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We investigate the use or splitting methods for the numerical integration of 
three-dimensional transport-chemistry mlldels. In particular. we investigate 
various possibilities for the time discretization that can take advantage of the 
parallclization and vectorization facilities lllfored by multi-processor vector com
puters. To suppress wiggks in the numerical solution, we use third-order, 
upwind-biased discretization of the advection l<:rms, resulting in a live-point 
coupling in <:ach direction. As an alternative to the usual splitting functions, 
such as co-ordinate splitting or operator splitting, we consider a splitting !unc
tion that is based on a three-coloured hopscotch-type splitting in the horizontal 
direction. whereas full coupling is retained in the vertical direction. Advantages 
of this splitting function arc the easy application of domain decomposition 
techniques and unconditional stability in the vertical, which is an important 
properly for transport in shallow water. The splitting method is obtained by 
combining the hopscotch-type splitting function with various second-order split
ting formulae from the literature. Although some of the resulting methods arc 
highly acrnrate, their stability behaviour (due to horizontal advection) is quite 
poor. Therefore we also discuss several new splitting formulae with the aim to 
improve the stability characteristics. It turns out that this is possible indeed, hut 
the price to pay is a reduction of the accuracy. Therefore, such methods are to 
be prd\:rn:d if accuracy is less crucial than stability: such a situation is frequently 
encountered in solving transport problems. As pan of the project TRUST 
(Transport and Reactions Unilied by Splitting Techniques], prdiminary ver
sions of the schemes are implemented on the Cray C98i4256 computer and arc 
a vailablc for benchmarking. 
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L INTRODUCTION 

The mathematical model describing transport processes of salinity, 
pollutants, etc., combined with their chemical or bin-chemical interactions, 
is defined by an initial-boundary value problem for the system of 30 
adveetion-diffusion-reaetion equations 

ac, ( iii= L(u, r, 11·) c1 + g 1 I, x, )', :, c 1, ... , c,,,), i=l, .. .,111, (I.la) 

a a a a ( oc,) L(u,v,w)c,:=--a (uc,)--8 (vc;)--8 (1vc1)+-8 1;x-a 
x y : x x 

+- E -' +- c;,-' . a ( ac.) a ( ac) 
a.v .v ay a::: ~ a::: 

Here, the various quantities are defined as follows: 

('. 
l 

U, V, \\' 

Rx, c;Y' 1;z 

"· '" 

concentrations of the contaminants, 
local fluid velocities in x, y, ::: directions 
(assumed to be divergence free), 
diffusion coefficients in x, y, : directions, 
reaction terms (e.g. chemical interactions) 
and emissions from sources. 

(I. I b) 

The velocities u, v, w, and the diffusion coefficients 1:.« c;.v, 1:2 are 
assumed to be known in advance. The terms g1 describe chemical reactions, 
emissions from sources, etc., and therefore depend on the concentrations. 
The mutual coupling of the equations in the system ( 1.1) is due to the func
tions g1. 

Along the lines described in Ref 8, we replace the physical domain by 
a set of N Cartesian grid points and we approximate ( l. I ) and its boundary 
conditions by the semi-discrete, mN-dimensional initial value problem 
(IVP) 

dC(t) 
- 1- = F(I, C(r)) := H(t, C(t )) + G(t, C(r) ), 

u 
( 1.2) 

Here, C contains the m concentrations c1 at all N grid points, C0 defines 
the initial values, H(l, C(t)) represents the advection-diffusion terms, and 
G(l, C( t)) contains the reaction terms and emissions from sources. H(l, C) 
is linear in C with a matrix of coefficients which is an m-by-m block
diagonal matrix with the same N-by-N diagonal blocks. In general, G(t, C) 
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is nonlinear in C, but at each grid point, it only depends on the m concen
trations C; at that particular grid point. 

Since the right-hand side function in ( 1.2) contains terms of quite a 
different nature ( advection-diffusion terms and reaction-source terms), it is 
a natural approach to integrate the system by splitting methods which are 
tuned to the individual right-hand side terms. Such splitting methods con
sist of a splitting function and a splitting .fimnu/a. The splitting function is 
determined by a partitioning of the spatial grid points. Given the splitting 
function, many splitting formulae are possible. These formulae take the 
particular properties of the right-hand side into account and determine the 
temporal accuracy and stability of the splitting method. 

In Reis. 8, 9, and 12, the numerical treatment of ( 1.1) has been 
investigated for the case of a single transport equation, i.e. m = 1. The semi
discretization was obtained by symmetric, second-order spatial finite dif
ference discretizations and the splitting method used was the so-called 
Odd-Even Line Hopscotch ( OELH) method. It belongs to a family of split
ting methods in which the splitting function is based on grid points which 
are divided into two diflerent groups arranged according to the so-called 
"odd-even line hopscotch" ordering (see also Gourlay).< 3 l The splitting for
mula uses a second-order, one-step time discretization consisting of two 
(fractional) stages of trapezoidal rule type. It is designed such that the 
implicit relations to be solved in each time step are only ( tridiagonally) 
implicit in the vertical direction. In Ref 10 this OELH method was success
fully applied to a five-species model, i.e. m = 5. The accuracy of the results 
is dictated by the grid sizes in space and time and not by the stability con
dition; in vector mode on the Cray C98/4256 computer, the speed-up is 
about a factor 12 with respect to the scalar mode. 

A possible drawback of this OELH method is its symmetric spatial 
discretization that may cause unwanted wiggles in the numerical solution. 
This disadvantage can be suppressed by changing to an upwind-biased dis
cretization for the advection terms. In this paper, we use a third order 
upwind scheme, resulting in general- -in a 5-point discretization (the so
called "= l/3 discretization ). <6 > As a consequence of this extended stencil, 
we can no longer apply the odd-even line hopscotch ordering. Therefore, in 
this paper, we introduce three groups of grid points (red, black and white 
points), that are arranged according to the "red-black-white line 
hopscotch" ordering. Given the associated splitting function, the time 
integration requires a splitting formula which allows for multi-term split
ting (in our case, a four-term splitting). 

We distinguish between splitting formulae based on consistent stages 
and on .fi"actiona/ stages. Unlike fractional stages, consistent stages provide 
approximations to the exact solution at some point on the I-axis. It turns 
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out that formulae with only consistent stages generate more accurate 
methods than formulae with one or more fractional stages. Both types of 
multi-term splitting formulae are available in the literature. We consider 
the stabi/i:;ing corrections formula of Douglas,< 1 > based on only consistent 
stages, the fractional-stage formula of approximation corrections suggested 
by Yanenko,0 3l and the parallel fractional-stage splitting formula of Lu et 
al.(7) These formulae have been selected because they are all second-order 
accurate. Furthermore, we present two new fractional-stage splitting for
mulae; one is a formula based on a combination of Forward and Backward 
Euler stages suggested by Hundsdorfer;<5> the second one is a formula with 
Trape:;oidal rule type stages (like the OELH method in <9>). All these split
ting formulae will be combined with the hopscotch type splitting function 
and the resulting methods will be called Red-Black-White Line Hopscotch 
(RBWLH) methods. The verification of the time-discretization-order of 
these methods becomes quite difficult. To overcome this difficulty, we will 
formulate the (one-step) RBWLH methods as Runge-Kutta methods with 
fractional stages, to be referred to as Runge-Kutta Splitting ( RKS) 
methods. For RKS methods, the order conditions up to order 3 are easily 
derived.<4 > In this way, we can verify the order of any (one-step) splitting 
method, whatever complicated the method is. 

As a result of our analysis of RBWLH methods, it turns out that two 
methods are particularly promising: the five-stage Douglas type method, 
showing a highly accurate behaviour, and the seven-stage trapezoidal rule 
type method, possessing improved stability properties. Since in shallow 
flow problems, stability is usually of more importance than accuracy, the 
trapezoidal rule type method is recommended. In this scheme, the implicit 
part of each of the seven stages is associated with either the red, or black, 
or white grid points, or with the reaction term G. A preliminary version of 
this method is implemented on the Cray C98/4256 computer and is 
available for benchmarking as the code TRUST (Transport and Reactions 
Unified by Splitting Techniques). The main properties are summarized 
below: 

+ fractional-stage method with seven stages 

+ third-order in space (upwind-biased K = 1/3 discretization) 

+ second-order in time (Strang-type symmetry) 

+ linear stability condition At(iui/Llx+ lvl/Ay) ~2.7 (independent of 
the vertical mesh size) 

+ storage economic 

+ bio-chemical stage ( G-stage) solved by functional iteration 
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• red, black and white stages five-diagonally, linearly implicit in 
vertical direction 

+ highly vectorizable implementation of the linear systems solver 

+ easy domain decomposition owing to the horizontal explicitness. 

The remainder of the paper is organized as follows. The next section 
briefly discusses RKS methods and provides us with criteria to verify the 
order of accuracy in time and to reduce the number of arrays needed for 
storage. In Section 3, the upwind-biased K = 1/3 discretization is described. 
Section 4 presents a brier survey of time discretization options and their 
main characteristics. Finally, in Section 5, we discuss numerical experi
ments and make a comparison of the various methods with respect to 
stability and accuracy. 

2. RUNGE-KUTTA SPLITTING METHODS 

For simplicity. we shall ignore the !-argument in the right-hand side 
function F(I, C(t)) of ( 1.2 ). In Section 4. where the actual RKS methods 
will be specified. we return to the nonautonomous notation. 

Suppose that the right-hand side F is split according to the splitting 
function 

a 

F(C) = L fk(C). ( 2.1) 
k=I 

Then the RKS formula is defined by 

a 

Y=(c@l)Cn+Llt L (A(kl@l)l<\(Y), 
k~I (2.2) 

where LI t is the integration step, Cn and Cn + 1 represent approximations to 
the exact solution vector C(I) at !=In and l=ln+I• ® denotes the 
Kronecker product, the s-dimensional vectors c and e; respectively are the 
vector with unit entries and the ith unit vector, I is the identity matrix 
whose dimension should be deduced from the context in which it appears 
(here, it equals the dimension of the IVP ( 1.2) ). The s components Y; of 
Y represent intermediate approximations to the exact solution values, 
1<\(Y) contains the derivative values (fk(Y;)), and the s-by-.1· parameter 
arrays A(kl are to be determined by order and stability conditions. In the 
following, A (kl will be assumed lower triangular. If a= I, then ( 2.2) reduces 
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to a conventional diagonally implicit RK method (DIRK method). The 
method {(2.l), (2.2)} will be called a O"-terms RKS method ll'ith sfi'actiona/ 
stages. RKS methods are completely defined by the splitting function ( 2.1) 
and the arrays A (k\ defining the splitting formula. 

In our case. where we want to solve transport problems. it is more 
convenient to present the RKS formula in an alternative form, that allows 
us to choose the arrays A (kl such that we obtain a storage economic 
scheme. Let T be an s-by-s nonsingular transformation matrix. Then, by 
premultiplication of (2.2) by the matrix T@l. we obtain 

Y = ( (!- T) ® !) Y + (Tc® I) Cn 

a 

+Lit L (A(k)®l) Fk(Y). 
k~l 

For example, if T is detined by 

() 0 

l 0 

0 0 

0 
0 

-1 ~) r-1 := 

(2.3) 

() () 0 

0 0 

0 (2.4) 

I 

then the stage values Yi• i ?:- 2 are defined by the preceding stage value 
Y;_ 1 plus a linear combination of derivative values. 

In Ref. 4, Table 2.1, the order conditions up to order p = 3 have been 
derived. Since a second-order time integration is usually su11iciently 
accurate in the numerical modelling of transport problems, we restrict our 
considerations to orders p = l and p = 2. Using the compact notation in 
terms of the matrices A<kJ, we have for first-order accuracy the u conditions 

j = 1, ... , u, (2.5a) 

and for second-order accuracy, in addition, the r:J 2 conditions 

j. k = 1, ... , u. (2.5b) 

The conditions ( 2.5) can be used for checking the order of accuracy of a 
given RKS formula (we remark that when using the representation ( 2.3 ), 
we should replace A<kl by r- 1/.i<kJ in (2.5)). 
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The linear stability of RKS methods can be analysed by means of the 
linear test equation 

dC(t) 

dt 
(2.6) 

k=I 

where Jk denotes the Jacobian matrix 8fk(Ynl/8y, which is assumed to be 
constant and to have its eigenvalues in the left halfplane. From (2.2), we 
deduce 

a 

Y=e®Cn+.dt L (A<kl®Jk)Y=(J-,1tS)- 1 (e®Cn), 
k=l 

(1 

s := L (A(k) ®Jk)· 
k=l 

Hence 

Thus, the stability matrix is given by 

Of special interest are the RKS formulae with factorizable stability functions. 
Let us consider the special RKS formula which has (when represented in the 
form (2.3)) lower bidiagonal matrices ;w> = Uiij> ). If T is chosen according 
to ( 2.4 ), we have 

a 

Y1=Cn+L1r L a\~>JkYl, 
k=l 

a 

Y;=Y;-1+.dt I [ai~}_ 1 JkYi_,+a;;>1kY;], ·-? (2.8) 
1- ..... , ... ,s, 

k=l 

Hence, the stability matrix takes the factorized form 

l 

R= n (l-,1tS;;)- 1 u+Arsi.i-1), s10=0. 
i=.S 

a 

S- ·- '\' -(k)J . 0 
iJ·- L. aiJ k•.I> . 

k=I 

(2.7') 
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3. SPATIAL DISCRETIZATION 

The spatial discretization of the diffusion terms in ( 1.1 ) can be 
approximated by symmetric differences. but the advection terms will be dis
cretized by upwind difference formulae in order to suppress unwanted 
wiggles in the numerical solution. Writing 

a ( 8c;) aex 8c; 82c; auc; 8c; au - e - =--+e - --=u-+c.-
8x X ax ax ax X 8x2 ' ax ax I ax' 

( 3.1) 

(and similar expressions for the derivatives with respect to y and ::: ), we are 
led to use the symmetric, second-order difforence stencils 

a 1 0 
ox:::: 2L1x [ - I 

82 1 
lJ, -8 _2::::-(A 2[1 

X LJX) 
-2 1] (3.2) 

for the differential operators occurring in the diffusion terms. Furthermore, 
assuming that the velocity field is divergence free, we may use the third
order upwind-biased discretization (so-called r; = 1 /3 discretization (6 l) 

a u 
u--:::::,-[Q -2 -3 6 -1] 

ax 6L1x 

if u~O 

(3.3) 

if u<O 

for the advection terms. Inserting the above approximations into ( 1.1 ), we 
arrive at the semi-discrete transport model ( 1.2 ). 

4. TIME DISCRETIZA TION 

In this section, we apply RKS methods to the transport model ( 1.2 ). 
In particular, we shall apply the RKS formula in the form ( 2.3) with lower 
triangular matrices J<kl_ On substitution of ( 2.4) and taking into account 
the triangular structure of the RKS matrices, we obtain the representation 

u 

y l =en+ Lit I awrk(Y i), 
k=l 

u ; 

Y;=Y;-1 +L1r I I a~lfk(Y), i=2, .... s, (4.1) 

k= l j= I 
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To restrict the amount of implicitness to a manageable level, we assume 
that for a given i at most one of the parameters a;; 1 does not vanish. 

Let us first consider the advection and diffusion terms. From the 
preceding section it follows that the semi-discretization is such that we only 
have coupling along the co-ordinate directions (no crosscoupling) and that 
in each direction we have at most a five-point coupling. 

Let the grid points in each horbmtal plane be grouped into three 
categories, red, black and white points, as indicated in Fig. 1, such that 
each vertical grid line contains either red, or black, or white points. 
Furthermore, let 

H=H(t, C) =H* +ff+ +H", (4.2a) 

where ff*, ff+ and H" have only nonzero values at the grid points*· + 
and o, respectively. Then, we may define the Red-Black-White Line 
Hopscotch ( RBWLH) splitting by 

(4.2b) 

Owing to this splitting and to our assumption on the parameters a;; 1, the 
implicit stages in ( 4.1 ) involving f 1 , f 2 or f 3 only possess implicitness in the 
vertical direction. 

The reaction and source terms represented by G(t, C( t)) can be handled 
simply by setting 

(4.2c) 

Since G has N component vectors, each of dimension m and mutually 
independent, the implicitness associated with the fractional function f4 = G 
consists of N implicit systems of dimension m. In shallow water applica
tions, this function is nonstiff, so that it is feasible to solve these systems 
by functional iteration. 

In the following subsections, we survey a few potential RBWLH 
methods of the form { ( 4.1 ). ( 4.2)}, written in non autonomous form, and 
we discuss their suitability for integrating transport problems. In Section 5, 
the behaviour of these RBWLH methods will be illustrated by means of a 
numerical example. 

0111+0•+0* 
+o*+o•+o 

*+o•+o•+ 
0 "' + 0 * + 0 "' 

Fig. 1. Three categories of grid points. 
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4.1. RBWLH method of Douglas type 

Examples of RKS formulae with an arbitrary number of fractional 
right-hand side functions (splitting terms) are given in Ref 4. A well-known 
example is the stahili:::ing corrl!ctions j(m1111/a of Douglas.(!) In the case of 
the splitting function ( 4.2 ). we obtain the RB fVLH 1111..'tlzod of Douglas type 
defined by 

Y2=Y1 +Llt[H*(tn. Y1l+H+(t,,. Y1J+H 0 (t,,. Y1l+G(t,,. Y1l]. 

Y3 =Y 2 +~L1t[H*(l,,+ilt, Y3 )-H*(t,,. Y 1l]. 

Y4 =Y 3 +iL1t[H+(tn+1Jt. Y4 )-H+(t,,. Y1)]. 

Y5 =Y4 +~L1t[H"U,,+L1t. Y5 )-H"(t,,. Y 1)]. 

Y6 =Y5 +~Llt[GU,,+L1t. Y6 )-G(t,,. Y 1 l]. 

(4.3) 

Note that the five stages of this method are all consistent stages. This is 
clear for the first stage which is in fact an explicit Euler step. The second 
stage can be rewritten as 

Y3 =HY 1 +Y 2 ] +~Llt[H*(t,,+ilt. Y3 )+H+(t,,. Y 1 ) 

+H 0 (!,,. Yi)+G(t,,. Y 1 )]. 

showing that Y3 is a first-order approximation at tn +Lit (and similarly for 
the remaining stages). The last four stages serve to raise the first-order 
accuracy of the first stage to second-order accuracy (by writing ( 4.3) in the 
RKS form ( 2.2 ). the order conditions ( 2.5) can be verified to hold). 
Evidently. due to the terms H*. H + and H 0 , the first stage is highly 
unstable. Hence, the next stages also serve to stabilize the method. This can 
be made more precise by considering the stability matrix associated with 
( 4.3 ): 

Here. Z = Z* + z+ + Z 0 + Z# with Z* = LltJ*. z+ = LltJ +. Z 0 =Lit.I" and 
Z# =AtJ#. and where the Jacobians J*, 1+. 1° and J# correspond to H*. 
H +. H 0 and G. respectively. In order to get some indication of the damping 
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effect of the stability matrix, we ignore the (non stiff) G-stage and we 
assume that Z*, z+ and Z 0 share the same eigensystem with eigenvalues 
.::-*, .::-+ and .::-". Then, the eigenvalues of the stability matrix are given by 
R(.::-*,.::-+,.::- 0 ). In particular, we are interested in the magnitude of 
R(.::-*, .::-+,.::-")for adveetion dominated problems, that is,.::-*,.::-+ and .::- 0 have 
an imaginary part that is relatively large compared to their real part. 
Unfortunately, it turns out that for such eigenvalues R(.::-*, .::-+, .::-") easily 
assumes values outside the unit circle. Hence, even this idealized scalar case 
indicates a poor stability behaviour and therefore it is to be expected that 
the total ( nonscalar) RBWLH method of Douglas type is not sutliciently 
stable for integrating transport problems over long time intervals. This 
expectation is confirmed in Section 5, where we describe numerical tests. 

4.2. RBWLH method of Yanenko type 

A second well-known example of a splitting formula allowing an 
arbitrary number of splitting terms is presented by the approximating 
corrections formula or Yanenko. 1131 In the case ( 4.2 ), we obtain the 
Yanenko type RBWLH method 

Y 1 = e,, +~Lit H* Un+ ~Lit, Yi), 

Y2 =Y 1 +~LltH+ Un+!L1t, Y2 ), 

Y 3 = Y 2 +~Lit H 0 Un+ !Lit, Y 3), 

Y4 =Y 3 +!LltG(tn+~L1t, Y4 ), 

en+ l =en+ Lit [H* (tn + !L1/, Y4) 

(4.4) 

+ H + (t n + ~A I, y 4) + H () (In + ! LI I, y 4) + G(t n + ~A I, y 4)]. 

Here, the first four fractional stages are highly stable, hut the last stage, 
which serves to obtain second-order accuracy, is a highly unstable explicit 
Euler step. This situation is comparable with that of the Douglas type 
RBWLH method. In fact, the stability matrix is given by 

R(Z*, z+, z 0 , z# l 
=l+Z(!-~Z#)- 1 U-!Z")- 1 (/ !Z+) 1 (1-~Z*J 1, 

which is quite similar to the stability matrix of the R BWLH method of 
Douglas type. As we will sec in Section 5, the stability behaviour of this 
scheme closely resembles that of the Douglas type scheme. 
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4.3. The Lu-Neittaanmiiki-Tai type RBWLH method 

Recently, Lu, Neittaanmaki and Tai<7l proposed a multi-term splitting 
formula that can take advantage of parallel computer systems. The 
RBWLH version takes the form 

Y 1=Cn+2 Lit H*(tn + !L1t, Y 1 ), 

Y2=Cn+2L11H+(tn+!Llt, Y2), 

Y3=Cn+2LltH 0 (tn+!Llt, Y3), 

Y4=Cn+2LltG(tn+!Llt, Y4), 

Y5=HY1 + Y2+ Y3+ Y4], 

Cn+1=Cn+Llt[H*(tn+!Llt, Y5)+H+(tn+!Llt, Y5) 

+ H 0 (tn +!Lit, Y 5) + G(tn +!Lit, Y 5) J. 

(4.5) 

Evidently, the first four fractional stages can be done in parallel. By means 
of ( 2.5 ), the method can be verified to be second-order accurate. With 
respect to stability, we observe that the structure is again similar to that of 
the Yanenko type method, that is, a number of highly stable stages 
followed by a highly unstable, explicit Euler step. 

4.4. RBWLH method of Forward/Backward Euler type 

Hundsdorfer<51 suggested a splitting formula of a nice conceptual sim
plicity. It combines Forward and Backward Euler stages in a symmetrical 
way (Strang-type schemes 01 >), yielding second-order accuracy. In case of 
the splitting function (4.2), the Hundsdorfer formula has eight fractional 
stages and reads 

Y1=Cn+!LltH*(tn+!Llt, Yi), 

Y2=Y 1 +!LltH+(tn+!Llt, Y2), 

Y3=Y2+!LftH0 (tn+!Llt, Y3), 

Y 4 =Y3+!LltG(tn+!Llt, Y4 ), 

Y5=Y4+!LltG(tn+!Llt, Y4), 

Y6=Y5+!L1tH 0 (tn+!Llt, Y5), 

Y 7 =Y6 +!LltH+(tn+!Llt, Y 6 ), 

Ys=Y1+!AtH*(tn+!Llt, Y1), 

Cn+1=Ys. 

(4.6) 
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The stability matrix associated with this 1m:th11J is readily seen to be of th1: 
llirm 

Rt /. *, Z + • Z". Z"' I 

R I (.\'I : = I+ ~ x. 

Again. the fact that this method has a numher of highly unstahle stages 
makes it unlikely that the overall stability will be satisfactory. 

4.5. RBWLH method of Trapezoidal type 

All preceding methods have in common that their splitting formulae 
consists of highly stable and highly unstable stages. Alternative and more 
stable methods can be constructed by choosing the splitting formula such 
that each individual stage is (marginally I stable. Moreover, we shall design 
the formula such that it contains fractional right-hand side functions of just 
one type, so that the stability matrix is factorizable. Similar to the previous 
scheme. we shall arrange the stages such that the fractional right-hand side 
functions appear symmetrically within each step. In this way. we are led to 
the second-order splitting fi.)rmula 

Y1=Cn, 

Y2=Y1 + iJt[H*(ln, Y1) + H*(tn + !Jt. Y2)), 

Y3=Y2+~Jt[H+un+!J1. Y2l+H+(ln+~J1. '\:'3)). 

Y4=Y3+iJ1[H"(tn+~Jt, '\:'3)+H 0 Un+!A1. Y4 )]. 

Ys=Y4+~...11[GUn+!At. Y4 1+GUn+~Jt, Ysl]. (4.7) 

Y6=Ys+iJt[H"Un+!At, Ysl+H 0 Un+!Jt. Y6)]. 

\'7=Y 0 +iJr[H+(ln+!Jt. Y6)+H+(ln+ !Jt, Y7 )]. 

Ys=Y1+iJt[H*Un+~...11, Y1l+H*(ln+J1, Ysl]. 

By means of ( 2.5) it can be verified that this formula does have second
order accuracy. Since all stages of ( 4. 7) are of trapezoidal type, we shall call 
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it an RBWLH method o( Trupe:::oidal type. The stability matrix associated 
with ( 4.7) is given by 

R(Z*, z+, z0 , z# l 
= Ql1Z*) Q(1z+) Q(1Z") Q(~Z#) Q(1Z") Qr±z+) Q(1Z*), 

Q(X) := (/-X)- 1 (/ + X). 

Since Q( X) has its eigenvalues on the unit disk for any matrix X with 
eigenvalues in the left halfplane and recalling that J*, J +, 1° and J # are 
assumed to have their eigenvalues in the left halfplane, we conclude that 
each stage of ( 4.7) is unconditionally stable, which is a much better starting 
point than we have seen for the preceding methods. Of course, this "stage
stability" does not imply that the combination of all the Q-matrices results 
in overall stability, since the matrices z•, z+. Z" and z# do not share 
the same eigensystem for our RBWLH splitting. Therefore, a more 
sophisticated stability analysis is needed. This can be done along the lines 
of the analysis given in Ref. 12 for the OELH method and will be subject 
of future research. 

Finally, we observe that in practice, it may be attractive to implement 
a modification of ( 4. 7) that is less costly in actual computation. This 
modification is given by 

Y1=Cn, 

Y2=Y1 +1L1t[H°(tn, Y1)+H*(t,,+~L1t, Y 2 )], 

Y3=Y2+±L1t[H*(tn+~.dt, Y2J+H+(tn+iLlt, Y3)], 

Y4=Y3+±L11[H+(t,,+iL1t, Y 3)+H"Un+iL1t, Y4 J], 

Ys=Y4+1L1t[G(tn+~L11, Y4 )+G(t,,+~L1t, Y 5 )], 

Y 6=Ys+1L1t[ H°(t,, +~Lit, Y 5 ) + H +u,, + ~.dt, Y 6 )], 

Y7=Y6+±L1t[H+(tn+~Llt, Y6)+H*(tn+~Llt, Y7)], 

Y 8 =Y7 +1Llt[H*(l,,+~L1t, Y 7 )+H0 (t,,+L11, Y8 )], 

(4.8) 

It can be verified that this scheme again has second-order accuracy. It is 
less costly than ( 4.7) because the various stages have a number of terms in 
common (so-called fast form), but its stability matrix is not factorizable 
anymore. 
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5. ~l':\IERICAL EXPERl\lE'.\:IS 

The RBWLH n11:1hud~ tk:-.L·riht'd in tht' rrl·c-.·ding ~u!N:l.'!i\lllS will hl· 
applii:d tn tht: tt:st 

15.la I 

defined on thi: region 0 ~ x. r ~ Lh. - L,:::;::::::;: 0 and for 0 ~ ! :::;: T. Hert:. 
L' = ( 11. r. ir l derwtcs the divergent:e free vd,lcity field. giwn in analytical 
form I set: Ref 2 I 

11U. x. r . .: l = : .i' + 31: + i 2 l[ I.\· - l 21 2 + (_i' - I 2 l2 - ,.:c]: du 1. 

r( I. x. y . .: I= l - .\ + 3(: +I 21[ (.\ -- I 21 2 + i _i'-- I 21 2 r 2 ]: d(l i, 15. I b I 

11H.x.y . .:l=-3L,.:1:+IH1.\-l 21 L,,+1.1'-l 21Lh: d111. 

when: we used the scaled co-ordinates .\ := x l. 11 • _1' := _r .: := .:L,. and 
r = I 3 and di 11=rns(2nt 7~). The Neumann h1mndar: conditions. the 
initial condition and the functions g 1 and g 2 are ch1)sen in accordance with 
the prescribed analytical solution. whid1 is of the form 

c,( t. x. r . .:) =exp (: i -/,If I -- ;·, [ ( .\ -· rl l l 12 + 1 _1' - .1( 111 2 ] i. i = I. 2. 
(5.lc) 

with ./~( { l = f ( Th+ I I. fn ( l) = 40 1 l. r( ! ) = l 2 +COS( 27rl Tp 1] 4. and .1( /) = 
[2+sin12n1 Tpl] 4. 

In our experiments. we take the foll1wving values for the parameters: 
L1i=2ll000. L, = 100. 1:=0.5. ;· 1 =80. ;·1 =20. T1o=32400. and TP=43200. 
The length of the integration interval T = 36000. Realistic valut:s tl)r the 
reaction rate constants are: k 1 = k 1 = rn- 4 . 

The acrnracy is measured by 

n/1 :=minimum owr all grid points ! -· 101og lahsolute error for c,I ). 
i= L 2. 

In the experiments. we ust: a grid with 81 pnints in each hnrizontal direc
tion and 11 points in the vertical. The stage involving the ( bin-chemit:al) 
G-function has been solved bv functional iteration; it turns out that 2 ikra
tions sunice tu reduct: the m:iximum norm of the residual below I 0 5 
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For various values of Jt, the cd-values are given in Table I. Further
more, for each method we list the experimentally determined CFL number; 
these numbers have been included to give an indication of the stability 
behaviour of the various schemes when applied to advection dominated 
problems (to that end we set i; = k 1 = k 2 = 0 in ( 5.1 a) and use constant u, 
r and 11· ). Especially for the methods ( 4.3 ), ( 4.4 ), and ( 4.5 ), we do not claim 
that these numbers are very precise, since for these methods the instability 
is of a rather mild nature if the CFL condition is not obeyed. Even for 
experiments using a large number of steps it is difficult to classify a result 
as stable or unstable. A Fourier analysis along the lines as described in 
Ref. 12 should be performed to obtain the exact CFL numbers. For ( 4.6) 
and the trapezoidal type methods however, we observe a sharp distinction 
between various time steps; violating the CFL condition results in severe 
instabilities. A common characteristic of all methods is that the stability 
behaviour is independents of Liz, which is a nice property in the current 
application of transport in shallow seas. Moreover, all methods behave 
unconditionally stable for diffusion dominated versions of the model (i.e., 
k 1 =k2 = 0, e » II U II). As a consequence, the time step is only restricted by 
the horizontal advection, and anticipating a similar stability condition as 
theoretically obtained for the OELH method, (l2l the stability condition of 
the RBWLH methods is conjectured to be of the form 

( [u[ lvl) 
Jt Jx + Liy ~ CFL number. 

The number of stages is not the same for all schemes, resulting in different 
CPU times per step. Taking the computational effort of method ( 4.8) as 
unity, the corresponding factors for the other methods are listed in Table I 
(here, the parallel features of ( 4.5) have not been taken into account). 
These factors should be taken into consideration in selecting a method. For 

Table I. cd1Jcdrvalues for problem (5.1) at T= 36000. For this problem, the cd1/cd2-values 
corresponding to .di--> 0 (i.e., the spatial accuracy) are given by 3.4/3.5 

Scheme .di= T/70 di= T/140 Lit= T/280 ,di= T/560 CFL costs/step 

Douglas I 4.3 I 3.1/3.1 3.4/3.5 3.4/3.5 0.6 0.8 
Yanenko i 4.4 I 2 9/2.3 3.2/2 9 3.4/3.3 0.6 0.8 
Lu-Neittaanrniiki-Tai ( 4.5) * 3.0/3.0 0.2 0.8 
Hundsdorfer I 4.6) 2.1/1.2 2.6/1.8 3.112.4 1.8 0.8 
Trapezoidal (4.7) 1.9/1.5 2.5.12.l 2.9/2.7 2.2 1.6 
Trapezoidal, fast form ( 4.8) 1.6/0.9 2.2/1.8 2.7 /2.4 3.l/2.9 2.7 1.0 
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cxampk. if the spatial grid is chosen as coar~e as possihk to achieve a cer
tain requested accuracy. then the timt: integration error should not rl·duce 
the accuracy. and the Douglas type scheme ( 4.3 l seems to he the most 
cllicient choice. Howt:vt:r. if the spatial grid is dit:tated hy "gcomt::tri1.·al .. 
reasons and full prt:cision lln this grid is not necessary. then also the time 
step can he enlarged; in this situation. the scheme ( 4.8 l is the most ellicient 
ont:. since it has the largest CFL number. Finally. we remark that the tem
poral error can always he reduced hy applying Richardson extrapolation. 
Since Richardson extrapolation can he done in parallel. the accuracy of the 
Trapezoidal type method can he improved without increasing the ctfoctive 
computational costs. 
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