

CWITracts

Managing Editors

K.R. Apt (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (Eindhoven University of Technology)

Editorial Board

W. Albers (Enschede)
P.C. Baayen (Amsterdam)
R.C. Backhouse (Eindhoven)
E.M. de Jager (Amsterdam)
MA Kaashoek (Amsterdam)
M.S. Keane (Amsterdam)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
H.J. Sips (Delft)
M.N. Spijker (Leiden)
H.C. Tijms (Amsterdam)

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Telephone 31-205929333, telex 12571 (mactr nl),
telefax 31-205924199

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science.

Local uniform grid refinement
for time-dependent

partial differential equations

R.A. Trompert

1991 Mathematics Subject Classification: 65M50, 65M20.
ISBN 90 6196 452 0
NUGl-code: 811

Copyright© 1995, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

Contents

1. Introduction 1
1.1. THE LOCAL UNIFORM GRID REFINEMENT METHOD 5
1.2. CONTENTS OF THIS TRACT 6
REFERENCES 7

2. A Static-Reg ridding Method for Two-Dimensional Parabolic Par-
tial Differential Equations 11

2.1. INTRODUCTION 11
2.2. OUTLINE OF THE ALGORITHM 13
2.3. REFINEMENT STRATEGY AND GRID STRUCTURE 16
2.4. DATA STRUCTURE AND MEMORY USE 19
2.5. INTERFACE CONDITIONS 21
2.6. RUNGE-KUTTA-CHEBYSHEV METHOD 22
2.7. ERROR INDICATORS 25
2.8. NUMERICAL EXAMPLES 28

2.8.1. Problem I 29
2.8.2. Problem II 32

2.9. FINAL REMARKS AND FUTURE PLANS 34
REFERENCES 39

3. Analysis of the Implicit Euler Local Uniform Grid Refinement
Method 41

3.1. INTRODUCTION 41
3.2. THE PROBLEM CLASS 42
3.3. THE IMPLICIT EULER LOCAL UNIFORM GRID REFINEMENT METHOD 45

3.3.1. Outline 45
3.3.2. The mathematical formulation 46

3.4. STABILITY ANALYSIS 47
3.4.1. Preliminaries 47
3.4.2. Stability and linear interpolation 49
3.4.3. Stability and higher-order interpolation 51

3.5. ERROR ANALYSIS 51
3.5.1. The local level error 51
3.5.2. A crude global error bound 53
3.5.3. Local and global errors 54
3.5.4. Convergence and linear interpolation 56
3.5.5. Convergence and higher-order interpolation 56

3.6. THE REFINEMENT CONDITION 57
3.6.1. Determining the integration domains 57
3.6.2. Restricted interpolation and the nesting property 59

3.6.3. Implementation aspects 60
3.7. NUMERICAL EXAMPLE 62

3. 7 .1. The issue of implicitness 62
3.7.2. The example problem 63
3.7.3. Convergence experiments 63

3.8. FINAL REMARKS AND FUTURE PLANS 64
REFERENCES 67

4. Runge-Kutta Methods and Local Uniform Grid Refinement 69
4.1. INTRODUCTION 69
4.2. THE GENERAL METHOD FORMULATION 70

4.2.1. The Runge-Kutta method 70
4.2.2. The semi-discrete problem 71
4.2.3. The multi-level multi-stage RK method 72

4.3. THE GENERAL ERROR SCHEME 75
4.4. REMARKS ON STABILITY 77
4.5. THELOCALERRORS 78

4.5 .1. Preliminaries 78
4.5.2. The local error 'Jfk 78
4.5.3. The local space error \Jfk,s 80
4.5.4. The local time error \Jfk,t 83

4.6. ERROR ANALYSIS FOR A THREE-STAGE DIRK METHOD 84
4.6.1. The DIRK method 84
4.6.2. Elaboration of the local time error 85
4.6.3. Elaboration of the refinement condition 88

4.7. NUMERICALEXAMPLES 90
4.7.1. Example problem I 90
4.7.2. Example problem II 91

4.8. EFFICIENCY OF TIME STEPPING 98
REFERENCES 98

5. Local Uniform Grid Refinement and Systems of Coupled Partial
Differential Equations 101

5.1. INTRODUCTION 101
5 .2. OUTLINE OF THE ADAPTIVE GRID METHOD 103
5.3. MATHEMATICALFORMULATION 104
5.4. ERROR ANALYSIS 106

5.4.1. Error relations 106
5.4.2. Error behavior 110

5.5. REFINEMENT STRATEGY 113
5.6. EXAMPLE PROBLEMS 118

5.6.1. Problem I 118
5.6.2. Problem II 125
5.6.3. Problem m 127

5.7. SUMMARY AND CONCLUDING REMARKS 131

REFERENCES 135

6. Local Uniform Grid Refinement and Transport in Heterogeneous
Porous Media 137

6.1. INTRODUCTION 137
6.2. OUTLINE OF THE ADAPTIVE GRID METHOD 139
6.3. STRATEGIES 140

6.3 .1. Refinement strategy 140
6.3.2. Time integration aspects 142
6.3.3. Solution of the linear and nonlinear systems 143

6.4. MODEL OF BRINE TRANSPORT IN POROUS MEDIA 145
6.5. lNTERFACECONDITIONS 146
6.6. NUMERICAL ILLUSTRATION 149
6.7. SUMMARY AND CONCLUDING REMARKS 155
REFERENCES 157

SUBJECT INDEX 159

Acknowledgements

This tract is a reprint of my thesis which is the result of my PhD. studies at the
CWI in Amsterdam under supervision of Prof.dr. P.J. van der Houwen.

I would like to thank all those who have contributed to this work. First of all, I
want to thank Dr. J.G. Verwer for his guidance and for giving me plenty of freedom
to do research. His numerous contributions to this tract are indispensable. Further, I
would like to express my gratitude to Prof.dr. P.J. van der Houwen for his willing­
ness to be my promotor. I am grateful to Joke Blom and Paul Zegeling for the lively
discussions we had about mathematics and other subjects. Especially, I would like
to thank Joke Blom for being a source of information to me about many subjects.
Finally, I would like to thank the Editorial Board of the CWI-tract series for giving
me the opportunity to prepare this work.

Chapter 1

Introduction

Numerous processes in nature are described by models containing partial dif­
ferential equations (PDEs). One can simulate these processes by solving the associ­
ated PDEs. The complexity of these PDEs, however, often demands that these
equations are solved numerically. To obtain a numerical solution, one discretizes
the PD Es on a set of discrete points, i.e. a space(-time) grid, which leads to a system
of algebraic equations. Solving this system gives the approximate solution to the
PDEs at these discrete nodes. This needs to be done only once when a PDE does
not depend on time. When a PDE is time dependent then, starting from a known ini­
tial solution, this system of equations is subsequently solved in order to advance the
approximate solution in time with a relatively small increment until a final time is
reached. This procedure is called time stepping.

Many PDEs have solutions which are rapidly varying functions of the spatial or
temporal co-ordinates. PDEs arising from models describing shock hydrodynamics,
transport in porous media, combustion processes and plasma physics and so on, can
serve as an example in this respect For the numerical practice it is important to
realize that the accuracy of the approximate solution depends on the variation of the
true solution from node to node. The larger the variations, the finer a grid needs to
be to obtain accurate results. In many applications, this dependency leads to huge
computational costs.

In case a uniform space grid is used, which means that all grid cells are identical,
the following situation can occur. Suppose that the variations over the spatial
domain of the solution are only locally large and small anywhere else. In that case a
uniform grid has to be fine to get an accurate approximation in the region of large
variation. However, such a grid is then also fine in regions where such a high resolu­
tion is not really needed. The picture on the left of Figure 1.1 clearly shows this.
This approach is computationally inefficient because the solution has to be com­
puted at a very large number of nodes. Moreover, storage for all these values has to
be provided too. Adaptive grid methods prove to be greatly beneficial here, since
these methods attempt to obtain accurate results in such a situation with minimal
computational effort, meaning CPU time and memory requirements. Adaptive
methods do this by using a fine grid spacing only where it is really needed, i.e.
where the large variations occur, and therefore, use as few nodes as possible. An
example of an adaptive grid is shown in the picture on the right of Figure 1.1.

2

FIGURE 1.1. The solution computed with a uniform grid (left) and an adaptive grid
(right).

Over the years a large number of adaptive grid methods have been proposed for
time-dependent problems. Two main categories of adaptive grid methods can be
distinguished, namely, 'moving-grid or dynamic-regridding methods and static­
regridding methods.

In dynamic-regridding methods, nodes are moving continuously in the space-time
domain, like in classical Lagrangian methods, and the discretization of the PDEs is
coupled with the motion of the grid. Therefore, grids generated by moving-grid
methods are essentially nonuniform and the number of nodes contained by such a
grid is constant in time. Such methods can be found in [2, 9, 11, 13, 16, 21-
23, 25, 28]. The motion of the grid can be governed in a number of different ways.
There are methods were a system of ordinary differential equations (ODEs) describ­
ing the grid motion is solved together with the discretized PDEs. The moving­
finite-element method of Miller et al [9, 21, 22], for example, is such a method. The
grid movement in this method is generated by a least-squares minimization of the
finite-element residual of the PDE over not only the nodal values of the solution and
its time derivative, like in the standard Galerkin method, but also over the spatial
co-ordinates of the nodes and their velocity. Other methods, like the one by Dorfi
and O'Drury [11], use the equidistribution principle to generate this system of ODEs
for the space grid movement. Equidistribution means that the method moves the
nodes such that the nodal value of a non-negative monitor function multiplied with
the corresponding cell size is constant over the whole grid. The method developed
by Petzold [23] also generates a system of ODEs for the motion of the nodes. Here,
the nodes are moved such that the rate of change of the solution in time is minim­
ized. Amey and Flaherty [2] proposed a method which uses ODEs to compute the
movement of a center of error of a cluster of nodes where the error is too large.

3

From this, the movement of each individual node is computed using a movement
function. Further, there are also more heuristic approaches to move the grid, like in
the method described by Smooke and Koszykowski [25], where the location of a
node is extrapolated from its location at previous time points.

In static-regridding methods the location of nodes is fixed. A method of this type
adapts the grid by adding nodes where they are necessary and removing them when
they are no longer needed. The refinement or de-refinement is controlled by error
estimates or error monitor values. Error monitors have no resemblance with the true
numerical error. They are, for example, based on the slope or the curvature of the
solution. Examples of static-regridding methods are described in [I, 3, 5-
8, 12, 13, 19, 20]. Methods of this type are, for example, methods which embed new
nodes in the existing grid. After refinement, the solution is then computed on a sin­
gle nonuniform grid, even when the initial grid is uniform. Such methods are, for
example, developed by Adjerid and Flaherty [I] and by Bieterman and Babuska [7].
Further, there is the adaptive method developed by Maubach [20] which treats the
time-dependent problem like a boundary value problem. Deufihard and his co­
workers developed a finite-element adaptive multilevel method for parabolic PDEs
[8, 19] based on Rothe's method, which is also called the method of discretization in
time first [24].

Another method of the static-regridding type is the local uniform grid refinement
method, described, for example, in [3, 5, 6, 12]. This method creates a series of
increasingly finer local uniform subgrids where they are needed. The PDEs are
solved at each grid separately for one time step in a consecutive order, from coarse
to fine. These finer grids are not embedded in the coarser grid but are overlaying it.
This method, which is the subject of this tract, will be discussed in greater detail in
the next section.

There are also methods which combine static with dynamic regridding. For
example, Gropp [14] and Arney and Flaherty [4], have developed methods which
combine local uniform grid refinement with dynamic regridding.

The difference between static and dynamic regridding is clearly illustrated by Fig­
ure 1.2. Here a local uniform grid refinement method described in [26] and the so­
called moving-finite-element method [9, 21, 22, 28] are applied to a combustion
problem. The moving-finite-element pictures in this figure were obtained from [28].
This combustion problem is discussed in [26, 28] and is derived from [I, 18]. At the
lower left corner of a square domain a front develops and propagates towards the
upper and right boundary of the domain as time proceeds. Figure 1.2 shows this for
both methods at two different time points.

The main advantage of static-regridding methods over moving-grid methods is
that static-regridding methods are more robust than moving-grid methods. The
phenomenon 'node crossing' in one space dimension and its equivalent 'grid distor­
tion' in two or three space dimensions is a real danger for moving-grid methods and
can reduce the accuracy of the computations considerably. In order to overcome
this difficulty, user-defined parameters associated with penalty functions have to be
introduced which limits the motion of the nodes. The choice of these parameters is
left to the user and may be critical. However, not all moving-grid methods suffer

4

FIGURE 1.2. The grid associated with a static-regridding method (left) and a
dynamic-regridding method (right) at two time points.

from this difficulty to the same degree. For example, the method in [2], does not
have a serious grid-distortion problem, because the movement function of the nodes
prevents this. It does, however, need a parameter to stabilize the motion of the grid.
This brings us to more difficulties associated with moving-grid methods, namely,
that grid motion based on minimization or equidistribution can be unstable [I OJ or
may even be discontinuous in time [27) which complicates time stepping. Further,
there are moving-grid methods where the nodes do not always move in the direction
the user wants them to move and therefore, some a posteriori regridding to correct
this deficiency in the moving-grid procedure is needed [23, 29].

Static-regridding methods do not have problems of this nature. Moreover, they
only need a few user-defined parameters like, for example, error tolerances. In gen­
eral, the choice of such parameters is not critical. However, moving-grid methods,

5

in contrast to static-regridding methods, attempt to smooth the variations of the solu­
tion in the time direction, which allows larger time steps when the grid motion is
sufficiently smooth. Finally, moving-grid methods, when working properly, use less
nodes than -,i,tic-regridding methods for a given accuracy.

In the next section, the subject of this tract, which is the local uniform grid
refinement method will be discussed.

1.1. THE LOCAL UNIFORM GRID REFINEMENT METHOD

The idea behind local uniform grid refinement is simple. Starting from a coarse
base grid covering the whole domain, finer-and-finer uniform subgrids are recur­
sively created locally in a nested manner in regions where the variations are large,
or in other words, where the solution is steep. Each time step a new initial boundary
value problem is solved at each grid separately in a consecutive order, from coarse
to fine. Therefore, the local subgrids are not patched into the coarser grids but are
actually overlaying them. An example of this is shown in Figure 1.3. Here we see
the composite grid together with the uniform grids it consists of.

A finer grid uses a time step which is smaller or equal to the coarser-grid time
step. In the latter case, the coarser-grid time step size is a whole multiple of the
finer-grid time step size.

FIGURE 1.3. The local subgrids overlaying the coarser grid.

When a grid of a certain level of refinement has reached the same time level as a
coarser grid, then the solution at the coarser grid is, in some way, updated by the

6

solution at the finer grid. The location, shape and size of these sub grids are adjusted
at discrete times to follow the movement of the steep parts of the solution. The gen­
eration of subgrids is continued until sufficient accuracy is reached at the finest
subgrid. The subgrids in this method are properly nested, meaning that subgrids are
completely overlapped by coarser grids.

So far, local uniform grid refinement methods have been proposed in a number of
different varieties, applied to different kinds of PDEs. We will now sketch some
varieties of the local uniform grid refinement method very briefly. The methods
contained in [3, 4, 6, 14] are applied to hyperbolic PDEs and use explicit time step­
ping techniques. In all these methods, the subgrids having the same cell size can
overlap each other. The method proposed by Berger and Oliger [6] employs rec­
tangular subgrids which may be skewed with respect to the co-ordinate axes in order
to align with the steep region of the solution. Arney and Flaherty [3] developed a
method very similar to the one in [6] except that the subgrids here are created by
so-called cellular refinement, meaning that the fine grid cells are properly nested
within coarser grid cells. These subgrids have a piecewise polygonal shape. Berger
and Colella [5] proposed a method comparable to the one in [6], except that the
subgrids are now rectangles with sides parallel to the co-ordinate axes.

Local uniform grid refinement is combined with grid movement in [4, 14]. Gropp
[4] proposed a method using subgrids which are rectangles having sides parallel to
the co-ordinate axes and which are able to move as a whole with the moving steep
fronts. In this method the subgrids are also allowed to overlap. In [14], Arney and
Flaherty added grid movement to their method discussed in [3]. The nodes of the
coarsest grid are able to move and the fine grid movement is induced by the move­
ment of the coarsest grid. The grid movement technique used here is the same as in
[2].

Local uniform grid refinement methods are used to solve elliptic PDEs by Gropp
and Keyes [15] and parabolic PDEs by Flaherty, Moore and Ozturan [12]. The
subgrids in [12] are piecewise polygonal and the ones in [15] are rectangles. In both
[12] and [15] domain decomposition is applied to improve the performance on
parallel computers.

1.2. CONTENTS OF THIS TRACT

This tract is based on five papers which have appeared in the literature. Each
chapter following this one contains one of these papers. The Chapters 2 and 6 are
rather applied in nature while the Chapters 3,4 and 5 are more fundamental. The
latter chapters form the kernel of this tract. In these chapters strategies for grid
refinement based on an error estimates are developed from error analyses. In gen­
eral, a refinement strategy based on heuristic criteria like the slope or the curvature
of the solution is computationally cheaper than an error-estimate-based strategy.
However, a strategy based on error estimates will in many cases give more accurate
results than a strategy based on heuristic error monitors. This is due to the fact that
heuristic error monitors bear no relationship with the true numerical error. Because

7

of this, the situation can occur that a strategy based on heuristics does not refine a
grid cell which ought to be refined considering the numerical error and vice versa.
Hence, a strategy based on error estimates can generate better subgrids than a
heuristic strategy. A brief description of the contents of this tract is given below.

Chapter 2 discusses the local uniform grid refinement method applied to parabolic
PDEs. The explicit Runge-Kutta-Chebyshev (RKC) method of van der Houwen and
Sommeijer [17] is used for time stepping, and the grid refinement process and time
step selection are based on heuristic error monitors.

In Chapter 3 a refinement strategy, controlling the generation of subgrids, is
developed based on an error analysis. The error analysis is carried out for the local
uniform grid refinement method applied to time-dependent PDEs which after spatial
discretization yield a system of ODEs, and where the implicit Euler method is used
for time stepping. Further, it is assumed here that the grid spacing of the finest
subgrid is fixed in time.

Chapter 4 is in many respects similar to Chapter 3, except that a general Runge­
Kutta scheme is used for time stepping. The case of a variable grid spacing in time
of the finest subgrid is also discussed in this chapter,

In Chapter 5, a refinement strategy is developed in case PDEs are solved which
after spatial discretization result in a system of differential algebraic equations
(DAEs). This refinement strategy is based on an error analysis carried out for this
case. A backward differentiation formula method (BDF) is used for time stepping.

Chapter 6 discusses the application of the local uniform grid refinement method to
a model for unsteady groundwater flow coupled with transport of solute in hetero­
geneous porous media. The local uniform grid refinement method proves to be use­
ful for this application, since it frequently occurs that the variations of the concen­
tration of solute over the spatial domain are only large at a small part of this domain.
This work is carried out as a part of contract research in behalf of the RIVM - the
Dutch National Institute of Public Health and Environmental Protection. In the
scope of this project, the local uniform grid refinement method is implemented in a
code called MOORKOP. This code is developed for solving a rather general class
of PDEs defined on a rectangular domain, including transport problems in hetero­
geneous porous media.

REFERENCES
1. S. ADJERID and J.E. FLAHERTY (1988). A local Refinement Finite Element

Method for Two Dimensional Parabolic Systems, SIAM J. Sci. Statist. Comput.,
9, 792-811.

2. D.C. ARNEY and J.E. FLAHERTY (1986). A Two-Dimensional Mesh-Moving
Technique for Time-Dependent Partial Differential Equations, J. Comput. Phys.,
67, 124-144.

3. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement
Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

4. D.C. ARNEY and J.E. FLAHERTY (1990). An Adaptive Mesh-Moving and Local

8

Refinement Method for Time-Dependent Partial Differential Equations, ACM
Trans. on Math. Softw., 16, 48-71.

5. M.J. BERGER and P. COLELLA (1989). Local Adaptive Mesh Refinement for
Shock Hydrodynamics, I. Comput. Phys., 82, 64-84.

6. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations, J. Comput. Phys., 53, 484-512.

7. M. BIETERMAN and I. BABUsKA (1982). The Finite Element Method for Para­
bolic Equations, Numer. Math., 40, 373-406.

8. P.A. BORNEMANN (1990). An Adaptive Multilevel Approach to Parabolic Equa­
tions I: General Theory and ID-implementation, IMPACT Comput. Sci. Engrg.,
2, 279-317.

9. N. CARLSON and K. MILLER (1988). The Gradient Weighted Moving Finite Ele­
ment Method in Two Dimensions, in Finite Elements Theory and Application,
152-164, ed. D.L. DWOYER, M.Y. HUSSAINI AND R.G. VOIGHT, Springer Verlag.

10. J.M. COYLE, J.E. FLAHERTY, and R. LUDWIG (1986). On the Stability of Mesh
Equidistribution Strategies for Time-Dependent Partial Differential Equations, J.
Comput. Phys., 62, 26-39.

11. E.A. DORFI and L. O'DRURY (1987). Simple Adaptive Grids for 1-D Initial
Value Problems, J. Comput. Phys., 69, 175-195.

12. J.E. FLAHERTY, P.K. MOORE, and C. OZTURAN (1989). Adaptive Overlapping
Grid Methods for Parabolic Systems, in Adaptive Methods for Partial Differen­
tial Equations, 176-193, ed. J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D.
V ASILAKIS, SIAM Publications, Philadelphia.

13. J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, and J.D. VASILAKIS, EDITORS.
(1989). Adaptive Methods for Partial Differential Equations, SIAi\1 Publica­
tions, Philadelphia.

14. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids,
SIAM J. Sci. Statist. Comput., 8, 292-304.

15. W.D. GROPP and D.E. KEYES (1992). Domain Decomposition with Local Mesh
Refinement, SIAM J. Sci. Comput., 13, 967-993.

16. D.F. HAWKEN, I.I. GOTTLIEB, and J.S. HANSEN (1991). Review of Some Adap­
tive Node-Movement Techniques in Finite-Element and Finite-Difference Solu­
tions of Partial Differential Equations, J. Comput. Phys., 95, 254-302.

17. P.J. VAN DER HOUWEN and B.P. SOMMEIJER (1980). On The Internal Stability of
Explicit m-Stage Runge-Kutta Methods for Large m-Values, Z. Angew. Math.
Mech., 60, 479-485.

18. A.K. KAPILA (1983). Asymptotic Treatment of Chemically Reacting
Systems, Pitman Advanced Publ. Company.

19. J. LANG and A. WALTER (1992). A Finite Element Method Adaptive in Space
and Time for Nonlinear-Reaction-Diffusion-Systems, Preprint SC 92-5, Konrad
Zuse Zentrum ftir Informationstechnik Berlin.

20. J.M.L. MAUBACH (1991). Iterative Methods for Nonlinear Partial Differential
Equations, PhD. Thesis, Catholic University of Nijmegen, Netherlands.

21. K. MILLER (1981). Moving Finite Elements II, SIAM J. Numer. Anal., 18,
1033-1057.

9

22. K. MILLER and R.N. MILLER (1981). Moving Finite Elements I, SIAM J.
Numer. Anal., 18, 1019-1032.

23. L.R. PETZOLD (1987). Observations on an Adaptive Moving Grid Method for
One-Dir,r~nsional Systems of Partial Differential Equations, Appl. Numer.
Math., 3, 347-360.

24. K. REKTORYS (1992). The Method of Discretization in Time, Series Mathemat­
ics and Its Applications 4, Reidel, Dordrecht.

25. M.D. SMO0KE and M.L. K0SZYKOWSKI (1986). Fully Adaptive Solutions of
One Dimensional Mixed Initial-Boundary Value Problems with Applications to
Unstable Problems in Combustion, SIAM J. Sci. Statist. Comput., 7, 301-321.

26. R.A. TR0MPERT and J.G. VERWER (1991). A Static-Regridding Method for Two
Dimensional Parabolic Partial Differential Equations, Appl. Numer. Math., 8,
65-90.

27. A.J. WATHEN (1992). Optimal Moving Grids for Time-Dependent Partial Dif­
ferential Equations,J. Comput. Phys., 101, 51-54.

28. P.A. ZEGELING (1992). Moving-Grid Methods for Time-Dependent Partial Dif­
ferential Equations, PhD. Thesis, University of Amsterdam, Netherlands.

29. P.A. ZEGELING and J.G. BLOM (1992). A Note on the Grid Movement Induced
by MFE, Int. J. for Numer. Meth. in Eng., 35, 623-636.

Chapter 2

A Static-Regridding Method for Two-Dimensional

Parabolic Partial Differential Equations

2.1. INTRODUCTION

11

Many evolution problems involving linear or nonlinear partial differential equa­
tions (PDEs) have solutions with sharp moving transitions such as steep wave fronts
and emerging or disappearing layers. In such situations, a grid held fixed throughout
the entire calculation can be computationally inefficient, since, to afford an accurate
approximation, such a grid would easily have to contain an unacceptably large
number of nodes. Adaptive grid methods strive to resolve these sharp transitions to
acceptable degrees of accuracy while avoiding the use of excessive numbers of grid
points. Such methods use, in some way or another, nonuniform or local, uniform
grids and, as time proceeds, automatically concentrate the grid in spatial regions of
high activity. It thus is attempted to keep the number of nodes at an acceptable level.

For time-dependent problems one may distinguish two main categories of
methods, viz., dynamic-regridding and static-regridding methods. In the first
category the grid moves continuously in the space-time domain, like in classical
Lagrangian methods, while usually the discretization of the PDE and the grid selec­
tion are intrinsically coupled. A well-known example is provided by the moving­
finite-element and related methods (see, e.g., the proceedings [8]), In the second
category the grid is moved only at discrete time levels and no intrinsic coupling
exists between the discretization of the PDE and the grid selection. This category
comprises a large number of different methods and the method developed in this
paper is of the static-regridding type.

Our method is closely related to the methods of Berger and Oliger [4], Gropp [9-
11] and Arney and Flaherty [2] and thus an important characteristic of it is local uni­
form grid refinement. The notion of local uniform grid refinement is an example of
'domain decomposition', the general idea of which is to decompose the original

12

physical or computational domain into smaller subdomains and to solve the original
problem on these subdomains. The idea of our static-regridding approach can be
briefly described as follows. Given a coarse base space grid and a variable, base
temporal step size, a 'decomposition' into local, uniform subgrids is performed
recursively. Hence, our computational subdomains are nested, local, uniform, space
grids with nonphysical boundaries which are generated up to a level of refinement
good enough to resolve the anticipated fine scale structures. The step sizes in time
and space during this refinement process are chosen automatically by comparing
estimates or indicators of local temporal and spatial errors to prescribed tolerances,
while the refinement is carried through until all tolerances are met. The process is
then continued to the next base space/time grid, while all fine grid results computed
at forward time levels are kept in storage as these are needed for step continuation.

An attractive feature of moving the points only at discrete time levels is the possi­
bility of dividing the whole solution process into the following computational pro­
cedures: spatial discretization, temporal integration, error estimation, regridding and
interpolation. Depending on the application, these individual procedures may range
from simple or straightforward to very sophisticated. This flexibility is attractive
since it makes it possible to treat different types of PDE problems with almost one
and the same code, assuming hereby that the grid structure and the associated data
structure remain unchanged. In this connection we wish to note that a major part of
the development and coding of any static-regridding method, including ours, lies in
the grid and data structure. The choice of data structure is important for keeping the
unavoidable overhead at an acceptable level, because at each time step grids may be
created or removed while also communication between grids of adjacent levels of
refinement frequently takes place.

When contrasted with the dynamic approach, an inherent drawback of static
regridding is that during the time stepping temporal variations are not minimized
because grid points do not move. More specifically, when a steep front passes a
fixed grid point, smaller integration steps are required to maintain accuracy than
when the grid point travels along with the front in the proper direction. In this con­
nection, interpolation at internal grid interfaces should also be used judiciously for
generating sharp solution profiles. Dynamic-regridding methods using a fixed
number of moving points obviously do not require interpolation at internal interfaces
which may be considered as an advantage. On the other hand, a well-known major
disadvantage of dynamic regridding is that methods of this type often have difficulty
in controlling grid skewness and grid tangling. This disadvantage is usually less in
hybrid methods where in some way or another static- and dynamic-regridding con­
cepts are combined. Examples of such methods can be found in, e.g., Arney et al [2],
Gropp [10] and, for ID problems, in Petzald [16] and Verwer, Blom and
Sanz-Serna [21]. Finally, an attractive feature of local grid refinement is that it
enables prescribed tolerances to be satisfied by using finer-and-finer grids in regions
where greater resolution is needed.

In this paper we concentrate on (systems of) parabolic equations of the reaction­
diffusion type,

13

u1 L(x,y,t,u) := d(uxx+uyy)+f(x,y,t,u), (1.1)

u = u(x,y,t), (x,y,t)E Qx{t>O},

subjected to appropriate initial and boundary conditions. For simplicity and conveni­
ence of presentation, our procedures are described and implemented on rectangular
Q, but they would also apply if Q is a union of rectangles or can be transformed this
way. Throughout the development of the method, the actual form of the operator L
and its boundary conditions play no essential role. In fact, since for spatial discreti­
zation the use of standard finite differences is supposed, a much wider class of dif­
ferential operators Lis allowed.

The contents of the paper is as follows. We start with an outline of our local uni­
form grid refinement algorithm in Section 2. The various components of the solution
algorithm are discussed in greater detail in the following sections. This discussion
includes the actual refinement strategy (Section 3), the data structure (Section 4)
and the grid interface conditions (Section 5). For the temporal integration we advo­
cate one-step Runge-Kutta methods, since linear multistep methods like BDF are
less appropriate due to the start up problem. Section 6 is devoted to a particular
Runge-Kutta method, viz., the explicit Runge-Kutta-Chebyshev (RKC) method of
van der Houwen and Sommeijer [13]. The temporal integrator we have used in the
present investigation is based on this method, but it should be stressed that other
choices of Runge-Kutta methods are possible too. The error indicators that govern
the selection of the step sizes in time and space are discussed in Section 7. In Sec­
tion 8 we present two examples of reaction-diffusion problems (1. 1) that were
solved with our static-regridding method using the explicit RKC scheme for time
integration. One of these two example problems is nonlinear and originates from
combustion theory. Our future plans are summarized in Section 9.

2.2. OUTLINE OF THE ALGORITHM

In this section we present a rough outline of our recursive static-regridding algo­
rithm, so as to facilitate the presentation and discussion of algorithmic details in
later sections. Our algorithm is based on the principle of local uniform grid
refinement (LUGR). LUGR may be contrasted with pointwise refinement which
leads to truly nonuniform grids. As already noted in the introduction, LUGR is an
example of 'domain decomposition'. When considered this way, our domain is a
base space/time grid determined by a base space grid consisting of rectangular qua­
drilateral cells with sides .1.x, ~y for T::,; t::,; T + At. The temporal step size ~t is
called the base temporal step size and the base space grid covers the physical
domain. It is assumed in this paper that this domain is rectangular, but without
essential changes the domain is allowed to be made up of a union of rectangles
(polygonal boundary parallel to the co-ordinate axes). The 'domain decomposition'
or regridding on local, uniform grids now takes place entirely within this base
space/time grid defined on the time interval T ::,; t ::,; T + ~t. Starting at the physical

14

initial time, the complete algorithm is then repeatedly applied until the desired final
physical time is reached. We will outline all computations required for advancing
the solution at the base grid at time T to the next base grid at time T + At. This out­
line is similar as in Gropp [11]. The base grid parameters Llx, Ay are supposed to be
prescribed. The base temporal step size At is supposed to be a trial value. For clarity
we discuss first a single level of refinement where the coarse grid coincides with the
base grid.

The following steps are followed to advance the solution from time T to the next
base time level T + M:

(1) Integrate on the coarse grid using one coarse time step of size At. Adaptation in
space is always preceded by adaptation in time, that is, the time step is first sub­
jected to a temporal local error test and eventually the integration is redone
with a smaller M until acceptance takes place. Call the accepted values of u on
the coarse grid at time T + At the new coarse u-values and those at time T the
old coarse u-values. Both sets of values are saved.

(2) Integration is followed by regridding. Using the new coarse u-values, decide
where the fine grid will be for T::; t ::; T + M. This is done by invoking a spatial
local error indicator and a clustering and buffering algorithm to distribute all
untolerable cells over the fine grid. The fine grid may consist of different dis­
junct fine subgrids. Overlapping fine subgrids are not allowed in our method
and fine subgrids need not be a rectangle. The actual refinement is cellular and
carried out by bisecting all sides of untolerable cells. At this point the non­
refined part of the coarse grid is complete and not further processed within the
current coarse time step.

(3) Regridding is followed by interpolation. Return to time level T and determine
initial values for the fine grid. If a cell was refined in the previous coarse time
step, then we use the available fine grid u-values and interpolation is not
needed. If a cell was not refined before, then we interpolate old coarse u­
values. For T::; t ::; T + M we need to specify boundary values at grid interfaces
where fine grid cells abut on coarse cells. Using old and new coarse u-values,
at these grid interfaces numerical Dirichlet boundary conditions are prescribed
via interpolation. If an interface coincides with the physical boundary, then
physical boundary conditions are used.

(4) Next the fine grid is integrated over the interval T::; t::; T + At while fine grid
u-values are subjected to the temporal local error test. This adaptation in time
may result in a smaller temporal step size than At. If T + At is reached, then the
new fine grid u-values are injected in the coarse grid points, i.e., the value of u

at T + At on the coarse grid is taken to be the value of u just computed on the
fine grid. Further, all fine grid u-values values at T + At are saved for use in the
next coarse time step. The solution at time T + At is now complete.

Multiple levels are handled in a natural, recursive fashion. After each accepted time
step of (4), taken on a grid of refinement level l, say, a regridding may take place
resulting in a grid of refinement level l + l. In fact, the computational steps follow

15

precisely points (2) - (4) above. Note that all fine grid results at forward time levels
are kept in storage and that for step continuation the most accurate results are used
that are available.

An illustration of the recursive local refinement, in ID for simplicity of presenta­
tion, can be found in Figure 2.1. Including the base grid there are three levels of spa­
tial refinement. In this figure the temporal step size is halved when going to a finer
grid. The numbers next to the individual grids indicate the order in which the solu­
tion was computed. Herewith we do not distinguish between disjunct subgrids at the
same level of refinement. Only the order of the time integrations is indicated. If in
this example the base space grid is given refinement level 1, then the order of the
corresponding occurring refinement levels is 1, 2, 3, 3, 2, 3, 3. The next occurring
refinement level is 1, assuming that the next time step is taken on the next base grid.
For clarity, a time history diagram of the occurring refinement levels is given in Fig­
ure 2.2. The location of the fine grids is not made visible in this time history diagram
and thus it may also correspond with a base time step of a 2D computation. With
Figures like 2.1 and 2.2 one may now easily conceive other possible order of
refinements. Finally, Figure 2.3 shows a two-dimensional example of a base grid
with three fine subgrids.

In conclusion, the principle on which our static-regridding method is based is
recursive LUGR and cellular refinement. The building blocks of our algorithm are
nested, local, uniform, finer-and-finer grids which are adaptively defined by invok­
ing indicators for local spatial and temporal errors. These local uniform fine grids
need not be rectangles and their location in the base space/time domain is automati­
cally governed by the error indicators. Initial and boundary conditions for a refined
subgrid are taken from the parent coarse grid or from the given initial function and
physical boundary conditions. The recursive refinement takes place repeatedly per
coarse time step. Solutions computed on current fine grids are kept in memory for
use in the next coarse time step.

Inherent in the approach we have adopted is that grid information is not passed to
the next coarse time step. This necessarily is a bit wasteful in situations where the
sharp transitions move very slowly, e.g., when approaching steady state. On the
other hand, the computational effort for the coarser grids normally shall not be large.
Further, uniform subgrids allow an efficient use of vector based algorithms and
finite-difference or finite-element expressions on uniform grids are more accurate
and cheaper to process than on nonuniform grids. In this respect the current LUGR
approach should be contrasted with pointwise refinement where arbitrary levels of
refinement around any point are allowed. This pointwise refinement leads to truly
nonuniform grids on which usually less points are needed than on an LUGR grid.
However, an inherent drawback of a truly nonuniform grid is a more complex and
expensive data structure. We refer to Gropp [9-11], Berger [3] and Ewing [7] for
some further discussions on various advantages and/or disadvantages when compar­
ing the two refinement techniques. We also note that the LUGR methods of Berger
and Oliger [3,4] (see also Arney and Flaherty [2]) are based on noncellular
refinement and truly rectangular subgrids which may overlap and rotate to align with
an evolving dynamic structure.

16

~ I I I I I I I I I I I I I I I I I I I

~ 11111111111 ~ 111111111

~ 111111 llill

FIGURE 2.1. Typical set· of LUGR grids in one space dimension for one base time
step. The final composite grid is shown at the top of the figure. Note that here the
step sizes in time are halved. In actual application the new step size is determined
by the local time error indicator.

2.3. REFINEMENT STRATEGY AND GRID STRUCTURE

When a new refinement level is to be created, the new fine grid has to meet two
demands. First, the new fine grid should be as efficient as possible, that is, no cells
are unnecessarily refined. This implies that the new fine grid is allowed to have an
irregular shape and also may consist of different disjunct subgrids. For clarity, it is
noted once more that in the discussion we do not distinguish between subgrids
belonging to the same level of refinement. In other words, when we write 'new fine
grid', we mean the complete grid associated to the next higher refinement level and
this grid may consist of different disjunct subgrids. The second demand is that the
accuracy at interior nodes of a new fine grid should not be diminished by low accu­
racy nodes on its boundary. Therefore, the boundary of the new fine grid must either
coincide with a physical boundary or lie in part of the physical domain where the
accuracy is sufficiently high, relative to the error measurement used. This second
demand is most important because when at a certain level a cell is not further
refined, we never return to this cell within the current base time step. In this section
we describe a local refinement strategy that conforms to both demands.

The refinement strategy decides where a new fine grid will be placed (cf. point (2)

17

- -- --

3

I
2

3

I -

3

2

3

2 4 5 6 7

no. of integration steps

FIGURE 2.2. Time history diagram of refinement levels occurring in Figure 2.1. Each
bar corresponds with an integration step. The levels are indicated within the bars.
The lower and upper line of a bar correspond with the old and new time value of the
integration step. The actual location of the refined grids is not shown.

of Section 2). The refinement is governed by a so-called local spatial error indicator,
ests, and a corresponding tolerance , 'iclue, tols, that has to be specified. Ideally, ests
estimates the genuine local spatial truncation error that has been committed on the
grid currently in use. We discuss the actual choice of the indicator in Section 7. For
the discussion of the present section it suffices to suppose that we are given values
of ests at the current forward time level at all nodal points of the grid currently in
use.

Let l be the level index of this grid. Let estsm be the maximum of all ests values.
If

estsm > tols, (3.1)

then it is decided to create a new fine grid of level l + 1. For this purpose, a second
spatial tolerance value is introduced. It is this second tolerance, denoted by tolspc
and derived from tols, that is used to decide which particular level-/ cells need to be
refined. The second tolerance tolspc is defined as follows. Let p be the order of con­
sistency of the spatial discretization and of the local error indicator. In our case
p = 2 since we here work with standard finite differences. Since the mesh width of
level / + 1 is half the mesh width of level l, etc., we may invoke the asymptotic order

18

FIGURE 2.3. Example of 2D grid structure. It is emphasized that fine grids are not
patched into coarse ones, but overlays them. The time dependency is not shown
here.

relation

estsm(k) = TP(k-l)estsm(l), k ~ l+l, (3.2)

where estsm(l) represents estsm of the level-I grid, etc., and k is a grid level index as
yet unknown. We here anticipate that on top of level l, another k-l refinement lev­
els will be needed to satisfy the condition

estsm(k) :::; tols. (3.3)

From this inequality the unknown integer k is now computed, that is,

k = l + 1 + entier[(log(estsm(l))- log(tols))/(plog(2))]. (3.4)

The idea is now to impose, at all nodal values of level l, the refinement condition

ests > tolspc := estsm(k), (3.5)

hereby introducing the second spatial tolerance value. However, because the

19

calculation of a spatial error indicator comes down to the calculation of higher
derivatives by means of finite differences (numerical differencing), it is conceivable
that these are underestimated in regions where the solution is steep. Therefore, by
way of safety, we suppose that one extra level would be preferable, which means
that in (3.5) a safety factor of TP must be built in. Thus we finally arrive at the
refinement condition

ests > tolspc := TPestsm(k). (3.6)

This condition is used to decide which level-! cells need refinement. The rationale
behind this second tolerance value is that we wish to refine all level-! cells, except
those for which ests does not exceed the expected maximum of the error indicator
values at the anticipated highest refinement level k. This local refinement strategy
takes into account the method strategy that when at a certain level a cell is not
refined, we never return to this cell within the current base time step. Another
natural justification is that, when using local grid refinement, this strategy attempts
to have the maximum norm of the spatial error over the complete physical domain
equal to or smaller than the maximum norm of the spatial error over local grids.

The actual cell refinement goes as follows. Any level-! node satisfying (3.6) is
flagged together with its eight neighboring nodes. Next, to create an extra buffer, all
sides of cells with at least one flagged corner node are bisected. This means that a
buffer zone of two coarse or four fine mesh widths is used around any untolerable
node. Hence, the minimal number of nodes in a column and row of any subgrid is
nine. Herewith it is tacitly assumed that the minimal number of internal points in a
row and column of the coarsest base grid is three. Near boundaries, physical and
internal ones, the buffering of course slightly differs. Finally, a cluster algorithm
groups all untolerable cells together to form the newly defined level-!+ 1 grid. It is
noted that subgrids in the new fine grid do not overlap and that we do not connect
subgrids which are lying close together since this leads to substantial bookkeeping.
For the same reason, the local refinement does not distinguish between co-ordinate
directions. This necessarily leads to some waste of points if a high gradient region
aligns with a co-ordinate direction.

The use of tolspc in combination with the buffer zone is rather conservative.
However, to our experience, it nicely conforms to the second demand stated above
that accuracy at interior nodes of finer-and-finer grids should not be diminished by a
too low accuracy at nodes on a previously selected interior boundary.

2.4. DATA STRUCTURE AND MEMORY USE

In this section we briefly discuss the data structure we have implemented. Our
data structure has close similarities with that of sparse matrix storage schemes, in
particular concerning the storage of a sparse matrix as a collection of sparse vectors.
The interested reader is referred to Duff et al. [6], Ch. 2, for the various technical

20

details that are involved in the use of this type of storage schemes.
The data we keep for each node are stored per level of refinement in a row

sequential order. In particular, rows in subgrids are taken together and a 'sparse'
vector in our storage scheme contains all data belonging to all nodes of a row at a
certain level. The data we store for each level of refinement are as follows:

- The number of rows.
- For each row

- A row index corresponding with its y-co-ordinate.
- A pointer to the memory location of the data belonging to its first node.

- For each node
- A column index corresponding with its x-co-ordinate.
- Two pointers to memory locations where data belonging to the nodes
directly above and below in the same grid is stored.
- An integer indicating the position of a node in the domain, i.e., whether
it lies on the physical boundary, on an internal boundary, or in the interior
of the grid.
- The solution and its time derivative at the beginning and end of a time
step.

The row and column indices are, amongst others, used to find coinciding nodes on
different refinement levels. This is needed for interpolation and injection. The row
and column indices correspond to the x- and y-co-ordinates in the following way.
Let i be the column index and j the row index of a node at refinement level /. Then,

X = Xo + iflx 2 - (I-I), (4.1)

where&, Liy are the coarsest level mesh widths and (x0 , y 0) is the co-ordinate of
the left lower corner of the physical, rectangular domain. It follows that a node on
level l with column index i and row index j coincides with a node on level l + 1 with
column index 2i and row index 2j.

We will now outline how the actual storage is organized. The arrays used are
divided in a number of blocks of the same size. The number of blocks equals the
maximum of the number of refinement levels that is expected to be required during
actual runtime. Each of the blocks is assigned a refinement level and all data for this
refinement level are stored in this block. Hence the size of the blocks should be
large enough to store all generated data of any refinement level that can occur dur­
ing runtime. Herewith we implicitly determine the maximum number of levels and
the maximum number of rows and nodes per level. The drawback of using memory
blocks of the same size is that memory is wasted, as it is likely that the actual
amount of memory needed differs per level. A clear advantage is computational
simplicity, because there is no need for garbage collection. Because the size of the
blocks is fixed, their initial subscript values are known which makes the data
retrievement simple and fast. Nevertheless, the implementation of our algorithm is

21

such that a garbage collector can be easily implemented. In this connection it is
noted that with minor modifications our storage scheme can be extended to 3D.
Needless to say that in 3D the memory waste could be prohibitive so that garbage
collection l•e-:omes a necessity. All experiments reported in this paper have been
carried out without garbage collection, indicating that in 2D this is not much of a
problem.

Next we give an estimate of the amount of memory needed in bytes. Work arrays
needed by the regridding algorithm and the time integrator are not included in this
estimate. The work arrays for the regridding algorithm are integer arrays and their
total length is negligible compared to the estimate given below. Further, for the time
integrator we use one and the same set of work arrays for all levels. The total length
of these arrays is of course determined by the actual integrator in use (see Section
6).

The array in which we store the solution and its time derivative at the begin and
end of an integration step is a real floating point array. The number of bytes per
node this array uses is 32 times the number of PDEs (NPDE), assuming precision
arithmetic involving 64 bits. The four arrays holding the column indices, the
pointers to nodes above and below, and the position indicators, are 4-bytes integer
arrays and together they take 16 bytes per node. The two arrays containing the row
indices and the memory addresses of the data belonging to the first node of all rows
are also integer arrays. These row indices and starting addresses require together 8
bytes of memory per row. Because the minimum number of nodes on a row is 7, it
follows that these two arrays take at most 8/7 bytes per node. We thus arrive at a
final estimate in bytes given by

maxlev * nptspl * (32 * NPDE + 16 + 8/7), (4.2)

where maxlev is the maximum number of levels and nptspl is the maximum number
of nodes per level.

2.5. INTERFACE CONDITIONS

When a new fine grid is created, initial and boundary values have to be defined.
Concerning the initial values, three cases are distinguished. If the time level at
which initial values must be specified coincides with the physical initial time, then
of course the prescribed initial function is used at any occurring node. If the time
level does not coincide with the physical initial time, then two possible cases
remain. A node coincides with a node at the same refinement level from a previous
time step. In this case we adopt the available solution at this node as initial value. In
the other case we must interpolate. The initial value is then obtained from interpola­
tion on the nearest coarse grid. Obviously, the interpolation error should not dimin­
ish the accuracy. We use fourth-order Lagrangian interpolation and note that this
way second-order accuracy is maintained in calculating the first and second spatial

22

derivatives with the second-order difference scheme. Note that we use an explicit
integration scheme which starts with a spatial differential operator calculation at the
initial time level (stage (6.2b)). It is then prohibited to use straightforward linear
interpolation, since this would yield zero second-derivative values at the newly
created nodes. When using implicit methods, this difficulty can be avoided by
selecting the method such that no evaluation at the initial time is used.

Concerning boundary values, again three possible cases are distinguished. A
boundary node of the new fine grid is located on the physical boundary. In this case
the physical boundary condition is imposed. If a new boundary node belongs to the
interior of the physical domain, still two different cases are possible. First, the node
coincides with a node of the nearest coarse grid. Then we define Dirichlet boundary
values by interpolating at the beginning and end of the new time interval to be
covered. This time interval always coincides with a previous coarse grid time step.
Fourth-order Hermite interpolation is applied, using the available solution and first
time derivative from the coarse grid. Second, the node is new and hence does not
coincide with a node of the nearest coarse grid. In this case a solution value is
already available at the initial point of the new time interval by the above Lagran­
gian interpolation procedµre. To be able to apply again Hermite interpolation as out­
lined above, the solution and time derivative at the end point of the time interval are
also generated by Lagrangian interpolation on the coarse grid.

Because we use second order in space and time in the discretization of the PDE,
the fourth-order interpolation procedures should be sufficiently accurate, provided
of course the local refinement has been carried through far enough at the time of the
interpolations. Note that the prescription of interior Dirichlet boundary values is
natural, since we solve initial boundary value problems involving second-order spa­
tial differential operators.

2.6. RUNGE-KUTT A-CHEBYSHEV METHOD

We will now describe the temporal integrator used for the experiments reported in
this paper. For this purpose we introduce the system of ordinary differential equa­
tions (ODEs)

dU (t) = F (t, U (t)),
dt

(6.1)

assuming that this system originates from spatial discretization of the PDE problem
(1.1) on the coarse base grid or on a refined local grid (method of lines). It is also
assumed that boundary conditions, physical and artificial, have been incorporated
into the continuous time, semi-discrete form (6.1). At this stage of development
there is no need being more specific about (6.1).

The integration method is the explicit Runge-Kutta-Chebyshev (RKC) method of
van der Houwen and Sommeijer [13]. This method has been designed for the
numerical integration of large stiff systems of ODEs which originate from spatial

23

discretization of multi-space dimensional parabolic PDEs such as (1.1). We will
present only a brief outline here. More details can be found in (13] and Verwer,
Hundsdmfer and Sommeijer [20]. The latter paper is devoted to a convergence
analysis of the RKC method.

Let Un denote an approximation to U (t) at time t = tn- Let !::i.t denote the step size
in time. The next approximation Un+! at time tn+I = tn + Lit is then given by the s­
stage integration method

Yo = Un, (6.2a)

Y1 = Yo+ P1LitFo, (6.2b)

Y; = m,;Y;-1 +n,;Y;-2 +(1-m1 -n;)Yo + p_;!::i.tF,;_1 +q_;!::i.tFo, (6.2c)

25.j 5.s'

(6.2d)

where F1 = F(tn + c1!::i.t, Y;) and the value Y; represents an intermediate, auxiliary
approximation to U (t) at the time point t = tn + c ;fit. Thus, the RKC method is to be
interpreted as a one-step, s-stage Runge-Kutta method.

The available method parameters are used for obtaining a very large real interval
of stability. This is achieved by identifying the recursive formula (6.2c) with a stable
three-term Chebyshev recursion, thus explaining the specific form of the integration
method. The length of the real stability interval that is obtained this way is propor­
tional to s 2 , where the proportionality constant depends on the order of consistency
and on a damping property imposed on the common stability function. This stability
function is a shifted Chebyshev polynomial.

The notion of stability meant here is the common linear stability based upon the
linear system

d~;1) = F (t, U (t)) := MU (t) + f (t), M symmetric. (6.3)

Specifically, we have stability, in the step-by-step sense, if Lit ands are such that the
inequality

Lit cr(M) 5. P(s), (6.4)

is satisfied, where cr(M) represents the spectral radius of Mand P(s) is the real sta­
bility boundary of the method. We have worked with a second-order method (for­
mulas (2.19) - (2.21) from (20]) of which the real stability boundary is given by

2
PCs):::: -s 2 .

3
(6.5)

24

If the system (6.1) is nonlinear, then criterion (6.4) is imposed in the common
heuristic way. Specifically, Mis then understood to represent the Jacobian matrix of
the vector function F taken at an appropriate point. Experience has revealed that the
linear theory is most reliable if F stems from a nonlinear parabolic problem and the
Jacobian matrix is symmetric. The method is recommended only if the Jacobian is
symmetric or 'nearly symmetric'. This excludes, e.g., convection-diffusion prob­
lems with dominating convection.

The RKC method is applied with variable step size governed by a local error indi­
cator (cf. Section 7) and with a variable number of stages s, such that always the
linear stability inequality (6.4) is satisfied with s minimal. The variable s-strategy
leans upon two properties. First, the error indicator is independent of s. Second,
thanks to an internal stability property associated with the three-step Chebyshev
recursion, there is no practical limit on s. This in fact implies that the method can be
applied as if it is unconditionally stable, simply by adjusting s at each integration
step to satisfy (6.4) for given step size and given spectral radius. The computation of
(a safe upper bound) of the spectral radius normally renders no problem for opera­
tors like (1.1).

When compared with the implicit approach, explicitness has an inherent advan­
tage for static regridding, since the costs of the numerical algebra involved in the
application of implicit methods is much larger than in standard (single-grid)
method-of-lines applications. Recall that at any time step a regridding may take
place at different levels of refinement, thus introducing one or more new Jacobians
of different order at any' time step when using an implicit method. This degrades the
efficiency of stiff ODE solvers, since these often benefit from integrating with old
Jacobians over many time steps. In spite of this, there are of course many problems
and situations where for stability reasons alone implicit time stepping becomes a
necessity. Therefore, as a continuation of the research reported here, in the near
future we will investigate the application of implicit Runge-Kutta methods for static
regridding. An important aspect hereby is the choice of appropriate implicit equation
solvers which can efficiently deal with various types of 2D systems (see, e.g., Hind­
marsh and N (/Jrsett [12]).

Concerning stability, the explicit RKC method should be positioned between clas­
sical explicit methods yielding a severe time step restriction and unconditionally
stable implicit ones. For problems with symmetric Jacobians, the RKC method is
still attractive in cases of substantial stiffness due to the quadratic dependence of the
real stability boundary on s. Furthermore, the method is simple to implement and the
explicitness offers natural prospects for vector-based implementations. Also the
memory demand is low. We have used a variable step size FORTRAN code due to
Sommeijer [19] that needs only 6 arrays of storage.

It is noted that our version of this code slightly differs from Sommeijer's original
one. This concerns merely the local error indicator. As we will outline in the next
section, the third-derivative estimator of the original code, based on the genuine
local truncation error, does not function well in our adaptive grid application and has
therefore been replaced by a more simple error indicator. However, the actual stra­
tegy associated with varying the step size, threshold factors and the like, has not

25

been changed. It would lead us too far here to discuss this strategy in detail and it
suffices to remark that, apart from the error indicator itself, the variable step size
strategy is conceptually similar to strategies in existing ODE codes.

2.7. ERROR INDICATORS

In static-regridding methods three different kinds of local errors show up, viz.,
spatial discretization errors, time integration errors and interpolation errors. The
asymptotic behavior of the local space and time errors for decreasing spatial and
temporal grid sizes is well understood for single-grid applications. This is also true
for the propagation of resulting global errors, at least for interesting model situations
(see e.g. [17, 20]). Needless to say that the static regridding complicates the error
analysis considerably. Such an analysis should provide insight into how these three
different local errors interfere with each other and propagate or accumulate under
regridding. Subsequently, this insight then should assist us in the choice of
mathematically correct, practical local error estimators. Without good estimators it
is likely that one wastes computational effort due to bad balancing of space and time
errors. This in fact is also true for standard, single-grid method-of-lines applications
(see Berzins [5] who studies the balancing of space and time errors in applications
using the BDF method). However, the question of balancing space and time errors is
most interesting for a static-regridding method, because for such a method the
regridding apparatus is available and it is natural to let the local refinement in space
be governed by the genuine space truncation error.

In a sequel to this paper we will present a convergence analysis of the static­
regridding method. This analysis is supposed to cover both explicit and implicit
Runge-Kutta methods for the time integration and shall be aimed at practically
balancing genuine local space and time errors. Here we confine ourselves to illus­
trating the convergence of the method numerically (next section) and to using sim­
ple heuristic, local error indicators. These error indicators are cheap and function
quite satisfactorily from the point of view of ease of use, viz., they automatically
invoke refinement in regions with high gradients. On the other hand, they do not
guarantee a good balance between spatial and temporal local errors.

Let us first define ests, the spatial error indicator first introduced in Section 3. In
this paper ests is based on the 'curvature' expression,

(7.1)

which is computed with the three-point finite-difference scheme. To our experience,
this 'curvature' expression functions well in measuring the degree of spatial
difficulty of the problem. We have also used it successfully in 1D moving grid com­
putations [21]. Note that the genuine space truncation error is also of second order
in the mesh widths, since we use the second-order finite-difference scheme for spa­
tial discretization. We thus have proportionality between the tolerance tols and the

26

spatial truncation error.
We next define estt, the temporal local error indicator that determines the step

size in time. According to the outline presented in Section 2, estt is computed after
every time step at any grid level. Naturally, the choice of estt should be determined
by the integration method (cf. the discussion at the end of Section 6). To our experi­
ence, the original third-derivative estimator of the RKC method functions quite
satisfactorily in standard, fixed grid applications. However, we have encountered
difficulties with this estimator in our adaptive grid application. These difficulties are
inherent to static regridding and similar to those reported by Petzold [15, 16].

The following observations are in order. The regridding implies that components
of a solution vector that acts as the initial vector for a following time step may be of
three different types. Components may result directly from a preceding integration
step on the same grid level, components may result from injection from a higher
preceding level, and components may be obtained from interpolation at the next
coarser level. While it is supposed that the accuracy is not adversely affected by the
interpolation and, trivially so, by the injection, the effect of the regridding thus is
that small 'discontinuities' are introduced into the initial vector, which in turn intro­
duce small stiff transient solution components in time. These small transients are
damped by the stability of the numerical method. They are, however, seen by com­
mon local error estimators like the one implemented in the original RKC code. This
estimator computes an approximation to the third solution derivative from solution
data that has become available within the current time step. It suffices to recatl that
this computation is to be interpreted as explicit numerical differencing which holds
true for any common local error estimator. The estimators then have a tendency to
choose step sizes which are smaller than what is really required to maintain the
accuracy, since on nonsmooth data explicit numerical differencing tends to overesti­
mate higher derivatives. When considered on its own, this is not so much of a prob­
lem. However, it may also result in unnecessary step rejections which of course
should be avoided. For a static-regridding method using different levels of
refinement, the sensitivity of the local error estimator for the observed nonsmooth~
ness is even worse, because this nonsmoothness increases for decreasing spatial
mesh widths. This implies that irrespective of the strategy used, there will always be
a tendency to use too small step sizes on fine grids, which by themselves are already
more expensive to process than coarser grids.

For implicit solvers an often used remedy to the problem of nonsmooth error esti­
mates is 'implicit filtering' by which the original, explicit local error estimate is
'smoothed' in an implicit way [15]. This filtering step kills all high-frequent com­
ponents in the estimated error and leaves, up to O (Lit), the low-frequent com­
ponents of the error unchanged. Because we work here with the explicit RKC
scheme, 'implicit filtering' cannot be used. We do not advocate explicit smoothers,
since these only work well if the errors to be smoothed do have a regular structure.
This is obviously not the case with static regridding, as already mentioned above. To
circumvent the difficulty, we therefore base our variable step size on the simple,
heuristic local error indicator

27

estt = (At)2 I u (t+At) - u (t) I = (At)3 I du (t)ldt I + 0 ((At)4), (7.2)

which is of the same order in step size as the local truncation error estimated in the
original code. The rationale behind this first-derivative indicator is that this way we
ignore the small, high-frequent error components which we wish to ignore for step
size prediction purposes. To our experience, the indicator is successful in this
respect. Usually, the imposed tolerance tolt should be chosen smaller than when
using the original estimator. This is to be expected, since for solutions with steep
temporal gradients, the third derivative shall be larger than the first one. It may also
be advisable for keeping ahead of instabilities. In a time stepping process, emerging
instabilities result in high-frequent error components which are detected by the local
error estimator. The estimator reacts by reducing the step size and consequently
restores stability. As indicated, the error indicator (7.2) detects high-frequent error
components later than the original estimator. Needless to say that the combination
(7 .1) - (7 .2) is inappropriate for subtle error balancing purposes. However, when
using an explicit method like RKC, they form a good compromise because they are
cheap and prevent the step size selection from being hindered by the inherent
nonsmoothness of the numerical solution.

As already mentioned at the end of the previous section, we have used the exist­
ing variable step size code of Sommeijer and have only replaced the existing estima­
tor by (7.2). The step size selection strategy within the code has not been altered.
When comparing the estimate,s with tolt, the maximum norm is used. Finally we
mention that the step size prediction is carried out per level. More precisely, when
entering a new level, the last predicted step size taken on that level is used. The step
sizes are always fitted to hit the endpoint of integration. For example, if at level 2
the predicted step size is smaller than that currently in use at the coarsest level 1, but
greater than half this step size, then the level-2 step size is taken to be half of the
level- I step size. During the first base time step the initial step size is the same for
any level that may be introduced.

To illustrate the foregoing we conclude this section with a pseudo FORTRAN
description of the entire LUGR algorithm. In this description T (level) denotes the
end time of the 'level' level. For level= 1 the end time is simply the final physical
time. For level > 1 this end time changes dynamically with the introduction and
removal of the refined grids and is always smaller than or equal to the forward time
value of the current coarse grid step size:

Program LUGR
level= l
T (level) = physical end time
t (level) = physical initial time
At (level) = initial step size
call PDEsol
endLUGR

28

subroutine PDEsol
10 if t (level) < T (level) then
20 advance on 'level' level from t (level) to t (level) + At (level)

compute time error indicator estt and predict new At (level)
if estt > tolt then

decrease At (level)
go to 20

end if
compute space error indicators ests and estsm for all nodes at "level"
if estsm > tols then

compute tolspc
end if
flag all untolerable nodes
if nodes are flagged then

else

generate new 'level' level + 1
t (level+ 1) = t (level)
lit (level+ 1) = At (level) or previously predicted At (level+ 1)
T (level+ 1) = t (level) + At (level)
level = level + 1
go to 10

t (level) = t (level)+ At (level)
l1t (level) = new At (level)
go to 10

end if
end if
if level > 1 then

update the solution on 'level- I' with 'level' values at coinciding
nodes

level = level - 1
t (level) = t (level) + !:J.t (level)
lit (level) = new At (level)
go to 10

end if
endPDEsol

2.8. NUMERICAL EXAMPLES

We present two examples of parabolic problems (I.I) that were solved with our
static-regridding method using the explicit RKC scheme for time integration. The
entire code is written in standard FORTRAN and the numerical experiments have
been carried out on a SUN/SPARC station 1.

29

2.8.1. Problem I

This test problem is hypothetical and due to Adjerid and Flaherty [1]. The equa­
tion is the Ii.war parabolic model equation

u, = Uxx + u>Y + f (x,y,t), 0 < x,y < l, t > 0, (8.1)

and the initial function at t = 0, the Dirichlet boundary conditions for t > 0, and the
source term f are selected so that the exact solution is

u(x,y,t) = exp(-80((x - r(t))2 + (y -s(t))2)), (8.2)

where

r(t) = ¼ [2 + sin(1tt)], s (t) = ¼ [2 + cos(1tt)]. (8.3)

This solution is a cone that is initially centered at (½, ¾) and that symmetrically
rotates around the center(½,½) of the domain in a clockwise direction. The speed of
rotation is constant and one rotation has a period of 2. This problem is not a very
difficult one in the sense that the spatial gradients of the solution are not extremely
large, that is, the cone is not that steep. However, the problem is suitable to subdue
an LUGR regridding algorithm like ours to a convergence test.

The solution is computed five times over the time interval [0,0.25] with an
increasing number of levels and decreasing time step. In the first computation only
one level is used, in the second two, and so on. The addition of a new level is
governed by selecting tols appropriately. Of course, the movement of the refined
grids is governed by the regridding algorithm itself. For each computation a constant
time step is taken which is the same for all levels (the time step control was
switched off). This time step is halved in the next computation when a new level is
added. Thus, in view of our regridding strategy based upon using the second toler­
ance parameter tolspc, we expect the error to decrease with a factor 4, due to the
second-order spatial differencing and the second-order consistency of the RKC
method. Note that the number of explicit Runge-Kutta stages varies with Mand the
spatial mesh width according to formulas (6.4) - (6.5). We refer to [20] for a conver­
gence test using the fixed grid approach (one single level) where the second order
nicely shows up.

Results of the convergence test have been collected in Table 8.1 and Figure 8.1.
The figure shows two grid structures used in the level-4 run. Observe that (away
from the physical boundary) the grids accurately reflect the symmetry of the rotating
cone. This gives confidence that the principles underlying the grid strategy of Sec­
tion 3 work out very satisfactorily. The size of the region of refinement is still con­
siderable, even at the fourth level. This is due to the fact that the cone is not that

30

steep, as we mentioned earlier.
Table 8.1 contains global errors at specified times given in the maximum norm

over the base grid (level 1). The base grid is uniform with a grid distance of 0.1. We
observe that the accuracy nicely decreases with the number of levels. Inspection of
all output data also revealed that the maximum error was indeed found on the finest
grid, as we anticipated in the development of the regridding strategy in Section 3.
However, quite interestingly, we also observe a slight reduction in order for increas­
ing number of levels. For instance, at t = 0.25 the successive ratios of the errors are
approximately 4.8, 3.5, 3.3, 3.2 and thus tend to deviate from 4, although the devia­
tion itself settles down. We believe this order reduction to be inherent in the LUGR
approach and to originate from the small 'discontinuities' in the grid functions
which are caused by the interpolation and injection (cf. the discussion of Section 7).
A particular role hereby is played by the internal Dirichlet boundaries. The follow­
ing experiment serves to illustrate this observation.

We have repeated the convergence test while omitting injection of fine grid
results into coarse grid nodes. Hence, the only change in the algorithm is that coarse
grid results are never updated so as to reduce the nonsmoothness in the grid func­
tions. Note that this way for each level solutions are obtained only by integration or
by interpolation. Further, the number of nodes where interpolation takes place will
be relatively small since this is needed only at locations where the current level not
yet exists. In this non-update convergence test we observed an overall improvement
in accuracy. For instance, for increasing number of levels, the errors at t = 0.25 with
their successive ratios now are, respectively, 0.21759, 0.04425, 0.01045, 0.00240,
0.00082 and 4.9, 4.2, 4.4, 2.9. Apparently, till level 4 the order has improved, but it
drops again at level 5. Inspection of the output data revealed that in the level-5 run
the maximal error was not always committed at this finest level-5 grid. This means
that in the level-5 run the heuristic spatial error indicator (7.1) probably failed in
adequately identifying the highest error region and this observation should explain
the drop in order. If this, more or less technical, problem can be overcome, the
'non-update version' of the LUGR algorithm might be a remedy to the reduction in
order and a good alternative for the more standard 'update version'. On the other
hand, omitting updating may be somewhat dangerous because the coarse grid solu­
tion can become so dispersed that the algorithm decides that grid refinement is no
longer necessary. Of course, this can also happen when updating is used since we
must rely here on error indicators or estimators. More precisely, since error indica­
tors or estimators always underly some form of asymptotics, approximations serving
as input for them should be of a certain minimal degree of accuracy in order to let
them detect inaccuracies safely. For an LUGR method this implies that some care
must be exercised in selecting the base grid parameters not too large since this might
work out in the wrong way.

We conclude this numerical example with a measurement of overhead, in terms
of total execution time and total number of PDE evaluations counted per node. The
estimated part of the total execution time that is spent outside the integration routine
is defined as overhead. Table 8.2 contains execution times and number of PDE
evaluations for four runs over the time interval [0,0.25], using, respectively, 1, 2, 3

31

and 4 refinement levels. The data are obtained with the 'update' version using now
also variable step sizes in time. The computations were organized such that at each
run the finest grid has Ax= Lly = 0.0125. Hence, the level-I run is performed on an
80-by-80 level-I grid with Ax= Lly = 0.0125, the level-2 run on a 40-by-40 level-I
grid accompanied with a level-2 grid with Ax= Lly = 0.0125, and so on. This way
the maximal error committed during each of the four runs is more or less equal, so
that the measurement of overhead is not

Levels I 1-2 1-2-3 1-2-3-4 1-2-3-4-5

tols 4.0 1.0 0.25 0.125 0.03125

6.t 0.01 0.005 0.0025 0.00125 0.000625

Time point
Global errors measured in the maximum norm over the coarsest I 0-by- l 0 grid.

The numbers in the brackets are the corresponding error ratios.

0.10 0.19120 0.03886 (4.9) 0.01154 (3.7) 0.00340 (3.4) 0.00112 (3.0)

0.15 0.24592 0.04904 (5.0) 0.01386 (3.5) 0.00420 (3.3) 0.00132 (3.2)

0.20 0.18575 0.03877 (4.8) 0.01150 (3.4) 0.00359 (3.2) 0.00119 (3.0)

0.25 0.21759 0.0451 I (4.8) 0.01273 (3.5) 0.00383 (3.3) 0.00121 (3.2)

TABLE 8.1. Results of the convergence test on Problem I.

t = 0.1

FIGURE 8.1. Grid structures used in the level-4 run with Problem I.

interfered by large differences in accuracy (in this reasoning we neglect the small
effects of the above observed order-reduction phenomenon). The finest grid with
Ax= Lly = 0.0125 is invoked by the spatial error indicator value tols = 0.125. The

32

Levels PDE Execution times Overhead
evaluations (sec) %

1 9749646 865 0
1-2 3604712 365 12

1-2-3 3427610 381 20
1-2-3-4 4147352 512 28

TABLE 8.2. Results of time measurements for Problem I.

time step tolerance parameter tolt = 2.0E-7 and the initial time step equals 0.005.
The parameter tolt was tuned so as to obtain nearly the same accuracy as in the
level-4 run of the convergence experiment.

The entries 'overhead' in Table 8.2 are percentages defined by

overhead = ((time(level) - (eval(level) * 865)/9749646) * 100%,
time (level))

(8.4)

where eval(level) is the total number of PDE evaluations and time(level) is the exe­
cution time. Thus in our measurement of overhead the work load for the single, 80-
by-80 grid is used as a reference point. When inspecting Table 8.2 one should real­
ize that the overhead factors are valid only for this particular experiment. Overhead
is not only solution dependent (size of the refined grids), but, since we measure CPU
times, also depends on the differential equation (expensive expressions in the opera­
tor) and on the degree of optimality in the FORTRAN code for the data structure
and the like. As yet, we have paid little attention to the matter of optimal coding. In
our opinion, the overhead factors found in this experiment are quite acceptable,
although we should note that the use of garbage collection will increase the over­
head (cf. Section 4). Finally we wish to note that for the present experiment the
decrease in execution time shown in Table 8.2 is minor due to the fact that the
refined grids are still of considerable size.

2.8.2. Problem ll

Our second example problem has also been borrowed from [1] and stems from
combustion theory. The problem is a model for a so-called single, one-step reaction
of a mixture of two chemicals. In the problem, the dependent variable u represents
the temperature of the mixture. The equation reads

0
u1 = d(uxx+uvv)+D(l+cx-u)exp(--), 0<x,y<l, t>0, (8.5) .. u

33

and is subjected to the following initial and boundary conditions,

u(x,y, 0) = I, 0:5:x,y:5:l, (8.6)

ux(0,y,t)=0, u(l,y,t)=l, 0:5:y:5:l, t>0,

uy(x,0,t)=0, u(x,l,t)=l, 0:5:x:5:l, t>0.

The parameter a is the heat release, D = R exp(0)/ao the Damkohler number, 8 the
activation energy, and R is the reaction rate. For small times the temperature gradu­
ally increases in a circular area around the origin. Then, provided the reaction rate is
large enough, at a finite time 'ignition' occurs causing the temperature to suddenly
jump from near unity to I +a, while simultaneously a reaction front is formed which
circularly propagates towards the outer Dirichlet boundary. When the front reaches
the boundary the problem runs into steady state. Following [I] we select the param­
eter values a= I, 8 = 20, R = 5, but choose a different value for the diffusion
parameter. While in [1] the diffusion coefficient d = 1.0, we here put d = 0.1. A
smaller diffusion coefficient has the effect that the wave front becomes steeper, par­
ticularly so upon approaching steady state [14]. With this choice of parameters the
'ignition' takes place at about t = 0.24 and the solution is in 'steady state' at about
t = 0.35.

In spite of the fact that a fine grid is necessary for combustion problems of this
type, the explicit RKC scheme is a natural candidate for the numerical integration.
Two arguments support this observation. First, we must follow a traveling front on
static, i.e., non-moving space grids. This naturally limits the temporal step size of
any integration scheme, be it explicit or implicit. Second, during the time evolution
this special combustion problem is 'I ocally unstable'. Inspection of the reaction term
reveals that for I :5: u :5: 2 its derivative varies approximately between + 1000 (for
u ::::: 1.6) and -5500 (for u ::::: 2.0). Consequently, irrespective the integrator used,
quite small integration steps are required to maintain sufficient accuracy in regions
of 'local instability' and before steady state will be reached the advantage of uncon­
ditional stability as provided by implicit methods shall not be fully exploited. To our
experience, for this problem the explicit, stabilized RKC method is a good alterna­
tive.

Figure 8.2 shows generated grids and solutions at six specified time points. These
are obtained using the full variable step size in time option using a uniform base grid
with llx = Ay = 0.05, tols = 0.6, tolt = l.0E-7 and initial step size of 0.005. With this
choice of parameters the method uses at most three levels, but integrates till
t = 0.24175 only on the coarse base grid. A notable point is that the grids accurately
reflect the symmetrical shape of the combustion wave front, thus again showing that
our regridding strategy works very well. The steepening up of the wave front for
evolving time is also clearly visible from the width of the finest level-3 grid. The
solution at the end time t = 0.35 is, approximately, in steady state and shows a thin
layer at the outer Dirichlet boundaries. At this time point the level-3 grid near the
layer is only 6 cells wide, which is the minimum number that is possible near a

34

boundary.
Inherent in static-regridding methods is that they have some difficulty in

efficiently approaching steady state. When using a single grid without refinement,
and assuming stability, a good variable step size solver will steadily increase the
step size upon approaching steady state. On fine level grids this steady increase of
step size will be less for a static-regridding method like ours, at least when using the
'update version', due to the fact that the injection of solutions from fine grids into
coarse ones has the effect that the numerical solution at the coarse grids is 'slightly
perturbed'. The 'slight perturbations' hinder the approximation from steadily
becoming stationary like in single-grid computations. This negative effect will be
most pronounced at higher levels of refinement. Fortunately, the drawback can be
largely overcome by using the 'non-update version' where injection is omitted.

By way of illustration we have included Table 8.3. This table contains informa­
tion concerning the temporal integration for three runs:

(i) the run corresponding with Figure 8.2, where 'updating' was used,
(ii) a similar run, but now without 'updating',
(iii) a run using a single, 80-by-80 grid without refinement, with the same parame-

ter values for the variable step size control.

We note that in case (ii) the generated grids are nearly the same as in case (i) and
that the plot accuracy in the three runs is the same. In particular, the finest mesh
width in space for all three runs is Li.x- = Liy = 0.0125, so that, since the accuracy is
very much the same, we can compare the workload. We see that for (i) and (ii) the
workload is nearly the same; (ii) requires more steps at level 1, but less at level 2
and 3 as to be expected. The number of time steps in (iii) is nearly the same as at
level 1 in (i) and (ii). The reduction in execution time, when comparing (i) and (ii)
with (iii) is approximately a factor of 2.7. This includes CPU time for overhead
which here appears to be larger than for Problem I.

2.9. FINAL REMARKS AND FUTURE PLANS

The LUGR algorithm presented in this paper is based on a mix of various tech­
niques and builts on previous work started by Berger and Oliger [4] and continued
by Gropp [9-11], Arney and Flaherty [2] and others. While Berger and Oliger [4]
consider hyperbolic problems, we have focussed on parabolic problems and have
applied a special, explicit time integrator using variable time steps. The integrator is
special in that it possesses an extended real stability interval. For parabolic problems
of type (1.1), the integrator is therefore an attractive alternative in situations where
the good stability properties of the more common implicit solvers can not be fully
exploited due to inherent step size restrictions. Our example Problem II illustrates
such a situation.

Further, while Berger and Oliger [4] and Arney and Flaherty [2] use noncellular
refinement and truly rectangular subgrids which may overlap and rotate to align with

35

-·· _i •- .. j

~1~
1-++f+++++ -l

f lt ~__L_L_L_~~~~

t = 0.24534

-~

, r
t111t1m1.mm.1 JI

t = 0.25237

FIGURE 8.2. Grids and solutions of Problem II at some specified output points.

36

T

- -- --1---l----l-•-.. -

---+- - - - ---t----t----t--t-+--J-

'~-~~--L-•----~~~L~L~_-J±jJlfflmllf~
I= 0.26796

I= 0.27653

-+-➔ 1-1-

------ -·-
•-4-+-+-+-+---t--+-+-+- - -1- ----1---

'-'--1-0-+-+-- -I-- l--'--1-- --

I= 0.35

FIGURE 8.2. Continued.

37

Accepted time steps PDE Execution Overhead
l~vel 1 level 2 level 3 evaluations times (sec) %

(i) 186 193 178 1530249 264 37
(ii) 199 168 154 1470343 252 37
(iii) 195 0 0 6206706 671 0

TABLE 8.3. Results of time measurements for Problem II. The number of rejected
steps is negligible in all three cases. The overhead is defined in the same way as for
Problem I, now relative to experiment (iii).

an evolving dynamic structure, we have chosen to use cellular refinement and to
avoid overlapping subgrids. On the other hand, our subgrids are not necessarily truly
rectangular and may of course be disjunct with neighboring subgrids at the same
level of refinement. This approach allows a simpler data structure and, most impor­
tantly, makes it possible in a relatively simple and transparent way to exclusively
interpolate missing initial and boundary conditions at internal grid interfaces in
low-error regions. It is emphasized that our method, unlike the method of Berger
and Oliger [4] due to overlapping subgrids, does not allow steep solutions to inter­
sect grid interfaces. For this purpose, a reliable refinement strategy is of crucial
importance. A good refinement strategy should refine in such a way that the accu­
racy obtained at the current highest level grid is comparable to the accuracy
obtained on this grid if it would be used without any adaptation. This.way the inter­
polation errors will never become visible. Our refiment strategy, as discussed in Sec­
tion 3, attempts to achieve this through the use of the refinement condition (3.6).
This condition in fact looks ahead such that all cells at the current level are refined,
except those for which at the anticipated highest level the solution is already
sufficiently accurate. The rationale behind this strategy is that when at a certain level
a cell is not refined, we never return to this cell within the current base time step as
we work with nested subgrids.

In connection with the use of nested subgrids, we recall that each time step we
restart from the base grid, but also that we keep the finest grid solution in storage for
possible use in the next time step. Actually, for evolving time we integrate on dif­
ferent grid levels with the understanding that the integration domains are nested per
level and change in time. The nesting requires the interpolation of Dirichlet boun­
dary values and the change in time requires interpolation of initial values, but only
for those nodal points not already used at the previous time step. Most of the time
we thus restart from the finest grid solution that already exist at a given nodal point.

The advantage of this approach, which is typical for LUGR methods, is that one
can integrate on uniform subgrids and avoid the use of truly nonuniform grids such
as obtained in a pointwise refinement procedure (see, e.g., Adjerid and Flaherty [1]).
Admittedly, the approach may be a bit wasteful in situations where the sharp transi­
tions move very slowly, e.g., when approaching steady state. On the other hand, the

38

computational effort for the coarser grids normally shall not be large and finite­
difference or finite-element expressions on uniform grids are more accurate and
cheaper to process than on nonuniform grids. Also note that an inherent drawback of
pointwise refinement and a truly nonuniform grid is a more complex and expensive
data structure.

There are two major reasons why the development of LUGR methods is of
interest. The first reason is obvious and of a purely practical nature: by refining the
spatial grid locally in regions of high spatial activity, it is attempted to obtain accu­
rate numerical solutions at significantly lower costs than required in the standard
approach without refinement. Our second numerical example illustrates this nicely
in respect with the execution time (see Table 8.3). Of course, since any LUGR
method necessarily involves considerable overhead arising from the data structure,
the regridding, the repeated integrations, etc., these methods are of interest only
when the spatial solution variations are sufficiently large, like in our Problem IL We
also conclude that in both our numerical examples the actual regridding strategy
based on the refinement condition (3.6) has functioned very well. This follows
directly from inspection of the plotted grids. On the other hand, in this paper the
actual input for the regridding still stems from the heuristic indicator (7.1). Our
choices of tols illustrate very clearly that this 'curvature indicator' bears no good
resemblance with the true spatial errors. No doubt it will be very worthwhile to
replace (7 .1) by an accurate estimator of the genuine local space error, assuming this
is feasible. This of course is also true for the time error indicator (7.2).

These observations lead us to the second reason why LUGR methods are of
interest. This second reason is of a more fundamental nature: these methods offer
the natural environment for balancing genuine local space and time errors and to let
the local refinement be governed by the genuine local space error. Balancing local
space and time errors has so far got only very little attention in the literature, but is
of obvious importance when one aims at efficiency and robustness in solving time­
dependent PDEs (see Berzins [5] and Schonauer et al. [18]). We will therefore con­
tinue our work on adaptive grid methods with an investigation to convergence pro­
perties of the present LUGR method. In this investigation we plan to analyze both
implicit and explicit methods and an important goal will be balancing genuine local
time and space errors. In this connection it should be noted that L-stable implicit
Runge-Kutta methods are of interest because of their inherent smoothing properties.
This will no doubt help to reduce any difficulty originating from the unavoidable
'nonsmoothness' in the numerical solution.

ACKNOWLEDGEMENT

This chapter is based on the paper "A Static-Regridding Method for Two­
Dimensional Parabolic Partial Differential Equations" by Trompert and Verwer
which appeared in Appl. Numer. Math. 8 (1991), 65-90. We would like to thank
Elsevier Science Publishers for granting permission to reprint.

Further we would like to thank Joke Blom and Paul Zegeling for reading the
manuscript and for suggesting many corrections and clarifying remarks.

39

REFERENCES
1. S. ADJERID and J.E. FLAHERTY (1988). A local Refinement Finite Element

Method for Two Dimensional Parabolic Systems, SIAM J. Sci. Statist. Comput.,
9, 792-811.

2. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement
Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

3. M.J. BERGER (1986). Data Structures for Adaptive Grid Generation, SIAM J.
Sci. Statist. Comput., 7, 904-916.

4. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations, J. Comput. Phys., 53, 484-512.

5. M. BERZINS (1988). Global Error Estimation in the Method of Lines for Para­
bolic Equations, SIAM J. Sci. Statist. Comput., 9, 687-703.

6. LS. DUFF, A.M. ERISMAN, and J.K. REID (1986). Direct Methods for Sparse
Matrices, Clarendon Press, Oxford.

7. R.E. EWING (1989). Adaptive Grid Refinement for Transient Flow Problems, in
Adaptive Methods for Partial Differential Equations, 194-205, ed. J.E.
FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D. VASILAKIS, SIAM Publications,
Philadelphia.

8. J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, and J.D. VASILAKIS, EDITORS.
(1989). Adaptive Methods for Partial Differential Equations, SIAM Publica­
tions, Philadelphia.

9. W.D. GROPP (1980). A Test of Moving Mesh Refinement for 2D-Scalar Hyper­
bolic Problems, SIAM J. Sci. Statist. Comput., l, 191-197.

10. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids,
SIAM J. Sci. Statist. Comput., 8, 292-304.

11. W.D. GROPP (1987). Local Uniform Mesh Refinement on Vector and Parallel
Processors, in Large Scale Scientific Computing, 349-367, ed. P. DEUFLHARD, B.
ENGQUIST, Birkhauser Series Progress in Scientific Computing.

12. A.C. HINDMARSH and S.P. N!,"!RSETT (1988). KRYS/, An ODE Solver Combining
a Semi-Implicit Runge-Kutta Method and a Preconditioned Krylov Method,
Rept. UCID-21422, Lawrence Livermore National Laboratory.

13. P.J. VAN DER HOUWEN and B.P. SOMMEIJER (1980). On The Internal Stability of
Explicit m-Stage Runge-Kutta Methods for Large m-Values, Z. Angew. Math.
Mech., 60, 479-485.

14. K. MILLER (1988). Private Communication.
15. L.R. PETZOLD (1987). Adaptive Moving Grid Strategies for One-Dimensional

Systems of Partial Differential Equations, Preprint UCRL-96190, Lawrence
Livermore National Laboratory.

16. L.R. PETZOLD (1987). Observations on an Adaptive Moving Grid Method for
One-Dimensional Systems of Partial Differential Equations, Appl. Numer.
Math., 3, 347-360.

17. J.M SANZ-SERNA, J.G. VERWER, and W.H. HUNDSDORFER (1987). Conver­
gence and Order Reduction of Runge-Kutta Schemes Applied to Evolutionary
Problems in Partial Differential Equations, Numer. Math., 50, 405-418.

40

18. W. SCHoNAUER, E. SCHNEPF, and K. RAITH (1984). Numerical Engineering:
Experiences in Designing PDE Software with Self Adaptive Variable
StepsizeNariable Order Difference Methods, Computing Suppl., 5, 227-242.

19. B.P. S0MMEIJER (1989). Private Communication.
20. J.G. VERWER, W.H. HUNDSD0RFER, and B.P. S0MMEIJER (1990). Convergence

Properties of the Runge-Kutta-Chebyshev Method, Numer. Math., 57, 157-178.
21. J.G. VERWER, J.M SANZ-SERNA, and J.G. BLOM (1989). An Adaptive Moving­

Grid Method for One-Dimensional Systems of Partial Differential Equations, J.
Comput. Phys., 82, 454-486.

Chapter 3

Analysis of the Implicit Euler

Local Uniform Grid Refinement Method

3.1. INTRODUCTION

41

Attention is focussed on parabolic problems having solutions with sharp moving
transitions in space and time, such as steep fronts and disappearing layers. For such
problems, a space grid held fixed throughout the entire time evolution can be com­
putationally very inefficient. We consider an adaptive grid method that refines
locally around sharp spatial transitions so as to avoid discretization on a very fine
grid over the entire physical domain.

Our method is based on the techniques called static regridding and local uniform
grid refinement (LUGR), as previously proposed by Berger and Oliger [3], Gropp
[7-9], Arney and Flaherty [2], Flaherty, Moore and Ozturan [6], Trompert and
Verwer [13], and others. Static regridding means that for evolving time the space
grid is adapted at discrete times. This should be contrasted with dynamic regridding
where the space grid moves continuously in the space-time domain. With the term
LUGR we mean that the actual adaptation of the space grid takes place using local,
uniform, refined grids. LUGR should be contrasted with pointwise refinement
which leads to truly nonuniform grids. In this connection, our LUGR method bears
resemblance with the fast adaptive composite grid (FAC) method [11] for elliptic
equations, where the basic computational objective is to solve on an irregular grid
by way of regular grids only.

The idea of the method can be briefly described as follows. Given a coarse base
grid and a temporal step size, nested, local, uniform subgrids are generated. These
subgrids possess nonphysical boundaries and on each of these subgrids an integra­
tion is carried out. They are generated up to a level of refinement good enough to
resolve the anticipated fine scale structures. Having completed the refinement for the
current base space-time grid, the process is continued to the next one while the fine

42

grid results computed at forward time levels are kept in storage so that they can: be
used for step continuation.

An attractive feature of the static-regridding approach is the possibility of divid­
ing the solution process into the following computational procedures: spatial discret­
ization, temporal integration, error estimation, regridding and interpolation. Depend­
ing on the application, these individual procedures may range from simple or
straightforward to very sophisticated. This flexibility is attractive since it makes it
possible to treat different types of partial differential equations (PDEs) with almost
one and the same code, assuming that the grid and the associated data structure
remain unchanged. Note that the choice of data structure is important for keeping
the unavoidable overhead at an acceptable level, because at each time step grids
may be created or removed while also communication between grids of adjacent
levels of refinement frequently takes place.

The method we analyze in this paper has many similarities with the method con­
structed in Trompert and Verwer [13]. In fact, the grid and data structure, the spatial
differencing and the memory use are the same. However, in the present paper we
concentrate on analysis rather than on construction, while using implicit Euler
instead of the explicit Runge-Kutta-Chebyschev method for time integration. The
main aim of this paper is to present a detailed error analysis and to prove stability
and convergence for a certain class of PDEs. The central issue in this analysis is a
refinement condition and a strategy that distributes spatial discretization and interpo­
lation errors in such a way that the spatial accuracy obtained is comparable to the
spatial accuracy on the finest grid if this grid would be used without any adaptation.

Section 2 is devoted to the problem class we concentrate on. In Section 3 we
introduce the tools and the formulation for the multilevel LUGR method. In Section
4 we discuss the maximum-norm stability of this method. We prove an uncondi­
tional stability result which is closely related to a maximum-norm stability result of
implicit Euler when applied on a single space grid. Section 5 is devoted to the error
analysis. In this section we investigate the total local error with its component parts.
Furthermore, here we introduce the refinement strategy underlying the so-called
refinement condition. This condition enables us to control the contribution of the
interpolation errors in favor of discretization errors. Due to this condition, we are.
able to prove a convergence result as if we are working on a single, fixed grid. We
further elaborate on this condition in Section 6 where we show how to implement it
for practical use. A numerical illustration of the error analysis is given irr Section 7.
The numerical results found here are in complete agreement with the analysis.
Finally, Section 8 briefly discusses our future research plans.

3.2. THE PROBLEM CLASS

Following the method-of-lines approach [12], we consider a real abstract Cauchy
problem

ur=L(t,u), O<t~T. u(~,O)=u0(~), (2.1)

43

where L represents a second-order partial differential operator which differentiates
the (possibly vector valued) solution u (x,t) to its space variable x in a space domain
Q in IR, IR2 or IR3. Boundary conditions are supposed to be included in the
definition of L.

With (2.1) we associate a real Cauchy problem for an explicit system of ordinary
differential equations (ODEs) in JRd,

.!!._ U (t) = F(t, U(t)), 0 < T ~ <t_' U(O) = u0 , (2.2)

which is defined by a finite-difference space-discretization. Thus, U and F are vec­
tors in]Rd representing grid functions on a space grid co covering the interior of the
space domain. Each component of U and F is vector valued if u is vector valued.
The dimension d is determined by the spatial dimension, the grid spacing, and the
number of PD Es in (2.1). F is determined by the type of grid, by the actual finite­
difference formulas and of course by the precise form of L and its boundary condi­
tions. Note that boundary values have been eliminated and worked into the ODE
system. In the following, our method description and analysis are centered around
this system.

Next we introduce some notations and assumptions needed for further specifying
(2.1) and (2.2). The symbol II.II denotes the maximum norm on the vector space JRd
or the induced matrix norm. Throughout our analysis we will deal only with the
maximum norm. The symbol µ[A] denotes the logarithmic matrix norm of the real
d x d matrix A = (aij) associated with 11-11, i.e.,

(2.3)

µ[A] is a useful tool in the stability analysis of nonlinear, stiff ODEs and semi­
discrete PDEs [4]. In this analysis, the structure of the Jacobian matrix
F' (t, TJ) = cJF(t, TJ)ldTJ plays a decisive role.

We are now ready to list our assumptions we make in further specifying (2.1) -
(2.2). These assumptions are concerned with, respectively, the class of PD Es (2.1),
the smoothness of u, the choice of spatial grid and actual finite-differencing, and the
stability of the semi-discrete system (2.2):

(Al) The LUGR method is applicable in any number of space dimensions. Fol­
lowing [13], we concentrate on the 2D case, while Q is supposed to be the unit
square. With minor changes Q is allowed to be composed of a union of rectangles
with sides parallel to the co-ordinate axes. In fact, as we will see later, refined grids
normally are of this shape. In what follows, we will mostly use the notation u (x,y,t),
rather than u (x,t).

(A2) The solution u of (2.1) uniquely exists and is as smooth as the numerical
analysis requires. Specifically, for our purpose it suffices that, u is a C 2-function int
and a C4-function in (x,y).

44

(A3) We will invariably use uniform space grids. Our base grid thus can be writ­
ten as

where hx = 1/M, hy = 1/N and M, N are positive integers. The spatial differencing
on co is supposed to be based on three-point formulas of second-order consistency.
As a rule, we use central differencing conditions involving first-order derivatives,
the one-sided three-point formula is used.

(A4) A constant v exists such that µ[F' (t, TJ)] :::;: v for all t E (0, T], TJ E IRd and all
grid spacings. Like (Al) and (A2), this assumption involves a restriction on the class
of PDE problems. Of course, they are made only for the sake of (model) analysis.
The LUGR method remains applicable in situations where these assumptions do not
hold or cannot be verified. On the other hand, for interesting classes of operators,
such as the scalar, nonlinear parabolic operator

with standard restrictions on/; and P;, one can prove the existence of a constant v.
The inequality µ[F' (t, TJ)] :::;: v is to be interpreted as a stability condition, both

concerning the ODE system (2.2) and its implicit Euler discretization

(2.6)

where 'C = tn - tn-l is the step size and un is the approximation for U Ctn)- This ine­
quality enables us to formulate the following, powerful stability result for implicit
Euler. Consider the perturbed form

(2.7)

- n-1 - n
where rn is an arbitrary local perturbation and U , U are perturbations to un-I,
un_ Then

for all 'C > 0 satisfying 'CV< 1 [4]. Since v is independent of the grid spacing, this
stability inequality is valid uniformly in hx and hy, For v = 0 we have contractivity
for all 'C > 0, while for v < 0 we even have damping for all 'C > 0. A result closely
related to (2.8) will be derived in Section 4.

3.3. THE IMPLICIT EULER LOCAL UNIFORM GRID REFINEMENT METHOD

3.3.1. Outline

45

Although its elaboration readily becomes complicated, the idea behind LUGR is
simple. Starting from the coarse base grid covering the whole domain, finer-and­
finer uniform subgrids are created locally in a nested manner in regions of high spa­
tial activity. These subgrids are created by bisecting sides of next coarser grid cells.
A new initial-boundary value problem is solved at each subgrid, and the integration
takes place in a consecutive order, from coarse to fine. Each of these integrations
spans the same time interval. Required initial values are defined by interpolation
from the next coarser subgrid or taken from a subgrid from the previous time step
when available. Internal boundaries are treated as Dirichlet boundaries and values
are also interpolated from the next coarser subgrid. The generation of subgrids is
determined by the local refinement strategy and is continued until the spatial
phenomena are described well enough by the finest grid.

During each time step the following operations are performed:

(l) Integrate on coarse base grid.
(2) Determine new finer uniform subgrid at forward time.
(3) Interpolate internal boundary values at forward time.
(4) Provide new initial values at backward time.
(5) Integrate on subgrid, using the same step length.
(6) If the desired accuracy in space is reached go to 7, else go to 2.
(7) Inject fine grid values in coinciding coarser grid points.

Thus, for each time step, the comp11tation starts at the coarse base grid using the
most accurate solution available, since fine solution values are always injected in
coinciding coarse grid points. Moreover, all subgrids are kept in storage for step
continuation.

We consider the use of uniform grids attractive because uniform grids allow an
efficient use of vector-based algorithms and finite differences on uniform grids are
faster and more accurate to compute than on nonuniform grids. In this respect the
current approach is to be contrasted with pointwise refinement leading to truly
nonuniform grids. Pointwise refinement techniques also require a more involved
data structure (Ewing [5]). On the other hand, with the LUGR method, there are
nodes that exist on more than one grid at the same time, meaning that at these nodes
integration takes place more than once during one time step. Hence, the total
number of nodal integrations needed will be larger than on a comparable single,
nonuniform grid.

In [2, 3, 6, 8] LUGR methods are examined based on noncellular refinement and
truly rectangular subgrids which may rotate and overlap to align with an evolving
fine scale structure. We avoid these difficulties. Our local sub grids do not overlap,
they may be disjunct, they need not be rectangles, and the actual refinement is cellu­
lar.

46

3.3.2. The mathematical formulation

LUGR methods solve PDEs on the whole domain at the coarsest grid only and on
a part of the domain at finer subgrids. Our method can be interpreted as a sequence
of operations on vectors in IRd with varying dimension d. The dimensions are time
and level dependent because the number of nodes changes per level of refinement
and per time step. This constitutes a problem for the formulation of the method. To
bypass this difficulty, the fine grids will be expanded so that they cover the whole
domain. The dimensions are then fixed per level of refinement, which facilitates the
derivation of a concise mathematical formulation. We emphasize that this grid
expansion is auxiliary. In actual application only part of the expanded higher-level
grids is processed.

Suppose that for a given time interval [O, T] and a given base grid, l levels are
needed to describe the spatial activity of a solution sufficiently accurately when
integrating over the entire time interval [O, T]. Introduce for k = 1, · · · , l the
expanded uniform grids

COk= {(x;, Yj):x;=ihx,k> 15,.i 5,.2k-lM-l and

Y; = jhy,k, 1 5,. j 5,. 2k-l N-1},

(3.1)

where N and Mare the ~ame integers as in (2.4) and hx,k = hxl2k-l, hy,k = hyl2k-l.
Note that fork = 1 the base grid ro1 = co given by (2.4) is recovered.

Let the generic notation for a grid function rt defined at rok be Tlk and let Sk denote
the space of these grid functions. We then denote the semi-discrete system con­
sidered in Sk by

(3.2)

Note that due to the grid expansion, only a part of the components of the ODE sys­
tem (3.2) is integrated for k>l in reality.

We are now ready to formulate the implicit Euler LUGR method. The following
formula defines the time step from step point tn-l to tn for I levels of refinement:

u7 = R11 U'/-1 + 1:F I Un, un,
uz = DZ [R1ku'r1 + 1:Fk(tn, Vi)]+(h - DZ) [Pk-lkUZ-1 + Vi],

for k=2, ,l, where

ur E sz is the approximation to u at (Ok at t = tn'

h: Sr~Sk is the unit matrix,
DZ: Sk➔Sk is a diagonal matrix with entries (DZ);; either unity or zero,

(3.3a)

(3.3b)

R1k: S1➔Sk is the natural restriction operator from co1 to cok
Pk-ik: Sk-l ➔Sk is an interpolation operator from cok-I to cok

47

Vi e Sk contains time-dependent terms emanating from the boundary an.

Specifically, the nonzero entries of DZ (2 ~ k ~ l) are meant to determine that part of
cok where the actual integration takes place. This integration has the fine grid solu­
tion DZR1ku7-1 as initial function and is defined by

(3.4)

The definition of D~ is provided by the refinement strategy. For the time being there
is no need to further specifying DZ. Note that the nesting property of the integration
domains is hidden in the precise definition of the matrices vi. The interpolation
step is defined by

(3.5)

where the grid function Vi contains various time-dependent terms occurring in phy­
sical boundary conditions. We need to include Vi because physical boundary condi­
tions have been worked into the semi-discrete system. For the analysis in the
remainder, Vi plays no role whatsoever.

The formulation (3.3) automatically comprises the interpolation of boundary
values at grid interfaces. This follows directly from the observation that for nodes at
grid interfaces, the associated diagonal entry of DZ is zero (there is no integration at
grid interfaces). Further, we note that (3.3) implies an order, (3.3a) is carried out for
the coarse base grid and (3.3b) for k=2, ,l successively. Having done this, the
updating will take place, meaning that UZ is replaced by R1k U7 from k =l-1 to 1.
After this we move on to the next time step. Recall that, due to the grid expansion,
in (3.3) the interpolation is carried out for all nodal points outside the integration
domain of cok. This enables the stability and convergence analysis to be carried out
for the spaces Sk. However, in actual application interpolation only takes place at
the local subgrids. In Section 6.2 it is shown that this does not interfere with the
analysis.

3.4. STABILITY ANALYSIS

3.4.1. Preliminaries

Consider, on the analogy of (2.7), for n =1,2, , the perturbed scheme

(4. la)

48

(4.lb)

for k=2, ,l with local perturbations r'J., and introduce the errors e'lc = U~ - U'lc, for
k=I, ,l. To shorten the formulas, we introduce the auxiliary quantities e0, D1 and
P 01 , where e0 = 0 E S 1, D1 is the unit matrix / 1 , and P 01 is the zero matrix. Then,
by subtracting (3.3) from (4.1), we get

n=l,2, ; k=I, ,l,

where Z'lc = h - 1:D'lcM'lc and is M'lc the integrated Jacobian matrix

I

M'lc = fF' Ctn, 0V~ + (1 - 0)U'lc)d0
0

which results from applying the mean value theorem for vector functions.
Assuming Z'lc to be nonsingular, we can rewrite (4.2) as

with

X'lc = czv-1 (h - D'lc)Pk-lk•

q = (Z'lcr' D'lcRtb

<)>k = (Z'lc)-lrk-

(4.2)

(4.3)

(4.4)

(4.5)

Note that X1 = 0 and that the operators X'lc, q are associated, respectively, to the
interpolation and restriction. We can rewrite (4.4) to the standard form

e'lc = G'lce7-' + '!f'lc, n=I,2, ; k=l, ,l, (4.6)

where the amplification operators G'lc and the local perturbation terms '!f'lc are defined
by a recurrence relation:

G7=r7, (4.7)

49

'1'7 = <1>7. (4.8)

'Ilk =Xi 'Ilk-I +<1>i, k=2, ,l.

The error recurrence (4.6) describes the error propagation for all refinement levels.
The main interest lies in the operator G? and the local perturbation \If?, since coarse
grid values are always updated by fine grid values. In (4.6) this is reflected by the
presence of e7-1•

The stability of the implicit Euler method in the above is contained the following
lemma:
LEMMA 4.1. Let v be the logarithmic norm value defined in assumption (A4) of Sec­
tion 2. Then,

11cz1r111 ~ - 1-, V'tV < 1 k=1.
1 - 'tV

{
1 , V'tV< 1 ifv>O,

11czkr1 11 ~ 1 - 'tV
1 , V 't > 0 if v ~ 0,

(4.9)

k=2, ,l.

PROOF. The result for k=l is standard since DJ is the unit matrix (see [4], p.46). The
premultiplication of MZ for k > l with Dk has the effect that either entire rows of Mk
are put to zero, or are left unchanged. From (2.3) we then can immediately deduce
that for v > 0 the bound (1 - 't\lr1 still holds, whereas for v ~ 0 the zero rows intro­
duce the bound 1. □

Observe that the replacement of the bound (1 - 'tVt1 by the bound 1 for v < 0
implies that in this case we do no longer exploit the damping property of implicit
Euler. For the analysis to follow this is no restriction since we are here merely
interested in proving stability and convergence results. Specifically the stability
result we are going to prove is not dependent on the damping in implicit Euler. To
shorten derivations, we first make another assumption.

(A5) The logarithmic norm bound v from (A4) in is nonpositive. Hence we res­
trict ourselves to dissipative problems. This is not essential; results obtained for v~O
can be extended to the case v>O by inserting (1 - 'tVt1 for the bound 1 any time the
stability inequality 11czkr1 II ~ 1 is used.

3.4.2. Stability and linear interpolation

In this section we will prove a general stability result for the multilevel adaptive
grid method (3.3) that is similar to the stability result (2.8) for the Euler method
applied without adaptation.

THEOREM 4.2. Let v~O according to (A5) and suppose that linear interpolation is
used. Then, for all 't>O and all n :C:: 1,

IIGZ!I ~ 1, k=l, ,l, (4.10)

50

k

11\JfZII ~ Lllr'JII, k=l, ,l, (4.11)
j=l

I

lle711 ~ lle7-1 II+ Lllrkll. (4.12)
k=I

PROOF. Inequality (4.12) is a trivial consequence of (4.10) and (4.11). Let us first
prove (4.10). This is done by induction with respect to k. Suppose IIGk-I 11 ~ 1. From
(4. 7) it follows that

(4.13)

where QZ = (/k - Dk)Pk-lkGk-l + DZR1k•
Consider the i th row of this operator. Suppose (DZ);; = 1. Then

(4.14)
j j

by definition of the restriction operator Rik· Next suppose (DZ);;= 0. Then

j j

by virtue of the induction hypothesis and the norm

IIPk-Jkll = I (4.16)

of the linear interpolation operator Pk-lk· Combining (4.14) and (4.15) gives IIQZ+i 11
and inequality (4.10) now follows from (4.13). The induction proof is finished if we
can prove that IIGT II ~ l. This follows immediately from the observation that
GT =rT =<zn-1R11.

There remains to prove (4.11). We have ll<l>ZII ~ IITZII- It then follows from (4.8)
that

11\JfZII ~ IIXZIIII\JfZ-1'1 + IITZII, (4.17)

so that we are finished if we can prove that IIXk II ~ 1. This is trivial due to (4.16) and
llh-Dkll= 1. D

The inequality (4.12) is the counterpart of the inequality (2.8). We may conclude
from Theorem 4.2 that when implicit Euler is stable and we interpolate linearly, our
multilevel adaptive grid method (3.3) retains stability of implicit Euler through the

51

bound IIG?II::; 1.

3.4.3. Stability and higher-order interpolation

A drawback of linear interpolation is its limited accuracy. In a genuine applica­
tion it might well be preferable to use higher-order interpolants (in [13] we have
successfully used fourth-order Lagrangian interpolation). Unfortunately, in that
case we must have IIPk-Ikli > 1 so that we are not able to prove the results of
Theorem 4.2 when following the above method of proof. If IIPk-lkll > 1, then it is
possible to prove (a constrained form of) stability by introducing an additional con­
dition that underlies the intention of interpolating exclusively in low-error regions.
Unfortunately, this condition turns out to be of no direct practical use. On the other
hand, numerical evidence suggests very strongly that those higher-order interpolants
do not cause genuine stability problems in real application. We believe we owe this
to the fact that the method interpolates in low-error regions, so that, loosely speak­
ing, this condition is satisfied implicitly.

3.5. ERROR ANALYSIS

We will present a detailed examination of the local error. From this we deduce the
refinement condition which henceforth underlies the refinement strategy. This condi­
tion enables us to control the contribution of spatial interpolation errors in favor of
spatial discretization errors. Due to this condition, we can prove a convergence
result as if we are working on a single, fixed grid. Specifically, it will be shown that
the usual convergence behavior applies and that the accuracy obtained is compar­
able to the accuracy obtained on the finest grid if this grid would be used without
any adaptation.

3.5.1. The local level error

Let uk(t) denote the point~ise restriction of the true solution u (x,y,t) to cok. Con­
sider (4.1). By replacing all U-values by associated uk-values, the local perturbation
r'Z becomes the local level error at grid level k. For convenience, we will denote this
error also by r'lc:

r'Z = u'Z - DZ [R1ku;i- 1 + 'tFk(tn, u'Z)] - (5.1)

(h-DD [Pk-lkuk-1 +b'Z], n=l,2, ; k=l, ,l,

where u'lc = uk(tn) and p 01, Uo, b'{ are auxiliary and put to zero; r'lc contains the fol­
lowing local error components, the local spatial error induced by the finite­
difference approximation, the local temporal error of the implicit Euler method, and
the interpolation error. We first discuss these different components. They are defined
in the standard way by,

52

d
ak(t) = dt uk(t) - Fk(t,uk(t)) (spatial discretization error) (5.2)

d
~k(t) = uk(t) - uk(t-t) - t-uit) (temporal error) (5.3)

dt

Yk(t) = uk(t) - Pk-lkuk-1 (t) - bit) (interpolation error) (5.4)

The grid function bk(t) in (5.4) has the same meaning as bZ in (3.5). In the follow­
ing, we assume without loss of generality that hx,k = hy,k = hk. In view of assump­
tions (A2) and (A3) made in Section 2, we have

(5.5)

with order constants determined by higher-order spatial derivatives of u and by PDE
operator quantities. Likewise, (A2) implies ~it)= t2ck where Ck= - ½d2uk/dt2

evaluated at a time t+(K-1)t, 0 ~ K ~ I. If u is a C3 -function in t, then

A 1 z dz 3
t->it) = - -t - 2 uk(t) + 0 (t),

2 dt

Let q denote the accuracy order of the (Lagrangian) interpolation. Then

Yk(t) = O(hV, k=2, ,l,

(5.6)

(5.7)

and here the order constants again depend exclusively on higher spatial derivatives
of u, assuming sufficient differentiability. If linear interpolation is used, then
assumption (A2) implies q = 2 and second-order spatial derivatives determine the
constants.

Now, using the relation uz-1 = R1ku7-1 for k=l, ... ,l, we can derive

Note, by definition of DZ, that DZ(ta.Z + ~D is the restriction of the usual local
discretization error ta.Z + ~k to the integration domain of the grid cok, while
(h - DZ)"fl represents the restriction of the interpolation error "fl to the complement
of this domain.

53

3.5.2. A crude global error bound

Denote the global discretization error by eZ = uZ - UZ and suppose e2 = 0. For
any choice of DZ the consistency results (5.5) - (5.8) imply

(5.9)

If we now suppose linear interpolation and assumption (A5), then application of
(4.12) yields

(5.10)

where IISnll = 0 (-cht) + 0 (-c2) + 0 (ht). Here the coarsest mesh width occurs due
to simply adding all normed local level errors in (4.15), including llr'l 11- Following
standard practice we thus obtain at any fixed time point tn = n't the global error
bound

(5.11)

where h = h 1 , and C 1 , C 2 , C 3 are positive constants independent of step size and
mesh sizes.

The first two terms are due to the temporal integration and spatial discretization.
They will vanish if mesh sizes and step size tend to zero independently of each
other, thus reflecting the unconditional convergence of the method when applied
without adaptation. On the other hand, if no relation is imposed between 't and h,
then the third term can grow unboundedly as 't, h ➔ 0. This term is due to the inter­
polation. Hence, even though we have stability and consistency, this result shows
that unconditional convergence cannot be hoped for. Fortunately, this conclusion is
not as bad as at it looks. By not specifying the matrices DZ and, subsequently, by
adding norms of the local level errors, we have simply supposed arbitrary integra­
tion domains at all levels of refinement. This must lead to a crude error bound like
(5.11). In application, the computations should be organized in such a way that the
interpolation only takes place in low-error regions so that the interpolation error is
virtually absent. This poses the task of setting up a precise error analysis and the
design of a local refinement strategy aimed at a suitable selection of the matrices
DZ.

54

3.5.3. Local and global errors

According to (4.6), the global error eZ satisfies the recurrence relation

eZ = GZer-1 + 'l'k, n=I,2, ; k=I, ,l, (5.12)

where 'l'k is the local error defined by the recursion (cf. (4.8), (4.5))

'1'7 = (zn-1 r7, (5.13)

'l'k = Xk'l'k-1 + (ZZr1 rt, k=2, ,l.

The operators GZ, XZ and zi are supposed to be redefined (replace all U-values by
associated uk-values). Note that 'l'k is essentially different from the local level err0r
ri. While ri is associated to the single k th level, 'l'k is associated to all levels up to
this k th level according to (5.13). This recursion governs the propagation of each
local level error when introducing higher-and-higher levels. Elaborating it gives, for
k=I, ,l,

k j+I

'l'k = !,(fIX7) (Zjr1 rj. (5.14}
j=I i=k

Next we split 'l'k into its temporal and spatial part denoted by, respectively, 'l'l, and
'l'Z,s:

'l'k ='lfZ,t+'l'k,s• k=I, ,l, (5.15)

and it follows from (5.8) that 'l'k,t and 'l'k,s are given, respectively, by

k j+l

vz., = :r,(nxn (z1Jr1 D'.i~'.i (5.16)
j=l i=k

k j+I

'l't = !,(IlXf) (Zj)-1 [-rDjaj + (Ij - Dj)yj] (5.17)
j=I i=k

Let us first examine 'l'k,t· Since ~k does not depend on mesh sizes, we have
~k = R1k~7. Substitution into (5.16) then yields

k j+I

vi.,= :r,<nxn (Zjr1 n1Rlj~7 (5.18)
j=l i=k

55

and we see that this operator is just the amplification operator GZ featuring in (5.12);
see the recursion (4.7). In conclusion, 'Vt, satisfies

llfn _ GnAn
yk,r- kf.l/, k=l, ,!. (5.19)

We next examine \lfk,s- Using the definition of XZ given in (4.5), we rewrite (5.17)
as

where

k-1 j+I

'Vk,s = (ZD-] (h - DZ)Pk-lk L (Il Xi') *
j=I i=k-1

(5.20)

(5.21)

and p7 = 0. In (5.20) the spatial local discretization error DZaZ committed on the
integration domain of grid rok is separated from the spatial local error part
(/k - Dk)Pk defined outside this domain. Hence, pZ collects all spatial error contri­
butions defined on the grids ro.i (1 :S: j :S: k-1), including discretization error a'} and
interpolation error y'}, together with y'l on rok. This separation enables us to formu­
late a refinement condition which ensures that when a new grid level is introduced,
the spatial local accuracy outside its integration domain will be smaller than or equal
to the spatial accuracy on the integration domain itself. This distribution of local
space errors is desirable, as we never return to grid points lying outside a current
integration domain.

The refinement condition constraints the matrices DZ, and is taken to be

where c > 0 is a parameter specified in Section 6. If (5.22) is true, then all errors
'Vk,s satisfy

(5.23)

56

and combining (5.12) with (5.15), (5.19) enables us to present the global error ine­
quality

lleZII::; IIGZlllle?-111 + IIGW711 + (l+c)ll(ZZr1'tDZcxm (5.24)

n=l,2, ; k=I, ,l.

The importance of the refinement condition (5.22) is reflected by the fact that in
(5.24) the interpolation error contribution has been removed. This is in agreement
with our goal of developing a local refinement strategy that generates refined
subgrids such that the accuracy obtained on the final finest grid is comparable to the
accuracy obtained if this finest grid would be used without adaptation. We will
further elaborate on condition (5.22) in Section 6. Note that it suffices to consider
(5.22) only for k=l, since it suffices to consider (5.23) and (5.24) for k=l.

3.5.4. Convergence and linear interpolation

Assuming linear interpolation and assumption (AS), as in Section 5.2, (5.24) can
be rewritten as

lleZII ~ lle?-111 + IIPZII + (l+c)'tllcxZII, n=l,2, ; k=l, ,l. (5.25)

Hence, following the same derivation as carried out for (5.11), for the highest level l
the global error bound

lle711::; C 1't + C2(l+c)hf (5.26)

results where C I and C 2 are positive constants independent of step size and mesh
sizes. This bound is unconditional in the sense that it assumes no relation between
step size and mesh sizes and, according to our goal, the smallest mesh width h1

occurs. We have recovered an error bound similar to the standard error bound for
implicit Euler when applied on a single grid.

3.5.5. Convergence and higher-order interpolation

As pointed out in Section 4.3, for the case of higher-order Lagrangian interpolants
a powerful stability result like that of Theorem 4.2 are not available. However
assuming that higher-order interpolation in low-error regions does not severely dam­
ages stability, as is strongly supported by our practical experience, it is natural to
impose the refinement condition (5.22) also in the case of higher-order interpolation.
Note that in the derivation of (5.22) no a priori choice was made for the interpolants.

57

3.6. THE REFINEMENT CONDITION

3.6.1. Determining the integration domains

Condition (5.22) needs first to be elaborated into a workable form before it can be
implemented for determining the integration domains. To begin with, we rewrite the
error Pk as

k-l j+I
PZ =y'/, +Pk-ikL(TIX:') (Z'])-1'tD']a'] + (6.1)

j=I i=k-1
k-l j+I

Pk-lk L< TI xn <z'}r1 uj - D'J)rJ, 2 ~ k ~ z .
.i=2 i=k-l

Next, we rewrite the first sum as

k-1 j+I
pk-lk L< TI xn (Z'jr1'tD']a'] = pk_lk(Zk-1 r 1 'tDk-l aZ-1 + (6.2)

.i=I i=k-1
k-1 j+I

pk-IkL(TIX:') (Z'}r1(lj -D'])Pj-lj(Z'J-1 r1'tD'J-1 a'J-1,
j=2 i=k-1

and substitute this expression into (6.1). It then follows that PZ can be written as

k-1 j+I
Pk= 11,z + Pk-1kL< TI xn <z'Jr1c1j -D'J)'A,'J, k=2, ,z, (6.3)

j=2 i=k-1

where

~ 11 _ ,/l p (Z")-1 D" n 11,.i - lj + j-lj j-1 't j-1 (Xj-1, j=2, ,l. (6.4)

The error function 'A,'] contains the interpolation error at level j and the prolongation
of the spatial discretization error of level j-1 to level j. The derivation now rests
upon monitoring the error (ZZ)-1 (h - DZ)Pk occurring in (5.22) through monitoring
all errors (11 -D'j)'A,'], jg, occurring in (6.3). The idea is to select the matrices D'J
such that the error functions (11 - D1)'A,') become sufficiently small. This makes
sense because if C 3 , C 4 are stability constants such that

j+l

II TI X?II ~ C4, (6.5)
i=k-1

then

ll(ZZ)-1 Ch - DZ)pkll ::; (6.6J

C3(l + IIPk-lkll(k-2)C3C4) max2~jg, {ll(/j-DJ)11/}II}.

Hence, if fork =2, , l the matrices Dk are selected such that

then the refinement condition (S.22) is satisfied.
In general, the stability constants C 3 and C 4 are unknown. However, if the dissi­

pativity assumption (AS) is satisfied, then the constant C 3 ::; I. Furthermore, if we
use linear interpolation, then (4.16) applies and also C 4 can be put equal to one, so
that (6.7) simplifies to

If assumption (AS) does_ not hold or higher-order interpolation is used, then C 3 and
C 4 may be larger than one, but not with a considerable extent. C 3 shall in general be
of moderate size in view of the excellent stability behavior of implicit Euler. Our
practical experience with fourth-order Lagrangian interpolation is that higher-order
interpolation is unlikely to yield instability problems, thus indicating that also IIXkll,
and hence C4, are of moderate size. That is why we proceed with (6.8) and also to
use it in situations where (AS) may be violated and/or higher-order interpolation is
used.

In application it suffices to impose (S.22) for k=l only, so that (6.8) can be
replaced by

(6.9)

In order to satisfy this condition, estimates of 11,z have to be computed. Therefore, to
create an extra safety margin, we replace (6.9) by the slightly more conservative
condition

(6.10)

where, per component, ~k is defined as

59

(6.11)

Condition (6.10) will determine the integration domain of wk. Let nz be this
integration domain and recall that when a node belongs to nz, the corresponding
diagonal entry of DZ is equal to one and zero otherwise. Suppose that the maximal
level number/ and c(/-1)-111(Z?r1'tD1a?II are known and that a solution at Qk-I,
k ':S:l, has just been computed. Prior to the integration step on level k, our task is then
to determine nz. That is, we must define DZ such that (6.10) is satisfied and in such
a way that the area of ni is as small as possible. The actual selection of Qk is car­
ried out by a flagging procedure which scans level-k grid points. A point is flagged
if, using appropriate estimates,

(6.12)

Hence, for such a point the corresponding diagonal entry (D'Dii = 1 and for non­
flagged points we define (Di:);; = 0. This way the refinement condition (6.10) is
satisfied.

In conclusion the solution at a node of grid wk is interpolated only if a
corresponding component of Sk is smaller than the maximum of the spatial discreti­
zation error at the finest grid multiplied with 'tc(/-1)-1. Otherwise integration is car­
ried out at this node. No doubt· this imposes a severe restriction on the size of the
interpolation errors. On the other hand, this restriction is natural because when going
to a higher level within the current time step, we never return to a grid point where
the solution has been interpolated which means that the interpolation error will be
carried along to the next time step. The fact that we do not return is a direct conse­
quence of the nesting property of the integration domains, which we discuss next.

3.6.2. Restricted interpolation and the nesting property

We now introduce the nesting property of the integration domains. Recall that this
property, being hidden in the definition of the matrices Dk, has played no role in the
foregoing analysis. We stipulate that in application the nesting is enforced by the
flagging procedure, in other words, this procedure scans only level-k points lying
within the previous integration domain Qk-I · A direct consequence is that, different
from (3.5), the interpolation is carried out only for level-k points within nz_1• Here
we will justify the deviation due to this restricted interpolation. We argue that the
restricted interpolation is in fact allowed by the inequality (6.10) where interpolation
over the whole of wk is still assumed.

Consider the error (ZZ-i r 1 'tDk-I aZ-1- This spatial error is defined at level k-1
and, by definition of DZ_1, has zero components outside nz_1• Hence, all its pro­
longated components are taken into account in the flagging procedure for determin­
ing nz_ For the interpolation error)1, which lives on the whole of wk (grid expan­
sion), the situation is different. However, restricted interpolation is allowed if for all

6.0

level-k points outside nz_1, the interpolation error satisfies

(6.13)

because then points outside ni_1 will not be flagged if the interpolation step (3.5)
would be carried out on the whole of cok. In other words, if (6.13) holds outside
nz_1, then the integration domains found with the restricted interpolation over nz_1

are equal to the domains found if the interpolation would be carried out on the
whole of cob which is in accordance with the method description (3.3).

The following argument shows that inequality (6.13) is very plausible with the
restricted interpolation procedure. First we recall that QJ coincides with the entire
physical domain. Hence for k =2 there is no restricted interpolation so that for all
level-2 points outside Q 2 inequality (6. I 3) is trivially satisfied. Next consider the
case k=3. Now the interpolation is restricted to level-3 points within Q~. Since for
all level-2 points outside Q~ inequality (6.13) is satisfied, we are justified in suppos­
ing that this is also true for all level-3 points outside Q~, in view of the consistency
of the interpolation (level-3 interpolation errors are smaller than level-2 errors).
Further, by construction of Q 3, (6. I 0) is satisfied for all level-3 points within Q 2 and
outside Q 3, and so is (6.16). In conclusion, we may suppose that (6.13) is satisfied
for all level-3 points outside Q 3 when using the restricted interpolation for k=3. For
k =4 and so on this argument can be repeated.

3.6.3. Implementation aspects

On top of the flagging procedure implementing (6.12) some safety measures have
been built. Any node for which (6.12) is true is flagged together with its eight neigh­
bors. Next, to create an extra buffer, all sides of cells with at least one flagged
corner node are bisected. This means that a buffer zone of two mesh widths is used
around any intolerable node. Near boundaries, physical and internal ones, the
buffering differs slightly. Although in theory this buffering could be omitted, in
practice it is wise to create a buffer zone around intolerable nodes because the esti­
mation of higher spatial derivatives contained in aZ and y'J_ is prone to inaccuracies.
After the flagging procedure, a cluster algorithm groups all untolerable nodes
together to form the newly defined integration domain.

The parameter c in (6.12) must be specified. In view of result (5.25), c should be
taken small so that the spatial accuracy obtained is indeed nearly equal to the spatial
accuracy obtained without adaptation. In fact hand, the smaller c, the more points
will be flagged and hence the safer the local refinement will be (c =0 implies global
refinement). On the other hand, when c is too large, the situation can occur that the
space errors are large and refinement is neccessary but no nodes are flagged because
(6.12) is satisfied at every node. Hence, c is available as a tuning parameter. In the
experiments in Section 7 we have simply put c=l.

Estimates of spatial interpolation and discretization errors are required. For 2s.k s.l
we must estimate the interpolation error y'J_ and the prolongated spatial discretization

61

error Pk-lk(Z'k_1)-1 D'k_1 a.'k_1• Further, an estimate of the spatial discretization error
(Z7r1 D7a.7 committed at the final l th level must be available at all lower levels.
Because we use local, uniform grids, the estimation of these errors can be realized
cheaply anr. easily. Consider the error a.r (cf. (5.2)) and let p be the order of con­
sistency (in this paper p =2). The es!imation we apply is based on the use of a
second spatial discretization operator F of a higher-order p. After some elementary
calculations we obtain the following approximation

-a.Z ::::: Fk(tn, uk(tn)) - Fk(tn, Uk(tn)) (6.14)

as an asymptotically corr~ct estimator for a.Z. The benefit of using uniform grids
now lies in the fact that F is easily constructed. At internal nodes our F provides
fourth-order accuracy (standard symmetrical differences), while at nodes adjacent to
physical or internal boundaries third-order accuracy is realized (standard one-sided
differences). The benefit of using uniform grids is also reflected in the estimation
for the error Yi (cf. (5.4)). So far we have implemented Lagrangian interpolation of
second (linear) and fourth order. For the second-order interpolation we need to esti­
mate spatial derivatives ux,:, etc., while in the fourth-order case spatial derivatives
like u~xxx appear. For both cases the estimation is straightforward.

We emphasize that, in spite of its simplicity, linear interpolation may become
disadvantageous due to the low order of accuracy. Inspection of the various terms in
(6.12) suggests to compare the following order relations:

-r<Pk-1k<zz_1 r 1 vz_1 a.Z-1)i = o (-rhh

11<zrr1-rv7a.711 = o (-rhf),

('fk)i = 0 (hr), second-order linear,

(Y'D; = 0 (hf), fourth-order Lagrangian.

(6.15a)

(6.15b)

(6.15c)

(6.15d)

In the discretization terms the step size 'tis contained. Consequently, it is the inter­
polation error that may will govern the refinement if 't is very small, and particularly
so when the interpolation is linear. The comparison is clearly in favor of the fourth­
order interpolation.

To estimate the right-hand-side term ll(Z7r1D7a.?II of (6.12) for 25'k5'l-l, we
exploit the asymptotics. Since the mesh width of level k is half that of level k + l, we
thus invoke

(6.16)

for k=l,2, In theory it suffices to do this only for k=l, but since for larger values
of k this estimation will become more and more accurate, it is done for every k.

Finally, we make a few remarks about the approximations (6.14) and (6.16). Our

62

method, like every other adaptive grid method is designed to solve PDEs with steep
solutions. Yet (6.14) and (6.16) underlie asymptotics, which means that they are
only accurate if the solution is sufficiently smooth on the grid in use. This consti­
tutes a problem for LUGR methods, because these methods estimate errors on
coarse grids. Nevertheless, if in practice the estimated error is not that accurate, it
might still give an good indication of where the spatial error is large and where it is
not and, specifically, the estimated error might still be in more or less the same order
of magnitude as the exact error, in which case the implemented refinement strategy
based upon (6.14) will still work. In our experience so far this is indeed the case.
We believe this is due to the fact that estimation (6.16) is carried out for finer-and­
finer subgrids with an increasing accuracy which partly remedies the problem.
However, if solutions become very steep it may be necessary to improve the imple­
mentation of the refinement strategy.

3.7. NUMERICAL EXAMPLE

This section is devoted to an illustration of the foregoing error analysis. Our goal
here is to numerically illustrate that by imposing the refinement condition the usual
order behavior is recovered. At the same time, the spatial accuracy obtained is com­
parable to the spatial accuracy on the finest grid if this grid would be used without
adaptation.

3. 7. I. The issue of implicitness

We use the implicit Euler method for time integration. In connection with impli­
citness, two points are worth mentioning. The first is that at any time step
refinement takes place at different levels, resulting in a different Jacobian per level
whose order usually varies. This impedes the profitable use of old Jacobians (like in
sophisticated stiff ODE solvers), unless it is decided not to adapt grids at every time
step, but instead per prescribed number of steps. We consider this as part of an
overall strategy that can easily be placed on top of the existing one. We adapt grids
at every time step since our main aim with the experiments is to illustrate the con­
vergence analysis together with the refinement strategy. However, when dealing
with real applications, it is most likely to be more advantageous to omit adaptation
at every base time step, just for efficiency reasons. The second point is that the Jaco­
bians do not posses a regular band structure, since the integration domains Qk nor­
mally have an irregular shape. Unlike the first, this point is intrinsic to the local
refinement method. In the experiments reported here the Harwell sparse matrix
solver MA28 has been used. This solver is well suited to cope with the structures we
meet, but is rather time consuming for the present application. It is likely that stan­
dard iterative methods can be applied at lower costs.

63

3. 7.2. The example problem

This test example is hypothetical and due to [I]. The equation is the linear para­
bolic equation

(7.1)

and the initial function, the Dirichlet boundary conditions for and the source term f
are selected so that the exact solution is

u (x,y,t) = exp[-80((x - r(t))2 + (y - s (t))2)], (7.2)

where r(t) = ¼ [2 + sin(7tt)] and s (t) = V4 [2 + cos(nt)]. This solution is a cone that
is initially centered at(½,¾) and that symmetrically rotates around (V2, Vz) in a clock­
wise direction with a constant speed. We have used this problem to subdue our
refinement method to a convergence test. Observe that the semi-discrete version of
this problem satisfies the dissipativity assumption (A5).

3. 7.3. Convergence experiments

We have carried out two identical convergence experiments. In the first linear
interpolation has been used and in the second, fourth-order Lagrangian. In both the
solution is computed four times over the interval O::=;t :Q, using a uniform IO x IO
grid and a constant time step size 't. In the first computation l =I, in the second l =2,
and so on. Since per computation the smallest mesh width is halved, 't is simultane­
ously decreased by 22 in view of the first order of implicit Euler. Hence, in line with
our analysis, per computation the maximal global error should also decrease by 22 .

Table 7. I shows the maxima of the global errors restricted to the finest integration
domain in use. This table clearly reveals the expected order behavior. The errors of
the l =4 runs are about a factor 4 smaller than the corresponding errors of the l =3
runs. Note that there is hardly a difference between the corresponding errors, show­
ing that, as anticipated by our strategy, the choice of interpolant has no notable
influence on the error. We emphasize that, in spite of the relatively large values for
't, the spatial error dominates the global errors shown in this table. For example,
using 't = 0.125 instead of 't = 0.5 in the l =2 run, the same global errors are found
(they deviate in the third or fourth decimal digit). In other words, conclusions on the
spatial error behavior induced by the local refinement algorithm can be drawn from
this table.

These results convincingly show, for the current example problem, that the use of
the refinement condition ensures that the spatial accuracy obtained is very much
comparable to the spatial accuracy on the finest grid if this grid is used without any
adaptation. Finally we note that the choice c =I apparently has no influence on the
error. We owe this to the fact that the refinement condition has been derived from

64

#of single t
't interpolation

levels grid 0.50 1.00 I.SO 2.00

2.00000 I JO X 10 0.16447

linear 0.03876 0.03890 0.03891 0.03891
2

0.50000 fourth order 0.03929 0.03945 0.03946 0.03946

20x20 0.03865 0.03881 0.03882 0.03882

linear 0.01369 0.01369 0.01369 0.01369
3

0.12500 fourth order 0.01376 0.01376 0.01376 0.01376

40x40 0.01389 0.01389 0.01389 0.01389

linear 0.00340
4

0.00340 0.00340 0.00340

0.03125 fourth order 0.00359 0.00359 0.00359 0.00359

80x80 0.00347 0.00347 0.00347 0.00347

TABLE 7. I . Maxima of global errors restricted to the finest domain.
Comparison with errors on a standard uniform grid.

errors bounds and is thus rather conservative.
The use of the two different interpolants is expressed in the slightly different

integration domains shown in Figures 7.1 and 7.2. As expected, at the higher levels
linear interpolation gives rise to somewhat larger domains. Showing that linear
interpolation is more expensive. As a rule, fourth-order interpolation is to be pre­
ferred as it leads to smaller domains. Note that for both interpolants the moving
domains accurately reflect the symmetric rotation of the cone, which once again
nicely illustrates the reliability of the implemented refinement condition with the
various estimators.

3.8. FINAL REMARKS AND FUTURE PLANS

In our future research we plan to pay more attention to time-stepping efficiency.
Using the refinement strategy of this paper as a starting point, we plan to examine
the application of methods possessing a higher order in time. Natural candidates
belong to the class of Runge-Kutta methods. It should be stressed, though, that fully
implicit methods can only be of serious advantage if the numerical algebra issue can
be satisfactorily solved. In this connection splitting methods of the ADI and LOD
type (see [10]) may therefore provide an attractive alternative to fully implicit ones,
although they are usually less accurate in time. Another point of serious practical
concern is to apply methods not only using an a priori chosen number of levels, but

65

- ,-- ·--· -- r-,-

~ H -H- -+-- ➔-+--+---+--+-~+-+-----t--l--l
f----- U •-1--r-----1

-r-~·-- ,~~r-----t-r+-rrrrrrrrrrr~rrrrh-i
- r·-.----t--r- -1--r -r- -f-i-f--f-+

----1----1----+-+---t-+--- 4-1--j-" --1--+--1-1- - ,--1-t--

-e

r-L...._--r-t--i------

t=0.5 t= 1.0

r- -1-----t--t--t--t-c--,-----1 ·o-----t~-,~- t-·+--.-- I

f ~~
r:·

++ - 1----+-+-+-+--I r-t- ·- 1-+-0----

·-HHl±f ___ , ---- -

I -r-i------

--+-++--1-+-+··j--j·-·t1--·- -- --- 1------1·-- --

f--f-+--+--+-,>------ . -- -- --- --- I--- -- -- -_____ u __ ~--~-~- ~-~ 1-
t = 1.5 t = 2.0

FIGURE 7 .1. Linear interpolation. Integration domains for the l =4 run at four dif­
ferent times. The size of the integration domains decreases only slowly with the
number of levels. This is due to the fact that the cone is not very steep. At the end
time t=2.0 the number of nodes amounts to 121, 425, 813 and 1917, respectively.

66

t=0.5 t= 1.0

t=l.5 t=2.0

FIGURE 7 .2. Fourth-order interpolation. Integration domains for the l =4 run at four
different times. At the end time t=2.0 the number of nodes amounts to 121, 425,
813 and 1361, respectively.

67

to have also the possibility to vary the number of levels. This might be useful for the
computation of solutions which, for example, steepen up in time like the combustion
problem in [13]. For such problems, the application of a variable number of levels
should be combined with the use of variable temporal step sizes. Preferably, the
complete adaptation then should be monitored by estimators of temporal and spatial
errors in such a way that there is a balance between the two which aims at minimiz­
ing the waste of computing time.

ACKNOWLEDGEMENT
This chapter is based on the paper "Analysis of the Implicit Euler Local Uniform

Grid Refinement Method" by Trompert and Verwer which appeared in SIAM J. Sci.
Comput. 14 (2) (1993), 259-278. We would like to thank the Society for Industrial
and Applied Mathematics for granting permission to reprint. Copyright 1993 by the
Society for Industrial and Applied Mathematics. All rights reserved.

Further we would like to thank Willem Hundsdorfer for his careful reading of the
manuscript.

REFERENCES
1. S. ADJERID and J.E. FLAHERTY (1988). A local Refinement Finite Element

Method for Two Dimensional Parabolic Systems, SIAM J. Sci. Statist. Comput.,
9, 792-811.

2. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement
Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

3. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations, J. Comput. Phys., 53, 484-512.

4. K. DEKKER and J.G. VERWER (1984). Stability of Runge-Kutta Methods for Stiff
Nonlinear Differential Equations, North-Holland, Amsterdam-New York­
Oxford.

5. R.E. EWING (1989). Adaptive Grid Refinement for Transient Flow Problems, in
Adaptive Methods for Partial Differential Equations, 194-205, ed. J.E.
FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D. VASILAKIS, SIAM Publications,
Philadelphia.

6. J.E. FLAHERTY, P.K. MOORE, and C. OZTURAN (1989). Adaptive Overlapping
Grid Methods for Parabolic Systems, in Adaptive Methods for Partial Differen­
tial Equations, 176-193, ed. J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D.
V ASILAKIS, SIAM Publications, Philadelphia.

7. W.D. GROPP (1980). A Test of Moving Mesh Refinement for 2D-Scalar Hyper­
bolic Problems, SIAM J. Sci. Statist. Comput., 1, 191-197.

8. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids,
SIAM J. Sci. Statist. Comput., 8, 292-304.

9. W.D. GROPP (1987). Local Uniform Mesh Refinement on Vector and Parallel
Processors, in Large Scale Scientific Computing, 349-367, ed. P. DEUFLHARD, B.

68

ENGQUIST, Birkhauser Series Progress in Scientific Computing.
10. W.H. HUNDSDORFER and J.G. VERWER (1989). Stability and Convergence of

the Peaceman-Rachford ADI Method, Math. Comp., 53, 81-101.
11. S. McCORMICK and J.W. THOMAS (1986). The Fast Adaptive Composite Grid

(FAC) Method for Elliptic Equations, Math. Comp., 46, 439-456.
12. J.M SANZ-SERNA and J.G. VERWER (1989). Stability and Convergence at the

PDE/Stiff ODE Interface, Appl. Numer. Math., 5, 117-132.
13. R.A. TROMPERT and J.G. VERWER (1991). A Static-Regridding Method for Two

Dimensional Parabolic Partial Differential Equations, Appl. Numer. Math., 8,
65-90.

69

Chapter 4

Runge-Kutta Methods

and Local Uniform Grid Refinement

4.1. INTRODUCTION

Local uniform grid refinement (LUGR) is an adaptive grid technique for comput­
ing solutions of partial differential equations (PDEs) possessing sharp spatial transi­
tions. Using nested, finer-and-finer, uniform subgrids, the LUGR technique refines
the space grid locally around these transitions to avoid discretization on a very fine
grid covering the entire domain. In this paper we examine the LUGRtechnique for
time-dependent problems. Thus, typical solutions aimed at are those possessing
sharp moving transitions, such as steep fronts, emerging layers, moving pulses, etc.
For time-dependent problems, LUGR is combined with static regridding. Static
regridding means that in the course of the time evolution, the space grid is adapted
at discrete times.

We consider Runge-Kutta methods for the time integration and, following the
method-of-lines approach, develop a mathematical framework for the general
Runge-Kutta LUGR method. We hereby focus on parabolic problems, but a consid­
erable part of the discussion applies to hyperbolic problems as well. The present
paper is a continuation of [12] which deals with the implicit Euler method. Here we
discuss how the ideas developed in [12] are extended to the general Runge-Kutta
case. Like in [12], much attention is paid to the local error analysis. The central
issue here is the 'refinement condition', which is to underly the refinement strategy.
By obeying this condition, spatial interpolation errors are controlled in a manner that
the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid
if this grid would be used without any adaptation. Non-numerical subjects, such as
the data structure and the memory use, are not discussed here. These are the same
as in [11]. For related earlier work on LUGR methods, we refer to Berger and
Oliger [3], Gropp [6, 7], Arney and Flaherty [2] and references therein.

70

Section 2 is devoted to the method formulation. Here we develop the mathemati­
cal framework that enables us to give a concise description of the Runge-Kutta
LUGR method. In Section 3 we set up a general error scheme, which is further ela­
borated in Sections 4 and 5. Section 4 briefly addresses the stability issue, while
Section 5 is devoted to the local error analysis. Here we derive the important
refinement condition. Under a natural assumption on the Runge-Kutta method, we
next prove that the 'uniform in h' temporal order of the method is at least equal to
the stage order. Noteworthy is that Sections 3 - 5 apply to the whole class of
Runge-Kutta methods. As a result, the outcome of the analysis is of a general nature,
so that for a specific Runge-Kutta method a further elaboration is needed. Such an
elaboration is presented in the remainder of the paper for a three-stage diagonally­
implicit Runge-Kutta (DIRK) method. In Section 6 attention is given to the order
reduction phenomenon and to how to implement the refinement condition for this
specific method. Section 7 deals with two numerical examples in two space dimen­
sions. Finally, we conclude the paper with Section 8 discussing two important
matters of practical interest.

4.2. THE GENERAL METHOD FORMULATION

4.2.1. The Runge-Kutta method

Consider the initial value problem for a standard system ordinary differential
equations (ODEs)

!u(t)=F(t,U(t)), O<t-5':T, U(O) = u0 . (2.1)

The general one-step, s-stage RK scheme for the numerical solution of (2.1) 1s

denoted by

s

U(i) = un-l + -cI,aijF(tn-1 + cj'C, U(j)), I -5': i -5': s,
j=I

.I'

un = un-l + -cI,b;FCtn-1 + C;'C, u<0),
i=I

(2.2)

(2.3)

where the step size 'C may vary with n. Superscripts will refer to time, while brack­
eted superscripts are used for approximations at intermediate stages. As usual, we
suppose c; = a; 1 + · · · + a;s• In the remainder it is convenient to combine (2.2)­
(2.3) into one formula. Denote a.v+li = b;, 1 -5': i -5': s, u<s+I) = un, then we rewrite
(2.2)-(2.3) as

s

u<i) = un-l + 'C I,aijFCtn-1 + c j'C, u<n), 1 -5': i -5': s + 1. (2.4)
.i=l

71

4.2.2. The semi-discrete problem

Consider an initial-boundary value problem in d space dimensions,

u1 =L(t,u), 0<t5'T, u(::,O)=u0(~), (2.5)

where L is supposed to be of at most second order and provided with appropriate
boundary conditions on the boundary an of the space domain n. The boundary is
taken to be locally parallel to the co-ordinate axes. The function u (x,t) may be vec­
tor valued and is supposed to exist uniquely and to be as often differentiable on
(nuan) x [0, T] as the numerical analysis requires.

LUGR methods use local, uniform grids whose size and number mostly vary in
time. Therefore, LUGR methods generate a sequence of operations on vectors in
vector spaces with a variable dimension. This complicates the error analysis. In
[12] we got round this problem by expanding the fine grids in the mathematical for­
mulation of the method, so that the entire domain is covered. Also here we use this
'grid expansion'. Temporal integration then takes place on one part of the expanded
fine grid and interpolation on the other. Note that this grid expansion does not take
place in the actual application but only in the mathematical formulation of the
method. Nevertheless, the results of the error analysis presented remain valid for
the applicated method.

Let l E JN+. For k = I, · · · , , l we introduce uniform space grids cok where each
cok is supposed to cover the whole of the interior domain n. The grid cok has no
points on an. The grid co1 is called the base grid and, given this grid, co2 is obtained
from co1 by bisecting all sides of all cells of co1, etc.. To (2.5) we now associate on
each cok a real Cauchy problem for an explicit ODE system in lRd',

(2.6)

defined by a finite-difference space-discretization of (2.5) and its boundary condi­
tions. Thus, Uk and Fk are vectors representing the values of grid functions defined
on the grid cok. Each component of Uk and Fk itself is vector valued if u is vector
valued. The boundary conditions have been worked into the semi-discrete system
by eliminating semi-discrete values at an. The dimension dk is determined by the
spatial dimension, the grid spacing, and the number of PDEs. The initial vector U2
for (2.6) is supposed to be exact.

In the remainder we let Sk with dim (Sk) = dk denote the grid function space. Sk
coincides with lRd' and Uk> Fk are elements of Sk. Let uk(t) e Sk represent the
natural (nodal wise) restriction of u (x,t) to cok. In Sk the fully continuous problem
(2.5) and the semi-discrete problem (2.6) are related by the local spatial discretiza­
tion error

72

(2.7)

In particular, uk and ak are sufficiently often differentiable with respect to t and
ak(t) has the order of consistency of the finite-difference scheme. Finally, we note
once more that we consider elements uk(t), Uk(t) E Sk defined on space grids wk
which cover the entire physical domain Q.

4.2.3. The multi-level multi-stage RK method

Starting at the coarse base grid ro1, this method successively integrates on
subgrids of wk fork= 2, · · · , lover the same time interval [tn-I, tnl- Characteristic
for the method is that subgrids, henceforth called the integration domains, are nested
and that so to say on each domain a new initial-boundary value problem is solved.
Required initial values are defined by interpolation from the next coarser integration
domain or taken from a possibly existing one from the previous time interval. Boun­
dary values required at internal boundaries are also interpolated from the next
coarser integration domain. At each level of refinement, the domains are allowed to
be disjunct and thus may consist of two or more subdomains. The nesting is contin­
ued up to a level fine enough to resolve the anticipated fine scale structure. This
means that, given ro1, l must be chosen sufficiently large. Having completed the
integration on the finest, 1th-level integration domain, the process is repeated for the
next time interval [tn, tn+il by again starting from ro1• We note that all refined
subgrids computed at forward time are kept in storage as they are used for step con­
tinuation. Further, for step continuation always the most accurate solution is used
that is available.

The above described process is defined by the formulas

s
U\il =R11U7-I +'t_LaijF1Ctn-l +cj't, U\n),

j=I

1::;i::;s+l; k=I,

s
ufl = Di [Rzkvl-l + 't LaijFitn-1 + C j't, u}/l)] +

j=I

(2.8a)

(2.8b)

where u~<+I) = V'!c E sk is the approximation to uk(fn> at the grid O)b ufl E sk is the
i th intermediate approximation at rob h: Sk ➔ Skis the unit matrix, DZ: Sk ➔ Sk is a
diagonal matrix with entries (DDu either unity or zero, R1k: S1 ➔ Sk, k = 1, · · ·, l, is
the natural restriction operator from ro1 to wk with Ru= 11, Pk-lk: Sk-I ➔ Sk,
k = 2, · · ·, l, is an interpolation operator from rok-l to rob and bfl E Sk contains

73

time-dependent terms emanating from the physical boundary an.
The nesting property of the integration domains is induced by the grid strategy.

This strategy determines at which nodes integration or interpolation is carried out
and defines t11e diagonal matrices DZ. If at a node integration is to take place, then
the associated diagonal entry (DZ)u is defined as (DZ)u = l. For all remaining inter­
polation nodes, (DZ);; = 0. The nesting property itself cannot be recovered from the
above formulation, as this is hidden in the actual definition of DZ.

The interpolation step on level k ;c: 2 stands on its own and is represented by

The grid function bfl plays an auxiliary role. We need to include it as boundary
conditions have been worked into (2.6) (method of lines). For the analysis
presented bfl plays no role (it contains merely time-dependent terms and does not
depend on u (x,t)). Likewise, the integration step on the integration domain of level
k is represented by

s

DZUf) =Di [R1ku7-1 +1:I,aijFk(tn-l +cj'l:, uf/l)],
j=I

(2.10)

where, according to (2.8a), D7 = I 1. Values at or beyond internal boundaries needed
in the function evaluation in (2.10) are defined by (2.9), for each RK stage. Hence,
due to the internal boundaries, (2.10) cannot be considered uncoupled from the
interpolation (2.9). Also observe that at each grid level the integration has the fine
grid solution DkRtku7-1 as initial function. Note that if we substitute the implicit
Euler formula in (2.10), the scheme of [12] is obtained.

In (2.8) the approximations ufl are defined on the whole of the grids rok and thus
are also elements of Sk. Consequently, for any k ;c: 2 interpolation is considered to
take place on the whole of rob which is costly. In actual application, the interpola­
tions are therefore restricted to the nested integration domains. This point will be
discussed later in the paper. For the time being, it is assumed that the numerical
solutions are indeed generated as grid functions in Sk (grid expansion).

In (2.8) the number of grid levels l is fixed a priori, independent of time. In appli­
cations this fixed-level mode of operation may be inefficient. For example, if a solu­
tion steepens up in time, less levels are needed in the initial integration than at later
times. Consequently, at early times l must be taken larger than necessary, which is
not efficient. On the other hand, the solution may also become less steep, which
again makes a fixed l inefficient. Obviously, the method should be capable of work­
ing with a variable l. For this variable-level mode of operation (2.8) requires a
modification. Let ln-l, ln denote the number of levels from tn-l to tn and tn to t11 +1,

respectively. Then, for the step from t11 _ 1 to tn, (2.8) is modified to

74

s

UV) =R1"_11Uf;~_\ +1:I;auF1Ctn-l +cj't, U\n),
j=I

l:S:i:'.S:s+I; k=I,

s

ufl = DZ [R1n-1ku7;=_\ + 1:I;aijFkCtn-l + Cj't, u}jl)] +
j=l

and, provided ln > ln-l, fork= ln_1+1, · · ·, ln we have

l:S:i:'.S:s+I.

(2.11 a)

(2.1 lb)

(2.1 lc)

Consequently, if the number of levels should increase for use in the next step, then
so-called full interpolations (2.1 lc) are carried out at the end of the current step, so
that the required initial function, which is to be taken from the highest grid level that
will be used, is always available. If ln :'.S: ln-l, then (2.1 lc) is omitted and nothing
really changes. Full interpolation is necessary only when the solution steepens up in
time. Because we will, let the ln depend exclusively on the spatial steepness, and
because maxn { ln} is finite, full interpolation is carried out only for a finite number
of steps, uniformly in 't. Hence full interpolation cannot have a strongly diminishing
effect on global accuracy. Like the matrices DZ, the actual choice for ln is part of the
adaptation strategy.

We conclude this section with a minor modification for certain RK methods.
Above, Dk depends only on the step number n and the level index k, and not on the
stages. There exist RK methods for which all coefficients a lj are zero, trivially so
for all explicit methods, but for example also for the implicit Lobatto IIIA-methods
(s = 2 yields the familiar trapezoidal rule). If this is the case, then it is more natural
to define for all grid levels the first-stage value as

(2.12)

to avoid interpolation. This means that at stage one DZ is to be replaced by the unit
matrix lk.

4.3. THE GENERAL ERROR SCHEME

To save space, (2.11) is rewritten as

s
uf) = DZ [R1n-1kut:.\ + 'tI,aijFkCtn-1 + Cj't, uV))] +

j=I

75

(3.1)

Note that D7 = 11 and DZ= 0 if k > ln-l · Further, if a lj = 0 (l :;; j:;; s), then DZ is
to be replaced by h for i = l, but only for 1 :;; k :;; ln-l · The rewriting of (2.11) into
(3.1) introduces variables not existing in reality, viz. the grid functions u~l, b\i) and
the operators P 01 and R1n_,k fork> ln-l· Formally we can use (3.1) due to the
definition of DZ.

The derivation of the error scheme parallels that in [12]. Consider the perturbed
scheme

with the local perturbations rfl still arbitrary. Introduce the errors

eu) = u-<ki) - vu), 1 < · < +1 1 < k < t k k - l - S ; - - n,

and subtract (3.1) from (3.2) to obtain

s

ef) = DZ [R,n_1ke~-::_~ + 't I,aijMV) eV)] +
j=I

(3.3)

(3.4)

MV) is the integrated Jacobian matrix resulting from the use of the mean value
theorem:

(3.5a)

(3.5b)

76

We next introduce the Kronecker product notation. Let Es+I be the unit matrix of
order s+l and denote e = [1, ···If E JR.s+t _ Introduce the augmented vectors

in the augmented space sk = JR.(s+l)d, and the matrix operators

R1n-1k: S111-I ➔ sk,
pk_lk: sk-1 ➔ sk,
Ik: sk ➔ sk,

R1n-1k = Es+I ® R1._,k = diag(R1n_,d,

Pk-tk = Es+1 ® Pk-tk = diag(Pk-lk),

lk = Es+I ® h = diag(/k)-

(3.7)

Define o;: sk ➔ sk, D~ = diag(/k, DZ, · · ·, DV if a,j = 0, 1 ~ j ~ s (cf. (2.12)),
and otherwise diag(DZ). Finally, we introduce the augmented Jacobian operators

a11Mk') a12Mk2) a1,,M}z) 0

M:= (3.8a)

a_,.;Mf') a.,2Mf) a.,.,Mf') 0

as+11Mf') as+12Mf) as+lsMks) 0

(3.8b)

so that (3.4) can now be written in the compact form

Z n n DnR '°' n-1 I Dn p n n
kek = k l11-1ie 'Cl e111-I) + (k - k) k-lkek-1 + rk, (3.9)

I~ k ~ ln.

In (3.9) we deal with an inner and outer recursion connected, respectively, with
the grid refinement index k and time stepping index n. Introduce

x: = (Z~)-1(1k -D;)Pk-lb

rn (Zn)_,DnR
k = k k l11 -1b (3.10)

<j>~ = (Z~r'r~,

77

where k = 1, · · ·, ln. Note that z; = lb X; = Pk-lb r; = 0, 4>; = r; for the full
interpolation levels k = ln_1+1, · · ·, ln. Using (3.10), (3.9) is rewritten as

k = 1, · · ·, ln.

An elementary calculation then leads to the final form

where G; and 'I'~ itself are also defined by recursions:

G" X"G" rn j = j j-1 + j,

n xn n "'n
'lfj= j'lfj-l+'f'j,

j =2, · · ·, k,

j =2, · · ·, k.

(3.11)

(3.12)

(3.13)

(3.14)

Equation (3.12) describes the error propagation for increasing levels within one
complete time step. When to be used as error recursion in time, we put k = ln as we
use the highest level approximations uf;=-~, Uf" , · · · for step continuation. Hence,

n = 1,2, · · ·, (3.15)

is the final error scheme for the highest level approximations. Similar as in the stan­
dard application of the RK method (single-level, multi-stage), our main interest con­
cerns the (s+l)th component vector. Note that the formulation (3.15) supposes that
U~ is taken for output rather than Ufn-i .

4.4. REMARKS ON STABILITY

In [12] we have presented a comprehensive analysis of the stability of the multi­
level implicit Euler method. The multi-level multi-stage RK formulas are not so
feasible for a comprehensive stability analysis. A technical difficulty originates from
the property that at any RK stage, nonphysical boundary values are defined by inter­
polating the solution of the corresponding stage from the next coarser grid. This
implies that the internal RK stages play a role in the stability analysis, even for con­
stant coefficient linear problems. On the other hand, we believe this role is little and
that in application one encounters the same step-by-step stability as on a single grid,
as long as interpolation takes place in low-error regions. In this paper no further
attention is paid to stability analysis. Instead, we refer to the preprint [10] for some
preliminary remarks on stability and proceed with the local error analysis which is
to reveal how to define the adaptation strategy for choosing the spatial integration

78

domains at the various refinement levels. Obviously, this is one of the main issues in
the analysis, implementation and application of adaptive grid methods.

4.5. THE LOCAL ERRORS

4.5.1. Preliminaries

In the following, 11-11 denotes the conventional maximum norm. We use the max­
imum norm as this norm is most natural for implementing adaptation strategies.
Note that 11-11 stands for the maximum norm in any space Sk or Sk under considera­
tion, while the same symbol will be used for operators. We will examine the total
local error 'V~ obtained by associatinp. the local perturbations r~ with the true PDE
solution. Note that the global errors e; then become global discretization errors, viz.

(5.1)

For clarity, henceforth we will consistently call 'V~ the total local error, whereas r;
will be consistently called a residual, so as to distinguish from 'V;. Note that 'V~ can
be interpreted as the kth -level global error after one time step starting from the true
PDE solution (put e7;::.\ = 0 in (3.12)).

We have tacitly used the natural assumption that any occurring augmented RK
operator Z~ is invertible (under appropriate conditions on 't and cod. We thus may
introduce the following bound:

(5.2)

where C 2 I denotes a constant independent of 't and cok> while 't itself satisfies
't ~ 'to with 'to possibly depending on co1._1 . The constant C and step size bound 'to
are assumed to take on appropriate values (C close to 1 and 'to not unduly restric­
tive). As in [12], the aim of the error analysis is to derive a refinement condition
that distributes space discretization and interpolation errors in such a way that the
local spatial accuracy obtained on co1._1 is comparable to the local spatial accuracy

if this grid would be used without any adaptation. Assuming a stable time stepping
process, this will then also be true for the global spatial accuracy.

n
4.5.2. The local error 'Vk

~(i)
Replace, in the perturbed scheme (3.2), all Uk values by the corresponding PDE

solution values ufl. Then, in the space Sk> the resulting residual r~ can be
expressed as

(5.3)

where

~; = [Pk)) T, · · · , Pk') T, Pks+l) Tf,

cr; = (A ® Ik) [<Xkl) T, ... '<Xks) T, cxr'+I) Tf,

y; = [rP) T, · · · , rt) T, rt+!) Tf,

The component pfl is the PDE residual defined for the i th RK stage:

The component cxfl is the PDE residual defined by the semi-discretization:

79

(5.4a)

(5.4b)

(5.4c)

(5.5)

(5.6)

Following common use, a; and likewise cr; and their components, will also be
called local space discretization error. The matrix A represents the (s+l) x (s+l)
Butcher matrix of RK coefficients aij whose (s+ l) th column is zero. Hence, the i th

component crfl of cr; is given by crfl = I,~_1 aijcxVl. Finally, the component rfl is
the residual defined by the interpolation: J-

and rfl and y; will also be called interpolation error. Observe that any component
vector

(5.8)

of r; is now determined completely by the true PDE solution u = u(x, t). Thus, rfl
can be Taylor expanded assuming sufficient differentiability. -

We are now ready to determine the local error \j/; defined by recursion (3.14).
Assuming

k+I

I]X~=lk, k=l,···,l,,, (5.9)
i=k

and using (3.10) and (5.3), we get

80

(5.10)

A natural splitting into a temporal and a spatial local error is

n n n
\jlk = \jlk,s + \jlk,r, (5.11)

where

(5.12)

(5.13)

The local space error \jl~,s contains only contributions from the spatial approxima­
tion, viz. local space discretization errors cr; and spatial interpolation errors y;. The
local time error \jl~,r contains only contributions ~; from the time integration.
Hence, due to the splitting (5.11), for the spatial local error analysis we may restrict
ourselves to \jl~,s and f?r the temporal local error analysis to \j/;, 1•

n
4.5.3. The local space error 'l'k,s

We rewrite \j/;,., as

n zn -1 I Dn p
'l'k,s=(d (k- k) k-lk*

(5.14)

where

k = 2, · · ·, ln. (5.15)

In (5.14), the local space discretization error D~cr~, defined at the level-k integra­
tion domain, is separated from the local spatial error part (lk - D~)P~ outside this
domain. Note that p ~ contains the level-k interpolation error Yk and the prolongated
local space error Pk-lk 'l'~-l,s· At the full interpolation levels, (5.14) simplifies to

n n p n
\Jfk,s =''(k + k-lk\Jfk-1,s,

81

(5.16)

The separation of errors in (5.14) enables us to formulate the important
refinement c,:mdition:

(5.17)

where c > 0 denotes a threshold factor to be specified later. Substitution into (5.14)
yields

" Z" I Dn n
ll'V1n-1,sll 5 (l+c)II(In-Ir 't In-I (jln-111. (5.18)

Hence, apart from the factor (1 +c), the local space error at the finest level is
bounded by the local space discretization error on its integration domain. By impos­
ing (5.17), we have virtually removed the error contribution from interpolation com­
mitted on all levels k 5 ln-l. Inequality (5.18) is in agreement with our goal of
developing an adaptation strategy that generates integration domains in such a way
that the spatial accuracy obtained on the finest level is comparable to that obtained
without adaptation.

The refinement condition (5.17) implies constraints on the matrices o; for
2 5 k 5 [11 _ 1• These constraints follow from the following derivation. Let, for brev­
ity, l = ln-l . With a simple calculation [12], we can rewrite p7 as

1-1 k+I
n ,.. n p xn zn -I I on ,.. n

P1=/\,1+ 1-111:(Il i)(k) (k- k)l\,k, (5.19)
k=2 i=l-1

where

,.. n n p zn _ 1 0 n n
l\,k =''(k + k-li k-1) 't k-l(jk-1• k =2, · · ·, l, (5.20)

contains the interpolation error at level k and the prolongated spatial discretization
error of level k-1 to k (fork= l - 1 convention (5.9) applies). This A-function will
be used for determining the matrices D~. Let C1 ~ 1 be a constant such that

(5.21)

For linear interpolation C1 = 1, while for higher-order Lagrangian interpolation
Ci> 1. Now,

82

k+I
II TI X711 ~ Cx ~ (Ccd-k-l (5.22)
i=l-1

and using (5.19) we get

(5.23)

with the grid independent constant

(5.24)

Hence, if for each k = 2, · · ·, l, the matrices o; are selected such that

I D n ') II C zn I DI! II II(k - k)l\,kll ~ -=-II(I)- 't I <J1 II, (5.25)
C

then the refinement condition (5.17) is satisfied. In the remainder, (5.25) thus
replaces (5.17).

This condition says that outside any integration domain the sum of the interpola­
tion and prolongated spatial discretization error from the previous coarser level wUl
be bounded by the spatial discretization error of the highest level, multiplied by c IC.
This imposes a severe restriction on the size of the interpolation and discretization
errors of the lower levels. On the other hand, this restriction is natural, because,
when going to a higher level within the current time step, we never return to a grid
point where the solution has been interpolated (nesting property). Note that in (5.25)
the temporal step size 't features. In particular, if 't➔O, then the interpolation errors
will prevail and o; ➔ lk. Recall that we interpolate at each time step so that inter­
polation errors can accumulate linearly with the number of time steps. Our
refinement condition prevents this.

The refinement condition (5.25) is not applicable to the full interpolation levels as
at these levels o; = 0. For simplicity, we now consider only one full interpolation
level and note that this is sufficient for practical purposes. Using (5.16), if
ln = [11 _ 1 + 1 we thus find, instead of (5 .18),

(5.26)

Recall that full interpolation occurs only in a finite number of steps, uniformly in 't.

Hence, when adding all local errors for a convergence proof, assuming stability, this
fact should be taken into account so as to avoid an overly pessimistic summation
like

83

(5.27)

With a more subtle summation, based on the finite number of full interpolations, the
1:-1-term is avoided.

In conclusion, by imposing the refinement condition (5.25), the local space error
bounds (5.18), (5.26) are valid. In an implementation these bounds can be used to
monitor the spatial accuracy, while (5.25) is then used for selecting the actual
integration domains. Such an implementation is method dependent and therefore
best to describe for a selected method. An illustration for a DIRK method is
presented below. Finally, the error bound (5.18) suggests to choose the threshold
factor c not too large. However, if we take c very small, then the effect will be that
the greater part of the diagonal entries of D~ are put to unity to satisfy the
refinement condition, which implies that the integration domains will become quite
large.

4.5.4. The local time error 'l'~,t

Since the same 't is used at all levels, and B ~ does not depend on the mesh width,
we have B~ = R1n-ikB~-i so that (5.13) yields

(5.28)

By comparison with the recursion (3.13) for the amplification operators GZ, one can
see that

n _ Gnn.n
'l'k,t- kfJln-1' (5.29)

This formula shows the dependence of the local time error on the temporal residual
of the finest integration level. Alternatively, we may write, similar as for the local
space error (5.14),

'I';,/= (ZZr1 [D;R,n-1kB~-I + (lk -D~)Pk-lk'l'~-1,t], (5.30)

k = 1, · · · , ln-1.

This representation shows more insight than (5.29). At each integration level we
recover the local time error contribution committed on the integration domain, viz.
(Z~)-1 [D~R111 _ 1kB7,,_1], and the prolongation of the previous local time error of the

. zn I I Dn p n next coarser level, VIZ. (kr [(k - k) k-lk'l'k-1,t]-

Let p denote the stage order of the RK method, [5, 8, 9]. Using (5.2) we have

84

(5.31)

Because both ~t-i and \JI;,, are O ('tjj+I), by definition of stage order, we thus trivi­

ally recover the usual stage-order result at all grid levels, that is,

11l = 0 ('tj,+I) 'I' k,t , (5.32)

where, apart from the norm bounds C for (Z~r1 and C1 for Pj-lj, the order con­
stant involved depends exclusively on bounds for temporal derivatives of u (x,t) (cf.
(5.5)). To recover the conventional ODE order, p say, of the RK method, the
(s+lt output component of \j/~,, must be expanded. We then would also arrive at
an order relation \j/~,, = 0 ('tp+l), but here the constant involved may depend on
negative powers of the mesh width, similar as in existing method-of-lines conver­
gence theories (see [8, 9] and the preprint [10] on the order reduction phenomenon).
Finally, no integration takes place at a full interpolation level, so that

n p n \JI k,t = k-lk \JI k-1,t, (5.33)

and we thus have the same temporal order as for \j/~,1, 1 ~ k ~In-I·

4.6. ERROR ANALYSIS FOR A THREE-STAGE DIRK METHOD

By way of illustration, in this section we elaborate the local error analysis for a
three-stage DIRK method which later on will be used for presenting numerical
examples.

4.6.1. The DIRK method

The DIRK method is found in [4] and defined by the Butcher array

0 0
20 0

b1

0 0
0 0

h2 0

0 =(3+{3)/6
b 1 = 3/2-0-1/(40)
b2 =-1/2+1/(40) (6.1)

It is strongly A-stable, has classical order p = 3, stage order p = 2, and uses only
two effective stages (first row of coefficients is zero). Note that stage one and two
define the trapezoidal rule and that stage three and four, the output stage, are identi­
cal.

85

4.6.2. Elaboration of the local time error

Assume, for simplicity, that the semi-discrete problem is of constant coefficient
linear type,

(6.2)

Note that the linear case reveals the essentials of the local error analysis. Also for
simplicity, we put ln-l = 2. Conclusions for the higher-level case immediately fol­
low. Thus, our task is to examine

n zn -IR An
'1'1,1 = (I) 21 l-'2• (6.3)

n zn -I DnAn I on p n '1'2,1=(2) [21-'2+(2- 2) 12'1'1,r].

From (5.5), (6.1) we deduce~?>= 0, ~&4> =~~)and

(6.4)

For any vk E Sk having vk'l = 0, the components w~> of wk= (Z~)-1Vk satisfy
Wkl) = 0,

wf> = (h - 0-cDZMk)-1 Vk2), (6.5)

wP) = (h-0-cDiMkr2h2-cDiMkvf) + (h-0-cDZMkr1vPl,

and wk4) = wPl. We note in passing that the bound (5.2) may be derived from

(6.6)

with the logarithmic norm µ = µ=[DZMd independent of (the mesh width of) Mk.
This bound applies in all cases where implicit Euler integrates in a stable way
[5, 12].

Now first put k = l. In view of the foregoing we then find 'l'I'.) = 0, 'I'\;/ = 'I'\:) and

(6.7)

86

Using the boundedness of the operators (/ 1 - 0tM I r', (/ 1 - 0tM I r 2tM 1, fork = 1
the stage-order result (5.32) with p = 2 is recovered. Also the classical order p = 3
follows from 'I'~;) when interpreted as the local ODE error. However, then the order
constant depends on M 1R 21 d 3u 2/dt3<tn-t)=M 1d 3u 1/dt 3(tn-l). Hence, p =3 is
meaningful only when M 1d 3u 1ldt3<tn-i)= 0(1), uniformly in the mesh width,
which is the case if the third derivative is zero at an. Otherwise the constant blows
up for decreasing mesh width, making p = 3 not meaningful (order reduction, see
[10] for a concrete example).

Next we put the level index k = 2. Since also ln-t = 2, it suffices to examine the
local error of the output stage, which is calculated from (6.3) as

"'~l = u2 - etDiM2r2h2tDiM2[Di~&2> + u2 -Di)P12'l'~:l1 +

(/ 2 - 0tDiM 2r1 [Di ~&3> + (/ 2 - Di)P 12 'l'~:)J

= u2 - 0tD2M2r2h2tDiM2CDi~&2> + u2 -Di)P12'fll:l1 + (6.s)

u 2 - etDiM 2r' u 2 - Di)P 12 '1'1:l + o (t4).

'!'&;/ = 'l'&:l

Using boundedness of the operators, and the results for k = 1, stage order p = 2
directly follows. Inspection of the various terms also reveals the classical order
p = 3. In connection with the occurrence of internal boundaries at grid interfaces, it
is of interest to again examine the possibility of order reduction.

Distinguishing local error components outside and inside the integration domain,
we can write,

(/ 2 - Di)'!'&;) = (/ 2 - Di)P 12 'I'~;),

Di'!'&;)= (/2 -8tDiM2r2b2tDiM2 *

[DW&2> + (/2 -Di)P12'fll:l1 +

(6.9a)

(6.9b)

Apart from the interpolation, the outside local error (6.9a) is completely determined
by level-I properties, so that a reduction at level 1 will also be felt at level-2 com­
ponents outside the integration domain. The reduction will also be felt inside the
level-2 integration domain, since (6.9b) depends on internal boundary values com­
puted at level 1. An interesting question is, will the internal boundaries cause order
reduction in case the physical one does not. To examine this question, we hen­
ceforth suppose that no reduction will take place at an and thus assume the

87

additional boundary condition Mkd 3 uJdt\tn-l) = 0 (1), uniformly m the mesh
width. Then'!'\;{ = 0 (-c4) , so that (6.8) yields

"'~:? = u2 - e-cD2M2r2b2-cD2M2[DW~2) + u2 -D2)P12'1'\:l1 +
O(-c4)

= - b 2 2: 3
(/ 2 - 0-cD2M 2)-2-c4 D2M 2 *

[D2 d: u2<tn-d+U2 -D2)P12 d: u1Un-1)] + O(-c4).
dt dt

Substitution of the interpolation error (5.7),

yields

'1'~4l = b2 283 (/ 2 - 0'CD2M 2r2-c4D2M 2U 2 - DD d 3
3 'Y2<tn-l) ' 3 ~

+ O('t4).

(6.10)

(6.11)

(6.12)

We note in passing that the additionally imposed boundary condition implies 'homo­
geneity in boundary conditions', causing the third derivative of b2(t) to vanish.
From (6.12) we now deduce that if

(6.13)

uniformly in the mesh width, then 'I'~;/ = 0 (-c4) uniformly in the mesh width.
Hence, assuming that at the physical boundary no order reduction takes place, an

important conclusion is that the internal boundaries do not cause order reduction if
the interpolation condition (6.13) holds. Fortunately, in applications this condition is
easily satisfied. Sufficient is that

(6.14)

saying that the accuracy order of the interpolation should be greater than or equal to
the spatial order of the differential operator (not to be confused with the order of

88

consistency of the difference operator). For example, for second order in space
problems it suffices to use simple linear interpolation.

4.6.3. Elaboration of the refinement condition

Given a specific integration method, the general refinement condition (5.25)
needs to be simplified for practical use. Two main simplifications can be dis­
tinguished:

(i) The first has to do with the augmented form. Working with (5.25) requires
computing in Sk which is expensive. Consequently, (5.25) is better replaced by an
appropriate approximating condition in Sk> preferably connected with the output
stage. It is always possible to carry this out, since the refinement condition is con­
cerned with spatial errors. Apart from various multiplying bounded operators, these
errors are similar over the stages.

Consider (5.20), (5.25). First we replace the Jacobian Mfl occurring in Z~ by an
approximation Mk constant over the stages. Mk is taken to be the (approximate)
Jacobian, computed at the beginning of the time step. Mk is available as it is also
used in the iterative Newton process for solving the implicit relations. Second, the
augmented spatial error cr; is approximated as

0

n

crk = b I aPl + b2afl + eapi :::: (6.15)

Note that we here truncate O ('t) terms and that aPl = aZ = ak(tn)- Next, by using
(6.5), the nontrivial components of the spatial error function Wk= (Z;r1 D;cr; are
approximated by

wfl :::: 20(h - 0'CDkMkr1 DZai,

wPl:::: (h - 0'tDZMkr1(2b20(h - 0'CDkMk)-1'CDkMk + h)Diaz, (6.16)

wi4l = wPl

At each of the stages we recover a proportionality with the local space discretization
error DZar This justifies to select one particular stage. We choose the approxima­
tion

(6.17)

89

which avoids two forward-backward substitutions and is based on

(6.18)

In first approximation, (6.18) is exact if DZaZ is taken to be an eigenvector belong­
ing to the maximal eigenvalue. On the other hand, the operator in (6.18) is bounded,
which justifies this step.

We now can replace the constituents of the regridding condition by their counter­
parts in Sk:

k = 2, · · · , l = ln-t,

11.Z = "fl + (1 - 2b2)tPk-lk(ZZ-t rt DZ-t aZ-t,

zz = h - 0tDZMk.

(6.19)

(6.20)

(6.21)

Obserye that ll(h -DZ)11.ZII = ll(lk -D~)A.~11 + 0 (t). The choice l - 1 for the con­
stant C is ~xact in case of linear interpolation, provided C::;; 1 (see (5.24), (5.2)). We
will use C = l - l also in other situations and note that, apart from the constant
1 - 2b 2, condition (6.19) is completely identical to the regridding condition found
for the implicit Euler method in [12].

(ii) The second simplification has to do with the nesting property and restricted
interpolation. Once at level k-1 the integration is completed, (6.19) is used to select
the integration domain for level k. This selection process is carried out by the so­
called flagging procedure which scans level-k points and flags those points for which
(6.19) is violated to be placed within the new domain. Our mathematical framework
prescribes that the scan be carried out on the whole of cok, as the interpolation error
"fl is defined on the whole of cok. This, of course, is time consuming. We therefore
apply restricted interpolation, saying that the interpolation is restricted to level-k
points lying within the (k-l)th integration domain. Subsequently, the scan is also
restricted to the (k-l)th integration domain. This way the nesting of the integration
domains is enforced. In [12] it is shown that restricted interpolation leads to (nearly)
the same integration domains as found with full interpolation, hence full interpola­
tion is truly redundant. Finally, the flagging procedure contains some safety meas­
ures (buffering) which enhances the reliability of the restricted interpolation. This
procedure also implements numerical estimators for "fl, (zi-t rt ni-t aZ-t and
ll(Z?)-t D?a?II- To save space, we again refer to [12].

90

4.7. NUMERICAL EXAMPLES

We will illustrate the outcome of the simplified refinement condition (6.19) of the
DIRK method (6.1). Recall that, in theory, this condition guarantees local space
errors at most equal to the maximum of the local space error on the finest grid when
used without adaptation, up to a certain grid independent con~tant (arising, e.g.,
from transferring the refinement condition to Sk and estimating C by l -1). Hence,
assuming stability, our theory dictates that the usual convergence behavior of the
discretization method applied without adaptation will be maintained.

Two examples are presented, both 2D. The first serves to illustrate the above
claim on convergence. This problem is solved using the 'fixed-level mode of opera­
tion'. The second serves to illustrate the performance of the method when applied in
the 'variable-level mode of operation'. This mode is advocated if the solution shape
strongly changes in time, e.g., when steep layers emerge at later times and at earlier
times large gradients are absent. In such situations it is important that new levels are
created in time in order to preserve accuracy. On the other hand, new levels should
not be created too early for efficiency.

4.7.J. Example problem I

The equation is linear and parabolic and given by (Adjerid and Flaherty [1])

u1 =ux.x+U}y-Ux-uy+J(x,y,t), 0<x,y<l, t>0. (7.1)

The initial and Dirichlet boundary conditions and forcing function f are adjusted to

u (x,y,t) = 1 - tanh(25(x - t) + 5(y - 1)). (7.2)

This solution is a skew wave propagating through the domain from left to right. The
wave starts near the left boundary and approaches the right boundary at approxi­
mately t = 0.8. We integrate over the time interval [0,0.6). This problem is suitable
to subdue the LUGR method to a convergence test.

The spatial discretization is based on second-order symmetric differences. Simple
linear interpolation is used and the constant c, introduced in the refinement condi­
tion, is put equal to one. Four computations were performed using, respectively,
1,2,3 and 4 levels. The mesh width in both x- and y-direction of the base grid is
0.05. During a computation the step size 'C is fixed. However, when adding a level,
we simultaneously halve 'C. Because the stage order of the DIRK method is 2, like
the order of the spatial discretization, per computation a gain factor of approxi­
mately 4 then should be found for the total global errors. To compare the accuracy
with the accuracy obtained on a single, uniform grid, we have also solved the prob­
lem in the standard way using the same values for 'C and the mesh width of the finest
level. The values for -c and the mesh width in space are always such that the space

91

error dominates. For illustration purposes this is necessary, since otherwise no valid
conclusion can be drawn on the performance of the spatial refinement condition.

#of single t
't

levels grid 0.3 0.6

0.1 1 20x20 0.17319 0.17401

0.05
2 0.02728 0.02815

40x40 0.02789 0.02810

0.025
3 0.00624 0.00716

80x80 0.00680 0.00684

0.0125
4 0.00177 0.00174

160x160 0.00168 0.00169

TABLE 7.1. Example problem I. Maxima of global errors computed at the finest
available level. Comparison with the accuracy obtained on a single, uniform grid.

The results of the computations are contained in Table 7.1. We see that the LUGR
solutions converge according to the theory and, also, that these solutions are as
accurate as the standard, uniform grid solutions. In view of the simplifications of
Section 6.3, this correspondence in accuracy is striking. We should note, though,
that in the actual flagging procedure some safety measures have been built, like
buffering. Buffering of course helps in keeping the LUGR accuracy close to the
standard accuracy. Figure 7.1 shows the grids of the 2-,3- and 4-level computations
at two different times. Note that the grids align with the wave front and become
larger for smaller 't, in accordance with (6.19).

4. 7.2. Example problem II

The equation is again linear and parabolic,

u1 =u.xx+uyy+J(x,y,t), 0<x,y<l, t>0. (7.3)

The initial and Dirichlet boundary conditions and forcing function f are adjusted to

u (x,y,t) = 1 -tanh(l00[(x - 0.5)2 + (y - 0.5)2 - t + 0.025]). (7.4)

This solution rapidly varies its shape and serves to illustrate the 'variable-level mode
of operation'. At t = 0 the solution is almost zero over the entire domain. As time
elapses it steepens up at [0.5,0.5], developing a circular wave front. This front starts

92

·TT
I

---- - 1---,-r--" ---

- __ -_1 ~::.,__ - ·--I--- --

r-·1----,-' ·t----t-,r++IHH-mr+:+t-+-:=t:ti-H---J---r- 1---- ··""·r---

f--+---+--+-'++-r+-H-+++-+++Ht -+- -1-.-- --- ---' i --:-:__::: ==
e--"""""•-·-- --r ' -

i .. ~ .----rt--- ... ___ r--· - -

:~=r~E t - ~ - ,_ -jwl - i~:-=·~
1---+---r --~ ~ -- -1-- -

--j----f---t--j-t+ I H 1-1+' ' :--=,lcl { I ~J~ fL:~I

. -i

+ ·-··
I+ - - -~

e--:~_-:-
I·+-·-r---.. _l~

-H ···-·- · 1-

1T1 T rTT_T ___ - ' -7T7

liiitff ±~ .. t
r - - T ,- - - -l-

4-++++ l+HH+H ,------ · 1-­

~

rWJftifuf ~ '-=­
~ifilfrOOJ 4 t=

_I-

r __ t __ ro, =.-------_;_· .. ---_--- r- --
- . - ,--

-- '

. . I

FIGURE 7.1. Example Problem I. Grids of the 2-,3- and 4-level computations at
t = 0.3 and t = 0.6.

93

to propagate towards the boundaries when u (0.5,0.5,t):::: 2 and during the propaga­
tion the front becomes steeper. When the front has passed a point (x,y), the solution
u (x,y,t) approximates the value 2. We solve the problem over the time interval
[0,0.1], whi ~'1 is sufficiently large to see all phenomena happen.

The refinement condition (6.19) tells us where to integrate on a finer level. When
using the 'fixed-level mode of operation' this suffices. When using the 'variable­
level mode of operation', we also need a criterion to decide when to change the
number of levels. A natural thing to do is to associate this criterion to the spatial
local error value. In the present experiment we employ the numerical spatial local
error expression as used in (6.19). Within each base time step we monitor the
number of grid levels with the criterion

(7.5)

where TOL represents a tolerance value. Starting with k = l, this inequality is
checked after each level integration. If it is violated, then k is increased by 1. Other­
wise it is decided that enough levels have been introduced and ln-t is assigned the
current value for k. Hence, the idea is to select ln-l in such a way that the local
error expression in (7 .5) is kept close to -cTOL.

We will encounter a few full interpolations. The full interpolation error is
neglected in (7.5). We justify this heuristic decision with the observation that full
interpolation can take place only in a few number of steps (see also Section 5).
However, to remain on the safe side, we now use fourth-order Lagrangian interpola­
tion instead of second-order linear. It is obvious that full interpolation should not
diminish the quality of the approximations, since otherwise the estimation of the
discretization and interpolation errors used by the refinement condition is hindered.
The full interpolation should also not interfere with the estimation of the number of
levels needed in the step to follow. Therefore, the additional errors stemming from
full interpolation have to be restricted in some manner. In the present experiment
fourth-order interpolation has turned out to work satisfactorily.

The actual experiment with problem (7.3) - (7.4) concerns one run over the time
interval [0,0.1]. The constant c of the refinement condition is again put equal to 1.
The step size "C = 0.001 and is kept constant. The value of 0.001 is sufficiently small
to guarantee that spatial effects dominate. The mesh width in both x- and y-direction
of the base grid is 0.05 and the tolerance parameter TOL = 50. Results are collected
in Tables 7.2-7.3 and Figure 7.2. For a subset of time points, including those where
a new grid level is added, Table 7.2 shows the course of the number of grid levels
and the maximum of the global error measured at the finest available grid. Note that
while the circular wave front develops, the algorithm keeps the error at a fairly con­
stant level, which is in line with the idea behind the error monitor (7.5).

The pictures contained in Figure 7.2 illustrate that the grids accurately reflect the
circular wave front form (symmetry), showing that the refinement condition, which
tells us where to refine, works as anticipated. On the other hand, the number of lev­
els needed is not always computed optimally. This happens, e.g., at t = 0.04 and

94

#of global
t

levels error

0.01
1

0.01074
0.017 0.03171

0.D18 0.01222
0.02

2
0.01117

0.03 0.01612
0.039 0.02523

0.04 0.01392
0.05 0.01493
0.06 3 0.01668
0.07 0.02168
0.072 0.02136

0.073 0.01289
0.08

4
0.01191

0.09 0.00722
0.1 0.00713

TABLE 7.2. Example problem II. Maxima of global errors computed at the finest grid
at various time points, including those where a new grid is introduced.

t = 0.073, time points where a new grid level is used for the first time. The grid pic­
tures show that at these time points the new fine grid almost completely overlaps the
existing one, indicating that the new fine grid is introduced too late (the solution
steepens up). Fortunately, Table 7.2 shows that this small deficiency does not dimin­
ish the accuracy for evolving time. Also note that at later points of time this
phenomenon disappears, see t = 0.05 and t = 0.1. This is of course what should hap­
pen due to the ever increasing solution gradients.

The precise origin of this small deficiency is not clear. The error introduced by
the full interpolation can play a role here (this error is not monitored by (7.5)). More
likely is, however, that it emanates from the lack of asymptotics at the coarser grids.
This lack of asymptotics is inherent to any monitoring process that starts on coarse
grids and therefore very difficult to overcome. To provide insight in the asymptotics
for the estimator of (7.5), we have added Table 7.3. This table shows the exact,
analytical values for (7.5) with their estimated numerical values at time points just
before and after the introduction of a new grid level. First, we see that at
corresponding levels before and after the listed time points the numerical estima­
tions are in fairly good agreement with one another, even on the coarse base grid.
This supports the conclusion that the full interpolation is sufficiently accurate for not
interfering with the selection of number of levels. Second, there is excellent agree­
ment between the exact and numerical values on the fine grids. However,

95

t level approx. exact

0.017 1 0.04616 0.05307
0.Q18 1 0.05165 0.05793

2 0.01246 0.01468

0.039 1 0.12511 0.28075
2 0.04678 0.05579

0.04 1 0.13972 0.33177
2 0.05084 0.06329
3 0.01495 0.01467

0.072 1 0.31630 1.48171
2 0.18625 0.30880
3 0.04685 0.05130

0.073 I 0.34144 1.39739
2 0.18078 0.29537
3 0.05088 0.05367
4 0.01683 0.01382

TABLE 7.3. Example problem II. Exact values and numerical estimates of the spatial
local error expression (7.5). Note that the step size 't = 0.001 is contained in these
values.

particularly at later times, the coarse grid values are not in good agreement with one
another. This means that we are outside the asymptotic regime and this is likely to
cause some disturbances in the selection of the right number of levels. We wish to
emphasize once more that in spite of this lack of asymptotics, the overall behavior
of the algorithm is very satisfactorily.

Let us conclude with a remark on the choice of TOL, in connection with the
discrepancy between the value TOL = 50 and the global accuracy shown in Table
7.2. A discrepancy like this is unavoidable, due to damping of global errors. Note
that we have a parabolic problem and that the DIRK method mimics the damping
property of the parabolic operator (strong A-stability). Part of the discrepancy may
also originate from cancellation between temporal and spatial terms. This damping
of global errors, and this eventual cancellation, has not been taken into account in
our error analysis which focuses on local errors, in particular on local error bounds.
For precise estimation purposes our analysis is simply too general. On the other
hand, the present example once more shows that local error bounds like (7.5) can be
much too conservative (the simplified form is not essential for the present discus­
sion). Consequently, for application, local error expressions like (7.5) are better be
interpreted as error monitors. In connection with grid selection purposes, our practi­
cal experience is that with this interpretation the (simplified) spatial local error
expression is reliable and works very satisfactorily.

96

l-+----l---l--C-+-+-+---,~1-+-+- - -- 1--4---'--1---'---"--

f-+-+-H-++--J r+t-H-l++H,H-+-J-l- -+---
1-+-+--l-f---+-+-+tt+++-H I--H-I-H8+-l-+-+---l--f---+-l

-- -r=.:__.:__::::::J

--l-4-L+i+-4----1----l-+-I--- - l- f--

-+--+-->-+--+- --- - --f-- I-- -1------+- l-+-f--+-l

l-+-+-+-;f-+-+-+---,--+-+-+-+-+--C- - - ··- -~--

+-+-+-+-+-+-f-+-1-- -c~-- -,--~ -~~ -• -1----

1 = 0.018

l-=-'--- -- --t--l---l--l-l--+--l-l-1-----l--'-'--l--lf-+_j__j
h+o-H-ll--1-1-c+-h--h-l-l-- -- --- -- ,~

1t111-trttt:rltttttttt:tt:1:t-:rJ'·- --- _, ___ --
~ -------"-- -+
LLLLLt+ttttl:ttttttttmrt::(,_

-+ --- -II- -
~ -t-~ -r--+-+-+-+-+-+-+-+-+
- r-1- - -I- ~ - - --- _,_ --- 0-j-j-f--J-+-l

~H--+=~~-=---- ,_ ___ _:_ _ __:,==1
I= 0.03

C:.:: •: ::~r~'.-: ~

r· .. ' -

t=0.04

FIGURE 7.2. Example Problem IL The course of the local, uniform grids and the
computed solution of (7.3).

97

+H

I""+

t =0.073

t=O.I

FIGURE 7 .2. continued.

98

4.8. EFFICIENCY OF TIME STEPPING

An important subject for future research is that of efficiency of the time-stepping
scheme itself when combined with the LUGR technique. Two important issues not
addressed in this work concern the use of variable time steps and the solution of the
arising systems of linear and nonlinear algebraic equations, in case of an implicit
scheme. Straightforward use of variable time step algorithms, as successfully
applied in single-grid, method-of-lines computations, renders problems due to the
fact that approximations obtained with an LUGR method are always difficult to
numerically differentiate in time. The reason for this is that part of the components
is obtained from a numerical integration, part from interpolation or injection. The
resulting 'nonsmoothness' is then felt when computing higher temporal derivatives.
More precisely, the higher temporal derivatives are estimated in a rough way, result­
ing in disturbances in the step size selection (see also [II]). To our experience,
smoothing or filtering procedures provide only a partial remedy here.

Concerning the second issue, by nature of the LUGR approach approximations
are computed in varying dimensions, even within one base time step. For DIRK or
alternative implicit methods this obviously implies that the numerical algebra effort,
to be made in solving systems of algebraic equations, becomes highly important. In
the numerical experiments reported here, we have paid no attention to the efficiency
of the numerical algebra computations and simply used an available sparse matrix
technique (same as in 02]). This technique, however, is known to yield a consider­
able overhead when used in the solution of time-dependent problems. It is most
likely that sophisticated iterative solution procedures will be much more effective.

ACKNOWLEDGEMENT
This chapter is based on the paper "Runge-Kutta Methods and Local Uniform

Grid Refinement" by Trompert and Verwer which appeared in Math. Comp. 60
(202) (1993), 591-616. We would like to thank the American Mathematical Society
for granting permission to reprint.

REFERENCES
1. S. ADJERID and J.E. FLAHERTY (1988). A local Refinement Finite Element

Method for Two Dimensional Parabolic Systems, SIAM J. Sci. Statist. Comput.,
9, 792-811.

2. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement
Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

3. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations, J. Comput. Phys., 53, 484-512.

4. M. CROUZEIX and P.A. RAVIART (1980). Approximation des Problemes
d'Evolution. Premiere Partie: Etude des Methodes Lineaires a Pas Multiples et
des Methodes de Runge-Kutta, Unpublished Lecture Notes, Universite de

99

Rennes, France.
5. K. DEKKER and J.G. VERWER (1984). Stability of Runge-Kutta Methods for Stiff

Nonlinear Differential Equations, North-Holland, Amsterdam-New York­
Oxford.

6. W.D. GROPP (1987). Local Uniform Mesh Refinement on Vector and Parallel
Processors, in Large Scale Scientific Computing, 349-367, ed. P. DEUFLHARD, B.
ENGQUIST, Birkhauser Series Progress in Scientific Computing.

7. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids,
SIAM J. Sci. Statist. Comput., 8, 292-304.

8. J.M SANZ-SERNA and J.G. VERWER (1989). Stability and Convergence at the
PDE/Stiff ODE Interface, Appl. Numer. Math., 5, 117-132.

9. J.M SANZ-SERNA, J.G. VERWER, and W.H. HUNDSDORFER (1987). Conver­
gence and Order Reduction of Runge-Kutta Schemes Applied to Evolutionary
Problems in Partial Differential Equations, Numer. Math., 50, 405-418.

10. R.A. TROMPERT and J.G. VERWER (1990). Runge-Kutta Methods and Local
Uniform Grid Refinement, NM-R9022, Centre for Mathematics and Computer
Science, Amsterdam.

11. R.A. TROMPERT and J.G. VERWER (1991). A Static-Regridding Method for Two
Dimensional Parabolic Partial Differential Equations, Appl. Numer. Math., 8,
65-90.

12. R.A. TROMPERT and J.G. VERWER (1993). Analysis of the Implicit Euler Local
Uniform Grid Refinement Method, SIAM J. Sci. Comput., 18, 259-278.

101

Chapter 5

Local Uniform Grid Refinement and

Systems of Coupled Partial Differential Equations

5.1. INTRODUCTION

The local uniform grid refinement method is an adaptive grid method used to
solve time-dependent partial differential equations (PDEs) with locally steep solu­
tions. For such problems, a uniform space grid can be computationally very
inefficient, since, to obtain an accurate approximation, such a grid would easily have
to contain an excessive number of nodes, particulary so in two and three space
dimensions.

The main feature of local uniform grid refinement is that the PD Es are solved on a
series of nested, uniform, Cartesian, increasingly finer subgrids covering only that
part of the domain where the spatial error is high. The PDEs are solved on each
separate subgrid in a consecutive manner, from coarse to fine. The location and size
of the subgrids are automatically adjusted at discrete times in order to follow the
movement of the steep fronts. The generation of subgrids is continued until
sufficient spatial accuracy is reached.

So far, local uniform grid refinement methods were proposed in a number of dif­
ferent varieties and applied to different kinds of PDEs. Here, we will not attempt to
give a complete overview of the field. We will only sketch some varieties of the
local uniform grid refinement method briefly and provide some references for
interested readers. The methods contained in [1-3, 5] are applied to hyperbolic
PDEs and use explicit time stepping techniques. The method proposed by Berger
and Oliger in [3] employs subgrids which are rectangles which may be skewed with
respect to the co-ordinate axes in order to align with the steep region of the solution.
Subgrids having the same cell sizes can partially overlap each other in this method.
In [l], Arney and Flaherty developed a method very similar to the one in [3] except
that the subgrids here are created by cellular refinement, meaning that the fine grid

102

cells are properly nested within coarser grid cells. Hence, these subgrids have a
piecewise polygonal shape.

Local uniform grid refinement is combined with grid movement in [2, 5]. In [5], a
method proposed by Gropp uses subgrids which are rectangles having sides parallel
to the co-ordinate axes and which are able to move as a whole with the moving
steep fronts. In this method the subgrids are also allowed to overlap each other. In
[2], Arney and Flaherty added grid movement to their method described in [1]. The
grid nodes of the coarsest grid are able to move and the fine grid movement is
induced by the movement of the coarsest grid. Local uniform grid refinement
methods are also used to solve parabolic and elliptic PDEs in [4, 6] and involve the
implicit solution of systems of equations. The subgrids in [4] are piecewise polygo­
nal and the ones in [6] are rectangles. In both [4, 6] domain decomposition is
applied to improve the performance on parallel computers.

Our previous work on this type of adaptive grid method is contained in [7-11].
The subgrids in our method have a piecewise polygonal shape and do not overlap.
Our method is a static-regridding method which means that no grid movement is
applied during a time step. The refinement strategy controlling the generation of
subgrids in [7] is based on heuristic criteria while in [8-11] it is underlied by a
comprehensive error analysis which has resulted in a so-called refinement condition.
This condition has been designed so that when this condition is satisfied during the
grid refinement process and the number of subgrids is fixed in time, then the spatial
accuracy of the solution obtained with the adaptive grid method should be compar­
able to the spatial accuracy obtained using one uniform grid covering the entire spa­
tial domain when the cell sizes of this uniform grid are identical to those of the finest
subgrid in use in the adaptive grid method. The refinement strategy is designed to
fulfill the refinement condition. Due to the refinement condition a convergence
result as if a single, uniform grid was used could be proved in certain model situa­
tions. The error analysis was carried out for the local uniform grid refinement
method applied to time-dependent PDEs which after spatial discretization yield a
system of ordinary differential equations (ODEs). However, when a system of cou­
pled PDEs is solved, this need not be the case. It is known that the global and local
error components associated with each separate PDE belonging to such a system can
behave differently from one PDE to another. This means that, for example, the glo­
bal error corresponding with one PDE can propagate in a different way to future
time levels than the one associated with another PDE. With respect to the local
error, this difference in behavior means that the local errors connected with different
PDEs do not always behave in the same way when the time step size tends to zero.
For this reason the refinement strategy has to be adapted to this more general class
of PDEs. Moreover, in most of our previous work, the refinement strategy is aimed
at controlling the spatial accuracy or global space error by, in some sense, control­
ling the local space error. This strategy performs satisfactorily but can be very res­
trictive, especially when the number of subgrids is large or the time step size very
small. In this paper, the error analysis is redone for systems of coupled PDEs.
From this, a more general and much less restrictive refinement strategy is obtained
aiming at controlling the spatial accuracy by estimating the global space error itself.

103

In Section 2 a brief outline will be given of our version of the local uniform grid
refinement method. Section 3 deals with the mathematical formulation of the
method needed for the error analysis. The results of the error analysis are given in
Section 4. This section also considers the influence of a system of coupled PDEs on
the behavior of the global and local error. The refinement strategy is discussed in
Section 5. Three example problems were used to illustrate the performance of the
method. The results of these tests are given in Section 6. Although the example
problems involve two space dimensions, the error analysis, refinement condition and
refinement strategy applies to any number of space dimensions. The final Section 7
contains the summary and concluding remarks.

5 .2. OUTLINE OF THE ADAPTIVE GRID METHOD

Although its elaboration readily becomes complicated, the idea behind local uni­
form grid refinement is simple. Starting from a coarse grid, finer-and-finer uniform
subgrids are created locally in a nested manner in regions where the solution is
steep. Here, a set of interconnected grid cells, all having the same sizes, is called a
subgrid. A set of subgrids having the same cell sizes is called a grid level or just
grid. Hence, a grid level consists of a single subgrid or several disjunct non­
overlapping subgrids. A new (initial-) boundary value problem is solved at each
grid level in a consecutive order, from coarse to fine using the same time step size
for all grid levels. This means -that the refinement in time is global, i.e. the step size
is adapted in time but is the same for all grid levels in use. Note that the PDEs are
solved on a grid level as a whole, in spite of the fact that the grid level can consist of
several disjunct subgrids. The required initial values for the finer subgrids are
defined by interpolation from the coarser subgrid or taken from a finer subgrid from
the previous time step when available. Internal boundaries, i.e. subgrid boundaries
lying in the interior of the domain, are treated as Dirichlet boundaries and values are
also interpolated from the next coarser grid level. Where the boundary of a fine
subgrid coincides with the boundary of the domain, the prescribed boundary condi­
tions are used. Except for the necessary initial and boundary conditions, all subgrids
are independent of each other. Therefore, the subgrids are not patched into the
coarser grids but are actually overlaying them. The generation of subgrids is contin­
ued until the spatial phenomena are described accurate enough by the finest grid.
The fine grid cells are created by bisecting the sides of the cells of the next coarser
grid, so the refinement is cellular. The subgrids created this way have a piecewise
polygonal shape. Further, the unknowns are defined at cell vertices which implies
that in the region where the coarse grid is overlapped by the fine grid, the coarse
grid nodes coincide with the fine grid nodes.

During each time step the following operations are performed:

(1) Solve the PDEs on the coarsest grid level.
(2) If the desired accuracy in space or the maximum number of grid levels is

reached then go to 8.

104

(3) Determine new finer uniform grid level at forward time.
(4) Interpolate internal boundary values at forward time.
(5) Provide new initial values at backward time.
(6) Solve the PDEs on the new grid level, using the same step length.
(7) go to 2.
(8) Assign fine grid values to the corresponding coarser grid points.

Thus, for each time step the computation starts at the coarse base grid using the most
accurate solution available, since coarse grid solution values are always replaced by
fine grid values at coarse grid nodes coinciding with fine grid nodes and all subgrids
are kept in storage for step continuation.

5.3. MATHEMATICAL FORMULATION

A mathematical formulation will be given needed for the error analysis of the
local uniform grid refinement method. The following system of PDEs is considered,
together with the initial and boundary conditions, defined on a domain n in IR, IR2

or IR3 with boundary an and sides parallel to the co-ordinate axes,

.9ln (~,t,u) u, = :Fn(~,t,u), t > t0 , x E n,

.9/an (~,t,u)'ur = :fan (~,t,u), t > to, X E an,
U(X,to) = Uo(X), X E nuan.

- -

(3. la)

(3.1 b)

(3.J C)

This system of PDEs is assumed to possess a unique solution u(x,t), which is as
often differentiable as the numerical analysis requires. The matrices .9/n and .9/an
are possibly singular matrices; :Fn and :Jan are functions containing spatial partial
differential operators. The matrices .9/n and .9/an do not contain space or time
derivatives of u(~,t). The space discretization of (3.1) (method of lines) yields

A(t,U)U = F(t,U), U(to) = Uo, t > to, (3.2)

where U(t) is the numerical approximation of u(x,t) on a space grid. If A (t, U) is
singular then (3.2) will be a system of differential-algebraic equations (DAEs) and
(3.2) will be a system of ordinary differential equations (ODEs), otherwise. In case
we have, for example, Neumann or Dirichlet boundary conditions, then A (t, U) will
possess rows containing only zeros which implies that (3.2) is a DAE system.

Local uniform grid refinement methods use local subgrids of changing size in
time and thus generate solution vectors with a variable dimension. This complicates
the analysis. In order to circumvent this problem, the fine local subgrids are
expanded over the whole of nuan. The solution to (3 .1) is computed only within
the original perimeter of the subgrid and interpolated from the next coarser subgrid

105

outside this region. This is only done in the mathematical formulation of the method
to make the error analysis easier. It does not take place in the implementation of the
method.

Let Qk, 1 ::; k ::; l, be uniform space grids covering Quan with l denoting the
maximum number of grid levels needed to advance the solution from tn-l to tn- The
grid refinement is cellular so Qk is obtained from Qk-l by bisecting sides of cells of
Qk-l. Note that nodes of Qk-l coincide with nodes on Qk· Let Sk be the vector
space of all grid functions on Qk and let UZ e Sk be the approximation to u(x,tn) at
Qk· Suppose that (3.2) is defined on Qb then using ans-step backward differentia­
tion fonnula (BDF) for time stepping results in the following system of equations,

_l_An(Un)un = _l_An(Un)vn-1 + Fn(Un) 0't k k k S't k k k k k,
s s

(3.3)

where 't = tn - tn-l, vz-1 is the history vector collecting values computed at back­
ward time points and 0.,, a 1, ••• , a., are coefficients depending on current and previ­
ous time step sizes.

Our formulation of the grid refinement method uses the following matrix opera­
tors:

the identity matrix h : sk ➔ sk,
a diagonal matrix DZ : Sk ➔ Sb with diagonal entries equal to unity or zero,

D7 = Ii,
the restriction operator R1k : S1 ➔ Sk, Ru = 11

the interpolation operator pk-lk : sk-1 ➔ sk.

The matrix DZ determines whether the solution at a particular grid node is obtained
by solving (3.1) or by interpolation from Qk-l. The diagonal entries of DZ associ­
ated with this node are equal to unity when (3.1) is solved and equal to zero other­
wise. The number of the diagonal entries associated with each grid node is equal to
the number of PDEs. Note that on the coarsest grid, system (3.1) is solved on the
whole of Q 1, meaning that D7 = 11• For example, the components of the vector
DZBZ, where 8Z is an arbitrary vector in Sk> are nonzero when their corresponding
nodes lie inside the region where (3.1) is solved, and if interpolation takes place then
these components are zero. With the vector (h - DZ)BZ it is just the other way
around. The injection of fine grid solution values in the coarser grid solution is
denoted by the operator R1k and the interpolation by the operator Pk-lk· Since all
nodes of Qk are also contained in Q1, injection takes place at each node of Qk·

One time step of the grid refinement method consists of l consecutive interpola­
tion and solution steps on grids Qk· Those are defined by

(3.4a)

106

(3.4b)

k=l, ,l.

Formula (3.4a) represents the interpolation step and (3.4b) the BDF solution step.
The subgrids in the local uniform grid refinement method are properly nested. This
means that the region of the domain covered by that part of grid level k where (3 .1)
is solved is covered completely by its counterpart associated with grid level k-1.
Hence, the set of nodes contained by that part of grid level k where interpolation
takes place will also belong to the set of nodes where interpolation takes place at the
grid levels k+l, k+2, ... , l. In other words, the solution at the part of grid level k
where interpolation takes place will be repeatedly interpolated until grid level l is
reached. Finally, we emphasize that this occurs only in the formulation of the
method to make the analysis easier. In practice, interpolation only takes place
where it is really needed.

5.4. ERROR ANALYSIS

In this section the results of the error analysis are presented. First, the truncation
errors of the interpolation and the space and time discretization will be introduced.
Then, using the mathematical formulation (3.4), relations are derived for the local
and global error. Finally, we give an example of the behavior of the local and glo­
bal error when a coupled system of PDEs is solved.

5.4.1. Error relations

For ut the pointwise restriction tonk of the exact solution u(x, tn) of (3.1), we
have the following error relations -

(h - DDui = (/k - DD Pk-lk ui-1 + (/k - DD Yi:,

1 DnAn(n) n 1 DnAn(n)R n-1 + DnkFkn(unk) + -e k k Uk Uk = -e k k Uk /kV/ .~ .~
(4. la)

(4.lb)

h n-1 n-1 n-, d n An d ,,rJ h · f th w ere v1 = a I u1 + ... +a,u1 · an <Xk, Pk an lk are t e truncation errors o e
space discretization, the time discretization and the interpolation, respectively. They
are defined by

(4.2a)

~k = (u,)r - /c [uk -a1ui-1 - · · · -a.,u;:-,'],
s

107

(4.2b)

(4.2c)

where (u,)Z is the restriction of ur(x, tn) to Qk· Since the restriction operator R1k

involves only the replacement of coarse grid values by fine grid values at coinciding
nodes after a time step has been performed on all grid levels, no additional errors are
introduced here. Therefore, we have uk-l = R1ku7-1 . The global error attn at Qk is
defined by

Subtracting (3.4) from (4.1) we get

where

and

(lk - DZ)eZ = (h - DZ)Pk-lkek-1 + (h - DZ)y't_,

- 1-Dn[K" + wnk]e;: = - 1-DHL;:ez + WZR1kf7-1] +
0/C k k 0.(t

k=l, ,l,

I

(4.3)

(4.4a)

(4.4b)

(4.5)

[KZ + Wk]ek = f ~[Ak(1;)~]d0 = AZ(uDur - AZCUZ)UZ, (4.6a)
0 d0

108

I

LZeZ + WZR1d?-1 = J :e [AZ@ri]d0
0

(4.6b)

I

M'/,e'/, = f :e [F%(s)Jd0 = FZ(uZ) - FZ(UZ),
0

(4.6c)

I I I

wz = fAZ(s)d0, KZ = J~[AZ(~)s]d0, LZ = J~[AZ(~)T]]d0, (4.6d)
o o ds o ds

s = ~ = euz + (1 - 0)UZ, 11 = 0R,kv7-1 + (1 -0)R,k Vi'-1, (4.6e)

which are obtained by applying the mean value theorem for vector functions. Com­
bining (4.4a) and (4.4b) yields a recurrence relation for the global error

where

r n - (Zn)-1- 1 DnwnR
k - k es 't k k lk

xz = czv-1 (h - DZ)Pk-Ik,

<l>Z = czzr1 {DZaZ - DZAZ(u'/,)PZ + (/k -DZ))1},

zz =Ik-nk + mc-0
1 rwz +KZ-LZJ - MZ).
s 't

(4.7)

(4.8a)

(4.8b)

(4.8c)

(4.8d)

The vector <p'/, is the local level error which is the contribution associated with a sin­
gle time step of grid level k to the global error eZ and zz is the integrated Jacobian
of the system of equations. Using the specific form of ZZ, we note that zz can be
written as Ik - DZ+ DZZZ. When czzr' is written as (h -nvczzr1 + nzczn-1, it
can by pre-multiplying (ZZ)-1 with zz very easily be shown that

czn-1 = h-DZ + mczzr1, k=l, ,l. (4.9)

Relation (4.7) is similar to the one obtained in [8-11] and leads to the following
expressions for the global and local error.

e'/, = cur-1 + \JIZ, n=l,2, ; k=l, ,l, (4.10)

109

where Gk is the amplification matrix and 'l'k the local error which is the contribution
associated with one time step of k grid levels to the global error eZ. They are given
by

which result in

k-1 j+I az = L(IJxn q + n.
.i=l i=k

k-1 j+I

'l'k = L(IJX7) <l>j + <l>Z, k=2, ,l.
.i=l i=k

(4.1 la)

(4.1 lb)

(4.12a)

(4.12b)

Now the local level error <l>k (4.8c) can be split up in a spatial part <!>ts and a tem­
poral part <l>Z,,, where <l>Z == <l>Z,s + <1>t1• These parts are given by

(4.13a)

(4.13b)

This yields two distinct relations for the local space error 'l'k,s and the local time
error 'l'k,r· With (4.9), (4.1 lb) and (4. 13a), the relations for 'l'k,s read

DZ'l't = DZ(zv-1 {DZaZ + (h - DV[Pk-lk'l'k-1,s + Y,:]},

(h - DV'l'Z.S = (h - DV[Pk-lk 'l'k-1,s + YZJ.

(4.14a)

(4.14b)

Here DZ'l'k,s denotes the local space error inside the region of grid level k where
(3.1) is solved and (h - DZ}\jlt, the local space error outside this region. In a simi­
lar way, the local time error can be written as

DZ'l'Z,, = DZ(ZZ)-1 { - DkAZ(uZ)~Z + (h - Dk)Pk-lk'l'k-1,t }, (4. 15a)

(h - Dk)'l'Z,t = (Ik -Dk)Pk-lk'l'k-1,t· (4.15b)

Since the local error can be split up in a spatial and temporal part, the same can be
done with the global error. Using (4.7)-(4.9) and (4.13) we get similar relations for
the global space error

110

(4.16a)

(4.16b)

and for the global time error

D"e" - D"(Z")-1 {D"[-1-W"R fn-l - A"k(u"k)A"k] + k k,r - k k k e k lk l,t t-'
/C

(4.17a)

(4.17b)

When we consider for example the global space error, given by (4.16), we observe
that the global space error in the region of grid level k where interpolation takes
place (4. I 6b) is determined by the global space error at grid level k-1 and the inter­
polation error. The global space error in the region of grid level k where (3.1) is
solved (4.16a) is determined by the inverse of the Jacobian zz operating on a vector
which consists of a part due to the spatial discretization error and the global space
error at previous time points, only nonzero inside this region, and a part due to the
global space error outside this region.

5.4.2. Error behavior

In this paragraph an example will be given of the behavior of the global and local
error. We consider a system of two coupled PDEs which is solved on a single grid.
Therefore, we will drop the subscripts denoting grid levels, k and l, in the remainder
of this section. This system of PDEs leads to the following system of differential­
algebraic equations after spatial discretization

(4.18)

which is written in the format (3.2). The BDF method (3.3) is applied to solve
(4.18) and some notation will be introduced needed for the examination of the glo­
bal and local errors. Relations for the local and global error are derived, using (4.7)
and (4.8). Due to (4.6c), (4.6d) and (4.18), we have

W" = [/ OJ
0 0'

K" = L" = [O OJ
0 0 '

(4.19)

111

The matrix DZ appearing in the error relation (4.7) will be equal to the identity
matrix h in this case which implies that the (h - Dn-terms vanish from (4.7) and
(4.8). The matrix zn is now given by

zn - 1-I-M11 -Mh
0/t (4.20)

Further, the matrix R1k will be equal to the identity matrix. Using the notation
above, this relation (4.7) for the global error is now given by

- 1-I-M11 e., 'C

-M11

(4.21)

The global error at the current time tn, en is given by (e1, e1l and the vector fn-l

in which global errors at backward times are collected by (!7-1 , n-1)7 (cf. (4.5)).
The vectors e1 and e~ represent the global error belonging to U'1 and U~ respec­
tively. Now examining (4.21) leads to the conclusion that only J7-1 contributes to
en. This means that in this case only e7 carries over to future time points while e~
does not.

For the local error \jln we have, according to (4.21)

- 1-I-M11
0.,'C

-M~1

-1

(4.22)

The behavior of the local error for small 'C is determined by the operator (znrl. The
behavior of this operator when it operates on a vector will be investigated for this
case where it is assumed that the cell sizes of the space grid remain constant. This
operator can be written as

-1
- 1-I-M71 -Mh [Y71 Yhl (Z")-1 = 0., 'C =

Y11 Y"
-M~1 -M12 22

(4.23)

112

When we assume that the diagonal blocks of zn are nonsingular we obtain

u + c-1-1 -M'l1 F 1 M'l2CM22)-1 M21 r 1 *
0.,'t

(-1-I -M11 r 1,
e_,.'t

Y21 = - (M22)-1 M21 Y'{1,

This leads to the following approximations for small 't

(4.24a)

(4.24b)

(4.24c)

(4.24d)

(4.25)

from which we obtain the following approximations for the local error components

\j/1 ::::: e., 't/(a.'I - Bn - 0., 'tM12 CM22 F 1 a.2,

\j/2::::: - 0s't(M22)-1M21 (a,'1-B'l)-(M22F1U2.

(4.26a)

(4.26b)

We see from (4.26) that the first component of the local error \Jfi' consists of the
truncation errors of the space and time discretization multiplied with an operator
which behaves like O ('t) for 't➔O, meaning that this component of the local error
will vanish in this case. Further we see that, unlike \Jf'I, the component \j/2 does not
disappear completely when 't➔O.

From this example we conclude that when a system of coupled PDEs are solved
the local and global error components can exhibit a very different behavior. There­
fore, a refinement strategy of an adaptive grid method based on error estimation will
have to take such differences in behavior into account. This means that in case of a
system of coupled PDEs, distinction must be made between errors associated with
each separate PDE when we want to develop a refinement strategy based on error
estimations. This will be discussed in the next section.

113

5.5. REFINEMENT STRATEGY

In [8] PDEs were considered which upon discretization of the space derivatives
lead to a S) stem of explicit ODEs in which the boundary conditions were incor­
porated. This system of ODEs was solved using the implicit Euler method. The
idea was to control the spatial accuracy of the solution by controlling the local space
error. Moreover, in case the number of grid levels is constant in time, the local
space error at the finest local subgrid should be comparable to the local space error
on a single, uniform grid having the same cell sizes as the finest subgrid. A
refinement strategy was developed aiming to fulfill the following inequality which is
called the refinement condition

C > 0,

where Z? is defined as

(5.2)

The matrices /1 and D? are defined similarly as in Section 3. The matrix M? arises
after discretizing the space derivatives of a time-dependent PDE and is comparable
to the matrix defined by (4.6c). When ll(Z7f111=:::::; 1, (5.1) results in the following
bound for the local space error at the finest subgrid

(5.3)

Apart from the constant c, this error bound is similar to the error bound we would
get using a single, uniform grid. This indicates that by satisfying the refinement
condition it is possible to get more or less the same spatial accuracy as if a single,
uniform grid was used. Further, it was proved that (5.1) holds when the inequality

(5.4)

is satisfied while creating finer, local, uniform subgrids, where

A)= y'j + P;-1;(Z'J-1 f 1'tD'J-1 a.'J-1 • (5.5)

In [9] a similar refinement condition and error bound were derived based on a gen­
eral Runge-Kutta time stepping scheme and in [11] a refinement condition was

114

derived for elliptic PDEs.
Although the refinement strategy based on fulfilling (5.4) worked satisfactorily in

practice, it stems from rather conservative estimates of norms and can therefore be
restrictive, especially when the number of grid levels is large. Further, in order to
fulfill (5.4) when 't➔O then the matrix DZ inevitably has to approach the identity
matrix h- This means that when 't is decreased, the local subgrids will cover an
increasingly larger part of the domain and will in the limit of 't = 0 cover the entire
domain. In this respect, (5.4) is also restrictive and one can argue whether it is
really necessary to let the local subgrids cover a larger part of the domain with
decreasing 't in order to retain a high spatial accuracy. Finally, from the previous
section we have concluded that components of the global and local error can exhibit
a different behavior. This is due to the fact that these different components are asso­
ciated with different PDEs. The inequalities (5.1) and (5.4) and the error bound
(5.3) are based on estimates of matrix norms where it is assumed that the system of
PDEs at hand lead to a system of explicit ODEs after spatial discretization. Hence,
it is assumed that all local and global error components behave in a similar manner.
This implies that (5.1) and (5.4) are not sufficiently accurate in case a coupled sys­
tem of general PDEs is solved. This might also be the case with a system of coupled
PDEs where upon semi discretization one or more PDEs lead to a much stiffer sys­
tem of ODEs than the other ones. For this reason, a new, more general refinement
strategy is developed for a general system of coupled PDEs. In contrast to most of
our previous work, this _new strategy will be based on controlling the global space
error which is less restrictive than (5.1). It should satisfy two demands. First, it
must make a distinction between vector components associated with different PDEs,
and second, it must computationally not be too expensive.

Basically a refinement strategy has to answer two questions. The first one is, when
should a new finer grid level be created, and the second one is, which grid cells need
to be refined. In order to answer these questions we will now introduce some nota­
tion. Suppose (3.l) consists of q different PDEs in which the boundary conditions
are included, i.e. boundary conditions are regarded as separate PDEs defined on
boundaries only. Note that a single PDE with Neumann or Dirichlet boundary con­
ditions can also be regarded this way.

An arbitrary vector 8k E sk is generically denoted as csr, J, 8k, 2, ... , 8'L1l,
where the component 8Z,; is associated with the /h PDE. The matrices h, DZ,
Pk-lb R1k are block diagonal and can be written as

h = diag(Jk.l, Ik, 2, ... , h,q),

DZ = diag(DZ, 1 , D'b, ... , Dk,q),

pk-lk = diag(Pk-lk, I, pk-lk, 2, ... , pk-lk,q),

R1k = diag(R1k, 1, Rik, 2, ... , Rtk,q)-

(5.6a)

(5.6b)

(5.6c)

(5.6d)

The matrices WZ, Kk, LZ, Mk and zz are written as block matrices with the blocks
Wk,;;, Kk,ij, Lk,ij, MZ,ij and ZZ,;;, where i,j=I, ,q. The blocks of zz are given by

115

zkn,,.,· = Ik · - Dnk · + Dnk -(-1-[wnk .. + Knk .. - Lkn ··] - Mnk ··) (5.7)
,l ,l ,l 0s't ,ll ,tt ,ll ,ll ,

znk,,;; = Dkn -(-1-[wnk .. + Knk .. - Lnk ··] - Mnk,,,;), i-:t=1·
, ,l es 't ,U ,l) ,l} , •

This leads to the following relation for the global space error

lJ 1 lJ
en - ~ Y" {Dn [~ wn R 1n-l + a,n] + k,s,i - £..; k,ij k,.i O 't _,t,,., k,jm lk,m l,s,m kj

J=I s m=I

(5.8)

i=l, ,q; k=l, ,l,

where r;:,ij is a block of (ZZ)-1• We have established that the various components of
the global and local space error can behave very differently. Consequently, a cri­
terion like, re.fine the grid when the local space error 'lfZ or the global space error
eZ exceeds some tolerance, is simply too crude. Although the operators (ZZ)-1 and
WZ determine how the truncation error of the space discretization a.Z affects the spa­
tial accuracy, one can say that the source of the space error is a.Z. This is certainly
true when a single, uniform grid is used. Therefore, the following criterion can be
used. A new grid level k + 1 is created if there exists a component i for which

(5.9)

holds, where TOL is a user-defined tolerance. It is assumed here that the PDE prob­
lem at hand is properly scaled. Otherwise the scaling of the various PDEs have to
be taken into account in criterion (5.9). We have also built in an extra condition in
our research code to smoothen its behavior. Suppose that the maximum number of
grid levels during the previous time step is l and that at grid level k <l, lla.Z,dl= < TOL
for all i. Although this means that a new finer grid level k + 1 is actually not neces­
sary, it will still be created when Ila.LIi= > 0.9 x TOL, to avoid fluctuations of the
maximum number of grid levels from one time point to the next.

Further, it should be pointed out that when the number of grid levels is increasing
in time additional interpolation errors are introduced, because new initial values
have to be interpolated over the whole newly created grid. It is possible that these
extra interpolation errors diminish the spatial accuracy. For example, this can be the
case when solving reaction diffusion problems with a small diffusion coefficient. In
such case, the interpolation error which will be committed when an extra grid level
is introduced can be very large due to a steep solution while the global space error is
small. For this reason it may be necessary to use an extra criterion to create a new

116

finer grid level based on controlling this potential interpolation error. This means
that the situation can occur that grid refinement talces place not to reduce the global
space error but to reduce the potential interpolation error. However, in most cases
when these potential interpolation errors are large, the global space error will also be
large and therefore, a criterion like (5.9) will be sufficient to control the global spa­
tial accuracy. In the refinement strategy we have implemented, only (5.9) is used as
a refinement criterion.

Having devised a criterion to generate new finer grid levels, we now have to find
a criterion to determine which grid cells need to be refined. In order to do this we
use (4.9) to rewrite (5.8) as

Dn -e" · - D" ~ Y" {D" [-1- ~ W" R fn-l + ex"] + (5 10a) k,1 k,s,1 - k,i ."-' k,ij kj S 't ."-' k,jm lk,m l,s,m k,J ·
J=I s m=I

(5.I0b)

i=l, ,q; k=1, ,l.

When we for a moment abandon the idea of expanded grids and think within terms
of local subgrids, then this new criterion will be based on the notion that after the
coarser grid values have been replaced by the finer grid values at coinciding nodes,
the largest absolute nodal value of the global space error should be at the finest grid
level. If this is not the case then the maximum norm of the global space error over
all grids will not be reduced by creating the finest grid level, which means that this
finest grid level is of no use.

When a grid is locally refined, the nodal values at the part of the grid which is
refined are eventually replaced by finer grid values. However, the nodal values out­
side this part of the domain remain unchanged. This means that if the nodal value of
the maximum space error should be at the finest grid level, we have to malce sure
that the value of the global space error at nodes outside the part of a grid which is
going to be refined are smaller than the maximum global space error at the finest
grid level. This means that, returning to the expanded grids, the global space error
at the part of a grid level where interpolation takes place is smaller than the max­
imum global space error in the region of the finest grid level where (3.1) is solved.
In other words, we have to demand that

(5.11)

i=l, ,q ; k=2, ,l; 0 < c::;;; 1,

where c is a user-defined constant and l the finest grid level which is going to be
used during this time step. If at grid level k-1 (5.9) holds for PDE component i and

117

if at node j the associated component of the vector (h,i - D'/;,i)e'/;,s,i satisfies

(5.12)

then the sixteen cells surrounding j will be refined. This implies that the refinement
is only controlled by the error components connected with the space discretization
error components for which (5.9) holds. In practice the right hand side of (5.12) is
estimated at grid level k-1. Not all grid level-k-1 nodes are scanned but only the
nodes within the region of k-1 where the PDEs are solved. The reason for this is
that outside the region where the PDEs are solved only repeated interpolation takes
place until grid level / is reached. The interpolation error committed by repeated
interpolation will be bounded since repeated interpolation implies that only more
intermediate points will be computed on the same interpolation polynomial. Hence,
the estimate of the right hand side of (5.12) at k-2 can be regarded as a first-order
approximation to the estimate at k-1 for the nodes lying outside the region of k-1
where the PDEs are solved. This means that when in the region of k-1 where inter­
polation takes place, (5.12) did not hold at a node belonging to k-2, we can assume
that it will not hold at its corresponding node plus its nearest neighbors at k-1
either.

We use (4.16) to compute the global space error which implies that on top of
solving (3.4) for the solution we solve an extra equation for the global space error.
The spatial discretization error a'/; is estimated by computing F'/;(U'/;) in (3.3) with a
higher- and a lower-order discretization and subtracting the two. The interpolation
error y'l. is computed by numerically estimating the truncation error. For both esti­
mates the numerically computed solution is used. To estimate the right hand side of
(5.11) we use the asymptotic behavior of the global space error. In case the space
discretization is of order p we have

IIDn II - 2-p(l-k+l)IIDn II l,iel,s,i = - k-l,iek-1,s,i =· (5.13)

If llaZ-1.ill= is computed and (5.9) holds then using the asymptotics we can estimate
how many grid levels are needed to achieve that (5.9) does not hold any longer. The
maximum number of grid levels I which are necessary during this time step is then
estimated as

. { log(llaZ-1,dl=) - log(TOL) }
I = k + ent1er p log(2) , i=l, ,q. (5.14)

This means that for component i we need I grid levels in order to fulfill
lla7,JI= < TOL. This I value is used in (5.13) to estimate IIDte1,.,,ill=- Note that for
different PDE components we can have different I values. The estimates above
might not always be accurate, especially at times when the number of grid levels in

118

use is about to change. This may lead to a refinement criterion (5.12) which is too
restrictive or not restrictive enough. Only the latter can influence the accuracy in a
negative manner. However, chosing c in (5.14) sufficiently small can overcome this
problem. It is also possible to improve the estimates of IID7,;e1,s,dloo and l by taking
these values at the previous time step into consideration.

Finally, we conclude this section with the following remarks. The strategy based
on (5.13) does not guarantee that, in case l is fixed over the entire time interval over
which the solution is computed, the global space error is comparable to the global
space error obtained with a single, uniform grid having the same cell sizes as the
finest grid level in the adaptive grid method. If such a guarantee is desired then
extra requirements have to be fulfilled in order to get a bound for lle1,s,;lloo which is
similar to the bound using a single, uniform grid. However, these requirements are
difficult to satisfy in practice and they can only be satisfied in an a posteriori
manner. For this reason we have not incorporated these requirements in the
refinement strategy. Nevertheless, when the constant c decreases then more grid
cells are refined and the gap between the spatial error of the adaptive grid and uni­
form grid computation is likely to become smaller. Further, the strategy described
in this section is not the only possible strategy. The relations for the local and global
space error, given by (4.14) and (4.16), respectively, leave room for other strategies
as well. The new strategy based on (5.11) is less restrictive than the previous one
based on (5.4). When the time step size tends to zero, then, according to (5.11), the
finer subgrids do not necessarily need to grow. This is in contrast to (5.4) where the
subgrids eventually will -cover the entire domain. Moreover, the (l-lf1 term is also
avoided in (5.11).

5.6. EXAMPLE PROBLEMS

Three example problems are used to illustrate the method and to test the
refinement strategy. For time integration, Implicit Euler for the first time step and
BDF2 with variable coefficients for the following time steps are used. Standard
second-order finite differences are used for space discretization and the interpolation
is fourth-order Lagrangian.

5.6.1. Problem 1

This test example is hypothetical and is given by a coupled parabolic and el1iptic
equation, both linear:

u, = Uxx + Uyy - V + g (x,y,t),

O=vxx+Vyy+u+h(x,y,t), O<x,y<l, t>O.

(6.la)

(6.lb)

The initial function, the Dirichlet boundary conditions and the source terms g and h
are selected so that the exact solution is given by

FIGURE 6.1 Problem I. The scaled absolute values of the exact global space error in
u and v obtained with 2 grid levels at t = 0.25.

119

120

FIGURE 6.1 Continued. The scaled absolute values of the exact global space error in
u and v obtained with 3 grid levels at t = 0.25.

121

FIGURE 6.1 Continued. The scaled absolute values of the exact global space error in
u and v obtained with 4 grid levels at t = 0.25.

122

f--l--+--f--t-----1--+-+-·+-+--t-t----t----t--t---t- ~--r- -·

FIGURE 6.2 Problem I. The grids of the 2- and 3-level computation at t = 0.25.

123

+

FIGURE 6.2 Continued. The grids of the 4-level computation at t = 0.25.

u (x,y,t) = v (x,y,t) = exp[-80((x - r(t))2 + (y - s (t))2)], (6.2)

where r(t) = ¼ [2 + sin(7tt)] and s(t) = ¼ [2 + cos(7tt)]. This solution is a cone that
is initially centered at (½,¾) and that rotates around (½, ½) in a clockwise direction
with a constant speed. We have used this problem to subdue the method to a con­
vergence test. The solution was computed from t = 0 to t = 0.25. Starting from a
coarse 20 x 20 grid, 1,2 and 3 additional grid levels were used. The number of grid
levels were kept constant throughout the entire time interval. The associated TOL
values were 20, 5 and 1. These tolerance values appear to be large compared to the
tolerance values one is used to. The reason for this is that the llaZ,dl= values can be
large. However the accuracy does not deteriorate severely by this because the
inverse of the Jacobian operates on the vector aZ (cf. (4.14a), (4.16a)) which
reduces the values of the components of this vector considerably. This is due to the
large high-frequent components of the grid function aZ and the fact that the Jaco­
bian stems from an elliptic/parabolic operator of which the inverse strongly damps
such components. The constant time step size was chosen to be equal to 0.005 and
the constant c from (5.17) equal to 0.5. The results at the final time, given in Table
6.1, show that the obtained global space errors decrease roughly with a factor of

124

#of global space error
grid levels u V

1 0.043973 0.044304

2 0.013465 0.012874

3 0.003594 0.002991

4 0.000757 0.000631

TABLE 6.1 Problem I. Maxima of the exact global space error restricted to the finest
grid.

#of global space error
grid levels u V

1 0.043441 0.044379

2 0.013277 0.013304

3 0.003543 0.003135

4 0.000748 0.000663

TABLE 6.2 Problem I. Maxima of the numerically estimated global space error res­
tricted to the finest grid.

four indicating the normal second-order convergence behavior which would also be
obtained with a single, uniform grid. Since the success of the refinement strategy,
described in the previous section, depends on the accuracy of error estimates, we
have also compared the numerical estimates of the global space error with the exact
values. In Table 6.2 the numerical estimates of the global space errors are given and
it appears that the estimates are quite accurate. The scaled absolute values of the
exact global space error in u and v at t = 0.25 for all computations is shown in Fig­
ure 6.1. The positioning of the finer subgrids in Figure 6.1 appears to be good. The
maximum global space error for both components is located at the finest subgrid in
use. Moreover, the refinements are fairly efficient, meaning that not many grid cells
are unnecessarily refined. Figure 6.2 shows the grids at t = 0.25.

ii

0.01

local
space

0.001
error

i

0.0001

1e-05 0.0001 0.001 O.Ql 0.1

time step size

FIGURE 6.3 Problem IL The maximum local space error in u (i) and in v (ii).

5.6.2. Problem II

125

The second test problem is a problem with a steady-state solution. Again the sys­
tem of PDEs given by (6.1) is solved but this time the sources g and hand the initial
function and Dirichlet boundary conditions are chosen such that the exact solution is
given by

1
u (x,y,t) = v (x,y,t) = exp[-80((x - r(t))2 + (y - 2)2)], (6.3)

where r(t)=½- ¼ exp(-IO00t). This represents a cone which is centered at(½,¼)
at t=0 and moves towards the center of the domain (½, ½) with a continuously
decreasing speed. In the steady-state situation the cone will have reached the center
of the domain.

Just like in example problem I, (6.1) was solved using 1,2 and 3 extra grid levels
after starting from a 20 x 20 uniform grid. Variable time step sizes were used. On
the 20 x 20 grid at tn, 't is predicted for the next time step so that 'tV7 = 0.1, where
V7 is a numerical approximation of u1(x, tn). These computed 't values were kept in
storage and used as time step sizes for all computations. The constant c from (5.17)
is chosen equal to 0.5 for all computations.

This problem was used to illustrate the differences in behavior of the local and

126

global
space
error
in u

0.01

0.001

0.0001

le-05

le-06

1 e-06 le-05 0.0001 0.001

time

---------i

-------ii

0.01 0.1 1

FIGURE 6.4 Problem II. The maximum global space error in u obtained with I, 2, 3
and 4 grid levels, indicated by i, ii, iii and iv, respectively.

global space error belonging to (6.la) and (6.lb) and to compare the maxima of the
global space errors in u and v of the adaptive grid solution obtained with a different
number of grid levels throughout the entire time interval. The solution was com­
puted to t=I.0. The TOL values were equal to 20, 5 and 1. The number of grid lev­
els were kept constant throughout the entire time interval. The results of paragraph
4.2 apply to this case, since, (6.l) fits in the format (4.18). It is to be expected that
the local space error in u behaves like O ('t) and the local space error in v like O (1)
when 't➔O. Figure 6.3 shows the behavior of the maximum local space error in u
and in v over the interior of a 20 x 20 grid as a function of the time step sizes. A
double logarithmic scale was used in this figure and the slope of the local space
error in u is almost equal to unity for small time step sizes indicating a linear
behavior in 't. Further, the local space error in v appears to be almost constant. This
means that the local space error in u and v behave indeed like predicted by (4.26) for
small 't. Figure 6.4 and 6.5 compare the maximum global space errors in u and v,
respectively, obtained with the adaptive grid method on l, 2, 3 and 4 grid levels.
These figures clearly reveal that the global space error in u, belonging to the PDE
(6. la) gradually increases in time until a certain maximum is reached while the glo­
bal space error in v, connected with the PDE (6.lb) remains at an almost constant
level over the entire time interval. The distances between the lines in Figure 6.4 and
6.5 reveal a second-order convergence behavior which would also be obtained with

global
space
error
in V

O.ol-

0.001-

0.0001-

le-05-

,----------~~---------i

1-------------------- ii

!-------------------- iii

t------------------- iv

le-06-

I I
le-06 le-05 0.0001

I
0.001

time

I
0.01

I
0.1

I
1

127

FIGURE 6.5 Problem II. The maximum global space error in v obtained with 1, 2, 3
and 4 grid levels, indicated by i, ii, iii and iv, respectively.

a single, uniform grid. The scaled absolute values of the global error in u at t=l.0
are shown in Figure 6.6. The global space error in v is not shown here, because it is
very similar to the one in u for this case. Again, the grids are reasonably efficient
and the maximum global space error is located at the finest subgrid in use. The
grids at the final time are shown in Figure 6.7.

5.6.3. Problem III

The third test problem is a problem with an oscillatory solution. The system of
PDEs given by (6.1) is solved once more but this time the sources g and hand the
initial function and Dirichlet boundary conditions are chosen such that the exact
solution is given by

u (x,y,t) = v (x,y,t) = sin(1tt)exp[-320((x - ~)2 + (y - ~)2)]. (6.4)

This represents an oscillating cone which is centered at (½, ½). At t=O the solution
is zero everywhere. Then a steep pulse emerges at the center of the domain which
reaches its maximum at t=0.5 after this it will decay until the solution is equal to
zero again at t=l.0.

128

FIGURE 6.6 Problem II. The scaled absolute values of the exact global space error in
u obtained with 2 and 3 grid levels at t = 1.0.

129

FIGURE 6.6 Continued. The scaled absolute values of the exact global space error in
u obtained with 4 grid levels at t = 1.0.

This problem was solved to test the performance of the method when a variable
number of grid levels is used. The solution was computed four times from t==O to
t=l.0 using a maximum number of grid levels of 2,3,4 and 5. The corresponding
TOL values were 160,40,10 and 2.5, respectively and the constant c was chosen to
be 0.5. Variable time steps were also used here which were determined in exactly
the same manner as in problem II and also kept in storage to be used for all compu­
tations. The maximum global space error in u as a function of time is shown in Fig­
ure 6.8. Here, the behavior of the global space error in vis very similar to the one in
u. The kinks in this figure indicate that at that time, a new finer grid level is created
or discarded. It appears that the global space error decreases with a certain factor
when the TOL value is divided by four. Inspection of the data revealed that this fac­
tor is larger than four in both the infinity and the L I norm. These norms of the max­
imum global space error were taken over the values at all time levels. This implies
that when the TOL value is decreased by a factor of four that the spatial accuracy is
increased by a factor of at least four for this example problem. The grids at t=0.5
are shown in Figure 6.9.

1'30

FIGURE 6.7 Problem II. The grids of the 2- and 3-level computation at t = 1.0.

FIGURE 6.7 Continued. The grids of the 4-level computation at t = l .O.

5.7. SUMMARY AND CONCLUDING REMARKS

131

In this paper we have discussed the application of a local uniform grid refinement
method to systems of coupled PDEs. The main feature of local uniform grid
refinement is that the PDEs are solved on a series of nested, uniform, Cartesian,
increasingly finer subgrids covering only a part of the domain where the spatial error
is high. The PDEs are solved on these subgrids in a consecutive manner, from
coarse to fine. The location and size of the subgrids are automatically adjusted at
discrete times in order to follow the movement of the steep fronts. The generation
of subgrids is continued until sufficient spatial accuracy is reached.

An error analysis was performed for the local uniform grid refinement method
applied to systems of coupled PDEs. It was shown that the global and local error
components associated with each separate PDE can exhibit an entirely different
behavior. With respect to the global error, this means that the global error com­
ponents can carry over to future time points in a very different way from one PDE to
another. The local space error components can show a different behavior for small
time step sizes. A refinement strategy controlling the generation of finer subgrids
was developed from the results of the error analysis. This strategy takes these

132

global
space
error
in u

0.1

0.01

0.001

0

ii

iii

iv

0.5

time

FIGURE 6.8 Problem III: The maximum global space error in u as a function of time.
The maximum number of grid levels is 2 (i), 3 (ii), 4 (iii) and 5 (iv).

differences in behavior into account and is based on estimating and controlling the
global space error. We have applied the method to three example problems, all
involving a system containing a parabolic and an elliptic equation to test the
refinement strategy. The observed convergence behavior of the global space error is
comparable to uniform grid computations. We have also seen the predicted differ­
ences in behavior of the components of the global and local space error. Further, the
global error estimates are fairly accurate and not many grid cells appear to be
unnecessarily refined. Using both a fixed and a variable number of grid levels in
time and a second-order space discretization, we have observed that when the toler­
ance value is decreased with a factor of four, the spatial accuracy also appears to
improve with a factor of four.

We consider these results to be very satisfactory. However, we feel that testing
on more difficult (nonlinear) problems needs to be done in order to fully appreciate
this refinement strategy. Further, in the example problems where variable time step
sizes were used, these step sizes were adapted in order to equidistribute a heuristic
monitor. It would be desirable to implement a time step strategy based on (4.15) or
(4.17). However, such a strategy only works well when the time error estimates are
sufficiently accurate. In [7] we have already reported that when using the local uni­
form grid refinement method these time error estimates do not resemble the actual
time error at all. Nevertheless, perhaps there is a remedy for this so that a time step

133

l----t----t---t-------j---t--t---i--i----t--r---1--,-----i--r----,--"1-- r- -i---

I - >---+--+--+--+--I--+-+-+--+---+---+-+- --1--+----< ---+--+---I

··•-f--.--!-------- '-~ ··---+--+-+-rl-->-+-c-h-+~+-,-,,--+-+-+--+---J--t---

--

FIGURE 6.9 Problem III. The grids of the 2- and 3-level computation at t = 0.5.

134

. --1

FIGURE 6.9 Continued. The grids of the 4- and 5-level computation at t = 0.5.

135

strategy can be developed which is just as successful as the refinement strategy in
space.

ACKNOWLEDGEMENT
This chapter is based on the paper "Local Uniform Grid Refinement and Systems

of Coupled Partial Differential Equations" by Trompert which appeared in Appl.
Numer. Math. 12 (1993), 331-355. We would like to thank Elsevier Science Pub­
lishers for granting permission to reprint.

REFERENCES
1. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement

Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

2. D.C. ARNEY and J.E. FLAHERTY (1990). An Adaptive Mesh-Moving and Local
Refinement Method for Time-Dependent Partial Differential Equations, ACM
Trans. on Math. Softw., 16, 48-71.

3. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations, J. Comput. Phys., 53, 484-512.

4. J.E. FLAHERTY, P.K. MOORE, and C. OZTURAN (1989). Adaptive Overlapping
Grid Methods for Parabolic Systems, in Adaptive Methods for Partial Differen­
tial Equations, 176-193, ed .. J.E. FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D.
V ASILAKIS, SIAM Publications, Philadelphia.

5. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids,
SIAM J. Sci. Statist. Comput., 8, 292-304.

6. W.D. GROPP and D.E. KEYES (1992). Domain Decomposition with Local Mesh
Refinement, SIAM J. Sci. Comput., 13, 967-993.

7. RA. TROMPERT and J.G. VERWER (1991). A Static-Regridding Method for Two
Dimensional Parabolic Partial Differential Equations, Appl. Numer. Math., 8,
65-90.

8. RA. TROMPERT and J.G. VERWER (1993). Analysis of the Implicit Euler Local
Uniform Grid Refinement Method, SIAM J. Sci. Comput., 18, 259-278.

9. RA. TROMPERT and J.G. VERWER (1993). Runge-Kutta Methods and Local
Uniform Grid Refinement, Math. Comp., 60, 591-616.

10. J.G. VERWER and RA. TROMPERT (1991). An Adaptive-Grid Finite-Difference
Method for Time-Dependent Partial Differential Equations, in Procs. 14th Bien­
nial Conference on Numerical Analysis, 267-284, ed. D.F. GRIFFITHS, G.A.
WATSON, Pitman Research Notes in Mathematics Series 260, Dundee, Scotland.

11. J.G. VERWER and RA. TROMPERT (1993). Analysis of Local Uniform Grid
Refinement, Appl. Numer. Math., 13, 251-270.

Chapter 6

Local Uniform Grid Refinement and Transport in

Heterogeneous Porous Media

6.1. INTRODUCTION

137

An adaptive grid finite-difference method is applied to a model for unsteady
isothermal groundwater flow coupled with transport in heterogeneous porous media.
The origin of this work lies in a safety assessment study on disposal of high-level
radioactive wastes in rock salt formations, like salt domes. The numerical simula­
tions of groundwater flow near these salt formations may provide insight in what
might happen in the event of contaroinants escaping from such a repository. The
concentration of salt in the proximity of salt formations is known to be large and
also in aquifers overlying these salt formations the salt content varies from fresh
water to that of saturated brine [8]. It should be noted that the presence of a high
concentration of salt in these natural situations gives rise to large concentration gra­
dients as well. A typical situation one encounters is that of a sharp fresh-salt water
interface that moves in time. A single, uniform space grid can be computationally
very inefficient when solving the partial differential equations (PDEs) describing
such problems because, to afford an accurate approximation, such a grid has to be
very fine over the whole domain while a fine grid is only needed where a sharp front
is located. Adaptive grid methods prove to be very useful here, since these methods
refine the space grid only where it is really needed, hence, reducing the necessary
CPU time.

The applied adaptive grid method is based on local uniform grid refinement. The
main feature of local uniform grid refinement is that the PDEs are solved on a series
of nested, uniform, finer-and-finer subgrids covering only a part of the domain.
These subgrids are automatically adjusted at discrete times in order to follow the
movement of large spatial variations. On each local subgrid a new initial boundary
value problem is solved for one time step in a consecutive order, from coarse to fine.

138

The generation of subgrids is continued until the spatial phenomena are described
with sufficient accuracy.

Local uniform grid refinement methods have been proposed in a number of dif­
ferent varieties, applied to different kinds of PDEs. Here, we will not attempt to
give a complete overview of the field. We will only sketch some varieties of the
local uniform grid refinement method very briefly, and provide some references.
The methods contained in [1-3, 6] are applied to hyperbolic PD Es and use explicit
time stepping techniques. The method proposed by Berger and Oliger in [3]
employs rectangular subgrids which may be skewed with respect to the co-ordinate
axes in order to align with the steep region of the solution. Subgrids having the
same cell sizes can partially overlap in this method. In [I], Arney and Flaherty
developed a method very similar to the one in [3] except that the subgrids here are
created by cellular refinement, meaning that the fine grid cells are properly nested
within coarser grid cells. Hence, these subgrids have a piecewise polygonal shape.

Local uniform grid refinement is combined with grid movement in [2, 6]. In [6], a
method proposed by Gropp uses subgrids which are rectangles having sides parallel
to the co-ordinate axes and which are able to move as a whole with the moving
steep fronts. In this method the subgrids are also allowed to overlap. In [2], Arney
and Flaherty added grid movement to their method described in [I]. The grid points
of the coarsest grid are able to move and the fine grid movement is induced by the
movement of the coarsest grid. Local uniform grid refinement methods are also
used to solve parabolic and elliptic PDEs in [5, 7, 9-15] and involve the implicit
solution of systems of equations. The subgrids in [5] are piecewise polygonal and
the ones in [7] are rectangles. In both [5] and [7] domain decomposition is applied
to improve the performance on parallel computers.

Our previous work on this type of adaptive grid method is contained in [9-15].
The subgrids in our method have a piecewise polygonal shape and do not overlap.
Our method is a so-called 'static-regridding method' which means that no grid
movement is applied during a time step. The refinement strategy controlling the
generation of subgrids in [IO, 13] is based on heuristic criteria while in
[11, 12, 14, 15] it is underlied by a comprehensive error analysis which has resulted
in a so-called refinement condition. This analysis was carried out for PDEs which
after spatial discretization lead to a system of ordinary differential equations
(ODEs). The aim of this refinement condition is that, once fulfilled, the overall spa­
tial accuracy should be dominated by the spatial accuracy at the finest grid level.
Due to the refinement condition, a convergence result could be proved in certain
model situations which is similar to the result obtained for a single, uniform grid. In
[9] the error analysis was carried out for systems of general coupled PDEs. These
systems of PDEs do not necessarily lead to a system of ODEs after spatial discreti­
zation. A refinement strategy was derived based on the notion that the finest subgrid
should contain the largest spatial errors. This strategy works quite satisfactorily but
a rigorous convergence proof like the one mentioned previously can no longer be
given.

In this work, the application of our version of the local uniform grid refinement
method to transport problems in heterogeneous porous media is discussed. The

139

adaptive grid method has been implemented in a code called MOORKOP. This
code can handle systems of PDEs of the following type, defined on a rectangular
domain

(I.la)

The boundary conditions may take the form

H(x,y,t,u,u,, ux, Uy) = 0, t > t0 ,

and the initial conditions may be defined by

u(x,y,to) = uo(x,y). (I.le)

The solution u may be vector valued. This general format was chosen to allow the
user to solve not only transport problems in porous media but other PDEs as well.
Moreover, in case transport problems are solved, the format (1.1) makes it easy for
the user to implement various modifications to the basic equations of the model.

This work can be regarded as a sequel to the work reported in [13] in which this
adaptive grid method was applied to transport problems in homogeneous porous
media. Since in natural situations, soil properties such as permeability and transver­
sal and longitudinal dispersivity can change abruptly from one region to another,
MOORKOP has now been extended so that it can handle transport in porous media
with such non-homogeneities. At these abrupt changes, interface conditions based
on continuity of fluxes are applied to obtain consistent numerical approximations.

6.2. OUTLINE OF THE ADAPTIVE GRID METHOD

The idea behind local uniform grid refinement is simple. Starting from a coarse
base grid covering the whole domain, finer-and-finer uniform subgrids are created
locally in a nested manner in regions of large spatial variations. Here, a set of inter­
connected grid cells, all having the same size, is called a subgrid. A set of subgrids
having the same cell size is called a grid level or just grid. Hence, in our version of
the local uniform grid refinement method, a grid level consists of a single subgrid or
several disjunct, non-overlapping subgrids. A new initial boundary value problem is
solved at each grid level separately in a consecutive order, from coarse to fine. The
same time step size is used for all grids. The required initial values are defined by
interpolation from the coarser grid level in which the refinement is embedded or
taken from a grid level from the previous time step when available. Internal boun­
daries, i.e. subgrid boundaries lying in the interior of the domain, are treated as Diri­
chlet boundaries and values are also interpolated from the coarser grid level. Where

140

the boundary of a fine subgrid coincides with the boundary of the domain, the
prescribed boundary conditions are used. Except for the necessary initial and boun­
dary conditions, all subgrids are independent of each other. Therefore, the subgrids
are not patched into the coarser grids but are actually overlaying them. The genera­
tion of grid levels is continued until the spatial phenomena are described accurately
enough by the finest grid. The fine grid cells are created by bisecting the sides of the
cells of the coarser grid. This means that the refinement is cellular and that the
subgrids have a piecewise polygonal shape.

During each time step the following operations are performed:

(1) Solve PDEs on the coarse grid.
(2) If the desired accuracy in space or the maximum number of grid levels is

reached then go to 8.
(3) Determine new finer grid level at forward time.
(4) Interpolate internal boundary values at forward time.
(5) Provide new initial values at backward time.
(6) Solve PDEs on new grid level, using the same time step.
(7) go to 2.
(8) Update the coarser grid solution using the finer grid values.

Thus, for each time step the computation starts at the coarse base grid using the most
accurate solution available, since coarser grid solution values are always updated by
the finer grid solution. ,

For time integration we use implicit Euler for the first time step and the second­
order two-step implicit BDF method with variable coefficients for the following
time steps where variable step sizes are taken. Standard second-order central finite
differences are used for space discretization and the interpolation, which is used for
obtaining initial and boundary conditions, is linear. The discretization of the boun­
dary conditions and the interface conditions are of first order. The unknowns in our
difference scheme are located at vertices of cells. Hence, where the coarser grid is
overlapped by a finer grid, the coarser grid nodes coincide with the finer grid nodes.
The resulting systems of equations are solved by an adapted version of modified
Newton's method in combination with the iterative linear solver BI-CGSTAB [16].

6.3. STRATEGIES

6.3.1. Refinement strategy

The local uniform grid refinement method is a valuable method for solving PDEs
with steep solutions because it can solve these PDEs just as accurately as on a very
fine grid, but with considerably less computational effort, since the involved fine
subgrids cover only a part of the domain. Moreover, it creates extra refinements
when necessary and removes these when they are no longer needed. This
refinement process is controlled by a refinement strategy. In [9, 11, 12, 14, 15], the

141

refinement strategy is based on a comprehensive error analysis taking into account
space discretization and interpolation error estimates. The aim of this strategy is to
have the overall spatial accuracy dominated by the spatial accuracy at the finest grid
level. Whe'.t the number of grid levels is constant for all times, this strategy should
lead to a spatial accuracy which is comparable to the one achieved with a single,
uniform grid having cell sizes identical to those of the finest grid level in the adap­
tive grid method.

The success of such a refinement strategy is very much dependent on the accu­
racy of error estimates. It is clear that these error estimates can only be accurate
when the solution is sufficiently smooth, i.e. it may be steep but it should be
sufficiently differentiable in space. Since nonsmoothness in the boundary condi­
tions, or even in the solution itself, is a well known phenomenon in flow and tran­
sport problems in porous media, the approach above was abandoned and replaced by
a more heuristic approach. In [10, 13] the refinement strategy was based on a curva­
ture monitor. This monitor is also used here because it is able to detect high-error
regions. Further, this monitor can also detect kinks in the solution profile which
occur at interfaces in porous media more quickly than a monitor based on the gra­
dient of a solution. This implies that refinements at interfaces will be created much
sooner. This is favorable for the accuracy of the computed solution, the approxi­
mated geometry of the interfaces, and also for solving the systems of nonlinear
equations.

The error monitor can be regarded as a scaled approximation of
ltix2a2u/ax2 I+ 1Liy 2a2u/ay 2-I for each solution component at every node. The
value of this monitor at node j associated with solution component i is denoted as
ESTS;,j- At every grid node and for each solution component this monitor value is
computed.

Let grid level 1 be the coarsest grid level and grid level 2 be the next finer grid
level and so on. Suppose we have just completed a time step on grid level m. After
this time step, the maximum values of ESTS;,j are computed over grid level m for
each component i. These maxima are denoted as ESTSmax;. If for some i,
ESTSmax; > TOLS, then a new grid level m+l is created within the current time
step, provided that m+l does not exceed the user-specified maximum number of
grid levels. Here, TOLS is a user-defined tolerance. Grid level m + 1 is the con­
structed as follows. For each i, for which ESTSmax; > TOLS holds, the cells around
the nodes of grid level m where ESTS;,j > ¼ x TOLS will be subdivided in four
identical cells. The set of these finer cells makes up grid level m + 1, on which the
current time step will now be repeated.

Finally, we have built in an extra condition to smooth the behavior of the code.
Suppose that the maximum number of grid levels during the previous time step is
levtop and that at grid level m <levtop, one has ESTSmax; s; TOLS. Although this
means that a new finer grid level m + 1 is actually not necessary, it will still be
created when ESTSmax; > 0.9 x TOLS. This way fluctuation of the maximum
number of grid levels from one time point to the next is likely to be avoided.

142

6.3.2. Time integration aspects

We have implemented the two-step BDF method of order two which we apply in
the variable step size mode. The. time derivative in (1.1) is then approximated as

where

Un -a1Un-l -a2Un-2
u,~----------

02At,,

-I
a 2 = _c_2_+_2_c, 0 _ c+l

2 - c+2'

(3.1)

(3.2)

Here, U, represents the pointwise restriction of u, to a space grid. Note that variable
time stepping is a prerequisite for transport problems in porous media, as they can
exhibit a highly distinct behavior in time. As starting formula we employ the one­
step BDF method of order one (implicit Euler).

In the second-order BDF method, it would be appropriate to use the numerical
estimates of the third time derivative of the solution for time step size control. This
would work satisfactorily in standard applications where a grid without adaptation is
used. However, one will encounter difficulties with such an estimator using a
static-regridding method like the local uniform grid refinement method. This was
already reported in [10]. These difficulties are due to the fact that the solution vec­
tor at the backward time points, present in the BDF formula, is obtained from inter­
polation from the coarser grid level, from computing the solution to (1. 1) at the
current grid level, and from assigning finer grid values to corresponding grid points
at the current grid. Although these operations do not adversely affect the accuracy
of the computed solution, they do introduce small 'discontinuities' in the solution
which cause small stiff transient solution components in time. These small tran­
sients are quickly damped due to the stability of the BDF method. They are, how­
ever, seen by the local truncation error estimator which will in turn greatly overesti­
mate the true local truncation error. This will lead to far too small time steps. In
order to circumvent this problem we will use a time error monitor which is able to
notice the transient behavior of the solution but does not see this background noise.
This means that the values this monitor measures should be considerably larger than
the background noise.

Here, the time step size is controlled by the time error monitor value which is a
scaled approximation of I At oulot I for each solution component at every node.
This monitor worked quite satisfactorily in previous applications. The maximum
value of this monitor, denoted as ESTT, is computed only over the interior grid
nodes of each subgrid for reason of robustness of the code. We will not elaborate

143

this further here. After a time step has been performed on all grid levels ESIT is
computed over all grid levels. If this maximum exceeds a user-specified tolerance
TOLT, then the time step is rejected, otherwise accepted. For each grid level a new
time step size is predicted such that the predicted value of ESIT for the new time
step is equal to 0.5 x TOLT. The minimum of these new time step size estimates is
taken to be the time step size for the next time step. The rationale is that when a
new time step is taken with this predicted value, ESIT will in general be approxi­
mately equal to 0.5 x TOLT which implies that time step rejections are unlikely to
occur. However, in case of a step rejection, the new time step size will be taken as
0.8 times this estimated value. In all cases, we require that the new time step size is
not smaller than ½ times and not larger than 2 times the old time step size to avoid
too large jumps in the step size selection. This strategy was adopted because of its
performance in numerous previous applications. Finally, the new time step size is
corrected with a small value to assure that the next output point is reached exactly.

6. 3.3. Solution of the linear and nonlinear systems

Because we use an implicit integration method and treat PDEs like (1.1) fully
coupled, we are facing the task of solving large coupled systems of nonlinear alge­
braic equations. Let the nonlinear system of equations to be solved be denoted as,

F(U) = 0. (3.3)

In the standard modified Newton approach the linear system of equations

J(U0)'fl = -F(Uk-1), (3.4)

Uk uk-1 + 'f/,

is subsequently solved, starting with k=l, until a stopping criterion is satisfied. Here
J is the Jacobian matrix, u 0 is the initial guess, and Uk is the eh iterate. In our
code, we use an adapted version of modified Newton in combination with precondi­
tioned BI-CGSTAB [16] for iteratively solving the resulting system of linear equa­
tions. For any system of PDEs like (1.1), the required Jacobian matrix for the New­
ton process is computed in a completely automatic manner. In our code the ele­
ments of the Jacobian are estimated by a simple first-order difference formula, so
that the user does not need to specify these. The reason why the standard modified
Newton procedure has been adapted for the application of the local uniform grid
refinement method is explained below.

When solving flow and transport problems in heterogeneous porous media one
can encounter convergence problems. For example, when a subgrid is newly
created or moves in space from one time point to the next, initial values for the new
fine subgrid cells are interpolated from the next coarser subgrid solution which may
be kinked due to an interface, leading to large interpolation errors. This way initial

144

data is obtained which does not look like the fine grid solution to the PDEs at the
backward time point, leading to a bad approximation of the Jacobian. To our
experience, when the modified Newton iteration fails to converge because of this,
the standard procedure of time step size reduction works very poorly, or not at all.
For this reason the modified Newton procedure had to be adapted. The
modifications we have made will now be elaborated upon.

The solution at the backward time point is taken as the initial guess for the finest
grid level. With respect to the initial guess for the coarser grid levels, in spite of the
fact that assigning of fine grid values to corresponding coarser grid nodes improves
the accuracy of the solution at the coarser grid level (cf. Section 2, step 8), the
updated coarser grid solution is usually not a very good initial guess for the solution
at this grid at the future time point. Therefore, we also keep the original, not­
updated solution at the backward time point in storage which is used as initial guess
for the next time step. After this, the linear system (3.4) is generated and iteratively
solved. In case this linear iteration process terminates unsuccessfully, (3.4) is gen­
erated all over again, employing a smaller time step size.

When (3.4) is solved at least twice (i.e. after two modified Newton iterations), we
check for convergence and convergence speed. When the corresponding criterion is
satisfied, the modified Newton stopping criterion is expected to be fulfilled within
the user-specified maximum number of iterations. Note that the convergence(speed)
criterion terminates a diverging as well as a slowly converging iteration process.

After this criterion has been fulfilled, we check if the modified Newton stopping
criterion is satisfied. If this is the case then we are done, otherwise we proceed with
the next iteration. In case that the convergence(speed) criterion is not satisfied, a
new Jacobian is computed.

There are two ways to compute a new Jacobian. First, the Jacobian can be com­
puted using the previous iterate uk-I as initial guess and employing the same time
step size. Second, we can compute the new Jacobian using the original initial guess
u0 with a reduced time step size, just as in the standard modified Newton approach.
The way the Jacobian is calculated depends on a number of criteria. First, the
number of new Jacobians using the same time step size during the whole iteration
process is limited to a user-defined maximum. If this maximum is reached then the
new Jacobian is computed with a reduced time step size. When a new Jacobian
using the same time step size was already obtained during the previous iteration and
the convergence(speed) criterion is still not satisfied, the new Jacobian is also calcu­
lated using a smaller time step size. Suppose that the last iteration where a new
Jacobian was computed with the same time step size is denoted by j. We assume
that when IIF(Uk-I)II= < IIF(Uj-I)II=, the iterate Uk-I is a 'better' solution to (3.3)
than u.i-I. A new Jacobian is only computed using the same time step size if this is
the case, and computed with a reduced time step size, otherwise.

This algorithm is more complicated than the standard modified Newton. Its
behavior ranges from standard modified Newton to a genuine Newton-Raphson pro­
cess. The idea behind it is that when the convergence criteria are not fulfilled, the
iteration is not immediately repeated with a smaller time step size, like in the stan­
dard modified Newton approach, but a new Jacobian, based on the last accepted

145

iterate and the same time step size, is tried first. Should this fail too, then the itera­
tion is repeated with a smaller time step size.

The maximum number of Newton iterations and Jacobians should not be chosen
too small, si 1:ce this would lead to a premature termination of a converging iteration
process. On the other hand, these numbers should not be chosen too large because a
slowly converging iteration process can then carry on for a long time which is com­
putationally inefficient. The maximum number of Newton iterations and Jacobians
with the same time step size in our code are chosen to be 10 and 5 respectively
which appeared to be reasonable choices in practice. When the time step size needs
to be decreased, we take the new step size to be ¼ times the previous one.

6.4. MODEL OF BRINE TRANSPORT IN POROUS MEDIA

In this section the mathematical model of brine transport used to solve the exam­
ple problem (cf. Section 6) is described. Following Trompert, Verwer and Blom
[13], we consider a model for unsteady, isothermal, single-phase, two-component,
saturated flow in a porous medium in two space dimensions. This model contains
two conservation laws, namely one for the mass of the whole fluid, i.e. water and
salt, and one for the mass of salt only. The mass conservation of the fluid supple­
mented with Darcy's law for the velocity field is given by

;t (np) + V. (pq)' = 0, q = - .!.<v P - pg),
µ

(4.1)

where n is the porosity of the porous medium, p is the mass density and q the velo­
city vector of the fluid. Note that here the velocity of the solid phase is neglected.
The permeability of the porous medium is denoted by k, µ is the dynamic viscosity,
p pressure and g the gravity vector. The mass conservation law of salt and Fick' s
law for the dispersive mass flux are given by

a
at(npco) + V. (pcoq + J) = 0, J = - pnDVco, (4.2)

respectively, where co is the concentration of salt and J the dispersive mass flux vec­
tor. D is the 2 x 2 dispersion tensor defined by

(4.3)

where a.L denotes the longitudinal and a.T the transversal dispersivity and drn the
molecular diffusion coefficient. I is the 2 x 2 identity matrix. The soil properties in
this model are n, drn, a.L, a.T and k. Temperature and compressibility effects are

146

neglected in this model, as well as sources, sinks and deformation of the porous
medium. To complete the model we need an equation of state for the fluid mass
density p and an expression for the dynamic viscosity µ which depends on the con­
centration of salt:

p = Po exp (yco),

µ = µo(l + l.85co - 4.10co2 + 44.50co3),

(4.4)

(4.5)

where p0 and ~ are the reference density and dynamic viscosity and y is a
coefficient obtained from laboratory experiments.

In cases of a low salt concentration (4.1) and (4.2) are only weakly coupled and
can be solved independently. The flow can then be regarded as independent from
the density gradients caused by differences in the salt concentration since these gra­
dients prove to be negligible. However, we consider cases of high salt concentra­
tion, in which case the flow is no longer independent from the density gradients, so
these equations should be solved together. With this model we have followed Has­
sanizadeh and Leijnse [8] in the description of brine transport, except for Darcy's
law and Fick' s law. In this paper these laws are used in their classical formulation,
valid for low concentration cases.

Using p and co as independent variables, we have recasted equations (4.1), (4.2)
in the form

-y'v. J + p'v. q = 0,

aco
pnTt + pq. 'vco + 'v. J = O,

(4.6)

which is obtained after some elementary calculations. At this stage we note that this
model fits into format (1.1) and can, within the limits of (I.I), be modified by the
user of the code. For example, one can add a temperature equation or use different
formulations for Darcy's law and/or Fick's law, or by add compressibility effects,
etcetera.

6.5. INTERFACE CONDITIONS

In this section we explain the interface conditions. These conditions are based on
continuity of fluxes across cell edges. Although we will only discuss the interface
conditions using the mathematical model of brine transport from the previous sec­
tion, it is straight forward to derive interface conditions for other transport problems
in heterogeneous porous media.

The soil properties in heterogeneous porous media can show abrupt changes from
one region to another. Moreover, across these interfaces, i.e. where the sudden
changes occur, p and co are continuous but their profiles may be kinked. We will

147

assume that, mathematically, these soil properties are piecewise constant functions
and that p and co are both continuous functions, not differentiable in space, at an
interface. This means that in order to get consistent numerical approximations, we
have to take care that numerical differentiation does not take place across such an
interface. Therefore, the numerical solution at an interface is obtained by fulfilling
interface conditions which connect the solution on both sides of the interface and
involve only one-sided difference schemes. Since (4.1) and (4.2) represent two con­
servation laws, it is natural to impose continuity of the spatial fluxes pq. n and
(pcoq + J). n at interfaces as interface conditions, where n is a unit vector locally
perpendicular to the interface. It suffices to impose continuity of q. n and J. n,
since p and co are both continuous functions.

II

X X
CJ CII

IV III

X X
CIV CIII

>----------<S>----------<

FIGURE 5 .1. Four arbitrary grid cells with cell edges, parallel to the co-ordinate axes.

Consider the four grid cells shown in Figure. 5.1, numbered I through IV, with
cell edges parallel to the co-ordinate axes. First, the soil properties are evaluated in
all cell centers and are supposed to be constant over each cell. Hence, the interfaces
are assumed to coincide with cell edges in the numerical approximation. The means
that the interfaces are approximated by piecewise vertical and horizontal lines.

When the soil properties are constant over these four cells then none of these cells
are intersected by an interface and (4.6) is discretized at grid node C using the stan­
dard second-order central finite differences in space. Now suppose that, for exam­
ple, the soil properties in CI are different from those in CII. Then the component of
q and J in x-direction which is perpendicular to the cell edge, separating the upper
left cell I from the upper right cell II, must be continuous. This cell edge is denoted
as CN. From (4.1)-(4.3) we have,

148

k
qz = - -(py - pgz),

µ

J 1 = -pnD1 1ffix-pnD 12 roy,

qy
nD 11 = ndm + cxTlql + (aL -aT)lql,

(5.1)

where q 1, J I and g I are the components in x-direction of q, J and g, respectively,
and nD 11 and nD 12 are elements of the first row of the dispersion tensor nD; q 2 and
g 2 are the components in y-direction of q and g. The derivatives of (5.1) are discre­
tized using the grid nodes N, S, E, W and C, which yields a first-order accurate
discretization. The fluxes q I and J I on the left and right hand side of CN are
denoted as q i,CN,1, J 1,cN,1 and q 1,cN,/l, J 1,cN,/l, respectively. They are now approxi­
mated as

where

kCI Pc- Pw = --(--- - Pcgi),
µc L\.x

roe - row ro N - roe
J 1,CN,1 = - PcnD11,CN,1 L\.x - PcnD12,cN,1 L1y

ken PE - Pc
--(--- - Pcg1),

µc L\.x
q 1,CN,/1

roE - roe roN - roe
= - PcnD 11,cN,ll L\.x - PcnD 12,CN,11 L1y

2
D d I I () ql,CN,I

n 11,cN,1 = n m,C/ + aT,C/ qCNJ + aL,C/ - <XT,C/ I I ,
qCN,I

nD12,cN,1

2

(5.2)

D d I I () ql,CN,/1
n 11,cN,11 = n m,Cll + aT,CII qCNJI + aL,c11-aT,CII I I'

qCN,11

nD12,CNJI
() ql,CN,llq2,CN,ll

= aL,cn - aT,cu I q I ,
CN,11

kC/ PN- Pc
= - -(--- - Pcgz),

µc L1y

(5,3)

q2,CN,II

I q I _ (q2 + q2)½ CN,I - I, CN,l 2, CN,l , I q I = (q2 + q2)½ CN,II l,CN,Il 2,CN,/1 ·

149

Here q 2,cN,I and q 2,CN,1I represent velocities parallel to CN and nD 11 ,cN,1, nD 12,cN,1,

nD 11 ,cN,ll, nD l2,CNJI are the elements of the first row of the dispersion tensor on the
two sides of CN. Constants like kc11 and aL,Cll denote the permeability and longitu­
dinal dispersivity at cell II and entries like, for example, Pc and µc are the mass
density and the dynamic viscosity in C. Continuity of q. n and J. n across CN yields
the following system of flux continuity equations for p and ro in C

ql,CN,I - ql,CN,/1 = 0,

J l,CN,I - J l,CN,1/ = 0.

(5.4)

When not only CN is an interface but also CW, CE or CS then the flux continuity
equations are generated for each interface. The equations we then solve is the sum
of these flux continuity equations.

6.6. NUMERICAL ILLUSTRATION

An example problem is presented dealing with the displacement of fresh water by
brine in a vertical column, filled with a porous medium and measuring one by one
meter. Here we assume that g = (0,-gf. The values of the parameters are chosen
as

n = 0.4, dm = 0m 2.s-1, Po= 103 kg.m-3 , Po= 105 N.m-2 , (6.1)

y = log(2.0), g = 9.81 m.s-2, ~ = 10-3kg.m-1.s-1.

In the vertical column considered, there are four different regions, indicated as I
through IV. This is shown in Figure 6.1. Each of these regions has its own permea­
bility and longitudinal and transversal dispersivity. These are given below in (6.3).
The column is completely open at the top and only half open at the bottom. The
vertical sides are closed. The initial values, boundary conditions are:

p(x,y,0) = Po+(I-y)p0 g, ro(x,y,0) = 0, 0m<x,y<lm,

ql = 0m.s-1, ffix = om-1, X = 0,Imand0m<y<lm,

q 2 =10-4 m.s-1, ro = 0.25x(l-exp(-10t)), (6.2)

0 m < x s; 0.5 m andy = 0 m,

150

y

r
(2) II

III (I) IV

FIGURE 6.1. The vertical column.

q 2 =0m.s-\ ro = 0, 0.5m<x<lmandy = Om,

p=p 0 , my= om-1, Om<x<lmandy = Im.

The soil properties are given by:

Region I: k = 10-13 m2, UL = 0.008m, a.r = 0.0016 m,

Region II: k = 10-15 m2, a,L = 0.005 m, a.r = 0.0010 m, (6.3)

Region III: k = 10-10 m2, a,L = 0.010 m, a.r = 0.0020 m,

Region IV: k = 10-13 m2, a,L = 0.008 m, a.r = 0.0016 m.

The interfaces are defined as:

I: x=0.1m,

2: x=0.3 m + 0.2 x y, (6.4)

3: y=0.6 m + 0.1 xx.

Saturated brine is injected into the column at the opening in the bottom and a
steep front in the salt concentration will develop, moving slowly towards the top of

151

the column. At first, the front will move completely past the interface on its right
hand side. So, initially there will be almost no penetration of salt into region IV and
a very sharp transition in the salt concentration arises at the interface between III
and IV. The front smoothes while moving. Later on, the front will pass the inter­
face between III and I and will move into region I. Much later the salt penetrates II
and IV from III at approximately the same time. First the salt penetrates IV at its
top left corner and later at the entire interface (1). Steady state is reached when
eventually the saturated brine has spread out over the entire domain.

We have computed the solution to this problem with two and three grid levels, of
which the coarsest is a 20 x 20 grid. We have chosen TOLT = 0.1 and
TOLS = 0.25 for both cases. The salt concentration is shown in the Figures 6.2
through 6.5. The lower boundary of these figures corresponds with the top of the
column. We have also computed the solution on a single, uniform 40 x 40 and
80 x 80 grid for comparison. The absolute value of the difference between the salt
concentration obtained with the uniform grid computation and the adaptive grid
computation is plotted in the Figures 6.6 and 6.7.

It appears that the maxima of these differences of 0.05 in both cases are rather
large. A reason for this could be that the refinement strategy is not restrictive
enough, i.e. too few grid cells are refined. Moreover, the spatial error monitor bears
no relationship with the true numerical errors which means that it is possible that
cells that should have been refined are not refined. Both of these factors contribute
to a larger numerical error. Further, the difference scheme we have used, the way
internal grid boundaries are treated and the interpolation and updating procedure can
be a cause, since, neither one is conservative. Applying a control volume scheme
and observing the conservation property at grid interfaces might help here.
Nevertheless, the real reason for the large differences is still unclear to us.

We have shown 3D plots of the salt concentration at the top and the pressure at
the bottom of Figure 6.8 at t=4000 s, computed on the 40 x 40 grid. The kinked
solution profile at some interfaces are clearly visible here. Note that at the interface
(1) there is a sharp kink in the salt concentration and no visible kink in the pressure.

#of single CPU time
grid levels grid sec.

2 3332
40x40 5995

3 9097
80x 80 40441

TABLE 6.1. CPU times of adaptive grid and uniform grid computations.

We have also compared the necessary CPU times of the adaptive grid and uniform

152

grid level # of Newton iterations # of Jacobians

1 973 294

2 1051 291

TABLE 6.2. # of Newton iterations and Jacobians, needed for the two-grid computa­
tion. The number of time steps is 290.

grid level # of Newton iterations # of Jacobians

1 1074 322

2 1175 326

3 1189 318

TABLE 6.3. # of Newton iterations and Jacobians, needed for the three-grid compu­
tation. The number of time steps is 318.

FIGURE 6.2. The salt concentration with two grid levels at t=4. 103 .

153

FrouRE 6.3. The salt <oncentrat;on Mil, two lltid levefs at t"'6.1<Y'.

FIGURE 6.4. The salt concenlnition .,;11, lhree grid levels at t=t.10'.

154

FIGURE 6.5. The salt concentration with three grid levels at t=6. 104.

FIGURE 6.6. The absolute differences in salt concentration. The 40 x 40 grid solution
compared to the two-level adaptive grid solution at t=6.104 . The maximum is 0.05.

155

FIGURE 6.7. The absolute differences in salt concentration. The 80 x 80 grid solution
compared to the three-level adaptive grid solution at t=6. 104 . The maximum is 0.05.

grid computations. These are compared in Table 6.1. We can see that the two-grid
and three-grid computations are 1.8 and 4.4 times faster than the corresponding uni­
form grid computations. These measurements were performed on a Silicon Graph­
ics INDIGO workstation. The Tables 6.2 and 6.3 contain information about Newton
iteration process of both adaptive grid computations. We can see that for both the
two- and the three-grid level computations the number of Jacobians is only
moderately larger than the number of time steps. Hence, our Newton iteration stra­
tegy performs well in combination with the local uniform grid refinement method
for this case.

6.7. SUMMARY ANDCONCLUDINGREMARKS

In this paper we have discussed the application of a code using local uniform grid
refinement, to transport problems in heterogeneous porous media. For such prob­
lems, where locally steep fronts in the solute concentration occur, adaptive grid
methods are valuable. They can compute a solution to these problems with locally
the same resolution as on a very fine uniform grid, but with less computational costs.

With respect to the modern computer architectures we note that it is easier to
obtain large speed ups on a vector/parallel computer with a rectangular uniform grid
than with an adaptive grid method. However, according to [4], we can obtain con­
siderable gains with an adaptive grid method too. On top of that, there will always
be cases in which it is very difficult or even impossible to perform accurate uniform
grid computations due to memory requirements, especially in three space

156

FIGIJRB 6.8. The salt concentration and the l"essure at t~.103 w;,1, a 40 x 40 grid.

157

dimensions.
In natural circumstances, the soil properties of the porous medium can change

very suddenly from one region to another. At these sudden changes the profile of
the pressure 0r the solute concentration may be kinked. Consequently, interface con­
ditions, implying continuity of fluxes across these interfaces and involving only
one-sided difference schemes, have been applied here to obtain consistent numerical
approximations. The 'numerical' interfaces are supposed to coincide with grid cell
edges. Further, compared to our previous publication [13], the modified Newton
method for solving the systems of nonlinear equations has been adapted to increase
the robustness of the code.

The results of the test problem indicates that the solution computed with the local
uniform grid refinement method requires less costs than a comparable uniform grid
method. However, we have observed considerable local differences between the
uniform grid and the adaptive grid solution. The cause of this is still unclear to us
and should be investigated. The results also indicate that the adapted modified New­
ton method and the linear iterative solver BI-CGSTAB work satisfactorily for the
example problem. Nevertheless we think that a warning is appropriate here.
Although the adaptation of the modified Newton method has improved the robust­
ness of the code considerably, there still is a possibility that the code breaks down,
simply because the (partially) interpolated initial guess for the iteration process (cf.
Section 3) is too far away from the solution of the system of nonlinear equations at
hand. A remedy to this could be to create at all times finer grids at interfaces,
whether or not required by the space error monitor.

ACKNOWLEDGEMENT
This chapter is based on the paper "Local Uniform Grid Refinement and Tran­

sport in Heterogeneous Porous Media" by Trompert which appeared in Adv. Water
Resour. 16 (1993), 293-304 We would like to thank Elsevier Science Publishers for
granting permission to reprint.

This work was carried out as a part of contract research by order of the Labora­
tory for Soil and Groundwater Research of RNM - the Dutch National Institute of
Public Health and Environmental Protection - in connection with project
'Locatiespecifieke Modelvalidatie' 725205. Financial support for this project was
provided by the Dutch Ministry of Economic Affairs.

REFERENCES
1. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement

Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math.,
5, 257-274.

2. D.C. ARNEY and J.E. FLAHERTY (1990). An Adaptive Mesh-Moving and Local
Refinement Method for Time-Dependent Partial Differential Equations, ACM
Trans. on Math. Softw., 16, 48-71.

3. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic

15B

Partial Differential Equations, J. Gomput. Phys., 5:3:, 4&:1--512.
4. J.G. BLOM, R.A. TROMPERT, andJ:G. VERWER (1994). VLUGRZ: A Vectorizs

able Adaptive Grid Solver for PD/is in 2D, Report NM,.R9403 (submittetho
ACM TOMS), Centre for Mathematics and. Computer Science, Amsterdam.

5. J.E. FLAHERTY, P.K. MOORE, and C: OZTURAN (1989). Adaptive Overlapping
Grid Methods for Parabolic Systems, in Adaptive Methods for Partial Differen-­
tial Equations, 176-193, ed. J:E: FLAHERTY, P.J. PASLOW, M.S. SHEPHARD, J.D:
V ASILAKIS, SIAM Publications, Philadelphia.

6. W.D. GROPP (1987). Local Unifonn Mesh Refinement with Moving Grids,.
SIAM J. Sci. Statist. Comput., .8, 292-304.

7. W.D. GROPP and D.E. KEYES (1992.). Domain Decomposition with Local Mesh
Refinement, SIAM J. Sci. Comput., 13, 967-993.

8. S.M. HASSANIZADEH and T. LEDNSE.(1988). On the Modeling of Brine Tran-•
sport in Porous Media, Water Resources Research, 24, 321-330.

9. R.A TROMPERT (1993). Local Uniform Grid Refinement and Systems of Cou~
pied Partial Differential Equations, Appl. Numer. Math., 12; 331-355.

10. R.A. TROMPERT and J.G. VERWER (1991). A Static-Regridding Method for Two
Dimensional Parabolic Partial Differential Equations, Appt. Numer. Math., 8;
65-90.

11. R.A. TROMPERT and J.G. VERWER (1993). Analysis of the Implicit Euler Local
Uniform Grid Refinement Method, SIAM J. Sci. Comput., 18, 259-278.

12. R.A. TROMPERT and J.G. VERWER (1993). Rung_e-Kutta. Methods and Local
Uniform Grid Refinement, Math: Comp., 60, 591-616.

13. R.A. TROMPERT, J.G. VERWER, and J.G. BLOM (1993). Computing Brine Tran­
sport in Porous Media with an Adaptive-Grid Method, Int. J. Numer. Meths. in
Fluids, 16, 43-63.

14. J.G. VERWER and R.A. TROMPERT (1991). An Adaptive-Grid Finite-Difference
Method for Time-Dependent Partial Differential Equations, in Procs. 14th Bien­
nial Conference on Numerical Analysis, 267~284, ed. D.F. GRIFFITHS, G.A.
WATSON, Pitman Research Notes in Mathematics Series 260, Dundee, Scotland.·

15. J.G. VERWER and R.A. TROMPERT (1993). Analysis of Local Uniform Grid.
Refinement, Appl. Numer. Math., n, 251-270.

16. H.A. VAN DER VORST (1992). BI~CGSTAB: A Fast and Smoothly Converging'
Variant of BI-CG for the Solutiorr of Nonsymmetric Linear Systems, SIAM· J.
Sci. Statist. Comput., 13(2), 63-1-644;

159

SUBJECT INDEX

adaptive grid methods 1, 11, 41, 69,
101, 137
ADI64
amplification matrix/operator 48, 109
augmented Jacobian 76
augmented space 76

backward differentiation formula
(BDF) 105, 118, 142
BI-CGSTAB 140
brine transport 145
buffering/buffer zone 19, 60, 89 ·

Cauchy problem 42, 71
cellular 6, 14, 45, 101, 138
cluster algorithm 19, 60
combustion 3, 32
composite grid 5
convergence 29, 56, 82, 102, 138, 144

damping 44
data structure 19
diagonally implicit Runge Kutta
method (DIRK) 85
differential algebraic equation (DAE)
105
domain decomposition 6, 11, 102, 138
dynamic-regridding 2, 11, 41

equidistribution 2
error estimator 61
error indicator/monitor 3, 25, 141

fast adaptive composite grid method
(FAC) 41
flagging 19, 59, 89
full interpolation 74

garbage collection 20
global error 54, 78, 107
global error bound 53
global space error 110
global time error 110
grid distortion 3
grid expansion/expanded grids 46, 71,
105
grid level 103, 139
grid structure 16
groundwater flow 7, 137

Hermite interpolation 22
history vector 105

implicit Euler 44
implicit Euler LUGR method 45
injection 14, 45, 106
integrated Jacobian 48, 76, 108
interface conditions 21, 146
internal boundaries 45, 72, 103, 140
initial boundary value problem 5, 45,
72, 103, 140
interpolation 14, 45, 103, 140
interpolation error 52, 79, 106
interpolation operator 47, 72, 105
implicit filtering 26

Jacobian 24, 43, 88, 110, 143

Lagrangian interpolation 21, 52, 118
linear interpolation 49, 140
local error 54, 78, 108
local level error 51, 108
local space error 54, 80, 109
local time error 54, 83, l 09
local uniform grid refinement (LUGR)
3, 41, 69, 101, 139

160

LOD64
logarithmic matrix norm 43, 85

MA28 62
matrix norm 43
maximum norm 43, 78, 116
mean value theorem 48, 76, 108
method of lines 22, 42, 69, 104
modified Newton 143
moving-finite-element method 2, 11
moving-grid methods 2
MOORKOP 7, 139
multi-level multi-stage Runge Kutta
method 72

nesting property 59, 73, 82, 102
node crossing 3

order reduction 31, 84
ordinary differential equation (ODE) 2,
22,43, 70,104
overhead 30

parabolic PDEs 12, 44
porous media 7, 145

reaction-diffusion 12
real stability boundary 23
refinement condition 18, 57, 81, 113
refinement level 14, 46, 72
refinement strategy 6, 16, 51, 69, 113,
140
restricted interpolation 59, 89
restriction operator 47, 72, 105
Rothe' s method 3
Runge-Kutta-Chebyshev method 22
Runge-Kutta LUGR 69
Runge-Kutta scheme 70

semi-discrete 43, 71
spatial discretization error 52, 79
spectral radius 23
stability constants 57
stability analysis 47
stage order 84

static-regridding 2, 11, 41, 69, 138
subgrid/subdomains 3, 12, 42, 69, 103,
139

temporal error 52, 79
temporal/time integration 12, 142
time stepping 1, 12
tolerance 17, 93, 115, 141
trapezoidal rule 84
truncation error 106

update 28, 140

CWITRACTS
I D.H.J. Epema. Surfa.•t'f with canonical hyperplane sections.
1984.
2 J.J. Dijkstr.i. Fake topological Hilb~r~ ~p_aces and characteri­
zations of dimension in terms of neglig1bzlity. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical
systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal
approach. 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie
groups. 1984.
6 A.P.W. Bohm. Data.flow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoom. Algorithms and approximations for queue­
ing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus. 1984.
IO C.G. van der Laan, N.M. Temme. Calculation of special

Junctions: the gamma function, the exponential integrals and
error-likefunctions. 1984.
11 N.M. van Dijk. Controlled Markov processes; time­
discretization. 1984.
12 W.H. Hundsdorfer. The numerical solution of nonlinear
stiff initial value problems: an analysis of one step methods.
1985.
13 D. Grune. On the design of ALEPH. 1985.
14 J.G.F. Thiemann. Analytic spaces and dynamic program­
ming: a measure theoretic approach. I 985.
15 F.J. van der Linden. Euclidean rings with two infinite
primes. 1985.
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial dif­

ferential operators: a case-study in Fourier integral operators.
1985.
17 H.M.M. ten Eikelder. Symmetries for dynamical and Hamil­
tonian systems. 1985.
18 A.D.M. Kester. Some large deviation resulls in statistics.
1985.
19 T .M. V. Janssen. Foundations and applications of Montague
grammar, part J: Philosophy, framework, computer science.
1986.
20 B.F. Schriever. Order dependence. 1986.
21 D.P. van der Vecht. Inequalities for stopped Brownian
motion. 1986.
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics:
aspects of an evolution. 1986.
24 J.C.M. Baeten. Filters and ultrafilters over definable sub­
sets of admissible ordinals. 1986.
25 A.W.J. Kolen. Tree network and planar rectilinear location
theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Reconciling
imperative languages and data.flow machines. 1986.
27 A.J.M. van Engelen. Homogeneous zero-dimensional abso­
lute Borel sets. 1986.
28 T.M.V. Janssen. Foundations and applications of Montague
grammar, part 2: Applications to natural language. 1986.
29 H.L. Trentelman. Almost invariant subspaces and high gain
feedback. 1986.
30 A.G. de Kok. Production-inventory control models:
approximations and algorithms. 1987.
3 I E.E.M. van Berkum. Optimal paired comparison designs
for factorial experiments. 1987.
32 J.H.J. Einmahl. Multivariate empirical processes. 1987.
33 OJ. Vrieze. Stochastic games with finite state and action
spaces. 1987.
34 P.H.M. Kersten. Infinitesimal symmetries: a computational
approach. 1987.
35 M.L. Eaton. Lectures on topics in probability inequalities.
1987.
36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.). Proceedings
of the first international conference 011 industrial and applied
mathematics (IC/AM 87). 1987.
37 L. Stougie. Design and analysis of algorithm'! for stochastic
integer programming. 1987.
38 J.B.G. Frenk. On Banach algebras, renewal measures and

regenerative processes. 1987.
39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory
and related topics. 1987.
40 J.L. Geluk, L. de Haan. Regular variation, extensions and
Tauberian theorems. 1987.
41 Sape J. Mullender (ed.). The Amoeba distributed operating
system: Selected papers /984-/987. 1987.
42 P.R.J. Asveld, A. Nijholt (eds.). Essays on concepts, for­
malisms, and tools. 1987.
43 H.L. Bodlaender. Distributed computing: structure and
complexity. 1987.
44 A.W. van der Vaart. Statistical estimation in large parame­
ter spaces. 1988.
45 S.A. van de Geer. Regression analysis and empirical
processes. 1988.
46 S.P. Spekreijse. Multigrid solution of the steady Euler equa­
tions. 1988.
47 J.B. Dijkstra. Analysis of means in some non-standard
situations. 1988.
48 F.C. Drost. Asymptotics for generalized chi-square
goodness-of-fit tests. 1988.
49 F.W. Wubs. Numerical solution of the shallow-water equa­
tions. 1988.
50 F. de Kerf. Asymptotic analysis of a class of perturbed
Korteweg-de Vries initial value problems. 1988.
5 t P.J.M. van Laarhoven. Theoretical and computational
aspects of simulated annealing. 1988.
52 P.M. van Loon. Continuous decoupling transfonnations for
linear boundary value problems. 1988.
53 K.C.P. Machielsen. Numerical solution of optimal control
problems with state constraints by sequential quadratic pro­
gramming in.function space. 1988.
54 L.C.R.J. Willenborg. Computational a~pects of survey data
processing. 1988.
55 G.J. van der Steen. A program generator for recognition,
parsing and transduction with syntactic patterns. 1988.
56 J.C. Ebergen. Translating programs into delay-insensitive
circuits. 1989.
57 S.M. Verduyn Lune!. Exponential type calculus for linear
delay equations. 1989.
58 M.C.M. de Gunst. A random model for plant cell popula­
tion growth. 1989.
59 D. va~ Dulst. Characterizations of Banach spaces not con­
taining l . 1989.
60 H.E. de Swart. Vacillation and predictability properties of
/ow-order atmospheric spectral models. 1989.
61 P. de Jong. Central limit theorems for generalized multil­
inear fom1s. I 989.
62 V.J. de Jong. A specification system for statistical software.
1989.
63 B. Hanzon. Identifiability, recursive identification and
lpaces of linear dynamical systems, part I. 1989.
64 B. Hanzon. Identifiability, recursive identification and
spaces of linear dynamical system'!, part II. 1989.
65 B.M.M. de Weger. Algorithms for diophantine equations.
1989.
66 A. Jung. Cartesian closed categories of domains. 1989.
67 J.W. Polderman. Adaptive control & identification: Conflict
orconjlux?. 1989.
68 H.J. Woerdeman. Matrix and operator extensions. 1989.
69 B.G. Hansen. Monotonicity properties of infinitely divisible
distributions. 1989.
70 J.K. Lenstra, H.C. Tijms, A. Volgenant (eds.). Twenty-five
years of operations research in the Netherlands: Papers dedt­
cated to Gijs de Leve. 1990.
71 P.J.C. Spreij. Counting process systems. Identification and
stochastic realization. 1990.
72 J.F. Kaashoek. Modeling one dimensional pattern formation
by anti-diffusion. 1990.
73 A.M.H. Gerards. Graphs and polyhedra. Binary spaces and
cutting planes. I 990.
74 B. Koren. Multigrid and defect correction for the steady
Navier-Stokes equations. Application to aerodynamics. 1991.
75 M.W.P. Savelsbergh. Computer aided routing. 1992.

76 O.E. Flippo. Stability, duality and decomposition in general
mathematical programming. 1991.
77 A.J. van Es. Aspects of nonparametric density estimation.
1991.
78 G.A.P. Kindervater. Exercises in parallel combinatorial
computing. 1992.
79 J.J. Lodder. Towards a symmetrical theory of generalized
functions. 1991.
80 S.A. Smulders. Control of freeway traffic flow. 1993.
81 P.H.M. America, J.J.M.M. Rutten. A parallel object­
oriented language: design and semantic foundations. I 992.
82 F. Thuijsman. Optimality and equilibria in stochastic
games. 1992.
83 R.J. Kooman. Convergence properties of recurrence
sequences. 1992.
84 A.M. Cohen (ed.). Computational aspects of Lie group
representations and related topics. Proceedings of the 1990
Computational Algebra Seminar at CW/, Amsterdam. 1991.
85 V. de Valk. One-dependent processes. 1994.
86 J.A. Baars, J.A.M. de Groot. On topological and linear
equivalence of certain function spaces. 1992.
87 A.F. Monna. The way of mathematics and mathematicians.
1992.
88 E.D. de Goede. Numerical methods for the three­
dimensional shallow water equations. 1993.
89 M. Zwaan. Moment problems in Hilbert space with applica­
tions to magnetic resonance imaging. 1993.
90 C. Vuik. The solution of a one-dimensional Stefan problem.
1993.
91 E.R. Verheul. Multimedians in metric and nonned spaces.
1993.
92 J.L.M. Maubach. Iterative methods for non-linear partial
differential equations. 1994.
93 AW. Ambergen. Statistical uncertainties in posterior pro­
babilities. 1993.
94 P.A. Zegeling. Moving-grid methods for time-dependelll
partial differential equations. 1993.
95 M.J.C. van Pul. Statistical analysis of software reliability
models. 1993.
96 J.K. Scholma. A Lie algebraic study of some integrable sys•
tems associated with root systems. 1993.
97 J.L. van den Berg. Sojourn times in feedback and processor
sharing queues. 1993.
98 A.J. Koning. StochasJic integrals and goodness•of•fit tests.
1993.
99 B.P. Sommeijer. Parallelism in the numerical integration of
initial value problems. 1993.
100 J. Molenaar. Multigrid methods for semiconductor device
simulation. 1993.
101 H.J.C. Huijberts. Dynamic feedback in nonlinear synthesis
problems. 1994.
102 J.A.M. van der Weide. Stochastic processes and point
processes of excursions. 1994.
103 P.W. Hemker, P. Wesseling (eds.). Contributions to mul•
tigrid. 1994.
104 I.J.B.F. Adan. A compensation approach for queueing
problems. 1994.
105 O.J. Boxma, G.M. Koole (eds.). Perfom1ance evaluation
of parallel and distributed systems - solution methods. Part I,
1994.
106 O.J. Boxma, G.M. Koole (eds.). Perfonnance evaluation
of parallel and distributed systems - solution methods. Part 2.
1994.
107 R.A. Trompert. Local uniform grid refinement for time­
dependent partial differential equations. 1995.

MATHEMATICAL CENTRE TRACTS
I T. van der Walt. Fixed and a/mast fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes, part
I: model and method 1964.
4 G. de Leve. Generalized Markovian decision processes, part
II: probabilistic background 1964.
5 G. de Leve, H.C. Tijms, P.1. Weeda. Generalized Markovian
decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables.
1964.
8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. I 964.
10 E.M. de Jager. Applications of distributions in mathematical
physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964.
12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken,
A. van Wijngaarden. Formal properties of newspaper Dutch.
1965.
13 H.A. Lauwerier. Asymptotic expansions. 1966. out of print;
replaced by MCT 54.
14 H.A. Lauwerier. Calculus of variations in mathematical
physics. 1966.
15 R. Doornbos. Slippage tests. 1%6.
16 J.W. de Bakker. Formal definition ~programminf;
~a9nG,°ges with an application to the de mition of AL. OL 60.

17 R.P. van de Riet. Formula manipulation in ALGOL 60,
part/. 1968.
18 R.P. van de Riel. Formula manipulation in ALGOL 60,
part 2. 1968.
19 J. van der Slot. Some properties related to compactness.
1968.
20 P.J. van der Houwen. Finite difference methods for solving
partial differential equations. I 968.
21 E. Wattel. The compactness operator in set theory and
topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra.
part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in
numerical algebra, part 2. 1968.
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Pa~rl. Representations of the Lorentz group and projec­
tive geometry. 1969. 1i6~uropean Meeting 1968. Selected statistical papers, part /.

27 European Meeting 1968. Selected statistical papers, part II.
1968.
28 J. Oosterhof(. Combination of one-sided statistical tests.
1969,
29 J. Verhoeff. Error detecting decimal codes. 1969.
30 H. Brandt Corstius. Exercises in computational linguistics.
1970.
31 W. Molenaar. Approximalions to 1he Poisson, binomial and
hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the
weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservalion of infinite divisibilil)' under mix­
ing and related topics. 1970.
34 I. Juhasz, A. Verbeck, N.S. Kroonenberg. Cardinal func­
tions in topology. 1971.
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.1.W. Duijvestijn, E.W.
Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper,
F.E.J. Kruseman Aretz, W.L. van der Poel. J.P. Schaap­
Kruseman, M.V. Wilkes, G. Zoutendijk. MC-25 Informatica
Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch
compound words. 1972.
39 H. Bavinck. Jacobi series and approximation. 1972.
40 H.C. Tijms. Analysis of (s,SJ inventory models. 1972.
41 A. Verbeek. Superextensions of topological spaces. 1972.
42 W. Vervaat. Success epochs in Bernoulli trials (wtth applica­
tions in number theory). f972.

43 F.H. Ruymgaart. Asymptotic theory of rank Jests for
independence. 1973.

44 H. Bart. Meromorphic operator valued functions. I 973.
45 A.A. Balkema. Monotone transformations and limit Jaws.
1973.
46 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation system,, part I: the language. I 973.
47 R.P. van de Riet. ABC ALGOL, a portable language for
formula manipulation systems. part 2: the compiler. 1973.
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoom. An ALGOL 60 compiler in ALGOL 60, text of the
MC-compiler for the EL-X8. 1973.
49 H. Kok. Connected orderable spaces. I 974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Smtzofl, C.H. Lindsey, L.G.L.T. Meertens, R.G.
Fisk er (eds.). Revised report on the algorithmic language
ALGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential
theory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974.
53 M.J. Faber. Metrizability in generalized ordered spaces.
1974.
54 H.A. Lauweriet. Asymptotic analysis, part I. 1974.
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part I:
theory of designs, finite geometry and coding theory. 1974.
56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2:
graph theory, foundations. partitions and combinatorial
geometry. 1914.

57 M. Hall. Jr., J.H. van Lint (eds.). Combinatorics, part 3:
combinatorial group theory. 1974.
58 W. Albers. Asymptotic expansions and the deficiency con­
cept in sta1istics. 1915.
59 J.L. Mijnheer. Sample path properties of stable processes.
1975.
60 F. Gobel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science.
1975.
64 W.J. de Schipper. Symmetr,c closed categories. 1975.
65 J. de Vries. Topological transformation groups, 1: a categor­
ical approach. 1915.
66 H.G.J. Pijls. Logically convex algebras in spectral theory
and eigenfunction expansions. 1976.
68 P.P.N. de Groen. Singularly perturbed differential operators
of second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics
and proof theory. 1916.
71 J.A.E.E. van Nunen. Contracting Markov decision
processes. 1976.
72 J.K.M. Jansen. Simple periodic and non-periodic I.Ame
functions and their applications in the theory of conical
waveguides. 1977.
73 D.M.R. Leivant. Absoluteness ofintuitionistic logic. 1979.
74 H.J.J. te Riele. A theoretical and computational stu4), of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo­
logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood
ratw tests in exponential families. 1978.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz
spaces. 1977.
79 M.C.A. van Zuijlen. Emperical distributions and rank
statistics. 1977.
80 P.W. Hemker. A numerical study of stiff two-point boundary
problems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer
science II, part I. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundatwns of computer
sl'ience JI, par/ 2. 1976.
83 L.S. van Be_nthem Jutting. Checking Landau's
"Grundlagen" m the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid
from the Arabic mto LAtin ~v Hermann of Carinthia (?). books
vii-xii. 1977.

85 J. van Mill. Supercompactness and Wallman spaces. 1977.
86 S.G. van der Meulen, M. Veldhorst. Torm /, a program­
ming s2•stem for opera~ions on vectors and matrices over arb1-
1rary pelds and oj varrable s1;;e. 1978.
88 A. Schrijver. Matroid~ and linking systems. 1977.
89 J.w_. de Roever. Complex Fourier transformation and
ana{l,'tic funciionals with unbounded carriers. 1978.

90 L.P.J. Groenewegen. Charac1eriza1ion of optimal strategies
in dynamic games. 198 I.
91 J.M. Geysel. Transcendence in fields of po.sitive characteris­
tic. 1979.

92 P.J. Weeda. Finite generalized Markov programming. 1979. n7~.'C. Tijms, J. Wessels (eds.). Markov decision theory.

94 A. Bijlsma. Simultaneous approximations in transcendental
number theory. 1978.
95 K.M. van Hee. Bayesian control of Markov chains. 1978.
96 P.M.B. Vitanyi. Lindenmayer systems: structure, languages,
and growth Junctions. 1980.
97 A. Federgruen. Markovian conlrol problems; functional
equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978.
99 J.K. Lenstra. A.H.G. Rinnooy Kan, P. van Emde Boa.s
(eds.). Interfaces between computer science and operations
research. 1 '178.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed­
ings bicentennial congress of the Wiskundig Genootschap, part
I. 1979.

IOI P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceed­
ings bicentennial congress of the Wiskundig Genootschap, parl
2. 1979. :g~8~- van Dulst. Reflexive and superrejlexive Banach spaces.

103 K. van Ham. Classifying infinitely divisible distributions
by functional equations. 11:178.
104 J.M. van Wouwe. Go-spaces and generalizations of metri­
zabi/ity. 1979.
105 R. Helmers. Edgeworth expansions for linear combinations
of order statistics. 1982.
:~9~. Schrijver (ed.). Packing and covering in combinatorics.

107 C. den Heijer. The numerical solution of nonlinear opera­
tor equations by imbedding methods. 1979.

I08 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science III, part 1. 1979.
I09 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science Ill, part 2. 1979.
I 10 J.C. van Vliet. ALGOL 68 transput, part I: historical
review and discussion of the implementation model. I 979.
111 J.C. van Vliet. ALGOL 68 transput, part J/: an implemen­
tation model. 1979.
112 H.C.P. Berbee. Random walks with stationary increments
and renewal theory. 1979.

113 T.A.B. Snijders. Asymptotic optimality theory for testing
problems with restricted alternatives. 1979.
114 A.J.E.M. Janssen. Application of the Wigner distribution to
harmonic analysis of generalized stochastic processes. 1979.
115 P.C. Baayen, J. van Mill (eds.). Topological structure, JI,
part I. 1979.
116 P.C. Baayen, J. van Mill (eds.). Topological structures J/,
part 2. 1979.

I 17 P.J.M. Kallenberg. Branching processes with continuous
state space. 1979.

;i~!. ~-9~()_oeneboom. Large deviations and asymptotic efficien-

119 F.J. Peters. SP'}rse matrices and substructures, with a novel
inyilementation ojfinite element algorithms. 1980.
120 W.P.M. de Ruyter. On the asymptotic analysis of large­
scale ocean circulation. 1980.
121 W.H. Haemers. Eigenvalue techniques in design and graph
theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear
equations. I 980.

123 I. Yuhasz. Cardinal functions in topology - ten years later.
1980.

124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hoek. Reduction methods in nonlinear pro­
gramming. 1980.

127 J.W. Klop. Combinatory reduction systems. 1980.
128 A.J.J. Tal.man. Variable dimension fixed point algorithms
and triangulations. 1980.
129 G. van der Laan. Simplicial fixed point algorithms. 1980.
130 P.J.W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J.
Sint, A.H. Veen. /LP: intermediate language for pictures.
1980.

131 R.J.R. Back. Correctness preserving program refinements:
proof theory and applications. 1980.
132 H.M. Mulder. The interval function of a graph. 1980.
133 C.A.J. Klaassen. Statistical perforinance of location esti·
motors. 1981.
134 J.C. van Vliet, H. Wup'ler (eds.). Proceedings interna­
tional conference on ALGOl 68. 1981.
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Slokhof
(eds.). Formal methods in the sttu/y of language, part I. I 98 I.
136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof
(eds.). Formal methods in the sttu/y of language, part 11. 1981.
137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981.
139 J. van der Wal. Stochastic dynamic programming. succes•
sive approximations and nearly optimal strategies for Markov
decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory ofpure
exchange economies without the no-critical-point liypothesis.
1981.
141 G.E. Welters. Abel-Jacobi isogenies for certain types of
Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topolog)' and order
structures, part I. 1981.
143 J.M. Schumacher. Dynamic feedback in finite· and
infinite-dimensional linear systems. 1981.
144 P. Eijgenraam. The so/ulion of initial value problems using
interval arithmetic; formulation and analysis of an algorithm.
1981.
145 A.J. Brentjes. Multi-dimensional continued fraction algo­
rithms. 1981.
146 C.V.M. van der Mee. Semigroup and factorization
methods in transport theory. 1981.
~:~2~.H. Tigelaar. Identification and informative sample size.

148 L.C.M. Kallenberg. Linear programming and finite Mar•
kovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg.
W.K. Vielsch (eds.). From A to Z. proceedings of a symposium
in honour of A. C. Zaanen. I 982.
150 M. Veldhorst. An analysis of sparse matrix storage
schemes. 1982.
151 R.J.M.M. Does. Higher order asymptotics for simple linear
rank statistics. 1982. :i~2?.F. van der Hoeven. Projections of lawless sequences.

153 J.P.C. Blanc. Af;plication of the theory of boundary value
problems in the anarysis of a queueing model with paired ser•
vices. 1982.
154 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computational
methods in number theory, part [. 1982.
155 H.W. Lenstra, Jr .. R. Tijdeman (eds.). Computational
methods in number theory, part JI. 1982.
156 P.M.G. Apers. Query processing and data allocation in
distributed database systems. I 983.
157 H.A.W.M. Kneppers. The covariant classification of two­
dimensional smooth commutative formal groups over an alge­
braically closed field of positive characteristic. 1983.
158 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 1. 1983.
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983.
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group,
an algebraic approach. I 983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the
second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten. Markov decision processes
with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, specification and implemen­
~':J~~~ techniques, with an application to garbage collection.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program­
ming. 1983.
168 J.H. Evertse. Upper bounds for the numbers of solutwns of
diophantine equations. I 983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topolog)' and order
structures, part 2. 1983.

