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Introduction 

Much has been written on commutative formal group theory and undoubtedly 
much more will be written. This work is another contribution to the theory of 
commutative formal groups. The main body of this work consists of a) a more or 
less self-contained presentation of commutative formal group theory in a covariant 
way, b) a theorem on the classification up to isomorphism of commutative formal 
groups defined over an algebraically closed field of positive characteristic. In the 
last chapter various applications are given. 

In the first chapter the concept of DPS-Hopf algebras is introduced. The category 
DPS-cHopf of DPS-Hopf algebras will turn out to be equivalent to the category 
of commutative formal group laws. Classical concepts as curvilinearity and S
typicality have well defined counterparts in DPS-cHopf. Within one chapter we 
will develop most of the classical theory found in [Haz] or [Laz]. New is the emphasis 
on the universal object C(A), whose group structure seems to reflect the menagerie 
of integrality lemmas necessary in the theory of commutative formal group laws. 
Witt and Hilbert rings will be seen to arise naturally in this setting. 

The second chapter deals with F-types. We will show that the Witt and Hilbert (if 
they exist) F-types of a curvilinear commutative formal group law G fully describe 
the formal group law G. In the process we will construct a universal DPS-Hopf 
algebra over a polynomial ring L, and thus give a new proof of the fact that the 
Lazard ring is a polynomial ring. We proceed to give connections with the theory of 
Dieudonne [Dieu] and of Honda [Hon]. We adapt a lemma of Dieudonne in order to 
obtain a very computable algorithm for finding the isogeny type of a commutative 
formal group law given by its F-type. 

In the third chapter we prove our main result: A commutative formal group law 
defined over an algebraically closed field k of positive characteristic of finite height 
is isomorphic to a commutative formal group law having a finite F-type. This finite 
F-type is described by a new set of invariants, called the jump data. Thus as a 
corollary we obtain: there is a catalogue of finite dimension over k of commutative 
formal group laws defined over k with bounded height. 

V 
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In this chapter we also prove a theorem on the reduction of formal group laws 
defined over W(k) given by their Hilbert F-types. This theorem will then be used 
to lift the problem of classification up to isomorphism over k to a well-described 
classification problem over W(k). · 
The last chapter then gives several applications: We give a complete classification 
in the 2-dimensional case (this has also been done by Manin [Man] and Kneppers 
[Kne]). In the 2- and 3-dimensionaj case we give the isogeny types as function of 
the parameters in the finite F-type. In the 2-dimensional case this has been already 
be done by Kneppers [Kne90], but this is new in the 3-dimensional case. Moreover 
using our theory there is now no obstruction for doing the same in any dimension. 
The chapter ends by treating a problem suggested by N. Yui: describe the structure 
(of the isomorphism classes) of the formal Brauer groµps of Fermat hypersurfaces 
defined over an algebraica.lly closed field k of positive characteristic. Again the 
solution of this problem lies in lifting the problem to a problem over W(k), solving 
that problem using the theory of Hilbert F-types (and the Serre-Witt cohomology 
as described in [SPM]) and then reducing the solution using a reduction theorem 
from chapter II. 



Some notation and conventions 

0.1 General conventions: We use the well known notation N = {1, 2, ... }, Z, Q and 
lFq, (q = pa). By P we will denote the set of all rational primes. 

0.2 For a given totally ordered finite (!) set E, we denote by Ml (E) the set of 
multi-indices on E, i.e., Ml (E) :=(NU {O} )E. The set Ml (E) becomes an abelian 
monoid under entrywise addition, and an ordered set under the lexicographic order. 

0.3 All rings and algebras are considered to be commutative and unitary. Therefore, 
a ring homomorphism¢: R1 -> R 2 will always satisfy the property ¢(1) = 1. 
Let R be a commutative unitary ring and let CURR be the category of commutative 
unitary R-algebras. Especially, CUR := CUR,: is the category of all commutative 
unitary rings. For K E CURR we will denote the multiplication byµ: K ® K-> K 
and the unit map by 1/ : R -> K (unless otherwise stated, all tensor products are 
over the base ring R). 

0.4 If R E CUR and x is a subset of an R-module M, then we denote by R{x} 
the R-module span of all x; E x in M. In this context R[x] denotes the R-algebra 
generated by all x; E x in M. By R[[x]] we denote the formal power series ring 
over R in the generic variables x; E x. 

0.5 A sum of the form I:t=a f; with a> b will be considered to be zero. 

0. 6 By ( a, b) we denote the greatest common divisor of a and b. 

0. 7 If Mis an R-module, then we denote by M* the linear dual of M. If f E M* 
and m E M then we define (f, m) := f(m). 

vii 





Chapter 1 

Generalities on DPS-Hopf algebras 

1 DPS-Hopf algebras 

1.1 For the definitions of coalgebra, bialgebra and Hopf algebra we follow closely 
[Haz], §37. Other references for the general theory of these concepts are [Abe] and 
[Yan]. 

1.2 Let R E CUR. A coalgebra over R is an R-module C together with two R
mod ule homomorphisms ~ : C -+ C ® C ( the comultiplication) and f : C -+ R ( the 
counit or the augmentation) such that 

(i) (Id ® ~) o ~ = (~®Id) o ~, 

(ii) (E ®Id) o ~=(Id ® E) o ~=Id 

(where we have identified R ® C ~ C ~ C ® R). In categorical terms a coalgebra 
over R is a comonoid object in Mod R, the category of R-modules, with two-sided 
counit. Let r : C ® C -+ C ® C denote the switching morphism which interchanges 
the two factors. The coalgebra C is said to be cocommutative if 

(iii) 7 0 ~ = ~-

Let R2 E CURR1 with canonical ring homomorphism z: R 1 -+ R2 • Let C1 and C2 be 
coalgebras over R 1 and R2 respectively. An R 1-module homomorphism f: C1 -+ C2 

is said to be a morphism of coalgebras if and only if (f ® f) o ~ 1 = ~ 2 of and 
E2 of = z o E1 (in Mod R,). Observe that we defined a coalgebra homomorphism 
between coalgebras over different base rings. In case the base rings are equal, we 
will sometimes say that f is an R-coalgebra homomorphism. 

1.3 An R-module Bis a called a bialgebra if 

(i) B is a commutative R-algebra (with structural morphisms µ, ry), 

1 



2 DPS-HOPFALGEBRAS CHAPTER! 

(ii) B is a coalgebra over R ( with structural morphisms ti, E), 

such that 

(iii) µ and rJ are R-coalgebra morphisms, 

(iv) ti and E are R-algebra morphisms. 

There is some redundancy in these requirements, see [Haz] 37.1.2 for details. An 
algebra homomorphism between two bialgebras (possibly over different base rings) 
is a morphism of bialgebras if it also is a morphism of coalgebras. A bialgebra 
is called cocommutative if the underlying coalgebra is cocommutative. Denote by 
cBialgR the category of cocommutative bialgebras over R. 
Let H be a bialgebra and let x = {x 1,x2 , •• • } be a set of generic variables. Then 
we denote by H,, 1 ,,,2 , ... := H,, := Z[x] :81 H the bialgebra over Z[x] obtained by 
extension of scalars. · 
A topological bialgebra is a bialgebra B together with a topology on B such that 
the structural morphisms of B are continuous. 

1.4 Let H be a bialgebra over R. Then the R-module homomorphism 'Y: H--+ H 
is called an antipode if 

(i) µ0(7:8ild)oti=rJOE=µo(ld :817)oti. 

A Hopf algebra is a pair consisting of a bialgebra H with an antipode 7. If H is 
(co)commutative, then 'Y is a morphism of (co)algebras ([Haz], proposition 37.1.8). 
A morphism of Hopf algebras simply is a morphism of the underlying bialgebras 
(but by [Haz], proposition 37.1.10 we know that a morphism of bialgebras com
mutes with the antipode). We denote by cHopf R the category of commutative and 
cocommutative Hopf algebras over R. 
In categorical terms we may say that cHopf R is the category of commutative 
cogroup objects of CURR. Equivalently H E cHopf R if and only if Spec(H) is 
an affine commutative group scheme over R. 

1.5 We give an easy example: Let X = {X;li E I} be a set of indeterminates. Then 
R[X] becomes a Hopf algebra if we define ti(X;) := Xi :81 1 + 1 :81 Xi, c(Xi) := 0 
and 7(X;) := -Xi. 

1. 6 An element x in a bialgebra H such that ti(x) = x :81 1 + 1 :81 x, is called 
primitive. The abelian group of primitive elements of H will be denoted P(H). 

1. 7 A sequence x = {x;li ~ O} C His called a sequence of divided powers, if and 
only if Xo = 1 and ti(xn) = Li+j=n Xi :81 Xj for all n. 
In the terminology of [Haz], 38.2.1 this would be a divided power sequence over 
1. The name "divided powers" arises from the fact that this notion in a way 
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generalizes xn /n! (as does another, different, notion in algebra that also goes by 
the name "divided powers"). For details, see [Haz], 38.2.2. 

1.8 For HE cBialgR (resp. HE cHopf n) we define~:= ~t : H[[t]] -----> (H 0 H)[[t]] 
by 

~ (Li?.Oh;ti) := L;?_O~(h;)ti_ 

Thus ~ is continuous with respect to the t-adic topologies. We then have the 
following basic relation between divided power sequences and primitive elements. 

1.9 Lemma. Let H E cBialglQ. Suppose given in H two sequences of elements 
(x;);?_o, (r1)1?.o such that x 0 = 1, r0 = 0 and such that the following relation holds 
for n 2'. 0 

nxn = L X;r1. 
i+j=n 

1.9.1 

(So in particular we have for all m that Tm E Z[x1, ... , Xm].) Then relation 1.9.1 is 
equivalent to the following relation in H[[t]] 

1.9.2 

Moreover, the sequence x = {x;li 2'. O} is a sequence of divided powers in H, if and 
only if all rm (m 2'. 1) are primitive. 

Relation (1.9.1) is called the Newton relation. 
proof: For the equivalence of relations 1.9.1 and 1.9.2: Differentiate both sides of 
1.9.2 with respect to t. Then compare the coefficients of powers oft. 
In order to obtain the second assertion apply~ to both sides of 1.9.2, and compare 
the coefficients of powers oft. Note that we need the commutativity of a and b for 
the relation exp(a + b) = exp(a).exp(b). 

D 

1.10 We use the previous lemma to construct an important example of a Hopf 
algebra: A, the bialgebra of the symmetric functions. Let O" = { O"mlm E N} be the 
set of indeterminates O"m. Define A = {a;li EN} C IQ)[O"] by the following relation 
in IQ)[O"][[t]]: 

(so a0 = 1). Then it is easily verified using (1.9.1) that IQ)[A] = IQ)[O"]. We now give 
IQ)[O"] the structure of a Hopf algebra as in example 1.5. By lemma 1.9 this means 
that a := {a;li 2: O}, is a sequence of divided powers. Thus in particular, if we 



4 DPS-HOPF ALGEBRAS CHAPTER 1 

define A := Z[A], then ~(a;) E A 0 A. Notice that the Newton relation holds in 
A: 

i+j=n 

Thus in particular am E A. In order to show that 1'1A is an endomorphism of A, 
consider the following relation in (Q 18) A[[t]] 

L r'(a;)ti = exp ( L 1'(:m) tm) = ( exp ( L a: tm) r1 = (I: a;tirl E A[[t]] 

So A is a subHopf algebra of (Q[a]. One easily finds that P(A) = Z{ a}, the 
Z-module span of all am. 
The name "symmetric functions" stems from the fact that, introducing a new set of 
generic variables Yi, i E N, the an may be considered as the elementary symmetric 
functions in the Yi· The a1 then turn out to be symmetric functions in the Yi· The 
classical proof of the equivalence between relations 1.9.1 and 1.9.2 is based on this 
fact (see [Haz], §17). 

1.11 We generalize 1. 10 as follows: Let S c P be an arbitrary set of rational 
prirres, possibly empty, and let N(S) be the multiplicative submonoid of the nat
ura1 numbers, generated by SU {1}. Let Zs be the intersection of all localized 
rir.gs Z(p),P E S. Here Z0 = (Q, by definition. Put as = {amlm E N(S)} for 
i1determinates am. Consider the relation 

L Entn = exp ( L a,:'tm), 
n2:0 mEN(S) 

1.11.1 

in the bialgebra (Q[usl, where we assume that all Um are primitive. If m E N(S), 
then we define am := am,s := Em. (Notice the double meaning of the am.) Let As 
denote the set {amlm E N(S)}. Let am have weight m. We easily see that (Q[as] = 
(Q[As], and the En, for natural numbers n, then become isobaric polynomials of 
weight n over (Q in the indeterminates am for m E N(S). However, the following 
generalization of a theorem of Dieudonne ([Dieu52]) shows, that acmally all En 
have coefficients in Zs. 

1.12 Lemma. The sequence {Enln ~ O} is a sequence of divided powers in As:= 
Zs[As]- Consequently As is a bialgebra over Zs. Also, P(As) = Zs{a-s}, the Zs
module span of all am,m E N(S). 

proof: Let m be the smallest integer such that Em = I:; 13 e13a13 (/:. Zs[A sl, and let 
/3 be a multi-index such that e13 (/:. Zs. Then m (/:. N(S). Consider the following 
relation: 

E; i8l E1 E Zs[A s] i8l Zs[A s] 
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We have the following two possibilities: 
1°) There is an index i such that /3 = (/31 , ... ,/3,) with /3;,/3,-/= O,i-/= r. We then 
find that the coefficient of af1 ••• a~::_11 ® a~' in the left hand side of this relation is 
e13. Therefore e13 is an element of Zs. This is a contradiction. 
2°) /3 = (/3,), so because of weight considerations /3, = m/r. Now the coefficient Ca 

of a~@ a~,-a in the left hand side of the relation is seen to be 

Ca = e13 ( ! ) E Zs, a= I, ... , /3, - l. 

The gcd of all Ca is pe13 if /3, = pn (for some prime p and n E N) and is e13 otherwise. 
But in any event /3, </. N(S) (as r/3, = m </. N(S) already) so in the first situation 
p is invertible in Zs. Therefore e13 E Zs and this again leads us to a contradiction. 

□ 

We call As the bialgebra of the S-typical symmetric functions. Notice that we 
have a homomorphism of bialgebras A--> As defined by an - 0 if n </. N(S) and 
an - an for n E N(S). 

1.13 Let H E cHopfR. A basis¢ = {¢1 1I E Ml (E)} for H considered as an 
R-module is called a structural basis if 

A.</J1 = ~ <PL@ <PK· 1.13.1 
L+K=I 

A DPS-Hopf algebra over Risa pair (H, ¢), where HE cHopf Rand¢ is a structural 
basis for H. But we usually just say His a DPS-Hopf algebra. A morphism of DPS
Hopf algebras is a morphism between the underlying Hopf algebras. Especially an 
isomorphism of DPS-Hopf algebras may be considered as a change of structural 
basis. The category of DPS-Hopf algebras over R will be denoted as DPS-cHopf R· 

The dimension of a DPS-Hopf algebra is defined as the cardinality of E. Notice 
that for H E DPS-cHopf R we have that P(H) = R{ ¢,J (i E E, E; is the i-th unit 
multi-index). 

1.14 Remark. -Recall that we have (subsection 0.2) adopted the convention 
that the index set E is finite. One might also define the notion of a DPS-Hopf 
algebra for infinite index sets E. A non-trivial example of such a DPS-Hopf algebra 
is A (note that the Z-module basis {a 1 II E Ml (N)} is not structural). For a proof 
of this fact see [Scho]. 
-We might define a DPS-bialgebra as a bialgebra which admits a structural basis. 
In the sequel we will see, however, that a DPS-bialgebra always admits an antipode. 

1.15 Let H E DPS-cHopf R and f : R --> R' a ring homomorphism. Then we 
define f.(H) E DPS-cHopf R' by the following procedure: Let { ¢11I E Ml (E)} be 
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a structural basis for H with algebra structure defined by 

</Jd>J = L a1,J,K<PK· 
K 

Then J.(H) is the DPS-Hopf algebra over R' defined as the free R'-module on the 
structural basis {¢1 /I E Ml (E)} and with algebra structure defined by 

¢1¢J = L f(a1,J,K )<PK· 
K 

One easily checks that J.(H) is indeed a Hopf algebra. 

1.16 Denote for HE cBialgR the linear dual as H*, and for a topological bialgebra 
H the continuous linear dual as H*c. (The continuous linear dual consists of all 
linear functionals which are continuous.) Let XE be the set {X./e E E}. For an 
H E DPS-cHopf R with structural basis { ¢1 /I E Ml (E)} the linear dual H* has 
the following properties. 

1.17 Proposition. Let HE DPS-cHopf R with structural basis { ¢1 /I E Ml (E)}. 
Then 

(i) H* ~ R[[XE]] as R-algebras. 

(ii) H* is a topological bialgebra under the XE-adic topology. 

(iii) (H*)*c ~ H. 

proof: (i): Let H E DPS-cHopf R with structural basis { ¢1 /I E Ml (E)}. Let 
81,.: H - R be defined by 81,.(<PJ) := 81,J, (Thus 81,J = 1 if I= J and 81,J = 0 if 
If. J.) Then the isomorphism of R-algebras between H* and R[[XEJl is given by 
81,. I-> X 1 . (Indeed use: 

81,.,8J,. = (81,. 18) 8J,.) 0 ~ = 81+J,. .) 

(ii) Straightforward dualization. (Notice (H 18) H)* ~ H*®H* as topological R
algebras because of (i).) 
(iii): Continuous linear functionals on H* are zero on monomials of sufficiently 
high degree, so an R-module basis for (H*)* 0 is given by 8x1,., (IE Ml (E)). This 
basis is easily seen to be structural. The isomorphism (H*)*c ~ H now is given by 
8x1. 1-> ¢1, 
:\'ote that we have used the cocommutativity. D 

1.18 Let H, H' E DPS-cHopf R and f : H - H' a homomorphism of Hopf algebras. 
Then f* : H'* - H* is a homomorphism of topological Hopf algebras, completely 
determined by f*(X~), e EE'. 
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Conversely: Of course, if T, T' are topological Hopf algebras over R, isomorphic 
as topological algebras to R[[XE]] respectively R[[XE']], then any homomorphism 
f: T-> T' induces a homomorphism of DPS-Hopf algebras f*: T'*-> T*. 
We denote the full subcategory of cHopf R consisting of all topological Hopf algebras 
over R, isomorphic as topological R-algebras to R[[XE]], for some finite index set 
£, as smooth-cHopf R· As we have seen in the proof of proposition 1.17, part (iii), 
if H E smooth-cHopf n, then H*c E DPS-cHopf R· 

1.19 Corollary. (Cartier) The categories DPS-cHopf R and smooth-cHopf R are 
anti-equivalent. □ 

1.20 The following will often be useful to us: Let Y; E H*, i E £ be algebraically 
independent such that R[[YE]] = H*. Then we define an isomorphism of topo
logical algebras <I> : R[[ZEJl -> H* by <I>(Z;) := Y;(i E E). We extend this to an 
isomorphism of topological Hopf algebras by defining ~(Z;) := <1>- 1 (~(Y;)). 

2 Curves 

2.1 A curve in a bialgebra H over R is a bialgebra morphism ¢ : A -> H, or 
equivalently, ¢ is given by a sequence of divided powers {¢; := ¢(a;)li ~ O} in 
H. We will usually write ¢ as an element of H[[t]]: ¢ = L;>o ¢;ti. We denote 
the set of curves as C(H). We define the m-th ghost component of¢ E C(H) as 
rm(¢) := ¢((Tm) (recall (Jm EA). We give the set C(H) a topology by considering 
C(H) as a subset of H[[t]], endowed with the t-adic topology. 

2.2 If HE cBialgn and H has no additive torsion (or equivalently, H fiat over Z), 
then as in lemma 1.9 we may write in Q 0 H[[t]] 

2.2.1 

So in this case the curve¢ is determined by the set {rm(¢)1m ~ 1} of (primitive) 
ghost components. 

2.3 Lemma. C(H) becomes an abelian group if we define 

¢ + 7/; :=µHO(¢ 0 7/;) 0 ~A, lqH)(a;) := 80,i and - ¢ := ¢ 0 'YA· 

As an element of H[[t]] the curve ¢+7/; is obtained by multiplication of power series. 
For the ghost components we have the relations: 
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□ 

2.4 The following obvious observation will often be useful: Let H have no additive 
torsion, ¢ E C(H) and suppose ¢i = 0 (1 ~ i < n) or equivalently rm(¢) = 0 
(1 ~ m < n). Then ¢n = rn(¢)/n E P(H) (Newton relation). 

2. 5 If H E DPS-cHopf R with structural basis { ¢ 1 II E MI ( E)} we still have another 
presentation of curves. :\'otice that R-algebra morphisms of H* to R[[t]] (with the 
t-adic topology) are necessarily continuous. 

2.6 Lemma. Let H E DPS-cHopf R· We have an isomorphism of groups 

proof: By lemma 1.17 we know that H* ~ R[[XE]] as topological R-algebras. 
If ¢ = "£ ¢;ti E C(H), we define ¢ E Alg n(H*, R[[t]]) by ¢>(X,) := "E,(X,, ¢i)ti, 
e EE. 
Conversely: Assume that 'ljJ E Algn(H*,R[[t]]). Then we may write 1/J = "£1/Jiti 
for /;;EH**. Since 1/J necessarily is continuous, we have that 1/J(X,) E tR[[t]], and 
therefore that 1/J; is zero on monomials of total degree greater than i. So especially 
'lj, is continuous and thus may be considered as an element of H. That the sequence 
L 1/J; Ii 2'. 0} is a sequence of divided powers follows from 

~]~1/Jn,X Q9 y)tn = 1/J(xy) = 1/J(x)'lj)(y) = ~] L 1/J; Q9 'lj)j,X Q9 y)tn. 
n n i+j=n 

□ 

2. 7 An S-typical curve in a Zs-bialgebra H is a curve which factors via As or 
equivalently a morphism of bialgebras As -+ H. Such a curve is determined by the 
values on the elements of As- If moreover H has no additive torsion, an S-typical 
curve can therefore be written as 

The set of all S-typical curves is denoted Cs(H). We will usually write Ls or Ls,m 
instead of LmEN(S). Since As is a subHopf algebra of Zs Q9 A we see from lemma 
2.3 that Cs(H) is a subgroup of C(H). 

2.8 If f : H -+ H' is a homomorphism of bialgebras, then we denote by C(J) : 
Cs(H) -+ Cs(H') the induced homomorphism of groups sending ¢ E Cs(H) to 
Jo¢ E Cs(H'). :\'ote that we have (C(J)</>)n = J(<l>)n-
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Operators on the group of curves 

2.9 Following Cartier, we will define three types of operators on Cs(H), H E 

cBialgR. For a E N(S) we will define Va, the a-th Verschiebung, and Fa, the 
a-th Frobenius operator, and for r E R we will define [r], the Witt operator or 
homothety. 
Since there are some subtilities involved which tend to mess up a clear understand
ing, we introduce some additional notations. 

2.10 Recall that for a generic .\, AA := Z[.\] 0 A and As,A := Z[.\] 0 As are 
bialgebras over Z[.\] and Zs[.\] respectively, obtained by extension of scalars. Also 
let Pr : Z[.\] ---> R for r E R, be defined by p,(.\) := r. We will define F:, V,; E 

End cBialg(A) and [.\]• E cBialgz(A, AA) and use these to define 

Fa¢:=¢ o F:, Va¢:=¢ o Va• and [r]¢ := (p, 0 ¢) o [.\]'. 

Especially we have thus defined generic operators Fg, V.f on C(A) and[.\] on C(AA)
We then have, for example, that F[(ld A) = F:. Therefore defining F: is equivalent 
to giving the curve FJ7(1d A) E C(A). The same applies for the other operators. 
Notice that the ring generated by all F:, V,;, [.\]• is the opposite ring of the ring 
generated by all FJ7, V.f, [.\]. Hence we see that in order to prove relations between 
F:, Va• and[.\]' (and thus the "opposite" of these relations hold between Fa, Va and 
[r] on C(H), HE cBialgR) it suffices to prove the corresponding relations for FJ7, V.f 
and [.\] on C(AA)- We will say that it suffices to check the relations generically. 
But as AA has no additive torsion we may restrict ourselves to checking the relations 
we want to prove for the ghost components. This fact will turn out to be a strong 
tool, for example lemma 2.16 now is reduced to almost a triviality, contrary to 
[Haz], 16.2. 

2.11 We start by defining V,;. Under the notations of 1.10, we easily define Va" by 

va•(am) := am/la 2.11.1 

(where am/la := am/a if aim and am/la := 0 if a Jm), or equivalently, 

2.11.2 

or equivalently, 

v:(ld A)= v:(exp (L (J::tm )) := exp (L (J::tam). 2.11.3 

From 2.11.1 or 2.11.2 one immediately has that V,; is a Z-algebra endomorphism, 
while from 2.11.3 one has (using lemma 1.9) that V.f(ld A) is a coalgebra morphism 
A---> Q 0 A. Thus v:(ld A) E C(A). 
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2.12 The generic Witt operator [A] is also easily defined by 

2.12.1 

or equivalently, 

2.12.2 

or equivalently, 

2.12.3 

Again: From 2.12.1 or 2.12.2 one immediately has that [A]e is an Z-algebra mor
phism A -+ AA, while from 2.12.3 one has (using lemma 1.9) that [A](ld A) E 
C(Q ® AA). Thus [A](ld A) E C(AA). 

2.13 For the ghost components we find the following relation 

Tm (V,!(¢,)) = V,!(¢,)(am) = ¢,(Vae(am)) = qJ (aam#a) = arm§a(q,). 

Analogously we find rm([A](¢,)) = Amrm(q,). 

2.14 The generic Frobenius operator is defined in terms of ghost components as 
follows 

Tm (F%(1d A)) := O'am· 

So we clearly have that Ff (Id .4) E C(Q ® A), but we have to check whether 
Ff (Id A) is still defined over A. For this let (a be a primitive a-th root of unity. 
From Ef=1 (!m = a6a,(m,a) we see that 

V,!F%(1dA) = exp (L :::at<1m) = exp (E cr,:'(t(!m)tm) 

a 

= E[(!)ld A· 
i=l 

Since Ef=i[(!]ld A is invariant under all p E G~I (Q(()/Q), we see that V..9 F[(ld A) E 
C(A). Therefore Fa(ld A) E C(A), as V[ does not change the ring of definition 
(2.H.l). 

2.15 From the relations for the ghost components we immediately see that all three 
types of operators may be restricted to S-typical groups of curves. However for 
a;/ N(S) we have that F,. and V<! become the trivial operators. 

2.16 Lemma. We have the following relations among the generic Frobeni'U$, the 
generic Verschiebung and the generic Witt operators on the group C(AA,µ) 
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V/ =Ff= [l] = Id A, 

F9V9 = a F9V.9 = V.9 F9 if (a b) = 1 aa ,ab ba, · 

□ 

2.17 Let R have characteristic p > 0. We will show that in C8 (H), H E cBialgR 
the operators Fp and ½, commute. Consider the generic relation 

(p - v: Fff) Id A = exp (P LmEN\pN /J':: tm) . 
We immediately find the right hand side to be a curve in pZ(p) 181 A (but actually 
it is, of course, a curve in pA since the left hand side is a curve in A). Therefore 
after reducing we find that p = VPFP as operators of C8(H), and thus (using lemma 
2.16) we have shown VPFP = p = FP ½,. 

2.18 If f : H --> H' is a homomorphism of bialgebras, then C(J) (see 2.8) commutes 
with Fa, Va and C(J)[r]¢ = [f(r)]C(J)¢, as one easily checks. 

Topology and convergence 

We will show that C8 (H) is a complete separated (or Hausdorff) topological group. 
(Recall that separated means that any two different curves have non-intersecting 
neighbourhoods.) 

2.19 Lemma. The group C8 (H) is filtered by {VaCs(H)I a E N(S)} and is com
plete in the following sense: Any sequence LaEN(S) Va'l/Ja for 'l/Ja E Cs(H), converges 
in Cs(H) (We will say that C8 (H) is V-complete). 

proof: Observe that rm(Va¢) = 0 form< a. □ 

It is easy to see that [-\], ,\ E R and F0 , a E N(S) are continuous operators with 
respect to this topology on C8 (H). 

2.20 We define 7ft : C8 (H) --. P(H) by 

7ft ("E ¢iti) := <1>1 = r1(¢). 
i~O 



12 DPS-HOPF ALGEBRAS CHAPTER 1 

Then it is easily seen that 1r1 is a group homomorphism. 
A set of curves {11,;} (i E / for some set I) such that {1r1·1t\} is a basis for P(H) is 
called a fundamental set of curves 

2.21 Let H be the bialgebra Z[a], for an indeterminate primitive 11. We will prove 
that C(H) = {O}, which shows that 1r1 is in general not surjective. 
Suppose O =f. 'I/; E C(H). Without loss of generality we may assume that '1/;1 =/- 0, 
so '1/;1 = w, z E Z - {O}. Write the curve 'I/; as exp(Em-1rm('l/;)tm) in C(HQ)
:.\'otice that rm('I/;) = Zml1, Zm E Z. Then we find from the Newton relation that 
'I/;;= ziai /i!+ lower order terms in 11. Thus 'lj.;; r/. Z[a] for i > lzl. 

2.22 Lemma. Let I be a finite index set and let { '1/;;li E /, 'I/;; E Cs(H)} be such 
that {1r1('1/;;)li E I} is a generating set for 1r1(Cs(H)). Then <P E C5 (H) can be 
written as 

<P = L l/;,[Aa,i]'I/;;, Aa,i E R. 
aEN(S),iEJ 

If {1r1('1/;;)li EI} is a basis for 1r1(C5 (H)), then the above expression is unique. So 
C5 (H) is separated. 

proof: Suppose <Pm = (Ls,a<n,iEI V0 [A0 ,;]'l/;;)m, for m < n. Then by observation 
2.4 we have that (</J - Ls,a<n,iEl V0 [A0 ,;]'l/;;)n is primitive. We therefore may write 

(<P - Ls Va[Aa,i]'l/;;)n = L An,i7rt('I/;;) = 'lrt (L[An,;]'1/;;), 
a<n,iEl iEl iEJ 

for some An,i E R. But then <Pm= (Ls,a:,sn,iEl Va[Aa,i]'l/;;)m, form ~ n. □ 

2.23 Let H be a DPS-Hopf algebra over R with structural basis { </Jill E Ml (E)}. 
Let E; (i E E) denote the i-th unit multi-index. Then we define the ith canonical 
curve <PH,i by 

<PH,i := L <Pm,tn. 
nEN 

2.23.1 

(This is indeed a curve!) Notice that r 1(</Jn,;) =¢,,,and that the tempting defini
tion 'I/;; := exp (</J,,t) does only give a curve in C(H) if RE CURQ-

2.24 Corollary. Let H E DPS-cHopf R and <PE C(H). Then cp can be uniquely 
written as 

<P = L Va[Aa,;J<PH,i Aa,i ER. 2.24.2 
aEN,iEE 

proof: The set {1r1(<Pn,;)li EE}= {</J,,li EE} is a basis for 1r1(C(H)) = P(H), so 
by lemma 2.22 we are done. □ 
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Module structure 

2.25 The group Cs(H) is a module over the ring generated by all operators Fa, Va 
and [A] (a E N(S), A E R). We will formalize this a little bit. Let Carts(R) be 
defined as set of formal sums of symbols by 

Carts(R) := { La,bEN(S) V,,[Aa,b]Fb I Aa,b E R, #{blAa,b =/- O} < 00 for all a}. 

Since Cs(H) is V-complete, we may interpret the elements of Carts(R) as well
defined operators on Cs(H), H E cBialgR. As such Carts(R) may be considered 
as a subset of the ring of operators on Cs(H). From lemmas 2.16 and lemma 2.26 
below we see that Carts(R) actually is a subring and that the ring structure is 
independent of H. Using 2.18 we conclude that Carts(•) may even be considered 
as a functor CUR -> UR. 

2.26 Lemma. Let As,µ,A := Z[µ, A] 0 As be the bialgebra over Zs(µ, A) (for 
genericµ, A), obtained by extension of scalars. We then have the following relation 
of generic operators on Cs(As,µ,A) 

with unique Va E Z[A,µ]. 

proof: One easily checks that rm(Ls V![va]Ffld As,,.,J = Ldlm dv;'1dum. So as
sume that we found Va E Z[A, µ] for a < n, n E N(S) such that rm([A]ld As,,.,A + 
[µ]Id As,,.,J = rm(Ls Va[va]Fald As,,.,J for m < n. Now consider the relation in 
C(Q[A,µ] 0A):) Cs(Q[A,µ] 0As) 

( [A]+[µ] - Ls V;[va]F!) Id As,,.,A = (Ls V;[va]F!) Id As,µ,A. 
a<n a~n 

2.26.1 

Then we find by comparing the coefficients of tn in both sides and using observation 
2.4, that 

\n + n " d n/d 
A µ - L..,djn,d,tn V d nVn 

/J"n= -/J"n, 2.26.2 
n n 

Now, since C(AA,µ), is a group the left hand side of 2.26.1 is an element of C(AA,µ), 
therefore the left hand side of 2.26.2 is an element of AA,µ- But then there is a 
unique Vn E Z[A, µ] such that rn(Ls V![va]Ffld As,,.,J = rn([A]ld As,,.,A +[µ]Id As,,.,J. 

□ 

We denote the Carts(R)-module structure by Q on places where confusion might 
arise. 
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2.27 Remark. - The proof of lemma 2.26 is based on the very small trick: "use 
the group structure of C(A)". We will use this technique several times more, and 
each time it replaces some (ad hoc) integrality lemma in [Haz] (for instance, the 
proof of lemma 2.26 replaces [Haz], 16.2.10 and 17.1.3). 
- There is a more elegant, but also more involved way of defining Carts(R). That 
is, we may define Carts(R) as End (R@As)DVP (the opposite ring of End (R@As)). 
One then needs the fact that A is a DPS-Hopf algebra (remark 1.14), so especially 
P(R@A) = R@P(A), and the technique of lemma 2.22 to describe End (R@As). 

2.28 From lemma 2.26 we immediately see that the subset Ws(R) of Carts(R) 
defined by Ws(R) := {Es Va[Aa]Fa IAa ER} is a subring. One may check that 
Ws(R) is commutative. Thus we may consider Ws(•) as functor CUR-+ CUR. We 
will study this functor in the next section. 

3 Witt vectors and Hilbert rings 

All results of this section for S = {P} or S = P can be found in [Haz, §17 and §27], 
or in [Laz]. 

3.1 We define the ring of S-Witt vectors or the S-Witt ring Ws(R) on RE CURz8 as 
follows. As a set Ws(R) is just RN(S). If x E Ws(R), then we write x = (xn)nEN(S)· 
The addition and multiplication on Ws(R) are defined via transport of structure 
usingtheisomorphismofsets<I>s(R): Ws(R)-+ Ws(R), <I>s(R)(x) := Es Va[xa]Fa. 
In the sequel we identify Ws(R) and Ws(R) via <I>s(R). 

3.2 Classically W(R) := Wp(R) is defined by means of the Witt coordinate (poly
nomials} Sn : RN -+ R with sn(x) := Edin dx;1d. One then proves that there are 
unique polynomials gx,;(x, y), g+,;(x, y) E Z[x1, ... , x;, y1 , ... , y;] for i E N, giving 
g+(x,y),gx(x,y) E W(Z[x,y]) such that 

Sn(x) + Sn(Y) = sn(B+(x,y)) and sn(x).sn(Y) = Sn(gx(x, y)). 3.2.1 

3.3 Notice that in order to prove relations in Ws(R) it is sufficient to prove these 
relations generically (see 2.10), i.e., it suffices to check these relations in Cs(As,v), 
where v is any appropriate set of generic variables. Thus we need only to consider 
the ghost components. But as rm(w¢) = sm(w)rm(¢), w E Ws(Z[v]), ¢ E Cs(As,v) 
we may even restrict ourselves to comparing the Witt coordinates. 
For example we easily prove relations 3.2.1 as follows. Using lemma 2.26 we see 
that we have unique polynomials g+,;(x,y) E Z[x1, ... ,x;,y1, ... ,y;] such that we 
have the following relation of operators on Cs(As,x,y) 

Ls,a V![xa]F! + Ls,a V![Ya]F! = Ls,a V![B+,a(x, y)]F!-
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Using lemma 2.16 we analogously prove the statement for gx(x, y). 

3.4 We will define operators Fa, Va(a E N(S)) and [A]w(,\ E R) on Ws(R). (We 
use the sans serif font in order to distinguish the operators on C5 (H) from the 
operators on Ws(R).) Once again Va and [A]w are easily defined. For w E Ws(R) 
we define 

(Va(w))n := Wn//a and ([A]w(w))n := AnWn, 

or equivalently (consider Ws(R) as subring of Carts(R)) 

3.4.1 

Va(w) := VawFa and [A]w(w) := [,\]w .. 3.4.2 

/ 
I 

3.5 From the definitions we see that Va and [A]w are additive. As will be clear from 
definition 3.4.2, the operators [A]w and [,\] are closely related. Therefore we will 
omit the subscript W and just write [,\], ,\ E R for the operator [A]w on Ws(R). 
One immediately checks 

and 
Vaw = Ls Vm[Wmffa]Fm E VaCarts(R). 3.5.1 

m 

3.6 Define the Teichmuller map TR = T : R -. Ws(R) by T(r) := (r, 0, 0, ... ), 
or equivalently T(r) := [r]. Then we have sm(T(r)) = rm. We also find that 
w E W5 (R) can uniquely be written as: 

3. 7 We define Fa on Ws(R) by the generic relation in Cs(As,w) for generic w = 
(wn),n E N(S): 

3.7.1 

In order to show that Fa is thus well-defined we use the technique of lemma 2.26. 
Consider in Cs(Q 0 As,w), for generic w = ( w;), i E N(S), the relation: 

Suppose we have found µb E Z[w] for b < n, n E N(S) such that the m-th ghost 
component of the left hand side is them-th ghost component of the right hand side 
for m < n. Then write: 
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(Ls Vi,9 [µb]F{) ° FJ O Id As,w = 
b~n 

FJo (~s V,;[wb]F{) OldAs,w -(f; \1i,9 [µb]F{) oF!OldAs,w· 

Comparing the coefficients of tn on both sides (using observation 2.4), we conclude 
µn E Z[w]. 

3.8 For the Witt coordinates we find sm(Faw) = Sam(w), so we may obtain the re
lations of lemma 2.16 for Fa, Va and [.X]. One may also check the following relations 
in Carts(R) for w E Ws(R), r E R 

3.8.1 

If the characteristic of R is p > 0, then we find in Carts(R) for w E Ws(R) 

A final remark: From the defining relation for Fa (3.7.1) one immediately finds 
Fa: W(R)--> W(R) to be a ring homomorphism . 

.A special homomorphism 

3.9 An S-Hilbert ring R is a Zs-algebra without additive torsion for which there 
are endomorphisms a-n, n E N(S) such that: 

a-v = ()PmodpR, p ES, 

(so a-1 = Id). 

3.10 Warning: The finiteness of human alphabets and convention have led us to a 
situation that we now have two meanings for the symbol a-m. On the one hand it 
may be a distinguished element of As, but it may also be an endomorphism of an 
S-Hilbert ring. 

3.11 Remark. The notion of an S-Hilbert ring should be compared with the 
notion of a p-Hilbert domain in [Dit89], page 83 (p-Hilbert rings R which are 
p-complete integral domains where pR is a prime ideal) and the notion of a pre
Hilbert domain in [Hov], page 27 (integral domains R in which p is the only non 
invertible rational prime and which are equipped with an endomorphism a- such 
that a-(x) = xP modpR). Hilbert rings arise in many places in the literature ([Hon], 
[Haz], [8PM], etc.) but they have never acquired a name. 
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3.12 Lemma. Let R be an S-Hilbert ring and x E R. Then there are unique 
Ad(x) ER, d E N(s), such that Ldjn dAd(xr/d = O"n(x) for all n E N(S). 

proof: Let Ad= Ad(x) ford< m be given such that Ldjn d>.~/d = O"n(x) for n < m, 
n, m, d E N(S). Write m = p'u with (p, u) = l. Then we first notice that: 

I: d>.';1d = p' I: d>.;t1 + I: dX';l1d. 

dim dju djp•- 1u 

Secondly 

O"m(x) = llp(llp•-1u(x)) = L dap(>.d)Pr-lu/d = L d>.';/d modp' R. 

We conclude that Am E Z(p) :81 R for all p[m, so Am E R, since R has no additive 
S-torsion. D 

3.13 Actually the proof of lemma 3.12 implies a little bit more, namely the following 
slightly generalized version of [Haz], lemma 17.6.1: Let R be an S-Hilbert ring and 
let {xnln E N(S)} be a series of elements of R such that ap(xn) = Xpn modp0rd p(n)+l 

for p E S. Then there is a unique x E Ws(R) such that sn(x) = Xn-

3.14 We define a homomorphism As: R--. Ws(R) for all S-Hilbert rings R by the 
relation: 

That As is thus well defined follows from lemma 3.12. 

3.15 Using Witt coordinates one easily checks the following relation in Ws(R) 

3.15.1 

3.16 A trivial example of an S-Hilbert ring is Zs under the trivial homomorphisms 
O"p = Id, p ES. If R is an S-Hilbert ring, the free polynomial ring R[X;];Ef, for some 
set J has a canonical S-Hilbert structure if we extend O"q by defining aq(X;) := X; 
(q E S, i E J). 

3.17 An important example of an S-Hilbert ring is Ws(R) for any Zs-algebra R, 
under the homomorphisms Fa, a E N(S). In order to check the condition Fpw = wP 
mod pWs(R) consider Zs[x] := Zs[x;]iEN(S), for generic x;, with the canonical 
Hilbert structure. Let x = (x;);EN(S) E Ws(Zs[x]). Define Cn := p- 1(sn(Fpx) -
sn(x)P), n E N(S). One easily checks that cn E Zs[x]. Some computations show 
that the set {cnln E N(S)} satisfies the conditions of 3.13 (see [Haz], 17.6.10) and 
thus we conclude that Fpx - xP E pWs(Zs[x]). Using the functoriality of Ws(•) we 
are done. 
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3.18 Remark. There is another notion in the literature which is closely related to 
that of Hilbert rings: Let 1r : W(A) ---> A be the projection on the first coordinate. 
A ring A is called a >.-ring if there is a ring homomorphism >. : A ---> W(A) such 
that 1r a >. = Id A and 

AW(A) 0 A = W(>.) 0 >., 

where >.w(A) : W(A) ---> W(W(A)) is the canonical ring homomorphism correspond
ing to the Hilbert ring W(A), as we have constructed above. One easily checks that 
Hilbert rings are >.-rings (without additive torsion). Conversely, if A is a >.-ring 
without additive torsion, A becomes a Hilbert ring if we define (Tn := 1r o Fn a>., 
(n E N). Though this can be found in [Bou], exercise 47 in chapter IX, §1, this does 
not seem to be widely known. For example in the book [FuL] on >.-rings, there is 
no reference at all to Witt vectors; Even in [Haz] where both concepts are treated, 
this specific connection is not mentioned. 

The following lemma will be used in chapter III, section 2. 

3.19 Lemma. Let R E CUR. Denote by 1r : Ws(R) ---> R the projection on the 
first coordinate. The fallowing diagrams commute. 

T 
R Ws(R) 

Ws(R) - Ws(Ws(R)) 
>.s 

T 
R Ws(R) 

m 

Ws(R) -- Ws(Ws(R)) 
Ws(1r) 

T 

R Ws(R) 

' 

l T 
' 71 ii I 
t 

Ws(R) -- Ws(Ws(R)) 
Ws(1r) 

7r 

R Ws(R) 

+ l >.s 7r I iv 
i 

Ws(R) -- Ws(Ws(R)) 
Ws(1r) 

proof: In order to prove relation i we need only consider the Witt coordinates 
s. : Ws(Ws(R)) ---. Ws(R): 

sa(>.s(r(r))) = F0 (r(r)) = r(r 0 ) = r(r)° = s0 (r(r(r))). 
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Relation ii may be directly checked. Combining relations i and ii we obtain relation 
iii. Relation iv follows from: 

1r o Ws(1r) o As(a) = 1r o Ws(1r)(a, ... ) = 1r(1r(a), ... ) = 1r(a). 

□ 

We end this section with a small lemma. (Compare with [Haz], 17.6.19 or [Laz], 
IV.4.13 to appreciate its short proof.) 

3.20 Lemma. If the rational prime p is invertible in R, then it is also invertible 
in Ws(R), S := P \ {p}. 

proof: Since p is invertible in R we have a ring homomorphism z : Zs ___, R 
and therefore by functoriality a ring homomorphism W(z) : W(Zs) ___, W(R). 
Composing with the ring homomorphism As : Zs -----, W(Zs) (indeed Zs is an 
S-Hilbert ring) we obtain a ring homomorphism Zs-----, Ws(R). □ 

Hilbert operators 

3.21 Let R be an S-Hilbert ring, H E cBialgR. The homomorphism As : R ___, 
Ws(R) as defined in 3.14, induces another set of operators on Cs(H), the Hilbert 
operators { r} for r E R 

{r}¢ := As(r)O¢. 3.21.1 

The group Cs(H) thus becomes an R-module. Notice that rm( {r }¢) = r"mrm(¢). 

3.22Let VsCarts(R) be the right ideal in Carts(R) generated by all Vv,P ES. Then 
from {r} = [r] mod VsCarts(R) we find (using 2.22) that any curve 'I/; E Cs(H) 
can uniquely be written as 

'I/;= L LVa{ra,;}</>;, ra,i ER, 
aEN(S) iEl 

where {1rt(<P;)li EI} is a basis for P(H). 

3.23 Combining (3.8.1) and (3.15.1) we easily check the following relations in 
Carts(R) 
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4 The structure of DPS-Hopf algebras 

4-1 Let HE DPS-cHopfR,R E CUR with structural basis {¢1 /1 E Ml(E)}. Write 
H* = R[[Xe]l, where < X", ¢"' >= 8,,.,,.. Let <PH,i = Ln <PH,i,ntn be the i-th 
canonical curve and define 

<PH,I := II <PH,i,l, (= II ¢1 ••• ) · 
iEE iEE 

4.2 Lemma. The set <PH := { <PH,1 /1 E Ml (E)} is another structural basis for H. 

proof: Consider the curve ¢H,;(i E E) as an element of Alg R(H*, R[[t;]]) C 

Alg R(H*, R[[te]]). Then under the product structure on Alg R(H*, R[[tE]]) induced 
by the comultiplication on H*, the product TiiEE <PH,i = E,,. <PH,,,.t" E H[[te]] may 
be considered as an algebra morphism H* - R[[tE]] determined by 

fo, j E E. Then 

(n <PH,i) (X"') = II (II <PH,i(Xe))"'· = tl<modR{t"//1r/ > /11;/}. 
•EE eEE iEE 

(Indeed: miEE <PH,i) (Xe) = (1 + LiEE <PH,iti + ... )(Xe) = te + .... ) This gives 
<PH,,,.(X"') = 8,,.,,. for /1r/ ::; /11;/, which means 

<PH,,r = ¢,,. + L Cr<Pr, 
lrl<l1rl 

for some Cr ER. So the set {¢H,,,./1r E Ml (E)} is an R-module basis for H. 
One easily checks that the basis {¢H,,,./1r E Ml (E)} is structural, i.e., that 

/::J.¢H,1r = L <PH,r 18) <PH,1<• 
T+1t=?r 

□ 

4-3 A structural basis {¢1 /1 E Ml (E)} for a DPS-Hopf algebra H will be called 
curvilinear if ¢1 = <f>H,l· Thus lemma 4.2 says that every DPS-Hopf algebra admits 
a curvilinear structural basis. 

4.4 Corollary. The functor C(.) : DPS-cHopf R - Mod cart(R) is faithful. 
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proof: Let HE DPS-cHopfR with curvilinear structural basis {(hll E Ml(E)}. 
Then f E DPS-cHopf R(H, H') is completely determined by the set of all f(¢m.J, 
m E N, i E E, or equivalently by C(J)¢H,i, i E E. □ 

4.5 Lemma. Let 'i/J = { 'i/J;li E E} be any fundamental set of curves for H E 
DPS-cHopf R· Then there are Y, EH*, e EE such that H* = R[[YE]] and 'i/Ji(Y,J = 
Di,,t. 

proof: Write ¢i,l = Lj M;,1'1/J;, 1. Define Y2,i := Lj Mi,iXj, then one easily com
putes that 'i/J; (Y2,i) = 8;,it mod t2 . So assume we have Ym,i E H* such that 
'i/Ji(Ym,j) = 8;,jt + C;,jtm mod tm+l _ Define Ym+l,i := Ym,i - Lj Cj,iy,;::i. Then one 
finds that 'i/Ji(Ym+l,j) = 8;,it mod tm+l _ Thus Y; := limm Ym,i satisfies the conditions 
of the lemma. D 

4.6 Remark. The Y, in the above lemma are far from unique. Suppose {Y,le E 
E} satisfies the conditions of the lemma. If Y:1 := Y,1 + Y,1 Y,,, Y;' := Y;(i-/:- e1), 

then also {Y:le E E} satisfies the conditions of the lemma. 
Combining lemmas 4.2 and 4.5 we obtain the following corollary. 

4. 7 Corollary. Let H E DPS-cHopf R and let {'i/J; Ii E E} be a fundamental set 
of curves. Then H admits a curvilinear structural basis { 'i/J1 II E Ml (E)} such that 
the i-th canonical curve 'ifJH,i equals 'I/Ji- □ 

The case when R has no additive torsion 

4.8 Let H E DPS-cHopf R, RE CUR without additive torsion and assume H has a 
curvilinear structural basis { ¢111 E Ml (E) }. Let #E = d. We write ai := ¢H,i,l = 
¢<; and the i-th canonical curve ¢ H,i as 

( 
oo "'d r . ·8· ) ,I.. . - ~ L.,J=l m,,,J J tm 

'+'H,, - exp L., m . 
m=O 

Write H* = R[[XE]], with < ¢1, XfJ >= 81,fJ• 

4.9 We will show that the algebra structure of H (or equivalently the coalgebra 
structure on H*) is completely determined by the set of all rm,i,j· 

We proceed as follows: Notice that { aa := [!; 8f• I 0:: E Ml (E)} is a basis for HQ. 
(Indeed one immediately computes¢,, = aa /0::! mod IQ{ 8/3 I 1;31 < In:!}. Here we have 
used the curvilinearity.) So we may write 

u Q 
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where Pa,u, Qu,o are rational numbers which depend only on the Tm,i,j· But then 

< <Po<P/3, xi >=< L Pa,uP(3,v8u+v, xi >= L Pa,uP/3,v < L Qu+v,-y<P-y, X; >= 

or equivalently 

- - -y 

u,v 

AX;= L G;(a, (J)Xc, 0 x 13 . 
o,/3EMl(E) 

4,10 A curvilinear structural basis {¢1 11 E Ml(E)} for HE DPS-cHopfR (ll E 
CUR) is called additive if 

<Pa•<P/3 = (a: (J) <Po+/3, 

or equivalently AX; = X; 0 1 + 1 0 X;. (Indeed 

< <Pa<P/3, X-y >= (a: (J) 8a+f3,-y =< <Pa 0 ¢13, JPX; 0 1 + 1 0 X;)'Y• > . ) 

If R has no additive torsion, then the canonical curves corresponding to an additive 
structural basis can be written as ¢n,; = exp(¢,,t),i EE. 

4.11 Proposition. (Q-theorem) If Risa Q-algebra, then a DPS-Hopf algebra 
H over R admits an additive curvilinear structural basis. 

proof: The set {-ip; := exp(8;t)} is a fundamental set of curves in C(H) for which 
we have 

□ 

4.12 Describing the explicit bialgebra isomorphism of H* corresponding to the 
change of structural basis in proposition 4.11 is more involved. We claim that 
Y; = Lm,j r"ill•' Xj satisfies ~Y; = Y; 0 1 + 1 0 Y;. 

In order to prove the claim we proceed as follows: One easily sees that f E 

Alg R(H*, R[[tE, t~]]) can be written as 

4.12.1 

Let <I> be the R-algebra isomorphism <I>: R[[XE]]®R[[XE]] ~ R[[tE, t~]]. Consider 
¢; as an element of Alg R( H*, R[[t;]]). We write ¢; for <Pi when considered as an 
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element of AlgR(H*,R[[t;]]). The set AlgR(H*,R[[tE,t'i,;)]) has a group structure 
induced by the comultiplication on H*, or equivalently by the multiplication on 
H[[tE, t~]]. The product TI¢ TI¢' := TiiEE ¢; TiiEE ¢; E Alg n(H*, R[[tE, t~]]) may 
be written as 

( ( r . a r . a )) IT ¢ IT ¢' = exp L m,:1 J {'[' + m,:1 J t'"(' . 
m,i,J 

Therefore 

On the other hand 

<IT¢ IT¢', X1 >= L < c/Jo-ef>p, X1 > t<>tl/3 = <I>(~(X1)). 
n,/JEMl(E) 

But then, using 4.12.1 

< IT qJ IT ¢',X1 >= exp (:E ~:;i,l<I>(~(X1)r). 
m,, 

4.12.2 

4.12.3 

Thus comparing (4.12.2) and (4.12.3) we find <I>(~(Y;)) = <I>(Y; 01) + <I>(l 0 Y;), 
which proves the claim. 

4.13 Remark. We have just proven that any choice of Tm = (rm,i,ikiEE E 
Md(R), m E N, completely determines a DPS-Hopf algebra H over Ql 0 R, pro
vided R has no additive torsion. 

S-typification of DPS-Hopf algebras 

4.14 Let RE CUR and let S* be a set of invertible rational primes in R. Let S be 
the complement of S* in P. Notice that by lemma 3.20 we have for p E s• that 
p-1 E Cart(R). So we may define Ps := TIPE5 .(1 - bV,,Fp) E Cart(R) . 

4- 15 A structural basis for a DPS-Hopf algebra is called S-typical if the canonical 
curves are S-typical. 

4.16 Proposition. A DPS-Hopf algebra over R admits an S-typical curvilinear 
structural basis. 

proof: The set {P5(¢H,i)} is a fundamental set of S-typical curves in C(H). □ 

4.17 Corollary. The group of curves C(H), HE DPS-cHopfn, RE CURz 5 can 
be described as 

C(H) ~ C5 (H)N(s·J_ 
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proof: The isomorphism <I> is given by 

<I>(¢):= (PsFn<l>)nEN(S·) ( and <I>-1(¢n)nEN(S•) := L n-lvn¢n). □ 
nEJ\l(S•) 

4.18 Corollary. Let RE CURz 5 • The functor 

Cs(•): DPS-cHopfR-> modcarts(R) 

is faithful. 

proof: Let {¢1 11 E Ml (E)} be an S-typical curvilinear structural basis for HE 
DPS-cHopf R· Then f E DPS-cHopf R(H, H') is fully determined by the S-typical 
curves C(J)<!>H,i (i E E). □ 

Height and jump sequence in positive characteristic 

,{. . .19 For the remainder of this section we assume either that R is a perfect field 
of characteristic p > 0, or that R is a p-Hilbert ring on which a := ap is an 
hutomorphism. Let H E DPS-cHopf R have dimension d. Everything will be p
typical, thus we denote W(R) := Wp(R), F := Fp, V := ½, and C(H) := Cp(H). 

4.20 We define the height h of H E DPS-cHopf R as follows: If C(H) is not a free 
W(R)-module, then we say that h := oo. If C(H) is a free W(R)-module, then we 
define 

h := rankw(R)C(H) = rankRC(H) /(VW(R))C(H). 

In the special case that R = k, a perfect field of characteristic p > 0 we may even 
write h = dimk C(H)/pC(H). 

4.21 Let M be a finitely generated W(R)-module. We denote by mg W(R)(M) the 
minimum number of generators of M. 

4. 22 Define for i 2:: 0 

Thus in particular Ro is the dimension d of Hand R;::; d (i 2:: 0). 

4.23 Lemma. Let H have finite height. Then F is injective, the operators F and 
V commute and the sequence (R;);~o is decreasing. 
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proof: Note that C(H) is a free W(R)-module implies that Fis injective: F'lj; = 0 
gives that V F'lj; = 0. Thus we see from F(V F - FV) = 0 that FV = VF. 
One easily checks that Vio+ 1¢j0 E W(R){V;¢H,j I i ~ i0 , 1 ~ j ~ d}, implies that 
Vio+ 2¢j0 E W(R){Vii¢H,j I ij ~ io + 1 for j -1- Jo, ij0 ~ io, 1 ~ j ~ d}. Thus with 
an easy induction we find that the sequence (R;);?_o is decreasing. D 

4-24 We now define the jump sequence (h;; r;);>i of H E DPS-cHopf n, H with 
finite height as follows: Let h1 be the smallest number i ?: 0 such that /l;+1 < R;. 
Write r 1 := Rh 1 - Rh 1 +I· We inductively define hj as the smallest number i > 0 
such that 

4-25 We give an easy example: Let H E DPS-cHopf R be I-dimensional with 
curvilinear p-typical structural basis ¢ such that F¢H,I = V ¢H,I + V 3¢H,I· Then 
one easily computes that Ro = R 1 = 1, R; = 0 for i ?: 2. Thus the jump sequence 
of His (1, 1). 
We have the following easy lemma connecting the jump sequence with the height. 

4.26 Lemma. Let H E DPS-cHopf n with height h < oo. Then H has jump 
sequence (h;; r;)i'.oi'.o-Y if and only if the W(R)-module C(H) has a basis 

{ Vi'¢;, IO~ l < ,, 0 ~ j1 ~ L~:\hk, L~=1rk < i1 ~ :E~:\rk}. 
We then also have the relations 

□ 

4.27 Remark. We have the following corollary to chapter III, theorem 2.14 and 
theorem 5.17: 

Corollary. Let R be a local p-Hilbert domain and H E DPS-cHopf R· Let F be 
injective, then the W ( R)-rank of C( H) is finite, or equivalently, H has finite height. 

The proof can be sketched as follows: 
Assume that Risa local p-Hilbert domain and that Fis injective on C(H). Denote 
T := FV - VF. Then FT = 0, which implies that T = 0. We now use chapter 
III, theorem 2.14 to conclude that Fis injective on C(1r*(H)). Thus the height of 
1r* ( H) is finite, and its jump-sequence is well defined. By chapter III, theorem 5.17 
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however, we know that the jump sequence of His the jump sequence of 1r*(H) and 
thus (using lemma 4.26) we have that the height of His finite. 
The author believes that a direct proof of this corollary may be used together with 
chapter III, theorem 2.14 to give another (more elegant) proof of our main result, 
chapter III, theorem 5.17. 

5 Commutative formal group laws 

In this section we will translate our results obtained in the context of DPS-Hopf 
algebras into the terminology of the theory of commutative formal group laws. As 
corollaries we will rediscover some of the classical results of commutative formal 
group theory. 

5.1 A formal group law of dimension d defined over a ring R is a d-tuple G = 
(G;), 1 :::; i:::; d of formal power series G; E R[[X1 , ... , Xd, Y1, ... , Yd]] such that 

G(0, Y) = Y and G(X, 0) = X, 

G(X, G(Y, Z)) = G(G(X, Y), Z). 

A formal group law is called commutative if 

G(X, Y) = G(Y, X). 

5.2 A homomorphism f between a d-dimensional formal group law G and an n
dimensional formal group law H is by definition an n-tuple of power series f; E 

R[[X1, ... , Xdl] such that f(0) = 0 and 

f(G(X, Y)) = H(J(X), f(Y)). 

We denote the category of (d-dimensional) commutative formal group laws defined 
over R by CFGL~). An isomorphism f is called a strong isomorphism if f; = 
X; mod deg 2, otherwise it is called weak. The isomorphism f is called specially 
weak if f; = Lj a;,jXi. 
The following proposition can be found in [Fro], Chapter I, §3, proposition 1. 

5.3 Proposition. Let G be a d-dimensianal commutative formal group law. Then 
there is a unique d-tuple of power series I; E R[[X1, ... , Xnll such that G(I, X) = 0. 
D 

5.4 We associate with GE Cf:GLt a topological Hopf algebra, denoted 8(G), and 
called the contravariant bialgebra of G. As topological algebra 8( G) is defined as 
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R[[X1 , ... , Xd]] equipped with the X-adic topology. The comultiplication on 8( G) 
is defined by ~(X;) := G;(X 0 1, 1 0 X) and the counit is defined by E(X;) := 0. 
Using proposition 5.3 we find that the antipode is given by ,(X;) = I;. 
If f : G -> H is a homomorphism of formal group laws, then we denote by 8(!) : 
8(H)-> 8(G) the induced homomorphism of Hopf algebras. 

5.5 Proposition. (Dieudonne) The category CFGLR is anti-equivalent to the cat
egory smooth-cHopf R· □ 

5.6 We now define the covariant bialgebra, denoted U(G), of Gas the topological 
dual of 8(G). As we have remarked in 1.18, U(G) is a DPS-Hopf algebra over 
R. We denote the canonical structural basis constructed in proposition 1.17 as 
¢a= {¢c,1ll E Ml (E)}. We then have canonical curves ¢a,;= 1 + Ln>l ¢c,;,ntn. 
If f : G -> H is a homomorphism of formal group laws, then we denot~ by U(f) : 
U(H)-+ U(G) the induced homomorphism of Hopf algebras. 

5. 7 Proposition. The category CFGLR is equivalent to DPS-cHopf R· Especially 
an isomorphism f of commutative formal group laws corresponds to a change of 
structural basis for U(G). Moreover f : G -+ H is a strong isomorphism if and 
only if ¢c,;,1 = ¢a,,, = U(f)(¢H,i,i), 1 ~ i ~ d. The isomorphism f is specially 
weak if U(f)(¢H) = [A]¢c for some A E Gld(R). □ 

5. 8 If H E DPS-cHopf R we denote by G H the commutative formal group law such 
that U(GH) = H. We may now prove the second part of remark 1.14: For a DPS
bialgebra H we have that the dual H* has an antipode, as we already observed, 
and thus H = (H*)*c is a DPS-Hopf algebra. 

We now give some lemmas which show that the terminology we have defined in 
the context of DPS-Hopf algebras corresponds to the terminology as used in the 
theory of commutative formal groups. 

5.9 Lemma. The commutative formal group law G is curvilinear if and only if 
the covariant bialgebra U ( G) is curvilinear. 

proof: For 1, J E Ml (E) denote as I J the multi-index obtained by entrywise 
multiplication. Write G;(X, Y) = I: arjX1YJ, then the definition of curvilinearity 
given in [Haz], 12.1 reads as follows:' G is curvilinear if I J = 0, 11111, IIJII ?: 1 

implies a}i_)J = 0(1 ~ i ~ d). 
Now assume that U(G) has a curvilinear basis { ¢1 11 E Ml (E)}, thus 1 J = 0, 
11111, IIJII?: 1 implies ¢HJ= ¢r¢J. Then 
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thus G is curvilinear. The proof of the converse statement is left to the reader. D 

5.10 Lemma. The commutative formal group law G is S-typical if and only if 
the covariant bialgebra U( G) is S-typical. 

proof: Corollary 4.17 is exactly definition IV.7.4 of [Laz]. □ 

5.11 Let k be a perfect field of characteristic p > 0. The height of a commutative 
formal group law over k is defined in [Haz], definition 18.3.8. That this definition 
is equivalent to ours is proven in [Haz], corollary 28.2.9. 

5.12 Define the d-dimensional additive formal group law Ga by the d-tuple of power 
series Ga= (Ga,i) where 

5.13 Lemma. The commutative formal group law G is additive if and only if the 
covariant bi algebra U ( G) is additive. □ 

As corollaries we now may obtain the following classical results. 

5.14 Corollary. (to lemma 4.2) Any commutative formal group law is strongly 
is Jmorphic to a curvilinear one. □ 

5.15 Corollary. (to proposition 4.16} Any commutative formal group law defined 
over a Zs-algebra is strongly isomorphic to an S-typical one. □ 

5.16 Corollary. (to proposition 4.11} All commutative formal group laws defined 
over a Q-algebra are isomorphic to an additive formal group law. □ 

The isomorphism loge : G -+ Ga of corollary 5.16 is called the logarithm of G. 
From section 4.12 we now find the "first transition theorem" of [Dit90], pg 255. 

5.17 Corollary. Let R have no additive torsion, G E CFGLR, G curvilinear. 
Write the canonical curves as 

</>e,i = exp ( L rm,;,:aj tm) , 
m?:1,jEE 

then loge= I:m-;::1 m-1rrxm, where, as usual, rm= (rm,i,j);,j. □ 

5.18 We give another standard example. Define the d-dimensional multiplicative 
formal group law Gm over RE CUR by the d-tuple of power series Gm= (Gm,i) 
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If R has no additive torsion, then the logarithm of Gm is Z:m m- 1 xm_ Thus by 
corollary 5.17 we find that the canonical curves are 





Chapter 2 

F-types, universal DPS-Hopf algebras and 
the Lazard ring 

1 Introduction 

1.1 In this chapter d = #E will be a fixed natural number. 

1.2 Let HE DPS-cHopfR,R E CURz 5 with curvilinear structural basis {¢1[! E 
Ml (E)}, #E = d. Then in Cs(H) we may write for i EE, a E N(S) 

Fa</JH,i = L Vi (L [Aa,l,i,j]¢H,j) , 
IEl'l(S) jEE 

for some unique Aa,l,i,j E R. We will write this as 

1.2.1 

where Aa,l = (Aa,l,i,j)i,jEE E Md(R). We will call this expression the Witt Fa-type 
of H ( with respect to ¢ H). 

1.3 Moreover if R is an S-Hilbert ring we analogously define the Hilbert Fa-type of 
H (with respect to ¢H) by 

1.3.1 

for some unique µa,l E Md(R). 

1.4 As an example we will give the F-types of the additive and multiplicative formal 
group laws. From chapter I, subsection 4.10 we see that Fa¢a. = 0, while from 
chapter I, subsection 5.18 we see that Fa¢cm =¢am. 

1.5 We will show (Theorem 4.5) that the Fa-types (Witt or, if they exist, Hilbert) 
completely determine the algebra structure of H and that this algebra structure 

31 
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is defined over Z[>.a,l,i,j](a, l E N(S), i, j E E). In the special case that R has no 
additive torsion and S = P this statement for Witt F-types is easily seen to be 
equivalent to [Haz], 27.4.15, the entwined function theorem. 

1.6 For any ring R let DR denote a (small) subcategory of DPS-cHopfR, such 
that for any homomorphism f : R --+ R' and any H E DR the induced f.(H) E 

DR'· We call Hg defined over the ring Lo universal (for D) if for any H E DR 
there is a unique ring homomorphism <I> : Lo --+ R such that <I>.(Hg) = H. 
(This is equivalent to the statement that the functor V : CUR --+ Set, sending the 
ring R to the set DR, is representable). For background on universal arrows and 
representability, see for example [MaL], chapter III. 

1. 7 Let F: CUR --+ Set denote the functor which assigns to a ring R the set of all 
d-dimensional curvilinear commutative formal group laws defined over R. It is a 
well known result of Lazard that F is representable by a free polynomial ring L, 
called the ring of Lazard or the Lazard ring. Proofs can be found in [Haz], chapter 
II and in [Laz55]. Lazard's proof is direct but, to quote [Haz], E.1.3, "the proof is 
exceedingly tough and computational". The proof of Hazewinkel is based on arith
metic properties of the coefficients of the generic logarithm, using his functional 
equ;, tion lemma. We present a third proof here, based on the construction of a 
un;versal curvilinear DPS-Hopf algebra Hu. 

1. 8 In the last three sections we give connections between the F-types of our theory, 
the theory of Hilbert and Witt functions of Ditters [Dit90], the special elements of 
Honda [Hon], §§2 and 3 and the theory of Dieudonne as exposed in his book [Dieu]. 
In the last section we also prove a lemma which enables us to compute the isogeny 
type for p-typical commutative formal group laws defined over an algebraically 
closed field of positive characteristic p from the Fp-type. 

1.9 As a matter of notation: if>.= (>.;,1);,j E Md(R), then we denote by >.(m) the 
matrix (>.0 );,i. Analogously if u is an endomorphism of R, then we denote by >.o
the matrix (>.'[);,j• If R is a ring and >. a matrix, then we denote by R[>.] the 
R-algebra generated by the entries of>.. The notions As, an, En and Un (n E N) 
of chapter I, subsections 1.10 and l.ll, will remain in force. 

2 The p-typical case 

In this section we will construct Hf,p, the universal d-dimensional p-typical curvi
linear DPS-Hopf algebra and its ring of definition Z(p)[Ap]-

2.1 Lemma. Let HE DPS-cHopf R, RE CURz5 , R without additive torsion. Let 
H have Witt F-types as in 1.2.1 or, if R is an S-Hilbert ring, Hilbert F-types as 
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in 1. 3.1. Then the algebra structure of H is completely determined by the set of all 
Fp-types with respect to an S-typical curvilinear structural basis for H (p E S ). 
Moreover, write the canonical curves as in chapter I, 4.8 

( 
" r · -8· ) ,1, . _ ~ ~j m,,,J J tm 

'PH,, - exp ~ m . 

mEN(S) 

Then the following formula holds for the matrices of the Witt F -types 

2.1.1 

while for the matrices of the Hilbert F-types we have 

2.1.2 

q, m E N(S), q > 1. If V c N(S) 2 is any set such that f : V -----. N(S) defined by 
(u,v) f-+ UV is a bijection, then IQ[rm]mEN(S) = IQ[Au,v](u,v)EV = IQ[µu,v](u,v)EV 

proof: We will only prove the statements for the Witt F-types since the statements 
for the Hilbert F-types are proven in the same manner. 
Let {¢1 11 E Ml(E)} be an S-typical curvilinear structural basis for H (chapter 
I, proposition 4.16). We have seen (chapter I, 4.9) that the set of all Tm,i,j, m E 
N(S), i, j E E completely determines the algebra structure of H. Now consider for 
i E E and q E N(S) 

F ,/., (~ I:j Tqm,i,jaj m) ~ V, (~[A ],I, ) q'PH,i = exp ~m,S m t = ~l,S l ~ q,l,i,j y,,H,j · 

Comparing ghost components we find (i EE) 

Lj STqm,i,jaj = L ( dA:.~~,j LTm/d,jA). 
' dlm,jEE IEE 

If we write this in terms of matrices, then we have found formula 2.1.1. 
From formula 2.1.1 we inductively find that IQ[As] = IQ[rm,i,j]mEN(S),i,jEE and thus 
the set of all Aq,m, q, m E N(S) also completely determines the algebra structure of 
H. The third statement also follows directly from formula (2.1.1). □ 

2.2 ~otice that the lemma implies that the restriction of the functor :F to the full 
subcategory CURQ is represented by IQ[Au,v](u,v)EV or by IQ[µu,v](u,v)EV, for any V 
as in the lemma. 
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2.3 For the remainder of this section we assume that we are in the p-typical context. 
We will therefore use "logarithmic" notations; indices of the form pi will be replaced 
by i. Precise definitions follow, of course. 

2.4 Let Aa,n,i,j, a, n E N( {p} ), a > l, i, j E E be generic variables. Denote by Ap 
the set of all >.a,l,i,i, a, l E N( {p} ), a > l, i, j E E. 

2.5 We will define 1{f := Hf,P as a curvilinear p-typical DPS-Hopf algebra over 
Z(p)[Ap]- As a set HP is defined by 

Hi := Z(p)[Apl[ai,mh:::;;:,;d,m;:>:O· 

The comultiplication is defined by the condition that that f; : Ap-+ Z(p)[a;,m]m;=,:o, 
fi(ap .. ) := a;,n is a surjection of bialgebras for all 1 :S: i :S: d. The algebra structure 
is then defined by demanding that the Fp-type of HJ! is given by 

Fp¢Hf = :E v;[>.MHf · 

Write Ei,n := f;(En)- Then a structural basis for HJ! is given by the set E .
{E,. := J};E;,,.;l1r E Ml(E)}. The canonical curves are p-typical by definition, 
therefore HJ! is indeed a curvilinear p-typical DPS-Hopf algebra. Since Z(p)[Ap] 
has no additive torsion, we know by lemma 2.1 (and chapter I, remark 4.13) that 
the Fp-type determines the algebra structure of Q 181 HJ!. A priori, the algebra 
structure is defined over Q[Ap], however, the following theorem asserts that HJ! is 
indeed defined over Z(p)[Ap]-

2.6 Theorem. The DPS-Hopf algebra HJ! is actually defined over Z(p)[Ap] and 
thus HJ! is the universal d-dimensional p-typical curvilinear DPS-Hopf algebra. 

proof: In the proof we denote H := HJ!, ai,i := !J(ap;), and a the set of all 
a;,m, 1 :S: i :S: d, m E N. 

We have to show that the algebra structure of His defined over Z(p)[Ap], i.e., that 
E;,nEi,m E z(p)[Ap]{E,.l1r E Ml (E)}. 

We proceed in several steps. 
Step 1: First we define a filtration B = { B; Ii 2'. 0} on H. For a monomial II; a~;,n; 
we define its weight 1111; a~:,n; II as I;; b;pn;. We extend this to polynomials P E 

Z(p)[Apl[a] by defining the weight IIPII of P to be the maximum of the weight of its 
terms. A polynomial is called isobaric if the weights of all its terms are equal. Now 
define 

B; :={PE Z(p)[Apl[a] j llPII :S: i}. 

So, for example, 80 = Z(p)[Ap] and 8 1 = Z(p)[Ap]{l, ai,oL

Step 2: As a second step, we will prove 

a~,i = pxa i,i+ 1 mod Bp;+ 1 _ 1, 2.6.1 
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for some x E Z(p) depending on aj,i· 

For this, consider the coefficient of tP' in Fp¢H,j· This is the coefficient of tP'+ 1 in 
VpFp¢H,j· We have to distinguish two cases: the case i = 0 and the case i ~ 1. 

-the case i = 0: We have 

So the coefficient of tP is Uj,t · But then from considering the coefficient of tP in the 
relation 

we find 
u·1 ~o ~o 

E· =a· 1 = ____2l_ + ---1l_ ~ u· 1 =pa· 1 - - 1'-J,P J, p pl J, J, (p-1)!. 

Thus we have found that the coefficient oft in Fp¢H,j is paj,t - (p - 1)!-1a;,o

-the case i ~ 1: From the relation for ghost components rm(VpFpc/J) = prm(¢) for 
m > 1, r 1(VpFp¢) = 0, we see 

(Notice the change from the additive notation for the group structure of curves to 
the multiplicative notation for multiplication of power series.) Thus the coefficient 
of tP' in FP¢ H,j is 

where Pis a polynomial of weight pi+t in pZ(p)[aj,o, .... , aj,i] which does not contain 
a term a;,;- :\"ote that because of weight considerations every monomial of weight 
pi+1 in P contains a p--th power of some aj,l (l < i). We may thus use induction on 
i to conclude that the coefficient of tP' in Fpc/JH,j can be written as 

where P' is a polynomial of weight less than pi+ 1 in pZ(p)[aj, □, .... , aj,i] and x' E Z(p)· 

But on the other hand, from the defining relation Fp¢H = I: v;[>.;]¢8 , we have that 

the coefficient of tP' in Fp¢H,j is an polynomial P" with IIP"II s; pi in Z(p)[Apl[a], so 
P" E Bp•· 
Comparing the two expressions for the coefficients of tP' in Fp¢H,J we find the claim 
(2.6.1). 
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Step 3: .\"otice that any isobaric polynomial P E Z(p)[ai,•l of weight n may be 
uniquely written as follows: Let n = I:; b;pi be the p-adic expansion of n and let c 
be the coefficient of TI; a;:i in P. Then it follows from (2.6.1) that 

P = (c + px)lJ a;:; modBn-1, 

for some x E Z(p) which depends on P. 
Step 4 : Let n E N have p-adic expansion n = I:: b;pi. We now will prove 

E1,n = ((TI;b;!)-1 +pxn)ITa;:;modBn-1, 2.6.2 

for some Xn E Z(p) depending on n. This follows from inspection of the relation 

L E1,ntn = exp (I:: u1,;p-itp') in IQ[u1,i]1:::,:1: 

1 ° Ej,p' = a 1,; = p-iu1,; mod IQ[u1,d1<;, 
2° Ej,n = (TI;b;!)- 1 (p-iu1,;/' modulo the ideal generated by u%,1, l < n. 
Thus we obtain, using step 3, the claim (2.6.2), indeed E1,n is an isobaric polynomial 
of weight n in Z(p)[a1,.] (chapter I, lemma 1.12). 

Step 5: We now easily prove the first part of the theorem. Consider the isobaric 
polynomial E1,nEj,mE Z(p)[a1,.] and let the p-adic expansion of n + m be n + m = 
I:: b.,pi. Then using step 3 and (2.6.2) we have 

Ej,nEj,m =-XII at=. X ((TI;b;!)- 1 + PXn+mr 1 Ej,n+m modBm+n-1, 
i 

for some x E Z(p)· Continuing with an easy induction, we have proven the first 
statement of the. theorem. 
For the second statement: Let B be any d-dimensional Hopf algebra with curvi
linear p-typical structural basis {¢1 11 E Ml (E)} and write the Witt FP-type of B 
as Fp¢B = L{p} v;[µ;]¢s. Then B = <I>*(H), where the ring homomorphism cI> is 
defined by <I>(>.P,P',k,l) := µ;,k,l, a, b E E. □ 

2. 7 Notice that if R is an 5-Hilbert ring with endomorphisms Un, n E N(S) and 
r E R is such that up(r) = rP,p E 5, then >.8 (r) = T(r) E W8 (R). So if we give 
Z(p)[Ap] the canonical p-Hilbert structure by putting up(>.p,m,i,j) := >-:,m,i,j, then we 
find that for H~ the Witt Fp-type equals the Hilbert Fp-type. 

3 The case R is a Z(p)-algebra 

Let p be some fixed but otherwise arbitrary p E P. In this section we construct 
H;f (p), the universal d-dimensional curvilinear DPS-Hopf algebra for DPS-Hopf 
algebras over Z(pi-algebras and its ring of definition L(p ). 
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3.1 Define a set A(p) of generic variables by 

A(p) := {..\p,p',i,j,An,p',i,jll ~ O,n > 1,gcd(n,p) = 1,i,j EE}. 

Let L(p) be the Z(pJ-algebra 

endowed with the canonical P-Hilbert structure, i.e., X'• = Aq for A E A(p), q E P 
(see chapter I, 3.16). 

3.2 For Aa,L,i,j E A(p), let 1/Aa,L,i,jll := al be its weight. Extend this to a weight func
tion on Z[A(p)] by putting 1/AµI/ := max {I/All, l/µ11} and IIA + µ// := max {l!AII, 1/µI/}. 
We define a filtration :Fil(A(p)) := {:Fil;/i ~ 1} on Z[A(p)] by 

:Fil;:= {x E Z[A(p)]l llxll ~ i}. 

(We consider :Fil(A(p)) also as an filtration on Md(Z[A(p)]) defined entrywise, thus 
:Fil;:= {ME Md(Z[A(p)])I IIMk,dl::::; i, k,j EE}). 

3.3 Let A1,1 := Id d and A1,n := 0 for n > 1. Define Aa,n,i,j E Z(p)[A(p)] (a, n E 
N,a > 1,i,j EE) inductively by the (matrix) relations 

and 

Apb,n = L A:::td Ap,n/d + PAb,pn 
d:dln,d\lpN 

\ _ -1 \ -1 ~ \ <Tqn/d \ 
l\b,qn - q l\qb,n - q L.... "b,d "q,njd, 

d:dln,d\lpN 

3.3.1 

3.3.2 

where b > 1 and q E P with gcd (p, q) = 1. Notice that these relations imply the 
following congruences Apb,n = PAb,pn mod :Fil bpn-1 and Ab,qn = q-1 Aqb,n mod :Fil bqn-1, 
so this is a well-defined inductive process. 

3.4 Let a be the set of all a;,n, i E E, n E N. We now define Hu (p) := H;/ (p) as the 
curvilinear DPS-Hopf algebra over Z(p)[A(p)]: 

such that]; : A---> Z(p)[a;,n]n;::,:o, ];(an):= ai,n is a homomorphism of bialgebras for 
all 1 ::::; i ~ d. Then { arr/1r E Ml (E)}, were arr := TI; a;,rr, is a curvilinear structural 
basis for Hu(p). We now define the Hilbert F-types of Hu(p) with respect to this 
structural basis to be 

Fa<f>Hu(p) = L Vn{..\a,n}<f>Hu(p), a EN. 
n;?:l 
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Csing lemma 2.1 we know that the F-types completely determine the algebra struc
ture of Q(;?)Hu (p). We have to check however whether the F-types are well-defined, 
since the coefficients can not be chosen independently ( as was the case in the pre
vious section). But on the one hand relations 3.3.1 and 3.3.2 express the equalities 
Fpb = Fp o A and Fqb = Fq o Fb (here we fundamentally use the Hilbert structure). 
While on the other hand by the third part of lemma 2.1 we have that all Aa,n E A(p) 
can be chosen independently (since the rm, m EN can be chosen so). 
The following theorem states that the algebra structure which is again a priori 
defined only over Q[A(p)], is actually defined over the ring Z(p)[A(p)]. 

3.5 Theorem. The curvilinear DPS-Hopf algebra Hu (p) is defined over the ring 
Z(p)[A(p)] and thus Hu(p) is the universal d-dimensional curvilinear DPS-Hopf 
algebra for DPS-Hopf algebras over Z(pi-algebras. 

proof: Define a new p-typical curvilinear structural basis for Hu (p) by the funda
mental set of curves ( i E E) 

'lj;; := II (1 - q-1VqFq)</>Hu(p),i, 
qE-P\{p} 

(as in chapter I, proposition 4.16) and let the corresponding Fp-type be 

Fp'I/J = :Ev;{µ;}'¢. 
ic':0 

Then from substituting 3.5.l in 3.5.2 we find the following relation 

Fp II (1 - q-1vqFq)</>Hu(pJ =:Ev;{µ;} II (1 - q-1vqFq)</>Hu(pJ· 
qE-P\ {p} ic':0 qE-P\ {p} 

3.5.1 

3.5.2 

We therefore see that all µ;,1,k E L(p) and thus by theorem 2.6 we conclude that 
the DPS-Hopf algebra Hu(p) is defined over Z(p)[µ;];~o c L(p). 
For the second part of the theorem, let the Witt F-types of Hu(p) be given by 

Fa</>HU(p) = L Vn[lla,n]</>Hu(p)· 
n~l 

Then from {r} = [r] mod V.,,Cart(Z[r]) (chapter I, 3.22), we find 

lla,n = Aa,nmod:Alan-1· 

Indeed write fva,n] = {va,n} + Ll>l Vi{va,n,1}, lla,n,l E Md(Z[va,nD· Then we find 
from comparing the Fa-types that Aa,n = lla,n + Lllm,l>l lla,n/l,l· Thus we conclude 
that L(p) = Z(p)[va,n,i,j],a,n E N,i,j E E. Now for any DPS-Hopf algebra B 
defined over a Z(p)-algebra R with Witt F-types 

Fa</>B = L Vn['Ya,n]<PB, 
nc':0 
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we have that B = <P.(H0 (p)), where the ring homomorphism cp : L(p) -------> R is 
defined by <P(va,n) := r'a,n• □ 

4 The general case; the ring of Lazard 

In this section we will construct H'j, the universal d-dimensional curvilinear DPS
Hopf algebra and its ring of definition L, the ring of Lazard. This will be done by 
constructing generators for L(p), p E P with the property that they are elements of 
Z[A] and are independent of p. These generators then will turn out to be generators 
for L. 
The notations of the preceding section will remain in force throughout this section. 

4- 1 Define for q E P, r E N 

If n E N is composite (i.e., n is not a power of a rational prime), let Decom (n) := 

{(u,v)luv = n, 1 < u}. Since n is composite we have that 

gcd{ul(u,v) E Decom(n)} = 1, 

or equivalently there are integers r u such that 

Now define 

L ruU=l. 
(u,v)EDecom (n) 

~n := L ruAu,v· 
(u,v)EDecom (n) 

4.2 Lemma. The set of all ~m, m > 1 is a set of algebraically independent gen
erators for the Z(p i-algebra L(p). 

proof: Fix p E P and denote by op the p-adic valuation on N. For a natural number 
n > l we let the p-adic decomposition of n be n = p0 p(nln1 (so gcd (n',p) = 1). 
Then we see from the relations 3.3.1 and 3.3.2 that for composite n EN 

op(u) 1-1, d ""! r uP V "n' ,pop(n) mo J7, n-1 

(u,v)EDecom (n) 

If n = qr, q E P, q =/- p, then 
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while if n = pr then, of course, (n = Ap,pr-1 E A(p). So indeed the set of all (n, n > 1 
is a set of algebraically independent generators for L(p). □ 

4.3 We may now define L, the ring of Lazard . Let J denote the ideal in Z[A] 
generated by relations 3.3.1 for all p E P. Denote by J+ the torsion closure of J, 
i.e., 

J+ := {x E Z[A] I mx E J for some m EN}. 

Then let 
L := Z[Al/1+. 

Clearly L has no additive torsion, so we have an imbedding L ~ Z(p) ® L. We 
conclude by lemma 4.2 that L = npZ(p) ® L = npZ(p)[(] = Z[(]. We call L the ring 
of Lazard. The polynomial ring L becomes a P-Hilbert ring under the canonical 
Hilbert structure. 

4.4 Let a := {a;,n Ii ~ d, n E N}. We define Hu := H;/ as a DPS-Hopf algebra 
over L by 

Hu:= L[a], 

such that f; : A - Hu defined by f;(an) := a;,n is a homomorphism of bialgebras. 
Th2 algebra structure is given by the Hilbert F-types 

Fatf>Hu = L Vn{l\a,n}tf>yu. 
n~l 

As in 3.4 we have that Hu will be well-defined provided that we prove the following 
theorem. 

4.5 Theorem. The curvilinear DPS-Hopf algebra Hu is defined over L and thus 
Hu is the universal d-dimensional curvilinear DPS-Hopf algebra. 

proof: By theorem 3.5 we have that Z(p) ® Hu is defined over Z(p) ® L for all 
p E P and thus Hu is defined over L. 
The second part of the theorem is proven in exactly the same way as the second 
part of theorem 3.5. D 

We may translate these results into the terminology of commutative formal group 
laws: 

4.6 Theorem. The functor :F is represented by the polynomial ring L. Further
more every curvilinear commutative formal group law is defined over the ring of 
coefficients of its F -types {Witt or, if they exist, Hilbert). □ 
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5 Hilbert functions and Witt functions 

In this section we connect the theory of F-types with the the theory of Hilbert 
functions and Witt functions as presented in [Dit90]. 

5.1 Let RE CURz 5 and let H E DPS-cHopf R with curvilinear S-typical structural 
basis¢= {¢1 11 E Ml(E)},#E = d. Write the canonical curves as in lemma 2.1. 
Then we define a map ghy := ghH,¢ : N(S) -. Md(R) by ghy(n) := Tn(¢H) = 
(rn,;,1);,1. As we have seen, in the case that R has no additive torsion gh8 is closely 
related to the logarithm of G8 (chapter I, corollary 5.17). 

5.2 Let Fs,R be the set of all functions f : N(S) -. Md(R). We give Fs,R the 
topology induced by the valuation v which is defined as follows: v(f) is the smallest 
n EN such that f(n) I= 0. Define for any function f E Fs,R the following operators: 

- Va by Vaf(n) := af(n//a) (where f(n//a) := f(n/a) if aln and O otherwise), 
- Fa by Faf(n) := f(an), 
- [A], for A E Md(R) by [A]j(n) := A(n) f(n). 

Yloreover if R is an S-Hilbert ring we also define 

- {A}, for A E Md(R) by P}f(n) := A"n f(n). 

Thus Fs,n becomes a Cart5 (R)-module. 

5.3 :\'.ow if R has no additive torsion we have by theorem 4.5 that His completely 
determined by the expressions (q E N(S)) 

FqghH = Ls Va[Aq,a]ghH 5.3.1 

( Aq,a E Md( R)) since these expressions are equivalent to the expressions 

Indeed since R has no additive torsion, the ghost components completely describe 
any curve in C5 (H). We also have seen in theorem 4.5 that H is defined over 
Z[Aq,a,;,1],q,a E N(S),i,j EE. If-it,H := I:sVa[Aa]c/JH, Aa E Md(R),A1 E Gld(R) 
defines another S-typical curvilinear basis -it, for H, then we find from considering 
the ghost components the relation 

Yloreover if R is an S-Hilbert ring we have analogous statements involving the 
Hilbert operators {. }. 

5.4 Ylore generally, we call a function f E Fs,n with f(l) = Id an S-Witt function 
defined over R if 
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where Aa,d E Md(R). Analogously we define S-Hilbert functions. Thus corre
sponding to any Witt or Hilbert function f there is a DPS-Hopf algebra H1 with 
structural basis ¢1. Ifwe define for an S-Witt function f (respectively an S-Hilbert 
function g) 

(respectively 

then we rediscover the "theorem of the ghost map" ([Dit90], pg 255) and the 
corollary in loc. cit. on page 256. We will reformulate them as: 

5.5 Proposition. Let the Zs-algebra R have no additive torsion. Let H E 

DPS-cHopf R with S-typical curvilinear structural basis¢= { ¢1 11 E Ml (E)}. Then 
ghH,¢ is an S-Witt function over R and we have an isomorphism of Cart8 (R)
modules Cs(H) ~ Ws,R(ghH,¢) by taking ghost components. Let 'ljJ be another 
S -typical curvilinear structural basis for IQ 181 H. Then 'ljJ is a structural basis for 
H if and only if Ws,R(ghH,¢) = Ws,R(ghH,,i,), or equivalently if and only if 

ghH,,i,(am) = "'£, dµ~"',:/d) ghH,¢(m/ d), 
djm 

for unique µa,d E Md(R), a, d E N(S). 
If R is an S-Hilbert ring we have an analogous statement. □ 

The following proposition will be used in chapter IV ( "second transition theorem", 
loc. cit. pg 264). 

5.6 Proposition. Let R be a p-Hilbert ring and let H E DPS-cHopf R with p
typical curvilinear basis¢. Write the FP-type of ¢H as FpghH,¢ = Li>O VP, { c;}ghH,c/>· 
Let 'ljJ be the p-typical curvilinear basis induced by '1/JH := Li>o i{;",{>.;}¢H (A; E 
Md(R), Ao E Gld(R)). Then for all m ~ 0 we have that g = gh~,,i, is a solution of 

g(pm+l)- f,pig(pm-jti+'c1 =pm+lAm+l and g(l) = Ao E Gld(R). 5.6.1 
j=O 

Conversely if g : N(p) --+ Md(R) is a solution of the equations 5.6.1 for some 
A; E Md(R), then '1/JH := L;>o Vp,{>.;}¢H induces another p-typical curvilinear 
basis 'ljJ for H, for which we have that ghH,,J, = g. 

proof: A proof using "generic F-type calculation" is given in [Dit90]. We sketch 
a straightforward proof using induction. One easily checks that g(l) = Ao and 
g(p) = pA 1 + A0c0 . Thus equation (5.6.1) holds form= 0. 
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Assume that ghH,,t; is a solution of 5.6.1 for all m < n. Then write 

pn+l An+! = ghH,,t;(Pn+l) - t pi xr+l-j ghH,¢(Pn+l-j). 
j=O 

43 

Now we may "push this equation down", by using the relations pi Aj = ghH,,t;(JJ1) -
r:{:-t p1 Ar-I ghH,¢(p1-1) and ghH,¢(Pn-j+l) = r:7::d picr-j-i ghH,¢(Pn-j-i). 
Expanding and using the inductive hypothesis we find eventually that ghH,1/J is a 
solution for 5.6.1 form= n. 
Conversely, assume that g is a solution of 5.6.1 for all m ~ 0. Then by the first 
part of the theorem, ghH,,t; is also a solution of 5.6.1. Using induction, one proves 
that g = ghH,,t;· □ 

6 Connections with the theory of Honda 

In this section we discuss a connection between the Hilbert Fp-type of a p-typical 
curvilinear commutative formal group law defined over a p-Hilbert ring R in which 
pR is maximal, and Honda's special element for such formal group laws. 

6.1 We briefly recall the notations and some of the results of [Hon], §§2 and 3. 
Let R be a discrete valuation ring having field of fractions K. Let p = (1r) be 
the maximal ideal of R. Assume the residue field to have characteristic p > 0 and 
also assume that there is an endomorphism a- of K and a power of q of p such that 
u(x) = xq modp for x ER. Define K,,.[[T]l as the noncommutative power series ring 
on T with multiplication rule Tx = x,,.T (x E K). We analogously define R,,.[[T]]. 
Denote by Am,n the ring of all m x n matrices over R,,.[[T]]. Let X = (X1, ..• ,Xn? 
and let K[[Xl]0 be the set of all f = (!;) 1'.'oi'.'om with f; E K[[X;]]i'.'oi'.'om such that 
f;(O) = 0 (1 ~ i ~ m). Define an operation * : Am,n x K[[Xllo -. K[[Xlla by 

An element u E An,n is called special if u = 1rld n mod deg 1. We say that f E 

K[[Xllo is killed by u modulo p if u * f E p[[Xllo- If p E Gln(R) and u is special, 
then f E K[[Xl]0 has type (P,u) if f is killed by u and f = PXmod deg2. 
We then have the following proposition, cf. [Hon], theorem 2 and proposition 3.3. 

6.2 Proposition. If f has type (P,u), thenG1 := f- 1(f(X)+f(Y)) is a commu
tative formal group law defined over R. Let g be of type (Q, u) (with Q E Gln(R)). 
Then G9 := g- 1(g(X) + g(Y)) is a commutative formal group law which is weakly 
isomorphic to G 1. If P = Q, then G 9 and GI are strongly isomorphic. 
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Moreover in the unramified case, i.e., 1r = p, we have that for any commutative 
formal group law G over R with logarithm loge there is a special element u which 
kills lofo. D 

The connection with FP-types is now given by the following proposition. (Using 
the notations of section 2.6.) 

6.3 Proposition. Let R be a p-Hilbert ring such that pR is maximal. Let u = 
L;2:o C;Ti be a special element (so C0 = p Id). Write u-1 = Li2'.0 B;Ti (so Bo = 
p- 1 ). Then Iogc(X) := L;>o pB;X(P'l is the logarithm of a curvilinear commutative 
formal group law G having-Fp-type 

Fpc/>G = L v;{-cz;_i}c/>c-
i2'.0 

The power series h = L;>o h;XP' has type (Id, u) if and only if the curvilinear 
p-typical commutative formal group law H having logarithm h is weakly isomorphic 
to G, i.e., if and only if the function ghH: n f--. pnhn is an element of H{p},R(ghc)-

pro1>f: Consider 
m 

u- 1u = 1 {::} I:Bm_;Cf+~-• = -pBm+l (m ~ 0) 
i=O 

m 

{::} pm+lpB:!:+1 = - LPicI:i.=-i(pm-ipB;!;_;) (m ~ 0). 
i=O 

Thus from chapter I, corollary 5.17 and formula 2.1.2 we (;btain the first part of 
the proposition. The second part now follows from proposition 5.5. D 

7 Connections with the theory of Dieudonne 

In this section we describe some connections between the theory we have developed 
so far and the theory of Dieudonne. 

7.1 We briefly recall some of the notations and results of [Dieu], chapter III, §§4 
and 5. Let k be a perfect field of characteristic p > 0, and let W := W(k). By u we 
denote the endomorphism Fp we constructed in chapter I, 3.7.1. Since k is perfect 
we have that u is invertible on W. The ring W is a complete valuation ring under 
the p-adic valuation Op- We define A, the Hilbert-Witt ring, as the W-module of 
power series a = L;>o a;T; with multiplication rule Ta= a"T. The ring R will be 
A localized with respect to T. The automorphism u is extended to R by defining 
u(T) := T. A right A-module M is called distinguished if it is finitely generated 
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and satisfies the conditions Mp c MT and m ........ mT is injective on M. The rank 
of a distinguished module is the dimension of the k-vector space M/MT. Then we 
have [Dieu], chapter III, §4, proposition 7. 

7.2 Proposition. The A-module M is distinguished of rank d if and only if M 
is isomorphic to a quotient Ad /u(Ad), where u is an endomorphism of Ad whose 
matrix with respect to the canonical basis of Ad has the form pld d-cT (c E Md(A)). 

□ 

The following easy proposition connects the group of curves of p-typical curvilinear 
formal group laws and distinguished modules. 

7.3 Proposition. Let H E DPS-cHopfk, with p-typical structural basis ¢ = 
{¢ill E Ml (E)} and FP-type Fp¢H = Li~o V}[A;]cpy, A; E Md(k). Define c := 
L;>o T(A;)Ti. Then the left W[[Vp]]-module Cp(H) and the distinguished right 
WUT]l-module Ad /(pld d - cT)Ad are anti-isomorphic. □ 

7.4 :\"ow assume k to be algebraically closed. We then have the following proposi
tion, cf. loc. cit. chapter III, theorem 4 ( or [Man], chapter III, §5, "the classification 
theorem"). 

7.5 Proposition. Let M be a distinguished A-module. Then the R-module MR := 

R ® A M admits a unique direct sum decomposition in simple submodules 

where for all j we have O < ri :S Sj and gcd (rj, si) = 1. □ 

7. 6 The decomposition described in the proposition is called the isogeny type of M. 
If G is a commutative formal group law defined over k. Then we define the isogeny 
type of Gas the isogeny type of CP(G). As in [Man], chapter II, §4 we denote by 
Gm,n-m the commutative formal group law corresponding to the distinguished A
module A/ (pm -Tn )A and by Gm,oo the commutative formal group law correspond
ing to the A-module A/pm A. Notice G 1,0 = Gm, the 1-dimensional multiplicative 
formal group law. We then say that M is isogenous to EB; Gm,,oo Erlj Gr,,s,-m, and 
denote this equivalence relation by "~". Manin only defines Gn,m for n, m rel
atively prime but it is well known that Gn,m is isogenous to dGn/d,mfd, where 
d = gcd (n, m). Therefore as in [Hon73], [Hov] or [Yui80] we will often use the 
notation Gn,m even if n and m are not relatively prime. 

7. 7In order to be able to compute the isogeny type from the FP-type, we generalize 
[Dieu], chapter III, §5, lemma 4. Let B(k) be the field of fractions of W(k). For 
each natural number ewe write Be(k) for the completely ramified extension of B(k) 
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generated by a root w of the polynomial xe - p, and We for the integral closure 
of W in Be(k). The automorphism u is extended to We by defining u(w) := w. 
We also extend 0 11 canonically to We by op(w) := 1/e. Write Ae for the canonical 
extension of A, and Re the canonical extension of R. We define the costathm c(a) 
of a E Re by (c(O) := oo) 

c(a) = c(LaiT') = min{i?: Olo11(a;) = min{o11 (an)ln?: O}}. 
i~O 

Further, if a E Ae with c( a) > 0 and w A a, we define the rational number 7( a) by 

,y(a) = 'Y(L a;Ti) := min { ?~a~. IO :5 i < c(a)} , 
i~O Ca i 

and a natural number j(a) by 

j(a) := min {jl,y(a) = op(a;).}. 
c(a) - J 

We may now prove the following lemma. 

7.8 Lemma. Let a E Ae be such that ,y(a) = r/s, s = c(a) -j(a). Then we may 
write in Ae• 

a = y(pr - T")x, 

for some x E A; •. For y we have the following formulae: c(y) = c(a) - s and 

,y(y) := min { ?~a;) - r. IO :5 i < c(a) - s}. 
ca -s-i 

proof: Let a E Ae be such that ,y(a) = r/s, s = c(a) -j(a). By [Man], remark to 
chapter II, lemma 2.2 we may then write 

• 
a= y IT (r - prt•x;), 

i=l 

for some x; E A; •. On the other hand, combination of loc. cit. lemma 2. 7 and the 
corollary to lemma 2.5 gives that 

Res I m=l (T - prf•x;) R •• ~ R •• I (T· - pr) Res. 

Thus we find that for some x E R; • 
• II (r - prf•x;) = (T" - pr) X 

i=l 
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(and thus x E A;,). We conclude that a = y (Ts - pr) x. One now easily com
putes from this relation that c(y) = c(a) - s and (with induction) that "f(Y) 
mini<c(a)-s {op(a;) - r/c(a) - s - i}. D 

7. 9 Repeated application of the lemma gives that a E A, p A a can be written in 
As, s = IL S; as 

where x; EA;, c(y) = 0. Thus also y EA;. But then, since R/aR is semisimple 
([Dieu], chapter III, theorem 1) and since R/(pr - V')R is simple if gcd (r, s) = 1 
(loc.cit. chapter III, theorem 2) we conclude that the isogeny type of A/aA is given 
by 

A/aA ~ $ Gr,,s,-r,· 
' 

7.10 The above lemma provides us with a strong tool for computing isogeny types 
of commutative formal group laws whose Fp-type is given. Just take any canonical 
curve¢;. Some power of Fp will be an endomorphism of W(k)[[V]]{¢;}. We thus 
find an a EA such that A/aA '------+ Cp(G). We now may use the lemma in order to 
decompose A/aA. Then, if necessary, we proceed by taking some other ¢i• Details 
of this procedure and examples can be found in chapter IV, sections 2 and 3, where 
we will compute the isogeny types for 2 and 3-dimensional commutative formal 
group laws. 





Chapter 3 

A finiteness theorem 
For commutative formal group laws of finite height defined over an 
algebraically closed field of positive characteristic. 

In this chapter it will be proven that any curvilinear commutative formal group law 
G of finite height defined over an algebraically closed field of positive characteristic 
is isomorphic to a formal group law Gtyp having a well characterized finite (Witt) 
F-type. This has as a corollary that there exists a finite-dimensional catalogue for 
such formal group laws of bounded height. 

This chapter is organized as follows: First an introduction to the problem is given, 
then two technical sections follow. In these sections some lemmas on reduction 
of F-types and on a special type of etale extensions are proven. In section 4 a 
classification result in characteristic zero of Ditters is adapted to our needs. The 
finite F-type then is. constructed in section 5. 

In this chapter all formal group laws are commutative and curvilinear. 

1 Introduction and statement of the results 

1.1 Let k be a ring of characteristic p > 0 and G be a d-dimensional p-typical formal 
group law defined over k. On Cp(G), the (additive) group of p-typical curves of G, 
we have operators V := V,,, F := Fp and [r], r Ek. The topological group Cp(G) is 
V-complete. Passing to the direct sum Cp(G)d, we have seen (chapter II, theorem 
4.6) that G is completely determined by its Witt F-type, i.e., the F-type of its 
canonical curves 

00 

F¢a = I:V;[CMa, 1.1.1 
i=O 

49 
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where C; E Md(k). (This is an abbreviated form for 

oo n 

F¢a,1 = LL V;[C;,1,i]<Pc,i, 
i=O j=l 

where C;,t,i E k.) Conversely every choice of C; E Md(k), i ;?: 0 gives rise to a 
unique formal group law G defined over k, with canonical curves ¢a. 

1.2 Let the p-typical formal group law G have F-type as in 1.1.1. We will say that 
the F-type is finite and has length n E N if C; = 0 for i > n, Cn =/= 0. Notice that 
G having a finite F-type does not imply that the height of G is finite. (Consider 
for example Ga.) A connection between the shape of the C; and the height of G is 
given in section 5. 

1.3 Moreover we know (chapter I, 5.7), that any formal group law H, isomorphic 
to G over k, has as a set of canonical curves ¢H 

00 

<PH = L Vi[A;J</Ja, 1.3.1 
i=O 

where A; E Md(k) for i;?: 0, Ao E Gld(k). Let the F-type of H be 

00 

F¢H = L Vi[D;]</JH- 1.3.2 
i=O 

1 .4 We have the following relation among the C;, A;, D; introduced in 1.1 and 1.3 
On the one hand we have by (1.3.1) and (1.1.1) 

F¢H = ~ Vi[A)P)]F</Ja = ~ V;[A)P)] (~ Vi[Ci]<Pc); 

while on the other hand we have by (1.3.2) and (1.3.1) 

Therefore we obtain the following identity 

1.5 Recall that the homothety or Witt operator [] is not additive, and multiplicative 
only in dimension one. Therefore working with equation (1.4.1) is very hard. 
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For example, it suffices, but, it is in general not necessary, that for each n ~ 0 the 
relations 

1.5.1 
i+j=n i+j=n 

hold in order to satisfy equation (1.4.1). 
As an example we will consider two special cases. 

1.6 We take d = 1, and k = JFP. Then the equation (1.4.1) reduces to 

Read this equation mod V 

[AaCa]¢a = [DaAo]¢a mod V. 

As d = 1 and Ao E JF;; this implies that C0 = D 0 • Subtracting the terms [A0C0]¢a = 
[DaA0]¢a and V[A1C0]¢a = V[D0Ai]¢0 from both sides of (1.6.1) we find mod V2 

V[AaC1]¢a = V[D1Ao]¢a mod V2 . 

This implies by the same reasoning as before that C1 = D1. Using induction 
we easily see Dm = Cm for all m ~ 0. So we rediscover the following result of 
Dieudonne ([Dieu], chapter III, §6, no.2, section II, for the translation between the 
terminology of Dieudonne and ours, see chapter II, section 7). 

Theorem. There is a bijective correspondence between the set of isomorphism 
classes of 1-dimensional formal group laws over a prime field and the set of all 
possible F-types (1.1.1). □ 

In particular it is not true that over the prime field every 1-dimensional formal 
group law is isomorphic to a formal group law having a finite F-type. 

1. 7 Again take d = l, but now assume ket to be the etale closure of a field of 
positive characteristic p. Let G be a 1-dimensional formal group law with F-type 
(1.1.1). There are two cases to be considered 
case 1: All C; are zero. This is equivalent (chapter II, subsection 1.4) to G being 
the formal additive group law. 
case 2: l',"ot all Ci are zero. Let h be the smallest integer such that Ch is not 
zero (h is easily seen to the height of G, as defined in chapter I, 4.19). For n = h 
equation (1.5.1) reads At+'ch = DhA0 . Since d = l putting Dh = l gives an etale 
equation for which we have an invertible Ao as solution. We may thus assume that 
Ch = 1 and that an N > h is given such that C; = 0 for h -I i < N. Now take 
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Ao= 1, A;= 0 for every O < i < N - h. We then find D; = C; for every i < N. At 
level N, (1.5.1) is now read mod Vas 

Taking DN = 0 we obtain an etale equation in AN-h· So by induction we find the 
following theorem. 

Theorem. Every 1-dimensional formal group law G of finite height h over an 
etally closed field ket of positive characteristic is isomorphic to a formal group law 
Gtyp with the F -type 

D 

This theorem gives the well known assertion that the only isomorphism invariant 
of I-dimensional formal groups defined over an algebraically closed field of positive 
characteristic is the height. 

1.8 Other published results on the classification up to isomorphism of formal group 
laws over rings of positive characteristic can be found for the I-dimensional case 
in for example [Haz] and [Hon]. An overview is given in [Hill]. The classification 
for 2-dimensional formal group laws over an algebraically closed field is given by 
l\ianin [Man] (contravariant) and Kneppers [Kne] (covariant). 

1.9 We will prove in this chapter the following theorem (theorem 5.17). 

Theorem. Let G be a d-dimensional p-typical curvilinear commutative formal 
group law of finite height, defined over an algebraically closed field k of positive 
characteristic p. Then G is isomorphic over k to a p-typical curvilinear commuta
tive formal group law Gtyp having a finite (Witt) Fp-type. Moreover the length A of 
the finite F -type is bounded by the height h of G. 

We borrow the definition of a catalogue from F. Oort: A catalogue for a small 
category C is an algebraic set S such that there is surjection of sets from S to the 
set of isomorphism classes of C. With this notation we obtain as an immediate 
consequence of the theorem 

Corollary. There is a catalogue of finite dimension over k for all p-typical curvi
linear commutative formal group laws G defined over an algebraically closed field k 
of positive characteristic such that the height of G is bounded by a fixed number. 

1. 10 Remark. Let G be defined over an algebraically closed field of positive 
characteristic p with finite height h. The group GP of p-typical curves of G of 
course has a canonical W(k)-module structure, and as such it has W(k) rank equal 
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to the height h of G (chapter I, lemma 4.26). However, having a catalogue of 
finite rank over W(k) does not give any information on finite-dimensionality of a 
catalogue over k. 

2 Reduction of Hilbert F-types 

2.1 Let k be an integral domain of characteristic p > 0. Let G be a d-dimensional 
p-typical curvilinear commutative formal group law defined over R := Wp(k) and 
let G denote the reduction of G which is defined over k. Write GP = Gp(G) and 
Gp= Gp(G). 

2.2 We recall some facts and notations which can be found in chapters I and IL 
For any formal group law H defined over a Zp-algebra A, we have the canonical 
Cartv(A)-module structure on Gp(H) and also an induced Wp(A)-module structure. 
Thus GP is a Wv(R)-module and Gp is an R-module. Let F := Fp and V := ½,. As 
we have seen both G and Gare determined by their Witt F-types. But since R is 
a p-Hilbert ring we also know that G is determined by its Hilbert F-type 

Fef>c = LVi{Gi}ef>c, 

for some (unique) G; E Md(R). Contrary to the Witt operators [ ], the Hilbert 
operators { } : R -> End Cp(G) are homomorphisms. Actually, as we have seen, if 
we denote by O the canonical Cartp(R)-structure on Gp, then 

[r]-ip = TR(r)O-ip, 

2.3 We will treat the following question : For G we can consider its Hilbert F-type 
and its Witt F-type, while for G we can only consider its Witt F-type. What is 
the relation between the Hilbert F-type of G and the Witt F-type of G? Or to 
phrase it differently: what is the fiber of the map 7r* from the set of all Hilbert 
F-types (over R) to the set of all Witt F-types (over k), induced by the canonical 
projection 7r : R 1-4 k on the first Witt coordinate. (The relation between the Witt 
F-type of G and the Witt F-type of G is, of course, just induced by [r] -> [7r(r)]). 

2.4 The first result is the following: From chapter I, lemma 3.19 (iii) we find that 
G having a Hilbert F-type of the form 

reduces to G having the Witt F-type 

Fef>a = I:Vi[GMa, 
i2:0 
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We will proceed to describe the fiber of the reduction map in terms of Hilbert 
F-types. 

2. 5 The basic idea is rather simple: in Gp( G) the operators F and V commute, thus 
the reduction of Cp(G) to Cp(G) will factor via Cp(G) modulo the commutation 
relation of F and V. We will prove that this fact is sufficient to determine Cp(G). 

2.6 We let T := FV - VF E Cartp(R) and define abelian groups Ci (i ~ 0) by 

2. 7 Some generalities. The operators F, [ ], { } stabilize I:}=o ViTCp(G). So on 
Ci we have an induced action of F, which we will again denote by F. The same 
applies to the operators [ ] and { }. The R-module structure on Cp(G) given by 
the Hilbert brackets { } also induces an R-module structure on Ci. 
However the operator V does not stabilize I:}=o ViTCp(G), which means that there 
is no induced action of V on Ci. Therefore Ci is not an R[[V]]-module. (It is a 
Wp(R)-module since Facts trivially on (FV-V F)Cp(G).) The operator V induces 
a map Ci -> Ci+l and thus V induces a well-defined operator on 1~ Ci. 

2.8 We will give an easy example which illustrates some of the features of this 
construction. 
Let G have Hilbert F-type 

F¢a = {(1 + p)ld }¢a= (1 + p)¢a. 

Csing 2.4 we see that the following relation holds in GP 

F¢a = (1 + p)¢a = (1 + VF)¢a = ... = LVi¢0 . 
i~O 

Thus a finite Hilbert F-type may reduce to an infinite Witt F-type. On the other 
hand we have in Jim Ci 

F¢a = (1 + p)¢a = (1 + V F)¢a = ... = L Vi¢a. 
i~O 

We conclude that in this case the Wp(k)[[V]]-modules GP and 1~ Ci are isomorphic. 

2. 9 Every element if; in C1 can be written as 

ri,i ER 
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or as 

r;,j ER 

where cl1 denotes the class in C1• However these expressions are not unique. 
In order to obtain a unique representation note that every r;,j E R = Wp(k) can 
be written as (V := VP) 

r;,j = :E VkT(r;,j,k) 
k~O 

r;,j,k Ek 

(chapter I, 3.6). We have the following easy but crucial lemma. 

2.10 Lemma. Let if; = cl1 {I:; Vi{a;}</>} in C1 and suppose a;0 = a;0 + Vr for 
some i 0 < l and r ER, then if;= cl1 {I:; V;{a:}¢} with a\= a; for i < i 0 . 

proof: Temporarily working over the perfect closure of the field of fractions of k, 
we have 

vio{a;o}<I>+ viop{F-lr}¢ 

Vi0 {a:o}4>+ Vi°F{F-1r}¢ mod Vi0 TCp(G) 

vio{a;o}<I>+ vio+l{r}F¢. 

Here in the first step we use the commutativity of F and V on Wp(k) (k has 
characteristic p > 0), and the fact that the Hilbert operators induce an R-module 
structure. In the second step we use via FV = vio+l F mod Vi0 T. The third step 
is the combination of the defining relation of Fon Wp(k) (see chapter 1 3.7.1) and 
chapter I, formula 3.15.1 which describes the action of Fon >.p(r), r E R. At the 
same time this makes clear that the relation is actually defined over k. □ 

2.11 Proposition. The class if; in C1 can be written as 

for some 'If;' E v1+1cp(G) and unique r;,i Ek. 

proof: Repeated application of lemma 2.10 yields that if; may be written as 
claimed. 
For the uniqueness, first note that 

d d 

vn(FV - VF) LL Vi{a;,i}</>G,j = :E vn{pao,j}<l>a,j mod vn+lcp(G) 2.11.1 
i~O j=I j=I 
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(and TVCP(G) = 0). Assume that'¢ E C1 can be written as 

i/J = cl1 {tt Vi{r(r;,j)}<Pc,j + 1/Jr} 

and also as 

i/J = cl1 {tt V;{r(r!,J}</ic,j + 1/J;} 

(1/Jr, 1/;~ E v1+1cp(G)), such that r;,i = r;,i for i < i 0 :::; l. Then we have 

l d l 

LL Vi{r(r;,j) - r(r:)}<PG,j EL VkTCp(G) + v1+1cp(G) 
i=ioj=l k=O 

This together with the first remark (2.11.1) gives that r(r;0 ,i) - r(r;0 ) E pR. 
This in turn implies that r;0 ,j = r;oJ· Thus by induction on i0 we see that the 
representation is unique. D 

2.12 We conclude from proposition 2.11 that an element K E 1~ Ci can be repre

ser1ted as K = I;;,i Vi{r(r;,i)} for unique r;,i Ek. 

P.13Put S = Wp(R)[[V]]. We summarize the different module structures we have so 
;ar encountered: GP is a Wp(R)-module via the Cartp-structure and an R-module by 
the Hilbert-structure. Therefore GP is a S-module with dim(G) generators via the 
Cartp-structure and a free R[[Vl]-module of rank dim(G) via the Hilbert-structure. 
The reduced GP is an R-module via the Cartp-structure, bm also an R-module via 
the reduction of the Hilbert R-module structure on GP. We also have an S-module 
structure on GP via reduction of the S-module structure on GP. 
It is clear that the subgroup STCP (:= { sT¢ Is E S, ¢ E Cp(G)) of GP is stabilized 
by { }, [ ], F, V (note that FT= 0). So we have induced operators on Cp/STCp = 
1~ Ci, which is therefore also an S-module, and an R-module via { } 

2.14 Theorem. The S-module Cp/STCp is isomorphic to the S-module Gp, and 
the Hilbert R-module structure on GP reduces to the canonical (Witt) R-module 
structure on GP. 

proof: The isomorphism of the first statement, of course, is given by 

i,j i,j 

Indeed from proposition 2.11 we find that the map <I> is a bijection. Since we 
already observed (subsection 2.5) that the reduction factors via GP/ STCP, and 
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that the induced homomorphism Gp/ STCP --> GP is precisely <I> (subsection 2.4), 
we are done. 
For the second statement, consider for a E R 

Since { T( a;)} reduces to [a;] in GP (lemma 3.19) we see that the R-module structure 
on GP induced by the reduction of the Hilbert R-module structure is exactly the 
canonical Wp(k)-module structure on Gp. □ 

We may thus describe the fiber of the reduction map Fwp(k) --> Fk in terms of 
F-types as in the following theorem. 

2.15 Theorem. Let k be an integral domain with positive characteristic p. Let 
G be a d-dimensional curvilinear commutative formal group law defined over k. 
Assume that G has Witt F-type F¢0 = LV;[G;]¢0 (G; E Md(k)). Let G be a 
d-dimensional curvilinear commutative formal group law defined over Wp(k) which 
reduces to G, then G has Hilbert F-type 

00 00 

i=O i=O 

where the B; E Md(Wp(k)) (i ~ 0) may be arbitrarily chosen. 

Reduction of permutation type Hilbert F-types 

□ 

2.16 Let. the p-typical formal group law G defined over R = Wp(k) have Hilbert 
F-type F¢a = Li>o Vi{C;}¢a, C; E Md(R). We say that (the F-type of) G is of 
permutation type if the matrix Li<'.O C;ti, for some transcendental t, has in every 
row and column exactly one entry of the form atm, a E R. All other entries in that 
row and column are zero. 

2.17 Lemma. Let G have permutation type F-type F¢a = Lt>o V1{Ci}¢a. As
sume that k is algebraically closed. Define D1 E Md(R), l :2: 0 by:-

Dt,i,i = p;(c1,i,j), 

where Op denotes the p-adic order (p00 := 0). Then there is a special weak iso
morphism ¢a, = {A}¢a from G to G' such that the F-type of G' is F¢0 , = 

L1<'.o V 1{D1}¢a,. 

proof: Let D1, l :2: 0 be defined as in the lemma. Then A must be an invertible 
solution of the system of equations 

2.17.1 
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We claim that we can find a diagonal matrix A (with diagonal entries A; := A;,;) 
which is a solution of 2.17.1. We proceed as follows: 
Define the permutation matrix U by U;,i := 1 if Ci,i,i -1- 0 for some l. Define 
diagonal matrices Ci,l? 0 by Ci,; := Ci,;,; := Ci,i_,i if Ci,i,i -1- 0 for some j, else 
Ci,; := 0. Analogously define diagonal matrices Di, l ? 0. Then the system of 
equations 2.17.1 is equivalent to the system of equations 

1- - 1- - 1 
A" C1U = D1UA {:::} A" Ci= Di UAU- {:::} 

A"1Ci = UAu- 1 Dz, 

for l ? 0. Denote A1r(i) := (U Au-1 );,; and f; := Ci,;/ Di,; if C; -1- 0 for some 
l =: l; ? 0 (and thus ord p(f;) = 0). Then we find that 2.17.1 is equivalent to 

A ,,1, JA 
i = i ,r(i), 0:::; i:::; d. 

This (etale) system of equations clearly has non-zero solutions ink. □ 

2.18 Proposition. Let G be a permutation type formal group law defined over 
WP( k), k an algebraically closed field of positive characteristic p. Write the Hilbert 
F-type of G as F</Ja = L;>o Vi{C;}<Pa- Then the reduction G of G is isomor
phic to a formal group law Gtyp such that Gtyp has a finite Witt F-type F</Ja,,p = 
Li2'.0 Vi[D;]<Pa,,p· Especially, D;,i,l = 1 if C;,i,i -1- 0modp, and in every row of 
Li2'.0 D;t', for some transcendental t, there is at most one non-zero entry which is 
a monomial in t with coefficient 1. 

proof: By lemma 2.17 we may assume that the non-zero entries of C;, i ? 0 are 
pure powers of p. Thus for G we have that F</Ja,i = V 1•pm'<PG,j, = vm.+i,Fm'<PG,j;· 
Repeated substitution of the action of F on <Pak leaves us with two possibilities: 
Either after a finite number of steps we have fo'und F</Ja,; = vi•</Ja,a, or this first 
possibility does not happen, which means that F</Ja,; = 0. □ 

3 Two etale lemmas 

The first lemma is a lemma in the spirit of [Dieu], chapter III, §5 , lemma 1, which 
applies to "one dimensional" a-equations over W(k), where k is an algebraically 
closed field. 

3.1 Lemma. Let ket be an etally closed ring of positive characteristic p. Suppose 
the matrix equation Eq over W ( ket) is defined by 

m 

x + L aix"1 = c, 
i=I 
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Let c: E Mn (ket) be a solution of Eq mod VW(ket). Then Eq has a solution x E 

Mn (w(ket)) such that X = T(c:) mod VW(ket). 

proof: We use induction on powers of V. Suppose we have found a solution 
xi = Lj:Ch ViT(oi) for Eq mod Vi. Define Xi+1 = L~=o ViT(oj), where oi has yet to 
be found. :\'ow consider Eq with x = xi+ 1 : 

m 

Xi + V;T( oi) + L a1 ( xf' + ViT( d/,1
)) = c {:} 

l=I 

vi (T(oi) +fa( T(of )) = ViT(r) + vi+! s, 
l=I 

with r E Mn (ket) ,s E Mn (w(ket)). Reading this modvi+I, we find: 

m °""' -p• _pl o; + ~ a1 er; = r, (a= 1r(a)). 
l=l 

Then this equation has by the Jacobi criterion ([Mum], IIl.5, definition 1) a solution 
Oi E Mn k . □ ( et) 

The second lemma is on a special type of etale extensions. 

3.2 Lemma. Let k be a ring of positive characteristic p. Assume that k[y;]i=l, ... ,n 

is an etale extension of k[½'li=l, ... ,n, then k[y;]i=I, ... ,n is an etale extension of k. 

proof: Assume that k[yi]i=l, ... ,n is an etale extension of k[1/2'li=l, ... ,n =: k[yP]. This 
is equivalent by the Jacobi criterion to the Yi being roots of !1 E k[yP][Zili=l, ... ,n =: 

k[yP][Z], for O ~ l ~ n, with 

det(8f;/azJJZ=y ,/:.Omodpfor pESpeck[y]. 

Let P1 E · k[)0, 0L=1, .. ,n be polynomials such that Pi(Zj, Yi) = Ji. Define new 
polynomials f 1 E k[Z] by Pi(Zj, Zj), We then obviously have that they; are roots 
of the Ji (for O ~ i, l ~ n) and 

because of the relation for monomials (b > 0, a E k[Z;];;ti): 
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This establishes that all y; are etale over k. □ 

4 A classification result for p-Hilbert domains 

In this section we adapt a classification result of Ditters for formal group laws 
defined over a p-Hilbert domain. 

4.1 Theorem. ([Dit89], section 3 ) Let R be a p-Hilbert domain. Let G be a d
dimensional formal group law over R, which is not isomorphic to the d-dimensional 
additive formal group law. Then there exists an element f '/=. 0 mod pR, a positive 
integer 'Y and integers h;, r; (1 :::; i :::; 1 , h1 ~ 0, h; ~ l for i ~ 2, r; ~ 1) and 
invertible matrices W1, W 2 in Md(R1) such that G is strongly isomorphic over R1 to 
a formal group law Gtyp with F-type F = E Vi{Dj}· Here the Di can be inductively 
described by the following procedure: Define g; = d - E;;;;,\ ri (so g1 = d), then we 
have matrices dj,i E Mg,xd(R),j ~ 0, 1:::; i:::; 'Y + 1, such that W 1DjW2 = dj,l and 

dm,i (* 09,) modp, m < h;, 

dh,,i ( : Ir, ~9i+I ) 
modp, 

* 
dm,i ( Or, 0 ) 

dm-h,,i+l ' 
m > h; 

and 

dm,i ( * 09~+,) modp, i=,y+l. □ 

4.2 In order to help read the inductive formulae of the theorem, notice that dm,l = 
0 mod pR for m < h1 and that: 

In [Dit89] the set (h;; r;) 1:::_:;:::_:-y is called the jump sequence. We will show that this 
coincides with the notion jump sequence as we defined in chapter I, 4.22. (Thus 
G has finite height if and only if E?=i r; = d.) The matrices Dm of the normalized 
F-type are called the higher Hasse- Witt matrices. 
We will use the following adaption of the above theorem. 

4.3 Theorem. Let G be a d-dimensional formal group law defined over a local 
p-Hilbert domain R. Then G is isomorphic over R to a formal group law Gtyp 
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described below. In the description we use following data, which we will call the 
jump data: 

jd 1 : a number, called the number of blocks with 1 ::; , ::; d, 

jd2 : numbers h; with h1 ~ 0, h; > 0 for 2 ::; i ::; ,, 

jd3 : natural numbers r; for 1 ::; i ::; , 

jd4 : matrices A; E Gl,.(R) for 1::; i::;, (the blocks) and 

jd5 : ad x d permutation matrix U. 

The F-type of Gtyp is related to the jump data as follows: Define g; := d - L;:\ ri 
(so g1 = d). The F-type F = L V 1Ci of Gtyp can then be described inductively by 
matrices ci,i E Mg.xd(R), j ~ 0, 1 ::; i ::; r + I such that uci = ci,l and 

Cm,i (* 09.) modp, m< h;, 

Chi,i ( : A; 

* ~9i+l ) 
modp, A; E Gl,.(R), 

Cm,i ( *r. 0 ) 
Cm-hi,i+l ' 

m>h; 

and 

Cm,i ( * 09~+,) modp, i=,+l. D 

proof: Let c;YP be isomorphic to G such that the Hilbert F-type F¢;YP = 
L Vi Di¢;YP of c;YP has the properties of theorem 4.1. Apply the special weak iso
morphism <Ptyp = w2- 1¢;YP then the F-type of Gtyp is given by F</Jtyp = L ViCi<Ptyp, 
where 

C w.-ui+1 D UT w.-ui+'w-ld 
i = 2 i yy 2 = 2 I i,l · 

If a column of di,I is zero then the corresponding column of Ci is also zero, and 
because the matrix w 2-ui+'w1- 1 is invertible we also have that if we got some set 
of independent columns in di,I then the set of corresponding columns in Ci is also 
independent. By multiplying from the left with a permutation matrix U we then 
may permute rows in order to obtain the ci,I in the form as given by the theorem. 
D 

4.4 Let G have finite height and an F-type in the form of theorem 4.3 then we 
easily see that the set 

{ Vi1¢;1 IO:::=:: l < ,, 0::; Ji::; L~:\hk, L~=1rk <ii::; L~:11rk} 
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is a basis for the W(R)-module Cp(G) and thus by chapter I, lemma 4.26 we 
conclude that the set (hi; r;) 1:::;;:::;-y is the jump sequence of G as defined in chapter 
I, 4.22. Lemma 4.26 in chapter I then gives a relation between the height h of G 
and the jump sequence of G. 

4.5 Having ap.y sequence C = { C;};>o of d x d matrices with entries in some local p
Hilbert domain, we define the jump-data of C to be t4e jump data of the associated 
formal group law. We denote the jump data as ( 1, (h;; r;; A;), U). 

4. 6 We end by noting the followillg obvious property: Suppose that G has jump 
data(,, (h;;r;;A;),U) and G' hasjµmp data(,', (h;; r!;A;),U'), with E7=1 h; < h~. 
Then G ffi G' has jump data (,+,',(ht; r;; At), U*), where ht := h; if i ::; , ai+d 
ht := h;_'Y if, < i ::; ,', the same convention applies for ri and A; while u• is the 
permutation matrix 

5 Constructing the finite F-type 

Given a p-typical formal group law G of finite height, determined by its F-type, 
we construct in this section the finite F-type of a p-typical formal group law Gtyp 
which is isomorphic to G. 

5.1 Notations, fixed throughout this section. We will denote by k a fixed perfect 
field of positive characteristic p. For any i(pi-algebra K we denote as W(K) := 
Wp( K) the ring of p-typical Witt vectors on K, on which we have injective operators 
F and V. Also 1r : W(K) ---+ K will dep.ote tlle ciw1-miic;:i.l projection to t)1e first 
coordinate, while r : K ---+ W(K) js t4e 'feicllmiiHer map. On W(k) we have a 
p-Hilbert strµcture, i.e., W(W(k)) is a W(k)-module under the homomorphism 
.4: W(k)---+ W(W(k)). 
AU maps are defined entrywise 01+ matrices. For a matrix A E Md(R) we will 
denote by k[A.] the suhring of fl gen.eril,ted by the en.tries of A. 

5.~ We hllye seen that t)le proh~m pf clf!$s)fyip.g d-dimension.iµ for!I).al groµp laws 
qefiIJ.ed over a ring k of positive characteristic can be formu).ated in terms of F
types as foUows. Fip.d a set of series of matri.ces N c Md(k)fll.J{O} witli so!I).e "nice" 
propertjes satisfying the followipg: Givep. an arbitrary f~rmal group law G qefined 
ovf:lr k with P-type 

QO 

FdJ = E Vi[C\]¢, 
i=O 
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there is an isomorphism 
00 

if;= LVJ[i\J]¢, 
j=O 

to a formal group law G N over k with the F-type 
00 

i=O 

for some N = { 1V;};2>:o E N. But since Gp( G) allows no k-module structure, or 
equivalently, since the Teichmiiller map T: k-> W(k) is not additive, we have seen 
that the computation of such a set N is not easy. 

5.3 The basic idea is to lift everything to W(k). An advantage of doing this is that 
the group of p-typical curves Cp(G) for a commutative formal group law G over 
W(k) has a well-behaved W(k)-module structure. 
First we translate the problem in characteristic zero. From now on we will use only 
the Hilbert structure, so we may omit the Hilbert parentheses { }, if there is no 
danger of ambiguity. 
So the problem is reduced to the following: Find a set of series of matrices N C 

Md(k)NJ{o} having some "nice" properties, such that the following holds. Given a 
lifting Gover W(k) of a formal group law Gover k having F-type 

00 

F¢a = L V;C;¢a, C; E Md (W(k)), 
i=O 

there is an isomorphism 
00 

'I/J = L vJ AJ¢a, 
j=O 

to a formal group law in the fiber above a G N for a suitable N EN, i.e., by theorem 
2.15 to a formal group law GN,B having an F-type of the form ('I/;= ¢aN,B) 

00 00 

F'I/J = L vi N;'I/J + L vJ BJT'I/J, 
i=O j=O 

5.4 We will rewrite the above formula in a form which will be useful for computa
tions. Write ¢ = ¢a. On the one hand we have: 

F'lj; F (~ V;A;¢) = A~F¢ + p ~ V;Ai+1¢ 

f vi ( Ag'+< C; + pA;+1) ¢. 
i=O 



64 A FINITENESS THEOREM CHAPTER 3 

On the other hand we have: 

F'lj; = (~v;N; + ~V;B;T) 'lj; 

(~v;N; + ~V;B;T) ( o/ViAi) ¢ 

( L vm (. L Nt Ai)+ (I: V;B;T) Ao)¢ 
m i+1=m , 

~ vm ( i+;m ( Nt Aj) + pBmAo - i+j~-1 ( B'[;+l Aaj+l cj) ) <D 

Comparing the coefficients of vm in the above two expressions for F'lj;, we obtain 
by unicity the following equation: 

A,,.m+lc A " (N";A) B A " (B"j+lA"j+lc) 
0 m + P m+l = L i j + P m O - L i O j · 5.4.1 

i+j=m i+j=m-1 

5.5 Thus the problem of classifying d-dimensional commu-tative formal group laws 
G over k up to isomorphism boils down to: given an arbitrary commutative formal 
g:oup law Gover W(k), i.e., an arbitrary set 

of matrices in Md(W(k)), determine the sets 

A= {A;li ~ O},B = {B;li ~ O} 

of matrices in Md(W(k)) with Ao invertible, such that the set N = {N;I N; = 
r(N;),i ~ O}, satisfying (5.4.1) is "as nice as possible". The notion "as nice as 
poasible" will be specified in theorem 5.l 7. 

5.6 Frorr.i now on we will consider only strong isomorphisms, so we t;i,ke A9 = Id. 
We 1!,lso assume that G has finite height h. 

5. 7We rr.iay and will assurr.ie that our formal group law G has F-type F = L ViC; 
wtiere the C; satisfy the jump data ('y, (h;; r,; A;), U) of theorem 4.3. 

5.8 Multiplying the system of equatiop.s (5.4.l) by U from the left we obtain the 
system of equations Eqm: 

c,,.+pUAm+1= L (nf.Xi)+pbmU- L (bf;+'ci)· 
i+j=m i+j=m-1 
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Here we have put 

Note first that we have used that U, being a permutation matrix, is invariant under 
a, and in the second place that the c1 = c1,1 have the properties of theorem 4.3. 

5.9 Some more notations. For any matrix A E Md(k) we define the following 
partition: 

A- ( A1 
- Am 

The matrix relation AB = C then, of course, implies 

etc. 

5.10We start by solving (see 5.10.1) the equations Eqmmodp over k. Here Eqmmodp 
is defined as: 

em= I: rir>-1 - 5.10.0.1 
i+j=m 

with c1 := 1r(c1) E k and where b0 , ri0 , >.0 are considered as variables (in which we 
will later express the ..\., b. and n 0 ). 

5.10.1 Write hE := "L7=2 h;. Solving (5.10.0.1) will mean constructing solutions 
rim, >-m E Md(k[bf]l<hE+m) of (5.10.0.1) such that rim =: rim,l has the following 
form (under the notations of theorem 4.3): 

fim,i = (* Og,)' m<h;, 

fthi,i ( : A.; 0 ), A.; := 1r(A;), = 
09i+I * 

and 

rim,i ( Or, 0 ) 
rim-h;,i+l ' 

m > h;. 

5.10.2 We will prove the existence of such rim, >-m by induction on 1 , the number 
of blocks. We will refer to this induction as the main induction. 

5.10. 3 For , = 1 the proof is easy: 
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In fact, "I= 1 means that Cm= 0 form< h1 or m > h1, while ch, = A1 E Gld(k). 
We therefore find with an easy induction that rim= Cm form S h1• Form> 0 the 
equation Eqhi+mmodp is read as: 

We conclude that we may choose >-m E k[bfl1<m such that rih1 +m = 0. 

5.10.4 So assume that we can. solve (5.10.0.1) for all commutative formal group 
laws having less than "I blocks (foi: some "I > 1) and assume next the number of 
blocks to be 'Y · 

5.10.5 Consider the equations (5.10.0.1). Form S h1 we find as in 5.10.3 

- - o h d - - ( A1 o ) nm = Cm = , m < 1 an nh1 = ch, = * 0 . 5.10.5.1 

5.10.6 Now for m ~ 0 consider the equation Eqm+hi modp. We will use another 
induction in order to find >-ml such that fih 1 +ml = 0 and also >-mn such that 
rih1+mll = 0. Assume we have proven this up to h1 + m then by (5.10.5.1): 

Ch1+ml = L (n'+il>-J1 + ni+ill >-mi) -
i+j=m 

Using the inductive hypotheses, the jump data, >.01 = Ir,, >-om = 0 and fihiJ = A1 

we see: 

Chi +tnl = fim+h11 + Af"' ).,iii - ~~:\Ai - b bf"' +;+l II Ch1 +illl · 
i+j=m-1 

So we may choose Ami E Mr1 (k[bfli-:m) such that fim+hil = 0. Also: 

c,.1+mII = I: (nt'i+a>-m + nt'i+ilI >..;iV) -
i+j=m 

~ (F»h1+HI _ ;:ph1+i+l _ ) 
La ('; JCh1+ill + Clj II C1&1+iIV " 

i+J=m-1 

Again usint the inductive assumptions and the jump data we find: 
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So again we may choose Jmn E Mr1 x(n-r1) (k[bl']1<m) such that fim+h1Il = 0, 
explicitly (m 2'. 0): 

5.10.6.1 

5.10. 7 From this last relation we even see that for O :::; m :::; h2 we have Jmn = 0, 
since for O:::; m < h2 the jump data (cm,2 = (*092 ) modp for O:::; m < h2) gives 
that ch1 +mIV = 0. Considering Eqm+h1 modp1v : 

ch1 +mIV L ( n( +iIII Jm + n( +ilV Jnv ) -
i+j=m 

we now conclude that fim+hilV = 0, (0 :::; m < h2) and fih1+h2IV = Ch1+h2IV 
(contrary to what happens in the III-part below, as the reader will see). 

5.10.8 Up to this point we have found JmI, Jmll , fimJ, nmn for all m 2'. 0, fimIII 
for O :::; m < h1 and fimIV form :::; h1 + h2 satisfying 5.10.1. We will now use the 
main inductive hypothesis to obtain the remaining parts of Jm and fim+h,. 

5.10.9 Again consider form 2'. 0 Eqm+h1 modp1y: 

Ch1 +mlV = L ( n( +iIII Jm + n( +ilV Ji IV ) -
i+j=m 

Inductively define matrices c'm, m 2'. 0 by: 

5.10.9.1 

Let x :::; d be a natural number. We see from (5.10.9.l) that if the last x columns 
of ch,+llV are zero (l :::; m) then so are the last x columns of c:r,. Therefore we 
may even conclude that the jump data of { c:r,}m;;:o are equal to the jump data of 
{ ch, +mIV }m;;:o- Notice further that the number of blocks of { c'm}m?:O is 'Y - 1. 
Using cm = 0 for all j 2'. 0 and formulae (5.10.9.1) with (5.10.6.1) we rewrite 
EqmmodpIV as: 

5.10.9.2 
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Comparing Eqmmodp with (5.10.9.2) we see that we may use the inductive hypoth
esis of the main induction in order to solve (5.10.9.2) (in the sense of 5.10.1) as a 
polynomial function of fl(, l :::; hr, + m and n1m , l < h1 + m. 

5.10.10 We are left with Eqm+h, mod pm : 

L (l(' +i+' III ch, +JI + "Flt' +i+' IV ch, +JIil ) • 
i+J=m-1 

Replacing nh,+ilV by the polynomial function we obtained in subsubsection 5.10.9 
we conclude that nh,+mIII E k[l/(]l<hE+m and that from the moment we find an 

invertible subbloc½ along the main diagonal in nt'i +ilV we may choose the corre
sponding rows in AmIII such that those rows are zero in nh,+m+iIII . 
This concludes the main induction. 

5.11 Having found a set of rim E Md(k[l/(]l<hE+m) solutions of Eqmmodp (5.10.0.1), 
we want to lift these to construct solutions n. E Md(r(k)) of Eqm (see 5.8). 

5.12 We define 

and 
- # - ~ bm = r(bm) + Vbm E Md(W(k[b1]1$m)), 

where the b'/;. E Md(W(k[bdf~m)) are yet to be determined. 

5.13 We will first rewrite (5.8). Note that since 7r(A.), 7r(n.), 7r(b.) are solutions of 
(5.10.0.1) we have: 

Tm := Cm - L nfj A;+ E bf;+l CJ E Md (vw(k[bf]i<m)) . 
i+J=m i+j=m-1 

Define x'm by Vx'm = Tm. Then Eqm becomes: 

VFbmU -VFUAm+i = Vx'm. 

Here we have used that the characteristic of k[b.] is p, so VF= FV = p on W(k[b.]). 
Since V is injective ( on any Witt ring) we find: 

FbmU - FUAm+1 = x'm. 
In view of x:,. E Md(W(k[bf]i<m)) and k being perfect we may write x:,. = Fxm. 
Since F is injective we therefore see: 
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which defines the equations Eq~. 

5.14 Now consider Eq~ mod V: 

where Xm := 7r(Xm) E Md (k[h;]i<m)· 

5.14.1 Form= 0 we have: 

hoU = io + U">.1 E Md (k[bflosiShE), 

(because i 0 E Md(k)) which gives by the Jacobi criterion (or by lemma 3.2): 

ho E Md ( k[bf]Tti$hE) • 

By lemma 3.1 we have a solution 

of Eq 0 such that 7r(b0 ) = h0 • 

69 

5.14,2 Next assume we have found h; E Md (k[bfl~sism+hE) for i < m, such 

that there are solutions b; E Md (W(k[hj]1~J) of Eq; (i,l < m). Then consider 
Eq~modV: 

hmU = Xm + U">-m+l E Md ( k[bf]~$i$m+hE) , 

which gives by lemma 3.2 

So by lemma 3.1 we have a solution 

of Eqm such that 7r(bm) = hm. 
- - et 

5.15 Put lR.n = k[b;];sm C k[bflm+lSiSm+hE· Then we have found an inductive 
system: 

llio - B1 - · · · - 1~ B,. =: B 

Since the transcendence degree of all 1Rn, ~ n2hr:, we also have that the transcen
dence degree of B ~ n 2hr:,. Denote the transcendence degree of B by tr9 • We write 
hm,i,j, for the image of hm,i,j in B. 
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5.16 From now on we assume that k is algebraically closed. So we have ring 
homomorphisms JR -+ k, determined by the choice of the first (in the lexicographic 
order) tr3 transcendental bm,i,j· This means that at last we have found solutions 
bm E Md(r(k)) for the equations Eq~ or equivalently for the equations Eqm. 
Summarizing, we have proven the following theorem. 

5.17 Theorem. Let G be a formal group law of finite height defined over an 
algebraically closed field k of positive characteristic p. Then G is isomorphic to a 
formal group law Gtyp which has a finite (Witt) F -type. 
More in detail: Let G be a lifting of G to W(k). Let the jump data of G be 
('y, (h;; r;; A;), U) as defined in theorem ,4..3. Then Gtyp has an F-type of the form 
F = L Vi [.IV;], where the nm,l = U Nm are described inductively by matrices nm,i E 
M9,xn(k) as follows: 

nm,i (* Og,) m < h;, 

( : A; 0 ), A; E Glr, (k) nh;.,i 

* 09;+1 

and 

nm,i = ( Or, 0 ) m > h;, 
nm-h,,i+l 

Moreover the jump data is invariant under reduction in the following sense: if 
G' is any formal group law over W(k) which reduces to G and has jump data 
('y', (h;; r;; A:), U) then ('y', (h:; r:; A:), U) = ('y, (h;; r;; A;), U). 

5.18 In view of the above theorem we may define the jump data (and jump se
quence) of a formal group law G defined over a field of positive characteristic in the 
following obvious way: Let G be any lift of G, having jump data ('y, (h;; r;; A;), U) 
then the jump data of G are defined by ('y, (h;; r;; A;), U). 
Using chapter I, lemma 4.26, which links the height of a formal group law with its 
jump sequence, we have the following corollary. 

5.19 Corollary. There is a catalogue of finite dimension over k for all formal 
group laws G defined over an algebraically closed field k of positive characteristic 
such that the height of G is bounded by a fixed number. 

5.20 Remark. The catalogue given by the above theorem, however, does not 
give a complete classification. 

5.20.1 For example if G has jump data ( "/, (h;; r;; A;), u) such that U is the identity 

matrix, then G is actually isomorphic to a direct sum of 1-dimensional formal 
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group laws. This is most easily proven as follows: Since U is the identity matrix 
we have that the stable rank (see [HaW]) of ch1 , 1 is r 1 , but then we may apply 
[Kne], Theorem 1.10.3 in order to find an isomorphism G ~ (G1,h1 )'1 @G'. Using 
property 4.6 we conclude that the jump data of G' must be ('y-1, (h;; r;; A;+1), Id), 
with h~ = h1 + h2 , h; = h;+1 for i > 1 and r; = ri+1 for i ?: 1. By an obvious 
induction we are done. 

5.20.2 As another example we may consider the 2-dimensional formal group laws, 
and compare the catalogue with the complete classification given in chapter IV, 
section 1. Assume that U is not the identity and 'Y = 2. Then we find by theorem 
5.17 Gtyp has an F-type of the form 

for some O :S d :S h2 , a., ah,+d E r(k*), and a. E r(k). While the result of chapter 
IV, theorem 1.7 is that in this case a classification is given by the F-types 

for some O < d < h2 , ah,+d E r(k*), and a. E r(k). Here the a. still have to be 
taken modulo the action of some finite group. So clearly there is a lot of redundancy 
in our catalogue. 

5.21 Consider example 2.8. The finite Hilbert F-type of G is in normal form in 
the sense of theorem 4.1 and has jump data (1, (O; d; (1 + p)ld ), Id). Thus the 
reduction G is by theorem 5.17 isomorphic over the algebraic closure k of k to 
Gtyp having jump data (1, (O; d; Id), Id) and F-type F¢a,,v = Id ¢a,,v· This is in 
accordance with [SPM], proposition 3.7 or [Dit89], theorem 6 -both proofs are not 
complete, but may be merged to obtain a complete proof- since these propositions 
imply that over W(k) the formal group law G is isomorphic to the d-dimensional 
multiplicative formal group law. 





Chapter 4 

Some applications 
In this chapter we will refer to chapter III, theorem 5.17 as the finiteness theorem. 
As before all formal group laws will be considered to be commutative and curvi
linear. In this chapter the following applications will be treated: 

Starting with the catalogue in the 2-dimensional case we give a complete classifi
cation of all 2-dimensional commutative formal group laws (section 1). Thus we 
rediscover the classification given for this dimension by Manin ([Man]) and Knep
pers ([Kne]). 

In the 2 and 3-dimensional case we compute the isogeny types as function of the 
parameters in our catalogue (sections 2 and 3). 

In the 3-dimensional case we will also determine which formal group laws may arise 
as the completion of an abelian variety (section 3). 

The last three sections will be devoted to describing the structure ( of the isomor
phism classes) of formal Brauer groups of Fermat hypersurfaces defined over an 
algebraically closed field of positive characteristic. In section 4 the p-adic Gamma 
function is introduced. The Serre-Witt cohomology of the Fermat hypersurfaces 
and the connection with the F-types of the formal Brauer groups are presented in 
section 5. Section 6 then gives the normalized F-types of the formal Brauer groups 
which represent the isomorphism classes. 

In the appendix the decomposition of the formal Brauer group of the Fermat hy
persurface corresponding to the affine equation X 19 + Y19 + Z 19 = 1 over JF5 is 
given. 

An application which will not be treated here, is another proof for the two finiteness 
theorems of Manin [Man]. These are corollaries to the finiteness theorem. 

73 
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1 The classification in dimension 2 

We will give a full classification up to isomorphism of 2-dimensional formal group 
laws of finite height defined over an algebraically closed field k of positive charac
teristic p. We thus discover the classification for such formal group laws given by 
Kneppers in [Kne]. We will repeat most of the proof of the finiteness theorem for 
this special case, and then perform some ad hoc computations to obtain the full 
classification. 

1.1 In this section G will be a 2-dimensional curvilinear p-typical formal group law 
of finite height defined over an algebraically closed field k of positive characteristic 
p. Almost all F-types in this section will be Witt F-types; we therefore omit all 
Witt brackets [ ]. We also omit the canonical curves in the notation for an F-type. 
A sum of the form Et with a > b will be considered zero. 

1.2 In the 2-dimensional case we have two possibilities for the 2 x 2 permutation 
matrix U appearing in the finiteness theorem. The case U = Id corresponds to G 
being a direct sum of two I-dimensional formal group laws (cf. chapter III, remark 
5.20). In this case, as is well known, the only isomorphism invariants are the heights 
of the I-dimensional components. 

1. 3 Thus assume U =f. Id , then by the finiteness theorem G is isomorphic to a 
formal group law Gtyp having normalized F-type: 

F = Vh1 ( c;:
1
1 ~ ) + ~I Vh1+I ( ah(t ~ ) + Vh1+h2 ( ah1t• ~2 ) , 1.3.1 

where a., a. E k, and ahi+d, o:. =f. 0, 0 < d :'.::'. h2 • Then the height h is given by 
h = 2h1 + h2 + 2 (see chapter I, lemma 4.26). 

L4 Lemma. Let G have normalized F -type 

F¢a = :E ViC,</Jc 
i~O 

1.4.2 

as in (1.3.1). If G is not isomorphic to a direct sum of two lower-dimensional 
formal group laws (we will say that G is non-split), then we may moreover assume 
that 

C _ ( 0 0 ) d C _ ( ah1 +h, 1 ) h1 - 1 0 an h1 +h2 - 0 0 . 

proof: By [Kne], theorem 1.10.3 G is split if the stable rank of Ch 1 is non-zero, 
thus ah1 = 0. Now normalize Ch 1 a la Hasse and Witt ([HaW], Satz 11). This 
gives that Ch 1 has the desired form, but the other non-zero C; may be changed. 
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We therefore again apply the finiteness theorem ( which does not change the first 
non-zero matrix). :\"ow let A1,1 , A2,2 be solutions ink of 

then 7/J = [A]¢a, A;,1 := 6;,1A;,1 is an isomorphism which does not change the shape 
of the first h 1 + h2 matrices of the F-type but normalizes Chi+h2 - D 

We may now prove the following theorem. 

1.5 Theorem. (first version) Any 2-dimensional non-split formal group law G of 
finite height h defined over an algebraically closed field k of positive characteristic 
is isomorphic to a p-typical formal group law Gtyp with F -type: 

with a. E k, ah, +d =I= 0, d > 0. Furthermore a formal group law G~YP having F-type 

(with f. E k, !hi+d =I= 0, d > OJ is strongly isomorphic to Gtyp if and only if there 
are /3; E lFPh, 0 < i :::; min { d, h2 - d} such that 

for h1 + d :::; m :::; h1 + 2d. (For the height h we have h = 2h1 + h2 + 2.) 

proof: Assume that G has an F-type as given by lemma 1.4. Denote the F-type 
of Gtyp by F = Li>o ViN;. We follow the proof of the finiteness theorem. Thus let 
G be a lifting of G with Hilbert F-type F = L Vi{ T( C;)}. Now we first have to 
solve the equations Eqmmodp in M 2 (k[b.]), which in this case are given by: 

(c; := UC;). Solving here means finding A. E M2(k[b.]) such that all n; := UN; 
have the form as claimed in the theorem. As in the proof of the finiteness theorem 
we find nm = Cm for m :::; h1, and nm = 0 for m > h1 + h2 • We will use the 
convention that A;, b;, c; and n; are zero if i < 0. Then we may rewrite Eqmmodp 
as: 
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One easily checks that the solutions of Eqmmodp are as follows (We use roman 
numerals at the right side of the equation to number the equations, and roman 
numerals at the left side to indicate which equations we have used.) 

I 

II 

III 

h1+h2 
). _ """ fpm+h1 +h2-i,1,2 \ 1..tJh.l +h2+l 

m,2,2 - - L., i "m+h1+h2-i,1,2 + U'm-1,2,2 IV 
i=h1+l 

and (define fm := nm,2,1 form$ h1 + h2) 

V 

1.5.3 We now have to solve the equations bm = UT(>-m+1)u-1 + Xmu- 1 (for b.'s), 
where bm := T(bm) + Vb! for some b! E W(k[b.]) and where Xm is defined by 

PXm = Cm - L T(nf)T(Aj) + L bf;+1 T(ci). 
i+i=m i+j=m-1 

But recall that it suffices to solve the equations bm = U>-m+1u- 1 +xmu-1 (for b.'s 
and where Xm := 7r(xm)). We then see that in our case 

Xm,1,1 = Xm,1,2 = 0. 

1.5.4 Using induction we find: 

form< h2: 

XI Xm,2,2 = 0, 

VI 

VII 
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II,VII 

form< d: 

XI 

I,IX 

V,VIII 

bm,2,1 = Am+l,1,2 + Xm,2,2 = 0, 

Xm,2,1 = 0, 

b - ). + X - fl.hi +I 
m,2,2 - m+l,l) m,2,1 - m,1,1 , 

VI VIII XI b = \ + X = LPht +h2+1 
, , m,1,1 Am+l,2,2 m,1,2 ifm,2,2 · 
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VIII 

IX 

X 

XI 

XII 

h1 +I 
1.5.5 From X and XII we conclude that bm,2,2 = ~.1,1 E lFP2h 1 H 2+2 = lFPh (0 Sm< 
d). Notice that !h,+d = ah,+d (V and VIII). The following equation shows that 
bm,1,2 (0 S m < h2 - 2d) can still be chosen freely (pol(b;,i,k) denotes a polynomial 
in b;,i,k): 

+pol(b.,2,1, b.,2,2) 

+pol(b.,2,1, b.,2,2) 

_ pm+h2+I-d h1 +d+l 

- -ah,+dah,+d 11,;.+h2-2d,l,2 

For m S h1 + 2d we have: 

m-1 m-1 
~ pm-i ~ 1 ~+1 

V,VIII,X f m = am - L, J; bm-i-1,2,2 + L, ajD"m-l-j,2,2· XIII 
i=hi+d i=h1+d 

Notice that if m S h1 + 2d,h1 + d Si Sm -1, then m - i -1 E [0,d), so 
bm,2,2 E lFP2h1 +h2+2. But for h1 + 2d < m S h1 + h2 we have: 

V,VIII 



78 SOME APPLICATIONS CHAPTER 4 

m.-1-ht -d h1 +d+l 

= -ah, +dat +d 1'".-h, -2d-i,i,2 

+pol(b.,i,i, b.,2,i, b.,2,2, b;,i,2)i<m-h1 -2d-i • 

So we may choose values for bm-hi-2d-i,i,2 such that fm = 0 (hi +2d < m ~ hi +h2). 

Therefore we may construct an isomorphism from G to Gtyp· If G~YP is isomorphic 
to Gtyp, then XIII gives the second statement of the theorem. D 

Our method gives essentially a classification up to strong isomorphism. (Since we 
have used as preparation a specially weak isomorphism in lemma 1.4 it isn't a 
true classification up to strong isomorphism.) In order to give a full classification 
we have to perform some ad hoc computations which also take all possible weak 
isomorphisms in effect. 

1.6 Lemma. Let G be a formal group law in the normal form of theorem {1.5). 
Then there is a {weak) isomorphism cf>n = I:; Vi[Ai]c/>a from G to a formal group 
law H with F -type 

where necessarily a E !Fph. 

proof: Use [Kne], chapter II, claim 3.3 for the special case s = 0, ah,+h2+h3 

bh,+ha = ch,+h2+2h3 = 0, dh,+ha+n = ah,+min{2d,ha-d} in order to obtain an isomor
phism from G to H' with F-type 

( 
O O ) mi11{2d,h2-d}-i ( 00 ) 

F = vh1 1 + E vh,+l ah,+I 
0 l=d 0 

Csing the finiteness theorem we see that we may normalize H' to H" having the 
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F-type 

Any specially weak isomorphism from H" to H having an F-type of the form 

necessarily is of the form ¢H = Ao¢H" with 

with a E lli'ph. Thus H has an F-type of the form as described in the lemma. □ 

We may now obtain the full classification. 

1. 7 Theorem. (final version) Let G be a non-split 2-dimensional formal group 
law of finite height h defined over an algebraically closed field k of positive charac
teristic p. Then G is isomorphic to a formal group law Gtyp with F -type: 

where a. E k, ah,+d =/:- 0. Furthermore Gtyp is isomorphic to a formal group law 
G~YP with F-type 

F = Vh1 ( 01 0 ) + min{~2}-l Vh,+l ( fh1+l O ) + Vh,+h2 ( 0 1 ) 
0 l=d O O O 0 

(f. E k,fh,+d =/:- 0}, if and only if there are f3i E lli'ph(0 :S: i < min{h2,d}), with 
(]0 =/:- 0 such that 

proof: Let G and H be in the normal form of lemma 1.6 with parameters a. 
and f •. Let ¢H = Li ViA;</Ja be an isomorphism from G to H. Then there is 
an isomorphism <PH• = L ViA:¢H with A~ = Ao 1 such that H' is in the normal 
form of theorem 1.5 (just take the composition of the special weak isomorphism 
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<PH" = A01¢a and the normalization of H" in the sense of theorem 1.5). Let H' 
have parameters J;, then by theorem 1.5 we have: 

f l ~ (f')Pm-i I _ ~ 
m + ~ i /Jm-i - llm + ~ ·(/J' .)Pi+! a, m-i , 

for some (J~ E lFph. Since H is a normalization of H' in the sense of lemma 1.6 
we have J m = o,.Pm+i 0.- 1 J:,.. Therefore define /Jo = o. and /J; = o,.P' /JI for O < i < 
min {h 2 , d} in order to obtain the assertion. D 

1.8 Remark. This classification was already given by Kneppers [Kne], Theorem 
2.1.8, who also compared this with the contravariant classification given by Manin 
([Man], chapter III, section 8) for the two dimensional case. In order to compare 
both classifications one should apply the special weak isomorphism 7/; = U ¢i to our 
normal form, and our h1 , h2 , d should be replaced by h1, h2 + h3 , h2 , respectively. 

2 Isogeny classes in dimension 2 

In [J(ne90] Kneppers gives the isogeny classes of 2-dimensional formal group laws 
defined over an algebraically closed field of positive characteristic and their depen
d,;nce on the parameters occurring in his normal form ( which we discussed in the 
preceding section). 
Using the theory we developed in chapter II, section 7 we will do the same for our 
normal form. This will turn out to give a substantial reduction in computations. 
Since the isogeny type does not depend on the "tail" of the F-type, we find the 
same results, 

2.1 Let G be a 2-dimensional formal group law of finite height defined over an 
algebraically closed field of positive characteristic. Let the jump data of G be 
('y, (h;; r;; A;), U), and let { ¢1, ¢2 } be a V-basis for Cp(G) such that the F-type of 
G with respect to this basis has the form as given by the finiteness theorem. 

2.2 If G is split, then G is a direct sum of two I-dimensional formal group laws 
having height h1 + 1, h1 + h2 + 1. Thus G has isogeny type G1,h1 EB G1,h1+h2 -

2.3 Assume that G is non-split, thus we may assume G has a F-type as described 
in lemma 1.4. The height h of G then is 2h1 + h2 + 2. Then the following relations 
hold in Cp( G) . 

h2 

F¢1 = L vh1+lah1+1¢1 + vh1+h2¢2 

l=d 

F¢2 = vh1</J1, 
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where a, E r(k), ad-/- 0, 0 < d :S h2. This gives 

Hence there is a subspace of Cp(G) on which F 2 acts as 

h2 
p2 = LPvh,+1-la, + v2h,+h2_ 

l=d 

Thus after applying V 2 on both sides we find that 

h2-l 
a:= -p2 + L pVh1+1+1a, + v2h,+h2+2 = 0 

l=d 

on this subspace. Using the notations of chapter II, section 7 we have that c(a) = 
h > 0 and 

Notice that p,.( a and thus we may apply chapter II, lemma 7.8. We conclude that 

Case I: If ,(a) = 2/h, or equivalently if h2 - 2d ~ 0, then G has a 2-dimensional 
isogeny factor G2,h,+h2· Thus G has isogeny type G2,h,+h2-

Case II: If ,(a) = 1/(h1 + h2 - d + 1), or equivalently if h2 - 2d > 0, then G 
has a I-dimensional isogeny factor G1,h,+h2-d, Since G has dimension 2 and height 
2h1 + h2 + 2 the other isogeny factor is necessarily is G1,h,+d· (But one may also 
use chapter II, lemma 7.8 to compute ,(y) = 1/(h1 + d + 1), or even compute the 
action of F 2 on ¢2 to find the other I-dimensional subspace of Cp(G)(V)), 
We have thus rediscovered [Kne90], summary, pg 313. 

2.4 Remark. A (not necessarily commutative) formal group law is called alge
broid if it arises as the completion of an algebraic group scheme (see [Haz], E4.7 
or [Man], chapter I, section 2.2). If a formal group law is algebroid, then any 
formal group law isogenous to it is also algebroid ([Man], chapter I, proposition 
1.6). Algebroid formal group laws arising from connected non-commutative are 
non-commutative, thus we may restrict ourselves to considering connected commu
tative algebraic groups. Since any connected commutative algebraic group X over 
an algebraically closed field (of arbitrary characteristic) contains a connected affine 
subgroup Xa such that the factor group X / Xa is an abelian variety, it suffices to 
consider the completions of abelian varieties. (The completion of Xa is isogenous to 
a direct sum of factors G1,0 and Gn,oo, n E N, all such factors are algebroid.) If the 



82 SOME APPLICATIONS CHAPTER 4 

formal group law G arises from the completion of an abelian variety X, then the 
height h is equal to 2 dim X Moreover it is a consequence of the Poincare duality 
that G is symmetric in the sense that, if G has an isogeny factor Gn,m, then G also 
has an isogeny factor Gm,n• See [Man], chapter IV for details. 

Thus in the 2-dimensional case we find that the height h of a (non-split) algebroid 
formal group law is 4. Then, from h = 2h1 + h2 + 2 we see that h2 = 2, h1 = 0. 
Combining we see that if d = 0, 1 we are in case I, the isogeny type is G2,2 and 
thus the formal group is algebroid. If d 2'. 2, we are in case II, but then the isogeny 
type is not symmetric and thus the formal group is not algebroid (Actually, d 2'. 2 
is not even possible since d < h2 = 2). 

3 The catalogue and isogeny classes for dimen
sion 3 

In this section we explicitly describe the catalogue as given by the finiteness theorem 
in the 3-dimensional case. We derive the isogeny types of all elements in our 
catalogue and we determine which 3-dimensional formal group laws may arise as 
the completion of an abelian variety. 

3.1 Let G be a 3-dimensional, non-split formal group law of finite height defined 
over an algebraically closed field k of positive characteristic p > 0. As in 1.1 we 
omit the Witt brackets [ ] and the canonical curves in the notation for an Witt 
F-type. Then by the finiteness theorem we have the following possibilities for the 
normalized F-type with respect to a V-basis {¢1,¢2,¢3} of Cp(G). 

case I: 

(define for use in subsection 3.2 ahi+h2+t := bh1+h2+1 := 1) 

case 11: 

F-v•• U ~ 
h1 +h2+ha ( 0 0 0 ) ( 0 0 0 ) + L V1 0 0 0 + Vh 1 +h7+ha . 0 0 0 ; 
l=h1+h2+I b1 Ct O O O 1 

(define for use in subsection 3.2 ah1+h2 +1 := bh,+h2+ha+i := Ch 1+hHha+l := 1) 
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3.2 Define for an F-type as described in one of the cases da E N by 

da := min {l I a1 -:J: 0}. 

We analogously define db and de. In all three cases we will compute the isogeny 
type as function of the h;, dj. 

3.3 Case I: We have that: 

F3¢1 = (~ F2v1a1 + l~b FV'bz'Vh1 + vh1+h2vh1 vh1) ¢1, 

i.e., there is a subspace of Cv(G) on which 

a:= p3 - L p2v1+1a, - L pv1+2+h1bt1+1 - v3h1+h2+3 = 0. 
l=d• l=db 

We will therefore consider A/aA <--+ Cv(G). It will turn out that R/aR has rank 3 
and thus R/aR ~ Cv(G)(V) as W((V))-modules. 
Using the notations of chapter II, section 7 we have c(a) := h = 3h1 + h2 + 3 and 

. { 2 1 3} 
-y(a) = mm h - da - 1' h - db - 2 - h1' h ' 

which leaves us with three subcases: 

Case Ia: If -y(a) = 3/h, or equivalently 

3h1 + h2 - 3da < 0, 

3h1 + 2h2 - 3db < 0, 

then G has isogeny type Ga,h-3· 

Case lb: If -y(a) = 2/(h - da - 1), or equivalently 

hi+ h2 - 2db + da < 0, 

-3h1 - h2 + 3da < 0, 
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then G has an isogeny factor G 2,h-d. _3 and thus we conclude that G has isogeny 
type G2,3h 1 +h2 -d. 8 G i,d •. 

Case le: If -y(a) = 1/(h - db - 2 - hi), or equivalently 

3hi + 2h2 - 3db > 0, 

hi + h2 + da - 2db > 0, 

then G has an isogeny factor Gi,h-db-J-h,. With the notations of chapter II, lemma 
7.8 we find that 

-y(y) = min { db + ~ + hi ' db + l : hi - da } ' 

if db+ l + hi - da > 0, else -y(y) = 2/(db + 2 + hi)- We end up with the two 
subsubcases: 

Case Ic,i: If in addition to the conditions of subcase le we have 

db + hi - 2da ;::=: 0, 

Case Ie,2 : If in addition to the conditions of subcase le we have 

db + hi - 2da < 0, 

3.4 Case II: Notice that the height h of G is 3h1 + 2h2 + h3 + 3. As in Case l we 
find that A/aA <---+ Cp(G) where 

h1+h2 
a:= p2 _ p L V'+Ia1 _ y2h1+h2+2_ 

l=d. 

Then 

,(a)= min { 2h1 + 2h2 + 21 2h1 + h2\ 1 - da}' 

which leaves us with the two subcases 

Case Ila: If 
2h1 + h2 - 2da $ 0, 

then G has an isogeny factor G2,2h 1 +h2 and thus we conclude that G has isogeny 
type G2,2h,+h2 8 G1,hi+h2 +ha (since there is an I-dimensional factor of height h-c(a) 
left.) 
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3.5 Case III: Analogously to the preceding cases we find A/aA '--+ Cp(G) where 

h1+h2 
a:= p3 - L p2v1+1a1+ 

l=da 
hi +h2+ha h1 +h2+ha L pVl+h1+2c, + L pVl+h1+h2+ha+2b, + vah1+2h2+ha+3_ 

Then (h = c(a)) 

. {3 2 1 1 } --y(a) = mm -, ----, ------, --------- . 
h h - da - 1 h - h1 - de - 2 h - h1 - h2 - ha - db - 2 

We thus have four subcases: 

Case Illa: If -y(a) = 3/h then G has isogeny type Ga,h-3· 
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Case IIIb: If -y(a) = 2/(h - da - 1) then G has isogeny type G2,h-da-3 EB G1,da· 

Case Ille: If -y(a) = l/(h- h1 - de - 2) then G has an isogeny factor Gi,h-hi-dc-3, 

and with the notations of chapter II, lemma 7.8 we find 

. { 2 1 } 
-y(y) = mm h1 + de + 2' h1 + de - da + l . 

Thus we have the two subsubcases 

Case Ille,1: If-y(y) = 2/(h1 +dc+2) then we conclude that G has the isogeny 
type G l,2h1 +2h2+ha-dc EB G2,h1 +de• 

Case Ille,2: If -y(y) = 1/(h1 + de - da + l) then we conclude that G has the 
isogeny type G1,2h1 +2h2+ha-dc EB G1,h1 +dc-da EB G1,da • 

Case Illd: If -y(a) = 1/(h - h1 - h2 - ha - db - 2) then G has an isogeny factor 
G1,2hi+ha-db, and with the notations of chapter II, lemma 7.8 we find 

Thus we have the two subsubcases 
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Case Illd,I: If "f(Y) = 2/(h1 + h2 +ha+ db+ 2) then we conclude that G has 
the isogeny type G 1,2h, +h2-db 8 G2,h, +h2+ha+db • 

Case Illd,2: If 'Y(Y) = 1/(h1 + h2 +ha+ db - da + 1) then we conclude that G 
has the isogeny type G1,2h1 +h2-d& EB G1,h1 +h2+ha+db-da Ef) G1,da · 

3. 6 As in the 2-dimensional case we treat de following question: Which 3-dimensio
nal formal group laws are algebroid? By remark 2.4 it suffices to answer the ques
tion: Which formal group laws of dimension 3 over k may arise as the completion 
of an abelian variety, necessarily also of dimension 3? 
We first notice that if G arises from the completion of an abelian variety of dimen
sion 3, then it is well-known that the height of G is equal to 6. Moreover, it is a 
consequence of the Poincare duality that if G has an isogeny factor Gn,m that G 

then also has an isogeny factor Gm,n (nm =I- 0) (see [Man], chapter 4, section 3) 

3. 7 Consider case I. We find that the condition on the height implies that h1 = 
0, h2 = 3. Then we find that the subcases reduce under the symmetry condition to 

Case la: For da 2 1, db 2 2 the isogeny type of G is Ga,a-

Case lb: Except for the overlap with case Ia, the isogeny type is not symmetric. 

Case le: Except for the overlap with case Ia, only the subsubcase Ic,2 gives for 
db = 1, da > 0 the isogeny type G2,1 EB G1,2-

3.8 Consider case II. The condition on the height gives that h1 = 0, h2 = ha = l. 
Under the symmetry condition we are left with the case da 2 0, then G has isogeny 
type G2,1 EB G1,2-

3. 9 Consider case III. The condition on the height gives that h1 = 0, h2 = h3 = 1. 
Under the symmetry condition we find that the subcases reduce to 

Case III11 : The isogeny type is G3,3 if d11 2 1, de 2 2, db 2 0. 

Case Illb: Except for the overlap with case III11 , the isogeny type is not symmetric. 

Case Ille: Except for the overlap with case Illa, only the subsubcase IIIe,l gives for 
de = l, da 2 1, db 2 1 the isogeny type G2,1 EB G1,2-

Case Illd: Except for the overlap with case III 11 , the isogeny type is not symmetric. 

3.10 We will give some explicit examples using computer packages which have been 
developed at the Vrije Universiteit in Amsterdam. For several types of curves over 
W(k) these packages compute the normalized Hilbert F-type of the completion of 
the Jacobian variety of these curves modulo any chosen power of p (normalized in 
the sense of chapter III, theorem 4.1). 
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3.10.1 The curve C defined over W(F5 ) given by the (affine) equation y2 = 1 + x 7 

has a finite Hilbert-F type of the form 

0 2 ) 0 0 mod 5}. 
0 0 

We may use chapter III, theorem 2.14 which says that the F-type of the reduction 
C of C to F5 can be described by just omitting the Hilbert braces { }. Using 
5 = VF we conclude that Chas Witt F-type of the form described in case I, with 
da, db~ 2. Thus the isogeny type of C is 3G1,1. 

Using the relation between the isogeny type of C and the (-function we may check 
this isogeny type by computing the (-function (see for example [Man], [Kob] or 
[Yui78]). One easily computes by counting points that the numerator of the (
(unction of C is 1 + 125.A6• This indeed implies that the isogeny type of C is 3G1,1 . 

This curve is also treated in [Yui78], example 5.4. 

3.10.2 We now consider the curve C defined over W(F3 ) given by the (affine) 
equation y2 = 1 - x + x7 • The finite F-type of Chas the form 

Then the reduction C of C to F3 is seen to have Witt F-type of the form described 
in case I, with db = 1. Thus the isogeny type of C is G1,2 EB G2,1• This is in 
accordance with the fact that the numerator of the (-function of C is 1 + 3.A + 
6.A2 + 12.A3 + 18.A4 + 27A5 + 27.A6, as one easily computes by counting points. This 
curve is also treated by [Man], chapter IV, section 5, example 1. 

3.10. 3 Consider now the curve C defined over W (F 2 ) given by the (affine) equation 
y2 + y = x 7 • The finite F-type of Chas the form 

( 000) (630) F = { 1 0 0 mod 23 } + V { 0 0 0 mod 23 } 

000 000 
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( 0 0 0) 
+V2 { o o o mod23 }. 

0 0 3 

Then the reduction C of C to JF2 is seen to have Witt F-type of the form described 
in case II, with da 2: 1. Thus the isogeny type of C is G1,2 EB G2,1 . This is in 
accordance with the fact that the numerator of the (-function of C is 1- 2>i3 + 8-X 6 , 

as one easily computes by counting points. 

4 Some lemmas on p-adic Gamma functions 

References to this section are the books [Kob80], [Lang], [Sch] and for lemma 4.4 
[Hov]. 

4.1 Let p be a fixed rational prime. Recall the p-adic Gamma function fp: It is 
defined on the natural numbers by 

n-1 

rp(n) := (-1r II J. 
j=:cl,(p,j)=l 

OT,e may extend this definition to all of Zp using the following well-known lemma. 

4.2 Lemma. (Congruence formula) For any numbers m and n from Zp we 
have 

fp(m + n) = up(n)fp(m) mod n.Zp, 

where the function up is defined on Zp by 

{ 
-1 

Up(n) := l 
if p = 2 and ordp(n) = 2 
otherwise . 

□ 

4.s Define the function p: Z ~ {O, 1} by p(z) = 1 if z 2: 0, and O otherwise. The 
following lemma is a slight generalization of [Hov], lemma 1.4.1. 

4.4 Lemma. Let(), 8' be p-adic integers such that 8- pO' E (-p, O] n Z, letµ, n, a 
be integers such thatµ, n > 0, and a E [0, np}. Then 

nri:P-1(8 + i) 
-----= 

nf,:-o' ( 8' + i) 
n-1 ( )p(9-p61+a-up-1) r (8 + + ) 

=(-l)a+µpP"II p(8'+µ+u) P a µp • 
u=O fp(8) 
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We only need the special case n = I, which is exactly Hoving's lemma. We therefore 
leave the proof of lemma 4.4, which is analogous to the proof of Hoving, to the 
interested reader. 

4.5 Corollary. We have the following formula 

[pc/m]! I [c/m]! = (-l)[pc/m]+lp[c/m]rp(l + [pc/ml), 

where c, m E N. 

proof: Taken= I,µ= [c/m], a= [pc/m] - p[c/m] and B = B' = I in the previous 
lemma (note that fp(l) = -1). □ 

5 Generalized Witt vector cohomology and F
types 

5.1 (For details on this subsection see [SPM] or [Sti].) For any scheme X we may 
define the sheaf WO x of Witt vectors on X. Assume that X is a smooth projective 
scheme over an affine flat (over Z) scheme S = SpecA, and that Hm(X,Ox) is 
a free A-module. Let {w1, ... ,wh} be a basis for Hm(X,Ox)- Denote by 7r : 

Hm(X, WOx) --+ Hm(X, Ox) the map induced by 1r: WOx --+ Ox, the projection 
on the first coordinate. Then by [SPM], lemma 2.5 we have that 7r is surjective. 
We therefore may choose liftings w; E Hm(X, WOx), i.e., 1rw; = w;. We denote by 
Fn: Hm(x, WOx)--. Hm(X, WOx) the map induced by Fn: WOx-. WOx, 
n E N. For every n ;?: I we define the h x h matrix Bn = (bn,i,j) with entries in A 
by 

7rFnWi = Lbn,i,jWj, 

or, equivalently, in vector notation 

We then have that Ln>l n-1 BJTn is the logarithm for the Artin-Mazur formal 
group with respect to a proper system coordinates ( Here we denote by BT the 
transpose of the matrix B) ([ArM] or [Sti]). 

5.2 In general it is not easy to compute the matrices Bn explicitly. In some cases 
however we can compute them rather easily: Let m be the dimension of X. Assume 
that U = {U;};=o, ... ,m is an open affine covering of X. Then the Cech cohomology 
flm(U, Ox) is isomorphic to Hm(X, Ox). 
A cocycle for the Cech cohomology is just any element f of Ox(U0 n ... n Um)
Denote by 1 the class off in km(X, Ox) and by T the Teichmiiller map from Ox 
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in WOx. Then as a lifting of 7 in iim(X, WOx) we may take the class r(f). The 
n-th Frobenius map Fn acts rather simply in this case Fn(r(J)) = r(Jn). So taking 
representatives f; of a basis w; of iim(X, Ox), the Bn = (bn,i,i) may be computed 
from 

Jr = L bn,i,jk 
j 

Of course, Bn depends on the choice of liftings. 

5.3 If we furthermore assume that A is a p-Hilbert ring with endomorphism fJ := fJp 

then we only have to consider the "p-typical matrices" Bp" (chapter I, corollary 
4.16). We then find the matrices H; of the Hilbert Fp-type of the formal group law 
associated to the B. recursively from ( chapter II, lemma 2.1) 

i.e., the Hilbert Fp-type of the p-typical formal group law G with logarithm 
Ln?_OP-nB;,.rm is F¢a = Li?_O Vi{H;}</Ja (F := Fp, V := V,,). 

5.3.1 

5.4 Let H be a formal group law isomorphic to G with Hilbert F-type F¢H = 
Li?.O Vi{N;}¢H• Let </Jo= Li?.O Vi{A;}¢H• Then we have the following relation 

m 
B °" ..JBul+i N m+lA pm+l - L,_JJ pm-; j = P m+l· 

j=O 

Modulo pm+i A this is read as 

m 
B - °" ,,jBul+i N d m+IA pm+! = L.__JJ pm-; j mo p . 

j=O 
5.4.1 

The converse is also true: if we have any solution of (5.4.1) then G is isomorphic 
to H (chapter II, proposition 5.6). 

5.5 So in order to find the higher Hasse-Witt matrices of the normalized F-type of 
G (in the sense of chapter III, theorem 4.1) we may try to find N1 which have the 
form as described in chapter III, theorem 4.1 and are solutions of 5.4.1. This is in 
general hardly possible, but in special cases when the Bi have some regular shape 
it can be done (see for example [Hov] or [DiH], where these matrix congruences are 
solved for several types of curves). 
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6 Higher Hasse-Witt matrices of Fermat Hyper
surfaces 

6.1 Let :F = :F N,m be the ( N - 1 )-dimensional Fermat hypersurface in lP'N corre
sponding to the (affine) equation 

where N ~ 2. Denote :Fp the reduction modulo p of :F. 

6.2 Choose as open affine covering of :FN,m the set U = {Ui}i=I, ... ,N, the pullback of 
the affine covering {{x; I= O}};=r, ... ,N oflP'N-I_ Denote fIN- 1(:F) := fIN-I(U,(]j:). 

6.3 As preparation for the actual computations of the higher Hasse-Witt matrices, 
for the vector(!= (a 1, ••• ,aN),a. E Z we define 

and the length lr!I of(! we define by 

lr!I := a1 + ... + aN. 

We will call (! an exponent. For typographical reasons we will usually write Lv 
instead of I:;'=I · So for example lr!I = Lv av. Let e; be the i-th unit vector. Notice 
that T<! is a cocycle in fIN- 1(:F) if and only if lr!I ~ 0, and that a cocycle Tl! is 
a coboundary if and only if a; ~ 0 for some i. Obviously for lr!I ~ m we have in 
fIN- 1(:F) the relation 

6.3.1 

and if a;~ m then T<!-m•, = O in fIN- 1(:F). 
We conclude that a basis for fIN-I(F) is given by the classes of Tl!, a; > 0, lr!I < m 
(This gives the well known assertion that 

• N-I ( m - 1 ) rank base ring H (:F) = N ). 

For details on the computations in the Cech cohomology we refer to [Sti] or [Har]. 

6.4 We will call an exponent (! holomorphic if the class of Tl! is non-zero. The 
following easy lemma then gives an arithmetic description of this property. 

6.5 Lemma. (! is holomorphic if and only if Lv[av/m] = [Lv av/m]. □ 

6.6 Let a mod m := a - [a/m]m, i.e., a mod mis the integer remainder of a modulo 
m. For a vector (! we define (! mod m componentwise. 
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6.7 Lemma. In fIN- 1(:F) we have the following relation 

where 
([ai/m] + ... + [aN /ml)! 

c<!. = ([ai/m])! ... ([aN/m])! · 

proof: From 6.3.1 we see that we have Ca= Lv Ca-me. for /g,_/ 2 m (and obviously 
CC!.= 1 for /g,_/ < m). We therefore may re~rite the generic power series LC!. c<!.T<!. as 

L (Lc<!.-m•.) T<!.+ L c<!.T<!. 
l<!.12'.m v l<!.l<m 

= (L c<!.T<!.) (LTm•·) + L T<!.. 
<!. v l<!.l<m 

So 
L c<!.T<!. = Lf<!.l<m TC!./ 1 _ Lv Tm•v = L T<!.. L dl]_Tm\ 

<!. l<!.l<m '1. 

WJ.ere 
d =(bi+ ... +bN) (bN-l +bN) = (b1 + ... +bN)! 

'1. b1 ... bN-l b1!.,.bN! . 

Comparing coefficients we find the assertion. D 

6.8 We may now compute the Bn from the relation in fIN- 1(:F) 

6.8.1 

where 
([naif m] + ... + [naN /ml)! 

Cn,<!. = ([naif m])!. .. ([naN /ml)! 

and from yn!!_modm = O if and only if /ng,_mod ml 2 m. 

6.9 Remark. -We observe that n = 1 mod m implies that Bn is an invertible 
(diagonal) matrix. In particular in the case p = 1 mod m we see that :Fp is ordi
n(J,ry, i.e., :Fp has invertible Hasse- Witt matrix 7r(Bp)- Conversely, if p ¢. 1 mod m 
then put z := min{[(m -1)/N],[(m - 1)/(pmodm)]}. One easily checks that 
/p(z, z, ... , z) mod m/ 2 m and thus Bp is not invertible. 
-The other extreme is the case when n = -1 mod m. In this case we see that 
Bn = 0 (since /g,_/ < m implies in this case /ng,_mod ml= Nm - /a/ > m). 
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-We note that the Bn (for any N :2: 2, m EN) are very sparse matrices so one may 
hope that explicit formula for the normal forms of the higher Hasse-Witt matrices 
in terms of explicit p-adic limits are obtainable. We will show that this is indeed 
the case. 

6.10 From now on let N :2: 2, m be fixed integers, and pa fixed rational prime such 
that the gcd (p, m) = 1. This condition on p is equivalent ([Kob]) to Fp being 
smooth. From now on our discussion will be focussed on p-typical objects. We will 
simply write Bn instead of Bp"· 

6.11 We will consider the p-typical decomposition of j[N-1(F). Take any holo
morphic q. Let f > 0 be the smallest integer such that pf~ = ~ mod m ( thus if 
m is. prime then f is the order of pin (Z/mZ)*). Define the cycle C = Cl!,_ as the 
ordered set fa,p~mod m, ... ,pf-1~mod m}. Let I be the number of holomorphic 
exponents in C and define the function r. : { 1, ... , 1 } - C by r i := "i-th holomor
phic exponent in C". The integer r;,j then is the j-th component of r;. Let C be 
a disjoint partition of the set of all exponents in cycles. Also define He to be the 
sub Z-module of j[N- 1(F) generated by 

T r1 (- T!!.) rr2 rr~ - ' , ... , . 

Then obviously j[N- 1(F) = EBeEC He is a direct sum decomposition of j[N-1(F) 
which is stable under the action of F = Fp. Therefore the associated p-typical 
formal group law G may also be decomposed as G = EBeEC Ge (Notice that this 
decomposition is finer than the motivic decomposition as introduced in [Shio]). 

6.12 Fix an holomorphic exponent ~- We will restrict our considerations to He. 
Write B1 := Be,1, l :2: 0 for the matrices representing the action of Fon He. Thus 

b _ { Cpn,r, 
n,i,j - O 

if pnr; = Tj mod m, 
otherwise . 

6.13 Denote by N1 := Ne,1 (l :2: 0) the matrices of a finite F-type of Ge. We will 
see (subsection 6.16) that this finite F-type further is of permutation type (see 
chapter III, subsection 2.16). In that case the matrix congruences (5.4.1) between 
the Bn and the N1 boil down to 

6.13.1 

where 
6.13.2 

and N1,k,j is the possible non-zero entry in the k-th column of Li>o N1• Since we 
are working over 'Ii, we may forget about the endomorphism u. -
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6.14 Denote I!.:= r;, PJ := r;,J, and consider the quotient 

6.14.1 

-I (Lv[pnHPv/m])! Tiv[pn-lPv/m]! 
= p · Tiv[pn+lpv/m]! · (Lv[pn-lPv/ml)! = 

-I [pn-lPv/m)! (Lv[pn+IPv/m])! 1 [LvPn+l-uPv/m]! [LvPn-lPv/m]! 
p I} [pn+lpv/m]!. [LvPn+lpv/m]! . !! [LvPn-uPv/m]! . (Lv[pn-lpv/ml)!' 

6.15 Using corollary (4.5) we see 

[pn-lPv/m]! I [pn-uPv/m]! 

[pn+Ipv/m]! = !! [pn+l-"Pv/m]! = 
I 

= II (-l)fpn+l-up./m]+lp-fpn-up,,/mJr;l(l + [pl+n-uPv/ml), 

and also 

[LvPn+l-uPv/m]! 
~-----= 
[LvPn-uPv/m]! 

= (-l)[L.Pn+l-up./m]+lp[L.Pn-up./m]rp(l + [1:>n+l-uPv/m]). 
V 

We are left with the two odd quotients 

(Lv[pn+IPv/ml)! _ l _ [LvPn-lPv/m]! 
[LvPn+lpv/m]! - - (Lv[pn-lPv/ml)!' 

This follows from lemma 6.5 since pn+I p and pn-l pare holomorphic (6.13.2). 
So we have found for the quotient (6.lf 1) that -

bn+l,i,j / lbul+l. = (-l)N'(-ptl+L~=o([L.Pn-up./mJ-L.fFn-up./mJ). 
p n-1,,,k 

1 fp(l + [LvPn+l-uPv/ml) • 11 Tiv fp(l + [pn+l-"Pv/ml). 6.15.1 

6.16 We will now choose l = lk,j = Jk depending on k such that the quotient 
(6.14.1) has p-adic order greater than or equal to 0. Take l ~ 0 to be the minimal 
integer such that p1+1rk is holomorphic. Then define j by TJ = p1+1rk mod m. So 
j = k + 1 if k < 'Y, and j = 1 if k = 'Y· Using lemma 6.5 and (6.13.2) we then have 
for u = 0, ... , l - 1 

V V 
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This implies that the quotient (6.14.1) has positive p-order. 
Also notice that a series of matrices { N1 h2-:o having only non-zero entries at the 
positions (N1.)1.,k is of permutation type. 

6.17In order to find the finite F-type we still have to find an expression for (6.14.1) 
which is independent of n modulo pn+l-l-ortlp(bn-i,,,.)_ First remark that [a/m] = 
a/m - (a/m) where (a/m) denotes the fractional part. Using (6.13.2) we see that 

6.17.1 

Then from (6.15.1) we see that the exponent, expp of-pin (6.14.1) is given by 

expp = -l + 'to (~(purk,v/m)- ((~purk,v)/m)). 6.17.2 

Using lemma 4.2 and (6.17.1) we find 

Il rp(l + [LvPn+l-uPv/m]) = IT rp(l - ((LvPUTk,v)/m)) modpn+l-1_ 6.17.3 
u=0 IIv rp(l + [pn+l-uPv/m]) u=l IIv rp(l - (purk,v/m)) 

Since expp + n + 1 - l ~ n + 1 - l - ord p(bn-l,i,k) we may conclude from (6.17.2), 
(6.17.3) and (6.13.1) that 

N1,k,j = 

(-l)Nl(-p)-l+L~=o(L.(pur,,./m)-((L.Pur,.,.)/m)). IT rp(l - ((LvPUTk,v)/m)). 
u=l IIv r p(l - (purk,v/m)) 

6.18 We have found that the associated formal group law G to :Fis isomorphic 
over Zp to @cec Gc,typ where the F-type of Gc,typ is 

F¢aa,,.P = I: v 1 Nc,1¢Gc,tn' 
12':0 

6.19 Using chapter III, lemma 2.17 we conclude that G:F is isomorphic over Wp(lFp) 
to EBcec G'c,typ, where the F-type of G'c,typ is 

F¢a• = "'vtNc' i"'a' C,typ ~ , '+' C,t11p' 
12':0 

and where Nb,t,i,j := p0 if the p-adic order op(Nc,t,i,j) = o (p00 := 0). 

6.20 We now apply chapter III, proposition 2.18: the associated formal group law 
G to :Fp is isomorphic over the algebraic closure JFP of lFP to EBcec Gc,typ, where 
Gc,typ has a finite Witt F-type 

F¢ac,,,P = L V1[Dc,1]¢a,.p' 
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Moreover we know that if Nc,1,i,i -;:j:. Omodp that then Dc,1,i,i = 1. 
We have some easy corollaries 

6.21 Corollary. The formal group law G associated to the reduction of the Fermat 
Hypersurface :Fp 

i: is ordinary (i.e., has invertible Hasse- Witt matrix) if and only if p = 1 mod m, 

ii: ( Koblitz [Kobj, pg 198) has Hasse-Witt matrix zero if and only if for all 
holomorphic g, we have that pg, is not holomorphic. 

iii: has finite height if N = 2, 

iv: has an additive direct summand if and only if there exists a holomorphic g, 
for which the following holds: For all r with pr g, holomorphic there is a u 
{with O ~ u < fr) such that [Evp"av/m] - Ev[p"a,,/m] > 1 (or equivalently 
2.,,,(p"a,,/m) -((LvP"av)/m) > 1), where fr> 0 is the smallest integer such 
that pr+frg, is holomorphic, 

v: is additive if N > 2 and p = -1 mod m, 

vi: can not be additive if m > Np, 

µroof: i: This we already observed in remark 6.9. 
ii: Let N1,i,k be a non zero entry of the finite F-type. Let k correspond to the 
holomorphic exponent g,. Then l ~ 0 is the smallest integer such that p1+1g, is 
holomorphic. 
iii: From formulae 6.16.1 and 6.17.2 we conclude that all non-zero entries in the 
normal form of the Hilbert F-type are 1 (cf. for example [Yui80]). 
iv: In order for Ge to be additive all entries of the finite F-type need to be zero 
modulo p. 
v: If p = -1 mod m, then we have for any holomorphic g, that Lv (pav / m) -
((2.,,, pa,,)/m) = N - 1. So for N > 2 we everywhere have positive p-powers in the 
finite F-type, i.e., the formal group law is additive. 
vi: If m > Np we see that both (1, 1, ... , 1) and (p,p, ... ,p) are holomorphic, so the 
Hasse-Witt matrix is non-zero and therefore the formal group law is not additive. 
D 

6.22 We start with two easy examples which one can handle using only {5.3.1) and 
(6.8.1). Consider the case N = 3 and m = 4. Then r< 1,t,t) is a ha.sis for iIN-1(:F). 
Take p = 2, we then see that all B2,. are zero, and therefore by 5.3.1 that all 
higher Hasse-Witt matrices are zero: the associated 2-typical formal group law is 
the additive one. 
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Take· p = 3, we then see that B3,, = 0 if n is odd, and that B3n is divisible by 
3" if n is even. We conclude, using 5.3.1, that all higher Hasse-Witt matrices are 
divisible by 3: the associated formal group law is again just the additive one. 

6.23 The author has written a small Maple program which computes the normal 
form as described in subsubsection 6.19. Using this program the following 3 exam
ples have been computed. 

6.23.1 As an example, consider the case N = 3, m = 9 and p = 5. We then obtain 
that the associated formal group law G:F to the Fermat hypersurface F = FN,m is 
isomorphic over Wp(lFp) to (we denote a formal group law by its Hilbert FP-type) 

~ _01 4 00 _5 24 ( { } { }) 
16 

G:F= F- 0 O +V P2 O EB(F-V {p}) . 

Thus the associated formal group law G:Fs to the reduction Fp is by subsection 
6.20 isomorphic over lFp to (here we denote the formal group laws by their Witt 
Fp-type) 

~ "24 0 1 ( ( )) 
16 

G Fp = Ga EB F = 0 0 

6.23.2 As another example consider N = 3, m = 9, and p = 7. Then we obtain 
that 

G :F 9;! ( F = V 2 {p}) 32 EB ( F = V2 { 1}) 24 
. 

Thus we conclude that 

6.23.3 As last example consider the case N = 3, m = 19 and p = 5. This example 
is treated in the appendix. 

6.24 Remark. In [Eke] Ekedahl introduces the notion of varieties of CM-type. 
He then uses crystalline cohomology in order to describe the formal Brauer group of 
surfaces which are Mazur-Ogus (Fermat surfaces and their quotients) and of CM
type in degree 2 (i.e., their formal Brauer group is a direct sum of 2-dimensional 
subgroups). His results agree with ours. 

7 Appendix 

In this appendix the decomposition of the associated formal group law to the 
Fermat hypersurface F3,19 over W5 (JF5 ), the corresponding decomposition of the 
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reduction .1"3,19,5 over F5 and the isogeny type are given. We refer to section 6 for 
(computational) details. 

A1 The associated formal group law G:F of dimension 816 to the format hyper
surface .ra,19 can be decomposed over W5(F5 ) as follows: 

1. The following component of dimension 1 appears 24 times, the F-type of this component is 

F= V8 [ 1] 

2. The following component of dimension 1 appears 48 times, the F-type of this component is 

3. The following component of dimension 1 appears 84 times, the F-type of this component is 

4. The following component of dimension 1 appears 12 times, the F-type of this component is 

5. The following component of dimension 2 appears 24 times, the F-type of this component is 

F _ [ 0 0 ] + V 7 [ O 1 ] 
- 1 0 0 0 

6. The following component of dimension 2 appears 36 times, the F-type of this component is 

F _ [ 0 1 ] + V 7 [ 0 0 ] 
- 0 0 p1 0 

7. The following component of dimension 2 appears 60 times, the F-type of this component is 

F-[o o]+v1[0 p2] 
- 1 0 0 0 

8. The following component of dimension 2 ap.pears 12 times, the F-type of this component is 

F=[~ ~]+v1[; ~] 
9. The following component of dimension 2 appears 48 times, the F-type of this component is 

F=v2 [~ ~]+v•[J ~] 
10. The following component of dimension 2 appears 12 times, the F-type of this component is 

F=v2 [~ ~]+v6[; ~] 
11. The following component of dimension 2 appears 24 times, the F-type of this component is 

F-v2[0 1]+v1[0 o] 
- 0 0 p3 0 
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12. The following component of dimension 2 appears 4 times, the F-type of this component is 

13. The following component of dimension 2 appears 24 times, the F-type of this component is 

F _ v2 [ 0 P1 ] + vs [ 0 0 ] 
- 00 p1 0 

14. The following component of dimension 3 appears 24 times, the F-type of this component is 

[
000] [Op2

0l F = 0 0 1 + V 6 0 0 0 
1 0 0 0 0 0 

15. The following component of dimension 3 appears 12 times, the F-type of this component is 

[
000] [000] [Op1

0] F = 0 0 0 + V 0 0 1 + vs 0 0 0 
100 000 000 

16. The following component of dimension 3 appears 12 times, the F-type of this component is 

[ 000] [010] [000] F = 0 0 0 + V 0 0 0 + vs 0 0 p2 

100 000 000 

17. The following component of dimension 4 appears 4 times, the F-type of this component is 

[
0000] [Op2

00] F = 0 0 1 0 + vs 0 0 O 0 
0001 0000 
1000 0000 

A2 We thus observe that the formal group law Gy:: associated to the reduction 
.F3,19,5 of .F3,19 modulo 5 can be decomposed over iF5 in the following way: 

The components 1 reduce to 24 times the following component of dimension 1 with F-type 

F = V 8 [ 1] 

The components 2, 3, 4, 13 reduce to 192 times Ga 
The components 5 reduce to 24 times the following component of dimension 2 with F-type 

F = [ 0 0 ] V7 [ 0 1 ] 
1 0 + 0 0 

The components 6 reduce to 36 times the following component of dimension 2 with F-type 

F = [ 0 1 l vs [ 0 0 ] 
0 0 + 0 1 
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The components 7 and 8 reduce to 72 times the following component of dimension 2 with F-type 

The components 9 reduce to 48 times the following component of dimension 2 with F-type 

The components 10,11 and 12 reduce to 40 times the following component of dimension 2 with 
F-type 

F = V 2 [ ~ ~ ] 

The components 14 reduce to 24 times the following component of dimension 3 with F-type 

[ 000] [100] F = 0 0 1 + vs O O 0 
1 0 0 0 0 0 

The components 15 reduce to 12 times the following component of dimension 3 with F-type 

[ 000] [000] [001] F= 0 0 0 +V O O 1 +V7 0 0 0 
1 0 0 0 0 0 0 0 0 

Tne components 16 reduce to 12 times the following component of dimension 3 with F-type 

[ 000] [010] [000] F = 0 0 0 + V O O O + vs O 1 0 
1 0 0 0 0 0 0 0 0 

The components 17 reduce to 4 times the following component of dimension 4 with F-type 

[
0000] [0001] F = 0 0 1 0 + V 7 0 0 0 0 
0001 0000 
1 0 0 0 0 0 0 0 

AS The isogeny type of G:F can now easily be computed: 
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