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Introduction. 

Before giving an overview of this tract, we will start with a general discussion 
about statistics. An experimenter is usually interested to understand a certain 

observable variable, which we call X. If he is in the circumstance that he is 

able to find deterministic factors, controlled and measured without error, which 

completely determine X, then he has total control over the variable X. In this 

case he does not have to be interested in statistics. 

Fortunately, life is not that perfect. Usually there will be an essential part 
of X which is not understood. A natural approach is now to consider X as a 
random variable with a probability distribution which is a member of a certain 

set in which the knowledge about X is incorporated. Such a set of probability 

distributions is called a model. The experimenter generates now n independent 

and identically distributed random variables X;, i = 1, ... , n, all having the 
same distribution as X, say P, by n times repeating the experiment under 

identical circumstances. He is now concerned with estimating the distribution 

P of X, or a function of P, using the observations X,, and knowing that P 
is an element of the model. The elements which he wants to estimate, P or 

functionals of P, are called parameters and an estimator of such a parameter 

is just a function of the observations X;, i = 1, ... , n. 

In order to illustrate the usefulness of considering a variable of interest as a 

random variable with a probability distribution which lies in a certain model, 

we give the following example (which is well known from text books): 

Example 0.1 (The quiz-master problem). I am the quiz-master. There 

are three doors and I know that behind one of the doors there is placed a car. 

If you guess the right door, then you get the car. You choose one of the three 

doors. To keep the game exciting I open one of the remaining two doors, of 

course one with no car behind it. After having opened such an empty door I 
give you another opportunity to choose a door. Do you change your mind and 

choose the other closed door or do you stick to your first decision? 

For convenience, assume that your first choice was the first door and that I 

opened the second door. The fact that I opened the second door tells you that 

the car is behind the first or third door. However, it tells you more. Assume 
that the car is behind the first door, then I could also have opened the third 

door. On the other hand if the car is behind the third door I had only one 

choice, namely I had to open the second door. Therefore, in order to make 
what you observed, namely that I opened the second door, most likely you 

should change your mind and choose the third door. 

1 



2 Introduction 

Another explanation of why you should change your mind is the following. 

If we play this experiment 1000 times and you always stick to your first decision, 

then you expect to win 1/3 of the 1000 cars. But if you would have changed 
your mind each of these thousand times, then you would expect to win the 

remaining 2/3 of 1000 cars. 
Consider now the case where we have 100 doors and I open 98 doors and 

then ask you if you want to change your mind. Changing your mind this last 

time would give you the car with probability 99 /100. 

In this example we are interested in estimating the parameter B0 , which is the 

number of the door with the car behind it. Then Bo E {1, 2, 3}. Assume you 
chose door 1. Consider the number of the door opened by the quiz-master as 

a random variable X. If we assume that the quiz-master does not open the 

door with the car and the door which has been chosen by you and that he 

has no other preferences for opening a door, then the distribution P of X is 

completely determined by B as follows: 

for all B we have P9 (X = 1) = 0, and 

if B = 1, then P9(X = 2) = P9(X = 3) = 1/2, 
ifB = 2, then P9(X = 2) = 0, P9(X = 3) = 1, 

ifB = 3, then P9(X = 2) = 1, P9(X = 3) = 0. 

Assume that the quiz-master opens the second door; in other words we observe 

X = 2. An intuitively appealing estimator, a function of the observation 
X = x, B(x) of Bo based on the observation x = 2 is obtained by maximizing 

P9(X = 2) over B E {1, 2, 3}; in other words make the observation X = 2 as 
likely as possible. B(x) is called the maximum likelihood estimator of 00 and 
for x = 2 it is given by 0(2) = 3, which agrees with the heuristically derived 

optimal decision in the example. Notice that 0(2) = 3 would be a MLE for 

any distribution P 1 ; so the third door would be the right choice even if the 
quiz-master would have a preference for one of the two empty doors. 

The model in this example was given by {P9 : 0 E {1, 2, 3}}. Models for 
which the distribution is determined up to a finite dimensional vector are called 

parametric models. In this example, the model contains only three elements, 

but is still very realistic; any reasonable quiz-master will open doors which he is 

allowed to open with equal probability and will not spoil the game by opening 

a door with the car behind it. Another nice feature of this three element model 

is that one observation of X makes one element of the model already essentially 
more likely than the others. This is a consequence of the fact that the model 

contains only a few elements. In general we have that the larger the model 
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is, the more observations one needs in order to do some essential statistical 

inference about the probability measure of the data. 

Heuristically, the reader is hopefully convinced that the maximum likeli­
hood estimator in this example is the only correct estimator to use. Formally, 

this requires a notion of efficiency of estimators. Firstly, one needs a criterium 

to judge the performance of an estimator. For example, as criterium one might 
take the supremum over all possible distributions of the data of the expectation 

(under such a distribution) of the squared difference between the estimator and 

the parameter. Now one establishes a lower bound on the performance w.r.t. 

this criterium and one calls an estimator efficient if it attains this bound. The 

lower bound is only interesting if it is achievable, i.e. if it is the greatest lower 
bound. For establishing the lower bound for a certain criterium one can decide 

to restrict oneself to a class of estimators with certain properties. For example, 

one can restrict oneself to the class of unbiased estimators and as criterium take 
the variance of the estimator. Then the variance of such an unbiased estimator 

is always larger than or equal to the well known Cramer-Rao bound. A nice 
feature of the Cramer-Rao bound is that the bound can be derived for each 
number of observations. However, most estimators are not unbiased; unbiased 

(for each possible P) estimators often do not even exist. So far there has not 
been developed a general finite sample efficiency theory for a more interesting 

class of estimators than just the class of unbiased estimators. Instead one re­

stricts oneself to "asymptotically (number of observations converges to infinity) 
unbiased" estimators which are known to converge at y'n-ratein distribution 

and then establishes the Cramer-Rao bound for the variance of the limit dis­

tribution. An estimator is now called asymptotically efficient if it attains the 
Cramer-Rao bound in the limit. 

In parametric models an asymptotic efficiency theory based on this Cramer­

Rao lower bound has been developed. This efficiency theory has been gener­
alized to all models, not only parametric models. For parametric models it 

has been shown that under some natural assumptions this Cramer-Rao bound 

is attained by mazimum likelihood estimators or modifications thereof. For 

a literature overview and description of a general efficiency theory we refer 

to Bickel, Klaassen, Ritov and Wellner (1993). The for us relevant theory is 
summarized in chapter 1. 

In many experiments one observes random variables X which are hardly 

understood. For example, one might be interested in the life-time X of a 

patient with a completely new and thereby unknown disease. In this case 

the experimenter does not want to make any essential assumptions on the 
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distribution P of X, because each assumption would be a guess. In this case 

the model would consist of all probability distributions or a set which lies dense 

in this set, where dense is in the sense that the models cannot be statistically 

distinguished. We call such a model a nonparametric model. Suppose that the 

experimenter observes n identically and independent lifetimes Xi, ... , Xn of 
such patients. A natural estimator of P is now the empirical distribution 

Pn(X EB) = the fraction of Xi which fall in B. 

If we subtract from Pn(B) its expectation P(B), then we have an average 

of n i.i.d. random variables IB(Xi) - P(B) with mean zero, where IB(·) is 
the indicator of the set B. The central limit theorem tells us that such an 

average multiplied with ,,/ii converges in distribution to the normal distribution 
with mean zero and variance equal to the variance of IB(X). The empirical 

distribution is for this nonparametric model also an efficient estimator of P 

with respect to a generalized Cramer-Rao lower bound. 

A great deal of literature is concerned with the so called uniform central 

limit theorem, where uniform is concerned with uniform in a collection of sets 
B and, more generally, uniform in any class of i.i.d. random variables, instead 

of only indicators IB(Xi), In this theory one considers Pn as a random element 
of a space of real valued functions. 

This so called empirical process theory solves the problem of proving ef­

ficiency of estimators of parameters in nonparametric models to satisfaction, 

using the fact that nice parameters are smooth functionals of P and thereby 
inherit all properties of the empirical distribution. For an overview of the em­

pirical process literature we refer to Wellner (1992). The for us relevant theory 
will be summarized in chapter 1. 

It is not surprising that there is a large remaining area between parametric 

models and nonparametric models. We call each model which belongs to nei­
ther of them a semiparametric model. There exists an abundance of interesting 

and natural applications which are described by semiparametric models. Con­
sider for example the following problem. One observes a random variable X 

and one knows that X is a known function of a random variable Y which has 

a completely unknown distribution. Here the distribution of X has a special 
structure induced by the known function. Therefore the model corresponding 

with X will often be essentially smaller than the nonparametric model con­

sisting of all probability measures. Consequently, one should not be satisfied 
anymore with the empirical distribution Pn as an estimator of the distribution 

of X. Pn might even not be a member of the model, which already explains 
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that one can do better. 

An important class of models which can be described in this way are the 
missing data models. Here one is interested in a certain random variable X 

with unknown distribution, but because of a certain irrelevant (random) factor 

one is only able to observe that X falls in a certain region; so each observation 

tells you something about the value of X but it does not have to determine 

X completely. In this case the observation can often be described as a known 
many to one mapping on X and the irrelevant factor. 

Overview. 

We close this section with a short overview of this tract. In the next chapter 
we will give an introduction to existing relevant theory which forms a basis for 

this tract: weak convergence theory, empirical process theory, efficiency theory 

ans some multivariate techniques. The rest of the tract consists of two parts: 
chapter 2, 3, 4 and 5 form the first part and chapter 6, 7 the second part. 

The first part covers general efficiency theory for maximum likelihood esti­

mators (MLE) and applies this theory to a general class of missing data models 

and two interesting applications. In chapter 2 we present a method for proving 

efficiency of MLE. The method is applicable to all models. In this theory a lot 
of significance occurs if the model is convez, which means that if one moves 
along a straight line from one element to another element of the model, then 

one does not leave the model. Using this convexity we establish a useful iden­

tity for MLE which in a straightforward manner provides us with consistency, 

efficiency and validity of the bootstrap under minimal conditions. The theorem 
can be trivially extended to all kinds of modifications of MLE. 

Many semiparametric models are convex. In chapter 3 we apply this ef­

ficiency theory for convex models to MLE in a general class of missing data 

models and illustrate it with several examples. Moreover, in chapter 4 and 5 

we successfully apply this theory to the bivariate censoring and line segment 

model, which are models where the standard approaches based on the self­

consistency equation require too strong conditions. For the bivariate censoring 

model we propose and prove efficiency of a MLE which is based on a slight 
reduction of the data. 

For reading chapter 2 one only needs to read the empirical process theory 

section and efficiency theory section of chapter 1. The general structure of the 

efficiency proofs in chapter 3, 4 and 5 are applications of the main theorems 

presented in chapter 2, but except for this the three chapters are self-contained 

and can be read independently of each other. 
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In the second part of the tract we study the construction of interesting 

inefficient estimators in the bivariate censoring model and analyze them by 

considering the estimators as functionals of the empirical distribution and es­

tablishing the required differentiability of these functionals. These estimators 

are especially interesting because they are easy to compute, have a good prac­

tical performance, and are very robust to changes of the distribution where we 

sample from so that the bootstrap works well. In chapter 6 we use the gen­

erally applicable functional delta-method in order to give full analyses of three 

explicit estimators. This chapter is joint work with Richard Gill and Jon Well­

ner. In chapter 7 an ad hoc modification of a MLE ( a so called M -estimator) 

for the bivariate censoring model, using density estimators, is analyzed by ap­
plying the implicit function theorem and a refinement of the usual functional 

delta-method as used in chapter 6. 

For chapter 6 and 7 one only needs to read the functional delta-method 

section of chapter 1 and chapter 6 and 7 can be read independently. 

We refer to our notation index at the end of this book. We have grouped the 

notation, which is all introduced in the next chapter, in the following categories: 

general, weak convergence theory, empirical process theory, efficiency theory. 



Chapter 1 

Basic Theory 

1.1 Weak convergence in non-separable metric 
spaces. 

In our applications we will consider estimators as random elements of a Ba­

nach space of functions. Suppose that (D, II · II) is such a Banach space, 

(Xn, An, Pn)n~o is a sequence of probability spaces, and 

Xn : Xn -+ D, for n = O, 1, 2, ... are arbitrary maps. 

We endow D with the Borel sigma-algebra; the smallest a-field containing the 
open sets and which makes each continuous real valued function measurable. 

For many interesting applications it is natural to consider Xn as an element 

of a non-separable space. In this case the Borel-sigma algebra is often very large 

and therefore Xn will usually not be measurable. On the other hand, for all 

known applications the limit random variable X 0 lies in a separable (sub)space 

and thereby will be measurable w.r.t. the Borel sigma-algebra, except for some 

pathological cases. 

Because we are only concerned with the asymptotic behavior of Xn, only 

"asymptotic measurability" should be relevant. Indeed there exists a powerful 

weak convergence theory for non-separable spaces without giving up the Borel 

sigma-algebra, but giving up that Xn induces a distribution on the Borel-sigma 
algebra. In the definition of weak convergence as used in Pollard (1984), which 

also generalizes the traditional definition of Billingsley (1968), D is endowed 

with that (often closed-ball) sigma-algebra which makes Xn measurable and 

thereby makes probabilities for Xn of events in this sigma-algebra well de­

fined. In the modern theory with the Borel sigma-algebra expectations and 

7 



8 Basic Theory 

probabilities for Xn are replaced by outer expectations and outer probabilities. 

This weak convergence theory is due to Hoffmann-J{Zlrgensen (1984) and Dud­

ley (1985) following an evolution from Dudley (1966) and Wichura (1968) and 
is presented in full details in van der Vaart and Wellner (1995). 

Let (n, A, P) be a probability space and f : n -+ IR is an arbitrary function. 

If f is measurable we define Pf = J fdP. An outer expectation is defined as 

follows: 

P* f = inf{Ph = j hdP: f ::=;hand his measurable}. 

Similarly, we define outer probability: 

P*(A) = inf{P(B): B::) A, BE A}. (1.1) 

It can be verified that P* f =Pf* and P*(A) = P(A*) for a certain measurable 
f* and measurable set A*. In other words, the infimum in the definition of outer 

expectation and outer probability is attained. 

Let Cb(D) be the collection of bounded, continuous functions h from D to 
IR. 

Definition 1.1 We say that Xn converges weakly to a Borel measurable ran­

dom element Xo in (D, II· II), and write Xn:&.Xo, if for every h E Cb(D), 

P:h(Xn)-+ Poh(Xo) = j h(Xo)(x)dPo(x), as n-+ oo. 

As can be straightforwardly verified a heuristically appealing equivalent char­

acterization of weak convergence is given by: 

lim P*(Xn EA)= P(Xo EA) 
n-oo 

for every Borel set A with P(Xo E 8A) = 0. We say that X0 is tight if for each 

e > 0 there exists a compact set K so that P(Xo EK)> 1- e. 

As usual define 

L2(P) = {f: (n, A, P)-+ IR: f measurable and j f 2dP < oo }, 

which is endowed with the Hilbert space inner-product norm llfllP _ 
JU, f}p = J J f2dP. Let :F C L2 (P). Estimators can often be considered as 
a random element of (i.e. this is our space D) 

def 
100 (:F) = {H: :F-+ IR: IIHll.:F = sup I H(f) I< oo} 

JE:F 
(1.2) 
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for some class :F C L2 (P). Let Xn : (Xn, An) --+ £00 (:F) for a certain class of 

functions :F C L2 ( P). Given X : ( X, A) --+ £00 ( :F) we consider the following 
semi-metric on :F 

Px,P(f,g) = J (X(f) - X(g))2 dP. (1.3) 

Xn is called asymptotically uniformly Px,p-equicontinuous in probability if for 
every £, 1J > O, there exists a 6 > 0 such that 

limsupP* ( sup J Xn(f) - Xn(g) J> £) < 1]. 
n .... oo px,P(/,g)<6 

(1.4) 

A Borel measurable map X in 100 (:F) is called Gaussian if each of its finite di­

mensional marginals (X(/1 ), ... , X(fk)) has a multivariate normal distribution 

on Euclidean space. 
By using a similar proof as the proof of the Ascoli-Arzela theorem, which 

gives conditions under which a pointwise convergent sequence converges also 

uniformly, the following important theorem can be proved: 

Theorem 1.1 A sequence Xn converges weakly in £00 (:F), :F C L2 (P), to a 

tight Gaussian process X if and only if 

• the finite dimensional marginals of Xn converge weakly to the correspond­

ing marginals of X; and 

• Xn is asymptotically Px,p-equicontinuous in probability. 

If Xndb.X, then one might hope that the weak convergence of 'smooth' 
functionals of Xn is preserved, in order not have to verify the weak conver­

gence for each special application. The following theorem tells us that weak 

convergence is preserved under continuous mappings, where the mappings are 
allowed to depend on n. 

Theorem 1.2 (Extended continuous mapping theorem). Let ( D, d) and ( E, e) 

be metric spaces. Let Dn C D and Yn : Dn --+ E satisfy: if Xn --+ x with 

Xn E Dn for every n and x E Do, then Yn(xn) --+ g(x), where Do C D and 

g : Do --+ E. Suppose that X E Do and g(X) are Borel measurable and 
separable. 

Then Xn:fb.X, Xn E Dn, implies that gn(Xn):fb.g(X). 

When applying this theorem it is effective to choose Dn as small as possible by 

putting all known properties of Xn in Dn. Then for showing Yn(Xn):fb.g(X) 

we only have to verify the convergence gn(xn)--+ g(x) for sequences Xn E Dn. 
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1.2 Empirical processes. 

Let X 1 , ... , Xn be a sample of i.i.d. random elements in a measurable space 

(X, A) each with law P and let Pn be the empirical measure which puts mass 

1/n on each X;, i = 1, ... , n. For a collection :F of measurable functions 

f ; X -+ IR consider the map from :F to IR given by 

We will consider Pn = (Pnf ; f E :F) as a random element of £00 (:F). The 

normalized version of this map is the :F-indexed empirical process given by 

1 n 

f-+ Gnf = v'n(Pn - P)f =fa~ (f(X;)- Pf). 

For a given function off one has the law of large numbers and the central limit 

theorem 

(1.5) 

provided Pf exists and P J2 < oo, respectively. 

Empirical process theory is concerned with making these statements uni­

form in f varying over a class :F. For a nice literature overview we refer to 
Wellner (1992) and for a self-contained presentation we refer to van der Vaart 

and Wellner (1995). 

The uniform version of the law of large numbers becomes 

as• IIPn - Pll:F .:..+ 0. 

With a.s.* we mean that the convergence is outer almost surely; there exists a 

measurable set with P-measure zero so that the convergence holds outside this 

set. A class for which this is true is called a P- Glivenko Cantelli class. 

For the uniform version of the central limit theorem it is assumed that 

:F C L2(P) and 

sup I f(x)- Pf I< oo, for every x. 
Je:F 

Under this condition the empirical process ( Gnf; f E :F) can be viewed as an 

element of £00 (:F). Consequently, it makes sense to investigate conditions under 

which 
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where the limit G is a tight Borel measurable element in 100 (:F). Then we 

say that the uniform central limit theorem holds at P. Classes :F for which 

the uniform central limit theorem at P holds are called P-Donsker classes. 

Because :F C L2 (P) the multivariate central limit theorem characterizes the 

finite dimensional distributions of G uniquely: 
D (Gnfi, ... , Gnfk)~N(0, E), 

where the k x k matrix E has (i,j)-th element P(f; - Pf,)(/j - Pfi). A 
tight Borel measurable random element is completely determined by its finite 

dimensional distributions. Consequently, if the weak convergence holds, then 

G = Gp is completely determined. Gp is called the P-Brownian Bridge. 

Notice that PG,P(f, g) as defined in (1.3) equals 

pp(!, g) = J ((f- g) - P(f - g))2 dP. 

If :Fis a P-Donsker class, then by theorem 1.1 we know that Gn is asymptoti­

cally pp-equicontinuous: for On ! 0 
p• 

JJGnllF = sup I Gn(h) I-+ 0, 
6n hEF6n 

(1.6) 

where 

:F6 = {f- g: f,g E :F,pp(f,g) < 8}. (1.7) 

Notice that we suppressed the dependence on P in the notation :F6. In fact 

theorem 1.1 and the multivariate C.L.T. tells us that condition (1.6) is sufficient 

for :F C L2(P) to be a P-Donsker class. 

Weak convergence can be metrized with a metric d so that weak convergence 

of Gn,P = ,,fii,(Pn - P) in £00 (:F) to the Brownian Bridge Gp is equivalent with 

d( Gn,P, Gp) -+ 0. We call :F Donsker uniformly in P E M for a certain 

collection of probability measures M if this convergence is uniform in P EM. 

It is not surprising that if :F is uniform Donsker in P E M, then we have 

pp-equicontinuity uniformly in PE M: for On ! 0 

sup IIGn,PIIF ~ 0. (1.8) 
PEM 6 n 

One might hope that an empirical process indexed by a uniform (in M) Donsker 

class :F based on sampling from a sequence p(n) EM which "converges" to P 
converges weakly to Gp. This statement can be made precise as follows. 

For each n let Xni, •.. , Xnn be i.i.d. with probability measure p(n) and let 

Pn be the corresponding empirical measure. Define 

Gn,P(n) = yn(Pn - p(n)). 
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Theorem 1.3 (Sampling from approximating measures). Assume that :F is 

Donsker uniformly in {P(n)}. Moreover, suppose that Pp(n) converges uni­

formly to pp in the sense that 

sup IPp(n)(/,g)- pp(f,g)I-+ 0 
J,gE:F 

(1.9) 

and that the marginals of Gn,P<"> converge in distribution to the marginals of 

Gp, the P-Brownian Bridge. 
D 

Then Gn,P(n)~Gp. 

For establishing the convergence of the marginals the following lemma is useful. 

The lemma is proved in Bickel and Freedman (1981) and uses the Mallows­

metric (Mallows, 1972). 

Lemma 1.1 Suppose p(n)(J - p(n) 1)2 -+ P(f - P 1)2 and f(X(n))db f(X), 
x(n) ~ p(n), X ~ P. 

D 
Then Gn,P<,.>f~Gpf. 

Let F = sup/e:F If I be the so called envelope of :F. For the case that p(n) is 

just the empirical measure Pn based on an i.i.d. sample X 1, ••• , Xn of P, we 
have the following theorem due to Gine and Zinn (1990): 

Theorem 1.4 (Empirical Bootstrap). Gn,P,.dbGp given almost all sequences 

X1, X2, ... if and only if :F is Donsker and P F 2 < oo. 

1.2.1 Uniform Donsker classes and some basic multivari-
ate techniques. 

In this tract we will consider several multivariate models in the sense that the 

i.i.d. observations are multivariate vectors and therefore we will be concerned 

with estimation of a multivariate distribution function. For these applications 

we need that the following classes are uniform Donsker. 

Example 1.1 (Indicators). For a, b E lR2 we use the partial ordering; a< 
b <=> (a1 < b1) /1. (a2 < b2) and a ~ b <=> (a1 ~ b1) /1. (a2 ~ b2). We denote the 
indicator of the rectangle (a,b] = {c: a< c ~ b} C lR2 with I(a,b], which is a 
function from lR 2 -+ JR. Define 

:F = {I(a,b]: a,b E lR2,a < b}. 

This is a Donsker class uniform in all probability measures on lR2 • The same 

holds for [a, b), (a, b), [a, b] and for the general lRk case. The class of real 

valued functions on lR with variation smaller than M < oo is a generalized 
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convex hull of indicators and therefore it is also uniformly Donsker ( see van der 

Vaart and Wellner, 1995). 

Example 1.2 (Uniformly bounded uniform sectional variation). Let 

[O, r] C JR.2 be a fixed rectangle. Let f : [O, r] _. JR, be a real valued bivariate 

function on [O, r]. The generalized difference off over (a, b] is defined as 

The variation norm off, which will be denoted with 11/llv, is defined as the 
supremum over all lattice (rectangular) partitions of [O, r] of the sum of the 

absolute values of the generalized differences of f over the elements of the 
partition; let {A;,;} be a collection of disjoint rectangles forming a lattice­

partition of [O, r], then 

11/llv = sup L I f(A;,j) I • 
{A,,;} i,j 

If 11/llv < oo, then we say that f is of bounded variation. We will say that 
/ : [O, r] _. JR, is of bounded uniform sectional variation if 

II/II:= max (11111 00 , llfllv, s~p llv _. f(u, v)llv, s~p llu _. f(u, v)llv) (1.11) 

is finite. Define the bivariate cadlag function space D[O, r] as in Neuhaus (1971): 

Definition 1.2 D[O, r], [O, r] C JR.2, is the vector space of bivariate functions 

/ : [O, r] _. JR, for which (with f(s+, t) we mean lim,,.!,,•,.>• f(s, t)) 

f(s,t) = f(s+,t+) = f(s+,t) = f(s,t+), 

and for which f(s-, t+ ), f(s-, t-) and f(s+, t-) exist. 

The k-variate case is a trivial generalization of this definition (Neuhaus, 1971). 

Define now for any O < M < oo: 

FM= {f E D[O, r]: 11/11: ~ M}. 

FM is a Donsker class uniform in all probability measures on [O, r]. 

We prove this by applying the continuous mapping theorem 1.2. Let P be a 

probability measure on [O, r] and let Pn be the empirical distribution. Then, by 

example 1.1, Gn(·) = fo(Pn - P)(O, ·] E (D[O, r], II· 1100 ), the empirical process 
indexed by rectangles (0, ·], converges weakly to the P-Brownian bridge G(•). 
Define 
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where J f dG is defined by integration by parts if G is not of bounded varia­
tion (as shown below). For proving that :FM is P-Donsker we need to show 

that 41(G,.):£..41(G) as elements in 100 (:FM)• For this purpose we apply the 
continuous mapping theorem to 41. We already have the weak convergence of 
G,. E D[O, r] to G. It remains to prove the required continuity of 41: 

sup I/ fd(G,. - G) I-+ 0 
JEFM · 

(1.12) 

for all sequences G,., with IIGnllv < oo and which converge in supnorm to 
G. This is proved by applying integration by parts as we will show now. 
Hildebrandt (1963, p. 108) provides us with: 

Lemma 1.2 Let f: [O, r] C m.2 -+ m. be cadlag and of bounded variation, then 

f(0, x] = (/1 - h)(O, x], 

where / 1 , h generate positive finite measures on the Borel sigma-algebra on 

[O, r]. 

Now, Fubini's theorem provides us with the following integration by parts for­
mula for 2 bivariate cadlag functions which are of bounded variation (and 

thereby by lemma 1.2 generate signed measures): 

Lemma 1.3 (Integration by parts). Let f, g E D[0, r] and II/II: < oo, llgllv < 
00. 

J;J~ f(u,v)g(du,dv) = J;J~ g([(u,s) x (v,t)])f(du,dv) 

+ J; g ([u, s] x (0, t]) f(du, 0) + f~ g ((0, s] x [v, t]) f(0, dv) 

+ f(0, 0)g ((0, s] x (0, t]). 

Proof. We refer to (Gill, 1992) for the general m." case. It works as follows. 
Substitute 

f(u,v)= f f(du',dv')+ f f(du',0)+ f f(0,dv')+f(0,0) 
lco,u]x(O,v] lco,u] lco,v] 

and apply Fubini's theorem. D 

Notice that with these formulas we can also define these integrals for g of 
unbounded variation and that if Fis zero at the bottom edges of [0, r], then 
only the first term on the right hand-side is non-zero. With this integration by 

parts formula we can bound J fdg by l6llgll00 11/11:- So we have the following 
lemma: 
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Lemma 1.4 Let f and g be two bivariate cadlag functions ans suppose that 

llfll: < oo. Then 

r fdg :'.5: 1611/11:llglloo· 
J[o,r] 

Now, (1.12) follows from lemma 1.4 by setting g = Gn - G, which proves 
that :FM is a P-Donsker class. The uniform Donsker class property is proved 

similarly. 
The following lemma is useful: 

Lemma 1.5 Let f: IR.2 --+ IR. If IIJII; < oo and f > 6 > O, then Ill/ /II: < oo. 

The proof requires some combinatorial arguments following directly from the 

definition (1.10) of 11 · llv (it is sketched for general k in Gill, 1993). 

With the straightforward extensions of the definitions of IIJII: and of D[O, r], 
it is proved in the same way that the k-variate analogue of :FM is also uniformly 

Donsker (see Gill, 1992). We enforced the functions in :FM to be cadlag in 

order to guarantee that integrals w.r.t. f E :FM are well defined; according to 

Hildebrandt (1963) this is not necessary if the integrand satisfies some weak 

continuity conditions. 

Finally, we state the following lemma. 

Lemma 1.6 (Telescoping). Let a;, i = 1, ... , k, b;, i = 1, ... , k be real num­

bers. 

k k k j-1 k 

II a; - II b; = I: II a;(a; - b;) II b;. 
i=l i=l j=li=l 

It can be easily verified (compare with the product rule for differentiating a 

product of functions) and it holds also for matrices (see Gill and Johansen, 
1990). It is a very useful lemma for proving that differences of two products 

converge to zero and that is what we often have to do in differentiability proofs. 

1.3 The functional delta-method. 

Let Pn be the empirical measure based on an i.i.d. sample from P. Suppose 

that :Fis a P-Donsker class. Then we know that Gn,P = ,,/n(Pn-P).Jb.Gp as 

random elements of £00 (:F). Suppose that we are interested in estimating <I>(P) 
for a certain functional <I>. In large semiparametric and nonparametric models a 

natural and good estimator of <I>(P) might be <I>(Pn), assuming it is well defined. 

A question which naturally arises is if ,,fii(<I>(Pn)-<I>(P)) also converges weakly, 
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just as Gn,P• The following theorem, the so called functional delta-method, 

which answers this question (by setting Zn = Gn,P, Z = Gp, Fn = Pn and 
F = P) is an immediate consequence of the extended continuous mapping 

theorem 1.2 by applying it to gn(Zn) = ,vn(~(F + (1/vn)Zn) - ~(F)): 

Theorem 1.5 (Functional delta-method). Let~: D,p C (D, 11·1I)-+ (E, 11·111), 

where (D, II· II) and (E, II· 11 1) are normed vector spaces. Endow D and E with 
the Borel sigma-algebra. 

Suppose that Dn, Do, D,p CD are so that Fn, FE D,p,· Zn= ,vn(Fn - F) E 

Dn; Z E Do, Do separable and 

1. Zn.Jb.Z in (D, II· II), where Z is Borel measurable. 

2. ~ satisfies the following differentiability property: if hn = ,vn( Gn - G) -+ 
h, Gn, GE D,p, with hn E Dn and h E Do, then 

(1.13) 

for a certain continuous linear mapping d~(G): Do C (D, II· II)-+ (E, II· 
111)-

Then 

The delta-method formulated in this way, by using that the differentiability 

only has to be verified for sequences hn E Dn, is essentially more convenient 
than the usual formulation in terms of Hadamard-differentiability tangentially 
to a subspace: see Gill, 1989, Reeds, 1976, van der Vaart and Wellner (1995) 

and Wellner (1993). We will sometimes refer to the differentiability property 
1.13 as compact differentiability, meaning (1.13) for an appropriate choice of 
Dn. For a discussion about the utility of the functional delta-method for an­
alyzing estimators and also for obtaining its asymptotic variance we refer to 
chapter 6. 

Let's proceed with our example. Assume that~ satisfies the differentiability 
property (1.13). Then application of.theorem 1.5 provides us with: 

The limit random variable d~(P)(Gp) is often unknown because we do not 
know P. In order to estimate the distribution of ,vn(~(Pn) - ~(P)) we can 
use the bootstrap; let p(n) be an estimator of P and suppose that by using 
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(e.g.) theorems 1.3 or (if p(n) Pn) theorem 1.4 we establish Gn,P(n) = 
,.,/n (1\ - p( n)) -:db,.c p for almost all sequences X 1, X 2, ••• , then we estimate 

the distribution of vn,( <I>( Pn) - <I>( P)) with the distribution of ,.,fii,( <I>( pn) -
<I>(P(n))), given p(n). 

The following theorem tells us that if we are able to verify (1.13) uni­

formly in p(n), then the bootstrap works asymptotically for almost all se­

quences X 1 , X 2 , •• •• Again, the theorem is an immediate consequence of the 

extended continuous mapping theorem. 

Theorem 1.6 Let <I> : D,j, C (D, II· II) --+ (E, 11 · 11 1 ), where (D, II· II) and (E, II· 
11 1) are normed vector spaces. Endow D and E with the Borel sigma-algebra. 

Suppose Dn, Do, D,j, CD are so that F'n, Fn, FE D,j,; Zn,Fn = vn(Fn - Fn) E 

Dn; Z E Do, Do separable, and 

1. Zn,Fn-:db,.z in (D, II· II) for outer almost surely all sequences Fn, Z is 

Borel measurable. 

2. <I> satisfies the following differentiability property: if hn - ,.,fii,( Gn -
Gn)--+ h, Gn, Gn E D,J,, with hn E Dn and h E Do, then 

(1.14) 

for a certain continuous linear mapping d<I>(G): Do C (D, II· II)--+ (E, II· 
111). 

Then for outer almost surely all sequences Fn we have: 

1.4 Efficiency theory. 

Let M be a model, a set of probability measures, on ( X, B). For two measures 

F and G on l3 we write F ~ G if Fis absolute continuous with respect to G. 
Let 

M(µ) = { P E M : P ~ µ }. (1.15) 

For each PE M(µ) we denote its density dP/dµ with p and the collection of 

all these densities p corresponding with M(µ) will be denoted with P(µ). 

Let {) : M --+ 0 C D be a parameter and B be a collection of real val­

ued linear mappings b : D --+ IR. Given an i.i.d. sample X 1 , •.. , Xn from an 
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unknown PE M it is required to estimate the parameter fJ = t9(P), which is 

done by an estimator 0n = 0n(X1 , X2 , ••• , Xn)• Here b0n : (Xn, Bn) -+ IR is a 

measurable map for all b E B. 

We define L5(P) as all elements f E L2 (P) with J fdP = 0. 

Definition 1.3 A map f. 1-+ Pc from [O, 1] CIR to P(µ) is called a differentiable 

(one- dimensional) submodel of P(µ) through p if there exist g E L5(P) with 

(1.16) 

Notice that if the integrand in (1.16) would converge pointwise to zero, then 

Therefore g can be considered as a L2(µ) version of the score function of the 

one dimensional submode! Pc• Submodels Pc C M with densities Pc C P(µ) 
for certain measure µ which satisfy (1.16) are called Hellinger differentiable. 

In the rest of this tract, if we write Pc,g E P(µ) or Pc,g E M(µ) we mean 

a one dimensional differentiable submode! of densities (w.r.t. µ) or measures, 

respectively, with score g as defined in definition 1.3. 

The variance of unbiased (over Pc,g) estimators of btJ(Pc,9 ) at € = 0 is 

bounded from below by the well known Cramer-Rao lower bound, which is 

given by 

-1 ( fcbtJ(Pc,g)lc=0) 2 

n llgllP ' 
as shown below, (1.17) 

Let S(P) be class of differentiable submodels. The variance of unbiased (over 

whole M) estimators of b'l?(P) is bounded from below by the supremum over 

S(P) of (1.17), assuming that this supremum exists, which leads to the so 

called generalized Cramer-Rao lower bound. Since the Cramer-Rao lower bound 

(1.17) does only depend through Pc,g on the score g the supremum is in fact 

a supremum over the collection of scores corresponding with S(P). In the 

following definition of this collection of scores, note the difference between 

S(P) and S(P). 

Definition 1.4 A cone S(P) in L5(P) is called a tangent cone at P EM of 

S(P) if for all g E S(P) there exists a differentiable one dimensional submodel 

Pc,g E S(P) CM through PE M with score g. 
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Recall that a cone Cina vector space over the reals is a subset which is closed 

under multiplication by nonnegative scalars: if g E C, then ag E C for all 

a> 0. 
As we will see below, the supremum over S(P) in the generalized Cramer­

Rao lower bound can be replaced by a supremum over the so called tangent 

space T(P): 

Definition 1.5 For a tangent cone S(P) C L5(P) we define the tangent space 

T(P) C L5(P) as the closure of the linear extension of S(P) within L5(P). 

The following differentiability property of M guarantees the existence of the 
supremum over S(P) of (1.17) and that the supremum over T(P) is taken. 

Definition 1.6 A parameter b'l9 : M --+ IR is called pathwise differentiable at 

P EM relative to S(P), if there exists a linear mapping J : T(P) --+ (D, II · II) 
so that b{): T(P)--+ IR is continuous and linear and 

1 . 
- (bd(P, 9 ) - b19(P))- b'l9(g)--+ 0 for all g E S(P). 
€ ' 

By the Riesz representation theorem there exists a !(P, bd) E T(P) so that 

b{)(g) = J [(P, bd)(x)g(x)dP(x). (1.18) 

. 2 

We have that the Cramer-Rao lower bound (1.17) equals 1/n (bJ(g)/llgllP) . 
Consequently, by (1.18) and the Cauchy-Schwarz inequality, this is maximized 

over T(P) by g = !(P, bd) and therefore P,,9 , g = !(P, M), can be consid­
ered as the so called hardest one dimensional submode! for estimating M(P) 
(if !(P, b'!9) ft S(P), then we might still think of it as an approximate sub­

mode!). Therefore !(P, bd) is sometimes called the efficient score. The variance 

of !(P, bd) is the generalized Cramer-Rao lower bound for unbiased estimators, 
as can be proved as follows (for the technical details see van der Vaart, 1988): 

Generalized Cramer-Rao lower bound. For a random variable, say Y, 
we denote its expectation with E(Y) and it variance with Var(Y): we often 

use an index which describes the distribution of Y. To begin with, let b01 

be an estimator of b0 based on one observation X ~ P and suppose that 

Ep(b01(X)) = b0 for all PE M. Definition 1.6 tells us that we have bJ(g) = 
(g,f(P, M))p. By the definition of pathwise differentiability and the fact that 

bd(P,,9 ) = Ep., 0 (b01(X)) we also have: 

bJ(g) = lim lf£jb01(x)d(P, 9 - P)(x) 
t.:--+0 ' 
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= lim 1/e /b01(z) (Pe,g{z)- p(z)) µ(dz) 
e-o 

= lim 1/e/b01(z) (Pe,g{z)- p(z)) dP(x). 
e-o p(z) 

(1.19) 

By using (1.16) we have (P£,9(z)-p(z))/ep(z) ~ g(z), where the approximation 
can be made rigorous. Using this approximation tells us that (1.19) converges 

to Ep(b01(X)g(X)). Our calculations do not depend on g E S(P) and by 
linearity and continuity of t?(g) and g-+ Ep(b01(X)g(X)) we have the identity 
for all g E T(P). In other words, for all g E T(P) we have: 

By the Cauchy-Schwarz inequality we have that 

(Ep(b0i(X)g(X))) 2 $ Var(b01(X))Var(g(X)). 

This tells us that 

Var(b01(X)) ~ (g, !(P, b19)}i. 
(g, g)p 

This holds for all g E T(P) and therefore in particular for g = !(P, bi?). 

This provides us with the Cramer-Rao lower bound: 

Varp(b01(X)) ~ Varp (l(P,bi?)(x)). 

Suppose now that we haven i.i.d. observations Xi ~ P and let b0n(X1, ... , Xn) 

be an unbiased estimator of bO for all PE M. Then the same calculations show 
that: 

The variance of l(P, bi?) is also the optimal asymptotic variance of ,,/n(On -

i?(P)) for so called regular estimators. 

Definition 1.7 Let bOn be an estimator of bO = bi?(P) for which 

bOn is a S(P)-regv.lar estimator of bO if for all g E S(P) there ezists a P£,g E 

S(P) so that for En= 1/,,/n 
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Notice that the smaller we choose S(P) the larger the class of regular esti­

mators (relative to S(P)) and the easier it is to verify pathwise differentiability. 

On the other hand the lower bound a 2 (1(P, bl?)), where a 2 denotes variance, 
represents a supremum over all Cramer-Rao lower bounds for the one dimen­

sional submodels Pe,g and therefore this lower bound can only be attained if 
S(P) is large enough. Therefore, in order to have existence of efficient estima­

tors one has to choose a rich enough class S(P) of one dimensional submodels 

Pe,g• 

Most interesting estimators are asymptotically linear: 

Definition 1.8 An estimator 0n of 0 = l?(P) is called II · IIB-asymptotically 

linear with influence curve I(P, bl?) E L5(P), b EB, if 

yn(b0n - b0) = yn(Pn - P)I(P, bl?)+ Rn,b, 

where 

def 
IIRnllB = sup I Rn,b I= op(l) 

bEB 

and the empirical process J I(P, bl?)d,,/n(Pn - P) indexed by {I(P, bl?): b EB} 
converges weakly. 

Theorem 2.12 in van der Vaart (1988) tells us that for any regular estimator 
b0n the limiting distribution Lb has a variance which is larger than a 2 (!(P, M)) 
and that equality holds if and only if b0n is asymptotically linear with influence 

curve equal to f(P, bl?). One may call this result an asymptotic Cramer-Rao 
bound. The result also explains the following name: 

Definition 1.9 f(P, bl?) E T(P) is called the efficient influence curve w.r.t. 

S(P) for estimating b0(P) in M. 

The convolution theorem tells us that if S(P) is convex, then the limiting dis­

tribution Lb of a regular estimator b0n equals the sum of N(O, aJ,(f(P, bl?))) 
and another independent random variable. Moreover, under some extra regu­

larity assumptions the variance of f( P, bl?) is also a lower bound for minimax 

estimators (for both statements see e.g. van der Vaart, 1988). This justifies the 
following definition of efficiency of 0n: 

Definition 1.10 Let 0, 0n E D and B be a collection of real valued linear 

functions on D. Assume that 0n is 11 • IIB-asymptotically linear with efficient 
influence curve f(P, bl?), b EB. 

Then we say that 0n is 11 · IIB-efficient. 
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The functional delta-method theorem 1.5 shows that weak convergence is 

preserved under differentiability as stated in (1.13). The following theorem 

tells us that efficiency is also preserved under this kind of differentiability (van 

der Vaart, 1991): 

Theorem 1. 7 Let B and B1 be a collection of real valued linear functions on 

vector spaces D and E, respectively, so that (D, II · IIB) and (E, II · IIBJ are 

normed vector spaces. Let 4>: D</> C (D, 11 • IIB)-+ (E, 11 · IIBJ be a functional, 

where both spaces are endowed with the the Borel sigma-algebra. 

Suppose that 0n E Dq, is an 11 · IIB-efficient estimator of 0 E D<j,, and the 

differentiability condition ( 1 .13) of theorem 1. 5 holds for 4> ( 0n). 

Then <I>(0n) is a 11 • IIB,-efficient estimator of<I>(0). 
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Chapter 2 

Efficiency Theory for the 
(NP)MLE and an Identity 
for Linear Parameters in 
Convex Models 

2.1 Introduction. 

To begin with we give the general set up of the problem we will investigate. We 

refer to the efficiency section 1.4 for some notation and definitions. tet M be 

a set of probability measures Pon a measurable space (0, A). Let{): M _. D, 
where Dis a vector space, be a D-valued parameter. Let B be a collection of 

real valued linear mappings b : D _. Ill. 
Given an i.i.d. sample X1, ... ,Xn from an unknown PE M we want to 

give a II · 11 8 -efficiency theory of maximum likelihood estimators of() = {)(P) 
and modifications thereof. 

M is not necessarily dominated by one fixed measure µ. Therefore it does 

not always make sense to define a maximum likelihood estimator as the maxi­

mizer over all PE M of the likelihood IJ:= 1(dP/dµ)(X;) for a fixed measure 
µ. A natural generalization of this last definition to general M, due to Kiefer 

and Wolfowitz (1956), is now given by: IPn EM is an MLE of P if and only if 

for each measure P1 E M we have with µ = Pi + IP n: 

J log ( d!n) dPn ~ J log ( ~:1) dPn, (2.1) 

In other words, IPn is the winner in each pairwise comparison. 0n = {)(IPn) is 
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called a ma:i:imum likelihood estimator (MLE) of 8. 

If it exists, then for any measure µfl with 1P fl ~ µfl we have: 

lPfl = arg max f 1og (ddP) dPfl. 
PEM(µ,.) µfl 

(2.2) 

The log likelihood cares only about the values p(Xi) = (dP/dµfl)(Xi), i = 
1, 2, ... , n. Therefore even in semiparametric models it is often possible to 
identify ]Pfl with a vector, where its dimension grows with n, and define it as a 
maximum over a compact euclidean set, which makes existence of MLE much 
easier to prove. 

lPfl is often not explicitly known as a function of X1, ... , Xfl, but once a 
dominating measure of JP fl, given the data, is explicitly known, then it is defined 
by (2.2) which can usually be computed with certain algorithms. Finding an 
MLE involves essentially two steps. Firstly, one determines, given the data, 

explicitly a dominating measure µfl (if JP fl is discrete, then it suffices to find its 
support) and then one maximizes the log likelihood over all possible densities 

in the model w.r.t. this known µfl. 

One can also decide not to worry about finding an explicitly, given the data, 

known dominating measure µfl of 1P fl, but choose µfl ourselves. µfl is usually 
chosen so that M(µfl) grows with n and more and more closely approximates all 
of M(P). In our. applications we will do this. Then we can define a so called 
"sieved"-ma:i:imum likelihood estimator as a maximizer of the log likelihood 

over M(µfl), abusing the traditional definition of sieve-MLE. Also in this case 
we can define this MLE as in (2.2) for some measure µfl. 

In this chapter we present a theory for proving efficiency of a MLE ()fl. 

Our applications in the next chapter are described by semiparametric models 
for which MLE are usually called "nonparametric maximum likelihood estima­
tors" (NPMLE). Therefore we will often denote ()fl with NPMLE, though the 
efficiency theory is also applicable to parametric models. 

The organization of this chapter is as follows. Firstly, in the next section 
we show that a maximum likelihood estimator often solves an efficient score 
equation. In section 3 we derive natural conditions for efficiency of an NPMLE 
and show how they trivially generalize to bootstrapped NPMLE and NPMLE 

based on a transformation, depending on n, of the original data (in the latter 
case everything, also the model, changes with n). (The latter kind of NPMLE 
will be analyzed in chapter 4.) Surprisingly enough we get one of the main 

conditions for free if the model is convez and the parameter {J : M --+ D linear. 
This follows from an identity. In section 4 we prove this identity and explain 

the gain from this identity for proving efficiency of NPMLE. In section 5 we 
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apply this identity to convex models which are linear in the parameter, study 

the required invertibility of the information operator and illustrate the use of 

the identity in a well known (non trivial) example. In section 6 we formulate 

the efficiency theorem for the NPMLE in convex models and in section 6.1 we 
extend this theorem to one-step estimators. Section 6.1 is not important for 
following the subsequent chapters. 

2.2 Efficient score equation for NPMLE. 

Assume that an MLE JPn as in (2.2) exists. 

Let S(JPn) be a class of one dimensional differentiable submodels of M 
through lPn (see definition 1.3). Let S(JPn) C L5(JPn) be the tangent cone 

corresponding to this class of submodels (see definition 1.4). Recall that a 
score Yn E S(JPn) of a JPn,,,g,. does by definition depend on JP,.. Let T(JP,.) be 

the tangent space at JPn (see definition 1.5). 

Suppose that b,,J is pathwise differentiable relative to S(JPn) at JP,. with 

efficient influence curve !(JP,., b'IJ,.) E T(JP,.) (see definition 1.6). JPn maximizes 

in particular the log likelihood of each one dimensional submode} lP n,,,g,., Yn E 

S(IP,.), which is dominated by a certain Vn, Consequently, if JPn lies in the 
interior of each one dimensional submode} of S(JP n ), then the following equation 

to hold (let Vn be a dominating measure of JP n,,,9 ,.): 

0 = ~ j log (dlPn,,,g,. (x)) dPn(x)I . 
dE dvn ,=O 

(2.3) 

Suppose that Yn is also pointwise defined instead of only in L2 (JP n) sense. Then 

by exchanging differentiation and integration (2.3) translates into 

0 = j g,.(x)dPn(x). (2.4) 

This holds for all g,. E S(JPn) and by linearity of g -+ J gdPn also for 
Lin(S(JP 11 )), its linear extension. Consequently, if !(JP,., b'IJ) E Lin(S(JP,.)), 
then we have: 

(2.5) 

which we will call the efficient score equation or MLE-equation. 

If f(JPn, b19) E T(JPn)\S(JPn), then it might still be possible to prove (2.5) 
by a continuity argument. For our theory we only need that 

(2.6) 
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There exist examples with f(JP,., bd) E T(JP,.)\S(JP,.) where (2.5) does not 
hold, while (2.6) is true (see Groeneboom and Wellner, 1992, interval censoring 
case I, p. 115: ifwe replace in the efficient score identity g,. by g, then we obtain 
(2.5) and they show that the difference of the two score identities is op(l/../n)). 

Since T(P) C L5(P) we always have the equations 

P](P, bd) = 0 and JP,.f(JP,., bd) = 0. 

2.3 Efficiency theorem for NPMLE. 

8,. is 11 • IIB-efficient (see definition 1.10) if and only if 

bO,. - b8 = J 1(P, bd)d(P,. - P) + R,.,b, 

(2.7) 

(2.8) 

where IIR..IIB = op(l/../n) and {](P, bd) : b E B} is P-Donsker. Notice that 

IIR..IIB = op(l/../n) can be replaced by IIR..IIB = op(IIO,. - OIIB)i then (2.8) 
implies 

which implies in its turn trivially that 118,. - OIIB = Op(l/./n). 
Assuming (2.6) this tells us that (2.8) holds if (and only if) 

:~~ lb(},. - b(J + J 1(1P,., bd)dP- J (l(P, bd)-1(JP,., bd)) d(P,. - P)I (2.9) 

is op(IIO,. - OIIB). Assume that there exists a P-Donsker class :F so that 
l(P, bd) - l(JP,., bd) E :F for all b E B with probability tending to 1. By 
the pp-uniform continuity of the sample paths of the empirical process indexed 
by :F (see (1.6)) it follows that if 

sup pp (f(P, M),I(JP ,., M)) -+ 0 in probability, 
bEB 

then supbeBIJ(f(P,b1?)-f(JP,.,b1?))d(P,.-P)I = op(l/../n). Therefore, 
once we have this it suffices for proving (2.8) to prove that the sum of the 
other terms appearing on the left-hand side of (2.9) is op(IIO,. - OIIB). This 
proves the following theorem: 

Theorem 2.1 Let X ~ P E M for a model M and let X 1 , •.• , X,. be n i.i.d. 

copies of X. Let (J = 17( P) E D, D a vector space, and B be a certain collection 
of real valued linear mappings on D. Suppose that for each P E M, bd, b E B, 
is path wise differentiable at P relative to S( P) with efficient influence function 
1(P, bd). 
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Let Bn = 19(IP n) 1 IP n E M be an estimator of 8 which satisfies the following 

conditions: 

Efficient Score Equation. 

:~~ If l(IPn, b19)dPnl = Op ( ~) , 

Differentiability condition. 

:~~ lb19(P)- M(IPn) - j l(IPn, M)d(P - IPn)I = op(IIBn-Blln),(2.10) 

~mpirical process condition. 

:~~ If (f(P, b19)- J(IPn, M)) d(Pn - P)I = op(l/./n). 

Sufficient conditions for the empirical process condition are: 

P-Donsker class condition. There exists a P-Donsker class F so that 

J(P, b19)- 1(IPn, M) E F for all b EB with probability tending to l. 

pp-consistency. 

sup pp (f(P, M),J(IPn, b19)) -+ 0 in probability. 
bEB 

Then Bn is a 11 · lln•asymptotically efficient estimator of 8. 

It is clear that f ( P, M) has to be defined in a stronger sense than as an element 
of L5(P). For example, for verifying the Donsker class condition for a univariate 
class of functions one might want to bound the variation of !(P, b19), which 
requires that J( P, b19)( x) is pointwise well defined for all x. This can often be 
straightforwardly accomplished, as we will see in the next chapters. 

If B = {b} for a single b, then this theorem provides us with efficiency of 
the real valued parameter b19(P) E JR. By verifying the conditions uniformly 

over a larger collection Bone obtains II· I In-efficiency. It might be clear that for 
verifying the pp-consistency condition II· I In-consistency of 19(IPn) will typically 
be required. 

At first sight it is not clear that J !(IPn, b19)d(P-IPn) should be the Gateaux 
derivative of 19 in the direction P - 1P n at IP n; in other words it is not trivial 
to see that the differentiability condition (2.10) is indeed a differentiability 
condition. Let v be a dominating measure of IP n and suppose that P ~ IP n. 

Then we can rewrite the differentiability condition (2.10) as: 

sup lb19(P) - M(IPn) - jf(IPn, M/- Pn dIPn I= op(IIBn - Blln), 
bEB Pn 

where the densities are w.r.t. v. J J(IPn, b19)(Pn - p)fpndIPn is the pathwise 
derivative of 19 at IPn evaluated at score g = (Pn - p)/Pn, where g corresponds 
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with the score of the line EP+(l-E)lP,. from P to JP,.. Therefore the condition 

is strongly related to "uniform" (in B) pathwise differentiability of ,{) at a 
moving sequence IP,.. In this argument the condition P ~ IP n is only due 
to the fact that in the definition of pathwise differentiability we linearize in 

scores g = lime-o(PE,g - p)/(Ep) of the one dimensional submodels, but this 
condition would not be necessary if we use a differentiability definition, where 

we linearize in lime-o(PE - p)/E. So there is no reason to expect that this 
condition is essential and examples (see next sections) show that it is indeed 
not. We discuss this disadvantage of the definition of pathwise differentiability 

in the next section. 

In this tract we are especially concerned with estimation of linear parameters 
in convez models. In this case the differentiability condition can be verified to 
hold with remainder zero, following from the pathwise differentiability of ,{) 

with remainder zero, and thereby (2.10) reduces to an identity (there is no 
op(ll9,. - b9IIB)-term in the differentiability condition). This identity provides 
us under the P-Donsker class condition and efficient score equation with root-n­
consistency of d(JP,.) which can in its turn be used to prove the pp-consistency 
condition. We will work this out in detail in the next section. 

Extension to NPMLE based on resampled data or reduced data. 

Firstly, we discuss the two applications to which we want to extend theorem 
2.1 and then we will show that both can be straightforwardly captured by 
one extension of theorem 2.1. The extension can also be used to investigate 

uniformity in P and regularity. 

The first application is the semiparametric bootstrap. Let X, ~ P, i = 
1, ... , n, be n i.i.d. random variables. Suppose that d(IP,.) is a 11 • IIB-efficient 
estimator of d(P). Let p(n) E M be an estimator of P and let x; ~ p(n), 

i = 1, ... , n, be n i.i.d. random variables. For asymptotic validity of the semi­
parametric bootstrap we want to show that the limiting distribution of the 
normalized NPMLE y'n(d(IP;) - d(P(n)), where IP; is a NPMLE based on 
the resampled data x;, equals the limiting distribution of y'n(d(IP,.)- d(P)), 
which is given by the optimal Gaussian process indexed by the efficient influ­

ence functions {!(P, bd): b EB}. 
In view of an important application (the second application to which we 

want to extend theorem 2.1) in chapter 4 we do not want to force p(n) to 

be a member of M. In this application we have X, ~ P and x; = <Pn(X,) ~ 
p(n) = Pef,-;; 1 where ¢,,.(X,) is a slight transformation ( reduction) of the original 

data X •. By using the reduced data x; we arranged to work in an easier model 
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Min= {P¢>;;1 : PE M} for which all conditions of theorem 2.1 can be verified 

uniformly in p(n). The parameter of interest is given by '19n : M1n-+ D which 

is so that t?n(p(n)) = t?(P); so we are still estimating the same 0 = t?(P). 

If <Pn converges to the identity one hopes that asymptotic efficiency is still 

attained. Here we are concerned with the question if the NPMLE based on 

this transformed (reduced data) is asymptotically efficient; in other words we 

want that ,vn( t?n(lP~) - 'l9n(p(n))) converges to the optimal Gaussian process. 

The last problem is captured by the following set up, which also coveres the 

resampled data by setting Mn= M, '19n = t?, Sn(P) = S(P) and fn(P1, Mn)= 

f(P1, bt?): 
Let p(n) E Mn be an approximation of P and Mn be a sequence of models. 

Let X; ~ P, x; ~ p(n), i = 1, ... , n, be two collections of n i.i.d. random vari­

ables. Suppose that b'l9n : Mn -+ D is pathwise differentiable at each P1 E Mn 
relative to a tangent cone Sn(P1) with efficient influence function ln(Pi, bt?n)• 
By verifying the conditions of theorem 2.1 uniformly in p(n) (so for the suffi­

cient conditions for the empirical process condition this means that we need to 
verify a uniform {P(n)}-Donsker class condition and a uniform in p(n) Pp(nJ­

consistency condition), then we have that ,In (bt?n(lP;) - b'l9n(p(n))) equals 

(here P: is the empirical distribution of X;) 

(2.11) 

where supbEB I Rn,b I= Op(nJ(l). To see this recall that the uniform Donsker 
condition provides us with asymptotic Pp(nJ-equicontinuity uniformly in { p(n )} 
(see (1.8)). The proof of (2.11) is then a copy of the proof of theorem 2.1 applied 

to the model Mn. 
For proving asymptotic efficiency it remains to prove the following condi­

tion: 

Approximation condition. 
The empirical process (Jln(p(n),b'l9n)dyn(P;-P(n)),bEB) converges 

weakly under p(n) to (the optimal Gaussian process) a mean zero Gaussian 

process Xo with covariance structure: 

i.e. the same limit process as when p(n) = P. This can be proved by applying 

theorem 1.3. Theorem 2.1 can also be straightforwardly extended to the non­

parametric bootstrap. vVe show how this works in the bootstrap section 6 of 

chapter 4. 



32 Efficiency Theory for NPMLE 

2.4 An Identity for linear parameters in con­
vex models. 

Let M be a convex set of probability measures. Notice that this also implies 

that M(µ) and 'P(µ) are convex. 

For each Pi E M(P) the line ePi + {1 - e)P, e E [O, 1], is a submodel of 

M through P. Let µ be a dominating measure of P. Then the corresponding 

straight line ep1 + {1 - e)p of densities with respect toµ can be written as: 

P1-P 
PE,g = {1 + eg)p, g = -p-. 

Consequently, its score is given by (p1 - p)/p. If g has finite supnorm, then 

PE,g is clearly Hellinger differentiable; it satisfies the differentiability property 

{1.16). Therefore for efficiency calculations a natural class of one dimensional 

submodels through P is given by 

S(P) = { ePi + {1- e)P, e E [O, 1]: Pi E M{P), ll!i 11 00 < oo}. (2.12) 

In terms of densities this class (2.12) is given by: 

{ Pl -p } PE,g = {1 + eg)p: llu = -p-lloo < oo, Pi E M(P) C L~(P). 

The corresponding tangent cone S( P) and tangent space T( P) are defined 

as in definitions 1.4 and 1.5. 

Definition 2.1 A parameter{) : M -. 0 C D is linear if{) is well defined on 
Lin{M) and{): Lin(M)-. Dis a linear mapping. 

Theorem 2.2 {Identity for linear parameters in convex models). Suppose that 
M is conve:r: and {) : M -. D is linear. Suppose P, Pi E M and that b{) is 

path wise differentiable at Pi E M relative to S( Pi) with efficient influence 
curve !(P1, b{)). 

Assume that either there e:r:ists a sequence P E M(Pim) with dP/dP1m E 

L2(Pim) so that form-. oo 

J 1(P1m, b{))dP -. J 1(Pi, b{))dP. 

b{)(Pim) -. M(Pi) (2.13) 

or there e:r:ists a sequence Pm E M(Pi) with dPm/dPi E L2 (Pi) so that for 
m-.oo 

J 1(Pi, b{))dPm -. J !(Pi, b{))dP. 

b{)(Pm) -. b{)(P) (2.14) 
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Then 

{2.15) 

Notice that for Pi= IPn, the NPMLE, {2.15) implies the differentiability con­

dition of theorem 2.1. The proof of theorem 2.2 {below) shows that it is easy to 

show the identity (2.15) for P, Pi EM with P « Pi. Once we have established 
this the identity conditions {2.13) (we mean both convergence statements) and 

(2.14) are just continuous extension conditions which trivially extend the iden­
tity to many more P, Pi. Notice that the sequences Pm and Pim are allowed 

to depend on b and that the identity conditions are not requiring more than 

convergence of two real numbers and hence they are very weak conditions. A 

natural candidate for Pim is {1 - Em)Pi + EmP for a sequence Em --+ 0. 
Proof of theorem 2.2. Suppose that we can prove the identity {2.15) for 

any P' and P{ with P' « P{ and dP' /dP{ E L 2(P{). Then the identity 

{2.15) holds in particular for P, Pim with dP/dPim E L2{Pim) and Pm, Pi 
with dPm/dPi E L2(Pi). If now the convergence form--+ oo holds as stated 
in (2.13) and (2.14), then it follows that the identity holds also for P and Pi. 
Therefore, it suffices to prove the identity {2.15) for any P and Pi with P « Pi 
and dP/dPi E L2{Pi): 

Let µ be a dominating measure of Pi and denote the densities of P and 

Pi with respect to µ by p and pi, respectively. Define P<,g = {1 + Eg)pi for 

g = (p - Pi)/Pi, which corresponds with the straight line EP + {1 - E)Pi. P<,g 
is a differentiable submode! through P1 with score g E S(Pi) and it is linear in 
g. By linearity of ,,J we have: 

~ (b'IJ(P<,u) - b'IJ(Pi)) 
1 
-b'IJ (E(P - Pi)) 
f 

MJ(P)- b'IJ(Pi)- {2.16) 

We also have that the left hand side is linear in g. By the pathwise differen­
tiability of ,,J at Pi relative to S{Pi) and the linearity in g of the left hand 

side, the left hand side equals the pathwise derivative in the direction g, which 

is given by J !(Pi, b'IJ)gdP1. Combining this with (2.16) and recalling that 

g = (p- Pi)/Pi gives us: 
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2.4.1 Discussion about the (ir)relevance of the identity 
conditions. 

In semi parametric models the NPMLE 1P n does often not dominate the un­
derlying P. If P 1'. 1Pn, then the direct proof of theorem 2.2 of the identity 
does not work because the line eP + (1- e)IPn does not even have a score (it 
is not Hellinger differentiable) and therefore cannot be linearized in a score; 
so it does also not make sense to talk about pathwise differentiability along 

this line. The approach followed by this theorem is to prove the identity for 
Hellinger differentiable lines and approximate the non-differentiable lines by 
Hellinger differentiable lines in order to obtain also a prove of the identity for 

non-differentiable lines. 
In order to carry out a direct proof we should have a notion of differen­

tiability which also applies to lines from P to 1P n, i.e. which also applies to 

non-Hellinger-differentiable submodels. In example 2.2 in the next section we 
show that if we give up linearizing in (p-p1)/p1 as in the proof of the theorem, 
i.e. we give up using the definition of pathwise differentiability, but instead only 
concentrate on linearizing in p-p1 (densities w.r.t. e.g.µ = P+Pi), then there 
is a direct proof, still using Hilbertspace structures, of an identity of similar 
nature. The use of this approach is not yet clear for us, but it established a 
kind of differentiability of {) along a line from any P1 to P and it can be eas­
ily generalized. We did not use this approach for our applications in the next 
chapters, because here the identity conditions (2.14) could be straightforwardly 
proved. But this alternative approach of proving a similar identity clarifies the 

irrelevance of the condition P ~ P 1 and hence that with a different set up one 
should be able to formulate a similar theorem, without requiring the identity 
conditions, but requiring a different kind of differentiability. 

In the following example the identity can be explicitly written down and it 

also shows how weak the identity conditions are. 

Example 2.1 (Nonparametric Model). Let X 1 , ..• , Xn be n i.i.d. copies 
of X ~ P, where Pis a completely unknown distribution. We want to estimate 

biJ(P) = P(B) for a measurable set B. Let 1Pn be the NPMLE. In this non­
parametric model we have J(IPn, B)(X) = I(X EB) - IPn(B). Therefore the 
efficient score equation for IP n tells us that IP n equals the empirical distribution 
Pn• The identity of theorem 2.2 is trivially true: 

(1Pn - P)(B) = -PJ(IPn, B). 

The condition (2.14) for P1 = IP n is satisfied if there exists a P;:' with P;:' ~ Pn 
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so that P:;'(B) ---+ Pn(B), which holds of course trivially. The latter condition 

provides us by application of theorem 2.2 with an indirect proof of the identity. 

In spite of the fact that the identity conditions (2.13) and (2.14) are very weak, 

implicitness of the efficient influence curve makes them not always easy to 

verify. In our applications in chapter 3,4 and 5 we verify the identity condition 

by proving the following much too strong condition, but which is still rather 

straightforwardly verifiable; there exists a sequence Pim with dP / dPim finite, 

bi9(Pim)---+ bi9(Pi), IIPim -Filip---+ 0 (or we take another L2 norm) and (using 

this) show that 

J IJ(P1m, M) - !(Pi, bi9)1 dP---+ 0. 

From now on if we write condition (2.14) we mean just one of the two conditions 

(2.13) and (2.14). 

2.4.2 The gain from the identity. 

Let 1Pn EM be a NPMLE of PE Mand suppose that (2.14) with P1 = IPn 

and P holds. Then (2.15) applied to Pi = IPn provides us with: 

M(IPn) - bi9(P) = - J !(IPn, biJ)dP, (2.17) 

which is the differentiability condition of theorem 2.1, but with remainder zero. 

Combining this equation with the efficient score equation (2.5) 

provides us with 

biJ(IPn) - bi9(P) = J !(IPn, bi9)d(Pn - P). (2.18) 

This is a very powerful identity because the right-hand side can be considered 

as an empirical process indexed by !(IPn, M). Therefore if the Donker class 

condition of theorem 2.1 holds, then it provides us already with root-n con­

sistency of M(IPn)• Now, the pp-consistency condition remains to be verified, 

where we can use this consistency result. In other words, the convexity of 

the model and linearity of the parameter often gives us the differentiability 

condition of theorem 2.1 and consistency for free and we can concentrate our 

attention on the Donsker class condition. 

In our examples we apply theorem 2.2 to models of a special type, discussed 

in the next section. 
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2.5 Application of the identity to convex mod­
els which are linear in the parameter. 

Consider a model M ={Pi,: 9 E 0}, where 0 CD is a convex set and 9-+ Pi, 

is linear. Then M is convex. For clarity and because it holds for all our 
applications we will assume that 0 is a convex set of probability measures on 

a certain fixed measurable space (in our case 0 is a convex set of distribution 
functions of probability measures on m,k), but this is not essential. 

Consider a parameter t?(Pi,) = '1r(9), where '1r is linear (see definition 2.1). 

Define t?(Pi,) = '1r(9) for all 9 E Lin(0), which we can do because 'I]{ is linear 
on Lin(0). Then 

t?(aPi,1 + /3Pi,) t?(Pai,1+,ai,) 

= '1r(a91 + /39) 

aw( 91) + ,Bw( 9) 

at?(Pi,1 ) + ,Bt?(Pi,), 

where we used linearity of 9-+ Pi,, extended definition oft?, linearity of 'I]{ and 

the definition oft?, respectively. This proves that t? is linear. Therefore if we 
can establish pathwise differentiability oft?, then application of theorem 2.2 
provides us with the identity (2.23) below. 

Let 9e,g be a line from 91 to 9, 91 <t: 9 with score g = (d91 - d9)/dfJ E 
L5(fJ). By linearity of(} -+ Pi, this line implies a submodel P9.,g with score 
(dP9 1 - dPi,)/dPi, E L5(Pi,), assuming that dPi,JdPi, exists and that it square 
integrable. (dPi, 1 - dPi,)/dPi, is linear in the underlying score g: 

dPi,1 - dPi, dP f gd9 _ 
dPi, = dPi, = Ai,(g). (2-19) 

Define now S(9) as all lines 9e,g = efJ1 +(1-e)fJ for which (dPi, 1 -dPi,)/dPi, E 
L5(Pi,). In all our applications S(fJ) is just the same set of lines as defined in 
(2.12), but now in the space 0 instead of in M. Let S(fJ) C L5(fJ) be the 
corresponding tangent cone and T( fJ) C La( fJ) be the tangent space. 

Now, Ai, : S(fJ)-+ S(Pi,) C L5(Pi,), where S(Pi,) is the tangent cone corre­
sponding with Pi,.,g, g E S(fJ). Suppose that Ai, can be continuously extended 
to T(fJ) C L5(fJ). Then the so called score operator Ai, can be defined as a 
linear Hilbertspace operator: 

Ai,: T(fJ) C L5(fJ)-+ L5(Pi,). 

Now, the tangent space T(Pi,) is given by 

T(Pi,) = Ai,(T(fJ)) C L5(Pi,). 

(2.20) 
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We will now give conditions for pathwise differentiability of{) relative to S(Po ). 
Suppose that bw is pathwise differentiable at() relative to S(0) with efficient 

influence function K-(0, bw). Then we have with the line 0t,g = e01 + (1 - e)0 E 

S(0) with score g = (d01 - d0)/d0: 

; (b{)(Po.,g) - b{)(Po)) ; (bw(0t,g) - bw(0)) 

j K-(0, bw)gd0. (2.21) 

This is a linear mapping in g. For pathwise differentiability of {)(Po) relative 

to S(Po) we need to rewrite this as a continuous linear mapping in the scores 

Ao(g) of Po., 9 • 

For this purpose let Al : L5(Po) -+ T(0) be the adjoint of Ao: for all 

g E T(0) and v E L5(Po) we have 

{Ao(g), v)p8 = (g, Al (v))o. (2.22) 

We have the following important result: 

Lemma 2.1 Assume that bw is pathwise d·ifferentiable at() relative to S(0). 
b{) is pathwise differentiable at Po relative to S(Po) if and only ifK-(0, bw) lies 

in the range of Al : L5(Po)-+ T(0). 

This lemma is due to van der Vaart (1991). The proof is straightforward: 

Suppose that we have pathwise differentiability with efficient influence function 

!(Po, bw). Then by (2.21) and the definition of pathwise differentiability we 

have for all g E S(0): 

J K-(0, bw)gd() = J 1(P9, bw)A9(g)dP9. 

Using the definition of adjoint we see that 

J ( Al (!(P0, bw)) - K-(0, bw)) gd() = 0 for all g E T(0), 

which proves one direction of the lemma. 

For the other direction, we have to express (2.21) as a linear mapping in 

Ao (g) E S( Po). Suppose that there exists a l E L5 ( P0) so that Al( I) = 
K-(0, bw). Then by definition of the adjoint 

J K(0, bw)gd0 = J lAo(g)dPo, 

which, by the Cauchy-Schwarz inequality, is a continuous linear operator on 

S(P). This proves the pathwise differentiability with efficient influence function 

!(Po, b{)) = IT(l I T(P0) (II denotes L2-projection) and hence the following 

theorem: 
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Theorem 2.3 (Identity in convex linear models). Consider a model M = 
{ P8 : 9 E 0}, where 0 C D is a convez set of probability measures on a 

measurable space and 9-+ P8 is linear. Let 1?(P9) = w-(9), where W is linear. 
If 

• bw is path wise differentiable at 91 relative to S( 91) with efficient influence 

function 1e(91, bw). 

• There ezists an l E L5(P9) so that AJ1 (l) = 1e(91, bw), 

then b1?( P91) is path wise differentiable with efficient influence function 

l(P911 bw) = IT(l I T(P9)) and for all P9 and P91 which satisfy {2.14} we 
have the identity: 

bw-(9) - bw-(91) = J l(P81, bw)d(P9 - P9i) = J l(P91' bw)dP9. (2.23) 

A simple corollary oflemma2.1, which provides us with a formula for l(P9, bw), 

is given by the following corollary (here Ti (f) is just any element g for which 

I9(g) = f): 

Corollary 2.1 If ,c'(9, bw) lies in the range of the so called information op­

erator I9 = AJ A8 : T(9) -+ T(9), then 1?(P9) is pathwise differentiable at P9 
relative to S( P9) with efficient influence function 

(2.24) 

2.5.1 Invertibility of the information operator. 

If the information operator is invertible and onto we can apply corollary 2.1 

and theorem 2.3. Therefore the following invertibility lemma is useful: 

Lemma 2.2 Let l9 = AJ A9 : T(9) C (L5(9), II· 11 8)-+ T(9) be the information 
operator as defined above. Assume that for all h E T(9) with llhll8 > 0 we have 

IIA9(h)IIP, > 0. Then I9 is 1-1. 

Assume that there ezists a c > 0 so that for all h E T(9) C H(9) we have 

llllhlltheta ~ IIA9(h)IIP, ~ 6llhll8 for some 1 > C > 0. Then I9 is onto and has 
bounded inverse with operator norm smaller than or equal to 1/62 • Its inverse 

is given by: 

00 

Iil = I:(I - I9)i. 
i=O 

Moreover, the range of (A9(T(9)) is closed and therefore equals T(P9). 
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Proof. Let llhll 11 = 1, then we have by the Cauchy-Schwarz inequality: 

IIAJ A11(h)ll11 IIAJ A11(h)ll11llhll11 
> (AJ A11(h), h)11 

(A11(h), A11(h))P8 • 
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If IIA11(h)IIPs > 0 for all llhll11 = 1, then I11 is 1-1 and hence invertible. We have 

that I11 = I - (I - I11). If IIA11(h)IIPs > 8, then we have that III11(h)ll11 > 82 • 

Because I - I11 is self-adjoint its norm is given by: 

sup (h, (I - I11)(h))11. 
llhjj 9 =l 

Because (h, I11 (h)) = (A 11 (h), A11(h)) 2:: 82 it follows that this norm is smaller 
than 1 - 82 • Consequently, the inverse of I11 is given by the Neumann series of 

I - I11 which converges for all h E T(0). This proves that I11 is onto and has 

bounded inverse with operator norm bounded by 1/ 82 • The final statement is 

also straightforward to check by using Cauchy sequences and the completeness 

of a Hilbert space.□ 

By using this lemma it is often easy to find natural conditions for (bounded) 

invertibility of the information operator I11 : (T(0), 11 · 11 11 ) --+ (T(0), II · 11 11 ). In 
particular this is true for missing data models as the next example and the 

models we cover in chapter 3, 4 and 5. 

2.5.2 Example. 

We already gave a trivial example of the completely nonparametric model where 

the efficient influence function is known and thereby the identity (2.18) for the 

NPMLE could also be explicitly verified. A non-trivial (well known) example, 

where this identity had not yet been discovered and can be explicitly written 

down, is the following. Here we will also show efficiency of the Kaplan-Meier 

estimator using identity (2.18) and we will give a method of proving a kind of 

differentiability of a parameter along any line, instead of only along lines with 

a score. 

Example 2.2 (Univariate Censoring Model). Let X 1 , •.• , Xn be n i.i.d. 

copies of a real valued X with distribution function F, where F is completely 

unknown. Let C1 , ..• , Cn be n i.i.d. copies of a real valued C with distribution 
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function G, where G is completely unknown. X and Care independent. We 

observe 

l'i = (Zi, Di)= ~(X;, C;) = (X; I\ Ci,I(X; ~ C;)) ~ PF,G• 

We are interested in estimating the su.rvivalfu,nction iJ(PF,G) = S(t) = 1-F(t). 

If G was known, then the model corresponding with Y would be a convex model 

which is linear in the parameter F. Therefore under the conditions of theorem 

2.3 identity (2.23) holds for the efficient influence function for the model where 

G is known. However, in this model it can be shown (as done in chapter 4 for the 

bivariate censoring model) that the efficient influence function for estimating 

F(t) in the model where G is unknown equals the efficient influence function for 

estimating F(t) in the model where G is known. This follows straightforwardly 

from the fact that the conditional density of X given what we observe about C 

(so C = z for the censored (D = 0) observations and C > z for the uncensored 

(D = 1) observations) equals the unconditional density of X. So the identity 

for G is known equals the identity for the model where G is unknown (i.e. 

the univariate censoring model). The identity conditions of theorem 2.3 can 

be verified by writing down the score operator, information operator, applying 

lemma 2.2, and using formula (2.24) for the efficient influence function, as we 

will do in chapter 3,4 and 5, which would give a proof of the identity without 

explicitly knowing the efficient influence function. 

Below, we will explicitly verify it: Define 

1 n 

Nn(t) - - EI(Z; ~ t,D; = 1) 
n i=l 

1 n 

Yn(t) - - EI(Z; ~ t) 
n i=l 

A(t) -
1t dF(s) 

0 1- F(s-)" 

It is well known that the NPMLE of S(t) is given by the Kaplan-Meier estimator 

Sn(t) = Jf(o,t](l - dNn/Yn), where Jf(o,t] is a product integral and stands for a 
limit of approximating finite products over partitions of (0, t] as the partitions 

become finer. 

This estimator has been extensively analyzed. For an overview of work 

done in this field we refer to Andersen, Borgan, Gill and Keiding (1993). Let 

H = 1- G, N = EpANn) and Y = EpAYn)- It is well known (e.g. Wellner, 
1982, Gill, 1993) that if H(t) > 0, then the efficient influence function for 
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estimating S(t) is given by: 

I~(s )( d) = -S() f' I(z E dv, d = 1)- I(z 2'.: v)dA(v) 
,t z, t lo S(v)H(v-) · 

This formula equals ApJ;1(I(t,oo) - S(t)), where Ap is the score operator and 

lp the information operator (see corollary 2.1 and Wellner, 1982). Conse­

quently, the efficient score-equation for the NPMLE Sn is given by: 

~ {' dNn(v) - YndAn(v) 
Pnl(Sn, t) = Sn(t) lo Sn(v)H(v-) . 

By using that Sn(t) = J[(o,tJ(l - dNn/Yn), it follows that dAn = dNn/Yn 

and consequently Pn!(Sn, t) = 0. This verifies the efficient score-equation. It 

remains to verify the identity (2.23), i.e. Sn(t) - S(t) = -PpJ(Sn, t), which is 
here given by: 

S () _ S() = S () ft dN(v) - YdAn(v) 
n t t n t lo Sn(v)H(v-) . (2.25) 

We know that dN = YdA, Y = S_H_. So dN - YdAn = S_H_(dA- dAn), 
where H _ cancels with the denominator. Therefore (2.25) is equivalent to: 

{' Sn(t) 
Sn(t) - S(t) = lo S(v-)d(An -A)(v) Sn(v) 

1' J[(l -dA(v)) (An -A) (dv) Jfp- dAn(v)), 
(O,v) (v,t] 

where we used that Sn(t)/Sn(v) = J[(v,t] (1- dNn/Yn)• This is the well known 
Duhamel equation for the univariate product integral (Gill and Johansen, 1990). 

This proves the identity for the NPMLE in the univariate censoring model: 

(2.26) 

Because we have already verified the identity we might as well finish the effi­
ciency proof by verifying the P-Donsker class and p-consistency conditions of 

theorem 2.1. 

Notice that J(Sn, t)(z, d) is a sum of two monotone functions and both 
parts are bounded by c / H ( t) for a constant c. The class of bounded monotone 

functions is a uniform-Donsker class (see example 1.1). Application of this to 

the right-hand side of (2.26) provides us with the following whole line result: 

sup H(t) ISn(t) - S(t)I = Op(l/vn,). 
tE(O,oo] 
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Fix T so that H(r) > 0. It follows trivially that suptE[O,r] ll1(Sn, t, ·) -
1(S, t, ·)IIPF --+ 0 in probability. Application of theorem 2.1 provides us now 

with supremum norm efficiency of Sn on [O, r]. Gill (1993) is able to obtain a 

few refined results for the Kaplan-Meier estimator by using identity (2.26). 

Alternative method of proving a similar identity as (2.23). We end 

this example with an alternative method for proving an identity without using 

the explicit form of the efficient influence function and without any need to 

verify the identity condition (2.14). Let Fie = EF + (1 - E)F1 be a line from F 
to F1. This line is dominated by µ = F + F1. Let f, Ji be the densities of F, F1 

w.r.t. µ. We characterize Fie by the direction (an equivalent of the score) 

assuming that f (Ji - J)2dµ < oo. Let µ 1 = (µ x G)<1>- 1 be the measure 

induced by µ x G on the sample space. Then dµ 1(z, 1) = H(z)dµ(z) and 

dµ 1(z, 0) = µ(z, oo)dG(z). PF,,,,. is dominated by µ 1 and we denote its line of 

densities with PF,.,,.. F1e,h induces a direction for PF,.,,. which we denote with 

BF, (h): 

Consider BF, : L5(µ) --+ L5(µ 1) as an operator (an equivalent of the score 

operator). This operator is given by: 

BF,(h)(z, d) = H(z)h(z)I(d = 1) + g(z) 1°" h(x)dµ(x)I(d = 0). 

Let B"J., : L5(µ1) --+ L5(µ) be the adjoint of BF,· Then we can define an 

equivalent of the information operator by 

Lemma 2.2 tells us that JF, is onto and invertible if IIBF, (h)IIµ, ~ ollhllµ for 

certain /j > 0. We have by only integrating over the complete observations and 

assuming that H > 15 > 0 ( this can be arranged by artificially censoring all 

observations at r, where H( r) > O, which does not influence the Kaplan-Meier 

estimator at t < r): 

J (BF, (h))2dµ1 > J (H(z)h(z))2 H(z)dµ(z) 

> 153 j h2 (z)dµ(z). 
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This proves that J Fi has bounded inverse and is onto. Let c(t) = J/"' dµ and 

Kt(·)= J(t,oo)(·) - c(t) E L5(µ). Now, we are ready to prove "the identity": 

F(t) - Fi(t) = j I(t,oo)(x)(f - f1)(x)dµ(x) 

(Kt, (f - fi))µ 

(JpJ'i}(Kt), (/ - Ji))µ 

(BFJi,/(Kt), BFi (f - fi))µ 1 

(BFJ'i/(Kt),PF - PFJµi 

J BFJ'i/(Kt)d(PF - PF1)· 

2.6 Efficiency theorem for NPMLE of linear 
parameters in convex models. 

In the subsection "The gain from the identity" we proved that combining the­

orem 2.1 and theorem 2.2 provides us with a general efficiency result for the 

NPMLE of linear parameters in convex models. We summarize it here: 

Theorem 2.4 (Efficiency theorem for NPMLE of linear parameters in convex 

models). Let X ~ P E M for a convex model M and let X1, ... , Xn be 

n i.i.d. copies of X. Let 8 = iJ(P) E D be a linear parameter and B be a 

certain collection of real valued linear mappings on D. Suppose that for each 

PE M, biJ, b EB, is pathwise differentiable at P relative to S(P) with efficient 

influence function 1( P, biJ). 

Let Bn = iJ(IPn), 1Pn EM, be an estimator of 8 = iJ(P) for which {2.14} 
holds with P and Pi = IP n and for which the following conditions hold: 

Efficient Score Equation. 

:~~ If !(IPn, biJ)dPnl = op(l/..jn). 

P-Donsker class condition. There exists a P-Donsker class :F so that 

!(P, biJ) - !(IPn, biJ) E :F for all b EB with probability tending to 1. 

Then IIBn - BIIB = Op(l/y'ri,). 

pp-consistency condition. 

sup pp (J(P,biJ),I(IPn,M))-+ 0 in probability. 
bEB 

Then Bn is a II · IIB -asymptotically efficient estimator of 8. 
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2.6.1 One step-estimators. 

Theorem 2.4 can immediately be extended to one-step estimators. 

Corollary 2.2 (Efficiency of one-step estimators of linear parameters in con­

vex models). Let X ~ P E M for a convez model M and let Xi, ... , X,. be 

n i.i.d. copies of X. Let(:} = iJ(P) E D be a linear parameter and B be a 

certain collection of real valued linear mappings on D. Suppose that for each 

PE M, biJ, b EB, is pathwise differentiable at P relative to S(P) with efficient 

influence function !( P, biJ). 

Let (:},. = iJ(.P,.), Pn E M, be any estimator of(:} = iJ(P) for which the 

condition {2.1,t), the P-Donsker condition and the pp-consistency of theorem 

2.,t hold. 

Then 

8! = (:}n + j !(Pn, biJ)dPn 

is an II · 11 8 -asymptotically efficient estimator of(:}. 

By application of the identity (2.18) we also obtain an efficiency result for the 

one-step estimator with sample splitting as will be defined below. Let n1 +n2 = 
n, where n, ---+ oo if n---+ oo, i = 1, 2, and split the sample in X1, ... , Xn1 and 

Xn1+1,··•,Xn. Define P!!) = 1/nE:~1 Cx; and P!!) = 1/nE:=ni+l Cx;; the 
empirical distributions of the first and second sample. 

Let 8n; = iJ(.P!~)) be an estimator of(:} based on P!~), i = 1, 2. Suppose that 
i>t> satisfies condition (2.14). Then the identity holds for 8n;, i = 1, 2: 

- J ~ ~(i) b(:}n; - b(:} - - I(Pn; 'biJ)dP. (2.27) 

The one-step estimator with sample splitting is defined as follows: 

b(:)9P = ! (b(:} + b(:} ) + ! (p<1>1(.P.<2> biJ) + p<2>J(p(l) biJ)) (2.28) n 2 n1 n2 2 n1 n2 , n2 n1 , • 

By (2.27) we have the following identity for b8:f: 

b(:)9P - b(:} = ! (cp<1> - P)Jcp<2> biJ) + cp<2> - P)Jcp< 1> biJ)) n 2 n1 n2 , n2 n1 , · 

The crucial difference between this identity and the identity for the one step 
estimator lies in the fact that here the right-hand side consists (conditionally) 
of sums of i.i.d. variables and thereby weak convergence is obtained under 
essentially weaker conditions. In order to show this we will consider 

V.n = (P(l) - P)1(.P.<2) biJ) - n1 n,, • (2.29) 
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Conditioned on Xn 1 +1, .. . ,Xn this is a sum of i.i.d. mean zero random vari­

ables. In the following arguments all statements are conditioned on this sample, 

or equivalently on PJ;). 

By lemma 1.1 it suffices for weak convergence of Vn to have that 

Var(I(PJ;>,bl?))---+ Var(I(P,M)) and I(P~;>,M)(Y)=:£:.f(P,M)(Y), Y ~ P. 

In other words, if these two conditions hold almost surely for all sequences P~;), 
then (2.29) converges in distribution to a normal distribution V = N(O,I( 8, b )). 
By definition of weak convergence this tells us that for all bounded and contin­

uous functions h ; JR---+ JR we have that E(h(Vn) I P~;)) ---+ E(h(V)) a.s. For 

such ah we have that E(h(Vn) I PJ;)) ~ llhlloo < oo. Therefore the dominated 
convergence theorem provides us with E(E(h(Vn) I P~;))) ---+ E(h(V)) which 

proves the unconditional weak convergence of Vn to N(O, 1(8, b)). This proves 
the following corollary for the one-step estimator with sample splitting: 

Corollary 2.3 (Efficiency of one-step estimator with sample splitting). Let 

X ~ PE M for a convex model M and let X1, ... , Xn be n i.i.d. copies of 

X. Let 8 = t?(P) E D be a linear parameter and let b be a real valued linear 

mapping on D. Suppose that for each P E M bl? is pathwise differentiable at 

P relative to S(P) with efficient influence function 1(P, M). 
~(i) ~(i) . (i) . 

Let 8n, = t?(Pn, ), Pn; EM, be an estimator of 8 based on Pn, , z = 1, 2. 

Suppose that Jt) satisfies condition {2.14}, Var(1(Pt>, bl?)) ---+ Var(I(P, bl?)) 
and f(Jt>, M)(Y):£:.f(P, M)(Y), Y ~ P, for almost all sequences Jt>, i = 
1, 2. 

Then b8!P is an asymptotically efficient estimator of b8. 

This theorem provides us with minimal conditions for constructing efficient 
estimators of linear parameters in convex models; it tells us that if we can esti­

mate the efficient influence function consistently, then there exists an efficient 

estimator. 

2. 7 Bibliographic remarks. 

Klaassen (1987) considers the problem of finding necessary and sufficient con­

ditions for constructing efficient one-step estimators, using sample splitting, in 

models Pe,0 , 8 E m,d and g E 9, where g is a class of functions. One of his 

crucial conditions is essentially the same as our differentiability condition in 

theorem 2.1. Our corollary 2.3 has the same nature as his result, except that 
we restricted ourselves to convex models and did not prove that the conditions 
are also necessary. 
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Greenwood and Wefelmeier (1991) consider NPMLE as a solution of the 
efficient score equation and also have as main condition the differentiability 

condition of theorem 2.1. They are concerned with efficiency of solutions of the 
efficient score equation in nonparametric filtered models and they point out the 
power of their approach for proving efficiency of the NPMLE. They formulate 
a similar efficiency theorem as theorem 2.1, but assume root-n-consistency and 

do not make the connection with empirical process theory. The discovery of 
the identity for convex models (theorem 2.2) by linking the differentiability 
condition to pathwise differentiability along lines is not found in the preced­
ing literature. Linking to pathwise differentiability seems also to be the right 
approach for verifying the differentiability condition for non-convex models. 

Gill and van der Vaart (1993) and van der Vaart (1992b), following the ap­
proach of Gill (1989), follow a different approach and concentrate on explaining 
efficiency of the NPMLE in semiparametric models. They base their analysis of 

NPMLE on a set of score equations, but where the directions do not depend on 
the NPMLE itself and thereby do not allow the efficient score equations which 

we use. As shown by Greenwood and Wefelmeier (1991) several models can be 
constructed where such a characterization of the NPMLE does not exist. The 

approach has the disadvantage that it does not separate conditions for point­
wise efficiency from conditions for supremum norm efficiency. They have to use 
implicit function theorem requirements like invertibility of the derivative and 
smoothness of the generalized score equation as a whole. These assumptions 
are in many interesting applications not satisfied (for example, the bivariate 
censoring model and the line-segment model of chapter 4 and 5). Gill and van 
der Vaart (1993) assume that the NPMLE converges weakly as a process to 
a Gaussian process and then show under sharp regularity conditions, which 
are unfortunately hard to verify, that the covariance structure of this Gaussian 
process must be the optimal one. Van der Vaart (1992b) bases his analysis on a 

general theorem for proving weak convergence of M-estimators, assuming con­
sistency and strong smoothness assumptions on the set of score equations. This 
approach does not exploit the specific structure of the efficient score equation 
and hence does not give optimal results for the NPMLE. 

In the case that the model is convex and the parameter linear, then theorem 
2.4 provides us even with consistency. In the general case (theorem 2.1) the 
differentiability condition can often be verified by just assuming consistency. 

With Greenwood and Wefelmeier's, Klaassen's and our approach the con­
ditions for efficiency depend on the efficiency result: the smaller B the more 
easily the conditions can be verified. For example, very weak conditions suf-
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flee for obtaining pointwise efficiency of the one step estimator with sample 

splitting. 

The main results of this chapter can also be found in van der Laan (1993a). 





Chapter 3 

Efficiency of the 
sieved-NPMLE for a Class 
of Missing Data Models 
with Applications. 

3.1 Introduction. 

Assume one is concerned with nonparametric estimation of a distribution func­
tion F based on i.i.d. observations X; ~ F, i = 1, ... , n. However, there is 

another random variable C which causes that one only observes a many to one 
mapping Y = «I>(X, C) of these X; 's and thereby one gets only partial infor­

mation about X; in the sense that one knows that X; lies in a certain region. 

Such models are called (nonparametric) missing data models or incomplete 
data models. We will restrict our attention to models where X is completely 

observed with positive probability. 

Several of such nonparametric missing data models are covered in the liter­

ature. Well known examples are: univariate censoring model (see 2.2), double 

censoring model (see Chang and Yang, 1987, Chang, 1990, Gu and Zhang, 

1993), multivariate censoring model (see chapter 4 and its bibliography), the 

class of Jbragimov-Has 'minskii (IH) models (see Ibragimov and Has'minskii, 
1983, Bickel and Ritov, 1992, van der Vaart, 1992a), in particular the Vardi­

Zhang model (Vardi and Zhang, 1992). 

In order to have identifiability of F one assumes that the conditional dis­

tribution G( · I x) of C, given X = x, is known or that it implies a coarsening 
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at random on X (Heitjan and Rubins, 1991, Jacobsen, Keiding, 1994, Gill, 

van der Laan, Robins, 1995). One says that X is coarsened at random if the 

observation Y does not carry more information on X than that X lies in the 

with Y associated region (this region is called the coarsening); i.e. the observed 

information on C is noninformative about the location of X in the associated 

region. A useful heuristic way to think about CAR is that C should only de­

pend on X through Y (i.e. what we observe). In Gill, van der Laan, Robins 

(1995) a general definition of CAR is given and it is shown that in nonparamet­

ric missing data models G satisfies CAR if G( · I x) is dominated by a µo( · I x) 
which is CAR itself and for which the density of G(· Ix) w.r.t. µo(· Ix) is only 

a function of ( c, ~( c, x )). Since one can always represent Y = ~( C, X) with 

C = Y and ~( C, X) = C, CAR holds if (in fact, and only if) the same density 

statement holds for the conditional distribution of Y, given X = x. Moreover 

it is shown that if this is the only assumption on G, then the model for Y is 

nonparametric. 

An important consequence of coarsening at random ( and the only relevant 

consequence for us) is that the density of the distribution of Y w.r.t. any 

by ~ induced measure factorizes in a F-part and a G-part: For all F with 

dF(x)G(dc Ix)«µ we have 

PF,a(y) = PF(Y)Pa(y), (3.1) 

where PF,G is the density ofY w.r.t. µ~- 1 , PF does not depend on G and PG 

does not depend on F. Under CAR this factorization holds for all measures 

µ. The factorization of the likelihood implies that a NPMLE of F is computed 

by ma.ximizing the F-part of the likelihood and hence does not depend on 

the knowledge on G. It also implies that the generalized Cramer-Rao lower 

bound for estimation of functionals of F is independent of the knowledge on 

G. Hence CAR-missing data models are from an analytical point of view not 

really different from then missing data models for which we assume that G is 

known. In this paper we are concerned with the behavior of the NPMLE in 

CAR-missing data models and in missing data models with G known. 

In a model where one only assumes CAR ( as we will do in our general 

class of missing data models) the model is completely nonparametric which 

implies that all asymptotically linear estimators are asymptotically equivalent 

and efficient; in other words, one needs to use the NPMLE-principle to come up 

with sensible estimators. Hence ad hoc estimators can only be constructed by 

assuming stronger assumptions on G than just CAR, for example, by assuming 

independence between X and C. Therefore an NPMLE is less sensitive to 
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dependent censoring than ad hoc estimators which is an essential advantage of 

a NPMLE relative to an ad hoc estimator; in the bivariate censoring model as 

covered in chapter 4, 6, 7 and 8 many ad hoc estimators have been proposed 

which are all inconsistent if one allows for dependent censoring, but CAR. 

An NPMLE solves each score equation corresponding with a one­

dimensional submodel through the NPMLE itself. Gill (1989) shows that for 
missing data models a natural set of score equations for the NPMLE corre­

sponds with the well known self-consistency equation (Efron, 1967). A so­

lution of the self-consistency equation can . be found with the EM-algorithm 

(Dempster, Laird and Rubin, 1977, Turnbull, 1976) which does in fact nothing 

else than iterating the self-consistency equation. In section 4 we show that 

any solution of the self-consistency equation which is equivalent (= absolutely 

continuous w.r.t. each other) with an MLE is an MLE; so ifwe iterate the self­

consistency equation with an estimator with a certain support, then iterating 
the self-consistency equation provides us with the MLE Fn which maximizes 

the likelihood over all F with the same support. So in order to compute an 
MLE one will first need to agree on its support. The support points should 
include at least one point in each associated region of the X; 's. A natural set 

of support points are the observed X; and a point in each region associated 

with a censored X; which does not contain uncensored X;. The corresponding 
MLE will be refered to as Sieved-NPMLE. 

Because the EM-algorithm is easy to understand it teaches us a lot about 

MLE's. By studying the EM-algorithm we learn that there is one crucial con­
dition which makes the EM-algorithm work in the sense that the NPMLE will 

be asymptotically efficient: With probability tending to 1 each region for X; 

implied by the incomplete observations contains several (in the limit even in­
finitely many) completely observed X;. This condition can be used as a rule 

of thumb for deciding if the NPMLE in a semiparametric CAR-missing data 

model, allowing complete observations, will be asymptotically efficient or not. 

In the chapter 4 we cover the bivariate right-censoring model which has as­
sociated regions which are half-lines in the plane which causes the inconsistency 

of the NPMLE. We show how to slightly reduce the data so that the NPMLE 
based on the reduced data is efficient; the method is generally applicable to 

any missing data model where the associated regions do not have full dimen­

sion. This example also functionates as a motivation for this chapter, i.e. for 

making rigorous that once one has regions of full dimension, then the NPMLE 

is efficient. 

In section 2 we define the general class of models satisfying the conditions 
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that X is observed with positive probability and that each region contains with 

positive probability several observed Xi. By enforcing the two conditions to 

hold in the more stringent sense that the words positive and several in the 

two conditions are replaced by larger than b > 0 and a fraction, we can carry 

through an efficiency proof for the general class of models without getting into 

a very refined, technical and specific analysis. We show that the assumption 

that X is observed with positive probability implies that each one dimensional 

submodel has information bounded away from zero. 

The total number of completely observed X; and the number of completely 

observed X; in an incomplete region should be considered as measures of sta­

bility of the estimators ( this appears also from simulation results in chapter 

8). We show in the applications that the conditions can often be arranged by 
reducing the data to a compact subset of the whole support of the data. This 

makes the NPMLE more stable at cost of a small loss of information; it is es­

sentially comparable with a truncated mean. This appears to be a right thing 

to do in practice, most of the times, since otherwise the NPMLE is less reliable 

for finite samples because of its large sensitivity to outliers. The assumption 

that given X = x it is observed with probability larger than b > 0 forces one 

already to reduce data to a compact support. Therefore, the additional as­

sumption that each region has Fo-probability larger than b > 0 is normally 
not an extra assumption so that it is not worthwhile to weaken that assump­

tion while not weakening the other. In some applications these more stringent 

conditions cannot be artificially arranged. Hence in this chapter we will for­

mulate two sets of assumptions which guarantee efficiency of the NPMLE, one 

based on the stringent conditions and one set based on weak conditions, but 

less worked out. In this way our set of assumptions provide a framework for 

verifying efficiency of NPMLE in any missing data model. 

In section 3 we prove existence and uniqueness of a "sieved"-NPMLE, dis­

cuss the EM-algorithm and prove identifiability of the self-consistency equation. 

These missing data models are essentially ( or one is allowed to work as if the 

censoring distribution is known or it is known) convex and linear in the pa­

rameter F. As shown in the preceding chapter this leads to a useful identity 

for the NPMLE; efficiency can be proved by applying theorem 2.3 and veri­
fying the boldfaced conditions of theorem 2.4. The general efficiency proof is 

given in section 4. In order to make the proof work we need invertibility of 

the so called information operator, a Donsker class condition and continuity 

condition for the efficient influence curve. The invertibility of the information 

operator is established in section 4.1. In the remaining subsections of section 



A Class of Missing Data Models 53 

4 the Donsker class and continuity condition for the efficient influence function 

are covered. Section 5 contains the final theorems. Our efficiency result is 

successfully applied to the mentioned examples. 

3.2 A class of missing data models. 

Firstly, we will describe the class of missing data models which we want to 

analyze and we introduce the necessary notation. Let X and C be two vector 

spaces (in our applications we have X = C = lR,k). (X, C) is a X x C-valued 

random element of a probability space (Xx C, B, Px,e), endowed with sigma­

algebra B and with distribution Px,e of (X, C) is determined as follows: X ~ 
Fo, where Fo is completely unknown, CI X = x has distribution Q(· IX= x) 
with density q(c Ix) w.r.t. a fixed µ 2 (same for each X = x). So C ~ Q where 

Q has density with respect to µ 2 given by: 

q(c) = J q(c I x)dFo(x). 

(X;, C;), i = 1, ... , n, are n i.i.d. copies of (X, C). We are interested in esti­

mating the distribution F0 • For this purpose we try to observe (X;, C;), but 

we can only get partial information about (X;, C;) in the sense that we observe 

Y; = <I>(X;, C;), i = 1, ... , n, where <I> is a known many to one mapping from 

X x C to a certain vector space y. It is assumed that q is known or that Q 
satisfies CAR: 

q( c I x) = h( c, q,( c, x)) for some function h. (3.2) 

In the CAR-models the likelihood factorizes in a part which only depends on F0 

and a part which only depends on q, so that one can compute the NPMLE of 

Fo by just maximizing the first part. Moreover, for the purpose of information 

calculations one can also do as if q is known. 

We endow Y with the image a-algebra A= <I>(B) and the image probability 

measure Px,e<I>- 1 will be denoted with Pp0 • Then for any A EA we have 

def 
Pp0 (A) = P(Y EA)= P ((X, C) E q-,- 1 (A)) = Px,e(<I>- 1(A)). (3.3) 

We assume that X is a normed vector space. Let Bx be a sigma-algebra on 

X, Be be a sigma algebra on C and suppose that Bis the product sigma-algebra 

of Bx and Be. For obtaining efficiency of the NPMLE of F0 we need some 

assumptions on <I>, F0 and Q. These assumptions are displayed and numbered 

in the sequel. 
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If we define for a region B E B 

Bz _ {c:(x,c)EB}EBe 

Be _ {x:(x,c)EB}EBx, 

assuming that these sections are elements of Be and Bx (which is well known 
for the Borel product sigma-algebra in the Euclidean case), then for any set 

BE B we have Px,e(B) = P((X, C) EB)= JB 1 Q(Bz I x)dFo(x). Let µ1 be 
a dominating measure of F0 and denote its density with fo. Then (X, C) has 
density q(c I x)fo(x) w.r.t. µ1 Xµ2. Moreover, we have that Pp0 ~ (µ1 xµ2)~-l 

and we denote the corresponding density with PFo or Po• 

Let's write down the model M of probability measures on (Y, A) as de­
scribed above. Let :F be the nonparametric model consisting of all probability 

measures on ( X, Bx). Then 

M ={PF: FE :F}, where Pp is defined as in (3.3). 

The parameter F which we want to estimate is now formally defined by rJ : 
M -+ D, where rJ(PF) = F and D is any vector space which contains the 
measures :F. For example, for D we can take the space of all signed measures. 
If X = IR,k, then we will identify F with its distribution function so that the 

space of multivariate cadlag functions space is a natural candidate for D. 

Each observation Y; tells us that (X;,C;) E B(Y;) = ~- 1({¥;}). In order 
to define the notion of a complete observation we define for a set B E B: 

Bi _ {x: (x,c) EB for some c} E Bx 

B2 _ { c : ( x, c) E B for some x} E Be, 

assuming (which holds for the Euclidean case) that the projections Bi, B2 are 
elements of Bx, Be, respectively. 

Then B(y)i = ~-1 ({y})i = {x : ~(x,c) = y for some c E C} which is 
the projection of the region ~-1({y}) on the X-space; in other words the 
observation Y tells us that X E B(Y)i. Similarly we have B(y)i = {c 
~(x, c) = y for some x EX}. Decompose Y n supp(Po) = A1 U A2 , where 

Ai= {y E Y: B(y) = B(y)i x B(y)i, B(y1) = {x}} 

and A2 is the complement of A 1 within Ynsupp(P0 ). Notice that Y; E A 1 tells 
us that B(Y;)i = {X;}. Therefore an observation Y; is called complete (for X) 

ifY;EA1. 
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For each x E supp(Fo) we denote with y(x) the collection of y E A1 with 

B(y)i = x. For all our applications we have that y(x) consists of one point. 

For convenience, in the sequel we will assume this, but it is not relevant for the 

results. 

We will now state the two main assumptions on F0 , Q and cl>. The first 

crucial assumption we make is that, given X = x, the probability that this 

X = x will be completely observed (i.e. Y E A1 ) is larger than b > 0. (In the 
sequel we will use the symbol b > 0 as a symbol for some small number larger 

than zero. So the same b's are used for different numbers.) Formally, this is 

written down as follows: 

Assumption 1 

P(Y E A1 IX= x) = Q (B(Y(x))z Ix)> b > 0, for all x E supp(Fo)-

Notice that assumption 1 requires completely observed X; on the whole support 

of F0 • We will refer to assumption 1 * as the weakened version of this assumption 

obtained by setting b = 0. 

The next assumption involves an assumption related to the density of the 

distribution of X given Y, YE A2 , w.r.t. F, assuming that this density exists. 

The following guarantees the existence of such a density and can also be shown 

to be necessary: Suppose that the conditional distribution of Y on A2 given 

X, i.e. Q(cl>(x, ·)- 1 Ix), has a density q1(y Ix) w.r.t. a fixed measure µ3 (this 

does not hold on A1 , but we only need this assumption on A2). Then the joint 

distribution of X, Y, Y E A2 , is q1(y I x)F(dx)µ 3 (dy). However, assuming 

F0 (B(Y)i) > 0 we have 

1 q1(Y I x)F(dx) 
q1(y J x)F(dx)µa(dy) = q1(Y I x)F(dx)µa(dy)J ( I )F(d )' 

B(y)i B(y)i q1 Y X X 

where fn(y)i q1(Y I x)F(dx)µa(dy) is the marginal distribution of Y on A2. 

Consequently, the conditional distribution of X given Y, Y E A2 , is given by 

q1(Y I x)F(dx)/ fn(y)i q1(Y I x)F(dx) which proves that the distribution of X 
given Y has a density proportional to q1(y I x) w.r.t. F. We can decompose 

q1(Y Ix)= a(y)qi(Y Ix), where a(y) is the factor in q1(Y Ix) which does not 

depend on x. Then 

q1(Y I x)F(dx) qi(Y I x)F(dx) 
fn(y)i q1(Y I x)F(dx) - fn(y)i qi(y I x)F(dx)' 

We denote Pp(Y) = fn(y)i qi(Y I x)F(dx), which is the normalizing constant 
for the distribution of X given Y = y. If Q satisfies CAR, then q1 (y I x) is only 

a function of y and hence then we have Pp(Y) = F(B(y)i). 
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Assumption 2 Suppose that the conditional distribution of Y on A2 given 

X = x, i.e. Q(~(x, ·)-1 I x), has a density q1(y Ix) w.r.t. a fixed measure µ3. 

Moreover, assume that 

p~(y) > c > 0 and P(X E B(y)i) = F0 (B(y)i) > c > 0 for ally E A2. 

and {IB(Yh : Y E A2} is a Fo-Glivenko-Cantelli class. If Q satisfies CAR, 
then p~(y) = Fo(B(y)i). 

We will refer to assumption 2* as the same assumption, but with C replaced by 

0. The Glivenko-Cantelli assumption tells us that 

1 n 

11- :EI(Xi E B(Y)i) - Fo(B(Yh)llyeM -t 0 a.s. 
n i=l 

Because Fo(B(Y)i) > 0 this implies that all the incomplete regions B(y)i will 

contain (for n large enough) a fraction of the underlying X; and by assumption 

1 each underlying X; has probability larger than 0 to be completely observed. It 
is now straightforward to verify that this implies that with probability tending 

to 1 each B(Y; )i will contain completely observed Xi and the minimal number 

of completely observed Xi in B(Y; )i, Y; E A2, converges to infinity. 

We conclude that for n large enough assumption 1 * and 2* provide us with 

probability tending to 1 with the following picture of the data: a fraction 
of the Xi will be completely observed and if Xi is not completely observed, 

then Xi E B(Y;)i, where B(Y;)i is a region which contains many completely 
observed X;. 

3.2.1 Verification of assumptions 1 and 2 for the exam-
ples. 

Example 3.1 (Univariate censoring). 

Model. We have n i.i.d. copies Xi E IR?:o of X ~ F0 , where Fo is completely 

unknown. We have n i.i.d. copies Ci E IR?:o of C ~ Go, where Go is completely 

unknown. X and C are independent. Denote the survival functions of F0 and 

Go with So and Ho, respectively. Let Fo ~ µ1, Go ~ µ2 with densities /o, g0 , 

respectively. We observe: 

We are interested in estimating So. If Y = (z, 1) E A1 (uncensored), then 

B(z, 1) = {z} x (z, oo). If Y = (z, 0) E A2 (censored), then B(z, 0) = (z, oo) x 

{z}. We have Po(z,d) = fo(z)Ho(z)I(d = 1) + So(z)go(z)I(d = 0), where Po is 
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the density induced by F0 x G0 with respect to (µ 1 x µ 2)<}-1. The sample space 

is Y = lR~o x {0, 1}. Y = A1 UA2, where A1 = lR~o x {1} and A2 = lR~o x {0}. 
Assumption 1. P(Y E A1 IX= x) = Ho(x). So assumption 1 requires that 

Ho(x) > 6 > 0 Fo a.e. 
Assumption 2. We have dPG 0 ((z, 0) I x) = I(x > z)dGo(z). So qi((z, 0) I 
x) = dP0 ((z, 0) I x)/dG0(z) ·= I(x > z) and therefore p~(z, 0) = So(z). So 

assumption 2 requires that S0 (z) > 6 > 0 Po(·, 0) a.e., or in other words 

S0 (z) > 0 for all possible censored z. 
How to arrange assumption 1 and 2? Fix r < oo so that S0 (-r) > 6 > 0 

and H0 (r) > 6 > 0. Make each observation z > r uncensored at r. This 

does not influence the NPMLE on [0, r); by the EM-algorithm (as explained in 
the next section) we know that all uncensored and right-censored observations 

after r put only mass on ( r, oo ). Then these truncated observations are coming 

from F8 which equals F0 on [0, r), but which has an atom at r so that F8(r) = 

1. Now, S0 (z) > 6 for all censored (z, 0) and H 0 (r) > 6 > 0 and thereby 
assumption 1 and 2 are satisfied. 

Example 3.2 (Double censoring). 

Model. We have n i.i.d. copies X; of X ~ Fx, Fx unknown. We have 

n i.i.d. copies of (Z;, Yli) of (Z, Y1) ~ Gz,Y, unknown, except that P(Y1 > 
Z) = 1. Let Y1 ~ Fy1 and Z ~ Fz. X and (Z, Y1) are independent. Let 

W = min(max(Z,X),Y1) and D = 1 if W = X, D = 2 if W = Y1 and D = 3 

if W = Z. We observe: 

Y = (W, D) = cp(X, Z, Y1) = (min(max(Z, X), Y1), D). 

So if Z < X < Y1, then X is completely observed and if X ~ Y1, then X is 

right censored at Y1 and if X ::; Z, then X is left censored at Z. We have 

A1 = {(w, 1) : w ~ 0}, A2 = {(w, 2), (w, 3): w ~ 0} and the sample space is 

given by Y = A1 U A2. The underlying probability space corresponding with 
(X, (Z, Y1)) is IR10 endowed with the Borel sigma algebra. We are interested 
in estimating Fx. 

We have 

B(w, 1) 

B(w, 2) 

B(w, 3) 

{w} x [0,w) x (w,oo) 

(w,oo) x [0,w) x {w} 

[0, w) X { w} X ( w, oo ). 

p(w, 2) = Sx(w)fy1 (w) and p(w, 3) = Fx(w)fz(w). 
Assumption 1. P(Y E A1 IX= x) = Gz,Y,([0,x) x (x,oo)) > 6 > 0. 
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Assumption 2. dPa 0 ((w,2) I x) = I(w S x)Go([0,w] x {w}) = I(w S 
x)Fz[0, w]dFy(w). So dPa 0 ((w, 2) I x)/dFy(w) = I(w S x)Fz(0, w). So 

qi((w, 2) I x) = I(w S x) and p'(w, 2) = Sx(w). dPa 0 ((w, 3) I x) = 
I(w > x)Go({w} x [w,oo)) = I(w > x)Fy([w,oo))dFz(w). So dPa 0 ((w,3) I 
x)/dFz(w) = I(w > x)Fy([w, oo)) and hence qi((w, 3) Ix)= I(w > x). Con­

sequently, we have p'(w, 2) = Sx(w) and p'(w, 3) = Fx(w). Assumption 2 

requires Fx(z) > 8 > 0 for all observed z and Sx(y1 ) > 8 > 0 for all observed 

Yl• 

How to "arrange"? Fix a r < oo. Assume Fz(r) = 1 and Sy1 (r) > 0. This 

means that after r we only have uncensored (d = 1) and right-censored (d = 2) 

observations. Then as in the univariate censoring model we can make all ob­

servations after r uncensored and by the same reason this does not influence 

the NPMLE on [0, r). Then these truncated observations are coming from FJc 
which equals Fx on [0, r), but which has an atom at r so that FJc(r) = 1. 

Now, we assume that there exists a 81 so that Fz [0, 81] = Fz ( { 0}) > O, i.e. 

it has an atom at O and no mass immediately after this atom. To summarize: 

by assuming that Fz ( r) = 1 and Sy1 ( r) > 0 we could arrange by artificial 

censoring that: 

(i): Fx(r-) < 1, Fx(r) = 1. 

And we have also to make the following assumption: 

(ii): Fz[0,81] = Fz({0}) > 0 and Fx(81 ) > 0 for certain 81 > 0. 
Under these assumptions (which are the same as the assumptions as used in 

Chang-Yang (1990) for proving asymptotic normality), assumption 1 and 2 can 

be proved as follows. 

Gz,Y, (Z E [0, w), Y1 E (w, oo)) ~ Gz,Y1 (Z = {0}, Y1 > Z) = Fz( {0}) > 8 

by assumption (ii). This proves assumption 1. Furthermore, P((0, 81], 3) = 0 

(i.e. there are no observed z E (0, 81 )) and therefore for Fx(z) > 8 > 0 we 

need Fx(81 ) > 0 and that holds by assumption (ii). We have P([r, oo), 2) = 0 

by assumption (i) (i.e. there are no observed y1 E (r, oo)) and therefore for 

Sx(Y1) > 8 > 0 it suffices to have Sx(r-) > 0 and that holds by assumption 

(i). This proves assumption 2. The conditions (i) and (ii) are not very easy 

to arrange. Gu and Zhang (1993) succeeded, by a specific analysis, to weaken 

these conditions. Of course, our assumptions 1 * and 2* are easily satisfied. 

Example 3.3 (Ibragimov-Has'minskii (IH) Model). 
Model. X1, ... ,Xn are i.i.d. copies of a X-valued random variable X which 

is distributed according to an unknown distribution F0 • C1 •.. , Cn are i.i.d. 

copies of C of a C-valued random variable with conditional distribution of C 
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given X = x given by a known kernel Q(·, x) which has a density q(· Ix) w.r.t. 

µ 2 • Let A be a third variable independent of X and C so that A E {0, 1} and 

P(A = 1) = A E (0, 1]. We observe the following many to one mapping of 

(X, C, A) EX x C x {0, 1}: 

Y = (Z,A) = ~(X,C,A) =(AX+ (1-A)C,A). 

A1 = {(z, 1) : z E X} and A 2 = {(z, 0) : z EC}. B(Y) C X x C and 

B(z, 1) 

B(z, 0) 

{z}xCx{l} 

Xx{z}x{0}. 

Assumption 1. P(Y E A1 I X = x) = A > 0. So assumption 1 is satisfied. 

Assumption 2. dPq(z, 0 I x) = (1 - A)q(z I x)dµ2(z) and hence dPq(z, 0 I 
x)/dµ 2(z) = (1 - A)q(z Ix). So assumption 2 requires that p~(z, 0) = J q(z I 
x)dF0 (x) > 15 > 0 for Po(·, 0) almost each z. By artificially censoring the C; it 

will often not be hard to arrange this assumption. 

For example, let's consider the Vardi and Zhang (1992) special IH model: 

q(c Ix)= ¾I(c::; x) and x and care real valued. Then assumption 2 requires 

p~(c, 0) = fc00 dF~(x) >Ii> 0 for almost each observed c. 
How to arrange in the Vardi-Zhang model? Let r be so that Fo(r) < 1. 

By artificially censoring the observed C; at r we obtain the following model: 

if x < r, then x ~ F0 and C I x is uniform [0, x] and if x ~ r, then C I x 
has density 1/x on [0, r] and it puts mass 1 - r/x at r. Then it is clear that 

assumption 2 holds. It is also satisfied if F0 has compact support on [0, r] and 

an atom at r. 

3.3 Existence of sieved-NPMLE and EM­
equations. 

We avoid the search for a dominating measure of the NPMLE (as defined in 

Kiefer and Wolfowitz, 1956) by analyzing the so called sieved-NPMLE of F0 

which is purely discrete and only puts mass on the completely observed X; in 

each region B(Y; )i and if B(Y; )i does not contain completely observed X;, 

then it puts mass on one point in B(Y; )i, chosen by us. 

Let Pn be the empirical distribution function of the data Y1 , •.. , Yn. Let 

{xi, ... , Xm(n)} be the set consisting of completely observed X; and the chosen 

points in the regions B(Y; )i which contain no completely observed X;. Let µn 

be the counting measure on { x1, •.. , Xm(n)} and define F(µn) as the set of all 

distributions F with F ~ µn. 
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Now, we define the sieved-NPMLE by: 

Fn = arg max f 1og(pF)dPn. 
FE:F(µn) 

(3.4) 

Sometimes Fn coincides with a NPMLE, and is certainly as natural because 
Fn eventually puts all its mass on the uncensored observations (what it should 
do, see discussion of EM-algorithm, below). In this section we prove existence 
and uniqueness of the sieved-NPMLE under the weak assumption 1* and 2*. 

Here there is no need for the stronger assumptions since the statements are 
statements for fixed n. 

3.3.1 Existence and uniqueness of sieved-NPMLE. 

Denote :F(µn) by :Fn and let 'Pn, be the class of densities PF, F E :Fn, w.r.t. 
(µn X µ2)1)- 1. For each F E :Fn we denote f = dF/dµn. Notice that each 
region B(Y;)i contains one or more elements of {x1, ... , Xm(n)}. We will show 

that Fn exists and is unique. 

Consider the set :Fn(61) = {F E :Fn : F{Xi} 2'.: 61, i = 1, ... , m}. Notice 
that :Fn(61) is isomorphic with a compact convez subset in JRm. Firstly, we 

show that PF E 'Pn is uniformly bounded away from zero on this set. By 
assumption 1 * we have that if Y; E A1 and F E :Fn(61), then pp(Y;) > M1. If 

Y; E A2, then 

m 

PF(°Yi) 2'.: 61 Ll(x; E B(Y;)i)Q(B(Y;),..; Ix;), (3.5) 
j=l 

which is larger than 61 max,..;eB(Y;)i Q(B,..;('Yi) Ix;)> 6261, for certain 62 > 0. 

Consequently, mini pp(Y;) is uniformly in FE :Fn(61) bounded away from zero. 

Therefore F --+ J log(pp )dPn is a continuous function on :Fn ( 61) for each 
61 > 0. Moreover, :Fn(61) is compact. Consequently the MLE, say Fn(61), 
over :Fn(61) exists. Now, we want to show that there exists a 6 > 0 so that 
Fn(6) lies in the interior of :Fn(6). Assume that there does not exist such a 

6 > 0. That means that lilll6!0 millie{l, ... ,m} Fn(6)(Xi) = 0 and consequently 

J log(PFn(6))dPn --+ -oo for 6--+ 0, which contradicts that J log(PF,.(6i))dPn 2'.: 
J log(PFn(62 ))dPn for 61 < 62. This proves that Fn exists, namely it equals the 
interior maximum Fn(6) for 6 small enough. (The EM-equations below tell us 

that 6 < 1/n suffices.) 
We will now show uniqueness of Fn. If F1 ( {Xi}) =p F2 ( {Xi}) for one of the 

completely observed Xi, then by assumption 1 pp1 =p pp2 w.r.t. the counting 

measure on the complete observations Y1, ... , Ym. This follows from pp1 (Y;) -
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PF,(Y;) = (!1 - '2)(X;)Q(B(Y;h IX;), i = 1, ... , m, and that by assumption 1 * 
Q(B(Y;h IX;) > 0. Suppose now that F1 ( {x;}) :/= F2( { x;}) for a point x; in an 

empty region B(Y;)1, Then Fi(B(Y;)i) = F1({x;}) :/= F2({x;}) = F2(B(Y;)i) 
and therefore it follows that PF1 (Y;) :/= PF,(Y;) (see (3.5)). This shows that if 

Fi:/= F2 w.r.t. µn, then PF1 :/= PF, w.r.t. Pn, 
By linearity of F-+ PF and the strict concavity of "log" this implies strict 

concavity of the log likelihood F-+ J log(pF )dPn on :F(µn)• Now, the unique­
ness follows from the fact that a strictly concave function on a Convex set has 

a unique maximum. 

3.3.2 EM-equations for the sieved-NPMLE. 

Suppose that assumptions 1* and 2* hold. Let S(Fn) be the class of lines 

€F1 + (l-€)Fn, Fi E F, through Fn with score h = d(Fi - Fn)/dFn E L5(Fn)• 
By convexity of Fn we have that these lines are submodels of Fn, Let S(Fn) 
be the corresponding tangent cone ( =collection of scores) and notice that it 

includes all h E L5(Fn) with finite supremum norm. Then it is trivial to verify 
that the tangent space T(Fn) (=closure oflinear extension of S(Fn) C L5(Fn)) 
equals l,5(Fn), The lines Fn,e,h E S(Fn) with score h generate one-dimensional 

submodels PFn,,,h through PFn with score AFn(h) E L5(PFn), where AFn is the 
so called score oper1;1tor. 

The score operator is given by: 

This is a result which holds for any missing data model (see van der Vaart, 

1988, Gill, 1989, Bickel et al., 1993, section 6.6). 

Fn maximizes the log likelihood over Fn, By differentiating the log likeli­

hood along PFn,,,h we obtain: 

(3.6) 

In particular, this holds for h = IE -Fn(E) for a collection of sets EE £ C Bx, 

Let £ be so that each FE Fn is uniquely determined by F(E), EE£. Then 

this equation reduces to the well known self-consistency equation: 

Fn(E) = J PFn (XE EI Y) dPn(Y) for all EE£ 

or equivalently, with fn = dFn/dµn, 

fn(X;) = j PFn (X = X; I Y)dPn(Y) for all X;, i = 1, ... , m. 

(3.7) 
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By copying the proof of theorem 3.1 below one shows that equation (4.6) has 

a unique solution in the class {F : F = µn}, where F = µn means that the 
two measures are equivalent. A solution of ( 4.6) is computed with the EM­
algorithm. Dempster et al. (1977) and Turnbull (1976) (see also Meilijson, 

1989)) show that the strictly concave likelihood J log(PF! )dPn (in F) increases 
at each step and converges to its unique maximum at Fn, 

The EM-algorithm does the following. Start with a F2 = µn, Now, for 

k = 0, 1, ... and i = 1, ... , m we can compute 

J!+1(x;) = j P1: (X = X; I Y) dPn(Y) = ¾ t P1: (X = X; I Y;) .(3.81 
j=l 

This means that each observation Y; has mass 1/n which it redistributes over 

B(Y;)i as follows: a point X; E B(Y;h gets mass 1/n x P1:(X = X; I Y;). 
This step is natural because our ultimate goal should be to give the X; mass 

1/n, but because of the random censoring we only know that X; E B(Y;)i; 
so we redistribute the 1/n over B(Y;)i according to a good estimate of the 

conditional density over B(Y;)i, namely P1: (X =·I Y;). 

Define Pc(A) = P(X E A, Y E A1) = P(B(Y)i E A, Y E A1), which is the 
distribution of the completely observed X;. Let Pcn(A) = 1/n I:7=1(1(X; E 

A, }'i E A1 ) be the empirical distribution of Pc, The completely observed X; 

get the full mass.1/n from l'i and therefore f!(X;) 2:: #{j : X; = X;}/n, 
i = 1, ... , m. This tells us that for each A E Bx we have Fn(A) 2:: Pcn(A). 

If assumption 1* holds, then this implies that limsupFn(A) 2:: bFo(A) for all 

AEBx. 
We summarize the obtained results in the following lemma (notation: Pnf = 

inf fdPn): 

Lemma 3.1 Let assumptions 1* and 2* hold. With probability tending to 1 

we have that each B(l'ih contains completely observed X;. 

1. The sieved-NPMLE Fn E :F(µn) over :F(µn) exists and is unique. 

2. For each set A we have Fn(A) 2:: Pcn(A) and if assumption 1 holds, then 

limsupFn(A) 2:: bFo(A). 

9. The score operator at PF is given by: 

AF : L~(F) _. L5(PF) : h 1--+ EF(h(T) I Y). 

Fn solves 

Pn (AF,.(h- Fn(h)) = 0 for all h E L2 (Fn) with Jlhlloo < oo. (3.9) 
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4. Fn is found by iterating the EM-algorithm above from some F~ = µn. Fn 

is the unique solution of {3.9) in {FE :Fn : F = µn}-

Heuristics of assumption 1 and 2. We end this subsection with the heuristic 

explanation of why Fn will have a good performance under assumptions 1 and 

2. By lemma 3.1 the sieved-NPMLE exists and is unique. Our assumptions 

1 * and 2* will take care that with probability tending to 1 each of the B(Y; )i 
corresponding with Y; E A2 will contain one or more completely observed X;, 
i = 1, ... , m. Then Fn puts only mass on the completely observed X;. 

The EM-algorithm starts with an initial estimator F~ which puts mass 

only on each of the completely observed X;. Each completely observed X; gets 

mass 1/n from itself and 1/nPp!(X = X; I Y;) from all other observations 

Y;. Because there is only mass on complete observations, it follows that the 

estimate Pp! ( · I Y;) is determined by mass given to the completely observed 

X; E B(Y; )i and hence can only improve if B(Y; )i contains completely ob­

served X;. Therefore these incomplete Yi can only redistribute consistently if 

B(Y; )i contain enough completely observed X;, and this is exactly guaranteed 

by assumption 1 and 2 with probability tending to 1. 

3.3.3 Identifiability of the self-consistency equation. 

The following theorem is useful for proving consistency of solutions of the self­

consistency equation (see e.g. Gu and Zhang, 1993, identifiability of the self­

consistency equation is a crucial ingredient of any consistency proof based ort 

the self-consistency equations). Moreover, it tells us in what sense the self­

consistency equation determines the NPMLE. Let :F0 be the set of all distri­

butions on X which are equivalent with Fo and for which lldFo/dFIL:,o < oo. 

Denote the densities dF /dµ1 by f. 

Theorem 3.1 Suppose that FE :Fo, Ff. Fo, implies PF f. PFo Pp0 a.e. (e.g. 

assumption 1 holds). For FE :F0 we denote 

{ fi-f } So(F) = h = - 1- : F1 E :Fo . 

Then 

Pp0 (Ap(h)) = O, Vh E So(F), FE :Fo ==> F = Fo. 

In other words: the self-consistency equation in Pp0 has a unique solution in 

Po, namely Fo. 
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Proof. Assume F 'I Fo, F = Fo, lldFo/dFll00 < M and Uh(F, Pp0 ) = 
Pp0 (Ap(h)) = 0 for all h E So(F). We want to get a contradiction (then we 

have to conclude that F = Fo). Seth= (Jo - f)/f and notice that h E So(F) 
and llhll 00 < oo. Define for this h a function ~h : I C JR. -+ JR. on a closed 
interval I around zero given by: 

where FE,h is a line through F with score h; in terms of densities it is given by 
fE,h = (1 + eh)f. Uh(F, Pp0 ) = 0 tells us that :E ~h(e) IE=o= 0. However, by 
linearity of / -+ PJ and the strict concavity of the "log" ( and our identifiability 
assumption) we have: 

~h(e) = j log (P(i+E(/o-/)/1)/) dPo 

J log ((1- e)pJ + ep10 ) dPo 

and hence 

> (1 - e) j log(p/ )dPo + e j log(Po)dPo 

(1 - e)~h(0) + e j log(po)dPo 

~h(e) - ~h(0) > e (! log(Po)dPo - J log(p/ )dPo) 

> e•c, 

where by the Jensen inequality 6 > 0, using that PJ 'I Po Po a.e. So 

which contradicts that :E ~h(e) IE=o= 0. D 

The crucial ingredients in this proof were the convexity of :F, the linearity 
of F -+ Pp and the identifiability of F from Pp as stated in the theorem. 

3.4 Efficiency of the sieved-NPMLE. 

For each FE :F define S(F) as all lines eF1 + (1- e)F, F1 E :F, F1 ~ F, with 
scores h = d(F1 - F)/dF E L5(F). Let S(F) be the tangent cone of S(F) and 
recall that the tangent space T(F) of S(F) equals L5(F). 
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Lemma 3.2 The score operator at F is given by: 

The adjoint of Ap is given by: 

The information operator is defined by: 

Proof. For the derivation of the score operator see Gill (1989), Bickel et al. 

(1993). We have: 

Ep (EF (h(X) I Y) v(Y)) 

Ep (EF (h(X)v(Y) I Y)) 

Ep (h(X)v(Y)) 

Ep (EF (h(X)v(Y) IX)) 

Ep (h(X)EF (v(Y) IX)) 

(h, Ep (v(Y) I X))F· 

So A]:(v) = Ep(v(Y) IX). □ 

If inflJhll = 1 JIIp(h)IIF = 0, then infllhll =l (Ap(h), Ap(h))PF = 0 and hence 
there ex1;t one dimensional submodels PF,,,. with arbitrarily low information. 

In this case it might be hard or impossible to estimate F as a whole at root-n 

rate. So the following lemma indicates the strength of assumption 1. 

Lemma 3.3 If assumption 1 holds (with 6 > 0), then Ip: L 2(F)-+ L 2 (F) is 

onto and has a bounded inverse. Moreover, the bound does not depend on F: 

If assumption 1* holds, then Ip is 1-1, but not necessarily onto. 

Proof. By lemma 3.3, for the onto and bounded invertibility of Ip it suffices 

to show that IIAp(h)llpF 2:: 05llhllr By only integrating over the complete 

observations, application of the substitution rule JB h(T-1(x))dF(T- 1)(X) = 
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fT-•(B) h(y)dF(y) in the third line below, using that y-+ B(y)i is 1-1 from A1 
to Supp(Fo), and assumption 1 at the fourth line provides us with 

IIAF(h)ll~F ~ llh(B(y)i)I(y E A1)ll~F 

f h2(B(y)i)dPF(Y) 
}A, 

f h2(B(y)i)Q (B(y)2 I B(y)i) dF(B(y)i) 
}A, 

= 1 h2(x)Q(B(y(x))2 I x)dF(x) 
supp(F) 

~ 6 j h2 (x)dF(x) 

6llhll~- □ 

Let S( PF) be the tangent cone at PF corresponding with the submodels PF,,11., 

h E S(F); in other words S(PF) equals the range of S(F) under AF. Appli­

cation of corrolary 2.1 to the parameter tl(PF) = F provides us now with the 
following result. 

Lemma 3.4 Let assumption 1 hold. For each E E Bx we define bE : D -+ 

JR by bEF = F(E). For each bE we have that bEtJ : M -+ JR. is pathwise 
differentiable at PF relative to S(PF) with efficient influence function given by: 

(3.10) 

In other words, 

(3.11) 

If only assumption 1* holds and IE - F(E) lies in the range of IF, then the 
same statements hold. 

For proving efficiency we apply theorem 2.4. 

The model Mis convex and F-+ PF is linear. Theorem 2.3 says now that 
we have the following identity; 

F1(E) - Fo(E) = - J !(F1, E)dPF0 , 

for all F1 with Fo <: F1 and dFo/dF1 E L5(F1). We want to apply this identity 
to F1 = Fn. Usually Fn does not dominate F so that this identity cannot 
be directly applied. However, notice that the identity holds in particular for 

F1 = Fn(a) = (1-a)Fn +aF for any a E (0, 1]. Hence if !(Fn(a), E) converges 
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to 1(Fn, E) in L1(PF,G) for a - O, then the identity also holds for Fn. Since 

Fn (a) converges to Fn w .r. t. each norm this is a weak continuity condition 

in F on the efficient influence function, which in particular follows from our 

verification of a stronger pp0 -consistency property below. 

If 1( Fn, E) is a score of Pp n,,,,. for a certain one dimensional line Fn,<,h 
through Fn with score h with finite supremum norm, then by lemma 3.1 we 

have the so called efficient score equation: 

By (3.10), for this it suffices to show that Ti,:_-(Ie) has finite supremum norm 

on X, which is proved by lemma 3.5 in the next subsection. 

Then combining the last two identities provides us with the identity: for 

each EE Bx 

Let B = {be : E E e}. Suppose now that with probability tending to 1 

1(Fn, E) lies in a P-Donsker class for all EE£, This P-Donsker class condition 
will be studied in section 5.2 and sufficient conditions are given. This provides 

us with IIFn - Folle = Op(l/./n). The pp0 -consistency condition requires to 
verify: if 

sup lll(Fn, E) - l(Fo, E)llp - 0 in probability, 
Eet: ~ 

then SUPeee(Pn - Po)(l(Fn, E) - l(Fo, E)) = op(l/.fii,). The latter provides 
us with supnorm-efficiency of Fn. 

In the next subsections we prove, or rather give verifiable conditions for, 

the Po-Donsker condition, the supremum norm invertibility of the information 

operator and the pp0 -consistency condition. The conditions will be verified 

for the examples. Finally, we summarize our conclusions in the final efficiency 
theorems in section 5. 

3.4.1 Supremum norm invertibility of the information op-
erator. 

We will now write down the score operator. Recall that by assumption 2 the 

distribution of X given Y = y, y E A2, has a density qi(y I x)/p'p(y) w.r.t. F 
which only lives on B(y1 ). So we have: 

Ap(h)(Y) 
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Notice that E(h(B(Y)i)IA 1 (Y)IX=x) = Q(B(y(x))zlx)h(x) and 

by assumption 2* E (V(Y)IA 2 (Y) I X = x) = JA 2 V(y)dPQ (y I x) = 
JA 2 V(y)q1(Y I x)dµ3(y). So the information operator is given by: 

r J h(u)qi(Y I u)F(du) 
lp(h)(x) = Q(B(y(x)h I x)h(x) + JA

2 
J qi(Y I u)F(du) q1(Y I x)dµ3(y). 

Consider the equation lp(h)(x) = f(x) for some pointwise well defined f with 

finite supremum norm. Define 

(3.12) 

and notice that assumption 1 * tells us that v1 ( x) > 0 for F-all x. Then the 

equation lp(h)(x) = f(x) is equivalent with the following equation: 

h(x) = _1_ {t(x) - f f h(u)qi~Y I u)F(du) dPQ(Y Ix)}. (3.13) 
v1(x) }A2 Pp(Y) 

For the moment denote the right-hand side by Cp(h, f)(x): i.e. we consider 

the equation h(x) = Cp(h, f)(x). If we assume that flies in the range of lp 
(so in particular if assumption 1 * holds), then we know by lemma 3.3 that 

there exists ah' E L2 (F), which is unique in L2(F), with lllp(h') - JIIF = 0: 

i.e. llh' - Cp(h', f)IIF = 0. Notice that if llh - gllF = O, then for each x 
Cp(h - g, f)(x) = 0. So even if h' is only uniquely determined in L2 (F), then 
Cp(h', f)(x) is uniquely determined for each x. Now, we can define h(x) = 
Cp(h', f)(x). Then llh-h'IIF = IICp(h', f)-h'IIF = 0. So in this way we have 
found a solution h of (3.13) which holds for each x instead of only in L 2 (F) 

sense. 

By assumption 2 we have that p'p > b > 0. So if supYEA 2 llu --+ qi(Y I 
u)IIF < oo, then it follows trivially (as shown below) by the Cauchy-Schwarz 

inequality that llhll 00 < oo. Moreover, lp(h) = 0 implies llhllF = 0 and that 
implies (see (3.13)) that h = 0 in supnorm. So we have now shown that lp 
is 1-1 and onto in supnorm sense. From now on, if we talk about Ti, 1(!), we 

mean this pointwise well defined solution. 

Let (B(K), II· 11 00 ) be the Banach space of functions on K, where I( is the 

support of F, with finite supremum norm 11 · lloo• We have shown: 

Lemma 3.5 Let assumption 1 and 2 hold and suppose that supYEA 2 llu --+ 

qi(Y I u)IIF < oo. Then lp: (B(K), II· 11 00 )--+ (B(K), II· 11 00 ) is 1-1 and onto. 
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For the Donsker class condition we have to consider the solution h'e of 

IFn(hE) = IE for E E £. We will show that llhElloo < MIIIElloo for some 
M < oo. So we want a uniform (in n) bound on the norm of the mapping Ii,} 
w.r.t. the supremum norm. 

For this purpose we consider IFJhn) = f. The approach to be followed is 
to bound the right-hand side of (3.13) with F = Fn in the supremum norm of 

f and llhnllFn• where we can use that the latter is uniformly bounded by the 
L2(Fn) norm off, by lemma 3.3. 

Firstly, we need to bound Pk away from zero. The following assumption 

will take care of this. 

Assumption 3 Let Pc(B) = P(X E B, Y E A1) be the distribution of the 
completely observed X; and Pnc be the empirical distribution function of Pc. 
Assume that 

sup If q~(y I x)d(Pnc- Pc)(x)I-+ 0 in probability. 
yEA2 

This is equivalent to saying that {x -+ qi(Y I x) : y E A2 } is a Pc-Glivenko­
Cantelli class. 

Lemma 3.6 If assumptions 1,2 and 3 hold, then uniformly in y E A2 p~n (y) > 
61 > 0 for some 61 > 0 with probability tending to 1. 

Proof. We have by lemma 3.1 

p~Jy) = j q~(y I x)dFn(x) ~ j q~(y I x)dPnc(x). 

Assumption 3 tells us that this converges uniformly in y E A2 to J qi (y I 
x)dPc(x) in probability. We have by assumption 1: dPc(x) = F(dx)P(Y E 

A1 IX= x) ~ 6F(dx). By assumption 2 we have: J qi(y I x)dF(x) =PHY)> 
8 > 0. D 

By lemma 3.6 we have that the denominators p~n in (3.13) are uniformly 
bounded away from zero for n large enough. 

Furthermore, we want to bound I J hn(u)qi(Y I u)Fn(du) I by MllhnllFn 
for an M < oo which is independently of YE A2 and n. 

By the Cauchy-Schwarz inequality, a sufficient condition for this is given 
by: 

Assumption 4 

f llq~(Y I u)IIFndPQ(Y Ix)< M < oo. 
jYEA2 
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Then by bounding 1/v1 and the denominator by 1/8 we have: 

hn(x) = Cn(hn, f)(x) ~ 8\ (llfllc,o + llhnllF)\1) · 

By lemma 3.3 (the uniform inn bounded invertibility of IFn w.r.t. L2(Fn)) we 

have 

llhnllFn ~ M1llfllFn ~ Mllfll 00 for some M < OO. 

Consequently, we have llhnlloo = IIIi;U)lloo ~ Mll/11 00 for some M < oo. This 
proves the following lemma. 

Lemma 3.7 If assumptions 1, 2, 3 and 4 hold, then IFn : (B(I<), II· 11 00 ) --+ 

(B(I<), II · 11 00 ) is onto and has bounded inverse. Moreover we have that 

IIIp,:(h)ll00 ~ Mllhll00 for certain M < oo which does not depend on Fn and 

h. 

3.4.2 Weak assumption approach. 

In the case that assumption 1 and 2 needs to be weakened one can follow the 

same approach without using that v1 and PF are bounded away from zero. 

Realize that our only goal is to prove that llhnlloo < M for some M < oo 

independent of n, with probability tending to 1. One can replace assumption 

4 by the following weak version of it: 

Assumption 4*: Assume that f*(x) = f(x)/v 1(x) has finite supnorm over 

the support of F. Assume that IIIi;U)IIFn ~ M with probability tending to 
1, where M < oo does not depend on n. Finally, assume 

with probability tending to 1. 

The first two assumptions provide us by Cauchy-Schwarz, as above, with the 

following bound 

The third assumption just says that this is bounded uniformly in n with 

probability tending to 1. One can use that dFn(x) ~ dPnc(x) (and hence 

PFn (y) ~ J q~ (y I x )dPnc(x)) and apply refined empirical process results in a 

specific analysis. 
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3.4.3 The P-Donsker class condition. 

Lemma 3.7 tells us that for each E E £ hE = Ti,;(IE) exists pointwise, 

SUPE,n llhEll 00 < oo and solves 

hFJ(x) = Cn(hE,IE)(x), (3.14) 

where 

Cn(hE,IE)(x) = Vi~x) ( IE(x)- i, AF,.(hFJ)(y)dP(y IX= x)). 

Here dP(y Ix) can be replaced by q1(Y I x)dµ3(y). Define 

Fin= { :l (JE(·) - i, AF,.(g)(y)dP(y IX=·)) : IIYlloo < 1, EE£}• 

Now, it follows that for proving the P0-Donsker-class condition it suffices to 

have: 

Assumption 5 Assume that there exists a P0-Donsker class F C L2 (Po) so 

that 

AF,. (Fin)) CF with probability tending to 1. 

Lemma 3.8 If assumption 1-5 or assumption 1*,2*,3,4*,5 hold, then 

{!(Fn, E): EE£} CF with probability tending to 1. 

As mentioned in the general efficiency proof (begin of section 5) the assumptions 

of lemma 3.8 provide us also with IIFn - Folle = Op(l/y'n). For efficiency it 
remains to verify the pp0 -consistency condition. 

Firstly, we work out assumption 5 for the general practical relevant case 
that X = IR,k. 

Conditions for assumption 5 in the case of multivariate observations. 

Let X = IR,k for certain k E IN and let £ = {(O, t]: t E supp(F0 )}. We refer to 
the following results stated in chapter 1. A real valued function on [O, r] C IR,k 

is called to be of bounded uniform sectional variation if the variations of all 

sections ( s --+ f( s, t) is a section of the bivariate function f, etc.) and of the 
function itself is uniformly (in all sections) bounded. The corresponding norm 

is denoted with II· 11;. In chapter 1 we proved that the class of functions with 

uniform sectional variation smaller than III < oo is a Donsker class. We also 

stated that if f > 6 > O, then Ill/ /II: ~ MIi/ii; for some M < oo which does 
not depend on f (Gill, 1993). We will now give properties of 4> guaranteeing 
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that hf = I;:(I(o,t]) is of bounded uniform sectional variation uniformly in n 

and thereby for any reasonable score operator the efficient influence function 

!(Fn,t) = Ap,.(hf) will lie in a fixed Donsker class. 

The next conditions will be denoted with 5.1, 5.2 and 5.3, where 5 stands 

for assumption 5. Recall from assumption 2 that for y E A2 we defined q1(Y I 
x) = dP(· IX= x)/dµ3. 
Condition 5.1 Assume 

Condition 5.2 

Let f : ]Rk - JR be any function with llfll: < oo. Condition 5.2 tells us that 

llf /viii: < oo. Using this, the uniform bound on Ap,.(hn) and condition 5.1 

it follows that IICn(hn, !)(·)II:< Mllfll:, uniformly inn. Consequently, (3.14) 

and III(o,tJII: = 2k tells us that llhf 11: < M, as required. 
Define ( B( K), II · II:) as the Banach space of functions on I(, the support of 

F0 , which are of bounded uniform sectional variation endowed with the uniform 

sectional variation norm. We showed that: 

Lemma 3.9 Consider the case where X = ]Rk. If assumptions 1-4, 5.1 and 

5.2 hold, then Ip : (B(K), II · 11 00 ) - (B(K), II · 11 00 ) and Ip: (B(K), II· II:) -
(B(K), II· II:) are onto and have a bounded inverse with an operator nomi which 
is bounded uniformly in F E F. 

Finally, assume that: 

Condition 5.3 Let 91(M) = {f : llfll: < M}. Assume that there exists a 

Po-Donsker class g C L 2 (P0 ) and M < oo such that 

Ap,.(91(M))) Cg with probability tending to 1. 

Because 9 1 (111) is a Donsker class, condition 5.3. is a rather weak assump­

tion, which will hold in most practical examples. We can now state the following 
lemma: 

Lemma 3.10 Consider the case where X = ]Rk. If assumptions 1-4, 5.1, 5.2 

and 5.3 hold, then there exists a Po Donsker class g C L 2 (P0 ) so that 

1(Fn, t) E g with probability tending to 1. 

In other words, then assumption 5 holds. 
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The weak assumption approach. Instead of assuming condition 5.1,5.2, 

we can just assume JA 2 llx -+ q1(Y I x)/v1(x)ll:dµ3(y) < oo, which does not 

necessarily require that v1 ( x) > /j > 0. 

3.4.4 Verification of assumptions 3, 4, 5.1, 5.2 and 5.3 for 
the examples. 

Example 3.4 (Univariate Censoring). 
Assumption 3 and 4. By the independence of X and C we had q~((z, 0) I 
x) = dP0 ((z, 0) I x)jdG0 = I(x > z) and hence assumption 3 and 4 are trivially 

satisfied. 

Condition 5.1. We have that q1((z, 0) I x) = q~((z, 0) I x) and clearly z-+ 
I(x > z) is of bounded variation uniformly in x. This proves 5.1. 

Condition 5.2. v1(x) = H(x). So 5.2 holds. 

Condition 5.3. 

f'" hdF 
Ap(h)(z,/j)=/jh(z)+(l-/j) zS(z) • 

By lemma 3.6 we know that Sn(z) > /jS(z) > /jl > 0 with probability tend­

ing to 1 and therefore the denominator is uniformly bounded away from zero 

with probability tending to 1. Because the variation norm of a distribution 

function, as Sn, is bounded, it follows that the variation of Apn (h)(z, 0) and 

Ap,. (I(0, t])(z, 1) are uniformly (in n and t) bounded with probability tending 

to 1. This proves 5.3. 

Example 3.5 (Double Censoring.) 
Assumption 3 and 4. Similar as for univariate censoring. 

Condition 5.1. Recall q1(w, 2) I x) = (dPa 0 ((w, 2) I x)jdFy(w) = 
I(w :::; x)Fz(0, w) and q1((w, 3) I x) = dPa 0 ((w, 3) I x)/dFz(w) = I(w > 
x)Fy([w, oo)) and consequently 5.1 holds. 

Condition 5.2. v1(x) = Fz,y([0, x] x [x, oo]). So condition 5.2 holds. 

Condition 5.3. 

The same proof as for the univariate censoring model holds. 

Example 3.6 (IH-Models, Vardi-Zhang.) 

For a general kernel q(· I ·) the best thing to require is that assumption 3, 4 

and 5 have to hold. We will work out what this means for the Vardi-Zhang 
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model. 
Assumption 3. For this we need that 

1100 d(Pnc - Pc)(:r:) I O sup - a.s. 
wE(O,T] W X 

We know that the convergence holds for each w E (0, r]. Recall now that a 
sequence of distribution functions which converges pointwise to a continuous 

limit is uniformly convergent. Therefore it suffices to show that 

100 __,d(_P,._c _-_Pc-'--')("---'-:r:) -o a.s. 
0 :r: 

By the Glivenko-Cantelli theorem this holds if Pc(l/:r:) < oo. 
Assumption 4. Assumption 4 requires that J; dF,.(:r:)/:r:2 < M with prob­
ability tending to 1. Assume F,.( {X;}) $ M P,.c( {X;}) for X; E [O, <h] for 
certain 61 > 0 with probability tending to 1 (this is easy to verify by using 
the EM-steps, because X; E [O, 61] gets mass 1/n from itself and mass 0(1/n2) 

from other observations; we will not get into the details here). Then it suffices 
to show that 

r P,.c(dw) M . h b b'l' d' Jo w2 $ , wit pro a 1 1ty ten mg to 1. 

Again, by the Gli~enko-Cantelli theorem it suffices now to assume Pc(l/w2) < 
00. 

Assumption 5. Recall that dPQ(z, 0 I :r:)/dµ2(z) = (1 - A)q(z I :r:) and hence 
Condition 5.1 requires that 

Consider the Vardi-Zhang kernel: :r: - I(z $ :r:)/:r:. Because of the singularity 
at zero 5.1 does not hold in this case. Therefore, we will verify assumption 5 

directly. Then it follows that it suffices to show that the following statement 
holds with probability tending to 1: 

J J g(u)q(c I u)dF,.(u) q(c I :r:)dc 
J q(c I u)dF,.(u) 

is of bounded variation uniformly in IIYlloo < 1. Substitute the Vardi-Zhang 
kernel. Then we have 

11a: J,oo g(u)dF,.(u) 
- c u de 
:r: 0 J,oo dF,.(u) ' 

C U 
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Define fn(c) = (fc'00 g( u)dFn( u)/u) / (Jc00 dFn( u)/u). Then we have to consider 

the derivative of fin(x) = ~ J; fn(e)de. We have 

f ' ( ) _.!_ix fn(x) - fn(e)d 
ln X - e. 

X O X 

However, 

11x J,x gdFn(u)/u 
- c de 
X o X 

< IIYlloo .!. r lex dFn(u)/u de. 
x } 0 x 

Therefore, it suffices to show that 1/x J; dFn(u)/u is bounded with probability 

tending to 1. Now, 1/x J; dFn(u)/u ~ J; dFn(u)/u2 • As already shown above 
this is bounded with probability tending to 1 if Pc(l/x2 ) < oo. 

In the cases where we have to deal with singularities, as in the Vardi-Zhang 

model, one should verify assumption 5 directly, instead of verifying the sufficient 

conditions 5.1, 5.2, 5.3. 

3.4.5 The P-consistency condition. 

We will formulate this condition as an assumption, because it is something 

which can be straightforwardly verified for any application. 

Assumption 6 Suppose that 

sup Jll(Fn, E) - l(F, E)JJp -+ 0 in probability, 
EEe P 

where we can use that JJFn - FIie -+ 0 in probability. 

Denote hnE = Ip}(Ie) and hE = lp 1(IE), as defined in the invertibilitysection 

3.5.2. We have 

(AFn -Ap)lp 1 (IE) + AFJp:([pn - lp)lp 1(Ie) 

(AFn -Ap)(hE) + ApJp:(IFn -lp)(hE)-(3.15) 

For assumption 6 we need to show that the Pp-norm of these terms converges 

to zero in probability, uniformly in E E £. Recall the score operator Ap and 

that the denominator PF,. is uniformly bounded away from zero by lemma 3.6. 

By telescoping the first term, it is written as a sum of two differences. The first 

difference is given by: 

(3.16) 
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and the second difference is similar and shown to converge to zero in the same 

way. Standard techniques, like the Cauchy-Schwarz inequality, dominated con­

vergence theorem, integration by parts and invertibility of the information op­

erator w.r.t. supremum norm and L2 norm (lemma 3.9) lead under mild condi­

tions to a straightforward proof of the convergence of (3.16) to zero. Also the 

other terms are dealt in this way. 

Consider the case where X = m,k and £ = {(0, t) : t E (0, r]}. For proving 

assumption 6 we need to prove convergence of terms 

J htq~d(Fn - F), which can be bounded by integration by parts (lemma 

1.3) by CIIFn - Flloo llhtqrn:. By lemma 3.9 we know that ht is of bounded 
uniform sectional variation. Consequently, the following condition is sufficient, 

but certainly not necessary, for proving assumption 6. 

Condition 6.1. There exists an M < oo so that for Pp almost each Y E A2 

we have that llx---+ q~(Y I x)II: < M < oo. 

We can state this as a lemma: 

Lemma 3.11 For the case that X = m,k we have that under assumptions 1-4, 

5.1, 5.2, 5.3 and assumption 6.1 the following holds: 

sup ll!(Fn; t) - !(Fo, t)IIPF -+ 0 a.s. 
tE[O,r) 0 

Because in the univariate censoring model and double censoring model q~ are 

indicators, condition 6.1 holds trivially in these models. Condition 6.1 is in 

general not true for the Vardi-Zhang kernel. However, a direct proof of as­

sumption 6 following the general proof above works as follows: Consider the 

term (3.16). It is given by: 

J (100 ht~x) d(Fn - Fo)(x)) 
2 

q(c)dc. (3.17) 

We want to show that this term converges to zero uniformly in t. By lemma 

3.9 we know that ht(x) is of bounded variation and bounded in supremum 

norm uniformly in t. Therefore by integration by parts we can bound f! ( c) -

ft(c) = J; h,£x)d(Fn - Fo)(x) by IIFn - Foi1 00 times a constant which involves 

the variation of ht and 1/x on (c, r). This converges to zero for each c > 
0, uniformly in t. For application of the dominated convergence theorem it 

remains to verify that f! + ft is bounded by a constant, uniformly in t. ht 

is bounded uniformly in t and we already showed in the preceding example 

that ft dFn(x)/x < M with probability tending to 1, using the assumption 
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that Pc(l/x) < oo. This proves the convergence of (3.17). The other terms 

appearing in the general proof are dealt similarly. 

3.4.6 Identity condition. 

Let Fn(a) = (1 - a)Fn + aF. Rewrite AFn(o)fF:(a)(IE) as in (3.15). Since 
Fn(a) - Fn = a(Fn - F) it is now trivially verified that both terms converge 

to zero if a-+ 0, assuming assumption 1* and 2*. For example, term (3.16) 

above equals a 2 times a term which is bounded (here n is just fixed, so we do 

not need terms to be bounded away from zero uniformly inn). 

3.5 Final theorems and results for the exam­
ples. 

We proved the following theorem: 

Theorem 3.2 Let £ be any collection of sets for which assumptions 1-6 or 

1*,2*,3,4*,5,6 hold. Then Fn is asymptotically supremum norm (over£) effi­

cient. 

Now, we formulate the less general theorem for the case that X = R~0 and 

£ = {[0, t] : t E I( C supp(Fo)}. 

Theorem 3.3 Under assumptions 1-4, 5.1, 5.2, 5.3, 6.1 we have: Fn is 

asymptotically supremum norm efficient. 

We already verified the assumptions for our examples. Application of these 

theorems provides us under the stated assumptions with efficiency of the sieved­

NPMLE for the univariate censoring, double censoring, and the IH-models. 

We will summarize these results below. The results are not new, but they 

are obtained by straightforward verification of the conditions of the general 

theorem 3.2 and 3.3 which can be applied to any CAR-missing data model or 

a missing data model with G known. 

Result 3.1 (Univariate Censoring). 

Let [0, r] C R~o be an interval such that Ho(r) > 0 and S0 (r) > 0. Then Fn 
is supremum norm asymptotically efficient on [O, r]. 

Result 3.2 (Double Censoring). 

Let [0, r] C R~o be an interval such that Fz( r) = 1, Sy1 ( r) > 0. Furthermore, 

assume that there exists a o > 0 so that Fz(o) = Fz({0}) > 0 and Fx(o1 ) > 0. 
Then Fn is supremum norm asymptotically efficient on [O, r]. 
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Result 3.3 (Vardi-Zhang model). Let [O, r] C lR>o be an interval such that 

fr00 dF~(x) > 6 > 0. Moreover assume that J l/x2dF0 (x) < oo. By artificially 

censoring the observed C; at T we have a model: if x < T, then x ~ F0 and 

CI xis uniform [O, x] and if x 2: r, then CI x has a density l/x is [O, r] and it 

puts mass l - (r/x) at T. Now, Fn is supremum norm asymptotically efficient 

on [O, r]. 

In the general class of IH-models the assumptions 1-7 give clear conditions on 

the kernel q(· I ·), which can be easily analyzed for each kernel. We could also 

state a result involving sufficient conditions on the kernel, but verification of 

assumption 1-7, just as we did for the Vardi-Zhang model, provides us with 

the sharpest results. 



Chapter 4 

Efficient Estimation in the 
Bivariate Censoring Model 
and Repairing NPMLE. 

4.1 Introduction. 

In this chapter we are concerned with estimation of the bivariate survival func­

tion of two dependent survival times. For example, one might be interested 

in estimation of the bivariate survival function of twins with a certain disease. 

Suppose that for each twin one observes two calendar times (U1 , U2) at which 

the disease started for twinl and twin2 and that one keeps track of the bivariate 

survival time (Ti, T2) of the twin measured from (Ui, U2) till a given calendar 

point t 0 • At t 0 one wants to use the available data to estimate the bivari­

ate survival function of (Ti, T2 ). In this setting, Ti will be potentially (i.e. if 

Ti > Ci) right randomly censored at the observed censoring time C1 = to - U1 

and similarly T2 will be potentially right randomly censored at the observed 

censoring time C2 = to - U2. 

In this chapter we propose an estimator for the bivariate survival function 

of T = (T1 , T2 ) based on bivariate right randomly censored data, assuming 

that the censoring times C = (Ci, C2 ) are always observed, as in the example 
above, or assuming that the censoring times are discrete. We prove asymptotic 

efficiency of this estimator. In the case that the censoring times are not ob­

served for the failures and the censoring times are not discrete, then we propose 

a simulation of the unobserved censoring variables and conjecture (no proof, 

but heuristic argument) that our estimator based on these simulated censoring 

79 
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variables will also be asymptotically efficient. 

We found it useful not to use a special notation for vectors in JR2; if we 
do not mean a vector this will be clear from the context. So if we write T we 

usually mean T = (Ti, T2) E JR~ 0 and if we write $, ~, <, > then this should 

hold componentwise: for example if x, y E JR2 then x $ y <=> X1 $ Y1, x2 $ Y2• 

We will write T;, i = 1, ... , n, as notation for n i.i.d. bivariate survival times 
with the same distribution as T, while we write T1 and T2 for the components 

ofT. 

Bivariate right randomly censored data can be modelled as follows: T is 
a positive bivariate lifetime vector with bivariate distribution Fo and survival 

function S0 ; F0 (t) = Pr(T $ t) and S0 (t) = Pr(T > t). Let C be a positive 
bivariate censoring vector with bivariate distribution Go and survivor function 

H 0 ; G0 (t) = Pr(C $ t) and H0 (t) = Pr(C > t). Assume that T and C are 
independent; (T, C) E JR4 has distribution F0 x G0 • Let (T;, C;), i = 1, ... , n be 
n independent copies of (T, C). We observe the following many to one mapping 

~ of (T;, C;): 

Y; = ~(T;, C;) = (T; I\ C;, I(T; $ C;)) = ('.n, D;), 

with components given by: 

'.n; = min{T;;,C;;}, D;; = I(T;; $ C;;), j = 1,2. 

In other words, the minimum and indicator are taken componentwise, so that 
'.n E (0, oo) 2 and D; E {0, 1} 2 are bivariate vectors. The observations Y; are 

elementsof[0,oo)2 x{0, 1}2 and Y; ~ Pp0 ,a0 = (FoxGo)~- 1• Weare concerned 

with estimation of So. 

Each observation Y; tells us that (T;, C;) E B(Y;) = ~- 1(Y;) C JR2 x 

1R2 , where B(Y;) = B(Y;)i x B(Y;)2 for the projections B(Y;)i C JR2 and 
B(Y;)2 C JR2 of B(Y) on the T and C space, respectively. The kind of region 

B(Y;)i for T; (point, vertical half-line, horizontal half-line, quadrant) generates 

a classification of the observations Y; = (T;, D;) in 4 groups: 

Uncensored. If D; = (1, 1), then the observation Y; is called uncensored, and 

it tells us that T; E B(Y;)i = {T;}. So T; = T;. 

Singly censored. If D; = (0, 1) or D; = (1, 0), then the observation Y; is called 

singly censored. If D; = (0, 1), then it tells us that T; E B(Y;)i = 
{(T;1, oo) x {'.Z12}} (horizontal half-line), and if D; = (1, 0) that T; E 

B(Y;)i = {{T;i} x (T;2 , oo)} (vertical half-line). 



Introduction 81 

Doubly censored. If D; = (0, 0), then the observation Y; is called doubly cen­

sored, and it tells us that T; E B(Y;)i = {(T;1 , oo) x (112, oo)} (upper 

quadrant). 

The uncensored observations are the complete observations and the singly­

censored and doubly censored are incomplete observations. An NPMLE solves 

the self-consistency equation (Efron, 1967, Gill, 1989) and a solution of the 

self-consistency can be found with the EM-algorithm (Dempster, Laird and 

Rubin, 1977, Turnbull, 1976), which does in fact nothing else than iterating 

the self-consistency equation. In the EM-algorithm each observation Y; gets 

mass 1/n which it need to redistribute over B(Y;)i in a self-consistent way. 

The incomplete observations Y; need to get information from the observed '.I'; 
about how to redistribute their mass 1/n over B(Y;)i, and for this purpose 

they need complete observations in B(Y;)i; the EM-algorithm listens only to 

the observations with a region B(Yj)i which has an intersection with B(Y;)i. 
It is only possible to have uncensored observations in B(Y;)i if Fo (B(Y;)i) > 
0, which is typically not true for the singly-censored observations; if Fo is 

continuous, then the probability that T falls on a line is zero. Indeed it is well 

known that the NPMLE for continuous data is not consistent (Tsai, Leurgans 

and Crowley, 1986). 

Many proposals for estimation of the bivariate survival function in the pres­

ence of bivariate censored data have been made. Because the usual NPML and 

self-consistency principle do not lead to a consistent estimator for continu­

ous data, most proposals are explicit estimators based on representations of 

the bivariate survival function in terms of distribution functions of the data: 

among them Tsai, Leurgans and Crowley (1986), Dabrowska (1988, 1989), 

Burke (1988), the so called Volterra estimator of P.J. Bickel (see Dabrowska, 

1988), Prentice and Cai (1992a, 1992b). 

Prentice and Cai (1992a) proposed a nice estimator which is closely related 

to Dabrowska's estimator except that this one also uses the Volterra struc­

ture of Bickel's suggestion. Dabrowska's multivariate product-limit estimator, 

based on a very clever representation of a multivariate survival function in 

terms of its conditional multivariate hazard measure, and the Prentice-Cai es­

timator have a better practical performance in comparison w.r.t. the Volterra, 

pathwisc estimator and the estimator proposed in Tsai, Leurgans and Crowley 

(1986) (see Bakker, 1990, Prentice and Cai, 1992b, Pruitt, 1992, and chapter 

8 of van der Laan, 1993d). It is expected that Dabrowska's and Prentice-Cai's 

estimators are certainly better than the other proposed explicit estimators. 

Besides, these two estimators are smooth functionals of the empirical distri-
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butions of the data so that such results as consistency, asymptotic normality, 

correctness of the bootstrap, consistent estimation of the variance of the influ­

ence curve, LIL, all hold by application of the functional delta method: see Gill 

(1992) and Gill, van der Laan and Wellner (1993) and van der Laan (1990). 

In Gill, van der Laan and Wellner (1993), here chapter 6, Dabrowska's results 

about her estimator are reproved and new ones are added by application of the 

functional delta method and similar results are proved for the Prentice-Cai es­

timator. Moreover, it is proved that the Dabrowska and Prentice-Cai estimator 

are efficient in the case that T1, T2, C 1, C2 are all independent. 

All the estimators proposed above are ad hoc estimators which are not 

asymptotically efficient (except at some special points (F, G)). This is also re­

flected by the fact that most of these estimators put a non negligible proportion 

of negative mass to points in the plane (Pruitt, 1991a, Bakker, 1990). 

Pruitt ( 1991 b) proposed an interesting implicitly defined estimator which is 

the solution of an ad hoc modification of the self-consistency equation. Pruitt 

points out why the original self-consistency equation has a wide class of so­

lutions and his estimator tackles this non-uniqueness problem in a very di­

rect way by estimating conditional densities over the half-lines implied by the 

singly-censored observations. Uniform consistency, y'n-weak convergence, and 

the bootstrap for his normalized estimator is proved in chapter 7 under some 

smoothness assumptions which are due to the fact that his estimator uses ker­

nel density estimators. However this estimator is not asymptotically efficient 

(except at some special points) and its practical performance is (somewhat 

surprisingly) worse, except at the tail where one hardly finds uncensored ob­

servations, (as shown in chapter 8 of van der Laan (1993d)) than Dabrowska's 

and Prentice and Cai's estimators. In the case that the sampling distribution 

is smooth, Pruitt's estimator appeared (as expected) to improve by using large 

bandwidths. 

As noticed by Pruitt (1991) the inconsistency of the NPMLE is due to the 

fact that the singly-censored observations imply half-lines for T which do not 

contain any uncensored observations. Based on this understanding we propose 

in section 2 to (slightly) interval censor the singly censored observations in the 

sense that we replace the uncensored component (say) Tli of the singly censored 

observations by the observation that T1i lies in a small predetermined interval 

around T1;. These intervals arc determined by a grid partition 7fh with a width 

h = hn, Now, for these interval censored singly censored observations Y/ the 

regions B(Y/) 1 are strips which contain with positive probability uncensored 

observations 
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The interval censoring of the singly censored observations causes one prob­

lem. The joint likelihood for F and G does not factorize anymore in a F-term 

and G-term, which is due to the fact that the region for (T, C) implied by 

the interval censored singly censored observations is not rectangular anymore. 

This tells us that for computing the NPMLE of F we also need to estimate 

G by maximizing over G. Because of similar reasons as for the NPMLE of 

F the NPMLE of G will only be good if we do a symmetric reduction (lines 

should be strips for C as well as for T). In other words, an extra reduction 

of the data will be necessary. Because the involvement of G in computing the 

NPMLE F/: certainly complicates the analysis and it makes the estimator more 

computer intensive we decided to choose a reduction of the data which recovers 

the orthogonality (i.e. factorization of the likelihood), while at the same time, 

as will appear, not losing asymptotic efficiency. The further reduction is based 

on the insight that if G0 is purely discrete on 1rh, then p}0 ,a0 ( ·, d) factorizes, 

as shown in section 2. Hence if the actual G is discrete, then by choosing 7rh 

(which can be done with probability tending to 1 if the number of observa­

tions converges to infinity) so that censoring variables lie on the grid 1rh we 

still have factorization of the likelihood. If the actual G is not discrete, but 

we observe C 1 , ... , Cn, then we can discretize (to the left) these C;'s to Cf on 

1rh, 2) replace the original Y;'s by cp(T;, en, and 3) replace the singly-censored 

observations of cp(T;, Cf) by interval singly-censored observations Y/. In this 

way, we constructed new observations l:? for which the density factorizes in a 

F and G part. 

This further reduction leads also to a good practical estimator as appears 

in the simulations in chapter 8 of van der Laan (1993d); its performance for a 

small value of h is better than Dabrowska's, Prentice and Cai's and Pruitt's es­

timator, except at the tail, and under complete independence of T1, T2, C1, C2. 

We show that if hn -+ 0 at a rate slower than n- 1118, then the estimator is 

asymptotically efficient and if h is fixed, then one still has an asymptotically 

normal estimator with an asymptotic variance arbitrarily close (small h) to the 

asymptotic optimal variance. Our derived lower bound is purely of theoreti­

cal value since it shows the existence of rates h = hn for which the estimator 

is efficient, but quicker rates will also provide efficient estimators. Obtaining 

theoretical insight about the precise rate at which hn should converge to zero 

if n -+ oo is very hard and not very useful because constants are not avail­

able. Simulations show that if n = 200, and the range of the observations is 

transformed back to [0, 1] x [0, 1], then choosing the width of the strips equal 

to h = 0.02 gives a very good estimator; so a few observations in each strip 
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is already effective. The estimator gets essentially worse if we increase h inde­

pendent of the smoothness of (F, G). This bandwidth-behavior is explained as 

follows. A large h means a large reduction of the data and hence an increase 

in asymptotic variance. On the other hand, we needed a h > 0 so that the 

EM-algorithm is able to use the uncensored observations in the strips around 

the singly-censored half-lines for obtaining a redistribution of mass 1/n over 

the half-lines. However, our primary interest is not the distribution over the 

half-line, but the survival function itself ( which integrates over the distribu­

tions over the half-lines), which explains that a smaller bandwidth than the 

one advised by density estimation literature will suffice. In practice, a sensible 

method for programming a sensible grid 1rh would be to set the width for the 

horizontal axis equal to a fixed proportion of the cross-validated bandwidth h! 
using the observed Tli 's and similarly compute the vertical width. 

If we do not observe C;, then we can draw a C: from a conditional dis­

tribution of C, given C E B(Y; )2, and consider these simulated C: as the 

observed C; 's above. For example, if we observe that C 1i E (Tli, oo) we set 

qi = T1; + U;, where U; is a realization from a known distribution on (O, r]. 
Then Y;' = <I>(T;,C:) = Y;, but we now observe q. C:, i = l, ... ,n, are still 

i.i.d, but C: depends on T; only through Y;. However, if the density of C, given 

T = t, depends only on T through Y = <I>(C, T), then the censoring mechanism 

satisfies coarsened at random (see Heitjan, Rubin, 1991) which implies that the 

density of Y still factorizes, where the F part of the density of Y' is still the 

same as the F part of the density of Y, i.e. where C and Tare independent. 

Consequently, we have that the efficient influence function for estimating F 

based on Y;' equals the efficient influence function for estimating F based on 

Y;. Hence, if we construct an estimator of F based on (C:, Y/) which is effi­

cient, then it is also efficient for the original data Y;. In other words, without 

any loss we arranged that we have available a set of observed Cf's. However, 

because of the dependence between C' and T the likelihood does not factorize 

anymore for the data <I>(T, C~) based on the discretized C~ so that our pro­

posed estimator is not a NPMLE for the interval censored <I>(T, C~) and hence 

has a bias. On the other hand, we let h converge to zero when the numbers of 

observations converge to infinity so that this bias converges to zero. Therefore, 

we conjecture (no proof) that our estimator based on these simulated C' is 

asymptotically efficient if h = h 11 converges to zero at an appropriate rate (not 

too slow and not too quick). In the sequel it will be assumed that the C;'s are 

observed or that G0 is discrete. 

We will call the MLE based on a reduction, or call it a slight transformation, 
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of the data a "Sequence of Reductions"-MLE and will abbreviate it with SOR­

MLE. It is a general way to repair the real NPMLE in problems where the 

real NPMLE does not work. If one understands why the usual NPMLE does 

not work, then one can hope to find a natural choice for the transformation 

of the data. Moreover, if we do not lose the identifiability, we have for a fixed 

transformation consistency, asymptotic normality and efficiency of the NPMLE 

among estimators based on the transformed data; while we obtain efficiency 

by letting amount of reduction of the data converge to zero slowly enough if n 

converges to infinity. 

In the next section we will define, in detail, the SOR-MLE for the bivariate 

censoring model. In section 3 we will give an outline of the efficiency proof, 

which is based on an identity for the SOR-MLE which holds in general for 

convex models which are linear in the parameter (van der Laan, 1993a). This 

identity lies a direct link between efficiency of the SOR-MLE and properties of 

the efficient influence function corresponding with the data Yh. In section 4 we 

prove the ingredients of this general proof. The crucial lemmas of this section 

are proved in section 6. We summarize the results in section 5. 

4.2 SOR-MLE for the bivariate 
model. 

. censoring 

Our original data is given by: 

(T;, D;) = <I>(T;, C;) ~ PF0 ,c0 (·, ·), i = 1, ... , n. 

Let Pu(·)= PF0 ,c0 (T ~ ·, D = (l, 1)) be the subdistribution of the (doubly) 
uncensored observations and similarly let P01 , P10 and P00 be the subdistri­

butions corresponding with D = (0, 1), D = (1, 0) and D = (0, 0), respectively. 

Then 

Let 

Fo. 

P11(·)I(d = (1, 1)) + Po1(·)I(d = (0, 1)) 

+P1o(·)I(d = (1, 0)) + Poo(·)I(d = (0, 0)), (4.1) 

Jo = dF0 /dµ for some finite measure µ 

Similarly, let G0 ~ v with density g0 • 

which dominates 

So(x1, ·) gener-

ates a measure on IR~o- This measure is absolutely continuous w.r.t. 

µ((x 1 ,oo),·); the marginal of the measureµ restricted to (x 1 ,oo) x 

IR~o- Now, we define S02(x 1,x2) -S0 (x 1,dx2)/µ((x1,oo),dx2) as 
the Radon-Nykodim derivative and similarly we define S01 (x 1 , x2) 

-So(dx1, x2)/p(dx1, (x2, oo)), Ho1(x1, x2) = -Ho(dx1, x2)/v(dx1, (x2, oo)) 
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and Ho2(X1, x2) = -Ho(x1, dx2)/v((x1, oo), dx2)- Then the density PFo,Go of 

PF0 ,G0 w.r.t. (µ X v)4>-l is given by 

fo(x)Ho(x)I(d = (1, 1)) + S01(x)H02(x)I(d = (1, 0)) 

+S02(x)Ho1(x)I(d = (0, 1)) + So(x)go(x)I(d = (0, 0)) 

P11(x)I(d = (1, 1)) + P10(x)I(d = (1, 0)) 

Po1(x)I(d = (0, 1)) + Poo(x)I(d = (0, 0)) 

L Ph(x)I(d = b). (4.2) 
hE{l,0}2 

Suppose that we observe C; and ('.fi, D; ), i = 1, ... , n. We will transform 

(T;, D;) and base our NPMLE on the transformed data. The transformation 

depends on a grid. For this purpose let 1rh = (Uk, v1? be a nested grid in 

h = hn of [0, r] which depends on a scalar h = hn in the following way: 

Ehn < uk+I - uk < Mhn, where f and Mare independent of n, k, and similarly 

for v1+1 -v1. With nested we mean that the grid points of 7rhn are a subset of the 

grid-points of 7rhn+m (we use this in order to make martingale arguments work 

for conditional expectations, given increasing sigma-fields) In other words, the 

grid must have a width between f hn and M hn. This tells us that the grid 7rh has 

(in order of magnitude) 1/h~ points (uk,v1). Let Rk,l = (uk,Uk+1] x (v1,v1+1J-

Move each C; to the left lower corner (uk, v1) of the rectangle Rk,l of 1rh 

which contains C;. Denote these discretized C; with Cf. Then Cf ~ Gh where 

Gh is the step function with jumps on 1rh corresponding with G0 : 

Consider now the n i.i.d. observations 

Notice that we are able to observe these Y;(T;, Cf') because for this we only 

need to know Y;(T;, C;). If h = hn converges to zero, then one the distribution 

of 4>(T, c") converges to the distribution of <I>(T, C). 

For convenience we will denote 4>(T;, Cf) with Y; = (T;, D;), again, and 

still use the notation p 11 , PIO, p01 and p00 , suppressing the dependence on h, 

but we have to realize that all censored T1; equal Uk for some k and T2; equal 
- h 

v1 for some l. Now, we can define the reduced data (T;, D;) which we will use 

for our estimator: 

h_ - h h h _ h - h h Y; - (T;, D;) = <I> (T;, C;) = Id ((T;, D;)) = Id (<I>(T;, C; )), 
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where Idh is a many to one mapping on the data (T;, D;) which is defined as 

follows. 

Idh(T, D) = (T, D) if D = (1, 1) 
h - - - • 

Id (T, D) = ((u;, T2 ), D) for u; s.t. T1 E (u;, u;+i], rf D = (1, 0) 
h - - - • Id (T, D) = ((T1 , v1), D) for Vj s.t. T2 E (vj, Vj+r], rf D = (0, 1) 

Idh(T, D) = (T, D) if D = (0, 0). 

Notice that Idh equals the identity for the uncensored and doubly censored ob­

servations and it groups all singly-censored observations (T1 , C2 , I(T1 ::; Cr)= 

1, I(T2 ::; C2) = 0) with Tr E (uk, ttk+rl to one observation and similarly with, 

the singly-censored observations with D = (0, 1). We used the notation Idh (Id 

from Identity) because for h -+ 0 (in other words, if the partition gets finer) 

this transformation converges to the identity mapping. We will still call the 

yh with D = (1, 0) and D = (0, 1) singly censored observations, in spite of 

the fact that they are really censored singly censored observations. Yl are 

i.i.d. observations with a distribution which is indexed by the (same as for Y;) 
parameters Fo and Gh. 

To be more precise, we have 

where 

P~ a (x,D=d) ro, h P11(·)I(d = (1, 1)) + P/;1(-)I(d = (0, 1)) 

+Pf0 (·)I(d = (1, 0)) + Poo(·)I(d = (0, 0)), (4.3) 

where the density p'},0 of PJ.o,ah w.r.t. (µ x vh)<I>,; 1 , Vh being the counting 

measure on 7rh, is given by: 

and 

Pll(Yr, Y2) 

Poo(vk, v1) 

fo(Y1,Y2)Hh(Y1,Y2) 

So(vk, v1)gh(vk, v1), 

f Por(vk, Y2)µ((vk, oo), dy2) 
J(v1,v1+d 

f S02(vk, Y2)Ho1(vk, v1)µ((vk, oo), dy2) 
lcv,,v1+d 
Fo((vk, oo), (v1, v1+1])Ho1(vk, v1)-

Similarly, p~0(uk, Y2) = Sor((vk, Vk+i], v1)Ho2(vk, v1). Notice that P3(·, d), d f 

(1, 1), is discrete on 1r11. The independence between C,. and T and the fact 
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that Ch is discrete on 7rh implied that the density p}0 ( ·, d) also factorized for 

d = (l, 0) and d = (0, 1). 

Let P!: be the empirical distribution function based on n i.i.d. Y;h(Ti, Cf)~ 
P~ c , which is the distribution of the data corresponding with T ~ Fo, ro, h 

C ~ Gh, where Gh is discrete on the grid 1rh, and the singly censored ob-

servations are interval censored by I dh (i.e. halflines are grouped to strips). 

Let { x 1, .•. , Xm( n)} consist of the uncensored T; and one point of each B(Yj )i 
which does not contain uncensored T;. Let µn be the counting measure on 

{x1, ... ,Xm(n)}- Now, we let F(µ,.) be the set of all distributions which are 

absolutely continuous w .r. t. µn. 

We define our SOR-MLE F/: of F0 which we will analyze; 

(4.4) 

where the maximum can be determined without knowing Gh by maximizing 

the term which only depends on F. We define S! as the survival function 

corresponding with F/:. 

4.2.1 Existence and umqueness of the SOR-MLE and 
EM-equations. 

In lemma 3.1 for a general class of missing data models it is proved that the 

MLE over all F with support {x1, ... , Xm(n)} exists and is unique, if the fol­

lowing two assumptions hold: Ho > 8 > 0 F0 a.e. and F0 (B(Y;h)i) > 0 for 

all censored Y;h (D = (1, 0), D = (0, 1), D = (0, 0)). This holds if all data 

lives on a rectangle [0, r] C IR~o, where r is such that H 0 (r) > 0, S0 (r-) > 0, 

Fo( r) = 1, Fo(T1 E [u;, u;+1l, T2 > r2) > 0 and Fo(T1 > r1, T2 E [vj, Vj+1]) > 0 
for all grid points (u;,vj), By making all observations Ti E [O,r]c uncensored 

at the projection point on the edge of [0, r] we obtain truncated observations 

with distribution pFhT c , where Fa equals Fo on [0, r), but puts all(= 1) its 
0, h 

mass on [0, r]. This means that our efficiency result proves efficiency for data 

reduced to [O, r]. For obtaining full efficiency we can let r = Tn converge slowly 

enough to infinity for n - oo. In our analysis this will mean an extra singular­

ity of magnitude 1/ H( rn) and therefore our analysis can be straightforwardly 

extended to this case. 

Let g E L2 (F/:) have finite supnorm. We will use the notation F(g) = 

f gdF. We have that dF!:,, = ( 1 + E(g - F:: (g) )dF::, E E ( -8, 8), 8 > 0 small 

enough, is a one-dimensional submodel through the MLE dF!: and hence by 
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definition of F:: 

f--, j log(ph,,,ch )dP/: 

is maximized at f = 0. Consequently, the derivative of this real valued function 

on ( -6, 6) at f = 0 equals zero so that exchanging integration and differentiation 

provides us with: 

P::(A}Jg - F/:(g)) = 0 for all g E L2(F;:) with 11911 00 < oo, (4.5) 

where the so called score operator Ai, for a distribution function Fis given by: 

The form of the score operator follows from the general fact that the score op­

erator in missing data models equals the conditional expectation operator (see 

Gill, 1989, Bickel, Ritov, Klaassen, Wellner, (1993), section 6.6). In particular, 

by setting g(T) = l(o,t](T) in ( 4.5) one obtains the well known self-consistency 

equation (Efron, 1967): 

(4.6) 

where Pp(T :::; t I Yh) = Pp(T :::; t I T E B(Yh)i), where B(Yh)i is a 

point, horizontal strip, vertical strip, or an upper quadrant, where the strips 

and quadrants start at the grid points. The SOR-MLE F/: is computed by 

iterating this equation with an initial estimator of F which puts mass on each 

point of the support of F/:. The self-consistency equation tells us that F/: puts 

at least mass 1/n on each uncensored observation, which provides us with the 

following useful bound: for each set A: 

(4.7) 

4.3 Outline of the efficiency proof. 

Firstly, we define the models corresponding with the data yh and Y. Let :F be 

the set of all bivariate distributions on (0, oo) and :Fh be the set of all possible 

bivariate distributions Gh which live on 1rh. Then the model corresponding 
with yh (see (4.3)) is given by 

Mh = {PP.,ch: FE :F,Gh E :Fh} 

and the model corresponding with Y (see (4.1)) by 

M = {PF,G: F, GE :F}. 
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Let D[0, r] be the space of bivariate cadlag functions on [0, r] as defined in 

Neuhaus (1971). We are interested in estimating the parameter 

i'Jh : Mh---> D[0, r]: i'Jh(PJ.,a.) = S. 

Similarly, we define 

i'J: M---> D[0, r]: i'J(PF,a) = S. 

To begin with we will prove pathwise differentiability of these parameters (see 

e.g. BKRW, 1993, chapter 3, van der Vaart, 1988). 

Let S(F) the class of lines £F1 + (1 - f)F, F1 E :F, with score h = d(Fi -

F)/dF E L5(F), through F. By convexity of :F this is a class of submodels. 

Let S(F) C L5(F) be the corresponding tangent cone (i.e. set of scores). It is 

easily verified that the tangent space T(F) (the closure of the linear extension of 

S(F)) equals L5(F). Each submode! of S(F) with score g will be denoted with 

F(,g• The score of the one dimensional submodels Pfr.,,g,Gh C Mh, g E S(F), 
is given by A}(g) where A} is called the score operator: 

A} : L2(F)---> L2(PJ.,a.) : A}(g)(Yh) = EF(g(T) I Yh), 

which is a well known result which holds in general for missing data models 

(van der Vaart, 1988, Gill, 1989, BKRW, 1993, section 6.6). The score operator 

AF for the one dimensional submodels PF,,.,G CM, g E S(F), is given by: 

AF: L2 (F)---> L2(PF,G): AF(g)(Y) = EF(g(T) I Y). 

Let Gh,(,g, C Mh be a line through Gh with score g1 . Because of factor-

ization of P}a (y) and PF,a(y) the scores B~(g1 ) of Pfr.a and the scores 
, h , h,<,g1 

Ba(gi) of PF,a, .• , are orthogonal to the range of AF and A}, respectively. 

Lemma 3.2 says that the adjoint of AF is given by 

and similarly that the adjoint of A} is given by: 

A}T: L2(P),ah)---> L2(F): A}T(v)(T) = EF,Gh(v(Yh) IT). 

Hence the corresponding information operator I} = A}T A} : L2 (F)---> L2 (F) 

is defined by: 

I}(g)(X) = EF,ah (EF,ah (g(X) I Yh) Ix). 

If H > o > 0, then it is trivially verified that IIAF(h)IIPF > v1bilhllF• Now, 
application of lemma 3.2 tells us that this implies that I} : L2 (F) ---> L2 (F) 
has a bounded inverse, uniformly in F E :F. And the same result holds for 

IF : L2 (F)---> L2 (F). This proves: 
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Lemma 4.1 Let h,a = AfAF : L 2(F)-+ L2(F) be the information operator 

for M. We have: If H > b > 0 F-a.e., for certain b > 0 then lF,G has bounded 

inverse Ii~ with norm smaller than 1/b and is onto. The same holds for the 

informati~n operator I},a, : L 2(F) -+ L2(F) for Mh with inverse IhJ,a,, 
where the bound is uniform in h. 

Let b1 : D[O, r] :-+ IR be defined by b1F = F(t). Define Kt= I(t,oo) - S(t). For 

each one dimensional submodel pFh G , we have 
t: ,g, h,t:,91 

l gdF 
(t,oo) 

(I(t,oo) - S(t), g)F 

(Kt, g)F 

(I}Ih}(Kt), g)F 

(A}I,:-}(Kt), A}(g)) ph 
, F,Gh 

(A}I,:-}(Kt), A}(g) + B~(g1))ph , 
, F,Gh 

where we used the orthogonality of the scores at the last step. The same holds 

for {) and PF,G without h. This proves by definition (see e.g. BKRW, 1993) 

that for each t E [O, r], b1{)h is pathwise differentiable at Pft_ah for each one 

dimensional submode! PF, .• ,a,., .• 1 at PJJ.,a, with efficient influence function 

(suppressing the G in the notation) given by: 

(4.8) 

And similarly for {) at PF,G with 

(4.9) 

Notice that these are the same efficient influence curves as we would have found 

in the models where G = G0 would have been known. In the sequel G0 does 

not vary and therefore we can skip the G in the notation; P]J. = PJJ.,a, and 

PF = PF,G 0 , Ip = IF,G etc. 
Our goal is to prove efficiency of S! as an estimator of 1'J(Pp0 ) = So. It 

should be remarked that for fixed h application of theorem 3.3 provides us 

under the assumptions as stated in section 2.1, by simple verification, with 

efficiency of S!, among estimators based on the data Y;h, i = 1, ... , n, as an 

estimator of {)h(PJ\) = S0 • However, we want more than efficiency for a fixed 

reduction. For this purpose we will follow the same analysis as followed for 

the general class of missing data models, except that we look carefully what 

happens if hn -+ 0 when the number of observation converges to infinity. 
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It works a.s follows: The model Mh is convex and the F -+ P;, is linear. 

Theorem 2.2 says now that we have the following identity; for each t E [0, r) 
we have 

S1(t) - So(t) = - J P'(S1, t)dP;,0 , 

for all F1 with F0 ~ F1 and dF0 /dF1 E L~(F1). So in particular this identity 
holds for 

S~(o:) = o:So + (1 - o:)S~, o: E (0, 1], 

which provides us with the identity: 

S~(o:)(t) - So(t) = - J P'(S~(o:), t)dP;,0 , o: E (0, 1). (4.10) 

Notice now that S! ( o:) - S! = o:( S! - S0 ). If o: -+ 0 the left-hand side of ( 4.10) 
converges to S!(t)-S0 (t) and it has been verified for the general class of missing 

data models that the right-hand side converges to - J P'(S!, t)dP;,0 ; in fact 
in our proof we show that f(Jh(S!, t) - Jh(S0 , t))2dP;,0 -+ 0 which basically 

proves this much weaker result (notice that S!(o:) converges to S! w.r.t. each 
norm). It follows that we have the following identity: 

It remains to verify: 

Efficient score equation. For all t E [0, r] 

J P'(F/:, t)dP/: = 0. 

(4.11) 

The score equations (4.5) tell us that it suffices to prove that Ip!(I(t,oo)) has 
finite supnorm. This is proved by lemma 4.12 in section 6 of this "chapter. 

The efficient score equation and the identity (4.11) provide us with the 
crucial identity 

( 4.12) 

Empirical process condition. Now, we will show for an appropriate rate 

hn-+ 0 that 

sup If (r(F/:, t) - P'(Fo, t)) d(P:: - PA)I = Opi. (1/v'n). 
tE[O,r) Fo 
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This condition requires a lot of hard work ( done in section 4 and 7). The reason 

for this is that we are not able to prove that J(Fo, t) has any nice properties, 

except that it exists as an element in L5(PF0 ), due to the very complicated 

form of the information operator I Fo. Therefore Jh ( F::, t) cannot be shown 

to be an element of a fixed Donsker-class when hn --. 0. In other words the 

P-Donsker class and pp-consistency condition as used in the proof for the 

general class of missing data models in chapter 3 do not help us here. More 

sophisticated conditions are needed. The technique will be to determine how 

quickly fh(F/:, t) looses its Donsker class properties for hn --. 0 and then to use 

(4.12) in order to obtain a rate for 11S! - S0 11 00 so that terms can be shown to 

converge to zero if hn -, 0 slowly enough. 

The empirical process condition provides us with (see e.g. Pollard, 1990) 

where the remainder holds uniformly int. 

Approximation condition. Finally, we need to show 

Notice that the left-hand side is a sum of i.i.d. random variables given by: 

1/v'nL~=l Xf(t) where X;h(t) = fh(Fo, t)(Y/). By Bickel and Freedman 

(1981) we have that if for h = hn -, 0 Xf (t):bX;(t) and Var(Xf (t)) -, 
Var(X;(t)), then this sum converges weakly to a normal distribution with mean 

zero and variance equal to Var(X;(t)). These two conditions are proved by 

lemma 4.8. 

We also show the approximation condition for the case that we consider the 

left and right-hand side as a random element of a L2-space of functions in t, 
which provides us with pointwise and L2-efficiency. 

4.4 Proof of efficiency of SOR-MLE. 

Recall the assumptions made in section 2.1: in particular F0(r) = 1 and hence 

PJ\ ( ·, d) lives on (0, r]. In all statements the width ( of grid) h converges to 

zero for n -, oo; the problem is to find a lower bound for the rate at which h 

should converge to zero. 
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4.4.1 Uniform consistency of F/: for hn-+ 0. 

The starting point of the analysis is (4.12). The indicators are a uniform 

Donsker class. This tells us that suph JIP/: - P;0 ll 00 = Op(l/,,fii,). 
A real valued function on [0, r] C IR-2 is called to be of bounded uniform 

sectional variation if the variations of all sections ( s --+ f( s, t) is a section of 

the bivariate function f) and of the function itself is uniformly (in all sections) 

bounded. The corresponding norm is denoted with J J · J J:. Recall from chapter 1 

that the class of functions with uniform sectional variation smaller than 111 < oo 

is a uniform Donsker class and that if f > fJ > 0, then Ill/ fJJ; ::; MJJJJI; fop 

some M < oo which does not depend on f (Gill, 1993). We have: 

Lemma 4.2 (Uniform sectional variation of efficient influence curve). Let 

Et1(1,0) = (uk,uk+1l x [v,,oo) be the the vertical strips of1rh and E¾,1(0,1) 
be the horizontal strips. Suppose that the grid 1rh is so that F0 (E!1) > bhn for 

certain fJ > 0. Let r1(hn) = I/h~12 . ' 
For all d E { 0, 1 }2 we have that for some M < oo fh ( F/:, t)( ·, d) E D[0, r] 

and 

sup Jli7'(F!, t)(·, d)IJ;::; Mr1(h) with probability tending to 1. 
tE[O,r] 

Proof. See section 6. 

Consider an integral J F1dH1 where F1 E D[0, r] and H 1 E D[0, r] are bivariate 

real valued cadlag functions which are of bounded uniform sectional variation. 

By integration by parts lemma 1.3 we can bound it by CIJH1JJ 00 JJF1JJ;. Be­

cause fh(F/:,t)(·,d) generates a signed measure we can apply this to (4.12) 

with F1 = fh(F/:,t)(·,d) and H1 = (P/:-PJ\)(·,d) and apply lemma4.2 to 

F1. This proves the following lemma: 

Lemma 4.3 (Uniform consistency). Under the assumption of lemma 4,2 we 

have: 

II Fhn _ F, JJ = O (r1(hn)) = O (-1-). n Ooo P ,,/n P y'nh[ 

So if h --+ 0 slower than n - I/3 , then F/: is uniformly consistent ( also for h is 

fixed). 

4.4.2 Empirical process condition. 

h h h h -hh -h · Define Zn = ,,/n(Pn - PF0 ) and fnt = I (Fn, t) - I (Fo, t). We will show that 

J f~1dZ~ converges to zero uniformly in t with probability tending to 1. By 
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using that IIF! - Folloo = Op (r1(hn)lvn) (lemma 4.3) we are able to show 

that: 

Lemma 4.4 (Supnorm convergence of efficient influence curve). Under the 

assumption of lemma 4.2 we have for all d E {1,0}2, with rz(hn) = 1/h~: 

llf!1(·,d)lloo = Op (ri(hn)rz(hn)lvn) = Op (11~). 

Proof. See appendix. 

Analysis of the uncensored term. Let's first analyze f f!1I(d = (1, l))dZ!. 

Recall that Z!I(d = (1, 1)) = Znl(d = (1, 1)) = fo,(Pi1 - Pu), where Pu =.. 

foHh. We will assume that Fo = Fg + FJ, where F8 is absolute continuous 

w.r.t. the Lebesgue measure with continuous density which is bounded away 

from zero and Fg is purely discrete with finite support. Then we can decompose 

Pu = Pf1 + Pf 1 , where pf 1 = f8 H h is purely discrete on the finite number of 

support points of Fg and P 11 is absolutely continuous w.r.t. Lebesgue measure 

with density bounded away from zero. 

For P{'1 we have a corresponding decomposition P{'1 = P{'/ + P{'{, where 

Pi/ only counts the number of observations coming from Pf1 • Firstly consider 

the integral w.r.t. fo,(Pf/ - Pf1). Let pf 1 be the density of Pf1 w.r.t. the 

counting measure, say µk, which lives on the support of Pf1• We have that 

f I Pif - Pf1 I dµk = Op(l/fo,). Therefore, with Znd = vn(Pf/ - Pf1) we 
have 

J f! 1I(d = (1, l))dZ,.a yn J J!1I(d = (1, l))(pff - Pti)dµk 

< vnllf!1I(d = (1, l))lloo J I (pff - Pf1) I dµk 

ynOp ( /4) Op ()n) 

Op (/4)' 
where the bound does not depend on t. Consequently, if nh~ - oo, then 

f J!1I(d = (1, l))dZna = op(l). 
Consider now f f!1I(d = (1, l))dZ~, where Z~I(d = 1, 1) = fo,(P{'{- Pf1). 

For convenience, we denote Z~ with Z,., again. We construct a lattice-grid 

7ran = (t;, ti), with maximal mesh an < h,., on [O, r] = [O, r1] x [O, Tz], which 
we force to be so that 7rhn C 7ran. Now 

[O,r] = LJA;,j(an), where Ai,j(an) = ((t;,t;+1J X (tj,tj+1])n [O,r] 
i,j 
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and the union is over all partition elements A;,j(an), i = 1, ... , n1(an), j = 
1, ... , n2 (an), The number of partition elements will be denoted by n(an) and 

it is clear that n(an) = O(1/a~). Now, we define an approximation of Zn as 

follows: 

So z:n is constant on each A;,i(an) with value Zn(t;, ti)· 
By using integration by parts it is clear that we have for d = (1, 1) (the 

integral is over y E [0, r], fixed d): 

J f!i(Y, d)dZn(Y, d) = J f!i(Y, d)d(Zn - Z!n )(y, d) 

+ J f!i(Y, d)dZ!n(y, d) 

< Cllf!i(·, d)ll:ll(Zn - z:n )(·, d)lloo 
+llf!t(,, d)lloollZ!n (•, d)II: 

< 0 P ( r1 (hn)) II( Zn - z:n )( ·, d)lloo 
+Op ( r1(h~(hn)) 11z:n (·, d)ll:-

In order to show that J J::1(y, d)dZn(Y, d) = op(l) for a rate hn -> 0, it suffices 

to show that there exists a rate an for which the last two terms converge to 

zero in probability. 

For convenience we will neglect the d in our notation. Define: 

Wtj(an) = sup I Zn(s) - Zn(t) I, 
s,tEA;, 1(an) 

and 

In other words, Wn(an) is a modulus of continuity of a bivariate empirical 

process. Firstly, we will bound the two terms in wn (an). 

We have 11zin - Znlloo ~ max;,j W;~j(an), Therefore 

(4.13) 

Furthermore we have 

(4.14) 
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Analysis of the modulus of continuity. For a rectangle R we define 

Zn(R) as the measure of R assigned by the bivariate signed measure Zn, De­

fine Wn,R(an) = SUPR:IRl~an I Zn(R) I- Einmahl's (1987) inequality 6.4, for 
Wn,R(an) holds for an empirical process from a sample of a continuous density 

which is bounded away from zero and infinity on [0, r] and is given by: 

(4.15) 

where \J!(x) 2: 1/(1 + 1/3x). Notice that Wn(an) is a bound on the measure 

assigned by Zn to strips instead of rectangles. However, the strips are a union 

of at most cf an rectangles A;,1(an) and on each rectangle A;,1(an) of these 

strips pi 1 is bounded away from zero and infinity and is continuous (here we 

use the nesting of 1rhn in 1r0 n) and hence for the modulus of continuity on the 

sets A;,1(an) the discontinuities on 7fh play no role. Consequently, (4.15) can 

be applied to each rectangle A;,1(an) in the strips. So the bound (4.15) implies 

the following bound for Wn(an): 

< 

< for any A> 0, 

where \J!(x) 2: 1/(1+1/3x) and where the C is now different from the preceding 

one. 

By using this inequality with A = a~- 5 -< it is trivial to see that if nan ---+ oo 

at an arbitrarily small polynominal rate ( n'), then for each f > 0 there exists 

a sequence On ---+ 0 and an €1 > 0 so that 

(4.16) 

So Wn (an)/ a~- 5- < converges to zero in probability exponentially fast. 

Assume nan ---+ oo at a polynomial rate. Applying ( 4.16) to ( 4.13) provides 

us with: 

So IIZ~n - Zn lloo = Op ( a~- 5-<), This proves that r1 (hn )ll(Zn - z~n )( ·, d)lloo = 
op (r1(h 11 )a~-5 -<) for any f > 0. 

Furthermore, applying (4.16) to (4.14) provides us with: 

11z:n 11: = Q (lj a~) Op ( a~- 5-<) = Op ( a;(l. 5+<)) , 
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Consequently, this tells us that for each e > 0 we have: If nan -+ oo ( at least 

at a polynomial rate), then 

J h ( o 5-£) (r1(hn)r2(hn)) 
fnt(Y, 1, l)dZn(Y) = op r1(hn)an· + op y'na~-5+£ · (4.17) 

For the first term it suffices that an converges quicker to zero than h~. Substi­

tuting this in the second term tells us that we it suffices to let hn converge to 
zero slower than n-1118. This proves the following lemma: 

Lemma 4.5 Suppose that F0 = F8 + FJ, where FJ is absolutely continuous 

w.r.t. Lebesque measure with continuous density which is bounded away Jrortf, 

zero on [0, r] and F8 is purely discrete with finite support on [0, r]. 
If hn converges to zero slower than n-1/ 18, then J f!1I(D = (1, l))dZ! = 

op(l). 

Analysis of the censored terms. We will now analyze the terms J f!1I( D -:j:. 
(1,l))dZ!. Recall that PP,J(D -:j:. (1,1)) is purely discrete on the grid 1rh, 

which contains 0(1/h;) points. Let p1}0 and P! be the densities of PP,0 and P;: 
w.r.t. Vh, respectively. So p~;t(v;, v;) = P!(v;, v;, 0, 0) is the fraction of doubly 
censored observations which falls on (v;,v;) and similarly for D = (1,0) and 

D = (0, 1). It is clear that for fixed hn we have IIP! - p}0 ll00 = Op(l/y'n). 
In the following result for hn -+ 0 we do not make any assumptions. Under 

weak assumptions the rate would be Op(l/ .Jii'fri), but this improvement is not 
interesting because of the slow rate in lemma 4.5. 

Lemma 4.6 We have that 

IIP~f - P~1IIL,(vh) =Op(~), 

and we have the same rate result for Pt8 and P88 . 

Proof. We give the proof for the first term, the others are dealt with similarly. 

Because we are just dealing with a multinomial distribution on the grid 1rh we 

have that E(p0f(uk, v,)) = P81(uk, v,) and Var(p0f(uk, v,)) = ¼P81(uk, v1)(1-
P81(uk, v1)). 1rh has O(h;) grid points (uk,v1) by definition of 1rh. Now, we 
have 

< 

< 

LE (I (p~f - P81)(uk, v1) I) 
k,l 

)n L ✓P~1(uk, v,)(1- p~1(uk, v1)) 
k,l 

1 1 
y'n h2.□ 
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•;...;.· 

Again, we will neglect the d in our notation, but the reader should re-

member that we only integrate over the singly censored and doubly censored 

observations. Now, we have: 

J f!tdZ! vn J f!i(P! - p'}Jdvh 

< vnllf!illoollP! - P}ollL,(vh) 

.jnOp (~)Op ( ~) 
= Op(~)· 

This proves the following lemma: 

Lemma 4.7 If hn converges to zero slower than n- 1/ 13 , then J f!tI(D 

d)dZ! = op(l) ford E {(1, 0), (0, 1), (0, 0)}. 

Lemma 4.5 and lemma 4.7 prove the empirical process condition for a rate of 

hn slower than n - l/ 18 . Recall that all the derived lower bounds are derived 

without any knowledge about l(Fo, t), except that it has a finite variance, and 

therefore they only have a theoretical value. 

4.4.3 Approximation condition. 

Pointwise convergence. 

Lett E [O, r) be fixed. Define v:(t) = J I"(F0 , t)(y)dZ!(y). v:(t) is a sum of 

i.i.d. mean zero random variables given by: 1/../nY:.,:=l Xf(t) where Xf(t) = 
fh(Fo, t)(Y/). By Bickel and Freedman (1981) we have that if for h = hn -+ 0 

Xf (t)¾X;(t) and Var(Xf(t))-+ Var(X;(t)), then this sum converges weakly 

to a normal distribution with mean zero and variance equal to Var(X;(t)). We 

will prove these two conditions: 

Lemma 4.8 Define the following real valued random variables Xh(t) = 
fh(F0 ,t)(Yh), yh ~ Pf\ and X(t) = l(Fo,t)(Y), Y ~ PFo· We have for 

each t E [O, r] that for hn -+ 0 

and 

E(Xhn (t)Xhn (s))-+ E(X(t)X(s)) uniformly ins, t E [0, r). 
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Proof. See section 6. Lemma 4.8 has the following corollary 

Corollary 4.1 The empirical process J fhn (Fo, t)(y)dZ!n (y) converges in dis­

tribution to a normal distribution with mean zero and variance equal to 

VarpF0 (I0 (Fo, t)). 

Hilbert space convergence. 

For showing that v,: converges weakly as a process in {D[O, r], II· 11 00 ) we need 
to show at least that {1{F0 , t): t E [O, r]} is a Pp0 -Donsker class. We have not 

been able to do this. Therefore we concentrate on proving weak convergence 

as a process in a Hilbert space. We use the following result which can be found 
in Parthasarathy {1967, p. 153). 

Lemma 4.9 Let Zn, Zo be random processes in a Hilbert space 1i endowed 

with the Borel sigma algebra B. Let e1 , e2 , ••• be an orthonormal basis of 1i. If 

(e;, Zn}£-(e;, Zo} for all j and limN-oo supn E(E~N+l (e;, Zn}2) = O, then 

Zn£.Zo in 1i. 

Let Vn(t) = 1/.,fo,Ef=1 X;(t). Firstly, we will prove the first condition of 
lemma 4.9 with Zn = v,: and Zo = Vo, the optimal Gaussian process. We have 

(e;, V,!'} = (e;, V,!' - Vn} + (e;, Vn}, 

Firstly, we will show that (e;, v: - Vn} = op(l). The fact that v,: and Vn 

are sums of i.i.d. random variables Xf and X;, respectively, and the Cauchy­
Schwarz inequality tell us: 

Var ( (e;, V,!' - Vn}) Var ( (e;, Xh - X}) 

< E ((e;, Xh - X}2) 

< (e;,e;}E(Xh -X,Xh -X}. 

Assume now that 1i = L2 (>.) for a certain finite measure>.. By lemma 4.8 we 

have Var(Xhn(t)) converges to Var(X{t)) and E((Xhn(t)- X{t))2) - 0, both 
uniformly int. Therefore, 

E(Xh - X, xh - X} s; sup I E((Xh - X)(s)2) If d>.(s) - o, 
•E(O,r] 

which proves the convergence of (e;, v,: - Vn} to zero in probability. Further­
more, we have 
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which is just a sum of i.i.d. mean zero random variables. By the CLT, for 

showing that this converges in distribution to (ei, Vo) it suffices to have that 

Var(f ei(s)X;(s)d>.(s)) < oo. This follows immediately from the fact that 

IIE(X2(s))ll 00 < oo. This proves the weak convergence of (ej, v:) to (e;, Vo). 
We will now verify the tightness condition. We have: 

00 

. f E (! j e;(s)e;(t)V,!'(s)V,!'(t)d>.(s)d>.(t)) 
•=N+l 

f j J e;(s)e;(t)E (V,!'(s)V,!'(t)) d>.(s)d>.(t) 
i=N+l 

f J J e;(s)e;(t) (E (Vo(s)Vo(t)) + o(l)) d>.(s)d>.(t) 
i=N+l 

o(l) (=tye;, 1))2) + i=t/e;, Vo) 2 • 

At the first, second, third equality we used Fubini's theorem, then we use the 

uniform convergence of E(V:(s)V,!'(t)) to E(V0 (s)V0 (t)), by lemma 4.8, and 

finally we again apply Fubini's theorem but now in the reversed order. The 

last bound does not depend on n anymore. Because l!Voll 2 = :E:1 (Vo, e;) 2 

and similarly for the function 1 it follows that if we take the limit for N--. oo, 

then both (tail) series converge to zero. 

Application of lemma 4.9 provides us now with: 

Lemma 4.10 Suppose the same assumption as in lemma 4-s. If.,\ is a finite 

measure and hn--. 0, then Vnh,.£v0 as random elements in L2(>.). 

4.5 Results. 

We will summarize the necessary notation for the theorem. Recall the reduced 

i.i.d. data Y/ ~ Pfr,; G , obtained by generating n i.i.d. C; ~ Gh and the 
O, h 

7rh-interval-censoring of the singly censored observations. We defined EZ i(l, 0) 
' 

and EZ 1(0, 1) as the vertical and horizontal strips of 1rh starting at (uk, v,). We 
' 

defined Z~ = y'n(P/: - pF,h c ) as the empirical process corresponding with o, h 

the reduced data, Jh(Fo, t) as the efficient influence function for estimating 

F0 (t) using the reduced data and 1(F0 , t) as the efficient influence function for 

estimating F0 (t) using the original data. 
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We have proved all ingredients of the general efficiency proof of section 3 

in section 4. Recalling lemma 4.3 (uniform consistency) and that for fixed h 

we have efficiency (among all estimators based on the reduced data) under the 

assumptions as stated in subsection 2.1 provides us with the following theorem: 

Theorem 4.1 Let [O,r] C lR~o be a rectangle so that H(r) > 0, So(r-) > 0, 

Fo(r) = 1 (data reduced to [O, r]). 

Fixed grid efficiency. Suppose that we do not change the grid 1rh for n -+ oo 

and that for each grid point ( uk, v1) F0 ( Et1(1, 0)) > 0 and F0 ( Er,1(0, 1)) > 01 

Then S! is a supnorm-efficient estimator of So for the data Y/, i = 
1, 2, ... , n: 

,/n(F/: - Fo)(t) = J Jh(Fo, t)dZ! + R~(t), 

where IIR~ILxi = op(l) and J Jh(F0 , t)dZ! converges weakly in 

(D[O, r], 6, 11 · 11 00 ) to a Gaussian process Nh with mean zero finite dimensional 

distributions and covariance structure given by: 

Uniform consistency. Suppose that the grid 1rh is such that F0 ( E!,i (1, 0)) > 

6hn and Fo ( E;,j (0, 1)) > 6hn for some 6 > 0. 
Then for any rate hn -+ 0 

IIS~n - Soll00 = Op (1/~) • 
Efficiency. Suppose Fo = F8 + F8, where F8 is purely discrete with finite sup­

port and F8 is absolutely continuous w. r. t. Lebesque measure with continuous 

density uniformly bounded away from zero on [O, r]. 

We have that for hn -+ 0 

( -;,. h rll h ) (- - ) Ep;
0 

I (Fo, s)(Y )I (Fo, t)(Y ) -+ EpFo I(Fo, s)(Y)I(Fo, t)(Y) 

uniformly in s, t E (0, r]. 

If hn converges to zero, but slower than n- 1118 , then we have that IIR~lloo = 
op(l) and for each t E [O, r] v;(t) = J I"(Fo, t)dZ! converges in distribution 

to the normal distribution N0 (t) with mean zero and variance: 

Var(No(t)) == Var (i(Fo, t)) . 
Moreover, for any finite measure.,\ v; converges weakly as a process in L2 (.,\) 

to No. 
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This implies that F/;n(t) is an efficient estimator of F0(t), pointwise and as 

an element in L2 (,\). 

We see that if nh! -> oo, then F/;n converges uniformly to F0 • Therefore, we 

think that n- 1/ 3 can also be used as a lower bound for asymptotic efficiency, 

though we did not prove this. 

4.6 The bootstrap. 

" By using the identity (4.12), verification of the bootstrap is immediate. We 

follow the line of the generalized version of theorem 2.4. 

Semiparametric bootstrap. Let Fn and Gn be estimators of Fo and Go, 
respectively. Draw a sample of n i.i.d. observations Y/ ~ Pf:; G". Let P/;* be 

the empirical distribution of Y/, i = 1, ... , n. Let F/;* be the nso"R-NPMLE as 

defined in ( 4.4) based on this bootstrap sample. We still have the identity: 

Let h be fixed. Assume that IIFn - Folloo -> 0 a.s. and IIGn - Golloo -> 0 a.s. 
Then it is easily verified by applying theorem 1.3 that the bootstrap works 

for the empirical distribution P/:*; fo(P/:* - PJ:;,.)dbzh for n -> oo, where 

Zh is the limit distribution of fo,(P/: - P/j). B; lemma 4.2 we know that 

IIJ(F/;*, t)II; < M < oo with probability tending to 1. Integration by parts 

tells us now that IIF/:* - F/:11 00 = Op(l/fo,). This implies as in the proof 

of lemma 4.4 that llfh(F/:*, t) - Jh(F/:, t)lloo -> 0. The class of functions of 

bounded uniform sectional variation form a uniform Donsker class ( example 

1.2). Therefore by the uniform continuity of the sample paths of the empirical 

process indexed by the functions of bounded uniform sectional variation (see 
(1.8)), we have now 

where IIR~* 11 00 = op(l) . ../n(P/:* - Pf:;,. )(fh(F/:, t)) is a sum of i.i.d. mean zero 
random variables. Therefore, for conv~rgence to the optimal normal distribu­

tion it suffices (lemma 1.1) again to show that these random variables converge 

in distribution to JhfF0 , t)(Y), Y ~ P/j and that their variance converges to the 

variance of I"(Fo, t)(Y), Y ~ P/j. For this we just copy the proofof lemma 4.8. 

Because the class of functions of bounded variation form a uniform Donsker 
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class the process ../ii( P/:* - P}h )( I" ( F/:, t)) is also tight and thereby it con­

verges weakly to the Gaussian process Nh given in our theorem. This proves 

the semiparametric bootstrap for fixed grid 1rh. 

Assume now that hn -+ 0. Then we know that Nh,. db No by application 

of lemma 4.8. This tells us that if hn -+ 0 slowly enough, then 

../ii(F/:* - F/:)(t) = No(t) + R!(t), 

where R~(t) converges to zero in probability. 
In order to obtain a lower bound for the rate at which hn should con­

verge to zero we need to copy our general proof. For this it was substantial 

that Fo = Fod + Foe, where Foe has a continuous density which is uniformly 
bounded away from zero on [O, r]. Therefore we also need to assume that 

Fn = Fne + Fnd, where Fne has a continuous density which is uniformly (also 

in n) bounded away from zero on [O, r] and Fnd is purely discrete on a finite 
support which does not depend on n. Then Fn and Gn suffice all assumptions 
(uniformly inn) which we needed for the general proof and hence it is easy to 

copy the general proof for Fn -+ F and Gn -+ G. 

Nonparametric bootstrap. Let hn be fixed. Assume now that we sam­

ple from P/: and that F/: is the SOR-NPMLE of the original sample. The 
identity tells us again: 

..fii,(P/:* - P}: )(I"(F::*, t)) 

..fii,(P/:* - P/:)(I"(F/:*, t)) 

+..fii,(P/: - Pt,,.)(I"(F/:*, t)) 
" 

vn(P/:* - P/:)(I"(F/:*, t)) 

+vn(P/: - P}:) (r(F/:*' t) - I"(F/:' t)). 

(4.18) 

Firstly, we use the identity (4.18) to obtain consistency of F{. The first 
term after the last equality is dealt in exactly the same way as the term 

..fii(P/:* - Pt,,.)(I"(F/:,t)) which we had to cover in the semiparametric boot­

strap analysis: By theorem 1.4 the bootstrap works for ..fii(P/:* - P/:), so we 
do not need assumptions for this. Consider now the second term for which we 

need to show that it converges to zero in probability. We have 

..fii,(P/: - P;,:) = ../ii(P/: - P/;) - vn(Pt,: - Pt). 

The integral w.r.t. the first term is a standard empirical process and hence 

convergence can be shown by the Donsker class condition (lemma 4.2) and the 
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p-consistency condition (lemma 4.4). For integral w.r.t. the second term we 

assume that -/n(F/: - F0 ) and -fii(G~ - Gh) converge weakly as elements of 

(D[0, r], B, II · 11 00 ). Then the second term can been shown to converge weakly 

by considering Pft,c as a functional in (F, G) and applying the functional delta 

method theorem. Then it is easy to show by using integration by parts and 

IIJh(F/:*, t) - Jh(F/:, t)l1 00 --+ 0 (lemma 4.4) that the second term converges to 

zero in probability. This proves that the nonparametric bootstrap works for 

hn fixed. 
Our general proof for determining a lower bound for the rate at which hn 

should converge to O cannot be copied because Pf: is purely discrete. However, 

just as with the semiparametric bootstrap we still have that the nonparametric 

bootstrap works for hn --+ 0 slowly enough. 

4. 7 Technical lemmas. 

In formulas the score operator A} evaluated at observation yh = (T, D)h is 
~ 0 

given by ( recall that T for D -:j; ( 1, 1) lives on the grid 1rh): 

A}/g)(T, Dt = g(T)I(D = (1, 1)) 

+ f . f g(s1,s2) Fo(ds1,ds2) I(D = (1,0)) 
J(uk,uk+dJ(v1,oo) Fo((uk, Uk+t], [vi, oo)) 

+ f f g(s1,s2) Fo(ds1,ds2) I(D=(0,1)) 
J(uk,oo)J(v 1,v1+d Fo([uk, oo), (vi, V1+1]) 

+ f f g(s1,s2) Fo(ds1,ds2) I(D=(0,0)). 
J(uk,oo)j(v 1 ,oo) Fo([uk, oo), (vi, oo)) 

Recall that (Uk, v1) is a function of 'I' and therefore it is natural to consider v1 
as a function in 'I'2: v1(T2) = v1 if '.T2 E (v1, v1+i] and similarly for Uk· In this 
way all four terms can be considered as functions on [0, r], where the last three 
are stepfunctions on 1rh. 

In formulas 18 is given by: 
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We will write down the singly censored term (2nd above) of lp0 ,a0 : L2 (Fo)-+ 

L2 (Fo): 

4.7.1 Proof of lemma 4.2. 

Lemma 4.11 Let Ef 1(1,0) = (uk,uk+1] x [v,,oo) be the the vertical strips 
' 

of 1rh and Ef 1(0, 1) be the horizontal strips. Suppose that Ho(r) > 0 and 
' # 

Fo(EZi) > ohn for certain o > 0. 
' 

Then there exists an € > 0 so that for any sequence hn which converges to 

zero slower than l/ ,In we have 

minF!n(E;i(l, 0)) > €hn, with probability tending to 1. 
k,l ' -

Similarly, for EZ,i (0, 1). 

Proof. We use the notation Ef,1 for both strips. Firstly, by the EM-equations 

(see (4.7)) we have 

( 4.19) 

where P 11 is the empirical distribution of the uncensored observations of Yl ~ 
Pj. a . We have o, h 

(4.20) 

Furthermore, { I Eh : h E ( 0, 1], k, l}, the collection of indicators of E: 1 over all 
k ,l ' 

(Uk, v1) E 7rh and for all h E ( 0, 1], is a uniform Donsker class. Consequently, 

we have for any € > o and rate r( n) slower than vn that 

P (sup I (Pf1 - Pu) (E;i) I>_(€)) -+ 0. 
k,l ' r n 

( 4.21) 

Assume that there exists an € < '51 so that 

limsupP (minPf1(EZ,1) ~ €hn) > o > 0 for some o > 0. 
n-oo k,l 

(4.22) 

We will prove that this leads to a contradiction if hn converges to zero slower 

than 1/ ,In. The contradiction proves that for each € < 01 and hn slower than 

vn 
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which combined with ( 4.19) proves the lemma. So it remains to prove the 

contradiction. We have by ( 4.20) and ( 4.22), respectively, 

> P ( ~~1nPf1(EZ,i) :S t:hn) 

> b > o. 

However, we also have (4.21). These two contradict if hn converges to zero 

slower than 1/ ,In. □ 
For obtaining a bound for the uniform sectional variation norm of the ef-, 

ficient influence function consider the equation: l}(g)(x) = f(x) for certain 

/ E L2 (F). We can write l}(g) = Hhg + K}(g), where K}(g) is the sum 

of the three terms corresponding with the censored observations. Then this 

equation is equivalent with the following equation: 

g(x) = Hh\x) {J(x) - Kj,(g)(x)}. (4.23) 

For the moment denote the right-hand side with C}(g,/)(x): i.e. we consider 

the equation g(x) = Cj,(g, f)(x). 
We know by lemma 4.1 that for each f there exists a g' E L2 (F), which is 

unique in L2 (F), with IJl}(g') - /JIF = 0: i.e. IJg' - Cj,(g', f)IIF = 0. Notice 

that if IIY1 - glJF = 0, then for each x Cj,(g1 - g, f)(x) = 0. So even if g' is 

only uniquely determined in L2(F), then C}(g',/)(x) is uniquely determined 

for each x. Now, we can define g(x) = Cj,(g',f)(x). Then IIY - g'JIF = 
JJC(g', /) - g'IIF = 0. So in this way we have found a solution g of ( 4.23) which 

holds for each x instead of only in L2(F) sense. 

To summarize, we have Yh = 1;;°}(!) is given by gh(x) = C}(g~, f)(x), 
where g~ = 1;;}(!) in L2(F) sense. Moreover, by the bounded invertibility of 

I} w.r.t. the L2 (F)-norm we have that IIY~IJF :S CJJ/JJp, where C :S 1/b does 

not depend on the width h. 

Assume that II/II: < 1. Now, we can conclude that JJghll 00 :S MIJK}(gh)IJ 00 

and IIYhlJ: :S MIJK}(gh)JJ:, for certain M < oo. 

Therefore it remains to bound the supnorm and uniform sectional variation 

norm of K}(g) and find out how this bound depends on the width hn. It 

suffices to do this for one of the singly censored terms of K}(gh)- We take the 

D = (l, 0) term which is given by: 

For convenience, we will often denote Ek,1(l, 0) by Ek,1• 
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Supnorm. Recall that II/lie'° S 1. By the Cauchy-Schwarz inequality and 

IIYhllF S CIIJIIF we have: 

< 

< 
✓F(Ek,I) 

By lemma 4.11 we can assume that F/:n(Ek,1) > fhn for certain f > 0. This 

proves, by replacing F (above) by F/:: 

Lemma 4.12 There exists a C < oo so that: 
C 

sup IIIh~h (f)ll 00 S r,::-- with probability tending to 1. 
ll1ll00=1 ' n vhn 

Uniform sectional variation norm over [O, r]. Notice that W is purely 

discrete with jumps at the grid points ( uk, v,). Therefore the uniform sectional 

variation norm of W equals the sum of the absolute values of all jumps. We 

have 

So 

Now, doing nothing more sophisticated than (we use lemma 4.12, at the first 

inequaltiy, and lemma 4.11 at the second) 

fe ghdF 
;(E ) S i1Yhi1 00 S M//h:, and F(Ek,I) > fhn 

k,l 
(4.24) 

we obtain the following bound: 
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Consequently, we have for the variation of W with F replaced by F/:: 

~ L l~Hh(uk, v,)I + ~ 2 LF/:(Ek,1) IHh(uk, ~v,)I 
V hn k,l hn k,l k,l 

< 1 C ( 1 ) 
..fen + h;/2 = 0 h!/2 ' 

where the bounds hold with probability tending to 1. So we proved the follow-

ing: 

Lemma 4.13 There exists a C < oo so that 

sup III;:}h (!)II: :::; ~ 2 with probability tending to 1. 
1111!:=1 ' n hn 

(4.25) 

Let g = Ih~h (!). The uniform sectional variation of the uncensored term of 
AF! (g) is b;unded by a constant times the uniform sectional variation of g 
and the uniform sectional variation of the censored terms can be bounded as 

above using ( 4.24) by C / h!12 . Therefore the uniform sectional variation of 

the efficient influence curve is also bounded by the rate given in (4.25). This 

completes the proof of lemma 4.2 (the cadlag property follows also trivially). 

4. 7.2 Proof of lemma 4.4. 

We will suppress the d in our notation. We have: 

IIJ!tllc"' III"(F!, t) - I"(Fo, t)ll 00 

< I (S! - So)(t) I +IIA!Ih,!(x:,) - A~Ih,~(x:t)ll00 , 

We know that IIF/: - Foll 00 = Op ( 1/( y'nh!)). The rate will be determined 

by the second term. Let g81 = Ii:~(x:1). We rewrite the second term as a sum 
' of two differences: 

(A: - A~)Ih,~(x:t) + A:Ih,!(I! - Ig)Ii:,~(x:1 ) 

(A! - A~)(g~1) + A!Ii:!(I! - Ig)(g~1)(4.26) 
' 

Firstly, we will consider the first term. It suffices to do the analysis for one 

of the singly censored terms; we consider the d = (1, 0) term. We have by 

telescoping: 

fe(k,l) 98,dF/: f E(k,l) 98,dFo 
Ff:(Ek,1) Fo(Ek,1) 

fe(k,l) g8,d(F/: - Fo) + (F/: - Fo)(Ek,1) fe(k,l) Y8,dF/; 

Fo(Ek,1) Ff:(Ek,1)Fo(Ek,1) · 
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At the first term, we can apply integration by parts. So the first term is 

bounded by: 

CIIFh - F, II IIY81II: 
n o oo F, (E ) · 0 k,l 

By lemma 4.13 we have IIY8ill: = 0(1/ ~) and we have Fo(Ek,1) > 6h. 
Therefore the first term is bounded by 

The second term is bounded by: 

CIIF,Z - Foll00 IIY81ll00 Fo(~k,l) = Op ( ~) · 

This proves that 

Consider now the second term of ( 4.26). Because AJ does only depend on 

G, we have for the term (I! - It)(g81): 

(I! - I8)(g~t) = AgT (A~ - A8)(Y81)· 

Because A8T is just a conditional expectation we have that IIA8T (g)ll00 :::; 

IIYlloo• Therefore, we also have that ll(I! - I8)(g81)lloo = 0(1/y'nii!). Now, 
we apply lemma4.12 which tells us that IIIh,;(g)ll00 :::; l/AIIYll00 • This tells 
us that 

IIA~Ih;(I! - I8)(g~1)ll 00 = 0 ( ~) · 
' ynh;! 

This completes the proof of lemma 4.4. 

4.7.3 Proof of lemma 4.8. 

Lemma 4.8 will be proved as a corollary of the next lemma. 

Lemma 4.14 Let CC L2 (F0 ) be any compact set in L 2(F0 ). Then we have: 

sup 11(18 - Io)(g)IIFo -> 0, 
gEC 

{4.27) 

and 

sup E (A~(g) - Ao(g)) 2 -> 0 for h = hn -> 0. 
gEC 
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Proof. By the compactness of C and the continuity of 18 : L2(Fo) -+ L2(Fo) 

the supremum in ( 4.27) is attained by some go E C. Let Yk be a sequence so 

that IIYk - YollFa -+ 0 and IIYkll= < oo fork= 1, 2, .... We have: 

11(13 - lo)(go)IIFo :'.S 11(13 - lo)(go - Yk)IIFo + 11(13 - lo)(gk)IIFo· 

11(18 - lo)(go - Yk)IIFo :S 2IIYo - YkllFa which converges to zero for k -+ oo. 

Therefore it suffices now to show that ll(I3n - lo)(gk)IIFo -+ 0 for each fixed k. 
Now, we have: 

.. 
The difference in the first term are comparable because all can be considered 

as functions of ( C, T) and thereby are defined on the same probability space. 

Firstly, we will consider the second term. It suffices to deal with one of the 

singly censored terms. Let d = (l, 0) and fk = A0 (gk)l(D = d). We have: 

(A~T - Ari )(fk)(T1, T2) = 1T, fk(T1, v)(Gh - Go)((T1, oo), dv). 

Let T = (T1, T2) be fixed and let T2 be a point where Ho(T1, 6.T2) 

0. By definition of weak convergence of Hh(T1,dv) to Ho(T1,dv) we have 

now that if v -+ fk(T1, v) is bounded and continuous Ho(T1, ·) a.e., then 

(AST - AJ)fk(T1, T:i) -+ 0 for this T. The boundedness follows from: 

llfkll= :S IIYkllcx:, < oo. We have that v-+ fk(T1, v) is given by: 

J,°" Yk(T1, v2)Fo1(T1, dv2) 
V-> _v~--------

Fo1(T1, (v, oo)) · 

This function is continuous at v if v -+ F01 (T1, v) is continuous at v. Conse­

quently, we need that F01 (T1, dv) puts no mass at a point where H0 (T1, dv) puts 

mass. By our convention that if T = C, then the observation is uncensored, 

this is satisfied. This proves the point wise convergence of f h = (AST - AJ) (fk) 
to zero F-a.e. We need to show that J f/.dF0 -+ 0. However, we also have 

llfhll 00 :'.S 2i1Ykll 00 and therefore the dominated convergence theorem provides 

us with f f;,dFo -+ 0. 

Let's now consider the first term AST (AS - Ao)(gk)- Because AS is a con­

ditional expectation its second moment is bounded by the second moment of 

(AS - Ao)(gk)- Therefore it suffices to show that Ex,c ((AS -Ao)(gk))2) -+ 0 

for h-+ 0, where we consider AS and Ao as functions in (T, C) via yh and Y, 

respectively. 

Recall how we constructed the data (T', Dl: 1) we have a nested sequence 

of partitions 1rh and we observed i.i.d. C1, ... , Cn ~ G, 2) Now, we discretize 
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C; such that Cf ~ Gh where Gh lives on 1rh. This provides us with data 

(T, D)h ~ PFo,G•. 3) Finally we discretized (T, D)h in order to obtain yh = 
(T, D)h ~ P]\,c •. Denote the sigma-field generated by yh with Ah. Because 

1rh is nested and the sigma field generated by 1rh converges to the Borel sigma­

field on (0, r] we have that Ah j A 00 for h --+ 0, where A 00 is the sigma field 

generated by Y = (T, D)), Y ~ PFo,Go· 
Consequently Mhn = Ex,c(gk(T) I Ahn) is a martingale in n and it is 

well known that if suph E(MK) < oo, then E((Mh - Mo)2) --+ 0. We have 

suph E(E(gk(T) I Ah)2) :S IIYklloo < oo and consequently we have ll(AS -
Ao)(gk)IIFoxGo--+ 0. This also proves the second statement in lemma 4.14. D 

Corollary 4.2 We make the same assumptions as in lemma 4.14. For each 

set CC L2 (Fo) which is compact w.r.t. 11 • IIFa we have for h--+ 0: 

sup ll(Jo 1 - Ih6)(g)II~ --+ 0. (4.28) 
gEC ' 0 

This implies 

sup l(A~Ih,6(9), A~Ih,6(g1))pt - (Aoio 1(g), Aoio1(gi))PFo I - 0. 
g,g,EC 

Moreover, we have 

sup E (A~ Ih,6 (g) - A0 I01 (g )) 2 
--+ 0. 

gEC · 

Proof. We have: 

1-1 (L r 1 1h r 1) (g) h,O O O - 0 0 

-Ih.6(18 - Io)Io 1(g). 

Firstly, notice that by the bounded L2-invertibility of Io (lemma4.1) J01(C) is 

compact in L2(Fo). Now, by the preceding lemma we have that supgEC 11(18 -
Io)Io 1(g)IIFo --+ 0. Finally, we know by lemma 4.1 that suph ll1h,611Fo < 00. 

This proves the first statement. For the second statement notice that: 

(Ih6(g), Y1)Fo 
' 

(lh,6(9) - 1o 1(g), Y1)Fo + (Io 1(g), Y1)Fo· 

The first term converges to zero by the Cauchy-Schwarz inequality and ( 4.28). 

The second term equals (Aoio 1(g),Aoio 1 (g1))PFo· 
It remains to prove the last statement. By the compactness of C and 

continuity of Aoio 1 and ASih,6 it suffices to show the statement for a fixed 

g E L5(Fo). We have 

A~Ih,6(9) -Ao101(g) = (A~ -Ao)I0 1(g) + A~(Ih,6 - 10 1 )(g). 
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The first term converges to zero by the second statement of lemma 4.14. 
For the second term we have: 

IIA~(Ih,~ - lo 1)(g)IIP; ~ ll(Ih,~ - Io 1)(g)IIFo - 0 by (4.28). □ 

Notice that C = {I(O, t] : t E [O, r)} C L 2(F0 ) is a compact set. Application 

of the corollary to this set C provides us with lemma 4.8. 





Chapter 5 

Efficiency of the NPMLE 
in the Line-Segment 
Problem. 

5.1 Introduction to the line-segment process 
problem. 

The spatial line-segment process problem, observing line-segments in a two 

dimensional window, was introduced by Laslett (1982). Laslett derives the 

log likelihood for this spatial problem and shows how a version of the EM­

algorithm can be used to find the NPMLE, but the behavior of the NPMLE 

has not been studied. Wijers (1991) considers the one-dimensional line-segment 
problem, so now we observe line-segments on the real line through an interval, 

and shows how it can be formulated as a nonparametric missing data model and 

thereby that the NPMLE can be characterized by the self-consistency equation 

as introduced by Efron (1967) (see Gill, 1989). By using an elegant technique 

based on the log likelihood he proves uniform consistency of the NPMLE. In this 

chapter we prove efficiency ( and bootstrap results also follow easily from the 

analysis) of a "sieved"-NPMLE for the one-dimensional line-segment problem, 

where sieved means that we maximize the loglikelihood over all distributions 

which put mass on the uncensored observations. 

In Gill, van der Laan, Wijers (1995) a self-contained overview of Laslett 

(1982), Wijers (1991) and this chapter is given and it is made clear how and how 

far the analysis followed in this chapter can be generalized to the spatial line­

segment problem. In the spatial line-segment problem there is an additional 

115 
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unknown parameter, namely the distribution of the orientation of the line­
segments. For a known orientation distribution and convex window the results 
for the NPMLE can be proved as essentially carried out in Wijers (1994) (he 
did it for a circular window). Suggestions for solving the unknown orientation 
distribution case are given using an extended identity as proved in van der 
Laan (1994). Also the NPMLE for non-convex windows is a completely open 
problem. A version of Gill, van der Laan, Wijers (1995) is also found in Gill 

(1993). 

The one-dimensional line-segment problem has the following statistical mo­
tivation. Suppose one is interested in the time a specific patient spends in the 
hospital. For this purpose one observes incoming and outgoing patients over a 
period [O, r] of time-length T. The variable of interest is the time X between 
the arrival time and the departure time of the patient. One can identify with 

each patient a line-segment with length X and start-point T, where Tis the 
arrival time of the patient. If the arrival time is smaller than 0, then the line­

segment is left-censored and if the departure time is larger than T, then the 
line-segment is right-censored. Hence one will observe four kind of observa­
tions on the line-segment: singly left-censored, singly right-censored, doubly 
censored and uncensored. The goal is to estimate the distribution of the lenght 
X of the line-segments from these observations. The one-dimensional line­
segment problem has also several economic applications. For example, if one is 
interested in estimation of the disgtribution of the time of unemployment and 
one has only information available over a period [O, r], then the same model 
applies. 

One clear feature of this model is that X is censored. In particular, if follows 
that one is not able to estimate the distribution (oflength) after T. Another less 

obvious feature of this problem is that long line-segments are more likely to be 

observed (i.e. to hit the window [O, r]) than short line-segments and therefore 
the observed line-segments cannot be considered as an i.i.d. sample from the 
random process which generates the line-segments. So there is a so called length 

bias problem; the empirical distribution function of all complete lengths of all 
(partially) observed line-segments does not converge to the distribution of the 
length of the line-segments. 

We will assume that the starting points, say T, of the line-segments fol­
low a homogeneous Poisson point process on Ill with rate .>.. Furthermore, 

assume that the length X > 0 corresponding with the line-segment starting 
at T is independent of the Poisson process and has the common distribution 

F. Preferably, one would like to have an estimator available which does not 
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utilize knowledge on the starting point distribution. In other words, just as in 

the univariate right-censoring model and many other missing data models, one 

prefers to model the distribution of (T, X) such that the likelihood of the data 

factorizes in a part which only depends on F and a part which only depends 

on the distribution of T so that knowledge on the distribution of T is irrelevant 

for computation of the NPMLE and for the information bound. This can only 

be achieved in missing data models where the observation Y is equivalent with 

observing that XE D 1(Y) and TE D2(Y) for some regions Di(Y) and D2(Y). 
However, in the line-segment model the censoring by the interval [O, r] causes 

a dependence between T and X regionwise, just as it does for mixture models 

where one observes a convolution of two variables. 

In our last section we discuss how our results can be extended to the case 

where T follows an inhomogeneous poisson process with a known or estimated 

rate A(t). 
It can now be shown (Karlin, 1981, Stoyan, 1987) that (T, X) follows a 

Poisson point process on IR x IR~o with intensity measure 

AdtdF(x). 

Let B be the set of all (X, T) for which the corresponding line-segment hits 

[O, r]. Ifµ is the mean of F, then JB dF(x)dt equals T +µ,as can be trivially 

verified. 

A well known fact about Poisson processes tells us that if we condition on 

the number of (X, T) E B, then these (X, T) EB can be represented as i.i.d. 

observations from a distribution given, for AC B, by: 

However, the latter we can rewrite as: 

IA dF(x)dt = r (r + x)dF(x) dt 
r+µ }A r+µ r+x' 

where ( r+x )dF(x )/( r+µ) corresponds with a probability distribution because 

it integrates to 1 and dt / ( T + x) is the density of the uniform distribution over 

(-x, r). Consequently, we can represent the distribution of the observed line­

segments as follows: the lengths X of the line-segments which hit [O, r] (so 

which are at least partially observed) have distribution V with 

dV(x) = (r + x)dF(x)/(r + µ), (5.1) 
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and the starting point T, given X = x, is uniformly distributed over (-x, r). 
This does not describe, yet, the distribution of the data because many of these 

(X, T) are censored. 

V is called the length biased version of F because it takes into account 

that long line-segments are more likely to hit the window [O, r] than the short 

line-segments. 

Heuristically one expects to be able to estimate V on [O, r) by using the 

uncensored and singly censored line-segments. Because of the µ in the relation 

(5.1) an estimator of Von [O, r) does not uniquely determine an estimator of 
" the parameter of interest Fon [O, r). However, we also observe the fraction of 

doubly censored observations. Let 

hv = P(T < O,X + T ~ r) = --dV(x)) 1 X-T 

[r,oo) T + X 

be the probability that the line-segment will be doubly censored. If it is not 

confusing, then we will skip the V in the notation hv. As shown in Wijers 

(1991) and easy to verify we have the following relation: 

2r/(r + µ) = 1- hv + f (r - x)/(r + x)dV(x). 
J(o,r) 

(5.2) 

This tells us that estimators of V on [O, r) and h (for h the NPMLE is sim­

ply the fraction of doubly censored line-segments) determine estimators of the 

parameter of interest Fon [O, r) and its meanµ. 

Moreover, Wijers (1991) shows that this relation between F, µ and V, h is 

1-1 and onto: let V and F be distributions on [O, oo ), we have that each V on 

[O, r) and h determine uniquely a F on [O, r) and its meanµ < oo and each 

F on [O, r) and its mean µ < oo determine uniquely a V on [O, r) and its h. 

Hence the collection of possible V's on [O, r) as defined by (5.1) obtained by 

varying F non parametrically (i.e. over all distributions) consists of all possible 

subdistributions on [O, r). So instead of parametrizing the length biased distri­

bution Vas dV(x) = (r + x)dF(x)/(r + µ), F completely unknown with finite 

mean µ, we can replace this model by all distributions V and concentrate on 

estimating V on [O, r) and h E [O, 1]. This leads to the following formal model 

of the line-segment problem due to Wijers (1991): 

Formal description of line-segment model. We can model the line­

segment problem as follows: X1, ... , Xn are n i.i.d. real valued random vari­

ables with distribution function Vo, which is completely unknown. T1 , ... , Tn 

are n i.i.d. real valued random variables, and given X; they are uniformly 
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distributed over (-Xi, r). We are concerned with estimation of (Vo, ho), us­

ing observations Y; = <I?(Xi, T;), where <J?(X;, T;) is a many to one mapping of 
these random variables (Xi, T;). In order to describe this mapping <P we need 

to define the following sets which form a partition of the probability space for 

(X, T) (here we follow the notation of Wijers, 1991 ): 

A1 - {(X,T): T < 0, 0 < X + T < r} 

A2 - {(X,T): T < 0, r ~ X +T} 

A3 = {(X, T): 0 < T < r, T ~ X +T} 

A4 - {(X,T): 0 < T < r, 0<X+T<r}. 

T is the starting point of the line-segment and X + T is the right end point 

of the line-segment. Consequently if T > 0 and X + T < r (i.e. (X, T) E A4), 

then the line segment is completely observed. If T < 0 and O < X + T < r 

then it is left censored, but not right censored (A1); if T < 0 and X + T ~ r, 

then it is doubly censored (A2); if O < T < rand X + T ~ r, then it is right 

censored, but not left censored (A2). 

Let Y = (X, D) = <I?(X, C) E (0, r] x {0, la, lb, 2} be the many to one 

mapping <P from (X, C) to (0, r] x {0, la, lb, 2} described as follows: 

{ 
(T+X,la) 

~ (r,2) 
Y=(X,D)= (r-T,lb) 

(X,0) 

if {X, T) E A1 
if (X, T) E A2 
if (X,T) E A3 
if (X,T) E A4 

(The definition of D here is temporary and will be modified in a moment.) 
Observing Y means now that we know if the line-segment is left, right, doubly 

or uncensored (D tells us this) and we observe a number X E (0, r], the length 

of the intersection of the line-segment with the window, of which we know how 

it depends on X and T. We observe Y; = (Xi, Di), i = 1, 2, ... , n. This is a 

missing data model: each observation Y; tells us that (Xi, T;) has fallen in the 
region <J?- 1(Y;). These regions are given by: 

<P-1(.X,D)= {(X,T): X+T=J, T~~ { 
{(X,T): X=X, O<T<r-X} 

{(X,T): T= r-X, X ~ X} 
A2 

if D = 0 

if D = la 
if D = lb 
if D = 2 

Notice that ho = Pv0 (Y E A2) and therefore a trivial and in fact the only 
sensible estimate of ho is the fraction of doubly censored line segments, which 

is also the NPMLE as we will see in the sequel. 
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Grouping together the singly censored observations. D = 0 corresponds 

with the uncensored observed line-segments in (0, r); D = la, lb with the singly 
left-censored and singly right-censored observed line-segments; D = 2 with the 

doubly ( at left and right) censored observed line-segments. As expected, the 
distribution of (.X, la) equals the distribution of (X, lb). Therefore, it makes 

sense to group together these two kinds of observations to one kind of observa­

tion. D = 0 for uncensored (as above), D = 1 for singly censored (D = la, lb 
above) and D = 2 for doubly censored (as above). The distribution of (X, 1) 
equals now two times the distribution of the preceding (.X, la), or preceding 

(X, lb). Denote the probability distribution of the data with: 

Pv0 (y, d) = Pv0 (X ~ y, D = d), d E {0, 1} 

and ho= Pv0 (D = 2). In formulas we have: 

ho 

r - :dvo(x) 
r+x 
2 [ dVo(x) dx 

1(;,oo) T +:,: 
- 2go(x)dx 

Pv0 (D = 2). 

(5.3) 

(5.4) 

(5.5) 

In order to determine the exact integration area one should realize that for 
computing probabilities for censored line-segments one should also integrate 
over the edges; a line-segment which ends exactly at T is observed as right­
censored at r. The density (w.r.t. the Lebesgue measure) g0 will appear in our 

analysis in denominators and therefore plays a crucial role. Define Vo(t) = 
1-Vo(t-). The distribution of the data is uniquely determined by Vo on [0, r) 
and ho, This follows from the following identity 

Vo(r) = 2rgo(r) + ho, (5.6) 

which is found by a simple rewriting of ho+ Pv0 ([0, r), 0) + Pv0 ([0, r), 1) = 1. 

Therefore we can parametrize the distribution of the data as Pvo,ho, where Vo 
is restricted to [0, r), Pv0 ,h0 (D = 2) = ho and Pv0 ,h0 (y, d) = Pv0 (y, d), d f 2, 
as defined by (5.3) and (5.4). Moreover, (5.6) tells us also that ifV0(r) is fixed, 

then ho can still have any value between 0 and V 0( r), which means that V as 
subdistribution on (0, r] and hv can vary quite freely in the parametrization 

Pv,h• 
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Let's now formally write down the model. Let Fr be the collection of all 

subdistributions on [0, r) C IR?:o• Then the model is given by: 

M = {Pv,h: VE Fr,h E [0, V(r)]}. 

We only have uncensored (D = 0) observations Xi = X; on (0, r). There­

fore, there is only hope to estimate V0 well on [0, r) (of course, the model only 

allows Vo which give probability zero to line-segments with length 0). It can 

be easily shown by applying theorem 3.1 of van der Vaart (1991) that the pa­

rameter t?(Pv,h) = V( r-) is not pathwise differentiable and thereby that there 

exist no regular estimators of V0 ( r-) (see Gill, 1993a,b) and it does not help 

to assume that Vo is continuous at r. It follows from (5.4) that estimating g( r) 

and hence estimating V( r-) is equivalent with estimating the density of the 
singly-censored line-segments at r. This explains why g( r) and V( r-) are not 

estimable at root-n rate. 

In order to suppress the influence of the irregularity of Vo( r-) we consider 

estimation of the following parameter: 

t?(Pv0 ,h) = (Wo, ho)= (1(-) (r - x)dVo(x), ho) E D[0, r] x [0, 1], 

where D[0, r] is defined as the space of cadlag (right-continuous with left-hand 

limits) on [0,r]. Because Pv0 (t,0) = fco,t] ;:;;dVo(x) (the distribution of the 

uncensored observations) there exists a regular estimator of W0 , namely J~ ( r + 

x)dPn(x, 0), where Pn(·, 0) is the empirical subdistribution of the uncensored 
(D = 0) observations. 

This parameter is also exactly the parameter we need for estimating F0 on 

[0, r - e] for all e > 0 and µ 0 • This is seen as follows: We will prove that 

the NPMLE (Wn, hn) is an efficient estimator of (W0 , ho) E D[0, r] x IR. In 
order to show that the corresponding µn and Fn on [0, r - e] are efficient for all 

e > 0, it suffices to show that(µ, F) can be written as a compactly differentiable 
functional of (V, h) (van der Vaart, 1991). Because of the relation dV0 (x) = 
(r + x)dF0(x)/(r +µ)it suffices to show thatµ is a compactly differentiable 

functional of (W, h). We have the relation Pv0 (Aa U A4) = Pv0 (A1 U A4) = 
r/(r + µ). The latter tells us that 2r/(r + µ) = 1- ho+ Pv0 (A4 ). However, 

Pv0 (A4) = fco,rl r-x )/( r+x)dVo(x) = fco,r) dWo(x )/( r+x). It follows thatµ 
is a compactly differentiable functional of (W0 , ho) E D[0, r] x IR and therefore 

efficiency of (Wn, hn) provides us with efficiency of µn and Fn on [0, r - e] for 

all e > 0. 
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The problem of establishing weak convergence at root-n rate in this model 
has appeared to be difficult and seems not possible by just using the self­

consistency equations. However, the identity approach as followed in the pre­
ceding chapters , followed here is successful. Let's first try to understand why 
this estimation problem is rather difficult. In chapter 3 we studied a general 
class of nonparametric missing data models and explained that there are essen­
tially 2 crucial assumptions, 1 and 2, under which the NPMLE will be efficient. 
The second assumption says that the censored regions for X implied by an ob­
servation Y should have positive probability w.r.t. V; this is clearly satisfied. 

# 

Assumption 1 required that P(Y E A4 I X = x) > 6 > O, which says that, 
given X = x, the probability that the line-segment (X, T) will be uncensored is 
larger than 6 > 0 Vo a.e. Assumption 1 guarantees that the information oper­
ator has a bounded L2-inverse (e.g. see van der Laan, 1993b). For X > T this 
probability is zero. This means that the information operator is not invertible 
and therefore we firstly need to recover the essential part of the information 
operator for estimation on [O, r). Indeed, as will appear, this is one impor­
tant ingredient of the analysis. So let's now verify assumption 1 for x E [O, r). 
P(Y E A4 I X = x) equals (r - x)/(r + x) and therefore converges to zero 
for x --+ T. Heuristically this means that there will be hardly any uncensored 
observations close to T and therefore it is very hard to estimate V0 close to T. 

But if, for example, Vo( T - e, r] = 0 for certain e > O, then assumption 1 is sat­
isfied. However, because T certainly does not represent the tail of Vo this is an 
unacceptable assumption, and the assumption can also not be easily arranged 

by artificial censoring as in the examples in chapter 3. Consequently, in the 
analysis we will have to deal with an inverse of an information operator with 
singularity 1/( T-x ). By exploiting a well understood Volterra structure which 
appears in the information operator we are able to show that this singularity is 
not disturbing for any parameter which does not use the value V(r) and hence 
in particular for W on [O, r]. 

Our results are based on the assumption that Yn ( T) is consistent. It ap­
peared that there was a mistake in the proof of this result in Wijers (1991) so 

that this result has not been established; the consistency on [O, r - e) of Vn still 
holds. However, Wijers (1993) proposed a slight modification of the data by 
censoring the line-segments by [O, r-epsilon] for some e > 0 in such a way that 
Yn ( r-e) is consistent and hence that our result applies to the sieved-NPMLE of 

this transformed data. We decided not to change all our results to this setting, 
but discuss the transformation in section 6. 

We will now give an overview of this chapter. In the next section we define 
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the "sieved"-NPMLE as the maximizer of the log likelihood over the class of 

discrete distributions which put only mass on the observed line segments and 

we discuss existence, uniqueness and the EM-algorithm for computation of the 

estimator in practice. In section 3 we formulate the efficiency theorem and 

give the general efficiency proof and we specify the three ingredients identity 

condition, Donsker class condition and the [>-Consistency condition which need 

to be proved in the subsequent sections. We also discuss the bootstrap and 

estimation of the limit distribution for construction of confidence intervals, 

where it is shown in subsection 4.3 that the latter can be carried out verJ 

quickly. In section 4 we prove the Donsker class condition by proving that the 

so called efficient influence function is of bounded variation uniformly in V and 

t. The proof consists of two parts. Firstly, we have to split the inversion of 

the information operator for functions on [0, r) and for a remaining non-unique 

easy part. Secondly, we prove that the first part ( the hardest) can be nicely 

inverted w.r.t. the supnorm and variation norm. In section 5 we prove the 

[>-Consistency condition and identity condition. 

5.2 Existence and uniqueness of the sieved­
NPMLE, EM-equations. 

Let Pn be the empirical distribution of Y;, i = 1, ... , n and let m = m(n) be 

the number of uncensored line-segments X; (i.e. D; = 0). Denote the counting 

measure on these X; with µm. Let Fr(µm) be those F E Fr with F ~ µm. 

For a V E Fr(µm) and h we define Pv,h(Y, d), d # 2, as the density of Pv,h 
w.r.t. (µm X dt)q,- 1, where dt stands for the Lebesgue measure. Define 

Now, we define a sieved-NPMLE as follows 

(Vn, hn) = arg maxBm j log(pv,h)dPn. 

By substitution of (5.3) and (5.4) it follows that the empirical loglikelihood is 

given by: 

n ( ~ ) 1 r-X; ~ ~ ;; L I(D; = 0)--~. V( {X;}) + I(D; = 1)2g(X;) +hPn(D = 2),(5.7) 
i=t r+ X, 

where g(x) = g(r) + J; dV(u)/r + u and g(r) can be expressed in V, h by 

(5.6). Assuming g0(r) > 0 Wijers (1991) shows existence and uniqueness of 
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the NPMLE (Vn, hn)• His proof is also applicable to this sieved-NPMLE. We 
will now derive the score-equations and in particular the EM-equations. Recall 

that Vn E :Fr(µm) is a subdistribution on [O, T). Consider the class of lines 
eVi + (1 - e)Vn through Vn E :Fr(µm) with scores g in L5(Vn) with finite 

supnorm; so for all the lines Vn,,g we have that V n,,9 ( T) = V n ( T ). Therefore 
h can still vary freely. Furthermore, consider the following one dimensional 

submode} through hn with score (I(D = 2) - hn): 

hn, = (1 + e(I(D = 2)- hn)) hn E [O, Vn(T)). 

Differentiating of J Iog(pv,.,h,..)dPn w.r.t. e provides us with: 

hn = Pn(D = 2), the fraction of doubly censored observations. 

Differentiating of J Iog(pv,..,.,h,. )dPn provides us with the familiar score op­
erator (see Gill, 1989, Bickel et al., 1993, section 6.6) Av,.(g) : L5(Vn) -+ 

L5(Pv,.,h,.) for missing data models: 

Ev,.,h,. (g(X) I Y) = 0 for IIYlloo < oo. (5.8) 

For a score g(x) = Ico,t](z) - Vn(t), t E [O, T), this equation reduces to the 
self-consistency equation (Gill, 1989) as written out below. Finally, we have 
the relation (5.6)for determining Yn(T). 

Computation of sieved-NPMLE. Let Vn = dVn/dµm be the point masses 

of Vn on the observed Xi and let Pno(x) = 1/n Ef=1 I(Xi $ x, Di = 0), 
Pn1(x) = 1/n E~1 I(Xi $ x, Di = 1) be the empirical distributions of the 
uncensored and singly-censored line-segments. ·we conclude that we have the 
following set of EM-equations: 

n 1 L ;Pv,.(X = Xi I Y;) 
j=l 

P. o({x·})+ Vn(xi) (.!:. E'J=1I(D; = 1,X; $ Zi) ) 
n • T + Xi n Ji 1/(T + u)dVn(u) + Yn(T) 

Pn(D = 2), the fraction of doubly censored 

2Tgn(T) + hn. 

The solution of the equations can be found with the EM-algorithm (Dempster 

et al., 1977, Turnbull, 1978, Meilijson, 1989): initiate the right-hand side of the 

first equation with v~ and g~ ( T ), this provides us with a v!, now obtain a g; ( T) 
using the third equation, and repeat these steps till convergence is established. 
For a much faster algorithm to solve these equations see Gill (1993a,b). 
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In practice, one might find that Vn becomes quite noissy close to r, remem­

ber that V( r-) is not root-n estimable, which will certainly also be reflected in 

the constructed confidence bands for which methods will be given. Therefore, 

interpolation of Vn on [O, T - €) to Vn ( T) is a sensible method for obtaining a 

more reliable estimate close to T. 

Remark: Parametric model. Suppose now that one wants to assume a 

parametric model Fe for F. One obtains the parametric likelihood by replac­

ing dV(u) = T + u/r + µdFe(x) in the nonparametric likelihood (5.7) and in 
particular in the expression of g(x) = J,,,°" 1/r + xdV(x) and in the expression 
of h. Then the likelihood depends only on 0. One can now compute the k score 

equations corresponding with differentiation of the loglikelihood with respect 

to the k coordinates of 0. This provides us with a k-equations with k unknowns 
which can be solved with Newton-Raphson or other numerical procedures. In 
this case it is not necessary to split up the distribution of the data in h and V 

though it seems natural to set h equal to hn = Pn(D = 2) and maximize over 

Ve restricted to [O, r]. 

5.3 Efficiency result and outline of proof. 

From now on Vo will denote the underlying distribution on IR and we will 

parametrize the distribution 'of the data with Pv0 , Vo E :F again, instead of 

Pvo,ho, Vo E :Fr. Define S(Vo) as the class of all lines €V + (1 - €)Vo through 
Vo, V ~ V0 , which are submodels by convexity of :F, with score g E L5(V0 ). 

Let S(Vo) C L5(Vo) be the corresponding tangent cone (=set of corresponding 

scores) and T(Vo) be the tangent space ( =closure of linear extension of S(Vo )). 
It is easy to see that T(Vo) = L5(V0 ). As discussed in the preceding section 

each one dimensional submode! Pv0 , ••• has a score given by Av0 (g), where Av0 

is the so called score operator: 

Av0 : L5(Vo)--. L5(Pv0 ): Av0 (g)(Y) = Ev0 (g(X) I Y). 

The Cramer-Rao lower bound for estimation of '\Jr(€) E IR for some '\Jr at€= 0 

along the one-dimensional model Pv0 , ••• equals: 

Let 

(d/d€W(€) l(=o)2 
IIAvo(Y)ll 2 

(5.9) 
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be the adjoint of Av0 • Now, the information operator is defined by: 

Let's first prove efficiency of hn = Pn(D = 2) as an estimator of ho = 
Pv0 (D = 2). We have that hn -ho= 1/n E~=l (I(D; = 2)- ho). Consequently 
hn is asymptotically linear with influence curve equal to I(D = 2) - h0 • How­
ever, I(D = 2)- ho is a score of a one-dimensional submode! (as defined in the 
preceding section) and hence it must be the efficient influence curve (see Bickel 
et al., 1993). , 

Define 

and notice that 

; (Wo,,g{t) - Wo(t)) = j g(x)11:t(x)dVo(x) = Ev0 (g(X)11:,(X)). (5.10) 

For any VE :F and t E (O,r] we prove that if g(r) > O, then there exists a 
ht E D[O, oo) with finite supnorm which solves Iv(ht) = Kt (see lemma 5.2 in 
the next section). For convenience we will denote any such ht with Iv (11:,). 
This shows that t?1(Pv )(t) = W(t) is pathwise differentiable along each path 
Pv., 9 , g E S(V), with efficient influence function given by: 

!(W, t)(X, D) = Av Iv (Kt - W(t)) (X, D) = Av(h,)(X, D)-W(t).(5.11) 

Let g = {!(Wo, t) : t E [O, r]}. 
Notice that Mis convez and that V-+ Pv is linear. Theorem 2.2 says now 

that 

W1(t) - Wo(t) = J !(W1, t)dPv0 fort E [O, r]. (5.12) 

for all V1 with Vo ~ Vi and dVo/dV1 E L5(Vi). In particular, it holds for 
V1 = Vn(o) = aV + (1 - a)Vn, By letting o -+ 0 we prove (see lemma 5.6) 
that this identity also holds at V1 equal to the NPMLE Vn. So we have: 

Wn(t)- Wo(t) = - j !(Wn, t)dPv0 fort E [O, r]. (5.13) 

Because hv,.t has a finite supnorm it is a score in S(Vn) of a one dimensional 
line through Vn and thereby (5.8) provides us with the efficient score equation: 

Ep,. (!(Wn, t)(Y)) = 0 for all t E [O, r]. 
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Combining the last two identities provides us with the crucial identity: 

Wn(t) - Wo(t) = j 1(Wn, t)d(Pn - Pv0 ) fort E [0, r]. (5.14) 

Suppose now that (the P0-Donsker class condition) 1(Wn, t) lies with proba­

bility tending to 1 in a P0-Donsker class (}. We prove this for (J equal to the 

functions of variation less than or equal to M < oo for some ( sufficiently large) 

M < oo (corollary 5.1 in the next section) using that Yn(r) > b > 0 with 

probability tending to 1. Wijers (1991) showed consistency of Yn ( T) under the 

assumption that g(r) > 0, which proves the Donsker class condition. So~ 

have now by the definition of Donsker class: 

sup I (Wn - Wo)(x) I= Op ( ~). 
tE[O,r] yn 

This implies that for each€ > 0, SUP[o,r-e] I (Vn - Vo)(x) I-+ 0, and in particular 

Vn(x)-+ V(x) for all x E [0,r), in probability. Suppose that Vo is continuous 

on [r - €1, r] for some €1 > 0. The consistency of Yn(r) implies by (5.6) 

consistency of Vn( r). If a sequence of monotone functions converges pointwise 

to a continuous function, then it converges uniformly. Applying this result to 

Vn on [r - €, r] provides us with uniform consistency of Vn on [0, r]. 

The pp0 -consistency condition is proved by lemma 5.5, using the consistency 

of Yn(r). This completes the supnorm-efficiency proof for Wn. 

This proves the following theorem, under the assumption that Yn ( T) is con­

sistent (see section 6). 

Theorem 5.1 hn is an efficient estimator of h0 • Assume g0 (r) > 0. Then 

sup I (Wn - Wo)(x) I= Op(l/yn). 
zE[O,r) 

If Vo is continuous on [r - €, r] for an € > 0, then Vn is uniformly consistent 

on [O, r] and Wn is a supnorm-asymptotically efficient estimator of Wo: 

vn(Wn(t) - Wo(t)) = J 1(Wo, t)d (vn(Pn - Pv0 )) + Rn,t, 

where P(IIRn,-IL'° > €)-+ 0 for all€> 0 and Zn(·)= yn(Pn - Pv0 )(1(Wo, •)) 
converges weakly in (D[0, r], B, II · IL'°) to a (pointwise) mean zero measurable 
Gaussian process Z with covariance structure given by: 

E(Z(s)Z(t)) = Eo (l(Wo, s)(Y)1(Wo, t)(Y)) . 
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If g0 ( r) = O, i.e. Vo( r) = 1, then one can just shrink down the window (0, r] 
to [O, r'] where r' is chosen so that a fraction of the singly censored or uncen­

sored observations become doubly censored. Then the theorem tells us that 

the NPMLE based on these reduced observations is efficient for these reduced 

observations and one can obtain efficiency by letting this fraction converge to 

zero slowly enough for n-+ oo. 

5.3.1 Construction of confidence intervals. 

We will discuss two methods for construction of a pointwise confidence interval 

for W(t) and estimation of the variance of the estimator Wn(t). The first 

method is the nonparametric bootstrap. This means that we estimate the 

distribution of Wn(t) by computing a large number of estimators Wn(t)# based 

on samples Yt, ... , Yl drawn from the empirical distribution function Pn. The 
asymptotic validity of the nonparametric bootstrap is proved straightforwardly 

by using identity (5.14) 

and repeating our efficiency proof, in exactly the same way (see section 4.6). 

Hereby we use that all our results (lemmas) are established uniformly in V. 

Similarly, asymptotic validity of the semiparametric bootstrap holds. In this 

case we would resample from Pvn,hn, where Vn, hn is the sieved-NPMLE. 

In the second method we estimate the limiting distribution of Wn(t) by 

estimation of the variance of !(W, t)(Y). We can estimate !(W, t) = Avlv(Kt), 
which depends on (V, h), by substitution of (Vn, hn), which provides us with 

an estimate 1n(W, t). Now, we can estimate the variance with: 

1 ~- 2 - L..Jn(W, t)(Y;) . 
n i=l 

(5.15) 

The computation of 1n(W, t)(Y;) involves inverting the information operator. 

However, as we will see this comes down to inverting a Volterra integral operator 

which is an infinite dimensional equivalent of a lower-triangular matrix and as 

shown in subsection 4.3 inversion at a discrete Vn with k support points is 

inverting a lower-triangular k by k matrix. 

The remaining program is as follows: In section 4 we will prove the (hardest) 

Po-Donsker class condition and thereby in the course of establishing this that 

hvn,t is bounded in supnorm. In section 5 the pp consistency and identity 
conditions will be verified. 
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5.4 Donsker class condition, uniform bound on 
the variation of the efficient influence func­
tion. 

In the sequel integrals f0'C, from zero to any point x, are integrals over [0, x) 
and integrals J;, from y to any z, are integrals over [y, z). The score operator 

Av0 is given by: 

Ev(h(X)IX = x, D = d)) 
r.00 !1:ddV( ) 

h(x)I(d = 0) + J;;,,, r+x x I(d = 1) 
t.. - 1 dV(x) Jx r+x 

J,oo (x-r)h(x)dV(x) 

+ r 1,00 ~dV(x) I(d = 2). 
r r+x 

The adjoint AJ : L5(Pv)--+ L5(V) of Av is given by: 

E(77(.X, D)IX = x) 

r - x 77(x, 0)I(x ~ r) + -- 77(x, l)dx 
2 lxAr 

r+x r+x 0 

X-T 
+--77(r, 2)I(x 2:: r). 

x+r 

Consequently, the information operator Iv = AJAv : L5(V)--+ L5(V) is given 
by: 

Iv(h)(x) 
2 

l
xAr J;2" ~dV(u) 

T - X h(x)I(x < r) + -- xoo r+u dx 
r+x r+x O J;; riudV(u) 

_ Joo (u-r)h(u)dV(u) 
+~ r r+u I(x > r) (5 16) 

x + r r00 !!.=LdV(u) - · · Jr r+u 

Consider the equation (in ht) 

Iv(ht)(x) = Kt(x) = I(o,t](x)(r - x), 

which should be considered as solving for the hardest submodel in F for esti­

mating W(t) using data from Pv. Notice that ht depends on V. Instead of 

htV,., htV we use the notation htn, ht, respectively. In the next subsection we 
will show that this hardest underlying score ht - W(t) = Iv (Kt) - W(t) exists 
and that it is given by a Neumann series. 

By analyzing this Neumann series we will show that hnt = Iv..(Knt) is 
of uniformly (in Vn and t) bounded variation and thereby, using (5.11), that 

!(Wn, t)I(D = d) is of bounded variation ford= 0, 1, 2 uniformly inn. 
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5.4.1 Solving for the hardest submode!. 

We split the inversion Iv(ht)(x) = (r - x)l(o,t](x) in two parts, namely we 

consider this equation for x ~ T and for x $ T. 

Inversion for a,~ -r. For x ~ T we have 11:t(x) = (r - x)l(o,t](x) = 0. Recall 

the definition g(y) = ft 1/(r+ u)dV(u). We define also: 

J,"° (u-r)h(u)dV( ) 
C(h)(r) = r fr"° ;dV(u) u 

For x ~ T ht (see (5.16)) is determined by the equation: 

l r J.00 ~dV(u) 
2 

0 
Y r;(:) dy+(x-r)C(h)(r)=0. 

Consequently, we have that ht solves: 

l
r J.00 ~dV(u) 

y r+u dy = 0 
0 g(y) 

C(ht)(r) = 0. 

(5.17) 

(5.18) 

(5.19) 

Inversion for a, E [o,-r) using (5.18). We use that ht solves (5.18). For 

x $ T the third term in Iv(ht)(x) equals zero. Consequently, for x $ T we 

have (at the second equality we use (5.18) and at the third equality we split 

up the integration area [y,oo) = [y, r) U [r, oo)): 

:,; J."° ht(U)dV( ) 
Iv(ht)(x) = T - x ht(x) + - 2 - f Y r+u u dy 

r + x T + x lo g(y) 
r J."° h1(u)dV( ) = T - X ht (x) - _2 _ 1 Y r+u u d 

T + X T + X :,; g(y) y 

T - X h ( ) y r+u U d 2 
1

T J.T ht(U)dV( ) 
--ex--- y 
r+x r+x "' g(y) 

--2-1r - 1-dy x ["° hc(u) dV(u). (5.20) 
T + X :,; g(y) lr T + U 

Now, we will use (5.18) in order to express J;' h:i:>dv(u) in an integral which 

only uses the values hc(x), x E [0, r]. By using Fubini at the second equality 

below, we have: 

0 = r_l_1"°ht(u)V(du)dy 
lo g(y) y r + u 

100 (l""r _1 dy) hc(u)V(du) 
0 O g(y) T + U 

r ( f" _(l)dy) hc(u)V(du)+ r _(l)dyx ["° ht(u)V(du), 
lo lo g Y T + u lo g Y lr T + u 
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and consequently 

t'° hi(u) V(du) = - J; (Io" ~dy) *V(du). 

lr T + u f0 g(y)dy 
(5.21) 

Substitute this in (5.20) and we multiply both sides with ( r+x )/( r-x ). Before 

we write down the obtained expression we make some definitions. Define the 

operator B; (D[O, r], II· 11 00 )-+ (D[O, r], II· 11 00 ) by 

2 1T r ~dV(u) 
B(h)(x) = -- y r+( ) dy for x E [O, r) and B(h)(r) = 0. ,, 

T-X :c gy 

Notice that lim:cTr B(h)(x) = 0 = B(h)(r) and therefore this operator indeed 
maps cadlag functions on [O, r] to cadlag functions on [O, r]. Moreover, define: 

rr i d 
2 J:c g(y) y 

- -:;:=-:;;J; g[y)dy 

_ r ( f" - 1 dy) ~V(du). lo lo g(y) T + u 

Substituting (5.21) into (5.20) and multiplying both sides of Iv(ht) = Kt with 

(r + x)/(r - x) tells us that ht solves the following equation for x E [O, r): 

(I - B)(ht)(x) = -o:19(x)ai(ht)(r) + I(o,t](x) · (r + x) 

and for x ~ T ht has to satisfy (5.18) and (5.19). 

B is a Volterra operator. Notice that (by using Fubini): 

B(h)(x) = 1r (-2-1" _1 dy) h(u) dV(u) 
:c T - X y=:c g(y) T + U 

1~:c K 9 (x, u)h(u)dV1(u), 

where 

K 9 (x, u) - 2 1" 1 -- --dy, 
T - X y=:c g(y) 

u E (x, r] 

dVi(u) 
1 

- --dV(u). 
r+u 

If g(r) > O, then 

2 
sup Kg(x, u) ~ -- < oo. 

:cE[O,r),uE(:c,r] g( r) 

(5.22) 
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By the Volterra structure of B (Kantorovich and Akilov, 1982, Gill and Jo­

hansen, 1990, see also Gill, van der Laan, Wellner, 1993), we have: 

Therefore for any h E D[0, r] we have 

This proves the following lemma: 

Lemma 5.1 Assume that g(r) > 0. We have the following results: 

1. I - B : (D[0, r], II · 11 00 ) -. (D[0, r], II· 11 00 ) has a bounded inverse given 

by E:=O B"(h). 

2. If h ~ 0, then B(h) ~ 0, and consequently B"(h) ~ 0, k = 1,2, .... 

3. For any h E D[0, r] 

,. 1 ( 2 )" IIB (h)ll00 ~ k! g( r) Vi(O, r] llhll00 • 

Notice that 0 19 E D[0, r]. Now, we can apply the Neumann series (i.e. the 

inverse of I - B) to the left and right-hand side of (5.22). This provides us 

with the following equation for ht E D[0, r]: 

00 00 

ht LB" (I(o,t](·)(r+ •)) -02(ht)(r) LB"(o19 ) 

k=O k=O 

~f fit - 02(ht)(r)h. (5.23) 

It remains to find 02(ht)( r). 02 is a linear mapping in hand therefore it makes 

sense to apply 02 to the left and right-hand side of (5.23). This provides us 
with: 

By lemma 5.1 019 ~ 0 implies that h = E:=0 B"(o19) ~ 0. Consequently 

02(h)(r) ~ 0 and therefore 

( )( ) _ 02(/1t)(r) _ 
02 ht r - l+o2(h)(r) =03t• 
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This proves that ht is uniquely determined on [0, r). So ht(X) is uniquely 

determined on [0, r) and for x ~ r it only has to satisfy (5.18) and (5.19) 

(several solutions are possible). From now on ht E D[0, r] (from which its 

restriction to [0, r) is the solution we were looking for) will be this unique part 

which lives on [0, r] and hf will be that part on [r, co) for which ht+ hf solves 

(5.18) and (5.19). By substituting this ht in (5.18) we find that hf(x), x > r 

has to satisfy 

r r *dV(u) d 

100 hr(u) dV(u) = - Io r g<;) y = C(ht, V). 
r T + u Io g(jj'jdy 

Moreover it has to satisfy C(ht)(r) = 0. This proves the following lemma. 

Lemma 5.2 Assume g(r) > 0. Define (they are all well defined) 

00 

fit - LBk(I(o,tJ(·)(r+·))ED[O,r] 
k=O 

00 

f2 _ LBk(a1g)ED[O,r] 
k=O 

02(/u)(r) E lR 
1 + 02('2)( r) · 

We have: Iv(ht)(x) = Kt(x) for all x E [O, co] if and only if ht(x) = f1t(x) -

aad2(x) for x E [O, r) and if hf= ht(x)I(x ~ r) satisfies 

100 hr(u) dV(u) = C(ht, V) I\ C(hf)(r) = 0. 
r r+u 

(5.24) 

Moreover, 1ihill00 ::; C/g(r) for a C < co which does not depend on V and 

t. 

The last statement is a trivial consequence oflemma 5.1. If one wants to have 
the solution of Iv(h) = x: for a general x:, then one replaces in this lemma 

I(o,t](x) by x:(x)( T + x)/( T- x), where it is required that x:(x )( r + x)/( T - x) E 

D[0, r]. Lemma 5.2 tells us that Iv(h) = Kt is solved by h(x) = ht(x)I[o,r)(x)+ 

hr(x)I[r,oo)• Consequently, we have .I(W, t) = Av(ht) + Av(hr). In the next 

section we will show the Donsker class condition for Av(ht)• Before we do this 

we will show that the Donsker class condition certainly holds for Av(hr) and 

that in fact the L2-consistency and Donsker class analysis of Av(ht) provides 

us certainly with these results for Av(hr). 
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5.4.2 The information after r. 

Recall the score operator Av. We have that Av(h[)I(D = 2) = C(hr)(r) and 
consequently this equals zero because hf satisfies (5.24). Av(hr)(x, 0) = hf(x) 

and because Pv(·, 0) puts only mass on [0, r) this equals 0 Pv a.e. Finally, we 

have by using that hf(x) = 0 for x <rand by (5.24) that: 

Av(hr)(x, 1) = 
r,oo hj"(u) ( ) J; r+u dV U 

g(x) 

Joo h,(u)dV( ) 
r r+u U 

g(x) 

C(ht, V) 
g(x) 

Let II· llv denote the variation norm. Notice that g is a monotone function. 

Therefore for showing that IIAv,.(h~t)I(D = l)llv < M for certain M < oo it 
suffices to have that Yn(r) > {J > 0 for certain 6 > 0 and that llhntll00 < M1 for 
certain M1 < oo. By the last statement of lemma 5.2 the latter follows from 

Yn(r) > {J > 0 for some {J > 0. Using that Yn(r) is consistent, this follows from 
g(r) > 0. This proves the P-Donsker class condition for Av,.(hr). 

Because convergence of C(hnt, Vn) to C(ht, V) follows from convergence of 
Vn to V on [0, r] and hnt to ht it is now also clear that the proved convergence of 
h~ in the P-consistency-analysis in section 6 provides us also with the required 
convergence for h~t and hence for the P-consistency condition for Av,.(h~t)· 

5.4.3 Estimation of the efficient influence curve in prac­
tice. 

In this section we explain how Av,. (hnt + h~t) is computed, as needed for 
computation of the estimated variance (5.15). Firstly, as shown above we have 

that Av,.(h~t) = I(D = l)C(hnt, V)/gn(x). Hence once we have a quick way 
of computing hnt from Vn, Yn ( r) we are done. Lemma 5.2 tells us that this is 
established once we can quickly invert (I - Bv,.)(h~)(x) = f(x) for some given 
function f(x). The lemma suggest to invert this equation by applying the 

Neumann series of Bv,. to f, which is indeed a quick method since k iterations 
is already enough to have reduced the error to the order 1/k!. However, here 

we show what inversion of the Volterra operator I - B really stands for in 

the case that Vn is discrete. Suppose Vn puts mass on k points x1 , ••• , Xk, 

namely the uncensored Xi. Then the only values of hf which count are hf(xi), 

i = 1, ... , k. Hence we can represent hf as hnt E ]Rk. Similarly, the relevant 
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values for the kernel Kgn are Kgn (x;, x; ), i = 1, ... , k, j = 1, ... , k, and also 

Bv., (h)(x) only jumps at x1, ... , Xk• Consequently, we can represent Bv., as a 

matrix operator (BIJ): lRk-+ JR\ where 

B;1_; = 0 if i > j and B;; = Kg.,(x;, x;)vn(x;) if j ~ i. 

This is due to the fact that the Volterra integral at x = x; only integrates (sums) 

over the values h~(x;) with j ~. i. So inverting (I - Bv.,)(h~)(x;) = f(x;), 
i = 1, ... , k, comes now down to solving (6;; - Bf;)(hnt) = f~ where 6;; = 1 if 
i = j and zero elsewhere. So 6;; - BIJ is an upper triangular matrix so that hat 
is found by first obtaining h~(xk) from the last equation, then obtain h~(xk-i) 
from the k - l'th equation using h~(xk) and go on like this till you arrive at 
the first equation. In this way we find in k simple steps hnt• This shows that 
inverting the information operator at a discrete Vn is not computer intensive 

at all and can be easily implemented. This provides us with a quick way of 

estimating the limit variance of y"n(Wn(t) - W(t)) and hence for constructing 
pointwise confidence intervals. 

5.4.4 Bounded variation of the hardest underlying scores. 

In this section we will show that suptE[O,r) llhtllv = 0(1) and 

lim supn-+oo SUPte[o,r) llhtn !Iv = 0(1) a.s. Lemma 5.2 tells us that htn = f1tn + 
Oatnhn• We have that 03tn :S 02nU1tn) :S 1if1tni1 00 02n(l). By lemma 5.1 
we have that llfunlloo :S exp (2Vn[O, r]/gn(r)) r. Therefore for showing that 

0atn :S M < oo for some M < oo for n large enough we need that gn ( T) > 6 > 0 
( some 6 > 0) for n large enough, which follows from consistency of gn ( r) to 

g( T) > 0. This shows that lim supn-+oo oan is bounded a.s. 

Now, lemma 5.2 tells us that for showing limsupn-+oo supt i!htnllv = 0(1) 
a.s. it suffices to show that ( a.s.) for some M < oo 

00 

limsup:Esupl!B!(I(o,t](·)(r+•))llv < M<oo 
n-+oo k=O t 

(5.25) 

00 

limsup L IIB! (a1g..) llv < M < oo. 
n-+oo k=O 

(5.26) 

We will prove (5.26) (the hardest of the two). For proving (5.25) one just 

substitutes l(o,tJ(·)/(r +·)for 01g.,• 
Consider the first term o 1g., of (5.26). Define 

1 1T 1 
h1n = -- --(-) dy, 

T- X "' gn y 
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and notice that 019,. = cnhin, where Cn = 2/ J;(1/(gn(y))dy < 
2gn(O)/r and therefore limsupn-oo Cn < oo. Now Ef=o IIB!(o19,.)llv < 
Cn Ef=o IIB!(h1n)llv• So it suffices to study the series Ef=o IIB!(h1n)llv• 

We have 

_1 ___ 1_ - 1 1T _l_dy 
T- x Yn(x) - (r - x)2 "' Yn(x) · 

Using this it follows that 

j_h1 (x) - 1 1r (-1- - _1_) dy 
dx n - (r - x)2 "' Yn(Y) Yn(x) 

(5.27) 

~ 0, 

by the fact that Yn is monotone. Consequently, h1n is monotone increasing and 

larger than or equal to zero and therefore llh1nll11 = llh1nll00 $ g,.tr)' which is 
uniformly bounded by the preceding argument. This proves: 

Lemma 5.3 We have that llh1nllv = llh1nll 00 $ 1/gn(r). If g(r) > 0, then 

Yn(r) > C > 0 for certain c > 0 with probability tending to 1. 

Consider now the term m(•) = B!+1(h1n)(•). Define for a function f 

a!(f)(y) = 1r B!(f)(u) dVn(u). 
11 r+u 

We have: 

d~ B!+1(h1n)(x) = j_ (-1-1r a! (hin)(y) dy) 
dx T - X "' Yn(Y) 

1 1r a!(h1n)(y) dy- _l_a!(h1n)(x) 
(r - x)2 "' Yn(Y) T- X Yn(x) 

1 1r (a!(h1n)(y) _ a!(h1n)(x)) d 
(r - x)2 "' Yn(Y) Yn(x) y. 

Consider a point x where this derivative is larger than or equal to zero. By 

lemma (5.1) lla!(f)lloo $ ~llflloo and if f ~ O, then a!(f) is decreasing, 
where Cn is bounded by 1/(rgn(r)). Therefore, if x $ y, then a!(hin)(y) ~ 
a!(h1n)(x). Hence we have: 

0 < 1 1r (a!(h1n)(y) _ a!(h1n)(x)) dy 
(r - x)2 "' Yn(Y) Yn(x) 

k 1 1T ( 1 1 ) < an(hin)(x) (r - x)2 "' Yn(Y) - Yn(x) dy 

k d 
$ an(hin)(x) dxh1n(x) by (5.27) 

ck d 
< k! llh1nll00 dx h1n(x). (5.28) 
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We can write m = m1 +m2 where m1 is increasing and m2 is decreasing. (5.28) 

and lemma 5.3 show that 

llm1llv :S ~f llh1nllvllh1nlloo = ~f llh1nll~-

ck 
We also know by lemma 5.1 that JJmJJ 00 :S "1tilh1nl100 • This tells us that 

llm2llv :S 2JJm2lloo :S 2 (llmlloo + llm1lloo) 

:S 2 ( ~~ 1lh1nlloo + ~~ llh1nll~) · 

Consequently, 

llmllv :S llm1llv + llm2llv :S 2 ~7 llh1nlloo + 3 ~f llh1nll~ :S 5 ~7 llh1nll~, 

assuming that 1ih1nlJ00 > 1, if not the bound is even better. This proves that 
00 00 

L JJB!(algn)llv < Cn L JJB!{h1n)llv 
k=O k=O 

< 5cnJJh1nll~ exp(Cn) 

< Mexp (1/gn(r)) 
Yn(r) 2 ' 

where we used lemrria 5.3 and Cn :S 1/(rgn(r)) at the last inequality. This 

proves (5.26). This provides us with the following result. 

Lemma 5.4 If g(r) > O, then 

limsupsup IJhtnllv < M a.s. and sup IJhtllv :SM for certain M < oo. 
n-oo t t 

5.4.5 Donsker class condition. 

Recall !(Wn, t)(·) = Avn(htn + hfn)(-) - Wn(t). Lemma 5.4 tells us that htn is 
of bounded variation uniformly in Vn and t. We also have that AvJ(D = d): 
(D[O, r], II· llv)-+ (D[O, r], II· llv) is a bounded linear mapping ford E {O, 1, 2}. 
This follows from the fact that AvJ(D = d) maps monotone functions to 

monotone functions, which is in fact a quite general fact which holds in missing 

data models. Recalling the subsection about Avn (hfn), it follows that this 

provides us with the following corollary of lemma 5.4: 

Corollary 5.1 (Uniform bound on variation of efficient influence curve). If 

g(r) > 0, then 

limsupsuplJ1(Wn,t)I(D = d)llv < M a.s. 
tl-+00 t 
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and 

sup III(W, t)I(D = d)llv :S M 
t 

ford= 0, 1, 2 and some M < oo. 

This proves the Po-Donsker class condition. 

5.5 Consistency condition for the efficient in-
fluence function. " 

As shown in the general proof, for verifying this condition we can use that 

supxE(O,r] I (Vn - Vo)(x) I-+ 0 and Yn(r)--+ g(r), both in probability. 

By lemma 5.2 the hardest score is given by Iv}(x:nt - Wn(t)) 

r:r=O Bt Unt) + h~t - Wn(t), where Int(·) = Ico,t](·)( T + ·) - 0'.3n0'.1gJ ). The 
efficient influence function at Vn is given by Avn(Iv}(x:nt- Wn(t))). By lemma 

5.2 and the subsection 5.4.2 it follows that the convergence of AvJh~t) follows 

easily from the convergence of Avn(hnt) shown below. 

Denote Jn = I - Bvn and J;; 1 = I:r=o Bt. Because Wn(t) --+ W(t) we 
only have to consider: 

(Avn -Av )J- 1 (ft) + AvJ;; 1(fnt - ft) 

+AvJ;; 1(Jn - J)J- 1(ft). (5.29) 

We have to prove that the L2(Pv )-norm of these terms converge to zero uni­

formly int E (0, r] in probability. Firstly, we will study the third term. fnt - ft 

involves the difference 

1 1r ( 1 1 ) a19n(x) - a1u(x) = c---=- -(-) - -() dy. 
T X x 9n Y g y 

(5.30) 

We have 

1r 1 
g(y) = --dV(x) + g(r). 

y r+x 

Consequently, the uniform consistency of Vn on [0, r] and the consistency of 

9n(r) provides us with uniform consistency of Yn(·) on [0, r]. The fact that 

Yn ( T) > o > 0 with probability tending to 1 tells us now that the integrand 

converges uniformly to zero in probability. This proves the convergence of 

(5.30) to zero in probability. By using the same arguments as we do below for 

the first and second term we can show that C¥3n - a3 --+p 0. This proves that 



Rho-Consistency Condition 139 

llfnt - ftll 00 --+p 0. By lemma 5.1 J;; 1 is a bounded (uniformly inn) operator 

on (D[O, r], II · 11 00 ). This proves the convergence to zero of the third term. 

Let's now consider the first term of (5.29). Define ht = J- 1(ft). Recall the 

score operator Av, where we only have to consider the first two terms because 

ht lives on [O, r). By telescoping, the first term of (Av,. -Av )(h) can be written 
as a sum of two similar terms and one is given by: 

1; *(Vn - V)(dx) 

gn (y) 

Applying integration by parts gives: 

_!_() (-lr(Vn -V)(x)d(~)(x)-(Vn -V)(y)ht(Y)). 
gn Y y T + • T + y 

(5.31) 

Using gn > 6 > 0 with probability tending to 1, we can bound this by the 

supnorm of Vn - V and the variation norm of ht. Lemma 5.4 tells us that ht 

is of bounded variation uniformly in t. This proves the uniform convergence of 

the first term. 

Let's now consider the second term of (5.29). In (Jn -J)(ht) = (Bn -B)(ht) 
we have to deal with the following kind of terms: 

1 1T1T 
T _ x x Y ht(u)d(Vn - V)(u)dy. (5.32) 

We can bound, by integration by parts, 1; ht(u)d(Vn - V)(u) by the supnorm 

of Vn - V and the variation norm of ht, where the latter is bounded uniformly 
int. This proves the uniform convergence of (Jn - J)(ht) and the boundedness 

of the operator 1-1 finishes the proof of the convergence of the second term of 
(5.29). This proves: 

Lemma 5.5 (p--consistency condition). If Vn is uniformly consistent for V on 
[O, r] and gn(r) is consistent for g(r) > O, then 

sup ll!(Wn, t) - !(l-V, t)IIPv --+ 0 in probability. 
tE[O,r] 

5.5.1 The identity condition 

For a E [O, 1] we define the line Vn(o) = aV + (1-a)Vn of distributions. Then 

V ~ Vn(a). This shows that the identity (5.12) holds for Pv,.(a),g,.(a(r): 

(5.33) 

We have Vn ( a )-Vn = a(Vn -V). Hence for o --+ 0 Vn (a) converges uniformly to 

Vn on [O, r] and the corresponding gn(a)(r) converges to gn(r). Hence if o--+ O, 
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then the left-hand side of (5.33) converges to Wn(t) - W(t). Since Vn(o:) - Vn 
converges to zero uniformly on [0, r], by imitating the steps in the proof for 

the f>-Consistency condition (using the bounded invertibility of I - Bv w.r.t. 

the variation and supnorm, uniformly in V) it follows that !(Wn(o:),t)(·,d) 

converges uniformly to !(Wn, t)(·,d), which shown that in particular 

This proves that we have the wished identity: 

This proves the lemma as needed in the general proof in section 3. 

Lemma 5.6 Let Vn(o:) = o:V + (1- a)Vn. Then ford E {0, 1, 2} 

ll!(Wn(o:), t)(•, d)- !(Wn, t)(•, d)lloo -+ 0. 

(5.34) 

(5.35) 

This completes the proof of all conditions we needed in the proof of theorem 

5.1: the uniform bound on the variation of !(Wn, t), the efficient score-equation, 

the identity for the Sieved-NPMLE and the pp-consistency of !(Wn, t). 

5.6 Discussion. 

Our results used that Un( r), or equivalently Vn( r-), is consistent, which has 
not been proved. The reason why the original proof of Wijers (1991) broke 

down at r was the fact that one could not establish Yn(r) > 6 > 0 for some 
6 > O; a condition we also needed in our analysis. Wijers (1993, page 136) 

proposed a slight extra censoring of the data to [0, r- e] which guarantees that 

Yn(r-e) > 6 > 0. Hence our results apply to the Sieved-NPMLE based on the 

slightly transformed data; Wn is an almost efficient estimator on (0, r-epsilon] 
for every e > 0. 

For T; :5 0 we observe pairs (Zi, Di) 

{ 1 T; + Xi :5 r - e 
Zi=min(T;+Xi,r-e), Di= 2 rr1 X -Li+ i>T-f 

and for the T; E (0, r) we observe 

Z; = min(X;,r-'.ll,r-,), D; = { 
0 T; + Xi :5 T, xi :5 r - e 
1 T; + xi > r, T; > e 
3 Xi > T - e, T; $ f 

Di = 0 corresponds with an uncensored line-segment on (0, r - e], Di = 1 

corresponds with a singly-left or right-censored line-segment on [0, r - e], but 



Discussion 141 

right-censored so that it would also have been right-censored when using the 

window [O, r], D; = 2 corresponds with a doubly censored line-segment on 

[O, r - t] and D; = 3 corresponds with a singly-right censored line-segment on 

[O, r - t], but which would have uncensored on [O, r]. Define h, = h + J; g( T -

x )dx. Now, the distributions of the data are: 

P(dz, 0) 

P(dz, l) 

P(D = 2) 

P(D = 3) 

T-U 
li[o r-,)(z)--dV(u) 

' r+u 
I[o,r-,)(z)g(z )dz 

h, 

= tg(r-t). 

The equivalent of the relation (5.6) is 

(5.36) 

This shows that the distribution of the data is indexed by V on [O, T - t) 
and h,. The EM-equations are the same: just replace h by h, and (5.6) by 

(5.6). For this case it can be shown (see Wijers, 1993, page 139) that Vn, the 
sieved-NPMLE for this transformed data, is uniformly consistent on [O, T - t) 
and hence Un ( r - t) is consistent so that our analysis can be imitated for this 

case. The reason that his proof now works is that Pn(D = 3) is uniformly (in 
n) bounded away from zero which by the loglikelihood principle enforces the 

NPMLE Pvn,hn(D = 3) of P(D = 3) = tg(r - t) to be uniformly bounded 

away from zero and hence that Un(T - t) = Pvn,hn(D = 3)/t is bounded way 
from zero. In order to obtain a fully efficient estimator w: of iv one should let 

tn _. 0 slowly enough when the number of observations converge to infinity. A 

practical suggestion is given in Wijers (1993). 

5.6.1 Inhomogeneous Poisson Process. 

Suppose that the starting points T of the line-segments follow a inhogeneous 

Poisson process with intensity measure >.(t)dt. By going through the same 

steps as in beginning of section 1 we show that after having conditioned on the 

observed line-segments each line-segment corresponds with an i.i.d. observation 

(X;, T;): 

X ~ dV(x) = S~) dF(x), 

where 

S(x) = 1-~ >.(t)dt and S = 100 1:_., >.(t)dtdF(x), 
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and T, given X = x E [O, r), have conditional distribution 

_ _ >.(t)dt 
dA(t IX - x) = I(-x,r)(t) S(x) . 

This means that in the distribution of the data we replace the uniform on 

(-x, r) by dA(t I x) and similarly one rewrites the EM-equations in this way. 

We can estimate >.(t) on [O, r). Hence by assuming a certain parametric shape 

this can provide us with an estimate of >.(t) on (-r, tau) which is all we need. 

In this way our estimation method is easily generalized to the case where >.(t) 
is not constant, but is replaced by an estimate. Also our efficiency results did 

not rely on the fact that T I X = x was uniform, but go through for any other 

known distribution. 
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Inefficient Estimation in 
Semiparametric Models 
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Chapter 6 

Inefficient Estimators of 
the Bivariate Survival 
Funct'ion in the Bivariate 
Censoring Model 

6.1 Three approaches to estimation. 

In this section we will describe three representations of the bivariate survival 
function, as maps from the distribution function of the data, on which three 

estimators can be based. The estimators are obtained by substituting the 
empirical distribution of the data into the representation. 

Our aim is to prove that these estimators are uniformly consistent and that 
the estimators converge weakly as random elements in the bivariate cadlag 

function space D[O, r] endowed with the supremum norm at root-n rate to a 

Gaussian process. Moreover, we also want to show that the bootstrap can be 
used to estimate the variance of these estimators and we obtain some local 

efficiency results for these estimators. 

The weak convergence and bootstrap results can be proved by applying the 

functional delta-method (see theorem 1.6). This means that we have to verify 

the required differentiability of the representation and the weak convergence of 

the empirical process which we plug into the representation. We are able to ver­

ify these conditions under essentially no conditions on the model. For a formal 

statement of our results see our final theorem in section 5. We also succeeded 

in proving that the Dabrowska and Prentice-Cai estimator are efficient under 
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independence. Practical simulations show that the asymptotic distribution is 

closely approached for surprisingly small samples (Balck.er, 1990, Prentice and 

Cai, 1992a and chapter 8 van der Laan, 1993d). 

The organization of the chapter is as follows. In section 2 we will give the 

basic techniques as lemmas for obtaining the required differentiability result 

for the representations and illustrate how these lemmas lead to the required 

convergence of the hardest terms. which appear in our differentiability proofs. 

In section 3 we will prove the differentiability results by applying these lemmas. 

In section 4 we will see how each representation leads to an estimator by just 

substituting the empirical distribution of the data. In section 5 we verify the 

weak convergence of these empirical processes which provide us, by application 

of the functional delta method, with results which are summarized in our final 
theorem. Finally, in section 6 we prove that for the bivariate censoring model 

the Dabrowska and Prentice-Cai estimator are efficient under independence. 

For the sake of completeness we describe the bivariate censoring model once 
more: 

Model. Bivariate random censoring. 

Suppose that (Tu, T21), ... , (Tin, T2n) are independent and identically dis­

tributed copies of T = (T1, T2) which has distribution function F on m.;0 = 
[O, 00)2, that (Cu, C21), ... , (Gin, C2n) are independent and identically-dis­
tributed with distribution function G on m.~0 independent of all of the 

(T1, T2)'s, and that we observe n i.i.d. copies 

('.fu,T2i, Du,D2i) = (Tu A Cu, T2i A C2i,I(Tu $ Cu),I(T2i $ C2i)). 

Problem: Use the observed data to estimate F. 

We assumed that we have observations in m.~0 • The estimators we propose 

are invariant under monotone transformations. Therefore our results can be 
generalized to data on m.2. 

The analyzed estimators have natural generalizations to the k-variate case, 

and the k-variate analysis can be done by simply using k-variate analogues of 

the ingredients we use in the analysis for the case k = 2; for some of these, see 

Gill (1992). (He shows that no further ingredients are needed for general k.) 

We refer to the bibliography on the bivariate random censoring model at 

the end of chapter 4. In chapter 4 we proposed a modified maximum likelihood 

estimator, a SOR-MLE, which depends on a grid-width hn (n is the number of 

observations), which is proved to be efficient for hn -+ 0 slowly enough. The 
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choice of the grid-width in practice is as with density estimation a problem. 

Moreover, we needed an additional smoothness assumption on F ( though a 

rather weak one). This estimator had to be computed with the EM-algorithm, 
which is quite computer intensive. We also saw that the efficient influence 

function is implicitly defined. Only in the special case of independence will we 

(see section 6 of this chapter) succeed in obtaining an explicit expression for 

the information bound. 

These difficulties in constructing efficient estimators; that they only seem to 

work under additional regularity assumptions and/or reduction of the data; and 
that they are computer intensive; are a motivation for considering inefficient 

estimators. 

In this chapter we focus on three inefficient estimators, but estimators ( ex­
cept the Volterra estimator) which have been shown to have good practical 
performance. We included the Volterra representation because it is included in 
the Prentice-Cai representation, and the analysis of the Dabrowska and Volterra 

estimator gives the analysis of the Prentice-Cai estimator for free. The esti­
mators are explicit and easy (quickly) to compute. The estimators are very 
smooth functions of the observations and therefore they are very robust: i.e. 

insensitive to small changes of the underlying distributions. Moreover, the only 
condition we need for obtaining consistency, weak convergence and bootstrap 
results on [O, r] is that there is mass on [r, oo) in F and G. Also the last two 

properties are certainly not shared with efficient estimators: in chapter 4 we 
needed beyond the grid-reduction of the singly censored observations to reduce 
the data to [O, r] before we were able to prove these results. 

Our approach to estimation of F in these three models is as follows: we find 

representations of F as maps ~ from the distribution of the data, which can be 
estimated from the observed data, to F. The three particular representations 
which we study here are given by: 

A. Dabrowska's (1988) representation. 

B. The Volterra equation. 

C. Prentice and Cai (1992a) representation. 

We give a new proof of the Prentice and Cai (1992a) representation. 
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Notation and Definition of [0, r]. If we write S, ~, <, > then this should 

hold componentwise for both components: so if x E 1R2 then x s y ~ xi S 
Yi, x 2 S Y2· We often will not use a special notation for the bivariate time-­

vector; ifwe do not mean a vector this will be made clear. If F(t) = P(X St) is 

a distribution function we will denote its survival function with S(t) = P(X > 
t). All functions we encounter are defined on a rectangle [0, r] C 1R~0 where 

r can be chosen arbitrarily large except that S( r-) > 0 and H( r-) > 0 is 

required. Finally, we define for a bivariate function f : 1R2 - 1R 11/11 00 = 
supa:E[O,r) I /( X) I• 

A. Dabrowska's Representation. The representation, the estimator and 
L-measure were all introduced by Dabrowska (1988), but in a rather different 

way than we do here; we take the representation in terms of product-integrals 
as done in Gill, 1990 (see also Andersen, Borgan, Gill, Keiding, 1993). We 
define the following three hazard measures with their heuristic interpretation: 

Aw(du,v-) 

A01(u-,dv) 

Au(du, dv) 

P(Ti E [u,u+du) I (Ti,T2) ~ (u,v)), 

P(T2 E [v,v+dv) I (Ti,T2) ~ (u,v)), 

P(Ti E [u,u+du), T2 E [v,v+dv) I Ti~ u, T2 ~ v). 

Formally, we introduce a vector hazard function A : [0, r] C JR;,0 - 1R~0 as 
follows: A(t) = (Aio(t), Aoi(t), A11(t)), t E 1R~0 , where - -

Aio(t) (6.1) 

A11(t) = 

One of the main advantages of model building in terms of hazards is that 
they are undisturbed by censoring and therefore we can get natural estimates 

of the integrated hazards by replacing them by their natural empirical coun­

terparts (see section 4). 

For a bivariate distribution M (i.e. measure) J[(o,tP + dM) is the bivariate 
product integral over the rectangle [0, t] (see Gill, Johansen, 1990, or our section 

3.2). It is just like the univariate product integral defined as the limit of 

finite products over finite rectangular partitions of [0, t]. Now, the following 
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representation ca.n be proved: 

S(t) JG.1- A10(du, 0)) JG.1 -Ao1(0, dv)) ]1;1 - L(du, dv)06.2) 

[O,t1] [Oh] [O,t] 

_ ri(A10(·, o), Ao1(0, • ), r2(L)), 

L is defined by 

L(t) 
= f A1o(du,v-)Ao1(u-,dv)-A11(du,dv) 

J[o,t] (1 - A1o(D.u, v-)) (1 - Ao1(u-, Dov)) 

- ra(A10, A01, Au), 

(6.3) 

and r2 represents the bivariate product-integral mapping. With A10(D.u, v-) = 
A10( u, v-) - A10( u-, v-) we denote the jump of s --+ A10( s, v-) at u. Assume 

that for each v (u 1-+ F(u, v)) < µ 1 and for each u (v 1-+ F(u, v)) < µ2 for 

certain (signed) measures µ1 and µ 2 • We define 

J J dF dG 
F(du, v)G(u, dv) = dµ 1 (u, v) dµ}u, v)dµ 1(u)dµ 2(v), (6.4) 

where the Radon-Nykodim derivatives are taken in u for fixed v and in v 

for fixed u, respectively. These assumptions are easily verified for the hazard 

measures by choosing µ 1 = S1 and µ 2 = S2 , the marginals of S. We will see 

in section 4 that the empirical counterpart .K,. of A is obtained by replacing 

in the representation of AS by an empirical survival function. Therefore, the 

assumptions are verified in exactly the same way by choosing µ 1 and µ 2 the 

marginals of this empirical survival function. We will do this in the proof of 

the final theorem in section 5. 

Note that by (6.2) and (6.3) this gives a map r such that 

s r(A) = r1 (A10(·, o), Ao1(0, • ), r2(L)) 

= r1 (A10(·,0),Ao1(0,·),r2ra(A)). (6.5) 

This representation can quite easily be heuristically verified, basically using the 

same idea as with the one-dimensional Kaplan-Meier product-integral. 

In section 4 we will give natural empirical estimators of A which generalize 

the famous Nelson-Aalen estimator from the one dimensional case. 

If we denote the estimate of A with An, then the estimate of S based on 

Dabrowska's representation is simply 

This estimator was studied by Dabrowska (1988, 1989). Gill (1990) gener­

alized the representation to dimension k ?: 2 and analyzed the estimator by 

applying the functional delta-method. 
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B. The Volterra equation. This equation is derived by extending the fol­

lowing argument for k = 1: let 

A(t) = [ ; dF for t ~ 0 
J[o,t] -

be the cumulative hazard function corresponding to F. Then 

F(t) = [ S_dA 
J[o,t] 

and consequently 

S(t) = 1 - / S_dA. 
J[o,t] 

For a given function A, this is a homogeneot1,S Volterra equation for S, where the 

solution is given by the Peano series (a special Neumann series) E~1 Ai(l), 
where A(S) = fto,-J S_dA. In this case, k = 1, this is solved explicitly by the 
product-integral of A: 

S(t) = nl -dA(s)). 
[O,t] 

For theory about the univariate product-integral and in particular the equiva­

lence between the univariate Peano series and the univariate product-integral 
we refer to Gill and Johansen (1990). 

For k = 2 the argument generalizes as follows. For F on [O, oo )2, we define 
as above 

Au(t) = f ) dF, where S(z) = P(X > z). 
J[o,t] -

This implies that 

F(t) = [ S_dAu. 
J[o,t] 

(6.6) 

It remains only to relate F to S and the marginal distributions: let F1 and F2 
denote the marginal distributions of F. Then since 

F1(t1) + F2(t2) - F(t) + S(t) = 1, 

(6.6) yields 

S(t) = 1 - F1(t1) - F2(t2) + [ S_dAu 
J[o,tJ 

_ w-(t) + [ S_dAu, 
J[o,t] 

(6.7) 
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where w(t) = 1 - F1(t1) - F2(t2) involves only the marginal distributions F1 

and F2. Regarded as an equation for S given fixed functions W and A, (6.7) 

is an inhomogeneous Volterra equation with a unique solution ~1(W,Au) (Gill 
and Johansen (1990), Kantorovich and Akilov (1982), page 396). This can be 

seen as follows. Represent the equation as (I -AA)(S) = w where AA(S)(t) = 

~o,t] S_dA. It is easy to check that this structure takes care that 

where one has to notice that by definition of r the supremum norm ( over [O, r]) 
IIAlloo is bounded. 

Consequently, E:=o A~ is a bounded operator: 

00 

II I,:A~(h)ll 00 ~ llhll 00 exp(IIAll00 )-

k=O 

This proves that S is given by the Neumann series of AA11 : 

00 

s = I,:A~11 (w). (6.8) 
1:=0 

Because AA11 depends only on Au and 

w(t) 1- J((l -A10(ds1, 0)) - J((l -A1o(O, ds2)) 

(O,t1] (Oh] 

- ~2(A10(·,O),Ao1(O,·)) 

(6.8) defines a map 

S =~(A)= ~1(w, Au)= ~i(~2 (A10(·, O), Ao1(O, ·)),Au). (6.9) 

It is not clear from (6.8) that F depends continuously on Au, but we will prove 

in section 3, as in Gill and Johansen (1990), that the bivariate Peano series, 
and thereby also ~ 1, satisfies the characterization of weak continuous compact 

differentiability at (w, A) as stated in theorem 1.6. 

Finally, it should be noticed that because of the exponential convergence 

of the terms A\u to zero, (6.8) provides us also with an exponentially fast 

algorithm for finding a solution of the Volterra equation for known (w, Au)­

Finally, the Volterra estimator of Sis given by: 
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C. Prentice and Cai's representation. We give a new proof of the 

Prentice-Cai representation (see also Prentice and Cai, 1992a). For still an­

other proof, see Wellner {1993). For this we need the following differentiability 
rules for U: R-+Rand V: R-+ R: 

U_dV +dUV 
dU 

uu_· 

If we apply these one dimensional rules to the sections u -+ F( u, v) and 
v -+ F(u, v) of a bivariate function F, then we denote these with d1 and 
d2, respectively. We apply these two one dimensional rules to each of the two 

variables of R = S/S1S2 in turn in order to express dR = d12R = d1{d2{R)) as 
follows: 

~ ~ 
dR = R_dL for certain measure L. 

Define the familiar univariate hazards A1{ds1) = A10(ds1, 0), A2(ds2) = 
Ao1{0, ds2). The reader can easily verify the following formulas (when ap­
plying the product rule to S / Si we give the left continuous version to S in­

stead of one of the Si, i = 1,2, and we denote F(-t)(s1,s2) = F{s1-,s2), 

F(-2)(s1,s2) = F{s1,s2-)): 

dR=d12R 

d12S d2S2d1S(-2) d1S1d2S(-1) d1S1d2S2S-
= -- - ---'--'- ---'--"-+-----

S1S2 S2S2-S1 S1S1-S2 S1S1-S2S2-
= R_ S1-S2- (d12S _ d2S2 d1S(-2) _ d1S1 d2S(-1) + d1S1 d2S2) 

S1S2 s_ S2- s_ Si- s_ S1- S2-
= R_ (Au{ds) - A2{ds2)A10{ds1, s2-)-A1{ds1)Ao1(s1-, ds2) + A1{ds1)A2{ds2)) 

{1- A1{.!ls1)){l - A2{.!ls2)) 

At the third equality notice that l/{l-A1{.!ls1)){l-A2{.!ls2)) = S1-S2-/ S1S2. 
Integrating the left and right-hand side over the rectangle {0, t] provides us with: 

R(t) = 1 + f R(s-)L(ds). 
l<o,t1 

(6.10) 

Here one has to notice that R(t1 , 0) = R{O, t2) = 1 for all t. This is a homoge­
neous Volterra equation with a unique solution given by the Peano series of .L 
which we will write out below. 
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By definition of R and the well known product integral representation of 

the univariate Si, i = 1, 2, this provides us with the following representation 

for the bivariate survival function: 

S(t) = J((l - Arn(du, 0)) J((l -Ao1(O, dv)) R(t) 
[O,t,] [Oh] 

= 01 (Arn, A01, R), (6.11) 

where R is the unique solution of (6.10), just the Neumann series Ef=o A}(l) 
as given in (6.8), given by the Peano series: 

oo n 

R = 1 + ~ / ... 15.u1<.,2< ... <u"9 'J1 L(dui) 

= 02(£). 

Define 

Above, we derived the following representation of L in terms of the hazards A 

L(t) = f . /3(1 ) {Au(ds) - Arn(ds1, S2-)Ao1(O, ds2) 
l(o,tJ s 

-A1o(ds1, O)Ao1(s1-, ds2) + Arn(ds1, O)Ao1(O, ds2)} 

- 0a(X.). 

Note that this gives a map 

S 0(A) = 01 (A10,Ao1,02(L)) 

= 01 ( Arn, Aoi, 020a ( X.)) . (6.12) 

Again, the estimate of S based on the Prentice-Cai representation is simply 

Prentice and Cai (1992a) motivated this representation through a connec­
tion between L and the covariance of univariate counting process martingales. 

Moreover, they proved almost sure consistency of the resulting estimator via 
continuity of 0. 

Remark. Firstly, the Volterra estimator is based on the idea to express dS in 

S_dA for a certain measure A which makes Sa solution of an inhomogeneous 

Volterra equation, while in Prentice-Cai's representation we do the same with 
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d(S/S1S2 ) which leads in this case to a homogeneous Volterra equation. The 

Volterra estimator uses an estimate of only one bivariate hazard Au, while the 

Dabrowska and the Prentice-Cai representations involve other functions L and 

L which describe the covariance structure. Furthermore, notice the similarity 

in the structure of L and L; this will save work in the differentiability proofs. 

The functional delta-method. Our approach to studying the estimators, 

which we will denote by S~, S{?, s:;c will be to study the maps i), r and 0 

which define them (analytically). In sections 2 and 3 we show that these sat­

isfy weak continuous Hadamard differentiability with respect to the supremum 

norm-metric for the sequences which can occur in practice. In section 4 we 

represent A as differentiable maps from the distribution function of the data 

to A, which, by the chain-rule gives us differentiable mappings i) o A, r o A 
and 0 o A. Application of the functional delta-method theorem 1.6 to these 

representations in the distribution of the data provides us with consistency, 

weak convergence, and asymptotic validity of the bootstrap for S~, S{?, s:;c. 
These results are summarized in theorem 5.1. 

This approach provides us with optimal results for the estimators in the 

sense that we es~ntially do not need any conditions. The only improvements 

can be made by extending these results to the whole plane and by investigating 

the rate at which the normalized estimators converge to its linearization in 

terms of the empirical processes we plug in. 

Also, the analysis has been separated into a purely analytical part ( dif­

ferentiability of i)) and a purely probabilistic part ( weak convergence of 

Zn = ytn( Pn - P) ), where the latter is well known in our case. After es­

tablishing these purely analytical properties of components of i) one may also 

conclude similar results for different sampling methods or models ( e.g. models 

1-3 in Gill, van der Laan and Wellner, 1993) without repeating the analysis. 

The supremum norm might be considered as a quite naive choice in order to 

get an optimal weak convergence result, but the supremum norm is easy to use, 

to interpret, and has an easy generalization to higher dimensions. 

After establishing the differentiability of the functionals which appear in 

the representation r and i) we will get the differentiability of the Prentice­

Cai representation for free: by the chain-rule a differentiability result for a 

functional can be used for establishing differentiability for any composition of 

several mappings involving this functional. Because of this property, other 

proposed explicit estimators can immediately be put into our framework. 
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6.2 Lemmas. 

In this section we give lemmas containing the basic analytic techniques for 

establishing the required differentiability property. Moreover, we will give two 

illustrations which show how these techniques can be used for this purpose. 

Definitions and Notation. All functions we encounter are considered as 
elements of the space of bivariate cadlag functions on [0, r] which is denoted by 

D[0, r], endowed with the supremum norm (see definition 1.2). If Fn converges 
in supremum norm to F, then we will denote this with Fn -> F (no other 

types of convergence are needed here). Furthermore, we refer to some basic 

facts mentioned in section 2.3: If a cadlag function is of bounded variation, 
then it generates a signed measure and we refer to the telescoping lemma 1.6. 

If for F we write F(du,v),F(u,dv),F(du,dv), we mean the one dimensional 
measures generated by the sections u 1-+ F( u, v ), v 1-+ F( u, v) and the two 
dimensional measure generated by (u, v) 1-+ F(u, v), respectively, and it will 

be automatically assumed that these sections and the function itself are of 
bounded variation. 

In our applications we want to be able to define integrals J FdH and 

J F(du,v)H(u,dv), when His of unbounded variation and Fis of bounded 
uniform sectional variation. This can be done by applying integration by parts 
so that H appears as function. We want to have an integration by parts for­

mula which takes account of mass given to the edge of the rectangle [0, r]. The 

following does this (here J; = fco,a)' the first formulas is the same as in lemma 
(1.3)): 

Lemma 6.1 (Integration by Parts). 

1• 1t F(u, v)H(du, dv) = 1• 1t H ([(u, s) x (v, t)]) F(du, dv) 

+ J; H([u,s] x (0,t])F(du,0)+ Ji H((0,s] x [v,t])F(0,dv) 

+ F(0, 0)H ((0, s] x (0, t]). 

1' ht F(du, v)H(u, dv) = 1' ht H(u, [v, t])F(du, dv) + 1• H(u, (0, t])F(du, 0). 

Notice that with these formulas we can also define these integrals for H of 

unbounded variation. We can bound both integrals by l6IIHll00 l1FII:- Notice 
that if F is zero at the bottom edges of [0, r], then only the first term on the 

right hand-sides is non-zero. 
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Proof. We refer to (Gill, 1990) for the general )Rk case. It works as follows. 

For the first integral, substitute 

F(u,v)= f F(du',dv')+ f F(du',0)+ f F(0,dv')+F(0,0) 
lco,u)x(O,-o) lco,u) lco,-o) 

and for the second integral substitute 

F(du, v) = f F(du, dv') + F(du, 0) 
1co,-o1 

and apply Fubini's theorem. D 

Assume that Fi, F2 are of bounded variation and that Fi(s1, s2) or 

Fi(s1-, s2) or Fi(s1, s2-) or Fi(s1-, s2-) is cadlag, i = 1, 2. Then F1 and 
F2 generate signed measures and we have 

(6.13) 

So by twice applying lemma 

6.1 to J F1(u)F2(u)dH(u) = J F1(u)d (J; F2(v)dH(v)) we can do integration 
by parts so that H appears as function and F1, F2 as measures. 

The following lemma is trivially checked, but useful. 

Lemma 6.2 (d-A interchange). We have: 

J J F(As, At)G(ds, dt) = 

J J F(ds,t)G(As,dt) 

J J F(ds,dt)G(As,At) 

J J F(As,t)G(ds,dt). 

Recall the denominator in the mappings Land L which appear in rand 0, 
which are of the form 1/{(1-a)(l-b)}, where a, bare are only nice functions in 
one coordinate, and therefore certainly do not generate a measure. Therefore 
it is not clear how we can integrate w.r.t. this denominator. The following 
lemma will take care of this problem. 

Lemma 6.3 (Denominator splitting). Let a1, a2 be real numbers. 

Then the following holds: 

1 1 a2 
(1 - ai)(l - a2) = -1 --a-1 + -(l---a-1-)(_l __ -a-2) 

or 
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In general, we have: 

1 " a; " a;a; n:=1 a; =nn-=----) = 1 + L.., -- + L.., -,-(--)-(~-..,..) + ... + nn ( ) . 
lli=i{l-a; i 1-a; i,i,ii-i 1-a; 1-a; i=1 l-a; 

This follows from the identity 1/{1 - a;) = 1 + a;/(1 - a;). 

Now, we are able to define the following terms with integration by parts as 

follows: 

Corollary 6.1 Define j3(u, v) = (1-A10(D.u, v))(l -Ao1(u, D.v)). We have: 

ff H(du,,,)A(u,d") = ff H(du v) A(u,d") 
,8(u,") ' 1-Ao1(u,A1l) 

+ ff H(Au,,,)A10 du, V A(u,d") 
,8 .. ,,,) 

ff H du,d" = ff H(du dv) + ff H(du D. v) Ao1 ( u, dv) 
,8 .. ,,,) ' ' 1-Ao1(u,A1l) 

+ ff H(Au,A,,)A1o(du, v)Ao1(u, dv) + ff H(D.u dv) A10(du, v) . 
,8(u,1l) ' 1-A1o(Au,") 

H plays the role of a function of unbounded variation (Brownian bridge) and 
A, A10, A01 are cadlag functions of bounded uniform sectional variation. Notice 

that all terms on the right-hand side of the equalities where H appears as 
measure are of the form f FdH where F generates a finite measure. Therefore, 
for all these terms we can apply the integration by parts formulas of lemma 6.1 

in order to make H appear as function. 

Again, this corollary is simple to prove by applying denominator splitting 
and d-D.-interchange. In the differentiability proof of the £-mapping we have 
to be able to bound the terms above in the supremum norm of H. It is now 

clear that this can be done with the integration by parts formulas. We will see 

that this is the whole story of the differentiability proofs: we use denominator­
splitting and d-D.-interchange in order to produce an integral f FdH, where 

F generates a measure and is of bounded uniform sectional variation. Then 

we apply integration by parts in order to bound these terms in the suprem~m 
norm of H and the uniform sectional variation of F. 

We did not deal, yet, with an integral of the form f HdFn, IIFnlloo _. O, 

IIHllv = oo, which we want to show to converge to zero. Since H is not of 
finite variation one cannot do integration by parts in order to bound this in 

the supremum norm of Fn. The next ingredient takes care of this, the so called 

Helly-Bray lemma: 
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Lemma 6.4 (Helly-Bray lemma). If H E (D[0, r], II· 11 00 ) is of unbounded 

variation, then we can approximate H with a sequence Hm where IIHmll: :::; 

M(m) < oo and JIH - Hmlloo - 0. This gives us the following bound: 

II/ HdFJJ00 :::; IIH - Hmll 00 l1FII: + l6IJFJJ00 M(m). 

For Hm one can (e.g.) take the step function equal to H on a grid 71"m. We 

did the substitution H = ( H - Hm) + Hm, integration by parts and bounding 

terms like J FdHm by IJFJJ00 IJHmll:- The bound in lemma6.4 is useful because 

it proves that integrals of the form J HdFn converge to zero when IIFnlloo - O, 

even if JIHllv = oo, provided that IIFnll: < oo (just let m - oo slowly enough). 

Illustration 1. We will illustrate how these lemmas easily provide us with 

compact differentiability (see theorem 1.5) of IP : (F, G) - f FdG at a point 
( F, G) with F and G cadlag functions of bounded uniform sectional variation 
for sequences Fn, Gn of uniformly (inn) bounded uniform sectional variation: 

ifYn = .,/n(Fn - F)- Y, Zn= .,/n(Gn - G)- Z, then 

/n(IP(Fn, Gn) - IP(F, G))- dlP(F, G)(Y, Z) - 0 

for a certain continuous linear mapping dlP(F, G) : (D[0, r])2 - JR. We have 
by telescoping: 

/n(1P(Fn,Gn)-1P(F,G))= J YndG+ J FndZn. 

So ifwe subtract from this its supposed limit dlP(F, G)(Y, Z) = f Y dG+ f FdZ, 
then we obtain by telescoping: 

j(Yn-Y)dG+ j(Fn-F)dZ+ J Fnd(Zn-Z), 

where the last two integrals are defined by integration by parts (lemma 6.1). 

The first integral can immediately be bounded by IJYn - YJJ 00 IJGllv - 0. The 
second integral converges to zero by the Helly-Bray lemma 6.4. For the third 

integral we can do integration by parts with respect to Fn and thereby bound 

this term by cJIZn - Zll 00 JIFnll: - 0. 

Illustration 2. We will give an illustration of how these lemmas are used to 

prove convergence to zero of quite complicated terms which we will encounter 

in our analysis of Dabrowska's estimator. Consider the term 

/ 
1 1 

/Jn(u,v) - f3(u,v)H(du,dv), (6.14) 
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where H is of unbounded variation. /Jn ( u, v) (/J( u, v)) is the denominator of Las 

defined above corresponding to (Aio, Ag1) ((A10, A01)) and (Aio, Ag1) converges 
in supremum norm to (A10, Ao1). We will show that this term converges to zero 
if A10, Ao1, Ai0, A&1 have the following four properties : 
1) /J > 6 > 0 on [O, r] for certain 6 > 0. 
2) There exists a sequence of uniformly in n finite (signed) measures µ2n so 
that Ai0( u, dv) < µ2n ( dv) for all .u. Similarly for A10, Ao1, A&1. 

3) There exists a sequence of uniformly in n finite (signed) measures µ1n so 
that Ai0(du,v) < µ2n(du) for all v. Similarly for A10,Ao1,A&1. 

4) 11Ai0(du, v)/µ1n(du)ll 00 < Mand 11Ai0(u, dv)/µ2n(dv)ll 00 < M for certain 
M < oo (uniform boundedness of the Radon-Nykodym derivatives). Similarly 

for A10, Ao1, A&1 · 
In our applications the assumptions 2-4 are easily verified by a simple choice 

of µin, µi, µ2n, µ2 and by choice of [O, r] assumption 1 will hold trivially. This 
will be done in the proof of the final theorem in section 5. 

The term (6.14) involves all the above mentioned techniques. Apply the 
denominator splitting lemma to rewrite 1//Jn(u, v) -1//J(u, v). This gives 

1 1 
/Jn(u, v) - /J(u, v) 

( Ai0(Au,v) A1o(Au,v) ) ( A&1(u,Av) Ao1(u,Av) ) 
= 1- Ai0(Au, v) - l -A1o(Au, v) + 1-Ag1(u, Av) - l -Ao1(u, Av) 

+ (Ai0(Au, v)Ag1(u, Av)_ A1o(Au, v)Ao1(u, Av)). 
/Jn ( U1 V) /J( U1 V) 

Then the integral (6.14) is the sum of three integrals which we will denote with 
A, Band C respectively. The first term A is given by: 

f ( Ai0(Au, v) _ A1o(Au, v) ) H(d d ) 
1-Ai0(Au, v) l -A10(Au, v) u, v 

= f ( Ai0~Au, v) _ A1o(Au, v) ) (H _ Hm)(du, dv) 
1 - A10(Au, v) 1 - A1o(Au, v) 

+ f ( Ai0~Au, v) _ A10(Au, v) ) Hm(du, dv) 
1-A10(Au, v) l -A10(Au, v) 

= f ( Ai0!du, v) _ A1o(du, v) ) (H _ Hm)(Au, dv) 
1 - A10(Au, v) 1 - A10(Au, v) . 

+ f ( Ai0~Au, v) _ A10(Au, v) ) Hm(du, dv). 
1-A10(Au, v) 1- A1o(Au, v) 

We .did the substitution H = H - Hm + Hm (Helly-Bray) and applied d-A­

interchange. Consider the first term, say Al. 
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Al. Here, we can apply the second integration by parts formula oflemma 6.1. 

Then one of the terms is given by: 

J(H - Hm)(Au, [v, r2]) 1 2 Ai0(du, v)Ai0(Au, dv) 
(1- Ai0(Au, v)) 

~ 4 
2 IIH - Hmll00 JI Aio(du, v)Aio(Au, dv) I 

(inf(u,t1)E[O,r) I 1 - Ai0(Au, v) I) 

~ CIIH - Hmll 00 J I Aio(du, v)Aio(Au, dv) I, 

where we used assumption /3,. > 6 > 0 on [O, r] for certain 6 > 0 in the last 

line, which follows from assumption 1 and the uniform convergence of /3,. to /3. 
The other terms which one gets after applying integration by parts are dealt 

in the same way. By assumption 2-4 we have: 

/ I Ai0(du, v)Ai0(Au, dv) I 

for some M' < oo. So if Ai0 satisfies assumptions 1--4, then CIIH - Hmlloo f I 
Ai0(du, v)Ai0 (Au, dv) I-+ 0 form -+ oo. The other terms are dealt similarly 

using the assumptions 1--4 for A10 and Aio• 
A2. The second term can be bounded by the supremum norm of 

Ai0 (Au, v)/(1 - Ai0 (Au, v)) - Aw(Au, v)/(1 - Aw(Au, v)) (which converges 
to zero) times the variation norm of Hm. 

So if we let m = m( n) -+ oo slowly enough for n -+ oo, then both terms Al 
and A2 converge to zero. 

The second term Bis dealt similarly. Now, we will deal with the third term 
C. Firstly, by telescoping we can rewrite: 

Ai0(Au, v)A1ii(u, Av) A1o(Au, v)Ao1(u, Av) 
/3,.(u,v) f3(u,v) 

= (/3,.(:, v) - /3(:, v)) A10(Au, v)A01(u, Av) 

+ /3 / ) (Ai0 (Au, v)- A1o(Au, v))Ao1(u, Av) 
n u,v 

+,8 / )Ai0(Au,v)(A1h(u,Av)-Ao1(u,Av)). 
n u,v 

We have to integrate these terms with respect to H. We set H = (H - Hm) + 
Hm (here an application of the Helly-Bray-lemma starts). By using the d-A-
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interchange trick we can transform all three terms with H - Hm into integrals 

where H - Hm appears as a function: e.g. 

J (H - Hm)(du, dv) Pn(~, v) (Ai0(Au, v) -A10(Au, v)) Ao1(u, Av) 

= j(H - Hm)(Au, Av) / /A10(du, v)- A1o(du, v))Ao1(u, dv). 
Pn u,v 

So if assumption 1-4 holds, then as we did above we can bound this term by 

Similarly, we have this bound for the other terms with H - Hm. The three 

terms with Hm we can directly bound by ll(l/,8n(u, v) - 1/,8(u, v))ll00 M(m) 

, ll(Ai0(Au,v)- A1o(Au,v))ll00 M(m), ll(A81(u,Av)- Ao1(u,Av))ll 00 M(m), 
where M(m) stands for a constant times the variation norm of Hm. So we can 

conclude that we have the following bound: 

II J H(du, dv) (Ai0(Au, v)A81(u, Av) _ A1o(Au, v)Ao1(u, Av)) lloo 
Pn(u,v) ,8(u,v) 

~ cjjH - Hmlloo + EnM(m), 

where En converges to zero. Let now m-+ oo slowly enough to obtain that the 

left-hand side bound converges to zero. This proves the convergence of (6.14). 

In general all terms we will encounter in the differentiability proofs are dealt 

in the following way: 

Telescoping. Step 1. Firstly, we do telescoping in order to rewrite a difference 

of two products as a sum of single differences: J An Bn - f AB = f ( An -
A)B + J An(Bn - B). Consider one term (e.g.) f(An - A)B. Here, 
we know that An -+ A, but An can appear as a measure in one or two 

coordinates: f(An -A)(du,dv)B(u,v) or f(An -A)(du,v)B(u,dv) or 

the easiest case f(An - A)(u, v)B(du, dv). 

Goal. Step 2. We want to bound the term f(An -A)B, where we usually have 

that An - A appears as a measure, in the supremum norm of An - A 
which is known to converge to zero. Therefore if An - A does not appear 

as a function, then our goal is to get this term in a form so that we can 

apply integration by parts with respect to B. 

Denominator-splitting, d-A-interchange. Step 3. 

Case O If An -A appears as function we can immediately bound f(An-
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A)dB by the supnorm of An -A. 

Case 1 If B is of bounded uniform sectional variation or is it a product of 

such functions ( of bounded uniform sectional variation but some left and 

some right continuous) we can bound the term in the supremum norm of 

An - A by applying the integration by parts formula of lemma 6.1. 

Case 2 If Bis of unbounded variation, we substitute B = (B-Bm)+Bm 

and we now want to bound the term with B - Bm in the supremum norm 

of B - Bm and the term with Bm in the uniform sectional variation norm 

of Bm (Helly-Bray lemma 6.4). We go back to step 3. 

Case 3 If B involves the denominator (3 we firstly apply the denominator 

trick lemma 6.3 and d - ~-interchange lemma 6.2 as in corollary 6.1 in 

order to rewrite the term to a term of Case O or 1. 

6.3 Differentiability 
of the Dabrowska, Volterra, and Prentice 
and Cai representations of F. 

In this section our goal is to establish weak continuous Hadamard differentia­
bility (see theorem 1.6) of the Volterra, Dabrowska, and Prentice-Cai represen­

tations of F, thereby paving the way for validity of the bootstrap in each case. 

Notation and assumptions on sequences. For any symbol which occurs 

as argument of the analyzed mapping, say A, An and A'tf are sequences which 

both converge in supremum norm to A and moreover it will be automatically 

assumed that they are of bounded uniform sectional variation uniformly in 

n. The latter can be done by choosing Dn in theorem 1.6 appropriately and 

because these properties hold for the estimators we plug in. 

An plays the role of the estimator of A using the original data and Aff plays 

the role of the same estimator, but using a bootstrap sample of the original 

data. 

6.3.1 The Volterra Representation. 

We give the proof of the Volterra representation before the proof of the bivari­

ate product integral (as part of the Dabrowska representation), because the 

proof is easier to generalize from the univariate case and for the Dabrowska 

representation we will be able to refer to the main lines of the differentiability 

proof given here. 
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Consider the inhomogeneous Volterra equation 

S(t)=w(t)+ f S(s-)dA11(s). 
lro,tJ 
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(6.15) 

We consider this equation as an implicit equation for S for given functions w 
and Au. For any measure a on ]R,2 set: 

(6.16) 

Pa = 'P(·; a) is the Peano series corresponding to a. The following proposi­
tions will be proved below in a separate subsection. The proofs are similar to 

the proofs given in Gill and Johansen (1990) as they already remarked on page 
1531. The inhomogeneous Volterra equation has a unique solution in terms of 

'P(·;Au): 

Proposition 6.1 If S satisfies (6.15}, then 

S(t) = w(t) + f w(s-)P ((s,t];Au)dA11(s). 
Jo<a~t 

Repeated substitution of the Volterra equation into itself and interchange of the 

order of integration make the claim intuitively clear. Here are two propositions 

giving useful properties of the Peano series P. 

Proposition 6.2 (Kolmogorov equations). The Peano series P = Pa defined 

by (6.16} satisfies 

P a(s, t] = 1 + /. P a(s, u)a(du) 
a<u~t 

1 + /. Pa( u, t]a(du). 
a<u~t 

Proposition 6.3 (Duhamel equation). If a and /3 are two measures on JR.2 

with corresponding Peano series Pa and P /3, then 

P 13(s, t] - P a(s, t] = J. P a(s, u)P 13(u, t](/3- a)(du). 
a<u~t 

(6.17) 

With the Duhamel equation one can show the following differentiability result 
for the Peano series. For all propositions and theorems recall our assumptions 

on the sequences A,.. 
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Proposition 6.4 ( weak continuous compact differentiability of 'Pa in supre­

mum norm). Assume 

hn = v'n(o:'! - O:n) - h in D[O, r]. 

Then, with 'P~ = 'P(·;o:f), 'Pn = 'P(•;o:n) 

(6.18) 

where 'P is given by 

(6.19) 

If h is of unbounded variation this is defined by (repeated) integration by parts 

(see lemma 6.13). 

Consistency. In general, notice that this differentiability result for a map­

ping A certainly implies continuity of A; if Fn - F then A( Fn) - A( F). 
Therefore our differentiability results will also provide us with almost sure uni­

form consistency of our estimators. 

Now, we have the tools to prove the weak continuous compact differentia­

bility property of the Volterra representation ~1 (w-, Au). 

Theorem 6.1 (weak continuous compact differentiability of ~ 1). Suppose that 

t;; 1(w-f - W-n) - o: in D[O, r] 

t;;1(A~f - Ai1) - /3 in D[O, r]. 

Then 

t;; 1 ( 0(w-t A~f)- 0("iP"n, Ai1)) - d0(w-, Au)(o:, /3) in D[O, r], (6.20) 

where d0(w-, Au)(-, ·) is a continuous linear functional defined on 

(D[O, r], 11 • 1100)2. 

Proof of theorem 6.1. For convenience denote Au with A. 

P:(s,t] _ P ((s,t];~) 

P n(s, t] - P ((s, t]; An), 
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and write S!f = +2(-wf, Af ), S,. = +2(+,., A,.) and S = +2(+, A). By equation 
(6.15) 

(6.21) 

and 

(6.22) 

so that subtraction yields (by telescoping) 

t;; 1 (st (t) - s,.(t)) = t;; 1 (+!f (t) - w,.(t)) 

+1 t;; 1(w!f-w,.)(s-)'P:(s,t]dA!f(s) 
•9 

+ 1st w,.(s-)t;; 1 ( P: - 'P,.) (s, t]dA!f 

+ 1 +,.(s-)'P ,.(s, t]t;;1 (dA!f - dA,.) (s) 
•St 

= In + lira + Illa + IV n• 

I,. -+ I by hypothesis. Our goal is to show that II,., III,., IV,. converge to 
thek supposed limits II, III, IV. Firstly, one should notice that the supposed 
limits are well defined: for example IV= fa<t +( s-)'P( s, t]d,8( s) is defined by 
repeated integration by parts (lemma 6.13f Here we need that s -+ 'P(s, t] 
is of bounded uniform sectional variation, which follows from the bounded 
uniform sectional variation of A:" as shown in the proof of proposition 6.4. By 
telescoping we have: 

II,. -II = 1 (o!f - o) (s-)'P(s, t)dA(s) 
•:9 

+ 19 o!f(s-) (P: -P) (s,t]dA(s) 

+ 1 o(s-)'P: (s, t]d(A:" - A)(s). 
•:9 

+ 1 (o!f - o)(s-)P: (s, t]d(A!f - A)(s). 
•St 

Because A is of bounded variation the first two terms can directly be bounded 
by a constant times the supremum norm of ( of - o) and ('P! - 'P)( s, t], 
respectively. ( of - o) converges to zero by hypothesis and ('P! - 'P)( s, t] con­
verges to zero by proposition 6.4. Similarly, using that A,., A:" are of bounded 
variation uniformly in n, we prove that the fourth term converges to zero by 
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bounding it in the supremum norm of ( cx'!f - a). For the third term we write 

'P! = 'P + ('P! - 'P) and for the non-trivial term with 'P we apply the Helly­

Bray lemma 6.4 with H(s) = a(s)'P(s, t] and F(s) = A1f - A, because a is of 
unbounded variation. 

The convergence of III", IV" to their supposed limits is proved, similarly: 
only integration by parts and Helly-Bray are needed. This completes the proof. 
D 

Proofs of propositions. 

Proof of proposition 6.2 (Kolmogorov equations). For convenience, we de­
fine the region which appears in each term of the Peano series: Bn(s, t] = 
{(u1, ... ,u") E (R2)": s < u1 < ... < u" ::;t}. Now, 

P a(s, u) = 1 + E f o-(du1) • • • o-(du"), 
n=l JB,.(a,u) 

(6.23) 

so 

I. P a(s, u)a(du) 
•<u:Sf 

= E f a(du1)·••a(du") 
n=l J B,.(a,t] 

= P a(s,t]-1. 

The backward equation is similarly proved. D 

Proof of proposition 6.3 (Duhamel equation). Consider the following m+ n­

fold integral: 

f o-(du1) • • •o-(dum)/J(dum+l) • • • /J(dum+"). 
}B.,,.+,.(a,t] 

(6.24) 

By splitting the integration on um we can write this as: 

Similarly, splitting the integration on um+l, we can also write it as: 
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Since these two integrals are equal to each other for all m and n, we can sum 

up the resulting identity on m and n to obtain 

!. P 0 (s, u) {P ~(u, t] - 1} a(du)= f {P 0 (s, u) - 1} P ~(u, t]/3(du) 
1<u~t J,<u~t 

(6.25) 

Combining (6.25) with the Kolmogorov equations yields the Duhamel equation. 

□ 
Proof of proposition 6.4 (weak continuous compact differentiability of P 0 ). 

By the Duhamel equation we have: 

(6.26) 

The difference with its supposed limit is given by (telescoping) 

J,' (P .. - P) (s,u)P(u,t]dh(u)+ J,'P,.(s,u) (P: - P) (u,t]dh(u) 

+ J,<u 9 P ,.(s, u)P: (u, t]d(hff - h)(u). 

Firstly, notice that all three terms are defined by repeated integration by parts 

(corollary 6.13), which can be done because s-+ P ,.(s, t] (and P~, P) are of 

bounded uniform sectional variation uniformly inn (see below). The first and 

second term converge to zero by the Helly-Bray lemma 6.4 and the third term 

can be bounded by the supremum norm of hf - h by applying integration by 
parts (lemma 6.1). In all three bounds the uniform sectional variation norm of 

P,., P~, P considered as functions s -+ P,. ( s, t] appear which are uniformly 
bounded. This is seen as follows. From the definition (6.16) of the Peano 

series it follows directly that IIP 0 11 00 ::; exp(llall 00 ) (see (6.8). Then by the 
Kolmogorov equation we have: 

So if llall; < M, then IIP 0 11: is bounded. This proves the bounded uniform sec­
tional variation property of P,., Pt, P, by assumption on a,.. This completes 
the proof. □ 

6.3.2 The Dabrowska representation. 

The covariance-mapping. 

We will state the differentiability result for the by far most complicated map­
ping L in the Dabrowska representation. 
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Proposition 6.5 Denote A= (A10, Ao1, Au). Let f3 = f31 - f32, where 

r31(A) = [ A10(du,v-)Ao1(u-,dv) and r32(A) = [ Aa(du,dv) 
J[o,t] /3( u, v) J[o,t] /3( u, v) 

Assume that ll(Ai1, Ai1 #)llv < M < oo and 
1. /3 > ~ > 0 on [O, r] for certain ~ > 0. 
2. There exists a sequence of uniformly in n finite (signed) measures µzn so 

that Ai0(u, dv) ~ µzn(dv) for all u. Similarly for Aw, Ai0 #, Aoi, Ao1, A01#. 
3. There exists a sequence of uniformly in n finite (signed) measures µ1n so 

that Ai0(du, v) ~ µzn(du) for all v. Similarly for Aw, Ai0 #, Ao1, Ao1, A01 #. 
4. 11Ai0 (du,v)/µ1n(du)ll 00 <Mand 11Ai0 (u,dv)/µ2n(dv)ll 00 < M for certain 
M < oo (uniform boundedness of the Radon-Nykodym derivatives). Similarly 

for A10, Aio #, Aoi, Ao1, Ao1 # 

If h;ff = -fn(A"/f - An)-+ h, then we have: 

for a certain continuous linear map df(A) 

(D[O, r], II· 11 00 ) • 

(6.27) 

(D[O, r], II· 11 00 )3 -+ 

Proof. We will· give the proof of ordinary compact differentiability, i.e. we 

replace An by A and A'!f by An in (6.27). The reader can easily verify that the 

proof goes through when we do not do this. We have by telescoping: 

,/n(r31(Ao1,Aio)- f31(Ao1,A10)) 

= vnf f /3(u, v) (Ai0(du, v-)A01(u-, dv) - A10(du, v-)Ao1(u-, dv)) 
/3n( u, v)/3( u, v) +vnff (/3- /3n)(u, v)Aw(du, v-)Ao1(u-, dv) 

/3n(u,v)f3(u,v) 
= ff hio(du, v-)A01(u-, dv) + hih(u-,dv)Ai0(du, v-) 

/3n(u, v) 

+ff vn/3;:.;n(u,v)A1o(du,v-)Ao1(u-,dv). 

It is easy to check that -fn(/3 - f3n)/(/3n/3) -+ H(u, v) for a fixed function 

H(h10, ho1) linear in (h10, hoi) which we will not write down. So the last term 

converges in II · 1100 to J J H(h10, ho1)( u, v )Aw(du, v- )Ao1( u-, dv). Notice that 
the supposed limit d~( A) is a continuous linear map because all terms can be 

defined by integration by parts with lemma 6.1. We only consider the second 

integral. The first is dealt similarly. The difference between the second integral 
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and its supposed limit can by telescoping be rewritten as the following sum of 

terms: 

ff hn - ho1 (u-,dt1)An (du,t1-) + J J An -A10 (du,t1-)ho1(u-,dt1) 
/3n u, V /3n u, V 

+ff (7k- - ~) ( u, v) + ho1( u-, dv)A10(du, v-). 

Term i. Use corollary 6.1 with H = h01 - hoi, A = Ai0, /3 = /3n­
Then apply integration by parts (the second part of lemma 6.1) and bound 

this term by the supremum norm of hi0 - h10 times integrals like J I 
1//3(A1o(du,v-)Ao1(u-,dv)) I- For the rest we refer to the techniques in 

illustration 2 where we show, by using the assumptions 1-4, that this variation 

is bounded. 

Term ii. Substitute h01 = (ho1 - hffi_) + hffi_. Now bound the term with 

(ho1 - hffi_) in the supremum norm of (h01 - hffi_) times a constant, and bound 

the term with hffi_ in the supremum norm of Aio - A10 times the uniform sec­

tional variation of hffi., both in exactly the same way as we did in term i. Now, 

let m-+ oo slowly enough (Helly-Bray lemma 6.4). 

Term iii. Similar to our illustration II with h( du, dv) replaced by 

ho1( u-, dv )Aw( du, v-). 
The proof for r32 is similar, but easier. □ 

Bivariate product-integral. 

The essential ingredient for establishing differentiability results for the product­

integral is the Duhamel equation. For the univariate product integral theory we 

refer to Gill and Johansen (1990). They also sketch how the proofs can be gen­

eralized to the multivariate product-integral. Here, we will present and prove 

the bivariate analogues of the Kolmogorov equations and Duhamal equation 

and finally state the differentiability result for the bivariate product-integral. 

For any signed measure L on JR.2 set 

Jf<s, t], L) = JG.1 + L(du, dv)), (6.28) 
(,,t] 

where the bivariate product-integral J[L(s,t] = J[((s,t],L) = J[(,,tp + 
L(du, dv)) is defined as the limit of finite products of fI~;=1(1 + 
L((u;-1, v;-1), (u;, v;)])) over partition-elements J;,; = ((u;_1, v;-i), (u;, v;)] 
with max.,;{ I ( u;-1, v;-1) - ( u;, v;) I} converging to zero. The ordering (speci­

fying in what way we multiply over the elements of the partition) of this product 
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is not relevant by the commutativity of multiplication in IR, but for our proofs 

we choose the video ordering (left under to right under then to left under one 

strip higher etc.). The proof that this product-integral is uniquely defined (that 
each sequence of partitions of rectangles with mesh converging to zero has the 

same limit) is exactly the same as the proof for the univariate product-integral 

as given in Gill and Johansen (1990), page 1515 (see Gill, 1993a). 

Remark. In one dimension the product integral equals the Peano-series. In 

two dimensions the same properties (Kolmogorov equations, Duhamel equa­
tion) for both can be proved. By using the total ordering in IR2 we can obtain 

all one dimensional results and we can go back and forth from total ordering 

to partial ordering. 

Property 6.1 Jt(o,t) (1 + L(du, dv)) :=; exp(IILII.,) So if L is of bounded varia­

tion, then t-+ ][ ((0, t], L) is bounded in supremum norm. 

This follows immediately from 1 + I L( J; ,i) I::; exp( I L( J; ,i) I). We will see that 
we can easily get generalizations of the Kolmogorov and Duhamel equation of 
the univariate case by replacing univariate intervals by rectangles with respect 
to the total (video) ordering. That is indeed what we will do. Then we will show 

that we can rewrite the obtained results in terms of rectangles with respect to 
the usual partial ordering. 

Lemma 6.5 Write (0, t] = {x E IR2 : 0 < x :=; t} for an interval with respect 

to the partial ordering on IR2 • Denote ]]O, t]] for an interval with respect to the 

total (video) ordering on IR2 : (x, y) E]]0, t]] {:} 0 < y < t 2 or y = t 2 , x :=; t 1 • 

Then 

(0,t] n ]]O,s]] = ({0,t1] x (0,s2))U((0,si] x {s2}) 

(0, t] n ]]s, oo]] ((si, ti] x { s2}) U ((0, t1] x (s2, t2]). 

The lemma says that we can describe these intersections as the union of one two 
dimensional rectangle and a one-dimensional line segment, both with respect 

to the partial ordering. The proof is trivial. 

For the next proposition and lemma it should be remarked that the Kol­

mogorov and Duhamel equations are certainly not true if the rectangles w.r.t. 

the total ordering are replaced by a partial ordering; by the total ordering, 

if we walk in video ordering from left under to right above the region grows 

monotonically to the total rectangle and that makes the identities essentially 

the same as the univariate identities. 
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Proposition 6.6 (Kolmogorov equations). Denote (0, t] for an inte1'1Jal with 

respect to the partial ordering on m,2 and denote l]O, t]] for an inte1'1Jal with 

respect to the total ordering on IR2 • The bivariate product-integral J[ = J[L 
satisfies: 

J[s,t] 
L 

1 + 1 n(s, t]n]]s, u[[)L(du) 
(a,t] L . 

1 + 1 n(s, t]n]]u, t[[)L(du). 
(s,t] L 

Proof. We prove the first equality. Consider a finite partition 7rhm of ( s, t] 
of rectangles with diameter smaller than hm. Replace the product-integrals 

by a finite product in video ordering over this partition. Then the integral 

is an integral of a simple function with respect to the measure L. Because 

of the identity TT~1 (1 + a;) = 1 + E~1 TT!:~ (1 + a; )a; it follows that the 
equality holds for this finite partition. By the convergence of this product to 

the product integral for hm -+ 0 (see definition of product integral) the left­

hand side JG: ( s, t] and the integrand on the right-hand side Jr; ( ( s, t]n]]s, u[[) 
converge to J[L (s, t] and J(L ((s, t]n]]s, u[[), respectively. The dominated con­

vergence theorem tells us that the right hand side converges for this sequence 

of partitions to 1 + f(a,t] J[L ((s, t]n]]s, u[[) L(du). □ 

Corollary 6.2 If L is of bounded variation, then t -+ J[L (0, t] is of bounded 

variation. Similarly, for bounded uniform sectional variation. 

Proof. This follows straightforwardly from property 6.1 and the Kolmogorov 

equations. For the precise argument see the proof of proposition 6.4 D 

Lemma 6.6 (Duhamel equation with total ordering). We have: 

Jfo, t]- Jfo, t] = 1 n(O, t]n]]0, s[[) d(o: - {J)(s) n(O, t]n]]s, oo[[). 
Ol /3 (O,t] Ol /3 

Proof. The proof is the same as the proof for the Kolmogorov equations 

except that we now have to use the telescoping-identity TT:=1 a; - TT:=1 b; = 
E:=1 TT~:~ a;(a; - b;) TTj=i+l b;. □ 
Now, with lemmas 6.5 and 6.6 we are able to write down a Duhamel equation 

which involves product-integrals over rectangles or lines with lower and upper 

corner chosen out of the corners of ( s, t]. We can simplify this to only product­

integrals over rectangles and lines with lower corner at (0, 0) as follows. 
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Lemma 6.7 

~(s,t] = (~(O,t]~(O,s]) / (~(O,(s1,t2)]~(0,(t1,s2)]), 

which is the generalized ratio of the product-integral over a rectangle with 

lower corner at ( 0, 0) and upper corner at one of the four corners of ( s, t]. 

Proof. The proof follows straightforwardly from the multiplicativity of the 

product-integral. D 

Proposition 6.7 (Duhamel equation). Define 

V(s,t) = JC,((O,t1] X (O,s2))JC, ((0,s1] x {s2}) 

x Jf.i/(si, t1] x { s2}) Jt~ ((0, t1] x ( s2, t2]), 

where Jt~ ((s1,t1] x {s2}) and 1[~ ((0,t1] x (s2,t2]) can be written as a gener­
alized ratio of product-integrals over rectangles with lower corners at (0, 0) and 

upper corners with coordinates taken from s and t (see lemma 6. 7). Then 

Jfo, t]- Jfo, t] = 1 V(s, t)d(a - P)(s). 
0 ~ (O,t] 

(6.29) 

All these product-integrals are of bounded (uniformly in t) variation in s by 
application of the property 6.1. So by our repeated integration by parts formula 

(6.13) we can do integration by parts so that a - P appears as a function and 
thereby bound it in the supremum norm of a - P and the uniform sectional 

variation norm of V. 

Proof. (Duhamel equation). Firstly, apply lemma6.6. Then by lemma6.5 and 
the multiplicativity of 1[0 we can write the product-integrals as a product over 
product-integrals over rectangles and hyperplanes with respect to the partial 

ordering. Finally apply lemma 6.7. D 

Theorem 6.2 (Weak continuous compact differentiability of the bivariate 

product integral). The bivariate product-integral 1[ : (D[0, r], II· 11 00 ) -+ 

(D[0, r], II · lloo): 

L f--+ nl -L( du, dv)) 

[O,t) 

satisfies differentiability property (6.21} for sequences IILnll: < C, IILffll: < C 
converging to a signed measure L. 
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It is already known that it holds for the univariate product-integral ( Gill and 

Johansen, 1990). 
Proof. For this we refer to the differentiability proof of the bivariate Peano 

series in the preceding section: the same ingredients (Kolmogorov equations, 

Duhamel, repeated integration by parts) have to be used in the same way. D 

6.3.3 The Prentice-Cai representation. 

Recall the Prentice-Cai representation 

S(t) 01 (A10(·, 0), Ao1(0, ·), R) 

01 ( A10(·, 0), A01(0, · ), 02(.L)) 

01 ( A10(·, 0), Ao1(0, ·), 02(03(A)) 

0(A), 

where 01 is a product of two univariate product integrals w.r.t. A10(·, 0) and 

Ao1(0, ·), respectively, times R; 02 = ~2 is the Volterra representation; 0 3 is 

the L mapping which has the same structure (slightly easier) as the r3 = L 

mapping of Dabrowska's representation. So the weak continuous differentiabil­

ity has been proved for 01 in Gill and Johansen (1990), for 0 2 in theorem 6.1, 
for 03 by copying the proof of proposition 6.5. The chain rule provides us now 

with the weak continuous differentiability of 0. 

6.3.4 Differentiability theorem for the three representa-
tions. 

Theorem 6.3 All three representations are defined in section 1. Let r be the 
Dabrowska representation and A the vector of hazard measures corresponding 

with S as defined in section 1: S = r(A). 
Dabrowska representation. 

Assumptions. Assume that 11Ai1llv < M < oo, 11Af1nllv < M < oo and 
1. S(r) > 0. 

2. There exists a sequence of uniformly in n finite (signed) measures µ2n so 

that Ai0 (u, dv) ~ µ2n(dv) for all u. Similarly for A10, Ai0 #, Ao1, A.81, A&1 #. 

3. There exists a sequence of uniformly in n finite (signed) measures µ 1n so 

that Aio(du, v) ~ µ2n(du) for all v. Similarly for A10, Ai0#, Aoi, A01, A01#. 

4. IIAio(du, v)/µ1n(du)ll 00 < M and 11Ai0(u, dv)/µ2n(dv)ll 00 < M for some 
M < oo (uniform boundedness of the Radon-Nykodym derivatives). Similarly 
for A10, Ai0#, Ao1, A01, A01 #. 
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n# - r,;; ➔# ➔ If Zx. = vn(An -An)-+ Zx., then 

vn(r(K!) - r(An)) - &(A)(zi#) - o, 

for a continuous linear map df(A): (D[O, r], II· 11 00 )3-+ (D[O, r], II· 11 00 ). 

Prentice-Cai representation. The same statement holds for the Prentice­

Cai representation S = 0(A). 
Volterra representation. The same differentiability result holds for S = 
4}(A) with the assumptions 2,3 and 4 replaced by: ll(Ai0 , A0i)llv < M < oo and 

ll(Aio#,Ao1#)llv < M < 00. 

Proof. This differentiability property has been proved for the univariate prod­

uct integral in Gill and Johansen (1990) (so this gives it for r 1 , 0 1, 4}2 ), for 

the bivariate product integral in theorem 6.2 (so this gives it for r 2), for the 

bivariate Volterra representation (bivariate Peano series) in theorem 6.1 (so 

this gives it for 0 2 , 4}1), for the L mapping in proposition 6.5 (here we need 

the denominator assumptions) (so this gives it for r 3 , 0 3 ), where one has to 

notice that assumption 1 tells us that f3 > 0 (denominator in Land L). Now, 

the theorem follows from the chain rule. □ 

6.4 The estimators. 

Let 4}, rand 0 denote the Volterra, Dabrowska and Prentice-Cai representa­

tion, respectively, which were defined and studied in sections 2 and 3. Now, we 

will construct the estimators which are based on these representations. From 

now everything indexed by n is random. 

Estimators for the hazards. First define the following subdistributions of 

the data corresponding with the four kinds of censoring which can occur. 

P;;(t) = p (z\:::; t1, T2:::; t2, D1 = i, D2 = i) for i, j E {O, 1}, t E Ill~o 

and 

P(t) = p (r1:::; t1, r2:::; t2) = :E P;;(t). 
i,j 

Then, on [O,r] with P(r-) = SH(r-) > 0, 

Au(t) [ _H_(-'-s--)'---dF(s) = [ ~dP11(s) 
lro,t] S(s-)H(s-) lro,t] P(s-) 

(6.30) 

A10(t) f H(u-, t2) F(d ) 
lro,t,] S(u-,t2)H(u-,t2) u,t2 (6.31) 
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{ ( l ) (Pu+ Pio)(du, t2) 
J[o,t1J P u-, t2 

Aoi(t) = { H(ti,v-) F(ti,dv) 
J[oh) S(ti, v- )H(ti, v-) 

(6.32) 

= { ( l (Pu+ Poi)(ti, dv). 
}[Oh) P ti, v-) 

If we define P = (Pio, Poi, Poo, Pii), then A= A(P). Let 

be the empirical distribution of Pi; for i, j E { O, 1} and Pn 
(Pf0, P«fi, P00, Pfi)- We estimate A with the Nelson-Aalen estimator 

An = A.(Pn) fort E W,t = {t: P(t) > O}. 

In other words An is given by the formulas above with Pi; replaced by Pl)· 

The Dabrowska estimator. Recall the representation S = r(A). We have 

s~ (t) = r(A.n)(t) fort E w,t, (6.33) 

which equals the product SinS2n J((l - L(An)) where Sin, S2n are the uni­
variate Kaplan-Meier estimators of the marginals Si, S2, respectively. 

The Volterra estimator. Recall the representation S = •(A). We have 

V .. .. 
Sn = •(An) fort E W,t, where •2(An) = 1- Fin - F2n• (6.34) 

The Prentice-Cai estimator. Recall the representation S = 0(A.). So 

PC .. + Sn = 0(An) fort E Wn , (6.35) 

which is equal to the product FinF2n02(0a(A:)). 

6.5 Asymptotic properties of the estimators. 

We will use the results of section 3 to establish a functional central limit theorem 
for the estimators defined in section 4. As outlined in section 1, we do this 
by applying the functional delta-method theorem 1.6 to the representations 
• o A, ,r o A and 0 o A as functionals in P. Since weak continuous Hadamard 
differentiability of•, rand 0 has been established in section 3, by the chain 
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rule, the remaining differentiability result for the delta-method which we need 

to verify is the weak continuous Hadamard differentiability for P-+ A(P). The 

weak convergence hypothesis of the delta-method requires that the bootstrap 

works for the empirical process Pn. 1'n is the usual empirical process indexed by 

the indicators I[o,tJ and therefore its bootstrap result is well known; let Pf be 
the bootstrapped empirical process obtained by resampling from the empirical 
- r,;:- -D Pn, then Zn = v n(Pn - P)====?Z, where Z is a Gaussian process with the same 

covariance structure as the left-hand side, and Z'/! = ,/n(P! - Pn).Jb.z given 

Pn. 
The following lemma provides us easily with the weak continuous differen­

tiability of the representation A. 

LeDlIIla 6.8 The functional 

A: (F, G) 1-+ J F(s)dG(s) 

satisfies the differentiability property (6.27} at any point (F, G) where F and 

G are of bounded uniform sectional variation for sequences (Fn, Gn), (Ff, Gtf) 
of bounded uniform sectional variation uniformly inn. 

The proof is a copy of illustration I and this mapping is also contained in the 
mapping L and L: the integration by parts lemma 6.1 and the Belly-Bray 

lemma 6.4 are the only ingredients we need. 

Recall the representation A: it is a composition of Y -+ 1/Y and A. So the 
weak continuous differentiability of A follows directly by the weak continuous 

differentiability of Y -+ 1/Y at a Y > 6 > 0 on [0, r] for some 6 > 0 and 
application of lemma 6.8 and the chain rule, using the fact that, by lemma 

1.5, the uniform sectional variation of 1/Y is bounded by the uniform sectional 

variation norm of Y. Here SH plays the role of Y. So we need that S( T )H ( r) > 
0. 

6.5.1 Final results. 

Theorem 6.4 (Functional central limit theorems for the estimators S[!, s;;c 
and s-:;). Suppose that 

S( r)H( r) > 0. 

Recall the definitions of Z E D[0, r]4 and the representations P-+ A(P), A-+ 
r(A), A-+ cI>(A), A-+ 0(A) as given in section 1. We denote the derivatives 
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with dl', d'P and d0. 
The Dabrowska estimator. 

sf; - s a.s. 

and 

../n(S;; - S)db ( dr(A) 0 dA(F)) (Z) in (D[0, r], B, 11 · lloo) 

for a continuous linear map dr(A) o dA(F) (D[0, r], II· 11 00 ) 4 --. 

(D[0, r], II· 11 00 ). Moreover, 

../n(S'/!D - S;;)dbdr(A)(Z) a.s. in (D[0, r], II· 11 00 ). 

So this estimator is consistent, its normalized version converges weakly to a 

Gaussian process and the bootstrap is asymptotically valid. 

The Prentice-Cai estimator. The same statement holds for s:;c with r 
replaced by 0 everywhere. 
The Volterra estimator. The same statement holds for s:; with r replaced 

by 'P everywhere. 

Proof. We have to verify the conditions of the functional delta-method theo­
rem 1.6 and apply it to roA, 0oA and 'Po A all three considered as functionals 

in P. The weak convergence of y'ri,(P! - Pn) (a.s.) and of y'ri,(Pn - P) has 
already been established above. Because we already verified the differentia­

bility condition for A it remains (by the chain-rule) to verify the conditions 
of theorem 6.3. Assumption 1 in theorem 6.3 is S( r) > 0. For the other as­

sumptions it suffices to show that A, An and A:!f satisfy the assumptions 2-4 
stated in theorem 6.3 (the bounded Radon-Nykodym derivatives assumptions). 
Here, one has to notice that assumption 2-4 for A11, A~f are stronger than the 

requirement of theorem 6.3 that these functions are of bounded variation uni­
formly inn. 
Verification of assumptions 2-4 of theorem 6.3. We will prove these 

conditions for A1o(t) = - f S(du, t 2)/S(u-, t2 ). It will be clear that the proof 
for A01 and A11 is similar. We have 

S(du, t2) 1 
A10(du, v) = - S(u-, t 2) $ S(r) S(du, 0). 

Therefore we have A10(du,v) «: S(du,0) and A10(du,v)/S(du,0) $ 1/S(r) 
(i.e. Radon-Nykodym derivative is bounded). Furthermore we have: 

A1o(u, dv) - f S(ds, dv) + f S(ds, v) S(s- dv) 
J(o,u] S(s-, v) J(o,u] S(s-, v) 2 ' 

1 1 
< S(r)S(O,dv)+ S(r)2 S(O,dv). 
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Therefore we also have A10(du,v) ~ S(O,dv) and A10(u,dv)/S(du,O) :S 
1/S(r) + 1/S(r)2. This proves conditions 2-4 for A10 by setting µ 1 = S1 

and µ 2 = S2 (the marginals of S). The formulas (6.30) tell us that Ai0(t) = 
- J P~(du, t2)/Pn(u-, t2) for P~ = Pi1 + Pio and Pn = Ei,j Jr;,j, where the 
latter converges a.s. to SH > 6 > 0. So by copying the proof of assumptions 

2-4, above, we obtain bounds 1/Pn(r) and 1/Pn(r)+l/Pn(r)2 for the Radon­

Nykodym derivatives. By the almost sure convergence of Pn, these bounds are 

bounded uniformly inn. Similarly, for A~'/f(t). Therefore the same proof works 

for all hazard measures. This completes the verification of the assumption 2-4. 

We can now apply theorem 6.3 and thereby we can apply the functional 

delta-method theorem 1.6. This proves the weak convergence and bootstrap 

results of the theorem. 

The consistency follows from the continuity of the representations r o A, 0 o 

A, cl> o A in P and the almost sure consistency of Pn to P in supremum norm 

(Glivenko-Cantelli). □ 

So far we did not write down the influence curves (derivatives) dr(A) o 

dA( P)( Z), d0(V) o dA( P)( Z) and d«l>( A) o dA( P)( Z) of the estimators because 

these formulas are large and not necessary for this work. The variance of these 

influences curves equal the variance of the limiting distributions of the estima­

tors. Therefore, the influence curves become useful if one wants to estimate the 

variance of the limiting distribution or in any other efficiency analysis. Below 

we will write down the proof of efficiency of the Dabrowska and Prentice-Cai 

estimator in case of independence, and thereby also give an illustration of how 

an influence curve can be fairly easily obtained. 

6.6 Influence curves. 

If an estimator is a compactly differentiable function of the empirical distri­

bution of an i.i.d. sample X 1 , •.. , Xn ~ P, then it is asymptotically linear by 

application of the functional delta-method theorem 1.5; one can write 

1 n l 

0n = 0 + - LI(P, 0)(X;) + op(n-•), 
n i=l 

where I(P, 0)(X;), called the influence curve at the point X;, is the derivative 

of the function in question applied to the centred empirical process, at sample 

size 1, based on the single observation X;. This follows from linearity of the 

derivative and the fact that an empirical distribution function is a sample aver­

age. One has Ee(I(P, 0)(X;)) = O, while Var(I(P, 0)(X;)) is the asymptotic 



In.iuence Curves 179 

variance of y'n(0,. - 0). It is not surprising that the influence curve plays an 

important role in efficiency and robustness studies. 

We discuss here computation of the influence curves of our three estimators 

S{?(t), sr (t), s:;c (t), for given t, as function of a bivariate censored obser­

vation (it it D1, D2). The form of the influence curve also depends on the 

point at which we make the calculations, i.e. on the assumed 'true' values of 

F and G. 

In principle, using the chain rule, one can write down formulas by applying 

the derivative of each composing mapping in turn. The resulting formulas are 

very large and not very illuminating. The procedure can be speeded up by 

noting the following algorithm for computing the derivative of our mappings, 

applied to any function: consider integrals and product-integrals as ordinary 

sums and products, consider differentials dF, dh etc. as ordinary variables 

indexed by (e.g.) t; apply the usual rules of algebra, and then convert back 

to a proper mathematical expression by replacing sums and products involving 

differentials by the 'obvious' integrals or product integrals. This also applies 

to the Peano series since it is an infinite sum of multiple integrals. 

The above statement is trivially true if the distributions involved are dis­

crete. By approximating the continuous distributions by discrete distributions 

and using that the algorithm is correct for discrete distributions, the result 

for continuous distributions follows straightforwardly from appropriate conti­

nuity of the compact derivative in the sense that I(P,., 0,.)(X)----+ I(P, 0)(X), 
0,. = 0(P,.), for sequences P,. ----+ P. So the idea which makes this algorithm 
work is that by appropriate continuity of the derivative one can determine the 

derivative at a general point from the derivative at a discrete approximation 

and the derivative at a discrete approximation is obtained by applying the usual 

rules of algebra (i.e. the algorithm is then trivially correct). This is proved for 

the Dabrowska representation in van der Laan (1990). 

We will compute the influence curve by direct formal algebraic manipulation 

of the representations of the estimators. We will use the chain rule in the 

sense that we will decompose the calculation in two steps: from the empirical 

distributions to the empirical hazards, and from the empirical hazards to the 

survival functions. 

Also we will only compute the influence curve at a special point: namely 

Fis continuous, F = F1F2, and G = G1G2. We call this 'complete indepen­

dence' ( of all survival and all censoring variables), and continuity of survival. 

The simplification caused by independence of the survival variables is obvious. 

Continuity of survival means that all unpleasant terms like 1/(1 - dA), both 
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arising as derivatives and as part of the representations themselves ( the (3 func­

tion in the Dabrowska and Prentice-Cai representations) disappear completely. 

That the terms arising from the derivatives of /3 disappear, is a more subtle 

point (this is shown by using the d - A-interchange lemma and that by con­

tinuity the underlying hazards have no jumps), but fortunately true. Finally, 

independence of censoring makes the probabilistic structure of the influence 

curves easier still and also allows optimality calculations ( computation of the 

efficient influence curve) to be done explicitly. 

The finding will be: at complete independence the Dabrowska and the 

Prentice-Cai estimators are efficient. We prove this 'at continuity' and con­

jecture it is also true without this restriction. The Volterra estimator is not 

efficient at this point. We will not write down the influence curve of Volterra's 

estimator, but refer to Gill, van der Laan and Wellner (1993). The result 

means that the Dabrowska and Prentice-Cai are very similar under complete 

independence and close to efficient under weak dependence, while the Volterra 

estimator is much inferior. This finding has been supported by extensive sim­

ulations (Bakker, 1990, Prentice-Cai, 1992a, Pruitt, 1992, and chapter 8). 

6.6.1 Computation of the influence curves. 

We do not go through the computation in detail but just make the remark that 

each step is made rigorous by application of our differentiability results for all 

mappings which occur. Since we are going to suppress Ti, T2 etc. a different 

notation is more convenient. We replace n by~ and use 1, 2 to indicate functions 
only depending on the first or second variable. In particular we use: 

instead of 

Au(·,·), A10(·, 0), Ao1(0, ·), A10(·, ·) and A01(·, ·). 

The influence curves for A, A.1 etc. are very simple and are given by: 

dA- dA :::: 

dA; - dA; :::: 

dM 

y 

dM; i = 1 or 2 
Yi 

d.M·1· 
--'-1 i,j = 1, 2 or 2, 1. 

y 
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Here for one bivariate censored observation ('.IL T2, D1, D2), 

M(s,t) = 1(f1~s,'.I'2~t,D1=l,D2=l) 

M1(s) 

M2(t) 

-1• 1\ (f1 2: u, T2 2: v) A(du, dv) 

I (f1 ~ s,D1 = 1)- 1• I (f1 2: u) A1(du) 

I (f2 ~ t,D2 = 1)-lt I (f2 2: v) A2(dv) 
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M112(s, t) 

y(s, t) 

= I (f1 ~ s, T2 2: t, Di= 1) - 1• I (f1 2: u, T2 2: t) A112(ds, t) 

P(T1 2: s, T2 2: t) 

Y1(s) P(T1 2: s). 

Using Jf (1 +dL) for the product integral of Land P(o,tj(L) for the Peano series 
P([O, t] : L) of L, we note that 

]fi+dL)- JF+dL) 

P(o,t](L)- P(o,t](L) 

1t / dL-dL 
R: Jt1+dL) (l+~L) 

R: j P[o,6)(L)(L - L)(ds)P (i,t](L).(6.36) 

The two representations for Dabrowska and Prentice-Cai are: 

T~ gives us then, by inspection (just notice that the denominator of L 

and L do not contribute to the influence curve by the d - ~ interchange lemma 

and noting that /(~s) = 0 if f is continuous) the following influence curve for 

Dabrowska 

and for Prentice-Cai we have 
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where 

(dL- dL) 

dM dM2 dA2 dMi dAi 
~ - - dAi12-- - dMi12- - dA21i-- - dM21i-

y Y2 Y Yi Y 

+dM1 dA + dM2dA. 
Y1 2 Y2 i 

Next, simplification arises on assuming independence in F and G. Then Ai1 2 = 

Ai, A= AiA2, y = YiY2, 'P(L) = 1 (L = 0) and L = 0. 

S {-f d:i _ f d:2 +ff ( dM - dMi12:~:- dM21idAi)} 

and notice that by cancellation of terms PC simplifies to exactly the same 

influence curve as Dabrowska's! Now, let dNi, dN2, Yi, Y2 be defined by dM = 
dN -Y dA, dMi12 = dNiY2 -YiY2dAi etc. Then we obtain for Dabrowska and 
Prentice-Cai 

S {-f dMi _ f dM2 +ff (dNidN2 - Yi Y2dAidA2) 
Yi Y2 YiY2 

+ff (-dNiY2dA2 + YiY2dAidA:i~ dN2YidAi + YiY2dAidA2)} 

= S {-f dMi -f dM2 + f dMi f dM2 }. 

Yi Y2 Yi Y2 

We will now show that this is also the optimal influence curve. 

6.6.2 Optimal influence curve under complete indepen­
dence. 

Denote the bivariate censored data with Y: so Y = (Ti, T2 , Di, D2). The score 
operator for S is given by: 

The information operator AfrAF : L2(F)---+ L2(F) is given by 

AfrAp(h)(Ti, T2) = EpF,a(Ep(h(T1, T2) I Y) I (Ti, T2)). 

Define 1,,t = I(t,oo) - S(t) E L2(F). Then the efficient influence curve for 
estimating S(t) is given by (see corollary 2.1): 

Assume now complete independence. Let t = (ti, t2), 1,,t 1 = I(t,,oo) - Si(ti), 

1,,'2 = I(t,,oo)-S2(t2). Define hi (univariate function in Ti) by A];Ap(hi) = 1,,t, 
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and h2 (univariate function in T2) by ApAp(h2) = K:t 2 • Then by complete 
independence (notice that ApAp(h1h2) = ApAp(h1)ApAp(h2)) we have 

ApAp (h1h2 + h1S2(t) + h2S1(t)) = ApAp(h1)ApAp(h2) + S2(t)ApAp(h1) 

+S1(t)ApAp(h2) 

= K:t1K:t2 + S2(t)K:t1 + S1(t)K:t2 

So under complete independence we have: 

Again, by complete independence we have Ap(h1h2) = Ap1 (hi)Ap2 (h2) where 

Ap1 (hi) = E(h1(T1) I (T1, D1)) and Apih2) = E(h2(T2) I (T2, D2)). Ap1 (hi) 
is the efficient influence curve for estimating S1(t1) for the univariate censor­
ing model where we only observe (T1 , D1) and we have a same statement for 

Ap2 (h2). So Ap.(hi), i = 1, 2, equals the influence curve of the Kaplan-Meier 

estimator for estimating Fi which is given by: ICi(ti) = -Si(ti) J dMi/Yi, 
i = 1, 2. So under complete independence we have 

I(F, t) = IC1(t1)IC2(t2) + IC1(t1)S2(t2) + IC2(t2)S1(t1) (6.37) 

S(t) { / dM1 I dM2 _ I dM1 _ I dM2 } 
Yt Y2 Yi Y2 

and this is exactly the influence curve of the Dabrowska and Prentice-Cai es­

timator under complete independence. This proves that the Dabrowska and 
Prentice-Cai estimator are efficient under complete independence. Finally no­
tice that (6.37) provides us with a nice and simple formula for the variance of 
the efficient influence curve: 

For example, in the case that Ti, T2, Ci, C2 are all four independent and 
uniform(0, 1), the reader can easily verify that this variance equals: 

.(6.38) 

Computer simulations for the Prentice-Cai and Dabrowska estimator show that 

this limiting variance is already closely approximated for n = 100 (see Bakker, 
1990, Prentice and Cai, 1992a,1992b and chapter 8 of van der Laan, 1993). 





Chapter 7 

Modified EM-Estimator of 
the Bivariate Survival 
Function 

7.1 Introduction. 

In chapter 4 we proposed a SOR-MLE based on a modification of the data 

and explained why a solution of the self-consistency equation, computed by 
the EM- equations (iterating the self-consistency equation), will not be consis­
tent for continuous data; the singly censored observations are not told how to 

redistribute their mass 1/n over their associated lines. 

Pruitt (1991b) proposed an interesting estimator which is a solution of 

a modification of the self-consistency equation. Pruitt modifies the self­
consistency equation by replacing the singly censored terms by ad hoc estimates 

(which are fixed in the subsequent EM-iterations) and thereby the singly cen­

sored observations are now told how to redistribute their mass. So it is not an 

NPMLE, and not efficient, but it shares several of the appealing properties of 

a self-consistent estimator and hence (see theorem 3.1) of a NPMLE. 

Each observation in the bivariate censoring model ( doubly, singly censored 

and uncensored) tells us that the survival time has fallen in a certain region: 
points for uncensored, lines for singly censored and quadrants for doubly cen­

sored. Iterating Pruitt's modified self-consistency equation tells us now that his 

estimator works as follows: each observation gets mass 1/n which it has to redis­
tribute over its associated region for the survival time. By using kernel density 

estimators the singly censored observation are told how to redistribute their 
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mass 1/n over their associated lines. The uncensored observations give mass 

1/n to the observed survival time. By solving the modified EM-equations the 

mass 1/n of the doubly censored observations is redistributed self-consistently 
over their associated quadrants: i.e. a point t in the quadrant gets mass 1/n 

times the conditional density under the estimator, given the survival time lies 

in the quadrant. Consequently, the estimator is a distribution function and the 

mass 1/n corresponding with each observation is redistributed over the region 

where it belongs in a self-consistent (for the uncensored and doubly censored) 
or consistent way by listening to the other observations. The singly censored 

redistribution is estimated with product limit estimators of univariate kernel 

density estimators. Pruitt (1991b) makes his estimator intuitively clear and 
proves its self-consistency properties. Uniform consistency, asymptotic nor­
mality and asymptotic validity of the bootstrap has not yet been proved, and 

is done in this chapter (based on van der Laan, 1991). 

We consider a slightly different version of his estimator: we use edge cor­

rected bivariate kernel density estimators while he smoothes in one direction. 

There are several motivations for being interested in Pruitt's estimator. 

Simulations (Pruitt, 1991b, and chapter 8 van der Laan, 1993d) show that his 
estimator is competitive with Dabrowska's and Prentice and Cai's estimators, 

while his estimator does not put negative mass on points (which is not true 
for Dabrowska's and Prentice and Cai's estimators). His idea of telling the 
singly censored observations how to redistribute its mass invites for less ad hoc 

estimators by not using kernel density estimators, but using the SOR-MLE in 
order to obtain an estimate of the conditional density over the lines (see van 

der Laan, 1993f, for practical results with these estimators). 

Pruitt's estimator uses kernel density estimators and therefore also depends 

on a bandwidth, but simulations show that his estimator is less sensitive to 
the choice of the bandwidth than the SOR-MLE of chapter 4 to the choice 
of the grid-width. This is intuitively clear because the bandwidth of Pruitt's 

estimator influences only the redistribution of mass 1/n over lines, while a 
change of the grid-width in the SOR-MLE changes all interactions between the 

regions generated by the observations and hence the estimator might change at 

all its support points. Pruitt's estimator is also less computer-intensive than 

the SOR-MLE. 

In the special submodel of the bivariate censoring model where one of the 

two survival times is always uncensored and the other is randomly censored, 

Pruitt's estimator is explicitly known and it is a NPMLE which by our results 

converges at root-n rate. Gill and van der Vaart (1993) have a general theory 
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which shows efficiency of NPMLE which are known to be root-n consistent. Un­

fortunately, their theory requires one cumbersome regularity condition which 

is expected to hold but which is hardly verifiable. All other conditions hold 

trivially. This submode! has an important application in regression analysis. 

Ritov (1992) proposes an efficient estimator for this submodel. For this sub­
model Pruitt's estimator is similar to Ritov's estimator. By explicitly writing 

out the influence curve of Pruitt's estimator one should be able to check that 

its asymptotic distribution is indeed the optimal one as given in Ritov {1992), 
but this goes beyond the scope of this chapter. 

Finally, we have some remarks on points of technique: we use some novel 

methods which may well be useful in other analyses of M-estimators and analy­
ses which involve density estimators. Pruitt's estimator is analyzed by applying 

the implicit function theorem. The implicit function theorem requires invert­

ibility of a derivative of the modified self-consistency equation solved by Pruitt's 
estimator and a strong differentiability condition. We apply a general trick in 

order to get an equation with the required smoothness, see section 3. The in­

vertibility proof (section 4) is highly non-trivial and might give techniques for 
proving invertibility of quite complicated operators of the form I - A where A 

has a norm larger than 1: so where it is certainly non-trivial that the Neumann 
series E:1 Ai(h) converges. We also formulate a functional delta-method for 

functionals like f </>(/n)dµ, where fn is a density estimator of / 0 • 

In this chapter we will prove (beyond existence of Pruitt's estimator Sn) 

strong uniform consistency of Sn and weak convergence of the normalized dif­

ference .jn(Sn - S). The main work consists of proving weak convergence of 

the singly-censored terms in Pruitt's modified self-consistency equation (7.4), 
below, which involve density estimators, and proving the necessary conditions 

for the implicit function theorem for Banach spaces (Hildebrandt and Graves, 

1927, Flett, 1980), to take care of the implicit character of equation (7.4) (its 
fourth term). 

The organisation of this chapter is as follows. In section 2 we define the 
estimator and the modified self-consistency equation which is solved by it. We 

also define that part of the equation which is explicitly known and denote it 

by W'n• In section 3 we state the consistency and weak convergence theorem 
and give the outline of the proof which is based on the implicit function the­

orem and the functional delta-method. The ingredients we need to verify will 

be formulated (like weak convergence and consistency of the explicit term W n 

and invertibility of the derivative of the modified self-consistency equation). In 

section 4 we prove the first two ingredients; in particular the required invert-
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ibility of the derivative of the modified self-consistency-equation. It remains to 

cover the analysis of lP',.. This requires a functional delta-method for density 
estimators as proved in section 5. In section 6 this functional delta-method is 
applied in the analysis of lP',.. The probabilistic conditions of this delta-method 

are covered in generality in section 6.1 and 6.2 and the result is summarized in 
lemma 7.4. In section 6.3 we make clear how to apply this delta method to our 
specific term and in section 6.4 the differentiability condition is proved, which 

completes the proof of all four ingredients. 

7.2 A Modified EM-estimator (Pruitt). 

For the description of the bivariate censoring model and notation we refer to 
chapter 4 and 6. In our analysis we need the following assumptions on Fo and 

Go: 

Assumptions. 
1. We restrict functions to a rectangle [0, r] C [0, 00)2, r = (r1, r2), where 
Tis chosen so that Go(r-) = 61 < 1, Go(r) = 1 and Go has an atom at r: 
Go({r}) = 6 > 0. 
2. We assume that Go has a density go w.r.t. the Lebesque measure on [0, r) 
and that Fo has a density lo w.r.t. the Lebesque measure on [0, r + e] for 
certain E > 0. Furthermore we assume that lo, g0 E C3[0, r). 
3. Moreover, we assume that for some E = (e1,E2) lo is strictly positive on 

[O, T + e]\[O, r]. 

Assumption 1 can be accomplished by censoring observations which do not 
fall in the rectangle [0, r] at the edge of the rectangle. In real life this means a 
small loss of information, but a gain in stability of the estimator. 

Let P,. be the empirical distribution function of 1', i = 1, ... , n. The EM­
algorithm finds a solution of the self-consistency equation: 

S,.(t) = j Ps,.(T > t I y)dP,.(y). (7.1) 

We refer to chapter 3 for a discussion on the EM-algorithm and its heuris­
tics. The integral w.r.t. P,. in equation (7.1) can be written as a sum of four 
integrals, namely w.r.t. the empirical distribution Pf1 of the uncensored ob­

servations, two with respect to the empirical distributions Pf0 and Poi of the 
singly censored observations and one with respect to the empirical distribu­

tion P00 of the doubly censored observations. Pruitt's estimator is the solution 
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of the equation obtained by replacing in (7.1) the integrands Ps,,_(T > t I y) 

in the two singly censored terms, which involve the unknown S,., by explicit 

estimators. 

Let's write down the modified self-consistency equation which is solved 

by S,. (Pruitt's estimator). The two conditional densities over the lines cor­

responding with the singly censored observations which appear in the self­
consistency equation are given by: 

WiF0 (ti, Yi, Y2) - Pp0 (Ti > ti I Ti > Yi, T2 = Y2) 

W2F0 (t2, Yi, Y2) - Pp0 (T2 > t2 I T2 > Y2, Ti = Yi)-

(7.2) 

Pruitt estimates them with two weighted product limit estimators Wi, W2, 
respectively. We will define these product limit estimators in section 6 (see 

(7.17)). 

We have the equation S(t) = J Ps(T > t I y)dPF,G(y). In formulas, using 
at the second equality that G has support on [O, r], it is given by: 

(7.3) 

where S(ti V Yi, t2 V Y2)/S(yi, Y2) = P(Ti > ti, T2 > t2 I Ti> Yi, T2 > Y2) and 

If we replace PF,G by P,., then we obtain the self-consistency equation. S,. 

(Pruitt's estimator) solves 

(7.4) 
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The only difference with the self-consistency equation is that in the self­

consistency equation we have W1F n, W2F n, self-consistent redistribution of 

mass 1/n, instead of W-1 , W2, redistribution of the mass 1/n according to a 

predetermined estimate. "ill" n represents the empirical counterpart of "ill". 

7.3 Outline of proof of consistency and weak 
convergence. 

We will prove the following theorem. 

Theorem 7.1 Assume that the underlying densities f, g satisfy assumptions 

1, 2 and 3 made in the introduction. Assume that for W1 , W2 we use ker­

nel density estimators with a kernel K satisfying the assumptions as stated in 

lemma 7.4 and bandwidth hn = n-117 • 

Then ll(Sn - S)ll 00 _. 0 in supnorm a.s. and .jn(Sn - S) converges weakly 

in (D[O, r], B, II• 1100 ). 

Outline of Proof. Equation (7.3) is given by: 

rl r2 S(tvy) 
S(t) = w(t) + lo lo S(y) dPoo(y). (7.5) 

If we consider P00 as fixed (known), then Scan be considered as a solution of 

K(S, "ill")= 0, where 

rl r2 s(t v y) 
K(S, w)(t) = w(t) - S(t) + lo lo S(y) dPoo(y). (7.6) 

Pruitt's estimator Sn is a solution of (7.4) which is the same equation but where 

Pu, Poi, P10, Poo are replaced by their empirical distributions and the singly 

censored conditional probabilities W1 and W2 are replaced by the weighted 

product limit estimators W-1 and W-2 , respectively, defined by equation (7.17) 
in section 6. In formulas we have: 

Sn(t) = "ill"n(t) + (' (2 Sn(t Vy) dPf!o(Y) 
lo lo Sn(Y) r· r2 s (t Vy) 

w:(t) + lo lo ~n(Y) dPoo(Y), 

where 

Consequently, Sn is an implicit solution of K(Sn, w;) = 0. 
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We will apply the implicit function theorem for Banach spaces (Hildebrandt 

and Graves, 1927, Flett, 1980, p. 205) to 

K : (D([O, r]), II • llcxJ2 - (D([O, r]), II • 11 00 ): (S, "Ii') - K(S, "Ii'). 

It says: 

Theorem 7.2 (Implicit function theorem). Assume 

1. K is a continuously Frechet differentiable functional from an open subset 

W of (D([O, r]), II· 11 00 ) 2 into (D([O, r]), 11 · 11 00 ), with (S, "Ii') E W. Conti­
nuity of the derivative is defined as continuity with respect to the operator 

norm: If llzn - xll 00 - O, then supllhll =1 lldK(xn)(h)- dK(z)(h)lloo -
0. 00 

2. The partial derivative d1K(S, "Ii'): (D([O, r]), II· 11 00 ) - (D([O, r]), II· 11 00 ) 

is invertible, and its inverse is continuous (i.e. it is an isomorphism). 

Then there are open neighborhoods Uo of "Ii' and Vo of S in (D([O, r]), 11 • 11 00 ) 

such that for each +' E Uo, there is a unique S' E Vo such that K(S', +') = 0. 
Moreover, if we define 0 by S' = 0(+'), then for U and V small enough, 0(·) 
is a continuously Frech.et differentiable mapping from U into V. Its derivative 
is given by 

Because of the simple structure of K (Poo is fixed), continuous Frechet differ­
entiability of K is easy to verify, provided that S > £ > 0 as is guaranteed by 
our assumptions. 

All the work has to be done in the verification of 2. The partial derivative 

d1K(S, "Ii') of K with respect to Sis given by: -(I -A) : (D([O, r]), II • 11 00 ) -

(D([O, r]), II • 11 00 ), where 

(I - A)(h)(t) = h(t) -1r1 1r2 h(t V y)S(y12(y;(y)S(t Vy) dPoo(y). 

In the next section it will be proved that I - A is invertible and that its 

inverse :E::':o An is a continuous operator ( see theorem 7 .3 ). In this proof it is 
important to notice that the integrand (h(t Vy)S(y) - h(y)S(t Vy))/S2 (y) is 

zero at point r. Therefore we only have to integrate over ii= [O,r]\{r}, and 
by assumption 1 we have that 

/ dPoo }; S = G([O, r]) - G( { r}) = 1 - c < 1, 
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which we will need in the invertibility proof. 

Consequently, we can apply the implicit function theorem. The implicit 
function theorem tells us that there exists a solution S~ close to S where 

S~ = 0(1li'!). In section 5 we will prove that 1li'n is uniformly consistent and 

that y'n(1li'n - w) converges weakly as elements of (D[O, r], B, II· 11 00 ). This 

does not immediately imply the same results for 1li'! because it involves Sn. 

However, the following argument proves it. 

The modified self-consistency equation (7.4) tells us that Sn (t) > "P;_1 (t). By 

assumption 2 and 3 on f, g we have that P 11 is uniformly bounded away from 
zero on [O, r] and we know by Glivenko-Cantelli that "15';_1 -1- P 11 • Consequently 

Sn(t) > ~ > 0 with probability tending to 1. Moreover, Sn is monotone (Sn only 

assigns positive mass) and y-1- Sn(tvy)/Sn(Y) is bounded by 1 and, by lemma 
1.5, is of uniformly (in n and t) bounded uniform sectional variation . Now, by 

using integration by parts we can bound 1;• 1;2 Sn(tvy)/Sn(y)d(Poo-P00)(y) 
by a bounded constant (involving the latter variation) times the supremum 

norm of Poo - P00, and consequently it follows that this term converges uni­
formly to zero with probability one, independently of the asymptotic behaviour 
of Sn. Therefore, if 1li' n converges uniformly with probability one to 1li' then 1li'! 
converges uniformly with probability one to 1li', independently of the asymptotic 

behaviour of Sn. 

Consequently the consistency of w n provides us with consistency of 1li'! and 
therefore the continuous mapping theorem 1.2 provides us with uniform con­
sistency of Sn = 0(1li'!) (0 is Frechet differentiable). Moreover, the continuous 

mapping theorem provides us also straightforwardly with the following: if Sn is 
uniformly consistent and y'n(1li'n -1li') converges weakly to a Gaussian process, 

then y'n( w: -1li') converges weakly to a Gaussian process, but another process. 

Now, the functional delta method theorem 1.5 applied to 0(1li'!) provides us 
with the weak convergence of y'n( Sn - S) to a Gaussian process, namely a 

linear transformation of the limiting distribution of y'n(1li'! - w). 

The implicit function theorem tells us that there exists a solution S~ close 

to S where S~ = 0(1li'!) and the result derived above holds for this S~. Because 
K(S, 1li'!) = 0 might have several solutions, the Sn which we compute with the 

EM-algorithm is not necessarily the S~ = 0( w:) given by the implicit function 

theorem. However, if we prove that each survival function Sn which solves 

K(Sn, 1li'!) = 0 is consistent, then for n large enough we have Sn = 0(1li';). We 
will prove this in the next section (lemma 7.1). 

We conclude that in the next sections the following four things have to be 
proved: 



Invertibility 193 

• I - A is invertible, and has a continuous inverse (theorem 7.3). 

• Each survival function S,. which solves K(S,., w:) = 0 is consistent 

(lemma 7.1). 

• llw,. - wll 00 converges with probability 1 to zero (section 6). 

• y'n(w,. - w) converges weakly as elements of (D[O, r], B, II· 1100 ), jointly 

with the empirical process y'n(P,. - PF,G ). This is also proved in section 
6 by application of the results of section 5. 

Notice that W,. involves density estimators so that the second and third point 

do not follow from empirical process theory and are certainly not trivial. In 
order to carry through the analysis we need conditions on the kernel and the 

bandwidth (see theorem 7.1). 

Bootstrap. We can explicitly write down the linearization of y'n(w: - w) 
in terms of Gaussian processes. Denote this derivative with dw(Z) where Z is 

a Gaussian process. Then we have that y'n(S,. - S)-::fb. E~1 A;(dw(Z)). It 
is clear that this is a· quite complicated expression which cannot be explicitly 
written down, just as the efficient influence curve for the bivariate censoring 

model. Therefore the most one can do is to approach the covariance structure 
of the limit distribution of S,. numerically (for certain known F and G). We 
can also use a semiparametric bootstrap (sampling from a smoothed PF,.,G..) 
in order to estimate the variance of S,. (see van der Laan, 1991). 

7 .4 Invertibility of the derivative of the modi­
fied self-consistency equation. 

Recall B = [O, r]\{r}, and define the operator: I - A : (D[O, r], II· 11 00 ) -

(D[O, r], 11 · lloo) by 

(I -A)(h)(t) = h(t) -1 { h(t V y)S(y12(y~(y)S(t Vy)} dPoo(y). 

As shown in the general proof, in order to apply the implicit function theorem 

to the equation K(S, w) we need to prove that the linear operator (I - A) is 
an isomorphism. 
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Theorem 7.3 The linear operator I - A: (D[0, r], 11 · 11.,c,)-+ (D[0, r], II· llc,0 ) 

as defined above is an isomorphism (i.e. a linear invertible mapping with con­

tinuo'IJ,S inverse). Its inverse is given by: 
00 

n=O 

Proof. Define 

A1(h) [ (h(t V y)S(y)) dR ( ) 
}; S2(y) oo y 

A2(h) [ (h(y)S(t Vy)) dR ( ) 
- }; S2(y) oo y 

A(h) _ A1(h) - A2(h). 

One should notice that if for an h E D([0, r]) the series T(h) = E:"=o An(h) 
converges, then (I -A)(E:"=o An)(h) = (E:'=0 An)(I -A)(h) = h. Assume 

that for h? 0: IIT(h)ll00 $ Mllhlloo• Then the same inequality holds for h $ 0. 
Consider now a general h E D([0, r]) with h = hl(h > 0)+hI(h $ 0) = h1 +h2, 
h1, h2 E D([0, r]). Then 

IIT(h)lloo $ IIT(hi)ll00 + IIT(h2)ll00 $ M(llh1ll00 + llh2ll00 ) $ 2Mllhlloo• 

So, then Tis a well defined bounded linear operator, which proves the theorem. 

So it remains to prove that if h? O, then IIT(h)ll00 $ Mllhll00 -

Here follows the proof of this. Let h ? 0 be fixed. For a constant c we have 

that A1(c) = cc, where c = fal/SdPoo- Using this tells us that: 

A(h) = A1(h) -A2(h) = A1 (h - llhlloo) - (A2(h) - cllhlloo). (7.7) 

One should notice that (use S > 0) c = fa 1/SdPoo = f13 P(C1 E dyi, C2 E 
dy2) = P( C E .B). By assumption 1 G has an atom in the point { r }. Therefore 
we have c < 1. 

We have for each h E D{[0, r]): IIA;(h)lloo $ cllhll00 , i = 1, 2. Ifin the sequel 
we say that / is non-increasing, then we mean: if t ? s, so t 1 ? s1 , t 2 ? s2 , 

then f(t) $ /(s). We have that A2(h) - 6llhll00 $ 0 and because S is non­

increasing A2(h)-cllhll 00 is non-increasing (recall h? 0). With the use of this 
fact we can prove the following property for h ? 0: 

(7.8) 

Proof of Property (7.8). Assume that h E D([0, r]) is non-decreasing and 

h ? 0 (we will denote this with h? 0 i). Then it is easy to see that A(h) is 
also non-decreasing: ift? s, then A(h)(t) - A(h)(s) equals 

J (h(t Vy) - h(s Vy)) S(y) + h(y) (S(s Vy) - S(t Vy)) dR ( ) 
s2(y) oo Y • 
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Because h(t Vy)- h(s Vy) ~ 0 and S(sVy)- S(t Vy) ~ 0 this term is equal or 

larger than zero. Now, rewrite the numerator of the integrand of A as follows: 

h(t Vy)S(y) - h(y)S(t Vy) = (h(t Vy) - h(y)) S(y) + h(y) (S(y) - S(t Vy)). 

So we have A(h) ~ 0. This shows that: if h~ 0 j, then A(h) ~ 0 j. We 

also have that if h ~ 0, then IIA(h)lloo ~ Sllhlloo• Therefore, if h~ 0 j, then 

IIAn(h)ll00 ~ Snllhlloo• This provides us also with the following result: 

(7.9) 

Now, by applying (7.9) to A2(h) - Sllhlloo ~ 0 ! we have: 

which proves (7.8). 

Notice also that Ai(h - llhll00 ) ~ 0. Now, we are ready to prove with 

induction that the following statement P(n) is true for all n E JN: 

P(l) is trivially true. Assume P(n) is true. We will prove P(n + 1). 

IIAn+l(h)lloo < IIAn A1 (llhlloo - h) ll00 + IIAn (A2(h) - Sllhlloo) lloo 
( by (7.7) and the triangle inequality, respectively.) 

< n6nllA1 (llhlloo - h) 11 00 + 15n+lllhll00 

( by P(n) and (7.8), respectively). 

< nsn+lllhlloo + 15n+illhlloo = (n + l)sn+illhlloo• 

So with induction we proved: if h ~ 0, then IIAn(h)lloo ~ nSnllhlloo• Conse­
quently, if h ~ 0, then 

This completes the proof of theorem 7.3. D 

We will now prove consistency for each survival function Sn which solves 

K(Sn, lP'!) = 0. We have 
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and 

J So(tvy) 
S0 (t) = w0(t) + So(Y) dPoo(y). 

Subtracting these two equations provides us with: 

* J dPoo(Y) 
(Sn - S0)(t) = (wn - Wo)(t) + (Sn - So) (t VY) So(Y) 

J Sn(tvy) 
- ( Sn - So)(y) Sn (y)So(Y) dPoo(y). (7.11) 

Denote 

J dPoo(Y) 
As,.(Sn - So)(t) - (Sn - So)(t Vy) So(Y) 

J Sn(t Vy) 
- (Sn - So)(y) Sn (y)So(Y) dPoo(Y) 

_ A1(Sn - So)(t)- A:"(Sn - So)(t), 

where A1 is the same as defined in the proof of theorem 3.3 and A:" is slighly 

different from the operator A2 • Now, (7.11) reduces to: 

(I - As,.)(Sn - So) = ('Ir! - 'Mo). 

Therefore for consistency of Sn it suffices to prove that z::r=O At is a bounded 

linear operator (uniformly inn). However, because A:" has all the properties 

which we needed from A 2 ( as the reader can verify for himself) we can do 

exactly the same proof as the proof of theorem 3.3 and we also get the same 

bound 6/(1- 6)2 of the norm of (I - As,.)-1• The only condition we need is 

that Sn > E > 0 on [O, r] which holds for n large enough (because Sn > "P;_1 

and F;_1 -+ Pn > 6 > O, by assumption 1 ). This proves that II Sn - Soll00 -+ 0 
a.s. 

In the same way it is proved that K(S, w;) = 0 has a unique solution among 

the survival functions S > 0 on [O, r]. This provides us with the following 

lemma: 

Lemma 7.1 Recall the assumptions on the model. Each survival function Sn 

which solves K(Sn, W!) = 0 is strongly uniformly consistent and if Sn > 0 on 

[O, r], then Sn is also the unique survival function solution of K(S, w;) = 0 in 

the class of survival functions S with S > 0 on [O, r]. 
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7 .5 Functional delta-method for functionals of 
density estimators. 

Consider the problem of estimation of a functional <l>(F) = r(f) E 
(D[0, r], II· 11 00 ), where f = dF/dµ : ]Rd -+ JR is the density of a d­
variate distribution F w.r.t. to the Lebesque measure µ, using i.i.d. ob­
servations X 1, ••• , Xn, X; ~ F. We can estimate r(f) with r(/n) where 
fn(x) = (nhd)- 1 E~1 K ((x - X;)/h) is the usual d-variate kernel density es­
timator (Silverman, 1986) with a bandwidth h = h( n) -+ 0. In this section we 
show how we can use theorem 1.5 in order to obtain a functional delta method 
theorem for the analysis of functionals of density estimators. 

Lemma 7 .2 Assume that: 

1. llfn - foll 00 -+ 0 a.s. 
2. Define Fn ( x) = J; f n ( x )dx and let Fn be the empirical distribution function 

of X;, i = 1, ... , n. Denote the limiting distribution of yn(Fn - F) with Z 

(i.e. the F-Brownian bridge), where Z is a Borel measurable Gaussian process 

concentrated on a separable subset Do of (D[0, r], 8, II· 11 00 ). Assume that Zn= 
~ D 

yn(Fn - F)~Z in (D[0, r], B, II· 11 00 ). 

3. limsupn llfnll: < M < oo a.s. 

Assume now that 4> satisfies the following purely analytical property: For 

each sequence Zn = yn(Fn - F)-+ Z in supnorm for Z E Do, llfn - fll 00 -+ 0 

and llfnll: = 0(1), we have: 

in supnorm for a continuous linear mapping d<l>(F) (D[0, r], II· 11 00 ) -+ 

(D[0, r], 11 · lloo). 
Then 

The proof of this lemma is nothing else than an application of theorem 

1.5 applied to 4> : (D[0, r], II• 11 00 ) -+ (D[0, r], II· 11 00 ) with a good choice 
for Dn so that we only have to verify the differentiability property for se­

quences Fn for which fn -+ f and llfnll: < M < oo. Firstly, no­
tice that llfn - flloo -+ 0 a.e. is equivalent with: for each f > 0 

P (limN-oo supn>N 11/n - /1100 > E) = 0. By Fatou's lemma this implies that 
for all f > 0 limN-oo P (supn>N llfn - fl loo > E) = 0. This implies that there 
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exist sequences En - O, Dn - 0 and N(6n) E 1N so that 

P ( sup 11/n - /lie'°< En) > 1- Dn. 
n>N(6n.) 

(7.13) 

Now, we will define the Dn in theorem 1.5. Let F be the set of all distribution 
functions F1 : m,d - lR, which are absolute continuous w.r.t. the Lebesque 

measure. Define now 

and 

z; = ZnI(Zn E Dn), 

where we mean with I(Zn E Dn) that if Zn ¢ Dn, then I(Zn E Dn) = 0. 

Consequently z; E Dn. By limsupn ll/nll: = 0(1) and (7.13) we have that 
for each E > O, there exists a N(E) so that Zn E Dn for all n > N(E) with 
probability 1 - E. Therefore, Zn-dk.Z implies z;-dk.z. Now, apply theorem 

1.5 to ~{.F,:'), where .F,:' = F + 1/,/nz;. This provides us with: 

vn ( ~(F:)- ~(F))-dk.d~(F)(Z). 

Because z; = Zn· with probability tending to 1 we have that 

The required weak convergence follows now from the general fact that 

D D 
Xn===>X, Yn = op{l) ⇒ Zn = Xn + Yn===>X, 

which completes the proof of the lemma. 
The lemma can be immediately generalized to all kinds of properties of the 

sequences Fn which we plug in, as long as these properties hold with probability 

tending to 1. The lemma will be applied in the analysis of vn( iJi' n - iJi') in the 
next section. Here, the probabilistic conditions of the lemma will be analyzed 

in generality. 

7.6 Weak convergence of the explicit part. 

We will apply the refined functional delta-method lemma 7.2 in the analysis of 

y'n(iJi'n - iJi'). We will see in the next subsection that J W1dPo1 has a repre­
sentation in terms of two distribution functions FN and Fy of the data, and of 

course a symmetric version of this statement holds for J W2dP10 (say Ffv, F4, ). 



Weak Convergence of Explicit Part 199 

So we can represent w in terms of distribution functions of the data for which 

we have a joint weak convergence result for its empirical counterpart, namely 

P = (FN, Fy, Ffv, F.;,, Pu, Poi, Pio, Poo)- In order to get Wn one replaces these 
distributions by their empirical versions: sow= w(P) and Wn = w(Pn) where 

we know that y'n(Pn - P)dbz for a certain Gaussian process Z. The refined 

delta method lemma 7.2 states now that in order to prove weak convergence of 

y'n(Wn - w) it is enough to show that this representation satisfies the charac­

terization of compact differentiability for all sequences Zn = y'n( Pn - P) E Dn, 

where Dn is chosen so that the empirical process Zn E Dn with probability 

tending to 1. 

Define the following normalized estimators: 

U01 (t) - y'n(P[:1 - Po1)(t) 

Uf1(t) - y'n(Pf1 - Pu)(t) 

Ufo(t) = y'n(Pfo - P10)(t). 

Then we can rewrite y'n(Wn - w) in terms of these normalized empirical dif­

ferences: 

We will now verify the purely analytical characterization of compact differen­

tiability. Assume that y'n( Pn - P) converges in supremum norm to Z. In order 
to prove the characterization of compact differentiability we need to prove that 

the first, second, third, fourth and fifth term converge in supremum norm, and 
that the last terms converge to zero in supremum norm. The third term will 

be analyzed in the next subsection. In that analysis one has to keep continu­

ally in mind that if we consider weak convergence of the normalized empirical 
processes which occur in this term that these should be taken jointly with the 

other normalized empirical processes! ( we will not remind the reader again of 

this fact). The fifth term is of exactly the same structure. The first term is 

trivial. For the convergence of the second and fourth term we apply integration 

by parts lemma 6.1 so that the integrals become integrals with respect to W1 
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and W2 and that U01 and Uf0 appear as functions. This can be done because 

W1 and W2 are of bounded uniform sectional variation uniformly int E [0, r], 
by assumption 2 about f, g and S( r) > 0. This proves the convergence of the 

second and fourth integral. In the next section we will see that W1, W2 are 

continuous functionals of strongly uniformly consistent estimators. This gives 

that W1 - W1 and W2 - W2 converge uniformly to zero almost everywhere. 

Furthermore, we will show that W1 and W2 are of bounded uniform sectional 

variation uniformly in n. Therefore the last two terms are of the form: 

Lemma 7.3 (Belly-Bray). Let fn, Zn, Z E (D[0, r], II· 11 00 ). Assume 

llfnll00 -+ O, llfnll: < M < oo, IIZn - Zll 00 -+ 0. Then J fndZn -+ 0. 

Proof. These terms are shown to converge to zero as follows. f fndZn 

f fnd(Zn - Z) + f fndZ. Apply integration by part to the first term so that 

we can bound it by CIIZn - Zll00 llfnll:. For the second term we apply the 
Helly-Bray lemma 6.4. □ 

This proves the convergence to zero of the last two terms. Now, we have ver­

ified the required differentiability of w(P) at P. Application of the functional 

delta method provides us now with weak convergence of y'n(Wn - w). 
Similarly, but easier, it is shown that the strong uniform consistency of 

Wi, W2 and P/;1 , Pf 0, Pf1 provides us with the strong uniform consistency of 

'Mn. 
It remains to analyze the third term. We will do this by application of 

the functional delta-method for functionals of density estimators as stated in 
lemma 7.2 in the preceding section. For this we need uniformly consistent 

density estimators on [0, r] which are of bounded uniform sectional variation 

and the integrated density estimator should be asymptotically equivalent with 
the empirical distribution function. These will be constructed in the next two 

subsections. The uniform consistency on [0, r] requires an edge-correction at 

the edge of [O, r]. We will study this in the next subsection. 

7.6.1 Uniformly consistent edge-corrected bivariate den-
sity estimators. 

If we have a density which is uniformly continuous on JR.2, then necessary and 

sufficient conditions for strong uniform consistency of the kernel density esti­

mator fn with kernel K and bandwidth hn are: hn -+ O, (nh!)/logn -+ oo 

as n -+ oo, K measurable w.r.t. Lebesque measure, f I K(t) I dt < oo, 

f K(t)dt = 1 (see Bertrand-Retali, 1974, 1978). We will also assume that 
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K has compact support within [-1, 1]2. Schuster (1985) shows how to get uni­

formly consistent estimators of univariate densities with support [c, d], by using 

symmetrization techniques which brings one back to the problem of estimating 

a uniformly continuous density on IR. In van der Laan (1991) this method is 

generalized to the two dimensional case. Here we only discuss a method in­
troduced by Richard Gill. From now on we will work with a symmetric kernel 

which satisfies the conditions mentioned above. 

Gill's method. This method requires that f also puts mass outside the 

rectangle [O, r]. Let fn be the kernel density estimator with bandwidth h. Let 

h = (h, h). Now, define the edge corrected kernel density estimator f: as 

follows: f: equals /,. on [h, T - h], and f:(x) gets the value of /,.(x'), where 
x' is the closest point to x on the edge of [h, T - h]. We will prove that f: is 

uniformly consistent. 

We have: 

sup I 1:(x) - f(x) I~ sup I /,.(x) - /(x) I+ sup I /,.(x') - /(x) I, 
xe[o,rJ xe[h,r-hJ xe[h,r-hJc 

where the complement is taken within [O, r]. Consider the first term. f,. uses 
here only data on [O, r]. Therefore, if there is mass outside [O, r], then the data 
is indistinguishable from a uniformly continuous density which equals f on 

[O, r], but nicely bends down to zero outside [O, r]. Now, by Bertrand-Retali's 

result fn is uniformly consistent on [h, r - h], which proves that the first term 
converges to zero. 

For the second term we have: 

I /,.(x') - /(x) I ~ I /,.(x') - /(x') I+ I /(x') - /(x) I -

So the supremum over [h, r - h]c of the first term converges to zero by the 

uniform consistency of /,. on [h, r - h]c and the supremum of the second term 
converges to zero by the uniform continuity of fe• 

7.6.2 Bivariate kernel density estimators: simultaneous 
uniform consistency, consistency of derivative and 
asymptotic normality of the integrated kernel den­
sity estimator. 

Let X;, i = l, ... , n be n i.i.d. copies of a bivariate random variable X 

(X1,X2) ~ f, where / is a bivariate continuous density on [O, r] w.r.t. the 
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Lebesque measure. Let 

be the bivariate kernel density estimator with kernel K. 
We will now find conditions on f, Kand h which provides us with a kernel 

density estimator which is uniformly consistent, which is of bounded uniform 

sectional variation uniformly inn and for which the integrated density estimator 

is asymptotically equivalent with the empirical distribution. We know already 

the conditions for uniform consistency (see above): for the bandwidth we need 
(nh2 )/log(n)--+ oo. We will find the conditions for each of the two remaining 

properties and then combine them in a lemma. 

Pointwise consistency of derivative of density. Assume that K has com­
pact support and that K 1•1(x) = (d2 /dx 1dx2)K(xi, x2 ) is continuous on [O, r]. 

Firstly, we will find conditions which guarantee that limsupllfnll; = Op(l). 
By the triangle inequality we have 

where 

11 _ d2 1 ~ 11(X1-Xli X2-X2;) 
fn' (xi, x2) = dx1dx2 fn(xi, x2) = nh4 {;-:_ K ' h , h . 

Firstly, we will study the second term. We have that 

~E (Kl,1 (X1 -Xli X2 - X2;)) 
~ h ' h 

1 / 1 1 ( X1 - Yl X2 - Y2 ) h4 K ' h , h f(yi, Y2)dy1dY2 

f2 J K 1•1(z1, z2)f (xi - hz1, Xz - hz2) dz1dz2. 

We will say that f E Ck[O, r] if f has k derivatives in both coordinates and fk,k 

is continuous. If f E Ck[o, r], then we have the following Taylor expansion: 

Assume that K1•1 satisfies the following orthogonality conditions. 

J K 1•1(z1, z2)zf z{dz1dz2 = 0, i 2: O, j 2: O, 1::; i + j::; k. (7.15) 
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Then we have 

f 1•1(x1, x2) + o (:2 hk JI K 1•1(z1, z2) I dz1dz2) 

/1•1(x1, x2) + o(hk- 2 ), (7.16) 

using that J I K 1•1(z1, z2) I dz1dz2 < oo because K E C1[0, r]. So if f E 

C2[0, r], then I E/J•1(x1, x2)- /1•1(x1, x2) I= o(l), uniformly in x E [O, r]. 
Let's now consider the first term of (7.14). The variance of /J•1(x1, x2) is 

given by 

where the variance of the K 1•1 term is bounded from above by 

E ( K1,1 ( x1 ~ xli, x2 ~ X2;)) 2 = O(h2). 

Here we use that we only have to integrate over a square with width h. So we 

conclude that if f E C 2 [0, r], then 

sup Var (I fJ• 1(x) - f 1•1 (x) I) = 0 ( h\) + o(l). 
o;E[O,r] . n 

This tells us that ifwe choose h so that h,.n1l 6 --+ oo, then fk 1(x)--+ /1•1(x) a.s. 

for all x. Moreover, by the triangle inequality, E (JI /J•1 - EfJ• 1 I (x)dx)--+ 0 

and (7.16) it follows also that 

limsup/ I fJ•1(x) I dx =JI / 1•1(x) I dx < oo a.s. 
R-H)O 

By doing similar calculation for the sections this provides us with: 

limsupllf,.11: < oo. 

Weak convergence of the integrated kernel density estimator. Let 

F,. be the empirical distribution function and k,.(z) = 1/h2 K(z). Then 

.F,.(x) = 1"' f,.(y)dy = F,. * k,.(x), the convolution of F,. and k,.. 

Now, 

y'n(F,. - F) = y'n (F,. * k,. - F * k,.) + ..,/ii, (F * k" - F). 

The first term is an empirical process indexed by smoothed indicators which 

clearly form a Donsker class and therefore empirical process theory provides us 
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immediately with weak convergence of the first term. The second term is the 

bias of which we have to take care. We have (f K(z)dz = 1) 

(F * kn - F)(x) I F(x-y)fzx(r)dy-F(x) 

J (F(x1 - hz1, xz - hz2) - F(x)) K(z1, z2)dz1dzz. 

Assume FE ck[o, r] and that K satisfies (7.15). Then we have that 

(F * kn - F)(x) = o(hk). 

In other words we have to choose k so that y'ri.o(hk) -+ 0. However, for the 

bounded variation condition we needed that hn converges to zero slower than 

n-116 • So we need that F E C 4[0, r] and hence that f E C 3 [0, r]. This proves 

the following lemma: 

Lemma 7.4 Let X; be n i.i.d. copies of a bivariate X ~ f, where f E C 3 [0, r]. 
Let fn be a bivariate kernel density estimator with kernel K and bandwidth 

hn, as defined above and let Fn = J: fn(y)dy be the integrated kernel density 
estimator. 

Assume that K E C 1[0, r], K satisfies the orthogonality conditions (7.15} 

for k = 4 and J K(t)dt = 1. 

• If hn -+ 0, nh; / log( n) -+ oo, then f n is uniformly consistent. 

• If hnn1l 6 -+ oo, then fJ• 1(x) -+ /1•1 (x) a.s. for all x E [O, r] and 

limsupn-+oo II/nil: ~ M < oo a.s. 

• If y'ri.o(h!) -+ O, then the integrated density estimator is asymptotically 
equivalent with the empirical distribution function. 

Consequently, if hn = n-1l7 , then llfn - flloo -+ 0 a.s, limsupn II/nil:= 0(1) 
a.s. and y'ri.(Fn - F).Jbz where Z is the F-Brownian bridge. 

If we choose a K of the form K(z1, z2) = g(zi)g(z2) for a certain differen­

tiable g : IR -+ IR, then it is trivial to construct a kernel which satisfies the 

orthogonality conditions (7.15) fork = 4. 

Remark. In our application we have that f n is an edge-corrected kernel den­

sity estimator. In the preceding section we already showed that under the 

same assumptions as with the uncorrected kernel density estimator it will be 

uniformly consistent on [O, r]. It is straightforward to verify that we can also 

apply the lemma to the edge corrected f n, we will not go into these technical 

details. 
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7.6.3 Application of the functional delta-method for den-
sity estimators. 

Here, we will prove weak convergence of 

.,/ii J;1 ft:2 (wi - Wi) (ti, Yi, Y2)dPoi(Yi, Y2) as random elements of the cadlag 
function space D([O, r]) endowed with the supremum norm and the Borel sigma­

algebra, by application of the delta-method lemma 7.2. Let K be a kernel 

satisfying the properties as mentioned in Lemma 7.4. We will now define Wi. 
Firstly, we define 

FN(ti, t2) - P(Ti :s; ti, T2 :s; t2, Di= 1, D2 = 1) 

Fy(ti, t2) - P(Ti > ti, T2 ::; t2, D2 = 1). 

So FN is the subdistribution of the doubly uncensored observations and Fy is 

the subdistribution of the in the second coordinate uncensored observations. 
Moreover, we define their derivatives w.r.t. the second coordinate. 

d 
N(yi, Y2) - -d FN(Yi, Y2) 

Y2 
d 

Y(y1, Y2) = -d Fy(y1, Y2). 
· Y2 

These are densities which appear in W1. We will estimate them with kernel 
density estimators. In fact, we will use edge corrected kernel density estimators 

Nn, Yn which converges uniformly on the rectangle [O, r]. This means that we 
make the usual kernel density estimator constant at distance h from the edge 

of [O, r], as discussed in section 6.1. In order not to complicate the notation 

we will suppress this fact in the notation. We denote these density estimators 

with Nn and Yn: 

We define S(· I Y2) as the survival function ofT1 given T2 = Y2• Therefore S(· I 
Y2) has the well known product limit representation in terms of its conditional 

hazard J~ 1 N(du, Y2)/Y(u-, Y2) (Gill and Johansen, 1990): 

S(y1 I Y2) = P(Ti > Yl I T2 = Y2) 
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= 

Of course, a natural estimator of Sis obtained by replacing N, Y by N,., Y,.: 

( I ) _ JC( N,.(du, Y2)) 
S,. Y1 Y2 = 1- Y,.( u-, Y2) . 

(O,yi] 

We can now define W1: 

S(t1 V Yl I Y2) 
S(y1 I Y2) 

S,.(t1 V Yl I Y2) 
S,.(y1 I Y2) . 

(7.17) 

Because we are also concerned with the probabilistic behaviour of the inte­

grated density estimators, which play the role of F,. in lemma 7.2, we also need 
notation for them. 

Fy,.(ti, t2) 1t2 Y,.(t1, Y2)dy2 

F'Nn(ti, t2) - 1t2 N,.(t1, Y2)dy2. 

So these are smoothed empirical distribution functions FNn, Fy,. of FN and 
Fy, respectively. Now, we define the following mappings: 

<1>1 : D([O, r])2 --+ 

<1>2 : D([O, r]) 

Define A,.(y1 I Y2) = ft N,.(du, Y2)/Y,.(u-, Y2). Finally, we can define the <l> 
to which we apply the refined functional delta method lemma 7.2. 

<l> = <1>2 o <1>1 : D([O, r])2 --+ D([O, r]). (7.18) 
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We want to prove weak convergence of 

yn ( f)(FNn, Fyn)- f)(FN, Fy )) (t1, t2) 

which equals 

vn ri 1T2 (tt\ - w1) (t1, Y1, Y2)dP01(Y1, Y2)­Jo t2 

We apply lemma 7.2 with (Fn is the empirical df. of F): 

F (FN,FY) 

Fn (FNn, Fyn) 

Fn (FNn, Fyn) 

fn (d~1 Nn(Y1,Y2), d~1 Yn(Y1,Y2)) 

f = (d:1N(y1,Y2),d:1Y(y1,Y2)). 

207 

According to lemma 7.2 we can separate the analysis in a purely probabilistic 

part and a purely analytical part. For the probabilistic conditions we just have 

to apply lemma 7.4. with the f, fn, F, Fn above. This provides us with the 

following proposition: 

Proposition 7.1 Assume f, g E C3 [0, r], K E C 1[0, r], K satisfies the orthog­

onality conditions (7.15} fork = 4 and J K(t)dt = 1. Moreover assume that 
hn = n-117 • Then 

1. mn(Yi, Y2) = (d/dy1Nn(Y1, Y2), d/dy1Yn(Y1, Y2)) is a uniformly consistent 
estimator of m = (d/dy1N(y1, Y2), d/dy1Y(y1, Y2)). 

2. m!•1(x)---+ m1•1(x) a.s. for all x E [O, r] and limsupn--+oo llmnll: = 0(1) a.s. 
3. Mn(·)= JJ·> mn(x)dx is asymptotically equivalent with the empirical distri­

bution Mn = (FNn, Fyn) of M = (FN, Fy ). 

Notice that if f, g E C3 [0, r], then m E C 3[0, r]. Moreover notice that m,. is 

the kernel density estimator of m. Therefore, this proposition is an immediate 

corollary of lemma 7.4. 

7.6.4 Analytical part of the analysis. 

We will now prove the differentiability property for () as stated in lemma 7.2. 

We can consider sequences Nn, Yn with: Nn ---+ N, Yn ---+ Y, IINnll: = 0(1), 
IIYnll: = 0(1), H; = vn(Fy-Fy)---+ Hy, H'Jt = vn(Fiv-FN)---+ HN, where 
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Fy(y1 , y2) = J; Y(yi, v)dv and similarly for FN, Fy and Fiv. Firstly, we will 

consider the difference Win - W1. 

Recall the definition of A(du I Y2) = N(du, Y2)/Y(u-, Y2) and its empirical 

version An(du I Y2) = Nn(du, Y2)/Yn(u-, Yz). We can consider S(· I Y2) also 

as a measure: S((a, b] I Y2) = P(T1 E (a, b] I T2 = Yz). Recalling its product 
integral representation w.r.t. A it follows that: 

S ((a, b] I Y2) = JG1 -A(du I Y2)) 
(a,b] 

Sn ((a, b] I Y2) JG1 - An(du I Y2)). 
(a,b] 

Now, we have that 

J[ (1-An(du I Y2)) - Jr (l -A1(du I Y2)) 
[Y1,t1 Vy1] [Y1,t1 Vyi] 

Sn ([yi, ti V Y1] I Y2) - S ([Yi, t1 V Y1] I Y2) • 

Duhamel's equation for the product integral (see Gill and Johansen, 1990, 
equation 42) tells us that: 

So we need to 

study the difference (An - A)(du I Y2) = (<pi(Nn, Yn) - <p1(N, Y)) (du, Yz). 

We have that 

where 

( Nn - N)( du, Y2) + _N_( d_u_, Y_2)_(Y_-_Y._n )_(_u,_y_2) 
Y(u,y2) Y2(u,y2) 

(Nn - N)(du, yz)(Y - Yn)(u, Y2) Nn(du, yz)(Y - Yn)2 (u, Y2) 
Y 2(u, Y2) + YY~(u, Y2) . 

This is trivially verified. 

Furthermore, we have by using the multiplicativity of the product integral 

that 
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where 

This provides us with: 

+s((Y1,u) I Y2)S((u,t1 Vy1] I Y2) 

W1(t1, Y1, Y2) + ~(u, t1, Yi, Y2), 

Rem. 

209 

(7.19) 

The expression (7.19) consists of four terms of which three involve Ri or R; 
or both. These three terms form the remainder and are shown to converge to 

zero (below). Firstly, we will be concerned with the main term which is linear 
in Nn - N and Yn - Y. 

Because N, Y, Nn, Yn, W1 are of bounded uniform sectional variation, inte­
grals with respect to N, Y, Nn, Yn, W1 are well defined. The terms are of the 

form f (Nn - N)Gdx for a function G which involves Y, N in numerator and 
Y in denominator. By using integration by parts they become of the form 

f(Fiv - FN )dG (and similar one dimensional integrals over sections). Because 
N, Y are of bounded uniform sectional variation and Y is uniformly bounded 

away from zero by assumption 3 (that f, g are strictly positive on (0, r+e)\(0, r), 
see introduction) this G is of bounded uniform sectional variation (lemma 1.5). 

Therefore, we can linearize the expression above in Hy, H'J.r. 
After having linearized in Hy, HJv and using that Hy and HJv converge 

in supremum norm to Hy, HN, it is trivial to see that this term converges in 
supremum norm to an expression linear in HN and Hy: just bound terms of 

the form f(HJv - HN)dG ~ IIHiv - HNll00 IIGII: and use that we know that 
IIHiv - HNlloo converges to zero and that G is of bounded uniform sectional 
variation because N and Y are. This expression is written down in van der 

Laan (1991) and we will denote it with d'P(N, Y)(HN, Hy). 
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Remainder. Because Nn, N, Yn, Y are of uniformly bounded uniform sec­

tional variation and Yn is uniformly bounded away from zero (because Y is 

uniformly bounded away from zero and Yn --+ Y) y--+ R1]( u, t1, y) is of bounded 
uniform sectional variation uniformly inn and ( u, t). The product integral is a 

continuous functional in (N, Y) with respect to the supremum norm (see Gill 
and Johansen 1990). Therefore R2 converges uniformly to zero. Here we use 

for the fust time that Nn - N--+ 0 and Yn - Y--+ 0. 

All three terms are in fact dealt with in the same way. These terms have 

the following structure: 

--+ 0 w.r.t. the supnorm. 

Here mn involves Nn, N, Y, Yn, which are of uniformly bounded uniform sec­
tional variation. The convergence to zero in supnorm of the first term is triv­

ial. The second integral is of the structure f ZndFn, where IIZn - Zlloo --+ 0 

(for IIHy - Hylloo --+ 0) and IIFnll: = 0(1) (for ll(Yn, mn)II: = 0(1)) 
and IIFn - Fll00 --+ 0 (for IIYn - Ylloo --+ 0). Therefore convergence to 
zero follows from the Belly-Bray lemma 7.3 with Zn = '1/'n(Fy - Fy) and 

Fn(·) = (Yn - Y)(s, ·)mn(s, Yl, •), 

Consider the term ,Jn f D~i(Nn - N, Yn - Y)R~dP01, Just as above we 
linearize this in Hiv and Hy, Then we obtain a term of the form f ZndFn where 

IIZn - Zll 00 --+ 0 (for IIHiv - HNll00 --+ 0), IIFnll: = 0(1) (for IIR~II: = 0(1)) 
and IIFn - Flloo --+ 0 (for IIR~ - R2ll 00 --+ 0). The Belly-Bray lemma 7.3 tells 
us now that this term converges to zero. 

Consider now the term Vll J RiW1dP01, Again, by doing integration by 

parts we can linearize in Hiv ( or Hy) and these will be integrated with respect 
to a measure which involves d(Yn - Y) ( or d( Nn - N)). Therefore this term 

is again of the form f ZndFn where IIZn - Zlloo --+ 0 (for IIHiv - HNll00 --+ 
0), IIFnll: = 0(1) (for ll(Nn, Yn, N, Y)II: = 0(1)) and IIFn - Flloo --+ 0 (for 
ll(Nn, Yn) - (N, Y)lloo--+ 0). The Belly-Bray lemma 7.3 tells us now that this 

term converges to zero. 

The term Vll J Ri RidP01 is proved to converge to zero in the same way as 

Vll f Ri W1dP01- This completes the differentiability proof. 



Weak Convergence of Explicit Part 211 

We conclude that once we have arranged that we only have to verify the differ­

entiability property in lemma 7.2 for sequences with a consistent density which 

is of uniformly (in n) bounded uniform sectional variation, then integration by 

parts and the Helly-Bray technique are the only ingredients one needs in order 

to prove that the remainder converges in supremum norm to zero. We have 

proved the analytical condition of lemma 7.2. Application of lemma 7.2 pro­

vides us now with weak convergence of fo f(W1n - W1)dP01 to the Gaussian 

process d'P(N, Y)(HN, Hy). 
This completes the proof of all four ingredients as stated in section 3 and 

hence the proof of theorem 7 .1. 
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Notation 

F ~ G: Fis absolutely continuous w.r.t. G, page 17. 

F = G: F ~ G and G ~ F. 
supp(F): the support of F. 

Lp: the law under P, page 20 

EX: the expectation of the random variable X, page 19 

Var(X): the variance of the random variable X, page 19 

f(a, b]: generalized difference of/ : lRd --+ lR over the rectangle (a, b] C lRd, 

page 13 

II· II.,: variation norm, page 13 

II· II:: uniform sectional variation norm, page 13 
D[0, r]: space of multivariate cadlag functions, page 13 

(B(K), II· 11 00 ): space of uniformly bounded functions on K, page 68 
Notation for weak convergence theory. 

Pf= f fdP, page 8 
P*: outer probability, page 8 

P* /: outer expectation, page 8 

Cb(D): the class of bounded real valued continuous functions on D, page 8 
D Xn~Xo: weak convergence, page 8 

Notation for empirical process theory. 

Pn: the empirical distribution, page 4 
:F: a class of measurable real valued functions, page 8 

II · IIF: supnorm over :F, page 8 
100 (:F): the space of uniformly bounded real valued functions on :F, page 8 

pz: variance metric on :F, page 9 

Gn/: normalized empirical process, page 10 

Gp: P-Brownian-bridge, page 11 

:F6 = {f - g: /, g E :F, pz(f, g) < c}, page 11 

Notation for efficiency theory. 
M: collection of all possible probability measures of a random variable X (i.e. 

model), page 17 

M(µ): measures in M which are dominated byµ, page 17 

P(µ): collection of densities w.r.t. µ corresponding with M(µ), page 17 

(D, II· II): normed vector space, page 18 

{J: M --+ E> C (D, II · II): D-valued parameter, page 18 

b: (D, II· II)--+ lR: a real valued linear mapping on D, page 18 

B: a collection of b: (D, II· II) --+ lR, page 18 

218 
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0.,,: estimator of 0, page 18 

(L5(P), II· llp): Hilbertspace of square integrable functions with mean zero, 
page 8 

PE,g, (PE,g): one dimensional differentiable submodel of measures (densities 
w.r.t. a certain fixed measure) with score g, page 18 

S( P): class of one dimensional submodels, for all our applications it is the class 

of lines as defined in (2.12), page 18 

S(P): tangent cone, page 18 
T(P): tangent space, page 19 

bJ: T(P)-+ lR: pathwise derivative of brJ at P relative to S(P), page 19 

l(P, bd): efficient influence function for estimating M(P), page 19 
I(P, M): influence curve for estimating bd(P), page 21 

11/IIB = supbeB• I bf I, page 21 
A9: T(0)-+ L5(P9): score operator at P9, page 36 
AJ : L5(P9)-+ T(0): adjoint of A9, page 36 
[9 = AJ A9: T(0)-+ T(0): information operator at P9, page 38 
Ii: the generalized inverse of [9. 
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