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PREFACE

This monograph is devoted to the mathematical analysis of polling systems.
Over the years, polling systems have found a wide range of applications in the
performance evaluation of communication systems, computer networks, and
manufacturing systems. This monograph provides a generalization and unifi-
cation of the exact distributional results for the standard polling model, studies
several optimization issues, and contains a detailed analysis of various exten-
sions. One of the main extensions concerns multiple-server polling systems,
which have received remarkably little attention in the literature so far.

The results presented in this monograph were obtained in the course of my
PhD research at the Center for Mathematics & Computer Science (CWI) in
Amsterdam. I am grateful to the Netherlands Organization for the Mathemat-
ics of Operations Research (LNMB) for supporting my research project.
Many people have contributed to this monograph in many ways. It has been a
great pleasure and privilege to have Onno Boxma as my advisor. I have strongly
benefited from his expertise and have appreciated his constant encouragement.
My joint research with Marco Combé, Hanoch Levy, and Rob van der Mei has
also been enjoyable and rewarding.

I am indebted to Ger Koole, Jacques Resing, and Rob van den Berg for their
helpful comments. Finally, my thanks go to Adri Steenbeek, Peter de Waal,
and Lieke van den Eersten-Schultze for their technical assistance.

Murray Hill, August 1996

Sem Borst






iii

CONTENTS

Preface i
1 Introduction 1
1.1 Background and motivation . . . .. . ... ... ... 1
1.2 Applications of polling models. . . . . .. ... ... ...... 3
1.3 Model description. . . . . .. .. ... .. ... ... ... 5
1.4 Analysis of polling systems . . . ... .............. 13
1.5 Optimization of polling systems . . . . . ... ... ... .... 18
1.6 Overview of the monograph . . . .. ... ... ......... 22

Decomposition properties and pseudo-conservation laws in polling

models 27
2.1 Introduction. . . .. ... ... . ... ... .. 27
2.2 Queue length decomposition . . . . .. ... ... ... ... .. 29
2.3 Work decomposition . . . ... ... ... ... ... .. ... 31
2.4 A queueing system with a customer collection mechanism ... 34
Polling systems with zero and non-zero switch-over times 43
3.1 Imtroduction. . . ... ... ... ... . ... ... ... ... 43
3.2 Model description. . . . . ... ... ... .. 45
3.3 The joint queue length distribution at various epochs ... . . . . 45
3.4 The joint queue length distribution at polling epochs . . . . . . 48
3.5 Marginal queue lengths and waiting times . . . . .. ... ... 52
3.6 Computational aspects . . . . . . ... . ... ... ... ..., 55

A pseudo-conservation law for a polling system with a dormant

server 59
4.1 Introduction. .. .. .. ... ... ... ... .. ... ... 59
4.2 Model description. . . . . ... ... .. 61
4.3 A pseudo-comservationlaw . . .. .. ... ... ... ...... 62

4.4 A comparison between the dormant and the non-dormant server
CASE v v v e e e e e e e e e e e e e e e e e e e 69



A globally gated polling system with a dormant server

51 Introduction. . ... ... ... ... ... .. . . . .. .. ..
52 Model description . . . . . . . . ... .o
53 Thecycletime ... ............. ... ... ...,
54 The waitingtime . . . . ... .. ... .. ... . ... ... ..
55 Thequeuelength . . . ... .............. .. ....
5.A Proofof Lemma 5.3.1 . ... ... ... ... ... .. ...
5B Proofof Lemma 5.4.1 . ... .............. . ....

Optimization of k-limited service strategies

6.1 Introduction. .. .. ... .. ... ... . ... . ... . ...
6.2 Model description and preliminaries . . ... ..........
6.3 The constrained optimization problem . . ... ... ... ...
6.4 Numerical results for the constrained problem . . . . . . .. ..
6.5 The unconstrained optimization problem . . . . . . .. .. ...
6.6 Numerical results for the unconstrained problem . .. ... ..
6.7 Concluding remarks and suggestions for further research . . . .

Optimization of fixed time polling schemes

7.1 Introduction. ... ... .. ... ... .. ...
7.2 Model description. . . . . . . ... ... o
7.3 Constructing an efficient ftp scheme I . ... ... .. ... ..
7.4 Constructing an efficient ftp scheme IT . . . . . . . .. ... ..
7.5 Numericalresults . . . . ... ... ... ... ..........
7.A Proofof Lemma 7.3.1 . ... ... ... .............
7.B The Golden Ratio procedure . . ... ..............
7.C A procedure based on extremal splittings . ... ........
7D Proofof Lemma 7.4.1 . ... ... ... .............

Optimal allocation of customer types to servers

81 Introduction. .. ... ........... .. .. ... . ...
8.2 Modeldescription. . . . . ... ... ... .. ... ... ...,
8.3 Finding an optimal random splitting . . . . ... ... ... ..
8.4 The case of ordered customer types . . . . .. ... .......
8.5 Finding an optimal source partitioning . . . . .. ... ... ..
8.6 Concluding remarks and suggestions for further research . . . .
8 A Proofof Lemma83.1 . ......................
8B Proofof Lemma832 . ... ........... ... . ...,
8.C Proofof Lemma 83.3 ... ....................
8D Proofof Lemma83.4 ... ....................
8.E A method for determining an optimal allocation . .. ... ..

75
75
76
77
81
86
89
91

95
95
97
98
103
107
112
117

119
119
120
121
126
132
136
138
138
140



9 Polling systems with multiple coupled servers 169
9.1 Imtroduction. ... .. ... ... ... . ... . ... ... 169
9.2 An M/M/m queue with coupled servers and service interruptions171
9.3 Model description. . . . ... .. ... ... ... ... .. 177
9.4 The joint queue length distributionI . . . . . . O 177
9.5 The joint queue length distribution IT . . . . . . ... ... .. 182
9.6 Concluding remarks and suggestions for further research . . . . 188
9.A Proofof Lemma 9.2.1 . ... ... ... ... ... . ..., 190
9.B Proofof Lemma 9.5.1 . ... ... ... ... .......... 192

10 Waiting-time approximations for multiple-server polling sys-
tems 195
10.1 Introduction . . . . . . .. ... Lo o 195
10.2 Model description. . . . . .. . ... ... e 196
10.3 The server interarrival time . . . . . . .. ... ... ... ... 197
10.4 The waiting time . . . . .. ... ... ... .. .. ....... 199
10.5 Approximating the weighted sum Z EW, o 202
10.6 Approximating the probabilities q1 ................ 205
10.7 Numericalresults . . . . . . ... .. ... ... ... ... ... 209
10.8 Concluding remarks and suggestions for further research . . . . 217

Bibliography 219



vi



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Queueing phenomena may be observed in several real-life situations, when ser-
vice facilities (counters, elevators, telephone lines, traffic lights) cannot imme-
diately render the amount or the kind of service required by their users. Also,
at the byte level in modern data-handling technologies (communication sys-
tems, computer networks), queueing phenomena may be encountered which
are typically less visible, but the effects of which at the user level are usually
not less serious. Quite often, such congestion effects may be adequately studied
by mathematical methods from queueing theory. Adopting the abstract termi-
nology from queueing theory, the main entity in a queueing model is a queue or
station, where customers arrive, which require some amount of service from a
server. Typically, queueing models are of a stochastic nature, in the sense that
the duration of the interarrival and service times of the successive customers is
not exactly specified, but described in terms of probability distributions. The
stochastic nature of queueing models reflects the fact that in most of the ap-
plications, it is intrinsically random or uncertain at what time demand occurs
for what amount of service.

The classical model in queueing theory consists of a single queue attended by a
single server. Single-server single-queue models have been studied extensively
in the literature, cf. Cohen [73] for a rigorous treatment of the main analytical
results. In several situations, the traditional single-server single-queue models
have proven to be very successful in accurately predicting waiting times, queue
lengths, and buffer overflow probabilities. However, in most of the recent ap-
plications, the parallel or distributed character of the service facilities involves
queueing models with multiple servers, multiple queues, or both.

This monograph is primarily devoted to queueing models with multiple queues
attended by a single server, visiting the queues one at a time, cf. Figure 1.1.
Moving from one queue to another, the server typically incurs a non-negligible
switch-over time. Such single-server multiple-queue models are commonly re-
ferred to as polling models. The term ‘polling’ originates from the polling data
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link control schemie, in which a central computer cyclically polls the terminals
on a communication link to inquire whether they have any data to transmit.
When a terminal completes the transmission of data, the data link may be
used for some system overhead, and then the central computer polls the next
terminal. In the associated polling model, the server represents the central
computer, the queues correspond to the terminals, the customers represent the
messages, and the switch-over time corresponds to the system overhead. In
a broader perspective, polling models may arise in situations, in which there
are multiple customer classes sharing a common resource, which is available
to only one customer class at a time. In those situations, changing from one
customer class to another usually involves a non-negligible overhead.
Stimulated by a wide variety of applications, polling models have been ex-
tensively studied in the literature, ¢f. Takagi [174], [175], [176] for a series of
comprehensive surveys. In this monograph, we provide a generalization and
tinification of the main exact distributional results available for polling mod-
els, present a detailed analysis of various extensions, and discuss several opti-
tnizétion issues. One of the main extensions concerns multiple-server polling
models, which are of considerable practical relevance. So far, however, they
have received remarkably little attention in the literature, perhaps because of
the combined mathematical difficulties arising in multiple-queue and multiple-
server models.

The remainder of the chapter is organized as follows. In Section 1.2, we describe
the main applications of polling models in communication systems, computer
networks, and traditional fields of engineering like maintenance, manufactur-
ing; and transportation. The wide diversity in applications is reflected in the
nimerous variants of polling models considered throughout the past decades,
mostly focusing oni the technologies emerging in the respective periods of time.
It is however not in the scope of the monograph to present an encyclopedic
categorization of the plethora of polling models considered in the literature.
Instead, in Section 1.3, we provide rather & global classification, by identifying
some fundamentally distinguishing features in the spectrum of polling models.
In Section 1.4, we survey the state of the art in the analysis of polling systems.
Rather than covering all technical details, we intend to illuminate the main
coticepts in the analysis of polling systems, which contribute to putting the
monograph in the right perspective. In Section 1.5, we review the state of the
art in the optimization of polling systems. Again, we seek to identify the main
developinents in the optimization of polling systems, rather than exhaustively
address all the topics raised. In Section 1.6, we give an overview of the main
results presented in the remainder of the monograph.
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FIGURE 1.1. The basic polling system.

1.2 APPLICATIONS OF POLLING MODELS

In this section, we describe the main applications of polling models in com-
munication systems, computer networks, and traditional fields of engineering
like maintenance, manufacturing, and transportation. For extensive surveys on
the applications of polling models, we refer to Levy & Sidi [141], Grillo [112],
and Takagi [173] (the latter two surveys focusing on computer-communication
systems).

Computer-communication systems

For reasons of flexibility and efficiency, modern computer systems mostly have
a distributed and parallel structure. Consider e.g. a local area network (LAN),
consisting of a number of computers or stations interconnected by a common
communication medium for exchanging packetized messages. For controlling
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the medium access in a LAN, one either needs a mechanism to resolve con-
flicts arising when more than one station starts to transmit simultaneously,
or one needs a protocol to avoid such conflicts, by giving only one station at
a time permission to transmit data packets. The performance evaluation of
the latter category, the so-called conflict-free medium access mechanisms, has
greatly stimulated the research in the area of polling models. Adopting the
polling terminology, the server represents the right of transmission, the queues
correspond to the stations, and the customers represent the data packets. In
practice, several versions of conflict-free medium access protocols are known.
One variant is the token ring, i.e., there is an explicit or implicit token circulat-
ing on the communication ring, representing the right of transmission. When
a station receives the token, it may start transmitting packets. As soon as the
station finishes transmitting, it passes the token to the next station. So holding
the token corresponds to utilizing the server.

Another variant is the slotted ring, i.e., the communication ring is subdivided
into time slots of the size of a single packet, circulating at constant speed.
When a station sees an empty slot pass by, it may put a packet in it. In case of
destination release the receiving station subsequently removes the packet from
the slot, while in case of source release the transmitting station empties the
slot again. So occupying a slot corresponds to utilizing a server.

A slotted ring may be viewed as a multiple-server polling system (unless there
is only a single slot). A token ring is in fact a single-server polling system, but
the stations may happen to be interconnected by multiple token rings rather
than only a single token ring.

Maintenance, manufacturing, transportation

In the first polling study that appeared in the open literature, Mack, Murphy,
& Webb [148] considered a situation in which a patrolling repairman cyclically
inspects a number of machines, checks whether or not a failure occurred, if
so repairs the machine, and then moves to the next machine. In the asso-
ciated polling model, the server represents the repairman, the queues corre-
spond to the machines, and the customers represent the possible breakdowns.
Konigsberg & Mamer [130] studied a similar model, in which an operator at
a fixed position serves a number of storage locations on a rotating carousel
conveyor. Models with several independent rotating carousels have also been
considered, cf. Kim & Konigsberg [127], Bunday & El-Badri [61].

There are also various applications in manufacturing environments. Consider
e.g. a flexible manufacturing system, in which a machine periodically changes
over from performing one type of operations to another. Here the server repre-
sents the machine and the queues correspond to the various types of operations.
A similar application is multi-product economic lot scheduling, cf. Sarkar &
Zangwill [161].

Furthermore, there are applications in transportation networks. Consider e.g.
a material handling system, in which a vehicle transfers loads from one ma-
chining center to another, cf. Bozer [55]. Here the server represents the vehicle,
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the queues correspond to the machining centers, and the customers represent
the loads. Similar applications are public transport systems, mail delivery, and
elevator facilities, cf. Gamse & Newell [106], [107].

A last application that is worth mentioning is the control of traffic lights. In
polling terms, the stream that is being given green light corresponds to the
queue receiving service.

- Ty

1.3 MODEL DESCRIPTION

As described in the previous section, polling models find a variety of applica-
tions in communication systems, computer networks, and fields like mainte-
nance, manufacturing, and transportation. The wide diversity in applications
is reflected in the numerous variants of polling models considered throughout
the past decades, mostly focusing on the technologies emerging in the respec-
tive periods of time. However, as mentioned earlier, it is not in the scope of
the monograph to present an exhaustive taxonomy of the abundance of polling
models considered in the literature. Instead, we provide in this section rather a
global classification, by identifying some fundamentally distinguishing features
in the spectrum of polling models. For a series of comprehensive surveys of the
overwhelming variety of polling models considered in the literature, we refer to
Takagi [174], [175], [176].

The basic model

A polling model basically consists of multiple queues, @1, ...,Qn, attended by
a single server S. Customers arriving at @); are also referred to as type-i cus-
tomers, 1 =1,...,n. ;

As usual in the recent polling literature, in the sequel the queues are always
assumed to have infinite buffer capacity. In some applications (manufactur-
ing, transportation), the inherent finiteness of the buffer capacity may play a
major role in the operation of the system. However, in many applications, the
finiteness of the buffer capacity only tends to have a minor influence on the per-
formance of the system. In those situations, the assumption of infinite buffer
capacity is quite often a reasonable idealizing approximation, which facilitates
the analysis considerably.

In addition to the description of the physical layout of the system, a model
description essentially includes two main facets. First, the specification of the
input to the system, i.e., the rules governing the duration of the interarrival,
service, and switch-over times. Second, the description of how the input is
handled by the system, i.e., the rules controlling the server action.

We first consider the arrival, service, and switch-over processes. We focus on
continuous-time models, i.e., the interarrival, service, and switch-over times are
assumed to be continuous-valued stochastic variables. Although occasionally
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some subtleties may be involved, most of the results for continuous-time models
carry over to discrete-time models.

The arrival process
Type-i customers arrive at generally distributed interarrival times A;, having

distribution A;(-) with Laplace-Stieltjes Transform (LST) c;(-), first moment
)]

1
rate at Q;, 1 = 1,...,n. The total arrival rate is A := Y ;.

: =1
As usual in the polling literature, in the sequel customers are always assumed
to arrive according to Poisson processes, unless specified otherwise. In the ab-
sence of detailed information on the characteristics of the arrival process, the
assumption of Poisson arrival processes is quite often a reasonable idealizing
approximation, which facilitates the analysis considerably.
We focus here on models with single arrivals, i.e., customers are assumed to
arrive one by one. Most of the results may however be generalized to models
with batch arrivals.

a;, and second moment a;”’, ¢ = 1,...,n. Denote by A; := 1/a; the arrival
n

The service process

Type-i customers require generally distributed service times B;, having dis-

tribution B;(-) with LST pf;(:), first moment f3;, and second moment ﬂz@),

i = 1,...,n. Define p; := \;53; as the traffic intensity at @;, ¢ = 1,...,n.
n

The total traffic intensity is p:= Y p;.

i=1

The switch-over process

Moving from @Q; to @, the server incurs a generally distributed switch-over
time S;;, having distribution S;;(-) with LST o;(-), first moment s;;, and sec-
ond moment sg), i, = 1,...,n. As usual in the polling liferature, in the
sequel, switch-over times are always assumed to depend only on the previous
queue visited or the next queue to be visited, ie., S;; = S; or S;; = S;,

i,j = 1,...,n, respectively. Thus, the distribution of the total switch-over
n
time incurred during a tour along the queues has LST o(-) := [] o0:(*), first
i=1
n n n n
moment s := Y s;, and second moment s := 3 3 s;5; + Z(s§2) —s2). To
=1 i=1 j=1 i=1

avoid ambiguity, in the sequel, S; always corresponds to the switch-over time
incurred when swapping out of @Q;, unless specified otherwise.

Remark 1.3.1

The successive interarrival, service, and switch-over times are implicitly as-
sumed to be independent. In addition, the arrival, service, and switch-over
processes are assumed to be mutually independent. In some of the polling ap-
plications, however, neither of these assumptions is very realistic. Not only
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bursty traffic due to packetizing of messages, or due to alternating on/off
phases of sources, but also collection or reservation mechanisms for transmis-
sion of messages may cause dependence in the arrival and service processes,
e.g., dependence between consecutive interarrival times, between consecutive
service times, or between the interarrival and service time of a customer. As
Combé [76] demonstrates, quite often such dependence structures may be ad-
equately modeled by a batch Markovian arrival process (BMAP), which is a
direct generalization of the batch Poisson arrival process. In the BMAP, the
arrival process is governed by an underlying Markov chain, which in the case
of an ordinary Poisson process has only a single state, cf. Lucantoni [147].
The BM AP/G/1 queue may be numerically analyzed by the matrix-geometric
method, cf. Lucantoni [146], Neuts [154]. To the best of the author’s knowl-
edge, the BM AP;/G;/1 polling model has not yet been studied.
In the polling literature, it is almost exclusively assumed that the arrival, ser-
vice, and switch-over processes are also independent of the state of the system.
As a rare exception, Boxma & Kelbert [46] consider a polling system in which
customers arrive at @; according to a Poisson process of rate A;; when the
server is at ;. Bozer & Srinivasan [55] analyze a model in which the switch-
over time depends on the state of the previous queue visited; Ferguson [92],
[91] studies a model in which the switch-over time may depend on the state of
the next queue to be visited. Models with state-dependent service times are
also conceivable.

O

Remark 1.3.2

With regard to the customer behavior, it is almost exclusively assumed in the
polling literature, that customers from some external infinite source arrive at
some queue, wait for some time, receive some amount of service, and then leave
the system. As a rare exception, Sidi & Levy [166] and Sidi, Levy, & Fuhrmann
[167] study an open polling network in which customers, after receiving service

at Q;, either move to Q; with probability r;;, or leave the system with proba-
n

bility 1 — Y r4;. In a manufacturing setting, customer routing may arise when
j=1

parts successively undergo service in a number of stages, e.g., drilling holes of

different type, painting in different colors. In the context of communication

networks, customer routing may occur when a station that receives a faulty

message, sends a negative acknowledgement to the station that transmitted

the message to indicate that the message has to be retransmitted. Altman &

Yechiali [9] analyze a closed polling network in which customers (belonging to

a permanent population), after receiving service at Q;, move to Q; with prob-
n

ability r;; (with ) 7;; = 1). As a generalization of customer routing, Levy &
=1

Sidi [141] describe a model with customer branching, in which departures may

trigger concurrent arrivals to the system.
O
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Remark 1.3.3
As usual in the polling literature, we focus here on a model with a discrete
structure, i.e., a finite number of distinct queues. Letting the number of queues
tend to infinity, with the traffic intensity p fixed, we obtain a continuous polling
model. Several models have been analyzed in which the server travels around
a circle, on which customers arrive according to a uniform Poisson process, cf.
Bisdikian & Merakos [20], Coffman & Gilbert [69], Fuhrmann & Cooper [102],
Kroese & Schmidt [132]. Recently, various models have been considered in
which the server traverses a graph or a region of higher dimension, or in which
customers do not necessarily arrive according to uniform Poisson processes, cf.
Altman & Foss [6], Bertsimas & Ryzin [17], Coffman & Stolyar [72], Kroese &
Schmidt [133].

O

Remark 1.3.4
As usual in the polling literature, for now, we focus on a model with a single
server. In the last chapters of the monograph, we consider polling models with
multiple servers.

(m}

We now consider the rules controlling the server action. A scheduling strat-
egy is a collection of decision instructions for determining the server action at
any given time. Occasionally, a scheduling strategy will also be referred to as
a scheduling discipline, a polling strategy, or a polling policy. A scheduling
strategy prescribes whether the server S should serve (which customer), switch
(to which queue), or idle. Those decisions are made based on some partial
knowledge of the state of the system (queue lengths, past arrival patterns),
and on past decisions.

Although a scheduling strategy in principle may be arbitrarily involved, it
mostly decomposes into three separate control mechanisms, viz.:

i. the routing policy: in which order should S serve the queues;

ii. the service policy: while at a queue, which number of customers should S
serve;

iii. the service order: while at a queue, in which order should S serve cus-
tomers.

We now successively describe the main variants of these three control mecha-
nisms.

The routing policy

The routing policy prescribes in which order S should visit the queues. In the
traditional cyclic polling model, the server visits the queues in a strictly cyclic
order, i.e., Q1,...,Qn,Q1,...,Qny....

One obvious generalization of strictly cyclic polling is periodic polling, intro-
duced in Kruskal [134] and revisited in Eisenberg [84], Baker & Rubin [15],
and Boxma, Groenendijk, & Weststrate [45]. In periodic polling, the server
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visits the queues in a fixed order, listed in a polling table of some size m, i.e., a

vector of length m with components in {1,...,n}. An important special case
of periodic polling is scan polling or elevator polling, in which the server visits
the queues in the order Q1,...,Q@n,@n,...,Q1,.... Another special case of

periodic polling is star polling, in which the server visits the queues in the
order Q1,Q2,Q1,Q3,Q1,--.,Qn-1,Q1,Qn,-- ..

Another natural generalization of strictly cyclic polling is Markovian polling,
introduced in Boxma & Weststrate [53]. In Markovian polling, the server
visits the queues according to a discrete-time Markov chain with state space
{1,...,n}, i.e., the server is routed from Q; to Q; with probability p;;, 7,7 =
1,...,n. A special case of Markovian polling is random polling, i.e., p;; = p;,
1,7 = 1,...,n, analyzed in Kleinrock & Levy [128]. Mixtures of periodic polling
and Markovian polling are also conceivable.

All above policies are static, in the sense that the routing decisions are made
independently of the state of the system, so that the sequence of the queues
visited is also independent of the input sequence to the system. In dynamic
policies, the routing decisions are made based on some partial knowledge of
the state of the system (queue lengths, past arrival patterns), and on past
decisions, e.g., the server may be instructed to serve the longest queue. Evi-
dently, in principle the performance of the system may improve substantially
by using such information in making the routing decisions. However, gathering
such information and implementing a sophisticated routing policy may involve
a considerable communication overhead, and complicate the operation of the
system significantly. Therefore, in practice, dynamic policies are not necessar-
ily preferable to static policies.

The service policy

While at a queue, the service policy (or strategy, or discipline) prescribes which
number of customers S should serve. There are four classical service disciplines.
I. Exhaustive service.

Under exhaustive service, the server continues to work until the queue becomes
empty. Customers that arrive during the course of the visit, are served in the
current visit.

I1. Gated service.

Under gated service, S serves only the customers that were present at the start
of the visit. Customers that arrive during the course of the visit, are served in
the next visit.

ITI. Limited service.

Under k-limited service, the server continues to work until either a prespec-
ified number of k customers have been served, or the queue becomes empty,
whichever occurs first. There are two versions of limited service: gated-limited
or exhaustive-limited service, depending on whether or not S only serves the
customers that were present at the start of the visit.

IV. Decrementing service.

Under k-decrementing service, the server continues to work until either there
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are a prespecified number of k customers less present than at the start of the
visit, or the queue becomes empty, whichever occurs first. 1-Decrementing ser-
vice is commonly referred to as semi-exhaustive service.

There are also numerous probabilistic hybrids of the four classical service dis-
ciplines. To give a systematic overview, we now define a family of service
disciplines which operate as follows. If there are m; customers present at the
start of the visit to @Q;, then a (random) number L;(m;) of them qualify for
service. Customers arriving during the visit to Q; qualify for service with
probability p;. The server continues to work until either a (random) number of
K;(m;) customers have been served, or there are no customers left that qualify
for service, whichever occurs first.

Service disciplines with p; = 1 and p; = 0 are frequently referred to as
exhaustive-type and gated-type policies, respectively, cf. Boxma [39], Levy &
Sidi [141], Levy, Sidi, & Boxma [142]. Disciplines with K;(m;) < oo (with
positive probability) are frequently referred to as limited-type policies. Simi-
larly, disciplines with L;(m;) < oo (with positive probability) may be viewed
as decrementing-type policies.

In binomial-type policies, K;(m;) = oo and L;(m;) is binomially distributed
with mean m;q;, 0 < ¢; < 1, cf. Levy [138], [139]. In Bernoulli-type policies,
L;(m;) = m; and K;(m;) is the sum of m; independent identically geomet-
rically distributed random variables each with mean 1/(1 ~ ¢;), 0 < ¢; < 1,
cf. Resing [159]. In case K;(m;) is just a single geometrically distributed ran-
dom variable, we obtain ordinary Bernoulli service, introduced in Keilson &
Servi [124], [164]. Ordinary Bernoulli service may be used as an emulation of
k;-limited service, under which S serves at most k; customers at @Q; (taking
gi = 1~ 1/k;). Note that Bernoulli service and k;-limited service coincide for
g; = 0 as well as ¢; = 1. In its turn, k;-limited service is widely used as an ap-
proximation of time-limited service, under which the server stays at most for a
time T; at Q; (taking k; = T;/f;, the exact value depending on whether or not
service is preempted when the timer expires). For deterministic service times,
k;-limited service and T;-limited service even coincide. A similar discipline is
fized time service, under which the server stays at a queue for a fixed time,
regardless of whether the queue becomes empty in the meanwhile or not. A
service discipline under which S always serves a fized number of customers at a
queue does not really make sense, since (for static routing policies) it inherently
causes the system to be unstable.

All above policies are local, in the sense that the service decisions are made at
each of the queues in isolation after the start of the visit. Recently, Boxma,
Levy, & Yechiali [50] proposed the globally gated service discipline as a model-
ing approach to reservation mechanisms like in the cyclic-reservation multiple-
access (CRMA) protocol. Under globally gated service, during a visit to @;, S
serves only the customers present at the start of the most recent visit to Q.
As a generalization of ordinary gated and globally gated service, Khamisy, Alt-
man, & Sidi [126] analyzed the synchronized gated service discipline. Under
synchronized gated service, during a visit to @, S serves only the customers



1.3 Model description 11

present at the start of the most recent visit to a ‘master’ queue Qr(;) with
7(3) € {1,...,n}. Synchronized versions of other service disciplines than gated,
or service disciplines with other gating epochs than at the start of the most
recent visit to Qnr(;), e.g. at the completion of the most recent visit to Qr(;), are
also conceivable, cf. Bertsekas & Gallager [16], and Lee & Sengupta [136], [137].
Although global in nature, even in the latter policies the service decisions de-
pend on the state of the system through the marginal queue length only. Poli-
cies in which the service decisions may be based on the joint queue length,
have been considered in Hofri & Ross [119], Koole [131], and Liu, Nain, &
Towsley [145]. With regard to the pro’s and con’s of such sophisticated adap-
tive service policies similar remarks hold as with regard to dynamic versus
static routing policies.

The order of service

While at a queue, the order of service prescribes in which order S should serve
customers. While the routing policy and the service policy together dictate the
global priorities, the service order determines the local priorities. In the sequel,
the order of service is always assumed to be First Come First Served (FCFS),
i.e., customers are assumed to be served in order of arrival. In fact, the service
order does neither matter for the queue length distribution nor, by Little’s law,
for the mean waiting times, as long as customers enter service in an order in-
dependent of their service times. Of course, the service order does matter for
the waiting-time distribution. Polling models with local priority rules within
queues have been considered in Fournier & Rosberg [94], and Shimogawa &
Takahashi [165].

The stability condition

Finally, we briefly discuss the conditions for stability. Recently Fricker & Jaibi
[97] rigorously proved that for a system with periodic polling a necessary and
sufficient condition for stability reads

p+i=1111?:}.cn/\,'R/Mi <1, (1.1)

where R is the mean total switch-over time incurred during a cycle, i.e., incurred
when passing through the polling table once, while M; is the maximum mean
number of type-i customers served during a cycle, i.e., the mean number of
type-i customers that would be served during a cycle, if there were an infinite
number of type-i customers present at the start of the cycle. Here the system
is said to be stable, if it admits a stationary regime with integrable cycle time.
A simple traffic balance argument shows that if the system is stable, then the
server is working a fraction p of the time, so that the mean cycle time is given
by EC = R/(1 — p). So if the system is stable (1.1) may be rewritten as

MR
1-p

<M; i=1,...,n, (1.2)
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saying that the mean number of type-i customers arriving during a cycle is
smaller than the maximum mean number of type-i customers served during
a cycle. As the server is working a fraction p; of the time at Q;, the mean
total visit time at Q; in a cycle is given by EV,; = p,EC = p;R/(1 — p),
¢ = 1,...,n. The mean total intervisit time at @; in a cycle follows from
EL=EC-EV;=(1-p)R/(1—p),i=1,...,n

Note that if the system is stable, then all the queues are stable. However, even
if a system is unstable a subset of the queues may still be stable. Assuming that
the queues are indexed such that ¢ < j <= \;/M; < )\;j/M;, Fricker & Jaibi
show that the queues @1,..., Q. are stable while the queues Qc+1,...,Qn are
unstable with x being defined as

Kk = max{s : ij+)\ (R+ Z BiM;)/M; < 1}.

Jj=1 J=1i+1

In other words, whether or not the individual queues are stable depends on the
ratio \;/M;. The mean cycle time is given by EC = (R + Z ﬁ] )/ (1=

=K+
Z pj). Note that (1.1) implies k = n.

The quantity M; is determined by the number of visits to @); as specified in
the polling table and the maximum mean number of customers served during
a visit to @; as specified by the service discipline (possibly different policies at
different visits). For ease of presentation, we now focus on the case of strictly
cyclic polling, so that R = s, and the quantity M; is determined by the service
discipline at @; only. (The sufficient stability conditions for the case of strictly
cyclic polling were independently established by Altman, Konstantopoulos, &
Liu [8] and Georgiadis & Szpankowski [108], using different techniques. The
assumptions in [8] and [108] on the service disciplines are however somewhat
restrictive compared to [97].) For service disciplines like exhaustive and gated
that do not impose any (probabilistic) restriction on the maximum mean num-
ber of customers served, M; = 00, so that the stability condition (1.1) reduces
to p < 1, which has long been stated without formal proof, cf. Eisenberg [84].
For both the exhaustive and gated version of k;-limited service, M; = k;, so
that (1.2) reduces to A;s/(1 — p) < k;, which also has long been stated without
formal proof, cf. Kiihn [135]. For k;-decrementing service, M; = k;/(1 — p;),
so that (1.2) reduces to A;s(1 — p;)/(1 — p) < ki, 2 = 1,...,n, saying that the
mean increase in the number of type-i customers during the intervisit time is
smaller than the net decrease during the visit time.

In [98] Fricker & Jaibi establish the stability condition for models with Marko-
vian polling; cf. also Borovkov & Schassberger [25]. For dynamic scheduling
strategies, there are hardly any results known on the conditions for stability;
cf. Schassberger [162] for the case of gated-limited service.

Throughout the monograph, the conditions for stability are assumed to hold.
We further always assume the system under consideration to be in steady state.
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1.4 ° ANALYSIS OF POLLING SYSTEMS

In this section, we survey the state of the art in the analysis of polling systems.
Rather than covering all technical details, we intend to illuminate the main
concepts in the analysis of polling systems, which contribute to putting the
monograph in the right perspective. We refer to Takagi [172] for a thorough
monograph on the analysis of polling systems, containing a detailed enumera-
tion of the main results.

In one of the first polling studies, Avi-Itzhak, Maxwell, & Miller [14] study
a two-queue model with zero switch-over times and alternating priority (i.e.
exhaustive service at both queues). They obtain the sojourn time distribution
by focusing on the system busy period. Takdcs [171] derives the waiting-time
distribution in the same model by studying the Markov chain formed by the
state of the system embedded at service completion epochs. Using similar
techniques, Eisenberg [83] obtains the waiting-time distribution in a two-queue
model with non-zero switch-over times, and either alternating priority or strict
priority, in which the server stops switching when the system is empty.
Cooper & Murray [77] study a model with an arbitrary number of queues,
zero switch-over times, strictly cyclic polling, and exhaustive service at each of
the queues. They derive the cycle time distribution by analyzing the Markov
chain formed by the state of the system embedded at visit completion epochs.
Cooper [78] obtains the waiting-time distribution for the model, by viewing
the queues in isolation as vacation queues, the intervisit periods constituting
the vacations. The solution method may also be used for a similar model with
gated service at each of the queues.

Eisenberg [84] studies a model with an arbitrary number of queues, non-zero
switch-over times, periodic polling, and exhaustive service at each of the queues,
in which the server keeps switching when the system is empty. Eisenberg de-
rives the waiting-time distribution, the marginal queue length distribution, and
the joint queue length distribution at polling epochs by cleverly exploiting four
Markov chains, embedded at service and visit beginnings and endings. The
solution method may also be used for a similar model with gated service at
each of the queues. In a recent study [86], Eisenberg shows how an adapted
version of the method may be applied in case the server stops switching when
the system is empty.

Over the years, several methods have been developed for computing the mean
waiting times at the various queues in strictly cyclic polling systems with either
exhaustive or gated service. To be specific, denote by W, the waiting time of
an arbitrary type-¢ customer, i.e., the time elapsing from its arrival to the start
of its service, i =1,...,n.

One method for computing the mean waiting times is the buffer occupancy
method, as used by Cooper & Murray [77], Cooper (78], and Eisenberg [84].
As the name suggests, in the buffer occupancy method, the mean waiting times
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are computed starting from the buffer occupancy variables X;;, denoting the
queue length at Q; at the start of a visit to Q;, 4,5 =1,...,n.
Define F;(z1,...,2,) := E(zf(“ ...zXin) to be the probability generating func-
tion (pgf) of the joint queue length distribution at the start of a visit to @,
| z; | <1, j=1,...,n. The buffer occupancy method starts with deriving n
functional equations, expressing F;11(:) into F;(-),¢=1,...,n.
The waiting times are related to the buffer occupancy variables as follows, cf.
Watson [187]. For exhaustive service, writing X; for X;;, for Rew > 0,
X;
Ble-oWey _ (L= XBJo _1-B((1—w/A)%) 13)
w — /\i(l - ﬁz(w)) wEXi/)\,-

the first term on the right-hand side representing the waiting-time Laplace-
Stieltjes Transform (LST) in the corresponding isolated M/G/1 queue of Q;
with arrival rate \; and service time LST S;(-).
For gated service, for Rew > 0,

B(e—oWi) = (1=XBi)w  B((Bi(w)*) — E((1 —w/X)*)
w = Ai(1 = Bi(w)) (1 = XiBi)wEX; /A;

the first term on the right-hand side standing again for the waiting-time LST in
the corresponding isolated M/G/1 queue of @;. In Chapter 2, we will discuss
the occurrence of that term in greater detail.

The above relationships yield expressions for EW; involving f; := EX; and
fI' = B(X;(X; — 1)) = E(X?) — EX; as unknowns. There are explicit ex-
pressions available for the first moments EX;; for exhaustive service, EX; =
MEL = Ai(1 = ps)s/(1 — p); for gated service, EX; = ,EC = A;s/(1 — p). For
the second moments E(X?) there are no explicit expressions available. How-
ever, the functional equations involving F;(-), i = 1,...,n, render a set of n3
linear equations with n® unknowns E(X;;Xix). The latter set of equations can
best be solved in an iterative manner, which requires O(n3logpe) elementary
operations (additions, multiplications), with e denoting the level of accuracy
required.

Another method for computing the mean waiting times is the station time
method, as used in Ferguson & Aminetzah [93]. As the name reflects, in
the station time method the mean waiting times are computed starting from
the station time variables Uj;, denoting the length of the station time at Q;,
7 =1,...,n. For exhaustive service, the station time consists of the visit time
plus the preceding switch-over time. For gated service, the station time is com-
posed of the visit time plus the following switch-over time.

Define O;(w1, .. .,wn) := E(e™«1Ui-1——waUi=n) (a]] indices mod n) to be the
Laplace-Stieltjes Transform (LST) of the joint station time distribution of the
last n visits at the start of a visit to Q;, Rew; > 0, j = 1,...,n. The station
time method starts with establishing n functional equations expressing ©;41 ()
into ©;(),t1=1,...,n.

o (14
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The waiting times are related to the station time variables as follows. For
exhaustive service, for Rew > 0,

cowiy _ (A =XBi)w  1-E(evh)
B(e™™) = 52 N(1-Biw) wEL

with I; denoting the intervisit time at @;,i.e., I, =S;—1+U;—1+...+ Uipn41.
Note that (1.3) and (1.5) are equivalent by the fact that for exhaustive service
X; equals the number of arrivals at Q; during L, i.e., E(z%¢) = E(e~»(1-2)L),
For gated service, for Rew > 0,

(1= Xfi)w E(e_)\i(l'—ﬂi(“’))ci) _ E(e—wc‘-)
w =il - Biw)) (1 - AB)wEC; ’

with C; denoting the cycle time at @, i.e., C; = U;—; + ... + U;_,. The
equivalence of (1.4) and (1.6) follows from the fact that for gated service X;
equals the number of arrivals at Q; during C;, i.e., E(zX¢) = E(e~»(1—2)Cs),

The above relationships yield expressions for EW; involving g; = EU; and
gi; = E(U;U;) (Q: being visited before Q;) as unknowns. There are explicit
expressions available for the means g;; for exhaustive service, g; = s;_1 +EV; =
si—1 + pis/(1 — p); for gated service, g; = EV; + s; = p;s/(1 — p) + s;. For
the covariances g;; there are no explicit expressions available. However, the
functional equations involving ©;(-), 4 = 1,...,n, induce a set of n? linear
equations with n? unknowns g;;. The latter set of equations can be solved in
an iterative manner, which requires O(nzlogpe) elementary operations, with e
denoting the level of accuracy demanded. A further advantage of the station
time method in comparison with the buffer occupancy method is that the
structure of the set of linear equations involved is somewhat simpler. Without
explicitly solving it, Ferguson & Aminetzah observe from the structure of the set

(1.5)

E(e“"w") =

(1.6)

of linear equations that the intensity-weighted sum z p:EW, yields a relatively

simple expression in comparison with the extremely comphcated expressions for
the individual mean waiting times themselves, cf. also Watson [187].
For exhaustive service,

Z1 X6 5@ s 2 ™ 2
EW,; = p= —_—t - ‘1. .
;p iy TPt |° ;p, (1.7)
For gated service,
Z Ai :B 52 s , n )
ZPzEW "P2(1 2) +P¥+2(1—_p')' P +;Pi . (1.8)

These relationships for the mean waiting times are commonly referred to as
pseudo-conservation laws. In Chapter 2, we will discuss the existence of these
pseudo-conservation laws in greater detail. A disadvantage of the station time
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method is that, unlike the buffer occupancy method, it only appears to be ap-
plicable to polling systems with either exhaustive or gated service.

Sarkar & Zangwill [160] describe a refinement of the station time method. They
express the n? unknowns g;; into the n unknowns g;;, and derive a set of n linear
equations for the latter coefficients, which however appears to be less sparse.
Konheim & Levy [129] describe a modification of the buffer occupancy method.
They propose to calculate E(X?) by the so-called descendant set approach,
which allows the computation of the mean waiting time at a single queue in
only O(nlog,e€) elementary operations, with € the level of accuracy desired.
Concluding, although efficient numerical evaluation of the mean waiting times is
non-trivial, polling systems with exhaustive or gated service do allow an exact
analysis for generally distributed service times, generally distributed switch-
over times, and an arbitrary number of queues. Polling systems with limited or
decrementing service, however, do not allow an exact analysis, apart from some
special cases like two-queue cases and completely symmetric cases. Eisenberg
[85] studies a two-queue model with zero switch-over times and alternating ser-
vice (i.e. 1-limited service at both queues), transforming the problem of finding
the joint queue length distribution into the problem of solving a singular Fred-
holm integral equation. Cohen & Boxma [74] analyze the same model, translat-
ing the problem into a Riemann-Hilbert boundary value problem. Using simi-
lar techniques, Boxma [37] studies a symmetric two-queue model with non-zero
switch-over times and 1-limited service at both queues. Boxma & Groenendijk
[43] analyze an asymmetric two-queue model with non-zero switch-over times
and 1-limited service at both queues by formulating a Riemann boundary value
problem. Cohen [75] considers a two-queue model with zero switch-over times
and 1-decrementing (semi-exhaustive) service at both queues. The solution of
the specific boundary value problem as formulated in each of the latter studies
typically requires an arsenal of most advanced techniques from complex func-
tion theory, usually rendering contour-integral expressions for the mean waiting
times. For polling systems with k-limited or k-decrementing service and n > 2
queues, only approximative results are available, apart from some mean-value
results for global performance measures, like the cycle times, or for the waiting
times in a completely symmetric system (cf. Fuhrmann [100] for the special
case of 1-limited service).

Summarizing, we observe a striking difference in complexity between on the
one hand service disciplines, like exhaustive and gated, that can be analyzed
exactly in a general setting by standard methods, and on the other hand service
disciplines, like limited and decrementing, that can only be analyzed exactly
in special cases by most ingenious techniques.

The existence of such a sharp distinction is illuminated in Resing [159] and in-
dependently explained in Fuhrmann [99]. Both Resing and Fuhrmann consider
the class of service disciplines that satisfy the following property:
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Property 1.4.1

If there are k; customers present at @Q; at the start of a visit, then during the
course of the visit, each of these k; customers will effectively be replaced in an
i.i.d. manner by a random population having probability generating function
(pgf) hi(z1,-..,2n), which may be any n-dimensional pgf.

By using a multi-type branching process approach, both Resing and Fuhrmann
show that the class of service disciplines that satisfy the above property allows
an exact analysis. The results of Resing and Fuhrmann suggest that service
disciplines that violate Property 1.4.1 defy an exact analysis, except for some
special cases, like two-queue cases and completely symmetric cases.

The key element in their exposition is that if the service disciplines in a polling
system satisfy Property 1.4.1, it is possible to relate the pgf Gi(z1,...,2,) =
E(z;’("1 ...zYin) of the joint queue length distribution at the end of a visit
to Q; to the pgf Fi(z1,...,2x) := E(z;...2X) of the joint queue length
distribution at the beginning of a visit to @Q; by

Gi(zl, e ,zn) = F,-(zl, ey Ri—1, hi(zl, ooy Zn), Zidlyeeey zn). (1.9)
Moreover, it is possible to relate Fiyi(z1,...,2) to Gi(21,...,2,) by
Ej+1(21, vo ;zn) = Gi(zl, vee >zn)0i(z )‘J(]' - Zj)), (1‘10)
—

irrespective of the service disciplines (ignoring here some subtleties in case the
total switch-over time in a cycle is zero, cf. Chapter 3). Thus, we obtain 2n
equations for 2n functions, which may be combined to obtain a functional
equation for one of the functions F;(-) or G;(-), which may then be solved by a
standard iterative procedure. As we will show in Section 2.1, most of the rele-
vant performance measures like marginal queue lengths at an arbitrary epoch
and waiting times may directly be derived from F;(-) and G;(-). Note that the
approach of Resing and Fuhrmann is closely related to the buffer occupancy
method, which was outlined earlier in the present section. In fact, the station
time method, which was also sketched there, only appears to be applicable to
a very restricted subclass of the service disciplines satisfying Property 1.4.1.

Assuming the service disciplines to satisfy Property 1.4.1, Resing shows that
in case the total switch-over time in a cycle is non-zero, the joint queue length
process at the polling epochs of a fixed but arbitrary queue constitutes a multi-
type branching process with immigration in each state. The particle types in
the branching process correspond to the customer types in the polling model,
the offspring in the branching process represents the customers arriving during
the service times in the polling model, and the immigration in the branching
process corresponds to the customers arriving during the switch-over times in
the polling model. In case the total switch-over time in a cycle is zero, Resing
shows that the joint queue length process at the polling epochs of a fixed queue
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constitutes a multi-type branching process with immigration in state zero only.
The immigration in the branching process then corresponds to the customers
arriving to an empty system in the polling model. So the models with zero
and non-zero switch-over times are closely related through a common offspring
generation, the only difference originating from the immigration. In Chapter 3,
we expose the relationship between models with zero and non-zero switch-over
times in greater technical detail.

The exhaustive service discipline satisfies Property 1.4.1 with h;(21,...,2,) =
n:(> Aj(1 — 2;)). Here n;(-) is the LST of the busy-period distribution in an

J#i '

ordinary isolated M/G/1 queue with arrival rate \; and service time distribu-

tion B;(-), satisfying the functional equation 7;(w) = fB;(w + Ai(1 — ni(w))), cf.

[73] p. 250. The gated service discipline satisfies Property 1.4.1 with h;(21,.. .,
n

zn) = Bi( > Aj(1 — 2;)). Limited and decrementing service disciplines violate
i=1

Property 1.4.1, and have indeed not yielded an exact analysis, except for some
special cases, like two-queue cases and completely symmetric cases.

Models with server-position dependent arrival rates and customer branching (as
the word suggests), cf. Remark 1.3.1 and Remark 1.3.2, satisfy Property 1.4.1,
and may thus be analyzed exactly by using a multi-type branching process ap-
proach. There are also some service disciplines, like synchronized gated, that
strictly speaking do not satisfy Property 1.4.1, but still allow an exact analysis.
Most of these service disciplines, however, satisfy the following generalization
of Property 1.4.1:

Property 1.4.2

If there are k; customers present at @; at the beginning (or the end) of a visit to
Qnr(:), with m(i) € {1,...,n}, then during the course of the visit to Q;, each of
these k; customers will effectively be replaced in an i.i.d. manner by a random
population having pgf h;(z1,. .., 2s), which may be any n-dimensional pgf.

In Chapter 9, we will introduce another generalization of Property 1.4.1 to
explore the class of service disciplines that allow an exact analysis in the case
of multiple servers.

Here we outlined the analysis for a continuous-time model with strictly cyclic
polling and single Poisson arrivals. Without seriously complicating the anal-
ysis, continuous-time may be replaced by discrete-time, strictly cyclic polling
may be generalized to periodic polling or Markovian polling, and single Poisson
arrivals may be generalized to batch Poisson arrivals.

1.5 OPTIMIZATION OF POLLING SYSTEMS

In this section, we review the state of the art in the optimization of polling
systems. As mentioned earlier, we seek to identify the main issues in the op-
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timization of polling systems, rather than exhaustively discuss all the achieve-
ments made. For extensive surveys on optimization of polling systems, we refer
to Boxma [39] (static optimization) and Yechiali [191] (semi-dynamic optimiza-
tion).

In most of the polling applications, some degree of freedom exists in the design
or control of the system in choosing the parameters of the scheduling discipline
(visit order, visit lengths, service order). A major objective in studying polling
systems is to develop sufficient understanding of how these parameters influence
the operation of the system, and how these parameters should thus be chosen
so as to improve the performance of the system. Nevertheless, compared to the
well-trodden area of the analysis of polling systems, the field of optimization
of polling systems still remains relatively unexplored. Although for example
many waiting-time approximations have been proposed for limited-type service
policies, the problem of determining appropriate values for the service limits
has hardly been addressed.
In the optimization of polling systems, the problem formulation is typically to
optimize some measure of the system performance over some class of feasible
scheduling disciplines. So there are two factors that play a role, first, what is
the performance measure to be optimized, second, what is the class of feasible
scheduling disciplines.
Concerning the first factor, there is probably no generic comprehensive mea-
sure to evaluate the system performance. Efficiency and fairness are commonly
viewed as important aspects of the system performance. Although it is some-
what unclear exactly how efficiency and fairness should be defined, it is widely
believed that there is some trade-off between them. On the one hand, exhaus-
tive service is considered to be efficient but not very fair, as a heavily-loaded
queue may dominate the complete system. On the other hand, 1-limited ser-
vice is considered to be fair, as each of the queues receives at most one service
per visit, but not very efficient. Ideally, a performance measure should re-
late all important aspects of the system performance to measurable quantities
like waiting times, queue lengths, and excess probabilities, and should indicate
how all those aspects weigh against each other. In view of these considerations,
n n
> ciMEW; (by Little’s law equivalent to Y ¢;EL;, with L; denoting the num-
i=1 i=1
ber of waiting type-i customers at an arbitrary epoch) is widely accepted as a
reasonable measure of the system performance.
Concerning the second factor, usually the class of feasible scheduling disciplines
consists of a family of strategies of a similar structure that differ by some (vec-
torial) parameter. We now successively discuss some optimization studies that
focus on optimization of a routing vector (routing probabilities, or polling ta-
ble), a service vector (service probabilities, or service limits), and a routing
vector and a service vector simultaneously. In addition, we mention some op-
timization studies that analyze less structured dynamic polling policies.
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Optimization of the routing policy for a given service policy

A considerable amount of research effort has been devoted to static optimiza-
tion, i.e., optimization of static routing policies, in which the routing decisions
are made independently of the state of the system. Boxma, Levy, & Weststrate
[47] (cf. also [188]) consider a system with random polling, and at each of the
queues either exhaustive or gated service. They address the problem of find-

n
ing the routing probabilities (p1,...,p,) that minimize ) p,EW,, the latter

quantity being explicitly known from the pseudo—conservatlion law for random
polling, cf. [53]. Boxma, Levy, & Weststrate [39] (cf. also [188]) consider a sys-
tem with periodic polling and at each of the queues either exhaustive, gated,
or 1-limited service. They study the problem of determining a polling table
n
that minimizes ) p;EW,;. The proposed approach is to use the optimal visit
i=1
ratios in random polling (i.e. the routing probabilities (p1,...,p,)) as indica-
tion for the optimal visit ratios in periodic polling (i.e. the occurrence ratios of
the queues in the polling table), and then to use the Golden Ratio procedure
as a heuristic for spacing the visits within the polling table. Boxma, Levy, &
Weststrate [49] (cf. also [188]) address the generalized problem of determining
n

a polling table that minimizes } ¢;\;EW,, the latter quantity now being ap-
proximated in terms of the occu I%ence ratios of the queues in the polling table.
Kruskal [134] studies a similar problem with deterministic arrival, service, and
switch-over processes. In all cases, the optimal visit ratios are given by sur-
prisingly simple square-root formulae.

Also, a considerable amount of research effort has been put in semi-dynamic
optimization, i.e., optimization of semi-dynamic routing policies, in which pe-
riodically the visit order for some future period is determined, based on some
partial knowledge of the state of the system. Browne & Yechiali [59] consider
a system with either exhaustive or gated service at each of the queues. They
address the problem of finding the visit order, at the start of each cycle, that
minimizes the expected duration of the new cycle, based on knowledge of the
queue lengths. The optimal visit order is given by a remarkably simple index-
type rule. However, they do not explicitly indicate how minimization of the
expected duration of each new cycle is supposed to contribute to optimizing
the system performance, in particular minimizing the mean waiting times. Ac-
tually, the mean cycle time remains s/(1 — p), cf. [8], in other words, the server
is doing nothing but deferring the service of customers to future cycles. Results
of Fabian & Levy [90] suggest that among all semi-dynamic visit orders, the
order that minimizes (maximizes) the expected duration of each new cycle in
fact yields the largest (smallest) mean waiting times. Purely dynamic opti-
mization of the routing policy (for a given service policy) has hardly received
any attention so far.
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Optimization of the service policy for a given routing policy

Borst, Boxma, & Levy [35] consider a system with a k-limited service strategy

at each of the queues. They address the problem of determining the vector
n

of service limits (ki,...,k,) that minimizes E c;AEW,. Chapter 6 of the

i=1
present monograph is based on the results obtained in [35]. Blanc & Van der
Mei [23] study a similar optimization problem in a system with a Bernoulli
service strategy at each of the queues. Purely dynamic optimization of the
service policy (for a given routing policy) has hardly received any attention so
far. ‘

Simultaneous optimization of routing policy and service policy

Borst, Boxma, Harink, & Huitema [34] consider a system operated with a fixed
time polling (ftp) scheme. An ftp scheme specifies which queue should be vis-
ited at what time, i.e., it specifies not only the order of the visits, but also the

starting times of the visits. They address the problem of constructing an ftp
n

scheme that minimizes Y ¢;A;EW,;. Chapter 7 of the present monograph is
i=1
based on the results obtained in [34].
Liu, Nain, & Towsley [145] consider a system with a dynamic polling policy,
i.e., a collection of instructions for making decisions on whether the server S
should serve (which customer), switch (to which queue), or idle, based on some
partial knowledge of the state of the system. They attempt to identify policies
that stochastically minimize the total amount of work and the total number of
customers present in the system at an arbitrary epoch. They show that opti-
mal policies are exhaustive and greedy, i.e., the server should neither idle nor
switch when a queue is non-empty. In addition, they show that in a symmetric
system, optimal policies are patient, and belong to the class of Stochastically-
Largest-Queue policies, i.e., the server should remain idling at the last visited
queue when the system is empty, and the server should never switch to a queue
known to be stochastically smaller than another queue.
For a model with zero switch-over times, the optimal (non-preemptive) polling
policy is known to be given by the cu-rule, cf. Meilijson & Yechiali [151], and
Buyukkoc, Varaiya, & Walrand [63]. For a symmetric two-queue model with
non-zero switch-over times, Hofri & Ross [119] show that the policy that min-
imizes the sum of discounted switch-over times and the holding cost, is ex-
haustive service in a nonempty system, and is of threshold type for switching
from an empty queue to another. For an asymmetric two-queue model with
switch-over costs rather than switch-over times, Koole [131] shows that the
policy that minimizes the sum of discounted switching cost and holding cost,
is not a threshold policy, but that the best threshold policy approaches the
optimal policy very well.
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Monotonicity issues

Closely related to optimization issues are questions of stochastic ordering or
monotonicity of the various performance measures with regard to the inducing
stochastic processes (arrival process, service process, switch-over process), or
with regard to the scheduling discipline (routing policy, service policy, order of
service).

For a fixed but arbitrary routing policy, Levy, Sidi, & Boxma [142] establish
a hierarchy of dominance relations among work-conserving, non-idling service
policies with respect to the total amount of work in the system at any time.
Under fairly mild assumptions, they show that the closer a service policy ap-
proaches the standard exhaustive service policy, the higher the service policy
reaches in the hierarchy, so that in particular the standard exhaustive service
policy figures at the top of the hierarchy.

Altman, Konstantopoulos, & Liu [8] consider a system with strictly cyclic
polling, and at each of the queues either exhaustive-type or gated-type ser-
vice. They show that the queue lengths at polling epochs, the visit times, the
intervisit times, and the cycle times are stochastically increasing in the arrival
rates, the service times, and the switch-over times.

Note that the above ordering results refer to global performance measures or
performance ineasures that are defined at polling epochs. For detailed perfor-
mance measures like waiting times or queue lengths at arbitrary epochs there
are hardly any ordering results known. In view of [8], it might be conjectured
that also the waiting time and the queue length at @; are stochastically increas-
ing with regard to the arrival rates, the service times, and the switch-over times
as well as the ‘limitedness’ of the service at @;, but most of the statements of
such tendency have either been disproved by simple counterexamples or have
lacked proof so far. As one of the scarce results, we establish in Chapter 5 a
stochastic ordering relation for the waiting times in a globally gated polling
system.

1.6 OVERVIEW OF THE MONOGRAPH

We now give an overview of the main results presented in the remainder of the
monograph.

In Chapter 2, we elaborate on the use of decomposition properties to ana-
lyze polling models, in particular discussing the existence of so-called pseudo-
conservation laws for the mean waiting times, cf. (1.7), (1.8). Broadening the
scope somewhat, we also demonstrate the use of such decomposition properties
to study a related model, namely, a queueing system with a customer collection
mechanism.

In Chapter 3, we consider two different single-server polling systems: (i) a
model with zero switch-over times, and (ii) a model with non-zero switch-over
times, in which the server keeps cycling when the system is empty. For both
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models we relate the steady-state queue length distribution at a queue to the
queue length distribution at visit beginning and visit completion instants at
that queue. As a by-product, we obtain a shorter proof of the Fuhrmann-
Cooper decomposition, cf. [103]. For the important class of service disciplines
with a branching structure satisfying Property 1.4.1, we expose a strong rela-
tionship between both the queue length and the waiting-time distribution in
the two models. We also show how the latter relationship can be exploited to
reduce the computational complexity of numerical moment calculations.

In Chapters 4 and 5, we study a polling system with a dormant server, i.e., a
polling system in which the server may be allowed to make a halt at a queue
when there are no customers present in the system. In the polling literature,
the server is usually assumed never to idle, in other words, to be switching
when not working. In particular, the server is assumed to be switching when
there are no customers present in the system. However, quite often there are
very sound reasons for letting the server stop switching when there are no cus-
tomers present in the system, rather than letting the server needlessly circle
around. In Chapter 4, we therefore derive a pseudo-conservation law for a gen-
eral model, permitting a variety of service disciplines, in which the server may
be allowed to make a halt at an arbitrary subset of the queues. We use the
pseudo-conservation law to compare the dormant and the non-dormant server
case. Furthermore, we address the question at which queues the server should
make a halt to minimize the mean total amount of work in the system.

The option of idling especially goes hand in hand quite naturally with the glob-
ally gated service discipline, introduced in Boxma, Levy, & Yechiali [50]. Under
globally gated service, during a tour along the queues only those customers are
served that were already present at the start of the tour, while the service of
customers that meanwhile arrive to the system is deferred until the next tour,
cf. Section 1.3. Thus, as suggested in Boxma, Weststrate, & Yechiali [54], it
does not make sense to start a tour along the queues when there are no cus-
tomers present in the system. In Chapter 5, we therefore focus on a globally
gated polling system in which the server makes a halt at its home base when
there are no customers present in the system. We derive an explicit expression
for the LST of the cycle time distribution, for the LST of the waiting-time
distribution at each of the queues, and for the pgf of the joint queue length
distribution at polling epochs. As a justification of the dormant server policy,
the waiting time at each of the queues is shown to be smaller (in the increasing-
convex-ordering sense) than in the ordinary non-dormant server case.

In Chapters 6 and 7, we discuss several optimization issues in polling systems.
In Chapter 6, we consider a polling system with a k-limited service strategy.
Under k-limited service, when visiting a queue, the server works until either
a prespecified number of customers have been served, or the queue becomes
empty, whichever occurs first, cf. Section 1.3. We are interested in the problem
of determining appropriate values for the service limits that contribute to an
efficient operation of the system. It appears that if we do not impose any con-
straint on the k;’s, then at least one of the optimal k;’s is always infinite. To
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accomplish a bound on the cycle time, we therefore also study a version of the

n
problem with a constraint of the form }_ v;k; < K. We propose four different

=1
approaches to the constrained optimization problem, based on four different
approximations for the mean waiting times, which are extensively investigated
by numerical experiments. Next, we discuss some properties of polling systems
with k-limited service, and establish a (partially conjectured) cu-like rule for
the unconstrained optimization problem. We then propose an approximative
approach to this problem, which is also elaborately examined by numerical ex-
periments. :
In Chapter 7, we consider a polling system operated with a fixed time polling
(ftp) scheme. An ftp scheme specifies which queue should be visited at what
time, i.e., it specifies not only the order of the visits, but also the starting times
of the visits. We are interested in the problem of constructing ftp schemes that
contribute to an efficient operation of the system. Starting from rather simple
approximations, we formulate the problem as a mathematical program. In view
of its NP-hardness, we develop a heuristic method for solving the mathematical
program. The method is tested by numerical experiments.
In Chapters 8, 9, and 10, we consider multiple-queue systems with multiple
servers. In Chapter 8, we consider a system consisting of several customer
types attended by several parallel non-identical servers. Customers are allo-
cated to the servers in a probabilistic manner; upon arrival customers are sent
to one of the servers according to a matrix of routing probabilities. We con-
sider the problem of finding an allocation that minimizes a weighted sum of
the mean waiting times. We expose the structure of an optimal allocation, and
describe in detail for some special cases how the structure may be exploited
in actually determining an optimal allocation. Furthermore, we consider the
problem of finding an optimal deterministic allocation, i.e., an optimal alloca-
tion that involves a 0-1 matrix of routing probabilities. We show the problem
to be NP-hard and indicate how the structure of an optimal non-deterministic
allocation may be used as a heuristic guideline in searching for an optimal de-
terministic allocation.
In Chapters 9 and 10, we consider polling systems with multiple servers, in
which the cooperation, unlike in the situation in Chapter 8, also results in ac-
tual interaction of the servers. So far, there are hardly any exact results known
for such multiple-server polling systems, apart from some mean-value results
for global performance measures like cycle times. In Chapter 9, we consider
systems in which the servers are assumed to be coupled, i.e., the servers always
visit the queues together. Guided by Property 1.4.1, we explore the class of
systems that allow an exact analysis. For these systems, we present distribu-
tional results for the waiting time, the marginal queue length, and the joint
queue length at polling epochs. The class in question includes several single-
queue systems with a varying number of servers, two-queue two-server systems
with exhaustive service and exponential service times, as well as infinite-server
systems with an arbitrary number of queues, exhaustive or gated service, and
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deterministic service times.

In Chapter 10, we consider systems in which the servers are assumed to be
independent, i.e., each of the servers visits the queues according to its own
cyclic schedule. These systems appear to completely defy the derivation of
exact analytical waiting-time results, which motivates the search for accurate
approximations. We derive such waiting-time approximations for systems with
the exhaustive and gated service discipline. The approximations are tested for
a wide range of parameter combinations.

Throughout the monograph, stochastic variables are denoted by capitals and
printed bold. References to the literature are presented as the name(s) of
the author(s), followed by the corresponding index in the reference list or, in
case of repeated occurrence, as the index in the reference list only, omitting
the name(s) of the author(s). The chapters are each divided in a number of
sections. Formulas are numbered per chapter, e.g., formula (2.6) is the sixth
formula in Chapter 2. Assumptions, corollaries, examples, figures, lemma’s,
properties, remarks, tables, theorems, etc. are numbered per section, e.g., The-
orem 4.3.1 is the first theorem in Section 3 of Chapter 4.
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CHAPTER 2

DECOMPOSITION PROPERTIES AND
PSEUDO-CONSERVATION LAWS IN
POLLING MODELS

2.1 INTRODUCTION

Overviewing the recent polling literature, we see a prominent role played by
so-called pseudo-conservation laws, which provide exact expressions for a spe-
cific weighted sum of the mean waiting times, mostly Y p;EW,, cf. Ferguson
=1

& Aminetzah [93], Watson [187]. Although the individual mean waiting times
usually involve extremely complicated expressions, a pseudo-conservation law
typically provides a relatively simple explicit expression, which e.g. depends on
the switch-over times only through the first two moments of their sum. There
are even service disciplines, like Bernoulli service, for which the individual mean
waiting times are completely unknown, but for which a pseudo-conservation law
is still explicitly known. Thus, pseudo-conservation laws provide a useful mea-
sure of the overall system performance. In addition, pseudo-conservation laws
prove to be a valuable instrument for constructing and validating waiting-time
approximations, and for determining the mean waiting times in a completely
symmetric system in a simple manner. Pseudo-conservation-law-based waiting-
time approximations for models with 1-limited service and an arbitrary num-
ber of queues are developed e.g. in Boxma & Meister [51], [52], Groenendijk
[113], Srinivasan [168]. Waiting-time approximations for similar models with
k-limited service are presented e.g. in Chang & Sandhu [66], Everitt [87], [89],
Fuhrmann & Wang [104].

The existence of pseudo-conservation laws is interpreted in Boxma & Groe-
nendijk [42], and further clarified in Boxma [38]. The framework presented by
Boxma & Groenendijk unified and generalized the pseudo-conservation laws ex-
isting until then, and also explained why they existed. In addition, the approach
allows a relatively simple derivation of pseudo-conservation laws, and a prob-
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abilistic interpretation of the various terms occurring in pseudo-conservation
laws. Until then, pseudo-conservation laws were obtained by cumbersome ad
hoc methods, which did not really explain why they existed, and what the
various terms occurring represented.

The key element in the framework presented by Boxma & Groenendijk is the
property of work decomposition, which builds on the fundamental property of
work conservation, and is closely related to the concept of queue length de-
composition, as described in Fuhrmann & Cooper [103]. To illuminate these
concepts, we consider in the present chapter a single-server queueing system,
not necessarily a polling model, with a Poisson arrival process of rate A, a
service time distribution B(-) with LST j3(-) and mean f, and service inter-
ruptions. The service interruptions are assumed to result from some kind of
interfering process that from time to time may keep the server from working,
even when there are customers present. A period during which the server is not
working, because of a service interruption, or because there are no customers
present, will be referred to as a non-serving interval.

The service interruptions may be interwoven with the arrival and service pro-
cess in an arbitrarily complex manner, but may not anticipate on the arrival
and service times of future customers. In particular, the durations of successive
service interruptions are allowed to be dependent.

For now, we abstract from what kind of interfering process causes the service
interruptions. In a performability setting, a service interruption typically rep-
resents a down-period of the system. In the context of polling models, a service
interruption usually corresponds to a switch-over time, or to an intervisit period
with regard to a specific queue, depending upon whether the polling system
in totality is viewed as a system with service interruptions, or just a specific
queue in isolation. Broadening the scope, the service interruptions may also
represent set-up times, shut-down times, reconfiguration times, periods during
which the server performs some secondary tasks, or they may correspond to
some collection or reservation mechanism for customers, on which we will focus
in Section 2.4.

The remainder of the chapter is organized as follows. In Section 2.2, we describe
the property of queue length decomposition for the model under consideration.
Focusing on a specific queue in a polling system in isolation, we indicate how the
queue length decomposition also translates into a decomposition of the waiting
time, as already recognized in Section 1.4, cf. (1.3), (1.4), (1.5), (1.6). In Sec-
tion 2.3, we elaborate on the related property of work decomposition. Applying
it to a polling system in totality, we sketch how the work decomposition prop-
erty leads to pseudo-conservation laws for the mean waiting times, as already
observed in Section 1.4, cf. (1.7), (1.8). In Section 2.4, we demonstrate how
the queue length and work decomposition properties may be exploited in a re-
lated model, namely, a queueing system with a customer collection mechanism.
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2.2 QUEUE LENGTH DECOMPOSITION

Using concepts from the theory of branching processes, under rather mild as-
sumptions, Fuhrmann & Cooper [103] prove the following queue length decom-
position property for the model under consideration:

NgNM/G/l + Ny, (2.1)

with denoting equality in distribution;

N := the queue length at an arbitrary epoch;

Nar/g/1 := the queue length at an arbitrary epoch in the ‘corresponding’
M/G/1 system,;

N := the queue length at an arbitrary epoch in a non-serving interval,
N1 and Ny being independent.

The corresponding M/G/1 system is an ordinary M/G/1 queue with simi-
lar traffic characteristics, but without any service interruptions. To find the
distribution of N, it thus suffices to find the distribution of Ny, as the distri-
bution of Njs/g/1 is simply known from the Pollaczek-Khintchine formula, cf.
[73] p. 238. From a methodological point of view, however, it is usually prefer-
able to analyze the queue length at the beginning and the end of a non-serving
interval rather than to study IN;, the queue length at an arbitrary epoch in a
non-serving interval. Therefore, we now relate the distribution of N; to the
queue length distribution at such embedded epochs. Denote by N® . and

begin
Nf:l)d the queue length at the beginning and the end of the k-th non-serving
interval. Denote by Npegin and Nepq a pair of stochastic variables with as joint

distribution the stationary joint distribution of N® . and N®

begin end’
Lemma 2.2.1

Pr{Nbe in < l} - Pr{Nend < l}

N;=1}= £ =, .
Pr{ ! } ENeng — ENbegin (2 2)
Written in terms of pgf’s, '
E(szegin) —_ E(zNend)

Ny —
E(z ) B (1 - z)(ENend - ENbegin),

|z|<1. (2.3)

Proof

Because of the PASTA property, N has the same distribution as the number of
customers seen by an arbitrary customer arriving in a non-serving interval. In
the first K non-serving intervals, the fraction of customers that see ! customers
upon arrival is

K
kZ_:II{N“" <I<N®) _13

begin="=""end ~
K ’
k
> (Nenh = Niggn)

k=1
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with Ifpy denoting the indicator function of the event E. So, using the law of
large numbers,

K
I K
2 e, et y/
Pr{N; =1} = lim
Koo K (k) _ (8
kgl (Nend - Nbegin)/K
Pr{Nbegin <1< Nepa — 1}
ENend - ENbegin
Pr{Nbegin < I} = Pr{Nena < [}

ENend - ENbegin

as Pr{Nbegin < Nend} =1.

(]

The queue length decomposition property (2.1) only holds if the order of service
is independent of the service times. Consequently, it typically does not hold for
a polling system in totality, but it does hold for each of the queues in isolation,
assuming that the order of service at each of the queues is independent of
the service times. Therefore, we now focus on the queue length at a specific
queue in a polling system in isolation, let us say @;. For the specification
of the arrival, service, and switch-over processes, we refer to the description
of the ‘basic model’ in Section 1.3. (In Section 2.4, we use the queue length
decomposition property to analyze a system where the service interruptions
arise from a customer collection procedure.) The queue length Npegin and
Nend at the beginning and the end of a non-serving interval then correspond
to the queue length Y, at the end and X; at the beginning of a wvisit to Q;,
respectively. Applying (2.1) and (2.3) to Q;, we then obtain

N; £ Nim/a/1 + Ny, (2.4)

an _ _E(Y) —B(X)
Bz = 1 - 2)(EX; - EY,)’

lz]<1, (2.5)

with

N; := the queue length at Q; at an arbitrary epoch;

N;m/c/1 = the queue length at an arbitrary epoch in the ‘corresponding’
M/G/1 queue of Q; in isolation;

N;; := the queue length at Q; at an arbitrary epoch in an intervisit period;
N;m/c/1 and Ny ; being independent.

By (2.4) and (2.5), to find the queue length distribution at @Q; at an arbi-
trary epoch it suffices to find the queue length distribution at Q; at the be-
ginning and the end of a visit, respectively. Note that for the class of service
disciplines that satisfy Property 1.4.1, E(2*¢) = F(1,...,1,2,1,...,1) and
E(zY:) =Gi(1,...,1,2,1,...,1), with z as i-th argument, are actually known.
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We now abstract from the polling context again. If the order of service in the
system with service interruptions is FCFS, then the sojourn time R of an arbi-
trary customer, i.e., the time from its arrival to the completion of its service, is
related to the queue length N (the total number of customers present, includ-
ing a customer possibly in service) at an arbitrary epoch by the distributional
form of Little’s law, cf. Keilson & Servi [125]:

E(zN) = E(e"*1—2)R), |z|<1, (2.6)

provided the sojourn time of customers is independent of arrivals after their
own arrival. _

Similarly, the waiting time W of an arbitrary customer is related to the number
L of waiting customers (excluding a customer possibly in service):

E(zY) = E(e1-9W),  |z]|< 1. (2.7)

Taking expectations in either (2.6) or (2.7) yields the original form of Little’s
law. Combining (2.1) and (2.6), taking A\(1 — z) = w, we obtain the following
sojourn time decomposition:

E(e™®) = E(e™®/¢/M)E((1 —w/M)N'),  Rew >0, (2.8)

with Ry /1 denoting the sojourn time of an arbitrary customer in the corre-
sponding M/G/1 system.

Noting that E(e”“R) = E(e"“W)B(w), we obtain from (2.8) the following
waiting-time decomposition:

E(e™W) = E(e™*WM/e/ME((1 —w/A)N'),  Rew >0, (2.9)

with Wys/g/1 denoting the waiting time of an arbitrary customer in the cor-
responding M/G/1 system.

We now return to the polling setting again. Since the order of service is re-
quired to be FCFS here, the properties (2.6)-(2.9) do not hold for a polling
system in totality, but they do hold for a specific queue in isolation with FCFS
order of service. Applying (2.9) to Q;, using (2.5) and the Pollaczek-Khintchine
formula, cf. [73] p. 255, we obtain

(1= MBiw  E((1-w/M)Y) = E((1 - w/X)*)
w = Ai(1 = Bi(w)) (EX; —EY;)w/\; '
Taking for exhaustive service Y; = 0 and E(zX¢) = E(e~*(1-2)Li) Jeads to

(1.3) and (1.5). Noting that for gated service E(z¥¢) = E(8;(\i(1 — 2))%¢) and
E(2%¢) = E(e~*(1~2)C:) gives (1.4) and (1.6).

E(e™“Wi) =

2.3 WORK DECOMPOSITION

In the previous section, we described the property of queue length decomposi-
tion, and indicated how it also translates into a decomposition of the waiting
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times at the individual queues in a polling system. In this section, we focus on
the related property of work decomposition, and sketch how it leads to pseudo-
conservation laws for the mean waiting times in a polling system, as shown by
Boxma & Groenendijk [42].
Adapting the arguments of Fuhrmann & Cooper, under even milder assump-
tions, Boxma & Groenendijk prove the following work decomposition property
for the model under consideration:

V£ Vyen +Vr, (2.10)
with ‘
V := the amount of work in the system at an arbitrary epoch;
Vg1 = the amount of work at an arbitrary epoch in the corresponding
M/G/1 system;
V1 := the amount of work in the system at an arbitrary epoch in a non-serving
interval;
Va1 and V| being independent.
When the amount of work in a non-serving interval were always zero, i.e.,
Vi =0, (2.10) would reduce to the fundamental property of work conserva-
tion, which in fact holds even in sample-path sense. Note that in a polling
system it is generally not the case that V; = 0, since the server may be switch-
ing when there are customers present.
The work decomposition property still holds if the order of service is not inde-
pendent of the service times, reflecting that in a sense the amount of work in
the system is a less sensitive quantity than the queue length. Consequently, it
holds in particular for the total amount of work in a polling system. Therefore,
we now focus on the total amount of work in a polling system, and show how
the work decomposition property leads to a pseudo-conservation law for the
mean waiting times. For the specification of the arrival, service, and switch-
over processes, we refer to the description of the ‘basic model’ in Section 1.3.
(In Section 2.4, we use the work decomposition property to analyze a system
where the service interruptions originate from a customer collection procedure.)
Applying Brumelle’s formula [60],

EV = Zp,EW +2 ZA 6. (2.11)
=1
From the Pollaczek—Khlntchme formula, cf. [73] p. 255,
> b

EVymign = '(IT_—— (2.12)

p)

Taking expectations in (2.10), substituting (2.11), (2.12), we obtain the follow-
ing relationship for the mean waiting times:

z s 13(2)
Zp,EW =p= 2( 3 +EV]. (2.13)
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When the amount of work in a non-serving interval were always zero, i.e.,
EV; =0, (2.13) would reduce to the property that E p:EW; does not depend

on the scheduling discipline as long as EV; = 0, Wthh is commonly referred
to as a conservation law.

For strictly cyclic polling, Boxma & Groenendijk [42] show that EV may be
determined as follows:

5@

'V $ | 2 E 2‘ E

with Z;; denoting the amount of work left behind by the server at Q; at the
completion of a visit.

Substituting (2.14) into (2.13), we obtain the following relationship for the
mean waiting times:

IRV L

EW, =p=L 4 5 25" 02|+ 5 Bz, (215
Zp Ry 21_p)[p ;p ; (2.15)

n
which is commonly referred to as a pseudo-conservation law, since Y, p;EW;

now does depend on the scheduling discipline through the terms éZ:i. As a
pleasing circumstance however, EZ;; is determined by the service discipline at
Qi only, i.e., not by the service discipline at Q;, j # 1, e.g. [42]:

I. Exhaustive service:

EZ;; =0.
II. Gated service:
2
EZ; = 25
1-p

III. 1-Limited service:

2
pis ;s

EZ;; = — i EW,.
T,

IV. 1-Decrementing service:

PINBPs | Ni(l—py)s
EZ;; = - 20— p) + pi 1=, EW;.

Substituting the above expressions into (2.15) yields the pseudo-conservation
laws, which before were only known to hold in cases with the same service
disciplines at each of the queues.

Here we sketched the derivation of a pseudo-conservation law for a continuous-
time model with strictly cyclic polling and single Poisson arrivals. Without
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seriously complicating the derivation, continuous-time may be replaced by
discrete-time, cf. [44], strictly cyclic polling may be generalized to periodic
polling, cf. [45], or Markovian polling, cf. [53], and single Poisson arrivals may
be generalized to batch Poisson arrivals, cf. [38]. In Chapter 4, we show how a
pseudo-conservation law is derived in case the server may be allowed to make
a halt at a queue when there are no customers present in the system.

2.4 A QUEUEING SYSTEM WITH A CUSTOMER COL-
LECTION MECHANISM

In the two previous sections, we sketched how decomposition properties may
be exploited in the setting of polling models. In this section, we describe how
such decomposition properties may be applied to a related model, namely, a
queueing system with a customer collection mechanism. For a detailed analy-
sis of an aggregated version of the model, we refer to Borst, Boxma, & Combé
[32], [33]. For a generalization and unification of the results, we refer to Boxma
& Combé [40], Combé [76].

The model under consideration consists of n queues, Q1,...,Q@,, attended by
a single server S. For the specification of the arrival and service processes at
the queues, we refer to the description of the ‘basic model’ in Section 1.3. Un-
like in a polling model, where the server periodically visits the queues to serve
(some of) the customers present, here a collector from time to time visits the
queues, picks up (some of) the customers present, and delivers them to the
server where they are served. Collectors are assumed to be sent out according
to a Poisson process of rate <y, independent of the arrival and service processes
at the queues. A collector visits the queues in strictly cyclic order, Q1,...,Qn.
Moving from Q; to @i+1 requires a constant travel time o;, i =1,...,n. Here
0 is to be understood as the travel time from @, to the server. (Note that
the travel time from the origin of the collectors to Q) is irrelevant here.)
Upon arrival at @Q;, the collector instantaneously picks up all the type-i cus-
tomers that have already been present for at least a constant time 7; (e.g.
7; = 0), 1 = 1,...,n. The collectors are assumed to have infinite capacity.
Upon arrival at the server, the collector instantaneously delivers all the cus-
tomers that were picked up. The order of service is assumed not to discriminate
between the various customer types; within the various customer classes the
order of service is assumed to be FCFS.

Conceptually, a batch of collected customers may also be viewed as a single
‘super’ customer. The service time of the super customer comprises the total
service time of the corresponding batch. So a super customer has a zero service
time in case a batch happens to be empty. The arrival epoch of the super
customer coincides with the arrival epoch of the corresponding collector at the
server. Since the collectors have a constant travel time, the super customers
arrive at the server according to a Poisson process of rate v. Focusing on the
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super customers, the model under consideration may thus be viewed as an
ordinary M/G/1 queue, essentially differing however from the standard model
description due to the intrinsic dependence between the interarrival and service
times. Namely, the larger the interarrival time of a super customer, the larger
the corresponding intercollector time, the larger the total service time of the
corresponding batch, and the larger the service time of the super customer. To
be specific, denote by (A, B) a pair of stochastic variables with as joint distri-
bution the joint distribution of the interarrival and service time of an arbitrary
super customer. From [32], [33],

E(e—¢A—wB) = Y Re( >0,Rew >0, (2.16)

Y+ CHAI - BW))

n

with B(w) := 21 %\iﬂi(w), so that Cov(A,B) = A\3/v? with 8 = i %‘"—ﬂi =

1= =1
p/A. In the sequel, we will not really highlight the effects of the dependence
between the interarrival and service times, but the impact is studied in detail
in [32, 33, 40, 76].
For future convenience, we first observe that the collection procedure under
consideration may be equivalently defined as follows. Arriving type-i customers

are first ‘retained’ for a while, and ‘released’ after a constant time 7; + Y o;.
Jj=1

Upon arrival at @;, the collector instantaneously picks up only the released

type-i customers. Moving from @Q; to Q;+; requires no travel time.

Taking the perspective of the last paragraph, we immediately see that at every

epoch the population of released customers is independent of the population of

customers being retained, implying
VLV vE, (2.17)

with

V := the amount of work in the system at an arbitrary epoch;

V* := the amount of work in the system at an arbitrary epoch corresponding
to released customers;

V# := the remaining amount of work in the system at an arbitrary epoch
corresponding to customers being retained;

V* and V# being independent.

The distribution of V# is given by

E(e V™) = exp[- Zn: Ai(1 = Bi(w)) (7 + i”a‘)], Rew > 0. (2.18)
=1

j=i

Denote by V° the amount of work at an arbitrary epoch in the ‘corresponding’
system with a zero-delay collection procedure, i.e., a system with similar traffic
characteristics, but with 0; =0, 7, =0,1=1,...,n.

Observing that the population of released customers in the original system
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evolves similarly as the total population of customers in the corresponding
zero-delay system,

v £ VO (2.19)

As described in Section 2.1, the following decomposition property holds for V©,
cf. [38]:

VO LV an + V9, (2.20)

with

Va1 := the amount of work at an arbitrary epoch in the ‘corresponding’
M/G/1 system without customer collection mechanism, i.e., a system with
similar traffic characteristics, where the customers have immediate access to
the server;

V9 := the amount of work in the zero-delay system at an arbitrary epoch in a
non-serving interval;

Vg1 and V9 being independent.

For future convenience, we first introduce some further terminology. A ‘basic’
non-serving interval is a non-serving interval beginning at the departure of a
super customer that leaves no super customers behind, and ending at the arrival
of the next super customer (which sees no super customers present). Since super
customers arrive according to a Poisson process of rate -y, the length of a basic
non-serving interval is exponentially distributed with mean 1/7. In case the
next arriving super customer (which sees no super customers present) happens
to have zero service time, a number of consecutive basic non-serving intervals
may occur, together constituting a larger non-serving interval. A ‘maximal’
non-serving interval is a non-serving interval that is not strictly contained in
any other larger non-serving interval. Note that the length of a maximal non-
serving interval is no longer exponentially distributed.

The distribution of Vg1 in (2.20) follows from the Pollaczek-Khintchine
formula, cf. [73] p. 255,

—wVnrie/1) = ___g—_/\ﬁ_)_w_
E(e / /)_w—)\(l—ﬂ(w))’ Rew > 0. (2.21)
The quantity V9 in (2.20) may be equivalently defined as the amount of work
in the zero-delay system at an arbitrary epoch in a basic non-serving interval.
Let us say D is the super customer at whose departure the basic non-serving
interval in question started.
The quantity V9 then consists of two independent components, viz.,

VL Vv, (2.22)
with

' := the amount of work that arrived since the departure of D;
V7 := the amount of work that arrived during the sojourn time of D;
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V' and V7 being independent.
For any non-negative stochastic variable T, denote by V(T) the amount of
work arriving to the system during a period of length T, i.e.,

E(e~“V(T)) = E(e~1-AW)T), Rew > 0. (2.23)

The quantity V7 is the amount of work arriving during the past of the basic
non-serving interval in question at the arrival of D. Since a basic non-serving
interval is exponentially distributed, the past of a basic non-serving interval
is also exponentially distributed. So V7 is distributed as the amount of work
arriving during an arbitrary interarrival time A, i.e., distributed as the service
time B of an arbitrary super customer,

12v(A) LB, (2.24)
with, taking ¢ =0 in (2.16),
E(e™“B) = S E— Rew > 0. (2.25)

T+ A1 - W)
Denote by R the sojourn time of D.
VI LZV(R). (2.26)

Substituting (2.19), (2.20), (2.22), (2.24), (2.26) into (2.17), we obtain the
following detailed form of the work decomposition property:

V £ Viyen + V(A) + V(R) + VE (2.27)

We now show how a functional equation may be derived for the LST r(w) :=
E(e™“R), Rew > 0, of the sojourn time distribution of an arbitrary super
customer. ’

Because of the PASTA property,

v*LiR. (2.28)

From (2.19), (2.20), (2.22), (2.24), (2.26), (2.28), we obtain the following de-
composition of the sojourn time of an arbitrary super customer:

R 2 Ve +B+V(R), (2.29)

all three terms in the right-hand side being independent. Note that the waiting
time W and the service time B of a super customer are however not indepen-
dent, due to the dependence between the interarrival and service time. Namely,
the larger the service time, the larger the interarrival time, and the smaller the
waiting time. Hence, although the sojourn time is composed of the waiting
time and the service time, (2.29) does not imply that W < Vuyen + V(R).
In [40] it is shown how the joint distribution of (W,B) may be determined in
a direct manner.
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The sojourn time R of D may be thought of as that of an arbitrary super
customer whose sojourn time is known to be smaller than an exponentially
distributed interarrival time A,

—wRy _ T(Y+Ww)
B ==

Note that r(vy) equals the probability that an arbitrary super customer finds
the server idle upon arrival. Because of the PASTA property, the latter prob-
ability equals the fraction of time that the server is idle, 1 — A8.

So we obtain from (2.21), (2.23), (2.25), (2.29), and (2.30) the following func-
tional equation for r(-): '

) = 0Tl A1 - Bw))
A= B@) 7+ A1 —pw)

We now solve the above functional equation.
Denote

— yw
fw) = oA 1= Bw))’ Rew > 0,

gw) =7+ M1 - B(w)), Rew > 0.

., Rew>0. (2.30)

Rew > 0. (2.31)

Then (2.31) may be rewritten as

rw) = 1@

9(w)
Define
¢ (W) = w, Rew >0,
g®) (W) = g(g* Y (W)), Rew>0,k=1,2,....
Iterating (2.32) K times, we find

r(g(w)), Rew > 0. (2.32)

*) (w
r(w) = r(g®+ (W) H {;E.ZH)((W))) Rew > 0. (2.33)

Letting K — oo in (2.33),

fle®(w
H G +1)((w Rew >0, (2.34)

with w* := Klim g¥)(w). For a proof of the convergence for p < 1, we refer to
— 00

(33], [40].
Putting w = 0 in (2.34),

Hfg( )(0))

FE (2.35)
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Substituting (2.35) back into (2.34),

_ 1 [Fe® W) /f(g®(0))
) = pair [g(k“)(w g%+ (0) ] ’

Rew > 0. (2.36)

Above we showed how the work decomposition property could be exploited to
derive a functional equation for the LST of the sojourn time distribution of
an arbitrary super customer. We now show how similarly the queue length
decomposition property can be applied to find an expression for the pgf of the
joint distribution of the numbers of customers present at an arbitrary epoch.
Similar to (2.17),

(Ny,...,Nu) £ (N,...,N%) + (N¥, ... N#), (2.37)

with

N; := the number of type-i customers present at an arbitrary epoch;

N? := the number of released type-i customers present at an arbitrary epoch;
N? := the number of remaining type-i customers being retained at an arbitrary
epoch;

(N%,...,N*) and (N¥,... N#) being independent.

The joint distribution of (N¥,... N#) is given by

# n n
E(z}\ll . z,{“f) =exp[- Y M(l—z)(ri+ Y 05)], (2.38)
=1 =i

for |z |<1,i=1,...,n

Denote by N* the total number of released customers present at an arbitrary
epoch. Denote by N° the total number of customers present at an arbitrary
epoch in the corresponding system with a zero-delay collection procedure (i.e.
with 0; =0, 7, =0,¢=1,...,n). Similar to (2.19),

N* £ NO. (2.39)

As described in Section 2.1, the following queue length decomposmon property
holds for N©, cf. [103]:

d
N°® = Ny g1+ NY, (2.40)

with

N/c/1 = the total number of customers present at an arbitrary epoch in the
corresponding M/G/1 system without a customer collection mechanism (i.e.
where the customers have immediate access to the server);

N9 := the total number of customers present in the zero-delay system at an
arbitrary epoch in a non-serving interval;

Ny g1 and NY being independent.
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The distribution of Njz/g/; in (2.40) follows from the Pollaczek-Khintchine
formula, cf. [73] p. 238,

E(zNm/en) = (- /\ﬁﬁ()igl_—z;g()\(i )), |z | <1 (2.41)

For any non-negative stochastic variable T, denote by N(T) the total number
of customers arriving to the system during a period of length T, i.e.,

E(N™M) =B IT),  |z]<1 (242)

Substituting (2.40) into (2.39), after decomposing the quantity NY similarly to
the quantity V9 in (2.22), we obtain the following detailed form of the queue
length decomposmon property:

N* £ Nyjep + N(A) + N(R). (2.43)

Since the order of service is assumed not to discriminate between the various
customer types,

N*
. Zn

Bz 1 ") = B(r(z)NY),  |zs|<1,i=1,...,n, (2.44)

with 7 (2) : Z Xizif A
From (2.37), (2.38), (2.44), (2.43), we obtain

E(zfIl coZNn) = E(w(z)NM/G/l)E(W(z)N(A))E(w(z)N(ﬁ)) (2.45)
X exp[— Z (1 —2;) T1,+ZO'J
=1 j=i
for |z |<1,i=1,...,n
From (2.42),
EANWy)=—T1 ;<L (2.46)

Y+ A1-2)’
From (2.30), (2.42),

r(y+ A(1 - 2))

B(N) = ()

) |z]<1, (2.47)

with r(-) as in (2.36).
Thus, E(zN...2N") is completely specified through (2.41), (2.45)-(2.47) and
(2.36). Taking z =(1,...,1,9,1,...,1) in (2.45) with y as i-th argument,

E(y™) = Emi(y) N/ ) E(m: (y) ) (i (y) D) (2.48)

x exp[-Ai(l—y T¢+ZO'J

]~—-’L
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with m;(y) :==1— A1 —y)/ A
Taking \;(1 — y) = w in (2.48), we obtain the following decomposition of the
sojourn time R; of an arbitrary type-i customer:

E(e~“Ri) = E(e—‘"RM/G/l)E(e_wA)E(e_WR) (2.49)

x exp[—w(T; + Z a;)].

j=i

(Recall that within the various customer classes the order of service is assumed

to be FCFS.)

Noting that E(e~“®+) = E(e~“W:)B;(w), we obtain from (2.49) the following

decomposition of the waiting time W of an arbitrary type-i customer:
E(e™“Wi) = _g'((:)) E(e“"wM/G/l)E(e““’A)E(e“"ﬁ) (2.50)

x exp[—w(m; + Z a;)].

j=i



42



43

CHAPTER 3

POLLING SYSTEMS WITH ZERO AND
NON-ZERO SWITCH-OVER TIMES

3.1 INTRODUCTION

In the present chapter, we consider two different single-server polling systems:
(i) a model with zero switch-over times, and (ii) a model with non-zero switch-
over times, in which the server keeps cycling when the system is empty. For
both models, we relate the steady-state queue length distribution at a queue to
the queue length distribution at visit beginning and visit completion instants
at that queue. As a by-product, we obtain a shorter proof of the Fuhrmann-
Cooper decomposition, discussed earlier in Section 2.2. For the important class
of service disciplines with a branching structure satisfying Property 1.4.1, we
expose a strong relationship between both the queue length and the waiting-
time distribution in the two models. We also show how the latter relationship
can be exploited to reduce the computational complexity of numerical moment
calculations.

As described in Section 2.1, polling systems may be viewed as queueing systems
with service interruptions. Focusing on a specific queue in isolation, the ser-
vice interruptions correspond to the intervisit times of the server with regard to
that queue. Accordingly, the concept of queue length decomposition for queues
with service interruptions (cf. Equation (2.1), Fuhrmann & Cooper [103]) has
proven to be very fruitful for the analysis of polling models. It has also led
to the concept of work decomposition in polling models (cf. Equation (2.10),
Boxma [38]), which relates the amount of work in a system with switch-over
times to the amount of work in a system with similar traffic characteristics but
without switch-over times. Note that in the latter case, the switch-over times
constitute the service interruptions. Heretofore, models with switch-over times
and models without switch-over times had usually been treated separately, of-
ten via different approaches; the problem with simply letting the switch-over
times tend to zero in a polling model with non-zero switch-over times is that
the number of polling epochs in an idle period tends to infinity, leading to de-
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generate distributions at such epochs, cf. [140], [86]. The relationship between
the two models has further been exposed in some recent papers of Cooper, Niu,
& Srinivasan [79], Fuhrmann [101], and Srinivasan, Niu, & Cooper [169]; these
authors consider waiting times and queue lengths instead of workloads. In the
present chapter, we unify and generalize some of their results.

Firstly, in Section 3.3, we use a beautiful relation of Eisenberg [84] (see also
[86]), which has received too little attention in the literature, to relate the prob-
ability generating functions (pgf’s) of queue lengths at various instants in the
polling system (visit beginnings and endings, service beginnings and endings).
We observe that this relation, which was presented by Eisenberg [84] for the
case of non-zero switch-over times, also holds for the case of zero switch-over
times, and we show how it almost instantaneously gives a simple proof of the
above-mentioned Fuhrmann-Cooper decomposition for the queue lengths at the
various queues of a polling system.

Eisenberg’s relation leads to an expression for the joint queue length pgf at ser-
vice completion instants at some queue into the joint queue length pgf’s at the
beginning and the end of a visit to that queue. The latter pgf’s can be easily
related, and determined, for the important class of polling models in which the
service discipline at each queue satisfies Property 1.4.1, which we restate here
for the sake of completeness:

Property 3.1.1

If there are k; customers present at Q; at the start of a visit, then during the
course of the visit, each of these k; customers will effectively be replaced in an
ii.d. manner by a random population having pgf hi(z1,...,2,), which may be
any n-dimensional pgf.

Resing [159] (see also Fuhrmann [99]) has studied polling systems that sat-
isfy this property; this includes the case of exhaustive or gated service at all
queues, but it excludes the case of 1-limited service at any queue. As described
in Section 1.4, for this class of polling systems, the joint queue length process
at visit instants of a fixed queue is a so-called multi-type branching process with
immigration. The theory of multi-type branching processes (cf. Athreya & Ney
[13], Resing [158]) thus leads to an expression for the pgf of the joint queue
length process at visit beginning (polling) instants. In Section 3.4, for models
that satisfy Property 3.1.1, we use a slightly adapted version of the results of
Resing [159] to relate the joint queue length pgf’s at visit beginning and visit
ending instants, and then to obtain those pgf’s. The results expose a close sim-
ilarity between the cases with and without switch-over times. In Section 3.5,
we determine the steady-state marginal queue length pgf at Q;, both for the
model with and the model without switch-over times, and we relate the pgf’s
for those two cases; similarly for the waiting-time Laplace-Stieltjes Transform
(LST) at Q;. In Section 3.6, we describe how the results can be exploited for a
very efficient numerical calculation of the waiting-time moments under differ-
ent switch-over time scenarios.
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3.2° MODEL DESCRIPTION

The model under consideration consists of n queues, Q1, ..., Qx, each of infinite
capacity, attended by a single server S. For the specification of the arrival, ser-
vice, and switch-over processes, we refer to the description of the ‘basic model’
in Section 1.3.

The server visits the queues in strictly cyclic order, @1,...,Q,. We consider
two versions of the model. In the first variant, all the switch-over times are
zero, i.e., 0(00) = 1, s = 0, s) = 0. In the other variant, at least one of the
switch-over times is non-zero with some positive probability, i.e., o(0c0) < 1,
$>0,s3 >0 '

In the model with non-zero switch-over times, the server keeps switching when
the system becomes empty. In the model with zero switch-over times, when
the system becomes empty, the server makes a full cycle, i.e., passes all the
queues once, and subsequently stops right before Q1. All this requires zero
time. When the first new customer arrives, the server cycles along the queues
to that customer. The choice of Q; is arbitrary, but for the application of the
theory of multi-type branching processes in Section 3.4, it will be necessary to
fix one position. There we shall discuss this issue in more detail.

We assume the service disciplines to be non-idling, i.e., the server is not al-
lowed to idle when there are customers present. For now, we do not specify the
service disciplines any further.

3.3 THE JOINT QUEUE LENGTH DISTRIBUTION AT
VARIOUS EPOCHS

Eisenberg [84] studies the model under consideration for the case of non-zero
switch-over times and the exhaustive service discipline at all queues (while
briefly discussing the case of gated service at all queues). He considers the
following four quantities, with IN denoting a vector of numbers of customers at
Q1,...,Q, and N a realization:

L;(t, N) := number of service beginnings at @; in (0,t) for which N = N;
M;(t, N) := number of service completions at Q; in (0,¢) for which N = N;
F;(t, N) := number of visit beginnings at Q; in (0,¢) for which N = N;
G;(t,N) := number of visit completions at @; in (0,¢) for which N = N;

In the case of a service or visit completion, the state is defined as what exists
immediately after the departure of the customer.

Eisenberg [84] now makes the crucial observation that each time a visit be-
ginning or a service completion occurs, this coincides with either a service
beginning or a visit completion. Hence,

E(taN)+Mz(t7N) :Lz(taN) +G1(t)N) (31)
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We observe that (3.1) not only holds for the case of non-zero switch-over times
and exhaustive or gated service, but for any service discipline, and also for the
case of zero switch-over times. Define the following equilibrium state probabil-
ities for this polling model:

L;(N) :=Pr(N = N, S is at Q; | service beginning instant);

M;(N) :=Pr(N =N, S is at Q; | service completion instant);

F;(N) := Pr(N = N | visit beginning at Q;);

Gi(N) := Pr(N = N | visit completion at Q;).

Eisenberg [84] divides all four terms in (3.1) by the total number of service

completions at all queues in (0,t), and takes the limit for ¢ — oco. He thus
relates those four equilibrium state probabilities:

Y:Fi(N) + M;(N) = Li(N) + vGi(N).

Here «; is the long-term ratio of the number of visit completions at @; to the
number of customers that are handled by the system; in this cyclic polling
model v; =+, ¢ =1,...,n. Written in terms of pgf’s,

YF;(2) + Mi(2) = Li(z) + vGi(z), (3.2)

for z = (21,...,2n), | 2; |£ 1,7 =1,...,n; here F;(z) and G;(z) denote the pgf
of the joint queue length distribution at visit beginnings and visit completions of
Q;, respectively, while L;(z) and M;(z) denote the pgf of the joint distribution
of queue length vector and server position at service beginnings and service
completions, respectively.

Now Eisenberg observes that M;(z) and L;(z) are related via

Mi(z) = Li(2)B:)_ N (1 = 2)) /=, (3:3)

=1

for |2;|<1,7=1,...,n.
It follows from (3.2) and (3.3) that

VB2 M (L - 7))
M;(z) = Fln
5= B3 2= 5)

[Fi(z) - G,(z)] (3.4)

Eisenberg, considering the variant with switch-over times and exhaustive ser-
vice, subsequently expresses F;(z) into G;—1(z). For the moment we refrain
from that (see Section 3.4), but we observe that formula (3.4) is generally valid
for the class of polling systems described in Section 3.2 (with and without
switch-over times).

Taking z = (1,...,1,y,1,...,1) in (3.4), with y as i-th argument, and dividing
by the probability A;/\ that an arbitrary service completion is at Q;, gives the
queue length pgf at Q; at a service completion instant at Q;. A standard up-
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and down-crossing argument, combined with PASTA, shows that the queue
length distribution at @; at its service completion instants, at its customer
arrival instants, and in steady-state, are all the same. Hence, with N; the
steady-state queue length at @; and with X; and Y; the steady-state queue
lengths at Q; at the beginning and end of a visit at that queue: for |y | <1,

a_ A BN —y))
BN = Sy =B =)

Note that 1/v equals the mean number of customers served per cycle, hence
also the mean number of customers that arrive per cycle: 1/y = AEC, with
EC the mean length of one cycle of S along the queues (a cycle w.r.t. Q; is
defined as the period between the start of two successive visits to @Q;; it is easily
seen that the mean cycle time is the same for all ). Because S spends on the
average a fraction p; of a cycle at @;, we can write:

E@™) - E@yY)] (3.5)

N _ Al —pi)
EX; -EY; = /\1(1 pl)EC = )\7 . (3.6)
From (3.5) and (3.6), for |y | < 1:
By = (1-p)(1-y)BiN(l —y) E(Y) - E@y™) (3.7)

Bi(Mi(1—-y)) —y (1-y)(EX; -EY;)’

The first term in the right-hand side is the pgf E(y™N:1m/6/1) of the queue length
distribution in a ‘corresponding’ isolated M/G/1 queue of Q; with arrival rate
A; and service time distribution LST S;(-). Now consider the second term.
Observe that Y; not only denotes the queue length at @; at the end of a
visit to that queue, but also the queue length at @Q; at the beginning of an
intervisit period for that queue; while X, denotes the queue length at @Q; at
the end of such an intervisit period. Introducing Njj;, a stochastic variable
with distribution the queue length distribution at an arbitrary instant in an
intervisit period of Q;, we have from Lemma 2.2.1:

E(yY+) - B(yX)

BW™) = T 3y EX — BYY)

(3.8)

This relation appears in the polling literature for various special cases (e.g.,
for exhaustive vacation models, where Y; = 0). It holds also for non-Poisson
arrivals, when N;; is defined as the queue length that is observed by an arbi-
trary customer that arrives at @; during an intervisit period.

Together, formulae (3.7) and (3.8) yield the well-known Fuhrmann-Cooper
queue length decomposition [103], applied to a queue in a polling model with
or without switch-over times: for |y | < 1,

E(yN¢) = E(yNam/en)E(yNar), (39)
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Remark 3.3.1
Fuhrmann and Cooper [103] state five conditions under which their decompo-
sition holds:
(i). Customers arrive at @; according to a Poisson process of rate A;.
(if). All customers arriving at @); are eventually served.
(iii). Customers enter service in an order that is independent of their service
times.
(iv). Service is non-preemptive.
(v). The rules that govern when the server begins and ends visit periods to Q;,
do not anticipate future jumps of the Poisson arrival process at @Q;.
These assumptions indeed hold in our polling model, and are implicitly used
in the derivation of (3.9). The above proof, with as key steps (3.1), (3.3) and
(3.8), in fact also holds for vacation models without a polling context. Note
that the relations 1/ = AEC and (3.6) hold generally for queues with some
vacation (intervisit) mechanism. We refer to Keilson & Servi [125] for another
short proof of the Fuhrmann-Cooper decomposition.

a

The waiting-time LST at Q; immediately follows from (3.9), when we assume
that within each of the queues customers are served in order of arrival. De-
note by W, the waiting time of an arbitrary type-i¢ customer. Denote by
Wi m/c/1 the waiting time of an arbitrary customer in the ‘corresponding’
isolated M/G/1 queue of Q;. By the distributional form of Little’s law, cf.
Keilson & Servi [125], similar to equation (2.9) in Section 2.2,

B(e ™) = B(e™Wamron)B((1 - w/A)Nor). (3.10)

In Section 3.5, we shall return to this relation, for the case of polling models
that satisfy Property 3.1.1.

3.4 THE JOINT QUEUE LENGTH DISTRIBUTION AT
POLLING EPOCHS

In the previous section, we have seen that Eisenberg’s results [84] yield sim-
ple relations between the pgf M;(z) of the joint queue length vector at service
completion epochs (or L;(2), at service beginning epochs) and the pgf’s F;(z)
and G;(z) of the joint queue length vector at visit beginning and visit comple-
tion epochs. We now restrict ourselves to polling models for which the service
discipline at each queue satisfies Property 3.1.1. Property 3.1.1 prescribes how
each of the customers present at @Q; at the visit beginning is replaced by in-
dependent families of customers at its visit completion. This enables one to
express G;(+) nicely into F;(-), and to finally determine each of the functions
F;(-) (after which the pgf’s G;(-), M;(:) and L;(-) follow). In our analysis we
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follow Resing [159].

First some words on the ergodicity conditions. In the sequel, we assume that
p < 1 and s; < oo for all <. Resing [159] proves that for the subclass of so-
called Bernoulli-type service disciplines, including exhaustive and gated service,
cf. Section 1.3, these conditions together constitute sufficient ergodicity condi-
tions. His proof is based on the observation that for these Bernoulli-type service
disciplines the derivatives of h;(21, ..., 2,) take the form ?_%éjz_l la=1= Aj0 lf—;i,

1 # 7, %ﬁl |z=1= 1 — a;, with a; some coefficient in (0, 1] determined by the
pa,rameter's of Q;. It may be easily verified, however, that the latter form of
the derivatives applies for any non-idling service discipline that satisfies Prop-
erty 3.1.1 with h;(21,...,2,) # 2;. Since the proof in Resing [159] further does
not rely on the specific form of @;, we may conclude that p < 1 and s; < o0
for all ¢ together constitute sufficient ergodicity conditions for any non-idling
service discipline that satisfies Property 3.1.1 with h;(z1,...,2n) # 2.
Property 3.1.1 implies that

Gi(z) = E-(zl, ... ,zi_l,hi(z),ziﬂ, ey Zn)- (3.11)

In the case of gated service, h;(2) is simply the pgf of the joint distribution of
the numbers of arrivals at all queues during one service time at @;: h;(z) =

Bi( 21 Ai(1 = z).
J=
In the case of exhaustive service, hi(z) = n:(> A;(1 — 2;)), with () the LST
J#i

of the length of the busy period in a ‘corresponding’ isolated M/G/1 queue
of Qi.

Next we relate F;(z) to G;—1(2).

In the case of non-zero switch-over times:

n
Fi(2) = Gima(2)ai-1(Q_ Ai(1 = 7). o (312)
7=1
In the case of zero switch-over times (in the sequel we add a superscript 0
for that case, to distinguish its quantities from those for non-zero switch-over
times):

F(z) = G)_1(2), (3.13)

for i = 2,...,n. The relation between F{(z) and G%(z) deserves special at-
tention, because of our convention, mentioned in Section 3.2, concerning the
behavior of the server when the system is empty. When all queues in the
model with zero switch-over times become empty, S makes a full cycle, and
subsequently stops right before @; (all this requires zero time). When the first
new customer arrives, S cycles along the queues to that customer. The conse-
quence of this is that when the system is empty at the start of a visit to Q1,
then the next visit to @; does not take place until a customer has arrived. We
can write

F(2) = Go(2) - FY (0)[1 - ¢°(2)], (3.14)
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The function g°(-) represents the ‘immigration process’ of the multi-type branch-
ing process: it is the pgf of the arrival process of customers during periods in
which the system is empty.

Remark 3.4.1

Although we shall sometimes find it convenient to concentrate on @1, it should

be noted that our convention for the position of S in an empty system does

not affect the waiting-time and queue length distributions.

In fact, our convention slightly differs from that of Resing [159], who assumes

that when the system is empty, S immediately stops right behind @1, and hence
n

)\.
takes g°(z) = Z X’ fi(2). Our convention enables us to simultaneously apply

=1
the theory of multi-type branching processes and Eisenberg’s approach.
' )

Substituting (3.11) into (3.12), respectively (3.13) and (3.14), we can relate
Fi(*) to Fi—1(-). We distinguish between the two cases of zero and non-zero
switch-over times. In both cases, the following branching functions play a
crucial role, thus establishing the link between both cases.

Define

f(2) = (f1(2), ..., fn(2)), (3.15)
with

fi(z) == hi(21,. .., 2, fix1(2), ..., fn(2)) : (3.16)

for | z; | < 1,5 =1,...,n. This is the offspring pgf, the pgf of the joint
distribution of the numbers of customers at the end of a cycle w.r.t. Q; that
are descendants of a type-i customer. In this branching process setting, a
descendant of some customer K is a customer that has arrived during the
service time of K or of one of its descendants.

Define

fOz) =2,
f®B @)= f(FED@), k21,

for|z;|<1,j=1,...,n.

Case I: Zero switch-over times
Substituting (3.11) into (3.13),

Fz)=F2 (21, 2i—2,hi_1(2), Zi, . . ., 2n) (3.17)
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for i = 2,...,n. Starting from (3.14) and (3.11) for ¢ = n, and subsequently
using (3.17) for i =n,n —1,...,2, one obtains

F(2) = F{(f(2) - FY (O)[1 - ¢°(2)]. (3.18)
Iterating (3.18) yields

oo

FP(2) =1-FP0) Y [1 - ¢°(f® ()], (3.19)

k=0
with
-1

FP0) = |1+ 1= ¢°(FP(0)]
k=0
the infinite sum being convergent when the ergodicity conditions are fulfilled.

Introducing, for | z; | < 1,5 =1,...,n,

H(z) =Y S n - 1P, (3.20)
k=0 i=1
we can write
FFz) =1 —F{’(O)i ) %\i(l - 1P(2) (3.21)
k=0 i=1

1— FY(0)H(z)/,

with
FP0)=[1+HO)/N".

Case II: Non-zero switch-over times
Substituting (3.11) into (3.12),

Fi(2) = Fic1(21, -, Zim2, him1(2), 24, -, 20) 01 (D A1 = 25)). (3.22)
7=1

Applying (3.22) n times (which corresponds to following the server during one
full cycle w.r.t. Qq),

Fi(2) = F1(f(2))9(2), (3.23)
with

9(2) = [T QM -2z)+ Y A= £(2).
e .
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The function g(-) represents the ‘immigration process’ of this multi-type branch-
ing process: it is the pgf of the vector of all customers that either have arrived
in the switch-over periods of the past cycle (measured w.r.t. Q1), or are de-
scendants of such customers.

Tterating (3.23) yields

Fi(z) = J]a(fP() (3.24)
k=0
- ﬁl‘[ ZA 1—f(’°>(z L A= (),
k=01i=1 J=1 J=i+1

the infinite product being convergent when the ergodicity conditions are ful-
filled.

From (3.21) and (3.24) we see that Fj(z) as well as FP(z) is determined by

n
> A1 - f}k) (2)). For constant switch-over times, the connection becomes

even closer, as (3.24) in that case reduces to a simpler expression:

Fi(z) = (3.25)

exp[— zzs,{zx (1= f® ) + Z A1 = ).

k=0 i=1 =1 J=i+1

Using (3.20), we can rewrite (3.25) into

n j-1 .
Fi(2) = exp[-sH(z) + »_\i(1—2) ) _ si]- (3.26)
j=1 i=1

3.5 MARGINAL QUEUE LENGTHS AND WAITING TIMES

In the previous section, the queue length pgf’s Fi(z) and FP(z) at visit be-
ginning instants have been determined for the class of cyclic polling models in
which Property 3.1.1 holds for all service disciplines. In Section 3.3, we already
obtained a decomposition for the pgf of the marginal queue length distribution
at @;, and for the waiting-time LST at @Q);, into a corresponding M/G/1 term
and a term involving E(y*¢) and E(yY+) (via the pgf E(y™N:1)). In particular,
denoting

h(y) —h(l * 7y 1, 1)1

Fy) = F(l oLyl 1)
F"Lo(y) Fo(l ,1,1$ 1)7
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with y as i-th argument, it follows from (3.8) and (3.11) for the case of non-zero
switch-over times that

(1 =y F{(1)(1 - (1))
the same result holds for the case of zero switch-over times, replacing Fi(-) by

FO(-) in (3.27). Similarly indicating queue lengths, and waiting times, by a
superscript 0 in the case of zero times, we find from (3.9) and (3.10):

EQ@Nir) =

BN = (N Fi (@) = Bi@)]F'(1) |
W) =BV B ) ~ PIEQ) (328)
E(e—ww.-) — E( —wWO) [F (h (1 - w/)‘ E(l - w/)\z)]ﬁ‘zm(l) (3‘29)

[FO(Ra(l = w/N)) — B (1 —w/A)FL(L)

For exhaustive service, h;(-) = 1; for gated service, h;(y) = Bi(Ai(1 — v)).
Differentiating (3.10) and (3.29) once, putting w = 0,

Y B s Ry (1)
EW: = 2(1 = Xif:) + F (N (1+hi(1)) - A= RN (3.30)

and

awo o FQ) Ry :
EW,; EWI—[2F;(1)A£ S (1 + R (1)). (3.31)

Let us now (without loss of generality) concentrate on W; and WY. Denoting

) = P, 1,...,1)

(the k-th generation type-1 customer offspring of a type-i customer), it follows
from (3.21) that

F(y) =1-FP(0)H(y)/A, (3.32)
with
H(y) := Z Z Xi(1 - FP () (3.33)
k=0 i=1

In particular, FO'(1) = —F2(0)H'(1)/). 1t follows from (3.24) and (3.33) that
F{(1) = —sH'(1), and hence

F{(1) = FY(1)s\/F2(0). (3.34)
From (3.29), (3.32), (3.34),



54 Chapter 3 Polling systems with zero and non-zero switch-over times

Corollary 3.5.1

E(e_wwfl) Fl(ill(l - w/)\l)) -_ Fl(l —w/)\1)

e-—-wW1 — —= 7 ’
E( ) s[H(h1(1 = w/A\1)) — H(1 —w/A1)]

(3.35)

which for exhaustive service (hy(-) = 1) and gated service (hy(1 — w/A;) =
B1(w)), corresponds to Theorems 2 and 5 in Srinivasan et al. [169], respectively.

For constant switch-over times, it follows from (3.26) that
Fi(y) = exp[-sA(y)], (3.36)

and hence we have from (3.35)

Corollary 3.5.2

E(e™“W1) = (3.37)

E(e _wwo)exp[—sH(hl(l w/A))] - exp[—sH(l —w/A1)]
s[H(h1(1 - w/M)) — H(1 —w/\)]

’

which for exhaustive service (h;(-) = 1) and gated service (A1 (1 — w/\;) =
B1(w)), reduces to Theorems 3 and 6 in Srinivasan et al. [169], respectively.

Remark 3.5.1 Substituting o;(w) = 1 — s;w + o(s;) for s; = 0,i=1,...,n,
in (3.24) yields that

F'1(y)=
DMLY S0 )+ 3 a0 7| ot -
=1 k=0 | j=1 j=1i+1

1 - sH(y) + o(s).

Hence, for s — 0 in (3.35), Wy approaches WY in distribution. Using (3.21)
and (3.29), the same statement follows for other service disciplines satisfying
Property 3.1.1.

0



3.6 Computational aspects 55

3.6 = COMPUTATIONAL ASPECTS

In this last section, we describe how the waiting-time results obtained can be
exploited for a very efficient numerical calculation of the various moments un-
der different switch-over time scenarios. For ease of presentation, we focus on
the first moment, but similar observations hold for the higher moments.

To determine EW; and EWY according to formulae (3.30) and (3.31), we need
to compute the quantities F’ Y(1), FY'(1), FO'(1), and FP"(1). The quantities
R} (1) and hY (1) occurring in (3 30) and (3. 31) may mmply be determined from
the service discipline at Q.

We first introduce some notation. -Denote ¢§’“’ = —4— fi(k)(y)ly_l, 1/1(’“) =
L fPWy=1, i =1,...,n, k = 0,...,00. Define & = S g, =
k=0

2¢"“’,¢—1 o, & _zm,,w _z,\\r
leferentxatmg (3.32), =

) = FO(O Z Z Xl = Fl ©) g, (3.38)

k=0 i=1
) = B0 Sy sym - B0, (3.39)

k=0 i1

Taking z = (y, 1,...,1) in (3.24), differentiating w.r.t. to y,
Fl)y = s Z Z A = s (3.40)
k=0 i=1
) = (ﬁ’l’(l)) +8 Z Z Aipl? (3.41)
k=0 i=1

+

S50 (g or)
k=0 i=1 j=i+1
(f"’l'(l))2 +s¥ + Z (s?) - s?) Xi

=1
" 2
with i = 55 [ 32 050 + 35 AzgltD
k=0 \ j=1 Jj=i+1
From (3.30), (3.31), (3.38)-(3.41), we obtain
AB2 2\1: R (1)
EW)=_"171 1+ R(1) - ——t——, 3.42
20— NBL) o ) 2(1 - R4 (1)) A (3.42)
(522 + 3 (P —sPpi
EW, - EW? = =1 (1 + Ay(1)). (3.43)

S‘I’)\l
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Note that the coefficients ®, ¥, and x;, ¢ = 1,...,n, are completely independent
of the switch-over times. Apparently, the presence of switch-over times always
increases the mean waiting times. That might not be very surprising, but it
should be noted that the (perhaps also intuitively appealing) claim that the
mean waiting times are increasing in the mean switch-over times is known to
be false (cf. Sarkar & Zangwill [160]). We see from (3.43) that, for given s,
the mean waiting times are increasing in the variance of each of the individual
switch-over times, cf. Sarkar & Zangwill [160], in particular being minimal for
constant switch-over times. In the latter case, (3.43) reduces to

EW; - EW? = %(1 + Rl (1)), (3.44)

which illustrates once more that the relationship between the models with and
without switch-over times takes a remarkably simple form for constant switch-
over times, cf. (3.37). The mean waiting times then increase linearly with s,
and for given s, they are insensitive to the individual s;’s, as observed earlier by
Fuhrmann [101] and Cooper et al. [79] for exhaustive and gated service. In this
respect, it is interesting to mention some results for a two-queue model with
exhaustive service at @y and 1-limited service at Qa; (cf. Groenendijk [114];
note that the branching property is now violated): for constant switch-over
times, the waiting-time distributions are still insensitive to the individual s;’s,
given s; but the linearity as displayed in (3.44) no longer holds.

Finally, we observe from (3.43) that, once the coefficients ®, ¥ and yx;, ¢ =
1,...,n have been calculated, the mean waiting times may be determined for
different switch-over time scenarios with very little additional effort, cf. also
Srinivasan et al. [169]. Those quantities ®, ¥, and x;, 2 = 1,...,n, may be
computed as follows. Taking z = (y,1,...,1) in (3.16),

) = (W, FO0) @), S0, (343)
Define T; as the visit time at Q; generated by an arbitrary type-z customer
present at the start of a visit to Q;. Then -2 3% 32-hi(2))2=1 = N ET;, az o 3255 i (2)|2=1

= MANE(T?), j # i, | # i. Define V; as the total visit time at Q; in a cy-
cle. From EV; = EX;ET;, EX; = EY; + \; (1 pi)EC, EV,; = p,EC, EY; =
EX;-2 357 hi i(2)|2=1, it immediately follows that -2 357 i (2)1z=1 = (M =1/B:)ET; +1.
Thus, dlﬁ'erentlatmg (3.45),

gty = Z i(2))s=1 83 + Z a (2= s (3.46)

]—1 j=i+1

= ET; Z)\ ¢(k) + ¢(k)/ET (ﬁ(k)/ﬂz Zn: /\j¢§-k+1) ;

j=1 =141

P = Za—h () + Z ——h (@)=Y (3.47)

_’L+1 .7
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+ ZZ 62‘] h’ (Z |z= 1¢(k)¢(k)

]—ll 1
+ zz 2 az PRl
]~1 1=iy1 I
D S PP SO P
=141 l=1i+1 3
(k ) (k) n
_ Z/\w(k) 1/) i, Z )\w(k+1)
=1 Jj=i+1

+ (ZA ¢(k) + Z A ¢(k+1))

J=1i+1
-1 n
+ ¢§k) [2ZTij¢§k) + Tii¢,(;k) +2 Z Tij¢§'k+1)J )
j=1 j=it+1

with 7 == azi:z;hi(z)lml — MNE(T?).
Summing (3.46) and (3.47) over k = 0,..., 00, we obtain

3, (O] n
F - ](;:r + Z /\j¢§~0) =9, (3.48)
* b =il

and

) (0) 2)
& "/) +E(T X1+§1+ Z )\d)(o) (349)

B: ET; Parri)

with & = kZ:O o |2 Z g + gt +2 3 lnjqﬁgkﬂ) :
=it

Multiplying (3.48) and (3.49) by p;, summing over s = 1,...,n, using ¢§O) =1,
¢,(;0) =0,1=2,...,n, 1/)50) =0,7=1,...,n, we obtain S e

d= 211/1‘3_;1:1, (3.50)
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