

CWITracts

Managing Editors

K.R. Apt (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (Eindhoven University of rechnology)

Edltotiai Board

W. Albers (Enschede)
P.c. Baayen (Amsterdam)
R.C. 13ackhouse (EihdhoVen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.s. Keane (Amsterdam)
H. Kwakerriaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Pl.Jt (Groningen)
M. Rem (Eihdhoven)
H.J. Sips (Delft)
M.N. Spijker (Leiden)
H.C. Tijms (Amsterdam)

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Telephone 31-205929333, telex 12571 (mactr nl),
telefax 31 - 20 592 4199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

Loop checking in logic programming

R.N. Bol

1991 Mathematics Subject Classification: 68N17.
ISBN 90 6196 456 3
NUGl-code: 811

Copyright© 1995, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Acknowledgements

This book has been written at the Centre for Mathematics and Computer

Science, where I was employed from 1987 to I 991 in the Department of

Software Technology led by Jaco de Bakker.

First of all I wish to express my gratitude to Krzysztof Apt, my supervisor,

for the many things he has done for me. He suggested me to investigate the

subject of this book, and was always ready to advise me on technical and

organizational matters. He also gave me several opportunities to travel abroad.

I also thank Jan Willem Klop for teaching me the foundations of logic

programming, for his continuous and friendly support and for four years of

pleasant cooperation in giving a course at the Free University of Amsterdam. I

thank Johan van Benthem, John Shepherdson, Jan Bergstra, Peter van Emde

Boas, Paul Klint and Jan Willem Klop for their comments on drafts of this

book.

Finally I thank my colleagues, friends and relatives for all they have done

for me. But most of all I thank my parents and grandparents for supporting me

in so many different ways.

Amsterdam, April 1991

In this edition, I corrected some spelling errors and I added a few references to

related work. The most notable changes are the addition of a discussion on

constructive negation in Chapter 5 and a more thorough analysis of

nontermination of the partial deduction procedure (due to not reaching the

closedness condition) in Chapter 6.

I thank the Eindhoven University of Technology and in particular Jos

Baeten for allowing me to spend time on this book.

Eindhoven, January 1994

Contents

ln1mduc1ion 1
1. Logic Programming 11

1.1 Syntax .. 11
1.2 SLD-resolution .. 14
1.3 Soundness and Completeness of SLD-resolution 21

2. Foundadom of Loop Checking 25
2.1 What is a Loop Check? ... 25
2.2 Properties of Loop Checks ... 29
2.3 Non,.simple Loop Checks .. 37

3.Simplel..oopChecb 45
3.1 Overview ... 45
3.2 Equality Checks ... 47
3.3 Subsumption Checks ... 58
3.4 Context Checks .. 70

4. Generalizing Comple~ness Resulm for Loop Checb 81
4.1 Preparation ... 81
4.2 The Generalization Theorem ... 84
4.3 Applications of the Generalization Theorem 89

5. Loop Checking and Negation 95
5.1 Introduction .. 95
5.2 Declarative and Procedural Semantics of General Programs 97
5.3 Loop Checks for Locally Stratified Programs 106
5.4 Soundness and Completeness ... 110
5.5 Deriving One Level Loop Checks from Positive Loop Checks 117

6. Loop Checking in Padial Deduction 125
6.1 Partial Deduction .. 126
6.2 The Use of Loop Checking in Partial Deduction 130
6.3 Complete Loop Checks .. 134
6.4 Conclusions ... 143

7. Towanls 1he Impleinen1ation of Loop Checking 145
7 .1 More Efficient Loop Checks ... 146
7.2 Two Simple Implementations of Loop Checking 158

8. Related Wolk 171

References
Index
list of No1atiom

185

191

197

Introduction

Logic programming

The first three generations of programming languages are imperative languages:

a program consists of a list of instructions, telling the computer what to do. The

exactness of the instructions can differ (for example storage allocation is

nowadays performed by the operating system and not by the programmer), but

the BASIC idea is the same. The fourth generation is already quite different: it is

based on the composition of functions. This book is about the fifth generation of

programming languages, which are based on logic: logic programming.

Programming languages are used to encode algorithms. An algorithm is a

recipe for solving a problem. Kowalski's [Ko] famous equation separates the

two aspects of an algorithm: 'Algorithm = Logic + Control'. The logical part of

an algorithm states the problem and defines its solutions. The control part

describes how these solutions are to be found. Imperative programs have very

explicit control structures, but it is completely up to the programmer to provide

them with logic. That is why they can be so unreadable: the programs states

what the computer must do, but not why.

For logic programs the converse is true. They consist of a set of

implications in first-order logic. Thus their logical, declarative meaning is

explicit and well-understood. But pure logic programs say a priori nothing about

control. Thus there must be a layer between the logic program and the computer

that adds the control. From where does this layer get its information? First of all

from the one who designs it. He decides how the logical rules of a program are

to be interpreted operationally.

Given an implication or clause A~B 1, ... ,Bn, its logical meaning

(declarative interpretation) is: ifB1 is true and ... and Bn is true then A is true.

An obvious procedural interpretation can be derived from this: if the user

requests a proof of A, try to prove B1 and ... and 8 0 • This very popular control

mechanism is known as top-down interpretation, because it corresponds to the

top-down construction of a proof tree for A.

2 Introduction

A

Top-down

The next question is in what order B 1, ... ,B 11 should be proved. Although

proving them in parallel has its advantages, it is usually done one-at-a-time

(mainly because this is more efficient on sequential machines): first B 1 is

proved, then B2 and so on. This seems natural, but it has an important

consequence: this interpretation assumes that some control information is

implicitly present in the logic program, encoded by the order ofBJ, ... ,B 11 • Thus

the addition of control is still partly the responsibility of the programmer. More

sophisticated methods for obtaining and using control information from the

programmer are described in [BdSK].

A definition of logic programs and their logical meaning is given in

Chapter 1. This chapter also formalizes the process called SLD-resolution: the

construction of an SW-tree, the search space of a top-down interpreter for logic

programs. It recalls an important result: the soundness and strong completeness

of SLD-resolution (Theorem 1.3.2). Soundness generally means that there are

no 'undesirable result,;': in this case it means that every solution that is present in

an SLD-tree is correct w.r.t. the logical meaning of the program. Completeness

means that every 'desirable result' is achieved: every correct solution is present

in every SLD-tree.

The most wide-spread logic programming language, PROLOG, allows the

programmer to add much more and explicit control information to his programs.

Unfortunately, programmers often over-use these extra-logical features of

PROLOG, especially the cut. The result is 'imperative PROLOG': a program

that consists mainly of control information and that has no declarative meaning.

Additional control information is often provided to improve the efficiency of a

logic program. The most extreme form of inefficient behaviour of a program is

nontermination.

Introduction 3

Nontermination

Although every solution is present in an SLD-tree, it is not guaranteed that it is

also found by an interpreter. When a logic program is interpreted by a

PROLOG-like interpreter, the result is often a nonterminating computation. This

does not mean that the program is logically incorrect. It is caused by the fact that

the interpreter employs a depth-first search through the SLD-tree. Consequently

it can enter an infinite branch and miss a solution.

The problem of detecting such a possibility of nontermination is generally

undecidable as logic programming has the full power of recursion theory.

Programmers have developed a number of useful heuristics to enforce

termination. Sometimes it suffices to give a more complex set of logical rules.

However, the resulting program can be very different from the original one.

More often than not, the programmer decides to add explicit control primitives to

the program, thereby destroying its declarative meaning. In both cases the

burden of avoiding nontermination rests with the programmer.

Another possible approach to this problem is based on modifying the

interpreter that searches through the SLD-tree by adding a capability of pruning.

Pruning an SLD-tree means that at some point the interpreter is forced to stop its

search through a certain part of the tree, typically an infinite branch. Every

method of pruning SLD-trees considered so far has been based on excluding

some kind of repetition in the SLD-derivations, because such a repetition can

make the interpreter enter an infinite loop. That is why pruning SLD-trees has

been called loop checking.

Ext,mple

To better understand the relevance of the problems studied here, consider the

following example. Let P be the following simple-minded logic program

computing in the relation tc the transitive closure of the relation r:

P = { tc(x,y) ~ r(x,y).

tc(x,y) ~ r(x,z),tc(z,y). } .

Suppose we add to P the following facts about r: r(a,a)~. r(a,b)~. r(b,c)~.

r(d,a)~. Then we can interpret Pas a PROLOG program, but if we ask:

4 Introduction

- tc(a,b) we get the answer 'yes';

- tc(a,c) the program gets into an infinite loop

(whereas we should get the answer 'yes');

- tc(a,d) the program gets into an infinite loop

(whereas we should get the answer 'no');

- tc(b,d) we get the answer 'no'.

Thus although logically Pis the right program for computing the transitive

closure of r, operationally it is not. One solution is to write a different program,

which is not straightforward - see for example the program in [CM,

Section 7.2]. In fact, Kunen [Ku2] proved that any such program must use

either function symbols or negation. In our solution we retain the above program

and we change the underlying interpreter by adding a loop checking mechanism

to it.

Loop checking

A k op check is a mechanism that prunes SLD-trees. A formal definition is given

in Section 2. l. · Although this definition imposes some restrictions, it is still

fairly general. Thus the question arises: 'What is a good loop check'. In Section

2.2 we introduce again notions of soundness and completeness, but now for

loop checks.

An undesirable result of the application of a loop check would be the loss of

solutions. Thus we call a loop check sound if it does not prune an SLD-tree to

such an extent that solutions are lost. We call it weakly sound if its application

results in the loss of some solutions, but not in the loss of all solutions. The

purpose of a loop check is to reduce the search space. We would like to end up

with a finite search space. If a loop checks achieves this result then it is

complete.

Due to the undecidability of the Halting Problem, a loop check cannot be

(weakly) sound and complete for all programs. In most cases we consider the

soundness of a loop check to be more important than its completeness (except in

Chapter 6). Therefore we shall usually investigate (weakly) sound loop checks,

and identify classes of programs for which they are complete.

It is important to notice that not every derivation that is pruned by a sound

loop check is actually in an infinite loop. Most of the loop checks we shall

consider prune a derivation as soon as some kind of repetition occurs that makes

Introduction 5

the resulting goal redundant (i.e., not producing any new answers). Whether or

not this repetition gives rise to an infinite loop is irrelevant for them. For

example, consider the program

P = I q +- p(x).

p(a) +- p(b).

p(b) f- p(c). }.

The SLD-derivation f-q ⇒ +-p(x) ⇒ Ix/al f-p(b) ⇒ +-p(c) fails finitely, but it is

pruned at +-p(b) by many loop checks.

Applications

From these considerations we obtain an implementation of the closed world

assumption of Reiter [Re] and of a query evaluation mechanism for various

classes of definite deductive databases. The closed world assumption (CW A in

short) is a way of inferring negative information in deductive databases. Reiter

[Re] showed that in the case of definite deductive databases (DB in sh01t) it does

not introduce inconsistency. However, even though CW A is correctly defined

for DB, there is still the problem of how it can be implemented, since it calls for

the use of the following rule'(or rather metarule):

if DB If cp then DB f- -, cp,

that is: deduce-, cp if cp cannot be proved from DB using first order logic.

The problem is how to determine for a particular ground atom A that there is

no proof for it. A loop check that is weakly sound and complete for DB solves

this problem as follows. A logic programming interpreter augmented with this

loop check tries to prove A from DB. When this attempt fails, we can infer-, A

using Clark's [Cl2] negation as (finite)failure rule, the operational counterpart

of CW A. The weak soundness of the loop check implies that if no proof is

found for A, then there is indeed no proof for A. The completeness is needed to

ensure the termination of the procedure.

A more general problem is that of query processing in DB: given an atom A,

compute the set [A]os of all its ground instances A0 such that DB f- A0. In

other words: compute all answers to the query A. Indeed, when A is ground and

DB If A, the query processing problem reduces to the problem of deducing -, A

by means of CW A. Here we need a loop check that is sound and complete for

6 Introduction

DB to solve the problem: to compute [A]oe for an atom A, it suffices to collect

all computed answer substitutions in the SLD-tree starting from A, pruned by

this loop check. Again, the soundness of the loop check ensures that all

solutions are found and the completeness ensures that the procedure terminates.

These applications of loop checking are formalized in Section 2.2.

An alternative application of loop checking is outlined in Chapter 6, where

loop checking is incorporated in the framework of partial deduction (following

[LS], where it is called partial evaluation). We show two ways in which loop

checking can be used in that framework. Firstly, the search space can be reduced

safely by a sound loop check, as sketched previously. The second application is

the use of a complete (but unsound) loop check to characterize and improve

termination criteria for partial deduction (this is called 'loop prevention' in [S2]).

Therefore Chapter 6 includes a description of a class of complete, unsound loop

checks.

Specific loop checks

In Section 2.3 and Chapter 3 we discuss some specific loop checks. The loop

checks of Section 2.3 depend on the program. Those in Chapter 3 don't: they

are simple loop checks. It appears that for practical purposes simple loop checks

are more interesting than nonsimple ones.

The simple loop checks defined in Chapter 3 have in common that they are

based on making comparisons between goals and their ancestors in the SLD

tree. A goal is pruned if it is 'sufficiently similar' to one of its ancestors. Based

on their notions of 'sufficiently similar', these loop checks are divided into three

groups, called equality checks, subsumption checks and context checks

respectively. Each group contains weakly sound and sound versions.

For all three groups of loop checks, we identify classes of programs for

which they are complete (as they are at least weakly sound, they cannot be

complete for all programs). The main restriction we make is that when studying

completeness we rule out programs that compute over an infinite domain. In

order to avoid unnecessary complications, we do so by restricting our attention

to programs without function symbols (function:f'ree programs).

This does not mean that these loop checks can be applied only when

interpreting function-free programs, nor that these loop checks can only be

complete for function-free programs. We do not study explicitly more

Introduction 7

permissive conditions leading to a finite domain, but most of our results can be

generalized easily in this direction.

We mention two possibilities. One is the use of typed functions. This

solution requires an adapted form of SLD-resolution, particularly of the

unification algorithm therein. Another solution is to consider only progrnms (and

goals) that satisfy the bounded term-size property ([vG2], [P]). This property

states that terms occurring in the computation do not grow beyond a certain

limit. It is not necessary that this limit is known in advance.

As one would expect, equality checks are based on the equality between

goals. They are complete for function-free restricted programs. Restricted

programs allow a restricted form of recursion (hence the name): only one

recursive call per clause is allowed. For example, the transitive closure program

P mentioned before is restricted. Thus P becomes not only logically, but also

operationally correct when the PROLOG-interpreter is augmented with an

equality check. (In contrast, this solution cannot be applied to an alternative

specification of the transitive closure of r obtained by replacing the second clause

of P by tc(x,y) f-- tc(x,z),tc(z,y), as the resulting program is not any more

restricted.)

Subsumption checks are based on the inclusion of goals. Consequently,

they are stronger than equality checks. They are not only complete for function

free restricted programs, but also for function-free programs in which no new

variables are introduced in clause bodies and for function-free programs in

which each variable occurs at most once in every clause body.

Context checks compare atoms in goals, but they take the rest of the goal

(the context of the atom) into account. The context checks are complete for the

three classes of programs mentioned.

Another example

Consider the following program EAX, that summarizes the logical properties of

equality. (The rules in EAX are called the eq1u.1lity axioms.)

EAX = { eq(x,x) f--.

eq(x,y) f-- eq(y,x).

(reflexivity),

(symmetry),

eq(x,y) f-- eq(x,z),eq(z,y). (transitivity),

eq(f(XJ, ... ,xn),f(y1, ... ,yn)) f-- eq(x1,yi), ... ,eq(xn,Yn). (substitutivity) }.

8 Introduction

EAX is usually added to an equational pro,:ram EP. A substitutivity axiom is

present for every n-ary function symbol in the language of EP.

Using EAX as a PROLOG program leads to a search space that contains

many redundant derivations. One cannot expect a loop check to prune them all,

as there can be infinitely many solutions to a query, but some of the most

obvious redundancies are removed already by the equality checks, for example:

f- eq(t,u)

I (symmetry)

f- eq(u,t)

I (symmetry)

f- eq(t,u)

and

f- eq(t,u)

I (transitivity)

f- eq(t,z),eq(z,u)

I (reflexivity)

f- eq(t,u)

With or without loop checking, this is a rather naive way to deal with

equality. In fact, the question how equality can be incorporated into logic

pror,ramming has created a research area of its own. For a thorough survey we

refer to [Ho].

Generalizations

One could say that both Chapter 4 and Chapter 5 contain generalizations of the

elementary framework of loop checking outlined so far, but the nature of these

generalizations is quite different. Chapter 4 focuses solely on the completeness

of loop checks. Its central theorem, the Generalization Theorem, allows us to

generalize certain completeness results. The theorem is applied on the results for

the subsumption and context checks mentioned before; stronger completeness

results for these loop checks are thus obtained.

Chapter 5 introduces loop checks for a broader class of programs, namely

programs with negative literals in their clauses. The declarative and procedural

semantics for logic programs with negation are considerably more complicated

than for programs without negation ([ABo], [CI2], [Pl], [P2]). As a result the

effect of applying a loop check is also more complex. Nevertheless we show

that loop checks for programs without negation can easily be extended to loop

checks for locally strat(fied programs, for which satisfactory semantics have

been defined.

Introduction 9

Towards an implementation i?f loop checkin,:

Finally, we pay some attention to the implementation of loop checking. The loop

checks we describe in Chapter 3 compare every goal with every ancestor of it.

Thus the number of comparisons is quadratic in the number of goals generated.

In practice this might turn out to be too expensive. Section 7.1 describes less

expensive loop checks that compare only some selected goals. It is shown that

this technique usually retains completeness results. Moreover, a proper selection

renders the number of compaiisons linear in the number of goals generated.

Section 7.2 reports a preliminary study on the practical implementation of

several loop checks, in particular the equality and subsumption checks and their

variants that compare only selected goals. Two implementations are described.

The first one consists of a meta-interpreter, the second one transforms the input

program such that the new program incorporates loop checking. Although these

implementations are not very efficient, and some questions remain open, the

measurements we performed on our implementations seem to suggest that loop

checking can be done efficiently.

Interdependence of the chapters

The following figure shows how the various chapters depend on each other. It

seems that Chapter 8 is the summit of this book. This is not the case: it discusses

work by others related to several subjects discussed here.

6

2.1 + 2.2 5.1 + 5.2

1. Logic Programming

In this chapter we recall briefly the basic definitions of pure logic programming.

More details and motivation can be found in [A] and [L].

1.1. Syntax

The language

A logic program is simply a set of formulas in a limited first-order language. The

alphabet of such a language is determined by:

- a finite set of constants, denoted by a, b, c, d, ... ,

- a finite set of.function symbols, denoted by f, g, h, ... ,

- a finite set of predicate symbols, denoted by p, q, r, s,

Each function and predicate symbol has a fixed arity, that is its number of

arguments. Function symbols (or just.functions) have a positive arity (constants

are introduced instead of 0-ary functions), but 0-ary predicate symbols (or just

predicates) are admitted. ,

We assume that an infinite set VAR of variables is fixed; typical elements of

VAR are x, y, z, x', x1, x2. Every alphabet contains VAR and the set of

symbols{'(',')',',','-,', 'f-', '1,:, 'v'}. We now define by induction terms

over a given alphabet:

- a variable is a term,

- a constant is a term,

- if f is an n-ary function symbol and t1, ... ,tn are terms, then f(t 1, ... ,t0) is a

term.

If p is an n-ary predicate symbol and t1 , ... ,tn are terms, then p(t1 , ... ,t0) is

an atom. Terms are denoted by t, u, t1, t2, ... and atoms by A, B, A1, A2,

A clause is a formula of the form A1v ... vAmf-BJ/\ ... /\Bn (m,n ~ 0),

usually written as A1, ... ,Amf-B1, ... ,B 0 , where A1, .. ,,Am,B1, ... ,B 0 are

atoms. We distinguish the following 'special' clauses by their values form an n:

- m = 0: goal clauses or goals, with as a special case

- m = 0 and n = 0: the empty clause, denoted by □;

- m= l: pro,vam clauses or definite clauses, with as a special case

- m = 1 and n = 0: unit clauses or.facts.

11

12 Logic Programming Chapter I

A positive literal is just an atom (A), a negative literal is the negation of an

atom (-.A). Literals are denoted by L1, L2, In Chapter 5 we shall encounter

general clause.v: constructs of the form A1v ... vA 111 f--L1A ... ALn, where

AJ, ... ,Am are atoms but L1, .. ,,Ln are (not necessarily positive) literals. Again,

such a general clause is called a general goal if m = 0, a general program clause

if m = 1. (General) goals are denoted by G, H, G1, G2, ... , (general) program

clauses by C1, C2, For a (general) program clause Af--LJ, ... ,Ln, A is

called the head of the clause and L1, ... ,Lm the body. For a goal G, IGI denotes

its length, i.e., the number of atoms in it.

A logic program (or just a program) is a finite nonempty set of program

clauses. A general logic program (or just a general program) is a finite nonempty

set of general program clauses. With each (general) program P we can uniquely

associate a first-order language Lp whose constants, functions and predicates are

those occurring in P. P isfunction{ree if P contains no function symbols.

An expression is a term, literal, sequence of literals, clause or program, and

is d•!noted by E. For an expression E, var(E) denotes the set of variables that

oc:ur in E. If var(E) = 0 then E is called ground.

Substitutions

Consider now a fixed first-order language. A substitution is a finite mapping

from variables to terms, and is written as

8 = {x1/tJ, ... ,xn/tn},

It is to be read: the variables XJ, .. ,,Xn are mapped (bound) to t1, ... ,tn

re.-.pectively. The notation implies that the variables XJ, .. ,,Xn are different. We

also assume that Xi t, ti (i = l, ... ,n). A pair Xi/li is called a binding. (x1, ... ,xnl

is tailed the domain of 8 (dom(O)), {tt,•••,tn} the range of 8 (ran(O)). If 8 is a

bijection, that is if dom(8) = ran(9), then 8 is called a renaming. Thus a renaming

is simply a permutation of a finite nummu- of variables. The empty substitution

or uhntity substitution is denoted by E: E = dom(E) = ran(E) = 0.

Substitutions operate on expressions. For an expression E and a

sub.,t1tution 8, E0 stands for the re.,ult of applying 8 to E, whic::h is obtained by

sintul.tlineously replacing each occurrenee in E of a variable from dom(8) by the

corresponding term. A substitution 8 is ground (in a given context) if E8 is

ground for all expressions E that occur in that context.

Section I.I Syntax 13

Substitutions can be composed. Given substitutions 8 and 11, their

composition 811 is defined as 1108 (regarding substitutions as functions).

Alternatively, if 8 = {x1/t1, ... ,xn/tn} and 11 = {y1/u1, ... ,yn/un}, then 811 is

obtained by removing from the set {x1/t111, ... ,xnllnll,Y1lu1, ... ,yn/un} the pairs

x/till for which Xi = till as well as the pairs y/ui for. which Yi E { x 1 , ... ,Xn}.

Thus for an expression E and substitutions O", 8 and 11, (E8)11 = E(811) and can

be written as E811; (cr8)11 = 0"(011) and can be written as 0811. A substitution 0 is

idempotent if 80 = 0. It is easy to see that a substitution 0 is idempotent if and

only if dom(8) n var(ran(8)) = 0. So the only idempotent renaming is£.

For two expressions E and F, E is an instance of F (F is more general than

E, notation F ~ E) if for some substitution 0, E = F0. E and Fare variants if E =
F0 for some renaming 0. A substitution 0 is more general than 11 if 11 = 0y for

some substitution y. 0 and 11 are variants if 11 = 0y for some renaming y. For a

program P, ground(P) denotes the set of all ground instance of clauses in Pin

the language Lp. Notice that ground(P) can be infinite.

Un(fication

Consider two atoms A and B. If for some substitution 0 we have A0 = B8, then

8 is called a un(fier of A and B and we say then that A and B are unifiable. A

unifier 0 of A and Bis called their most general un!fier (or mgu in short) if it is

more general than any other unifier of A and B. A unifier 8 of A and Bis called

relevant if dom(0) ~ var(A) u var(B). It is easy to prove that every idempotent

mgu of A and Bis relevant. The following theorem is due to Robinson [Ro].

THEOREM 1.1.1 (Unification Theorem). There exists a unification

algorithm which for any two atoms produces an idempotent most general

unifier (f they are unifiable and reports nonexistence of a unifier otherwise.

PROOF. The unification algorithm we give here was first presented by Martelli &

Montanari ([MM]). Two atoms can only be unified if they have the same

predicate symbol. When p(s1, ... ,sn) and p(t1, ... ,tn) are to be unified, first the

set of equations { s 1 = t 1, ... , Sn = tn} is constructed. This set is then

transformed according to the following six rules:

14

(a) Eu{t=x}

(b) Eu{x=x}

Logic Programming

• Eu{x=t}

• E,

Chapter I

iftE VAR,

(cl) E 0 {f(sJ, ... ,s0) = f(tJ, ... ,t0)1 • Eu {s1 = t1, ... ,s0 = t0 } (n;;:: 0),

(c2) Eu{f(s1, ... ,s0)=g(t1, ... ,tm)l • failure iff;,1:g,

(dl) Eu{x=t} • E{x/t}u{x=t} ifxe:var(t)andxevar(E),

(d2) Eu{x=t} • failure if x ;,!: t and x e var(t),

until none of these rules is applicable. (Here 0 denotes the disjoint union.) If the

algorithm ends in failure, then the two atoms are not unifiable. Otherwise we

take 8 = { x/t I (x = t) e E}, where E denotes the final set of equations. We omit

the proof that this algorithm is correct and that it always terminates. □

1.2. SLD-resolution

SLD-derivations

Let G = f--AJ, ... ,A0 be a goal and C = Af--BJ, ... ,Bm be a program clause. If

for some i, 1 S i S n, Ai and A unify with an idempotent mgu 8, then we call

G' = f--(AJ, ... ,Ai-1,Bt,••·•Bm,Ai+l,···•An)8

a resolvent of G and c., The transformation from G to G' is called a resolution

step and denoted by G =>c,9 G'. The atom Ai is called the selected atom in G.

Now let P be a program and Go a goal. An SLD-derivation of P\...l{Go} is a

(finite or infinite) sequence Go =>c 1,e 1 G1 => ... =} Gk-I =>ck,9k Gk=> ... of

resolution steps such that for all i = 1,2, ... , Ci is a variant of a clause in P and

var(Ci)" (var(Go) u var(C1) u ... u var(Ci-1)) = 0 (standardizing apart). It is

important to note that, in contrast with [A], we do not require SLD-derivations

to be a maximal sequence.

If an SLD-derivation D is finite, then IOI denotes it-. length, i.e., the number

of resolution steps in it. Given a goal G = f--A1, ... ,A0 , G- denotes the formula

AtA, .. AA0 • With each goal in an SLD-derivation Go =>c 1,e1 Gt=> ... => Gk-I

=>ck,0k Gk=> ... we associate a resultant: for i;;:: 0, the resultant associated to Gi

i~ Go-8182 •.. 0i if Oi = □, Go 8182 ... 8if--Gi- otherwise.

In every nonempty goal in an SLD-derivation, one atom must be selected.

Which one it is may depend on every aspect of the preceding derivation. This

dependency is formalized by the notion of selection rule. Let HIS (for history)

be the set of finite SLD-derivations of which the last goal is nonempty. A

selection rule R is a function which when applied to an element D of HIS selects

Section 1.2 SLD-rcsolution 15

an atom in the last element of D. For example, the lefimost selection rule selects

always the leftmost atom of a goal, the rightmost selection rule selects always

the rightmost atom.

Given a selection rule R, an SLD-derivation D = (Go =>c 1,e1 G1 => ... =>

Gk-I =>ck,ek Gk=> ...) is an SLD-derivation via R if for all i;;:: 0 (and i !5: IDI if D

is finite), if Gi ct; D then the selected atom in Gi is R(Go =>c 1,e1 G1 => ... => Gi)

Obviously for every SLD-derivation D there is a selection rule R such that D is

an SLD-derivation via R (this is not the case in [L]). This explains the

abbreviation 'SLD': SLD-resolution is Selection rule driven Linear resolution for

Definite clauses.

For a program P and a goal G, we distinguish SLD-derivations of Pu{ G}

with four different outcomes:

- infinite derivations,

- successful derivations: finite derivations of which the last goal is empty,

-failed derivations: finite derivations of which the selected atom in the last goal

does not unify with the head of any variant of a clause in P,

- unfinished derivations: all other finite derivations.

A proper initial subderivation of an SLD-derivation D = (Go =>c 1,e1 G1 => ... =>

Gk-1 =>ck,ek Gk=> ...) is an unfinished SLD-derivation D' = (Go =>c 1,e1 G1

=> ... =>Gk-I =>ck,ek Gk) such that if D is finite, ID'I < IDI.

Successful SLD-derivations are also called SLD-refutations. The computed

answer substitution of an SLD-refutation Go =>c 1,e1 G1 => ... =>Gk-I =>ck,ek Gk

= D is the substitution 0102 ... 0k (in contrast with [A] and [L] not restricted to

var(Go)). The computed answer is the resultant associated to □, which is

Go-8182 ... ek,

Two SLD-derivations are variants if the following conditions hold:

- their initial goals are variants,

- in corresponding goals atoms in the same position are selected,

- in corresponding derivation steps the clauses used are variants.

It has been proved in [LS] that these conditions imply that all corresponding

resultants are variants. In particular, if the derivations are successful then their

computed answers are variants (but not necessarily their computed answer

substitutions).

16 Logic Programming Chapter I

Properties of SLD-derivations

The following lemma shows that our conditions on SLD-derivations, notably

standardization apart and the use of idempotent mgu • s, guarantee that a variable

in an SLD-derivation has only one 'meaning': it appears only in one consecutive

sequence of derivation steps and it is not renamed within this sequence.

LEMMA 1.2.1. Let D = (Go =>c,,e, Gt=> ... =>Gi =>c;+t,Bi+/ Gi+J => ...)

be an SLD-derivation and let O 5 i < k (5 IDI). /f'x E var(Ci+JJ u var(Gi)

and x E var(Gk), then/or allj, i <.i 5 k, x E var(Gj) and x0j = x.

PROOF. We use induction on j from k down to i. x E var(Gk) is given. Now

assume that i ~j < k and x E var(Gj+J). We prove that x0j+I = x and that if j > i,

x E var(Gj). Let Gj = ~(S 1,A,S2), where A is the selected atom in Gj- Let Cj+ 1

= H~S3. (St, S2 and S3 are possibly empty sequences of atoms.) Then 0j+I is

an idempotent mgu of A and H and Gj+I = ~(S 1,S3,S2)0j+I · Sox E

var(S1,S3,S2)0j+I, hence for some y E var(S1,S3,S2), x E var(y0j+J). Two

cas,;s arise.

- '.'< = y. Thus x0j+I = x. Also, if j > i, x 6!: var(S3) since x E var(Ci+J) v var(Gi)

and S3 is standardized aprut. So x E var(S 1,S2) ~ var(Gj)-

- x -:I:- y. Then x E var(ran(0j+i)), and since 0j+I is idempotent, x e: dom(0j+I),

so x8j+l = x. Also, since 0j+I is relevant, x E var(A,H). If j > i, x e: var(H)

since x E var(Ci+ 1) v var(Gi) and H is standardized apart. So x E var(A) ~

var(Gj),

So in both cases we have x0j+ 1 = x and if j > i also x E var(Gj)- □

The following definition captures the notion that two variables in a goal are

related, Le., that they might be unified in an attempt to refute the goal. (Compare

this notion with connected (sets of) predicate instances in [Na].) We then prove
•

that when two variables occur unl'elated in a certain goal, they cannot be related

in any goal later in the derivation.

DtFtNITION 1.2.2.

Let S be a set of atoms. We define the relation-son variables as:

x -s y if there is an atom A in S such that x,y E var(A).

Obviously, -sis a symmetrical relation. Now we define the relation ==s to be the

transitive and reflexive closure of -s. Then ==s is an equivalence relation.

Section 1.2 SLD-resolution 17

An equivalence class of =sis called a chain (in S). For x E var(S), the chain

of xis denoted by Cs(x), or C(x) whenever Sis clear from the context. D

LEMMA 1.2.3. Let D = Go ==>c 1.e1 G 1 => ... => G;_J =>c;,0; G; ==> ... be an

SLD-derivation and Let O < i (~ IDI).

ffx =c; yand x,y E var(G;-1), then x ""Ci-I y.

PROOF. Let Gi-1 = f-(A,R), where A is the selected atom in Gi-1. Let Ci =

Hf-S and let 0i be an mgu of A and H. Then Gi = f-(S,R)0i. Assume x * y

(for x = y the claim is trivial). Since x ""Gi y, there is a sequence of variables x =
w 1, w2, ... , w20 = y in Gi such that w2j-l =sei w2j for 1 :s; j :s; n and W2j ~Rei

W2j+ J for l :s; j < n.

For 1 < j < 2n, every variable Wj E var(R0i), so we can choose for it a

corresponding variable Zj E var(R) ~ var(Gi-1) such that Wj E var(zj0i)- Since 0i

is idempotent, and x,y E var(Gi-1) n var(Gi), we can choose ZJ = WJ = x = x0i

and z2n = w2n = y = y0j. Now let 1 :s; j < 2n.

We prove that Zj ""Gi-l Zj+l· Two cases arise.

- j is even, so Wj -Rei Wj+ l ·

Then there is an atom Bin R such that Wj,Wj+I E var(B0j). So we have variables

Vj,Vj+I E var(B) such that Wj E var(vj0i) and Wj+l E var(Vj+J0i)- So Vj -s

Vj+ 1, and hence Vj -R Vj+ 1. For Vj (and analogously for Vj+ 1) two subcases

arise.

- Vj = Zj. Then Vj ""A Zj.

- Vj * Zj. Then, since Wj E var(vj0i) n var(zj0i) and 0i is relevant, we have Vj, Zj

E var(A). Hence Vj ""A Zj-

Therefore Zj ""'A Vj -R Vj+I ""'A Zj+l, so Zj ""'Gi-1 Zj+I·

- j is odd, so Wj ""'Sei Wj+ 1.

If Wj = Wj+I, then Zj = Zj+I, so Zj ""'Gi-l Zj+l· Otherwise, we can prove that Zj E

var(A) (and analogously Zj+I E var(A)). Again two subcases arise.

- Zj0i * Zj- Then Zj E var(A): 0i is relevant and 2:i E var(Gi-1), so Zj i var(H).

- Zj0i = Zj- Then Wj = Zj E var(S0i), say Vj E var(S) such that Zj E var(vj0i)- Then

Vj0i * Vj, since Vj E var(S), Zj E var(Gi-1) and S is standardized apart.

Therefore Vj E var(H), and hence Zj E var(A).

Now Zj -A Zj+I, so Zj ""'Gi-1 Zj+l·

Therefore we have x = z1 ""'Gi-l z2 ""'Gi-l z3 ""'Gi-l ... ""'Gi-l Z2n = y. D

18 Logic Programming Chapter I

Normal SW-derivations ·

In some cases it appears to be convenient to restrict the choice of the mgu by

disallowing the 'needless renaming of variables in a derivation'. We explain this

now. When we have a variable x in the selected atom of the goal which is to be

unified with a variable y in the input clause, then two idempotent mgu' s are

available: I x/y} and { y/x).

When { x/y} is chosen, it is likely that the variable y occurs further on in the

derivation as a substitute for x, whereas x itself does not occur any more. On the

other hand, if { y/x} is chosen, the variable x is retained and the variable y will

not occur in any goal of the derivation. Therefore the renaming from x to y is

considered to be a needless renaming. So we choose { y/x I, thereby retaining the

'older' variable x and adjusting the 'newer' variable y.

A more indirect instance of the same principle is shown in the derivation

+-A(x) =>A(x')+-B(x',y), (x'/x} +-B(x,y) =>B(z,z)+-, (y/x,1Jx} D.

In the first step I x'/x} is chosen for the reason described above. In the second

step, the choice of { x/z,y/z} is out of the question for the same reason.

However, this still leaves the choice between {x/y,z/y} and {y/x,z/x}. Although

x and y occur both irr B(x,y), x appears earlier in the derivation than y.

Therefore we choose { y/x,z/x}, thereby again retaining the older variable x and

adjusting the newer variable y.

It is important to note two things. Firstly, Lemma 1.2. l says that a variable

cannot be introduced, disappear and later on in the derivation reappear, which

would complicate the decision criterion given above. Secondly, the choice of the

mgu is still nondeterministic, as is shown in the derivation

+-A =>A+-B(x,y), £ +-B(x,y) =>B(z,z)+-, {y/x,z/x} D.

Here the choice between { y/x,z/x} and I x/y ,z/y} is arbitrary.

We now formalize these intuitions.

Df;FINITION 1.2.4 (Normal SLD~derivation).

Let D = (Go =>c1,e1 01 => ... => Gi-1 =>ci,8i Gi => ...) be an SLD-derivation.

For every variable x occurring in D, we define

{
0 if x E var(Go),

tag(x) =
j if x e var(Cj}.

Section 1.2 SLD-resolution 19

Dis a normal SLD-derivation if for every i > 0 (and i $ IDI when Dis finite), for

every variable x E var(Gi-1): if x0i is a variable, then tag(x);;:: tag(x0j). D

Intuitively, the lower the tag of a variable is, the 'older' it is. The following

lemma shows that we may restrict our attention to nonnal SLD-derivations.

LEMMA 1.2.5. Every SLD-derivation has a normal variant.

PROOF. Consider the unification algorithm of Theorem I. I. I. We change rule

(a) of this algorithm to:

(a') Eu {t=x} ~ Eu {x=t} ift~ VARortag(t)<tag(x),

thus taking tags into account.

Recall that we take 0 = { x/t I (x = t) E E}, where E denotes the final set of

equations to which none of the rules is applicable. Thus whenever x0 = y :t:- x,

we have that (x = y) E E and rule (a') is not applicable on E, hence tag(x) 2::

tag(y). Showing that this algorithm also terminates and yields an idempotent

mgu of p(s1 , ... ,sn) and p(t1 , ... ,tn) is straightforward. D

Properties of normal SLD-derivations

In this subsection we prove some properties of normal SLD-derivations that

appear to be needed in Chapter 3 and 4. The reader who is not interested in such

technical details is encouraged to skip the rest of this section.

LEMMA 1.2.6. Let D = (Go ⇒c ,.e, G 1 ⇒ ... ⇒ Gi-1 ⇒c;,0; G; ⇒ ...)be a

normal SW-derivation and let O 5j < k (5 IDI). Let C be a chain in Gj

Then C0k n VAR~ C.

PROOF. Let x E C and assume that x0k is a variable. We prove that x0k E C.

If x0k = x then clearly x0k E C.

Otherwise, x E var(Gk-1), since ek is relevant and by standardizing apart, x ~

var(Ck)- Dis normal, x E var(Gk-1) and x0k is a variable, so tag(x);;:: tag(x0k),

Hence xek ~ var(Ck)- x0k :t:- x and ek is relevant, so x0k E var(Gk-J). Thus x

and x0k occur both in the selected atom of Gk-I· Therefore x "'Gk-I x0k.

Also, tag(x0k) $ tag(x) $ j, thus by Lemma 1.2.1, for every i such that j $ i

< k, x e var(Gi) and x0k E var(Gi)- Applying Lemma 1.2.3 k-1-j times yields

that x "'Gj x0k. Hence x0k E C. D

20 Logic Programming Chapter I

COROLLARY 1.2.7. Let iJ = (Go =>c J,6/ G J => ... => G;_J =>c;,6; G; => ...)
be a normal SW-derivation <fa .functionJree program P and Go and let

0 Sj < k (SIDI). Then var(Gj0k) f;; var(Gj) and var(Gj0j+/···0k) {;;var(Gj).

PROOF. Let x e var(Gj8k). P is function-free, so for some y e var(Gj), x = y8k.

Now by Lemma l.2.6, x = y8k e CajCy)8k n VAR~ CajCY) ~ var(Gj).

Now var((Gj8j+t)8j+2··· 8k) ~ var(Gj8j+2··· 8k) ~ ... ~ var(Gj8k) ~

var(Gj). D

COROLLARY 1.2.8. Let D = (Go =>c,,61 G J => ... => G;_, =>c;,6; G; => ...)
be a normal SLD-derivation and let O Sj < k (SIDI). Let C be a chain in Gj

Then C0j+J0k n VAR f;; CBj+J and C0j+I··· 0k n VAR f;; C0j+l·

PROOF. If j+ I = k, then the claim is trivial. So assume j+ I < k.

Let x e C8j+ 1 and assume that x8k is a variable. We prove that x8k e C8j+ 1.

By Lemma 1.2.6, x e C8j+ 1 n VAR implies x e C. Therefore, again by Lemma

1.2.6, x8k e eek n VAR ~ C. Two cases arise.

- xf' k8j+ 1 = x8k. Then x8k e C implies x8k = x8k8j+ 1 e C8j+ l •

- :,8k8j+l-:# x8k. Then x8k E var(Gj+t), since 8j+l is idempotent. As we have

· ;8k e C ~ var(Gj), x8k 'E var(Gk-1) by Lemma 1.2. l and x8k E var(Ck) by

standardizing apart. Thus x8k = x e C8j+ I·

Now ((C8j+1)8j+2) ... 8k ("I VAR~ (C8j+1)8j+3···8k) n VAR~ ... ~

(C8j+1)8k n VAR~ C8j+l· D

In order to formulate the final property of normal derivations we prove in

this section, we need the following definition.

DEFINITION 1.2.9 (Local selection rule).
(This definition is equivalent to the definition of local i,;election functions in [V].)

A selection rule R is local if every SLD-derivation D = (Go =>c1,o1 G1 => ...)
via R satisfies the following property. If in a goal Gi, an atom A is selected and

in a goal Gj (j > i) the further instantiated version B8i+I ... 8j of the atom B (-:# A)

in Gi is selected, then A is resolved completely between Gi and Gj. D

It is easy to see that the leftmost selection rule and the rightmost selection

rule are examples of local selection rules.

Section 1.2 SLD-resolution 21

COROLLARY 1.2.10. Let D = (Go ==>c,.e, G1 ==> ... ==> G;_J ==>c;,0; G; ⇒ ...)
be a normal SLD-derivation <d" a .function~free program P and Go and let

0 5j < k (5 IDI). Let A be the selected atom in Gj- Suppose a local selection

rule is used between Gj and Gk and A is not completely resolved before Gk,

Then var(A0k) b var(A) and var(A0j+I··· 0k) b var(A).

PROOF. Let x e var(A) and assume that x0k is a variable. We prove that x0k e

var(A). Let Gj = (A,R) and regard the derivation f-A = Hj =>cj+l,0j+I Hj+I =>

... =>ck,ek Hk (hence for j $ i $ k, Gi = (Hi,R0j+I ... 0i)). Note that this

derivation exists, since a local selection rule is used and A is not completely

resolved before Gk, and note that the derivation is normal. Now x E var(A) =
var(Hj) implies x0k e var(Hj) = var(A) by Corollary 1.2.7.

Now var((A0j+1)0j+2···0k) s;;; var(A0j+2···0k) s;;; ... s;;; var(A0k) s;;; var(A).D

1.3. Soundness and Completeness of SLD-resolution

SW-trees

We are now ready to define the search space of top-down interpreters for logic

programming, the SLD-tree.

DEFINITION 1.3.1 (SLD-tree).

Let P be a program, G a goal and R a selection rule.

An SLD-tree of Pu{GJ via Risa tree satisfying the following:

- Each node of the tree is a goal; the root node is G.

- If a goal G' has a child G", then the edge between G' and G" is =>c,e such

that G' =>c,e G" is a resolution step.

- Each branch of the tree is an SLD-derivation of Pu { G} via R.

- Nodes which are the empty goal are leaves.

- Let G' be a nonempty goal and let A be selected by R in G'. For every clause

C in P such that a variant of the head of C unifies with A, G' has a child G"

such that the clause in the edge from G' to G" is a variant of C. G' has no

other children. D

Notice that the last condition implies that no branch of an SLD-tree is an

unfinished SLD-derivation. An SLD-tree is succes.~ful if it contains the empty

goal (equivalently: if at least one of its branches is a successful SLD-derivation),

22 Logic Programming Chapter I

otherwise it is failed. An SLD-tree is finite if it has no infinite branches (because

programs are finite sets of clauses, SLD-trees are finitely branching).

Pruning a node (goal) in an SLD-tree means removing all its descendants.

An initial subtree of a tree Tis obtained by pruning zero or more nodes of T.

Sometimes we shall call an initial subtree of an SLD-tree an unfinished SLD

tree: all its branches are (possibly unfinished) SLD-derivations.

Soundness and completeness

We assume that the reader is familiar with the notions interpretation, model and

semantical implication (see [F] for an introduction). The !alter is denoted by t=.

Let P be a program and G a goal. A substitution 0 is a correct answer

substitution for Pu{ G} and G-0 is a correct answer for Pu{ G} if P t= G~0.

We can now formulate the soundness and strong completeness of SLD

resolution, which is due to Clark [Cl l]. See also [AvE].

THEOREM 1.3.2 (Soundness and strong completeness of SLD

resolution).

Let P be a program, G a goal and R a selection rule. Let The an SLD-tree

of Pu{G} via R.

(i) Each computed answer (substitution) <d' an SLD-refutation in Tis a

correct answer (.,ubstitution)for Pu{G}.

(ii) For each correct answerfor Pu{G}, there is an SLD-refutation in T that

gives a more general computed answer. □

A logic program can express (by semantical implication) that certain facts

hold, but it cannot express that certain other facts do not hold. To overcome this

shortcoming Reiter ([Re]) introduced the closed world assumption (CW A).

Given a program P, CW A(P) = {--, A I A is a ground atom and P IF A}. The

soundness and completenesii of SLD-resolution imply that CWA(P) = {-,A I A

is a ground atom and every SLD-tree of Pu{ +=A} is failed j.

Searching SW-trees

When a program P and a goal O are presented to an interpreter for logic

programming, it will perform a search through an SLO-u·ee for Pu{ G} via

some selection rule R (we can also say that it constructs such a tree). The order

Section 1.3 Soundness and Completeness of SLD-resolution 23

in which the nodes of this SLD-tree are visited (constructed) is determined by

the search rule (which is not to he confused with the selection rule).

From now on we assume that the clauses of a program P are ordered. Then

the SLD-tree becomes an ordered tree: the outgoing edges of a node are ordered

by the clauses in P of which they use a variant. (For simplicity we assume that P

itself does not contain two clauses that are variants.) In practical systems the

clauses of a program form a text, which is naturally ordered.

Informally, we call an interpreter sound if all the answers it gives are

correct, and we call it complete if its answers 'cover' all correct answers. The

soundness of SLD-resolution (Theorem I .3.2.i) implies that interpreters based

on searching the SLD-tree are sound, regardless of their search rule. The

completeness of SLD-resolution (Theorem 1.3.2.ii) implies that these

interpreters are also sound w.r.t. CW A: given a program P and a ground atom

A, if the interpreter terminates on Pu{ ~A} reporting failure, then the SLD-tree

of Pu{ ~A} is (finite and) failed, thus-, A E CW A(P).

We would prefer to have a complete interpreter, which requires a search rule

that eventually finds each successful branch on the SLD-tree. A breadth-first

search rule satisfies this property, but is not very compatible with an efficient

implementation. Therefore PROLOG uses a depth-first left-to-right search rule.

If a solution in the SLD-tree occurs to the right of an infinite branch, this

solution is not found by a standard PROLOG interpreter (sometimes reordering

the clauses of the program helps, but not always; for an example see [L], page

59). Consequently the standard PROLOG interpreter is not complete.

Completeness w.r.t. CW A would require that for every program P and

ground atom A such that-,A E CWA(P), the interpreter terminates on Pu{ ~A}

reporting failure. But the SLD-tree of Pu{ ~A} can be infinite, in which case an

interpreter that tries to search it completely does not terminate. So in this case

both a breadth-first interpreter and the standard PROLOG interpreter are

incomplete w.r.t. CW A.

In Section 2.2 we show how the introduction of loop checking can improve

the situation regarding the incompleteness of interpreters with a depth-first

search rule as well as the general incompleteness of interpreters w.r.t. CW A.

2. Foundations of Loop Checking

In this chapter we systematically study the foundations of loop checking

mechanisms. To this end, we provide in Section 2.1 a general definition of a

loop check. We also introduce a natural subclass of loop checks, called simple

loop checks: their definition does not depend on the analyzed logic program.

In Section 2.2 we define some important properties of loop checks, like

soundness (no computed answer to a goal is missed) and completeness (all

resulting derivations are finite). We study the effect of adding loop checks to

top-down interpreters. Finally we prove that no sound and complete simple loop

check exists even in the absence of function symbols.

In Section 2.3 we study some nonsimple loop checks: loop checks that take

the program into account. We show that such a loop check can be sound and

complete for the class of function-free programs. However, their value for

practical purposes appears to be limited: nonsimple loop check are in a sense too

powerful.

2.1. What is a Loop Check?

Definitions

One might define a loop check as a function from SLD-trees to unfinished SLD

trees. However, this would be a very general definition, allowing practically

everything. The purpose of a loop check is to prune an SLD-tree to an initial

subtree of it. Moreover, we shall use here a more restricted definition: given a

program P and a goal G, the decision to prune a node is based only upon its

ancestors in the SLD-tree of Pu I G}, that is on the SLD-derivation from G up to

this node.

Thus we exclude here more complicated pruning mechanisms, for which the

decision whether a node in a tree is pruned depends on the so far traversed

fragment of the considered tree. Such mechanisms are for example studied by

Vieille [V] and Tamaki & Sato [TS] (see Chapter 8).

Due to this restriction we could define a loop check as a function which,

given a program and an SLD-derivation, returns it unchanged if it is not pruned,

and otherwise returns the proper initial subderivation of it that ends in the pruned

25

26 Foundations of Loop Checking Chapter 2

node. Of course, if a derivation D is pruned at the goal G, then every derivation

D' that is the same as D until and including G must also be pruned at G: the

ancestors of G are the same in D and D'.

This means that it is better to define a loop check as a set of derivations

(depending on the program): the derivations that are pruned exactly at their last

node. Thus a program Panda loop check L determine a set of (unfinished)

SLD-derivations L(P). Such a loop check L can be extended in a canonical way

to a function fL from SLD-trees to unfinished SLD-trees by pruning in an SLD

tree T for Pu{ Go} the nodes in { G I the SLD-derivation from Go to G in T is in

L(P)}. We shall usually make this conversion implicitly.

We shall mainly study an even more restricted form of a loop check, called

simple loop check, in which the set of pruned derivations is independent of the

program. Thus a loop check is a function with a program as input and a set of

derivations, being a simple loop check, as output. This leads us to the following

definitions.

DEFINITION 2. 1. 1.

Let L be a set of SLD-derivations. Initial.~(L) = { D e L I L does not contain a

proper initial subderivation of D}. L is subderiw,tion.free if L = Initials(L). D

In order to render the intuitive meaning of a loop check L: 'every derivation

De Lis pruned exactly at its last node', we need that Lis subderivation free.

Note that Initials(lnitials(L)) = Initials(L).

DEFINITION 2.l.2 (Simple loop c.:hec.:k).
A simple loop check is a computable set L of finite SLD-derivations such that L

is closed undtr variants and subderivation free. a

The first condition here em1ures that the choice of variables in the input

clauses in an SLD-derivation does not influence its pruning. This ii. a reasonable

demand since we are not interelited in the choice of the names of these variables.

OEFINITION 2.1.3 (Loop c.:heck).
A loop check is a computable function L from programs to sets of SLD

derivations such that for every program P, L(P) is a simple loop check. 0

Section 2.1 What is a Loop Check? 27

Of course, we can treat a simple loop check L as a loop check, namely as

the constant function AP.L.

DEFINITION 2.1.4,

Let L be a loop check. An SLD-derivation D of Pu{ G} is pruned hy L if L(P)

contains D or a proper initial subderivation of D. □

An example: the Variant r?f Atom check

A first attempt to formulate the Variant rd" Atom (VA) check might be: 'A

derivation is pruned at the first goal that contains a variant A of an atom A' that

occurred in an earlier goal.' Note that we have to allow here that A and A' are

variants: if we required A = A' then we would violate the first condition in

Definition 2.1.2.

The intuition behind this loop check is the following. We wish to prove A'

by resolution. If we find out after some resolution steps that in order to prove A'

we need to prove a variant A of A', then there are two possibilities. One is that

there is a proof for A. Then this proof could also be used as a proof for A', by

applying an appropriate renaming on it. So we do not need the proof of A' that

goes via A. The other possibility is that there is no proof for A. In that case, the

attempt to prove A' via A cannot be successful. So in both cases there is no

reason to continue the attempt to prove A' via A.

The derivation step f-B,A ⇒sf--,E f-A shows that the first formulation of

the VA check is not precise enough: it does not capture the intuition that the

proof of A' goes via A. The atom A should be the result (after one or more

derivation steps) of resolving A', or a further instantiated version of A' (if A' is

not immediately selected). Therefore we arrive at the following definition.

DEFINITION 2.1.S (Variant of Atom check).

The Variant of Atom check is the set of SLD-derivations

VA = Initials({ D I D = (Go ⇒c 1,01 Gt ⇒ ... ⇒ Gk-I ⇒ck,0k Gk) such that for

some i and j, 0::;; i ::;; j < k, Gk contains an atom A that is

- a variant of an atom A' in Gi and

- the result of an attempt to resolve A'0i+l ···0j, the further

instantiated version of A', that is selected in Gj}). □

28 Foundations of Loop Checking Chapter 2

We now illustrate the use of this loop check.

EXAMPLE 2. 1.6.

(This example is based on Example 8 in [B], see also [vG I]).

Let P = { p(O) t-. (Cl),

q(l) t-. (C2),

p(x) t- p(y). (C3),

r t- p(x),q(x). (C4) },

let G = t- r.

That the informal justification of the loop check VA is incorrect, is shown

by applying it to two SLD-trees of Pu{ G}, via the leftmost and rightmost

selection rule respectively, which gives us Figure 2.1.1. (In this figure and

elsewhere a failed node, i.e., a node without a successor in the SLD-tree, is

marked by a box around it. C' denotes the program clause C, where every

variable vis renamed to v'.)

t-r t-r

~;4) ~;4)
t- p{x),q(x) t- p(x),q(x)

(Cl) "-.<C3)' I (C2)
{x/0) ~x'/x} t{x/1}

t- q(O) t- p(y'),q(x) t- p(l)

-ff-IY-~-C-3) ___ ___, I (C3)'

{y'/~ ~~"/y'} VA prunes here +tx'/l}

I t- p(y') t- q(x) t- p(y"),q(x) ._ ____ _

I (C2) (CP/ \(C3)"' (Cp/ ~~3)"
t{x/1} {y"/0~ ~{x"'/y"} {y'/Ov ~x"/y'}

D D

FlGURE 2.1.1

A detailed analysis shows why the goal G3 = t-p(y') in the rightmost tree is

pruned by the VA check. Clearly, a variant of p(y') occurs in an earlier goal:

p(x) in Gt, So we take i = I. In Gt, p(x) is not yet selected, so j > i. In fact

Section 2.1 What is a Loop Check'? 29

j = 2, for in G2 the atom p(I), which is a further instantiated version of p(x), is

selected. Indeed, p(y') is the result of resolving p(1). Therefore the derivation is

pruned at G3 by the VA check. (In this case, p(y') is the direct result of

resolving p(l), but in general there may be any number of derivation steps

between Gj and Gk.) D

Indeed, this loop check has not worked properly here: all successful

derivations have been pruned. Clearly, this is an undesirable property for loop

checks. On the other hand, all infinite derivations are pruned, as intended. In the

next section, we shall give formal definitions of these and related properties of

loop checks.

2.2. Properties of Loop Checks

In this section some basic properties of loop checks are introduced and some

natural result-; concerning them are established.

Soundness and completeness

The most important property is that using a loop check does not result in a loss

of success: the answer to the query 3G- (which is simply 'yes' or 'no') must

not change. Since we intend to use pruned trees instead of the original ones, we

need at least that pruning a successful tree yields again a successful tree.

Even stronger, often we do not want to lose any individual solution. That

is, if the original tree contains a successful branch, giving some computed

answer 8 (thus proving \i"G-8), then we require that the pruned tree contains a

successful branch giving a more general answer than 8, thus proving (a formula

trivially implying) \i"G-8. In this way every correct answer is still 'represented'

by a more general computed answer in the pruned tree, thus ensuring the

complete-ness of SLD-resolution with loop checking.

Finally, we would like to retain only shorter derivations and prune the

longer ones that give the same result. This leads to the following definitions.

DEFINITION 2.2.1 (Soundness).

i) A loop check Lis weakly sound if for every program P, goal G, and SLD-tree

T of Pu{ G}: if T is successful, then fL(T) is successful.

30 Foundations of Loop Checking Chapter 2

ii) A loop check L is sound if for every program P, goal G, and SLD-tree T of

Pu{ G }: ifT contains a successful branch with a computed answer G-cr, then

fL(T) contains a successful branch with a computed answer G-cr' :5 G-cr.

iii) A loop check L is shortening if for every program P, goal G, and SLD-tree T

of Pu{ G}: ifT contains a successful branch D with a computed answer G-cr,

then either fL(T) contains D or fL(T) contains a successful branch D' with a

computed answer G-cr' :5 G-cr such that 10'1 < IOI. □

The following lemma is an immediate consequence of these definitions.

LEMMA 2.2.2. Let L be a loop check.

i) If L is shortening, then L is sound.

ii) ff L is sound, then L is weakly sound. □

The purpose of a loop check is to reduce the search space for top-down

interpreters. Although impossible in general, we would like to end up with a

finite search space. This is the case if every infinite derivation is pruned.

DEFINITION 2.2.3 (Completeness).

A loop check Lis complete w.r.t. a selection rule Rfor a class <?f programs 9, if

for every program P E ,;: and goal G in Lp, every infinite SLD-derivation of

Pu{ G} via R is pruned by L. D

We must point out here that by these definitions we have overloaded the

terms 'soundness' and 'completeness'. These terms do not only refer to loop

checks, but also to interpreters for logic programs (with or without a loop

check). As explained in Section 1.3, such an interpreter is sound if any answer it

gives is correct w.r.t. the intended model or the intended theory of the program.

An interpreter is complete if it finds every correct answer within a finite time.

Interpreters and loop checks

When a top-down interpreter is augmented with a loop check, we obtain a new

interpreter. The soundness and completeness of this new interpreter depends on

the soundness and completeness of the old one, as well as on the soundness and

completeness of the loop check. However, these relations are not trivial. For

Section 2.2 Properties of Loop Checks 31

example, it is not true that adding a complete loop check to a complete interpreter

yields a complete interpreter (recall that the notion of soundness of a loop check

was introduced to ensure the completeness of the interpreter equipped with it).

The relationships between soundness and completeness of loop checks and

the interpreters augmented with them are expressed in the following lemmas. We

refer here to two interpreters: one searching the SLD-tree depth-first left-to-right

(as the PROLOG interpreter does), and one searching breadth-first. Recall that

without a loop check, both interpreters are sound and sound w.r.t. CW A. The

breadth-first interpreter is also complete, but not complete w.r.t. CW A.

LEMMA 2.2.4. Let P be a program, A a ground atom and La weakly sound

loop check. Thenforevery SLD-tree T<d°PU{f--A},-,A E CWA(P) !ff"
fL(T) contains no succes.~ful branches.

PROOF. We know by the Soundness and strong completeness Theorem 1.3.2

that -, A e CW A(P) ~ T contains no successful branches.

=> T contains no successful branches and fL(T) is a subtree of T, so fL(T)

contains no successful branches either.

<= Since L is weakly sound, a successful branch in T would yield a successful

branch in fL(T). But fL(T) contains no successful branches, hence T contains

no successful branches either. □

Thus an interpreter augmented with a weakly sound loop check remains

sound w.r.t. CWA. Since fL(T) may be infinite, nothing can be said about

completeness.

LEMMA 2.2.5. Let P be a program, Ga goal and Tan SLD-tree <f Pu{GJ.

Let L be a sound loop check. Then G-0 is a correct answerfor Pu{GJ (ff

fL(T) contains a succes.~'f"ul branch with a computed answer G-r:;; G-0.

PROOF. We have by the strong completeness of SLD-resolution PI= G-0 ~ T

contains a successful branch with a computed answer G-cr $ G-0.

=> T contains this successful branch, and since L is sound, fL(T) contains a

successful branch with a computed answer substitution t such that Gt :s; Gcr.

Now G~t :s; G-cr :s; G-0.

<= fL(T) contains a successful branch with a computed answer G~t :s; G-0, so

T contains this branch as well. □

32 Foundations of Loop Checking Chapter 2

Thus an interpreter augmented with a sound loop check remains sound.

Moreover, a breadth-first interpreter remains complete.

COROLLARY 2.2.6. Let P be a program, A a ground atom and L a weakly

sound and complete loop check. Then.for every SLD-tree T of Pu{f-A},

--,A E CWA(P) iff.fL(T) is.finite and contains no succes.~ful branches.

PROOF. By Lemma 2.2.4 and the Completeness Definition 2.2.3. □

Thus an interpreter augmented with a weakly sound and complete loop

check becomes complete w.r.t. CWA.

COROLLARY 2.2.7. Let P he a program, G a goal and L a sound and

complete loop check. Then.for every correct answer G-0.for Pu{G} and

for every SLD-tree T of Pu{G}, .h(T) is finite and contains a succes.ful

branch with a computed answer G-r :SG-0.

PRC,OF. By Lemma 2.2.5 and the Completeness Definition 2.2.3. □

Thus a depth-first interpreter augmented with a sound and complete loop

check becomes complete . This also means that a sound and complete loop check

can be used to implement query processing as defined in the Introduction.

Indeed, given a program P and an atom A with an SLD-tree T of Pu{ +-A}, it

suffices to traverse the finite tree fL(T) and to collect all (computed) answers.

Comparing and combining loop checks

After studying the relationships between loop checks and interpreters, we shall

now analyze a relationship between loop checks. In general, it can be quite

difficult to compare loop checks. However, some of them can be compared in a

natural way: if every loop that is detected by one loop check, is detected at the

same derivation step or earlier by another loop check, then the latter one is

stronger than the former.

DEFINITION 2.2.8.

Let L1 and L2 be loop checks. Lt is stronger than L2 if for every program P and

goal G, every SLD-derivation D2 e L2(P) of Pu{ G} that is not itself contained

in L1(P) has a proper initial subderivation D1 e L1(P). D

Section 2.2 Propc11ics of Loop Checks 33

In other words, L1 is stronger than Lz if every SLD-derivation that is

pruned by L2 is also pruned by L 1. Note that the definition implies that every

loop check is stronger than itself.

When an interpreter is augmented with a loop check, we obtain a new

interpreter. This means that we could iterate the process; adding several different

loop checks in order to detect more loops or to detect loops earlier. Another way

to obtain this result is to combine these loop checks into one new loop check,

which is added to the interpreter. This leads to the following definition.

DEFINITION 2.2.9 (Sum of loop checks).

Let L1 and L2 be loop checks. For every program P, The union of L1 and L2

(denoted by L1+L2) is defined as: (L1+L2)(P) = Initials(L1(P) u L2(P)). D

Note that we can not take simply L 1 (P) u L2(P), since one loop check

might contain a proper initial subderivation of the other. A number of nice,

easily provable properties hold for sums of loop checks.

THEOREM 2.2.10. Let L1,, L2 and L3 he loop checks. Then:

i) L1+L2 is a loop check.

ii) L1+L1 = L1.

iii) L1+L2 = L2+L1.

iv) (L1+L2)+L3 = L1+(L2+L3).

v) L1 is stronger than L2 !ff L1+L2 = L1.

vi) (f L1 and L2 are simple, then L1+L2 is simple.

vii) (f L1 and L2 are shortening, then L1+L2 is shortening.

PROOF. i)-vi). Straightforward.

vii). For every successful derivation D with computed answer G-cr, the shortest

derivation(s) with a computed answer more general than G-cr is (are) neither

pruned by L1 nor by L2, hence it is (they are) not pruned by L1+L2. D

REMARK 2.2.11. Even if L1 and L2 are sound, L1+L2 can be unsound. The

following example shows that this is still true if L I and L2 are both simple.

34 Foundations of Loop Cheeking

Let P = { p(x,l) f- p(x,0). (Cl),

p(l,x) f- p(0,x). (C2),

p(0,O) f-. (C3) }

Consider the SLD-tree of Pu { f-p(1, 1) }

in Figure 2.2.1.

Let L1 be the set of variants of D1 =

(f-p(1, 1) ⇒(CI) f-p(1,0) ⇒(C2) f-p(0,0))

and Jet Lz be the set of variants of Dz =

(f-p(1, I) ⇒(C2) f-p(0, I) ⇒(c 1) f-p(0,0)).

Both L1 and Lz are sound: every SLD-tree

that contains (a variant of) D1 must contain (a

variant of) D2 and vice versa. Clearly L1+L2

is unsound. D

Chapter 2

f-p(l,I)

cc/) \cc2)
{x/1} . \tx/1}

f-p(1,0) f-p(0, I)

(C2)' I I (CI)'

I x '/0 } t t { x '/0 }
f-p(0,0) f-p(0,0)

(C!) ! ! :CJ)

D D

FIGURE 2.2.1.

The following theorem will prove to be very useful. It will enable us to

obtain soundness and completeness results for loop checks which are related by

the 'stronger than' relation, by proving soundness and completeness for only

one of them.

THEOREM 2.2.12 (Relative Strength). Let L1 and L2 be loop checks, and

let L1 be stronger than L2.

i) {f L1 is weakly sound, then L2 is weakly sound.

ii) If L1 is sound, then L2 i.v sound.

iii) {f L1 is shortening, then L2 is shortening.

iv) {f L2 is complete (w.r.t. a selection rule R for a class rl programs 9),

then L1 is complete (w.r.t. R.for the class r?f'programs 9).

PROOF. iHii) If an SLD-tree T contains a successful branch, then fL 1 (T)

contains a successful branch that satisfies the conditions of Definition 2.2.8.

Since L1 is stronger than Lz, fL 1 (T) is a subtree of fL2(T), so this branch is also

contained in ft2(T).

iv) Every infinite SLD-derivation is pruned by L2, so it is also pruned by L1. D

Now we have a more clear view of the situation. Very strong loop checks

prune derivations in an 'early stage'. If they prune too early. then they are

unsound. Since this is undesirable, we must look for weaker loop checks. But a

loop check should preferably be not too weak, for then it might fail to prune

Section 2.2 Properties of Loop Checks 35

some infinite derivations (in other words, it might be incomplete). Of course, the

'stronger than' relation is not linear. Moreover, loop checks exist that are neither

sound nor complete.

The exi.'otence of sound and complete loop checks

A question now arises: do there exist sound and complete loop checks?

Obviously, there cannot be such a loop check for logic progrdms in general, as

logic programming has the full power of recursion theory. (Remember that

according to the definition, a loop check is computable.) So when studying

completeness we shall rule out programs that compute over an infinite domain.

We do so by restricting our attention to programs without function symbols, so

called function-free programs. This restriction leads to a finite Herbrand

Universe, but other solutions (typed functions, bounded term-size property

[vG2]) are also possible here.

Now our question can be reformulated as: is there a sound and complete

loop check for function-free programs? Before answering this question for loop

checks in general, we answer it for simple loop checks.

THEOREM 2.2.13. There is no weakly sound and complete simple loop check

for function-free programs.

PROOF. The proof is similar to the proof of Theorem 4. 7 in [BW] for sound

loop checks. Let L be a simple loop check that is complete for function-free

programs. Consider the following infinite SLD-derivation D, obtained by

repeatedly using the clause p(x)+-p(y),s(y,x) (using the leftmost selection rule).

+-p(xo),q(xo)

u
+-p(x 1),s(x 1,xo),q(xo)

u
+-p(x2),s(x2,x 1),s(x 1,xo),q(xo)

u
+-p(x3),s(x3,x2),s(x2,x 1),s(x 1,xo),q(xo)

u

FIGURE 2.2.2

36 Foundations of Loop Checking Chapter 2

Since Lis a complete loop check, this derivation is pruned by Land since L

is simple, the goal at which pruning takes place is independent of the program

used for this derivation. Suppose this derivation is pruned by L at the goal

f-p(xn),s(x 11 ,x11_1), ... ,s(x 1,xo),q(xo).

Now let P = { s(i,i+ I)f-. I O :5 i < n} v { p(O)f-. p(x)f-p(y),s(y ,x).

q(n)f-. }. Extending the above derivation to an SLD-tree of Pv{ G} (still using

the leftmost selection rule, see Figure 2.2.3), we see that every goal of the

derivation has two descendants, obtained by applying the clauses p(O)f- and

p(x)f-p(y),s(y,x) respectively. The derivation of Figure 2.2.2 shows the effect of

repeatedly applying p(x)f-p(y),s(y,x). After applying p(O)f- at some goal, a

derivation becomes deterministic: if there are initially m s-atoms, then these

atoms are resolved from left to right by the clauses s(O,l)f-, ... , s(m-1,m)f-.

Finally, the goal f-q(m) is left. Since of all goals of the form f-q(i) (i ~ 0)

only the goal f-q(n) can be refuted, exactly n s-atoms are needed. Therefore the

only successful branch of this SLD-tree of Pv{ G} goes via the goal

f-p ,xn),s(x11 ,x 11_ i), ... ,s(x 1 ,xo),q(xo). As exactly this goal is pruned by L, L

ha,; pruned the only successful branch of this SLD-tree. Hence L is not weakly

~ound. D

f-p(xo),q(xo)

u
f-p(x 1),s(x 1 ,xo),q(xo)

u
f-p(x2),s(x2,x 1),s(x 1,xo),q(xo)

u

u

⇒ f-s(O,xo),q(xo)

⇒ f-s(O,x 1),s(x 1,xo),q(xo)

⇒ f-s(l ,xo),q(xo)

f-p(x 11),s(x11,xn-!), ... ,s(x1,xo),q(xo) ==> ... n intermediate goals ... ⇒ f-q(n)

⇒o

FIGURE 2.2,.3

Section 2.3 Nonsimplc Loop Checks 37

2.3. Nonsimple loop · checks

In this section we investigate two nonsimple loop checks. We show that these

loop checks are sound and complete for programs with a finite number of

ground atoms in their language. To enforce this restriction in a simple way, we

assume throughout this section that programs are.fimction{ree.

Proo/Tree Redundancy

The example of Theorem 2.2.13 suggests that a sound and complete (but not

simple) loop check might exist depending only on the lwi,:ua,:e of the program.

We shall prove that such a loop check indeed exists. Given a derivation, the loop

check first constructs the associated prorl tree. It prunes the derivation if this

proof tree contains 'too much' repetition, where 'too much' depends on the

initial goal and the language of the program. Our definition of a proof tree is an

adapted version of the one in [Cl l].

DEFINITION 2.3.l (Proof tree).

Let D = (Go :::)c 1,e 1 G1 ⇒-... ⇒ Gk-I ⇒ck,0k Gk) be an SLD-derivation. The

proof tree associated to D is constructed as follows.

First e, ... 0k is applied to every goal and clause in D. This new structure is

not an SLD-derivation: instances of program clauses are used and there is no

standardizing apart. Also unifiers are not needed: the head of the input clause is

already syntactically equal to the selected atom in the goal. So a step consists

only of the replacement of this selected atom by the body of the clause. This

means that we can regard these replacements as being carried out in parallel (no

instantiation of shared variables). This yields the prorl tree associated to D. In

this tree every node, consisting of an atom A, has as descendants nodes

consisting of the atoms A was replaced by. In the resulting proof tree, a 'special'

root node is needed: otherwise, a goal of more than one atom would yield a

forest instead of a tree. □

Figure 2.3. l shows an example of this conversion of an SLD-derivation D

via D81 ... 0k (where 81 .. ,0k = { x/x',y/l,y'/0,z'/z}) into its proof tree.

38

D

f-p(x),q(y) D

! p(x')f-p(y'),r(z')

{ xix' I
f-p(y'),r(z'),q(y) I wi

! p(O)f-

{y'/0}
f-r(z'),q(y) tlll1

I r(z)f-

t {z'/z}

f-q(y) -

I q(l)f-

• l y/1 I
D -

Foundations of Loop Checking Chapter 2

f-p(x'),q(I)

!p(x ')<-p(O),,(z I

f-p(O),r(z),q(I) ! p(O)<-

f-r(z),q(I) ! nz)<-

f-q(I) ! q(I}<-

0

FIGURE 2.3.]

the proof tree associated to D

A goal in D corresponds to a 'horizontal layer' through the proof tree. A

derivation step corresponds to the replacement of a node (representing the

selected atom) in such a layer by its children. A simple induction argument

shows that the length of an SLD-refutation equals the number of nodes in its

proof tree, not counting the root.

For a program P and a goal G we denote by LP,G the language that is

obtained from Lp by adding the variables of G to the set of constants. We can

now define the intended loop check and show its effect on the derivation of

Theorem 2.2.13.

DEFINITION 2.3.2 (Proof Tree Redundancy check).

For a function-free program P, the Pro<i Tree Redundancy check is defined

as PTR(P) == Initials({D I for some G, Dis an SLD-derivation of Pu{G} and for

some predicate symbol p, a branch of the proof tree associated to D

contains more p~atoms than there are ground p-atoms in Lp,O}). D

Section 2.3 Nonsimple Loop Checks 39

EXAMPLE 2.3.3.

In Theorem 2.2.13 we considered the program P= {s(i,i+l)f-. IO s; i < n} u

{ p(0)f-. p(x)f-p(y),s(y,x). q(n)f-. I and the resulting infinite SLD-derivation

D of Pu{ f-p(xo),q(xo)} shown in Figure 2.2.2. The proof tree associated to

the first three steps of Dis depicted in Figure 2.3.2.

q(xo)

s(x2,x 1)

FIGURE 2.3.2

The number of ground p-atoms in LP,G is n+2: p(xo), p(0), p(I), p(2), ... ,

p(n). The leftmost branch of a proof tree associated to a proper initial

subderivation of D consists of the atoms p(xo), p(x 1), p(x2), Thus when the

(n+J)fd p-atom of this branch is generated, D is pruned, notably at the goal

p(Xn+2),s(Xn+2,Xn+ 1),s(xn+ J ,xn), ... ,s(x 1,xo),q(xo). Recall that the derivation

was needed up to and including the goal p(xn),s(xn,Xn_i),s(xn-1 ,Xn-2),

... ,s(x1,xo),q(xo) in order to preserve the refutation of f-p(xo),q(xo). □

For a convenient notation in the following proofs, we write Succ(P,G,cr)

for the set of SLD-refutations of Pu{ G} with a computed answer G-'t s; G-cr.

We say that a refutation D is a shortest refutation in Succ(P,G,cr) if D E

Succ(P,G,cr) and IOI= min{ID'I ID' E Succ(P,G,cr)}.

THEOREM 2.3.4. PTR is shortening (so a fortiori sound).

PROOF. Let P be a program, G a goal in Lp, cr a substitution and D a shortest

derivation in Succ(P,G,cr). We must show that D is not pruned by PTR. To this

end we prove that for every predicate symbol p in Lp, no branch in the proof

40 Foundations of Loop Checking Chapter 2

tree T associated to D contains more p-atoms than there are ground p-atoms in

LP,G·

We prove this claim by contradiction: suppose that for the predicate symbol

p there is such a branch in T. Then there exists a ground instance of T (w.r.t.

Lp,G) in which some node consists of the same p-atom as one of its ancestors.

Now a proof tree with less nodes than T can be constructed:

is replaced hy

A

FIGURE 2.3.3

For any selection rule, this smaller proof tree can be converted back into an

SLD-refutation with the same computed answer substitution as D (because the

ground instantiation of T did not affect the variables of G). Thus D is not a

shortest refutation in Succ(P,G,cr). Contradiction. D

THEOREM 2.3.5. PTR is complete.

PROOF. Let P be a program, G a goal and D an infinite SLD-derivation of

Pu{ G}. As the proof tree associated to D is infinite1, but finitely branching, it

follows from Konig's Lemma that it has an infinite branch. Lp,G contains only a

finite number of ground atoms. Thus for at least one predicate symbol p, this

infinite branch contains more p-atoms than there are ground p-atoms in Lp,o. D

1 Strictly speaking we have not defined the proof tree associated to an infinite derivation (in

order to avoid an infinite composition of substitutions). Here it is sufficient to consider only

the predicate symbols of the atoms, forgetting the arguments and suhstitutions altogether.

Section 2.3 Nonsimple Loop Checks 41

PTR may be shortening and complete, in practice it is often useless because

it allows very long derivations. For a program P and an atom A, and an SLD

derivation D of Pu{ f-A) that is not pruned by PTR, the maximum length of a

branch in the proof tree associated to D is the number of ground atoms in

LP,f-A, say N (the root is not needed here). The maximum branching factor B is

the maximum number of atoms in the body of a clause used in D. A simple
'°N-3 .

calculation shows that 1DI can be as much as ..:.,i=O B1• The problem is not that

PTR is too cautious: even for small languages, a shortest refutation can indeed

be extremely long.

EXAMPLE 2.3.6.

In the program of Theorem 2.2.13, the length of the (longest) successful branch

is only 2n + 2. But if we take P11 =

{ s(i,i+l)f-. IO :5 i < n } u

{ p(x 1,x2,x3) f- p(x 1,x2,y),p(x 1,xz,y},s(y ,x3).

p(x 1 ,x2,0) f- p(x 1 ,y ,n),p(x 1 ,y ,n),s(y ,xz).

p(x 1 ,0,0) f- p(y ,n,n),p(y ,n,n),s(y ,x 1).

p(0,0,o) f-. I
then a successful derivation of Pnu{ f-p(n,n,n)} takes 3.2(n+l)LL2 steps. This

can be se~n by considering the three arguments of p as representing a three-digit

number in base (n+ I). If proving p(x,y ,z) takes T(xyz) steps, then we have

T(xyz) = 2-T(xyz-l) + 2 and T(0) = I. This yields T(x) = 2x+l+2x -2 =
3·2x -2. Now take x = nnn in base (n+ I), that is x = (n+ I)3- I. □

Because PTR takes only the language of the program into account, it will

sometimes prune derivations much later than necessary. In the next section, we

investigate a stronger loop check, that takes the whole program into account.

The strongest loop check

Taking the whole program into account gives us an opportunity to define a

shortening loop check which is stronger than every other shortening loop check

(hence it is complete). Strange as it may seem, this loop check is also

impractical.

The aim of generating an SLD-tree is to find all solutions to a problem. For

a function-free program, this set of solutions is finite. Once this set is known, a

42 Foundations of Loop Checking Chapter 2

finite unfinished SLD-tree can be constructed that contains only the shortest

derivation(s) for every solution. The other derivations are pruned as soon as

possible. This loop check is obviously as strong as possible: every derivation

that is not pruned is really needed. It is also useless for practical purposes, as

there is no point in generating the pruned SLD-tree when the set of solutions is

already known.

DEFINITION 2.3.7 (STRONG check).

STRONG(P) = Initials({ D = G ⇒ ... I for no O; D is an initial fragment of a

shortest derivation in Succ(P,G,cr)}). □

Note that an SLD-tree pruned by STRONG consists not only of the shortest

refutation(s) of Pu{ G} for any computed answer substitution cr, but also of the

derivations that follow the path of such a derivation but 'make a wrong

decision', that is a step deviating from such a refutation. After such a step, the

derivation is immediately pruned by STRONG. This effect is caused by the fact

that pruning a node in a tree implies removing all descendants, so we cannot

remove the descendants caused by a 'wrong step' while retaining the others. The

following example shows the effect of pruning an SLD-tree by STRONG.

EXAMPLE 2.3.8.

Let p = { p(l) ~-

p(y) ~ q(y,z),p(z).

q(w,0) ~-

q(0,l) ~-

and let G = ~p(x).

(Cl),

(C2),

(C3),

(C4) I,

Consider an SLD-tree of Pu{ G} displayed in Figure 2.3.4. In

Succ(P,G,{x/1}) a minimal length derivation has 2 goals, in Succ(P,G,{x/0}) a

minimal length derivation has 4 goals and in Succ(P,G,t) a minimal length

derivation has 6 goals. These derivations are retained by STRONG in the

considered SLD-tree, the others are pruned (at the horizontal lines in the figure).

Among these ate successful ones, but not minimal length successful ones. (The

tree in Figure 2.3.4 is extended beyond the sixth level to show this effect.) □

Section 2.3 Nonsimplc Loop Checks 43

t-p(x)

1vf ~/xi

D t-q(x,z),p(z)

~ (C4)/ \cc3)

{x/0,z/r ~/x,z/0)

t-p(l) t-p(O)

(C2)'/ \(Cl) \cc2)'

{y'/l i; \ ~·,01

t-q(l ,z'),p(z') D t-q(O,z'),p(z')

(C3)1 ({x/O}) (C4✓ \(C3)'

{z'/0,w/1} {z'7' '\2'/0,w'/O}

t-p(O) t-p(1) t-p(O)

(C2)"1 (Cy l (C2)" l(C2)"

{y"/0} D {y"/1} {y"/0}

t-q(O,z"),p(z") 0 t-q(l ,z"),p(z") t-q(O,z"),p(z")

(C4) l \ (C3)' I ,(C3)' (C4) l \ (C3)"
{z"/1} \{z"/0,w'/O} ~z"/0,w'/l} {z"/l} ~z"/0,w"/O}

t-p(1) t-p(O) t-p(O) t-p(I) t-p(O)

(Ci \ \ l (Ci \ \
□ . .,,, . .f'

00
_:fl" ··\,

FIGURE 2.3.4

We can now prove the claims we made in the beginning of this section.

44 Foundations of Loop Checking

THEOREM 2.3.9. For .function-free programs:

i) STRONG is a loop check.

ii) STRONG is shortening.

iii) STRONG is stronger than any shortening loop check.

iv) STRONG is complete.

Chapter 2

PROOF. i) STRONG is a loop check. The nontrivial point here is to prove that

for every function-free program P, STRONG(P) is computable. Can we, given

a derivation D = G ⇒ ... , decide whether or not Dis pruned by STRONG and if

so, at which node? Indeed we can, using the following procedure.

1. Compute the set of correct answers for Pu{ G} modulo renamings (e.g.

bottom-up). Since P has no function symbols, this set is finite. Construct

(breadth-first) an initial subtree of an SLD-tree of Pu{ G} that contains (a proper

subderivation ot) D and for each correct answer a successful branch with a more

general computed answer.

2. For each correct answer G-a, mark the nodes of the shortest refutations in

Sue ;(P,G,a).

3. Prune D at the first node in the tree that is not marked. If such a node does not

e x.ist, then Dis a subderivation of a minimal length refutation.

ii) STRONG is shortening. If a successful derivation D of Pu{ G) with

computed answer substitution a is pruned by STRONG, then it is not a shortest

derivation in Succ(P,G,a). Obviously, there is a short~st derivation D' e

Succ(P,G,a) in the SLD-tree. D' is shorter than D and not pruned by STRONG.

iii) STRONG is stronger than any shortening loop check. Let L be a loop

check and let D be a derivation of Pu{ G) that is pruned by L. If D is a

subderivation of a shortest refutation D', then Lis not shortening. Otherwise, D

is pruned by STRONG.

iv) STRONG i~ complete. STRONG is stronger than PTR and by Theorem

2.3.5 PTR. is complete. Now apply the Relative Strength Theorem 2.2.12. D

So far, we have not been very sucE!essful in defining useful sound and

complete loop checks. In the next chapter, we shall restrict our attention to

simple loop checks. They will be shortening (or at least weakly sound), but as

shown in Theorem 2.2.13 they cannot be complete (not even for function-free

programs). Nevertheless, for each of these loop checks we shall introduce one

or more naturnl classes of programs for which they are complete.

3. Simple Loop Checks

3.1. Overview

In this chapter we study a number of intuitive simple loop checks. We can divide

them into three groups, which are studied in Section 3.2, 3.3 and 3.4

respectively. These sections are all organized in the same way. First the loop

checks of the group are defined and their effect is shown in an example. Also the

relative strength of the loop checks within the group and in relation to the other

groups is investigated.

Then we prove the appropriate soundness results. It appears that every loop

check comes in two versions: a weakly sound one and a shortening one.

Furthermore, the shortening version is always obtained from the weakly sound

version in the same way: by adding a condition involving the computed answers

generated so far. Because adding such a computed answer to a goal yields the

corresponding resultant, we say that the weakly sound loop checks are based on

goals, whereas the shortening ones are based on resultants. An immediate

consequence of this construction is that the weakly sound versions are stronger

than their shortening counterparts.

Finally we identify one or more natural classes of (function-free) programs

for which the loop checks in the group are complete. The loop checks in all three

groups appear to be complete for restricted programs without function symbols.

Restricted programs allow a restricted form of recursion (hence the name).

All loop checks in this chapter are based on the same idea: a goal is pruned

if it is 'sufficiently similar' to one of its ancestors. It is only in the notion of

'sufficiently similar' that the groups, and the loop checks within each group,

differ. In the first group, the notion of 'sufficiently similar' is based on the

equality of goals, respectively resultants. We call these loop checks equality

checks.

The second group consists of loop checks based on the inclusion (or

subsumption, see e.g. [CL]) of goals, respectively resultants. We call these loop

checks subsumption checks. Subsumption checks are stronger than the

corresponding equality checks. This makes it more difficult to establish their

45

46 Simple Loop Checks Chapter 3

soundness but opens a· possibility for completeness for more classes of

programs than just restricted ones.

We show that subsumption checks are complete for function-free programs

in which no variables are introduced in the clause bodies (so called nvi

programs), and for function-free programs in which each variable occurs at most

once in every clause body (so called svo programs). These completeness

theorems make use of a simple version of Kruskal' s Tree Theorem, called

Higman's Lemma [H]. While the use of this theorem to establish termination of

term rewriting systems is well-known (see e.g. [DJ] or [Kr]), we have not

encountered any applications of this theorem in the area of logic programming.

The third group of loop checks we study is based on a simple loop check

introduced by Besnard [B]. These checks are directly inspired by the Variant of

Atom check (Definition 2.1.5), but when comparing two atoms they take into

account a certain context (a goal or a resultant) of those atoms. Therefore we call

them context checks. We prove that for local selection rules (see Definition

1.2.9), the subsumption checks are stronger than the context checks.

As mentioned above, we prove that context checks are complete for

function-free restricted programs. We also prove that they are complete for

function-free nvi programs (a result that has been claimed in [B] without much

proof) and for function-free svo programs.

The differences between the loop checks within a group are rather small.

The most important one ha.,;; been mentioned: the distinction between loop checks

based on goals and those based on resultants. Another (independent) distinction

is made between loop checks testing for variants and those testing for instances.

For example, if the word 'variant' in Definition 2.1.5 is replaced by the word

'instance', we get the ln.vtcmce <l Atom (IA) check. As every variant of an

eipression is also an instance of it, an 'instance' check is stronger than the

corresponding 'variant' check. (Thus, like VA, IA is not weakly sound.)

Finully, for the equality checks and subsumption checks, which deal with

complete goals, one more (again independent) distinction is made. Whereas

equality between atoms is unambiguous, equality between goals is much less

clear. In SLD-derivations, we regard goals as lists, so both the number and the

Qrder of oocurrences of atoms is important. However, we may also regard goals

as multisets, where the order of the occurrences is unimportant. We might even

consider regarding them as sets, which is customary in mathematical logic.

Section 3.1 Overview 47

However that proves to be impractical: the goals ~A,A and ~A become

indistinguishable, making the derivation step ~A.A ⇒A+- ~A seem useless

(which it is not). Regarding goals as sets in our loop checks would require

regarding goals as sets in SLD-derivations, which would result in too many

undesirable effects.

3.2. Equality Checks

In this section we study the equality checks in detail. First we give a definition

of the weakly sound versions. Then we formally introduce the additional

condition that makes these checks shortening. Finally, we define the class of

restricted programs: the equality checks are complete w.r.t. the leftmost selection

rule for function-free restricted programs.

Definitions

In fact, we should give a definition for each equality check. This would yield

eight almost identical definitions. Therefore we compress them into two

definitions, trusting that the reader is willing to understand our notation. The

equality relation between goals regarded as lists is denoted by =L; similarly =M

for multisets. We begin with the weakly sound versions.

DEFINITION 3.2.1 (Equality checks based on Goals).

For Type e { L,M}, the Equals Variant/Instance <l GoalT_vpe check is the set of

SLD-derivations

EVG/EIGType = lnitials({D I D = (Go ⇒c 1 ,e 1 G1 ⇒ ... ⇒ Gk-I ⇒ck,ek Gk)

such that for some i, 0 ~ i < k, there is a renaming/substitution

't such that Gk =Type Git}). D

For example, EIGM = Initials(ID I D = (Go ⇒c 1 ,e 1 G 1 ⇒ ... ⇒ Gk- I

⇒ck,ek Gk) such that for some i, 0 ~ i < k, there is a

substitution 't such that Gk =M Git}).

The informal justification for these loop checks is similar to the one given

for the VA check. Suppose that we want to refute a goal G. If we find that in

order to refute G we need to refute a variant or instance of G, say Gt, then two

cases arise. If there is no solution for Gt, then pruning Gt is clearly safe. On the

48 Simple Loop Checks Chapter 3

other hand, if there is a solution for Gt, then the derivation giving this solution

might be used (possibly in a more general form) directly from G.

We shall prove later in this section that these loop checks are indeed weakly

sound. However, they are not sound. To see this, suppose that we find for Gt a

successful derivation D with a computed answer substitution cr. Then using D

directly from G gives a computed answer substitution tcr (maybe a more general

substitution, but not necessarily). Therefore success is not lost. However, the

derivation G = Gi =>ci+ 1,ei+ 1 ... =>ck,ek Gk = Gt, followed by D, yields a

possibly different computed answer substitution: 0i+ 1- .. 0kcr, thus possibly

affecting soundness. (In Example 3.2.3, we show a specific program and goal

for which this difference arises.) Of course, we are only interested in computed

answers, i.e., the resultants Go01 ... 0i0i+ 1 ••• 0kcr and Go01 ... 0i't<J, where Go is

the initial goal. So 't and 0i+ 1 ... ek should coincide on the variables of Go01 ... 0j.

Hence we can make these loop checks sound, and even shortening, by

adding the condition Go01 ... ek = Go01 ... 0j't. (Note that in this equality it is

irrebvant whether goals are lists or multisets.) It will appear that this condition

works not only for EVG and EIG, but for all other loop checks studied in this

c napter, as well.

Finally, note that adding this condition is equivalent to the replacement of

the condition Gk =Type Gi't by the condition Rk =Type Ri't, where Rk and Ri

are the resultants associated to the goals Gk and Gj.

DEFINITION 3.2.2 (Equality checks based on Resultants).

For Type e { L,M}, the Equals Variant/Instance <~f Resultantrype check is the set

of SLD-derivations

EVR/EIRType = Initials({ D I D = (Go =>c 1,e 1 G 1 => ... => Gk-I =>ck,ek Gk) such

that for some i, 0 $ i < k, there is a renaming/substitution 't

such that Gk =Type Gj't and Go01.,.0k = Go0J ... 0j't}). D

For example, EVRL = lnitials({D ID= (Go =>c 1,e 1 Gt=> ... => Gk-I =>ck,ek

Gk) such that for some i, 0 $ i < k, there is a renaming 't

such that Gk =L Gi't and Go01 .,.0k = Go01 ... 0j't}).

The following example shows the difference between the goal-based and

resultant-based equality checks. It is so chosen that the other variations (variants

or instances, goals regarded as lists or as multisets) do not play a role.

Section 3.2 Equality Checks

EXAMPLE 3.2.3.
Let P = { p(a) ~- (Cl),

p(y) ~ p(z). (C2) },

let Go= ~ p(x).

An SLD-tree of Pu {Go}

based on goals:

EVG/EIG

~p(x)

(C2)/ \(Cl)

(y/xv \tx/a}
~p(z) D

An 'SLD-tree' of Pu{ Go}

based on resultants:

p(x)~p(x)

cc2>/ \cco
(y/xv \tx/a}

p(x)~p(z) p(a)~

49

prunes
here 1 ~ (lxtal) (C21' ~Cl) (lxtal) (C (Cl) .

(y'/z (z/a} (y'/z} (z/a}

p(x)~p(z') p(x)~ l~\ ~ 8;=R 1/ \ 0

FIGURE 3.2.1

Without the condition Go81 ... ek = Go81 ... 8j't we would only obtain the

computed answer substitution {x/a}, whereas we should also obtain the empty

substitution. This shows that the EVG and EIG loop checks are not sound.

In the leftmost tree in Figure 3.2.1, ~p(z) is a variant of ~p(x), so the

derivation is pruned by EVG at that goal. However, the corresponding resultant

p(x)~p(z) is clearly not a variant of p(x)~p(x), therefore the derivation is not

yet pruned by EVR. After another application of (C2), the resultant p(x)~p(z')

occurs, which is a variant of p(x)~p(z). There the derivation is pruned by EVR.

The rightmost tree shows an 'SLD-tree' in which the goals are replaced by

the corresponding resultants. Note that a successful branch in a resultant-based

SLD-tree does not end by D, but by the computed answer of this branch. D

50 Simple Loop Checks

LEMMA 3.2.4. All equality checks are simple loop checks.

PROOF. Straightforward.

Chapter 3

□

Figure 3.2.2. shows the 'stronger than' relationships between the equality

checks (and the VA and IA checks) and summarizes their properties. In this

figure, an arrow L1 ➔ L2 means that L2 is stronger than L1. Proving these

'stronger than' relations is straightforward.

E1R~-----~EVG~
EVRM EIRL :- E~~!(_~ E!IGL

Soundness

~,,
EIRM ~ EIGM

shortening _ ,,
VA

~,,
IA

FIGURE 3.2.2

weakly sound

not weakly sound

We now prove that the equality checks based on resultants are shortening and

that the equality checks based on goals are weakly sound. According to the

Relative Strength Theorem 2.2.12 it is sufficient to focus on the strongest

checks in both classes: the EIRM and the EIGM checks. The proof consists of

two stages. The first stage, established in the following lemma, does not depend

on the loop checking criterion and can therefore also be used to prove the

soundness of the simple loop checks presented in the following sections.

Section 3.2 Equality Checks 51

LEMMA 3.2.5 (Shortening Condition). Let L he a loop check.

ff.for every program P, goal Go and SLD-re.fi,tation D = (Go ⇒c1,o1 G1 ⇒ ...
⇒ Gk-1 ⇒ck,okGk ⇒ ... ⇒c,,,.0,,,0) rf Pu{Go/ (0 < k 5m):

[Gk is pruned by L] implies

[for some goal G; (0 5 i < k) in D there exists an SLD-refutation

G; ⇒a1 ... ⇒a11 0 rf Pu{Gi/ such that n < m-i],

then L is weakly sound.

Moreover, if also Go0J ... 0;a, ... a 11 5 Go0, ... 0k0k+/· .. 0111 is implied,

then L is shortening.

PROOF. First we focus on the weakly sound case. Let P be a program, Go a

goal and Tan SLD-tree of Pu{Go}. Suppose T contains a successful branch D

= (Go ⇒c,.01 G1 ⇒ ... ⇒ Gi-1 ⇒cj,8j Gi ⇒ ... ⇒ Gk-I ⇒ck,ek Gk ⇒ ...
⇒cm,8m □) and suppose that Dis pruned at Gk. We use here induction on m,

i.e., we assume that for every successful branch B in T shorter than D, fL(T)

contains either B or a successful branch shorter than B.

We prove that fL(T) contains a successful branch D' that is shmter than D.

By assumption an SLD-derivation D1 = (Gi ⇒cr 1 ... ⇒crn D) of Pu{ Gil exists.

Adding (a properly renamed variant of) D1 to the initial part of D gives the

derivation D2 = (Go ⇒c 1 ,e 1 G1 ⇒ ... ⇒ Gi-1 ⇒ci,8i Gi ⇒t 1 ... ⇒tn D). By the

independence of the selection rule, T contains a branch D3 such that 1D31 = 1D21

and the computed answers of D3 and D2 are variants ([KM]). Since D3 is shorter

than D (ID3I = i+n < i+(m-i) = m = IOI), by the induction hypothesis fL(T)

contains either D' = D3 or a successful branch D' shorter than D3, which proves

the claim.

For the shortening case, it remains to prove that Goa's; Go81 .. ,8m, where

a' is the computed answer substitution of D'. First we strengthen the induction

hypothesis: for every successful branch Bin T shorter than D giving a computed

answer Ga, fL(T) contains either B or a successful branch shorter than B,

giving a computed answer Goa' s; Goa.

Then either since D' = D3 or by the new induction hypothesis, and since

the computed answers of D3 and D2 are variants, Goa' s; Go81 ... 8i't1 ... 'tn s;

Go81 ... 8ia1 ... ans;Go81 ... 8m. D

We now use this lemma to prove the desired result.

52 Simple Loop Checks Chapter 3

THEOREM 3.2.6. i) Thi loop check EIRM is shortening.

ii) The loop check EIGM is weakly sound.

PROOF. Let P be a program, Go a goal and D = (Go =>c1.a1 G1 => ... => Gi-1

=>ci,9i Gi => ... => Gk-I =>ck,9k Gk=> ... =>cm,9m □) an SLD-refutation of

Pv{Go} (where O :s; i < k :s; m).

i) Assume that for some substitution t: Gk =M Git and Go81 ... 0k =

Go0J ... 0jt. So the SLD-derivation Git =>ck+l,9k+I ... =>cm,9m □ exists (the

order of the atoms in Grt may differ from the order in Gk, so a different

selection rule may be necessary). By the Lifting Lemma of [L] a derivation

Gi =>a1 ... =>an □ of Pv{Gil exists, with cr, ... 0"0 S t0k+1···0m (n = m-k <

m-i). Now Go0J ... 0j<JJ ... O"n S Go0, ... 0jt0k+1··•0m = Go0, ... 0k0k+1··•0m,

hence the full condition of Lemma 3.2.5 is satisfied, so EIRM is shortening.

ii) The additional condition Go81 ... 8k = Go81 ... 0it was only used to prove

the additional shortening condition of Lemma 3.2.5. D

COROLLARY 3.2.7 (Equality Soundness).
i) All equality checks based on resultants are shortening. A fortiori they are

sound.

ii) All equality check.v based on goals are weakly sound.

PROOF. By Theorem 3.2.6 and the Relative Strength Theorem 2.2.12. D

Cntnpleteness

For completeness issues, it is sufficiettt to consider the weakest of the equality

Checks: the EVRL check. We know that EVRL is not complete-Theorem

l.2.13 presents a counterexample that holds for every simple loop check. For

the EVltt cheek this counterexample can even be simplified. What we need in

fact is onty the propositional structure of the recursi-ve clause that ls the 'core' of

Theorem '.l.2,13, i.e., we .ttuiy ~move itk 11rgu111ettts.

ExAMPLi 3.2.8.
Let P = t p ~ p,!t I.
Thett for 'the' SLD-tree T of Pu { r-p I viii the leftmost selection rule; fEVRL (T)

is it1f1nite. Indeed, every de~cendartt of the initial gual has one occurrence of s

ti:lofl thar'i its parent goal, sd it canMl ~ a variuht of any of it!. ancestors. D

Section 3.2 Equality Checks 53

Obviously, the problem is that the atom pin the goal is allowed to generate

infinitely many s-atoms, which are never selected, thereby making the goal

wider and wider. We now introduce a class of programs for which this

phenomenon cannot occur and we prove that EVRL is complete for these

programs. The necessary restriction is obtained by allowing at most one

recursive call per clause and allowing such a call only after all other atoms in the

body of the clause have been completely resolved. In order to avoid unnecessary

complications, we shall place the atom that causes the recursive call (if present)

at the right end of the body of the clause, and consider only derivations via the

leftmost selection rule. For a formal definition, we use the notion of the

dependency graph Op of a program P.

DEFINITION 3.2.9.

The dependency graph Dp of a program Pis a directed graph whose nodes are

the predicate symbols appearing in P and

(p,q) e Op iff there is a clause in P using p in its head and q in its body.

D p • is the reflexive, transitive closure of Op. When (p,q) e Op•, we say that p

depends on q in P. For a predicate symbol p, the class r?f p is the set of predicate

symbols p 'mutually depends' on: clp(p) = {q I (p,q) e Op* and (q,p) e Op*}. □

DEFINITION 3.2.10 (Restricted program).

Given an atom A, let rel(A) denote its predicate symbol. Let P be a program. In

a clause H~A,, ... ,A0 (n ~ 0) of P, an atom Ai (I $; i $; n) is called recursive if

rel(Ai) depends on rel(H) in P. Otherwise, the atom is called nonrecursive.

A clause H~AJ, ... ,A0 is restricted w.r.t. P if AJ, ... ,An-1 are nonrecursive.

A program Pis called restricted if every clause in Pis restricted w.r.t. P. □

Note that this definition allows at most one recursive call per clause. Thus

(disregarding the order of atoms in the bodies) restricted programs include so

called linear programs, which contain only one recursive clause and in this

clause only a single recursive call occurs. The 'transitive closure' program given

in the introduction is restricted. Note also that programs of which all clauses

have a body with at most one atom are restricted. The name restricted program

originates from [SS], where essentially the same class of programs is defined

and investigated, although a more rigid format is used.

54 Simple Loop Chccb Chapter 3

We now prove that EVRL is complete w.r.t. the leftmost selection rule for

restricted programs. First we demonstrate an interesting feature of restricted

programs, namely that in each SLD-derivation via the leftmost selection rule,

goals have a number of atoms which is bounded by a value depending only on

the program and the initial goal. Then we show that this implies that modulo the

'being a variant of' relation, the number of possible goals in such an SLD

derivation is finite.

In the rest of this section, P is a function-free restricted program and G is a

goal in Lp. The maximum length of the goals in a derivation of Pu{ GI can be

computed by means of the following weight-function, which is defined on goals

and predicate symbols (by mutual induction).

DEFINITION 3.2.l l.

The function weight is defined as follows:

i) for a goal G = +-A1, ... ,An (n ~ I),

weight(G) = max { weight(rel(Ai)) + n - i I i = I, ... ,n)

(n - i is the number of atoms to the right of Ai in G);

ii) for a predicate symbol p, weight(p) =

max({ weight(+-AJ, ... ,An) I

A+-AJ, ... ,An E P, n > 0, rel(A) E clp(p), rel(An) E clp(p) } u
{ I+ weight(+-A1, ... ,A11_1) I

A+-AJ, ... ,An E P, n > I, rel(A) E clp(p), rel(A11) E clp(p) } U

{ 1 l). o

Note that in the definition of weight{p), clauses of the form A+-13, with

cl(rel(A)) = cl(rel(B)) are not considered-they do not affect the length of goals

appearing in a derivation. Moreover, if the predicate symbols p and q are

mutually dependent, then weight(p) = weight(q).

The fact that Pis restricted ensures that the weight-function is well-defined:

if weight(p) ls defined in terms of weight(q), then (q,p) E Op*, hence Weight(q)

is not defined in terms of weight(p). Intuitively, the weight of a goal G

majorizes the length of all goals which appear in an SLD-derivation of Pu{ GI
using leftmost selection rule. More precisely, we hnve the following lemmas

(recall that IGI denotes the length of G).

Section 3.2 Equality Checks

LEMMA 3.2.12. Let G = ~AJ, ... ,An (n ~ 1). Then IGI 5 weight(G).

PROOF. weight(G) ~ weight(rel(A1)) + n - I ~ n = IGI.

55

□

LEMMA 3.2.13. Let G ⇒c H be a derivation step w.r.t. P where the leftmost

atom of G is selected. Then weight(G) ~ weight(H).

PROOF. Since the weight of a goal depends only on the predicates appearing in

it, and not on the arguments of these predicates, we prove this fact for the case

of programs written in propositional logic. Let G = f-AJ, ... ,A0 ; then weight(G)

= max{weight(Ai) + n -i Ii= l, ... ,n}, and let C = A1f-B1, ... ,Bm.

Then the goal H = f-BJ, ... ,Bm,A2, ... ,A0 and therefore

weight(H) = max({weight(Bi) + m + n - I - i Ii= l, ... ,m}

u {weight(Ai-m+1) + m + n- I -i Ii= m + l, ... ,m + n-1})

= max({weight(Bi) + m + n - 1 - i Ii= l, ... ,m}

u { weight(Ai) + n - i I i = 2, ... ,n I).

Two cases arise.

i) weight(H) = max { weight(Ai) + n - i I i = 2, ... ,n}.

Then clearly weight(H) ::; weight(G).

ii) weight(H) = max{weight(Bi) + m + n - I - i Ii= l, ... ,m} (hence m > 0).

We show that in this case weight(H) ::; weight(A 1) + n - 1 ::; weight(G).

Subtracting n - 1, it suffices to show that

weight(A1) ~ max{weight(Bi) + m-i Ii= 1, ... ,m}. Again two cases arise.

iia) (Bm,A1) Ii!: Op*. Then because of the existence of C, weight(A1) ~

weight(f-BJ, ... ,Bm) = max{weight(Bi) + m - i Ii= l, ... ,m}.

iib) (Bm,A1) e Op*. Then weight(A1) ~ I+ weight(f-B1, ... ,Bm-I) =

1 + max { weight(Bi) + m - I - i I i = 1, ... ,m - 1} =

max{weight(Bi) + m -i Ii= 1, ... ,m- 1 }.

Also weight(Bm) + m - m = weight(A 1), since B01 e clp(A 1). This proves

the claim that max{weight(Bi) + m- i Ii= l, ... ,m}::; weight(A1). □

COROLLARY 3.2.14. Let D = (Go ⇒ Gt ⇒ G2 ⇒ ... ⇒ G; ⇒ ...) be an SLD

derivation via the leftmost selection rule. Then for every goal G; in D: IG;I 5

weight(Go).

PROOF. By induction on i. The induction basis is provided by Lemma 3.2.12,

the induction step by Lemma 3.2. I 3. □

56 Simple Loop Checks Chapter 3

So weight(Go) is indeed the desired maximum length of goals occurring in

any SLD-derivation of Pu{Go}.

We now present a formalization of the 'being a variant of' relation on

resultants. Our presentation here is more general than needed to prove the

completeness of the equality checks. However, we need these results in full

generality to prove the completeness of the subsumption checks and the context

checks.

DEFINITION 3.2.1S.

Let X be a set of variables. We define the relation -x on resultants as R1 -x R2

if for some renaming p, RI p = R2 and for every x e X, xp = x. Now let G be a

goal and let k ~ l. Then the relation -x,G,k stands for the restriction of

the relation -x to resultants S 1 +-S2 such that +-SI is an instance of G and

l+-S2I s; k. D

LEHMA 3.2.16. For every set <l variables X, goal G and k 21, ~x,G,k is an

equivalence relation.

f'ROOF. Straightforward. D

For a resultant R, the equivalence class of R w .r.t. the relation -x,G,k will

be denoted as [R]x,G,k, or just [R] whenever X, G and k are clear from the

context. The following lemma is crucial for our considerations.

LEMMA 3.2.17. Suppose that the language L has no function symbols and

finitely many predicate symbols and c<>nstants. Then for every finite set of

variable.,; X, goal G and k ;;?! 1, the relation -x,G,k ha.,; only finitely many

equivalence classes.

PROOF. Let #c be the number of constants in L, #p the number of predicate

symbols, #x the number of variables in X and let #a be the maximum arity of the

predicate symbols in L. Let G be a goal of the form +-p1(...),p2(...), ... ,pn,(...)

with m ~ 1 and let #v be the number of distinct variables in G.

A resultant in an equivalence class of -x.G,k is then of the form

P1(...),p2(...), ... ,pn,(...) +- q1(...),q2(...), ... ,qn(...) with Os; n s; k. An

equivalence class of -x.G,k is completely described by the predicate symbols

Section 3.2 Equality Checks 57

q1, ... ,q0 , the arguments of Pt,•··•Pm (in accordance with G) and the arguments

of q1, .. ,,qn,

The number of arguments that must be specified in this resultant is #v for

Pt, .. ,,pm, plus at most n•#a for q,, ... ,q0 • For every argument we may choose

either a constant, a variable from X or another (fresh) variable. However, we

need at most #v + n-#a different fresh variables. Therefore the choice of the

arguments is limited to (#c + #x + #v + n-#a)#v+n·#a possibilities.

Since for a fixed n, the choice of the predicate symbols q,, ... ,q0 is limited

to #p0 possibilities, we have at most L~=<> #p" ·(#c + #x + #v + n -#a)#v + n-#a

equivalence classes of -x.G,k· D

We can now prove the desired theorem.

THEOREM 3.2.18. The loop check EVRL is complete w.r.t. the leftmost

selection rule.for.functionfree restricted 11rogram.~.

PROOF. Let P be a function-free restricted program and Jet Go be a goal in Lp.

Let k = weight(Go). Consider an infinite SLD-derivation D = (Go ⇒c 1 .e 1 Gt

⇒ ... ⇒ Gi-1 ⇒ci,9i Gi ⇒.:.) of Pu{Go}. By Corollary 3.2.14 for every i ~ 0:

IGil S k. Every goal Gi is a goal in Lp and hence every resultant Go81 .. ,9i~Gi

belongs to an equivalence class of -0.ao,k· Since Lp satisfies the conditions of

Lemma 3.2.17, -0.ao,k has only finitely many equivalence classes, so for some

i ~ 0 and j > i, Go81 ... 9i~Gi and Go81 ... 9j~Gj are variants. This implies that

D is pruned by EVRL, D

COROLLARY 3.2.19 (Equality Completeness). All equality checks are

complete w.r.t. the leftmost selection rule .for .function-free restricted

programs.

PROOF. By Theorem 3.2.18 and the Relative Strength Theorem 2.2.12. D

Now combining Corollary 2.2.6 and Corollary 2.2.7 with the Equality

Soundness Corollary 3.2.7 and the Equality Completeness Corollary 3.2.19, we

conclude that all equality checks lead to an implementation of CW A for function

free restricted programs. Moreover, a depth-first interpreter augmented with any

of the equality checks based on resultants yields an implementation of query

processing for these programs.

58 Simple Loop Checks Chapter 3

3.3. Subsumption Checks

Definitions

Similar to the equality checks, there are eight subsumption checks. We shall

define them by means of two parametrized definitions, again trusting that the

reader is willing to understand our notation. The inclusion relation between

goals regarded as lists is denoted by i;;;L; similarly i;;;M for multisets. Note: Gt

i;;;L G2 if all elements of Gt occur in the same order in Gz; they need not occur

on adjacent positions. For example, (p,r) i;;;L (p,q,r).

DEFINITION 3.3.1 (Subsumption checks based on Goals).

For Type e { L,M}, the Subsume.fi Variant/Instance <f Goalrype check is the set

of SLD-derivations

SVG/SIGType = Initials({D ID= (Go =>c,,e, G1 ⇒ ... ⇒ Gk-I =>ck,ek Gk)

such that for some i, 0 S i < k, there is a renaming/

substitution t with Gk ;;;;;iType Git I). D

DEFINITION 3,3.2 (Subsumption checks based on Resultants).

For Type e { L,M}, the Subsumes Variant/Instance <?f Resultantrype check is the

set of SLD-derivations

SVR/SIRType = lnitials({D ID;::: (Go =>c1,e 1 G1 ⇒ ... ⇒ Gk-I =>ck,0k Gk) such

that for some i, 0 S i < k, there is a renaming/ substitution t

with Gk ~ype Git and Go8, ... 8k = Go8, ... 8itl). □

LEMMA 3.3.3. All subsumptior, ched.fi are simple loop check.\·.

PROOF. Straightforward. □

The foUpwing e,c;~mple soows the 4ifference1; between the behaviour of

varioµs supsumption check1; J1.nd the equality checks.

li!X4MPLE 3,3,4.

~t P = .{ p(y) +,- p(O),r(y).

p(O) f-,-,

q(J) ho.

r(z) f.- q(z),p(w).

(CJ),

(C2),

(Cl},

(C4) },

Section 3.3 Suhsumption Checks

f-p(x)

1.m? ~xi
({ x/O I) o f-p(O),r(x)

I SIG -I--------------

7 ~/0I

f-r(x) f-p(O),r(O),r(x)

,vxV
f-q(x),p(w)

SVG------------
(C3) I

{x/1 If
f-p(w)

!EIG,EVGi-1 -------
(Cl1/ ~C2)

{y'/wy iw/0}

f-p(O),r(w) D @!I) SIR,....___,.. __________ _

(C2) ,, STRONG l''· '-(Cl)"

'"'{y"/01
e ,~

f-r(w) f-p(O),r(O),r(w)

i.
(C4)' i

{z'/w} i
.-----. f-q(w),p(w')
SVR-----

(C3)

{w/1}

f-p(w')
lEIR,EVR t-1 --

(C2). (Cl)"'

e {y"'/0}

f-r(O),r(w)

(C4)'

{z'/0)

f-q(O),p(w'),r(w)

FIGURE 3.3.1

f-r(O),r(x)

(C4).

{z/0I L ~t

f-q(O),p(w),r(x)

59

60 Simple Loop Checks Chapter 3

and let G = ~p(x).

Figure 3.3.1 shows an SLD-tree of Pu{ G) using the leftmost selection

rule. It also shows how this tree is pruned by different loop checks. First we

explain the behaviour of the loop checks with respect to this tree. Then we shall

make some generalizing comments on this behaviour. In this example, the

distinction between list versus multiset based loop checks does not play a role.

Starting at the root, the first loop check that prunes the tree is the SIG

check. It prunes the goal ~p(0),r(x), because it contains p(0), an instance of

p(x). Following the leftmost infinite branch two steps down, the SVG check

prunes the goal ~q(x),p(w), because it contains p(w), a variant of p(x). One

step later, the atom q(x) is resolved, so the EIG and EVG checks prune the goal

~p(w) for the same reason.

However, the loop checks based on resultants do not yet prune the tree. The

computed answer substitution built up so far maps x to x after the first three

steps and to 1 later on. This is clearly different from the substitutions { x/0} and

{ xAI}, which are used to show that p(0) respectively p(w) are an instance

rei pectively a variant of p(x).

Now the derivation 'repeats itself, but with x replaced by w. Therefore the

loop checks based on resultants prune the tree during this second phase, exactly

where the corresponding loop checks based on goals pruned during the first

phase.

The side branch that is obtained by repeatedly applying the first clause (and

corresponding side branches later on) is pruned by the subsumption checks at

the goal ~p(O),r(0),r(x). This goal contains the previous goal ~p(0),r(x).

Therefore both the resultant based and the goal based loop checks prune this

goal. In contrast, the equality checlcs do not prune this infinite branch because

the goals in it become longer in every derivation step (analogously to Example

:.t2Jl).
The loop checks based on goali. all prune the solution (x/J I, so they are not

~nd. Among these loop checks, the SIO check prunes as soon as possible for

a w~akly sound loop check. ConveFsely, the SIR check prunei. this tree as soon

as possible for a shortening loop check. So on this tree, it behaves exactly like

STRONG, which exhibits such a behaviour by definition. D

Section 3.3 Subsumplion Checks 61

Another example shows that there can be a nontrivial difference between the

behaviour of subsumption checks based on list subsumption and those based on

multiset subsumption.

EXAMPLE 3.3.5.
Let P = { p(x) +- p(y),s(x),r(y). J. (Note the similarity between this clause and

the clause p(x) +- p(y),s(y,x) in Theorem 2.2.13.)

Let G = +-p(xo),q(xo).

An SLD-derivation (and SLD-tree) of Pu { G) via the leftmost selection rule is

depicted in Figure 3.3.2. This infinite SLD-derivation is pruned by the SVRM

check at the goal +-p(x2),s(x 1),r(x2),s(xo),r(x 1),q(xo), since a variant of an

earlier goal, namely (+-p(x1),s(xo),r(x1),q(xo)){x1/x2,x2/x1 I, is 'multiset

contained' in it.

+-p(xo),q(xo)

.u.
+-p(x 1),s(xo),r(x 1),q(xo)

.u.
+-p(x2),s(x 1),r(x2),s(xo),r(x 1),q(xo)

.u.
+-p(x3},s(x2),r(x3},s(x 1),r(x2),s(xo),r(x 1),q(xo)

.u.

FIGURE 3.3.2

However, this derivation is not pruned by the SVRL check, nor by the

stronger SIGL check. For, assume that the SIGL check prunes this derivation

at the goal Gk= +-p(xk),s(xk_i),r(xk),s(xk-2),r(xk-l), ... ,s(xo),r(x 1),q(xo),

because Grt = (+-p(Xi),s(xi-1),r(xi),s(xi-2),r(xi-1), ... ,s(xo),r(x 1),q(xo))t, an

instance of an earlier goal Gi, is list-contained in it.

Clearly, the presence of the q-atoms in Git aJld Gk requires xot = xo. So the

atom s(xo)t in Git corresponds to the atom s(xo) in Gk. Then, because Git is

list-contained in Gk, r(x 1)t can only correspond to r(x 1), the only atom between

s(xo) and q(xo). Therefore x1t = x,. Using induction, we can derive x2t = x2,

62 Simple Loop Checks Chapter 3

... , Xi't = Xj. However, the presence of the p-atoms in Gi't and Gk requires Xi't =
Xk. Since i < k, this is a contradiction. So the assumption that the SIGL check

prunes the derivation is refuted. D

The above examples suggest some 'stronger than' relationships (although

an example can only prove the absence of such a relationship). Figure 3.3.3

shows such relationships between the subsumption checks, the equality checks,

VA and IA, extending Figure 3.2.2.

:- EVGL

' EIRL :- EJGL

.. I :- EVGM 1, ' EIRM - EIGM -

l l l l l l l l
...

SVGL
~

' SIRL· ,, ; Sr
. - -- · :,-- SVGM ,,

' SIRM· ·· - SJGM . ~ ·- ..
we,i"ly soynp

8 hortening

', not w~akly soun!i
VA

' 0 IA

FIGURE 3.3.3

Section 3.3 Subsumption Checks 63

The arrows between the 'cubes' mean that every subsumption check is

stronger than the corresponding equality check in the other 'cube'. So the

structure of 'stronger than' relations between equality checks and subsumption

checks is a four-dimensional hypercube. Again, proving these 'stronger than'

relations is straightforward.

Soundness

To prove the desired soundness results, we prove that the SIRM check is

shortening and that the SIGM check is weakly sound, since these are the

strongest loop checks based on resultants, respectively goals, in our scheme.

First we need the following lemma.

LEMMA 3.3.6. Let P be a program and r a substitution. Let G1 and G2 be

goals such that G2r f;;M G J. Suppose DJ is an SLD-refutation of Pu{G J}

with computed answer substitution <11. Then there exists an SLD-refutation

D2 of Pu{ G2} with a computed answer substitution <12 such that ID2I 51D JI

and <12 5r<11.

PROOF. Let D = (Gt =>c1,e1 ... =>cn,8n □) and let Cn1, ... ,Cnm be those clauses

from Ct, ... ,Cn that are used (directly or indirectly) to resolve atoms belonging

to G2t, with I $ n1 < ... < nm :s; n. Then there exists an unrestricted (in the

sense of [L]) SLD-derivation G2t81 ... 8n1-I =>cn 1,8ni···8n2-1 •·· =>Cn 111,8n 111 ••• 8n

□. Now apply the Mgu Lemma and the Lifting Lemma of [L]. □

We can now prove the desired theorem.

THEOREM 3.3.7. i) The SIRM check is shortening.

ii) The SIGM check is weakly sound.

PROOF. Let P be a program, Go a goal and D = (Go =>c 1,a1 Gt=> ... => Gi-1

=>ci,8i Gi => ... => Gk-t =>ck,8k Gk=> ... =>cm,8m □) an SLD-refutation of

Pu{ Go} (where 0 $ i < k :s; m).

i) Assume that for some substitution t: Gk ;;;;!M Git and Go81.,.8k =

Go81 ... 8jt. Since Gk =>ck+t,8k+I ... =>cm,8m □, by Lemma 3.3.6 an SLD

derivation Gi =>01 ..• =>on □ of Pvl Gil exists, with <JJ ... <Jn :5 t8k+I · .. 8m (n $

m-k < m-i). Go8t ... 8j<JJ ... <Jn $ Go81 ... 8jt8k+l ··•8m = 0081 ... 8k8k+l--·8m,

hence the full condition of Lemma 3.2.5 is satisfied, so SIRM is shortening.

64 Simple Loop Checks Chapter 3

ii) The additional condition 0081 ... 0k = 0081 ... 0i't was only used to prove

the additional shortening condition of Lemma 3.2.5. □

COROLLARY 3.3.8 (Subsumption Soundness).

i) All subsumption checks based on resultants are shortening. A .fortiori

they are sound.

ii) All subsumption checks based on goals are weakly sound.

PROOF. By Theorem 3.3.7 and the Relative Strength Theorem 2.2.12. □

Completeness

We now shift our attention to completeness issues. From the results of the

previous section we can immediately deduce the following result.

COROLLARY 3.3.9 (Subsumption Completeness]). All subsumption

checks are complete w.r.t. the leftmost selection rule for .functionfree

restricted programs.

PJ.OOF. By the Equality Completeness Corollary 3.2.19 and the Relative

f,trength Theorem 2.2.12. □

However, the subsumption checks are stronger than the corresponding

equality checks. So we can try to find other classes of programs for which the

subsumption checks are complete. We know that the subsumption checks are

not complete for all programs, not even for all function-free programs. For P =

{p(x)+-p(y),s(y,x)}, a derivation of Pu{+-p(x),q(x)} is not pruned by any of

the subsumption checks, as was shown in Theorem 2.2.13.

A close analysis of the proof of this theorem shows that the problem is

caused by three characteristics of this clause occurring simultaneously, namely:

l. A new variable, y, is introduced by a recursive atom, p(y).

2. There is a relation between this new variable, y, and an old variable, x,

namely via the atom s(y,x).

3. The recursive atom p(y) is selected before the 'relating' atom s(y,x).

It appears that, in order to obtain the completeness of the subsumption

checks, it is enough to prevent any of these events. Clearly, the use of restricted

programs and the leftmost selection rule prevents the third event. We now

Section 3.3 Subsumption Checks 65

introduce two new classes of programs, preventing the first and the second

event, respectively.

DEFINITION 3.3.10 (Nvi program).

A clause C is non-variable introducing (in short nvi) if every variable that

appears in the body of C also appears in the head of C.

An nvi program is a program of which every clause is nvi. □

DEFINITION 3.3.11 (Svo program).

A clause Chas the single variable occurrence prope1ty (in short is svo) if in the

body of C, no variable occurs more than once.

An .\·vo program is a program of which every clause is svo. □

Clearly, in nvi programs the first event cannot occur, whereas in svo

programs the second event is prevented. We would rather have used the

terminology right-linear instead of svo, which is common in the area of term

rewriting systems. However, in the area of deductive databases this term is

already in use for a completely different notion.

EXAMPLE 3.3.12.
The following program is an nvi program and an svo program, but not a

restricted program. It computes in the relation 'add' the sum of two two-digit

binary numbers (the first four arguments of 'add'); this sum is a three-digit

binary number, stored in the last three arguments of 'add'.

ADD= { add(0,0, x,y, 0,x,y H--.
add(x,y, 0,0, 0,x,y H--.
add(x,y, x,y, x,y,0) f--.

add(Xt,YI, x2,Y2, z,x3,y3) f-- add(0,y1, 0,y2, 0,0,Y3),

add(0,x1, 0,x2, 0,z,x3).

add(Xt,l, x2,l, 1,0,0) f-- add(0,x1, 0,x2, 0,0,1). }.
The first three clauses are evidently correct; every addition of the form OX + 0Y

is taken care of by them. The fourth clause deals with the case where adding the

last digits of both numbers does not give a carry (ensured by the first atom in the

body). The fifth clause deals with the case where there is such a carry. Only the

66 Simple Loop Checks Chapter 3

case XJ "# xz (or equivalently, XJ + x2 = I) has to be considered there: if x1 = x2

then the third clause applies.

Note that this program yields infinite derivations that are not pruned by any

of the equality checks. Indeed, starting with the goal f- add(O,y 1,0,y2,0,0,y3),

the first recursive clause applies, giving the goal f- add(O,y1,0,y2,0,0,y3),

add(0,0,0,0,0,0,0). Repeatedly selecting add(O,y 1,0,y2,0,0,Y3) and applying

the first recursive clause yields an infinite derivation containing goals of

increasing length, which is not pruned by any of the equality checks. D

We now prove that the weakest of the subsumption checks, the SVRL

check, is complete for function-free nvi programs. To this end we use the

following (weakened) version of Kruskal's Tree Theorem, called Higman's

Lemma. (See [H]; for a formulation of the full version of Kruskal's Tree

Theorem, see [DJ] or [Kr].)

LEMMA 3.3.13 (Higman's Lemma). Let wo, WJ, w2,

sequence of (finite) word~ over a.finite alp/whet 1:.

Then for some i and k > i, Wi ~L Wk.

be an infinite

D

In order to prove that the SVRL check is complete for function-free nvi

programs, we prove that that every normal SLD-derivation (see Definition

1.2.4) of a function-free nvi program (and an arbitrary goal) does not introduce

new variables. Then we prove that in the absence of function symbols, infinite

derivations in which no new variables are introduced are pruned by the SVRL

check.

DEFINITION 3.3.14.

An SLD-derivation D = (Go ==>c 1,e1 G1 ==> ...) is non-variable introducing (in

short nvi) if var(Go) ~ var(G1) ~ var(G2) ~ D

LEMMA 3.3.1S. Let P be a function~f'ree nvi program and let Go be a goal in

Lp. Let D be a normal in.finite SLD-derivation <f PL.l{Go/. Then D is an

i~finite nvi derivation.

PROOF. Suppose that D = (Go ==>c 1,e1 G1 ==>c2,e2 G2 ==> ...). We prove that for

every i > 0: var(Gi) ~ var(Gi-1). By Corollary 1.2. 7 var(Gi-18i) ~ var(Gi-1),

Section 3.3 Subsumption Checks 67

so it is sufficient to prove that var(Gi) !;;;; var(Gi-t0i)- Let A be the selected atom

in Gi-1 and let S1 be the rest ofGi-1· Let Ci= H~S2, then Gi = ~(S1,S2)0i.

Let x E var(Gj). Two cases arise.

- xis introduced by Gi-1, that is x E var(S10i). Then x E var(Gi-10i)-

- x is introduced by Ci, that is x e var(Sz0j). Then, since P is an nvi program,

x E var(H0j). 0i is a unifier of Hand A, so x E var(A0i) !;;;; var(Gi-t0i)- D

LEMMA 3.3.16. In the absence <f.fimction symhols, every i,~finite nvi SLD-

derivation is pruned by SVRL.

PROOF. Let D = (Go=>c 1,e1 G1 => ...)bean infinite nvi SLD-derivation. We

take for I: the set of equivalence classes of -var(Go),Go, 1 as defined in Definition

3.2.15. By Lemma 3.2.17, I: is finite. To apply Higman's Lemma 3.3.13 we

represent for j 2: 0 a goal Gj = ~AJj,···•Anj.i (or rather the corresponding

resultant Go0J ... 0j~Gj) as the word [Go01 ... 0j~Alj], ... ,[Go01 ... 0j~An_µl

over I:. (Recall that for a resultant R, [R] denotes its equivalence class.) The

sequence of representations of Go, G 1, G2, ... yields an infinite sequence of

words wo, w1, wz, ... over I:.

Now by Higman's Lemma 3.3.13, for somej and k > j: [Go0J ... 0j~A1j],

... ,[Go01 ... 0j~Anj.j] !;;;;L [Go01 ... 0k~A lk], ... ,[Go01 ... 0k~Ankkl- So by the

definition of -var(Go),Go, I, there exist renamings p 1, ... ,Pnj which do not act on

the variables of Go such that (Go01 ... 0_j~A 1_j)P1, ... ,(Go01 ... 0j~Anj.i)Pnj !;;;;L

(Go01 ... 8k~A1k), ... ,(Go81 ... 8k~Ankk)-

As D is nvi, var(Gj) !;;;; var(Go) and therefore the renamings Ph do not act on

the atoms Aij of Gj (Is; h,i s; nj)- Thus Gj = GjPI !;;;;L Gk and Go81 ... 8jPI =

Go8J ... 8k. So Dis pruned by SVRL. D

THEOREM 3.3.17. The SVRi loop check is complete for .functionJree nvi

program'>.

PROOF. By Lemma 1.2.5 (every SLD-derivation has a normal variant), Lemma

3.3.3 (SVRL is closed under variants), and Lemma 3.3.15 and 3.3. I 6. D

COROLLARY 3.3.18 (Suhsumption Completeness 2). All subsumption

checks are complete.for.functionJree nvi programs.

PROOF. By Theorem 3.3.17 and the Relative Strength Theorem 2.2.12. D

68 Simple Loop Checks Chapter 3

We now prove that the SVRL check (and hence all subsumption checks) are

complete for function-free svo programs.

LEMMA 3.3.19. Let P he a .fimction~free svo program and let Go be a goal in

Lp. Let D = (Go =>c1,01 G1 =>c2,02 G2 => ...)be a normal SLD-derivation

of Pu{Go}. Then for every goal Gi (i:? 0): (f x occurs more than once in

G;, then x E var(Go).

PROOF. By induction. For i = 0, the claim is trivial.

Now suppose that x occurs more than once in Gj (i > 0).

Let A be the selected atom in Gi-1 and let SI be the rest of Gi-1. Let Ci =

Hf-S2, then Gi = f-(S1,S2)0i. There are two ways in which we can obtain a

variable x occurring more than once in Gj.

l. A variable y occurs more than once in (S 1 ,S2) and y0i = x.

By standardizing apart, var(SI) n var(S2) = 0, soy occurs either only in S1 or

only in S2. Since Cj is svo, y does not occur more than once in S2. Therefore y

occt·rs more than once in SI. Then by the induction hypothesis, y E var(Go).

Consequently x = y0i E var(Go0i) ~ var(Go) (by Corollary 1.2.7).

2. There are variables y t, Y2 in (S 1,S2) such that y 10i = Y20i = x and y 1 * Y2·

In this case y 1, Y2 E var(A,H), since 0i is relevant. If y I E var(S 1), then by

standardizing apart YI Ee var(H), so YI E var(A). Therefore YI occurs more than

once in Gi (in A and in SI), and we can apply the induction hypothesis and

Corollary 1.2.7 again. Since the same argument holds if Y2 E var(SI), only the

case y I, Y2 E var(S2) is left. In this case, since y 1, Y2 E var(A,H), and by

standardizing apart YI, Y2 E var(H). Since y18i = Y28i = x, the sets

ZI = { z E var(A) I z occurs in A at the position of an occurrence of YI in H} and

Z2 = { z e var(A) I z occurs in A at the position of an occurrence of Y2 in H} are

not disjoint. (Otherwise, a more general unifier of A and H than 0i would exist,

mapping YI to an element of Z1 and Y2 to an element of Z2.) Letze Z1 n Z2. z

occurs at least twice in A, so z E var(Go). Thus x :::: z0i E var(Go0i) ~ var(Go).D

We can now prove the desired theorem.

THEOREM 3.3.20. The SVRL loop check is complete for .fimction~free svo

programs.

Section 3.3 Subsumption Checks 69

PROOF. Let P be a function~free svo program and let Go be a goal in Lp. Let

D = (Go ⇒c 1 ,e 1 G1 ⇒c2,e2 G2 ⇒ ...)be an infinite SLD-derivation of Pv{Go).

By Lemma 1.2.5 and 3.3.3 we may assume that D is normal.

Again, we take for I: the set of equivalence classes of ~var(Go),Go, 1 as

defined in Definition 3.2.15. By Lemma 3.2.17, I: is finite. To apply Higman's

Lemma 3.3.13 we represent a goal Gj= Atj, ... ,A 0 j.i in Das the word Wj=

[Go0J .. ,0jf-A1j], ... ,[Go01 .. ,0jf-A0~] over I:. The sequence of representations

of Go, G1, G2, ... yields an infinite sequence of words wo, w1, w2, ... over I:.

Now by Higman's Lemma 3.3.13, for some j and k > j: [Go0, ... 0jf-A1j],

... ,[Go01 ... 0jf-Anj.j] ~L [Goe, .. ,0kf-AJk], ... ,[Go01 .. ,0kf-Ankkl- So there

are renamings PJ, .. ,,Pnj such that (Go01 ... 0jf-A 1j)P1 , ... ,(Go01 .. ,0jf-Anj.i)Pnj

~L (Go0J.,.0kf-AJk), ... ,(Go01 .. ,0kf-Ankk),

We now construct a renaming p. Consider the set X = var(Gj)-var(Go). By

Lemma 3.3.19 a variable x E X occurs at most once in Gj; if x occurs in Aij,

then we define xp = xpj. In order to make pa renaming p maps (one-to-one) the

variables of Xp-X to the variables of X-Xp; p is the identity mapping on

variables outside XuXp. Since, by the definition of ~var(Go),Go,I• the renamings

Pi do not act on variables in var(Go), x E XuXp implies x ~ var(Go). Hence p

does not act on the variables in var(Go), so Gjp ~L Gk, By Corollary 1.2.7

var(Go01 .. , 0j) ~ var(Go), thus Go01 ... 0.iP = Go01 ... 0j. So Gjp ~L Gk and

Go01 ... 0jp = Go01 ... 0k, hence Dis pruned by SVRL, D

COROLLARY 3.3.21 (Subsumption Completeness 3). All subsumption

checks are complete.for .function:free svo programs.

PROOF. By Theorem 3.3.20 and the Relative Strength Theorem 2.2.12. D

Now combining Corollary 2.2.6 and Corollary 2.2.7 with the Subsumption

Soundness Corollary 3.3.8 and the Subsumption Completeness Corollaries

3.3.9, 3.3.18 and 3.3.21, we conclude that all subsumption checks lead to an

implementation of CW A for restricted programs, nvi programs and svo

programs without function symbols. Moreover, the subsumption checks based

on resultants also lead to an implementation of query processing for these

programs.

70 Simple Loop Checks Chapter 3

3.4. Context Checks

Definitions

The explanation for the fact that the Variant (Instance) of Atom check is not

(weakly) sound is that it does not take into account the context of an atom.

However, whereas f-p(x) and f-p(y) are variants, the existence of a refutation

of f-p(y),q(x) does not imply the existence of a refutation of f-p(x),q(x). To

remedy this problem we should keep track of the links between the variables in

the atom and those in the rest of the goal.

Roughly speaking, the IA check prunes a derivation as soon as a goal Gk

occurs that contains an instance At 'produced' by an atom A that occurred in an

earlier goal Gj. But when a variable occurs both inside and outside of A in Gi,

we should not prune the derivation if this link has been altered. Such a variable x

in Gi is substituted by x0i+ 1 ... 0k when Gk is reached. Therefore 't and 0i+ I· .. 0k

should agree on x. This leads us to a loop check introduced by Besnard [B].

DEFINITION 3.4.1 (Context checks based on Goals).

The Variant/Instance Context check based on Goals is the set of SLD-derivations

CVG/CIG = Initials({ D I D = (Go ⇒c 1,e I G 1 ⇒ ... ⇒ Gk-I ⇒ck,0k Gk) such that

for some i and j, 0 $ i $ j < k, there is a renaming/

substitution t such that for some atom A in Gi: At appears

in Gk as the result of an attempt to resolve A0i+ 1 ••• 0j,

the further instantiated version of A in Gj and for every

variable x that occurs both inside and outside of A in Gi,

X0i+l ·••0k = xtl). 0

Besnard describes the condition on the substitutions as follows: 'When At

is substituted for A0i+l·•·0k in Gi0i+1•··0k, this should give an instance ofGi.'

We show that this formulation is equivalent to ours. Let Gi = (A,S), that is A

occurs in Gi and S is the list of other atoms in Gi, Then (At,S0i+ 1 · .. 0k) should

be an instance of (A,S), say (Acr,Scr).

Clearly, xcr = l xt for x E var(A),

X8i+l ··•8k for x E var(S),

so for x e var(A) ri var(S), xt = x8i+I ... ek.

The following example clarifies the use of the context checks.

Section 3.4 Conlcxl Checks 71

EXAMPLE 3.4.2.

We use the program P and the goal G of Example 2.1.6 and apply the CIG

check on two SLD-trees of Pu (G}, via the leftmost and rightmost selection

rule, respectively. This yields the trees in Figure 3.4.1.

The goal G3 = f-p(y') in the rightmost tree that was incorrectly pruned by

the VA check, is not pruned by the CIG check. Certainly, p(y') is the result of

resolving p(l) in G2, the further instantiated version of p(x) in GI· But replacing

p(x)8283 by p(y') in G 18283 yields f-p(y'),q(l), which is not an instance of

f-p(x),q(x). □

+(C4) +(C4)

f-p(x),q(x) f-p(x),q(x)

(Cl) "-.<C~)'
{x/0} ~x'/x}

CIG prunes here I (C2)
+(x/1}

f-q(0) f-p(y'),q(x)

(Cl)/ '\.(C3)"
{y'/Oy ~(x"/y'}

f-q(x) f-p(y"),q(x)

!(C2) (C
1
\)/ ~C3)"'

{ x/1} { y"/0/ ~(x"'/y"}

D

FIGURE 3.4. l

f-p(I)

!(C3)'
l x'/1 I

f-p(y')

(C?'J'/ \~~)
I x"ly'v t'/0}

f-p(y") □

CLAIM 3.4.3. CVG and C/G are weakly sound simple loop checks.

PROOF. Proving that CVG and CIG are simple loop checks is straightforward.

Besnard proves in [B] that CIG is weakly sound. From this it follows that the

weaker CVG check is also weakly sound. See also Theorem 3.4.6. □

In Example 3.2.3, the context checks act exactly in the same way as the

corresponding equality checks. This shows that CVG and CIG are not sound.

Again we can obtain sound, even shortening, versions by using resultants

instead of goals.

72 Simple Loop Checks Chapter 3

DEFINITION 3.4.4 (Context checks based on Resultants).

The Variant/Instance Context check based mi Resultants is the set of SLD

derivations

CVR/CIR= lnitials({D ID= (Go ⇒c 1 ,e 1 G1 ⇒ ... ⇒ Gk-I ⇒ck,ek Gk) such that

for some i and j, 0 $ i $ j < k, there is a renaming/

substitution t such that Go81 ... ek = Go81 ... 0it and for

some atom A in Gi: At appears in Gk as the result of an

attempt to resolve A0i+ 1 ... 0j, the further instantiated

version of A in Gj and for every variable x that occurs both

inside and outside of A in Gi, X0j+ 1 ... ek = Xt }). D

Using Besnard's phrasing, the conditions on the substitutions can be

summarized as: 'When At is substituted for A0i+ 1 ... ek in the resultant

Ri0i+I ... ek, this should give an instance of Ri.'

LE~ IMA 3.4.5. CVR and CIR are simple loop check\-.

PF OOF. Straightforward.

Soundness

D

Now we prove that the CIR check is shortening. From this it follows that the

weaker loop check CVR is also shortening.

THEOREM 3.4.6. The CIR check is shortening.

PROOF. Let P be a program, Go a goal and D = (Go ⇒c 1 ,e 1 Gt ⇒ .. ⇒ Gi-1

⇒ci,8i Gi ⇒ ... ⇒ Gk-I ⇒ck,ek Gk ⇒ ... ⇒c111 ,0 111 □) an SLD-refutation of

Pu{Go} (where O $ i < k $ m).

Assume that D is pruned by CIR, that is for some substitution t: Gi =
~(A,Si), Gk= ~(At,Sk), At descends from A, Si0i+l ··· 0k = Sit and

0081 ... 8k = 0081 ... 8jt. (Here G = ~(A,S) means: A occurs in G and ~s is

obtained by removing A from G.)

Then ~si l;M Gi and ~At l;M Gk. Since Gj ⇒ci+t,0i+I ... ⇒ck,ekGk

⇒ck+t,0k+l ... ⇒c111,0 111 □, by Lemma 3.3.6 we have SLD-refutations 01 of

Pu{ ~Si I and Oz of Pu{ ~A}, where the computed answer substitution of 01,

t1 $ 8i+ 1 ... 8m and the computed answer substitution of Oz, tz $ t8k+ I· .. 8m.

Say ttY = t8k+ I· .. 0m. Now we combine DI and D2 into an unrestricted SLD-

Section 3.4 Conlexl Checks 73

refutation of Pu{ ~(A.Si)}: first resolve A as in D2; the goal Si't2 remains.

Replacing the last mgu µ of this derivation by µy, this remaining goal becomes

Si't2Y = Sj't8k+l ···8m = Si8i+l ···8k8k+l · .. 8111 • From Lemma 8.5 of [L] and the

existence of D1 it follows that Pu{ ~Si8i+I ... 8 111 } can be refuted indeed, giving

a computed answer Si8i+ 1 ... 8111 • The Mgu Lemma of [L] shows that the

combined unrestricted refutation can be turned into a real SLD-refutation D3 of

Pu{ ~(A,Si)} giving a computed answer Go81 ... 8j't3::;; Go81 ... 8rt8k+1···8m =

Go81 ... 8k8k+1···8m.

Since At descends from A, an inspection of the proof of Lemma 3.3.6

shows that every derivation ~tep in D1 and D2 has a corresponding derivation

step in the tail (Gi ⇒ ... ⇒□)of D. This tail consists of m-i derivation steps. On

the other hand, at least one step in this tail has no corresponding step in D1 or

D2: the step in which A8i+l ···8j is selected. Hence ID3l = 1D11 + 1D21) < m-i.

Now apply Lemma 3.2.5. D

COROLLARY 3.4.7 (Context Soundness).

i) The context checks based on resultants are shortening. A fortiori they are

sound.

ii) The context checks based on goals are weakly sound.

PROOF. By Theorem 3.4.6 and the Relative Strength Theorem 2.2.12. Note that

omitting the considerations about computed answer substitutions from the proof

of Theorem 3.4.6 yields a proof for ii), i.e., for Claim 3.4.3. D

For derivations via local selection rules (see Definition 1.2.9), e.g. the

leftmost and rightmost selection rule, a different soundness proof exists, based

on the relative strength of the context checks.

LEMMA 3.4.8. The SIGL check is stronger than the C/G check and the SIRL

check is stronger than the CIR check w.r.t. local selection rules.

PROOF. Suppose D = (Go ⇒c 1 ,e 1 G1 ⇒ ... ⇒ck,0k Gk) is pruned at Gk by the

CIG check. We show that Dis pruned by the SIGL check at Gk (or earlier).

We have an atom A in Gi, A8i+ I· .. 8_j in G_j as the selected atom and At as

the result of resolving A8i+l ···8j. Let Gi = (S,A,T), where S consists of those

atoms in Gi that are completely resolved between Gi and Gj. The use of a local

selection rule yields Gj = (A8i+ 1- .. 8_j,T8i+ I· .. Oj) and Gk = (At,U,T8i+I ... 8k)

74 Simple Loop Checks Chapter 3

(U consists of the atoms in Gk other than At that are the result of resolving

A8i+1··•8j), Finally, ifx e var(A)" var(S,T) then x8i+1 ... 8k = xt.

G. A T
I

G. A8i+t ".0j T0. 1 ... 0. Context check J 1+

I \
\

'A•I

\

l Gk u T0i+J' .. 0k

FIGURE 3.4.2

We show that for some substitution O', Gja !'.;L Gk, We define a as follows:

{

x if x E var(Gj),

xcr = x0j+ 1 ... 0k if x e var(Gj) - var(A),

xt if x e var(Gj) n var(A).

We show that (i) A8i+1 ... 8Jtt = At ahd that (ii) T8i+1 ... 8jcr = t8i+1 ... 8k,

(i) Let x e var(A), then x e var(Oi), We prove that x8i+I •. ,0jct = x:t.

If x e var(Oj), then (by Lettutut 1.2. i) x8i+ 1 ••• 8j = x, hence x8i+ 1 ••• 8jd =
:llO' = lt.

If x I! var(Oj) theh x8i+ 1 •.. 9j .,,_ x, hence x e var(S). So x8i+ 1 ••• 8k = x.t.
Mureover, for every y e var(x8i+, ... 8j), either y e vat(S) or y is
hmuduced by Ci+ 1, ... ,Cj, i.e., y E var(Oi), in particular y I!

var(A}. In bt>th cases yet == y8j+ 1 ... 8k (nutice tlmt y e
vat(x81+ 1 ... Oj) !;;;; vi:ir(A81+1 .. ,8j) ~ vat(Gj)). So x8i+1 .. ,0jtt =

lOi+ i ... 81c = x't.
(ii) Now let ye vat<fli+t .. ,Oj), We prove that Y" = y8,1+1 ... 8k.

Pir111t nt)tt that founttte x e var(tJ: y e var(x81+ i .. ,8j),

th e var(S), then x = Xii+, .. , 0j = y, so y e var(T), hence ya = y0j+, ... 8k,
lfx e vat(S), then again either y e var(S) 01· y I! var(A), ahd ltt both ta11es

Y~ = J8j+l .. ,8k,

Section 3.4 Context Checks 75

If D is pruned by the CIR check, then we also have that Go01 ... 0k =

Go0J ... 0j't. We show that this implies Go0J ... ek = Go0J ... 0p, i.e., that Dis

pruned by the SIRL check. Let x E var(Go0, ... 0i), hence x0i+1···0k = xt. We

show that x0i+l ···0P = X0i+l ···ek.

If x e: var(S), then x0i+ 1 ... 0j = x, hence x0i+ 1 ... 0jO" = xcr =

{

X = X0i+l···0j = X0i+1···0k ifx i': var(Gj),

= X0j+I ... 0k = X0i+ I ... 0k '.f X E var(Gj) - var(A),

xt = x0i+ I· .. ek 1f x E var(Gj) n var(A).

If x E var(S), then again for every y E var(x0i+I ... 0j), either y E var(S) or y

e: var(A), and in both cases ycr = y0j+l • .. ek (if ye var(G_;) then

ycr = y = y0j+ I ... 0k). So X0i+l · .. 0p = X0i+I .. ,0k. 0

Although we conjecture that the subsumption checks using variants are also

stronger than the corresponding context checks using variants, it appeared not

easy to prove this. (One must show that cr is a renaming, or more precisely that

an alternative definition for cr makes it a renaming and preserves the properties

proved above.) We feel that the conjecture is not interesting enough to justify

such an effort.

The following example shows that the previous result does not hold for

selection rules that are not local.

EXAMPLE 3.4.9 (based on Example 10 in [B]).

LetP={p~q. (Cl),

q~p.

r~ s.

and let G = ~p.r.

(C2),

(C3) },

Then the derivation ~Jl,r ⇒(Cl) ~q.r ⇒(C3) ~Q,S ⇒(C2) ~p,s (in which the

selected atoms are underlined) is pruned by the context checks (the p in the

fourth goal is the result of resolving the p in the first goal), but not by the

subsumption checks. □

Now we can add the context checks to our 'stronger than' scheme (see

Figure 3.4.3; the dotted arrows are only valid for local selection rules). Proving

the relations between the context checks is again straightfo1ward.

76 Simple Loop Checks Chapter 3

shortening weakly sound

EVRL-----EVGL i~IRL ~IGL

EVR~ EVG~l

CVG ,

VA

' IA

not weakly sound

FIGU~E 3.4.3

Section 3.4 Context Checks 77

That the equality checks and the context checks are incomparable (even

when we consider only derivations via local selection rules) is shown in the

following example.

EXAMPLE 3.4.10.

The derivation ~p =>p+-p,q ~p,q is pruned by each context check, but not by

any of the equality checks. Conversely, the derivation ~r =>r+-p(x),q(x),E

~p(x),q(x) =>p(y)+-,{y/x) ~q(x) =>q(z)+-p(w),q(w),{zlx) ~p(w),q(w) is pruned by

each equality check, but not by any of the context checks (q(x) produces q(w),

but x occurs both inside and outside q(x), and the substitution (x/w I does not

agree with {y/x}(z/x} on x). D

Completeness

Again we shift our attention to completeness issues. We first prove that, like the

equality checks and the subsumption checks, the context checks are complete

w.r.t. the leftmost selection rule for function-free restricted programs.

THEOREM 3.4.11. The CVR check is complete w.r.t. the leftmost selection

rule.for.function:free restricted programs.

PROOF. Let P be a function-free restricted program and let Go be a goal in Lp.

Let k = weight(Go). Consider an infinite SLD-derivation D = (Go =>c 1 ,e I G 1

=> ... => Gi-1 =>ci,0i Gi => ...)of Pu{ Go 1- By Corollary 3.2.14 for every i ~ 0:

IGil ~ k. Every goal Gi is a goal in Lp and hence every resultant Go81 ... ei~Gi

belongs to an equivalence class of -0,Go,k· Lp satisfies the conditions of Lemma

3.2.17, so -0,Go,k has only finitely many equivalence classes. Thus the set

E = {S< IS< is an equivalence class of -0,Go,k and for infinitely many resultants R

associated to goals in D: RE S<I is nonempty. For simplicity, we shall say that

the goal Gi is in an equivalence class S<, when in fact (Go81 ... ei~Gi) E S<·

For every equivalence class S< of -0,Go.k, we define the length of S<, denoted

by IS<I, as the length of the goals in~- Since Et:. 0, we can define l = min { IS<I I ~ E

E}. Now we choose an equivalence class e E E with lei = l . According to the

choice of e, D contains infinitely many goals in e and a finite number of shorter

goals (since the number of equivalence classes of -0,Go,k is finite).

78 Simple Loop Checks Chapter 3

Let Gi and Gk be (the first) two goals in D that are in e such that no goal

lying in D between them is shorter. Since Gi and Gk are in the same equivalence

class e, we have Gk = Gj't and 0081 ... 0k = Go81 ... 0j"t for some renaming t.

Let A be the leftmost atom in Gi and let S be the rest of Gj. A is selected in

Gj. However, A is not completely resolved between Gi and Gk, otherwise a

goal shorter than Gi, namely an instance of S, would appear between Gi and Gk

in D. Therefore the atom At in Gk is the result of resolving A. Furthermore, no

atom of S is selected between Gi and Gk, so Gk= (At,S0i+ I· .. 0k)- Hence

S0i+l ···0k = St.

When in the resultant Ri0i+ 1 ••. 0k, we replace A0i+ 1 ... 0k by At, we obtain

(0081 ... 0k~At,S0i+I · .. 0k) = (0081 ... 0jt~At,St), which is a variant of Ri.

Therefore D is pruned by the CVR check. □

COROLLARY 3.4.12 (Context Completeness 1). All context checks are

complete w.r.t. the Leftmost selection rule for .fimction~free restricted

programs.

PROOF. By Theorem 3.4.11 and the Relative Strength Theorem 2.2.12. □

Besnard [B] claims without much proof that the CIG check is complete for

function-free nvi programs. It appears that even the weakest of the four context

checks, the CVR check, is complete for function-free nvi programs.

THEOREM 3.4.13. The CVR check is complete .for function~free nvi

programs.

PROOF. Let P be an nvi program, Go a goal in Lp and D = (Go =>c 1,e1 G 1

=>c2,e2 02 => ...) an infinite SLD-derivation of Pv I Go I.
Since D is infinite, at least one atom in Go has infinitely many selected

descendants, hence the proof tree of this atom is infinite. Applying Konig's

Lemma on this proof tree shows that it has an infinite branch, so there exists an

infinite sequence of goals Gm0,Gm 1, ••• (0 $ mo< m1 < ...)containing atoms

Ao,A1, ... such that for every i ~ 0:

- Ai is the selected atom in Gm-,
I

- Ai+ 1 is (the further instantiated version of) an atom Ai+ 1 ', which is introduced

in Gmi+ 1 as the result of resolving Ai.

The situation is depicted in Figure 3.4.4 (selected atoms are underlined).

Section 3.4 Context Chci:ks 79

Go = (...... Ao')

* * 0, ... 01110

Gmo =(...... Ao) (Ao= Ao'01 ... 0m0)

I \ • 0mo+l

Gmo+I = (...... AJ'.)

* * 01110+2···01111

Gm1 = (...... A1) (A1 = A1'0m0+2···0m 1)

I \ • 0111 1+1

Gm,+I =(...... A2')

* * 0111 1+2···

etc.

FIGURE 3.4.4

We now consider the resultants Go0182 ... 0 111 . ~ Ai (i ~ 0). These
I

resultants belong to equivalence classes of the relation ~var(Go),Go, J, which has

by Lemma 3.2.17 only finitely many equivalence classes. Hence for some p

and q > p: (Go0182 ... 0mp ~ Ap) ~var(Go),Go,I (Go0182 ... 0m9 ~ Aq).

So by Definition 3.2.15, there exists a renaming p such that:

- Go0182 ... 0mpP = Go0182 ... 0m9,

-App= Aq,

- p does not act on the variables of Go.

When this is compared with the definition of the CVR check, taking i = j =

mp, k = mq, A = Ap and t = p, it appears that the only additional condition for

pruning is that 'for every variable x that occurs both inside and outside of Ap in

Gmr: x0111p+1···0m9 = xp'. We now prove that this condition is also satisfied,

which proves that D is pruned by the CVR check.

By Lemma 1.2.5, 3.3.15 and 3.4.5 we may assume that D is an nvi

derivation. Then var(Gmp) !;;;; var(Go), so for every variable x in Gmp: xp = x.

In particular, it follows that Aq = App = Ap,

80 Simple Loop Checks Chapter 3

Now suppose that x occurs both inside and outside of Ap in Gmp· Then x

occurs in Aq, hence in Gmq· By Lemma 1.2.1, x occurs in every goal between

Gm and Gm and x0m +I= ... = x0m = x. Hence x0111 +1 ···0111 = x = xp. D p q p q p q

COROLLARY 3.4.14 (Context Completeness 2). All context checks are

complete for function:free nvi programs.

PROOF. By Theorem 3.4.13 and the Relative Strength Theorem 2.2.12. D

Finally, it appears that the context checks are also complete for function-free

svo programs.

THEOREM 3.4.15. The CVR check ts complete for .fimction~free svo

programs.

PROOF. The proof of this theorem is identical to the proof of Theorem 3.4.13,

up to the point where the condition 'for every variable x that occurs both inside

and outside of Ap in Gmp: x0mp+l ···0mq = xp' must be proved. In the case of P

bring an svo program, this condition is proved as follows. If x occurs both

:nside and outside of At, in Gmp, then x occurs more than once in Gmp• so by

Lemma 3.3.19 x e var(Go). Thus xp = x. Hence x occurs in Aq, hence in Gmq·

By Lemma 1.2.1, x occurs in every goal between Go and G111q and x8mp+ 1 =

... = x8mq = x. Hence x8mp+l ··•0m4 = x = xp. D

COROLLARY 3.4.16 (Context Completeness 3). All context checks are

complete for function-free svo programs.

PROOF. By Theorem 3.4.15 and the Relative Strength Theorem 2.2.12. D

Now combining Corollary 2.2.6 and Corollary 2.2.7 with the Context

Soundness Corollary 3.4. 7 and the Context Completeness Corollaries 3.4.12

and 3.4.14 and 3.4.16, we conclude that all context checks lead to an

implementation of CW A for restricted programs, nvi programs and svo

programs without function symbols. Moreover, the context checks based on

resultants also lead to an implementation of query processing for these

programs.

More results on the completeness of loop checks can be found in [FPS],

and in the next chapter.

4. Generalizing Completeness
Results for Loop Checks

This chapter is devoted to the Generalization Theorem. This theorem presents a

method to extend (under certain conditions) a class of programs for which a

given loop check is complete to a larger class, for which the loop check is still

complete. These conditions and classes of programs are presented in Section

4.1. The theorem is proved in Section 4.2.

In Section 4.3 the theorem is applied to Corollaries 3.3.18, 3.3.21, 3.4.14

and 3.4.16 ('The subsumption and context checks are complete for function-free

nvi and svo programs.'), giving rise to stronger completeness theorems. The

proof of the result based on nvi programs is straightforward, whereas the result

based on svo programs requires a more elaborate analysis.

4.1. Preparation

Introduction

In the previous chapter, a number of natural simple loop checks was introduced.

These loop checks were proven to be sound, but only complete for certain

classes of programs. For each of these loop checks, one or more such classes

were determined.

Here, the problem of finding classes of programs for which a simple loop

check is complete is addressed in more generality. We prove the Generalization

Theorem, which allows us to generalize certain completeness results: given that

a loop check L is complete for a class of programs C, we may conclude that L is

also complete (w.r.t. the leftmost selection rule) for a class of programs

extending c, provided that Land Csatisfy some natural conditions.

Basically, the theorem is only applicable to a class of programs C if C =
{ P I every clause in program P satisfies Pr 1 } , for some property Pr of clauses

that is 'local' to clauses (that is, whether a clause satisfies Pr is independent of

the rest of the program). We say that C is the class of Pr programs. By allowing

1 We do not give a formal definition of a property: we assume that the notion 'a clause C

satisfies a property Pr' is given.

81

82 Generalizing Completeness Results for Loop Checks Chapter 4

the addition of nonrecursive atoms (Definition 3.2. l 0), the class of nr-extended

Pr programs is obtained.

The Generalization Theorem states that if the loop check L is complete for

function-free Pr programs, then Lis also complete for function-free nr-extended

Pr programs, provided that the nonrecursive atoms are resolved before other

atoms are selected. For simplicity, this is achieved by using the leftmost

selection rule, and putting the nonrecursive atoms left from the other atoms in

the clause. Formally, we have the following definitions.

Definitions

DEFINITION 4.1.1.
Let Pr be a property of clauses. A program P sati.~fies Pr (Pis a Pr program) if

every clause in P satisfies Pr. D

DEFINITION 4.1.2 (Nr-extended Pr program).

Let P be a program. A clause C = (Hf-NR,R) is nr-extended Pr w.r.t. P if the

clause Hf-R satisfies Pr and NR contains no recursive atoms. NR is called the

nonrecursive part of C and R is called the Pr-part.

A program Pis nr-extended Pr if every clause in Pis nr-extended Pr w.r.t. P. D

EXAMPLE 4.1.3.
If Pr is the property 'C is a unit clause', then the class of nr-extended Pr

programs is the class of hierarchical normal programs ([L]): programs in which

no recursion is allowed.

If Pr is the property 'the body of Chas at most one atom', then the class of nr

extended Pr programs is the class of restricted programs (Definition 3.2.10). D

Note that the property of being a nonrecursive atom is not local to clauses;

therefore the construction cannot be applied repeatedly. We must make one more

restriction on the properties we consider.

DEFINITION 4.1.4.

A property of clauses Pr is closed under instantiation if for every clause C that

satisfies Pr and for every substitution cr, Ccr satisfies Pr. D

Section 4.1 Preparation 83

Note that Ccr is not necessarily a ground instance of C. The Generalization

Theorem is only valid for prope11ies that are closed under instantiation, such as

the properties of Example 4.1.3 and the property 'C is non-variable introducing'

(Definition 3.3. 10). However, in the next section, where we study some

applications of the Generalization Theorem, we also consider a property that is

not closed under instantiation, namely the single variable occurrence (svo)

property (Definition 3.3. l l). A detailed inspection of the proof of the

Genenlization Theorem enables us to derive useful results for this property as

well.

The Generalization Theorem is only valid for loop checks satisfying certain

conditions. These conditions are formalized here. The first condition is that the

loop check is 'safe for goal extension'. Informally, this means that when we

have a derivation that is pruned by the loop check, adding some atoms to the

initial goal that are never selected (before the derivation is pruned), yields a

pruned derivation again.

DEFINITION 4.1.5.

A loop check L is safe for goal extension if for every SLD-derivation D of

Pu{ f-G} that is pruned by L, an SLD-derivation of Pu{ +-(G,H)} which

selects the same atoms, and uses the same input clauses and mgu's as Dis also

~~~L D 

The second condition is that the loop check is 'safe for initialization'. 

Informally, this means that when we have a derivation that is pruned by the loop 

check, adding some derivation steps in front of it ('initialization steps'), yields a 

pruned derivation again. 

DEFINITION 4.1.6. 

A loop check L is safe for initialization if for every SLD-derivation D = (Gi 

=>ci+I,0i+I Gi+J =>ci+2,ei+2 Gi+2 => ... )that is pruned by L (i > 0), every 

derivation (Go =>c 1,e 1 G1 => ... => Gi =>ci+l,0i+I Gi+I =>ci+2,ei+2 Gi+2 => ... ) 

in which in Gi, Gi+J, ... the same atoms are selected as in D, is pruned by L D 

The third condition is that the loop check is 'safe for detailing'. Informally, 

this means that when we have a derivation that is pruned by the loop check, 



84 Generalizing Completeness Results for Loop Checks Chapter4 

replacing every derivation step by one or more steps giving the same computed 

answer ('showing the details of one step in several steps'), yields a pruned 

derivation again. 

DEFINITION 4.1.7. 
A loop check Lis safe for detailing if for every SLD-derivation 

D = (Go =>c1,e1 G1 => ... ) that is pruned by L, every derivation of the form 
I I I I I I 

(Go=>c1 •, H 1 => ... =>H 1 =>r t G1 •• n1- '11J' n1 

with for every i > 0: 
i i 

'ti ... 'tni lvar(Go,G1, ... ,Gj-l) = 8i lvar(Go,G1, ... ,Gj-J) 

in which in Go, G1, ... the same atoms are selected as in D, is pruned by L. □ 

4.2. The Generalization Theorem 

~ · e can now formulate the Generalization Theorem. 

THEOREM 4.2.1 (Generalization Theorem). Let Pr be a property of 

clauses that is closed under instantiation. Let L be a loop check such that 

- Lis complete for function{ree Pr programs and 

- L is safe for goal extension, initialization and detailing. 

Then Lis complete w.r.t. the leftmost selection rule forfunction{ree nr

extended Pr programs. 

In the rest of this section, we shall assume that Pr is a property and L is a 

loop check satisfying the above conditions. For proving this theorem, we use 

the following lemma. 

LEMMA 4.2.2. Let P be a function{ree nr-extended Pr program and let Go be 

a goal in Lp. Let D be an i,~finite SLD-derivation rl Pv{ Go} via the 

leftmost selection rule. Suppose that 

for no goal G;=HG,H) in D (i ~0), the derivation of Pv{+-G} (using 

the same input clauses, mgu's and selection rule as D) is pruned by L (*) 

Then D is pruned by L. 



Section 4.2 The Generalization 171corc111 85 

Before proving this lemma, we show that the Generalization Theorem is an 

immediate consequence of it. 

PROOF OF THE GENERALIZATION THEOREM. Let P be a function-free or

extended Pr program, Go a goal in Lp and D an infinite SLD-derivation of 

Pu{Go}. Two cases arise. 

i) For no goal ~(G,H) in D, the derivation of ~G (using the same input 

clauses, mgu's and selection rule as D) is pruned by L. Then by Lemma 

4.2.2, D is pruned by L. 

ii) Otherwise, there is a goal ~(G,H) in D for which the derivation of ~G 

(using the same input clauses, mgu's and selection rule as D) is pruned by L. 

Then the tail of D starting at this goal ~(G,H) is pruned, since L is safe for 

goal extension. So D is pruned by L too, since L is safe for initialization. □ 

PROOF OF LEMMA 4.2.2. Assume that D is an infinite SLD-derivation of 

Pu{ Go} that satisfies(*). The dependency graph Op of P (see Definition 3.2.9) 

defines a (well founded) partial ordering :S of the set {clp(p) Ip is a predicate 

symbol in Lp}. Therefore we may assume as induction hypothesis (by a 

complete induction on :S), that this lemma has been proved for every derivation 

of Pu{ G} where G contains only strict $-smaller predicate symbols than the $

largest predicate symbol in Go. 

CLAIM 1. D is of the form 

(G ==> I I H' ==> ==>H' ==> I I G o c,:r, I ... n1-l c,,,.r11, I 

for some derivation D' = (Go ==>c1,o1 G1 ==>c2,o2 G2 ==> ... ),with for every i > 0: 

'1··· -1,,; lvar(Ga,G J, ... ,G;_J) = 0; lvar(Ga,G J, ... ,G;-J)• 

and where Ci, C2, ... all .wti.~fy Pr. Moreover, in the Koals Go, G1, ... , the 

same atoms are selected in D mu/ D'. 

Lemma 4.2.2 follows from Claim l: D' is a derivation of I Go,C1 ,C2, ... }, 

IC 1,C2, ... } is a function-free Pr program and L is complete for function-free Pr 



86 Generalizing Completeness Results for Loop Checks Chapter 4 

programs, so D' is pruned by L. As L is safe for detailing, D is pruned by L 

too. 

PROOF OF CLAIM I. We prove the claim by induction. Suppose we have 

constructed D' and proved the claim up to the goal Gi. (Up to Go, the claim is 

trivial.) 

Le i+I i+I t Gi = f-A1, ... ,An, let C = C 1 = (Af-NR,R) and let t = t 1 • Suppose 

that NR is the nonrecursive part of the body of C and that R is the Pr-part. The 

next step in Dis Gi ⇒c,t f-(NR,R,A2, ... ,A 11)t. Let 01 be the SLD-derivation 

of Pu{f-NRt} that uses the same input clauses, mgu's and selection rule as the 

tail of D starting at f-(NR,R,A2, ... ,A11 )T. Four cases arise. 

1) NR is empty. This is a special case of case 4: Pu{ f-NRt} is immediately 

successfully refuted. (If Go is :5-minimal, then this is the only possible case, 

since then rel(A1) = rel(A) is :5-minimal and by definition every predicate 

symbol in NR is strictly :5-smaller than rel(A).) 

2) D1 is failed. Then D is failed too, which contradicts the assumption that D is 

infinite. 

3) DI is infinite. By definition, every predicate symbol in NR is strictly $

smaller than rel(A1),·which is :5-smaller than the :5-largest predicate symbol in 

Gi (hence in Go), so by induction on :5 we can apply Lemma 4.2.2 on D1. 

Hence D1 is pruned by L or D1 does not satisfy (*). However, this 

contradicts the assumption that D satisfies (*): if DI is pruned then we take G 

= NRt and H = (R,A2, ... ,An)'t; if D1 does not satisfy(*), say for H\: 1 = 
f-(G',H'), then we take G = G' and H = (H',{R,A2, ... ,An)t\+I ... -r;:\ 

4) D1 is successful, yielding a computed answer substitution cr (if NR is empty 

then cr = E). This is the only remaining case. In this case we have in D the 

goal Gi+I = f-(R,A2, ... ,An)tcr, immediately after NR is completely resolved. 

CLAIM 2. The sequence r?f resolution steps between Gi and Gi+l in D can be 

mimiced by one resolution step Gi ==> C;+t,0;+/ Gi+l in D', where Ci+/ is an 

instance r?f A f-R and ra1var(Go.G 1 .... ,Gi) = 0i+ I h·or(Go.G /, .... G;)· 

Claim I follows from Claim 2: since Pr is closed under instantiation, Ci+I 

satisfies Pr. So we have constructed D' and proved Claim I up to the goal Gi+ I· 

Now the construction of the resolution step Gi ⇒ ci+l ,ei+ 1 Gi+I remains. 



Section 4.2 The Generalization Theorem 87 

PROOF OF CLAIM 2. First, we define Ci+ 1 and 0i+ 1, then we prove that Gi ⇒ 

Ci+J,8i+I Gi+I is indeed a derivation step. Finally, we check the other 

requirements on Ci+ 1 and 0i+ I· By Lemma 1.2.5 we may assume that D is 

normal. 

For every chain C in NR, we fix a substitution Pc such that for every x E 

var(Ct), xpc E C and xpct = x. Moreover, if x E var((var(R) n C)t), then xpc 

E var(R). For every chain, such a substitution exists: if x E var(Ct), then { y E C 

I yt = x} * 0. If {y E var(R) n CI yt = x} * 0, then xpc must be chosen from 

the latter set, otherwise any element of the former set will do. 

{ 
x if x i! var(NR) 

Now we can define 'I' by: X\jf = .f C (NR) 
xt<JPC(x) 1 x E ~ var 

(Note that if xtcr is a variable, then xtcr E var(C(x)tcr) ~ var(C(x)t) by Corollary 

1.2.8, since D is normal.) 

Finally, we define Ci+I = (Af-R)\jf and 0i+I = tcr1var(Ai,A'1')· Now we must 

prove that Gi ⇒ ci+J,8i+I Gi+I is indeed a resolution step. That is: 

CLAIM 3. (Af-R)l/f is properly standardized apart. 

CLAIM 4. O;+J is an idempotent mgu <fAljland A1. 

CLAIM 5. (Rlfl,A2, ... ,An)8;+1 = (R,A2, ... ,An)ra: 

In the proofs of these claims, we take C(x) = CNR(x). 

PROOF OF CLAIM 3. We prove that var((Af-R)\jf) ~ var(Af-NR,R). 

Let x E var(Af-R). Then: 

if X\jf = x, then X\jf E var(Af-R); 

if X\jf * x, then x E C(x) ~ var(NR), so if X\jf is a variable, then X\jf = 

xtcrpqx) E C(x) ~ var(NR). 

Before proving Claim 4, we prove an additional claim. 

CLAIM 6. 1/f is idempotent. 

PROOF. Let x be a variable. If X\jf = x, then X\jf\jf = X\jf. 

Otherwise, X\jf\jf = xtcrpqx)'I' = (since xtcrpqx) E C(x) ~ var(NR) or xtcr is a 

constant)= xtcrpqx)'t<1PC(x) = xtcrcrpqx) = (cr is idempotent)= xt<JPC(x) = X\jf. 



88 Generalizing Completeness Results for Loop Checks Chapter 4 

PROOF OF CLAIM 4. We prove that for every relevant unifier 11 of A1 and A1j1: 

11 = 0i+lll• Let 11 be a relevant unifier of A1 and A\j/: A 111 = A\j/11. 

By standardizing apart, var(A1) n var(NR) = 0, so we have A1 = A1\j/. 

Therefore, \j/11 is a unifier of A1 and A. Since 'tis an idempotent mgu of A1 and 

A, we have \j/11 = tro = nro = 't\j/11 ( 't :5 \Jill, so for some ro: tro = \Jill ). 

Let x be a variable. Ifx e var(A1,A\j/), then x = x0i+I, so x11 = x0i+ITI• 

If x E var(A1), then at the corresponding position in A, we find a term (constant 

or variable) t such that x11 = t\j/11 and xi= t't. Two cases arise. 

- xi= xtcr. Then x11 = t\j/11 = lt\j/11 = X't\j/11 =* x111 = xicr11 = x0i+lll· 

* : xi e var(NR), since either xi is ground, or x't E var(A It) ~ var(A 1) (the latter 

inclusion by Corollary 1.2.10, since D is normal). 

- xi -:t xtcr. Then xi E var(NRt), so for some v E var(NR): v't = xi and V\j/ = 

V't<JPC(v)• Now Xll = t\j/11 = t't\j/11 = X't\j/T) = V't\j/11 = V\j/11 = (by Claim 6) = 

V\j/\j/ll = V\j/'t\j/11 = V'tO'PC(v)'t\j/11 = V't<J\j/11 = X't<J\j/11 =* xicr11 = X0i+lll• 

*: xo::cr e var(NR), since either xtcr is ground, or xtcr E var(A1tcr) ~ var(A1). 

( .he latter inclusion by Corollary 1.2.10, since D is normal). 

If x E var(A\j/), then for some y E var(A) we have y\j/ = x. At the corresponding 

msition in A 1, we find a term t such that x11 = tll and yt = t't. Again two cases 

arise. 

- y e var(NR). Then Y'I' = y and ytcr = yt. Therefore we have x11 = y\j/11 = y'!\j/ll 

=* Y'!ll = Y't<Jll = y\j/'t<Jll = X't<Jll = X0i+lll• 

*: y't E var(NR), since either y't is ground, or yt E var(At) = var(A1t) ~ 

var(A1). 

- y E var(NR). Then y\j/ = ytcrpqy), so (see Claim 6), Y'I' = y\j/\j/ = y\j/tcrpqy'11') 

= X'tO'PC(x)· Therefore we have x11 = Y'l'll = (by Claim 6) y\j/\j/ll ::c: Y'l''!\Jl1l = 

xtcrpqx)'t'l'll = x'tcr\j/11 =* x1:cr11 = x0i+lll· *: again, xtcr e var(NR). 

PROOF OF CLAIM 5. 

If x E var(Ai) (2 :5 i :5 n), then 

if x E var(A1) then x0i+I = x = x1:cr; 

if x E var(A 1) then by definition x0i+ 1 = x1:cr. 

If x E var(R), then two cases arise. 

- X\j/ E var(A\j/). Then X\j/0i+ 1 = X\j/'tcr = 

(if x E var(NR)) : x'tcr. 

(if x E var(NR)) : x'tO'PC(x)'tO" = xtcrcr = xtcr. 



Section 4.2 The Generalization Theorem 

- X\j/ E var(A\j/). Then either X\j/ is ground or for no y E var(A): Y'I' = X\j/. 

If X\j/ is ground, then xtO' is ground, so X\j/ = xtO'PC(x) = xtO'. 

If for no y E var(A): Y'I' = X\j/, then in particular, x E var(A), so xt = x. 

Now, if x E var(NR), then X\j/ = x = xt = xtO'. 

89 

If x E var(NR), then x\j/ = xtO'PC(x)• Also, xtO' E C(x)tO' ~ C(x)t (by Corollary 

1.2.8, since D is normal), so for some z E C(x): zt = xtO' ( and C(z) = C(x) ). 

Then ztO' = X'tO'O' = xtO', so Z\j/ = X\j/. Hence z E var(A), so zt = z = ZPC(z)'t, so 

z = ZPC(z) = ZPC(x)• Therefore X'tO'PC(x) = Z'tPC(x) = ZPC(x) = z = zt = X'tO'. 

Obviously, Ci+I is an instance of Af-R. Also, 8i+Jlvar(Go,GJ, ... ,Gj) = 

'tO'ivar(A1 ,Alfl)rwar(Go,G I, ... ,Gj) = 'tO'ivar(At) = 'tO'ivar(Go,G I , ... ,Gj)), by Corollary 

1.2.10, since D is normal and a local selection rule is used. This concludes the 

proof of Claim 2 and thereby the proof of Lemma 4.2.2. □ 

4.3. Applications of the Generalization Theorem 

Introduction 

A simple example of the application of the Generalization Theorem, based on the 

first observation in Example 4.1.3, is the following. 

COROLLARY 4.3.1. (f P is a function:free hierarchical normal program, then 

every SW-derivation of Pu{GJ via the leftmost selection rule is finite. 

PROOF. We prove an equivalent proposition, namely that the empty loop check 

is complete w.r.t. the leftmost selection rule for function-free hierarchical normal 

programs. This follows from the Generalization Theorem and the following 

observations. 

- The empty loop check is complete for 'unit-programs', programs that consist 

solely of unit clauses. 

- The .'unit' property is closed under instantiation. 

- The empty loop check is safe for goal extension, initialization and detailing. 

- Nr-extended unit-programs are hierarchical normal programs. □ 

Of course, this result is well known, even for arbitrary selection rules and 

programs with function symbols. More interesting results can be obtained by 

using the Generalizatiqn Theorem to extend the completeness results presented 



90 Generalizing Completeness Results for Loop Checks Chapter 4 

in Chapter 3. The first result presented there is the completeness of equality 

checks for function-free restricted programs w.r.t. the leftmost selection rule. 

The Generalization Theorem cannot be applied on this proposition. In contrast, 

the Generalization Theorem provides an alternative proof for this proposition, 

based on the lemma 'the equality checks are complete for function-free programs 

in which the body of each clause contains at most one atom'. 

A generalized completeness resultf<,r suhsumption and context checks 

The other results of Chapter 3 are only valid for the subsumption and context 

checks. Therefore we shall now prove that the weakest of those checks, the 

SVRL check and the CVR check, satisfy the conditions of the Generalization 

Theorem, i.e., that they are safe for goal extension, initialization and detailing. 

lEMMA 4.3.2. The SVRL check and the CVR check are sqfefor goal extension. 

PROOF. Let D be an SLD-derivation of Pu{ f-Go}. Let D' be an SLD

derivation of Pu{ f-(Go,Ho)}, in which the same atoms are selected and the 

same input clauses and mgu's are used as in D. Thus D cannot contain any 

variable occurring in Ho but not in Go. Denote by 0n the mgu used in the n-th 

resolution step of D and D' (n ~ I). 

If D is pruned by the SVRL check resp. the CVR check, then we have for 

some renaming 't two goals Gi and Gk in D with Go0J ... 0k = Go81 ... 0j't and Gk 

;;;;)L Gi't resp. (A in Gi 'produces' At in Gk and 't and 0i+ 1 ... 0k agree on 

var(Gi)rwar(A)). Assuming that 'tacts only on the variables in D, we have that 

81 ... 8k and 81 ... 0i't coincide on all variables of Ho. So (Go,Ho)81 ... 8k = 

(Go,Ho)81 ... 8j't and (Gk,Ho81 ... 8k) ;;;;)L (Gi,Ho81 ... 8i)'t, resp. 't and 8i+1- .. 8k 

agree also on var(Ho0J ... 8i)rwar(A). This means that D' is pruned by SVRL, 

respectively CVR, as well. D 

Notice that it is essential to consider loop checks based on resultants here. It 

is easy to see that the loop checks based on goals are not safe for goal extension 

(consider e.g. the program of Example 3.2.3 and the goal f-p(x},p(x)). 

LEMMA 4.3.3. The SVRL check and the CVR check are sqfe for initialization. 

PROOF. Let D' = (Go ⇒c 1 ,e 1 G1 ⇒c2,e2 G2 ⇒ ... )be an SLD-derivation. 

Suppose that for some i > 0 the derivation D = (Gi ⇒ci+t,Si+I Gi+I ⇒ci+2,8;+2 



Section 4.3 Applications of the Generalization Theorem 91 

Gi+2 => ... ) is pruned by SVRL resp. CVR. Clearly for some j, k > j and 

renaming t (acting only on variables in D): t 'proves' that Gj and Gk are 

'sufficiently similar' for SVRL, resp. CVR, and Gi0i+l ···0k = Gi0i+l ··•0jt, So 

it remains to prove that Go01 ... ek = Go01 ... 0.it· 

Let x e var(Go01 ... 0j). Two cases arise. 

i) x e var(Gj). Then x does not occur in D, hence x0i+ 1 ... ek = x0i+ l · .. 0jt = x. 

ii) x e var(Gj). Then Gi0i+l ···0k = Gi0i+l ···0jt yields x0i+l ···0k = x0i+l ··•0jt, 

Hence D' is pruned by SVRL, respectively CVR, as well. □ 

LEMMA 4.3.4. The SVRL check and the CVR check are sqf'e for detailing. 

PROOF. Let D = (Go =>c 1,e 1 G1 => ... )be an SLD-derivation that is pruned by 

SVRL resp. CVR and let D' be an SLD-derivation of the form 
I I I I I I 

(Go =>c,,t1 HI=> ... => Hn,-1 =>Cn,,tn1 Gt 

22 2 2 2 2 
=>c1,t1 HI=> ... => Hn2-I =>¼2•tn2 Gz => ... ) 

with for every i > 0: t; ... < lvar(Go,GJ, ... ,Gj-1) = 0i lvar(Go,GJ, ... ,Gj-J) 

in which in Go, G 1, ... the same atoms are selected as in D. Since D is pruned 

by SVRL resp. CVR, we have for some j, k > j and renaming t: t 'proves' that 

Gj and Gk are 'sufficiently similar' for SVRL, resp. CVR and Go01 ... ek = 

Go01 ... 0jt. For CVR this proof includes that 'for every variable x that occurs 

both inside and outside of A in Gi, x0i+l · .. ek = xt'. It follows immediately that 

I I 2 2 k k I I 2 2 _i _i 
Got1 ... tn, tl ... tn2· .. t, ... 'tnk = Got 1 · .. tn, t 1 · .. 'tn2· .. •1 ·. ·'njt, and 

for CVR that 'for every variable x that occurs both inside and outside of A in Gi, 

i+ 1 i+ 1 k k ' H D' . d b SVR CVR xt1 ... tn2 ... t 1 ... t 0 k = xt. ence 1s prune y L, resp. . □ 

Now we can use the Generalization Theorem together with the fact that the 

subsumption and context checks are complete for function-free nvi programs. 

COROLLARY 4.3.5. The subsumption and context checks are complete w.r.t. 

the leftmost selection rule for function-free nr-extended nvi programs. 

PROOF. The nvi property is obviously closed under instantiation. Therefore by 

Theorem 3.3.17 respectively 3.4.13, the Generalization Theorem 4.2. l, and the 



92 Generalizing Completeness Results for Loop Checks Chapter 4 

Lemmas 4.3.2, 4.3.3 and 4.3.4, the SVRL check and the CVR check are 

complete w.r.t. the leftmost selection rule for function-free nr-extended nvi 

programs. Since the SVRL check is the weakest of the subsumption checks and 

the CVR check is the weakest of the context checks, by the Relative Strength 

Theorem 2.2.12 the same holds for the other subsumption and context checks. □ 

The single variable occurrence property 

Finally, in Chapter 3 it was proved that the subsumption and context checks are 

also complete for function-free svo programs. However, the single variable 

occurrence property is not closed under instantiation, so we cannot immediately 

use the Generalization Theorem. In fact, this should not come as a surprise, 

since every program can be converted into a 'computationally equivalent' nr

extended svo program. This can be done by replacing the k > I occurrences of a 

variable x in the body of a clause by 'new' variables XI,· .. Xk and adding the 

nonrecursive atoms eq(x,x1), ... ,eq(x,xk) in the body of the clause. Finally the 

clal' se eq(x,x) is added to the program (assuming that eq is a new predicate 

sy nbol in P). 

In the proof of Lemma 4.2.2, we need that the clause Ci+ 1 = (A~R)'lf 

satisfies the property Pr considered, given that the clause A~R satisfies Pr. Up 

till now, this was derived immediately from the assumption that Pr should be 

closed under instantiation. Since for the svo property thi~ is not true, we shall 

derive conditions that ensure directly that Ci+I satisfies the svo property, i.e., 

that every variable in R'lf occurs only once (provided that every variable in R 

occurs only once). 

Formally, let x,y e var(R) such that x -:t:. y and X'lf,Y'I' e VAR. We shall 

derive conditions on the program ensuring that X'lf -:t:. Y'I'· 

If x e var(NR), then X'lf = x. 

Then, if y e var(NR), Y'I' = y -:t:. x, and 

if ye var(NR), Y'I' = ytcrpqy) e C(y) !::;;; var(NR), so Y'I' -:t:. x. 

The same argument holds if y e var(NR). So a problem can only arise in the 

case that x,y e var(NR): then X'lf = X't<1PC(x) !::;;; C(x) and Y'I' = ytcrpqy) !::;;; C(y). 

One solution is demanding that for every pair of distinct variables x,y e 

var(R) n var(NR), C(x) -:t:. C(y). Then C(x) n C(y) = 0, so X'lf -:t:. Y'I'· This 

means that two variables in R should not be 'linked' by a chain through NR, 

thus the addition of the eq-atoms in the construction above is disallowed. 



Section 4.3 Applications of the Generalization Theorem 93 

Another solution is to avoid that different variables in a (sub)goal are unified 

while the (sub)goal is refuted. (That is: to ensure that for every variable x in a 

goal, and for every unifier cr in the derivation, either xcr = x or xcr is a constant.) 

This condition can be met (for normal derivations) by the demand that variables 

do not occur more than once in the head of a clause. This disallows the addition 

of the clause eq(x,x)+-. 

In this ca,;e such a condition yields X\j/ = X'tPC(x) (x'tcr cannot be a constant, 

since X\j/ is a variable). Then x't = X'tPC(x)'t = X\j/'t. Using the condition again 

(but now w.r.t. 't), we obtain x = X\j/ (still, x't cannot be a constant). Similarly 

we obtain y = Y'I', so X\j/ -:I:- y\jl. 

These two solutions give rise to two classes of programs for which the 

subsumption and context checks are complete w.r.t. the leftmost selection rule. 

DEFINITION 4.3.6 (Chain-restricted svo program). 

Let P be a program. A clause C = (A+-NR,R) is chain-restricted svo w.r.t. P if 

C is or-extended svo w.r.t. P, where NR is the nonrecursive part and R is the 

svo-part of C, and for every pair of distinct variables x,y e var(R), CNR(x) -:i:

CNR (y). A program P is chain-restricted svo if every clause in P is chain

restricted svo w.r.t. P. D 

DEFINITION 4.3.7 (Head-restricted svo program). 

Let P be a program. A clause C is head-restricted svo w.r.t. P if C is nr

extended svo w.r.t. P and in the head of C, no variable occurs more than once. 

A program P is head-restricted svo if every clause in P is head-restricted svo 

w.r.t. P. D 

COROLLARY 4.3.8. The suhsumption and context check.~ are complete w.r.t. 

the leftmost selection rulefor.function:f'ree chain-restricted svo programs. 

PROOF. By Theorem 3.3.20 respectively 3.4.15, the Generalization Theorem 

4.2.1, the Lemmas 4.3.2, 4.3.3 and 4.3.4 and the considerations above, the 

SVRL check and the CVR check are complete w.r.t. the leftmost selection rule 

for function-free chain-restricted svo programs. Since the SVRL check is the 

weakest of the subsumption checks and the CVR check is the weakest of the 

context checks, by the Relative Strength Theorem 2.2.12, the same holds for the 

other subsumption and context checks. D 



94 Generalizing Completeness Results for Loop Checks Chapter 4 

COROLLARY 4.3.9. The subsumption and context checks are complete w.r.t. 

the leftmost selection rule forfunction~free head-restricted SV<J programs. 

PROOF. By Theorem 3.3.20 respectively 3.4.15, the Generalization Theorem 

4.2.1, the Lemmas 4.3.2, 4.3.3 and 4.3.4 and the considerations above, the 

SVRL check and the CVR check are complete w .r.t. the leftmost selection rule 

for function-free head-restricted svo programs. Since the SVRL check is the 

weakest of the subsumption checks and the CVR check is the weakest of the 

context checks, by the Relative Strength Theorem 2.2.12, the same holds for the 

other subsumption and context checks. D 

We give now an example of a function-free head-restricted svo program that 

does not fall into any other class of programs discussed so far. 

EXAMPLE 4.3.10. 

The program NONRECp characterizes the predicates that are defined without 

recursion in a given program P (predicates in Pare constants in NONRECp). Op 

(see Definition 3.2.9) cannot be represented in NONRECp by { dep(p,q)f--. I 

(p,q) E Op}, because (without the use of negation) these clauses fail to express 

that (p,q) ~ Op for some p and q. Instead, let Ip 1, ... ,Pn} be the predicates in 

Lp. For every predicate Pi, there is only one ground clause dep(pi,q1, ... ,q 0 )+

in NONRECp such that for some m: {(Pi,q1), ... ,(pj,q 111)} i;;;: Op and qm+l = ... 
= q0 = nil (nil is a constant in NONRECp that differs from Pl, ... ,p0 ). 

Furthermore, NONRECp contains the following two clauses: 

nonrec(nil) f--. 

nonrec(x) f-- dep(x,x1, ... ,x0 ),nonrec(x1), ... ,nonrec(x 11). 

Without loop checking, this program goes into an infinite loop if and only if 

the predicate p is defined in P by means of recursion. As the program is head

restricted svo and function-free, the subsumption and context checks prune all 

its infinite loops, thus making the program work properly. D 

Of course, in this example it is easier to write a restricted program that 

succeeds on predicates defined using recursion and that fails otherwise (using 

{ dep(p,q)f--. I (p,q) E Op} and computing the transitive closure of 'dep'). Then 

'nonrec' can be defined via negation. Yet the combination of negation and loop 

checking is a delicate matter. That it is indeed possible is shown in Chapter 5. 



5. Loop Checking and Negation 

5.1. Introduction 

In Chapter 2 a formal framework is given for loop checking mechanisms that 

operate on top-down interpreters for positive logic programs. This chapter 

extends this framework to interpreters for general logic programs, i.e., logic 

programs allowing negative literals in clauses' bodies. Several problems arising 

in the presence of negation are identified and solved. In a different setting, a 

combination of loop detection and negation was also studied in [KT] and [SI]. 

Loop checks are used to prune the search space generated by a top-down 

interpreter. Therefore, before loop checks can be defined, this search space 

needs to be described properly. The search space must in turn agree with the 

intended semantics of the program. For positive programs the choice was 

obvious: least Herbrand models and SLD-trees. However, in the presence of 

negation, we must pay more attention to this problem. 

In the most well-known approach, introduced in [Cl2] and treated in [L], 

the intended semantics of general logic programs is derived from the completion 

of a program; the corresponding search space consists of SLDNF-trees, 

obtained when the interpreter is equipped with the neRation as finite failure rule. 

Informally this rule states that -,A may be inferred when an attempt to prove A 

(again by SLDNF-resolution) fails after a finite number of resolution steps. 

According to Theorem 16.5 of [L], for positive programs the completion 

semantics corresponds exactly to finite failure, i.e., -,A is a logical consequence 

of the completion of P if and only if Pu{ f-A) fails finitely. Due to the 

restriction to .finite failure, this approach is hardly compatible with the use of a 

loop check. Indeed, the intention of loop checking is to turn infinite (hence 

failed) paths in the search space into finitely failed paths. Thus if Pu{ f-A} fails 

finitely due to the use of a loop check, -, A is not entailed by the completion

semantics. So completion semantics is inappropriate for our purposes. 

Numerous alternative semantics have been proposed; see [ABo] for an 

overview. Here we adopt an approach of Przymusinski, which is based on 

perfect model semantics ([P 1 ]). Furthermore, we restrict our attention to locally 

strat(fied proRrams; it is shown in [P 1] that these programs have a unique perfect 

95 



96 Loop Checking and Ncga1ion Chapter 5 

Herbrand model (a 'perfect' model is defined as being minimal w.r.t. a certain 

partial ordering on models, which is a refinement of the usual subset ordering). 

The perfect model of a locally stratified program is also its unique stable model 

[GL] and its (total) well founded model [vGRS], [PW]. 

In [P2] a corresponding search space, called SLS-trees, is defined for 

stratified programs; this definition is generalized here to locally stratified 

programs. As pointed out by Przymusinski, an SLS-tree represents the search 

space of a top-down interpreter, equipped with the 'negation as failure' (not 

necessarily finite failure) rule. 

Obviously this rule is in general not effective, so SLS-resolution cannot be 

effectively implemented, but only approximated. 1 However, as Przymusinski 

[P2] suggests, loop checks can yield such approximations: 

'Suitable loop checking can be added to SLS-resolution without destroying its 

completeness. For large classes of stratified programs, SLS-resolution with 

subsumption check will result in finite evaluation trees and therefore can be 

implemented as a complete and always termin.iting algorithm. This is the case, in 

particular, for function-free programs.' 

Cne of the contributions of this chapter is a substantiation of this claim. 

It appears that for our purposes the standard SLS-trees do not present 

enough detail in the treatment of negative literals. Therefore these SLS-trees are 

augmented with justifications, which show explicitly the construction of a 

subsidiary SLS-tree off-A, when -,A is selected. 

A further major problem (not treated in [KT] and [SI]) is the occurrence of 

floundering: when only substitutions are used as computed answers, a 

nonground negative literal cannot be answered properly: the derivation is said to 

flounder. Floundering lies between success and failure, making it hard to 

determine which floundering derivations can be pruned. This problem is solved 

by considering floundering derivations as potentially successful, and giving a 

potential answer substitution. These substitutions 'cover' the semantically 

correct answers (which cannot be expressed as substitutions), but are possibly 

more general. A new completeness theorem for SLS-resolution, based on these 

1In contrast, it is decidable whether a certain tree is an SLDNF-tree, but not by using SLDNF

resolution: one selection rule may result in an inlinite SLDNF-tree, whereas another selection 

rule yields a finitely failed one. 



Section 5.1 Introduction 97 

potential answers, is proposed. The proof of this theorem requires generalized 

versions of the Mgu and Lifting Lemma (as presented in [Ca]). 

In order to keep the potential answer substitutions as specific as possible, a 

selection mechanism is proposed that postpones floundering as long as possible. 

It appears that the restriction to these selection rules allows us to prove a form of 

the 'independence of the selection rule' property, which is well-known for 

positive programs. 

In Section 5.2 we formalize this approach. Loop checks for locally stratified 

programs are formally defined in Section 5.3. Apart from the replacement of 

SLD-derivations by SLS-derivations, the definitions hardly differ from those in 

Section 2.1. Only the effect of applying a loop check on an SLS-tree with 

justifications appears to be complicated. 

In Section 5.4 the soundness (no potential answer is lost) and completeness 

(the search space becomes finite) of loop checks for locally stratified programs 

are studied. Soundness becomes even more important than it was in the positive 

case: if a loop check prunes a (potential) success in a suhsidiary SLS-tree, then 

the 'parent' SLS-tree should be extended; this extension might contain unsound 

answers. It is shown that, a top-down SLS-interpreter remains sound and 

complete when it is augmented with a sound loop check. 

Finally, in Section 5.5 it is shown how loop checks for positive programs 

can be turned into loop checks for locally stratified programs. The main 

observation is that in locally stratified programs negative literals cannot give rise 

to a loop. Thus any loop is caused hy positive literals and can be detected by a 

loop check for positive programs; the negative literals are simply removed. It is 

shown that this construction preserves the completeness of the loop checks. 

Soundness is not preserved for every possible loop check (a counterexample 

using a highly nontypical loop check is given), but for 'reasonable' loop checks, 

including the ones studied in Chapter 3, soundness is preserved. 

5. 2 Declarative and Procedural Semantics of General Programs 

SLS-resolution 

DEFINITION 5.2.1 (Local stratification). 

Let P be a program. P is locally strat(l,ed if there exists a mapping stratum from 



98 Loop Checking and Negation Chapter 5 

the set of ground atoms of Lp to the countable ordinals, such that for every 

clause (H ~ A1, ... ,Am,-,B1, ... ,-,Bn) E ground(P): 

for I :::; i :::; m, stratum(Ai):::; stratum(H) and 

for I :::; i:::; n, stratum(Bi) < stratum(H). D 

Obviously, stratified programs ([ABW]) and programs without negation 

(positive programs) are locally stratified. From now on, only locally strat!fied 

programs shall be considered, therefore we usually omit the qualification 'locally 

stratified'. Consequently, we assume that for every considered program a 

mapping stratum, satisfying the above requirements, is availahle. 

DEFINITION 5.2.2. 

Let P be a program. We extend the mapping stratum as follows. 

I. For an atom A, not necessarily ground, 

stratum(A) = sup { stratum(Ao) I Ao is a ground instance of A in Lp } . 

2. For a negative literal -,A, not necessarily ground, 

stratum(-,A) = stratum(A) + 1 

3. For a goal G, 

stratum(G) = { O 
max ( stratum(Li) I 

if G = D, 

A selection rule determines which literal is selected in a goal of a derivation. 

A well-known problem concerning the 'negation as (finite) failure' rule is 

.floundering: the selection of a nonground negative literal (cf. [Cl2], [L]). We 

assume that such a selection is avoided whenever possible. 

DEFINITION 5.2.3. 

A selection rule is sqfe if it never selects a nonground negative literal in a goal 

containing positive and/or ground negative literals. D 

Following Przymusinski's presentation for stratified programs in [P2], we 

now define for a given program P and goal G the SLS-tree of Pu{G}, together 

with some related notions. The definition uses induction on stratum(G). 



Section 5.2 Declarative and Procedural Semantics or General Programs 99 

DEFINITION 5.2.4 (SLS-tree). 

Let P be a program and G a goal. Let R be a fixed safe selection rule. Assume 

that SLS-trees have already been defined for goals H such that stratum(H) < 

stratum(G). We define the SLS-tree T <d" Pu/GJ via R. (In fact this tree is not 

uniquely defined, as the choice of the names of auxiliary variables is left free.) 

The root node of Tis G. For any node H in T, its immediate descendents 

are obtained as follows: 

- if H = D, then H has no descendents and is a success leaf. 

- if R selects a nonground negative literal in H, then H has no descendents and 

is a flounder leaf. 

- if R selects a positive literal L in H, then H has as immediate descendants: for 

every applicable program clause C in P, a goal K such that H ⇒c,e K is a 

derivation step and C' is a (properly standardized apart) variant of C. 

If no program clauses are applicable, then H is a failure leaf. 

- if R selects a ground negative literal L = -, A in H, then the SLS-tree T' of 

Pu{ (c-A} via R has already been defined. 

(Either some ground instance By of an atom B in G depends negatively on 

A, therefore stratum(G) 2! stratum(B) 2! stratum(By) > stratum(A); or -.A is 

an instance of a negative literal in G, so again stratum(G) > stratum(A).) 

T' is called a side-tree <d" H (or, <f n. We consider three cases: 

- if all leaves of T' are failed, then H has only one immediate descendant, 

namely the goal K = H - l L}, i.e., the goal H with L removed (such a 

derivation step is denoted as H ⇒ K). 

- ifT' contains a success leaf, then H has no immediate descendants and is a 

failure leaf. 

- otherwise, H has no immediate descendants and is a flounder leaf. 

If T has a success (flounder) leaf then T is .,·1Kces.,fi,l (floundered); hence an 

SLS-tree may he both successful and floundered. T is failed if all of its leaves 

are failed (note that a failed SLS-tree may contain infinite branches). 

An SLS-derivation (<d" Pu/GI) is an initial segment of a branch of an SLS

tree (of Pu{ G }). An SLS-derivation ending in a success (flounder) leaf is called 

succes.~ful (floundered). An SLS-derivation is failed if it is infinite or ends in a 

failure leaf. Othe1wise it is called w~finished. 

A successful SLS-derivation (or SLS-refutation) of Pul G} yields a 

computed answer substitution o- in the same way an SLD-refutation does: 



100 Loop Checking and Negation Chapter 5 

whenever in a refutation step a negative literal is selected, such a step does not 

contribute to the computed answer substitution. G-cr is called the computed 

answer of the derivation. 

An SLS-derivation or -tree of Pu{ G} is potentially succes,\ful if it is 

successful or floundered. The potential answer substitution o- of a potentially 

successful SLS-derivation is again the sequential composition of the mgu's of 

the derivation (thus the potential answer substitution of a refutation coincides 

with its computed answer substitution). Its potential answer is again G-cr. □ 

Soundness and completeness <f SLS-resolution 

We need the following soundness and completeness results, which strengthen 

the results of [Ca], [KT] and [PP]. 

'IHEOREM 5.2. 7 (Soundness and strong completeness of SL.c;;-resolution). 

Let P be a program and Ga goal. Let Mp be the unique perfect Herbrand 

rrodel rf Pas defined in [Pl], but based on the canonical language <f [Kul]. 

Let R be a safe selection rule and 0 a substitution. 

i) ff'G-0 is a computed answer.for Pu{GJ then V(G-0) is true in Mp. 

ii) ff' Pu{GJ has a.failed SLS-tree, then -,3(G-) is true in Mp. 

iii) ff' V(G-0) is true in Mp, then there exists a potentially succe.\·.~f'ul SLS

derivation <f Pu{GJ via R giving a potential answer G-a 5G-0. 

iv) ff' -,3(G-) is true in Mp, then the SLS-tree for Pu{GJ via R is not 

successful. 

PROOF. iv) follows immediately from i) and ii) follows immediately from iii). 

i) and ii) are proved in [Ca, Theorem 5.3(i)]. So iii) remains to be proved. 

We introduce the following terminology. 

An SLS-derivation is unrestricted if instead of mgu's, arbitrary unifiers are 

used. 

An (unrestricted) SLS-derivation is grounded if every goal in it is ground. 

An oracle SLS-derivation differs from the standard SLS-derivation in the 

treatment of selected ground negative literals: such a literal -,A is removed if 

A~ Mp and the derivation fails if A e Mp (and floundering does not occur). 

From this it follows that a grounded (oracle) SLS-derivation never floun

ders. Now assume that 'v'(G-0) is true in Mp. It can then be shown (similarly to 

other completeness proofs, e.g. in [Ca] and [KT]) that there exists a grounded 



Section 5.2 Declarative and Procedural Semantics or Gcncr:11 Programs 101 

oracle SLS-refutation of Pu{ G8y} via R, where y = { x1/a1, ... , x01/a01 } binds 

all variables XJ, ••• ,x01 in G8 to new constants a,, ... ,arn. (More precisely, these 

constants are added to Lp. Notice that P remains locally stratified under this 

extension of the Herbrand Universe. More importantly, the oracle in the oracle 

SLS-refutation uses the model Mp w.r.t. the extended Herbrand Universe. The 

use of the oracle replaces the more usual induction on stratum .) 

In this grounded oracle SLS-refutation, we can textually replace the 

constants a1, ... ,a01 by XJ, ••• ,x 111 again. Thus we obtain a 'derivation' of 

Pu{ G8} of which the unifiers do not act on the variables of G8. However, it is 

possible that some ai is replaced by Xi in a selected negative literal, causing this 

'derivation' to flounder, in which case the rest of the derivation must be 

discarded. Thus we obtain a potentially successful unrestricted oracle SLS

derivation of Pu{ G8} of which the unifiers do not act on the variables of G8. 

Now we supply side-trees for the remaining successful oracle steps (in 

which a ground negative literal -,A is selected and removed). As in such a case 

A E Mp, from iv) it follows that the constructed side-tree, an SLS-tree of 

Pu{ ~A} via R, is not successful. If it is failed, then we have found the desired 

side-tree. If it flounders, then again our derivation flounders at this point and the 

rest of it is discarded. So we obtain a potentially successful unrestricted SLS

derivation of Pu { G8), of which the unifiers do not act on the variables of G8. 

Now we need the following generalizations of the well-known Mgu Lemma 

and Lifting Lemma (see e.g. Lemma 5.2 and 5.3 in [Ca]). 

LEMMA 5.2.8 (Mgu Lemma). Let P he a program and Ga goal. Suppose 

that Pu{GJ has a potentially succes.~fi1l unrestricted SLS-derivation using 

the un(fiers 01, ... , 011 • Then there exists a potentially succes.\:fi.tl SLS

derivation of Pu{GJ using the mgu's 0',, ... ,0'111 , such that G~0'J, ... ,0'111 

:5 G~01, ... ,811 and m :5 n. 

PROOF. First the construction of the proof of the original Mgu Lemma can be 

applied, disregarding floundering. The resulting 'derivation' uses the mgu's 

8'1, ... ,8'n, and G~8'1, ... ,8'11 ~ G~81, ... ,811 • It is a valid SLS-derivation up to 

the first selection of a nonground negative literal. At this goal (obtained after m 

steps if it exists, otherwise m = n) floundering occurs and the rest of the 'deri

vation' is discarded. The result is a potentially successful SLS-derivation with a 

potential answer G~8'1, ... ,8' 111 ~ G~0'1, ... ,8' 11 ~ G~81, ... ,8n; and m ~ n. D 



102 Loop Checking and Ncgatinn Chapter 5 

LEMMA 5.2.9 (Lifting Lemma). Let P he a pmJ!,ram, G a J!,Oal and 0 a 

suhstitution. Suppose that Pu{ G 0/ has a potentially succes.~ful SLS

derivation using the m!!,u's 0,, ... , 011 • Then there exists a potentially 

succenful SLS-derivation rf Pu{GJ using the mgu's 0',, ... ,0'm, such 

that G~0'J, ... , 0'111 :5 G-00,, ... , 011 and m :511. 

PROOF. First the construction of the proof of the original Lifting Lemma can be 

applied, disregarding floundering. The resulting 'derivation' uses the mgu's 

0' 1, ... ,8'n, and G~8'1, ... ,8'n :5 G~881 , ... ,011 • It is a valid SLS-derivation up to 

the first selection of a nonground negative literal. At this goal (obtained after m 

steps if it exists, otherwise m = n) floundering occurs and the rest of the 'deri

vation' is discarded. The result is a potentially successful SLS-derivation with a 

potential answer G~8'1, ... ,8'111 :5 G~0'1 , ... ,8' 11 :5 0~881, ... ,811 ; and m :5 n. D 

Applying these lemmas on the potentially successful unrestricted SLS

derivation of Pu{ 00} proves the existence of a potentially successful SLS-

derivation of Pu { G}, giving a potential answer O~o :5 o~e. D 

Theorem 5.2.7 allows us to omit in further considerations the perfect model 

semantics: in order to show that a loop check respects this semantics it is 

sufficient to compare pruned SLS-trees with original, unpruned trees. 

The following example shows 

why a stronger result than the one 

presented in [Ca] is needed here. 

EXAMPLE 5.2.10. 

Let p = { p(l) f--. 

p(y) f-- p(y),-,q(y). 

q(l) f-- -,r(x). I. 
Figure 5.2.1 shows an SLS

tree of Pu{ f--p(x)} via the leftmost 

selection rule. Since the tree floun

ders, ordinary completeness resttlts 

like the one in [Ca] cannot be used. 

However, a loop check might very 

well prune the goal f--p(x), -,q(x). 

f--p(x) 

p( I )f--/ \ p(y)f--p(y),-,q(y) 

{xiii; \tylx} 

D f--p(x),-,q(x) 

p( I )f--/ \ p(y')f--p(y'),-,q(y') 

{x/1} / \ {y'/x} 

(-...,q( l) f--p(x),-,q(x),...,q(x) 

flounders / \ 

FIGURE 5.2.1 



Section 5.2 Declarative and Procedural Semantics or General Programs 103 

In this case the pruned tree does not flounder, so it is expected to be 

complete. Indeed this completeness follows from Theorem 5.2.7 (as the only 

potential answer occurring in the tree is p( 1 )). □ 

A more precise description <?f'the search space 

In the positive case, when a program Panda goal Gare input to the interpreter, 

only an SLD-tree of Pu{ GI is searched. However, in the presence of negation, 

not only an SLS-tree of Pu{ GI is searched, hut also its side-trees, and the side

trees of its side-trees, et cetera. We call such a construct consisting of an SLS

tree and its side-trees (to the required depth) a just(!'ied SLS-tree. As in 

Definition 5.2.4, induction on stratum is used. 

DEFINITION 5.2.11 (Justified SLS-tree). 

Let P be a program and Ga goal. Let Rhea fixed safe selection rule. Ajw,tified 

SLS-tree T of Pu{ G} via R consists of an SLS-tree Ttop of Pu{ GI via R, 

which is, for every goal H in Ttop in which a ground negative literal -, A is 

selected, augmented with a justified SLS-tree T' of Pu{ f-A} via R. Such a tree 

T' is called ajust(fication ofH (or, <d'T), T10p is called the top level ofT. Tis 

successful (potentially successful, floundered, failed) if Ttop is successful 

(potentially successful, floundered, failed). The computed/potential answers of 

Tare those ofT1op· 

Figure 5.2.2 shows a justified SLS-lree. 

f--, p ........ mo, f-p 

+ 
□ 

' p f--,q 
f--,q .. .,.,,.. ..,..,.. -\W" f-q 

failure qf-~ qf--,s 

f-r f--,S ..... ;,j<»• f-S 
rf- f flounder 

□ 

FIGURE 5.2.2 

' Sf- -,t(X) 
f- -,t(x) 
flounder 

□ 



104 Loop Checking and Negation Chapter 5 

Notice the relationship between a side-tree T of H (an SLS-tree), and a 

justification J ofH (a justified SLS-tree): Tis the top level of J. 

In order to render potential answers as specific as possible, it is worthwhile 

to 'postpone' floundering until all nonfloundering literals are resolved. This is 

achieved by considering the class of deeply sqfe justified SLS-trees defined 

below. The definition uses induction on stratum again. 

DEFINITION 5.2.12. 

A justified SLS-tree is deeply sqfe if for every flounder leaf rL 1, ... ,Ln in it, 

every literal Li (I $ i $ n) is a negative literal -,Ai, and either Ai is nonground or 

every deeply safe justified SLS-tree of Pu{ rAi I flounders unsuccessfully. D 

In a deeply safe justified SLS-tree, all justifications are also deeply safe (as 

the definition refers to every flounder leaf, not only those at the top level). Using 

a safe selection rule alone is not enough to obtain deeply safe trees: a ground 

negBlive literal -,A may be selected in a goal that still contains positive literals; 

then the side-tree of -,A may unsuccessfully flounder. 

In this chapter, deeply safe trees are only used as a theoretical construct: 

Theorem 5.4.6 implies that the interpreter to which our loop checking 

mechanism is added can be allowed to use any safe selection rule. Nevertheless, 

it might prove profitable in practice to construct deeply safe trees, for this 

reduces the occurence of floundering to a minimum. 

At first, it seems that checking whether 'every deeply safe justified SLS-tree 

of Pu{ rAi} flounders' requires the construction of deeply safe trees of 

PU{ rAi} via every possible selection rule. The following lemma shows that 

this is not the case, as for deeply safe trees the independence of the selection rule 

holds. 

LEMMA 5.2.13 (Independence of the selection rule for deeply safe trees). 

Let P be a program and Ga goal. Let Ti and T2 he deeply S<{fe just(fied 

SLS-trees ,f Pu{G}. Then tht1re exists a bijection q>.fiwn the potentially 

succe.\".~ful branches in Ti to the potel'lfially succe.,·.~fi1! branches in T2 such 

that IBI = lcp(B)I and the potential answers rf Band cp(B) are variants. 

Moreover, B is succes.~ful if and only (f cp( B) is. 



Section 5.2 Declarative and Procedural Sema111ics of General Programs 105 

PROOF. Remove all negative literals from T1 that are never selected (since T1 is 

deeply safe, precisely these literals remain in the flounder leaves). The resulting 

tree is successful, hence the Switching Lemma (Lemma 3.3 in [KT]) can be 

applied repeatedly. In this way, a successful tree can be obtained in which the 

selections take place in the same order as in Tz. Now adding the 'floundering 

literals' in their place yields exactly T2: because T2 is deeply safe, the added 

literals are never selected before the flounder leaves. 

Notice that induction on stratum is needed to show that whether a literal is a 

'floundering literal' or not is independent of the selection rule. D 

Therefore a valid method for creating deeply safe justified SLS-trees is to 

create only one (again deeply safe) justification for a selected negative literal. If 

this justification flounders unsuccessfully, then the literal is marked as 

'floundering' and the interpreter 'backtracks' over this selection (that is, this 

selection is 'undone', and another literal is selected). Only if all literals in a goal 

are marked as 'floundering', the goal is a flounder leaf. 

The final lemma of this section shows that in deeply safe trees the 

occurrence of floundering is indeed reduced to a minimum, i.e., given a 

program and a goal, every computed answer that can be obtained is present 

(modulo variants) in every deeply safe tree. Conversely, if the deeply safe tree 

has a floundering branch, such a branch is also present in every other tree (with 

a more general potential answer, indicating the possibility that the other tree 

flounders sooner). 

LEMMA 5.2.14. Let P be a program and G a goal. Let Ti and T2 be just(fied 

SLS-trees <l Pu{GJ and let Ti he deeply sqf'e. 

i) For every computed answer in T2, Ti contains a variant<?{ it. 

ii) For every potential answer in Ti, T2 contains a more general potential 

answer. 

PROOF. For both claims, we need to consider only the top-level of the trees, as 

the justifications can be treated by induction on stratum. 

i) Suppose that T2 contains a successful branch D. As far as D is concerned 

(without its justifications), T2 is deeply safe. In other words, D can be 

embedded in a deeply safe justified SLS-tree T3 of Pu{ G}. Now apply 

Lemma 5.2.13 on T1 and T3. 



106 Loop Checking and Ncgalinn Chapter 5 

ii) Suppose that T1 contains a potentially successful branch D. Consider a deeply 

safe justified SLS-tree T3 of Pu{ G l that follows the selections of T2 as long 

as they are deeply safe. By Lemma 5.2. I J, T3 contains, a potentially 

successful branch D' of which the potential answer is a variant of the answer 

of D. T2 contains either D' or an initial segment of D' that flounders ( on a goal 

in which the selection is not deeply safe). The potential answer of such an 

initial segment of D' is more general than the potential answer of D' itself. □ 

The approach to floundering we have sketched here tries to avoid 

floundering (by using deeply safe trees), and when floundering occurs, it tries to 

prove that the occurrence is harmless (i.e., that the returned potanlial answer is 

less general than some computed answer). In the remaining cases, the potential 

answer can be used, but no attempt is made to get more information from the 

floundering goal. 

Methods for trying to get more information, called constructive negation, 

have been studied both in the setting of SLDNF-resolution fCh], [Dr] and SLS

resolution [Dr], [P3]. 

Both approaches are complementary. Because constructive negation is 

computationally expensive, it makes sense to limit its use to those cases where it 

is really needed. These cases are identified by our approach. In fact, as is shown 

by Example 5.5.12, it is almost unavoidable that the application of loop 

checking turns some successful SLS-trees into floundering ones, a behaviour 

which becomes more acceptable when constructive negation is used. On a 

technical level, one might expect a relation between Theorem 5.2.7 iii) and 

completeness results for constructive negation. 

5.3. Loop Checks for Locally Stratified Programs 

In this section we give a formal definition of loop checks for locally stratified 

programs (based on SLS-derivations), closely following the presentation of loop 

checks for positive programs in Chapter 2. The purpose of augmenting an inter

preter with a loop check is to prune the generated seurch space while retaining its 

soundness and completeness. We define and study those properties of loop 

checks for locally stratified programs that are needed to achieve this goal. 



Section 5.3 Loop Checks for Locally Stratified Programs 107 

Definition.v 

Since loop checks can be used to prune every part of a justified SLS-tree, one 

might define a loop check as a function on justified SLS-trees, directly showing 

where the trees are changed. However, this would be a very general definition, 

allowing practically everything. A first restriction we make is that a loop check 

acts only within an SLS-tree, disregarding its justifications and the possibility 

that this SLS-tree itself may be part of a justification in another SLS-tree. We 

shall formally call such loop checks for locally stratified programs one level loop 

checks. Nevertheless, we usually omit the qualification 'one level', unless 

confusion with positive loop checks (loop checks for positive programs, as 

defined in Section 2.1) can arise. This restriction leaves the possibility open that 

loop checks are used to prune more than one tree in a justified SLS-tree. 

Similar to positive loop checks, we restrict the scope of one level loop 

checks even more, namely from SLS-trees to SLS-derivations. As in Section 

1.3 and 2.1 we define: 

- a node in an SLS-tree is pruned if all its descendants are removed. 

- by pruning some of its nodes we obtain a pruned version of an SLS-tree (an 

unfinished SLS-tree). 

- whether a node of an SLS-tree is pruned by a loop check depends only upon 

its ancestors in the tree, that is on the SLS-derivation from the root to this 

node. 

So we define a one level loop check as a set of derivations (possibly 

depending on the program): the derivations that are pruned exactly at their last 

node. Thus a program P and a loop check L determine a set of (unfinished) 

SLS-derivations L(P). Such a loop check L can be extended in a canonical way 

to a function fL 1 from SLS-trees to unfinished SLS-trees: fL I prunes in an SLS

tree of Pu{ Go I the nodes in I G I the SLS-derivation from Go to G is in L(P)}. 

Extending L to a function fL * from justified SLS-trees to 'pruned' justified SLS

trees, showing the effect of applying L to all SLS-trees within the original 

justified tree, is less straightforward, because pruning a justification can affect 

the 'parent' tree. This subject is discussed later in this section. 

Again we also introduce the notion of a simple one level loop check, in 

which the set of pruned derivations is independent of the program. This leads 

us to the following definitions, which are almost identical to the ones in 

Section 2.1. 



108 Loop Checking and Negation Chapter 5 

DEFINITION 5.3.1. 

Let L be a set of SLS-derivations. Initials( L) = ID E L I L does not contain a 

proper initial subderivation of D}. Lis suhderimtio11 .fi·ee if L = Initials(L). □ 

DEFINITION 5.3.2 (Simple one level loop check). 

A simple one level loop check is a computable set L of finite SLS-derivations 

such that Lis closed under variants and subderivalion free. □ 

DEFINITION 5.3.3 (One level loop check). 

A one level loop check is a computable function L from programs to sets of 

SLS-derivations such that for every program P, L(P) is a simple one level loop 

check. □ 

DEFINITION 5.3.4. 

Let L be a loop check. An SLS-derivation D of Pu l GI is pruned hy L if L(P) 

cont: .ins D or a proper initial subderivation of D. □ 

Pruning a just!fied SLS-tfee 

We now formalize how a justified SLS-tree is pruned. To simplify the 

definition, we assume that only one loop check L is used to prune a justified 

SLS-tree T: both the top level of T and (recursively) all justifications of Tare 

pruned by L. 

A problem arises when L prunes the justification of a goal G to such an 

extent that (potential) success in it is lost: instead of being a failure (flounder) 

leaf, G should now obtain a descendant, i.e., the search space of an interpreter 

with such a loop check extends the original search space beyond G. Modelling 

this additional search space is problematic, as there is no original tree to follow. 

We avoid this problem tempornrily by turning such a leaf G into an 

extension lea,/: In this way the pruned tree remains a subtree of the original one. 

This property can be well exploited in the proof of the soundness and 

completeness of SLS-resolution with loop checking, where pruned trees are 

compared with original ones and Theorem 5.2.7 is used. 



Section 5.3 Loop Checks for Locally S1ra1ilicd Programs 109 

DEFINITION 5.3.5 (Pruning a justified SLS-tree). 

Let P be a program and G a goal. Let L be a loop check and let T be a justified 

SLS-tree of Pu{ G}. Then the tree T p = .h *(T), the pruned version of T, is 

defined as follows. 

The root node of T p is G. For any node H in the top level of T p, the same 

literal as in T is selected; the immediate descendants of H in T p are: 

- if the SLS-derivation from G to H is pruned by L, then H has no descendants 

and is a pruned leaf. 

- otherwise: 

- if a ground negative literal is selected in H, then H has a justification T' in 

T. The pruned version of T', Tp' = fL * (T'), is already defined by 

induction (on stratum). Tr' is the (pruned) justification of H in T p· We 

consider the top level of T p': 

- if it contains a success leaf, then H has no immediate descendants and is 

a failure leaf. 

- otherwise, if it contains a flounder leaf, then H has no immediate 

descendants and is a flounder leaf. 

- otherwise, if it contains an extension leaf or if H has no descendants in 

T, then H has no immediate descendants in T p and is an extension leaf. 

- otherwise, H has in T p the same immediate descendant as in T. 

- otherwise H has in T p the same descendants (or the same leaf-type) as in T. 

A pruned justified SLS-tree is succes.~f'ul (etc.) if one of its top level leaves is 

successful (etc.). It is failed if all its top level leaves are either failed or pruned.□ 

f--, p ......... mi,. .. f-P 

flounder ~ 
' p f--,q 

f,--, q '""~"·~· w, f-q 

flounder qf-iAqf--,s 

f-r f--,s··••a•-,►· f-S 
pruned flounder ~ 

, sf- -,t(x) 

FIGURE 5.3.1 

f--,t(x) 
flounder 



I IO Loop Checking and Negation Chapter 5 

EXAMPLE 5.3.6. 

When a loop check pruning the goal f-r is applied to the SLS-tree in Figure 

5.2.2, the tree depicted in Figure 5.3.1 is obtained. When the goal f-s is also 

pruned, then the tree of Figure 5.3.2 is obtained. □ 

f--,p ··--··--W,.· f-p 

extension ~ 
' p f-,q 

f--, q ... 
extension 

········A-"··· f-q 

qf-1A qf--,S 

f-r f--, S · ·· +,.. f-S 
pruned extension pruned 

FIGURE 5.3.2 

5.4. Soundness and Completeness 

In this section a number of properties of one level loop checks is defined. These 

definitions are only concerned with the effect of applying a loop check on the top 

level of a justified SLS-tree. Thereafter the influence of applying loop checks 

satisfying these definitions on all levels of a justified SLS-tree is studied. 

Definitions 

As was pointed out before, using a loop chei:;k should not result in losing 

potential success. In order to retain completeness, an even stronger condition is 

needed: we may not lose any individual solution. Since Theorem 5.2.7(iii) 

involves potential answers, pruning the tree should preserve those successful 

;}nd flounderins; branches that indicate (the possibility of) solutions not 

otherwise found. That is, if fhe origin,11 SLS-trce co11tnins a potentially 

successful branch (giving some computed nnswer}, then the pruned tree should 

contain a potenti,dly successful hrnnch giving a more general answer. 

Jn orcter to consider only those potential answers th;.1t are as spei::ific as 

possible, only deeply safe jµstified SLS-trees are t,l!<en into account. (Otherwise 

we would not be allowed to prune a floundering derivation like 'f-p ⇒pt-p,-,r 

f-p,,r', where -,r is selected and its side-tree flounders.) 



Section 5.4 Soundness and Completeness Ill 

DEFINITION 5.4.1 (Soundness). 

Let R be a safe selection rule and let L be a loop check. 

i) L is weakly sound if for every program P and goal G, and potentially 

successful deeply safe justified SLS-tree T of Pv I G}, fL 1 (Twp) is potentially 

successful. 

ii) Lis sound if for every program P and goal G, and deeply safe justified SLS

tree T of Pu{ G}: if T contains a potentially successful branch giving a 

potential answer G-cr, then fL 1 (T10p) contains a potentially successful branch 

giving a potential answer G-cr· ~ G-cr. D 

The following lemma is an immediate consequence of these definitions. 

LEMMA 5.4.2. Every sound loop check is weakly .wnmd. D 

Moreover, if the initial goal is ground (which is always the case for side

trees), then the notions weakly sound and sound coincide. 

The purpose of a loop check is to reduce the search space for top-down 

interpreters. Although impossible in general, we would like to end up with a 

finite search space. This is the case when every infinite derivation is pruned. 

DEFINITION 5.4.3 (Completeness). 

A loop check Lis complete w.r.t. a selection rule R for a class <fprograms c, if 

for every program P e c and goal G in Lp, every infinite SLS-derivation of 

Pu{ G} via R is pruned by L. D 

As in Section 2.2 we have overloaded the terms 'soundness' and 

'completeness'. These terms refer both to loop checks and to interpreters (with 

or without a loop check). We now study how the soundness and completeness 

of a loop check affects the soundness and completeness of the interpreter 

augmented with it. 

Interpreters and loop checks 

We prove that under the right conditions an SLS-interpreter augmented with a 

loop check remains sound and complete (in the sense of Theorem 5.2.7). Due to 

the introduction of extension leaves, a pruned justified SLS-tree does generally 

not cover the entire search space for the SLS-interpreter augmented with a loop 



112 Loop Checking and Negation Chapter 5 

check. For, whether a node is an extension leaf depends (partly) on the 

unpruned SLS-tree. This tree is not available for the loop-checked interpreter, so 

it cannot decide to stop at an extension leaf. Beyond an extension leaf, it might 

find incorrect answers. Therefore we must ensure the absence of extension 

leaves in soundness results. 

As a first step, we do so for deeply safe justified SLS-trees by comparing 

their pruned and unpruned versions directly. The enumeration in this lemma 

links up with Theorem 5.2.7. 

LEMMA 5.4.4. Let P be a program and G a goal. let R be a scle selection 

rule and 0 a sub.vtitution. Let T he a deeply .wlf"e just~fied SLS-tree <d' 
Pu{ G} via R. Let l be a weakly sound lm,11 check and let T11 = _ti, *(T). 

-) Tp has no extension leaves. 

i) If G-0 is a computed answer in Tp then G-0 is a computed answer in T. 

ii) ({Tp is failed, then Tis failed. 

iii, If Lis sound and T contains a potential answer G-0, then Tp contains a 

potential answer G'-a ~ G-0. 

iv) If Tis not succes.~ful, then T11 is not succes.rfi,I. 

PROOF. -) Suppose (in order to obtain a contradiction) that G is an extension 

leaf in T p· Then a ground negative literal is selected in G. Let T' be the 

justification of G in T and let T p' = fL *(T') be the justific,1tion of G in T p· By 

jpducHon (on stratum), we may assume tha! T p' has no extension leaves. So 

the only case left is that G is a leaf in T, and T p' is failed. Obviously G is not a 

sµcce!is leaf. So G is a failure leaf or flounqer leaf in T. Hence T' is potentially 

successfµl. Since Lis weakly i.01.1nd an<l T' i& deeply i;afe, we may conclude 

in<luctively from H) that T p' ii; potentiAIIY s1-1cces!iful. Contmdiction. 

i) ilfll:J iv) 'f pis /.l sµbtree of T. 

ii) S1-1ppP!ie (in ori:ter to obtain a ¥PntrudicHon) thaf T n is foileA, wherei.ls Tis 

pi:nenthlHY s1.1ccessf1.1!. C~mi;iper I! potentiAIIY i;1.1cces&fu! hrnnch P in T- t\11 
juliOficatigps of P are either fuilei:t or flq1.1nAerei:I. ln~LJcHvely by iv) the prnned 
j!-lstifil:mthms are also failed pr tlounctere(l. Thµs T p Plll only be failed if D 

it~elf i11 pr1.1ned by L. This holds for every pqtenti.1lly successflll branch in T, 

thus fL 1(T1op) is failed. However, since Lis weakly sound and Tis deeply 

&afe and potentially successful, by Definition 5.4.1 (i) f1,.. 1 (T10p) must be 

potemially successful. Contradiction. 



Section 5.4 Soundness .ind Completeness 113 

iii) As ii), considering a branch only (potentially) successful if its potential 

answer is more general than G-0. (Notice that if a failed justification of D in T 

is replaced by a floundering pruned justification in T p, the potential answer of 

the remaining part of Din T pis more general than the potential answer of 0.) 

In this case Definition 5.4.1 (ii) must be used. D 

Indeed, combining Lemma 5.4.4(-) and (i)-(iv) with Theorem 5.2. 7(i)-(iv) 

gives the required soundness and completeness results for deeply safe trees. The 

following theorem shows that it is not really necessary to use deeply safe 

selections. Only some parts of the unpruned tree (which are never constructed 

by the interpreter, but just used for comparison reasons) must be deeply safe. 

We need one more definition. 

DEFINITION 5.4.5. 

A loop check L is selection-independent 

if for every program P and for every D E L(P). 

{ D' I D' differs from D only in the selection of the literal in its last goal} 

!;;; L(P). D 

The restriction to selection-independent loop checks is not a severe one. 

Intuitively, after the creation of a new goal the loop check is performed first. 

Only when no loop is detected a further resolution step is attempted; to this end a 

literal is selected. All loop checks defined in Chapter 3 are selection

independent. 

THEOREM 5.4.6 (Soundness and strong completeness of SLS-

resolution with loop checking). 

Let P be a program and Ga goal. Let R he a sqfe selection rule and 0 a 

substitution. Let The a justUied SLS-tree ,f Pu{ G J via R. Let L he a weakly 

sound selection-independent loop check. Then there exists a just(fied SLS-tree 

T' <d"Pu{G/ such that: 

-) Tp' =.h*(T') represents the search space.f<w Pu{G/ <d"a top-down SLS

interpreter using R, augmented with the loop check L(i.e., T11 ' has no 

extension leaves and makes all selections according to R, except for the 

selections in pruned leaves). 



114 Loop Checking and Negation Chapter 5 

i) ff G~0 is a computed answer in 1i,' then G-0 is a computed answer in T'. 

ii) ff'Tp' isfailed, then T' is failed. 

iii) ff Lis sound and T' contains a potential answer G~0, then Tp' contains a 

potential answer G~a ~ G~0. 

iv) ff T' is not succes.~ful, then Tp' is not .1·1u.·ces.1:fi,I. 

v) ff T is succe.1-.~fi,l, then T' is .rncces.~fi,l. 

vi) ff Tis failed, then T' is.failed. 

PROOF. First we give a construction of T'. By induction on stratum, we may 

assume that for each justification J of T, a _justification J' is defined such that J' 

is derived from J as T' will be derived from T. 

As a first step we obtain T" by replacing in T every justification J by such a 

justification J'. Furthermore, if a floundering justification J of a leaf H is 

replaced by a failed justification J', then H has must obtain a descendant in T" 

and T" is expanded beyond H. This expansion takes place via R, except that the 

justifications in the expansion are still the ones inductively derived from the 

justifications via R. By v) and vi) this replacement of justifications cannot give 

rise to other problems. 

For every justification J' in T", it follows from -) that fL *(J') has no 

extension leaves. Moreover, it follows that Tp" = fL *(T") has no extension 

leaves. (For suppose that H is such an extension leaf, then the justification J' of 

H in T" must be potentially successful, whereas fL *(J') is failed. This 

contradicts ii), applied inductively on J'.) 

We obtain the tree T' by expanding T p" beyond its pruned leaves, where at 

those pruned leaves and beyond, selections are made in a deeply safe way (thus: 

not necessarily via R). Notice that differences between T" and T' do not occur 

before the selection in a goal where T" is pruned, so by the assumption that L is 

selection-independent it follows that Tr' = ft *(T') =Tr" (except possibly in 

selections in pruned leaves). Now we prove our claims. 

-) For the justifications in T p', this is true by induction. As was remarked, the 

top level of T p' = T p" contains no extension leaves. Finally, the top level of T" 

(and T p") follows R, so Tr' does (except possibly in pruned leaves). 

i) and iv) Tp' is a subtree ofT'. 

ii) Suppose that T p' is failed. Then Tr" is failed, so apparently no floundering in 

the justifications of Tr" reaches its top level. So we may 'pretend' that T p" is 

deeply safe, apart from selections in its pruned leaves (i.e., using Lemma 



Section 5.4 Soundness and Compktencss I 15 

5.2.14 we could replace every justification of Tr" by a deeply safe one, 

without changing its top level). T' is an expansion of Tr" that is deeply safe in 

and beyond the pruned leaves of T p". Thus in the same way, we may 

'pretend' that T' is deeply safe. Then by Lemma 5.4.4(ii), T' is failed. 

iii) First consider the tree T ds, which is obtained from T' by expanding T' in a 

deeply safe way beyond every flounder leaf that is not deeply safe (either by 

making an other selection or by replacing the justification). Consider a 

potentially successful branch D in T' that is pruned in Tr'· As D is pruned in 

Tr"• the tail (the part that is pruned out) of D in T' is already constructed in a 

deeply safe way. Therefore D occurs in T ds unexpanded (w.r.t. T'). 

By its construction, we may again 'pretend' that Tds is deeply safe. Thus if 

D yields a potential answer G-0, then, by Lemma 5.4.4(iii) and assuming that 

L is sound, fL *(T ds) yields a potential answer G-o-' ~ G-0. The branch D' 

giving this answer G-o-' is either fully present in T' ( o- = o-') or an initial 

fragment of it is present which flounders (giving a potential answer G-o-::;; 

G-o-'). D' cannot be pruned in Tr'· because a goal pruned in Tr' is also 

pruned in fL *(T ds) (as T ds is an expansion of T', and Lis selection

independent). 

v) Consider a successful branch D in T. All its justifications are failed. So from 

vi) it follows inductively that Dis still present in T". If Dis not pruned in Tr"• 

then it is present in T'. If Dis pruned in Tp", then in T' it is extended beyond 

the pruned goal in a deeply safe way. By Lemma 5.2.14(i) this extension is 

successful. 

vi) If Tis failed, then T has no floundering justifications. So inductively by v) 

and vi) the top levels ofT and T" are identical. T11" may contain pruned leaves, 

but by Lemma 5.2.14(ii) expanding them again in a deeply safe way can only 

lead to failure again. □ 

Thus combining Theorem 5.4.6(-) and (i)-(iv) with Theorem 5.2.7(i)-(iv) 

(applied on T') gives the final soundness and completeness results. However, 

the (loop-checked) interpreter need not be effective: in general traversing infinite 

justifications is required. Any real interpreter can only traverse a finite part of a 

(justified) SLS-tree, and is therefore incomplete, unless the use of the loop 

check has resulted in a finite search space. 



116 Loop Checking and Negation Chapter 5 

THEOREM 5.4.7. Let P be a program and G a goal in Lp. Let L he a loop 

check. Let R he a .w~fe selection rule, let T he a just(fied SLS-tree r~f 

Pu{GJ via Rand let Tp = .h *(T). ff Lis complete w.r.t. R for a class rd' 

programs ccontaining P, then T11 is.finite. 

PROOF. The theorem follows immediately from Definition 5.4.3. D 

Applying Theorem 5.4.7 on the tree T' as constructed in Theorem 5.4.6 

shows that using a complete loop check (on all levels) ensures that the pruned 

justified SLS-tree is finite. If also the conditions of Theorem 5.4.6 are met (thus 

excluding extension leaves), then ii follows that indeed the search space of the 

interpreter is finite. In this case the interpreter is really sound and complete. 

Finally we must answer the question: 'Can the use of a (sound) loop check 

introduce floundering?'. The answer depends on what is exactly meant by the 

word 'introduce'. The following theorem indicates that the pruned tree can only 

flounder if somewhere in the original tree (but not necessarily at the top level) 

floundering occurs. 

THEOREM 5.4.8. Let P he a program and G a goal in Lp. Let L he a loop 

check. Let R he a safe selection rule, let T he a just(fzed SLS-tree of 

Pu{GJ via Rand let Tp = .h *(T). ff a .flounder leqf occurs in Tp, then a 

flounder leaf occurs in T. 

PROOF. Suppose that G is a flounder leaf in Tp, so a negative literal is selected 

in G. If this negative literal is not ground, then G itself is a flounder leaf in T. 

Otherwise, let T' denote the justification of G in T, and let T p' = fL *(T'). T p' 

must be floundered. By induction (on stratum), a flounder leaf occurs in T', 

hence in T. D 

The fact that a flounder leaf occurs in T does not imply that T flounders: the 

flounder leaf might occur in a successful justification. If the pruned version of 

this justification is not successful (but only potentially successful), then it is 

possible that T is failed, whereas its pruned version flounders. Example 5.5.11 

illustrates this effect. The tree in Figure 5.5.2 is succe.ssful; for most of the loop 

checks applied there its pruned version is not. Thus if this tree is the side-tree of 

a goal f--.p, then the application of one of these loop checks turns f--,p from 

a failure leaf into a flounder leaf. 



Section 5.4 Soundness and Complclencss 117 

Nevertheless, the result of Theorem 5.4.8 is significant. It guarantees that if 

the program P does not cause floundering (i.e .• for every ground goal G, an 

SLS-tree of Pu{ G} via a safe selection rule does not flounder; a property that is 

undecidable but for which sufficient syntactical conditions are known), the use 

of a loop check does not cause floundering too. Notice that it is not required in 

Theorem 5.4.8 that the loop check used is weakly sound. But if it is not, the 

pruned tree might contain extension leaves and the interpreter might find an 

occurrence of floundering beyond such a leaf. 

5.5. Deriving One Level Loop Checks from Positive 
Loop Checks 

Defmitions 

In this section we show how one level loop checks can be derived from positive 

loop checks. Since a successfully resolved negative literal is simply removed 

from a goal, negative literals cannot give rise to loops. (Thanks to the fact that 

we consider only locally stratified programs, looping 'through negation' cannot 

occur.) Therefore the basic idea is to remove all negative literals in a derivation. 

Then an SLD-derivation remains, to which a positive loop check is applied. 

NOTATION 5.5.1. 
For every (goal- and program-) clause, program, SLS-derivation and -tree X, 

X+ denotes the object obtained from X by removing all negative literals. Thus if 

X is an SLS-derivation or -tree, then in x+ every derivation step G => H in 

which a negative literal is selected in G is deleted, since in this case G+ = H+. □ 

Notice that for every SLS-derivation D of Pu{ G}, o+ is an SLD-derivation 

of p+u{ G+}. For an SLS-tree T of Pu{ G}, T+ is an unfinished SLD-tree of 

p+u{ G+} (due to failure or floundering of a negative selected literal in T, T+ is 

not necessarily completed). 

In fact the above definition is not completely precise: suppose that in the last 

goal G of an SLS-derivation D, a negative literal is selected. Then it is not clear 

which atom is selected in G+ in o+. Nevertheless, as the positive loop checks 

we are interested in are all selection-independent (Definition 5.4.5 does also 

apply to positive loop checks) we do not need to he more precise. 



118 Loop Checking and Negation Chapter 5 

DEFINITION 5.5.2. 
Let L be a positive loop check. The one level loop check derived from L, 

OL = AP.Initials( { D I D is an SLS-derivation and D+ E L(P+)} ). D 

The following lemmas establish the required relationships between a 

positive loop check and the one level loop check derived from it. 

LEMMA 5.5.3. For every positive loop check L, OL is a one level loop check. 

Moreover, OL is simple iff Lis simple. 

PROOF. Immediately by the definitions. □ 

LEMMA 5.5.4. Let L he a positive loop check, D an SLS-derivation and P a 

program.Dis pruned by OL(P) (!JD+ is pruned hy L(P+ ). 

PROOF. D is pruned by OL(P) iff some initial part of D, Din E OL(P), iff some 

initial part of o+, Din+ E L(p+), iff o+ is pruned by L(P+). □ 

Soundness 

Unfortunately, as is shown in the following counterexample, it is not the case 

that a one level loop check derived from a (weakly) sound positive loop check 

(as defined in Section 2.2) is again (weakly) sound. 

COUNTEREXAMPLE 5.5.5. 
Let P = { p +- q( 1 ),q(2). (C 1 ), 

q(x) +- -,r(x). (C2), 

q(2) +- q(l). (C3), 

r(2) +-. (C4) }, 

and let G = +-p. 

Pis (locally) stratified and Figure 5.5.1 shows an SLS-tree T of Pu{ 0} via 

the leftmost selection rule. Let D denote the successful branch in T. 

Then o+ is the SLD-derivation +-p =>cc 1) +-q( I ),q(2) =>q(x)~ +-q(2) =>(C3) 

+-q(l) =>q(x)~ □. Even a simple sound loop check L might prune the goal 

+-q(l) in D+: it is visible in the second step of o+ that the clause q(x)+- is 

present in p+; this clause allows for a shorter way to refute +-q(2) than via (C3} 

and +-q(l). 



Section 5.5 Deriving One Level Loop Checks from Positive Loop Checks 119 

Unfortunately, this shortcut fails in the 

SLS-tree because it introduces the literal 

-,r(2) instead of-, r(l ), and -, r(2) foils. So 

OL prunes D, hence OL is not weakly sound 

(note that the tree is the top level of a deeply 

safe justified tree). □ 

Although the loop check used in the 

counterexample formally satisfies the 

definitions, it is highly nontypical. We shall 

now show that more usual (weakly) sound 

positive loop checks, notably the ones 

defined in Chapter 3, derive again (weakly) 

sound one level loop checks. To this end we 

introduce a soundness condition, which is 

very similar (also in its proof) to Lemma 

3.2.5. 

~p 

♦ (Cl) 

~q(l),q(2) 

♦ (C2) 

~r(l),q(2) 

~q(2) 

\(C3) 

~q(l) 

♦ (C2) 

~-,r(l) 

♦ 
□ 

FIGURE 5.5.1 

LEMMA S.S.6 (Soundness Condition). Let L be a one level loop check. 

If.for every program P, goal Go and potentially successful branch D = (Go 

⇒91 G1 ⇒ ... ⇒ Gk-I ⇒9k Gk ⇒ ... ⇒9111 H) (0 < k 5m) of a deeply 

safe justified SLS-tree T of Pu/Go}: 

[ Gk is pruned by L] implies 

[ for some goal G; (0 5 i < k) in D and.for some n < m-i, there 

exists a potentially successful branch G; ⇒<1/ ... ⇒<1,i H' of a 

deeply safe justified SLS-tn•e <f Pu{G;J ], 

then Lis weakly sound. 

Moreover, if also Go6, ... 6;GJ ... G11 5Go61 ... 6k6k+l···6m is implied, 

then L is sound. 

PRCXF. First we focus on the weakly sound case. Let P be a program, Go a goal 

and T a deeply safe justified SLS-tree of Pu {Go). Suppose that T10p contains a 

potentially successful branch D = (Go ⇒9 1 G 1 ⇒ ... ⇒ Gi-1 ⇒ei Gi ⇒ ... ⇒ 
Gk-I ⇒ek Gk ⇒ ... ⇒0111 H) that is pruned by L ut Gk, We use here induction on 

m, i.e., we assume that for every successful branch B in T10p shorter than D, 

fL 1(T10p} contains either Bora potentially successful branch shorter than B. 



120 Loop Checking and Negation Chapter 5 

We prove that fL 1(T10p) contains a potentially successful branch D' that is 

shorter than 0. By assumption a potentially successful SLS-derivation D1 = ( Gi 

=>01 ... =>an H') of Pu{ Gj} exists. Adding (a properly renamed version of) D1 

to the initial part of D gives the derivation D2 = ( Go =>e I G 1 => ... => Gi-1 =>ei 

Gi =>t1 ••• =>tn H'). By the independence of the selection rule (Lemma 5.2. I 3), 

T10p contains a branch 03 such that 1D3I = 1D2I and the potential answers of D3 

and D2 are variants. Since 03 is shorter than D (1D3I = i+n < i+(m-i) = m = IOI), 

by the induction hypothesis fL 1(T10p) contains either D' = D3 or a potentially 

successful branch 0' shorter than D3, which proves the claim. 

For the sound case, it remains to prove that Gocr' $ Go0, ... 0m, where cr' is 

the potential answer substitution of D'. First we strengthen the induction 

hypothesis: for every potentially successful hrnnch B in T10p shorter than 0 

giving a potential answer G~cr, ft 1 (T top) contains either B or a potentially 

successful branch shorter than B, giving a potential answer Go~cr' S Go~cr. 

Then either since 0' = D3 or by the new induction hypothesis, and since 

the 1 ,otential answers of D3 and D2 are variants, Gocr' S Go81 ... 8rt 1 ... tn $ 

G0'31 ... 8j<JJ ... crn $ Go8J ... 8m. D 

Indeed, the one level loop checks derived from the positive loop checks 

defined in Chapter 3 satisfy the above soundness condition. So we can prove 

that they are (weakly) sound. 

THEOREM S.S. 7 (Soundness of Conversion). 

i) The one level loop checks derived .from the equality, subsumption and 

context checks based on goals are weakly sound. 

ii) The one level loop checks derived from the equality, subsumption and 

context checks based on resultant.~ are .vound. 

PROOF (Sketch). The proofs of Theorem 3.2.6, 3.3.7 and 3.4.6, in which it is 

shown that the positive loop checks mentioned satisfy the soundness condition 

(for the positive case), are straightforwardly generalized to the present case. 

Every successful SLD-derivation must be replaced by a potentially successful 

branch of a deeply safe justified SLS-tree. The Mgu Lemma, Lifting Lemma and 

Independence of the Selection Rule of [L] (used in the positive case) must be 

replaced by Lemma 5.2.8, 5.2.9 and 5.2.13 respectively. D 



Section 5.5 Deriving One Level Loop Checks from Positive Loop Checks 121 

Completeness 

Since some completeness properties of positive loop checks depend on the 

selection rule used, these selection rules are adapted to the presence of negation. 

DEFINITION 5.5.8. 

Let R be a selection rule for SLD-derivations. 

An extension <?f R is a selection rule R' for SLS-derivations such that for every 

SLS-derivation D via R', o+ is an SLD-derivation via R. D 

Unlike soundness, completeness carries over from positive to one level loop 

checks without much difficulty. 

TIIEoREM 5.5. 9 (Completeness of Conversion). ff L is complete w. r. t. a 

selection rule R for a class <?l programs c, then (Ji is complete w.r.t. any 

s{le extension <?f R for the class <d'programs { P I p+ E c and Lp = Lp+ }. 

PROOF. Let P be a program, G a goal in Lp (both possibly containing negative 

literals) and Ra selection rule for SLD-derivations. Let R' be an arbitrary safe 

extension of R. Let D be an· infinite SLS-derivation of Pu { G} via R'. Then D+ 

is an infinite SLD-derivation of P+u{ a+} via R. Let L be a positive loop check 

that is complete w.r.t. R for (a class of programs containing) P+: for every goal 

Hin Lp+, every infinite SLD-derivation of P+u{ H} is pruned by L(P+). Since 

G+ is a goal in Lp = Lp+, o+ is pruned by L(P+). Hence by Lemma 5.5.4, Dis 

pruned by OL(P). D 

Notice that the requirement Lp = Lp+ is just a technicality which can be met 

easily by adding some irrelevant clauses to P. Combining the completeness 

results presented in Chapter 3 and 4 with Theorem 5.5.9 yields the following 

results. 

COROLLARY 5.5.10. 

i) The one level loop checks derived .fi"mn the equality, suhsumption and 

context checks are complete w.r.t. any .\'lfe extension <?( the le.fimost 

selection rule for locally strat(fied.fimctionfree programs P such that p+ 

is a restricted program. 



122 Loop Checkinp and Ncpation Chapter 5 

ii) The one level loop checks derived from the suh.rnmption and context 

checks are complete.for locally strat!fh-d.fim<'fion:f'ree programs P such 

that p+ is an nvi program or cm svo program. 

iii) The one level loop checks derived.from the subsumption and context 

checks are complete w.r.t. any safe extension <f the leftmost selection 

rule for locally stratified fimctimi:f'ree programs P such that p+ is an nr

extended nvi-program, a chain-re.,·tricted svo program or a head-

restricted svo program. □ 

The following example illustrates the application of several one level loop 

checks derived from positive loop checks defined in Chapter 3. 

+-p 

J (Cl) 

+-q(x),-,s(x) 

{y;Y ~xi 

+-r(x),q(x),-,s(x) +- -,s(x) flounders 

I (C4) 

+ {x/1} 
+-q( 1 ),-,s( 1) 

(C31 
(y'/1 y \ (C2)' 

~y'/1} 

pruned by subsumption checks 
and by context checks 

pruned by equality checks 
based on instances 

+- -,s(1) +-r( l ),q{ l ),-,s( I) 

J 
J<C4) 

□ +-q( l ),-,s( I) 

pnmed by equality checks 
based on variants 

FIGURE 5.5.2 



Section 5.5 Deriving One Level Loop Checks from Positive Loop Checks 

EXAMPLE 5.5.11. 
Let P = { p ~ q(x),-,s(x). (CI), 

q(y) ~ r(y),q(y). (C2), 

q(y) ~

r(l) ~-

(C3), 

(C4) I. 

123 

and let G = ~p. In Figure 5.5.2 an SLS-tree T of Pu{ GI via (a safe extension 

of) the leftmost selection rule is depicted. It is shown where T is pruned by 

various loop checks. 

For every loop check used, the pruned tree is finite. This was to be 

expected, as p+ is a restricted program. Furthermore, each loop check retains 

potential success in the pruned tree (they even retain the most general potential 

answer, since G is ground). However, it appears that only the equality checks 

based on variants retain a successful branch. Obviously the extra instantiation in 

this branch, which was superfluous in the positive case, serves here to prevent 

floundering. □ 

But the equality checks based on varianls do not always retain at least one 

successful branch, as is shown in the following example. As we remarked at the 

end of Section 5.2, the use of constructive negation can make this behaviour 

more acceptable. 

~p 

+ p ~q(x),-,s(x) 

~q(x),-,s(x) 

q(l)~:(o/ ~(y~~ 
{x~ 'x/xl 

!pruned ~q(y),-, s( I) ~ -,s(x) flounders 

q(l)~.q(r ~(z~~ 
{y~ ~YI 

~ -,s( I) 

+ 
D 

FIGURE 5.5.3 



124 Loop Checking and Neg.Ilion Chapter 5 

EXAMPLE S.S.12. 
Consider the program { p+-q(x),-, s(x). q(l )+-q(y). q(y)+-.} and the goal +-p 

(see Figure 5.5.3). In order to avoid floundering of f--, s(x), the clause 

q(l)+-q(y) must instantiate it to -,s(I). But the resulting refutation is pruned by 

the one level loop check derived from EVRL. 



6. Loop Checking in 
Partial Deduction 

This chapter introduces an alternative application of loop checks, namely in 

partial deduction. In Section 6.1 we recall the framework for partial deduction 

presented in [LS], illustrated by an example. In this framework, partial 

deduction involves the creation of SLD-trees 1 for a given program and some 

goals, up to certain halting points. 

In the literature it is often noted that the problem of finding good halting 

points (loop prevention) is 'very closely related to the problems of loop 

trapping' ([LS]). But a precise connection was never made, probably because 

there was no formal theory of loop trapping to connect to. Either the problem 

was identified as being 'difficult', or for practical purposes ad hoc solutions 

were used. 

In the previous chapters we presented a framework for the analysis of loop 

checking mechanisms, toget_her with some particular loop checks intended to be 

incorporated in a PROLOG-1 ike interpreter for use at run-time. One of the aims 

of this chapter is to show that this framework is sufficiently general for 

describing loop checks suitable for paitial deduction as well. 

In Section 6.2 we show that halting criteria for partial deduction can indeed 

be described as loop checks, but that their characteristics are different from the 

'traditional' loop checks used at run-time. More precisely, a loop check used for 

partial deduction must first of all be complete, whereas in the traditional 

application the soundness of a loop check is more important. 

We also show in Section 6.2 how in conjunction with a complete loop 

check (which enforces termination) a sound loop check can be used to remove 

some loops from the program obtained by partial deduction. To this end the 

example of Section 6.1 is reconsidered. The addition of such a sound loop check 

1 In [LS], programs with negation arc considered and SLDNF-resolution is used. As shown in 

Chapter 5, the use of a sound loop check can he combined with (stratified) negation, hut 

because infinite failure can he turned into finite failure by such a loop check, it was more 

natural to use SLS-resolution there. In order to avoid unnecessary complications, we restrict 

ourselves here to positive programs and SLD-rcsolution. 

125 



126 Loop Checking in.Partial Deduction Chapter6 

.,· 
to the partial deduction procedure is probably less costly than adding it to a 

PROLOG-like interpreter, as most informal.ion needed for it (such as previous 

goals) must be maintained for the complete loop check anyway. 

The importance of sound loop checks has been sufficiently stressed in the 

literature and in previous chapters. Complete loop checks have not yet received 

that much attention. Section 6.3 contains some general observations about 

complete loop checks (notably their relation with selection rules) and describes a 

class of complete loop checks that is inspired by some typical examples 

proposed in [SI]. Furthermore, the relationship with [BdSM] is discussed. 

6.1. Partial Deduction 

Although partial evaluation dates back to the 1970s, and was introduced into 

logic programming in the early 1980s ([Kl), the topic only recently has attracted 

more substantial attention (e.g. [BEJ]). The foundations of partial evaluation in 

pure logic programming have been thoroughly studied in [LS]; we follow their 

framework here. Their method is more appropriately called partial deduction 

nowadays, leaving the, term partial evaluation for works taking into account 

certain extralogical features of PROLOG, as is done in e.g. [SI, S2]. 

The following intuitive description of partial deduction is given in [LS]: 

'Given a program P and a goal G, partial evaluation produces a new program 

P', which is P "specialized" to the goal G. The intention is that G should have 

the same answers w.r.t. P and P', and that G should run more efficiently for P' 

than for P. The basic technique for obtaining P' from Pis to construct "partial" 

search trees for P and suitably chosen atoms as goals, and then extract P' from 

the definitions associated with the leaves of these trees.' 

Below we define how exactly P' is derived from P and we formalize the 

requirement that G should have the snme unswers w.r.t. P and P'. We say that 

an unfinished SLD-derivation or -tree is trivittl if it consists solely of an initial 

goal. 

DEFINITION _6.1.1 (Partial deduction). 

LetP be a program, A an atom and Ta finite nontrivial SLD-tree of Pu{ +-A}. 

Let G1,,.,,Gr be the ]eaves of T that are not failed (r;::; 0 is possible). Let 

R1, .. ,,Rr be the corresponding resultants (notice thut having a single atom as 



Section 6.1 Partial Deduction 127 

initial goal implies that these resultants are Horn-clauses). The set {R1, ... ,Rr} is 

called a partial deduction.for A in P. 

For a set of atoms A = { A 1, ... ,As}, a partial deduction for A in P is the 

union of partial deductions for A1, ... ,As in P. 

A partial deduction for P w. r. t. A is a program obtained from P by 

replacing the set of clauses in P whose head contains one of the predicate 

symbols appearing in A by a partial deduction for A in P. D 

DEFINITION 6. 1.2 (Soundness and completeness of partial deduc1ion). 

Let P be a program and A a finite set of atoms. Let P' be a partial deduction for 

P w.r.t. A. Let G be a goal. 

i) P' is sound w.r.t. P and G if every correct answer for P'u{ G} is correct for 

Pu{G }. 

ii) P' is complete w.r.t. P and G if every correct answer for Pu{ G} is correct 

for P'u{G}. D 

As SLD-resolution is sound and complete (w.r.t. the least Herbrand model 

semantics), one could equally well express these criteria by means of computed 

answers of SLD-refutations. In [LS] programs with negation are considered, 

using SLDNF-resolution ([Cl2]) and completion semantics. Consequently their 

approach is more complicated in two ways. 

First of all, SLDNF-resolution is generally not complete w.r.t. the 

completion semantics. So a distinction between declarative soundness and 

completeness of partial deduction (considering correct answers) and operational 

soundness and completeness (considering computed answers) must be made. 

Secondly, they require more elaborate notions of soundness and 

completeness. In terms of seman_tics, having no correct answers for Pu{ ':-A} 

allows for two situations that must be distinguished, namely 'comp(P)l==A' and 

'comp(P)IF A and comp(P)IF ;eA'. In terms of SLDNF-derivations, this relates to 

the distinction between finite and infinite failure. 

It appears that partial deduction is always sound for positive programs, but 

only complete under a certain condition. 



128 Loop Checking in Partial Deduction Chapter6 

DEFINITION 6.1.3. 

Let S be a set of first order formulas and A a finite set of atoms. Sis A-closed 

if each atom in S that contains a predicate symbol occurring in an atom in A is an 

instance of an atom in A. D 

THEOREM 6.1.4. ([LS]) Let P be a prowam, G a wml, A a .finite set <?f atoms 

and P' a partial deduction.for P w.r.t. A. 

i) P' is sound w.r.t. P and G. 

ii) ff' P'u{GJ is A-closed, then P' is complete w.r.t. P and G. D 

The following example shows a case in which partial deduction is 

traditionally useful: a meta-interpreter is specialized to a certain object program. 

The resulting program bears similarity to this object program: the meta

interpreter is 'compiled away'. Thus one level of interpretation is removed, an 

operation that usually leads to a considerable gain in efficiency. 

The example also shows that the closedness condition is needed. In Section 

6.'.:: this example reoccurs in combination with loop checking. 

EXAMPLE 6.1.S. 

Let P be the following variant of the 'vanilla' -interpreter, interpreting a small 

transitive closure program (translated in such a way that the PROLOG system 

predicate 'clause' has become a purely logical predicate; the predicate symbols 

denoting the base relation r and its transitive closure tc have become function 

symbols). Goals are represented as lists and the leftmost selection rule is always 

used. Notice that the addition of x2 in the third clause for 'solve' avoids an 

infinite loop (or the use of a cut). 

solve([]) +-. 

solve([x]) +- clause(x,y),solve(y). 

clause(r(a,a),[]) +-. 

clause(r(a,b),[]) +-. 

solve([x 1,x2ly]) +- solve([x 1 )),solve([x2ly ]). cluuse(r(b,c),[]) +-. 

clause(tc(x,y),[r(x,y)]) +-. 

clause(tc(x,y),[r(x,z),tc(z,y)]) +-. 

Taking A = { solve([tc(x,c)]) I, the SLD-tree of Figure 6.1.l can be 

constructed (the resultants are given). 



Section 6.1 Pm1ial Deduction 129 

solve([tc(x,c)]) +- solve([tc(x,c)]) 

I 
solve([tc(x,c)]) +- clause(tc(x,c),y),solve(y) 

I I 
solve([tc(x,c)]) +- solve([r(x,c)]) solve([tc(x,c)]) +- solve([r(x,z),tc(z,c)]) 

I 
solve([tc(x,c)]) +- clause(r(x,c),y'),solve(y') 

I 
solve([tc(b,c)]) +- solve([]) 

I solve([tc(x,c}]} +- solve([r(x,z)]),solve([tc(z,c)]) 

solve([tc(b,c)]) +- (unjini.\·hed) 

FIGURE 6.1. I 

The partial deduction P1 for P w.r.t. A is now obtained by replacing the 

clauses for 'solve' in P by: 

solve([t~(b,c)]) +-. 

solve([tc(x,c}]} +- solve([r(x,z)]),solve([tc(z,c)]). 

The resulting program is not complete w.r.t. Pu{ +-solve([tc(x,c)]) }: every 

call to solve([r(x,z)]) fails, only the answer substitution { x/b} is found. This is 

due to the fact that P1 is not A-closed: the atom solve([r(x,z)]) occurs in P1 and 

is not an instance of solve([tc(x,c)]). Thus solve([r(x,z)]) must be included in A 

and an SLD-tree of Put +-solve([r(x,z)])) must be constructed (Figure 6.1.2). 

solve([r(x,z)]) +- solve([r(x,z}]} 

I 
solve([r(x,z)]) +- clause(r(x,z),y),solve(y) 

I I I 
solve([r(a,a)])+-solve([]) solve([r(a,b)])+-solve([]) solve([r(a,c)])+-solve([]) 

I I I 
solve([r(a,a)]) +- solve([r(a,b)]) +- solve([r(b,c)]) +-

FIGURE 6.1.2 



130 Loop Checking in Partial Deduction Chapter 6 

Thus the new partial deduction P2 for P w.r.t. A contains for 'solve' the clauses 

solve([r(a,a)]) f-. 

solve([r(a,b)]) f-. 

solve([r(b,c)]) f-. 

solve([tc(b,c)]) f-. 

solve([tc(x,c)]) f- solve([r(x,z)]},solve([tc(z,c)]). 

Now P2u{ f-solve([tc(x,c)])} is A-closed and indeed P2 is complete w.r.t. 

Pu{ f-solve([tc(x,c)])}. D 

This short introduction to partial deduction leaves two questions 

unanswered (although the example gives some hints), namely: 

- which set A = {Al· .. ,As} is best to be used, and 

- how deep the SLD-trees of Pu{ f-A1 }, ... ,Pu{ f-Asl should be expanded. 

Both questions relate to the termination of the partial deduction procedure. 

For the second one, this is obvious: if one of the SLD-trees is expanded 

infinitely deeply, then the procedure cannot terminate. However, if the 

expansion of an SLD-tree is stopped at an unfortunate moment, the resultant that 

is delivered might not be A-closed. When the 'missing' atoms are simply added 

to A, this requires the creation of more SLD-trees. These can, in turn, deliver 

new resultants that are not A-closed, and so on. Here we address only the 

second question, by relating the stopping criteria for the expansion of the SLD

trees used in partial deduction to loop checking. 

6.2. The Use of Loop Checking in Partial Deduction 

In this section the relation between partial deduction and loop checking is 

established. It appears that loop checks can be used in two different ways, each 

requiring special characteristics of the loop check. 

Suppose a program P and a finite set of atoms A are given. For every atom 

A e A, a finite (unfinished) SLD-tree of Pu{ f-A I must be constructed. When 

constructing these SLD-trees, two loop checks can be applied at the same time. 

1. A sound, but not necessarily complete loop check is applied as in standard 

SLD-resolution. Goals that are pnmed by this loop check are treated as failure 

leaves. 



Section 6.2 The Use of Loop Checking in Partial Deduction 131 

2. A complete, but not necessarily sound loop check is used for loop prevention. 

It ensures that the constructed tree is finite, thus enforcing termination of the 

partial deduction procedure (assuming that the closedness condition is reached 

within finite time). The resultants corresponding to the goals pruned by this 

loop check become part of the partial deduction for P w.r.t. A. 

In order to avoid trivial SLD-trees, these loop checks must be nontrivial, 

i.e., it must not prune SLD-trees at their root. We now formalize this way of 

using loop checks in partial deduction and we prove that the soundness and 

completeness results of partial deduction persist. 

DEFINITION 6.2.1 (Partial deduction with loop checking). 

Let P be a program, A an atom and Ta (completed) SLD-tree of Pu( f-A). Let 

Ls and Le be two nontrivial_loop checks such that Le is complete. Let G1, .. ,,Gr 

be the leaves of fLe+L/T) (this unfinished SLD-tree is obviously finite and 

nontrivial) that are neither failed nor pruned by Ls. Let R1, ... ,Rr be the 

corresponding resultants. The set IR 1, ... ,Rr I is called a partial deduction.for A 

in P w.r.t. Ls and Le. 

For a set of atoms A=,{ A,, ... ,A5 }, a partial deduction.for A in P w.r.t. Ls 

and Le is the union of partial deductions for A,, ... ,As in P w.r.t. Ls and Le. 

A partial deduction.for P w.r.t. A, L.1. and L,. is a program obtained from P 

by replacing the set of clauses in P whose head contains one of the predicate 

symbols appearing in A by a partial deduction for A in P w.r.t. Ls and Le. □ 

THEOREM 6.2.2. Let P be a prowam, G a w>al and A a finite set of atoms. 

Let Ls and Le be two nontrivial loop checks such that Le is complete. Let P' 

be a partial deduction.for P w.r.t. A, Ls and Le. Then 

i) P' is sound w.r.t. P and G. 

ii) If P'u{G} is A-closed and L.1. is .\·ound, then P' is complete w.r.t. P and 

G. 

PROOF. i) The tree fLe+L/T) in Definition 6.2.1 is precisely the finite nontrivial 

SLD-tree required in Definition 6.1.1. The only difference is that the resultants 

corresponding to the goals pruned hy Ls are not included in P'. In other words, 

there exists a program P" ~ P' such that P" is a partial deduction for P w.r.t. A. 

Thus, due to the absence of negation, a correct answer for P'u {GI is also a 

correct answer for P"u( G}, and hence by Theorem 6.1.4 also for Pu( G). 



132 Loop Checking in Paflial Deduction Chapter 6 

ii) (This proof closely follows the proof of Theorem 4.1 (h.i) in [LS]). Suppose 

that 0 is a correct answer substitution for Puf a}. Then there is an SLD

refutation D of Pu{ G} giving a computed answer a-er s; a-0. We prove by 

induction on IOI that there is an SLD-refutation D* of P'uf a} giving a 

computed answer a~cr* s; a-er. 

For IOI= 0, i.e., a= □, the claim is trivial. If the clause applied in the first 

step of Dis (a variant of) a clause in P', then the induction step is also trivial. 

Otherwise the selected atom A in a must be an instance of an atom in A, 

because Pu{a} is A-closed; say A1 EA and A1Y =A.The steps in the 

refutation of Pu{ a} in which A and its derived atoms are selected, constitute a 

refutation of Pu{ f-A}. Hence the completed version of the SLD-tree of 

Pu{ f-A 1} that was constructed during the partial deduction contains a 

successful branch B that uses the same steps (possibly in a different order). B 

gives a computed answer substitution t such that A 1t $Aiyer.By the Switching 

Lemma (Lemma 4.6 in [LS]), the refutation steps of D can be reordered such 

that the new refutation D' begins with the steps proving A (more precisely: an 

inrtance of A more general than Acr), in the order in which they occur in B. 

Here two cases arise. If B is pruned by Ls, then the SLD-tree of Pu{ f-A 1} 

contains a branch B' that is not pruned by Ls and that gives a computed answer 

substitution t' such that A It' $ A It. This gives rise to yet another refutation 

(D") of Pu{ a}: the steps proving A according to refutation B can be replaced 

by steps proving A according to refutation B' (as Ait' $ Acr). If Bis not pruned 

by Ls then D" = D', B' = B and t' = t. In both cases, the computed answer 

substitution er" of D" satisfies a~cr" s; a-er. 

For some goal ai on the branch B', the corresponding resultant Ri must be 

included in P'. Let H be the head of Ri. Then H s; A1t' $ Acr, say Hex= Acr. As 

we may assume that D" and H have no variables in common, it follows that 

Hera= Aacx. Thus H and A unify, hence Ri can be used to resolve A, giving a 

resultant R'. By Lemma 4.12 of [LS], the SLD-derivation corresponding to B', 

starting from '-"A instead of f-A I yields R' in place of Ri. As, modulo a 

renaming and the presence of the rest of a, this derivation forms exactly the first 

i steps of D", these steps can be replaced by the application of Ri, reaching the 

(i+ I )st goal of D" in one step; the resulting derivation still has er" as its computed 

answer substitution. If i = I, then IB'I = I and Ri is a variant of the clause used 

in B'. Otherwise we can apply the induction hypothesis on this goal; the result is 



Section 6.2 The Use of Loop Checking in Partial Deduction 133 

the refutation o• of P'u ( G} with a computed answer substitution a* such that 

G-a* S G~a S G-8. 

Thus 8 is a correct answer substitution for P'uf G}. D 

We now apply this part of the theory to the program given in Example 

6.1.5. Especially the effect of the addition of a sound loop check is remarkable. 

EXAMPLE 6.2.3. 

Suppose that the SLD-tree of Pu{ f-solve([tc(x,c)]) I of Example 6.1.5 had not 

been finished at the resultant solve([tc(x,c)])f-solve([r(x,z)]),solve([tc(z,c)]), 

but continued as shown in Figure 6.2.1. 

The resultant solve([tc(a,c)])f-solve([tc(a,c)]) could well be pruned by a 

sound loop check, e.g. EIRL (in fact it is pruned by all loop checks defined in 

Chapter 3 that are based on instances). The two other resultants could be pruned 

by some complete, but unsound loop check Le (see Section 6.3). 

solve([tc(x,c)]) +-- solve([tc(x,c)]) 

solve([tc(b,c)]) +-- solve([tc(x,c)]) +-- solve([r(x,z)]),solve([tc(z,c))) 

I 
solve([tc(x,c)]) +-- clause(r(x,z),y'),sol ve(y'),solve([tc(z,c)]) 

I 
solve([tc(a,c)]) f- solve([]),solve([tc(a,c)]) 

solve([tc(a,c)]) f- solve([]),solve([tc(b,c)]) 

solve([tc(b,c)]) f- solve([]),solve([tc(c,c)]) 

solve([tc(a,c)]) +-- solve([tc(a,c)]) 

solve([tc(a,c)]) f- solve([tc(b,c)]) 

solve([tc(b,c)]) +-- solve([tc(c,c)]) 

FIGURE 6.2. I 



134 Loop Checking in P,artial Deduction Chapter 6 

Now the resulting partial deduction P3 for P w.r.t. I solve([tc(x,c)J)}, EIRL 

and Le contains the following clauses for 'solve': 

solve([tc(b,c)]) f-. 

solve([tc(a,c)]) f- solve([tc(b,c)]). 

solve([tc(b,c)]) f- solve([tc(c,c)]). 

In contrast to Example 6.1.5, where A had to be extended, P3 is already A

closed. So by Theorem 6.2.2, P3 is complete for Put f-solve([tc(x,c)])}. 

Moreover, whereas the SLD-trees of Pu{ f-solve([tc(x,c)]) I and 

P2ul f-solve([tc(x,c)])} contain an infinite branch, the SLD-tree of 

P3uf f-solve([tc(x,c)])} is finite. In this case the use of a sound loop check 

during partial deduction (making the clause solve([tc(a,c)])f-solve([tc(a,c)]) 

disappear) can replace the use of a loop check at run-time. Obviously this will 

not always be the case. D 

6.3. Complete Loop Checks 

The previous chapters and most papers on loop checking consider the 

application of loop checks at run-time, on an SLD-tree generated by a PROLOG

like interpreter. Consequently, the soundness of a loop check is usually 

considered to be more important than its completeness. Only a few loop checks 

that are not weakly 11ound have been studied in some detail (e.g. in [BW]), and 

even those loop checks are mostly not complete. 

So for the purpose of partial deduction, a sound loop check can be chosen 

from the literature. In this section we concentrate on the complete loop check 

needed. This loop check in general is not weakly sound. Our first observation 

concerns the relationship between complete loop checks and the selection rule. 

Complete loop checks and the se/e(,·tion rule 

Sound loop checks indicate that there is certainly a loop ( or at least a redundant 

goal). If that is the case, then the derivation is best stopped immediately: the 

remainder of the derivation can succeed, giving a redundant answer, finitely fail 

or be infinite (depending on the selection rule), but in all cases there is no point 

in constructing it. This explains why such loop checks are normally independent 



Section 6.3 Complete Loop Checks 135 

of the atom selected in the current goal (they are selection-independent , see 

Definition 5.4.5). 

The complete, but generally unsound loop checks studied here indicate the 

possibility of a loop. Such a possibility is olwiously related to the selection of 

the atom. Selecting another atom could be perfectly safe (i.e., not possibly 

loop). Moreover, this selection could remove the possibility of a loop, either by 

finitely failing or by instantiating the 'possibly dangerous' atom to a harmless 

instance. 

Thus it is worthwhile to use a loop check that prunes only if it finds that the 

selected atom is 'dangerous', and to adopt a selection rule that avoids pruning 

(selecting a 'dangerous' atom) as long as possible. (In the same way, 

floundering is avoided in the presence of negation by the use of a safe selection 

rule.) In [BL] partial selection rules are used that do not select 'dangerous' 

atoms at all: by stating that 'the computation terminates in deadlock when no 

literal is available for selection', the loop check is described implicitly by the 

partiality of the selection rule. 

Four of these selection rules are given; they are all of the same form: an 

atom A is 'dangerous' if it is produced by an atom A' higher up in the derivation 

such that 

1) A and A' are variants 

2) A is an instance of A' 

3) A' is an instance of A 

4) A and A' have a common instance 

(A S A' and A' S A) 

(A'S A) 

(AS A') 

(for some B: A SB and A' SB'). 

Loop check 4) is obviously stronger than 2) and 3), which are in turn 

stronger than 1). Unfortunately, none of these loop checks is complete, a simple 

counterexample being the program { p(x)~p(f(x)) I and the goal ~p(a). 

It would be too simple to say that these loop checks are too weak for this 

program: if a stronger loop check prunes the derivation arising from this 

program and goal at some place, then the resultant delivered is not { p(a) }

closed. Continuing naively by adding the required atom, and doing so 

repeatedly, will never result in the closedness condition being satisfied. Thus, 

although it allows only finite SLD-trees to be produced, such a stronger loop 

check alone cannot enforce termination of the partial deduction procedure. The 



136 Loop Checking in Partial Deduction Chapter6 

solution is obviously to add sometimes (but when'?) a more general atom to the 

set A than is strictly needed. But this solution cannot be applied if only the one 

infinite SLD-tree is created. So, also in this case, a complete loop check must be 

preferred. 

The simplest complete loop check is without doubt the use of a depth-bound 

on derivations (L = { D I IOI = d I for some d ~ l ). But such a loop check is not 

very useful for partial deduction purposes. In order to obtain a partial deduction 

for P w.r.t. A that is A-closed, every atom occurring in a pruned goal must be 

an instance of an atom in A. Thus pruning goals regardless of their structure 

usually results in an 'explosion' of the set A. 

The OverSizeCheck 

More sophisticated loop checking mechanisms are discussed in [SI]. The 

following definition gives their general framework, leaving two parameters 

open: a depth-bound and a size-function on atoms. Roughly speaking, the loop 

che,;k prohibits the selection of 'oversized' atoms. An atom is 'oversized' if it is 

'p-oduced' by at least depth-bound earlier selected atoms with the same predicate 

i ymbol that have a smaller or equal size. Let #S denote the number of elements 

of a set S and rel(A) the predicate symbol in an atom A. 

DEFINITION 6.3.1 (OverSizeCheck). 

Let d ~ I and let the function size be defined for all atoms (details on size follow 

later). The OverSizeCheck of d and size, OSC(d,size) = 
Initials( { Go => Gt => ... => Gk I for O :s; i S k, Ai is selected in Gi and 

#{ i IO S i < k, rel(Ai) = rel(Ak), Ak is the result 

of resolving Ai and size(Ai) S size(Ak)} ~ d} ). D 

Notice that d ~ I ensures that OSC is a nontrivial loop check. The following 

remark follows immediately from the definitions. 

REMARK 6.3.2. 

For every function size, if I S d I S d2 then OSC( d 1 ,size) is stronger than 

OSC(d2,size). For every d ~ I, if for all atoms A and B: size1(A) S size1(B) 

implies size2(A) S size2(B), then OSC(d,size2) is stronger than OSC(d,size1). D 



Sec1ion 6.3 Complele Loop Checks 137 

The size of an atom is usually just a natural number. This is the case for the 

versions l and 2 of OSC in [SI]. In version I, the size-part of the condition is 

completely absent (equivalently, for all atoms A: size(A) = 0). Thus for every 

predicate symbol only d atoms may be selected. By Remark 6.3.2, this is for a 

given value of d the strongest possible version of OSC. 

In version 2, size(A) is the total number of variable, constant and function 

symbol occurrences in A. Example 6.3.7 shows an application of these 

versions. We now prove that OSC is complete if size returns natural numbers. 

THEOREM 6.3.3. Let d ;;:: 1 mu/ lei for every a/om A, size(A) E -. Then 

OSC(d,size) is complete. 

PROOF. Suppose that D =(Go=> G1 => ... )is an infinite SLD-derivation. Since 

D is infinite, at least one atom in Go has infinitely many selected 

descendants, hence the proof tree of this atom is infinite. Applying Konig's 

Lemma on this proof tree shows that it has an infinite branch, so there exists an 

infinite sequence of goals Gm0,Gm 1, •.• (0 :5: mo< m 1 < ... ) containing atoms 

Ao,A 1, ... such that for every i ~ 0: 

- Ai is the selected atom in Gmi' 

- Ai+! is (the further instantiated version of) an atom Ai+ 1 ', which is introduced 

in Gmi+ 1 as the result of resolving Ai, 

(The situation is similar to the one in Theorem 3.4.13, see Figure 3.4.4.) As we 

have only a finite number of predicate symbols, at least one predicate symbol p 

occurs in infinitely many atoms Ai, Let I = l i I rel(Ai) = p} and let i I,· .. ,id be the 

smallest d members of I. Let k = max { size(Ai} I I :5: j :5: d}. Two cases arise. 

l. For some n e I: size(An) > k. Then OSC(d,size) prunes D at Gmn (or earlier). 

2. For all n e I: size(An) :5: k. Then in the worst case (Ai)ie I consists of d atoms 

of size k, then d of size k-1, ... , then d of size I, then d of size 0. That 

makes (k+l)d atoms. So OSC(d,size) prunes D at the goal in which the 

(k+ l )d+ }lh atom of (Ai)ie I is selected ( or earlier). D 

In some cases a more complex size-function is convenient. We show that 

instead of the natural numbers, any well-quasi-ordered set can be used. (For a 

survey on well-quasi-ordered sets see [Kr]. They are frequently used in 

termination proofs for term rewriting systems, see e.g. [DJ].) 



138 Loop Checking in Partial Deduction Chapter6 

DEFINITION 6.3.4. 
A set U is well-quasi-ordered under a quasi-ordering ~ if every infinite sequence 

u1,u2, ... of elements of U contains a pair Uj and Uk such that j < k and Uj $ Uk- □ 

The folJowing lemma is a special case of a result well-known from the 

literature. For completeness sake we repeat the argument here, following [DJ]. 

LEMMA 6.3.5. Let Ube a well-quasi-ordered set under :? and let n :? 2 be a 

natural number. Then· every i1{fh1ite .vequence u1,u2, ... <?I" elements <?I" U 

contains a sub-sequence u;1, ... ,u;11 .Yueh that u;15u;2 5 ... 5 u;,,. 

PROOF. By induction on n. 

For n = 2, the claim corresponds to the definition of a well-quasi-ordered set. 

Assume that the claim holds for a certain value of n. Then we can define a 

function row such that for every infinite sequence S = (ui)ie I of elements of U, 

row(S) = (ui 1, ••• ,Uin) is a sub-sequence of S such that Uj 1$ ... :s;uin• Let 

end(row(S)) denote in. 

Let u1,u2, ... be an infinite sequence of elements of U. The required sub

sequence of length n+ 1 is constructed as follows. 

Define inductively jo = 0 and fork> 0, jk = end(row((ui)i>jk-l)). Consider 

the infinite sequence (Ujk)k>O• As U is well-quasi-ordered there exist p and q 

such that p < q and Ujp $ Ujq• The sequence row((ui)i>jp-l) is an increasing 

sequence of length n that ends in Ujp• Adding Ujq to this sequence yields the 

required increasing sequence of length n+ l. D 

THEOREM 6.3.6. Let d :? J and let U be a well-quasi-ordered set. if for every 

atom A,. size(A) E U, then OSC(d,size) i.Y complete. 

PROOF. Suppose that D = (Go => G 1 => .•. ) is an infinite SLD~derivation. Let I 

be defined as in Theorem 6.3.3. By Lemma 6.3.5 the sequence (size(Ai))iel 

contains an increasing sequence of length d+ 1. Let An 1, ••• ,An1.1+ 1 be the 

sequence of corresponding atoms. Then OSC(d,size) prunes D at the goal in 

which And+I is selected. D 

Version 3 of OSC in [S l] can serve as an example. There 

U = { (p,n) I p is a predicate symbol with arity k and n e -k} and 

(p,n) :s; (q,.m) if p = q and n Sm. Jexicographically. 



Section 6.3 Complete Loop Checks 139 

It is easy to see that for a language with finitely many predicate symbols, U 

is indeed well-quasi-ordered under 2:. Defining termsize as size was defined in 

version 2, the size of an atom A== p(t 1 , ••• ,lk) is defined as 

size(A) == (p,<termsize(t 1 ), ••• ,termsize(lk)> ). 

EXAMPLE 6.3. 7. 

This example shows the application of the three versions of OSC mentioned 

above. Throughout this example the depth-bound used is 1 (a poor choice in 

practice, but it serves to keep the example small). Consider the following 

variation of the reverse program that reverses a list of natural numbers (formed 

by the constant 0 and the successor-function s), but leaves out the Os in the 

reversed list. 

P = I reverse( [ ], x, x) ~- (CI), 

reverse( [0 Ix], y, z) ~ reverse(x, y, z). (C2), 

reverse([s(w) Ix], y, z) ~ reverse(x, [s(w) I y], z). (C3) }. 

Figure 6.3.1 shows where the three versions of OSC prune the SLD-tree of 

Pu{ ~reverse([O,s(0),s(s(0)) I x], [ ], y)}. 

~reverse([0,s(0),s(s(0)) I x], [ ], y) 

I (C2) 

~reverse([s(0),s(s(0)) I x], [ ], y) 

I (C3) 

~reverse([s(s(0)) I x], [s(0)], y) 

I (C3) 

~reverse(x, [s(s(0)),s(0)], y) 

version I prunes here 

version 2 prunes here 

!cl)' (C2)' \ (C3)' 

J.1[\y/[s(s(O)),s(O)] I x/[0 I x']l\ I x/[s(w') I x'] I 

D ~reverse(x', [s(s(0)),s(0)], y) ~reverse(x', [s(w'),s(s(0)),s(0)], y) 

i version 3 prunes here i 

FIGURE 6.3.1 



140 Loop Checking in Partial Deduction Chapter 6 

According to version I, the predicate 'reverse' may be selected only once. 

Thus it prunes the second goal. Version 2 does not prune the second goal, 

because its size is strictly smaller than that of the initial goal. But the second and 

third goal have the same size, so version 2 prunes the third goal. Version 3 uses 

a different size-function. According to this function the third goal is smaller than 

the second, because its first argument is smaller. So version 3 does not prune 

until the given part of the list has been completely processed: after that the first 

argument cannot shrink any more and as the second argument stays the same or 

grows, version 3 prunes there. □ 

The formulation of version 3 of OSC shows that it is always possible to 

incorporate the predicate symbol of an atom A in size(A) and to make elements 

with different predicate symbols incomparable. In this sense the requirement 

rel(Ai) = rel(Ak) in Definition 6.3.1 is superfluous. But normally it serves well 

to simplify the definitions of U, S and size. Moreover it highlights that the 

Ove 'SizeCheck takes the structure of the current goal into account, the feature 

thrt was missing in the simple depth-bound check. 

The question which depth-bound and size-function are optimal shall remain 

unanswered here. It is not even clear how to compare different choices, let alone 

how to identify the optimal choice. The above framework for OSC allows for a 

wide range of complete loop checks, from very simple to vay complex. But as 

is noted in both [BL] and [S 1, S2], in practice a complex loop check is not 

necessarily better than a simpler one. An explanation for this phenomenon is that 

even if the partial deduction process is not in a loop, the result of stopping it at a 

certain point can be better than the result of stopping it later. 

A related work 

A closely related approach is pursued in [BdSM]. First they give the following 

characterization of finite (unfinished) SLD-trees, using well-founded sets. 

DEFINITION 6.3.8. 

Given a completed SLD-tree T, we associate to each node (goal) G of Ta natural 

number (this number is needed to distinguish different occurrences of the same 

goal). The set of goal-occurrences in T is GT= { (G,i) I G is a goal of T and i is 



Section 6.3 Complete Loop Checks 141 

its associated number}. If the goal occurrence (G,i) is an ancestor of {G',j) in T 

then we write (G,i) >T (G',j). D 

DEFINITION 6.3.9. 

A strict partially ordered set U,>u is wel/Jounded if there is no infinite sequence 

u 1 ,u2, ... of elements of U such that Uj >u Uj+ 1 for all j ~ I. 

A wel/Jounded measure on a strict partially ordered set S,>s is a monotonic 

function from S,>s to a well-founded strict partially ordered set U,>u. 

An SLD-tree T is well-founded if there exists a well-founded measure on 

GT,>T- □ 

THEOREM 6.3.10 ([BdSM]). An SLD-tree Tis finite Uf" Tis well~f"ounded. □ 

This theorem can be used as follows. Given an SLD-tree T, we fix a well

founded set U,>u and a function f from GT to U. We obtain a finite pruned 

version T' of T by pruning each node (G,i) in T unless f(G',j) >u f(G,i), where 

(G',j) is the parent of (G,i), in T. T' itself is not well-founded w.r.t. U,>u, but 

removing the leaves from T' yields a well-founded tree w.r.t. U,>u. By 

Theorem 6.3.10 this tree is finite, and hence T' is finite. 

The only-if part of Theorem 6.3. IO implies that for each finite initial subtree 

T' of T, we can find suitable U,>u and f. Thus this method cannot help us by 

allowing only 'good' nodes to be pruned. 

We now compare this method with OSC( I ,size). First of all, this method is 

not a loop check: it allows us to prune two derivations that are variants of each 

other and that occur both in the complete tree at different places. This is caused 

by an important difference between the functions f and size: where size takes 

only the selected atom as input, f takes the whole goal and its associated 

number. 

A more technical difference is the use of well-quasi-ordered sets for OSC 

and well-founded sets here. Well-quasi-ordered sets seem to be more limited, as 

they allow only a finite number of incomparable elements. But they allow that 

distinct elements a and b are equivalent, i.e., a ::; b and b ::; a. One must realize 

that a derivation step G ⇒ H here requires a strict decrease: 'H < G', whereas 

OSC prohibits increase: 'not H ~ G'. Thus when G and H are incomparable, 



142 Loop Checking in Parti.il Deduction Chaptcr6 

they are pruned by thii- method, but not by OSC; the treatment of incomparable 

elements here is the same as the treatment of equivalent elements by OSC. 

In order to make it easier for the user to specify which nodes are to be 

pruned, at the same time providing more guidance to the user as to where 

pruning could give 'good' results, a more complex characteriu1tion of finite 

SLD-trees is provided. It allows us to divide nodes in a finite number of classes, 

and to compare two nodes only if they are in the same class. In practice, the 

class of a node is often based on the predicate symbol of the selected atom in it. 

However, the theory does not require this. In OSC, this practice is 'built-in' 

through the requirement 'rel(Ai) = rel(Ak)'. The measure associated to a class is 

usually some kind of term-size of the selected atom, like in OSC. 

A special class (Co) is added for those goals of which the user knows that 

they terminate or yield a goal in another class without pruning (typically goals of 

which the selected atom has a nonrecursive predicate symbol, and the empty 

goal). They are not compared to any other goal. 

DEFINITION 6.3.11. 

An SLD-tree T is subset-wise founded if there exists a finite number of sets 

Co, ... ,CN such that 

i)GT=u{Ck 10Sk$N}, 

ii) for each i = l, ... ,N, Ci,>T has a well-founded measure fi, and 

iii) for each branch D of T and for each non-leaf (G,i) E Co therein, there exists a 

node (G'j) in D such that (G,i) >T (G',j) and 

- either (G'j) e Ck for some k > 0, 

- or (G'j) is a leaf in T. D 

Notice that Co, ... ,CN need not be a partition of GT. Condition iii) ensures 

that goals in Co indeed terminate or lead to u goal in another class. This 

definition is still general enough to allow the following theorem. 

THEOREM 6.3,12 ([BdSM]), An SLD-tree T is finite Ul" T fa ,sub,\·et-wi,w, 

.founded. O 

Thus any complete loop check can still be described as an instance of this 

method. A more interesting question is whether it can be done in a 'natun1l' 



Section 6.3 Complete Loop Checks 143 

way. For example, it is suggested in [BdSM] to formulate the use of a 

combination of a criterion C(G) (e.g. one of the criteria suggested in [BL]) and a 

simple depth-bound d by using a single class with the measure 

{ 
d if dT(G) 2! d or C(G) · 

f(G,i) = G . , where dT(G) is the depth of G in T. 
d-dT( ) otherwise 

One could argue that this measure is not 'natural', because it depends on the 

location of a goal in the tree. 

Finally an even more complicated method is introduced in [BdSM], which 

we shall not discuss here in detail. The aim of this method is to facilitate the 

incorporation of a condition like · A1,; is the result of resolving Aj' in OSC. This 

condition is important: otherwise the partial deduction for a goal f--q ( ... ) 

producing a goal f--p( ... ),p( ... ) might be stopped when the second p-atom is 

selected, because it is 'similar' to the previously selected first p-atom. The 

definition is still general enough to define all pruned trees. 

In my opinion this method is only of practical interest for 'natural' choices 

of Co, ... ,CN and f,, ... .fN- Although the choice of a depth-bound as used in 

OSC will always remain arbitrary, it could be worthwhile to integrate the 

possibility of a depth-bound in this method as well. This could be done easily by 

allowing a derivation to 'disqbey' the required monotonicity a (fixed) finite 

number of times, as is done in OSC. 

In its full generality this method is too strong for practical purposes, but it 

might be of theoretical interest. A given loop check can always be seen as an 

instance of this method, but then the interesting question is how 'natural' this 

instance is. The answer to this question might be more informative than the 

answer to the question whether a given loop check can be seen as an instance of 

OSC, which is simply 'yes' or 'no'. 

Finally, the method of [BdSM] can be automated. When this has been done, 

implementing an instance of this method requires only that Co, ... ,CN and 

f1, ... .fN are typed in. For a 'natural' instance, this should take little effort. 

6.4. Conclusions 

Summarizing, we have the following results. 

- Loop prevention methods for partial deduction can be formulated within the 

framework of loop checking. 



144 Loop Checking in Partial Deduction Chapter6 

- However, loop prevention requires a complete, probably unsound loop 

check, whereas the use of a loop check at run-time requires a sound, probably 

incomplete loop check. This explains why loop checks proposed in the 

literature for use at run-time are not suitable for loop prevention. 

- Nontermination of the partial deduction procedure can be caused by the 

creation of an infinite SLD-tree, but also by never reaching the closedness 

condition. 'Loop prevention' as discussed here only deals with the first cause. 

- Sound loop checks can be added in a useful way to the partial deduction 

scheme, as outline in Section 6.2. This can result in the removal of loops 

from the generated program. 

- This addition of a sound loop check does not agree with the completion 

semantics and SLDNF-resolution, but with the perfect model semantics and 

SLS-resolution, as was explained in Chapter 5. 

- f<urther research on complete loop checks is required. In this respect, it is 

improtant that using the most selective (weakest) complete loop check not 

necessarily leads to the best possible generated program. 

- The completeness of a loop check can be proved by showing that it is an 

instance of the framework presented in [BdSM]. Once the method based on 

this framework is automated, 'natural' instances of it can be implemented 

easily. 

Acknowledgement 

This chapter benefitted from discussions with Kerima Benkerimi, John 

Gallagher, Jan Komorowski and Dan Sahlin. 



7. Towards the Implementation 
of Loop Checking 

FinalJy we shall pay attention to some practical aspects of loop checking. The 

considerations in this chapter could contribute to an efficient implementation of 

loop checks. Most loop checks essentially compare the goals in a derivation: a 

derivation is pruned if 'sufficiently similar' goals are detected. In theory a goal is 

usually compared with every previous goal in the derivation. This means that the 

number of comparisons is quadratic in the number of goals generated. In 

practice this might turn out to be too expensive. 

In Section 7. l we investigate how to alter such loop checks to obtain less 

expensive ones (notably such that the number of comparisons performed is 

linear in the number of goals generated) while retaining the soundness and 

completeness results of the original loop check. To this end we modify Van 

Gelder's [vGl] 'tortoise-and-hare' technique, where each goal is compared with 

only one of its ancestors (namely the goal 'halfway'). Unfortunately, this 

technique does not preserve'completeness. Here we propose to make a selection 

of goals (on account of their level in the SLD-tree) and to compare only selected 

goals. We prove that this solution preserves most completeness results when 

applied to the loop checks defined in Chapter 3. We study one selection in 

particular, namely the one that selects the goals of which the level in the SLD

tree is a triangular number. It appears that this selection renders the number of 

comparisons linear in the number of goals. 

The theory of loop checking has been studied in the literature (for an 

overview see Chapter 8), hut the practical implementation of such systems was 

hardly addressed (yet see [vGI]). In Section 7.2 we present two ways of 

implementing loop checks. The first implementation consists of a meta

interpreter. The second implementation avoids the extra layer of interpretation; 

instead it transforms the program given by the user to include loop checking. We 

give a global description of both implementations; more details about them can 

be found in [He]. We did not aim at writing maximally efficient implementa

tions: our implementations must be seen as prototypes of future systems. 

However, the measurements we performed on our implementations seem to sug

gest that it is indeed possible to implement loop checking in an efficient way. 

145 



146 Towards the Implementation of Loop Checking Chapter 7 

7.1. More Efficient Loop Checks 

Introduction 

Most loop checking mechanisms for logic programming proposed in the 

previous chapters and elsewhere in the literature are based on comparing goals: a 

derivation is pruned if 'sufficiently similar' goals are detected. In theory, a goal 

is usually compared with every previous goal in the derivation. 

Obviously the exact criterion for 'being sufficiently similar' is the essence of 

a loop check. This criterion, in addition to the two goals that are compared, may 

use some further information about the derivation, such as the mgu's used, the 

initial goal (for the loop checks based on resultants) and the ancestry relation 

among atoms (for the context checks). However, when too much extra 

information is used, one may doubt if the loop check really 'compares goals'. It 

is difficult, if at all possible, to give a precise limit on the amount and the nature 

of 'other information' that may be used by the criterion. Therefore we refrain 

from giving a fully exact definition, relying instead on the intuition of the reader. 

DEFINITION 7.1.1 (Full comparison loop checks). 

A.full-comparison loop check is a loop check of the form 

L(cp) = Initials({D ID= (Go ⇒c,.e, G1 ⇒ ... ⇒ Gk-I ⇒ck,ek Gk) 

and for some i < k cp(Gi,Gk,D) holds I), 

where cp(Gi,Gk,D) 'essentially compares Gi and Gk': cp(Gi,Gk,D) = true if and 

only if Gi and Gk 'are sufficiently similar'. 

The relation cp is called the loop checkin>: criterion of L(cp). □ 

The condition that cp 'essentially compares goals' implies for example that 

the effort of computing cp(Gi,Gk,D) is independent of IDI. Therefore the numbe1· 

of q>•computations (comparismu) performed by a loop check is a good measure 

of the overhead caused by the loop check, as was tacitly assumed in the 

beginning of this chapter. For full-comparison loop checks, the number of 

comparisons performed is quadratic in the number of goals generated. 

LEMMA 7.1.2 [Col]. On a .finite SLD-derivation D, a .fi,/l~comparison loop 

check performs½ IDl(IDI+ I) comparisons. 

PROOF. Obvious. □ 



Section 7.1 More Effkicnl Loop Checks 147 

An interpreter equipped with a full-comparison loop check might not be 

very useful in practice: the longer a derivation gets, the more time is spent on 

loop checking instead of generating new goals. For a practical loop check, the 

number of comparisons should be at most linear in the number of goals 

generated. 

We discuss in this section two methods for adapting existing loop checks to 

meet this requirement. Both methods describe which carefully selected pairs of 

goals are to be compared, using the loop checking criterion of the original loop 

check. For the new loop checks thus obtained we investigate the soundness, 

completeness and the number of comparisons performed (relative to the number 

of goals generated). 

The first method, originally proposed by Van Gelder [vGI], is called the 

'tortoise-and-hare technique'. Roughly speaking, this method compares every 

newly generated goal in a derivation with only one ancestor, namely the goal that 

is currently 'halfway' in the derivation. In this way the number of comparisons 

performed is clearly equal to the number of goals generated. Unfortunately, this 

construction does not preserve completeness in general. 

Then two other closely related techniques are introduced. In both methods 

an (infinite) number of 'checkpoints' is selected; then every goal that is at such a 

checkpoint (on account of its level in the SLD-derivation or -tree) is compared 

with 

- every previous goal ('single selected' loop checks), or 

- the previous goals at checkpoints ('double selected' loop checks). 

The use of single selected loop checks is already suggested in [Co 1 ]. It appears 

that the soundness and (in most cases) completeness of selected loop checks is 

independent of the selection. 

The 'density' of the selection determines the efficiency of a selected loop 

check. The original full-comparison loop check can be described as the selected 

loop check for which every goal is selected as a checkpoint, which is the most 

dense selection possible. A 'linear' loop check is obtained if the increasing 

number of comparisons at the checkpoints is compensated by a decreasing 

density of the occurrence of checkpoints among other goals: the further the 

derivation is developed, the more comparisons are performed at a checkpoint, 

but the less checkpoints occur. 



148 Towards the lmplcmcntalion of Loop Checking Chapter7 

In [Col], Covington argues informally that a single selected loop check 

with a selection of the form {n,n2,n3, ... } (for some constant n > 1) is linear. At 

the end of this section we prove in detail that for a double selected loop check 

this effect is obtained with the selection t½ i(i+ I) I i e -} (the initial goal is 

defined to be at level 0). So for single and double selected loop checks, an 

appropriate selection renders the number of comparisons performed linear in the 

number of goals generated. 

The tortoise-and-hare technique 

A first attempt to reduce the number of comparisons performed by a loop check 

is presented in [vGl]. There every goal Gk is compared with exactly one 

previous goal, namely the goal Gkt2 (G(k-1 )/2 if k is odd) 'halfway' the 

derivation. The name of the method originates from the technique used to keep 

track of the goals Gk and Gk/2 in the derivation: a fast (every derivation step) 

moving pointer (the hare) points at the 'current' goal Gk, a slow (every other 

stepi moving pointer (the tortoise) points at the goal Gk/2 'halfway'. We now 

formalize this technique. 

DEFINITION 7.1.3 (Tortoise-and-hare technique). 

Let q> be a loop checking criterion. The tortoise-and-hare loop check of q> is the 

loop check Vh( q>) = Initials( { D I D = ( Go =>c 1,e I Gt => ... ⇒ Gk-I =>ck,8k Gk) 

and for some k > 0: (k = 2i or k = 2i+ l) and q>(Gi,Gk,D) holds}). D 

The following theorem is an immediate consequence of the previous 

definitions. 

THEOREM 7.1.4 (Relative strength and soundness of Vh). 

Let q, be a loop checking criterion. 

i) 4 q,) is stronger than Lfh( q,). 

ii) If 4 q,) is weakly sound (.fmmd, shortening) then Lfh( q,) i.f weakly sound 

(sound, shortening). 

PROOF. i) is obvious. 

ii) follows from i) and the Relative Strength Theorem 2.2.12. D 



Section 7.1 More Efficient Loop Checks 149 

Van Gelder justifies the use of the tortoise-and-hare technique by the 

observation that due to the use of the leftmost selection rule and the fixed order 

of clauses in PROLOG every loop must have a fixed length, say d (assuming no 

side-effects occur). As the distance between the tortoise and the hare 

continuously increases by l, the loop is detected (after the tortoise enters the 

looping part of the derivation) as soon as the distance between the tortoise and 

the hare is a multiple of d. 

In [ vG I] a looping derivation is not pruned automatically: it is suggested 

that control should be returned to the user, once a loop is detected. (Which 

makes sense there: the loop check that is proposed in [vGI], and to which the 

tortoise-and-hare technique is added, is not even weakly sound, so it is up to the 

user to determine whether the derivation is really in a loop.) In our setting, a 

pruned goal is handled as a failed one, giving rise to backtracking. As is implicit 

in Definition 7 .1.3 (and explicitly mentioned in [ vGI ]), during backtracking the 

tortoise and hare motions are simply 'undone'. 

This entails however that the fixed order of clauses in PROLOG cannot be 

relevant for a demonstration of the completeness of the method: no distinction is 

made between the application of a clause as a first attempt to solve a goal, or its 

application as a later attempt after backtracking from previous (failed) attempts. 

Indeed the tortoise-and-hare technique does not preserve completeness, as the 

following counterexample shows. 

COUNTEREXAMPLE 7.1.5 (Incompleteness of Vh). 

Let p = { p f- p. p f- q. 

qf-p. qf-q.}. 

Let q> be a loop checking criterion such that for every derivation D: cp( f-p,f-p,D) 

= q>(f-q,f-q,D) = true and q>(f-p,f-q,D) = q>(f-q,f-p,D) = false (as one would 

expect). Let T be the SLD-tree of Pu{ ~p} pruned by Uh(cp). 

CLAIM. T contains one infinite branch, so Uh(cp) is incomplete for P. 

PROOF. Let G be a goal in T that is not pruned. We prove that G has two 

immediate descendants, of which only one is pruned. Regardless of G being 

f-P or f-q, G has two descendants G 1 = f-p and Gz = f-q, which are both 

compared with the same 'halfway' goal H. If H = f-P, then G1 is pruned but 

G2 is not; if H = f-q, then Gz is pruned but GI is not. □ 



150 Towards the Implementation of Loop Checking Chapter 7 

Selected loop checks 

An easy generalization of Counterexample 7 .1.5 shows that a loop check cannot 

be complete if there exists a maximum N such that every goal is compared with 

at most N other goals (at least not if N is smaller than the number of ground 

atoms in the language). Therefore we adopt a different strategy here: an infinite 

selection S of natural numbers is made, and a pair of goals (Gi,Gk) is compared 

if and only if 

- i < k and k e S (single selected loop checks), respectively 

- i < k and i, k e S (double selected loop checks). 

DEFINITION 7.1.6 (Selected loop checks). 

Let q> be a loop checking criterion and let S be an infinite subset of-. 

The single selected loop check of q> and S is the loop check 

L1(q>,S) = Initials({D ID= (Go ⇒c1,81 G1 ⇒ ... ⇒ Gk-I ⇒ck,9k Gk) 

and for some k e S and i < k: q>(Gi,Gk,D) holds}). 

The double selected loop check of ~I) dllU ~ If: ,h,. •~op ch~rk 

L2(q>,S) = lnitials({D ID= (Go ⇒c1,01 G1 => ... ⇒ Gk-I =>ck,ek Gk) 

- and for some i, k e S: i < k and q>(Gi,Gk,D) holds}). 

Sis called the selection of Ll(q,,S) or L2(q,,S). □ 

Clearly, the number of comparisons performed by a selected loop check 

depends on the selection S. For S = -, we obtain the full-comparison loop 

checks again, for which the number of comparisons is quadratic in the number 

of goals generated. In the next subsection, the efficiency of double selected loop 

checks with S = { ½ i(i+ I) I i e - } is studied in detail. For now, we do not 

consider any specific selection, but rather study the soundness and completeness 

of selected loop checks in general. 

LEMMA 7.1.7 (Relative strength of selected loop checks). 

Let q, be a loop checking criterion anti let S 1 anti S2 be .selections. 

Then, i) L1 ( q,,S 1) is strmiger than L2( q,,S J) and 

~f" S1 ;;;i S2 then ii) L1(q>,S1) is stronger than L'(cp,S2) anti 

iii) O(q,,S1) is stronger than L2(q>,S2). 

PROOF. Obvious. □ 



Section 7.1 More Efficient Loop Checks 151 

In particular, the full-comparison loop check L(q>) = L1(q>,-) = L2(q>,-) is 

stronger than any selected loop check using the criterion q>. This enables us to 

derive the soundness of a selected loop check from the soundness of the 

corresponding full-comparison loop check. 

THEOREM 7.1.8 (Soundness of selection). Let <p be a loop checking 

criterion. ff L( <p) is weakly sound (sound, shortening) then for every 

selection S: L1 ( <p,S) and L2( <p,S) are weakly sound (sound, shortening). 

PROOF. By Lemma 7.1.7 and the Relative Strength Theorem 2.2.12. D 

Combining this theorem with the soundness results for the simple loop 

checks presented in Chapter 3 yields the following results. 

COROLLARY 7.1.9. For every selection used, 

i) the (single and double) selected equality, subsumption and context checks 

based on goals are weakly sound and 

ii) the (single and double) selected equality, subsumption and context 

checks based on re.~ultants are shortening. 

PROOF. By Equality Soundness Corollary 3.2.7, Subsumption Soundness 

Corollary 3.3.8, Context Soundness Corollary 3.4.7 and Theorem 7.1.8. D 

Unfortunately, an equally general completeness result cannot be obtained 

using Lemma 7.1.7. Instead, generalizing the completeness results from the 

simple loop checks of Chapter 3 to the corresponding selected loop checks 

requires a detailed analysis of the completeness proofs in Chapter 3. (However, 

by Lemma 7 .1.7 it suffices to consider only double selected loop checks.) 

For the equality checks and subsumption checks, this generalization is 

straightforward. By definition, a full-comparison loop check is complete if every 

'possible' infinite derivation (given an initial goal and a program satisfying the 

restrictions) contains two goals that 'are sufficiently similar' for the loop check. 

But in the relevant proofs in Chapter 3 (notably Theorem 3.2. I 8, Lemma 3.3.16 

and Theorem 3.3.20) a stronger result is proved: every infinite sequence of 

unrelated goals contains two 'similar' goals. Although in Chapter 3 this 

sequence is always taken { Gi I i E -l, the sequence { Gi I i E S} can be used for 

any selection S. Hence the completeness results for equality and subsumption 



152 Towards the Implementation of Loop Checking Chapter 7 

checks (Corol1aries 3.2.19, 3.3.9, 3.3.18 and 3.3.21) generalize immediately to 

selected equality and subsumption checks. 

THE<>REM 7. 1.10 (Con.,aeteness of selected equality and suhsumption checb). 

i) All (single and double) selected equality checks are complete w.r.t. the 

leftmost selection rule.for junction:free restricted programs. 

ii) All (single and double) selected .,·uhsumption checks itre complete w.r.t. 

the leftmost selection ruleforjimction:(ree restricted programs. 

iii) All (single and double) .~elected subsumption checks are complete for 

function:free nvi programs. 

iv) All (single and double) selected sub.mmption checks are complete.for 

.function:free sw> programs. 

PROOF. By the arguments given above. D 

For the context checks, the generalization of some of the completeness 

resr Its is less straightforward, but still possible . 

.... HEOREM 7.1.11 (Completeness of selected context checks). 

All (single and double) selected context checks are complete for function

free nvi programs andfor.function:f'ree svo programs. 

PROOF. Let S be a selection. In the completeness proofs for the full-comparison 

context checks (Theorems 3.4.13 and 3.4.15), an infinite sequence of goals 

Gm0, Gm I' ... (0 ~ mo< m 1 < ... ) is constructed in which 'similar' goals are 

shown to occur. The selection M = (mo< m1 < ... ) can be adapted to the 

selection S =(so< s1 < ... ):we define the new selection T =(to< t1 < ... )by: 

- to= SO, 

- li = min Is e S I 3 m e M such thatti-t ~ m < s I for i> 0. 

As in the sequence G010, Gm 1, ... , in the goals of the sequence G10' Gt 1, 

... atoms Ao, A1, ... occur such that Ai+t is the result (directly or indirectly) of 

resolving Ai. The 'interleaving' with the selection M is needed to ensure that 

Ai+ 1 is not just an instantiated version of Ai, but indeed the result of at least one 

resolution step performed on Ai. (This follows from the observation that Ai is 

the selected atom in G01i; so in Theorem 3.4.13 exactly one resolution step on 

Ai occurs between Ai and Ai+I, whereas here it can be more than one step.) 



Section 7.1 More Efficient Loor Checks 153 

In the rest of the proof of Theorem 3.4.13 (and 3.4.15), the sequence M 

can be replaced by T without any difficulty. Therefore the double selected CVR 

check using the selection T is complete for function-free nvi programs and for 

function-free svo programs. By Lemma 7.1.7 (T ~ S) and the Relative Strength 

Theorem 2.2.12, the same holds for all (single and double) selected context 

checks using the selection S. □ 

Surprisingly, selected context checks are not necessarily complete w.r.t. the 

leftmost selection rule for function-free restricted programs, as the following 

counterexample shows. 

COUNTEREXAMPLE 7.1.12. 

Let P = { p(y) +- q(x),p(x). 

q(l)+-. }, 

and let Go = +-q(xo),p(xo). 

Recall Definition 3.4.1 (the CIG check) and consider the following infinite SLD

derivation D = (Go=>c 1,e1 G1 => ... )of Pv{Go} via the leftmost selection rule: 

+-q(xo),p(xo) 

I q(O+-

♦ {xo/1} 

+-p(l) 

+ 

p(y1)+-q(x1 ),p(x 1) 

{y1/l} 

P(Y2)+-q(x2),p(x2) 

{y2/l} 

D is not pruned by the single selected 

CIG check using the selection S = 
{ 2i I i e - } . First compare G2j = 

+-q(xj),p(xj) with +-p{ l ). But p(xj) is 

not an instance of p( l ). Thus we 

compare G2j with G2i = +-q(xi),p(xi) 

(i < j). q(Xj) is not the result of 

resolving q(xi), so we are forced to 

take A = p(Xi) and x/xj E t. Then 

82i+ 1 = I xj/ I } and p(Xj) is indeed the 

result of resolving p( I) = p(xi)82i+ 1 

in G2i+ 1 • But t and 82i+t ... 82j 

should agree on Xi, which they do 

not. □ 

This counterexample also shows that it is generally impossible to apply the 

Generalization Theorem 4.2.1 on completeness results for selected loop checks 



154 Towards the hnr,lc111cnta1ion of Loop Checking Chaplet 7 

(namely: the program used in the counterexample is un nr-extended version of 

the program { p(y) +- p{x)} and the selected context checks are complete for the 

programs {p(y) +- p(x)} and ( p(y} +- p(l) }). The explanation is obviously that 

selected loop checks are not safe for initialization and detailing (see Definitions 

4.1.6 and 4.1. 7), as these operations affect the goals that are selected for 

comparison. 

Nevertheless we can conclude that in most cases a selected loop check can 

be used instead of the corresponding full-comparison loop check, without losing 

its benefits such as soundness and completeness. In the next subsection we take 

a more constructive attitude towards selected loop checks and we investigate 

how much is gained by using them. 

Triangular loop checks: a case study 

This subsection presents a detailed study of double selected loop checks with the 

selection S = t½ i(i+ 1) I i E -} . Numbers of the form ½ i(i+ I) are usually called 

triangular numbers, therefore we call such loop checks triangular loop ch:~l:::. 

In this section the loop checking criterion is not relevant, as we focus solely on 

the number of comparisons performed. 

THEOREM 7.l.13. Lei D be a .finite SLD-derivation. The number of 

compttri:rons performed on D by,; triangular loop check is cit mrw IDI. 

PROOF. Let O = ( Oo ==>c1,81 G1 ~ ... ==> Gk-1 ~Ck,0k Ok). For every triangular 

number n = ½ i(i+ 1) (0 S n 5 k), the goal On is compared to i previous g<>als. 

We may assume that k is a triangular. rtumber, say k = ½ jU+ I). The number of 

comparisons performed on D is then ! i = ½ jU+ I) == k = IOI. □ 
i=O 

The foJiowing arrangement of goals may help the intuition: 

Oo: G1 G2 04 01 

03 Gs Os 
06 09 

Oto 

Every column co11Utin!i one 'triungulal" goal G (a 

goal with a tl'iungular number as its index; this 

index is exactly the level of the goal). The number 

of goals irt the column of G equals the number of 

columns preceding it (for G ~ Go), which in turn 

equal!, the number of comparb1ons performed at 0, 



Section 7.1 More Efficient Loop Checks 155 

So the presence of G7, G8, G9 and G10 'justifies' the four comparisons 

performed at G10. This arrangement of goals also explains the word 'triangular'. 

When SLD-trees are considered, the situation gets more complicated: two 

goals Gto and G10' may have common ancestors G7, Gg and G9; these five 

goals cannot completely justify the eight comparisons performed at G 10 and 

G10'. We now show that for SLD-trees with a constant (average) branching 

factor and containing a 'reasonable' number of goals (say :5 1010), the number 

of comparisons performed is less than five times the number of goals generated. 

THEOREM 7.1.14. Let T consist <f the Levels O, ... ,k <fan SLD-tree, have a 

constant averaRe branchinR factor hand contain 11 :f JQIO w){lfs. Then a 

triangular loop check pe,forms less than 5-n comparisons on T. 

PROOF. We may assume that b > 1 (for b = I (orb< I), see Theorem 7.1.13) 

and that the depth of T is a triangular number, say k = f j(i+ I). Then for O :5 m 

:5 k, the number of 

- goals at level m 

- goals in T 

- comparisons at level m = ½ i(i+ 1) 

- comparisons in T 

We consider two cases. 

CASE I: b.i-1 :5 5. 

is b 111 , 

k . 1,k+I I Ill 
is I b1 = ---- = n :5 IO , 

i=<l h-1 

is i-b111 , 

is Ii-bl/2-i(i+I)_ 
i=I 

In this case the number of goals at level½ i(i+ 1) ( I :5 i :5 j) can be at most 5 

times the number of goals at level½ i(i-1 )+I. Therefore the goals between level 

½ i(i-1 )+ I and level½ i(i+ I) justify at least one fifth of the comparisons at level 

½i(i+l). Formally, !,i-bl/2-i(i+l) = !,bi-l.i-bl/2-i(i-l)+l :5 hi-I. !,i-bl/2-i(i-l)+I :5 
i=I i=I i=I . . . . k 

5. I ±bl/2-i(i-l)+l :s; 5. I ±bl/2-i(i-l)+r = 5. 2,bl < Sn. 
i=I r=I i=I r=I l=I 

The final equation is justified by the observation that every level-number I 

( I :5 I :5 k) can be written as / = t+r, where l = ~ i(i-1) is the largest triangular 

number smaller than Land I :5 r :5 i. 



156 Towards the Implementation of Loop Checking Chapter 7 

CASE 2: b.i-1 > 5. 

In this case the total number of comparisons can be estimated at ¾ times the 

number of comparisons at the last level, since the number of comparisons at 

level fj(i+l) is j-bl/2-jU+l) > b.i-(j-l)·bl/2-j(j-l) > 5 times the number of 

comparisons at level½ j(j-1) (which is in turn > 5 times the number of 

comparisons at level ½-u- I )(j-2); I + ¼ + ds + . . . = ¾). . 
Th f the number of comparisons in T 5 J·bk 5 j·bk·(b-1) 

ere ore . = - • - - - • == 
the number of goals in T 4 n - 4 (bk+LJ) 

sj~ I) . (Notice that b.i-1 > 5 implies bk+ I > l 25 » I.) 

Finally k = ij(j+l) and hk~~I ::; IQIO implies j::; ✓- ~+2-hJog(I010(b-

l))) -½- A numeric analysis 1 of the function S(~l)·(✓- ~ +2-hJog( I010(b-I )) 

-½) shows that its maximum is almost 5 (== 4.95 for b == 3.21 ). 

D 

Finally we consider SLD-trees which do not have a constant average 

branching factor, but exhibit a kind of 'worst case' behaviour. In these trees 

nnly the parents of the 'triangular' goals have more than one descendant. More 

formally, if bk is the number of descendants of a goal at level k (k ~ 0), then 

{ 
b if k = -

2

1 j(j+l)-1 (j > 0) 
bk= 

1 otherwise, 

for some constant branching factor b. 

THEOREM 7.1.15. Let T consist <l the levels O, ... ,k <la 'worst case' SLD

tree with branching factor b, and contain n goals. Then a triangular loop 

check performs less than b·n comparisons on T. Moreover, {f n ~ 1010, 

then a triangular loop check pe,forms less than 6-n cmnpari~mis on T. 

PROOF. Let k = ½j(j+l). The number of goals at level k is then nbk = b.i. Hence 
i=O 

the number of comparisons performed at level k is j-b.i. Each of the levels 

½j(j-1)+1, ... , ½j(i+l)-1 consists of hi-I goals, giving (i-1)-hi-l goals together. 

So for the j-bi comparisons at level k, there are (j-1 )-b.i-l+bi 'justifying' goals, 

1 Performed using the 'Maple' package, developed hy the Symbolic Computation Group of the 

University of Waterloo, Ontario, Canada. 



Section 7.1 More Etfo.:ienl Loop Checks 157 

j·b 
giving ._ 1 +b comparisons per goal. 

J U-1 )·b j·b 
It is easy to sh~w that b > I implies U-l )-l+b < j-l+b' so the overall ratio 

J-b 
in _Tb is less than j-l +b comparisons per goal. First notice that b > l implies 

J· 
j- l +b < b, which proves the first claim. 

Now n ~ 1010 implies b.i < 1010, soj < hfog(JOIO). A numeric analysis of 
hlog(JOIO)·b 

the function hlog(JOI0)-l+b shows that its maximum is almost 6 (-= 5.76 for 

b"" 21 ), which proves the second claim. D 

Conclusions 

The obvious conclusion is that the number of comparisons performed by a 

triangular loop check is (almost) linear in the number of goals generated. For 

any realistic number of generated goals n, the number of comparisons performed 

is at most 6·n. So triangular loop checks satisfy the requirement stated in the 

introduction. Moreover, unlike the tortoise-and-hare technique, which was 

motivated by the same requirement, the 'triangular' technique retains the 

completeness of the corresponding full-comparison loop checks (with the 

exception of Counterexample 7 .1.12). 

A minor disadvantage of the selection technique (compared to the tortoise

and-hare technique) might be that the comparisons are not distributed smoothly 

over the goals, which makes the timing of the interpreter less predictable. 

An important question is the choice of the selection: the sparser the selection 

is, the more efficient the resulting loop check, relative to the number <d' goals 

generated. However, using a sparse selection is not necessarily the best thing to 

do: loops are detected later, so the overall effort of generating goals and loop 

checking may well become larger than with a less sparse selection. The optimal 

choice will definitely depend on the program that is interpreted. We shall briefly 

return to this subject at the end of this chapter. 

In practice, it might pay off to postpone the invocation of a loop check until 

a loop is suspected, which is the case when a derivation is growing 'unusually 

long'. This technique can be formalized by using selections S = {i +NI i E -1, 
or S = t½ i(i+l) +NI i E -I for some 'large' number N. Obviously using such 

a selection does not affect the completeness of the loop check. 



158 Towards the Implementation of Loop Checking Chapter 7 

7 .2. Two Simple Implementations of Loop Checking 

In this section we give a global description of two simple implementations of 

loop checking (for more details we refer to [He]). The first implementation has 

the form of a meta-interpreter. Every part of the computation process, deriving 

new goals as well as loop checking, is programmed explicitly in C-PROLOG. 

This means that the program is slow, but allows to measure the time spent on 

loop checking separately from the time spent on finding the next goal. 

In the second, more efficient implementation of loop checking the program 

given by the user is transformed into a new program that includes loop 

checking. Thus the additional layer of interpretation is removed. The search for 

applicable clauses and unification is now done by the underlying C-PROLOG 

system, but the computations performed for the loop check are still explicit. This 

inequality between the efficiency of generating the next goal and loop checking 

makes the implementation less suitable for judging the relative cost of loop 

checking. 

Finally the results obtained from the two implementations are discussed. We 

address the question 'How costly is loop checking?'. This question suggests a 

comparison between existing PROLOG systems and an equally efficient system 

with loop checking. Although we did not build such an efficient implementation, 

our results indicate that it is indeed feasible to implement loop checking. But we 

should point out here that this conclusion relies on the assumption that such 

efficient implementations distribute their time similar to our implementations 

(that is: mostly on manipulating substitutions). 

Of course some loop checks are more demanding than others. So we also 

give a comparison between the various loop checks that we implemented. 

A loop checking meta-interpreter 

A meta-interpreter seems to be the easiest way to incorporate loop checking in a 

logic programming interpreter. Due to the extra layer of interpretation, the 

resulting implementation is not very efficient. This section contains only a 

description of the meta-intetpreter; a discussion of the results obtained from it is 

deferred to the end of this section. 

First we desctibe how the meta-interpreter is Llsed. The user adds his 

program to the meta~interpreter (as usual, the program must not use p1-edicates 



Section 7.2 Two Simple Implementations of Loop Checking 159 

defined by the meta-interpreter) and presents a goal ~sol veI {Check, Goal) to 

it. The representation of the program and Goa 1 is discussed later. 

The parameter Check specifies the loop check that is to be used. Currently 

we have implemented the equality and subsumption checks (list-versions) 

described in Chapter 3 (evg, eig, evr, eir, svg, sig, svr, sir) and their 

single triangular (***,st) and double triangular ( * * *, dt) variants described in 

the previous section. Furthermore the user can choose not to use any loop check 

by specifying empty or non. The difference between the two is that empty 

collects data like all other loop checks (without usin& it), whereas non does not 

collect any data. 

The procedure solve I merely initializes the data-structures and counters. 

Then an attempt to solve the goal is made. This attempt stops at every leaf of the 

(pruned) SLD-tree, giving the derivation leading to that leaf, the counters and, in 

case of a success leaf, the computed answer. The user can use backtracking of 

the underlying PROLOG-interpreter to find all leaves of the SLD-tree. 

The main procedure of the meta-interpreter is solve. It has eight input 

parameters and one output parameter. When the derivation Go =>c I ,e I G 1 

⇒ ... ⇒ Gk-I =>ck,ek Gk ·has been constructed, these parameters have the 

following meaning. 

Input for constructing the derivation: 

Goal : Gk (also used for loop checking), 

Subst 

Lastvar 

: 01 ... ek, restricted to the variables of Go, 

: the number of variables used (needed for standardizing apa1t). 

Input for loop checking: 

Check : the loop check that is used, 

Result : Go01 ... 0k (so a result is the left-hand side of a resultant), 

ListGoal : [Gk-t,Gk-2,··•,Go], 

ListResult : [Go01 ... 0k-l,Go01 ... 0k-2,- .. ,Go], 

Depth : k. 

When a double triangular loop check is used, ListGoal and ListResult 

contain only the goals (results) with a triangular index. When non is used, these 

lists are not maintained. 



160 Towards the Implementation of Loop Checking Chapter? 

Output (provided that a finite derivation is generated): 

Derivation : a derivation [Gk+I, Gk+2, ... , G0 , endmark], 

where endmark = true means Gn = □, 
endmark = prune means Gn is pruned and 

endmark = [ false I ... J means Gn is failed. 

The four clauses for solve correspond to the four possible situations for the 

current goal: respectively success leaf, failure leaf, not a leaf and pruned leaf. 

solve([],_,_,_,_,_,_,_, [true]) :- ! . 

solve([falselGoal),_,_,_,_,_,_,_, []) :- ! . 

/* success leaf*/ 

/* failed leaf*/ 

solve(Goal,Subst,LastVar,Check,Result,ListGoal,ListResult, 

Depth, [NewGoallDerivation]) :

check(Check,Goal,Result,ListGoal,ListResult,Depth, 

NewListGoal,NewListResult), 

! , /* no loop has been detected: continued branch*/ 

{ind_new_goal_result(Goal,Result,Subst,LastVar, 

NewGoal,NewResult,NewSubst,NewLastVar), 

NewDepth is Dept_h + 1, 

solve(NewGoal,NewSubst,NewLastVar,Check,NewResult, 

NewListGoal,NewListResult,NewDepth,Derivation). 

solve([AIGoal],_,_,_,_,_,_,_, [prune])./* a loop: pruned leaf*/ 

The first clause is obvious. The second clause deals with the case 

that the previous goal is a failed leaf. This is detected by the procedure 

find_new_goal_result, as it cannot find a clause of which the head unifies 

with the selected (leftmost) atom. It then replaces this atom by false. Thus the 

next goal of such a derivation is a goal of which the leftmost atom is false. We 

use this goal as the endmark of the derivation. 

The third clause invokes the loop check. If check succeeds, i.e. if no loop 

is detected, then find_new_goal_result computes one derivation step, giving 

the new goal to be solved. The list of p,-evious goals and results is updated by 

check: if a double selected loop check is used, then only selected goals and 

results are included in those lists. If non is used, no updating is done at all. 

If the loop check in the third clause fails, a loop has been detected and the 

fourth clause applies. If the user does not want the interpreter to stop at failed 



Section 7.2 Two Simple Implementations of Loop Checking 161 

leaves, he can simply add fa i 1 after the cut in the second clause, enforcing 

automatic backtracking. Similarly, if the user does not want the interpreter to 

signal pruned leaves, he can omit the fourth clause of solve. 

The procedure check selects the appropriate loop checking procedure and 

calls it with the relevant parameters. Some typical clauses are: 

check(non,_,_,ListGoal,ListResult,_,ListGoal,ListResultl. 

check(empty,Goal,Result,ListGoal,ListResult,_, 

[Goal IListGoal], [Result IListResult]). 

check(evr,Goal,Result,ListGoal,ListResult,_, 

[Goal I ListGoal J, [Result I ListResult l) 

check_EVR(Goal,Result,ListGoal,ListResult). 

The triangular loop checks are treated by four clauses, two for single and 

two for double triangular loop checks. We give here the clauses for the double 

triangular loop checks. 

check((Full,dt) ,Goal,R~sult,ListGoal,ListResult,Depth, 

[GoallListGoal], [ResultlListResult]) 

I is sqrt(l+B*Depth) ,integer(!),!, 

/* the check is (***,dt) and Depth is triangular*/ 

check(Full,Goal,Result,ListGoal,ListResult,_,_,_). 

check((Full,dt) ,_,_,ListGoal,ListResult,_,ListGoal,ListResult). 

/*the check is (***,dt) but Depth is not triangular*/ 

First it is checked if Depth is a triangular number (it is easy to show that d is 

triangular if and only if ✓ l +8d is an integer). If this is the case then the first 

clause applies; the lists of goals and results are updated and the corresponding 

full-comparison check is invoked. If not, no check is performed and the lists of 

goals and results remain unchanged. 

The meta-interpreter handles several objects occurring in SLD-derivations, 

like variables, goals and substitutions. Here we describe how all such items are 

represented in it. 

In simple meta-interpreters, like the well-known 'vanilla'-interpreter, object 

variables are represented by variables of the meta-interpreter (meta-variables). In 



162 Towards the Jmplcmcntalion of Loop Checking Chapter 7 

this way, unification and the subsequent application of the unifier can be done 

implicitly by the underlying PROLOG-interpretcr. For our purposes this 

approach is difficult to use (although it can be done): a variable that is bound by 

solving the current goal must remain a variable in the list of previous goals. 

Therefore an object-variable A is represented by the meta-constant $A. 

Consequently, the user must put a $-sign in front of all variables in the program 

and the goal. Furthermore, unification and the renaming of program clauses 

must be done explicitly by the meta-interpreter (hence the need for LastVar). 

Object atoms become terms in the meta-interpreter (an object-predicate is a 

meta-function) and goals are represented as lists of (object-)atoms. The initial 

goal that is specified by the user must also be represented as a list, but the bodies 

of program clauses have the usual shape: they are transformed into lists by the 

meta-interpreter. A substitution {x1/t1, ... ,x1/t0 } is represented by the list of 

bindings [eq(x1/t1), ... ,eq(x0/t0 )]. 

Compiling loop checks into the pr<wram 

In this section we present a more efficient implementation of loop checking. The 

program given by the user is transformed into a new program. Interpreting this 

new program by means of an ordinary PROLOG-interpreter has the same effect 

as using a loop-checked (meta-)interpreter. The trnnsformation, which can be 

done automatically, consists of four parts. 

1. A caJI to the predicate loop_check is added as the first literal in the body of 

every clause. 

2. Extra parameters are added to every user-defined predicate. These parameters 

are needed to pass relevant data to the loop_check procedure. 

3. A claui;e is added to augment the query specified by the user (with only the 

'normal' parameters aqd the loop check to be used) with the proper 

initializations of the new parameters. for simplicity it is assumed that the 

user's query wUI always consist of 011(! mom of a.fixed predit"te. 

4. The prpcedure loop_checJ< and its auxiliary procedures are added to the 

progr1;1m. 

We shtlll now treat these modifications in more detail. 

The call to the predicate loop_check that is i.1dded to a clause C checks 

whether, given the preceding derivation, applying C would lead to a loop. If 

indeed a loop is detected then the call foils (with the side-effect that the user is 



Section 7.2 Two Simple Implcmcntalions of Loop Checking 163 

informed), thus preventing C to be used. If no loop is detected then the call 

succeeds and the output parameters are filled with updated versions of the 

required data. A special case occurs when an empty goal (a solution) is found: 

the user is informed and loop checking is not necessary. 

The required data strongly resemble the data used hy check in the meta

interpreter, but there are some notable differences. 

l. The procedure check gets the current goal as an input parameter. When 

loop_check is called in a clause C, the current goal (i.e. the goal that would 

result from applying C) is assembled from the previous goal and the body of 

C. The current goal is returned in an output parameter. 

2. The counter Depth is updated by loop_check. The new value ts also 

returned in an output parameter. 

Thus loop_check has as input parameters: Check (the loop check), Body (the 

body of the clause), Goa 1 (the previous goal), Result (the current result), 

ListGoal, ListResult (as in check) and Depth (not yet updated, thus one less 

than in check). Its output parameters are CurrentGoal, NewListGoal, 

NewListResult and NewDepth. 

The procedure loop_check consists of the following three clauses, dealing 

with respectively the empty goal, no loop being detected and a loop being 

detected. Instantiating the output variables is only needed in the second case. 

loop_check(_, [), [HJ ,_,ListGoal,_,_,_,_,_,_) :-

!, /* a success leaf is reached: no loop check needed*/ 

nl, write('true'), nl, write([[] IListGoal]). 

loop_check(Check,Body, [HI Goal) ,Result,ListGoal,ListR~sult,Depth 

,CurrentGoal,NewListGoal,NewListResult,NewDepth) 

NewDepth is Depth+ 1, 

append(Body,Goal,CurrentGoal), 

check(Check,CurrentGoal,Result,ListGoal,ListResult, 

NewDepth,NewListGoal,NewListResult), 

! . /* no loop has been detected*/ 

loop_check (_,Body, [HI Goal],_, ListGoal, _, _, _, _, _, _) 

/* a loop has been detected: inform the user and fail. */ 

append(Body,Goal,CurrentGoal), 

nl, write('prune'J, nl, write([CurrentGoallListGoal]), 

!, fail. 



164 Towards the Implementation of Loop Checking Chapter 7 

The procedure check that is called in the second clause has exactly the same 

functionality as it has in the meta-interpreter, but due to a different representation 

of variables its clauses differ slightly. As there is only one level here, it is not 

possible to represent object-level variables by meta-level constants. But we must 

still avoid that a variable that is bound by solving the current goal is also bound 

in the list of previous goals (and results). To this end each goal (result) that is 

added to such a list is renamed first, using fresh variables (of course the same 

renaming is applied to a goal Gk and to the corresponding result Go81 ... 8k)- The 

following clause for check is a typical example (the second and third parameter 

of rename_var are used to hold intermediate substitutions). 

check(evr,Goal,Result,ListGoal,ListResult,_, 

[NewGoal I ListGoal], [NewResult I ListResult]) 

rename_var([ResultlGoal], [],_, [NewResultlNewGoal]), 

check_EVR(NewGoal,NewResult,ListGoal,ListResult). 

The literals specified by the user must pass the parameters needed for the 

hop check (Check, Goal, Result, ListGoal, ListResult and Depth). Except 

for Check, which remains unchanged, each literal must pass an input value 

(when it is selected) as well as an output value (when it is resolved) for these 

parameters. So a pair of each is added, except for Result: the application of the 

subsequent unifiers automatically changes the input value for Result into the 

output value for Result. 

Thus a clause h (Xl : - b1 Ci1 l , ... , bn Cin) is transformed to: 

h(X,Check,Goal,Result,ListGoal,ListResult,Depth, 

Goaln+1,ListGoaln+1,ListResultn+J,Depthn+1l 

loop_check (Check, [b1 (J'..1), ... , bn (J'..n l l, Goal, Result, ListGoal, 

ListResult,Depth,Goal1,ListGoal1,ListResult1,Depth1) 

b1 {J'..1,Check,Goal1,Resµlt,ListGoal 1,ListResult1,Depth1, 

Goal2,ListGoal2,ListResult2,Depth2), 

bn(J'..n,Check,Goaln,Result,ListGoaln,ListResultn,Depthn, 

Goaln+l • ListGo&ln+l • ListResultn+l • Depthn+l) . 



Section 7.2 Two Simple Implementations of Loop Checking 165 

Moreover, if h is the predicate that the user will use in the query, a clause is 

added to properly instantiate the input parameters: 

h (lS,, Check) : -

rename_var( [h(lS,)], [] ,_,RenamedGoal}, 

h(X,Check, [h(X)] ,h(X), [RenamedGoal], [RenamedHead] ,O,_,_,_,_). 

Notice that the instantiation is only correct under the assumption that the 

query consists solely of the atom h (Xl. In the meta-interpreter, Result was 

always a list of atoms, containing as many atoms as the initial goal. Now that the 

initial goal is known to consist of a single atom, the list construction is 

unnecessary. 

Results 

In its most unspecific form, the question we try to answer in this section is: 

'How costly is loop checking?'. The answer depends not only on the loop check 

that is used and its implementation, but also on the object program. 

Often there is a trade-off between using a weak loop check, which detects 

loops late (or not at all), and using a stronger loop check, which is usually 

costlier. The object program, especially the amount and the length of its loops, 

determines which loop check gives the best results. On one side, for programs 

without loops the empty loop check is certainly optimal. On the other hand, 

when a loop check fails to detect a loop, the resulting computation is infinite, a 

result that is difficult to compare to any finite figure. When a loop check is 

compared with the empty loop check, one of the two extremes is bound to 

occur. 

Existing benchmarks are not very useful in this case. First of all, our meta

interpreter is only capable of handling pure logic programs, which benchmarks 

rarely are. Secondly, benchmarks usually terminate without loop checking: the 

effort needed to enforce termination is already encoded explicitly in the program. 

Our choice is not to measure the benefit of using a stronger loop check, but 

only its cost. That is, if two loop checks are compared, the object program and 

goal are chosen such that the resulting SLD-tree is pruned by the two loop 

checks at the same place(s). In particular, when a loop check is compared to the 

empty loop check, the object program does not loop. 



166 Towards the Imple1nent,Hion of Loop Checking 

In practice we used the standard ttunsitive closure program: 

tc{X,Y) :- r(X,Y). 

tc{X,Z) :- r{X,Y),tc(Y,Z). 

Chapter 7 

augmented with facts giving the relation r. This program allows us to control the 

presence and length of refutations and loops easily hy modifying the graph of r. 

Furthermore the program is restricted and function-free, so all equality and 

subsumption checks (including their single and douhle selected variants) enforce 

termination of this program for any relation r. Finally it is easy to see that only 

the selection, but not the underlying full-comparison check determines where 

derivations from such programs and goals are pruned. 

The numerical results mentioned helow wet"e ohtained using a linear relation 

{ r (a, b) , ... ,r (m, n)} and a circular relation { r (a, b) , ... ,r (m, n) ,r (n, a) 1- The 

goals used were ?-tc(a,n) and ?-tc(a,n), fail, fail, fail. All loop checks 

are applied using the linear relation; obviously the resulting derivations at"e never 

pnmed. All loop checks are also applied using the circular relation, although the 

computations using non and empty diverge where the others are pruned. The 

length of the loop in r is chosen to be 14, which means that a loop occurs after 

28 derivation steps. As 28 is a triangular numher, the triangular loop checks 

detect the loop immediately. So all loop checks prune the resulting derivations at 

the same place. 

The question 'How costly is loop checking?' suggests a comparison 

between ah efficient PROLOG ii1te1·preter with loop checking and existing 

Pf{OLOG interpreters; As developing a really efficient PROLOG interpreter With 

loop checkittg involves much more W(1rk than nuiking the two relatively siniple 

implementations presented in this paper, it wm1ld be helpful if out 

iltiplementatitlns could yield so111e predktioi1s ,ihout 1nore efficient ones. 

it appears that the most tihie- ,lhd spuce-consi.tniihg component of oi.tr 

ifuplementatiotls is the explicit iii.irtiplildlloh of substitUiit>hs, which occuts both 
in the cbnstfUetiori of the defiv11tion {in the foi'111 of l1hificiitidn) and in the loop 
clieck (in the fotlii of im1tt:hihg). C:ohsetjlle11tly, jWediciiotts aboi.tt efficietit 

itttplementations (ctlliipilrihg tliose With and without loop checking) can tJtily be 

made Uiitlet the assumption that they also spettd niost of their linie mahipulatittg 

substilUtions. 



Section 7.2 Two Simple Implementations of Loop Checking 167 

linear relation r non empty eh! eir ev2 evr 

solving check 0.197 0.247 1.285 1.390 1.345 1.397 

+--tc(a,n) derive 7.593 7.603 7.965 8.046 7.794 7.990 

finishing check 0.222 0.282 1.546 1.672 l.620 l.700 

+--tc(a,n) derive 8.894 8.907 9.399 9.473 9.384 9.405 

failing check 0.412 0.425 1.716 l.847 l.785 l.857 

+--tc( a,n),fail,fail,fail 9.33) 9.308 9.730 9.764 9.764 9.819 

linear relation r sig sir svg svr (sir,st) (sir,dt) 

solving check 1.754 1.790 1.755 1.798 0.504 0.409 

+--tc(a,n) derive 8.003 8.009 7.960 7.987 7.726 7.663 

finishing check 2.164 2.217 2.152 2.233 0.540 0.439 

+--tc(a,n) derive 9.449 9.442 9.386 9.416 9.019 8.967 

failing check 4.193 4.316 4.209 4.306 0.693 0.563 

+--tc(a,n),fail,fail,fail 10.560 10.513 10.481 10.559 9.332 9.308 

TABLE 7.2.1 

circular relation r non emotv eig eir evg evr 

solving check 0.210 0.271 1.279 1.408 l.303 1.409 

+--tc(a,n) derive 7.638 7.607 8.295 8.259 8.324 8.325 

finishing check diverges 1.612 1.770 1.640 1.782 

+--tc(a,n) derive diverges 9.920 9.899 9.960 9.967 

failing check diverges 1.784 1.958 1.864 l.972 

+--tc(a,n),fail,fail,fail diverges 10.136 10.238 10.246 10.261 

circular relation r sig sir svg svr (sir,st) (sir,dt) 

solving check l.775 1.859 1.758 1.852 0.524 0.412 

+--tc(a,n) derive 8.363 8.412 8.39) 8.378 8.143 8.058 

finishing check 2.264 2.374 2.262 2.377 1.207 0.642 

+--tc(a,n) derive 10.041 10.098 10.045 10.037 9.656 9.570 

failing check 4.318 4.466 4.366 4.491 1.705 0.889 

+--tc(a,n),fail,fail,fail 10.863 10.930 10.932 11.004 9.831 9.760 

TABLE 7.2.2 



168 Towards the Implementation of Loop Checking Chapter 7 

In the meta-interpreter, both unification and matching are performed 

explicitly, whereas in the transformed programs only matching is performed 

explicitly: unification is performed by the PROLOG-interpreter itself. In a 

practical PROLOG-interpreter with loop checking, both unification and matching 

will be done in an efficient way. Predictions about such practical interpreters 

must thus be based on measurements of the meta-interpreter, because it treats 

unification and matching on an equal level. 

Tables 7 .2.1 and 7 .2.2 show such measurements (in seconds cpu-time 

used). In Table 7 .2.1 the linear relation r is used. The first pair of rows shows 

how much time is needed to find the first (and only) solution for ?-tc (a,n), the 

second pair shows the time needed until the computation of ?-tc (a, n) halts and 

the third the time needed until the computation of ?-tc (a, n) , fa i 1, fa i 1, fai 1 

fails. Table 7.2.2 shows the same for the circular relation r. 

It is noteworthy that the measured time spent on generating the derivation is 

related to the loop check. This implies that a fraction of the time measured as 

'der ve'-time is actually 'check'-time. A numerical analysis shows that about 

30% of the 'check' -time is involved. Making this correction we see in this 

e x:ample that the equality checks cost about 24% of the 'derive' -time and the 

subsumption checks about 32% (for the goal ?-tc (a, n) ), respectively 60% (for 

?-tc (a, n), fail, fail, fail). 

The results show that there is not much difference among the various 

equality checks (and among the various subsuinption checks). Not surprisingly, 

the checks based on goals are slightly cheaper than those based on resultants. In 

contrast to the rule-of-thumb that ~tronger checks are costlier, the checks testing 

for instances are slightly cheaper than the checks testing for variants. This is due 

to the implementation: first a substitution is computed, then it is tested if this 

sUb!ititution is a renaming. 

the difference between the eql1itiity checks on the one hand and 

subsUttiption checks on the other hUild is 11101·e significant. Due to the small 

gmtis in the tefutaticlns of ?-tc (a, n) ( ohly one or two ato1ns), the subsurtlption 

checks are approximately only 34% more expensive, But for the lal'gei' goals in 

the derivations of ?-tc (a, nl, f.ail, fail, fail; this figure is already 134%! 

The advantage of the triangular loop checks is evident: they need much less 

time. But in this test their disadvantage does hot show: here they have the same 

effect as the full-comparison loop checks, but in general they prune derivations 



Section 7.2 Two Simple Implementations of Loop Checking 169 

(much) later. In small examples like these, where the cost of loop checking is 

rather small compared to the cost of generating derivation steps, full-comparison 

loop checks will usually show a better performance. 

But one may suspect that it costs too much to apply the full-comparison 

loop checks on a large example with few loops. In any case the use of a 

triangular loop check definitely beats using no loop check at all. This applies in 

particular to programs that are still being tested/debugged: they are not supposed 

to loop, but some loops may be present. A triangular loop check that also reports 

pruned derivations would probably be a useful debugging tool. 

We can only briefly address the issue of optimisations here. Our meta

interpreter does not use any of the common optimisation techniques, such as last 

call optimisation. It is conceivable that such optimisations are seriously 

hampered by the introduction of loop checking, making loop checking more 

costly than our figures show. 

On the other hand, our loop checking procedure itself could certainly be 

improved considerably, for example by using 'incremental' testing: an equality 

check tests first if two goals have the same length, then whether they have the 

same predicates in the same order and so on. Also the storage and retrieval of 

previous goals could be improved by hashing techniques. These optimisations 

would make loop checking less costly. At this time we cannot predict how those 

two effect-. accumulate. 





8. Related Work 

Termination of logic programs can be enforced in many ways, of which our 

form of loop checking is just one. In this chapter we outline a spectrum of 

methods for enforcing termination and we discuss the place of loop checking 

therein. The place of a method within this spectrum shall be determined by the 

amount of change it involves for the interpreter, compared with the standard 

pure logic programming interpreter based on SLD-resolution. 

Proving tennination of logic programs 

The first technique we encounter consists of identifying those logic programs 

that terminate without any change of the interpreter. By rephrasing it as 

'identifying those logic programs for which the empty loop check is complete', 

this technique could be considered as a special case of the issues treated 

previously. However, we feel that the study of terminating logic programs is a 

research area of its own right. Without aiming at completeness, we mention here 

the following work. 

Vasak and Potter [VP] distinguish existential and universal termination. 

Given a goal, a program is said to terminate existentially if it either fails finitely 

or produces at least one solution. This depends on both the selection rule and the 

search rule. A program Pis said to terminate universally on a goal G if the SLD

tree for Pu { G} is finite. This still depends on the selection rule used, but not on 

the search rule. Usually, termination refers to universal termination. 

The dependency on the selection rule yields another distinction: Pu{ G} is 

strongly terminating if every SLD-tree for Pu{ G} is finite; Pu{ G} is weakly 

tenninating if there exists a finite SLD-tree for Pu{ G}. Strong termination is for 

example studied in [Be] and [AB]. Between these two extremes, a view of 

practical interest is taken by Apt and Pedreschi [AP]: Pu { G} is le.Ii tenninating 

if the SLD-tree for Pu{ G} via the leftmost selection rule is finite. 

Starting from Floyd [Fl] the classical proofs of program termination have 

been based on the use of well-founded orderings. Every 'situation' S in a 

computation is associated to an element f(S) of a well-founded set and for every 

'step' leading from a situation S1 to a situation S2 it is shown that f(S2) < f(S1). 

171 



172 Related Work Chapter 8 

In the area of logic programming, this approach is outlined in [Be]. There, a 

level mapping for a program P is defined as a function from the ground atoms 

in Lp to the natural numbers. A program is called recurrent if for some level 

mapping 11, for every ground instance A~B I,· .. ,Bn of a clause in P: 

IAI > IBil for i = 1, ... ,n. 

An atom A is bounded w.r.t. a level mapping 11 if 11 takes a maximum on 

the set of ground instances [A] of A; if A is hounded then l[A]I denotes this 

maximum. A goal G = ~AJ, ... ,An is bounded if A1, ... ,An are bounded; ifG is 

bounded then IGI denotes the multiset { l[A i]I, ... ,l[Anll}. Notice that ground 

atoms, and hence ground goals, are always hounded. 

A 'situation' in logic programming corresponds to a goal, a 'step' 

corresponds to a derivation step. A level mapping associates a multiset of natural 

numbers to a bounded goal. Now let P he a recurrent program and G a hounded 

goal w.r.t. some level mapping 11. Bezem [Be] proves: if G ==> G' is a 

derivation step w.r.t. P, then G' is again a bounded goal and IG'I < IGI in the 

mult,set ordering (which is well-founded). Thus recurrent programs are strongly 

ter ninating for bounded goals, and especially for ground goals. A perhaps more 

s Jrprising result of [Be fis that the converse of this theorem is also true: if a 

program P is strongly terminating for every ground goal, then P is recurrent. 

In [AB] this approach is generalized to the case of general programs and 

SLDNF-resolution 1• The corresponding programs are called acyclic programs; 

every acyclic program is locally stratified. As the distinction between SLDNF

resolution and SLS-resolution lies in their treatment of infinite failure, it is not 

surprising that the two coincide for acyclic programs. 

Apt anq Pedreschi [AP] have modified these ideas to characterize left

termination. Given a program P, a level mapping 11 and a model I of P, P is 

acceptable w.r.t. 11 and I if for every ground inst~ince Af-B 1, .. . ,B0 of a clause 

in P: 
IAI > IBil for i = l , ... ,n, where n = min( { n )u{ i 11 w, Bil). 

The idea is that I w, Bi implies thut se.lecting ai results io (finite) failure. 

Thus due to the use of the leftmost selection rule l3i+ 1, ... ,Bn are never selected, 

hence their levels are irrelevant. It is proved in [AP] that 

1 The treatment of floundering in original definitions of SLDNF-rcsolution (e.g. in [L]) is not 

very satisfactory: a 'floundering SLDNF-dcrivation' docs not exist. In [AB] floundering is 

treated in SLDNF-resolution like in SLS-rcsolution (sec Dclinition 5.2.4). See also [ADJ. 



Chapter 8 Related Work 173 

for every ground goal G: Pu{ GI is left-terminating iff 

for some level mapping 11 and model I of P: Pis acceptable w.r.t. 11 and I. 

Of course the question remains how a suitable level mapping and model are 

found, and how the acceptability condition is tested on infinitely many ground 

instances of clauses. Abstract interpretation techniques can help here. 

Also related work by Bossi et al. [BCF] and by Wang & Shyamasundar 

[WS] could help at solving this problem. They transform a program P and a goal 

G into a directed graph (U-graph in [WS], .,pec(lic graph in [BCF]). The nodes 

of these graphs are the atoms that occur in P and G; arcs represent dependency 

(via the clauses of P) and unifiability. Every cycle in the graph corresponds to a 

possible loop in the program. The problem of finding a suitable mapping can 

now be solved locally for every strongly connected component (SCC) of the 

graph: the mapping must not increase on the arcs of the SCC, and every loop in 

the SCC must contain an arc on which the mapping strictly decreases. 

The method described in [BCF] is again related to a slightly different 

approach, introduced by Ullman & Van Gelder [UvG] and improved by PHimer 

[P]. First, they assume that the analyzed program is well-moded (as originally 

defined by [OM]), i.e., that the input and output positions of a predicate can be 

distinguished. Modes can often be inferred automatically, e.g. by abstract 

interpretation, and need not be supplied by the programmer. The size (level) of 

an atom A is now determined by sum of the sizes of the terms on (a selection of) 

the input positions of rel(A) (the size of a term can for example be defined as in 

Section 6.3). 

Now their way to prove (left-)termination is the following. Consider an 

atom p(t1, ... tn) with ground terms on its input positions. Suppose that 

constructing the SLD-tree of Pu{ f-p(t 1 , ••• t11 )} via the leftmost selection rule 

leads recursively to the selection of another p-atom, say p(s1, ... ,Sn)- The 

termination of the program is ensured if in all such cases the size of p(s1 , ... ,sn) 

is strictly smaller than the size of p(t I,· .. ,1 11 ). 

In order to prove such a claim so-called linear predicate inequalities are 

inferred. In [UvG] these linear predicate inequalities have the form Pl + c ~ P2· 

In [P] this is generalized to LiE I Pi + c 2:: LjE J P_i, where I is a selection of the 

input positions of the predicate p and J is a selection of its output positions. A 

linear predicate inequality is valid if for every ground atom p(t1, ... ,In) in the 

least Herbrand model of P: LiE I size(ti) + c 2:: LjE .I size(lj) holds. 



174 Related Work Chapter 8 

With the aid of these linear predicate inequalities an upper bound for the 

sizes of the input terms Si (i e I) of a recursive call p(s1 , ... ,sn) can be given in 

terms of the sizes of the input terms ti (i e I) of the 'parent' call. For example, 

consider the program P = { p{f(f((x)),x)~. q(0)~. q(x) ~ p(x,y), q(y).) and 

take for n ~ 0: size(fll(0)) = n. A possible mode for this program is p(+,-), q(+), 

i.e., the second position of p is an output position, the other positions are input 

positions. It is obvious that Pl - 2::?: P2 is a valid linear predicate inequality for p 

in P. Thus evaluation of ~q(t) for some ground term t leads to a recursive call 

~q(s) with size(t) - 2;;:: size(s), hence size(s) < size(t). 

Plumer describes how the analysis of the data flow within clauses enables 

the automatic derivation of valid linear predicate inequalities (thereby 

generalizing similar considerations restricted to terms being lists in [UvG]). The 

result is an efficient tool for testing left termination for a large class of logic 

programs. 

Finally, M. Baudinet [Ba] presented a method for proving termination of 

PROLOG programs in which with each program a system of equations i:, 

associated whose leao;t fixpoint is the meaning of the program. By analyzing this 

least fixpoint various termination properties can be proved. The main method of 

reasoning is fixpoint or structural induction. 

Detecting loops in derivatiom-

Loop detection techniques can be divided into two classes: those techniques that 

warn for all possible infinite loops, and those that signal only the certainty of a 

infinite loop. Due to the undecidability of the Halting Problem, the first class 

must give some false alarms, whereas the second class must miss some loops. 

For loop checks we introduced the terminology complete for the first class and 

(weakly) sound for the second class. A termination prover can be used as a loop 

detection technique of the first class: if the attempt to prove termination fails, a 

warning can be issued that the program might loop. 

The aim of loop detection is controlling recursive inference. This can be 

implemented in two ways. The first way is to perform a static analysis of the· 

program as a pre-processing step. The outcomes of such an analysis can be 

translated into modifications of the program, such as reordering the atoms in a 

clause or the addition of control primitives (e.g. wait declarations as described in 

[NJ). The other method is the application of a loop detection mechanism at run-



Chapter 8 Related Work 175 

time, where its results can influence control directly. The framework of loop 

checking we described falls in this category. Although run-time analysis is 

generally able to cope with larger classes of programs and loops therein, it has 

the disadvantage of introducing overhead at run-time. 

As the two distinctions are more or less orthogonal, we can divide loop 

detection mechanisms in four categories. However, the boundaries between 

those categories are not always very sharp. For example, SchmUcker [Sc] 

proposes two conditions: one for detecting potentially infinite loops and one for 

detecting definitely infinite loops; then she shows how the two conditions can be 

combined. Moreover, she explicitly mentions hoth run-time analysis and pre

processing as possible applications. Another example is that [SGG], a paper that 

is oriented towards run-time analysis, inspired the preprocessing-oriented work 

in [dSBV]. Finally, loop checks that are neither sound nor complete can be 

found in a number of papers. 

Here we shall concentrate on the detection of loops in derivations at run

time. It seems that Gelernter [G] was the first one to apply this kind of loop 

checking (in a geometry theorem prover). Loveland and Reddy [LR] isolated his 

technique and elaborated on it. The problem was faced in the propositional (or 

more precisely: variable-free) case. In this case the solution is straightforward: a 

derivation is pruned as soon as an atom reproduces itself. In the absence of 

variables this check coincides with the Variant of Atom check (Definition 2.1.5) 

and the context checks (Section 3.4). Therefore it is sound and (for finite 

programs) complete. 

Loveland and Reddy claim that 'the results presented here ... hold equally 

well in the first-order format ... since it is a propositional rule', but they do not 

further comment on what they mean by this. Poole and Goebel [PG] show that 

checking for syntactically identical atoms is not complete in the presence of 

variables, and that generalizations such as VA and IA are not weakly sound. On 

this basis they argue that it is better to forget about loop checking. Van Gelder 

[ vG I] proposes an implementation of loop checks based on IA and on checking 

for identical atoms (see also Section 7 .1: the t011oise-and-hare technique). 

Brough and Walker [BW] describe two interpreters for logic programming 

that implement loop checking, and compare them with the standard interpreter 

(all using the leftmost selection rule). Their first interpreter, lG, checks for 

identical atoms again. Their second interpreter, IR, is more interesting, because 



176 Related Work Chapter 8 

it uses one of the few loop checking mechanisms that are not based on 

comparing goals: it is based on comparing the clauses used. A derivation D = 

(Go ⇒c 1 ,e 1 G1 ⇒ ... ⇒ Gk-I ⇒ck,ek Gk) is pruned at Gk if for some i: Ck0k :5 

Ci0i and the selected atom in Gk is produced by the selected atom in Gj. It seems 

that this method satisfies Definition 2.1.2: it is a simple loop check. In general it 

is not a complete loop check, but it is complete for function-free programs. 

Besnard [BJ rephrases the loop checking criterion as 'allowing a clause to 

be used at most once'. Apart from the omission of the phrase 'on the same atom' 

(to capture that the selected atom in Gk is produced by the selected atom in Gi), 

this ignores the fact that actually the instances of the clauses used are compared. 

Still, his example, which shows that the loop check is not weakly sound, is 

correct. Brough and Walker themselves already show that the loop check is not 

sound (Example 3 of [BW]). We present here a small extension of this example, 

which also shows that it is not even weakly sound. 

EXaMPLE 8.1. 

LetP= 

p(a,b,c) f-. '(Cl), 

p(y,z,x) f- p(x,y,z). (C2), 

q(c) f-. (C3) I 
and let G = f-p(u,v,w),q(u). 

Figure 8.1 shows the only SLD

refutation of Pu{ GI (modulo 

variants). Obviously the instances 

of (C2) used in the first and 

second step are variants, so this 

refutation is not found by IR, □ 

f-p(u,v,w),q(u) 

I (C2), {y/u,z/v,x/w} 

f-p(w,u,v),q(u) 

I (C2)', 

I y'/~,z'/u,x'/v I 
f-p(v,w,u),q(u) 

I (Cl), l v/a, w/b,u/c} 

f-q(c) 

I (C3), E 

□ 

FIGURE 8.1 

In spite of this, Brough and Walker claim that Ia and IR ai·e 'better' than the 

standard interpreter. They support this claim as follows. According to their 

definitions an interpreter does not enumerate answers as it finds them, but it 

collects them and produces them at once when it terminates. Consequently, if it 

does not terminate, it gives no answers at all. Futthermore, the more (correct) 

answers an interpreter gives, the better it is (for a given program and goal). That 



Chapter 8 Related Work 177 

nontermination can be preferable over the result 'no (more) answers' if the latter 

is not sound w.r.t. CWA is not taken into account. In this context their claim is 

justified, because they prove: 'given a program and a goal, if the standard 

interpreter stops, then Ia and IR do not prune any derivations'. But this way of 

comparing interpreters is suspicious at least. 

Covington [Col] also proposes some kind of Variant of Atom check, or 

perhaps EVG, but his definitions are not very precise. He proposes to 'block the 

evaluation of subgoals that match higher goals' (in such a context 'goal' often 

means 'selected literal'), where 'in determining whether the arguments are the 

same, uninstantiated variables are considered to match each other even though 

they have different names'. Taking this literally, p(x,x) and p(y,z) match each 

other. Obviously the resulting method is unsound, but at least it can be defined 

as a simple loop check, because the matching criterion is closed under variants. 

Covington also suggests to limit the number of comparisons. He suggests 

some special solutions for transitive and symmetrical relations. For other cases 

he suggests the use of a single selected loop check (Definition 7.1.6), with a 

selection of the form { b, b2, b3, ... I. He shows that this gives approximately 

b/(b-1) comparisons per golli. He also suggests the use of hashing techniques. 

In a second paper ([Co2]), Covington shows that his loop check is 

unsound, and that hence the resulting interpreter incomplete. He proposes to 

weaken the loop check by adding an extra requirement: the same program clause 

must be applied on the 'similar' atoms. This revision closely resembles IR of 

[BW]. Indeed, although Covington says that this 'appears to solve the problem 

completely', Example 8.1 refutes this claim. 

Finally we mention here the work of Besnard [B]. After giving some 

counterexamples regarding [BW] and [Co 1], he proceeds by describing a 

weakly sound loop check (CIG). In Section 3.4 we elaborated on this work by 

defining some variations on this check (CVG, CIR, CVR); CIR and CVR are 

sound. These checks still test for similar atoms, but now the context of these 

atoms is taken into account. That is why we named them 'context checks'. 

Tabulation 

The fact that VA is not weakly sound had been observed already by Black ([Bl 

Section 6.4]. He suggests some improvements, such as taking into account 

which clause produced an atom, or allowing a fixed number of repetitions before 



178 Chapter 11 

stopping a derivation. But because the resulting methods are still not wealcly 

sound, he proposes a more :mhtle solution th,1n simply pruning infinite 

derivations. His solution was re-invented several times .tnd is known under 

different names, such cts memoing or mcmo-ization ([P]), tabulµtion ([TS]) and 

lemma resolution ([V]). It can ,1lso be fo~111d in [SGG Algorithms 3.7 and 3.8]. 

These techniques are essentially the sa111e, ,ilthough the proposed 

implementations can differ in det<dls. The nwin idea, which originates from 

functional programming, is to store intermediate results, and to look them up 

when they would normally be recomputed. Apart from the effoct on tennination, 

this can improve the efficiency of a program considerably. In the following, 

more precise description of this method, we shall adhere to the terminology of 

[V]. He calls his formalization of the method SLD-AL resolution: SLD

resolution augmented with an Admi.\',\'ihility test and Lemnut resolution. 

When an atom in a goal is selected, the admissibility test distinguishes two 

possibilities. The first possibility is that the atom is 'new': no results have been 

computed for it yet. In this case the goal is called ,,dmissihle and the selected 

atom is resolved by SLD-resolution against a clnuse of the program, as usual. 

The other possibility is that the selected atom is an instance of an atom th~1t was 

selected earlier. For this earlier atom (the producer) answers (lemnws) have been 

sectrched. In this case the goal is not admissible, and the selected atom is only 

resolved against those lemm1:1s (lenw1a resolution). 

lt is 11ecessary to use a loq) selection rule: once an atom is :,;elected all 

ani,;wen; for that µtom !}re requested; restrictions imposed by another atom Pf! the 

ctnswers for the fuU gfuil are found when (,m instm1ce of) this other cttom ii,; 

selected. The part of a deriv!}tion between the selection of an atom and the poiM 

where the atom is completely rei,;olved rnn be considered a 'loql proof for (an 

im,tance of) thctt atom. lts rnsuH is l.ldcted as a lenww. In [TS] only the leftlllost 

seleplicm 1'\.lle is cpnsidered, whereas [V] <1llows ,1ny local selection nih~. 

When an ;itom A is icle,Hifie,d .is being n producer for ,inother atom B, two 

cases ctrise, lf all possibilH\es for A ar!! t1!rem:ly exh111.1stecl, i.e., all answers for A 
are known, th.en these answers can :,;imply he applie,:i 011 a. The other possibility 

is that A is still being procesliect. This is certnin!y the case if a descencls from A
In this Pase the answers for A th<ll are a!rel.ldy known can he 11pplied on 13- If A 

prodµces mor1;1 answers later, then these ;111i,;wcn; llll!SI ,1!so he applied on 13. lf 
13 cle,scends frorn A, this can lead to still 111ore ;111swers for A l.lnd th.ti process 



Chapter 8 Related Work 179 

repeats. As is shown in the following example, it is even possible that there are 

infinitely many answers for A; in this case B has infinitely many descendants. 

EXAMPLE 8.2. 

Let P = { p(O)~. 

p(f(x) ~ p(x). 

and let G = ~p(x). 

In Figure 8.2 p(x') is found to be an 

instance of p(x), so ~p(x') is not 

admissible and p(x) becomes a 

producer. At that point only the 

answer { x/0} has been found for p(x). 

When this answer is used to resolve 

p(x'), a new answer for p(x), namely 

{ x/f(O)}, is found. Using this on p(x') 

yields { x/f(f(O))} for p(x), et cetera D 

~p(x) 

p(O)/ \ p(f(x')~p(x') 

\ {x/f(x')} 

I x/0 l O ~p(x') 

lx'/Ol D 
p(f(O))~ 

I x'/f(O) I 0 

D D D 

p(f(f(O)))~ 

ol x'/f(f(O))} 

FIGURE 8.2 

The order in which the·nodes of an SLD-AL tree are constructed (visited) is 

described by the search rule. As for ordinary SLD-resolution, a 'good' search 

rule is required for finding all answers. An important advantage of SLD-AL 

resolution over SLD-resolution is that for function-free programs SLD-AL trees 

are always finite (hence any search rule is 'good'). But in the presence of 

function symbols, SLD-AL trees can be infinitely branching, in addition to the 

possibility of having infinite branches. 

A further notable difference between SLD-trees and SLD-AL trees is that the 

shape of the SLD-AL tree depends on the search rule that is applied while 

constructing it. Until now we spoke about 'earlier' selected atoms, relying on 

the intuition of the reader. Whether one goal is 'earlier' than another depends on 

the search rule. Moreover, a inadmissible goal can be visited several times if its 

producer is still producing new answers (e.g. the goal ~p(x') in Figure 8.2 is 

visited infinitely many times; each visit results in a new solution for its producer 

and hence in a new visit). 

In Definition 4.1 of [TS] and Appendix D of [V], a search strategy for SLD

AL trees is described: the multistage depth-first strategy. This strategy involves 

the creation of a sequence of straight SLn-AL trees. These trees differ from 



180 Related Work Chapter 8 

SLD-AL trees in that the lemmas used for lemma resolution are not proved in the 

tree itself, but given in advance. At each stage of the search, a straight SLD-AL 

tree is constructed depth-first, using the lemmas proved in the straight SLD-AL 

trees constructed in the previous stages. Consequently, straight SLD-AL trees 

are again finitely branching. In particular, for the tree constructed in the first 

stage, no lemmas are available, thus inadmissible goals are just pruned. 

It is obvious that every straight SLD-AL tree in a sequence thus constructed 

contains the preceding trees. This gives rise to two implementations: either each 

tree is constructed anew, or each tree is obtained by extending its predecessor. 

The first implementation (called QSQR in [V]) can take maximal advantage of 

depth-first techniques, but involves duplicate work. The second one (used in 

QoSaQ) requires more storage. 

In order to achieve completeness, it is important that none of the straight 

SLD-AL trees in the constructed sequence is infinite. In the presence of function 

symbols this is not necessarily the case. (Consider the program {p(x)~p(f(x)).} 

and I ne goal ~p(0).) [TS] propose the use of term-de11th abstraction (later called 

suhgoal generaliwtion in [V]) to obtain finite trees. In this technique the 

a,1missibi1ity test is not applied on the atoms that actually occur, but on 

generalized versions of them: whenever a subterm of a term occurs below a 

certain depth, it is replaced by a fresh variable. The result is the same as if the 

bounded term-size property were met. SLD-ALG resolution \SLD-AL resolution 

incorporating this technique) is sound and complete. 

In order to limit the number of inadmissible goals, some other suggestions 

for altered admissibility tests have been made, m1mely: 

- applying the test only for designated predicates (called r-predicates in [VJ; it is 

i.uggested that at least all recursively defined predicates should be r

predicates). 

- making a goal inadmissihll:l only if the selected atom is an instance of one of its 

micestors. 

~ testing for V(lriants instead of instance,\', 

Kemp anct Topor [KT] and Seki und ltnh (SI] genernliied the tahulatlon 

technique to stratified. programs (locully stratified programs are not considered, 

and the issue of floundering is avoided). [SI] is based on [TS], whereas [KT] is 

ba1,1;1d on [V]. Both use negation as foilure (i.e., SLS-resolution). Recently, 

Chen and Warren [CW) implemented an interpreter for their XOLDTNF-



Chapter 8 Related Work 181 

resolution, which uses tabulated SLS-resolution to compute the well founded 

model [vGRS] of arbitrary programs with negation. 

Finally a combination of pruning and SLD-AL resolution is proposed in 

[V]. The pruning mechanism he proposes is closely related to the SIRM check. 

The only significant difference is that the SlRM check compares a goal only with 

its ancestors, whereas in [VJ a goal can be compared with every earlier 

constructed goal. The following definition formalizes his approach, and corrects 

some minor errors in it. 

DEFINITION 8.3 (Redundancy). 

Let P be a program, Go a goal and T an SLD-tree of Pu{ Go} via a local 

selection rule. Let G be a goal in T. A relevant ancestor of G in Tis an ancestor 

H of G such that the selected atom A in H is not yet resolved in the parent of G 

(in other words: the path from H to G is fully contained in the local proof of A). 

A goal Gt is redundant relatively to its relevant ancestor H if there is a goal 

G2 (other than G1) such that H is also a relevant ancestor of G2 and for some 

substitution O" the following holds. 

Let A be the selected atom in H and let R be the rest of H. Let 01 be the 

composition of mgu' s on the path from H to G 1, and 02 the composition of 

mgu's on the path from H to Gz. Then we can write Gt= f-(S1,R81) and G2 = 

f-(S2,R82). It must hold that S2cr i;;;;M SI and A02cr = A01. 

A goal is locally redundant if it is redundant relatively to all its relevant 

ancestors, a goal is globally redundant if it is redundant to at least one of its 

relevant ancestors. D 

It is easy to prove that in the given context A02cr = A01 implies R02cr = 

R01, and hence S2cr i;;;;M S 1 implies G2cr i;;;;M G 1. Furthermore, if a goal G is 

redundant relatively to H, then G is redundant relatively to all ancestors of H that 

are relevant ancestors of G. Thus in order to determine that G is locally 

redundant (in a partially constructed SLD-tree), it is sufficient to compare G to 

all previously constructed descendants of the parent r?f" G (which is by definition 

a relevant ancestor of G). In order to determine that G is globally redundant, it is 

sufficient to compare G to all descendants of the highest relative ancestor r?f" Gin 

the SLD-tree constructed so far. 



182 Related Work Chapter 8 

In ordinary SLD-trees, all globally redundant goals can be pruned without 

losing computed answers. The proof of this claim is similar to the proof of 

Theorem 3.3.7 (the soundness of SIRM)- See also Appendix A.3 in [V]. It is 

based on the observation that if a goal G that is redundant relatively to H is 

pruned, all solutions for H are still found, even though some solutions for some 

descendants of H may not be found. 

For SLD-AL trees, the situation gets more complicated. In these trees, 

inadmissible goals occur that obtain the solutions for their selected atoms from 

the associated producers. This works properly only if the producer produces all 

solutions. This cannot be guaranteed if globally redundant descendants of the 

producer can be pruned: they can be pruned only if the are redundant relatively 

to the producer. 

A simple solution is to prune only locally redundant goals, as they are 

redundant relatively to all their ancestors. A more complex solution is to prune in 

addition those globally redundant goals that are not needed by a producer. I.e., a 

goal is pruned if it is globally redundant and also redundant relatively to all 

relevant ancestors of it that are producers. This seems still quite simple, until one 

realizes that a goal is not created as a producer: it can become a producer when 

an other goal is created. Thus this solution requires a waking mechanism: a goal 

G is put asleep when it is globally redundant and not needed by a producer; 

when one of its relevant ancestors H becomes a producer and G is not redundant 

relatively to H, then G is woken up. The practical problem of implementing such 

a waking mechanism is addressed in the QoSaQ procedure (see [V]). 

Bottom-up query processing 

Although it was described as a top-down strategy, tabulation is closely related to 

bottom-up strategies. The widely recognized disadvantage of naive or semi

naive (bottom-up) evaluation is that it fails to focus on relevant data. Tabulation 

can be seen as top-down determination of relevant data, alternated with bottom

up computation of answers. The same effect can be obtained by a program 

transformation called Magic Sets. For studies relating tabulation to semi-naive 

bottom-up evaluation using magic sets, we refer to [Br], [Se] and [BD]. A 

number of other bottom-up strategies is described and compared in [BR]. 



Chapter 8 Related Work 183 

Conclusion 

One could get the impression that tabulation and sophisticated bottom-up 

evaluation strategies are by far superior over PROLOG-like interpreters (with or 

without loop checking). For certain applications, especially in the area of 

deductive databases, this is definitely the case. Although most of our 

completeness results are restricted to function-free programs, loop checking can 

be applied to all programs, because most soundness results are valid for all 

programs. A loop check docs not need to detect al/ loops in order to be useful. 

We feel that as long as programmers alter logic programs to enforce termination, 

a general and easy-to-understand pruning mechanism is a welcome modification 

of interpreters, especially if it can be implemented at a reasonably low cost. 

Programmers who insist that all loops are bugs could use loop checking as a 

debugging tool. 

The fact that the topic of implementing simple methods for loop detection is 

addressed frequently seems to prove these points. Unfortunately, the topic is 

often studied in an ad hoc manner. When the first idea, invariably closely related 

to the Instance of Atom check, appears to be wrong, the disappointed researcher 

usually abandons the issue. As a result no framework for the classification of 

simple loop checks had been set up until now. Moreover, a lot of similar and 

duplicate work has been done. Hopefully this book can serve as a theoretical 

foundation for further, more practically oriented research in this area. 





References 

[A] K.R. APT, Logic Programming, in: Handbook of Theoretical Computer 

Science (J. van Leeuwen ed.), vol. B, North Holland, 1990, 493-574. 

[AB] K.R. APT and M. BEZEM, Acyclic Programs, New Generation 

Computing 29(3), 1991, 335-363. 

[ABo] K.R. APT and R.N. BOL, Logic Programming and Negation: A 

Survey, J. Logic Programming, 1994. 

[ABW] K.R. APT, H. BLAIR and A. WALKER, Towards a Theory r~f 

Declarative Knowledge, in [M], 89-148. 

[AD] K.R. APT and H.C. DOETS, A new definition of SLDNF-resolution. 

ILLC Prepublication Series CT-92-03, Dept. of Math. and Comp. Sci., 

Univ. of Amsterdam, 1992. To appear in J. Logic Programming. 

[AvE] K.R. APT and M.H. VAN EMDEN, Contributions to the Theory <i 
Logic Programming, J. ACM 29(3), 1982, 841-862. 

[AP] K.R. APT and D. PEDRESCHI, Reasoning ahout Termination of Pure 

Prolog Programs, Information and Computation l 06( l ), 1993, 109-

157. 

[B] Ph. BESNARD, On Infinite Loops in Logic Programming, Internal 

Report 488, IRISA, Rennes, 1989. 

[Ba] M. BAUDINET, Proving Termination Properties rd' PRO LOG Programs: 

a Semantic Approach, in: Proc. of the Third Annual IEEE Symposium 

on Logic in Computer Science (LICS), Edinburgh, 1988, 336--347. 

[BCF] A. BOSSI, N. COCCO and M. FABRIS, Proving Termination of 

Logic Programs by Exploiting Term Properties, in: Proc. 

TAPSOFT'91, 1991, 153-180. 

[BO] R.N. BOL and L. DEGERSTEDT, The Underlying Search for Magic 

Templates and Tabulation, in: Proc. of the Tenth Int. Conf. on Logic 

Programming (D.S. Warren ed.), MIT Press, Cambridge Massachu

setts, I 993, 793-8 I I. 

[Be] M. BEZEM, Characterizing Termination r!f" Logic Programs with Level 

Mappings, in: Proc. of the 1989 North American Conf. on Logic 

Programming (E.L. Lusk and R. Overbeek eds.), MIT Press, 

Cambridge Massachusetts, 1989, 69-80. 

185 



186 References 

[BEJ] D. BJ0RNER, A.P. ERSHOY and N.D. JONES eds., Workshop on 

Partial Evaluation and Mixed Computation, Gammel Avernres, 

Denmark, 1987. 

[BL] K. BENKERIMI and J.W. LLOYD, A Partial Evaluation Procedure for 

Logic Programs, in: Proc. of the 1990 North American Conf. on Logic 

Programming (S. Debray and M. Hermenegildo eds.), MIT Press, 

Cambridge Massachusetts, 1990, 343-358. 

[Bl] F. BLACK, A Deductive Question Answering Machine, in: Semantic 

Information Processing (M. Minsky ed.), MIT Press, Cambridge 

Massachusetts, 1968, 354-402. 

[BR] F. BANCILHON and R. RAMAKRISHNAN, An Amateur's Introduction to 

Recursive Query Processing Strategies, in: Proc. ACM-SIGMOD Int. 

Conf. on Management of Data, 1986, 16-52. 

[Br] F. BRY, Query Evaluation in Recursive Datahases: Bottom-up and Top

down reconciled, in: Proc. of the First Int. Conf. on Deductive and 

Object-Oriented Databases, 1989. 

[BdSK] M. BRUYNOOGHE, D. DE SCHREYE and 8. l\.KLKELS, 

Control, J. Logic Programming 6, 1989, 135-162. 

[BdSM] M. BRUYNOOGHE, D. DE SCHREYE and B. MARTENS, A General 

Criterion.for Avoiding Infinite U,~f'olding during Partial Evaluation, in: 

Proc. of the 1991 Int. Logic Programming Symposium (V. Saraswat 

and K. Ueda eds.), MIT Press, Cambridge Massachusetts, 1991. 

[BW] D.R. BROUGH and A. WALKER, Some Practical Properties rf Logic 

Programming Interpreters, in: Proc. of the Int. Conf. on Fifth 

Generation Computer Systems (ICOT eds.), 1984, 149-156. 

[Ca] L. CAVEDON, Continuity, Consistency, and Completeness Properties 

for Logic Programs, in: Proc. of the Sixth Int. Conf. on Logic 

Programming (G. Levi and M. Martelli eds.), MIT Press, Cambridge 

Massachusetts, 1989, 571-584. 

[Ch] D. CHAN, Constructive Negation hased on the Completed Database, in 

[KB], 111-125. 

[CL] C.L. CHANG and R.C. LEE, Symbolic Logic and Mechanical Theorem 

Proving, Academic Press, New York, 1973. 



Rctcrcnccs 187 

[Cll] K.L. CLARK, Predicate Logic as a Computational Formalism, Research 

Report DOC 79/59, Department of Computing, Imperial College, 

London, 1979. 

[Cl2] K.L. CLARK, Negation as Failure, in: Logic and Data Bases (H. 

Gallaire and J. Minker eds.), Plenum Press, New York, 1978, 293-

322. 

[CM] W. CLOCKSIN and C. MELLISH, Programming in PROLOG, Springer 

Verlag, Berlin, 198 l. 

[Col] M.A. COVINGTON, Eliminating Unwanted Loops 111 PROLOG, 

SIGPLAN Notices 20( I), 1985, 20-26. 

[Co2] M.A. COVINGTON, A Further Note on Looping in PROLOG, 

SIGPLAN Notices 20(8), 1985, 28-31. 

[D] S.W. DIETRICH, Extension Tables: Memo Relations in Logic 

Programming, in: Proc. of the Symposium on Logic Programming, 

1987, 264-272. 

[DJ] N. DERSHOWITZ and J.-P. JOUANNAUD, Rewrite Systems, in: 

Handbook of Theoretical Computer Science (J. van Leeuwen ed.), vol. 

B, North Holland, 1990, 243-320. 

[DM] P. DEMBINSKI and J. MA LUSZYNSKI, And-Parallelism with Intelligent 

Backtracking for Annotated Logic Programs, in: Proc. of the 

Symposion on Logic Programming, 1985, 29-38. 

[Dr] W. DRABENT, What is Failure? An approach to Constructive Negation, 

draft 1992. Provisionally accepled by Acta Informatica. 

[F] M. FITTING, First-order Logic and Automated Theorem Proving, 

Springer Verlag, Berlin, 1990. 

[Fl] R.W. FLOYD, Assigning Meanings to Programs, in: Mathematical 

Aspects of Computer Science (J.T. Schwartz ed.), Proc. Symposia in 

Applied Mathematics (1966), vol. XIX, 1967, 19-32. 

[FPS] F. FERRUCCI, G. PACINI and M.l. SESSA, Redundancy Elimination 

and Loop Checks for Logic Programs, draft 1993. To appear in 

Information and Computation. 

[G] H. GELERNTER, Realization r?(a Geometry-theorem Proving Machine, 

in: Computers and Thought (E. Feigenbaum and J. Feldman eds.), 

McGraw-Hill, New York, 1963, 134-152. 



188 Rcforcnccs 

[vGI] A. VANGELDER, E_fficient Loop Detection in Prolog using the Tortoise

and-Hare Technique, J. Logic Programming 4, 1987, 23-31. 

[vG2] A. VAN GELDER, Negation as Failure Using Tight Derivations .for 

General Logic Programs, in [M], 149-176. 

[GL] M. GELFOND and V. LIFSCHITZ, The Stahle Model Semantics .for 

Logic Programs, in [KB], 1070-1080. 

[vGRS] A. VAN GELDER, K. Ross and J. SCHLIPF, The Well~f'ounded 

Semantics for General Logic Programs, J. ACM 38(3), 620-650, 

1991. 

[HJ G. HIGMAN, Ordering hy divisibility in abstract algebra's, in: Proc. of 

the London Mathematical Society (3) 2 (7), 1952, 215-221. 

[He] J.P. HENRARD, lmplementatio11s <f Loop Checking, Licenciate thesis, 

University of Namur, Belgium, 1991. 

[Ho] S. HOLLDOBLER, Found(ttions <f Equational Logic Programming, 

LNCS 353, Springer Verlag, Berlin, 1989. 

[K] H.J. KOMOROWSKI, A Spec(fication <fan Abstract Prolog Machine 

and its Application to Partial Evaluation, Ph.D. dissertation, LSST 69, 

Linkoping University, I 981. 

[KB] R. KOWALSKI and K. BOWEN, eds., Proc. <f the Fifth Int. Co~{. on 

Logic Programming, MIT Press, Camhridge Massachusetts, 1988. 

[KM] J.W. KLOP and J.J.CH. MEYER, Toegepaste Logica dee//: Resolutie

logica, Course Notes, Free University of Amsterdam, 1988 (in Dutch). 

[Ko] R.A. KOWALSKI, Algorithm= Logic+ Control, Comm. of the ACM 

22(7), 1979, 424-435. 

[Kr] J.B. KRUSKAL, Well-Quasi-Ordering, the Tree Theorem, and 

Vaz,wmyi's Conjecture, Transactions of the AMS 95, 1960, 210-225. 

[KT] D.B. KEMP and R.W. TOPOR, Completeness <fa Top-Down Query 

Evalut,tion Procedure for Strat(fied Databases, in [KB], 178-194. 

[Kul] K. KUNEN, Negation in Logic Programming, J. Logic Programming 4, 

289-308, 1987. 

[Ku2] K. KUNEN, Some Remarks on the Completed Database, in [KB], 978-

992. 

[L] J.W. LLOYD, Foundation.,· <f Logic Programming, Second Edition, 

Springer-Verlag, Berlin, 1987. 



References 189 

[LR] D. LOVELAND and C. REDDY, Deleting Repeated Goals in the Problem 

Reduction Format, J. of the ACM 28(4), 1981, 646-661. 

[LS] J.W. LLOYD and J.C. SHEPHERDS0N, Partial Evaluation in Logic 

Programming, J. Logic Programming 11, 1991, 217-242. 

[M] J. MINKER, ed., Foundations <~( Deductive Databases and Logic 

Programming, Morgan Kaufmann, Los Altos, 1988. 

[MM] A. MARTELLI and lJ. MONTANARI, An Efficient Un(fication Algorithm, 

ACM Transactions on Programming Languages and Systems 4( 1 ), 

1982, 258-282. 

[N] L. NAISH, Automating Control for Logic Programs, J. Logic 

Programming 2, 1985, 167-183. 

[Na] J.F. NAUGHTON, One-Sided Recursion, in: Proc. of the Sixth ACM 

Symposium on Principles of Datahase Systems, ACM New York, 

1987, pp. 340-348. 

[P] L. PLUMER, Termination Pror~f:,· for Logic Programs, LNCS 446, 

Springer Verlag, Berlin, 1990. 

[Pl] T.C. PRZYMUSINSKI, On the Declarative Sernantics ~( Deductive 

Databases and Logic Programs, in [M], 193-216. 

[P2] T.C. PRZYMUSINSKI, On the Declarative and Procedural Semantics of 

Logic Programs, J. Automated Reasoning 5, 1989, 167-205. 

[P3] T.C. PRZYMUSINSKI, On Constructive Negation in Logic Program

ming, in: Proc. of the 1989 North American Conf. on Logic 

Programming (E.L. Lusk and R. Overbeek eds.), MIT Press, 

Cambridge Massachusetts, 1989. 

[PG] D. POOLE and R. GOEBEL, On Eliminating Loops in PROLOG, 

SIGPLAN Notices 20(8), 1985, 38-40. 

[PP] H. PRZYMUSINSKA and T.C. PRZYMUSINSKI, Weakly Per.feet Model 

Semanticsfor Logic Programs, in [KB], 1106-1120. 

[PW] T.C. PRZYMUSINSKI and D.S. WARREN, Well Founded Semantics: 

Theory and Implementation, draft 1992. 

[Re] R. REITER, On Closed World Data Bases, in: Logic and Data Bases (H. 

Gallaire and J. Minker eds.), Plenum Press, New York, 1978, 55-76. 

[Ro] J.A. ROBINSON, A Machine-oriented Logic Based on the Resolution 

Principle, J. of the ACM 12(1), 1965, 23-41. 



190 Rctercnccs 

[S l] D. SAHLIN, The Mixtus Approadi to Automatic Partial Evalu"tion <~f 

Full Prolog, in: Proc. of the 1990 North American Conf. on Logic 

Programming (S. Debray and M. Hermenegildo eds.), MIT Press, 

Cambridge Massachusetts, 1990, 377-398. 

[S2] D. SAHLIN, An Automatic Partial Evcilualor for Full Prolog, 

Ph.D.thesis, Swedish Institute of Computer Science, 1991. 

[dSBV] D. DE SCHREYE, M. BRUYNOOGHE and K. VERSCHAETSE, On the 

Existence of Non-termilwting Queries for a Restricted Class of 

PROLOG-clauses, Artificial Intelligence 41, 1989, 237-248 .. 

[Sc] A. SCHMUCKER, On the Detection <l b~f111ite Loops in Logic 

Programs, draft, 1990. 

[Se] H. SEKI, On the Powerr?{Alexander Templates, in: Proc. of the Eighth 

Symposium om Proinciples of Database Systems, ACM SIGACT

SIGMOD, 1989. 

[SGG] D.E. SMITH, M.R. GENESERETH and M.L. GINSBERG, Controlling 

Recursive Inference, Artificial Intelligence 30, 1986, 343-389. 

[SI] H. SEKI and H. ITOH, A Query Evaluation Method for Strat~f'ied 

Programs under the Extended CWA, in [KB], 195-211. 

[SS] 0. STEPANKOVA and P. STEPANEK, A Complete Class of Restricted 

Logic Programs, in: Logic Colloquium '86 (F.R. Drake and J.K. Truss 

eds.), North Holland, Amsterdam, 1988, 319-324. 

[TS] H. TAMAKI and T. SATO, OLD Resolution with Tabulation, in: Proc. 

of the Third Int. Conf. on Logic Programming (G. Goos and J. 

Hartmanis eds.), LNCS 225, Springer Verlag, Berlin, 1986, 84-98. 

[UvG] J.D. ULLMAN and A. VAN GELDER, Efficient Tests for Top-down 

Termination <?f'L<>gical Rules, J. ACM 35(2), 1988, 345-373. 

[VJ L. VIEILLE, Recursive Query Proces,\:ing: The Power <f Logic, 

Theoretical Computer Science 69( I), 1989, 1-53. 

[VP] T. VASAK and J. POTTER, Ch<mu:teriuaion <f Terminating Logic 

Programs, in: Proc. of the 1986 IEEE Symposium on Logic 

Programming, 1986, 140-147. 

[WS} B. WANG and R.K. SHYAMASUNDAR, Methodology for Proving the 

Termination qf' Logic Programs, in: Proc. of the Eighth Annual 

Symposium on Theoretical Aspects of Computer Science (ST ACS91 ), 

Hamburg. LNCS 480, Springer Verlag, Berlin, 1991, 214-227. 



Index 

abstract interpretation 173 

acceptable program 172 

acyclic program 172 

add 65 

admissibility 178 

alphabet 11 

answer (substitution) 

computed- 15, 99 

COlTect - 22 

potential - 100,111 

applications 5, 89 

arity I I 

atom 11 

Instance of - check 

46, 70, 76, 175, 183 

(non)recursive -

selected -

Variant of - check 

53 

14, 134 

27, 46, 70, 76, 175 

based on 

- goals 45, 47, 58, 70, 168 

- resultants 45, 48, 58, 72, 168 

binding 12 

body 12 

bottom-up evaluation 

bounded atom / goal 

182 

172 

bounded term-size property 7, 35 

branching factor 155, 156 

breadth-first 23, 31, 32 

chain 17, 87, 92, 93 

chain-restricted svo program 

93, 122 

191 

class 53 

clause 1, 11, 128 

definite - 11 

empty- 11 

general - 12 

general goal - 12 

general program - 12 

goal- 11 

program - 11 

property of -s 81 

unit- 11, 82, 89 

-closed 128 

closed under 

- instantiation 82, 84 

- variants 26 

closed world assumption 5, 22, 23 

comparison 146, 154-157 

compiling loop checks into the 

program 162 

completeness 

- of an interpreter 23, 31, 32 

- of a loop check 4, 30, 32, 34, 

3 5, I 11 , 116, 121, 130, 134 

- of paitial deduction 127 

- with loop checking 131 

strong - of SLD-resolution 2, 22 

strong - of SLS-resolution 100 

- with loop checking 113 

-w.r.t.CWA 23,31,32 

computed answer (substitution) 

15, 99 

constant 11 



192 

context checks 70-80, 175, 177 

- based on goals 70 

- based on resultants 

completeness of -

72 

78, 80, 91, 93, 121, 152, 153 

relative strength of - 73-77 

soundness of- 71-73, 120, 151 

correct answer (substitution) 22 

CWA 5,22,31,32 

deductive database 5 

deeply safe 104, 111, 112, 114 

definite clause 

dependency graph 

depends on 

depth-bound 

dept11-first 

11 

53, 94 

53, 94 

136, 143 

23, 31,32 

derivation see SLD-derivation 

d 1main 12 

double selected loop check 147, 151 

empty goal I I 

equality axioms 7 

equality checks 47-57, 159, 168 

- based on goals 

- based on resultants 

47 

48 

completeness of - 57, 121, 152 

relative strength of - 50, 76 

soundness of - 52, 120, 151 

equality of goals 

expression 

extension leaf 

extension of R 

fact 

failed 

-node 

46,47 

12 

108, 109, l 12, 113 

121 

I I 

- SLD-derivation 

28 

15 

Index 

- SLD-tree 

- SLS-tree 

22 

99 

floundering 96, 98, 99, 104, 105, 

l 16, 123, 124 

full-comparison loop check 146 

function 

--free program 

- symbol 

11 

6, 12, 35, 37 

11 

general clause / goal / program 12 

Generalization Theorem 84 

goal I I 

based on -s 45,47, 58, 70 

empty- 11 

equality of -s 46,47 

general - 12 

inclusion of -s 58, 61 

--occurrence 140 

ground 12 

head 12 

head-restricted svo program 

93, 122 

hierarchical normal program 82, 89 

Higman's Lemma 

idempotent 

identical atoms check 

implementation 

66 

13 

175 

158-169 

inclusion of goals 58, 61 

independence of selection rule 104 

initial 

proper - suhderivation 

- subtree 

Initials 

instance 

Instance of Atom check 

15 

22 

26, 108 

13 

46, 70, 76, 175, 183 



interpretation l, 22, 158 

interpreter 22, 30-32, 95, 175 

bottom-up - 182 

breadth-first - 23, 31, 32 

depth-first - 23, 31, 32 

meta-- 128, 158-162, 168 

PROLOG-

23, 31, 32, 159, 162, 166 

SLS-- 111 

top-down -

vanilla--

2, 30,95 

128, 161 

justification I 03 

justified SLS-tree 103 

deeplysafe-104, 111,112,114 

pruning a - I 09 

language 11, 56, 121 

leftmost selection rule 15, 57, 64, 

78, 84, 91, 93, 121, 152, 171 

lemma resolution 178 

length of a derivation 14, 41 

length of a goal 12, 54 

level-mapping 172 

Lifting Lemma 102 

linear predicate inequality 173 

linear program 53 

literal 12 

locally stratified program 95, 97 

local property 

local selection rule 

loop check 

81 

20, 73, 178 

4, 26, 163 

compiling -s into the program 

162 

complete - see completeness 

-ing criterion 

full-comparison -

146 

146 

Index 193 

nontrivial -

one level-

131 

107, 108, 118 

partial deduction with -ing 131 

selected - 147, 150, 177 

simple - 26, 35, 45 

simple one level - 107, I 08, 118 

sound - see soundness 

triangular - 154-157, 161, 168 

matching 166 

memoing 178 

meta-interpreter 128, l 58-162, 168 

mgu 

MguLemma 

model 

perfect -

more general 

most general unifier 

negation as failure 

13 

101 

22, 172 

95, 100 

13 

13 

5, 96 

negation as finite failure 5, 95 

nonrecursive 94 

- atom 53 

- part 82 

nontrivial loop check 129 

non-variable introducing see nvi 

normal SLD-derivation 18, 66, 87 

nr-extended Pr program 82, 84, 91 

nvi 65-67, 80, 91, 122, 152 

one level loop check l 07, I 08, 118 

optimisations 

OverSizeCheck 

completeness of the -

partial deduction 

completeness of -

soundness of -

- with loop checking 

169 

136 

137, 138 

6, 126 

127 

127 

131 



194 

potential answer (substitution), 

-ly successful I 00, I 11 

predicate (symbol) 11 

linear - inequality 173 

producer 178 

program 12 

acceptable - 172 

acyclic - 172 

chain-restricted svo - 93, 122 

- clause 11 

function-free -

general -

6, 12, 35, 37 

12 

head-restricted svo -

hiernrchical normal -

linear-

locally stratified -

93, 122 

82, 89 

53 

95,97 

or-extended Pr - 82, 84, 91 

nvi- 65-67, 80, 91, 122, 152 

Pr

recurrent

restricted -

81, 82 

172 

7, 53, 57, 64, 78, 121, 152, 153 

svo-

65, 69, 80, 92-94, 122, 152 

terminating - 171-17 4 

well-moded - 173 

PROLOG 2, 149, 158, 162, 166 

proof tree 1, 37 

Proof Tree Redundancy check 38 

completeness of - 40 

soundness of - 39 

proper initial subderivation 15 

property 81 , 84 

Pr part 82 

Pr program 81, 82, 84 

Index 

pruned / pruning 

22, 27, 107-109, 180 

QoSaQ 180, 182 

QSQR 180 

query processing 5,32,57,69, 79 

range 12 

recurrent program 172 

recursive 94 

-atom 53 

redundant 181 

refutation 15 

shortest - 39 

relative strength 

32-34, 50, 62, 76, 148, 150, 165 

relevant ancestor 

relevant mgu 

renaming 

resolution step 

resolvent 

restricted 

181 

13 

12, 164 

14 

14 

7, 53, 57, 64, 78, 121, 152, 153 

chain - svo program 93, 122 

head - svo program 

result 

resultant 

93, 122 

159 

14, 56 

hased on -s 45, 48, 58, 72, 168 

reverse 

safe 

139 

deeply- 104, 111, 112, 114 

- selection rule 98 

safe for 

~ detailing 

~ goal extension 

- initialization 

search rule 

84,91 

83, 84, 90 

83, 84,90 

23, 179 



selected atom 14, 135 

selected loop check 14 7, I 50, 177 

selection 147, 150 

soundness of ~ 15 I 

selection-independent 113, 135 

selection rule 14, 134 

independence of ~ 104 

leftmost ~ 15, 57, 64, 

78, 84, 91, 93, 121, 152, 171 

local~ 

partial~ 

rightmost~ 

safe~ 

shortening 

~ condition 

sho1test refutation 

side-tree 

simple 

~ loop check 

20, 73, 178 

135 

15 

98 

30 

51 

39 

99, 104 

I 18 

26, 35,45 

~ one level loop check 108 

single selected loop check 

147, 150, 177 

single variable occurrence see svo 

size 136 

term-~ 139 

bounded~ property 7, 35 

SLD-AL resolution 178-181 

SLD-derivation 14 

failed~ 

infinite~ 

15 

15 

non-variable introducing ~ 66 

normal~ 18, 66, 87 

successful~ 15 

trivial ~ 126 

unfinished ~ 15 

Index 

SLDNF-resolution 

SLD-refutation 

shortest~ 

SLD-resolution 

soundness of~ 

195 

95, 127, 172 

15 

39 

2, 15 

22 

strong completeness of~ 22 

SLD-tree 2, 21 

failed~ 22 

subset-wise founded ~ 142 

successful ~ 21 

trivial~ 126 

unfinished ~ 22 

well-founded~ 141 

SLS-derivation 99 

grounded~ 100 

oracle~ 100 

unrestricted -- 100 

SLS-refutation 99 

SLS-resolution 96-102 

SLS-tree 96,98 

justified ~ see justified SLS-tree 

solve 128-130, 133, 159, 160 

soundness 

~ condition 

~ of conversion 

~ of an interpreter 

~ of a loop check 

119 

120 

23,31,32 

4, 29-36, 111, 118-120, 130 

~ of pmtial deduction 127 

~ with loop checking 131 

~ of selection 151 

~ of SLD-resolution 2, 22 

~ of SLS-resolution 100 

~ with loop checking 113 

~ w.r.t. CWA 23, 31 



196 

standardizing apart 14, 159, 162 

stratum 97, 98 

STRONG check 42, 59 

completeness of~ 44 

soundness of ~ 44 

strong completeness of 

- SLD-resolution 2, 22 

~ SLS-resolution JOO 

~ with loop checking 113 

stronger 

32-34, 50, 62, 76, 148, 150 

subderivation 

~ free 26, 108 

proper initial ~ 15 

subset-wise founded SLD-tree 142 

subs· itution 

·mswer~ 

idempotent ~ 

subsumption 

subsumption checks 

12, 162, 166 

see answer 

13 

45, 58, 61 

58-69, 159, 168 

~ based on goals/ resultants 58 

completeness of ~ 

64, 67, 69, 91, 93, 94, 121, 152 

relative strength of~ 62, 76 

soundness of~ 64, 120, 151 

subtree, initial ~ 22 

successful 

potentially ~ 

~ SLD-derivation 

~ SLD-tree 

~ SLS-tree 

l 00, 111 

15 

21 

JOO 

sum 

svo 

tabulation 

33 

65, 69, 80, 92-94, 152 

177 

Index 

term 11 

~-size 139 

bounded ~ prope11y 7, 35 

terminating programs 171-174 

top-down 1, 2, 30, 95 

tortoise-and-hare technique 148 

incompleteness of the ~ 149 

transitive closure 

3, 7, 128, 133, 166 

triangular loop checks 

154-157, 161, 168 

unfinished 

- SLD-derivation 

~ SLD-tree 

~ SLS-derivation 

unification 

unifier 

vanilla-interpreter 

variable 

variant 

15 

22 

99 

13, 162, 166 

13 

128, 161 

11 

13, 15, 56 

Variant of Atom check 

27, 46, 70, 175 

relative strength of -

soundness of~ 

76 

28 

15 via R 

waking 

weakly sound 

weight 

well-founded 

~ measure 

~ set 

~ SLD-tree 

182 

4, 29-36, 111 

54 

141 

140, 141, 171 

141 

well-moded program 

well-quasi-ordered set 

173 

138, 141 



CIG 

CIR 

clp(p) 

Cs(x) 

CVG 

CVR 

CWA 

dom(0) 

List of Notations 

Context checks based on Instances and Goals 

Context checks based on Instances and Resultants 

the class of p in P 

the chain of x in S 

Context checks based on Variants and Goals 

Context checks based on Variants and Resultants 

Closed World Assumption 

domain of0 

70 

72 

53 

17 

70 

72 

5, 22 

12 

Dp, Dp* Dependency graph of P and its reflexive, transitive closure 53 

EIGL, EIGM Equals Instance of Goal check 47 

EIRL, EIRM Equals Instance of Resultant check 48 

EVGL, EVGM Equals Variant of Goal check 47 

EVRL,EVRM 

fL 

fLI 

fL* 

ground(P) 

IA 

Ia 

Initials(S) 

IR 

L(q>) 

L1(<p) 

L2(q,) 

Llh(q,) 

Mp 

nvi 

Qi, 

OSC(d,size) 

PTR(P) 

ran(0) 

rel(A) 

Equals Variant of Resultant check 

effect of L on an SLD-tree 

effect of L on an SLS-tree 

effect of Lon a justified SLS-tree 

set of ground instances of clauses in P 

Instance of Atom check 

Goal terminating Interpreter 

Initial subderivations of S 

Rule terminating Interpreter 

Full-comparison loop check of criterion q> 

Single selected loop check of criterion q> 

Double selected loop check of criterion q> 

Tortoise-and-hare loop check of criterion <p 

perfect Herbrand model of P 

non-variable introducing 

One level loop check derived from L 

OverSizeCheck based on d and size 

Proof Tree Redundancy check for P 

range of 0 

predicate symbol of A 

197 

48 

26 
107 

107, 109 

13 

46 

175 

26 
175 

146 

150 

150 

148 

JOO 

65, 66 

118 

136 

38 

12 

53 



198 List of Nnt,1tinns 

SIGL, SIGM Subsumes Instance of Goal check 58 

SIRL, SIRM Subsumes Instance of Resultant check 58 

stn1tum(L) stratum of a literal ( or goal) 98 

STRONG(P) STRONG check for P 42 

Succ(P,G,o) set of refutations of Pu( GI with a computed answer 

more general than G~o 39 

SVGL, SVGM Subsumes Variant of Goal check 58 

SVO single variable occurrence property 65 

SVRL,SVRM Subsumes Variant of Resultant check 58 

T1op top level of T 103 

U,>u strict partially ordered set 140 

VA Variant of Atom check 27 

VAR the set of variables 11 

var(E) set of variables in E 12 

weight(G) weight ofG 54 

x+ result of removing all negative liternls from X 117 

L1 +L2 sum ofL1 and L2 33 

D empty'goal 11 

E empty substitution 12 

=>c,0 derivation step with clause C and mgu 8 14, 99 

I= semantical implication 22 
S,; more general than 13 

=L equality of goals seen as lists 47 

=M equality of goals seen as multisets 47 

!::L inclusion of goals seen as lists 58 

!::M inclusion of goals seen as multisets 58 

II level mapping 172 

IOI length of a derivation D (number of steps) 14 

IOI length of a goal G (number of atoms) 12 
G- conjunction of atoms of G 14 

-s immediately related atoms in S 16 

=s reflexive, transitive closure of -s 16 

-x resultants that are variants modulo X 56 

-x,0,k restriction of ~x to certain resultants 56 

[R]x,G,k equivalence class of R under ~x.G,k 56 



CWITRACTS 
I D.H.J. Epema. Surfaces with canonical hyperplane sections. 
1984. 
2 J.J. Dijkstra. Fake topological Hilb~r! sp_aces and characteri
zations of dimension in terms of neghgihl/uy. 1984. 
3 A.J. van der Schaft. System theoretic descriptions of physical 
systems. 1984. 
4 J. Koene. Minimal cost flow in processing networks, a primal 
approach. 1984. 
5 B. Hoogenboom. Imertwining functions on compact Lie 
groups. 1984. 
6 A.P.W. Bohm. Dataflow computation. 1984. 
7 A. Blokhuis. Few-distance sets. 1984. 
8 M.H. van Hoom. Algorithms and approximations for queue
ing systems. 1984. 
9 C.P.J. Koymans. Models of the lambda calculus. 1984. 
10 C.G. van der Laan, N.M. Temme. Calculation of special 
functions: the gamma function, the exponential integrals and 
error-like functions. 1984. 
11 N.M. van Dijk. Controlled Markov processes; time• 
discretization. 1984. 
12 W.H. Hundsdorfer. The numerical solution of nonlinear 
stiff initial value problems: an analysis of one step methods. 
1985. 
13 D. Grune. On the design of ALEPH. 1985. 
14 J.G.F. Thiemann. Analytic spaces and dynamic program
ming: a measure theoretic approach. 1985. 
15 F.J. van der Linden. Euclidean rings with two infinite 
primes. 1985. 
16 R.l.P. Groothuizen. Mixed elliptic-hyperbolic panial dif
ferential operators: a case•study in Fourier integr_al operators. 
1985. 
17 H.M.M. ten Eikelder. Symmetries for dynamical and Hamil• 
tonian systems. 1985. 
I 8 A.D.M. Kester. Some large deviation results in statistics. 
1985. 
19 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part I: Philosophy, framework, computer science. 
1%6 -
20 B.F. Schriever. Order dependence. I 986. 
21 D.P. van der Vecht. Inequalities for stopped Brownian 
motion. 1986. 
22 J.C.S.P. van der Woude. Topological dynamix. 1986. 
23 A.F. Manna. Methods, concepts and ideas in mathematics: 
aspects of an evolution. 1986. 
24 J.C.M. Baeten. Filters and ultra.filters over definable sub• 
sets of admissible ordinals. 1986. 
25 A.W.J. Kolen. Tree network and planar rectilinear location 
theory. 1986. 
26 A.H. Veen. The misconstrued semicolon: Reconciling 
imperative languages and data.flow machines. 1986. 
27 A.J.M. van Engelen. Homogeneous zero•dimensional abso• 
lute Borel sets. 1986. 
28 T.M.V. Janssen. Foundations and applications of Montague 
grammar, part 2: Applications to natural language. 1986. 
29 H.L. Trentelman. Almost invariant subspaces and high gain 
feedback. 1986. 
30 A.G. de Kok. Production·inventory control models: 
approximations and algorithms. 1987. 
31 E.E.M. van Berkum. Optimal paired comparison designs 
for factorial experiments. 1987. 
32 J.H.J. Einmahl. Multivariate empirical processes. 1987. 
33 O.J. Vrieze. Stochastic games with finite state and action 
spaces. 1987. 
34 P.H.M. Kersten. Infinitesimal symmetries: a computational 
approach. 1987. 
35 M.L. Eaton. Lectures on topics in probability inequalities. 
1987. 
36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.). Proceedi~gs 
of the first international conference on industrial and applted 
mathematics (IC/AM 87). 1987. 
37 L. Stougie. Design and analysis of algorithms for stochastic 
integer programming. 1987. 
38 J.B.G. Frenk. On Banach algebras, renewal measures and 

regenerative processes. 1987. 
39 H.J.M. Peters. O.J. Vrieze (eds.). Surveys in game theory 
and related topics. 1987. 
40 J.L. Geluk, L. de Haan. Regular variation, extensions and 
Tauberian theorems. 1987. 
41 Sape J. Mullender (ed.). The Amoeba distributed operating 
system: Selected papers /984-1987. 1987. 
42 P.R.J. Asveld, A. Nijholt (eds.). Essays on concepts, for• 
,nalisms, and tools. 1987. 
43 H.L. Bodlaender. Distributed computing: structure and 
complexity. 1987. 
44 A.W. van der Vaart. Statistical estimation in large parame
ter spaces. 1988. 
45 S.A. van de Geer. Regression analysis and empirical 
processes. 1988. 
46 S.P. Spekreijse. Multigrid solution of the steady Euler equa• 
tions. 1988. 
47 J.B. Dijkstra. Analysis of means in some non•standard 
situations. 1988. 
48 F.C. Drost. Asymptotics for generalized chi•square 
goodness•o/•fit tests. 1988. 
49 F.W. Wubs. Numerical solution of the sha/low•water equa• 
lions. 1988. 
50 F. de Kerf. Asymptotic analysis of a class of perturbed 
Korteweg•de Vries initial value problems. 1988. 
51 P.J.M. van Laarhoven. Theoretical and computational 
aspects of simulated annealing. 1988. 
52 P.M. van Loon. Continuous decoupling transformations for 
linear boundary value problems. 1988. 
53 K.C.P. Machielsen. Numerical solution of optimal control 
problems with state constraints by sequential quadratic pro• 
gramming in/unction space. 1988. 
54 L.C.R.J. Willenborg. Computational aspects cf sun1ey data 
processing. 1988. 
55 G.J. van der Steen. A program generator for recognition, 
parsing and transduction with syntactic patterns. 1988. 
56 J.C. Ebergen. Translating programs into delay-insensitive 
circuits. 1989. 
57 S.M. Verduyn Lunel. Exponential type calculus for linear 
delay equations. 1989. 
58 M.C.M. de Gunst. A random model for plant cell popula• 
tion growth. 1989. 
59 D. va9 Dulst. Characterizations of Banach spaces not con• 
taining I . 1989. 
60 H.E. de Swart. Vacillation and predictability properties of 
low•order atmospheric spectral models. 1989. 
61 P. de Jong. Central limit theorems for generalized multi/· 
inear fonns. 1989. 
62 V.J. de Jong. A specification system/or statistical software. 
1989. 
63 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part I. 1989. 
64 B. Hanzon. Identifiability, recursive identification and 
spaces of linear dynamical systems, part JI. 1989. 
65 B.M.M. de Weger. Algorithms for diophantine equations. 
1989. 
66 A. Jung. Cartesian closed categories of domains. 1989. 
67 J.W. Poldennan. Adaptive control & identification: Conflict 
or con.flux?. 1989. 
68 H.J. Woerdeman. Matrix and operator extensions. 1989. 
69 B.G. Hansen. Monotonicity properties of infinitely divisible 
distributions. 1989. 
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-fiv_e 
years of operations research in the Netherlands: Papers dedz. 
cated to Gijs de Leve. 1990. 
71 P.J.C. Spreij. Counting process systems. Identification and 
stochastic realization. 1990. 
72 J.F. Kaashoek. Modeling one dimensional pattern formation 
by anti-diffusion. 1990. 
73 A.M.H. Gerards. Graphs and polyhedra. Binary spaces and 
cutting planes. 1990. 
74 B. Koren. Multigrid and defect correctionfor_the steady 
Navier•Stokes equations. Application to aerodynamics. 1991. 
75 M.W.P. Savelsbergh. Computer aided routing. 1992. 



76 O.E. Flippo. Stability, duality and decomposition in general 
mathematical programming. I 991. 
77 A.J. van Es. Aspects of nonparametric density estimation. 
1991. 
78 G.A.P. Kindervatcr. Exercises in parallel combinatorial 
computing. 1992. 
79 J.J. Lodder. Towards a symmetrical theory of generalized 
functions. 199 I. 
80 S.A. Smulders. Control of freeway traffic flow. 1993. 
81 P.H.M. America, J.J.M.M. Rutten. A parallel object
oriented language: design and sema1ltic foundations. 1992. 
82 F. Thuijsman. Optimality and equilibria in stochastic 
games. 1992. 
83 R.J. Kooman. Convergence properties of recurrence 
sequences. 1992. 
84 A.M. Cohen (ed.). Computational aspects of Lie group 
representations and related topics. Proceedings of the /990 
Computational Algebra Seminar at CW/, Amsterdam. 1991. 
85 V. de Valk. One-dependent processes. 1994. 
86 J.A. Baars, J.A.M. de Groot. On topological and linear 
equivalence of certain function spaces. 1992. 
87 A.F. Monna. The way of mathematics and mathematicians. 
1992. 
88 E.D. de Goede. Numerical methods for the three
dimensional shallow water equations. 1993. 
89 M. Zwaan. Moment problems in Hilbert space with applica
tions to magnetic resonance imaging. 1993. 
90 C. Vuik. The solution of a one-dimensional Stefan problem. 
1993. 
91 E.R. Verheul. Multimedians in metric and normed spaces. 
1993. 
92 J.L.M. Maubach. Iterative methods for non-linear partial 
differenlia[ equations. 1994. 
93 A.W. Ambergen. Statistical uncertainties in posterior pro
babilities. 1993. 
94 P.A. Zegeling. Moving-grid methods for time-dependent 
partial differential equations. 1993. 
95 M.J.C. van Put. Statistical analysis of software reliability 
models. 1993. 
96 J.K. Scholma. A Lie algebraic studl of some integrable sys
tems associated with root systems. 1993. 
97 J.L. van den Berg. Sojoum times in feedback and processor 
sharing queues. I 993. 
98 A.J. Koning. Stochastic integrals and goodness-of-fit tests. 
1993. 
99 B.P. Sommeijer. Parallelism in the numerical integration of 
initial value problems. 1993. 
100 J. Molenaar. Multigrid methods for semiconductor device 
simulation. 1993. 
101 H.J.C. Huijberts. Dynamic feedback in nonlinear synthesis 
problems. I 994. 
102 J.A.M. van der Weide. Stochastic processes and point 
processes of excursions. 1994. 
103 P.W. Hemker, P. Wesseling (eds.). Contributions to mul
tig11d. 1994. 
104 I.J.B.F. Adan. A compensation approach for queueing 
problems. 1994. 
)05 O.J. Boxma, G.M. Koole (eds.). Performance evaluation 
of parallel and distributed systems - solution methods. Part I. 
1994. 
106 O.J. Boxma, G.M. Koole (eds.). Perfomumce evaluation 
of parallel and distributed systems * solution methods. Part 2. 
1994. 
107 R.A. Trompert. Local unifonn grid refinement for time~ 
dependent partial differential equations. 1995. 
108 M.N.M. van Lieshout. Stochastic geometry models in 
image analysis and spatial statistics. 1995. 
l09 R.J. van GlabJ:,eek. Comparative concurrency semantics 
and refinement of actions. 1995. 
110 W. Vervaat (ed.). Probability a,ul lallices. I 995. 
111 I. Helsloot. Covariant Jonna/ group theory and some 
applications. 1995. 
112 R.N. Bol. Loop checking in logic programming. 1995. 
113 G.J.M. Koole. Stochastic scheduling and dynamic pro
gramming. 1995. 



MATHEMATICAL CENTRE TRACTS 
I T. van der Walt. Fixed and almost fixed points. 1%3. 
2 A.R. Bloemena. Samplingfrom a graph. 1964. 
fa. de Leve. Generalized Markovian decision processes, 
part I: model and method. 1964. 
4 G. de Leve. Generalized Markovian decision processes. 
part II: probabilistic background. 1964. 
5 G. de Leve, H.C. Tijms, P.J. Weeda. Generalized Markovian 
decision processes, applications. 1970. 
6 M.A. Maurice. Compact ordered spaces. 1964. 
7 W.R. van Zwet. Convex transformations of random variables. 
1964. 
8 J.A. Zonneveld. Automatic numerical integration. 1964. 
9 P.C. Baayen. Universal morphisms. 1964. 
10 E.M. de Jager. Applications of distributions in mathematical 
physics. 1964. 
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, t96~~n Wijngaarden. Formal properties of newspaper Dutch. 

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print: 
replaced by MCT 54. 
14 H.A. Lauwerier. Calculus of variations in mathematical 
physics. I %6. 
15 R. Doornbos. Slippage tests. 1966. 
16 J.W. de Bakker. Formal definition xprogrammi"f; 
~a;l,i'.ages with an application to the de nition of AL OL 60. 

17 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part I. 1%8. 
18 R.P. van de Riel. Formula manipulation in ALGOL 60, 
part 2. 1%8. 
19 J. van der Slot. Some properties related to compactness. 
1968. 
20 P.J. van der Houwen. Finite difference methods for solving 
partial differential equations. 1968. 
21 E. Watte!. The compactness operator in set theory and 
topology. I %8. 
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, 
part I. 1968. 
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in 
numerical algebra, part 2. 1968. 
24 J.W. de Bakker. Recursive procedures. 1971. 
25 E.R. Paerl. Representations of the Lorentz group and projec
tive geometry. 1969. 
i~iii~ropean Meeting 1968. Selected statistical papers, part I. 

fi6~~ropean Meeting I 968. Selected statistical papers, part /I. 

28 J. Oosterholf. Combination of one-sided statistical tests. 
1969. 
29 J. Verhoelf. Error detecting decimal codes. 1969. 
~g7~_- Brandt Corstius. Exercises in computational linguistics. 

31 W. Molenaar. Approximations lo the Poisson. binomial and 
hypergeometric distribution functions. 1970. 
32 L. de Haan. On regular variatio11 and its application to the 
weak convergence of sample extremes. 1970. 
33 F.W. Steutel. Preservations of infinite divisibility under mix
ing and related topics. 1970. 
341. Juhasz, A. Verbeek, N.S. Kroonenberg. Cardinal func
tions in topology. 1971. 
35 M.H. van Emden. An analysis of complexity. 1971. 
36 J. Grasman. On the birth of boundary layers. 1971. 
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. 
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg.:J<emper, 
F.E.J. Kruseman Aretz, W.L. van der Poe!, J.P. Schaap
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica 
Symposium. 1971. 
38 W .A. Verloren van Themaat. A utomalic analysis of Dutch 
compound words. 1972. 
39 H. Bavinck. Jacobi series and approximation. 1972. 
40 H.C. Tijms. Analysis of (s,S) inventory models. 1972. 
41 A. Verbeek. Superextensions of topological spaces. 1972. 
42 W. Vervaat. Success epochs in Bernoulli trials (with applica
tions in number theory). T972. 
43 F.H. Ruymgaart. Asymptotic theory of rank tests for 
independence. f973. 
44 H. Bart. Meromorphic operator valued Junctions. 1973. 

45 A.A. Balkema. Monotone transformations and limil laws. 
1973. 
46 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulation systems, part I: lhe language. 1973. 
47 R.P. van de Riel. ABC ALGOL, a portable language for 
formula manipulalion systems, part 2: the compiler. 1973. 
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L. 
Oudshoom. An ALGOL 60 compiler i11 ALGOL 60, text of the 
MC-compiler for the EL-XB. 1973. 
49 H. Kok. Connected orderable spaces. 1974. 
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. 
Koster, M. Sintzolf, C.H. Lindsey, L.G.L.T. Meertens, R.G. 
Fisker (eds.). Revised report on the algorithmic language 
ALGOL 68. 1976. 
51 A. Hordijk. Dynamic programming and Markov potential 
theory. 1974. 
52 P.C. Baayen (ed.). Topological structures. 1974. 
53 M.J. Faber. Metrizability in generalized ordered spaces. 
1974. 
54 H.A. Lauwerier. Asymptotic a11alysis, part I. 1974. 
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I: 
theory of designs, finite geometry and coding theory. 1974. 
56 M. Hall, Jr., J.H. van Lint (eds.). Combi11atorics, part 2: 
graph theory. foundations, partitions and combinatorial 
geometry. 1914. 
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3: 
combinatorial group theory. 1974. 
58 W. Albers. Asymptotic expansions and the deficiency con
cept in statistics. 1975. 
59 J.L. Mijnheer. Sample path properties of stable processes. 
1975. 
60 F. Glibel. Queueing models involving buffers. 1915. 
63 J.W. de Bakker (ed.). Foundations of computer science. 
1975. 
64 W.J. de Schipper. Symmetric closed categories. 1975. 
65 J. de Vries. Topological transformation groups, I: a categor
ical approach. 1975. 
66 H.G.J. Pijls. Logically convex algebras in spectral theory 
and eigenfunction expansions. 1976. 
68 P.P.N. de Groen. Singularly perturbed differential operators 
of second order. 1976. 
69 J.K. Lenstra. Sequencing by enumerative methods. 1977. 
70 W.P. de Roever, Jr. Rec:ursive program schemes: semantics 
and proof theory. 1976. 
71 J.A.E.E. van Nunen. Contracting Markov decision 
processes. 1976. 
72 J.K.M. Jansen. Simple periodic and non-periodic Lanu! 
functions and their applications in the theory of conical 
waveguides. 1977. 
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979. 
74 H.J.J. le Riele. A theoretical and computational study of 
generalized aliquot sequences. 1976. 
75 A.E. Brouwer. Treelike spac:es and related connected topo
logical spaces. 1977. 
76 M. Rem. Associons and the closure statements. 1976. 
77 W.C.M. Kallenber~. Asymptotic optimality of likelihood 
ratio tests in exponent,al families. 1978. 
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz 
spaces. 1977. 
79 M.C.A. van Zuijlen. Empirical distributions and rank 
statistics. 1977. 
80 P.W. Hemker. A numerical stut{y of stiff two-point boundary 
problems. 1977. 
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science II, part I. 1976. 
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer 
science /I, part 2. 1976. 
83 L.S. van Benthern Jutting. Checking Landau's 
"Gru11dlagen" in the AUTOMATH system. 1979. 
84 H.L.L. Busard: The translation of the elements of Euclid 
from the Arabic into Lotin by Hermann of Carinthia (?), books 
vii-xii. 1977. 
85 J. van Mill. Supercompact11ess and Wal/mann spaces. 1977. 
86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program
ming SJSlem for operations on vectors and matrices over arbi
trary fields and oJ variable size. 1978. 
88 A. Schrijver. Matroids and linking systems. 1977. 
89 J.W. de Roever. Co'!'JJlex Fourier transformation and ana
lytic functionals with unbounded carriers. 1978. 
90 L.P.J. Groenewegen. Characterization of optimal strategies 
in dynamic games. 1981. 



91 J.M. GeyseJ. Transcendence in fields of pasilive characteris
tic. 1979. 
92 PJ. Weeda. Finite generalized Markov programming. 1979. 
i~7~_.c . .Tijms, J. Wessels (eds.). Markov decision theory. 

94 A. Bijlsma. Simultaneous approximations in transcendental 
number theory. 1978. 
95 K.M. van Hee. Bayesian control of Markov chains. 1978. 
96 P.M.B. Vitimyi. Lindenmayer systems: structure, 
languages, and growth functions. 1980. 
97 A. Federgruen. Markovian control problems; functional 
equations and algorithms. 1984. 
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 
99 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas 
(eds.). Interfaces between computer science and operations 
research. 1978. 
100 P.C. Baayen, D. van Dulst, J. Oosterhotf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
/. 1979. 
IOI P.C. Baayen, D. van Dulst, J. Oosterhotf (eds.). Proceed
ings bicentennial congress of the Wiskundig Genootschap, part 
2. 1979. 
:g~8D. van Dulst. Reflexive and superreflexive Banach spaces. 

I03 K. van Ham. Classifying infinitely divisible distributions 
by functional equations. 1978. 
104 J.M. van Wouwe. GO-spaces and generalizations o/metri
zability. 1979. 
I 05 R. Helmers. Edgeworth expansions for linear combinations 
of order statistics. 1982. 
J~~/· Schrijver (ed.). Packing and covering in combinatorics. 

107 C. den Heijer. The numerical solutioil of nonlinear opera
tor equ1<1ions by imbedding methods. 1979. 
108 J.'-1. de Bakker, J. van Leeuwen (eds.). Foundations of 
comp1 ter science JI/, part 1. 1979. 
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of 
co, -puter science I II, part 2. 1979. 
I' J J.C. van Vliet. ALGOL 68 transput, part I: historical 
, 1view and discussion of the implementation model. 1979. 
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen
tation model. 1979. 
l 12 H.C.P. Berbee. Random walks with stationary increments 
and renewai theory. 1979. 
I I 3 T.A.B. Snijders. Asymptotic optimality theory for testing 
problems with restricted alternatives. 1979. 
114 AJ.E.M. Janssen. Application of the Wigner distribution to 
harmonic analysis of generalized stochastic processes. 1979. 
115 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part I. 1979. 
116 P.C. Baayen, J. van Mill (eds.). Topological structures II, 
part 2. 1979. 
117 P.J.M. Kallenberg. Branching processes with continuous 
state space. 1979. 
118 P. Groeneboom. Large deviations and asymptotic 
efficiencies. 1980. 
119 F.J. Peters. S~rse matrices and substructures, with a novel 
implementqtion offinite element algorithms. 1980. 

11~e~~~;;\t~ut~r,:~~ .1 ~so'.he asymptotic analysis of large-

I 21 W .H. Haemers. £igenvalue techniques in design and graph 
theory. I 980. 
122 J.C.P. Bus. Numerical solution of systems of nonlinear 
equations. 1980. 
l~:l Yu)l4sz. Cardinal functions in topology - ten years later. 

124 R.D. Gill. Censoring and stochastic integrals. 1980. 
125 R. Eising. 2-D systems, an algebraic approach. 1980. 
126 G. van der Hoek. Reduction methods in nonlinear pro
gramming. 1980. 
127 J.W. Klop. Combinatory reduction systems. 1980. 
128 A.J.J. Talman. Variable dimension fixed point algorithms 
and triangulations. 1980. 
129 G. van der Laan. Simplicia/ fixed point algorithms. 1980. 
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. 
Smt, A.H. Veen. /LP: intermediate language for pictures. 
1980. 
131 R.J .R. Back. Correctness preserving program refinements: 
proof theory and applications. 1980. 
132 H.M. Mulder. The interval function of a graph. 1980. 

133 C.A.J. Klaassen. Statistical performance of location esti
mators. 1981. 
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna
tional conference on A LGOJ 68. 1981. 
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Fo,mal methods in the study of language, part I. 1981. 
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof 
(eds.). Formal methods in the study of language, part II. 1981. 
137 J. Telgen. Redundancy and linear programs. 1981. 
138 H.A. Lauwerier. Mathematica/ models of epidemics. 1981. 
139 J. van der Wal. Stochastic dynamic programming, succes
sive approximations and nearly optimal strategies for Markov 
decision processes and Markov games. 1981. 
140 J.H. van Geldrop. A mathematical theory ofpure 198~~nge economies without the no-critical-point hypothesis. 

141 G.E. Welters. Abel-Jacobi isogeniesfor certain types of 
Fano threefolds. 1981. 
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part I. 1981. 
143 J.M. Schumacher. Dynamic feedback in finite- and 
infinite-dimensional linear systems. 1981. 
144 P. Eijgenraam. The solution of initial value problems using 
i':J81.a/ arithmetic; formulation and analysis of an algorithm. 

~ii~:Ji:&fntjes. Mu/ti-dimensional continued fraction algo-

146 C.V.M. van der Mee. Semigroup and factorization 
methods ill transport theory. 1981. 
Jiit·H. Tigelaar. Identification and informative sample size. 

148 L.C.M. Kallenberg. Linear programming and finite Mar
kovian control problems. 1983. 
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, 
W.K. Vietsch (eds.). From A to Z, proceedings of a sympo
sium in honour of A. C. Zaanen. I 982. 
150 M. Veldhorst. An analysis of sparse matrix storage 
schemes. 1.982. 
151 R.J.M.M. Does. Higher order asymptotics for simple linear 
rank statistics. 1982. 
:~~2G.F. van der Hoeven. Projections of lawless sequencies. 

153 J.P.C. Blanc. Application of the theory of boundary value 
problems in the analj,sis of a queueing model with paired ser-
vices. 1982. . 
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theon , part I. 1982. 
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational 
methods in number theory, part II. 1982. 
156 P.M.G. Apers. Query processing and data a/location in 
distributed database systems. 1983. 
157 H.A.W.M. Kneppers. The covariant classification of two
dimensional smooth commutative formal groups over an alge
braically closed field of positive characteristic. 1983. 
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of· 
computer science IV, distributed systems, p-rrt I. 1983. 
159 J.W. de Bal<ker, J. van Leeuwen (eds.). Foundations of 
computer science IV, distributed systems, part 2. 1983. 
160 A. Rezus. Abstract AUTOMATH. 1983. 
161 G.F. Helminck. Eisenstein series on the metaplectic group, 
an algebraic approach. 1983. 
162 J.J. Dik. Tests for preference. 1983. 
163 !-1. Schipj>ers. Multiple grid methods for equations of the 
second kind with applications in fluid mechanics. 1983. 
164 F.A. van der Duyn Schouten. Markov decision processes 
with continuous time parameter. 1983. 
165 P.C.T. van der Hoeven. On point processes. 1983. 
166 H.B.M. Jonkers. Abstraction, specification and implemen~~ft techniques, with an application to garbage collection. 

167 W.H.M. Zijm. Nonnegative matrices in dynamic program
ming. 1983. 
168 J.H. Evertse. Upper bounds for the numbers of solutions of 
diophantine equations. I 983. 
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order 
structures, part 2. 1983. 


