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0.1. INTRODUCTION AND SUMMARY

This part of the monograph is concerned with the approximation of
controlled Markov processes with continuous-time parameter {t|t=0} by
controlled Markov processes with discrete-time parameter {nh|n=0,1,2,...},

where h is a small step-size.

A Markov process is a stochastic process satisfying the so-called
'"Markov property': "Given the actual state at a time-point t (present),
the behaviour (evolution) of the process from t onward (future) is indepen-
dent of the history up to time-point t (past)".

A controlled Markov process with continuous-time parameter can be
described informally as follows. The state of a process (e.g. the number of
customers in a service facility or the value of an investment fund) is ob-
served continuously. A control prescribes‘at any time-point which decision
rule has to be used. The decision rule in turn prescribes for any observed
state the-control variable (e.g. the service rate of the facility or the in-
vestment opportunity of the fund).

If at a time-point t the current decision rule is §, then the evolution of
the process during the time interval [t,t+At], where At is small, is deter-
mined, approximately, by an infinitesimal cperator A?

In applications this operator will be given by'means of infinitesimal cha-
racteristics depending on the actual state, say x, and the corresponding
control variable §(x) (e.g. the arrival and service rate at the facility
(jump characteristics) or the profit rate (drift) and risk (diffusion)
coefficient).

A cost-rate function L8 yields costs incurred per unit of time.

Particular of interest for the above model is the so-called

continuous—~time optimality equation (Bellman equation):

- E% ¢t(X) = inf [L6 + A5¢t](x) , t=2Z
(1) S€A

9, = 0

where A denotes a set of possible decision rules from which at each time-—
point a decision rule has to be chosen, and S is the state space.
The solution ¢t’ provided it exists, is well-known to represent 'optimal

(minimal) expected costs of controlling' on [t,Z]. In general, however,



neither these costs nor a corresponding optimal control can be given ex-

plicitly.

The objective of this study is to present a general method of ap-
proximating continuous-time controlled Markov processes and related func-
tions such as expected costs or optimal expected costs of controlling.

Such a method is at least of theoretical interest,since continuous-time
model formulations are often given via a limit of discrete-time descrip-
tions. Especially,however, the computation by means of recursive systems

and inductive procedures which are well-known for discrete-time structures
makes time-discretization attractive from a computational point of view.

For instance,optimal expected costs as well as a corresponding control for

a discrete-time Markov process can be obtained recursively by using dynamic
programming (see relation (2)).

In view of the computational aspect we focus on an approach which not only
yields the convergence of discrete-time approximations as the step size h
tends to 0, but which also provides rates of convergence or bounds and which
is applicable to a wide class of discretization-methods possibly including
numerical‘procedures. In this respect we emphasize,however, that this mono-
graph must be seen just as a first step in this direction and that it is not
concerned with obtaining 'good' numerical procedures.

Further analysis and developments in this respect would certainly be valuable.
The discretizations which will be given explicitly in this monograph as well
as the convergence rates and bounds obtained are not in the first place of
computational interest. They illustrate,however, the application of our
method which,to the best of our knowledge,forms a new approach to obtaining

approximations for controlled stochastic models.

First, in chapter I, we analyze the approximation method for uncontrol-
led and (time-) homogeneous Markov processes as direct application of a well-
known approximation theorem ad pted from numerical analysis. The approxima-
tion concerns expectations induced by transition probabilities (see (2.6)
of chapter I) and,as an implication,also the probability law of the process.
Next,in chapter II,we proceed along the same lines for controlled and (time-)
inhomogeneous Markov processes. For fixed control we study the approximation
of expectations induced by transition probabilities again (see (2.3.1) of
chapter II) as well as of the finite horizon cost function (see (2.3.2) of
chapter II).



Furthermore , attention is paid to the approximation of optimal cost
functions as given by (1) and additionally,in jump— and diffusion-type ap-

plications to comstructing 'nearly-(e-) optimal' (discrete-time) controls.

Therefore, we consider a discrete-time controlled Markov process at
time-points {nh|n = 0,1,2,...},where h is a small step-size. (The setting
for uncontrolled processes is included by neglecting the control character-
istics). Such a process is determined as follows.

At each time-point nh the state of the process is observed. A control pres-—
cribes at any time-point a decision rule,which #m its turn prescribes for
any observed state a decision (action) to be chosen. If at time-point nh
the actual state is x and decision rule & is used, then the state at nh+h
is determined by the ome-step transition probability:

Pi(x;.). Further, a one-step cost hLﬁ(x) is incurred.

In view of the approximation analysis,we introduce an operator TS

on functions f : S+ R, where S denotes the state space, by defining
5 5
TEG) = [£(3) Py (x;dy) ,»  X€S

(denoting the expectation of f induced by Pi(x;,)).

Then the inductive structure leads, for instance, to the possibility of recur-
sively solving the discrete-time optimality equation (dynamic programming
equation):

¢, 60 = inf leTp@l DI, <

(2) 5€eA

s, XE€ES
h -
Py, () =0

The function d? represents the optimal expected costs on [jh,£h].

By subtracting ¢j from both sides, and writing

h+h

Ag= Dg—ﬂhﬂ,

5 . .
(Ah will be called a one-step generator), one easily derives

h

en) 1 3T, xes,

h __h . 5. .5
3) [¢jh'-¢jh+h](x) = gzi hiL + A (0



which can be seen as discrete-time analogue of the relation (1).

(Note that the right hand sides of (1) and (3) are non-linear in @ and ¢h).

Intuitively, one might expect that as h tends to 0, convergence, in
some appropriate norm, of the one-step generators AE to the infinitesimal
operator A§ for all decision rules 6§, implies convergence also of the corre-
sponding discrete—timé processes and related functions, such as the conver-
gence of ¢h to @. Actually, results of this type are well-known in the
literature.

Without being exhaustive, we like to mention Skohorod (1958), Trotter (1958),
Kurtz (1969) as well as Kushmer and Yu (1973), (1974) for uncontrolled pro-
cesses, and Whitt (1975), Kushner (1977), (1978), Kakumanu (1977), Nisio
(1978), Gihman and Skorohod (1979), Van Der Duyn Schouten (1979), Hordijk
and Van Der Duyn Schouten (1980), (1983a), (1983b), (1983c), Bensoussan and
Robin (1983) as well as Christopeit (1983) for controlled processes.

All these references, with exception of Kakumanu (1977) for a specific model,
are only concerned with the convergence of discrete-time approximations as
the step size h tends to 0. With exception of Kushner (1977) and Haussmann
(1980) for specific examples,.rates of convergence or bounds are not pro-
vided. Moreover, the approaches used are quite different and several of

them are especially developed for specific models or discretizations and

require a detailed study of stochastic processes.

The approximation method developed in this monograph is of a uni-
fying form and makes use of deterministic respresentations, more precisely,
of deterministic time—evolution equations based on the 'Markov property'.
For uncontrolled and time-homogeneous Markov processes these equations are
the well-known time-differential equations (cf. Dynkin (1965)):

(4) LA £20 Tf=f
dt 't t ? ? ’
where A is a linear operator on a domain of functions DA and f denotes an
initial function.
For controlled and time-inhomogeneous Markov processes it is more conve-

nient to present these equations as time-difference equations

(5) U -Uiyp = hAt(Ut+h)+ R (h) , tth =Z, U, = u,



where At is a non-linear operator on some domain of functions D, again,

A
u is a fixed terminal function at time-point Z, and Rt(h) is a term

which in a particular application has to satisfy:
(6) Rt(h)h_l-+ 0 (in some appropriate norm) as h-+0.

The literature on numerical analysis presents a well-known ap-
proximation theorem, known as Lax-Richtmeyer theorem, which deals with
the convergence of finite difference-methods for initial value problems as
given by (4). Consequently, application of this theorem enables us to study
the discrete-time approximation for uncontrolled and homogeneous Markov
processes. This is done in chapter I.

In order to deal with the convergence of non-linear and time-inhomo-
geneous difference-methods for the backwards time-difference equation (5),
we present, as a slight extension of the Lax-Richtmeyer theorem, an approx-
mation lemma. Although, also results of such a type are well-known in the
literature on numerical analysis, we prefer to present a somewhat different
form, which is particularly suitable for our purposes, Application of the
approximation lemma is possible for: expectations induced by transition
probabilities, finite horizon cost functions, and finite horizon optimal

cost functions. This is shown in chapter II.

The approximation theorem as well as the approximation lemma con-
cern approximations with respect to some appropriate norm and directly
show how to obtain orders of convergence in that norm. As a result, applica-
tion of the approximation theorem or lemma yields the following differences
with the results given by the references mentioned above:
(i) Appropriate norms can be used.
(ii) Orders of convergence or bounds can be obtained.
By choosing appropriate norms we are able to study the approximation also
for unbounded functions as well as to deal with unbounded charactericstics
such as cost rates or infinitesimal characteristics.
Orders of convergence can be used to conclude that the convergence of discrete-
time approximations for fixed control is uniform in a class of controls, or
to show that €- optimal controls -can be constructed by using discrete-time

dynamic programming.

More detailed comparisons with results of references as well as brief discus-

sions on related literature can be found in the chapters I and II.



This monograph pays much attention to applying the method of time-
discretization to uncontrolled and especially to controlled Markov proces-
ses of jump and diffusion type.

The discrete-time approximations given for these applications are quite
natural and of a simple form. It may be remarked that the approximation
lemma allows just as well more advanced difference-methods advpted from the
literature on numerical analysis,which yield much better orders of conver-
gence and computational results. Since, however, the application of such
methods would require further analysis, they are not considered in this
monograph. Nevertheless, as stated earlier, further investigation on com=

putational aspeets would be useful.

Since each of the chapters I and II contain a detailed introduction
and summary itself, we only give a brief outline of the scope here.
First of all, we will conclude this introduction by presenting the neces-
sary material on probability theory,such as the definitions of: stochastic
processes, transition probabilities, Markov processes and weak convergence.
Further,this introduction includes a list of (notational) conventions.
Next,chapter I studies time-discretization for uncontrolled and (time-)
homogeneous Markov processes. First,time-discretization is analyzed in a
general framework and yields as main approximation results of this chapter:
theorem 4.3.1 and 4.3.7. Thereafter,applicaticn of these results is shown
for Markov jump processes with bounded jump rates, an infinite server
queue and solutions of stochastic differential equations (diffusions).
Chapter II examines the method of time-discretization for controlled Markov
processes,more or less parallel to chapter I.
First of all,a formal description of continuous—time controlled Markov pro-
cesses is given. There are three functions of interest to be approximated.
In a general framework, again, the approximation of these functions is shown
by the main approximation results of this chapter: theorems 6.3.2, 6.4.2
and 6.5.2 respectively. Next,special attention is paid to the appli-
cations: Controlled Markov jump processes and controlled stochastic dif-
ferential equations (diffusions). As a special result of time-discretizationm,
also the construction of g-optimal controls will be investigated. In addi-
tion; at the end of this chapter a brief discussion on related literature
will be given.
Finally, the Appendix contains auxiliary material on weak convergence of

Markov processes on so-called D-spaces. A list of references as well as

a list of symbols are included.



0.2. PROBABILITY CONCEPTS ; NOTATION

This section only collects some basic concepts and notation of proba-
bility theory which are essential for the sequel. For a more extensive in-—
troduction of probability theory we especially refer to Breiman (1968),
Feller (1970) or Gihman and Skorohod (1969). In particular with respect to
detailed studies of stochastic processes the books of Billingsley (1968),
Dynkin (1965) and Gihman and Skorohod (1974), (1975), (1979) are also re-
commended. The definitions given below are adapted from Gihman and Skorohod
(1974). The end of a definition or notation will be indicated by the sym-—
bol o.

DEFINITION 0.1. Let @ be a set with o - algebra Z.
A probability measure Pon Q@ is a o — additive non-negative measure such

that P (R) = 1. The 3 - tuple (R,2,P) is called a probability space.

A random element X on a metric space S with Borel-field B is a measurable
function from some probability space (R,%,P) into S. The probability mea-

sure E% is defined by E%(B) = P ({w|X(w)€B}) for all BEB,

Let(R,2,P) be a probability space. S a metric space and 0 some parameter
set. A function X with domain €XQ such that X(t;.) is a random element on
S for each t€0 is called a random function or stochastic process. We call
6 its domain of definiton and S its range or state space.

X(.,0) for fixed w.R is called a sample path. ul

A random function X will be denoted by {Xt|t§9} or (Xt)t€e , where
Xt indicates random element X(t,.), t€©.
In the sequel the domain of definition 6 will always be given by either
(i) 6 = {t€R |t= 0}, or
(ii) 6 = {nh |n=0,l,2,...} for some h > O.
For case (ii) we also let X be denoted by {thInEEI} or (th)

n€N °
In the rest of this introduction let S be a metric space with Borel-field B.

DEFINITION 0.2. A transition probability from 8, into §,, where S, and S,
are metric spaces with Borel-fields Bland Bz respectively, is a mapping P
from S, x Bz into [0,1] such that

(i) P(x3B) is Bl - measurable in x for any BGBZ, and

(ii) P(x;.) is a probability measure on S, for any X €S

2 1 °
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DEFINITION 0.3. A collection of transition probabilities from S into S:
, %,
{Ps t[s,tee, s<t} satisfies the Chapman-Kolmogorov equation if for all
9’

t],tz,t €06 with t <t <t

3 1<to<ts s x¢S and BeB it satisfies

(0.1) P, . (3B = [P (y:B) P (x3dy). o
1273 S 2’73 1°72

The definition of a Markov process is often given by using conditional
probabilities; see for instance Dynkin (1965) p.77/78 or Gihman and Skorohod
(1974) p.160. On p.162 and 163 of Gihman and Skorohod (1974), however, it is

shown that the following definition can also be given.

DEFINITION 0.4. Let {PS t[s,t€9,3<t} be a collection of transition probabi-
9

lities from S into S which satisfies the Chapman—Kolmogorov equation.

Then {Xt|t66} is a Markov process with transition probabilities

{Ps’t[s,t€6,5<t} if for any n = 1,2,..., OSt]<t2<...<tn with tiee Jdi=1...,n

and Bl,Bz,...,BnéB it satisfies

P(X €B ,X €B_ ,...,X. €B) =
(0.2) t] 1 t2 2 tn n
B f Py (dx) [, / Pt Gepsdxy) L. [ g f Pyt (x _ 3dx )1]]
1 t] 2 1°72 n n-1’"n o

In accordance with (0.2),;also let the set of transition probabilities
include for any t=0 the identity function Pt c ,i.e.; Pt t(x;B) =1 if x¢B
3 2
and 0 otherwise. In the sequel we always represent the transition

probabilities by {Ps

t s, teb}.
REMARK 0.5.It is shown by theorem 6 on p. 162 of Gilman and Skorohod(1974)
that a Markov process satisfies the so-called 'absence of after - effect’.
which informally says:

" The behaviour of the process for s> t(future)only depends on the state of
the process at s = t (present) and not on its history for s<t (past)!

The absence of after—effect is also known as 'Markov property'.It is this
Markov property or,more precisely,the Chapman-Kolmogorov equation on which

the approximation analysis in the sequel will be based. o

*
In that case we also call the collection a semigroup

of transition probabilities.



REMARK 0.6. A process (Xt)tee can be Markov with different collections of
transition probabilities, say {P; t[s,tee} and {Pz tls,tee}. By using (0.2)
b £
however it can be shown that, (also see p. 29, 160 and 161 of Gihman and
Skorohod (1974) for any s,t€6 and BER:
1 2
P (X Elx|P,  (x3B) # P (x;B) })=0.

Therefore, we let definition 0.4 also include transition probabilities.

DEFINITION 0.7. A Markov process (Xt)tEG with transition probabilities
{PS t[s,tee} is called homogeneous if for some collection
’
{Pt | te®} of transition probabilities and all s,te6, x€S and B€B:
PS,S+C<X;B) = Pt(x;B). [a]

DEFINITION 0.8. Let P be a probability measure on S and let f be a real-
valued measurable and P -integrable function. Then the expectation of £
induced by P is given by EIPf where

(0.3) E_f = [fdP.
P
S
If it is clear which probability measure is considered, then we

write Ef(X)>= ]EIP £, o
" .

NOTATION 0.9.

C(S) = {£:S+R | f bounded and continuous }-

Cu(S)= {f:8+ R I f beunded and uniformly continuous }.

DEFINITION 0.10. Let h>0. A collection {B"| he(0,hy1} of probability

measureson S converges weakly to a probability measure Pon S as h—+0 if

(0.4) lim [ £ dP® = [ £ dP for all £eC(s).
>0 S S
NOTATION: ]Ph= P. s}

For a collection of random elements {Xh|h€(0,h0]} on S and X a random ele-

ment on S write X* = X if Bep = By

The portmanteau theorem, see p.11/12 of Billingsley(1968), gives

several equivalent conditions for weak convergence.

Let us conclude this introduction with several notational conventions.



CONVENTIONS 0.11.

(0.5)

(0.6)

(0.7)

(0.8)

(0.9

(0.10)

(0.11)

(0.12)

(0.13)

(0.14)

(0.15)

(0.16)

(0.17)

An integral sign: f without subscript indicates an integral with

domain of integration the whole metric space S.

The symbol h always denotes a real-valued positive step-size.
h-+0 indicates: as h tends to O from above.

h= h0 denotes: h€ (O’hO] .

The symbol Z always denotes a real-valued positive time-point.
In the sequel we focus on time intervals [0,Z] where Z is fixed
but arbitrarily chosen. This fact will not be mentioned repeatedly.

t<Z indicates for all t€[0,z].

For x> 0 let [x] denote the 'entier'of xj;i.e.; the number

n€{0,1,2,...} such that x-1<n=<x.

For a collection {xh hE(O,ho]} C Rand p> 0 we say that

xh is convergent of order O(hp) if

lxh[ < KhP for all h=< h, and some constant K.

Let S be a metric space with metric dS and x€S, thS-for all hShO.
Then xh—>x denotes that ds(xh,x)~>0 as h~0.

For BcB define lB(x) =1 if x€B and lB(x) = 0 otherwise.
I always denotes an identity operator.

The function 0 : S+ R is given by: 0(x) = 0 for all x¢S.
N= {0,1,2,...}.

The symbol := or =: indicates a defining relation.

An equality sign = between two random elements on a same proba-

bility space denotes equality with probability one.

For f: R+ R a measurable function let f' resp. £'' resp. £f'''
denote the first resp. second resp. third derivative, provided

it exists.



(0.18)

(0.19)

(0.20)

(0.21)
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The notation . ... , which in this monograph will be frequently
called a collection, always indicates a family of elements para-
metrized by parameters ranging through a parameterset given by
.++ o Consequently, in this mongraph the word 'collection'

must be interpreted as 'family' and not as 'set'.

Furthermore, with respect to the concepts of boundedness,conti-
nuity and differentiability of a family one can also interpret

a family as a function.

Two processes {XiltEO} and {X§|t2 0} on D[0,«), where D[0,=) is
defined in the Appendix A, are called equal if they have the same
probability law on D[0,«).

2 ln=0,1,2,...}

are said to be equal if for any BEBM, where Bm is the infinite

Let h> 0. Two processes {X;h]n = 0,1,2...} and {X

product-c-field of f, it holds that

1 _ 2
P& ) nen®®) = B &) en€B)-

The two chapters are numbered by a Roman capital. Each of them is

subdivided in sections numbered by arithmetics and subsections

numbered by an additional arithmetic. For instance subsection 5.3.

' Each section or subsection has its own numbering for definitionms,

notations, lemmas, propositions, theorems and remarks as well as
separately a numbering between brackets for expressions, rela-
tions, formulas etc. For instance, lemma 5.3.2 and expression
(5.3.2) of Chapter I.

Reference to a numbered statement in the same chapter is direct,
but for a numbered statement in the other chapter or appendix
we add the corresponding capital I or II, or letter A.

For instance lemma I.5.3.2 and expression I.(5.3.2) if referred

to from chapter II.

The end of a definition and notation, as said before, as well as
that of an assumption, remark and proof will be indicated by

the symbol o.



CHAPTER I

MARKOV PROCESSES; TIME-DISCRETIZATION

1. INTRODUCTION AND SUMMARY

This chapter is concerned with the approximation of continuous—time
homogeneous Markov processes by means of discrete-time Markov processes.
More precisely, given a process with continuous-time parameter {t]t > 0}
we consider for h sufficiently small processes with time parameter

{nh|I1= 0,1,2...} and investigate convergence as h tends to O.

Methods of ﬁime—discretization for stochastic processes are well-
known in the literature. As references we like to mention Skorohod (1957),
(1958), Trotter (1958), Kurtz (1969),(1970),(1975), Kushner and Yu (1973),
(1974), Whitt . (1975), Kushner (1977), Gihman and Skorohod (1979), Hordijk
and Van Der Duyn Schouten (1983a).

The results of these references concern weak convergence of probabi-
lity laws and do not provide rates of convergence or bounds.

Their proofs of convergence are based on showing convergence of the one-
step gemerators of the discrete-time processes to the infinitesimal opera-
tor of the continuous-time process. These proofscan be subdivided in those

of probabilistic and those of analytic type.

The proofs of probabilistic type use probabilistic arguments such as:
Relative compactness of the approximations (Kushner and Yu (1974a),(1974b)),
weak convergence of embedded processes for jump type processes (Whitt (1975),
Hordijk and Van Der Duyn Schouten (1983a)), or approximation of stochastic
differential equations ( Kushner ‘(1977), Gihman and Skorohod (1979)).

The proofs of analytic type among the above mentioned references are
based on a semigroup description for expectations induced by transition
probabilities (Skorohod (1957), (1958), Trotter (1958) and Kurtz (1969),
(1970), (1975)).
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In this chapter,we will also make use of the semigroup and thus ana-
lytic approach. In contrast with Skorohod, Trotter and Kurtz,we will not
investigate the cbnvergence of resolvents of discrete-time semigroups and
thus conclude convergence of the semigroups.

However, we will apply a well-known approximation theorem from which the
convergence of the semigroups can be directly concluded.

This theorem, known as the Lax—-Richtmeyer theorem, is adapted from
the literature on numericai analysis. It concerns the convergence of dif-
ference-methods for time-evolution equations with a given initial value
or more precisely for so-called properly-posed initial value problems.

Since the semigroup induced by a continuous-time Markov process cor-
responds to such a problem, the Lax-Richtmeyer theorem can be applied in
order to study its approximation by means of discrete-time Markov proces-
ses. Moreover, besides its simple form it has the advantage above the weak
convergence results mentioned above, that it provides rates of convergence

with respect to some appropriate norm.

According to the Lax—Richtmeyer theory the so-called concepts of
consistency and stability appear to be essential. Intuitively these con-
cepts have the following interpretation.

Consistency states the convergence of the one-step generators to the infi--
nitesimal operator as the step size h tends to 0.

Stability requires boundedness of the discrete-time semigroups on a finite

time-interval uniformly in all step-sizes h and with respect to some norm.

The Lax-Richtmeyer theorem guarantees that consistency together with stabi-
lity implies convergence of the difference-method. In addition, an order

of convergence may be concluded from an order of consistency.

Application of the Lax-Richtmeyer theorem to a difference-method in-
duced by discrete-time Markov processes enables us to study:
(i) Convergence as well as reates of convergence for
expectations induced by transition probabilities,
(ii) weak convergence of the tramsition probabilities, and
(iii) weak convergence of the stochastic processes on D[0,»).
The possibility of choosing appropriate norms allows us to deal with
expectations for umbounded functions, and

unbounded infinitesimal characteristics.
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After presenting convergence results in general form this chapter studies
the method of time-discretization for three applications:

Jump—procesées with bounded jump rates (subsection 5.1),

an infinite server queue as special example of a jump process with

unbounded jump rates (subsection 5.2), and

~ solutions of stochastic differential equations or shortly diffusion

processes (subsection 5.3).
For each of these applications we explicitly present one discrete-time con-
struction. Especially for the jump and diffusion process these constructions
can be seen as natural stochastic approximations. Further, they illustrate
how to obtain rates of convergence as well as how to choose appropriate
norms. It may be noted, however, that any other difference-method can be ap-

plied just as well. From a numerical point of view this may be better.

In the general setting as well as in these three applications the Mar-
kov processes are assumed to be homogeneous in time. Analogous results for
time-inhomogeneous Markov processes however, can be obtained directly from

chapter II by considering constant controls.

The organization of the chapter is as follows. First, in section 2, we
present the semigroup of operators induced by transition probabilities of
continuous—-time Markov processes and we show that it corresponds to a so-
called properly-posed initial value problem.

Section 3 concerns the discrete-time approximation of this problem. First,
the general éoncepts of a difference-method, consistency, and stability

are introduced and next,the Lax—Richtmeyer theorem is presented.

Further,for direct ‘application later on, the end of section 3 contains a
specific lemma from which consistency as well as an order of convergence
can be concluded.

The results of sections 2 and 3 are applied in section 4 to difference meth-
ods for continuous-time Markov processes which are induced by discrete-
time Markov processes. More precisely, in a general setting we present suf-
ficient conditions for convergence of expectations, transition probabilities
and processes. .

The proofs given in this section make use of weak convergence results, which
are collected in the Appendix, for processes.

Finally, section 5 contains the three applications for which the method of

time-discretization is developed.



2. TRANSITION PROBABILITIES AND SEMIGROUPS

This section concerns a representation for transition probabilities of
homogeneous Markov processes., Therefore, in analogy with Dynkin (1965) it is
shown that these probabilities induce a semigroup of linear and bounded ope-
rators. (lemma 2.6). The semigroup property results from the essential Mar-
kov property or more precisely the Chapman-Kolmogorov equationm.
Furthermore, this semigroup appears to be the unique solution of a particular
time-evolution equation given by a so-called Znitial value problem. (lemmas
2,10 and 2.11). Combining these results with some additional properties

yields (theorem 2.12):

The semigroup induced by the transition probabilities corresponds to

a so-called properly-posed initial value problem.

These results are directly adapted from Dynkin (1965). In this section
nevertheless, the semigroup need not to be contractive as in Dynkin, but is
only assumed to be bounded for some appropriate norm. This fact will appear

to be useful for the applications given in section 5.

DEFINITION 2.1, Let S be a metric space with Borel-field B, then
{Ptltzo} with Pt:SxB»H{ , t20, is called a semigroup of transition probabi-

lities on S, if

(i) for all x€S and BEPR
P (x;B) = 15(x),
(ii) for all x€S and t=0
Pt(x;.) is a probability measure on S,
(iii) for all B¢B and t=0
Pt(x;B) is P-measurable in x, and
(iv) for all xeS, tIEO, t220 and B¢B
(2.1) Ptl+t2(X;B) =‘fPt2(z;B) Pt](x;dz).

Relation (2.1) is called the Chapman-Kolmogorov equation (cf. relation (0.1)
of the introduction).
For the rest of this section let S be a complete metric space with Borel-

field B and consider a semigroup of transition probabilities {Pt|t2 0}.
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DEFINITION 2.2. A real-valued function pw: S-+R is called a bounding function
on S if for some 60>0 : u(x)zﬁo for all x€S. o
NOTATION 2.3. With g a bounding function on S define
(2.2) B! = {f:S-+R.lf measurable and sup u(x)_llf(x)|<W},

X€S
and for £€B" write

-1
(2.3) el =l£C)I = sup w(x) " [£(x)].
H B xes

If pu(x) =1 for all x€S we also write

2.4 £l =1 £ .
@& el =Nl :

LEMMA 2.4. Let u be a bounding function on S. Then | induces a norm on

8" and 8" is a Banach space with respect to this norm.

The rorm is called p-norm.
PROOF. Immediately from the completeness of S. o

If some bounding function p is under consideration,then we assume, unless

explicitly stated otherwise, that any subset of 8" is endowed with the

u-norm | l‘Land the metric induced by it. Especially in the approximation
analysis later on,this natural convention must be kept in mind.
Further, for any bounding function p it may be noted that .

B ={f: S+ R |f measurable and sup If(x)[ < e} C B%. o
X€S

In the rest of this subsection let Z>0 and bounding function p be fixed

and suppose that the following assumption is satisfied.

ASSUMPTION 2.5. For the semigroup of transition probabilities {PtltZO},

the bounding function p and constant M:

(2.5) I/ u@P, Csanll = u s t<Z. o

Definition 2.1 together with assumption 2.5 enables us to define for any

t<Z a linear cperator Tt : g% gt by

(2.6) TEG) = [ £(y) P (x3dy) s x€S. o



LIMMA 2.6. The collection of operators {Tt|t‘52} s a semigroup of bounded

linear operators on g" satisfying for any £ B!

(2.7) T,f = £ and theB“ , t<z

(2.8) Tt +t2f = Tt (Tt £) , tIStZSZ,
: 1“2

(2.9 I £ Ilu =M Jf ”u , t<z

PROOF. (2.7): The measurability of th follows directly from the measurabi-
lity of f and condition (iii) of definition 2.1 . The fact that th is p-
bounded follows from (2.5) through

() | ff(y)Pt(x;dy)i = llfHu J uym P (+3dy) = [ £ lluM p(x) .

(2.8): Since £ B" one can show as in theorem 11.20 of Rudin (1964) that
there exists a sequence of simple functions {fn}:___l such that
£7(x) > £(x) for all x S and | £°

Chapman-Kolmogorov relation we have that

u (| u for any n. According to the

[P op, . (xsdy) = [ £%r, (zsay) e, (x3d2),
1 72 2 1

for any n€N,, tIEO, tZEO and x¢S. By letting n tend tow , and using the

dominated convergence theorem for both sides of the last expression the

proof will be completed.

(2.9): This is shown by (¥). o

N, oo
DEFINITION 2.7. A sequence of functions {f }n=1 c "

converges in p-norm to fes” if an— f Ilu—>0 as n—+w» , notation:f=p-1lim £,
0

A collection of functions {ft|t€[0,Z]}CBu is called:
uw - bounded if: ”ft”uEM for some constant M and all t<Z,
u - eontinuous on [0,2] if for all t=<Z:

”ft+s_ ft”u + 0 as s>0 ,
W - differentiable on [0,2] if for some cullection {gt]tE [0,2]} and allts<z:

- -1 .
ILft+s_ ft}s - gtHu—>0 as s=>0 ,notation:

( Here we assume that t+s=Z and

for the endpoints 0 and Z we only consider the limits as s+ 0 resp.s+0)
o
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NOTATION 2.8, Let us write

Bg = {fe8"[u-lim T, = £}
(2.10) b0
Di = {feB!|p-lim [Thf--f]h_l exists }-. a
b0

DEFINITION 2.9.The infinitesimal operator of the semigroup { Ttlt <z}is a
linear operator A : DXL)BS defined by

£-£Jn !, £ed? .

(2.11) Af = p-lim [T N

0 E

Note that the domain of the operator A : DK depends on pu , whereas the
operator A itself does not. The next lemma presents results sim lar to
Dynkin (1965) p.22/23. Particularly, it shows that the semigroup satisfies

a so-called time-evolution equation.

LEMMA 2.10.
(i) B‘S 18 a Banch space,.
AfEB% for any f€D* , and
T f 18 W —continuous on [0,z] for any fEBg.
(ii) The p~closure of DK cotncides with Bg .
(iii) For £ er it holds that thGDK for all t=1z,
the collection {th[tSZ} 18 u~ differentiable on [0, 2z], and
d
—_ f = = <Z.
(2.12) dtTt A(th) Tt(Af) ,t=1Z
PROOF.The first statement only requires to show :Bg is closed. Therefore,

let £ =p-1im fn with {fn]nGN }CBS and take ¢>0. Then,

I € - £ll, = Impf - T el + T — £ 0, + 1€ - £l

IA

w'

o+ Dlle, - £, + Ty - £l

First fix n such that “fn - fHu < 5[2(M+1)]—1,next choose & such that for
. - 1 ; ; ; -

h<&: HThfn anu<25 . Then the above inequality yields ”Thfu fLu<s.

Hence, Eg is closed. Consequently,relation(2.11) implies AfGB0 for fEDK.

Finally,let f € B%. Then with t€[0,2),h>0 such that t+h=z

- f - -
IT gt = T Fly = T (T - Ol slTe - £,
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and for t€(0,z),h>0 such that t-h=>0 :
- . - < -
I € = T80 = 1T G- D, = M liTps - £l

Hence,by letting h tend to ¢ and using that fEBS we find that th is p-conti-
nuous on [0,Z] .

a
(ii) Obviously,DK'EBg. Let,fEBg and define ga(x) = f Tsf(x)ds..Then,

0
a+h a+h

h
Thga(x) = f Tsf(x)ds = f Tsf(x)ds - f Tsf(x)ds + ga(x) .
h a 0
By virtue of the W —continuity of Tsf in s this inequality yields:

. -1
" ~%;% [Thga - ga]h = Taf - f , and thus gaEDl’L

A"
The proof of (ii) is concluded with f = p-lim e

0
(iii) Let fEDi. Then for t€[0,z),h>0 such that t+h<Z, we have

-1
I [Tt+hf th]h- - TtAfllLL

1 -1

I\

T (lo g - €10 - A€) [l = M T € = €10 - Af ] .

And for t€(0,Z] , h>0 and t-h>0:

[}

-1
e, £ - T,E] b - TAfll b

|
”Tt—h([f - T.flh —Af)llu +

-1

I T, _p(Af - ThAf)Ilu =M ||[f -T flh - Af”u + M ||ag - ThAfHu.

h

Hence,by letting h tend to O in the above inequalities and using that fED:

and Aféﬂg,as shown under (i),we may conclude :

. . . d
— r . et =
th is u -differentiable on [0,Z] and : dtth Tt(Af) , t<Z .

However,since also

-1 _ _ -1
[Toypf = TEI0 = [T, (T.6) - T £,

the p -differentiability implies for f€ DX : Tfe€ Di and

d - -
il f = T (Af) = A(T f) , ts<Z . o
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LEMMA 2.11.Let A be the operator on DX as defined by (2.11). Then for any
fe DX there exists a unique p —-bounded and n -differentiable collection
{u, | £=2} ¢ Di satisfying

(2.13) -d—tut=Aut , t=Z ,u0=f
PROOF. According to (iii) of lemma 2.10 and relation (2.9) the collection
{th | te [0,2] } is such a solution . To prove the uniqueness let
{ ut]: |‘t5Z} and {ui ] t<Z} be p-bounded solutionsof (2.13).Define for t=<Z:
2 wo. . e
g /T u UL - Then . { 8, | =z} ¢ DA is p - bounded and satisfies

d _ _ =

qc 8.~ A, 2, 8y = 0.

Next ,since 8 is W=~ bounded uniformly in t=Z and gtéB“' the expreséion

Ts-t g, is well-defined by (2.6) if s>t .Let s€(0,Z], h>0 and t<s-h,then
-1

d
T - - — —_— =
I T (evn) B (t+h) T, 8. ]h T, [~ Ag + dtgt]Hu

1

Ty o (le, - T8 00 '+ Ag, )IIu T pAe, ~ T As, ”u +

-1_d d d
“Ts—t—h([gt+h gt]h EEgt)llu * ”Ts—r_—h a8t~ Ts-t dtgt”u :
Since gtEDX' it holds that AgtEBg and hence %gtEBp' .Together with the
differentiability of 8, this implies that all four terms in the right-

hand side converge to O as h tends to O .

+
d - — g" = 0
Hence it To_t g, = Ts—t[ Agt+ it gt] 0 , t€[0,s).
Similarly 51-: T g. =T . [-Ag + -(-i—g 1=0 t€(0,s]-
dt “s-t°t s-t t  dt°t ’ ?
Consequently, T go(x) Ty gs(x) = gs(x) =0 , x€S , s€[0,Z] . o

Relation (2.13) is called an initial value problem or a time-evolu-
tion equation . The collection {ut] t€[0,Z]} is called its solution.
Combination of lemma 2.10 and lemma 2.11 yields as final result:

THEOREM 2.'2. The domain Dx

{1 £ | telo,2]} i the wnique - bounded solution within Di of the initial

value problem (2.13). o

is dense in B%‘ and for any £ ED‘Z the collection
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3. LAX-RICHTMEYER THEORY

This section studies the convergence of difference-methods for initial
value problems given by (2.13). Lax and Richtmeyer (1956) presented an es—
sential theorem from which convergence can be concluded. This theorem is
well-known in the literature on numerical analysis. The Lax—Richtmeyer theo-

ry as presented below is directly adapted from Meis and Marcowitz (1981).

The problem considered is concerned with the approximation of semi-
groups which correspond to initial value problems by means of semigroups
which are constructed from a difference-method.In order to conclude conver-—
gence two concepts appear to be essential:

consistency and stability.

The Lax-Richtmeyer theorem states that

consistency implies convergence if and only if there is stability.

In view of subsequent applications we also give a lemma which presents a

sufficient condition for consistency and which concerns a convergence-order.

In this section we consider a Banach space B with norm ||.|| and time-
interval [0,Z]. For a collection {ftl t€[0,Z]}CB the concepts strongly con-

tinuous as well as differentiable mean continuity respectively differentia-

bility with respect to the time parameter in norm

DEFINITION 3.1. Let DAQB, A: DA+B a linear operator. Then we have a

properly-posed initial value problem on DA if:

(i) DA is dense in B.

(ii) TFor any ceDA

which is strongly differentiable on [0,Z] and satisfies:

exists a unique collection {Ut(c)l t€[0,2]} in DA

3.1) SV =AU, tsz | Uy =

(iii) For some constant M and any CGDA the collection {Ut(c) |t€[O,Z]}
given in (ii) satisfies: HUt(c)”:SMHcH for all t€[0,z].

NOTATION: P(B,Z,A) denotes this properly-posed initial value problem. o

LEMMA 3.2. Let P(B,Z,A) be a properly-posed initial value problem.

Then there exists a unique collection {Etl t€[0,2]} of linear operators
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E BB, t= Z, such that Et(c) = Ut(c)’ for all c€D, and t€[0,z]. Further

]
<]
=1
(ad
+
T
IA
N

(3.2) E_,
BTty by Y
Ml cl , t<Z , cé€B,

IA

(3.3) [IEcl
(3.4) Ec is 8tr0ngly continuous in t€[0,Z] for all c€B.

(3.5) A Ec is strongly continuous in t€{Q,Z] and

A Etc = EtAc, t=< 2z, for all cEDA.

PROOF See theorem 4.12 and theorem 5.5 of Meis and Marcowitz (1981),

DEFINITION 3.3. Let P(B,Z,A) be a properly-posed initial value problem,
{Et | t€[0,z]} its semigroup and h0> 0.

(1) A collection of linear operators MD = {Ch | hE(_O,ho]}with for h= hO
C,:B»B,is called a difference-method if for some constant K:
IIChc”EKHc” for all h=hj and c¢B.

(ii) M‘D is called consistent for ¢ where c€B, if

-1
llc. -EIJEclh
(3.6) h ~ “h'Ct .
converges to 0 uniformly in t<Z, as h—0.

MD is called consistent if for some subset Dc dense in B

it is consistent for all CEDC.

(iii) MD is called stable if for some constant KC:

I, 1%l =& el
(3.7) h ¢

for all h= hO and n such that nh<Z and all cé€B.

(iii) MD is called convergent for ¢, if for all t=<Z:

lic, 1" ¢ - Ec
(3.8) L el
with |nh - t| < h

converges to O uniformly in nh=<Z,t<Z as h—0.

M is called convergent if it is convergent for all c¢B .



We are now able to present the essential approximation theorem. The proof
which will be given is adapted from Meis and Marcowitz (1981). It is in-
cluded in order to show its simplicity and to illustrate the above con-

cepts. Moreover, we use parts of the proof later on.

THEOkEM 3.4. (LAX-RICHIMEYER)
A constistent difference method M for P(B,Z,A) 78 convergent
1f and only if MD 18 stable .

PROOF. We only give the proof of sufficiency (if part) since the necessi-
ty (only if part) will not be used in the sequel. A proof of the necessi-

ty however can be found in Meis and Marcowitz (1981) p. 62/63.

Let M.D be stable. According to the semigroup property (3.2) we have for
any hSho, n€N such that nh<Z and c€B:
n-1

3.9) [Ch]nc - E,c =kzo [ch]k[ch - E

1E

h'" (a-1-k)hE"

Hence, for cEDC we conclude from (3.6), (3.7) and (3.9) that for any

&>0exists a §,>0 such that for all h=6, and nh= Z:

1 1

n

(3.10) Il [c 1% - E cll=nk h e <eZK,.

By virtue of (3.4) there exists a 52> 0 such that if ]nh - t|< 62, then
- <

(3.11) ”Enhc E cf=e.

Hence, if cEDC, h< 61 and |nh - t]<52, then
n

(3.12) I c,1e - EtCIIES(ZKC + 1),

Since ¢ is chosen arbitrarily, this proves the convergence of MD on DC‘

Now let c€B ande >0. Then there exists a EEDC with |lc - c||<e.

Relation (3.3) and the stability condition (3.7) yield

25
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e, 1% - Ecll=lllc, 1" e - Ecll +llc 1" (c = &) [+ E (e - &)
<" c-gcl+ @ +x)lle-cl

Se(ZKC + 1) +e M + KC),

if |oh - t | is sufficiently small. The last inequality results from (3.12)
with c replaced by ¢ and|lc - cl<e. Again, since ¢ is chosen arbitrarily

this proves the convergence of MD also on B. u]

COROLLARY 3.5. Let LN be a stable difference-method for P(B,Z,A) which is

consistent for c with c€B, then it is convergent for c.
PROOF. Immediately from (3.9) up to (3.12) u]

REMARK 3.6. By using (3.9) it also follows that if MD is stable, then the
left-hand side of (3.10) is convergent, as h tends to 0,of an order equal

to the order of convergence in (3.6) (order of consistency). o

Although, the following lemma can be proven, analogously to p.50 of
Meis and Marcowitz, by using the generalized mean value theorem, we
prefer to prove it by an integral representation, since we also make use of
this representation later on. Therefore, let P(B,Z,A) be a properly-posed

initial value problem and c€D,. Then by virtue of the time-evolution equa-

A
tion(3.l),Etc = Ut(c) and the continuity of AEtc we can write

t
(3.13) Ec-c=[AEcds , t=<zZ,
t . s
0
where the integral stands for the Bochner-integral (see p.42/43 of Hille (1948)).
Further, by using (3.13) together with the semigroup property (3.2) and the
strong continuity of A Etc we find, that
-1 -1 t+h
ICE, -1Ih -M)Ecll=In" [ (AEc -AEQ) ds |,

(3.14) t
which converges to O uniformly in t+h<2Z as h-0.

Next,let us consider a difference - method MD={ Ch|hE(0,hOJ}.
Then,for any thhO we define a linear operator Ah:B-*B by

(3.15) A = Ic - !,

which we call a one - step generator.



JEMMA 3.7.Let P(B,Z,A) be a properly-posed initial value problem
and M[):{Ch | hg(o,ho}} a difference-metiod . Then:
(Z) M 18 consistent for c with cGDZL if

4, = DE c|

(3.16)
- converges to 0 uniformly in t€{0,Z] as h->0 .

(ii) Let be stable , cept , p<1 and suppose that
A

la, - MEcll + I(E- 13- ME cl
(3.17) Ay t h - t

is convergent of order 0(hP) uniformly in t€[0,z] .

Then , the expression

(3.18) e, 1%e - Ecl

with n= [th_l] ig convergent of ovder 0(P) uniformly in tef0,z] .

PROOF. (i) For all hshO and t+h<Zwe find by writing C_ = I+hA+h[Ah—A]

h

(3.19) @, - cE el = (- 1= DEel + G- Dl
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By virtue of (3.14) and (3.16) the right-hand side of (3.19) converges to 0

uniformly in t<Z as h tends to 0 , which proves the consistency for c .

(ii) First note that according to (3.17) and (3.19) the expression

-1
(3.20) H(Eh— Ch)EtcHh

is convergent of order O(hp) uniformly in t < Z.

By using IIAEtc || = {]EtAcl! <M ||Ac||<w, t = Z, we obtain from (3.13):

(3.21) IIEnhc - Etc“ =h M |Ac|

with n = [th_l] .The proof is concluded by noting that p<l and using the

above facts in the proof of the Lax-Richtmeyer theorem for fixed c .

REMARK 3.8. Clearly, the restriction p =1 can be relaxed to p>0
if one replaces t by nh in expression (3.18).
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4. APPROXIMATIONS BY DISCRETE-TIME MARKOV PROCESSES

4.1. INTRODUCTION AND SUMMARY

First,recall from the introduction and definition 2.1 that a continu-
ous-time homogeneous Markov process has a corresponding semigroup of tran-
sition probabilities. Now let us consider such a semigroup as well as the
corresponding semigroup of linear operators defined by means of relation
(2.6). Then theorem 2.12 together with definition 3.1 imply, as already
stated in section 2, that the semigroup of linear operators corresponds to

a properly-posed initial value problem.

Consequently, the Lax-Richtmeyer theory can be applied to difference-
methods for continuous—time homogeneous Markov processes. Hence, the con-
cepts of consistency and stability will be essential.

Consistency will be guaranteed by a so-called comsistency relation, see
(4.3.1), and stability by a so-called stability relation , see (4.3.2).

Approximations for the semigroups might be obtained by using any dif-

ference-method. However, we especially focus on difference-methods which

are induced by one-step transition probabilities Ph for all step sizes h.

A one-step transition probability induces a semigroup of transition

probabilities {Phn |n=0,1,2,...} As direct application of sections 2 and

h
3,we first study the approximation of expectations ff(y)Pt(.;dy) by expec—

tations ff(y)P:h(.;dy). (Theorem 4.3.1)

This also yields the weak convergence of the transition probabilities
h
Pnh("') to Pt(.,.). (Theorem 4.3.4.)

Finally, 1et{Xt| t> 0} be a Markov process with transition probabilities

{Pt] t=0}. Then by letting {P:h
h | n=0,1,2,...} we can consider the weak convergence

|n=0,1,2,...} induce discrete-time
Markov processes {th
of the discrete-time processes {X2h| n=0,1,2,...} to {x, [t =0} on an

appropriate space. (Theorem 4.3.7.)

4,2. MODEL

Continuous-time. Let S be a separable and complete metric space with Borel-

field B and {Ptl t= 0} be a semigroup of transition probabilities on S.

Suppose that assumption 2.5 is satisfied.
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"
B
expression (2.6), (2.10), (2.10) and (2.11) resprectively.

Further, recall the definitions of th , s Di and Af given by
Finally, remember that the collection {Tt| t€[0,2z]} is the unique semigroup
corresponding to a properly-posed initial value problem P(BH,Z,A).

Discrete-time. Let for some h0> 0 :{ Ph [hE(O,hO]} be a collection of

transition probabilities from S into S; hence for any h:ShO:
Ph(x;.) is a probability measure on S for any x€S, and

Ph(x;B) is P-measurable in x€S for any B€B.

For any step—size h we call PP 4 one-step transition probability.

Suppose that for any hShO

@2 If ue) PCaanll, <o

Then we introduce a difference-method MD={ Chl hE(O,hO]} on BY
by defining for all hih0 , £eB" and x€s:

(4.2.2) CE@ = [ £(y) PP (x;dy).

Further , for any h<h_ we obtain a collection { P:h| n =0,1,2,...}

0
of transition probabilities from the recursive scheme

h -
2. Po(x,B) = 1B(x)
te. X€S , BEB.

P (sB) = [ BU(ysB) Py Geidy)  ,nz

Hence , from (4.2.1),(4.2.2) and (4.2.3) it follows that
n h
(4.2.4) [c 17 £G) = [ £(3) P, (x3dy)

for all hSh0 , NEN , £e8" and x€s .
Finally , recall for hEhO the expression (3.15) : Ah= [Ch-l]h_]

4.3 DISCRETE-TIME APPROXIMATIONS

By applying the Lax-Richtmeyer theory,presented in section 3,
to the difference-method given above,we obtain the following main

approximation result .
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THEOREM 4.3.1. Let £€D" and suppose that

A

Iia, - AlT £l
(4.3.1) * tow

converges to 0 uniformly in t=<Z, as h—0,
and

~ If we) BPCsay) = C 1+ by )

(4.3.2) K

for all hsh0 and some constant MC'

Then the expression

h Y - .
(4.3.3) If £ 2y Gady) = [ £G) 2 Csdy) ]
with n = [th_l], converges to 0 uniformly in t<7Z as h-0.

PROOF. First,note that relation (4.3.2) guarantees relation (4.2.1).

By virtue of 1emma>3.7.,re1ation (4.3.1) implies consistency.

According to lemma 4.3.2 below,relation (4.3.2) implies stability. Hence,
the Lax-Richtmeyer theorem 3.4 together with the expression (2.6) for th
and (4.2.4) for [Ch]nf .completes the proof. o

LEMMA 4.3.2. Let relation (4.3.2) be satisfied, then for any 7> 0 the
difference-method is stable on [0,Z]. '

PROOF.

) h

Since |[ £(y) Pl (x3dy) | = [ w(p)ll £ “p. PP (x;dy),
we have : I Chf ”H < | f Hu‘] + hMC).

Hence , by iterating this inequality n-times,where nh=<Z ,we find
(4.3.4) lie, 1™l < el (1 + )™ < el M
h m m c "

for all hfhO and n such that nh<Z ,and fEBu . u]

REMARKS 4.3.3
1. An order of convergence for expression (4.3.3) can be obtained by using

lemma 3.7. o
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2. Note that relation(4.3.2),implying stability, depends only on the
one-step transition probabilities {Ph| hG(O,hO]}and T

3. Since relatioﬁ (4.3.1) resp. (4.3.2) imply consistency for f resp.
stability, we will refer to these relations in the rest of this chap-
ter as ; the consistency relation (4.3.1) resp. the stability relation
(4.3.2). 1t may be noted that by virtue of (3.14),relation (4.3.1) is
necessary for consistency whereas (4.3.2) is not necessary for stability.

4, If for allf in some setG relation (4.3.1) and relation (4.3.2) are
satisfied, then it can be shown as in the proof of the Lax-Richtmeyer
theorem that for any f within the p-closure of G expression (4.3.3)

converges to 0 as h tends to 0.

Next, let us study weak convergence of the transition probabilities
and corresponding processes. For the definition and notation of weak con-
vergence see definition 0.10 of the general introduction. For definitioms,
notation and analysis of weak convergence of processes on so-called D-

spaces, we refer to the Appendix A.

First, in order to conclude weak convergence of the transition proba-
bilities recall the notation Cu(S) for the set of real-valued uniformly

continuous and bounded functions, also see notation 0.9.

THEOREM 4.3.4. Let G be a subset of BY with u-closure containing c"(s).
Suppose that the consistency relation (4.3.1) is satisfied for all f€G
and let the stability relation (4.3.2) hold.
Then, for any t<Z, x€S and with n = th']:

h
(4.3.5) Pnh(x,.)=sPt(x,.) , a8 h-0,

PROOF. According to theorem 4.3.1 and statement 4 of remark 4.3.3 it

holds that expression (4.3.3) converges to O as h tends to 0 for any
fec¥(S). This fact together with the portmanteau theorem, see Billingley
(1968) p.11, completes the proof. o

Next, let us consider a continuous-time homogeneous Markov process
{x, |t 20} with collection of transition probabilities {p, [t =0}.
Further, let {Zg] h€(0,h ]} be a collection of random elements on S.
First,let us focus on the existence and construction of discrete-time

Markov processes.
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LEMMA 4.3.5. For any h<hg there exists a unique discrete—time Markov
process {XEh| n = 0,1,2...} with transition probabilities

h h
e o

|n=0,1,2...} and xg y

PROOF;, According to the theorem of Ionescu Tulcea (see Neveu (1964) p. 145)
there exists a unique random process {Xgh[ n=0,1,2...} such that for

any n€N and BO,BI...Bn+1€B:

PxeB) = P (zlen)
0 0 o

5 o5

h B )

h
P (Xg €Bo,X[ €B o Xy €B

(4.3.6) 07071

h
]{ o x g " CnBarn) O Coxpsex)
0¥B;Xe - XB_

By construction (4.2.3) of the transition probabilities
{P:h| n=0,1,2...} we have for all j,n€ N, x€ Sand B€B:

h
(4.3.7) P‘(‘mj)h(x;n) = [ Pl Pgh(x;dy).

Consequently, the collection {PE | n=0,1,2...} satisfies the Chapman-

h
Kolmogorov equation. By comparing the constructions (4.2.3) and (4.3.6)
|n=0,1,2...} is a homo-

n=0,1,2...}. o

and using (4.3.7) we can conclude that {Xgh

geneous Markov process with transition probabilities {Pghl

Note that the system (4.3.6) gives a recursive construction of the
process {Xghl n=0,1,2...}.
In order to analyse weak convergence of the processes{X:h |a=0,1,2...}
as h tends to O let us first give a slight extension ot theorem 4.3.4

which guarantees relation (3.5) of the Appendix.

LEMMA 4.3.6. Let the hypotheses of theorem 4.3.4 be satisfied and suppose
that

(4.3.8) ff(y) Pt(x;dy) 18 continuous in x for any t=<Z and fEC“(S),
and
(4.3.9) sup M(x) <o for any compact set QCS.
x€Q

Then for any x€S and collection {xh ]hé(O,ho]} with x'>x as h-0,
and £=7 ,n€ N with n=[th_]},we have
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(4.3.10) P:h(xh;.)==Pt(x;.) , as h=>0.

PROOF. According to the hypotheses of theorem 4.3.4, theorem 4.3.1 and
statement 4 of remark 4.3.3 it holds that expression (4.3.3) converges

to O,as h tends to 0,for any fect(s). Hence, by using (4.3.9):

sup | [ E(EY, (x5 dy) - [E(P G,dy) | >0 , as b0,
X€Q

for any Q compact and f€Cu(S). Consequently, by using (4.3.8)
h ., h
Iff(y)Pnh(x ;3dy) —ff(y)Pt(x;dy) | =0 , as h=>0,

for any £ect(s). Application of the portmanteau theorem, see Billingsley
(1968) p.11, completes the proof. [a]

. =h
Define for all h€(0,h0] a process (Xt)tEO on D[0,») by
(4.3.11) X =X , t€[nh,nh+h) , néEN

THEOREM 4.3.7..Let for each Z= 0 assumption 2.5 be satisfied,with M

replaced by MZ, as well as the hypotheses of theovem 4.3.4 and the
conditions (4.3.8) and (4.3.9). Further , assume

h

(4.3.12) Xo =X0 s

(4.3.13) P ( (Xt) €Dl0,=) ) =1,

t20
and
(4.3.14) one of the following conditions holds:

(i) Condition (ii) of theorem A.3.5 .

(ii) Condition (ii) of theorem A.3.6 .

(iii) Conditions (ii) and (iii) of theorem A.3.7.
Then,

h

(4.3.15) &) = (X,)

t’t=0 isg % DI0») as,h>0 .

Proof. Immediately fromrelations (4.3.12) and (4.3.13) , lemma 4.3.6 and
the theorem A.3.5 , or A.3.6 or A.3.7 corresponding to the condition in
(4.3.14) which is satisfied .
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5. APPLICATIONS

5.1. JUMP PROCESSESS

5.1.1. CONTINUOUS TIME MODEL

A A detailed introduction and study of Markov jump processes can be
found in Breiman (1968) and Gihman and Skorohod (1969), (1975). Informally,
a Markov jump process satisfies the following description.

Given that at time-point t the state of the process is x,then the state
remains unchanged thereafter for an exponential time with parameter q(x);
hence,with probability [I - q(x)h] + 0(h2) the state will not change during
[t, t+h], where h is small,and with probability q(x)h + O(hz) a change of
that state, called a jump, will occur during this interval. Given that a
jump out of x occurs,then the state changes according to a transition
probability H(x;.); hence, H(x;B) is the probability that the jump brings

the state in set B.

To proceed formally let us consider the 3-tuple (S,q,H), where
S is a separable and complete metric space with Borel-field B ,
q : S* R 1is a measurable function, called jump rate, and
H: SxB~>[0,1] is a transition probability, called jump measure.

Throughout this subsection the following assumption is made.

ASSUMPTION 5.1.1.

(i) H(x;{x) = 0 for any x€S .

(ii) For some constant Q< and all x€S: 0=<q(x) <Q . o

THEOREM 5.1.2. There exists a unique semigroup of transition probabilities
{Ptl t =0} on S such that for all x€S, and BER:

G.LD [PysB) - 10T > q G HGGB) - 1,601,

as h->0, uniformly in all x€S and BEB.

PROOF Write a(x3;B) = q(x)H(x;B) and a(x) = q(x) for all x€S and B€B. Then
the conditions a) and b) on p.25 of Gihman and Skorohod (1975) are satis-
fied. Hence, the proof directly follows from theorem 5 on p.27 of this

reference. o
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REMARKS 5.1.3

1. Condition (i) of assumption 5.1.1 is not essential for theorem 5.1.2
nor the analysis of this subsection. This may be seen by using a trans-
formation as given on p.312 of Gihman and Skorohod (1969).

2. Expressions for the transition probabilities can be found on p.335 of
Bfeiman or p.364 of Gihman and Skorohod (1969). In this subsection
however, we make use of another expression given in proposition 5.1.5

below, which is more convenient for our purposes. u]

THEOREM 5.1.4. Let Z0 be a random element on S. Then there exists a unique
homogeneous Markov process, (Xt)t>()’ with transition probabilities
{Pt| t= 0} given by theorem 5.1.2 and such that

and
€D[0,=)) =1,

(i) XO = ZO’

() P (XD,

PROOF. For the existence and construction of such a process see theorem 4
on p.364 of Gihman ;nd Skorohod (1969) or theorem 15.37 together with
corollary 15.44 of Breiman (1968). Since the transition probabilities
determine the finite-dimensional distributions, see relation (0.2), the
uniqueness follows from theorem 14.5 of Billingsley (1968). u]

The process (Xt)tZ
(or pure) jump process (see Gihman and Skorohod (1969) p.312 or Breiman
(1968) p.328) corresponding to (S,q,H).

In the rest of this subsection, consider the unique collection of tran-

0 given by theorem 5.1.4 will be called a Markov

sition probabilities {Ptl t= 0} given by theorem 5.1.2.

PROPOSITION 5.1.5. Let the transition probability H from S into S be
defined by

(5.1.2) Hx;B) = [ - qéX)] 1,60 + Séfl H(x3;B) , x€S, BB,

where Q is the constant given by assumption 5.1.1. Further, define for
all néN transition probabilities " from S into S by

70 (x;B) = 1;(x) x€S, Bep.

1,2,...

(5.1.3)

1§

B 8y = [ A D (93) flxidy)  , n
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Then, for all t= 0, x€S, BER:

n

(tQ)
n

(5.1.4) P, (x;B) = yoLeQ) ttQ gney gy
n=0 *

PROOF.One can verify that the convergence relation (5.1.1) holds uniformly

in all x€S and B€B . Hence, theorem 5.1.2 completes the proof. o

In order to apply the results of section 2,we consider a bounding

funtion P which satisfies for some constant K< w:

(5.1.5) If u(y)H(.;dy)Hll = K.

REMARK 5.1.6 Since H(x;.) is a probability measure for any x€S it can be
shown that K= 1. If p(x) =1 for all x¢S then we can take: K = 1, o

LEMMA 5.1.7. Let p satisfy (5.1.5). Then assumption 2.5 is satisfied.

PROOF. From (5.1.5) it follows that
(5.1.6) ‘llf BOEC A, < &
Hence, by n-times iterating:
(5.1.7) If u(y)!_ln(.;dy)llLL = KN

Combination of (5.1.4) and (5.1.7) yields for t=<2Z:

(5.1.8)  NIf wP C3dpll = exp(zQR-11) o

In view of lemma 5.1.7 the results of section 2 can be adapted with
bounding function p satisfying (5.1.5). Therefore,recall relations (2.6),
(2.10) and (2.11) for th Bu,Di and Af.
td

LEMMA 5.1.8. (i) Di = Bg = 8"

(ii) For all geB™ and xes:

(5.1.9) Ag(x) = qx) [ [g(y) - g(x)] H(x;dy).



PROOF. Let geB". According to expression (5.1.4) for Ph:

oL . i
(5.1.10) T g) =] 9%— e[ gy BGiap ],

n=0

Further, from (5.1.2) and (5.1.5)

(5.1.11) Q[ g(y) H(xsdy) = qx) [[g(y) - g(x)] H(x;dy) + Qg(x)

and

(5.1.12)  |If [e( - gx)] B sapll = & D gl -
By using (5.1.7), (5.1.10), (5.1.11) and (5.1.12) we find that

(5.1.13) I [rg - g](-)h_] - q() [ [gly) - g()] H(.;dy)llu

converges to 0 as h tends to 0. This proves (i) and (ii) of the lemma .

5.1.2, APPROXIMATIONS

Take hofEQ_l and let {Phl h€(0,h0]} be a collection of one-step

transition probabilities defined by
(5.1.14)  P"(x;B) = hq(x) H(x3B) + [1 = ha() ]1,()

for all x€S, B€R and h:EhO. Let {C. [hG(O,hO]} be the corresponding

difference-method defined by (4.2.2) and Ah = [Ch - I]h—]. Then,for gGBu:

(5.1.15)  Ag() = q( [ [g(y) - gx)] H(xsdy) = Ag(x) ,X€S,h<h

LEMMA 5.1.9. The congistency relation (4.3.1) holds for any fes”,

PROOF. Immediately from (5.1.15).

LEMMA 5.1.10 The stability relation (4.3.2) ©s satisfied .

PROOF. Relation (5.1.5), with K= 1, yields

.1.16) [ fum Ph(.;dy)lluf(l + hQ[R-1]),

. h
Recall expression (4.2.3) for the collection {Pnhl n= 0,1,2,..,}.

0

.

37
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THEOREM 5.1.11. For any fest the expression
h
(5.1.17) [ £ B (3dy) = [£() P C3anll,
with n = [th_l] is convergent of order 0(h) uniformly in t<Z.
PROOF. In view of theofem 4.3.1, lemma 5.1.9 and lemma 5.1.10,it remains
to show that the order of convergence is 0(h). Therefore,we use relation

(3.17) of lemma 3.7 with Et = Tt and ¢ = £ together with expression (3.14).

Since thEBp' = DK for all t<2Z, expression (5.1.9) for A together with
the boundedness of q(:) by Q and relation (5.1.5) yield

(5.1.18) IIATsf - Athllus 2QK”Tsf - th”u‘
By using (3.13), Ath = TtAf and ”Ttg”uSM”g”“ if gEBp' with M=eZQ K- 1],
we find with 0=t <s<t+h <Z :
- < (am ZQ(K-1) ZQ(R-1)
(5.1.19) . IITSf thllu_ (s-t) e ‘ll Af”ushe ZQKIIfHu.

By combining (5.1.18) with (5.1.19) and using. (3.14) we obtain

1 | <ran2e2 ZQ(R-1)
A)thHu_.h4Q Ke | £ Hu.

(5.1.20) Il - TIn"
The proof is completed by using (5.1.15) and (5.1.20) in (3.17) and apply-

ing lemma 3.7.

REMARK 5.1.12. Note that (5.1.5) is satisfied with K = 1 if we take
w(x) = 1 for all x€S. In that case we have: ”f”u = |I£ll, and

BY = {f:S> R|f measurable and bounded } =:B.

By using (5.1.15) and (5.1.20) with K =1 in (3.19),it follows that

-1 <‘2
(s.1.21) (w7l - T IT ), = haQ Il

Hence, from the proof of the Lax-Richtmeyer theorem with constant K, = 1,

C
relation (5.1.19) with $=[th l]h and K = 1, and relation (5.1.21),we can

conclude that for all £€B and t=2Z:
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Expression (5.1.17),

(5.1.22) { A )
with W replaced by =,is bounded by: h{4zQ +2Ql £l - o

PROPOSITION 5.1.13. For all x€S, t=0 and with n =[th_1] the weak con-

vergence relation (4.3.5) for the transition probabilities is satisfied.

PROOF., Since Cu(S)C B" this follows from theorem 4.3.4 together with
lemma 5.1.9 and 5.1.10. o

Let us conclude this subsection by showing weak convergence of
discrete-time processes. Therefore, consider a Markov jump process
(Xt)tzo ﬁiven by theorem 5.1.4 and for any h:ShO a discrete-time Markov
process {Xﬁh |n=0,1,2...} as given by lemma 4.3.5.
Further, recall expression (4.3.11) for the process (iz)tE:O'
LEMMA 5.1.14. Suppose that
(1) q(x) Zs continuous in x, and
(ii) H(x;.) s weakly continuous in x.

Then relation (4.3.8) is satisfied for any Z>0.

PROOF. Expression (5.1.2) for H together with (i) and (ii) imply
(5.1.23) ff (y) H(x;dy) is continuous in x for any fECu(S).

Repeatedly applying (5.1.23) to expression (5.1.3) and making use of

expression (5.1.4) completes the proof. o

THEOREM 5.1.15. Let the conditions (i) and (ii) of lemma 5.1.14 be satis—

fied and assume: XE=X0 as h tends to 0. Then,

(5.1.24) & (x,)

e=0" &g o DI0,x) as h>0.

PROOF. We will apply theorem 4.3.7. First of all, note that Z> 0 has been
chosen arbitrarily. Henceby taking u(x) = 1 for all x€S in (5.1.5) and
using the lemmas 5.1.9 and 5.1.10 as well as ct(s)c B",we conclude that
for any Z> 0 assumption 2.5 as well as the hypotheses of theorem 4.3.4
are satisfied. Further, by virtue of lemma 5.1.14 relation (4.3.8) holds,

and clearly relation (4.3.9) is valid with p(x) = 1 for all x€S.
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Since also relation (4.3.12) and (4.3.13) are guaranteed, the proof
will be completed by verifying relation (4.3.14).

Therefore, we focus on condition (ii) of theorem A.3.6.

According to expression (5.1.14) for Ph:

(5.1.25)  PP(x;s-{x}) = hQ
for any x€S and h=h,. Consequently, for fixed &> 0:

0

(5.1.26) sup  sup Phh(x;S—{x}) < [Bh_l]hQ < 8Q.
nh<=56 x¢€§ n

This proves condition (ii) of theorem A.3.6 and thus completes the proof. o

5.2. M|M|« - QUEUE

5.2.1,CONTINUOUS-TIME MODEL

This subsection is concerned with a specific jump process {Xt|t2 0}
where X, denotes the number of customers in a so—called Znfinite-server-—
queue. Informally, this process is described as follows.

According to a Poisson process, say with parameter \, customers arrive

at a service facility. Each customer present at the facility is being
served with constant service-rate, say v. The arrival and service process
are assumed to be independent. Hence, the process satisfies the following
exponential structure:

Given that at time-point t the number of customers present is i, then the
waiting time up to the next arrival or service-completion, which we call
a Jump, has an exponential distribution with parameter (A+iv). Given that
a jump occurs,then with probability X(X+iv)_1 the state becomes (i+1) and
with probability iv(X+iv)—] it becomes (i-1).

Note that the above exponential description resembles that of subsection
5.1. In contrast,however, the jumprate (Miv) is not bounded uniformly

in i. Nevertheless,the study of (pure) jump processes given in Breiman

(1968) includes the above process.

Hence,in this subsection we consider the 3-tuple (N,\ ,v) where

N, the set of natural numbers,denotes the state space, A isa positive

constant, the arrival rate, and v is a positive constant,the service rate
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per customer . The following proposition presents transition probabilities

which correspond. to the above description .

PROPOSITION 5.2.1. Define for any 1€KW, BCN, and t=0:

. P(?:)(i;B) = 1) o MVt and for n = 1,2,...
(5.2.1) . '
P(n)(i;B) = f e'-(“lv)S [XP(n_l)(i+1;B)+ivP(n—])(i—l;B)] ds,
t g t-s t-s
and - '
(5.2.2) P _(i;B) =) p™ (i;p).
t t
n=0
Then {P tlt 20} Zs a semigroup of transition probabilities.

PROOF; One can show by induction on N that for any t,i,B the expression

N
z P(:)(i;B) is dominated by 1 and monotone increasing in N.
n=0

Consequently, the right hand-side of (5.2.2) is well-defined. By using
(5.2.1) and (5.2.2) one easily verifies the Chapman-Kolmogorov equation,

see relation (2.1), and proves that Pt is a probability. o

PROPOSITION 5.2.2. Let Z0 be a random element on S. Then there exists a

unique homogeneous Markov process (Xt) £>0 with transition probabilities
{Ptl t= 0} given by (5.2.1) and (5.2.2),such that

(1) XO = Z0

(ii) P ( (Xt)tz o € D[0,=) ) =1 .

PROOF., The existence and construction of the process is shown by theorem
15.37 of Breiman, provided the condition of proposition 15.43 of this

reference holds. This condition,however, .is satisfied since

z ()\+i\)+n\1)_1 = o for any i€N. As in the proof of theorem 5.1.4, the
n=0 )
uniqueness follows from theorem 14.5 of Billingsley (1968). o

In the rest of this subsection consider the semigroup {Ptl t>0}

given by (5.2.1) and (5.2.2),and the Markov process (Xt) given by

t=0
proposition 5.2.2. First,let us present some properties of the tranmsition

probabilities {Pt| t=>0}.

LEMMA 5.2.3. Let hy>0. Then for some constant C depending only on
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\ and v,we have for all h=h,, t=0:

(5.2.3) [n B (i3i+1) - A | = he , izo0,
-1 ) .2 ,
(5.2.4) |h P, (i3i-1) = iv| = i%hC , i=1,

' 1 .2 ,
(5.2.5) |h Ph(l; i-2,i-3,...0 )| = i"hC , 1iz2,
(5.2.6) P_(i;i+n) < 0 @', iazo.

t ’

PROOF. Consider i€ N and write

fhe"(“i")s A o= OWive) (hes) |

1]

(i) Eh(i;+1) = e

() By (is-1)
(i) 5, (132 +2) = [PAL/"%nae]ds = pPn®
o o]

[Piva) [fP78 (iv)de Tds = (i+1) %2
o o

(iv) B, (i35 -2)

IA

o
fhe—(X+1v)siv e—()\+1v—v)(h—s)dS _ ie—h(X+1v)[ehv
o

h25 3i2v

2h2 ,

~h(wiv) [ ~hv_

_.]]

-1
Voo,

i1,

(The interpretation of these expressions is the following: Given that

Xy = i then all during (0,h]:
Eh(i;+l) is the probability of one arrival only,

Eh(i;—l) is the probability of one service-completion only,

Eh(i;z +2) dominates the probability of at least 2 arrivals, and

Eh(i;f-Z) dominates the probability of at least 2 service-—completions.)

By using (5.2.2) it can be shown that

(5.2.7) ]Ph(i;i-l-]) - Eh(i;+l)|55h(i;z+2) , i=0,
(5.2.8) |Ph(i;i—l) - 5h(i;-1)]sf>h(i;s-2) , i=1,

Relation (5.2.7) together with (i) and (iii) yields (5.2.3).
Relation (5.2.8) together with (ii) and (iv) yields (5.2.4).
(5.2.5) is a direct consequence of (iv) and

(5.2.6) follows analoguously to (iii).

DEFINITION 5.2.4. For any p€N the bounding function up is defined by

by (1) = Ow+iv)P,

0
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LEMMA 5.2.5. For any p&¢N there exists a constant M(p) such that

(5.2.9) ] w_ () B G5l = M) ,  tsZ.
20 P "
J P
PROOF. By virtue of (5.2.6),relation (5.2.9) can be verified with

(5.2.100 M) =1+ ] 0@ a+al) P, o
n=0

COROLLARY 5.2.6. Assumption 2.5 is satisfied with p = p.p for any pEN. o

In view of corollary 5.2.6,the results of section 2 can be adapted
with bounding function p = up+2 and péN . Consider some fixed p€N .

In what follows below the constants M(p) and M(p+1) are given by (5.2.10).

n m
LEMMA 5.2.7 (i) B P ¢ DAP+2

W
(ii) For all g€B P and i€N :
(5.2.11) Ag(i) = Mg(i+1)- g(i)] + iv [g(i-1) -g(1)]
.
PROOF, Let g€B ° and write

T,g(i) = P, (i3i+1)g(i+1) + Ph(i;i;l)g(i—l) +

(5.2.12)
Do R Gsde@) + 1 R Giie(d) + (-] P (i3)ed).
j=i+2 j=<i-2 i
By using (5.2.6) it follows that
(5.2.13) ) P, (i3))8(j) =
jz i+2
2.2, v On)" . P 22 . P
(\“n )nZO YCTAL g ”up (Mive2v+nv)® = (Wh%) | g ””'p (M+iv+2v) "M(p).

With some calculation the relatioms (5.2.3), (5.2.4), (5.2.5), (5.2.12) and
(5.2.13) together with the fact that gEBu'p yield

(5.2.14) IHTg—didH”—(xbtﬂ>ma)]+ivkaﬂ)1c)hu
b “’p+2

is convergent of order O(h) as h tends to 0. This completes the proof. o
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5.2.2. APPROXIMATIONS

For a,b€R we write aAb = min (a,b).

Choose hoz 0 and let {Ph | h€(0,h.]} be a collection of one-step

transition probabilities on N defined by

1 - [hO+iv) A 1] s j=1

A

(5.2.15)  PP(iz§) = (hOw+iv) A 1] 5o

iv . .
— = i-1

MOwiv) A1l S 5 ]

for all i€N. Let {Ch | hE(O,ho}} be the corresponding difference-method

defined by (4.2.2) and Ah = [Ch— I] h_l. Then,

Agl) = [1AK Owin) '], .
(5.2.16) , i€N, geB P.
A lg@E+1) - g@i)] + iv [g@i-1) - gD

Further, recall expression (4.2.3) for the collection {P ]n =0,1,2...}.

h

nh

LEMMA 5.2.8. The consistency relation (4.3.1) holds with u.=up+2 for any
T

feBP.

u
PROOF. First consider some g€B P Comparing (5.2.16) with (5.2.11) gives

[Ag() - Ag(D)] = {LOwiv) An~'] = Owiv)}.
(5.2.17)
o 8+ - g(D)] + 2% [g(i-1) - g(D).

Hence, for ()\.+i\))>h-l and using |g(j)| = O+iv)P gllu for all j,we find
P
A g - ag() | Owiv)™ = [T Owin) ™2+ Owiv) 'L
(5.2.18)
[O*ivav)P+ 3O+ivP]] g ”u < 2h 4(1+ % YO+iv)P g -
P P
Since also |Ag(i) - Ag(i) | = 0 for (#iv)< b ',relation (5.2.18) yields
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V3P
y S p80+) el

(5.2.19) A -A) g |l
Ah‘ p+2 P

"
Next let £€B P, According to (5.2.9),
IrJ'P
< : <
(5.2.20) T f€B * and ”th”u < M(p) Hﬁ.l[u‘ , t<Z .

P p

By combination of (5.2.19) and (5.2.20),

(5.2.21) Il -a)T £l < nh8U+2)P M) £l , t=z .
t Y A [
p+2 P
By letting h tend to 0 in (5.2.21) the proof is completed. o
LEMMA 5.2.9. The stability relation (4.3.2) is satisfied with u = up+2.
PROOF. From expression (5.2.15) for Ph :
(5.2.22)  [ITw,,) "W, =
P up+2
. +2 e .. p*2
. A A+1v+y P 1y AFiv=y
P oA+ 55 GG s S 0 | S
_ . v\ p+2 . _ Y _\p¥2
1 + h|-O+iv) + A1+ X) + iv(l X+iv) | = 1+hn M,
’ o

n
THEOREM 5.2.10. For any £€B P the expression

(.2.23) |7 £ PP (i - T £G) B Cii
jélN nh j%N ¢ Mo+

with n = [th_l] s convergent of order 0(h) uniformly in t=Z.

PROOF. By virtue of theorem 4.3.1, lemma 5.2.8 and lemma 5.2.9 it remains
to verify the order of convergence O(h). Therefore, we will use relation
(3.17) of lemma 3.7 with E_=T_and ¢ = f where £€8™p , together with
expression (3.14).

"
First of all,note that relation (5.2.11)for A yields for any n€N and g¢€B n
E

(5.2.24) Il ag |l =4fgl .
Hn

un+1

Relations (5.2.24), (3.13) and (5.2.9) yield for O0<t<s=t+h=2Z:
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(5.2.25) [AT £ - AT _£|| = 4|t £ - T £ <
s t up+2 s t p‘p+]

.
4f llrafll | dssa(s—t) MGprDAEl = h 16 M(p+D ]
t Mo+l Ppe1 Y

Applying (5.2.25) to (3.14) and combining (3.14) with (5.2.21) shows

-1

- — - <
s, - &) T.f Hu " + [T, - 1]n A) T f ”up+2 =
(5.2.26) P
holEl, 80+ )P mp) + 163 (p+D)].
P
Using (5.2.26) in (3.17) and applying lemma 3.7 completes the proof. [a]

PROPOSITION 5.2.11. For all i€N, t<0 and with x = i, n = [th"] the weak

convergence relation (4.3.5) for the transition probabilities is satisfied.

PROOF. Immediately from theorem 5.2.10 and the fact that
{f : N>R | f bounded} ¢ B"P for péN.

Consider the Markov process (X )t> 0 given by prop031t10n 5.2.2,
as well as for all h“h0 the discrete-time processes {X oh |n = 0 1,2...}

given by lemma 4.3.5. Further, recall expression (4.3.11) for (X )t> 0

THEOREM 5.2.12. Suppose that X3=XO as h—+0, then

h

(5.2.27) (Xt)tz 0= (Xt)tz g on D[0,») as h—0.

PROOF. We will apply theorem 4.3.7. First note that Z>0 and p € N have
been chosen arbitrarily. Hence, by taking u = Ho and using the lemmas
5.2.5, 5.2.8 and 5.2.9 we conclude that assumption 2.5 as well as the
hypotheses of theorem 4.3.4 are satisfied for all Z> 0. Further, clearly
the conditions (4.3.8) and (4.3.9) hold. Since also the relatioms (4.3.12)
and (4.3.13) are guaranteed, the proof is completed by showing (4.3.14).
Therefore, we will verify the conditions (ii) and (iii) of theorem A.3.7.
For a compact set CC N with Q = max {i| i€C} we find for all h=h,:
(5.2.28)  sup PP(i;N-{i}) = sup {h(wiv) A1} = hOwQv).

i€C i€cC
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Consequently, for any 6§ >0 and all hEhO:
(5.2.29)  sup  sup PO (3N-{i}) = [6h ' TnOMQv) = 50wQ).
nh<§6 ie€C

This proves condition (ii) of theorem A.3.7.

To proceed,first note that Ph(i;j) does not exceed Mh for j = i+l

and is equal to O for j = i+2. Consequently, for any 1€N:

(5.2.30) P (X?lh > i+ £ for some nh = Z | Xg = i) <
-1 -1.¢ 1 /
Zh i/ Zh \Z
¢ ow” < Bl ow < 00
h _ ., oo s . h _ .
where PP (- XO = 1) denotes the conditional probability given that XO = i.

From (5.2.30) we conclude for all i=Q:

oz’

(5.2.31) P (}'(2 < Q+f for all t€[0,2] }xg =iz1 - 98

which converges to 1 as £+ uniformly in hEhO.
Hence, for any compact set C, say with Q = max {i | i¢€C}, and any n > 0,
one can find a compact set {0,1,..., Q+£} such that the left-hand side
of (5.2.31) is larger than 1 -7 uniformly in all i€C and h< ho. This

guarantees condition (iii) of theorem A.3.7 and thus finalizes the proof. D
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5.3. SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS (DIFFUSIONS)

5.3.1. CONTINUOUS-TIME MODEL

For an introduction, definitions, properties and techniques of
stochastic differential and integral equations we refer to Arnold (1975)
or Gihman and Skorohod (1972). In this subsection we frequently make use
of the latter reference. Further,we note that the process which will be
considered is also known as diffusion (process),

(see definition 2 on p.64 of Gihman and Skorohod (1972)).

With (wt)tZ 0

Gihman and Skorohod (1972) and a,b: R-+ R measurable functions, consider

denoting a Wiener process as defined on p.8 of
the stochastic differential equation:

(5.3.1) dnt = a(’r]t)dt + b(nt) dwt.

A random function (T]t)thZ is called a solution of (5.3.1) on [0,Z] if
it satisfies the conditions 1), 2) and 3) on p.33 of Gihman and Skorohod
(1972). Particularly,with probability one the solution must satisfy

the stochastic integral equation:

t t
(5.3.2) e = Mg +Oj a(ns)dg +0j b(ns)dwS , t=<2z.

The first integral is a random element,which,with probability ome, is

equal to the ordinary Lebesque integral. The second integral is a random
element, known as stochastic integral with respect to the Wiener measure,
as defined on p.15 of Gihman and Skorohod (1972). The existence and unique-
ness of a solution of (5.3.1) will be guaranteed by theorem 5.3.1 below,
under a Lipschitz condition on the coefficients a and b.

First, let us formally present the 4-tuple (R, W,a,b), where

R, the real line,is the state space, (W )

t’t>0
a is a measurable function from R into R,called drift function and

is a Wiener process,

b is a measurable function from R into R,called diffusion function.
Further, it is useful to recall the conventions (0.16) and (0.17) of the

introduction.



49

THEOREM 5.3.1. Let the following assumptions be satisfied:
(i) There exists a constant L such that for all x,y¢R:

(5.3.3) la(x) - a(y)| + |b(x) - b(y)|=L|x-y|.

(ii) Ny does not depend on (W) and E [no]2

< @,
t=0

Then there exists a solution (nt) of (5.3.1) satisfying:

t=2Z
(1ii) With probability one,the funtion m ¢ 18 continuous in t.

(iv) E[T]t]zf C for all t=<7Z and some constant C .

1 2 . . ,
If (T)t)tSz and (), -, are ?olut;ons of (5.3.1) satisfying
(iii) and (iv),then: P (nt =N for all t<2Z) = 1.

PROOF. With K := V2 max {L, | a(O)] + Ib(O) |} we obtain for all x,y€R:

la) - a@ | + |[b&) - b |= K[x-y]
(5.3.4)
a0 |2 + [5G0 |2 = K1

Hence, the proof is given by theorem 1 on p.40 of Gihman and Skorohod (1972).

o

Throughout this subsection let the Lipschitz relation (5.3.3) be
satisfied, so that we can use relation (5.3.4). According to theorem 5.3.1
for any x€R there exists a unique solution of (5.3.1) with T]O = X,

This solution is denoted by (T)t(x))t< Hence, we have

7
t t
(5.3.5) T]t(x) = x+f a(ﬂs(x))ds+0f b(‘f')s(x))dws , t=2Z.
0

PROPOSITION 5.3.2. We obtain a semigroup of transition probabilities
{Pt|tEZ} by defining for all t=<Z, x€R and BER:

(5.3.6) Pt(x;B) =P (‘r]t(x) € B)

PROOF. A direct consequence of theorem | on p.67 of Gihman and Skorohod (1972)

- a
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PROPOSITION 5.3.3. Let (nt) be a solution of (5.3.1) as given by
theorem 5.3.1. Then (nt)tSZ

tion probabilities {Ptltsz} defined by (5.3.6).

t=2
s a homogeneous Markov process with transi-—

PROOF. See theorem ! on p.67 of Gihman and Skorohod (1972). o

The following two lemmas present results which will be used frequently
without being mentioned explicitly. The first lemma concerns growth con-
ditions with respect to the time-parameter. The second shows Holder-type
inequalities for integrals with random functions as integrands. In doing
so, we assume that the measurability of the integrands as well as existence
of the integrals, in (5.3.9) as ordinary integrals with probability one

and in (5.3.10) as stochastic integrals, is guaranteed.

LEMMA 5.3.4. For any m€N there exists constants G(m), L(m), depending only on
m,Z and K such that for all x€Rand t=<1Z:

(5.3.7) Elﬂt(x)lm < (1+|X|m) etG(m)_
o
(5.3.8) ‘E['ﬂt(x)-x|m < (1+|le) t2 L(m) etGGm).

PROOF. By using theorem 4 on p.48 of Gihman and Skorohod (1972) with

Ny = % together with Schwartz' inequality. o

LEMMA 5.3.5. Let (fs)S<t be a random function. Then for any m= 1:

t t
(5.3.9) Elf £ as/™ = " [ E|f|™as.
S 0 S

t 2m m-1 t 2m
(5.3.10) E(f £ aw )™ = m(2n-1) [ E(E )™ ds.
0 S S 0 s

PROOF. Relation (5.3.9) follows from using Holder'sinequality to the
integral and next applying Fubini's theorem . Relation (5.3.10) is given
by theorem 6 on p.26 of Gihman and Skorohod (1972) . o

In order to present a result on the dependence of initial data for
solutions of stochastic differential equations,we need some further mota-

tion and a smoothness assumption on the functions a and b .
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NOTATION 5.3.6. For any m€N define the class of functions C3;m by

C3;m = {f:R~> RI for some constant Kf, all x€S and k = 0,1,2,3:
(5.3.11) dk dk .
E;k f(x) exists andlagk f(x)]:EKf(I+[x| ) } o

ASSUMPTION 5.3.7. For constant K and all x€S it holds that

k k
—;k a(x) and H%k b(x) exist, are continuous in x and
(5.3.12) k
% a0y | + s b)) | =K, k=1,2,3
dx dx - ? 2T o

In the rest of this subsection let assumption 5.3.7 be satisfied.

For f€C3;m let K_ denote the constant given by (5.3.11).

£
Further, C or Ci’ i=1,2,... always denotes a constant which depends only
on m,Z and K.
The following proposition is an extension of theorem ! on p.60 of Gihman

and Skorohod (1972) in that it shows polynomial bounds.

PROPOSITION 5.3.8. Let fECB;m and define for t>0 and all x€S:

= 33m -
gt(x) = Ef (T]t(x)). Then g.cC and th_ CKe .

PROOF. Since f€C3;m,it follows from (5.3.11) and (5.3.7) that

(5.3.13)  |E£(M ()] = KE U+, G0 ™ = 2%, ™ (14]x ™).
dk
Let us present the proof for E§k E f(ﬂt(x))only for k = 1. For k = 2,3,

it can be given analogously.
By virtue of theorem 1 on p.60 and its corollary on p.61 of Gihman and

Skorohod (1972), the existence is shown by

T EE,6)) = B[ (0,(0)(GE 1, G))], where
(5.3.14)
(a% nt(x))tz 0 is a random function satisfying:
d _ t , ;. d
T Ne® =1+ [ la't )] GEn ) ds
(5.3.15) 0

t
+ e )] G n )
0
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. d d . .
Since IEE-a(x)| + Iag-b(x)l < K relation (5.3.15) yields
d 2
(5.3.16) E (——dx T]t(x)) =

2

e t
30+k? [T E (G0 ) las + & [ EGEn_ ()%
0 0

Hence, the Gronwall-Bellman inequality, see for instance lemma 1 on p.4l

of Gihman and Skorohod (1972), implies

2
(5.3.17)  E (0,6’ 331+ DK e

Then, applying Schwartz' inequality to (5.3.14), wusing (5.3.17),
£'(y) < Kf(]+|y]m) and (5.3.7) yield

d 2,4 d 2,4
(5.3.18) IE IEf(nt(x))I S{ELE (GNP HE (G n, )7)*

I\

RC(1+x ™).

Let us proceed by analyzing the results of section 2 for solutions
of stochastic differential equations. Therefore, in the rest of this sub-
section let {Ptl t<Z} be the semigroup of transition probabilities given

by (5.3.6). Further, in this subsection let By be given as follows:

DEFINITION 5.3.9. For any méN the bounding function M is defined by
b (x) = (1+|x|™ for all x¢R.

LEMMA 5.3.10. Assumption 2.5 is satisfied with W = W, for any m&N .
PROOF. By using the growth relation (5.3.7) a

Let m€N be fixed. According to lemma 5.3.10 we can apply the results of

section 2 with bounding function {U = um+3.
3;m c Du m+3

LEMMA 5.3.11.(i) C A

3sm

(ii) For any ge¢C and x€R :

2
(5.3.19)  Ag(x) = a(x) é g (x) +‘§b2(x) ?1%2 g (x).



3;m

PROOF. Let g€C . By Taylor expansion we find

R@@)-g&)=Eg@m@»-g&)=

]2

2
(5.3.20) l B 5], 0-x] + 5 522 8601, )=

+gel ey Iy G-x]) Iy Go-x1%),

o —

where leh XI < 1. The three terms of the right hand side will be consi-
3
dered under (i), (ii) and (iii) below.

h
(i)  Since E [ b(n_(x))dW, = 0 it follows from (5.3.5) that
0

h
(5.3.21)  |E{l )=x] - haG)}| = |E [ la(n x)) - a(x)]ds] s
0

h
K [ E|n,)-x|ds = hVh c,(1+]x|).
0
b 2 h 2
(ii) since E[ [ b (aw 1" =E [ [b(n (x))]"ds
0 0

h
E [ b ) - b b0, ) +b)]ds
0

L}

hb? (x).

+

Schwartz' inequality implies

h
(5.3.22)  |E[ [ b av]? - i) | =
0

h h
(2 fE(ns(x)—x)zds]‘l’[Kz i E(2+(’qs(x))2)ds]%5hx/hC2(1+|x|2),
0 0
By using (5.3.5), (5.3.22) and Schwartz' inequality we find
2 2 2
(5.3.23) |E { I, x)-x]" - hb"(x)} = hh C,(1+[x|%) +
h ) h h
|E [ [ atn,x))ds]” + 2 E[ [ a(n (x))ds] [ [ b(n (x))aw ]|
0 0 0
2 2 M 2
= wh ¢, (1+[x]) + BK® [ E (1+(n (x))")ds +
0

h
20k [ [ B (v @) Das1H =
0

hvh C3(]+lx]2).
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(iii) Since gEC3;m and [eh | =1,we find
»X

A |Eg'" " (x+6 m (x)—x])l2 =

(5.3.24) h,x M =
2 2m 2 2m
(Kg) E(1+2|x|+|nh(x)|) sch(Kg) (1+ x|
Schwartz' inequality and (5.3.24) imply that
3

(5.3.25) [Elg"'" Gevoy  (y ()-2)) ][y G)=x]7] =
m+3

csKg{(1+lx|2m) n3(1+]x®3 < wh c 6K, 1+ x|

Finally, using that gEC3;m and combining (5.3.20), (5.3.21), (5.3.23) and

(5.3.25),0ne can show

2
|[T,g@-g ! - [aG) 5 gG+lb? (0 52 8| =

(5.3.26)
m+3

vh C,K (1+]x|
Relation (5.3.26) completes the proof if we let h tend to O. o

5.3.2. APPROXIMATIONS

Take h0>>0 and let {PhIhG(O,hO]} be a collection of one-step

transition probabilities defined by

x + a(x)h + b(x) Vh

[

for y

—
N =

(5.3.27) PP (s {yh) =l
x + a(x)h - b(x) Vh

1

5 for y
for all x€S and hEhO.
method defined by (4.2.2) and Ah [C I]h

Further, recall expression (4.2.3) for {Pnhln = 0,1,2...}.

Let {C |ne(o, h, 1} be the corresponding difference-

LEMMA 5.3.12. The consistency relation (4.3.1) holds with p=p 3 for any
3;m
fecC .

PROOF, First comsider gGCS;m. By Taylor expansion we obtain
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d 1.2, d2 -1
(5.3.28)  |AeG) - lat) g 8() + 5 b7() g2 e@]|=h

{

2
2 21 d
[a (x)h E-EEZ g(x)l +

I'_‘

g 8" kO [a(x)h+b (x)Vh]) [a(x)h+b ()R] +

N

|

¥

N

g (e, [aGh-b()Vh]) [aGh-b()Vh]® 1,

+
3em h,x
g€C™’ ,it is easily shown that relation (5.3.28) and expression (5.3.19)

for A yield

where ]9 [ <1, [6; x |S 1. Since | a(x)| + |b(x)| = K(1+|x|) and

- | <
(5.3.29) Il (a4 -Mg "“m+3_ \/hC]Kg.

Next,consider fECB;m. Then relation (5.3.29) together with proposition

5.3.8 guarantee for all t=Z :

(5.3.30) I (8,-8) T f ”u < \/hCsz.
m+3
By letting h tend to O in (5.3.30) the proof is concluded. o

LEMMA 5.3.13. The stability relation (4.3.2) 18 satisfied with p = boyge

PROOF. Write m = m+3. From expression (5.3.27) for Ph, Schwartz' inequali-
ty and la(x)| + [b(x)| = K(1+|x]) it follows that

(5.3.31) | fua(y) Ph(x;dy)l =

|1+ % [x+a(x)h4-b(x)Vh]m + %-[x+a(x)h-—b(x)Vh]m| <

1
2

Nl

1 +{ —;-[x+a(x)h+b(x)\/h]zg1 + ]26}

<

[x+a(x)h - b(x)Vh
a+|x/™ +hMC)

for some constant MC not depending on x,h. This proves (4.3.2) with p = Hoes

o
PROPOSITION 5.3.14. For any f€C3;m the expression
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(5.3.32) | [£(y P:h (-3dy) - [£(y) B C5dn)ll
. m+3

with n = [th_l] is convergent of order O(Vh) uniformly in t<Z.

PROOF. In view of theorem 4.3.1, lemma 5.3.12 and lemma 5.3.13 it remains
to show the order of convergence O(Vh). This follows from lemma 3.7, rela-
tions (3.17), (5.3.26), (5.3.30) and proposition 5.3.8. u]

In order to show weak convergence of the transition probabilities,
we give the following lemmas. Although the result of lemma 5.3.15 is
intuitively clear and the Weierstrass—theorem gives an analogous result
for bounded intervals, we could not find a proof in the literature.

Its proof is given in Appendix B.
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LEMMA 5.3.15. C is dense in C°(R) in supremum - norm. o

LEMMA 5.3.16. Relation (4.3.8) is satisfied for any Z>0.

PROOF, It is shown by remark 1 on p.61 of Gihman and Skorohod (1972) that

(5.3.33) E [n, (y+by) - nt(y)]2 < clay)?.
Relation (5.3.33) together with Chébyshev's inequality implies that nt(x)
is continuous in x in probability and thus in distribution.

The portmanteau theorem, see p.1l1 of Billingsley (1968),completes the proof.

u]

PROPOSITION 5.3.17. For any x€S and collection {Xh[hE(O,hO]} with
o x as h-+0, all t<Z and with n = [th_l] the weak convergence relation

(4.3.10) for the transition probabilities is satisfied.

PROOF. First note that m was assumed to be fixed but arbitrarily chosen.
Consider m = 0. Then lemma 5.3.12, 5.3.13 and 5.3.15 guarantee the
hypotheses of theorem 4.3.4 with p = Hy and G = 03;0.

Consequently, since also lemma 5.3.16 implies (4.3.8) and clearly (4.3.9)
is satisfied with p(x) = (1+|x|3), application of lemma 4.3.6 completes

the proof. o

Let us conclude this subsection by showing weak convergence of
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processes. Therefore,let (X )
®Rlpayz =
Further,for any h=h

£>0 be the process such that for any Z=0:

= (n )t<Z where (T] )t<Z is given by theorem 5.3.1.

consider a collection {R = 0,1,2,...}of identical

0 hln

and independent random elements with

: h h _ _ 1
(5.3.34) PR, =Vh) = P (Rnh = -Vh) =

oh , nNEN,

]

and let Xh be an initial random element independent of {R ]n =0,1,2...}.

0
Next, for any h= hO define a discrete—~time process {X n= 0,1,2...} by

oh |

h _ .h h h | h

(5.3.35) th+h = th+ a(th)h + b(th) Rnh . néEN ,

Then, it is not difficult to see that {Xh n =0,1,2,...} is a homogeneous
nh

Markov process with transition probabilities

{?" |n = 0,1,2,...} defined by (4.3.2) with P" given by (5.3.27).

Consequently, according to lemma 4.3.5 it equals the unique homogeneous

Markov process comstructed by (4.3.6).

The stochastic difference equation (5.3.35) can be seen as the dis-—
crete-time analogue of the stochastic differential equation (5.3.1).
More precisely, the following theorem shows that the solutions of (5.3.35)
weakly converge to that of (5.3.1) as h tends to O.

THEOREM 5.3.18. If x ~X_ as h>0and sup E |xg|3 < =, then

h<h0

0= (Xt)tzo on D[0,* as h-0.

0

(5.3.36) (&),
PROOF. We will apply theorem 4.3.7. First of all, let us repeat that
Z>0 and m are chosen arbitrarily. Hence, by taking p = p,3 and

G = CB;O,we conclude from lemmas 5.3.10, 5.3.12, 5.3.13 and 5.3.15 that
assumption 2.5 as well as the hypotheses of theorem 4.3.4 are satisfied
for all Z> 0.

Further, recall that lemma 5.3.15 implies (4.3.8) and U = u3 satisfies
(4.3.9). Relation (4.3.12) is guaranteed by assumption and relation
(4.3.13) is implied by theorem 5.3.1 since C[0,=) C D[0,«).
Consequently, theorem 4.3.7 completes the proof if we verify (4.3.14).

Therefore, we will focus on condition(ii) of theorem A3.5 and let
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= y. Then, for n< ¢,

h . . h
(th(y))nG]N denote the solution of (5.3.35) with Xo

h h 3
b X h'3 = f E lxl;h(y) - th(Y)I ng(dy)-

(5.3.37) E X, - X

Consequently, the conditions of the theorem together with lemma 5.3.19
given below yields,
3

. 3
® = ¢ (sh-nn)?

h
(5.3.38) E |th X

uniformly for all 0=nh<#h<Z, some constant CZ and all Z>0. This veri-

fies condition (ii) of theorem A.3.5. o

The following lemma, which was essential for the above proof,

can be seen as the discrete-time analogue of the growth relatiom (5.3.8).

LEMMA 5.3.19. For any Z> 0 there exists a constant M, depending only on

yA

Z and K such that for all h=h,,y€s and 0<nh=¢h=<2Z:
3

h h 3 3 2
(5.3.39) E [Xeh(y)—th(y)] < MZ(1+]y| )(¢h-nh)“,

PROOF. Let hSh0 and ye€S.
Similarly to (5.3.31) we obtain for any m€N , and jh=1Z

M
h m <h m Ci_m
3. E X, = = ... = .
(5.3.40) lih(y)[ (1+1'MC)1EIX(j_Dh | e "yl
To proceed, let us write: 7. = 'r]}.1 (y) and R, = R}.1 , JEN . From (5.3.35):
] jh 3 jh
3 £-1 3 @:1 3
(5.3.41) Efn,-n|> <8 E|}] a(m.h|”> +8E| ] bn.) R.|”.
£ n j=n J j=n 1773

By using Holder's inequality, |a(x)| = K(I1+|x|) and (5.3.40) we find

2-1 3
(5.3.42) El'z a(nj)h| <
j=n
2 41 3 3 3
E (¢h-nh)” ] ;a(nj)l h< (¢h-nh)~ C (1+|y]”)
j=n

In order to give a bound for the second term in the right-hand side of

(5.3.41), first use Holder's inequality to write
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3

£-1 A

3 el 4
(5.3.43) E|] @) RJT = [EC] b0y RDT]

j=n j=n
Next,we will proceed in analogy with p.385/386 of Gihman and Skorohod
(1969) as follows. First,by using

E (Rj)3 = E(Rj) =0, Rj is independent of ng for all i< j and
of Ri for all i< j, and relation (5.3.35) we find

£-1 4 e-1 4
EL[] b() R;IY = E 1 [btn,) BRIV +
(5.3.44) I=n =
e-1 j-1
e ][] by rI1% (b0 R;1
j=n i=n
From Schwartz' inequality, |b(x)| = K(1+|x|) and E (Rj)8 SENE
-1 s & 8 4.1 4
(5.3.45) E ) [bMm.) R = ] {E[bM.,)]I°n"}? = (¢h = nh)hC, (1+]y [")-
j=n J J j=n J

Again noting that Rj is independent of n;s i<j and Ri’ i<j, using
E (Rj)2 = h, and Schwartz' inequality
-1 -1
2 2 2
(5.3.46) E ] [] by R[] [R,1° =

j=n 1i=n

=1 =l .
E (U] bop RIP (6011 DR

IA

j=n i=n

21 -1 L B ,
¢ I EL] b RI%1 (D E[bm) I

j=n i=n j=n

-1
Since,according to (5.3.44),the expression E[ ) b(ni) Ri]4 is increasing

in j,the last term of (5.3.46) is bounded by =n
-1 4.1 Lo
(5.3.47) {(¢h-nh) E[ ] b, RI}H{(eh-nh) C (1+[y[)}?
i=n

Finally, from the relations (5.3.44) up to (5.3.47) one easily derives

' bl 4 2 h
(5.3.48) E[] b(n;) Rj] = (¢h-nh)” ¢, (1+|y]™).
J=n
The combination of (5.3.41), (5.3.42), (5.3.43) and (5.3.48) completes
the proof. o
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CHAPTER IT

CONTROLLED MARKOV PROCESSES; TIME-DISCRETIZATION

1. INTRODUCTION AND SUMMARY

Parallel to the preceding chapter,the present chapter is concerned
with applying the method of time-discretization to controlled Markov
processes. More precisely, given a continuous-time Markov process with
controlled generators,we study for h sufficiently small a discrete-time
Markov process at time-points {nh|n = 0,1,2,...} with controlled one-step
generators. The approximation of several functions associated with the con-
tinuous-time model is investigated by considering the corresponding functions

for the discrete-time model.

In this chapter we study time-discretization for controlled proces-
ses from an approximative (computational) point of view. Another approach
of applying time-discretization, which have appeared to be useful in the
literature, is to transpose results of discrete-time models to a continu-
ous—time model, Particularly,Van Der Duyn Schouten (1979) and Hordijk and
Van Der Duyn Schouten (1980), (1983a), (1983b), (1983c) have developed
this approach. Especially they have been succesful in transposing the
structure of optimal policies from discrete-time models to a continuous-
time model. They analyze the convergence of a time-discretization method
in a general framework of so—called Markov decision drift processes.

This framework allows generator as well as impulsive controls simultane-
ously and includes semi-Markov, Markov renewal as well as many other
jump—type models with deterministic evolutions (drifts) between the jumps.
However, their framework does not include diffusion type processes nor
does their approximation approach yield rates of convergence or bounds.
Actually,the impulsive control aspect makes it essentially more difficult

to obtain bounds of approximation. It is not considered in this monograph.
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Although the setting of this chapter is quite different from that of the
Markov decision drift processes as introduced by Hordijk and Van Der Duyn
Schouten (1980),there are strong relations and several of their techniques

have been used.

As further references with respect to time—discretization of con-
trolled stochastic processes,we like to mention without being exhaustive:
Whitt (1975), Kushner (1977), (1978), Kakumanu (1977), Nisio (1978),
Gihman and Skorohod (1979), Haussmann (1980) ,Bensoussan and Robin (1983)
and Christopeit (1983). For each of these references a brief discussion
and comparison with the current chapter is included in section 9. Below,

only some global considerations are presented.

Nisio (1978), Gihman and Skorohod (1979), Bensoussan and Robin (1983)
and Christopeit (1983) use methods of time-discretization which have in
common that the one-step generators are induced by one-step transition
probabilities of a continuous-time model but under a constant control
variable during the interval of discretization. Nisio (1978) as well as
Bensoussan and Robin (1983) are concerned with optimal control problems
associated with time homogeneous Markov semigroups. Nisio (1978) uses such
a method to show a unique semigroup representation for optimal stopping
functions. Bensoussan and Robin (1983) just study the convergence of opti-
mal cost functions related with continuous, stopping and impulsive control
problems. Gihman and Skorohod (1979) focus on a fairly general framework
of controlled stochastic processes.

Especially in view of their results on controlled Markov jump processes
as well as controlled stochastic differential equations, their book has
been a basic reference for our study.

Gihman and Skorohod (1979) apply time-discretization for several purposes,
such as to show the sufficiency of step—controls in a general setting and
to prove the optimality of a control for Markov jump processes.
Christopeit (1983) examines controlled diffusion processes and proves the
optimality of a control.

Particularly,Kushne: (1977), (1978) and Haussmann(1980) study for control-
led diffusion processes discrete-time approximations which can possibly
be obtained numerically and seem to allow for several modifications.

Kushner (1977), (1978) studies finite horizon-, impulsive- as well as
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average cost control problems. Haussmann (1980) gives a special result for

the finite horizon case.

Whitt (1975) and Kakumanu (1977) present results related with time-discre-
tization for the infinite horizon cost case of controlled Markov jump pro-
cesses. None of all the above mentioned references focuses on convergence

rates or bounds. As far as we know , the literature does not provide such
results nor a general approach to obtain them for controlled stochastic

processes.

This chapter concentrates on a general framework of time-discretiza-
tion for controlled Markov processes in order to approximate several func-—
tions of interest associated with the continuous-time model. The approxi-
mation analysis deals with rates of convergence or bounds with respect to
some appropriate norm and is developed for a wide class of time-discreti-
zations. Especially from a numerical point of view the latter fact might
be useful, although numerical analysis is not included in this monograph.
The approximation results are obtained by considering the discrete-time
approximation of time-difference equations. The derivation of these equa-
tions follows from the Markov property.

Since non-linear and time-dependent operators has to be taken into account,
we present an approximation lemma, to be seen as extension of the Lax-
Richtmeyer theorem. The concepts consistency and stability are redefined
in analogy with chapter I. Similarly to the Lax-Richtmeyer theorem,the
approximation lemma states that consistency together with stability im-
plies convergence. In addition, the order of convergence can be concluded
from the order of consistency.
Since ,however, in contrast with chapter I we consider time-difference in
stead of time-differential equations, the consistency will not be implied
by convergence of the discrete-time generators to the continuous—time
generator but requires also sufficient smoothness with respect to the time
parameter of the continuous—time function.
The approximation lemma yields the discrete—time approximation for

. transition probabilities,

. finite horizon costs functions, and

. finite horizon optimal cost functions
by verifying a corresponding and so-called

. smoothness assumption as well as a

. (strong)-consistency- and (strong)-stability relatiom.
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The possibility of choosing an appropriate norm enables us to deal with

unbounded functions and unbounded infinitesmal characteristics. The possi-
bility of obtaining rates of convergence can be helpful for concluding con-
vergence uniformly within a class of controls as well as for constructing a

nearly-optimal control.

As in chapter I much attention is paid to applying the method of
time-discretization to controlled processes of jump and diffusion type.
The discretizations given are just the controlled analogues of those pre-
sented in chapter I and can be seen as natural approximations. More advan-
ced discretizations will certainly be better from a computational point of
view. Nevertheless, these 'naive' discretizations must just be seen as il-
lustrations and as a first step to a more computational approach for con-

trolled jump and diffusion models.

The scope of this chapter is as follows. Section 2 starts with the
formel description of controlled Markov processes by means of introducing
the concepts of a control object and an admissible Markov control. There-
after,it presents the semigroup description for transition probabilities
and the three types of functions for which the approximation analysis will
be developed. Section 3 provides the time-difference equations for these
functions. Next, in analogy with the continuous-time model also the dis-
crete-time Markov process is given by means of introducing the concept
of an h-control object. The admissibility of a Markov control for the
discrete~time model is almost automatically fulfilled. Section 5 contains
the approximation lemma as well as an additional lemma from which consis-
tency and orders of convergence can be concluded. Section 6 applies the
general approximation results to controlled Markov processes. First, the
essential (strong)-consistency and (strong)-stability relations are col-
lected in subsection 6.2. Next,in a general setting,the convergence of dis-
crete-time approximations for each of the three types of functions is shown
succesively in the subsections 6.3, 6.4 and 6.5.

Application of the approximation-method is shown for controlled Markov jump
processes in section 7 and for controlled stochastic differentials equations
(diffusion processes) in section 8. Besides the approximation of the three
types of functions,both sections give,as special application, the construc-—
tion of nearly -optimal controls. Finally, section 9 contains a discus-

sion on related literature.
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2. CONTINUOUS-TIME CONTROLLED MARKOV PROCESSES

2.1 DESCRIPTION AND DEFINITIONS

This chapter is concerned with continuous-time controlled Markov

processes. Such a process satisfies the following informal description.

The state of a procéss is observed continuously. A control m pres-
cribes at any time-point t a decision rule m(t). Given that at a time-point
the current decision rule is §, then the evolution thereafter is infinitesi-
mally determined by an <nfinitesimal operator A6.

The infinitesimal operator itself is determined by infinitesimal characteris-
tics, such as jump rates, or drift and diffusion functions, which depend on
the actual state and decision rule.

A decision rule, say §, in turn prescribes for the actual (observed) state,
say x, a decision (controle variable) 5(x) which has to be chosen. Usually,
the infinitesimal characteristics depend on a decision rule through the
decision.

Costs are taken into account by means of a cost rate function depending on

the actual state and decision.

In order to give a formal presentation of continuous—time controlled

Markov processes,we introduce the concept of a control object.

DEFINITION 2.1.1. A control object is a 7-tuple
(S,F,A,u,DA,{AéiﬁéA},L) » where

(i) S is a separable complete metric space with Borel-field B.

(ii) T is a separable complete metric space with Borel-field B(T).
(iii) A denotes a set of Borel-measurable functions 6:S =+ T.

(iv) u denotes a bounding function, (cf. definition 2.2 of chapter I).
W) DA is a nonempty subset of B" (cf. notation 2.3 of chapter I).
(vi) For any 6€A: A5 is a linear operator from DA to ™

(vii) L:S xT->R is a Borel-measurable function.

Throughout this chapter the above characteristics are given the
following interpretation:
(1) S is the state space of the process.
(ii) T denotes a set of decisions. At each time-point a decision has to

be taken from T.
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(iii)

(iv)
()

vi):

(vii)

A presents a set of decision rules i.e.; if the current decision rule
is 8€A and the actual state is x, then the decision §(x)€I' is chosen.
i is a bounding function and determines the class B“.

DA is a domain on which for all decision rules 8€A the operator A6 is
defined.

A% indicates an infinitesimal operator under decision rule &€A.

L represents a cost-rate function i.e.; if during [t,t+At], where At
is small, the state remains constant, say x, and the decision chosen

is always Yy, then the costs incurred are AtL(x,Y). o

REMARKS 2.1.2.

1.

It is well-known that a domain DA of infinitesimal operators is very
important in view of the uniqueness of a corresponding process. For
instance, uniqueness can not be guaranteed if DA is too small. There-
fore, it may be noted that, as for the applications in chapter I,
also for the applications in this chapter, given in section 7 and 8,

the p-closure of D, contains Cu(S).

A

The approximation analysis which follows does not require further
specification on the set of decision rules A. As examples consider:
(i) A = {6.:S~T|5 measurable}.
(ii) For any x€S there exists a I'(xj ¢ T and

A={8:5->T |6 (x) €T'(x) for all x€S}.

However -, we only make the assumption (i) in parts of section 7 and 8.
o

For the rest of this chapter, with exception of the applications given

in section 7 and 8, consider a fixed control object. Although the defini-

tions, notations and results which follow depend on the control object un-

der consideration, this dependence will not be mentioned explicitly.

This fact must be kept in mind throughout this chapter.

A continuous—time controlled Markov process is determined by its

control object and a control. In the setting of this chapter we restrict

ourselves to non-randomized Markov controls defined below.

DEFINITION 2.1.3. A non-randomized Markov control is a function m:[0e) - A.

Let [1(M) denote the set of all non-randomized Markov controls. o
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Not for any non-randomized Markov control the existence and unique-
ness of a continuous—time Markov process is guaranteed. Therefore, we in-

troduce the notion of an admissible Markov control.

DEFINITION 2.1.4. A Markov control m€Il (M) is called admissible if the

following two conditions are fulfilled:

(1) There exists a unique collection of transition probabilities
us ) . [P
{Ps t| s,t >0} and this collection satisfies the Chapman-Kolmo-
5
gorov equation (see definition 0.3 )as well as for any

féDA and t=0:

s

(2.1.1) | t,t+h

(] £R" L (sdy) - £ - zsf‘(t)f<->uu 50 ashoo.

(ii) For some initial random element Z0 there exists a unique Markov pro-

v . o, . ea e ut
cess {th t=>0} with transition probabilities {PS t| s,t> 0}
t]

and such that: Xg = ZO and P ((X:) €D[0,=))

t=0 1. o

For m€II(M) an admissible control the Markov process {X1|.t2 0} is called

a continuous-time controlled Markov process.

REMARK 2.1.5. In the above definition of an admissible control the unique-
ness is just stated and does not necessarily result only from the additio-
nal requirements. For instance, the uniqueness of a semigroup of transi-
tion probabilities is not guaranteed only by (2.1.1). In fact we need im-
plicit conditions on the control object, especially with respect to the
operators I and the domain DA’ and on the control w which must guarantee
the existence and uniqueness.

For the applications given in section 7 and 8 the admissibility of controls,
i.e.; the existence and uniqueness of transition probabilities and a cor-

responding Markov process, will be verified. o

From now on let Z> 0 be fixed. We also &all a control n eI(M)

admissible if the conditions of definition2.1.4 are satisfied only on the

finite time interval [0,Z].

DEFINITION 2.1.6. Let IT(AB) be the set of admissible Markov controls such

that any m€llI(AB) satisfies for some bounding constant M
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(2.1.2) I wey) 2] (Gl = M LS, t<Z. o

In the rest of this chapter let for w€II(AB) :{P: tl s,t <Z} denote
E]
the unique collection of transition probabilities given by definition 2.1.4
and M" the bounding constant given by (2.1.2).

Further, we make use of the following notational conventions:

NOTATION 2.1.7. If {f_|t€[0,2]} is a p-bounded family in B", such that
for any x€S: ft(x) is Lebesque integrable in t€[0,Z],

then for t=<Z we write :

Z
8, = f £ ds , if for all x€S:
t
(2.1.3) 7
gt(x) = f ﬁéx)ds, as Lebesque integral.

t

In particular,conclude that {gtl t€[0,2]} is a p-bounded subset of BY. o

NOTATION 2.1.8. For 6€A : Ls(x) = L(x,6()) ,XES .
For m€TI(M),t>0 and n(t)=6 : L:(x) = La(x) ,X€S . o

(t)

. . . 1T
REMARK 2.1.9. 1In our setting we consider a cost-rate function L

m(t)

and an operator A which depend on the actual time parameter t

only through tke current cdecision rule w{(t). It may be clear to the
reader, however, that the analysis of this monograph can simply be
extended by allowing an additional and explicit time dependence as

m(t n(t
L (t) and A ® under current decision rule m(t) at time-point t.

Such an extension is not included for notational convenience.
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2.2 SEMIGROUP DESCRIPTION

Let m€[T(AB). Then for any s,t<Z relation (2.1.2) justifies the
definition of an operator: Tz ¢’ B Bt given by

(2.2.1) T:’tf(x) = [£(@y) Pz’t(x;dy) ,  x€S.

Moreover, since the transition probabilities satisfy the Chapman-Kolmogo-
rov relation (see (0.1)),the proof of the following lemma can be given in

analogy with that of lemma 2.6 of chapter I.

LEMMA 2.1.1. The collection {TZ ¢ | s,t=2} s a semigroup of linear ope-
b
rators on B such that for any feB":

u v R -
(2.2.2) Ts’thB 3 Ts,sf £ , s<t=<2Z.
uf _ uf
(2.2.3) Ts,tf - Ts,e (Te,tf) , ss<6sts<Z
14 m
(2.2.4) llis’tflluslifIIHM , Ss<t<Z. 5

REMARK 2.1.2. Since the semigroup {TZ tl s,t >0} is inhomogeneous in the
time -parameter ,the results of section’Z chapter I can not be transferred
directly. Particularly, several additional smoothness conditions with re-—
spect to the time parameter have to be made in order to show that the
semigroup corresponds to unique solutions of time-differential equations
or equivalently to a properly-posed initial value problem.

In this chapter, however, we prefer to deal with time-difference equations
and we give smoothness conditions later on for direct application to the

approximation analysis. o
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2.3 FUNCTIONS OF INTEREST

This subsection presents the three types of functions for which the
method of discrete-time approximation will be examined. In order to present
these functions as well as for purposes in subsequent sections, some assump-
tions are included. The three types of functions and the corresponding assump-

tioﬁs are given below in §1 ,§2 and §3 respectively.
§1.  EXPECTATION OF F § FIXED CONTROL

Let welI(AB) and £€D,. For all t=Z and x€S consider the expectation
of f induced by P! _(x;-):
t,Z

(2.3.1) Tz,zf(x) = [£(y) P:’Z(x;dy).

ASSUMPTION 2.3.1.

.. Al
(i) {Tt’zf | tE[O,Z]}CDA.

Giy {a"(®) T: L | £ €[0,2]} is p-bounded. : o

§2. FINITE HORIZON COST FUNCTION ; FIXED CONTROL
Let m€II(AB) and suppose that the following assumption holds.

ASSUMPTION 2.3.2. For any t=<Z the function T: s Ln(s) is p—continuous

and p- bounded in s€[t,Z]. o

The finite horizon cost function V:,thZ, is defined by

i z b m(s)
(2.3.2) v, = [T L ds.
t t t,s

i . .
The value Vt(x) represents the expected total costs from the time-point

t up to Z given that the state at time-point t is x .

ASSUMPTION 2.3.3.

. v
(1) {v, | tefo,z]} cp, .

(ii) {Aﬁ(t) V: | t€[0,2]} is p-bounded. )
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§3. FINITE HORIZON OPTIMAL COST FUNCTION

ASSUMPTION 2.3.4. There exists an operator J: DA—>Bu such that

(2.3.3) JE(x) = inf 12@x) + A% ()]
€A

for all fEDA and x€S. O

Note that this assumption requires that the right hand side of (2.3.3)

exists and is finite for all f€D, and x€S. Suppose that assumption 2.3.4

A
is satisfied and consider:

ASSUMPTION 2.3.5. There exists a unique collection {¢t [tE[O,Z]}CIDA with
{J(¢t) | t€[0,2]} p~ bounded and satisfying the finite horizon continuous-

time optimality equation:

z
¢t = | J(@,) ds , t<Z.
(2.3.4) t

¢t, t<Z, is called a finite horizon optimal cost function.
Note that (2.3.4) requires that for any x€S the function J(¢S)(x) is

Lebesque integrable in s.

REMARK 2,3.6. It is well-known that for jump- and diffusion-type applica-
tions the value ¢t(x) can be interpreted as the optimal ('minimal’) ex-—
pected total costs from time-point t up to Z given that the state at time-
point t is x; where for t>0 the 'minimum' is taken over a wide class of
Markov controls and for t = 0 also history dependent controls can be

taken into account. (cf. Yushkevich (1980), Fleming and Rishel (1975)). o

REMARK 2.3.7. By combining (2.3.1) and (2.3.2) one can also consider a
finite horizon cost function with a terminal cost function, say f,

at time-point Z. Correspondingly, 0 can be replaced by f in (2.3.4). o
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3. TIME-DIFFERENCE EQUATIONS

This chapfer is concerned with the discrete-time approximation for
each of the functions given by (2.3.1), (2.3.2) and (2.3.4).
In chapter I we dealt with discrete-time approximations for so-called
initial value problems or equivalently for functions satisfying a time-
differential equation.
In order to proceed in analogy with chapter I,the functions to be approxi-
mated will be presented by time-evolution equations. In the setting of this
chapter,however, it is convenient to give such equations as time—difference

in stead of time-differential equationms.

The time-difference equations presented are direct consequences of
the Markov- or equivalently semigroup property (2.2.3),respectively the
integral representation (2.3.4). Moreover, we let the form of these equa-
tions correspond to time-difference equations which are given in section 4
for discrete-time controlled Markov processes. This can be seen by compa-
ring (3.1.3) with (4.2.3), (3.2.3) with (4.2.6) and (3.3.2) with (4.2.9).
Since also the structure of all these equations is one and the same, we
are able to present one approximation lemma in section 5 which can be

applied for each of the functions of interest.
Let h>0 and t=<Z such that t+h=<2Z.

3.1, TRANSITION PROBABILITIES

Let n€ll(AB), fEDA and suppose that assumption 2.3.1 holds. Accor-

ding to the semigroup property (2.2.3) we can write

n

(3.1.1) Tt,zf = Tt,t+h (Tt+h,zf)'
Hence, by defining

n - T 71 "(t) u
G.1.2) R (T,E,h) = ([T (=11 =AY T o f

relation (3.1.1) can be rewritten as

Ul T _ o am(E)
(3.1.3) T _f£-T f = hA (Tt+h’z

m
t,Z t+h,Z £) + R (T,£,h).
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Let m€II(AB) and suppose that the assumptions 2.3.2 and 2.3.3 hold.

By virtue of the semigroup property (2.2.3) and the fact that T

linear and bounded operator on Bu, we can write

"o n o _m(s) T !
(3.2.1) Ve -tf T g b ds T g (Vo).
Hence, by defining
t+h
R (V,h) = ([ Ty 1" ge - n" B 4
Ed
(3.2.2) t
ul a7 am(E)y T
([Tt,t+h I]-hA ) Vien

relation (3.2.1) can be rewritten as

(3.2.3)  Vi-vl_ = AL NS I Rl (V,h).

t+h t+h

3.3 FINITE HORIZON OPTIMAL COST FUNCTION

m is a
t,t+h

Suppose that the assumptions 2.3.4 and 2.3.5 hold. Define

t+h
(3.3.1)  R.(@,h) = tf J(@)ds -3, ).

Then, the optimality equation (2.3.4) becomes

(3.3.2) 1) -.¢t+h = hJ(@

. ) + R_(@,h).

t+h
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4, DISCRETE-TIME CONTROLLED MARKOV PROCESSES
4.1, DESCRIPTION AND DEFINITIONS.

Let h>0. A discrete-time controlled Markov process at time-points

{oh |n= 0,1,2,...} can be briefly described as follows.

At each of the time-points the state of a process is observed. A
control m prescribes for any time-point nh a decision rule w(nh).
If at a time-point nh the observed state is x and the decision rule is &,
then the state at time-point nh+h is determined according to a one-step
transition probability Pg(x;.).
Consequently, on a finite time interval [0,Z] a discrete time controlled
Markov process is completely determined by a finite number of decision
rules and one-step transition probabilities.
Further, at each time-point the current decision rule ,say &, prescribes
for the observed state, say x, dectsion 8(x) which has to be chosen. If
the observed state is x and decision a is chosen,then a one-step cost

hL(x,a) is incurred.

In contrast with a continuous—time controlled Markov process,the
existence and uniqueness of a discrete-time controlled Markov process can
be proven constructively. This will be shown below. First let us give the

necessary notation and definitions.

DEFINITION 4.1.1. An h-control object is a 7-tuple
(S,F,A,u,h,{Pgl 5€A}, L), where

(1) S,I',A and P are as defined in section 2.

(ii) h>0 denotes the step size of the process i.e.; the distance between
the equidistant time-points at which the process is generated.

(iii) For any 8€A: Pi: SxB—+ R 1is a transition probability, and can be
interpreted as the one-step transition probability under current
decision rule §.

(iv) L: SxI'+ R is the measurable function defined in section 2, but here

we let hL represent a one-step cost function.

In the rest of this section,consider a fixed h-control object
8
(S,F,A,u,h,{PhI 8€A}, L).
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DEFINITION 4.1.2. A non-randomized h-Markov control is a sequence of deci-
sions rules (w(0), m(h), m(2h),..., w(nh),...) such that for all
né€N : m(nh)€A.

Let Hh(M) denote the set of all non-randomized h-Markov controls.

The following lemma, which may be seen in contrast with definition 2.1.4,
guarantees the existence and uniqueness of transition probabilities and a

Markov process for any T!EHh(M).

LEMMA 4.1.3. Let m = (0(0), w(h), W(2h),..., w(ah),...) Q). Then:
(i) There exists a unique collection of transition probabilities
{Pl;.1 a | =n;3;i,n€N} such that for any j€N, x€S and BER:

£

h

s { Pj’j(x;B) = lB(x) , and for n=j:
o h IR '7¢'S I
\ Pj,n+l(X’B) = f 2 (z3B) Pj’n(x,dz)

(ii) For any random element Zg on S there exists a unique Markov process
h | . h_.h
X, |n=0,1,2,...} with X,=2,

{Pjh,nh | 3,n€N} where Pjh,nh=P?,n for all j=n; j,n€N.

and transition probabilities

PROOF.
(i) Directly by construction (4.1.1).
(ii) According to the theorem of Ionescu-Tulcea (see Neveu (1964) p.145)

n=0,1,2,...} such that

there exists a unique random process {X};h|

for any n€N and BO’BI""’BnH €B:

h _ h
P (XOEBO) = P (ZOEBO) , and

h h

h
(4.1.2) P (X € B, Xy €By,.. Koy €B L) =

m(nh),
fBoxle...xBnPh (xn’ Bn+1) dPp (xo,xl,...,xn).

3

By construction (4.1.1) of the transition probabilities {PI;. 0 Ian;j,nGN}
’

we have for all j={¢=n, x€S and B€B:

hoomy = (P2 (2:B) PR (x:
(4.1.3) P ’n(x,B) = IPB,n(z,B) Pj’e(x,dz) .
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Consequently, the Chapman-Kolmogorov equation is satisfied Hence, from

(4.1.1), (4.1.2) and (4.1.3) we conclude that {X In =0,1,2,...} is a

Markov process with transition probabllltles{PJ ] J,nEEJ} given by
s

(4.1.1).

REMARKS 4.1.4.

1.

Note that the systems (4.1.1) and (4.1.2) give a recursive contruc-

tion of the transition probabilities and the Markov process.

In view of lemma 4.1.3 any control n(Hh(M) may be called admissi-

ble for the h-control object.

In order to avoid too much notational complexity we have omitted
to indicate the control as an index if we consider a discrete-time
controlled Markov process. It will always be made clear in advance

which control is under consideration.

In accordance with lemma 4.1.3,let for ﬂﬂTh(M) the collection
{ IJ,rlE N} ,defined by (4.1.1),denote the transition probabili-

3
ties of the process {X =0,1,2,...}.

h|“
It may be remarked that the step-size h is indicated by a subindex
for the collection {P | 5€A} given above as well as for the collec-
tlons{Th] 8€A} and{Ah |6€A} defined below.

For all other symbols,h will be indicated as a superindex.
DEFINITION 4.1.5. Let §5€A and assume that
-8

G.1.8) e By Gl < =
Then,let Tﬁ: B" > 8" be defined by
4.1.5)  1o8() = [£(y) PO(x;dy) m

e h y) Fp sy » X€5 , fe€B".

. &, ph, g
Further ,define the operator Ah :B"=>B" by
<} 5 -1

(4.1.6) Ah -[Th Il h o,
which we call the one-step generator under decision rule 6.



77

DEFINITION 4.1.6. Let Hh(AB) be the set of controls ﬁEHh(M) such that any

ﬂEHh(AB) satisfies for some constant Mh:

h .
(4.1.7) I [ u) P2 Csapll = ™ , j.m =g o
jon "

Then for nEHh(AB) and j,n€N we can define an operator T? 0t : S L by

(4.1.8) T?,nf(x) = [£(y) P?’n(x;dy) , Vxes,

and according to (4.1.8) we find

h

< h =
(4.1.9) HTJ.,an =M IIfHLL

"

Further, since (4.1.7) is satisfied for any j€N and with n = j+1,it fol-
lows from (4.1.1) that relation (4.1.4) is valid for any &€

{m(0), w(h), m(2h),..., "(nh),...} € A. Hence, the notations (4.1.5) and
(4.1.6) are justified if we consider ﬁGTh(AB).

4.2, FUNCTIONS OF INTEREST.

This subsection presents the discrete-time analogues of the three
types of functions,which for continuous-time processes are defined by
(2.3.1), (2.3.2) and (2.3.4).

In view of the approximation analysis which will follow,we also present
one-step recursion relations: see (4.2.2), (4.2.5) and (4.2.8). These re-
lations show that the discrete-time functions can be computed recursively.
In addition, the relations will be rewritten as time-difference equations
in order to illustrate the correspondence with the time-difference equa-

tions (3.1.3), (3.2.3) and (3.3.2) for the continuous-time functionms.

The three functions of interest and corresponding relations are

given below in §1., §2 and §3 respectively. Let £ = [Zh_l].

e

1. EXPECTATION OF F; FIXED CONTROL

Let nEHh(AB) and £eB"(S). For any j< £ and x€S consider the

expectation of £ induced by the transition probability P? p(x;.):
v
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h h
(4.2.1) TLef(@ = [f(y) %’wxﬁyL

By virtue of (4.1.1) it can be shown analogously to lemma 2.6 of chapter I

that for any £eB" and j<b:

(4.2.2) T. f).

h w(jh) . h
F=T T,
it h ( h|

+1,¢

Further, by using (4.1.6) and (4.2.2) we easily obtain

h _ _ . h _ 1,7 (3h) b
(4.2.3) Ty of = Tiap of = bAL T (ToL, 0.
§2.  FINITE HORIZON COST FUNCTION; FIXED CONTROL

Let ﬁEHh(AB) and suppose that the following assumption is satisfied:

ASSUMPTION 4.2.1. {LTU™) |5 <p3 c B, o

The finite horizon cost function V? is defined by

2-1
- h m (nh)
(4.2.4) v by T o @ )h

n=j

Since assumption 4.2.1 is satisfied it follows from (4.2.2) and (4.2.4)

that the collection of cost functions {V?| j=< ¢} satisfies the system:

h -

Ve =0
(4.2.5)
h _ . m(jh) m(jh) ,.h .
Vi = hL PO, 5t

Note that (4.2.5) can be solved recursively.

Further, by using (4.1.6) and (4.2.5) we easily find

h _oh _ m(jh) m(jh) ,.;h
(4.2.6) vj vj+1 h[L + Ah (Vj+1)]‘

§3. FINITE HORIZON OPTIMAL COST FUNCTION

NOTATION 4.2.2. Consider a collection of functions {g5|5€A} cs'.
The function gO: S+ RU {-=} given by

g2(x) = inf [gPx)] , x€S, will be denoted by: inf [g0]. o
5€A 5€A
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ASSUMPTION 4.2.3. For some subset FC BY with 0¢F, and all f€F:

(4.2.7) inf (1% +10f] €¥. o
S€A

Let assumption 4.2.3 be satisfied.

Then, there exists a unique collection {¢?| j<4£}cCF

satisfying the finite horizon discrete-time optimality equation :

(4.2.8)

o = inf [hLG + T6(¢}.1 )] s i<t
1 e R+l

J¢2=5
l

Note that (4.2.8) can be solved recursively. Further, by using (4.1.6) and
(4.2.8) we easily find

h h . 5 .5,h
(4-2-9) ¢j = ¢j+] = gzih[L + Ah(¢j+])}-
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5. APPROXIMATION LEMMA

In analogy with section 3 of chapter I, this section is concerned
with the convergence of time-difference methods and therefore contains an
approximation lemma.

This lemma can be seen as a partial extension of the standard Lax-Richt-
meyer theorem in that it allows non-linear and time-inhomogeneous methods.
Such extensions are well-known in the literature on numerical analysis,
see for instance Ansorge and Hass (1970). The approximation lemma presen-—
ted in this section,however,is given in a form which is more suitable for
our purposes. Therefore,it concerns time-difference equations in stead of
properly-posed initial value problems. In view of the time-difference
relation (3.1.3), (3.2.3) and (3.3.2), these equations are given as

backwards time-evolution equations.

In analogy with chapter I we redefine the essential concepts of
consgistency and stabiZity‘and the approximation lemma of this chapter also
states that comsistency together with stability implies convergence.

Especially for direct application to the time-difference equations
(3.1.3), (3.2.3) and (3.3.2) we also include a more specific lemma. This

lemma concerns consistency and orders of convergence.

In this section let B denote a Banach space endowed with norm |[.]|.

Further, let h,>0 be fixed and as before write ¢ = [le_]].

0

DEFINITION 5.1. Let {E? | jh=2, jEN, he(0,h ]} be a family of operators

E?: B—-+B and let u¢B. Then we have a properly-posed time-difference

problem if there exists a family {U, |t€[0,2]} ¢B such that for all hsh:
5.1) u,, =B} U, ) j<t U, =u
jh j jh+h’ ’ Z i
and Ut is strongly continuous in t€[0,Z].
NOTATION: P(B,Z,E,u) denotes this problem.
The collection {Ut|t€[0,Z]}is called the solution of P(B,Z,E,u). o

Note that,since (5.1) must be satisfied for any hE(O,ho] there can only
exist a unique family {Ut | t€[0,2]}. Further, it is emphasized that the

operators E? can be non-linear.
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DEFINITION 5.2. Let P(B,Z,E,u) be a properly-posed time-difference problem
and {Ut | t=2} its solution.

(i) A family of operators M) = {C? | jh< 2, jEN, hE(O,hO]} with
C}.1 :B>B, jh<2Z, is called a difference-method if for some con-

J
stant K: ”C?c I<Klle|]l for all jh<Z and c€B.

(ii) M.D is called consistent if

1

T h -
ICy Wipen) ~ By Wipyplin

(5.2)

convergences to 0 uniformly in j <4 as h—0.

(iii) MD is called stable if for constants K?,with j< ¥ and hE(O,hO] yand
for some constant KC the following conditions are satisfied:
h h h
HCj(c]) €y (el =K, lley = cll
(5.3)
for all ¢, c,€B, j< £ and h€(0,h0],
and
o o h
n [K.] =K
f=n ] C
(5.4) ]
for all n<m< £ and hE(O,hO].
(iv) M) is called convergent if by defining for all hsh('):
h h _ h _h h h .
(5.5) Ue—u, Uj—Cj Cj+l"' Cg‘_1 (UB) , J<¢?,
we obtain
Ilo? - I
n t
(5.6)
with |nh-t|<h converges to O uniformly in t<Z as h-0. o

These definitions enable us to present the main approximation lemma.

LEMMA 5.3. (APPROXIMATION LEMMA)
Let My be a difference-method for P(B,Z,E,u).
Then M is convergent if it is consistent and stable.

PROOF. Let M) be consistent for u and stable. For all h€(0,h.] write

0



83

h _ - <
J 6]. =T Ujh s J-—g >
(5.7) l
h _ h _.h .

According to the relations (5.1) and (5.5) we have

(5.8) 5? =ct @l V-cR

\ ) +
i i+ j ¢

(Ujh+h i’

Consequently, relation (5.3) directly implies

h h .h h
5.9 5. I =K. ||5. + e,
(5.9) I 1= & st I+ 1 .
By using this inequality for j=n,n+l,...,f-1 and applying the stability
condition (5.4) we conclude that
£-1

h h h
(5.10)  llspl=kolisyl +lehll+ K, T llel]
j=n+l

Further, by virtue of the continuity condition of definition 5.1:

h
(5.11) ||53|| =|u —U5h||->0 , as h-0.

Z

And the consistency condition (5.2) yields that uniformly in j<?¢ :
h -1

(5.12) ”sj Ih ">o0 , as h—>0,

Combination of (5.10), (5.11) and (5.12) shows that uniformly in n<2£:
h

(5.13) Hﬁnll - 0 , as h»0.

Finally, the proof is completed by writingwith |nh-t|<h.

.4 ful-u l =l i+ lu_, - vl :

and using (5.13) together with the continuity condition of definition 5.1.

o

In order to apply the above approximation lemma to time-difference

problems corresponding to the equations (3.1.3), (3.2.3) and (3.3.2),1let
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us consider the following assumption.

ASSUMPTION 5.4. Let DB, {U, | t€l0,2]}cD ,
{At | t€[0,2]} a family of operators A :D>B, t<Z, and
{r_(h) | t+h=z, t€lo,z], hE(O,hO]}CB such that for all h=hg:

(5.15) U -U,, =hA (U

¢ e+h )+Rt(h) , t+h=2Z ,

t+h
. _ . . -
and At(Ut+h) is ||.|l-bounded uniformly in t+h<2Z.

Next,consider a difference-method M.D = {C?Ijhi Z, jEN, hE(O,hO]}
and define for all jh<Z an operator A? :B->B by

(5.16) A = P -1t
J J

LEMMA 5.5. Let assmuption 5.4 be satisfied and suppose that
IR, (0 [0~

(5.17) {

converges to 0 uniformly in t<Z as h—0.

Then {Ut | t€l0,2]} <s the solution of a properly-posed time-difference
problem P(B,Z,E,u) with u = UZ and for all c€B, jh+h=2Z:

h -
(5.18) Ej (c) = [I+hAjh](c) + th(h).
Further, we have:
(i) MD 18 consistent if
h
(5.19)

converges to 0 uniformly in jh+h=<Z as h—0.

(ii) Let M be stable, p=<1 and suppose that

h -1
”Aj (Ujh"'h) - Ajh (Ujh'l'h)” + ”th(h)”h
(5.20)

s convergent of order 0(hP) untformly in jh+h=<1Z,



85

Then,

[ lwa-v,l <
(5.21) l

with n= [th—l] is comvergent of order 0(hP) uniformly in t=<z.

PROOF. The relations (5.15) and (5.18) directly imply (5.1) with u = U,.

Further, since A (Ut+h) is ||.]| bounded uniformly in t+h<Z,we conclude

from (5.15) and (5.17) that for some constant L and all h:EhO:

(5.22) v, -0,/ = hL.

t+h

Consequently, U is Lipschitz in t with respect to the norm ||.|| which
implies the strong continuity of Ut in t. This completes the conditions
of definition 5.1 for P(B,Z,E,u).

We proceed by proving (i) and (ii).
(1) By using (5.16) and (5.18) we can write

1

h h -1 _
(5.23) [cj (Ujh+h) - EJ. (Ujh+h)]h =
h -1
[AJ. (Ujh+h) —Ajh(Ujh+h)] - th(h)h

The relations(5.17), (5.19) and (5.23) directly yield the consistency.

(ii) Consider the proof of the approximation lemma 5.3 and note that
8? h_1 is given by expression (5.23). Hence, (5.20) implies that
expression (5.12) is convergent of order O(hp). Since also (5.22) im-
plies an order of convergence O(h) in (5.11), the_relétions-(B.lO),
(5.11), (5.12) and together with the fact that p<1, yield an order of
convergence O(hp) in (5.13).

Finally, this latter fact together with the Lipschitz relation

(5.22) again, implies that the right-hand side of (5.14) is con-

vergent ef order O(hp). o

REMARKS 5.6. 1. Obviously, we could have given an extended definition of a
stable difference-method more general than by (5.3) and (5.4), sﬁch that the
if-part of the standard Lax-Richtmeyer theorem follows directly fromm lemma 5.3.
For our purposes, however, (5.3) and (5.4) are sufficient and more convenient.
2. Similarly to remark I.3.8, the restriction p=<1 can be relaxed to p>0 ,

if t is replaced by nh in (5.21) and if, in addition, U ,-u is of order O(hp). [u]

th
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6. DISCRETE-TIME APPROXIMATIONS

6.1, INTRODUCTION AND SUMMARY

The approximation analysis of section 5 will be applied in this
section to conclude that the three types of continuous-time functions
given by (2.3.1), (2.3.2) and (2.3.4) can be approximated by the corre-
sponding discrete—~time functions given by (4.2.1), (4.2.4) and (4.2.8)
respectively.

In view of the time-difference equations presented in section 3 espe-

cially lemma 5.5 will be used. As a result, for each of the three types

of continuous—time functions convergence of discrete-time approximations

can be concluded if the following three conditions are fulfilled:

(i) The continuous-time function is sufficiently smooth with respect
to the time-parameter so that it satisfies a so-called smoothness—
assumption (see 6.3.1, 6.4.1 or 6.5.1).

(ii) The discrete-time geﬁerators converge to the infinitesimal operator
of the continuous-time process as required by the consistency
relation (6.2.1) or the strong consistency relation (6.2.2).

(iii) The discrete-time one-step transition probabilities satisfy the
stability relation (6.2.3) or the strong stability relation (6.2.4).

By verifying these conditions the discrete-time approximation is shown for:

1. Transition probabilities (subsection 6.3).
2. Finite horizon cost functions (subsection 6.4).
3. Finite horizon optimal cost functions (subsection 6.5).

As an implication of 1, also weak convergence of processes is considered.

Throughout this section we consider
(S;F,A,M,DA,{ABIGEA},L)as fixed control object and
6] .
(s,T',A,u,h ,{PhlﬁéA},IJ as h-control object for all hE(O,hO].

For mw€II(AB) let {Pz’tls,tz 0] denote the transition probabilities of the
continuous-time controlled Markov process under control T as given by
definition 2.1.4. And for any hfShO let {P?’n|j,n€N} be the transition
probabilities of the discrete-time controlled Markov process as given by

lemma 4.1.3 under h-control b - (m(0),m(h),m(2h),...).

Further, recall (4.1.5) for Tg and (4.1.6) for Aﬁ = [Tg-I]h_l.
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Finally, we note that for each of the three types of continuous-time func-
tions the so-called smoothness assumption 6.3.1, 6.4.1, or 6.5.1 includes
all assumptions made with respect to that function in preceding sectionms.
The so-called consistency and stability relations for this chapter are
defined in the next subsection. Recall that &= [Zh_ll-

6.2. CONSISTENCY AND STABILITY RELATIONS

In the definitions below consider a collection {Ut|tEZ} =
D, and W€IT(AB). The collection will be specified by

A
U =T _f with w€II(AB) and £€D, in subsection 6.3 ,
t t,Z A
Ut: = VT; with m€II(AB) in subsection 6.4 , and
Ut = ¢t in subsection 6.5.

Consistency relation:

il G - TGy g
(6.2.1) l

converges to 0 uniformly in jh+h<2Z as h-0.

Strong consistency relation:

5 6
sup II(Ah-A ) UL |l
jh'u
(6.2.2) 6€4

converges to 0 uniformly in jh+h<Z as h-0.

Stability relation:

1o B O Caanl, = o™
(6.2.3) {

uniformly in jh<Z, h=h_ and for some constant K.

0

Strong stability relation:

(19

j sup || [u(y) Pfl(.;dy)llus (I+hKA)
(6.2.4) l

uniformly in jh<2Z, hEh0 and for some constant KA'
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REMARKS 6.2.1.
1. Obviously, the strong relation (6.2.2) implies (6.2.1) and the
strong relation (6.2.4) implies (6.2.3) for any m€II(AB).

2, Let m€II(AB) and suppose that the stability relation (6.2.3) holds.
Then from (4.1.1) and (6.2.3) it follows that for all j<n=< £:

6.2 Ifue) 25 Csanll,s a0 5

So that according to definition 4.1.6: nh = (n(0),n(h),m(2h),...) ﬂTh(AB).
Consequently, the notations (4.1.5) for Tg and (4.1.6) for Ag are
justified for any &€(m(0),n(h),m(2h),...). If the strong stability rela-
tion (6.2.4) holds,then these notations are allowed for any &€A.

These facts will be used in subsection 6.3, 6.4 and 6.5.

6.3. TRANSITION PROBABILITIES AND PROCESS

Let m€lI(AB) be fixed, consider £f€D
(2.3.1) for T

h Z
with © (11(0) ,m(h) 11(2h),...).

A and recall the expressions

, (3.1.2) for K[ (T,f,h) as well as (4.2.1) for T? .

SMOOTHNESS "ASSUMPTION 6.3.1.
(i) Assumption 2.3.1 is satisfied, and

(ii)

U -1
IR (T, £,B)]]
(6.3.1)

converges to O uniformly in t+h=<2Z as h-0, o

THEOREM 6.3.2. Suppose that with collection {U ltelo,z]} =1 T f]té[Q,Z]}
the following conditions are saz‘nsfwd.

(i) The smoothness assumption 6.3.1.
(ii) The consistency relation (6.2.1).
(iii) The stability relation (6.2.3).
Then,

£ Pg’e(x;dy) - [ £ P:’Z(x;dy) Ilu
(6.3.2)

with n= [th_l] converges to 0 uniformly in t<Z as h-0 .
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PROOF. By virtue of assumption 2.3.1 and the time-difference equation

(3.1.3),the assumption 5.4 is satisfied with

B=8" ;p=D ;U =T £ ;A = A"®
(6.3.3)

U
R (h) = R (T,£,h) ;  tsZ.

Further, relation (6.3.1) implies (5.17).
Next,define a difference-method MD by

(6.3.4) c‘j1 () = TT;(jh)f . i<Z, he(O,nyl.

Then, the one-step generator A? defined by (5.16) equals the one-step
geperator A;(Jh) as defined by (4.1.6) for all j,h.

Consequently, application of lemma 5.5 shows that conditions (i) and (ii) of
the theorem imply consistency of MD for the collection

{v,|telo,z]} = {T’;’the[o,z]}.

Next let us examine the stability of MD.
With (6.3.4) and the stability relation (6.2.3) we find

h _h = " Gh) e < S
(6.3.5) ch(fl) cj<f2)llu = T, T E ) s (kD IE =]
h " K"
for all f],fzeB” and j<¢. Hence, with Ky = (I+hK') and Ky = e the
relations (5.3) and (5.4) are satisfied which implies the stability. o

Further, from comparing (4.2.2) and (6.3.4) it follows that

(6.3.6) T‘j‘ - U? with u‘J? defined by (5.5) with u = f.
5
Finally, the approximation lemma 5.3 completes the proof if we recall the

consistency and stability as well as the expressions (2.3.1) and (4.2.1) o

REMARK 6.3.3. An order of convergence in (6.3.2) can be obtained by using
(ii) of lemma 5.5 together with orders of convergence in the consistency

relation (6.2.1) and the'smoothness 'relation (6.3.1). o
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The above theorem concerns expectations induced by transition pro-
babilities. Particularly, it enables us to study the weak convergence of
the transition probabilities themselves as well as of the underlying
controlled processes. Therefore, as in chapter I, we refer to definition
0.10 for the notion of weak convergence and to the Appendix A for weak
convergence on D-spaces. Further, recall that Cu(S) is the set of real-

valued uniformly continuous and bounded functions on S.

THEOREM 6.3.4. Let G be a subset of BY with u-closure containing C(S).
Suppose that the conditions of theorem 6.3.2 are satisfied for any £€G.
Then for all <2, x¢S and with n = [th '], £ = [z8']:

h T
(6.3.7) Pn’g(x,.)*l’t’Z

(x3.) , as h>0.
PROOF. First of all,conclude that (6.3.2) is satisfied for any f€G.
Further, for fl,fzé B" it follows from (2.1.2) that for t=1Z:
ut it
(6.3.8) 1 -2 2, Csanll = WllEp =€),

and from (4.1.9) that for nh=<1Z:

6.3.9 [ £ -£)) P Caanll, = ullle -5,

Next, let fECu(S) and {fn}:=1CZBu such that an-f”-*O as n— e,

Then, by using (6.3.2) for all fn, together with (6.3.8) and (6.3.9) and

by letting n—+«,one can show that (6.3.2) holds for f.

Finally, since convergence of functions within 8" in y-norm implies con-
vergence of their values for any fixed x€S, the proof is concluded from

the portmanteau theorem. (cf. Billingsley (1968) p.11). o

n . .
Let {thtz 0} be the continuous—~time controlled Markov process

as given by definition 2.1.4 induced by control m and some Xg = ZO’
and let for all h=<h_: {Xh |n = 0,1,2,...} be the discrete-time con-
0 nh

trolled Markov process given by lemma 4.1.3 induced by

m = ((0),7(h),m(2h),...) and some xg - zg.

Further, define for all thho a process (ih)

=0 o0 D[0,~) by
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(6.3.10) X =X, , t€[nh,nh+h), néN.
THEOREM 6.3.5. Let G be a subset of BY with u-closure containing c*(s).
Suppose that for each Z>0 and £€G the conditions of theorem 6.3.2
as well as the following conditions ave satisfied:
i

(6.3.11) xg=x0 , as h-0.

(6.3.12) £(y) P (x.dy) is continuous in x€S.
t,Z

(6.3.13) sup W(x) < for any compact set QcC S.

x€Q
(6.3.14) One of the following holds:

(i) Condition (ii) of theorem A.3.5.

(ii) Condition (ii) of theorem A.3.6.

(iii)Conditions (ii) and (iii) of theorem A.3.7.
Then,

h

= A1
(6.3.15) (xt)

(Xt) on D[0,») as h=0.

t=0 t=0

PROOF. As in the proof of theorem 6.3.4,we can show that for any £ect(s)
and Z€(0,~) relation (6.3.2) is satisfied.
Consequently, together with (6.3.13) we obtain for any fECu(S), Z>0:

(6.3.16)  sup | [£(y) B} ,Gesdy) = [£() B} ,(xsdy)| > 0
er s i

as h-+0 for any compact set QCS, with n = [th_l], L = [Zh_]].
From (6.3.12), (6.3.16) and the portmanteau theorem we obtain for any
x€S and collection {xh|h€(0,h0]} with xh-*x:

h h ut
(6.3.17) Pn’g(x 5.) = Pt’z(x,.) as h-»>0,

which proves relation (3.5) of the appendix A. The proof is com-
pleted by theorem A.3.5, A.3.6 or A.3.7 corresponding to (6.3.14). a
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6.4, FINITE HORIZON COST FUNCTION

Let m€II(AB) be fixed and recall the expressions (2.3.2) for Vz,
(3.2.2) for R(V,h) and (4.2.4) for v‘J.1 with 1 = (n(0),m(h),7(2h),...).

SMOOTHNESS ASSUMPTION 6.4.1. The following conditions hold:
(i) Assumption 2.3.2,

(ii) assumption 2.3.3,
(iii) assumption 4.2.1, and

(iv)

U -1
IR, Vs, B
(6.4.1)

converges to O uniformly in t+h=2Z as h—+0,. o

THEOREM 6.4.2. Suppose that with collection {U|te[0,2]} = {V||t€[0,2]}
the following conditions are satisfied:

(1) The smoothness assumption 6.4.1.

(ii) The consistency relation (6.2.1).

(iii) The stability relation (6.2.3).

Then, <
( Ve - Vel
(6.4.2) l
withn = [th '] converges to 0 uniformly in t€[0,2] as h>0. o

PROOF. By virtue of the assumptions 2.3.2, 2.3.3 and 4.2.1 and the time-

difference equation (3.2.3),the assumption 5.4 is guaranteed with

= pH . = . =y .
f B=38 3 D=0D, ;U Ve s
= () m(t) .
(6.4.3) At(Ut) L +A (Ut) H
m
Rt(h) = Rt(V,h) s =2,

Further, relation (6.4.1) guarantees (5.17).
Next, define a difference-method MD by

(6.4.4) Cljl(f) = " D +'T;(jh)(f) , 3<%, h€(0,h 1.



93

Then, the one-step generator A? defined by (5.16) is given by
6.4.5 ey = 1"UD U gy,
]
Combining (6.4.3) and (6.4.5) yields
h oy = (a"(Gh) _m(ih)
(6.4.6) Aj(f) Ajh(f) = (Ah A Y (£).

Consequentily, application of lemma 5.5 shows that the conditions (i) and
(ii) of the theorem imply consistency of MD for the collection

i
{u_| tefo,z]} = {v_| telo,z]}.
Next, let us examine the stability of MD.
From (6.4.4) and the stability relation (6.2.3) it follows that

h _h _ e (Gh) o - u B
(6.4.7) lles ey = eotEll, = lITy =7 (g =€) = (bkDy IE) =5, ],

i
for all fl,fZGBu and j<?¢. Hence, with K? = (1+hKn) and KC —e 2K ,

the relations (5.3) and (5.4) are satisfied which proves the stability.

Further, from comparing (4.2.5) and (6.4.4) it follows that

(6.4.8) v? - U? with U? defined by (5.5) with u = O.

Finally, the approximation lemma 5.3 completes the proof if we recall the

consistency and stability. o

REMARK 6.4.3.
1. An order of convergence in (6.4.2) can be obtained by using (ii) of
lemma 5.5 together with orders of convergence in the consistency

relation (6.2.1) and the 'smoothness' relation (6.4.1).

2. Recall that the discrete-time cost functions V? can be computed by
recursively solving (4.2.5). !

3. By considering orders of convergence, one can sometimes conclude that
the convergence in (6.4.2) is uniform in some class of controls, say
[{U). As a result, we would obtain for any x¢S and t=2Z:

(6.4.9) linf VP(x) - inf V'(x)| > 0 as h0.

nw) ® nw) ©

Hence, the 'optimal cost functions within TI(U)' could be approximated. O
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6.5. FINITE HORIZON OPTIMAL COST FUNCTION

Recall the expressions (2.3.3) for the infimum-operator J, (2.3.4)
for ¢t’ (3.3.1) for Rt(¢,h) and (4.2.8) for ¢?.

SMOOTHNESS ASSUMPTION 6.5.1. The following conditions hold:

(i) Assumption 2.3.4,
(ii) assumption 2.3.5,
(iii) assumption 4.2.3,and

(iv)

-1
IR, @0
(6.5.1)

converges to O uniformly in t+h=<Z as h-0.

THEOREM 6.5.2. Suppose that with collection {U_| t€[0,2]} = {6 |t€[0,2]}
the following conditions are satisfied:

(1) The smoothness assumption 6.5.1.
(ii) The strong consistency relation (6.2.2).
(iii) The strong stability relation (6.2.4).
Then
2 h
ST
(6.5.2) l

with n = [th—l] converges to 0 uniformly in t<Z as h-0.

PROOF. By virtue of the assumptions 2.3.4 and 2.3.5 as well as the time-
difference equation (3.3.2),the assumption 5.4 holds with

_ b _ _
B=8 3 D=D, 3 U-=20

(6.5.3) A (U) =3U) = inf [L0+ A%,
tt t o sen ¢

Rt(h) = Rt(¢,h) , t=<Z.
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Further, relation (6.5.1) guarantees (5.17).
Next, define a difference-method MD by

(6.5.4)  c'(E) = inf L+ TO(E)].

1 €A
Then A?, the one-step generator defined by (5.16)  is given by
6.5.5 A6 = inf [0+ A0(D)].

J €A

Combining (6.5.3) and (6.5.5) yields
(6.5.6) Iah ) -a, () =
] jh H

sup w0 [sup | AXH) 0 -A%(H) @) |] =
x€S 8€A

sup sup u(x)_1 [Ag(f)(x)"Aé(f)(X)[
5€A  x€S

[é) &
sup [|A, (£) - A7(£) |
sen : H

Consequently, application of lemma 5.5 shows that the conditions (i) and
(ii) imply consistency of MD for the collection

{u |tef0,z]} = {4 _[telo0,2]}.

Next, let us examine the stability of MD.
First, in analogy with the steps of (6.5.6) it can be proven that

h h & &
(6.5.7) ch(fl) cj(f2>llu = gzz HTh(fl) Th(fz)”u'

Next, the strong stability relation (6.2.4) and (6.5.7) imply

h h
(6.5.8) ch<f]> cj(fz)llu = (1+hK ) £, lelLL
uw ., . h _ ZX
for all f],fzéB and j< £. Hence, with Kj = (1+hKA) and KC =e A,

the relations(5.3) and (5.4) are satisfied which proves the stability.

Further, from comparing (4.2.8) and (6.5.4) it follows that

(6.5.9) ¢? = U? with U? defined by (5.5) with u = O.
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Finally, the approximation lemma 5.3 completes the proof if we recall the

consistency and stability. o

REMARK 6.5.3.

1. An order of convergence in (6.5.2)can be obtained by using (ii) of
lemma 5.5 together with orders of convergence in the strong consis-

tency relation (6.2.2) and the 'smoothness' relation (6.5.1).

2. Recall that the discrete-time optimal cost functions ¢? can be

computed by recursively solving (4.2.8).

3. By means of orders of convergence and relation (4.2.8), it is possible
to give piecewise constant controls which are 'mearly-(c-) optimal'
for the continuous—time model. This will be shown for the applica-

tions in sections 7 and 8.

4, The discrete-time approximations given in subsections 6.3 and 6.4
are all induced by one and the same fixed control w€IT1(AB).
However, let {nh |h€(0,h0]} be a collection of controls n}%Hh(AB).
Then we can just as well consider discrete-time approximations
induced by discrete-time controlled Markov processes under control

ﬂh, say with corresponding transition probabilities {P? n|j,n€N}‘
E

It is easily seen that all results of subsections (6.3) and (6.4)
remain valid if we replace the consistency relation (6.2.1) and the sta-

bility relation (6.2.3) by

t
"Gy _ Gy

Il

jh+h”u

(6.5.10)

converges to O uniformly in jh+h=<Z as h-0,
and ho.

1w 7y O Caanll, = (e
(6.5.11)

uniformly in jh<2Z, h=<h, and for some constant K.

0
(Note that (6.2.2) does not imply the relation (6.5.10)).
Particularly,discrete-time controls "3 which correspond to the discrete-
time optimality equations (4.2.8) are of interest.

0 for h->0 such that the

convergence relation (6.4.2) holds and if in addition the convergence re-

If the controls {ng} contain a Limit control

lation (6.5.2) is satisfied, then it can be shown that 7, is an optimal

0
control for the continuous—time model. u]
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7. CONTROLLED MARKOV JUMP PROCESSES

7.1. CONTINUOUS-TIME MODEL

This section concerns controlled Markov jump processes. For a gene-
ral description of such a process one may consider the informal descrip-—
tion given in subsection 5.1 of chapter I where the jump-characteristics
q and H must be replaced by q: and H: with 7 representing a control.

As a specific example of a controlled Markov jump process consider a ser-
vice facility with one server. Customers arrive according to a Poisson
process with parameter A. Each customer demands an amount of service which
has an exponential distribution with mean 1.

The customers are served one at a time and in order of arrival. The ser-
vice rate v can be controlled within a finite interval [v],vZ].
Consequently,if at epocht the number of customers present is i=1 and if
during [t,t+At] a constant service rate v is used,then with probability
Mt + o(At) a new customer arrives and with probability

vAt + o(At) a customer completes a service during [t,t+At], where At is
assumed to be small., Costs are incurred by a holding cost rate linear in
the number of waiting customers plus a service cost rate linear in the

controlled service rate.

To proceed formally,let us consider the control object
(8,T,4,1,D,, {A6|6€A}, L) as well as
q a measurable real-valued function on S x ', called jump rate, and
H a transition probability from S x ' to S, called jump measure;
such that for any &€A, fEDA and x€S:

(7.1.1) Aéf(x) = q(x,8(x)) [ [£(y) - £(x)] H(x,6(x);dy).

Specifications on the jump characteristics g and H, the bounding func-
tion p, the domain DA and cost-rate function L will follow.
First of allthroughout this section the following assumption is made:

ASSUMPTION 7.1.1.

(1) H(x,y;{x}) = 0 for any (x,y)€S x T.
(ii) For some constant Q< and all (x,y)€S x I': 0=q(x,y) = Q. ]
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As in subsection 5.1 of chapter I condition (i) is not necessary for the
analysis of this section, whereas condition (ii) is.
Particularly, assumption 7.1.1 enables us to show the existence and unique-—

ness of transition probabilities and a corresponding process for any measurable

control. First consider:

NOTATION 7.1.2.

qG(X) = q(x,5(x)), Ha(x;.) = H(x,5(x);.) for x€S, 8€A.
q: = &, HT; = for mEI(M), t> 0 and §=m(t). a

Then the following theorem is to be seen as an extension of theorem I 5.1.4.

THEOREM 7.1.3. Let well(M) such that nt(x) 78 measurable in (t,x).

Then we have:

(i) There exists a unique semigroup of transition probabilities

{PTSr tls,tz 0} such that for any t=0, h>0, x€S and BER:

[P:,t+h(x;B)-lB(x)]h_] 18 uniformly bounded
(7.1.2)

and as h—0 converges to: q:(x)[H:(x;B)-lB(x)l

(i1)  For any random element Z. on S there exists a unique Markov process

0
{XZ[t%:O} with transition probabilities

Tr—.

0 €D[0,=)) = 1.

o ) n
{Ps’t|s,tE:0} such that X =2, and P ((X))

t=0
PROOF. (i) The existence of a semigroup {PZ tIs,tz 0} satisfying (7.1.2)
follows from defining, as in theorem 4 on p.364 of Gihman and Skorohod

(1969), for any s,t>0, x€S, Bé€B:

. Pz,t(X;B) = Z Pz,t(X;B) , where
n=0
0 t m
PS t(x;B) = IB(x) exp (- f qu(x)du), and for n=>1I:
7.3 4 7 s
P?  (x;B) = ft exp [ (- fuq"(x)dc)] q (x)
s,t 7’ s u ot

S
[f Pz-i (y;B) Hz(x;dy)] du
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If {Pz’tls,tz 0} is a collection satisfying (7.1.2),then it can be shown
in analogy with p.347 - 353 and p.364 - 366 of Gihman and Skorohod (1969)
that the collection is given by (7.1.3). (As only difference with the

above reference we must use dominated convergence in (7.1.2) in stead of

convergence uniformly in t).

(ii) The existence and construction of such a process is shown by theorem
4 on p. 364 of Gihman and Skorohod (1969). Since the transition probabili-
ties determine the finite-dimensional distributions,the uniqueness follows

from theorem 14.5 of Billingsley (1968). o

Before further investigating the admissibility of a control,let us

first present an assumption on | which is made throughout this section.

ASSUMPTION 7.1.4., For some constant 1 =K< :

(7.1.4) supllfu(y)'ﬂa(.;dy)ll < K. o
8€A H

The control which will be given below obviously satisfies the measurabi-

lity condition. Therefore, let {PZ tIs,tz 0} denote the transition pro-

babilities given by (7.1.3). Recall’(7.l.l) for A6 and as before let Z

be a finite time-point.

Below we always use a symbol C to indicate a constant depending only on

Z,Q,K and a control m. Further, At always denotes a positive number,

representing a length of time.
LEMMA 7.1.5. Let w€lI(M) such that

TT _ 1
(7.1.5) lappp =~ 9l = atC , tHAE<Z.
1] £, ,, Csdy) = [ E@ELCaanll NE17 < atc
t+HAL 7 gL m wos
(7.1.6)
uniformly in fept , At <Z,

Then for all feB” and t+h<z:

Ui

. _ -1 _ ,w(t) -
(7.1.7) Il[ff(y)Pt’Hh(.,dy) £()In -A f(-)llu_hCHfHpL
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PROOF. First of all let us prove that for all s=t=<Z, and n€N:

@)",

: n . [ (t*s)n
(7.1.8) Il [e@ Ps,t(.,dy)hu_ —

where PZ ¢ is defined recursively by (7.1.3).
’

Clearly for n = 0 relation (7.1.8) is satisfied. Let us proceed by in-

duction on n. Let (7.1.8) be satisfied for n - 1. Then according to

(7.1.3) and (7.1.4):
n . <
(7.1.9) I f ey Ps’t(.,dy)llu <

t
Jol U u BT (23ay] B Cad) | du =

n-1

t
Jalfuw Pl

(.;dy)llu- I [ 1(z) Hz(.;dZ)lllJL du =

t n-1] n
J@o” S = 2 o,

Next let fEBLi and let t<t+h<Z. As a direct consequence of (7.1.8):

n

(7.1.10) t,t+h

[£@) P

I~ 8

=}
N

(.;dy)llLL =

n

o [kI”lel, = n%eM e .

Il o~1 8

=]
N

Since q is bounded by Q we have

t+At .
7.1 flexp (< g ()dw) - 1.0 | = aec,
Expression (7.1.3) for Pl t+h together with (7.1.6) and (7.1.11) gives
after some calculation:
-1 t+h 1 o v
(7.112) 0TGP Csdy) = () [ £ BGsay)ll, = bell

Further, by virtue of (7.1.5) one easily shows:
t+h kit m 2
7.1.13)  lexp (-] q (-)du) = (1=hq (DIECD], = bocliEll,
t

Finally, by combination of expression (7.1. 3) for P: t+h and the rela-
t]

tions (7.1.10), (7.1.12) and (7.1.13) the proof is completed.
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The above lemma and its proof enable us to conclude admissibility
of a control,as defined in definition 2.1.4,as well as boundedness,as

given in definition 2.1.6.

THEOREM 7.1.6. Let well(M) which satisfies the relations (7.1.5) and (7.1.6).
Then ,

(i) T is an admissible control for the control object with D, = 8" and
(ii) 1 satisfies the boundedness relation (2.1.2).

Consequently, well(AB).

PROOF .

(1) Directly from definition 2.1.4, theorem 7.1.3 and lemma 7.1.5.

(ii) According to (7.1.3) and (7.1.8) relation (2.1.2) is satisfied with
bounding constant MTT = exp(ZQK) . o

REMARKS7.1.7.

I. The Lipschitz relations (7.1.5) and (7.1.6) are quite strong. How-
ever, in view of proving the admissibility of a control as well as of ob-—
taining approximation results later on,several relaxations are possible.
For instance,let us only suppose that the left-hand side of (7.1.5) and
(7.1.6) converge to 0 as At—>0. Then it can be shown analogously to the
proof of the above lemma that also the left hand side of (7.1.7) converges
to 0 as At—+0. And,as a result,it can be shown in analogy with the approxi-
mation analysis which follows that the theorems 7.2.3 and 7.2.5 are valid

if the order of converge O(h) is omitted.

An other relaxation which can be desirable for applications is to
replace (7.1.5) and (7.1.6) by piecewise Lipschitz (or continuity) condi-
tions on q and H with respect to the time-parameter. A specific relaxation
of this type is made in §4 of subsection 7.2. In order not to complicate

things too much,we have omitted to include such relaxations in generality.

2. The Lipschitz relations (7.1.5) and (7.1.6) are guaranteed in each
of the following two cases:
(1) m is stationary, i.e.; for some &€A and all t=0: nw(t)=S5.

(ii)  With dF the metric on T it holds for some Lipschitz constant L:
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o llaCsry) = aCaypl, = daplrpsry)) Lo s Ty, €T

I/ £ HCsvy3dy) =[£G BC,vp3aplly

(7.1.14)

M7 =d Grpary) L, for all £6BY, vy, €T
I8 I 1°°2

A

llap G (), (D) Il = st L , t+At = Z.

t+At
The Lipschitz conditions in (7.1.14) on q and H are quite natural in queue-
ing models where the state variable denotes the number of customers present.
The Lipschitz condition on T as given in (7.1.14) may not always be satis—
fied in realistic models.

In this respect,however, (also see remark 1) relaxations as piecewise Lip-

schitz conditions on 7 as given by (7.1.14) will be useful.

3. By using standard arguments it can be shown that relation (7.1.6)

is satisfied for all feB" if and only if

‘ m b
(7.1.15) Hfu@)muﬂt-ﬂtﬂ.ﬁwmiiAw , tHALSZ
where the measure IH:+At - H:I(x;.) denotes the total variation of
(Ht+At - Ht)(x;.). (see Neveu (1964) p.101 for a definition). o

In view of theorem 7.1.6,the notations and results of section 2
can be applied for any we[I(M) satisfying (7.1.5) and (7.1.6) for all
£ and t+At=z. Especially,recall expression (2.2.1) for Tz’tf.
Then,by using the results of this subsection one easily verifies the
following relations,which are given for application later om.

For all feB" ,s,t<7, t+At<Z and S€p :

(7.1.16) HTZ,tfHuS eZQKHfHu ,

(7.1.17) [l £, = 2QKllfHM s

(7.1.18) | [Trt"t+At -nell, o= eechel,

(7.1.19) H([T‘;’t+At T QR Y n, = AtCIIfHu
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7.2. APPROXIMATIONS

Take hOS - and let for any h:ShO:{P§|6€A} be a collection of one-
step transition probabilities defined by

7.2.1)  P2GB) = e’ BB + [1-ha® (@) 11,

for all x€S, B€B and 6€A. Obviously, relation (7.1.4) guarantees relation
(4.1.4) ,which justifies the notation of the operators TE
by (4.1.5) respectively (4.1.6) for any 5€A .

As a result, we obtain for any féBu, x€S and h=<h

and Ai as given
O:
7.2 @ = P [ EG) - @] Bxsay) = 2°£60

LEMMA 7.2.1. The strong consistency relation (6.2.2) holds for any col-
lection {Ut]te[O,Z]}CZBu.

PROOF. Immediately from (7.2.2). u]

LEMMA 7.2.2. The strong stability relation (6.2.4) is satisfied.

PROOF. Relation (7.1.4), with K= 1, and (7.2.1) yield:

7.2.3)  sup || [u(y) Psanl, = (mQR-1D). o
"
S€A
Lemma 7.2.2 implies, also see remark 6.2.1, that for any control mw€Il(M)
and h=h_: nh = (m(0),n(h),m(2h),...) GHh(AB), (see definition 4.1.6).

0
As a result, below we will examine in correspondence to the subsections

6.3, 6.4 and 6.5 respectively, the discrete-time approximation for the
continuous—time model given in subsection 7.1.1 of:

transition probabilities in §1,

finite horizon cost functions in §2, and

finite horizon optimal cost functions in §3.
In addition, the construction of nearly-(e~) optimal controls is studied
in §4. The notation which will be used can be found in the {correspon-

ding parts of) sections 2,3 and 4.

NOTE It is easily seen that lemma 7.2.1 also holds if in the right-
hand side of relation (7.2.1) we add an arbitrary term of order o(h),

as h tends to O. o
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§1. TRANSITION PROBABILITIES

Let m€II(M) which satisfies (7.1.5) and (7.1.6).

THEOREM 7.2.3. For any £eB" the convergence relation (6.3.2) is satisfied

with order of convergence 0O(h).

PROOF. By virtue of theorem 6.3.2, lemma 7.2.1 and lemma 7.2.2,relation

(6.3.2) is proven by verifying the smoothness assumption 6.3.1.

Since D, = B"

A ,assumption 2.3.1 directly follows from (7.1.16) and (7.1.17).

The 'smoothness' relation (6.3.1) is satisfied since (7.1.16) and (7.1.19)

yield:
™ -1
(7.2.4) HRt(T,f,h)Huh =
=1 _11 o AT(E)y o < heel@
I (h [Tt’t+h I] - A ) Tt+h,zf”u < hCe HfHLL .

Hence, the smoothness assumption 6.3.1 is guaranteed. Furthermore, lemma
5.5 togethér with the relations (7.2.2) and (7.2.4) shows the order of

convergence O(h). o

In analogy with subsection 5.1 of chapter I also weak convergence
of the transition probabilities can be concluded as well as,under additio-
nal continuity conditions on q and H,jweak convergence of processes on
D-spaces. However, such a result is included by much more general results
shown by Hordijk and Van Der Duyn Schouten (1983a).See also Van Der Duyn
Schouten (1979).
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§2. FINITE HORIZON COST FUNCTION
Let m€lI(M) which satisfies (7.1.5) and (7.1.6).

ASSUMPTION 7.2.4. For constants L and C:

(7.2.4) HLGHu <1 for all €A,
m i
(7.2.5) HLt+At - LtHu < AtC.

THEOREM 7.2.5. Let assumption 7.2.4 be satisfied. Then the convergence re-
lation (6.4.2) holds with order of convergence 0(h).

PROOF. By virtue of theorem 6.4.2, lemma 7.2.1 and 7.2.2 relation (6.4.2)

is proven by verifying the smoothness assumption 6.4.1.

By using (7.1.16), (7.1.18), (7.2.4) and (7.2.5) we obtain with As=0:

u b b b
- <
(7.2.6) HTt,S+AS Lois Tt’s LSHu <
b b L 0 ﬁ _ LTI
“Tt,s+As (Ls+As Ls)”u * ”Tt,s (Ts,s+As D Ls”u = 4sC.
Hence, ™ 17 is p-continuous in s€[t,Z]. Since also (7.1.16) and (7.2.4)

t,s
. o, . . .
imply that Tt SLS is p-bounded uniformly in 0<t=<s=<Z,the assumption
’

2.3.2 is guaranteed. Consequently, {V:[tE[O,Z]} is p-bounded. Together
with DA = B" and (7.1.17) this also implies assumption 2.3.3. Clearly,
assumption 4.2.1 is implied by (7.2.4).

Further, expression (3.2.2) for Rt(V,h), relation (7.2.6) with s=t, the
p-boundedness of {Vt|t€{0,Z]} and relation (7.1.19) imply that

Ut -1
(7.2.7) HRt(V,h)Huh =
-1 (t+h._w i v,
IIn tf T, lgds Ltnu +
'™ -1 - "™y v < ne
t,t+h t+h'p T -

Consequently, the smoothness assumption 6.4.1 is satisfied. Furthermore,
lemma 5.5 together with the relations (7.2.2) and (7.2.7) guarantees the

order of convergence O(h). u]



106

Note that analogous to (7.1.14) one can give Lipschitz conditions on
L with respect to y,and m with respect to t,which guarantee (7.2.5).

For the case of a stationary control @ and bounded cost-rates we present

a special approximation result. Namelv, a rate of convergence which is linear

in the length Z of the time interval, for Z larger than 1.

APPLICATION 7.2.6.

Let ™ be a stationary control i.e.; m(t) = & for all t> 0 and some &€A.

Further, assume that for some constant L :

(7.2.8) P <1 for all sen.
. ™ 5 _m 5 .
Since 4, =43 Ht= H™ for all t= 0,one easily shows that the tran-
sition probabilities {Pz tls,tz 0} defined by (7.1.3) are time-homo-
v ’
1 . = pm
geneous,i.e.s Ps . Ps L5+t for all 8118, and t.
1’71 2°72
. 1o} uf 5 0
. = . = . >
Write: Pt P0,0+t’ Tt T0,0+t’ t=0,

and choose p(x) = 1, x€S. Hence ”f”u = |I£ll for feB”, relation (7.1.4) holds
with K = T and ”th”m =l€ll, , t=o0 .
First of all V: becomes

Z-t
7.2.99 VI =[ %,

0

which implies immediately,

T it Z-t 5.6
(7.2.10) Hvt+At--th°° < IT L7, ds = atL
Z-t-At
and together with (7.1.17) with K = 1.
[SIP b kit it _
(7.2.11) Ila (vt+At—vt)Hw = ZQ“Vt+At"Vt”w < At2QL .

Further,by writing

]

(7.2.12) (AT A NN e AT G T
t’ e

t-h 't
I~ % 0% - il + T l-1 - A% |,
0 s o h t e

the relations (7.1.18) and (7.1.19) imply that E%—V: = (L5+ A5V2L
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Since also the relations (7.2.10) and (7.2.11) guarantee the continuity
of V: and A6
(cf. 1.13 on p.38 of Dynkin (1965)):

mo. . il =
Vt in t in supremum-norm and VZ = O,we can conclude

Z
(7.2.13) Vi = [ @ a%)) as.
t
Consequently, from (3.2.3) and (7.2.13):

t+h

Ul _ 6, 8.1 _ 65, 6,1
(7.2.14) R (V,h) = tj’ L7+ AV ))ds - h(L™+ AV ),
So that (7.2.11) and (7.2.14) yield:
u -1 &, .m ki
(7.2.15) IR (V,h)ll)h " = sup la (W -V Oll, = n2eL.

s€[t,t+h]

Hence, the 'smoothness' relation (6.4.2) is satisfied with order of conver-

gence not depending on Z.

Next, note that the strong stability relation (6.2.4) is satisfied with
KA = 0 and proceed analogously to the proof of theorem 6.5.2. Then, the
stability condition holds with Kc = 1.

As a result, by using relations(5.23), (7.2.2), (7.2.10) and (7.2.15),
and reconsidering the proof of the approximation lemma 5.3, one can con-
clude that

VP - Vil = n20Lz + hiz + b
(7.2.16)

with n = [th_]], uniformly in t=2Z.

Since (7.2.16) holds uniformly in all stationary controls m, this approxi-
mation result can be useful inorder to approximate 'optimal average

cost functions'. [u]
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§3. FINITE HORIZON OPTIMAL COST FUNCTION
In addition to assumptions 7.1.1 and 7.1.4 let be satisfied:

ASSUMPTION 7.2.7.

1) T is compact.
(ii) A= {8:5+T|5 measurable }.
(iii) q(x,Yy) is continuous in (x,y)€SxT.
H(x,v;.) is weakly continuous in (x,Y)€SxT .

L(x,v) is continuous in (x,Y)€SxT and satisfies (7.2.4). u]

This assumption enables us to prove the existence and the unique-
ness of a solution of the optimality equation (2.3.4) with A6 given by
(7.1.1). Therefore,however, we first give some auxiliaries. First, recall
expression (2.3.3) for the infimum operator J and let c" denote the sub-
class within B" of continuous functions. Then we have cf. lemma 1.4 on

p.16 of Gihman and Skorohod (1979)

LEMMA 7.2.8. J = c™ >t

PROOF. Let fec™. Then,according to (iii) of assumption 7.2.7 the function
g:SxT'> R defined by

g(x,7) = LGx,y) + q(x,v) [ [£(y) - £(x) JH(x,y3dy)
is continuous in (x,Y)€SxT. So that from (i) and (ii) of assumption 7.2.7.,
Jf(x) = inf g(x,6(x)) = min g(x,y) = g(X,YO)

§€A yer

for some YOEF and any fixed x€S.

Next, let x€S and {xn}g S with X > X as n>>. Then clearly
B 0 . 0 .
(7.2.17) JE(x) = g(x,y) = lim g(x _,y ) = 1lim sup Jf(x ).
n-e n n-> o
On the other hand, let {rg} and {Yn } be sequences such that

J
lim inf Jf(xn) = lim Jf(xn ) = lim g(xn Y ), then
noe R I R
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the compactness of I' implies the existence of Y*GF such that for the metric
dF on T': dF(Yn ,Y*) -+ 0 as j—»>« . Hence, we obtain

j
(7.2.18)  JE(x) < g(x,v) = lim g(x_ v ) = lim inf JE(x ).

j-—)co J J n-—>o

Combining (7.2.17) and (7.2.18) proves the continuity of Jf(x) in x€S.
Further ,according to expression (2.3.3) for Jf, (7.1.17) and (7.2.4):

7.2.19 Jf = L + 2 QK|If .
( N N QellEll
which completes the proof. o

PROPOSITION 7.2.9. Assumption 2.3.5 holds i.e.; there exists a unique
p~bounded solution {¢t|t€[O,Z]} of the optimality equation (2.3.4).

PROOF. Let C"[0,Z] be the set of functions g:[0,2]~C" which are p-continu-
ous in t. For gGCLLZO,Z] write g, = g(t), t<Z. Let gec"[0,2]. Then,

(7.2.20) la(g ) - J(gt)”p. < sup 1a%(g

-g ) = 20Klg
5€n R

t+AL t+At t+At gt”p.

proves the p-continuity in t of J(gt). Hence, by also taking lemma 7.2.8
into account we can define an operator
B:c*[0,2] > c*[0,2] by

Z

(7.2.21) (Bg), = f J(g)ds ,t=z.
t

Then, for gl,gZE ct [0,2] and any t=<2Z:

1 2 z §, 1 2
(7.2.22) sup [[(Bg ), -(Bg )tHM < sup [ sup [A°(g -¢g )Slluds =
t<z t<Zt 6€A

Z
1 2 1 2

sup [ 20Kl (g - gl ds = (20kZ) sup [I(g" - &%) I -

t<zt b t<2z W
Consequently, the operator B on CLﬁO,Z] is Lipschitz with respect to the
norm gl = sup llg [l for gec[o0,z].

t=<2Z
The proof proceeds by the well-known method of successive approximation
(also known as Picard-iteration), (cf. lemma 11.4 of Fleming and Rishel(1975)).

[w]



110

Further, according to (7.2.19):
Z

<
(7.2.23) gl = tf (L + 20Kll@ [l ) ds
so that the Gronwall-Bellman inequality implies

< o
(7.2.24) ”¢t”u < ZL exp(2QKZ) .cﬁ.
Next consider the approximation-method given in subsection 6.5. Then the
following theorem shows that the continuous-time optimal cost functions
{¢tIt€[0,Z]} can be approximated by the discrete—time optimal cost func-

tions {¢:|n =0,1,2,...}.

THEOREM 7.2.10. The convergence relation (6.5.2) is satisfied with order

of convergence 0(h).

PROOF. By virtue of theorem 6.5.2, lemma 7.2.1 and 7.2.2 relation (6.5.2)

follows from verifying the smoothness assumption 6.5.1.

Lemma 7.2.8 guarantees assumption 2.3.4 with DA = c" and proposition 7.2.9
shows assumption 2.3.5 also with DA = c*,

Further, lemma 7.2.8 together with the fact that Ti = [hAi*—I] = [hA61-I]
yields assumption 4.2.3 with F = ct.

To prove (6.5.1) first conclude from (7.2.19) and (7.2.24):

t+At
(7.2.25) 19,4 pe~ e*tllLL = Iltf J(@)ds IIHE At (L+2QKC)

Then, from expression (3.3.1) for Rt(¢,h), the fact that

13 (p ) - (q)t)llu = 20K||¢ @ |l and relation (7.2.25):

t+At trAt Tt

(7.2.26) R (@, )] v ! < nc.
u

Hence, the 'smoothness' relation (6.5.1) is satisfied. Furthermore, lemma
5.5 together with the relations (7.2.2) and (7.2.26) guaranteesthe order

of convergence 0O(h). o

REMARK 7.2.11.
1. Clearly, the constant C in (7.2.26) can be given explicitly by using
(7.2.24) and (7.2.25). Together with the consistency shown by (7.2.2)



and the stability with constant K, = exp ZQ(K-1), relation (7.2.26) in

turn may yield a precise rate of Sonvergence in (6.5.2).

E pecially this latter fact is of interest since the functions ¢? can be
obtained recursively and provide a corresponding discrete-time optimal
control by applying dynamic programming. (see lemma 7.2.12 below).

For h sufficiently small this discrete-time optimal control is an
e-optimal control for the continuous time model if applied to the

discrete-time model.

2. The finite horizon optimality equation (2.3.4) for Markov jump pro-
cesses has been studied by several authors. The existence and uniqueness
of a solution is well-known. First of all,the case of a finite state and
action space is analyzed by Miller (1968). Pliska (1975) considers a
general state space and compact action set and requires somewhat stronger
continuity conditions as given by assumption7.2.7 as well as a convexity
condition on the set of decision rules.

Gihman and Skorohod (1979) also deal with a general state space,
assume a compact decision set and use the continuity conditions of assump-
tion 7.2.7. All these references concern bounded cost rates i.e.; ”LSHWTEC
uniformly in 8€A. Yushkevich (1980) extends the above models to general
state and action spaces as well as unbounded cost rates.

Moreover, he relaxes the continuity conditions to measurability assump-
tions. The cost rates,however, are assumed to be non-negative and the

cost functions to be finite for any initial state and admissible control.
Proposition 7.2.9 partially extends his results in that p~bounded functions

can be dealt with. Moreover, its proof is constructive.

3. The 'optimality' of the solution of the optimality equation has
been shown by the above mentioned references as well as by Rishel (1976)
and Boel and Varaiya (1977).

Miller (1968) proves the optimality within the class of all piecewise-
constant controls. Pliska (1975) considers all Markov controls. Rishel
(1976), Boel and Varaiya (1977), Gihman and Skorohod (1979) as well as

Yushkevich(1980) also include history dependent controls.

4, The existence of optimal Markov controls i.e.; with corresponding
cost function satisfying the optimality equation is well-known for the

case of bounded cost rates and under the continuity conditions on the
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jump characteristics. See Pliska (1975) and Gihman and Skorohod (1979).
Under the weaker conditions,Yushkevich (1980) shows the existence of
e-optimal Markov or optimal Markov controls in several specific situations
(see theorem 6.2, 7.1, 8.1 of this reference).

We remark that in our setting,where the cost-rates are allowed to be un-
bounded,if bounded by the p-norm, but where the continuity conditions on q
and H are made,the existence of an optimal Markov control can be shown
analogously to Pliska (1975) or Gihman and Skorohod (1979).

In the next paragraph we will concentrate on constructing e-optimal

Markov controls.

Sh. CONSTRUCTION OF e-OPTIMAL MARKOV CONTROLS.

With the method of time-discretization we can construct e-optimal
Markov controls as follows. First,by using dynamic programming we can ob-
tain an h-Markov control which is optimal for the h-discrete-time model.
This control is implemented in the continuous-time model as a control,
say 7, which is stationary on the intervals [nh, nh+h). Let V" denote
the corresponding cost function. Then, showing that the discrete-time and
continuous—time cost function under that control are equal up to an order
0(h) and using the approximation result of §3 also imply that v approxi-

mates the optimal cost function @ with order O(h).

As in §3,let the assumptions 7.1.1, 7.1.4 as well as 7.2.7 be
satisfied. Recall the verification of assumption 4.2.3 with F = c* as
well as the existence of a unique p-bounded solution {¢t|t€[0,Z]}C ct
of (2.3.4) and {#%]jh=2z, jeN}c ¥ of (4.2.8).

Fix h=h, and let’t = [,
LEMMA 7.2.12. There exist 6(0),6(1),...,6(&-1) € A such that

(7.2.27) ¢ = inf b+ 080 ] = w8 4 H0Igh jot.
5€A h™j+l1 h j+r

PROOF. Consider some j <. Then first conclude from the continuity of

¢?+1(x) in x and of q,H and L in (x,y) that the function g defined by

gGe) =hLG,) +haGe,) [ 65, IBGridy) + [-haGem) 165, G
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is continuous in (x,y)€SxTI. Next,recall the compactness of I'. Then,lemma
1.4 on p.16 of Gihman and Skorohod (1979) guarantees the existence of a

measurable function (selection) SO:S->F such that

inf g(x,8(x))= inf g(x,y) = g(x,éo(x)) , XES.

5€n Ye€T f

2(3) yield the proof.
(5]

Let 6(j) = &°,then (7.2.1) for Pi(J)and (4.1.5) for T

Let %P ) such that " = (6(0),5(1),...,6(6-1),5(2=1),6(¢=1),...) with

8(1),1 =1,..,%-|given by lemma 7.2.12. According to lemma 7.2.2 we have:
nfen® (ap) .

From (4.2.5) and (7.2.27) it follows that
(7.2.28) v? = o , ise.

Next, let mell(M) be defined by

(7.2.29)  w(o) = n'(ah),  t€[nh,nh+h), neN.

. . . . T
According to theorem 7.1.3’there exists a unique semigroup {PS t|s,t2 0}

of transition probabilities given by (7.1.3) with

m _ &(n)
q =4

mo_ H6(n)

¢ if t€[nh,nh+h), t<Z.

s H
Consequently, by reconsidering the proof of lemma 7.1.5,but only with

t = nh,nh<Z, néN ,we conclude that (7.1.7) still holds for t = nh,nh=2Z,
né€N. Hence, the relations (7.1.18) and (7.1.19) remain valid with

t = nh,At <h.

These facts imply that relation (7.2.6) is true for any t=Z but with

s = jh, j€EN and As =h. This shows that T: SLZ is p-continuous in
s€[jh,jh+h), jEN, jh<Z, so that vi is well-defined by (2.3.2) for any
t=<Z. Further, it is easily seen that (3.2.1), (3.2.2) and (3.2.3) remain
valid. Moreover, analogously to (7.2.7) it is shown that

(7.2.30) ”Rgh(v,h)ﬂuh_l < hC , nh<Z, néN.
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THEOREM 7.2.13. For all t=<Z and some constant C:
it
(7.2.31) HVt ¢t”u < hC.

PROOF. By virtue of theorem 7.2.10 and equality (7.2.28) it suffices to

prove for all t<Z, with n = [th—l] and C some constant:

h e
(7.2.32) ||vn vtllLL < he
Writing ¢

v it TT i n v
(7.2.33) LA A nfh Toh,s Cs ds + [Tnh’t-I]Vt

and using the relations (7.1.16) and (7.1.18) one easily concludes

(7.2.36) V" -v"

<
nh [T hC,

so that the proof is completed by showing

(7.2.35) v - v"

N nh”u < hC.

& _ 6 _ B _ .-l
From (3.2.3), (4.2.5) and A~ = A = [Th Ilh :

h _ ,.6(3) 8(3) h
V. = hL + Th Vj+1
(7.2.36)
mo_ o 6(3) 8(3) ™ ut
th hL + Th th+h + th(V,h).
Write: 6, = v? - vgh. Then (7.2.3), (7.2.30) and (7.2.36) imply
2
7.2.37 5. < (1+ho)||8. | + nc .
@230 syl = asols

Iterating (7.2.37) for j = n,n+l,..., £ -1 and using (7.2.32) with
t =2  yields (7.2.35).
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8. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS (DIFFUSIONS)

8.1. CONTINUOUS TIME MODEL

This section 1is concerned with the solutions of controlled stochas-
tic differential equations,also known as controlled diffusion processes.
As example of such a process consider an investment fund. The owner (con-
troller) of the fund can continuously control the fund by choosing an in-
vestment opportunity from an available set. An investement opportunity is
characterized by a pair (YI,YZ),where Yy denotes the rate of return (profit)
per dollar invested and Y, is the value of risk given by the variance per
dollar invested. Let the state variable of the process denote the value of
the fund. Then,given that at time-point t the state is x and that during
[t,t+At] one and the same investment opportunity with associated pair
(Y],Yz) is chosen,the state at time t+At is given by the random variable
Xt+At satisfying

Kpppe = XFEVBEHXA W,

where wAt is a stochastic increment,due to risk,which has a normal dis-
tribution with mean O and variance At. Costs are involved by means of a cost
rate function depending on the actual value of the fund as well as the rate

of return and value of risk.

To proceed formally,let S = R, I‘=F1 xl"z C 1R2 and for 6: R »T
and x€S write §(x) = (Sl(x),ﬁz(x)). Then,in this section,we consider a con-
trol object (R, F,A,u,DA,{AﬁlﬁéA},L) as well as
a: R xTI', » R a measurable function, called drift function, and

1

b: R xT,> R ameasurable function, called diffusion function,

such that for all €A, f€DA and x€S:

2
(8.1.1) A% = a(x,&l(x))d—i £(x) + l2 bz(x,ﬁz(x)) ?1%2 £(x).

As will be shown below, for a sufficiently smooth control m€[I(M) there
exists a controlled Markov process on [0,Z],denoted by (ni)t<:z, which

correspondsto the above control object and is given by the
stochastic differential equation:
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s m 1 i
= <
(8.1.2) dnt at(nt) dt + bt(nt) dwt , t=<2

where a:, b: are given by notation 8.1.! below. As in subsection 5.3 of
chapter I,we refer to the books of Gihman and Skorohod (1972) or Arnold
(1975) for the definitions, properties and techniques of stochastic dif-
ferential and integral equations with respect to the Wiener measure (wt)tz 0
Particularly, detailed studies of controlled stochastic differential
equations can be found in Fleming and Rishel (1975), Gihman and Skorohod

(1979) and Krylov (1980) as well as many others.

Specifications on the functions a and b, the bounding function W,
the domain DA and the cost-rate function L will follow. First,let us
present some notation before analyzing the admissibility of a control.

NOTATION 8.1.1.

) = alx,5,(0)36°60) = bx,5,(x)) for all BEA, x€S.
it I§) i é)
a, =a ;b =b for melI(M), t=0 and & = w(t). o

THEOREM 8.1.2. Let welI(M) be such that the following conditions hold:

(1) For some constantl , all x,y«R and t+At=Z:
il Ul Ul v
(8.1.3) lagpe @ -2, M| + b, O -b (M| = L(fx-y| +a0).

(ii) ng does not depend on (wt)tz 0 and E [ng]z < o,

*
Then there exists a unique  solution (n:) of (8.1.2) satisfying:

t=2
(iii) With probability one the function n: is continuous in t.

n]2 <

(iv) E '[T]t

C for all t=7Z and some constant C.

* Here , the uniqueness holds in the sense of random elements on D[0,Z],

but also in the stronger sense as given by theorem 5.3.1 in Chapter I .
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PROOF. By defining K: = max {L,LZ + |a2(o)] + [bg(o)|} one easily shows

|af () = al (y)| + |b] () =L (3) |

IA

K|x-y|
(8.1.4)

|a2(x)|ﬂ-|b1(x)|

IA

K(1+]x])

for all x,yc Rand t<Z. Further, recall that az and b: are measurable in
(t,x). Hence, the proof is given by theorem 1 on p.40 of Gihman and
Skorohod (1972). [u}

In the rest of this subsection 8.1 , let m satisfy (8.1.3) for some
Z>0. The Lipschitz and growth relation (8.1.4) will be used without expli-
citly mentioning it.
Particularly, after using a time-shift over time-s it directly follows from
theorem 8.1.2 that for any s,t<Z and x€S there exists a unique solution

Ul < < .
(ns,t(x»sStEZ such that for all s<t=<2Z:

t t
(8.1.5) “Z L) = x+ [ az(nz LE)du + [ bz(nz L0
b s ’ s E]

These solutions enable us to present the following proposition.

Its proof is given by theorem 1 on p.67 of Gihman and Skorohod (1972).

PROPOSITION 8.1.3.

(1) There exists a unique semigroup of trcnsition probabilities

{Pz t | s,t<2} such that for all s,t<Z and BEB :
(8.1.6) P (x3B) = P (n _(x)€B)
-1 s, t %3 ﬂs,t ,X €S.

(ii1)  The unique solution of (8.1.2) given by theorem 8.1.2 is a

Markov process with transition probabilities {Pz t|s,t:SZ]. o

Further, after using a time shift over -s again, the following lemma can be
shown by applying theorem 4 on p.48 of Gihman and Skorohod (1972) together

with Schwartz' inequality.

LEMMA 8.1.4. For any méN there exist constants G(m) and L(m) depending
only on m,Z and K such that for all 0=s=t=<2Z and x€R:
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e(t—S)G(m)

IA

(8.1.7) E lﬂL’,t<x> ke (a+|x|™

=}

(8.1.8) E |n‘; t(x)_x|m < G x™ -2 Lm o (£=5)G(m) .

To proceed,let {Pz,t]s,tf Z} be the transition probabilities given by
(8.1.6) and fix m€N . The symbol C always denotes a constant depending
only on m,Z,K and w.

In addition we recall the notation I.5.3.6 for C3;m as well as the constant
K if fegdim
definition I.5.3.9.

. Further, let Hy denote the bounding function given by

3;m

LEMMA 8.1.5. For any f€C and t+h=2Z:

ul

i -1 w(t),. .. <
t,e+n (390 TEC) IR T = ATRTEC My = Vh K

(8.1.9) It [ e
PROOF. Consider a fixed fEC3;m and t+h<Z. Write for s> 0:

ng(x) = n:,t+s(x)’ a (-) = a:+s(-), b (+) = bLS(-) and T_f(x) = E£(n (x)).

Then by using the integral equation (8.1.5) as well as the growth and
Lipschitz relation (8.1.7) and (8.1.8) respectively the proof can be given
almost analogously to that of lemma I.5.3.11.

As only difference the time dependence of the functions as’bs has to be
taken into account. However, by using the Lipschitz relation (8.1.3),es-
pecially with respect to the time parameter,one easily verifies that this
time dependence givesrise to extra terms of the form h2C on the right-hand
sides of I(5.3.21), (5.3.22), (5.3.23) and (5.3.26). u]

THEOREM 8.1.6. Let well(M) such that relation (8.1.3) 7s satisfied.
35m
=C . Then,

(1) © <s an admissible control for the control object, and

Consider the control object with b=u .4 and DA

(ii) m satisfies the boundedness relation (2.1.2).
Consequently, wEII(AB).

PROOF. (i) Directly from definition 2.1.4, theorem 8.1.3 and lemma 8.1.5.
(ii) By using the growth relation (8.1.7). o
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REMARKS 8.1.7.

1. The Lipschitz relation (8.1.3) is quite strong. However, as in
remark 7.1.7,it may be noted that, in view of proving the admissibility

of a control as well as of obtaining approximation results later on,some
relaxations, especially with respect to the Lipschitz condition the time-
parameter, can possibly be made.

Particularly, relaxations to piecewise Lipschitz conditions are very use-
ful for applications. A specific relaxation of this type will be made in
§4 of subsection 8.2.

However, we have not dealt with more relaxations and prefer to give strong
conditions in order to avoid too much complexity as well as to show how

to obtain rates of convergence.

2. The Lipschitz relation (8.1.3) is satisfied if the functions a and

b are Lipschitz i.e.; for some constant G, all x,y€R, YI,YZEF],n],anFZ :

Ia(X’Y]) - a(y;Yz) ! + Ib(x:'r]l) - b(y’nz) [ =
(8.1.10)
GUx=y| + v, = v, * Iny =M, D)

and if in addition one of the following two conditions hold:
(1) m is stationary with a Lipschitz decision rule i.e.;
for some 5€A and all t=0: m(t) = & and for all x,y€R and some

constant G :

(8.1.11) [61(X)—5](y)]+ ]52(x)-62(y)| = G|x-y

(ii) The control m satisfies for all t<Z and with § = w(t) the Lip-

schitz relation (8.1.11) (with constant G uniformly in all t=<2Z)

as well as with dn(Cr;,n)),(r,0m,)) == [y v, | + Iny=,| :
8.1.12 =
@.1.12)  fdp(m )y (] fec .

(Note that (i) is included by (ii)).
Especially the conditions (8.1.11) and (8.1.12) will not always be satis-
fied in realistic models. As in 1 of this remark,however,extensions to

piecewise Lipschitz conditions seems to be worthwhile in this respect.
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In view of theorem 8.1.6 the notations and results of section 2
can be applied with p = Hoe3 and DA = C3;m. Recall expression (2.2.1) for
b

T f.
s,t

Then from relation (2.2.4), expression (8.1.1) for Aé, the growth condition

of (8.1.4) and the inequality (8.1.9) one easily verifies for all

£ec>™, 5,657, A<z

m 0
(8.1.13) . _ £l = M [f] ,
St s Yme3
.14 A" g < oK, ,
um+3
(8.1.15) hot" - 1)1 < AtCK ,
t,t+At s f
-1_ ()
(§.1.16) ||([Tt cent " 1](At) A )fllum+35 Vit CK .

Let us conclude this subsection by presenting analogously to proposition

I.5.3.8,a result on the differentiability of Tg tf(x) with respect to its
b

initial data x. Therefore however, as in chapter I we make the following

s . s u
additional assumption on a and b .

ASSUMPTION 8.1.8. For constant K and all x€S, t<Z it holds that

k
[ S— a (x) and Sgk b:(x) exist, are continuous in (t,x) and
i—Eika"(x)]+l—‘311zb"(x)|< K, k=1,2,3 o
a t ax t hd ’ L] ’ .
3sm

PROPOSITION 8.1.9. Let £€C™’ and define for 0=s=t=Zand all X€S:

g . (x) = " f(x). Then gy €C3 ™ and K < CK
s,t s,t gs t

£

PROOF. By using the same notation as given in the proof of lemma 8.1.5
and noting that the growth relation in (8.1.4) as well as the boundedness
condition in (8.1.17) hold uniformly in t=Z the proof can be given

analogously to that of proposition I1.5.3.8. o

NOTATION 8.1.10. Let C3;m{D Z] be the set of collections {gtl t€{0,z]}

such that for some constant,denoted by K [0,Z],and all t:

35m
gtEC and Kg = Kg [0,z] . o

t
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8.2. APPROXIMATIONS

Take h,>0 and let for any h:EhO :{Pi]SEA} be a collection of tran-

0
sition probabilities defined by

for y=x+ aﬁ(x)h+ b6(x)\/h

N —

(8.2.1) Pg(x;{y})=
for y=x+ as(x)h - b5(x)\/h

No| —

for all x€S and &6¢€A.
Below we examine the discrete-time approximation of

transition probabilities in §1,and

finite horizon cost functions in §2.
Therefore,let m€II(M) be a fixed control and suppose that
the Lipschitz relation (8.1.3) as well as assumption 8.1.8 are satisfied.
Then, for any thhO we consider the h-control object with p= b3 and Pﬁ
given by (8.2.1) as well as the h-Markov control : nh= (m(0),mh),m(2h),...).
According to lemma 8.2.2 below, relation (4.1.4), which justifies the use
of the operators Tg and Aﬁ given by (4.1.5) and (4.1.6), is guaranteed for
any 8€(m(0),m(h),m(2h),...,7(£h)) £ = [Zh—l]. First recall that
Ia:(x)| +|bz(x)| = R(1+ |x]),uniformly in t<Z. Then by using this growth

relation, the following two lemmas can be shown analogously to the proof

of lemma I.5.3.12 and lemma I.5.3.13 respectively. Let €= [Zh—I].

LEMMA 8.2.1. The consistency relation (6.2.1) with u= bovs is satisfied
for any collection {UtItG[O,Z]}EC3;m[O,Z]cnquuch that for all h=hy, j<¢(:

(3b) _ ,m(3h)

(8.2.2) ll(A:l ) 1JJ.h+h||LLer3 < vhek, [0,2]. a

o

LEMMA 8.2.2. The stability relation (6.2.3) is satisfied with p= oe3e

Note that (also see remark 6.2.1) lemma 8.2.2 implies:
7%= (10, (h),m(2h),...) €I (AB).
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§1. TRANSITION PROBABILITIES

3;

THEOREM 8.2.3. For any £€C™°" the convergence relation (6.3.2) is satisfied

with order of convergence 0(Vh).

PROOF. Let f’EC3;Iu and first conclude from proposition 8.1.9 that

ul

(8.2.3) {Tt,Z

£ltel0,21} € ¢>3™[0,2] and I
f f
t,Z
Consequently, by virtue of theorem 6.3.2, lemma 8.2.1 and lemma 8.2.2,

relation (6.3.2) is proven by verifying the smoothness assumption 6.3.1.

Condition (i) of assumption 2.3.1 with DA = C3;m directly follows from

(8.2.3). Condition (ii) of assumption 2.3.1 with =k 3 is implied by
(8.1.14) together with (8.2.3) again.

The 'smoothness' relation (6.3.1) is satisfied since (8.1.16) and (8.2.3)

yield:
v -1
(8.2.4) IR (T,£,m, h =
m+3
ICEES —11 - ATy g = Vh CK. .
t,t+h t+h, 2 o T f

Hence, the smoothness assumption 6.3.1 is guaranteed. Furthermore, lemma
5.5 together with the relations (8.2.2) and (8.2.4) implies the order of

convergence O(Vh). o
In analogy with subsection 5.3 of chapter I,also weak convergence

of the transition probabilities and discrete-time processes can be conclu-

ded by making use of lemma I.5.3.15 and an analogue of lemma I.5.3.19.

§2. FINITE HORIZON COST FUNCTION

ASSUMPTION 8.2.4.

(8.2.5)  {L]|tel0,2]} €¢>P™(0,2]

(8.2.6) I -y

< <
C+AL ehy = AtC t+At <Z.
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k
(8.2.7) sgk L:(x) is continuous in (t,x) for k = 1,2,3. o

o o i . . .
More specific conditions on L and 7 guaranteeing assumption 8.2.4 will
be given in remark 8.2.6 below. First,let us present the approximation

result.

THEOREM 8.2.5. Let assumption 8.2.4 be satisfied. Then the convergence re-
lation (6.4.2) holds with order of comvergence 0(Vh).

PROOF. First let us verify the smoothness assumption 6.4.1.
By using (8.1.13), (8.1.15), (8.2.5), (8.2.6) and the fact that
Hg”u < 2”g”u if gEBp’m, we conclude for all o<St<s<s+tAs<Z:

m+3 m
T i o ki <
(8.2.8) ”Tt,s+As s+As t,s Ls”um+3 -
Tt s b 0 s s
-— -— <<
”Tt,s+As(Ls+As Ls)”u * ”Tt,s(Ts,s+As I)Ls”u = AsC.

m+3 m+3

i o,
H T
ence, t,s LS is um+3

Further, relation (8.2.5) implies the um-and hence uﬁ+3-boundedness of

-continuous in s€[t,Z] for any t=Z.

{L:]tE[O,Z]}. So that together with (8.1.13) we also conclude the um+3-
boundedness of {TZ SLZis,tG[O,Z]}, which completes the verification of
assumption 2.3.2.

Next, we will show:
(8.2.9) {th'|ce[0,z]} cc>Mo,z].

Therefore, first of all by using proposition 8.1.9 and the mean value

theorem,conclude that for all f€C3;m, x€S, 0=st=s=Z and with |Ax| = i:
ok T ak ut -1 m
. _<? - T <
(8.2.10) Gk T FON -y = G T FON | [ax] ™ = (x| Mok,

where C depends only on Z,K and m. Relation (8.2.10) together with (8.2.5),
which implies the boundedness of KL" uniformly in t<Z, and Lebesque's

dominated convergence theorem will t imply for K = 1,2,3, x€S and t=7Z:

k Z k&
0 At _ 3 it n
(8.2.11) Gk V() = tf Gk Ty glg @) ds

if in addition the integrals in the right hand side of (8.2.11) are well-
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defined as Lebesque-integral. However, by using the continuity in (t,x) of
a:(x), b:(x) and L:(x),as resulting from (8.1.3) and (8.2.7), the continuity
of the integrands in s for fixed t and x can be shown analogously to p.61/62
of Gihman and Skorohod (1972). Consequently, (8.2.11) holds for k = 1,2,3
all t€Z and x€S.
Finally, (8.2.3), (8.2.5) and (8.2.11) yield (8.2.9).

3;m

This proves condition (i) of assumption 2.3.3 with DA = C ,

and together with (8.1.14) also condition (ii) of assumption 2.3.3 is shown.

Further, expression (3.2.2) for RZ(V,h), relation (8.2.8) with s=1t,(8.2.9)
and (8.1.16) imply that

(8.2.12) HR:(V,h)H L
u'm+3
t+h
I f T:  Lnds - L:H +
K s s T
-1 it _ _ m(t) . 1 -
In ([Tt’t+h I] - hA )vt+h||u < VhC.

m+3

Consequently, the smoothness assumption 6.4.1 is satisfied.

As a result, by virtue of theorem 6.4.2, lemma 8.2.1 together with (8.2.9)
and lemma 8.2.2,the convergence relation (6.4.2) holds. Furthermore, lemma
5.5 together with (8.2.2) and (8.2.12) shows the order of convergence o(Vh).

a]
REMARK 8.2.6.

1. It is not difficult to verify that assumption 8.2.4 is satisfied if

the following conditions are guaranteed:

(1) m satisfies (8.1.12) as well as for any t=Z and with 8 = w(t)
relation (8.1.11) with constant G uniformly in all t<2Z.

(ii) For all x€S, (Yl,nl) , (Yz,nz)EF.
m
(8.2.13)  |LGx,v; ) = LGx,1ymy) [ SCCv v, [ + Ny, ) 0+ ]x 7]

(iii) For k = 1,2,3,1i = 1,2,3

k

E . . . .
§§fk L(XI’XZ’X3) exists, i1s continuous in (x],x ,X.,) and

2’73

(8.2.14)
e} m m m
|§§;k L(xl,xz,x3)| =cll+ |x1| + |x2[ +|x3| ],(x],xz,x3)ERxI}xF2.
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2. Note that the convergence in (6.4.2) is concluded uniformly within
the class of controls for which the Lipschitz constant L in (8.1.3) and
C in (8.2.6) as well as the constant KLTT [0,Z] corresponding to (8.2.5) are

uniformly bounded. ]

§ 3. FINITE HORIZON OPTIMAL COST FUNCTION

In stead of assuming a fixed control and corresponding smoothness
conditions as in §1 and §2 , in this paragraph the following assumptions

are made:

ASSUMPTION 8.2.7.
(1) 1"l C R and I‘z
(ii) A ={6: R>T|6 measurable }.

(iii) The function L: R xl’1 XT2—> R satisfies (8.2.14).

C R are compact-.

(iv) The functions a: Rx I‘1*>IR and b: R xl"2—> R are continuous and
satisfy for some constant G, all x,y€R and (YI,Y2)€I‘ the Lipschitz

condition:

(8.2.15) latx,v)) —aly,y) |+ |b(x,Y2)-b(y,Yz)]SG|X-Y|- o

ASSUMPTION 8.2.8. There exists a unique collection {¢t|t€ [0,Z]} satisfying
(2.3.4) such that

s

(8.2.16) {9, |tef0,2]} € c>*™[0,2]
as well as for all o<s<s+As<7Z:

(8.2.17) -2 ¢

2
3
9xX ' s+As 3122 q’s”um = Vas c. e

2
- 5§'¢s”um * ”532 ¢s+As
REMARK 8.2.9. We note that assumption 8.2.8 will not be satisfied in
general. References and more detailed statements in this respect are given
in remark 8.2.13 below. Further, assumption 8.2.8 is only likely to be
satisfied under stronger conditions on a and b, such as sufficient dif-
ferentiability and strictly positiveness of b. In our approach,we let
assumption 8.2.7 contain conditions only for the approximation analysis,
whereas assumption 8.2.8 guarantees the existence of the optimal cost

function. o
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In this §3,we will also consider for any h<h, an h-control object

0
with p = p 43 and P6 given by (8.2.1). According to lemma 8. 2 11 below,rela-
tion (4.1.4) is guaranteed and hence,the notations Ti and Ah as given by

(4.1.5) and (4.1.6) are justified for all 8€A. From (8.2.15) one easily

concludes for some constant K and all x€S:

&, 1 o]
(8.2.18) sup (Ja (x) |+ [b7(x)]|) = K(1+|x]).
5€A
As a result, by using the growth relation (8.2.18) ,the following two lemmas
can also (cf. lemma 8.2.1 and 8.2.2) be shown analogously to the proofs of

lemma I.5.3.12 and lemma I.5.3.13 respectively.

LEMMA 8.2.10. The strong conststency relation (6.2.2) holds with p=u +3fbr
any  collection {U, |telo,z]} ecd ™10,2] and such that for all h=h
jh+h=2Z:

0’

(8.2.19)  sup H(Ah A% Uil

sup b < Vvh CKU[O,Z]. 0

LEMMA 8.2.11. The strong stability relation (6.2.4) holds with p= boyge O

THEOREM 8.2.12. The convergence relation (6.5.2) is satisfied with order
of convergence 0(Vh).

PROOF. By virtue of theorem 6.5.2, lemma 8.2.10 together with (8.2.16),
and lemma 8.2.11 ,the relation (6.5.2) is shown by verifying the smoothness

assumption 6.5.1.

Therefore, from the continuity of L, a and b one easily concludesthat for

any f€C3;m and fhECum the functions g and gh on E{xT]x Pz,defined by

2
BOE,Y)57y) = LT 51,) + [aGey)gs £00 45 b2 Gey,)ge2 £(0]
(8.2.20) gh(x,Yl,Y2)= hL(X,Y],YZ)*'[% fh(xi-a(X,Y])h-Fb(x,Yz) Vh) +
-2- £ (x + a(x, v Dh-b(x,yv,) V)],

are continuous in (x,yl,yz)eﬂlx P]:(PZ. Next,recall expression (2.3.3) for

the infimum operator J with A~ given by (8.1.1). Further, recall the
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conditions (i) and (ii) of assumption 8.2.7 as well as the growth rela-
tion of (8.2.14) and the growth relation (8.2.18). Then it can be shown

analogously to the proof of lemma 7.2.8 that
3sm B . .

>> > C . This guarantees assumption 2.3.4 with DA =C
as well as assumption 4.2.3 with F= Cpm.

J:C 33m

Furthermore, from (8.2.]4) and (8.2.18) it is seen directly that

8.2.21) gl = cC+xp for £eCO™,

m
so that together with (8.2.16) we can conclude that the collection
{J¢t]t€[O,Z]} is Dl and hence um+3—bounded. Together with assumption 8.2.8,
this also proves assumption 2.3.5. Finally,from (8.2.17) and (8.2.18)
it follows that

8.2.22) 3@, -I@)I, = sup 1A%

"

-] < VAtC
w3 S€A tu

t+At n+3

t+At

Consequently, expression (3.3.1) for Rt(¢,h) and (8.2.22) imply

(8.2.23) IR, (8,h) || h! < Vhe.
t u
m+3
Hence, the 'smoothness' relation (6.5.1) is satisfied. Furthermore, lemma
5.5 together with the relations (8.2.19) and (8.2.23) guarantees the order

of convergence 0(Vh). a]

REMARKS 8.2.13.

1. The problem of the existence and the uniqueness of a solution of
the optimality equation (2.3.4) for diffusion processes, as is required

by assumption 8.2.8, is well-known in the literature.

Especially,the case of an uncontrolled and non-degenerate diffusion
coefficient has been frequently studied. Existence results can be obtained
by using results for ordinary differential equations together with a
method of successive approximation,as shown for instance by Fleming and
Rishel (1975). From an algorithmic and computational peint of view,the
method of policy improvement (iteration),as used by Puterman (1977),(1978),

can be very valuable.
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For linear systems, i.e. with coefficients linear in the control variable,
it is sometimes possible to solve the optimality equation analytically, as

shown, for instance, on p. 187 - 200 of Gihman and Skorohod (1979).

Krylov (1980), however, studies the Bellman equation, in general, for
diffusion processes with controlled drift as well as diffusion coefficients.
Under smoothness and growth conditions on the diffusion characteristics
as well as the cost rate function (see p.130, 165 and 173 of Krylov) of the
type as given by (8.1.17) and (8.2.14) up to second order derivatives as
well as non-degeneracy of the diffusion coefficient, he proves (see chap-
ter 4) the existence of a solution of the Bellman equation.

In addition, it is also shown that the first and second derivatives of a so-
lution with respect to the state variable are polynomial bounded, such as
required by (8.2.16). In analogy with his results, we trust that also the
conditions for the third derivative can be verified. We like to note that
his proofs are based on using stochastic differential equations for the
(mean square) derivatives of solutions of differential equations with
respect to the initial data,and using Lipschitz and growth conditions,

uniform in all controls, of the coefficients.

2. It is well-known, see for instance p.159 of Fleming and Rishel
(1975), p.174~-180 of Gihman and Skorohod or Krylov (1980),that the solu-
tions of the optimality equation of diffusion type present optimal cost of
control within a wide class of controls,including history dependent con-

trols. =

§4. CONSTRUCTION OF e—OPTIMAL PIECEWISE CONSTANT CONTROLS

As in section 7,it will be worthwhile,in view of the optimality
property stated in 2 of remark 8.2.13,to study the possibility of con-
structing (simple) controls such that the cost function of the correspon-
ding continuous-time controlled process is close to the optimality func-
tion. If there exists a discrete—time control which is Lipschitz with re-
spect to the state variable and which is optimal (nearly optimal) for an
h-discrete-time controlled process,with h sufficiently small, then it
can be shown analogously to §4 of subsection 7.2. that this control is
also nearly optimal for the continuous-time model. Unfortunately, how-

ever, in general such a Lipschitz property for optimal or nearly optimal
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controls is not guaranteed or may be difficult to prove.

In order to avoid Lipschitz requirements on the controls,we will use dis-
crete-time controlled stochastic processes of which the one-step transi-
tion probabilities themselves are induced by stochastic differential equa-
tions under constant control variable.

A discrete-time controlled process so constructed is just a special case
of a continuous-time controlled stochastic differential equation.

As a result, showing that the corresponding optimal cost functions of the
discrete-time construction and the continuous-time model are close and
recursively determining an optimal (or nearly-optimal) control for the
discrete-time case, yields a nearly-optimal control.

In this paragraph,let the assumptions 8.2.7 and 8.2.8 also be satis-
fied. Further,for vy = (Y],YZ)EF we will also use y as a superindex to
indicate a constant decision rule Y€A with y(x) = y for all x€S as well
as a constant Markov control ? with ;(t) = v for all t=0.

It will always be clear which of these two is used.

Let h>0 be fixed and note that the Lipschitz relation (8.2.15) im-
plies the Linschitz relation (8 1.3) for the constant control m = ?, where
?(t,x)=‘Y for all x€S, t=>0, ve€r. Consequently, according to theorem
8.1.2, there exists for any Y and x€S a unique (homogeneous) Markov

process (n:(x)) satisfying:

t=<h

t t
(8.2.24) M) =x+ [ a'M () ds+ [ b'(¥(x) aw. , t<h.
t 0 s 0 s s

Further, let {TI|t€[O,Z]} be the corresponding semigroup of operators defined
on BYm+3 by

(8.2.25) TZf(x) = Ef(n*tf(x)) , X€S.
3;m_

Then, according to (8.1.7), (8.1.15) and (8.1.16) we obtain for all n€N, f€C

(8.2.26) E |T]I(x)|n < ¢+ |x|™M,

Y o_ <
(8.2.27) I [TAt I]f||um+3 = M CK,

Y _ -1 _ .y <
(8.2.28) II([TAt I](At) A )fIIu < VAt C K¢ s

m+3
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where, by virtue of (8.2.15) and (8.2.18), the constant C holds uniformly in v€TI.

To proceed first conclude from (8.2.14) and the compactness of T that

LYec3sm
Y 1Y .

{T, L |telo,h]} is T

As a result, the function TZ

. Consequently, by using (8.2.27) it is easily seen that
—continuous as well as um+3—bounded in t€{0,h].

L7 can be integrated.

Hence, by virtue of lemma 8.2.14 below we are able to define an operator Gh
on c'm+3 by

h
(8.2.29)  GPf(x) = inf [ T LY(x)ds + TVEG) ]
yer 0 °

We obtain a collection {¢?|jh:§Z} c c'm by recursively solving the

discrete-time optimality equation:

N Z-2h -1

6,00 = inf [[ /LY (x)ds] , x€s, ¢ = [zn '],
(8.2.30) ver 0

h _ h,h .

¢J =G (¢j+]) s J< e.

LEMMA 8.2.14. €™ cP'm o cMm and ghectm,
PROOF. Since the functions a and b are uniformly continuous in (x,y) on
the compact set [-N,N] x T for any N>0 it follows from theorem 2 on p.52
of Gihman and Skorohod (1972) that for (xn,Yn)—> (x,v):
T n 2
(8.2.31) sup E |rﬂtr &M - n’tf(x)| > 0.
t<h

Further, note that relation (8.2.14) together with the compactness of T
implies that |LY(x) - LY(y)| = |x-y| c(1+ |x|™+ |y|™ as well as that
relation (8.2.13) holds. Hence, we can write
no.n o
(8.2.32) |1} 1Y M -1 L ] =
no.ono n n
EIER AN I A A S I LA AP YO N I

n n
Ecln] ™ =l |1+ n) G|+ nf) "] +

n | n Y m
Ec (Iy]-v, I+ I¥j-v,1) [1+nfG)["].
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Finally,applying Schwartz' inequality to the first term of the last sum,
letting (xn,Yp) -+ (%,Y) and using (8.2.26), (8.2.31) and (8.2.32) shows:

(8.2.33) TZ LY(x) is continuous in (x,y) uniformly in t=h.

Furthermore, for any fect'™  relation (8.2.31),implies by using the standard
step of applying Chebyshev's inequality : ng(x) is weakly continuous in
(x,Y). Further,since fECum and ELLm (ng(x))f c (1+ |x|m) uniformly in v
(see(8.2.26) this also implies that

T;f(x) = E f(nﬁ(x))is continuous in (x,Y) for any fechm,

Consequently, for £€c’™ the function gh: Rx I'> R ,defined by
h h
(8.2.34) g (x,y) = [ T: LY (x)ds + TZf(x),
0

is continuous in (X,Y). From this continuity it follows analogously to the
proof of lemma 7.2.8 that th(x) is continuous in X.

Since also (8.2.14) and the compactness of T implies the p_-boundedness

of 1Y,we obtain from (8.2.26) and (8.2.34): G":clm » cMm,

Further,from the definition of ¢$ we obtain analogously: ¢2 ECum. u]

LEMMA 8.2.15. There exist 60,61,...,6
and with vy = 6j(x):

BE A such that for any j< £, x€S

h Z-Etn
¢j(x) = [ TZ LY (x)ds if j = ¢,

(8.2.35) 0

h
h - ey Y Y.h s s
¢j(x) Oj TS L' (x)ds + Th¢j+l(x) if j < ¢.

PROOF. First conclude from the recursive scheme (8.2.30) and lemma 8.2.14

that {¢?|j <g}cchm, Then, the proof directly follows from the continuity
in (x,v) of the right-hand sides in (8.2.35), shown by the proof of lemma
8.2.14, together with the compactness of T and lemma 1.4 on p.16 of

Gihman and Skorohod (1979). =

Let 7 represent the control which at time—point jh changes its value
according to the decision rule Gj given by lemma 8.2.15 and the current
state and thereafter remains unchanged up to the next time-point jh+h,
i=0,1,...,0
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Then, from the stochastic integral equation (8.2.24) together with lemma
8.2.15,it can be concluded that the optimal cost functions {¢h|jh:EZ}
represents cost functions {V;h |jh:§Z } corresponding to a controlled
stochastic integral equation under the piecewise constant and almost-
Markov control m.

(A precise formulation would require history dependent controls,which here
we avoid). In view of the above,however, we write: V2h= ¢?, j<4¢ and will
show that ™ is (in the above mentioned informal sense) a nearly-optimal

control.
THEOREM 8.2.16. For some constant C all t<7Z and with n = [th_]].

it
(8.2.36) v, -9l < VhC.

nh t um+3
PROOF. First of all from (2.3.4) and (8.2.22) we easily conclude that
(8.2.37) e . - ol = VhC.

nh t um+3

Next, according to the systems (2.3.4) and (8.2.30), the fact that A

contains all constant decision rules and that infima are taken pointwise:

h
h_ YooY gh Y1Y4s - hLY
¢j inf [L" + T) ¢j+]+(0f T,L'ds - hL)] ,

(8.2.38) Yer
- i Y Y
¢jh inf[hL' + (bA' + 1) ¢jh+h + th((b,h)
23
Write Sj = ¢2 - ¢jh' Then from (8.2.38):
(8.2.39) ls.l <
VI
h
sup [0, DIl +supll (f TVLYas - wLV)| o+
yer J Hut3  yer 0 S Foe3
sup [[([T) -~ 1] - na") @, I+ (R, @0
verT J p'm+3 J Lj'm+3
3;m

First, conclude from (8.2.14) that LYec and sup KLy<:w.

veT
Further, recall: {¢ _|t€[0,2]} € ™ [0,z].
By using these facts we conclude from (8.2.23), (8.2.27), (8.2.28) and
(8.2.39):
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(8.2.40) lls. | < sup TV (5.. ) + hVhe
J “h+3 ver hoj+l “m+3

Finally, by using lemma 8.2.17 given below, relation (8.2.35) for Qg and

(8.2.37) for t = Z, we obta&n by iterating (8.2.40) for i=n.n+1..... N
(8.2.41) II5. 1l < vhC

I Hnes .
Combination of (8.2.37) and (8.2.41) completes the proof. [a)

LEMMA 8.2.17. For any n€N and all ve€I':
Y
(8.2.42) ”Th“n”u = (1+hC)
n
for some constant C not depending on h and Y.

PROOF. Since Schwartz' inequality can be used if n is uneven it suffices

to give the proof for n is even. First,we write

En )] =ElMG) -x +x]°

=

(8.2.43)

%"+ ] G xPE @G -0t

Relation (8.1.8) directly implies (also noting that h:ShO):

(8.2.44) ) (’i‘)|x|“"1 |E (Y ) - x| =nca+[x[™.
1=2,...,0

Y

Next, recalling that a' is Lipschitz in x, uniformly in ¥y, we obtain ana-

logously to relation (5.3.21) of chapter I:

(8.2.45)  |E{[n/(0) - x] =ha"GO}] = wh cO+]x]) .

so that together with the growth relation for al (see (8.2.18)):
(8.2.46) |E[n¥;—x]| <hC (1+]x]).

Combining (8.2.43), (8.2.44) and (8.2.46) yields

(8.2.47) Tl () = 1+ EMII" = (+x|™) + he (x| o
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REMARKS 8.2.18.

I. Note that lemma 8.2.17 is a slight extension of the growth relation
(8.1.8).
2. In view of the discrete-time optimality equation (8.2.30),we note

that for any fixed vy the term between brackets on the right-hand side of
(8.2.29) can be given explicitly by using formula for the transition pro-

babilities as shown on p.93-95 of Gihman and Skorohod (1972).

3. The existence of optimal and e-optimal Markov controls as well as
construction of e-optimal Markov controls has been shown in chapter 5 of
Krylov (1980) under a uniform Lipschitz condition on the coefficients in

all admissible controls (see p.214 of Krylov (1980)).

In this respect compare the Lipschitz relation (8.2.15). Krylov's construction
of e-optimal controls follows from continuity arguments and choosing dense
subsets of the decision set (cf. lemma 1.4.9 on p.28 of Krylov(1980)) and
consequently,does not show a recursive construction such as given by

lemma 8.2.15 above. a
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9. RELATED LITERATURE

The topic of stochastic control has obtained a fast growing atten-
tion in the literature during the last decade,so that it is impossible to
give a reasonable complete survey on this field.

In this respect,we only like to mention the survey paper of Fleming (1969),
as well as the list of references included by Fleming and Rishel (1975),
Kushner (1977), Gihman and Skorohod (1979) and Bensoussan (1983).

Also methods of time-discretization have been frequently applied in the
literature for all types of 'ad hoc' applications with considerable success
and seem to become an important tool for analyzing controlled stochastic
processes (see for instance Mitchell (1973) and Doshi (1978)).

Therefore,we restrict ourselves to a discussion on the literature
which is most closely related to the approximation analysis of this mono-
graph. First in {1 we discuss the so-called Markov decision drift processes
introduced by Hordijk and Van Der Duyn Schouten (1980). Their model recei-
ves special attention since it includes continuous as well as impulsive
controls simultaneously and also because the approximation analysis of
this monograph may yield some generalizations of their model such as the
inclusion of diffusion processes as drifts. Next,in § 2 we focus on the
work of Kushner (1977), (1978) and Haussmann (1980), which especially seem
to be of interest also from a computational point of view, as well as the
work of Nisio (1978), Bensoussan and Robin (1983), Gihman and Skorohod
(1979), Christopeit (1983), Whitt (1975) and Kakumanu (1977).

In addition,§3 and § 4 contain only a small survey of related lite-
rature on controlled Markov jump processes and controlled diffusion pro-

cesses respectively. We note that these surveys are far from complete.

§ 1. MARKOV DECISION DRIFT PROCESSES; TIME-DISCRETIZATION

Van Der Duyn Schouten (1979) and Hordijk and Van Der Duyn Schouten
(1980), (1983a), (1983b), (1983c) have introduced Markov decision drift
processes. An informal description of such a process is the following.

A process is observed continuously. The process is assumed to be a jump
process with deterministic drifts between the jumps. The jumps are indu-
ced by a controlled Markov jump process (for example, in a maintenance
replacement model shocks of damage occur according to a Poisson process

with controllable shock rate) as well as by possible impulsive controls



136

(for example,an immediate replacement if a certain level of damage is ex-

ceeded). The deterministic drift itself (such as a continuous increase

of damage) is not influenced by the controls.

A policy pescribes at each time—point t a decision to be taken based on

the history up to that time-point; it is either a 'continuous control

variable' influencing the jump-characteristics of the Markov jump process

or an 'impulsive control' which has an impulsive effect on the process.

Costs per unit of time are incurred depending on the actual state and

'continuous control' as long as no impulsive control takes place as well

as lump costs depending on the actual state and the 'impulsive control'.
The above description holds for many applications as queueing, re-

placement and inventory models,especially since the process is allowed

to evolve between jumps and since impulsive controls are taken into

account.

For the above framework,Van Der Duyn Schouten (1979) and Hordijk
and Van Der Duyn Schouten (1980), (1983a), (1983b), (1983c) develop a
method of time-discretization in order to obtain structural results for
optimal controls in the continuous—time model. Therefore, a sequence of
discrete—time Markov decision chains is constructed. In a discrete-time
Markov decision chain the difference in their impact of continuous and
impulsive controls vanishes. By making use of the dynamic programming
method for discrete-time optimality equations together with weak conver-
gence results for the approximating sequence of processes they are able
to conclude the optimality of a limit control within a wide class of
'regular’' policies.
Further,under several conditions they are able to deal with unbounded cost
rates and it is worth noting that their analysis does not require solu-
tions of the continuous-time optimality equations. The optimality of
structured policies is shown, e.g. bang — bang type resp. monotone type resp.
(s,S)-type in maintenance replacement resp. M|M|1-queueing resp. inven-

tory models.

The discretization presented in section 7 for controlled Markov
jump processes is equal to their discretization in case of absence of
impulsive control. Therefore,in that case the analysis of this chapter

can be applied in order to obtain approximations for the optimal cost
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functions. Furthermore,especially the generalization of a deterministic
drift to a controlled stochastic process between jumps, is an important
topic for further investigation where the results and techniques of
Hordijk and Van Der Duyn Schouten can be combined with the analysis of

this chapter.

§2. FURTHER GENERAL TIME-DISCRETIZATION METHODS.

Kushner (1977) develops probability methods for approximations
in stochastic control, particularly controlled diffusion processes, and
first or second order differential equations. His method is based on a
combined discretization of time-and state variable and is induced by a
numerical procedure, although a modification is required in order to
guarantee discretizations associated with one-step transition probabili-
ties. His type of discretization resembles that presented in section 8
for controlled diffusion processes. If the drift coefficient is always

0 then these discretizations are exactly the same.

The way of showing convergence, however, is somewhat different.
Kushner only needs to verify the tightness of the approximating processes.
Using a weakly convergent subsequence the existence of a limit process
is proved. By showing the uniqueness of a limit process (cf. p.99) and
by using continuity properties on D-spaces (cf. p.100/101), Kushner
(1977) proves the convergence of the approximating processes as well as
of the corresponding cost functionals.

The tightness is proven by showing that the fourth moments of the incre-
ments over time st for all discrete-~time processes are uniformly bounded
by C(At)z(cf. P.96/97 of Kushner (1977)).In this respect we note that
lemma I.5.3.19 presents a similar type of result. Since,however, there
we required a polynomial bound with respect to initial data and we al-

allowed unbounded coefficients,we had to give a somewhat modified proof.

Kushner applies his method to a variety of interesting problems
associated with diffusion processes as optimal stopping, impulsive con-
trol and reflection problems. He studies the approximation of the cost
functionals (some specific numerical results are included) as well as the

existence and optimality of a limit control.
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Again,it is worth noting that the approach does not require analysis of
continuous-time optimality equations. Further,we note that he assumes
diffusion coefficients to be uncontrolled and the cost functions invol-

ved to be bounded.

The same approximation method is applied to the average cost case
in Kushner (1978) and, under relaxations of Lipschitz conditions and for
the finite horizon function again, by Haussmann. ‘Haussmann shows that

a limit control satisfies a stochastic maximum principle.

Gihman and Skorohod (1979), Nisio (1978) as well as Bensoussan

and Robin (1983) use the same type of time-discretization. As one-step
.. e h _ oY Y
transition probabilities they take Pnh,nh+h Pnh,nh+h nh,nh+h
denotes the transition probability of the continuous—-time process under

where P

constant control variable y during [nh,nh+h).

In a general setting,Gihman and Skorohod (1979) consider controlled
stochastic processes associated with a control object (different from our
definition) and so-called generalized controls inducing a random process
of control. For a fixed sample path of the control process the probability
law of the state process is determined in a non-anticipative way and si-
milarly for a fixed sample path of the state process the probability law
of the control process is determined in a non-anticipative way. By using
time-discretization,they show in this general setting the sufficiency of
step~(that means with piecewise constant control variables) feedback con-
trols with respect to optimality for finite horizon cost functions depen-
ding on the entire history of state and control process.

For a controlled Markov jump process these results yield the optimality
of a solution of the optimality equation and of a corresponding control.
Further, for controlled stochastic differential equations driven by a
process of independent increments, which includes a Wiener process and/
or Poisson processes, it is shown that the discretization induced by
piecewise constant controlling the differential equations yields nearly-
optimal controls. The discretization given in §4 of section 8 is of the
same form. The results of Gihman and Skorohod require Lipschitz condi-
tions on the drift and diffusion coefficient in the state variable uni-

formly in all controls, whereas in §4 of section 8 we only require the
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Lipschitz condition uniformly in any fixed control-variable (decision).

Further,their results concern bounded cost functions.

Nisio (1978) shows that the optimal cost functions associated with
optimal stopping problems for time-homogeneous Markov processes can be re-
presented by a unique non-linear semigroup which is monotone; contractive
and strongly continuous. In addition,he shows that the semigroup is the
unique solution of an optimality equation. His results assume bounded and
Lipschitz cost functions and are derived by controlling the model at step-
sizes 2_i and showing monotony properties of the corresponding cost func-—

tions.

Bensoussan and Robin (1983) use a same type of method as Nisio but
also apply it to continuous and impulsive control problems associated
with homogeneous Markov semigroups. Analogously to Nisio,the convergence
of discrete-time optimal cost functions is shown for step-sizes 27" and
by using monotony arguments. The boundedness of the cost functions is as-
sumed but relaxations of Lipschitz conditions are made. For the continuous
control problém the set of possible controls is assumed to be finite.

Probabilistic interpretations of the convergence results are included.

Christopeit(1983) studies a stochastic differential equation with
controlled bounded drift function and uncontrolled diffusion coeffi?ient.
As discretization stochastic difference-equations with step-size 27" are
considered. The one-step stochastic difference is taken linear in the step-
size and drift function at the discrete-time point plus an addition of a
Wiener increment. By showing tightness convergence results are obtained
and the optimality of a limit control is shown for the finite horizon cost
case The existence of the limit control which has to satisfy a certain
convergence condition is assumed a priori. The drift function is Lipschitz
in all variables. The cost function is allowed to be exponentially boun-

ded and is only required to be continuous.

Whitt (1975) studies in a general setting the convergence of a se-
quence of Markov renewal programs and related functions. As a particular
application for expomential processes and countable state space,an approx-

imating sequence of discrete-time Markov programs is studied.
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Convergence results are obtained under (pointwise) convergence conditions
of the one-step to the infinitesimal jump characteristics. (The time-dis-
cretization given in section 7 for Markov jump processes and with countable

state space obviously satisfies that condition).

Kakumanu (1977) treats controlled Markov jump processes with coun-
table state space andrfinite decision set, bounded jump rates and bounded
cost-rate function. For the discounted as well as the average cost case
he shows that for any control the cost functions and hence also the op-
timal cost functions are exactly equal, up to a factor, for the continuous-

and discrete—time model.

§3. CONTROLLED MARKOV JUMP PROCESSES

A study of these processes can be found in Miller (1968), Pliska
(1975), Davis (1976), Boel and Varaiya (1977), Kakumanu (1977), Gihman
and Skorohod (1979) and Yushkevich (1980). See remark 7.2.11 for specific
remarks on these references in view of optimality equations and optimal

controls.

In more general settings controlled jump-type processes are examined
by Stone (1973), Whitt (1975), Rishel(1976), Van Der Duyn Schouten (1979)
and Hordijk and Van Der Duyn Schouten (1980), (1983a), (1983b), (1983c).

Applications of controlled jump-type models can especially be found
in queueing models, storage models etc. See for instance Mitchell (1973),
Doshi (1978), Van Der Duyn Schouten (1979) and Hordijk and Van Der Duyn
Schouten (1983c).

§4. CONTROLLED DIFFUSION PROCESSES

A general study of these processes can be found in the books of
Mandl (1968), Fleming and Rishel (1975), Kushner (1977), Gihman and
Skorohod (1979), Krylov (1980) and Bensoussan (1983) as well as the
theses and related papers of Pliska (1972), (1973) and Puterman (1972),
(1974).
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Particularly,the work of Mandl (1968), Pliska (1972), (1973) and
Puterman (1972), (1977), (1978) are concerned with the continuous control
of diffusion processes on bounded subsets of the state space. They present
many existence and uniqueness results with respect to the optimality equa-
tions in the stationary case (Mandl, Pliska and Puterman) as well as the
finite horizon case (Puterman), on the optimality of solutions of these
equations and especially on proving the existence of optimal and e-optimal

Markov or piecewise constant controls.

Applications of controlled diffusion processes have been given,for
instance, for dam, queueing, investment and particularly cash-balance
models. See Bather (1968), Pliska (1972), Puterman (1972), Constantinides
(1974), Constantinides and Richard (1978), Harrison and Taylor (1978), and

Harrison and Taksar (1981).
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APPENDIX

A WEAK CONVERGENCE OF MARKOV PROCESSES ON D[0,«)

1. INTRODUCTION AND DEFINITIONS

This appendix provides three theorems in order to conclude weak con-
vergence of discrete-time Markov processes to a continuous-time Markov pro-
cess on a special sample path space D[0,~). Especially these theorems are
developed for application to jump- and diffusion-type Markov processes and
have been applied in subsections 5.1,5.2 and 5.3 of chapter I.

First,it is shown that weak convergence of transition probabilities also
implies weak convergence of the finite-dimensional distributions of the
processes (see proposition 3.4). Next,each of the three theorems presents
conditions which guarantee 'weak compactness' (tightness) of the discrete-
time processes. We note that these conditions are essentially based on re-

sults of Chentsov (1956) and Skorohod (1957), (1958).

D-spaces concern functions on a continuous-time parameter which at
each time-point has aleft-and right-hand limit and are right continuous.
Analysis of D-spaces is initiated by Skorohod (1956). Studies of weak con-—
vergence of stochastic processes on D-spaces, that means with sample paths
contained in a D-space,can also be found in Billingsley (1968), lLindvall
(1973), Gihman and Skorohod (1974),and Whitt (1980).

Sample paths of jump-processes, as given in subsections [.5.1 and 1.5.2, are
contained in D-spaces. Sample paths of diffusion processes, as given in

subsection I.5.2, are eclements of the subclass of continuous functions.

Without restriction of generality,let the state space S be given
by R. For a function x:{0,Z]> R with Z>0 and t€[0,Z] write x(t-) = 1im x(s)
and x(t+) = éi? x(s), with the convention x(0-) = x(0), x(Z+) =x(Z). stt
First let us present the necessary notations:

For a,b€R write: aAb=min (a,b); avb=max (a,b).

D[0,2]={x:[0,2]> R |x(t+) exists and x(t+)=x(t) for all t€[0,Z)
x(t-) exists for all t£(0,Z] and x(Z-) =x(Z)}
D[0,*) = {x: [0,2) > R |x(t-), x(t+) exist for all t€[0,=)
x(t) =x(t+) for all t€[0,=)}.

(1.1)
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(1.2) For x€D[0,») and Z€[0,») the Skorohod modules on [0,Z2] is given by

4.00,2](x) = sup [x (e )=x(t ) [A[x(t,)-x(ty) |

- < <
Oit2 cEt]StZStB_t2+c_Z

(1.3) For x,y€D[0,%2] , z¢(0,») define

[ d, (x,y) = inf sup {|x(t) —yOu(e)) |v|e=2(t) |},
A, t€[0,2]
where AZ = {A:[0,2] > [0,2]|A(t) strictly increasing

and continuous in t, A(0) =0, A(Z)=2Z}.

(1.4) For z€[0,») define the mapping
PZ : D[0,2)>D[0,Z] such that for x€D[0,=):
T, (x) =y €n[0,2] with y(t) = x(t) for all t¢[0,2), y(Z)=x(Z-).

(1.5) For x,yéD[0,») define

duCx,y) = [ ° 4@ (), T (3IAI] ds.
0
The literature especially studies D[0,1]. However, the following holds:

LEMMA 1.1.
D[0,z] Zs a separable metric space with metric d, for all Z>0.

D[0,~) s a separable metric space with metric d_.

PROOF., For Z = | especially see Skorohod (1956) or Billingsley (1968).
For Z = « gsee theorem 2.5 of Whitt (1980). o

REMARKS 1.2.

1. The metric d] was introduced by Skorohod (1956) and the correspon—

ding topology is known as Skorohod's J —topology.

1
2. D-spaces with the above metrics are not complete. However, they
are metrizable as complete metric spaces by means of metrics which are
equivalent to the above metrics, see theorem VII of Kolmogorov (1956),
theorem 14.2 of Billingsley (1968), theorem 1 of Lindvall (1973) and
theorem 2.6 of Whitt (1978). o
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2. WEAK CONVERGENCE ON D [0,)

In what follows below,read [0,Z] = [0,®) if Z = =,
Recall the definition of a stochastic process X given by definition 0.1
with © = [0,2], S = R and Z€[0,») U{=}. Then X is called a random element
on D[0,2] if P ({o|X(-,w)€D[0,2]}) = 1.
Notation : X€R(D[0,z]).
In this monograph we always assume separable stochastic processes (cf.

Gihman and Skorohod (1974) p.164).

For X€R(D[0,~)) with probability measure lPX denote

TX = {t|P ({o|X(t+,0) = x(t-,@))}=1
then it follows analogously to p.124 of Billingsley (1968) that

N = [0,=) - Ty is a countable subset of R.
Recall the concept of weak convergence and the notation Xh=X as given by
definition 0.10with S = D[0,2], 2€[0,»)U{=}, (continuity of functions has
to be considered with respect to the metrics given by (1.3) for Z< « and

(1.5) if 2 = =), o
LEMMA 2.1. Let XhER(D [0,=)), O0< hShO and X€R(D[0,)). Then

f X=X on D[0,») Zf and only if
(2.1) 1

h
I‘Z(X )==1"Z(X) on D[0,2] for all ZETX.

PROOF. See theorem 3 of Lindvall (1973) or theorem 2.8 of Whitt (1980). no

NOTATION 2.2. For x€D[0,»), kéNand 0<t,<t,<...<t, write

1 2 k
k k
rr = (x(t.,)), , €R",
t] ’tzp..,tk(X) ( ( 1 )1=1

LEMMA 2.3. Let XhER(D [0,=)), 0<hfho and XE€R(D[0,»)) and
suppose that

for any k€N and 0t <ty<...<ty with tiETX for all ick:

(2.2) K
t,st --,tk(x) on R,

m LR
1°72°" 7k

tl’tZ’

and
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[ for any A3 and any €>0:
(2.3) !

lim sup P (AC[O,Z](Xh) >e¢e) = 0.
ct0 he€(0,hy]

Then: xh=>x on D[0,=).

PROOF. Consider ZETX. Since dZ is a natural extension of d],it results ana-
logously to the proof of theorem 3.2.1 on p.283 of Skorohod (1956) that
r,&™ =T &) on pl0,2].

Application of lemma 2.1 completes the proof. o

REMARK 2.4. Condition (2.2) requires weak convergence of the so-called
finite dimensional distributions. Condition (2.3) together with (2.2) im-
plies that the collection of processes is weakly compact (tight).

In the next section we will consider Markov processes and present specific
conditions on their transition probabilities which guarantee (2.2) and (2.3).

o
3. WEAK CONVERGENCE OF MARKOV PROCESSES
In view of the approximation analysis,this section analyzes the

conditions of lemma 2.3 with the following stochastic processes:

1) X=&diso

{PS t:|s,t2 0} its transition probabilities.
3

€R(D[0,»)) a Markov process with

(i1) For some h,>0 and any h<h

0 o°
h h .. Jh _ .h =1 N
X = (Xt)tZ 0 a Markov process with Xt = th, n = [th ], t=0 and
{P?h mhIj,mEN} its transition probabilities at {nh|n=0,1,2,...}.
h . h h .
Clearly, for any h€(0,h.] : X €R(D[0,~)) and by denoting P =P, with
i) -1 0 s,t jh,mh
j = I[sh '] and m=[th "],we obtain the corresponding transition probabili-

ties for all s,t>0.

In order to analyze weak convergence of finite-dimensional dis-
tributions given by (2.2),we first present two lemmas. Therefore let

S,S],S2 denote separable metric spaces with Borel-field B,Bi and Bz

respectively.
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LEMMA 3.1.
Let X Xh for all h€(0, h, 1 be random elements on S.
and f f for all he(0, h 1 real-valued bounded and measurable functions on S.

If
h

X =X
and
h, h h
for By - almost all x: £ (x') -~ £(x) as x —+x ,
then
Ef(X") = Ef(X).
PROOF. See Hordijk and Van Der Duyn Schouten (1980) theorem 6.11. o

DEFINITION 3.2.

Let Z = (ZI’ZZ) be a random element on Slx 82

and Q a transition probability from S] into SZ'

Suppose that for any BIEB] and BZGBZ it holds that

(3.1) P (Z/€B ,2,€8,) = / Q(z,3B,) IBl(zl)d]PZl (z)).
Then 22 is said to be induced by [Z],Q]. o
LEMMA 3.3.

Let Z= (Z »Z ) and P (Z Zz) for all he(o, h, 1 be random elements on
$, %8, and Q and Q for aZZ h€(0,h,] transztton probabilities such that

1 0*
z, 18 induced by [Z',QJ, and
h . . h h
z, is induced by [ZI’Q 1 for all hE(O,hO].
Ir
h
(3.2) Z =27 onS$S , and for P, - almost all z :
1 1 1 Z1 1
(3.3) Qh(zT;.) = Q(z];.) as z? >z,
. h o hy
then: (ZI’ZZ) (ZI’ZZ) on S]x SZ'

PROOF. According to theorem 3.1 of Billingsley (1968),it suffices to show:

(i) (Zh h (B xB ) > P )(Bl sz) for all B,,B with

(Z],Z 2
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(ii) P(Z .z )(aB]xSZ) = P(Z .z )(SlxaBZ) = 0.

1°72 1°72
Let (ii) be satisfied for BIXBZ' Then by expression (3.1):
IPZ (aBl) = 0 and Q(z‘;aBz) = 0 for z) ¢ IPZ -almost sure.

1
Hence, (3.3) together with the portmanteau theorem, see Billingsley (1968)
p.19, implies that for IPZ -almost all z):
1
h. h h h
(iii) Q (ZI’BZ) ]B](Zl) »Q(z],Bz) 1Bl (Zl) as z; > z;.
Consider expression (3.1). Then the application of lemma 3.1, condition

(3.2) as well as condition (iii) yield condition (i).

The above lemma enables us to conclude convergence of the finite-dimensic-

nal distributions from that of the transition probabilities as follows.

PROPOSITION 3.4. Suppose that

(3.4) XO = XO .
and ‘
h . h .
Ps’t(x ,.) =PS,t(x’.)
(3.5)

for all xh—>x, x€R and s,t> 0.
Then the weak convergence condition (2.2) is satisfied.

PROOF. Let 0= t,< t2< cee< . From (0.2) conclude that

h . . h h
th is induced by [Xo ’PO,t]] » and

th is induced by [XO , PO,tl]
Hence, lemma 3.3 together with (3.4) and (3.5) yields
h h . . . h
(X0 ,Xt? = (XO’Xt¥ which implies th = th.

The proof proceeds by induction on £<k as follows. Define random elements

Yh and Y on RZ by: Yh = (Xh) and Y =1 (Y). Then again
pree ety Erseeesty

t
according to (0.2):
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XE is induced by [Yh,ﬁt:l ¢ ], and

(1) I £+1 £’ e+
1 X is induced by [Y, P 1,

Eoul Eortpy
where

-h ¢ _.h )

PS,t ((Xj)j=la-) = PS,C(XZ’.)
(ii)

- £

Ps,t((xj)j-l") = Ps,t(XE")'

. 17 I 4 Z . .
Since for yh = (X?)j=1 €R and y= (xj)j=1 R : yh»y on R implies that
xté >X,, we conclude from conditions (3.5), (i) and (ii): condition (3.3)

is satisfied with

sl=me, Z?=Yh, z,=Y, s =1R,Qh=1'>h andQ=§t . -
227 0+1

Hence with an induction hypothesis Y}é = Y, we obtain from lemma 3.3:

l

(Yh,Xh ) = (Y,X ) on ]R£+l , or equivalently

t t

o+1 h 2+1
it X)=m x). o
Epseeesty N

The following theorems are given such that in section 5 of chapter I
they can directly be applied to discrete-time approximations for solutions
of stochastic differential equations, respectively jump processes with

bounded respectively unbounded jump rates.

THEOREM 3.5. Suppose that

(i) relations (3.4) and (3.5) are satisfied, and
(ii)  for some a>9, vy>0 and any Z> 0 exists a constant K, such that
for all 0=snh=<?¢h=<Z and all hE(O,ho]:
h h

(3.6) E X, -X | <K, |¢h-nh

1+a
¢h  “nh :

Then Xh=X en D[0,=).

PROOF. According to proposition 3.4 ,condition (i) implies (2.2).
Let ZGTX. Then, since dZ is the natural extension,it is justified to apply
theorem 3 on p.341 of Gihman and Skorohod (1974). As a result, relation

(2.1) is verified by showing:
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h h h | 3Y_ _
(3.7) E(]Xt - X, - X [)? SH(ty - t))

1 2 2 3
for all hE(O,hO] 0st,=t,St,=Z and with constants H,a,B>0.
Since X: is constant for t€[nh,nh+h), n€N, the left hand side of (3.7)
is equal to 0 if ih > max ([t] —t2|, |t2—t3|). For ih < max

(It1 - t2|, ]tz—t3]) we can bound it by using Schwartz' inequality by

1A

' 1
(3.8) B X} -x! [T R - xE )
1 2 2 5

sup {E ngh - xgh!Y} S 3K, (ty - tl)]+a,
|¢h-nh| < (ty=t,)+h
where the last inequality follows from (3.6) and hSZ(t3—t]).
Consequently, for all h€(0,ho] relation (3.7) is satisfied. o

For x€R and €= 0 write: Ve(x) = {y€R| |y—x| > €}

THEOREM 3.6. Suppose that

(i) relations (3.4) and (3.5) hold, and
(ii1)  for .any e>0 there exists a constant Q(e) such that
for all 6§>0 and hE(O,hO]:

(3.9) sup sup Ph oh (x;Ve(x)) =6Q(e) .

x€R |fh-mh|<& P

Then X = X on D[0,=)

PROOF. According to proposition 3.4,condition (i) implies (2.2).
Let Z€Ty. Recall relation (1.2) for the Skorohod modulus on [0,Z].

Then, since X: is constant for t€[nh,nh+h), n€N,it follows that

P (a,[0,2](x") > 0)

ik

0 if c< {h sand

(3.10) P (Ac[o,zl(xh)ze)

IA

sup
0= nzh-c—h = n]h = n2h = n3h = n2h+c+h
Xh | > €) else .

n3h

h h h
P(X . -X _|Aalx -

n]h nzh nzh
By applying lemma 3 on p.431 of Gihman and Skorohod (1974)
with a = 3¢cQ(e/4) and choosing c such that 3cQ(e/4) =}
we conclude from (3.9) and (3.10):

’
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(G.11) P (AC[O,Z](Xh)z 6) < 6cQ(s/4).

Since this holds for any fixed € >0 uniformly in all hE(O,hO]’relation
(2.3) follows from letting c tend to 0. Hence, lemma 2.3 completes the

proof. [n)

The notation P (-|+) used below indicates a conditional probability which
is assumed to be regular. For definitions of these probability concepts

we refer to any standard book on probability theory.

THEOREM 3.7. Suppose that

(i) relations (3.4) and (3.5) are satisfied,
(ii)  for any &> 0 and any compact set K there exists a constant
Q(e,K) such that for all 6>0 and all hE(O,hO]:

(3.12) sup sup

x5V, (x)) =8 Q(e,K),
x€K |£h-nhj &

h
Poh,nh
(iii) for any n>0 any Z<> and compact set KO there exists a

compact set K=K(n,Z,KO) such that for all hE(O,hO]:

(3.13) inf P (X €K for all t€[0,2][X) =x) >1-n
XGKO

Then  X'=X on D[0,>) .

PROOF. According to proposition 3.4 condition (i) implies (2.2).
Let ZETX. Choose M> 0 arbitrarily. Since Xg
2 on p.377 of Gihman and Skorohod (1974) that for some compact set K. and

0
all h€(0,h]:

=X0, it follows from theorem

(1) P ERD> 17

Then, by conditioning on the initial state Xg
and using (i) together with (3.13) we also obtain for some
compact set K depending on mM,Z and KO:
(i1) P (DK for all tel0,2]) > 1-2n.

Next, let us recall the Skorohod modulus given by (2.1). Then by (ii),
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p (AC[O,Z](Xh) > 4e) < M+
(3.14)
P (4, 0,21 ™ = 4e and x‘t’ex for all t€[0,2]).

The last term can be bounded analogously to (3.10) but with extra require-
ments that: X:EK for all t€[0,z].

Then, in analogy with the proof of lemma 2 on p.420 and lemma 3 on p.431

of Gihman and Skorohod (1974),it can be shown that after choosing c such
that 3c¢Q (% ,K) = flz‘ , the relation (3.10) with X? €K for all t€[0,Z] and
the relation (3.12) imply

(3.15) P (2 [0,2](x™ = 4e and x‘t‘ €K for all t€[0,2]) = 6cQ(e,K),
Consequently, for any fixed M >0 the combinationof (3.14) aund (3.15) yields
(3.16) lim sup IP(AC[O,Z](Xh) > 4e) < 2.

ct0 hE‘(O,hO]

Since & and M are chosen arbitrarily,relation (3.16) proves (2.3).

Lemma 2.3 completes the proof. u]

8 PROOF OF LEMMA I.5.3.15.

Let f€C'(R) and first consider f(-) on [0,»). Let £>0.

Then there exists a 65>O such that lf(x) —f(y)[< e if |x-y|<66.
Define with tO = 0 a sequence {ti}:___o such that

If(x)—f(ti)]<e for all x€[t,,t. ) and |f(ti+1)—f(ti)] =g, If
|f(x) —f(ti) I<5 for all x> ti then define ti+l:= ~, Hence,

Iti+1

-ti]2¢55>0 for i = 0,1,2,...
Next define a function gZ: [0,) - R by

g ¥t 7 Xt 6
B(e) + [ECe D -£(e DTl 20 (——p " + 70 ——=p)
1+1 1 1+1 i
+ ¥ty s 7t 4 .
gb.(x) = - 84 (F"Tt‘.‘) + 35 (= 1, if b, SX<t <=,
i+l i i+l i

1 < = o
f(ti) , 1f ti_x,tiﬂ .
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Then, one easily verifies the following properties with k=1,2,3:

k
. d + . . _ .
(1) &k 8, (x) exists and is equal to 0 for x = ti with ti< ,
Gi) 4% g ) =e 2.10° [(6)72A1], x=0, and
—k ®& €
dx
(1i1) lg) (0 - £60] =e. 211 , x20

Analogously,one can find a function g;:(—m,0]+ R. Combining g: and g:

and noting that ¢ is chosen arbitrarily completes the proof. 8]
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