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For certain types of products requirements as to their quality are formulated 
by fixing specification limits for a number of characteristics. If one of the char­
acteristics does not satisfy the specification, the producer should not deliver 
that part to the customer. In complicated production processes it often occurs 
that a (small) fraction of the manufactured parts does not satisfy the specifi­
cations, despite efforts to reduce the variability within the production process. 
To ensure that this fraction is not shipped to the customer, the products are 
inspected on the characteristics specified. A typical exa.mple is the manufac­
turing of Integrated Circuits (IC's), for which specification limits are agreed on 
for a large n11mber of characteristics and each part is tested before delivery. 

In general, the measurements will not give the true value of the character­
istic. Due to meast1rement errors the measurement could wrongly suggest that 
the characteristic is conforming. To prevent accepting too many nonconforming 
products in this way, a somewhat more stringent test limit is set by the pro­
ducer. The more stringent this test limit, the smaller the number of accepted 
nonconforming products, but, at the same time, the larger the number of prod­
ucts that are needlessly rejected. Usually, it is considered unnecessary to make 
sure that not a single nonconforming product passes the test. In particular, 
when products are manufactured in very large quantities, as is the case with 
!C's, it is acceptable if a small fraction has been passed wrongly. It is common 
practice to agree with the customer on a bound on the probability of wrongly 
accepting a product, denoted by 'Y, together with a specification limit. 

So, given a specification limit and a value of --y, a test limit has to be deter­
mined. Besides by the value of , , the distance between test limit and specifi­
cation limit is determined by two more factors. Obviously, the magnitude of 
the measurement error is of importance. The smaller the measurement error, 
the closer the test limit can be set to the specification limit. Furthermore, 
the fraction of products for which the characteristic is around the specification 
limit plays a part. If there are simply no products of which the characteristic 
is around the specification limit, then there is no risk of wrongly accepting a 
product either. 

Although the problem has been given some attention in the literature, in 
' 

practice test limits are determined mainly in an informal way. Often the test 
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,1 .' 1 ., :. . .!D\ error Me ni0r111,elly di&tribut,ed. The first practical cornpncat.ion, 
wbi(-h bu Dot yet been studied, is that even if the assumption of nor1nality 
is justified, tbe c,ormsponding parameters ( mean, variance) will be unknown. 
Eetirr1ation itself of the para.meters is not a problem, however, the accuracy of 
the obtairlt,~j test lin1it depends on the accuracy of the estimators. In chapter 3 
<>f this book 11.mple atter1tion is paid to the complication when for the deter-
1nir1atio11 of' t.he test Iirr1its estimators of t,he parameters have to be used. Test 
lin1its ,vhic}1 a1l<.JW for the fact tl1at they are based on estimators are derived. 

In mar1y situations in practice the assumption of normality for the measure-
1nent error and/or the characteristic is not justified. In chapter 4 test limits are 
derived for the situation in which the measurement error can still be assumed 
to be normally distributed, but in which the characteristic is not necessarily 
normally distributed. Chapter 5 is dedicated to a specific part of the determi­
nation of test limits. To obtain an accurate test limit, it is essential to estimate 
t.he de11sity of the characteristic at the specification limit correctly. In chapter 5 
several ways to estimate the density in one point are discussed and compared. 
In chapter 6 test limits are derived for the general situation: normality for the 
measurement error is no longer assumed either. 

In chapter 2 the results are summarized for application in practice. The test 
limits for the different situations are presented in the form of a manual. 
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In many production processes large numbers of parts have to be inspected on 
various characteristics, for each of which a specification limit has been set. The 
specification limit is the largest or smallest value of a characteristic for which 
a product may be shipped to the customer. In semiconductor industry, for ex­
ample, integrated circuits (IC's) have specified values for many measurements. 
Usually, these values are agreed on with the customer or published in presen­
tations. This is, 

In the eighties a trend away from such inspection procedures has been 
started. Many industries have made great effort to improve the control of 
manufacturing processes and to establish working conditions for continuous 
improvements. In this respect, statistical process control and design of experi­
ments receive much attention. The focus in these fields is on better control of 
variation of the product characteristics. In areas such as semiconductor indus­
try, however, inspection of products is still inevitable. In the manufacturing 
of IC's, relations between process characteristics and product characteristics 
are not always very well known. Therefore process control by itself will not 
give sufficient safeguards, and IC's are still 100% tested on the characteristics 
specified. 

Typically, the measurement process used during inspection will not be infal­
lible, although one tries to reduce its variability. It is therefore common practice 
to apply a somewhat more stringent test limit, instead of the specification limit 
itself, to decide whether to accept a product. By accepting only those products 
which satisfy this test limit, the producer hopes that the consumer loss, which 
is the probability of obtaining products that are both bad and accepted, will 
stay below a prescribed bound , . Such bounds are often required to be very 
small (10 - 100 ppm, parts per million), especially when many characteristics 
are measured separately and parts are supposed to pass all of these tests, as is 
the case with IC's, for example. 

The choice of the test limit is an important practical problem. If it is chosen 
too close to the specification limit, the bound , on the consumer loss may be 
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violated. On the other hand, if the limit is chosen too conservative, one will 
be faced with an unnecessary large producer loss, which is the probability of 
obt · · product,s that are both conforming and rejected. Clearly this will 
lower the yield - the probability of obtaining products that are accepted and 
t,hus delivered. In production processes of the type mentioned before, a loss of 
yield of 0~1% ca.n already be quite costly. Nevertheless, it is still quite common 
to set test limits in the infotmal way described previously - just 'somewhat' 
more stringent than the specification limit. 

1.1 'The pr,oblem of finding correct test · limits 

By way of exa1nple, consider the following situ.ation. The specification limit 
for a 1 

• characteristic is ~eed ,on at 700.0 and pro,ducts s.hould only be 
a.pp:x,· .. · ·.·· .. • if the ch,a.ractetis,tic is .smallet tJJ,a.n ·this speciicat.ion limit. A 100% 
inspection is carried out by the producer .. · <Together witht.h'especifi,ca.tion limit 
a bo11nd f on the oonSt1,mer loss is fixed.· 

Supp,ose that the fono·· \··.· · · · .. ·.· ·, •···.· gram represents the measurements fr:om 
production of the insp . · · ·.··•· • .•.. · ·. eha.r ·. .· .··. ristic. · .·· ··' '•• .. · ·· 

Fig111·e 1.1 .. 1 Histogram for measurements from production 
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Because the measurements are contaminated by a (small) measurement er­
ror, the production data cannot be considered as the true values of the charac­
teristic. Besides measurement errors, imprecision, for example due to round off 
errors, may contaminate production data. Consequently, testing on the basis 
of the specification limit will lead to products which are nonconforming but 
accepted, and thus a test limit is placed on the left side of s to make sure that 
this will happen not too often. The problem is where to put this limit. 
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By setting the test limit far left of the specification limit, perhaps not one 
nonconforming product will be accepted. There is no need, however, to be 
more strict than required by the bound on the consumer loss. It is clear that to 
maximize the yield, the test limit should be as large as possible. The location 
of the test limit also depends on the magnitude of the measurement error. 
The smaller the measurement error, the closer the test limit can be set to the 
specification limit. Finally, the fraction of products around the specification 
limit is of importance, because these are products that can be judged incorrectly. 
The smaller this fraction, the less stringent the test limit may be. 

There are several, more or less, informal ways to determine the location 
of the test li1r1it. For a clear discussion it is useful to formulate the problem 
more precisely. We define the random variable X as the true value of the 
inspected characteristic, but because of a small random measurement error U, 
the production data are actually observations from 

-
X =X +u. (1.1.1) 

We assume that the specification limit, denoted bys, is given. The limit is 
such that products should be rejected if the characteristic has a value larger 
than s. It is often convenient to use the following quantity, 

=P(X>s), (1.1.2) 

which is the probability of a product being nonconforming. To fix ideas, in 
many applications 1r will be in the range from 0.001 to 0.15. 

The test limit we are looking for should be as large as possible to maximize 
the yield, defined as 

--
Yield= P(X < t), (1.1.3) 

which is the probability of accepting a product. On the other hand, the con­
sumer loss, defined as 

-
CL= P(X > s, X < t), 

should not exceed the prescribed bound ,. Hence the optimal choice for t is 
obtained by letting t = te, where te is such that the consumer loss equals 1 
exactly, that is 

-
P(X > s, X < te) = ,. (1.1.4) 

From this definition it is immediately clear that it is rather difficult to actually 
find the test limit we are looking for. This is probably also the main reason 
why informal methods to set the test limit are still popular. 

Perhaps the most informal way to set a test limit, is to take simply 

t =· s - b, 
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for some small constant b. In the example ab,ove we could choose to take t = 695. 
This approach, of course, fully ignores the behavior of the measurement error 
and it takes not into account the bound on the consumer loss. 

A small improvement is to use the standard deviation of the measurement 
error, which we denote by uu, and take 

t=s-k-au, (1.1.6) 

for some given k. Common choice is k = 3 leading to the so called '3u-limit'. 
It is relatively easy to find a conservative approximation to the value of te in 

which all of the three relevant factors - the bound , , the measurement error 
and the lo,cation of the specification limit in relation to the production data 
a.re involved. 

From (1.1.4) and (1.1.2) it follows that 

P(X < te l X > s) = ry/w:. (1.1.7) 

In view of (1.1.1) this leads t,o 

1 /1r = P(U < te - X I X > s) < P(U < te - s IX> s) · P(U < te .• s),, 

where we tacitly assumed that X and U are indep,endent. Following standard 
practice, let us make the assumption that U is normally distributed with mean 
0 and variance O'f;, which we denote by U rv N(O, ar; ). Let ti> denote the 
standard normal distribution function and <t,- l its inverse, then it follows that 

te - S -1 te - S 
1 /tr < ~ -- , hence that ti> (1 /tr) < -- and, consequently, that by 

au uu 

(1.1.8) 

a conservative approximation to te is obtained. The advantage of this approx­
imation is its simplicity, but in the derivation the simplifying assumption is 
made that each nonconforming part has X = s, rather than X > s. 

When besides U also the characteristic is normally distributed, X rv N(µx, 
a}), the measurement X is N (µx, a¼ + a&) distributed ( assuming X and U 
are independent) and (X, X) has a bivariate normal distribution, (X, X) rv 

N(µx, µx, u}, a'¼ + ai, p), where the correlation coefficient p equals (1 + 
ui / (11 )-112 . In this situation the consumer loss is thus simply a function 
of the specification limit s, the test limit t and the three parameters µ x, u x 
and au. Consequently, the test limit te for which the consumer loss equals , 
exactly, can be determined numerically. 

This approach has been proposed by Mullenix (1990). A first complication 
is that even if X and U are normally distributed, in practical situations only 
s and , are given while µx, a_k and ui often have to be estimated. en a 
very large number of observations is available for estimation, one may expect 
that the test limit obtained by plugging in the estimates instead of the true 
values will indeed be close to te. In practical situations especially the number of 
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observations to estimate au is often not very large, however. It is not guaranteed 
that for moderate sample sizes the obtained test limit is close to te and, more 
importantly, that the resulting consumer loss is close to 1 . 

1.2 l1r1prove111ents in yield 

We have discussed several methods to set a test limit. An interesting question 
is what gains in yield are achieved if a more advanced test limit is applied, 
rather than a crude approximation. Because, if it were negligible, why should 
we bother? 

With the test limits from (1.1.5) and (1.1.6) the consumer loss is not at all in 
control and hence not suitable, but with tc from (1.1.8) the bound , is certainly 
not violated, at least, if U is normally distributed, X and U are independent 
and the parameters 1r, cf. (1.1.2), and uu are known. For the sake of illustration 
let us assume X rv N(O, 1) and U rv N(O, a 2 ), and compare the yield obtained 
when using te rather than tc. In table 1.2.1 we present the gains achieved in 
yield for various choices of 1r, , and a. 

Table 1.2.1 The gains in yield by using te, rather than tc 

The gain in yield is given in %, for various combinations of 1r, , and a. 

0.01 
0.05 
0.10 
0.20 

(0.10,lOppm) 
0.29 
1.11 
2.14 
4.32 

(1r,,) 
(0.05,20ppm) (O.Ol,40ppm) 

0.18 0.06 
0.70 0.20 
1.38 0.40 
3.04 0.98 

(0.0025,lOOppm) 
0.02 
0.07 
0.12 
0.27 

It is easily shown that for X rv N (µ x, al) and U rv N ( 0, a[J) with au = 
u · ux the same figures follow. From table 1.2.1 we conclude that using the 
simple approximation tc, rather than te, can lead to a considerable loss of yield. 
Therefore, with respect to further investigations, for example the consequences 
of estimating parameters, we need approximations to te which are much more 
accurate than tc. 

1.3 Literature on test limits 

The problem of controlling the misclassification probabilities - incorrectly ac­
cepting a part and incorrectly rejecting a part - while carrying out a 100% in­
spection has been discussed over a long period of time and from various p,oints 
of view. All of the contributions have in common the assumption that both the 
characteristic and measurement error are normally distributed. In the problem 

• 
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of : ng test limits no attention has been paid to the co · · uences of using 
estbnaton of l • s rather than the true values . 

. ·· ..... , of the first ... · . . . rs in which application of a test li·rnit relative to a 
....... , i&cation lin·1it is disetlSSOO, comes from Grubbs and Coon (1954). They 
C0Mlder, , other things, determination of test lixuits if the consumer and 
producer lo88 should be eque.l or if the s111n of the two should be minimal. In 

·•··· .·. ·.· .·. cues the test 11.mit app•oo.rs to be oft.en less stringent than the specification 
lmit .. Nowada;ye e•.••·.· ·.,.mets see1n to be more demanding, however .. 

M•, . ·.·.··· and Shyu (1986) give confidence bounds for the misclassification 
· · L!-L t t 1·-·t · t b t th ,-obablltiel for the situation in wnirn not a separate • es .· Jm1 1s se , u e 

. ' ' ' ', !·_, .,: ' ' .. ' ' . ·•· 1 !-.-1. 
·_,_,> _- .. : --_.:.- _ 1 :·1 ,; _r _;:_ .i '.\ - ,·: ( _ .,.-_:: - 18 .app:ue\l .• 

. -( )d . !Werliag. Jt.1 ·· ·•· .. ··•····· · ••· . ., Br~t and Nacbtsheim · 1991 · · iscuss various mea-
1111·• of ) I ,,:v' ,' ,1°

1 
' for example the 100DSumer loss, and evaluate the mea­

... with raped tt, ooia+putat~: .. •: •• , .. · ··• · co ., . ·., , , ~1euee of the corresponding test limit, 
i .. ·. 1·• ; •• r'4'1tn1~ and eoono1nic oo ··.; ~; ·· era.tions. 
M-, funl.- teiereaees are fouod in these · ·· .. · · .. rs. 

1.4 Estimation of para111eter·s and nonnormality 

To get an impression of the consequences involved by estimation of paran1eters, 
e,ssume again that both the characteristic and measurement error are normally 
distributed and independent, X "'N(µx,u'¾) and U "'"' N(O,a&), but µx, 
ux a.nd uu a.re unknown. If we have to rely on estimators of the parameters., 
trivially, the obtained estimates cannot be considered as the true values of the 
parameters. Compare this complication with the following standard textbook 
problem. We have a random variable Z "' N(µ, o-2), where both µ and a are 
unknown. Based on a sa1nple Z1, .... , Zn a confidence interval for µ has to 
be determined. We compute sample mean,--.Z and sainple variance S 2 . Then, 
although we still have that (Z - µ)/(u/ n rv N(O, I), we should use instead 
that ( Z - µ) / ( SJ n) has Student's distribution to find the confidence interval, 
as q is unknown. Simply plugging in S for a- and continuing as if it were the 
true value, is not correct. 

· ·. · ·ie the difference between the standard normal distribution and Student's 
distribution with n degrees of freedom is negligible for practical purposes if 
n > 30, it turns out that to determine test limits much more observations are 
needed before the estimates of µx, ax and au may be identified with the true 
values. In fact, in chapter 3 it is shown that if te is computed by plugging in 
estimates which are based on moderate sample sizes ( cf. the discussion at the 
end of section 1.1), average consumer losses up to 21 can occur. 

If X or U is not normally distributed, the relation between the consumer loss 
and the pararneters µx, ux and au does not hold. Certain quantities remain to 
b·e estimated, however, and similar problems occur. It is very well known that 
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for several reasons ( outliers, skewness, heavy tails, bimodality etc.) normality 
fails quite often. .. 

1.5 Test li111its which allow for estin1ation 

When the test limit is based on estimators of parameters, the test limit itself 
and the resulting consumer loss actually are random variables. Since the true 
values of the parameters are unknown, we should no longer try to find a test 
limit which leads to a consumer loss exactly equal to , , as for instance, we 
should not try to find an estimator P,x exactly equal to µx. 

We will derive two types of test limits for the case where estimators are used. 
The first test limit is to be applied if the consumer loss should be equal to , 
in expectation. If estimates are obtained regularly, for example for each new 
batch of products, the long run average of the consumer loss then will tend to 1 , 
notwithstanding the (considerable) variation between batches. If one and the 
same consumer receives all batches this will be quite satisfactory. In general, 
a consumer loss with average 1 (and a lot of spread) is not advisable. For, we 
can hardly expect that a consumer who complains about receiving 215 ppm 
defectives rather than the 100 ppm which was agreed, will be soothed much if 
he is told that his competitor received only 30 ppm, thus making the average 
more correct! In this kind of situation a somewhat conservative test limit is 
appropriate, such that the bound , is violated only with a small probability. 
We will derive such a test limit as well. 

1.6 Outline of this book 

In this book the investigations are presented on the basis of various assumptions 
on the distributions of the characteristic and measurement error. In chapter 2 
the results are summarized in the form of a manual. 

-

-

-

-

The following four situations have been considered. 

Both the measurement error and the characteristic are normally 
distributed ( chapter 3). 
The measurement error is normally distributed but the type of 
distribution of the characteristic is unknown (chapter 4). 
The characteristic is normally distributed but the type of distri­
bution of the measurement error is unknown ( chapter 6). 
Both the measurement error and characteristic have an unknown 
type of distribution (chapter 6). 

It is not surprising that in the course of finding correct test limits, several 
more or less isolated problems were encountered. A problem which WM studied 
extensively emerged from the following. If the distribution of X is not normal, 
especially the reciprocal of the density of X at the specification limit is of 



10 TEST LIMITS D CONSUMER LOSS 

interest. Since estirriation of this quantity is not a problem which has received 
much attention in the literature, a lot of effort has been put in finding the 
way in which this quantity can be estimated optimally. Several nonparametric 
estimators have been investigated (cf. chapter 4). Moreover, the most suitable 
nonparametric estimator has been compared to several parametric estimators. 
The results, which are heavily based on simulations, are presented in chapter 5. 



• • 
I I 

Based on the theory in the next chapters we will provide here the procedures to 
set test limits as they can be applied in practice. Although from a theoretical 
point of view it is obvious, we want to emphasize that the data used to compute 
the test limit must be obtained from a stable process. The computed test limit 
has lost its accuracy if a modification occurs in the production process. 

Corresponding to most practical situations we consider a one-sided speci­
fication interval. The specification limit, denoted by s, is given and the test 
limit, denoted by t, is somewhat more stringent than s. The following random 
variables are used, 

- X refers to the true value of the inspected characteristic, 

- U stands for the measurement error, 
_, 

- X = X + U is the observed value of the inspected characteristic. 

By , we denote the prescribed bound on the consumer loss. 
To apply the procedures, the following two conditions on X and U should 

be satisfied. 

- X and U are mutually independent, 

- the standard deviation of U is much smaller than the standard deviation 
of X. ( As a rule, less than one third.) 

In four sections we will consider the following situations. 

- Both the measurement error and the characteristic are normally dis­
tributed (section 2.1) 

- The measurement error is normally distributed but the type of distribu­
tion of the characteristic is unknown (section 2.2) 

- The characteristic is normally distributed but the type of distribution of 
the measurement error is unknown (section 2.3) 

- Both the measurement error and characteristic have an unknown type of 
distribution (section 2.4) 
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In each of these sections expressions for two test limits are given, one test 
limit in order to obtain a consumer loss which is in expectation equal to the 
prescribed bo11nd 1 (referred to as 'unbiased estimation') and a test limit in 
order to obtain a cons1.1mer loss which exceeds "Y with a probability a only 
(referred to as 'confidence interva.l approach'). The test limits are denoted by 
tu and ti, respectively. 

There is a slight difference in the formulas between the situation in which 
products are nonconforming if X > s and the situation in which products are 
nonconforming if X < s. Therefore, two expressions are given for each type of 
the test li1nit. 

The accuracy of the test limits as well as the question whether the chosen 
estirr1ators are optimal is not a. point of discussion here. For that we like to refer 
the reader to the relevant chapters in this book where it is discussed extensively. 

For the purp,ose of review the following sections are divided into seven parts: 

1. A short description of the situation. 
2. Expressions for the estimators of the para1neters. 
3. Expressions for the test limits tu and ti. 
4. Some remarks on the actual computation of the test limits. 
5. A numerical example. 
6. A guide for the number of observations for estimation. 
7. A reference to the chapter in which the mathematically interesting 

aspects and formal justification of the procedures are treated. 

All calculations to compute the test limits can be performed on a pocket 
calculator, we assume however that either a table or a numerical procedure is 
available to evaluate the standard normal distribution. 

About the notation, we remark that a. '' ,. '' on top of a parameter or a 
function refers to an estimator of the parameter or a function of estimators. 
The standard normal distribution and its density are denoted by ~ and ¢, 
respectively. 
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2.1 Both the characteristic and 111easure111ent error 
are nor111ally distributed 

Situation The measurement error is N(O, <7fl )-distributed. 

The characteristic is N(µx, al )-distributed. 

The parameters au, µx and ax are not known. 

Estimators The estimator of au is based on n repeated measurements - -
of the characteristic with two replications, Xii and Xi2 (i = 
1, ... , n), and is given by 

I n -

n ·-1 i-

With respect to estimation of µx and u;c we consider two 
possibilities. There are either m - n additional observations -
Xii (i = n +I, ... , m) from production available or not. If 
the extra observations are not available, the estimators of µx 
and al are, 

1 n 

n-

- - -
where Xi•= (Xi1 + Xi2)/2. 
In the other situation, 

1 m -
Xi1, 

m --1 i-

1 
m-

m 

Test limits In case of unbiased estimation and when items should be ap­
proved if X < s, the test limit is given by 

.,., 

tu= s - (a1 - c +cu)· au, 
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C 

o-u f(s)' 

where 91(a) ¢(a) - a(I - 'P(a)), 

f(s) 
o-x 

withs= s-µx 
ax 

where k(a) </>(a) 
1 - ~(a)' 

k(a1) 2a1k(a1) + 1 - af} 
4n 

(s4 + 4s2 + l)(k(a1) - a1) 
+ 4m · 

The test li1nit is computed with the estimated values a1, c 
and au. These are obtained from a1, C and Cu, respectively, by 
replacing the parameters by their estimators everywhere. 

If the specification lin1it s is such that items should be 
approved if the value of the characteristic is larger th an s, the 
test limit becomes 

In case the consumer loss may exceed the prescribed bound 
, with probability a only, the correction term Cu above is re­
placed by Ci which is defined as, 

Ci 

where ua = 4\-1(1 - a), the upper a-quantile of the stan­
dard normal distribution. Hence, if items should be approved 
if X < s, the test limit becomes 

otherwise 

In a figure: 
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Test limits when product is nonconforming if X > s: 

"" .... .,., A c.uau e,;,au 
< ➔ (a1 c)&u 

' I .. -...... --.......... . .. I I I ,, 
.... ..... 

µx ti tu s 

Test limits when product is nonconforming if X < s: 

... ,,._ 

euuu 
(a1 + c)au 

s 

Computation The expression for a1 is not explicit, but as 91 (a) is strictly 
decreasing in a, a1 is uniquely defined. Its value is determined 
either by using a simple numerical root-finding procedure or 
with the help of table 2.1.1 at the end of this chapter (page 30). 
In this table numerical values of g11{b) are given. The step­
size of b is taken such that linear interpolation will lead to 
errors in a1 of 0.001, at most, which is amply accurate for 
practical purposes. 

The first part of the correction ter1ns Cu and Ci, with n in 
the denominator, is due the estimation of au, the second part 
is due to the estimation of µx and ux. In the situation where 
no data from production is available, we should read m = n. 
In the special case where µx and ux are known or mis very 
large ( over a few thousand) the second part of the correction 
terms may be omitted. However, omitting Cu for moderate 
sample sizes (for example n = 40) leads to consumer losses 
which in expectation can be equal up to 21 . 

Numerical Suppose the value of a characteristic should not be belows= 
example 59.50 and the consumer loss should not be larger than , = 40 

ppm (parts per million). In order to estimate uu, n = 120 
products have been measured twice, leading to fru = 0.3631. 
The estimates of µx and ax are obtained on the basis of a 
production sample of 2781 observations, resulting in flx 
68.462 and &x = 4.017. With the estimates we first compute 
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" a1. 

10-2) ~ 1.8264, from table 2.1.1. Using k(l.8264) = 2.2204, 
we find c = -0.0283, Cu = 0.0267 + 0.0016 = 0.0283 and 
Ci= 0.1869. We obtain iu = 60.163 and ii= 60.221. 
In a figure: 

0.0283o-u 0.1869au 
1.798l&u ( ) 

--1-------------------1~--
s = 59.50 

I 
l 4 = 60.221 µx = 68.462 

... 
tu=60.163 

Number of If unbiased estixnation is sufficient, but on the other hand 
observations cons11mer losses larger than 'Y(l + 80) should only occur with 

probability a (for exatnple 60 = 0.20 and a= 0.10), the num­
ber of observations required to estimate qu is approximately 

1 Ua k(a1) n~ . 
2 Co {k(a1) - a1) 

2 

' 

with u0 = ~-1(1 - o:}, the upper a-quantile of the standard 
no1mal distribution. The factor k{a1)/{k(a1)- a1} is approx­
imately 3 for a1 = 1 and 6.4 for a1 = 2. For a = 0.05 or 0.10 
(Uo = 1.65, 1.28, respectively) and 60 = 0.1 or 0.2, the factor 
u.!/(265) varies from 20 to 140. Together this leads to quite 
large values of n. 

The average yield in the confidence interval approach is 
smaller than in case of unbiased estiination (because Ci > Cu). 
The number of observations required to limit the reduction of 
yield to a value f3o (for example /3o = 0.1%) strongly depends 
on the true (but u own) value of au f(s). In fact, in certain 
situations there is practically no loss of yield at all, even for 
very small sample sizes, whereas in other situations it is pos­
sible to achieve a certain value of f3o only for extremely large 
sample sizes. With /3o = qu f ( s) / K for some constant K, the 
required sample size is approximately 

The factor k(a1) is between a1 and a 1 + 1. It is clear that 
for this guide to be of use, some idea of the value au f(s) is 
needed. 

Section 3.4.3 contains more information. 
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• 

Reference Chapter 3. 

2.2 The measuren1ent error only is nor1nally dis­
tributed 

Situation The measurement error is N(O, a& )-distributed, but au is un­
known. 
The type of distribution of the characteristic is unknown. 

Estin1ators The estimator of au here is the same as in the previous situ­
ation. It is based on n repeated measurements of the charac-- -
teristic with two replications, Xi1 and Xi2 ( i = 1, ... , n), and 
it is given by 

The test limits are further based on estimators of the den--
sity of X and its derivative at the specification limit. We 
write g( s) and g' ( s) to denote this density and its derivative, 
respectively. 

To estimate g(s) Rosenblatt's estimator is applied. The - -estimator is based on an additional sample Xi, ... , Xm from 
production and it is defined in the following way, 

g(s) 

where Zi = 

h 

-
1 if Xi E [ s - h, s + h] 
0 otherwise 

" a­x ,,.. 
a­x 

-1/2 

' 

' 

in which flx and ag are the sample mean and sample stan­
dard deviation of X ( we have µx = µ x). So, estimation of 
g(s) boils down to simply counting the number of observations 
around s. By h, called the bandwidth, the area around s is 
specified. 
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The estimator of g' ( s) is of a similar form as the one of 
g(s), 

g'(s) 

-1 if Xi E [s - h, s] -
where Zi = 

-
h 

.,.. 
q­x 

1 if Xi E (s,s+h] , 
0 otherwise 

A 

,,1.. s-µx 
m-~ - .... -­

a-X 

-1/4 

• 

Test limits In case of unbiased estimation and when items should be ap­
proved if X < s, the test limit is given by 

s - ( a1 - c + eu) • au, 

' 

where g1(a) ¢,(a) - a(l - tl>(a)), 

C = 
au g'(s) -
2 g(s) 

where k(a) 

ai + 1 - a1k{a1) , 

</>(a) 
1-~(a)' 

k(a1) {201k(a1) + 1 - a} 
4n 

1 
2mhg(s) 

1 
• 

m 

If the specification limit s is such that items should be 
approved if X > s, the test limit is 

s + ( a1 + c + eu) · &u. 

In case the consumer loss may exceed , with probability 
a only, the correction term Cu above is replaced by C£ which 
is defined here as, 

k{a1)2 (k(a1) - a1)2 

Ua + () , 2n 2mhg s 
Ci 

where Ua = ~-1(1 - o), the upper a-quantile of the stan­
dard normal distribution. Hence, in the situation where items 

• 
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should be approved if X < s, the test limit is 

otherwise, 

Computation Given a value of 1 / { 8-ug( s)} computation of a.1 is the same 
as in section 2 .1. The parts in the correction terms Cu and Ci 

with n in the denominator are due to the estimation of au. 
They are identical to those in section 2.1. The parts with m 
are due to the estimation of g. 

• 

With respect to the estimation of g( s) it may occur that 
there are no observations in the interval [s - h, s + h]. This 
happens especially in situations where s is in the tail of the 
distribution and only a small number of measurements is avail­
able. The best thing to do in this case is to try to get more 
observations. If this is not possible, one could apply the test 
limit from the previous section. However, this test limit is un­
reliable if the characteristic is not normally distributed. An 
alternative is to take simply the conservative test limit tc from 
(1.1.8). That is, ic = s - ~-1 (1 - 1 /ir) • iiu if products should 
be rejected if X > s and ic = s + ~-1 (1 - ,/fr)· uu oth­
erwise. The parameter 1r (either P(X > s) or P(X < s)) 
is estimated by the fraction of observations which does not 
satisfy the specification. 

Numerical Just as in the example from the previous section, suppose 
example the consumer loss should not be larger than 'Y = 40 ppm 

(parts per million), the specification limit is s = 59.50 and the 
value of the characteristic should not be below s. Based on 
n = 120 repeated measurements, fru = 0.3631 is found. From 
production m = 2781 measurements of the characteristic are 
available. -To estimate the density of X and its derivative, we first 
need the estimates of µx and ax to determine the bandwidths 

-
h and h. The sample mean and sample standard deviation 
yield P,x = 68.462 and fr x = 4.0334, say. We find h = 0.4161 
and 1i = 1.2954. Now, suppose in the interval [s - h, s + h] 
there are 19 observations of X, and in the intervals [s - h, s] -
and [s, s + h] there are 21 and 43 observations, respectively. 
We then obtain g( s) = 8.211 • 10-3 and g' ( s) = 4. 714 • 10-3 . 

Having all the estimates we find u.1 = 911 (1.3417 · 10-2 ) ~ 
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1.8248 (table 2.1.1) and c = -0.0293, Cu = 0.0473 and Ci = 
0.2171. The test limits become iu = 60.169 and ii = 60.231. 

Number of The guidelines in the previous section for the number n of 
obser·vations repeated measurements apply to the present situation as well 

(reading g instead off where necessary). When using one of 
these directions here, the number m of additional production 
data should be much larger than n, as a rule m :=-J n 2

. 

Reference Chapter 4. 

2.3 The cha r·acteristic only is normally distributed 

Situation The characteristic is N(µx, ui )-distributed, but µx and ux 
are own. 
The type of distribution of the measurement error is unknown. 
The mean of the measurement error is denoted by µ. If there 
is no systematic measurement error µ is simply 0, otherwise 
the value of µ is assumed unknown. 

'4lc;tim:ators Regarding the measurement error, observations U1, ... , Un of 
the measurement error itself are needed. This means that 
c · ~ out some repeated measurements does not give the 
necessary information. Observations on the measurement er­
ror are usually obtained from a comparison between standard 
measurement results and precise laboratory measurements of 
the same objects. The measurement error on the laboratory 
measurements is negligible and hence the difference between 
the two measurements yields observations from the measure­
ment error in the factory. 

In the computation of the test limits we will encounter 
sample functions rk(d) and lk(d) which are defined by 

- d)k · I(u;.-d)>O, k = 0, 1, 2 and 

where Ix>O = 1 ifx>O 
0 ifx<O. 

If there is a systematic measurement error (µ f:. O), the pa-
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. 

rameter µ is estimated by the sample mean 

1 n 
p, = ui . 

n ·-=-1 'l-

The estimators of µx and a3c are based on an additional - -
sample from production, Xi, ... , Xm. The estimator of µx is 
defined as 

The estimator of ui here is simply the sample variance. It is 
defined as 

1 m 

(Xi - flx )2 
-

m -1 
i=l 

Test lixnits First we consider the situation where products should be re­
jected if X > s. 
In case of unbiased estimation the test limit is 

with 

" tu 
,,.. 

s - ( dl - Cl + Cu,l) ' 
, 

where f(s + µ) 

withs 

s l2(dz) 
2ux lo(dz)' 

' 

1 - lo (dz) s4 + 4s2 + 1 ----+-----
n lo(dz) 4m 

• 

In the case where the consumer loss may exceed I with prob­
ability a only, the correction term Cu,l above is replaced by 
Ci,l, and the test limit becomes 

,._ 

s - ( di - cz + Ci,l), 

with 
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where u0 . 'P-1(1 - a), the upper a-quantile of the standard 
normal distribution. 

If the specification limit is such that products should be 
rejected if X < s, then in case of unbiased estiination the test 
limit is given by 

,.. 

S + (dr - Cr+ Cu,r), 

with dr such that r1 ( dr) = 1 
f(s+µ)' 

where f (s + µ) 

withs 

s r2(d,.) 
2o-x ro(dr)' 

1 
-<l>(s), 
ux 

s-f µ-µx 
' 

1-ro(dr) s4 +4s2 + 1 
, 

while in case the test limit should be such that the consumer 
los.s may exceed , with probability a only, the correction term 
Cu,r above is replaced by Ci,r, and the test li1nit becomes 

with Ci,r 

In a figure: 
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Test limits when product is nonconforming if X > s: 

" Cu,l 

s 

Test limits when product is nonconforming if X < s: 

" Cu.,r 

I . I I .. I _______ ,.. __ 

" ..... 

s tu ti 

Computation The expressions for dl and dr are not explicit. The easiest way 
to determine them is to consider the ordered observations of 
the measurement error. Let Uci) denote the smallest observa­
tion, Uc2) the second smallest, etc., until U(n) · 

The following figure shows the function n r1 ( d). 

nr1(d) 

I n, I 
I 

J(s + µ) I 
I 
I 

Si.,. I - - ,.. - - --- -
I I 
I I 
I I 
I I 
I I I 
I I I 
I I I 
I I I 
I I I I 

.... 
From this figure it is clear that to compute dr we have to find 
the value ir, which is defined as 

max + 1, 
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n 

j=i+l 

/(s+µ) = -
ux 

s + fl -[1,x 

(by definition Sn = O; if there is no systematic measurement 
error, µ = 0 and we do not estimate µ). ,,., 

Then dr is given by 
,.. 

" n,/J(s+µ)-·sir 
dr = u(ir) - . 

n-ir+l 

The corresponding algorithm is straightforward: 

i := n; Si:= O; 
, 

f 011nd:= Si > n ,.. ; 
f(s + µ) 

WHILE (NOT f 011nd) DO 
BEGIN 

i:=i-1· 
' F. • , 

4 := i + 1; 

:= (ir)- ; 
n-ir+l 

,.,. 

Computation of dz is analoguous. We have to find the value 
ii which is defined as, 

min i S-t > n ,.. 1 
f(s + µ,) 

i-1 

- 1, 

with Si= n l1(Ui) = ...... j (Uu+i)-U(j)) (in this case S 1 = 0). 
,.. j=l 

Now d1 is given by 
A 

u: - n,/J(s + µ) - sit 
(i,) . . 

'tl 

The corresponding algorithm is as follows. 

i := l; Si:= O; 

fo11nd:= Si > n ,.. 'Y ; 
J(s + µ) 

WHILE (NOT fo11nd) DO 
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i := i + 1; 
END· 

' iz := i - 1; 
,., 

dt := - ( ) -ii . ' iz 
,.. ... 

25 

Once dr or dz is computed, computation of the test limit is 
straightfo1-ward. 

Numerical Suppose the consumer loss should not exceed , = 40 ppm 
example (parts per million), the value of the inspected characteristic 

should not be belows= 59.50 and the estimates flx = 68.462 
and ux = 4.0334 are obtained from a production sample of 
m = 2781 observations. With these estimates it is found ... 
f (s) = 0.008379. (It is known there is no systematic measure-
ment error, µ = 0). 

Suppose of n = 120 products both laboratory measure­
ments and standard measurements are carried out. The dif­
ferences between the laboratory and standard measurements 
are the observations of the measurement error and suppose 
the six largest observations are U(iis) = 0.5015, U(llfi) 

0.5658, u(117) = 0.5737, u(ll8) = 0.5965, u(119) = 0.6388 and 
.,.. 

U(i2o) = 0.9551. We have n'Y/f(s) = 0.5729 and to compute 
" 
dr, first we determine ir. The values of Si are 8 119 = 0.3163, 
S11s = 0.4009, S111 = 0.4693, 8116 = 0.5009 and 811s 

A 

0.8224, hence, ir = 116 and we find dr = 0.5514. Further 
computation is straightfor·ward, Cr = 0.0095, Cu,r = 0.0224 
and C-£,r = 0.1063 and the test limits are iu = 60.064 and ,,. 

ti= 60.148. 
In a figure: 

0.0224 

0.5419 

s = 59.50 

0.1063 
< ) 

,._ 
----------~1-w--

I 
I ti= 60.148 µx = 68.462 

... 
tu=60.064 
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.,., ,.. 

Number of About the computation of dr and dz, it is important that 
observations ir < n - 2, respectively, ii > 2. If this is not the case, one 

should try to obtain more observations on the measurement 
error because the computed test limit is unreliable in this kind 
of situation. Application of the test limit from section 2.1 if 
the measurement error is not normally distributed, is not to 
be recommended. 

If unbiased estimation is sufficient, but on the other hand 
consumer losses larger than 1 (1 + 60) should only occur with 
probability a (for exan1ple 60 = 0.20 and a = 0.10), the num­
ber of observations required on the measurement error is ap­
proximately 

uo 2 l2(di) - lf (dz) n~ 
r .. 60 l r (dz) 

when products are nonconforming if X > s, or 

_ 'Uo 
2 r2(dr) - rf (cl,.) n ::..:; 

60 rr(dr) 

when products are nonconforming if X < s. The number m 
of additional production data should be at least of the same 
order of magnitude. · 

The average yield in the confidence interval approach is 
smaller than in case of unbiased estimation {because the cor­
rection terms Ci,r, Ci,l are larger than Cu,r, Cu,I, respectively). 
The number of observations required on the measurement er­
ror to lirnit the reduction of yield to a value /3o (for exa111ple 
/3o = 0.1%) is approximately 

,._ f (s + µ) 2 l2(dz) - l~(dl) 

when products are nonconforming if X > s, or 

_, f (s + µ) 2 r2(d,.) - rf (cl,.) 
' 

when products are nonconforming if X < s. The number m 
of additional production data should be again at least of the 
same order of magnitude. 

It is clear that for these guides to be of use, some idea of 
the value of f(s + µ) and of dz, d, is needed. The guidelines 
are based on the theory in section 3.4.3. 

Reference Chapter 6. 
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2.4 Both the characteristic and 1neasurement error 
have unknown types of distribution 

Situation The type of distribution of the characteristic is unknown. 
The type of distribution of the measurement error is unknown. 
The mean of the measurement error is denoted by µ. If there 
is no systematic measurement error µ is simply 0, otherwise 
the value of µ is assumed unknown. 

Estimators As in the situation of section 2.3 observations U1, ... , Un of 
the measurement error itself are needed and we will again en­
counter the sample functions rk(d) and lk(d). If there is a 
systematic measurement error (µ -f:. 0) we need to estimateµ. 

With respect to the unknown distribution of the charac--teristic we merely need to estimate the density of X and its 
derivative at the specification limit s ifµ = 0 or at s + µ if 
µ -:/ 0. The density and its derivative are denoted by g and g', 
respectively. The estimators g and fl' are based on an addi-- -
tional sample Xi, ... , Xm from production and are as defined 
in section 2.2 (readings+µ instead of s when necessary). 

Test limits First we consider the situation where products should be re­
jected if the value of the characteristic is larger than the spec­
ification limit. 

In case of unbiased estimation the test limit in this situa-
• • t1on 1s 

,... 

s (dz - cl+ Cu,z), 

with dl such that l1 (d,) = ' 
g(s + µ)' 

1 g'(s + µ) l2(dz) ---------
2 g(s + µ) lo(dL)' 

1 - lo(dz) 1 ----+ . 
n lo(d1) 2mhg(s + µ) 

1 

' m 

In case the consumer loss may exceed , with probability a . 
only, the correction term Cu,l above is replaced by Ci,l, and the 
test limit becomes 

... 
s - ( dl - Cl + C-i,l) ' 

• 
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with 

l1(dt) l2(dz)/l1(dz)2 - 1 1 _ 1 
Cil = ' n m 

where u0 = 4)-1 (1 -a), the upper a-quantile of the standard 
normal distribution. 

If the specification limit s is such that products are non­
conforming if the value of the characteristic is smaller than s, 
then in case of unbiased esti1nation the test lir11it is given by 

,.. 

S + (dr - Cr+ Cu,r), 

with d,. r 

1 g'(s + µ) r2(dr) -
2 g(s + µ) ro(dr)' 

1 
n ro(dr) 2mhg(s + µ) m ' 

while in case the estimated test limit should be such that 
cons11mer loss may exceed , with probability a only, the cor­
rection term Cu,r above is replaced by Ci,r, and the test limit 
becomes 

.... 
S + (dr - Cr+ Ci,r), 

with 

1 
m 

where Ua: = ~-1 (1 - a), the upper a-quantile of the standard 
normal distribution. 

Computation Given a value of, /g(s + µ) (or ,/g(s) ifµ= 0), computation 
,._ A 

of dr and dz here is ca.tried out in the way which is described 
in the previous section. If there are no observations in the 
interval [s + µ - h, s +fl+ h], hence g(s + µ) = 0, the best 
thing to do is to try to get more obse1·vations. If this is not 
possible, the test limits from the previous section may be ap­
plied, however, these limits are unreliable if Xis not normally 
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distributed. 
An alternative is to apply a conservative approach similar 

to the one in section 2.2. Instead of dl take dl,c = min{d I lo(d) 
< ,/7i-} with 1r the fraction of products for which the mea-

,.. " 
surement is larger than s + fl, and instead of dr take dr,c = 
min{d I ro(d) < 1 fir} with ir the fraction of products for which 
the measurement is smaller than s + fl. The correction terms 
are omitted. 

Numerical Suppose the consumer loss should not exceed 'Y = 40 ppm 
example (parts per million) and the value of the inspected character­

istic should not be below s = 59.50. On n = 120 products 
both laboratory measurements and standard measurements 
are carried out and from production m = 2781 measurements 
of the characteristic are available. It is known there is no sys­
tematic measurement error (µ = 0). -

To estimate the density of X and its derivative, we first 
need the estimates flx and fr x to determine the bandwidths h 

-
and h. From the production data the estimates ftx = 68.462 
and ax = 4.0334 are obtained, leading to h = 0.4161 and -
h = 1.2954. In the interval [s - h, s + h] there are 19 ob-- - -
servations of X, and in the intervals [ s - h, s] and [ s, s + h] 
there are 21 and 43 observations, respectively. We obtain 
g(s) = 8.211 • 10-3 and g'(s) = 4.714 • 10-3 . 

The differences between the laboratory measurements and 
the standard measurements are the observations of the mea­
surement error. Suppose the six largest observations are U(llS) 

= o.5015, Uc116) = o.5658, Uc111) = o.5737, u(11s) = o.5965, 
U(119) = 0.6388 and Uc120) = 0.9551. Further computation is 
as in the example in the previous section. We have n-y / g( s) = ,.., 
0.5846 and to compute dr we determine ir first. We find 

.... 
116, dr = 0.5491, Cr = 0.0101, Cu,r = 0.0285 and 

Ci,r = 0.1120. The test limits are fu = 60.067 and ii = 60.151. 

,., ,. 
Number of About the computation of dr and dz, it is important that 

observations ir < n - 2, respectively, iz > 2. If this is not the case, one 
should try to obtain more observations on the measurement 
error because the computed test limit is unreliable in this kind 
of situation. Application of the test limit from section 2.2 if 
the measurement error is not normally distributed, is not to 
be recommended. When the meanµ of the measurement error 
is estimated, it is important that the number m of additional 
production data is much larger than n. 
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The guideline in the previous section to prevent obtaining 
too large values .of the consumer loss in the case of unbiased 
estimation, a.nd the guideline with respect to the loss of yield 
in the confidence interval approach both apply to the present 
situation (reading g instead off where necessary). However, 
when using one of these directions here, the number m of 
additional production data should be much larger than n, as 
a rule m ~ n2• 

Reference Chapter 6 

Table 2.1.1 Values of g11(b) 

The values of bare such that linear interpolation lead to errors of 0.001, at most. 

b g-l(b) b g- 1(b) b g-1(b) b 911(b) 
3.5E-Ol 0.1020 3.9E-02 1.3719 ·. 3.0E-03 2.3674 1.4E-04 3.2748 
3.IE-01 0.1926 3.4E-02 1.4341 2.6E-03 2.4150 l.2E-04 3.3155 
2.8E-Ol 0.2659 . 3.0E-02 1.4897 2.3E-03 2.4553 l.IE-04 3.3382 
2.5E-01 0.3449 · 2.6E-02 1.5521 2.0E-03 2.5007 9.2E-05 3.3846 
2.2E-,01 0.4308 • 2.3E-02 1.6044 1.7E-03 2.5527 7.7E-05 3.4303 
2.0E-01 0.4929 2.0E-02 1.6631 l.SE-03 2.5923 6.5E-05 3.4734 
1.8E-Ol 0.5597 ·. l.SE-02 1.7065 1.3E-03 2.6371 5.5E-05 3.5154 
1.6~01 0.6,328 l.6E-02 1.7544 l.lE-03 2.6887 4.6E-05 3.5599 
1.5E-01 0.6711 • 1.4E-02 1.8.077 9.3E-04 2.7398 3.9E-05 3.6007 
l.4E-01 0.7120 · • l.3E-02 1.8370 7.9E-04 2.7889 3.3E-05 3.6416 
l.3E-Ol 0.7552 l.2E-02 1.8682 6.7E-04 2.8378 2.SE-05 3.6814 
1.2E-Ol 0.8010 1.lE-02 1.9019 5.7E-04 2.8852 2.4E-05 3.7185 
1.lE-01 0.8499 9.5E-03 1.9578 4.SE-04 2.9349 2.0E-05 3.7619 
9.6E-0·2 0.9246 • 8.2E-03 2.0130 4.lE-04 2.9800 l.7E-05 3.8003 
8.4E-02 0.9957 7.lE-03 2.0661 3.5E-04 3.0248 1.5E-05 3.8297 
7.4E-02 1.0615 6.lE-03 2.1212 3.0E-04 3.0679 l.3E-05 3.8630 
6.5E-02 1.1273 · 5.3E-03 2.1714 2.6E-04 3.1076 l.lE-05 3.9017 
5.'TE-02 1.1923. 4.6E-03 2.2212 2.2E-04 3.1534 9.lE-06 3.9451 5.0E-02 1.2556 4.0E-03 2.2'697 1.9E-04 3.1932 7.6E-06 3.9861 4.4E-02 1.3160 3.5E-03 2.3154 l.6E-04 3.2393 6.3E-06 4.0283 



In this chapter the situation is treated where both the inspected characteristic 
and the measurement error are normally distributed. 

3.1 Introduction and notations 

Let X denote the true value of the characteristic we want to measure. Because -of a measurement error, denoted by U, we measure in fact X = X + U. We 
write X rv N(µx,cri) that is, Xis normally distributed with mean µx and 
variance crl. Likewise, we write U rv N(O,afJ). We assume that X and U are 
independent and that au is small compared to ax, which is typically the case 
in situations of practical interest. 

The specification limit, denoted bys, is given. We will consider the situation 
where products are nonconforming if X > s and we are typically interested in 
situations where the probability of a product being nonconforming, which is 
denoted by 1r, 

' 

is smaller than 0.5 (implying s > µx ). At the end of section 3.2 we discuss the 
difference with the situation where products are nonconforming if X < s (and 
hence s < µx ). 

Given a test limit t, the consumer loss is defined by 

CL= P(X > s, X + U < t). 

The consumer loss should not exceed the prescribed bound , . By te the test 
limit is denoted for which CL = 1 . We use 4> and </> to denote the standard 
normal distribution function and density, respectively. 

In section 1.1 we argued that in this situation the consumer loss is a func­
tion of the specification limit s, the test limit t and the three parameters µx, 
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-
ax and uu. (Note that (X, X) has a bivariate normal distribution, (X, X) r,J 

N(µx,µx,ol,a} + ui,p) with p = (I+ o-tJ,/uk )-112 .) If these latter param­
eters a.re known, the limit te can be determined numerically. Usually these 
parameters are unknown, however. 

First, to appraise the considerable effect of plugging in estimators rather 
than the true values, and then to subsequently correct for this effect, we need 
a more explicit relation between the test li111it, 'Y, the specification limit and 
the three parameters µx, <J'X and uu. In the next section this is established. 
Accurate a.pp ·. · ations to te as functions of µx, ux and au are derived. 

3.2 The case of known parameters 

Fort ·.. . · • .. ly, simple but nevertheless accurate approximations to the bivariate 
n01· 11:ual ·: , "bution can be obtained from Cox and Wermuth (1991) and Albers 
and Kallenberg (1994). The ·latter paper specializes to large p, the correlation 
coofllcient involved. Since uu is assumed to be much smaller than ax, p is 
typically large and we shall 1ise some of the results from Albers and Kallenberg 
(1994). 

Let 

s-t 
a=·· 

O'U 

s-te 
Oe = ---, 

au (3.2.1) 

then t ·· s - a· uu. Note that a plays a role similar to that of k in (1.1.6) 
and +-1(1 - ,/1r) in (1.1.8). In applications we will typically be interested in 
nonnegative a. Hence in what follows we shall tacitly assume a > 0, just like 
we us1,1med s > µx. Many of the results we are going to formulate remain true 
for, or can be adapted to, negative a but it does not seem interesting to bother 
about this. 

Let 

uu U - X a . _ y . ___ X = - µx _ s - µx 
, ' , S=---

O'X Uy ux O'X ' 
(3.2.2) 

CL.·····P(X>s, X-auY<t) 
• .. P(Y>a, s<X<s+a(Y-a)). (3.2.3) 

For the consu.111er loss we can write 

(3.2.4) 

. 00 

(y - a)k<P(y)dy, (3.2.5) 
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for k > 0. It is easily verified that, for k > 1, 

9k+1 (a) = k · 9k-I (a) - a· 9k(a), 

g~(a) k · 9k-1(a). 

Moreover, 

g1(a) = r/J(a) - a(l - ~(a)), 

g2(a) (a2 + 1)(1 4>(a)) - a¢(a). 

The consumer loss can thus be approximated by 

As the 9k (k > 0) decrease, we can define 

-1 , 
91 u¢(s) . 
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(3.2.6) 

(3.2.7) 

(3.2.8) 

{3.2.9) 

With a1 we obtain a first order approximation t1 = s-a1 uu to te. The following 
lemma gives information on the performance of this limit. 

Lemma 3.2.1 For a1 from {3.2.9} we have that 

-
-a1au) 3 _ _ ----------- < 4amax{s,1}. 

r 
(3.2.10) 

Proof. Observe that 

(3.2.11) 

with ey betweens and s+u(y-a). As for z > s > 0 we have that O < -</>'(z) < 
-<t>'(max{s, 1} ), it follows from (3.2.4), (3.2.11) and (3.2.5) that 

½u2¢' (max{s, 1}) · g2(a) 
-< P(X>s, X<s-aau)-a¢(s)·g1(a) < 0, 

(3.2.12) 

which in its turn, together with (3.2.9), leads to 

½u2¢' (n1ax{s, 1}) · 92(a1) < P(X > s, X < s - a10-u) - 1 < 0. (3.2.13) 

Now, according to (3.2.6), g3(a) = 291 (a)-ag2(a). As all gk are nonnegative, 
it follows that O < 93 < 291. Moreover the fact that z 2 < ½(z + z3 ) for z > 0, 
implies in view of (3.2.5) that 92 < ½(91 +93) < J91. Consequently, the left-hand 
side of (3.2.13) is bounded from below by 3a,¢>' (max{s, 1}) /( 4¢>(s)), which is 
at least -¾a,max{s, l}. D 



the e()DBU!Der ks c,e.iwed by using a1, is under control. In ~act, for values of a 

imp!"· .. ·.· ...... :t ii oot·t&inly called for. 
·The way to achieve this improvement already suggests itself in (3.2.8). By 

· ·.. . . . .. •·~ with a 1 we introduce a such that 

(3.2.14) 

Note thn (i is not nec:essarily defined uniquely. While the functions Yk 
ue monotone, the function as a. whole on the left-hand side of (3.2.14) not 
..•... · .. · · y is. The following lernxna gives a simple necess&J.y and sufficient 

· ... ·• ition. 
ID··.· ·uce the function 

t/,(x) 
1 . tt(x)' 

(3.2.15) 

then we formulate 

Lemma S.2.2 As k{x)-x decreases and lim k(x) - x = oo, lim k(x) - x = 
X t-00 X •oo 

0, ~re ii a unique xo St1,ch that 

1 
k(zo) - .xo •···•· _, {3.2.16) 

(1$ 

for given u and i. The .. ction 91 (x) - ½usg2(x) decreases for x > xo. 

Proof. Combining (3.2.7) and (3.2.15), we see that k(x) - x = -g1(x)/gi(x). 
Hence the derivative of k(x)-x equals h(x)/u'i (x)2 , where h(x) = g1 (x)g'{(x)-
!h (x)2. Now h' ...... g·1gi8> - 9'igf, and thus h'(x) = x¢(x)g1 (x) - ¢(x)gi (x) = 
~(x)92(x) > 0. As moreover 91., 9i, g'{ and hence also h(x) tend to Oas x ) oo, 
it follows that h(x) < O. Consequently, k(x) - x decreases. 

The derivative of g1(x) - ½usg2(x) equals g~(x) + usg1(x) = -g{(x){-1 + 
uJ(k(x)-x)}, which is negative iff k(x)-x < 1/(us). This will hold for x > xo, 
with Xo as in (3.2.16}, because k(x) - x is decreasing. □ 

The lemma. shows that for typical values of 1 , u and s no monotonicity 
problems can occur. In fact, to obtain x0 = 0 as solution of (3.2.16) it is 
required to have cri as large as 1.25, which bound will hardly ever be violated. 
Hence we shall implicitly assume in the remainder of this chapter that the 
parameters a.re chosen such that a is well above x0 = x0 ( u, s) from (3.2.16). 
Analogously to lemma 3.2.1 we have 
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Lemma 3.2.3 Fors> 1 we have for a from {S.2.14} that 

-X<s-aau)-, 1 2 max(s2 -l,2) - __________ ...;_,_..,;_ < 30" 3 - • 
1- -as 4 

(3.2.17) 

Proof. For z > s > 1 we have that O < ¢''(z) < ¢''(max{s, 3}), which leads 
to ( cf. ( 3.2.13)) 

~ 
O < P(X > s, X < s - aau) - , < ¼a3</>'' max{s, 3} 93(a). (3.2.18) 

Now 92 < Jg1, and therefore g1(a)(l - ¾as) < g1(a) - ½as92(a). As more-

2 91 (a) - ½us92(a) 
over 93 < 291, it follows that g3 (a) < _;..__ _____ _ 

(1 - ¾as) 
and thus g3(a) < 

CT S 1 - 4as 
(3.2.18) this leads to (3.2.17), which 

proves the lemma. D 

It follows from the lemma that a is a lower bound for ae- Hence we now 
have 

a < ae < a1. (3.2.19) 

Moreover, a is a second order approximation, and as such more precise than 
a1 which can be seen from comparing the bounds in (3.2.10) and (3.2.17). In 
principle it is possible to continue in this fashion, by e.g. giving a third order 
upper bound. There are several reasons not to pursue this. In the first place 
the results become more complicated. Moreover, the lower bound on s will 
increase. Finally, the first and second order bound seem adequate for practical 
purposes: for small u and s the first order result may suffice, whereas for the 
remaining cases the second order result will be sufficiently precise. It seems 
more rewarding from a practical point of view to look for a more convenient 
version of the second order approximation. 

We introduce therefore 
-

a2 = a1 - us 2 1 (3.2.20) 

with k as in (3.2.15). Then we have 

Leu:1111.a 3.2.4 The approximation a2 from {3.2.20} and a agree to second or­
der, while moreover 

(3.2.21) 
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1 1 >---
1 - 4>(a + ea) 

· ,_. 2 ~ (a) 2 
- ak(a) , (3.2.22) 

w', . we use (3.2.6) and (3.2.7) for the second step in (3.2.22). Compari­
lO!l of (3.2.20) and (3.2.22) shows that in order to prove (3.2.21) it suffices 

show this, observe that (-fl2/fi)' · (-~g~ + 92gf) /(/i)2
, which is negative iff 

~-g,,g'{ /g1 < 0. This in turn is negative iff 291 (x)-g2(x)k(x) > 0 (use (3.2.6), 
(3.2.7) and (3.2.15)), which is equivalent to {2 + xk(x)}g1(x) > -k(x)gi(x) = 
,<s). This translates into (1 + xk(x)) </>(x) > (2 + xk(x)) x (1 - 4>(x)), which is 
equiv&lfflt to 

X 
(3.2.23) 

For ~ > o. we obtain from Kotz and Johnson (1985), p. 505, the inequality 
k(z) > l(x) ~l;t!' (3.x + ✓x2 -t- 8)/4. Hence it suffices to prove (3.2.23) with 
k ~pl ·. . ··.·.· by l on both sides. Straightforward evaluation shows the latter 
inequality to be equivalent to x6 + 12x4 + 36x2 + 32 > x6 + 12x4 + 36x2 , which 
is indeed true (an,d quite sharp for larger x!). 

The remaining a~ti.on of the lemma, concerning the agreement to second 
rd · """ ...1 • "d t fr th f · o o . ,e,r ·.·. • ., . •· .. ··•···· ·. a &n,u at, is evi 1en .. om e proo g1ven. 

In com · • • · . .. ai to a, we not,e to begin with that ii is really a lower bound 
for Ge, wher~, 02 merely shares with ae the property of falling between a and 
01. On the other hand, a lower bound is less attractive in itself than an upper 
bo,und as it leads to anti-conservative test limits. The attractiveness of a lies 
mostly in its being a second order approximation. Arguing heuristically, we 
1nay ex • a2 to be an improvement in that sense, for, a also serves as a lower 
bound and as su,ch its error always has the same sign. Such a side condition 
does not hold for 02. Of course this argument can be misleading. A thorough 
check would require comparison of the leading terms in the errors with respect 
to the consumer loss caused by using a2 and a, respectively. Since this is not 
difficult but on the other hand tedious, we shall not bother to carry it out here 
and. ··· pone our judgement to the numerical results in section 3.3. 
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Having accurate approximations to ae we will now consider the yield and 
the producer loss. The yield is the simple univariate probability 

-
Yield= P(X < t) = (3.2.24) 

For given ae the yield can thus be obtained exactly. Typically, we will not be 
using the exact ae but an approximation. To judge the error committed in this 
way, note that for O < b1 < b2 < s/q 

- b1u - b2a s s 
~ - b1a ✓1 +a2 ✓1+0-2 ~(j 

-s s < <<t> (3.2.25) 
✓1+0-2 (~ b1)a ✓1+a2 

• 

✓1·+a2 

This shows in the first place that for the very accurate approximation a2 of 
ae, the error in Yield will be negligible. The numerical examples shown in 
table 1.2.1 (section 1.2), thus extend to a2. 

Closely related to the consumer loss and the yield is the producer loss, which 
is defined by 

-
PL = P(X < s, X > t). (3.2.26) 

The producer loss is the probability of needlessly rejecting a product. It is not 
difficult to verify the following relation. 

-PL= (1 - 1r) - P(X < s, X < t) =CL+ (l - 1r) - Yield. (3.2.27) 

Combination of (3.2.27), (3.2.8) and (3.2.24) leads to a particularly simple ap­
proximation for the producer loss, 

-us 
(3.2.28) 

This approximation has to be handled with some care as it involves expansion 
of (.s - aa)/✓1 + u 2 around s. The expansion gets inaccurate for not too large 
s in combination with larger a and u. Moreover, it contains simplifications 
g1(a) +a~ a and g2(a) + (a2 + 1) ~ a 2 + 1, which are not adequate for very 
small a. 

At the end of this section. we briefly pay attention to the case in which 
products should be rejected if X < s. 

Given a test limit t, the consumer loss is then given by 

CL = P(X < s, X + U > t). 

The test limit here is typically larger than the specification limit, therefore we 
now define (cf. (3.2.1)) 

t - S te - S 
a= --, ae = ---, 

uu au 
(3.2.29) 



THEN CASE 

µx s-µx 
(T S · · }I' - ' ... ,,,,. 1 .. •. - ' 8 ' 
. "X l t1U O'X O'X 

(3.2.30) 

where y ~ Jt and J here difier from (3.2.2) by a minus-sign. Again we have that 
}' an.d X ~• ind \: ent and standard no11nal, and since we assumed s < µx, 
-.. .•. , .·. ha,. in the . t ,C8,8e i > 0. 

For tbe ooo,iim.er loss we write 

CL P(X < s, X +uuY > s +aau) 
P(X > J X crY < 1- an) 

.. . ' 
P(Y > a, I< X < s+a(Y · a)), 

wbit'.h it exactly the same expression as (3.2.3). Hence, all the results which have 
~ dori?ed in this section apply to the present case, however with alternative 
deftwtk>lll of a an,d I. 

3.3 Numerical results 

In Um section we numerically investigate the quality of the various approxima,.. 
tion1 p •··. ·.•. · .· .. · .. · .·.· in section 3.2. By the triple a, 1 (hence 1r) and "'/ the situation 
ii Q)Ulpletely .. ···.·· ... · ~ ed. The r . · .. · .. of (a, 1r, 1)-values considered is 

o: .~;'J;3; 0.01, 0.05, 0.10, 0.20, 0.30 

,r • 0.0025, 0.01, 0.05, 0.10, 0.15 (3.3.1) 

"I = 1, 5, 10, 20, lOOppm 

· · .•.· true "• ii o . , ,ned, through numerical evaluation. As it runs from roughly 
~l to 4,~ it• fett tb&i th$ r,egioo of values of practical interest is amply covered 
by (S.S~l)~ 

We , · :uate thie upper bound a1 from (3.2.9), the lower bound a from 
(3.2 .. 14) &DC! the &pp1·oxi1nation a2 .·•··.· .. • . (3.2.20), together with the correspond­
in.g coneu~ lotSeS. In table 3.3.1 on the next page we present these results 
for .U O' md a eh,oi,oe of (,r, ry)-values from (3.3.1), This choice is representative, 
.. 1....... nlrt111•11'1!'1a .&.-..- - t!I 58 • bl.lu.: • l "" l . · 1 ~ j,"':w~, ·~illlii IU,l" ·au. .···•·· · · · w~"es l8 comp ,e"e y s1nu a.r. 

The forem.ost ooacluaioo form ta.hie 3.3.1 is that in particular a2 performs 
strikingly well. In fact, ( 0 L(a2) . 1 ) / 1 is completely negligible for practical 
pu . ·· .. · .· .. •·. ·.· · and a:a ·tan be ess,,imed identical to ae I Closer inspection of the results 
provides l()t;oe .$dditioo'1 infc>;rm&tion along the following lines. In the first place, 
for tl1e cues considered nll four a1s behave as they should in the sense that each 
lncreues in a and wand decre.ues in,. Moreover, we indeed have that a< ae, 
02 < 01 (cf (3 .. 2.19) and (3.2.21)), while the first order approximation a 1 is less 
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Table 3.3.1 Accuracy of a 1 , a and a 2 . 

The approximations a1, a and a2 are compared to the true value ae, for various 
(a, 1r, 1 ). For each approximation, the realized cons11mer loss (in ppm) is given as well. 

(0.15, 1 ppm) 
a -a CL(a) a2 

0.01 2.9672 1.00 2.9664 1.00 2.9664 1.00 2.9664 
0.05 3.4026 0.99 3.3994 1.00 3.3994 1.00 3.3993 
0.10 3.5773 0.98 3.5712 1.00 3.5713 1.00 3.5712 
0.20 3.7454 0.95 3.7338 1.00 3.7341 1.00 3.7339 
0.30 3.8409 0.93 3.8241 1.00 3.8247 1.00 3.8244 

(1r,,) = (0.05,20 ppm) 
a CL(a1) a CL(a) a2 

0.01 1.6758 19.88 1.6733 20.00 1.6733 20.00 1.6733 
0.05 2.2803 19.49 2.2712 20.01 2.2714 20.00 2.2714 
0.10 · 2.5106 19.05 2.4943 20.03 2.4948 20.00 2.4948 
0.20 2.7272 18.24 2.6971 20.12 2.6989 20.00 2.6989 
0.30 2.8483 17.50 2.8046 20.26 2.8084 20.01 2.8086 

(1r, ,) = {0.01, 40 ppm) 
a CL(a1) a CL(a) a2 

0.01 0.6708 39.54 0.6638 40.00 0.6638 40.00 0.6638 
0.05 1.4895 38.24 1.4688 40.06 1.4695 40.00 1.4695 
0.10 1.7801 36.85 1.7445 40.23 1.7465 40.02 1.7468 
0.20 2.0458 34.44 1.9815 40.84 1.9883 40.11 1.9894 
0.30 2.1918 32.36 2.0979 41.88 2.1123 40.27 2.1148 

( 1r,,) (0.0025, 100 ppm) 
(1 CL(a1) a CL(a) a2 

0.01 -1.2365 97.34 -1.2771 100.05 -1.2756 99.95 -1.2763 
0.05 0.3240 92.57 0.2654 100.51 0.2695 99.93 0.2690 
0.10 0.7603 87.66 0.6713 101.64 0.6814 99.96 0.6812 
0.20 1.1317 79.67 0.9801 105.91 1.0098 100.30 1.0114 
0.30 1.3273 73.22 1.1042 113.72 1.1665 100.95 1.1714 

accurate than the second order approximation a, which (almost always) is less 
accurate than a2 ( cf. the remarks following lemma 3.2.4). It is also evident that 
the errors grow as a and s increase, which is in agreement with the bounds 
from (3.2.10) and (3.2.17). As concerns the quality of these bounds, for the 
cases investigated the upper bound (3.2.10) for the first order approximation 
performs reasonably well in the sense that it is of the right order of magnitude. 
On the average it differs from the actual error by a factor 2.5. The upper bound 
(3.2.17) for the second order approximation is relatively less precise. This is 
not surprising, as the errors involved can be extremely small. For la.rge u and 
s, where non-negligible errors occur, the bound again is of the right order of 
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magnitude and differs by a factor of about 5 on the average from the actual 
error. 

Having established in the above that when using a2 the CL is under almost 
perfect control, we conclude that also with a2 the gains in Yield as described 
in section 1.2 are attained. 

3.4 Estimation of parameters 

We have obtained a very accurate approximation to te in which the role of s, 
, and µx, O'X and o-u has become more explicit. In practical situations we 
shall often have to rely on corresponding estimators flx, B-x and fru. We will 
write£= t(P,x,&x,uu) and a= a(flx,ax,B-u), and by CL(t we denote the 
probability of a new item to be nonconforming and accepted, that is P(X > - "' s, X < t , given t. 

3.4.1 Second order unbiased test limits 

We will look for £11, = t11,(/lx, ux, au) such that 

{3.4.1) 

to sufficient precision for practical purposes. 
Arguing as in (3.2.2)-(3.2.4), we obtain that (3.4.1) can be translated into 

00 

E {<P(s + qy) - <P(s)}cp(y + fruau/uu )dy = ,, 
0 

(3.4.2) 

where in analogy to (3.2.1), we have au= au(flx, ax, uu) defined by 
.... 

.,.. S - tu 
·Ou=--,..-. 

(ju (3.4.3) 

To determine the function au = au(µ x, u x, uu) we can use an expansion 
similar to (3.2.8), leading from (3.4.2) to 

"' 

E qu ... 
01 au (ju 

- " 
(J'S qU " 

- 2 02 au+ ... au . ' u¢(s)' (3.4.4) 

again to sufficient precision. Comparison of (3.4.4) with (3.2.14) suggests that 
the use of consistent estimators for the three parameters involved will lead to an 
au which is closely related to a, and hence to a 2 from (3.2.20). The difference 
will consist of an appropriate term 

(3.4.5) 

to correct for the effect of having estimated instead of being able to use the 
known values. 
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For arbitrary (flx, frx, fru) the explicit expression for this difference will be 
unduly complicated. Therefore we first present two choices for these estimators 
which are likely to be used in practice. 

'I'ypically, estimation of au will entail a series of repeated measurements. 
Suppose we consider n parts and apply p replications, 

-
Xij =Xi+Uij, i = l, ... ,n, j = l, ... ,p. (3.4.6) 

Denoting averaging over an index by a '•', we have (cf. e.g. Scheffe (1959, 
p. 228)) the three independent statistics 

-x •• 
1 n p - - 2 (Xii xi.) 

n(p 1) . lj 1 1, 

n -1 ~ 2 
(Xi• x •• ) . 

n l i=l 

As moreover 

-x •• 

n(p-1)S! 
q2 u 

(n - l)SC 

U3(_ + Gf;/p 

a2 0-2 
N µx, x + u 

n np 

2 
Xn(p-1) 

2 
Xn-1, 

(3.4.7) 

this leads to the UMVU (uniformly minimum variance unbiased) estimators (cf. 
Lehmann (1983, p. 198)) 

-flx = x •• 
a~= St· S!/P 

..... 2 = 82 au w· 

It is straightfo1·ward to obtain ( co )variances. We e.g. have 

1) 

np(p - 1) · 

(3.4.8) 

Since we have that a = au /ux << 1, we may simplify to (equalities holding up 

to O(o-2)) 

.... 

nVAR µx = n-lVAR 
2 ax 

"'2 ... z ax au 
a3c' ui 

cov 

= 1 + O(a2
) 

(3.4.9) 
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Given a budget of np observations to base the estimators on, the question 
remains how to choose p. Inspection of (3.4.9) suggests strongly to let p = 2. 
Indeed, for 0 = uJc/O"i > 1, which is clearly the case here, Scheffe (1959, p. 238) 
shows that this is the optimal choice. Hence we shall always let p equal 2 in what 
follows. Summarizing our first choice, we observe that the estimators defined 
through (3.4.8) are unbiased, and to the order considered, independent with 
variances n - 1, 2n - 1 and 2n -I for Px / u x, o-i / o-i and a-i / Uf;, respectively. 

Also of practical interest is the following design. Quite often the test data 
described above form part of a typically much larger set of production data. 
Hence we have a sample X 1, ... , Xm from X, with m > n ( and usually m ~ n). - -A subset of size n is measured twice, giving rise to Xi,l = Xii and a replication 

. xi,2 = .Xi2 for i = 1, ... 'n. The Xij are again of the form (3.4.6), with p = 2. 
For CTD the situation is the same as before, just as in (3.4.8) it is estimated by 
(using that p = 2) 

(3.4.10) 

But the estimators for µx and u~ can be improved by using the non-replicated 
m - n observations from production. In fact, the mean .x£m-n) of these latter 
data is normally distributed with mean µx and variance (cri +o-t, )/(m-n) and 

clear, however, that to O(o-2) it is also optimal to use simply P,x = X., for, the 
gain in variance reduction by using the replications Xi2 is utterly negligible, 
especially when besides uu < ux we also have m >> n. For ai completely 
analogous arguments hold. Hence in this situation we suggest 

-fi.x = x., 
1 m - (3.4.11) 

t=l 

with 8-'eJ as in (3.4.10). Again the estimators are unbiased, and to the order con­
sidered independent, but now with varjances m-1 , 2m-1 and 2m-1 for P,x/ux, 
""2 / 2 d "'2 / 2 · 1 o-x u x an u u O" u, respective y. 

In the following theorem it is proved that with the estimators as in (3.4.8) or 
as in (3.4.10) in combination with (3.4.11) second order unbiasedness is obtained 
when taking (cf. (3.4.3)) 

k(a1){2a1k{a1) + 1 - at} (s4 + 4s2 + l)(k(a1) - a1) 
4n + 4m ' 

(3.4.12) 

with a2 from (3.2.20), a1 from (3.2.9) and k as in (3.2.15). In the case where 
no production data are available we should read m = n. 
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Theore1-.1 3.4.1 Lets be bounded and suppose n ➔ oo and u ► O, ~ . ► o such 
that a1 is bounded . 

.,.. 

For tu = s - aufru, with au = au(flx, frx, o-u) from {3.1,.12} and [1,x, ax, au as 
in (3.,4.8), or as in (3.4.10) and (3.,4.11), we have, for some C > O 

(3.4.13) 

Proof. Once the theorem has been proved for the choice of (3.4.8), the case 
where m > n follows automatically. hence we will assume m = n. Moreover, 
let 

"'2 o-u 
l, Z = 2 - 1. 

au 
(3.4.14) 

For the set 

A= {max(IVI, IWI, IZI) < e}, (3.4.15) 

we have for every € > O that P(Ac) 0 e-Cn . for some C > 0. Since 

probabilities are bounded, E CL(tu) - 1 llAc = 0 e-Cn , where ]Ac denotes 
the indicator function of the set Ac. Hence the inclusion of the last term in 
(3.4.13) allows us to restrict attention to A in what follows, i.e- to assume that 
each estimator is close to the parameter it corresponds to, which in its turn 
makes it possible to apply expansions. 

Let d =Cu+ (a2 - a1) = au - a1, d = d(P,x,ux,uu), 0.1 = a1(Px,&x,&u) 
etc. From (3.4.12) and (3.2.20) it follows that d = O(n-1 + a). To,gether with ... 
(3.4.2)-(3.4.4) this gives that the expected consumer loss EVL(tu) equals 

,._ ,.. .... 2- .... 
C1U ... 

u<f>(s) 
au,... au " , uu" us . IA E 91 a1 + d 91 a1 a1. 

O'U . uu uu au 

+o i(n-2 + a2) + e-Cn • (3.4.16) 

A - .... 

, we observe that the expression a s a1 = 91 'Y ,,. .... ux ax 
requires expansion of m(X, Y) = g1(Xg11 (bY/X)) around b ··· m(l, 1), w ··.· ··•· 
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• (3.4.17) 

To evaluate the expectation of the resulting expansion, we need E(X - l)k(Y-
1)', for integers k and l with O < k, l < 4. In view of (3.4.14) we have 
X - 1 = (I + Z) 112 - 1 = ½Z - ½Z2 + . . . . From (3.4.8) it is known that 
EZ = O, Ez2 = 2n-1 .. Moreover, it is also easily verified that EZ3 and EZ4 are 
bothO(n-2). HenceE(X-1) = -(4n)-1 andE(X-1)2 = (2n)-1 , apart from 
the contribution to the remainder in (3.4.13), while E(X - 1)3 and E(X - 1)4 

only contribute to the remainder. For (Y - 1) we observe that (3.4.14) and 
(3.4.17} give 

✓1 + W¢,(s) y = ------;:::::::::::=:-
<I>( ( s - V) / ✓1 + W)' 

(3.4.18) 

which can be expanded in terms of V and W. Proceeding as above we obtain 
(s4 + 4s2 + l)(k(a1) - a1) . 

that to the desired order E(Y-1) -.. ...;__ ___ _.;._;__,;__;.... ___ The rema1n-
4n 

ing (mixed) moments can either be relegated to the remainder, or will not occur 
in the expansion (this is the case with E(Y - 1)2). In fact, the expansion of 
m(X, Y) - m(l, 1) up to and including second order terms equals 

-</.>(a1) · (X - 1) + g1(a1) · (Y - 1) + ½a1¢(a1)(2k(a1) - a1) · (X -1)2 

- a1k(a1)g1 (a1) · (X - l)(Y 1). (3.4.19) 

Since te1·ms like fE(X - 1)- lAcl < E(X -1)4 + ElAc = O(n-2 + e-Cn) we may 
use the evaluated moments. Using (3.4.19) we now obtain from (3.4.16) that 
ECL(iu) - 1 equals 

k(a1){2a1k(a1) + 1 - a?} (s4 + 4s2 + l)(k(a1) -uif>(s)g~ (a1) . --------------__,;;;:.;;_ - ____ __,.;._ ___ _ 
4n 4n 

q2§ 
- (3.4.20) 

But from the definition of d it is immediate that the choice for Cu in (3.4.12) 
will cancel all the tei·ms in (3.4.20), apart from the remainder. □ 

The correction term Cu in {3.4.12) consists of two parts: the part with n 
in the denominator corrects for estimation of au, while the other part, with 
min the denominator, corrects for estimation of µx and ax. Since k(x) > x, 
both terms in (3 .. 4.12) are nonnegative and thus au > a2 . This agrees with 
our intuition as Gu - a2 stands for the complication of having to estimate the 
parameters, rather than knowing them. Moreover, note that the behavior of 

coefficient aj + 1 - a1k(a1) of as/2 is quite small (e.g. it decreases from 1 for 
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a 1 = 0 to 0.26 for a1 = 2). But in (3.4.12) the coefficient of (4n)-1 increases 
considerably as a1 grows ( e.g. from 0.8 for a1 = 0 to 15.4 for a 1 = 2), while the 
factor ( s4 + 4s2 + 1) in the coefficient of ( 4m )-1 also clearly increases steeply 
. -1n s. 

To obtain an impression whether replacement of a2 by au indeed compen­
sates for the effect of using estimators for µx, ux and au, a simulation study 
has been carried out. The following sample sizes have been taken, n = 40, 80 
and m = 40, 80, 2500. For the case m = 2500 we expect that we may identify 
the estimators of µx and ux with their true values and thus that we may omit 
the second part of correction. To study the effect of the separate corrections, 
the consumer loss has been computed as well if a2 is corrected for the estimation 
of au only, hence omitting the second part of Cu- In table 3.4.1 below the study 
is surmnarized. 

Table 3.4.1. Accuracy of du 

Three test limits are computed when using estimators of µ,x, ax and au. Based on a 
simulation with 10000 replications, the average consumer losses are shown. 

- CLe denotes the average cons,1mer loss if simply a2 is computed. 
- CLn refers to the cons11mer loss if a2 is corrected for estimating uu only. 
- CLnm refers to the cons111ner loss if there is corrected for the estimation of µx 

and ax as well. 

n 40 n 80 
(u,1r,'Y) (0.01, 0.15, 20 ppm) 

m CLe CLn CLnm CLe CLn GLnm 

40 26.4 21.2 20.3 -
80 25.7 20.6 20.2 23.2 20.6 20.2 

2500 25.5 20.4 20.4 22.7 20.2 20.2 

(u,1r,'Y) (0.10, 0.15, 20 ppm) 
40 36.9 22.1 21.2 -
80 34.9 20.7 20.3 27.3 20.4 20.0 

2500 35.2 20.8 20.8 26.9 20.1 20.0 

(u,1r,'Y) (0.20, 0.15, 20 ppm) 
40 40.5 21.6 20.7 -
80 39.7 21.1 20.7 29.6 20.7 20.3 

2500 39.5 20.9 20.9 29.5 20.6 20.6 
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Table 3.4.1. (Continued) Accuracy of au 
Three test limits are computed when using estimators of µx, ax and uu. Based on a 
simulation with 10000 replications, the average consumer losses are shown. 

- CLe denotes the average cons1.1mer loss if simply a2 is computed. 
- CLn refers to the con.c:i111ner loss if a2 is corrected for estimating au only. 
- CLnm refers to the cons11mer loss if there is corrected for the estimation of µx 

and u x as well. 

n 40 n 80 
(o-,1r,1') (0.01, 0.10, 40 ppm) 

m CLe CLn CLnm CLe GLn GLn11l. 
40 49.0 43.3 40.2 -
80 47.8 42.0 40.7 44.5 41.6 40.2 

2500 45.7 40.0 39.9 43.0 40.1 40.1 

(er, 7r, ,) (0.10, 0.10, 40 ppm) 
40 65.1 45.3 42.2 -
80 61.2 42.1 40.9 50.9 41.5 40.2 

2500 59.7 40.8 40.8 49.1 39.9 39.8 

(u,1r,,) (0.20, 0.10, 40 ppm) 
40 69.8 43.9 41.0 -
80 67.6 42.1 40.9 53.8 41.4 40.1 

2500 65.9 40.8 40.8 52.3 40.1 40.1 

(u, 7r' ,) (0.01, 0.01, 40 ppm) 
40 156.7 156.1 82.8 -
80 121.2 120.6 97.8 122.5 122.1 98.9 

2500 101.3 100.6 100.1 100.7 100.3 99.8 

(a,-n-,,) (0.10, 0.01, 100 ppm) 
40 173.2 163.6 94.6 -
80 132.2 122.3 100.9 126.8 121.8 100.3 

2500 110.3 100.4 99.9 105.0 100.0 99.5 

(a,1r,,) (0.20, 0.01, 100 ppm) 
40 187.3 171.4 100.0 -
80 140.5 124.7 103.5 130.5 122.5 101.2 

2500 114.8 99.4 99.0 107.3 99.5 99.0 

The results clearly indicate that for the sample sizes considered, the result 
"' E CL( tu) = 'Y is realized with sufficient precision for practical purposes. More 

important, the results also show that this is absolutely not the case if we neglect 
the correction to a2. Without correction average consumer losses up to 21 are 
obtained and we conclude that the assertions which we made in section 1.4 are 
justified. Plugging in estimates and continuing as if it were the true parameter 
values can lead to averages which are much larger than , indeed. 

We see that in many situations correcting for estimation of au only already 
gives a great improvement. However, when s is in the tail of the distribution, 
hence when sis large (cf. the case ,r = 0.01), correction for the estimation of 
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µx and ax is necessary as well. Note that this is perfectly in correspondence 
with the theory, as in these situations ( s4 + 4s2 + 1) is large. Finally, note that 
the table indicates that for the situation of m = 2500 correction for estimation 
of cru only is sufficient. 

3.4.2 Test limits for which , is violated with small probability 

It is grat·-~• ·ng to note in the previous section that our second order asymptotics 
work well in the sense that CL(iu) on the average is close to the prescrib-ed ,. 
However, simulations also show that CL(iu) varies widely around, (e.g. leading 
to upper and lower 5% quantiles like 215 and 30 ppm, respectively, when , = 
100 ppm, n = 40 and even m = 2500). It is not difficult to identify the cause 
of this variation. A glance at the proof of theorem 3.4.1 reveals that in the 
expansion of CL(iu) factors like (flu/au - 1) occur (cf. (3.4.17) and (3.4.19)). 

· · e E(flu /au -1) is of order n-1 , we have that (flu /au -1) itself is of order 
n-1/ 2 in probability. As we noted in the previous section that terms of order 
n-1 are not at all negligible in correcting the expectation for intermediate n, it 
stands to reason that tern1s of order n-1/ 2 will be quite important. In fact, let 

k(x) (3.4.21) 

with k as in (3.2.15). We can show that 

Lemma 3.4.1 Under the conditions of theorem s.4.1 we have, 

2 

= --- + -- + n a 'Y e , (3.4.22) 
2n 2m 'Y 

both for i = s - a.ufru and for i = s - a2flu. 

Proof. Using (3.4.1)-(3.4.4) in combination with {3.4.12), (3.4.16) and (3.4.19) 
we obtain that (on the set A, cf. (3.4.15)) 

CL(tu) - 1 
u¢(s)g~(a1 ) {(X -1) • k(a1) - (Y - 1) · (k(a1) - a1) + Cu} {3.4.23) 

+0 ,{(X-1)2 +(Y-1)2 +n-2 +o-2
}. 

Now u<f>(s) = 1 /b = ,y/g1(a1), and therefore o-¢(s)/i(a1) = -'Y/(k(a1)-a1), 
which in its turn leads to, using (3.4.21), 

-(X - l)l(a1 ) + (Y - 1) - eul(a1)/k(a1) 

+0 n-2 +a2 +(X-1)2 +,(Y-1)2
··• 

(3.4.24) 
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Through (3.4.18) it can be shown that E(Y - 1)2 = (s4 + 1)/(4m) to the 
desired order. We already know that E(X - 1)2 = (2n)-1 and that all other 
moments involved are O(n-2 ). Hence the result in (3.4.22) follows for t = 
s - aucru. 

As Cu only plays a role in the remainder, it is immediate that fort = s-a2(7u 
the result is true as well. □ 

A first conclusion from this lemma is that the correction step from a2 to au 
in (3.4.12), which in the previous section was seen to be vital in controlling the 
unbiasedness, is unimportant in the context of the mean squared (relative) error. 
More interesting it is to note that (3.4.22) and (3.4.24) are quite illuminating, as 
these formulas provide a simple explanation for the wide variability in the values 

h ~ 

of GL(tu) mentioned at the beginning of this section. In going from fru to CL(tu) 
the relative error is inflated by a factor l(a1) which rapidly increases in a1 (e.g. 
a1 = 1 gives 3, while for a1 = 2 it equals 6.4). Next, the way from flx and fix 
to CL(iu) goes through (Y-1). Now (Y-1) lacks an inflating factor, but from 
(3.4.18) we see that here the effect is hidden inside, leading to the factor s4 + 1 
in (3.4.22). Together, these effects explain why a heuristic argument, according 
to which the fact that for moderately large n and m the estimates P,x, &x and 
&-u will be reasonably close to µx, ax and cru, respectively, should imply that 
CL( tu) is reasonably close to , as well, turns out to be quite misleading. 

Fortunately, using lemma 3.4.1 it is now rather straightforward to find a 
correction Ci to a2, leading to ai = a2 + Ci and ti= s - aiau such that 

(3.4.25) 

with sufficient precision, for some small, given, probability a. If Ci is small 
it is seen from (3.4.23) that under the conditions of theorem 3.4.1 CL( ii) is 
asymptotically normal, 

with (neglecting terms of order n-1 and m-1 in µcL) 

l(a1) 
µcL=-q--

k(a1) 

(3.4.26) 

(3.4.27) 

By taking the correction term Ci such that µcL = -o-cL-t>-1(1- a), (3.4.25) 
is realized with sufficient precision. We obtain 

(3.4.28) 
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where Ua = ~-1 c1 - a) is the upper a-quantile of the standard normal distri­
bution and a2, a1 and k are given in (3.2.20), (3.2.9) and (3.2.15), respectively. 

With this choice of Ci we may indeed apply (3.4.23) and we have pro'1"ed the 
following theorem. 

Theorem 3.4.2 Under the conditions of theorem S.4 .1 we hav,e for ai : ... ,: 
ai(flx, crx, uu)A from (9.4.28}, flx, ax, au as in {3.,4.8), or as in (S.4.10) an,d 
(3.,4.11), and ti = s - Oi&u, that · 

P(CL(4) > 1 ) =a+ o(l). (3.4.29) 

Note that the correction term Ci is of order n-1/ 2 (if m > n) and hence mueh 
larger than the correction term Cu· We introduced. a negative bias and we have 
to first order that 

ECL(4) = 1 (1 - 8), (3.4.30) 

with 6 = u 0 · l2 (a1)/(2n) + (s4 + 1)/(2m). Thus to ensure that , is violated 
with probabi ity at most a, the average consumer loss has to b,e lo'\\~red to 
1'(1-S). In passing we note that for a=½ we have fJ = 0 and CL(~) at(X'eed to 

.,.. 
CL(tu) to first order. 

Nurnerical results which give some insight into the accuracy of the results 
will be presented in the next section. 

3.4.3 Choosing the number of observations 

Application of the stronger criterion P( CL(t > 7) instead of ECL{f) .... ~ will 
lead to a reduction of the yield. A sensible criterion now requires that the 
consumer loss violates the bound , with probability o only, while the avera,ge 
loss of yield is limited to /3o, for exan1ple /3o = 0.1 %. 

Consider the test limi.t ti = s - aiO"U (cf. (3.4.25) anrl (3.4.28}). The corre-
sponding yield is (cf. (3.2.24)) 

Since both ai - au and ai -

expand (3.4.31) around (s - a2)/ 1 + a , leading to 
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From (3.2.25) it is seen that this approximation actually is a lower bound (if 
s > (a2 + Ci)a), but also that the approximation in itself is quite accurate. To 
limit the average reduction in yield to {30 , it follows for Ci that 

-1 

• 

To get an impression of the sample sizes involved, we specialize to the case 
where m :» n, then the second term on the right-hand side of (3.4.28) can be 
neglected and it follows that 

1 
n>TI,.£=-

2 

2 

• (3.4.33) 

Note that for o: = ½, fi.i = Ua = 0 there is no loss of yield to first order. In 
practice Ua varies between 1.28 (a=0.10) and 1.65 (a=0.05) and k(a1) varies 
between 1 and 3 (using that a < k(a) < a+ 1 for a > 0). Together, this leads 
to a factor between 1.282 = 1.6 and (1.65 • 3)2 = 24 for ni. Usually the value of 
a is between 0.01 and 0.20 and </>(s) ranges from 0.03 for s = 2.33 (1r = 0.01) 
to 0.28 for s = 0.84 ( 1r = 0.20). We see that with choices of /3o between 0.1 % 
and 1 %, the value of ni varies widely. For example, the combination o- = 0.20, 
s = 1 and /3o = 0.1% gives a<f>(s)//30 ~ 48, hence leads to a factor of about 
2300 for ni. Taking f3o = 1 % instead, the factor reduces to about 4.82 = 23. 
Obviously, it is not feasible to choose a value of {30 irrespective of the true (but 
unknown) value of u</>(s). Therefore it may be helpful to write /3o = qcp(s)/K 
for some constant K. Then we have ni > ½{uak(a1)K}2 . 

Remark 3.4.1 It may seem more realistic to consider the estimated version 
,.. 

ti = s - ai&u in relation to s - a2&u. In a similar way as the proof of theo-
rem 3.4.1 it is proved that 

" ,.. 
E ~ s - a2uu µx " "' s-aiO'U -µx 

al+ ul; (71 + o-'f, 
-CiC1 </> s - a2cr 

✓1 +a2 ✓1 +a2 
+ 0 <72n-1 + n-2 + e-Cn , 

for some C > 0 as u • 0, n - ► oo and assuming m > n. D 

In case of unbiased estimation there is a loss of yield as well, caused by 
using a2 + Cu instead of a2. The losses are much smaller however, since Cu is 
of order n - l. In case of unbiased estimation another point of view may apply. 
Sometimes it is sufficient if the consumer loss on the average equals ,y, but large 
deviations from , should not occur very often. We will consider the number 
of observations required for estimation to ensure the consumer loss exceeds 
1'(1 +60) with probability a only. In the previous subsections we have seen that 
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moderate sample sizes m and n allow second order unbiasedness, but much 
larger sample sizes are needed if not only the mean, but also the variation has 
to be controlled. As a consequence, if the sample size is such that the variation 
is under control, the bias correction Cu actually has lost its importance. 

Because ( GL(tu,)-,)/-y is asymptotically normal, cf. (3.4.26), it follows that 
acLUa (where ull! = <.P- 1 (1 - a)) should be smaller than b0 , hence that n and 
m should satisfy 

(3.4.34) 

To get an impression of the sample sizes involved here, let us specialize again to 
the case where 1n >> n. Then the second term on the left-hand side of (3.4.34) 
can be neglected and it follows that 

1 
n>nu.= 

2 
(3.4.35) 

For a= 0.05 or 0.10 and 60 = 0.1 or 0.2, the factor u~/(285) varies from 20 to 
140. Together with values of l(a1) of about 6, it is clear that nu is very large. 
This is perfectly in correspondence with the observation at the beginning of 
section 3. 4. 2. 

Table 3.4.2 on the next page gives an impression of the accuracy of the 
first order asymptotics from this and the previous section. The approximation 
/3 (cf. (3.4.32)), is compared to the true loss of yield, and the relative error 
(, - CL(ti))/1 is compared to the approximation b from (3.4.30). 

We conclude that for the situations considered, the approximation f3 is very 
accurate. The approximation 6 is reasonably precise. 

3.5 An application in se111iconductor industry 

As an example of the theory of sections 3.2 and 3.4 we consider a stereo decoder 
TDA1543/N2 manufactured at Philips' consumer IC plant at Nijmegen. There 
are 85 characteristics measured, from which we choose one that has to fall above 
a sp•ecification s = 1. 935. Current practice is to set the test limit t at 3o-u from 
the specification limit ( &ff is the estimated measurement variance). Available 
are a bulk of production data and some test data to estimate the measurement 
error. The production sample size is so large (m=3099) that we may identify 
the resulting estimates for µg = µx a.nd ag with these para.meters (cf. the 
discussion at the end of section 3.4.1). 
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Table 3.4.2 Accuracy of the first order asymptotics 

The approximation (3 from (3.4.32) is compared to the true loss of yield. The approx­
imation 6 from (3.4.30) is compared to the true relative error in the consumer loss. 
For several choices of (a, 1r, 1') a 2 from (3.2.20) is computed, in addition ai from (3.4.28) 
is computed for a:= 0.1 and n = 400, 1600 and m > oo. In view of remark 3.4.1 the 
true value of a is used to compute ai and a2. 
yield(a2 ) denotes the yield obtained with t s-a2a. loss denotes yield(a2 )-yield(ai)-

0.01 
0.10 
0.20 

0.01 
0.10 
0.20 

0.01 
0.10 
0.20 

0.845 
0.776 
0.669 

0.897 
0.849 
0.769 

0.990 
0.985 
0.975 

(3 

0.0% 
0.4% 
1.0% 

0.0% 
0.3% 
0.8% 

0.0% 
0.0% 
0.1% 

n =400 

1' - CLi 
loss 

. 

' 

(1r = 0.15, ,= 20 ppm) 

/3 

0.0% 0.253 0.287 0.0% 
0.4% 0.374 0.462 0.2% 
1.1 % 0.407 0.516 0.5% 

(1r = 0.10, -y= 40 ppm) 
0.0% 0.198 0.218 0.0% 
0.3% 0.324 0.386 0.1 % 
0.8% 0.358 0.440 0.4% 

(1r = 0.01, ,=100 ppm) 
0.0% 0.047 0.048 0.0% 
0.0% 0.165 0.183 0.0% 
0.1% 0.200 0.231 0.1 % 

n = 1600 

loss 

0.0% 
0.2% 
0.5% 

0.0% 
0.1% 
0.4% 

0.0% 
0.0% 
0.1% 

- . 

0.135 
0.207 
0.229 

0.104 
0.176 
0.198 

0.024 
0.086 
0.104 

0.144 
0.231 
0.258 

0.109 
0.193 
0.220 

0.024 
0.092 
0.116 

We obtain µx = 1.942531 and O'x = 0.004857. To estimate uu, n = 40 
products have been measured twice, leading to an estimate au == 0.0001043. 
Because o-i = ai - ai, it follows that ux is estimated by 0.004856. Since ax 
is assumed to be known and uu is so much smaller than ax, we see that we 
can reasonably assume O'X = 0.004856 (Of course, we drag along more digits 
here than strictly justified, but this enables us to show where ag and o-x start 
to differ). 

Before applying the results we check whether the normality assumptions 
for X and U are sufficiently reasonable in our example. The histogram for 
the production data, figure 3.5.1, suggests that using our model for X is quite 
reasonable. Moreover, the kurtosis and skewness of the production data turn 
out to be 0.20 and -0.09, respectively. For U only 40 observations are available 
and we perform the Shapiro-Wilk test. This leads to a p-value of 0.4. Hence 
we see that once more the assumption of normality is reasonable. 
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Figure 3.5.1 Histogram for production data 
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Now, to apply the results we standardize to a = o-u/ax = 0.021 and s 
-(s - µx)/ux) = 1.551 (cf. (3.2.30)), leading to ,r = 0.0605. For,= 100 ppm 
we find a.2 = 1.367 (cf. (3.2.20)), whereas taking the effect of estimating u into 
account and thus using the correction term Cu (cf. (3.4.12)), leads to au,= 1.415. 
For the conservative approximation from (1.1.8) we have '1>- 1 (1 - --y /1r) = 2.938. 
For --y = 20 ppm we obtain 0.2 = 2.029, au= 2.128 and ~-1 (1 - --y/1r) = 3.405. 
Assuming by way of illustration that the true a equals the observed a, then the 
test limit currently used, i = s + 3o-u, leads to CL(t = 1.0 ppm and Yield= 
0.9314. We obtain in case of 1 = 100 ppm Yield=0.9359 using both a2 and au, 
and Yield=0.9316 and GL=l.2 ppm using 41>-l (1 - 1 /1r). For , = 20 ppm the 
corresponding results for the yield are O. 9341, 0. 9338 and O. 9302 using a2, au 
and ~- 1 (1 - , /1r), respectively. Hence in this example a substantial increase of 

~ 

yield of about 0.5% can be obtained. 
Finally, using the more conservative approach (3.4.25) leads to ai = 1.629 

for , = 100 ppm and ai = 2.373 for 1 = 20 ppm, both for a = 0.10. Note 
that this stays well below the choice of the current practice, according to which 
a = 3, regardless of u, 1 and s. 

3.6 Sampling schen1es 

For the selection of a criterion for a test limit, in section 3.4 we considered one 
single new item to be tested on the basis of our estimated test limit ( cf. the 
introduction of section 3.4). In practice we deal of course with a whole series 
N, with typically N ~ n, of new items to be judged through a single test limit 
which is based on n ( and m) earlier observations. Intuitively it is clear that n 
should increase in N: the longer one is going to use a certain test limit, the 
better it should be. 
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To make this intuitive feeling more precise we argue as follows. As always, 
we use a test limit i for which E CL( t = 1 ( at least) to first order. In this 
section we write CLn = CL(t . Let GN be the average realized consumer loss 
over the N new items, then to first order EG N = ,' and 

VARGN = (1 - N-1)VAR( CLn) + N-11'(1 - ,) 

= VAR( CLn) + N-1')'(1 - 1 ), 
(3.6.1) 

once more to first order, using that VAR( CLn) = 0(1 2). This suggests that 
VAR( CLn) should be of the order of magnitude N- 11 (1 - ,). Taking both 
terms in (3.6.1) equal and using lemma 3.4.1, we obtain 

(3.6.2) 

Specializing as before to the case where m » n for the sake of illustration, 
(3.6.2) reduces ton~ no= ½l2(a1)1 N. Having again values of l(a1) of about 6, 
letting e.g. , E (10-5 , 10-4) and N"' 106 (which is implied by speaking about 
parts per million), we see again large sample sizes n arising. Combination with 
(3.4.35) leads to 

(3.6.3) 

We conclude this section with the following consideration, inspired by the 
fact that large sizes n ( and m) are often required. Without loss of generality 
assume that n, m and N are multiples of a given positive integer k. Suppose that 
the whole process described before is now divided into k subgroups each leading 

kN-1,(I - 1). In view of (3.4.22) it is clear that VARCLn/k = kVARCLn to 

first order. Hence GN = k- 1 "k cU) h L.,j-1 N/k as 

VARGN = VARCLn + N-1r(l - ,). (3.6.4) 

-
Comparison of 3.6.4) with (3.6.1) shows that VARGN ~ VARGN. Hence there 
is no loss in working with a number of smaller samples, each leading to its own 
estimates as compared to using one single, very large sample, Moreover, from 
the perspective of robustness, it is even quite attractive to work with a number 
of separate steps, as this will provide better protection against deviations from 
the assumption that the production process is stationary. 
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The assumption of normality for both the characteristic and the measurement 
error often is not met in practice. In this chapter we will assume the measure­
ment error only to be normally distributed. We have two reasons not to involve 
nonnormality of the measurement error here as well. First of all, in many sit­
uations where the characteristic is not normally distributed, the measurement 
error may. Secondly, in chapter 3 we have seen that the effects of estimating 
au and of estimating µx and ax can be treated separately. In fact, we will 
see that the results derived in this chapter can be adapted directly to the more 
general case in which the distribution of the measurement error is unknown as 

well. 

Denoting the procedures derived under the assumption of a normally dis­
tributed characteristic and measurement error as normal test limits, the first 
question is whether the normal test limits are still (approximately) correct. 
The extensive literature on robustness in statistics shows that typically classi­
cal procedures, which are optimal under normality, are quite sensitive to even 
small deviations from the normality assumption, especially in cases of heavy­
tailedness or outliers. 

Both theoretically and by simulations it is investigated here when test limits 
are sensitive for deviations of the normality assumption for the characteristic. 
AB it turns out that the actual consumer loss may be much larger than the 
prescribed bound , , there is need for robust test limits, indeed. We will derive 
two robust test limits. One limit for which the expected consumer loss is equal 
to , and a limit for which , is violated only with a small, given, probability, 
both to sufficient precision. 
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4.1 The normal test limit under nonnor111al distri­
butions 

With respect to the inspected characteristic X we simply assume that it has 
density fx and that /x(s) > 0, with s denoting the specification limit. We 
measure X = X + U where the measurement error U is N(O, o-2 )-distributed 
and independent of X. We assume that the standard deviation <r of the mea­
surement error is much smaller than the standard deviation of X. (In this 
chapter we omit the subscript u of au.) 

By 

= P(X > s) (4.1.1) 

we denote the probability that a product is nonconforming. By te we again de­
note the test limit for which the consumer loss ( CL) equals, exactly (cf. (1.1.4)). 

In this section we study the behavior of the normal test limit when the shape 
of the distribution of Xis not normal. We consider standardized densities in 
the sense that 

EX = 0, VAR.X = 1. (4.1.2) 

Let tf denote the solution of (1.1.4) if fx =¢(the standard normal density), 
corresponding to the situation where the characteristic is normally distributed. 
We investigate 

N - N CL(te ) = P(X > s, X < te ), (4.1.3) 

for various f x, thus studying how the normal test limit behaves under nonnor­
mal distributions. In this way we avoid a mix up of errors due to the estimation 
process and the nonnormality. Moreover, while estimation errors can be elimi­
nated by taking a large amount of observations, the nonnormality error remains. 

We assume that , is of order u¢( s) as u ~ 0. The distribution function 
of X is denoted by Fx and the standard normal distribution function and its 
density by <I, and <p, respectively. The following theorem shows the behavior of 
the CL as a > 0. 

Theorem 4.1.1 If Fx is differentiable at s with F~(s) = fx(s), then 

CL(t~) = fx(s) 
(4.1.4) 

as o- > 0. 

Proof. Let af = (s - t'/)/a. From the proof of lemma 3.2.1 it follows that 
(cf. (3.2.12)) 

½u2¢>'(max{s, 1} )g2(af) < 1 - a¢(s)g1(a~) < 0. 
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As 92 < !91 it follows that 

and af is bounded. Analogous to (3.2.4) we now write 

Since 

and 

CL(t~) = 
00 

aN e 

{Fx(s + u(y - a~)) - Fx(s)}¢>(y)dy. 

0 < Fx(s + a(y - a~)) - Fx(s) < 1 

(4.1.5) 

(4.1.6) 

for any k, we restrict attention in ( 4.1.6) toy < I log al. Because a~ is bounded, 
al log al ➔ 0 as a ➔ 0 and Fx is differentiable in s, it follows that 

CL(t1:) 
I log al 

fx(s)a(y - ai/)¢(y)dy(l + o(l)) + o(ak) 

a fx(s)g1(a1:)(1 + o(l)) 
fx(s) · 

as a > 0. 

This completes the proof of the theorem. D 

It is clear from this theorem that the behavior of fx(s)/</>(s) determines the 
performance of the normal test limit. Note that this differs from many classical 
results on questions of robustness, where bad behavior under nonnormality of 
methods based on normality assumptions is caused by outliers. 

Of course, the ratio f(s)/¢(s) for a density f can be anything if there are 
no restrictions on this density. Therefore we investigate 

1 

/E:F .p(s) S /E:F . 

for some interesting classes :F of densities f. In view of (4.1.2) all densities are 
standardized in the sense that 

00 

xf(x)dx = 0 and 
-oo -oo 

The first class :F1 under consideration is the class of symmetric, unimodal 
densities. 



Lemma 4.1.1 For alls> 0 

1 . 1 3 
-
2 

min -, 3 . 
s s 

Proof. If/ E Fi ands> 0, then 

f(x) > f (s) for all lxl < s 

and hence 
s 

1 > f(x)dx > 2s/(s). 
-s 

Moreover, 
00 

1= x2 f(x)dx > 
-oo 

which in combination with ( 4.1.8) leads to 

1 1 3 - ' 3 . 
/E:Ft S S 

Ifs< 3, take 

J(x) 

1 - t: 

2s 

2'T} 

o < lxl < s 

s < lxl < s + 11 

( 4.1. 7) 

(4.1.8) 

(4.1.9) 

with 1J such that J x 2 f(x)dx = 1. This shows that we can get arbitrary close to 

1 = 1 . 1 3 
3. 

2s 

Ifs> 3, take 

f(x) 

s' s3 

3-e 1 3-c --+- 1-2s3 2ij s2 

3-E 
2s3 

o < lxl < TJ 

"'< !xi < s 

with 'T} such that f x 2 f (x)dx = 1. This shows that we can get arbitrary close to 

3 = 1 . 1 3 
2s3 2 min -;, s3 

Therefore, inequality (4.1.9) is sharp and the result is proved. D 

The upper bound (4.1.7) leads to the following upper bound on f(s)/¢,(s) 
( cf. ( 4.1.4)). 
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s 1.5 2 2.5 3 
... s 

sup c' ') 2.57 3.47 5.48 12.54 
fEF1 <P s 

Next we restrict F1 furthermore by the extra requirement f (x)/¢(x) > 
f(s)/</>(s) for all lxl > s. We call this class :F2. 

Let 

¢,(x) ' 

then we have that 

Lem1na 4.1.2 For all s > 0 

sup f (s) 
/EF2 

• 

1 '' . 
__ , --- ~ . 

2 ½s3 +s+z(s) 

Proof. If f E :F2 and s > 0 then 

/(x) > f (s) for !xi < s 

and 

Thcrrefore 

1 -2 

. 
' 

> 

0 

0 s </>(s) 

/(s) ½s3 + s + z(s) , 

implying 

1 
sup f(s) < ~----- = u(s), say. 
/EF2 2. ½ s3 + s + z(s) 

Taking 

f(x) 

u(s)(l - c) + a(c, 17) 

u(s)(l - c) 

¢(s) 
- e.)¢(x) 

)xi < 11 

r, < lxl < s 

lxl > s 

( 4.1.10) 

( 4.1.11) 

( 4.1.12) 
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with a(€, 17) such that J f(x)dx = 1 and 'f/ such that J x 2 f(x)dx = 1, it is seen 
that we can get arbitrarily close to the upper bound in ( 4.1.12), thus completing 
the proof. □ 

The upper bound (4.1.11) leads to the following upper bound on f(s)/<P(s) 
(cf. (4.1.4)). 

s 1.5 2 2.5 3 
·• s 

sup ., (,) · 1.23 1.82 3.54 9.18 
/E:F2 </JS 

Dropping the symmetry, unimodality does no longer help. Arbitrarily high 
densities at s are possible by taking a narrow spike at s and some mass (far) on 
the negative a.xis to get f xf (x)dx = 0 and J x2 f(x)dx = 1. Therefore consider 
the class :Fa of all densities with f ( x) / ¢( x) > f ( s) / ¢( s) for all x > s. (Hence 
F2 = F1 nF3.) 

Lemma 4.1.3 For all s > 0 

sup f(s) 
/E..r3 

1 
½(s2 + 4) 1/ 2 + ½s + z(s) · 

Proof. If f E :F3 and s > 0, then 

00 

J(x)dx > f(s)z(s) > 0, 
8 

00 

s ¢(s) s 
xcf>(x)dx = f(s) > 0 

and 

00 

s ¢(s) s 
x2¢>(x)dx = f(s){s + z(s)}. 

Hence 
s 

f(x)dx < 1 - f(s)z(s) 
-oo 

and 
s 

xf(x)dx < -f(s), 
-oo 

(4.1.13) 

(4.1.14) 

( 4.1.15) 



4.1. The normal test lirnit under nonnormal distributions 61 

which leads to 
s s 2 8 -1 

xf(x)dx f(x)dx 
-oo -oo -co 

f2(s) 
> 

1 -/(s)z(s) 

and 
00 s 

x 2 f (x)dx = 1 -
s -oo 1 - f(s)z(s) · 

In combination with (4.1.14) we obtain 

f(s) 2 

and, 

J2 (s){l - z(s)(s + z(s))} + f(s){s + 2z(s)} - 1 < 0. 

From Kotz and Johnson (1985, p. 505), we obtain 

2 

s+ s +4 

from which it follows that 1 - z(s){s + z(s)} < 0. 

(4.1.16) 

Since for the largest root of (4.1.16) /(s) > z(s)-1 , which is in conflict with 
( 4.1.15), we obtain 

-1 
sup s < --_------- = ½(s2 + 4)112 + ½s + z(s) . 

The sharpness of this bound is shown in a similar way as in lemma 4.1.1 and 
lemma 4.1.2. We omit the details. D 

The upper bound (4.1.13) leads to the following upper bound on f(s)/¢(s) 
(cf. (4.1.4)). 

s 1.5 2 2.5 3 

To show both the influence of nonnormality and the estimation process, 
simulation results are presented for some familiar distributions. The normal 
test limit 

( 4.1.17) 
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is computed, with au from (3.4.12). Since we are interested in the influ­
ence of nonnormality of X on the test limit, estimation of a is avoided and 
thus a is MSumed to be known in the simulations. Consequently, the term 
(k(a1){2a1k(a1) + 1 - ay}/(4n) in (3.4.12) to correct for estimating a is omit­
ted, according to 'n ► oo'. The estimators fix and frx (cf. (3.4.11), however 
with au replaced by o-) are based on a sample X1 + U1, ... ,Xm + U,1-,, where 
X 1 , ... , Xm, U1, ... , Um are independent, Ui rv N(O, a 2 ), but Xi does not nec-
essarily have a normal distribution. 

The following distributions of X are considered. 

distribution density 

beta 
1 (x - µ1)p-l (µ2 - x)q-l 

normal mixture 

ga:rnma 

B(p, q) (µ2 - µ1)P+q-l 

1 
2 

1 
vr(a:) 

(x > µ) 

o:-1 x-µ 
V 

exp 
x-µ 

V 

where B denotes the beta-function and r the gamma-function. In the simula­
tion the parameters are chosen in such a way that EX = 0 and VA = 1. 
The results are summarized in table 4.1.1 on the next page. 

In view of the results in table 4.1.1, additional simulation results not pre­
sented here and the preceding theorem we conclude that 

- for symmetric and unimodal densities the CL based on the normal test 
limits may differ from,, but not strongly (note that beta p = 2, q = 2, is 
syrornetric and unimodal, while gamma a = 32 is unimodal and almost 
symmetric) 

- in general, substantial deviations up to a factor 8 are not uncommon, 
especially if 1r is small ( s is large) 

- there is need for robust test limits. 

Remark 4.1.1 If the distribution of X is heavy-tailed and the specification 
limit is not large, the CL based on the normal test limit will in general not 
violate ,, but even may be conservative. This is understood by the following 
argument. If fx(s)/¢(s) is large for large values of s, for instance by heavy­
tailedness, usually this is compensated by values fx(s)/¢(s) smaller than 1 for 

• 
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moderates, resulting in a conservative CL for those values of s. Such an effect 
is clearly seen in table 4.1.1. □ 

Table 4.1.1. Simulated mean (standard deviation) of CL(iN) 

The test limit fN as in ( 4.1.17) is computed, but ,ilx and ax are based on sarnples, of size 

m, from various distributions. "Y = 100 ppm, a 0.10. We write Q(s) = fx(s)/</>(s). 
The simulation is carried out with 10000 replications. 

distr. 
N(O,l) 

beta 
p=2 
q=2 

beta 
p=B 
q=32 

beta 
p=2 
q=B 

n.m.ixt 
µ1 = 0.53 
0-1 = 1.0 

n.mixt 
µ1 = 0.63 
0-1 = 1.1 

garnma 
a=2 

gamma 
a=6 

ga1runa 
a =32 

m 
100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

1T' = 0.10 
CL(fN) 

-------.--
s = 1.28 
fx(s) = </>(s) 

s = 1.36 
Q(s) = 1.336 

8 = 1.33 
Q(s) = 0.900 

8 = 1.40 
Q(s) = 0.852 

s = 1.47 
Q(s) = 0.932 

8 = 1.55 
Q(s) = 1.067 

s = 1.34 
Q(s) = 0.689 

s = 1.3 
Q(s) = 0.805 

8 = 1.31 
Q(s) = 0.907 

100. 8 15.7 
100.1(7.3) 
100.0(3.5) 

135.6 21.3 
135. 7(10.3) 
135.6(5.1) 

92.3 17.7 
90.8(7.8) 
90.6(3.9) 

89.5 21.5 
87.0(9.0) 
86.6(4.4) 

96.4 19.3 
• • 

94.9(8.7) 
94.6(4.2) 

116.8 43.3 
111.3(15. 7) 
109.8(7.3) 

74.3 21.6 
' ' 

70.5(8.1) 
69.8(3.8) 

83.9 18.1 
81.7(7.9) 
81.3(3.8) 

92.1 16.1 
' . 

91.4(7.5) 
91.2(3.6) 

1r = 0.01 
CL(tN) -~~---r---~ -

s = 2.33 104.7 53.7 
fx(s) = ¢>(s) 101.1(21.4) 

100.1 (10.2) 

8 = 1.97 
Q(s) = 1.305 

s = 2.63 
Q(s) = 1.664 

s = 2.85 
Q(s) = 2.837 

s = 2.68 
Q(s) 1.705 

8 = 2.89 
Q(s) = 3.562 

s = 3.28 
Q(s) · 6.677 

s = 2.90 
Q(s) = 2.707 

s = 2.58 
Q(s) = 1.464 

118.6 32.6 
' ' 

120.9(15.9) 
121.4(7.8) 

187.5 181.9 
' ' 

175.6(55.2) 
172.7(25.9) 

374.7 540.2 
• 

318.4(141.7) 
304.1(61.3) 

187.1 144.5 
178.4(54.0) 
174.4(24.7) 

542.5 930.8 
406.0(213.2) 
380.4(85.5) 

1655.7 2532 
996.6(928) 
804.8(299) 

387.6 607 
311.7(148) 
294.8(64.0) 

160.9(119.3 
153.5( 45.8) 
151.3(21.6) 



4.2 Second order unbiased test limits based on 
density estimation 

4.2.1 Deconvolution 

It is clearly seen in the previous section that nonnormality cannot be ignored 
in determination of test limits. At the same time the proof of theorem 4.1.1 
indicates how to pro,ceed if X has density f x. In ( 4.1.5) ef> should be replaced by 
f X· In general the density/xis unknown and therefore it has to be estimated by 
available observations. Estimation of the density of X, however, is complicated -by the fact that we observe X = X + U instead of X. In chapter 3 this 
problem did not occur because the density f concerned (being ¢) is determined 
by parameters (mean and variance of X) which can be estimated consistently. 
Estimation of fx, not assuming a parametric model for the distribution of X, 
leads to the so called nonparametric deconvolution problem. We are interested 
in the density of X, having observations from X + U. It is well-known that 
nonparametric deconvolution with normal error is very difficult, i.e. giving 
extremely slow optimal rates of convergence. This is shown e.g. by Zhang 
(1990) and Fan (1991a) (cf. also Fan (1991b)), where many further references 
on the deconvolution problem are found. 

Therefore we do not apply deconvolution estimators here, but take into 
account the extra information that a is small, implying that the density f x of 
X + U is close to the density f x of X. In fact, 

00 

fg(x) - fx(x) = 
-oo 

and thus the difference will typically be of order a 2 • In that case the deconvo­
lution problem is more tractable (cf. Fan (1992)). 

In this section we derive a test limit for which the resulting consumer loss 
in expectation is equal to the prescribed bound ,, to sufficient precision. It 
turns out that f'x_ has to be estimated as well. In chapter 3 estimation of the 
derivative itself did not come up because it is determined by µx and ax. 

A A A 

Now, let t = t( fr, f g, f'g) be a test limit based on estimators of a, f g and /'-
A ..... X 

and let a = a( a, f x, f'g) = ( s - t /a. By CL( t we denote again the probability 

of a new item to be nonconforming and accepted that is P(X > s X < t 
... = - ' = ' ' 

ECL(tu) = (4.2.1) 

to sufficient precision. More precisely, we are looking for second order unbi­
asedness. 
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4.2.2 Selecting estimators 

For estimation of a, J x and f 'x:, we consider the following model. We have a set 
of n variables which are measured twice and a sainple of size m from production, 
where m typically is much larger than n. In formula, 

-
Xij =Xi+ Uii, 
-xi= xi+ ui, 

where 

i = 1, ... , n, j = 1, 2 

i = n + 1, ... , n + m, 

(X11,X12), .. · ,(Xn1,Xn2) 

are observations in duplicate (test data) and 

- -
Xn+l, • . • , Xn+1n 

are single observations (production data). 
We can estirnate a as before by 

,. 
(J" = 

In the proof of theorem 3.4.1 we already concluded that 

(7 

where 111 = -¼, 112 = ½ and V3, 114 = 0. 

(4.2.2) 

(4.2.3) 

(4.2.4) 

To estimate f x (and f'g) we apply the Rosenblatt-kernel estimator. It is 
generally recognized that the choice of the bandwidth is more important than 
the choice of the kernel {cf. Silverman (1986, p. 43), Hardie (1991, p. 78)). We 
therefore simply take the uniform kernel. The conventional bandwidth of order 
m-1/ 5 turns out to be not the optimal one here. The choice of the bandwidth 
is treated in sections 4.2.5 and 4.2.6. 

Apart from considering these kernel estimators, we have also considered the 
density estimator proposed by Abramson (1982), especially because of the re­
ported good small-sample behavior of this estimator (cf. Terrell and Scott (1992) 
p. 1248 and references there). Since there were no important improvements, we 
do not propose this estimator here. 

As it is seen in the definition of a1 in (4.2.7), in fact we have to estimate 
1/ f x(s). Therefore we have also considered quantile estimators, cf. e.g. Bloch 
and Gastwirth (1968), Hall and Sheather (1988), Jones (1992). Also these 
estimators, based on order statistics, give no substantial improvement. 

Hence, 

m m ,. 

Jg(s) 
1 

and /'g(s) 
1 

(4.2.5) 
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where 

and 

1 if Xn+i E [s - h, s + h] 
0 otherwise 

-1 if Xn+i E [ S - h, S] - -
1 if Xn+i E (s, s + h] 
0 otherwise 

for i = 1, ... , m. The esti1nator of f g(s) boils down to just counting the 
observations around the specification limit. The choice of the bandwidth h will 
be considered in section 4.2.5. 

Direct calculation gives as h ) 0, m ► oo, 
A 

E fx 1 
fx 

A 

fx E 1 
fx 

;,. 

fx E 1 
fx 
,.. 

fx E 1 
fx 
i'-

E X 1 
f'-X 

A 

f'-E X -l 
f' ... X 

2 

3 

4 

O(h2 ) 

1 1 
+ O(h4 + h/m) 

2mhf 5c(s) m 

O((mh)-2 + h/m + h6 ) 

O((mh)-2 + (mh)-3 + h8 ) 

O(h2 ) 

A 

fx -1 
fx 

4.2.3 Expansion of the consumer loss 

(4.2.6) 

In chapter 3 accurate approximations to and various bounds on the consumer 
loss have been derived for the case X ,..._, N(µx, a-~). From (3.2.4) it is obvious 
that by writing Fx instead of ~ and imposing suitable regularity conditions on 
Fx, many of the results presented in section 3 .. 2 can be generalized. One of the 
reasons not to do this is because we are actually interested in a test limit in 

.,.,, A 

terrr1s off x and f'x (and consequently in terms of fx and f'g) instead of in fx 
and fx-

Therefore, let 

-1 ' (4.2.7) 
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analogous to {3.2.9). In view of the results in section 3.4, let a correction term 
A A h 

d = d(u, f x, J'g) be defined by 

( 4.2.8) 
~ A 

where a1 = a1(a,Jg) and with tu aimed to satisfy (4.2.1). 
Further we define 

a= (s -iu)/u = (a1 + J)a/u. ( 4.2.9) 

The following lemma gives a nonasymptotic upper and lower bound of the 
.... 

relative error in CL(tu) in terms of a when a > 0. 

Lemma 4.2.1 Assume that f'x(x) > 0 for all x > s and assume that fx(s) > 
¾o-max{-fx(s),O}, then if a> 0 

CL(iv.) -afx(s)91(a) - ½u2fx(s)g2(a) ½u2 max{fx(s);x > s} 
O< 1 < a ' ufx(s)g1(a) + 2a 2 f'x:(s)g2(a) fx(s) + 4amin{fx(s), O} 

( 4.2.10) 

with 91 and g2 as in (3.2. 7). 

Proof. Writing Y = -U /a we have 

CL(iu) 

= P(X > s, X + U < tu) = P(Y > a, s < X < s + a(Y - a)) 
00 

{Fx(s + a(y - a)) - Fx(s)}</>(y)dy (4.2.11) 
-a 

for some ey betweens ands+ a(y-a). Since O < J'Jc(z) < max{fi(s);x > s} 
for all z > s we get 

00 

0 < (y- a)3 JJc(ey)</>(y)dy < max{f~(s);x > s}ga(a). ( 4.2.12) 
-a 

Because a> 0 we can use that g3 (a) < 2g1(a) and g2(a) < !g1(a) (cf. the proof 
of lemma 3.2.1) and hence 

a fx(s)g1 (a)+ ½a2 fx(s)g2(a) > ag1 (a)(fx(s) + ¾a min{fx(s), 0}) > 0. 
( 4.2.13) 

Combination of (4.2.11)-(4.2.13) completes the proof. □ 

The condition J'x(x) > 0 for all x > s is not always met in examples of 
interest (cf. lemma 3.2.3). It is easily seen in the proof of lemma 4.2.1 that 
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without this condition the lemma still holds if O in the left-hand side of ( 4.2.10) 

is replaced by 

½a2 min{O,min{fi(s);x > s}} 
fx(s) + ¾a min{fx(s}, 0} 

• 

In view of theorem 4.1.1 and the discussion in section 4.2.1 we put the 

following assumptions. 

Al lfx(x)I < M for all X > s, 

A2 Jg(s) = fx(s){I + O(o-2)} > 0 and 
f'g(s) fx(s){l + O(cr) }, as a · ➔ 0, 

A3 a1 is bounded as a,, • 0. 

We prove the following asymptotic result. 

Lem.ma 4.2.2 Assume Al and A2, then 

CL(iu) = {afg(s)g1(a) - ½o-2 J'g(s)g2(a)}(l + O(o-2
)) 

as a ·· > 0, unifo1mly in a> 0. 

Proof. As ( 4.2.10) we have 

( 4.2.14) 

ICL(tu)-ufx(s)g1(a)-½cr2fi(s)g2(a)I < ¼a3Mg3(a) < ½a3 M91(a) 

and the proof is completed by application of A2 and the fact that 92 < !91- D 

4.2.4 The correction term 

To determine the correction term d defined by (4.2.8) we need to expand CL(iu) 
.,._ ,. 

in terms of a, f x and f'g. Therefore we define the set A by 

!'-
----- - 1 < C3 , 

X 

A= 
.,._ 
(J' 

(j 
( 4.2.15) 

where C1, c2 and c3 are sufficiently small positive constants. Note that O(P(Ac)) 
still depends on the bandwidths hand li and hence the order O(P(Ac)) cannot 
yet be specified. On the set A we have ( cf. ( 4.2.8) and ( 4.2.14) and cf. (3.4.16)) 

"" ... "" 
CL(tu) == 

u a a 
A ( 4.2.16) 

a 

Writing IA as the indicator function of the set A, we have, with k(a) as in 
(3.2.15), 
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Lemma 4.2.3 With fr and J x from (,4..2.3} and (,4..2.5), respectively, we have 
as m, n > oo and h ► 0 

E 91 

1 1 ( 4.2.17) 
4n 2mhfg(s) m 

Proof. We expand m(X, Y) = g1(Xg11 (b/(XY))) around b = m(l, 1), where 

" 

b=---
afg(s) u' fx. 

In obvious notation, 

m(x, y) - m(l, 1) 

m1o(x -1) + mo1(Y -1) + ½m2o(x -1)2 + ½mo2(Y -1)2 

+ m11(x - l)(y -1) + ½mgo(x - 1)3 + ½m21(x - 1)2(y -1) 

+ ½m12(x - l)(y - 1)2 + ¼mo3(y - 1)3 

+ O((x - 1)4 + (y - 1)4 ), 

" as (x, y) ► (1, 1). By independence of a- and Jg, (4.2.6) and (4.2.4) we get 

E {m(X, Y) - m(l, 1)} · lA 

1 
mo2 

m 

The P(Ac)-term on the 0-term comes from the replacement of terms like 
,.., " u a 

E - - 1 • lA by E - - 1 . The difference of the two can be estimated 
er a 

by 
A ,._ 4 

IE u - I E a 1 El 1 · lAc < - + · Ac 
u 

and so P(Ac) = ElAc appears in the 0-term. Finally, straightforward calcula­
tions give 

( 4.2.18) 

which proves the lemma. □ 

Remark 4.2.1 In (4.2.17) both a and, are considered fixed. Under assump­
tion A3 the lemma also holds when letting u, 1 ➔ 0. □ 



The lemma in combination with ( 4.2.16) and ( 4.2.1) suggests that we should 
take (following the notation of chapter 3) 

where 

C 
a f'g(s) g2(a1) - = ____ ;;..;;..__ 

k(a1){2a1k(a1) + 1 - at} 
4n 

1 1 

m 

(4.2.19) 

(4.2.20) 

(4.2.21) 

Comparison with (3.4.12) shows that the term to correct for estimation of a 
has not changed, but the different way of estimating the density does result in 
a different correction. 

In view of (4.2.16) and (4.2.1) we prove 

Lemma 4.2.4 Under the assumptions of lemma 4,.2.3 in combination with A3, 
A " ,.,. A 

with d = d(a, f x, f'g) from (4.2.19) and f'g from (,4..2.5), we have as ,y, o > 0, 
- -
h , > 0 and if h > h and m > n that 

,., .,._ 

E (j d... I (j ,.. 
91 -a1 

(]' Cf 

and 

E g2 
... 
(j,. 

-a1 
(j 

( 4.2.22) 

( 4.2.23) 

Proof. Let b, X and Y be as in the proof of lemma 4.2.3. Then, letting 
a1 = a1(X, Y) = g11 (b/(XY)), we write (on the set A) 

Xclg~ (Xii1) - dg~ {a1) 

n-1 {f1(X, Y) - /1(1, 1)} + (mh)-1 {/2(X, Y) - /2(1, 1)} 
"' 
f'x 

- 1 + f3(X, Y) - /3(1, 1) . Jg 
X 

+ m-1 {f4{X, Y) - /4(1, 1)} 

with, writing h(X, Y) 

f1(X, Y) 
4 
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2Jg(s)Y ' 

f4(X, Y) = -(k(ii1) - a1)h(X, Y). 

Combination of (4.2.6) and (4.2.4) and dealing with lA as in the proof of 
lemma 4.2.3 yields 

"' " 
E ad .... , a,., 

91 a1 a a 

0 {n-1 + (mh)-1 + u + m-1}{n- 1 + h2 + (mh)- 1 + P(Ac)} 

+ o a{h2 + m-1 + (hh) 2 + h/(mh2 ) + P(Ac)} 

0 n-2 + n-1h2 + m-1h + (mh)-2 + un- 1 + a(mh)-1 + ah2 

+ 0 P(Ac) , 

using h > h and m > n, which completes the proof of (4.2.22). 
argument ( 4.2.23) is proved. 

combination of the results in this section yields 

By the same 
□ 

ECL(iu) = "Y + 0 "Y{n-2 + h2 + (mh)- 2 + a 2 + ah2 } + P(Ac) , (4.2.24) 

-
for h > h and m > n. 

4.2.5 Optimal rates of bandwidths 

To find the optimal bandwidths we have to consider P(Ac) since it also depends -
on hand h. 

For the estimator & we have that for each c > 0 there exists c( e) > 0 such 
that 

.... 

p a 
--1 > t 

• 

= O(e-c(e)n), as n > CX). ( 4.2.25) 

By Kolmogorov's Exponential Inequality, cf. Shorack and Wellner (1986 p. 855), 
it fallows that for each e > 0 there exists constants c1 ( e), c2 ( E) > 0 such that 

.,.. 

p fx 
ix 

-1 > € ( 4.2.26) 

,._ 

f'-p . X _,,. 1 > f. 

f'-x 
( 4.2.27) 
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This implies that we should choose h and li such that mh ► CXJ and mh3 ► oo. 
It is seen from (4.2.24) that the optimal rate for h equals m-1/ 2 , implying 
mh • > oo as should be the case to get P( Ac) sufficiently small. 

Note that this rate differs from the conventional optimal rates in density 
estimation implied by minimizing mean squared error. For the optimal band­
width h there is some freedom. Taking li = m-a for some a E [¼,½),the order 
term O(uh2 ) in ( 4.2.24) vanishes since uh2 < u 2 + h4 < u 2 + 1/m by this choice. 
On the other hand, the error term in { 4.2.27) is sufficiently small. 

As a result we have now proved the following theorem, which shows that we 
have established a second order unbiased test limit. 

A ;,. 

Theorem 4.2.1 Assume Al-A3. Let fr be given by (4.2.3}, and f x and f'g be 

given by (4.2.5) with h of order m-1/ 2 and h of order m-a for some a E [¼, ½)-
"' ,,,. A A ;.._ ,,,,,._ 

For the test limit tu= s - (a1 + d)a with a1 = a1(a, f x) and d = d(fr, f x, f'g) 
given by (4.2. 7) and (4-.2.19}, respectively, 

( 4.2.28) 

for some r > 0 as u, 1 > 0 and m > n > oo 

Comparison of theorem 4.2.1 with theorem 3.4.1 shows that an extra term 
m - l is entered ( and a further exponential term). This means that if m is of the 
order n2 or larger there is no loss in precision when using test limits based on 
density estimation, if we have normal observations. It is clear from section 4.1 
and theorem 4.1.1 that a substantial gain is obtained in case of nonnormal 
observations. 

4.2.6 Choice of bandwidths 

Although theoretically a different constant in the bandwidth does not change 
the order-term in (4.2.28), from a practical point of view the constant is rather 
important if mis not extremely large. The remark in Hall and Sheather (1988, 
p. 382) that the optimal rate is more a qualitative guide than a quantitative as­
sertion applies here as well. To get a concrete quantitative proposal we therefore 
explore the most important terms of the 0-term in (4.2.28). 

After some tedious, but straightfo1 ward calculation it turns out that we 
should take 

31/4 
h = ---:-:-~-----,.... ml/2{Ji,(s)/g(s)}l/4 

1/4 

• ( 4.2.29) 

Direct calculation shows that 

gf (a)g1 (a) 
= - a}. 
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From Ito and McKean {1974, p. 17) we obtain the inequalities, for a> O, 

1 
2 a+ a2 + 2 

1 
a+ a2 +4 

and hence 

0.89 = (½ + ¼ · ½) 114 < 
2 4g~ (a1 )2 2 4 

= 0.93. 

As often the case in density estimation the optimal bandwidth depends on 
the unknown density. A possible solution is to use a reference distribution. Here 
we 1night take the normal distribution with mean µ and variance r 2 , say. For 
values of s with (s-µ)/r not too far from 2 and taking Jg(x) = <f>((x-µ)/r)/r 
we get 

31/4 

</>((s - µ)/r) 
• 

Estimating µ and r from the data by fl and f and substituting these estimates 
leads to the proposal 

"' r 
h = --;:==::;:;:;:::=::::::::;: • 

m ¢( s -fl r 
( 4.2.30) 

Sirnilarly, we propose 
.,.. 

- 'T 
h = ---------

{m ¢((s - µ,)/f)}1/ 4 • 
(4.2.31) 

Either the usual sample mean and sample standard deviation or more robust 
estimators ofµ and r can be used. 

4.2. 7 Numerical results 

In section 4.1 it was shown by theory and simulation results that the normal 
test limit may violate 1 substantially, when observations are nonnormal. The 
preceding theory shows that a more robust test limit can be obtained using 
density estimation. It is seen in theorem 4.2.1 that asymptotically the new test 
litnit behaves well under all kind of distributions. What remains is the behavior 
of the new test limit for moderate sample sizes. Two questions now arise when 
comparing the new test limit with the normal one for moderate sample sizes: 

- how much do we lose when normality holds, 

- how much do we gain when normality fails. 

To answer the questions Monte Carlo experiments are performed for a broad 
range of alternatives. A confounding factor is the estimation of a. Since we 
are interested in the influence of nonnormality of X on the test limits, both 

• 



for the normal test limit (table 4.1.1) as here, a is assumed to be known in 
the simulations (implying again that the term k(a1){2a1k(a1) + 1 - ar} /(4n) 
in (4.2.21) disappears, according to 'n > oo'). Results of the simulation study 
are presented in table 4.2.1 below. They should be compared with table 4.1.1. 

Table 4.2.1. Simulated mean and standard deviation of CL(iu) 

The test limit iu as in (4.2.8) is calculated, in which d = d(u, f :x, ]'g) given in (4.2.19) 
and h and h Min (4.2.30) and (4.2.31). ; 100 ppm, u = 0.10. The simulation is 
carried out with 10000 replications. 

distr. 
N(O,l) 

beta 
p=2 
q=2 

beta 
p=8 
q= 32 

beta 
p=2 
q=8 

n.mixt 
µ1 0.53 
0"1 . 1.0 

n.mixt 
µ1 = 0.63 
0-1 = 1.1 

grunma 
et=2 

gamma 
et=6 

gamma 
0'=32 

1r = 0.10 
freq. 

m CL(iu) f-(s) = 0 
-~--,---~~ 

100 . 98.6 39.2 0.0013 
400 99.8(27.0) -

1600 99. 7(18.9) -

100 100.8 33.8 0.0003 
• • 

400 100.7(24.2) -
1600 · 100.6(16. 7) -

100 97.3 ~40.7) 0.0001 
400 99.6(29.3) -

1600 99.6(20.1) -

100 96. 7 40.4 0.0054 
' . 

400 99.8(30.9) -
1600 99.7(21.2) -

100 98.1 66.9) 0.0002 
400 100.3(28.0) -

1600 100.2(19.6) -

100 98.0 38.5 0.0032 
400 100.3(28.8) -

1600 100.2(20.2) -

100 93.8 38.9 0.0053 
• • 

400 99.7(36.2) 0.0003 
1600 99.5(23.6) -

100 96.6 40.5 0.0032 
400 99.5(31.7) -

1600 99.7(21. 7) -

100 96.6 39.9 0.0001 
' ' 

400 99.8(29.3) -
1600 99.9(20.5) -

1r = 0.01 
• 

m CL(iu) J- (s) 0 -~-------100 67 .4 26.8 0.0127 
400 92.0(45.7) 0.0006 

1600 98.2(33.5) -

100 93.2 41.6 0.0015 
400 101.4(54.1) -

1600 100.4(24.1) -

100 · 65.2(23.6) 0.0043 
400 89. 7(38.9) 0.0002 

1600 97 .0(29.9) -

100 63.0 22.5 0.0005 
' ' 

400 87.6(32.4) -
1600 96.3(24.6) -

100 101.2 29.8) 0.0298 
400 86.8(30.5) 0.0013 

1600 95. 7(25.0) -

100 129.8 35.3 0.0439 
400 92.4(28.4) 0.0013 

1600 94.1(21.6) -

100 
400 

1600 

100 
400 

1600 

100 
400 

1600 

36.0 8.9 -
' ' 

73.6(19.7) -
91.6(20.3) -

56.7 20.0 0.0006 
85.8(32.l) 0.0001 
96.2(27.3) -

63. 7 23.3 0.0067 
• 

90.0( 40. 7) 0.0006 
97.1 (31.3) -
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It is seen in tables 4.2.1 and 4.1.1 that the loss of the robust test limit is small 
if normality holds, except when 1r and m are both small. Under nonnormality 
there is a drastic improvement. This is exactly what is expected for a robust 
procedure, a small loss when the claimed model holds and a large gain if the 
assumed model does not hold. Note that n = 40 is even a rather small value for 
estimating er. In view of ( 4.2.28) one may think on m ~ n 2 • It is seen that for 
m = 1600 the simulated mean ECL(iu) is close to , in all cases in table 4.2.1. 
This does not hold for the normal test limit. 

In the theory it is assumed that h ➔ 0, or m<f:>(s) > ex:>. That small values of 
m<J,(s) may indeed lead to larger errors is seen in table 4.2.1 when considering 
7f = 0.01 and the gamma distribution with a = 2. In this situation m<jJ(s) = 
0.18, 0.74, 2.95 form= 100, 400, 1600 respectively. This explains the errors in 
that case. Using the normal test limits it is seen that much larger errors occur, 
which remain if m becomes larger (cf. table 4.1.1). Moreover, in most cases the 
average consumer loss based on density estimation is conservative, in contrast 
to the average consumer loss based on normal test limits. 

4.2.8 · No observations in s - h, s + h 

If 1r" and mare small, it may occur that there are no observations in [s-h, s+h], 
"' 

implying Jg(s) = 0. For instance, if the density of X is standard normal, 
1r = 0.01 (s = 2.33), er = 0.1 and the density is estimated with m = 100, 
then h = 0.615 and the probability of no observations in [s - h, s + h] equals 
0.013. Formally, }g(s) = 0 would imply to take iu = oo. The idea is that the 
observations indicate that there is no probability mass on the right hand side of 
sand therefore there is no reason to reject products. As a consequence, in this 
situation CL(t equals 1r and hence in the preceding example the contribution 
of this event to ECL(i) equals 0.013 · 0.01, irrespective of,, and thus 1 = 100 
ppm is already exceeded by this contribution. In table 4.2.1 the number of cases 
in which there are no observations in [s - h, s + h] is reported. For calculations 
of the simulated mean and standard deviations these cases are deleted. 

Application of other density estimators does not help to solve this problem. 
This is reasonable, since if we make no assumptions about the relation between 
the density in the 'middle' and in the 'tail' ( as we do with nonparametric density 
estimation) and if there are no observations in the tail, then the only reasonable 

""' 
nonparametric estimate is Jg(s) = 0. 

One way to use information in the 'middle' is to assume a parametric model, 
somewhere between on one hand the too restrictive normal model and on the 
other hand the nonparametric approach. On such a intermediate approach will 
be reported in chapter 5. As it is seen in table 4.2.1 the problem disappears al-

.,.,. 

most for larger m. There is no such problem with f'x_ (s) = 0. The corresponding 
term in c ( cf. ( 4.2.20)) simply vanishes. 



4.2.9 Conclusions, recommendations 

In view of the theoretical and simulations results we conclude the following. 

- The second order unbiased test limit using Rosenblatt' s kernel estimator 
for estimating f x ( s) and f'x_ ( s) has the required robustness property with 
respect to the normal test limit: 

• only a small loss under the normal model 
• a large gain in case of nonnormality. 

are the mean and variance of X, the normal test limit may be preferred. 
Otherwise, it is ( as a rule much) better to use the test limit derived in 
this chapter. 

"' 
- If f x ( s) = 0, try to get more observations. If this is impossible, the 

normal test limit may be applied, but note that for small 1r and m the 
normal test limit is unreliable. 

- When taking the number n of the test data to estimate a of order m 112 , 

with m the number of production data, the error terms induced by esti­
mating a, f x and f 'g are of the same order. 

4.3 Test limits for · which ~ is violated with small 
probability 

It is seen in the theory of section 4.1 that the consumer gloss based on normal 
test limits may be far from I on the average if X does not have a normal 
distribution. The simulation results in table 4.1.1 show this rather clearly. 
Further, it is seen by the standard deviation ( also presented in table 4.1.1) that 
the consumer loss varies widely. 

In section 3.4.2 it is shown that the standard deviation of CL( t when ap­
plying the normal test limit, hence estimating µx and o-x, is of order m- 1/ 2 . 

This is clearly seen in table 4.1.1. For the test limit based on density estimation 
it is seen in table 4.2.1 that if 1r = 0.10 the standard deviation for m = 1600 is 
about one half of its value at m = 100. Indeed, we will show that the standard 
deviation is of order m -l/4 . 

From ( 4.2.16) writing d = c + Cu and from the proof of lemma 4.2.3 we get, 
on the set A ( cf. ( 4.2.15) ), 

CL(iu) , 

,.. 

fx -1 + 
fx 

A 

fx -1 
fx 

(4.3.1) 
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The right-hand side is asymptotically normal AN(µcL, atJL) with (neglecting 
terms of order n- 1 and (mh)-1 in µcL), 

h2 f'Jc(s) g~ (a1) - -- _...;;;..;;;;.___ + eu--
6 f x ( s) 91 ( a 1) 

( 4.3.2) 

1 </.>(a1) 2 1 
2n 91 (a1) 

(4.3.3) 

The choice h = (m</J(s))- 1/ 2 indeed leads to acL of order m-1/ 4 . 

Having explained the order of magnitude of the standard deviation it 111ay 

be appropriate, when the unbiasedness property is not adequate, to replace Cu 
by a larger Ci leading to 

( 4.3.4) 

for which, with sufficient precision, 

(4.3.5) 

where a is a small positive number. 
Considering the asymptotic normality this requirement implies that ECL(ii) 

should be smaller than,. Thus by introducing a negative bias, it is expected 
that this gives opportunity to reduce the variance at the same time! In view of 
the new criterion we therefore reconsider the bandwidth h. 

h2 f'! (s) . . . 
~ 

J'Jc. As a consequence we put the condition 

h2 
-- -➔ 0, 
UCL 

(4.3.6) 

which is satisfied if 

(4.3.7) 

Assuming (4.3.6) we take, as in the normal case, Ci such that -µcL/crcL is 
the upper a-quantile of the standard normal distribution,. We obtain 

Ci= Uo: ( 4.3.8) 

where Ua: = 4l-1(1-a). (Since (n-1 + (mh)-1)/acL ➔ 0, indeed terms of order 
n-1 and (mh)-1 can be neglected in (4.3.2)). 

It is seen from (4.3.8) and (4.2.21) that, ignoring terms of order n 1 and 
(mh)-1, Ci indeed is larger than Cu and hence ii == s - (a1 + c + ci)a is sn1.aller 

A 

than tu. 
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Reducing the bias as much as possible under the stronger requirement ( 4.3.5) 
to maximize the yield P(X < ii), we should minimize the variance aZJL· There­
fore, h should be chosen as large as possible, but satisfying ( 4.3. 7). 

Ignoring at this point the n-1 term in (4.3.3), deletion of the h2 term in µcL 

( cf. ( 4.3.6)) can be translated into 

h2 J'! (s) 1 1 
X <-----

6 f x(s) K 2mhf x(s) 

1/2 

' 

for some large K and hence 

5 _ 18f g(s) 

If f x =</>ands is close to 2, then 18Jg(s)/{f}(s)}2 is close to 1 and we get 

h = {K2m¢(s)}-1/ 5 . Taking for instance m = 100, s = 2.33 (corresponding 
to 7r = 0.01) we get {m¢(s)}-1/ 5 = 0.82 and {m<J,(s)}-112 = 0.61, hence for 
reasonable values of K the choice of h here is even smaller than in ( 4.2.30). A 
similar discussion is found in Hall and Sheather (1988). 

Resuxning we may conclude 

- the stronger requirement P(CL(ii) >,)<a is met, 

- for large values of m the bandwidth h should be taken somewhat larger 
than as in ( 4.2.30), while for moderate values of m still ( 4.2.30) may be 
applied. 



• 
r1s 
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In the last chapter we have seen that to determine test limits, it is important to 
estimate the density of the characteristic at the specification limit accurately. 
Application of Rosenblatt's estimator yields good results in many situations. 
Because nonparametric density estimators typically use observations around 
the specification limit only, problems occur in situations with a small number 
of observations and where the specification limit is in the tail of the distribution 
( cf. the discussion in section 4.2.9). 

In this chapter we investigate in what situations application of parametric 
models could be considered a complement to, or even a competitor of the non­
parametric approach. We concluded in chapter 4 that the normal density as 
a density estimator, using just a location and scale parameter, turns out to 
be no competitor of the nonparametric estimator. But what do we gain if for 
example parameters of skewness and kurtosis are added? Another extension to 
a parametric family is to use some quantiles as shape parameters. 

A larger parametric model could also be viewed as a compromise between 
assuming perfect knowledge of the form of the density (normality) and no knowl­
edge at all (nonparametric approach). Instead of making a big step at once, an 
intermediate approach assuming moderate knowledge of the density may give 
an improvement in particular situations where the nonparametric approach is 
less reliable. 

In any case, with a parametric model the observations from the center of 
the distribution are used as well, and improvements are therefore expected 
especially in those situations where the specification limit is in the tail. 
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5.1 Overview of the investigations 

In five sections, 5.3-5.7, we will discuss five parametric models by looking at 
two things. By simulation we investigate how well the true density can be 
estimated if the observations are from the model. Then we investigate in what 
sense the parametric model can be used in situations where observations are not 
from the model, but still from a reasonably smooth distribution. We compare 
these results again with those of Rosenblatt 's estimator, but also with those 
of the normal distribution. As we are especially interested in improvements 
of Rosenblatt 's estimator if the density has to be estimated in the tail with 
only a relatively small number of observations, we will study these situations 
in particular. 

After introduction of the set-up and the notations in section 5.2, in sec­
tion 5.3 we reconsider application of the normal density as a density estimator. 
In the following four sections we will then study some larger parametric models, 
which are all, in various ways, extensions to the normal distribution. 

- exponential power distribution (section 5.4) 

- Pearson system ( section 5 .5) 

- Johnson system ( section 5 .6) 

- Box-Cox transformation model (section 5. 7) 

This chapter is concluded by an appendix containing some technicalities. 

It will turn out that these larger parametric models often lead to improve­
ments compared to the normal distribution. However, they do not always com­
pete well against the kernel estimator. 

5.2 Set-up and notations 

From the proof of theorem 4.1.1 it is seen that if the test limit is based on an 
" estimator fx of fx (fx denoting the density of the characteristic), the consumer 

loss satisfies 

CL - 1 ,_ fx(s) 
--- f',,; ~ 1, 

fx(s) 
(5.2.1) 

at least, if f x ( s) > 0 and provided / x ( s) is close to the true density. 
In this chapter we pass over the complication that to set test limits we 

usually have to rely on observations from X which are contaminated by a small 
random measurement error U. We simply assume that we have observations 
from X itself. In the previous chapter it is seen that if the test limit is based 
on Rosenblatt's estimator, there is asymptotically no loss of precision. For 
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parametric estimators in general it is unduly complicated to investigate the 
consequences if observations from X + U instead are used, however. Therefore, 
at first we simply ignore this complication and assume that we have independent 
observations X1, ... , Xm from X. In the remainder of this chapter we omit the 
subscript x of J x. 

"' -
Let JR be Rosenblatt's estimator (cf. (4.2.5), however, with Xn+i replaced 

by Xi, i = 1, ... , m). In section 4.2.5 we have shown that there exists a set A, 
defined by 

A= (5.2.2) 

such that P(Ac) = O(e-cEmh) for some positive constant Ct:- Together with the 
fact that CL, being a probability, is bounded, this implies that quantities like 
mean, variance and mean squared error of CL can be evaluated with respect 
to IA- The error caused is O(e-camh), while this enables us to use (5.2.1) 
throughout, when applicated to Rosenblatt's estimator. From section 4.2.2 it 
follows that, as m ► oo, 

E 
f'' (s) 2 1 

(5.2.3) 

leading to the recommendation 

_ µx -1/s 
h= ' 

where, if unknown, the expectation µx and variance ai- should be estimated. 
The rate of convergence now equals m - 4/ 5 . 

Writing {le, fJ E e} for the parametric family of densities, there should be 
f o for some 0 E e close to the unknown f and the estimator f 0 should in 
turn be close to f0. We assume fe(s) > 0. Under weak regularity conditions 
(cf. appendix A.1 at the end of this cl1apter) there exists also a set B with 
P(Bc) exponentially small, such that 

Je(s) 
(5.2.4) 

as m .... ➔ oo. 

What can we say about the difference between (5.2.3) and (5.2.4) in general? 
First of all, if f 0 ( s) = f ( s) the rate of convergence of the parametric estimator 
equals m-1 and hence from a theoretical point of view faster convergence is 
obtained using the parametric estimator than when using the nonparametric 
one. 

For small sample sizes the difference between m-4 / 5 and m- 1 is not really 
large and the co.efficients of the m-4/ 5 _ and m-1-terms are of importance as 
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well. The main coefficients in (5.2.3) are ¢ 115 / f and ¢-4/ 5 which are large when 
f is estimated in the tail. The coefficients of the parametric density estimator 

"' depend on fe and the estimator 8. For the sake of illustration, consider the 
situation of chapter 3 in which f(s) = fe(s) = ¢((s - µ)/a)/a. If we expand 
the left-hand side of (5.2.4) around (fl, fr) = (µ, a) we encounter terms like 
E((P, - µ)/o-)l((fr - o-)/cr)k (fork, l = 0, 1, 2, cf. (5.A.5) and (5.A.6) in the ap­
pendix). When µ, u are estimated by the sample mean and the sample standard 
deviation, respectively, the terms are quite small. Estimation of the parameter 
u using sample a1- and a2-quantiles X(o:i) and X(o:2 ) leads to terms containing, 
among others, 

(5.2.5) 

Comparing this expression to (5.2.3) we conclude that, at least for small sample 
sizes, it is not sensible to use sample quantiles beyond the specification limit 
s. In that case the coefficients easily become larger than those of Rosenblatt's 
estimator. 

Problems may arise in parametric density estimation when, besides param­
eters of location and of scale, also parameters of skewness and kurtosis have 
to be estimated. It is well known that estimation of higher moments causes 
problems if these moments are large. 

In the numerical examples in the following sections the exact mean and mean ... 
squared error of (/ / f R) · l{f R>O} as well as 

~ 

Po= P(JR(s) = 0) (5.2.6) 

are calculated. As we deal with standardized densities only, µx=O and a}=l, 
yielding h = {m<f>(s)}-115 . (Note that 2mhfR(s) has a binomial distribution 
B(m,p), with p = F(s + h) -F(s - h), F being the distribution function of X), 

For estimation in the parametric models we rely on simulation. Together 
with the simulation results we will provide the number of replications, if pos­
itive, for which the parametric estimate of the density is less than a certain 
quantity (as a rule 10-5), or it cannot be determined by numerical problems. 

The specification limit s is chosen such that 

= P(X > s) 

is 0.10 or 0.01. 

5.3 Normal distribution 

In this section we reconsider the normal density as a parametric model, that is, 
we take fe(s) = </>((s -µ)/o-)/a = c/>e(s) with 0 = (µ,u). The parameter 0 may 
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be estimated by the maximum likelihood estimators 

,. - I m 1 m 
0 = (µ,a), withµ,= X = - ;..._ Xi, a-2 = - (Xi -X)2• 

m ·-1 m . 1 i- i= 

In view of the discussion at the end of section 5.2 we will also consider quantile 

sample median, then an estimator of 0 is also defined as follows. 

fl= sample median, er= (x(p) - µ)/cf?- 1(p), 

where <1>- 1 (p) is the p-quantile of the standard normal distribution. 
In the table 5.3.1 below f / / 8 is compared to f / JR when sampling from the 

normal family itself, that is, f ( s) = ¢( s). 

Table 5.3.1 ¢(s) estimated in three ways {1r = 0.01) 

The parametersµ and a are estimated either by the maxim11m likelihood estimators or 
by means of the sample median and the 0.975-sarriple-quantile. The mean and mean 
squared error of <f;/ </>0 are estin1ated on the basis of a simulation with 10000 replications. 

Maxim11111 likelihood Quantile 
Rosenblatt estimators ofµ, a estimators ofµ, a 

,.. 

JMSE JMSE v'MSE m Po E</>/fn E</>/ E¢/ ft 

100 0.001 0.809 0.522 1.160 0.599 1.155 1.074 
400 0.000 0.828 0.285 1.033 0.214 1.047 0.354 

1600 0.000 0.878 0.180 1.007 0.098 1.010 0.157 
6400 0.000 0.921 0.113 1.002 0.049 1.002 0.076 

As it is seen, the parametric estimator based on maximum likelihood estima­
tors is the best one. In terms of MSE, Rosenblatt's estimator is almost as good 
for m < 400. It performs for m < 400 better than the para1netric estimator 
based on quantiles. For very large mall three estimators behave very well, the 
convergence rate of Rosenblatt' s estimator being slightly slower. 

In section 4.1 we have investigated both theoretically and by means of some 
examples how much the ratio f / Jo can differ from 1, with !0 = ¢ and f an 
arbitrary but standardized density out of certain classes of densities. If the 
parameter 0 is estimated using sample quantiles these results are of less value, 
because the mean and variance of ¢0 are not necessarily O and 1, respectively. 
We extend the result obtained for f E F1 (the class of unimodal and symmetric 
densities) to the case in which the normal density is such that two quantiles 
correspond to the unknown f. 
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Call :Fq(p) the class of unimodal and symmetric densities for which the 
distribution function Fis s.t. p- 1 (½) = X(i/2) (median) and F-1 (p) = X(p) 

with X(i/2) and X(p) given and p > ½-

Proposition 5.3.1 Fors > X(1/2) 

p-½ 
S X(l/2) 

• min 
p-½ 1-p 

' X(p) X(l/2) S X(p) 
if X(p) < S . 

Proof. For f E Fq(p) we have that 

X(p) 1 

X(t/2) 

Because f is unimodal and symmetric around X(i/2), f is not increasing on 
[x(l/2), oo). It follows that 

for S E ( X(l/2), X(p)] · 

Moreover, from 

00 

J(x)dx = 1 -p 
X(p) 

it follows that 

( s - X(p)) · f ( s) < 1 - P, 

1 

for s > X(p)· Since f(s) should also be less than or equal to J(x(p)) for s > X(p), 
we have 

J(s) < min 
X(p) 

p-½ 1-p 
' X(l/2) S X(p) ' 

fors>x(p)· 
In the same way as in the proof of lemma 4.1.1, we can construct densities 

that come arbitrary close to the upper bound. Hence the proposition follows. 
D 

Figure 5.3.1 on the next page clearly shows the difference with the moment 
approach. 

. - ;<-:..-_ 1 
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Figure 5.3.1 Suprema of densities from and :F1 (cf. lemma 4.1.1) and Fq(0.975) 
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0 0.5 1 1.5 

., .. 

2 2.5 
The solid line shows the suprema off E Fq(0.975) 

The dashed line shows the suprema of f E :F1 

The standard normal density </> is drawn as well 

• 
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Table 5.3.2 and table 5.3.3 (page 101 and 102) provide some examples of 
mean and mean squared error of the ratios f /¢9 when sampling from /3- and 
r-distributions (cf. section 4.1, p. 62). The parameter 0 is estimated using the 
maximum likelihood estimator (derived in the normal family) and the quantile 
estimator with p = 0.975. Under f, the maximum likelihood estimator con­
verges to (0,1) as m ~ oo, since EX= 0 and ✓VARX == 1 under f. Therefore 
the limiting value f ( s) / ¢( s) is also presented in the tables. 

The sample median and sample 0.975-quantile under f converge to the me­
dian and 0.975-quantile of X with density f, as m > oo. Let 0 = (µ, o-) be the 
parameter value for which the normal distribution with mean µ and standard 
deviation a has the same median and 0.975-quantile as the distribution of of X 
with density f. Now the limiting value off /¢9 equals f /¢,0 and therefore this 
quantity is presented in table 5.3.2 and table 5.3.3 as well. The value p = 0.975 
is chosen afterwards, out of several values. For values below 0.90 the results are 
a lot worse. The results are again compared to those of Rosenblatt's estimator. 

We summarize table 5.3.2 and table 5.3.3 as follows. 

- The ratio's f / </>0 in the quantile case are very close to one for various J. 

- There is a very large bias and mean squared error off/ ¢0 when 0 is estimated 
by the maximum likelihood estimator and the ratio f / ¢ is large. This is 
(mainly) due to the large ratios J(s)/¢(s). (cf. (5.A.7) in appendix A.l). 

- For small sample sizes the bias and mean squared error off /¢9, using the 
quantile estimators, are not smaller than the bias and mean squared error 
obtained with Rosenblatt's estimator (cf. the discussion in section 5.2). 

Based on the computations in this section, we conclude that if one chooses to 
apply the normal density in a nonnormal situation, its two parameters should be 
estimated using the sample median and a sample p-quantile where pis somewhat 
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smaller than 1 - 1r. But even then the normal density estimator is not to be 
considered a competitor of Rosenblatt's estimator. 

5.4 Exponential Power Distribution 

The exponential power distribution (EPD) looks as a simple and obvious ex­
tension to the normal distribution. Its density is given by 

fo(x) 
1 

for - 00 < X < oo, 

where r is the gamma function. The extra parameter f3 affects the tail of the 
distribution. The larger (J, the more heavy tails, while for /3 > 0 the EPD 
converges to a uniform distribution. For example, /3 = 2 corresponds to a 
kurtosis of 25. 2. 

Two types of estimators of e = (µ, a, /3) suggest themselves, moment esti­
mators and maximum likelihood estimators. 

The expressions for the moment estimators are simple but not explicit. The 
equations are 

EX=µ 

a r(/3) 

and f3 follows from 
• 

E IX -EXl1 r((i + 1). (3) r(13)i /i - 1 

r((i+l)·/3)j/i . 

It is natural to base the estimators of a and {3 on the variance and kurtosis 
(i = 2, j = 4), but simulations showed that good results are obtained as well 
if the estimators are based on the third absolute moment in combination with 
either the first absolute moment or the variance. 

Table 5.4.1 (page 103) shows simulation results of fe/ J8, where 0 is estimated 
using sample mean, sample variance and sample kurtosis, in comparison with 
Rosenblatt's estimator. The conclusions are 

- To estimate the density parametrically at a point in the tail of the distribu­
tion, 100 observations do certainly not suffice. In this situation Rosenblatt 's 
estimator performs much better. 

- There seems to be no considerable loss when the normal density is estimated 
by the density of the EP D, provided the number of observations is sufficiently 
large (i.e. larger than 100). Moreover, the bias and mean squared error do 
not vary much with the parameter /3. 
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Because the small sample behavior of the moment estimators is not really 
satisfying, we also studied maximum likelihood estimation. The estimators have 
to be determined iteratively from a system of three equations. As initial esti­
mates we took the moment estimates based on the variance and third absolute 
moment. In appendix A.2 the estimation procedure is described. It shows that 
these estimators are not to be recommended for practical purposes. 

Table 5.4.2 on page 104 shows some simulation results with the maximum 
likelihood estimators. The situation with 6400 observations is omitted because 
of the extremely large amount of computer time involved. We conclude that the 
results in the situation with 100 observations have improved, but they are not 
yet satisfying. For larger numbers of observations the results seem to improve 
only for larger values of (3 (/3 > 1), but this improvement is accompanied by 
an increasing number of failures. These failures are due to the fact that we 
stopped the estimation procedure after 200 iterations. 

Table 5.4.3 and table 5.4.4 on page 105 and page 106 are the analogs of 
table 5.3.2 and table 5.3.3. r- and ,B-densities are estimated by means of the 
density of the EPD. These tables are interesting because they are examples of 
the improvement that is obtained if, besides mean and variance, the kurtosis is 
involved in estimation as well. (It turned out that there is not much difference 
between estimators based on the variance and absolute third moment and esti­
mators based on the variance and kurtosis. This makes the latter preferable.) 
We may conclude that compared to the normal density, there is an improve­
ment in the ratio f / fe, but for smaller sample sizes this is annulled by the poor 
estimators. 

A question that emerges here is what improvements of the ratio f / f e can be 
achieved by involving the kurtosis. In lemma 4.1.1 we saw that for standardized, 
unimodal and symmetric densities f, 

3 
2s3 • 

If the kurtosis of such a density f should equal d, we also have that 

s 

d/2 > 
0 

x4 f(x)dx > f(s) 
0 

s 

x4dx f (s) · s5 /5 => f(s) 
5d 

< 2s5 · 

For instance for d = 3, corresponding to the r1ormal distribution, the condition 
becomes effective for s > 5 ~ 2.24. 

We finish this section with the conclusion that involving the kurtosis as 
an extra parameter to estimate often gives an improvement in the ratio f / fe 
compared to f /¢ (using only mean and variance). The estimator based on the 
density of EPD does not improve the results of Rosenblatt's estimator. 
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5.5 Pearson system 

Although the Pearson system is very old, still literature appears about the 
system and it is still used in a lot of applications ( cf. Parrish ( 1983)). As the 
system is especially meant to approximate unknown densities, we studied its 
possible application as well. For a detailed description of the system we refer 
to Johnson & Kotz ( 1970), here we will briefly summarize the idea. 

The Pearson system is a system of types of distributions stemming from the 
following differential equation for the density J: 

1 df(x) 
f(x) dx 

a+x 

Different conditions on the roots of Co + c1 x + c2x2 correspond to different types 
of distributions. For example, the condition that co + c1x + c2x2 has a positive 
and a negative root leads to the ,B-distribution, while if c1 = c2 = 0, the normal 

distribution follows. 
Figure 5.5.1 below summarizes the Pearson system. 

Figure 5.5.1 Pearson system (figure from Johnson&Kotz (1970)) 
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/31 = (skewness)2 , /32 = kurtosis 
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Each combination of skewness and kurtosis corresponds to one (type of) 
distribution. 
The main types of distributions are 

I (3 - distribution, cf. page 62, 

IV 'Type IV', with density 

f (x) = K(so + c2(x + s1)2) 
-S1 

- --:=== arctan --;;=:::;::::= 
c2s0 so/c2 

with - oo < x < oo and O < c2 < 1/5, 

K to be determined numerically, 

VI 'Type VI', with density 
(x - µ1)p-1 (x - µ2)q-1 

with O < µ1 < µ2 < x or x < µ2 < µ1 < 0, 

q > 1 and p + q - 1 < 0 ( > p < 1 ). 

The other types are called 'transition types'. For example type N is the 
normal distribution, type III the gamma distribution and type VII Student's 
distribution. 

The Pearson system thus contains a large variety of densities. The parame­
ters of the system can be estimated by (explicit) moment estimators (cf. Johnson 
& Kotz (1970)). There are also quantile estimators available, but as they are 
not explicit we prefer application of the moment estimators. Besides, as we will 
see in the next section, the quantile approach is more suitable for the Johnson 
system. Since both systems are much alike, this is also a reason not to apply 
these quantile estimators here. A disadvantage of the Pearson system is the 
complexity of type IV. 

About the Pearson system we discuss again two things, the behavior of the 
estimators and the ability to approximate densities which are not from the 
system. We concentrate again on the particular situations. 

Table 5.5.1 on page 107 and page 108 gives a comparison between the be-,.. 
havior of fe/ /8 and fe/ f R• We summarize the results as follows. 

- To use the moment estimators, a rather large number of observations seems 
necessary. Failures in situations with 100 observations partly occur because 
sometimes s falls outside the estimated support of the /3-distribution. 
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- Estimation of type IV is a problem. The large number of failures, even in 
situations with 1600 observations, is caused by the fact that the normal­
izing constant K of type IV can easily be something like 1040 , leading to 
numerical problems. 

- Only in the situation with 1600 observations the moment estimators lead 
to better results than Rosenblatt's estimator. 

Remark 5.5.1 The poor results with /32 = 15 occur because the gth central 
moment is infinite and with this the variance of the sample kurtosis as well. 
Assumption (5.A.2) (page 95) is not satisfied. □ 

While we hoped for an improvement of Rosenblatt's estimator, especially 
for m not too large, the bad behavior of the parametric estimator when sam­
pling from the family itself, is striking. Although we thus conclude that the 
Pearson system is not at all a competitor of Rosenblatt's estimator, we shortly 
discuss in what way the system approximates unknown densities. We consider 
standardized Exponential Power and Contaminated Normal Distributions. The 
density of a Contaminated Normal Distribution ( CND) is given by 

f(x) = (1 - , for - 00 < X < 00, 

with O < r < 1. If µ1 = µ2, the density is unimodal and symmetric. Any 
such contaminated normal distribution has heavier tails than the normal dis­
tribution. Table 5.5.2 provides some results. It shows that application of the 
Pearson system is not at all a guarantee for a good approximation to a density 
in a fixed point. Especially whens corresponds to the 0.99-quantile, the ratio's 
f / Jo are not really close to 1. 

5.6 Johnson system 

The Johnson system is relatively new compared to the Pearson system. The 
first paper goes back to 1949 (Johnson). Like the Pearson system the Johnson 
system consists of types of distributions that cover the ([31 , [32 )-plane (/31 is the 
squared skewness, /32 is the kurtosis). The three types of distributions of the 
Johnson system - U(nbounded), L(ognormal) and B(ounded) - flow from 
transformations of a normal random variable. For a detailed description we 
refer again to Johnson & Kotz (1970), here we will briefly point out the main 
characteristics of the system. 

The distributions of a r.v. X from the Johnson system are given by the 
following relations 

' i = (B,L, U), 



where 

Z r-..1 N(O, 1) 

fB(Y) 
fL(Y) 

fu(Y) 

5.6. Johnson system 

log(Y/(1 - Y)) 
log(Y) 

log(Y + Y2 + I) 

0 < Y < 1 
y > 0 

- 00 < Y < 00. 
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Figure 5.6.l shows the relation between (/31, f32) and the types of distributions. 

Figure 5.6.1 Johnson system (figure from Stuart&Ord (1987)) 
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Because the system is a transformation model, estimation based on quantiles 
is obvious. However, only since 1980 explicit estimators are available. These 
estimators, derived by Slifker & Shapiro (1980), are based on four quantiles, 

Slifker & Shapiro (1980) also provide a function of these quantiles which dis­
criminates among the three types. For convenience the estimating equations 
are given in appendix A.3. 

We have to choose a value of z to determine which quantiles we use for our 
estimates. The authors do not give a specific advice about its value. For a 
discussion we refer to their paper. 
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Table 5.6.1 (page 110 and page 111) is the analog of table 5.5.1. It provides 
a comparison between the use of the quantile estimators of the system and 
Rosenblatt's estimator. Out of several values the value of z which leads to the 
smallest mean squared error of f 0 / f 8 is selected. From the simulations we draw 
the following conclusion. 

- Compared to the Pearson system, the estimators of the Johnson system 
perform much better but in the situation with 100 observations, still worse 
than Rosenblatt's estimator. 

Remark 5.6.1 With respect to the choice of z, we advise to use the following 
rule of thumb. With 100 observations, take z equal to 0. 7, with 400 observations 
or more, take z equal to 0.8. With the choice z=O. 7 or z=0.8 the 0.9821-quantile 
or the 0.9918-quantile has to be estimated. These quantiles are just left and 
right of the specification limit if 1r = 0.01. This explains (partly) the behavior 
of the quantile estimators compared to Rosenblatt. D 

Like the Pearson system, we tried to fit densities that are not from the 
system. Table 5.6.2 is the analog of table 5.5.2, we fitted densities of Contam­
inated Normal and Exponential Power Distributions by the Johnson system. 
Compared to the Pearson system we see a large improvement with respect to 
the exponential power densities, while the approximations to the contaminated 
normal densities remain poor. 

5. 7 Power transformation 

Box&Cox (1964) introduced a parametric model by the following assumption 
about a observable r.v. X 

y 

where Y is assumed to have a known type of distribution. 

Originally Box&Cox discussed this model in the context of linear models. 
The classical theory about a normal homoscedastic linear model could be less 
restrictive if it were appropriate after a transformation of the X's. As we 
are interested in finding a parainetric model that, among other things, gives 
improvements with respect to the application of the normal density, we take Y 
to be N (µy, a}) distributed. Hinkley (1975) considered the case where Y has 
an exponential or a gamma distribution. 

1µy+l 
the probability that .:\1 Y + 1 is negative is sufficiently small and we use the 
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notation, ignoring that X is not well defined on this part of small probability. 
For the sake of convenience we say that X has a Box-Cox distribution (BCD). 

The BCD is skewed to the right for .-\1 < 1, normal for .-\1 = 1 and skewed to 
the left for .-\1 > 1. This reveals immediately the main limitation of the model, 
the only symmetric density within the model is the normal density. 

Like the Johnson system, the relation between the parameters and the mo­
ments is not explicit. For example, for small ay the mean of X will be something 
like (A1µy + 1)1/Ai - A2 but the variance of X is not clear at all. Cox&Reid 
(1986) derived an approximately orthogonal and intuitively more appealing 
parameterization. They write, 

ay 2 

• 

With this parameterization the probability mass we neglect is 1 -

hence A1 vo/v1 must be small. 

Remark 5.7.1 The attraction of this parameterization can be shown by a 
simple Taylor expansion. We obtain 

EX 
0-y 2 

)= 

and 

VAR(X) 
ay 2 

(l+O 
O"y 2 

) 

VO (1 + 0 

VQ ..\10-y 
as 

vr >..1µy + 1 

2 

---,.) 0. 

We see that vo corresponds to the scale while v1 corresponds to the location 
of the distribution. The threshold parameter A2 corresponds to the location as 
well. Often A2 is omitted, but here we also see that without .X2 the model of 
limited use for the present application. D 
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It is a problem to estimate the four parameters involved. About maximum 
likel.ihood estimation Hinkley (1975) remarks that it both involves a great deal 
of calculation and it can be sensitive to outliers. Together with our experience 
from maximum likelihood estimation of the parameters of the EP D ( section 5.4), 
this was reason for us not to try to apply these estimators. For the case ..\2 = 0 
Hinkley ( 1975) derives and discusses estimators of ..X.1. The estimating equations 
become rather complicated if ..X.2 does not necessarily equal O, however. In 
appendix A.4 quantile estimators are derived for a fixed value c = ..\1 vo/v1. 
The estimators are based on the sample median and sample p- and (1 - p)­
quantiles. 

Table 5.7.1 (page 113) gives ratio's f / Jo, with J again r- and ,8-densities, for 
p = 0.9. The ratio's are all surprisingly close to one and, in contrast with fitting 
the normal density (section 5.3 and table 5.3.2)and table 5.3.3), the ratio's f / le 
here are also for other choices of p very close to one. Figures of the densities 
show a striking resemblance between the r- and ,B-densities and the fitted BC­
densities for various choices of p and over a long range of s ( the exception is 
again the ;3(2, 2)-density with its very finite support). If the parameters are 
estimated, the choice of the quantiles is more important. Simulations showed 
that p = 0.90 yields the best results. But from table 5.3.2 and table 5.3.3 it 
is also seen that for 1r = 0.01 with Rosenblatt's estimator much better results 
are obtained. B,ecaus.e estimation of the 0.90-quantile is involved, neither we 
exp·ect an improvement for 1r = 0.10 ( cf. (5.2.5)). 

To conclude this section, the possible application of the BC-transformation 
model is certainly restricted to smooth and skewed densities, but even then 
there is no guarantee that it gives an improvement compared to Rosenblatt's 
estimator. 

5.8 Conclusions 

Having studied several parametric models we come to the following conclusion. 
In estimating a density at a fixed point, larger parametric models certainly give 
improvements for a great variety of densities, compared to the application of 
the normal density. But it turns out that it is very difficult to improve on 
Rosenblatt,s estimator. Perhaps one of the most striking results is that, even 
with observations that are from the parametric family itself, for small sample 
sizes up to 400 Rosenblatt's estimator often gives better results. 

Although we did not explicitly investigate the relation between a test limit 
based on these parametric models and the corresponding consumer loss, in view 
of section 5.2 we conclude that it is very difficult to improve the test limit based 
on Rosenblatt's estimator. 
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5.A Appendix 

5.A.1 Regularity conditions on the parametric estimator 
.,., 

Given a sample X1, ... , Xm from density f0, we assume that an estimator 0 
converges to 0 = (01, ... , 0k) such that, as m ► oo, 

i=I, ... ,k, (5.A.l) 

(5.A.2) 
i,j = 1, ... ,k 

E i1, ... ,ij==l, ... ,k, (5.A.3) 

there exist positive constants cei = C()i ( €) such that 
... 

P(l0i - Bil > €) = O(e-c8im), i = 1, ... , k. 
(5.A.4) 

We write f 8 for the parametric density estimator. For estimators of parame­
ters which are based on sample moments or sample quantiles and for maximum 
likelihood estimators (5.A.1)-(5.A.4) usually hold. 

With a sample Xi, ... , Xm from an unknown density f which does not 
belong to the parametric family, f 8 will usually not converge to f. Therefore 
we write, if f 8 > 0, 

f 
2 

f 2 
21 f Ii, 1 1 1 1 • 

fe Jo Jo Jo le (5.A.5) 
2 

3f fa 2 1 + ... • 

fe !0 10 

Although we assumed that f0(s) > 0, J0(s) is not necessarilly positive. If 
density Jo has finite support and s falls outside the estimated support we obtain 
J8(s) = 0, for example. We cannot determine the probablity of f8(s) being O in 
general. Moreover, it makes no practical difference whether the estimate equals 
0 exactly or whether the estimate is 10-6 • Therefore, we introduce the set 

B= 10 - 01 < € ' 

" with the idea that on the set B, where 0 is close to 0, J0(s) is also close to Je(s). 
We make this idea more precise by the assumption that we can write 

fe 
-1 

Jo 
(5.A.6) 
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where 

PARAMETRIC DENSITY ESTIMATORS 

1 8/e(s) 
fe 80i ' 

1 82 fe(s) 
Jo a0iaai' 

(D1)i and (D2)iJ both finite, 

and where the remainder term Re is such that 

and 
P(JRol > e) = O(e-erm), for some positive constant Cr = Cr(E). 

This assumption now implies that 

f 
2 

E 1 ·lB 
ft, 

I 2 f f fo 1 1 E 1 · lB + 
Jo Jo fe 

f 3f fo 2 

2 E 1 · lB + O(m-2 ) 
Jo Jo !0 

f 2 

1 + O(m-1). 
Jo 

(5.A. 7) 

S .. A.2 Maximum likelihood estimation in the exponential power 
distribution 

The log-likeliho,od function of the exponential power distribution is given by 

L(µ,a,{3;X1, ... ,Xm) 

-m ( ln2+lnu+ln,8+lnr(/3) )-
. 1 a 
i= 

In order to obtain the maximum likelihood estimators of u and f3 we simply 
put the corresponding partial derivatives equal to 0, 

8£ 
8a 

8/3 

= 0 ·; ; => (j = 

: > 

1 m 

m . 1 t= 

(3 

' 

1 m xi - µ I/ (3 xi - µ 
--· In ---

a a 
= 0, 
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d ,B • 

With respect to the parameter µ the things are a little more complicated. 
We have that if µ =I= Xi ( i = 1, ... , m), the second derivative of L is negative 
for /3 < 1, 0 for /3 = 1 and positive for /3 > l. In the case /3 > 1 we have that 

!ill -
µlXi 8µ 

oo, i = 1, ... , m , 

-ex::>, i = 1, ... , m. 

Because Lis continuous in µ, we conclude that if /3 > 1 the maximum likelihood 
estimator ofµ must be equal to one of the observations. In the case {3 < I, 
L is continuously differentiable (with respect to µ). If /3 = 1, the maximum 
likelihood estimator ofµ is equal to the sample median. 

For the three parameters we now have a system of three equations from 
which we iteratively determine the estimates. 

5.A.3 Estimators of the Johnson syste1n 

The density related to the Johnson-system is given by 

fx(x) 
x-e x-e ), i=(B,L,U). 

Slifker&Shapiro (1980) presented the following estimators of the four para.me­
ters. 

Define 

and 

m X(4) X(3), 

n X(2) X(t), 

p X(3) X(2), 

q X(2) + X(3)· 

Then the U-type is characterized by 

mn 

and 

2z 
1 m n 

arccosh - - + -
2 p p 

• 

' 
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8 • arcsinh 

2p 

n m 
p p 

2 n~ -1 
pp 

nm 
-- -1 
pp 

' 

m n 
-+­
p p 

m n ' 2 +-+2 
p p 

n m 
p 

q p p 
2 + m n 

2 -+- -2 
p p 

• 

The B-type is characterized by 
mn 
-2 < 1, 
p 

and 
z 

------::----= ==== ===-, 

For the L-type, 

1 
arccosh -

2 

8 · arcsinh 

p 

q A P 

mn 
p2 1. 

p p 

n 
-

m 

1 + p 
m 

pp -1 
mn 
p p 

-
n m 

pp -1 
mn 

1 + p 
m 

2 pp -1 
mn 

2 

-2 -4 

1 + p 
m 

' 

-4 

' 

Hence, based on sample quantiles we will (almost) never choose the L-type as 
sampled distribution. 
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5.A.4 Estimators of the Box-Cox model 

We will derive approximate but accurate estimating equations, based on quan­
tiles, by fixing the ratio A.1 vo/v1. The p-quantile is given by 

A1 vo . By fixing c = we have that X is not well defined on a part with proba-
v1 

bility mass 1 4>(1/c). For the p-quantile we now write 

' 

as C ► 0. 
With this Taylor expansion we obtain the following (approximate) estimat-

ing equations 

median 

X(p) - median · 
1 1 

-1 

1 
-1 

Al 

These approximations make sense if A1 is not too close to O and for quantiles 
not too far in the tail. By dividing the second by the third equation we obtain a 
quadratic expression for A1 and with .X1 , we also obtain explicit (approximate) 
expressions for vo and A-2. 

with 

A 

B 

C 

• -B- ✓B2 -4AC 
2A 

, 

-2) 
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and 

Q 
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X(p) X(l-p) 

X(p) - med · 

We checked the accuracy of the estimating equations numerically. It appears 
that even with c = 1/3, for any p E [0.10, 0.90] the p-quantile according to the 
parameters derived by the estimating equations practically equals the true p­
quantile. 
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Table 5.3.2. t,-densities, at s (0.99-quantile), estimated in three ways 

Shown are simulated bias E(f J</>8 - f /¢8 ) and the square root of the simulated mean 
squared error E(f /</>9 - 1)2 based on 1000 replications, in comparison with mean and 
square root of the mean squared error corresponding to the Rosenblatt estimator. 
The pararneters of the normal density are both estimated by the maxirn11rn likelihood 
estimators and by means of the sample median in combination with the sample 0.975-
quantile. 

Rosenblatt 

{3(2, 2) 
(s = 1.973) 

.... 
✓MsE m Po Ef/JR 

100 0.000 0.948 0.328 
400 0.000 0.972 0.173 

1600 0.000 1.008 0.102 
6400 0.000 1.026 0.065 

,8(8,32) 
(s = 2.633) 

.... 
✓MSE m Po Ef/JR 

100 0.003 0.851 0.567 
400 0.000 0.853 0.296 

1600 0.000 0.893 0.179 
6400 0.000 0.930 0.111 

P(2, s) 
(s = 2.853) 

.... 
'MSE m Po EJ/JR 

100 0.002 0 .. 869 0.567 
400 0.000 0.865 0.287 

1600 0.000 0.901 0.173 
6400 0.000 0.935 0.106 

Maxim11m likelihood 
estimators of µ, u 

fl</> bias JMSE 
1.305 0.102 0.579 
1.305 0.022 0.369 
1.305 0.005 0.321 
1.305 0.001 0.309 

fl<!> bias ✓MSE 
1.664 0.681 2.554 
1.664 0.133 0.982 
1.664 0.030 0.737 
1.664 0.006 0.681 

f /<I> bias ../MSE 
2.837 2.294 10.60 
2.837 0.343 2.570 
2.837 0.090 2.009 
2.837 0.021 1.879 

Quantiles 
estimators of µ, a 

f /¢0 bias /MSE 
1.671 0.031 0.882 
1.671 0.012 0.726 
1.671 0.002 0.683 
1.671 0.001 0.674 

f /¢6 bias ✓MSE 
0.980 0.259 1.710 
0.980 0.062 0.416 
0.980 0.016 0.178 
0.9,80 0.004 0.087 

f/</>e bias ✓MSE 
1.003 0.314 2.360 
1.003 0.064 0.423 
1.003 0.013 0.178 
1.003 0.003 0.087 
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Table 5.3.3. f-densities, at s (0.99-quantile), estimated in three ways 

Shown a.re simulated bias E(f / ¢,0 - f / ¢0) and the square root of the simulated mean 
sq ..... error E(f /¢8 - 1)2 based on 1000 replications, in comparison with mean and 
square root of the mean squared error corresponding to the Rosenblatt estimator. 
The paran1eters of the normal density are both estimated by the maximum likelihood 
estiniators and by means of the sample median in combination with the sample 0.975-
quantile. 

Rosenblatt 

r(2) 
(s = 3.280) .. 

JMSE rri Po Ef/JR 
100 0.005 0.834 0.579 
400 0.000 0.848 0.321 

1600 . 0.000 0.889 0.190 
6400 0.000 0.927 0.117 

I'(6) 
(s - 2.902) 

,. 

JMSE m Po EJ/fn 
100 0.005 0.859 0.588 
400 0.000 0.860 0.315 ' 

• 

1600 0.000 0.896 0.185 
6400 . 0.000 0.931 0.114 

r(32) 
( s ··- 2.5,82) 

... 
✓MsE m Po Ef/fR 

100 0.003 0.845 0.568 
400 0.000 0.850 0.300 

1600 0.000 0.890 0 .. 182 
6400 0.000 0.928 0.112 

Maxim11m likelihood 
estimators ofµ, u 

f/</J bias ✓MSE 
6.676 25.44 95.27(5) 
6.676 2.741 12.27 
6.676 0.560 6.725 
6.676 0.148 5.935 

fl¢ bias ✓MSE 
2.707 2.762 13.31 
2.707 0.406 2.554 
2.707 0.085 1.888 
2.707 0.022 1.752 

f /</J bias ✓MSE 
1.464 0.493 1.856 
1.464 0.102 0.727 
1.464 0.022 0.528 
1.464 0.006 0.480 

Quantiles 
estimators of µ, u 

f/</>0 bias ✓MSE 
0.977 1.022 9.999 
0.977 0.146 0.753 
0.977 0.028 0.264 
0.977 0.009 0.125 

• 

J/</>e bias ✓MSE 
0.962 0.484 3.586 
0.962 0.096 0.526 
0.962 0.022 0.218 
0.962 0.005 0.106 

f/¢0 bias JMSE 
0.972 0.258 1.755 
0.972 0.061 0.413 
0.972 0.017 0.179 

. 

0.972 0.002 0.090 

Between brackets the number of 'failures', the n11mber of times that either the 
paran1eters could not be determined or that the estimated density was less 
than 10-5 • 
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Table 5.4.1. Estimation of the BP-density at s (0.99-quantile) in two ways 

Table shows simulated mean E(J9 / J8) and the square root of the simulated mean 
squared error E(/6 / f6 - 1)2 (based on 1000 replications), when 0 is estimated using 
sample mean, sample variance and sample kurtosis, in comparison with the mean and 
mean squared error from Rosenblatt 's estimator. 

Rosenblatt 

EPD(¼), (s = 1.913) 
"' ✓MSE m Po Ef/fR 

100 0.000 0.709 0.396 
400 0.000 0.764 0.279 

1600 0.000 0.831 0.193 
6400 0.000 0.889 0.126 

EPD(½), (s = 2.326) 
"' ✓MSE m Po Ef/!R 

100 0.001 0.809 0.522 
400 0.000 0.828 0.285 

1600 0.000 0.878 0.180 
6400 0.000 0.921 0.113 

EPD(l), (s = 2.766) 
... 

✓MSE m Po Ef//R 
100 0.016 0.925 0.625 
400 0.000 0.918 0.385 

1600 0.000 0.924 0.196 
6400. 0.000 0.947 0.116 

EPD(2), (s 3.107) 
.... 

v'MSE m Po EJ/!R 
100 0.068 0.894 0.549 
400 0.001 1.023 0.600 

1600 0.000 0.964 0.243 
6400 0.000 0.966 0.134 

Pa.rametric 
estimator 

Efo/ t- ✓MSE 
4.253 50.05 (130) 
1.551 14.99 (12) 
1.011 0.098 
1.004 0.049 

Efs/ t- ✓MSE 
3.817 42.04 (5) 
1.060 0.215 
1.013 0.094 
1.004 0.045 

Efg/ t-- ✓MSE 
1.864 9.312 
1.065 0.226 
1.017 0.097 
1.004 0.046 

Efe/ Ii· ✓MSE 
1.788 5.241 
1.044 0.286 
0.997 0.109 
0.990 0.059 

Between brackets the nu1nber of 'fail11res': the n11rnber of times the estimates of the 
p&.1·ameters could not be deter·mined or the estimated density was less than 10-5

• 
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Table 5.4.2. Maximum likelihood estimation of the density of the EP D 

The table shows simulated mean and the square root of the simulated n1ean squared 
error of fe/ f; at s (the 0.99 quantile), based on 1000 replications. 

EPD(¼) m 
100 
400 

1600 

1.621 
1.060 
1.010 

JMSE 
7.040 70 
0.253 
0.099 

EP D( ½) _..,.....,,.m_.,__E-=-f e~/..=...Mf --~✓~M~S~E __ 
100 1. 737 4.885 

EPD(I) 

EPD(2) 

400 1.046 0.240 
1600 1.012 0.102 

m Efe/i~ 
100 
400 

1600 

m 
100 
400 

1600 

1.291 
1.047 
1.013 

1.146 
1.037 
1.010 

✓MSE 
1.315 (1) 
0.205 (1) 
0.089 

✓MsE· 
0.595 ,---.18 

' 
0.181 (1) 
0.082 

Between brackets the n11mber of failures, that is the number of times that 
either the estimate,d density is less than 10-5 oi: the estimates could not be 
determined · ; 
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Table 5.4.3. ,8-densities, at s (0.99-quantile), estimated by the normal- and 
BP-density 

Estimation of <pe based on maxim11m likelihood estimators ( derived in the normal fa.rn­
ily), estimation of the BP-density based on sample mean, variance and kurtosis. The 
table gives the simulated bias E(f / f 8 - f / f 8 ) and the square root of the simulated 
mean squared error E(J / f 6 - 1 )2 based on 1000 replications. 

Normal density EPD 

(3(2, 2) m f /<l>e bias ✓MSE !/lo bias ✓MSE 
(s= 1.973) 100 1.305 0.102 0.579 1.341 3.775 93.59 11 ' ' 

400 1.305 0.022 0.369 1.341 0.087 0.580 
1600 1.305 0.005 0.321 1.341 0.019 0.397 
6400 1.305 0.001 0.309 1.341 0.005 0.356 

{3(8, 32) m f!<P bias JMSE fife bias ✓MSE 
(s · 2.633) 100 1.664 0.681 2.554 · 1.527 7.046 60.94 3 ' . 

400 1.664 0.133 0.982 1.527 0.305 1.231 
1600 1.664 0.030 0.737 1.527 0.063 0.651 
6400 1.664 0.006 0.681 1.527 0.016 0.557 

/3(2, 8) m f !<P bias ✓MSE I/lo bias JMSE 
(s= 2.853) 100 2.837 2.294 10.60 2.068 13.427 88.21 11 

• • 

400 · 2 .. 837 0.343 2.570 . 2.068 0.484 2.241 
1600 2.837 0.090 2.009 2.068 0.090 1.226 
6400 2.837 0.021 1.879 2.068 0.022 1.105 

Between brackets the n111nber of 'failures', the n111nber of times that either the para:cn­
eters could not be determined or that the estimated density was less than 10-5 • 
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Table 5.4.4. r-densities, at s (0.99-quantile), estimated by the normal- and 
EP-density 

Estimation of ¢,8 bMed on maximum likelihood estimators ( derived in the normal fam­
ily), estimation of the BP-density based on sample mean, variance and kurtosis. The 
table gives the simulated bias E(/ / f 8 - f / f e) and the square root of the simulated 
mean squared error E(f / / 0 - 1)2 based on 1000 replications. 

Normal density EPD 

r(2) m f/4> bias ✓MSE f/fo bias ✓MSE 
(s= 3.280) 100 6.676 25.44 95.27 5 1.797 11.861 65.49 16 

• • ' • 

400 6.676 2.741 12.27 1.797 0.537 2.106 
1600 · 6.676 0.560 6.725 1.797 0.108 0.968 

' 

6400 6.676 0.148 5.935 1.797 0.029 0.841 

r(6) m fl</> bias ✓MSE fife bias ✓MSE 
(s== 2.902) 100 2.707 2.762 13.31 1.625 12.148 77.94 11 

' 

400 2.707 0.406 2.554 1.625 0.493 1.781 
1600 2.707 0.085 1.888 1.625 0.094 0.795 
6400 2.707 0.022 1.752 1.625 0.024 0.665 

r(a2) m fl</> bias ✓MSE fife bias ✓MSE 
(s= 2.582) 100 1.464 0.493 1.856 1.349 4.605 55.84 :2) 

400 1.464 0.102 . 0.727 1.349 0.213 0.845 
. 

1600 1.464 0.022 0.528 1.349 0.044 0.448 
' ' . ' • 

6400 1.464 0.006 0.480 1.349 0.013 0 .. 375 

Between brackets the n,1mber of 'failures', the number of times that either the param­
eters could not be determined or that the estimated density was less than 1 o-&. 
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Table 5.5.1. Densities from Pearson system, at 0.99-quantile, estimated in 
two ways 

The table shows simulated mean E(f 6 / f 9) and the square root of the simulated mean 
squared error E(fe/ f 8 - 1)2 based on 1000 replications, in comparison with the mean 
and mean squared error from Rosenblatt 's estimator. 

Rosenblatt Pearson 
(/31' 132) 
(0,2.5) 

.... 
JMSE ✓MSE m Po Ef/lR Efe/ t-

100 0.000 0.814 0.434 6.700 88.321 124 
' 

400 0.000 0.842 0.246 1.116 0.567 (1) 
1600 0.000 0.890 0.157 1.016 0.120 

m Po 
~ 

Ef/JR .JMSE Efe/ f.-- ✓MSE 
100 0.001 0.808 0.523 5.143 43.697 123 

' 

400 0.000 0.828 0.285 1.116 0.915 (89) 
1600 0.000 0.878 0.180 1.019 0.130 (101) 

m Po 
A 

Ef/JR ✓MSE E/9/ t-- ✓MSE 
100 0.012 0.862 0.605 5.441 43.698 61 

' 

400 0.000 0.876 0.370 1.431 8.937 {2) 
1600 0.000 0.900 0.201 1.031 0.176 

... 
v'MSE EJ,J I. .. v'MSE 1n Po Efe/!R 

100 0.023 0.872 0.609 9.638 73.251 59 
• ' 

400 0.000 0.905 0.425 1.241 0.919 (6) 
1600 · 0.000 0.913 0.211 1.298 8.421 (5) 

Between brackets the nu111b,er of fail11res, that is the n11mber of times that ei­
ther the estimated density is less than 10-5 or the ostitnates of the para111ete:1s 

could not be dete1·1nined. 
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Table 5.5.1. (Continued) Densities from Pearson system, at 0.99-quantile, 
estimated in two ways 

Rosenblatt Pearson 
(/31, /h) 

' 
" 

' 

(0.5,3) m Po EJ//R \/MSE Efe/ f.A ✓MSE 
100 0.001 0.883 0.538 3.424 30.423 107 

' ' 

400 0.000 0.877 . 0.263 1.083 0.327 (1) 
1600 0.000 0.910 0.159 1.014 0.118 

"' ✓MSE ✓MSE m Po Ef/JR Efe/ iA 
100 0.006 0.859 0.593 5.704 42.318 139 

' 
, 

400 0.000 0.861 0.323 1.079 0.411 (196) 
0.896 

' 

(250) 1600 · 0.000 0.188 1.014 0.123 

,. 
✓MsE· ✓MSE m Po Ef/JR Efe/ J,-

"' 100 0.013 0.866 0.607 2.913 10.446 80 ' . 
400 · 0.000 0.881 · ' . 0.375 1.103 0.415 (13) ' ' 

1600 0.000 0.903 0.201 1.010 0.146 

Between brackets the nurnber of failures, that. is the nurnbe:r .of times that ei­
ther the estimate.cl density is less.than, 10-5 o~ the estimates of the parameters 

' 

could not be determined. · 
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Table 5.5.2. Pearson system applied to fit Contaminated Normal and Expo­
nential Power densities, at their 0.90- a.nd 0.99-quantiles 

Tables gives ratios f / J9 where J9 is such that skewness and kurtosis of fe, from the 
Pearson system, correspond to the skewness and k is off. 

CND(µ2, 0-2, 0.9)1 

1fs 0.10 1f's 0.01 
µ2 0-2 s !/Jo s f /Jo 
0.0 0.8 1.131 1.137 · 2.682 1.469 
0.0 0.6 0.884 0.998 3.332 3.656 

-0.2 0.8 1.306 0.764 2.828 1 .. 160 
-0.2 0.6 0.896 0.958 • 4.078 3 .. 021 

EPD({3) 
1fs 0.10 1rs 0.01 

/3 s f//lJ s !/Jo 
0.25 1.068 0.763 1.291 2.016 

1 0.805 1.273 1.138 2.766 
2 0.525 1.228 0.819 3.107 

1 The contamination parruneter r is equal to 0.9 and the parameters µ1 and 
0-1 are such that the mean is equal to O and variance equal to 1 
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Table 5.6.1. Densities from Johnson-system, at 0.99-quantile, estimated in 
two ways 

The table shows simulated mean E(f o / f 8) and the square root of the simulated mean 
squared error E(J8 / f8 - 1)2 based on 1000 replications, in comparison with the mean 
~d mean squared error from Rosenblatt 's estimator. 

(/31, /h.) 
(0, 2.5), B 

(0, 3), N 

(0, 6), U 

(0, 10), U 

m 
100 
400 

1600 

m 
100 
400 

1600 

m 
100 
400 

1600 

m 
100 
400 

1600 

Rosenblatt 

Po 
0.0001 
0.0000 
0.0000 

Po 
0.0013 
0.0000 
0.0000 

Po 
0.0156 
0.0000 
0.0000. 

Po 
0.0296 
0.0001 
0.0000 

... 
EJ/!R 
0.682 
0.792 
0.869 

,,. 

EJ/!R 
0.808 
0.828 
0.878 

,.. 

Ef/!R 
0.575 
0.790 
0.875 

"" 
Ef/fn 
0.535 
0.808 
0.885 

vMSE 
0.453 
0.273 
0.171 

✓MSE 
0.523 
0.285 
0.180 

MSE 
0.575 
0.388 
0.214 

MSE 
0.587 

. 0.434 
0.224 

z 
0.8 
0.9 
0.9 

z 
0.7 
0.8 
0.8 

z 
0.7 
0.8 
0.8 

z 
0.7 
0.8 
0.8 

Johnson 

Efe/ 1,-
1.312 
1.035 
1.013 

Efe/ ill 
1.126 
1.059 
1.019 

1.093 
1.065 
1.016 

E/9/ fil 
1.096 
1.041 
1.012 

✓MSE 
1.210 61 

' • 

0.397 
0.146 

✓MSE 
0.872(34, 
0.370 
0.151 

JMSE 
0.886 12 

' . 
0.426 
0.175 

✓MSE 
0.947 ,10) 
0.402 
0.179 

Between brackets the n11mber of failures, that is the n1unber of times that the 
estimated density is less than I/10th of the true density. . 
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-Table 5 .. 6.1. {Continued} Densities from Johnson-system, at 0.99-quantile, 
estimated in two ways 

(0.49, 3), B m Po 
100 0.0009 

• 400 0.0000 
1600 0.0000 

(0.49, 4), U m Po 
100 0.0056 
400 0.0000 

1600 o. 

(0.49, 6), U m Po --100 0.0142 
400 . 0 .. · 

1600 0.0000 

Rosenblatt 
" EJ/JR 

0.735 
0.834 
0.900 

.... 
Ef/fR 
0.619 
0.782 
0.868 

... 
Ef/fR 
0.577 
0.788 
0.873 

Johnson 
✓MSE z E/1J/f1J 
0.502 0.8 1.241 
0.272 0.9 1 .. 011 
0.162 0.9 1.013 

v'MSE z Efe/l:· 
0.558 0.7 1.105 
0.343 0.8 1.043 
0.201 0.9 1.000 

,/MSE · z EJ9/ t-__ --=...;;~ 

0.574 0.7 1.146 
0.384 . 0.8 1.042 
0.213 • 0.8 1 .005 

✓MSE 
0.985 48 

' • 

0.279 
0.139 

✓MSE 
0.860 28 
0.368 (1) 
0.147 

✓MSE 
-, 

0.905 20 
0.412 
0.171 

Between brackets the n111nber of failures, that is the n11 r ,1ber of ti1nes that the 
estimated density is less than I/10th of the true density .. 
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Table 5.6.2. Johson system applied to fit Contaminated Normal and Expo­
nential Power densities, at their 0.90- and 0.99-quantiles 

The densities of the Jo .-· n system are such that the F(q,- 1 (ai · z))-quantiles (a = 
( -3, -1, 1, 3)) correspond with those of the . .u; •..-.own density. 

1r = 0.10 1r = 0.01 
z µ2 a2 s f /Jo s J /Jo 

0.7 0.0 0.8 1.131 1.133 2.682 1.529 
0.0 0.6 0.884 1.268 3.332 2.788 

-0.2 0.8 1.306 0.856 2.828 1.095 
-0.2 0.6 0.895 1.092 4.078 2.569 

z µ2 <Y2 s !/Jo s f /fe 
0.8 0.0 0.8 1.131 1.185 2.682 1.268 

0.0 0.6 0.884 1.338 3.332 2.399 
-0.2 0.8 1.306 0.835 2.828 1.250 
-0.2 0.6 0.896 ·, 1.098 4.078 3.075 

EPD(/3) 
7r 0.10 7r 0.01 

z f3 s· f /fe s f /fo 
0.7 0.25 1·.335 1.017 2.016 0.809 

0.50 1.281 1.000 2.326 1.000 
1.00 1.138 1.032 2.766 1.168 
2.00 0.818 1.088 3.107 1.204 

z f3 s I lie s f /fa 
0.8 · 0.25 1.335 1.044 2.016 0.761 

0.50 1.281 1.000 2.326 1.000 
1.00 1.138 0.992 2.766 1.249 
2.00 0.818 1.026 3.107 1.317 

1 
The contamination parameter r is equal to 0.9 and the parameters µ 1 and 

a1 are such that the mean is equal to O and variance equal to I 
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Table 5.7.1. Box-Cox model applied to estimate (3- and r densities, at the 
0.9- and 0.99-quantiles 

The table gives the simulated bias E(f / f 6 - J / f 6 ) and the square root of the simulated 
mean_squared error E(/ / f 8 - 1 )2 , based on 1000 replications. The estimators of the 
parameters are based on the 0.1-, 0.5- and 0.9-quantile with c = ½-

7( 0.10 1r 0.01 
/3(2, 2) m Illa bias ✓MSE fife bias ✓MSE 

100 1.228 0.053 0.386 1.113 0.162 0.636 (28 
400 1.228 0.006 0.304 1.113 0.023 0.192 

1600 1.228 0.002 0.285 1.113 0.009 0.134 

/3(8, 32) m fl</> bias ✓MSE fife bias 'MSE 
100 1.004 0.040 0.185 0.990 1.064 5.300 9 " . 

400 1.004 0.008 0.088 0.990 0.099 0.469 
1600 1.004 0.004 0.042 0.990 0.025 0.171 

/3(2,8) m fife bias ✓MSE fife bias ✓MSE 
100 1.061 0.037 0.202 0.937 0.550 2.784 
400 1.061 0.011 0.109 0.937 0.046 0.296 

1600 1.061 0.001 0.076 0.937 0.013 0.136 

r(2) m Ills bias JMSE fife bias ✓MsE 
100 0.997 0.04·0 0.199 1.008 0.849 3.409 4 

~ . 
400 0.997 0.007 0.083 1.008 0.092 0.441 

1600 0.997 0.002 0.042 1.008 0.027 0.171 

I'{6) m Ills bias JMSE fife bias ✓MSE ... 
100 0.983 0.040 0.179 1.032 1.834 9.718 

~. 
8 

400 0.983 0.008 0.086 1.032 0.104 0.515 
. 

1600 0.983 0.004 0.044 1.032 0.035 0.201 

r(32) m fife bias ✓MSE fife bias ✓MSE 
100 0.987 0.0,34 0.176 1.020 1.850 11.19 9 

' ' 

400 0.987 0.011 0.087 1.020 0.115 0.592 
1600 0.987 0.001 0.044 ' 1.020 0029 0.193 • 

: . : ' ·#\ . ' .: . ' 

Between brackets the number of 'failures': the n11·n·,ber of times the estimates of the 
uld b d .. he ti ..1. ·ty l ""1.. 1·0-5 para111eters co . not ,e . e or t1,· ·. es .. • • ·. · .·· · · . · aeem •. was ess 'w1an ·· · · ·· • 

• 



In this final chapter we consider the situation in which a test limit has to be 
determined when the measurement error does not have a normal distribution. 
In case of a N ( 0, u2 ) distributed measurement error ( chapter 3 and chapter 4) 
the test limit is based on an estimator of the standard deviation a. It will 
turn out that information on the standard deviation of the measurement error 
will not be sufficient to determine an accurate test limit in a more general 
situation. While a can simply be estimated by means of repeated measurements 
on the characteristic, in this chapter we will have to assume that we have 
observations on the measurement error itself. These observations are usually 
obtained by comparison of the standard measurement results for a number of 
products to corresponding precise measurements. Once we have observations 
on the measurement error, the assumption that its mean is equal to O (there is 
no systematic measurement error) is no longer necessary. 

6.1 Preliminaries. 

The measurement error U has mean µ and variance a 2 • We assume that 

U-µ 
V 

' 
(6.1.1) 

with mean O and variance 1, has a continuous density, denoted by g, and we 
suppose that 

(Al) EIVlr < oo, for some r > 6. 

In analogy to the functions 9k ( cf. (3.2.5)) we define 

00 

(v - a)kg(v) dv (k = 0, 1, 2), (6.1.2) 
a 



6.1. Preliminaries. 

where lA denotes the indicator function of the set A. 
Elementary calculations show that 

hk(a) = -k · hk-1(a) (k = 1, 2). 
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(6.1.3) 

The value of the inspected characteristic is denoted by X and its measure--
ment by X = X + U. We assume that X and U are independent. The 
distribution function and density of X are denoted by Fx and fx, respecti .. · .. · . 
Likewise, F x and f g are the distribution function and density, respectively, of 

.... 
X. With respect to the densities fx and f x we assume 

J'g and J';_ are bounded. 
{A2) 

Jg(s + µ) = fx(s) + O(a2), J'g(s + µ) = fx:(s) + O(a), 

where s denotes the specification limit. Further we will tacitly ass11me that 
fx(s) > 0. 

The consumer loss, with test limit t, is defined by 

CL(t) = P(X > s,X + U < t). 
Let 

a=s+µ t>O (6.1.4) 
a 

analogoiJS to (3.2.1). We have the following result for the consumer loss in 
terrr1s of a. 

Le1nma 6.1.1 Assume (Al) and (A2). Then 

as <r > 0. 

Proof: We write 

P(X > s, X + U < t) 
P(X > s, X < s + u(V - a)) 

·00 

{Fx(s + u(v . a)) - Fx(s)}g(v)dv 
a 

ufx(s)(v -
. 12, .·._ .. 2 

.. ·1.. ...... . . .Ji ( ) i ' ,( ,.,,. ·)• -- .. C - :, - / ... -. -· , . -._ 
.. •· 0.·· ex \,,t,' :< L·;i•• . •~ 

a 

.. ·· .. · - ·8 ·•··udv •·•·· ......... ,,,UR.-

er , an .· . use x .. ·•· •. ·. . . ·. .. . · .. • .. ··_ ' . . .. . • .. ·.· . • . . . . . ·.. . ... ·. . . .·. . · ... ·. . . . ; , . 

of (6.1.5). 
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6.2 Consumer loss under incorrect assumption of 
normality 

We will discuss whether a test limit based on the normality assumption of the 
measurement error can be applied in nonnormal situations. To be able to apply 
lemma 6.1.1, we assume that (Al) and (A2) are satisfied. 

Suppose, in order to get a consumer loss equal to , , a test limit t 0 = s - a0 a 
is obtained under the assumption of a normally distributed measurement error 
with meanµ and variance cr2• By lemma 6.1.1 we have in this situation,= 
af ;x(s + µ)g1(ao){l + O(a)}, with g1(a) = E(Y - a) - l{Y>a} with Y rv N(O, 1). 
If U is not normally distributed we have CL(t 0 ) . a f x (s + µ)h1(a 0 ){1 + O(a)} 
and ,·• 

' 

The following examples show that the ratio h1(a)/91(a) can differ much from 
one, even for symmetric and unimodal densities g of V and choices of a between 
0 and 3. 

Example 6.2.1 In this example· it is shown that there are symmetric unimodal 
densities g for which h1(a) is arbitrarily small (for any a> 0). 
Consider densities of the form 

1 1 
be if 0 < !xi < e c+ 

2 € 
• ·. . ' ,• .t . ' ! ,, ' ' ', 

9E(X) 
C if e < lxl < b ' 
0 if lxl > b 

with O < c < 1. 
2 

2b(b2 -

density is well defined if € < 3 < b. 
Now, for every a> e, f~(x - a)ge(x) dx > 0 as b -> CX). 

Example 6.2.2· Consider gf:. from the previous exa.xnple. 
If we take b = 3a (> 3) we have 

lim 
t:10 a 

For a= 

00 1 
(x - a)ge(x) dx = 

· 9a 

91 a 

D 

D 
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Example 6.2.3 In table 6.2.1 below the ratio h1 (a)/ g1 (a) is computed if V has 
an exponential power distribution or a symmetric /3 distribution. The location 
and scale parameter of the distributions are such that the mean is O and the 
variance is equal to 1. For exan1ple, EPD(l/8) stands for the exponential power 
distribution with shape parameter 1/8. (cf. section 5.4). The density of the /3-
distribution is given on page 49. 

Table 6.2.1 Ratio h1(a)/g1(a) for f3 and exponential power distributions. 

a {3(2,2) /3(8, 8) ,8(32,32) EPD(I/8) EPD(I/4) EPD(l) EPD(2) 
0 1.05 1.01 1.00 1.08 1.05 0.88 0.69 
1 0.99 1.00 1.00 0.93 0.96 1.03 0.96 
2 0.08 0.71 0.93 0.01 0.22 2.46 3.88 
3 < 0.01 0.11 0.67 < 0.01 < 0.01 13.3 40.9 

D 

From these three examples we conclude that a test limit based on the as­
sumption of normality of the measurement error indeed can lead to severe vi­
olation of the bound , if normality fails. In view of the intro,duction of this 
chapter we conclude that information on the standard deviation of the 
measurement error only is not sufficient to determine an accurate test limit. 

6.3 Second order unbiased test limits in the 
nonnor111al situation 

By CL(t we denote the probability that a new product is both nonconforming 
and accepted, for a given test limit i. In this section we are looking for a test 
limit tu such that 

to sufficient precision. 

6.3.1 Definition of the test limit 

We introduce 

d=s-t>O , 

an.d define, for k = 0, 1, 2, 

The relation between Tk and AJz (cf. (6 .. 1 .. 2)) is 

k d+µ. 
t:r-hk 

(6.3.1) 

(6.3.3) 
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In terms of the parameter d and the functions rk the consumer loss CL( t) is 
then given by (cf. (6.1.5)) 

P(X > s, X + U < s - d) 
(6.3.4) 

as a • 0. 
Analogous to the functions hk (cf. (6.1.3)) we have {fork = l, 2) 

r~(d) = -k · rk-1 (d). (6.3.5) 

As a first order approximation to tu we define) 

Jg(s+µ) ' 
(6.3.6) 

similar to {3.2.9) and ( 4.2. 7). Note that d1 is uniquely defined since r~ (d) < 0 
(cf. (6.3.5)), with equality holding only if r1(d) = 0. 

In chapter 3 {cf. (3.2.20) and (3.4.5)) and chapter 4 (cf. {4.2.19)) we have 
seen that the test limit is of the form t = s - ( a1 + c + c.u)a. The main term a1 a 
is similar to d1 , the correction c is used to correct for the second order term in 
the expansion of the consumer loss (cf. {6.1.5)) and Cu is used to correct for the 
bias due to esti111ation of unknown parameters. 

The test limit tu which we are looking for in the present situation will then 
be typically of the form 

(6.3.7) 

with the correction terms c and Cu such that (6.3.1) is obtained. 
To compute the test limit we will have to estimate the functions rk. Given 

observations U1, ... , Un from U we define 

fk(d) = -
n .-1 

i= 

(6.3.8) 

6.3.2 Second order unbiased test limits if f x and µ are known 

While the notation in terms of the parameter d and functions rk ( d) is adequate 
to compute the test limit, for the analysis of the consumer loss we prefer the 
notation in terms of the parameter a and the functions hk (a) ( cf. ( 6 .1. 2) and 
(6.1.4)) since in this way the scale parameter a is more visible. This makes it 
more easy to compare the results from this chapter with the results from the 
previous chapters. 

In this section we assume that f x and µ are known. 
Let 

(6.3.9) 
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and, given observations U1, ... , Un from U, let 

with 

i,,-1 
1 

for k = 0, 1, 2. 

, 
uf g(s + µ) 

We assume that a1 is bounded as a, 1 > 0. 

' 

Because of expansions later, we introduce the set 
A 

A= h2(a1) _ h2(a1) 

h~(a1) h1 a1 

for sufficiently small constants c1, c2, €3 > 0. 
We will study the consumer loss on the set A. Since we have that 

ECL(t 

the foil owing lemma shows the error ca.11sed by this restriction. 
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(6.3.10) 

(6.3.11) 

(6.3.12) 

(6.3.13) 

Lemma 6.3.1 Assume (Al} and assume that g(a1) > 0 with a1 as in (6.9.9}. 
A 

Then, with a1 as in (6.3.10) and hk as in (6.9.11}, 

P(Ac) = O(n-r/4 ). 

Proof. The set A is the intersection of the three part:; B1, B2 and B3, with 
B1 = { la1 - a1 I < £1} etc. We have that 

P(Ac) < P(B1) + P(B1 n B2) + P(B1 n Ba). (6.3.14) 

First we consider P(Bf). ,., 

Since h1 is nonincreasing we have 

x < y {=> h1(x) > h1(y). (6.3.15) 
" Consequently, using that h1 (a1) = h1(a1), 

,.. 
a1 > €1 a1 

.,.. 

=> h1(a1 + t:1) h1(a1 + t:1) > h1(a1) h1(a1 + t:1) 

> h~(a1 + e1) > 0 
,. 

a1 < a1 €1 
A. 

=> h1(a1 t:1) h1(a1 €1) < h1(a1) h1(a1 t:1) 

< h~ (a1) < 0. 
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Under (Al), E lh1(a) - h1(a)lr = O(n-r/2). Hence, 

P(lii1 - a1l > e1) = O(n-r12). 
" 

With respect to P(B1 n B~) we have that if la1 - a1 I < E1 then h2(a1 + e1) < 
h2(&1) < h2(a1 - e1). Hence, for some small rJ > 0, 

P lii1 - a1l > t:1, h2(&1) > (1 + 77) h2(a1 - c1) 
..... 

< P h2(a1 - f1) > (1 + rJ) h2(a1 - E1) 

O(n-rf4). 

Analogously, 

p I a 1 - a 1 I < € 1, h2 ( a, 1) < ( 1 - 7]) h2 ( a 1 + € 1) 

< P h2(a1 + £1) < (1 - rJ) h2(a1 + E1) 

O(n-r/4). 

"' Since hi(a) is a sum of bounded r.v.'s, probabilities like 

are.even exponentially small. Rene~ the lemma follows. □ 

Remark 6.3 .. 1 The assumption r > 6 in (Al) is needed to prove asymptotic 
results further in this section. A remainder term in (6.3.13) which is just of 
order n-r/4 for some r > 6', however, does not guarantee that the error we make 
is indeed sufficiently small for finite sample sizes. Since the consumer loss is 
very small, it is supposed to range from 1 ppm to 100 ppm, say, large values of 
n or a large value of r is really needed. , 

If instead of assumption (Al) we impose 

(Al') Eetv2 < oo, for O < t < to fo~ some to > 0, 
. . ' . 

we obtain P(Ac) = 0 (e-in), for some c > 0. The error we make by studying 
• • • 

the consumer loss on the set A only is then exponentially small, just as in 
the situation of a normally distributed measurement error (cf. chapter 3 and 
chapter 4). D 

' "' 
To find the correction term to a1 (actually to d1, of course, cf. (6.3.6) and 

(6.3.10)) in order to obtain a consumer loss which is in expectation equal to~, 
to sufficient precision, we write 

( 6.3.16) 

and we will approximate E( 01 - a1) and E( a1 - a1 ) 2 . 

' 
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From (6.3.15) it follows that 
A 

n(a1 - a1) < y {=} h1(a1 + y/ n) < h1(a1). (6.3.17) 
,.., 

As h1 is a sum of independent random variables, we can approximate its dis-
tribution by means of an Edgeworth expansion. 
We define the following 

h1(a1 + y/ n) 

Hn(Y) 

µn(Y) 
o-~(y) 

Pn(Y) 
h2(a1 + y/ n) - hf (a1 + y/ n) (6.3.18) 

E{(V - (a1 + y/ n)) · l{V>ai+y/vn} -µn(Y)} 3 /o-~(y) 

Zn(Y) 
h1(a1) - µn(Y) 

<Tn(Y) n. 

Le1t11na 6.3.2 With Hn and Zn as in (6.9.18}, unifo1·mly for IYI < n we have 

with 

Proof. Direct application of Theorem 20.6 in Bhattacharya and 
ta.king, in their notation, s = 3 and 

if X < 0 

and 

if X > 0, 

respectively. 

(6.3.19) 

(1976), 

D 

Le1nma 6.3.3 WithH;;,from (6.S.19) andt.1 asin (6.S.12}, under the assump­
tions of lemma 6.3.1, 

0 

0 

as n > oo. 



122 

Proof. For the set A (cf. (6.3.12)) we write A = {B1 n B23}, with B1 
{\ii1 - ail < c1} and B23 = B2 n B3, with B2 and B3 as in the proof of 
lemma 6.3.1. Then 

= E n(a1 - a1)2 · 1B1 (1 - 1B~3 ) 

E n(a1 - a1)2 · l{la1-a11:5~1} 

- E n(a1 - a1)2 · lB1 lB~3 · 

(6.3.20) 

From the proof of lemma 6.3.1 it follows that E 1B1 1B23 = O(n-r/4 ), hence that 

which is o(n-112 ) for r > 6. Likewise we find 

E n(a"' 1 - ) 1 1 = O(n-r /4+1/2). a1 · B1 B~3 

We have that (cf. (6.3.20)) 

Partial integration yields 

f1fo, 
+ 2 y{l - Hn(Y) + Hn(-y)}dy. 

(6.3.21) 

0 

The first term on the right-hand side is sufficiently small. To see this we write 

eyn{l - H~(c1 n) + H~(-t:1 n)} + 
-€~n{Hn(c1 n) - H~(E1 n)} - t:in{Hn(-€1 n) -H~(-c1 n)}. 

Since <Tn(Y) (cf. (6.3.18)) is bounded for IYI < €1 n and for some e E (-€1, c1) 
also {h1(a1) - µn(Y)} n = -yhi (a1 + e), there is some c > 0 such that . 

• 

lzn (y) I > f (YI, (6.3.22) 
. . ' ' . ,• 

• 

for IYI < c1 n. Hence, for some 8 > 0 we have that 

efn{l - H~(c1 n)} O(e-8n) 
ctn H~(-c1 n) O(e-6n). 

By lemma 6.3.2 we also get 
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Now, in the integral of (6.3.21) we may replace Hn by H:,,, because by (6.3.22) 
we have 

e1../n 

-ti vn 1 + €
3 IYl3 

o(n-1/2). 

The approximation to E(o1 - a1) n · l{lo.i-ail:5ei} is proved in the same way.□ 

Lemma 6.3.4 Assume g'(a) is_bounded on la1 - al < e1. With Zn, Pn from 
(6.3.18), uniformly in jy( < t1 n we have, as n > oo 

with 

Zn(Y) 

Pn(Y) 
A1y + A2y2 

/ ___ n + O(lyl3 /n) 

Aa + O(IYI/ n), 

A1 = -h~(a1) b 

A2 

A3 = {h3(a1) - 3h2(a1)h1(a1) + 2hf{a1)} b3 

b = {h2{a1) - hi(a1)}-1/ 2 _ 

Proof. By Taylor expansion we have, uniformly in IYI < t1 n, 

as n > oo. The results follows by noting that h~ = -2h1. 

(6.3.23) 

□ 

Lemma 6.3.5 If y = o(n112 ), then for some A # 0, under the definitions 
(6.9.18} and {6.3.23} 

n:i(y) 

as n ► oo. 

~(A1y) + A2</>(A1y)y2 
/ n -

0 (IYl5 + l)cp(Ay)/n , 

Proof. In view of lemma 6.3.4 Taylor expansion of functions like ~(A1y(l +x)) 
around x = 0 yields the result. D 
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Lemma 6.3.6 Under the assumptions of lemma 6.S.3-lemma 6.3.5 

(6.3.24) 

as n > oo. 

Proof. Combination of lemma 6.3.3-lemma 6.3.5 and direct calculation yields 
result. D 

The result we have obtained, cf. (6.3.16), 

A2 I 1 1 '' -
n I 1 n 
h1 (a1) 1 + hi (a1) -

n hi (a1) ' 
(6.3.25) 

indicates that the correction to a1, to cancel out the first order bias term in the 
consumer loss {cf. (6.1.5)), should be equal to 

h1(a1) 1 + hi(a1) 
n (hi(a1))2 • 

• 

. 

Indeed, in terms of d1 etc. (cf. (6.3.7)), let 

with 

... 
d1 

.... 
C 

. 
' • 

.... 
Cu 

then 

.-..-1 "Y 
r1 

Jg(s + µ) 

1 f'g(s + µ) r2(d1) -
2 /g(s + µ) f 0 (d1) 

.... .... 
f1 (d1) {1 fo(d1)} 

• ... 
r5(d1) n ' 

• 
• 

( 6.3.26) 

• · (6.3.27) 

. , . . . ' . ,, . t ., 

Theorem 6.3.1 Under (Al) and (A2) and the assumption that g(a1 ) > 0 and 
that g'(a) is bounded for la1 - al < e1 , we have with iu as in (6.3.26} 

, ( 6.3.28) 

as n > oo and u,, ➔ 0 such that a1 is bounded. 
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Proof. In terms of the parameter a and the functions hk we have 

" tu = s + µ - aau, 

with (cf. (6.1.2)) 
,.. 

au 

... (a) 
C 

ii,-1 r 
1 afg(s+µ) 

a J'g(s + µ) h2(a1) 
-

2 Jg(s +µ)ii~ (a.1) 

h1 (a1) {1 + hi ( a1)} 
n ( h~ ( a 1 ) ) 2 . 
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We restrict our attention to the set A (cf. (6.3.12)), at the cost of an order 
n-r/4 in the remainder of ECL(iu)-
We have, in view of the proof of lemma 6.1.1 and the definition of the set A 
(cf. (6.3.12)), 

ECL(tu) IA= 

Expansion of the first order term around au = a1 yields 

E lA af ;x(s + µ)h1(au) 

E IA 1 + afg(s + µ) (a1 - a1)h~(a1) + (c<a) + c~a))h~(a1) 

' 

with € between a1 and a1 + c<a) + ~a). 

Writing c(a) and ~a) for the correction terms with a1 and hk instead of 01 and 
h1c, we have that c<a) = 0( a) and cl:') = 0( n-1) as n - • oo, u ► 0, and 

E 1A (a1 - a1)(c(a) + ct0 >) = O(un-1 + n-2) 

E 1A (c<0 >)2 = O(o-2), E 1A(cia))2 = O(n-2) 

E lA (a.1 - a1)2{h1(e) - h1(a1)} = o·(n-1)-

Further, using e.g. results on the oscillation modulus of the empirical process 
{cf. Mason et al. (1983); we omit the ·cal details) 
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Since moreover 

we obtain, using that af g(s + µ)h1(a1) = 1 and h1(a1) = 0(1), 

E IA u f x ( s + µ) h 1 ( ou) 

+ o(')'n-1) + O(,o-2 ) + 0(1 n-rf4 ). 

Finally, because 

we get the result. D 

6.3.3 Simulation results 

To demonstrate theorem 6.3.1 for finite sample sizes, some simulations have 
been carried out. Based on 10000 replications, the average and standard devi-

,., 
ation of the consumer loss obtained with test limit tu (cf. (6.3.26)) is computed 
if observations on the measurement error are from a normal or a r-distribution. 
In order to see in what way the bias correction Cu (cf. (6.3.27)) contributes, we 
also computed the 'uncorrected' test limit, 

• (6.3.29) 

The results are summarized in the two tables on the next pages. 
From these tables we conclude that, for the situations considered, the first 

order approximation to the bias of the consumer loss when using i2 (cf. (6.3.29), 
(6.1.5) and (6.3.25)) is quite accurate, and that the bias correction works well 
if ro{d1) = P(U < -d1) is not too small. For example, in table 6.3.1 with 

,, ' ! '~ 

1 = 20 ppm, P(X > s) = 0.15 and o- = 0.10, d1 is such that P(U <-di) = 
"' 0.003. Since by definition fo(d1) > n-1 , this probability and, consequently, the 

correction term Cu cannot be accurately estimated if n = 25. Vice versa, a test 
limit based on only one observation of the measurement error is not reliable. 
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Table 6.3.1 Test limit iu with a N(O, o-2 )-distributed measurement error 

The table shows simulated mean and standard deviation (between brackets) of CL( i2) 
and of CL(tu), based on 10000 replications. Moreover the first order approximation 
to the mean of CL(i2 ) (following from (6.3.25)) is shown. The values of I are in ppm, 
1r denotes P(X > s), the probability that a product is nonconforming, and n is the 
n11mber of observations on the measurement error. 
The characteristic is standard normally distributed. 

theory 

(7, a, 1r) = (100, 0.01, 0.01), 

n ECL(i2) ---40 102.7 
80 101.4 

500 100.2 
2000 100.1 

(7, a, 1r) = {100, 0.10, 0.01), 

n EGL(~) 
--4~0- 127.9 

80 113.9 
500 102.2 

2000 100.6 

('Y, a, n) ( 20, 0.01, 0 .15), 

n ECL(i2) 
40 41.3 
80 30.6 

500 21.7 
2000 20.4 

(~, a, 1r) = (20, 0.10, 0.15), 

n ECL(t2) ---40 194.9 
80 107.4 

5.00 34.0 
2000 23.5 

simulated 

ro(d1) = 0.481 

ECL(t2) 
102.6(23.8 
101.4(16.6) 
100.2(6.7) 
100.1(3.3) 

ro(d1) = 0.082 

EGL(½) 
123.8(73.8) 
112.2{ 49.4) 
101.7(19.0) 
100.3(9.3) 

ro(d1) ..... 0.023 

EGL(½) 
43.6(41~0)'" 
30.9(24.4) 
21.6(8.2) 
20.4(4.0) 

ro(d1} = 0.003 

ECL(t2) 
243.4 ·211.3 • • 
121.9(136.5) 
33.8(28.8) 
23.4(12.1) 

100.0 23.8) 
100.0(16.6) 
100.0(6.7) 
100.0(3.3) 

100.5(70.2) 
99.2(48.2) 
99.5(18.9) 
99.8(9.3) 

ECL(tu) 
32.4(36.8) 
23.5(22.6) 
20.0(8.0) 
20.0(3.9) 

226.2 256.4 
• 

105.7(123.8} 
25.5(26.6) 
20.4(11.8} 
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..... 

Table 6.3.2 Test limit tu with a r(8)-distributed measurement error 

This table s11mmarizes the same simulation as in table 6.3.1, however with a measure­
ment error which has a r-distribution with shape parameter 8 and with the location 
and scale parameter such that the mean is O and the variance a 2 • 

theory 

(1 , a, 1r) = (100, 0.01, 0.01), 

simulated 

• 

n ECL(t2) 
-~40~ 102.2 

80 101.1 
500 100.2 

2000 100.0 

ro(d1) = 0.533 

ECL(t2) 
. 102.1(20.7) 
101.2(14.6) 
100.1{5.7) 
100.0(2.9) 

(,, a, 1r) = {100, 0.10, 0.01), ro(d1) = 0.120 

ECL(i2') n ECL(t2) 
-~40- 118.2 

80 109.1 
500 101.5 

2000 100.4 

117.2(60.6) 
108.0(39.8) 
101.6(15.3) 
100.3(7.6) 

(,, a, 1r) = (20, 0.01, 0.15), ro(d1) = 0.040 

n ECL(t2) EGL(i2) --
40 32.1 33.3 29.4 

• 

80 26.0 26.4(17.4) 
500 21.0 20.9(5.9) 

2000 20.2 20.2(2.9) 

. 

(,, a, rr) (20, 0.10, 0.15), ro(d1) 0.006 

n EGL(t2) EGL(t2) 
• 

144.5(174.5) 40 98.7 
80 59.3 70.1 (77.5) 

500 26.3 26.3(18.0) 
2000 21.6 21.5(7.6) , 

• 

6.3.4 Generalization: estimation of µ 

. ECL(tu) 
99.9(20.5) . 

100.1 (14.6) 
99.9(5.7) 

100.0(2.9) 

ECL(iu) 
100.2(57.3) 

99.2(38.4) 
100.2(15.2) 
99.9(7.6) 

ECL(iu) 
24.1 26.4 

' 

21.0(16.2) 
20.0(5.8) 
20.0(2.9) 

ECL(tu) 
127.2(160.6) 

55.1 (68.2) 
20.9(16.9) 
20.0(7.5) 

• 

. ' "' ' / ,, . 
• 

In this section we show that if EIVlr < oo for r > 8 (cf. assumption (Al)), no 
"' additional correction term is needed to the test limit tu (cf. (6.3.26)} when the 

mean of the measurement error has to estimated. 
Let the estimator of µ be the sample mean, 

(6.3.30) 
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and let 

r 
ufg(s+µ) · 

(6.3.31) 

We introduce the set Aµ. similar to the set A (cf. (6.3.12)), defined by 

1 + h~(a1) 
(6.3.32) 

-
(h~ (a1))2 

for small constants e1 , e2, e3, e4 > 0. In the same way as in the proof of 
lemma 6.3.1 it is easily shown that also P(A~) = O(n-r/4 ). (Note that un-
der (Al), P(lfi - µI > e) = O(n-rf2 ), fore> 0.) 

" We now have the following relation between a1 and h1 (cf. 6.3.17)). 

ass11ming that Jg(s + fi,) > 0. 
Since f'g is bounded we have that 

u/g(s + fi,) 
'Y 1 -(j],-

ufg(s+µ) 

- -with W = (fi, - µ)f(fl) for some bounded function f. 
Consequently, 

+w2, 

(6.3.33) 

{6.3.34) 

f'-(s+µ)_ 2 

gs+µ 

Since, under (Al), P(W2 > eo u2n-1l 2 ) = O(n-r/4 ), for some eo > 0, we get 
(cf. ( 6.3.34)) 

< P{(a.1 - 01) n < y) < (6.3.35) 

f'- (s + µ) _ 2 1 2 

+ O(n-r/4) 



130 

From lemma 6.3.2 and the proof of lemma 6.3.3 it is seen that O(n-r/4 ) is 
sufficiently small if O(n-r/4+3/ 2) = o(n- 112 ), hence if r > 8. 

With the definition of h1 (cf. (6.3.11)) and fi, (cf. (6.3.30)) it is seen that 
"' 
h1(a) + (µ- µ) is a sum of independent r.v.'s. Consequently, the probabilities 
in (6.3.35) can be approximated by means of an Edgeworth expansion, in a 
similar way as in section 6.3.2. 

Let 

Zn(Y) 

1 n 

n . 1 
i= 

(¼ - a)· l{¼>a} -
Jg(s + µ) 
gs+µ 

EK(a1 + y/n112 ) = h1(a1 + y/n112 ) 

nVARK(a1 + y/n112 ) 

h2(a1 + y/n112 ) - hj(a1 + y/n112 ) 

- 2o-E¼(¼ -
f'g(s + µ) 

+ o-2hf (a1) 
Jg(s+µ) ' 

h1(a1) - µn(Y) -----.n. 
an(Y) 

By Taylor expansion we get (cf. lemma 6.3.4)t 

uniformly in IYI < c1 n (€1 as in (6.3.32)), with 

Ao 
I 3fg(S + µ) 

and b, A1 and A2 as in lemma 6.3.4. , 

(6.3.36) 

Carrying out steps analogous to those leading to lemma 6.3.5 and lemma 6.3.6, 
both for the left-hand side of (6.3.35) and the right-hand side, we obtain (the 
term ~oa2n-1!2 in the right-hand side only gives an additional tetrri of ordet·a2 

in ( 6.3.37)) · , , · ' 
• 

A2 1 . . -1/2 2 
. . ' 

1 +a o n 
1 -1/2 2 

(6.3.37) 

Following the lines of the proof of theorem 6.3.1, we find that (6.3.37) leads 
to additional terms of order -yun-1 and ,ya-2 in the expectation of the consumer 
loss, compared to the case in which µ is known. They contribute only to the 
remainder. 
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Simulations as the ones presented in table 6.3.1 and 6.3.2 but with estimation 
ofµ, indeed yield results which are practically the same as the results obtained 
when µ is known. Numerical examples are therefore omitted. 

6.3.5 Generalization: estimation off x but µ known 
-When the density of X is estimated, an additional correction term is needed 

to the test limit which has been derived in section 6.3.2. In chapter 3 for 
example, we have seen that the correction term Cu (cf (3.4.12)) contains a part 
which corrects for the bias due to estimation of <1 and a part which corrects for 
estimation of the parameters µx = EX, UJ( = VAR.X. Likewise, in chapter 4 
the correction term Cu. (cf. (4.2.21)) contains a part which corrects for estimation 
of u (which is equal to that in chapter 3) and a part which corrects for estimation 
of the density. 

It will be seen by a simple heuristic argument that also in the present situa­
tion there is no mix-up of errors. As a consequence it is not difficult to derive a 
correction term which corrects for the bias due to the estimation of the density 
for the present situation. However, a rigorous proof of a theorem, like theo­
rem 3.4.1 or theorem 4.2.1, which gives second order unbiasedness, requires a 
great deal of technicalities and a large amount of space. Therefore we have 
chosen not to pursue. 

To derive the additional correction term, let ]g(s + µ) be the estimator of 
f .x(s +µ)and define 

b = , b 
ufg(s+µ)' 

'Y 
A ' 

af g(s + µ) 

and 

a1 = hi"1(b), a1 = h11 (b). 
With test limit £1 = s+µ-a. 1u the consumer loss is approxi1nated by (cf .. (6.1.5)) 

CL(t1) = ufg(s + µ)h1(a1), 

and it,s relative error by 

h1{a1) - h1(a1) 

h1(a1) 

h1(a1) h1(a1) 

The first term in (6 .. 3.38) is equal to 

h1(a1) = ]g(s + µ) 

Jg(s + µ,) Jg(s + µ) 

• {6.3.38} 

2 
(6.3.39) 

+ ... ' 
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which is very much in correspondence with (4.1.4). 
For the second term in (6.3.38) we write 

h1 (a1) - h1 (a1) 

h1 ii-; 1(b) 

"' 
withe between band b. 

,. 
-b 

" -b+(b-b) 
h; h11 (e) 

h1 h11
(~) 

-1 
' 

( 6.3.40) 

• 

The first term in (6.3.40) is precisely the one we have studied in section 6.3.2 
(cf. (6.3.16)). The two factors in the last term in (6.3.40) are not independent, 
but the second factor will not vary much for small changes of~- It is clear that 
the expectation of this term will be of smaller order than both E(b - b) and 

A 1 
E h1 h1 (b) - b . 

Combination of (6.3.38) - (6.3.40) then gives approximately 

b-b h1 h11(b) -b 
• 

So, the additional correction t.erm we a.re looking for should cancel 
• 

to sufficient precision. 
To estimate the density ( and its derivative) we assume that we have inde­

pendent observations X 1, ... , Xm from X, which are also independent of the 
observations U1, .. ~, Un from the measurement error. If Rosenblatt's estima­
tors, as defined in section 4.2.2, are applied, it follows from section 4.2.4 that 
the additional correction should equal 

1 _ 1 
2mhf g(s + µ) . m · . 

" 

The test limit then becomes (cf. (6.3.26)) 
" ..... 

tu= s - (d1 + c + eu), (6.3.41) 

with 

(6.3.42) 

1 1 
... • 

2mhfg(s + µ) m 
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Also in the present situation Rosenblatt's estimators are applied with the 
bandwidths as in section 4.2.6. 

We have carried out several simulations with this test limit. The results for 
choices of,, a and 1r = P(X > s) as in the first three situations of table 6.3.1 
and table 6.3.2 are presented in table 6.3.3 and table 6.3.4 below. 

Table 6 .. 3.3 Test limit iu with a N(O, o-2 )-distributed measurement error 

The table shows simulated mean and standard deviation (between brackets) of CL(tu) 
{with iu from (6.3.41}) based on 10000 replications. To estimate the density and its 
derivative Rosenblatt>s estimators are applied., with bandwidths as in section 4.2.6. 
The n1.11nber of observations to estimate the density is denoted by m. In the table, nr 
denotes the n111nber of replications for which the test limit could not be determined 
( caused by a very small estimate of the density). The values of "I are in ppm, 1r denotes 
P(X > s), the probability that a product is nonconforming, and n is the n1.1rnber of 
observations on the measurement error. 
The characteristic is standard normally distributed. 

(1 , a, 11") = (100, 0.01, 0.01), 

n 
40 
80 

500 
2000 

(--y, a, 11") 

n 
40 
80 

500 
2000 

(,, O', ,r) 

n 
40 
80 

500 
2000 

(m = 100) 
ECL(tu) nr 

67.0(28.9) 43 
67.0(25.4) 33 
66.8(21.9) 34 
66.4(21.4) 21 

(100, 0.10, 0.01), 

(m 100) 
ECL(iu) nr 

74.6(64.9) 23 
69.7(47.8) 32 
67.9(30.4) 25 
68.2(27 .. 0) 25 

(20, 0.01, 0.15), 

(m 100) 
ECL(tu) nr 

32.0(37.4) 
' ' -

23.9(23.3) -
19.9(10.2) -
19.8(7.5) -

ro(d1) = 0.481 

(m = 400) 
ECL(tu) nr 

90.5(39. 7) 37 
90.1(36.2} 27 
90.4(33.5) 5 
89. 7(32.3) 4 

ro(d1) 0.082 

(m 400) 
ECL(tu) nr 

96.9(81.7) 4 
92.4(63.6) 3 
93.1(50.7) 2 
92.7(48.5) 3 

ro(d1) 0.023 

(m 400) 
ECL(tu) nr 

32.5(37:6) -
24.1(23.5) -
20.1(9.3) -
20.0(6.1) -

(m 1600) 
EGL(tu) nr 

-- 98.0{36. 7) 1 ,. 
98.2(33.6) 1 
97.8(29.8) 1 
98.1(29.9) -

(m 1600) 
EGL(tu) nr 
99.6(77.5) -
97.9(58.9) -
97.5(39.1) -
97.6(34.5) -

(m 1600) 
ECL(tu) nr 
32~7(37.1) -
24.0(23.0) -
20.2(8.8) -
20.0(5.2) -
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Table 6.3.4 Test limit iu with a r(8)-distributed measurement error 

This table s111nmarizes the same simulation as in table 6.3.3, however with a measure­
ment error which has a r-distribution with shape parameter 8 and with the location 
and sea.le parameter such that the mean is O and the variance a2

• 

(,, u, 1r) = (100, 0.01, 0.01), 

n 
40 
80 

500 
2000 

(,, O', 1r) 

n 
40 
80 

500 
2000 

(,, a, n) 

n 
40 
80 

500 
2000 

(m = 100) 
ECL(tu) nr 

,, 

66.0(26.5) 35 
66.1(23.7) 19 
66.0(20.9) 24 
65. 7(20.4) 27 

(100, 0.10, 0.01 ), 

(m 100) 
ECL(tu) nr 

70.6(53.-4) .. 26 
68.2(39.4) 34 
68.1(27.3) 24 
68.4(25.4) 40 

(20, 0.01, 0.15), 

(m 100) 
ECL(tu) nr 

24.1(26.8) -
21.0(17.5) -
19.8(8.4) -
19.7(6.9) -

• 

ro(d1) = 0.533 

(m = 400) 
ECL(tu) nr 

90.0(37.5) 28 
90.4(35.0) 1.6 , 
89.8(32.8) 4 
90.3(32.1) 4 

ro(d1) 0.120 

(m 400) 
ECL(iu) nr 

94.6(70.2) 3 
93.7(58.8) 9 
93.5( 45.9) 7 
92.7(42.3) 3 

ro(d1) 0.040 

(m 400) 
ECL(iu.) nr 

24.4(26.9) -
21.2(17.2) -
19.9(7.3) -
20.0(5.5) -

(m = 1600) 
ECL(tu.) nr 
97.8(34.9) 1 
97.6(32.5) 1 
98.0(29.9) -
97 .8{28. 7) 1 

(m 1600) 
ECL(tu) nr 
99.5(65.3) -
99.4(51.1) -
99.4(35.8) -
99.2(33.6) -

(m 1600) 
ECL(tu) nr 
24.5(27.1) -
21.0(16.6) -
20.1(6.6) -
20.0( 4.3) -

The results once more indicate that 100 observations are not enough if the 
density has to be estimated at a point in the tail of; the distribution ( cf. sec­
tion 4.2.7 and chapter 5). We conclude that the average consuI;Iler losses .are 
quite close to, if a sufficient large number of observations is available. 

6.3.6 Generalization: estimation off x and µ 

In section 6.3.4 we have proved that there is no loss of precision, in terms of the 
,.. 

asymptotic bias of the consumer loss, if the test limit tu from section 6.3.2 is 
based on an estimator of µ instead of on the true value. In the previous section 
we have seen that when the density has to be estimated but µ · is known, it 
suffices to add essentially the same correction term to the test limit as applied 
in chapter 4. 
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While we handled the problems in the latter case by a simple heuristic argu­
ment and with theory from chapter 4, this argument is not entirely convincing 
in the more general case where everything has to be estimated. To begin with, 

A A 

we have to consider E/g(s + µ), which is complicated by the fact that f x is 
,., 

not differentiable if f x is Rosenblatt's estimator. But perhaps more difficult it 
is to determine the expectation of the remainder term in (6.3.40} if also µ is 
estimated. We then have to consider 

__,,;;..,;. ___ - 1 
Jg(s + µ) 

h; ii1 1Ce) 
ii; hi"1 (e) 

where { now also depends on fl. 

- 1 ' 

-On the other hand, when the number of X-observations m is large, the 
A ,._ 

estimators f x and f 'g are close to f x and f 'x, respectively, and we can use 
the results of section 6.3.4, the situation where f x and J'g are known, but µ is 
estimated. In this section we will study the number of observations for which 
the estimators of f x. and J'g may be identified with their true values. 

"' Let tu denote the test limit as in (6.3.26), however with the estimatorµ, as 
in (6.3.30), instead of the parameter µ. In terms of the functions hk and the 
parameter a the test li1nit is then defined by 

with 

A 

tu = s + µ - (aa1 + c + eu), 

.,.. 
C 

A 

Cu. 

h-1 r 
1 afg(s+fl) 

a2 f'x_(s + fi.) h2(a.1) 
2 fx(s+f1.)ho(a1) 

o- ii1(a.1) {1 - ho(a.1)} 
n ~(a1) . 

By i~ we denote the test liu1it with estimators ofµ, Ix and J'g-

with 

ii,-1 
1 

'Y 
"' 

ufg(s + µ) 
A 

o-2 J'g(s + fi,) h2(ai) 
2 j x (s + fi,) ho(ai) 

o-h1(ai) {1 . ho(ai)} 
n ~(ai) · 

(6.3.43) 

(6.3.44) 

(6.3.45) 

(6.3.46) 
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We will study 

El CL(£:) - CL(iu)I 

for the situation in which£; is computed with Rosenblatt's estimators off x 
-

and f'- ( cf. section 4.2.2). The bandwidths h and h are not yet fixed. They 
will b; determined when it has become clear in what way the bandwidths affect 

I CL(i!) - CL(tu)I- - - - ' '' 
We assume that we have observations X1, ... , Xm from X and observations 

U1, ... , Un from the measurement error, which are all mutually independent. It 
will be assumed throughout that f x is bounded, that f x ( s + µ) > 0 and that 
f 'g is bounded in a neighborhood ,of s + µ. 

' 

First we consider the difference between u.1 and ai. 

Lemma 6.3.7 Assume (Al) and assume that g(a1) > 0, with a 1 as in (6.3.9). 
In the notation as above, there exists a constant C 1 > 0 such that 

' ' ' " 
liii-ii1I <C11/g(s+µ)-Jg(s+µ)I, (6.3.47) 

on a set D with P(Dc) = O(n-r/2 ). 

Proof. By definition 

' "' . 
o-Jg(s + fl) 

" 

The first requirement for the set Dis that ii1 and iii are in a neighborhood of 
a1. and that 

lh; (di+ €1)1 = ho(ai + c1) > e2, (6.3.48) 
"' for sufficiently small constants e1, c2 > 0 (Note that ho is nonincreasing) .. As 

P(V > a1 + e1) = ho(a1 + t1) > 0, the set where iii is in a neighborhood of a 1 
and (6.3.48) does not hold has exponentially small probability. The complement 
of the set where iii and ii1 are in a neighborhood of a1 has probability of order 
n-r/2 • (S•ee the proof of lemma 6.3.1). 

Hence, for any 8 E (0, t:1), 
~ A 

h1 (ai - 8) - h1 (at) > c28 
' 
' ' ' 

(6.3.49) 
and 

(6.3.50) 
If ' 

" 
Jg(s + µ) Jg(s + µ) 

µ)I > e3, for some tg > 0 and (6.3.47) follows from the boundedness of liii - &11 
on D. □ 
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Lemma 6.3.8 Under the assumptions of lemma 6.9. 7 there exists a constant 
C2 > 0 such that 

l(c* + c~) - (c + c.u)I 

< C2 (o-2 + an- 1) 
"" If X ( s + µ) - f X ( s + µ) I + I Jg ( s + µ) - Jg ( s + µ) I 

,._ 

+ sup lho(x) - ho(x) I , 
X 

~ ~ ~ ~ 

Proof. Estimation of lh2(ai) - h2(a1)1 and lh1{ai)-h1(a1)l is straightforward 
usi!lg that 15:i-ail is bounded (see the proof of lemma 6.3.7). Direct estimation 
of ho(ai) - ho(a.1) is difficult and therefore replaced by 

lho(ai) - ho(a1)\ 
< lho(ai) - ho(ai)l + lho(ai) - ho(il1)I + lho(d1) - ho(&1)I 

.... 
< 2 sup lho(x) - ho(x)I + lho(iii) - ho(a1)I 

X 
.... 

< 2sup lho(x) - ho(x)I + C3la,i - &11-
x 

The quantity )ai - a1)is estimated by application of lemma 6.3.7. Hence the 
lemma follows.. D 

If a1 > a.i, we have 

~ 

a1 

{Fx(s + u(v - ai) + c* + c~) -Fx(s)}g(v)dv + (6.3.51) 
A. 
al 

CX) 

{Fx(s + a(v - o.i) + c + eu) - Fx(s + u(v - 6.1) + c + eu)}g(v)dv. 
A 

a1 

Except for a set with probability of order n-r/2 we have, for some constant 

C4 > 0, that 

with E sup h2(x) . < oo and N(a1) a small neighborhood of a1. 

xEN(a1} • 
Since fx is bounded, the first term on the right-hand side of (6.3.51) can be 

estimated by 
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while the latter term is at most 

Cs{ulai - ail+ l(c + eu) - (c* + c~)l}­

A similar result holds if ai > a1. 

Lemma 6.3.9 Under the assumptions of lemma 6.3. 7 

El}g(z) -Jg(z)I 
" Elfg(z) Jg(z)I 

O((mh)- 1/ 2 + h2 ) 

O((mh3)-112 + li2), 

as m ) oo and h, h ➔ 0, for z in a neighborhood of s + µ. 

El]g(z) - -Jg(z)I 

< 

O((mh)-112 + h2 )-

... 
Similarly for J'g(z) - f g(z). 

We have obtained 

EI CL(t) - CL(iu.)I < 06 a E l']g(s +'µ) - f x(s + µ)( + 
06 E t(c + eu) - (c* + c:)I + O(n-rl2

). 

With the choice 

h rv m-1/5, h (",J m-111 

we get 

□ 

EI CL(t) - CL(tu.)I < 01 om-2/ 5 + C1 (ai + an-1){m-2!7 + n-1
/

2
} 

+ O(n-rf2). 

If m is such that m / n512 > oo then 

E I CL(~) - CL(tu.)1 

which disappears in the remainder term which was: found in theorem 6.3.1. We 
conclude that, in general, if mis quite large compared to n (which in practice 
will frequently the case), the effect of estimating f x can indeed be neglected. 

... .,., 
Remark 6.3.2 We studied EI CL(t!) · CL(tu)I, while in case of unbiased esti-
mation the quantity fE { CL(t~)- CL(iu) }I actually is of interest. It is therefore 
to be expected that in practice smaller samples sizes will suffice. D 
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6.4 Test limits for which , is violated with small 
probability 

It is evident from section 6.3.2 that the consumer loss is asymptotically normal 
if f x is known. Under the heuristic approach in section 6.3.5 asymptotic nor­
mality still holds if f x is estimated. This enables us to find a correction term 
for which the consumer loss exceeds , with small probability only. 

Let 
.... 
ti 

with 

1,,-1 
1 

i 
" , 

o-Jg(s+µ) 

the correction term c as in ( 6 .3.42) and Ci such that 

P(CL(4) > 1 ) < a 

is obtained. to sufficient precision, for some choice of a. 

(6.4.1) 

(6.4.2) 

From (6.3.16) and (6.3.38) in combination with (6.3.39) and (6.3.40) it fol­
lows that 

CL(ti) -

::d 1,,-1 ' h-1 , h~ (a1) 
afg(s + µ,) h1 (a1) 1 uf g(s + µ) 1 

.... 
}g(s + µ) 

2 
h1(a1) Jg(s + µ) 

1 + 1 
fx(s + µ) .fx(s+µ) 

en Rosenblatt's estimator is applied to estimate the density (section 4 .. 2.2), 
it follows from section 4.3 that the right-hand side is asymptotically nor1nal 
AN(µcL, uiL) with (neglecting terms of order n-1, h2 and (mh)-1 in µcL) 

h1 (a1) 
µcL Ci h1 (a1) 

and (cf. {6.3.24) a.nd (6.3.23)) 

• " • A 3 t- 1- h -l/S d find With the same a.rg11ments as 1n section'¼ .. we CIJ.\.e · .. · rv m an we · · 
that Ci should be taken 

Ci 
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where u0 = ~-1(1 - a). 
The test limit thus becomes 

(6.4.3) 

with 

.,. 
c= (6.4.4) 

The discussion on the bandwidth hat the end of section 4.3 applies here as well. 
For computation of the test limit with moderate values of m the bandwidth 
h derived in section 4.2.6. may still be applied. For larger values of m the -
bandwidth should be taken somewhat larger. The bandwidth h to estimate 
f'g(s + µ) should be taken as in section 4.2.6. 

6.5 An application in semiconductor ind11stry 

As an example of the theory of this chapter we consider a television color de­
coder TDA9162/Nl manufactured at Philips' consumer IC plant at Nijmegen. 
From several characteristics specified we choose one that should be below s = 

. . 

670.0. For n = 44 products both a standard measurement and a precise lab-
, 

oratory measurement is carried out. From production m = 2732 observations 
are available. Two histogra1r1s summarize tl}.e .data. 

Figure 6.5.1 Histogram for production data 
• 
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Figure 6.5.2 Histogram for the measurement error 
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The histograms indicate that the assumption of normality for neither the 
characteristic nor the measurement error is justified. A plot (not presented 
here) of the values of Xi against the values of Ui (i = 1, ... , n) shows that it is 
reasonable to assume that the measurement error and the insp,ected character­
istic are independent. 

The estimated mean of the measurement error is equal to 1.38, therefore 
we estimate the density ( and its derivative) at s + µ = 671.38. To apply 
Rosenblatt's estimators (section 4.2.4) we determine the bandwidths first, as 
in section 4.2.6. The sample mean and sample standard deviation of the -
X-observations are 653.6 and 10.02, respectively, leading to h = 0.666 and - .... ,.. 
h = 2.584. We find Jg(s + µ) = 0.0096 and J'g(s + µ) = -0.002. 

For the computation of the test limit itself we refer to section 2.4. Suppose 
the bound on the consumer loss is 'Y = 100 ppm. Then in case of unbiased 
estimation we find iu, = 661.92. (cf. (6.3.41)). As a consequence of section 6.3.6, 
the part of the correction Cu (cf. (6.3.42)) which corrects for the estimation of 
f x is omitted. (Its value is 0 .. 006.) IT the consumer loss should exceed "Y with 
probability a= 0.10 only, we find ii= 661.70 (cf. {6.4.3)). (Again we omit the 
part of the correction te1m with min the denominator.) 

About the reliability of the test limit we remark the following. The simu­
lation results (section 6.3.3) show that the accuracy of the test limit depends 
on the value of r 0 (d1) = P(U < -d1). In the present situation there a.re two 
observations to the left of -d1 · -7.98. The simulation results indicate that 
two observations in expectation to the left of the true value of -di is sufficient. 
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