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.
13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print:
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition tprogrammi"f;
\a9c;ages with an application to the de nition of AL OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 1. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related lo compactness.
1968.
20 P.J. van der Houwen. Finile difference methods for solving
partial differential equations. 1968.
21 E. Wattel. .The compactness operator in sel theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra,
part/. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Pa<:rl. Representations of the Lorentz group and projec
tive geometry. 1969. i~6tropean Meeting 1968. Selected statistical papers, part I.

i~6tropean Meeting 1968. Selected statistical papers, part II.

28 J. Oosterhoff. Combination of one-sided statistical tests.
1969.
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximations to the Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application lo the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservations of infinite divisibility under mix
ing and related topics. 1970.
34 I. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinalfunc
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L van der Poel, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). [912.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for
independence. 1973.
44 H. Bart. Meromorphic operator valued functions. 1973.

45 A.A. Balkema. Monotone transformations and limit laws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part/: lhe language. 1973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems, part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-XB. 1973.
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, LG.LT. Meertens, R.G.
Fisker (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological stmctures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I:
theory of designs, finite geometry and coding theory. 1,!74.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations, partitions and combinatorial
geometry. 1914.
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975.
ii~L Mijnheer. Sample path properties of stable processes.

60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetric closed categories. 1975.
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1975.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic Lame
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo
logical spaces. 1977.
76 M. Rem. Associons and the closure statements. 1976.
77 W.C.M. Kallenberi;. Asymptotic optimality of likelihood
ratio .ests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Empirical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part I. I 976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part 2. 1976.
83 LS. van Benthem Jutting. Checking Londau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.LL Busard. The translation of the elements of Euclid
from the Arabic into Latin by Hermann of Carinthia (?), books
vii-xii. 1977.
85 J. van Mill. Supercompactness and Wa/Jmann spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming system for operations on vectors and matrices over arbi
trary fields and oJ variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and ana
lytic functionals with unbounded carriers. 1978.
90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic games. 1"981.

91 J.M. Geysel. Transcendence in fields of posith>e clwracreris
lic. 1979.
92 P.J. Weeda. Finite generalized Markov programming. 1979.
93 H.C. Tijms, J. Wessels (eds.). Afarkm• decision theury.
1977.
94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Ba..vesian control of Markov chains. 1978.
96 P.M.B. Vitllnyi. Lindennu~,ver systems: structure,
languages, and growth .fi.mctions. 1980.
97 A. Fe<lergruen. Markovian control prohlcms; Ji111ctional
equations and algorithms. l 984.
98 R. Geel. Singular perturbations <f hyperbolic type. 1978.
99 J.K. Lcnstra. A.H.G. Rinnoov Kan, P. van Emde Boas
(eds.). Interfaces between computCr science and operarions
research. 1978.
100 P.C. Baaycn. D. van Dulst, J. Oosterhoff (eds.). Proceed"
ings bicentennial congress t!f" 1/te Wiskundig Genootsdwp, part
/. 1979.
JOI P.C. Baaycn, D. van Dulst. J. Oostcrhoff (eds.). Proceed
ings bicentennial congress of the Wiskundig Genoolschap, part
2. 1979.
102 D. van Dubit. Reflexive and superrejfexive Banach ::.paces.
1978.
103 K. van Harn. Classi(ving infinite(>' divisible distrilmiions
~y Jimctional equations. Ens.
104 J.M. van Wouwc. GO-spaces and generalizations of metri
zahili1y. 1979.
105 R. Helmers. Edgeworth l!xpunsionsfor linear combinations
of order statistics. 1982.
106 A. Schrijver (ed.). Packing and covering in combinatorics.
1979.
107 C. den Heijer. The numerical solution of nonlinear opera
tor equations by imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.). Fowulations of
computer science Ill, parl I. 1979.
109 J.W. de Bakker. J. van Leeuwen (eds.). Foundations of
computer science III, part]. 1979.

110 J.C. van Vliet. AL(!OL 68 transpw, part/: historical
review and disrnssion oj the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 fnmsput. part /I: an impleme11-
tation model. 1979.
112 H.C'.P. Berhce. Random walks with stationarr increments
and renewai theory. 1979. ·
113 T.A.B. Snijders. A::.ymptotic·optimali~y theo1yfor testing
problems with restricted alternatii1es. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic ana(vsis of generalized stochastic processes. 1979.
115 P.C. Baayen. J. van Mill (eds.). Topological structures /I,
part/. 1979.
I 16 P.C. Baayen, J. van Mill (ed.s.). Topological structures /I,

part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.
118 P. Grocncboom. Large d£1\liations and asymptotic
efficiencies. 1980.
119 F.J. Peters. Sparse matrices an.cl substructures, with a novel
implementation o_/ finite element algorithms. 1980.
120 W.P.M. de Ruyter. On the w,pnptotic analysis oflarge
scale ocean circulation. 1980.
121 W .H. Haemers. Eigenvalm' techniques in design and graph
1heo1y. 1980.
122 J.C.P. Bus. Numerical solution of systems of 11011/inear
equations. 1980.

: ~~l Yuhasz. Cardinal functions in topologr - ten years later.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van dcr Hock. Reduction methods in nonlinear pro
gramming. 1980.
127 J.W. Klop. ComhinatOJJ' reduction systems. 1980.
128 A.J.J. Talman. Variable dimension fixed point algorithms
and rriangulations. I 980.
129 G. van der Laan. Simplicial fixed point a!gorilhms. 1980.
130 P.J.W. ten Hagen, T. Hagen. P. Klint, H. Noot, H.J.
f~it_A.H. Veen. /LP: imermediate la11gzwgefor picrures.

131 R..J.R. Back. Correctnt'.Ss pn.>ser11ing program refinements:
proof theory and applicmions. 1980.
132 H.M. Mulder. Tl1t, interva/jl111crio11 ofa graph. 1980.

133 C.A.J. Klaassen. Statistical performance of location esti
malors. 1981.
134 J.C. van Vlit:t. H. Wupper (eds.). Proceedings inrerna"
fional conference on ALGOL 68. 1981.
135 J.A.G. Grocnendijk. T.M.Y. Janssen. MJ.B. Stokhof
(eds.). Formal methods in the study o_f"language, part I. 1981.
136 JAG. Grocncndijk, T.M.Y. Janssen. MJ.B. Stokhof
(eds.). Formal method~ in the s1tu(v of language. part 1 /. 1981.
137 J. Telgen. Redundan(y and linear programs. 1981.
138 H.A. Lauwcrier. Mathematiwl models of epidemics. 198 I.
139 J. van der Wal. Swchasric dynamic programming, .rncces
.sive approximations and near(r optimal strategies f0r Markol'
decision processes and Markov games. 1981.
140 J.H. van Gddrop. A 111all1emarical the01y of pure
exchange economics without the no-critical-point hypothesis.
1981.
141 G.E. Welters. Ahcl-Jacobi isogrnies for certain ~1-pes <d
Fano three/olds. I 981.
142 H.R. Bennett. DJ. Lutzer (eds.). Topology and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamicjl!edback i11 finite- and
infinite-dimensional li11ear sys1ems. 198 l.
144 P. Eijgenraam. The so/Wion ofi11itial l'alue problems using,
interval arithmetic; formulation and ana(vsis r!f an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional co111i11uedfraction algo
rithms. 1981.
146 C.V.M. van der Mee. Semigroup andfactorization
methods in transport them~\'. 1981.
147 H.H. Tigclaar. ldelllijication a11d il1f"ormatil'e sample size.
1982.
148 L.C.M. Kallenberg. Linear program111i11i and finite Mar
kovian control problems. 1983.
149 C.B. Huijsmans. M.A. Kaashock, W.A.J. Luxemburg,
W .K. Vietsch (eds.). Frum A to Z, proceedings t?{ a -\Y111po
shun in honour of A.C. Zaanen. 1982.
150 M. Vcldhorst. An ana{J1sis o_fsparse matrix storage
schemes. 1982.
151 RJ.M.M. Does. Higher order a.~i-mptoticsfor simple linear
rank slatisrics. 1982.
152 G.F. van der Hocven. Projections <{lawless sequencies.
1982.
153 J.P.C. Blanc. Applimtion o_/ the theory of houndary value
problems in the anal)'sis ofa queueing model with pairl!d ser
vices. 1982.
154 H.W. Lenstra, Jr.. R. Tijdeman (eds.). Compwational
methods in nwnher theo1:r, part I. 1982.
155 H.W. Lcnstra, Jr., R. Tijdeman (eds.). Compulational
methods in numbn theory, part //. 1982.
156 P.M.G. Apers. Q11e1y processing and data a/location in
distributed database systems. 1983.
157 H.A.W.M. Kneppers. The covariant classification oftwo
dimensional smooth commwative /'ormal groups over an alge
hraical(r closed field of positive clwracteristic. 1983.
158 J.W. de Bakker . .J. van Leeuwen (eds.). Foundations o_/
rnmputer science IV, distribllted ~ystems, part 1. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundatiom of
computer science IV. distributed systems. part 2. 1983.
160 A. Rczus. Abs1rac1 AUTOMAT//. 1983.
161 G.F. Helminck. Eisenstein series 011 the metaplectic group.
a11 algebraic approach. 1983.
162 J..J. Dik. Testsforpr~/'erence. 1983.
163 H. Schippers. Multiple grid methods.for equa1ions of!he
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van dcr Hoeven. 011 point processes. 1983.
166 H.B.M. Jonkers. Abstraction, !>J){?cification and implemm
lation techniques. with an application to garhage collection.
1983.
167 W.H.M. Zijm. Nonnegative matrices in dynamic propwn
ming. 1983.
168 J.H. Evertse. Upper hounds.for the numbers if solutions o_f"
diophantine equalions. 1983.
169 H.R. Bennett. D.J. Lutzer (eds.). Topolog_v and order
stntctures, pan]. 1983.

