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Introduction 
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The pioneering work by G'eman & Geman [42] and Besag [16] stim:ulated 
a surge of interest in statistical approaches to image analysis. Until re­
cently, most attention has been given to segmentation or classification 
tasks, i.e. dividing an image into relatively homogeneous regions of dif­
ferent type. Following [16, 42), a Bayesian approach is usually taken in 
which a Markov random field model is used as a prior distribution to 
impose smoothness on segmentations. Computational problems due to 
the high dimensionality of images are overcome by iterative algorithms 
relying only on the local characteristics of the probabilistic model. An 
efficient deterministic technique to find a locally optimal segmentation is 
Besag's Iterated Conditional Mode (ICM) algorithm. Realisations of the 
posterior distribution can be obtained by a Gibbs sampler, and a simu­
lated annealing schedule to approximate a globally optimal classification 
can be designed [42]. 

The goal of this monograph is to argue that the (continuous) Markov 
or Gibbs processes studied in stochastic geometry, spatial statistics and 
statistical physics [11, 101, 104, 105, 107] provide a rich collection of 
models usable in a broad range of problems involving the higher-level 
interpretation of spatial and image data. 

Object recognition is the task of interpreting a noisy image to iden­
tify certain geometrical features. An object recognition algorithm must 
decide whether there are any objects of a specified kind in the scene, 
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and if so, determine the number of objects and their locations, shapes, 
sizes and spatial relationship. The image data are noisy and sometimes 
blurred. There is a wide field of applications, including industrial robot 
vision, document reading, interpretation of medical scans [20], auto­
mated cytology [86], classification of astronomical features [87, 108] and 
identification of grain structures in materials science. 

It is increasingly acknowledged that discrete Markov random fields 
(MRFs) are not the appropriate prior models to use in object recogni­
tion. This is partly because geometrical shapes with smooth boundaries 
are unlikely to arise as realisations of a discrete MRF; but more im­
portantly because the procedures that result from applying a discrete 
MRF model do not combine information 'globally' to identify geometri­
cal shape. 

This issue is familiar from the computer vision literature ~ the dis­
tinction between 'low-level' and 'high-level' vision. Low-level tasks such 
as segmentation, classification and tomographic reconstruction call for 
local (pixel neighbourhood) operations, converting the input image into 
another raster image. In high-level tasks such as object recognition and 
scene analysis we have to interpret the image globally, reducing it to a 
compact description ( e.g. a vector graphics representation) of the scene. 

Here we study the problem of detecting an unknown number of objects 
of (usually simple) shape in an unknown spatial arrangement, possibly 
overlapping each other. This requires a prior stochastic model for the 
spatial arrangement of the objects. We propose to use the Markov object 
processes [11, 107] which have a simple mathematical form, and for which 
there is a natural analogue of the Gibbs sampler (a spatial birth-and­
death process [11, 88, 101]). Thus, analogues of the ICM and simulated 
annealing algorithms can be developed. Also, some existing techniques 
in computer vision turn out to be equivalent to maximum likelihood 
methods. The use of Markov point process models was also proposed 
by Ripley and coauthors [87, 106, 108]. 

Alternative approaches have been described in recent studies [28, 86, 
87, 108] on recognising the shape of an interesting object (hand, galaxy, 
mitochondrion). The shape is described by a flexible template, typi­
cally a polygon, with edge lengths and angles governed by a joint prior 
distribution, typically a Markov chain. 

We claim that the general framework described above is flexible enough 
to be easily adaptable to various other tasks in high-level vision and spa­
tial statistics, for instance the clustering of (image) features. As in object 
recognition, these problems involve the extraction of an underlying pat-
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tern from a given set of data ( that is not necessarily in image form). 
Applications include large-scale edge detection [91], the identification of 
cluster centres in a point pattern [13, 19, 23, 96], but also the analysis 
of geological faults in relation to earthquakes or the reconstruction of 
ancient roads using archaeological finds (117]. 

Stochastic geometry is helpful in providing both the (conditional) clus­
ter models for the data and, as in object recognition, a prior Markov 
process. We discuss sampling techniques that simultaneously partition 
the data into groups and find the centres of clustering. A connection 
with the classical k-means algorithm (see also (23]) is established and 
we note that under obvious conditions the nearest parent approximation 
(70, 71] is in fact a maximum likelihood estimator. 

As argued above, Markov spatial models provide useful prior distri­
butions in image analysis, but they are equally interesting in their own 
right. Until recently attention has focused mostly on pairwise inter­
action models. These provide a flexible class for negative association 
between neighbouring objects but they do not seem to be able to model 
clustered patterns and M!llller [89] has argued that nearest-neighbour 
Markov models (11] are better suited to this task. 

In support of this claim, we show that many cluster processes with 
bounded non-empty clusters fall within the class of nearest-neighbour 
Markov point processes. In particular, any Poisson cluster process with 
uniformly bounded clusters is Markov with respect to the connected 
component relation (11, p. 106]. If a Markov or nearest-neighbour 
Markov point process is used as the parent process in a cluster model 
and the clusters are uniformly bounded and almost surely nonempty, 
then the cluster process is again nearest-neighbour Markov. These re­
sults suggest that nearest-neighbour Markov processes may be suitable 
multiple-generation cluster models (66] and help to explain why statisti­
cal inference for Poisson cluster processes based on interpoint distances 
[78] bears so close a resemblance to that for Markov point processes. 

On the other hand, the simpler Markov models [107] also allow clus­
tered patterns if interactions between more than two points or objects 
are permitted. We discuss a model that can exhibit both clustering 
[125] and inhibition according to the value of a single parameter. The 
model has interactions of arbitrary high order and is closely related to 
the empty space function. 

Much of the research presented in this tract was performed in collab­
oration with others. Chapter 2 is based on 



A.J. Baddeley and M.N.M. van Lieshout. ICM for object 
recognition. In Computational Statistics, Y. Dodge and J. 
Whittaker (Eds). Volume 2, pp. 271-286. Heidelberg-New 
York: Physica/Springer, 1992. 

A.J. Baddeley and M.N.M. van Lieshout. Object recognition 
using Markov spatial processes. In Proceedings 11th !APR 
International Conference on Pattern Recognition pp. B 136-
139. Los Alamitos: IEEE Computer Society Press, 1992. 

The model in Chapter 3 is reported in 

A.J. Baddeley and M.N.M. van Lieshout. Area-interaction 
point processes. CWI Report BS-R9318, November 1993. To 
appear in Annals of the Institute of Statistical Mathematics. 

The deterministic algorithms in Chapter 4 can be found in 

A.J. Baddeley and M.N.M. van Lieshout. ICM for object 
recognition. In Computational Statistics, Y. Dodge and J. 
Whittaker (Eds). Volume 2, pp. 271-286. Heidelberg-New 
York: Physica/Springer, 1992. 

while the stochastic annealing approach is in 

M.N.M. van Lieshout. Stochastic annealing for nearest-neigh­
bour point processes with application to object recognition. 
Advances in Applied Probability 26, pp. 281-300, 1994. 

See also [75, 5, 76, 3, 8]. 

The application in spatial statistics is based on 

A.J. Baddeley and M.N.M. van Lieshout. Stochastic geome­
try models in high-level vision. K.V. Mardia and G.K. Kanji 
(Eds.) Statistics and images Volume 1. Advances in Applied 
Statistics, a supplement to Journal of Applied Statistics 20, 
pp. 231-256, 1993. 

and the author's part in ongoing research 

A.B. Lawson, M.N.M. van Lieshout and A.J. Baddeley. Mar­
kov chain Monte Carlo methods for spatial cluster processes. 
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Chapter 2 

Maximum likelihood object recognition 

Object recognition can be formulated as a parameter estimation problem 
by direct analogy with the formulation of segmentation and classification 
[16, 40, 42] and in keeping with the general setup of Grenander [49, 50, 
51]. In this Chapter we define the object recognition problem, develop a 
simple maximum likelihood treatment, and show that this is very similar 
to some existing techniques in computer vision. 

2.1. OBJECT RECOGNITION 

Object recognition techniques are surveyed in [36, 99, 109]. They can 
be divided into methods such as region growing which detect an object 
of unspecified shape and size by characterising it as a region of homo­
geneous pixel intensity (etc.), and template matching methods which 
compare the data image with a translated and rotated copy of a ref­
erence shape and locate the optimal match [109]. Here we follow the 
template matching approach. 

Suppose the experimental data consist of an image y = (Yt ; t E T) 
where the 'image space' Tis an arbitrary finite set. Apart from the usual 
two-dimensional rectangular grids, T could be a pair of grids ( carrying 
left and right stereo images), a temporal sequence, etc. The observed 
value Yt at pixel t E T ranges over a set V that is arbitrary. Examples 
include {0, 1} for binary images, {0, 1, ... , 255} for 8-bit digitised grey 
level images or JR. 
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The class U of possible objects is an arbitrary set ( 'object space'). 
Typical examples would be the class of all polygons in IR 2 or all convex 
polyhedra in IR3 • However U need not be a class of subsets of IRd since 
the specification of an object may also include properties like colour or 
surface texture. Section 3.1.1 discusses this further. Here we assume 
only that each object u E U determines a subset R(u) ~ T of image 
space 'occupied' by the object. 

An object configuration is simply a finite set of objects 

where Xi E U, i = l, • • • , n, n ~ 0. The objects may be in any spatial 
relation to each other; the number of objects is variable and may be 
zero. 

The goal then is to extract the unobserved underlying pattern x from 
a given data image y. 

A standard numerical criterion for the degree of match between x and 
y is the Hough transform, originally proposed by Hough [57] to detect 
straight lines in binary images [12, 24, 35, 65, 114]. A recent survey 
is [60]. The Hough transform is a real valued function of the object 
parameter vector u defined by 

Hy(u) = L Yt, u E U 
tER(u) 

(2.1.1) 

where y is the data image. This is often interpreted as a vote-counting 
operation: each pixel t votes with strength Yt for all the objects that 
contain that pixel. Objects are located typically by finding local maxima 
of the matching criterion, or by accepting all template positions where 
the match exceeds a threshold value. 

An alternative approach using mathematical morphology is to perform 
an erosion with respect to the template. For example if y is a binary 
image and Y is the set of white pixels define the generalised erosion 
[112, 113] of Y by 

ER(Y) - {u: R(u) ~ Y} 
- { u : Yt = 1 for all t E R( u)} (2.1.2) 

i.e. accept only those objects u for which every pixel in the template 
R( u) is white. On a discrete image lattice, the erosion is the set of 
parameters u where the Hough transform attains its maximum possible 
value. 
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2.2. NOISE MODELS 

In the likelihood approach to image analysis the observed image y de­
pends on the true object configuration x through a known conditional 
probability density /(y I x). This density describes the 'forward prob­
lem' of image formation and includes both the deterministic influence of 
x and the stochastic noise inherent in observing y. 

Following custom, we assume that the data pixel values Yt are condi­
tionally independent given X = x. This embraces additive and multi­
plicative random noise as well as Poisson distributed counts and more 
general exponential family models. Without loss of generality the con­
ditional distributions of individual pixel values belong to a family of 
distributions with densities {g(· I 0) : 0 E 0} indexed by a parameter 
space e. 

Definition 1 An independent noise model is a stochastic model for Y 
given X = x, which assumes pixel values Yt are conditionally indepen­
dent given x, with joint probability density 

f(y Ix)= II g(yt l,0(x)(t)) (2.2.3) 
tET 

where {g(· I 0): 0 E 0} is a family of probability densities on V and 
0(x)(t) is the parameter value of the conditional distribution of Yt given 
x. Then 0(x)(,) is a 0-valued image, deterministically derived from x, 
which we call the signal. 

Note that no assertions are made about the way objects interact and 
that the model does not imply that the pixel values are (unconditionally) 
independent. 

A simple example is the signal 

0(x)(t) = { 01 if t E ~(x) 
0o otherwise 

(2.2.4) 

where 01, 0o are known parameters (foreground and background signal 
values) and S(x) is the silhouette 

n 

S(x) = LJ R(xi) 
i=l 

formed by taking the union of all objects in the configuration. In other 
words, under this simple model, each of the objects in the configuration 
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x is 'painted' onto the scene, and independent random pixel noise is 
superimposed on the result. 

We call this a blur-free independent noise model. It may seem oversim­
plified; yet we shall show that several standard techniques in computer 
vision are equivalent to assuming this model. 

The following are examples of independent noise models. Strictly 
speaking, they represent a whole family of models; members are obtained 
by varying the signal function. 

Model 1: additive Gaussian white noise 
Yt is normally distributed with mean µ = e(x)(t) E 1R and fixed 
variance a2 > 0: 

Model 2: additive Laplacian noise 
Yt is double exponentially distributed with meanµ= e(x)(t) E 1R 
and fixed dispersion parameter ..X > 0: 

Model 3: binary image 
Yt has a Bernoulli distribution with success probability e(x)(t): 

Special cases are a) salt-and-pepper noise where 

e(x)(t) = { 1- p if t E S(x) 
p else 

and b) pepper noise where: 

e(x)(t) = { 1 if t E S(x) 
p else 

Here O < p < 1 is fixed. 

Model 4: Poisson counts 
Yt is integer valued and Poisson distributed with meanµ= e(x)(t) 
E JR+: 
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Model 1 is widely used in image analysis. In Models 3a and 3b the 
silhouette is converted to a binary image and noise introduced by ran­
domly flipping pixel values with probability p. In Model 3a all pixels are 
subject to change, while in Model 3b only background pixels are flipped. 
Mode] 4 is the usual model in emission tomography where a patient is 
injected with a radioactive isotope and emitted particles are recorded in 
a system of detectors placed around the patient. 
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2.3. MAXIMUM LIKELIHOOD ESTIMATION 

Given observation of y, the likelihood of a configuration x is defined to 
be f(x; y) = f(y Ix), and we seek 'the' maximum likelihood estimate of 
X 

x = argmaxx f(y I x) (2.3.5) 

which may be nonexistent or nonunique. Specifically, note that for any 
blur-free model the likelihood depends on x only through its silhouette 
S(x), so configurations with the same silhouette cannot be distinguished 
in likelihood. 

Since the log-likelihood is a sum of individual pixel error terms 

L(x; y) = logf(y Ix)= I:log g(yt I e(x>(t)), 
tET 

maximum likelihood estimation is equivalent to regression of y on the 
class of signals e(x)(·) for all possible x, with pixelwise loss function 
-logg(yt I ·). 

Lemma 1 An MLE for Model 1 is a solution of the least squares re­
gression of y on the class of functions 

In Model 2 any MLE solves a least absolute deviation regression on the 
same class. 

Proof: Writing !Tl for the area or number of pixels in T, the log­
likelihood is 

1 1 ( )2 L(x; y) = -- ITI log(21ro-2) - -2 L Yt - e(x)(t) 
2 20- tET 

for Model 1 and 

,\ 
L(x; y) = ITI log- - ,\ L IYt - 0(x)(t)1 

2 tET 

for Model 2. □ 
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Typically, the equation (2.3.5) cannot be solved directly. This is 
clearly true for the regression above, because of the combinatorial and 
geometric complexity of the functions o(x)(t). We will return to this 
problem below. 

Lemma 2 For Model 3a with O < p < 1/2, the ML equations are 

x = argminx IS(x) b. YI 

where D. denotes the symmetric set difference ('exclusive-or') and Y = 
{ t E T : Yt = 1} is the set of white pixels. 

Proof: 

L(x; y) - IS(x) \ YI logp + IS(x) n YI log(l - p) 
+ IY \ S(x)l logp + (ITI - IY U S(x)I) log(l - p) 

- ITllog(l - p) + IS(x) b. YI log -1 P 
-p 

and for p < 1/2 the coefficient of IS(x) b. YI is negative. □ 

Squared error and L1 error have been proposed as optimality criteria 
for object recognition in their own right but we see here that they are 
special cases of the maximum likelihood approach. These results confirm 
recent arguments in the literature [79, 81] in favour of using L1 filtering, 
except when the noise is Gaussian. 

2.3.1 Connection with mathematical morphology 
The following result shows that standard morphological operators solve 
the ML equations (2.3.5) for a simple noise model. 

Lemma 3 A maximum likelihood estimator for Model 3b is the gener­
alised erosion (2. 1 .2) 

Xmax - ER(Y) 
- { u E U : R( u) ~ Y}, 

where Y = {t ET: Yt = 1}. This is the largest solution of the ML equa­
tions; the other solutions are the subsets x ~ Xmax with the same silhou­
ette, 

S(x) = S(xmax), 
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Proof: The density is nonzero only if S(x) ~ Y and in this case equals 

/(ylx) = IT pYt(l - p)<l-yt). 
tET\S(x) 

The log likelihood is then 

L(x; y) - IY\S(x)llogp+(ITI-IYl)log(l-p) 

= ITI log(l - p) + IYI log-1 p - IS(x)l logp 
-p 

and the result follows. D 

The 'classical' erosion operator e [112] is the special case where U = 
T C IR2 and R(u) = u + R is the translation over u of a fixed subset 
R ~ T. Then 

xmax = Y e R := { u : ( u + R) ~ Y}. (2.3.6) 

Thus the erosion operator is the MLE for a simple translation model; 
its corresponding silhouette is the opening of Y by R [112]. 

The dual of (2.3.6) is the dilation EB 

YEBR .- {u:(u+R)nY,60} 

- {u:(u+R)q;Yc} 

- (YceRt 

(see [112]), generalised straightforwardly to 

Hence by exchanging foreground and background, i.e. taking o(x)(t) = 
1 - p for t E S(x) and O otherwise, one obtains a similar result for the 
dilation: a maximum likelihood estimator is a subset of the generalised 
dilation DR(Y) of Y. 

2.3.2 Relation to pre-processing 
It is also interesting to note that popular 'pre-processing' techniques, 
such as change of scale, thresholding or gamma correction, amount to 
simply modifying the noise model. ff the pixel values Yt are subjected 
to an invertible, differentiable transformation ('anamorphosis' in mor­
phology parlance) y~ = <P(Yt) then the model (2.2.3) is transformed into 
another model of the same type with g replaced by another density g' 
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f(y' Ix)= JI g'(y~ I 9(x)(t)) 
tET 

where 

J(yD being 1 for grey level data, and llz-¢-1(yDI in the absolutely con­
tinuous case. In particular, for exponential families the transformed 
data is again an exponential family. 

This is also true for transformations such as 'clipping' pixel values to 
an interval [a, b) 

{ 
a ifs<a 

clip(s, a, b) = s if a$ s $ b. 
b ifs>b 

Treating clipped pixel data as if they arise from additive Gaussian noise 
is equivalent to assuming additive two-sided exponential noise with sig­
nal (= mean) values 0o = a, 01 = b. 

Lemma 4 For Model 2 with 9(x)(t) defined by {2.2.4) with 0o < 01 

L(x U {u}; y) - L(x; y) = 

2A{ L y;- 91 ; 90 1R(u)\S(x)I} 
tER(u)\S(x) 

Proof: Observe that (with a< b) 

Hence 

ls-bl-ls-al - l{s<a}(b-a)+l{s>b}(a-b) 

+ 1 { a $ s $ b }(a+ b - 2s) 

- a + b - 2s + 1 { s < a}( -2a + 2s) 

+ l{s > b}(-2b+ 2s) 

- a+ b - 2clip(s, a, b). 

L(xU{u}; y)-L(x; y)= 



= -A L {IYt - 011 - IYt - 0ol} 
tER(u)\S(x) 

= -A L {0o + 01 - 2clip(yt, 0o, 01)} 
tER(u)\S(x) 

and the result follows. 
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D 

These remarks do not hold for more complex pre-processing operations 
such as neighbourhood filtering, which interfere with the dependence 
structure of (2.2.3). 



27 

2.4. ITERATIVE METHODS FOR MLE 
It is usually impossible to solve the ML estimating equations (2.3.5) 
directly, and one has to resort to iterative approximation methods. 

2 .. 4, 1 Add-and-delete algorithms 
The simplest form of iterative adjustment is to add or delete objects 
one-at-a-time. If the current configuration is x then we consider adding 
a new object u (/. x, yielding configuration x U { u}, if the log likelihood 
ratio 

(2.4.7) 

is sufficiently large or deleting an existing object u E x yielding x \ { u} 
if 

(2.4.8) 

is sufficiently large. Two variations of this scheme are to visit the possi­
ble objects u sequentially (assuming U is discretised) applying the above 
rules at each step, or to scan the whole of U to find the object u whose 
addition or deletion would most increase the likelihood. 

Algorithm 1 ( Coordinatewise optimisation) Initialise x(O) = 0 or 
some other chosen initial state. When the current reconstruction is 
x(k-l), visit every u E U sequentially in a predetermined order. If 
u <I. x(k-l) and L(x<k-l) U { u}; y) - L(x(k-l) ; y) ~ w, where w ~ 0 is 
a fixed threshold, then add u to the configuration, yielding x(k) = x(k-l) U 
{u}. If u = Xi E x<k-l) and L(x<k-l) \{xi}; y) - L(x(k-l); y) ~ w, 
then delete Xi yielding x(k) = x(k-l) \ {xi}. Update recursively until one 
complete scan of the image yields no changes. 

Algorithm 2 (Steepest ascent) Initialise x(O) - 0 or some other 
chosen initial state. Given x(k-l), determine 

and 

a= max . {L(x(k-l) \{xi}; y) - L(x(k-l) ; y)} 
xiEx<A:-lJ 

b = sup { L(x(k-l) U {u}; y) - L(x(k-l); y)}. 
uEU 
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If max{ a, b} < w, then stop. Otherwise, if b ~ a, add the corresponding 
object, while if a> b, delete the corresponding object. 

These algorithms bear a very strong resemblance to Besag's ICM al­
gorithm [16] except for the lack of a prior distribution. The analogy will 
be explored in Chapter 4. 

Clearly these algorithms increase the likelihood at each step, 

As there are only a finite number of possible configurations, convergence 
of J(y I x<k)) is guaranteed and (if w = 0) we reach a local maximum 
of the likelihood function. At worst there is cycling between images of 
equal likelihood. However the algorithms do not necessarily yield the 
global maximum likelihood solution, and the local maximum obtained 
will depend on the initial configuration x<0) and for Algorithm 1 on the 
scanning order as well. We should therefore choose a sensible initial 
state, such as the empty list 0, or the set of local maxima of 

J(y I {u}) 
J(y I 0) 

wherever this ratio is larger than 1. 

Complications arise if the model f(y I x) contains unknown parame­
ters. We will return to this problem in Section 4.2.3. 

2.4.2 General add-delete-shift algorithms 
Another form of iterative adjustment is to change an existing object 
slightly by translation, rotation or expansion. The aim is to obtain 
methods that are more robust against imprecise information contained 
in the initial estimate. Another advantage is that convergence may be 
faster, as throwing away an incorrect object and replacing it by the right 
one can then be carried out in one single step. 

Write 

for the configuration obtained from x by moving the element Xi E x to 
a new position u. Let Q(x, Xi) be the set of all object points u for which 
this operation is permitted. Typically u will be required to be close to 
Xi but not equal to any Xj, say Q(x, Xi)= N(xi) \x where N(xi) is some 
neighbourhood of Xi· Then the criterion for a move from Xi E xis 
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(2.4.9) 

and the analogues of Algorithms 1 and 2 are as follows. 

Algorithm 3 ( Coordinatewise optimisation with shifts) 
Assuming that the parameter space is finite, visit every u E U sequen­
tially. Consider every possible transition involving u and select the max­
imum from (2.4. 7), (2.4.8) and (2.4.9). If this maximum log likelihood 
ratio is larger than a given threshold w, update the reconstruction ac­
cordingly. 

Algorithm 4 (Steepest ascent with shifts) Consider all possible 
transitions from the current state x and take that transition that has the 
maximum log likelihood ratio exceeding threshold w. 

The convergence properties are similar to Algorithms 1-2. Here, how­
ever, a 'local maximum' of the likelihood is a state x such that no 
neighbouring configuration x U {u} or x \ {xi} or M(x, Xi, u) has larger 
likelihood. This is a more stringent definition than for the previous 
algorithms, and one expects the results to be better. 
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2.5. RELATION TO HOUGH TRANSFORM 

The Hough transform (2.1.1) is very similar to the log likelihood ratio 
(2.4.7) for a blur-free model: 

L(xU{u};y)-L(x;y)= L Zt 

R(u)\S(x) 

(2.5.10) 

where Zt = logg(Ytl01) - logg(ytl0o) is the difference in goodness-of­
fit at pixel t. Note that pixels can also cast fractional or negative 
votes, a modification that has been suggested ad hoc by several authors 
[12, 27, 122, 124] and [22, 26] respectively. In fact, (2.5.10) is identical 
to the (generalised) Hough transform of image z when the new object 
u does not overlap any existing object Xi E x. For exan1ple, the Hough 
trans! orm is the log likelihood ratio for comparing { u}, the scene con­
sisting of a single object, against the empty scene 0 [58]. When objects 
do overlap, the likelihood ratio (2.5.10) is a generalisation of the Hough 
transform, with domain of summation 'masked' by the silhouette of the 
current configuration. Equivalently (2.5.10) is the Hough transform of 
the masked image Wi~) = Ztl{t </. S(x)}. 

The similarity between (2.1.1) and (2.5.10) is even stronger since Zt is 
linear in Yt for many exponential noise models. For additive Gaussian 
noise 

and for Poisson noise 

01 
Zt = Yt log 00 - (01 - 0o). 

The likelihood ratio is then of the form 

L(xu{u}; y)-L(x; y)=a L Yt-blR(u)\S(x)l.(2.5.11) 
R(u)\S(x) 

In particular when u does not overlap x this is a linear adjustment of the 
Hough transform of y. More generally, let g be an exponential family of 
the form 

g(yt I 0) = exp [A(0) + B(yt) + C(0)D(Yt)] 
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for some real-valued functions A, B, C and D. Then (2.5.11) holds if Yt 
is replaced by D(yt). The generalisation to vector-valued functions is 
straightforward. 

Apart from illuminating the meaning of the Hough transform, these 
results show how to correctly interpret values of the Hough transform 
when the objects do not have equal area, e.g. in the presence of edge 
effects. For Gaussian or Poisson additive noise (say), the likelihood 
ratio is positive when the average value of Yt over R(u) \ S(x) exceeds 
a critical value. The latter is simply the Neyman-Pearson critical value 
for classifying a single observation Yt as foreground or background ( 0 E 

{0o, 01} ). 

For the general 'blurred' model (2.2.3) the likelihood ratio equals 

L h(Yt, 0(x)(t), 0(xU{u})(t)) 
tEZ(x,u) 

and thus is again similar to the Hough transform, where 

( ') g(Ytl0') 
h Yt, 0, 0 = log g(YtlO) 

is as before the difference in goodness-of-fit at pixel t and 

(2.5.12) 

(2.5.13) 

is the set of pixels where the signal is affected by the addition of object 
u. 

The log likelihood ratio for a transition from x to M(x, Xi, u) (Algo­
rithms 3 and 4) can be represented as 

[L(z U {u}; y) - L(z; y)] - [L(z U {xi}; y) - L(z; y)] 

where z = x \ {xi}. This is a difference of two values of the generalised 
Hough transform (2.5.12) for the configuration with Xi deleted. In par­
ticular it depends only on data pixels within a region Z(z, u) U Z(z, xi)· 
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2.6. EXAMPLE 

Figure 2.1 shows a scanned 128 x 128 image ('pellets') taken from the 
Brodatz texture album (21]. This is a relatively easy dataset for object 
recognition but helps to illustrate the approach. 

We treat the pellets as discs of fixed radius 4 pixels but with blurred 
boundaries. The grey-level histogram has two distinct peaks at value 8 
and 172, suggesting that we can regard the background and foreground 
signal as roughly constant at these values. Assuming additive Gaussian 
noise, its variance was estimated by thresholding the image and taking 
the sample variance, giving an estimate of 83.1. Blurring was modelled 
by assuming that the original blur-free signal was subjected to a 3 x 3 
averaging (linear) filter with relative weights 4 for the central pixel, 2 
for horizontal and vertical neighbours and 1 for diagonal neighbours. 

Figure 2.2 shows an approximate MLE computed by steepest ascent 
(Algorithm 2) from an empty initial configuration at threshold w = 0. 
Pellets are correctly identified but there is 'multiple response', i.e. the 
MLE sometimes contains clusters of objects around the position of each 
'true' object. 

Figure 2.1: Pellets image taken from [21], digitised on a 128 x 128 square 
grid. 
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Figure 2.2: Approximate maximum likelihood reconstruction by steepest 
ascent of the pellets texture at threshold w = 0 from an empty initial 
state. 





Chapter 3 

Markov spatial processes 
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The first Section of this Chapter is an overview with some adaptations 
of the theory of random processes of geometrical objects [117] with em­
phasis on Markov object processes [107, 11]. These provide a flexible 
class of models for inhibition and we propose to use them as priors in 
the object recognition problem discussed in Chapter 2. In Sections 3.2 
and 3.3 we introduce a Markov point process proposed by Baddeley and 
Van Lieshout [9] that exhibits both clustered and ordered pattern ac­
cording to the value of a parameter. It has infinite order interactions 
and is related to the empty space function F as the Strauss model is 
to Ripley's K-function. Statistical inference for this model is studied in 
Section 3.4. 

3.1. SURVEY OF MARKOV SPATIAL MODELS 

3.1.1 Objects 
The 'objects' featuring in stochastic geometry range from simple geo­
metrical figures (points, lines, discs) through plane polygons and convex 
compact sets to completely general closed sets. A given class of objects 
U is treated as a space in its own right, so that objects are regarded as 
points in U. 

At one extreme, simple geometrical figures can be specified by the 
values of a few parameters (giving location, orientation etc.) so that 
U is isomorphic to a subset of IR,d. For example a disc in IR.2 can be 
specified by its centre (x, y) and radius r so that U = IR2 x IR,+. At 
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the other extreme, the space :F of all closed subsets of ]Rd can be made 
into a locally compact, second countable Hausdorff space (l.c.s. space) 
so that a random closed set can be defined as a random element of :F 
[84]. 

It is often useful to represent an object as a 'marked point', i.e. a pair 
(s, m) consisting of a point s E ]Rd and a 'mark' m E M, where M 
is an arbitrary l.c.s. space. The point s fixes the location of the object. 
and the mark m contains all other information such as size and shape. 
A disc in IR2 can be regarded as a point (x, y) marked by a radius r. 
Objects with additional properties such as colour and surface texture 
can be represented as marked points by choosing an appropriate mark 
space M. For example a grey-scale surface texture can be formalised as 
an upper-semicontinuous function ]Rd --+ JR+, and the space of all such 
functions is l.c.s. 

3.1.2 Markov object processes 
Let U be the class of objects. As before, a configuration is a finite 
set x = {x1 , ... ,xn} of objects Xi E U. Writing n for the set of all 
configurations, a random process of objects is a random element of n, 
or equivalently, a point process on U consisting of a finite number of 
'points' with probability 1. 

The basic reference model is the Poisson object process in U with 
intensity µ, where µ is a finite non-atomic measure on U. Under this 
model the total number of objects has a Poisson distribution with mean 
µ(U); given that exactly n objects are present, they are independent and 
identically distributed in U with probability distribution proportional to 
µ, i.e. !?(xi EB)= Q(B) = µ(B)/µ(U) for B ~ U. 

F\uther details can be consulted in [117]. 
Our interest is in constructing non-Poisson spatial processes exhibiting 

dependence between neighbouring objects. To do this we shall specify 
the probability density of the new process with respect to the Poisson 
process ( thereby restricting attention to processes that are absolutely 
continuous with respect to the Poisson). The density is a measurable and 
integrable function p : n --+ [O, oo). For the new process, the distribution 
of the total number of objects is 

I?(N=n) = e-µ:U) 1 ···1 p({x1, ... ,xn})dµ(x1) ... dµ(xn)· 
n. u u 

Writing qn = I?(N = n), given N = n, then random objects have joint 
probability density 

Pn(X1, • • •, Xn) = e-µ(U) µ(Utp( {xi, ... , Xn} )/(n! qn) 
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with respect to the distribution of n i.i.d. objects in U with distribution 
Q. 

Provisionally define two objects u, v to be 'neighbours' if their induced 
sets (cf. Section§ 2.1) overlap, 

u~v -?:> R(u)nR(v)=/=0. (3.1.1) 

This can be replaced by any symmetric ( u ~ v iff v ~ u), reflexive 
relation between elements of U. The neighbourhood N (A) of a set A ~ U 
is the set of all points in U neighbouring a point in A: 

N (A) = { u E U : u ~ a for some a E A} . 

The simplest kind of spatial interaction is that which forbids objects 
to overlap. Consider a Poisson process of objects in T conditioned on 
the event that no pair of objects is overlapping. Its density with respect 
to the original Poisson process is simply 

(x) = { 0 if Xi ~ Xj for some i =I= j 
p a otherwise (3.1.2) 

where a > 0 is the normalising constant ( = reciprocal of the probability 
that Poisson process has no overlapping objects). Call this a hard object 
process by analogy with the better-known hard core point process. 

Next consider a pairwise interaction 

(3.1.3) 
Xi"'Xj 

where a, f3 > 0 are constants, n(x) is the number of points in x, and 
g : U x U - [O, oo). The product is over all pairs of neighbouring objects 
Xi~ Xj with i < j. 

If g = 1 then (3.1.3) is simply a Poisson process with intensity measure 
(3µ; if g = 0 it is the hard object process (3.1.2). If the (measurable) 
function g ~ 1, the process is purely inhibitory. 

The special case g = 'Y for a constant O < 'Y < 1 is called a Strauss 
object process and the density can be written 

where 

s(x) = L l{xi ~ Xj} 
i<j 

(3.1.4) 

is the number of pairs of neighbouring objects ( e.g. number of overlaps) 
in the configuration. This process exhibits 'repulsion' or 'inhibition' 
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between objects, since s(x) tends to be smaller than under the Poisson 
model. The density (3.1.4) is typically not integrable for , > 1. 

Just as discrete Markov random fields are closely connected with sta­
tistical physics, pairwise interaction processes (3.1.3) also occur as mod­
els of interacting particle systems. The negative log probability density 
of a particular configuration x can be interpreted as its physical 'energy': 
it is the sum of a ground potential log a, a potential log/3 for the pres­
ence of each object Xi, and an interaction potential logg(u, v) between 
each pair of neighbouring objects u, v. 

The density (3.1.3) bears a close resemblance to the distribution of a 
discrete Markov random field with pairwise interaction. However, the 
number of terms appearing in the product in (3.1.3) depends on the 
realisation x. Some configurations have more interaction than others. 

Note that if u E U, u (/. x with p(x) > 0, the ratio 

p( X u { u}) - /3 . II ( ·) 
(x) - g u,xi 

p Xi~U 

(3.1.5) 

depends only on u and on the neighbours of u in x. This important 
property signifies that all interaction is 'local'. In the statistical physics 
interpretation, - logp(x U { u}) + logp(x) is the energy required to add 
a new point u to an existing configuration x. In probabilistic terms 
p(x U {u})/p(x) is the Papangelou conditional intensity >.(u;x) at u 
given the rest of the pattern x on U \ { u}, see [25]. Roughly speaking, 
>.( u; x)du is the conditional probability of a point in the infinitesimal 
region du centred at u given the configuration agrees with x outside this 
region. 

Following are definitions and results of Ripley and Kelly [107] trivially 
generalised to random object processes [11, Section 3]. Let ~ be any 

symmetric, reflexive relation on U. 

Definition 2 A random object process X with density p is called a 
Markov object process with respect to~ if for all x E n 

(a) p(x) > 0 implies p(y) > 0 for ally ~ x; 

(b) if p(x) > 0, then 

p(x U {u}) 
p(x) 

depends only on u and N ( { u}) n x = { Xi E x : u ~ Xi}. 

(3.1.6) 
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The term 'Markov' is justified by the following spatial Markov prop­
erty. Let A be a measurable subset of U. Then the conditional distri­
bution of X n A given X n Ac depends only on X in the neighbourhood 
N(A) n Ac= {u E Ac: u ~ a for some a EA}: 

.C(XnA I XnAc) =C(XnA I XnN(A)nAc). 

Define a configuration x E n to be a clique if all members of x are 
neighbours (xi ~ Xj for all i =/:- j). Configurations of 0 or 1 objects 
are cliques. Then the Ripley-Kelly analogue of the Hammersley-Clifford 
theorem [107] states that a process with density p : n -+ [0, oo) is Markov 
iff 

p(x) = IT q(y) (3.1.7) 
cliques ys;;x 

for all x E n, where the product is restricted to cliques y ~ x, and 
q : n -+ [0, oo) is an (arbitrary) function. 

To conclude this Section, consider the following area-interaction pro­
cess 

(3.1.8) 

with parameters /3 > 0, 'Y > 0 and normalising constant a> 0. As usual 
IS(x)I is the area (or pixel count) of the silhouette. This is a Markov 
overlapping object model (i.e. Markov with respect to (3.1.1)) with in­
teractions of infinite order. For 'Y < 1, configurations with relatively 
few overlapping objects are favoured, for 'Y = 1 it is a Poisson process 
and for 'Y > 1 the model encourages clustered patterns. This model 
is interesting in its own right and will be discussed in greater detail in 
Sections 3.2 and 3.4. 

3.1. 3 Nearest-neighbour Markov object processes 
A further extension due to Baddeley and M0ller [11] is to allow interac­
tion behaviour to depend on the realisation of the process. For exan1ple, 
in a one-dimensional renewal process, each point can be said to inter­
act with its nearest neighbours to the left and right, regardless of how 
far distant these neighbours may be. In two dimensions we would like 
to construct point processes exhibiting interaction between those pairs 
of points that are neighbours with respect to the Voronoi (Dirichlet) 
tessellation generated by the point pattern. 

Assume that for each configuration x we have a symmetric reflexive 
relation ~ defined on x. We might prefer to think of this as a finite 

X 

graph whose vertices are the objects Xi E x. 
Consider the following pairwise interaction model ( cf. (3.1.3)) 



p(x) = af3n(x) II g(xi, Xj), 

i<j;xi~Xj 
X 
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Any generalisation of Definition 2 should at least embrace p. However 

p(xU{u}) =/3 II 
p(x) Xi ~ U 

XU{u} 

Tixi ~ x· g(Xi, Xj) 
Xu{u} 3 

g(xi,u) ( ) . 
Ilxi~Xj g Xi, Xj 

X 

The extra factor arises, since~ is depending on the pattern x. If p(~YJf l) 
is to depend on 'local' information only, conditions must be imposed on 
~. 
X 

The following definitions and results are taken from [11] to which we 
refer for further details. Define the x-neighbourhood of a subset z ~ x 
as 

N ( z I x) = { ~ E x : ~ ~ 17 for some 1J E z} . 

Let y ~ z E n and u, v E U with u, v ~ z. Then require 

(Cl) x(y I z) # x(y I z U {u}) implies y ~ N({u} I z u {u}); 

(C2) if u 7'x v where x = z U {u} U {v} then 

x(y I zU{u})+x(y I zU{v}) =x(y I z)+x(y Ix). 

where x is the clique indicator function. 

Examples of relations satisfying these conditions are 

• Xi ~ Xj iff Xi~ Xj where~ is any symmetric, reflexive relation on 
X 

U (i.e. not depending on the configuration x); 

• for points or marked points in 1R2, Xi ~ Xj iff Xi, Xj are joined by 
X 

an edge of the Delaunay triangulation generated by x; 

• for compact sets in 1Rd, Xi ~ Xj iff Xi and Xj belong to the same 
X 

connected component of the union of the objects. 

The proofs can be found in [11, Appendix]. 

Definition 3 A random object process with density p is called a nearest­
neighbour Markov object process (nnMp) with respect to{~: x En} 

X 

if, for all x with p(x) > 0 
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• p(y) > 0 for ally~ x; 

• the ratio p(~(J)V depends only on u, on N( { u} I x U { u}) n x = 
{xi E x : Xi ~ u} and on the relations ~, ~ restricted to 

xu{u} x xu{u} 

N({u} Ix u {u}) n x. 

A subset y ~ xis a clique in x if all members of y are x-neighbours 
of one another (u ~ v for all u, v E y). 

X 

A generalised Hammersley-Clifford theorem holds [11]: a process with 
density pis nnMp iff 

p(x) = { Ticliques y~x q(y) if q(y) ~ 0 for all y ~ x 
0 otherwise 

(3.1.9) 

where q : f! -+ IR+ satisfies certain regularity conditions ((11)-(12) of 
[11]). 

Kendall [64] proved a spatial Markov property for nnMps. 
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3.2. AREA-INTERACTION PROCESSES 

Pairwise interaction Markov processes (3.1.3) have been studied inten­
sively. They provide a flexible class for modelling inhibition patterns 
and can be interpreted quite easily using the Hammersley-Clifford rep­
resentation (3.1.7). However, they do not seem to be able to produce 
clustered patterns in sufficient variety. The original clustering model 
of Strauss [118] turned out [63] to be non-integrable for parameter val­
ues 'Y > l corresponding to the desired clustering; Gates and Westcott 
[39] showed that partly-attractive potentials may violate a stability con­
dition, implying that they produce extremely clustered patterns with 
high probability; and recent simulation experiments by M0ller [89] sug­
gest that the behaviour of the Strauss model with fixed n undergoes 
an abrupt transition from 'Poisson-like' patterns to tightly clustered 
patterns rather than exhibiting intermediate, moderately clustered pat­
terns. 

The area-interaction model (3.1.8) in contrast is a Markov model that 
can yield both moderately clustered and moderately ordered patterns. 

It has interactions of infinite order, and is similar in form to the pair­
wise interaction Strauss model (3.1.4). Both densities reduce to a Pois­
son process when 'Y = 1, and exhibit ordered patterns for O < 'Y < 1; 
in contrast to the Strauss model, (3.1.8) is well-defined for all values of 
')' > 0 and produces clustering when 'Y > 1. The attractive case was pro­
posed by Widom and Rowlinson [125] as the 'penetrable sphere model' 
for spherical molecules in the study of liquid-vapour phase transitions. 

3.2.1 Definition of the process 
As usual for Gibbs point processes we treat separately the cases of a 
finite point process (say, points in a bounded region A ~ IR,d) and a 
stationary point process on IRd. The formal construction of finite Gibbs 
point processes is described in [25, p. 121 ff] or [100]. 

As before, let U be a locally compact complete separable metric space 
(typically JRd or a compact subset). The space of all possible realisations 
x shall be identified with the space NI of all integer-valued measures 
on U which have finite total mass and are simple ( do not have atoms of 
mass exceeding 1). Write n(x) for the total number of points and x 8 for 
x restricted to B ~ U. The a-algebra NI on NI is the Borel a-algebra 
of the weak topology, i.e. NI is the smallest a-algebra with respect 
to which the evaluation x H n(xB) is measurable for every (bounded) 
Borel set B ~ U. 

Given a totally finite, non-atomic measureµ on U, construct the Pois­
son process of intensity µ as in Section 3.1. 2 (typicallyµ is the restriction 
of Lebesgue measure to a compact window A ~ JRd, yielding the unit 
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rate Poisson process restricted to A). Let 1r be its probability distri­
bution on (Nf,Nf). Then we construct (Gibbs) point processes by 
specifying their density with respect to 1r. 

Definition 4 ( "Standard case") The area-interaction process m a 
compact region A ~ ]Rd is the process with density 

p(x) = a 13n(x) 'Y-m(Sr(x)) (3.2.10) 

with respect to the unit rate Poisson process on A, where /3, 'Y, r > 0 
are parameters and a is the normalising constant. Here m is Lebesgue 
measure and 

n 

Sr(x) = LJ B(xi, r) 
i=l 

is the union of spheres or discs of radius r centred at the points of the 

realisation, B(xi, r) = { a E JRd : Ila - Xiii ~ r}. 

For 'Y = 1 this of course reduces to a Poisson process with intensity 
measure {3µ. It is intuitively clear that for O < 'Y < 1 the pattern will 
tend to be 'ordered' and for 'Y > 1 'clustered'. The clustered model was 
introduced by Widom and Rowlinson [125]. See also [56, 110, 111]. 

It is often more convenient to use the parameter 'f/ = 'Y-1rr2 , since the 
addition of one point a to the configuration x alters p(x) by a factor 
ranging from /3 to f3rJ. 

Various modifications are of interest, for example, one may wish to re­
place Sr(x) by AnSr(x), or to allow the radii of the discs B(xi, r) to vary 
across the region [68]. More generally, the discs B(xi, r) can be replaced 
by compact sets Z(xi) depending on Xi, We assume that the mapping 
Z onto the space K, of all compact subsets is continuous with respect to 
the myopic topology [84, p. 12] generated by {KE K,: Kn F = 0} for 
all closed F ~ U and {KE K,: Kn G -=I- 0} for all open subsets G ~ U. 

Definition 5 ( "General case") Let v be a totally finite, regular Borel 
measure on U and Z : U -+ K, a myopically continuous function {84, 
p. 12], assigning to each point u EU a set Z(u) ~ U in the space of all 
compact subsets K,. Then the general area-interaction process is defined 
to have density 

(3.2.11) 

with respect to 1r (the distribution of the finite Poisson process with in­
tensityµ), where S(x) is the compact set ui=l Z(xi)-



44 

In a parametric statistical model the measure v and the definition 
of Z(•) might also be allowed to depend on the parameter 0. Other 
generalisations are possible, for instance 

p(x) = a(0) !] b(xi; 0) exp (-h f(d(x, u)) du) 

where d(x, u) = mini I lxi - ul I and f : [O, oo] --+ ( -oo, oo]. The model 
we will discuss in this Section is a special case, analogous to the Strauss 
process. 

Lemma 5 The density (3.2.11} is measurable and integrable for all val­
ues of /3, , > 0. 

Proof: Lett> 0 and consider V = { x ENI: v(S(x)) < t }· We show 
that V is open in the weak topology. 

Choose x EV. Since vis regular, there is an open set G ~ U contain­
ing S(x) such that v(G) < t too. Consider W = {y ENI: S(y) ~ G }; 
we have y E W iffy has no points in H = {u EU: Z(u) n ac-::/= 0}. Now 
H is closed in U since u ~ Z ( u) is myopically continuous and the class 
of all compact sets intersecting a given closed set is closed in the myopic 
topology on K,, Moreover, W = { y E NI : n(y n H) = 0} is open in the 
weak topology. To see this, note that for any y E W, the open ball in 
the Prohorov metric [25, p. 622] with radius t: < min{d(y, H), 1} centred 
at y is an open environment of y contained in W. Thus, Wis an open 
environment of x contained in V and, since x was arbitrary, V is weakly 
open. 

In fact this shows that x ~ v(S(x)) is weakly upper semicontin­
uous. It follows that the map g : NI --+ [0, oo) defined by x ~ 
exp[-v(S(x)) log,] is weakly upper semicontinuous for, E (0, 1) and 
lower semicontinuous for 'Y > 1. Hence g is measurable. By definition 
of the weak topology, x ~ 13n(x) is measurable, and hence the density 
(3.2.11) is measurable. 

To check integrability, observe that 

0 ~ v(S(x)) ~ v(U) < oo (3.2.12) 

Now the function f(x) = 13n(x) is integrable, yielding the Poisson process 
with intensity measure /3µ. Hence (3.2.11) is dominated by an integrable 
function, hence integrable. D 

In fact (3.2,12) establishes a slightly stronger result. 
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Lemma 6 The distribution P13,,., of the general area interaction process 
is uniformly absolutely continuous with respect to the distribution of the 
Poisson process 1rf3 with intensity /3µ, that is its Radon-Nikodym deriva­
tive is uniformly bounded. 

In particular, the general area-interaction process satisfies the linear 
stability condition in (39]. Explicit bounds on the density a-y-v(S(x)) 

with respect to a Poisson process of intensity /3µ are 

min {-yv(U)' 'Y-v(U)} 5 f 5 max { 'Yv(U)' 'Y-v(U)}. 

This suggests that the 'singularity' (highly clustered behaviour) of the 
Strauss model is unlikely. 

As usual, the normalising constant a is difficult to compute, since 

0 -1 = lF;Bn(X)'Y-v(S(X)) 

where the expectation is with respect to the reference Poisson process; 
this entails computing the moment generating function of v(S(X)), or 
equivalently, the vacancy distribution in the coverage problem [53]. A 
notable exception is the !~dimensional penetrable sphere model [125]. 

Area-interaction seems a plausible model for some biological processes. 
For example the points Xi may represent plants or animals which con­
sume food within a radius r of their current location. The total area of 
accessible food is then Sr(x); and the herd will tend to maximise this 
area, so an area-interaction model with 'Y < 1 is plausible. Alternatively 
assume that the animals or plants are hunted by a predator which ap­
pears at a random position and catches any prey within a distance r. 
Then Sr(x) is the area of vulnerability, and the herd as a whole should 
tend to minimise this [55] so an area-interaction model with 'Y > 1 is 
plausible. Area-interaction processes with 'Y > 1 are also used as a model 
for liquid-vapour equilibrium in chemical physics. 

The process can be derived from Poisson processes. 

Lemma 7 Let X, Y be independent Poisson processes in A with inten­
sity measures /3µ and llog-ylv respectively. lf-y > 1 then the conditional 
distribution of X given {Y n S(X) = 0} is an area-interaction process 
with parameter 'Y. If 'Y < 1 then the conditional distribution of X given 
{Y ~ S( X)} is an area-interaction process with parameter 'Y. 

Proof: If 'Y > 1 

IP(Y n S(X) = 01X) = e-v(S(X)) Jog,.,= 'Y-v(S(X)) 
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hence the conditional distribution of X given YnS(X) = 0 has a density 
proportional to the right hand side. Similarly if 'Y < 1 

IP(Y ~ S(X)IX) - IP(Y n (A\ S(X)) = 0) 
= ev(A\S(X)) log")' = 'Yv(A)'Y-v(S(X)). 

D 

3.2.2 Limiting cases 
Here we study the convergence of the area-interaction process as 'Y ---+ 

0,oo. 
Let v* = maxx v( S( x)), typically the measure of the observation win­

dow or its (generalised) dilation and 

H = {x: v(S(x)) = v*}. 

F\1rther, write 1rf3 for the distribution of the Poisson process of rate {Jin 
U and finally, in the standard case, denote 

HG= { x: m(S(x)) = n(x)1rr2} 

for the set of configurations respecting a hard core distance r. 

Lemma 8 Let P13,.,, be the distribution of the area interaction process 
with density (3.2.11). 

If 'Y ---+ 0 with {J fixed, then P13,.,, converges to a uniform process on H, 
i.e. P13,'Y(E)---+ 1r13(E n H)/1rf3(H). 

In the standard case, if 'Y ---+ 0 and {J ---+ 0 so that fJ'Y-1rr 2 ---+ ( E (0, oo), 
then P13,.,,(E) converges to P(E) = 1r'(E n HC)/1r'(HC), a hard core 
process. 

If 'Y ---+ oo with {J < oo fixed, then P13,.,, converges to a process that is 
empty with probability 1. 

Proof: First consider 'Y ---+ 0. Then J 'Yv*-v(S(x))d1rf3(x) ---+ 1rf3(H), 
hence 

'Yv* -v(S(x) 1 { x E H} 
P13,.,,(x) = J 'Yv*-v(S(x))d1rf3(x) ---+ 1rf3(H) 

from which the first assertion follows. To prove the second assertion, 
note that for m(Sr(x)) < n(x)1rr2, 'Yn(x)1rr2 -m(Sr(x))---+ 0. Hence 

(n(x)l{x E HO} 
P13,.,,(x)---+ fHc (n(x)d1rl(x). 

The third statement follows similarly, by noting that the density con­
verges pointwise to zero unless the pattern is empty. D 
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3.2.3 Markov property 
Define two points a, b E U to be neighbours whenever Z(a) n Z(b) =fa 0. 
In the standard case a~ b iff Ila - bll S 2r. 

Lemma 9 The area-interaction process {3.2.11} is a Markov point pro­
cess with respect to (3.1.1} in the sense of Ripley and Kelly {107}. 

Proof: The likelihood ratio 

p( X U { U}) = ,3,,-11(Z( u)\S(x)) 

p(x) 

is computable in terms of u and { Xi : Xi ~ u}, since 

Z(u) \ S(x) ; Z(u) n [yz(x{ 
- Z(u) n [x~u Z(xi)l c 

(3.2.13) 

Hence (3.2.11) defines a Markov point process with respect to~. □ 

The Ripley-Kelly analogue of the Han1mersley-Clifford theorem ( 3.1. 7) 
then implies that the density p can be written as a product of clique in­
teraction terms 

p(x) = II q(y) 
y~x 

where q(y) = 1 unless Yi ~ Yi for all elements of y. To compute the 
interaction terms explicitly, invoke the inclusion-exclusion formula: 

n 

v(S(x)) L v(Z(xi)) - L v(Z(xi) n Z(xj)) + 
i=l i<j 

which gives 

q(0) - a 
q({a}) _ ,37 -v(Z(a)) 

q( {y1' ... 'Yk}) - ,(-liv(n:=l Z(yi))' k "?:. 2. (3.2.14) 

That is, the process exhibits interactions of infinite order. 
The process satisfies a spatial Markov property (cf. [64, 107]). Define 

the dilation of a set E ~ U by 
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Dz(E) = {u EU: 3e EE such that Z(u) n Z(e) # 0}. (3.2.15) 

In the standard case this becomes the classical dilation of mathematical 
morphology 

Dz(E) = {u E IRd: d(u,E) ~ 2r} (3.2.16) 

where d(u, E) = inf {l[u - vii : v EE}. Then the spatial Markov prop­
erty states that the restriction of the process to E is conditionally inde­
pendent of the restriction to Dz(E)c given the information in Dz(E)\E. 

Figure 3.1 shows simulated realisations of (3.2.10). The number of 
points was fixed and the alternating birth/death technique of [102] used. 
This method entails alternating deletion of a random point and addition 
of a new point u to the current configuration x from a probability density 
proportional to p(x U {u}). The latter step can be implemented using 
rejection sampling, since the birth ratio (3.1.6) is dominated by a known 
constant by virtue of (3.2.12). In practice this will be a good bound for 
'Y close to 1. 
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Figure 3.1: Simulated realisations of an area-interaction process con­
ditional on n = 100 points, with r = 5 in a window of size 256 x 256. 
Left: ordered pattern, 1 = 0.9711, 1 - 251r = 10; Right: clustered pattern, 
1 = 1.02975, 1 - 251r = 0.1. 
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3.3. STATIONARY AREA-INTERACTION PROCESS 

Here we use the methods of Preston [100] to check that the area inter­
action model ( standard case) can be considered as the restriction to a 
bounded sampling window of a stationary point process on the whole of 
IRd. 

Let N be the space of all locally finite counting measures (i.e. integer­
valued Radon measures) on IRd with the vague topology, and N its 
Borel u-algebra; that is, N is the smallest u-algebra making x 1--+ n(xB) 
measurable for all bounded Borel sets B. 

Write C for the class of all bounded Borel sets in IRd. For every BE C 
let N 8 be the subspace of those x E N contained in B (i.e. putting 
no mass outside B), NB ~ N the induced u-algebra on N and 7f~ the 
distribution on (N,N) of the homogeneous Poisson process of rate /3 on 
B. Note that any x E N can be decomposed as x = x 8 U x 8 c. Define 
f 8 : N--+ [O, oo) by 

(3.3.17) 

where Sr(x) = UxiExB(xi,r), Bffir = BtBB(O,r) and aB(XBc) is the 
normalising constant , 

aB(XBc )-1 = f ,,,-m(Sr(YUXBc)nBEl)r) d1r~(y). 
}NB 

To check that this is well-defined, observe that 

Sr(x) n B$r = Sr(XBEl)2J n B$r 

so that x 1--+ m(Sr(x) n Bffir) is measurable with respect to NBE!l2r and 
a fortiori with respect to N. It is clearly integrable. Hence, by F\1-
bini's theorem, aB(·)-1 is NBE!l2r\B-measurable. Since aB is uniformly 
bounded away from zero, a-1 is also measurable. Thus, (3.3.17) is N­
measurable and integrable, and we may define for x E N, F E N 

(3.3.18) 

Theorem 10 There exists a stationary point process X on IRd such 
that 

IJJ>(X E FI XBc) = ~B(X, F) a.s. 

for all BE C and FEN. That is, (3.3.18) is a specification without for­
bidden states {100, p. 12] and the distribution of X is a stationary Gibbs 
state with this specification. The corresponding potential V : N f --+ IR, 

V(x) = (-log')')m(Sr(x)) 
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is stable / 100, p. 96}. 

Note that this result does not exclude the possibility that the Gibbs 
state is not unique, i.e. there may be 'phase transition' [100, p. 46]. 
Proof: First we prove consistency condition (6.10) of [100, p. 91]. For 
any bounded Borel sets A ~ B 

jB(x) = aB(XBc) ')'-m(Sr(XAc)nBE!lr\AE!lr) 
JA(x) aA(XAc) 

On the other hand 

{ fB(XAc Uy) d1r! (y) = aB(XBc) / 'Y-m(Sr(XAcUy)nBE!lr) d1r!(y). 
}NA }NA 

Since m(Sr(XAc u y) n B$r) = m(Sr(XAc u y) n A$r) + m(Sr(XAc) n 
B$r \ A$r), fN J8 (xAc Uy) d1r1(y) = f 8(x)/ JA(x). It follows [100, A . 
pp. 90-91] that {ibB : B E C} is a specification in the sense of [100, p. 
12]. 

Now we check the conditions of Theorem 4.3 of [100, p. 58]. Condition 
(3.6) of [100, p. 35] is trivially satisfied. Arguments similar to those 
used to derive Lemma 6 above yield that for any K E K, the family 
{1rK(Y, ·)}yEN considered as a class of measures on (N,NI<) is uniformly 

absolutely continuous with respect to 1r~; hence Preston's condition 
(3.11) [100, p. 41] holds, which implies his (3.10). It remains to check 
(3.8) of [100, p. 35]. Let K, be the class of all compact subsets of 1Rd; 
then we claim that 

for any B E C and F E NI< where K E K,, there exists L E K, 

such that ibB(·, F) is measurable with respect to NL, 

To check this, choose L to contain KUB$2r and observe that 1F(x8 cUy) 
and J8 (xi Uy) are measurable with respect to NL @N8 , then apply 
Fubini's theorem. This proves the claim, which implies Preston's (3.8) 
and hence the conditions of his Theorem 4.3. 

It is easy to see that V is the unique canonical potential corresponding 
to the densities J8 (cf. [100, p. 92]). Since 0 ~ m(Sr(x)) ~ 1rr2n(x), V 
is stable. D 
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3.4. INFERENCE 

This Section surveys parameter estimation techniques. We also derive 
a new identity from the Nguyen-Zessin formula that can be computed 
quite generally as an index for clustering and for estimating model pa­
rameters. 

3.4.1 Sufficient statistics, exponential families 
Consider a family of standard area-interaction processes (3.2.10) indexed 
by a parameter 0 = (/3, ,), with r and A ~ ]Rd fixed. This is an expo­
nential family with canonical sufficient statistic 

T(x) = (n(x), M(x, ·)) 

where 
n 

M(x,r) = m(Sr(x)) = m(LJ B(xi,r)). 
i=l 

Modifying this slightly we obtain a connection with the 'empty space 
statistic' F(t) = l?(X n B(O, t) -:fa 0) [31, 103]. Define 

--() m(A(-r) n (U~1 B(xi, r))) 
F r = -----'---'--------

m(A(-r)) 
(3.4.19) 

where 

A(-t) = {a E A: B(a, t) ~A}. 

This is the 'border method' [104, p. 25] or 'reduced sample' estimator 
[4] of the empty space function. 

Lemma 11 ( n( x), F) is a sufficient statistic for the area-interaction 
process (3.2.11} with parameters (/3,,) when Z(u) = B(u,r) and the 
measure v is Lebesgue measure restricted to A(-r)· 

The canonical parameter is - log, but we prefer to use , to maintain 
the comparison with the Strauss process. 

3.4.2 Maximum likelihood 
As usual for Markov point processes, the likelihood (3.2.11) is easy to 
compute except for a normalising constant a that is not known ana­
lytically. Maximum likelihood estimation therefore rests on numerical 
or Monte Carlo approximations of a [93, 94, 95, 98] or recursive ap­
proximation methods [90]. For a more detailed review see [33, 45] or 
[104]. 
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We will not explore this further here, except to note that the maximum 
likelihood estimating equations are as usual 

n(x) - IE,a,..,.n(X) 
v(S(x)) - IE,a,..,.v(S(X)) 

(3.4.20) 

(3.4.21) 

where x is the observed pattern and X is a random pattern with density 
(3.2.11). For the model conditioned on n(x) = n the ML estimating 
equation is analogous to (3.4.21) with /3 absent. 

9.,4.3 Takacs-Fiksel 
The Takacs-Fiksel estimation method exploits the Nguyen-Zessin iden­
tity [92] 

>. ~f(X) = IE[>.(a; X) J(X)] (3.4.22) 

holding for any bounded measurable non-negative function f: N-+ lR+ 
and any stationary Gibbs process X on ]Rd with finite intensity>., see 
[46, 47, 67, 85, 62] or [104, p. 54-55], [33, §2.4] . The expectation 
on the left hand side of (3.4.22) is with respect to the reduced Palm 
distribution of X at a E ]Rd, that is the conditional distribution of 
the rest of the process given that there is a point at a; >.(a; x) is the 
Papangelou conditional intensity of X at a (cf. Section §3.1.2). Thus 
(3.4.22) states that the reduced Palm distribution of X at a is equivalent 
to the >.(a; X)-weighted distribution of X. 

A Takacs-Fiksel method [37, 38, 120, 121] is then to choose suitable 
functions and to estimate both sides in the above formula. The resulting 
set of equations is solved, yielding estimates for the parameters of the 
model. The idea was originally suggested by Takacs [120, 121] for a 
particular case and generalised by Fiksel [37, 38]. A variant using only 
nearest neighbour measurements was developed by Tomppo [123]. 

For a Gibbs process the conditional intensity can be computed in 
terms of likelihood ratios [62]. For the standard area-interaction process 

>.(a; x) = /3,y-m(B(a,r)\Sr(X)) 

for a¢ x; this depends only on XB(a,2r)· 

One interesting instance of (3.4.22) is 

f(x) = l{x n B(0, s) = 0} 
>.(0;x) 

using 0 as an arbitrary point of ]Rd (cf. [117, (5.5.18), p. 159]). Then 
IE[>.(0; X) /{X)] = 1 - F(s) where F(s) = IP(X n B(0, s) -::/= 0) is the 
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empty space function of X. Now ifs> 2r, 

..\ !FiJJ(X) - ..\ J l{X n B(O, s) = 0} 1r11m(B(O,r)\Sr(X)) dPJ(X) 

- ..\ J l{X n B(O,s) = 0} r,-1,m(B(O,r)) dPJ(x) 

- ..\ r,-l,,rr2 [1 - G(s)] 

where G(s) = I?b(X n B(O,s) =I= 0) is the nearest neighbour distance 
distribution function of X. Equivalently 

J(s) = 1- G(s) = r,,-1rr2 
1 - F(s) .X 

(3.4.23) 

for all s > 2r. 
Thus parameter estimates for the area-interaction process can be ex­

tracted directly from the standard statistics F and G. Similar identities 
hold for any (Markov) model with finite range of interaction. The ratio 
can be computed in many cases, when F and G separately cannot, and 
the graph provides an estimate for the interaction range. For further 
development of this idea see [78]. 

Identity (3.4.23) also provides a further description of the typical pat­
tern generated by the model; F and G are used in spatial statistics as 
measures of clustering versus regularity, with 1 - F(t) = 1 - G(t) = 
exp{-.X-,rt2 } and hence (1-G)/(1- F) = 1 in the case of a Poisson pro­
cess. Clustering is sometimes characterised by elevated G and lowered F; 
regularity by elevated F and lowered G [31]. Hence (1- G)/(1- F) < 1 
for clustering and > 1 for regularity. 

3.4.4 Approximation by lattice processes 
Besag, Milne and Zachary [18] proved that any purely inhibitory ( or hard 
core) pairwise interaction point process is the weak limit of a sequence 
of lattice processes, and remark [18, p. 214] this is also true of general 
Gibbs point processes, again of purely inhibitory type. Here we extend 
the result to the area-interaction model, which is not inhibitory. 

Consider a partition { 0 1 , ... , Cm} of the observation window A and 
choose representatives ~i E Ci, Denote the area of Ci by Ai > 0 and 
the set of all representatives by 3. We shall construct a {O, 1}-valued 
stochastic process n = { ni : i = 1, ... , m} which is auto-logistic, 

(3.4.24) 

where 
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µi(Ci) = Ai IT q(~i u y)17(Y); 

the product ranges over all (possibly empty) subsets of 3 \ {~i}, the set 
function q is the clique interaction function (3.2.14) and r,(y) = Ile;EY n3 
is either O or 1. 

Given a realisation of n, construct a realisation x of a point process 
X such that if ni = 0 then x n Ci is empty, while if ni = 1 then x n Ci 
consists of one point uniformly distributed in Ci independently of other 
points. 

Lemma 12 The conditional distributions (3.4.24) specify a distribution 
for n and 

P(n) = IT Af; IT q(y)17<Y). 
P(O) i 0#y~3 

The point process X is absolutely continuous with respect to a unit rate 
Poisson process on A, with density 

f(x) = /(0) IT q(y)rix(Y). 
0;t,y~3 

Here rJx(Y) = TI n(x n Cj) and the product ranges over all j such that 
~j E y. 

Proof: Use Besag's factorisation theorem [14, p. 195]. □ 

Theorem 13 Consider a sequence of partitions Cr= { Cr,1, ... , Cr,m(r)} 

such that maxi diam( Cr,i) - 0. Then the corresponding point process 
x<r) converges weakly and in total variation to the area-interaction pro­
cess p(·). 

Proof: Let fr be the density of x<r). For fixed x 

fr(x) _ IT q(y) = 13n(x) 1 -v(S(x)) = !_ p(x) 
fr(0) 01y~x a 

since all cells ultimately contain at most one point, and q is continuous 
in all its arguments. By dominated convergence, 

1 / fr(x) J l 1 
fr(0) = fr(0) d1r(x) - ; p(x) d1r(x) = ;; 

thus, 

fr(x) 
fr(x) = fr(0) /r(0) - p(x) 

pointwise and the theorem is proved. □ 
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3.4.5 Pseudolikelihood estimation 
Because of the lattice approximation, the model parameters can be es­
timated by pseudolikelihood [15, 18, 61]. Using the notation of Sec­
tion 3.4.4, the pseudolikelihood for partition { Ci}~1 is 

Since 

PL(0) - II IP(ni = 1 I nj,j # i) 
xnC;;e0 

II {1- IP(ni = 1 I ni,j # i)}. 
xnC;=0 

m,( I . .) AiA(~i; x) 
ir ni = l nj,J # i = 1 + AiA(~i;x) 

where A(· ; x) is the Papangelou conditional intensity, we have 

lim Al IP(ni = 1 I ni,j # i) = A(~i;x) 
A; ..... Q i 

or IP(ni = 1 I nj, j # i) ~ AiA(~i; x). Therefore, for small Ai, 

logPL(0)-n(x)logAi - L log{~_IP(ni=llni,j#i)} 
xnC;;i!:0 i 

+ L log{l -lP(ni = 11 nj,j # i)} 

xnC;=0 

~ L log A(~; x) - j A(~; x) <i{,. 
eEx A 

In the limit, the pseudolikelihood equations are 

PL(/3,,;x)=exp{- LA(u;x)du} !!A(xi;x). 

For the area-interaction model (3.2.10) 

A(u;x) = p(xU{u}) =/3,-m(B(u,r)\Sr(x\{u}))_ 

p(x \ {u}) 

(3.4.25) 

Writing t( u) = m( B( u, r) \ Sr(x \ { u})) the maximum pseudolikelihood 
estimates of /3 and, are the solutions of 

n /3 L ,-t(u)du 

/3 l t(u),-t(u)du 

(3.4.26) 

(3.4.27) 
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Note that these have exactly the same form as the pseudolikelihood 
equations for the Strauss model [104, p. 53]; in that case -t(u) is the 
number of points in x with O < llu - Xiii~ r. 

For inhibitory pairwise interaction models it is known that pseudo­
likelihood estimation is a special case of the Takacs-Fiksel method when 
the interaction radius r is fixed [33, Section 2.4], [104, p. 54] or [115, 
Section 4]. The same is true for the area-interaction model. 

Theorem 14 For a stationary area-interaction process, the pseudolike­
lihood equations (3 .. 4.,26} and (3.4,27) are special cases of the Takacs­
Fiksel method. 

Proof: Take f to be either of 

f 13(x) - /3-1 , 

/-y(x) - --y-1m(B(O, r) \ Sr(x \ {O} )). 

These are the partial derivatives of log >.(O; x) with respect to /3 and -y. 
When f = f 13 an unbiased estimator for the left hand side of (3.4.22) is 

n l 
---
m(A) /3 

and, by stationarity, an unbiased estimator of the right hand side is 

1 11 -t(u) 
m(A) A /3 /3-y du. 

When f = f-r, the average over the observed events 

_n_.!_ t -t(xi) 
m(A) n i=l 'Y 

is an unbiased estimator of the left hand side of (3.4.27) by the Campbell­
Mecke formula [117, p. 113], while an unbiased estimator for the right 
hand side is the window mean 

_l_ J -t(u)/3 -t(u) d 
m(A) A 'Y 'Y u. 

These reduce to (3.4.26)-(3.4.27). □ 
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This Chapter develops a Bayesian approach to object recognition. We 
describe iterative optimisation schemes related to Besag's ICM [16] and 
discuss how spatial birth-and-death processes can be used for sampling 
and stochastic annealing [42]. The relative merits of the methods are 
investigated by means of a simple synthetic example. 

4.1. GENERAL 

A strong motivation for adopting a Bayesian approach to object recog­
nition is that the MLE tends to contain clusters of almost identical 
objects, i.e. there is 'multiple response' to each true object, as noted in 
Section 2.6. This is related to the fact that the Hough transform has 
rather flat peaks around the correct object positions. Multiple response 
is undesirable if it is important to correctly determine the number of 
objects, and if it is believed that objects do not lie extremely close to 
one another. For instance in document reading it is known in advance 
that characters usually do not overlap. A standard approach in com­
puter vision is to select one object per peak of the Hough transform; but 
this is very similar to a Bayesian approach using a prior model which 
assigns low probability to configurations in which objects are close to 
one another. 

Natural prior models p(x) belong to the class of nearest-neighbour 
Markov object processes described in Chapter 3. Given observation of 
image y, the posterior probability density for scene x is then 



p(x I y) ex f(y Ix) p(x). 

60 

( 4.1.1) 

The posterior distribution is often a nearest-neighbour object pro­
cess too, though possibly with respect to a different neighbour relation. 
Specifically, for the overlapping objects relation (3.1.1) and a blur-free 
independent noise model with g(· I •) > 0, the posterior distribution is 
Markov with respect to (3.1.1) as well. 

A Maximum A Posteriori (MAP) estimator of the true configuration 
solves 

x - argmaxx p(x I y) 

argmaxx J(y Ix) p(x). (4.1.2) 

Again, the optimisation is over the space n of all object configurations. 
In decision theoretic terms, this corresponds to imposing a 0-1 loss func­
tion, according to whether the recognition is perfect or imperfect. As­
suming p(·) > 0 rewrite (4.1.2) as 

x = argmaxx [logf(y Ix)+ logp(x)]. (4.1.3) 

Because of this expression, x is also called a penalised maximum likeli­
hood estimator. The, factor log / (y I x) is interpreted as a measure of 
goodness of fit to the data, and - logp(x) as a penalty for the complexity 
of the configuration x. Typically, p( •) assigns low weight to configura­
tions with many similar objects. Alternatively, P.J. Green noted that 
(4.1.3) can be interpreted as an optimisation of Euler-Lagrange type. 

4.1.1 Prior models 
A simple prior is the Strauss process (3.1.4) which results in a penalty 
of - log f3 for the presence of each object Xi E x and a penalty of - log 'Y 
for each pair of neighbouring objects (e.g. overlapping objects). Modifi­
cations which might be useful in this application are 

n 
p(x) = a II f31R(x;)I II ,ylR(xi)nR(xj)I (4.1.4) 

i=l i<j 

and, for marked objects, to allow the interaction terms to depend on the 
marks. 

Regarding the choice of parameter values, note that if the raster is 
made finer ( say, quadrupling the number of pixels) then the log likelihood 
typically increases by the same factor. This suggests that to maintain 
the balance between f and p in ( 4.1.2 )-( 4.1.3) the parameters log f3 and 
log,y of a Strauss model should also be multiplied by this factor. Models 
such as (4.1.4) with interactions expressed in terms of pixel counts, do 
not require such adjustment. 

Since the area-interaction model (3.1.8) 
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is also defined through pixel counts, the same remark holds. To enforce 
inhibition, choose 'Y < 1. Then, with the number of objects fixed, the 
silhouette area IS(x)I is maximal if there is as little overlap as possible. 
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4.2. ITERATNE ALGORITHMS 

Iterative methods are needed in order to find the MAP estimator (4.1.2). 
As in Section 2.4 we consider algorithms which add or delete objects 
one at a time. The log likelihood ratio criterion is now replaced by a log 
posterior probability ratio. 

Algorithm 5 Apply Algorithms 1, 2, 3 or 4 with f(y I x) replaced by 
the posterior probability p(x I y). Thus we iteratively add object u to list 
X iff 

1 J(y Ix U {u}) p(x U {u}) 
og f (y I x) p(x) ~ w, 

delete existing object Xi iff 

log J(y Ix\ {xi}) p(x \ {xi}) > w 
f (y I x) p(x) -

and if shifts are permitted, we shift Xi Ex to u iff u E Q(x, Xi) and 

1 f(y I M(x,Xi,u)) p(M(x,xi,u)) 
og----,.........,------ > w 

f(y I x) p(x) -

where w ~ 0 is a chosen threshold. 

The convergence properties of Algorithms 1--4 remain valid for this 
new objective function. An alternative description of Algorithm 5 is 
that the static threshold value used in the likelihood ratio algorithms 
is replaced by one that depends on the current reconstmction and on a 
smoothing parameter. 

Algorithm 5 is a close analogue of Besag's ICM algorithm [16]. If the 
object space U is finite, consider labelling each Uj E U with value 

V . = { 1 if Uj E X . 
1 0 else 

The ICM approach would be to visit each object sequentially and update 
its label in the light of current estimates for the other objects: when the 
labelling is v, the label of the current object Uj is updated to 

argmax I?(½= k I y, (vi)i#i)-

But this is clearly equivalent to comparing 

f (y I X \ { Uj}) p( X \ { Uj}) 

against 
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where xis the current object list; and this is Algorithm 5 (w = 0). 
Algorithm 2 is a simple variant of ICM, at least in the discrete case. 

This algorithm is also defined when U is 'continuous' (any l.s.c. space) 
but the interpretation is more complex. We add a new object u at 
the position where the Papangelou conditional intensity of the posterior 
distribution, given the current configuration x on U \ { u}, is maximal, 
provided this is greater than ew (relative to the reference measure µ). 

4.2.1 Examples 
Figure 4.1 shows the result of steepest ascent ICM for the pellet texture 
of Section 2.6. The prior was a Strauss process of overlapping discs 
(3.1.4) with log,6 =log')'= -1000. 

Figure 4.1: MAP reconstruction of the Brodatz pellets texture by steep­
est ascent from an empty initial state (w = 0) using a Strauss prior with 
log,6 =log')'= -1000. 

As another example, consider a noise corrupted image of a scene con­
sisting of rectangles of various sizes (Figure 4.2). The object space is 
four-dimensional; any rectangle can be described by the coordinates of 
its upper left and lower right corner. The forward model is blur-free 
Gaussian white noise. Because the object size is variable, MLE solu­
tions cannot distinguish between one large rectangle and a union of 
several small ones having the same silhouette. Therefore we introduce a 
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Figure 4.2: Realisation from a Gaussian blur-free independent noise 
model with u = 10, 01 = 150 and 00 = 100, digitised on a 128 x 116 
grid. 

penalty - log,B = 5.0 on addition of an object and obtain a (non-unique) 
steepest ascent reconstruction given in Figure 4.3 (top). Fine tuning is 
possible by allowing the corners to move one pixel in every direction. 
The result is shown ih Figure 4.3 (middle). 

Note that the posterior distribution cannot distinguish between an 
equal number of objects having the same silhouette. If it is desirable 
to have as many overlap as possible, a penalty -log,= 5.0 on every 
pair of overlapping objects can be introduced, resulting in Figure 4.3 
(bottom), or for every pixel in the intersection (resolving uncertainty in 
the two objects in the top centre of the image). 

4.2.2 Relation to Hough transform 
In many cases, computing the posterior log likelihood ratio is a local 
operation, related to the Hough transform. For example, taking the 
Strauss prior (3.1.4), g(-j-) > 0 and a blur-free signal, 

log f (y I x U { u}) p( x U { u}) = log ,B + r( u; x) log 'Y + L Zt 
f (y I x) p(x) R(u)\S(x) 

where r(u;x) = s(x U {u}) - s(x) is the number of neighbours of u in 
x and Zt = logg(Ytl01) - g(Ytl0o) (cf. Section 2.5). The new term in, 
is a penalty against adding an object in the vicinity of existing objects. 
For the area-interaction prior (3.1.8) the term involving, is replaced by 
-IR(u) \ S(x)l log, so that we again obtain something very similar to 
the Hough transform. 

In general, for any independent noise model (2.2.3) with g(·I·) > 0, 
and any nearest neighbour Markov object prior (Definition 3), the pos-
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terior log likelihood ratio depends only on data pixels in the update 
zone Z(x, u) and on the configuration (and relations) in the restricted 
neighbourhood x n N ( u I x U { u}) of the added object. 

4.2.s Parameter estimation 
Until now we assumed that the model parameters were known exactly. 
However, in realistic situations unknown physical variables have to be 
taken into account. In some applications where many similar images are 
available, these can be used for parameter estimation. In the absence of 
training data, estimation and recognition of objects must be carried out 
simultaneously. 

Maximum likelihood can be applied to obtain estimates. This is fea­
sible for many noise models; in particular for independent noise models 
the method is straightforward. The prior distribution, however, involves 
a normalising constant which cannot be evaluated, making maximum 
likelihood estimation intractable. An alternative, more efficient method 
is maximum pseudolikelihood estimation (14, 15, 61], which maximises 
the product of conditional densities. This product does not involve the 
normalising constant and i~ easy to compute for Markov processes. How­
ever, it is not a genuine likelihood, except in the case of spatially inde­
pendent objects. (See also Section 3.4.5). 

For the superficially similar case of image segmentation using Markov 
random fields, Besag [16] proposed the following procedure. Unknown 
parameters in f and p are denoted by </> and '1/J respectively. 

Algorithm 6 

1. obtain an initial estimate x of the true pattern, with guesses for </> 

and 'I/) if necessary; 

2. estimate </> by maximising f(y I x; </>); optionally, estimate 'I/) by the 
maximum pseudolikelihood method; 

3. carry out a single step of the reconstruction algorithm based on the 
current estimates x, ¢ and ,(/;, leading to a new estimate x, and 
return to step 2. 

An alternative, fully Bayesian approach is to specify a prior distri­
bution for each model parameter and replace step 2 above by sampling 
from the posterior distributions. 

As an illustration, Figure 4.4 displays a digitised piece of music, re­
produced with kind permission of R. van den Boomgaard. The data was 
scanned by P. Tax (University of Amsterdam). Here we will focus on 
finding the locations of notes. To a good approximation their shape is 
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Figure 4.3: Steepest ascent reconstructions for the data in Figure 4.2 at 
threshold w = 0 using a Strauss prior. The initial state is empty. Top: 
only births and deaths, log,B = -5 and log-y = 0. Middle: translations 
over 1 pixel in every direction, log ,B = -5 and log -y = 0. Bottom: 
translations over 1 pixel in every direction, log,B = -5 and log-y = -5. 
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elliptical, the major axis making a 30 degree angle with the horizontal 
coordinate axis. As the shape is assumed to be constant, the parameter 
space and image space coincide, i.e. this is a translation model. 

Figure 4.4: Binary image of a small piece of music digitised on a 250 x 65 
grid. 

For the noise distribution a salt-and-pepper model was chosen, with 
unknown error fraction p. As it is known in advance that notes cannot 
overlap each other, a suitable choice for the prior distribution is a hard 
core object process (3.1.2). 

A steepest ascent reconstruction, starting from an empty list, for the 
data in Figure 4.4 is given in Figure 4.5. Here, w = 0 and log,B = -50. 
The noise error fraction p is estimated during iteration by its maximum 
likelihood estimator 

~ IS(x)~YI 
p= ITI . 

Recall that Y is the set of pixels with value 1 and ~ denotes the sym­
metric set difference. To facilitate interpretation the data image was 
masked by the reconstruction and vice versa. 

Figure 4.5: Steepest ascent reconstruction (white) 'masked' by the data. 
The initial configuration is empty, w = 0 and the prior distribution is 
hard core with log,B = -50. 

The scene contains not only notes, but also other features such as hor­
izontal and vertical lines, thick bars etc. However, their contribution to 
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the Hough transform is small in comparison to real'notes, due to the fact 
that negative pixel votes serve to compensate the positive contributions. 
In other words, the objects R(u) are large enough to accumulate strong 
evidence in the Hough transform and to suppress noise. By setting the 
penalty - log,6 for addition of a new object high enough, only desired 
objects are detected. 

It is interesting to note that the parts in the image are strongly con­
nected. Vertical line segments are usually linked with the basic notes 
(except to separate measures) and might be joined by bars. Once the 
basic ellipses have been found, one could add an extra stage to look for 
line segments and then bars, thus building a hierarchical method for 
automatic music reading. We do not pursue this issue fhrther. 
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4.3. PERFORMANCE EVALUATION 

In this Section we study in detail a simple synthetic example in which a 
pattern of discs of fixed radius (parameterised by the centre coordinates) 
has been observed after addition of Gaussian noise (Figure 4.6). As the 
true scene is known, it is possible to compare algorithms by computing 
numeric performance measures . 

• • •* • • •• • • •• -• . : - • 
Figure 4.6: Binary silhouette scene of discs with radius 4 and realisation 
from Gaussian model with 'er = 50, 01 = 150 and 00 = 100, digitised on 
a 98 x 98 square grid. 

4.3.1 Reconstructions 
Figure 4.7 shows maximum likelihood reconstructions obtained by the 
coordinatewise optimisation algorithm (Algorithms 1 and 3) taking thresh­
old value w = 0. The pixels were scanned in row major order and for 
the initial state we took the local maxima of 

log f (y I { u}) 
/(y I 0) 

where the expression was non-negative. F\irthermore, Algorithm 3 al­
lowed translations over one pixel in every direction. Note the multiple 
response, especially where discs overlap each other. 

The reconstructions obtained using steepest ascent (Algorithms 2 and 
4) with empty initial state and threshold value w = 0 are given in fig­
ure 4.8. In this case it seems important to stop short of convergence. 
Typically, when all the objects that are really present have been de­
tected, the method keeps adding spurious ones. This can be counter­
acted by taking a higher threshold value. In the present example choos­
ing w = 6 will result in the 'best' reconstruction shown in Figure 4.9. 

Algorithm 5 is illustrated in Figure 4.10 for coordinatewise optimisa­
tion. Again, the pixels were scanned in row major order choosing the 



0 0 0~ 

0 Oo 0 

0 
00 

O O d)) 
0 Oo 

70 

0 0 0~ 

0 Oo 0 

oo ~ 
0 

Q) 0 Oo 

Figure 4.7: MLE reconstructions using coordinatewise ascent with the 
local extrema of the Hough transform as initial state. Left: only births 
and deaths; right: births, deaths and translation. 
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Figure 4.8: MLE reconstructions using steepest ascent with the empty 
list as initial state. Left: only births and deaths; right: births, deaths 
and translation. 
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Figure 4.9: 'Best' intermediate MLE reconstruction using steepest as­
cent with the empty list as initial state (both Algorithms 2 and 4). 

local extrema of the Hough transform as initial configuration. A Strauss 
prior model was used with parameters /3 = .0025 and , = .25. In the 
steepest ascent case fewer spurious discs are added. Indeed the final 
result is the 'best' one for this particular example (Figure 4.11). Over­
all, MAP gives a clear imptovement over MLE, successfully combating 
multiple response. 

4.3.2 Typical behaviour 
In the discussion below, we define one 'step' of each algorithm as a 
complete scan through the discretised parameter space. The number 
of 'transitions' (additions or deletions of objects) per scan may vary: 

0 
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0 Oo oO 0 Oo 00 
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0 0 0 0 

CD Oo CD Oo 

Figure 4.10: MAP reconstructions using coordinatewise ascent with the 
local extrema of the Hough transform as initial state. The prior distri­
bution is a Strauss model with /3 = .0025 and,= .25. Left: only births 
and deaths; right: births, deaths and translations. 
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Figure 4.11: MAP reconstructions using steepest ascent with the empty 
list as initial state. The prior distribution is a Strauss model with fJ = 
.0025 and , = .25. Left: only births and deaths; right: births, deaths 
and translations. 

steepest ascent ( and some sampling techniques) generate one transition 
per scan, while coordinatewise optimisation yields a variable number 
depending on the data, the current reconstruction and the scanning or­
der. 'Steps' are roughly proportional to total computer time, although 
this ignores the possibility of parallelism: steepest ascent could be im­
plemented in parallel computation, but coordinatewise optimisation is 
inherently sequential. 

The performance of an algorithm is measured by computing the log 
likelihood L(x(k) ; y) itself and two 'external' measures of fidelity, 
Pratt's figure of merit [1] 

1 1 

max{n(x), n(x(k))} ,L(k) 1 + td(xi, x) 
X-EX 

and Baddeley's ~2 metric [2] 

With a slight abuse of notation, the same symbol d is used to denote 
the distance from either a lattice or a configuration member to a given 
pattern. It can be justified by noting that in this particular example 
image space and object space coincide. 

We computed the ~ 2 distance and the figure of merit for the recon­
struction x(k) at each iteration. Figure .1 graphs the performance of co­
ordinatewise optimisation starting with the local extrema of the Hough 
transform. Pixels were scanned in row major order. Again MAP shows 
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a clear improvement over the MLE in terms of the external performance 
measures. Note that for Bayesian algorithms the log likelihood graph 
need not be monotone, as these methods aim at increasing the posterior 
likelihood. 

For the steepest ascent algorithms the behaviour is qualitatively dif­
ferent, see Figure .2. While coordinatewise optimisation needs only a 
few scans through the image, steepest ascent from an empty initial image 
requires at least as many scans as there are objects in the image. New 
objects are added one-by-one, gradually improving the reconstruction 
quality, until all objects are detected; then the reconstructions deterio­
rate. This method can however yield more accurate reconstructions than 
coordinatewise optimisation algorithms, especially in the non-Bayesian 
case. 

A widely used technique for object recognition is to compute the 
Hough transform and find its local extrema. In noisy images this proce­
dure performs badly, as can be seen from the graphs in Figure .1 where 
the y intercept is the performance of the Hough extrema operator. 

4.3.3 Initial state influence 
Tables 1-12 show performance measures for the eight possible algorithms 
using various initial states. 

First restrict attention to the methods based only upon addition and 
deletion. Using initial configurations other than the empty list does 
not change the overall pattern described above. Coordinatewise opti­
misation converges in a few steps; steepest ascent slowly improves the 
reconstruction by removing incorrect objects and replacing them by the 
right ones. MAP shows less sensitivity to the initial state than does 
MLE. 

Not surprisingly, the best reconstructions were obtained when initial­
ising with the true image, but a perfect match is not guaranteed. This 
reflects the fact that the truth is not necessarily a solution of the MAP 
equations. 

One proposal is to use the local extrema of the Hough transform as the 
initial state. This appears sensible for the coordinatewise optimisation 
algorithms but not for steepest ascent. In most cases better reconstruc­
tions could be obtained with an empty image as initial state. 

The same remarks hold if the initial state is a translation of the true 
state. A possible explanation is that extra effort is required to throw 
away incorrect estimates and replace them with better ones. 

In summary, for the add-delete algorithms, it is best as a rule of 
thumb to use the empty list as a starting state for the steepest ascent 
algorithms, unless additional information about the objects to be de-
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tected is available. This is especially so since time is wasted in throwing 
away incorrect objects. Another advantage is that no preprocessing (e.g. 
computing the Hough transform) of the data is required. 

'I\1rning now to the add-delete-shift algorithms, we note that these 
exhibit less sensitivity to the choice of initial state. Another advantage 
is that the number of scans needed for steepest ascent decreases, as it 
is no longer necessary to throw away spurious objects first and then 
replace them by better ones. This is illustrated in Figure .2 where it 
must be noted that the plot for Algorithm 2 is cut off, as 71 transitions 
were needed. The graphs for the refined algorithms are smoother than 
those for the techniques based upon addition and deletion only, and 
the levels at convergence are better. The Bayesian method with only 
births and deaths is unable to reposition many discs, as the posterior 
log likelihood ratios are too small. When using Algorithm 2 more discs 
are thrown away and readded at their proper positions, but many more 
scans through the image are required. 

4.3.4 Noise influence 
It is also of interest t,o investigate the influence of signal-to-noise ratio. 
We generated ten independent realisations of Model 1 for several values 
of u2 . Reconstructions were obtained and the average quality calculated 
for Algorithms 1-5. The results are depicted in Figure .3. 

As could be expected, the reconstructions become poorer when more 
noise is added. Due to the extra term penalising undesirable configu­
rations, the MAP solutions are less sensitive to the noise variance than 
ML estimates. Steepest ascent is more robust than coordinatewise op­
timisation. 
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4.4. FIXED TEMPERATURE SAMPLING 

The natural analogue of the Gibbs sampler in this context is a spatial 
birth-and-death process [101, 88]. This is a continuous time, pure jump 
Markov process, whose states are configurations x E n, and for which the 
only transitions are the birth of a new object (instantaneous transition 
from x to x U { u}) or the death of an existing one ( transition from x 
to x \ {Xi}). Formally, write B for the (Borel) o--algebra on U and let 
D(·, •): n x U - [0,oo) be a measurable function and B(·, •): n x B -
[0, oo) a finite kernel, i.e. B(x, •) is a finite measure on ( U, B) and B( ·, F) 
is a measurable function on n. These are called the death rate and birth 
rate. The reason is clear from the following. Given the state x at time 
t, 

• the probability of a death x - x \ {xi} during a time interval 
(t, t + h), h - 0, is D(x \ {xi}, xi)h + o(h); 

• the probability of a birth x - x U { u} during time ( t, t + h), where 
u lies in a given measurable subset F ~ U, is B(x, F)h + o(h); 

• the probability of more than one transition during (t, t+h) is o(h). 

We will assume that B(x,-·) has a density b(x, ·) with respect toµ on U, 
so that intuitively b(x, u) is the transition rate for a birth x - x U { u}. 
Write 

B(x) = fu b(x, u) dµ(u) 

for the total birth rate, and similarly define 

D(x) = I: D(x \{xi}, Xi), 
x;EX 

To avoid explosion, i.e. an infinite number of transitions occurring 
in finite time, the rates have to satisfy certain assumptions. Preston 
[101, Prop. 5.1, Thm. 7.1] gave sufficient conditions under which there 
exists a unique spatial birth-and-death process with given rates solving 
Kolmogorov's backward equations 

d 
dtl?(Xt E AIXo = x) - -[B(x) + D(x)] l?(Xt E AIXo = x) 

+ in l?(Xt E AJXo = z)R(x, dz) 

with R(x, A) = B(x, {u EU: x U {u} EA})+ ~x;Ex 1 {x \ {xi} EA} 
D( x \ {xi}, Xi) the total rate from pattern x into a measurable subset 
A ~ n. For a given process (Xt)t he also found conditions for the 
existence of a unique invariant probability measure and convergence in 
distribution (i.e. convergence of l?(Xt E FIXo = x)). 
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Theorem 15 For each n = 0, 1, ... define /'i,n = SUPn(x)=n B(x) and 
8n = infn(x)=n D(x). Assume 8n > 0 for all n ~ 1. If either (a) /'i,n = 0 
for all sufficiently large n ~ 0, or (b) Kn> 0 for all n ~ 0 and both the 
following hold: 

00 L K,o • • • Kn-1 

81 ... 8 
n=l n 

< 00 

= 00 

then there exists a unique spatial birth-and-death process for which B(•, ·) 
and D( ·, •) are the transition rates; this process has a unique equilibrium 
distribution to which it converges in distribution from any initial state. 

A slightly stronger result given by M0ller [88] includes the case /'i,Q = 0, 
0 c 11 1 db h '°'oo '-1 ... ,.,._1 d '°'oo ~ 

/'i,n > 10r a n ~ an Ot ~n=2 61 ... 6,. < 00 an ~n=l ,_1 ... ,-,. = 00, 

still assuming all 8n positive for n ~ 1. 

4.4.1 Construction 
Suppose we want to, san1ple from the temperature modified posterior 
distribution 

PH(x I y) ex {f(y Ix) p(x)}l/H. (4.4.5) 

The purpose of introducing a temperature parameter is to sharpen peaks 
in posterior probability. For small H > 0, configurations with large 
posterior density are favoured, while others are suppressed. Indeed, if 
object space U is discretised PH(· I y) converges pointwise to a uniform 
distribution on the set of MAP solutions as H tends to zero. 

Consider any blur-free independent noise model (2.2.3) with g(·I·) > 0 
and a nearest-neighbour Markov object prior. The former assumption 
is needed so that the class K = {x : J(y I x) p(x) > 0} is hereditary. 
For some fixed k E [0, 1] set 

bH(x, u) = /(Yl x) p(x) { 
(/(y lxU{u})p(xu{u}))k/H ifx EK 

0 if x <t, K 
(4.4.6) 

for u <t, x and death rate 

D ( \ { } ) / \ ) H i X E (4.4_7) { 
( /(y x) p(x) ) k-t f K 

H X X, X · = Y X Xi p X Xi 

i ' i 8~(x)/n(x) if x <t, K 

Here 8~ = inf {LxiEx DH(x \ {xi}, Xi) I f(y I x) p(x) > 0, n(x) = n}. 
By convention, the infimum of the empty set equals oo. Note that by this 
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definition 6~ = 6n, where Cn is defined as in Theorem 15. The boundary 
cases k = 0 ('constant birth rate') and k = 1 ('constant death rate') are 
well-known in spatial statistics, to obtain realisations of a point process. 
It is widely argued ( e.g. [102]) that the constant death rate procedure 
should be preferred, as under the constant birth rate process there is a 
high probability that a newly-added object will have a large death rate 
and thus be rapidly deleted again. 

For a nearest-neighbour Markov prior the above expressions are typ­
ically easy to evaluate, since the normalising constant a is eliminated. 
Moreover the 'detailed balance' equations 

(4.4.8) 

are satisfied whenever f (y I x U { u}) p( x U { u}) > 0. Intuitively, under 
the equilibrium distribution PH(· I y) transitions from x into x U {u} 
are exactly matched by transitions from x U { u} into x. Given a spa­
tial birth-and-death process with rates satisfying (4.4.8), Ripley [102] 
remarked that the process is necessarily time reversible and PH(·IY) is 
the density of its unique invariant probability measure. For each ap­
plication, however, one sh(;mld verify that the process just described is 
well-defined. For instance the following corollary of Theorem 15 holds. 

Corollary 16 Let y and H > 0 be fixed. For any blur-free independent 
noise model with g(·I·) > 0, and any nearest-neighbour Markov object 
process p( ·) with uniformly bounded likelihood ratios 

p(xu{u}) < /3 
p(x) - < oo 

there exists a unique spatial birth-and-death process for which (4.4.6) 
and (4.4. 7) are the transition rates. The process has unique equilibrium 
distribution PH(· I y) and it converges in distribution to PH(· I y) from 
any initial state. 

Proof: We will prove the following properties: 

1. 6n > 0, for n ?: 1; 

2. if "-no = 0 for some no ?: 1, then "-n = 0 "In ?: no; 

3. if "-n > 0 for all n, then condition (b) of Theorem 15 holds. 

Property 1: Use the representation of the log likelihood ratio as a gen­
eralised Hough transform (2.1.1). Since T is finite, we have upper and 
lower bounds on the goodness of fit, say I h(Yt, 0o, 01) I ~ a for all t. 
Hence 
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I L(x U {u}; y) - L(x; y) I$ a n(R(u)) $ a n(T) 

where n denotes the number of pixels. For p( •) we have by assumption 
p(~YJr}) $ (3. If p(x) > 0 this implies that 

k-l 

( f(y Ix} p(x) ··)·IT 
D-n(x\{u},u)= f(y Ix\ {u}) p(x\ {u}) . 

[k l ] ? exp II (I L(x \ {u}; y) - L(x; y) I+ log/3) 

[k -1 ] ? exp II (a n(T) + log/3) =: 8 > 0. 

Suppose p(x) = 0. If p(z) = 0 for all z with n(z) = n(x), then DH(x \ 
{u}, u) = oo? 8. Otherwise n(x) DH(x \ {u}, u) = inf {DH(z) I n(z) = 
n(x), p(z) > 0}. By the above argument, DH(z \ {zi}, Zi) ? 8 for all 
such z and Zi E z. Hence DH(z) ? 8 n(x) and DH(x \ {u},u) ? 8. 
Therefore DH(x) ? 8 n(x) for all patterns x, and hence On ? 8 n > 0 
for n? l. 
Property 2: Use the fact that K = {x : f(y I x) p(x) > 0} is 
hereditary. 
Property 3: The birth rates are also bounded. For p(x) > 0 

_ (f(y I xU{u})p(xU{u}))k/H 
f(y Ix) p(x) 

< exp[! (a n(T) + log/3)] 

-. K > o. 

For p(x) = 0, again bH(x, u) = 0 $ K. Hence BH(x) $ K µ(U) and so 
Kn$ K µ(U). 

Using these bounds, one obtains 

Ko···Kn-1 < Kn µ(Ur. 
81 · · · 8n - n! on 

Since µ( U) is finite by assumption, the first assertion follows. Similarly 

81 · · · 8n > n! on 
Kl··· Kn - Kn µ(U)n 

which does not converge to zero as n -+ oo. The Corollary is proved if 
we combine these properties with Theorem 15. □ 
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If the state space is discretised, the situation is easier. Recall that any 
Markov chain on a finite state space is uniquely defined by its transition 
rates and if for an irreducible Markov chain with rates R(i,j), ii= j, 1r 

is a probability measure satisfying the detailed balance equations 

R(i,j) 1r(i) = R(j, i) 1r(j) (4.4.9) 

then the chain is time reversible and has unique limit distribution 1r (see 
for instance [97, pp. 277-278]). Hence, if f(y I x) > 0 for all x the class 
K is hereditary, due to the Markov property of p(·). It follows that the 
birth-and-death process defined above restricted to K is irreducible. 

To simulate the birth-and-death process we generate the successive 
states x(k) and the sojourn times T(k) as follows. Given x<k) = x<k), 

y(k) is exponentially distributed with mean l/(DH(x(k)) + BH(x(k))), 

independent of other sojourn times and of past states. The next state 
transition is a death with probability DH(x(k))/(DH(x(k)) + BH(x(k))), 

obtained by deleting one of the existing points Xi with probability 

DH(x(k) \{xi}, Xi) 

DH(x(k)) 

Otherwise the transition is a birth generated by choosing one of the 
points u ~ x<k) with probability density 

bH(x(k), u) 

BH(x(k)) 

with respect to µ and adding u to the state. 

Algorithm 7 (Fixed temperature sampling) Run the process de­
scribed above for a 'large' time period C and take x<L) where 

k 

L = min{k = 0, 1, 2, .. -1 L)(i) > C}. 
i=O 

For a discussion of the rate of convergence see [88]. 
Figure 4.12 shows a single realisation from the posterior distribution 

for the pellets texture of Section 2.6 using the same Strauss prior as for 
Figure 4.1. The realisation was obtained by running the constant death 
rate process described above Algorithm 7. 

The main advantage of sampling techniques compared to determinis­
tic methods is the ability to estimate any functional of the (modified) 
posterior distribution by taking a sufficient number of independent re­
alisations. Examples of useful functionals are: the distribution (mean, 
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variance) of the number of objects; the probability that there is no ob­
ject in a given subregion of the image; the distribution of the distance 
from a given reference point to the nearest object and the first-order in­
tensity [117]. In the discrete case the first-order intensity at u is simply 
the (posterior) probability that u belongs to x. It can be regarded as 
an alternative to the Hough transform. The posterior intensity is given 
in Figure 4.13. 

Clearly, other sampling techniques [44] could be used as well. How­
ever, at small temperatures, those based on (standard) rejection san1-
pling may have unacceptably long waiting times. 
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Figure 4.12: Realisation from the posterior distribution for the Brodatz 
pellets texture sampled at, time 1. The prior distribution is a Strauss 
process with logt, =log,= -1000. 

Figure 4.13: Posterior intensity estimated over 10 time units for the 
Brodatz pellets texture. The prior distribution is a Strauss process with 
log t, = log 1 = -1000. 
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4.5. CONVERGENCE OF INHOMOGENEOUS MARKOV PROCESSES 

Given a family of well-defined spatial birth-and-death processes indexed 
by temperature parameter H, each converging in distribution to the 
corresponding PH(· I y), stochamic annealing involves an inhomogeneous 
Markov process with H gradually dropping to zero. To find an annealing 
schedule that ensures convergence to a mode of the posterior distribu­
tion, some results on inhomogeneous Markov processes are needed. The 
discrete time case has been studied in [52, 126]. 

4.5.1 Definitions 
Let µ and 11 be probability measures on a common measurable space 
(S, A). Their total variation distance is defined as the maximal differ­
ence in mass on measurable subsets A E A 

11µ - 1111 = sup I µ(A) - 11(A) 1-
AEA. 

If ISi < 00 

IIµ - 1111 = -21 I: I µ(i) - 11(i) l-
ies 

Similarly in the continuous case, if both µ and v are absolutely contin­
uous with respect to some measure m with Radon-Nikodym derivatives 
fµ and f,,,, 

IIµ - vii=½ fs I fµ(s) - f,,,(s) I dm(s). 

Definition 6 For a transition probability function (stochastic matrix} 
P(·, ·) on (S, A), Dobrushin's contraction coefficient c(P) is defined 
by 

c(P) = sup II P(x, ·) - P(y, ·) 11-
x,yES 

We list some properties that will be used in the sequel (see Dobrushin 
[34, Section 3]). 

Lemma 17 Let A be the set of all probability measures on ( S, A). Then 
for all transition probability functions P and Q and for all µ, v E A the 
following hold 

(i) c(P) ~ 1; 

( ••) (P) UµP-vPU 
11 C = SllPµ,tvEA llµ-vll ; 

(iii) llµP - 11PII ~ c(P) IIµ - 11II; 
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(iv) c(PQ) ~ c(P) c(Q). 

For completeness, the proof is given below. Much can be found in 
[34]. 
Proof: Property (i) is trivial; 

To prove (ii) first note that, since 118:i: - byll = 1 for all x -=p y, 

c(P) 

For the reverse inequality, choose v, µ E A and consider 'the' Jordan­
Hahn decomposition [54] of S with respect to µ - v, i.e. find a disjoint 
measurable partition A+, A- such that 

(µ - v)(A) ~ 0 'v'A+ 2 A EA, 

(µ - v)(A) ~ O 'v'A- 2 A EA. 

Then IIµ - vii = (µ-v)(A+)v(v-µ)(A-) and since (µ-v)(A+uA-) = 0, 

IIµ - vii=(µ - v)(A+) = (v - µ)(A-). 

Setting -r(A) := infyES P(y, A), for all x ES 

P(x, A) - r(A) ~ sup I P(x, A) - P(y, A) I= c(P). 
a:,y,A 

Consider the case µP(A) ~ vP(A). The other case is similar. Then 

µP(A) - vP(A) = ls P(x, A)(µ - v)(dx) 

= j P(x, A)(µ - v)(dx) + j P(x, A)(µ - v)(dx) 
A+ A-

~ f P(x, A)(µ - v)(dx) + f r(A)(µ - v)(dx) 
lA+ lA-

= j (P(x, A) - r(A)) (µ - v)(dx) 
A+ 

Therefore 

llµP - vPII = sup I µP(A) - vP(A) I~ c(P) IIµ - vii 
AEA 
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and hence 

ll µP-vPII sup .;_;__ __ -'-'- < c( P) 
v::f,µEA IIµ - vii -

which proves (ii). Property (iii) is an easy consequence of property (ii); 
for (iv) note that 

ll(PQ)(x, ·) - (PQ)(y, ·)II - IIP(x, ·)Q - P(y, ·)QII 
< c(Q) IIP(x, ·) - P(y, ·)II-

Therefore 

c(PQ) sup IIPQ(x, ·) - PQ(y, ·)II 
x,y 

< c(Q) sup IIP(x, ·) - P(y, ·)II 
x,y 

- c(P) c(Q). 

□ 

.f5.2 Limit theorems 
The main theorem of this Section states sufficient conditions under which 
a sequence of Markov processes converges in total variation to a well­
defined limit. 

Recall that the transition semi-group ( Qt)t?.O of a Markov process 
(Yt)t?.O in continuous time is the semi-group of probability kernels rep­
resenting its conditional distributions, 

Qt(Y, F) = l?(Yt E FI Yo= y). 

Theorem 18 Let (Xt)t>O be a non-stationary Markov process on a mea­
surable space (S, A), defined by a sequence of transition semi-groups 
( Qn)nEN. The process follows the transition rules Qn in the time period 
[tn, tn+l), that is 

for tn ~ r < s < tn+l · Here tn / oo as n-+ oo. Assume that for each 
n EN, Qn has an invariant measure µn, i.e. 
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for all FE A and t ~ 0. Assume moreover that the following hold 

00 

(CJ L llµn - µn+1II < 00 

n=l 
( D} c( Ptt') -+ 0 as t' -+ oo for all t ~ 0 

where Ptt1(x, F) = I?(Xt' E F I Xt = x). Then µao = limµn exists 
and vPot -+ µ00 in total variation as t -+ oo, uniformly in the initial 
distribution v. 

Proof: Condition ( C) implies that (µn) is a Cauchy sequence in II· II 
and hence converges in total variation to µ 00 , say. 
Define n(t) = sup {n: tn ~ t} choose O ~ t < tn(t)+l < t' < oo. Then 

µaoPtt 1 - µao = (µao - µn(t))Ptt' + µn(t)Ptt' - µao 

= (µao - µn(t))Ptt' + µn(t)Ptt,.(t)+l Pt,.(t)+lt' - µao, 

Since µn(t) is an invariant measure one sees that 

Hence 

µaoPtt' - µao - (µao - µn(t))Ptt' + µn(t)Ptn(t)+lt' - µao 
n(t')-1 

(µao - µn(t))Ptt' + L (µk - µk+1)Ptk+1t' 
k=n(t) 

llµaoPtt' - µooll < llµoo - µn(t) II c(Ptt1 ) 

n(t')-1 
+ L llµk - µk+l II c(Pt1:+1t') + llµn(t') - µcoll 

k=n(t) 
00 

< 2 sup llµk - µooll + L llµk - µk+l II 
k2'.n(t) k=n(t) 

-o(t-oo). 

Let E > 0. Choose t such that llµaoPtt' - µooll < t/2 for all t' > tn(t)+l. 
Next observe that 

!Iv Pot' - µooll ll(vPot - µao)Ptt' + µaoPtt 1 - µcoll 
< llvPot - µooll c(Ptt') + llµooPtt' - µooll 
< c(Ptt') + llµooPtt' - µooll • 

Use condition (D) to choose t' such that c(Ptt') < t/4. Summarising, we 
obtain 
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llvPot - µo:ill -+ 0 uniformly in 11 (t-+ oo). 

D 

A sufficient condition for (D) is given by the next result. It is easier to 
work with, since only stationary Markov chains have to be considered. 

Lemma 19 Use the same notation as in the previous Theorem. If 
c(Ptntn+i) ~ l - l/n for all n ~ 2, the Dobrushin condition (D) holds. 

Proof: Write Pn = Ptntn+i. Then 

Thus 

00 1 - L log c(Pn) ~ L - = oo 
n=2 n=2 n 

o:) 

or equivalently 

N 

IT c(Pn)-+ 0 (N-+ oo). 
n=2 

Fix t. Then for t' > tn(t)+2 

c(Ptt') = c(Pttn(t)+l Ptn(t)+ltn(t)+2 '' 'Ptn(t')t') 

< c(Pttn(t)+l) [ n1r1 
c(Pi)l c(Ptn(t')t') 

i=n(t)+l 

n(t')-l 
< IT c(Pi)-+ 0 (t'-+ oo). 

i=n(t)+l 

D 
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4.6. OBJECT RECOGNITION BY STOCHASTIC ANNEALING 

An alternative method for solving the MAP equations (4.1.2) can be 
based on the results of Section 4.5. Assuming the conditions of Corol­
lary 16, for each fixed H we can construct a spatial birth-and-death 
process with equilibrium distribution PH(· I y). Oi.tr proposal therefore 
is to use a stochastic annealing algorithm that simulates these processes 
consecutively with H gradually dropping to zero. In contrast to ICM, 
if the temperature H decreases sufficiently slowly, stochastic annealing 
results in a global maximum. 

In the superficially similar context of image segmentation, a simulated 
annealing algorithm was developed by Geman and Geman [42]. How­
ever, the Markov processes involved are rather different. Since in seg­
mentation problems both object and image space are finite pixel grids, 
a discrete time Markov chain changing each pixel label in turn suffices. 

4. 6.1 The summability condition 
First we consider the summability condition ( C) in Theorem 18. 

Lemma 20 For fixed data y, let Hn ~ 0 (n---+ oo) and consider the 
sequence of H n -modified posterior distributions with densities 

PH,,(X I Y) ex {f(y Ix) p(x)}l/Hn 

with respect to the reference measure 1r on n (law of Poisson process or 
counting measure in the discretised case). Assume that 1r(M) > 0, where 
M denotes the set of solutions to the MAP equations (4- 1.2). Then the 
sequence PHn converges in total variation to a uniform distribution on 
M. Moreover the sequence satisfies c,.;;':.dition (CJ. 

Proof: Since 1r(M) > 0, 3 x# attaining the maximum. Denote 

( f(y Ix) p(x) ) 1/Hn [ 
ln(x) = /(y I x#) p(x#) , Zn= Jn ln(x)d1r(x). 

It is easily seen that ln(x)---+ l{x EM}, (n---+ oo), and 

lim Zn= f lim ln(x)d1r(x) = f l{x E M}d1r(x) = 1r(M) 
n-oo ln n-oo ln 

by the dominated convergence theorem. Moreover, Zn! 1r(M), sup Zn= 
Z1 ~ 1r(n) < oo. 

To prove condition ( C), suppress the dependence on x and consider 



~ (ZnZn+l)- 1 { ln+ll Zn+l - Zn I+ Zn+l I ln+l - ln I} 
1 

~ 1r(M)2 {Zn+1(ln - ln+1) + ln+1(Zn - Zn+1)} 

1r(f!) 
~ 1r{M)2 {ln - ln+l + Zn - Zn+1} 

Therefore 

El / I ln(x) - ln+1(x) I d1r{x) ~ 
n=l ln Zn Zn+l 

= 7r~~~2 k {h(x) - lN(x) + Z1 - ZN} d1r{x) 

1r{f!) 
= 1r(M)2 (1 + 1r(f!)) (Z1 - ZN) 
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Letting N - oo the right hand side converges to 1r(~?2 {l+1r(f!)) (Z1 -

1r(M)) < oo. □ 

A more restricted version, ?rn oc exp[-!/ Hn] for a bounded, measur­
able function f was proved in Theorem 3.3.a of [52]. The assumption 
1r(M) > 0 is needed; if 1r(M) = 0 the sequence of modified posterior dis­
tributions will not converge in total variation {cf. [52, Theorem 3.3.b]). 

4.6.2 The Dobrushin condition 
From now on let f be a blur-free independent noise model with g( ·I·) > 0. 
Again, let Hn "'>, 0 and consider the family (x(n))nEN of spatial birth­
and-death processes on K = {x: J(y I x) p(x) > 0} defined by (4.4.6) 
and ( 4.4. 7). As K is closed and irreducible, the processes are well-defined 
and converge to the unique limit PH(· I y) (see Section 4.4). 

Recall the following result by M0ller [88], a generalisation of earlier 
work by Lotwick and Silverman [80]. 

Theorem 21 Let Xt be a spatial birth-and-death process and define Kn, 

On as in Theorem 15. Assume moreover that On > 0 for all n ~ 1 and 
Kn = 0 for all n > no ( condition (a)). Then for all fixed to > 0 
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t 1 
sup IIPt(x, ·) - Pt(Y, ·)II ~ 2 (1- K(to))"io-
x,y 

for all t > t0 . The supremum is taken over all initial states x, y con­
taining at most no objects. 

Here 

K(to) = min Ko(n, to), 
n~no 

(4.6.10) 

Therefore, by Lemma 19 we can construct an annealing schedule sat­
isfying condition (D) by requiring 

t 1 1 
2(1- K(to))to- ~ 1- -

n 
or equivalently 

t > to 1 + 2 n . ( 
log(l (1 - 1))) 

- log(l - K(to)) 
(4.6.11) 

Under the assumption in Lemma 20, condition ( C) also holds and by 
Theorem 18 the sequence of birth-and-death processes constructed this 
way converges in total variation to a uniform distribution on the set 
of global maxima of the pqsterior distribution, regardless of the initial 
state. 

The proof of Theorem 21 is instructive and needed for the generalisa­
tions discussed below. 
Proof: {Lotwick & Silverman, Mf;iller) 
Let Xt and Yt be two independent spatial birth-and-death processes 
and assume that the number of objects is bounded by n0 • The initial 
distributions are .>.., an arbitrary probability measure concentrated on 
configurations with at most n0 points and the equilibrium measure v 
respectively. Write Zt = (Xt, Yt). Since state (0, 0) is discrete, coupling 
applies. Define 

Ut = { Xt, t < r 
Yt, t ~ r 

where r = inf {t > 0 : Xt = Yt = O}. 

Then r is a stopping time and Ut ~ Xt, Hence for every measurable 
A, 



IP.>.(Xt E A) - v(A) = IP>.(Ut E A) - v(A) 

= IP>.(Xt E A ; t < r) + IP>.(Yt E A ; t ~ r) - v(A) 

~ IP>.(Xt EA ; t < r) + IP>.(Yt E A) - v(A) 

= IP>.(Xt EA; t < r) ~ IP(t < r). 

Similarly 

Thus 

v(A) - IP>.(Xt EA)= v(A) - IP>.(Ut EA) 

= v(A) - IP>.(Xt E A ; t < r) - IP>.(Yt E A; t ~ r) 

= IP.>.(Yt EA ; t < r) - IP>.(Xt EA; t < r) 

~ IP.>.(Yt EA; t< r) ~ IP.>.(t < r). 
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(4.6.12) 

To find a bound on IP.>.(t < r), again assume that Xt and Yt are in­
dependent birth-and-death processes and fix an initial state Zo = (x, y) 
containing m and n objects respectively. Then IP( first transition in Z 
occurs before time t and is a death I Z0 ) ~ K1(m + n, t). To see this, 
set 

f(x, y) = [1 - e-:i:-y] _Y_ 
x+y 

where x = (BH(x) + BH(Y)) t ~ 0 and y = (DH(x) + DH(Y)) t > 0. 
The partial derivatives off are 

of ( ) - y [(1 ) -:i:-y 1]· ~ X, y - ( )2 + X +ye - , vx x+y 

of ( ) - y -:i:-y X (1 -:i:-y) 0 
{)y x, y - x + y e + (x + y)2 - e > . 

Set g(z) = (l+z)e-z-1 on (0,oo). Sinceg'(z) = -ze-z < 0, ~(x,y) < 
0. Therefore a lower bound can be obtained by taking x as large and y 
as small as possible. It follows that 

IP( r ~ to I Zo) ~ 

IP( first m + n transitions occur before t0 and all are deaths I Z0 ) ~ 



!fl>( first m + n sojourn times are all s _to_ 
m+n 

and all these transitions are deaths I Zo) ~ Ko(m + n, to). 
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Since the number of objects is bounded above by no, K(to) = minn:s;no 
Ko(n, to)> 0 and lfl>(T S to)~ K(to) for all initial distributions. In fact, 

IP'(T > kto) s (1 - K(to)l 

for all k EN. 
The proof is by induction. For k = 1 the assertion has been proved 

already and we may assume the statement is correct for some k E N. 
Then 

lfl>(T > (k + l)to) = 

j lfl>(Zt -=I= (0, 0) in (to, (k + l)to) I Zt0 = z) 

lfl>(Zt -=I= (0, 0) before to and Zt0 E dz) 

S (1- K(to)l j lfl>(Zt-=/= (0, 0) before to and Zt0 E dz) 

= (1 - K(to)l lfl>(Zt -=I= (0, 0) before to) S (1 - K(to)l+1 

which completes the induction argument. 
Now, for arbitrary t > to, 

t LtJ t 1 
lfl>(T > t) S lfl>(T > Lt)to) S (1- K(to)) tci s (1- K(to))tci- . 

Using (4.6.12), Theorem 21 is proved. 

4.6.3 Example 

D 

Consider the synthetic example studied in Section 4.3. We will use the 
same parameter values here, to enable comparison. 

In practice, the theoretical temperature schedule ( 4.6.11) is too slow 
and one resorts to 'feasible' schemes. Here we chose a geometric cooling 
of rate 1/2 and initial temperature H = 4.0. The log posterior likelihood 
as a function of time is given in Figure .4; Figure .5 graphs the number 
of objects against time. Finally a typical reconstruction sampled at 
H = .25 is given in Figure 4.14. The constant death rate method was 
used throughout. 
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In contrast to ICM, stochastic annealing results in a global maximum, 
regardless of the initial state. Experiments with several initial states 
are in accordance with the theory in that similar reconstructions were 
obtained. One has to be careful though, since a too fast cooling schedule 
was used. For a discussion on the implications of such ad hoc choices, 
see [48]. 

0 
0 oO 

0 
o o& 0 0 

0 Oo 0 Oo 00 
oO d) 0 0 CD 

0 0 0 05 CD Oo CD 

a a 

Figure 4.14: San1ple taken at time 25 for a geometric cooling schedule 
starting at H = 4.0 of rate .5 (left) and from the posterior distribution 
after 2.0 time units (right) for a Strauss prior with f3 = .0025 and 'Y = .25 

A good compromise between ICM and stochastic annealing is to sam­
ple at a fixed 'low' temperature (see also [41]). A reconstruction ob­
tained by running the constant death rate procedure at H = l is given 
in Figure 4.14. Using cons~ant birth rate instead was found to behave 
worse. The latter method tends to add an unlikely object and immedi­
ately deletes it again. This confirms experience reported in the literature 
([88, 102]). 

Estimates of the posterior intensity (Figure 4.15) suggest that the pos­
terior distribution is rather peaked and can be used as an approximation 
to MAP estimation, apart from being interesting in its own right. 

Typical runs of the constant death rate method are illustrated in Fig­
ure .6, where the ~ 2 distance [2] to the 'true' pattern is graphed against 
time. Starting from an empty scene, objects are immediately added 
to form a plausible reconstruction followed by deletion and immediate 
readding of one of the objects. Note that the results obtained this way 
are comparable to steepest ascent reconstructions. 

For the Brodatz pellet texture of Figure 2.1, the results of simulated 
annealing are very similar to those of posterior sampling (Figure 4.12), 
as could be expected from Figure 4.13. 
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Figure 4.15: Posterior intensity at temperature 4.0, 1.0 and .25 (from 
top to bottom). 
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4,.6.4, Remarks and extewsions 
Generalisations to diffusing. objects are possible. In the finite case I UI < 
oo, write 

M(x,xi,u) 

for the con.figuration obtained from x by replacing Xi by u. The set 
of u E U for which this operation is aJI-0wed is denoted by Q(x, xi). 
Typically it consists of unoccupied objects close but not identical to Xi. 

Suppose the diffusion rates are aJso powers of the log likelihood ratios 

( . ) _ {. /(y I M(x,xi, u)) p(M(x,xi,u)) }k/H 
CH x, Xi, u - . J(y I x) p(x) (4.6.13) 

If detailed balance is required to hold as well, necessarily k = ½. 
Writing C8 (x) for the total diffusion rate out of state x, the expected 

sojourn time BH(x)+c.it\xJ+DH(x) is less than 1/(B8 (x) + D8 (x)), the 
expected waiting time for the process with only births and deaths. New 
positions with a large increase in posterior likelihood are favoured. 

The following additional notation is needed. 

'Yi= max. CH(x); 1'm = . _Iµ~ 'Yi+ ,Yj; CTm = bm +Km+ '1'm 
n(X)=i i,1:i+1=m 

and K 1 ,Ko,K as in (4.6.10}. 

Lemma 22 The Markov chain on K with rates given by (4.4.6), (4.4. 7) 
and { 4. 6 .13) is irreducible and' satisfies the detailed balance equations. 
It is time reversible and has unique equilibrium distribution pH ( · IY). 
Moreover for all fixed to > 0 

.l.-1 
~~ II Pt(x, ·) - P;(y, ·) 11' ~ 2 (1-K(to))to 

for all t > to. 

Proof: Every configuration x can be reached from every other config­
uration z by first deleting all points in x \ z and then adding z \ x, since 
all birth and death rates are strictly positive. T]n1s the Markov chain is 
irreducible. Since the detailed ba.Iance equations hold by construction, 
the first part of the result follows. The second part can be derived by 
coupling arguments similar to those in the proof of Theorem 21. The 
only change is that we now have to prove that I?( the first transition in 
Z occurs before time t and is a death I Zo) = 
[1 - exp {-(BH(x) + BH(Y) + CH(x) + CH(Y) + DH(x) + DH(Y))t}] 

DH(x)+DH(Y) > K ( t) T th· 1 
BH(x)+BH(Y)+CH(x)+CH(Y)+DH(x)+DH(Y) _ 1 m + n, . o see • 1s, et 

f(x,y,z) = [1 - e-(x+y+z)] x+;+z· The partial derivatives are 
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81 (x,y,z)= z [(x+y+z+l)e-(x+y+z)_1]; 
ax (x + y + z) 2 

81 (x,y,z)= z [(x+y+z+l)e-(x+y+z)_1]; 
8y (x + y + z)2 

and 

8 f (x, Y, z) = e-(x+y+z) z + [1 - e-(:z:+y+z)] X + y . 
az x+y+z (x+y+z)2 

Since ~(x,y,z) < 0, U(x,y,z) < 0 and M-(x,y,z) > 0, the statement 
~n. □ 

In the continuous case, n objects can perform a diffusion on un 
dxt = V logpH(x I y) dt + V2H dBt 

at least if PH(· I y) is strictly positive and infinitely differentiable [102, 
p. 178]. Here Bt denotes Brownian motion. See also [43, 86]. 
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4. 7. IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY 

The building blocks of Algorithms 1-7 are the forward log likelihood ra­
tios (2.4.7), (2.4.8) and (2.4.9) and the prior log likelihood ratios (3.1.5). 
The former is a function of the object parameter u, that is closely related 
to the Hough transform and involves only pixels in a relatively small 
zone Z(x, u) determined by u and the current pattern x (cf. (2.5.12), 
Section 2.5). Focusing on blur-free models, the (generalised) Hough 
transform (2.5.10) depends on the data image only through 

g(yt I 01) 
zt = h(Yt, 0o, 01) = log Y(Yt I Oo) 

which can therefore be 'precomputed' in the initialisation step {in gen­
eral, the data image is directly involved). Moreover, after adding or 
deleting a particular point u the log likelihood ratio (2.5.10) requires 
updating only for v in the region 

V(u) = {v EU: R(v) n R(u) j 0}. 

For example, in a translation model with U = T = JR d and R{ u) = Ro+u 
this is the central synimetrisation V ( u) = Ro EB Ro + u. 

For a nearest-neighbour Markov prior, the latter component is 'local' 
too and depends only on those objects in the current reconstruction that 
are neighbours of u ( cf. Section 3.1.3). 

Computations are carried out on a logarithmic scale to avoid overflow. 
In fixed-temperature sampling or stochastic annealing, write aH for the 
log birth rate (cf. formulas {4.4.6) and (4.4.7)), 

aH(x, u) = ! ( L(x U {u}; y) - L(x; y) + log p(xp~x~u} )) . 

One could first find 

m(x) = max aH(x, u) 
u 

and then digitise to compute 

BH(x) = em(x) L exp [aH(x, Uj) - m(x)] 
j 

where the exponential terms lie between O and 1. The conditional like­
lihood of a birth at u is computable from the same summands 

bH(x, u) 
BH(X) = exp [aH(x, u) - m(x)] exp [m(x) - log BH(x)]. 
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The death rates can be dealt with similarly. 
We implemented the simulations and reconstructions in C++ (AT&T, 

[119]) using the CLIP library [116] for manipulating the image data.The 
C++ language is well suited, since it allows the user to define separate 
classes for each of the mathematical entities; changes in one class do not 
affect any other class. Here the model components are template shapes, 
object configurations, signal function, noise model and prior distribu­
tion. For each of these we defined a C++ class maintaining the rele­
vant paran1eter settings, performing update operations and computing 
the likelihood ratios. Computations were carried out in single precision 
arithmetic; using double precision resulted in slightly different recon­
structions. 

4. 7.1 Sampling 
In fixed temperature san1pling or stochastic annealing (k i= 1), the com­
putational effort is mainly in sampling from bH(x, •)/ BH(x). Since the 
birth rate b H ( x, u) is an exponential function of the Hough transform 
(2.5.12), it tends to have sharp peaks as a function of u when His small 
or when xis suboptimal. There is then a high probability that the next 
transition will add a new Object u at one of the locations that is close 
to maximal for bH(x, u). This implies that rejection sampling meth­
ods that generate a putative new object uniformly become impractical. 
Many proposals would be rejected and the waiting times would be un­
acceptably long. This suggests using an algorithm which incorporates a 
search operation over U. 

One simple algorithm of this kind is to find the global maximum 
of birth rate b* = maxu biI(x, u), then locate all objects u satisfying 
bH(x, u) ~ ab* where a < 1, or larger than a given threshold value. 
Making a list of all such candidates we proceed as if these are the only 
objects in U, computing the total birth rate of the candidates and per­
forming rejection sampling. After each transition the list of candidates 
has to be recomputed. This algorithm is an approximation to the de­
sired birth-and-death process: larger values of a increase the speed but 
decrease accuracy of the approximation. 

An exact algorithm can be obtained by incorporating a rejection sam­
pling step. Denote the threshold on the birth rates defined above by 
WH(x) and, for u (/. x, set 

(x u) = { bH(x, u) if bH(x, u) ~ WH(x); 
9H ' wH(x) else. 

Writing G H(x) for the integral of 9H, we generate a sequence (X(k), T(k)) 

of states and sojourn times as follows. 
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Algorithm 8 An initial state x<0> is given. For each k = 0, 1, 2, ... 
compute D = DH(x(k)), G = GH(x(k)) and set T(k) = 0. 

• Add an exponentially distributed time to T(k) with mean 1/(D+G); 

• with probability D~G generate a death x<k+t) := x<k) \ x1 by delet­

ing one of the points in x<k) at random according to distribution 
DH(·,·) and stop; 

• else sample a point u from gH(x(k), u)/G; with probability bu~x~:~,u~ 
gH X ,u 

accept a birth x(k+l) := x<k) U {u} and stop; otherwise repeat the 
whole procedure. 

It is important to note that the method does not require computation 
of the total birth rate. 

To see the validity of the algorithm above, note that we generate a 
( 1-dimensional) Poisson process of putative events with rate D + G. The 
acceptance probability p of an event is 

D + G, f bH(x, u) gH(x, u) d (u) = D + BH(x). 
D+G D+G lu 9H(x,u) G µ D+G 

Due to the thinning property of Poisson processes [25, p. 241] the sojourn 
time is exponentially distributed with mean 1/(B8 (x) + D8 (x). Next, 
consider the transition rate for the addition of an object u to pattern x: 

The death rates can be treated similarly. 

4. 7.2 Multiresolution techniques 
Whatever strategy is adopted, there will be problems with the 'curse 
of dimension', i.e. as the dimension of the object space U increases, 
the cost of searching U increases exponentially. This problem is well­
known in the context of Hough transforms; it is often named as the 
major limitation on their performance, and multiresolution strategies 
are usually recommended. 

We propose using the following multiresolution algorithm. For each 
'resolution level' m = 0, 1, ... , M conceptually divide object space U 
into a partition Um = {U1,m, ... , Ukm,m} such that each partition is a 
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refinement of the previous one: ui,m = uj Ut;,m+l for all i, m. 'Concep­
tually' means that the subdivision of a block Uim into smaller blocks is 
only carried out when needed. The standard example is the quad-tree 
in which the unit square is divided into 2m x 2m smaller squares at stage 
m. 

Interpret each partition Um as a class of 'large objects' in T by defining 
for any V ~ U 

R(V) = LJ R(u) 
uEV 

(or UuEvZ(x, u) in the blurred case). 
Define a Hough transform on Um 

Htm) (V) = I: Wt, V E Um 
tER(V) 

where w is any image. This provides an upper bound for the Hough 
transform on U, provided Wt ~ 0: 

F\irthermore the Hough transform at level m is an upper bound for the 
Hough transform at level m + 1 

(4.7.14) 

Suppose we can find an image w, possibly depending on x, such that 

Wt~ ~ltf h(Yt, 9(x\t), 9(xu{u})(t)) 

where his as in (2.5.12). For example in the blur-free case we can take 

where a+ = max{a, O}. Assuming the conditions of Corollary 16 hold, 
we obtain a decreasing sequence of upper bounds on the birth rates of 
the stochastic annealing procedure: 

(4.7.15) 

where u E UiM,M C ... C Ui0,o and 
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with /3 as in Corollary 16. The maximum birth rate, and the set of 
locations where the birth rate is near to maximum, can then be deter­
mined by searching the multiresolution space dynamically in the usual 
way. This method bears many resemblances to the adaptive Hough 
transform [59]. 

An application of this technique is shown in Figure 4.16. This is a 
synthetic example modelled on the problem of identifying linear features 
such as long crystals and fission tracks in micrographs of minerals. The 
objects are line segments of variable length, so that the object space U 
is 4-dimensional, making simple search methods computationally expen­
sive. 

----
/ 

Figure 4.16: Synthetic 256 x 256 image of blurred line segments degraded 
by additive Gaussian noise with u 2 = 9 (left). Reconstruction by steep­
est ascent using a Strauss prior with /3 = .002 and 'Y = 0.25 (right). The 
initial configuration is empty and w = 0. 

The signal is assumed to be a function of the distance d( t, x) from t 
to S(x), in this case linear decay 

for d(t, x) ~ c; 
otherwise. 

Figure 4.16 is a simulation of this model with (arbitrary) line segments 
of length ranging between 60 and 70, foreground brightness 100, back­
ground brightness 254, decay radius c = 4 pixel units, and additive 
Gaussian noise with variance 9.0. 

The choice of parametrisation is important for the computational cost 
of the multiresolution algorithm. We choose to parametrise segments by 
their length f, orientation p, and the coordinates (d, t) of the midpoint 
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of the segment after rotation by - p, so that d is the distance from the 
(arbitrary) origin O to the infinite line L containing the segment, and 
t is the distance from the midpoint of the segment to the foot of the 
perpendicular O L. 

It is interesting to note that this is the standard parametrisation of 
lines in lR.2 in stochastic geometry, where this choice is dictated by prop­
erties of the 'invariant' measure for random lines. One may speculate 
that stochastic geometry can help suggest the right parametrisation for 
the Hough transform for other classes of geometrical objects, and in 
general, suggest the right way to formulate many problems in image 
analysis. 

Our multiresolution algorithm splits U at level 0 into blocks of roughly 
constant (p, d) with a tolerance of 1 degree in p and 1 pixel unit in d. 
That is, we group together all those segments which lie (approximately) 
along a given infinite line of orientation p and distance d from the origin. 
The objects R(V) at level Oare thickened lines, whose Hough transform 
is relatively easy to compute. 

We introduce a neighbourhood structure by defining two line segments 
to be neighbours u ~ v iff ~heir dilations by a ball of decay radius have 
a non-empty intersection. The prior model is a Strauss process with 
/3 = 0.002 and 'Y = 0.25. We applied the multiresolution algorithm with 
upper bounds (4.7.15) computed from Wt = ~ (Yt - 0<x)(t))2. Note 
that the choice of parametrisation also means that the bounds (4.7.15) 
at level 0 are rather tight. The result of steepest ascent is given in 
Figure 4.16. 





Chapter 5 
Spatial clustering 
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This Chapter studies the high-level task of clustering image features. A 
clustering algorithm must decide whether the data can be partitioned 
into meaningful groups and locate the group centres. This can be formu­
lated within the same general framework discussed at length in Chap­
ter 4, but note that the data is now a list of features instead of a digital 
image. Hence, both the data and the unknown centres can be modelled 
conveniently as a point process. Here, we study in detail the special 
case of spatial point patterns, and indicate how the framework can be 
tailored to other applications. 

5.1. INTRODUCTION 

There are many similarities between object recognition (Chapter 4) and 
the problem of detecting clusters in a spatial pattern. In both problems, 
the goal is to extract an underlying pattern from a set of data that can 
be a digital image, a point pattern in Euclidean space or the output of 
an edge detector. In particular, the formal framework is the same and 
the techniques presented in Chapter 4 carry over with some adaptations. 

The localisation of cluster centres is of interest in many areas of appli­
cations, for instance in forestry where seedlings tend to scatter around 
mature trees. While methods to test whether a spatial pattern is clus­
tered (as opposed to 'random') abound in the spatial statistics literature, 
see eg [31], these do not allow the estimation of cluster centre location 
or cluster membership. Other types of techniques test for the presence 
of a cluster at a fixed location. For instance, the Geographical Analysis 
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Machine by Openshaw et al. [96] is a grid based procedure using Monte 
Carlo testing in each disc centred at a grid point. The method is com­
puter intensive, suffers from multiple response and has unknown power. 
It was improved by Besag and Newell [19]. Their method centres around 
observations rather than grid points and is less computer intensive, but 
remains admittedly rather ad hoc. 

An early work that does attempt to locate centres of clustering is 
Baudin [13]. He derived a formula for the posterior intensity of a 
Neyman-Scott cluster process. However, it was found too complicated 
for practical application. 

Here we present a stochastic model in keeping with the general frame­
work described in Chapter 4 and introduce a Markov prior to combat 
overestimation of the number of clusters and to improve robustness. 
These ideas in connection with object recognition were proposed by Bad­
deley and Van Lieshout [8]. Independently, a Gibbs sampler technique 
for detection of cluster centres in a Cox process was developed by Lawson 
[69, 70, 71, 73]. The presentation here is based on [8] and the author's 
contribution to ongoing research with A.J. Baddeley and A.B. Lawson. 
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5.2. CLUSTER PROCESSES 

The data consist of a finite set of points y = {y1, ... , Ym} ~ T, m ~ 1, 
where T ~ IR2 (say) is the window of observation and it is required 
to determine the locations of an unspecified number of cluster centres 
x1 , ... , Xn E U. In other words, both x and y are modelled as a re­
alisation of a point process, albeit not necessarily on the same space. 
Typical applications include the analysis of spatial pattern in the occur­
rence of rare diseases and the estimation of the positions of ancestors of 
the current generation of trees in a wood. 

5.2.1 General 
The analogue of the conditional independence assumption in Section 2.2 
is that conditional on X = x, the observed point process Y is a superpo­
sition of independent finite point processes Zxi of 'daughters' associated 
with each 'parent' Xi E X : 

We take a likelihood approach by restricting ourselves to processes 
that are absolutely continuous. Thus, the distribution of each daughter 
pattern Zxi is specified by its density g( · I xi) with respect to the dis­
tribution 1r of a Poisson point process on T with a finite, non-atomic 
intensity measure µ (as reviewed in Chapter 3). If g(· I ·) : n x U is 
jointly measurable in its arguments, the cluster process is well-defined 
[25, p. 236]. 

In many applications, the daughter processes Zxi are identically dis­
tributed up to translation . 

in which case 

g(z I Xi) = g(z - Xi I 0). 

The interested reader can consult [25, 31] or [117] for further details. 
The distribution of the total offspring is found by superposition, and 

can be expressed in terms of the component densities g( • I •) as follows. 

Lemma 23 For independent clustering, the forward density with respect 
to 1r is 

n(x) 

/(y Ix)= eµ(T) I: IT [9(Y4>-1(i) I Xi)e-µ(T)]. (5.2.1) 
4> i=l 
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Here g(· I u) denotes the (jointly measurable) Radon-Nikodym den­
sity of daughter process Zu, The sum is over all ordered partitions 
¢ : {1, ... , n(y)} -+ {1, ... , n(x)}, assigning a parent to each obser­
vation and for every I~ {l, ... , n(y)}, YI= {yi: i EI}. 

Proof: Set m = n(y) and use the Janossy densities im(· I x) [25, 
p. 122] which can be interpreted as the conditional intensity of having 
exactly m events, one in each of m infinitesimal regions centred at Yi· 
Hence 

im(Y Ix) = e-µ,(r) f (y Ix) 

On the other hand, by partitioning in groups belonging to the same 
parent 

n(x) 

im(Y Ix)= L II [u(Y4>-l(i) I Xi)e-µ,(r)]. 
</> i=l 

Therefore 
· n(x) 

e-µ,(r) /(y Ix)= L IT [u(Y4>-l(i) I xi) e-µ,(r)]. 
</> i=l 

and the assertion follows. 

5.2.2 Inhomogeneous Poisson models 

□ 

A class of models that is fairly general, yet amenable to calculations, 
is that of inhomogeneous Poisson processes [117] ( also called geneml 
Poisson processes [25]). Under this model, each Ze is a Poisson process 
on T with intensity function h( • I {); thus { gives birth to a Poisson 
number of daughters with mean fr h(t I {) dµ(t) and given m daughters, 
these are independent and identically distributed with density 

h(· I{) 
fr h(t I{) dµ(t) 

(with respect toµ) on T. The class of Poisson processes is closed under 
independent superposition, hence the total offspring is a Poisson process 
with intensity 

n(x) 

A(t Ix)= L h(t I Xi) (5.2.2) 
i=l 
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and ha.'3 a simple density, given in Definition 7 below. If moreover the 
daughter distributions are identical up to translation, >.(- I x) simplifies 
to 

n(x) 

,\(t Ix) = I: h(t - Xi), (5.2.3) 
i=l 

Definition 7 An independent inhomogeneous Poisson cluster process 
is a point process on T having conditional density 

f (y I x) = exp [£ (1 - ,\(t I x) )dµ(t)] fi ,\(yj I x). (5.2.4) 

with respect to the reference Poisson process 1r. Here, the intensity func­
tion ,\(t I x) = 'E~~) h(t I Xi) for measurable, integrable functions 
h(· I Xi): T--+ [O, oo). 

Summarising, the total number of offspring n(Y) is Poisson distributed 
with mean fr ,\(t I x) dµ(t) and conditionally on n(Y) = m the joint 
density is 

TI,;1 ,\(w I x) 
/m(Y Ix)= Ur ,\(t I x) dµ(t))m 

with respect to µm. 

(5.2.5) 

It can be verified that (5.2.4) is in accordance with Lemma 23 by 
noting that 

(5.2.6) 

where the sum is over all ordered partitions</>: {1, ... , n(y)}--+ {1, ... , n(x)}. 
The forward distribution (5.2.4) depends on the underlying pattern x 

only through the intensity function,\(· I x). Therefore ,\ takes over the 
role of the signal function in object recognition. 

If the parents follow a Poisson process, the unconditional distribution 
of Y is that of a Neyman-Scott process; allowing an arbitrary parent 
distribution, Y is Cox. Kingman [66] ha.'3 argued that Cox processes 
are a natural framework in which to model the spatial pattern of a 
population of reproducing individuals. See also [10] or Chapter 6. 

We conclude this Section with a few examples. The Matern process 
[83] a.c3sumes that daughters are uniformly distributed in a disc of some 
fixed radius r around the cluster centre, 



(5.2.7) 

If the uniform distribution is replaced by a radially symmetric Gaussian 
distribution 

(5.2.8) 

we obtain a modified Thomas process. Strictly speaking, the original 
models both assume a Poisson process for the parents, but with a slight 
abuse of language we will use these names for any parent distribution. 
Although these examples are isotropic, directional effects can be mod­
elled as easily. 

In an epidemiological context, information on population density is 
often taken into account as a modulating function k(·), estimated non­
paran1etrically from census data [32, 72]. Thus 

n 

>.(t Ix) = k(t) L h(t I Xi), (5.2.9) 
i=l 

Background noise can be added by superposition of a (stationary) 
Poisson process, adding one extra term to the expression (5.2.2). 
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5.3. MAXIMUM LIKELIHOOD ESTIMATION 

Given observation of a point pattern y, the unknown pattern of clus­
ter centres x is regarded as the parameter to be estimated. Thus the 
maximum likelihood equations are 

x = argmaxxf (y I x) 

where the optimisation is over all realisations x E n. Again, these 
equations do not necessarily allow a (unique) solution. 

Lemma 24 For an independent inhomogeneous Poisson cluster model 
(5.2.,4.} the maximum likelihood equations are 

x = argma:t.x_ [t log>.(yj Ix) - h >.(t Ix) dµ(t)] . (5.3.10) 
3=1 T 

Proof: The log likelihood is 

L(x; y) = f log>.(yi Ix)+ h (1- >.(t Ix)) dµ(t) 
j=l , T 

hence the maximum likelihood equations are (5.3.10). D 

Since for any Poisson process the Papangelou conditional intensity is 
equal to the unconditional intensity 

>.(t; y Ix) = /(y U {t} Ix) = >.(t Ix) 
J(y,I x) 

the maximum likelihood and pseudolikelihood equations ( cf. Section 3.4.5) 
coincide. 

Solving the maximum likelihood equations is equivalent to solving a 
regression problem. The result should be compared to Lemma 1. 

Lemma 25 An MLE for Model (5.2.4} is a solution of the regression 
of y on the class of intensity functions {>.(• Ix) : x En} with pointwise 
loss 

_.!:._ f >.(t I x)dµ(t) - log>.(yj Ix) 
m}T 

Proof: Immediate from (5.3.10). 

A simple illustration is given in the result below. 

Lemma 26 For the Matern cluster process (Model (5.2. 7}} 

D 
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X = argmax [ti log n(x n B(y;, r)) - :,., !; µ(T n B(x;, r))] 

Here B(u, r) denotes the closed ball with radius r centred at u and the 
maximum is taken over O(y) = {x En: x n B(yj, r) -=I= 0 for all Yi E y}. 

Proof: Note that the likelihood is positive only for x E O(y). In that 
case the log likelihood is well-defined, 

L(x; y)- µ(T) = flog [4n({i: llxi -Yill ~ r}] 
j=l 1rr 

n(x) 
- 4 I: / l{llt- Xiii~ r} dµ(t) 

1rr i=l Jr 
m 

mlog µ 2 + I)og n(xnB(yj,r)) 
1rr j=l 

n(x) 

- 4 I: µ(TnB(xi,r)). 
7rr i=l 

□ 
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5.4. THE BAYESIAN APPROACH 

Generally a maximum likelihood estimator x of x may run into difficul­
ties similar to those encountered in the context of object recognition. If 
h is smooth and almost flat near its maximum, and the data pattern 
is 'dense', the maximum likelihood estimate tends to contain multiple 
responses to each true cluster. This is precisely what we wish to avoid. 

To see where multiple response occurs, first consider a 'blur-free' in­
homogeneous Poisson model with intensity function 

>.(t Ix)=>. l{t E S(x)}, 

where S(x) = U B(xi, r) denotes the 'silhouette' of pattern x. This 
model cannot distinguish between configurations with the san1e silhou­
ette (compare this to the situation in Chapter 2). As another example 
consider the Matern model and assume a single isolated disc. Now add 
a parent to this configuration close to the true centre, such that all 
daughters are in the overlap. This will be more likely if 

mlog2 > µ 

or equivalently m > 1.4 J.1t (see Lemma 26). Since the variance in the 
number of points is µ, this will happen frequently. If discs are over­
lapping, some points contribute a factor log 1.5 instead of log 2 and the 
effect is even stronger. Background scatter noise or incorrect parameter 
estimates may also cause multiple response. 

As in Chapter 4 we introduce a nearest-neighbour Markov model to 
penalise scenes containing too many parents close together. Writing p( ·) 
for the density with respect to a Poisson process with intensity measure 
v (say), the MAP equations are formally given by (4.1.2) 

x = argmax f(y Ix) p(x). 

Note that f is the density of a point process instead of a pixel-based 
random field. Generally, the MAP equations cannot be solved explicitly 
due to the high dimensionality of the space. 

Throughout the remainder of this Section assume the inhomogeneous 
Poisson model (5.2.2). 

5.4.1 Deterministic algorithms 
The algorithms of Chapter 4 can be modified for use in this context. 
Typically, the observation window is 2-dimensional, and can easily be 
discretised and scanned. 

Iterative updating is based on repeatedly performing additions, dele­
tions and possibly shifts ( cf. Algorithms 3-4), based on their posterior 
likelihood ratios. 
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The (forward) likelihood ratios for the general model (5.2.1) can be 
rather intractable, but for the Cox model (5.2.4) they simplify to 

J(y ~ x ~ ~u}) = e-H(u) ft [l + nh(yj( I Ul )] (5.4.ll) 
f y X j=l Li=l h Yj Xi 

and 

f(y Ix\ {xi})= eH(x;) ft [1- nh(yj I Xi) l 
f (y I x) j=l Lk=I h(yj I Xk) 

(5.4.12) 

If shifts are permitted, 

f(y I M(x, Xi, u)) 
f(y Ix) 

= eH(xi)-H(u) ft [l + h(yj l u) - h(yj I Xi)] 
j=l Lk=l h(yj I Xk) 

(5.4.13) 

where, as in Chapter 2, M(x,xi,u) denotes the configuration (xU{u})\ 
{xi} obtained by replacing Xi Ex by u and H(u) = JTh(t I u))dµ(t). 
The ratio (5.4.11) is comparable to the Hough transform, in the sense 
that each point Yi votes with variable strength for a cluster centre at u. 

The prior likelihood ratios are easy to compute if p is a nearest­
neighbour Markov point process (Definition 3). 

Algorithm 9 Apply any of Algorithms 1-4 for the transition criteria 
(5.4.11), (5.4.12) and (5.4.13) above. 

5.4.2 Stochastic algorithms 
The posterior distribution {or the parent pattern is too complicated to 
san1ple directly. Instead we construct a spatial birth-and-death process 
as in Section 4.4. An important feature is that the cluster models 
described in Section 5.2 all assume at least one parent, and the empty 
configuration x = 0 has zero posterior probability when y -=I= 0. This 
causes difficulty, since the class K = {x: f(y I x) p(x) > O} ought to be 
hereditary. A similar remark holds for zero-likelihood configurations, as 
found e.g. in the Matern cluster process (Model (5.2.7)) which assigns 
zero posterior density to any configuration x that does not place at least 
one parent point within a distance r of each data point. 

To overcome these problems we propose to introduce a background 
stationary Poisson noise process with (small) intensity<:. The resulting 
superposition is still an inhomogeneous Poisson process for any parent 
configuration. An alternative in the absence of other zero-likelihood 
configurations is to set f(y 10) = <:m exp[µ(T)(l - <:)]. 

Recalling the definition of temperature modified posterior distribu­
tions 
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PH(x I y) ex: {f(y Ix) p(x)}H, 

we want to construct a spatial birth-and-death process with rates given 
in (4.4.6) and (4.4.7) converging weakly to PH(· I y). 

Lemma 27 Let y and H > 0 be fixed and assume an independent inho­
mogeneous Poisson cluster model superimposed on a background Poisson 
process of constant rate c. Moreover let the prior model be a nearest­
neighbour Markov process p( •) with uniformly bounded likelihood ratios 

p(x U {u}) < a 
p(x) - /J < oo 

If O ~ h(• I ·) ~ h* < oo, then there exists a unique spatial birth-and­
death process for which (4.4.6} and (4.4. 7) are the transition rates. The 
process has unique equilibrium distribution PH(· I y) and it converges in 
distribution to PH(· I y) from any initial state. 

Proof: If p(x) > 0, bH(x, u) = 

( )
k/H IT [1 + h(yj I u)J-exp [- / h(t I u) dµ(t)] p(x U {u}) 

i=l >-.(yj I x) JT p(x) 

( h*)mk/H 
~ 1 + 7 (3k/ H =: K, > 0 

and DH(x \ {u}, u) = 

(nm [ h(yj I u) l [ r ] p(x) ) /.:Bl 
j=l 1+ >-.(yjjx\{u}) exp - }Th(tlu)dµ(t) p(x\{u}) 

Once these bounds have been obtained, the proof follows the lines of the 
proof of Lemma 15. □ 

Having specified a family of well-defined Markov processes with equi­
librium distribution PH(· I y), H > 0, the theory developed in Sections 
4.5 to 4.7 applies. In particular, a simulated annealing algorithm can be 
developed to approximate a MAP-reconstruction of the parent process. 
Furthermore, functionals of the posterior distribution such as the dis­
tribution of the number of cluster centres, the probability that there is 
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no cluster in a particular region, and the first-order intensity of cluster 
locations can be estimated. 

Parameters in f and p can be estimated in advance or during itera­
tion. Alternatively, one can specify a Gibbs sampler but note that this 
approach requires a set of prior distributions, one for each parameter. 

In [70] a somewhat different Gibbs sampler approach was taken for a 
Neyman-Scott model conditioned on the number of observations. Here 
n( x) and x were treated separately, using rather severe approximations 
[71]. 
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5.5. EXAMPLE 

Figure 5.1 shows the locations of 62 redwood seedlings in a square of 
side approximately 23 m. The data was extracted by Ripley [102] from 
a larger data set in Strauss [118]. The K-function for this data is given 
in [102] and suggests aggregation. As noted by Strauss this is caused by 
the presence of stumps known to exist in the plot, but whose position 
has not been recorded. 

. . . . 
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. . . . . .. . 

. . . . 
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Figure 5.1: Positions of 62 redwood seedlings in a unit square (Ripley 
1977). 

Previous analyses of this data set include Strauss' who fitted a model 
later criticised by Kelly and Ripley [63]. Ripley [102] rejected the Pois­
son hypothesis and remarked that there appears to be both clustering 
and inhibition between clusters. Diggle [31] fitted a Poisson cluster pro­
cess of Thomas type and reported least squares estimates (25.6 , .042) 
for the parent intensity and the standard deviation of daughter-parent 
distances. A goodness of fit test showed adequate fit, but from a bio­
logical point of view, a mean number of 26 stumps is implausible. In 
[30], Diggle fitted a Poisson cluster process of Matern type with similar 
results (radius .098). 

None of the above have looked at cluster centre location. This was 
first studied by Lawson [70] who fitted a Poisson Thomas cluster process 
and reported 16 parents. 
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5.5.1 Model 
Following [31, 70] we assume the number of daughters per parent is 
Poisson and seedlings follow a radially symmetric Gaussian distribution 
around their ancestor. In contrast to the aforementioned work, a Strauss 
prior (3.1.4) with strict inhibition ( 0 < 'Y < 1) is introduced. 

Lemma 28 Maximum likelihood estimators for Model (5.2.8} solve the 
following set of equations. 

and 

! f (Li=l ex~ [- ~ ~IY~ - Xiii~ 11Yj
2

- Xill 2
) = 

1=1 Li=l exp [ w IIY1 xiii ] 

fr Li=l exp [- ~ lit - Xill 2] lit - xill2 dµ(t) 

fr Li=l exp [- ~ lit - Xill2] dµ(t) 

Proof: The score functions are 

a l 1 n [ 1 ] -;;i-L(x; y) = m - -2 2 I:exp --2 2 lit - Xill2 dµ(t) 
uµ µ r 7r<7 i=l <7 

and 

{) 
{)q2 L(x; y) 

Equating to zero completes the proof. □ 
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The pseudolikelihood estimators for the Strauss model are well-known 
[104, Chapter 4, page 53], see also (3.4.26)-(3.4.27) and subsequent re­
marks. 

In the Lemma above, no background noise process was taken into 
account since doing so would lead to an intractable set of equations. 
However, in the simulations below we did include a Poisson noise process 
with intensity parameter e set to a small constant. Then, since h ~ 21rµu2 

and p(xu{u}) < /3 Lemma 15 applies p(x) - , . 



5.5.2 Analysis 
We analysed the redwood data using a Strauss prior with interaction 
distance .084 (31) and logtj = log-y = -10. Throughout, a constant 
death rate spatial birth-and-death process was used. 

Setting the initial parameter values toµ= 1, u = .042 and an empty 
list of cluster centres, we ran the birth-and-death process for 2 time units 
and found maximum likelihood estimates µ = 6.5 and u = .05. For 
these values, a sample taken after 2 time units is shown in Figure 5.2 
and the posterior intensity estimated over 50 time units in Figure 5.3. 
For reasons of clarity, here black corresponds to high values. 
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Figure 5.2: Realisation from the posterior distribution taken after 2 time 
units (black), for a Thomas model withµ= 6.5, u = .05 and a Strauss 
prior with logtj = log-y = -10, r = .084. The data is displayed in grey. 
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Figure 5.3: Posterior intensity of redwood seedlings (Ripley) estimated 
over 50 time units, for a Thomas model with µ = 6.5, CJ = .05 and a 
Strauss prior with log /3 = log, = -10, r = .084. 
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Surprisingly, although the redwood data as extracted by Ripley [102] 
appear frequently in the spatial statistics literature, to the best of our 
knowledge the full data set [118] has not been reanalysed before. Thus 
we scanned region II of [118, Figure 1, p. 474], the roughly triangular 
area containing almost all the redwood stumps (Figure 5.4). The point 
coordinates in the range from 0 to 200 are listed in the Appendix. 

Again assuming a Thomas type cluster model with a Strauss prior, we 
computed the posterior intensity for the same (rescaled) model param­
eters used to obtain Figures 5.2 and 5.3. An estimate based on running 
a constant death rate Markov process (4.4.6)-(4.4.7) for 50 time units is 
displayed in Figure 5.5; a typical realisation sampled at time 2 is shown 
in Figure 5.6. 

-. 
I • 

Figure 5.4: Positions of 123 redwood seedlings in a subset of the unit 
square (Strauss 1975). 

Note that the results agree on the intersection of Figure 5.1 and Fig­
ure 5.4 and provide a plausible description of the clustered pattern. In 
particular, the Markov prior successfully combats the 'overestimation' 
(from a biological point of view) of the number of cluster centres. 
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Figure 5. 5: Posterior intensity of redwood seedlings in region II (Strauss) 
estimated over 50 time units, for a Thomas model withµ = 6.5, <J = .025 
and a Strauss prior with log,B = log,y = -10, r = .042. 
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Figure 5.6: Realisation from the posterior distribution taken after 2 time 
units (black), for a Thomas model withµ= 6.5, CJ= .025 and a Strauss 
prior with log,6 =log,= -10, r = .042. The data is displayed in grey. 
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5.6. OFFSPRING ASSIGNMENT 

A cluster model can conveniently be interpreted as a marked point pro­
cess w = {(x1,Z:i:i), ... ,(xn),Zx,.)} of parents {x1, ... ,xn} marked by 
their offspring Zxi, i = 1, ... , n (see Section 5.2.1}. So far, we concen­
trated on estimating the parent configuration x. It is the purpose of 
this Section to study the joint distribution of parents and their offspring 
(conditional on the data), thus enabling us to label observations by the 
cluster they belong to. 

5.6.1 Overview 
The task described above resembles approaches to finite mixture models 
[23, 29] dealing with assigning independent realisations to a component 
density. The indicators specifying which component density a given 
data point is drawn from are treated as missing data. A variant of 
the EM algorithm or Gibbs sampler then augments the observations by 
estimating or sampling these missing variables. 

The basic difference with the current problem is that the number 
of densities in a mixture model is fixed and known, while our problem 
entails recovering a point pattern with a variable number of points. This 
distinction is quite crucial, as it implies the impossibility to build a Gibbs 
sampler, alternatingly sampling the marks (or centers) given data and 
centers (or marks) [29]. 

Here, we propose a two-step algorithm for sampling p( w I y) that 
combines a Metropolis-Hastings step for the parents with a Gibbs step 
drawing from the conditional distribution of the marks. The basic idea 
is that, when a new parent configuration x' is generated from the current 
x = {x1, ... , Xn} and marks Zx = (ZxJf=1 , x' does not have to conform 
to Zx (eg. x' could have one point fewer than x). We then update the 
marks to Z~, and require conformity with x', allowing empty sets of 
offspring. 

Algorithm 10 Given an initial parent configuration x, a labelling Zx = 
(ZxJ7i~) and data y, alternate between a Metropolis-Hastings and a 
Gibbs step as follows. 

1. given w = {(x1, Zx 1 ), ••• , (xn, Zx,.)} and y, perform a Metropolis­
Hastings step for x only, independent of the marks Zx, yielding 
the new configuration x'; 

2. given x', y reallocate the offspring by a Gibbs step, sampling Z~, 
from the conditional distribution !?(Z~, I x', y). Replace x by x', 
Zx by Z~, and return to step 1. 
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An assignment of data to clusters can be interpreted as an ordered 
partition of the data (cf. Lemma 23). If one considers unordered par­
titions instead, a Gibbs sampler can be developed. Intuitively, these 
unordered partition elements correspond to 'sibling sets' generated by a 
common, if unspecified, parent. Then, by allowing parents not having 
any offspring at all, the number of cluster centres can be changed, but 
the conditional distributions involved are rather awkward. 

Offspring labelling can be combined with density estimation to assess 
the goodness-of-fit of the cluster distribution. Assuming Model (5.2.3), 
given a label assignment ¢ : y -+ x which maps Yi onto its parent, one 
has a set of vector differences Yi - ¢(Yi) to which a density can be fitted. 
Comparison with the model h is an indication of its validity. 

5.6.2 The Metropolis step 
The Metropolis-Hastings sampling method [44] uses a discrete time Mar­
kov process whose transition kernel is a mixture of two transition kernels 

Q(F Ix)= (1- p) Qo(F Ix)+ pQ1(F Ix), 0 Sp S 1. 

The first kernel governs transitions between configurations consisting of 
the same number of points, the second kernel controls births and deaths. 
Both adopt the Metropolis-Hastings strategy of generating a proposal 
state and accepting it with a probability based on the likelihood ratio 
of the desired equilibrium distribution p(· I y). 

Specifically, for x =I= 0, Q0 selects a current point Xi E x with equal 
probability (say), a new point u E U from a probability density c( x, Xi, u) 
concentrated on { u: f(y I M(x, Xi, u)) p(M(x, Xi, u)) > O}, with the prop­
erty that c(x, Xi, u) > 0 if ~d only if c(M(x, Xi, u), u, Xi) > 0. A change 
from x to x' = M(x, Xi, u) is accepted with probability 

A ( 'I)- . {l p(x'Jy)c(x',u,xi)} 
o x x - mm , ( I ) ( ) . p X y C X,Xi,U 

(5.6.14) 

Note that Qo is concentrated on Kn = {x : n(x) = n; f (y I x) p(x) > O}. 
The proposal kernel of Q1 is concentrated on Kn-I U Kn+I (or K1 if 
n = 0) and constructed as follows. 

• with probability q(x) generate a new point u from a density b(x, u) 
with respect to v; accept with probability 

A1(x U {u}Jx) = min{l, r(x, u)} 

if f (y I x U { u}) p( x U { u}) > 0 and O otherwise; 
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• otherwise (with probability 1 - q(x)) delete a point Xi E x with 
probability D(x \{xi}, Xi) (or if n = 0 do nothing); accept with 
probability 

if f(y I x) p(x) > 0 and O otherwise. 

Here, if f(y Ix U {u}) p(x U {u}) > 0 

( ) f(yjxu{u})p(xU{u}) 1-q(xu{u}) D(x,u) 
r x, u = J(y I x) p(x) q(x) b(x, u) · 

By construction, the detailed balance equations are satisfied. 
We shall assume that p(· I y) is hereditary (or modified to be heredi­

tary, see the discussion in Section 5.4.2). Moreover for any configuration 
x and any u E U such that f (y I x U { u}) p(x U { u}) > 0 

D(x,u) > O,b(x,u) > 0,q(xU{u}) < 1 and q(x) > 0. (5.6.15) 

Of course this leaves us with many choices for b(·, ·), c(·, ·, ·), D(·, ·), 
and q( · ). One of the simplest is 

1 1 1 
q(·) = 2' b(·, ·) = c(·, ·, ·) = v(U)' and D(x, ·) = n(x) + 1 

with acceptance probabilities 

A1(x'lx) = min {1, v(ur<x')-n(x) f(y Ix') p(x')n(x)!} 
J(y I x) p(x)n(x')! 

and Ao as in (5.6.14). 
However this may tend to generate too many proposals with low ac­

ceptance probabilities. A more rapid algorithm may be obtained by 
generating the new point in the shift part Q0 uniformly within some 
neighbourhood D(xi) of the deleted point Xi (or more generally, from 
some symmetric probability density c(x,xi,u) = c(xi - u)). To main­
tain detailed balance, we require symmetry: u E D( v) if and only if 
v E D(u). See [93, 95]. 

Another possibility resembling spatial birth-and-death processes ( cf. 

Section 4.4) is to set D(x, ·) = n(x1)+l as before and 

b(x,u)=f(yjxU{u})p(xU{u}) 1 ,q(x)= B(x) , 
f(y Ix) p(x) B(x) n(x) + B(x) 

where 



Then 

B(x) = r p(x u {u} I y) dv(u). 
lu p(xly) 

B(x) + n(x) 
r(x,u)= B(xU{u})+n(xU{u}) 

5.6.3 The Gibbs step 
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Regarding the Gibbs step in Algorithm 10, we now proceed to derive 
the conditional distributions of marks given x. 

Theorem 29 Given a parent configuration x and a data pattern y, for 
any Zxi, i = 1, ... , n = n(x) forming a partition of y 

l?((ZxJi=l I x,y) = I: i~lg~Zxi I Xi~ )' 
. </, i=l g Y<t,- 1(i) Xi 

provided there exists at least one Zx for which this expression is strictly 
positive. 

Proof: Assume that Zx and y are compatible and write m = n(y). 
Then we can identify the marks with a function ¢ : {1, ... , m} -+ 

{1, ... , n}. The Janossy densities with respect to (v x 1rr 
n 

in( {(x1, Zx 1 ), ... , (xn, Zxn)}) = e-v(U) p( {x1, .. ,, Xn}) II g(Zx; I Xi) 
i=l 

can be rewritten in terms of x, y and ¢ as 

n 

ln(x, Y, <p) = e-v(U) p( { X1, ... , Xn}) II g(y <t,-l(i) I Xi) 
i=l 

with respect to (v X 7r r or equivalently by the family 

n 

lnm(x,y,¢>) = e-v(U) p({x1,.,, ,xn}) II [u(Y<t,-l(i) I Xi)e-µ(T)] 
i=l 

with respect to vn µm. Therefore 

l?((Z )n I ) lnm(x,y,¢>) 
x; i=l x, y = e-µ(T) f (y I x)e-v(U)p(x) 

ni=l [u( Zx; I Xi)e-µ(T)] 
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The last equality follows from Lemma 23. D 

The class of independent inhomogeneous Poisson cluster models is of 
special interest. Superposition of an independent Poisson noise process 
is covered, by noting that noise can be interpreted as offspring from an 
imaginary (fixed) parent. 

Corollary 30 For Model (5.2.2), y = Uf=1 Za:i and n = n(x) 

n TI~1 TitEZ.,. h(t I Xi) 
IP((Za:Ji=l Ix, y) = TI~1 CEi h(yj I Xi)) (5.6.16) 

assuming at least one Z exists for which ( 5. 6.16) is strictly positive. 

Proof: Apply the previous theorem and formula (5.2.6). D 

Rephrasing (5.6.16) in terms of a labelling</>, it follows that the labels 
attributing each data point to a cluster centre are independent, with 
probabilities 

h(yj I X<t,(j)) 

Ei h(yj I Xi). 

Hence, simulation of the mark process is easy. 

5.6.4 Convergence 
Returning to Algorithm 10, note that since 

/(wly) = p(xly)IP(Zxlx, y), 

the detailed balance equations for Algorithm 10 reduce to the detailed 
balance equations of a Metropolis-Hastings algorithm for the marginal 
parent process and hence are satisfied whenever (5.6.15) hold. In that 
case, applying the arguments in [44, Section 4] yields that the process 
is irreducible (with respect to /(w I y)) and positive Harris recurrent. 
Hence, if the chain is aperiodic (e.g. when p < 1 or q(0) < 1), Al­
gorithm 10 converges in total variation and ergodically to /(w I y). It 
follows that sample path averages of any absolutely integrable functional 
converge almost surely to its expectation under the limit distribution. 
In particular, we can consider functionals such as the probability that 
two data points are offspring of the same parent, or the distribution 
function of displacements from the parent. 

Geyer & M0ller [44] also establish a central limit theorem under ad­
ditional conditions. 
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5.6.5 Relations to other methods 
Corollary 30 can be used as a justification for the nearest-parent classifier 
proposed by Lawson [70). Given a set of sites y = {y1, ... , Ym} and a 
set of parents x = { x1, ... , Xn}, suppose the task is to assign to each Yi 
a label ¢(j) E {1, ... , n} corresponding to centre X<f,(j)· In Model (5.2.2) 
the labels are independent and hence a maximum likelihood classifier is 

(5.6.17) 

If we superimpose a background Poisson process, whenever the maxi­
mum is less than e, Yi is considered to be noise. 

Lemma 31 For Model (5.2.3), if h(·) is isotropic (i.e. h(t) is a function 
of lltll only) and decreasing in the norm of its argument, the maximum 
likelihood classifier (5.6.17) is the nearest parent classifier. 

Proof: Immediate from (5.6.17). □ 

As remarked above, conditionally on the number of parents, sibling 
information can be incorporated as missing auxiliary variables in a Gibbs 
sampling algorithm [17, 29). The distribution of offspring labels given 
data and parents is derived in Theorem 29. The conditional density of 
parents given the labelled data is treated below. 

Theorem 32 For any labelling <p: {1, ... , n(y)}--+ {1, ... , n}, the con­
ditional density of the n cluster centres with respect to vn is 

( I ¢ ) - . p(x) ni=l g(y <1,-l(i) I Xi) 
Pn X 'y - fun p(x) ni=l g(y <J,-l(i) I Xi)dv(x1). • · dv(xn)" 

Proof: Since Janossy densities are not ordered, and vn is we have 

( 1 ,1.. )-_!_ lnm(x,y,¢) 
Pn X 'f', y - I 1 r ( ) ( ) ( ) n. nf Jun lnm x, Y, <p dv X1 ••• dv Xn 

- ,he-v(U) f U" p(x) ni=l [u(y <J,-l(i) I Xi)e-µ(T)] dv(x1) ... dv(xn) 

( using the notation in the proof of Theorem 29) and the theorem follows. 
□ 

In particular, if the prior model is a Poisson process with intensity 
function ,\( ·), the centres Xi are independent with density 



fu .X(u) g(Zi I u) dv(u) 

determined by their offspring Zi, 

Summarising, the Gibbs sampling algorithm runs as follows. 
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• given a current parent configuration x assign a labelling ¢ with 
probability IP(¢ I x,y); 

• given a current labelling ¢ : {1, ... , m} --+ {1, ... n} sample n 
parent positions from Pn(x I ¢,y). 

In the context of finite mixture models, a similar Gibbs sampler was 
introduced by Diebolt and Robert [29]. Celeux and Govaert [23] de­
veloped a stochastic EM (SEM) algorithm, alternating sampling the 
missing labels with maximum likelihood parameter estimation. All 
above techniques can be thought of as stochastic versions of the classi­
cal k-means algorithm, a deterministic method that iteratively assigns 
labels by means of the nearest parent classifier (Lemma 31) and then 
recomputes the parent positions as the centres of gravity of the current 
clusters. 
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5.7. OTHER APPLICATIONS 

We will briefly consider two other examples of identifying clusters in 
spatial patterns [8]: fitting lines to point patterns and high-level edge 
detection. 

5. 7.1 Fitting curves to point patterns 
In our first example, the data again consist of a point pattern y -
{y1, ... , Ym} ~ T with T ~ 1R2 bounded, but the points are believed to 
lie close to a curve or curves, possibly not contiguous, and the objective 
is to estimate the curves. An example is the image analysis tru:;k of join­
ing a dot pattern into a curvilinear boundary. An application to spatial 
statistics is the identification of ancient roads or trade routes given in­
formation about the location of archaeological finds such M pottery or 
coins [117, p. 139], or the analysis of earthquake occurrences in relation 
to geographical fault patterns (Ogata, personal communication). 

Let the curves be parametrised by a small number of real parameters 
and let U be the corresponding parameter space. The tme curve pattern 
is then a configuration x = { x 1 , ••• , Xn} ~ U. Again we can ru:;sume an 
independent cluster model in which each curve Xi gives rise to a point 
pattern Zxi and these daughter patterns are conditionally independent 
given x. 

It is no longer appropriate to ru:;sume that the daughter patterns Zxi 

are equivalent up to translation, since e.g. the expected number of points 
may well depend on the length of the curve. However we can Msume 
Z(xi) is Poisson with intensity h(· I Xi), so that the observ~d point pat­
tern is again a Cox process [117, p. 138]. Particular cases of interest 
would be the analogues of the Matern and Thomas models in which dis­
tance to the cluster centre is replaced by distance to the nearest point 
on the cluster curve. 

The treatment of this problem is formally equivalent to that in the 
previous Sections, the only difference being that the cluster parents now 
belong to a general family of objects U instead of T. The general tech­
niques of Section 5.4 apply. 

5. 7.2 High-level edge detection 
Our final exan1ple is the high-level vision problem of identifying large 
scale edges in a scene using the output of a low-level edge detector. The 
'data' y consist of a pattern of line segments and the objective is to 
cluster them around a small number of larger line segments [91]. 

Let W denote the set of possible outputs of the low-level edge detector. 
For example these may be line segments restricted to have unit length 
(= 1 pixel width) and orientation which is a multiple of 45 degrees. As 
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usual U denotes the space of objects we are looking for, which in this 
case are also line segments, but have unrestricted length and orientation. 

Model y as a superposition of conditionally independent line segment 
processes Zxi associated with each true line segment Xi- Again it is not 
reasonable to suppose that all clusters are identically distributed up to 
translation, but we may assume they are all Poisson so that y is a Cox 
line segment process. Typically the expected number of line segments 
in Zx, will depend on the length of Xi. 

The MLE and MAP estimators of x can then be determined using the 
techniques we have described above. 

The possible benefits of a prior model for x include the ability to 
encourage long lines and continuity between lines, and to penalise lines 
that cross one another. 
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Chapter 6 
Markov properties of cluster processes 

The goal of this Chapter, ( a revision of Baddeley, Van Lieshout and 
M0ller [10]) is to establish a theoretical link between Markov processes 
and cluster models. We prove that a Poisson cluster process with uni­
formly bounded clusters is a nearest-neighbour Markov point process 
with respect to the connected component relation introduced by Bad­
deley and M0ller [11]; moreover, if a (fixed range) Markov or nearest­
neighbour Markov point process is used as the parent process for a clus­
ter process, and the clusters are uniformly bounded and a.s. nonempty, 
then the cluster process is 'again nearest-neighbour Markov. These re­
sults convincingly support M0ller's claim [89] that nearest-neighbour 
Markov processes provide a rich class of models for (moderate) spatial 
clustering. The former result may also be helpful in understanding why 
statistical theory ( as developed in Van Lieshout and Baddeley [78]) for 
Poisson cluster processes so closely resembles that for Markov point pro­
cesses. 

6.1. SETUP 

We consider finite, simple point processes X on a locally compact, com­
plete separable metric space U (typically IB,d or a compact subset). The 
metric is denoted d and the set of all configurations is identified with 
the space NI of all simple, totally finite counting measures on U. For 
more details see Sections 3.1.2 and 3.2.1. 

Let µ be a finite, non-atomic Borel measure on U. We will restrict 
attention to processes whose distributions are absolutely continuous with 
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respect to the law 1r of a Poisson process on U with finite intensity 
measure µ and denote the density by f. 

Recall that f is called hereditary [107] if 

J(x) > 0 implies f(z) > 0 for all z ~· x. (6.1.1) 

We say that f is hereditary excluding 0 if ( 6.1.1) holds except when 
z =0. 

6.1.1 Markov point processes 
We are interested in Markov point processes [107] (cf. Definition 2) with 
respect to the following relation. Define u, v E U to be r-close if 0 < 
d(u, v) ~ r where dis the metric of U and write u ~ v. 

We also consider nearest-neighbour Markov point processes ( compare 
to Definition 3) with respect to the following realisation dependent re­
lation. 

Definition 8 For each x E N f, define the connected component rela­
tion [ 11 J between points of x by 

Xi ~ Xj iff X'i ~ z1 ~ · · · ~ Zn ~ Xj for some z1, ... , Zn E x 

In other words, two points of x are related under ~ if they are in the 
X 

same connected component of the finite graph whose edges connect every 
pair of r-close points in x. 

The Hammersley-Clifford theorem (3.1.9) [11, Theorem 4.13] spe­
cialises to the following result. 

Lemma 33 A point process X is nearest-neighbour Markov with respect 
to the connected component relation ~ iff 

X 

J(x) = II <p(z) (6.1.2) 
cliques z~x 

where <p(·) ~ 0 is such that whenever z is a ~-clique with ip(z) > 0 then 
z 

<p(w) > 0 for all w ~ z. 

Equivalently, X is nearest-neighbour Markov w.r.t. ~ iff 
X 

I< 

J(x) = !(0) II <I>(xvi,) (6.1.3) 
k=l 

where XDp ... ,xvK are the connected components of x and <I>(·) ~ 0 
is such that if x is a ~-clique and z ~ x is a ~-clique then <I>(x) > 0 

X Z 

implies <I>(z) > 0. 
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6.1.2 Cluster processes 
In the remainder of this Chapter we will consider the independent clus­
tering model described in Section 5.2, in which each point ( in an un­
observed parent process X gives rise to a finite point process Ze of 
daughters. The data model Y is the superposition 

Interpreted as a marked point process {(x1, Zx 1 ), ••• , (xn, Zxn)}, we as­
sume that the marks Zx; are independent. For convenience we will 
sometimes consider densities with respect top= eµ(U)1r. Writing Qe for 
the distribution of offspring of a parent at point(, we assume henceforth 
that 

(A) Qe is absolutely continuous with respect to p with density Qe = 
g(· I () e-µ(U); equivalently, Qe is absolutely continuous with re­
spect to 1r with density g(· I(); 

(B) ((,z) 1----+ qe(z) is Borel measurable U x Nf---+ IR+; 

(C) (uniform boundedness) Ze ~ B((, R) a.s. for some R > O; 

(D) Qe is hereditary excluding 0. 

Here B((, R) denotes the closed ball in the metric d with centre ( and 
radius R. 

Lemma 34 The cluster process described above is absolutely continuous 
with respect to 1r with Radon-Nikodym derivative 

/ (y) = IE ( e•CV) c, ,.;.,x, Il q"' (y c,)) (6.1.4) 

where lE denotes expectation with respect to the distribution of X, and 
the sum is over all ordered partitions of y = {y1, ... , Ym} into n subcon­
figurations Ye., ... ,Ye,. (allowing empty sets). 

Proof: Conditionally given X = x, the density with respect to 1r is 
n 

f (y I x) = eµ(U) I,: II Qx; (ycJ 
C1, ... ,C,. i=l 

by Lemma 23. Here the sum is over all ordered partitions of y into 
n = n(x) clusters, allowing empty sets. The result follows by integrat­
ing over x. □ 
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6.2. STATEMENT OF RESULTS 

Theorem 35 Let X be a unit rate Poisson point process on U and 
Y a cluster process with parent process X and clusters satisfying the 
assumptions (A)-(D) of Section 6.1.2. Then Y is a nearest-neighbour 
Markov point process with respect to the connected component relation 
at distance 2R. 

Any Poisson process with finite intensity measure >. can be treated in 
the same way by replacing the reference measure µ by >.µ. 

Consider the special case in which the offspring of each parent are 
Poisson. In lRd, say, consider a parent process on a compact subset 
B and let µ be Lebesgue measure restricted to the dilated set B(f)R = 
BEBB(O, R). Assume that a parent at~ has a Poisson number of offspring 
with mean w, positioned i.i.d. with probability density h(Yi - ~) with 
respect to µ where h is supported on B(O, R). For y -::f. 0, the density is 

This is easily ( or via the proof of Theorem 35) factorised as 

f(y) = eµ(BrJJR)wrne-mwe-/3 [ I: ew(rn-k) J(yc1), • • J(yc,.,)] , 
C1, ... ,C1, 

(6.2.5) 

where /3 = (1 - e-w) µ(B), the sum is over all unordered partitions of y 
into disjoint non-empty subconfigurations, and 

(6.2.6) 

Since J (y c) = 0 unless y c is a ~-clique, the only nonzero terms in 
y 

(6.2.5) are those for partitions which are refinements of the partition of 
x into connected components. Thus (6.2.5) factorises into terms associ­
ated with each connected component. According to (6.1.2) the process 
is nearest-neighbour Markov, provided the positivity condition stated 
below ( 6.1.2) is satisfied. 

A special case is the Matern cluster process in which h = constant on 
B(O, R): then we have 
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J(yc) = µ ( n B(yj, R) n B) 
YiEYc 

i.e. J(yc) is the volume occupied within B by the intersection of the 
balls of radius R centred at the points of YC· In this case the positiv­
ity condition is clearly satisfied, so that the Matern cluster process is 
nearest-neighbour Markov. 

In Theorem 35, nearest-neighbour Markov cannot be replaced by 
Markov in the sense of Ripley and Kelly. 

Counterexample 1 A Neyman-Scott process with uniformly bounded 
clusters in general is not a Markov point process at any fixed range 
s < oo. 

For, consider a configuration of three points YI, Y2, y3 such that IIY1 -
Y2II < min{s, 2R}, IIY2 -y3II < min{s, 2R}, but IIY1 -y3II > max{s, 2R}. 
If f were a Markov function at ranges then 

Substituting (6.2.5) gives 

[1 + ew J(yi, Y2) + ew J(y2, y3)] = [1 + ew J(yi, Y2)] [1 + ew J(y2, y3)]. 

Ifwe assume that J(yi, Yj) > 0 whenever IIYi-Yjll < 2R (e.g. the Matern 
model), this is clearly a contradiction. Hence f is not a Markov density 
in the Ripley-Kelly sense. 

Next we turn to non-Poisson parent processes. The simplest gener­
alisation is to take a Ripley-Kelly Markov parent process. However, in 
general, the cluster process constructed as in Section 6.1.2 is not nearest­
neighbour Markov. 

Heuristically, this is because parents without offspring can cause in­
teraction by merging of disjoint ~-cliques. If we require each parent 

y 
to have at least one daughter, the cluster process is nearest-neighbour 
Markov. 

Theorem 36 Let X be a Markov point process at range r and Y the 
associated cluster process satisfying (A)-(D) of Section 6.1.2. If more­
over 

(E) the clusters are nonempty a.s. 

then Y is a nearest-neighbour Markov point process for the connected 
component relation at range 2R + r. 
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It is clear from the proof that the same result holds when the parent 
process is nearest-neighbour Markov. This suggests that a population 
of reproducing individuals can be modelled by the mechanism in Theo­
rem 36. See also [66]. 

Theorem 37 Let X be a nearest-neighbour Markov point process at 
ranger and Y the associated cluster process satisfying (A}-(D} of Sec­
tion 6.1.2. If moreover 

{E) the clusters are nonempty a.s. 

then Y is a nearest-neighbour Markov point process for the connected 
component relation at range 2R + r. 

Proof: The following adaptation in the proof of Theorem 36 is needed. 
Let t: : {1, ... , m} --+ {1, ... , n} be a surjective mapping such that 

d(yj - xE(j)) $ R for all j. Suppose z ~ x is a connected component 
with respect to i' at range r such that t:-1 ( z) = w s;;; y. Then w is 
a connected component in y at range 2R + r. To see this, choose any 
w1, w2 E w. There exists ax-connecting path between the t: images 
z1, z2 E z, say 

As t: is surjective, Xii is the image of some Yki E y. Now apply the 
triangle inequality to obtain 

~ R + r + R = 2R + r. 

Continuing in this manner proves the claim. 0 

Corollary 38 Let X be a (nearest-neighbour) Markov point process at 
range r and Y the associated cluster process obtained by translating each 
Xi E X independently, where the displacements are absolutely continuous 
with respect to µ with density supported in B(O, R). Then Y is a nearest­
neighbour Markov point process for the connected component relation at 
range 2R+ r. 

Proof: Apply Theorem 36 or Theorem 37. 0 



6.3. PROOFS 

In this Section we give the proofs of the main results. 
Proof: {Lemma 33) 
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Suppose that (6.1.2) holds. Let x ENI, l EU and let XDp"·,XDK 

and w U {0 denote the connected components of x U {O. Then, if 
xvK+i, ... , xvL are the connected components of w, we have that xv1 , 

... , xvL are the connected components of x, and 

while 

/(x)- '1'(0) [£,,.rt. 'I'(•)] jll+.,}lD; ,p(z). 

Hence f(xu{O) > 0 implies f(x) > 0 (as z ~ xvi for j > K implies that 
z ~ w) and f(xu{O)/ f(x) satisfies the conditions of Definition 3. Thus 
Xis nearest-neighbour Markov with respect to the connected component 
relation. 

Conversely, suppose Xis nearest-neighbour Markov. By the analogue 
of the Hammersley-Clifford theorem [11, Theorem 4.13], 

J(x) = IT ip(y)x(ylx) 
y~x 

(taking o0 = 0) (6.3.7) 

where x(y Ix)= 1 if y is a ~-clique and O otherwise; and <p: NI---+ IR+ 
X 

satisfies 

(11) ip(x) > 0 implies ip(y) > 0 for ally~ x 

(12) ip(x) > 0 and ip(N({O I xU {0)) > 0 imply ip(xU {0) > 0 

where N ( { O I x u { O) denotes the neighbourhood of e in x u { O 
(see Section 3.1.3). Note that, in the case of the connected component 
relation, ~ ~ rJ implies ~ ~ rJ for x ;;2 y, so that x(y I y) = 1 implies 

y X 

x(y Ix) for any x ;:2 y. 
To prove that (6.3.7) reduces to (6.1.2) we need to show that, if ip(y) > 

0 for ally ~ x with x(y I x) = 1, then ip(y) > 0 for ally~ x. 
To prove this, suppose v, w ~ x are disjoint connected subconfigu­

rations of x. If e Ev then N({O I w u {0) = {O. By assumption 
ip({O) > 0, ip(w) > 0 so (12) gives ip(w U {0) > 0. Similarly, if 
{l,rJ} ~ V with rJ ~ e then N({rJ} I w u {l,rJ}) = {l,rJ}, and by as­
sumption ip( {l, rJ}) > 0, so (12) gives ip(w U {l, rJ}) > 0. Continuing in 
this way we obtain that ip(y) > 0 for ally ~ x. 
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Hence if X is nearest-neighbour Markov then its density is of the 
form (6.1.2) where <p satisfies (Il) and hence the condition stated in the 
Lemma. □ 

Proof: (Theorem 35) 
By (6.1.4), the density f(y) of y -=I= 0 with respect to 1r is 

(6.3.8) 

here the inner sum is over all ordered partitions of y into n disjoint, 
possibly empty, sets. For y = 0, 

f (0) - 1 + E ~! [fu qe(0) dµ(~)] n 

- eµ(U~-fJ 

(6.3.9) 

(6.3.10) 

if we define /3 = fu(l - qe(0)) dµ(~). Note that since the parent process 
is Poisson, the number of non-empty clusters is Poisson distributed with 
mean /3. 

Now qe(z) = 0 whenever z g B(~, R); hence if qe(z) -=I= 0 then all pairs 
of points in z are closer than 2R apart, i.e. z is a clique with respect to 
the finite range relation with distance 2R. Hence the integral in (6.3.8) 
is nonzero only when the partition consists of 2R-cliques. 

For y -=I= 0, let YDp ... , Yv,.,m be the connected components of y for 
the relation ~ with range 2R. Then the integral in (6.3.8) is nonzero 

y 
only when the partition is a refinement of D1 , ..• , Dkm· Let C1 , ... , Ck 
be an unordered partition refining D1 , ..• , D1c,,., consisting of non-empty 
sets. This contributes a term 

k 

a IT J qe(Yc;) dµ(~) 
i=l U 

to the density. Since fu qe(0) dµ(~) = µ(U) - /3, the coefficient a is 

(X) 1 L ,(µ(U) - f3r-k n(n - l) ... (n - k + l) = eµ(U)-fJ_ 
n=k n. 

The class of all partitions that are refinements of D1 , ... , Dk.,. is the 
Cartesian product of the sets of partitions of each Di, Hence, for y -=I= 0, 
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(6.3.11) 
i=l 

where 
k 

<I>(z) = L L JI fu qe(zci) dµ(~) 
k:2'.1 Zc1 , .. ,,zck J=l 

(6.3.12) 

where zc1 , ••• , zck range over all unordered partitions of z into nonempty 
sub configurations. 

Since the offspring densities Qe are hereditary excluding 0, clearly <I> is 
hereditary excluding 0, and hence / is hereditary. According to (6.1.2) 
the density (6.3.11) is nearest-neighbour Markov with respect to the 
connected component relation at range 2R. 

□ 

Proof: (Theorem 36) 
The density p(x) can be factorised as in (6.1.2). 

By (6.1.4), the density of y with respect to 1r is 

n(x) 

f (y) = eµ(U) 1 . p(x) L IT Q:xi (ycJ d1r(x) 
Ni C1, .. ,,Cn(X) i=l 

where the inner sum ranges over all ordered partitions of y into disjoint, 
possibly empty subconfigurations. 

First note that by assumption qe(0) = 0, hence the integrand can be 
rewritten as 

n 

p(x) LIT Q:xi(Yc 1(i)) (6.3.13) 

where E ranges over all surjective mappings of the points of y onto the 
points of x, identified with mappings from {1, ... , m} onto {1, ... , n}. 

We can restrict attention to those E such that 

for all j (6.3.14) 

since all other terms are zero. For such E, if z ~ x is an r-clique and 
E-1(z) = w ~ y, then w must be a 2R + r-clique. To see this, take 
Yi, Yj E w and apply the triangle inequality: 

d(yi - Yj) ~ d(yi - Xe(i)) + d(Xe(i) - Xe(j)) + d(Xe(j) - Yj) 

~ R+r+R. 

Let y Di, , .. , y Dk,,, be the connected components of y at distance 2R+ 
r. Then we can rewrite (6.3.13) as 
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n 

II cp(z) L II qxJYc 1(i)) = 
cliques z~x E i=l 

Any £ of the type described above can be represented as a family of 
surjective mappings 

ck: Dk---* Dk= {i I d(xi, Yj) ~ R for some j E Di} 

automatically satisfying the norm condition (6.3.14). Note that xv, 
k 

form a disjoint partition of x. Thus (6.3.15) is 

Integrating over x and exploiting the form of 1r yields f (y) = 
k,,, n(v) 

eµ(U) II 1 . L II qv;(YE-1(i)) II cp(z) d1rk(v) 
k=l Nl(yvktBR) Ek i=l k cliques z~v 

where we write 7rk for the Poisson process on the corresponding expo­
nential space Nf(yv,., $ R). Thus, f factorises as required by (6.1.2). 
The hereditary property follows as in the proof of the previous Theorem. 

D 
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Appendix 

Delta distance 

Initial pattern 

empty 
true 
shifted 
Hough extrema 

MLE 
( coordinatewise) 
.546 
.230 
.367 
.314 

MAP 
( coordinatewise) 
.404 
.099 
.335 
.170 

157 

Table .1: Delta distance between the true pattern and the reconstruction 
obtained using coordinatewise ascent. The only transitions are births 
and deaths. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .210 .140 
true .235 .099 
shifted .260 .291 
Hough extrema .213 .182 

Table .2: Delta distance between the true pattern and the reconstruction 
obtained using steepest ascent. The only transitions are births and 
deaths. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .093 .140 
true .000 .000 
shifted .192 .291 
Hough extrema .178 .182 

Table .3: Optimal delta distance between the true pattern and inter­
mediate reconstructions using steepest ascent. The only transitions are 
births and deaths. 
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Initial pattern MLE MAP 
( coordinatewise) ( coordinatewise) 

empty .528 .207 
true .236 .132 
shifted .344 .132 
Hough extrema .335 .132 

Table .4: Delta distance between the true pattern and the reconstruction 
obtained using coordinatewise ascent. The transitions are births, deaths 
and translations. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .205 .132 
true .205 .132 
shifted .210 .132 
Hough extrema .220 .132 

Table .5: Delta distance between the true pattern and the reconstruction 
obtained using steepest ascent. The transitions are births, deaths and 
translations. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .093 .132 
true .000 .000 
shifted .049 .099 
Hough extrema .187 .132 

Table .6: Optimal delta distance between the true pattern and interme­
diate reconstructions using steepest ascent. The transitions are births, 
deaths and translations. 



Figure of merit 

Initial pattern 

empty 
true 
shifted 
Hough extrema 

MLE 
( coordinatewise) 
.627 
.883 
.794 
.802 

MAP 
( coordinatewise) 
.733 
.960 
.815 
.929 
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Table .7: Figure of merit between the true pattern and the reconstruc­
tion obtained using coordinatewise ascent. The only transitions are 
births and deaths. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .900 .944 
true .879 .960 
shifted .865 .859 
Hough extrema .890 .926 

Table .8: Figure of merit between the true pattern and the reconstruc­
tion obtained using steepest ascent. The only transitions are births and 
deaths. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .985 .944 
true 1.00 1.00 
shifted .906 .860 
Hough extrema .907 .931 

Table .9: Optimal figure of merit between the true pattern and inter­
mediate reconstructions using steepest ascent. The only transitions are 
births and deaths. 
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Initial pattern MLE MAP 
( coordinatewise) ( coordinatewise) 

empty .632 .908 
true .881 .948 
shifted .809 .948 
Hough extrema .787 .948 

Table .10: Figure of merit between the true pattern and the reconstruc­
tion obtained using coordinatewise ascent. The transitions are births, 
deaths and translations. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .902 .948 
true .902 .948 
shifted .900 .948 
Hough extrema .890 .948 

Table .11: Figure of merit between the true pattern and the reconstruc­
tion obtained using steepest ascent. The transitions are births, deaths 
and translations. 

Initial pattern MLE MAP 
( steepest ascent) ( steepest ascent) 

empty .985 .948 
true 1.00 1.00 
shifted .993 .960 
Hough extrema .906 .948 

Table .12: Optimal figure of merit between the true pattern and interme­
diate reconstructions using steepest ascent. The transitions are births, 
deaths and translations. 
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Figure .1: Reconstruction quality at successive steps of coordinatewise 
ascent with the local maxima of the conditional Hough transform as 
initial state. 
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Figure .2: Reconstruction quality for the successive reconstructions ob­
tained using steepest ascent starting with a diagonally translated copy 
of the true configuration. 
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at different noise levels. Top: coordinatewise ascent; bottom: steepest 
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Figure .5: Number of objects against time for a geometric cooling sched­
ule starting at H = 4.0 of rate .5 and a Strauss prior with /3 = .0025 
and,= .25 
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Figure .6: Delta-2 distance between reconstructed and true pattern as 
a function of time. The cutoff value is 4. 
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Coordinates of points in region II of Strauss' redwood data 
167 5 170 5 
144 6 174 7 
144 8 146 11 

13 12 145 14 
125 17 161 17 
37 18 144 18 

150 19 154 19 
160 19 52 20 
143 20 152 21 
155 22 33 23 
137 23 133 24 
144 24 33 25 
141 25 138 26 
137 27 134 28 
36 30 82 32 
98 36 83 42 
30 45 49 45 
46 46 57 46 
63 48 65 49 
67 51 54 52 
59 54 129 54 

147 54 18 56 
127 56 66 57 
121 58 49 59 
123 59 126 59 
52 60 49 61 
60 61 122 61 

127 61 51 62 
54 62 98 64 

110 70 44 74 
60 76 46 79 

109 79 107 80 
41 81 40 85 
84 89 98 96 
85 107 42 109 
51 109 85 109 
90 109 48 111 
91 111 53 112 
80 113 51 114 
78 115 89 115 
80 116 85 118 
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89 119 70 123 
72 125 71 127 
67 128 62 132 
69 132 65 133 
67 134 21 137 
22 137 23 139 
28 144 28 146 
23 149 25 152 
22 153 22 154 
54 156 15 157 
17 157 20 157 
60 157 16 159 
54 159 58 161 
54 162 50 16 
30 169 47 172 
53 172 51 175 
26 177 46 177 
50 178 25 179 
36 181 39 181 
30 182 32 183 
42 183 







LP optimisation, 23 

area-interaction process, 39, 42, 
61 

Bayesian approach, 59, 111 

clique, 39, 41, 134 

Index 

cluster process, 105, 133, 135 
clustered pattern, 42, 54 
configuration, 18, 59, 107, 123 
connected component relation, 40, 

134 
coordinatewise optimisation, 27, 

29, 62 
Cox process, 107 
curve fitting, 130 

detailed balance, 77, 125, 127 
diffusion, 94 
dilation, 24, 48 
Dobrushin's contraction coefficient, 

82,88 

edge detection, 130 
empty space statistic, 52 
erosion, 18, 24 
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finite mixture model, 123, 129 
fixed temperature sampling, 79, 

97, 112 
forward density, 19, 106 

Gibbs sampler, 114, 123, 129 

Hammersley-Clifford theorem, 39, 
41,47, 134 

hard core process, 37 
hereditary, 38, 41, 76, 112, 125, 

134 
Hough transform, 18, 30, 59, 64, 

96 

ICM algorithm, 28, 62 
image space, 17 
independent noise model, 19, 60, 

64 
inference, 52 
inhibition, 42, 54, 59, 111 
inhomogeneous Poisson process, 

106, 127 
intensity function, 107 
interaction, 37, 47 
iterative optimisation, 27, 62, 111 

k-means algorithm, 129 



lattice process, 54 
likelihood approach, 19, 105 
likelihood ratio, 27, 62, 112 

Markov object process, 38, 59 
Markov point process, 47, 111, 

134,137,138 
mathematical morphology, 18, 23 
Matern process, 107, 110 
maximum a posteriori estimation, 

60, 87, 111 
maximum likelihood estimation, 

22, 27, 52,109 
maximum pseudolikelihood esti-

mation, 56, 65, 109 
Metropolis-Hastings algorithm, 124 
modified Thomas process, 108 
multiple response, 59, 104, 111 
multiresolution, 98 

nearest neighbour distance, 54 
nearest-neighbour Markov object 

process, 39, 59 
nearest-neighbour Markov point 

process, 111, 134, 136, 
138 

nearest-parent classifier, 128 
Neyman-Scott process, 107, 137 

object recognition, 17, 59, 87 
object space, 18, 35 
offspring assignment, 123 

pairwise interaction, 37-39 
Papangelou conditional intensity, 

38, 53, 56, 63, 109 
phase transition, 51 
Poisson object process, 36 
posterior distribution, 59, 76, 111 
pre-processing, 24 

regression, 22, 109 

segmentation, 11 
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signal, 19 
silhouette, 19, 39, 111 
spatial birth-and-death process, 

75, 76, 87, 112 
spatial clustering, 103 
spatial point process, 35, 103 
stationary area-interaction pro-

cess, 50 
steepest ascent, 27, 29, 62 
stochastic annealing, 87, 113 
stochastic EM algorithm, 129 
Strauss object process, 37, 60 
Strauss process, 42, 57 
sufficient statistic, 52 

Takacs-Fiksel method, 53, 57 
temperature, 76, 87, 112 
template matching, 17 
total variation, 82, 85, 127 

Voronoi tessellation, 39 
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