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Preface 

This is a revision of my Ph.D. thesis, which was written in the winter of 1991-92, 
based on four years of research at Leiden University. During that time I studied 
various routing and scheduling problems, for which I (partially) characterized 
the optimal policies using the same technique: dynamic programming. 

Over the last three years I found several related articles of which I was 
previously unaware, some new interesting results appeared, and I strengthened 
a few results myself. Based on that I prepared this revision. The sections which 
changed the most are 1.8, 1.9, 2.4, 3.7, and appendix A. 

I would like to thank three people who contributed greatly to my thesis: 
my advisor Arie Hordijk, for his guidance, my office-mate Floske Spieksma, 
and Carly Giezen, for her support outside the office. 

Sophia Antipolis, June 1995 Ger Koole 
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Introduction 

The title of this monograph consists of two parts, stochastic scheduling and 
dynamic programming. The former refers to a class of models, the latter refers 
to the method used to find optimal policies for these models. The models 
studied here can be divided in two classes: those in which customers at arrival 
are to be assigned to one of a number of queues and those in which one or more 
servers are to be assigned to different customer classes or queues. Of great 
importance is the way in which customers arrive at the stations. Models with 
independent arrival streams are studied in chapter 1. Then we allow the arrival 
stream to depend on the numbers of customers in the queues in such a way that 
controllable networks can be modeled with it. These and other network results 
can be found in chapter 2. In chapter 3 we generalize the arrival process even 
more, for example to include finite source models. Many results of chapter 1 
and 2 are special cases of the results of chapter 3. Chapter 4 contains the proofs 
of the dynamic programming results. Chapter 5 considers methods by which we 
can translate the discrete-time results of the chapters 1 to 3 to continuous-time 
results. We conclude with four appendices, respectively on weak convergence 
of arrival streams, on phase-type distributions with a monotone failure rate, on 
majorization, and on algorithms to compute optimal policies. 

Summarizing, chapter 1 can be seen as an introduction, chapter 2 contains 
the network results, and in chapter 3 the dynamic programming results are 
handled in their greatest generality. 

Chapter 1 starts by introducing the Markov Arrival Process (MAP), an 
arrival process based on a Markov process. In appendix A it is shown that the 
class of Markov Arrival Processes is dense in the class of all independent arrival 
processes. The MAP is taken as input to a model consisting of m parallel 
queues, with possibly finite buffers, each with their own exponential server. 
These types of models, in which each arriving customer is to be assigned to one 
of the queues, are called customer assignment models. When the service rates of 
all servers are equal, the policy that assigns arriving customers to the shortest 
non-full queue (the SQP) is optimal for a large class of cost functions, including 
the total number of customers. This is shown in section 1.2, by inductively 
proving properties of the discrete-time dynamic programming equation. A 
related model has no buffers at the servers, but different service rates. Here 
arriving customers should be sent to the fastest available server. For both 
models, there is a complete characterization of the allowable cost functions, to 
be found in appendix C. 



2 Introdiiction 

The previous results are only interesting in continuous time, due to the way 
of modeling. Section 1.4 considers a simple symmetric discrete-time model with 
simultaneous events, in which the SQP is optimal. In section 1.5 we generalize 
the result of section 1.2 to pathwise optimality of the SQP. So far, all cost 
functions depend on the number of customers in the queues. We can also 
consider the number of departed customers. In section 1.6 it is shown that the 
SQP is again optimal, and that we can allow rejections. Section l. 7 deals with 
maintenance models closely related to the models of the earlier sections. 

In sections 1.2 to l. 7 the information available to the controller is the 
numbers of customers in each queue. In section 1.8 the amount of work in each 
queue is known. Here the policy that assigns to the queue with the shortest 
workload (the SWP) is optimal. In section 1.9 there is no information at all, 
not even on previous assignments. It is shown that the optimal policy divides 
the arrivals equally among the queues. It is the only result in this chapter not 
obtained by dynamic programming. 

Now we move to the server assignment models. First we generalize the 
MAP to be able to include server vacations and arrivals in multiple classes. In 
section 1.11 and 1.12 we deal with the following model. Customers arrive in m 
different classes, and all customers in the same class have an exponential service 
time with the same mean. There are one or more identical servers available, 
which have to be assigned to the customers present. Both models with a single 
and with multiple servers are studied, giving conditions on the cost functions 
for list policies to be optimal. As special cases we find the following well known 
results. In the single server case the µc-rulc minimizes the weighted number of 
customers. In the multiple server case the makespan is minimized by the LEPT 
policy (LEPT stands for longest expected processing time first). In the single 
server case we generalize the results to IFR and DFR service time distributions. 

In chapter 2 we consider controllable tandems and networks of centers, 
each center being of one of the types discussed in chapter l. Consider the last 
center in a tandem system, in which the control in each center is allowed to 
depend on the state of the whole network. Then we cannot use the optimality 
results of chapter 1 to obtain the optimal policy in the last center, because the 
arrivals, through the control in the previous centers, depend on the state of 
that center. With a Markov Decision Arrival Process (MDAP) we deal with 
this type of dependency, by using it to model all but the last center with it. 
It is shown that the SQP, for the model of section 1.2, is still optimal for this 
type of arrival stream. An interesting question is what the optimal policy is 
in the first of two centers in tandem. Some results and counterexamples are 
given in section 2.3. We also analyze the model where the policies are allowed 
to depend on the workloads. It appears that the results are stronger than the 
results for the model based on the numbers of customers. 

The results on the server assignment models arc not as easily generalized 
to arrivals according to an MDAP. More precisely, the generalization holds 
only if the policy which is optimal in the case of an MAP processes the jobs 
in decreasing order of expected processing times. This means that LEPT also 
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minimizes the makespan for dependent arrivals, but in the single server case the 
µc-rule is only optimal if it coincides with LEPT. Counterexamples are given 
in the case that it does not. In the sections 2.6 and 2. 7 we consider tandem 
systems with each center having a single server. Section 2.6 deals with heavy 
traffic results. In section 2. 7 we assume that the service time distribution of 
each customer is the same in both centers. Then we have the striking result 
that each work-conserving policy minimizes the makespan. 

Chapter 3 starts with generalizing the MDAP to a Dependent Markov 
Decision Arrival Process (DMDAP). Now we can also model a finite source. 
In section 3.2 a customer assignment model is studied with asymmetric service 
times. The following partial characterization of the optimal policy is given: if 
queue k has less customers and a faster server than queue l, then an arriving 
customer can better be assigned to queue k than to queue l. From this result the 
results of section 1.2 and 1.3 follow. In section 3.3 we study again symmetric 
models, but now with batch arrivals, and with non-routable arrivals and an 
assignable server. In section 3.4 we consider a model with asymmetric servers, 
multiple customer classes and no buffer space. Each customer has blocking 
costs, depending on its class. Various monotonicity results are proved. Then 
we move again to the server assignment models. Results for the multiple server 
case are generalized to partial availability of servers. Here we cannot model a 
finite source. We end the chapter by considering a model with a single server 
and a finite source. 

Most results are obtained by proving structural properties for discrete
time models. Typically, we formulate the dynamic programming equation and 
prove certain inequalities by induction, provided that they hold for the cost 
functions. In most models we have an inequality giving the optimal policy, an 
inequality showing monotonicity, and, in the customer assignment models, an 
inequality showing symmetry of the costs, all in n steps. The decision points 
of the discrete-time model are the jump times of the original continuous-time 
model. In fact, the sojourn times of the embedded chain are all exponentially 
distributed with parameter a. By increasing this uniformization parameter we 
show in section 5.3 that the optimal policies in the continuous-time models 
have the same properties as the optimal policies in the discrete-time models. 
If the optimal policy is myopic, that is, the same decision rule is optimal for 
each horizon, then we can prove the continuous-time results by considering a 
fixed a. This is the subject of section 5.2. All models considered in chapter 1 
have myopic optimal policies. 

The main result of appendix A is already discussed. There multi-dimen
sional phase-type distributions are used, and it is shown that they are dense 
in the class of all distributions. In appendix B we deal with one-dimensional 
phase-type distributions. By the Markovian structure of our models, we cannot 
deal with general service time distributions. To prove results for (service time) 
distributions with monotone failure rates, we need a characterization for the 
approximating phase-type distributions. This is provided in appendix B. 



4 Introduction 

As we said, our inductive results give conditions on cost functions. For 
several customer assignment models, complete characterizations of the sets of 
allowable cost functions are given in appendix C. 

In some models where optimal policies could not be given, numerical ex
periments were done. Also to provide counterexamples computational methods 
were used. Appendix D deals with these methods. 

Most models of chapter 1 can already be found in the literature. Existing 
results are generalized, for example to finite buffers and to more general cost 
functions. Detailed discussions of the existing literature can be found in the 
appropriate sections of chapter 1. The main generalizations of the chapters 2 
and 3 are the dependent arrival processes. Chapter 5 adapts existing results 
for use in the models of chapters 1, 2 and 3. Also in the appendices several 
new results are presented. 



Chapter 1 

Models with Markov Arrival Processes 

1. 1. Markov Arrival Processes 

We start this chapter by introducing the arrival process. 

1.1.1. Definition. (Markov Arrival Process) Let A be the countable state 
space of a Markov process with transition intensities Axy with x, y E A. When 
this process moves from x to y with probability qxy an arrival occurs. We call 
the triple (A,>..,q) a Markov Arrival Process (MAP). 

Arrival processes with the arrivals on the jumps of a Markov process were 
first introduced by Rudemo [61]. For computational results we refer to an 
article by Neuts [51] and to chapter 5 of his latest book [53]. 

With the MAP the departure process of most queueing systems with ex
ponentially distributed sojourn times can easily be modeled, which can then be 
used as input to another system. As an example, take the MIMll queue with a 
Poisson(~) arrival stream and service intensityµ. Construct the MAP (A,>.., q), 
corresponding to the departures, as follows: take A = { 0, 1, ... }, Aii+l = ~ and 
Aii-l = µ if i ~ 1. All other transitions have intensity 0. Take qii+l = 0, 
qii-1 = 1. 

Now we show how to model a phase-type renewal process with an MAP. 

Phase-type renewal processes. Assume we have a renewal process with 
independent interarrival times of phase-type, as discussed in Neuts [52]. Phase
type distributions are defined as follows. We have a Markov process with m+ 1 
states, where state m + 1 is absorbing, the other m states are transient. The 
transition intensity from state x to y is denoted by txy, O'.x is the probability 
that the system starts in state x. The time until absorption is the phase-type 
distribution. Assume O'.m+i = 0, i.e. there is no atom at 0. To model this 
renewal process with an MAP (A,>.., q), we have to take the parameters as 
follows: A = {1, ... , m }, Axy = txy + txm+10'.y and qxy = (txm+10'.y )/(txy + 
txm+1ay)- We see that when the original state moves tom+ 1, the process is 
immediately restarted and moves to state y with probability ay. 

Also the Markov Modulated Poisson Process (MMPP) can be modeled 
with an MAP. 
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Markov Modulated Poisson Process. An MMPP is governed by a Markov 
process with state space A and transition intensities jxy• When the system is 
in state x customers arrive with intensity µ.,. As this does not change the 
arrival process we can assume j.,., = 0 for all x. This process can easily be 
modeled with an MAP (A,.\, q): take 

A=A., if X = y, 
otherwise 

d _ { 1 if x = y, an q., -
Y O otherwise. 

The MMPP is often used, both theoretically and practically, as it is easy to 
implement. However, models like the MIMll queue above can not be modeled 
with it. More details on the MMPP are given in Asmussen & Koole [3]. 

It can be shown that the class of MAPs is dense in the class of all arrival 
processes. This is shown in appendix A. The approximating MAPs used there 
have bounded rates in each state, i.e. I:Y Axy :S; 1 for all x for some constant 
1 . By adding transitions from x to x with q.,., = 0 we can modify the MAP 
such that I:Y Axy = 1 in each x. This is assumed throughout. 

1.2. Symmetric customer assignment model 

Now consider the following model. Customers arrive according to an MAP to 
a system consisting of m parallel queues. On arrival the customers have to be 
assigned to one of the queues. This assignment may depend on the state of 
the MAP reached at the arrival instant, and on the previous queue lengths. 
Queue j has a buffer of size Bj, including the customer being served. We write 
B = (B1 , ... , Bm)• It is not allowed to assign a customer to a full queue, 
unless all queues are full. Each queue has a server which serves with rate µ. 
Our goal is to show that each arriving customer should be assigned to the 
shortest non-full queue, for various objective functions. 

The total transition rate out of each state is bounded by ,+mµ. Now the 
system can be seen to operate as follows. The time between two transitions 
is exponentially distributed with parameter a :::: 1 + mµ. The transitions at 
the jump times have probabilities proportional to their rates. Central in our 
approach is the analysis of the Markov chain on the jump times, the embedded 
Markov chain. This method is called uniformization. (For more details, see 
chapter 5.) 

At a jump, the probability of a transition from x to y in the arrival pro
cess is Axy/a. The probability of a departure at a queue is µ/a, the arrival 
probabilities remain q.,y. For notational simplicity we assume a = 1, i.e. we 
use the same variables for the embedded discrete-time model as for the original 
continuous-time model. Note that a transition in the MAP and a departure at 
one of the queues cannot happen simultaneously. The state of our model will 
be notated as (x, i), with x EA the state of the MAP and i = (i1 , ... , im) the 
state of the queues, ij being the number of customers in queue j. Then, at 
each decision epoch, with probability Axy the arrival process moves from x to 
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y, giving an arrival with probability q,,y, and there is a (potential) departure 
of a customer at each queue with probability µ. With probability 1 - 1 - mµ 
a dummy transition occurs. Now define v(n ·i as the expected costs over n x,i 

jumps of the embedded Markov chain, starting in state (x, i). The v(n ') can be x,i 

computed recursively, using the following dynamic programming ( dp) equation: 

vrx-+:i~ = LAxy(qxymjn{ify,i+ej)} + (1- qxy)v(y,i))+ 
y 

m 

L µv(x,( i-e J )+) + ( 1 - 'Y - mµ )v(x,i) · 
j=l 

(1.2.1) 

The minimization ranges over all j for which the queues are not full, i.e. for 
which ·ij < Bj. If i = B, add action O with ea = 0. 

Note that there are no immediate costs. The only costs are the v0 , mean
ing that there are costs associated with the state reached in the end. Omitting 
the immediate costs does not restrict generality, but makes the analysis more 
elegant. Also note that relation (1.2.1) is not in the standard dynamic pro
gramming form because the action taken may depend on the current state of 
the arrival process y and not just on x. (In chapter 5 it is rewritten to bring 
it in the standard form.) The following lemma gives relations between the 
expected minimal costs in different states of the model. 

1.2.1. Lemma. If 

and 

W(x,i+eh)::; W(x,i+e,,) for ij, ::; ij,, i + ej, +eh::; B, 

W(x,i) ::; W(x,i+e,,) for i + ej, ::; B 

for i* a permutation of i, i* ::; B 

hold for the cost function w = v 0 , then they hold for all vn. 

(1.2.2) 

(1.2.3) 

(1.2.4) 

For the proof we refer to the proof of corollary 3.3.2, because the model 
studied here is a special case of the model studied in section 3.3. 

Note that the lemma gives conditions on the v 0 , the cost function. Let us 
interpret the equations. Equation (1.2.2) gives the optimal policy. If we have 
to decide between assigning a customer to queue j 1 or to h we have to choose 
j 1 if there are less customers in that queue. Thus amongst the non-full queues, 
the shortest is selected. This policy is called the Shortest Queue Policy (SQP). 
The SQP tries to balance the number of customers in the queues. 

Equation (1.2.3) and (1.2.4) are needed to prove (1.2.2). The former gives 
a general objective: fewer customers is better. The latter shows that the value 
function is symmetric, even though the buffer sizes can be different. 

We assume that the costs are bounded, either from above or below. This 
ensures that, in the continuous-time model, the costs at time T, for all T, are 
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well defined. By (1.2.3), the costs are bounded from below by vfx,o) for fixed x, 
meaning that the assumption is not very restrictive. We assume it throughout 
this chapter. Now we can prove that the SQP minimizes the costs at time T, 
using corollary 5.2.2. 

1.2.2. Theorem. For all T, the SQP minimizes the costs at T (from O to T) 
for all cost functions satisfying (1.2.2) to (1.2.4). 

It remains to study the cost functions that satisfy the conditions. An 
obvious cost function is 11(x,i) = i1 + · · · + im = Iii, meaning that the SQP 
minimizes the total number of customers in the system in expectation, both 
at the time horizon T and from O to T. Another cost function that satisfies 
the conditions is v( x,i) = maxj{ ij }, the maximum queue length. Note that 
the dependence on the state of the arrival process can be quite general: if 
we associate costs Cx with state x, cost functions like vf x,i) = Cx + Iii and 
v(x,i) = Cx maxj{ ij} for c,, 2: 0 are allowed. In fact, a necessary and sufficient 
condition is that for x fixed the costs must be weak Schur convex in i, as shown 
in appendix C. Not only v(x,i) = Iii but also vfx,i) = I{lil > s} is allowed for 
all s. (I { ·} is the indicator function.) This means that the SQP minimizes 
the probability that there are more than s customers in the system at T, i.e. 
the SQP stochastically minimizes the number of customers in the system. It 
is easy to see that if 11(x,i) = C(x,i) satisfies (1.2.2) to (1.2.4), so does v(x,i) = 
l{c(x,i) > s}. This means that each cost function which is minimized by the 
SQP in expectation at T is minimized stochastically too. Summarizing, the 
SQP minimizes all Schur convex functions stochastically. 

The first to prove the optimality of the SQP for minimizing the number 
of customers in the system, was Winston [82], in 1977. He assumed Poisson 
arrivals and infinite buffers. Weber [75] extended this to arbitrary arrivals, but 
his argument for service time distributions with an increasing failure rate was 
shown to be false in Sparaggis & Towsley [68]. Whitt [81] showed that the SQP 
is not optimal for a model with U-shaped failure rates. Proposition 8.3.2 of 
Walrand [74] gives a coupling proof for the exponential server case. Another 
proof of the pathwise optimality of the SQP is given in Hordijk & Koole [22]. 
We give yet another coupling proof based on dynamic programming in section 
1.5. In Hordijk & Koole [21] finite buffers are introduced. There the number of 
departed customers is considered, rather than the number of customers in the 
system. Blocking is allowed. This model is discussed in section 1.6. The model 
of Towsley et al. [71] is exactly the model studied here. Johri [31] and recently 
Menich & Serfozo [46] weakened the conditions on the arrival and service rates. 
Similar conditions are studied in chapter 3. Finally, Sparaggis & Towsley [68] 
obtained the result for service times with an increasing likelihood ratio. 

As said, in section 1.6 we consider a model in which the reward is related 
to the number of departed customers. Other customer assignment models can 
be found in section 1.3 to 1.9. In chapter 2 we generalize the present result to a 
model in which a certain dependency of the arrival process on the state of the 
queues is allowed. In chapter 3 we study models with different service rates for 
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different queues. There we give a partial characterization of the optimal policy. 
Together with this, assumptions on arrival and service rates are generalized. 

1.3. Customer assignment model without waiting room 

When we drop the condition that the service rates must be equal in each 
queue, we get an interesting problem. Numerical computations indicate that 
there is no optimal policy with a nice structure; for example the optimal policy 
depends, in the case of Poisson arrivals, on the arrival rate. In chapter 3 we give 
a partial characterization of the optimal policy using dynamic programming, 
and there we go into more details on the numerical results obtained by various 
researchers. Here we consider a special case where the optimal policy can be 
completely described, namely the case where there is, besides the customer in 
service, no space in the queues, i.e. B = (l, ... , 1). Queue j has a server with 
service rate µj, and we take µ1 2:'. · · · 2:'. µm for convenience. We show that 
for various cost functions it is optimal to assign each arriving customer to the 
fastest available server. We call this policy the Fastest Queue Policy (FQP). 

The first to address this problem was Seth, whose paper [64] appeared in 
the same year as Winston's seminal paper on the SQP [82], 1977. He analyzed 
the model with m = 2 servers and Poisson arrivals. Then there are only 
two policies to be considered, for which the stationary distribution is easily 
computed. The FQP minimizes the blocking probability. Derman et al. [17] 
generalize this result to multiple servers and general arrivals. Recent results 
for this type of model are discussed in section 3.4, where we consider a similar 
model with class-dependent blocking costs. 

Seth [64] also gives a counterexample to the optimality of the FQP for non
exponential service times. A similar result is obtained by Cooper & Palakurthi 
[14]. These results show the sensitivity of this model to the shape of the service 
time distributions. 

Now we derive the optimality of the FQP. As in the previous section, 
the model is uniformizable. Assume 1 + µ1 + · · · + µm :S 1. The dynamic 
programming formulation is: 

vr,,-\\ = L Axy ( q.,y rryn { v(y,i+e; l} + ( 1 - q.,y )v(y,i)) + 
y 

m (1.3.1) 

LµjV(x,(i-e;)+) + (1- 'Y - µ1 - · · · - µm)v(x,i)• 
j=l 

The minimization ranges over all queues for which ij = 0. Note the similarity 
with (1.2.1). 

The following lemma gives the optimality of the FQP. 

1.3.1. Lemma. If 

W(- "+e ) < W(- "+e ) for i1·, = i 1·2 = 0, 1·1 < 1·2 w,• ;, - w,• iJ (1.3.2) 

and 
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'W(x,i) :::; 'W(x,i+e,,) for ij, = 0 (1.3.3) 

bold for tl1e cost function w = v0 , then tlley llold for all vn. 

Equation (1.3.2) gives the optimality of the FQP. For the proof we refer 
to the proof of the equivalent lemma for the more general model studied in 
section 3.4. There it is shown how the optimality of the FQP follows from a 
more general result on an asymmetric customer assignment problem. Also the 
symmetric model of section 1.2 is a special case of that model. 

1.3.2. Theorem. Tlie FQP minimizes tlle costs at T (from O to T) for all 
cost functions satisfying (1.3.2) and (1.3.3). 

Let us consider the cost functions satisfying the conditions. As in the 
previous section vf x,i) = ·i1 + · · · + im = Iii is allowed. Again, each allowable 
cost function is also minimized stochastically. This gives us, if we take v(0 ') = x,, 
I{lil 2: m}, that the FQP minimizes the blocking probability at each T. 

For the SQP we had a complete characterization of all allowable cost func
tions. Here something similar holds: the allowable cost functions are the set of 
functions increasing in an ordering, which is called the partial sum ordering in 
Chang et al. [12] .. In appendix C the ordering is introduced and the equivalence 
is shown. 

1.4. Discrete-time customer assignment model 

So far we studied a continuous-time model by analyzing a discrete-time one. 
Of course, discrete-time models themselves are also interesting. Unfortunately, 
the model of lemma 1.2.1 is not very realistic in discrete time: arrivals and 
departures cannot happen simultaneously and therefore they are not indepen
dent. The optimality result for this model is more involved than for the model 
without simultaneous events. Therefore we analyze the following simple model. 
There are 2 identical parallel queues with infinite capacity, each with one server. 
When a customer is served during a time slot it leaves the system with prob
ability µ, giving geometric service times with average 1/ µ. The interarrival 
times are geometric with parameter A. The state is denoted by (i,j), with i 
(j) the number of customers in queue 1 (2). 

The dynamic programming equation becomes: 

1)0~~ =Amin {µ2vni-l)++1,(j-1)+) + µ(1- Jt)v[(i-1)++1,j)+ 

(1 - µ)µv(i+l,(j-1)+) + (1 - µ)211(i+l,j), 

/L2V((i-l)+,(j-l)++l) + µ(1- µ)v((i-1)+,j+l)+ 

(1 - µ)/tv(i,(j-1)++1) + (1 - µ) 21,(i,j+l) }+ 
(1.4.1) 

(1- ).)(µ2v((i-l)+,(j-l)+) + /t(l - /t)v((i-1)+,j)+ 

(1- µ)µv(i,(j-l)+) + (1- ft)2,v0,j))· 
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Note that if a queue is empty there is no departure even if an arrival occurs at 
that queue. We have the same equations as in the model without simultaneous 
events: 

1.4.1. Lemma. If 

W(i+l,j) ::; '11'(i,j+l) for i ::; ], 

and 

hold for the cost function v0 , the11 they hold for all v n. 

(1.4.2) 

( 1.4.3) 

( 1.4.4) 

The proof can be found in chapter 4. The optimal policy is not immedi
ately clear from the equations. In the proof however it is shown that for i ::; j 

we have µ 2v«i-i)++J,(j-J)+) + µ(1- µ)v«i-l)++l,j) + (1- µ)µv(i+l,(j-J)+) + (1-

µ )21'0+1,j) ::; µ2v«i-1)+ ,(j-1)+ +l) + µ(1- /L )v«i-1)+ ,j+l) + (1-µ )µv(i,(j-1)++1) + 
(1 - µ) 2v(i,j+l)' which are the terms in the minimization of the dynamic pro
gramming equation. Thus the SQP is optimal. 

1.4.2. Theorem. The SQP minimizes the costs at each n far all cost functions 
satisfying (1.4.2) to (1.4.4). 

The equations derived here are equivalent to (1.2.2) to (1.2.4), form = 2. 
Thus the same cost functions are allowed here. 

The generalization to more than 2 queues seems to be straightforward, 
although we did not check that in full detail. When we introduce buffers 
however, problems arise. For example, when some queues are full we have 
to specify the allowable actions and the actual point in time at which the 
arrival occurs; before or after the departure. After the departure seems from a 
modeling point of view the most interesting; this results in a model where we 
decide on the assignment after the departure of the customers. For example, if 
all queues are full, this means assigning to a queue where a departure occurs. 
We conjecture that also in this case the SQP is optimal. If the assignment 
occurs before the departures take place, then the SQP might not be optimal. 

In the next section we return to the study of continuous-time models. 
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1.5. Pathwise optimality 

In this section we want to prove the pathwise optimality of the SQP for the 
continuous-time model of section 1.2. There we showed that the SQP is stochas
tically optimal at T for all allowable cost functions. This is equivalent with 
saying that, for an arbitrary policy R, we can couple the realizations such that 
the costs at T are lower under the SQP. To prove pathwise optimality, we have 
to show that for coupled realizations the SQP has lower costs jointly across 
time. Again, we want to use dynamic programming for our result. However, 
in the dynamic programming recursion we compute expected costs: vn are the 
expected costs after n transitions. We give a similar recursion with random 
variables. 

In the previous sections it was sufficient to know the transition rates. Here 
however we need to know the stochastic behavior and specify the underlying 
probability spaces. In section 1.2 it is argued that our model is governed by 
two independent processes: one governing the jump times and one governing 
the transitions themselves. The jump process is the same as in section 1.2, 
we will not further specify it. The transitions are generated by independent 
uniformly distributed random variables. Assume the current state is (x, i). 
Let U be the r.v. generating the transition at the current jump time. Let 
(j) be the index of the jth smallest component of i. If i(j) = i(j+l), take 
(j) < (j + 1). For example, if i = (2, 1, 0, 1), then (1) = 3, (2) = 2, (3) = 4 
and (4) = 1. Note that i(l) :<;; • · • :<;; i(m), the usual definition of i(·)· Assume 
that the states of the MAP are numbered. The system moves to (y, i + e j) 
if U E [I:z<y Axz, I:z<y A:z:z + Axyqxy) and if action j was chosen in state 
(y, i). The system moves to (y, i) if U E [I:z< A:z:z + Axyqxy, I:z<y Axz), and 

y -
to (x, ('i - eui)+) if U E [, + (j - 1)µ, 1 + jµ). A dummy transition occurs 
if U E [, + mµ, l]. Note that the actual coupling can be found in the term 
on departures: in different states, departures at the jth longest queue in both 
models are coupled. Although the method of proof is different, this is the same 
coupling as in Wah-and [74] and Hordijk & Koole [22]. 

Let Un, n 2: 1, be i.i.d. random variables, uniformly distributed on [O, l]. 
Choose random variables v'i~,i)' for all x and 'i on the same probability space, 
and define v'i~,i), n 2: 1 by the following recursion: 

mtn{v;;,i+e;)} if Un+l E [ L Axz, L Axz + Axyq:z:y), yEA 
J z<y z<y 

v;;,i) if Un+l E [ L Axz + Axyqxy, L Axz), yEA 
V,n+l -(:z:,i) - z<y z5,y 

v;n (:z:,(i-e(j))+) if Un+l E [,+(j-1)µ,,+jµ), j = 1, ... ,1n 

Vi~,i) if Un+l E [,+mµ,1] 

The allowable actions are the same as in section 1.2. 
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The minimization in the recursion is taken on each sample path. In general 
this minimum need not be attained by a unique action. In the next lemma we 
show that, in this case, it is attained by the same action in each state, namely 
that action that assigns to the shortest queue, which gives the optimality of 
the SQP for the recursion. 

1.5.1. Lemma. If 

and 

W(x,i+e11 ) S W(x,i+e;z) for ij, S ijz, i + Cj1 + Cjz S B, 

. W(x,i) S W(x,i+e11 ) for i + Cj, S B, 

for i* a permutation of i, i* S B 

hold for the cost function W = v0 , then they hold for all vn. 

(1.5.1) 

(1.5.2) 

(1.5.3) 

The proof of lemma 1.5.1 can be found in chapter 4. To understand the 
meaning of this lemma, condition on a realization of the jump times. Number 
the r.v.'s governing the transitions in reverse and condition also on them. Then 
the lemma tells us that the costs are minimized by the SQP. Note that the 
coupling is implicit in the recursion; for all policies the same Un are used. Thus 
the lemma shows that the costs are lowest under the SQP for each realization. 
This gives of course the optimality at each T but also the optimality over the 
whole path. 

1.5.2. Theorem. The SQP minimizes the costs pathwise for all cost functions 
satisfying (1.5.1) to (1.5.3). 

The costs are allowed to be random variables. Apart from that the condi
tions are similar to the conditions of the previous sections. 

Note that from the pathwise optimality it also follows that the sum of the 
waiting times of the first n customers is minimized stochastically by the SQP. 
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1.6. Customer assignment model with rejection 

Here we study a model which is similar to that of section 1.2. However, the 
policies and the type of cost functions studied are different. Concerning the 
policies, it is allowed to send a customer to a full queue, meaning that it is 
rejected. By introducing an extra queue without waiting room in the buffer, 
we can add a rejection option in each state. The type of cost functions studied 
here is concerned with the number of customers that have already departed. 
This is the model studied in Hordijk & Koole [21], but we choose to prove it 
a little differently. In view of the objective it would be appropriate to have 
a model with rewards, but in order to agree with the other models we study 
costs. We add an extra variable to the state space (.T, i), which counts the 
number of departed customers, i.e. if a departure occurs at queue j the system 
moves from ( x, i, k) to ( x, i - e j, k + 1). The dynamic programming equation is 

vc'x1:i\) = L Axy ( qxy nvn{ v(y,i+ejt\B,k)} + (1 - q.,y )v(y,i,k)) + 
y 

m 

µ L (8i; 11(x,i-ej,k+l) + (1 - 8i;)11[~,i,k)) + (1 - 1 - rnµ)v(x,i,k)· 
j=l 

(1.6.1) 

Because of the rejection option the minimization ranges over all j. Of course, 
instead of adding the variable k, we could have taken immediate costs. This 
however would only have given results in expectation instead of stochastic 
results. 

The analysis continues as usual: 

1.6.1. Lemma. If 

and 

W(x,i+eh,k) S W(x,i+e 32 ,k) for iii S ij2 , i + ej, + e12 SB, 

W(x,i,k+I) S W(x,i+e;, ,k) for i + eh SB, 

W(x,i+eh ,k) S W(x,i,k) for i + eh S B 

for i* a permutation of i, i* S B 

hold for the cost function v0 , then they hold for all v n. 

( 1.6.2) 

(1.6.3) 

(1.6.4) 

(1.6.5) 

The present model is a special case of the model of section 3.5. Thus 
for the proof of the lemma we refer to the derivation in the beginning of that 
section. Equation (1.6.2) is by now well known; we should assign to the shortest 
queue. Equation (1.6.3) states that the costs are smaller when customers leave 
quickly. Equation (1.6.4) says that a full system is better. Note that it is the 
reverse of (1.2.3); it allows us to include rejection as an action without losing 
the optimality of the SQP. Equation ( 1.6.5) is again symmetry. 

Of course all cost functions satisfying (1.6.2) to (1.6.5) are allowed, but 
cost functions depending only on i are not of interest here, because (1.6.3) and 
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( 1.6.4) would give that the costs are constant in each state. Of interest here is 
v~x,i,k) = -k, meaning that, when starting in (x, i, 0), the SQP maximizes the 
expected number of departed customers. Also I { k :S s} is allowable for all s, 
giving the following theorem. 

1.6.2. Theorem. The SQP maximizes the number of departed customers 
between O and T stochastically. 

1. 7. Series of parallel processors 

A type of model related to the symmetric customer assignment model is the 
following, introduced by Katehakis & Melolidakis [33]. We have a series of m 

groups of components, group j consisting of Bj components. The system is up 
when at least one component in each group is functioning. New components 
arrive according to an MAP. The problem is how to assign the arriving compo
nents to the groups. Assigning a component to a group in which all components 
are functioning means that the component is lost. First we study a model in 
which all components are subject to failure, all with the same intensity. This 
is the model studied by Katehakis & Melolidakis. Then we consider the case 
where only the working components can fail. 

For the first model we assume that Bj is finite for each j. Let 1 + (B1 + 
· · · + Bm)µ :S l. The dynamic programming equation is: 

V(x'.i\ = LAxy ( q,,y mJn{ V(y,i+eJAB)} + (1 - qxy )v(~,i)) + 
y 

m 

µ L ijV(x,i-eJ) + (1- 'Y - (i1 + · · · + im)Jt)v(x,i)· 

j=l 

As in the last section the minimization ranges over all j. 

1. 7 .1. Lemma. If 

W(x,i+e11 ) :S W(x,i+e,i) for ij, :S ijz, i + ej, + eh :S B, 

W(x,i+e11 ) :S W(x,i) for i + ej, '.S B 

and 

W(x,i) = W(x,i*) for i* a permutation of i, i* :S B 

hold for the cost function v0 , then they hold for all vn. 

(1.7.1) 

(1. 7.2) 

(1. 7.3) 

(1. 7.4) 

The proof can be found in chapter 4. It is interesting to note that for the 
proof of (1. 7.2) we do not need (1. 7.3), because of the fact that each component 
is handled in exactly the same way. Therefore we need (1.7.3) only to see that 
the optimal policy does not reject arriving components. If sending a component 
to a full group were not allowed, as in section 1.2, we could omit (1.7.3). In 
lemma 1.2.1 this cannot be done, as we need (1.2.3) in the proof of (1.2.2). 

Equation (1.7.3) is the reverse of (1.2.3), and is again due to the service 
mechanism. 
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1.7.2. Theorem. Tlle SQP minimizes tlle costs at T (from Oto T) for all 
cost functions satisfying (1, 7,2) to (1, 7,4), 

One function we are interested in is v(0 .. ) = 1{3j with ij = O}. This cost x,, 
function is indeed allowable, giving that the SQP minimizes the probability 
that the system is down. If the system is up when there are k out of n groups 
functioning, rather than all n groups, we can take v(0 .1 = 1 if there are more x,, 
than k non-empty groups in i, and O otherwise. This cost function is also al-
lowable, thus the SQP maximizes also in this k-out-of-n system the probability 
that the system is working. A related cost function is 1{3j with ij < k }. This 
is also an allowable choice, corresponding to a system in which each group 
much have at least k working components. These results were also obtained by 
Katehakis & Melolidakis [33]. 

Now we consider a similar model, not studied in [33], in which only them 
components required for the system to function can fail. This means that no 
component fails if the system is down. If we want to maximize the probability 
that the system is up at T, the SQP might not be optimal, as the following 
example shows. Take m = 2, µ = ..\ = 1 and T = 2. With the computational 
method described in appendix D, which amounts to computing the dynamic 
programming equations for a large uniformization parameter, we computed 
the optimal policy. It followed that it is optimal in state ( 0, 1) to assign new 
components to group 2. Customers arriving after 0.967 are assigned to group 1. 

However, if we look at the expected time the system is up from O to T 
the SQP is optimal. To show this, we have to introduce immediate costs. We 
prefer to incur all costs together at T, in a way similar to the model of the 
previous section. Therefore we add an extra component to the state space, 
which is raised by 1 each time a component fails. The dynamic programming 
equation is: 

L Axy ( qxy ll~ln{ 'U(y,i+e;/\B,k)} + (1 - qxy )vfy,i,k)) + 
y 

m 

µ L vfx,i-e;,k+I) + (1- 'Y - mµ)vfx,i,k) if ij > 0 for all j, 
j=l 

L Axy ( qxy mjn{vfy,i+e;/\B,k)} + (1 - qxy)vfy,i,k)) + 
y 

(1 - 7)vfx,i,k) if ij = 0 for some j. 

Again, the minimization ranges over all j. 

1. 7.3. Lemma. If 

m 

L W(x,i-e;, ,k+l) ~ mw(x,i,k) for i 2: e, 
ji=l 

(1.7.6) 
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W(x,i+e11 ,k) ~ W(x,i,l,) 

W(x,i,k+I) ~ W(x,i,k) 

17 

(1.7.7) 

(1.7.8) 

for i* a permutation ofi, i* ~ B(l.7.9) 

hold for the cost function v 0 , then they hold for all vn. 

The proof can be found in chapter 4. As in the first model of this section, 
we only need (1.7.7) to know that we should not use the rejection option. As 
in the result of the previous section, we can take v(0 . k) = -k, giving that the x,i, 
SQP maximizes the expected number of failed components. However, we are 
interested in the time the system is up. But, components only fail if the system 
is up, with rate mµ. Thus the policy that maximizes the number of departures, 
also maximizes the time that the system is up. 

1. 7.4. Theorem. The SQP maximizes the expected time that tlie system is 
up between O and T. 

As in section 1.6, the second and third equation give, for cost functions 
only depending on i, constant costs. Thus vf x,i,k) = -k is the only cost function 
of interest. 

In Koole [39] the same model is studied, but there the queue to which 
an arrival is assigned is determined at the time of the previous arrival. This 
models the repair at the spot by a repairman, and results in a model with a 
specific form of delayed information. Similar results as for the current model 
are derived. 

1.8. Customer assignment model with workloads 

The information available to the controller in the model of section 1.2 are the 
numbers of customers in the queues. Here we study a model in which the 
amount of work in the queues, the workload, is known. The characteristics 
of the model are as follows. The service times of all customers are identically 
independently distributed, the controller assigns not knowing the actual ser
vice times, and the servers all work at the same constant speed c. Daley [15] 
showed that a variant of the SQP, the Slwrtest Workload Policy (SWP), min
imizes the total workload at each T. In fact, he shows with forward induction 
that the workload under the SWP is weakly submajorized by the workload of 
each policy, giving the stochastic optimality for each Schur convex cost func
tion. (Appendix C deals with majorization.) Foss [18] obtains the same result. 
Also Wolff [84] shows that the SWP minimizes the workload, although he only 
compares the SWP with policies that are not allowed to depend on the work
load. 

We also prove the optimality of the SWP, again with dynamic program
ming. However, as decision points we do not take the jumps of a Poisson 
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process but the actual arrival instants. Thus, technically speaking, we condi
tion on the arrival process. We do this to avoid technical problems: when the 
sojourn time between two events is constant, the amount of work done in each 
queue is also a constant, thus simplifying the analysis. In general, many models 
with arrivals according to MAP's can also be handled by taking arrivals at de
terministic times. Exceptions are the second model of the previous section and 
several models of chapter 3, the reason being that even for arrivals according 
to MAP's the optimal policies are not myopic. We chose to use the MAP as 
much as possible, to link on with the forthcoming chapters. 

Now we prove the optimality of the SWP at T. Let Sn be the sojourn 
time between the nth and ( n + 1 )th arrival, counted backward from the time 
horizon, let the amount of work done by a busy server in this time be Un = csn, 

and assume that P is the distribution function of the service times. With i we 
denote the vector of workloads, i E IR~. We have 

1.8.1. Lemma. If 

and 

J Wi+teh dP(t):::; J 'Wi+tehdP(t) for iii :::; ij,, 

Wi :::; Wi+teh fort ~ 0, 

Wi = Wi• for i* a permutation of i 

hold for the cost function w = v0 , then they hold for all vn. 

(1.8.2) 

(1.8.3) 

( 1.8.4) 

Note the resemblance to lemma 1.2.1. The proof can be found in chapter 4. 
In section 3.3 we give a different proof of the optimality of the SWP; there we 
see it as the limiting case of the SQP model with batch arrivals. 

Equation (1.8.2) without the integration, i.e. Wi+te. < Wi+te. for all t, 
Jl - J2 

is not true; this means that it is essential that the controller does not know 
the actual service times of the arriving customers. To construct an example 
illustrating this, take m = 2, u 0 = 2 and v 0(. . ) = i 1 + i 2 , which indeed satisfies 

, 21 ,i2 

the conditions of lemma 1.8.1. Let the service time be equal to 2 a.s. Then 
it is easily seen that, if we take i = (0, 1), t = 1, j 1 = 1 and J2 = 2, then 

VT+te · = v(\ 1) = 1 > 0 = 11(\ 2) = Vf+te · · JI , , J2 

1.8.2. Theorem. The SWP minimizes the costs (stochastically) at T for all 
cost functions satisfying (1.8.2) to (1.8.4). 

The cost functions considered here are functions of IR~. It follows directly 
that again all Schur convex functions satisfy the inequalities. See appendix C 
for an overview of these functions. If we require the inequalities to hold for all 
service time distributions P, then the Schur convex functions are exactly the 
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allowable cost functions, which can be shown in the same way as theorem C.l. 
Note that the statement in the penultimate paragraph of p. 304 in Daley [15], 
on the functions that respect weak majorization, is not correct: for example 
indicator functions of allowable cost functions are in general not convex. 

For the SQP we were able to prove pathwise optimality. Here however, as 
stated in Wolff [84], we have the striking result that the SWP minimizes the 
total workload stochastically but not pathwise. To construct a counterexample 
to the pathwise optimality, take a model with initial workload i = (1, 2) and 
speed c = l. For the service time B we have lP(B = 1) = lP(B = 2) = ½- The 
first customer arrives at t = 0, the second at t = l. No more arrivals occur 
before t = 4. When we fix the policy used, there are four different realizations 
up to t = 3, each with probability ¼- To get a pathwise ordering, we have to 
combine the realizations for the SWP and an arbitrary policy R such that the 
SWP is better for all t. Take R such that we start with assigning to the longest 
queue, but the second customer is assigned to the shortest. Denote with bi (bi) 
the service time of the ith arriving customer in the model that uses the SWP 
(R). At t = 1 the amount of work is 1 + b1 + b2 (1 + b1 + b2 ). Therefore we 
have to couple b1 = b2 = 1 with b1 = b2 = l. Now we show that if b1 = 1 and 
b2 = 2, then there is no choice of b1 and b2 which is pathwise better. Take first 
b1 = 1 and b2 =· 2. Then, at t = 3, the system ruled by R is empty, but not 
the model under the SWP. For both eventualities with b1 = 2 we have that the 
amount of work just after the first arrival is larger under the SWP. 

Note that if we are allowed to let the coupling depend on tin this example, 
we find the optimality of the SWP. This is equivalent to saying that the SWP is 
stochastically optimal in this example, which follows also from theorem 1.8.2. 

In the models of the next chapter where customers move through a riet
work, it is of interest to consider the number of departed customers instead of 
the workloads. This model was studied by Wolff [83]. First he remarks that 
the SWP is stochastically equivalent to a single MIMlm queue with FCFS dis
cipline. Then he shows that FCFS is better than any policy in the model with 
parallel queues, using a coupling argument. In the coupling argument service 
times are given to the customers the moment they start service. This means 
that the controller is allowed to assign knowing the number of customers in each 
queue, and the remaining service times of the customers presently in service. 
A policy in this class is the SQP, but not the SWP or other policies depending 
on the workloads. This result is generalized to the class of all policies which do 
not depend on the service time of the arriving customer in Koole [36]. These 
results are all pathwise. 
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1.9. Customer assignment model without information 

In the previous section we have shown that the SWP minimizes the total 
amount of work in the system stochastically, at any T. For exponential service 
times, we have seen in section 1.2 that the number of customers is minimized 
by the SQP. In the latter model the workloads are not known to the controller, 
i.e. in the model where the SQP is optimal, the queue-length model, the con
troller has to decide based on different information than in the workload model 
where the SWP is optimal. Note that because the SQP minimizes the number 
of customers stochastically it also stochastically minimizes the amount of work 
still to be done in the class of allowable policies. An interesting question is 
if either the SWP or the SQP is better with respect to minimizing the rmm
ber of customers in the system. This question is answered by Wolff [83]. As 
mentioned in the previous section, he shows that the SWP is better than all 
policies that do not depend on the workload, amongst which is the SQP. 

Besides the number of customers or the workload we have two more ob
vious models with a different amount of information. The first is where you 
have no information at all. For exponential service times and an initially empty 
system we show at the end of this section that each arriving customer should 
be assigned to each queue with probability ~ to minimize the number of cus
tomers, and thus the total workload. We call this policy the Equal Splitting 
Policy (ESP). When we know the previous assignments but not the state of 
the system the Cyclic Assignment Policy (CAP) minimizes the number of cus
tomers; proposition 8.3.4 of Walrand [74] has a simple proof for the case with 
exponential service times, a proof for IFR service times ( see appendix B for a 
definition of IFR) can be found in Liu & Towsley [42]. 

From standard results in Markov Decision Theory, we know that even if 
the class of policies in the models depending on the queue lengths are allowed 
to depend on the whole history, the SQP remains optimal. This means that 
the workload under the SQP is smaller thah under the CAP (and the ESP). 
It is clear that the ESP is worse than the CAP. Thus if we list the policies in 
increasing order of expected workload, we have: SWP, SQP, CAP, and ESP. 

We end this section with showing that the ESP minimizes the number of 
customers in the system, when there is no information available. For results 
for cost function related to the workloads, we refer to Chang et al. [11] and 
Chang [10]. A full proof of the result is given in Koole [38]. As this proof is 
based on forward instead of backward recursioh, we will only sketch it. 

We confine ourselves to two queues. Consider first a single model, with 
assignment vector (p,l - p) with p 2: ½- Let QP(n) = (Qf(n),Q~(n)) be 
the queue lengths directly after the nth event (which can be an arrival or a 
(potential) departure from one of the queues), and initial state QP(O). Define 
for all i,j,s E lNo 

A(i,j,s) = {(x,y) E IN~ Ix~ i,y ~ j,x +y ~ s}. 
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Now let 
P]:(i,j, s) = IP((Qf(n), Q~(n)) E A(i,j, s)). 

Take Pt( i, j, s) = 1 for all i, j, s, which corresponds to starting with an empty 
system. Then it can be proven, with forward induction, that 

P}:('i + j,i + k, s) 2 PJ:(i,i + j + k, s) (1.9.1) 

for all i,j,k,s,n 2 0. In a way this shows that if queue 1 has a higher assign
ment probability than queue 2, then this will result in a stochastically larger 
queue length. This interpretation becomes clear if we take k = 0. Having shown 
(1.9.1), we can compare two systems with assignment probabilities q 2 p 2 ½
Again with forward induction it can be shown that, for all i, j, s, n 2 0, 

PJ:(i,i+j,s) 2 Pi(i,i+j,s). 

For i 2 s this states that the probability of having less than s customers in the 
system at any time is maximized by the ESP. In [38] it is shown how this result 
can be made pathwise, and how it can be generalized to an arbitrary number 
of queues. 

Let us compare the method of proof for the above result with dynamic 
programming. In general, dp determines the optimal action in each state. In 
the current setting, due to the information structure, distributions on states 
would serve as states. Equation (1.9.1) shows that certain distributions do not 
occur, and in those that can occur it is advantageous to have a more balanced 
assignment. 

If we were to apply dp to the model without state information (i.e., with 
distributions as states) then we would find the CAP as optimal policy. Al
though the CAP uses no state information, it uses the previous assignments to 
determine the current. Note that Bernoulli policies use no information at all. 

1.10. MAP's with multiple customer classes and server vacations 

In the models we study after this section, we have multiple customer classes 
and server vacations. Therefore we add a mark to each arrival generated by the 
MAP to model the class of an arriving customer or the availability of a server. 
Let q;Y be the probability of an arrival in class k, given a transition from x to 
y. Then an arrival with mark k, 1 :::; k :::; m, denotes the arrival of a customer 
in class k. In some of our models servers can go on vacation at random times. 
There are s servers. With an arrival in class k, m + 1 :::; k ::=; m + s, an event 
for server k - m is meant; if the server is working he goes on vacation and vice 
versa. We assume ~:~;" q;Y :::; 1. Simultaneous arrivals cannot occur. To give 
a complete description of the current state of the system we have to specify 
the state of the arrival process, of the servers and of the queues. Thus, besides 
the state of the arrival process x and the state of the queues i we have to add 
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a variable to the state of the system denoting the availability of the servers. 
Because we are interested in optimally assigning the available servers, but not 
in controlling the number of servers, it is convenient to make this variable part 
of the arrival process. Thus, add a vector z = (z1, ... , zs) of 0-1 variables to 
the state of the MAP. Server k is available if and only if Zk = l. Concerning 
the arrivals of customers, we want to address questions like: when is the first 
time that the system becomes empty after N arrivals? To deal with this type of 
question, we also would like to identify the state of the arrival process with the 
numbers of arrived customers. To do so, also add a variable n = ( n1, ... , nm) 
to the state of the MAP, where nk is the number of customers that have arrived 
in class k. Assume we have an MAP (A,>.., q). The transition intensities of the 
new arrival process (A.),q) with state space A= {(x,z,n)} become: 

qm+k = { 1 
(x,z,n)(y,z* ,n) 0 

if Zj = zJ, j -I k, z;, = (1 - ziJ+ 
otherwise 

-k - 0 
q(x,z,n)(y,z,n) -

The arrival process just defined is again an MAP. Thus we have the following 
equivalent definition: 

1.10.1. Definition. (Markov Arrival Process) Let A be the countable 
state space of a Markov process with transition intensities Axy with x, y E A. 
When this process moves from x to y, with probability q;Y an arrival in class 
1 ::::; k ::::; m occurs, and with probability q~+k an event with server 1 ::::; k ::::; s 
occurs. There are sets Aj', ... , A! C A such that server k is available if and only 
if x E A1o, and sets Afn, ... , A~n C A, n E IN, such that if x E A't,n then there 
have been nor more arrivals of class k. We call the triple (A,>.., q) an MAP. 

Section 1.1 handled MAP's with only one customer class and without 
server vacations. We showed there how to model various types of arrival pro
cesses. If the arrival streams in different classes are independent of each other 
we can take the superposition of the m processes (i.e., the process with as 
state space the product space, in which each component is independent of the 
others), with the arrivals in process j having marks j. This is again an MAP. 

The result in appendix A on the approximation of arrival processes is on 
marked arrival streams, thus the weak convergence of MAPs to general arrival 
processes holds for the present model too. 
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1.11. Server assignment model with a single server 

In this section we study a model in which a single server is to be assigned to 
one of m customer classes. Each customer in class j has an exponential service 
time with intensity Jlj. At each decision epoch the server can be reassigned. 
Customers arrive in the m classes according to an MAP. Server vacations are 
not interesting because we have only one server, therefore we do not model 
them. This model has been studied extensively, mainly for linear costs, i.e. 
a cost function in which every customer of class j adds Cj to the costs. It is 
well known that the customers should be served in decreasing order of JljCj, 
according to the Jlc-rule. This result can be found in Baras et al. [4] and 
Buyukkoc et al. [8], the last paper using a very simple interchange argument. 
Here we also show that the /LC-rule is optimal, using dynamic programming. 
The µc-rule minimizes the costs stochastically only in the special case that 
the service rates and the costs are both decreasing. An interesting related 
model is that of Righter & Shanthikumar [57]. They have DFR service time 
distributions and consider the number of successful departures. With Pi the 
probability that a departure in queue j is successful, they show that the µp
rule is optimal. This result holds stochastically, in all cases. Later on in this 
section we also consider DFR service times, showing that the µc-rule, with µj 
the current failure rate of a customer, is still optimal. 

Takeµ= maxi Jlj. We uniformize, and we assume therefore that ,+Jl:::; 1. 
We consider two models, one in which idleness of the server is allowed and one 
in which it is not allowed. We have as the dynamic programming equation: 

n+l_ · {",\ (~ j 1n +(1-~ j) n )+ v(x,i) - mz1n L.,, xy L.,, qxy 'l (y,i+e;) L.,, qxy v(y,i) 
y j=l j=l 

Jl/V(x,i-ei) + (1 - 'Y - µz)v(x,i)} = 
m m 

LAxv(Lq{yv(y,i+e;) + (l- Lq{y)v(y,i))+ 
y ~l ~l 

min {µ1v(x,i-ei) + (µ - µ1)v(x,i)} + (1 - 1 - Jl)v(x,i)· 

The minimization ranges over all l with i1 > 0. If idleness is allowed, action 
0 (with µo = 0) has to be added to the actions. Now we have the following 
lemma: 

1.11.1. Lemma. If idleness is not allowed or is suboptimal in each state and 

µj1W(x,i-eh) + (µ- µj,)W(x,i) '.S µj,W(x,i-e;,) + (µ- Jlj,)W(x,i) (1.11.1) 

for J1 < )2 and ij,, ij2 > 0 

hold for the cost function v 0 , then they hold for all vn. 
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Thus, if idleness is not allowed, we have the optimality of the policy that 
assigns to the non-empty queue with smallest index. We call this policy the 
Smallest Index Policy (SIP). Later on in this section we study a more general 
model. Therefore lemma 1.11.1 follows from lemma 1.11.5. When idleness is 
allowed we have to add monotonicity to obtain the suboptimality of idleness. 

1.11.2. Lemma. If 

(1.11.2) 

holds for the cost function v0 , then it holds for all vn. 

Note that (1.11.2) is a special case of (1.11.1), for the cases that Iii~ 2, by 
giving action O the lowest priority. For the proof, we refer to the proof of lemma 
1.11.6. We can have two separate lemmas because we do not need (1.11.2) in 
the proof of (1.11.1). The same approach does not work in most customer as
signment models because monotonicity is needed to prove the inequality giving 
the structure of the optimal policy. The same holds for the multiple server 
model of the next section. We summarize our results for the continuous-time 
model. 

1.11.3. Theorem. The SIP minimizes the costs at T for all cost functions 
satisfying (1.11.1), when idleness is not allowed. 

1.11.4. Theorem. The SIP minimizes the costs at T for all cost functions 
satisfying (1.11.1) and (1.11.2), when idleness is allowed. 

Remark. In section 1.2 we assumed that all cost functions are bounded. In 
the model of theorem 1.11.3 however, it is natural to consider cost functions 
of which both the positive and negative parts are unbounded. For example, if 
m = 2, vf x,i) = i1 - i2 is an allowable cost function. In this case finiteness of 
the costs at T can be shown when the costs are v-bounded, as is proved in the 
first part of the proof of theorem 5.3.2. 

Also in the case of an infinite planning horizon, there are complications. 
Due to the unboundedness of the costs we cannot use the results for negative 
dynamic programming, as suggested in chapter 5. In the case of Poisson arrivals 
v-geometric recurrence can be shown, giving average and Blackwell optimality 
of the SIP. The v-geometric recurrence of the discrete-time model is shown by 
Spieksma [70]. Her results are used in Dekker & Hordijk [16] to verify their 
conditions for Blackwell optimality in the continuous-time semi-Markov model. 

Now we study the cost functions. In general we have the following char
acterization. Define Cijv(0 ·i = v(0 ·+ ·) - v(0 ')• Then (1.11.1) is equivalent x,i x,i e1 x,i 
to 

(1.11.3) 
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and (1.11.2) to 
(1.11.4) 

A simple cost function satisfying both conditions is the following: v(:i:,i) = 
I{lil > O}. As we minimize the expected cost for this function, we minimize 
the probability that there are any customers present at time n. When there 
are no arrivals, this coincides with minimizing the makespan stochastically. 
Of course this is of no interest here, as all work conserving policies minimize 
the makespan. The analysis of this type of cost function is of interest to the 
multiple server case. 

A cost function of interest here is the following: vc\,i) = ~;:l Cjij. It is 
easy to see that this function satisfies (1.11.3) if and only if µ1c1 2: · · · 2: µmcm. 
This means that the µc-rule minimizes the costs in expectation. If idleness is 
allowed we have to add Cj 2: 0 to make the cost function satisfy (1.11.4). In 
the customer assignment models studied previously in this chapter every cost 
function that was minimized in expectation was also minimized stochastically. 
Here this is not the case. To analyze the stochastic optimality, first assume 
Cj 2: 0. We distinguish three cases. 

1. µ1 2: ··· 2: µm, c1 2: ··· 2: Cm 2: 0. Now l{~;:1 cjij > k} satisfies the 

conditions too. Indeed, we have v(x,i-e;,) '.S v(x,i-eh) '.S v(x,i)" Therefore 

ll.itv(0x i-e·) 2: ll.hv(0x i-e· )" Together with µit 2: /Ljz we J::iave (1.11.3). 
' Jl ' J2 

2. There are J1 and )2 such that j 1 < )2 and µj 1 < µh. For example, take 
m = 2, no arrivals, i = (1, 1), /L1 = 1, c1 = 5, µ 2 = 2 and c2 = 2. The µc

rule prescribes class 1, however, if we want to minimize IP( i1 c1 + i2c2 2: 6) 
for some T, we should start with class 2. 

3. There are j 1 and J2 such that j 1 < j 2 and cit < ch. For example, take 
m = 2, no arrivals, i = (1, 1), µ 1 = 4, c1 = 1, µ2 = 1 and c2 = 3. Again 
the µc-rule prescribes class 1, but we should choose class 2 to minimize 
IP(i1c1 + i2c2 2: 2) for some T. 

Thus the /LC-rule is stochastically optimal only if /L1 2: · · · 2: µm and c1 2: · · · 2: 
Cm. We call the service rates and costs in this case agreeable. When there are 
no arrivals, the stochastic optimality also follows from Righter & Shanthikumar 
[58], by taking, in their notation, Jj ( Cj) = Cj I { Cj > T}. 

If we do not allow idleness, i.e. when the holding costs can be negative, the 
condition for stochastic optimality is as follows. Take m 1 such that c1 2: · · · 2: 
Cm1 2: 0 2: Cm1 +1 2: · · · 2: Cm. If /ll 2: · · · 2: µm 1 and if µm 1 +1 '.S · · · '.S µm, 

then I{~;:1 Cjij > k} satisfies (1.11.3). 
Several other interesting cost functions, like the expected weighted number 

of late customers and the expected weighted sum of customer tardiness, also 
satisfy the conditions on the cost functions. See Chang et al. [12] for details. 

We change the model as follows. When a customer in queue j is served 
it leaves the system with rate µj, and joins queue f(j) with rateµ - µj. We 
assume that f (j) 2: j-1. If f (j) = j for all j we have the same model as above. 
This service mechanism can be formulated in terms of successful departures. If 
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Pi = µi / µ, then Pi is the probability that a departure is successful. The value 
function becomes 

m m 

V(x-:-i) = L>xy(:Lq{yv(y,i+ei) + (1- Lq{y)v(y,i))+ 
Y i=l i=l (1.11.5) 

mln {µzv(x,i-ei) + (µ - µz)v(x,i-e 1+ef(l))} + (1 - I - µ)v(x,i)· 

Again, the minimization ranges over all l with iz > 0. If idleness is allowed, 
action O (with µ 0 = 0, f (0) = 0 and e0 = 0) has to be added to the actions. 

1.11.5. Lemma. If idleness is not allowed or not optimal in each state and 

µj, W(x,i-e;,) + (µ - µi, )w(x,i-eh +eiuu) :S (1.11.6) 

µj,W(x,i-e;,)+(µ-µh)w(x,i-e;,+ew 2 )) forji <h andii,,ih >0 

hold for the cost function v0 , then they hold for all vn. 

The proof can be found in chapter 4. Similar results for monotonicity hold: 

1.11.6. Lemma. If 

(1.11. 7) 

holds for the cost function v0 , then it holds for all vn. 

The proof can be found in chapter 4. Again we have: 

1.11.7. Theorem. The SIP minimizes the costs at T for all cost functions 
satisfying (1.11.6), when idleness is not allowed. When idleness is allowed, 
(1.11. 7) should be added. 

Similar results are obtained in section 3 of Nain [49]. Actually, he al
lows random routing of unsuccessfully served customers, but, as in the present 
model, only to higher numbered queues. We chose not to model random routing 
so as to keep the notation simple. 

An interesting case we can model is that of a single class of DFR service 
times. We use the characteriz1J.tion of DFR distributions by ph1J.se-type distri
butiops as shown in appendix B. There the transition intensity in each phase 
is taken to be equal. After k phases of service a customer finishes service with 
probability ak or receives one or more additional phases of service with proba
bility 1-ak. If a DFR distribution is approximated by phase-type distributions 
in this way, then the ak are non-increasing. It does not restrict generality to 
take O!k = az fork> l, with l a constant (in appendix B l = rn2 ). 

Consider the following server assignment model. Take rn = l, Pi = ai, 
f(j) = j + 1 if j < rn, and f(rn) = m. The costs are linear with ci = 1 for 
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all j. This cost function satisfies (1.11.6), because the CTj are decreasing. Thus 
the expected number of customer in the system is minimized in expectation by 
serving the customer with the highest failure rate. Using the same argument 
as for the model without routing of customers, it follows that this result holds 
also stochastically. Using a limiting argument, this gives that the number of 
customers in an GIDFRll queue is minimized at T by the policy that serves 
the customer with the least attained service time (the LAST policy). 

Note that customers are generally not served until they leave the system, 
but only until they change phase. For the limiting case this gives processor 
sharing as the service discipline for all customers who have received the same 
amount of service. 

Taking Pj = am-j, f(j) = j - 1 and Cj = -1 shows that MAST (most 
attained service time) maximizes the number of customers in the system. Al
though the Pk are increasing, also v(:z:,i) = I{lil :S s} satisfies the conditions, 
and thus the result holds also stochastically. Note that MAST is equivalent to 
FCFS. 

For IFR service times it is shown in appendix B that the ak are non
decreasing. In this case the above results are reversed. 

1.11.8. Theorem. LAST (FCFS) stochastically minimizes the number of 
customers at T in a GIGll queue in the case of DFR (IFR) service times; 
LAST (FCFS) stochastically maximizes the number of customers at T in a 
GIGll queue in the case of IFR (DFR) service times. 

All these results can also be found in Righter & Shanthikumar [57]. 
We continue with generalizing the above results to models with multiple 

customer classes. To avoid certain technicalities we assume that each class has 
either positive holding costs and a DFR service time distribution, or negative 
holding costs and a IFR service time distribution. From the construction it 
will be clear how to deal with the other two cases; in these cases however the 
condition that f (j) ~ j - 1 can easily be violated. 

Thus assume first that each class has its own DFR service times, class 
n having ln phases, n = 1, ... , r, r being the number of classes. The success 
probability of phase k of class n is ak, the holding costs are c~ > 0, independent 
of the phase. We make a distinction between classes and queues. Now take for 
each class and possible phase a queue, i.e. li + · · · + l,. queues, with JnA, the 
number of customers in the queue corresponding to the nth customer class and 
the kth phase. Of course, we take f(jnk) = )nk+l if k < ln and f(jnzJ = )nln, 
Pnk = ak, and Cnk = c~. Order the queues in decreasing value of PnkCnk· Then 
the µc-rule is optimal. We use a limiting argument to get the result for the case 
of general DFR service times. The optimal policy serves the customer with the 
highest product of holding cost and failure rate. We call this policy again the 
µc-rule. 

As indicated, it is also possible to have customer classes with IFR service 
time distributions and negative holding costs (requiring that idling is not al
lowed). In this case all DFR customers are first served, possibly using processor 
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sharing. Then ( as long as there are no arrivals) the customers with IFR service 
times are served. 

1.11.9. Theorem. The µc-rule minimizes the expected holding costs at T 
if customers have either DFR or IFR service time distributions, provided the 
holding costs for customers with DFR (IFR) service time distributions are 
positive (negative). Idleness is allowed if there are no customers with IFR 
service times. 

For a stochastic result we need that a;: 2: a:: for all k1 and k2 if cn, > Cn2 • 

In the limiting case this means that the failure rate of class n 1 is always higher 
than the failure rate of class n2. This is the case if we have a family of random 
processing times with decreasing failure rate (see for example section 4.2 of 
Weiss [791). 

The results of this section are a superset of those in Koole [37]: there it is 
assumed that f (j) 2: j instead off (j) 2: j - l. 

Remark. Equation (1.11.5) can be written as -v(n+_l) = 1T1v(n ·i + JtT2v(n ·i, x,i x,i x,i 

with T1-v(x,i) = (:Ey>-xy(···))/, and T2v(x,i) = (minz{···})/µ, ifwe assume 
that 1 + µ = l. Here T1 and T2 themselves can be seen as dp operators. In 
chapter 5 it is shown how convex combinations of dp operators result from a 
continuous time model. 

A discrete time model however would typically consist of a departure and 
an arrival event in succession, resulting in a dp equation of the form wn( +1) = 

x,i 
T2T1w(n •i· x,i 

The proof of the lemmas 1.11.5 and 1.11.6 basically consists of showing 
that the equations propagate for T1 and T2 • Of course, this implies that the 
lemmas hold as well for wn, proving the optimality of the SIP for the discrete 
time model. A direct proof of this result can be found in Weishaupt [78]. 

The generalization to other models, as the one with multiple servers (stud
ied in the next section) or the customer asssignment models studied earlier, are 
less direct because in these models there are events which have to be dealt with 
simultaneously. A more systematic study of different types of value function 
based on operators as T1 and T2 here can be foµnd in Altman & Koole [2]. 
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1.12. Server assignment model with multiple servers 

In this section we study again the first model of the previous section, but with 
multiple servers. Server vacations are interesting here and therefore we model 
them as well. It was shown by Bruno et al. [7] that the policy that assigns 
the available servers to the jobs with lowest service intensities, i.e. the jobs 
with the largest expected processing time, minimizes the expected makespan. 
The optimal policy is called LEPT. Weber [76] generalized this to stochastic 
optimality. Giving conditions on the cost functions for LEPT to be optimal, 
for arrivals according to an MAP and arbitrary server vacations, is the main 
subject of this section. The cost function corresponding to the makespan will 
indeed appear to be allowable. Independently, similar results were derived by 
Chang et al. [12]. 

We assume that µ1 :$ · · · :$ µm. As in section 1.10, s is the number 
of servers, and s( x) is the number of servers currently available, i.e. s( x) is 
determined by x, the state of the MAP. We assume 1 + sµm :$ 1, i.e. we 
have uniformized the model. Take µ = µm. An assignment action in ( x, i) 
consists of the s( x) class numbers to which the available servers are assigned. 
We introduce again class 0, µo = 0. If a server is assigned to class O it idles. 
Now we can assume that there will be no more servers assigned to a class then 
there are customers in that class. These actions are called admissible. The 
dynamic programming equation is: 

s(x) 

L (µzk v(x,i-e,k) + (µ - µzk )v(x,i)) + (1 - 'Y - s( X )µ )v(x,i)} = 
k=l 

m m 

LAxy(Lqtyv(y,i+e;) + (1- Lqty)v(y,i))+ 
y j=l j=l 

s(x) 

1 m\n { L (µzkv(x,i-e,k) + (µ- µzk)v(x,i))} + (1- 1 - s(x)µ)v(x,i)• 
1,•••, s(x) k=l 

(1.12.1) 
To make the action unique we can assume li :$ · · · :$ l.,(x)· 

1.12.1. Lemma. If 

µii W(x,i-eh) + (µ - µii )w(x,i) :$ µh W(x,i-eh) + (µ - µh )w(x,i) (1.12.2) 

for ii < i2 both admissible and Iii ~ 2 

and 

(1.12.3) 
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hold for the cost function v0 , then they hold for all v n. 

If the number of customers is s(:,;) + 1 or more and there are admissible 
actionsji, ... ,j8 (x) andji,h,---,is(x) withj1 <ji, then 

s(x) 

L (µjk V(x,i-eik) + (µ - µjk )v(x,i)) 5 
k=l 

s(x) 

µJ; v(x,i-ej*) + (µ - µJ; )vr;,i) + L (µjk v(x,i-ejk) + (Jl - µjk )v(x,i)) 
1 k=2 

is equivalent to (1.12.2). This means that (1.12.2) and (1.12.3) gives us the 
optimal policy. Equation (1.12.3) says that, if possible, no server should idle. 
By (1.12.2) we know that, when there are more than s customers, we should 
serve the group of customers with indexes as small as possible. Thus the SIP, 
which is here equal to LEPT, is optimal. 

As contrasted with the single server case, we need (1.12.3) in the proof of 
(1.12.2). The model here is a special case of the model of section 3.6, thus for 
the proof we refer to the proof of lemma 3.6.1. 

1.12.2. Theorem. The SIP minimizes the costs at T for all cost functions 
satisfying (1.12.2) and (1.12.3). 

Note that the inequalities (1.12.2) and (1.12.3) are the same as (1.11.1) 
and (1.11.2). Thus, (1.11.3) and (1.11.4) characterize again the allowable cost 
functions. However, we have the extra condition /L1 5 · · · 5 /lm. This means, 
in the case of linear costs, that the µc-rule is optimal in the multiple server 
model if µ1 5 · · · 5 µm and µ1c1 2 · · · 2 µmcm. To satisfy the monotonicity 
we assume Cm 2 0. Note that if µ 1 = 0 then (1.12.2) and (1.12.3) give that the 
costs in each state must be equal. 

Now we go into the details of cost fqnctions of the type vfx,i) = l{lil > O}. 
As said in the previous section, we conclude that the probability that there are 
any cust01ners present at T is minimized by LEPT. 

We can modify the system such that it remains empty once it becomes 
empty, by taking vc'/J) = 'Ev Axvv(v,o) + (1 - 'Ev Axv)v(x,o)· Lemma 1.12.l 
still holds for this model. In section 3.6 another approach with the same result 
is taken. Now we can study the probability that the system becomes empty 
before T. This means that the SIP minimizes the length of the busy period. 

As shown in section 1.1, we can model the departure process of most 
queueing systems with an MAP. This way we can model tandem systems, of 
which the center with state i is the last in line, although we cannot let the 
actions taken in the first centers depend on the state of the last center, as this 
would introduce a dependence on the last center. Tandem models with this 
type of dependence are the subject of the next chapter. For tandem systems 
without this dependence, we might be interested in the moment the whole 
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system becomes empty. Now we have to take v(0 ·i = I{lil > 0 or lxl > O}, x,i 
where x is the vector denoting the state of all centers but the last one. This 
gives similar results as above, but now for emptiness of the whole system. 

As argued in section 1.10, we can take sets Ak C A, denoting the set of 
states for which the number of arrivals in all classes at reaching that state 
is k or more. By taking v 0( ·i = I { Ii I > 0 or x (j. Ak} we can study the first x,i 
time after the kth arrival at which the system becomes empty. If there are no 
arrivals after the kth we have the makespan in the release date model of Weber 
[76] and Chang et al. [12]. Note that the conditions on the cost functions in 
Chang et al. [12] are the same as the conditions here. The generalization of 
this section consists of a more general arrival process. 

When considering linear costs, we cannot take c1 = · · · = Cm = 1 unless 
µ1 = · · · = µm. This is not strange, because it is intuitively clear that LEPT 
does not minimize the number of customers at any T. The perhaps more 
logical candidate for optimality, the policy that serves customers with high 
service rates first (the SEPT policy), is not optimal either. This we show with 
the following example. 

Take the following model: s = 2, m = 2, µ 1 = 2 and µ2 = 1. There are 
no arrivals, and -we start with i 1 = 2 and i2 = 1. The objective function is 
the expected number of customers at T. The possible work-conserving policies 
are LEPT which starts serving a class 1 and a class 2 customer at time O and 
SEPT which starts with both class 1 customers. In the continuous-time model 
it is easy to compute the expected number of departed customers L at T using 
the following formula, with a 1 and a 2 the service rates of the customers served 
first, a3 the rate of the other customer (note that a 3 < a 1 + a 2): 

1 + e-(0<1+a2)T _ e-"'1T _ e-"'2T + 

1 -(0<1+0<2)T a1 + 0'.2 -0<aT(l -(0<1+0<2-0<a)T) -e -------e -e . 
a1 + a2 - a3 

The first line in the last expression is the probability that the first departure 
takes place before T. The second line is equal to (1 - e-°' 1 T)(l - e-°' 2T), the 
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probability that both first scheduled jobs finish. The last term is concerned 
with the customer scheduled last. 

Using a small computer program we computed L for LEPT (a1 = 1, 
a2 = a3 = 2) and the SEPT (a1 = a2 = 2, a3 = 1). For T small SEPT is 
better at 0 (for T = 0.1 we have L = 0.380,:::;: 4T for SEPT and L = 0.302,:::;: 3T 
for LEPT as can be expected from the infinitesimal properties). However, for 
T larger, LEPT is better (for T = 3 we have 2.929 for SEPT vs. 2.941 for 
LEPT). Thus there is no myopic optimal policy. Typically, the optimal policy 
is equal to LEPT at time 0 (if Tis large enough), and change to SEPT as time 
goes on: if we are at T - c: with c: small and still no customer have left SEPT 
is optimal. It is well known, see e.g. Weber [76] and Chang et al. [13], that if 
we replace the number of customers at T by the integral from 0 to T of the 
number of customers, i.e. if we consider flowtime, then SEPT is stochastically 
optimal. 



Chapter 2 

Models with Markov Decision Arrival Processes 

2.1. Markov Decision Arrival Processes 

In the previous chapter we studied models with arrivals which were modeled 
by an MAP. In an MAP the arrival times depend only on x, the state of the 
MAP, and not on i, the state of the queues. In this chapter we generalize the 
MAP to allow for a certain type of dependency on the state of the queues. Of 
course, this dependency cannot be taken completely general. Take for example 
a customer assignment model in which arrivals occur more frequently if the 
queues are balanced. Then it is clear that it might be optimal to assign an 
arriving customer to the longest queue to suppress future arrivals. Therefore 
we model the dependence using actions in the arrival process, while keeping, for 
a fixed action, the transition intensities independent of the state of the queues. 
This leads to the following definitions. First we describe the arrival process 
without multiple customer classes or server vacations. 

2.1.1. Definition. (Markov Decision Arrival Process) Let A be the 
countable state space of a Markov decision process with transition intensities 
Axay with x,y EA and a E A(x), the set of actions in x. When this process 
moves from x to y, while action a was chosen, then with probability q.,ay an 
arrival occurs. We call the quadruple (A, A,>.., q) a Markov Decision Arrival 
Process (MDAP). 

Note the similarity with the definition of the MAP in section 1.1: if we 
take IA(x)I = 1 for all x, we have an MAP. We use definition 2.1.1 in the 
sections on the customer assignment models. In the server assignment models 
we need again arrivals in multiple classes and server vacations. The equivalent 
of definition 1.10.1 is: 

2.1.2. Definition. (Markov Decision Arrival Process) Let A be the 
countable state space of a Markov decision process with transition intensities 
Axay with x,y EA and a E A(x), the set of actions in x. When this process 
moves from x to y, while action a was chosen, then with probability q;ay an 

arrival in class 1 ::; k ::; m occurs, and with probability q:Utk an event with 
server 1 ::; k ::; s occurs. There are sets Af, ... , A! such that server k is available 
if and only if x E A1c, and sets Afn, ... , A~n, n E IN, such that if x E A't,n then 
there have been nor more arrivals of class k. We call the quadruple (A, A,>.., q) 
a Markov Decision Arrival Process (MDAP). 
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In the next section we start by illustrating the use of an MDAP for cus
tomer assignment models. Again we assume that the transition intensities in 
each state are equal, i.e. I:Y Axay = 1 for all x E A and a E A( x). 

2.2. Symmetric customer assignment model 

We consider the model of section 1.2, but with arrivals according to an MDAP. 
Thus, we have m queues, with buffer sizes B = (B1 , ... , Bm) and service 
intensity µ. The results for this model are quite similar to the results of section 
1.2, the only difference being the arrival process. To obtain optimality results 
both at T and from O to T we now need to introduce immediate costs C(x,i). 
See section 5.3 for more details. Before illustrating the use of the MDAP, we 
give the dynamic programming equation. Note the similarity with (1.2.1). 

v(/i\ =c(x,i) + mJn { :~:::>xay(qxay mjn{v['y,i+e;)} + (1- qxay)v['y,i)) }+ 
y 

m 

L µv(x,(i-e;)+) + (1 - 1 - mµ)v0,,i)• (2.2.1) 
j=l 

The second minimization ranges again over all j for which the queues are not 
full, i.e. for which ij < Bj. 

The MDAP is especially designed to model the arrivals at the last center 
of a tandem network. To show this, assume there are m ( m) queues in the 
first (second) center, with state (i1, ... , tm) ( ( i1, ... , im)), service intensities µ 
(µ) and buffer sizes iJ ( B). The arrival process at the first center is Poisson 
with rate t Assignment actions are taken in both centers, and these actions 
are allowed to depend on the whole state of the system. Then the dynamic 
programming recursion is: 

m 

L ( Oih µ m~n{ v(i-eh ,i+e,AB)} + (1 - o,h )µv(i,i)) }+ 
ji=l J 

m 

L µv0,(i-e,)+) + (1 - j - rhµ - mµ)v(i,i)• 
j=l 

Now, if we take >.i,a,i+ea = j and q,,a,i+ea = 0, >.,,a,i-e; =µand q,,a,i-ej = 

1 if Zj > 0, Aiai = 1 - j - µ I:;~1 Di; and qiai = 0, and all other transition rates 
0, then this recursive equation has the form of (2.2.1). Thus we have modeled 
the first center as an MDAP. 

It is easy to see that, instead of a tandem system, we can model any 
network in which i is the state of a center without feedback to the network. 

We return to the general model with an MDAP. As in the case with an 
MAP, we have the following result: 
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2.2.1. Lemma. If 

and 

W(x,i+eh):::; W(x,i+eh) forij,:::; ijs, i+ei, +eh:::; B, 

W(x,i) :::; W(x,i+eh) for i + Cj, :::; B 

for i* a permutation of i, i* :::; B 

hold for the cost functions c and v0 , then they hold for all vn. 
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(2.2.2) 

(2.2.3) 

(2.2.4) 

For the proof we refer to the more general model of section 3.3. The result 
says again that an SQP is optimal, for suitable cost functions. An SQP, because 
SQP refers only to the assignment of the customers to the queues, and not to 
the action in the MDAP. For the tandem model described above it follows that 
it is optimal in the second center to employ the SQP, if the first center is also 
controlled optimally. How this first center should be controlled is the subject 
of the next section. 

Because the optimal actions in the MDAP can depend on n, we cannot use 
the method of section 5.2, but we need a limiting argument. To use this, we have 
some minor restrictions on the cost functions. All cost functions considered 
here satisfy these conditions. Note that some of our cost functions, like Iii, are 
unbounded. Still they satisfy the conditions, which are given in assumption 
5.3.1. Throughout this chapter we assume that this assumption holds. 

2.2.2. Theorem. For all T, an SQP minimizes the costs at T (and from Oto 
T) for all cost functions satisfying (2.2.2) to (2.2.4). 

The conditions on the cost functions are exactly the same as in section 1.2, 
thus we refer to that section for a discussion of the allowable cost functions. 
Regarding stochastic optimality however, results are not as easy, as the optimal 
policy depends on the horizon. Of course, if v0 is allowable, an SQP minimizes 
I { v~x,i) > s} for each value of s, but for different values of s different SQP's 
can be optimal. Examples showing this are easily given. Thus there is no 
single policy that is better than all policies R and all values of s. It is an open 
question if there is for every fixed policy R an SQP which is better for all s. 
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2.3. Tandems of customer assignment models 

In this section we consider the tandem system introduced in the previous sec
tion, with µ = µ and B = B = oo. Customers arrive at the first center 
according to a Poisson process with intensity .X. In the previous section we saw 
that in the second center the SQP should be used. Here we study the optimal 
assignment in the first center. We use the same notation. First we show that 
the SQP is not optimal in the first center. 

Consider a system in which there is only one arrival at time 0. We compute 
the expected flowtime (which is the sum of the departure times). As the initial 
state we take i = (1, 0), i = (5, 5). Thus we have to decide whether to route 
the arriving customer to queue 2 or to queue 1 at the first center. Take µ = 1. 
Let us denote the expected flowtime if we start with (i, i) with f( !1 ~' ). These 

i2·t2 

numbers can be calculated with the recursive formulae 

J(gg) = 0, 

f( !1i1)= (z +z +i +i2 +8· f(i1_-li1_+1)+8- f(.i' i1_+1)+ i2 i2 1 2 1 Z1 z2 <2 Z2 Z2 -1 Z2 

8iJ( :: i\~1) + 8i2f U~ i2i~l )) / (8i, + 8h + Di, + 8ii) if i1 ::; i2, 

f ( i1 i, ) (- ~ · • , f ( i, -1 i, ) , f ( i1 i, ) 
i2i2 = i1 + i2 + i1 + i2 + Ui, h i2+l + Ui2 i2-l i2+l + 

8i,f U~ i\~1) + 8i2f U~ i2i~l)) I (8,;, + 8,;2 + 8i, + 8i2) if i1 2:. i2, 

We found that f(~;) = 41.63 < 41.67 = f(i;). Because the flowtime is the 
integral of the number of customers over time, there are T's for which the 
number of customers at T is not minimized by the SQP in both centers. This 
is because if it were, the expected number of customers would be smaller under 
the SQP for all T, and so the flowtime would also be smaller. 

Define P(~'i') as the expected flowtime up to T, i.e. the expected number 
?.2 ~2 

of customers integrated from 0 to T. Add an extra superscript A to denote the 
model with Poisson(.X) arrivals. It is easily seen that J(!1i1 )- P(!1i1)-+ 0, as 

i2i2 i2i2 

T increases. Take T such that this difference is smaller than 0.01. Take A small 
enough such that the expected flowtime of the arrivals before T is smaller than 
0.01. Then we have 

where the first inequality follows by the choice of .X, and the fourth follows by 
the choice of T. This shows that, for A sufficiently small, there are states in 
which routing according to the SQP is suboptimal. 

An intuitive explanation of this phenomenon is easily given. When both 
queues of the second center are heavily loaded, it pays to delay arriving cus
tomers, which allows one to see how the center evolves in time. This can be 
done by assigning customers arriving at the first center to the longest queue. 

To study the optimal policy for more realistic values of .X than considered in 
the last section we did various numerical calculations on the two center model. 
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Again we fixed the service rate µ to 1 and varied the arrival rate >.. Because 
we used successive approximation ( see appendix D for a practical discussion of 
computational algorithms) we had to introduce buffers (in each queue equal) 
to make the state space finite. We also varied these buffer sizes to study the 
influence of the finite buffers on our model. To minimize blocking influence we 
assumed that no service takes place at the first center if the second center is 
full. Note that this type of arrival process cannot be modeled with an MDAP, 
due to the blocking protocol. We computed the optimal policy in the first 
center for discounted and average costs. Our results are summarized in the two 
tables below. First we consider discounted costs. 

In Hordijk & Koole [22] we took as immediate reward the expected num
ber of departed customers. The advantage of taking this reward is that the 
optimal policy does not seem to depend on the buffer sizes. Because we have 
worked so far with the total number of customers we do the same in the present 
calculations. However, this means a stronger buffer influence, especially when 
,\ 2: 2. Therefore we only considered ,\ < 2 here. Becauseµ = 1, it follows from 
Kingman [34] that a single center model operated by the SQP has a stationary 
distribution under this assumption. (See Adan et al. [1] for a recent result 
and references on computational issues regarding the SQP.) Thus, if we take B 
large enough, we expect to have little buffer influence. 

The results for B varying from 20 to 45 are shown in table 2.3.1. For each 
combination of (3, the discount factor, and ,\ the table contains the maximum 
relative difference between the optimal policy and the SQP, and the state where 
this maximum is attained. These numbers are calculated with the formula 
maxi{(vf (SQP)-vf)/vf}, where vf (vf (SQP)) are the costs under the optimal 
policy ( the SQP) and the minimization is taken over all possible states. It is 
clear from the table that the SQP is nearly optimal. In some cases the difference 
decreases as B increases, thus in these cases the SQP might be optimal for 
B = oo. In these states we increased B, if possible, until the relative difference 
was smaller than 10-15 . In the cases with ,\ = 1.5 and /3 = 0. 75, and ,\ = 1.9 
and /3 = 0.5 and 0. 75 we were, due to computational difficulties, not able to 
increase B any further. 

(3 = 0.01 0.1 0.25 0.5 0.75 

>. =0.1 <l0-15 l.5·10-13 ,( ~ :: ) l.7·10- 9 ,(~ :gi 5.9-10- 7 ,( ~:) l.8·10- 5 ,(~ :i 
0.25 <10-15 l.6·10- 13 ,( ~ :: ) 2.2-10- 9 ,(~ :g) 8.6·10- 7 ,(~ :) 2.6·10- 5 ,( ~:) 

0.5 <10-15 4.5·10- 14 ,( ~ :: ) 1.1-10-9,(~ ::) 6.3·10- 7 ,(~ :i 2.2-10- 5 ,( ~ :g) 
1 <10-15 <10-15 4.2-10- 11 ,( ~ :~) 5.1·10-8 ,( ~ ii) l.9·10-6 ,( ~ ii) 

1.5 <10-15 <10-15 2.2-10- 14 ,(~ ::) 8.4·10- 11 ,(~ i~) <10- 11 

1.9 <10-15 <10-15 <10-15 <10-14 <10- 7 

Table 2.3.1. Discounted costs 
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In the average cost case we again compared the optimal policy and the 
SQP. The relative difference between their average costs can be found in table 
2.3.2. Once again the SQP is nearly optimal. When comparing both tables, 
we see that the average cost case does not behave as the limiting case for the 
discounted cost case. A possible explanation is the following. The difference in 
the assignments in state (~!),with k ~ 10, manifests itself if the second center 
becomes empty. As there are many customers in the second center, this requires 
that /3 is close to 1. However, in the limiting average case the dependence on 
the starting state has disappeared, and the effect of the few states where the 
optimal action is not according to the SQP is small. It is interesting to note 
that the states where the SQP is not optimal all have the same form, with few 
customers in the first center, and heavily loaded, balanced queues in the second 
center, as in the example at the beginning of this section. 

>. = .1 .25 .5 1 1.5 1.9 

Table 2.3.2. Average costs 

Having seen that the SQP is not optimal in the case where the policies 
depend on the whole state of the system, we continue with studying the case 
where the policies only depend on local information, i.e. where the policy at a 
certain center depends only on the state of that center. We call this the partial 
information case, as contrasted to the full information case. 

At the end of this section we study the general partial information case. 
We will see there that also in this case a counterexample to the optimality of 
the SQP can be constructed, for discounted costs. If we restrict the class of 
admissible policies even more, namely to static policies at the second center, 
we can prove the optimality of the SQP. A policy R is called a static policy if 
it is defined by a sequence of random variables {IIn, n E IN}, where IIn = .i 
corresponds to routing the nth arriving customer to queue _j. The routing 
probabilities are stochastically independent of the queue lengths and the ar
rival times. Both the Equal Splitting Policy and the Cyclic Assignment Policy 
of section 1.9 are static, as can be shown by taking all IIn independent and 
IP(IIn = 1) =½for all n for the ESP and IP(IIn+l = .i + l(mod2)IIIn = .i) = 1 
for all n for the CAP. The SQP is not static. We prove that, for partial infor
mation, the SQP in both centers gives an earlier departure process than the 
two center policy which uses a static policy in the second center. Because we 
use coupling this means also that the number of customers is minimized by the 
SQP in both centers. 

To show our result we need two theorems. The first states that the SQP 
gives a pathwise earlier departure process. The second theorem says that for 
a static policy an earlier arrival process gives an earlier departure process. 
Combining these theorems gives indeed the result on static policies. We see 
an arrival process as a sequence of arrival times. That is, the arrival process 
V = {Vn, n E IN} has Vn as the time of the nth arrival. For arrival processes 
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V = {Vn, n E IN} and W = {Wn, n E IN} we say that Vis pathwise earlier than 

W and we write V :::;P W if there are arrival processes V* and W* with V* ~ V 

and W* ~ W such that v;(w) :::; W,';(w) for all w in some probability space 
and n E IN. We use a similar definition and notation for departure processes. 

With ~ we mean that the processes on either side have the same distribution. 
By theorem 1.5.2 we have: 

2.3.1. Corollary. Consider a center wit11 two parallel queues, arrival process 
U and policy SQP and a similar center wit11 an arbitrary policy R. If V and 
V are tlie respective departure processes, tlien V :::;P V. 

2.3.2. Theorem. Consider one center wit11 two parallel queues and a static 
policy R. For arrival processes T and T tlic departure processes are denoted 
by V and V, respectively. IfT :::;PT, tlien V :::;P V. 

~ ~ d 
Proof. Because T :::;P T there are arrival processes T* and T* with T = T* 

~ d - ~ 
and T = T* such that T,';(w) :::; T,';(w) for all n and w. Fix w E n. We use 
the following notation: T,';(w) = tn, T,';(w) = in. Let Sn (Sn) be the service 
time of the nth ·customer and Un (Un) the queue to which the nth customer 

is routed. Of course Sn ~ Sn. Because R is static we also have Un ,g, Un. 
Hence by coupling arguments we may assume that Sn = Sn and Un = Un for 
all n. Denote an arbitrary realization of Sn, U,,,, n > 0 with sn, un, n > 0. We 
omit the superscript*. Let e,v(t) ((T,V(t)) be the number of arrived (served) 
customers at time t. A subscript j denotes a specific queue. Then 

{T(t) n 

lY(t) = L l{un =.i}I{tk + LI{1tz = j}sz:::; t,k = 1, ... ,n} 
n=l l=k 

F<tJ n 

2 L I { Un = j} I { t k + L I { uz = j} sz :::; t, k = 1, ... , n} 
n=l l=k 

F(tl n 

2 L l{un =j}I{ik + LI{v,z = j}sz:::; t,k = 1, ... ,n} 
n=l l=k 

= [Y(t), j = 1, 2. 

Thus lv(t) = li(t) + li'(t) 2 [V(t) for all t and t;;:::; i;; for all n. □ 

This theorem is also true for general service times. Unfortunately, it does 
not hold for the SQP as the following counterexample shows. 

Take T1 = T2 = T3 = T1 = T2 = O; T3 = h; Tn = Tn > 1 + h for all 
n 2 4. Thus T :::;P T. Compare the probabilities that 2 customers have left at 
t = 1 + h. Condition on the number of departures in [O, h]. If no departures 
occur in [O, h], the two systems are the same. 
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On the other hand, if exactly one departure occurs in [0, h], the time un
til the next departure in the T-model has with probability ½ an exponential 
distribution with parameterµ and with probability ½ an exponential distribu
tion with parameter 2µ. Indeed, the customer departing in [0, h] leaves the 
queue with one customer with prob~bility ½ and the queue with two customers 
with probability ½ as well. In the T-model the at h arriving customer chooses 
the empty queue, therefore the time until the next departure is Erlang(2µ) 
distributed. The difference between these two probabilities, say c, does not 
depend on h, but only on µ. The probability that one customer leaves in [0, h] 
is equal to 2µh + o(h). 

The probability that two customers leave in [0, h] is o(h). Now we have: 

IPT(2 customers leave in [0, 1 + h])-
IP f ( 2 customers leave in [0, 1 + h]) = 2µhc + o( h) > 0, 

if his small enough. Note that the idea behind this counterexample is similar 
to the counterexample in the full information case; there, by sending to the 
longer queue, the arrivals of the customers at the second center were delayed. 

Combining corollary 2.3.1 and theorem 2.3.2 gives the following result for 
the two centers in tandem. 

2.3.3. Theorem. Let R = (R1 , R2 ) be the two center policy with static 
policy R2 ill center 2. Let R* = (SQP, SQP) be the two center policy which 
uses the SQP in both centers. For a general arrival prncess T let W (W) be 
the departure prncesses of the second center under R (R* ). Then W :::;PW. 

Proof. The proof follows easily from corollary 2.3.1 and theorem 2.3.2. As 
depicted in figure 2.3.1 let V (V) denote the departure processes of the first 
center under policy R (R*). The departure process of the second center for the 
policy ( SQP, R2 ) is denoted by W. 

T w 

T w 

T w 
Figure 2.3.1. 

From corollary 2.3.1 we have V :::;P V. Hence by theorem 2.3.2 W :::;P W. 
Corollary 2.3.1 also gives W :::;P W. Combining the last two inequalities yields 

w:::;pw. □ 

This result can also be found in [22]. 
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It is straightforward to generalize theorem 2.3.3 to a network of centers in 
tandem. The proof goes by induction on the number of centers. Suppose it is 
true fork centers. Assume that V, Vis the departure process of the kth center 
when using (R1, ... , Rk) with Ri static for 2 ::; i ::; k, respectively the SQP in 
each center. Then by the induction hypothesis V ::;P V and we can use again 
the same arguments as in the proof of theorem 2.3.3. 

In the partial information case the policy in each center is not allowed to 
depend on the state of the other center. But, the fact that the state of the 
other center is unknown does not mean that there is no information on the 
other center. For example, in the discounted cost case, decisions taken early in 
time weight more heavily than decisions taken later. This means that there is 
a dependence on the starting state. The same phenomenon occurs for average 
costs, for multichain models. Of course the model studied here is unichain, but 
for discounted costs we were able to construct a policy R*, which uses partial 
information, that is better for certain starting states than the SQP. In center 2 
R* uses the SQP. Also in center 1 the SQP is used, except in state (0, 1) and 
(1, 0). With the counterexample from the beginning of this section in mind, we 
might expect that R* performs better than the SQP for starting states of the 
form (0, 1, k, k) and suitable choices of parameters. Indeed, takeµ = 1, >. = 0.01 
and discount factor 0.9 in the discrete-time normalized model. Then the infinite 
horizon expected discounted number of customers is smaller under the SQP for 
starting states like (0, 1, 0, 0), but R* is better for starting state (0, 1, 10, 10). 
The relative differences are respectively 1.9 • 10-3 and -1.3 • 10-1 . Whether 
the SQP is optimal for average costs remains an open question. On the one 
hand, the model is unichain, and therefore the optimal policy is independent of 
the starting state; on the other hand, the numbers of customers in the centers 
are not independent, meaning that some information on the state of the other 
center can be obtained from the state of the present center. 

In Hordijk & Koole [22] we conjectured that the SQP is optimal in the 
partial information case. This is clearly falsified by the present results. Our 
conjecture was based on numerical results obtained by Loeve & Pols [44], who 
used an algorithm derived by Kulkarni & Serin [41] to find local optima or 
saddle points in the class of policies that use partial information. In all problem 
instances they considered, the SQP is optimal. 
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2.4. Networks of customer assignment models with workloads 

The model studied in section 1.8 is concerned with the workloads and not with 
the actual departures. This means that we cannot distinguish the departure 
epochs of the customers. Therefore it is not of interest to the network models 
studied in this chapter to generalize the dynamic programming result of the
orem 1.8.2 on the optimality of the SWP to arrivals according to an MDAP. 
For this reason we leave this generalization to chapter 3. Of interest here is 
to try to obtain similar results as in section 2.3 for tandem systems and other 
networks. 

In section 1.5 we saw that the SQP is pathwise optimal in the queue 
length model. The same holds for the workload model, as stated in section 1.8. 
However, we showed in the previous section that the SQP is not monotone in 
the sense that earlier arrivals give earlier departures. This is not the case for 
the SWP. Because the SWP is equivalent to a single multi-server queue with 
FCFS discipline, the monotonicity is easily shown by a coupling argument. 
This gives the following result. 

2.4.1. Theorem. Let R = (R1 , R 2 ) be a two center policy with R 1 and 
R2 not depending on the workload of tl1e other canter (thus R uses partial 
information). Denote with R* = (SWP, SWP) the two center policy which use 
the SWP in both centers. For a general arrival process T let W (W) be the 
departure processes of the second center under R (R* ). Then W -s;p W. 

Proof. Again, the result follows easily by considering a picture. 

T w 

T w 

T w 
Figure 2.4-1. 

By the pathwise optimality of the SWP we have W -s;p W and V -s;p V. 
By the monotonicity of the SWP we have W ,s;P W. Combining the inequalities 
yields W -s;p W. □ 

Due to the fact that the SWP is monotone we can generalize the results 
to networks of centers with feedback to the network, and to policies using full 
information. Related to this are the results of Righter & Shanthikumar [59]. 
They also consider networks of centers, each with one server, and show that, 
in the case of a service time distribution with an increasing likelihood ratio, 
the departures are earlier if the customers are served non-preemptively. Mono
tonicity plays an important role there too. 
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Consider c centers, where routing between the centers is according to static 
rules. Remember that static policies were introduced in the previous section 
for the assignment of customers to parallel queues within a center. Here they 
are used for routing between different centers. The model is either open or 
closed. Let R be an arbitrary policy, that possibly uses information on all 
centers. In the case of random service times, the assignment decisions are not 
allowed to depend on the workloads. Now, let V(i,j) (V(i,j)) be the stream of 
customers going from center i to center j, using the SWP (R). Outside arrivals 
are assumed to be coming from center 0. 

2.4.2. Theorem. V(i,j) Sp V(i,j) for all i and j. 

Proof. Due to the (possible) feedback in the network arrival times depend on 
prior departure times. Therefore we cannot use arguments similar to those in 
the proof of theorem 2.4.1. We couple the networks, one using the SWP and 

one using R, by constructing V*(i,j) and V*(i,j) with V*(i,j) 4: V(i,j) and 

V*(i,j) 4: V(i,j) for all i and j. The routing is coupled by letting the nth 
customer that leaves center i go to the same center in both networks. Note 
that, by taking i·= 0, we have V*(0,j) = V*(O,j). In the case of deterministic 
service times the models are completely coupled now. The service times are 
coupled for each queue separately, such that the departures are earlier under 
the SWP. Now consider a realization. 

Events in the networks with streams V* and V* occur at points 111 < 
v2 < · · · and ·ii1 < ii2 < · · ·. Each event consists of a transition of a customer 
from one center to another, Transitions from center ·i to center j occur at 
v1(i,j) < v2(i,j) <···and ii1(i,j) < t'i2(i,j) < · · ·. (If 2 or more events occur 
at the same time, we assume that they are logically ordered. For example, if 
a customer arrives at a center, receives O processing time and leaves again, we 
assume that the arrival occurs before the departure.) We use the fact that if 
the arrivals up to T at a certain center are earlier in the SWP model, then the 
departures up to T are also earlier. The proof uses induction on the number 
of events in the network operated by R. Choose n *. Define nij as follows: 
Vn• (i,j) S 'Un• < Vn• +i(i,j). Suppose 

ZJ 1,J 

v1(i,j) S v1(i,j) for all!= 1, ... ,nij, i and j. 

Consider transition n* + 1 in the network operated by R. Suppose that a 
customer moves from center i* to center j* at this transition. Consider center 
i*. By the induction hypothesis for j = i*, the arrivals at i* before Vn• are 
earlier under the SWP. Because there are no arrivals at center i* between 
Vn• and Vn•+1 in the network operated by R, also the arrivals before 'Vn•+1 
are earlier under the SWP. By the optimality and monotonicity of the SWP, 
the departures are also earlier, and thus vn;. ;• +1 S vn;. i* +1, completing the 
induction step. □ 
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Note that we can also have non-controllable centers in the network, as 
long as they are monotone. Even more general, we can also insert control
lable centers of the type considered in Righter & Shanthikumar [59]. Another 
possibility is the inclusion of centers with Bernoulli routing, as long as the as
signment in the center is more balanced for R* than for R. This follows from 
the monotonicity of this type of center (theorem 2.3.2), and from the pathwise 
optimality (as shown in section 1.9). The next corollary follows easily. 

2.4.3. Corollary. In a closed network, the SWP maximizes the throughput. 
In an open network, the SWP minimizes the number of customers in the system. 

For their model Righter & Shanthikumar [59] formulate a similar corollary. 

2.5. Server assignment model with multiple servers 

In section 2.2 the dynamic programming results of section 1.2 were easily gener
alized to arrivals according to an MDAP. The generalization is possible in most 
customer assignment models. For the server assignment models it is more com
plicated. In this section we show that lemma 1.12.1, which shows the optimality 
of LEPT, can be generalized to arrivals according to an MDAP. This means 
that, as in the customer assignment models, LEPT is optimal in the last cen
ter of a tandem system, where each center has its own servers and customers 
keep their class. Lemma 1.11.1 however, which deals with single server models, 
cannot be generalized in its full generality as two counterexamples show. 

We follow the analysis of section 1.12. Again assume µ1 S · · · S µm. The 
other remarks made there are also valid here. The analogue of (1.12.1) is: 

m m 

V(x~i~ = C(x,i) + mJn { L Axay(Lqtayv(y,i+e3 ) + (1- Lqty)vfy,i)) }+ 
y j=I j=l 

The lemma which gives the optimal policy is also the same: 

2.5.1. Lemma. If 

µj, 'W(x,i-e31 ) + (µ - µii )w(x,i) S µjz 'W(x,i-eh) + (µ - µjz )w(x,i) (2.5.1) 

for iii, iiz > 0 and ii < iz 
and 

'W(x,i-e31 ) S 'W(x,i) for iii > 0 (2.5.2) 

hold for the cost functions c and v 0 , then they hold for all vn. 

The model studied in section 3.6 is a generalization of the present model, 
for example with partial availability of the servers. For a proof of the lemma 
we refer to the proof of lemma 3.6.1. 
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2.5.2. Theorem. A SIP minimizes the costs at T ( and from O to T) for all 
cost functions satisfying (2.5.1) and (2.5.2). 

The same cost functions as in section 1.12 are allowable here. Of course, 
this includes the optimality of the SIP in the single server case if µ 1 ::; · · · ::; Jlm. 
If the queues are not ordered this way, we have seen in section 1.12 that the 
SIP is in general not optimal in the multiple server case. Because the MDAP is 
a generalization of the MAP, this also holds for the present model. However, in 
the single server case the SIP was optimal, independent of the ordering. This 
does not hold in the case of MDAP's, as the following counterexamples show. 
Summarizing, in the case of dependent arrivals we need µ 1 ::; · · · ::; µrn both in 
the multiple and in the single server case. This result can also be found in [25]. 

We consider a system of two centers in tandem, each with two queues, 
where each center has one server. There are no arrivals, and when a customer 
leaves queue j at the first center, it enters at the second center again queue 
j. We show, for certain choices of the service parameters, holding costs and 
starting states, that the µc-rule in the second center is not optimal. This 
contradicts the results in section 4 of Nain [49] and in section 2 of Nain et 
al. [50]. We show that the expected total costs over the infinite horizon are not 
minimized by a policy that uses the µc-rule in the second center. This means 
that there are T's for which the µc-rule does not minimize the expected costs 
at T. The first example (which can be found in [23]) is the simplest, although 
we must assume that the policies allow idling in the first center. In the second 
example this is not the case. 

We use a similar notation for the tandem system as in section 2.2, i.e. we 
add a tilde to denote the first center. The parameters of the first example are 
given in figure 2.5.1. 

center 1 µ c center 2 µ C 

•I 2 .65 •I 2 1.05 

•I 1 2 

Figure 2.5.1 

Denote by Kijk the total expected holding cost when at time O there are 
i customers in the first queue of center 1, j customers in the first queue of 
center 2 and k customers in the second queue of center 2. It follows from the 
optimality of the µc-rule for a single center that the optimal policy in center 2 
is the µc-rule when center 1 is empty. Because the holding costs are positive, 
idleness in center 2 is not optimal. Hence the total expected holding cost for 
the optimal policy in starting states with the first center empty are: 
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2 
Koo1 = 1 = 2; 

1.05 
Korn = - 2- = 0.525; 

3.05 
Ko11 = - 2- + Koo1 = 3.525; 

2.1 
Ko20 = 2 + Korn = 1.575; 

4.1 e: 
Ko21 = 2 + Ko11 = 5.o75. 

In starting states with customers in both centers the total expected hold
ing cost is the minimum of terms corresponding to different actions. Denote by 
(i,j) the possible actions: i (j) is the queue served in center 1 (2). The succes
sive terms in the computation below correspond to the action pairs (1, 1), (1, 2), 
(2, 1) and (2, 2) respectively, where terms belonging to actions corresponding 
to idleness in center 2 are deleted. The optimal action pair in starting state 
i j k is denoted by aij k. 

0.65 
Krno = - 2- + Korn = 0.85; 

. { 2.65 1 2 2.65 } 
K101 = nun - 3- + 3K100 + 3Kon; - 1- + K100 

= min{3.51667; 3.5} = 3.5; 

a101 = (2,2); 

. { 1.7 1 1 1.7 } 
K110 = mm 4 + 2Ko20 + 2Krno; 2 + K100 

= min{l.6375; 1.7} = 1.6375; 

a110 = (1, 1); 
3.7 1 1 3.7 1 2 

Km= min{ 4 + 2Ko21 + 2K101i 3 + 3K110 + 3Ko21; 

3.7 3.7 } 
2 +K101; 1 +K110 

= min{5.4625; 5.49583; 5.35: 5.3375} = 5.3375; 

am= (2, 2). 

From a110 = (1, 1), a 101 = (2, 2) and n111 = (2. 2) we conclude that the 
server in center 1 starts serving the job in queue 1 after the job in queue 2 of 
center 2 has finished its service. Hence the optimal action in center 1 depends 
on the state in center 2. Since a 111 = (2, 2) the server in center 2 serves the job 
in queue 2 before the job in queue 1, thus the /LC-rule is not optimal at center 
2. Note that the optimal action in center 2 depends on the state in center 1. 

The error in Nain [49] and Nain et al. [50] can best be explained with the 
help of the example. Basically, in both articles, the authors try to improve 
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an arbitrary policy by keeping the behavior of the first center the same and 
changing the policy in the second center to the µc-rule. In the example, the 
customer in center 1 ( customer 1) is not served until the customer in center 
2, queue 2 ( customer 3) has departed. We change the policy by serving the 
customer in center 2, queue 1 ( customer 2) first, but now we cannot let the 
server in center 1 be idle for the service time of customer 3, because we do not 
know its service time yet. 

Another possibility, by ·which we keep the stochastic behavior of center 1 
the same, is taking the idle time at center 1 independent of the service time 
of customer 3, but with the same distribution. In the example, the server at 
center 1 idles during an exponentially distributed time with parameter 1, while 
customer 2 is served at center 2. This trivially does not improve the optimal 
policy, but we also calculate it. 

Let Kijk denote the total expected holding cost when the customer, ini
tially in center 1, is still there and when the server starts idling. With Kijk 
we denote the same, if the customer in center 1 has already departed or if the 
server at center 1 is servicing the customer. Since the policy is fixed there 
is no minimization in the computation. The total expected holding cost for 
states with i = 0 and state 100 are equal to those of the optimal policy. The 
computation of the other values is as follows, 

* 0.65 
K100 = - 1- + K100 = 1.5; 

2.65 2 1 
K101 = - 3- + 3Kon + 3K100 = 3.51667; 

* 2.65 1 1 * 
K101 = - 2- + 2 K101 + 2 K 100 = 3.83333; 

3.7 1 1 
Km = 4 + 2 Ko21 + 2 K101 = 5.4 7083; 

K* 3·7 1 K 2 K* 5 6125 111 = 3 + 3 111 + 3 101 = . . 

Indeed we see, when comparing Kin with Kn1 previously obtained, that 
Kin is larger. 

The second example has 4 customers present, one in each of the 4 queues. 
The parameters of the exponential distributions and the holding costs are given 
in figure 2.5.2. 

center 1 µ c center 2 µ C 

• lo.5 10 •I 3 1.05 

•I 2 4 •I 1 3 

Figure 2.5.2 
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Straightforward calculation gives in this model the following values and 
optimal decisions: 

Kuoo = 30.683; 

K1101 = 35.839; 

K1110 = 31.491; 

K1111 = 37.938; 

auoo = (2, 1); 

a1101 = (1, 2); 
a1110 = (2, 1); 
aim= (1,2). 

The µc-rule in center 2 gives priority to queue l. However, the optimal 
policy serves queue 2 first if center 1 is occupied. Hence, in this model also the 
optimal decision rule in center 2 depends on the state in center l. Note that 
the optimal policy never idles. In the next section we will see that this is a 
consequence of the fact that c1 ~ c1 and c2 ~ c2. 

2.6. Tandems of server assignment models with a single server 

In this section we consider a tandem of two centers, each with m queues, a 
single server, and with arrivals according to an MAP at the first center. The 
service rates in queue j in the first center are fi,j, in the second µj. Thus the 
counterexamples of the previous section are special cases of this model, with 
m = 2 and no arrivals. In the previous section it has been showed that ( for 
suitable cost functions) the SIP is optimal in the second center if µ1 ::; · · · ::; µm. 
No results were obtained on the optimal policy at the first center. In general the 
optimal policy in the first center depends on the state of the second center, even 
if the SIP is optimal in the second center, and is therefore hard to characterize. 

In this section we first show monotonicity in both centers. In the case of 
linear costs, the conditions for the first center are that the costs must be higher 
in each class than the costs, for the same class, in the second center; for the 
second center the costs must be positive. This leads in the linear case to an 
adaptation of the µc-rule, for which we show the optimality in the heavy traffic 
case. With the help of calculations we investigate how this policy behaves for 
other values of the parameters. 

We assume Ev ,\,y = 1 for all x and that 1 + ji, + µ ::; 1, where again 
µ = maxi µj and ji, = maxi fi,j. The dynamic programming equation is: 

m m 

v(.,~i~i) = ll!in { 2).,v ( L qtyv(y,i+e;,i) + (1 - L qty)v['y,i,i)) + 
l,l y j=1 j=1 

- n (- - ) n µlv(o:,i-ei,i+ei) + µ - µl v(.,,i,i)+ 

µ1v['.,,i,i-e 1) + (µ - µ!)v['.,,i,i) + (1 - 'Y - ji, - µ)vc'.,,,i,i)} = 

m m 

LAo:v(Lqtyv(y,i+e;,i) + (1- Lqty)v['y,i,i))+ 
y j=1 j=1 
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(2.6.1) 

The minimization ranges over all non-empty queues. Idleness corresponds 
to action O with ji,0 = µ 0 = 0. Now we prove monotonicity in both centers. It 
is easily seen that the monotonicity in the second center can also be proven in 
the more general case of an MDAP. 

2.6.1. Lemma. If 

(2.6.2) 

and 

(2.6.3) 

hold for tl1e cost function v0 , then they hold for all 11n. 

The proof of this lemma can be found in chapter 4. We have the following: 

2.6.2. Theorem. The optimal policy at T is non-idling in both centers for 
all cost functions satisfying (2.6.2) and (2.6.3). 

Let us see what the inequalities mean for linear costs. Equation (2.6.3) 
requires that, as in the analysis in section 1.11, Cj 2: 0 for all j. It is easily seen 
that (2.6.2) requires Cj - Cj 2: 0 for all j. This is not surprising, as this number 
is the cost reduction when a class j customer moves from center 1 to 2. This 
gives us a conjecture on how an optimal policy might be: in center 1 serving 
the queue with highest fi,j ( Cj - Cj) and in center 2 the µc-rule, i.e. serving the 
queue with highest µjcj. We call this policy the tandem Jtc-rule. However, 
this policy is not optimal due to problems when the second center is almost 
empty, meaning that not only cost reduction is important, but so is keeping 
the second server busy. Therefore we have the following lemma, in which it is 
assumed that there are enough customers in the second center. 

2.6.3. Lemma. Assume idleness is not allowed. If 

(2.6.4) 

and, for some j, 

(2.6.5) 
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liold for tile cost function v 0 • tilen tliey liold for all vn. 

The proof can be found in chapter 4. Note that because queue ] in center 
2 is never empty, (2.6.5) is weaker than usual. Thus the SIP is optimal in the 
first center, if i1 is large enough. In the second center, queue J has highest 
priority, and is always served because of the number of customers in the queue. 
The lemma is the basis of our heavy traffic theorem. The proof is included as 
the theorem does not follow from uniformization. We assume that no idleness 
is allowed. 

2.6.4. Theorem. For all T, cost functions satisfying (2.6.4) and (2.6.5) and 
E > 0 tliere is a number N sucil tilat tile tandem w:-nzle in botil centers is 
E-optimal at T, if tilere are more tilan N customers in queue] at time 0. 

Proof. Let N1 denote the fixed number of customers in the first center, at 
time 0. We compare the costs of two policies: the tandem /LC-rule and the 
optimal policy R*. Let the r.v. <I>; (ttc) and <I>; ( R*) denote their costs, where 
x is the starting state of the whole system. We can use uniformization which 
gives us the possibility of conditioning on the number of jumps. If this number 
is smaller than N, then the expected costs under R* are larger, by lemma 2.6.3. 
Let AN denote the event that there are more than N jumps in [O, T]. Thus 
IE(<I>;(µc)IAN) - IE(<I>;(R*)IAN) ~ 0. Then 

IE<I>;° (µc) - IE<I>;° ( R*) = 

( IE( <I>;' (µc) IAN) - IE( <I>; (R*) IAN)) JP( AN)+ 

(IE(<I>;(11c)IAN)-IE(<I>;(R*)IAN))JP(AN) ~ 

(IE(<I>;(µc)IAN) - IE(<I>;(R*)IAN ))IP(AN ). 

The expected number of arrivals, conditioned on AN, is smaller than N +T/,. 
Thus the expected number of customers available at T. conditioned on AN, for 
both the tandem µc-rule and R*, is smaller than N1 + 2N + T / 1 . The expected 
costs are bounded by ( N1 + 2N + T / 1 )c for some r:. It remains to show that 
there is a N such that JP( AN )(N1 + 2N + Th )c ~ f. This follows easily as 
IP(AN) and NIP(AN) l Oas N - oc. □ 

Indeed, it is easily checked in the case of linear costs that the tandem µc
rule is optimal if ft1 ( i'\ - C1) 2: · · · 2: /Lm ( r;.,,, - Cm) aud /LjCj 2: /ljCj for all j. If 
idleness is allowed, we cau, as nsnal.. combine lcmrna 2.6.3 and 2.6.1: 

2.6.5. Theorem. For all T. cm;t fonctiow-: sa (2.6.4). (2.6.5). (2.6.2) 
m1d (2.6.3) and E > () tlien: i8 ;i 1111111ber N .,ucli i li:it tile tandem /lC-n1lc in 



Tandems of server assignment models with a single server 51 

both centers is i:;-optimal at T, if there are more than N customers in queue j 
at time 0. 

Now we restrict ourselves tom= 2 queues, and we assume that the tandem 
µc-rule has the same priority in both centers, i.e. serving queue 1 is optimal in 
both centers if there are enough customers. Then we do not need to assume 
that there are more than n customers in the first queue of the second center, 
instead it suffices to assume that there are, in total, more than n customers in 
the second center. 

2.6.6. Lemma. Assume idleness is not allowed. If 

and 

for i1, i2 > 0 and n ~ i1 + i2 

hold for the cost function w = v 0 , then they hold for all vn. 

(2.6.6) 

(2.6.7) 

The proof can be found in chapter 4. As in the previous case, we can show 
the following. 

2.6. 7. Theorem. For all T, cost functions satisfying (2.6.6) and (2.6. 7) ( and 
(2.6.2) and (2.6.3) if idleness is allowed) and E > 0 there is a number N such 
that the tandem µc-rule in both centers is E-optimal at T, if there are more 
than N customers in the second center at time 0. 

An interesting question is how well the tandem µc-rule performs for other 
traffic than heavy traffic. We did some computations on the model of figure 
2.6.1. The arrivals at both queues are Poisson with the same rate. 

>. center 1 Jt c center 2 µ C 

>. * 1 4 2 1.1 

>. * 2 2 1 2 

Figure 2.6.1 

In table 2.6.1 the results for the discounted cost case are summarized. For 
all combinations we computed the relative difference between the costs under 
the optimal policy and under the µc-rule, for the starting states with each 
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queue empty (shown above) and 5 customers in each queue of both centers. Of 
course we had to make the state space finite. We did this by giving an upper 
bound on the total number of customers in the system. By doing it this way, 
buffer influences are relatively small. Note that the average load is equal to 
½A*, and thus A*= 0.6 gives an average load of0.9. 

/3 = 0.01 0.1 0.25 0.5 0.75 

,\* =0.1 0 0 0 0 2.6·10- 8 

0 0 0 0 4.3-10- 6 

0.2 0 0 0 0 4.0-10- 7 

0 0 0 0 4.2-10- 6 

0.3 0 0 0 0 4.5-10- 7 

0 0 0 0 2.1-10- 6 

0.4 0 0 0 0 0 
0 0 0 0 <lQ-15 

0.5 0 0 0 0 0 
0 0 0 0 <10-1s 

0.6 0 0 0 0 <10-14 

0 0 0 <10-14 <l0-13 

Table 2.6.1. Disco11,nted costs 

The results for the average cost case in table 2.6.2 indicate that theorem 
2.6. 7 does not hold for average costs. The results for high traffic intensities 
are less accurate (indicated with :=:::) due to the finite state space, although we 
had a model with a maximum of 60 customers, giving more than 6 • 105 states. 
Note that not only the buffer influence, but also the relative differences in these 
models are larger than in the customer assignment models. 

A* R* µc rel. diff. 

0.1 0.886 0.889 3.4. 10-3 

0.2 2.134 2.171 1.7. 10-2 

0.3 4.024 4.202 4.4. 10-2 

0.4 7.248 :=::: 7.939 9.5. 10-2 

0.5 ::::: 14.092 ::::: 16.862 2.0. 10-1 

0.6 :=::: 36.6 ::::: 48.5 3.2 · 10-1 

Table 2.6.2. Average costs 

The results of this section are also published in [26]. 
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2. 7. Tandems of server assignment models with a single server 
and identical centers 

Here we consider the special case p, = µ. Consider recurrence relation ( 2.6.1). 
Instead of inequalities we consider equalities here. 

2. 7.1. Lemma. Assume idleness is not allowed. If 

(2.7.1) 

µ · w( - · ) + (µ - µ · )w( - ·) = µ · w( - · ) + (it - µ · )w(- - ·) J1 x,i,i-eh Jt x,i,i J2 x,i,i-ej 2 t J2 x,i,i 

and 

/LJ, W(x,i-e;, ,O) + µh (µ - µiz )w(x,i-e32 ,eiz) + (µ - /Liz )µw(x,i,O) 

for ii < )2 and ij,, Zj2 > 0 

hold for the cost function v0 , then they hold for all vn. 

(2. 7.2) 

(2.7.3) 

Equation (2. 7.1) and (2. 7.2) give, for allowable cost functions, the opti
mality of all possible policies: (2.7.1) shows that serving queue ii or queue J2 
in center 1 makes no difference. Similarly, (2. 7.2) shows that serving any queue 
in center 2 is optimal. Equation (2.7.3) is needed in the proof of (2.7.1). The 
proof of the lemma can be found in chapter 4. 

Now consider allowable cost functions. The only interesting ones we could 
find are both I{lil + Iii = O} and I{lil + Iii > O}. This means the following. 

2. 7 .2. Theorem. For every non-idling policy the probability that there are 
customers present at T is the same. 

Changing the system as in section 1.12 gives: 

2. 7.3. Corollary. The distribution of the length of the busy period is equal 
for all non-idling policies. 

Heuristically, we can say the following. If the policy in center 1 does not 
depend on center 2, the arrivals at center 2 are independent ( according to an 
MAP) and it is clear that every policy in center 2 minimizes the makespan. 
Thus, a possible explanation of theorem 2. 7.3 centers around the first center. If 
there is enough work at center 2, again the policy does not matter. However, in 
case the server at center 2 has little work, there are 2 possibilities. The first is 
to serve a fast customer in center 1, giving the server at center 2 work as soon 
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as possible. However, the amount of work is small. When a slow customer is 
served in center 1 the situation is reversed: it takes long for the work to arrive, 
but the amount of work is large. Apparently, the two phenomena balance each 
other. 

As usual in single server models, we can combine equation (2.7.1) with 
(2.7.3), (2.6.2) and (2.6.3) when idleness is allowed. Note that, by (2.6.3), 
I{lil +Iii= 0} is not a valid cost function anymore. Therefore we have: 

2. 7.4. Corollary. The length of tlie busy period is stochastically identical 
under all work-conserving policies, if both centers have equal service rates and 
idleness is allowed. 

Remark. When each queue in center one has one customer initially present, 
and no arrivals occur, and if the SIP is employed in both centers, then we can 
think of the servers as going from queue to queue instead of the customers going 
from center to center. Using this equivalence (which was pointed out to me by 
Rhonda Righter, and which can by found in Pinedo & Schrage [55, p. 190]), and 
using corollary 2.7.4, we see that reordering of the queues in a system where 
the service rate depends only on the server has no effect on the makespan. This 
interchangeability of •IMll queues is well known, see Weber [77] for references. 
Note that the equivalence is only valid under certain restrictions on the model. 
Similarly, the interchangeability is proven for a more general model. Therefore 
the results on both models are of independent interest. 

It appears that lemma 2.7.1 cannot be generalized easily to inequalities, 
although we conjecture that a similar lemma with equalities replaced by in
equalities holds. We give some numerical results supporting this conjecture, 
with m = 2, Poisson arrivals and c = c. By scaling we can fix /L 2 = 1 and 
c1 = 1, giving the parameters as in figure 2.7.1. 

A center 1 µ C center 2 µ C 

A* Iµ• 1 I /L* 1 

A* I 1 c* 1 c* 

Fi_qu:re 2. 7 . .1 

With value iteration we computed the average costs for the optimal policy, 
the policy that gives priority to queue 1 (Ri). and to the policy that gives 
priority to queue 2 in both centers ( R2 ). It appeared that for low values of 
A* the differences are most significant. Because of the computational method 
we had to introduce a number B equal to the maximum number of customers 
in the system. For B = 25 there was no infinenn~ from the buffer (when we 
took A* small), meaning that B = 30, 35 and 40 gave the same results. Taking 
Jt* = 2 appeared to be satisfactory. We took ,\' = 0.25, giving an average 
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workload of 0.375. In figure 2. 7.2 the values of the different policies can be 
seen for various values of c*. 

For c* ::::; 2, R 1 appeared to be optimal. If c* ~ 2.66, then R2 is op
timal. For 2 < c* ::::; 2.66 the optimal policy is neither R1 nor R2. The 
number 2 can easily be explained: below 2 R 1 is both faster and costs less. 
The value 2.66 is explained as follows. When there are no arrivals, the to
tal costs can be computed. It appears that, for general µ*, the optimal ac
tion in (1, 1, 0, 0) is queue 1 if c* ::::; 2µ* 2 /(1 + µ*) and queue 2 if c* ~ 
2µ* 2 /(1 + µ*). For JL* = 2 this number is indeed equal to 8/3. Computations 
show that 2Jt* 2 /(1+µ*) is the tum-over point for various JL*. This indicates that 
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(1, 1, 0, 0), the only state with 2 customers in which the action is non-trivial, 
plays an important role in this model. 





Chapter 3 

Models with 

Dependent Markov Decision Arrival Processes 

3.1. Dependent Markov Decision Arrival Processes 

In some models we can generalize the arrival process even more, by letting the 
arrival probabilities depend on the state of the queues. 

3.1.1. Definition. (Dependent Markov Decision Arrival Process) Let 
A be the countable state space of a Markov decision process with transition 
intensities A:i:ay with x,y EA and a E A(x), the set of actions in x. When 
this process moves from x toy, while action a was chosen and the state of the 
queues is i, then with probability q~ay;i an arrival in class 1 ::; k ::; rn occurs, 
and with probability q-:;;,tk an event with server 1 ::; k ::; s occurs. There are 
sets Af, ... , A! such that server k is available if and only if x E A%, and sets 
A1n, ..• , A~n, n E IN, such that if x E Akn then there have been n or more 
arrivals of class k. We call the quadruple ( A, A,>., q) a Dependent Markov 
Decision Arrival Process (DMDAP). 

Naturally, we can also let the transition rates and the probabilities of server 
events depend on the state of the queues i. Because we do not study models 
where this is the case we did not allow this type of dependency. 

How the arrival probabilities are allowed to depend on i will be specified 
for each model. Note that if there is no dependency, we have an MDAP. It is 
clear that conditions on the DMDAP must be given; to give an example where 
the optimality result does not hold, assume that in the customer assignment 
model of section 1.2 the arrival probabilities are higher in more balanced states 
than in unbalanced states. Then assigning to the longer queue might be more 
favorable. 
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3.2. Asymmetric customer assignment model 

In this section we deal with a customer assignment model with asymmetric 
service rates. In the sections 3.3 and 3.4 we will see that the results of section 
1.2 and 1.3 are special cases of the result proved here. The present result gives 
only a partial characterization of the optimal policy in the general model, even 
if the arrivals are non-controlled. We discuss some computational results at 
the end of the section. 

The model is as follows. Customers arrive according to a DMDAP, all 
in one class ( write q instead of q1 ). There are no server vacations. Arriving 
customers have to be assigned to one of the non-full queues, where B are the 
buffer sizes. In state (x,i), a customer in queue j is served with rate µji· We 
end the description by giving conditions on the arrival probabilities and the 
service rates. 

To make the notation shorter (although it abuses notational conventions 
a bit), let i* be the permutation of i with ij, and ih switched, that is, i'J = 
ij if j -=I= j 1 ,h, i'J1 = ih and i;2 = iii. Assume all vectors considered are 
componentwise smaller than B. Now we formulate the conditions on the arrival 
probabilities and the departure rates. 

The q mu~t satisfy the following conditions: 

(3.2.1) 

(3.2.2) 

An interesting example which satisfies the conditions is a DMDAP with A = 
{l}, A(l) = {l}, >.m = ,\ and qm;i = (N - lil)/N, the well known finite 
source model. In fact, if qxay;i only depends on Iii (and x, a and y), every other 
dependency is allowed. 

The JL satisfy the following: 

JLji = 0 if ij = 0 

µji+e 31 2 µji+eh if j-=/= ]1,]2, 'tji :s; ij2 and ]1 < ]2 

µj,i+eh + µhi+e 31 2 µj,i+eh + µjzi+eh if 'tji :s; ih and ]l < .iz 

JLji 2 µji+eh if J -=/= ]l 

µji 2 µji* if j-=/= J1,J2, ij1 > ih and J1 < ]2 

µj,i 2 /Lizi• ifij1 > ih and J1 < J2 

µj,i + JLj,i 2 /Lj,i* + µhi* if ih > ih and J1 < .h 
We also assume that µji :s; µ for some constant µ. An interesting example 
is µji = min{ij, Sj}Jl,j, with s1 2 · · · 2 Sm and iii 2 · · · 2 Jl,rn· Thus lower 
numbered queues have more and faster working servers. 

Another example is the following. Assume that customers which are not 
served require a certain amount of attention which decreases the service rate 
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of the customer being served. The amount of attention needed depends on the 
queue. This results in µji = (1 - Pjij)µ, p 1 S · · · S Pm· We assume that Bis 
such that pjBj S 1 for all j. Note that the service rate at queue j is decreasing 
in ij, an at first sight counterintuitive fact. This µji satisfies the conditions. 

Again we assume that 1 + mµ S 1, where I:Y Axay = 1 for all x and a. 
The dynamic programming equation is: 

V(x-:-i~ =C(x,i) + mJn { L Axay ( qxay;i mJn{vfv,i+e;/\B)} + (1 - qxay;i)v(y,i)) }+ 
y 

m m 

LµjiVGz,,i-e;) + (1- Lµji -,)v(x,i)• 
j=l j=l 

3.2.1. Lemma. If 

and 

W(x,i+e;,) S W(x,i+e;,) for iii S ij, and J1 < )2, 

W(x,i) S W(x,i+e;,) 

hold for the cost functions c and v 0 , then they hold for all vn. 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

The proof of lemma 3.2.1 can be found in chapter 4. Recall that we as
sumed that all vectors considered are smaller than B. Equation (3.2.4) gives a 
partial characterization of the optimal policy. It says that an arriving customer 
should be assigned to queue Jl instead of queue J2 if there are less customers 
in queue i1 and if Jl < J2. Usually, this does not specify the optimal policy 
completely. Therefore we called the characterization partial. Note that send
ing the customer to queue Jl gives a higher total service rate, and in the case 
Jlji = µj with ft1 2 · · · 2 ftm, the customer is sent to the faster queue. There
fore we call such a policy a Shorter Faster Queue Policy (SFQP). Equation 
(3.2.6) is needed to prove equation (3.2.4). Equation (3.2.5) is the well known 
monotonicity. Using corollary 5.3.4, we have the following. 

3.2.2. Theorem. For all T, an SFQP minimizes the costs at T (from Oto T) 
for all cost functions satisfying (3.2.4) to (3.2.6). 

A special case of this result is proven in [24]. 
The conditions (3.2.4) to (3.2.6) are weaker than (1.2.2) to ( 1.2.4 ), meaning 

that all Schur convex cost functions are allowable. It is easy to give non
Schur convex functions that are allowable (for example, vf x,i) = I:;'~1 Cjij with 
0 S c1 < · · · < cm), meaning that the class of allowable functions is strictly 
bigger. In the present case however, we were not able to give a complete 
characterization of all allowable cost functions, although we have a conjecture, 
stated in appendix C. Note that, for reasons explained in section 2.2, there are 
no stochastic results. 
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For the class of non-symmetric additive cost functions we have a sufficient 
condition. We consider cost functions c which only depend on i, because the 
dependence on x can be arbitrary. We consider C(o:,i) = fi{i1) + · · · + fm(im)
Deflne 6.fi(i) = f;(i + 1) - Jj{i). Then the following conditions are sufficient: 
Jj increasing, 6.fi ( i) ::; .. · ::; 6.f m( i) for all i and m - 1 of the m functions are 
convex. Since of any two functions one is convex, either 6.fh (iii) ::; 6.fh ( ih) ::; 
6.fh (ih) or 6.fii {iii) ::; 6.fi2 {iii) ::; 6.fh ( ih) holds if i1 < i2 and iii ::; ih, 
and (3.2.4) follows. Equation (3.2.5) is immediate, and {3.2.6) follows because 
6.fii(i)::; 6.!J2{i) for all i, and thus fii{ijJ-fi1{ih)::; fJ2{iji)-fi2{ija), 

Even in the case of an MAP, the optimal policy is not myopic. Consider 
the following simple model with Poisson arrivals, m = 2, µ2 ~ µ1, B = ( oo, oo) 
and vri1,i2) = i1 + i2, Now consider v~l,O) and v~l,O)' No matter how small µ2 

is, if n = 2 action 2 is optimal because, if there is an arrival, there is at most 1 
service completion before the planning horizon. If n = 3 however, it is possible 
that queue 1 is served twice before n = 0, and we can choose the parameters 
such that action 1 is optimal. 

Also in the continuous-time case (and again independent arrivals), there is 
no unique optimal policy. However, for the model with Poisson arrivals and a 
single server at each queue (i.e., µji = min{ij, l}µj) attempts have been made 
to describe the optimal policy in more detail. Theoretically it has been shown 
by Hajek (19] that the optimal policy is monotone, meaning that there is an 
increasing switching curve, and it has been shown by Katehakis & Levine (32] 
that for an arrival rate which is sufficiently small the policy that assigns to the 
queue with smallest expected workload is optimal. 

In the papers Van Moorsel & De Vries (47], Nobel & Tijms (54], Houck 
(30] and Shenker & Weinreb (65] computational results are obtained, mostly for 
m = 2 and B1 = B2 • Van Moorsel & De Vries (47] and Nobel & Tijms (54] use 
successive approximation, in the other two papers simulation is used. Nearly 
optimal policies are proposed, for example the policy that assigns each arriving 
customer to the queue where its expected delay is minimal. It is clear that 
successive approximation is a better method than simulation, because with 
simulation a policy cannot be compared with the optimal one, and because 
simulation is computationally less attractive. (Note that this contradicts a 
remark by Shenker & Weinreb (65], where it is stated that, using methods from 
Markov decision theory, it is difficult to find the optimal policy "even in the 
smallest non-trivial case of just two non-identical servers". In the previous 
chapter we had no problems finding optimal policies in models with 4 queues, 
with an accuracy which is hard to obtain with simulation.) All policies studied 
in the cited papers are SFQP's. Nobel & Tijms (54] also consider the case where 
there is more than one server in each queue, i.e. the case µji = min{ij,Sj}P,j, 
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3.3. Symmetric customer assignment models 

In this section we first analyze the symmetric model using lemma 3.2.1. Then 
we generalize this model by introducing batch arrivals. By a limiting argument 
we obtain results for models with workloads. Unfortunately we cannot allow 
finite buffers in this model. In the third model of this section we allow non
routable arrivals at the queues, and we introduce an extra movable server, as 
Menich & Serfozo [46] did. All parameters are allowed to depend on the whole 
state of the system, with conditions as general as possible. If we take an arrival 
process without actions and with one state, we have the model of Menich & 
Serfozo [46]. 

To start with the first model, we modify the conditions of the previous 
section as follows. Assume again that all vectors considered are componentwise 
smaller than B. 

The q satisfy the following: 

qxay;i+e11 ~ qxay;i+eh if ij, ~ ih (3.3.1) 

qxay;i = qxay;i* for all ii, jz 

Recall that i* agrees with i except for ii and iz being interchanged. The last 
condition is called symmetry. Note that the finite source model satisfies these 
conditions. 

Also µ is made symmetric: 

µji = 0 if ij = 0 

/Lji+e11 2'. µji+eh if j -::j::. j1,iz and iii ~ ih 

/Lj,i+eh +/Lj,i+e11 2'.µiti+eh +/Lj,i+e12 ifij, ~ih 

µji 2'. /Lji+eh if j -::j::. i1 
/Lji = µji* if j -::j::. i1,h 

µj,i = /Lj,i* and µhi= µhi* 

The symmetric versions of the examples of the previous section, /Lji = 
min{ij,s}p, and µji = (1-pij)JJ, for suitable B, are allowed here. 

The present model is general enough to capture that of Johri [31]. There 
Poisson arrivals are taken, together with the following assumptions on the 
service rates: µji = /Lji if ij = Zj, µji ~ µji+eJ and µji+2e; - µji+e 1 ~ µji+eJ -

µji, i.e. the service rate in a queue depends only on the number of customers in 
that queue, and is both increasing and concave. For example, the model with 
multiple servers at each queue conforms to this description. 

The dynamic programming equation remains the same as in the previ
ous section. The conditions are stronger than those in section 3.2, giving the 
validity of lemma 3.2.1 for the model studied here. 

We can obtain the optimality result for the symmetric case from lemma 
3.2.1. Let II be a permutation matrix. Assume that v0 and care symmetric in 
· · o o d 
i, 1.e. v(x,i) = v(x,iIT) an C(x,i) = C(x,iII) · 



62 Models with Dependent Markov Decision Arri-val Processes 

3.3.1. Lemma. Assume we have vectors B and iJ = BIT, a permutation of 
B. Let vn and iin be value function for identical models, except for the buffer 
sizes, being B and iJ. Then v(n ·i = ii(n .) with i = ill for all n. x,i x,i 

As the arrival and departure rates are symmetric the inductive proof is 
trivial. 

Now consider equation (3.2.4). By exchanging queue j 1 and queue j 2 in 
the ordering we have the reversed inequality. By doing the same with (3.2.6) 
we have rewritten the set of inequalities, giving the following. 

3.3.2. Corollary. If 

(3.3.2) 

(3.3.3) 

and 

(3.3.4) 

hold for the cost· functions c and v0 , then they hold for all vn. 

The equations (3.3.2) to (3.3.4) are the same as (1.2.2) to (1.2.4) and 
(2.2.2) to (2.2.4). Because the MAP and the MDAP are both special cases of 
the DMD AP, and because µji = min { i j, 1} ji, satisfies the conditions, lemma 
1.2.1 and 2.2.1 follow. 

3.3.3. Theorem. For all T, an SQP minimizes the costs at T (from Oto T) 
for all cost functions satisfying (3.3.2) to (3.3.4). 

Again, all Schur convex function are allowable cost functions. 

In the second model of this section we want to generalize the results of 
section 1.8 to arrivals according to a DMDAP. If we want to do this straightfor
wardly, then we would have to generalize the uniformization results of chapter 5 
to include the model here, for example generalizing the countable state space to 
IRm. Instead of this, we show that the workload model is the limiting case of a 
queue length model with batch arrivals, for which the SQP is optimal. Assup:ie 
that each batch consists with probability f3k of k customers. It is essential that 
the whole batch is assigned to the same queue. If we want to model batch ar
rivals where each member of a batch can be assigned to another queue, we can 
simply use the model without batch arrivals and regard the model with batch 
arrivals as a limiting case. We consider the simple case of each queue having 
a single server. Because the size of the batch can be arbitrarily large, blocking 
can always occur in the case of finite buffers, therefore we do not model them. 
The DMDAP has the same conditions as in the previous model. 
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The dynamic programming equation is: 

V(x-+:i~ =C(x,i) + m}n { L Axay ( qxa.y;i mju {L /3k11(y,i+kei) }+ 
y k 

(1 - qxay;;)v(y,i)) }+ 
m 

L µv(x,(i-e;)+) + (1 - mil - 1 )v(x,i)· 
j=l 

3.3.4. Lemma. If 

L /3kW(x,i+keh) ::; L /3kW(x,i+ke,,) for ij, ::; ije 
k k 

and 

hold for the cost_ functions c and v0 , then they hold for all vn. 

63 

(3.3.5) 

(3.3.6) 

(3.3.7) 

The proof can be found in chapter 4. Note that equation (3.3.5) is not 
valid without the summation, for the same reason as that (1.8.2) was not valid 
without the integration. Using corollary 5.3.4, we get the following. 

3.3.5. Theorem. For all T, an SQP minimizes the costs at T (from O to T) 
for all cost functions satisfying (3.3.5) to (3.3. 7). 

Again, all Schur convex cost functions satisfy the conditions. 
By lemma A.2 we can approximate any service time distribution arbitrarily 

closely by phase-type distributions. Assigning to the shortest queue is, in the 
limit, equivalent to assigning to the queue with the shortest workload. This 
gives the following result. 

3.3.6. Theorem. For all T, an SWP minimizes the costs at T (from Oto T) 
for all Schur convex cost functions. 

Although the arrival process is a DMDAP with which we can model a 
finite source, we cannot model a finite source in the workload model, because 
we do not know the actual number of customers in the system. Note however 
that we already proved in theorem 2.4.2 that the SWP is optimal in a finite 
source model. 

Now we look at the model that has additional non-routable arrival streams, 
and an extra movable processor. The combination of finite buffers and addi
tional arrivals is not allowed as the SQP might not be optimal anymore. This 
can be seen from the following example: take m = 2, B = (3, oo ). In state 
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( 2, 1) it may be optimal to assign an arriving customer in the assignable stream 
to queue 1, because then future non-routable arrivals at queue 1 are blocked. 

The extra arrival streams can easily be modeled with the DMDAP: arrivals 
in class O are routable, customers arriving in class k, 1 :=; k :=; m, join queue k. 
The arrival probabilities of class O are allowed to depend on the assignment 
action, i.e. we have arrival probabilities q~ay;ij• where j is the assignment. 
Assume that there are numbers iizay such that q~ay;ij :=; iizay for all i and j. 
We let the service probabilities depend also on x. Denote the service rate of 
the movable processor with fi,ji;z, if it serves queue j in state i. Assume also 
that fi,ji;z :=; ji, for all i, j and x. The dynamic programming equation is: 

(3.3.8) 

m m 

L µji;zV(z,i-e;) + (1 - 'Y - ji, - L µji;z)v(z,i)• 
j=l j=l 

Now we give the conditions. Recall that i* is the vector equal to i, but 
with queue ii and h interchanged. First we have symmetry of all parameters 
involved (called interchangeability in Menich & Serfozo [46]): 

o o "f · 4 · · d o o q.,ay;ij = q.,ay;i• j 1 J r J1, J2 an q.,ay;iii = q.,ay;i• h 

We also assume the following on q0 (with, as in section 1.5, (j) the index of 
the jth smallest component of i): 

0 < 0 
qzay;i(l) - qzay;ij (3.3.9) 

(3.3.10) 

Assume li < h. The conditions on the non-routable arrival probabilities are: 

(3.3.11) 
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m m 

L (j) < L (j) f k - l + 1 qxay·i - qxay·i+e or - 1 , • • • , m 
' ' (11) 

(3.3.12) 
j=k j=k 

Concerning servers, we assume, besides the interchangability: 

JJ,ji;x = µji;x = 0 if ij = 0 

The assumptions on the service rate of the routable server are the reverse of 
those on q0 : 

JL(m)i;x ~ JJ,ji;x (3.3.13) 

JL(m)i+e,, ;x ~ JL(m)i+e;,;x if ij1 :=:; ijz 

The assumptions on the fixed servers are much like those on the non-routable 
arrivals: 

m m 

Lµ(j)i+e(l 1 );x ~ LJL(j)i+e(l2 );x fork= 1, ... ,li,l2 + 1, ... ,m 
j=k j=k 

m m 

L µ(j)i;x ~ L µ(j)i+e(l 1 );x for k = li + 1, ... , m 
j=k j=k 

Note that the conditions are the same as in Menich & Serfozo [46]. Now we 
can formulate our inductive result. 

3.3.7. Lemma. If 

and 

W(x,i+eit) :::; W(x,i+e;,) for ih :::; ijz, 

W(x,i) :=:; W(x,i+eh ), 

W(x,i) = W(x,i*) 

hold for the cost functions c and v 0 , then they hold for all vn. 

(3.3.14) 

(3.3.15) 

(3.3.16) 

3.3.8. Theorem. For all T, an SQP minimizes the costs at T (from Oto T) 
for all cost functions satisfying (3.3.14) to (3.3.16). 

By appendix C the class of allowable cost functions is the class of weak 
Schur convex functions. 

Remark. As we saw, the arrival probabilities and service rates are allowed to 
depend both on the state of the arrival process and the state of the queues. 
Therefore the term environment instead of arrival process would be more ap
propriate. Typically, in an environment the arrivals are according to a Markov 
Modulated Poisson Process. Here however, we kept the arrivals occurring at 
the transitions of the environment, in order to maintain the generality of the 
arrivals. In most other models studied in this thesis we can allow the service 
rates to depend on the state of the arrival process. Because the generalization 
is only minor and because of notational simplicity we refrained from doing so. 



66 Models with Dependent Markov Decision Arrival Processes 

3.4. Custpmer assigmnent InPdels without waiting ropm 

The results of section 3.2 can also be ]lsed to obtain results in tl1e model without 
wa,iting room, m]lch like the results op the symmetric model were obtained in 
the previous section. We have the same condition on the arrival probabilities 
and the service rates, bl.lt because B = (1, ... , 1) the inequalities of lemma 
3.2.1 simplify to 

(3.4.1) 

and 
W(x,i) ::; W(x,i+e,,) for ij, = 0. (3.4.2) 

These are the same inequalities as (1.3.2) and (1.3.3). Lemma 1.3.1 follows 
because µji = min{ ij, 1 }µj satisfies the conditions of lemma 3.2.1. 

3.4.1. Theorem. For all T, an FQP minimizes tlle costs at T (from Oto T) 
for all cost functions satisfying (3.4.1) to (3.4.2). 

The class of allowable cost functions are the functions that respect the 
partial sum ordering, as introduced and discussed in appendix C. 

In Sobel [66] a model is studied in which customers of rh classes arrive 
according to independent Poisson processes. Besides that, the model is similar 
to the model studied here. The analysis of that paper appears to be erroneous. 
(The basic theorem 1 does not hold as the derivation of B 2 1 is incorrect.) 
Sobel & Srivastava [67] wrote a revision. The model is essentially a single class 
model. The optimal policy does not depend on the class, and the only place the 
class of a customer plays a role is in the cost function. However, no example is 
given of a cost function that indeed depends on the customer classes. Here we 
prefer to study a more complex model in which rejection is allowed. 

Consider m exponential servers with decreasing service rates µ 1 2 · · · 2 
µm and arrivals according to an MAP. (At the end of this section we show 
that the results cannot be generalized to (D )MDAPs.) Arrivals occur in rh 
classes. When a class k customer arrives, it can either be rejected or sent to 
one of the free servers. The service times depend only on the server, not 011 
the customer class. When a class k customer is rejected blocking costs bk are 
incurred, b1 2 · · · 2 bm 2 0. (It can be shown that if a class has negative 
blocking costs, it will always be blocked.) At the servers, an action has to be 
chosen for each class of customers. We denote with ak the free server to which 
an arrival in class k is assigned, with action 0 corresponding to blocking. The 
dynamic programming equation becomes (assume e0 = 0): 

Tri 

V(~~i~ = L Axy ( L q!Y n~tn { I { a,, = 0 }bk + 'U0J,i+eak) }+ 
y k=l 

m 
(1 - I: q!y)v01_i)) + 

k=l 



Customer assignment models without waiting room 67 

m m 

I: JljV(x,(i-ei)+) + (1 - 'Y - I: µj )v(x,i) · 
j=l j=l 

3.4.2. Lemma. If vf x,i) = 0 for all x and i, then the following equations hold 
for all n: 

v(x,i+eh) ::; vG,;,i+eh) for )1 < )2 and ij1 = ih = 0 

v(x,i) ::; v(x,i+eh) for iii = 0 

V(x,i+eh) ::; b1 + v(x,i) for iii = 0 

vn . - vn . < vn . - vn . 
(x,i+eii) (x,i) - (x,i+eh +eh) (x,i+eh) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

for J1 = min{jl(i + eh )j = O} and ij2 = 0 

The proof can be found in chapter 4. Let us consider the consequences 
of the lemma. As can be deduced from the dynamic programming equation, 
when considering assigning an arbitrary customer to one of the free servers, we 
have to compare 1'(x,i+ei) for various j. By (3.4.3) v(x,i+ei) is minimal for the 
j corresponding .to the fastest free server. Equation (3.4.4) is the well known 
monotonicity. (Because we did not use bk ~ 0 in its proof, it follows from the 
monotonicity that blocking is always optimal if bk < 0.) Equation (3.4.5) is 
concerned with the assignment of customers with the highest blocking costs. 
It says that assigning such a customer to an arbitrary server is better than 
blocking, i.e. a class 1 customer should never be blocked unless the system is 
full. Equation (3.4.6) says that when a class k customer is blocked in state ( x, i), 
i.e. 1'(.,,i+eii) - bk - v(x,i) ~ 0, it is also blocked when there are more customers 

present (and the state of the MAP is the same). On the other hand, when 
a customer is admitted, it is admitted as well in states with less customers. 
Another monotonicity property is the following. If v(x,i+eit) - bk, - v(x,i) ~ 0, 
then also v(n ·+ . ) - bko - v(n .) ~ 0, if k1 < k2. Thus, when blocking is x,i eJ 1 ~ x,i 

favorable for class k1 , then blocking is also favorable for class k2 . Similarly, 
when customers of a certain class are admitted, then all customer classes with 
higher blocking costs are admitted as well. This gives the following. 

Theorem. For all T, an optimal policy minimizing the blocking costs from 0 
to T exists and has the following properties: 
If a customer is admitted it should be sent to the fastest free server; 
Class 1 customers are never blocked, unless the system is full; 
Ifa class k customer is blocked in (x,i1), it is blocked in (x,i1 +i2); 
If a class k customer is admitted in ( x, i1 + i2 ), it is admitted in ( x, i1); 
If a class k customer is blocked in (:c, i), all classes with indices liigher thank 
are blocked as well in (x, i); 
If a class k customer is admitted in (:c, i), all classes with indices lower than 
thank are admitted as well in (x, i). 
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This result comes from [35]. 
If the arrival stream is an MDAP, then {3.4.3), {3.4.4) and {3.4.5) still 

hold, but {3.4.6) fails. We demonstrate this with the following example. Take 
m = 2 and µ 1 = µ2 = 1. The arrival process is as follows. There is <1,µ arrival 
in class 2 at t = 0, after which the arrival process moves to one of 2 states. 
If action 1 is chosen, the arrival process moves to state 1, where customers of 
class 1 arrive according to a Poisson proces:, with rate >.1 . There are no class 
2 arrivals. If action 2 is chosen, the arrival process moves to state 2, in which 
there are no class 1 arrivals, but where there are Poisson arrivals in class 2 
with rate >.2 • This arrival process can easily be approximated by MDAP's. It 
appears that, for suitable values of b1, b2, -X1, >.2 and T, it is optimal to block 
the class 2 customer and choose action 1 if the system is empty, but to admit 
the class 2 customer and choose action 2 if there is one customer available. 
This means that (3.4.6) does not hold. Using the uniformization method the 
different strategies can easily be compared. Equation {3.4.6) fails for example 
for b1 = 10, b2 = 1, >.1 = 1, >.2 = 3.5 and T = 5. It is straightforward to give 
an intuitive explanation. 

3.5. Customer assignment models with rejections 

Here we want to generalize the model of section 1.6 to asymmetric servers. 
Section 1.6 deals with a symmetric customer assignment model, for which it 
is shown that the SQP maximizes the number of departures from the system. 
Thus, we analyze the model of section 3.2, but with a different objective func
tion. We will see however, that the conditions on the arrival probabilities and 
the service rates need to be different. The model we study has as dynamic 
programming equation: 

v(a;-+:i\) = C(x,i,k) + mJn { L Axay ( q.,ay;i mjn{v~,i+ejl\B,k)}+ 
y 

{1 - q.,ay;i)v(y,i,k)) }+ 
m m 

(3.5.1) 

Lµji(oi,V(x,i-e,,k+l) + {1- Oi,)v(x,i,k)) + (1- 7- Lµji)V(x,i,k)· 
j=l j=l 

The extra component of the state space k cpµµts the number of departures. As 
in the server assignment models with a single server we study both the case in 
which rejection is allowed and the case in which it is not allowed. 

We start with the model in which rejection is not allowed, meaning that the 
minimization ranges over all j for which Zj < l3j- To make the notation shorter, 
let i* again be the permutation of i with iii and ih interchanged. Assume all 
vectors considered are componentwise s:qi.<1,ller than B. The conditions for q 
are: 
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qxay;i 2'. qxay;i+e;, 

Although the conditions are more restrictive than m section 3.2, the finite 
source model still satisfies them. 

For µ, we take the same conditions as in section 3.2. Now we have: 

3.5.1. Lemma. If 

and 

W(x,i,k+l) ::; W(x,i+e;, ,k), 

W(x,i,k+l) ::; W(x,i,k) 

hold for the cost functions c and v0 , then they hold for all 11n. 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 

The proof can be found in chapter 4. The only meaningful cost function 
is again vfx,i,k) = -k (and C(x,i,k) = 0). 

3.5.2. Theorem. In the case of a DMDAP, an SFQP maximizes the expected 
number of departed customers between O and T, if rejection is not allowed. 

If we want to allow rejections, we have to assume that qxay;i is independent 
of i, i.e. the arrival process is an MDAP, and we cannot model a finite source. 
This is intuitively clear: if the system is relatively full it might be better to 
reject a customer in order to make a better choice when the customer comes 
again. 

Concerning the service rat.es, we need the extra condition µji+e;, 2: µji 

for all j. As we already assumed the reverse for j -::/- j 1 , it amounts to: 

and 

µj,i+e 11 2'. µj,i· 

This is not surprising. On one hand, if we assign to the shortest queue, cus
tomers leave the system fast. To agree with this, service rates must be high in 
states with few customers. On the other hand, states with few customers can 
be reached by rejecting customers, and to agree with this, service rates should 
be high in states with many customers. This reasoning intuitively explains the 
fact that the service rates must be constant. 

For completeness, we give the other conditions as well. 

µj 1 i+e;, + µj,;+e11 2: µj,i+e;z + µj,i+e;, if ij, ::; ijz and ii < )2 

µj 1 i 2: µhi* if ih > ih and ii < J2 
µj 1 i + µhi 2: µhi*+ µhi* if ih > ih and J1 < )2 
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3.5.3. Lemma. If 

and 

W(x,i+e;, ,k) :5 W(x,i+e,.,k) for ij, :'S ij, and j1 < h, 
W(x,i,k+l) :'S W(x,i+e11 ,k), 

W(x,i+e;, ,k) :'S W(x,i,k) 

hold for the cost functions c and v0 , then they hold for all vn. 

(3.5.6) 

(3.5.7) 

(3.5.8) 

(3.5.9) 

The proof can be found in chapter 4. Equation (3.5.8) shows that there 
exists an optimal policy that does not reject customers. Because of the arbitrary 
buffers we need (3.5.8) in the proof of (3.5.7). Note that lemma 1.6.1 is a special 
case of lemma 3.5.3, using the equivalent of lemma 3.3.1. 

3.5.4. Theorem. In the case of an MDAP, an SFQP maximizes the expected 
number of departed customers between O and T, if rejection is allowed. 

Also the model with B = e gives a myopic optimal policy, as the first 
model studied in the previous section. Because we did not handle this model 
in chapter 1, we do it here. As is easily seen equation (3.5.6) to (3.5.9) simplify 
to 

and 

Then we have, in case of an MAP: 

3.5.5. Theorem. For all T, the FQP maximizes the number of departed 
customers between O and T stocliastically. 

Remark. We end this section by considering the differences between the mod
els of this section. In the second modeL in which rejection is allowed, we need 
qxay;i+e;, 2'. qxay;i to prove (3.5.8), and q,wy;i 2'. qxay;·i+eh to prove (3.5.7). 
Thus q.,ay;i must be independent of i. In the first model, in which rejection is 
not allowed, we do not have (3.5.8), and thus we only assume q.,ay;i 2'. qxay;i+e;,. 
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3.6. Server assignment model with multiple servers 

In this section we generalize the result for the server assignment model with 
multiple servers of section 2.5 to servers which are partially available, and to 
arrival processes that stop producing customers if i = 0. Let us first describe 
the model of section 2.5 again. 

Customers arrive in m different classes. The service times of customers in 
class j are exponentially distributed with rate µj, µ 1 :::; · · · :::; µm. In the case 
of arrivals according to an MDAP and multiple servers it is shown in section 
2.5 that the SIP is optimal. 

Here we have arrivals according to a DMDAP, with the following condition. 
There are numbers q~ay such that q~ay;O :::; q~ay and q~ay;i = q~ay if i I- 0. If 
we take q~ay;O = 0 the system stays empty once it becomes empty. This way 
we can study the length of the busy period for the model with an MDAP, even 
in the case that there are arrivals (in the system with q~ay;O = q~ay) after the 
first emptiness. 

Perhaps more interesting is the following generalization. In the model of 
section 1.12 we modeled server vacations, i.e. a server is either working at full 
speed or not working at all. Here we introduce more possibilities, by assuming 
that server k is working at speed Pk ( x), 0 :::; Pk: ( x) :::; 1. Note that this can also 
be modeled with the arrival process. The dynamic programming equation is: 

m m 

V(x~i\ =C(x,i) + m]n { L Axay ( L q!ay;i"(y,i+ei) + (1 - L q!ay;i)v(y,i)) }+ 
y ~1 ~1 

(1- ')' - LPk(x)µ)v(x,i)' 
k=l 

with lk the queue to which server k is assigned, and the second minimization 
taken over all allowable actions ( with possibly lk = 0, meaning that server k 
idles). We have again: 

3.6.1. Lemma. If 

µj, 'W(x,i-eh) + (µ - µj, )w(x,i) :::; µh 'W(x,i-e12 ) + (µ - µh )w(x,i) (3.6.1) 

for ij,, ij2 > 0 and i1 < h 
and 

(3.6.2) 

hold for the cost functions c and v 0 , then they hold for all vn. 

The proof can be found in chapter 4. There it is also shown that the 
policy that assigns the servers with the highest speed to the customers in low 
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numbered classes is optimal. We call such a policy a Fastest Server Smallest 
Index Policy (FSSIP). The first to obtain this type of optimality result (without 
arrivals) were Weiss & Pinedo (80]. As a special case they showed that the 
FSSIP minimizes the expected makespan. 

3.6.2. Theorem. A FSSIP minimizes the costs at T (from Oto T) for all cost 
functions satisfying (3.6.1) and (3.6.2). 

See section 1.12 for a discussion of the allowable cost functions. 

Remark. In the proof of (3.6.2) we used neither (3.6.1) nor µ1 :s; · · · :s; µm, 
meaning that lemma 3.6.1 not only gives the optimality of LEPT, but also the 
monotonicity in the server assignment models of the sections 1.12, 2.5 and 2.6. 

3. 7. Server assignment model with a single server 
and a finite source 

In this chapter we introduced the DMDAP. The main motivation to do so was 
to model a finite source in the customer assignment models. In the server 
assignment models this cannot be done in general due to the multiple customer 
classes. In this section we handle a special model with m customer classes, 
all of finite source type, and with a single server. The service parameters are 
as usual, Aj is the rate at which each customer of class j enters queue j, and 
Nj is the total number of customers of class j. We show that, for certain cost 
functions, the SIP is optimal if A1 :s; · · · :s; Am. The case A1 :s; · · · :s; Am 
and µ 1 2: · · · 2: µm is studied in Righter [56]. We formulate the dynamic 
programming equation. The direct costs are not modeled because the optimal 
policy appears to be myopic, and thus we can use corollary 5.2.2 or 5.2.3. 

m 

vf+1 = 1:)Nj - ij )AjVi+e; + m[n {µzvf-e, + (µ - µz)vf }+ 
j=l 

m 

(1- I:(Nj - ij)Aj - µ)vf. 
j=l 

As contrasted with the other single server models, we need monotonicity here 
to prove the structure of the optimal policy, giving the following lemma. 

3.7.1. Lemma. If 

µj, Wi-e;, + (µ - µj, )wi :s; µh Wi-eh + (µ - µh )wi (3.7.1) 

for ij,, ih > 0 and j1 < h 
and 

(3.7.2) 
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hold for the cost function v0 , then they hold for all vn. 

3.7.2. Theorem. If A1 :S · • • :S Am, then the SIP minimizes the costs at T 
(from Oto T) for all cost functions satisfying (3.7.1) and (3.7.2). 

Equation (3.7.1) and (3.7.2) are the same as equation (1.11.1) and (1.11.2), 
thus the same cost functions are allowable. 

An interesting interpretation for linear costs is given in Chakka & Mi
trani [9]. In this model the customer are the servers of a multi-server queue. 
They are subject to failure (with rates Aj), and are repaired by a single re
pairman (with rates µj), which is the server in our model. If we assume that 
a class j server has a service rate Cj, then minimizing I:j ijCj corresponds to 
maximizing the total service capacity. 

The condition A1 :S · · · :S Am is essential; to illustrate this, we give an 
example with linear costs where no list policy is optimal. ( A list policy is a 
policy if all customers are ordered ( the list) and served according to this order.) 
For our example we choose a model with three customers and the following 
parameters: A1 = 2.00, A2 = 1.00, A3 = 0.10, µ 1 = 3.15, /J,2 = 2.00, µ3 = 1.00, 
c1 = 1.00, c2 = 1.00 and c3 = 0.05. We see that µ1c1 2 µ2c2 2 µ3c3 and 
A1 2 >.2 2 A3 , making this model fall outside the scope of theorem 3. 7.2. For 
each of the 24 different policies we computed the average holding costs. For the 
six list policies the values are given below. Each list policy is characterized by 
its list, thus policy { a, b, c} indicates the policy which gives highest priority to 
customer a, and lowest priority to c, and its value is denoted by v( a, b, c). The 
values are as follows: v(l, 2, 3) = 0.8803, v(l, 3, 2) = 0.9338, v(2, 1, 3) = 0.8806, 
v(2,3,1) = 0.9285, v(3,1,2) = 0.9569, and v(3,2,1) = 0.9559. Thus (1,2,3) 
is the best list policy. However, let us consider the policy that gives lowest 
priority to the third customer, that serves customer 1 in state (1, 1, 0), but 
serves customer 2 in state (1, 1, 1). Computations show that this policy is 
optimal, with value 0.8800. This shows that there need not be an optimal list 
policy. 

We could leave it at that, but let us try to gain some more insight in the 
model by giving a heuristic explanation for this phenomenon. Customer three 
plays a role of little importance. It fails seldomly (as A3 = 0.10), and if it 
has failed, it has the lowest repair priority (as c3 = 0.05). The parameters are 
chosen such that if only the customers 1 and 2 are available for repair, then 
customer 1 gets served first. However, if customer 3 is also at the queue, the 
time it takes to repair customers 1 and 2 plays a more important role, as this 
determines the instant at which the repair of customer 3 begins. To start repair 
early on customer 3, service should start with customer 2 ( cf. theorem 3. 7.2, as 
A2 < A1)- The parameters for customer 3 arc chosen such that the availability 
of customers changes the order in which customers 1 and 2 should be served. 

In Koole & Vrijenhoek [40] these results are also derived, and additional 
references are given. Furthermore, we derive policies which are asymptotically 
optimal. For the case that the server idles most of the time, the µc-rule is opti
mal; for the heavy traffic case the SIP is optimal if µ1ci/A1 2 · · · 2 µmcm/Am. 





Chapter 4 

Proofs of dynamic programming results 

4.1. Proofs of chapter 1 

Proof of lemma 1.4.1. By induction on n. The case n = 0 is the condition 
on the cost function. Now assume that (1.4.2) to (1.4.4) hold up to n. First 
we determine the optimal action at vn+l in (i,j). Consider the dynamic pro
gramming equation (1.4.1). If i = j then both terms in the minimization are 
equal by (1.4.4), symmetry. Thus, again by symmetry, it is enough to consider 
i < j. 

It is easily Seen that (i - 1)+ ~ (j - 1)+, (i - 1)+ ~ j, i ~ (j - 1)+ and 
i ~ j, from which follows, by (1.4.2), that the 4 terms in v0~~ corresponding 
to assigning the arriving customer to queue 1 are one by one smaller than 
the terms corresponding to assigning to queue 2. This gives us that sending an 
arriving customer to the first queue is better, even if we knew where departures 
would take place. 

Note that combining (1.4.3), monotonicity in the first queue, and symme
try gives v(i,j) ~ v(i,j+l)' monotonicity in the second queue, and that (1.4.2) 
and symmetry gives v(i,j+l) ~ v(i+l,j) if ,i, ~ j. 

Now we prove (1.4.2) for vn+l. The case i = j follows from symmetry. 
Thus assume i < j. Because of this, assignment to the first queue is not only 
optimal in (i,j), but also in states like (i,j - 1). We have 

,2n <'2n 
A/L v(i+l,j-1) - Aµ v((i-1)++1,j) 

by (1.4.2) if i > 0 and by monotonicity in the second queue if i == O; 

and 

>.(l - µ)µv[~+ 2,j-l) ~ >.(l - µ)µv[~+l,j) 

by (1.4.2) if i < j - l; in case i = j - l we have 
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by symmetry if i > 0 and monotonicity if i = O; we have 

by (1.4.2); 

and 
(1- .\)µ(1- µ)v0,j) ~ (1- .\)µ(1 - µ)v((i-l)+,j+l) 

by {l.4.2) if i > 0 and monotonicity if i = O; 

(1 - .\)(1 - µ)µv 0+l,j-l) ~ (1 - .\)(1- µ)µv 0,j) 

and 
(1- .\)(1- µ) 2v0+1,j) ~ (1 - .\)(1- µ) 2v0,j+l) 

by (1.4.2). Summing all terms gives v(i!i,j) ~ v(~j~i)· 
We continue with {l.4.3). If i + 1 < j, then also i < j and assignment 

to the first queue is optimal in both (i,j) and (i + 1,j); if i + 1 > j, then 
assignment to the second queue is optimal in both (i,j) and (i + 1,j). Choose 
action 1 in ( i + 1, j) if i + 1 = j. Then the optimal action in ( i, j) is the same 
as in (i + 1,j). Showing v(ij) ~ v(i!i.J) can now be done by using (1.4.3) 
on all corresponding terms, unless i = 0, then we have equality in all terms 
corresponding to departures in queue 1. 

The last equation, v(n_+_i) = vn( :l-.1), follows easily. □ 
i,J J,i 

Proof of lemma 1.5.1. By induction. We will check (1.5.1) to (1.5.3) for 
all possible realizations of Un+l. From the induction hypothesis we have that 
all relations given below hold for each realization of U1 , ... , Un. We start with 
{l.5.1). Assume i31 < i32 • The case ij1 = i32 is a special case of (1.5.3). If 
Un+l E [Ez<y Axz, Ez<y Axz+Axyqxy) an arrival occurs. Letj* be the shortest 
queue in i + e32 , i.e. the optimal action in (y, i + e32 ). Then, if j* =/=- ii, 

If j* = ii then (we omit the terms with yn+i) 
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We took (j) < (j + 1) if icn = i(j+l)· However, by (1.5.3), the ordering in case 
of ties can be taken arbitrary. Now we can make sure that queue j1 is served 
in i + ej1 and i + eh for the same value of Un+i, by taking queue ii first in 
i + eh amongst the queues with iii + 1 customers and by taking queue j1 last 
in i + eh amongst the queues with iii customers. Similarly, we can assure that 
queue h is served for the same values of Un+l in i + Cj1 and i + eiz. Now, if 
Un+i E [, + (j - l)µ, "/ + jµ) with (j)-:/- i1 or .i2, 

(1.5.1) 
v,n < v,n (x,(i+e31 -e(j))+) - (x,(i+e,, -e(j))+)· 

If (j) = i1 then, if iii > 0, 

and, if iii = 0, 
(1.5.2) 

v,n. < v,n. . 
(x,i) - (x,i+e32 ) 

If (j) = i2 then 

If Un+l 2 1 + mµ, then 

(1.5.1) 
v,n. < v,n. . (x,i+e31 ) (x,i+e32 ) 

We continue with (1.5.2). If Un+l E [I:z<y ,\,,z, I:z<y .\,,z + Axyqxy) and i + 
eh = B, we have 

if i + eh -f:. B then 

(1.5.2) 

min{V,(nyi+e·)}::; v,(nyi+e·) ::; min{V,(nyi+e· +e·)}. 
J , ' J ' 31 J ' 11 J 

The cases Un+l E [I:z<y Axz+Axyqxy, I:z:;y Axz) and Un+l E [,+mµ, 1] follow 
easily. With respect to the departures we can again reorder the ties such that 
all queues in ·i and ·i + eh are served for the same Un+ 1 . Now look at the 
departures at queue j. If j -:/- i1, 

(1.5.2) 
v,n . < v,n . (x,(i-e3 )+) - (x,(i+e31 -e3 )+)· 

If j = ii and ij 1 > 0, then 

(1.5.2) 
v,n. < v,n . (x,i-e31 ) - (x,i) 

and if j = i1 and iii = 0 then 

Yc~,i) ::; Yc~,i). 
As for (1.5.3), the only non-trivial eventuality is when a customer arrives, 
because the buffers might give problems. However, it is easily checked that the 
smallest non-full queue in i and i* have the same number of customers. □ 
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Proof of lemma 1. 7.1. By induction. Assume the lemma holds up to n. 
We start with (1.7.2). Assume ih < ih- The case ih = ih can be done with 
(1.7.4). Let j* be the optimal action in (y, i+eh) at stage n+ 1. Then j* -:f. 22· 
If j* = j 1 , we have 

q.,Yv(y,i+e;, +eh)+ (1 - q.,y)v['y,i+eh) = 

q.,y mjn{v(~,i+eh+e;/\B)} + (1- q,,y)vfv,i+eh)· 

If j* -:f. j 1 we have 

(1.7.2) 

q.,Yv0/,i+eh +ei*) + (1 - q.,y)v0/,i+eh) ::; 

q.,Yv(y,i+eh+ej•) + (1- q.,y)v01,i+eh) == 

q.,y min { V(ny i+e. +e · /\B)} + ( 1 - q,,y )v(ny i+e. ) . 
. j ' 12 'J • ' .12 

Now it follows that 

L Axy ( q,,y mjn{ vfy,i+% +ei/\B)} + (1 - q.,y )vfy,i+e;,)) ::; 
y 

L Axy ( qxy mjn{ v0J,i+eh+ei/\B)} + (1 - qxy )v['y,i+eh)). 
y 

Concerning the departures, note that each customer in ( x, i+ej1 ) and ( x, i+ei,) 
is served. We have 

if ij > 0. Summing this for all customers in state i gives all terms, except those 
corresponding to the extra customers in queue ii and 22· However, their term 
is easy: 

The dummy term follows easily from (1.7.2). Summing the terms gives 
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We continue with (1.7.3). Let j* be the optimal action in (y, i). If j*-=/:- J1, 
then j* is also optimal in (y, i +eh), and 

If j* = }1 we have 

(1.7.3) 

qxyV(y,i+eh+ej•) + (1- qxy)v(y,i+eh) < 

Note that this derivation also holds in case i + ej1 = B. 
Now we have 

L Axy ( qxy mJn{ V(y,i+eh +ei/\B)} + (1 - qxy )'U(y,i+eh)) < 
y 

L Axy ( qxy mJn{ V(y,i+eiAB)} + (1 - qxy)v(~,i)). 
y 

For all customers except for the extra customer in class j 1 we have 

The extra customer is considered together with a dummy term with coefficient 
µ: 

The coefficients of the remaining dummy terms are equal and the inequalities 
follow easily. 

Equation (1. 7.4) follows easily. □ 
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Proof of lemma 1. 7.3. By induction. We start with (1. 7.5). The arrival 
terms go the same as in lemma 1.7.1. Now consider the departures. If i + e;i 
and i+eh both have an empty group, there is only the dummy term. If i+eh, 
but not i + e;i has an empty group, (1. 7.6) can be used, and what remains are 
dummy terms with equal coefficients. If the system is in both i+ej1 and i+eh 
up, we have 

for each j, by (1.7.5). 
We continue with (1.7.6). Let j* be the optimal assignment in (y,i,k)at 

step n + 1. Then, if i -;fa B, 

m 

L ( qr,;y m~n{ V(y,i-eh +e;AB,k)} +{1---qzy )v~,i-% ,k)) ~ 
ii=l J 

m( qzyV(y,i+ei* ,k) + (1 - qzy)v~,i,k)) = 

m ( qzy mjn{ v~,i+e;AB,k)} + (1 - qzy )v(y,i,k)). 

If i = B then in each state (y, i - e;i, k) we can send an arrival to a full group: 

m 

L ( qr,;y min{ v~,i-eh +e;AB,k)} + (1 - qzy)v~,i-e;l'k)) ~ 
Ji=l J 

m ( qr,;yV(y,i,k) + (1 - qr,;y )v(y,i,k)) = 

m(qzymjn{v(y,i+e;AB,k)} + (1- qzy)v(y,i,k))· 

This gives the inequalities for the arrival terms. 
Concerning the departures, if ij1 > 1 we have 

if i;i = l we have 
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Summation of these terms for j 1 = 1, ... , m gives the terms concerning depar
tures, leaving dummy terms with the same coefficients. 

We continue with (1.7.7). The arrival term can be shown similar to the 
arrival term of (1.7.3). When the system is up or down in both i + eii and i 
the departure terms follow easily by induction. If i + ej1 2 e and ij, = 1, then 
first (1.7.6) should be used. 

Equation (1.7.8) follows easily by induction. Also (1.7.9) can be proven 
easily. □ 

Proof of lemma 1.8.1. By induction. First we will show that 

holds for all s, i.e. that it is optimal to assign to the queue with the smallest 
workload. First assume that ij, - s 2 0. This means that (i + tej - se)+ = 
(i - se)+ + tej for j = J1 and j = jz. Then we have 

J J (1.8.2) 

V0+teh -se)+dP(t) = V0-se)++te;, dP(t) S 

J V0-se)++teh dP(t) = J V0+te32-se)+dP(t). 

Now assume that ·ij1 - s < 0, but ih - s 2 0. By (1.8.3), monotonicity, we 

have v0+te;, -se)+ S v0 _se)++teh. This gives 

J V0-.se)++tehdP(t) = J V0+teh-se)+dP(t). 

Finally assume that ih-s < 0. We can rewrite (i+tej2 -se)+ as (i-se)+ +t*eh 
with t* = (t - s + ii,)+. Note that t* < t. Because (i + tej1 - se)+ S 
(i - se)+ + t*ej1 we have, by (1.8.3), v0+te;, -se)+ S v0 _se)++t*e;,. Thus 

j V0+te;, -se)+dP(t) S j V0-se)++t*e;, dP(t) = 

J V0-se)++t•eh dP(t) = J V0+teh-.,e)+dP(t). 

Having shown that assigning to the smallest queue is optimal, the inequalities 
will follow quite easily. 

Consider (1.8.2). Let j* be the optimal assignment in i + teh. If j* = Jl, 
then 
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J J V(i+te:ii+seh-u,,e)+dP(s)dP(t) = 

J mjn { J V(i+te;,+se;-une)+dP(s) }dP(t). 

If j* =f. Jl, then 

J mjn { J V(i+teh+sei-u,.e)+dP(s) }dP(t) :S: 

ff V(i+teh+sej•-Une)+dP(s)dP(t) :S'. 

ff V(i+te;,+sei* -u,.e)+dP( S )dP(t) = 

J mjn { J V(i+teh+sej-u,,e)+dP(s) }dP(t), 

the second inequality by tl;ie optimality of the SWP as shown above. 
Concerning (1.8.3), if j* is the optimal action in i + teh, we have 

f V(i+teh +sei* -une)+ dP( S) = ~in { f 11(i+teh +sej-Une)+ dP(s) }. 

Equation (1.8.4), symmetry, is as usual trivial to prove. □ 

Proof of lemma 1.11.5. By induction. Assume the lemma holds up to n. 
We start with the arrivals. Because 

(1.11.6) 

µj, V(y,i-eh +e;) + (µ - µh )v(y,i-eh +eJU, 1+eJ) :S'. 

the arrival term follows easily. 
Consider the terms concerning departures. Let .i* be the optimal action 

in (x,i - ej,)- Because (i - ej2 )J, > 0, j* :S: j 1 . Because f(.i 2 ) 2: .72 - 1 we 
see that .i* is also optimal in (x,'i - eh+ ef(is))- We distinguish two cases, 
.i* < .i1 and j* = .i1. Assume j* < .i1- Then .i* is also optimal in ( x, i - ej1 ) 

and (x,i- eh +et(h))- We have 
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(1.11.6) 

(µ - µj, )(µj• 'U(x,i-e;, +ew,) -e;•) + (µ - µj• )v(x,i-e;, +e w,) -e;•+e J(j* )) ) :S 

µh (µj• 'U(x,i-eh -e;•) + (µ - µj• )v0,,,i-eh -e;• +e1u•)l )+ 

(µ - µh)(µj•'U(x,i-eh+ei(h)-e;•) + (µ - µj• )v(x,i-eh+ef(h)-ej*+e,u•))) = 
µh min {µzv(x,i-eh -el) + (µ - µz)v(x,i-eh -e1+e,cz)) }+ 

(µ - µj,) min {µzv0,,,i-eh+e 1(h)-e 1) + (µ - µz)v(x,i-eh+et(h)-ei+ef(I)) }. 

Now consider j* = Jl· Then h is an allowable action in (x, i - eh) and 
(x,i - eh+ ef(j,))- Then we have 

µj, min {µzv(x,i-e;, -ei) + (µ- µz)vc'.,,,i-e;, -e1+ef(!))}+ 

(µ - µj,) min {µz'U(x,i-e.;, +ef(jt )-ez) + (µ - µz)V(x,i-e;, +ef(jt )-ez+eJ(I))} :S 

µj, (µh 'U(x,i-e;, -eh) + (µ - µh )v(x,i-e;, -eh +e f(h )) )+ 

(µ - µj, )(µh 11(x,i-e;, +e1u,)-eh) + (µ - µh )v(x,i-e;, +ew1)-eh+ew2 ))) = 
µj2 min {µzv(x,i-eh-ez) + (JL - µz) 11(~,i-eh-e1+enl)) }+ 

(µ - µh) mtn {µzv(x,i-e;, +ef(j2 ) -el) + (µ - µz) 11(x,i-e;z +etUz) -e1+ef(!))} · 

The dummy transition follows easily by induction. □ 

Proof of lemma 1.11.6. With induction. Assume the lemma holds up ton. 
The arrival term follows easily, like in the proof of lemma 1.11.5. Let j* be the 
optimal action in state ( x, i). If j * -f. j 1 , then 

µj, min {µzv(x,i-e;, -ez) + (µ - µz) 11(x,i-e;, -e1+eio)) }+ 

(µ - µj,) min {µ1 110,,,i-e;, +ew,)-e1) + (µ - µ1) 11i'x,i·-e;, +ew,)-e1+et(l))} :S 

µj, (µj• 110,,,i-e;, -e;•) + (µ - µj• )v(x,i-e;, -e;• +e f(j* )) )+ 
(1.11.7) 

(µ - µj, )(µj* 11G,,,i-e;, +e W,) -e;•) + (µ - µj• )v(x,i-e;, +e W, )-e;.+e J(j* )) ) :S 

µµj* 11G,,,i-e;•) + µ(µ - µj• )v(x,i-e;•+ew•)) = 
µmfn {µ1 11i'x,i-e1) + (µ - µ1) 11i'x,i-e1+et(l))}· 

If j* = ]l, then, because idling is allowed now, 

µj, mfn {µzv(x,i~e;, -e1) + (µ - µ1) 110,,,i-e;, -e1+ew)) }+ 

(µ - µj,) min {µzV(x,i-e;, +ef(;,)-ezl + (JL - µz)v(x,i-e;, +ew1 )-e1+et(l))} :S 

µ . µvn . + (µ - µ. )µv(n . = Jt (x,i-e;,) J1 x,i-e;, +etu,)) 

µmfn {JLZ'V(x,i-ei) + (µ - µz) 11(x,i-e1+ef(lJ)}· 

The dummy transition follows easily by induction. □ 



84 Proofs of dynamic programming results 

4.2. Proofs of chapter 2 

Proof of lemma 2.6.1. By induction. Assume the lemma holds up ton. We 
start with (2.6.2). The terms regarding arrivals at the first center follow easily. 

Consider the departures from the first center. Let j* be the optimal action 
in the first center in state (x,i,i). If j* =/- j 1 , j* is allowable in state (x,i -
eh, i + eh) and the term follows by induction. If j* = j 1 , and i = eji, then 
idling is the only action in state in state ( x, i - ej,, i + ej,) and the term follows 
by induction. If there is at least one more customer available, say in queue Jz, 
and j* = h, then 

µj, V(x,i-e;, ,i+e;,) + (µ - µj, )v(x,i,i) = 

min {µjV(nx i-e · i+e ·) + (µ - µj )v(nx ii)}· 
j ' J' J , ' ' 

Consider the departures from the second center. The optimal action in (x, i, i) 
is allowable in (x, i-ej,, i+eji}, Therefore the term follows easily by induction. 

Equation (2.6.3) follows from a result in section 3.6. □ 

Proof of lemma 2.6.3. By induction. Assume the lemma holds up to n. We 
start with (2.6.4). Assume n+ l :::; ij, The terms concerning arrivals follow im
mediately, using induction, because n < ij, Consider the terms corresponding 
to departures from center 1. Let j* be the optimal action in state i. Because 
iii > 0, j* is also optimal in i - ej2 • If j* =/- j 1 , then the terms follow easily by 
induction. If j* = h, then 
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Consider the second center. By (2.6.5), serving queue j is always optimal. The 
terms follow by induction. Note that we used (2.6.5) at step n with at least 
n + l customers in queue j. Also the dummy term follows easily. 

Consider (2.6.5). Again the terms concerning arrivals and the dummy tran
sition follow easily. The optimal action in the first center of ( x, i, i) depends 
only on i. Because the number of customers in queue j in state (x, i, i - eh), 
( x,i, i - e j) and ( x, i, i) is ij -1 or more, there are at least n customers available, 
meaning that, by (2.6.4), the same action is optimal in each state. Therefore 
also the terms concerning departures from the first center follow easily. Con
cerning the second center, serving queue j is optimal in each state. Also these 
terms follow easily by induction. □ 

Proof of lemma 2.6.6. By induction. Assume the lemma holds up to n. 
We start with (2.6.6). Assume n + l :::; i 1 + i 2 . The terms concerning arrivals 
follow immediately, using induction, because n < i 1 + i 2 . Consider the terms 
corresponding to departures from center 1. In i and i - e2 it is optimal to serve 
queue 1. Thus 

(µ - fi,2) mjn {µjV(x,i-e 1,i+e1) + (µ - {i,j )v(x,i,i)}. 

Consider the second center. If i1 > 0, serving queue 1 is optimal in i + e1, i 
and i + e2, using that (2.6.7) holds for i1 + i2 ~ n + l at stage n. Then 

(2.6.6) 

(µ - fi,1)µ1v(x,i,i-ei) + (µ- fi,1)(µ- µi)v(x,i,i) :::; 
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fe2 mjn {µ;v0t,i-e2,i+e2~ej) + (µ- µ;)v(:i:,i-e2,i+e2) }+ 

(µ - fe2) mjn {µ;v(z,i,i-e;) + (µ - µ;)v(z,i,i) }. 

We wanted to prove the inequality for all i with n + 1 ~ i1 + i2. We used at 
stage n (2.6.6) with i 1 + i 2 + 1 > n customers in the second center. 

If i 1 = 0, then i 2 > 0. Thus serving queue 2 is optimal in i and i + e2. 

Then 

(2,6.6) 

(ji,- it1)µ2v(z,i,i-e 2) + (ji,- it1)(µ - µ2)v(z,i,i) ~ 

µ2µ2v(:i:,i-e 2,i+e2-e2) + fe2{µ - µ2)v(:i:,i-e2,i+e2)+ 

(P, - it2)µ2vcz,i,i-e2) + (µ - ji,2)(µ - µ2)v0c,i,i) = 

it2 min {µ;v(:i:,i-e 2,i+e2-e;) + (µ - µ; )v(:i:,i-e2,i+e2) }+ 
3 . 

(µ - it2) mjn {µ;v(:i:,i,i-e;) + (µ - µ; )v(:i:,i,i) }. 

Also the dummy term follows easily. 
Consider {2.6.7). Again the terms concerning arrivals and the dummy 

transition follow easily. The optimal action in the first center of (x, i, i) depends 
only on i. Because the number of customers in center 2 in state (x,i,i - e1), 
(x, i, i - e2 ) and (x, i, i) is i1 + i 2 - 1 or more, there are at least n customers 
available, meaning that, by (2.6.6), the same action is optimal in each state. 
Therefore also the terms concerning departures from the first center follow 
easily. Concerning the second center, we have 

(µ ,- µ1) ~in {µ;v(z,i,i-e;) + (JL - µ; )v(z,i,i)} ~ 

µ1µ2v0t,i,i-e 1 -e2) + µ1 (µ - µ2 )v(z,i,i-e1 ) + 

(µ - µ1)µ2v0c;.:,i-e 2) + (µ - µ1)(µ - µ2)V(z,i,i) = 

µ2 mjn {µ;v0t,i,i-ea-e;) + (JL - µ; )v(z,i,i-e2) }+ 

(µ - µ2) mjn {µ;v(z,i,i-e;) + (µ - µ; )vfz,i,i) }· 
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Proof of lemma 2. 7.1. By induction. Assume the lemma holds up to n. 
In all 3 equations the term corresponding to arrivals and the dummy term go 
easily with induction, like in the proof of lemma 1.11.5. Therefore we only 
consider the terms regarding departures at the first and the last center. We 
start with equation (2.7.1). Serving queue Jz in (x,i - ej,,i + ei,) is optimal, 
thus the terms corresponding to departures from the first center of the l.h.s. 
are: 

/tj, µh V(x,i-eh -eh ,i+e,, +e12 ) + µj, (µ - µh )vf,,,,i-eh ,i+e11 ) + 
(µ - µj,}µj2 v(x,i-e12 ,i+eh) + (µ - µj,) (µ - /tjz )v(x,i,i) · 

We have to show that this expression is equal to the one where all j 1 and J2 
are exchanged. Number the 4 terms consecutively. The first and 4th term are 
both symmetric in j 1 and J2. Term 2 with j 1 and )2 exchanged is term 3. 

We continue with the second center. First assume i f. 0, thus there is a J3 
such that ih > 0. Then we have: 

µj, µis 11(x,i-e11 ,i+e11 -e13 ) + µj1 (µ - µh )v(x,i-e11 ,i+e11 )+ 

(µ - µj, )µi, 11(x,i,i-eia) + (µ - µj1) (µ - µj3 )v(x,i,i) · 

We use (2.7.1) twice, once with i,i - eh for terms 1 and 3 and once for terms 
2 and 4. 

When i = 0, we need (2.7.3) to prove (2.7.1). The terms corresponding to 
departures in the second center of the l.h.s. are: 

µ · µ · vn - + µ · (µ - µ · )vn - + (it - µ · )µv" - . J1 J1 (x,i-e11 ,0) Ji Jl (x,i-eh ,e11 ) ~ Jl (x,i,O) 

Equation ( 2. 7 .3) immediately gives the expression wanted. 
Now we prove (2.7.2). The terms corresponding to departures from the 

first center go directly with induction. Thus the following terms remain: 

µj1 µj2 V(x,i,i-e11 -e12 ) + µj1 (µ - µj2 )v(x,i,i-e11 ) + 
(µ - µj1)µj2 11(x,i,i-eh) + (µ - µj,) (µ - µj2 )11(x,i,i) · 

This expression is symmetric in ]I and 12 · 
We continue with (2. 7.3). The terms concerning departures at both centers 

are: 

µ· (µ-µ· )µ· vn - +µ·(µ-µ·)(it-µ.· )v" - + J1 J1 J2 (x,i-e11 -e12 ,e11 +eh) J1 J1 J2 (x,i-e11 ,eiJ) 

µj, (µ - µj1)µj1 11(x,i-e1l'O) + µh (µ - µj,)(µ - µj1 )11(x,i-e11'eh )+ 

(µ - µj, )µµj, 11(x,i-e,, ,e11 ) + (µ - µj, )µ(µ - µj1 )vf,,,,i,O) + (µ - µj, )µ 2v(x,i,O) = 
µ;1 µh 11(x,i-e11 -eh ,e_;2) + µj, (µ - µj, )µh V(x,i-e11 -eh ,e11 +eh)+ 

µJ1 (3µ - µj1 - µh )v(x,i-e,, ,o) + µj, (µ - /tj, )(3µ - µj, - µh )v(x,i-e11 ,e,,) + 
(µ - µjl )µ(3µ - µh - µj, )v(x,i,O) - (µ - Jtj, )µ(µ - µj2 )11(x,i,O). 

Number the terms consecutively. For term 1 and 2 we use (2.7.2) for i - ej, -
eiz,eh + ej,, for term 3, 4 and 5 we use (2.7.3). Term 6 is symmetric. □ 
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4.3. Proofs of chapter 3 

Proof of lemma 3.2.1. By induction. We start with (3.2.4). Assume ij, < 
ih. The case ij, = ih is a special case of {3.2.6). We start with the term 
corresponding to arrivals. Let j* be the optimal assignment in (y, i + eiz ). 
Then we have 

(3.2.4) 

qxay;i+eh V(y,i+eh +ej•) + {1 - qxay;i+eh )v(y,i+eh) :::; 

(3.2 .1 )+(3.2.5) 

qxay;i+eh V(y,i+eh+ej•) + {1 - qxay;i+eh )v(y,i+eh) :::; 

qxay;i+e;, V(y,i+e;, +er) + {1 - qxay;i+e;, )v(y,i+e;,) = 
qxay;i+e;z min{ v[~,i+e;, +ei!\B)} + {1 - qxay;i+e;z )v(y,i+e;,) 

J 

if j* ::/- ii and 

(3.2.4) 

qxay;i+eh V(y,i+e;, +e;,) + {1 - qxay;i+eh )v(y,i+eh) :::; 

(3.2.1 )+(3.2 .5) 

qxay;i+eh v[~,i+eh +e;,) + ( 1 - qxay;i+e;, )v(y,i+e;,) :::; 

qxay;i+eh V(y,i+e;,+e;,) + {1 - qxay;i+e;, )v(y,i+e;,) = 

qxay;i+e;, mJn{v[~,i+ei,+ei!\B)} + {1 - qxay;i+e;, )v(y,i+e;,) 

if j* = ii- Note that .i* cannot be equal to h- Now let a* be the optimal 
action in (x,i+eh)- We have 

n1n { L Axay ( qxay;i+e;, mJn{ v[~,i+eit +ei!\B)} + (1 - qxay;i+eh )v(y,i+eit))} :::; 
y 

L A:w•y ( q.,a•y;i+eh mJn{v(y,i+e;, +ei!\B)} + (1 - qxa•y;i+e;, )'v(y,i+eit)) :::; 
y 

LAxa•y(qxa•y;i+ejz min{v(y,i+e;,+ej!\B)} + (1- q.,a•y;i+e;,)v(y,i+e;,)) = 
y J 

mJn { L Axay ( qxay;i+e;, mJn{ V(y,i+e;,+ei!\B)} + {1 - qxay;i+e;, )v(y,i+e;,)) }
Y 
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Consider a departure at queue j, j =/= i1, h: 

(3.2.5) 

< 

89 

The terms corresponding to a departure from queue i1 and h will be con
sidered together. We have v(': ·+ . _ . ) :::; vn( ·+ . _ . ) = v(nx ·+e. -e. ) :::; x,i e 31 e32 x,i e11 e11 ,i 12 32 

v0z,,i+e,,-e;,)' by (3.2.4). As µj,i+e;, + µizi+e;, 2:: µj,i+e,, + µhi+e,,, we have, 
together with (3.2.5), 

it· · vn . +fl· · vn . + t J1 i+e32 (x,i+e,, -e11 ) J2i+e;, (x,i+eh -e32 ) 

(Jlj,i+e,, + µhi+e;, - µj,i+e 12 - /lizi+e12 )vfx,i+eh )· 

Note that we did not use (3.2.6) in the above proof. However, we used it for 
the case ij, = ih. · 

Now we prove (3.2.5), monotonicity. The arrival term is easy. Let a* be 
the optimal action in (x, i +eh). 

mJn { L Axay ( qxay;i mjn{ v(y,i+e;AB)} + (1 - qxay;i)v(y,i))} :::; 
y 

(3.2.5) L Axa•yV(y,i+e;,) :::; 
y 

L Axa•y ( qxa•y;i+e;, mjn{ VGJ,i+e;, +e;AB)} + (1 - qxa•y;i+e;, )v(y,i+e;,)) 
y 

min { ~ Axay (qxay·i+e. min { Vn(y i+e +e. AB)} + ( 1 - qxay·i+e )vn(y i+e. ) ) } . a ~ ' JI j ' Jt J i JI ' JI 
y 

Consider a departure at queue j, j =/= i1. Then 

(3.2.5) (3.2.5) 
µ ··vn < µ··vn < J' (x,i-e;) Ji (x,i+e;, -e;) 

µji+e;, V(x,i+e;, -e;) + (µji - µji+e;, )vfx,i+e,,), 

because µji 2:'. µji+e;,. By v(x,i-e;,) :::; v(x,i) :::; vfx,i+e;,) we have for the term 
corresponding to a departure from queue j 1 
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if µj,i+eh - µj,i ~ 0. 
We continue with (3.2.6). Let j* be the optimal assignment in (y, i*). We 

know that j* =/. h- We have 

if j* =/. ii and 

(3.2.6) 

qxay;iV(y,i+ei*) + (1 - q.,ay;i)v(y,i) < 

(3.2.2)+(3.2.5) 

qxay;iV0,i*+ej•) + (1 - qxay;i)V(y,i*) ::; 

qxay;i*V(y,i•+ej•) + (1- qxay;i• )v(~,i•) = 

q.,ay;i• mtn{v0,i*+e3AB)} + (1- q.,ay;i• )v(y,i*) 
J 

(3.2.6) 

q.,ay;iV(y,i+e,,) + ( 1 - qxay;;)v(~,i) ::; 

(3.2.2)+(3.2.5) 

qxay;iV(y,i•+e31 ) + (1- qxay;i)v0,i*) ::; 

qxa11;i•V0,i•+e11 ) + (1 - qxay;i• )71(y,i*) = 

qxay;i• mtn{v(~,i•+e3AB)} + (1- qxay;i• )v(y,i*) 
J 

if j* = ii- The term wanted is derived in the same way as for (3.2.4). 
The departures at queue j, j =/. ii,h, go similarly as those in (3.2.4). The 

terms corresponding to a depaiture from queue .i1 and h will be considered 
together. Note that v(nx i*-e·)::; v(r~ i*-e· )' by (3.2.4). Thus, by µj,i ~ /lhi* 

' J2 ·, Jl 

and µhi+ /lj2 i ~ µj 1 i• + /lj,i•, we have 

(3.2.5) 
n ( ) -n < µJ·2i*V(,. ,·•-e·) + µJ-,i - /l1·•,i• + /l1·•,i 'l'(c ;•_,,.) .• ,, J2 .. ' .. .,. ' '11 

□ 
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Proof of lemma 3.3.4. By induction. We start with (3.3.5). Let _j* be the 
shortest queue in state i + J.:eh. Because ij1 :<::; ih, j* does not depend on k. It 
is easily seen that qxay;i+keh :<::; qxay;i+ke;,. If j* -=/- i1, we have 

L f3k ( qxay;i+keh mjn{L f31v(y,i+keh +le_;)} + ( 1 - qxay;i+ke11 h'(y,i+ke11 )) = 
k l 

(3.3.1) 

~ ( ~ ) ) (3.3.6) 

~f3k qxay;i+ke11 ~(31v(y,i+ke;z+lej•) + (1- qxay;i+A,eh v~,i+ke;z) :<::; 
k l 

L /3k ( qxay;i+keh L f31v(y,i+keh +leJ*) + ( 1 - qxay;i+l.,eh )v[~,i+keh)) = 
k l 

L f3k ( qxay;i+keh mjn{L f3zv(y,i+keh +le;)}+ (1 - qxay;i+ke;, )vlv,i+ke;z)) · 
k l 

If j* = ii, then 

L f3k ( qxay;i+ke11 mjn{L f31v~,i+keh +leJ)} + (1 - qxay;i+keh )vlv,i+keh)) < 
k l 

(3.3.1) 

L f3k ( qxay;i+keh L f31v(~,i+keh +leh) + (1 - qxay;i+keh )v~,i+keh)) (3~6) 

k l 

Lf3k ( qxay;i+keh Lf3zv(y,i+keh +le;z) + (1 - qxay;i+keh )v(y,i+keh)) = 
k l 

L /3k (qxay;i+ke;z min{L f31vfy,i+keh+leJ)} + ( 1 - qxay;i+keh )vlv,i+keh)). 
k J l 

The departure term follows as in the proof of lemma 3.2.1. 
Consider the departures. Note that, by (3.3.7), we can assume ij, < ijz· If 

ij, > 0, the term follows easily by induction. If ij, = 0, the term on all servers 
except i1 also follow by induction. For server i1 we have 

The terms corresponding to the dummy transition and the immediate costs 
follow easily. 

Also (3.3.6) and (3.3.7) follow with induction. □ 
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Proof of lemma 3.3. 7. By induction. We start with (3.3.14). Assume 
iii < ii,. The case ij 1 = ih is a special case of (3.3.16). We start with the 
term corresponding to the routable arrivals. Let j* be the index of the shortest 
queue in (y, i +eh). First note that assigning to the shortest queue is still 
optimal: if a customer arrives, it is favorable by (3.3.14), and the probability 
that a customer arrives is by (3.3.9) smallest, which is favorable by (3.3.15). 
Then, if j* -=/= ii, 

If j* = j 1, assume that j is the shortest queue in i + eh. We will use that 
o O O h 1 · 1· b .* . 1 qxay·i+e. 1- :S qxay·i+e. 1· :S qxay·i+e. 1· , t e ast mequa 1ty ecause J 1s a so , Jl , JI 1 , , J2 1 

the smallest queue in i. 

Note that j* cannot be equal to jz. 
Concerning the non-routable arrivals, we have the following. We will show 

that if there are numbers iili, iili such that "E,~k iili :S L,~k iili for 1 :S k :S m 
and Ii < 12 then 

(4.3.1) 

Suppose the relation holds for fixed k. Consider k -1. If ijt- 1 :S ijt-1 , we have 
by (3.3.14) and (3.3.15), 
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and the result follows easily. If qt-1 > qt-1 , we have by (3.3.14) 

Thus it remains to show that (4.3.1) with q replaced by ii, with ii{, = q{, for 
. k ,j -j .,: . > k d •k -k -k-l -k-l h ld It . ·1 J > , q1 = q1 1or J . , an q1 = q1 + q1 - q1 o s. 1s eas1 y seen 

2 2 - 1 1 1 2 

that Ei=k, ii{, ::; Ei=k, ii'2 for k1 = k, ... , m, completing the induction step. 

By taking q{ = q~dy;i+e(IJ and li and l2 such that (li) = ii and (l2) = h we 
are finished with the tern~ concerning_the non-routable arrivals, in case (3.3.11) 
holds for all k. If Ei=k qf1 ::; Ei=k qf2 holds for k = li and k > l2 only, we can 
show ( 4.3.1) for k = li, using the fact that v(n ·+ + ) < v(n ·+ + ) :c,, e(l,J eu,J - :c,, e(!2) eu2) 

for all i1 and h with li :::; i1 :::; l2 and li :::; h ::; l2, in much the same way as 
the induction step above. Now, by adding a dummy term we get the arrival 
term in a similar way as in the proof of lemma 3.2.1. 

Consider the assignable server. Omit in the notation the dependence of 
µ on x. Let j* be the index of the longest queue in (y,i + e32 ). Note that it 
cannot be j 1. We can take j* such that it is also the longest queue in i and 
i + ei,. By (3.3.13), (3.3.14) and (3.3.15), we see that assigning the server to 
the longest queue is optimal. We have 

min{Jl,ji+eh V(y,i+eh -ej) + (µ - Jl,ji+eh )v(y,i+eh) }. 
J 

Finally, consider the fixed server. Omit again the x in the notation of µ. 
(Note the similarity between what follows and the way non-routable arrivals 
were treated.) We will show that if there are numbers µili, µ;12 such that 

Ei=k µ;z, 2: Ei=k µjz2 for 1 :::; k ::; m and li < l2 then 

m m m 

L µjl, v0,,i+e(l1 )-e(j)) :::; L µil2 v(:c,i+e(12 i-eui) + L(µ;z, - µ;zJv(:c,i+e(l 2))· 
~k ~k ~k 

(4.3.2) 
Suppose the relation holds for fixed k, consider k - l. If µ'i._ 111 ;?: µ'i._ 112 , we 
have by (3.3.14) and (3.3.15), 
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Equation (4,3.2) follows easily. If µ;,_ 111 < µ;,_ 112 , we have by (3.3.14) 

Now (4.3.2) follows by induction, with µklz replaced by µ;, 12 + JL;,_ 112 - µk-ll, • 
Using a similar reasoning as in the case of non-routable arrivals we find that 
L,~k µ;z, ~ L,~k µ; 12 only needs to hold for k = 1, ... , l1 , l2 + 1, ... , m. 

Now we prove (3.3.15), monotonicity. The term concerning the routable 
arrivals is easy: 

~ n 
qxayV(y,i+e(l)) 

Using (3.3.12) we can show 

similar to the analysis of (3.3.14). Because 

for j :::; l1 , we have the term wanted. 

m 

The terms corresponding to the assignable server are similar to the terms 
corresponding to the routable arrivals. the terms corresponding to the fixed 
servers are similar to the term corresponding to the non-routable arrivals. 

Equation (3.3.16) is trivial to prove. □ 

Proof of lemma 3.4.2. By induction. It is easily seen that v0 = 0 satisfies the 
inequalities. Assume the lemma holds up to n. We prove the inequalities for 
the terms on the 1h classes and the terms on departures separately. Multiplying 
with q~Y' summing etc. give the complete inequalities. The terms on arrivals 
are proven by considering the optimal action on the r.h.s., and then finding 
an action on the l.h.s. for which the inequality holds. We start with (3.4.3). 
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Consider an arbitrary customer class l. Assume the optimal action in (x, i+eh) 
is blocking. Then we have (take blocking in (x, i + ej,} ): 

by induction. If the optimal action in (x,i + eh) is sending to server J1, we 
take server ]2 in (x,i + eh)- Then we have: 

If the optimal action is server j* -::f. j 1 in state (x,i + eh), we take the same 
action in (x, i +eh). We have by induction 

Now we have 

min {1{ az = O}(bz + v(nx i+e. )) +'°'I{ az = j}v(~'l:i+e. +e ·)} ~ 
al ' 11 L.-t ' ' 'JI J 

j 

min {I{az = O}(bz + vf,, i+e )) + '°'I{az = j}vfx i+e +e >} a1 , 12 .L....J , 12 1 

j 

for all l. The term, concerning the arrival process, but without arrivals, goes 
by induction. Consider the terms corresponding to departures. Terms for 
j -::f. j 1 , ]2 are done with induction. With the help of (3.4.4) we have, using 
µj, ~ µj,, 

C b. · h 1 · n+l < n+l om 111mg t ese resu ts gives v( ·+ . ) _ v( ·+ . )· x,i e11 x,i e12 

We continue with (3.4.4). Take in (x, i) the optimal action of (x, i +eh). 
Then (3.4.4) follows immediately. 

Consider (3.4.5). Let j* be. the optimal action in (x, i) for some customer 
class l. If j* -::f. ]1, take action j* on the l.h.s. and we have 

by induction. If the optimal action is j 1 , reject in i + ej,. Then 

If the optimal action is blocking, take blocking as action on the l.h.s. For 
departures at servers j -::f. j 1 we have 
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by induction. For server j 1 we have 

This completes the proof of (3.4.5). 
Rewrite (3.4.6): 

In the following table one can see the optimal actions of the r.h.s. in the left 
columns and the actions establishing the inequalities in the right columns. Let 
j* = min{jJ(i + ej1 + ei,)j = O}. Note that j* -I ji,j2 , and that j* cannot be 
optimal in i, due to the choice of j 1. The terms are identified by their states. 

i + Cj, + Cji i 

0 0 
0 ]l 

0 ]2 

j* 0 
j* ]l 

j* ]2 

i + Cj1 

0 
0 

]2 

0 
j* 
]2 

i + Cj, 

0 
]l 

0 
j* 
]l 

j* 

induction 
equality 
equality 
twice induction 
induction 
induction 

For example, if, for a certain customer class l, rejection is optimal in i, 
and if sending a customer to queue j* is optimal in i + Cj1 +eh, the inequality 
is established by taking rejection in i + eii and action j* in i +eh, according 
to the fourth case in the table. Indeed, 

by using induction at both steps, giving 

If i + ej, + eh = e, only the first three cases have to be considered. 
Regarding the departures we have, concerning server j1 and h, 

at both sides. The other terms follow by induction. D 

Proof of lemma 3.5.1. The proof goes by induction. We start with (3.5.2). 
Let j* be the optimal action in i +eh. The analysis goes as usual by differen
tiating between j* -I ii and j* = i1- If j* -I ii, then 



Proofs of chapter 3 97 

If j* = i1, then 
vn . - < vn . . (y,i+e;, +e32 ,k) - (y,i+e 32 +e;, ,k) 

Because qxay;i+e;, = qxay;i+e;,, the term on arrival follows. 
The terms concerning departures go the same as in the proof of lemma 

3.2.1. Consider a departure at queue j, j =/. j 1 ,h with ij > 0: 

(3.5.2) (3.5.3) 
µ vn < µ·· vn . < ji+e;, (x,i+eh -eJ,k+l) Ji+e31 (x,i+e12 -eJ,k+l) -

µji+e 32 V(x,i+e12 -eJ,k+l) + (µji+e 31 - µji+e 32 )v(x,i+e12 ,k) · 

The terms corresponding to a departure from queue j 1 and h will be considered 
together. We have, by (3.5.2), that both v(~ •+ ___ k+l) and vn( •+ ___ k+l) 

x,i ell €11' X1i ell eJ2 1 

are smaller than both v(n ·+ . _ _ k+l) and v(n •+ _ _ _ k+l). As /Lj, i+e - + x,i e12 e.7 1 1 x,i e12 e12 , 11 

µhi+eh 2 µj, i+e12 + µhi+e 12 , we have, together with (3.5.3), 

µ,j,i+e 32 v0;,i+e12 -eh ,k+l) + µhi+e 32 v0;,i+e12 -e12 ,k+l)+ 

(µj,i+eJi + µj,i+eh - µj,i+e 32 - µhi+e 12 )v(x,i+e12 ,k)· 

The terms concerning costs and the dummy transition follow easily. We con
tinue with (3.5.3). Let j* be the optimal action in i + eh. Then j* is also 
allowed in i. Now we have, by (3.5.3) and (3.5.4), 

qxay;i+eh v;,i+eJ* ,k+l) + (qxay;i - qxay;i+e;, )v(y,i+e31 ,k+l) :::; 

qxay;i+eh V(y,i+eh +eJ* ,k) + ( qxay;i - qxay;i+eh )v(y,i+eh ,k) = 

qxay;i+eh ~in{ vfv,i+e31 +eJ ,k)} + ( qxay;i - qxay;i+e;, )v(y,i+eh ,k) · 

The arrival term follows as usual. Note that when i + eh = B and an arrival 
occurs, this customer is rejected. This is equivalent to taking qxay;i = 0 if 
Iii 2 IBI. 

By µji 2 µji+eh, we have for j =/. i1 and i.i > 0 

using once or twice (3.5.3). Using (3.5.3) gives for queue j 1 : 

µj, i+eh v[~,i,k+l) + (µ - µj, i+e31 )v(x,i+eh ,k) 

Again the terms concerning costs and the dummy transition follow easily. It is 
trivial to prove equation (3.5.4). The proofs of (3.5.5) and (3.5.2) are similar. 
□ 
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Proof of lemma 3.5.3. By induction. We follow the proof of lemma 3.5.1. 
First observe that 

or v(n . k+l) :'.S v(n ._ . k+l) :'.S v(n . k) if i = B. Thus also (3.5.4) holds. The :c,i, z,i e31 , z,i, 

conditions on the arrival process and service rates are stronger than in the 
previous model, thus the proof of (3.5.6), (3.5.7) and (3.5.9) is equal to that of 
lemma 3.5.1. 

Now consider equation (3.5.8). Let j* be the optimal assignment in state 
(y, i, k ). If j* =/:- i1 then 

if j* = ii then 

Because q.,ay;i = qzay, the terms on arrivals follow. 
The departure terms from each queue, except queue j 1 , follow easily with 

induction. Note that we use here that µ;i+eh = µji if j =/:- ii- Concerning 
queue i1, we have 

by (3.5.8) and (3.5.4). □ 

Proof of lemma 3.6.1. The proof goes by induction. Assume that the lemma 
holds up to n. First we show that the SIP is optimal for n + 1. Consider two 
server assignments, which differ only in the assignment of 2 servers, say server 
k1 and k2 , which are assigned to queue j 1 and h- In one assignment server k1 

is assigned to queue ii and server k2 to h, in the other assignment v.v. The 
difference between the departure terms is 

which is negative if Pk 1 (x) > Pk,(x) and j 1 < h- Thus queue ii should be 
served by the faster server. By taking Pk,(x) = 0 we have that serving queue 
ii is better than serving queue h. Repeating this gives the optimality of the 
SIP. 

We start with (3.6.1). Because Iii 2". 2 we only deal with states for which 
q;ay;i = q;ay, therefore we omit the i in the notation. The fact that q;ay;O need 
not be equal to q;ay plays a role only in the proof of (3.6.2). Rewrite (3.6.1) as 



Proofs of chapter 3 99 

Consider the terms corresponding to arrivals. Assume a* is the optimal action 
in (x,i - eh)- Then we have 

m m 

µj, mJn { L •A:,;ay ( L q{ayv[~,i-eit +ej) + (1 - L qLy)v(y,i-eit)) }+ 
y j=l j=l 

m m 

(µh - µj,) mJn { L Axay ( L q{ayv(y,i+ej) + (1 - L q{ay)v[~,i))} S 
y j=l j=l 

m m 

µj, L Axa•y ( L qta•yV(y,i-e11 +ej) + (1 - L qta•y)vfy,i-eit)) + 
y j=l j=l 

m m 

/Liz LAxa•v(Lqta•yV(y,i-eh+e;) + (1- Lqta•y)v(y,i-e32 )) = 
y j=l j=l 

. m m 

µjz mJn { L Axa.y ( L q{ayv(y,i-eh+ej) + (1 - L qLy)v[~,i-eh)) }. 
y j=l j=l 

Note that we used JLj, S µiz explicitly here; if µj, > JLiz there would have been 
2 expressions ( with positive coefficients) on the r.h.s. and there would not have 
been 1 minimizing action. We would not have this problem if there were no 
actions to choose, i.e. if the arrivals are independent. 

Consider the terms concerning departures. We write Pi instead of Pj(x), 
and assume that P1 2 · · · 2 Ps• We also assume Iii 2 s + 1. We distinguish two 
cases. First assume that there are customers in queues Ji ::; · · · S j; present 
in state i - ej, with j_; S j1. Because j1 < jz, the same action, say j{, ... , j;, 
is optimal in i, i - ej, and i - eiz- We have for 1 S k S s: 

(3.6.1) 

µj, (µ - JLjz )v(x,i-eh) + (µj2 - µj,) (µ - JLjz )v0,,i) < 

µh µjz v(x,i-eh -eJ*) + µh (µ - µjz )v(x,i-e,,) · 
k 

Now the departure terms of (3.6.1) follow easily: 

s 

µj, li~-~~L { L (pkµlk v[~,i-e11 -e1k) + pk(µ - JLlk )v(x,i-e11 )) }+ 
k=l 

s 

(µi, - µj,) li~-~~s { L (pkµlk V0,,i-e1k) + Pk(µ - µzk )v(x,i))} = 
k=l 

(4.3.3) 
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8 

L {pkµj,µj;V(x,i-e,, -ej•) + Pk(µj, - µj,)µjzv(x,i-ej•) }+ 
k=l k k 

8 8 

LPkµj,µjzv(x,i-ejz-ej•) + LPkµji(µ- µjz)v(x,i-ejz) = 
k=l k k=l 

8 

µj, l,~_i.). { L (Pkµlk V(x,i-eh-ezk) + Pk(µ - µzk )v(x,i-eh)) }-
k=l 

Concerning the second case, assume that all class j 1 customers are served in 
state i. Consider the optimal assignment in i - ej2 , being Ji S · · · S j; 
with j;1 = Jl · Assign server s1 in both i and i - ej, to queue J2 and all 
other servers to the same queues as in i - eh. Then ( 4.3.3) holds for server 
1, ... , s1 - 1, s1 + 1, ... , s. For server s1 we have 

(3.6.1) 

(µh - µj, )µjz V(x,i-eh) + (µi, - µj, )(µ - µh )v(x,i) < 

µ,j, µj, V(nx i-e · -e · ) + µj, (µ - µj, )v(nx i-e · ) · 
' J2 11 ' 12 

The terms concerning departures follow in the same way as in the first case. 
Now assume 2 S Iii S s. Suppose that server s1 is assigned to queue J1 in 

state i - eh. The term concerning server s1 is similar to the corresponding term 
in the previous case, and in state i we keep one customer unserved. Again, the 
terms concerning departures follow easily. 

It remains to study the dummy term, which goes by induction. 
We continue with (3.6.2), which is much easier to prove. Let a* be the 

optimal action for the MDAP in (x, i). Note that q~ay·i-e. S q~ay·i· Then we 
' JI ' 

have 

m m 

mJn { L Axay ( L qtay;i-e,, V(y,i-e,, +ei) + (l - L qtay;i-e,, )v(y,i-e,,))} S 
y j=l j=l 

m m 

L Axa*y ( L q~a*y;iv(y,i+ei) + (1 - L q~a*y;i)v(y,i)) = 
y j=l j=l 

m m 

mJn { L Axay ( L q~ay;iv(y,i+ej) + (1 - L q~ay;i)v(y,i)) }. 
y j=l j=l 
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Let ii, ... , j; be the optimal assignment in ( x, i). If j 1 does not belong to this 
action, we have 

( 4.3.4) 

for k = ii, ... , j;. Summing gives the expression wanted. If ii does be
long to the optimal action in (x,i), say j 1 = j;, take the suboptimal action 
ii, ... ,j;_1 , 0 in (x, i - ej, ). We have ( 4.3.4) fork= ii, ... ,j;_1 . For the last 
server we have 

(3.6.2) 

µv(x,i-e,,) < µj, 11(x,i-e,,) + (µ - µj, )v(x,i) · 

Summing gives the expression for the suboptimal action. As the optimal action 
is even better, we have the inequality wanted. □ 

Proof of lemma 3. 7.1. By induction. Assume the lemma holds up to n. 
We start with the terms on arrivals of (3. 7.1 ). We consider each customer 
separately, instead of each queue separately. All customers who are not in the 
queues in state i can enter the system in the states considered in (3.7.1). Their 
terms go directly with induction. Consider the extra customers in queue j 1 

and jz. We have 

This gives 

(3.7.1) 

Aj,µj, vf-e,, + >..h (µ - µj, )vf :=:; 

(3. 7 .2) 

>..h µh 11i-e12 + >..h (IL - /lj, )vf :::; 

)..,j,/lj,'Vi-eh + (>..j,/l - >..j,µj,)vf. 

>..j, µh 11i-e,, + )..h µh vf + >..j, (µ - µh )vf + >..j, (µ - /lj, )vf, 

which are the terms on the extra customers. 
The departure and dummy terms can be proved in a similar way as in 

the proof of lemma 1.11.5. We continue with (3.7.2). Again all terms follow 
directly by induction, with an exception for the extra customer in queue j 1 . □ 





Chapter 5 

U niformization 

5.1. Introduction 

The dynamic programming results of the previous chapters are obtained for 
discrete-time models. Here we establish, for the policies optimal in the discrete
time models, optimality at T in the continuous-time models, for all T. First 
we make a distinction between policies and decision rules. A decision rule is a 
function prescribing for each state which action to take ( or more generally, for 
each state it is a distribution on the actions). A policy R is, in the discrete
time case, a sequence of decision rules (f 1, fz, ... ) , with f n the decision rule 
at time n. If the system is controlled continuously in [O, oo ), R is a family 
{ft, t E [O, oo)} with ft the decision rule at t. 

We consider the following controllable model. We have a countable state 
space E. If action a E A( x) is chosen in x E E, the system goes to y with 
intensity qxay• We assume that there is a constant a such that Ly qxay S a for 
all a E A( x), x E E. A model satisfying this condition is called uniformizable. 
We will consider this model for various types of cost functions. 

Unfortunately not all models considered in the previous chapters conform 
to this description. Particularly, in the customer assignment models we first 
choose an action in the arrival process. Then, immediately after a transition in 
the arrival process, the assignment action has to be chosen, possibly depending 
on the state of the arrival process just reached. To be able to use the results 
of the forthcoming sections, we rewrite it in the standard form as follows. In 
state ( x, i) ( with x the state of the arrival process) we have as possible actions 
( a, j z; z E A) with a in the action set of the arrival process and 1 S j z S m for 
all z, and j z an allowable action in i. Here a is the action in the an:ival process, 
and iz is the queue to assign the arriving customer to if the arrival process 
moves to z. Thus each action has IAI + 1 components, giving the action sets 
A( ( x, i) ). The non-negative transition intensities are for example in the model 
of section 2.2: 

q(x,i)(a,jz)(y,i+e;) = Axayqxay if jy = j 

q(x,i)( a,jz )(y,i) = Axay ( 1 - qxay) 

q(x,i)(a,jz)(x,i-e;) =µif ij > 0 

q(x,i)(a,jz)(x,i) = 1 - L Axay - µ L Di; 

!/ j 
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If the model is uniformizable, we can rewrite the dynamic programming equa
tion of the embedded discrete-time chain in the form of (2.2.1): 

L Diiq(x,i)(a,j.)(x,i-ej)V(x,i-ej) + q(x,i)(a,j.)(x,i)V(x,i)} = 
j 

j y j 

mJn { L Axay ( qxay nvn { v~,i+ej)} + (1 - qxay )v211,i)) }+ 
y 

j y j 

A disadvantage of this way of rewriting is the fact that models that originally 
had only finite action sets now have infinite action sets. 

A way to get around this problem is to allow for 2 transitions immediately 
after each other at the jump times. We illustrate this idea again with the 
model of section 2.2. Let the jump times be exponentially distributed with 
rate a= ,+mµ. Assume that the process is in (x,i). An action a E A(x) is 
selected and we have as transition probabilities p for the first jump: 

Axay 
P(x,i)a(y,i,O) = --;;-qxay 

Axay ( ) 
P(x,i)a(y,i,1) = -- 1 - qxay 

a 
µ 

P(x,i)a(x,i,2) = m~ 

l Axay µ 
P(x,i)a(x,i,3) = - --;;- - m~ 

The third component of the state indicates the event at the immediate second 
transition, with probabilities denoted p. Take j as the assignment action. 

'P(x,i,O)j(x,i+eJ) = 1 

'P(x,i,l)j(x,i) = 1 
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P(x,i,3)j(x,i) = 1 

Here we also show that equation (2.2.1) can be obtained. Let wn be the value 
function for the present model. We will show that if w 2n = vn in states of the 
form ( x, i), then w 2n+2 = vn+l. For ease of notation, assume a = 1. 

2n+l + (1 " , ) 2n+l ) mµw(x,i,2) - ~ "xay - mµ w(x,i,3) = 
y 

n~n { L Axayqxay mJn { wf ;,i+e J)} + L Axay ( 1 - qxay )wf ;,i) + 
y y 

fl L wf;,(i-eJ)+) + (1 - L Axay - mJt)wf;,i)) 
j y 

This completes the induction step. 
The results for the discrete-time models are of two types. First we have 

the models of chapter 1. The optimal policies obtained there are myopic, i.e. 
they have the same decision rule for all n. Continuous-time results for these 
models are obtained in the next section. 

In section 5.3 models with horizon-dependent optimal policies are studied. 
Here extra conditions are necessary to obtain optimality at T. 

5.2. Uniformization with fixed parameter 

In this section we assume that we have a uniforrnizable problem, and that the 
optimal policy of the discrete-time model is myopic and independent of the 
uniformization parameter. Furthermore, assume that the costs are bounded, 
either from above or below. Consider a model in which there are only costs 
at T, thus the problem is how to control the model from O to T. We call the 
class of policies in the continuous-time model that only can change actions at 
the jump times the semi-Markov policies. Note that this is not a restriction for 
the customer assignment models, because there the only action of importance 
is the one taken at the jump times. In the server assignment models however, 
it is a restriction. Denote with ¢T ( ¢T ( R)) the minimal costs ( the costs using 
policy R) at T. Let R* be the policy with ft = f* for all t, with f* the optimal 
decision rule in the discrete-time model. Then we have the following. 

5.2.1. Theorem. ¢T(R*) :S ¢T(R) for each semi-Markov policy R. 

Proof. The evolution of the process is completely described by two indepen
dent random processes: the Poisson process generating the transition times 
and the embedded chain generating the actual transitions at the transition 
times. Note that the former process does not depend on the policy chosen, 
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the latter however does. We condition on the transition times, both for R and 
R*. Let w E Q be a realization of the transition time process with probability 
space (Q,P), with w = (t1, ... ,tu), 0 :S t1 :S ···:St,, :ST, the t's being the 
transition times. Note that u is a realization of a Poisson distributed random 
variable. The decision rule used at t by R is completely determined by the 
jump times before t and the states at these moments. This induces a policy Rw 
in the embedded chain. Note that R: does not depend on w, therefore we use 
R* also for the discrete-time policy. Denote by v;(Rw, w) the value function of 
the embedded chain (not necessarily in the standard form). By the optimality 
of R* we have v;(R*,w) = v; :S v;(Rw,w). Denote by ¢;(R) the expected 
costs at T using R and starting in x. Then 

¢;(R*) = l v~dP(w) :S l v~(Rw,w)dP(w) = ¢;,(R). 

Note that, although ¢; ( R) can be infinite, it is well defined due to the bound
edness of the costs and therefore of the vn. □ 

The optimal policy also minimizes the costs from O up to T, because that 
is the integral over the costs from O to T. Thus, we do not need to introduce 
immediate costs in the dynamic programming equation. 

The process just described is called uniformization. It is essential that the 
rate out of each state is uniformly bounded ( otherwise we cannot formulate the 
discrete-time dynamic programming equations) and that the policy R" is the 
same for each n. In the models of the chapters 2 and 3 the latter condition is 
not satisfied, giving need for a limiting argument, which is the subject of the 
next section. 

Note that if a policy is stochastically optimal in the discrete-time model, 
it is also stochastically optimal in the continuous-time model. 

Summarizing, we have the following. 

5.2.2. Corollary. The policies minimi½ing the costs in the discrete-time mod
els considered in chapter 1 minimize the costs at T (from O to T) in the 
continuous-time models in the class of semi-Markov policies, if the costs are 
bounded, either from above or below. 

The decisions are taken on the Poisson epochs. even if there is a dummy 
transition. By increasing the uniformization parameter we add decision epochs. 
This way we can approximate continuous-time control. Roughly speaking the 
class of limiting policies are called strongly regular in Hordijk & Van der Duyn 
Schouten [29]. More precisely, a policy is strongly regular if for almost all 
sample paths the time points at which the control is discontinuous has Lebesgue 
measure zero. See Hordijk & Van der Duyn Schouten [29] for details. 

5.2.3. Corollary. The policies minimizing tl1e costs in the discrete-time mod
els considered in chapte1· 1 minimize the costs at T ( from O to T) in the 
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continuous-time models in the class of strongly regular policies, if the costs 
are bounded, either from above or below. 

Also results on discounted and average costs can be obtained. It is clear 
from theorem 5.2.1 that R* minimizes f0T e-f3tcp~(R) dt and ;p; j~T cp~(R) dt and 
their limits for T ---> oo, if they exist. 

Usually definitions for discounted and average optimality other than the 
ones given above, using semi-Markov Decision Processes, are used. We can 
translate the continuous-time problems into discrete-time ones, like the ones 
we studied in chapter 1. See for example Serfozo [63] for this equivalence. 
Then, under suitable conditions guaranteeing the convergence of the successive 
approximation scheme, optimality of R* for average and discounted optimality 
follows. Convergence of successive approximation can be proved for example 
using negative dynamic programming (Ross [60]) or by showing v-geometric 
recurrence (Spieksma [69]). 

A complication using succe:osive approximation is that the analysis of chap
ter 1 only considers costs at the end of the horizon, as we took v"' of the form 
v"' = inf J{ P(f)vn-l }, v0 = c, with P(f) the transition matrix under decision 
rule f. However, we are interested in w"' = inf t{ c + (3P(.f)w"'- 1 } with w0 = 0. 
By the assumption of this section that the optimal policy is myopic, we have 
w" = v0 + • • • + 13n-lvn-l _ If R* = (f, f, ... ) is the optimal policy, this gives 
us for arbitrary R 

w"(R*) = w"::; w"(R). 

5.3. Continuous-time Bellman equation 

In this section we give another approach to continuous-time control. We show 
that under mild conditions on the cost functions the solutions of the dynamic 
programming equations converge to the solution of the continuous-time Bell
man equation. Hence the structure of the optimal value functions carry over to 
the continuous-time model, and therefore so does the structure of the optimal 
policy. 

We can use this method not only in the models of chapter 1, but also 
in the (non-myopic) models of the chapters 2 and 3. The method is usually 
referred to as time-discretization. Our analysis is based on the results of Van 
Dijk [73], as he allows for both positive and negative unbounded costs. Besides 
this he considers salvage costs. We rewrite his results here for the simpler case 
of a uniformizable model. Denote with G(.f) the infinitesimal generator of the 
process if decision rule f is used. 

For the customer assignment model we would have the following generator. 
Assume the current state is (x,i) and f(x,i) = (a,jz)- Then, for example 
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and 
m 

G(f)(x,i)(x,i) = -( L Axay +/LL 8;,) • 
y j=l 

Basic to the analysis is the continuous-time Bellman equation. Heuristically, 
this equation can be derived as follows. Let ¢i denote again the expected costs 
for horizon t. We are interested in <f>T, thus ef>t are in fact the expected costs 
from T - t to T. Assume that continuously over time costs with rate c are 
incurred, ¢0 are the costs at the end. Then we have: 

dd </> 8 = inf{c+ G(f)ef>8}. 
t f 

Integrating from O to t gives 

<l>t - ¢>0 = r\nf{ C + G(f)<f> 8 }ds, 
lo 1 

the Bellman equation. Note that we have a model with immediate costs, as 
contrasted with the model used in uniformization. We need to do it this way 
because we cannot introduce immediate costs afterwards, for the same reason 
that we cannot use uniformization with a fixed parameter here. That is, for 
minimizing costs at different T we have different optimal policies. 

Now we introduce our computational scheme. We assume that the model 
is uniformizable, i.e. there is a constant a such that for each state x and decision 
rule f we have IG(.f)xxl ::::; a. Let h be a positive number, h :::; 1/a. Define 
Ph(.f) = hG(f) + I. Thus Ph(!) is the transition matrix of the discrete-time 
model obtained by uniformization with parameter 1/h. Take he as immediate 
costs. Now define 

vh,o = <f>o. 

We will show that 11h,k with k = Lt/hj, t :::; T, converges as h --+ 0 to the 
solution of the Bellman equation under certain conditions. Heuristically, when 
seen as uniformization, this can be explained by noting that the number of 
jumps before T converges to a constant as h decreases (which follows from 
lemma A.2). When seen as discretization, vh,n is the first order approximation 
of the costs at hn. By the infinitesimal properties, the transition rates converge 
to their first order approximations as h --+ 0. 

The conditions involve the weighted supremum norm, defined as follows: 
llbllv = supx lbxl/vx with v > 0 the bounding vector. For a matrix the norm 
is defined as follows: IIAll 11 = supx I:Y IAxyjvy/vx. We will often use that 
IIAbllv ::::; IIAll,,llbllv• We assume the following. 
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5.3.1. Assumption. There are v 2: 1, constants K1 and K 2 such that 

We will check these conditions for various cost functions. If q>° is an 
indicator function and c = 0, we take v = e. Then IIG(f)!I,,, S 2a and 11¢0 11,,, S 
1. In the customer assignment model with C(x,i) or </>f x,i) = i1 + · · · + im, take 

V(x,i) = i1 +· · ·+im Vl. Then IIG(J)llv S 2a and llcllv, ll</>0 llv S 1. In the server 
assignment models with C(x,i) or <i>f x,i) = i1c1 + · · · +imcm take V(x,i) = (i1 Jc1 I+ 

· · · + i.mJcml) V 1. Because V(x,i+e;)/V(x,i) and V(x,i-e;)/v(x,i) S 1 + maxj lcjl, 
IIG(f)llv S 2a(l + maxj Jcjl) and llcllv, 11¢0 11,,, S (1 + maxj lcil)- Similarly, if 
C(x,i) or <p(x,i) = (i1c1 + · · · + imcmt take V(x,i) = (i1Jc1I + · · · + limlcm)n V 1, 

giving IIG(f)llv S 2a(l + maxj lcjl)n and llcllv, 11¢0 11,,, S (1 + maxj icjl)n. 

0 h Lt/hj 0 5.3.2. Theorem. There are </>~ such that Vx' -> </>~ with h = 2-m as 
m -> oo, for t S T and all i. 

Proof. First we show that all vh,n with hn S T are v-bounded: 

llvh,mllv S sup llhc + ph(f)vh,m-lllv S 
f 

hsup llcllv + sup IIPh(f)llvllvh,m-lllv S hK2 + (1 + hK1)llvh,m-lllv 
f f 

Now we have, since 1 + c Sec, 

n-1 

(5.3.1) 

llvh,nllv S L(l + hK1)khK2 + (1 + hK1tllvh,ollv S TeTK, Kz + eTKi Kz. 
k=O 

(5.3.2) 
Let us denote the r.h.s. by C1. 

We will prove the convergence by first deriving a relation between vh,n and 
vh/Z,Zn. By induction on n we prove 

for C2 2: K1K2 + KjC1 . Assume the inequality holds up to k. 

inf{h/2(J + ph/Z(f))c+ ph/2(f)Phf2(J)vh/2,2k} = 
f 

i'f{(h + (h/2)2G(f))c+ (Ph(!)+ (h/2) 2(G(f)) 2)vh/z,zk} S 

(5.3.3) 

inf{hc + ph(f)vh/Z,Zk} + sup{(h/2)2G(f)c} + sup{(h/2)2(G(f))2vh/Z,Zk}::; 
f f f 
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vh,k+I + v(l + hKi)k+l(kh2 + h)C2 + sup{(h/2) 2G(f)c}+ 
f 

sup{ (h/2)2( G(f) )2iN2,2k }. 
f 

We have 

and, using (5.3.2), 

ll(h/2)2(G(f))2vh/2,2kll,, ~ (h/2)2 Kf llvh/2,2kllv ~ h2 KfC1, 

giving 
sup{(h/2)2G(f)c} + sup{(h/2)2(G(f))2vh/Z,2k} ~ 

f f 

vh2(K1K2 + KfC1) ~ vh2C2. 

Thus, because (1 + hK1)k 2'. 1, the inequality holds. 
Because l2t/hJ = 2lt/hJ or 2lt/hJ + 1, we have 

vhf2,l2t/hJ ~ vh/2,2lt/hJ + vh(KiCi + Kz), 

by (5.3.1). Thus 

t vh/2,L2t/hJ ~ vh,lt/hJ + v(l,;:Jh2 + h)C, 

if C 2'. eTK,c2 + K1C1 + K2. 
Iterating this last inequality k times, for h of the form 2-n\ gives 

k-l 
2-(m+k) lt/2-(m+k)J 2-m lt/2-mj " ( ) -m -l 

v ' ~ v ' + L, v T + 1 C2 2 ~ 
l=O 

v2-m,lt/2-m J + v(T + l)Crm+i_ 

Because the space of vectors with bounded v-norm is a Banach space, we have 
that v~' lt/hJ for each x has at least one limit point. To show that there is a 
unique limit point, suppose that, for fixed a::, v~ and v~ are limit points, with 

2-m lt/2-mj 
v~ < v~. Take f < (11~ - v~)/3, and m such that lvx · - v~I < E and 

?-(m+k) lt/2 -(m+kl J 
vx(T + l)c2-m+1 < E. Then v; ' , < v~ - E for all k. Hence v: 
is not a limit point. □ 

5.3.3. Theorem. Tlie function ¢} is a solution of tlie Bellman equation. 

Proof. We have, for h = 2-m. 

and thus 

vh,n+l - 'Oh,n = hinf{G(f)vh,n}, 
f 

lhlt/hj 
v"· lt/hj - vh.O = inf { G(f )vh· ls/hj }ds . 

• O f 

The left hand side converges to Jt-¢/l for each i. By dominated convergence the 
r.h.s. converges to J: inf 1{ G(J)¢·'}ds for fixed i, giving the Bellman equation. 
For further details, we refer to Van Dijk [73]. □ 
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We will not go into the details of showing that this solution is unique. Due 
to the finite action sets of the models we consider the infima are always attained 
and optimal policies exist. And as the discrete-time value functions converges 
to the continuous-time value function, the inequalities we typically prove for 
the discrete-time models also hold for the continuous-time models. This means 
that the optimality results also hold for the continuous-time models. As we 
considered both terminal costs and costs over time, the results hold both for 
costs at T and for costs over time. 

5.3.4. Corollary. Tl1e policies minimizing the costs in the discrete-time mod
els considered in chapters 2 and 3 minimize the costs at T (from O to T) in 
the continuous-time models, if the transition rates and costs satisfy assumption 
5.3.1. 

Regarding discounted and average optimality, the same remarks as in the 
previous section apply here. 
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The approximation of point processes 

Here we show that any marked arrival stream can be approximated in the 
sense of weak convergence by a series of MAP's. For stationary point processes 
this has already been proven by Herrmann [20]. Note that we used the marks 
in the previous chapters to indicate the class of arrivals and server vacations. 
We use the following definition of an MAP: 

A.1. Definition. (Markov Arrival Process} Let A be the, possibly count
able, state space of a Markov process with transition rates Axy, x, y E A. When 
this process moves from x to y with probability q~Y an arrival with mark v oc
curs, with I:vEB q~Y :::; 1 for all x, y E A and B C IR+. The triple (A,>., q) is 
an MAP. 

A series of random variables xm = {(X;:i)}n<N on IRN converges weakly 

to X = {(Xn)}n<N, notated as xm ~ X, if IEJ(Xm) --+ IEJ(X) for all 
continuous and bounded f. Assume xm (X) has distribution function Fm 
(F). 

In Schassberger [62] it is shown, for N = 1, that to have xm ~ X, we 
can take xm such that 

(X) 

Fm(x) = F(O) + L (F(~) - F(\~1 ))E~(x), (A.1) 
k=l 

where E;;,(x) is the d.f. of a gamma distributed r.v. with k phases and in

tensity m, i.e. E;;,(x) = I:~k e-mx (~~)
1

, the probability that a Poisson(mx) 
distributed r.v. has k or more successes. The result holds also if the mass at 0 
is omitted and if the mixture is taken finite, e.g. 

m 2 -l 

Fm(x) = F(,k)E~(x)+ L (F(~)-F( \;,1 ))E~(x)+ ( l-F(m:-1 ))E;;:2 (x). 
k=2 

An heuristic explanation is easily given. The mass in a small interval, in the 
limit each point, is approximated by a series of gamma distributions with equal 
mean and increasing intensity. Such a series converge to their mean a.s. 

A similar result can be obtained for finite-dimensional r.v.'s. This has 
already been shown in lemma 6.1 of Hordijk & Schassberger [28]. We give a 



114 Appendix A 

different proof here. First we construct xm. Define 

Now we have as approximation 

N 

Fm(x) = L IP(X1 E Cm(ki), ... ,XN E Cm(kN)) II E;;t(xj)- (A.2) 
1"5:ki~m2 j=l 
j:1, ... ,N 

We see that the mass of each cube with length of the sides ¾;,- is put on the 
upper corner, say x'. Then each component x5 of this vector is approximated 
by an independent gamma distribution with parameter m and mx3 phases, 
giving an expectation of x 5. 

A.2. Lemma. xm _E_, X. 

Proof. It is well known that weak convergence is equivalent with convergence 
of the d.f. in each continuity point of F. Take such a point x. Choose an c > 0. 
By continuity there exists a {j > 0 such that IF(:z; + s) - F(x)I :S N~ 4 if Isl < b. 

Now assume the integer l, a power of 2, is large enough such that JN /l < {j 
and 12 11 > maxi Xi- The first condition guarantees there are vectors x = 
(xi, ... , XN) and X = (x1, ... 1 XN) such that .Tjl and Xjl are integer, Xj < Xj < 
Xj and the product set Ilf=1[xj,xj] is contained in the ball around x with 
radius b. By the integer condition x and x lie at the top corner of the cube 
Ilf=1 C1(xjl) and Ilf=1 C1(xjl). As we only consider powers of 2, x and x lie 
at corners as well if m > l. The second condition assures that Cm(Xjm) is 
bounded for all j if m ~ l. 

The sum in the definition of Fm can be split in N +2 parts, namely {kll :S 
kj :S Xjm}, {kll :S h'.j :S Xjm,3j: kj > Xjrn}, {klk1 > x 1rn}, ... ,{klkN > 
x Nm}. Note that these sets are not disjoint, the last N overlap, and that 
{klkj :S Xjrn,3j: kj > Xjm} = {kll :S kj :S Xjm}\{/;:11 :S kj :S xpn}. Now we 
have if m ~ l: 

N 

I L IP(X1ECm(k1), ... ,XNECm(A:N))(1-IIE:,{(xj))I+ 
1 :S,k; :S,x;rn j=l 

N 

L IP(X1 E Cm(k1), ... ,XN E Cm(kN)) II E;;t(xj)I+ 
1"5:kj~Xjm j=l 
3j:l.·j>Xjm 
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N 

I L IP(X1 E Cm(k1), ... ,XN E Cm(kN)) II E;;f(xj)I +···+ 
k1>x1m j=l 

N 

L IP(X1 E Cm(k1), ... ,XN E Cm(kN)) II E;;f(xj)l-
kN>xNm j=l 

115 

The inequality holds because the probabilities of the second term of the r.h.s. 
sum to F(x). 

We give a bound for each term. It is easily seen that IF(x)- F(x)I :S N~4 

if m 2'. l. Consider the second term of the r.h.s. If kj :S Xjm then E:rt(x) 2'. 
E:,fm(x). Because x < x, limm->oo E:,fm(x) = 1. We choose m large enough 

such that F(x)(l - I]E;;f(x)) :S (1- I]E:,fm(x)) :S N~ 4 • The probabilities 
in the next term summed gives F(x) - F(x), therefore this term is bounded by 

2 N ~ 4 • For the last N terms we have the following. If kj > x jm then E;,t ( x) :S 
E:,fm(x). By choosing m large enough we have E!(n(x) '.S N~4 which gives 
the inequality wanted. All equalities summed gives IFm(x) - F(x)I :SE. □ 

We are interested in the convergence of {(X;;)}nEIN to {(Xn)}nEIN· We 
are working in the product topology. Then the following holds ( e.g. by Billings
ley [6]): 

if and only if 

for all finite N. However, first we have to check whether { (Xn) }nEIN is well 
defined. This is done by checking consistency of the finite dimensional r.v.s 
{(X;,'."')}n<N (see Loeve [43], p. 94). 

A.3. Lemma. {(X;;)}n:;N are consistent for all N. 

Proof. By the symmetry of (A.2) it suffices to show that the projection of 
{(X;;)}n:;N on IR~-l is equally distributed as {(X~n)}n:;N-1· We have, as 

ur:=l Cm(kN) = IR+, 

N-1 
L IP(X1 E Cm(k1), ... ,XN E Cm(kN)) II E;;t(xj) = 

1<,k;<:;m2 j=l 
j=l, ... ,N 

N-1 
L IP(X1 E Cm(k1), ... ,XN-l E Cm(kN_i)) II E;;f(xj)- □ 

1 '5:kj '5:m2 j=l 
j=l, .... N-1 
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It is easily seen that the lemmas remain valid if we replace (A.2) by 

(A.3) 

Now consider the oo-dimensional r.v. {(Sn, Vn)}nEIN· Here Sn is the nth 
interarrival time, Vn is the mark belonging to the nth arrival. As {(Sn,¼,) }n::;N 
is a 2N-dimensional r.v. we can apply the results obtained above by tak
ing xt'21 = S~ml and x~;l = V~ml_ With the superscript (m) we mean 
that the expression holds both with and without the superscript m. Thus 
{(S;:', vnm)}nEIN is well defined by lemma A.3 and 

holds. 
Note that if Vn E {1, ... , l}, as in the server assignment model, then also 

x;;l E IN, and x1;) = Vn form large enough, thus avoiding non-integer class 
numbers. 

We continue by constructing an MAP (A,,\ q) which generates the inter
arrival times and marks { (S;;', Vnm )}nEIN for an arbitrary m. First we construct 
A. Take for each NE IN all vectors of the form (/3,s1, ... ,sN,v1,--·,vN-1) 
with Sn,Vn E {1, ... ,m2 }, 1 :S /3 :S SN and IP(Sn E Cm(sn),n :S N;Vn E 
Cm(vn),n :SN - l) > 0. 

Being in state (/3, s1, ... , SN, v1, ... , VN-1) sojourn time N is produced. 
The integer /3 indicates the current phase of the gamma distribution. 
The transition rates and arrival probabilities are: 

/3 =SN: 

A(f3,s1 , ... ,SN ,v1 , ... ,v N _ i)(/3+1 ,s, , ... ,8 N ,v, , ... ,v N _,) = 7n, 
V -o q(/3,.s, , ... ,sN,V1 , ... ,VN-1 )(/3+1,s, , ... ,SN ,v, , ... ,VN _,) - • 

>.(f3,s1 , ... ,sN,V1 , ... ,VN-1)(l,s1 , ... ,SN+l ,v, , ..• ,VN) = 
IP(Sn E Cm(sn),n '.SN+ l;Vn E Cm(vn),n :SN) 

mIP(Sn E Cm(sn),n :S N;Vn E Cm(vn),n '.SN -1)' 

All other transition intensities are 0. Note that the transition rate out of each 
state is equal to m. The transition mechanism is illustrated in figure A.l. 
The transition marked I (III) corresponds to an arrival of a customer with 
mark v:; 1 (~); the next arrival will take place after SN (sN+i) phases. At 
transitions marked II no arrivals occur. The result proved above can easily be 
extended to multi-dimensional and not necessarily positive marks. 
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Figure A.1. 

II 

l,s1,•··,sN+l• 
v1 , ... ,vN 
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The analysis so far has to do with interarrival times and is thus in the 
customer time scale. However, weak convergence of (marked) point processes 
is, in general, defined in the physical time scale. To complete the analysis 
we have to prove that weak convergence of the interarrival times entails weak 
convergence of the point process. This result can be found in Asmussen & 
Koole [3]. 
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Phase-type distributions of DFR/IFR distributions 

Consider phase-type distributions of the form (A.1). The objective of this 
appendix is to give a characterization of these distributions if the approximated 
distribution is DFR or IFR. We will see, in the case of a decreasing (increasing) 
failure rate distribution, that the probability that a phase-type distribution con
sists of k phases, conditional that it consists of k or more phases, is decreasing 
(increasing) in k. (Decreasing and increasing are used in the non-strict sense.) 
For the DFR case our result is a special case of the characterization of Hordijk 
& Ridder [27]. 

Let F be a non-negative distribution function. For fixed m we define 
/j1 = F(l/m) and /Jk = F(k/m) - F((k - 1)/m) fork> 1. Again, let E:;_.(x) 
be the d.f. of the gamma distribution with k phases and intensity m. Now take 

00 

Fm(x) = L!JkE~(x). 
k=l 

It is clear, by lemma A.2, that Fm converges weakly to F. Now Fm can be 
seen as the time until absorption of a Markov process with initial distribution 
(0, /j1 , /j2 , .•. ) and transitions depicted as follows 

m m 

Figure B.1. 

Consider the following Markov process which starts in state 1: 

(1- a2)m 

0 

Figure B.2. 
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Now take 
if I:~:i /Jk < 1, 

if I:~:i /Jk = 1. 
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Then it is easily seen that the time until absorption in both processes is equally 
distributed. Vice versa, f3n = (1- a1) · · · (1- Cl!n-1)an. 

We can define a distribution to be DFR or IFR if the failure rate ( defined 
as f (t)/(1-F(t)), with f the density of F) is decreasing or increasing. However, 
then we implicitly assume that the failure rate, and thus the density, exists. 
To avoid this, we prefer to use the definition of Barlow & Prochan [5], which 
is only in terms of .F(t) = 1 - F(t). Then it follows for example that F with 
F( t) = I{ t :::: x }, the deterministic distribution, is also IFR, although its failure 
rate does not exist. 

B.1. Definition. (DFR and IFR) A non-negative distribution function is: 
DFR if .F(t+ s)/.F(t) is increasing int:::: 0 with .F(t) > 0, for each s:::: 0; 
IFR if .F(t + s)/ .F(t) is decreasing in -oo < t < oo with .F(t) > 0, for each 
s:::: 0. 

Now we can formulate the main result of this appendix: 

B.2. Theorem. If F is DFR (IFR) then an is decreasing (increasing) in n, 
for all m. 

Proof. First we consider the DFR case. Takes= 1/m and t = 1/m, 2/m, .... 
Then, according to the definition of DFR, F(n/m )/ .F( (n-1)/m) is increasing. 
Therefore (F(n/m)- F((n - 1)/m))/ F((n - 1)/m) is decreasing inn. By the 
definition of f3n, F((n - 1)/m) = 1 - F((n - 1)/m) = 1 - I:~:i f3k- Because 
f3n = F(n/m) - F((n - 1)/m), an is decreasing in n if n :::: 2. As (31 = 
F(l/m):::: F(l/m) - F(0), we also have a 1 :::: az. 

Concerning IFR distributions, the analysis goes completely analogous, ex
cept for (31 . We show that F(0) = 0 or 1. Assume F(0) = a, 0 < a < 1. By 
the right-continuity of distribution functions we can find t1 and E such that 
F(t1 + c:)/ .F(t1 ) > 1- a, and .F(t1 ) > 0. Because .F(0)/ .F(-c:) = 1- a, we have 
a contradiction with the IFR assumption. Thus F(0) = 0 or 1, in the former 
case giving /31 = F(l/m)- F(0), and in the latter case an= 1 for all n. □ 

A disadvantage of this method is that we need an infinite number of states. 
Therefore we change the process of figure B.2, making the state space finite, as 
shown in figure B.3. 

This corresponds with changing the approximation into 

m 2 m 2 oo 

Fm(x) = L,f3kE;',.(x) + (1- L,h) L,(1- /Jm2)k-l/Jm2E:2+k(x). 
k=l k=l k=l 

It is easily checked that the approximation lemma A.2 also holds for Fm. 
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1--....:,...._ . . . . . . . . . _....:,....----4 

0 1--4!''---....__ ___ ---J._______ . . . . . . . . . ---~ 
Figure B.3. 
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Majorization 

In the customer assignment models the class of all allowable cost functions 
can often be characterized with the help of majorization. For two types of 
orderings, originating from the symmetric case (see e.g. section 1.2) and the 
case B = 1 (see e.g. section 1.3), we have a complete characterization. For the 
more general model of section 3.2 we give a conjecture for the correct ordering. 

In the first ordering, all vectors considered are componentwise smaller than 
the buffer vector B. Consider the ordering --<, with i --< i* if there are i1, ... , in, 
i0 = i and in = i*, such that 

(C.1) 

or 
(C.2) 

or 
ik is a permutation of ik-l _ (C.3) 

Now consider the weak subma.joriza.tion ordering --<w (see Marshall & Olkin 

[45]). We write i --<w i* if I:;=l i[j] :s; I:;=l i[j] for all k, with i[1] ~ · · · ~ i[m] 
the decreasing rearrangement of i. Thus, the sum of the kth largest components 
of i is smaller than that of i*. 

C.1. Theorem. The orderings--< and --<w a.re equivalent. 

Proof. i--< ·i* ⇒ i --<,,, i*. Take i0 , ••• ,in as in (C.1), (C.2) or (C.3). It is easy 
to see that ik-l --<w ik for all k. Because --<w is a preordering transitivity holds 
and i --<w i*. 
i --<,,, i* ⇒ i --< i*. We construct i 0 , ... , in such that i = i0 --< • • • --< in = i*. 
Assume that the k largest components of ik are equal to, and in the same place 
as, the k largest components of i*, and i = i0 --< • • • --< ik --<w i*. We construct 
ik+1 with the property that either ik+1 has the k + 1 largest components equal 
to i* and ik --< ik+l --<w i*, or ik+1 = i*. Repeating this gives the result. For 
simplicity of notation assume that k = 0. 

Take the largest component of i 0 , say queue j 1 , and interchange it with 
the component of i0 with the index of the longest queue of i*, say queue .iz. 
Call the resulting vector i'. Then, as i[l] :s; i[l]' i[l] fits in the buffer of queue 
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jz. Because i11 > i12 , i12 fits in the buffer of queue j 1 , thus i' ~ B. We have 

by symmetry i 0 -< i' and trivially i' -<w i*. 
If i[2] = 0, the result follows by (C.2), because all components except i[l] 

are 0. Thus, assume if z] > 0. 
Now we transfer a customer from i[2] to if l]" Call the resulting vector i". 

By (C.1) we have i' -< i". To show i" -<w i* we distinguish the following two 
cases. 

In case if2l > i[3], then i[l] + i[2] = i[~] + i[;] and i" -<w i* follows immedi
ately. 

I ., ., ., tl .,, + + .,, 1 + ., + + ., 
n case i[2] = · · · = 'l[k] > i[k+l] ten i[l] · · · i[l] = i[l] · · · 1.[l], 

l < k. However, it is straightforward to see that i(l] + · · · + i[z] < if1l +···+if!]" 
Thus i" -<w i*. 

Repeat this until either i[~] = i[l] ( and call the resulting vector ·i 1 , repeat 

the argument) or ifo = 0 (which case is already handled). □ 

The equivalence of theorem C.l gives that the class of functions satisfy
ing for example (1.2.2), (1.2.3) and (1.2.4) is precisely the class of functions 
preserving weak submajorization. These functions are called the weak Schur 
convex functions, cf. Marshall & Olkin [45]. According to Marshall & Olkin 
[45], a similar result has been shown by Muirhead [48]. He shows (presumably 
for B = oo) that the ordering obtained by transfers of the form (C.1) and 
(C.2) is equivalent to the majorization ordering. This ordering is like the weak 
majorization ordering, but with the additional constraint I:j=l i[j] = I:j=l i[j]. 

In much the same way we can give the generalization of the results of 
section 1.3. There we took B = l. It appears that the result can easily be 
extended to arbitrary buffers. Then the ordering agrees with the partial sum 
ordering of Chang et al. [12], used there in the context of a server assignment 
model. Again, all vectors considered are smaller than B. Define the partial 
ordering -< as follows: i -< i* if there are i 0 , ..• , in with i0 = i and in = i* such 
that 

(C.4) 

or 
,;k _ ;k-1 + e. 
0 - ,, J· (C.5) 

It is easily seen that the class of cost functions satisfying (1.3.2) and (1.3.3) is 
precisely the class of functions preserving the ordering -(. 

We show that the ordering -< is equivalent to an ordering -<', defined by: 
· 1 ·• "f '°"m · < '°"m ·• f k l i -< i l L..,j=k Zj - L..,j=k ij or . = ' ... 'm,. 

C.2. Theorem. The orderings -< and -<' are equivalent. 

Proof. ·i -< i* ⇒ i -<' i*. Take ·i = i0 -< • · · -< in = i* as in the definition of-<. 
It is easy to see that ik-l -<' ik for all k. Due to the transitivity of-<' we have 
i -<' i*. 
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i -<.' i* ⇒ i -<. i*. We construct i 0 , ... , in such that i = i 0 -<. · · · -<. in = i*. 
First add 1:;:1 i5 - 1:;:1 ij customers to state i0 , adding them to the queues 
with smallest indices, without passing the buffer sizes. Call this state i 1 . Then 
i -<. i 1 -<.' i*. Clearly, if i1 = i*, we are ready. If not, let h be the highest 
numbered queue with i}, < i52 . Now, construct i' = i1 - ej, +eh, with j1 the 

highest numbered queue with ii < h and ij, > 0. Since I:;:k i} < I:;:k i5 
for k = ii + 1, ... , h we have i' -<. 1 i*. Repeat this construction until we have 
ij1 = i51 . Choose a new ii and repeat. 

Finally, i1 -<. • • • -<. in and transitivity gives i -<. i*. □ 

Let us look at the -<.'-preserving functions. Allowed cost functions are 
c; = I:;:k ij, for all k, the total number of customers in the m - k queues with 
slowest servers. Hence the FQP minimizes the total number of customers in 
the m - k queues with slowest servers stochastically for all k = 1, ... , m. It is 
clear that there are other interesting -<.'-preserving functions, e.g. the weighted 
total number of customers with increasing weights. 

Finally, consider the model of section 3.2. To study the allowable cost 
functions, define the ordering -<. as follows: i -<. i* if there are i 1 , ... , in, i0 = i 
and in = i*, such that 

(C.6) 

or 
·k ·k-1 

1, = i + ej (C.7) 

or 

ik a permutation of ik-l with ii and j 2 exchanged, iJ,- 1 > 'i}2-
1 and ii < h-

(C.8) 
Now define an ordering as follows: i -<.' i* if I:J=k(ij - l)+ ~ I:J=k(i5 - l)+ 
for all k and l. 

C.3. Conjecture. The orderings -<. and -<.' are equivalent. 
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Computational issues 

In this section we compare different computational methods, mostly from 
a practical point of view. We consider value iteration ( also called successive ap
proximation), both for discounted and average costs and uniformization (with 
a large parameter). 

We introduce some notation. Let Axay be the transition intensity from x 
to y using action a and c., the costs in state x. Assume that the state space is 
finite ( which simplifies the analysis but is also necessary for the computations) 
and that :Z:::v Axay = a for all x and a. Consider the following iteration scheme: 

vn+l = min {c, + /3, "°"' Axay vn} 
x a x ~ a Y 

y 

It is well known that 'V~ converges to the minimal discounted costs if /J E [0, 1) 
and that, under an aperiodicity assumption, 11;+1 -v~ converges to the minimal 
average costs if /J = l. 

We start by motivating the choices for the discount factor made in table 
2.3.l. Assume that the costs are continuously incurred over time, meaning 
that the costs at t are multiplied with j3t. Then we take in the discrete model 
fJ = a/(log(!J- 1 ) +a) as discount factor. In table D.1 the values of /J are given 
for the choices of /3 taken in table 2.3.1, for the typical value a = 5. It is 
surprising to compare the values of {3 and /J. 

/3 fJ 
0.01 0.52 
0.1 0.68 
0.25 0.78 
0.5 0.88 

0.75 0.95 

Table D.1. Discomd factors 

Our computations were done on workstations. For the model of section 2.3 
we give in table D.2 the computer time in seconds and the n111nber of iterations, 
for>. = 1, B = 20 and an accuracy of 10-10 , needed to calculate the discounted 
and average costs (/3 = 1) under the SQP with value iteration. Each iteration 
takes about 4 seconds. Note that the number of states is approximately 1.6-105 • 

When >. ( or B) is increased the number of iterations sharply increases. For 
example, if,\ = 1.9 and B = 30, 43288 iterations were needed. 
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{3 time iterations 

0.01 172 42 
0.1 277 69 

0.25 419 105 
0.5 758 192 

0.75 1708 436 
1 5761 1224 

Table D.2. Value iteration 

Our experience is that it is easy to overlook some of the possible transitions. 
In the discounted case the value function still converges, but to the wrong 
solution. However, in the average cost case, in a model which is irreducible 
under each policy, the costs converge to 0. Therefore it is preferable also to 
program the average cost case, even if we are only interested in discounted 
costs. 

We continue with uniformization. Consider the following iteration scheme: 

vh,n+l = min {he + ~ h>.. vn + (1 - ha)vh,n} x a x L.....J xay y , x 

y 

As we showed in section 5.3, vh,lT/hJ converges to the costs from O to T as 
h -+ 0. Little is known about the convergence of this method. Some bounds 
on the speed of convergence can be found in Van Dijk [72] and [73]. Our 
computational experience is summarized in table D.3. There for various values 
of T and h the total costs from O to T are given, again for the model of section 
2.3, starting from the states with in each queue 10 customers. Other starting 
states give similar results. The number of iterations is h- 1 . Each iteration takes 
a little less time than for discounted and average costs, because we do not have 
to check whether we are finished iterating. (Because we did computations on 
several computers, some of which were faster than others, we do not supply 
computer times.) Note that because a = 5, h needs to be smaller than 0.2. For 
T = 1, it seems that an accuracy of 10-10 is obtained for h = 10-10 , meaning 
1010 iterations. If each iteration takes 3 seconds, this takes approximately 950 
years. This explains why we computed, for several models, discounted and 
average costs, but not costs from O to T. 

T=l 10 100 

h =0.1 39.550000 350.510743 1033.855844 

0.01 39.505000 350.062022 1033.855578 

0.001 39.500500 350.017155 

0.0001 39.500050 

Table D.3. Uniformization with a -+ oo 
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