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Preface

This is a revision of my Ph.D. thesis, which was written in the winter of 1991-92,
based on four years of research at Leiden University. During that time I studied
various routing and scheduling problems, for which I (partially) characterized
the optimal policies using the same technique: dynamic programming.

Over the last three years I found several related articles of which I was
previously unaware, some new interesting results appeared, and I strengthened
a few results myself. Based on that I prepared this revision. The sections which
changed the most are 1.8, 1.9, 2.4, 3.7, and appendix A.

I would like to thank three people who contributed greatly to my thesis:
my advisor Arie Hordijk, for his guidance, my office-mate Floske Spieksma,
and Carly Giezen, for her support outside the office.

Sophia Antipolis, June 1995 Ger Koole
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Introduction

The title of this monograph consists of two parts, stochastic scheduling and
dynamic programming. The former refers to a class of models, the latter refers
to the method used to find optimal policies for these models. The models
studied here can be divided in two classes: those in which customers at arrival
are to be assigned to one of a number of queues and those in which one or more
servers are to be assigned to different customer classes or queues. Of great
importance is the way in which customers arrive at the stations. Models with
independent arrival streams are studied in chapter 1. Then we allow the arrival
stream to depend on the numbers of customersin the queues in such a way that
controllable networks can be modeled with it. These and other network results
can be found in chapter 2. In chapter 3 we generalize the arrival process even
more, for example to include finite source models. Many results of chapter 1
and 2 are special cases of the results of chapter 3. Chapter 4 contains the proofs
of the dynamic programming results. Chapter 5 considers methods by which we
can translate the discrete-time results of the chapters 1 to 3 to continuous-time
results. We conclude with four appendices, respectively on weak convergence
of arrival streams, on phase-type distributions with a monotone failure rate, on
majorization, and on algorithms to compute optimal policies.

Summarizing, chapter 1 can be seen as an introduction, chapter 2 contains
the network results, and in chapter 3 the dynamic programming results are
handled in their greatest generality.

Chapter 1 starts by introducing the Markov Arrival Process (MAP), an
arrival process based on a Markov process. In appendix A it is shown that the
class of Markov Arrival Processes is dense in the class of all independent arrival
processes. The MAP is taken as input to a model consisting of m parallel
queues, with possibly finite buffers, each with their own exponential server.
These types of models, in which each arriving customer is to be assigned to one
of the queues, are called customer assignment models. When the service rates of
all servers are equal, the policy that assigns arriving customers to the shortest
non-full queue (the SQP) is optimal for a large class of cost functions, including
the total number of customers. This is shown in section 1.2, by inductively
proving properties of the discrete-time dynamic programming equation. A
related model has no buffers at the servers, but different service rates. Here
arriving customers should be sent to the fastest available server. For both
models, there is a complete characterization of the allowable cost functions, to
be found in appendix C.
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The previous results are only interesting in continuous time, due to the way
of modeling. Section 1.4 considers a simple symmetric discrete-time model with
simultaneous events, in which the SQP is optimal. In section 1.5 we generalize
the result of section 1.2 to pathwise optimality of the SQP. So far, all cost
functions depend on the number of customers in the queues. We can also
consider the number of departed customers. In section 1.6 it is shown that the
SQP is again optimal, and that we can allow rejections. Section 1.7 deals with
maintenance models closely related to the models of the earlier sections.

In sections 1.2 to 1.7 the information available to the controller is the
numbers of customers in each queue. In section 1.8 the amount of work in each
queue is known. Here the policy that assigns to the queue with the shortest
workload (the SWP) is optimal. In section 1.9 there is no information at all,
not even on previous assignments. It is shown that the optimal policy divides
the arrivals equally among the queues. It is the only result in this chapter not
obtained by dynamic programming.

Now we move to the server assignment models. First we generalize the
MAP to be able to include server vacations and arrivals in multiple classes. In
section 1.11 and 1.12 we deal with the following model. Customers arrive in m
different classes, and all customersin the same class have an exponential service
time with the same mean. There are one or more identical servers available,
which have to be assigned to the customers present. Both models with a single
and with multiple servers are studied, giving conditions on the cost functions
for list policies to be optimal. As special cases we find the following well known
results. In the single server case the pc-rule minimizes the weighted number of
customers. In the multiple server case the makespan is minimized by the LEPT
policy (LEPT stands for longest expected processing time first). In the single
server case we generalize the results to IFR and DFR service time distributions.

In chapter 2 we consider controllable tandems and networks of centers,
each center being of one of the types discussed in chapter 1. Consider the last
center in a tandem system, in which the control in each center is allowed to
depend on the state of the whole network. Then we cannot use the optimality
results of chapter 1 to obtain the optimal policy in the last center, because the
arrivals, through the control in the previous centers, depend on the state of
that center. With a Markov Decision Arrival Process (MDAP) we deal with
this type of dependency, by using it to model all but the last center with it.
It is shown that the SQP, for the model of section 1.2, is still optimal for this
type of arrival stream. An interesting question is what the optimal policy is
in the first of two centers in tandem. Some results and counterexamples are
given in section 2.3. We also analyze the model where the policies are allowed
to depend on the workloads. It appears that the results are stronger than the
results for the model based on the numbers of customers.

The results on the server assignment models are not as easily generalized
to arrivals according to an MDAP. More precisely, the generalization holds
ounly if the policy which is optimal in the case of an MAP processes the jobs
in decreasing order of expected processing times. This means that LEPT also
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minimizes the makespan for dependent arrivals, but in the single server case the
pe-rule is only optimal if it coincides with LEPT. Counterexamples are given
in the case that it does not. In the sections 2.6 and 2.7 we consider tandem
systems with each center having a single server. Section 2.6 deals with heavy
traffic results. In section 2.7 we assume that the service time distribution of
each customer is the same in both centers. Then we have the striking result
that each work-conserving policy minimizes the makespan.

Chapter 3 starts with generalizing the MDAP to a Dependent Markov
Decision Arrival Process (DMDAP). Now we can also model a finite source.
In section 3.2 a customer assignment model is studied with asymmetric service
times. The following partial characterization of the optimal policy is given: if
queue k has less customers and a faster server than queue I, then an arriving
customer can better be assigned to queue & than to queuel. From this result the
results of section 1.2 and 1.3 follow. In section 3.3 we study again symmetric
models, but now with batch arrivals, and with non-routable arrivals and an
assignable server. In section 3.4 we consider a model with asymmetric servers,
multiple customer classes and no buffer space. Each customer has blocking
costs, depending on its class. Various monotonicity results are proved. Then
we move again to the server assignment models. Results for the multiple server
case are generalized to partial availability of servers. Here we cannot model a
finite source. We end the chapter by considering a model with a single server
and a finite source.

Most results are obtained by proving structural properties for discrete-
time models. Typically, we formulate the dynamic programming equation and
prove certain inequalities by induction, provided that they hold for the cost
functions. In most models we have an inequality giving the optimal policy, an
inequality showing monotonicity, and, in the customer assignment models, an
inequality showing symmetry of the costs, all in n steps. The decision points
of the discrete-time model are the jump times of the original continuous-time
model. In fact, the sojourn times of the embedded chain are all exponentially
distributed with parameter @. By increasing this uniformization parameter we
show in section 5.3 that the optimal policies in the continuous-time models
have the same properties as the optimal policies in the discrete-time models.
If the optimal policy is myopic, that is, the same decision rule is optimal for
each horizon, then we can prove the continuous-time results by considering a
fixed a. This is the subject of section 5.2. All models considered in chapter 1
have myopic optimal policies.

The main result of appendix A is already discussed. There multi-dimen-
sional phase-type distributions are used, and it is shown that they are dense
in the class of all distributions. In appendix B we deal with one-dimensional
phase-type distributions. By the Markovian structure of our models, we cannot
deal with general service time distributions. To prove results for (service time)
distributions with monotone failure rates, we need a characterization for the
approximating phase-type distributions. This is provided in appendix B.
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As we said, our inductive results give conditions on cost functions. For
several customer assignment models, complete characterizations of the sets of
allowable cost functions are given in appendix C.

In some models where optimal policies could not be given, numerical ex-
periments were done. Also to provide counterexamples computational methods
were used. Appendix D deals with these methods.

Most models of chapter 1 can already be found in the literature. Existing
results are generalized, for example to finite buffers and to more general cost
functions. Detailed discussions of the existing literature can be found in the
appropriate sections of chapter 1. The main generalizations of the chapters 2
and 3 are the dependent arrival processes. Chapter 5 adapts existing results
for use in the models of chapters 1, 2 and 3. Also in the appendices several
new results are presented.



Chapter 1

Models with Markov Arrival Processes

1.1. Markov Arrival Processes

We start this chapter by introducing the arrival process.

1.1.1. Definition. (Markov Arrival Process) Let A be the countable state
space of a Markov process with transition intensities Azy with z,y € A. When
this process moves from z to y with probability ¢., an arrival occurs. We call

the triple (A, A,q) a Markov Arrival Process (MAP).

Arrival processes with the arrivals on the jumps of a Markov process were
first introduced by Rudemo [61]. For computational results we refer to an
article by Neuts [51] and to chapter 5 of his latest book [53].

With the MAP the departure process of most queueing systems with ex-
ponentially distributed sojourn times can easily be modeled, which can then be
used as input to another system. As an example, take the M|M|1 queue with a
Poisson()) arrival stream and service intensity . Construct the MAP (AN, 9),
corresponding to the departures, as follows: take A = {0,1,...}, Ajix+1 = A and
Aii—1 = p if 2 > 1. All other transitions have intensity 0. Take gs4+1 = 0,

gii-1 = 1.
Now we show how to model a phase-type renewal process with an MAP.

Phase-type renewal processes. Assume we have a renewal process with
independent interarrival times of phase-type, as discussed in Neuts [52]. Phase-
type distributions are defined as follows. We have a Markov process with m+1
states, where state m + 1 is absorbing, the other m states are transient. The
transition intensity from state x to y is denoted by tgy, oy is the probability
that the system starts in state z. The time until absorption is the phase-type
distribution. Assume @,,+1 = 0, i.e. there is no atom at 0. To model this
renewal process with an MAP (A, ), q), we have to take the parameters as
follows: A = {1,...,m}, Agy = toy + tems10y and goy = (tami10y)/(toy +
tzm+1ay). We see that when the original state moves to m + 1, the process is
immediately restarted and moves to state y with probability oy,.

Also the Markov Modulated Poisson Process (MMPP) can be modeled
with an MAP.
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Markov Modulated Poisson Process. An MMPP is governed by a Markov
process with state space A and transition intensities A;,. When the system is
in state z customers arrive with intensity p.. As this does not change the

arrival process we can assume Ay, = 0 for all z. This process can easily be
modeled with an MAP (A, A, q): take

_ A _Jp Hz=y, _{1 ifz=y,
A=A, Ay = {)\my otherwise and - goy = 0 otherwise.

The MMPP is often used, both theoretically and practically, as it is easy to
implement. However, models like the M|M|1 queue above can not be modeled
with it. More details on the MMPP are given in Asmussen & Koole [3].

It can be shown that the class of MAPs is dense in the class of all arrival
processes. This is shown in appendix A. The approximating MAPs used there
have bounded rates in each state, i.e. 35 Asy < 7y for all © for some constant
v. By adding transitions from z to z with ¢, = 0 we can modify the MAP
such that Zy Agy = v in each z. This is assumed throughout.

1.2. Symmetric customer assignment model

Now consider the following model. Customers arrive according to an MAP to
a system consisting of m parallel queues. On arrival the customers have to be
assigned to one of the queues. This assignment may depend on the state of
the MAP reached at the arrival instant, and on the previous queue lengths.
Queue j has a buffer of size Bj, including the customer being served. We write
B = (By,...,By). It is not allowed to assign a customer to a full queue,
unless all queues are full. Each queue has a server which serves with rate p.
Our goal is to show that each arriving customer should be assigned to the
shortest non-full queue, for various objective functions.

The total transition rate out of each state is bounded by v+ mpu. Now the
system can be seen to operate as follows. The time between two transitions
is exponentially distributed with parameter a > v + mpu. The transitions at
the jump times have probabilities proportional to their rates. Central in our
approach is the analysis of the Markov chain on the jump times, the embedded
Markov chain. This method is called uniformization. (For more details, see
chapter 5.)

At a jump, the probability of a transition from z to y in the arrival pro-
cess is Agy/a. The probability of a departure at a queue is p/a, the arrival
probabilities remain g.,. For notational simplicity we assume a = 1, i.e. we
use the same variables for the embedded discrete-time model as for the original
continuous-time model. Note that a transition in the MAP and a departure at
one of the queues cannot happen simultaneously. The state of our model will
be notated as (z,7), with z € A the state of the MAP and ¢ = (41,...,im) the
state of the queues, 7; being the number of customers in queue j. Then, at
each decision epoch, with probability Az, the arrival process moves from z to
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y, giving an arrival with probability ¢y, and there is a (potential) departure
of a customer at each queue with probability u. With probability 1 — v — mu
a dummy transition occurs. Now define '"?z,i) as the expected costs over n
jumps of the embedded Markov chain, starting in state (z,3). The v, ;) can be
computed recursively, using the following dynamic programming (dp) equation:

ot = 30 hey (e min {00y} + (1= a0y )+
Y
(1.2.1)

m
Do (imepyry + (L= 7 = mphol, .
=1

The minimization ranges over all j for which the queues are not full, i.e. for
which ¢; < Bj;. If ¢ = B, add action 0 with ¢o = 0.

Note that there are no immediate costs. The only costs are the v°, mean-
ing that there are costs associated with the state reached in the end. Omitting
the immediate costs does not restrict generality, but makes the analysis more
elegant. Also note that relation (1.2.1) is not in the standard dynamic pro-
gramming form because the action taken may depend on the current state of
the arrival process y and not just on z. (In chapter 5 it is rewritten to bring
it in the standard form.) The following lemma gives relations between the
expected minimal costs in different states of the model.

1.2.1. Lemma. If

W(zyites,) S Wiayiteyy) 10741 Sy, i+ €5 +ej, < B, (1.2.2)
W(g,i) < Wigjite;,) fori+e;, < B (1.2.3)

and
W(gs) = W(z4+)  fori* a permutation of 1, 1* < B (1.2.4)

hold for the cost function w = v°, then they hold for all v".

For the proof we refer to the proof of corollary 3.3.2, because the model
studied here is a special case of the model studied in section 3.3.

Note that the lemma gives conditions on the v°, the cost function. Let us
interpret the equations. Equation (1.2.2) gives the optimal policy. If we have
to decide between assigning a customer to queue j; or to j2 we have to choose
71 if there are less customers in that queue. Thus amongst the non-full queues,
the shortest is selected. This policy is called the Shortest Queue Policy (SQP).
The SQP tries to balance the number of customers in the queues.

Equation (1.2.3) and (1.2.4) are needed to prove (1.2.2). The former gives
a general objective: fewer customers is better. The latter shows that the value
function is symmetric, even though the buffer sizes can be different.

We assume that the costs are bounded, either from above or below. This
ensures that, in the continuous-time model, the costs at time T, for all T, are
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well defined. By (1.2.3), the costs are bounded from below by v(, ,, for fixed z,
meaning that the assumption is not very restrictive. We assume it throughout
this chapter. Now we can prove that the SQP minimizes the costs at time T,
using corollary 5.2.2.

1.2.2. Theorem. For all T, the SQP minimizes the costs at T (from 0 to T)
for all cost functions satistying (1.2.2) to (1.2.4).

It remains to study the cost functions that satisfy the conditions. An
obvious cost function is 'U?z,i) =14, + -+ + im = ||, meaning that the SQP
minimizes the total number of customers in the system in expectation, both
at the time horizon T and from 0 to T. Another cost function that satisfies
the conditions is 'v?w-) = max;{i;}, the maximum queue length. Note that
the dependence on the state of the arrival process can be quite general: if
we associate costs ¢, with state z, cost functions like v?m’i) = ¢z + |i| and
v?m.) = ¢y max;{i;} for ¢; > 0 are allowed. In fact, a necessary and sufficient
condition is that for z fixed the costs must be weak Schur convex in ¢, as shown
in appendix C. Not only v, ;) = [i| but also v, ; = I{|i| > s} is allowed for
all s. (I{-} is the indicator function.) This means that the SQP minimizes
the probability that there are more than s customers in the system at 7, i.e.
the SQP stochastically minimizes the number of customers in the system. It
is easy to see that if vow.) = C(y,i) satisfies (1.2.2) to (1.2.4), so does '”?a:,i) =
I{c(z,;y > s}. This means that each cost function which is minimized by the
SQP in expectation at T is minimized stochastically too. Summarizing, the
SQP minimizes all Schur convex functions stochastically.

The first to prove the optimality of the SQP for minimizing the number
of customers in the system, was Winston [82], in 1977. He assumed Poisson
arrivals and infinite buffers. Weber [75] extended this to arbitrary arrivals, but
his argument for service time distributions with an increasing failure rate was
shown to be false in Sparaggis & Towsley [68]. Whitt [81] showed that the SQP
is not optimal for a model with U-shaped failure rates. Proposition 8.3.2 of
Walrand [74] gives a coupling proof for the exponential server case. Another
proof of the pathwise optimality of the SQP is given in Hordijk & Koole [22].
We give yet another coupling proof based on dynamic programming in section
1.5. In Hordijk & Koole [21] finite buffers are introduced. There the number of
departed customers is considered, rather than the number of customers in the
system. Blocking is allowed. This model is discussed in section 1.6. The model
of Towsley et al. [71] is exactly the model studied here. Johri [31] and recently
Menich & Serfozo [46] weakened the conditions on the arrival and service rates.
Similar conditions are studied in chapter 3. Finally, Sparaggis & Towsley [68]
obtained the result for service times with an increasing likelihood ratio.

As said, in section 1.6 we consider a model in which the reward is related
to the number of departed customers. Other customer assignment models can
be found in section 1.3 to 1.9. In chapter 2 we generalize the present result to a
model in which a certain dependency of the arrival process on the state of the
queues is allowed. In chapter 3 we study models with different service rates for
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different queues. There we give a partial characterization of the optimal policy.
Together with this, assumptions on arrival and service rates are generalized.

1.3. Customer assignment model without waiting room

When we drop the condition that the service rates must be equal in each
queue, we get an interesting problem. Numerical computations indicate that
there is no optimal policy with a nice structure; for example the optimal policy
depends, in the case of Poisson arrivals, on the arrival rate. In chapter 3 we give
a partial characterization of the optimal policy using dynamic programming,
and there we go into more details on the numerical results obtained by various
researchers. Here we consider a special case where the optimal policy can be
completely described, namely the case where there is, besides the customer in
service, no space in the queues, i.e. B = (1,...,1). Queue j has a server with
service rate pj, and we take p; > -+ > p,, for convenience. We show that
for various cost functions it is optimal to assign each arriving customer to the
fastest available server. We call this policy the Fastest Queue Policy (FQP).

The first to address this problem was Seth, whose paper [64] appeared in
the same year as Winston’s seminal paper on the SQP [82], 1977. He analyzed
the model with m = 2 servers and Poisson arrivals. Then there are only
two policies to be considered, for which the stationary distribution is easily
computed. The FQP minimizes the blocking probability. Derman et al. [17]
generalize this result to multiple servers and general arrivals. Recent results
for this type of model are discussed in section 3.4, where we consider a similar
model with class-dependent blocking costs.

Seth [64] also gives a counterexample to the optimality of the FQP for non-
exponential service times. A similar result is obtained by Cooper & Palakurthi
[14]. These results show the sensitivity of this model to the shape of the service
time distributions.

Now we derive the optimality of the FQP. As in the previous section,
the model is uniformizable. Assume v + g1 + -+ + gty < 1. The dynamic
programming formulation is:

VD = 2 ey (doy min{ufy sy} + (1= 40y ) +
Y
(1.3.1)

Zﬂj”?z,(i—em) +(L=y=p1 = = mm)V( -
J=1
The minimization ranges over all queues for which 7; = 0. Note the similarity
with (1.2.1).
The following lemma gives the optimality of the FQP.

1.3.1. Lemma. If

W(g,ite;,) < W(z,ite;,) for i, =15, =0, j1 < j2 (1.3.2)
and
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w(z,i) S w(m,i+6j1) fOI‘ Z'j1 = 0 (133)
hold for the cost function w = v°, then they hold for all v™.

Equation (1.3.2) gives the optimality of the FQP. For the proof we refer
to the proof of the equivalent lemma for the more general model studied in
section 3.4. There it is shown how the optimality of the FQP follows from a
more general result on an asymmetric customer assignment problem. Also the
symmetric model of section 1.2 is a special case of that model.

1.3.2. Theorem. The FQP minimizes the costs at T (from 0 to T') for all
cost functions satisfying (1.3.2) and (1.3.3).

Let us consider the cost functions satisfying the conditions. As in the
previous section /U?z,i) =141+ - + 4y, = || is allowed. Again, each allowable
cost function is also minimized stochastically. This gives us, if we take 17?@1‘) =
I{|i{| > m}, that the FQP minimizes the blocking probability at each T

For the SQP we had a complete characterization of all allowable cost func-
tions. Here something similar holds: the allowable cost functions are the set of
functions increasing in an ordering, which is called the partial sum ordering in
Chang et al. [12]. In appendix C the ordering is introduced and the equivalence
is shown.

1.4. Discrete-time customer assignment model

So far we studied a continuous-time model by analyzing a discrete-time one.
Of course, discrete-time models themselves are also interesting. Unfortunately,
the model of lemma 1.2.1 is not very realistic in discrete time: arrivals and
departures cannot happen simultaneously and therefore they are not indepen-
dent. The optimality result for this model is more involved than for the model
without simultaneous events. Therefore we analyze the following simple model.
There are 2 identical parallel queues with infinite capacity, each with one server.
When a customer is served during a time slot it leaves the system with prob-
ability p, giving geometric service times with average 1/u. The interarrival
times are geometric with parameter A\. The state is denoted by (i, 7), with @
(7) the number of customers in queue 1 (2).
The dynamic programming equation becomes:

+1 __ . 2,.n 1
V(i) =Amin {“ Vi—n++1,G-0+) T AL = B0y 41,5

(1= W) uvips oy + (1= 1) * 0041 5y
ﬂzvﬁi—1)+,(j—1)++1) + (1 = w1+ je1)t
1.4.1
(1= )i 1)+ 41y + (1 = /‘)2"’(7;',1'-%1)}"_ ( :
(1- A)(szzti—1)+,(j—1)+) + (L = oy )+

(1= W sy + (1= 0 )-
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Note that if a queue is empty there is no departure even if an arrival occurs at
that queue. We have the same equations as in the model without simultaneous

events:

1.4.1. Lemma. If

W(it1,5) < Wi, j+1) foré < j, (1.4.2)
Wi, j) < Wiit1,5)s (1.4.3)

and
W(i,g) = W0 (1.4.4)

hold for the cost function v°, then they hold for all v™.

The proof can be found in chapter 4. The optimal policy is not immedi-
ately clear from the equations. In the proof however it is shown that for ¢z < j
we have w0, _yy4 iy oy FRL =00 ye g g (L= oy H(L-
W 1) S By G-y TR0y gy =BG gy F
(1- p,)zv'(’;’ﬂ_l), which are the terms in the minimization of the dynamic pro-
gramming equation. Thus the SQP is optimal.

1.4.2. Theorem. The SQP minimizes the costs at each n for all cost functions
satisfying (1.4.2) to (1.4.4).

The equations derived here are equivalent to (1.2.2) to (1.2.4), for m = 2.
Thus the same cost functions are allowed here.

The generalization to more than 2 queues seems to be straightforward,
although we did not check that in full detail. When we introduce buffers
however, problems arise. For example, when some queues are full we have
to specify the allowable actions and the actual point in time at which the
arrival occurs; before or after the departure. After the departure seems from a
modeling point of view the most interesting; this results in a model where we
decide on the assignment after the departure of the customers. For example, if
all queues are full, this means assigning to a queue where a departure occurs.
We conjecture that also in this case the SQP is optimal. If the assignment
occurs before the departures take place, then the SQP might not be optimal.

In the next section we return to the study of continuous-time models.
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1.5. Pathwise optimality

In this section we want to prove the pathwise optimality of the SQP for the
continuous-time model of section 1.2. There we showed that the SQP is stochas-
tically optimal at T for all allowable cost functions. This is equivalent with
saying that, for an arbitrary policy R, we can couple the realizations such that
the costs at T are lower under the SQP. To prove pathwise optimality, we have
to show that for coupled realizations the SQP has lower costs jointly across
time. Again, we want to use dynamic programming for our result. However,
in the dynamic programming recursion we compute expected costs: v™ are the
expected costs after n transitions. We give a similar recursion with random
variables.

In the previous sections it was sufficient to know the transition rates. Here
however we need to know the stochastic behavior and specify the underlying
probability spaces. In section 1.2 it is argued that our model is governed by
two independent processes: one governing the jump times and one governing
the transitions themselves. The jump process is the same as in section 1.2,
we will not further specify it. The transitions are generated by independent
uniformly distributed random variables. Assume the current state is (z,%).
Let U be the r.v. generating the transition at the current jump time. Let
(7) be the index of the jth smallest component of i. If i(;) = i(j41), take
(j) < (j +1). For example, if i = (2,1,0,1), then (1) =3, (2) =2, (3) =4
and (4) = 1. Note that i(;) < --+ < i), the usual definition of i(.). Assume
that the states of the MAP are numbered. The system moves to (y,i + €;)
if U € [EKy /\M,Zz<y Azz + AzyQay) and if action j was chosen in state
(y,%). The system moves to (y,7) if U € [2z<y Aez + ’\quw’zzgy Azz), and
to (z,(i —e))t)if U € [y +(j — 1)p,y + jp). A dummy transition occurs
if U € [y + mp,1]. Note that the actual coupling can be found in the term
on departures: in different states, departures at the jth longest queue in both
models are coupled. Although the method of proof is different, this is the same
coupling as in Walrand [74] and Hordijk & Koole [22].

Let Uy, n > 1, be i.i.d. random variables, uniformly distributed on [0, 1].
Choose random variables Vom. , for all z and ¢ on the same probability space,
and define (2,1‘)3 n > 1 by the following recursion:

(Vi) Uit € [ 30 Aers 3 Aee + Aayitn) v € A
J z<y z<y
n+1 Vivi) if Unt1 € [Z Azz + Asyloy, Z ’\”)’ yea
View = z<y z<y
Viaizegpt) HUnya € [’H’ (4 - 1)lL,’Y+j/L), J=1...,m
L V) if Upy1 € [’y +mpy, 1]

The allowable actions are the same as in section 1.2.
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The minimization in the recursion is taken on each sample path. In general
this minimum need not be attained by a unique action. In the next lemma we
show that, in this case, it is attained by the same action in each state, namely
that action that assigns to the shortest queue, which gives the optimality of
the SQP for the recursion.

1.5.1. Lemma. If

Wizjite;) S Wiajite;,) forij <ij, i+ej +ej, < B, (1.5.1)
W < W(m,iﬂh) fori+ej < B,
and
Wie,i)y = Wiz, for i* a permutation of 1, i* < B (1.5.3)

hold for the cost function W = V°, then they hold for all V™.

The proof of lemma 1.5.1 can be found in chapter 4. To understand the
meaning of this lemma, condition on a realization of the jump times. Number
the r.v.’s governing the transitions in reverse and condition also on them. Then
the lemma tells us that the costs are minimized by the SQP. Note that the
coupling is implicit in the recursion; for all policies the same U, are used. Thus
the lemma shows that the costs are lowest under the SQP for each realization.
This gives of course the optimality at each T' but also the optimality over the
whole path.

1.5.2. Theorem. The SQP minimizes the costs pathwise for all cost functions
satisfying (1.5.1) to (1.5.3). "

The costs are allowed to be random variables. Apart from that the condi-
tions are similar to the conditions of the previous sections.

Note that from the pathwise optimality it also follows that the sum of the
waiting times of the first n customers is minimized stochastically by the SQP.
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1.6. Customer assignment model with rejection

Here we study a model which is similar to that of section 1.2. However, the
policies and the type of cost functions studied are different. Concerning the
policies, it is allowed to send a customer to a full queue, meaning that it is
rejected. By introducing an extra queue without waiting room in the buffer,
we can add a rejection option in each state. The type of cost functions studied
here is concerned with the number of customers that have already departed.
This is the model studied in Hordijk & Koole [21], but we choose to prove it
a little differently. In view of the objective it would be appropriate to have
a model with rewards, but in order to agree with the other models we study
costs. We add an extra variable to the state space (z,%), which counts the
number of departed customers, i.e. if a departure occurs at queue j the system
moves from (z,%, k) to (z,i—e;,k+1). The dynamic programming equation is

'”(n:z‘l,k) = Z Azy (‘hy mjin{”?y,mej/\s,k)} +(1- qu)”(ny,i,k))'*’
Y
m (1.6.1)
#Z (5ij’l'(7;,i—ej,k+1) + (1 -6, )”(nz,z',k)) + (L= =mp)vi ;-

J=1

Because of the rejection option the minimization ranges over all j. Of course,
instead of adding the variable k, we could have taken immediate costs. This
however would only have given results in expectation instead of stochastic
results.

The analysis continues as usual:

1.6.1. Lemma. If

W(g,ite;, k) < W(z,itej, k) for i;, <1ij,, 1 +ej +ej, < B, (1.6.2)
W(g,k+1) S W(g,ite;, k) fori+e; < B, (1.6.3)
W(g,ite;, k) < W(z,ik) fori+ej;; <B (1.6.4)

and

W(g,ik) = W(g,i+,k) fori* a permutation ofi,7* < B  (1.6.5)
hold for the cost function v°, then they hold for all v™.

The present model is a special case of the model of section 3.5. Thus
for the proof of the lemma we refer to the derivation in the beginning of that
section. Equation (1.6.2) is by now well known; we should assign to the shortest
queue. Equation (1.6.3) states that the costs are smaller when customers leave
quickly. Equation (1.6.4) says that a full system is better. Note that it is the
reverse of (1.2.3); it allows us to include rejection as an action without losing
the optimality of the SQP. Equation (1.6.5) is again symmetry.

Of course all cost functions satisfying (1.6.2) to (1.6.5) are allowed, but
cost functions depending only on ¢ are not of interest here, because (1.6.3) and
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(1.6.4) would give that the costs are constant in each state. Of interest here is
'”?z,i,k) = —k, meaning that, when starting in (z,,0), the SQP maximizes the
expected number of departed customers. Also I{k < s} is allowable for all s,
giving the following theorem.

1.6.2. Theorem. The SQP maximizes the number of departed customers
between 0 and T stochastically.

1.7. Series of parallel processors

A type of model related to the symmetric customer assignment model is the
following, introduced by Katehakis & Melolidakis [33]. We have a series of m
groups of components, group j consisting of B; components. The system is up
when at least one component in each group is functioning. New components
arrive according to an MAP. The problem is how to assign the arriving compo-
nents to the groups. Assigning a component to a group in which all components
are functioning means that the component is lost. First we study a model in
which all components are subject to failure, all with the same intensity. This
is the model studied by Katehakis & Melolidakis. Then we consider the case
where only the working components can fail.

For the first model we assume that B; is finite for each j. Let v+ (By +

-+ B)p < 1. The dynamic programming equation is:

1 . n
(71;c+z) Z)‘wy (qzy fllj!n{”&,i+ejAB)} +(1- (Izy)”(y,i)) +
y

m (1.7.1)
’I‘Zijv(n:c,i—ej) + (1 -7 (7'1 +eee zm)”’)v(nm,z)
j=1
As in the last section the minimization ranges over all j.
1.7.1. Lemma. If
Wz ite;,) S Wizites,) f0T 45 <ijy, 1+ej +ej, < B, (1.7.2)

W(z,ite;,) S W(ai) fori+e; < B
and
W(g,i) = W(g,i%) for i* a permutation of ¢, i* < B (1.7.4)
hold for the cost function v°, then they hold for all v™.

The proof can be found in chapter 4. It is interesting to note that for the
proof of (1.7.2) we do not need (1.7.3), because of the fact that each component
is handled in exactly the same way. Therefore we need (1.7.3) only to see that
the optimal policy does not reject arriving components. If sending a component
to a full group were not allowed, as in section 1.2, we could omit (1.7.3). In
lemma 1.2.1 this cannot be done, as we need (1.2.3) in the proof of (1.2.2).

Equation (1.7.3) is the reverse of (1.2.3), and is again due to the service
mechanism.
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1.7.2. Theorem. The SQP minimizes the costs at T (from 0 to T') for all
cost functions satisfying (1.7.2) to (1.7.4).

One function we are interested in is v, = I{3j with ¢; = 0}. This cost
function is indeed allowable, giving that the SQP minimizes the probability
that the system is down. If the system is up when there are & out of n groups
functioning, rather than all n groups, we can take v( 0= = 1 if there are more
than k non-empty groups in ¢, and 0 otherwise. This cost function is also al-
lowable, thus the SQP maximizes also in this k-out-of-n system the probability
that the system is working. A related cost function is I{3j with i; < k}. This
is also an allowable choice, corresponding to a system in which each group
much have at least k& working components. These results were also obtained by
Katehakis & Melolidakis [33].

Now we consider a similar model, not studied in [33], in which only the m
components required for the system to function can fail. This means that no
component fails if the system is down. If we want to maximize the probability
that the system is up at T, the SQP might not be optimal, as the following
example shows. Take m = 2, g = A =1 and T = 2. With the computational
method described in appendix D, which amounts to computing the dynamic
programming equations for a large uniformization parameter, we computed
the optimal policy. It followed that it is optimal in state (0,1) to assign new
components to group 2. Customers arriving after 0.967 are assigned to group 1.

However, if we look at the expected time the system is up from 0 to T’
the SQP is optimal. To show this, we have to introduce immediate costs. We
prefer to incur all costs together at T, in a way similar to the model of the
previous section. Therefore we add an extra component to the state space,
which is raised by 1 each time a component fails. The dynamic programming
equation is:

( .
Z Azy (‘Imy Injln{v(ny,i+ej/\B,k)} +(1- qacy)"’&,i,k)) +
y

ot BY U ieswen) + (L= 7 = mp)vl, ) i ij > 0 for all j,
(z: k) — = 9 J=1

Z Azy (q:z:y m}n{”&,i+e,~/\3,k)} +(1- qu)v&,i,k)) +
y

t (1 = Y)v(p,ix) if ¢; =0 for some j.
Again, the minimization ranges over all j.
1.7.3. Lemmma. If

W(z,itej, k) < W(g,ite;,,k) for ’l:j1 < ’ijz, t4+ej +¢j, <B, (175)
m
Z 'w(a:,'i—-ejl,k+1) S m’lU(z’,,;,k) fort Z €, (1.7.6)
J1=1
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W(z,ite,, k) < W(gsk) fori+ej < B, (1.7.7)
W(a,ik+1) S W(ai,k)
and

W(g,ik) = W(g,irk) fori* a permutation of i, i* < B(1.7.9)
hold for the cost function v°, then they hold for all v™.

The proof can be found in chapter 4. As in the first model of this section,
we only need (1.7.7) to know that we should not use the rejection option. As
in the result of the previous section, we can take v?x’i’k) = —k, giving that the
SQP maximizes the expected number of failed components. However, we are
interested in the time the system is up. But, components only fail if the system
is up, with rate mpu. Thus the policy that maximizes the number of departures,
also maximizes the time that the system is up.

1.7.4. Theorem. The SQP maximizes the expected time that the system is
up between 0 and T'.

As in section 1.6, the second and third equation give, for cost functions
only depending on ¢, constant costs. Thus 'U?m‘i’k) = —Fk is the only cost function
of interest.

In Koole [39] the same model is studied, but there the queue to which
an arrival is assigned is determined at the time of the previous arrival. This
models the repair at the spot by a repairman, and results in a model with a
specific form of delayed information. Similar results as for the current model
are derived.

1.8. Customer assignment model with workloads

The information available to the controller in the model of section 1.2 are the
numbers of customers in the queues. Here we study a model in which the
amount of work in the queues, the workload, is known. The characteristics
of the model are as follows. The service times of all customers are identically
independently distributed, the controller assigns not knowing the actual ser-
vice times, and the servers all work at the same constant speed c. Daley [15]
showed that a variant of the SQP, the Shortest Workload Policy (SWP), min-
imizes the total workload at each T. In fact, he shows with forward induction
that the workload under the SWP is weakly submajorized by the workload of
each policy, giving the stochastic optimality for each Schur convex cost func-
tion. (Appendix C deals with majorization.) Foss [18] obtains the same result.
Also Wolff [84] shows that the SWP minimizes the workload, although he only
compares the SWP with policies that are not allowed to depend on the work-
load.

We also prove the optimality of the SWP, again with dynamic program-
ming. However, as decision points we do not take the jumps of a Poisson
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process but the actual arrival instants. Thus, technically speaking, we condi-
tion on the arrival process. We do this to avoid technical problems: when the
sojourn time between two events is constant, the amount of work done in each
queue is also a constant, thus simplifying the analysis. In general, many models
with arrivals according to MAP’s can also be handled by taking arrivals at de-
terministic times. Exceptions are the second model of the previous section and
several models of chapter 3, the reason being that even for arrivals according
to MAP’s the optimal policies are not myopic. We chose to use the MAP as
much as possible, to link on with the forthcoming chapters.

Now we prove the optimality of the SWP at T. Let s, be the sojourn
time between the nth and (n + 1)th arrival, counted backward from the time
horizon, let the amount of work done by a busy server in this time be u,, = csy,
and assume that P is the distribution function of the service times. With ¢ we
denote the vector of workloads, ¢ € IR'}". We have

o
vzn+1 - m]m{/0 v(”i_l_tej_une)erP(t)} (1.8.1)

1.8.1. Lemma. If

/wi_Hej] dP(t) < /wi_H% dP(t) for ij, <ij,, (1.8.2)
Wi < Wiyge;, fort >0, . (1.8.3)

and
w; = w;« for v* a permutation of ¢ (1.8.4)

hold for the cost function w = v°, then they hold for all v™.

Note the resemblance to lemma 1.2.1. The proof can be found in chapter 4.
In section 3.3 we give a different proof of the optimality of the SWP; there we
see it as the limiting case of the SQP model with batch arrivals.

Equation (1.8.2) without the integration, i.e. Witte;, < Witte;, fOT all ¢,
is not true; this means that it is essential that the controller does not know
the actual service times of the arriving customers. To construct an example
illustrating this, take m = 2, ug =2 and v?ihiz) = 11 +15, which indeed satisfies
the conditions of lemima 1.8.1. Let the service time be equal to 2 a.s. Then
it is easily seen that, if we take ¢ = (0,1), ¢t = 1, j; = 1 and j» = 2, then
”zl+tej1 =vy =1>0=1(, = ”zl+tejz-

1.8.2. Theorem. The SWP minimizes the costs (stochastically) at T for all
cost functions satisfying (1.8.2) to (1.8.4).

The cost functions considered here are functions of IRY". It follows directly
that again all Schur convex functions satisfy the inequalities. See appendix C
for an overview of these functions. If we require the inequalities to hold for all
service time distributions P, then the Schur convex functions are exactly the
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allowable cost functions, which can be shown in the same way as theorem C.1.
Note that the statement in the penultimate paragraph of p. 304 in Daley [15],
on the functions that respect weak majorization, is not correct: for example
indicator functions of allowable cost functions are in general not convex.

For the SQP we were able to prove pathwise optimality. Here however, as
stated in Wolff [84], we have the striking result that the SWP minimizes the
total workload stochastically but not pathwise. To construct a counterexample
to the pathwise optimality, take a model with initial workload 7 = (1,2) and
speed ¢ = 1. For the service time B we have IP(B = 1) = IP(B = 2) = ;. The
first customer arrives at ¢t = 0, the second at ¢ = 1. No more arrivals occur
before ¢t = 4. When we fix the policy used, there are four different realizations
up to t = 3, each with probability %. To get a pathwise ordering, we have to
combine the realizations for the SWP and an arbitrary policy R such that the
SWP is better for all ¢. Take R such that we start with assigning to the longest
queue, but the second customer is assigned to the shortest. Denote with b; (b;)
the service time of the ¢th arriving customer in the model that uses the SWP
(R). At t =1 the amount of work is 1+ by + by (1 + by + 132) Therefore we
have to couple by = by = 1 with 131 = 132 = 1. Now we show that if by = 1 and
by = 2, then there is no choice of by and b which is pathwise better. Take first
by = 1 and bs ="2. Then, at t = 3, the system ruled by R is empty, but not
the model under the SWP. For both eventualities with b; = 2 we have that the
amount of work just after the first arrival is larger under the SWP.

Note that if we are allowed to let the coupling depend on ¢ in this example,
we find the optimality of the SWP. This is equivalent to saying that the SWP is
stochastically optimal in this example, which follows also from theorem 1.8.2.

In the models of the next chapter where customers move through a net-
work, it is of interest to consider the number of departed customers instead of
the workloads. This model was studied by Wolff [83]. First he remarks that
the SWP is stochastically equivalent to a single M |M|m queue with FCFS dis-
cipline. Then he shows that FCFS is better than any policy in the model with
parallel queues, using a coupling argument. In the coupling argument service
times are given to the customers the moment they start service. This means
that the controller is allowed to assign knowing the number of customers in each
queue, and the remaining service times of the customers presently in service.
A policy in this class is the SQP, but not the SWP or other policies depending
on the workloads. This result is generalized to the class of all policies which do
not depend on the service time of the arriving customer in Koole [36]. These
results are all pathwise.
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1.9. Customer assignment model without information

In the previous section we have shown that the SWP minimizes the total
amount of work in the system stochastically, at any T'. For exponential service
times, we have seen in section 1.2 that the number of customers is minimized
by the SQP. In the latter model the workloads are not known to the controller,
i.e. in the model where the SQP is optimal, the queue-length model, the con-
troller has to decide based on different information than in the workload model
where the SWP is optimal. Note that because the SQP minimizes the number
of customers stochastically it also stochastically minimizes the amount of work
still to be done in the class of allowable policies. An interesting question is
if either the SWP or the SQP is better with respect to minimizing the num-
ber of customers in the system. This question is answered by Wolff [83]. As
mentioned in the previous section, he shows that the SWP is better than all
policies that do not depend on the workload, amongst which is the SQP.

Besides the number of customers or the workload we have two more ob-
vious models with a different amount of information. The first is where you
have no information at all. For exponential service times and an initially empty
system we show at the end of this section that each arriving customer should
be assigned to each queue with probability % to minimize the number of cus-
tomers, and thus the total workload. We call this policy the Equal Splitting
Policy (ESP). When we know the previous assignments but not the state of
the system the Cyclic Assignment Policy (CAP) minimizes the number of cus-
tomers; proposition 8.3.4 of Walrand [74] has a simple proof for the case with
exponential service times, a proof for IFR service times (see appendix B for a
definition of IFR) can be found in Liu & Towsley [42].

From standard results in Markov Decision Theory, we know that even if
the class of policies in the models depending on the queue lengths are allowed
to depend on the whole history, the SQP remains optimal. This means that
the workload under the SQP is smaller than under the CAP (and the ESP).
It is clear that the ESP is worse than the CAP. Thus if we list the policies in
increasing order of expected workload, we have: SWP, SQP, CAP, and ESP.

We end this section with showing that the ESP minimizes the number of
customers in the system, when there is no information available. For results
for cost function related to the workloads, we refer to Chang et al. [11] and
Chang [10]. A full proof of the result is given in Koole [38]. As this proof is
based on forward instead of backward recursion, we will only sketch it.

We confine ourselves to two queues. Consider first a single model, with
assignment vector (p,1 — p) with p > 1. Let QP(n) = (Q¥(n),Q%(n)) be
the queue lengths directly after the nth event (which can be an arrival or a
(potential) departure from one of the queues), and initial state @7(0). Define
for all ¢,7,s € INg

A(i,j,8) = {(z,y) eIN} |z <i,y < j,z+y < s}.
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Now let
Ph(i, j, s) = ]P((Qf(n)szzj(n)) € A(ivja 3))

Take P} (i,,8) = 1 for all 4, j, s, which corresponds to starting with an empty
system. Then it can be proven, with forward induction, that

PP(i+j,i+k,s)> PP(ii+j+k,s) (1.9.1)

for all 4,7,k,s,n > 0. In a way this shows that if queue 1 has a higher assign-
ment probability than queue 2, then this will result in a stochastically larger
queue length. This interpretation becomes clear if we take k = 0. Having shown
(1.9.1), we can compare two systems with assignment probabilities ¢ > p > %
Again with forward induction it can be shown that, for all ¢, 5,s,n > 0,

PR(i,i+j,8) > Pl(i,i+ j,8).

For 7 > s this states that the probability of having less than s customers in the
system at any time is maximized by the ESP. In [38] it is shown how this result
can be made pathwise, and how it can be generalized to an arbitrary number
of queues.

Let us compare the method of proof for the above result with dynamic
programming. In general, dp determines the optimal action in each state. In
the current setting, due to the information structure, distributions on states
would serve as states. Equation (1.9.1) shows that certain distributions do not
occur, and in those that can occur it is advantageous to have a more balanced
assignment,.

If we were to apply dp to the model without state information (i.e., with
distributions as states) then we would find the CAP as optimal policy. Al-
though the CAP uses no state information, it uses the previous assignments to
determine the current. Note that Bernoulli policies use no information at all.

1.10. MAP’s with multiple customer classes and server vacations

In the models we study after this section, we have multiple customer classes
and server vacations. Therefore we add a mark to each arrival generated by the
MAP to model the class of an arriving customer or the availability of a server.
Let q’m“y be the probability of an arrival in class k, given a transition from z to
y. Then an arrival with mark k, 1 < k < m, denotes the arrival of a customer
in class k. In some of our models servers can go on vacation at random times.
There are s servers. With an arrival in class k, m+1 < k < m + s, an event
for server k —m is meant; if the server is working he goes on vacation and vice
versa. We assume E?:ln q’;y < 1. Simultaneous arrivals cannot occur. To give
a complete description of the current state of the system we have to specify
the state of the arrival process, of the servers and of the queues. Thus, besides
the state of the arrival process z and the state of the queues z we have to add
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a variable to the state of the system denoting the availability of the servers.
Because we are interested in optimally assigning the available servers, but not
in controlling the number of servers, it is convenient to make this variable part
of the arrival process. Thus, add a vector z = (z1,...,25) of 0-1 variables to
the state of the MAP. Server k is available if and only if z; = 1. Concerning
the arrivals of customers, we want to address questions like: when is the first
time that the system becomes empty after N arrivals? To deal with this type of
question, we also would like to identify the state of the arrival process with the
numbers of arrived customers. To do so, also add a variable n = (n1,...,7m)
to the state of the MAP, where ny is the number of customers that have arrived
in class k. Assume we have an MAP (A, ), q). The transition intensities of the
new arrival process (A, A, §) with state space A = {(z, z,n)} become:

X(z,z‘n)(y,z,n+ek) = Amyqi\:y, ]‘ S k S m
~
Q(zzm)(yzmter) = HI=k}, 1<k <m

Ayzm)(gyztm) = Aay@an' ¥y 25 = 25, j# Ky 2= (1—z)*

~mtk {1 iz =255 #k 2 =1 -zt
Uz,zm) (v m) = 0 otherwise

m+s

3 k
)‘(E,an)(yyzyn) = ’\zy(l - E : qzy)
k=1

~k
q(Z,Z,n)(y»Zan) = 0

The arrival process just defined is again an MAP. Thus we have the following
equivalent definition:

1.10.1. Definition. (Markov Arrival Process) Let A be the countable
state space of a Markov process with transition intensities Az, with z,y € A.
When this process moves from z to y, with probability q’afy an arrival in class
1 < k < m occurs, and with probability q;';Jrk an event with server 1 <k <s
occurs. There are sets A7,...,AS C A such that server k is available if and only
if z € Af, and sets Af,,,..., A%, C A, n € N, such that if z € A{, then there
have been n or more arrivals of class k. We call the triple (A, A,q) an MAP.

Section 1.1 handled MAP’s with only one customer class and without
server vacations. We showed there how to model various types of arrival pro-
cesses. If the arrival streams in different classes are independent of each other
we can take the superposition of the m processes (i.e., the process with as
state space the product space, in which each component is independent of the
others), with the arrivals in process j having marks j. This is again an MAP.

The result in appendix A on the approximation of arrival processes is on
marked arrival streams, thus the weak convergence of MAPs to general arrival
processes holds for the present model too.
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1.11. Server assignment model with a single server

In this section we study a model in which a single server is to be assigned to
one of m customer classes. Each customer in class j has an exponential service
time with intensity p;. At each decision epoch the server can be reassigned.
Customers arrive in the m classes according to an MAP. Server vacations are
not interesting because we have only one server, therefore we do not model
them. This model has been studied extensively, mainly for linear costs, i.e.
a cost function in which every customer of class j adds c; to the costs. It is
well known that the customers should be served in decreasing order of yjc;,
according to the pe-rule. This result can be found in Baras et al. [4] and
Buyukkoc et al. [8], the last paper using a very simple interchange argument.
Here we also show that the pc-rule is optimal, using dynamic programming.
The pc-rule minimizes the costs stochastically only in the special case that
the service rates and the costs are both decreasing. An interesting related
model is that of Righter & Shanthikumar [57]. They have DFR service time
distributions and consider the number of successful departures. With p; the
probability that a departure in queue j is successful, they show that the up-
rule is optimal. This result holds stochastically, in all cases. Later on in this
section we also consider DFR service times, showing that the pc-rule, with p;
the current failure rate of a customer, is still optimal.

Take ¢ = max; ptj. We uniformize, and we assume therefore that y+p < 1.
We consider two models, one in which idleness of the server is allowed and one
in which it is not allowed. We have as the dynamic programming equation:

m m
+1 __ i . j n
V(o) = min { ZAW ( D Ty ¥yigep + (1= D Q’iy)%,i)) +
Jj=1 j=1
Pz + (L= = /l’l)v(n:c,i)} =
m
> wy(zqzy”<yz+e,> + Zqiy ”(yz))

y Jj=1

mlin {Mv&,i—e,) + (1 - ﬂl)v(nm,i)} + (1= = m)of; )

The minimization ranges over all [ with ¢; > 0. If idleness is allowed, action
0 (with go = 0) has to be added to the actions. Now we have the following
lemma:

1.11.1. Lemma. If idleness is not allowed or is suboptimal in each state and

Hjy W(zsimez) + (1= B )W(a,i) S BjyW(ayi-e;y) + (B = ;)W (1.11.1)
for j1 < j2 and ij,,%5, >0

hold for the cost function v°, then they hold for all v™.
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Thus, if idleness is not allowed, we have the optimality of the policy that
assigns to the non-empty queue with smallest index. We call this policy the
Smallest Index Policy (SIP). Later on in this section we study a more general
model. Therefore lemma 1.11.1 follows from lemma 1.11.5. When idleness is
allowed we have to add monotonicity to obtain the suboptimality of idleness.

1.11.2. Lemma. If -
W(g,ime;,) S W(ayi) forij, >0 (1.11.2)

holds for the cost function v°, then it holds for all v™.

Note that (1.11.2) is a special case of (1.11.1), for the cases that [¢| > 2, by
giving action 0 the lowest priority. For the proof, we refer to the proof of lemma
1.11.6. We can have two separate lemmas because we do not need (1.11.2) in
the proof of (1.11.1). The same approach does not work in most customer as-
signment models because monotonicity is needed to prove the inequality giving
the structure of the optimal policy. The same holds for the multiple server
model of the next section. We summarize our results for the continuous-time
model.

1.11.3. Theorem. The SIP minimizes the costs at T for all cost functions
satisfying (1.11.1), when idleness is not allowed.

1.11.4. Theorem. The SIP minimizes the costs at T for all cost functions
satisfying (1.11.1) and (1.11.2), when idleness is allowed.

Remark. In section 1.2 we assumed that all cost functions are bounded. In
the model of theorem 1.11.3 however, it is natural to consider cost functions
of which both the positive and negative parts are unbounded. For example, if
m =2, v?w.) = 17 — 19 is an allowable cost function. In this case finiteness of
the costs at T can be shown when the costs are v-bounded, as is proved in the
first part of the proof of theorem 5.3.2.

Also in the case of an infinite planning horizon, there are complications.
Due to the unboundedness of the costs we cannot use the results for negative
dynamic programming, as suggested in chapter 5. In the case of Poisson arrivals
v-geometric recurrence can be shown, giving average and Blackwell optimality
of the SIP. The v-geometric recurrence of the discrete-time model is shown by
Spieksma [70]. Her results are used in Dekker & Hordijk [16] to verify their
conditions for Blackwell optimality in the continuous-time semi-Markov model.

Now we study the cost functions. In general we have the following char-

acterization. Define Aj'v?w’i) = 'v?mﬂj) - v?m,i). Then (1.11.1) is equivalent
to

i Ajlv?a:,i—-eh) 2 /I’jzAjzv?m,i—ejz) if j1 < j2 and 25,75, >0 (1.11.3)
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and (1.11.2) to
Ajvly s > 0 for all j. (1.11.4)

A simple cost function satisfying both conditions is the following: v(m H =
I{|¢| > 0}. As we minimize the expected cost for this function, we minimize
the probability that there are any customers present at time n. When there
are no arrivals, this coincides with minimizing the makespan stochastically.
Of course this is of no interest here, as all work conserving policies minimize
the makespan. The analysis of this type of cost function is of interest to the
multiple server case.

A cost function of interest here is the following: v?w.) = E] 1Ct5. It is
easy to see that this function satisfies (1.11.3) if and only if p1¢1 > -+ > pmCrm.
This means that the pc-rule minimizes the costs in expectation. If idleness is
allowed we have to add ¢; > 0 to make the cost function satisfy (1.11.4). In
the customer assignment models studied previously in this chapter every cost
function that was minimized in expectation was also minimized stochastically.
Here this is not the case. To analyze the stochastic optimality, first assume
¢j > 0. We distinguish three cases.

1o > > ppm, €1 > -+ > ¢ > 0. Now I{Em cji] > k} satisfies the

conditions too. Indeed, we have v?“. ; ) < (w iy Therefore

(:c i en) -

Ahv(z ime;) 2 Ahv(m —e,,) Together with Wi, > pj, we have (1.11.3).

2. There are j; and js such that J1 < j2 and pj, < pj,. For example, take

m = 2, no arrivals, ¢ = (1,1), g1 = 1, ¢; =5, p2 = 2 and ¢z = 2. The pe-

rule prescribes class 1, however, if we want to minimize IP(¢1¢1 +i2cy > 6)

for some T', we should start with class 2.

3. There are j; and j, such that j; < js and ¢j; < ¢j,. For example, take
m = 2, no arrivals, ¢ = (1,1), g1 =4, ¢1 = 1, g = 1 and ¢ = 3. Again
the pc-rule prescribes class 1, but we should choose class 2 to minimize
IP(i1c1 + i2ce > 2) for some T.

Thus the pc-rule is stochastically optimal only if g3 > -+ > pp and ¢y > -+ >
¢m. We call the service rates and costs in this case agreeable. When there are
no arrivals, the stochastic optimality also follows from Righter & Shanthikumar
[58], by taking, in their notation, f;(C;) = ¢;I{C; > T}.

If we do not allow idleness, i.e. when the holding costs can be negative, the
condition for stochastic optimality is as follows. Take m; such that ¢; > --- >
Cmy 202 Cmyy1 2 - 2. M 2000 2 py and i p 1 <000 < s
then I{3°7", ¢ji; > k} satisfies (1.11.3).

Several other interesting cost functions, like the expected weighted number
of late customers and the expected weighted sum of customer tardiness, also
satisfy the conditions on the cost functions. See Chang et al. [12] for details.

We change the model as follows. When a customer in queue j is served
it leaves the system with rate p;, and joins queue f(j) with rate p — p;. We
assume that f(j) > j—1. If f(j) = j for all j we have the same model as above.
This service mechanism can be formulated in terms of successful departures. If



26 Models with Markov Arrival Processes

Pj = pj/ 1, then p; is the probability that a departure is successful. The value
function becomes

m m
+1 _ i
(nz i) z Aay ( Z qiyv?y,iﬂj) + Z qu ”(y z))
Y j=1 j=1

IIlliIl {l"l'”inm,i—e,) + (/1’ - :“’l)v(nz,i—ez+e;(1))} + (1 -7- p’)v(nﬂ?»i)'

(1.11.5)

Again, the minimization ranges over all [ with ¢; > 0. If idleness is allowed,
action 0 (with go = 0, £(0) = 0 and ep = 0) has to be added to the actions.

1.11.5. Lemma. Ifidleness is not allowed or not optimal in each state and

P W(z,i—e;;) + (ﬂ' — K )w(:l:,i—ej1 +esiin)) < (1116)
Bja W(zi—ej,) + (/L - ll'jz)w(z,i—ejz«f—efuz)) for j1 < j2 and ijlaijz >0

hold for the cost function v°, then they hold for all v™.

The proof can be found in chapter 4. Similar results for monotonicity hold:

1.11.6. Lemma. If
Bjr W(z,i—ej,) + (/J' = K )'w(z,i—-ejl+e_f(jl)) < pW(z,4) for ijl >0 (1117)
holds for the cost function v°, then it holds for all v™.

The proof can be found in chapter 4. Again we have:

1.11.7. Theorem. The SIP minimizes the costs at T for all cost functions
satisfying (1.11.6), when idleness is not allowed. When idleness is allowed,
(1.11.7) should be added.

Similar results are obtained in section 3 of Nain [49]. Actually, he al-
lows random routing of unsuccessfully served customers, but, as in the present
model, only to higher numbered queues. We chose not to model random routing
so as to keep the notation simple.

An interesting case we can model is that of a single class of DFR service
times. We use the characterization of DFR distributions by phase-type distri-
butions as shown in appendix B. There the transition intensity in each phase
is taken to be equal. After k phases of service a customer finishes service with
probability ay, or receives one or more additional phases of service with proba-
bility 1—ay. If a DFR distribution is approximated by phase-type distributions
in this way, then the aj are non-increasing. It does not restrict generality to
take ar, = aq for k > I, with ! a constant (in appendix B I = m?).

Consider the following server assignment model. Take m = I, p; = aj,
f(j) =5 +1if j < m, and f(m) = m. The costs are linear with ¢; = 1 for
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all j. This cost function satisfies (1.11.6), because the a; are decreasing. Thus
the expected number of customer in the system is minimized in expectation by
serving the customer with the highest failure rate. Using the same argument
as for the model without routing of customers, it follows that this result holds
also stochastically. Using a limiting argument, this gives that the number of
customers in an G|DFR|1 queue is minimized at T' by the policy that serves
the customer with the least attained service time (the LAST policy).

Note that customers are generally not served until they leave the system,
but only until they change phase. For the limiting case this gives processor
sharing as the service discipline for all customers who have received the same
amount of service.

Taking p; = am—j, f(j) = j — 1 and ¢; = —1 shows that MAST (most
attained service time) maximizes the number of customers in the system. Al-
though the pj are increasing, also 'U?“.) = I{[i| < s} satisfies the conditions,
and thus the result holds also stochastically. Note that MAST is equivalent to
FCFS.

For IFR service times it is shown in appendix B that the aj are non-
decreasing. In this case the above results are reversed.

1.11.8. Theorem. LAST (FCFS) stochastically minimizes the number of
customers at T in a G|G|1l queue in the case of DFR (IFR) service times;
LAST (FCFS) stochastically maximizes the number of customers at T in a
G|G|1 queue in the case of IFR (DFR) service times.

All these results can also be found in Righter & Shanthikumar [57].

We continue with generalizing the above results to models with multiple
customer classes. To avoid certain technicalities we assume that each class has
either positive holding costs and a DFR service time distribution, or negative
holding costs and a IFR service time distribution. From the construction it
will be clear how to deal with the other two cases; in these cases however the
condition that f(j) > j — 1 can easily be violated.

Thus assume first that each class has its own DFR service times, class
n having [, phases, n = 1,...,7, r being the number of classes. The success
probability of phase k of class n is a, the holding costs are ¢j, > 0, independent
of the phase. We make a distinction between classes and queues. Now take for
each class and possible phase a queue, i.e. Iy + --- 4+ . queues, with 7, the
number of customers in the queue corresponding to the nth customer class and
the kth phase. Of course, we take f(jnk) = Jnk+1 if ¥ < I, and f(jni,) = Jni,
Pnk = af, and cp = c;,. Order the queues in decreasing value of pyrcnr. Then
the pc-rule is optimal. We use a limiting argument to get the result for the case
of general DFR service times. The optimal policy serves the customer with the
highest product of holding cost and failure rate. We call this policy again the
pe-rule.

As indicated, it is also possible to have customer classes with IFR service
time distributions and negative holding costs (requiring that idling is not al-
lowed). In this case all DFR customers are first served, possibly using processor
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sharing. Then (as long as there are no arrivals) the customers with IFR service
times are served.

1.11.9. Theorem. The pc-rule minimizes the expected holding costs at T
if customers have either DFR or IFR service time distributions, provided the
holding costs for customers with DFR (IFR) service time distributions are
positive (negative). Idleness is allowed if there are no customers with IFR
service times.

For a stochastic result we need that azl‘ > aZ: for all k1 and ks if ¢y, > Cp,-
In the limiting case this means that the failure rate of class n; is always higher
than the failure rate of class my. This is the case if we have a family of random
processing times with decreasing failure rate (see for example section 4.2 of
Weiss [79]).

The results of this section are a superset of those in Koole [37]: there it is
assumed that f(j) > j instead of f(j) > j — 1.

Remark. Equation (1.11.5) can be written as v(";il) = YTv(, ;) + pTavg, ),
with Tyof, o = (2, Aey(---)) /7 and Toof, ;) = (ming{---})/p, if we assume
that v + ¢ = 1. Here T1 and T, themselves can be seen as dp operators. In
chapter 5 it is shown how convex combinations of dp operators result from a
continuous time model.

A discrete time model however would typically consist of a departure and
an arrival event in succession, resulting in a dp equation of the form w?:il) =
TZle(nz,i)'

The proof of the lemmas 1.11.5 and 1.11.6 basically consists of showing
that the equations propagate for 77 and T3. Of course, this implies that the
lemmas hold as well for w™, proving the optimality of the SIP for the discrete
time model. A direct proof of this result can be found in Weishaupt [78].

The generalization to other models, as the one with multiple servers (stud-
ied in the next section) or the customer asssignment models studied earlier, are
less direct because in these models there are events which have to be dealt with
simultaneously. A more systematic study of different types of value function
based on operators as T and T here can be found in Altman & Koole [2].
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1.12. Server assignment model with multiple servers

In this section we study again the first model of the previous section, but with
multiple servers. Server vacations are interesting here and therefore we model
them as well. It was shown by Bruno et al. [7] that the policy that assigns
the available servers to the jobs with lowest service intensities, i.e. the jobs
with the largest expected processing time, minimizes the expected makespan.
The optimal policy is called LEPT. Weber [76] generalized this to stochastic
optimality. Giving conditions on the cost functions for LEPT to be optimal,
for arrivals according to an MAP and arbitrary server vacations, is the main
subject of this section. The cost function corresponding to the makespan will
indeed appear to be allowable. Independently, similar results were derived by
Chang et al. [12].

We assume that g9 < -+ < py,. As in section 1.10, s is the number
of servers, and s(z) is the number of servers currently available, i.e. s(z) is
determined by z, the state of the MAP. We assume v + sy, < 1, i.e. we
have uniformized the model. Take p = p,,. An assignment action in (z,7)
consists of the s(z) class numbers to which the available servers are assigned.
We introduce again class 0, gp = 0. If a server is assigned to class 0 it idles.
Now we can assume that there will be no more servers assigned to a class then
there are customers in that class. These actions are called admissible. The
dynamic programming equation is:

n+l _
(:c i) T mln { Z )‘Ml ( Z qzyv(y,z+e1) + Z q:z:y ’U(y z))

Uigeees s(.z:)
s(z)

> (B fsice + (1= )0 ) + (1= = (@)l b =
k=1

m m
S der (X ey tlyiney + (1= S ad) o)+
Y Jj=1 j=1
s(z)
n {3 (mavimeny + (= m )0 b+ (L= 7 = sl -
1 *yvs(x k:l
(1.12.1)

To make the action unique we can assume l; < --- < ly(,).

1.12.1. Lemma. If

P W(zimes) + (10— B )Wz i) S BjaW(aimej) + (1= Bjy )W (z i) (1.12.2)
for j; < j, both admissible and [i| > 2
and

W(z,i—e;,) < W(e) for ijl >0 (1.12.3)
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hold for the cost function v°, then they hold for all v™.

If the number of customers is s(z) + 1 or more and there are admissible
actions ji,...,Js(z) and ji,J2,...,Js(z) With j1 < j7, then

s(z)
S (Bitfoicey) + (1= B30 ) <
k=1
s(z)
n n n n
Hii V(ai-e;r) + (1 = g3 )00 + Z (#jk”(z,i—ejk) + (p— ﬂjk)v(m,i))
k=2

is equivalent to (1.12.2). This means that (1.12.2) and (1.12.3) gives us the
optimal policy. Equation (1.12.3) says that, if possible, no server should idle.
By (1.12.2) we know that, when there are more than s customers, we should
serve the group of customers with indexes as small as possible. Thus the SIP,
which is here equal to LEPT, is optimal.

As contrasted with the single server case, we need (1.12.3) in the proof of
(1.12.2). The model here is a special case of the model of section 3.6, thus for
the proof we refer to the proof of lemma 3.6.1.

1.12.2. Theorem. The SIP minimizes the costs at T for all cost functions
satisfying (1.12.2) and (1.12.3).

Note that the inequalities (1.12.2) and (1.12.3) are the same as (1.11.1)
and (1.11.2). Thus, (1.11.3) and (1.11.4) characterize again the allowable cost
functions. However, we have the extra condition gy < -+ < fy,. This means,
in the case of linear costs, that the pc-rule is optimal in the multiple server
model if g1 < -+ < i, and p1c1 > -+ > pmem. To satisfy the monotonicity
we assume ¢, > 0. Note that if gy = 0 then (1.12.2) and (1.12.3) give that the
costs in each state must be equal.

Now we go into the details of cost functions of the type vf, ;) = I{|i| > 0}.
As said in the previous section, we conclude that the probability that there are
any customers present at 7" is minimized by LEPT.

We can modify the system such that it remains empty once it becomes
empty, by taking v(":Ol) =3, Azyv(y o) + (1 - >y Azy)V(y0)- Lemma 1.12.1
still holds for this model. In section 3.6 another approach with the same result
is taken. Now we can study the probability that the system becomes empty
before T'. This means that the SIP minimizes the length of the busy period.

As shown in section 1.1, we can model the departure process of most
queueing systems with an MAP. This way we can model tandem systems, of
which the center with state 7 is the last in line, although we cannot let the
actions taken in the first centers depend on the state of the last center, as this
would introduce a dependence on the last center. Tandem models with this
type of dependence are the subject of the next chapter. For tandem systems
without this dependence, we might be interested in the moment the whole
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system becomes empty. Now we have to take v?w.) = I{|i| > 0 or |z| > 0},
where z is the vector denoting the state of all centers but the last one. This
gives similar results as above, but now for emptiness of the whole system.

As argued in section 1.10, we can take sets Ay C A, denoting the set of
states for which the number of arrivals in all classes at reaching that state
is k or more. By taking 'v?z’i) = I{|¢| > 0 or z ¢ A} we can study the first
time after the kth arrival at which the system becomes empty. If there are no
arrivals after the kth we have the makespan in the release date model of Weber
[76] and Chang et al. [12]. Note that the conditions on the cost functions in
Chang et al. [12] are the same as the conditions here. The generalization of
this section consists of a more general arrival process.

When considering linear costs, we cannot take ¢; = -+ = ¢, = 1 unless
1 = +++ = Wmy. This is not strange, because it is intuitively clear that LEPT
does not minimize the number of customers at any 7. The perhaps more
logical candidate for optimality, the policy that serves customers with high
service rates first (the SEPT policy), is not optimal either. This we show with
the following example.

Take the following model: s = 2, m = 2, g3 = 2 and py = 1. There are
no arrivals, and-we start with ; = 2 and 75 = 1. The objective function is
the expected number of customers at 7. The possible work-conserving policies
are LEPT which starts serving a class 1 and a class 2 customer at time 0 and
SEPT which starts with both class 1 customers. In the continuous-time model
it is easy to compute the expected number of departed customers L at T using
the following formula, with @; and a; the service rates of the customers served
first, ag the rate of the other customer (note that as < ay + a2):

T
L= / (o1 + az)e_(a1+a2)tdt+
0
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—_— a1 + ag)e(arte)t(] _ emea(T=t)ygpy
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The first line in the last expression is the probability that the first departure
takes place before T. The second line is equal to (1 — e~ *1T)(1 — e=*2T) the
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probability that both first scheduled jobs finish. The last term is concerned
with the customer scheduled last.

Using a small computer program we computed L for LEPT (a; = 1,
az = az = 2) and the SEPT (a; = ay = 2, a3 = 1). For T small SEPT is
better at 0 (for T' = 0.1 we have L = 0.380 =~ 4T for SEPT and L = 0.302 =~ 3T
for LEPT as can be expected from the infinitesimal properties). However, for
T larger, LEPT is better (for T = 3 we have 2.929 for SEPT vs. 2.941 for
LEPT). Thus there is no myopic optimal policy. Typically, the optimal policy
is equal to LEPT at time O (if T is large enough), and change to SEPT as time
goes on: if we are at T — ¢ with £ small and still no customer have left SEPT
is optimal. It is well known, see e.g. Weber [76] and Chang et al. [13], that if
we replace the number of customers at T' by the integral from 0 to T of the
number of customers, i.e. if we consider flowtime, then SEPT is stochastically
optimal.



Chapter 2

Models with Markov Decision Arrival Processes

2.1. Markov Decision Arrival Processes

In the previous chapter we studied models with arrivals which were modeled
by an MAP. In an MAP the arrival times depend only on z, the state of the
MAP, and not on ¢, the state of the queues. In this chapter we generalize the
MAP to allow for a certain type of dependency on the state of the queues. Of
course, this dependency cannot be taken completely general. Take for example
a customer assignment model in which arrivals occur more frequently if the
queues are balanced. Then it is clear that it might be optimal to assign an
arriving customer to the longest queue to suppress future arrivals. Therefore
we model the dependence using actions in the arrival process, while keeping, for
a fixed action, the transition intensities independent of the state of the queues.
This leads to the following definitions. First we describe the arrival process
without multiple customer classes or server vacations.

2.1.1. Definition. (Markov Decision Arrival Process) Let A be the
countable state space of a Markov decision process with transition intensities
Azay With z,y € A and a € A(z), the set of actions in z. When this process
moves from z to y, while action @ was chosen, then with probability gz.y an

arrival occurs. We call the quadruple (A, A, A,q) a Markov Decision Arrival
Process (MDAP).

Note the similarity with the definition of the MAP in section 1.1: if we
take |A(z)| = 1 for all z, we have an MAP. We use definition 2.1.1 in the
sections on the customer assignment models. In the server assignment models

we need again arrivals in multiple classes and server vacations. The equivalent
of definition 1.10.1 is:

2.1.2. Definition. (Markov Decision Arrival Process) Let A be the
countable state space of a Markov decision process with transition intensities
Azay With z,y € A and a € A(z), the set of actions in z. When this process
moves from z to y, while action a was chosen, then with probability q’;ay an

arrival in class 1 < k < m occurs, and with probability q;’a‘;k an event with

server 1 < k < s occurs. There are sets Af, ..., A$ such that server k is available
if and only if z € A}, and sets Af,,..., A%, n € N, such that if z € A}, then

there have been n or more arrivals of class k. We call the quadruple (A, 4, A, q)
a Markov Decision Arrival Process (MDAP).
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In the next section we start by illustrating the use of an MDAP for cus-
tomer assignment models. Again we assume that the transition intensities in
each state are equal, i.e. 35, Azqy =y for all z € A and a € A(z).

2.2. Symmetric customer assignment model

We consider the model of section 1.2, but with arrivals according to an MDAP.
Thus, we have m queues, with buffer sizes B = (Bi,...,Bn) and service
intensity p. The results for this model are quite similar to the results of section
1.2, the only difference being the arrival process. To obtain optimality results
both at T and from 0 to T we now need to introduce immediate costs c(g ;).
See section 5.3 for more details. Before illustrating the use of the MDAP, we
give the dynamic programming equation. Note the similarity with (1.2.1).

o3 e+ 10 5 (1 ) + (1= i)
Y
m
> BV (g (imejyt) + (1 =7 = mp)vi . (2.2.1)
J=1
The second minimization ranges again over all j for which the queues are not
full, i.e. for which 7; < Bj;.

The MDAP is especially designed to model the arrivals at-the last center
of a tandem network. To show this, assume there are 7 (m) queues in the
first (second) center, with state (i1,...,%m) ((41,...,4m)), service intensities
(r) and buffer sizes B (B). The arrival process at the first center is Poisson
with rate A. Assignment actions are taken in both centers, and these actions
are allowed to depend on the whole state of the system. Then the dynamic
programming recursion is:

1 _ 5
v(ni,i) =C(3,i)+ min {)‘”(nu»ea/\é,i)"'
in

Z (5i,-1 f mjin{"("z—ejl jite;amyt (1= 6y )[W("i,i)) }+
j1=1

m
DG iy F (L= A = 1ivji — mu)o ).
j=1
Now, if we take A; g ite, = X and Giajites = 0, Aigji—e; = fband giai—¢; =
1if7; >0, Mgz =7 — A— i Z;n:l 0;; and giq; = 0, and all other transition rates
0, then this recursive equation has the form of (2.2.1). Thus we have modeled
the first center as an MDAP.
It is easy to see that, instead of a tandem system, we can model any
network in which 7 is the state of a center without feedback to the network.
We return to the general model with an MDAP. As in the case with an
MAP, we have the following result:
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2.2.1. Lemma. If

W(z,ite;,) < W(z,ite;,) for 5, <1ij,, 1 +ej +ej, < B, (2.2.2)
W(g,i) < W(z,itej,) for i + e, < B (223)
and

W(gi) = W(g,4+)  fori* a permutation of i, 1* < B (2.2.4)
hold for the cost functions ¢ and v°, then they hold for all v™.

For the proof we refer to the more general model of section 3.3. The result
says again that an SQP is optimal, for suitable cost functions. An SQP, because
SQP refers only to the assignment of the customers to the queues, and not to
the action in the MDAP. For the tandem model described above it follows that
it is optimal in the second center to employ the SQP, if the first center is also
controlled optimally. How this first center should be controlled is the subject
of the next section.

Because the optimal actions in the MDAP can depend on n, we cannot use
the method of section 5.2, but we need a limiting argument. To use this, we have
some minor restrictions on the cost functions. All cost functions considered
here satisfy these conditions. Note that some of our cost functions, like |i|, are
unbounded. Still they satisfy the conditions, which are given in assumption
5.3.1. Throughout this chapter we assume that this assumption holds.

2.2.2. Theorem. For all T, an SQP minimizes the costs at T (and from 0 to
T) for all cost functions satisfying (2.2.2) to (2.2.4).

The conditions on the cost functions are exactly the same as in section 1.2,
thus we refer to that section for a discussion of the allowable cost functions.
Regarding stochastic optimality however, results are not as easy, as the optimal
policy depends on the horizon. Of course, if v° is allowable, an SQP minimizes
I{v?w.) > s} for each value of s, but for different values of s different SQP’s
can be optimal. Examples showing this are easily given. Thus there is no
single policy that is better than all policies R and all values of s. It is an open
question if there is for every fixed policy R an SQP which is better for all s.
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2.3. Tandems of customer assignment models

In this section we consider the tandem system introduced in the previous sec-
tion, with i = g and B = B = oco. Customers arrive at the first center
according to a Poisson process with intensity A. In the previous section we saw
that in the second center the SQP should be used. Here we study the optimal
assignment in the first center. We use the same notation. First we show that
the SQP is not optimal in the first center.

Consider a system in which there is only one arrival at time 0. We compute
the expected flowtime (which is the sum of the departure times). As the initial
state we take i = (1,0), ¢ = (5,5). Thus we have to decide whether to route
the arriving customer to queue 2 or to queue 1 at the first center. Take p = 1.
Let us denote the expected flowtime if we start with (Z,7) with f (““) These
numbers can be calculated with the recursive formulae

( f(o0) =0,
PG = (b i i s+ 8 O ) 48 £ )+
< 621f(11 11 1) +622f(12 ig— 1))/(651 +6i2 +621 + 67'2) if 43 < iz’
f(:;:;) = (11 + 22+ + 22 +611f(“121 ‘in';-l) +612‘f(’52 1 12+1)+
\ nf(“ G- 1)+612f(,2 o )/(6;1 + i, + 65, +(5i2) if 47 > 1,

We found that f(27) = 41.63 < 41.67 = f(;7). Because the flowtime is the
integral of the number of customers over time, there are T’s for which the
number of customers at T is not minimized by the SQP in both centers. This
is because if it were, the expected number of customers would be smaller under
the SQP for all T, and so the flowtime would also be smaller.

Define f7( :;l; ) as the expected flowtime up to T', i.e. the expected number
of customers integrated from 0 to 7. Add an extra superscript A to denote the

model with Poisson()) arrivals. It is easily seen that f(31%!)— fT( ::2) — 0, as

T increases. Take T such that this difference is smaller than 0.01. Take A small
enough such that the expected flowtime of the arrivals before T' is smaller than

0.01. Then we have
FTAE) < FT(2) +0.01 < £(2) +0.01 < £(13) —0.01 < fT(13) < M43,

where the first inequality follows by the choice of A, and the fourth follows by
the choice of T. This shows that, for A sufficiently small, there are states in
which routing according to the SQP is suboptimal.

An intuitive explanation of this phenomenon is easily given. When both
queues of the second center are heavily loaded, it pays to delay arriving cus-
tomers, which allows one to see how the center evolves in time. This can be
done by assigning customers arriving at the first center to the longest queue.

To study the optimal policy for more realistic values of A than considered in
the last section we did various numerical calculations on the two center model.
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Again we fixed the service rate p to 1 and varied the arrival rate A\. Because
we used successive approximation (see appendix D for a practical discussion of
computational algorithms) we had to introduce buffers (in each queue equal)
to make the state space finite. We also varied these buffer sizes to study the
influence of the finite buffers on our model. To minimize blocking influence we
assumed that no service takes place at the first center if the second center is
full. Note that this type of arrival process cannot be modeled with an MDAP,
due to the blocking protocol. We computed the optimal policy in the first
center for discounted and average costs. Our results are summarized in the two
tables below. First we consider discounted costs.

In Hordijk & Koole [22] we took as immediate reward the expected num-
ber of departed customers. The advantage of taking this reward is that the
optimal policy does not seem to depend on the buffer sizes. Because we have
worked so far with the total number of customers we do the same in the present
calculations. However, this means a stronger buffer influence, especially when
A > 2. Therefore we only considered A < 2 here. Because p = 1, it follows from
Kingman [34] that a single center model operated by the SQP has a stationary
distribution under this assumption. (See Adan et al. [1] for a recent result
and references on computational issues regarding the SQP.) Thus, if we take B
large enough, we expect to have little buffer influence.

The results for B varying from 20 to 45 are shown in table 2.3.1. For each
combination of 3, the discount factor, and A the table contains the maximum
relative difference between the optimal policy and the SQP, and the state where
this maximum is attained. These numbers are calculated with the formula
maxi{(v? (SQP)—v?) /v?}, where vP (vP (SQP)) are the costs under the optimal
policy (the SQP) and the minimization is taken over all possible states. It is
clear from the table that the SQP is nearly optimal. In some cases the difference
decreases as B increases, thus in these cases the SQP might be optimal for
B = co. In these states we increased B, if possible, until the relative difference
was smaller than 107, In the cases with A = 1.5 and 8 = 0.75, and A = 1.9
and 8 = 0.5 and 0.75 we were, due to computational difficulties, not able to
increase B any further.

B =10.01 0.1 0.25 0.5 0.75

A=0.1 | <107 1.51207%%,(31%) 1.7107°,(91%) 5.91077,(98) 1.81075,(92)

0.25| <107 1.6107%3,(915) 2.22107°(919) 8.6:1077,(73) 2610773 %)

0.5 | <107 45207,(913) 1.1-107°(9 1) 6.3:1077,(93) 2.2:107°,(5 1)

1 <1071® <1078 4.21071,(913) 5.1.1078,(9 1)) 1.9-107,(9 1D
1.5 | <107 <1071® 2.2.1071,(31%) 8.4-20711(21%) <107 M
1.9 | <1wo07?® <107'® <1078 <107 <1077

Table 2.3.1. Discounted costs
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In the average cost case we again compared the optimal policy and the
SQP. The relative difference between their average costs can be found in table
2.3.2. Once again the SQP is nearly optimal. When comparing both tables,
we see that the average cost case does not behave as the limiting case for the
discounted cost case. A possible explanation is the following. The difference in
the assignments in state ((1) Z)’ with £ = 10, manifests itself if the second center
becomes empty. As there are many customers in the second center, this requires
that B is close to 1. However, in the limiting average case the dependence on
the starting state has disappeared, and the effect of the few states where the
optimal action is not according to the SQP is small. It is interesting to note
that the states where the SQP is not optimal all have the same form, with few
customers in the first center, and heavily loaded, balanced queues in the second
center, as in the example at the beginning of this section.

A=.1 .25 D 1 1.5 1.9
<107 1.3.107'? 2.1.107'° <107® <107 <107

Table 2.3.2. Average costs

Having seen that the SQP is not optimal in the case where the policies
depend on the whole state of the system, we continue with studying the case
where the policies only depend on local information, i.e. where the policy at a
certain center depends only on the state of that center. We call this the partial
information case, as contrasted to the full information case.

At the end of this section we study the general partial information case.
We will see there that also in this case a counterexample to the optimality of
the SQP can be constructed, for discounted costs. If we restrict the class of
admissible policies even more, namely to static policies at the second center,
we can prove the optimality of the SQP. A policy R is called a static policy if
it is defined by a sequence of random variables {IL,,n € IN}, where II,, = j
corresponds to routing the nth arriving customer to queue j. The routing
probabilities are stochastically independent of the queue lengths and the ar-
rival times. Both the Equal Splitting Policy and the Cyclic Assignment Policy
of section 1.9 are static, as can be shown by taking all II,, independent and
IP(Il, = 1) =  for all n for the ESP and IP(Il,; = j + 1(mod?2)|Il, = j) =1
for all n for the CAP. The SQP is not static. We prove that, for partial infor-
mation, the SQP in both centers gives an earlier departure process than the
two center policy which uses a static policy in the second center. Because we
use coupling this means also that the number of customers is minimized by the
SQP in both centers.

To show our result we need two theorems. The first states that the SQP
gives a pathwise earlier departure process. The second theorem says that for
a static policy an earlier arrival process gives an earlier departure process.
Combining these theorems gives indeed the result on static policies. We see
an arrival process as a sequence of arrival times. That is, the arrival process
V = {V,,n € IN} has V, as the time of the nth arrival. For arrival processes
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V ={V,,n € N} and W = {W,,,n € IN} we say that V is pathwise earlier than
W and we write V' <, W if there are arrival processes V* and W~ with V* iy
and W* £ W such that Vi (w) < Wy(w) for all w in some probability space
and n € IN. We use a similar definition and notation for departure processes.

With £ we mean that the processes on either side have the same distribution.
By theorem 1.5.2 we have:

2.3.1. Corollary. Consider a center with two parallel queues, arrival process
U and policy SQP and a similar center with an arbitrary policy R. If V and
V are the respective departure processes, then V<, V.

2.3.2. Theorem. Consider one center with two parallel queues and a static
policy R. For arrival processes T and T the departure processes are denoted
by V and V, respectively. If T' <, T, then V <p V.

Proof. Because T' <, T there are arrival processes T* and T* with T 47
and T £ T* such that T (w) < T,’;(ui) for all n and w. Fix w € Q. We use
the following notation: T (w) = tn, T (w) = tn. Let S, (Sn) be the service
time of the nth-customer and U, (U,) the queue to which the nth customer
is routed. Of course S, 4 S,. Because R is static we also have U, % U,.
Hence by coupling arguments we may assume that S, = S, and U,, = U, for
all n. Denote an arbitrary realization of S,,,Uyn, n > 0 with s,,u,, n > 0. We
omit the superscript *. Let ¢V (¢) (€7°V(t)) be the number of arrived (served)
customers at time ¢. A subscript ;7 denotes a specific queue. Then

(1)

W)=Y Hun=5}Ktx+> Hu=j}si <t.k=1,....n}
n=1 =k
& (1)
Z Hu, =7}t + Zl{uz =jlsi<t,k=1,...,n}
eT(t)
Z H{u, = j} {ix +Zl{ul =jtsi<tk=1,...,n}
Thus £V (t) = ¢/ (t) + &Y (t) > €V (¢) for all t and t¥ < ¥ for all n. o

This theorem is also true for general service times. Unfortunately, it does
not hold for the SQP as the following counterexample shows.

Take Ty = T2 = T3 =T =T = 0; Ty = h; T, =T, > 1+ h for all
n > 4. Thus T' <, T. Compare the probabilities that 2 customers have left at
t = 14+ h. Condition on the number of departures in [0, h]. If no departures
occur in [0, h], the two systems are the same.
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On the other hand, if exactly one departure occurs in [0, k], the time un-
til the next departure in the T-model has with probability % an exponential
distribution with parameter ;1 and with probability % an exponential distribu-
tion with parameter 2u. Indeed, the customer departing in [0, h] leaves the
queue with one customer with probability % and the queue with two customers
with probability % as well. In the T-model the at h arriving customer chooses
the empty queue, therefore the time until the next departure is Erlang(2pu)
distributed. The difference between these two probabilities, say ¢, does not
depend on h, but only on p. The probability that one customer leaves in [0, h]
is equal to 2puh + o(h).

The probability that two customers leave in [0, k] is o(h). Now we have:

IPr(2 customers leave in [0,1 + h])—
IP;(2 customers leave in [0,1 + h]) = 2phc + o(h) > 0,

if h is small enough. Note that the idea behind this counterexample is similar
to the counterexample in the full information case; there, by sending to the
longer queue, the arrivals of the customers at the second center were delayed.

Combining corollary 2.3.1 and theorem 2.3.2 gives the following result for
the two centers in tandem.

2.3.3. Theorem. Let R = (Ry,R;) be the two center policy with static
policy R, in center 2. Let R* = (SQP,SQP) be the two center policy which
uses the SQP in both centers. For a general arrival process T let W (W) be
the departure processes of the second center under R (R*). Then W < W.

Proof. The proof follows easily from corollary 2.3.1 and theorem 2.3.2. As
depicted in figure 2.3.1 let V (V) denote the departure processes of the first
center under policy R (R*). The departure process of the second center for the
policy (SQP, Ry) is denoted by W.

NG W e e W
NG S N2

T, o0y YV, @opy W
S@®—L—E®

Figure 2.3.1.

From corollary 2.3.1 we have V <p V. Hence by theorem 2.3.2 W < W.
Corollary 2.3.1 also gives W <, W. Combining the last two inequalities yields
W<, W. o

This result can also be found in [22].
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It is straightforward to generalize theorem 2.3.3 to a network of centers in
tandem. The proof goes by induction on the number of centers. Suppose it is
true for k centers. Assume that V, V is the departure process of the kth center
when using (R, ..., Ry) with R; static for 2 < i < k, respectively the SQP in
each center. Then by the induction hypothesis V <p V and we can use again
the same arguments as in the proof of theorem 2.3.3.

In the partial information case the policy in each center is not allowed to
depend on the state of the other center. But, the fact that the state of the
other center is unknown does not mean that there is no information on the
other center. For example, in the discounted cost case, decisions taken early in
time weight more heavily than decisions taken later. This means that there is
a dependence on the starting state. The same phenomenon occurs for average
costs, for multichain models. Of course the model studied here is unichain, but
for discounted costs we were able to construct a policy R*, which uses partial
information, that is better for certain starting states than the SQP. In center 2
R* uses the SQP. Also in center 1 the SQP is used, except in state (0,1) and
(1,0). With the counterexample from the beginning of this section in mind, we
might expect that R* performs better than the SQP for starting states of the
form (0,1, k, k) and suitable choices of parameters. Indeed, take g = 1, A = 0.01
and discount factor 0.9 in the discrete-time normalized model. Then the infinite
horizon expected discounted number of customers is smaller under the SQP for
starting states like (0,1,0,0), but R* is better for starting state (0,1, 10, 10).
The relative differences are respectively 1.9 - 1072 and —1.3 - 10~7. Whether
the SQP is optimal for average costs remains an open question. On the one
hand, the model is unichain, and therefore the optimal policy is independent of
the starting state; on the other hand, the numbers of customers in the centers
are not independent, meaning that some information on the state of the other
center can be obtained from the state of the present center.

In Hordijk & Koole [22] we conjectured that the SQP is optimal in the
partial information case. This is clearly falsified by the present results. Our
conjecture was based on numerical results obtained by Loeve & Pols [44], who
used an algorithm derived by Kulkarni & Serin [41] to find local optima or
saddle points in the class of policies that use partial information. In all problem
instances they considered, the SQP is optimal.
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2.4. Networks of customer assignment models with workloads

The model studied in section 1.8 is concerned with the workloads and not with
the actual departures. This means that we cannot distinguish the departure
epochs of the customers. Therefore it is not of interest to the network models
studied in this chapter to generalize the dynamic programming result of the-
orem 1.8.2 on the optimality of the SWP to arrivals according to an MDAP.
For this reason we leave this generalization to chapter 3. Of interest here is
to try to obtain similar results as in section 2.3 for tandem systems and other
networks.

In section 1.5 we saw that the SQP is pathwise optimal in the queue
length model. The same holds for the workload model, as stated in section 1.8.
However, we showed in the previous section that the SQP is not monotone in
the sense that earlier arrivals give earlier departures. This is not the case for
the SWP. Because the SWP is equivalent to a single multi-server queue with
FCFS discipline, the monotonicity is easily shown by a coupling argument.
This gives the following result.

2.4.1. Theorem. Let R = (Ry,Ry) be a two center policy with R; and
R, not depending on the workload of the other conter (thus R uses partial
information). Denote with R* = (SWP,SWP) the two center policy which use
the SWP in both centers. For a general arrival process T let W (W) be the
departure processes of the second center under R (R*). Then W < W.

Proof. Again, the result follows easily by considering a picture.

T, 2y~ Y. W,
(B (B2

Gy WA, 4

Figure 2.4.1.

By the pathwise optimality of the SWP we have W <p W and 1% < V.
By the monotonicity of the SWP we have W <p W. Combining the inequalities
yields W <, W. o

Due to the fact that the SWP is monotone we can generalize the results
to networks of centers with feedback to the network, and to policies using full
information. Related to this are the results of Righter & Shanthikumar [59).
They also consider networks of centers, each with one server, and show that,
in the case of a service time distribution with an increasing likelihood ratio,
the departures are earlier if the customers are served non-preemptively. Mono-
tonicity plays an important role there too.
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Consider ¢ centers, where routing between the centers is according to static
rules. Remember that static policies were introduced in the previous section
for the assignment of customers to parallel queues within a center. Here they
are used for routing between different centers. The model is either open or
closed. Let R be an arbitrary policy, that possibly uses information on all
centers. In the case of random service times, the assignment decisions are not
allowed to depend on the workloads. Now, let- V (1, §) (V(z,])) be the stream of
customers going from center ¢ to center j, using the SWP (R). Outside arrivals
are assumed to be coming from center 0.

2.4.2. Theorem. V(i,j) <, V(i,j) for all i and j.

Proof. Due to the (possible) feedback in the network arrival times depend on
prior departure times. Therefore we cannot use arguments similar to those in
the proof of theorem 2.4.1. We couple the networks, one using the SWP and
one using R, by constructing V*(4,7) and V*(i,5) with V*(4,7) 4 V(i,j) and
V*(i,5) 2 V(i,7) for all i and j. The routing is coupled by letting the nth
customer that leaves center ¢ go to the same center in both networks. Note
that, by taking # = 0, we have V*(0,7) = V*(0,). In the case of deterministic
service times the models are completely coupled now. The service times are
coupled for each queue separately, such that the departures are earlier under
the SWP. Now consider a realization.

Events in the networks with streams V* and V* occur at points v; <
vy < --- and 97 < U9 < ---. Each event consists of a transition of a customer
from one center to another. Transitions from center ¢ to center j occur at
v1(2,5) < v2(i,7) < --- and 91(3,7) < U2(4,7) < ---. (If 2 or more events occur
at the same time, we assume that they are logically ordered. For example, if
a customer arrives at a center, receives 0 processing time and leaves again, we
assume that the arrival occurs before the departure.) We use the fact that if
the arrivals up to T at a certain center are earlier in the SWP model, then the
departures up to T are also earlier. The proof uses induction on the number
of events in the network operated by R. Choose n”. Define n;; as follows:
{’n;‘j (Za]) < i’n* < ﬁn;‘1+1(z>]) Suppose

w(i,j) < 4i(i,j) for all I = 1,...,nj;,

7 and j.

Consider transition n* 4+ 1 in the network operated by R. Suppose that a
customer moves from center * to center j* at this transition. Consider center
¢*. By the induction hypothesis for j = ¢*, the arrivals at :* before 9,« are
earlier under the SWP. Because there are no arrivals at center :* between
Up» and Upx41 in the network operated by R, also the arrivals before 9px4q
are earlier under the SWP. By the optimality and monotonicity of the SWP,
the departures are also earlier, and thus Uns, L+ < ﬁn:‘*j*_*_l, completing the

induction step. o
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Note that we can also have non-controllable centers in the network, as
long as they are monotone. Even more general, we can also insert control-
lable centers of the type considered in Righter & Shanthikumar [59]. Another
possibility is the inclusion of centers with Bernoulli routing, as long as the as-
signment in the center is more balanced for R* than for R. This follows from
the monotonicity of this type of center (theorem 2.3.2), and from the pathwise
optimality (as shown in section 1.9). The next corollary follows easily.

2.4.3. Corollary. In a closed network, the SWP maximizes the throughput.
In an open network, the SWP minimizes the number of customers in the system.

For their model Righter & Shanthikumar [59] formulate a similar corollary.

2.5. Server assignment model with multiple servers

In section 2.2 the dynamic programming results of section 1.2 were easily gener-
alized to arrivals according to an MDAP. The generalization is possible in most
customer assignment models. For the server assignment models it is more com-
plicated. In this section we show that lemma 1.12.1, which shows the optimality
of LEPT, can be generalized to arrivals according to an MDAP. This means
that, as in the customer assignment models, LEPT is optimal in the last cen-
ter of a tandem system, where each center has its own servers and customers
keep their class. Lemma 1.11.1 however, which deals with single server models,
cannot be generalized in its full generality as two counterexamples show.

We follow the analysis of section 1.12. Again assume py < -+ < fy,. The
other remarks made there are also valid here. The analogue of (1.12.1) is:

m m
n+1 . . .
Ve = Ca,) + min { 2 Aeay ( > Ty yiveny T (1= qa’my)v(”y,i)) }+
v i=1 i=1
s(z)

pin {30 (mefaicay) + (= )l }+ (1= 7 = s(@)0 o
1cybs(@ k:l

The lemma which gives the optimal policy is also the same:
2.5.1. Lemma. If

iy W(zi-e;,) T (B = By )W(z,i) S BjaW(zime;,) + (1= By )W) (2.5.1)
for i5,,15, > 0 and j; < j2
and
W(g,i-ej,) < W(g ) fori;, >0 (2.5.2)
hold for the cost functions ¢ and v°, then they hold for all v™.

The model studied in section 3.6 is a generalization of the present model,
for example with partial availability of the servers. For a proof of the lemma
we refer to the proof of lemma 3.6.1.
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2.5.2. Theorem. A SIP minimizes the costs at T (and from 0 to T') for all
cost functions satisfying (2.5.1) and (2.5.2).

The same cost functions as in section 1.12 are allowable here. Of course,
this includes the optimality of the SIP in the single server case if g1 < -+ < iy
If the queues are not ordered this way, we have seen in section 1.12 that the
SIP is in general not optimal in the multiple server case. Because the MDAP is
a generalization of the MAP, this also holds for the present model. However, in
the single server case the SIP was optimal, independent of the ordering. This
does not hold in the case of MDAP’s, as the following counterexamples show.
Summarizing, in the case of dependent arrivals we need p1 < -+ < p, both in
the multiple and in the single server case. This result can also be found in [25].

We consider a system of two centers in tandem, each with two queues,
where each center has one server. There are no arrivals, and when a customer
leaves queue j at the first center, it enters at the second center again queue
J. We show, for certain choices of the service parameters, holding costs and
starting states, that the pc-rule in the second center is not optimal. This
contradicts the results in section 4 of Nain [49] and in section 2 of Nain et
al. [50]. We show that the expected total costs over the infinite horizon are not
minimized by a policy that uses the pc-rule in the second center. This means
that there are T’s for which the pc-rule does not minimize the expected costs
at T. The first example (which can be found in [23]) is the simplest, although
we must assume that the policies allow idling in the first center. In the second
example this is not the case.

We use a similar notation for the tandem system as in section 2.2, i.e. we
add a tilde to denote the first center. The parameters of the first example are
given in figure 2.5.1.

center 1 ‘ ﬂ, ¢ center 2 12 c
2 .65 ®| 2 1.05

Figure 2.5.1

Denote by Kj;;i. the total expected holding cost when at time O there are
1 customers in the first queue of center 1, j customers in the first queue of
center 2 and k customers in the second queue of center 2. It follows from the
optimality of the pc-rule for a single center that the optimal policy in center 2
is the pc-rule when center 1 is empty. Because the holding costs are positive,
idleness in center 2 is not optimal. Hence the total expected holding cost for
the optimal policy in starting states with the first center empty are:
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2

Koo1 = 1= 2;
1.

Kot = % = 0.525;
3.05

Koy = 5 + Koo1 = 3.525;
2.1

Koz = 5 + Ko10 = 1.575;
4.1

Koo1 = 7 + Ko11 = 5.575.

In starting states with customers in both centers the total expected hold-
ing cost is the minimum of terms corresponding to different actions. Denote by
(z,7) the possible actions: 7 (j) is the queue served in center 1 (2). The succes-
sive terms in the computation below correspond to the action pairs (1,1), (1,2),
(2,1) and (2,2) respectively, where terms belonging to actions corresponding
to idleness in center 2 are deleted. The optimal action pair in starting state
1jk is denoted by a;jz.

0.65
Kip0 = 5 + Ko10 = 0.85;
.. 265 1 2 2.65
Ki01 = mm{T + §K1oo + gKon; = + K100}
= min{3.51667;3.5} = 3.5;
@101 = (2a2);
1T 1 1 1.7
K10 = mm{T + -2—K020 + §K100; o + K100}
— min{1.6375; 1.7} = 1.6375;
ajlo = (1» 1)§
.37 1 1 3.7 1 2
K= mln{T + 5K021 + §K101; = + §K110 + §K021§
3.7 3.7
5 + Kio1; T + K110}
= min{5.4625; 5.49583; 5.35; 5.3375} = 5.3375;
ajll = (2, 2)

From a110 = (1,1),a101 = (2,2) and a111 = (2.2) we conclude that the
server in center 1 starts serving the job in queue 1 after the job in queue 2 of
center 2 has finished its service. Hence the optimal action in center 1 depends
on the state in center 2. Since a111 = (2,2) the server in center 2 serves the job
in queue 2 before the job in queue 1, thus the pc-rule is not optimal at center
2. Note that the optimal action in center 2 depends on the state in center 1.

The error in Nain [49] and Nain et al. [50] can best be explained with the
help of the example. Basically, in both articles, the authors try to improve
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an arbitrary policy by keeping the behavior of the first center the same and
changing the policy in the second center to the pc-rule. In the example, the
customer in center 1 (customer 1) is not served until the customer in center
2, queue 2 (customer 3) has departed. We change the policy by serving the
customer in center 2, queue 1 (customer 2) first, but now we cannot let the
server in center 1 be idle for the service time of customer 3, because we do not
know its service time yet.

Another possibility, by which we keep the stochastic behavior of center 1
the same, is taking the idle time at center 1 independent of the service time
of customer 3, but with the same distribution. In the example, the server at
center 1 idles during an exponentially distributed time with parameter 1, while
customer 2 is served at center 2. This trivially does not improve the optimal
policy, but we also calculate it.

Let K7;), denote the total expected holding cost when the customer, ini-
tially in center 1, is still there and when the server starts idling. With Kjj;
we denote the same, if the customer in center 1 has already departed or if the
server at center 1 is servicing the customer.- Since the policy is fixed there
is no minimization in the computation. The total expected holding cost for
states with ¢ = 0 and state 100 are equal to those of the optimal policy. The
computation of the other values is as follows,

100 = 0f5 + K100 = 1.5;
K1 = 23ﬁ + 5 Ko + ;Kmo = 3.51667;
Koy = & + 1K101 + Kwo = 3.83333;
K1 = 377 + ;K(m + =Ki01 = 5.47083;
Ky = 3:;)7 ;Klll + 3K101 = 5.6125.

Indeed we see, when comparing K7, with K11 previously obtained, that
K14 is larger.

The second example has 4 customers present, one in each of the 4 queues.
The parameters of the exponential distributions and the holding costs are given
in figure 2.5.2.

center 1 ﬁ, ¢ center 2 1 c
L J |0.5 10 [ | 3 1.05
o|l2 4 o1 3

Figure 2.5.2
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Straightforward calculation gives in this model the following values and
optimal decisions:

K100 = 30.683; a1100 = (2
K101 = 35.839; a1101 = (1,
Ki110 = 31.491; a0 = (2
Ki111 = 37.938; ai1n = (1

The pc-rule in center 2 gives priority to queue 1. However, the optimal
policy serves queue 2 first if center 1 is occupied. Hence, in this model also the
optimal decision rule in center 2 depends on the state in center 1. Note that
the optimal policy never idles. In the next section we will see that this is a
consequence of the fact that ¢, > ¢; and é; > cs.

2.6. Tandems of server assignment models with a single server

In this section we consider a tandem of two centers, each with m queues, a
single server, and with arrivals according to an MAP at the first center. The
service rates in queue j in the first center are fi;, in the second p;. Thus the
counterexamples of the previous section are special cases of this model, with
m = 2 and no arrivals. In the previous section it has been showed that (for
suitable cost functions) the SIP is optimal in the second centerif py < -+ < fip,.
No results were obtained on the optimal policy at the first center. In general the
optimal policy in the first center depends on the state of the second center, even
if the SIP is optimal in the second center, and is therefore hard to characterize.

In this section we first show monotonicity in both centers. In the case of
linear costs, the conditions for the first center are that the costs must be higher
in each class than the costs, for the same class, in the second center; for the
second center the costs must be positive. This leads in the linear case to an
adaptation of the pc-rule, for which we show the optimality in the heavy traffic
case. With the help of calculations we investigate how this policy behaves for
other values of the parameters.

We assume Zy Azy = v for all z and that v+ g + p < 1, where again
p = max; pt; and i = max; ji;. The dynamic programming equation is:

m m
i) = mm { Z’\zy ( Z ‘Izy”(y,wenz) +(1- Z qiy)v?yﬂd)) +
j=1
'u’iv(a:,i—e,-,i+e,~) + (/L - Mi)vzlm,i,i)+

WO ey (1= )V + (L= = = )y} =

Z i ( Z QayV(y,itesi) T ( Z T2y) ¥y, l))

Y J=1
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min {0 e irey) + (B = B0 (2.6.1)

mjin {/l’j'v(n:c,i,i—ej) + (k- ll‘j)v(na:,i,i)} +(l=y-p- #)”(T;,i,i)-

The minimization ranges over all non-empty queues. Idleness corresponds
to action 0 with fip = po = 0. Now we prove monotonicity in both centers. It
is easily seen that the monotonicity in the second center can also be proven in
the more general case of an MDAP.

2.6.1. Lemma. If

Wz i—e;,  ite;,) < Wiz i) fori;, >0 (2.6.2)
and

W(g,ii—ej,) < W(z,i,i) for ijl >0 (263)
hold for the cost function v°, then they hold for all v™.

The proof of this lemma can be found in chapter 4. We have the following:

2.6.2. Theorem. The optimal policy at T is non-idling in both centers for
all cost functions satisfying (2.6.2) and (2.6.3).

Let us see what the inequalities mean for linear costs. Equation (2.6.3)
requires that, as in the analysis in section 1.11, ¢; > 0 for all j. It is easily seen
that (2.6.2) requires ¢; —c; > 0 for all j. This is not surprising, as this number
is the cost reduction when a class j customer moves from center 1 to 2. This
gives us a conjecture on how an optimal policy might be: in center 1 serving
the queue with highest 1;(é; — ¢;) and in center 2 the pc-rule, i.e. serving the
queue with highest pjc;. We call this policy the tandem pc-rule. However,
this policy is not optimal due to problems when the second center is almost
empty, meaning that not only cost reduction is important, but so is keeping
the second server busy. Therefore we have the following lemma, in which it is
assumed that there are enough customers in the second center.

2.6.3. Lemma. Assume idleness is not allowed. If
fij Wiz i—e;, ite;,) T (= By W(z i) S iy Wiz imej, ites,) T (= s )W(a i)
for j1 < jo2 and #j,,%5, > 0 and n < i; (2.6.4)
and, for some J,
MWz iyi—e;) (B — B3)W(a,i0) S By Waii-e;,) T (1= By )W(z i)

forij, >0 andn <i; (2.6.5)
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hold for the cost function v°, then they hold for all v™.

The proof can be found in chapter 4. Note that because queue j in center
2 is never empty, (2.6.5) is weaker than usual. Thus the SIP is optimal in the
first center, if 7; is large enough. In the second center, queue j has highest
priority, and is always served because of the number of customers in the queue.
The lemma is the basis of our heavy traffic theorem. The proof is included as
the theorem does not follow from uniformization. We assume that no idleness
is allowed.

2.6.4. Theorem. For all T, cost functions satisfying (2.6.4) and (2.6.5) and
€ > 0 there is a number N such that the tandem pc-rule in both centers is
e-optimal at T, if there are more than N customers in queue j at time 0.

Proof. Let N; denote the fixed number of customers in the first center, at
time 0. We compare the costs of two policies: the tandem pc-rule and the
optimal policy R*. Let the r.v. ®(uc) and ®I(R*) denote their costs, where
z is the starting state of the whole system. We can use uniformization which
gives us the possibility of conditioning on the number of jumps. If this number
is smaller than N, then the expected costs under R* are larger, by lemma 2.6.3.
Let Ay denote the event that there are more than N jumps in [0,7]. Thus
(@7 (ic)| A5) — E(&7 (R")|A%) < 0. Then

E®T (uc) - E®T(R*) =
(B(@T (ue)|An) - (T (R) | Ax) ) P(A)+
(B(® (nc)|A%) - (T (R)|45,) ) P(A) <

(B(@ ()| Aw) — (ST (R")| Ax) ) P(Ax).

The expected number of arrivals, conditioned on Ay, is smaller than N +7T/+.
Thus the expected number of customers available at T', conditioned on Ay, for
both the tandem pe-rule and R*, is smaller than Ny +2N +7T/v. The expected
costs are bounded by (N1 + 2N + T/v)c for some ¢. It remains to show that
there is a N such that IP(Ayx)(N1 4+ 2N + T/vy)c < 5. This follows easily as
IP(Ay) and NIP(An) | 0 as N — oc. o

Indeed, it is easily checked in the case of linear costs that the tandem pc-
rule is optimal if i1 (¢1 —c1) > -+ - > flon(Cm — ) and pje; > pjcj for all j. If
idleness is allowed, we can, as usual, combine lemma 2.6.3 and 2.6.1:

2.6.5. Theorem. For all T. cost functions satis{ving (2.6.4). (2.6.5). (2.6.2)
and (2.6.3) and € > 0 there is a number N such that the tandem pe-rule in
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both centers is e-optimal at T, if there are more than N customers in queue j
at time 0.

Now we restrict ourselves to m = 2 queues, and we assume that the tandem
pe-rule has the same priority in both centers, i.e. serving queue 1 is optimal in
both centers if there are enough customers. Then we do not need to assume
that there are more than n customers in the first queue of the second center,
instead it suffices to assume that there are, in total, more than n customers in
the second center.

2.6.6. Lemma. Assume idleness is not allowed. If

PAW(gi—ey iter) T (b= 1) W(gi4) < l2W(gi—eyites) T (b — fi2)W(zi,i)

for 11,70 > 0 and n < iy + 19 (2.6.6)

and

PAW(z iiey) T (B = 1) W(z0) S B2W(a,iimes) T (1 — p2)W(a i)

for 21,19 > 0 and n < i1 + 12 (2.6.7)
hold for the cost function w = v°, then they hold for all v™.

The proof can be found in chapter 4. As in the previous case, we can show
the following.

2.6.7. Theorem. For all T, cost functions satisfying (2.6.6) and (2.6.7) (and
(2.6.2) and (2.6.3) if idleness is allowed) and € > 0 there is a number N such
that the tandem pc-rule in both centers is e-optimal at T, if there are more
than N customers in the second center at time 0.

An interesting question is how well the tandem pc-rule performs for other
traffic than heavy traffic. We did some computations on the model of figure
2.6.1. The arrivals at both queues are Poisson with the same rate.

A center 1 L c center 2 ‘ 12 c

A* 1 4 2 1.1

A" EBE: 1 2
Figure 2.6.1

In table 2.6.1 the results for the discounted cost case are summarized. For
all combinations we computed the relative difference between the costs under
the optimal policy and under the pc-rule, for the starting states with each
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queue empty (shown above) and 5 customers in each queue of both centers. Of
course we had to make the state space finite. We did this by giving an upper
bound on the total number of customers in the system. By doing it this way,
buffer influences are relatively small. Note that the average load is equal to
%)\*, and thus A* = 0.6 gives an average load of 0.9.

B=00101025 05 0.75

-8

v=oi| 44 u o e
-7

o2 4 4o 4
03] 5 0 8 5 Al
04 5 5 o o  <w-is
05 5 o o o <iw-w
—14

06| O 00 <i0-11 S1g-13

Table 2.6.1. Discounted costs

The results for the average cost case in table 2.6.2 indicate that theorem
2.6.7 does not hold for average costs. The results for high traffic intensities
are less accurate (indicated with ~) due to the finite state space, although we
had a model with a maximum of 60 customers, giving more than 6 - 10° states.
Note that not only the buffer influence, but also the relative differences in these
models are larger than in the customer assignment models.

A" R pe rel. diff.
0.1 0.886 0.889 |3.4-1073
0.2 2.134 2.171 |1.7-1072
0.3 4.024 4.202 |4.4-1072
04| 7.248 | =~7.939 |9.5-1072
0.5 |~ 14.092 | ~ 16.862 | 2.0 - 10!
0.6 ~36.6 | ~485 |3.2-107!
Table 2.6.2. Average costs

The results of this section are also published in [26].
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2.7. Tandems of server assignment models with a single server
' and identical centers
Here we consider the special case fi = p. Consider recurrence relation (2.6.1).

Instead of inequalities we consider equalities here.

2.7.1. Lemma. Assume idleness is not allowed. If

P W(a,imejy jite;y) T (1 = B )W(zii) = Hjy W(zi—ej, ite;,) T (1 = 1y )W(s3,4)
for j1 < j2 and %j,,%;, > 0, (2.7.1)
i Waiimesy) T (1= B2 JW(a,i0) = Hjs Wi iimesy) + (1 = 132)W(a i)
for j1 < j2 and 15,15, > 0, (2.7.2)

and
2 —
Mg, W(z,i—ej,,0) + Iy (/1’ — K, )w(:z:,i—ejl 1€51) + (/J/ — Ky )/Lw(z,i,o) =

N.??w(m!i_ejzio) + Kjz (iu' - :U’jz)w(z,i—ejz,ejz) + (,Uz - Il:jz),u,’ll/(z,i,o)
for j1 < jp and 7,75, >0 (2.7.3)
hold for the cost function v°, then they hold for all v™.

Equation (2.7.1) and (2.7.2) give, for allowable cost functions, the opti-
mality of all possible policies: (2.7.1) shows that serving queue j; or queue j;
in center 1 makes no difference. Similarly, (2.7.2) shows that serving any queue
in center 2 is optimal. Equation (2.7.3) is needed in the proof of (2.7.1). The
proof of the lemma can be found in chapter 4.

Now consider allowable cost functions. The only interesting ones we could
find are both I{]¢| + |¢| = 0} and I{[¢] + |¢| > 0}. This means the following.

2.7.2. Theorem. For every non-idling policy the piobability that there are
customers present at T is the same.

Changing the system as in section 1.12 gives:

2.7.3. Corollary. The distribution of the length of the busy period is equal
for all non-idling policies.

Heuristically, we can say the following. If the policy in center 1 does not
depend on center 2, the arrivals at center 2 are independent (according to an
MAP) and it is clear that every policy in center 2 minimizes the makespan.
Thus, a possible explanation of theorem 2.7.3 centers around the first center. If
there is enough work at center 2, again the policy does not matter. However, in
case the server at center 2 has little work, there are 2 possibilities. The first is
to serve a fast customer in center 1, giving the server at center 2 work as soon
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as possible. However, the amount of work is small. When a slow customer is
served in center 1 the situation is reversed: it takes long for the work to arrive,
but the amount of work is large. Apparently, the two phenomena balance each
other.

As usual in single server models, we can combine equation (2.7.1) with
(2.7.3), (2.6.2) and (2.6.3) when idleness is allowed. Note that, by (2.6.3),
I{|i] + |s| = 0} is not a valid cost function anymore. Therefore we have:

2.7.4. Corollary. The length of the busy period is stochastically identical
under all work-conserving policies, if both centers have equal service rates and
idleness is allowed.

Remark. When each queue in center one has one customer initially present,
and no arrivals occur, and if the SIP is employed in both centers, then we can
think of the servers as going from queue to queue instead of the customers going
from center to center. Using this equivalence (which was pointed out to me by
Rhonda Righter, and which can by found in Pinedo & Schrage [55, p. 190]), and
using corollary 2.7.4, we see that reordering of the queues in a system where
the service rate depends only on the server has no effect on the makespan. This
interchangeability of -|M|1 queues is well known, see Weber [77] for references.
Note that the equivalence is only valid under certain restrictions on the model.
Similarly, the interchangeability is proven for a more general model. Therefore
the results on both models are of independent interest.

It appears that lemma 2.7.1 cannot be generalized easily to inequalities,
although we conjecture that a similar lemma with equalities replaced by in-
equalities holds. We give some numerical results supporting this conjecture,
with m = 2, Poisson arrivals and ¢ = ¢. By scaling we can fix yo = 1 and
c1 = 1, giving the parameters as in figure 2.7.1.

A center 1 . M C center 2 14 C
A* o1 l I

Figure 2.7.1

With value iteration we computed the average costs for the optimal policy,
the policy that gives priority to queue 1 (Rp). and to the policy that gives
priority to queue 2 in both centers (Rz). It appeared that for low values of
A* the differences are most significant. Because of the computational method
we had to introduce a number B equal to the maximum number of customers
in the system. For B = 25 there was no influence from the buffer (when we
took A* small), meaning that B = 30, 35 and 40 gave the same results. Taking
1* = 2 appeared to be satisfactory. We took A* = 0.25, giving an average
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workload of 0.375. In figure 2.7.2 the values of the different policies can be
seen for various values of c*.

For ¢* < 2, R; appeared to be optimal. If ¢c* > 2.66, then R, is op-
timal. For 2 < ¢* < 2.66 the optimal policy is neither R; nor Ry;. The
number 2 can easily be explained: below 2 R; is both faster and costs less.
The value 2.66 is explained as follows. When there are no arrivals, the to-
tal costs can be computed. It appears that, for general p*, the optimal ac-
tion in (1,1,0,0) is queue 1 if ¢* < 2u**/(1 + p*) and queue 2 if ¢* >
2u*? /(1 4 p*). For p* = 2 this number is indeed equal to 8/3. Computations
show that 2p*% /(14-p*) is the turn-over point for various p*. This indicates that

3.1

3.0{ —— optimal policy -
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9 .
1.8
1.7 T T T T T 1
1.75 2.00 2.25 2.50 2.75 3.00 3.25

NANOO CRPHROLY

Figure 2.7.2

(1,1,0,0), the only state with 2 customers in which the action is non-trivial,
plays an important role in this model.






Chapter 3

Models with
Dependent Markov Decision Arrival Processes

3.1. Dependent Markov Decision Arrival Processes

In some models we can generalize the arrival process even more, by letting the
arrival probabilities depend on the state of the queues.

3.1.1. Definition. (Dependent Markov Decision Arrival Process) Let
A be the countable state space of a Markov decision process with transition
intensities Azqy with z,y € A and a € A(z), the set of actions in z. When
‘this process moves from z to y, while action a was chosen and the state of the
queues is 7, then with probability q’z“ay;i an arrival in class 1 < k < m occurs,
and with probability q;r;‘;k an event with server 1 < k < s occurs. There are
sets Aj,..., A such that server k is available if and only if z € A}, and sets

Sareo s A2, n € IN, such that if z € Aj, then there have been n or more
arrivals of class k. We call the quadruple (A, A, A, q) a Dependent Markov
Decision Arrival Process (DMDAP).

Naturally, we can also let the transition rates and the probabilities of server
events depend on the state of the queues z. Because we do not study models
where this is the case we did not allow this type of dependency.

How the arrival probabilities are allowed to depend on ¢ will be specified
for each model. Note that if there is no dependency, we have an MDAP. It is
clear that conditions on the DMDAP must be given; to give an example where
the optimality result does not hold, assume that in the customer assignment
model of section 1.2 the arrival probabilities are higher in more balanced states
than in unbalanced states. Then assigning to the longer queue might be more
favorable.
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3.2. Asymmetric customer assignment model

In this section we deal with a customer assignment model with asymmetric
service rates. In the sections 3.3 and 3.4 we will see that the results of section
1.2 and 1.3 are special cases of the result proved here. The present result gives
only a partial characterization of the optimal policy in the general model, even
if the arrivals are non-controlled. We discuss sonie computational results at
the end of the section.

The model is as follows. Customers arrive according to a DMDAP, all
in one class (write ¢ instead of ¢'). There are no server vacations. Arriving
customers have to be assigned to one of the non-full queues, where B are the
buffer sizes. In state (z,%), a customer in queue j is served with rate p;;. We
end the description by giving conditions on the arrival probabilities and the
service rates.

To make the notation shorter (although it abuses notational conventions
a bit), let 7* be the permutation of 7 with 7;, and i;, switched, that is, i} =
v if § # j1,J2, 4}, = 15, and ¢, = 4;,. Assume all vectors considered are
componentwise smaller than B. Now we formulate the conditions on the arrival
probabilities and the departure rates. '

The ¢ must satisfy the following conditions:
Qzaysite;; < Qoayiite;, if 5, <45, and jy < j2_ (3.2.1)

Qzay;i < Qzay;i* if ijl > ij2 and jl < jz (3.2.2)

An interesting example which satisfies the conditions is a DMDAP with A =

{1}, A(1) = {1}, M11 = X and 111, = (N — |i])/N, the well known finite
source model. In fact, if gzqy;; only depends on |i| (and z, @ and y), every other
dependency is allowed.

The p satisfy the following:

i = 0 ifij =0

Bjite;, = Hjite;, i J # J1.J2, 45, <ij, and j1 < jo
Pjrite;, F Mjsites, 2 Mjrive;, T Kizive,, if 15, <25, and j1 < j2
Bji 2> Bjive;, if § # 5
Bji 2 pyi if § # J1,J2, 15, >4, and j1 < j2
Wjri > Pjaex if 5, > 45, and j1 < Jo
Wiri F fjai > fjyie + prjex if 25, > 45, and j1 < ja

We also assume that p;; < p for some constant p. An interesting example
is pj; = min{ij,sj}ﬂj, with sy > «++ > 8p, and fi; > -+ > fly,. Thus lower
numbered queues have more and faster working servers.

Another example is the following. Assume that customers which are not
served require a certain amount of attention which decreases the service rate
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of the customer being served. The amount of attention needed depends on the
queue. This results in pj; = (1 — p;ji;)f, p1 < -+ < pm. We assume that B is
such that p; B; < 1 for all j. Note that the service rate at queue j is decreasing
in ¢;, an at first sight counterintuitive fact. This u;; satisfies the conditions.

Again we assume that v+ mp < 1, where Ey Agay = 7 for all z and a.
The dynamic programming equation is:

”(rlzfil) =C(z,i) + mai“ { Z Azay (‘Izay;i mjin{”&,wrej/us)} +(1- Qzay;i)'”&,i)) }+
y

m m
D ity + (1= Y i = V) - (3.2.3)
=1 i=1

3.2.1. Lemma. If

W(zite;,) S W(zjite;,) LT, <1, and j1 < Ja, (3.2.4)
W(z,i) < W(z,ite;,) (3.2.5)

and
W(g,i) S Weee)y forij, >, and j1 < js (3.2.6)

hold for the cost functions ¢ and v°, then they hold for all v™.

The proof of lemma 3.2.1 can be found in chapter 4. Recall that we as-
sumed that all vectors considered are smaller than B. Equation (3.2.4) gives a
partial characterization of the optimal policy. It says that an arriving customer
should be assigned to queue j; instead of queue js if there are less customers
in queue j; and if j; < j2. Usually, this does not specify the optimal policy
completely. Therefore we called the characterization partial. Note that send-
ing the customer to queue j; gives a higher total service rate, and in the case
Wj; = fbj With fiy > -+ > fim, the customer is sent to the faster queue. There-
fore we call such a policy a Shorter Faster Queue Policy (SFQP). Equation
(3.2.6) is needed to prove equation (3.2.4). Equation (3.2.5) is the well known
monotonicity. Using corollary 5.3.4, we have the following.

3.2.2. Theorem. For all T, an SFQP minimizes the costs at T (from 0 to T')
for all cost functions satisfying (3.2.4) to (3.2.6).

A special case of this result is proven in [24].

The conditions (3.2.4) to (3.2.6) are weaker than (1.2.2) to (1.2.4), meaning
that all Schur convex cost functions are allowable. It is easy to give non-
Schur convex functions that are allowable (for example, v?”) = E;’f__l ¢ji; with
0 < ¢ <--+ < ¢p), meaning that the class of allowable functions is strictly
bigger. In the present case however, we were not able to give a complete
characterization of all allowable cost functions, although we have a conjecture,
stated in appendix C. Note that, for reasons explained in section 2.2, there are
no stochastic results.



60 Models with Dependent Markov Decision Arrival Processes

For the class of non-symmetric additive cost functions we have a sufficient
condition. We consider cost functions ¢ which only depend on ¢, because the
dependence on z can be arbitrary. We consider c(; ;) = f1(41) + -+ + fm(im)-
Define Af;(i) = fj(i + 1) — f;(¢). Then the following conditions are sufficient:
fj increasing, Afy(2) < --- < Afy(i) for all ¢ and m — 1 of the m functions are
convex. Since of any two functions one is convex, either A f;, (¢,) < Afj, (45,) <
Afj2 (ih) or Afjl (ijl') S Afj2 (7;.7'1) S Asz (ijz) holds if jl < jz and ijx S ijzv
and (3.2.4) follows. Equation (3.2.5) is immediate, and (3.2.6) follows because
Afj (1) < Afj, (¢) for all 7, and thus f;, (ijl) = fin (ijz) < fi (ijl) = fi (i.‘iz)'

Even in the case of an MAP, the optimal policy is not myopic. Consider
the following simple model with Poisson arrivals, m =2, p2 < p1, B = (00, 00)
and 'u(tl i) = = 11 + 175. Now consider 'u(1 0 and 7’(1 0y No matter how small ps
is, if n = 2 action 2 is optimal because, if there is an arrival, there is at most 1
service completion before the planning horizon. If n = 3 however, it is possible
that queue 1 is served twice before n = 0, and we can choose the parameters
such that action 1 is optimal.

Also in the continuous-time case (and again independent arrivals), there is
no unique optimal policy. However, for the model with Poisson arrivals and a
single server at each queue (i.e., pj; = min{s;,1}ji;) attempts have been made
to describe the optimal policy in more detail. Theoretically it has been shown
by Hajek [19] that the optimal policy is monotone, meaning that there is an
increasing switching curve, and it has been shown by Katehakis & Levine [32]
that for an arrival rate which is sufficiently small the policy that assigns to the
queue with smallest expected workload is optimal.

In the papers Van Moorsel & De Vries [47], Nobel & Tijms [54], Houck
[30] and Shenker & Weinreb [65] computational results are obtained, mostly for
m = 2 and By = By. Van Moorsel & De Vries [47] and Nobel & Tijms [54] use
successive approximation, in the other two papers simulation is used. Nearly
optimal policies are proposed, for example the policy that assigns each arriving
customer to the queue where its expected delay is minimal. It is clear that
successive approximation is a better method than simulation, because with
simulation a policy cannot be compared with the optimal one, and because
simulation is computationally less attractive. (Note that this contradicts a
remark by Shenker & Weinreb [65], where it is stated that, using methods from
Markov decision theory, it is difficult to find the optimal policy “even in the
smallest non-trivial case of just two non-identical servers”. In the previous
chapter we had no problems finding optimal policies in models with 4 queues,
with an accuracy which is hard to obtain with simulation.) All policies studied
in the cited papers are SFQP’s. Nobel & Tijms [54] also consider the case where
there is more than one server in each queue, i.e. the case pj; = min{s;, s; };.
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3.3. Symmetric customer assignment models

In this section we first analyze the symmetric model using lemma 3.2.1. Then
we generalize this model by introducing batch arrivals. By a limiting argument
we obtain results for models with workloads. Unfortunately we cannot allow
finite buffers in this model. In the third model of this section we allow non-
routable arrivals at the queues, and we introduce an extra movable server, as
Menich & Serfozo [46] did. All parameters are allowed to depend on the whole
state of the system, with conditions as general as possible. If we take an arrival
process without actions and with one state, we have the model of Menich &
Serfozo [46].

To start with the first model, we modify the conditions of the previous
section as follows. Assume again that all vectors considered are componentwise
smaller than B.

The q satisfy the following:

qma,y;i+ej1 S Qmay;i-}-eh if 'le S Z]g (331)

Qray;i = Qeay;i* for all jl,jz )
Recall that +* agrees with 7 except for j; and j, being interchanged. The last
condition is called symmetry. Note that the finite source model satisfies these

conditions.
Also p is made symmetric:

MHii = 0if ij =0
Hjite;, = Mjite;, i 7 # J1,J2 and 15, <1,
Mj1i+6jl +/’Lj2i+ej1 Z ll’jl’i+8j2 + :u’jzi"rejz if Z]1 S 7’]2
Wi > Bjite;, if 5 # J1
Bji = pyix if § # j1,J2
fjyi = fjpiv and fuj,; = fhj,is

The symmetric versions of the examples of the previous section, pj; =
min{i;, s} and pj; = (1 — pij)f for suitable B, are allowed here.

The present model is general enough to capture that of Johri [31]. There
Poisson arrivals are taken, together with the following assumptions on the
service rates: pj; = pij; if 05 = 45, prji < Pjive; and fjizoe; — Pjive; < fljite; —
Hji, i.e. the service rate in a queue depends only on the number of customers in
that queue, and is both increasing and concave. For example, the model with
multiple servers at each queue conforms to this description.

The dynamic programming equation remains the same as in the previ-
ous section. The conditions are stronger than those in section 3.2, giving the
validity of lemma 3.2.1 for the model studied here.

We can obtain the optimality result for the symmetric case from lemma
3.2.1. Let II be a permutation matrix. Assume that v° and c are symmetric in
i, ie. v?z,i) = v?:c,iﬂ) and C(z,i) = C(x,iI0)-
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3.3.1. Lemma. Assume we have vectors B and B = BII, a permutation of
B. Let v™ and 9™ be value function for identical models, except for the buffer
sizes, being B and B. Then Vo) = Ua) with 7 = Il for all n.

As the arrival and departure rates are symmetric the inductive proof is
trivial.

Now consider equation (3.2.4). By exchanging queue j; and queue j; in
the ordering we have the reversed inequality. By doing the same with (3.2.6)
we have rewritten the set of inequalities, giving the following.

3.3.2. Corollary. If

W(a,ite;,) S W(aites,) for ij, <1ij,, (3.3.2)
W(z,i) S W(aite;) (3.3.3)

and
W(z,i) = W(z,i*) (3.3.4)

hold for the cost functions ¢ and v°, then they hold for all v™.

The equations (3.3.2) to (3.3.4) are the same as (1.2.2) to (1.2.4) and
(2.2.2) to (2.2.4). Because the MAP and the MDAP are both special cases of
the DMDAP, and because pj; = min{s;, 1}/ satisfies the conditions, lemma
1.2.1 and 2.2.1 follow.

3.3.3. Theorem. For all T, an SQP minimizes the costs at T (from 0 to T')
for all cost functions satisfying (3.3.2) to (3.3.4).

Again, all Schur convex function are allowable cost functions.

In the second model of this section we want to generalize the results of
section 1.8 to arrivals according to a DMDAP. If we want to do this straightfor-
wardly, then we would have to generalize the uniformization results of chapter 5
to include the model here, for example generalizing the countable state space to
IR™. Instead of this, we show that the workload model is the limiting case of a
queue length model with batch arrivals, for which the SQP is optimal. Assume
that each batch consists with probability 8 of k customers. It is essential that
the whole batch is assigned to the same queue. If we want to model batch ar-
rivals where each member of a batch can be assigned to another queue, we can
simply use the model without batch arrivals and regard the model with batch
arrivals as a limiting case. We consider the simple case of each queue having
a single server. Because the size of the batch can be arbitrarily large, blocking
can always occur in the case of finite buffers, therefore we do not model them.
The DMDAP has the same conditions as in the previous model.
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The dynamic programming equation is:
o1 =etei i { 3 e (s 0 Bty 120,
y k
(1- qacay;i)”(ny,i)) }'*‘

D0 (i) (L= mp = 7)ol .
=1

3.3.4. Lemma. If

Zﬁkw(z,i-{—keh) < Z,@kw(m’i.{.keh) for 15, <1, (3.3.5)
k k
W(z,i) S W(a,ite;) (3.3.6)
and
W(g,i) = W(z,i*) (3.3.7)

hold for the cost_functions ¢ and v°, then they hold for all v".

The proof can be found in chapter 4. Note that equation (3.3.5) is not
valid without the summation, for the same reason as that (1.8.2) was not valid
without the integration. Using corollary 5.3.4, we get the following.

3.3.5. Theorem. For all T, an SQP minimizes the costs at T (from 0 to T')
for all cost functions satisfying (3.3.5) to (3.3.7).

Again, all Schur convex cost functions satisfy the conditions.

By lemma A.2 we can approximate any service time distribution arbitrarily
closely by phase-type distributions. Assigning to the shortest queue is, in the
limit, equivalent to assigning to the queue with the shortest workload. This
gives the following result.

3.3.6. Theorem. For all T, an SWP minimizes the costs at T (from 0 toT)
for all Schur convex cost functions.

Although the arrival process is a DMDAP with which we can model a
finite source, we cannot model a finite source in the workload model, because
we do not know the actual number of customers in the system. Note however
that we already proved in theorem 2.4.2 that the SWP is optimal in a finite
source model.

Now we look at the model that has additional non-routable arrival streams,
and an extra movable processor. The combination of finite buffers and addi-
tional arrivals is not allowed as the SQP might not be optimal anymore. This
can be seen from the following example: take m = 2, B = (3,00). In state
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(2,1) it may be optimal to assign an arriving customer in the assignable stream
to queue 1, because then future non-routable arrivals at queue 1 are blocked.

The extra arrival streams can easily be modeled with the DMDAP: arrivals
in class 0 are routable, customers arriving in class k, 1 < k < m, join queue k.
The arrival probabilities of class 0 are allowed to depend on the assignment
action, i.e. we have arrival probabilities qgay;ij, where j is the assignment.
Assume that there are numbers §gqy such that qgay;ij < Ggay for all 2 and j.
We let the service probabilities depend also on z. Denote the service rate of
the movable processor with fiji;, if it serves queue j in state 7. Assume also
that fij;;z < i for all ¢, j and z. The dynamic programming equation is:

’UZ:_:) = C(z,9) + main { Z)‘may (In]ln {qgay;ijv&,i+ej) + (qmay - qgay;ij)va/,i) }+
Y

m m
Z Tray;iVy,ite,) T (1— Z Taaysi ~ qu)v(ny,i)) }+
J=1

i=1
mjin{/lji;z'vzlz,i—ej) + (- ﬂji;w)”(nz,i)}+ (3.3.8)
m m
Z PiisaV(gimeyy + (1= 7 = i = Z/‘ﬁw)”?w,i)'

Now we give the conditions. Recall that ¢* is the vector equal to i, but
with queue j; and j; interchanged. First we have symmetry of all parameters
involved (called interchangeability in Menich & Serfozo [46]):

0 0 . . . . 0 _ 0
Qzayyi; = Qzay;itj lf] ?I: J1,72 and Qzay;ij; = Qeay;itjs
J — e S i 2
qzay;i - q:cay;i* if J 71: J15J2 and q:nay;i - qmay;i*
frjise = Rjivie i J # J1,72 and fiji iz = fjivia
Bjise = pjixse if § # J1,72 and pj 0 = Pjyiee

We also assume the following on ¢° (with, as in section 1.5, (j) the index of
the jth smallest component of 3):

q:?}a,y;i(l) < qgay;ij (3.3.9)
qgay;i-l—ejl(]) < qgay;i+ej2(1) if 35, <14, (3.3.10)

Assume l; < l3. The conditions on the non-routable arrival probabilities are:

m m

0) j
> aiteny, S D G, T B =1l 1 m (3.3.11)
i=k =k
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Yo al <Y a e, fork=h+1,...,m (3.3.12)
j=k =k

Concerning servers, we assume, besides the interchangability:
fjize = pjize = 0if 4, =0

The assumptions on the service rate of the routable server are the reverse of
those on ¢°:

/l(m)i;z > ﬂ'ji;:c (3313)
ll(m)i+ejl;z > /l(m)i+ej2;z if ijl <15,
The assumptions on the fixed servers are much like those on the non-routable
arrivals:

m m
Eu(j)i-i-e(,l);m Z Z#’(j)i-}—e“ﬂ;:c for k = 1)' .. al17l2 + 17' R
i=k i=k

m m
D iGyie 2 Y BGyiteqyym for k=l +1,...,m

Note that the conditions are the same as in Menich & Serfozo [46]. Now we
can formulate our inductive result.

3.3.7. Lemma. If

w(xsi“"ejl) S w(m,i-}‘e]‘z) fOr z]1 S ijzv (3-314)
W(g,i) < W(gite)s (3.3.15)

and
W(z,i) = W(z,ir) (3.3.16)

hold for the cost functions ¢ and v°, then they hold for all v™.

3.3.8. Theorem. For all T, an SQP minimizes the costs at T' (from 0 to T)
for all cost functions satisfying (3.3.14) to (3.3.16).

By appendix C the class of allowable cost functions is the class of weak
Schur convex functions.

Remark. As we saw, the arrival probabilities and service rates are allowed to
depend both on the state of the arrival process and the state of the queues.
Therefore the term environment instead of arrival process would be more ap-
propriate. Typically, in an environment the arrivals are according to a Markov
Modulated Poisson Process. Here however, we kept the arrivals occurring at
the transitions of the environment, in order to maintain the generality of the
arrivals. In most other models studied in this thesis we can allow the service
rates to depend on the state of the arrival process. Because the generalization
is only minor and because of notational simplicity we refrained from doing so.
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3.4. Customer assignment models without waiting room

The results of section 3.2 can also be used to obtain results in the model without
waiting room, much like the results on the symmetric model were obtained in
the previous section. We have the same condition on the arrival probabilities
and the service rates, but because B = (1,...,1) the inequalities of lemma
3.2.1 simplify to

W(g,itej,) < W(g,ite;,) for 71 < j2 and ijl = ij2 =0 (3.4.1)

and
W(g,s) < W(z,itej,) for ¢;, =0. (3.4.2)

These are the same inequalities as (1.3.2) and (1.3.3). Lemma 1.3.1 follows
because pj; = min{é;, 1}fi; satisfies the conditions of lemma 3.2.1.

3.4.1. Theorem. For all T, an FQP minimizes the costs at T (from 0 to T')
for all cost functions satisfying (3.4.1) to (3.4.2).

The class of allowable cost functions are the functions that respect the
partial sum ordering, as introduced and discussed in appendix C.

In Sobel [66] a model is studied in which customers of 1 classes arrive
according to independent Poisson processes. Besides that, the model is similar
to the model studied here. The analysis of that paper appears to be erroneous.
(The basic theorem 1 does not hold as the derivation of B > 1 is incorrect.)
Sobel & Srivastava [67] wrote a revision. The model is essentially a single class
model. The optimal policy does not depend on the class, and the only place the
class of a customer plays a role is in the cost function. However, no example is
given of a cost function that indeed depends on the customer classes. Here we
prefer to study a more complex model in which rejection is allowed.

Consider m exponential servers with decreasing service rates p; > -+ >
[ and arrivals according to an MAP. (At the end of this section we show
that the results cannot be generalized to (D)MDAPs.) Arrivals occur in m
classes. When a class k customer arrives, it can either be rejected or sent to
one of the free servers. The service times depend only on the server, not on
the customer class. When a class k customer is rejected blocking costs by are
incurred, by > -+ > by > 0. (It can be shown that if a class has negative
blocking costs, it will always be blocked.) At the servers, an action has to be
chosen for each class of customers. We denote with aj, the free server to which
an arrival in class k is assigned, with action 0 corresponding to blocking. The
dynamic programming equation becomes (assume ey = 0):

"
+1 _ k : _ ,
v("w.) = Z Azy ( ’.Z oy n;iu {I{ak =0}by, + "(ny,i+eak )}+
y c=1
m

(1=3ab)efy )+
k=1
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m m
D B (imepyry T (1= 7= 3 15)00s,0y-
j:l ]:1

3.4.2. Lemma. Ifv(,; =0 for all z and i, then the following equations hold
for all n:

”(nm,i+ej1) < v(na:,i+ej2) for j1 < jp and ij, =4, =0 (3.4.3)

V(o) < U(nm,i+e,<1) for 15, =0 (3.4.4)

Viaites) S 01+ 00y fori =0 (3.4.5)
v(n%iﬂjl) = Yz < 'U(nz,z‘+ej2+ejl) - ”?z,i+ej2) (3.4.6)

for j1 = min{j|(¢ +ej,); = 0} and ij, =0

The proof can be found in chapter 4. Let us consider the consequences
of the lemma. As can be deduced from the dynamic programming equation,
when considering assigning an arbitrary customer to one of the free servers, we
have to compare v&’H_ej) for various j. By (3.4.3) U(g,ite;) 18 minimal for the
J corresponding to the fastest free server. Equation (3.4.4) is the well known
monotonicity. (Because we did not use by, > 0 in its proof, it follows from the
monotonicity that blocking is always optimal if by < 0.) Equation (3.4.5) is
concerned with the assignment of customers with the highest blocking costs.
It says that assigning such a customer to an arbitrary server is better than
blocking, i.e. a class 1 customer should never be blocked unless the system is
full. Equation (3.4.6) says that when a class k customer is blocked in state (z,1),
ie. v("z’iﬂjl) — by — v(”m.) > 0, it is also blocked when there are more customers
present (and the state of the MAP is the same). On the other hand, when
a customer is admitted, it is admitted as well in states with less customers.
Another monotonicity property is the following. If v&’iﬂj]) = b, =00, 20,
then also v("w’iﬂjl) — by, — v("z’i) > 0, if k3 < k3. Thus, when blocking is
favorable for class k;, then blocking is also favorable for class k. Similarly,
when customers of a certain class are admitted, then all customer classes with
higher blocking costs are admitted as well. This gives the following.

Theorem. For all T, an optimal policy minimizing the blocking costs from 0
to T exists and has the following properties:

If a customer is admitted it should be sent to the fastest free server;

Class 1 customers are never blocked, unless the system is full;

If a class k customer is blocked in (z,11), it is blocked in (z,%1 + i2);

If a class k customer is admitted in (z,i1 + i2), it is admitted in (71 );

If a class k customer is blocked in (x,%), all classes with indices higher than k
are blocked as well in (z,1);

If a class k customer is admitted in (z,i), all classes with indices lower than
than k are admitted as well in (z,1).
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This result comes from [35].

If the arrival stream is an MDAP, then (3.4.3), (3.4.4) and (3.4.5) still
hold, but (3.4.6) fails. We demonstrate this with the following example. Take
m = 2 and gy = pg = 1. The arrival process is as follows. There is an arrival
in class 2 at t = 0, after which the arrival process moves to one of 2 states.
If action 1 is chosen, the arrival process moves to state 1, where customers of
class 1 arrive according to a Poisson process with rate A;. There are no class
2 arrivals. If action 2 is chosen, the arrival process moves to state 2, in which
there are no class 1 arrivals, but where there are Poisson arrivals in class 2
with rate A;. This arrival process can easily be approximated by MDAP’s. It
appears that, for suitable values of by, b2, A1, A2 and T, it is optimal to block
the class 2 customer and choose action 1 if the system is empty, but to admit
the class 2 customer and choose action 2 if there is one customer available.
This means that (3.4.6) does not hold. Using the uniformization method the
different strategies can easily be compared. Equation (3.4.6) fails for example
for b1 =10, b =1, Ay = 1, Ay = 3.5 and T = 5. It is straightforward to give
an intuitive explanation.

3.5. Customer assignment models with rejections

Here we want to generalize the model of section 1.6 to asymmetric servers.
Section 1.6 deals with a symmetric customer assignment model, for which it
is shown that the SQP maximizes the number of departures from the system.
Thus, we analyze the model of section 3.2, but with a different objective func-
tion. We will see however, that the conditions on the arrival probabilities and
the service rates need to be different. The model we study has as dynamic
programming equation:

+1 . .
'”(nm,i,k) = C(ayi k) + 1IN { Z Azay (‘Iway;i nb.ln{'u(rtq,i+ej/\3,k) P
Yy
(1 - q:cay;i)'ua,’i’k)) }+ (3.5.1)

m m
Zﬂji (6ijvzlz,i—ej,k+l) +(1- 5@)”&4,@) +(1-7- Z/‘ji)”&,i,k)-

The extra component of the state space k counts the number of departures. As
in the server assignment models with a single server we study both the case in
which rejection is allowed and the case in which it is not allowed.

We start with the model in which rejection is not allowed, meaning that the
minimization ranges over all j for which ¢; < B;. To make the notation shorter,
let 2* again be the permutation of ¢ with ¢;, and 7;, interchanged. Assume all
vectors considered are componentwise smaller than B. The conditions for q
are:

Qoay;i = Qoay;i i [i] = |2



Customer assignment models with rejections 69

Qzay;i > Qzay;itej,
Although the conditions are more restrictive than in section 3.2, the finite
source model still satisfies them.
For p, we take the same conditions as in section 3.2. Now we have:

3.5.1. Lemma. If

W(g,ite;, k) S W(zite;,,k) for tj; <45, and j1 < ja, (3.5.2)
W(g,ik+1) S W(a,ite;, k) (3.5.3)
W(z,ik+1) S Wpik) (3.5.4)
and
W(z,ik) < W(g,iv k) for ij, > i, and j; < jo (3.5.5)

hold for the cost functions ¢ and v°, then they hold for all v™.

The proof can be found in chapter 4. The only meaningful cost function
is again v?w.,k) = —k (and ¢z k) = 0).

3.5.2. Theorem. In the case of a DMDAP, an SFQP maximizes the expected
number of departed customers between 0 and T, if rejection is not allowed.

If we want to allow rejections, we have to assume that ¢gqy;; is independent
of 7, i.e. the arrival process is an MDAP, and we cannot model a finite source.
This is intuitively clear: if the system is relatively full it might be better to
reject a customer in order to make a better choice when the customer comes
again.

Concerning the service rates, we need the extra condition Wjite;, = Kji
for all j. As we already assumed the reverse for j # ji, it amounts to:

Hji = My if ij = ij
and
ll’jli'i'ejl 2 ’1’].1‘i'

This is not surprising. On one hand, if we assign to the shortest queue, cus-
tomers leave the system fast. To agree with this, service rates must be high in
states with few customers. On the other hand, states with few customers can
be reached by rejecting customers, and to agree with this, service rates should
be high in states with many customers. This reasoning intuitively explains the

fact that the service rates must be constant.
For completeness, we give the other conditions as well.

pii =0ifi; =0
ll’jl'i-'f‘ejl +l1'j2i+ejl Z ll'jli+ej2 +ﬂ’j2‘i+6j2 if 1']1 S z]z a‘nd jl < jz
Mgy > Hjyix if ijl > ijz and jl < jz
Hivi  Bjyi 2 Pgyiv + Pjpie i 45, > 45, and j1 < ja
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3.5.3. Lemma. If

Wz ite;, k) S Wiaites, k) forij <ij, and ji < ja, (3.5.6)
W(g,ik+1) S W(zite;, k) (3.5.7)
W(g,ite;, k) S Wiaik) (3.5.8)
and
W(z,ik) < Wigin k) for i, > ij, and §1 < j2 (3.5.9)

hold for the cost functions ¢ and v°, then they hold for all v™.

The proof can be found in chapter 4. Equation (3.5.8) shows that there
exists an optimal policy that does not reject customers. Because of the arbitrary
buffers we need (3.5.8) in the proof of (3.5.7). Note that lemma 1.6.1 is a special
case of lemma 3.5.3, using the equivalent of lemma 3.3.1.

3.5.4. Theorem. In the case of an MDAP, an SFQP maximizes the expected
number of departed customers between 0 and T, if rejection is allowed.

Also the model with B = e gives a myopic optimal policy, as the first
model studied in the previous section. Because we did not handle this model
in chapter 1, we do it here. As is easily seen equation (3.5.6) to (3.5.9) simplify
to

w(m,i+ej1yk) S 'W(m,i.{,_ejz’k) if jl < jzﬂ
Wz, ikt+1) S W(aitej, k)
and
Wig,ites, k) S Wiaik)-

Then we have, in case of an MAP:

3.5.5. Theorem. For all T, the FQP maximizes the number of departed
customers between 0 and T stochastically.

Remark. We end this section by considering the differences between the mod-
els of this section. In the second model, in which rejection is allowed, we need
Qeaysite;, = Guaysi t0 prove (3.5.8), and Gray;i > Grayite;, tO prove (3.5.7).
Thus ggqy;; must be independent of ¢. In the first model, in which rejection is
not allowed, we do not have (3.5.8), and thus we only assume ggqy;; > Qzayiite;, -
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3.6. Server assignment model with multiple servers

In this section we generalize the result for the server assignment model with
multiple servers of section 2.5 to servers which are partially available, and to
arrival processes that stop producing customers if + = 0. Let us first describe
the model of section 2.5 again.

Customers arrive in m different classes. The service times of customers in
class j are exponentially distributed with rate p;, pt7 < -++ < iy In the case
of arrivals according to an MDAP and multiple servers it is shown in section
2.5 that the SIP is optimal.

Here we have arrivals according to a DMDAP, with the following condition.
There are numbers gF,, such that ¢¥,, ., < ¢¥,, and ¢¥,, ., = ¢, if i #0. If
we take q’;ay;o = 0 the system stays empty once it becomes empty. This way
we can study the length of the busy period for the model with an MDAP, even
in the case that there are arrivals (in the system with q’;ay;o = q’;ay) after the
first emptiness.

Perhaps more interesting is the following generalization. In the model of
section 1.12 we modeled server vacations, i.e. a server is either working at full
speed or not working at all. Here we introduce more possibilities, by assuming
that server k is working at speed pi(z), 0 < pr(z) < 1. Note that this can also
be modeled with the arrival process. The dynamic programming equation is:

m m
+1 _ . ] n ] n
V(ai) =Coyi) T min { Z Asay ( Z oay;iVy,ite;) T (1- Z qi‘ay;i)v(y,i)> }+
Y j=1

i=1

8
,lmin, { Zpk(m) <“lk'”("w,i—el,c> + (1 - l‘lk)'”("m,i)> }+
T k=1

1=y = pe(a)w)vls ;).
k=1

with [} the queue to which server k is assigned, and the second minimization
taken over all allowable actions (with possibly I = 0, meaning that server k
idles). We have again:

3.6.1. Lemma. If

P W(z,ime;) t (B = B )W i) S PjaWzyimez,) + (10— p5,) W0 (3.6.1)
for ij,,15, > 0 and j; < j»
and

W(z,i—ej;) < W(g,3) for ijl >0 (362)
hold for the cost functions ¢ and v°, then they hold for all v™.

The proof can be found in chapter 4. There it is also shown that the
policy that assigns the servers with the highest speed to the customers in low
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numbered classes is optimal. We call such a policy a Fastest Server Smallest
Index Policy (FSSIP). The first to obtain this type of optimality result (without
arrivals) were Weiss & Pinedo [80]. As a special case they showed that the
FSSIP minimizes the expected makespan.

3.6.2. Theorem. A FSSIP minimizes the costs at T (from 0 to T') for all cost
functions satisfying (3.6.1) and (3.6.2).

See section 1.12 for a discussion of the allowable cost functions.

Remark. In the proof of (3.6.2) we used neither (3.6.1) nor py < -+ < pim,
meaning that lemma 3.6.1 not only gives the optimality of LEPT, but also the
monotonicity in the server assignment models of the sections 1.12, 2.5 and 2.6.

3.7. Server assignment model with a single server
and a finite source

In this chapter we introduced the DMDAP. The main motivation to do so was
to model a finite source in the customer assignment models. In the server
assignment models this cannot be done in general due to the multiple customer
classes. In this section we handle a special model with m customer classes,
all of finite source type, and with a single server. The service parameters are
as usual, A; is the rate at which each customer of class j enters queue j, and
N; is the total number of customers of class j. We show that, for certain cost
functions, the SIP is optimal if A; < --- < Aj,. The case A; < --- < Ay,
and pq > -+ > pn is studied in Righter [56]. We formulate the dynamic
programming equation. The direct costs are not modeled because the optimal
policy appears to be myopic, and thus we can use corollary 5.2.2 or 5.2.3.

m

’U?-H = Z(N] - ij))‘jvzn+6j + mlin {mvi"_e' + (IJ' a M)v?}-}-
J=1

(1= (Nj —ij)Aj — p)op.

i=1

As contrasted with the other single server models, we need monotonicity here
to prove the structure of the optimal policy, giving the following lemma.

3.7.1. Lemma. If

Py Wiy, + (B = pjy Jwi < pjyWizey, + (1 — pj, Jws 3.7.1)
for ijwijz >0 and j1 < j2
and
Wi—e;, < w; for ’ijl >0 (372)
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hold for the cost function v°, then they hold for all v™.

3.7.2. Theorem. If \; < --- < A\, then the SIP minimizes the costs at T
(from 0 to T) for all cost functions satisfying (3.7.1) and (3.7.2).

Equation (3.7.1) and (3.7.2) are the same as equation (1.11.1) and (1.11.2),
thus the same cost functions are allowable.

An interesting interpretation for linear costs is given in Chakka & Mi-
trani [9]. In this model the customer are the servers of a multi-server queue.
They are subject to failure (with rates A;), and are repaired by a single re-
pairman (with rates p;), which is the server in our model. If we assume that
a class j server has a service rate c;, then minimizing ), ; 1c; corresponds to
maximizing the total service capacity.

The condition A; < --- < A,, is essential; to illustrate this, we give an
example with linear costs where no list policy is optimal. (A list policy is a
policy if all customers are ordered (the list) and served according to this order.)
For our example we choose a model with three customers and the following
parameters: Ay = 2.00, A2 = 1.00, A3 = 0.10, p; = 3.15, pe = 2.00, p3 = 1.00,
c1 = 1.00, c; = 1.00 and c3 = 0.05. We see that pijc; > pace > pscs and
A1 > A2 > A3, making this model fall outside the scope of theorem 3.7.2. For
each of the 24 different policies we computed the average holding costs. For the
six list policies the values are given below. Each list policy is characterized by
its list, thus policy {a, b, c} indicates the policy which gives highest priority to
customer a, and lowest priority to ¢, and its value is denoted by v(a,b,c). The
values are as follows: v(1,2,3) = 0.8803, v(1, 3,2) = 0.9338, v(2, 1,3) = 0.8806,
v(2,3,1) = 0.9285, v(3,1,2) = 0.9569, and v(3,2,1) = 0.9559. Thus (1,2,3)
is the best list policy. However, let us consider the policy that gives lowest
priority to the third customer, that serves customer 1 in state (1,1,0), but
serves customer 2 in state (1,1,1). Computations show that this policy is
optimal, with value 0.8800. This shows that there need not be an optimal list
policy.

We could leave it at that, but let us try to gain some more insight in the
model by giving a heuristic explanation for this phenomenon. Customer three
plays a role of little importance. It fails seldomly (as A3 = 0.10), and if it
has failed, it has the lowest repair priority (as c3 = 0.05). The parameters are
chosen such that if only the customers 1 and 2 are available for repair, then
customer 1 gets served first. However, if customer 3 is also at the queue, the
time it takes to repair customers 1 and 2 plays a more important role, as this
determines the instant at which the repair of customer 3 begins. To start repair
early on customer 3, service should start with customer 2 (cf. theorem 3.7.2, as
A2 < A1). The parameters for customer 3 are chosen such that the availability
of customers changes the order in which customers 1 and 2 should be served.

In Koole & Vrijenhoek [40] these results are also derived, and additional
references are given. Furthermore, we derive policies which are asymptotically
optimal. For the case that the server idles most of the time, the pc-rule is opti-
mal; for the heavy traffic case the SIP is optimal if gic1 /A1 > -+ > pmCm/Am.






Chapter 4

Proofs of dynamic programming results

4.1. Proofs of chapter 1

Proof of lemma 1.4.1. By induction on n. The case n = 0 is the condition
on the cost function. Now assume that (1.4.2) to (1.4.4) hold up to n. First
we determine the optimal action at v™*! in (i, ). Consider the dynamic pro-
gramming equation (1.4.1). If : = j then both terms in the minimization are
equal by (1.4.4), symmetry. Thus, again by symmetry, it is enough to consider
1< .

It is easily seen that (i — )T < (j—1)F, i = 1)T < 7,4 < (j—1)* and
1 < j, from which follows, by (1.4.2), that the 4 terms in v(":ﬁ corresponding
to assigning the arriving customer to queue 1 are one by one smaller than
the terms corresponding to assigning to queue 2. This gives us that sending an
arriving customer to the first queue is better, even if we knew where departures
would take place.

Note that combining (1.4.3), monotonicity in the first queue, and symme-
try gives v(';’j) < 'U("i’jﬂ), monotonicity in the second queue, and that (1.4.2)
and symmetry gives v&jﬂ) < v("iH,j) ife> 5.

Now we prove (1.4.2) for v™*1. The case i = j follows from symmetry.
Thus assume ¢ < j. Because of this, assignment to the first queue is not only
optimal in (¢, j), but also in states like (z,7 — 1). We have

2 2
MV, j-1) S M1yt 41,5)
by (1.4.2) if ¢ > 0 and by monotonicity in the second queue if 7 = 0;

A(L = m)oisn gy S Al = B0y )

and
A(L - N)Iw(ni+z,j—1) <A1 - :u')/“}(ni+1,j)
by (1.4.2) if i < j — 1; in case : = j — 1 we have

ML= )iy a1y + AL = p)pvd s 5 <

(L =)o 1yt 1) T AL = )pvi o)
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by symmetry if ¢ > 0 and monotonicity if 2 = 0; we have
A1 - #)Z”Fin,j) <AM1- :“')va£+1,]'+1)

by (1.4.2); . -
(1= Np v i1y S (L= Npo_ny+ 5

and
(1= N = v i) < Q= Nl = wv_1y+ j1)

by (1.4.2) if < > 0 and monotonicity if ¢ = 0;

(1= X1 = Wpvfipr,jo1y < (1= N1 = p)p )

and
(1= N1 = w015 < (1= V(1= m)*0f j1a)

by (1.4.2). Summing all terms gives v("iill’j) < v&";il).

We continue with (1.4.3). If ¢ + 1 < j, then also ¢ < j and assignment
to the first queue is optimal in both (¢,5) and (14 1,7); if ¢ + 1 > j, then
assignment to the second queue is optimal in both (%,7) and (41, ). Choose
action 1in (¢4 1,7) if § + 1 = j. Then the optimal action in (i, j) is the same
asin (i +1,7). Showing v < v{{] ;) can now be done by using (1.4.3)
on all corresponding terms, unless ¢ = 0, then we have equality in all terms
corresponding to departures in queue 1.

The last equation, 'U(Tj; = v("j',*;.i, follows easily. o

Proof of lemma 1.5.1. By induction. We will check (1.5.1) to (1.5.3) for
all possible realizations of U,y;. From the induction hypothesis we have that
all relations given below hold for each realization of Uy,...,U,. We start with
(1.5.1). Assume 4;, < ¢j,. The case i;, = i;, is a special case of (1.5.3). If
Upi1 € [Ez<y Az, Ez<y Azz+Azyqzy) an arrival occurs. Let j* be the shortest
queue in i + ej,, i.e. the optimal action in (y,% + €;,). Then, if j* # j;,

(1.5.1)
n-+1 — : n n
(yites;) — mjm{v(y,iﬂjl re)t S Vigives +ep) S

s _ yn+l
V(Z,i+e,~z+ej.) = mjm{V(Z,i+e,-,+e,~)} = V(Z,iﬂjz)-
If j* = j; then (we omit the terms with V"+1)
nbin{‘/(zﬁ'f'ejlﬁ'ej)} s V(’ylwi'*'ejl +ej2) = nb'in{.‘/(‘;vi'*'ejg +e.i)}'

U, € [Ez<y Azz + )\zquy,zzgy Azz), then trivially

n
Vivires) S Vigsites,)-
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We took () < (j+1) if i(j) = i(j+1). However, by (1.5.3), the ordering in case
of ties can be taken arbitrary. Now we can make sure that queue j; is served
in ¢ + e;, and 7 + e;, for the same value of U,y1, by taking queue j; first in
it +e;, amongst the queues with 7;, 4+ 1 customers and by taking queue j; last
in 7+ e;, amongst the queues with ¢;, customers. Similarly, we can assure that
queue js is served for the same values of U,41 in 7 4 €5, and ¢ + ¢j,. Now, if
Unt1 € [y + (5 = D)y, v + jp) with (j) # ju1 or jz,
(1.5.1)

V(Z,(Hejl—e(j))*) S V(Tzl,(i+ej2—e(j))+)'
If (j) = j1 then, if ¢;, > 0,
(1.5.1)
Ve S Viite,—ei)

and, if 25, =0,
5.2)
Vi < V(rxl,i+ej2)-
If (j) = j2 then
(1.5.1)
‘/(x,i-f—ejl —ej,) = (z,2)"
If Upy1 > v+ mp, then
" sy
V(w,i+ejl) < V(z,i+ejg)'
We continue with (1.5.2). If Upyq € [ZKy )\W,Ez<y Azz + AzyQay) and @ +
ej, = B, we have
mjin{V(TyL,i'Hlj)} = V(Z+ej1)’
if i + ej, # B then
5.2)
mjin{V(Z,Hej)} < V(Z,i+€jl) < mjin{V(Zyi‘Fen +€j)}'

The cases U, 41 € [EKy Azz+Azylay, ZzSy Azz) and Upt1 € [y+mp, 1] follow
easily. With respect to the departures we can again reorder the ties such that
all queues in % and ¢ + ej, are served for the same U,y;. Now look at the
departures at queue j. If 7 # 71,
Ve CLyn
(z,(i—ej)*) = V(z,(itej; —e;)F)
If j = j1 and 75, > 0, then
' n (1.2.2) -
(zi—ej) = Y(zy)
and if j = j; and 7;, = 0 then
Vi) < Ve
As for (1.5.3), the only non-trivial eventuality is when a customer arrives,

because the buffers might give problems. However, it is easily checked that the
smallest non-full queue in 7 and ¢* have the same number of customers. o
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Proof of lemma 1.7.1. By induction. Assume the lemma holds up to n.
We start with (1.7.2). Assume ¢, < ¢j,. The case ij, = i;, can be done with
(1.7.4). Let j* be the optimal action in (y,%+e€j,) at stage n+1. Then j* # js.
If 3* = 51, we have

Azy mjin{v(r;,i+en +ej/\B)} +(1- qu)’u&’i'*'ejl) s

" " (1.7.2)
QzyV(y,itej, +ej,) + (1 - q“y)v(y»i-i-ejl) p

mev@,i+e11 +ej,) + (1 - sz)v&,i+ej2) =
Qzy m]-in{v(nyyi+ejg +ej/\B)} +(1- qzy)v&’i+ej2)_
If j* # 71 we have
Gy m]in{v(ny,i+ej1 +ej’\B)} +(1- q:ny)v(.';,,i+ej1) s
) . (1.7.2)
" QoyV(yite;, +ejo) T (1- qmy)v(y’i'}'eﬁ) s
me'v(ny,i-l—ej;+ej~) +(1- ‘Imy)”?y,iﬂn) =
9zy nljin{vgy,‘i'{'ejz +Ej/\B)} + (1 - qu)vZJwi+ejz).

Now it follows that

Z Ay (‘hy Irljin{”&,i+ejl +e,-/\B)} +(1- sz)”&,weh )) <
Y

Z Azy (‘hy Iflj.in{”@,i+e,~2+ej/\13)} +(1- me)”(@,iﬂjz ))-
y

Concerning the departures, note that each customerin (z,i+e;, ) and (z,i+ej,)
is served. We have

n (1.7.2) n
’J"U(m,i-i—ejl —ej) S “v(m,i+ej2—€j)’

if 4; > 0. Summing this for all customersin state ¢ gives all terms, except those
corresponding to the extra customers in queue j; and j,. However, their term
is easy:

ll'v,(nm,i-}—ej‘ —€j;) = ﬂ’vzlz,i—f‘eh —ej,)"
The dummy term follows easily from (1.7.2). Summing the terms gives

n+1 n+1
v(a:,i+ejl) — v(:c,i+ej2)'
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We continue with (1.7.3). Let j* be the optimal action in (y,4). If 7* # ji1,
then j* is also optimal in (y,% + ej, ), and

Qzy m,.in{”&,weh +ej/\B)} +(1- qmy)’"&ﬂ*"?h) =

(1.7.3)

ToyV(yite;, +e) T (1= qﬂy)”?y,wen) hS
ToyVy,ite;e) T (1= Qay)v(y s =

Gzy mjin{”?y,i+ej/\B)} +(1- qu)v(ny,i)'

If j* = 71 we have
(1.7.3)
Gey Irl]in{”?y,i+ejl+ejAB)} +(1- qu)”?y,ﬁen) < ”(TL,H%) =

sz”(r;,ﬁeh) +(1- wa)”?y,n =

Goy mIn{vy sye,nm)} + (1= Gon)00 0

Note that this derivation also holds in case 7 +¢;, = B.
Now we have

Z Azy (qﬂﬂy mjin{v&,mh +CJ'/\B)} +(1- ‘Iwy)v(ny,i-i—eh )) <
y

S Aoy (2o min{ofy i1, + (1= 00y ).
Y

For all customers except for the extra customer in class j; we have

n (1.7.3) "
iu’v(a:,i+ejl —e;) < l‘l’v(:c,i—ej)'

The extra customer is considered together with a dummy term with coefficient
75

#v?myi"'ejl _ejl) = Mvzbzai)'
The coefficients of the remaining dummy terms are equal and the inequalities

follow easily.
Equation (1.7.4) follows easily. o
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Proof of lemma 1.7.3. By induction. We start with (1.7.5). The arrival
terms go the same as in lemma 1.7.1. Now consider the departures. If 7 4 e,
and i+ej, both have an empty group, there is only the dummy term. If i 4ej,,
but not ¢ + e;, has an empty group, (1.7.6) can be used, and what remains are
dummy terms with equal coefficients. If the system is in both ¢ +e¢;, and ¢ +e¢;,
up, we have

v&,i+ej1 —e_,‘,k+1) S v(::,i+ej2—ej,k+1)
for each j, by (1.7.5).

We continue with (1.7.6). Let j* be the optimal assignment in (y, ¢, k)at
step n + 1. Then, if 7 # B,

m

Z (‘Imy mjin{”&,i—ejl+ej/\3,k)} +(1 —'sz)”("y,i-e,l ,k)) <
J1=1
m n n (1.7.6)
Z (qw”(y,i—eh+e,~~,k) +(1- qu)”(y,i—ejl,k)> <
Jji=1

m(‘]zy’”(';,i+ej~ ,k) + (]‘ - qm?/)v(r;/»i’k)) =

m(fhy mjin{”?y,wej/\s,k)} +(1- me)v&,i,k))-

If ¢ = B then in each state (y,% — ej,, k) we can send an arrival to a full group:

m
Z (me Injin{?’@,i-eha-ej/\s,k)} + (1= €oy)vy iy, ,k)) <
Ji=1
m " n (1.7.6)
Z (qmyv(yvi—ejl vk) + (1 - qmy)v(yvi—eh 7’“)) S
j1=1

m(‘lwy"’(r;,i,k) +(1- sz)”&,i,k)) =

m(qmy nljin{"a;,i+ejAB,k)} +(1- %y)”(ﬁ,,i,k))-

This gives the inequalities for the arrival termns.
Concerning the departures, if 4;, > 1 we have

m n (1.7.6) n
y’zv(z,i—eh—eh,k-}&) S /‘l'mv(m,i—ejl,k+l);

Ja=1

if i;, = 1 we have

n — n
HMU(giej, k1) = B e k+1)"



Proofs of chapter 1 81

Summation of these terms for j; = 1,...,m gives the terms concerning depar-
tures, leaving dummy terms with the same coefficients.

We continue with (1.7.7). The arrival term can be shown similar to the
arrival term of (1.7.3). When the system is up or down in both 7 + e;, and ¢
the departure terms follow easily by induction. If ¢ +€;, > e and 4;, = 1, then
first (1.7.6) should be used.

Equation (1.7.8) follows easily by induction. Also (1.7.9) can be proven
easily. o

Proof of lemma 1.8.1. By induction. First we will show that

‘/A’U(r:}tej1 —se)+dP(t) < ‘/"U(ni+1.‘ej2 —3e)+d>P(t) if i, < iy

holds for all s, i.e. that it is optimal to assign to the queue with the smallest
workload. First assume that ¢;, — s > 0. This means that (¢ + te; — se)t =
(i — se)t +te; for j = j1 and j = jo. Then we have

(1.8.2)

/v8+tejl—se)+dp(t) = /va—se)++tej1 dP(t) <

/”(nz‘—se)++tej2dp(t) = /v8+tej2—se)+dp(t)'

Now assume that z;, — s < 0, but 7;, — s > 0. By (1.8.3), monotonicity, we

n n ..
have Vlitte;, —se)t < V(i se)ttey, - This gives

(1.8.2)
/v(i—i-tejl—se)‘f'dp(t) < /’U(i——se)‘*‘-l—tej1 dP(t) <
/(U(’%i—se)-*'+tej2dp(t) = /,U(Tfi+tej2—se)+dp(t)'

Finally assume that ¢;, —s < 0. We can rewrite (i+tej, —se)™ as (i—se)t+t*ej,

with t* = (¢t — s + 4j,)". Note that t* < ¢. Because (i + tej, — se)™ <
(i - Se)+ + t*e;, we have, by (1'8'3)’ ’Ua%—tejl—se)*' < ’U?i—se)J'-H*ejl + Thus

/v(ni-i-tejl —se)+dP(t) < /’U(T;i—se)‘*—}-t*eh dP(t) =

/vgi—se)++t*ej2 dP(t) = /v?i+tej2—se)+dp(t)'

Having shown that assigning to the smallest queue is optimal, the inequalities
will follow quite easily.
Consider (1.8.2). Let j* be the optimal assignment in ¢ + tej,. If j* = ji,

then
/Injin{/vgi+tejl+sej—une)+dP(s)}dP(t) <
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/‘/v?i+te_,~1+sej2—u,,e)'*'dp(s)dp(t):

/In:,,-ln{/v(i+te_.,~2+sej—u,.e)+dP(s)}dP(t)-
If 3* # j1, then

/Injin{/v?i+te11+sej—une)+dp(s)}dp(t) <

//va+tej1+sej* —une)+dP(s)dP(t) <
//v?i+tej2+sej. —u,.e)+~dP(s)dP(t) =

/Il-;in{/'Ul(’;—}-tejz-{—sej—u,,e)-*de(s)}dP(t)’

the second inequality by the optimality of the SWP as shown above.
Concerning (1.8.3), if j* is the optimal action in % + tej,, we have

1.8.3)

(
Hljin{/v(ni+sej—une)+dp(3)} < /v(ni+sej*—u,,e)+dp(s) <

/ Wittes +0,e —uneyt AP(5) = min { / Vire, +sej_u”e)+dp(s)}.
Equation (1.8.4), symmetry, is as usual trivial to prove. o

Proof of lemma 1.11.5. By induction. Assume the lemma holds up to n.
We start with the arrivals. Because

(1.11.6)
o .\
:u‘le(y,i—ejl +ej) + (”’ Ky )'U(y,i—ejl+e!(jl)+ej) <

. n —_ . n .
”’-72'0('%7:“31'2 +ej) + (:u’ /1'12 )'U(y,z—ejz-!-ef(h)-i‘ej)

the arrival term follows easily.

Consider the terms concerning departures. Let j7* be the optimal action
in (z,i — ej,). Because (i —ej,)j, > 0, j* < ji. Because f(j2) > j2 — 1 we
see that j* is also optimal in (z,% — ej, + ey(;,)). We distinguish two cases,
J* < j1and 3% = j;. Assume j* < j;. Then j* is also optimal in (z,7 — ej,)
and (z,% — ej, +e(j,)). We have

3 : n _ n
“11 mlln {p’lv(z,‘i—eh —e,) + (”’ Hl)v(:c,i—-ejl -—e1+ef“))}+

. : n _ no _
(n— ;le)mlm {mv(”ﬂ'"en +esup—en) T (n m)v(w-en +ef(m—ex+8m))} -
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Py (B2 imej, —epn) T (B = 15*)V(a i) —ejutesen)T
(1.11.6)
(1 — #jx)(l‘j‘”(nz,i—ejl+ef(j1)—ej.) + (B — pjs )”?x,i—e,-l+e,(j1)—e,-.+e,(j*,)) <
Poa (e V(e imey —epo) T (= B2 )0(ai—e;, —ejute o)) T
(- I’sz)(/‘j""?x,i—ej2+ef(j2,—ej.) + (1 = pje )”?x,i—eh+ef(j2)—ej‘+e,(j.))) =
Jojp TID {Hl”("z,i—ejz—e,) + (k= /‘l)v?x,i—ejz—ez-}-ef(;))}_*—
(1= g ) min { v s ey (= B i ey —erbesan) )

Now consider j* = j;. Then j; is an allowable action in (z,7 — ej,) and
(z,i—ej, + eg(j,))- Then we have

Hj mlin {l»"l”(na;,i—ej1 —e) T (n— m)'v("z’i_ejl —61+6f<z))}+

(1= nj) mlin {/‘l”(nz,i—ej1+ef(jl)—ex) +(n = 'u'l)v(nzai—ej, +€f(jl)—el+e.f(l))} =
iy (ﬂjz”(nz,i—e,-1~en) +(p - /‘jz)v(nm,i~ej1—ejz+efuz)))+

(1 = s )32V i—es, 4es 5y —es) T (= Bia )V imes tesiiry—ess erinn) =
i min {0y ize;, ey + (= BV ic;, —erte,)t T

(1 — mj,) mlin {#l”Fz,i—ej2+ef(j2)—e:) +(n - '“’)v("r,i—ejz +esiig) —ertes) }

The dummy transition follows easily by induction. o

Proof of lemma 1.11.6. With induction. Assume the lemma holds up to n.
The arrival term follows easily, like in the proof of lemma 1.11.5. Let j* be the
optimal action in state (z,¢). If j* # j1, then

Hiq mlin {”‘lv&,i—eh —ey) + (,LL - :u’l)v?z,i—ejl —ertegs(ry) }+
(/J’ - l‘l']l) Hllln {:u’lv&,i—ejl-l-ef(jl)—ez) + (Il' - /l’l)vzl:c,i—-ejl+8f(j1)—61+6f(1))} S

Hjy (l‘l’j*v?z,i—e]‘l —ej*) + (ll/ — g )v?zsi_ej1 _ej'+ef(j*)))+
i} } (1.11.7)
(,“'—l‘h)(’"]"”(mt’ﬂjﬁﬂﬂn)‘ej*)+(“_p‘f’ )v(‘”:i"‘eh+ef(j1)_ej*+‘3f(j*))) s

#Nj*”?z,i—ej.) + p(p — /’Jj*)v(nx,i—ej*+ef(j.)) =
ﬂmlin {'“’lv&,i—ez) + (k- ’”)v(nz,i—eﬁef(l))}'
If 7* = j1, then, because idling is allowed now,
i, mlin {/le(",;,i_-ej1 —ey t (8- #l)”(nz,i—ejl —€l+ef(l))}+
(= pjy) mlin {Nl”(nx,i—elere,(jl)—e,) + (1 - Nl)"’(nx,i—ejl +e.f(j1)"el+ef(‘))} <
By /w?z,i_eh) + (1 — pj, )N”(T;,i—ejlﬂml)) =
'umlin {ﬂ’lv?x,i—ez) +(n= “l)v&ﬁi—eﬁeﬂn)}'

The dummy transition follows easily by induction. . o
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4.2. Proofs of chapter 2

Proof of lemma 2.6.1. By induction. Assume the lemma holds up to n. We
start with (2.6.2). The terms regarding arrivals at the first center follow easily.

Consider the departures from the first center. Let j* be the optimal action
in the first center in state (z,%,7). If j* # ji, j* is allowable in state (z,7 —
€j,,% + ej,) and the term follows by induction. If j* = j;, and 7 = e;,, then
idling is the only action in state in state (z,7—ej,,%+ej,) and the term follows
by induction. If there is at least one more customer available, say in queue jg,
and j* = 71, then

: ~ n ~ ~ n
nljln {ll‘jv(m,i—eh —ej,itej +ej) + (/j’ - ”‘.’i)v(z,i—e,-l,i+ej1)} <
. . (2.6.2)
Il’ij(m,i—eh —ejz,i-i-ejl +e,»2) + (lu’ - ”’]2 )v(z,i—ejl,i+ejl) S

. . (2.6.2)
/l‘jzv(z,i—ejl,i+e,-1) + (/‘ = K, )'U(:z:,'i——ej1 Jitej;) <

ﬁ’jl v?:r,,i—-ejl sitej;) + (ﬂ' - ﬂ'jl )v?x,i,i) =
m].in {ﬂj”(’l,z-e,-,we,») + (- ﬂj)”&,i,i)}

Consider the departures from the second center. The optimal action in (z,%,1)
is allowable in (z,7—e;,,i+ej, ). Therefore the term follows easily by induction.
Equation (2.6.3) follows from a result in section 3.6. o

Proof of lemma 2.6.3. By induction. Assume the lemma holds up to n. We
start with (2.6.4). Assume n+1 <45 The terms concerning arrivals follow im-
mediately, using induction, because n < ¢;. Consider the terms corresponding
to departures from center 1. Let j* be the optimal action in state 7. Because
25, > 0, j* is also optimal in 7 — ej,. If j* # j;, then the terms follow easily by
induction. If 7* = j;, then

p’jl Il’ljill {ﬂjv&,i—ejl —ejitej; +ej) + (ﬂ’ - ﬂ’j)v(nz,i——ej] ,'i+ej1)}+
(- i) mjin {ﬂj"’("z,z—ej,i+e,~) + (B - ﬂj)”(nz,i,z')} <
Py ﬁjzv?m,i—ejl —ejy itei, +ej,) + fij, (B — P, )'U&nm,i—ejl ,i+ejl)+
(/}’ = R, )ﬂjzv&,i—ejz Jitej,) + (ﬂ’ = fij, )(ﬂ‘ = fij, )v&,i,i) =
ﬂ'jz nlJin {ﬂjvinz,i—Ejz —ej,i+e_,~2+6j) + (ﬂ' - ﬂ] )”ina:,i—ejz,i+ej2)}+

(ﬁ' - ﬂjz ) Hljlll {ﬂ‘j’v?z:,i—ej,i+ej) + (ﬂ' - ﬁj)v&ﬂﬂ)}'
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Consider the second center. By (2.6.5), serving queue j is always optimal. The
terms follow by induction. Note that we used (2.6.5) at step n with at least
n + 1 customers in queue j. Also the dummy term follows easily.

Consider (2.6.5). Again the terms concerning arrivals and the dummy tran-
sition follow easily. The optimal action in the first center of (z,%,7) depends
only on 7. Because the number of customers in queue j in state (z,%,7 — e;, ),
(z,%,2—e;) and (z,%,4) is i;—1 or more, there are at least n customers available,
meaning that, by (2.6.4), the same action is optimal in each state. Therefore
also the terms concerning departures from the first center follow easily. Con-
cerning the second center, serving queue j is optimal in each state. Also these
terms follow easily by induction. o

Proof of lemma 2.6.6. By induction. Assume the lemma holds up to n.
We start with (2.6.6). Assume n + 1 < 41 +45. The terms concerning arrivals
follow immediately, using induction, because n < ¢; + ¢2. Consider the terms
corresponding to departures from center 1. In 7 and 7 — eq it is optimal to serve
queue 1. Thus

Y mjin {ﬂjﬂ&,z-el —ejiterte;) T (= 1)Uz ey iter) }"‘

(ft = fi2) min {ﬂjv&,a_ej,mj) +(p— /11)”&,%,1')} <
P20y ey —ep itertes) T H1(E = f2)V(5 5 e, itenT
(o — ﬂl)ﬂzv&,z_ez,HeZ) + (= fin) (/2 — ﬂz)v&,i,i) =
fio mjln {ﬁjv(nx,i—eg—ej,i+ez+ej) + (= i )vzlz,i—eg,i+e2)}+
(A — fi2) mjin {ﬂjv?z,i—Ej,i+ej) + (- ﬂi)v(nwﬂ,i)}'

Consider the second center. If ¢; > 0, serving queue 1 is optimal in ¢ + ey, ¢
and ¢ + ez, using that (2.6.7) holds for 41 + i3 > n+ 1 at stage n. Then

B 1'1’%7111 {ﬂjv?x,i—el,i+el—ej) + (/"' - ll’j)v(na:,i—-el,i—i—el) }+

(= fia) min {#j“("z,z,i—ej) + (n - Nj)”(nm,i,i)} =

ﬂlulv?z7i_elai+el_el) +/~L1(ll/— Nl)v(n“’vi'ehi"'el)-l_

o o (2.6.6)
(B = )05y + (B = ) (B — p1)v(p 50 <

ﬂzﬂlv?z,i—eg,i+e2—e1) + /22 (/l' - /‘l’l)v?z,i—eg,i+eg)+

(ID’ - ﬁZ)Mlv?m,i,i—el) + (ﬁ' - ﬂ'z)('u' - 'u'l)v("z’i’i) =
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ﬂ'2 m’m {/‘l’j,‘]?ﬁ!,i—CQ,i-i-Bg—ej) + (ll’ - P‘j)v&,i—ez,i-{-ez) }+

(ﬁ' - ﬂ'z) In]ln {F’jv'(nm,i,i—ej) + (M - ”‘j)v?w,i,'i)}‘

We wanted to prove the inequality for all 7 with n+ 1 < ¢; +¢3. We used at
stage n (2.6.6) with ¢; + i3 + 1 > n customers in the second center.
If ¢4 = 0, then i3 > 0. Thus serving queue 2 is optimal in ¢ and ¢ + es.
Then
e II;II] {/’l’j’v(z:,i——el,i—i-el—ej) + (Il’ - ll’j)v(n:c,i—el,'i—}-el)}_'_

(5= ) min {3 iy + (= 100} <

ﬂ'lll’zv?ﬁﬂ—ehi‘i'el—ea) + i - Il'z)v{lwyi—el,i+e1)+

o o " (2.6.6)
(B — #1)#2”Fm,i,z’-e2) + (o= i) (p — #Z)v(z,i,i) <

I]’Z/L2v&,i—e2,i+eg—ez) + ﬂ2('u - #z)vl(nmwi_ehi"'e?)-*-
(= f2) P2y 55— cy) + (B — i) (1 — p2)0s 55y =

fb2 IIEIII {ﬂjv?ﬁ,i—eg,i+e2—6]’) + (/j’ - ll’j)v?w,i—eg,i+eg)}+

(A — fiz) min {M”&,i.i~ej) + (= 5) 00 }
J

Also the dummy term follows easily.

Consider (2.6.7). Again the terms concerning arrivals and the dummy
transition follow easily. The optimal action in the first center of (z,%,?) depends
only on i. Because the number of customers in center 2 in state (z,%,i — e1),
(z,%,i — e2) and (z,%,1) is 41 + 42 — 1 or more, there are at least n customers
available, meaning that, by (2.6.6), the same action is optimal in each state.
Therefore also the terms concerning departures from the first center follow
easily. Concerning the second center, we have

it {0 iy + (= 1o |+

(= pr)min § vl 50 oy + (10— p5)00 50 ¢ <
7 J

PAH2( ey —e) T B (B = 12) V(555 e0)F
(= )2V 55 ey) + (= 1) (= p2)V( 55 =

B2 mjfm {ﬂj”&,i,i—ez—e,) + (n - /‘J')”(nm,i,i—ez)}"'

(k ~ p2) min {ujv("m,a,i_ej) +(p - /bj)v&,;,z-)}- o
2



Proofs of chapter 2 87

Proof of lemma 2.7.1. By induction. Assume the lemma holds up to n.
In all 3 equations the term corresponding to arrivals and the dummy term go
easily with induction, like in the proof of lemma 1.11.5. Therefore we only
consider the terms regarding departures at the first and the last center. We
start with equation (2.7.1). Serving queue j, in (z,7 — ej,,% + €;,) is optimal,
thus the terms corresponding to departures from the first center of the Lh.s.
are:

Ky /’szvinz,i—ejl —ejy,itej; tej,) + iy ([L = Hj, )vzlm,i—ej] yitejy )+
(B = 1 ) n Vi —e, iesy) T (10— B ) (= 13 ) V(e -
We have to show that this expression is equal to the one where all j; and j»
are exchanged. Number the 4 terms consecutively. The first and 4th term are
both symmetric in j; and jo. Term 2 with j; and j» exchanged is term 3.
We continue with the second center. First assume 7 # 0, thus there is a j3
such that ¢;, > 0. Then we have:
Hjq ”’jsv?z,i—ejl vtej; —ejs) + Hjy (’1‘ — HKjs )v?:c,i—ejl yitejy )+
(1 = B s ¥ iime ) (= pg ) (1 = B3 ) V(5 )
We use (2.7.1) twice, once with 7,7 — e;, for terms 1 and 3 and once for terms
2 and 4.
When ¢ = 0, we need (2.7.3) to prove (2.7.1). The terms corresponding to
departures in the second center of the lLh.s. are: .
gy gy v?m,i—ejl,o) + Hiq (lu' = K )v(n:c,i—ejl 1€jiq) + (lu‘ — Hj )P’U(nz,i,o)'
Equation (2.7.3) immediately gives the expression wanted.

Now we prove (2.7.2). The terms corresponding to departures from the
first center go directly with induction. Thus the following terms remain:

Hji g, v(n:c,i,i—-ejl —ejy) + 1, (/1’ — Hj, )Iv(nz,i,i—ejl )+
(“ — Hjy )/’szv(nz,i,i—ejz) + (/L — Ky )(/L — Hj, )vzlz,i,i)‘
This expression is symmetric in j; and js.

We continue with (2.7.3). The terms concerning departures at both centers
are:

B 0200 ey ey 5 (= 1500 s, oy 5 0 s, o)t
Hijy (/J’ — Kj )ru’jz vin:c,i—ejl —ejy €5, +e5y) + 1, (/L = K5 )(/‘L — Ky, )v(nz,i—ejl 1€ )+
Py (B = P )3 V0 e, 0y F Mon (1 = iy ) (B = 152 )00 e o) T
(1= 13 by Ve sy + (= B3 ) BB = 15005 5.0y + (B = 0 JH* V(5 5.0) =
B P33 Ui —esgesg) i (B = 15 505, e e e T
/"?l (3“ — Hji — Ky, )v&,i—eh ,0) + By (ﬂ’ = Ky )(31“ = Hj — B, )v?m,i—ejl 1€y )+
(1= p3 )(3p = gy = 13 )00z 5,00 = (1 = B )1 = 152 )00 5.0)-
Number the terms consecutively. For term 1 and 2 we use (2.7.2) for i — e, —
€j,,€j, + €j,, for term 3, 4 and 5 we use (2.7.3). Term 6 is symmetric. o
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4.3. Proofs of chapter 3

Proof of lemma 3.2.1. By induction. We start with (3.2.4). Assume 7;, <
ij,. The case ij, = ij, is a special case of (3.2.6). We start with the term
corresponding to arrivals. Let j* be the optimal assignment in (y,7 + ej,).
Then we have

. : n _ . n
Azay;itej, mjm{"’(y,i+e,~1 +e_,-/\B)} +(1 dzay;ite;, )'U(y,i+e,-1) <

(3.2.4)
n . n
Goaysi+es; Uy,ites, +ege) T (1= Goayiite;, 0y ite;) S

(3.2.1)+(3.2.5)
. n — . n
Qzaysite;; U(y,ite;,+e;x) + (1 Azay;ite;, )”(y,i+e,-2) <

n X n _
Goaysites, Vy,ites, +egn) T (1= Toavsites, Wiy ites,) =
: n . n
qway;i‘*‘ejz In";'n{,v('y,’l:--f-(:‘j2 +ejAB)} + (1 - qzay;"“"ejz )v('y,‘i+ej2)
if 7* # j; and
. : n - . n
Qrayite;, mjm{"’(y,i+e,-,+ej/\3)} +(1 Qzay;ite;, )”(y,i+e,-1) <

(3.2.4)
n n
Gzaysitej, V(y,itej, +ej,) T (1 = Geaysite;, Volyires) <

. (3.2.1)+(3.2.5)
n
zaysites, Uy itej, +ej,) T (1~ Goaysite;, )'U(y,i+ejz) =

Qzay;ite;, T’(T;,,i+ej2+e,»l) +(1- Qzay;ite;, )”&,H%) =
oo Wy iy om0} + (1= Qoo it
if j* = j1. Note that j° cannot be equal to j;. Now let a* be the optimal

action in (z,¢ + ej,). We have

H{}“ { Z Azay ((Ia:ay;i+ej1 mjin{”(ny,i+ejl+ej/\13)} +(1- Qzay;ite;, )"’&,H—eh))} <
Y

. 3 n . n
Z Aa}a*y (q:ca*y;ﬁ-eh nl].ln{v(y,i+ej1 +ej/\B)} + (1 - qwu“y$l+"«‘j1 )v(y,i+ej1)) S
Y

. n n —
2 deary (’ha*wiﬂjz In}'n{’v(y,i"'ejz"‘ej/\B)} + (1 = tsarysivey, )v(?/»i+ejz)) =
Yy

m(}n { Z Azay (qzay;i+ej2 nl}n{v(nyvi"l'ejz te; AB)} + (1 - q:cay;z'+€j2 )v&1i+ejz )) }
Y
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Consider a departure at queue j, j # j1,j2:

(3.2.4) (3.2.5)
.. n .. n
Hjites; Uiz ite;, —e;) S Hjite;, U(z,itej, —e;) <

.. n . — .. n
Hjites, V(e ite;, —e;) + (I”Jz+eh Hjite;, )v(z,i+ej2)-

The terms corresponding to a departure from queue j; and j» will be con-
sidered together. We have v

. <ol . = vt )
($71+ej1—ej2) - (:c,z+e“ _611) (EvH‘er '“612) -
v("z’i“h_eh), by (3.2.4). AS pij ive;, + Bjpite;, 2 Hjrite;, T Kijzite;,» We have,
together with (3.2.5),

. . n .. n
:u]lH-ejl v(z,H—ejl —ej;) + iu’]zH-ejl v(m,z’+e]-1 —ej,) <
. n .. n
lu"jll+ej2 v(a:,i+ej2—ej1) + iu'.727'+ej2 ,U(Zﬂ:'i'ejz '—ejz)+
. . . — o — [ n
(#4, itej, T Hjsites, — Mjrite;, = Misite;, )U(:c,i+ej2)'

Note that we did not use (3.2.6) in the above proof. However, we used it for
the case 4j, =1,,.

Now we prove (3.2.5), monotonicity. The arrival term is easy. Let a* be
the optimal action in (z,7 + €, ).

min { 7 Mooy (@rousi min {0y i1, )} + (1= Gty ) } <
Yy

" . (3.2.5)
> Asary (Gear ity g,y + (1= o)y <
Yy
n (3.2.5)
Z )‘za*yv(y,i-}-eh) S

Y

) : n . n _
Z )\za"y (Qma*y;z-l—ejl Injln{v(y,i+ej1 +e; /\B)} + (1 ~ Qzarysite;, )v(yvi"‘eh )) -
Yy

In‘;ln { Z A:z:a,y (q:z;ay;i-l—ejl rn‘}n{vzly,i-{—eh +e; /\B)} + (1 - qza'y;i'i_ejl )v&7i+€jl )) }
Y

Consider a departure at queue j, j # j;. Then
" (3.2.5) " (3.2.5)
PiiV(zime;) S Hii¥(zjite; —e;) S
Pogite;, V(s ites, —e;) T (Hii = Hiites, V(s ive; )
because pj; > pjite; - By v("m ime;,) < v?w o S v("m ite; ) We have for the term
k] 1 ? ? 1

corresponding to a departure from queue j;

.. n . . n .. .. n
/1’311"1(:c,i—e]-1) < /1']1z+ej1 v(a:,i) + (:“Jzz - :U'le—i—ejl )v(a,-,i+ej1)



90 Proofs of dynamic programming results
if pji — pjrive;, > 0 and

ini¥(pi—e; ) T (Bivides, = ini) V(i) S Bivites, Vizi)
if pjyite;, = Mjri 2 0

We continue with (3.2.6). Let j* be the optimal assignment in (y,4*). We
know that j* # j;. We have

Azay;i nlj.in{”&,i+ejAB)} +(1- Qzay;i)”(ny,i) <
(3.2.6)

qtﬂy;i”&,i+ej.) +(1- ‘Izay;i)v(ny,i) <

. L (322)+(.2:5)
qma?/§iv(y,i*+ej*) + (1 - ‘Izay;i)'”(y,i*) <

Q:x:ay;i'v(ny,i*-f—ej~) + (1 - goaysir )IUZ;N'*) =
doeie M0y} (1= e 1
if 5% # j1 and
Qzay;i n;in{v(ny,i'i'ej/\B)} +(1- Qway;i)va,,i) <
. I CE )
GoayiiV(y,ite;,) T (1~ Goaysi) vy <
i} L (3224625
Taay;i¥y,ir+e;,) T (1= Gaaysi)v(y,iv) <
%ay;i'”(ny,z‘~+ej,) +(1- qmay:i*)”?y,i') =

Qzay;it m].in{'"&,iwej/\B)} + (1 = GoaysisV(yir)

if j* = j;. The term wanted is derived in the same way as for (3.2.4).

The departures at queue j, j # j1,j2, go similarly as those in (3.2.4). The
terms corresponding to a departure from queue j; and j» will be considered
together. Note that 'v("z,i‘_ej;’) < v?z,i*—-eh)’ by (3.2.4). Thus, by pj,: > pj,e

and fij,; + fj,i > [y i + fj,i-, We have

(3.2.6)
n om
Kiri¥(zi—e;)) T Hi2i¥(zi-c;,)

.. n ..t
Fjri¥(eix —e;,) + Hjai¥(g % —ej, ) <

. . (3.2.5)
Hjaix V(g i —e;,) + (1ji — pjain + /l'jzi)/"'(;i.i*—ejl) <

. . n . . n R — .. PR — . n
:u']zl’v(:c,i'—ejz) e v(z,i“—ej]) + (:U‘Jll Mejpir + fjas — fhjyix )v(z,i*)‘ o
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Proof of lemma 3.3.4. By induction. We start with (3.3.5). Let j* be the
shortest queue in state ¢ + kej,. Because i;, < 1j,, j* does not depend on k. It
is easily seen that geaysitke;, < Gzaysi+he;,- If y* # 71, we have

Z Bk (qzay;i+kej, HI}H{Z ﬁl”?y,i+kejl+lej)} +(1- Qzay;itke;, )”(ny,i+kej1 )) =
k l

(3.3.5)

Z Br (Q£ay;i+kej1 Z ﬂl'v(ny,i+kej1 +lejx) +(1- Tzay;itke;, )v&,i«}-ke“ )) S
k l

.3.1)
.6)

(3.3.
n (3.3
n
P (‘hawﬁken > Pioy,ivhes,+ies) T (1= Goaysivie;, )“(y,i+kej2)) =
k l
n n —_
Zﬂk (‘hay;i+ke;2 Zﬁlv(y,i+kej2+lej~) +(1- Jzay;itke;, )v(yvi+kejg)) -
k 1

M n n
> (qmy;m% min{ D Aoy isne, +iey } + (1= Gaaysines, )“<y,z’+kem)-
k l

If j* = j1, then
Zﬁk (q:cay;i+lcej1 mjin{z BrvGy ivke;, +1e,) ) + (1 = Goaysithe;, )_v(T;/,i+kej1)) <
% 1

. . (3.3.5)
Z,Bk (qzay;i—i-kejl Zﬂlv(y,i-i—k:ejl—}—leh) + (1 = Goaysi+ke;, )1}(y,i+ke]~1))
k 1

n n
Zﬂk (qmy;i+kej1 Zﬂlv(y,i+kejl+lej2) + (1 = aaysithe;, )”(y,i+kej2))
k ]
. n —_ . n —_
k 1

Z/Bk (Qzay;i+kej2 Hbln{z ﬁlv'(ny,i+kej2+le]—)} + (1 ~ Qzay;itkej, )vgl/’i‘f‘ken)) :
k l

The departure term follows as in the proof of lemma 3.2.1.

Consider the departures. Note that, by (3.3.7), we can assume 7;, < 7j,. If
15, > 0, the term follows easily by induction. If 4;, = 0, the term on all servers
except j; also follow by induction. For server j; we have

(3.3.6) (3.3.5)

Zﬁkw(z,(i+keh—e“)+) < Zﬂkw(z,i-i—kejl) < Zﬂkw(x,prkejz)-
% % %

The terms corresponding to the dummy transition and the immediate costs
follow easily.

Also (3.3.6) and (3.3.7) follow with induction. o
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Proof of lemma 3.3.7. By induction. We start with (3.3.14). Assume
ij, < 4j,. The case ij, = ij, is a special case of (3.3.16). We start with the
term corresponding to the routable arrivals. Let j* be the index of the shortest
queue in (y,? + ej,). First note that assigning to the shortest queue is still
optimal: if a customer arrives, it is favorable by (3.3.14), and the probability
that a customer arrives is by (3.3.9) smallest, which is favorable by (3.3.15).
Then, if ]* # j17

: 0 n ~ (1] n
II]'].ln{qa:ay;i+Ejl JJU(y,i+e_,-1 +e;) + (qzay - qzay;i+ej1j)v(y,i+ej1 )} <
o " 3 o . (3.3.14)
q:cay;i+ejl]""U(y,i.+ej1 +ejx) + (‘Ia:ay - qzay;i+e,~1j" )v(y,i+ej1) S
o . ) o . (3.3.10)+(3.3.15)
qmay;i—}—ejlj‘ v(y,i+ej2+ej=-) + (‘Imay - q$0y§i+€j1 J* )’ll(y,i+€j2) <
0 n ~ 0 n —
Qa:ay;i+ej2j'v(y,i+ej2 +ejx) + (Qza.y - qmay;i+e,-zj' )'U(y,i—}-eh) -
: 0 n ~ 0 n
Injln{Q:cay;i+ej2jv(y,i+ej2 +ej) + (‘hay - qmay;i+ej2j)v(y,i+ejz)}'
Ifj = J1, a.ssume that j is the shortest queue in ¢ 4+ €;,. We will use that

. . e
qway,1+e“1 < qmy’we“]1 < qzay,t+enh’ the last inequality because j* is also

the smallest queue in 3.
{0, 1 e + (s = i it sy} =
j zay;ite;; J° (y,it+ej, +ej) Tay zayjitej, j/7(y,i+ej;)
. . i o . (3.3.14)
Qa:ay;i+ejljv(y,i+ej1 +ej) + (Qacay - q:z:tzy;‘H—ej1 j)v(y,i+ej1) S
0 " : o . (3.3.15)
qq:ay;i+ej1 j’v(g/,z'~4-tzj1 +ej,) + (‘hay - qmay;i+ej1j)v(y,i+ejz) <
0 n ~ 0 n —
q:cay;i+ej2j1 v(y,i+ej2 +ejy) + (‘Imay - qmay;i—f-ejzjl )v(y,i-lv-ejz) -
: 0 n ~ 0 n
rnjln{qzay;ii-ehjv(y,i-l-eh +ej) + (‘Imay - qzay;'i+e12j)v(y,i+ej2)}'
Note that j* cannot be equal to js.
Concerning the non-routable arrivals, we have the followmg We will show

that if there are numbers ¢ ql1 ‘112 such that 2] & ql, < E] & q, for1<k<m
and l; < Iy then

m m m

~J .n =] _~j\,n =3 n
Zqlxv(x1i+e(1,)+e(j))+Z(qlz—qll )'U(%H'eul)) < quzv(mwi+e(lz)+e(1‘))' (4'3'1)
i=k j=k j=k

Suppose the relation holds for fixed k. Consider k— 1. If qk 1< q , we have
by (3.3.14) and (3.3.15),

~f— 1 ~k—1 ~k—1\, n ~k—1 n
a, (3 iteq,yterk-1)) + (qlz -4, )v(z,i‘l-eul)) < q, v(m,i+e(zz)+e(k—1))
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and the result follows easily. If (j{“l_l > tjlkz—l, we have by (3.3.14)

~k— 1 ~k—1 -1
a, (=c iteqyter—1)) = (qh qlz ) Y(z,iteq)+ew)) +qlz v(m iteq,)tek—1))

Thus it remains to show that (4.3.1) with ¢ replaced by ¢, with (jl.1 = cj{l for
i>k g = q, for j > k, and ¢f = ¢f + q,’j—l — G holds. It is easily seen
that EJ ks ql1 < EJ ks ql for ky = k,...,m, completing the induction step.

€]
Tay; 'L+e(¢)

are finished with the term concernlng the non-routable arrivals, in case (3.3.11)

holds for all k. If E " ql’1 < 2] 1 4, holds for k =1; and k > lz only, we can

show (4.3.1) for k = Iy, using the fact that Viositen e )<
1 J1

By taking ¢; = ¢ and [; and l2 such that (1) = j1 and (I2) = j2 we

(W+e(12)+e(m)
for all 73 and jo with I3 < 73 < I3 and I3 < j5 < l5, in much the same way as
the induction step above. Now, by adding a dummy term we get the arrival
term in a similar way as in the proof of lemma 3.2.1.

Consider the assignable server. Omit in the notation the dependence of
pon z. Let 7% be the index of the longest queue in (y,7 + e;,). Note that it
cannot be j;. We can take j* such that it is also the longest queue in 7 and
i +ej,. By (3.3.13), (3.3.14) and (3.3.15), we see that assigning the server to
the longest queue is optimal. We have

mlin{ﬂ'ji+ej1 v&ii—en —ep T (A~ Pites, )v&’i+ej1)} <

) ) o . (3.3.14)

Bitites Vyites —ese) T (A= Birite;, J00yive;) S
J1 J 1

. (3.3.15)
~ n o 1
Bjrites, Vyites, —ezo) T (B = Bjrite; Wiy ite;,) <

-~ . . n ~ 1 . . n =

Bivites, Wy ites, —ezo) T (B = Bjvites, Wiy ite,)) =
. ~ n (l i n

min{ it e;, U0y ite;, —ej) + (= fjite, )0y ite;,) )
j J2 J 72

Finally, consider the fixed server. Omit again the z in the notation of u.
(Note the similarity between what follows and the way non-routable arrivals
were treated.) We will show that if there are numbers Kji, s Bj, such that

E;-n:k W, 2 E;n:k wi, for 1 <k <mand l; <l then

Z“ﬂl Uiaiteqy)—ei)) = Z”ﬂz Uz iteay)—eiy) T Z Kty = F1 )V (zite,))

ji=k i=k
(4.3.2)
Suppose the relation holds for fixed k, consider k — 1. If Pr—11, 2 Hh—11,> W€
have by (3.3.14) and (3.3.15),

* n * n * * n
Fr—11 V(2 iteqy)—en-1)) < ll’k—llzv(z,i—ﬁ—e(lz)—e(k_l))+(luk—111 —/J'k—llz)v(a:,i+e(12))'
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Equation (4.3.2) follows easily. If uy_;; < pj_y;,, we have by (3.3.14)
P11, Yz iteqry) —eqeony) + (Bho—1ly = Po-11)V(z it eqy) —eay) S

* n
“k—llzv(w»i-i-e(xz)—e(k—l))'

Now (4.3.2) follows by induction, with p},; replaced by py;, + pi_17, — Bk_11,-
Using a similar reasoning as in the case of non-routable arrivals we find that
E;’;k W, 2 z;nzk 1, only needs to hold for k=1,...,5;,o +1,...,m.

Now we prove (3.3.15), monotonicity. The term concerning the routable
arrivals is easy:

. 0 ~ 0
IIllel {qmay;ijv(T;,iJrej) + (Q:cay - qway;ij)vaj,i)} =

. . ) . . (3315
Toay;i(1) Uyiteqy) T (eay = Qoayii()) 000 S

. @319 (3.3.15)
ToayV(yiteqy) S Toay¥(yite;) <

: 0 n ~ 0 n
Injln {qa:ay;i-{—ejl j'v(y,i+ej~1 +e;) + (qa:a,y - q@ﬂy§i+€j1j)v(yvi+e]‘l )}

Using (3.3.12) we can show

m m
)] (7) (7)
Z qmay§iv&7i+e(,~)) + Z (qﬁay;i'!'e(z]) - qmay;i)v(nw,i) <
j=lhi+1 j=h+1

m
() n
Z q$ay§i+e(ll)v(z»i+e(ll)+e(j))’
Jj=h+1

similar to the analysis of (3.3.14). Because

n

n n n
Y(z,3) < v(z,'i-i-e(j)) < ’U(ﬁl»i-l-e“l)) < v($7i+€ul)+e(,‘))

for 3 <1y, we have the term wanted.

The terms corresponding to the assignable server are similar to the terms
corresponding to the routable arrivals, the terms corresponding to the fixed
servers are similar to the term corresponding to the non-routable arrivals.

Equation (3.3.16) is trivial to prove. o

Proof of lemma 3.4.2. By induction. It is easily seen that v* = 0 satisfies the
inequalities. Assume the lemma holds up to n. We prove the inequalities for
the terms on the 7 classes and the terms on departures separately. Multiplying
with q’m“y, summing etc. give the complete inequalities. The terms on arrivals
are proven by considering the optimal action on the r.h.s., and then finding
an action on the Lh.s. for which the inequality holds. We start with (3.4.3).
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Consider an arbitrary customer class [. Assume the optimal actionin (z,i+e;,)
is blocking. Then we have (take blocking in (z,7 + ej,)):

bl + ,Uinz’i'i'ejl) S bl + vzlzvi"'ejz),

by induction. If the optimal action in (z,7 + ej,) is sending to server j;, we
take server jp in (z,¢+ ej,). Then we have:

n n
Iu(z,i+ej1 +ej,) < v(:c,i+ejz+ejl )*

If the optimal action is server j* # j; in state (z,7 + ej,), we take the same
action in (z,7 + e, ). We have by induction

n n
Y(z,ites,+en) = Vlmyites,+ejn):

Now we have

ngtizn {I{al = 0}(bl + qula’vi'f'ejl)) + Z I{al = j}v(nz7i+e.i1+ej)} s
J

Hzlzi,n {I{az =0}(b; + ’U&’Heh)) + Zl{al = j}v&yﬂejz_,_ej)}
j .

for all I. The term, concerning the arrival process, but without arrivals, goes
by induction. Consider the terms corresponding to departures. Terms for
J # J1,J2 are done with induction. With the help of (3.4.4) we have, using

Ky 2 s
Mgy V(g T s V(g ige;) S Hin¥(z,) + Min ”&,Heh) < 150005 F B ”(nz,i+ej2)-
n+1 n+1
(z,i4ej,) = “(z,i4ej,)"
We continue with (3.4.4). Take in (z,¢) the optimal action of (z,7 + e, ).
Then (3.4.4) follows immediately.

Consider (3.4.5). Let j* be.the optimal action in (z,%) for some customer
class I. If 7* # 71, take action j* on the Lh.s. and we have

Combining these results gives v

Ua,itesetes,) S 01T Viaive,n)
by induction. If the optimal action is ji, reject in ¢ + ej,. Then
b+ ’Uin:z:,i+ej1) <bi+ Il],(n:'c,'i+ej1 )

If the optimal action is blocking, take blocking as action on the Lh.s. For
departures at servers 7 # j; we have

P’jv?z,i-i-ejl —e;V0) < iu'Jbl + p’jv(nm,i—ejvo)
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by induction. For server j; we have
Ky v?x,i) < 1 by + B 'U(né:,i)'

This completes the proof of (3.4.5).
Rewrite (3.4.6):

n n n n
Yig,ite;;) T Uzjites,) S Uasites,+esy) T Vi)

In the following table one can see the optimal actions of the r.h.s. in the left
columns and the actions establishing the inequalities in the right columns. Let
7* = min{j|(¢ + ¢j, +€j,); = 0}. Note that j* # ji, j2, and that j* cannot be
optimal in ¢, due to the choice of j;. The terms are identified by their states.

itej, e |t fite |tteg,
0 0 0 induction
0 J1 0 J1 | equality
0 J2 J2 0 equality
7 0 0 j7* | twice induction
7" 7 7 j1 |induction
7 J2 J2 j7* |induction

For example, if, for a certain customer class [, rejection is optimal in 1,
and if sending a customer to queue j* is optimal in 7 +ej, +e;,, the inequality
is established by taking rejection in 7 4 e, and action j* in % + ej,, according
to the fourth case in the table. Indeed,

n n n n n n
v(a:,i-i—ejl) _v(:c,i) < v(m,i+ej1+ej2) _’U(z,i+ej2) < v(:u,i+ej1+ej2+ej~) _v(z,i+ej2+ej~)
by using induction at both steps, giving
n n n n
bl + v(z,i+ej1) + v(m,i+ej2+ej~) S v(z,i—}-eh—}—ejz-i-ej*) + bl + v(ac,i)'

If : + e, + ej, = e, only the first three cases have to be considered.
Regarding the departures we have, concerning server j; and ja,

ﬁ”j1v(nm,i) + l"jzv?z,i+ejl) + Ui ”Fm,i—}-eh) + /l'jzvau,i)
at both sides. The other terms follow by induction. o

Proof of lemma 3.5.1. The proof goes by induction. We start with (3.5.2).
Let j* be the optimal action in 7 4 e;,. The analysis goes as usual by differen-
tiating between j* # j; and j* = j;. If j* # 71, then

(3.5.2)
n n
Yiyyites, +ejok) < Ulyites,+ejek)
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If 7* = j1, then
n n
v(y,i+ej1 +ej,y,k) S v(y,i+ej2 +ej, k)
Because Qzayjite;, = Qeaysite;,> the term on arrival follows.

The terms concerning departures go the same as in the proof of lemma
3.2.1. Consider a departure at queue j, j # 71,72 with z; > 0:

" (3.5.2) . (3.5.3)
iites, Uz ite;, —epkt1) S Hiites, Vajites, —esht1) S
n n
Hjites, Uz ite;, —e;,k+1) T (Bjite;, — /'l'ji+6j2)v(m,i+ej2,k)'
The terms corresponding to a departure from queue j; and j, will be considered

together. We have, by (3.5.2), that both v7 k1) and v,

(z,i+ej; —ejy, (z,i+ej, —ej,,k+1)

- n n ..
are smaller than both Ul ,ites, —cjy ht1) and Ul ites, —es k)" As fjyite;, T

Hisite;, = Hirite;, T Hiyite;,, We have, together with (3.5.3),
ivites, Uz ites, —ejy k1) T Hirites; Vaites, —es k1) S
Wi ol + Wiyi v +
Jittej, Y(z,itej, —ej, ,k+1) J2ttej, V(x,ite , —ej,,k+1)
(Bjrites, + Hjzie;, = Pjyites, = Hizites, )V(z,; :
Jittej, J2ttej, Jiitej, J2itejy )V (a itej,,k)
The terms concerning costs and the dummy transition follow easily. We con-

tinue with (3.5.3). Let j* be the optimal action in % + e;,. Then j* is also
allowed in 7. Now we have, by (3.5.3) and (3.5.4),

. n
Qzay;i mjm{v(y,i+ej,k+1)} <

Qeaysite;, Yy iten k1) T (dzay;i Qzay;ite;, )v(y,i-i-ejl k1) S
Qoaysite;; Uiy ite;, +eju,k) T (Geay;i — Goaysite;, )”(y,i+ej1 k) =
. : n L . n
Qzay;ite;, n;-ln{v(y,i+ej1+€j,k)} + (q:z:ay;z Azay;ite;, )v(y7i+€j1 k)

The arrival term follows as usual. Note that when 7 + e;, = B and an arrival
occurs, this customer is rejected. This is equivalent to taking ggay;; = 0 if

il > 1Bl

By pji > pjite;, , we have for j # ji and i > 0

ﬂjiv&,i—ej,k+2) < Hjite;, 1’(nz,z'+ej1 —ejk+1) T (mji = Hjite;, )'U(nz,z'+ej1 k)
using once or twice (3.5.3). Using (3.5.3) gives for queue j;:

ﬂjli”?z,i—en,ku) + (- Hj:i)”(nz,i,kﬂ) < /“’(nz,i,kﬂ) <

Kjrite;, v?z,i,k-}—l) + (ﬂ’ — Hjrite; )'Uzl:c,i+ejl,k)
Again the terms concerning costs and the dummy transition follow easily. It is
trivial to prove equation (3.5.4). The proofs of (3.5.5) and (3.5.2) are similar.

[m]
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Proof of lemma 3.5.3. By induction. We follow the proof of lemma 3.5.1.
First observe that

n n n
Vizikt1) S Vizites, k) S Uik

OF V(o iht1) S Vaize,, kt1) S Vinip) if & = B. Thus also (3.5.4) holds. The
conditions on the arrival process and service rates are stronger than in the
previous model, thus the proof of (3.5.6), (3.5.7) and (3.5.9) is equal to that of
lemma 3.5.1.

Now consider equation (3.5.8). Let j* be the optimal assignment in state
(yaia k) If]* '—/: jl then

(3.5.8)
s n n n —_— M n
Inj.ln{”(y,iJrej,Jre,-,k)} S V(yite, tepk) S Ulyite k) = llljln{”(y,i+ej,k)}»

if % = 71 then
. n n o n
{00 s, tey b)) S Uyihes, ) = D0y ipe 0

Because ¢zqy;; = Geay, the terms on arrivals follow.

The departure terms from each queue, except queue jy, follow easily with
induction. Note that we use here that pjiye;, = pji if j # ji. Concerning
queue j;, we have

Bjyite;, v(nz,i,k+1) < /l’jliv(nz,i-ej].k»{—l) + (Nj1i+ejl - lu’].li)v?w,i,k)’
by (3.5.8) and (3.5.4). o

Proof of lemma 3.6.1. The proof goes by induction. Assume that the lemma
holds up to n. First we show that the SIP is optimal for n + 1. Consider two
server assignments, which differ only in the assignment of 2 servers, say server
k1 and kg, which are assigned to queue j; and j2. In one assignment server k;
is assigned to queue j; and server ks to j2, in the other assignment v.v. The
difference between the departure terms is

(P (2) — Pry () (ujlv(‘z,i_eh) (1= 132 ) V(o) = P Vi) ~ (/L—wg)v&,n),

which is negative if pg, () > pr,(z) and j1 < j2. Thus queue j; should be
served by the faster server. By taking pg,(z) = 0 we have that serving queue
j1 is better than serving queue j2. Repeating this gives the optimality of the
SIP.

We start with (3.6.1). Because |i| > 2 we only deal with states for which
q’;ay;i = qicay, therefore we omit the ¢ in the notation. The fact that qfay;o need
not be equal to q’jay plays a role only in the proof of (3.6.2). Rewrite (3.6.1) as

”’jlv(nz,i—ejl) + (:“’jz — Hjy )v?z,i) < /l’jzvztw,i—ejz)’ L 1 0
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Consider the terms corresponding to arrivals. Assume a* is the optimal action
in (z,% — ej,). Then we have

m m

i min {3 Ay (3 oy i ey (1= D B 0fices))
y Jj=1 J=1

(:u’h /’LJI mln { Z )‘an ( E qzayv(y,z+eJ) + 1 - Z qzay v(y,z)) } <

Jj=1 j=1
Hin 3 Ao (3 e licey v (= 3 e Wi )+
Jj=1 j=1
(3.6.1)
(/"’]2 ll’h Z Aza y(qua yv(y itej) + 1 - qua y v(y,z)) <
Y Jj=1 =

m m
g, Z ’\za*y(z qma*yv(y,z ej,+e;) + 1 - Z Qrary v(y,z e,",))
y J=1 =

mln { Z Azay ( Z q’:ayv('y” ejy+ej) +( Z qm“y v(yﬂ €z )> }

Note that we used pj, < pj, explicitly here; if pu;, > g1, there would have been
2 expressions (with positive coefficients) on the r.h.s. and there would not have
been 1 minimizing action. We would not have this problem if there were no
actions to choose, i.e. if the arrivals are independent.

Consider the terms concerning departures. We write p; instead of p;(z),
and assume that p; > --- > p,. We also assume [¢| > s+ 1. We distinguish two
cases. First assume that there are customers in queues j; < --- < j; present
in state 7 — e;; with j; < j;. Because j; < ja, the same action, say ji,...,7;,
is optimal in ¢, 2 — e;, and 7 —ej,. We have for 1 < k < s:

Ky Hgi v(n:c,i—ejl —ej’:) + (/l’]'z — Hjy )Nj;v(na;,i—ej;)-i'

(3.6.1)
iy (II' - iu'J; )v?:c,i—ejl) + (/"’.72 = K )(,LL - HKjx )vin:c,i) <

Poja P V(g imc;, —ejz) + Hia (= 1 )V ime;,)-

(4.3.3)

Now the departure terms of (3.6.1) follow easily:

ll’h IIllIl {Z(pk/l'lkv(zz e“—e,k)+pk(/“l’ :u’lk)v(:cz e“))}-'-

17 13

(ll‘Jz l‘yl mm {E (Pkll'lk'v(m, e, )+Pk(# iy, U(x z))} =

773
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> {Pk.uj] Pt Vi, —eze) T P (ia = M) iy v?m,i_ej;)}+
k=1

s (4.3.3)
> {Pkﬂjl (1= i )00 iy, + Pr(gy — ) (1 — ”‘j;)v(x,i)} <
k=1

S 8
Zpkﬂjzﬂj; 'v(nz,i—ejz —ej;) + Zpk#’jz (ﬂ’ - /l'j,:)v(nz,z'—ejz) =
k=1 k=1
8
i, llr?lflls { kZ (pk/l’lkv?z,i—ejz —er,) +pk(ﬂ/ - P’lk)v?’_l:,i—ej2)) }
=1
Concerning the second case, assume that all class j; customers are served in
state <. Consider the optimal assignment in ¢ — e;,, being j7 < -+ < j7
with ji = j1. Assign server s; in both 7 and i — ej, to queue js and all
other servers to the same queues as in 7 — ej,. Then (4.3.3) holds for server
1,...,81 — 1,81 +1,...,s. For server s; we have

Py i Vs iy, —ej) T Hn (B = B3 ) V(g ime; )t

(3.6.1)
(sz = K )’szv?x,i—ﬁjz) + (:u'jz = Ky )(ﬂ‘ — Ky )vin:c,i) <
ﬂ'jzll’jl'u(nz,i—ejz —ejy) + Wi, (M - Hjy )'U(th,i—ej.z)'

The terms concerning departures follow in the same way as in the first case.

Now assume 2 < |¢| < s. Suppose that server s; is assigned to queue j; in
statei—ej,. The term concerning server s; is similar to the corresponding term
in the previous case, and in state ¢ we keep one customer unserved. Again, the
terms concerning departures follow easily.

It remains to study the dummy term, which goes by induction.

We continue with (3.6.2), which is much easier to prove. Let a* be the
optimal action for the MDAP in (z,4). Note that qiami_eh < @} ay:i- Then we
have

m m
: J J
mam { Z )‘“y (Z qzay:i—en Uahi—ej, +ej;) + (1 - Z qzay:i-ejl )v(ny,i%n)>} <
y j=1 Jj=1
m m
. . (3.6.2)
Z Ama*y ( Z qia*y;i—ej1 v&l,i—ejl +e;) + (1 - Z Qia‘y;i—ejl )”&,i—eh)) <
Y Jj=1 j=1
m i m .
D ey ( D Baryi¥lyitey F (1= qia*y;i)v(ny,i)) =
y Jj=1 Jj=1

m m
min { Z Azay ( Z Gaaysi¥y,ite;) + (1~ Z q;ay;i)”(ny,i)) }
Y i=1 J=1
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Let j§,...,7% be the optimal assignment in (z,). If j; does not belong to this
action, we have

(3.6.2)
BV i ey o) T (= BV i ey S MRV i o) T (10— 1r)V( ) (434)

for £ = j{,...,j%. Summing gives the expression wanted. If j; does be-
long to the optimal action in (z,?), say j1 = ji, take the suboptimal action
J¥ye. oy Ji_1,01n (z,% — ej,). We have (4.3.4) for k = j7,...,j5_,. For the last
server we have

" (3.6.2) n N
V(g i—e;) < K1 V(zi-e;) T (1= Il’jl)v(z,i)‘

Summing gives the expression for the suboptimal action. As the optimal action
is even better, we have the inequality wanted. o

Proof of lemma 3.7.1. By induction. Assume the lemma holds up to n.
We start with the terms on arrivals of (3.7.1). We consider each customer
separately, instead of each queue separately. All customers who are not in the
queues in state 7 can enter the system in the states considered in (3.7.1). Their
terms go directly with induction. Consider the extra customers in queue j;

and jo. We have
(3.7.1)

’\jz Mgy v?—eh + Ajz (,U, = Hj )'U:l <

., L (3.12)
)‘jz Hi, ’Ui—ej2 + )‘jz (/1’ = Kj, )vi <

A I"jzvin——ej2 + ()‘J'z:u = Aji iy JCH
This gives

Aja /'lev? + A iy ’U?_eh + A4 (/1' — K )’U? + Aj, (/L — Hj )vzn <

Aju b V7o F Ao b 07+ Ngy (18— gy )07+ Agy (1 = gy )07

which are the terms on the extra customers.

The departure and dummy terms can be proved in a similar way as in
the proof of lemma 1.11.5. We continue with (3.7.2). Again all terms follow
directly by induction, with an exception for the extra customer in queue j;. o






Chapter 5

Uniformization

5.1. Introduction

The dynamic programming results of the previous chapters are obtained for
discrete-time models. Here we establish, for the policies optimal in the discrete-
time models, optimality at T in the continuous-time models, for all 7. First
we make a distinction between policies and decision rules. A decision rule is a
function prescribing for each state which action to take (or more generally, for
each state it is a distribution on the actions). A policy R is, in the discrete-
time case, a sequence of decision rules (f1, f2,...), with f, the decision rule
at time n. If the system is controlled continuously in [0,00), R is a family
{ft,t €[0,00)} with f; the decision rule at ¢.

We consider the following controllable model. We have a countable state
space E. If action a € A(z) is chosen in z € E, the system goes to y with
intensity ggqy. We assume that there is a constant o such that > Geay < a for
all a € A(z), z € E. A model satisfying this condition is called uniformizable.
We will consider this model for various types of cost functions.

Unfortunately not all models considered in the previous chapters conform
to this description. Particularly, in the customer assignment models we first
choose an action in the arrival process. Then, immediately after a transition in
the arrival process, the assignment action has to be chosen, possibly depending
on the state of the arrival process just reached. To be able to use the results
of the forthcoming sections, we rewrite it in the standard form as follows. In
state (z,%) (with = the state of the arrival process) we have as possible actions
(a,72;2 € A) with @ in the action set of the arrival process and 1 < j, < m for
all z, and 7, an allowable action in ¢. Here a is the action in the arrival process,
and j, is the queue to assign the arriving customer to if the arrival process
moves to z. Thus each action has |A| + 1 components, giving the action sets
A((z,%)). The non-negative transition intensities are for example in the model
of section 2.2:

Uz,i)(a,5:) (write;) = AvayQeay I Jy =]
Uzi)(a,j2) (i) = Azay(l = Goay)
Uz,i)(aja)(mgi—e;) = i 15 >0

Ussi)(ara) (i) = 1 — Z Aoay = 1Y 8,
Y J
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If the model is uniformizable, we can rewrite the dynamic programming equa-
tion of the embedded discrete-time chain in the form of (2.2.1):

n+1

Uiz,i) = (a, J,,zeA) { Z (q(z l)(a,h)(y,1+€;y)v(y,z+e],,) + U(z,i)(a,i:) () Y (y,z)) +

Z 67:1q(zyi)‘(avjz)(zvi'—ej)v&nl,i-—ej) + q(zai)(a’jz)(wvi)v?wqi)} =
J

min { - min {Aeay (toasfyine,) + (1= Goar)ily) } 1+
Yy
S it ey (1= 3 Naay = 3 8500 =
—d y J
min { 37 Xz (gaoy min {0, e} + (1 = Gaua)0fy ) J+
Y

D i uleiey F (1= D Xoay = 1Y 6 )00, -
J Y )

A disadvantage of this way of rewriting is the fact that models that originally
had only finite action sets now have infinite action sets.

A way to get around this problem is to allow for 2 transitions immediately
after each other at the jump times. We illustrate this idea again with the
model of section 2.2. Let the jump times be exponentially distributed with
rate @ = v + mpy. Assume that the process is in (z,7). An action a € A(z) is
selected and we have as transition probabilities p for the first jump:

A:i;a'y
P(z,i)a(y,i0) = quay

Aza
P(z,i)a(y,i1) = %(1 ~ Qzay)

P(z,)a(z,i,2) = m;

Azay _ M

P(zi)a(z,i,3) = 1 — o o

The third component of the state indicates the event at the immediate second
transition, with probabilities denoted p. Take j as the assignment action.

D(=,i,0)j(zi+e;) = 1
D(z,i,1)j(zy) = 1

B(z,i,2)j(z,(i—e;;)+) =
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D(2,i,3)j(z,i) = 1

Here we also show that equation (2.2.1) can be obtained. Let w™ be the value
function for the present model. We will show that if w?™ = v™ in states of the
form (z,1), then w?"*2 = v™*1. For ease of notation, assume a = 1.

2n+4-2 : 2n+1 2n+1
w2 = min { - heastrarfy 1 + 3 dea (1 = g+
Yy Yy
gy 4 (1= 3 Ay — a2 Th)) =
Yy

min { Z Asayoay H;in{w?;‘,mj)} + Z Azay(1 = Goay)Wiy.s)+

a
Y Y

B W ety T (L= D Anay — mﬂ)“’(zé?,z‘))
J y

This completes the induction step.

The results for the discrete-time models are of two types. First we have
the models of chapter 1. The optimal policies obtained there are myopic, i.e.
they have the same decision rule for all n. Continuous-time results for these
models are obtained in the next section.

In section 5.3 models with horizon-dependent optimal policies are studied.
Here extra conditions are necessary to obtain optimality at T

5.2. Uniformization with fixed parameter

In this section we assume that we have a uniformizable problem, and that the
optimal policy of the discrete-time model is myopic and independent of the
uniformization parameter. Furthermore, assume that the costs are bounded,
either from above or below. Consider a model in which there are only costs
at T, thus the problem is how to control the model from 0 to T. We call the
class of policies in the continuous-time model that only can change actions at
the jump times the semi-Markov policies. Note that this is not a restriction for
the customer assignment models, because there the only action of importance
is the one taken at the jump times. In the server assignment models however,
it is a restriction. Denote with ¢7 (¢T(R)) the minimal costs (the costs using
policy R) at T. Let R* be the policy with f; = f* for all ¢, with f* the optimal
decision rule in the discrete-time model. Then we have the following.

5.2.1. Theorem. ¢T(R*) < ¢T(R) for each semi-Markov policy R.

Proof. The evolution of the process is completely described by two indepen-
dent random processes: the Poisson process generating the transition times
and the embedded chain generating the actual transitions at the transition
times. Note that the former process does not depend on the policy chosen,
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the latter however does. We condition on the transition times, both for R and
R*. Let w € Q be a realization of the transition time process with probability
space (2, P), with w = (t1,...,t4), 0 <t < -+ < t, < T, the t’s being the
transition times. Note that u is a realization of a Poisson distributed random
variable. The decision rule used at ¢ by R is completely determined by the
jump times before t and the states at these moments. This induces a policy R,,
in the embedded chain. Note that R} does not depend on w, therefore we use
R* also for the discrete-time policy. Denote by vZ(R,,,w) the value function of
the embedded chain (not necessarily in the standard form). By the optimality
of R* we have v?(R*,w) = v? < v"(R,,w). Denote by ¢T(R) the expected
costs at T using R and starting in z. Then

T(R*) = ¥ w v Ry, w w) = ¢T .
m(R)—/ﬂ vdp( )s/ﬂ “(Ry,w)dP(w) = ¢T(R)

Note that, although ¢Z(R) can be infinite, it is well defined due to the bound-
edness of the costs and therefore of the v™. o

The optimal policy also minimizes the costs from 0 up to T, because that
is the integral over the costs from 0 to 7. Thus, we do not need to introduce
immediate costs in the dynamic programming equation.

The process just described is called uniformization. It is essential that the
rate out of each state is uniformly bounded (otherwise we cannot formulate the
discrete-time dynamic programming equations) and that the policy R* is the
same for each n. In the models of the chapters 2 and 3 the latter condition is
not satisfied, giving need for a limiting argument, which is the subject of the
next section.

Note that if a policy is stochastically optimal in the discrete-time model,
it is also stochastically optimal in the continuous-time model.

Summarizing, we have the following.

5.2.2. Corollary. The policies minimizing the costs in the discrete-time mod-
els considered in chapter 1 minimize the costs at T (from 0 to T) in the
continuous-time models in the class of semi-Markov policies, if the costs are
bounded, either from above or below.

The decisions are taken on the Poisson epochs. even if there is a dummy
transition. By increasing the uniformization parameter we add decision epochs.
This way we can approximate continuous-time control. Roughly speaking the
class of limiting policies are called strongly regular in Hordijk & Van der Duyn
Schouten [29]. More precisely, a policy is strongly regular if for almost all
sample paths the time points at which the control is discontinuous has Lebesgue
measure zero. See Hordijk & Van der Duyn Schouten [29] for details.

5.2.3. Corollary. The policies minimizing the costs in the discrete-time mod-
els considered in chapter 1 minimize the costs at T (from 0 to T) in the
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continuous-time models in the class of strongly regular policies, if the costs
are bounded, either from above or below.

Also results on discounted and average costs can be obtained. It is clear
from theorem 5.2.1 that R* minimizes fOT e Pyl (R) dt and + fOT ¢t (R)dt and
their limits for T' — oo, if they exist.

Usually definitions for discounted and average optimality other than the
ones given above, using semi-Markov Decision Processes, are used. We can
translate the continuous-time problems into discrete-time ones, like the ones
we studied in chapter 1. See for example Serfozo [63] for this equivalence.
Then, under suitable conditions guaranteeing the convergence of the successive
approximation scheme, optimality of R* for average and discounted optimality
follows. Convergence of successive approximation can be proved for example
using negative dynamic programming (Ross [60]) or by showing v-geometric
recurrence (Spieksma [69]).

A complication using successive approximation is that the analysis of chap-
ter 1 only considers costs at the end of the horizon, as we took v™ of the form
o™ = inf ({P(f)v" 1}, v° = ¢, with P(f) the transition matrix under decision
rule f. However, we are interested in w™ = infs{c+ SP(f)w™ '} with w° = 0.
By the assumption of this section that the optimal policy is myopic, we have
w® =00+ 4 gL If R* = (f, f,...) is the optimal policy, this gives
us for arbitrary R :

w™(R*) = w™ < w"(R).

5.3. Continuous-time Bellman equation

In this section we give another approach to continuous-time control. We show
that under mild conditions on the cost functions the solutions of the dynamic
programming equations converge to the solution of the continuous-time Bell-
man equation. Hence the structure of the optimal value functions carry over to
the continuous-time model, and therefore so does the structure of the optimal
policy.

We can use this method not only in the models of chapter 1, but also
in the (non-myopic) models of the chapters 2 and 3. The method is usually
referred to as time-discretization. Our analysis is based on the results of Van
Dijk [73], as he allows for both positive and negative unbounded costs. Besides
this he considers salvage costs. We rewrite his results here for the simpler case
of a uniformizable model. Denote with G(f) the infinitesimal generator of the
process if decision rule f is used.

For the customer assignment model we would have the following generator.
Assume the current state is (z,¢) and f(z,¢) = (a,j,). Then, for example

G(f)(:c,i)(y,i+ej) = /\zayq:cay lf] = jya

G(f)(z,i)(z,i—cj) =pifi; >0
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and m
G(f)(@ i) = = ( PIREIDD ‘Sif)'
y 3=1

Basic to the analysis is the continuous-time Bellman equation. Heuristically,
this equation can be derived as follows. Let ¢! denote again the expected costs
for horizon t. We are interested in ¢7, thus ¢ are in fact the expected costs
from T — t to T. Assume that continuously over time costs with rate c are
incurred, ¢° are the costs at the end. Then we have:

S0 = inf{e+ ()4,

Integrating from 0 to t gives

t 0 __ t* c SV ds
o ¢ -/0 int{c+ G(£)9°)ds,

the Bellman equation. Note that we have a model with immediate costs, as
contrasted with the model used in uniformization. We need to do it this way
because we cannot introduce immediate costs afterwards, for the same reason
that we cannot use uniformization with a fixed parameter here. That is, for
minimizing costs at different 7" we have different optimal policies.

Now we introduce our computational scheme. We assume that the model
is uniformizable, i.e. there is a constant a such that for each state z and decision
rule f we have |G(f)zz| < a. Let h be a positive number, h < 1/a. Define
PR f) = hG(f)+ I. Thus P"(f) is the transition matrix of the discrete-time
model obtained by uniformization with parameter 1/h. Take hc as immediate
costs. Now define

phmtl — il}f{hc + PM(f)v"™"}, h(n+1)< T,

vh,O — ¢0-

We will show that v™* with k = |t/h], t < T, converges as h — 0 to the
solution of the Bellman equation under certain conditions. Heuristically, when
seen as uniformization, this can be explained by noting that the number of
jumps before T' converges to a constant as h decreases (which follows from
lemma A.2). When seen as discretization, v is the first order approximation
of the costs at hn. By the infinitesimal properties, the transition rates converge
to their first order approximations as h — 0.

The conditions involve the weighted supremum norm, defined as follows:
|Ibll, = sup, |bz|/vz with v > 0 the bounding vector. For a matrix the norm
is defined as follows: ||A|l, = sup, >, [Azylvy/ve. We will often use that
|| 4b||,, < || Al+||b]].- We assume the following.
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5.3.1. Assumption. There are v > 1, constants K; and K, such that

IG(H)Il, < Ky for all f, |||, < K2 and “¢°||,, < K.

We will check these conditions for various cost functions. If ¢° is an
indicator function and ¢ = 0, we take v = e. Then ||G(f)||, < 2a and ||¢>°|},,

1. In the customer assignment model with ¢, ;) or (,b‘()z’l) 11 + -+ + 2, take
Y(zi) =11+ +im V1. Then ||G(f)|» < 2 and ||c|s, ||¢°|l, < 1. In the server

assignment models with ¢(; ;) or qS?z o = i1c1 e Fimem take vz ;) = (Z1en|+

“+imlem|) V 1. Because V(g ite;)/V(e,s) and 1/(,, ie;)/ V(e < 1+ max; e,
||G’ Hllv £ 2a(1 + max; |(‘]|) and ||c||u, [|¢°]], < 1+ max; |c]|) Similarly, if
C(s,i) OF ¢(z o = (i1c1 + - +imem)" take vig gy = (irler| + -+ + |imlem)™ V1,
giving [|G(f)l» < 2e(1 + max; [¢;|)™ and |lc[|,, [|¢°[l, < (1 + max; |ej])™.

5.3.2. Theorem. There are ¢! such that vl /Rl ¢t with b = 27™ as
m — oo, for t < T and all ¢.

Proof. First we show that all v»™ with hn < T' are v-bounded:
[[o"™ |, < sup [|he + PH(f)o™ ™|, <
f

h h,m—1 h,m—1 (531)
hSl}PI|C||u+Sl;P||P (Ollullo™™ ]l < REKz + (L+ K)o ™|,

Now we have, since 1 + ¢ < e,

n—1
o™l <) (1 + hE1)*hK, + (14 hE1)"|[v™°]], < TeT¥1 K, + 751K,
k=0
(5.3.2)
Let us denote the r.h.s. by Cj.
We will prove the convergence by first deriving a relation between v™™ and
vP/2:27 By induction on n we prove
/22 < P L y(1 4 WK™ (nh? + h)C,y (5.3.3)
for Cy > K1 K> + K2Cy. Assume the inequality holds up to k.

ph/22k+2 _ inf{h/2c+Ph/z(f)vh/z,zk+1} <
f —
inf (/2(1 + P2 (f))e+ PM2(f)PM2(f)o"/>7) =

inf{(h+ (h/2)°G(f))e+ (P"(f) + (R/2)*(G(£))*)o"/>*} <

if}f{hc + PP(f)o"/??+} 4 S‘}P{(h/Q)ZG(f)C} + Sl;p{(h/?)Z(G(f))th/Z’Zk} <
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MR Ly (14 K )PP (KR? + R)Cy + sup{(h/2)*G(f)c}+
f

sup{(h/2)*(G(f))*"/>?*}.
f
We have
I(R/2)°G(f)ellv < (h/2)* K1 Ko,
and, using (5.3.2),
l(h/2)X(G(£))*o"/>%*, < (h/2) Kzllvh/z M|, < h?K7Ch,
giving
sup{(h/2)’G(f)c} + sup{(h/2)*(G(f))*"/>?*} <
f f
th(Kle + KfCl) < IthCz.
Thus, because (14 hK;)* > 1, the inequality holds.
Because |2t/h| = 2|t/h] or 2|t/h] + 1, we have
oML < yh/2218R] 4y (K Oy + K),
by (5.3.1). Thus

M2 < hLt/h] ,,(L% B + B)C,

if C > eTchz + K,Cq + Ks.
Iterating this last inequality & times, for h of the form 2™, gives
k-1
vz‘(m+k)’|_t/2—(m+k)_j S vz_m7l_t/2_mj + Z y(T + 1)02-—m2-—l S
=0
2™ |t/27 ™) + I/(T+ 1)02——771-!—1.
Because the space of vectors with bounded v-norm is a Banach space, we have
that vy’ mU/M for each = has at least one limit pomt To show that there is a
unique limit point, suppose that, for fixed z, v}, and v} are limit points, with

v, < v!'. Take £ < (v — v,)/3, and m such that [v2 /> ") _4!| < & and

+1 g—(m+k) /2™ (m+k)J "
v (T +1)C2~™* < e, Then vy < wll — ¢ for all k. Hence v
is not a limit point. o

5.3.3. Theorem. The function qgt is a solution of the Bellman equation.

Proof. We have, for h = 2=™
1)h,n.-+-1 _ ,Uh,n — hiIflf{G(f)’Uh’n},

and thus
h{t/h]
oM t/R] _ 0 =/ inf{G(f)Uh‘Ls/hJ}dS'
0

The left hand side converges to (j)f #° for each i. By dominated convergence the
r.h.s. converges to fo inf {G(f ¢S}ds for fixed ¢, giving the Bellman equation.
For further details, we refer to Van Dijk [73]. o
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We will not go into the details of showing that this solution is unique. Due
to the finite action sets of the models we consider the infima are always attained
and optimal policies exist. And as the discrete-time value functions converges
to the continuous-time value function, the inequalities we typically prove for
the discrete-time models also hold for the continuous-time models. This means
that the optimality results also hold for the continuous-time models. As we
considered both terminal costs and costs over time, the results hold both for
costs at T and for costs over time. '

5.3.4. Corollary. The policies minimizing the costs in the discrete-time mod-
els considered in chapters 2 and 3 minimize the costs at T (from 0 to T') in

the continuous-time models, if the transition rates and costs satisfy assumption
5.3.1.

Regarding discounted and average optimality, the same remarks as in the
previous section apply here.






Appendix A

The approximation of point processes

Here we show that any marked arrival stream can be approximated in the
sense of weak convergence by a series of MAP’s. For stationary point processes
this has already been proven by Herrmann [20]. Note that we used the marks
in the previous chapters to indicate the class of arrivals and server vacations.
We use the following definition of an MAP:

A.1. Definition. (Markov Arrival Process) Let A be the, possibly count-
able, state space of a Markov process with transition rates Az, z,y € A. When
this process moves from z to y with probability g, an arrival with mark v oc-
curs, with 33 5 gy, <1 forall z,y € A and B C R4. The triple (A, ), q) is
an MAP.

A series of random variables X™ = {(X*)}o<ny on R" converges weakly
to X = {(Xn)}n<n, notated as X™ 2, X, if Ef(X™) — Ef(X) for all
continuous and bounded f. Assume X™ (X) has distribution function F,
(F).

In Schassberger [62] it is shown, for N = 1, that to have X™ 2, X, we
can take X™ such that

Fu(a) = F(0)+ Y (F(&) - F(531)) Eh (a), (A1)
k=1

where E¥ (z) is the d.f. of a gamma distributed r.v. with k phases and in-

l
tensity m, i.e. EX (z) = Y00, e_mZ(ml—f), the probability that a Poisson(mz)
distributed r.v. has k£ or more successes. The result holds also if the mass at 0

is omitted and if the mixture is taken finite, e.g.

m?—-1
2

Fon(a) = F(X)BL @)+ Y (F(&)-F(531) Bh(o)+(1-F(Z2) ) B (2).
k=2

An heuristic explanation is easily given. The mass in a small interval, in the
limit each point, is approximated by a series of gamma distributions with equal
mean and increasing intensity. Such a series converge to their mean a.s.

A similar result can be obtained for finite-dimensional r.v.’s. This has
already been shown in lemma 6.1 of Hordijk & Schassberger [28]. We give a
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different proof here. First we construct X™. Define

[0, X ifk=1,
Cm(k)={ (1, 2] ifke{2,...,m? -1},
(=1 o0) if k = m?.

Now we have as approximation

N
Fu(@)= Y 11:'(X1 € C(ky),..., Xy € Cm(kN)) [1E: (). (A2)
1<k;<m? j=1
Ji=1,...,N

We see that the mass of each cube with length of the sides L is put on the
upper corner, say z'. Then each component 933 of this vector is approximated
by an independent gamma distribution with parameter m and mm;- phases,
giving an expectation of w;

A.2. Lemma. X" -2 X.

Proof. It is well known that weak convergence is equivalent with convergence
of the d.f. in each continuity point of F'. Take such a point z. Choose an € > 0.

By continuity there exists a § > 0 such that |F(z+s) — F(z)| < 555 if |s| < 6.

Now assume the integer I, a power of 2, is large enough such that \/N/I < 6§

2_ . .
and lTl > max; z;. The first condition guarantees there are vectors & =

(Z1,...,&n) and & = (&1,...,Zn) such that £;/ and Z;l are integer, Z; < z; <

Z; and the product set Hj.vzl[aﬁj,:ij] is contained in the ball around z with
radius 6. By the integer condition & and % lie at the top corner of the cube
H;-Vzl Ci(Z;1) and vazl Ci(&;1). As we only consider powers of 2, & and Z lie
at corners as well if m > I. The second condition assures that C,(z;m) is
bounded for all j if m > I.

The sum in the definition of F, can be split in N 42 parts, namely {k|1 <
ki < @ym}, {k|l < kj < 2;m;35 : kj > &;m}, {k|ky > &ym},... {klky >
Zym}. Note that these sets are not disjoint, the last N overlap, and that
{klk; < @jm,3j5 : k; > 2;m} = {k|]1 < k; < z;m}\{k|]l < k; < Z;m}. Now we
have if m > I:

|Fn(@) - Fa)| < |F(@) - Flo)|+

| > P(XieCulln),. . Xn € Culh)) (1- ﬁEl‘;{(a:j))lJr
k;j<@;m =1

1<

3 IP(X1 € Cn(ka),..., XN € Cm(kN)) ﬁEf;{(wj)|+

1<k;j<&;m 7=1
3jik;>dm
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> IP(Xl € C(ky),.... Xy € Cm(kN)) ﬁEf,g(zj)‘ ot

ki>&m j=1
IkN;:leP(Xl € Cr(k1),..., Xy € Crm ) lj'[ ‘

The inequality holds because the probabilities of the second term of the r.h.s.
sum to F(Z).
We give a bound for each term. It is easily seen that |F (&) — F(z)| <

N+4
if m > 1. Consider the second term of the r.h.s. If k; < Z;m then Em( ) >
Eni™(z). Because & < , lim,, o E. ’m(z) = 1. We choose m large enough

such that F(2)(1 — HEm( ) < (1- HEfer(ar)) < %7z The probabilities
in the next term summed gives F(Z) — F(Z), therefore this term is bounded by

For the last N terms we have the following. If k; > &;m then EY (z) <

N+4
EL™(z). By choosing m large enough we have Eni™ (z) < w55 which gives
the inequality wanted. All equalities summed gives |Fy,(z) — F(z)| < €. =

We are interested in the convergence of {(X7*)}nenw to {(X5)}new. We
are working in the product topology. Then the following holds (e.g. by Billings-

ley [6]):

{ }nEIN _’ { }nelN
if and only if

{(XT)}nen = {(X)bnen

for all finite N. However, first we have to check whether {(X,)}new is well

defined. This is done by checking consistency of the finite dimensional r.v.s
{(X77)}n<n (see Loeve [43], p. 94).

A.3. Lemma. {(X7")},<n are consistent for all N.

Proof. By the symmetry of (A.2) it suffices to show that the projection of
{(X7)}n<n on IRiV" is equally distributed as {(X7*)}n<n—1. We have, as
U’I;;n;:lcm(kN) = IR+5

P(X* < 3,0, Xy S avo1, X3 € Ry ) =

N-1
> P(Xi€Cnln)s., X € Cr(kw)) [T Bl () =
1<k;<m?2 j=1
=1,...,N
N-1
3 IP(X1 € Cou(k1),..., Xn_1 € Cm(kN_l)) Il Esei)- o
.ISkj5m2 j=1
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It is easily seen that the lemmas remain valid if we replace (A.2) by

Fu)= Y () IT E(ey) T] e < %} (A.3)

1<k;<m? J<N JSN
J=1...N J odd J even

Now consider the co-dimensional r.v. {(Sn, Va)}new. Here S, is the nth
interarrival time, V,, is the mark belonging to the nth arrival. As {(Sn, Vo) }n<n
is a 2N-dimensional r.v. we can apply the results obtained above by tak-
ing Xé;nll = 5™ and X;T) = V{™. With the superscript (m) we mean
that the expression holds both with and without the superscript m. Thus
{(S7, V™) }new is well defined by lemma A.3 and

(S, Vi e - {(Sns Vi) Jnew

holds.

Note that if V,, € {1,...,1}, as in the server assignment model, then also
X;Zl) € IN, and X;T = V, for m large enough, thus avoiding non-integer class
numbers.

We continue by constructing an MAP (A, A, q) which generates the inter-
arrival times and marks {(S7*, V,™)}nem for an arbitrary m. First we construct
A. Take for each N € IN all vectors of the form ([3,31,...,sN,vl,...,vN_l)
with sn,v, € {1,...,m?}, 1 < B < sy and IP(Sn € Cn(sn),n < N;V, €
Cm(vn),n < N — 1) > 0.

Being in state (,6,31,... ,sN,vl,...,vN_l) sojourn time N is produced.
The integer 3 indicates the current phase of the gamma distribution.

The transition rates and arrival probabilities are:

M ’\(ﬁ,fn 3o es SN VLo UN —1)(B41,81 50008 N, VT, UN —1) — T

0.

qivﬁ,sl,...,sN,vl,...,vN_l)(ﬁ+1,sl,...,3N,v1,...,vN_1) =
B=sn: A(Br8110ees SN 01 3eee N 1)1, see SN 41 yVT yoesON) =
IP(Sn € Cm(sn),n < N+ 1;V, € Cr(vn),n < N)
IP(Sy € Cin(sn),n < N3V, € Cin(vn),n < N — 1)’

m

'N-1

1.

m —_—
9(B,510vs8 801 sy —1)(1,81 yeesSN+1yV15ee,UN)

All other transition intensities are 0. Note that the transition rate out of each
state is equal to m. The transition mechanism is illustrated in figure A.1.
The transition marked I (III) corresponds to an arrival of a customer with
mark “X=1 (2X); the next arrival will take place after sy (sy41) phases. At
transitions marked II no arrivals occur. The result proved above can easily be

extended to multi-dimensional and not necessarily positive marks.
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Figure A.1.

The analysis so far has to do with interarrival times and is thus in the
customer time scale. However, weak convergence of (marked) point processes
is, in general, defined in the physical time scale. To complete the analysis
we have to prove that weak convergence of the interarrival times entails weak
convergence of the point process. This result can be found in Asmussen &

Koole [3].



Appendix B

Phase-type distributions of DFR/IFR distributions

Consider phase-type distributions of the form (A.1). The objective of this
appendix is to give a characterization of these distributions if the approximated
distribution is DFR or IFR. We will see, in the case of a decreasing (increasing)
failure rate distribution, that the probability that a phase-type distribution con-
sists of k phases, conditional that it consists of k or more phases, is decreasing
(increasing) in k. (Decreasing and increasing are used in the non-strict sense.)
For the DFR case our result is a special case of the characterization of Hordijk
& Ridder [27]. '

Let F be a non-negative distribution function. For fixed m we define
B1 = F(1/m) and By, = F(k/m) — F((k— 1)/m) for k > 1. Again, let EX (z)
be the d.f. of the gamma distribution with & phases and intensity m. Now take

Fu(z) = BBy ().
k=1

It is clear, by lemma A.2, that F,, converges weakly to F. Now F,, can be
seen as the time until absorption of a Markov process with initial distribution
(0,81, P2,...) and transitions depicted as follows

...... @@@

Figure B.1.

Consider the following Markov process which starts in state 1:

1-a1)m  (1—a2)m

Figure B.2.
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Now take
=) A
1 if Yooy B = 1.
Then it is easily seen that the time until absorption in both processes is equally
distributed. Vice versa, 8, = (1 —a1) -+ (1 — ap—1)an.

We can define a distribution to be DFR or IFR if the failure rate (defined
as f(t)/(1—F(t)), with f the density of F') is decreasing or increasing. However,
then we implicitly assume that the failure rate, and thus the density, exists.
To avoid this, we prefer to use the definition of Barlow & Prochan [5], which
is only in terms of F(t) = 1 — F(t). Then it follows for example that F with

F(t) = I{t > z}, the deterministic distribution, is also IFR, although its failure
rate does not exist.

{—""— if S sy B < 1,
a, =

B.1. Definition. (DFR and IFR) A non-negative distribution function is:
DFR if F(t+ s)/F(t) is increasing in t > 0 with F(t) > 0, for each s > 0;
IFR if F(t + s)/F(t) is decreasing in —oo < ¢t < oo with F(t) > 0, for each
s> 0.

Now we can formulate the main result of this appendix:

B.2. Theorem. If F is DFR (IFR) then a, is decreasing (increasing) in n,
for all m.

Proof. First we consider the DFR case. Take s = 1/m and t = 1/m,2/m,....
Then, according to the definition of DFR, F(n/m)/F((n—1)/m) is increasing.
Therefore (F(n/m)— F((n —1)/m))/F((n — 1)/m) is decreasing in n. By the
definition of B, F((n—1)/m)=1—F((n—1)/m)=1— S 7_1 fr. Because
Brn = F(n/m) — F((n — 1)/m), a, is decreasing in n if n > 2. As §; =
F(1/m) > F(1/m) — F(0), we also have a1 > as.

Concerning IFR distributions, the analysis goes completely analogous, ex-
cept for B;. We show that F/(0) = 0 or 1. Assume F(0) =a, 0 < a < 1. By
the right-continuity of distribution functions we can find ¢; and ¢ such that
F(t1+¢)/F(t1) > 1—a, and F(t;) > 0. Because F(0)/F(—¢) = 1 —a, we have
a contradiction with the IFR assumption. Thus F(0) = 0 or 1, in the former
case giving f; = F(1/m)— F(0), and in the latter case a;, = 1 for all n. o

A disadvantage of this method is that we need an infinite number of states.
Therefore we change the process of figure B.2, making the state space finite, as
shown in figure B.3.

This corresponds with changing the approximation into

Fru(z) =Y BeBE(2) + (1= i) D (1= ) B2 BV o ().
k=1 k=1 k=1

It is easily checked that the approximation lemma A.2 also holds for F,.
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1-oax)m (1-amz_1)m
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Figure B.3.

(1 - am)m



Appendix C

Majorization

In the customer assignment models the class of all allowable cost functions
can often be characterized with the help of majorization. For two types of
orderings, originating from the symmetric case (see e.g. section 1.2) and the
case B =1 (see e.g. section 1.3), we have a complete characterization. For the
more general model of section 3.2 we give a conjecture for the correct ordering.

In the first ordering, all vectors considered are componentwise smaller than

the buffer vector B. Consider the ordering <, with ¢ < ¢* if there are #1,...,i",
i =7 and ™ = 7*, such that
= — e ey, O <iFTT <l 41 (C.1)
or
iF =i e (C.2)
or
i* is a permutation of ¥, (C.3)

Now consider the weak submajorization ordering <,, (see Marshall & Olkin
[45]). We write i <y, & if Y5y i) < 35— i, for all k, with iy > +++ > [y
the decreasing rearrangement of 2. Thus, the sum of the kth largest components
of ¢ is smaller than that of 2.

C.1. Theorem. The orderings < and <., are equivalent.

Proof. i <1* = i <,,¢*. Take ¢°,...,s" as in (C.1), (C.2) or (C.3). It is easy
to see that i*~1 <., i* for all k. Because <, is a preordering transitivity holds
and 7 <, 1",
1< 3% =1 <4*. We construct ¢°,...,i" such that s = 4% < --. < " = i~
Assume that the k largest components of i* are equal to, and in the same place
as, the k largest components of i*, and i = i < --- < ¥ <, *. We construct
i*+1 with the property that either :**1 has the k+ 1 largest components equal
to +* and iF < ¢*¥+1 <, i*, or i**t! = i*. Repeating this gives the result. For
simplicity of notation assume that k£ = 0.

Take the largest component of :°, say queue j;, and interchange it with
the component of i with the index of the longest queue of i*, say queue j,.
Call the resulting vector ¢'. Then, as i?l] < ii‘l], i?l] fits in the buffer of queue
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Ja. Because i) > i}, i?z fits in the buffer of queue j;, thus i’ < B. We have
by symmetry 2° < i’ and trivially 2’ <, 2*.

If ifz] = 0, the result follows by (C.2), because all components except ifl]
are 0. Thus, assume ifz] > 0.

Now we transfer a customer from iEZI to ih]. Call the resulting vector ¢".
By (C.1) we have ¢ < 3"”. To show i <,, ¢* we distinguish the following two
cases.

In case ifz] > ifa]’ then i{l] + iE