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Preface 

This tract consists of six papers, which are listed here with their original 
preprint data. The first, fourth and fifth paper have been revised. The third 
paper is followed by a supplement of comments and corrections. 

l. W. VERVAAT (1988): Random upper semicontinuous functions and ex­
tremal processes. Report MS-R8801, CWI, Amsterdam. 

2. T. NORBERG (1990): On the convergence of probability measures on con­
tinuous posets. Report 1990-08, Dept Math., Chalmers U. of Technology, 
Goteborg. 

3. G. GERRITSE (1985): Lattice-valued semicontinuous functions. Report 
8532, Dept Math., Cath. U., Nijmegen. 

4. W. VERVAAT (1988): Spaces with vaguely upper semicontinuous inter­
section. Report 88-30, Dept Math. and Inf., Delft U. of Technology, 
Delft. 

5. T. NORBERG & W. VERVAAT (1989): Capacities on non-Hausdorff spaces. 
Report 1989-11, Dept Math., Chalmers U. of Technology, Goteborg. 

6. H. HOLWERDA (1993): A note on Fell- and epicompactness. Report 9323, 
Dept Math., Cath. U., Nijmegen. 

These papers were written in two streams of research. The first sprang from 
the need for a general qualitative theory of extremal processes in the 1980 
research that finally resulted in the paper O'Brien, Torfs & Vervaat (1990). For 
extremal processes, since long a topic of active research, an abstract definition 
surprisingly did not exist. The first paper in this tract provides one, and its 
formalism has been adopted in the field soon after its prepublication in 1988. 

The second stream started with work of Norberg on random capacities in 
the spirit of the theory of random measures as developed by his thesis advisor 
Olav Kallenberg (Norberg (1986)). The fifth paper in this tract generalizes the 
topic to non-Hausdorff spaces, a generality demanded by developments in the 
first stream. 

An extremal process now is regarded as a random variable with values in 
a topological space of sup measures, or equivalently, of upper semicontinuous 
functions. They are topological lattices, an area of active research since the 
70s. In fact, if the time domain is locally compact (but not necessarily Haus­
dorff), they are a major example of continuous lattices (cf. Gierz et al. (1980)). 
This connection is already present in the first and third paper in a fresh and 
rudimentary form, but more prominently and digested in the second, fifth and 
sixth. For a uniform theory with many isomorphisms it is essential to regard 
the Hausdorff property as incidental and to consider unprohibitedly T0 spaces. 



The editor discovered this in the first paper, and the resulting attitude perme­
ates all other papers in this tract, in particular the fifth and sixth. The second 
paper extends the values of random variables to the more general continuous 
partially ordered sets, the third paper the values of semicontinuous functions 
to lattices. The fourth paper explores the separation condition (satisfied by all 
Hausdorff spaces) that renders the intersection of closed sets upper semicon­
tinuous, and consequently also the infimum of upper semicontinuous functions. 
The sixth paper places the compactness of the spaces of closed sets and semi­
continuous functions in the context of the best related results for continuous 
lattices. 

Capacities appear at the end of the first paper and dominate the fifth. There 
are two reasons for this. On the one hand, capacities can be regarded as 
upper semicontinuous functions on the space of open sets provided with a non­
Hausdorff topology. That is how they appear in the first paper, and are studied 
again in part of the fifth. On the other hand, the space of capacities contains 
all kinds of interesting subspaces, as the measures, the upper semicontinuous 
functions and the closed sets (cf. Vervaat (1988)). 

In hindsight, capacities turn out to be the most natural framework for the 
spaces considered in this tract. The research in this spirit is more recent, and 
the most important initiatives can be found in O'Brien & Vervaat (1991, 1993). 
A new aspect in the latter papers is that capacities just seem to be made for 
topologizing the theory of large deviations. 

The editor wishes to thank all who have contributed to the production of 
this tract, the other authors for their contributions, Henk Holwerda and Bart 
Gerritse ( different from the author of the third paper) for their many remarks 
and corrections, and the editorial and technical staff of CWI for the physical 
production. 

Villeurbanne, November 1993, WIM VERVAAT 
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POSTSCRIPT 

Wim Vervaat died suddenly on January 31, 1994. At the time of his death 
he had almost finished the work for the present tract. Only in the first and 
lengthy paper by his hand a considerable number of editorial corrections still 
had to be carried out. 
In the meantime some of the preprints referred to in this tract appeared in final 
form. Here are the updated references: 

Preface, [5]: G.L. O'BRIEN & W. VERVAAT (1995): Compactness in 
the theory of large deviations. Stoch. Processes and their 
Applications 57 1-10. 

First paper, [35]: H. H0LWERDA & W. VERVAAT (1996): Lattice of ca­
pacities, and related topologies. Statistica Neerlandica 50 
306-324. 

The latter is part of a special issue of Statistica Neerlandica in memory of Wim 
Vervaat, which also contains a complete list of his publications. 

Nijmegen, February 1997, HENK H0LWERDA 





Random Upper Semicontinuous Functions and Extremal 

Processes1 

Wim Vervaat2 

All functions take their values in the extended real line. Spaces of upper semicon­
tinuous (use) functions on a topological space E are considered and topologized 
in different ways. Convergence in distribution of random use functions is char­
acterized for one topology, the sup vague topology. In a canonical way, use 
functions correspond to sup measures, union-sup homomorphisms on the open 
sets of E. Random sup measures are interpreted as extremal processes. By 
identifying closed subsets of E with their indicator functions we make them a 
subspace of the use functions. Consequently, the basics of random closed sets 
are part of the theory. A function on E is use iff its hypograph is closed in the 
product space of domain and range, which establishes another relation between 
the use functions on E and the closed subsets of a space, this time different 
from E. The natural bijections between all these spaces or subsets of them turn 
out to be lattice isomorphisms, and homeomorphisms if the spaces are provided 
with the sup vague topology. All spaces are sup vaguely Hausdorff if E is locally 
quasicompact, but E need not be Hausdorff itself. In fact, it is better to allow E 
being non-Hausdorff for a smooth theory. At the end of the paper, the developed 
theory is applied to capacities as a common framework for vague convergence of 
Radon measures and sup vague convergence of use functions. 

Keywords & Phrases: upper semicontinuous functions, sup measures, spaces of 
closed sets, hypographs, sup vague topology, sup narrow topology, hypo topology, 
locally quasicompact spaces, extremal processes, random upper semicontinous 
functions, random closed sets, convergence in distribution, vague convergence of 
capacities, Radon measures as capacities. 
Mathematics Classification: 
Primary: 54820, 54D45, 60805, 60B10. 
Secondary: 06835, 28E99, 54Hl2, 60G99, 60K99. 



2 Wim Vervaat 

0. INTRODUCTION 
The original reason for the research leading to the present paper was the neces­
sity of formalizing the notion 'extremal process' in probability theory. What 
came out of it turned out to be a common framework for random closed sets, 
parts of optimization theory, theory of hyperspaces in set topology, and ex­
tremal processes as intended. Substantial parts of this paper could be classified 
as set topology, and to a lesser extent as lattice theory, rather than probability 
theory. 

Extremal processes have come up in the probabilistic literature in the fol­
lowing way. Let (fa)~-oo be a sequence of real-valued random variables (for 
instance independent and identically distributed, but nothing is actually as­
sumed). Set for subsets A of R 

Mn(A) := ( V xk - bn)/an, 
k:k/nEA 

where an > 0 and bn are 'normalizing constants'. In the older probabilistic 
literature extremal processes were limits in distribution of Mn([0, t]) as n ➔ oo, 
regarded as random functions of t ( see for instance LAMPERTI ( 1964), DWASS 
(1964), RESNICK & RUBINOWITCH (1973)). In the more recent literature 
the idea gradually broke through that Mn should be regarded as a random set 
function, for instance on the intervals (PICKANDS (1971), MORI & OODAIRA 
(1976), MORI (1977), RESNICK (1986, 1987)). However, the full consequence 
of this idea has not been drawn by these authors, because the special cases 
considered by them allow a nice and concise description as functionals of point 
processes in the plane, which aspect attracted the focus of their attention. The 
point process approach turns out to be too narrow in the study of stationary 
self-similar extremal processes by O'BRIEN, TORFS & VERVAAT (1990), which 
forced these authors to define extremal processes as random set functions with 
certain properties. For a related approach, see NORBERG (1987). 

It is most convenient to regard an extremal process M as a random i­
valued function (i := (-oo, oo]) on the open sets in R such that M has with 
probability 1 (wp 1) the following property: 

M(LJ Gj) = V M(Gj) (01) 
jEJ jEJ 

for each collection (Gj)jeJ of open sets in R. More formally, let Ebe a topo­
logical space, g = g(E) the collection of its open sets, and let m be a II-valued 

1 The first version of this paper was completed June 1982, while the author was visiting 
the School of Operations Research and Industrial Engineering and the Center for Applied 
Mathematics at Cornell University, supported by a NATO Science Fellowship from the 
Netherlands Organization for the Advancement of Pure Research (zwo) and a Fulbright­
Hays travel grant. The second version was written in 1987 at the Centre for Mathematics 
and Computer Science at Amsterdam, whose hospitality and support are gratefully ac­
knowledged. It is the version referred to in the literature up to now (1993). In the present 
and final version errors have been corrected and references updated. However, the author 
did not aim at a complete face-lift to the present state of knowledge. 

2 Wim Vervaat died early 1994. His last work address was Universite Claude Bermard Lyon 
1. This part of CWI Tract 110 was finalized by Henk Holwerda. 
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function on g. Here JI is a fixed compact subinterval of i, JI = i in the previous 
application, but JI= [0, 1] for convenience in most of the present paper. Let us 
call m a sup measure if 

m(LJ Gj) = V m(Gj) 
jEJ jEJ 

for each collection (Gj)jEJ in g, Then an extremal process is just a random 
sup measure. In order to give this definition sense, it is necessary to make SM, 
the collection of all sup measures, a measurable space. For the notion of con­
vergence in distribution of extremal processes, SM must be made a topological 
space, preferably with the measurable structure derived from the topological. 
It is exactly this what the present paper is about. 

The following duality, established in Sections 1 and 2, plays a key role in 
the theory. If m is a function on g(E), then its sup derivative is the function 
dv m on E defined by 

dvm(t) := inf{m(G): GE g,t E G}. 

If f is a function on E, then its sup integral iv f = fv is the function on g 
defined by 

F(G) := V J(t) for GE g, 
tEG 

It turns out that sup measures correspond one-to-one to upper semicontinuous 
(use) functions on Eby dv and iv. Let US = U S(E) be the collection of all use 
functions on E (here and in the sequel all functions are assumed to be JI-valued 
unless stated otherwise). We now can topologize SM by topologizing US or 
vice versa. It turns out that for E locally compact with countable base SM 
becomes compact (Section 4) and metric (Section 5) with the following notion 
of sup vague convergence (Section 3): 

{ 
limsupmn(K) :S: m(K) for KE K, 

mn ➔ m in SM iff 
liminfmn(G) ~ m(G) for GE g, 

(0.2) 

where K = K(E) is the collection of compact sets in E. In fact, the right hand 
side need be required only for subcollections like bases (Section 5). 

If Eis locally compact with countable base, then the Borel field of SM is the 
smallest that makes the evaluations m f--t m(A) measurable for all A E g or all 
A EK (Section 11), and extremal processes(= SM-valued random variables) 
Mn converge in distribution to M iff all finite-dimensional distributions of 
the values of Mn at the compact balls in E converge to those of M, where 
the balls B in E must be restricted to those with IP'[M(B) = M(intB)] = 1 
(Section 12). The finite-dimensional distributions of the values of the extremal 
processes on g can be characterized by requiring (0.1) to hold wpl separately for 
each countable collection (Gj) in g (Section 13). In Section 14 measurability 
and semicontinuity of the actions of taking suprema and infima in SM are 
investigated. 
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Before discussing the connections with the literature, we first indicate some 
relations with spaces of closed sets. Let F(E) be the collection of all closed 
sets in E, and let lA for A c E be the indicator function of A: lA (t) := 1 if 
t E A, 0 if t E E\A. Then F i-+ lp maps F one-to-one into US ( E). So we can 
identify (random) closed sets in E with (random) {O, 1 }-valued use functions 
or (random) {0,1}-valued sup measures. Moreover, F(E) is topologized by 
the relative topology of the sup vague topology on U S(E) in its image under 
Fi-+ lp. We call this the sup vague topology on F(E). On the other hand, a 
function on E is use iff its hypograph 

hypof := {(t,x) EE x (0,1]: x::; f(t)} 

is closed in Ex (0, l]. So 'hypo' maps US(E) one-to-one into F(E x (0, 1]). 
Consequently, any topology on F(E x (0, 1]) determines a relative topology on 
US(E), and it turns out (Section 7) that the sup vague topology on F(Ex (0, 1]) 
generates the sup vague topology on US(E) (for this reason often called the 
hypo topology). So it is a matter of taste on which space one wants to define the 
sup vague topology first. The present paper starts with US (or rather SM), 
in contrast with most of the literature. The reason is the duality between Sl'vf 
and US, which seems to have been unnoticed so far, but plays a crucial role 
here. 

Actually, the map 'hypo' has even much nicer properties, which become 
visible only if one is willing to consider non-Hausdorff spaces. Let (0, l]t denote 
the space (0, 1] provided with the upper topology, whose nontrivial open sets 
are (x, 1] for O < x < 1. Then 'hypo' turns out to be an order preserving 
bijection between US(E) and F(E x (0, l]t) (Section 1), and a homeomorphism 
between the spaces provided with the sup vauge topology (Section 7). So if 
E* =Ex (0, l]t, then US(E) and F(E*) are homeomorphic, whereas in the 
previous paragraph, with E* =Ex (0, 1], US(E) is only homeomorphic to a 
subspace of F(E*). 

This observation compels us to considering non-Hausdorff spaces E from the 
beginning. It turns out that US(E) and F(E) are sup vaguely quasicompact 
(qcompact) whatever is E (Section 4). Here quasicompactness refers to the 
finite open sub cover property, without Hausdorffness. It turns out that US ( E) 
and F(E) are in addition Hausdorff (hence compact) in case Eis locally qcom­
pact but not necessarily Hausdorff (Section 4). In non-Hausdorff spaces things 
are not as one is used to ( qcompact sets need not be closed, an intersection of 
two qcompact sets need not be qcompact, lattice-isomorphic topologies need 
not come from homeomorphic spaces, etc.), and this environment is explored 
in Sections 8 and 9. 

There are related developments in many fields of mathematics. Here we 
indicate them only globally. More detailed comments are made at the end 
of each section. Furthermore, we do not discuss the special case that E is 
compact and metric, in which case F(E) is equal to the space /C(E) of compact 
sets, metrized by the Hausdorff distance. This is a classical topic in topology. 
Random closed sets ( = F(E)-valued random variables) are the subject of a 
monograph by MATHERON (1975), which was developed further by SALINETTI 
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& WETS (1981, 1986) and NORBERG (1984, 1986), with random USC functions 
appearing in the 1986 papers. Use functions appear as images with grey levels 
in SERRA (1982), who attributes this idea to MATHERON in the early 1970s 
(personal communication). 

Random closed sets appear in the equivalent shape of 'measurable closed 
multifunction' in the optimization literature (ROCKAFELLAR (1976), CAs­
TAING & VALADIER (1977), KLEIN & THOMPSON (1984)). Similarly, random 
lower semicontinuous functions can be identified with 'normal integrands' in 
the optimization literature (RocKAFELLAR (1976)). The two viewpoints were 
conciliated by SALINETTI & WETS (1981, 1986). A whole system of conver­
gence notions ('r- and G-limits') was developed for variational analysis by DE 
GIORGI & FRANZONI (1975), DE GIORGI (1977, 1979) and BUTTAZZO (1977). 
The sup vague convergence notions in US(E) and :F(E) are particular cases of 
this. Applications in mathematical economics can be found in DEBREU (1966, 
1974) and HILDENBRAND (1974). 

The following topological literature is relevant for :F(E) and US(E). A con­
vergence concept corresponding to the sup vague topology in :F(E) for locally 
compact E was studied by CROQUET (1948) and KURATOWSKI (1966), and 
actually has its traces in the beginning of this century. The topology itself was 
studied first by FELL (1962), and later on by DIXMIER (1968) and MATHERON 
(1975). Spaces of use functions were already considered by Mosco (1969) and 
BUTTAZZO (1977). 

Spaces of subsets of a given topological space ('hyperspaces') are a topic of 
study in set topology. Classical references are MICHAEL (1951) and the more 
recent monograph by NADLER (1978). However, our sup vague topology does 
not occur at all in these references. For a possible reason, see our discussion in 
4.6. In contrast to this, the recent monograph by KLEIN & THOMPSON (1984) 
also treats the sup vague topology, motivated by applications in economics and 
optimization. 

The spaces US(E) and :F(E) (with reverse order) play a central role as 
examples of continuous lattices in GIERZ ET AL. (1980). Actually, a whole 
chapter in this monograph is devoted to a general and abstract theory of spaces 
of lower semicontinuous functions, which appear there in the shape of 'Scott 
continuous functions'. See also MISLOVE (1982) for a fast introduction. Only 
in the last decade locally qcompact spaces (not necessarily Hausdorff) have 
been studied, exclusively in the context of lattice theory. See GIERZ ET AL. 
(1980) and HOFMANN & MISLOVE (1981). 

Sup measures are a special case of semilattice homomorphisms in G IERZ 
ET AL. (1980) and of semigroup-valued measures in SION (1973). The terms 
'sup derivative', 'sup integral' and 'sup vague topology' remind us that we 
are dealing here with the 'minimax analogue' of calculus and analysis of Radon 
measures, in the sense of CUNINGHAME-GREEN (1979), who developed a matrix 
calculus and spectral theory with addition + replaced by V and multiplication 
replaced by +. 

There are two topics in the paper that have not been mentioned yet. Ini­
tially, mainly in Sections 3 and 4, a whole class of topologies on SM and US 



6 Wim Vervaat 

are introduced, by replacing K, in (0.2) by some general class of sets B, and the 
resulting topologies are called the sup B topologies. The major reason is that 
in this way we obtain results as well for the sup :F or 'sup narrow' topology, 
which is favorite in classical set topology. 

Another development is that sup vague convergence of sup measures and 
vague convergence of (additive) Radon measures can be put into one common 
framework of vague convergence of capacities, monotone set functions on the 
qcompact sets with certain semicontinuity properties. Sections 15 and 16 com­
plement the pioneering paper by NORBERG (1986). 

The author has tried to make this paper self-contained, which entails that 
part of the results is not new. There are several reasons for this. The results 
elsewhere are often formulated in the context of other fields of mathematics, 
and therefore not easily understandable for probabilists. And even where the 
formulations in the literature are more familiar, the approach in the present 
paper is rather different. For instance, the basics of random closed sets appear 
as side results of a more general theory of random use functions, so that this 
paper can serve as an alternative to the introduction in MATHERON's (1975) 
monograph. Furthermore, the generality of non-Hausdorff spaces permeates 
the paper from the beginning. 

There is more in probability theory than extremal processes that can benefit 
from a self-contained and direct introduction to random use functions. Point­
wise ordered pairs of lsc and use functions ( - f, g E US, f ::; g) form a space 
which is a compactification of the function space C(E). By considering this 
compactification or related ones the proof of Donsker's theorem can be inter­
preted in a new way (cf. VERVAAT (1981), LENSTRA (1985) and SALINETTI 
& WETS (1986)). Furthermore, the most natural context for processes of ran­
dom closed sets is a generalization of extremal processes, whose values are no 
longer in i, but in a lattice L, for instance L = :F(E') for some other space 
E'. Lattice-valued use functions are investigated in G ERRITSE ( 1985), BEER 
(1987) and HOLWERDA (1993a), and the corresponding probability theory is 
being developed by NORBERG. Part of the basic theory has already been dealt 
with by GIERZ ET AL. (1980). 

The prerequisites for the present paper are the measure theoretical foun­
dations of probability theory, convergence in distribution in Polish spaces and 
basics of set topology. 

0.1.. Notations and Conventions 
All functions are JI-valued, unless stated otherwise; JI is a compact subinterval 
of i := [-00,00], for convenience JI= [O, 1] in the present paper, but JI= i is 
more appropriate for applications. 

E is a topological space. No separation axioms are assumed in general. 
In many places all or part of the regularity conditions show up: E is locally 
quasicompact with countable base. In particular these are assumed in the prob­
abilistic sections 11, 12 and 13. A subset K of Eis quasicompact (qcompact} if 
each open cover contains a finite subcover; if K is in addition Hausdorff, then 
K is compact. For A C E its saturation satA is the intersection of all open sets 
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containing A; if A = satA, then A is saturated. 

g .- { open sets}; 
:F .- { closed sets}; 
IC .- { qcompact sets}; 
Q .- { saturated qcompact sets}; 
9o .- base of open sets; 
/Co .- base-like collection of qcompact sets; 
us .- { upper semi continuous functions on E}; 
SM .- { sup measures on 9} (cf. §2); 

When E varies and the dependence on E becomes relevant, we write 9(E), 
US(E), etc. In this paper, F is always a closed set, G an open set, K a 
qcompact set, Q a saturated qcompact set. In proofs these qualities are not 
always mentioned. Let A C E. Then: 

lA is the indicator function of A: 
lA(t) := 1 for t E A, 0 fort E E\A; 

closA is the closure of A; 
intA is the interior of A; 
sat A is the saturation of A as defined above ( cf. also 1. 7); 
sqc A is the smallest qcompact set containing A if it exists (§8); 
Ac:= E\A is the complement of A. 

Moreover, 
hypo f is the hypograph off (§1); 
dv m is the sup derivative of m (§2); 
iv f = JV is the sup integral off (§2). 

Convergence in distribution of random variables is denoted by ➔d, equality in 
distribution by =d· 

lsc 
USC 

rv 
wpl 
qcompact 

0. 2.. Contents 

= lower semicontinuous; 
upper semicontinuous; 
random variable; 
with probability one; 
quasicompact. 

0. Introduction 2 
1. Upper semicontinuous functions 8 
2. Sup measures 11 
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1. UPPER SEMICONTINUOUS FUNCTIONS 

In the present section we collect some results about real-valued upper semicon­
tinuous functions, many of them well-known. All functions are defined on a 
topological space E, without any separation axiom assumed, and take their val­
ues in some compact interval JI in the extended real line. In many probabilistic 
applications JI= [0, oo] or JI= [-oo, oo]. For convenience we fix JI= [0, 1] in the 
present paper. We write JI':= JI\inflI, so JI'= (0, l]. For functions f: E ➔ JI 
we define the hypograph off by 

hypo/:= {(t,x) EE x JI': x::; f(t)}. 

By [-oo, oo]..!- we denote the set [-oo, oo] provided with the lower topology, 
whose nontrivial open sets are [-oo,x) for x E (-00,00]. A subset A provided 
with the relative lower topology is denoted A..!,. Similar conventions apply to the 
upper topology on [-oo, oo]: [-oo, oo]t has nontrivial open sets (x, oo]. Observe 
that a nonempty subset of A..!, is quasicompact (qcompact) iff it contains its 
supremum. Quasicompactness refers to the finite open subcover property. A 
compact set is both quasicompact and Hausdorff. 

1. 1. DEFINITION. Let E be a topological space. A function f : E ➔ JI is upper 
semicontinuous (use) at t EE if 

J(t) = I\ V J(u). 
openG3tuEG 

A function f : E ➔ JI is use if it is use at all t E E. A function f : E ➔ JI is 
lower semicontinuous (lsc) if l - f is use. 

1.2. THEOREM. The following are equivalent: 

(i) f is use; 
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(ii) hypo/ is closed in E x JI'; 
(iii) /: E ➔ JI.j,. is continuous, i.e., r- [O,x) is open for all x E JI'. 

1.3. COROLLARIES. The first two corollaries are based on independent ob­
servations about functions with closed hypographs that will play a role in the 
proof of the theorem. 
(a) Let A C E. Then lA has a closed hypograph iff A is closed. (From (ii). 
Observe that dos hypo lA = hypo lc1osA-) Similarly, xlA VylE with x > y has 
a closed hypograph iff A is closed. 
(b) If (/i )jEJ is a collection of functions with closed hypographs then /\jEJ Ji 
has a closed hypograph. If, moreover, J is finite, then V jEJ Ji has a closed 
hypograph. (From (ii). Observe that hypo /\ = n hypo, hypo V = U hypo, 
the latter only for finite collections.) 
(c) If/ is use and Eis qcompact, then/ has a maximum. (From (iii). Observe 
that /(E) in JI.j,. is qcompact.) 

Before proving Theorem 1.2, it is useful to make the following observation. Set 

fa:= ( V /(u))lE V lE\G 
uEG 

for open G CE, and 

f* := f\fa. 
G 

Then Definition 1.1 tells us that / is use iff / = /*. 

1.4. LEMMA. dos hypo / = hypo/*. 

PROOF. Obviously / ~ /*, so hypo f C hypo f*. Furthermore, hypo /* is 
closed by the observations in Corollaries 1.3(a,b). So it is sufficient to prove 
hypo f* c closhypo/. To this end, consider (t,x) (/. closhypo/. Then there is 
an open G 3 t and a real y < x such that G x (y, 1] does not intersect hypo /. 
Hence f(u) ~ y < x for u E G, so f*(t) ~ y < x, i.e., (t,x) (/. hypo f*. □ 

PROOF OF THEOREM 1.2. 
(i) =} (iii). Ift E r-[o,x ), then /\openG3t VuEG f(u) = f(t) < x, so VuEG f(u) 
< x for some open G 3 t. So t E G C r- [O, x), which proves r- [O, x) to be 
open. 
(iii) => (ii). We have in general: 

/ = I\ (xlE V lr-[z,1])- (1.1) 

zEJI' 
From (iii) and the independent hypo observations in Corollaries l.3(a,b) we see 
that hypo / is closed. 
(ii) => (i). By Lemma 1.4 we have / = /* if hypo / is closed. D 

Let US = US(E) be the set of all JI-valued use functions on E. We want to 
characterize US as a whole. First a notation. By Y = Y(E) we denote the 
family of closed sets in E. 
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1.5. THEOREM. (a) US is the smallest class of JI-valued functions on E that 
contains xlp for x E JI', F E :F and is closed for arbitrary infima and finite 
suprema. 
(b) US is the smallest class of JI-valued functions on E that contains 

xlpVylEforx,yE JI,x2'.:y, FE:F, 

and is closed for arbitrary infima. 

PROOF. (b) Follows from (1.1), Theorem 1.2 and Corollaries 1.3(a,b). 
(a) Follows from (b) and Corollary 1.3(b). 

The space US ( E) is a complete lattice ( all subsets have infima and suprema) 
with the infimum being pointwise infimum and the supremum of (Ji)J being 
(VJ !J)*. The space :F(E) is a complete lattice with the infimum being inter­
section and· the supremum being closure of the union. 

1.6. THEOREM. The map hypo is a lattice isomorphism from US(E) onto 
:F(E X JI't). 

PROOF. The family of closed sets in E x JI't is the smallest class that contains 

F x (0, x] = hypo xlp for x E JI', F E :F(E) 

and is closed for arbitrary intersections and finite unions. Apply Theorem 
l.5(a). D 

From Theorem 1.6 we learn that U S(E) can be examined by considering :F(E*) 
for E* = ExJI't. However, E* is not Hausdorff. This motivates us to maintain a 
generality beyond Hausdorffness in the present paper. In non-Hausdorff spaces 
the following notion will be useful. 

1. 7. DEFINITION. The saturation of a set A c E is the set 

satA := n G. 
openG::,A 

If A= satA, then A is said to be saturated. 

All sets in E are saturated iff Eis T1 (cf. §3), in particular if Eis Hausdorff. 
Note that u E sat{ t} =: satt iff t E dos{ u} =: closu. More generally, we 
have closu n satA =/- 0 iff closu n A =/- 0. Applying this for A = LJJ AJ we find 
sat LJJ Ai = LJi satAJ. The intersection of saturated sets is saturated, as in 
general sat nJ AJ c nJ satAJ C sat nJ satAJ. 

1.8. THEOREM. If f is usc and ACE, then VtEA J(t) = VtEsatA f(t). 

PROOF. As sat A = UtEA satt, it is sufficient to prove the theorem for A = {a}. 
Since G 3 a implies G :J sata for open G, we have 

J(a) ::; V J(t) ::; /\ V J(t) = f(a). □ 
tEsata G3a tEG 
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1.9. EXAMPLE. E = llll-- Then satt = (-oo, t] fort E E. The space US(E) con­
sists of all nondecreasing right-continuous ][-valued functions on JR, and can be 
identified with the class of all probability distribution functions on the extended 
real line [-oo, oo]. 

1.10. LITERATURE. Most results are classical knowledge in a perhaps less clas­
sical presentation. For a lattice-theoretical approach to lower semicontinuous 
functions, see Chapter II of GIERZ & AL. (1980). The three characterizations 
of upper semicontinuity in Theorem 1.2 need no longer be equivalent in case 
the totally ordered range ][ is replaced by a more general lattice or partially 
ordered space. See PENOT & THERA (1982), GERRITSE (1985), BEER (1987) 
and HOLWERDA (1993a). 

2. SUP MEASURES 
In the present section we introduce the sup measures, which henceforth will be 
close companions of use functions. By g = Q(E) we denote the class of open 
sets in a topological space E. 

2.1. DEFINITION. (a) The sup derivative of a function m : g ➔ ][ is the 
function dv m : E ➔ ][ defined by 

dvm(t) := /\ m(G) fart EE. (21) 
G3t 

(b) The sup integral of a function f : E ➔ ][ is the function jY : g ➔ ][ 
defined by 

rca) := V J(t) Jar GE 9, 
tEG 

where V 0 := 0. Occasionally we will write iv J instead of jY. 

2.2. LEMMA. Let m and f be as in Definition 2.1. Then 
(a) dv m is use, 
(b) m?:. iv ~m, 
(c) f ~ dviv J. 

PROOF. (a) Note that 

dv m = f\ (m(G)lE V lE\G), 
GEQ 

so dvm is use by Corollaries 1.3(a,b). 
(b,c) Obvious. D 

2.3. REMARK. Note that Definition 1.1 can be rephrased as: f is use iff 
f = dv iv f =: f*. In Lemma 1.4 we recognize f* as the smallest use function 
larger than f, the function with dos hypo fas hypograph. 
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2.4. DEFINITION. A function m : g ➔ IT is called a sup measure if m(0) = 0 
and for all collections (Gj)jEJ of open sets 

m(LJ Gj) = V m(Gj)- (2.2) 
jEJ jEJ 

Obviously, all sup integrals are sup measures, but different f in Definition 
2.l(b) may generate the same sup measure. Example: E = JR, li = lij = 1 on 

9\{0}. The following theorem shows that all sup measures are sup integrals of 
use functions, and that the correspondence is one-to-one, so that iv applied to 
use functions and dv to sup measures are inverses of each other. 

2.5. THEOREM. Let m and f be as in Definition 2.1. 
(a) mis a sup measure iff m = ivdvm. 
(b) If m is a sup measure, then f = dv m is the largest f and only usc f with 
jV=m. 
(c) If mis a sup measure, then VtEA dvm(t) = /\a-:.:iA m(G) for all nonempty 
sets ACE. 
(d) dv: SM ➔ US is a bijection, and its inverse is iv. 

PROOF. (a) The 'if' part is trivial, the 'only if' part a special case of (c) for 
open A. 
(b) Follows from (a), Lemma 2.2(a,c) and Remark 2.3. 
(c) For all t EA we have dvm(t) :S /\a-:.:iA m(G), so VtEA dvm(t) :S /\a-:.:iA m(G). 
To prove the reverse inequality, fix x > VtEA dvm(t). For each t E A there 
is an open Gt 3 t such that m(Gt) < x, so m(UtEA Gt) :S x, implying 
/\a-:.:iA m(G) :S x. 
(d) Follows from (a). □ 

Let m be an increasing [-valued function on Q and let 9o be a base of g_ Obvi­
ously, dvm does not change if we restrict G to 90 in (2.1). Furthermore, if m 
is a sup measure (hence increasing), then its values on g are determined by its 
values on g0 and (2.2). The following theorem characterizes which functions 
on 9o can be extended to sup measures on g. 

2.6. THEOREM. (Extension Theorem). Let 90 be a base of g_ If m is an 
IT-valued function on 9o such that m(0) = 0 and {2.2} holds whenever Gi E 9o 
for j E J and ujEJ Gj E 9o, then m can be extended to a unique sup measure 
on g by {2.2). 

PROOF. By rephrasing Definition 2.l(a) and the proofs of Lemma 2.2(a) and 
Theorem 2.5(a) with 90 instead of 9, we obtain that dvm (in its new definition) 
is use, and that m = iv dv m on 90 . Hence the unique extension of m to g is 
ivdvm. □ 

If the topology g of E has a countable base, then (2.2) is equivalent to its 
restriction to countable J, whether or not restricted further to 90 . In particular 
this is the case if E = JR and 90 is the collection of open intervals in JR. 
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2. 7. EXAMPLE. Let E = ll4 as in Example 1.9. Then the sup measures 
m can be identified via m(-oo, •) with the nondecreasing left-continuous II­
valued functions on JR, and dv m turns out to be the right-continuous version 
of m(-oo, •). 

2.8. LITERATURE. SHILKRET (1970) investigated sup measures with emphasis 
on analogues of integration theorems in measure theory. This research was 
continued in the wider context of capacities by NORBERG (1986). Sup measures 
are a special case of semigroup-valued measures as studied by S1ON (1973). Sup 
measures are semilattice homomorphisms between (g, U) and (II, V), which are 
studied in categorical generality by GIERZ & AL. (1980). With some effort 
the duality between sup measures and usc functions can be related to a Galois 
connection (cf. GIERZ & AL. (1980, §0.3), the dual ofm being xi--+ intj+-[o,x] 
with f = dvm). Lemma 2.2(a) and part of Theorem 2.5 have been proved 
previously by BUTTAZZO (1977, Lemmas (1.5) and (1.6)) and GRAF (1980, 
Proposition 6.1). The terminology 'sup measure', 'sup derivative', 'sup integral' 
indicates that we are dealing here with 'minimax' analogues of measure theory 
and calculus, in the sense of CUNINGHAME-GREENE (1979) (replace + by V). 
Theorem 2.5(a) can be seen as the analogue of the Fundamental Theorem of 
integral calculus, which identifies the indefinite integral as an antiderivative. 

3. THE SUP TOPOLOGIES 
In the present section we introduce a class of topologies on SM= SM(E), the 
lattice of sup measures on g(E). By Theorem 2.5 we may identify SM with 
US via the bijections 

dv 

SM(E) +=2 US(E), 
iv 

so all topologies on SM carry over to US by declaring dv and iv homeomor­
phisms. The map 'ind': :F 3 Fi--+ lF injects :Finto US, and each topology on 
US induces in this way a relative topology on :F. 

Recall that the sup measures as defined in Section 2 have the open sets g 
as their domain. However, by Theorem 2.5(c) there is a canonical extension to 
all subsets A of E by 

The right-hand side depends only on A via sat A, so 

m(A) = m(sat A) for A C E, 

(31) 

(32) 

which result is equivalent to Theorem 1.8 by Theorem 2.5. Two classes of 
subsets of E will determine the topology on SM, the open sets g and another 
class B, the bounding class of the topology. For a bounding class we require only 
that it contains 0 (this condition does not matter here, but will be convenient 
later on when we consider :F(E)). Examples of bounding classes are: 
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B {0}, 
B .J .J(E) .- {finite subsets of E}, 
B = K, = K(E) .- { qcompact subsets of E}, 
B = :F :F(E) .- { closed subsets of E} as defined before, 
B g = Q(E), 
B :Fd .- {d-bounded closed subsets of E}, 

where dis a metric that metrizes the topology of E. 

3.1. DEFINITION. The sup topology on SM{E) with bounding class B, 
or the sup B topology on SM (E), is the smallest topology that makes the 
evaluations 

m f-t m(A) use for A E B, lscfor A E g. 

3.2. REMARKS. (a) The sets 

{m E SM: m(B) < x}, {m E SM: m(G) > x} for 

BEB,GEQ,xEK 

form a subbase of the sup B topology in SM. 
(b) A net (mn) converges sup B tom in SM iff 

lim SUPn mn(B) :S m(B) 
lim inf n mn ( G) ~ m( G) 

for B E B, 
for G E Q. 

(3.3) 

(3.4) 

(3.5) 

For additive Radon measures and B = K (3.5) is known to characterize vague 
convergence. Similarly, (3.5) with B = :F characterizes weak (or narrow) con­
vergence for additive bounded measures, in particular probability measures. 
Therefore we call sup K, convergence also sup vague convergence, and sup :F 
convergence also sup weak ( or sup narrow) convergence. 
(c) If mn ➔ min the sup {0} topology, then also mn ➔ m' for each m' :Sm. 
So the sup B topology is not Hausdorff for B = {0}. This may happen also for 
other B. 
(d) The sup g topology on SM is relative to the product topology on rr. 9. 

(e) The sup B topology on SM does not change if 
(el) B is enlarged to be closed for finite unions, 
(e2) Bis replaced by Bsat := {satB: B EB}. 

For (el) , note that 

lim supn mn(B1 U B2) = lim supn(mn(B1) V mn(B2)) 
:Slim supn mn(B1) V lim supn mn(B2) '.S m(B1) V m(B2) = m(B1 U B2) 

if mn ➔ m and B1, B2 EB; (e2) follows from (3.2). 

3.3. DEFINITION. The sup B topology on US(E) is the topology that makes 
the bijection <f./ between SM(E) and US(E) a homeomorphism. The sup B 
topology on :F(E) is the topology that makes the injection 'ind' from :F(E) into 
US ( E) a homeomorphism. 
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3.4. PROPERTIES. (a) The sup B topology on US(E) is the smallest that 
makes the sup evaluations 

f 1-t r (A) USC for A E B' lsc for A E 9' 

so fn 1-t fin US(E) iff 

lim supn f;{ (B) :'.5; jY (B) for B E B, 
lim inf n J;; ( G) 2: jY ( G) for G E 9. 

(b) The sets 

(3.6) 

(3.7) 

{ F E :F : F n B = 0} for B E B, { F E :F : F n G # 0} for G E 9 (3.8) 

form a subbase for the sup B topology on :F(E). Note that :F itself belongs to 
it, because 0 E B. A net CFn) converges sup B to Fin :F(E) iff the following 
implications hold: 

F n B = 0 ⇒ Fn n B = 0 for all sufficiently large n (BE B), 
F n G # 0 ⇒ Fn n G # 0 for all sufficiently large n (GE 9). 

(3.9) 

In set topology one usually preferred to consider :F(E) with the sup :F topology. 
In probability and optimization one considered :F(E), and more recently also 
U S(E), with the sup K, topology, for locally compact E. When it comes to 
probability in the present paper, we will restrict ourselves to the sup K, topology 
on US(E) for locally qcompact E (not necessarily Hausdorff). 

The properties of the sup B topologies depend strongly on the separation 
axioms assumed for the topology 9 on E and the interaction between 9 and 
the bounding class B. Here we list the separation axioms and interaction 
hypotheses that occur in this paper. 

3.5. SEPARATION AXIOMS FOR 9. The space E (or rather its topology 9) is 
(a) To if for each {t,u} c E there is a GE 9 such that #(G n {t,u}) = 1, 
(b) T1 if for each {t,u} C E there are G1,G2 E 9 such that G1 n {t,u} = 

{t},G2 n {t,u} = {u}, 
(c) T2 (Hausdorff) if G1 and G2 in (b) can be chosen disjoint, 
( d) T3 if for each t E E and F E :F with t (/. F there are disjoint G1, G2 E 9 

such that t E G1, F C G2. 

3.6. LOCAL AXIOMS FOR B. The space E (or rather its topology 9) is 
(a) locally B if for each t EE and each open G 3 t there is a BE B such that 

t E intB C B C G, 
(b) internally B for each t E E there is a B E B such that t E intB, 
(c) frogmentally B if for each t E E and each open G 3 t there is a B E B 

such that t E B C G. 
Synonyms for locally, internally and fragmentally K, are locally, internally and 
fragmentally qcompact (compact if Eis T2). 

3. 7. PROPERTIES. (a) If Eis locally B, then Eis internally Band fragmentally 
B. 
(b) the space E is locally B iff B contains a neighborhood base at t for each 
t EE iff for each open G there is a collection {Bj}jEJ c B such that 
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G = LJ intBj = LJ Bi. 
jEJ jEJ 

(c) the space Eis internally B iff E = LJBEB· int B, in particular if EE B. 
(d) If Eis T2 , then Eis locally compact iff Eis internally compact. A similar 
equivalence does not hold for local qcompactness in absence of T2. In particular, 
a qcompact Eis internally qcompact by (c), but need not be locally qcompact. 
For an example of the latter, consider the one-point qcompactification E' of 
a Hausdorff space E, obtained by adding one point oo to E and making the 
complements in E' of compact sets in E to be its open neighborhoods. Then 
E' is qcompact, and E' is locally qcompact iff E' is Hausdorff iff E is locally 
compact. 
(e) The space Eis locally g and internally :F. The space E is locally :F iff E 
is T3. 
(f) If :J C B, then E is is fragmentally B; :J C K; :J c :F iff E is T1 . 

(g) :F c K iff EEK. If Eis T2 , then KC :F. 

3.8. EXAMPLE. Let E = lllj, as in Examples 1.9 and 2.7. Then 

g = {0, JR, (-oo, t) : t E JR}, 
:F={0,JR,[t,oo) :tEJR}, 
K = {0,A C JR: supA EA}, 
pat = {0, JR}, 
Ksat = {0, (-oo, t] : t E JR}. 

The space lllj, is To, but not T1, T2, T3 ( = locally :F) or fragmentally :F. It is 
locally qcompact with countable base {0, (-oo, t) : t E ij}. The spaces US 
and SM have been described in Examples 1.9 and 2.7. Recall that US can be 
identified with the probability distribution functions on [-oo, oo]. 
The following characterizes fn ➔ f sup Bin US for different B: 
(a) B = {0}: J(t-):::; liminfnfn(t-) fort E JR, 
(b) B =:For {0, JR}: (a) and lim supn fn(oo-) :::; f(oo-), 
(c) B = g: limnfn(t-) = J(t-) fort E JR, 
(d) B = K or :J: 

J(t-) :::; lim infn f n(t-) :::; lim supn f n(t) :::; J(t) fort E JR 
¢? limn fn(t) = J(t) for all t where J(t-) = J(t). 

So US is not sup B Hausdorff for B = {0} or :F. It is Hausdorff, even compact 
for B =Kor g, and metrizable for B = K by a Levy-type distance) but not for 
B = g_ So US(lllj,) is sup vaguely compact and metrizable, even though lllj, is 
not Hausdorff. In the next sections we will identify the relevant properties of 
lllj, as local qcompactness with countable base. 

3.9. LITERATURE. Sup B topologies for various B were considered by ARENS 
& DUGUNDJI (1951), POPPE (1965, 1966) and MROWKA (1970). The sup 
:F or sup narrow topology in :F has been a major topic in set topology ( e.g. 
MICHAEL (1951) and NADLER (1978)). More common names are 'Vietoris' 
or 'finite' topology. A convergence concept in :F that is topologized by the sup 
K or sup vague topology in case E is locally qcompact is known since long, in 
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fact as a combination of notions of upper and lower limits in :F ( cf. CROQUET 
(1948), MROWKA (1958), KURATOWSKI (1966, §29), BERGE (1963, §I.9) 
and FLACHSMEYER (1964)). The first discussion about the sup vague topology 
in :Fas a topology is given by FELL (1962), followed by DIXMIER (1968), and 
MATHERON (1975) for E locally compact with countable base. Both the sup 
narrow and sup vague topologies are treated by KLEIN & THOMPSON (1984). 
Local axioms as in 3.6 were considered by CEDER (1961). 

If Eis metric and metrized by d, then K, is metrized by the Hausdorff metric 

(establishing distance oo between 0 and nonempty sets). If Eis compact, then 
:F and K, coincide, and the sup vague and sup narrow topologies are the same 
and generated by the Hausdorff distance. The space K, with the Hausdorff 
distance is classical and will not be discussed here. 

The sup vague or 'hypo' ( cf. Section 7) topology on US has been considered 
by several authors. Some of them start with the convergence concept: f n ➔ f 
in USiffforeach t E Ewehavelimsupn fn(tn) :S f(t) for all sequences (tn) ➔ t 
in E, and limn fn(tn) = f(t) for some sequence (tn) ➔ t in E (E locally 
compact with countable base). This is the case with DE GIORGI & FRANZONI 
(1975), BuTTAZZO (1977), who in fact study a more general collection of 
upper and lower limits in topology ('f- and G-limits'), which is also considered 
by DE GIORGI (1977, 1979). Other authors start with the embedding 'hypo': 
US(E) ➔ :F(E x JI'), like Mosco (1969) for convex functions, BEER (1982) for 
compact E and SALINETTI & WETS (1986). Characterizations (3.6) and (3.7) 
of the sup vague topology in US also occur in SALINETTI & WETS (1986) and 
NORBERG (1986). Only NORBERG (1986) and the present paper take it as 
starting point. 

The sup vague topologies in US and :F are a special case of the Lawson 
topology in continuous lattices (with reverse order) in case E is locally qcom­
pact, cf. Th.II.4.7 and Ch.III of GIERZ ET AL. (1980). 

4. GENERAL PROPERTIES OF THE SUP TOPOLOGIES 
We assume SM(E), US(E) and :F(E) provided with a sup B topology for 
some bounding class B. Note that :Fis a subspace of US after identification 
with its image under 'ind'. We start with examining this subspace. 

4.1. THEOREM. The range ind(:F) is sup B closed in US iff Eis locally B. 

PROOF. Let E be locally B. If f E USvnd:F, then f(t) E (0, 1) for some 
t E E. Select G such that t E G and jY(G) < 1. Then select BE B with 
t E intB C B c G. The basic open set 

contains f, but does not intersect ind:F. This proves that U Svnd:F is open. 
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Conversely, assume that USvnd:F is open. By Remark 3.2.(e) we may also 
assume that B is closed for finite unions and consists of saturated sets. Consider 

1 
f := - lancios t V lac. 

2 

Then f E US. We investigate when generic basic open sets 

U = {g E US: gv(Bi) < Xi for 1::; i::; m, gv(Gi) > Yi for 1::; j =::; n} 

contain f and do not interesect ind:F. For the latter, the actual values of Xi 
and Yi do not matter and may be replaced by extreme values. So we need to 
consider only 

U = {g E US: gv(B) < I, gv(Gi) > 0 for 1::; j =::; n}. 

We have Un ind:F = 0 iff Gi CB for some j, say j = k (if existing, consider 
lu;ciost; with ti E Gi \B for j = I, 2 ... , n, and note that closti n B = 0 iff 
ti (/. B because Bis saturated). We have f EU iff BC G and 
Gin (Ge U dost) =f. 0 for all j. Considering j = k we find Gk CB CG and 
Gk n dost =f. 0, sot E Gk CBC G. We have proved that Eis locally B. □ 

4.2. THEOREM. The following are equivalent: 
(i) SM and US are qcompact; 
(ii) :F is qcompact; 
(iii) B c IC. 

4.3. THEOREM. (a) SM, US and :F are To. 
(b) If Eis fragmentally B, then SM, US and :F are T1. 
(c) If Eis locally B, then SM, US and :F are T2. 
(d) If :F is T2, then Eis internally B. 

4.4. COROLLARIES. (a) The spaces SM, US and :Fare sup vaguely(= sup K.) 
qcompact for general E, and moreover compact if Eis locally qcompact. If E 
is T2 and SM, US or :Fis sup vaguely compact, then Eis internally compact, 
so locally compact by Property 3.7(d). So if Eis T2 , then each of SM, US and 
:F is compact iff E is locally compact. 
(b) The spaces SM, US and :Fare sup weakly (= sup :F) qcompact iff E is 
qcompact, and sup weakly compact if Eis qcompact and T3 (= locally :F). 

PROOF OF THEOREM 4.2. By (3.4) each closed set in US is an intersection of 
finite unions of 

U: r(B) 2: x}, U: fv(G)::; y} for BE B, GE g, x,y E IL 

By Alexander's subbase theorem (KELLEY (1955, p.139)) US is qcompact iff 
for each instance of 

nu: r(Bi) 2: xi} n nu: r(Gi)::; Yi}=: 
iEI iEl n F1,i n n F2,i = 0 

(4.1) 

iE/ iEJ 
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the same holds true with I and J replaced by finite subsets. Set 

g := /\ (yilE) V lE\G;). 
iEJ 
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Then g is use by Corollaries l.3(a,b), and niEJ F2,i = {! : / ::; g}. Further­
more, if Ji, /2 E US,fi::; /2 and niEJFl,i contains Ji, then also /2. So (4.1) 
holds iff 

(4.2) 

(iii) => (i). Assume B C K,. Assume further that E = LJiEJ Gi (this is no 
restriction: if necessary, add a j with Gi = E and Yi = 1 in (4.1)). Suppose 
that (4.1) holds and fix an i that realizes (4.2). Let Ji CJ be the collection of 
j such that Bi nGi-:/- 0 and Yi< Xi· Then Bi C LJiEJ, Gi. As Bi is qcompact, 
we have Bi C LJiEJ Gi for some finite J# CJ;. Defining 9# by reducing J to 
J# in the definitiorf" of g we find 

g'ft(Bi)::; V g'ft(Gi)::; V Yi < Xi, 
iEJ# iEJ# 

so (4.1) already holds with {i} instead of I and J# instead of J. We have 
proved that US is qcompact. 
(i) => (iii). Conversely, if US is qcompact, consider (4.1) with only one i, Bi= 
BE B, Xi := 1, Yi:= 0 for j E J. (4.1) is equivalent to (4.2), thus to 

(4.3) 

Reduction to finite J, being possible as US is qcompact, is equivalent to the 
same reduction in (4.3). Hence Bis qcompact, which proves BC K,. 
(iii) {:} (ii). Repeat the proof of (iii) {:} (i) with ind'.F) instead of US, {O, 1}­
valued J, Xi := 1, Yi := 0. □ 

PROOF OF THEOREM 4.3 (a,b,c). It is sufficient to prove the statements for US, 
as SM is homeomorphic and Fis a subspace. So suppose g, h E US and g -:/- h. 
Then g(t) -:/- h(t) for some t E E, say g(t) < h(t). Let g(t) < x < h(t). Then 
gv(G) <x for some open G ~ t, so the basic open set {J E US: jY(G) > x} 
contains h, but not g. This proves US to be T0 • 

If moreover, Eis fragmentally B, then we can find B with t EB CG, and 
the basic open set {J E US: jY(B) < x} contains g, but not h. This proves 
US to Ti. 

Finally, if E is locally B, then select B E B with t E intB C B C G. 
Then {J E US : jY(B) < x} and {J E US : jY(intB) > x} are disjoint 
neighborhoods of g and h, which proves US to be T2 • □ 

Before proving Theorem 4.3(d), we examine first the basic open sets in F, 
intersections of finitely many sets in the subbase (3.8). If Bis closed for finite 
unions, then they have the form: 
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{FE.r: FnB=0, FnGj:;l:0forj=l,2, ... ,n} (44) 

with n E No, B E B and Gj E g for j = 1, 2, ... , n. In particular, we must 
know when a set as in (4.4) is not empty. 

4.5. LEMMA. The set in (4-4) is empty iff Gi C satB for some j. 

PROOF. The set in (4.4) is empty iff for each open H => B(H := E\F), there 
is a Gi with H => Gi. The latter holds if Gi c satB for some j. If, on the 
other hand, Gi C satB for no j, then there is for each j an open Hi => B such 
that Hi"/> Gi. Consequently, H := n;=1 Hi=> Band H => Gi for no j. D 

PROOF OF THEOREM 4.3(d). It is no restriction to assume B closed for finite 
unions. For if C is the collection of finite unions in B, then csat is the collection 
of finite unions in Bsat, and if E is internally csat, then E is also internally 
Bsat. So let B be closed for finite unions and let .r be T2 • Fix t E E. Then 0 
and dost have disjoint neighborhoods in .r. By (4.4) their form is 

U = {FE.r:FnB1= 0}, 
V = {FE.r:FnB2 = 0, FnGi:;l:0forj=l,2, ... ,n} 

with t E G i for j = 1, 2, ... , n ( note that G i n dost # 0 iff t E G i). By Lemma 
4.5 we have Un V = 0 iff Gi C sat(B1 U B2 ) for some j. So there is a j with 
t E Gi C sat(B1 U B2), which proves E to be internally Bsat_ D 

4.6. LITERATURE. Special cases of Theorem 4.1 occur in KLEIN & THOMPSON 
(1984). The sup narrow topology in .r is more 'hereditary' in its properties 
(cf. Property 4.4(b)). This could explain why this topology received almost 
exclusive attention from set topologists. The fact that .r is sup vaguely qcom­
pact has been proved by many authors, e.g. CROQUET (1948), FELL (1962), 
KLEIN & THOMPSON (1984), and MATHERON (1975) for E locally compact 
with countable base. Sup vague qcompactness of US has been proved by BuT­
TAZZO ( 1977) for E being locally qcompact with countable base and SALINETTI 
& WETS (1981) for E = JR.d. It also follows from Th.II.4. 7 and Th.III.1.10 of 
GIERZ ET AL. (1980). The last part of Corollary 4.4(a) has been proved also 
by DIXMIER (1968) and GIERZ ET AL. (1980). The latter reference contains 
also an extension of the equivalence to non-Hausdorff spaces: If Eis sober (cf. 
Section 9), then US and .r are sup vaguely Hausdorff iff E is locally qcom­
pact. For a new and very simple proof that US is sup vaguely compact, see 
HOLWERDA (1993b). 

5. THINNING THE CONVERGENCE CRITERIA TO BASES 
The object of the present section is to thin out characterization (3.3) of the sup 
B topology on SM (and thus also on US and .r) to equivalent characterizations 
with Band g replaced by subclasses 80 and Q0 . The g part is easy. 

5.1. LEMMA. Let 9o be a base of g. If the evaluation 

SM 3 m 1--t m(G) E II 
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is lsc for G E go, then also for G E g. 

PROOF. If G E g, then G = LJjEJ Gi for some collection {Gj}jEJ C go, so 
m ....+ m( G) = V jEJ m( G i) is lsc as supremum of lsc functions. □ 

The B part is more demanding, and will in fact be handled only in case B = K. 

5.2. LEMMA. Let E be locally Ko with Ko CK. If 

SM 3 m ....+ m(K) E II 

is usc for KE Ko, then also for KE K. 

PROOF. We may and will assume Ko to be closed for finite unions ( cf. Remark 
3.2(el)). We will show that 

m(K) = I\ m(Q) for KE K, (5.1) 
QEICo:Q-:JK 

from which it follows that m ....+ m(K) is usc as infimum of usc functions. 
Trivially we have ~ instead of= in (5.1). To prove the reverse inequality, let 
m(K) < x. We will show that m(Q) ~ x for some Q E Ko with Q :J K. We 
have KC G := (dvm)r-[O, x), which is open by Lemma 2.2 and Theorem 1.2. 
By Property 3. 7 (b) we have G = LJiE J intKj = LJ jEJ Ki for some collection 
{KibEJ c K0 . As KE Kand KC G, there is a finite subset J# of J such 
that 

K C LJ intKi C LJ Ki =: Q C G. 
jEJ# jEJ# 

Now Q E Ko, Q :J Kand m(Q) ~ m(G) ~ x. □ 

5.3. THEOREM. If go is a base of g, Ko CK and Eis locally Ko, then the sup 
vague ( = sup K) topology on SM is the smallest that makes the evaluations 

m ....+ m(A)usc for A E Ko, lsc for A Ego. 

PROOF. Combine Lemmas 5.1 and 5.2. □ 

5.4. LEMMA. If go is a countable base of g and Eis locally K, then Eis locally 
Ko for some countable Ko CK. 

PROOF. For all G1, G2 E go such that there is at least one K E K with 
G1 c intK CK C G2, select one K(G1,G2) EK. Set Ko:= {K(G1,G2)}. D 

5.5. THEOREM. If Eis locally qcompact, then SM, US or :F are sup vaguely 
metrizable iff E has a countable base. 

5.6. REMARK. If Eis locally qcompact, then SM, US and :Fare sup vaguely 
compact by Corollary 4.4(a), so metrizable iff they have a countable base. 
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PROOF OF THEOREM 5.5. By Remark 5.6 we must show that SM, US or 
:F has a countable base iff E has one. If E has a countable base go, then 
E is locally Ko for some countable Ko C K by Lemma 5.4, and a countable 
subbase of the sup vague topology on SM is given by the subbase in (3.4) with 
B E Ko, G E g0 and x E lI n (Q. So SM has a countable base, as does US and 
its subspace :F. 

If :F has a countable base U of the sup vague topolgy, then it has also a 
countable base V consisting of finite intersections of subbase sets as in (3.8) 
(select one such set between each pair of U1 C U2 in U). Let T be the coarser 
topology in :F with subbase consisting of 0 and { F E :F : F n G f=, 0} for 
G E g_ Then each {F E :F : F n G f=, 0} is union of elements of V, but 
does not have any { F E :F : F n K = 0} as subset, since it does not contain 
0 E {FE :F: F n K = 0}. So W consisting of all elements of V that are finite 
intersections of sets { F E :F : F n G f=, 0} is a countable base for T. Let c be 
the map 

E3t1-+clostE:F. 

Then c(t) = c(u) iffno open set in E separates t and u. Identifying such points 
we make E a T0 space, and c an injection. Furthermore, c is bicontinuous if :F 
is provided with the topology T: 

{t EE: c(t) n G f=, 0} = G 

for G E g. So E is a subspace of ( :F, T) after identification via c. As ( :F, T) has 
a countable base, E does. D 

We now investigate how we can select the subclasses Ko of K as in Theorem 5.3 
or Lemma 5.4 under more specific assumptions. Note that satK is qcompact 
if K is. 

5. 7. EXAMPLE. If Eis locally compact (thus Hausdorff), then with a base g0 

we can choose Ko := { closG : G E g0 } n K. 

5.8. EXAMPLE. If Eis locally compact with countable base, then Eis metriz­
able, say by d. Set fort EE and r E (0, oo): 

B(t,r) := {uEE:d(t,u)<r}, 
B(t,r+) := {uEE:d(t,u)~r}. 

(5.2) 

Let D be a countable dense subset of E. Then a countable base g0 and a 
countable Ko C K such that E is locally Ko are given by 

go := {B(t,r): t ED, r E (Q n (0, oo), B(t,r+) EK}, 
Ko := {B(t,r+): t ED, r E Qn (0,oo), B(t,r+) EK}. 

(5.3) 

Note that for fixed t we have B(t, r+) compact for all sufficiently small r (not 
for all r: consider E = (0, 1) with the usual metric and topology). One can 
metrize the same topology in such a way that all B(t,r+) are compact (cf. 
VAUGHAN (1937)). Our present choice of Ko with g0 does not follow the recipe 
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of Example 5.7, as closB(t,r) = B(t,r+) need not hold in general (consider 
r = 1 in a discrete E with d(t, u) = 1 fort -:j, u). 

5.9. LITERATURE. The combination of Theorem 5.3 with Example 5.8 for 
E = m_d has been proved by SALINETTI & WETS (1981). For a completely 
different approach (cf. lines following Example 10.2), see NORBERG (1984, 
1986). The 'if' part of Theorem 5.5 has been proved by DIXMIER (1968) and 
MATHERON (1975). 

6. EXAMPLES AND FURTHER PROPERTIES 
The following examples exhibit some properties of the sup K, and :F topologies 
in US(R). 

6.1. EXAMPLES. E = IR,n = 1,2, ... ,fn E US(R). 
(a) f n := l{n}· Then f n ➔ Om_ sup K, but Un) does not converge sup :F. 
(b) fn(t) := ½+½ ·(-lt cosn½t. Then fn ➔ lm_ sup K, and :F, whereas Un(t)) 
does not converge in JI for any t. 
(c) fn := 1{1/n}· Then f n ➔ l{o} sup K, and :F, whereas fn ➔ Om_ pointwise. 
(d) f n := l{i/n} for even n, 1{1-l/n} for odd n. Then Un) does not converge 
sup K, of :F, whereas fn ➔ Om_ pointwise. 
(e) fn := 1(-oo,1/n] + 112/n,oo)· Then fn ➔ lm_ sup K, sup :F and pointwise. 

We now show that in many instances monotone nets in SM and US converge. 

6.2. THEOREM. (a) If (mn) is an increasing net in SM and m(G) := V n mn(G) 
for GE (J, then m E SM and mn ➔ m sup B for any bounding class B. 
{b) If Un) is a decreasing net in US with pointwise infimum f, then f E 
US,fn ➔ f sup K, and f;{(K) ➔ jY(K) for KE K. 

PROOF. (a) Obviously, SM is closed for arbitrary suprema by (2.2), and 
liminfnmn(G) = limnmn(G) = m(G) for GE (J. Furthermore, mn(B)::::; 
m(B), so lim supn mn(B) ::::; m(B) for B E B. 
(b) US is closed for arbitrary infima (Corollary 1.3(b)), so f E US. Let KE K,. 
Since J;{ (K) is nonincreasing inn and J;-: (K) 2 jY (K), we have limn f;{ (K) 2 
jY(K). If limn J;{(K) > x > jY(K) for some x E JI, then the nonempty 
qcompact sets Kn f1i[x, 1] would decrease to the empty set K n r-[x, 1], 
which is impossible. So J';{(K) ➔ jY(K). Trivially, limnJ;-:(G) 2 jY(G) for 
GE <J, as J;-:(G) 2 jY(G), so fn ➔ f sup K. □ 

6.3. COROLLARY. If Kn.IX in K, n :F and m E SM, then m(Kn).!.m(K). 

PROOF. Apply Theorem 6.2(b) to fn := 1Knd'1m with K1 instead of the Kin 
Theorem 6.2(b). □ 

Even for nonmonotone nets the convergence J;-: (K) ➔ jY (K) in Theorem 
6.2(b) is interesting. 
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6.4. THEOREM. Let fn, f E US. Then the following statements are equivalent. 
(i) f n ➔ f sup K. and pointwise; 
(ii) g(K) ➔ jY(K) for KE K.. 

PROOF. (i) ⇒ (ii). Let KE K.. By 3.7 and Corollary 1.3(c) we have for some 
tK EK: 

limsupn J,;'(K):::; jY(K) = J(tK) = limn fn(tK):::; liminfn f,Y(K). 

(ii) ⇒ (i). Choosing K = {t} we obtain pointwise convergence. For GE g 
we have 

liminfnf,;'(G) = liminfn Vteafn(t) 2". VtEGliminfnfn(t) 
= Vtealimnfn(t) = Vteaf(t) = JY(G). 

Together with the hypothesis this implies f n ➔ f sup K. by (3. 7). □ 

6.5. REMARK. One can prove that fn ➔ f sup K. and pointwise ifI fn ➔ 
f locally uniformly in the semimetric d(x, y) := (x - y)+ on lit, i.e. iff 
d(f (t), f n(t)) ➔ 0 uniformly on qcompact sets in E. See Section 8 for the 
definition of 'semimetric'. 

6.6. LITERATURE. The results in Remark 6.5 and related relative compactness 
criteria have been obtained by SALINETTI & WETS (1979). DOLECKI ET AL. 
(1983) and BEER (1982). 

7. HYPO TOPOLOGIES 
Here is a diagram of one-to-one maps that we have found in Sections 1, 2 and 3. 
Horizontal arrows denote surjections, vertical arrows injections; SM= SM(E) 
is the lattice of sup measures on Q(E), US= US(E) the lattice ofusc functions 
on E, 'ind' the indicator map :F(E) 3 F i--+ lp and 'id' is the identity map. 
All maps are in fact lattice isomorphisms, since they are order preserving. 

SM(E) US(E) 

:F(E) 

:F(E x lI't) 

{-id 

:F(E x IT') 

In Sections 3 and 4 we considered topologies on the different spaces in relation 
with the maps dv, iv and 'ind'. In the present section we will concentrate on 
relations with the maps 'hypo' and 'id'. 

Set E* := Ex IT't. Each class B* of subsets of E* determines a sup B* 
topology on :F(E*), by Definitions 3.1 and 3.3. We carry this over to a topology 
on US(E) by 'hypo'. 

7.1. DEFINITION. The hypo B* topology is the topology on US(E) that makes 
US(E) homeomorphic to :F(E x lI't) with the sup B* topology via hypo. 

Set K.*(E) := K.(E*). Then the sup vague topology on :F(E*) is the sup K.* 
topology (cf. Remark 3.2(b)). Let us call the hypo K.* topology on US(E) the 
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hypo vague topology. The following is a very convenient property that justifies 
our preference for vague topologies. Note that there is no condition at all on 
the underlying topological space E. 

7.2. THEOREM. The sup vague and hypo vague topolgies on US(E) coincide. 

PROOF. Recall that all elements of F(E*) have the form hypo/ for some 
f E US(E), by Theorem 1.6. For GE g(E),x E [O, 1) and f: E ➔ IT we have 

jV(G) > x <=> hypo/ n (G x (x, 1]) f: 0. 

For KE /C(E),x E (0, 1] and f E US(E) we have by Corollary 1.3(a) 

jV(K) < x <=> hypo/ n (K x [x, 1]) = 0. 

(7.la) 

(7.lb) 

The f E US(E) satisfying the left-hand sides of (7.1) form a subbase of the 
sup vague topology on US(E). Note that G x (x, 1] E g* := g(E*) and that 
K x [x, 1] E /(* (cf. lines preceding Definition 1.1 with At instead of Al.). 
Consequently, the sets hypo f E F(E*) satisfying the right-hand sides of (7.1) 
are open as subbase sets of the sup vague topology on F(E*). We have shown 
that hypot- is continuous. 

The remainder of this proof serves to show that also 'hypo' is continuous. 
So we must show that 

{f E U S(E) : hypo/ n G* f: 0} for G* E g* (7.2a) 

and 

{J E US(E) : hypo/ n K* = 0} for K* E /C* (7.2b) 

are open subsets of US(E). By Lemma 5.1 applied to F(E*) as subspace of 
US(E*) ~ SM(E*) we need to show (7.2a) to be open only for G* varying 
through a base g0 of g*. Such a base are the open rectangles G x (x, 1] as in 
(7.la), and (7.la) gives us what we need. 

We now consider (7.2b). Let 1r1 : (t,x) t-+ t be the projection in E* onto 
the first component. Set for n = l, 2, ... 

2n 

K~ := LJ (1r1(K* n (Ex (O,krn])) x [(k - l)rn, ll). 
k=l 

Then K~ ::J K*, so hypo JnK* = 0 if hypo JnK~ = 0 for some n. Conversely, if 
hypo JnK~ = 0 for all n, then there are tn E 1r1K* and (tn, Xn) EK* such that 
Xn - f(tn) ::; 2-n. Since 1r1K* and K* are qcompact, we arrive after passing 
to subsequences at the situation tn ➔ to in 1r1K* and (tn,Xn) ➔ (t0 ,x0 ) in 
K*. The latter convergence implies Xn ➔ x0 in IT't, i.e., lim inf Xn 2'.: x 0 in IT'. 
Since f is use, it follows that 

J(to) 2'.: lim sup f(tn) 2'.: lim sup(xn - rn) 2'.: xo, 

while (to, xo) EK*. So hypo f n K* f: 0. We have proved 
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{f E US(E): hypo/ n K* = 0} = LJ:=l {f E US(E): hypo/ n K; = 0} 

= LJ:=l LJ~:1 {f E US(E): jV(1r1(K* n (Ex (0,k2-n])) < (k -1)2-n}. 

The right-hand side is a union of open sets, since /v is applied to qcompact 
sets. For the last observation, note that a continuous function 1r1 is applied 
to a qcompact set, an intersection of the qcompact set K* with the closed set 
Ex (0,k2-n] in E*. □ 

We now consider the last (vertical) arrow 'id' in the diagram at the beginning 
of this section. From the next theorem it follows that it is a homeomorphism 
if the spaces on its both sides are provided with the sup vague topology. 

7.3. THEOREM. (a) F(E x JI't) with the sup vague topology is a subspace of 
F(E x JI') with the sup vague topology. 
(b) If E is locally qcompact, then this subspace is closed. 

Before proving the theorem we introduce some convenient notation and a 
lemma. For x E JI', set tx := [x, l]. For C C JI', set tC := UxEC tx. For 
Ac Ex JI', set tA := Uct,x)EA{t} x tx. Note that tA C satA in Ex JI't, so 
that for F* E F(E x JI't) we have 

F* n A = 0 ~ F* n t A = 0 ~ F* n satA = 0 (7.3) 

(cf. lines following Definition 1.7). In general, saturations of qcompact sets are 
qcompact. Consequently, tK* E K(E x JI't) if K* E K(E x JI't), but we can 
say more. 

7.4. LEMMA. If K* E K(E x JI't), then tK* E K(E x JI'). 

PROOF. Let 1-l be the base of g(E x JI') consisting of rectangles H = G x I 
with GE g(E) and I an open interval in JI'. Then tH = G x tI E g(E x JI't). 
Suppose tK* C LJiEJ Hi with Hi E 7-l. Then also tK* C LJiEJ tHi. Since 
tK* E K(E x JI't), there is a finite J# CJ such that tK* C LJjEJ# tHi. Let 1r1 
and 1r2 be the projections on the first and second component of Ex JI', and define 
.!.H starting from ..J,x := (O,x] for x E JI'. Then 1r1tK* = 1r1K* E K(E), and 
1r2tK* has the form [x, 1], so belongs to K(JI'). Consequently, 1r1tK* x 1r2tK* 
belongs to K(E x JI') and so does 

Consequently, a finite subcollection of (Hj)jEJ covers the right-hand side, so a 
finite subcollection covers t K*. □ 

PROOF OF THEOREM 7.3. (a) First of all, the topology of E x JI't is coarser 
than that of E x JI', so F(E x JI't) c F(E x JI'). The subbase open sets of 
F(E x JI't) are {F*: F* nG*-/:- 0} and {F*: F* nK* = 0} for G* E g(E x JI't) 
and K* E K(E x JI't). Recalling that g(E x JI't) C g(E x JI') we identify 
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{F* : F* n G* ::/ 0} as the trace in (:F x ll't) of a subbase open subset of 
:F(E x l11). By {7.3) we have 

{F*: F* n K* = 0} = {F*: F* n tK* = 0}, 

and by Lemma 7.4 we can identify the right hand side as the trace in :F(E x ll1t) 
of a subbase open subset of :F(E x ll1). We have proved (a). 
{b) For general E,:F(E x l11t) is sup vaguley qcompact by Corollary 4.4{a). If 
Eis locally qcompact, then so is Ex ll1, so :F(E x ll1) is Hausdorff by Theorem 
4.3(b). In this case the qcompact subset :F(E x ll1t) is closed. D 

7.5. LITERATURE. BUTTAZZO {1977, Prop. {1.12)) proved that US(E) is sup 
vaguely homeomorphic to a subset of :F(E x ll'). Theorem 7.2 is a consequence 
of a general representation theorem in GIERZ ET AL. {1980) that identifies 
certain continuous lattices as :F(E*) with E* the set of primes of the lattice in 
question. For more and very general results on closed epigraphs, see HOLWERDA 
{1993). 

8. NON-HAUSDORFF LOCALLY QCOMPACT SPACES 
The next two sections can be skipped by readers who are not interested in 
non-Hausdorff spaces. In the present section all material is concentrated that 
may be relevant for readers who want to restrict their considerations of non­
Hausdorffness to E x ll1t with E Hausdorff. 

Let us consider the diagram at the beginning of Section 7. From the the­
orems in Sections 4 and 7 we know that things are particularly nice if E is 
locally qcompact, but not necessarily Hausdorff, and all spaces are endowed 
with the sup vague topology. Then all spaces are compact, and all arrows are 
homeomorphisms (into when vertical). If, in addition, Eis Hausdorff, or more 
specially, metric, then Examples 5. 7 and 5.8 indicate convenient choices of sub­
collections K,0 of K, for defining smaller subbases of the sup vague topologies 
on the spaces SM(E), US(E) and :F(E) {cf. Theorem 5.3). 

In this section we explore what remains of this when E is not Hausdorff. 
This is useful, because we want to be able to consider also E* := Ex ll1t, which 
is not Hausdorff, but is locally qcompact if E is. The following examples are 
instructive. 

8.1. EXAMPLE. Let E = llll- as in Example 1.9. Nonempty A C Illl- are 
qcompact iff sup A EA. Thus Kn:= (-oo,0) U {n} is qcompact for n = 1, 2, 
but K1 n K2 = ( -oo, 0) is not. We see that K(Illl-) is not closed for finite 
intersections. Let G be open and nontrivial, so G = (-oo,x) for some x E lit 
Then G is relatively qcompact, i.e., contained in some qcompact set. There 
is even a smallest saturated qcompact set Q containing G, viz. Q = (-oo,x]. 
We cannot obtain Q by taking closures as in Example 5.7, since closG = lit In 
fact, the only closed qcompact set is 0. 

8.2. EXAMPLE. Let E =Qi.with the relative lower topology from Illl-- Again, 
nonempty A C Qi. are qcompact iff sup A E A. The generic open set is 
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(-oo, x) n Q with x E JR. Now G := (-oo, 11") n Q is relatively qcompact since 
G c (-oo, q] n Q for q > 11", q E Q. However, there is no smallest qcompact set 
containing G. 

The first step to overcome these problems is considering saturated qcompact sets 
rather than qcompact sets. We write Q = Q(E) for the collection of saturated 
qcompact sets, with generic element Q. It is immediate that satK E Q iff 
KE IC. 

We have 

Q(JR.!.) = {0, (-oo,x] : x E JR} and Q(Q!-) = {0, (-oo, q] n Q: q E Q}. 

Note that in both cases Q is closed for finite intersections, but that only Q(JR.!.) 
is closed for arbitrary intersections. There are E for which Q(E) is not even 
closed for finite intersections (cf. Example 9.7(b)). 

These observations lead us to the following regularity condition that we will 
impose on E. 

8.3. DEFINITION. A topological space is a Q 0 space if the collection Q of its 
saturated qcompact sets is closed for arbitrary intersections. 

Hausdorff spaces are Q0 , and so are lit!- and JI't, but Qi is not. If A C E is 
relatively qcompact and E is Q O, then the intersection of all saturated qcompact 
sets containing A is the smallest such set. We will denote it by sqcA, the 
saturated qcompactification of A. For Hausdorff E we have sqcA = closA for 
relatively compact subsets A. For non-Hausdorff spaces which are Q0 , 'sqc' 
takes over the role of 'dos'. We now can generalize Example 5.7 to 

8.4. EXAMPLE. If Eis locally qcompact and Q0 , then with a base Q0 we can 
choose 

/Co:= {sqcG: GE Q0 , G relatively qcompact } 

in Theorem 5.3. 

It would be nice to generalize Example 5.8 as well to non-Hausdorff spaces. The 
only way to do this is by generalizing the notion of 'metric', since all metric 
spaces are Hausdorff. Here are some partial results. 

8.5. DEFINITION. A semimetric on Eis a map d: Ex E ➔ [0, oo) such that 
d(t, t) = 0 fort EE and satisfying the triangle inequality 

d(t, v) ::; d(t, u) + d(u, v) fort, u, v EE. 

Note that we do not require d(t,u) = d(u, t). We define the balls B(t,r) 
and B(t, r+) for semimetrics as in (5.2). As for metrics, one proves that the 
balls B(t, r) form a base of a topology, by definition the topology generated 
or semimetrized by d. For example, JR.!. (Example 8.1) is semimetrized by 
d(t,u) := (u-t)+, and more generally, (IR.!-r by d(t,u) := v:==l(uk-tk)+. 
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In general we have for semimetric E 
(a) satt = {u EE: d(t,u) = 0}, 
(b) closu = {t EE: d(t,u) = 0}, 
(c) the net (tn)n converges tot in E iff d(t, tn) ➔ 0. 
Note that (a) and (b) express the more general equivalence u E satt {:} 
t E closu. 

8.6. THEOREM. If E has a countable base, then Eis semimetrizable. 

PROOF. Let G1 ,G2, ... be a base for E. Define for t,u EE 
00 

n=l 

29 

One easily checks that d is a semimetric. We now show that d generates the 
same topology as G1 ,G2 , .... If t E Gn, then {s: d(t,s) < 2-n} C Gn, so Gn 
is d-open. On the other hand, with N such that :En>N 2-n < f we find 

tE n GnC{u:d(t,u)<t:}. □ 
n,SN:tEGn 

Recall that the balls B(t, r+) are defined as in (5.2) for semimetrics d. In 
general, the balls B(t, r+) need not be closed. If E is locally compact (thus 
also Hausdorff) and is metrized by d, then for fixed t the (then closed) balls 
B(t, r+) are compact for all small r (cf. Example 5.7). If Eis locally qcompact 
and semimetrized by d, then the balls B(t, r+) are saturated (as intersection 
of the open sets B(t, s) for s > r), but not necessarily qcompact, even for small 
r. However, in the Qli space IlU of Example 8.1 all balls B(t,r+) = (-oo,t+r] 
are qcompact. 

8. 7. DEFINITION. If Eis semimetrized by d, then dis said to be Q compatible, 
and E is said to be semimetrized Q compatibly by d if for each t E E we have 
B(t,r+) E Q for all small r. 

8.8. COROLLARY. If Eis locally qcompact and Q compatibly semimetrized 
by d, then Ko as in (5.3) can be substituted in Theorem 5.3. 

8.9. EXAMPLES. (a) All metrics on locally compact spaces are Q compatible. 
(b) The semimetric d(t,u) = (u - t)+ on JlU is Q compatible. 
(c) The semimetric d(t, u) = (u - t)+ on Q.,i is not Q compatible: B(O, 1r+) = 
(-oo, 1r) n Q is not qcompact. However, there is another semimetric d' that 
generates the same topology and is Q compatible: d' (t, u) := cp((u-t)+), where 
cp(0) := O,cp(t) := 2-n fort E [2-(n+l),2-n),n E Z. 

We do not know whether all semimetrizable locally qcompact spaces can be 
semimetrized Q compatibly. It is even hard to verify if specific spaces are Q 
compatibly semimetrizable, as for instance (([-oo,0)U[l,oo)).!.)2. However, in 
many specific cases it is easy to find Q compatible semimetrics, and the number 
of such cases is extended by 
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8.10. LEMMA. If E(i) and E<2) are locally qcompact and Q compatibly semime­
trizable, then so is E := E(i) x E(2). 

PROOF. First of all, E is locally /Co with /Co the qcompact rectangles, so E is 
locally qcompact. If E(n) is Q compatibly semimetrized by the semimetric d(n) 

for n = 1,2, then Eis by the semimetric d(t,u) := V!=i d(nl(t<nl,u(n)). □ 

8.11. COROLLARY. If Eis locally qcompact and Q compatibly semimetrizable, 
then so are Ex JI't and Ex JI'. In particular, the conclusion holds true if Eis 
locally compact and metrizable. 

8.12. LITERATURE. The same notion of 'semimetric' occurs in NACHBIN 
{1965). 

9. MORE ABOUT NON-HAUSDORFF SPACES 
First we make a fundamental observation about the spaces in the diagram of 
lattice isomorphisms in the beginning of Section 7. If we are given a toplogical 
space (E,g), then US(E) depends only on this space via g_ More specifically, 
if (Ei,gi) and (~,g2) are two topological spaces such that gi and g2 are 
lattice isomorphic, then US(Ei) and US(~) are lattice isomorphic. This is 
obvious in the diagram on the left side since SM(E) is a space of functions on 
g, and on the right side since :F(E x JI't) depends on (E, g) only via g. If, 
moreover, the bounding class B in the sup B topology on US ( E) depends on 
( E, g) only via g ( which is the case for B = :F but not for B = K,) then US ( E) 
as a topological space depends on ( E, g) only via g. 

This makes it useful to study which topological spaces E have lattice iso­
morphic topologies g. First we must get rid of a trivial complication. If two 
points in E are not separated by any open set, then we can identify them with­
out affecting the lattice of open sets. By identifying all nonseparated points we 
make Ea T0 space. Therefore we will often assume that Eis T0 • 

We now start with an example. As in Example 8.2, let QJ.. be the rationals 
provided with the lower topology, the relative topology from lllj... Then its 
nontrivial open sets are given by (-oo,x) n Q for x E Ill We see that the 
topology of QJ.. is lattice isomorphic to that of lllj... Intuitively we may feel 
that JR as a total space fits better in the topology than Q. We now provide 
theoretical support for this feeling. At this point it is more convenient to regard 
a topology determined by the closed sets :F rather than the open sets g. 

9.1. DEFINITION. A set FE :Fis called prime if F =j:. 0 and F = Fi UF2 with 
Fi,F2 E :F implies F = Fi or F2. 

9.2. REMARK. From the definition it follows that closA (A c E) is prime 
iff A =j:. 0 and An Gn =j:. 0 for open Gn (n = 1, 2) implies An Gi n G2 =j:. 0. 
In particular singleton closures are prime. Moreover, in a Hausdorff space a 
prime closed set cannot contain two points, so the prime closed sets are just 
the singletons. The characterization in the first clause of this remark remains 
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valid with G1 and G2 coming from a base 9o of Q. 

9.3. EXAMPLE. In QI, the prime closed sets (Q and [x, oo) n (Q with x E IR\ij 
are no singleton closures. In lill- the total set IR is prime closed and no singleton 
closure. 

The observations in the example suggest us what to do. If F is a prime closed 
set that is not a singleton closure, then add a new point x to E that by definition 
is contained in each open set that intersects F, to obtain F = closx. Formally 
one performs this by making a new topological space whose points are the 
primes in :F(E). See Section 1 of HOFMANN & MISLOVE (1981), from which 
we borrow the following definition and result. 

9.4. DEFINITION. A topological space E is sober if it is To and each prime 
closed set in E is a singleton closure. 

9.5. THEOREM. For each space E there is a sober space sobE, unique up to 
homeomorphism, such that Q(sobE) is lattice isomorphic to Q(E). 

9.6. EXAMPLE. sobQI, :=sobllll- :=[-00,00),l.. 

We call sobE the sobrification of E. The term is not very suggestive, as sobE 
is a kind of completion of E. It is the largest To space with topology lattice 
isomorphic to Q(E). We make a T0 space Ea topological subspace of sobE by 
identifying points whose closure complements are mapped on each other by the 
lattice isomorphism between the topologies. We already noticed that US(E) 
and US(sobE) are lattice isomorphic, and homeomorphic with the sup weak 
topologies but not necessarily with the sup vague topologies. 

It is hard to find examples of the latter, but HOFMANN & LAWSON (1978, 
§7) exhibit one in which every qcompact set in E has empty interior, whereas 
sobE is locally qcompact. Consequently, US(sobE) is sup vaguely Hausdorff 
by Theorem 4.3(c), whereas US(E) is not, by Theorem 4.3(d). 

In Examples 8.1 and 8.2 we observed that in general /C is not closed for 
intersections, but that Q := { satK : K E IC} is closed for intersections in some 
of the cases where /C fails to be so. We called E a Q0 space if Q is closed for 
arbitrary intersections, and found that lill- is Q0. The following list of examples 
is instructive. 

9. 7. EXAMPLES. (a) Eis countable, the open sets are empty or cofinite. Then 
Eis T1 but not T2, and not sober as the total set Eis prime closed. All subsets 
are qcompact and saturated, so Eis locally Q and Q0 . The sobrification of E 
is obtained by adding a point oo to each nonempty open set. 
(b) E = NU { 001, 002} with as open sets all subsets of N and all cofinite subsets 
of E that intersect {001,002}- Then Eis T1 (so all subsets are saturated) but 
not T2; Eis sober; A C Eis qcompact iff A is finite or A intersects { 001, 002}. E 
is locally Q, but Q is not closed for finite intersections: consider Qn := NU{ OOn} 
for n = 1, 2. However, Q is closed for intersections of decreasing nets in Q. 
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(c) Eis Hausdorff, but not necessarily locally compact. Then Eis sober and 
Q6. 

From HOFMANN & MISLOVE (1981) and GIERZ & AL. (1980) we quote the 
following definition and results. 

In a sober space, Q is closed for intersections of decreasing nets in Q (HOF­

MANN & MISLOVE (1981, Prop. 2.19)). Consequently, a sober space is Q6 
iff Q is closed for finite intersections. A space E is called supersober if the set 
of limit points of each ultrafilter on E is either empty or a singleton closure. 
A Ti space which is not T2, is not supersober. If Eis supersober, then E is 
sober and Q6 (GIERZ & AL. (1980, VII-1.11), NORBERG & VERVAAT (1989, 
Prop. 1.3)). If Eis sober, Q6 and locally Q, then Eis supersober (HOFMANN 

& MISLOVE (1981, Th.4.8)). 
We will not prove or use these results here, but rather content ourselves 

with obtaining directly a collection of weaker results which serves our needs. 

9.8. LEMMA. Let E be locally Ko with Ko C JC and such that Ko is closed for 
finite intersections. 
(a) If (ta)a is a convergent net in E and Limta its set of limits, then Limta is 
prime closed. 
(b) If in addition E is sober, then E is Q6. 

PROOF. (a) In general, the set Limta is closed. Let Gi, G2 be two open 
sets intersecting Limta. We must prove that Gin G2 n Limta 'I- 0. Select 
Un E Gn n Limta and Kn E /Co such that Un E intKn C Kn C Gn for n = 1, 2. 
Since Un= lim ta, we have that ta E intKn C Kn for all sufficiently large o:, so 
ta E Kin K2 for all sufficiently large o:. Since Kin K2 is qcompact, there is a 
u E Kin K2 with u = lim ta. Sou E Kin K2 n Limta C G1 n G2 n Limta. 
(b) Let Q; E Q for j E J and set Q := n;eJ Q;. Then Q is saturated as 
intersection of saturated sets. It remains to show that Q is qcompact. Let (ta) 
be a net in Q. Then (ta) is a net in Q; (for some fixed j) and Q; is qcompact, 
so there is a convergent subnet with at least one of its limits in Q;. Think 
(ta) replaced by this convergent subnet. By (a) and the sobriety of E there is 
a u E E such that Limta = closu. For all j we have that ta is a convergent 
net in the qcompact set Q;, so Q; n closu 'I- 0. As Q; is saturated, it follows 
that u E Q; for all j, so u E Q. We have proved that Q n Limta 'I- 0, so Q is 
qcompact. □ 

We now turn to product spaces. 

9.9. LEMMA. Let E := E<1> x E<2> with the product topology. Then the prime 
closes sets in E are the rectangles with prime closed sides in E(l) and E(2). 

PROOF. Let 1rn for n = 1, 2 be the projection in Eon the nth component E(n). 
The key observations are that for open a<1> in E(1) and closed Fin Ewe have 

(9.1) 
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and that the open sets for testing primality of Fas in Remark 9.2 may be the 
open rectangles 

(92) 

Considering (9.1) for two open sets G(l) we see that clos1r1 F (and similarly dos 
1r2 F) is prime, if Fis prime. If F(n) is prime closed in E(n) for n = 1, 2, then 
F(l) x F(2) is in E, which one verifies by intersecting F(l) x FC2 ) with open 
rectangles as in (9.2). 

It remains to prove that F = clos1r1 F x clos1r2 F =: FC1) x FC2) for each prime 
closed in Fin E. So suppose there is at E (F(l) x FC2l)\F. As Fis closed, 
there is an open rectangle G(l) x G(2) containing t but not intersecting F, which 
contradicts the primality of F and Fn (GC1) x EC2l) -I 0, Fn (EC1) x GC2l) / 0 
(note that 1r1t E aC1) and 1r1t E FC1) = clos1r1 F, so GC 1) n 1r1 F -I 0). □ 

9.10. THEOREM. Let E = E(l) x E(2 ) with the product topology. 
(a) If E(l) and E(2) are locally qcompact, then so is E. 
(b) If E(l) and E(2) are sober, then so is E. 
(c) If E(l) and E(2) are sober, locally qcompact and Q0 , then so is E. 

PROOF. (a) Eis locally Ko with Ko the qcompact rectangles. 
(b) Follows from Lemma 9.9 and clos(t,u) = (dost) x (closu). 
(c) Let Ko be the qcompact rectangles in E. Then E is locally Ko and Ko is 
closed for finite (even arbitrary) intersections because E(l) and E(2) are Q0 . 

By (b), E is sober. So E satisfies all assumptions of Lemma 9.8(b), which 
proves E to be Qo. □ 

9.11. COROLLARY. If Eis sober, locally qcompact and Q0 , then so are Ex JI't 
and Ex JI'. 

9.12. LITERATURE. Most results of this section can be found in HOFMANN & 
MISLOVE (1981) and GIERZ ET AL. (1980). 

10. OTHER CRITERIA FOR CONVERGENCE 
Let E be locally qcompact and Q compatibly semimetrized by d, which is in 
particular the case if E is locally compact and metrized by d. Let the balls 
B(t,r) and B(t,r+) he defined by (5.2). If fn ➔ f sup Kin US, then 

jV(B(t,r)) ::; liminfnJ,;'(B(t,r)) 
::; lim supn f,;' (B(t, r+ )) ::; jY (B(t, r+)) 

(101) 

for all t E E and r > 0 such that B(t, r+) is qcompact (which is the case for 
all sufficiently small r, depending on t). If 

(102) 

for some t and r, then 

r (B(t, r)) = lim fi (B(t, r)). 
n 

(103) 
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As the function r 1-t jY (B( t, r)) is monotone, we have (10.2) for fixed t violated 
for at most countably many r. Consequently, if 

91 := {B(t,r): jY(B(t,r)) = jY(B(t,r+)), B(t,r+) E ,q, 
Kt := {B(t,r+): jY(B(t,r)) = jY(B(t,r+)), B(t,r+) EK}, 

(10.4) 

then 91 is a base of 9 and E is locally Kt· So (10.1) restricted to balls in 
91 or Kt (which is (10.3) with the same restriction) implies fn ➔ f supK by 
Theorem 5.3. We conclude: 

10.1. THEOREM. We have fn ➔ f sup vaguely in US iff f;,(B) ➔ jY(B) for 
all BE 91 or all BE Kt defined in (10.4). 

10.2. EXAMPLE. E=IR.fn ➔ JsupvaguelyinUS(JR) ifflimn/,;'(B) =JY(B) 
for all open bounded intervals B such that jY(B) = jY(closB). 

A unifying approach to some of the preceding results is based on semiseparating 
classes as considered by NORBERG (1984, 1986). First, let Ebe locally compact 
(thus Hausdorff) with countable base. A class A of subsets of E is called 
separating if for all open G and compact K with G ::) K there is an A E A 
such that G::) A:::> K. A class A is semiseparating if the class of finite unions 
of elements in A is separating. Examples of semiseparating classes are A = 9 f 
and A= Kt· NORBERG (1986) related sup vague convergence of sup measures 
to the limiting behavior of their values on semiseparating classes. We refer to 
his work for the results, and confine ourselves to indicating some connections 
and a possible generalization to non-Hausdorff E. 

A sup measure is inner continuous on 9 in the sense that 

(cf. (2.2)). An inner continuous set function m : 9 ➔ lI is a sup measure iff 

A sup measure is outer continuous on Kn:F, i.e., Corollary 6.3 holds true. This 
suffices for the case of Hausdorff E considered by NORBERG. 

Generalization to the non-Hausdorff case is possible for locally qcompact 
sober E. In this case it is necessary to consider only semiseparating classes 
of saturated sets that separate open and saturated qcompact sets. The role 
of compact closure of relatively compact sets is taken over by the sqc opera­
tion in Example 8.4. The following lemma shows that sup measures are outer 
continuous on the saturated qcompact sets Q. 

10.3. LEMMA. If E is locally qcompact and sober, m is a sup measure and 
(Qn)n is a decreasing net in Q with intersection Q, then m(Qn)-1-m(Q). 

PROOF. Obviously, limn m(Qn) 2: m(Q). By Theorem 2.5 and Corollary l.3(c) 
there is a tn E Qn such that dvm(tn) = m(Qn)- Since the Qn's are qcompact, 
there is a convergent subnet (tn, ). By Lemma 9.8(a) the set of its limits is 
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prime closed, so has the form closu for au EE, as Eis sober. Since the Qn's 
are saturated and Qn n closu =I 0, we have u E Qn for all n, so u E Q. As 
u = limn' tn', we have 

m(Q) ~ dvm(u) = Aa3 u m(G) ~ limsupn, dvm(tn,) 
~ limsupn, m(Qn') = limn m(Qn)-

This combined with the first observation proves the lemma. D 

NORBERG (1984, 1986) assumed the sets in the semiseparating classes to be 
Borel measurable, which becomes necessary in the context of SM - or US-valued 
random variables. 

10.4. LITERATURE. Theorem 10.1 has been proved also by SALINETTI & 
WETS {1981, 1986) and NORBERG (1986). 

11. MEASURABILITY, RANDOM VARIABLES AND EXTREMAL PROCESSES 
Let in general Bor E denote the Borel field of a topological space E, the CT-field 
generated by g(E). We begin with investigating Bor SM and Bor :F, where 
throughout this section SM and :Fare endowed with the sup vague topology. 
In general it is hard to characterize Bor SM further, but if SM has a countable 
base, then Bor SM is already generated by its subbase (3.4), as now each open 
set in SM is countable union of finite intersections of subbase elements. Now 
Bor SM can be characterized succinctly. 

11.1. THEOREM. If g(E) has a countable base, go is a base of g and E is 
locally /Co with /Co C IC, then Bor SM is the smallest CT-field that makes the 
evaluations m 1-t m(A) measurable for all A Ego or all A E /Co. 

PROOF. SM has a countable base by Theorem 5.5 and Remark 5.6. In the 
proofs of Lemmas 5.1 and 5.2 all J can be taken or made countable, which 
shows measurability of A 1-t m(A) for A E go (or /Co) to be equivalent to that 
for A E g ( or JC). Measurability for all A E g or JC implies measurability for 
all A E g U JC by (3.1) with Gn.J,,A E JC and Property 3.7(b) with J made 
countable. 

11.2. DEFINITION. An extremal process is an SM-valued random variable 
(rv). A random usc function is a US-valued rv. A random closed set is 
an :F -valued rv. 

11.3. COROLLARY. In the situation of Theorem 11.1 an extremal process is 
a mapping M from some probability space into SM such that M(A) is an 
1£-valued rv for each A Ego or each A E /Co. 

11.4. REMARK. Let A be the smallest CT-field in SM that makes all evaluations 
m 1--t m({t}) = dvm(t) measurable. Then AC Bor SM, but A is in general 
strictly smaller than Bor SM. To see this, set E := [O, 1] and let the rv ~ have 
a uniform distribution in E. Set M 1 := 0, M 2 := 1{{} · Then M 1 and M 2 are 
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extremal processes with different distributions on Bor SM: M1 (E) = 0 wpl, 
M2(E) = 1 wpl, but equal distributions on A: M1 ({t}) = M2({t}) = 0 wpl 
for each t E E. 

11.5. THEOREM. Let E, Q0 and Ko be as in Theorem 11.1 with, moreover, 
9o and Ko closed for finite intersections, and let M be an extremal process. 
Then the probability distribution of M is determined by the finite-dimensional 
distributions of (M(G))GEQo or (M(K))KEKo· 

PROOF. The family of sets njEJ{m : m(Gj) :'.S Xj} for finite subcollections 
(Gj)jEJ of Q0 generates Bor SM by Theorem 11.1, and is closed for finite 
intersections. Apply Theorem 10.3 of BILLINGSLEY (1979). The proof for Ko 
~~~&. □ 

11.6. REMARK. If M is an extremal process, then dv M is a random use 
function. If X is a random use function, then xv is an extremal process. 

Let M be an extremal process. So f& we have seen that M(A) is a rv in 
lI for A E g UK. Although M(A) need not be a rv for all A C E, even 
not for all A E Bor E in case the o--field in the underlying probability space 
does not contain all IP' nullsets, we can extend g UK a bit further. Obviously, 
M(LJ~=l An) = V~=l M(An) is a rv if each M(An) is. So M(A) is a rv for 
each A E (Q U Kt, the family of countable unions of elements of g U K. If E 
is locally qcompact with countable base, then g C Ku, so (Q U Kt = Ku. We 
have found 

11.7. THEOREM. If E is locally qcompact with countable base and Mis an 
extremal process on E, then M(A) is a rv for each A E Ku {the o--qcompact 
sets), in particular for open A. 

11.8. REMARK. By (3.2) we have M(A) = M(satA) wpl for all A E Ku 
simultaneously. So we do not lose anything by restricting Ku to the saturated 
sets in Ku. As n sat = sat n (cf. §1), we have { A E Ku : A = satA} = Q17 , 

the class of countable unions of saturated qcompact sets. In the next section 
it will be convenient to restrict Qu a bit further to 

'D := {A E Qu: AC Q for some Q E Q}. (11.1) 

We call V the natural domain of extremal processes. 

We now turn to random closed sets (cf. Definition 11.2). They can be reg&ded 
as {O, 1 }-valued extremal processes or {O, 1 }-valued random use functions. The 
previous theorems specialize to the following result. 

11.9. THEOREM. Let g have a countable base, 9o be a base of g and E be 
locally Ko with Ko CK. Then the following holds. 
(a) Bor :F is the smallest o--field that contains { F E :F : F n A =I- 0} for all 
A E 9o or all A E Ko. 
(b) A random closed set is a mapping X from some probability space into :F 
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such that [X n A -:/:- 0) is an event for all A E go or all A E Ko. 
(c) If in addition go {or Ko) is closed for finite unions, then the probability 
distribution of a random closed set X is determined by T(A) := IP'[X n A -:/:- 0) 
for A Ego {or Ko); Tis called the distribution function of X. 
(d) If X is a random closed set, then [X n A -:j:. 0) is an event for each A EK,,.. 

PROOF. (a,b,d) Straightforward from Theorem 11.1 and Corollary 11.3. 
(c) In the first instance, Theorem 11.5 translates into the distribution of X 
being determined by the finite-dimensional distributions of 

(112) 

where go and Ko need not yet be closed for finite unions. In general, the finite­
dimensional distributions of a collection of {O, 1}-valued rv's (Ej)jEJ determine 
and are determined by IP'[Ei = 0 for i E I] for all finite IC J. So 

IP'[X n A = 0) = 1 - IP'[X n A -:/:- 0) 

with A varying through the finite unions in g0 (or Ko) determines the finite­
dimensional distributions of (11.2). The relevant direction of determination 
can be read from 

IP'[Ei = 0 for i E K, Ei = 1 for i E L\K] 

= L (-l)#(I\K)IP'[Ei = 0 for i EI) 
I:KCICL 

for finite K, L with K C L C J. □ 

11.10. REMARK. It is possible to characterize those T : K ➔ [O, 1) such 
that T is the distribution function of a random closed set X. See MATHERON 
(1975, §2.2), SALINETTI & WETS (1986) and Ross (1986) for Hausdorff E, 
and REVUZ (1955) and HONEYCUT (1971) for more general E. 

11.11. LITERATURE. Random closed sets(= F(E)-valued rv's) are the subject 
of the monograph by MATHERON (1975). They appear in the shape of 'mea­
surable closed multifunctions' in the optimization literature (ROCKAFELLAR 
(1976), CASTAING & VALADIER (1977)). SALINETTI & WETS (1981) concil­
iate the two points of view. Random lower semicontinuous functions appear in 
the shape of 'normal integrands' in the optimization literature (ROCKAFELLAR 
(1976)). SALINETTI & WETS (1986) conciliate the two points of view. See 
also NORBERG (1984) for random closed sets and NORBERG (1986) for random 
usc functions. 

12. CONVERGENCE IN DISTRIBUTION 
As in the previous section, E is locally qcompact with countable base, and 
SM and.rare provided with the sup vague topology. By Corollary 4.4(a) and 
Theorem 5.5, SM and.rare metrizable and compact. So the general theory 
about convergence in distribution as treated in BILLINGSLEY (1968) applies 
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immediately to extremal processes and random closed sets, with the pleasant 
circumstance that the collection of all probability distributions on BorSM or 
Bor.r is narrowly (=weakly) compact, so we need not worry about tightness 
conditions. Since the distribution of an extremal process M is determined by 
that of (M(G))GE9o with go a base of g, we may expect that convergence in 
distribution of Mn to Min SM is determined by something like convergence 
in distribution of (Mn(G))GE9o to (M(G))GE9o in lI 90 . We are going to make 
this precise. 

As in the classical theory of convergence in distribution, we must be care­
ful with sets at which the limit M is discontinuous with positive probability. 
Recall the definition of the natural domain V of extremal processes in (11.1), 
the defintion of Q0 in Definition 8.3 and the definition of sqc after Definition 
8.3, that each Hausdorff space E is Q0 and that in Hausdorff spaces the sqc 
operation is the same as taking closure for relatively compact sets. 

12.1. DEFINITION. Let E be locally qcompact and Q0 with countable base. 
(a) Let M be an extremal process on E. A set A E V is called a continuity 
set of M if M(intA) = M(sqcA) wp1. The family of all continuity sets of M 
is denoted by C(M). 
(b) A class A C Q,,. is probability determining if the distributions of ex­
tremal processes M are determined by the finite-dimensional distributions of 
(M(A))AEA· 
( c) A class A C Q,,. is convergence determining if for each two extremal 
processes M1 and M2 the class An C(M1) n C(M2) is probability determining. 

For the next theorem, recall Definition 8. 7 of Q compatible semimetric and 
note that all metrizable locally compact (Hausdorff) E are Q compatibly 
semimetrized by their metrics. 

12.2. THEOREM. Let E be Q compatibly semimetrized by semimetric d and 
have a countable base. Let D be a dense subset of E. Then the classes of balls 

go .- {B(t,r): t ED, r > 0, B(t,r+) E ,q, 
Ko .- {B(t,r+): t ED, r > 0, B(t,r+) EK} 

both are convergence determining. 

PROOF. Since go is a base of g and E is locally Ko ( cf. Example 5.8 and 
Corollary 8.8), go and Ko are probability determining by Theorem 11.5. It 
is obvious that go and Ko keep these properties if r is allowed to vary only 
through a dense subset of (0, oo) for each t E D. So we are done if we prove 
that B(t, r), B(t, r+) E C(M) for all but countably many r E (0, oo), where M 
is an extremal process. 

Lett E D. Then r f--t M(B(t,r)) is a nondecreasing left-continuous func­
tion, whereas M(B(t,r+)) = lims..J-rM(B(t,s)) (wpl). In this situation we 
have M(B(t,r)) = M(B(t,r+)) wpl iff M(B(t,s)) ➔d M(B(t,r)) in lI as s..),r. 
So it is sufficient to show that the map r f--t law M(B(t, r)) has only count-
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ably many discontinuities. The countable collection of bounded continuous 
nondecreasing functions 

c) := {O V (ax+ b) A 1: a,b E Q, a> O} 

determines convergence in distribution in JI: 

Xn ➔d X in JI iff F.p(Xn) ➔ F.p(X) for cp E c). 

Furthermore, r ➔ F.p(M(B(t,r))) is nondecreasing for cp E c), 

as r i-+ cp ( M ( B( t, r))) is nondecreasing wpl. So there are only countably many 
rat which r i-+ F.p(M(B(t, r))) is discontinuous for at least one cp E c). Only at 
these points r i-+ law M(B(t, r)) can be discontinuous, so only at these points 
we may have M(B(t,r))-:/ M(B(t,r+)) with positive probability. D 

The next theorem clarifies the term 'continuity set' in Definition 12.l(a). Note 
that we can also speak about continuity sets of deterministic sup measures 
m, as they can be regarded as degenerate extremal processes. Consequently, 
C(m) = {A EV: m(intA) = m(sqcA)}. 

12.3. THEOREM. Let E be locally qcompact and Q0 with countable base. 
(a) If mo E SM and A E C(m0), then the map SM 3 m i-+ m(A) E JI is 
continuous at mo. 
(b) Let A be a convergence determining class and Mn, M be extremal processes. 
Then Mn ➔d Min SM iff 

(Mn(A))AeC(M) ➔d (M(A))AeC(M) in JIC(M) (12.1) 

(i.e., the finite-dimensional distributions of the left-hand side converge to those 
of the right-hand side). 

PROOF. (a) Suppose mn ➔ m0 in SM. Note that A C sqcA E QC JC. By 
(3.5) we have 

mo(A) = mo(intA) ~ liminfmn(intA) ~ liminfmn(A) 

~ limsupmn(A) ~ limsupmn(sqcA) ~ mo(sqcA) = mo(A). 

(b) If Mn ➔d Mo in SM and A1,A2, ... ,Ak E C(Mo), then SM 3 mi-+ 
(m(Ai))t=l E Jik is wpl continuous at Mo, so (Mn(Ai))t=1 1-+d (Mo(Ai))t=1 in 
Jik by the Continuous Mapping Theorem (BILLINGSLEY (1968), §5). Conversely, 
if (12.1) holds, then each Mo to which some subsequence of (Mn) converges 
in distribution must have the same finite-dimensional distributions as M for 
A E AnC(M) nC(M0), so Mo =d M. Since SM is compact, (Mn) is relatively 
compact for convergence in distribution, so Mn ➔d Min SM. □ 

12.4. REMARK. One can prove that A E C(mo) is also necessary for continuity 
of mi-+ m(A) at mo in case A EV, intsqcintA = int A and sqcintsqcA = 
sqcA. 

Identifying random closed sets X with the associated {O, 1}-valued extremal 
processes M := ff we can translate Definition 12.l(a) into the following. 
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12.5. DEFINITION. Let X be a random closed set in E with distribution func­
tion T := lP'[X n · -:/- 0] considered on g UK. Then A E 7J is called a continuity 
set of X if T(intA) = T(sqcA), and C(X) is the class of all such A. 

12.6. THEOREM. Let E be locally qcompact and Qli with countable base, and 
let A be a convergence determining class which is closed for finite unions. Let 
X n, X be random closed sets in E with distribution junctions T n, T. Then 
Xn -+d X in :F iff Tn(A) -+ T(A) for all A E An C(X). 

PROOF. Similar to the proofofTheorem 12.3(b). Use Theorem 11.9(c) for the 
uniqueness of limit points of convergent subsequences and note that C(X) is 
closed for finite unions. For the latter, note that sqc(A U B) = sqcA U sqcB 
and int(A U B) :) intA U intB, so (sqc(A U B))\int(A U B) c ((sqcA)\ intA) U 
((sqcB)\intB). D 

12. 7. APPLICATIONS. (a) If Mn, M are extremal processes on an interval 
E C JR, then Mn -+d M iff 

(Mn(Ji))f=l -+d (M(Ji))f=1 in ][k 

for each finite sequence (Ji)t1 of open intervals which are relatively compact 
in E and such that M(Ji) = M(closJi) wpl for i = 1, 2, ... , k. 
(b) If Xn,X are random closed sets in JRd with distribution functions Tn,T, 
then Xn -+d X iff Tn(A) -+ T(A) for all finite unions A of blocks in ]Rd such 
that T(intA) = T(closA). 

12.8. LITERATURE. Convergence in distribution for random closed sets is 
studied by SALINETTI & WETS (1981) for E = ]Rd and by NORBERG (1984). 
Convergence in distribution for random usc functions is studied by SALINETTI 
& WETS (1986) for E = JRd and NORBERG (1986). For convergence in proba­
bility, see SALINETTI, VERVAAT & WETS (1986). Convergence of probability 
measures on semi-lattices is studied by NORBERG (1989). 

13. THE EXISTENCE THEOREM FOR EXTREMAL PROCESSES 
As in the previous sections we assume that Eis locally qcompact with countable 
base. We need the following lemma, which will be proved in Section 14 ( cf. 
Remark 14.15(a)). 

13.1 LEMMA. Let J be countable. Then the mapping USJ 3 (h)iEJ 1--7 

/\iEJ h E US is measurable, so /\jEJ Xi is a US-valued rv if all Xi are. 

Let M be an extremal process and 9o a base of g_ By Theorem 11.5 the 
probability distribution of M is determined by the distribution of the ][go_ 
valued rv (M(G))GEQo· However, if we do not assume an extremal process to 
be given, but start only with an ][g0-valued rv (N(G))GEQo, then it need not 
be true that there is an extremal process M such that M(G) = N(G) wpl for 
each GE 9o (separately). Obviously, a necessary condition for the existence of 
such an Mis 
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00 00 

N(LJ G;) = V N(G;) wpl (13.1) 
j=l j=l 

for each separate sequence (G;)~1 in g0 with U~1 G; Ego. The next theorem 
tells us that this condition is also sufficient. 

13.2. THEOREM. (Existence Theorem for extremal processes). Let Ebe locally 
qcompact and Q5 with countable base, and let go be a base of g that does not 
contain 0. Let (N(G))aeg0 be an JI.g0 -valued rv such that (13.1) holds wpl for 
each separate sequence (G;)~1 in go with U~1 G; E go. Then there is an 
extremal process M such that M(G) = N(G) wpl for each GE go separately. 

13.3. REMARKS. Note that in the theorem the exceptional event of probability 
0 that (13.1) does not hold may depend on the sequence (G;)~1. The stronger 
condition that (13.1) holds for all sequences (G;)~1 simultaneously reduces 
Theorem 13.2 to a trivial consequence of the Extension Theorem 2.6. If go is 
countable, then it follows that M = N wpl on g0 , so N is wpl the restriction 
of the extremal process M (again by Theorem 2.6.). If g0 is uncountable (for 
instance if g0 = g), this need not be true, as shows the following example. 

13.4. EXAMPLE. E = R, go = {open intervals}, ~ is a rv with a uniform 
distribution in (0,1), N(G) := l[(e8a) for GE go, where fJG is the boundary of 
G. Then N is wpl not the restriction to g0 of an extremal process, but M = 0 
makes the theorem work. 

13.5. REMARK. The complication in Example 13.4 is avoided by assuming N 
to be monotone on g0 • Then the conclusion of Theorem 13.2 can be strength­
ened to M(G) = N(G) wpl for all G E g0 simultaneously. 

PROOF OF THEOREM 13.2. Let gl c go be a countable base of g consisting 
of relatively qcompact sets, and let 

X := /\ (N(G)la V la•). (13.2) 
aeg1 

Then Xis a US-valued rv by Lemma 13.1, so M := xv is an extremal process. 
It is obvious that 

M(G) ~ N(G)wpl for all GE g1. (13.3) 

Let (Gk)~1 be an enumeration of g1 and set 
n 

Xn := /\ (N(Gk)lah V la,). 
k=l 

We are going to prove 

N(Gk) ~ xi(Gk) for n;::: k. (13.4) 

Let An be the collection of atoms of the field generated by G1,G2, ... ,Gn. 
Then Xn is constant at each DE An with value A;-5,n,a;::)DN(G;). Hence 
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V f\ N(G;) for k ~ n. (135) 

ff (13.4) would not hold for some fixed n ~ k, then for each atom D C Gk as 
in (13.5) there is a G;(D) with j(D) ~ n and G;(D) ::> D such that N(G;(D)) < 
N(Gk)- Hence 

N(Gk) > V N(G;(D)) = N( u G;(D)) wpl, 
DcG,. DcG,. 

contradicting (13.1), since Uvca,. G;(D) ::> Gk. This proves (13.4). As Xn-.lX 
pointwise, we have by (13.3), (13.4) and Theorems 6.2(b) and 6.4 

N(Gk) = lim X~(Gk) ~ lim X~(sqcGk) = M(sqcGk)-
n-+oo n-+oo 

Combining this result with (13.3) we find 

M(G) ~ N(G) ~ M(sqcG) wpl for all GE g1. (136) 

Now take G0 E g0 • Then there is a (countable) subcollection g2 of g1 such 
that Go = Uaeg2 G = Uaeg2 sqcG. By (13.1) and (13.6) we have wpl 

M(Go) = V M(G) ~ V N(G) = N(Go) ~ V M(sqcG) = M(Go), 
aeg2 aeg2 aeg2 

so M(Go) = N(Go) wpl for each separate Go Ego. □ 

13.6 LITERATURE. For existence theorems for random closed sets based on 
their probability distribution functions, see REVUZ (1955), MATHERON (1975), 
BERG ET AL. (1984, Th.4.6.18), SALINETTI & WETS (1986) and NORBERG 
(1989). Where in NORBERG (1984, 1987) theorems are claimed to generalize 
Theorem 13.2, it is ignored that 'wpl' in Theorem 13.2 refers to each separate 
sequence (G;). The exceptional null event may vary with it. For existence 
theorems for probability measures on semi-lattices, see NORBERG (1990). 

14. SEMICONTINUITY OF THE LATTICE OPERATIONS 
In the present section we first return to the generality of a topological space 
E without further assumptions, and the sup B topologies on SM, US and :F. 
The spaces SM, US and :Fare lattices with as partial orders the pointwise 
order of functions on g for SM, the pointwise order of functions on E for US, 
and set inclusion for :F. The lattices SM and US are isomorphic via dv and 
iv, and Fi-+ lp maps :F isomorphically onto a sublattice of US, in which A 
and V give the same result as in US. 

We first investigate when the above partial orders are closed. Recall that a 
partial order ~ on a topological space T is closed if 

graph~:= {(x,y) E T2 : x ~ y} 

is closed in T2, or equivalently, if for all limits x and y of convergent nets (x0 ) 

and (Yo) in T with x 0 ~ Yo for all a we have x ~ y. Note that the order in 
the subspace :F is closed if the order in US is. 
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14.1 THEOREM. (a) If Eis locally B, then the orders in SM, US and :Fare 
sup B closed. 
(b) If the order in :F is sup B closed, then E is internally B. 

14.2 COROLLARY. If Eis Hausdorff, then the orders in SM, US and :Fare 
sup K, closed iff Eis locally compact (cf. Property 3.7(d)). 

PROOF OF THEOREM 14.1. (a) We give the proof for US. Let (h,g) be outside 
the graph of ::;, so g(t) < h(t) for some t E E. The construction in the proof 
of Theorem 4.3(c) gives the sides of an open rectangle around (h,g) that does 
not intersect graph ::; . 
(b) It follows by Proposition I.2 of N ACHBIN (1965) that :Fis Hausdorff. Apply 
Theorem 4.3(d). D 

We now turn to the lattice operations. We write VSM and /\ SM for the lattice 
operations in SM, and Vus and /\ us for the lattice operations in US. Note 
that VSM is the same as taking pointwise suprema of functions on g, but that 
I\ SM is more complicated: 

/\SM •vdv /\ ·v /\ dv i mj=i jmi=i i mi. (14.1) 

PROOF. The first identity follows from Lemma 2.2(b) and Theorem 2.5(a). 
The second identity with ::; instead follows from the monotonicity of dv and 
iv implying subsequently 

f\j ffij ::; ffik, 

dv /\j ffij ::; dY mk, 

dv l\i mi ::; l\i dY mi, 

·vdv /\ < ·v /\ dv i jmi _ i i mi. 

On the other hand we have mk = iv dY mk ~ iv l\i dv mi with a sup measure 
on the right-hand side, so 

/\SM > •v /\ dv j ffij - i j ffij- D 

Analogously, /\ us is the same as taking pointwise infima of functions on E, 
but now Vus is more complicated: 

V us f - dv ·v V f dv V ·vf j j - i j j = j i j• (14.2) 

Consequently, we prefer considering V in SM and /\ in SM (often without 
writing the upper indices). 

We now want to investigate the topological properties of the lattice opera­
tions. The following concepts will be useful. 

14.3. DEFINITION. (a) (cf. (3.3)). The upper topology on SM is the topology 
with sub base consisting of { m : m( G) > x} for G E g and x E [O, 1). The B 
lower topology on SM is the topology with subbase consisting of 
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{m: m(B) < x} for BE Band x E (0, 1). 

The lower and upper topologies are defined on US and :F by declaring dv and 
fad' homeomorphisms (so have for subbases the corresponding halves of (3. 7) 
and {3.8}}. We write SMt, USt and :Ft for the spaces with the upper topolo­
gies, and SM.,1. or SM.,1.8 , etc. for the spaces with the B lower topologies. 
(b) Let T be a topological space. A mapping cp: T ➔ SM, US or :Fis called 
lower semicontinuous (lsc) if cp : T ➔ SMt, USt or :Ft is continuous, 
and cp is called B upper semicontinuous (use) if cp: T ➔ SM.,1.8 ,US.,1.8 or 
:F.,1.8 is continuous. IfT has the form T = (SMt)J,(UStV or (:Ft)J with the 
product topology, then lsc functions on T are called lower continuous. If T 
has the form T = (SM.,1.8 V, (US.,1.8 V or (:F.,1.8 )J with the product topology, 
then usc functions on T are called B upper continuous. 

14.4. COROLLARY. In the situation 

S -!t T 4 SM, US or :F, 

cp o ,p is lsc (Buse) if ,p is continuous and cp is lsc (Buse), and cp o ,p is lower ( B 
upper) continuous for appropriate Sand T if both ,p and cp are. 

14.5. REMARK. If Eis locally qcompact with countable base, then lsc and B 
use functions are Borel measurable, by Theorem 11.1. 

14.6. THEOREM. Let J be an arbitrary index set. Then 

SMJ 3 (m;);eJ t-+ V m; E SM (14.3) 
jEJ 

is lower continuous, and B upper continuous (so B continuous} if J is finite. 

14.7. COROLLARY. The mapping :FJ 3 (F;);eJ t-+ closLJ;EJF; E :Fis lower 
continuous, and B upper continuous (so B continuous) if J is finite. 

PROOF OF THEOREM 14.6. (a) Lower continuity follows from 

{(m;): V;m;(G) > x} = Uk{(m;): mk(G) > x} E Q((SMtV). 

It remains to prove that the mapping is B use in case J is finite. If so, then 
Vf 8 corresponds to taking pointwise suprem of use functions, and by Theorem 
2.5(c) we have for BE B 

v:M m;(B) = VteB [V;dvm;] (t) = V; VteBdvm;(t) = V;m;(B). 

Consequently, 

14.8. REMARK. If J is infinite, then the mapping (14.3) need not be continu­
ous. We exhibit this in :F rather than SM. Let Ebe a separable metric space 
without isolated points, (t;)f;,1 a dense sequence in E, B = JC and F;,n := 0 
for j < n, { t;} for j ~ n. Then we have F;,n ➔ 0 =: F; as n ➔ oo, so that 
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00 

dos LJ Fj,n = dos{ tn, tn+i, ... } ➔ E, 
j=l 

whereas LJ.:1 Fi = 0. 

We now are going to study the semicontinuity of /\. We will restrict our 
attention to B = /C, or equivalently, B = Q. The following assumption will be 
crucial. Note that it is equivalent to its restriction from /C to Q. 

14.9. ASSUMPTION. For KE /C and G1,G2 E Q such that KC G1 U G2 there 
are K1,K2 E /C such that K1 C G1,K2 C G2 and Kc K1 U K2. 

14 .10. LEMMA. Sufficient conditions for Assumption 14. 9 to hold are that E 
is locally qcompact or that E is Hausdorff. Assumption 14.9 does not hold if E 
is the one-point qcompactification of a space which is not locally qcompact. 

PROOF. See VERVAAT (1988a). 

14.11. THEOREM. Let J be an arbitrary index set. Then 

FJ 3 (Fj )jEJ f-t n Fj E F 
jEJ 

□ 

(14.4) 

is /C upper continuous iff Assumption 14.9 holds. The mapping is not /C con­
tinuous, even if J is finite. 

PROOF. First an example showing that (14.4) is not /C continuous if #J = 2. 
Let E := JR., F±n := {±1/n} for n = 1,2, .... Then Fjn ➔ {O} =: Fj for 
j = +, -, whereas F+n n F_n = 0, F+ n F_ = {O}. 

Necessity and sufficiency of Assumption 14.9 for the case #J = 2 has been 
proved in VERVAAT (1988a). This implies already necessity of Assumption 14.9 
for all larger J (take Fi = E for all j but two). Sufficiency for finite J follows 
by induction. For infinite J, note that for qcompact K 

{(Fj)jEJ: Kn n Fi= 0} = U {(Fj)jEJ: Kn n Fi= 0}. 
jEJ finiteJ#CJ jEJ# 

The set on the right-hand side is open because of our previous result for finite 
J. □ 

14.12. THEOREM. Let J be an arbitrary index set. Then 

usJ =' (fi)jEJ f--t /\ h E us 

jEJ 

(14.5) 

is /C upper continuous if Assumption 14.9 holds. The mapping is not /C con­
tinuous, even if J is finite. 

PROOF. By Theorem 7.2 the spaces US(E) and F(E x JI't) are sup /C home­
omorphic. So Theorem 14.12 follows from Theorem 14.11 if we show that 
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Assumption 14.9 also holds for E* := E x ]['t. To this end, suppose that 
Ftn,F2n E .F(E*) and K* E K(E*) and that Ft F2 K* = 0. Adopt the 
notations after Theorem 7.3. Then Ft n F2 n tK* = 0 by (7.3), and also 
tK* E K(E*). Because Ft and F2 are hypographs, we have 1r1 (Ft n tK*) n 
1r1 (F2 n t K*) = 0. Now 1r1 (t K*) is qcompact since 1r1 is continuous, and 
1r1 (F~ n t K*) is closed in 1r1 (t K*) for n = 1, 2, since 1r1 is a closed mapping 
when restricted to the qcompact domain 1r1 tK* x 1r2tK*. By Assumption 14.9 
holding for E we can find K1 and K2 E K(E) such that 

K1n1r1(F;ntK*) = K2n1r1(FtntK*) = 0 

and 1r1tK* C K1 U K2. Then with K~ := Kn x 1r2tK* we have Kin F2 = 
K2 n Ft = 0 and K* c Ki U K2. D 

14.13. REMARKS. (a) If J is countable, then BorSMJ is the J-fold product 
CT-field of BorSM. So if (Mj)jeJ is a countable collection of extremal pro­
cesses, then V jEJ Mj and /\J:, Mj are extremal processes. Considering the 
sup derivatives of Mj we obtain Lemma 13.1. 
(b) If J is uncountable, then BorSMJ is strictly larger than the J-fold prod­
uct CT-field of BorSM (cf. NELSON (1959), Theorem 2.1 and Corollary 2.1), so 
V j Mj and /\JM Mj need no longer be extremal processes if all Mi are. How­
ever, for each system of extremal processes there is a 'version' (i.e., another 
system of extremal processes with the same joint distributions for each finite 
subsystem of extremal processes) which is BorSMJ measurable. Its distribu­
tion over BorSMJ is unique if we require in addition that it is regular. All this 
is an immediate application of Theorem 1.1 of NELSON (1959). 

14.14. LITERATURE. For special cases of Theorems 14.6 and 14.11, see BERGE 

(1963), KURATOWSKI (1968, §43) and MATHERON (1975). Assumption 14.9, 
Lemma 14.10 and Theorem 14.11 is the central topic of VERVAAT (1988a). 
Condition 14.9 already occurs in WILKER (1970). 

15. CAPACITIES 

15.1. DEFINITION. A precapacity is a function c: K(E) ➔ [0, oo] =: Jf such 
that c(0) = 0 and c is increasing: c(K1)::; c(K2) if K1 C K2. 

Examples of precapacities are obtained by restricting countably additive mea­
suresµ on BorE to K(E). In this case we have c(K1 U K2) = c(K1) + c(K2) 
for disjoint K1, K 2 E K(E), or more generally, 

c(K1 U K2) + c(K1 n K2) = c(K1) + c(K2) in case also 
(151) 

K1 n K2 E K(E). 

Other examples of precapacities are the canonical extensions of sup measures 
m on g(E) restricted to K(E) : c(K) := /\a-:>K m(G) (cf. Theorem 2.5(c)). In 
this case we have 

(152) 
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Equivalently, if f E US(E), then c(K) := jY(K) defines a precapacity with 
the same properties. Finally, if FE :F(E), then the same procedure for f = lp 
gives a {O, 1 }-valued precapacity c satisfying (15.2). 

Precapacities can be extended to all subsets of E by 

c(A) := V c(K) for A C E. (15.3) 
KCA 

In particular the extension to g(E) is important. 

15.2. DEFINITION. A precapacity is upper semicontinuous (use), if 

c(K) = I\ c(G) for KE JC(E). (15.4) 
G:>K 

Obviously, c(K) = c(satK) for use precapacities, so we can restrict their domain 
to the saturated qcompact sets Q(E). However, we now must require c(K) = 
c(satK) for K E JC before applying (15.3). We then have c(A) = c(satA) for 
AcE. 

15.3. DEFINITION. A capacity is an use precapacity with domain restricted 
to Q(E). 

In the literature one sees often the following 'upper continuity' condition, which 
reads in a generalization to the non-Hausdorff case: 

c( Qn)-l-c(n Qn) for all decreasing nets ( Qn) in Q(E) 

with n Qn E Q(E). 
(15.5) 

15.4. THEOREM. (a) If Eis sober, then capacities c satisfy (15.5). 
(b) If a precapacity c satisfies (15.5) and E is sober and locally qcompact (in 
particular if E is locally compact), then (15.4) holds, soc is a capacity. 

PROOF. (a) If Qn+Q := n Qn in Q, then c( Q) ~ lim c( Qn) since Q C Qn for 
all n. Conversely, if G :::) Q and Qn--1-Q, then Qn C G for large n in case Eis 
sober (HOFMANN & MISLOVE (1981)). Hence limc(Qn) ~ c(Q). 
(b) Let Q E Q. By applying Property 3.7(b) we find for each instance of QC G 
a Q' E Q(E) such that Q c intQ' c Q' CG. We have Q = na:iQ G because 
Q is saturated. Selecting with each such Ga Q' as above and applying (15.5) 
to the net of finite intersections of such Q' we find c(Q) ~ Aa:iQ c(G). The 
reverse inequality is obvious. □ 

15.5. EXAMPLES. (a) Let E =NU {oo} be the Appert-Varadarajan space, 
i.e., all sets { n} C N are open and a subset G C E containing oo is open 
iff limn-1#(G n {1, ... ,n}) = 1. Then Eis Hausdorff and JC consists of its 
finite subsets. If c = #, then c is the extension of a finite precapacity on JC 
to all subsets of E. Obviously, c satisfies (15.5). However, c is not use since 
c( G) = oo for all G containing oo. 
(b) Here is an example of a precapacity c with different limits lim c(Kn) for 
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different decreasing sequences (Kn) with the same intersection. Let E := 

{(0, 0)} U (0, 1]2 with the trace topology and trace distance d from IB.2 . Set 
V := {0} x Ii and o := (0, 0). Then 

(K) ·= d(V, K) + d(o, K) £ K Y(E\{ }) 
c . d(V,K) or E /\, o 

defines a capacity on E\{o}. Let c' be the precapacity on E defined by c'(K) := 
c(K\{o}). If (Kn) is a decreasing sequence of line segments starting at o, then 
lim c(Kn) depends on the slope of these segments. 

For the moment, we return to precapacities. For sufficiently nice E, for in­
stance metric, consider precapacities c which are restrictions to K(E) of Radon 
measures µ on BorE (i.e., µ is finite on K(E) and µ(A) = V Kc A µ(K) for 
A E BorE). The well-known vague topology on spaces of Radon measures 
(cf. BERG ET AL. (1984, §2.4)) suggests us the vague topology on spaces of 
precapacities, with subbase 

{ c : c( G) > x}, { c : c( K) < x} for G E g, K E K and x E .If. (15.6) 

Note that the trace topology on the space of the c arising from sup measures, usc 
functions or closed sets coincides with what we called the sup vague topologies 
on SM, US and :F. Similarly, the case of bounded measures µ on Bor E 
suggests us to extend the notion of narrow (= weak) topology to spaces of 
precapacities, with subbase 

{ c : c( G) > x}, { c : c( F) < x} for G E g, F E :F and x E .If. (15. 7) 

Again, the trace topology on the precapacities coming from SM, US or :F 
corresponds to the sup narrow topology. We will study these topologies, in 
the case of the vague topology including the relations with spaces of Radon 
measures and spaces of sup measures. The latter aspect for the narrow topology 
is more complicated, and will be dealt with in another paper. 

In the previous sections we have assumed that sup measures and usc func­
tions have their values in :rr = [0, 1]. By obvious transformations we may replace 
:rr by any compact interval in [-oo, oo], in particular by .If= [0, oo], the range of 
capacities. In the present section we will think :rr replaced by .If. 

We now take the following point of view. We consider Q(E) as space on 
its own, with as points the saturated qcompact subsets Q of E, and want to 
regard (15.6) and (15.7) as special cases of sup topologies on US(Q(E)). In 
particular, this implies that we provide Q(E) with a (non-Hausdorff) topology 
gQ with base gf consisting of 

Q(G) = {Q E Q(E): Q c G} for GE Q(E). 

Then a precapacity c determines a sup measure cv on gQ by 

cv(GQ) = V c(Q) for GQ E gQ_ 
QEGQ 

For GQ E gf this specializes to 

(15.8) 
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cv(Q(G)) = c(G) as defined in (15.3). 

Our new upper semicontinuity assumption about c is that c E US(Q(E)), so 
c = dv iv c, which may be written as ( cf. proof of Theorem 2.6) 

c(Q) = /\aQEgQ,GQ3Qcv(GQ) = /\aQEQf,:GQ3Qcv(GQ) 

= /\aEr;;(E):G°JQ cv ( Q( G)) 

= /\aEQ(E):G°JQ c(G), 

which is (15.4). Consequently, 

15.6. THEOREM. A precapacity c is a capacity, i.e., (15.4) holds, iff c E 

US(Q(E)) and c(0) = 0. 

We write CAP = CAP(E) for the family of all capacities on E (or rather 
Q(E)). Recall that CAP(E) = {c E US(Q(E)): c(0) = O} =: USo(Q(E)), 
where Q(E) is provided with the topology with base g§I- consisting of the sets 
in (15.8). Let B be a class of subsets of E. Then 

BQ := { Q(B) : B E B} 

is a class of subsets of Q(E). In view of (15.6) and (15. 7) we define the B 
topology on CAP as topology with sub base 

{ c : c( G) > x}, { c : c( B) < x} for G E g, B E B and x E Jf. 

Since c(B) = c(satB) = cv(Q(B)), we see by Lemma 5.1 that the B topology 
on CAP(E) is the same as the sup BQ topology on US0 (Q(E)). 

15.7. THEOREM. If Eis locally B and B is closed for finite unions, then Q(E) 
is locally BQ, and CAP is BQ Hausdorff. 

PROOF. The generic element of the base gf is in (15.8). Let Q0 E Q(G), so 
Qo C G. For each t E Qo, select a B(t) E B such that t E intB(t) C B(t) C G. 
Then Qo C UtEQo intB(t). Select a finite subset Q# of Qo such that Qo C 
UtEQ intB(t), and set B := UtEQ B(t). Then B E B and Qo C intB C B C 
G. st # 

Qo E Q(intB) C Q(B) C Q(G), 

where Q(intB) E gf and Q(B) E BQ. So Q(E) is locally BQ. Then US(Q(E)) 
and also USo(Q(E)) is sup B Hausdorff by Theorem 4.3(c), so CAP is B 
Hausdorff. D 

15.8. COROLLARY. If Eis locally closed(= T3, cf. Property 3.7(e)), then 
CAP is narrowly Hausdorff. 

15.9. THEOREM. (a) The space CAP is vaguely qcompact. 
(b) If E is locally qcompact, then CAP is vaguely compact. 
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PROOF. (a) Follows from Corollary 4.4(a), provided that QQ C JC(Q(E)) (cf. 
Theorem 4.2.(iii)). To prove the latter, let Q E Q(E) and consider Q(Q) = 
{HE Q: H C Q}. Let Q(Q) C Ua Q(Ga), Then Q E Q(Q) C Ua Q(Ga), so 
Q E Q(Ga) for some a=: {3. Then Q C G/3, so Q(Q) C Q(G/3)-
(b) Combine (a) and Theorem 15.7 for B = Q. □ 

15.10. LITERATURE. The present section complements and generalizes aspects 
of NORBERG (1986). For similar results on narrow convergence of capacities, 
see SALINETTI & WETS (1987) and VERVAAT (1988). DAL MASO (1980) has 
a similar approach to capacities based on topologies in spaces of increasing 
functions (DAL MASO (1979)). The topics of the present section have been 
developed further by NORBERG & VERVAAT (1989) and HOLWERDA & VER­
VAAT (1993). For simpler and direct proofs of the vague qcompactness of CAP, 
see HOLWERDA & VERVAAT (1993). 

16. SUP AND RADON MEASURES AS SPECIAL CAPACITIES 
In the beginning of the previous section we observed that restrictions of sup 
and Radon measures to K, are precapacities with specific behavior for unions 
in K, (cf. 15.2) and (15.1)). In the present section we are going to characterize 
the spaces of these restrictions as subspaces of the (pre )capacities. The presen­
tation is self-contained for sup measures. The corresponding results for Radon 
measures demand much more theory and are quoted from the literature. 

We start with some generalities about precapacities. 

16.1. LEMMA. If c is a precapacity and (Gn) is an increasing net in g with 
union G := Un Gn, then c(Gn)tc(G). 

PROOF. If x < c(G) = V Kea c(K), then there is a KC G such that x < c(K). 
Since K is qcompact, there is an n such that K C Gn, so x < c(Gn)- Hence 
x < lim c(Gn), which proves c(G) :'.Slim c(Gn)- The reverse inequality is trivial. 
□ 

16.2. COROLLARY. Let c be a precapacity. 
(a) If 

c(G1 U G2) = c(Gi) V c(G2) for G1,G2 E g, (161) 

then c(Uj Gj) = vj c(Gj) for arbitrary collections in g (apply the lemma to 
the net of finite unions). 
(b) If c(G1 U G2) = c(G1) + c(G2) for disjoint G1, G2 in g, then c(LJi Gj) = 
I:i c(Gj) for arbitrary collections of disjoint sets in g (idem). 

16.3. LEMMA. If Assumption 14.9 holds and 

c(K1 U K2) = c(K1) V c(K2) for K1, K2 E K, 

then {16.1) holds. 

(162) 

PROOF. If x < c(G1 U G2), then there is a qcompact K C G1 U G2 such that 
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x < x(K). By Assumption 14.9 there are K 1 C G1 and K 2 C G2 such that 
K c K1 U K2. Hence 

x < c(K) < c(K1 U K2) = c(K1) V c(K2):::; c(G1) V c(G2). 

We have proved c(G1 U G2) :::; c(Gi) V c(G2). The reverse inequality is trivial. 
□ 

16.4. THEOREM. If Assumption 14- 9 holds, then a capacity c is the restriction 
to K of the extension of a sup measure on g iff {16.2) holds. 

PROOF. By Lemma 16.3 and Corollary 16.2(a) we see that c is a sup mea­
sure on g. Upper semicontinuity of c guarantees that c(K) = /\a-::;K c(G), in 
accordance with Theorem 2.5(c). D 

16.5. COROLLARY. If Assumption 14.9 holds, then there is for each capacity 
c satisfying (16.2) a unique f E US such that c(K) = jY(K) for KE Q. 

We now turn to Radon measures and henceforth assume that E is Hausdorff. 
There are two different definitions of Radon measures in the literature. Follow­
ing BERG ET AL. (1984) we say that a countably additive measureµ on Bor E 
is Radon ifµ is finite on K, and µ(A) = V KcA µ(K) for A E BorE. Most other 
authors, starting with BOURBAKI (1965), require in addition that µ is locally 
finite: for each t E E there is an open G 3 t such that µ(G) < oo. It is not 
hard to see that a Radon measure is locally finite iff its restriction to K is usc 
as a precapacity, so is a capacity. 

Here is a list of plausible characterizations of finite additivity of precapaci­
ties on K. Each line is implied by the next. 

c(K1 U K2) = c(K1) + c(K2) if K1 n K2 = 0 ; 

c(K1 U K2) :::; c(K1) + c(K2) & (16.3a) ; 

c(K1 U K2) + c(K1 n (K2) = c(K1) + (K2); 

c(K1) = c(K1 \K2) + c(K2) if K1 :J K2. 

(16.3a) 

(16.3b) 

(16.3c) 

(16.3d) 

16.6. THEOREM. A precapacity c is the restriction of a Radon measure to K 
iff c is finite-valued on K and {16.3d} holds. 

PROOF. BERG ET AL. (1984, Th.2.1.4). □ 

16. 7. THEOREM. A capacity c is the restriction of a {necessarily locally finite) 
Radon measure to K iff c is finite-valued on K and {16.3b} holds. 

PROOF. BOURBAKI (1965, Th.IX.3.1 + Remark 1). □ 

16.8. EXAMPLE Let E = R and let c([a, bl) := eb-a - 1 for compact inter­
vals [a,b]. Extend c to finite disjoint unions of such intervals by (16.3a), and 
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subsequently to all of JC by {15.5). Then c is a capacity by Theorem 15.4{b). 
Furthermore, c satisfies {16.3a), but is not the restriction of a Radon measure, 
since it does not satisfy {16.3b). 

16.9. LITERATURE. For related problems in partially ordered sets, see NOR­
BERG (1989). For related problems in non-Hausdorff spaces, see NORBERG & 
VERVAAT {1989). 
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On the Convergence of Probability Measures on 

Continuous Posets 

Tommy Norberg 

ABSTRACT. We study convergence in distribution of random variab­
les in a countably based continuous poset L. The convergence is with 
respect to the Lawson topology on L. The main result is the following: 

Let e,e1,e2, ... be random variables in L. Then en converges in 
distribution to e if, and only if, 

limsupnPni{xi 5 en} 5 Pni{xi 5 e} 
for finite collections { xi} ~ L, and 

liminfnP{ en E n/i} ~ P{ e E n/i} 
for finite collections { Fi} of Scott open filters on L. 

We also derive some new existence results for probability measures 
on L. A lattice theoretical notion of tightness is introduced and related to 
the classical notion of tightness for random elements in a topological space. 

Our results apply to random elements and various kinds of random 
sets in locally compact second countable sober spaces. They furthermore 

apply to semicontinuous processes and, more generally, random capacities 
on such a topological space. 
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1. Introduction 

Let L be a. countably based continuous partially ordered set (poset for short). In a. 

previous pa.per (Norberg (1989)), we have discussed the existence of random variables in L. 

Now our aim is to study their convergence in distribution, which by definition is equivalent 

to weak convergence of the induced probability measures. 

On L there is a canonical topology, called the Lawson topology, which is completely 

regular, second countable and Hausdorff, hence Polish (i.e., admits a complete separable 

metric). The convergence in distribution is relative to this well behaved topology. 

An L-va.lued mapping e, defined on some probability space, is a. random variable in 

L if all events of the form {x S e} are measurable. It is not hard to see that this is equiva­

lent to require the event {e E F} measurable for FE $ - the collection of (Scott) open 

filters on L. 

Let e,e1,e2'" .. be random variables in L. Our main result (Theorem 5.3) states that 

en converges in distribution to e, which we denote by en -+d e, if and only if 

(1.1) limsupnPni~l {xi Sen} S Pni~l {xi Se}, m = 1,2, ... , x1, ... ,xm EL, 

(1.2) liminfnP{en E ni~l Fi}~ P{e eni~l Fi}, m = 1,2, ... , F1, ... ,F m E $. 

Let L be Vr-closed, i.e., closed for finite suprema. Then 

X S Z, Y S Z <:=} 3Ny S Z, 

and condition (1.1) simplifies to 

(1.3) 

By definition every continuous poset is closed for directed suprema. Thus, if A ~ L is non­

empty, then the supremum of A, denoted VA, exists. Hence if A ~ L has a lower bound, 

then A has a greatest lower bound, denoted AA. It follows that $ is closed for finite inter­

section (nr-closed), and condition (1.2) reduces to 

Thus the characterization of convergence in distribution is particularly simple if L is Vr­

closed. 

The line ( -00,00] is a simple example of such an L. Another simple example is the 

non-negative reals [0,oo) with the reversed order. These two examples are also Ar-closed. The 

union {l}x(0,l] U (0,l]x{l} in its coordinatewise order is an example of a continuous poset 
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which is Vr- but not Ar-closed. 

Other well-known (and important) examples of continuous posets are the collections 

of closed subsets of a locally compact second countable Hausdorff space and, more general­

ly, all extended real-valued upper semicontinuous functions on such a space (cf. Gerritse 

(1985) and Vervaat (1988)). Also many of the collections of capacities discussed in Norberg 

(1986) and Norberg & Vervaat (1989) are continuous posets. 

The reader who wants more examples of continuous posets is also referred to Law­

son (1979), Gierz, Hofmann, Keimel, Mislove & Scott (1980) and Hofmann & Mislove 

(1981). These references contain all the general information on continuous posets that we 

need in this paper. 

There is a well known simple characterization of convergence in distribution of real­

valued random variables in terms of weak convergence of the associated distribution func­

tions. A similar result can be proved if Lis assumed both Vr- and Ar-closed. 

So assume this. Clearly any mapping of the form P{ • $ e} is continuous from below 

in the sense that P{xn $ e} i P{x $ e} as xn j x. There is no analogous notion of continuity 

from above, since L need not be closed for countable decreasing infima. It can, however, be 

shown that the set of all x E L, for which there is some F E $ satisfying 

is dense in L. We could refer to such an x as a continuity point of P{ • $ e}, and we will see 

below that en __,d e if and only if 

(1.5) limnP{ x $ en} = P{ X $ e} 

for continuity points (Proposition 5.6). 

By Zorn's lemma, any continuous poset has a maximal point, though there need of 

course not be a unique one. But if there is, then this point is the largest member of L and 

may in some cases act as the point of infinity (consider, e.g., the case (-00,00] mentioned 

above). Assume now that L indeed has a largest member (a top), which we regard as the 

point of infinity and denote by T. 

A random variable e in L may be called tight if e # T with probability one. It is easy 

to see that e is tight in this sense if, and only if, for each f > 0 there is some F e $ with 

P{e E F} $ t. Similarly, a sequence el'e2, ... or collection (en) of random variables in L 
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may be called tight, if for each £ > 0 we have 

supnP{ ~n E F} $ £ 

for some F E 2. Some simple argumentation will show us that (en) is tight if, and only if, 

supnP{xS en}$£ 

for all £ > 0 and some x < T (Proposition 5.8). 

Let e1,e2, ... be a sequence of tight random variables in L, which converges in distri­

bution to some random variable e. If ( en) is tight, so is e by (1.2). The converse follows by 

( 1.1) ( Proposition 5.9). 

As remarked above our results apply to the collection of closed subsets of any locally 

compact second countable Hausdorff space. This is true also if we replace the Hausdorff 

separation assumption by the weaker condition that the space is sober. So, let S be such a 

space and let :!J' denote its collection of closed subsets. Furthermore write 'j for its collec­

tion of open sets and .Z for its collection of compact saturated sets. We will remind the 

reader of some basic topological notions soon. Let us only note at this point that a subset of 

a topological space is saturated if it coincides with the intersection of its open neigborhoods 

and that all subsets of a Hausdorff space are saturated. 

A mapping <p from some probability space into :!J' is called a random closed set in S, 

if { r.p n G 1 0} is a measurable event for all GE 'f (Cf. Matheron (1975), who treats the 

Hausdorff case.) Clearly this holds if and only if { <p £ F} is measurable whenever F E :!J'. 

Next note that :!J' is a continuous poset relative to the exclusion order d· Thus a random 

closed set in Sis nothing but a random variable in :!J'. Moreover, the Lawson topology on 

:!J' coincides with Fell's (1962) "hit or miss" topology. 

Let r.p,r.pl'<p2, ... be random closed sets in S. Clearly (1.3) is equivalent to 

(1.6) liminfnP{ 'Pn n G H} ~ P{ <p n G H}, GE 'j, 

and it follows directly from a result of Hofmann & Mislove (1981) that (1.4) holds if and 

only if 

(1.7) 

Thus, (1.6) and (1.7) together are necessary and sufficient for <pn -+d <p. 

A class ./6 of subsets of S is said to be separating if, whenever Q £ G, where Q e i, 

and GE 'j, we have Q £ A £ G for some A E ./6. Below it will be seen that <pn -+d <p if and 
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only if 

(1.8) 

for all sets A in some separating class of Borel sets in S (Proposition 6.1). This result was 

proved for the Hausdorff case in Norberg (1984). 

The largest member of .'J" with respect to the exclusion order is the empty set 0. So 

ip is tight if and only if ip is non-empty with probability one. The result of Hofmann & 

Mislove (1981), which we just referred to, tells us that this holds if, and only if, for every f 

> 0 we have 

(1.9) P{ipnQH}~l-f 

for some Q e 9, . 

The topological space Scan be endowed with a finer topology, which is completely 

regular, second countable and Hausdorff, in particular Polish. It is called the patch topolo­

gy and may be characterized by the fact that sn-+ sin Sif and only if {snr-+ {sr in .'J" 

with respect to Fell's topology (Proposition 6.2). It is easy to write down a characterization 

of convergence in distribution (with respect to the Polish patch topology) of random ele­

ments {1,{2, ... to {. The following is obtained: {n -+d { if and only if 

(1.10) liminfnP{ {n E G} ~ P{ { E G}, GE '#, 
(1.11) limsupnP{{nE Q} SP{{E Q}, QE 9, 

(Theorem 6.3). If Sis Hausdorff, then 9, ~ .'J" and (1.11) follows from (1.10). In this case 

the patch topology coincides with the original topology and nothing new is obtained. 

Call a collection ({n) of random elements in S tight if whenever f > 0 there is a 

compact saturated Q ~ S with 

infnP{ {n E Q} ~ 1- f. 

A random element is tight if the corresponding singleton is. We must be a little careful 

when discussing tightness in the continuous poset L because we have several notions of it. 

We refer to the classical notion defined in this paragraph as topological tightness. The topo­

logy underlying it is always the Scott topology. 

Let ( {n) be a family of random variables in L. Below we will see that ( {n) is topolo­

gically tight if and only if f > 0 implies the existence of finitely many x1, ..• ,xm E L satisfy­

ing 
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infnPui:l {xi~ e} ~ 1 - f. 

We may of course take m = 1 here if L is Ar-closed. The reader might want to compare this 

with our previously introduced lattice theoretical notion of tightness. 

Let e be a random element in S and write '{) = { e} - for its singleton closure. Not 

surprisingley e is tight if and only if '{) is. so in the lattice theoretical sense. The latter is 

obviously always true. Hence any random element in Sis tight. 

Assume the collection i, of compact saturated sets in S to be nr-dosed. Then the set 

{{sr: SE s} U {0} 
is compact with respect to Fell's topology (Proposition 6.5). This fact allows the following 

conclusion for a collection (en) of random elements in S: Every subsequence of (en) has a 

further subsequence which is convergent in distribution if and only if ( en) is tight (Theo­

rem 6.7). 

Note that the tightness is relative to the original topology, while the convergence in 

distribution is with respect to the Polish patch topology. So this result is not an extension 

of Prohorov's theorem (see, e.g., Billingsley (1968), p. 37) to a class of non-Hausdorff 

spaces. Instead it is an improvement of it when applied to a Polish space which arises as 

the patch space of a locally compact sober space (see Lawson (1989)). The advantage of our 

result over Prohorov's is that the collection i, of sets which are compact and saturated 

with respect to the original topology on S generally is, in a distinctive way, smaller than 

the collection .% of subsets of S, which are compact with respect to the Polish patch 

topology. 

We continue with a description of the contents of the various sections of this paper. 

In Section 2 we give the basic preliminaries on continuous posets and topology. The real 

development of our results begins in Section 3 when we introduce a convenient u-field on L 

and discuss measurability. 

Section 4 begins with a discusion of uniqueness of probability measures on L. For 

the reader's convenience we include here three existence theorems for random variables and 

one for random open filters in L. The latter are by definition random elements in $, which 

is continuous under inclusion ~- These four theorems have various assumptions on L and 

are proved in Norberg (1989). We conclude Section 4 by proving two new theorems. The 
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first gives existence criteria for random variables in L, under assumptions on the latter that 

are not studied earlier, while the second discusses the existence of random open filters on L. 

Section 5 contains the main result of this paper (i.e., Theorem 5.3), which gives 

necessary and sufficient conditions for convergence in distribution of random elements in .L. 

The proof goes as follows: First we conclude by the Lawson duality (cf. Lawson (1979) or 

Hofmann & Mislove (1981)) that there is an equivalent theorem giving necessary and suffi­

cient conditions for convergence in distribution of random open filters on L (Theorem 5.4). · 

We then prove that any random open filter on L also is a random Scott open set in L. The 

latter are by definition random variables taking their values in Scott(£) - the collection of 

Scott open sets in L - which is continuous under inclusion. Next, we prove that a sequence 

of (random) open filters converge in $, if and only if it converge in Scott(£). The final 

argument uses a characterization of convergence in distribution for random Scott open sets, 

which is proved earlier in Section 5. 

After proving our main result we briefly discuss simple necessary and sufficient 

conditions for convergence in distribution, assuming L both Vr- and Ar-closed. We then 

discuss tightness in the lattice theoretical sense. Finally in Section 5, we study convergence 

in distribution of rowwise infima Aj enj, where the enj 's form a null array. It turns out 

that any limiting random variable must be infinitely divisible with respect to A. 

In Section 6 we discuss convergence in distribution of random elements in locally 

compact sober spaces. As already remarked, the convergence is relative to the Polish patch 

topology. The important results of this section are Theorem 6.2, which characterizis con­

vergence in distribution and Theorem 6.7, which is our improvement of Prohorov's theo­

rem. 
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2. Continuous posets and locally compact sober spaces 

In this section we introduce some of the notation and terminology needed in this 

paper. Let L be a poset. For z e L, we write jz = {11 e L: z 5 11} and !z = {11 e L: 11 5 z}. 

Say that a non-empty set A ~ L is directed (filtered) if given z,11 e A, jz n jy n A -/: 0 (!z n 

! 11 n A -/: 0 ). A non-empty set A ~ L is a filter if it is filtered and upper in the sense that j z 

~ A whenever z e A. 

Assume L up-complete in the sense that every directed subset D haB a supremum VD 

in L. Let z,y e L. Then z is said to be way below 11 and we write z < y, if for every directed 

set D ~ L with 115 VD we have z 5 zfor some z ED. 

Assume further that for each z e L, z = V{y e L: 11 < z} and this set is directed. 

Then L is called continuous. A set U ~ L is Scott open if (i) U is an upper set and (ii) D n 

U-/: 0 whenever D ~ L is directed with VD e U. The collection of Scott open sets in L is a 

topology which we call the Scott topology and denote by Scott(£). Its subcollection of open 

filters is denoted .:tor OFilt(L). Note that .:tis an open baBe for Scott(L). Another open 

baBe for Scott(£) is formed by the sets {11 E L: z < y}, ze L. Both .:t and Scott(£) are con­

tinuous posets relative to the inclusion order ~-

The coarsest topology on L that contains Scott(£) (or .:t) and all sets of the form 

L\ j z, where z e L, is called the Lawson topology. This topology is completely regular, se­

cond countable and Hausdorff, hence Polish. 

The above definitions and results can be found, e.g., in the papers Lawson (1979) 

and Hofmann & Mislove (1981) or the monograph Gierz, Hofmann, Keimel, Lawson, Mis­

love & Scott (1980). 

Lawson (1979) shows that the mapping 

z-+ ~= {Fe .:t: Z'E F} 

is an order-isomorphism between L and OFilt( .:t). This is the object level of what is nowa­

days called the Lawson duality, and .:tis often called the {Lawson) dual of L. 

Say that a set Q ~ Lis separating, if for each z,y E L with z < y, there exists some z 

e Q with z 5 z 5 y. This notion is very similar to the notion of a basis employed for continu­

ous lattices in Gierz et al. (1980). Do not confuse it with our notion of a separating class of 

sets mentioned in the introduction. Norberg (1989) proves that the following four assertions 
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are equivalent: (i) Scott(L) is second countable, {ii) L contains a countable separating 

subset, (iii) $ contains a countable separating subset and (iv) Scott($) is second count­

able. Moreover, a continuous topology has a countable separating subset if and only if it is 

second countable. Lawson (1988) calls L countably based, if L contains a countable separat­

ing subset. 

Let S be a topological space. Call a closed set F ~ S irreducible if, whenever F ~ F1 U 

F2 for any closed sets F1,F2 ~ S, then F ~ F1 or F ~ F2. Every singleton closure is irredu­

cible and S is called sober if every non-empty irreducible closed set is the singleton closure 

of a unique s e S. Hausdorff spaces are sober, but the converse is not true. Recall from the 

introduction that a set A ~ Sis saturated if it equals its saturation satA = n{ G: A ~ G and 

G ~ Sis open}. Clearly a set K ~ Sis compact if and only if its saturation is. We call S 

locally compact if whenever s E G ~ S, where G is open, we have s E If ~ K ~ G for a com­

pact set K ~ S. Note that we may take K saturated here. 

The Scott topology on a continuous poset is sober and locally compact (Lawson 

(1979)). It is quite obvious that the topology 'J of any locally compact sober space Sis 

continuous. Hofmann & Lawson (1978) shows the converse, i.e., a sober space is locally 

compact if its topology is continuous. Hofmann & Mislove (1981) shows that the collection 

!i, of compact saturated subsets of Sis anti-order isomorphic to OFilt(<J). This fact is very 

important in random set theory. 

We end this section by proving two lemmata, which will be needed below. The first 

is included at this point mainly for pedagogical reasons. Its proof is given in detail. The 

standard facts used are simple and can be found, e.g., in Lawson (1979)). The second lem­

ma is an important part in the proof of Theorem 5.3. It has some independent value. 

LEMMA 2.1. Let L be a countably based continuous poset. Let Q ~ L be Scott compact 

saturated. Then there are some xni E L, where n = 1,2, ... and 1 ~ i ~ kn< oo, such that 

Q~hTxni]lQ 

as n .. oo. 
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see this, recall that $ is continuous relative to £ and that 3 contains a countable separat­

ing subset ~. Then 

F=V{Ge3:G<F} 

( = U{ Ge $: G < F} ). By the interpolation property (Lawson (1979), Proposition 1.6), if G 

< F, then G < Hand H < F for some He 3. Choose De ~ such that G £ D £ H. Clearly D 

< F. We conclude 

F=U{Ge ~: G<F}. 

The set on the right is countable and directed. To see the latter, use the fact that the set 

{ G e $: G < F} is directed and repeat the argument already given. Thus there are 

F1,F2, ... e 3 such that Fn < F and Fn j F. Use the interpolation property to conclude 

that we may take F n < F n+l here. (Up to now we have not used the fact that 3 is a col­

lection of filters.) By Lawson (1979), Proposition 3.3, if Fn < Fn+l' then Fn £ jzn £ Fn+l" 

By construction, it is clear that (jzn) j F. Note that jzn £ Fn+l £ jzn+l· By Lawson 

(1979), Proposition 2.2, zn+l < zn. Our claim in the first sentence of the proof is thereby 

proved. 

By Hofmann & Mislove (1981), Theorem 2.16, 

{ u E Scott(L): Q £ D} E OFilt(Scott(L)) 

(i.e., is an open filter on Scott(L)). Recall that Scott(L) is continuous and, being second 

countable, contains a countable separating subset. By the already proved result, 

(jU,Ji{UeScott(L): Q£ D}, 

forsome Ul'U2, ... eScott(L)with Q£ Un and Un+l < Un.Itiseasytoseethat Un! Q. 

We next prove that if U< V, where U, Ve Scott(L), then U£ Ui~1jzi £ Vfor some 

Zi•···,zm e L. From this fact, the lemma clearly follows. To see it, note first that U £ 

Ui~l Fi £ V for some Fl' ... ,F m e 3, since 3 contains a countable base for Scott(L). By 

the interpolation property, we may assume here that U < u:1F,- For 1 ~ i ~ m, choose 

F il'F i2, ... e 3 such that Fin< Fi and Fin j Fi Then U £ ui~l Fin for some sufficiently 

large n. 

By Lawson (1979), Proposition 3.3, we may choose zp···,zm e L such that Fin£ jzi 

£ F1, Hence 

a 
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LEMMA 2.2. Let L be as in the above lemma. Then the Lawson topology on :t = 
OFilt(L) is the trace of the Lawson topology on the largerScott(L). 

PR.OOF. The Lawson topology on :tis generated by the sets 

9'x = {FE :t: XE F} =: { u E Scott(L): jx !; U} n :t, 

where x E L, and the sets 

:t\jH= {FE :t: H(f F} = {UE Scott(L): H(f U} n :t, 

where HE :t. Here 

{ U E Scott(L): jx !; U} E OFilt(Scott(L)) 

since jx is Scott compact saturated. So this set is open with respect to the Lawson topology 

on Scott(L). Clearly so is also 

{UE Scott(L): H(f U} = Scott(L)\jH, 

since HE :t !;; Scott(L). Hence the Lawson topology on :tis included in the trace of the 

Lawson topology on Scott(L). 

To see the converse, first conclude by Hofmann & Mislove (1981), Theorem 2.16, 

that if 'It E OFilt(Scott(L)), then 

'It= { U E Scott(L): Q !;; U} 

for some Scott compact saturated Q !;; L. Thus the Lawson topology on Scott(L) is the 

coarsest topology containing all sets of the form 

{ U E Scott(L): Q !;; U}, 

for Q !;; L Scott compact saturated, and all sets of the form 

{UE Scott(L): V(f U}, 

where VE Scott( L). 

Now, if VE Scott(L), then V = UnFn for some F1,F2, ... E :t, since :t contains a 

countable base for Scott(L). Hence 

{UEScott(L): V(f U}=Un{UEScott(L):Fn(f U}. 

Next, if Q !;; U E Scott(L), where Q is Scott compact saturated, then Q ~ ui:\ jxi ~ U for 

some x1, ... ,xm E L (cf. the proof of Lemma 2.1). The set ui!\ jxi is Scott compact saturat­

ed. Moreover, u:1 jxi !; U if, and only if, xl' ... ,xm E U. Thus the Lawson topology on 

Scott(L) is generated by all sets in the two families 
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{ { U E Scott(L): F ( U}: FE .t'}, 
{{UE Scott(L): XE U}: XE L}. 

Tommy Norberg 

Hence the relativization of the Lawson topology on Scott(L) to .t' is included in the Law-

son topology. a 
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3. Measurability 

For the remaining part of this paper L is a countably based continuous poset. Its 

Scott topology, which is second countable, is denoted by Scott(£) and .z denotes its collec­

tion of open filters. We let D and 9J be countable separating subsets of L and .z, resp. 

Write l: (or l:(L)) for the a-field on L generated by the sets Tx, x E L. 

Oµi- first result gives several equivalent conditions for measurability. It says in par­

ticular that l: is generated by .z and also by the larger Scott(£). 

PROPOSITION 3.1. Let (0, .9!) be a measurable space and consider a mapping e from n 
into L. Then the following five conditions are equivalent: 

(i) e is measurable w.r.t . .9t and l:, 

(ii) { X $ e} E .9!, XE L, 

(iii) {x< e} E .9!, XE L, 

(iv) { e E F} E .9!, FE .Z, 

(v) { e E V} E .9!, U E Scott(L). 

They imply 

(vi) { e $ x} E .9!, X E L. 

PROOF. Since l: by definition is generated by all sets of the form Tx, (i) and (ii) are 

equivalent. If FE .:I, then obviously F = UzepTx. Moreover, if x E FE .:I, then Tx ~ TY for 

some y E F n D. Thus F = Uxe.FllDTx. Hence (ii) implies (iv). We have already remarked 

that .:I ls an open base for Scott(£). Since the latter is second countable, (iv) implies (v), 

which in turn trivially implies (iii). It is an easy exercise to show that Tx = nye:xTY = 
nye:x{ z E L: y < z}, and that the latter intersection can be thinned to a countable one, i.e., 

we may restrict y to D. So (iii) implies (ii). 

Condition (vi) follows from (v), since !xis Scott closed for all x E L. □ 

We have not been able to prove that condition (vi) of Proposition 3.1 implies that e 
is measurable. It is true in many particular cases. We believe, however, that it is not a 

general fact. 
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4. Probability distributions 

Let (0, .st, P) be a probability space. Then {:O -+ Lis called a random variable in 

L if { is measurable w.r.t . .st and I: (cf. Proposition 3.1). In this case, the two mappings z 

-+ P{ z S {} and F-+ P{ { e F} defined on Land $, resp., have important interrelations. 

PR.0P0SITION 4.1. Let { be a random variable in L. Then 

(a) P{zs e} = "yc:?{11 S {} = "yc:?b< e} = "zeFE$P{{ E F}, ze L; 

(b) P{{ E F} = V <7<z;P{{ E G} = V ze_pP{z $ {} = V ze_pP{z< {},FE ~ 

PaooF. Let F e $. Then, since 3 is continuous and contains a countable separating 

subset !I, F= UG<FG, where Ge !I. It is easy to extract G1,G2, ... e !I such that Gn l 

F. Next argue as in the proofs of Lemma 2.1 and Proposition 3.1 to conclude that there are 

;,z..i, ... e F satisfying zn+l < zn and both (lzn) l F and {ye L: zn < y} l F. This shows 

(b) - (a) follows similarly. a 

The distribution of a random variable { in L is by definition the induced probability 

measure PC1 on I:. Equality in distribution is denoted =d· Thus, for random variables {,11 

in L, { =d 11 if, and only if, PC1 = P11-1 on I:. Here, and in similar instances, the random 

variables need not be defined on the same probability space although we, for convenience, 

denote by P all underlying probability measures. 

THEOR.EII 4.2. Let {,11 be random variables in L. Then the foUowing statement is equi­

valent to { =d 11: 

(i) P{ { E CJ} = P{'1 E CJ}, U E Scott(£). 

Moreover, if L is Yr- or Ar-closed, then also the following three statements are equivalent to e 
=d 11: 

(ii) 

(iii) 

(iv) 

P{z< {} = P{z< 11}, ze L, 

P{zS {} = P{zS 11}, ze L, 

P{{e F} = P{'1e F}, Fe 3. 
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PR.OOF. The first assertion of the theorem is obvious. Clearly { =d 71 implies (ii), 

which, by Proposition 4.1, in turn implies both (iii) and (iv). This proposition also shows 

that (iii) and (iv) are equivalent. If L is Ar-closed, then .:t U { 0} is nr--closed and { =d 71 

follows by a standard monotone class argument from (iv). If L is Vr--closed, then { =d 71 

follows in a similar way from (iii). □ 

A part of the above theorem can be found in Norberg (1989), from which we now 

fetch three existence theorems for random variables in L. Let A:L---+ IR, and let n = 1,2, ... 

and x,x1, ... ,xn E L. If Lis Vr-closed, we recursively define 

An(x;xl' ... ,xn) = An-l (x;x1, ... ,xn_1) -An-l (xVxn;x1, ... ,xn_1), 

where 

A1 (x;x1) = A(x) -A(xVx1). 

The first existence theorem pressumes that Lis both Vr- and Ar-closed, i.e., a lattice. 

THEOREM 4.3 (Norberg (1989)). Assume L both Vt- and Ar-closed and let A:L---+ IR+. 

Then there is a random variable { in L satisfying 

P{x 5 {} = A(x), x e L, 

if, and only if, the following three conditions hold true: 

(i) 

(ii) 

(iii) 

An(x;x1, ... ,xJ ~ O, 

A(xn) ! A(x) as xn j x, 

SUPxeLA(x) = 1. 

Before proceeding, let us look at the case when L only is vr-closed and A:L-+ [0,1] 

is a function satisfying conditions (i) and (ii) of Theorem 4.3. It seems natural to add a 

bottom to L, i.e., form LJ. = L U { J. }, where J. is an artificial point satisfying J. 5 x for all x 

E LJ.. It is trivial that LJ. is a countably based continuous poset, which is both Vr- and At­

closed. It is also trivial that the mapping A:LJ.---+ IR+, given by letting A(x) = A(x) if x EL 

and = 1 if x = J., satisfies conditions (ii) and (iii) of Theorem 4.3. 

Now note that 
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if xn = .1. and that this iterated difference does not depend on the order in which we 

enumerate x1, ... ,xn. Thus we only need to check whether 

(4.1) An(.1.;xl' ... ,xn) ~ 0 

for xl' ... ,xn e L. If (4.1) holds, we may conclude by Theorem 4.3 that there is a probability 

measure X on L.1. satisfying 

A(jx) = A(x), xe L.1.. 

Write,\ for the restriction of X to L. Clearly ,\(jx) = A(x) for x e L. Moreover, (4.1) is of 

course necessary for the existence of ,\. 

Is ,\ a probability measure? In order to answer this question, we note that 

n - n -
,\(Ui=l jxi) = ,\(Ui=l jxi) = 1 - An(.1.;x1,···,xn) 

if xl' ... ,xn e L. Hence,\ is indeed a probability measure if 

(4.2) 

where the infimum is taken over n = 1,2, ... and x1, ... ,xn e L. 

Conversely, if ,\ is a probability measure on L, then ,\ is topologically tight by the 

discusion in the introduction and 

sup,\(u~1 jxi) = 1, 

i.e., (4.2), follows by Proposition 6.4 below (please forgive us for relying on an unproven 

result). Thus (4.2) is a necessary and sufficient condition for ,\(L) = 1. 

It is quite natural to refer to any function satisfying condition (i) of Theorem 4.3 as 

a completely monotone function. This is the case also with functions satisfying condition (i) 

in Theorems 4.4, 4.6 and 4.7 below. Functions satisfying 

A(xn)-+ A(x) as xn j x 

may be called inner contin'/1,0'US. 

Whenever c is a real-valued function defined on an At-closed poset M and y e M, we 

write l:ll for the mapping on M given by 

l:lyc(x) = c(x) - c(x/\y). 

Note that if Lis Vt-closed, then the collection {ix: x e L} is nr-closed and, writing A(x) = 
c(jx), 

A1 (x;y) = l:ljyc(jx). 

The next existence theorem pressumes that L is At-closed and has a top. Then .Z is 
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nr-closed and contains L. 

THEOREM 4.4 (Norberg (1989)). Suppose L is Ar-closed and has a top, and let t: $--+ 

IR+. Then there is a random variable ~ in L satisfying 

P{~ E F} = t(F), FE$, 

if, and only if, the following three conditions hold true: 

(i) 

(ii) 

(iii) 

t, F ... !:. F t(F) ~ 0, 
1 n 

t(Fn) j t(F) as Fn j F, 

t(L) = 1. 

THEOREM 4.5 (Norberg (1989)). A increasing function µ on Scott(L) extends to a 

unique probability measure on ( L, E) if, and only if, the following three conditions hold true: 

(i) 

(ii) 

(iii) 

µ(UU V)+µ(Un V)=µ(U)+µ(V), 

µ(Un) j µ(U) as Un j U, 

µ(0) = 0, µ(L) = 1. 

Functions satisfying (i) in Theorem 4.5 above are sometimes called modular. We 

have already remarked that the Scott topology is a locally compact, second countable and 

sober topology on L (cf. Lawson (1979)). Norberg (1989) shows that Theorem 4.5 above 

applies to all such topological spaces, provided that Scott(L) and E are replaced by the 

collections of open and Borel sets, resp. 

The Lawson duality is of particular interest in the setting of Theorem 4.4, because if 

Lis At~losed and has a top, so is the case for its dual $ and conversely. It yields the fol­

lowing existence theorem for random variables in $, which quite naturally are called 

random open filters on L. 

THEOREM 4.6 (Norberg (1989)). Suppose L is Ar-closed and has a top denoted by T. Let 

M:L -> IR+. Then there is a random open filter 1P on L satisfying 

P{xE 1P} = M(x), xE L, 

if, and only if, the following three conditions hold true: 
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(i) 

(ii) 

(iii) 

D. ... D.x M(x) ~ 0, 
xl n 

M(xn) i M(x) as xn i x, 

M(T)=l. 

Tommy Norberg 

To this line of existence theorems we now add two new. The first considers the case 

when L only is assumed to be Ar-closed, thus is a slight generalization of Theorem 4.4. Note 

that ~ = .:tu {0} is nr-closed and that Le .:t. 

THEOREM 4.7. Assume L Ar-closed and let t:~ - IR+· Then there is a random vari­

able { in L satisfging 

P{{ E .F} = t(.F), Fe .:t, 

if, and only if, the following three conditions hold true: 

(i) 

(ii) 

(iii) 

D.F ... D.F t(.F) ~ 0, 
1 n 

t(Fn) i t(.F) as Fn j F, 

t(0) = 0, t(L) = 1. 

PROOF. Note first that ~ is a continuous poset with a second countable Scott topo­

logy, the latter because JD U {0} is a separating subset of ~- By Theorem 4.6, there is a 

random open filter cp in ~ satisfying 

P{Fe cp} = t(.F), Fe~-

Let .'? be an open filter in ~- If 0 e .'?, then .'? = ~' so assume 0 ¢ .'?. Then .'? 

must be an open filter in .:t. By the Lawson duality, .'? = 3i for some x e L. Thus 

OFilt( ~) = OFilt( .:t) U { ~}-

Now note that 

P{cp = ~} = P{0 e cp} = t(0) = 0. 

Hence cp e OFilt( .:t) a.s. Then cp = .'?{ a.s. for some random variable { in L satisfying 

P{{e.F}=P{Fecp}=t(.F),Fe.:t. a 

REMARK 4.8. In the setting of Theorem 4.7 one in practise starts with a mapping t:.:t 

...... 1R +' extends it to ~ by putting t(0) = 0 and then checks whether the three conditions 
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of the theorem are at hand. 

We have already remarked that :I is nr-dosed, if Lis Vr-dosed. Assume this and let 

LJ. = L u { J.} as in the discusion following Theorem 4.3. Assume further that the mapping 

N:LJ.-+ IR+ satisfies 

(4.3) 

(4.4) 

(4.5) 

Ll ... Ll N(x) ~ 0, 
xl xn 

N(xn) j N(x) as xn j x, 

N(J.) = 0, N(T) = 1, 

where T denotes the top of L, which exists by assumption. Then there is a random open 

filter cp in L satisfying 

P{x E cp} = N(x), XE L. 

We leave the proof of this fact to the reader. Cf. Theorem 4.6. It is clear that conditions 

( 4.3)-( 4.5) also are necessary for the existence of cp. 

The next result should be compared with Theorem 4.5. 

THEOREM 4.9. Let A:Scott(L)-+ IR+ be increasing. Then there is a random open filter 

cp on L satisfying 

P{ cp ~ U} = A( U), U E Scott(L) 

if, and only if, the following three conditions hold true: 

(i) 

(ii) 

(iii) 

A(UU V) + A(Un V) = A(U) + A(V), 

A(Un) ! A(U) as Un! U= (nnUn) 0 , 

A(0) = 0, A(L) = 1. 

PROOF. Write CoScott( .:/) for the collection of Scott closed subsets of :I. For U E 

Scott(L), put 

,l(U) ={FE.:/: F~ U}. 

It is not hard to see that ,{ takes values in CoScott( .:/) and that 

,l(u~l Uk)= u~l ,{( Uk), U1,···,un E Scott(L), 

,l(A0Y 0 ) = n0 ,{( U 0 ), { U 0 } ~ Scott(L). 

(Note that A0 U O = (n0 U 0 ) 0 .) Moreover, 



76 Tommy Norberg 

U = u..{( U), U e Scott(£), 

since .% is a base for Scott(£). Cf. Lawson (1979), which furthermore shows that if /7 E 

CoScott( .t'), then /7 = ,{( U) for a unique U E Scott(£). Thus, ,{ is an order-isomorphism 

between Scott(£) and CoScott( .t'). 

For U e Scott( .t'), put 

µ( 'ltJ = 1 - ,\( .C1( .t'\ U) ). 

Then µ maps Scott( .t') into [0,1]. Moreover, µ(0) = 1 - ,\(£} = 0 andµ( .t') = 1 - .-\(0) = 

1. Next, let u1, u2 e Scott( .t'). If u1 ~ u2, then .t'\ u2 ~ .%\ u1, which implies 

.C1( .%\ u2) ~ .C1( .t'\ u1) andµ( u1) 5 µ( u2) follows. Soµ is increasing. To see that µ is 

modular, let Ui = .C1( .%\ Ui), i = 1,2. Then 

Hence 

Similarly, 

Hence 

..{(U1 U U2) = ..{(U1) + ..{(U2) = .t'\(U1 n u2). 

µ( ul U U2) + µ( ul n U2) = 1 - ,\( ul U U2) + 1 - ,\( ul n U2) 

= 2 - ,\( U1) - ,\( U2) = µ(U1) + µ(U2). 

Finally, let U, Ul' u2, ... E Scott( .t') satisfy Un j U. Then .%\ Un l .%\ U, which implies 

Un= .C\.%\Un) l ,cl(.%\'ltJ = U. 

Hence ,\(Un) l ,\( U) and µ(Un) j µ( U) follows. 

By Theorem 4.5, µ extends to a probability measure on .%. Let cp be a random open 

filter on L with distributionµ. If U E Scott(£), then 

P{cp~ U} =P{cpe ..{(U)} =µ(..{(U)) 

= 1-µ(_%\..{(U)) = ,\(.tl(,{(U))) = ,\(U). 

The necessity, which easily follows from the fact that 

{ cp E ,{( U)} = { cp ~ U}, u E Scott(£), 

and the properties of ,{, is left to the reader. a 
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5. Weak convergence results 

In this section we shall discuss the convergence in distribution of random variables 

in L w.r.t. its Lawson topology. Recall from Section 2 that the Lawson topology is the coar­

sest topology that contains .:t and all sets of the form L\ ix, where x E L. If Lis Ar-dosed, 

then the mapping (x,y) ........ x/ly from LxL into L is (Lawson) continuous. By Proposition 

3.1, I: is the Borel o--field on L. 

Recall that ........ d denotes convergence in distribution, i.e., for random variables 

e,el'e2, ... in L, en ........ d e if Pe;1 converges weakly to PC1. The latter holds by definition 

if E[g(en)l ........ E[g( e)] whenever g:L......; IR is continuous and bounded (cf. Billingsley (1968)). 

By the Portmanteu Theorem of Billingsley (1968) (or Ash (1972), Theorem 4.5.1), 

the following two conditions are implied by en .......,d f 

(5.1) limsupnPni:'.,\{xi $en}$ Pni{xi $ e}, m = 1,2, ... , x1, ... ,xm EL; 

(5.2) liminfnP{enE U}~P{eE U}, UEScott(L). 

We begin with a preliminary result in which L is Yr-closed and has a bottom, i.e., is 

a complete lattice. This case is particularly simple, since the Lawson topology is compact 

(cf. Gierz et al. (1980)). Soon we will see that the following characterization of convergence 

in distribution is valid also if L only is assumed to be Yr-closed. See Remark 5.5 below. 

PROPOSITION 5.1. Suppose L is Yr-closed and has a bottom. Let e,el'e2, ... be random 

variables in L. Then en .......,d e if, and only if, the following two conditions hold true: 

(i) limsupnP{x$ en}$ P{x$ e}, xE L, 

(ii) liminfnP{ en E F} ~ P{ e E F}, FE .:t. 

Moreover, condition (ii) is a consequence of 

(iii) 

PROOF. The necessity is already proved. We first show the last assertion of the theo­

rem. Fix FE .:t and let t > 0. By part (b) of Proposition 4.1, 

P{eEF}SP{x<e}+t 

for some x E L. Now (ii) follows by a routine estimation. 

Next assume (i) and (ii). By the compactness of the Lawson topology, (en) contains 
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a convergent subsequence. Thus we may select {'i.,{~, ... and a random variable 71 in L 

such that {n -+d 71. Suppose x E FE z. Choose y E Land GE Z such that x E G ~ jy ~ 
k 

F. By (5.1) and (5.2), 

and 

By Proposition 4.1, 

P{x$ 71} $ P{71 E G} $ liminf~{{n E G} 
k 

$ limsupnP{{n E iYH P{{ E jy} 5 P{{ E .F} 

P{x $ {} $ P{ { E G} $ liminfnP{{n E G} 

$ limsup~{{n E jy} 5 P{71E jy} 5 P{71E F}. 
k 

P{x5 {} = P{x$ 71}, XE L. 

Thus 71 =d { by Theorem 4.2, and we may conclude by Billingsley (1968), Theorem 2.3, 

□ 

The Scott topology on L is a countably based continuous poset, satisfying the hypo­

theses of the foregoing result. Random variables in Scott(£) are quite naturally called ran­

dom Scott open sets. 

THEOR.EM 5.2. Let 'Y, 'Y 1, 'Y 2' ••. be random Scott open sets in L. Then 'Y n -+d 'Y if, and 

only if, the following two conditions hold troe: 

(i) limsupnPni:!l {F; ~ 'Yn} 5 Pn:1 {Fi~ 1}, m = 1,2, ... , Fp···,F me z, 
(ii) liminfnPni:!l {xi E 'Yn} ~ Pni:!l {xi E 'Y}, m = 1,2, ... , Zp···,zm EL: 

PB.OOF. Assume (i) and (ii). Let U e Scott(£). Then U = Uli for some Fl'F2' ... e 

z. By (i), for each fixed m, 

limsupnP{ U~ 'Yn} $ limsupnP{u:1Fi ~ 'Yn} = limsupnPni:!l {Fi~ 'Yn} 

5 Pni:!1 {Fi~ 'Y} = P{u:1 Fi~ 'Y} L P{ U ~ 'Y}-

This shows condition (i) of Proposition 5.1. 

Next, let .!Y be an open filter on Scott(£). By Theorem 2.16 of Hofmann & Mislove 

(1981), 
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.'? = {Ue Scott(£): Q!; U} 

for some Scott compact saturated Q !; L. By Lemma 2.1, there are xni E L, where n = 
1,2, ... and 1 S i S kn < oo, such that 

By (ii), for every fixed m, 

liminfnPh'n E .'?} = liminfnP{ Q !; 'Yn} ~ liminfnP{Uilxmi !; 'Yn} 

= liminfnPni{xmi E 'Yn} ~ Pni{xm"i Er}= P{Uilxmi !; r} l P{ Q !; r} = P{ re .'?}. 

This shows condition (ii) of Proposition 5.1 and 'Yn ._d ')' follows. 

To see the necessity, it is enough to note that 

{ U E Scott(£): ui::\ Txi !; U} 

is an open filter on Scott(£), since u/:!1 l xi is Scott compact saturated, and that 

{ U e Scott(£): u/~\ Fi!; U} 

is closed, since .f !; Scott(£). a 

Here are our main convergence theorems for distributions of random variables in L 

and its Lawson dual Z. The first result replaces the preliminary Proposition 5.1. 

THEOREM 5.3. Let e,el'e2, ... be random variables in L. Then en ._d e if, and only if, 

the following two conditions hold true: 

(i) limsupnPni:::l {xi Sen} S Pni:::l {xi Se}, m = 1,2, ... , x1, ... ,xm EL, 

(ii) liminfnP{ en E ni:::l Fi} ~ P{ e E ni:::l Fi}, m = 1,2, ... , Fl' ... ,F m E .f. 

Moreover, condition (ii) holds if 

(iii) liminfnPni:1 {xi< en} ~ Pni:::l {xi< eL m = 1,2, ... , xl, ... ,xm E L. 

THEOREM 5.4. Let cp,cp1,cp2' ... be random open filters in L, i.e., random variables in 

Z. Then cpn ._d cp if, and only if, the following two conditions hold true: 

(i) limsupnPni:::l {Fi!; cpn} S Pni:::l {Fi!; cp}, m = 1,2, ... , Fl' ... ,F m E z, 
(ii) liminfnPni:::l {xi E cpn} ~ Pni:::l {xi E cp}, m = 1,2, ... , xl' ... ,xm EL. 

Moreover, condition (ii) holds if 

(iii) liminfnPni:::l {Fi< cpn} ~ Pni:::l {Fi< cp}, m = 1,2, ... , F1, ... ,F m E .f. 
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PR.00F OF THE0R.EMS 5.3 AND 5.4. Due to the Lawson duality, the two theorems are 

equivalent. To see this, recall from Section 2 that OFilt( .2') = {-';;: x E L} and note that 

{cp e -';;} = {xe cp}, 

for x E L and random open filters cp in L. Thus we only need to prove one of the theorems. 

The proof of the fact that (i) and (ii) together is a necessary and sufficient condition 

for convergence is very easy in the setting of Theorem 5.4, since cp,cpl'cp2, ... also are ran­

dom variables in Scott(L) and cpn -d cp in .r if, and only if, cpn -d cp in Scott(L) (cf. 

Lemma 2.2). 

In the proof of the implication from (iii) to (ii) we work in the setting of Theorem 

5.3. Fix Fl' ... ,F m E .2'. For 1 $ i $ m, choose xil,xi2'"' E L such that 

{y E L: xin < y} l Fi 

(cf. the proof of Proposition 4.1). Then, for each fixed m, 

liminfnP{ en E n;\ F;} ~ liminfnPn;\ { xim < en} 

~ Pni=l{xim < e} l P{e E ni=lFi}. 

Thus (ii) is a consequence of (iii). 

REMAR.K 5.5. If L is Vr-closed, then the two equivalences 

x$ z, y$ z~ iVy$ z, 

x< z, y< z~ iVy< z 

a 

hold for x,y,z E L, and, moreover, .2' is nr-closed. Thus, in this case the conditions of Theo­

rem 5.3 reduce to the corresponding conditions of Proposition 5.1. 

If L only is Ar-closed, then .r u {0} is nr-closed. In this case statement (ii) of Theo­

rem 5.3 reduces to statement (ii) of Proposition 5.1. 

There is always a need for simple necessary and sufficient conditions for conver­

gence. We confine ourselves to the simple case when Lis both Vr- and Ar-closed. 

PR.0P0SITI0N 5.6. Assume L both Vr- and Ai-closed and let e,e 1'e2'"' be random vari­

ables in L. Then, if en -d e, there are separating sets A ~ L and vi ~ .2', such that A is Vr­

closed and 
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(i) 

while A is nr-closed and 

(ii) 

Moreover, en -+d e if there are separating sets A~ L and A ~ .t', such that 

(iiia) limsupnP{x$ en}$ P{x$ e}, xE A, 

(iiib) liminfnP{en E F} ~ P{e E F}, FE A; 

or if there is a separating A~ L such that 

(iv) 

or if there is a separating A ~ .t' such that 

(v) 

Our proof of the necessity of (i) and (ii) requires the following lemma, which tells us 

that the collection of all pairs (x,F) E Lx .t', satisfying F ~ jx and P{ e E jx\F} = 0, is 

sufficiently rich for our purposes. 

LEMMA 5.7. Let e be a random variable in L. Then, whenever x E FE .t', we have x E 

H ~ jy ~ F for some pair (y,H) E Lx .t' with 

P{y$ e} = P{eE H}. 

PROOF. Let x(l) = xand choose x(O) E Fsuch that x(O) < x(l). Then choose recursiv­

ely x(M.Cn) for n = 1,2, ... and k = 1,2, ... ,2n-1, such that x(Mi-n) < x(/2-m) if Mi-n < 

/2-m. For O < t < 1, put 

It is easily seen that 

Hence the mapping 

t-+ P{yt $ e}, 0 < t < 1, 

is decreasing and left continuous. Let t be a point of continuity. Then, by monotone conver­

gence, writing y = Yt and H = Ut<siYs, 

P{y $ e} = P{e EH}. 
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Clearly He $ and z e H!;jy ~ F. a 

PR.OOF OF PROPOSITION 5.6. Suppose en -+d e and let z,y E L, z < y. Then y E F ~ l z 

for some Fe $. By Lemma 5.7, there is a pair (z,H) e Lx .t with ye H ~ l z ~ F and P{ e E 

lz\H} = O. By Theorem 5.3, 

P{z 5 en}-+ P{z 5 e}. 

Thus the set A of all z e L for which the above convergence holds is separating. 

Similarly the reader may prove that the set vi of all F e .t satisfying 

P{en E F}-+ P{e E F} 

is separating, too. Now suppose F,H e vi. Then F nH e .t. To see that F nH e vi, note 

first that 

liminfnP{en E FUR}~ P{e E FUR}, 

since FUHE Scott(L), and then that 

limsupnP{en E FnH} = P{e E F} + P{e EH} -liminfnP{en E FUR} 

5 P{e E FnH} 5 liminfnP{en E FnH}. 

The proof of the fact that A is a Vr-closed is similar. 

This shows the necessity of (i) and (ii). To see that (iii) is a sufficient condition for 

en -+d e, choose for z E L some Zl'Zi•··· E A such that Zn< z and Zn r :r. Then 

limsupnP{z 5 en} 5 limsupnP{zm 5 en} 5 P{zm 5 e} t P{z 5 e}. 

Thus condition (i) of Theorem 5.3 follows from (iiia). Analogously the reader easily shows 

that (iiib) implies condition (ii) of Theorem 5.3. So (iii) is sufficient for en -+d e. 
To see that (iv) implies en -+d e, let first Fe $. Choose zm E A such that (l zm) l 

F. Now condition (ii) of Theorem 5.3 follows from 

liminfnP{en E F} ~ liminfnP{en E lzm} = P{e E tzm} r P{e E F}. 

Similarly the reader may show condition (i) of Theorem 5.3 and en -+d e follows. The 

remaining part of the proof is similar and, therefore, left to the reader. a 

Assume, for now, that Lhasa top, which we denote by T. In some applications it is 

important to be able to determine whether the limit of a sequence of distributions of 

random variables in L charges T or not. 
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Recall from the introduction that we call a collection (en) of random variables in L 

tight, if for all f > 0 there is some FE .:I with 

(5.3) 

A random variable e in Lis of course tight if the collection (e) is. There are F1,Fr·· E .:I 

satisfying F n i { T}. So e is tight if, and only if, e i: T a.s. 

PROPOSITION 5.8. Let L have a top T and consider a collection ( e;) of random vari­

ables in L. Then ( en) is tight if, and only if, for every f > 0 there is some x E L, x < T, such 

that 

PROOF. The equivalence follows from the facts that every FE .:I contains some x < 
T, and that if x < T, then some F E .:I satisfies F ~ j x. a 

PROPOSITION 5.9. Let L have a top T and consider a sequence e1,e2, ... of tight random 

variables in L. Let e be a random variable in Land assume en _,de. Then, if the sequence 

( en) is tight, so is e and vice versa. 

PROOF. As remarked in the introduction, the direct assertion follows at once from 

Theorem 5.3. So assume e tight. Fix f > 0. Choose x0 EL, x0 < T, such that P{x0 5 e} < L 

By Theorem 5.3, P{x0 5 en} 5 f for all n > m, say. Next, choose xi E L, xi< oo, such that 

P{xi 5 ei} 5 f for 1 5 i 5 m. Let x< T satisfy xi 5 xfor all i. Then, clearly, 

supnP{x 5 en} 5 f. a 

For the remaining part of this section, we assume L both Vr- and Ar-closed. Then L 

has a top, which we still denote by T. Consider a triangular array ( enj, n E IN, 1 5 j < oo) of 

random variables in L. We assume the enj 's independent for each fixed n and that 

limnsupjP{en/ .F} = 0 

for F E .:I, in which case we say that they form a null-array. Note that this holds if, and 

only if, 
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lim inf-P{x<" J = 1 n J - "nJ 
for x e L with x < T. This is easy to see. 

We are concerned with the possible convergence in distribution of the rowwise infi­

ma Aj enj of a null-array (enj" 

THEOREM 5.10. Assume L both Ve- and Ac-closed. Let e be a random variable and let 

( en} be a null-array of random variables in L. Then "lnj ->d e if, and only if, 

(ia) liminfnEj P{ x $ enyc ~ -logP{ x $ e}, x e L, 

(ib) limsupnEjP{en/ F} $-logP{e e F}, Fe$. 

Moreover, if Aj enj ->d e, then there are separating subsets A ~ L and .A ~ $, such that 

(iia) limnEj P{ x $ en;c = -logP{ x $ e}, x e A, 

(iib) limnEjP{en/ F} =-logP{ee F}, Fe .A. 

Here A may be chosen Ve-closed and .A nc-closed. 

Conversely, "lnj ->d e if there are separating sets A~ L and .A ~ $ such that 

(iiia) liminfnEj P{ x $ enyc ~ -logP{ x $ e}, x e A, 

(iiib) lirnsupnEjP{en/ F} $ -logP{e e F}, Fe .A, 

orif 

(iv) 

holds for all x in some separating subset of L, or if 

(v) 

holds for all Fin some separating subset of$. 

PROOF. Write en = Aj enj. We only prove that en ->d e if, and only if, both (ia) 

and (ib) hold. The remaining part of the proof is very similar to the proof of Proposition 

5.6. 

First note that trivial manipulations, using the well-known inequality 

a-$ -log(l-a-), 

show us that condition (i) of Theorem 5.3 follows by (ia) and that (ib) follows by condition 

(ii) of Theorem 5.3. 

Suppose condition (i) of Theorem 5.3. Fix x e L and let xm < x. Let l > 0 be given 
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and pick 5 > 0 such that 

-log(l-a) S (l+E)a 

whenever O S a < 5. Note that xm < T. Hence 

supjP{xm $ enf < 5 

for sufficiently large n. We may now conclude that 

-logP{xm $ e} $ (l+E)liminfi:jP{xm S enfc $ (l+E)liminfnEjP{x $ (nt' 

and (ia) follows by letting E ! 0 and then xm i x. 

85 

Finally assume (ib). Fix FE %. Let E > 0 be given and pick 5 > 0 as in the above 

paragraph. Then 

for n ~ m, say. Hence 

limsupn-logP{(n E F} = limsupnErlogP{(njE F} 

$ limsupnE/l+E)P{en/ F} $-{l+E)logP{( E F}, 

from which condition (ii) of Theorem 5.3 trivially follows. □ 

A random variable e in Lis called infinitely divisible if, for n = 1,2, ... , we have e =ct 

/\j (nj for some independent and identically distributed random variables (n1, ... ,(nn in L. 

If e is infinitely divisible, then, by Norberg (1989), e $ m a.s., where 

m= v{xe L:P{xS e} > O}. 

Thus we may assume that (nj $ m a.s. Let FE %. A simple argument shows that 

limnP{ enl ~ F} = 0 

if, and only if, P{ { E F} > 0, which clearly is equivalent to m E F. We conclude that the 

enj 's form a null-array if m = T, or if we regard them as random variables in M = !m. 

Next, let (en/ be a null-array of random variables in Land assume that Aj {nj -1d 

{. Our aim is to show that e must be infinitely divisible. The following characterization of 

the infinitely divisible distributions is sufficient for our needs. 

THEOREM 5.11 (Norberg (1989)). Assume L both Vr- and Ar-closed, and let e be a ran­

dom variable in L. Define 
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where 

te<F) = -logP{e E F}, FE .Z. 

Then e is infinitely divisible if, and only if, ~ is nr-closed and 

tl.F1 ... tl.F/lF) $ 0, n = 1,2, ... , F,Fl' ... ,Fn E ~-

We prove that ~ is nr-closed. The proof of the second condition of Theorem 5.11 is similar 

but more cumbersumb. Let F,HE ~- We know from Theorem 5.10 that 

tn(F) = EjP{en/ F}-+ te<F) 

if FE A, where A ~ .t' is separating and nr-closed. If F,H E A, we now get 

te<FnH) = limn'n(FnH) $ limn[tn(F) + tn(H)] = te<F) + te<H). 

In the general case, choose F n'Hn E A, such that F n l F and Hn j H. Then 

te<FnH) = llmn'eCFnnHn) $ limn[teCFn) + te<Hn)l = te<F) + fe{H). 

It follows that t e{ F nH) < oo, if t e{ F) < oo and t e{ El) < oo, i.e., ~ is nr-closed as claimed. 
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6. Random elements in locally compact sober spaces 

In this section Sis a locally compact, second countable and sober topological space. 

Write .7, 1 and i, for the collections of closed, open and compact saturated sets in S. 

Moreover write rt/ for the Borel-u-field on S, i.e., rt/ = 11(?)- Note that if Q E i., 

then Q = nnGn for some G1,G2, ... E '#, and, if GE'#, then G = UnQn for some Q1,Q2, ... 

E i, . Thus rt/ = u( i, ) = 11( i, U '#). 
Note that 1 is continuous and, for G1,G2 E '#, G1 < G2 if, and only if, G1 ~ Q ~ G2 

for some Q E i,. Cf. Hofmann & Mislove (1981). The mapping which identifies an open set 

with its complement is of course an anti-order-isomorphism between ,; and .7. Thus .7 is 
continuous relative to the exclusion order 2- Hofmann & Mislove (1981) also shows that 

(6.1) OFilt('#) = { {GE '#: Q ~ G}: Q E i, }· 

Thus also i, is continuous relative to the exclusion order 2- It follows by (6.1) and the 

Lawson duality that 

(6.2) OFilt( i,) = { { Q E i,: Q ~ G}: GE 1}· 
The Scott topologies on .7,1 and i, are second countable, since 1 is so. 

The reader easily writes down characterization theorems for distributions of random 

variables in .7, 1 and i, , i.e., random closed, open and compact saturated sets in S ( for the 

closed sets, see (1.6)-{1.7)). Let us instead note that some simple manipulation show that 

the Lawson topology on .7 is generated by the two families 

/
{FE .7: Fn Gi 0}: GE 1}, 
{FE .7: Fn Q= 0}: QE i, }· 

Thus it coincides with Fell's (1962) topology. 

Recall from the introduction that a class v6 of subsets of S is called separating, if 

whenever Q ~ G, where Q E i, and GE 1, we have Q ~ A ~ G for some A E A. 

PROPOSITION 6.1. Let cp,cp1,cp2, ... be random closed sets in S. Then 'Pn -+d cp if, and 

only if, 

(6.3) 

for A in some separating class of subsets of S. 
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PROOF. Suppose i.pn -d <p. Whenever Q £ G, where Q E .Z and GE '§, there are Q1 

E .Z and G1 E 'J satisfying Q £ G1 £ Q1 £ G and P{ <p n G1 t: 0} = P{ <p n Q1 t: 0}. This 

follows by Lemma 5. 7. Clearly 

P{i.pn n Gl t: 0}-+ P{i.pn Gl t: 0}. 

Thus the class of sets satisfying ( 6.3) is separating. 

Conversely, assume that (6.3) holds for all A E A, where A is separating. We 

prove (1.6) and leave (1.7) to the reader. If GE '§, choose A1,A2, ... E A such that An j 

G. Then 

P{i.pn Gt: 0} = limmP{i.pn Amt: 0} 

= limmlimnP{ 'Pn n Amt: 0} $ liminfnP{ 'Pn n G j: 0}. □ 

A similar result may of course be proved for random compact saturated sets. This is 

left to the reader. We only note that a subcollection A £ .Z is separationg as a subset of .Z 

if, and only if, it is so as a class of sets in S. 

A sequence (1'(2, ... of random closed (resp. compact saturated) sets in Sis tight if, 

and only if, for all f > 0, we have 

infnP{(n n QH} ~ 1- f 

for some compact and saturated Q £ S (resp. 

supnP{(n £ G} $ f 

for some open G £ S). To see this, use (6.1) (resp. (6.2)). For the closed sets, cf. {1.9). 

An S-valued mapping on some probability space {!l, se, P) is called a random ele­

ment in Sif it is measurable w.r.t. 5e and ef/. 

The patch topology on: S is by definition the coarsest topology containing '§ and all 

S\ Q, with Q E i,. It is completely regular, second countable and Hausdorff (Hofmann & 

Mislove (1981), Corollary 4.6), in particular Polish. Clearly #' is the Borel-o--field w.r.t. 

the patch topology. As an example of this construction we mention that the Lawson topolo­

gy on Lis the patch of the Scott topology. 

We shall write down a simple convergence theorem for distributions of random vari­

ables in S. The convergence will be with respect to the patch topology. A part of the fol­

lowing proposition is needed. 
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(i) 

{ii) 

(iii) 

PROPOSITION 6.2. For s,s1,s2, ... E S, the following three statements are equivalent: 

sn _, s w.r.t. the patch topology; 

sat{sn} _, sat{s} in !i w.r.t. the Lawson topology; 

{sn}- _, {s}- in .!? w.r.t. Fell's topology. 

PROOF. Let A <;; S be saturated and fix s E S. Then 

s.E A¢=} sat{s} <;;A¢=} {s}-n A+ 0. 
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The proof is easy, thus omitted. In order to complete the proof, just note that the sets in '1 
and !i, are saturated. □ 

We next characterize convergence in distribution w.r.t. the patch topology of 

random variables in S. Denote by GSC + the class of non-negative functions g on S satisfy­

ing {g > x} E '§ for all x > 0, and by QSC + those non-negative functions q on S that satisfy 

{ q ~ x} E !i, for x > 0. 

THEOREM 6.3. Let {,{1,{2, ... be random variables in S. Then the following two 

conditions are equivalent to {n _,d {: 

(ia) limsupnP{{nEQ}~P{{EQ},QE!i, 

{ib) liminfnP{{n E G} ~ P{{ E G}, GE'§; 

(iia) limsupnE(q({J] ~ E(q({)), qE QSC+, 

(iib) liminfnE(g({n)l ~ E(g({)], gE GSC+. 

PROOF. It should be clear from what has been said before the theorem that {n _,d { 

if, and only if, the two parts of (i) hold true. Next note that 1 G E GSC + if G E '§, while 

1 Q E QSC + if Q E !i,. Thus (ii) implies (i). To see the implication from {n _,d { to (ii), 

note first that the functions of GSC + are lower semicontinuous, while those of QSC + are 

upper semicontinuous w.r.t. the patch topology. This is trivial. Slightly less trivial is the 

fact that each q E QSC + is bounded. For { q ~ n} L { q = oo} = 0, so { q ~ n} = 0 for some n. 

Now refer, e.g., to Ash {1972), Theorem 4.5.1. □ 
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By definition, a collection ( en) of random variables in Sis tight if, for all f > 0, we 

have 

(6.4) 

for some Q e !I, • Let us see what this means for a collection of random variables in a con­

tinuous poset. 

PROPOSITION 6.4. Let (en) be a collection of random variables in L. Then (en)" is (to­

pologicaUy) tight if, and only if, for every E > 0, there are some :;_, ... ,zm EL such that 

infnPUi~l { zi $ en} ~ 1 - f. 

PROOF. By Lemma 2.1, if Q f; L is Scott compact saturated, then Q f; U~l lzi for 

some :;_, ... ,zm e L. This shows the only if part. To see the if part, just note that Ui~l lzi is 

Scott compact saturated. a 

Clearly (6.4) is equivalent to 

infnPHenr n Q:/: 0} ~ 1- E 

( cf. the proof of Proposition 6.2). So ( en) is tight if, and only if, ( {en}-) is so in the lattice 

theoretical sense. This is the idea behind what follows. 

PROPOSITION 6.5. Assume i, n,-closed. Let sl'sr·· e S and assume that { sn} - - FE 

:? w. r.t. Fell 's topology. Then either F = 0 or F = { s} - for some s E S. 

REMARK 6.6. The result says that the set 

°'i= {{sr: s Es} U {0} 
is closed and therefore compact w.r.t. Fell's topology. So this is a kind of a compactifica­

tion of S. 

PROOF OF PROPOSITION 6.5. We prove that Fis irreducibel, because the result then 

follows by sobriety. Suppose Ff; H1 U H2, where Hi f; Sis closed. Choose Him E :? and 

Qim E !I, such that Hi f; S\Qim f; Him! H;- Fix m. Then Ff; S\Qlm u S\Q2m. Hence 
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FnQ1mnQ2m = 0 and, since Q1mnQ2m e .2, sn ~ Q1mnQ2m for sufficiently large n. For 

such n, sn e H1m U H2m. Hence sn is in H1m or H2m infinitely often. In the former case, F 

~ H1m while F ~ H2m in the latter. Hence, F ~ H1 = nmHlm or F ~ H2 = nmH2m, show-

ing our claim that Fis irreducibel. □ 

Here is finally our variant of Prohorov's theorem (cf. Billingsley (1968)). Note that 

the convergence in distribution is with respect to the patch topology, while the tightness is 

relative to the (coarser) original topology. 

THEOREM 6. 7. Assume .2 nc-closed. Let ( en) be a sequence of random variables in S. 

Then every subsequence of ( en) has a further subsequence which converges in distribution to 

some random variable e, if, and only if, ( en) is tight. 

PROOF. Suppose ( en) is tight. Then so is ( { enr) in the lattice theoretical sense. By 

compactness, every subsequence of ( { en}-) has a further subsequence ( { en }-), which 
k 

converges in distribution to some random closed set 1/ in S. By tightness, 1/ 'f 0 a.s., so by 

Proposition 6.5, 1/ is a singleton closure a.e. Thus there is a random element e in S satisfy­

ing 1/ = { er. By Proposition 6.2, en _,d f 
k 

Suppose, conversely, that ( en) is not tight. Then so is the case for ( { enr), too. 

Thus there must be a subsequence ( { en }-), which converges in distribution to some non­
k 

tight random closed set 1/· Then P{11 = 0} > 0. This clearly rules out the possibility 

that (en) or some subsequence thereof converges in distribution. 
k 

□ 
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0. Introduction 

The concept of upper semi-continuous (use) functions from a topological space E to 

R or R := [-00,00] is classical. Recently, interest has grown in the case where a more 

general space L replaces the range R or R, with the complication that previously 

equivalent characterizations of upper semi-continuity split into different concepts. 

Several results in this direction were obtained by Michel [1973), Peno! & Thera 

[1979,1982] and Beer [1984]. Peno! & Thera require L to be a preordered topological 

space, and in all their definitions the topology of L (besides that of E) plays a role. 

Their main motivation is application to optimization, with L a linear preordered 

topological space. 

In the present paper it is assumed that L is a complete lattice, and one more 

definition of upper semi-continuity is given, suggested by Vervaat [1982,1985], for which 

no topology of L is needed. However, we are interested in the relation between the 

definitions of Michel, Penot & Thera and Vervaat, and here the topology of L comes 

in. As is to be expected, several conditions in the interplay between topology and lattice 

structure of L play a role in the results. This is what Sections 1-4 (and the Appendix) 

deal with. 

In Section 5, the main aim of the present paper is presented: breaking the ground 

for a future analysis of random lattice-valued usc functions and lattice-valued extremal 

processes in the sense of Vervaat [1982] (cf. also Norberg [1985)). Here it will turn out 

why Vervaat's definition of semicontinuity is the most useful for us. 

As a preparation for this future analysis, we study the following important 

example: 

L = US(E,R), 

the space of use functions from a topological space E to R (so in fact we study use 

functions which take usc functions as their values!). A study of the structure of this 

space shows that it is a so-called continuous lattice. To continuous lattices a whole 

monograph, Gierz et al. [1980), is devoted. Several results on continuous lattices from 

the present paper can be found there as well. Nevertheless, we have tried to make this 

paper self-contained, because it is directed to researchers in probability (random closed 

sets, extremal processes) and optimization theory, for whom it is hard to find their way 
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in the book, as we know by experience. 

After a short introduction on continuous lattices. we prove that all forementioned 

notions of upper semicontinuity coincide if L is a continuous lattice (Section 6). 

In Sections 7-10, we specialize to 

the space of all closed subsets of E x L 2, where L2 is another continuous lattice 

(Section 8), and to 

(Section 10), which brings us back to our starting point. Sections 7 and 9 do the 

preparing work. 

The topology that we find on these spaces, starting from the lattice viewpoint, turns 

out to coincide with the sup vague topology as introduced by Fell ([1962]; see Section 7 

for more references), under the assumption that E is locally quasicompact. In view of 

the future applications, we do not assume that E is Hausdorff. 

List of notations 

N {1,2, ... } 

N, {0,1,2, ... } 

R [-00,00) 

A' complement of A 

int A interior of A 

closA closure of A 

IP(E) {A:A c: £} 

.'1(£) {A: A c: E, A closed} 

~(£) {A:A c: E,A open} 

x.,. the function: t o-+ {: 
if IEA 
if I ,/A (xeL, A c: £) 

0 lattice bottom 

I lattice top 

h {yeL: y<!6x} 

tx {yeL: y;;i:x} 

lA UuA lx 

95 
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tA 
x>y 

x<y 

xllY 
x>>y 

u .. ,4 tx 
x,;.y and x*y 

x,s;y and x*y 

x,f,y and x~y 

if B c L is filtered (see below) and inf B ,s; y, 

then there is a z e B with z ,s;x 

-U,x {yeL:x>>y} 

,fl-x {yeL: y>>x} 

-0,A {yeL: x>>y for some xeA} 

E t the space E with the topology 

generated by the open sets ( l x )' 

/(A) 

/'(A) 

/\A 
VA 

the space E with the topology 

generated by the open sets ( l X r and -U,x 

(/(1): IEA} 

sup f(A) 

inf A 

sup A 

Some definitions 

quasicompact 

compact 

finite open subcovcr property 

quasicompact + Hausdorff 

B c L is filtered B n lx n ly *0forallx,y e B 

I. Three types or semlcontlnulty 

Gerard Gerritse 

Let E be a topological space and L a complete lattice, provided with a topology. 

Nothing is required in advance about the relation between lattice structure and 

topology. We will formulate three notions of upper semicontinuity for functions 

f: E -,. L, which all agree in the classical case L =I, I some closed interval in R. The 
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first ( and our main) one was suggested by Vervaat [ 1982]. 

Definition 1.1. A function f: E -+ L is said to be lattice upper semicontinuous (lat use) at 

teE, if f(t) = I\ {r(G): G open, teG} =: J" (t). 

Note that f,t;;f" in general. As usual, f is said to be lat usc (on E) if it is at every 

teE. We can characterize this global semicontinuity using the notation 

{ r(G) if teG 
(1.1) fG(t):= I if 1¢G 

for every open G c E, where 1 is the top element of L (recall that L is complete). 

Obviously, f is lat USC iff f = /\afG =: f'. 

The second definition is due to Penot & Thera [1979,1982], and involves a 

topological structure on L. Unfortunately. their research concentrates on lower rather 

than upper semicontinuity, so their results can be cited only after reversing the order. 

Definition 1.2. A function f: E-+ L is said to be topologically upper semicontinuous (top 

use) at teE, if for every neighbourhood U of f(t) there exists an open neighbourhood G 

oft such that f(G) c i U. 

If i U is open for all open U c L, and ,: is the topology on L , then 

,:d: = { i U: U open} defines a topology on L , the "decreasing topology generated by 

,:". In that case f: E-+ L is top usc iff f: E-+ (L,,:d) is continuous. This was 

observed by Penot & Thera [1982] and worked out by Beer (1984); see the latter for 

more details. 

For our last definition of upper semicontinuity, originally from Michel [1973), we 

need the notion of hypograph. 

Definition 1.3A. Set L' := L\{0}. The hypograph of a function f: E-+ L is the set 

hypo f:= {(1 ,x)e E X L': x,t;;f(t)). 

The appearance of L' in this definition (in which it differs from Michel's) may be 

surprising, but its convenience will become clear later on. As a first hint, note that the 

bottom 0£ of LE:= {f: E-+ L) has the bottom 0 of ,'f(E x L') as its hypograph. 
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Deftnldon 1.38. A function f: E--+ L is said to be hypo-clos,ed if hypo f is closed in 

E x L' , where L' is provided with the restriction topology of L. 

To lay the connection with Penot & Thera's work, note that their hypograph is 

closed as subset of E x L iff ours is as subset of ExL', provided that {O} is closed in 

L. 

Finally, we denote by US1, US, and HC the spaces of all lat use, top use and hypo­

closed functions, respectively. 

2. Lattice properties of the function spaces 

First we study closedness for taking arbitrary (pointwise) infima. 

Theorem 2.1. US, and HC are closed for arbitrary infima. 

Proof. Consider {/1: iel} for some index set/, and set f:= /\1.,fi. 
(i) Suppose {fi: ie/} c: US,. and let teE. For each i, f 1(1);;. f,'(1) ;;i, ,-(,). Taking the 

infimum over all i gives f(t) ;;. ,- (1). 

(ii) Notice that hypo f = n Id hypo f1. 

a 

For US,. a condition is needed, even for finite infima. Corollary 1.9 of Penot & 

Thera (1982) can be sharpened slightly. 

Lemma 2.2. If A: L x L --+ L is top use, then US, is closed for finite infima. 

Proof. Let ft,fz e US,. f:= f1A'2, teE, U a neighbourhood of f(t). Choose 

neighbourhoods U, of f,(t) such that X1AX2 e l U for all x 1eUi, x 2eU2• There are 

open neighbourhoods G., G 2 oft such that f 1(G1) c: l U1 for i=l,2. Let G:= G 1nG2• 

Then f(G) c: l U. 

a 
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The infinite case is a sharpening, in both conditions, of Corollary 1.13 in Penot & 

Thera [ 1982). Recall that a set B c L is filtered if every pair of elements of B has a 

common lower bound in B. 

Theorem 2.3. If I\ : L XL -+ L is top usc and 

(2.1) inf B e clos B for each nonempty filtered B c L, 

then US, is closed for arbitrary infima. 

Proof. Let{/;: ie/} c US,, f:= /\;e/ f;. Let teE, and Ube a neighbourhood of /(1). 

Set f,:= /\;e/ f; for every finite Jc/ and B:= {/1(1): Jc/ finite}. Then Bis a filtered 

set in L and inf B = f(t), so f(t) e clos B. It follows that there is a finite J c / such 

that f,(t) e U. As f 1 e US, (by Lemma 2.2), we can find an open neighbourhood G of 

t such that f 1 (G) c ! U. So f(G) c ! U. 

D 

In taking suprema, we must be more careful. About infinite suprema, nothing can 

be expected, as shows the classical case L =R. But even finite suprema need not inherit 

semicontinuity from their superands. The following example is instructive. 

Example 2.4. Let E = {O} U { .l: n eN}, with the restriction topology of R, and let 
n 

L c R2 be the set L:= ((0,0),(1,0),(1,1)} U {(.l,1): neN}, with the restriction 
n 

topology of R2 and componentwise ordering. Define f ,g: E-> L by /(0) = (0,0), 

/(.l) = (.l,1) for all n, g(t) = (1,0) for all teE. Then (f v g)(O) = (1,0), 
n n 

(/ v g)(t) = (1,1) if t>O. Now f and g belong to US1 and HC, but f v g belongs to 

neither of these. Unfortunately, f r/.US,, so the example says nothing about this class. 

D 

We will restrict our attention now to US, and US1, as for HC no nice results seem 

to exist. For US,, Penot & Thera [1982, Corollary 1.9) give a result, which we again 

sharpen slightly. 

Theorem 2.5, If ! U is open for all open U and if the mapping (x ,y) ...... x v y is top use 

at every point of {(x ,x): xeL }, then US, is closed for finite suprema. 
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Proof. Let f 1,/i e US, and f: = f I v Ji. Let I e E and U c L be a neighbourhood of 

f(t). As f(t) = f(t) v /(1), we can find open neighbourhoods V1 and V2 of f(t) such 

that xvy e ! U for all xeV.,yeV2. Set U1:= V1nV2• Now ! U1 is an open 

neighbourhood of f(t), hence also of f;(I) (i=l,2). So we can find open 

neighbourhoods G; oft such that f1(G;) c ! U1• Set G:= G 1 nG 2• For seG, we have 

fi(s).f2(s) e ! u., so f(s) = fi(s) v fi(s) e ! U. 

D 

Replacing the conditions of Theorem 2.5 by one sufficient condition we find: 

Corollary 2.6. If the mapping (x ,y) >-+ x v y is top usc at every point of 

{ (x ,y) e L x L: x .;;y}, then US, is closed for finite suprema. 

In order to deal with US1, we adopt Definition 0.4.1 from Gierz et al. (1980). 

DeOnltlon 2. 7. A lattice L is called join-continuous if for every x e L and every filtered set 

B c L the following holds: 

X V (/\y<B y) = /\y.s(X vy). 

Theorem 2.8. If L is join-continuous, then US1 is closed for finite suprema. 

Proof. Let fi,/ieUS,, f:= f 1vfi, and teE. Observe that {N(G): Gopen, teG} is a 

filtered set in L. The following is straightforward (with G, G 1, G 2 varying through the 

open neighbourhoods of 1): 

D 
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3. Comparison of the function spaces for two-valued functions 

Throughout this section, we will consider functions f: E----+ L which take at most 

two different values. For a function space S as defined in Section I, we set "S for the 

subspace of those one-or-two-valued functions. Our final result will be: 

2HC c 2US1 c 2US,, where in general no inclusion can be reversed. Conditions under 

which they can will also be given. 

To begin with, note that all one-valued ( =constant) functions belong to these 

classes. 

As US1 is our main class of interest, we first characterize the (nontrivial) elements 

of 2US,. 

Lemma 3.1. Let f: E----+ L be two-valued: 

(3.1) (x,t.,y, A ,A'" ,t., 0). 

Then f e2US1 iff one of the following three conditions holds: (i) x >y and A is closed; (ii) 

x<y and A is open; (iii) xlly and A is clopen. 

Proof. A quick argument shows that the theorem can be restated in the following way: 

(a) if x"!y, then: A is open iff f is lat use at each point of A; 

(b) if x ,f,.y, then: A is closed iff f is lat use at each point of A'. 

We only prove (a). So let x"!y. Then A is open <l==> every teA has an open 

neighbourhood G c A <==i> every teA has an open neighbourhood G with 

fv(G) = x <==-> for every teA, f' (t)-,;.x <==-> f is lat use at every point of A. 

□ 

An easy consequence of this theorem is the following. 

Corollary 3.2. Let f be two-valued. Then f e 2US1 iff f-( j x) is closed for each x e L. 

For 2HC and 2US, we cannot give such explicit characterizations as for 2US1 in 

Lemma 3.1, so we concentrate on comparing both of them with 2US1• We first compare 

2US1 and iHC. 

Lemma 3.3. 2HC c 2USt. 
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Proof. Let x ,!,O. Observe that 

(3.2) hypo f n (£ X {x}) = f-( f x) X {x}. 

If hypo f is closed in £ x L', then both sides of (3.2) are closed in E x {x), so 

f-( t x) is closed in £. Apply Corollary 3.2. 

0 

Example 3.4. 2US1 c/: 2HC. Let L have the trivial topology {0,L) and consist of at 

least three points: O,x ,1. Then the function XE belongs to 2VS1 but not to 2HC. 

0 

For a condition under which 2VS, c 2HC, we need the following definition. 

Definition 3.5. L has closed lower (upper) point shadows if ! x ( t x) is closed for every 

xeL. 

Remark. Penot & Thera (1982) call the order on L semi-closed if L has closed lower 

and upper point shadows. From Nachbin (1965, Prop. 1.2] we quote: if the order on L 

is closed (i.e., its graph is closed in L 2), then L has closed lower and upper point 

shadows. However, the order being closed forces L to be Hausdorff (cf. Nachbin),. 

which is too strong for our purposes. 

Lemma 3.6. If L has closed lower point shadows, then 2US1 c 2HC. 

Proof. Note that L'=L\{O} has the restriction topology of L, so (!x)' := ( !x)\{O} is 

closed in L' iff ! x is in L. Write f as in (3.1), and observe that 

(3.3) hypof =(Ax (!x)') U (A' x (h)'). 

We consider the three cases in Lemma 3.1. (i) Suppose x>y and A closed. Then 

hypo f = (A x (!x)') U (£ x ( h)'), which is closed in ExL'. (ii) The case x<y 

and A open is similar. (iii) The case xllY and A clopen follows immediately from (3.3) 

as it stands. 

0 
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Having finished comparing 2US1 with 2HC, we now turn to 2US,. 

Lemma 3.7. 2US1 c: 2US,. 

Proof. Let f be as in (3.1), let teA (say) and U be a neighbourhood of f(t)=x. We 

must find an open neighbourhood G of I such that f(G) c: l U. If A is open. take 

G=A. If A is not open, then by Lemma 3.1 x>y, so any G will do. 

D 

Example 3.8. 2US, ,f. 2US1• Let L f denote the complete lattice L, provided with the 

upper topology ,i.e., the nonempty closed subbase sets are l x (so it is the coarsest 

topology with closed lower point shadows). As all nonempty open sets in L 1 are 

increasing, their lower shadows coincide with L, so every f: E-> L is top use. But the 

definition of US1 is topology-free for L, so there are many non-lat usc functions, for 

example f = IA for every nonclosed A c: £. 

D 

Lemma 3.9. If L has closed upper point shadows, then 2US, c: 2US1• 

Proof. Let f be as in (3.1). In view of Lemma 3.1, it suffices to prove: (a) if xfy, then 

A is open; (b) if x,f,y, then A is closed. We only show (a). So let teA. Then f(t)=x. 

As t y is closed and x; f y, there is a neighbourhood U of x with U n f y = 0. 

Choose an open neighbourhood G of t such that f ( G) c: l U. As y ; l U, 

/(G) = {x}, so G c: A. 

We collect our results: 

Theorem 3.10. (i) 2HC c: 2US1 c: 2US,. 

(ii) If L has closed lower point shadows, then 2HC = 2US1• 

(iii) If L has closed upper point shadows, then 2US1 = 2US1• 

D 
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4. Comparison of the full function spaces 

In this section we study relations between the function spaces us,. US, and HC. In 

general, these spaces are different, and, in contrast to the two-valued case, no general 

inclusions hold. Examples of functions belonging to exactly one or two of these spaces 

are given in the Appendix. Here we give conditions on L under which some inclusions 

hold. First we handle the relations between US1 and US,. 

Theorem.4,1. Suppose 

(4.1) inf B e clos B for eac/111onempty filtered B c L. 

Then US1 c US,. 

Proof. Let teE. f lat use at 1. Let U be a neighbourhood of f(t). Define 

B:= {r(G): Gopen, reG}. As B is filtered and inf B = f(t), it follows that 

f(r) e clos 8. Thus UnB-¢ 0, so there exists an open neighbourhood G of I such that 

r(G) e u. Hence f(G) C ! u. 
□ 

Theorem 4.2. Suppose 

(4.2) x = inf {sup U: U open, xeU} for all xeL. 

Then US, c US1• 

Proof. Let teE, f top use at I. For every neighbourhood U of f(t) there is an open 

neighbourhood G of I such that f(G) c ! U, whence f'(t) ,s;; [V(G) ,s;; 

sup ! U = sup U. So f 0 (1) ,s;; inf {sup U: U open, f(t)eU} = f(t). 

□ 

Remark, Another way of stating (4.2) is: the identity mapping: L -+ L is lat use. 

Next we turn to the relations between US, and HC, which were found by Penot & 

Th~ra (1982, Prop. 1.3). 

Proposition 4.3. (a) If the order of L is closed, then US, c HC. 
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(b) Lei {O} be closed in L. If ( l U)' is quasicompact for every nonempty open U c L. 

then HC c US,. 

We had to add the condition on {O} because of the slight difference between our 

definitions and those of Michel and Penot & Thera (cf. Section 1). In (a), we do not 

need to add this condition, as it is guaranteed by the closed order of L. implying 

Hausdorffness (cf. Section 3). 

What remains are the relations between US1 and HC. For HC c US1, it seems that 

no essentially shorter way can be found than tying Theorem 4.2 and Proposition 4.3(b) 

together. The converse however is handled in a rather different way, using the results of 

the previous section on two-valued functions. The crucial step is the following: 

Lemma 4.4. US1 is the smallest function space which both contains 2US1 and is closed for 

arbitrary infima. 

Proof. Let l: be the smallest function space as indicated. By Theorem 2.1, l: c US1• It 

remains to prove that US1 c l:. So let / e US1. For every open G in E, define /G as in 

(I. I). Note that every /G belongs to l:: if /v(G) = I, then /G is constant, and if 

r(G) < I, then/GE 2US, by Lemma 3.1. As f is lat use, f = AG /G. So /el:. 

D 

Combining Theorem 2.1, Lemma 3.6 and Lemma 4.4, we find: 

Theorem 4.5. If L has closed lower point shadows, then US1 c HC. 

S. Sup measures 

The present section on supremum measures (sup measures) gives a motivation for 

our definition of upper semicontinuity, as the concept of lattice upper semicontinuity fits 

in a natural way in the theory of sup measures, introduced by Vervaat (1982). On the 

other hand, this sectipn explains our interest in continuous lattices, as this concept helps 

us to generalize Vervaat's results. Continuous lattices will be the main topic of the 

remaining sections. 
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Let £ be a topological space, again, and !:J the collection of its open sets. Vcrvaal 

introduced the concept of A-valued sup measures m: !:J ---> R. We generalize some of his 

results to L-valued sup measures m: !:J-> L, where L is a complete lattice (without a 

topology). In the beginning, this causes only few changes. 

Definition 5.1. (a) For every function f: E -> L, its sup integral f v: !:J -+ L is defined 

by 

r(G) := sup {f(t): teG}. 

(b) For every function m : !:J -+ L, its sup derivative d v m : E ---> L is defined by 

dvm(t) := inf {m(G): teG}. 

In the following lemma the only nontrivial part is (c), which, however, follows 

immediately from (a) and (b). 

Lemma S.2. (a) For every m: !:J-+ L, m ~ (dvm)v. 

(b) For every f: E-+ L, f,,;, dvf'. 

(c) For every m: !:J-+ L, dvm is lat use. 

( d) For every f: E -+ L, d v f v is the smallest lat use majorant off. 

The way to generalize sup measures is self-evident. 

Definition 5.3. A function m : !:J --+ L is called a sup measure if 

for every collection { G;: j el} c: !:J. 

Of course, every sup integral fv is a sup measure. In Vervaat (1982] it is proved 

that for L = A every sup measure can be written as a sup integral, by showing the 

following: m: !:J-> Risa sup measure iff m = (dvm)'. Trying to generalize this result, 

we encounter the first problem. The relevant inequality in Theorem 2.5 of Vervaat 

[1982] is proved by showing that all strict majorants of one side majorize the other side, 

so the other side is majorized by the infimum of all strict majorants of the first side as 

L = A. So what we need for our general complete lattice L is some strict inequality 
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relation with the property that every lattice element equals the infimum of all its strict 

majorants. 

Studying in detail the concrete inequality that is to be proved, tells us that we need 

the following. 

Definition S.4. In a complete lattice L, x is said to be way above y, in symbols x >>y, if 

for each filtered set B with inf B ,;; y, there is a z e B such that z E;x. We wrire 

-U,x:= {yeL: x>>y), 1)-x:= iyeL: y>>x). 

Caution. The definition of "way above" is strongly asymmetric. In general, the 

corresponding "way below" relation y << x, based on directed sets (i.e., the reverse 

order analogue of filtered sets) D with sup D ;;,, x need not coincide with the above 

relation! 

These concepts, and much of the further terminology in this section, are borrowed 

from Gierz et al. (1980), who, however, develop their theory concentrating on the way 

below relation, which is the wrong choice for our purposes. For that reason, we will 

sometimes quote explicitly some of their results in our setting. Whenever we want to 

discriminate between the two, we insert the affix "lower" to the notions in the context of 

Gierz et al., and "upper" in ours. 

We already discussed the need of the following. 

Definition S.S. A complete lattice L is called (upper) continuous if x = inf 1)-x for all 

xeL. 

Usually, in whatever context, the word "continuity• is defined in terms of a 

topology. Notice that the notion of lattice continuity, however, does not involve a 

topology on the lattice. For the choice of this terminology, see Scott (1972). 

Finally, we can give the analogue of Vervaat's Theorem 2.5 (1982). 

Theorem S.6. Let L be a continuous lattice and m: £l -+ L. 

(a) If m is a sup measure, then VreA dvm(t) = AG: Ac:.G m(G) for all A c: E. 

(b) m is a sup measure iff m = (dvm )v. 

Proor. (a) Obviously VreA dvm(r),;; AG, Ac:.G m(G). We will prove: 

1r VreA dvm(t) c: t AG: Ac:.G m(G), which gives the converse inequality by lattice 

continuity. So let x >> V,.,.. dvm(t), and set B, := {m(G): teG, G open} for every 

teA. Then B, is a filtered set and x >> dvm(t) = inf B,, so there is an open 
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neighbourhood G, of t with m(G,).;;x. Set Go:= U ,.A G,; then A c G11 and 

m(Go) = V,oA m(G,).;; x. Sox -" Ao, Ac:G m(G). 

(b) The "if' part is trivial, the "only if' part is a special case of (a) for open A. 

I.I 

Corollary 5.7. Let L be a continuous lattice and let m: §-+ L be a sup measure 11111I 

l::= {f: E-+ L: f" = m}. 

(a) dvm e I; 

(b) dvm = sup I; 

(c) if feI is lat usc, then f = dvm. 

Proof, (a) follows from Theorem 5.6, (b) from Lemma 5.2(b), while (c) is 

straightforward. 

ll 

6. Conllnuous lattices and the Lawson topology 

In Section 5 we introduced the notions of way above relation and continuous 

lattice. Here we give some elementary properties. Most of them can be found in dual 

form in Gierz et al. (1980). 

The first proposition deals with the way above relation, and L is not assumed to be 

a continuous lattice. Its proof follows immediately from the definitions. 

Proposition 6.1. For all x ,y ,z ,weL we have: 

(a) If x>>y, then x.-y; 

(b) lfw;;. x >> y;;. z, the11 w>>z; 

(c) Jfx>>z andy>>z, thenxAy >> z; 

(d) x = inf ,O.x if! x"l,y implies the existence of a z>>x with z"l,y. 

The following lemma shows that in a continuous lattice the way above relation 

satisfies some interpolation property. 

Lemma 6.2. Let L be a continuous lattice. If x>>z, then there is a y with x >> Y >> z. 
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PrtNif. I.ct 8:= {11eL: 11>>y>>z for some yeL}. We must show that xe8. By 

l'roposition 6.l(h,c), 8 is an increasing filtered set. Of course, z':= inf 8 ;a,, z. Now 

,upposc :'f,.z. Applying Proposition 6.l(d) twice, we find a y>>z with y'l:z' and a 

,, >>.r with 11 '1oz •. Thus u e8, so u ;a,, inf 8 = z •. a contradiction. So z • =z. 

It follows that x >> inf 8, and as 8 is filtered, there is a we 8 such that x ,;,,w. So 

, E I 8 = 8. 

□ 

('11rollary 6.3. Let L be a conti11uous _la/lice. If x>>y, then for every filtered set 8 c L 

11·it/r inf B ,;; y, there is a ze8 with x>>z. 

Proof. By Lemma 6.2, there is a weL such that x >> w >> y. From w>>y follows 

th.: existence of a ze8 with zE.w, so x>>z. 

□ 

The goal of this section is to study the results of the preceding sections on US1, US, 

and /IC. Most of these require a topology on L, except one, which is the topic of the 

next theorem. 

Theorem 6.4. If L is a continuous la/lice, then US1 is closed for finite s11prema. 

Proof. By Theorem 2.8, it suffices to show that lattice continuity implies lattice join­

continuity. So let xeL, 8 c La filtered set; we must show 

(6.1) xv inf 8 ;a,, inf (xvy: ye8} =: w 

(note that the reverse inequality is trivial). 

Suppose (6.1) does not hold. By Proposition 6.l(d), there is a z >> x v inf 8 with 

z'l:w. As inf 8 =s.x v inf 8, there is a ye8 with y=s.z. So z ;a,, xv y ;a,, w, a 

contradiction. Thus (6.1) is proved. 

□ 

The time has come to provide our continuous lattice with a topology. It is the 

upper version of what Gierz et al. (1980) call the Lawson topology. 

Definition 6.5. Let L be a continuous lattice. The (upper} Lawson topolov is defined by 

its subbase elements ,U.x and Ox)', for all xeL. Notation for this topological space: 
L,U. t. 
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To get an idea, note that R,(), t is R with the usual topology, as both 

(!x)' = (x,oc) and ,(),x = [-oc.x) are open, the latter by Theorem 6.6. For general L, 

a generic base element is given by ,(), x n n &-1 (! xk )', for some 

neN0,x.X1.X2,•••.XnEL (note that ,(),1 = L). 

Theorem 6.6. If L is a cominuous lattice, then L ,(), l has closed order. In particular, it 

is a Hausdorff space and has closed point shadows. 

Proof. That closed order implies the last two statements, was observed in previous 

sections, so only the closed order remains to be proved. Let r:= {(x ,y): x:s;y) be the 

graph of the order and let (x,y) ¢ r, so y1x. By Proposition 6.l(d), there is a z>>y 

with z 1x. Now ( ! z )' x ,(),z is a neighbourhood of (x ,y ), disjoint from r. 

□ 

The structure of L-U, t has one more nice feature: 

Theorem 6. 7. If L is a contin11ous lattice, then L ,(), l is a compact space. 

Proof. We use Alexander's lemma: it suffices to select a finite subcover from each open 

subbase cover of L. (i) Let ( ! y )' U U ;e1 ,(),x; = L for some index set I (at most one 

( h)' suffices, as U; ( h;Y = (! A; y1)' ). As yeL and y ¢ ( l y)', there is an i el 

such that y e-U,x;, so ! y c -U,x;, hence ( ,(),x; ,( l y )'} is a finite subcover of L. (ii) The 

cases, where the cover consists of only one type of subbas.e elements, are trivial. 

□ 

We continue our research on the classes US1, US, and HC. 

Theorem 6.8. Let L be a continuous lattice with the Lawson topology. Then US, = US1• 

Proof. A direct proof is not difficult and uses Proposition 6.l(d) and Lemma 6.2. But 

the results of Section 4 allow a shorter proof. 

(a) For us, c US,. we use Theorem 4.1, checking (4.1). So let B c L be filtered, 

x:= inf B and let U be a neighbourhood of x. We may assume that 

U = -U,y n n:c! ( lyk)' for some neNo, y,yi, ... ,y.eL. As y>>x, Corollary 6.3 gives 

a zeB withy>>z. From z;;,,x andxj;yk> we see that zj;yk for every k. So z e BnU. 

(b) For US, c US1, we use Theorem 4.2, checking (4.2): 
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inf {sup U: U open, xeU},;;; inf {sup .JJ,z: z>>x},;;; inf {z: z>>x} = inf 1)-x = x 

(the reverse inequality holds trivially). 
D 

The following lemma, needed to prove the last result of this section, goes back to 

the remark following Definition 1.2. 

Lemma 6.9. In a continuous lattice with the Lawson topology, ! U is open for every 

open U. 

Proof. We may assume that U is an open base set, i.e., U = .JJ,x n n /=I ( ! x;)' for 

some neN0• x ,xi, ... ,x.eL. Letze! U, so there is a ueU with z,;;;u. As x>>u, there is 

a y with x >> y >> u (Lemma 6.2). Note that yeU, so z e .JJ,y c ! U. 

D 

Theorem 6.10. Let L be a continuous lattice with the Lawson topology. Then 

US,= HC. 

Proof. We check the conditions in Proposition 4.3. 

(a) Already done in Theorem 6.6. 

(b) First note that {O} is closed in L. Now let U c L be open. By Theorem 6.7 and 

Lemma 6.9, ( l U)' is a closed subset of a quasicompact space, hence itself 

quasicompact. 

D 

7. The lattice or closed subsets or a topological space 

Let D be a locally quaslcompact space, i.e., each point in D has a neighbourhood 

base of quasicompact sets. In absence of Hausdorffness, it is not sufficient that each 

point has some quasicompact neighbourhood. Even a quasicompact space need not be 

locally quasicompact. 

In this section L = .'1(D) is the (complete) lattice of closed subsets of D. The order 

in .'1(D) is set inclusion, the infimum corresponds with the intersection, whereas the 

supremum corresponds with the closure of the union. 

111 



112 Gerard Gerritse 

One can prove that ,'F{D) is a continuous lattice iff it is lattice isomorphic to .'F(D') 

for some locally quasicompact topological space D' (cf. Gierz et al. [1980), Hofmann & 

Mislove (1981)). It is not necessary that D itself is locally quasicompact, although 

examples are hard to find. Hofmann & Lawson (1978, p. 304) construct one by the 

axiom of choice. 

In Gierz et al. (1980) the lattice L = §(D) of open subsets of D is studied. Of 

course, properties of .'F(D) are dual to those of ~(D). Nevertheless it is instructive to 

give some proofs, in order to get used to the specific meaning of the strict inequality 

relation >> in this type of lattice. 

The first lemma is the dual of lll.1.13 in Gierz et al. (1980]. 

Lemma 7.l. Let D be a locally quasicompact space. For F1,F2 e .'f(D), we have F1>>F2 

iff there is a quasicompact K c D suc/1 that Fi c K' c F 1• 

Proof. For the "iF' part, let 18 be a filtered subset of .'F(D) and Bo:= n Be:R 8 

= inf /B c F2- Then K c F~ c 86 = U Be:A B', an open cover of K, so there is a 

finite lllo c 18 such that K c LJ Be:A,, B' = ( n Be/Ro 8 )'. As .'Jl is filtered, there is a 

B,elB with B, c n Be:~, 8 c K' c Fi, which proves that F,>>F2. 

The "only ir' part uses the local quasicompactness of D. Suppose F1>>F2. As F~ is 

open, there is for every teF~ a quasicompact K, with t e int K, c K, c Fi- Now 

Fi = LJ ref1 int K,, so F2 = n ••Fl (int K,)' is the infimum of the filtered set 

{ n IEA (int K,)': A c F~ finite}. As F,>>F2, there is a finite A c Fi such that 

(U,.A int K,Y = n,.A (int K,)' CF,. It follows that K:= U,eA K, satisfies 

F2 CK' CF,. 

□ 

The following, important, result is an easy consequence now. 

Theorem 7.2. If D is locally quasicompact, then ,'F{D) is a continuous lallice. 

Proof. Let F e .'F(D) and set F,:= inf 1)-F = n {H e ,'F(D): F CH and F C K' CH 

for some quasicompact K}. Of course, F c F1. For F1 c F, let teP. As D is locally 

quasicompact, there is a quasicompact K such that t e int K c K c P. Set 

H:= (int K)', then F c K' c H and tr/H, so t¢F1. 

□ 
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We are going to topologize .-T(D) by means of the Lawson topology. The resulting 

topology turns out to be well-known. 

Theorem 7.3. If D is locally quasicompact, then the Lawson topology 011 ,T(D) coincides 

with the so-called sup vague topology, generated by the open subhase selS 

(7.1) {Fe iT(D): FnG if:. 0},for Gopen 

and 

(7.2) {Fe .-1-(D): FnK = 0},for K quasicompact. 

Proor. As the Lawson topology on ,'F(D) is generated by its subbase elements ( ! F)' 

and ..(J,F for all Fe,1-(D), it suffices to show: 

(a) the sets ( ! F)' generate the same topology as the sets (7. I); 

(b) the sets {I, F generate the same topology as the sets (7 .2). 

(a) For F0 e ,1-(D). ( ! FoY = {F: F ¢ ! F0} = {F: F c/ Fo} = {F: F n F[i if:. 0}. 

(b) Let F0 e ,1-(D). Then 

..(J,F0 = {F: F11>>F} = {F: F c Kc c F11 for some quasicompact K} 

= { F: F n K = 0. F0 UK = D for some quasicompact K} 

= UK:F.,uK=D {F: FnK = 0), which is open in the topology generated by the sets 

in (7.2). 

Conversely, we will prove that {F: FnK = 0) = U F: FnK=0 ..(J,F. For the c part (the 

other part is obvious), let F11 n K = 0. As Ff, is open and K c Ff,, we can find for 

every teK a quasicompact K, with t e int K, c K, c Ff,. Now K is quasicompact and 

K c U ,eK int K,, so there is a finite Koc K with K c U ,eK., int K,, Set 

Ki:= U ,eKo K, and F:= ( U ••Ko int K,Y, then Fe ,'f(D), FnK = 0, F' c Ki, K 1 is 

quasicompact and Ki c Ff;, so F0 c K\ c F, which proves that F>>Fo, so F0 e -U,F. 

D 

The sup vague topology on closed sets was studied first by Fell (1962). For 

Hausdorff D, many authors worked on it, as Matheron (1975), Salinetti & Wets (1985+) 

and Norberg (1985). For non-Hausdorff D see the revision of Vervaat (1982). Note that 

for compact metric D. the sup vague topology coincides with the well-known Hausdorff 

topology. 
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8. A topology on US1 

Let E be a locally quasicompact space and L a complete lattice. In this section we 

want to topologize the space US, of all lat use functions /: E -+ L. To this end, we use 

the mapping hypo (Definition 1.3A), which assigns to every feUS1 a subset of 

E x L' (L ':= L\{O}). 

If L=R, hypo is a lattice isomorphism between US, and a subspace of tl'(E x R'), 

by which we mean: a bijection which takes arbitrary infima and finite suprema into 

arbitrary intersections and finite unions, respectively. A particularly nice feature of this 

isomorphism is that its image hypo( us,) is closed under arbitrary intersections and finite 

unions, so it defines a cotopology, i.e., the closed sets of a topology. It turns out that 

we can identify hypo(US1) with .'J'(E x R' f ), where f denotes the upper topology as 

defined in Example 3.8. Thus one can topologize US, with the induced sup vague 

(Lawson) topology on ;1(E x R' f ), introduced in Section 7. More about this can be 

found in Vervaat (1982). 

Our goal is to generalize the above for arbitrary, complete lattices L. If L is not 

totally ordered, problems arise: in general, hypo/ U hypo g is a larger set than 

hypo (/vg). For example, if L=R2, /=(0,1)£, g=(l,0)1:, then fvg = (1,1)£, so 

hypo (/vg) = E x i '(1,1), (where, for a moment, l 'x denotes h n L'), whereas 

hypo/ U hypo g = E x [ l '(0,1) U l '(1,0)), which is not the hypograph of any 

function, as l '(0,1) u l '(1,0) can not be written as l 'x for any x e R2• 

This example suggests us to restrict the space l'f( E x L' f ) together with its 

topology to the subspace .'10 of those Fe tff..E x L' t) which satisfy 

(8.1) for all teE there exists ayeL such that {xeL': (t,x) e F} = l 'y. 

Note that in (8.1), y is an element of L, rather than L', for we want 0 to be a member 

of ;fo-

ll is easily verified that ,'Fo is closed for arbitrary infima, from which it follows that 

ffo is a complete lattice (see, for example, 0.2.2 in Gierz et al. (1980)). However, the 

ffo-supremum of two elements F.,F2 of .'10 is no longer the union of both sets, but 

rather: 

hypo ((hypo- F1) v (hypo- Fz)). 

Summarizing: 
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Theorem 8.1. The mapping hypo: US1 -> ,T-j, dejines a lauice isomorphism, i.e., it is a 

bijection preserving infima and supremo. 

As the isomorphism hypo carries over the lattice structure to US1, the question 

arises whether US1 is a continuous lattice. To answer this question, we must know 

something about the way above relation in US1• Here we only derive what is directly 

needed; al the end of this section, a complete description of the way above relation is 

given. 

As infima in the sublattice :T-0 coincide with infima in the mother lattice 

.'f = ,T-(E x L' f ), we see that the way above relation in ,T-i, is the restriction of the way 

above relation in ,T-; in other words, for F,G e ,Ji,: F>>G in ,'1'0 iff F>>G in fl'. In the 

sequel, we work in US1 rather than in :T-11 , because this gives more insight in US1, which 

is after all the space we are studying. The first lemma is the reverse order analogue of 

II.4.20(ii) in Gierz el al. (1980), though in a quite different language. 

Lemma 8.2, Let E be locally quasicompact and L a continuous lattice. Then for every 

feUS,, 

f = inf {a;n, Ii v Iii•• liJ': a eL, K c £ is quasicompact and a >> fv(K)}. 

Proof. Let .'/I be the collection on the right hand side. Of course, inf .'/I ;;!: f. For the 

converse, let 1e£. We must show that (inf IJJ)(t).;; f(t). Since L is a continuous lattice, 

it suffices to show that 

(8.2) for all x >> f(t) there exists a be[B such that b(t)-.x. 

So let x >> f(t). As feUS,, there is an open neighbourhood G oft with x >> fv(G) 

(Corollary 6.3). As E is locally quasicompacl, there is a quasicompacl set K c G with 

/ E int K. Set b:= X;n1/i V l(int/i)'· 

□ 

The following lemma states that the collection m in the proof of Lemma 8 .2 is 

actually part of * f: 

Lemma 8.3. Let E be locally quasicompact and L a continuous lattice. If a eL ,K c E is 

quasicompaci and a >> fv(K), then a;0 , K v l(int Ii)' >> /. 
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Proof. Let f/l c US1 be a filtered set with inf f6 .,;; f. We must find a b el8 with 

b "'- a1., K V •o., K)'" Lei IEK. Nole that (inf !11)(1) "'- /(1):,;;; /"(K), {b(t): be!J1} is 

filtered, and a >> f"(K), so we find by Corollary 6.3 a b,e!P. such that a >> b,(t). As 

b, e US1, there is an open neighbourhood G, of I such that b,v(G,):,;;; a. Now 

K c U ••K G,, so there is a finite subset J of K such that K c U ,El G,. As fl! is 

filtered, there is a bell! with b .,;; /\,., b,. This b satisfies the requirements, since 

bv(int K):,;;; bv(K).,;; V,., b,v(G,):,;;; a. 

□ 

Combining the two preceding lemmas, we conclude: 

Theorem 8.4. If E is locally q11asicompac1 a11d L is a co111i11uous lattice, 1he11 US1 is a 

co111i11uous lattice. 

Next, we want to provide US1 with the sup vague (Lawson) topology, by translating 

the corresponding topology on ;T-j1• As we have seen, the way above relation >> on ;;0 is 

just the restriction of >> to tf. Of course, the same holds for the :,;;; relation. As the 

Lawson (,U, f )-topology is defined in terms of these two relations, we immediately 

conclude: the Lawson topology on ;1j1 is the restriction of the Lawson topology to tf. So 

we see, by Theorems 6.6 and 6.7: 

Theorem 8.5. If E is locally quasicompact and L is a continuous lattice, then US,,U, f is 

a compact Hausdorff space, which ca11, via t1'0, be considered as a closed subspace of 

t1'(ExL' t ). 

Corollary 8.6. ,'1'0 is closed in ff. 

As promised earlier, we finally completely characterize the way above relation in 

us,. 

Proposition 8.7. Let E be locally quasicompact and L be a co111inuous lattice. Then for 

/ ,g e US,, g>>f if and only if there exist neN, a., ... ,a.eL and quasicompact sets 

K1,••·•K• in E s11ch that a, >> f"(K;) for all i and g ;;, /\1 (a, ... , v 111., K,y)-

Proof. The "ii" part: by Lemma 8.3, a,..,•• v l(inc K,l' >> f for every i, so by 

Proposition 6.l(c), g ;;, /\1 (a, .. •• v 1,1., K,Y) >> f. 
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For the "only if' part, let g>> f. We want to use Lemma 8.2. but the collection Ill on its 

right hand side need not be filtered. Therefore we study the collection 11!11 of all infinrn 

of finitely many elements of Ill. Of course, lllo is filtered. and. by Lemma 8.2. 

inf tllo,,;; inf /8 = f, so there is ab e/80 with b,,;;g, which is exactly what we need. 

D 

Corollary 8.8. Let E be locally quasicompact, L be a co111i11uous lattice a11d g e US1• 

Then {)-g is nonempty iff g satisfies the following two conditions: 

(i) inf g(E) » O; 

(ii) {I: g (t )*I} is co11tai11ed in the i111erior of a quasicompact set. 

Proof. Note that {)-g ;I, 0 iff g >> Ot. For the "only iF' part, suppose g >> OF.. By 

Proposition 8.7 there are a 1, ••• , a"eL, all >>0. and quasicompact sets Ki, ... ,K" in E 

such that g;;. /\; (a;,,.,, v 10"' K,r>· Now inf g(E);;. /\; a; >> 0 by Proposition 6.J(c), 

and {t: g(t);l,I} c LJ; int K; c int LJ; K;. 

For the "iF' part, let inf g(E) >> 0 and {t: g(t);l,I} c int K for some quasicompact K. 

Then g -" (inf g(E));01 K v l(ino K)" so g>>O by Lemma 8.3. 

D 

9. Quaslcompact subsets or L' t 

In Section 8 we have topologized US1 via the sup vague topology on ,'F(E x L' t ). 
In Section 7 we have found a subbase for the sup vague topology on ;J'(D) 

(Theorem 7.3). The goal of Section 10 is, by putting D:= E x L' t, to translate the 

subbase elements in terms of US1• For translating (7.2), we need a characterization of 

quasicompactness in L' t . That is what this section deals with. 

Theorem 9.1. If A c L' t is nonempty, then A is_ quasicompact if[ inf 8 e t A for 

each filtered 8 c t A. 

Proof. By Ale,::mder's lemma, A is quasicompact iff each subbase cover {( l x;)': ie/} 

of A contains a finite subcover. Note that all subbase elements are increasing sets. As 

A c U iff t A t: U for increasing U and arbitrary A, we may assume that A is 

increasing. 
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For the "if' part. take a cover as above and set B: = { /\, eJ X;: J c I finite}. B is 

filtered, and A c U ,., ( lx;)' = ( l inf B)'. So B cf. t A, i.e., there is a finite Jc/ 

with 1\,,1 x, ¢ A. As A is increasing, we see that A n ( J, /\;,1 x,) = 0, hence 

Ac ( ! 1\,,1 x,)' = U,eJ ( lx,)', so A is quasicompact. 

For the "only if' part, suppose that A is quasicompact, B c A is filtered and inf B ¢ A. 

Then, since A is increasing, A c ( l inf B )' = U ,.8 ( J, x )', an open cover of A, so 

there is a finite B0 c B such that A c U ,eB, ( ! x )' = ( l inf Bo)'. But as B is 

filtered, B contains a b ,,;; inf B 0, so b ¢ A , a contradiction. 

□ 

It turns out to be very hard to give a more specific characterization of 

quasicompactness in L' t . However, if L is a continuous lattice, there is an important 

subclass of quasicompact sets: 

Proposition 9.2. If L is a contin11011s lattice, then all sets of tire type ({l,x)' (xeL') are 

quasicompact in L' t , and so are their intersections. 

Proof. Of course, t ( {l,x )' = ( {l,x )'. Let B c ( {l,x )' be filtered and set y: = inf B. If 

y ¢ ({l,x)', then x>>y, so by Corollary 6.3 there is a zeB such that x>>z. So 

B cf. ({l,x)', a contradiction. Hence ye({l,x)', and Theorem 9.1 applies. For the second 

statement, notice that it follows easily from Theorem 9.1 that the intersection of 

arbitrarily many increasing quasicompact sets is quasicompact. 

□ 

From this proposition it will be an easy consequence (Corollary 9.5) that L' t is a 

locally quasicompact space if L is a continuous lattice. However, we present this result 

in a somewhat more general context, as this will be useful in Section 10. The following 

definition is taken from the forthcoming revision of Vervaat (1982). 

DeOnltlon 9.3. Let D be a topological space and lB c ll'(D). D ~ called loeaUy ,'8 if for 

every teD and open neighbourhood G of t there is a BelB such that 

t e int B c B c G. 

The same definition turns up already in a paper by Ceder (1961), who calls lB a 

"quasibase" for the topology on D if D is locally lB. We prefer Vervaat's terminology, 

in view of our applications (cf. Corollary 9.5). 
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Lemma 9.4. If L is a co11ti11uous lattice, then L' t is locally { n .('= 1 (-IJ,xd': 

neN, x 1, ••• ,x.eL' }. 

Proof. Let yeL' and yeU, U open. We may assume that U is a base set. i.e .. 

U = ni'! 1 (lz;)'. For every/, z;fy, so by Proposition 6.l(d) there are x;>>z; with 

X;fy. Set K:= n ;".:,1 ({rx;)'. As ({rx;)° C ({rz;)' for each i, it follows that KC u. 

Finally. since n ,n,:, I ( i X; )' is an open subset of K. we conclude that y E n i: I ( i X; )' 

c int K. 

D 

Notice that we reobtain the definition of local quasicompactness by taking in 

Definition 9 .3 for 18 the collection of all quasicompact subsets of L' t , or even a 

collection of some quasicompact subsets. This leads to the announced result: 

Corollary 9.S. If L is a continuous lattice, then L' t is locally quasicompact. 

Proof. Combine Proposition 9.2 and Lemma 9.4. 

D 

10. Back to the topology on US1 

The first lemma in this section is an easy consequence of Definition 9.3. 

Lemma IO.I. Let Di,D2 be topological spaces which are locally [8 1,t82, respectively. 

Then Di X D2 is locally 831 x /82(:= {8 1 x 8 2: 8 1elB1, 8 2ef82}, provided with the 

product topology). 

Corollary 10.2. If E is locally quasicompact and L is a continuous lattice, then E XL' t 
is locally quasicompact. 

Proof. Combine Corollary 9.5 and Lemma 10.1. 

D 
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So, as a first step to realize the final goal sketched in the introduction of the 

preceding section, we apply Theorem 7.3: the sup vague topology on ;1{£ x L' t) is 

generated by the open subbase sets 

(10.1) {F c: E x L' t: FnG ¢ 0} for all open G c: E x L' t 

and 

(10.2) {F c: E x L' t: FnK = 0} for all quasicompact K c: E x L' f. 

We want to thin out this untractable subbase by selecting sufficient subclasses of 

open sets and quasicompact sets in E x L' t. Much of the following was done in 

Vervaat (1982). However, his results are in terms of sup measures, and only deal with 

L=R, which was sometimes essentially made use of. We generalize his results and 

translate them into terms of closed sets. Here is the result: 

Theorem 10,3. If E is a locally qllasicompact space a11d L is a conti11uous lattice, then 

the sup vague topology on tr(E x L' t) is generated by the ope11 subbase sets 

(10.3) {F c: E x L' t: F n (G x ( ! X)') ¢ 0}, where G runs through a base of 

open srts in E a11d X c: L' is finite, 

a11d 

(10.4) {F c: E x L' t: F n (K x (,U.X)') = 0}, where K ru11s through tire 

quasicompact subsets of E a11d X c: L' is fi11ite. 

Proof. (i) Starting with the open sets, we see that we can thin out (10.1) to open base 

sets G c: Ex L' t, since {F: F n (U,., G,) ¢ 0} = U,., {F: FnG; ¢ 0}. This 

results in (10.3). 

(ii) In order to derive (10.4), we set IB:= :XE x d, where :XE denotes the class of all 

quasicompact subsets of E, and d is the collection defined in Lemma 9.4. Furthermore 

·we set lB,:= { Uf.1 Bt: neN, 81, .. ,,BnelB}. It suffices to thin out (10.2) to IB1, since 

{F: F n U t Bt = 0} = n t {F: FnBt = 0}. To this end, it suffices to prove that 

(10.S) {F: FnK .. · 0} = u BE/111: KeB {F: FnB = 0} 

for every quasicompact Kin E x L' t. 
The only nontrivial inclusion in (10.S) is the c: part. Therefore, fix an F with 

FnK = 0, i.e., K c: F'. By Lemmas 9.4 and 10.1, E x L' t is locally 81, so for every 

teK there is a B,e8! such that t e int B, c: B, c: F'. Now K is quasicompact, so from 

the open cover {int B,: teK} we can select a finite subcover {int B1: tel} of K, for 

. some finite Jc: K. Set B:= U,., B,. Then Be8!., Kc: B and FnB = 0, which 
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proves (10.5). 

□ 

Finally, we translate to US1: 

Theorem 10.4. If E is a locally quasicompact space and L is a continuous lattice, then 

the sup vague topology on US1 is generated by the open subbase sets 

{/: f(G) cf. ! X} 

and 

{/: f(K) c {l,X}, 

where G ru/lS through a base of open sets in E, K runs through the quasicompact subsets 

of E and X c L' is finite. 

Proof. Apply the isomorphism hypo to Theorem 10.3. The only nontrivial observation 

is that both ( ! X)' and ( {l,X)' are increasing sets. 

□ 

11. Appendix 

In this appendix we give examples of functions belonging to exactly one or two of 

the three function spaces studied in Section 4. 

Example I US1 \ (US, U HC): 

E = (0,1), usual topology; 

L = {0} U (1,2), lower topology (i.e., the reverse order analogue of the upper 

topology, cf. Example 3.8); 

f(0) = 0, f(t) = 1+1 if t>0. 

Example 2 US,\ (US1 U HC): 

see Example 3.8. 
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Example 3 HC \ (US, U US1): 

E = (0,1), usual topology; 

L = {(x,1-x) e R2: xe(0,l)}; 

/(1) = 1-1. 

Example 4 (US1 U US,)\ HC: 

see Example 3.4. 

Example 5 (US1 U HC) \ US,: 

E=R, usual topology; 

L=R, discrete topology; 

f = identity mapping. 

Example 6 (US, u HC) \ US1: 

E=R, usual topology; 

Gerard Gerritse 

L = LS(R, (-1,01) (lower scmicontinuous functions from R to (-1,01), with the 

topology induced by the sup vague topology on US via the identification 

L = -US(R,(0,11); 

/(1) = -1,,,. 
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Appendix: notes and complements 

A GENERAL 
Many results can be found also in Gierz et al. {1980}, as the following list shows. 
Mislove {1982} is recommended for a first introduction to continuous lattices. 

The present paper 

Theorem 6.6 
Theorem 6.7 
Lemma 6.9 
Lemma 7.1 
Theorem 7.2 
Theorem 7.3 

Gierz et al. ( 1980) 

p. 155 above Definition 111.2.10 
Theorem 111.1.9 (more generally for complete lattices) 
Proposition 111.2.l{a) 
dual of I.1.4 {cf. Exercise 111.1.13} 
dual of Example 1. l. 7 
Exercice 111.1.13 

For a further study on versions of semicontinuity, see 

• H. HOLWERDA {1993}: Variations on lower semicontinuity. In: H. Hol­
werda: Topology and Order. Ph.D. Thesis, Cath. Univ. Nijmegen. 

B CORRECTIONS 
In the proof of Theorem 6.7it is not true that "one (.J,.y)c suffices". See Theorem 
111.1.9 in Gierz et al. {1980). 

It is easier and more natural to replace (7.2} by its (equivalent) restriction 
to saturated qcompact sets, and to restrict attention to such sets throughout 
Section 9. 
It is harmful and not necessary to replace L by L' := L\{O} in Section 9. 
Proposition 9.2 is false for L' but correct for L. 
Example 3 in Section 11 is false and must be replaced by the following, due to 
Henk Holwerda. 
E = [0, 1); 
L = {[0, 1) x {0}}U{{0, 1} x {1}} with the induced topology and order of [0, 1)2; 
/(0} = {0, 1), / (t) = (t, 0} if t :/: 0. 

C TYPOS AND MINOR CORRECTIONS 

List of notations: 
Some definitions: 
line above Lemma 7.1: 
Section 8, 3rd paragraph, line 2: 
Lemma8.3: 
Reference [6): 

JV(A) ➔ /V(A) 
B :/: </> must be required in addition 
III.1.13 ➔ I.1.4 
larger ➔ smaller 
local qcompactness is not needed 
1979 ➔ 1981 
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Spaces with Vaguely upper Semicontinuous lntersection1 

Wim Vervaat2 

Spaces are not assumed to be Hausdorff. The intersection operation in the 
hyperspace of closed sets is shown to be upper semicontinuous with respect 
to the vague topology iff covers of saturated quasicompact (qcompact) sets 
by open sets can be imitated by a similar cover by smaller saturated qcompact 
sets. A sufficient condition for this is that each saturated qcompact set is 
part of some locally qcompact set. Results are demonstrated on the example 
of one-point qcompactifications of spaces whose qcompact sets are closed. 

0. Introduction 

Let E be a topological space, not necessarily Hausdorff. Quasicompactness 
(qcompactness) refers to the finite-open-subcover property; the combination 
'qcompact' and 'Hausdorff' is referred to as 'compact'. Let F, g and K, denote 
the families of closed, open and qcompact sets in E. Capitals F, G and K with 
or without index denote generic elements of F, g and K,. The vague or Fell 
topology (Fell (1962), Matheron (1975), Norberg (1986), Vervaat (1988)) in F 
is generated by the subbase consisting of 

{FEF:FK=¢} 
{ F E F: FG -:/- q>} 

for KE K, 
for GE Q. 

(la) 
(lb) 

It is well-known that F with the vague topology is qcompact, and is Hausdorff 
iff E is locally qcompact in case E is Hausdorff (Vervaat (1988)), or more 
generally, in case E is sober, i.e., To and not a proper subspace of a larger T0 

space E1 with topology lattice-isomorphic to that of E (Gierz et al. (1980), 
Hofmann & Mislove (1981)). One easily checks that the union 

1 Revision of Report 88-30 of the Faculty of technical Mathematics and Informatics, Delft 
University of Technology, whose hospitality is gratefully acknowledged. 

2Wim Vervaat died early 1994. His last work address was Universite Claude Bernard 
Lyon 1. 
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is vaguely continuous (Vervaat (1988)). In contrast to this the intersection 

(2) 

is almost never continuous, but in many instances it turns out to be vaguely 
upper semicontinuous (use), by which we mean that the mapping is continuous 
when :F on the range side is provided with the upper vague topology, with 
subbase consisting only of the sets in (la). In this note we will investigate 
when the intersection is vaguely use. 

1. Saturated sets 

For A c E we write sat A := n{ G: G :::, A}. We call sat A the saturation of 
A, and say that A is saturated if A = sat A. Note that E is T1 iff all singletons 
are closed iff all subsets of E are saturated. One easily verifies that 

tEsatA iff clos{t}nsatA-:f-cp, 

so that FA -:f- cp iff F n sat A -:f- cp in case F is closed. Consequently, 

{ F E :F: F K = cp} = { F E :F: F n sat K = cp}. 

We therefore may thin out the subbase of the (upper) vague topology in :F 
by restricting Kin (la) to Q, the family of saturated qcompact subsets of E. 
Generic elements of Q are denoted by Q, with or without index. 

2. Qcompact imitations of open covers 

In this section we show that the intersection is vaguely use iff each cover of a 
Q E Q by two open sets can be imitated by a smaller cover by two saturated 
qcompact sets (cf. also Vervaat (1988)). 

Theorem 1. The intersection is vaguely usc ill for each instance of Q C G1 UG2 

there are Qi, Q2 E Q such that Q1 C G1, Q2 C G2 and QC Q1 U Q2. 

Proof. The intersection is vaguely usc iff for each Q E Q 

is open in :F2. Openness of U is equivalent to the existence for each (F10, F20) E 
U of Q1, Q2 such that 

F10Q1 = F20Q2 = cp, 
F1Q1 = F2Q2 = cp implies F1F2Q = cp. 

(a) 
(b) 

Because Q is saturated, implication (b) holds iff Q C Q1 U Q2 (to see this, 
consider F1 U clos{x} and F2 U clos{x} for x E Q\(Q1 U Q2)). Consequently, 
openness of U is equivalent to the condition in the theorem holding with G1 = 
Ff0 , G2 = F~h- □ 
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Remarks. (a) Vague upper semicontinuity of the intersection was defined as 
continuity of the mapping in (2) with :F on the range side provided with the 
upper vague topology. From the proof of Theorem 1 it is obvious that it does 
not make difference whether the spaces :Fon the domain side are provided with 
the vague topology or only with the upper vague topology. 
(b) The Lawson and Scott topologies with reversed order of Gierz et al. (1980) 
coincide with the vague and upper vague topologies in case E is locally qcom­
pact, and are finer in general (cf. proof of Theorem 7.3 in Gerritse (1985)). 
For locally qcompact E, upper semicontinuity of the intersection follows from 
Corollary n.4.13 in Gierz et al. (1980). 
(c) The condition in Theorem 1 plays a prominent role in Norberg & Vervaat 
(1989), which triggered the research leading to the present paper. It is also a 
central condition (Condition (D)) in Wilker (1970). That's why this condition 
is referred to as 'Wilker' in recent work (~ 1993) of Holwerda and Vervaat. 

3. Sufficient conditions 

Recall that E is locally qcompact if the topology has a base of qcompact sets, 
or equivalently, if for each instance of t E G there are G1 E g and Q1 E Q 
such that t E G1 C Q1 C G. It is well-known that for Hausdorff E this is 
equivalent to each point of E having a qcompact neighborhood, but not so for 
non-Hausdorff E. In particular a qcompact E need not be locally qcompact. 

Here is a sufficient condition for vaguely upper semicontinuous intersection. 
It can be regarded as local qcompactness around each qcompact set. 

Theorem 2. If for each Q E Q there is an A ::) Q such that A is locally 
qcompact in the relative topology, then the equivalent statements in Theorem 1 
hold. 

Proof. We prove the second statement in Theorem l. So let QC G1UG2. First 
suppose that Eis locally qcompact, so we may choose A= E. Select for each 
t E Q a Q(t) E Q such that t E int Q(t) and Q(t) C G1 if t E G1 and Q(t) C G2 
if t E G2. Then there is a finite J C Q such that already Q C UtEJ int Q(t). 
Now set Q1 := UtEJGi Q(t) and Q2 := UtEJGi c Q(t). Then Q1 C G1, Q2 C G2 
and QC Q1 UQ2. 

Next suppose that A ::) Q is locally qcompact. The previous result applies 
to Q C G1A U G2 A considered in A with the relative topology, to obtain Q1 

and Q2 such that Q1 c G1A, Q2 c G2A and Q c Q1 U Q2. □ 

Remark. The condition in Theorem 2 holds with maximal A: A = E in case 
Eis locally qcompact. If Q is closed for finite intersections, then the condition 
in Theorem 2 holds iff it holds with minimal A: A = Q, i.e., each Q E Q is 
locally qcompact in the relative topology. The latter holds for instance if E is 
Hausdorff or if all qcompact sets are finite. In either case E need not be locally 
qcompact. 

Under additional assumptions the condition in Theorem 2 is also necessary. 
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Theorem 3. Let Ebe such that K, C :F (so Eis T1 and Q = K). Then the 
equivalent conditions of Theorem 1 hold iff each K E K, is locally qcompact in 
the relative topology. 

Proof. The 'if' part follows from Theorem 2. For the 'only if' part, let t E GK. 
We have KC GU {tY, with {tY open because Eis T1 . By Theorem 1 there 
are K1, K2 such that K1 c G, K2 c {tY and Kc K1 U K2. Then we have 
t E K2c KC K1K C GK, with K2c open because K, C :F. □ 

4. Application to one-point qcompactifi.cations 

Let E be a space such that K, C :F (which is the case if E is Hausdorff). 
Let E' := E U { oo} its one-point qcompactification with open sets G' = G 
or Kc U { oo} (subsets and families of subsets of E' will be marked by primes 
throughout). Also in this generality E' is qcompact and T1 , and E is a subspace 
of E'. 

fu this section we want to investigate which E' have vaguely usc intersection. 
The notions of k-extension and k-space (Kelley (1975) and Brown (1968)) will 
be useful here. Let E be a space such that K, is closed for arbitrary intersections 
(which is the case if K, c :F). Call Ac Ek-closed if AKE K, for all KE K, let 
:Fk be the family of k-closed sets, and let gk be the family of their complements, 
the k-open sets. If K, C :F, then gk :J g, and gk is a topology in E, which 
is called the k-extension of g (Kelley (1975), Problem 6.K). It is the finest 
topology in E with the same qcompact sets as g. If gk = g, then Eis called a 
k-space. This is the case if K, C :F and E is first countable or locally qcompact 
(Kelley (1975), Theorem 7.17, stated for Hausdorff E, but the proof applies 
verbatim in the present generality). 

Lemma. Let E be such that K, C :F and let E' be its one-point qcompacti­
fication. Then K' is qcompact in E' iff it is qcompact in E or has the form 
K' = AU {oo} with A E :Fk. 

Proof. Since E is a subspace of E', subsets of E are qcompact in E' iff they 
are in E. 

It remains to consider K' = A U { oo}. If A U { oo} E K,', then we have 
F' n (AU { oo}) E K,' for each F' E :F', in particular for F' = K E K,. Hence 
AK E K,', so AK E K, for K E K. It follows that A E :Fk. 

Conversely, let A E :Fk, and suppose that (AU {oo}) n ni FJ = </>, with 
FJ E :F'. Then at least one FJ, F0 say, avoids oo, so belongs to K. Hence 
AF0 EK, and 

(AU {oo}) n nFJ = AF0 n n(FJ\{oo}) = </>, 
i i 

where FJ\ { oo} E :F. Consequently, AF0 has empty intersection with the inter­
section of finitely many FJ. This proves A U { oo} E K,'. □ 
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Corollary. In the situation of the lemma we have :F' C JC', and :F' = JC' iff E 
is a k-space. 

Theorem 4. Let Ebe a k-space such that JC C :F, and let E' be its one-point 
qcompactification. Then E' satisfies the equivalent conditions of Theorem 1 iff 
E is locally qcompact. 

Remark. For E such that JC C :F (not necessarily a k-space) we have that E' is 
locally qcompact iff E is locally qcompact, and in this case both E and E' sat­
isfy the equivalent conditions of Theorem 1, by Theorem 2 and the subsequent 
remark. 

Proof of Theorem 4. In view of the remark, it remains to prove the 'only if' 
part. Now JC' = :F' by the lemma and its corollary, so each K' E JC' is locally 
qcompact by Theorem 3. In particular, E' is. □ 

5. Extensions of the results 

5.1. Let J be an index set and consider the intersection 

:FJ 3 (Fj)jEJ t-+ n Fj E :F. 
jEJ 

In this paper we have characterized those E for which the intersection is vaguely 
upper semicontinuous in case #J = 2. By iteration we see that this implies 
vaguely usc intersection for all finite J, and then for arbitrary J (cf. Vervaat 
(1988, §14)). 

5.2. It is immediate that the condition in Theorem 1 is equivalent to the 
analogous statement with covers by arbitrarily many open sets rather than 
two. 

5.3. For functions f: E ➔ [O, 1], define the hypograph, hypo f, by 

hypo f := {(t, x) E E x (0, 1]: 0 < x ::; J(t)}. 

Let US(E) denote the space of usc functions E ➔ [0, 1]. Let (0, l]t denote 
the interval (0, 1] provided with the upper topology, whose nontrivial open sets 
are (x, 1]. The sup vague topology in US(E) can be defined by declaring the 
bijection 

hypo: US(E) ➔ :F(E x (0, l]t) 

a homeomorphism (Vervaat (1988)). Now the results of the previous sections 
translate into a characterization of A (pointwise infimum) in US(E) being sup 
vaguely use, with the conditions on E now to be applied to Ex (0, l]t-

Acknowledgment. The revision benefitted from remarks by Henk Holwerda. 
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Capacities on non-Hausdorff spaces1 

Abstract 

Tommy Norberg2 

Wim Vervaat3 

Capacities of various types and Radon measures are generalized to a non­
Hausdorff setting. This involves changes in the definitions (having no effect 
inside the Hausdorff context) and selection of new topological regularity 
conditions. Attention is paid to classical topics theory, and also to topologies 
on spaces on capacities. 

AMS 1980 subject classifications: Primary 06835, 28A12, 28A33; sec­
ondary 28A05, 28C15, 54D10, 54D45. 
Key words and phrases: Capacity, Radon measure, spaces of semicontinuous 
functions, topological spaces of capacities, continuous lattice, Scott topol­
ogy, Lawson topology, logically quasicompact space, vague topology, sat­
urated quasicompact sets, upper semicontinuous intersection, sober space, 
supersober space. 

0. INTRODUCTION 

Let E be a topological space. If E is Hausdorff, then the answers to the 
following are known. Let capacities be increasing outer continuous functions 
con the compact subsets of E such that c(0) = 0. When is c the restriction 
of a Radon measure? When can c be extended to a Choquet capacity? It is 
the first object of this paper to answer the same questions for broad classes of 
non-Hausdorff spaces (Sections 3 and 4). 

After this, the (initial) domain of the capacities (the compacts in case E is 
Hausdorff) is topologized in such a way that capacities can be interpreted as 
semicontinuous functions on this domain (Section 5). Consequently, conditions 
are known under which the capacities form a continuous lattice in the sense 

1 Revised version of preprint 1989-11, Department of Mathematics, University of Gothen­
burg. Research supported by the Swedish Natural Science Research Council. The hos­
pitality of the Department of Mathematics of Delft University of Technology is gratefully 
acknowledged. 
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3 Wim Vervaat died early 1994. His last work address was Universite Claude Bernard 
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of GIERZ et al. (1980), but a surprising (and unusual) additional result is that 
they are also a continuous lattice with the order reversed (Section 6). 

The non-Hausdorff setting requires its own regularity conditions, which are 
presented in Section 1. Capacities are introduced in Section 2. Compact Haus­
dorff topologies on the set of all capacities are defined in various ways in Sec­
tion 7. Under mild conditions all turn out to be the same. 

Non-Hausdorff spaces are the natural setting for spaces of closed sets and 
upper semicontinuous functions (cf. VERVAAT (1988a)). That was our major 
reason for writing this article. Moreover, we speculate that a theory of con­
tinuous characters of topological semigroups can be developed by allowing the 
topology to be non-Hausdorff. Such a theory could not be developed so far, in 
sharp contrast with the situation for topological groups. 

We conclude this introduction with some general remarks on the notations: JR 
denotes the real line and 114 is its non-negative part. We write JR+ for [O, oo). 
The natural numbers are denoted N and Q is the rationals. Let A~ E, where E 
is a topological space. We then write A - for its closure and AO for its interior. 

1. REGULARITY CONDITIONS FOR NON-HAUSDORFF SPACES 
Let E be a topological space. We write g and :F for the collections of open and 
closed sets in E. Nonscript capitals G and F, with or without index, always 
denote open and closed subsets of E. We assume E to be To, i.e., for each 
pair of distinct points s, t E E, there is an open set containing only one of 
them. Equivalently, { s }- = { t}- implies s = t. H, more specifically, there are 
open sets containing s but not t and t but not s, then Eis called T1. This is 
equivalent to {s}- = {s} for alls EE. 

For A ~ E we define the saturation of A, sat(A), by 

sat(A) = n G. 
G;2A 

If A= sat(A), then A is called saturated. Clearly, 

sat(A) n F = 0 ~ An F = 0 

It is a simple exercise to show that s E sat(A) iff { s }- n A -:f. 0. It follows that 
E is T1 iff all subsets of E are saturated. 

In what follows it is helpful to keep the following examples in mind. Let ll4 
denote the reals with the lower topology, whose nontrivial open sets are the 
intervals (-oo, x) for x E Ill Let Q-!- denote the rationals with the relative 
topology of ll4. Observe that g(H4) and g(Q-!-) are isomorphic as lattices in an 
obvious way. So non-Hausdorff spaces with the same (i.e., lattice isomorphic) 
topology need not be homeomorphic. Intuitively we feel that ll4 is a more 
complete To space than Q-!- with the same topology. The following definitions 
and properties settle this. 
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A nonempty F ~ E is said to be irreducible if for each instance of F ~ Fi n F2 
we have F ~ Fi or F ~ F2. Obviously each singleton closure is irreducible. 
If, conversely, all irreducible closed sets are singleton closures, then Eis called 
sober. 

THEOREM 1.1 ( HOFMAN & MISLOVE (1981)). For each To space E there 
is a sober To space sob(E), unique up to homeomorphism, in which E can be 
embedded as a subspace. The space sob(E) is the largest To space with the same 
topology as E. 

We call sob(E) the sobrification of E. Obviously ((JI- is not sober, since the 
irreducible closed set [x, oo) n Q is no singleton closure for x E JR\Q. Even JR.I. 
is not sober, because JR itself is irreducible and not a singleton closure. In fact, 
both sob(Q-!-) and sob(!R.1-) are homeomorphic to [-oo, oo),!.. 

Hausdorff spaces are sober, and there are nonsober T1 spaces ( cf. G IERZ et 
al. (1980, page 79)). 

We now consider quasicompact (qcompact) subsets of E, where quasicompact­
ness is defined by the finite-open-subcover property, without resort to any 
further separation property, i.e., Q ~Eis qcompact iff every open cover of Q 
has a finite subcover. The combination qcompactness and Hausdorff is referred 
to as compact. 

In both Q-!- and JR.I., a nonempty subset is qcompact iff it contains its supre­
mum. From this it follows that the intersection of two qcompact sets need not 
be qcompact: Take Qi = (-oo, 1r] and Q2 = (-oo, 4] n Q. Then both Qi and 
Q2 are qcompact subsets of JR.I., but Qi n Q2 = ( -oo, 1r] n Q is not. 

Things become better if we restrict our attention to the collection Q of 
saturated qcompact sets in E. Nonscript capitals Q, with or without index, 
always denote elements of Q. Note that both Q(Q!.) and Q(JR.1.) are closed for 
finite intersections, and Q(JR.1.) even for arbitrary nonempty intersections. 

If E is Hausdorff, then Q coincides with the collection JC of compact subsets 
of E. 

We say that E is Q 5 if Q is closed for arbitrary nonempty intersections. 

Henceforth we will consider mainly sober spaces, because of Theorem 1.2 below. 
A collection ( A 0 ) 0 of sets is said to be a decreasing net if for each pair ai, a 2 

there is an a3 such that A03 ~ Ao1 n A02 • 

THEOREM 1.2 (HOFMANN & MISLOVE (1981)). Let E be sober and take a 
decreasing net (Q0 ) 0 of sets in Q. Then the following holds: 

(a) noQo E Q, 
(b) If no Qo ~ G, then Q0 ~ G for some a 

From (a) it follows that a sober Eis Q5 iff Q is closed for finite intersections. 
If Eis not sober, (b) may fail. Consider JR.1.,Q 0 = (-oo,a] for a E IR,G = 0, 
and recall that sob(JR.1.) = [-oo, oo),!.. 
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We say that E is locally qcompact if E has a base of qcompact sets, i.e., if 
s E G implies the existence of Q ~ E such thats E Q0 ~ Q ~ G. For the 
case that E is Hausdorff it is known that E is locally compact iff each s E E 
has a compact neighborhood, in particular if E is compact. The analogue for 
non-Hausdorff Eis false. In particular the usual one-point qcompactification 
of a Hausdorff E is not Hausdorff and not locally qcompact if E is not locally 
compact. 

We say that Eis WILKER or has upper semicontinuous (use) intersection if for 
each instance of Q ~ G1 UG2 there are Q-1,Q2 such that Q1 ~ G1,Q2 ~ G2 
and Q ~ Q1 U Q-2 (cf. WILKER (1970)). The latter property turns out to be 
equivalent to the mapping 

(F1, F2} 1-t F1 n F2 

from :F x :F to :F being usc when :Fis provided with Fell's topology (cf. FELL 
(1962}}, or the sup vague topology (cf. VERVAAT (1988b}}, which explains our 
name of it. 

Recall that E is To. In the remainder of the paper one or more of the following 
four hypotheses will be assumed: 

• Eis sober, 
• Eis Q&, 
• E is locally qcompact, 
• E has usc intersection. 

Here is a little more background for these regularity assumptions. 
A space is called supersober if the set limit points of each ultrafilter is either 

empty or a singleton closure (HOFMAN & MISLOVE (1980, Def. 1,2)). A T1 
space which is not Hausdorff is not supersober. HE is supersober, then E 
is sober (GIERZ et al. (1980, VII-1.11)} and Q& (see Proposition 1.3 below). 
HE is sober, Q& and locally qcompact, then E is supersober (HOFMANN & 
MISLOVE (1980, Th. 4.8)). 

Sufficient conditions for the usc intersection property have been obtained in 
VERVAAT (1988b}. Here are three: Eis Hausdorff, Eis locally qcompact, or 
each Q ~Eis locally qcompact in the relative topology of E. 

For completeness we enclose there following result, whose proof we could not 
find in the literature. 

PROPOSITION 1.3 (VAN RooIJ (1984)}. If Eis supersober, then Eis Q6. 

PROOF. Let (Qa)a be a collection in Q. We must prove that R = no: Q0 E Q. 
As R is saturated, it suffices to prove that R is qcompact. To this end, let (F13}13 
be a collection of closed sets such that R has nonempty intersections with all 
finite subcollections. We must show that Rn (n13 F13} :f 0. Extend (Rn F13}13 
to an ultrafilter X in E and set Y = nxex x-. Note that Y ~ n13 F13. We 
will show that Rn Y :f 0. 
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As Q0 2 R, Q0 intersects every member of X. As Q0 is compact, Q0 nY =/- 0. 
In particular, Y =/- 0, so Y = {x}- for some x, since Eis supersober. We have 
Q0 n {x }- =/- 0, so x E sat(Q0 ) = Q0 . It follows that x ER, so Rn Y =/- 0. D 

2. CAPACITIES ON Q 
An increasing mapping c : Q -t i.+- is said to be outer ( or right) continuous if 
c(Q) < x E JR+ implies the existence of a G 2 Q such that c(Q1) < x whenever 
Q1 ~ G. If addition c(0) = 0, then c is called a capacity, or longer, a capacity 
on Q. 

Capacities on Q extend to the powerset of E in two steps: 

c(K) := c(satK) farK EK 

c(A) = sup c(K). 
K~A 

(2.la) 

(2.lb) 

As a consequence the outer continuity extends from Q to K, and c(satA) = c(A) 
for Ac E. The extension to g is of particular importance. It is inner (or left) 
continuous in the following sense: Whenever c(G) > x, there is a Q ~ G such 
that c(G1) > x for all G1 2 Q. The following is an obvious consequence of 
outer continuity. 

PROPOSITION 2.1. Let c be a capacity on Q. Then 

c(Q) = inf c(G). 
G2_Q 

The above notion of capacities coincides with VERVAAT's (1988a). Two other 
notions occur in the present paper, Choquet capacities ( defined on the powerset 
of E) in Section 4, and capacities on Q in Section 5. 

In the literature one often sees the following 'upper continuity' condition for 
capacities on Q, which reads in a generalization to sober E: 

i~f c(Qa) = c(n Qa) (2.2) 
a 

for all decreasing nets (Q0 ) 0 ) in Q (recall that Q is closed for intersections of 
decreasing nets if E is sober, cf. Theorem 1.2). Functions satisfying (2.2) are 
said to preserve filtered intersections (in Q). 

PROPOSITION 2.2. Let E be sober and let c : Q -t lR.+- be increasing. Then 
the following holds: 

(a) If c is outer continuous, then c preserves filtered intersections. 
(b) Let E be locally qcompact. If c preserves filtered intersections, then c 
is outer continuous. 

PROOF. Part (a) is a simple consequence of Proposition 2.1 and Theorem 1.2, 
while part (b) follows from the fact that for each Q ~ E there is a decreasing 
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net (Q0 ) 0 with intersection n0 Q0 = Q and Q ~ Q~ for all a. For details, we 
refer to VERVAAT (1988a), Theorem 15.4. □ 

Without local qcompactness, (b) need not be true. It fails for c = # ( cardi­
nality) in case Q happens to consist of all finite subsets of E and all nonempty 
open sets are infinite. On the other hand, if E is locally qcompact, sober 
and second countable, then c preserves filtered intersections if c(Qn) .j,. c(Q) 
whenever Qn .j,. Q. Here are some additional properties that capacities will be 
assumed to possess in the next sections. 

Let £ be a lattice of subsets of E (i.e. closed for finite intersections and 
unions). A mapping c : £ --+ i+ is called modular if 

c(A1 U A2) + c(A1 n A2 = c(A1) + c(A2) 

for A1, A2 E £. It is called submodular ( or strong subadditive) if the equality 
sign above is replaced by ~ and supermodular if it is replaced by ~. 

If Eis Q6, then Q is a lattice. The following is a simple exercise. 

PROPOSITION 2.1. If E is Q6 and c is a supermodular capacity, then its ex­
tension to the powerset of E is supermodular too. 

Submodularity does not extend so easily. The best results are obtained in the 
context of capacitability in Section 4, but the following more modest results 
will be used in Section 3, which we wish to keep independent of Section 4. 

Our first result is Lemma 9.9 of CROQUET (1969) in a larger generality. 
Choquet's proof uses normality. It is easier to resort to the usc intersection 
property instead, as do DELLACHERIE & MEYER (1978) in their proof of Cho­
quet's lemma. 

PROPOSITION 2.4. Let Ebe a Q6 space with usc intersection, and let c be a 
submodular capacity on Q. Then its extension tog is submodular. 

PROOF. Argue as in the last paragraph of DELLACHERIE & MEYER'S (1978) 
proof of their Theorem 111.42, but replace JC by Q. D 

PROPOSITION 2.5. Let Ebe Q6 with usc intersection, and let c be a modular 
capacity on Q. Write 

Then 

1l = {A~ E: c(A) = G~A c(G)}, 

1l1 = {A E 1l: c(A) <-oo}. 

(2.3) 

for A1, A2 E 1l and 1l J is a lattice, so c is modular on 1l f. 

PROOF. By Proposition 2.4, we know that c is submodular on g. This implies 
that c is submodular on 1l, and (2.3) follows by Proposition 2.3. 
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It remains to prove that 1-l I is a lattice. Fix A1, A2 E 1-l J, let t:: > 0 and 
choose Gi 2 A-i such that c(Gi) < c(Ai) + t::, for i = 1, 2. Then 

c(A-1 u A2) + c(A1 n A2) + 2t:: = c(A1) + c(A2) + 2t:: 
> c(Gi) + c(G2) = c(G1 u G2) + c(G1 n G2). 

Hence 

So 

and 

O ~ c(G1 n G-2) - c(A1 n A2) < 21:, 

showing that A1 U A2, A1 n A2 E 1-lJ· 

3. RADON MEASURES 

D 

In the present section we want to characterize those capacities which are re­
strictions to Q of Radon measures on the Borel-a-field B of E. However, we 
must adapt the definition of Borel-a-field and Radon measure to the larger 
generality of non-Hausdorff spaces. 

We define the Borel-a-field Bas the a-field generated by Q and Q. If Q ~ F 
(in particular if E is Hausdorff) or Q is second countable, then B is already 
generated by Q alone, and we return to the usual definition of Borel-a-field. 
Note that unsaturated qcompact sets need not be Borel measurable ( consider 
Illj.. in Section 1). 

Let c consist of the finite unions of sets of the form Q\G. Note that c consists 
of qcompact sets, not necessarily saturated. We say that a countably additive 
measureµ on (E, B) is a Radon measure ifµ is finite-valued on Q and c-inner 
regular, i.e., 

µ(B) = sup{µ(C): B 2 CE c} (3.1) 

for BE B. 
If E is T1 , then all sets are saturated and c = Q. In this case our notion of 

Radon measure coincides with more classical versions as in BERG et al. (1984). 

The following is known for locally compact Hausdorff E (cf. BOURBAKI (1965), 
Theorem 3.1 and Remark 1). See also the discussion on p. 62-63 of BERG et 
al. (1984). 

THEOREM 3.1. Let E be Hausdorff and locally compact. A capacity c is the 
restriction of a unique Radon measure to Q iff c is finite-valued on Q, 

(3.2a) 
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for all Q-1, Q2 2 E, and, in addition, 

c(Q1 U Q2) = c(Qi) + c(Q2) 

if Q1 n Q2 = 0. 
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(3.2b) 

If c extends to a Radon measure on l3 and Q is a lattice, then c is modular on 
Q: 

(3.3) 

for Q1 , Q2 ~ E. On the other hand, (3.3) implies (3.2) , so Theorem 3.1 also 
holds true with (3.2) replaced by (3.3). 

We cannot expect that Theorem 3.1 holds as it stands for non-Hausdorff E 
because of the following example: If G is nonempty open subset of JR+ -1-, then 
G = [0, x) for some x, 0 < x ::; oo. Hence every nonempty saturated subset of 
JR+,!. contains the point 0, and we see that if both Q1, Q2 ~ JR+ ,!. are nonempty, 
then Q1 n Q2 =I- 0. Thus, for JR+ ,!. condition (3.2b) does not tell us anything 
about c. Neither does (3.3), but for (JR+ ,!.) 2 (3.3) becomes a restrictive and 
meaningful hypothesis. 

We will generalize Theorem 3.1 with (3.3) instead of (3.2) to sober Qi; spaces 
with use intersection ([0, oo),!. is such space). Our proof is based on the following 
two general results. 

PROPOSITION 3.2. Let .C be a lattice of subsets of E containing 0. Let c: .C ---t 
JR+ be increasing and modular with c(0) = 0. Then c extends to a unique finitely 
additive finite measure µ on the ring R generated by .C. 

PROOF. There is a unique real-valued additive set function µ on R that extends 
c. This follows by a result of SMILEY (1944) and and PETTIS (1951) (see also 
KISYNSKI (1968), LIPECKI (1971) and TOPS0E (1978, Corollary to Lemma 
8.1)). The ring R consists of all finite disjoint unions of sets of the form L\L1, 
and 

µ(L\L') = c(L) - c(L n L') ~ 0, 

since c is increasing. Hence µ is nonnegative. □ 

We say that a class c of subsets of Eis compact if Cn E c for n = 1, 2, ... and 
nn Cn = 0 imply n:=1 Cn = 0 for some m E N. 

PROPOSITION 3.3 NEVEU (1965), Proposition I-6-2 and Exercise I-6-1). Let A 
be a field of subsets of E and µ: A ---t JR+ a finitely additive finite measure. If 
c ~ A is a compact class and µ is c-inner regular, then µ is countably additive 
on A and can be extended to a unique c-inner regular measure on the a-field 
generated by A. 
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We now apply these results to our case interest. It is convenient to fix a modular 
finite-valued capacity c on Q. We write 

91 = { G E 9 : c( G) < oo}. 

By Proposition 2.1 there is for each Q ~Ea GE 91 with G 2 Q, so UaHh G = 
E. 

LEMMA 3.4. If E is sober and Q0 , then the collection c0 of all sets of the form 
Q\G is a compact class, as well as c consisting of all finite unions from Co. 

PROOF. Suppose nn(Qn \Gn) = 0. Then nn Qn ~ Un Gn. Now nn Qn E Q 
because E is Q0 , so there is an m E N such that nn Qn ~ LJ:=1 Gn. By 
sobriety of E there is an l E N such that n~=l Qn ~ LJ:=1 Gn (cf. Theorem 
1.2 (b)), so n~=1 (Qn\Gn) = 0 if k ~ max(l,m). 

This proves that c0 is a compact class. Now c0 is closed for arbitrary inter­
sections, because Q is so. By Lemma I-6-1 of Neveu (1965) or Theorem III.4 
of DELLACHERIE & MEYER (1978), then also c is a compact class. D 

Let £, be the lattice generated by Q U 9 I and write R for the ring generated by 
£. Note that Co~ R: Q\G = Q\(G n G1) for Q ~ G1 E 91- Soc~ Ras well. 

LEMMA 3.5. Let E be Q0 with use intersection. There is a unique finitely 
additive finite measure µ on R, such that µ = c on £,. 

PROOF. By Propositions 2.5 and 2.1, c is modular on £, ~ 1l1- The lemma 
follows by Proposition 3.2. □ 

In general we do not have c = µ on R ( consider lllj. in Section 1). The next 
result explores to what extent c = µ can hold for Radon measures µ. 

PROPOSITION 3.6. Letµ be a Radon measure on (E, B). ifµ= c on Q, then 
µ(B) = c(B) for all saturated B E B. 

PROOF. Note first that c is Q-inner regular, whileµ is c-inner regular. Since 
Q ~ c, we have c ~µon B. 

Now let B E B be saturated, and take x < µ(B). Then x < µ(C) for some 
C E c, C ~ B. Since C is qcompact, so is sat(C), i.e., sat(C) E Q. We also 
have sat(C) ~ sat(B) = B, so 

x < µ(C) ~ µ(sat(C)) = c(sat(C)) ~ c(sat(B)) = c(B). 

Thus µ(B) ~ c(B) and equality follows. 

Here is the main result of this section. 

□ 

THEOREM 3.7. Let E be sober and Q0 with use intersection, and let c be a 
finite-valued modular capacity on Q. Then there exists a unique Radon measure 
µ on B such thatµ= c on Q {and hence on all saturated Borel sets). 
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PROOF. In the first instance we restrict our attention to the case c(E) < oo. 
Then (if= g and EE n, son is the field generated by QU(i. By Lemma 3.5, 
c in £, extends to a unique finitely additive measure µ on n. By Theorem 3.3 
and Lemma 3.4 it only remains to check thatµ is c-inner regular. Because n 
consists of finite unions of sets L1 \£2 with £1, £2 E C, it is sufficient to check 
thatµ is c0 -inner regular (c0 as in Lemma 3.4) on the latter sets: 

(3.4) 

We may assume £ 2 C £ 1. The inequality~ in (3.4) is obvious, but ~ needs a 
proof. 

Let 1: > 0. Note that Li E 1-£1 (cf. Propositions 2.5 and 2.1). Hence we 
may select Q ~ L1 such that c(Q) > c(L1) - 1:, and G 2 L2 such that c(G) < 
c(L2) + 1:. Then Q\G ~ L1 and 

µ(Q\G) = c(Q) - c(Q n G) ~ c(Q) - c(G) 

This proves (3.4) and completes the proof of the theorem in case c(E) < oo. 
We now drop this assumption. The conclusion of the theorem holds for each 

GE g,, considered as space on its own, and the resulting µa on the Borel sets 
of G for GE g, are consistent in the sense that µa 1na2 = mµG2 on the Borel 
sets of G1 n G2. We now defineµ on B by 

µ(B) = sup µa(G n B) 
GE91 

(3.5) 

for B E B. Then µ = µa on the Borel sets of G if G E g I. It is routine to show 
thatµ is countably additive, hence a measure on (E, B). 

We now prove that µ is c-inner regular. It suffices to prove that µ(B) ~ 
SUPccB µ(C). If x < µ(B), then there is a G E g, such that x < µ(B n G), 
so there is a C E c, C ~ B n G such that x < µ( C), which proves the desired 
inequality. 

As a Radon measure, µ is determined by its values on c, whence by the µa 
for GE g,. Soµ is unique. D 

Note that outside the context of Radon measures, µ need not be unique (cf. 
SCHWARTZ (1973), pp. 44-45). 

Recently NORBERG (1989) has shown that if c: g-+ i+ is increasing, finite 
and modular on 

{ G E g : G ~ Q for some Q} 

and such that c(0) = 0, then c extends to a unique measure on the a-field gen­
erated by (i, provided that Eis locally qcompact, sober and second countable, 
and that c is inner continuous. So our Theorem 3.7 both complements and 
extends Norberg's result. 
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4. CHOQUET CAPACITIES AND CAPACITABILITY 
In this section Eis assumed sober and Q6- By a Choquet capacity we mean an 
extended real-valued mapping e, defined at all subsets of E, such that 

(i) e(A) ~ e(B) for A~ B ~ E, 

(ii) e(An) t e(A) for A, A1, A_2, ... ~ E with Ant A, 

A set A ~ E is called capacitable if 

e(A) = sup e(Q). 
Q~A 

Choquet's theorem on capacitability says that every Q-analytic subset of Eis 
capacitable ( cf. DELLACHERIE & MEYER (1978), Theorem III.28 and Definition 
III.7). There it is also shown that the collection a(Q) of all Q-analytic sets is 
closed for countable unions and intersections, contains Q (Theorem III.8), that 
EE a(Q) iff Eis a countable union of sets in Q (the remark after Definition 
III.7), and that a(Q) contains the a-field a(Q) generated by Q iff all sets of 
the form E\Q are Q-analytic (Theorem III.12). 

Let e : g -+ JR+ be increasing and submodular. assume that e( Gn) t e( G) 
whenever Gn t G. For A~ E, we define 

e*(A) = inf e*(G). 
G;2A 

Then e* satisfies conditions (i) and (ii) above (cf. DELLACHERIE & MEYER 
(1978, Theorem II.32)). Consequently, e* is a Choquet capacity iff (iii) holds, 
i.e., e*(Qn) -l- e*(Q) whenever Qn -l- Q. Inner continuity of e is a sufficient 
condition for this, as shows the following proposition. 

PROPOSITION 4.1. Let E be a sober Q6 space, and let e : g -+ JR+ be in­
creasing, submodular and inner continuous. Then e* is a submodular Choquet 
capacity. 

PROOF. DELLACHERIE & MEYER (1978) prove this result for Hausdorff E. 
Their proof applies with obvious changes. D 

Also the next result is known in the Hausdorff case ( cf. DELLACHERIE & 
MEYER (1978), Theorem III.42). It is a corollary to Proposition 4.1. 

THEOREM 4.2. Let E be a sober Q6 space with usc intersection, and let c be a 
submodular capacity on Q. For A~ E, let 

c(A) = inf c(G). 
G;2A 

Then c is a submodular Choquet capacity relative to Q. Hence c(A) = c(A) for 
all Q-analytic sets A~ E. If c is modular on Q, then so is c on a(Q). 
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PROOF. Every assertion except the last follows as in DELLACHERIE & MEYER 
(1978). ff c is modular on Q, then, by Proposition 2.3, its extension (2.1) is 
supermodular on the powerset of E, in particular on a(Q), where it coincides 
with the submodular function c. □ 

We now apply Theorem 4.2 to random set theory. Let e be a random closed 
set in E (which of course is assumed to be sober and Q6 with usc intersection). 
By this we mean that e is an .r-valued function on some probability space 
(n, A, P) such that 

{enQ I 0} EA. 

Let 

T(Q) == P{enQ I 0}. 

It is not hard to see that T is a submodular capacity, and that its extension 
tog is 

T(G) = P{enG # 0}. 

Let BE a(Q). By Theprem 4.2, 

sup T(Q) = inf T(G). 
Qc;,B GJB 

It follows that the event {en B # 0} belongs to the completion of A w.r.t. P, 
as can be seen by arguments on page 30 of MATHERON (1975). 

An analogous result holds for the random usc functions discussed by VER­
VAAT (1988a). NORBERG (1986) treats the case when E is locally compact, 
second countable and Hausdorff. 

5. SEMICONTINUITY 
Clearly the collection 

{{ Q E Q : Q ~ G} : G E Q} 

is closed for finite intersections, so it may serve as a vase for a topology on Q. 
Note that all sets U in this base are decreasing in the sense that 

Consequently, all open subset of Q are decreasing as well. 
A mapping c : Q ~ i+ is usc with respect to the topology just introduced 

if the set { Q E Q : c( Q) < x} is open for all x E i+ . In particular, these sets 
are decreasing, so any usc c must be increasing. The remaining part of the 
next result is easy. 

PROPOSITION 5.1 (VERVAAT (1988a), Theorem 15.6). Let c: Q ~ i,t. Then 
c is usc iff c is outer continuous (and hence increasing). In particular, when 
c(0) = 0, c is usc iff c is a capacity. 
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Here it is appropriate to recall Proposition 2.2, which gives 

COROLLARY 5.2. Let E be sober and fix c : Q --+ JR.+. If c is use, then c is 
increasing and preserves filtered intersections. The converse holds true is E is 
locally qcompact. 

So far, capacities (not Choquet capacities) have been defined in the first in­
stance on Q, with extensions afterwards to all subsets of E, in particular to 9: 

c(G) = sup c(Q). 
Q<;;_G 

Hence forth we call such c capacities on Q, and the induced functions on g 
their extensions to g. 

We now will introduce a topology on g and define capacities on g to be lsc 
functions c on g mapping 0 on 0. These capacities turn out to be increasing, 
so they can be extended to all subsets of E, in particular to Q: 

c(Q) = inf c(G). 
G"2_Q 

We call the induced function on Q the extension of c to Q. 

Directed sets in g play a central role in the definitions. A directed set in g is a 
parametrized collection (Gi)i ~ 9, such that for each i1,i2 there is an i3 with 
Gii U Gi2 ~ Gi3 • In other words, a directed set is nothing but an increasing 
net. 

Here is the topology on g_ It is called the Scott topology (cf. SCOTT (1972), 
GIERZ et al. (1980) and HOFMANN & MISLOVE (1980)). A subclass U C Q 
belongs to this topology (or is Scott open) iff U is increasing: 

G1 2 GE U ==> G1 EU, 

and directed sets in g cannot penetrate U only by their union: 

(Gi)i directed, LJ Gi EU==> Gi EU for some i. 
i 

A function c : g --+ JR.+ is said to preserve directed unions if 

for all directed sets (Gi)i. One can characterize the Scott topology as the 
coarsest for which all such c are continuous. 

A mapping c : g --+ JR.+ is lsc iff the sets { G E g : c( G) > x} are Scott open 
for x E Ill+- . In particular these sets are increasing, so such a c is increasing. 
An increasing C : g --+ i.+ preserves directed unions iff c(ni Gi) > X with 
(Gi)i directed implies c(Gi) > x for some i. It is clear that this holds iff c is 
lsc. Hence 
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PROPOSITION 5.3. Let c : Q --+ IR+. Then c is lsc iff c preserves directed 
unions. 

Recall that c: Q --+ IR+ is a capacity on Q iff c is lsc and c(0) = 0. here is the 
connection with capacities on Q. 

THEOREM 5.4. The following four propositions are true: 

al If c : Q --+ IR+ is increasing and c(0) = 0, then it extension to Q is a 
capacity on Q. 

a2 The extension of the latter capacity on Q to Q equals c in case c was already 
a capacity on Q. 

bl If c : Q --+ IR+ is increasing and c(0) = 0, then its extension to Q is a 
capacity on Q 

b2 The extension of the latter capacity on Q to Q equals c in case c was already 
a capacity on Q and E is locally qcompact. 

PROOF. 
al We only need to show that the extension of c to Q preserves directed unions. 
If (Gi)i is directed in Q and G = ni Gi, then c(G) ~ supi c(Gi) because c is 
increasing. For each Q ~ G we have Q ~ Gi for some i, so c(Q) ::; supi c(Gi)­
Hence c(G) ::; supi c(Gi)-

a2 This is Proposition 2.1 once again. 

bl We only need to show that if c(Q) < x, then supQ~G c(Q) < x for some 
G ;2 Q. But this is obvious from the definition of c(Q). 

b2 Let c be a capacity on Q and write d for its extension to Q. Let fur­
ther e be the extension of d to Q. We shall prove that c = e. Fix G ~ E. If 
Q ~ G, then d(Q) ::; c(G). Hence 

e(G) = sup d(Q)::; c(G). 
Q~G 

Now let x < c(G). Whenever s E G, there is by local qcompactness a Q ~ G 
withs E Q0 • Thus we may choose an increasing net (Qo:)o: such that Qo: ~ G 
for all a and Uo: Q~ = G. But the x < c(Q~) for some a. If Qo: ~ G', 
then c(Q~) ::; c(G'). Hence c(Q~) ::; d(Qo:), But d(Qo:) ::; e(G), so we have 
x < e(G), showing that c(G) ::; e(G). Hence c(G) = e(G). D 

In particular this result tells us that we do not need discriminate between 
capacities on Q and Qin case Eis locally qcompact. 

The condition of local qcompactness cannot be omitted in b2 of the theorem, 
as shows the following example. Let E be the reals with the right half-open 
topology (Ex. 51 in STEEN & SEEBACH (1978)), having as base all intervals 
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[a, b) for a < b. Then E is Hausdorff, so Q(E) = K,(E), and all compact sets 
are countable. Moreover, the Borel-a-field of E coincides with the classical 
Borel-a-field of Ill Let c be Lebesgue measure. We must show that c is lsc, 
i.e., that c(Ui Gi) = supi c(Gi) for all directed families (Gi)i of open sets. For 
classical open sets this follows by Theorem 2.1.5(i) in Berg et al. (1984). The 
result then extends to open sets in the new setting by arguments as in point 
7 of Ex. 51 in STEEN & SEEBACH (1978). So c is a capacity on Q. Since 
all compact sets are countable, we have d = 0 on K, and e = 0 on Q in the 
terminology of the proof of Theorem 5.4.b2. 

We have discussed functions c : Q ---t JR..+ that preserve directed unions. A 
stronger condition is that c preserves all unions. Such e's are called sup mea­
sures in VERVAAT (1988a). There it is shown that each sup measure is of the 
form 

c(G) = supg(s), 
sEG 

where g is use with range JR..+ , and given by 

g(s) = inf g(G) 
G3s 

for s EE. 
If c is a capacity on Q, i.e., already known to preserve directed unions, then 

c preserves all unions iff 

c(G1 n G2) = c(G1) V c(G2)-

6. CONTINUOUS LATTICES OF CAPACITIES AND RELATED TOPOLOGIES 
In the previous section we equipped Q with the topology generated by all sets 
of the form {Q : Q ~ G}, and saw that an JR..+-valued function on Q is a 
capacity iff it is use and maps 0 to 0. 

Now we take E locally qcompact sober. Then Q is locally qcompact, too. In 
fact Q is a continuous semi-lattice under reverse inclusion and its topology is 
the Scott topology (cf. HOFMANN & MISLOVE (1980) and GIERZ et al. (1980) 
Theorem 8.4 of GERRITSE (1985) or Theorem 11.2.8 of GIERZ et al. (1980) 
now tell us that the collection of all use functions from Q to JR..+ is an upper 
continuous lattice, i.e., a continuous lattice under the reverse pointwise order. 
By Theorem 1.2.7.(ii) in GIERZ et al. (1980) the sublattice of all capacities on 
Q is continuous as well. 

In Section 5 we equipped also Q with its Scott topology. It is well known 
that Q is locally qcompact in this topology if Q is a continuous lattice, which 
is the case iff sob(E) is locally qcompact. A dual form of Gerritse's Theorem 
8.4 now tells us that the collection of all lsc functions from Q into JR..+ in this 
case is a continuous lattice under the pointwise ordering. It is obvious that its 
sublattice of capacities is continuous too. 

So, for E locally qcompact and sober, the collection of all capacities on Eis a 
continuous lattice under both the pointwise and the reverse pointwise ordering. 
(Recall that we may identify capacities on Q and capacities on Q in this case.) 
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Next we discuss various ways of defining a compact Hausdorff topology on sets 
of capacities. 

Every continuous lattice can be endowed with a canonical compact Haus­
dorff topology which is called the Lawson topology (cf. GIERZ et al. (1980) 
or HOFMANN & MISLOVE (1980)). This is the coarsest topology containing 
the Scott topology and the complements of all Scott qcompact saturated sets. 
Moreover, a result of LAWSON {1973) shows that this is the only possible com­
pact Hausdorff topology on a continuous lattice in case lattice operations are 
continuous. 

Write Cg and CQ for the collections of capacities on 9 and Q, resp. We just 
saw that Cg is a continuous lattice if 9 is continuous or, equivalently, sob(E) is 
locally qcompact, and that CQ is a continuous lattice under the reverse order 
(or upper continuous) if Eis locally qcompact and sober. In the latter case we 
need not distinguish between capacities on 9 and Q and we will write C for 
either of Cg and CQ. 

Now the Lawson topology on C can be introduced in two different ways de­
pending on whether we regard C as a continuous lattice in the natural pointwise 
ordering or its reverse. Note however that both methods must yield the same 
topology. 

Let us turn to more explicit characterizations. The members of C are pre­
cisely the usc functions on Q into JR+ that map 0 on 0. VERVAAT (1988a) 
introduces a topology for usc functions which he calls the sup vague topology, 
and shows it to be qcompact, and moreover Hausdorff if Q is locally qcompact, 
the case we are considering. Consequently, C is compact in the relative sup 
vague topology, which then must coincide with the Lawson topology. 

By analogy with measure theory in locally compact spaces VERVAAT (1988a) 
introduces a topology on C, which may be called the vague, since it is generated 
by all sets of the form { c : c{ Q) < x} and { c : c( G) > x} for Q, G and 
x E JR+. Note that a sequence (en) converges in this topology (or "vaguely") 
ifflimsupncn(Q) ~ c(Q) and limsupncn(G) ~ c(G). VERVAAT (1988a) shows 
that the vague topology on C coincides with the sup vague in the previous 
paragraph, so in the end with the Lawson topology. 

NORBERG {1986) introduces the vague topology for capacities in case E is 
locally compact and proves that it is compact Hausdorff. His proof applies here 
too, provided the class JC of compact sets in E is replaced by its counterpart 
Qin the non-Hausdorff setting. 
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A note on Fell- and Epicompactness1 

Henk Holwerda 
Lankfort 39-35, 6538 JV Nijmegen, The Netherlands. 

The present note contains a lattice-theoretic proof of two well-known com­
pactness results, for the Fell topology on the hyperspace of closed subsets 
of, and the epitopology on the space of all extended-real-valued lower semi­
continuous maps on a given topological space. 

1 INTRODUCTION 

Let X be an arbitrary topological space and :F(X) its hyperspace of all closed 
subsets, endowed with the Fell topology (Fell (1962)) with subbasic open sets 
{FE :F(X): F n K =¢}for K ~ X compact and {FE :F(X): F n G =/- ¢} 
for G ~ X open. It has been proved by many authors that :F(X) is Fell 
compact (but not necessarily Hausdorff), whatever is the underlying space 
X (see besides Fell (1962), e.g., Flachsmeyer (1964) and the monographs by 
Matheron (1975) and Attouch (1984)). The last author also proves compactness 
of the closely related space LSC(X) of all lower semicontinuous (lsc) maps from 
X to R := [-oo, oo], equipped with the so-called epitopology. This epitopology 
arises naturally as the relative Fell topology from :F(X x R) if lsc functions on X 
are identified with their closed epigraphs in Xx R. Compactness of LSC(X) can 
thus be proved via closedness in :F(X x R), which holds for locally compact (but 
not necessarily Hausdorff) X (cf. Attouch (1984) for Hausdorff X and Vervaat 
(1988) for the general case). A more direct approach to the epitopology occurs 
in the latter paper Vervaat (1988), who calls it the inf vague topology and 
characterizes it by having subbasic open sets {/ E LSC(X) : inf f(K) > c} 
and {/ E LSC(X) : inf /(G) < c} for K ~ X compact and G ~ X open, 
respectively, and c E R (here inf A denotes the infimum of A for A ~ R). 
This characterization gives rise to an alternative, direct compactness proof for 
LSC(X), without any restriction on the underlying space X (Vervaat (1988); 
cf. also the non-standard proof in Norberg (1990)). 

The aim of the present note is to provide a lattice-theoretic interpretation 
of both the Flachsmeyer-Matheron-Attouch proof of Fell compactness of :F(X) 
and Vervaat's proof of epicompactness of LSC(X). Obviously, both :F(X) and 

1This paper was part of the author's Ph.D. thesis, written unde supervision of Wim 
Vervaat. Support was provided by the Dutch foundation for mathematics SMC with financial 
aid from the Netherlands Organization for Scientific Research NWO (project 611-303-015). 
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LSC(X) carry a natural partial order, the (reverse) inclusion and pointwise 
order, respectively. By exhibiting their role in the cited proofs we show that 
these proofs in fact correspond to special instances of a well-known compactness 
result in lattice theory. For the special case of a locally compact underlying 
space X, the connection with lattice theory was made already by Gierz et 
al. (1980) (see Exe. III.1.13 and Thm. II.4.7; cf. also Gerritse (1985), Thms. 8.4 
and 10.4). 

2 PRELIMINARIES ON COMPLETE LATTICES 
We briefly review the relevant lattice-theoretic notions here. For more infor­
mation we refer to the monograph Gierz et al. (1980) on so-called continuous 
lattices, from which most of these notions are taken. 

Let L be a complete lattice, i.e., L is a set equipped with a partial order 
:S such that every subset A of L has an infimum inf A and (hence also) a 
supremum sup A. In particular, L has a bottom O and a top 1, which also 
appear as sup and inf, respectively, of the empty set </J. 

For xEL and A~L we write tx := {y EL: x '.Sy} and tA := {y EL: x '.S 
y for some x E A}, and we say that A is increasing if A = t A; the sets .J,.x and 
.J,.A, and the notion of a decreasing set are defined dually. 

Finally, a subset D ~ Lis called directed (filtered) if every finite subset of D 
has an upper (lower, respectively) bound in D. In particular, this must hold 
for <p ~ D, so D cannot be empty. 

We come to the Lawson topology on L, which typically stems from the theory 
of continuous lattices. It has subbasic open sets of two types, increasing and 
decreasing respectively. The open sets of the first type are those increasing 
subsets U of L for which 

sup D E U implies D n U =I- <I> for all directed sets D ~ L. 

The second class of sub basic open sets is { ( tx) c : x E L}. The Lawson topology 
>.(L) on Lis the topology generated by these two types of sets. 

Here is the fundamental compactness result that we are going to use. It has 
a completely elementary proof, based on Alexander's subbase lemma. 

THEOREM (Gierz et al. (1980), Thm. III.1.9). Each complete lattice is compact 
in its Lawson topology. 

For the rest we note that the subbasic Lawson open sets of the first type 
themselves also constitute a topology on L, the so-called Scott topology a(L). 
On the other hand, the topology generated by the sets (tx)c for x E Lis called 
the lower topology and denoted by w(L). For convenience we also introduce 
the dual Scott topology a(L) defined with the help of infima of filtered sets, the 
upper topology v(L) generated by the sets (.J..x)c for x E L, and their common 
refinement A(L), the dual Lawson topology. Of course, Lis also A-compact. 

3. F(X) AND LSC(X) AS COMPLETE LATTICES 
Let X be an arbitrary topological space, and consider F(X) and LSC(X). 
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Obviously, :F(X) is a complete lattice with respect to the inclusion order (i.e., 
F1 '.S'. F2 iff F1 ~ F2 ), in which the infimum operation means 'intersection', and 
the supremum 'closure of the union'. Likewise, LSC(X) with the pointwise 
order (i.e., Ji '.S'. '2 iff J1(x) '.S'. h(x) for all x E X) is a complete lattice in 
which suprema can be taken pointwise; the infimum of a subfamily of LSC(X) 
is the largest lsc function smaller than or equal to its pointwise infimum. It 
remains to point out the relation between the topology and the lattice structure 
of :F(X) and LSC(X), respectively. Here are the results. 

PROPOSITION 1. The Fell topology on :F(X) is coarser than the dual Lawson 
topology. 

COROLLARY. :F(X) is Fell compact. 

PROOF OF PROPOSITION 1. Let L denote :F(X) with the inclusion order. 
First, let K ~ X be compact and U := {FE :F(X): F n K = ef>}. We show 
that U E u(L). It is clear that U is decreasing. So let D ~ L be filtered and 
suppose inf D E u, i.e., (nFED F) n K = ef>. By compactness of K we have 
(n~=l Fi)nK = ef> for an n EN and certain F1, ... , Fn ED. Since Dis filtered, 
there is an F0 E D such that F0 ~ Fi for i = 1, ... , n. Apparently, Fon K = ef>, 
i.e., F0 EU, so DnU-:/:- ef>. 
On the other hand, for open G ~ X we have H := ac EL and {FE :F(X): 
FnG-:j:. ¢}={FE :F(X): Fi H} = (.!.Hf E v(L). □ 

Using Vervaat's characterization of the epitopology we can give a completely 
similar proof for the case of LSC(X). 

PROPOSITION 2. The epitopology on LSC(X) is coarser than the Lawson 
topology. 

COROLLARY. LSC(X) is epicompact. 

PROOF OF PROPOSITION 2. Let L now be LSC(X) with the pointwise order. 
Firstly, let K ~ X be compact, c ER and U := {f E LSC(X): inf J(K) > c}. 
We prove U E a(L). Clearly, U is increasing. Now, let D ~ L be directed and 
suppose g := supD EU. Then for x EK we have g(x) = sup/EDJ(x) > c, 
so there exists an Jx E D with Jx(x) > c. Since Jx is lsc, x has an open 
neighbourhood Gx such that Jx(Gx) ~ (c, oo]. Compactness of K then implies 
the existence of a finite number of points X1, ... , Xn such that K ~ u~=l Gx;. 
As D is directed, there is an Jo E D such that Jo 2:: Jx; for i = 1, ... , n. 
It follows that Jo(K) ~ (c, oo), hence also inf Jo(K) > c, since Jo as an lsc 
function attains its minimum on the compact set K. We conclude that JO E U, 
so DnU-:j:. ¢>. 
Secondly, let G ~ X be open, c ER and V := {f E LSC(X): inf J(G) < c}. 
Now define h : X ➔ R by 

h(x) := { c ~f x E G, 
-oo 1f X (/_ G. 
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As G is open, h is lsc, i.e., h E L. Now V = {J E LSC(X) : f(x) < 
c for some x E G} = {J E LSC(X): f(x) < h(x) for some x E X} = (thY E 
w(L). □ 

On closer inspection the compactness proofs for :F(X) in Flachsmeyer (1964), 
Matheron (1975) and Attouch (1984) and that for LSC(X) in Vervaat (1988) 
turn out to reflect the structure of the lattice-theoretic proof of Gierz et al. 
(1980), Thm. III.1.9 (cited above). Quite different, however, is the original 
proof of Fell (1962) for :F(X), in terms of universal nets. 

Following Vervaat (1988) we could also have proved the results for :F(X) and 
LSC(X) at once by identifying :F(X) with the space of all lower(!) semicontin­
uous {O, 1}-valued maps (via the characteristic functions of the complements 
of closed sets) and replacing the range R in LSC(X) by an arbitrary compact 
subset of R ( or, even more generally, another continuous lattice, as in Gierz et 
al. (1980) and Gerritse (1985)). 

If the underlying space X is locally compact (in the strong sense of Fell 
(1962) in case X fails to be Hausdorff), then the Fell and the epitopology 
on :F(X) (LSC(X), respectively) are even known to coincide with the (dual) 
Lawson topology (cf. the references at the end of the introduction). Moreover, 
:F(X) and LSC(X) are (reverse-order) continuous lattices in this case and the 
respective topologies are all Hausdorff. 
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