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Chapter 1 

Introduction 

Numerous processes in nature are described by models containing partial dif
ferential equations (PDEs). One can simulate these processes by solving the associ
ated PDEs. The complexity of these PDEs, however, often demands that these 
equations are solved numerically. To obtain a numerical solution, one discretizes 
the PD Es on a set of discrete points, i.e. a space(-time) grid, which leads to a system 
of algebraic equations. Solving this system gives the approximate solution to the 
PDEs at these discrete nodes. This needs to be done only once when a PDE does 
not depend on time. When a PDE is time dependent then, starting from a known ini
tial solution, this system of equations is subsequently solved in order to advance the 
approximate solution in time with a relatively small increment until a final time is 
reached. This procedure is called time stepping. 

Many PDEs have solutions which are rapidly varying functions of the spatial or 
temporal co-ordinates. PDEs arising from models describing shock hydrodynamics, 
transport in porous media, combustion processes and plasma physics and so on, can 
serve as an example in this respect For the numerical practice it is important to 
realize that the accuracy of the approximate solution depends on the variation of the 
true solution from node to node. The larger the variations, the finer a grid needs to 
be to obtain accurate results. In many applications, this dependency leads to huge 
computational costs. 

In case a uniform space grid is used, which means that all grid cells are identical, 
the following situation can occur. Suppose that the variations over the spatial 
domain of the solution are only locally large and small anywhere else. In that case a 
uniform grid has to be fine to get an accurate approximation in the region of large 
variation. However, such a grid is then also fine in regions where such a high resolu
tion is not really needed. The picture on the left of Figure 1.1 clearly shows this. 
This approach is computationally inefficient because the solution has to be com
puted at a very large number of nodes. Moreover, storage for all these values has to 
be provided too. Adaptive grid methods prove to be greatly beneficial here, since 
these methods attempt to obtain accurate results in such a situation with minimal 
computational effort, meaning CPU time and memory requirements. Adaptive 
methods do this by using a fine grid spacing only where it is really needed, i.e. 
where the large variations occur, and therefore, use as few nodes as possible. An 
example of an adaptive grid is shown in the picture on the right of Figure 1.1. 
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FIGURE 1.1. The solution computed with a uniform grid (left) and an adaptive grid 
(right). 

Over the years a large number of adaptive grid methods have been proposed for 
time-dependent problems. Two main categories of adaptive grid methods can be 
distinguished, namely, 'moving-grid or dynamic-regridding methods and static
regridding methods. 

In dynamic-regridding methods, nodes are moving continuously in the space-time 
domain, like in classical Lagrangian methods, and the discretization of the PDEs is 
coupled with the motion of the grid. Therefore, grids generated by moving-grid 
methods are essentially nonuniform and the number of nodes contained by such a 
grid is constant in time. Such methods can be found in [2, 9, 11, 13, 16, 21-
23, 25, 28]. The motion of the grid can be governed in a number of different ways. 
There are methods were a system of ordinary differential equations (ODEs) describ
ing the grid motion is solved together with the discretized PDEs. The moving
finite-element method of Miller et al [9, 21, 22], for example, is such a method. The 
grid movement in this method is generated by a least-squares minimization of the 
finite-element residual of the PDE over not only the nodal values of the solution and 
its time derivative, like in the standard Galerkin method, but also over the spatial 
co-ordinates of the nodes and their velocity. Other methods, like the one by Dorfi 
and O'Drury [11], use the equidistribution principle to generate this system of ODEs 
for the space grid movement. Equidistribution means that the method moves the 
nodes such that the nodal value of a non-negative monitor function multiplied with 
the corresponding cell size is constant over the whole grid. The method developed 
by Petzold [23] also generates a system of ODEs for the motion of the nodes. Here, 
the nodes are moved such that the rate of change of the solution in time is minim
ized. Amey and Flaherty [2] proposed a method which uses ODEs to compute the 
movement of a center of error of a cluster of nodes where the error is too large. 
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From this, the movement of each individual node is computed using a movement 
function. Further, there are also more heuristic approaches to move the grid, like in 
the method described by Smooke and Koszykowski [25], where the location of a 
node is extrapolated from its location at previous time points. 

In static-regridding methods the location of nodes is fixed. A method of this type 
adapts the grid by adding nodes where they are necessary and removing them when 
they are no longer needed. The refinement or de-refinement is controlled by error 
estimates or error monitor values. Error monitors have no resemblance with the true 
numerical error. They are, for example, based on the slope or the curvature of the 
solution. Examples of static-regridding methods are described in [I, 3, 5-
8, 12, 13, 19, 20]. Methods of this type are, for example, methods which embed new 
nodes in the existing grid. After refinement, the solution is then computed on a sin
gle nonuniform grid, even when the initial grid is uniform. Such methods are, for 
example, developed by Adjerid and Flaherty [I] and by Bieterman and Babuska [7]. 
Further, there is the adaptive method developed by Maubach [20] which treats the 
time-dependent problem like a boundary value problem. Deufihard and his co
workers developed a finite-element adaptive multilevel method for parabolic PDEs 
[8, 19] based on Rothe's method, which is also called the method of discretization in 
time first [24]. 

Another method of the static-regridding type is the local uniform grid refinement 
method, described, for example, in [3, 5, 6, 12]. This method creates a series of 
increasingly finer local uniform subgrids where they are needed. The PDEs are 
solved at each grid separately for one time step in a consecutive order, from coarse 
to fine. These finer grids are not embedded in the coarser grid but are overlaying it. 
This method, which is the subject of this tract, will be discussed in greater detail in 
the next section. 

There are also methods which combine static with dynamic regridding. For 
example, Gropp [14] and Arney and Flaherty [4], have developed methods which 
combine local uniform grid refinement with dynamic regridding. 

The difference between static and dynamic regridding is clearly illustrated by Fig
ure 1.2. Here a local uniform grid refinement method described in [26] and the so
called moving-finite-element method [9, 21, 22, 28] are applied to a combustion 
problem. The moving-finite-element pictures in this figure were obtained from [28]. 
This combustion problem is discussed in [26, 28] and is derived from [I, 18]. At the 
lower left corner of a square domain a front develops and propagates towards the 
upper and right boundary of the domain as time proceeds. Figure 1.2 shows this for 
both methods at two different time points. 

The main advantage of static-regridding methods over moving-grid methods is 
that static-regridding methods are more robust than moving-grid methods. The 
phenomenon 'node crossing' in one space dimension and its equivalent 'grid distor
tion' in two or three space dimensions is a real danger for moving-grid methods and 
can reduce the accuracy of the computations considerably. In order to overcome 
this difficulty, user-defined parameters associated with penalty functions have to be 
introduced which limits the motion of the nodes. The choice of these parameters is 
left to the user and may be critical. However, not all moving-grid methods suffer 
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FIGURE 1.2. The grid associated with a static-regridding method (left) and a 
dynamic-regridding method (right) at two time points. 

from this difficulty to the same degree. For example, the method in [2], does not 
have a serious grid-distortion problem, because the movement function of the nodes 
prevents this. It does, however, need a parameter to stabilize the motion of the grid. 
This brings us to more difficulties associated with moving-grid methods, namely, 
that grid motion based on minimization or equidistribution can be unstable [ I OJ or 
may even be discontinuous in time [27) which complicates time stepping. Further, 
there are moving-grid methods where the nodes do not always move in the direction 
the user wants them to move and therefore, some a posteriori regridding to correct 
this deficiency in the moving-grid procedure is needed [23, 29]. 

Static-regridding methods do not have problems of this nature. Moreover, they 
only need a few user-defined parameters like, for example, error tolerances. In gen
eral, the choice of such parameters is not critical. However, moving-grid methods, 
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in contrast to static-regridding methods, attempt to smooth the variations of the solu
tion in the time direction, which allows larger time steps when the grid motion is 
sufficiently smooth. Finally, moving-grid methods, when working properly, use less 
nodes than -,i,tic-regridding methods for a given accuracy. 

In the next section, the subject of this tract, which is the local uniform grid 
refinement method will be discussed. 

1.1. THE LOCAL UNIFORM GRID REFINEMENT METHOD 

The idea behind local uniform grid refinement is simple. Starting from a coarse 
base grid covering the whole domain, finer-and-finer uniform subgrids are recur
sively created locally in a nested manner in regions where the variations are large, 
or in other words, where the solution is steep. Each time step a new initial boundary 
value problem is solved at each grid separately in a consecutive order, from coarse 
to fine. Therefore, the local subgrids are not patched into the coarser grids but are 
actually overlaying them. An example of this is shown in Figure 1.3. Here we see 
the composite grid together with the uniform grids it consists of. 

A finer grid uses a time step which is smaller or equal to the coarser-grid time 
step. In the latter case, the coarser-grid time step size is a whole multiple of the 
finer-grid time step size. 

FIGURE 1.3. The local subgrids overlaying the coarser grid. 

When a grid of a certain level of refinement has reached the same time level as a 
coarser grid, then the solution at the coarser grid is, in some way, updated by the 
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solution at the finer grid. The location, shape and size of these sub grids are adjusted 
at discrete times to follow the movement of the steep parts of the solution. The gen
eration of subgrids is continued until sufficient accuracy is reached at the finest 
subgrid. The subgrids in this method are properly nested, meaning that subgrids are 
completely overlapped by coarser grids. 

So far, local uniform grid refinement methods have been proposed in a number of 
different varieties, applied to different kinds of PDEs. We will now sketch some 
varieties of the local uniform grid refinement method very briefly. The methods 
contained in [3, 4, 6, 14] are applied to hyperbolic PDEs and use explicit time step
ping techniques. In all these methods, the subgrids having the same cell size can 
overlap each other. The method proposed by Berger and Oliger [6] employs rec
tangular subgrids which may be skewed with respect to the co-ordinate axes in order 
to align with the steep region of the solution. Arney and Flaherty [3] developed a 
method very similar to the one in [6] except that the subgrids here are created by 
so-called cellular refinement, meaning that the fine grid cells are properly nested 
within coarser grid cells. These subgrids have a piecewise polygonal shape. Berger 
and Colella [5] proposed a method comparable to the one in [6], except that the 
subgrids are now rectangles with sides parallel to the co-ordinate axes. 

Local uniform grid refinement is combined with grid movement in [4, 14]. Gropp 
[4] proposed a method using subgrids which are rectangles having sides parallel to 
the co-ordinate axes and which are able to move as a whole with the moving steep 
fronts. In this method the subgrids are also allowed to overlap. In [14], Arney and 
Flaherty added grid movement to their method discussed in [3]. The nodes of the 
coarsest grid are able to move and the fine grid movement is induced by the move
ment of the coarsest grid. The grid movement technique used here is the same as in 
[2]. 

Local uniform grid refinement methods are used to solve elliptic PDEs by Gropp 
and Keyes [15] and parabolic PDEs by Flaherty, Moore and Ozturan [12]. The 
subgrids in [12] are piecewise polygonal and the ones in [15] are rectangles. In both 
[12] and [15] domain decomposition is applied to improve the performance on 
parallel computers. 

1.2. CONTENTS OF THIS TRACT 

This tract is based on five papers which have appeared in the literature. Each 
chapter following this one contains one of these papers. The Chapters 2 and 6 are 
rather applied in nature while the Chapters 3,4 and 5 are more fundamental. The 
latter chapters form the kernel of this tract. In these chapters strategies for grid 
refinement based on an error estimates are developed from error analyses. In gen
eral, a refinement strategy based on heuristic criteria like the slope or the curvature 
of the solution is computationally cheaper than an error-estimate-based strategy. 
However, a strategy based on error estimates will in many cases give more accurate 
results than a strategy based on heuristic error monitors. This is due to the fact that 
heuristic error monitors bear no relationship with the true numerical error. Because 
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of this, the situation can occur that a strategy based on heuristics does not refine a 
grid cell which ought to be refined considering the numerical error and vice versa. 
Hence, a strategy based on error estimates can generate better subgrids than a 
heuristic strategy. A brief description of the contents of this tract is given below. 

Chapter 2 discusses the local uniform grid refinement method applied to parabolic 
PDEs. The explicit Runge-Kutta-Chebyshev (RKC) method of van der Houwen and 
Sommeijer [17] is used for time stepping, and the grid refinement process and time 
step selection are based on heuristic error monitors. 

In Chapter 3 a refinement strategy, controlling the generation of subgrids, is 
developed based on an error analysis. The error analysis is carried out for the local 
uniform grid refinement method applied to time-dependent PDEs which after spatial 
discretization yield a system of ODEs, and where the implicit Euler method is used 
for time stepping. Further, it is assumed here that the grid spacing of the finest 
subgrid is fixed in time. 

Chapter 4 is in many respects similar to Chapter 3, except that a general Runge
Kutta scheme is used for time stepping. The case of a variable grid spacing in time 
of the finest subgrid is also discussed in this chapter, 

In Chapter 5, a refinement strategy is developed in case PDEs are solved which 
after spatial discretization result in a system of differential algebraic equations 
(DAEs). This refinement strategy is based on an error analysis carried out for this 
case. A backward differentiation formula method (BDF) is used for time stepping. 

Chapter 6 discusses the application of the local uniform grid refinement method to 
a model for unsteady groundwater flow coupled with transport of solute in hetero
geneous porous media. The local uniform grid refinement method proves to be use
ful for this application, since it frequently occurs that the variations of the concen
tration of solute over the spatial domain are only large at a small part of this domain. 
This work is carried out as a part of contract research in behalf of the RIVM - the 
Dutch National Institute of Public Health and Environmental Protection. In the 
scope of this project, the local uniform grid refinement method is implemented in a 
code called MOORKOP. This code is developed for solving a rather general class 
of PDEs defined on a rectangular domain, including transport problems in hetero
geneous porous media. 
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Chapter 2 

A Static-Regridding Method for Two-Dimensional 

Parabolic Partial Differential Equations 

2.1. INTRODUCTION 

11 

Many evolution problems involving linear or nonlinear partial differential equa
tions (PDEs) have solutions with sharp moving transitions such as steep wave fronts 
and emerging or disappearing layers. In such situations, a grid held fixed throughout 
the entire calculation can be computationally inefficient, since, to afford an accurate 
approximation, such a grid would easily have to contain an unacceptably large 
number of nodes. Adaptive grid methods strive to resolve these sharp transitions to 
acceptable degrees of accuracy while avoiding the use of excessive numbers of grid 
points. Such methods use, in some way or another, nonuniform or local, uniform 
grids and, as time proceeds, automatically concentrate the grid in spatial regions of 
high activity. It thus is attempted to keep the number of nodes at an acceptable level. 

For time-dependent problems one may distinguish two main categories of 
methods, viz., dynamic-regridding and static-regridding methods. In the first 
category the grid moves continuously in the space-time domain, like in classical 
Lagrangian methods, while usually the discretization of the PDE and the grid selec
tion are intrinsically coupled. A well-known example is provided by the moving
finite-element and related methods (see, e.g., the proceedings [8]), In the second 
category the grid is moved only at discrete time levels and no intrinsic coupling 
exists between the discretization of the PDE and the grid selection. This category 
comprises a large number of different methods and the method developed in this 
paper is of the static-regridding type. 

Our method is closely related to the methods of Berger and Oliger [4], Gropp [9-
11] and Arney and Flaherty [2] and thus an important characteristic of it is local uni
form grid refinement. The notion of local uniform grid refinement is an example of 
'domain decomposition', the general idea of which is to decompose the original 



12 

physical or computational domain into smaller subdomains and to solve the original 
problem on these subdomains. The idea of our static-regridding approach can be 
briefly described as follows. Given a coarse base space grid and a variable, base 
temporal step size, a 'decomposition' into local, uniform subgrids is performed 
recursively. Hence, our computational subdomains are nested, local, uniform, space 
grids with nonphysical boundaries which are generated up to a level of refinement 
good enough to resolve the anticipated fine scale structures. The step sizes in time 
and space during this refinement process are chosen automatically by comparing 
estimates or indicators of local temporal and spatial errors to prescribed tolerances, 
while the refinement is carried through until all tolerances are met. The process is 
then continued to the next base space/time grid, while all fine grid results computed 
at forward time levels are kept in storage as these are needed for step continuation. 

An attractive feature of moving the points only at discrete time levels is the possi
bility of dividing the whole solution process into the following computational pro
cedures: spatial discretization, temporal integration, error estimation, regridding and 
interpolation. Depending on the application, these individual procedures may range 
from simple or straightforward to very sophisticated. This flexibility is attractive 
since it makes it possible to treat different types of PDE problems with almost one 
and the same code, assuming hereby that the grid structure and the associated data 
structure remain unchanged. In this connection we wish to note that a major part of 
the development and coding of any static-regridding method, including ours, lies in 
the grid and data structure. The choice of data structure is important for keeping the 
unavoidable overhead at an acceptable level, because at each time step grids may be 
created or removed while also communication between grids of adjacent levels of 
refinement frequently takes place. 

When contrasted with the dynamic approach, an inherent drawback of static 
regridding is that during the time stepping temporal variations are not minimized 
because grid points do not move. More specifically, when a steep front passes a 
fixed grid point, smaller integration steps are required to maintain accuracy than 
when the grid point travels along with the front in the proper direction. In this con
nection, interpolation at internal grid interfaces should also be used judiciously for 
generating sharp solution profiles. Dynamic-regridding methods using a fixed 
number of moving points obviously do not require interpolation at internal interfaces 
which may be considered as an advantage. On the other hand, a well-known major 
disadvantage of dynamic regridding is that methods of this type often have difficulty 
in controlling grid skewness and grid tangling. This disadvantage is usually less in 
hybrid methods where in some way or another static- and dynamic-regridding con
cepts are combined. Examples of such methods can be found in, e.g., Arney et al [2], 
Gropp [10] and, for ID problems, in Petzald [16] and Verwer, Blom and 
Sanz-Serna [21]. Finally, an attractive feature of local grid refinement is that it 
enables prescribed tolerances to be satisfied by using finer-and-finer grids in regions 
where greater resolution is needed. 

In this paper we concentrate on (systems of) parabolic equations of the reaction
diffusion type, 
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u1 L(x,y,t,u) := d(uxx+uyy)+f(x,y,t,u), (1.1) 

u = u(x,y,t), (x,y,t)E Qx{t>O}, 

subjected to appropriate initial and boundary conditions. For simplicity and conveni
ence of presentation, our procedures are described and implemented on rectangular 
Q, but they would also apply if Q is a union of rectangles or can be transformed this 
way. Throughout the development of the method, the actual form of the operator L 
and its boundary conditions play no essential role. In fact, since for spatial discreti
zation the use of standard finite differences is supposed, a much wider class of dif
ferential operators Lis allowed. 

The contents of the paper is as follows. We start with an outline of our local uni
form grid refinement algorithm in Section 2. The various components of the solution 
algorithm are discussed in greater detail in the following sections. This discussion 
includes the actual refinement strategy (Section 3), the data structure (Section 4) 
and the grid interface conditions (Section 5). For the temporal integration we advo
cate one-step Runge-Kutta methods, since linear multistep methods like BDF are 
less appropriate due to the start up problem. Section 6 is devoted to a particular 
Runge-Kutta method, viz., the explicit Runge-Kutta-Chebyshev (RKC) method of 
van der Houwen and Sommeijer [13]. The temporal integrator we have used in the 
present investigation is based on this method, but it should be stressed that other 
choices of Runge-Kutta methods are possible too. The error indicators that govern 
the selection of the step sizes in time and space are discussed in Section 7. In Sec
tion 8 we present two examples of reaction-diffusion problems (1. 1) that were 
solved with our static-regridding method using the explicit RKC scheme for time 
integration. One of these two example problems is nonlinear and originates from 
combustion theory. Our future plans are summarized in Section 9. 

2.2. OUTLINE OF THE ALGORITHM 

In this section we present a rough outline of our recursive static-regridding algo
rithm, so as to facilitate the presentation and discussion of algorithmic details in 
later sections. Our algorithm is based on the principle of local uniform grid 
refinement (LUGR). LUGR may be contrasted with pointwise refinement which 
leads to truly nonuniform grids. As already noted in the introduction, LUGR is an 
example of 'domain decomposition'. When considered this way, our domain is a 
base space/time grid determined by a base space grid consisting of rectangular qua
drilateral cells with sides .1.x, ~y for T::,; t::,; T + At. The temporal step size ~t is 
called the base temporal step size and the base space grid covers the physical 
domain. It is assumed in this paper that this domain is rectangular, but without 
essential changes the domain is allowed to be made up of a union of rectangles 
(polygonal boundary parallel to the co-ordinate axes). The 'domain decomposition' 
or regridding on local, uniform grids now takes place entirely within this base 
space/time grid defined on the time interval T ::,; t ::,; T + ~t. Starting at the physical 
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initial time, the complete algorithm is then repeatedly applied until the desired final 
physical time is reached. We will outline all computations required for advancing 
the solution at the base grid at time T to the next base grid at time T + At. This out
line is similar as in Gropp [11]. The base grid parameters Llx, Ay are supposed to be 
prescribed. The base temporal step size At is supposed to be a trial value. For clarity 
we discuss first a single level of refinement where the coarse grid coincides with the 
base grid. 

The following steps are followed to advance the solution from time T to the next 
base time level T + M: 

( 1) Integrate on the coarse grid using one coarse time step of size At. Adaptation in 
space is always preceded by adaptation in time, that is, the time step is first sub
jected to a temporal local error test and eventually the integration is redone 
with a smaller M until acceptance takes place. Call the accepted values of u on 
the coarse grid at time T + At the new coarse u-values and those at time T the 
old coarse u-values. Both sets of values are saved. 

(2) Integration is followed by regridding. Using the new coarse u-values, decide 
where the fine grid will be for T::; t ::; T + M. This is done by invoking a spatial 
local error indicator and a clustering and buffering algorithm to distribute all 
untolerable cells over the fine grid. The fine grid may consist of different dis
junct fine subgrids. Overlapping fine subgrids are not allowed in our method 
and fine subgrids need not be a rectangle. The actual refinement is cellular and 
carried out by bisecting all sides of untolerable cells. At this point the non
refined part of the coarse grid is complete and not further processed within the 
current coarse time step. 

(3) Regridding is followed by interpolation. Return to time level T and determine 
initial values for the fine grid. If a cell was refined in the previous coarse time 
step, then we use the available fine grid u-values and interpolation is not 
needed. If a cell was not refined before, then we interpolate old coarse u
values. For T::; t ::; T + M we need to specify boundary values at grid interfaces 
where fine grid cells abut on coarse cells. Using old and new coarse u-values, 
at these grid interfaces numerical Dirichlet boundary conditions are prescribed 
via interpolation. If an interface coincides with the physical boundary, then 
physical boundary conditions are used. 

(4) Next the fine grid is integrated over the interval T::; t::; T + At while fine grid 
u-values are subjected to the temporal local error test. This adaptation in time 
may result in a smaller temporal step size than At. If T + At is reached, then the 
new fine grid u-values are injected in the coarse grid points, i.e., the value of u 

at T + At on the coarse grid is taken to be the value of u just computed on the 
fine grid. Further, all fine grid u-values values at T + At are saved for use in the 
next coarse time step. The solution at time T + At is now complete. 

Multiple levels are handled in a natural, recursive fashion. After each accepted time 
step of ( 4 ), taken on a grid of refinement level l, say, a regridding may take place 
resulting in a grid of refinement level l + l. In fact, the computational steps follow 
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precisely points (2) - (4) above. Note that all fine grid results at forward time levels 
are kept in storage and that for step continuation the most accurate results are used 
that are available. 

An illustration of the recursive local refinement, in ID for simplicity of presenta
tion, can be found in Figure 2.1. Including the base grid there are three levels of spa
tial refinement. In this figure the temporal step size is halved when going to a finer 
grid. The numbers next to the individual grids indicate the order in which the solu
tion was computed. Herewith we do not distinguish between disjunct subgrids at the 
same level of refinement. Only the order of the time integrations is indicated. If in 
this example the base space grid is given refinement level 1, then the order of the 
corresponding occurring refinement levels is 1, 2, 3, 3, 2, 3, 3. The next occurring 
refinement level is 1, assuming that the next time step is taken on the next base grid. 
For clarity, a time history diagram of the occurring refinement levels is given in Fig
ure 2.2. The location of the fine grids is not made visible in this time history diagram 
and thus it may also correspond with a base time step of a 2D computation. With 
Figures like 2.1 and 2.2 one may now easily conceive other possible order of 
refinements. Finally, Figure 2.3 shows a two-dimensional example of a base grid 
with three fine subgrids. 

In conclusion, the principle on which our static-regridding method is based is 
recursive LUGR and cellular refinement. The building blocks of our algorithm are 
nested, local, uniform, finer-and-finer grids which are adaptively defined by invok
ing indicators for local spatial and temporal errors. These local uniform fine grids 
need not be rectangles and their location in the base space/time domain is automati
cally governed by the error indicators. Initial and boundary conditions for a refined 
subgrid are taken from the parent coarse grid or from the given initial function and 
physical boundary conditions. The recursive refinement takes place repeatedly per 
coarse time step. Solutions computed on current fine grids are kept in memory for 
use in the next coarse time step. 

Inherent in the approach we have adopted is that grid information is not passed to 
the next coarse time step. This necessarily is a bit wasteful in situations where the 
sharp transitions move very slowly, e.g., when approaching steady state. On the 
other hand, the computational effort for the coarser grids normally shall not be large. 
Further, uniform subgrids allow an efficient use of vector based algorithms and 
finite-difference or finite-element expressions on uniform grids are more accurate 
and cheaper to process than on nonuniform grids. In this respect the current LUGR 
approach should be contrasted with pointwise refinement where arbitrary levels of 
refinement around any point are allowed. This pointwise refinement leads to truly 
nonuniform grids on which usually less points are needed than on an LUGR grid. 
However, an inherent drawback of a truly nonuniform grid is a more complex and 
expensive data structure. We refer to Gropp [9-11], Berger [3] and Ewing [7] for 
some further discussions on various advantages and/or disadvantages when compar
ing the two refinement techniques. We also note that the LUGR methods of Berger 
and Oliger [3,4] (see also Arney and Flaherty [2]) are based on noncellular 
refinement and truly rectangular subgrids which may overlap and rotate to align with 
an evolving dynamic structure. 
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FIGURE 2.1. Typical set· of LUGR grids in one space dimension for one base time 
step. The final composite grid is shown at the top of the figure. Note that here the 
step sizes in time are halved. In actual application the new step size is determined 
by the local time error indicator. 

2.3. REFINEMENT STRATEGY AND GRID STRUCTURE 

When a new refinement level is to be created, the new fine grid has to meet two 
demands. First, the new fine grid should be as efficient as possible, that is, no cells 
are unnecessarily refined. This implies that the new fine grid is allowed to have an 
irregular shape and also may consist of different disjunct subgrids. For clarity, it is 
noted once more that in the discussion we do not distinguish between subgrids 
belonging to the same level of refinement. In other words, when we write 'new fine 
grid', we mean the complete grid associated to the next higher refinement level and 
this grid may consist of different disjunct subgrids. The second demand is that the 
accuracy at interior nodes of a new fine grid should not be diminished by low accu
racy nodes on its boundary. Therefore, the boundary of the new fine grid must either 
coincide with a physical boundary or lie in part of the physical domain where the 
accuracy is sufficiently high, relative to the error measurement used. This second 
demand is most important because when at a certain level a cell is not further 
refined, we never return to this cell within the current base time step. In this section 
we describe a local refinement strategy that conforms to both demands. 

The refinement strategy decides where a new fine grid will be placed (cf. point (2) 



17 

- -- --

3 

I 
2 

3 

I -

3 

2 

3 

2 4 5 6 7 

no. of integration steps 

FIGURE 2.2. Time history diagram of refinement levels occurring in Figure 2.1. Each 
bar corresponds with an integration step. The levels are indicated within the bars. 
The lower and upper line of a bar correspond with the old and new time value of the 
integration step. The actual location of the refined grids is not shown. 

of Section 2). The refinement is governed by a so-called local spatial error indicator, 
ests, and a corresponding tolerance , 'iclue, tols, that has to be specified. Ideally, ests 
estimates the genuine local spatial truncation error that has been committed on the 
grid currently in use. We discuss the actual choice of the indicator in Section 7. For 
the discussion of the present section it suffices to suppose that we are given values 
of ests at the current forward time level at all nodal points of the grid currently in 
use. 

Let l be the level index of this grid. Let estsm be the maximum of all ests values. 
If 

estsm > tols, (3.1) 

then it is decided to create a new fine grid of level l + 1. For this purpose, a second 
spatial tolerance value is introduced. It is this second tolerance, denoted by tolspc 
and derived from tols, that is used to decide which particular level-/ cells need to be 
refined. The second tolerance tolspc is defined as follows. Let p be the order of con
sistency of the spatial discretization and of the local error indicator. In our case 
p = 2 since we here work with standard finite differences. Since the mesh width of 
level / + 1 is half the mesh width of level l, etc., we may invoke the asymptotic order 
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FIGURE 2.3. Example of 2D grid structure. It is emphasized that fine grids are not 
patched into coarse ones, but overlays them. The time dependency is not shown 
here. 

relation 

estsm(k) = TP(k-l)estsm(l), k ~ l+l, (3.2) 

where estsm(l) represents estsm of the level-I grid, etc., and k is a grid level index as 
yet unknown. We here anticipate that on top of level l, another k-l refinement lev
els will be needed to satisfy the condition 

estsm(k) :::; tols. (3.3) 

From this inequality the unknown integer k is now computed, that is, 

k = l + 1 + entier[(log(estsm(l))- log(tols))/(plog(2))]. (3.4) 

The idea is now to impose, at all nodal values of level l, the refinement condition 

ests > tolspc := estsm(k), (3.5) 

hereby introducing the second spatial tolerance value. However, because the 
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calculation of a spatial error indicator comes down to the calculation of higher 
derivatives by means of finite differences (numerical differencing), it is conceivable 
that these are underestimated in regions where the solution is steep. Therefore, by 
way of safety, we suppose that one extra level would be preferable, which means 
that in (3.5) a safety factor of TP must be built in. Thus we finally arrive at the 
refinement condition 

ests > tolspc := TPestsm(k). (3.6) 

This condition is used to decide which level-! cells need refinement. The rationale 
behind this second tolerance value is that we wish to refine all level-! cells, except 
those for which ests does not exceed the expected maximum of the error indicator 
values at the anticipated highest refinement level k. This local refinement strategy 
takes into account the method strategy that when at a certain level a cell is not 
refined, we never return to this cell within the current base time step. Another 
natural justification is that, when using local grid refinement, this strategy attempts 
to have the maximum norm of the spatial error over the complete physical domain 
equal to or smaller than the maximum norm of the spatial error over local grids. 

The actual cell refinement goes as follows. Any level-! node satisfying (3.6) is 
flagged together with its eight neighboring nodes. Next, to create an extra buffer, all 
sides of cells with at least one flagged corner node are bisected. This means that a 
buffer zone of two coarse or four fine mesh widths is used around any untolerable 
node. Hence, the minimal number of nodes in a column and row of any subgrid is 
nine. Herewith it is tacitly assumed that the minimal number of internal points in a 
row and column of the coarsest base grid is three. Near boundaries, physical and 
internal ones, the buffering of course slightly differs. Finally, a cluster algorithm 
groups all untolerable cells together to form the newly defined level-!+ 1 grid. It is 
noted that subgrids in the new fine grid do not overlap and that we do not connect 
subgrids which are lying close together since this leads to substantial bookkeeping. 
For the same reason, the local refinement does not distinguish between co-ordinate 
directions. This necessarily leads to some waste of points if a high gradient region 
aligns with a co-ordinate direction. 

The use of tolspc in combination with the buffer zone is rather conservative. 
However, to our experience, it nicely conforms to the second demand stated above 
that accuracy at interior nodes of finer-and-finer grids should not be diminished by a 
too low accuracy at nodes on a previously selected interior boundary. 

2.4. DATA STRUCTURE AND MEMORY USE 

In this section we briefly discuss the data structure we have implemented. Our 
data structure has close similarities with that of sparse matrix storage schemes, in 
particular concerning the storage of a sparse matrix as a collection of sparse vectors. 
The interested reader is referred to Duff et al. [6], Ch. 2, for the various technical 
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details that are involved in the use of this type of storage schemes. 
The data we keep for each node are stored per level of refinement in a row 

sequential order. In particular, rows in subgrids are taken together and a 'sparse' 
vector in our storage scheme contains all data belonging to all nodes of a row at a 
certain level. The data we store for each level of refinement are as follows: 

- The number of rows. 
- For each row 

- A row index corresponding with its y-co-ordinate. 
- A pointer to the memory location of the data belonging to its first node. 

- For each node 
- A column index corresponding with its x-co-ordinate. 
- Two pointers to memory locations where data belonging to the nodes 
directly above and below in the same grid is stored. 
- An integer indicating the position of a node in the domain, i.e., whether 
it lies on the physical boundary, on an internal boundary, or in the interior 
of the grid. 
- The solution and its time derivative at the beginning and end of a time 
step. 

The row and column indices are, amongst others, used to find coinciding nodes on 
different refinement levels. This is needed for interpolation and injection. The row 
and column indices correspond to the x- and y-co-ordinates in the following way. 
Let i be the column index and j the row index of a node at refinement level /. Then, 

X = Xo + iflx 2 - (I-I), (4.1) 

where&, Liy are the coarsest level mesh widths and (x0 , y 0 ) is the co-ordinate of 
the left lower corner of the physical, rectangular domain. It follows that a node on 
level l with column index i and row index j coincides with a node on level l + 1 with 
column index 2i and row index 2j. 

We will now outline how the actual storage is organized. The arrays used are 
divided in a number of blocks of the same size. The number of blocks equals the 
maximum of the number of refinement levels that is expected to be required during 
actual runtime. Each of the blocks is assigned a refinement level and all data for this 
refinement level are stored in this block. Hence the size of the blocks should be 
large enough to store all generated data of any refinement level that can occur dur
ing runtime. Herewith we implicitly determine the maximum number of levels and 
the maximum number of rows and nodes per level. The drawback of using memory 
blocks of the same size is that memory is wasted, as it is likely that the actual 
amount of memory needed differs per level. A clear advantage is computational 
simplicity, because there is no need for garbage collection. Because the size of the 
blocks is fixed, their initial subscript values are known which makes the data 
retrievement simple and fast. Nevertheless, the implementation of our algorithm is 
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such that a garbage collector can be easily implemented. In this connection it is 
noted that with minor modifications our storage scheme can be extended to 3D. 
Needless to say that in 3D the memory waste could be prohibitive so that garbage 
collection l•e-:omes a necessity. All experiments reported in this paper have been 
carried out without garbage collection, indicating that in 2D this is not much of a 
problem. 

Next we give an estimate of the amount of memory needed in bytes. Work arrays 
needed by the regridding algorithm and the time integrator are not included in this 
estimate. The work arrays for the regridding algorithm are integer arrays and their 
total length is negligible compared to the estimate given below. Further, for the time 
integrator we use one and the same set of work arrays for all levels. The total length 
of these arrays is of course determined by the actual integrator in use (see Section 
6). 

The array in which we store the solution and its time derivative at the begin and 
end of an integration step is a real floating point array. The number of bytes per 
node this array uses is 32 times the number of PDEs (NPDE), assuming precision 
arithmetic involving 64 bits. The four arrays holding the column indices, the 
pointers to nodes above and below, and the position indicators, are 4-bytes integer 
arrays and together they take 16 bytes per node. The two arrays containing the row 
indices and the memory addresses of the data belonging to the first node of all rows 
are also integer arrays. These row indices and starting addresses require together 8 
bytes of memory per row. Because the minimum number of nodes on a row is 7, it 
follows that these two arrays take at most 8/7 bytes per node. We thus arrive at a 
final estimate in bytes given by 

maxlev * nptspl * (32 * NPDE + 16 + 8/7), (4.2) 

where maxlev is the maximum number of levels and nptspl is the maximum number 
of nodes per level. 

2.5. INTERFACE CONDITIONS 

When a new fine grid is created, initial and boundary values have to be defined. 
Concerning the initial values, three cases are distinguished. If the time level at 
which initial values must be specified coincides with the physical initial time, then 
of course the prescribed initial function is used at any occurring node. If the time 
level does not coincide with the physical initial time, then two possible cases 
remain. A node coincides with a node at the same refinement level from a previous 
time step. In this case we adopt the available solution at this node as initial value. In 
the other case we must interpolate. The initial value is then obtained from interpola
tion on the nearest coarse grid. Obviously, the interpolation error should not dimin
ish the accuracy. We use fourth-order Lagrangian interpolation and note that this 
way second-order accuracy is maintained in calculating the first and second spatial 
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derivatives with the second-order difference scheme. Note that we use an explicit 
integration scheme which starts with a spatial differential operator calculation at the 
initial time level (stage (6.2b)). It is then prohibited to use straightforward linear 
interpolation, since this would yield zero second-derivative values at the newly 
created nodes. When using implicit methods, this difficulty can be avoided by 
selecting the method such that no evaluation at the initial time is used. 

Concerning boundary values, again three possible cases are distinguished. A 
boundary node of the new fine grid is located on the physical boundary. In this case 
the physical boundary condition is imposed. If a new boundary node belongs to the 
interior of the physical domain, still two different cases are possible. First, the node 
coincides with a node of the nearest coarse grid. Then we define Dirichlet boundary 
values by interpolating at the beginning and end of the new time interval to be 
covered. This time interval always coincides with a previous coarse grid time step. 
Fourth-order Hermite interpolation is applied, using the available solution and first 
time derivative from the coarse grid. Second, the node is new and hence does not 
coincide with a node of the nearest coarse grid. In this case a solution value is 
already available at the initial point of the new time interval by the above Lagran
gian interpolation procedµre. To be able to apply again Hermite interpolation as out
lined above, the solution and time derivative at the end point of the time interval are 
also generated by Lagrangian interpolation on the coarse grid. 

Because we use second order in space and time in the discretization of the PDE, 
the fourth-order interpolation procedures should be sufficiently accurate, provided 
of course the local refinement has been carried through far enough at the time of the 
interpolations. Note that the prescription of interior Dirichlet boundary values is 
natural, since we solve initial boundary value problems involving second-order spa
tial differential operators. 

2.6. RUNGE-KUTT A-CHEBYSHEV METHOD 

We will now describe the temporal integrator used for the experiments reported in 
this paper. For this purpose we introduce the system of ordinary differential equa
tions (ODEs) 

dU (t) = F (t, U (t)), 
dt 

(6.1) 

assuming that this system originates from spatial discretization of the PDE problem 
(1.1) on the coarse base grid or on a refined local grid (method of lines). It is also 
assumed that boundary conditions, physical and artificial, have been incorporated 
into the continuous time, semi-discrete form (6.1). At this stage of development 
there is no need being more specific about (6.1). 

The integration method is the explicit Runge-Kutta-Chebyshev (RKC) method of 
van der Houwen and Sommeijer [13]. This method has been designed for the 
numerical integration of large stiff systems of ODEs which originate from spatial 
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discretization of multi-space dimensional parabolic PDEs such as (1.1). We will 
present only a brief outline here. More details can be found in (13] and Verwer, 
Hundsdmfer and Sommeijer [20]. The latter paper is devoted to a convergence 
analysis of the RKC method. 

Let Un denote an approximation to U (t) at time t = tn- Let !::i.t denote the step size 
in time. The next approximation Un+! at time tn+I = tn + Lit is then given by the s
stage integration method 

Yo = Un, (6.2a) 

Y1 = Yo+ P1LitFo, (6.2b) 

Y; = m,;Y;-1 +n,;Y;-2 +(1-m1 -n;)Yo + p_;!::i.tF,;_1 +q_;!::i.tFo, (6.2c) 

25.j 5.s' 

(6.2d) 

where F1 = F(tn + c1!::i.t, Y;) and the value Y; represents an intermediate, auxiliary 
approximation to U (t) at the time point t = tn + c ;fit. Thus, the RKC method is to be 
interpreted as a one-step, s-stage Runge-Kutta method. 

The available method parameters are used for obtaining a very large real interval 
of stability. This is achieved by identifying the recursive formula (6.2c) with a stable 
three-term Chebyshev recursion, thus explaining the specific form of the integration 
method. The length of the real stability interval that is obtained this way is propor
tional to s 2 , where the proportionality constant depends on the order of consistency 
and on a damping property imposed on the common stability function. This stability 
function is a shifted Chebyshev polynomial. 

The notion of stability meant here is the common linear stability based upon the 
linear system 

d~;1) = F (t, U (t)) := MU (t) + f (t), M symmetric. (6.3) 

Specifically, we have stability, in the step-by-step sense, if Lit ands are such that the 
inequality 

Lit cr(M) 5. P(s ), (6.4) 

is satisfied, where cr(M) represents the spectral radius of Mand P(s) is the real sta
bility boundary of the method. We have worked with a second-order method (for
mulas (2.19) - (2.21) from (20]) of which the real stability boundary is given by 

2 
PCs):::: -s 2 . 

3 
(6.5) 
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If the system (6.1) is nonlinear, then criterion (6.4) is imposed in the common 
heuristic way. Specifically, Mis then understood to represent the Jacobian matrix of 
the vector function F taken at an appropriate point. Experience has revealed that the 
linear theory is most reliable if F stems from a nonlinear parabolic problem and the 
Jacobian matrix is symmetric. The method is recommended only if the Jacobian is 
symmetric or 'nearly symmetric'. This excludes, e.g., convection-diffusion prob
lems with dominating convection. 

The RKC method is applied with variable step size governed by a local error indi
cator (cf. Section 7) and with a variable number of stages s, such that always the 
linear stability inequality (6.4) is satisfied with s minimal. The variable s-strategy 
leans upon two properties. First, the error indicator is independent of s. Second, 
thanks to an internal stability property associated with the three-step Chebyshev 
recursion, there is no practical limit on s. This in fact implies that the method can be 
applied as if it is unconditionally stable, simply by adjusting s at each integration 
step to satisfy (6.4) for given step size and given spectral radius. The computation of 
(a safe upper bound) of the spectral radius normally renders no problem for opera
tors like (1.1). 

When compared with the implicit approach, explicitness has an inherent advan
tage for static regridding, since the costs of the numerical algebra involved in the 
application of implicit methods is much larger than in standard (single-grid) 
method-of-lines applications. Recall that at any time step a regridding may take 
place at different levels of refinement, thus introducing one or more new Jacobians 
of different order at any' time step when using an implicit method. This degrades the 
efficiency of stiff ODE solvers, since these often benefit from integrating with old 
Jacobians over many time steps. In spite of this, there are of course many problems 
and situations where for stability reasons alone implicit time stepping becomes a 
necessity. Therefore, as a continuation of the research reported here, in the near 
future we will investigate the application of implicit Runge-Kutta methods for static 
regridding. An important aspect hereby is the choice of appropriate implicit equation 
solvers which can efficiently deal with various types of 2D systems (see, e.g., Hind
marsh and N (/Jrsett [12]). 

Concerning stability, the explicit RKC method should be positioned between clas
sical explicit methods yielding a severe time step restriction and unconditionally 
stable implicit ones. For problems with symmetric Jacobians, the RKC method is 
still attractive in cases of substantial stiffness due to the quadratic dependence of the 
real stability boundary on s. Furthermore, the method is simple to implement and the 
explicitness offers natural prospects for vector-based implementations. Also the 
memory demand is low. We have used a variable step size FORTRAN code due to 
Sommeijer [19] that needs only 6 arrays of storage. 

It is noted that our version of this code slightly differs from Sommeijer's original 
one. This concerns merely the local error indicator. As we will outline in the next 
section, the third-derivative estimator of the original code, based on the genuine 
local truncation error, does not function well in our adaptive grid application and has 
therefore been replaced by a more simple error indicator. However, the actual stra
tegy associated with varying the step size, threshold factors and the like, has not 
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been changed. It would lead us too far here to discuss this strategy in detail and it 
suffices to remark that, apart from the error indicator itself, the variable step size 
strategy is conceptually similar to strategies in existing ODE codes. 

2.7. ERROR INDICATORS 

In static-regridding methods three different kinds of local errors show up, viz., 
spatial discretization errors, time integration errors and interpolation errors. The 
asymptotic behavior of the local space and time errors for decreasing spatial and 
temporal grid sizes is well understood for single-grid applications. This is also true 
for the propagation of resulting global errors, at least for interesting model situations 
(see e.g. [17, 20]). Needless to say that the static regridding complicates the error 
analysis considerably. Such an analysis should provide insight into how these three 
different local errors interfere with each other and propagate or accumulate under 
regridding. Subsequently, this insight then should assist us in the choice of 
mathematically correct, practical local error estimators. Without good estimators it 
is likely that one wastes computational effort due to bad balancing of space and time 
errors. This in fact is also true for standard, single-grid method-of-lines applications 
(see Berzins [5] who studies the balancing of space and time errors in applications 
using the BDF method). However, the question of balancing space and time errors is 
most interesting for a static-regridding method, because for such a method the 
regridding apparatus is available and it is natural to let the local refinement in space 
be governed by the genuine space truncation error. 

In a sequel to this paper we will present a convergence analysis of the static
regridding method. This analysis is supposed to cover both explicit and implicit 
Runge-Kutta methods for the time integration and shall be aimed at practically 
balancing genuine local space and time errors. Here we confine ourselves to illus
trating the convergence of the method numerically (next section) and to using sim
ple heuristic, local error indicators. These error indicators are cheap and function 
quite satisfactorily from the point of view of ease of use, viz., they automatically 
invoke refinement in regions with high gradients. On the other hand, they do not 
guarantee a good balance between spatial and temporal local errors. 

Let us first define ests, the spatial error indicator first introduced in Section 3. In 
this paper ests is based on the 'curvature' expression, 

(7.1) 

which is computed with the three-point finite-difference scheme. To our experience, 
this 'curvature' expression functions well in measuring the degree of spatial 
difficulty of the problem. We have also used it successfully in 1D moving grid com
putations [21]. Note that the genuine space truncation error is also of second order 
in the mesh widths, since we use the second-order finite-difference scheme for spa
tial discretization. We thus have proportionality between the tolerance tols and the 
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spatial truncation error. 
We next define estt, the temporal local error indicator that determines the step 

size in time. According to the outline presented in Section 2, estt is computed after 
every time step at any grid level. Naturally, the choice of estt should be determined 
by the integration method (cf. the discussion at the end of Section 6). To our experi
ence, the original third-derivative estimator of the RKC method functions quite 
satisfactorily in standard, fixed grid applications. However, we have encountered 
difficulties with this estimator in our adaptive grid application. These difficulties are 
inherent to static regridding and similar to those reported by Petzold [ 15, 16]. 

The following observations are in order. The regridding implies that components 
of a solution vector that acts as the initial vector for a following time step may be of 
three different types. Components may result directly from a preceding integration 
step on the same grid level, components may result from injection from a higher 
preceding level, and components may be obtained from interpolation at the next 
coarser level. While it is supposed that the accuracy is not adversely affected by the 
interpolation and, trivially so, by the injection, the effect of the regridding thus is 
that small 'discontinuities' are introduced into the initial vector, which in turn intro
duce small stiff transient solution components in time. These small transients are 
damped by the stability of the numerical method. They are, however, seen by com
mon local error estimators like the one implemented in the original RKC code. This 
estimator computes an approximation to the third solution derivative from solution 
data that has become available within the current time step. It suffices to recatl that 
this computation is to be interpreted as explicit numerical differencing which holds 
true for any common local error estimator. The estimators then have a tendency to 
choose step sizes which are smaller than what is really required to maintain the 
accuracy, since on nonsmooth data explicit numerical differencing tends to overesti
mate higher derivatives. When considered on its own, this is not so much of a prob
lem. However, it may also result in unnecessary step rejections which of course 
should be avoided. For a static-regridding method using different levels of 
refinement, the sensitivity of the local error estimator for the observed nonsmooth~ 
ness is even worse, because this nonsmoothness increases for decreasing spatial 
mesh widths. This implies that irrespective of the strategy used, there will always be 
a tendency to use too small step sizes on fine grids, which by themselves are already 
more expensive to process than coarser grids. 

For implicit solvers an often used remedy to the problem of nonsmooth error esti
mates is 'implicit filtering' by which the original, explicit local error estimate is 
'smoothed' in an implicit way [15]. This filtering step kills all high-frequent com
ponents in the estimated error and leaves, up to O (Lit), the low-frequent com
ponents of the error unchanged. Because we work here with the explicit RKC 
scheme, 'implicit filtering' cannot be used. We do not advocate explicit smoothers, 
since these only work well if the errors to be smoothed do have a regular structure. 
This is obviously not the case with static regridding, as already mentioned above. To 
circumvent the difficulty, we therefore base our variable step size on the simple, 
heuristic local error indicator 
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estt = (At)2 I u (t+At) - u (t) I = (At)3 I du (t)ldt I + 0 ((At)4), (7.2) 

which is of the same order in step size as the local truncation error estimated in the 
original code. The rationale behind this first-derivative indicator is that this way we 
ignore the small, high-frequent error components which we wish to ignore for step 
size prediction purposes. To our experience, the indicator is successful in this 
respect. Usually, the imposed tolerance tolt should be chosen smaller than when 
using the original estimator. This is to be expected, since for solutions with steep 
temporal gradients, the third derivative shall be larger than the first one. It may also 
be advisable for keeping ahead of instabilities. In a time stepping process, emerging 
instabilities result in high-frequent error components which are detected by the local 
error estimator. The estimator reacts by reducing the step size and consequently 
restores stability. As indicated, the error indicator (7.2) detects high-frequent error 
components later than the original estimator. Needless to say that the combination 
(7 .1) - (7 .2) is inappropriate for subtle error balancing purposes. However, when 
using an explicit method like RKC, they form a good compromise because they are 
cheap and prevent the step size selection from being hindered by the inherent 
nonsmoothness of the numerical solution. 

As already mentioned at the end of the previous section, we have used the exist
ing variable step size code of Sommeijer and have only replaced the existing estima
tor by (7.2). The step size selection strategy within the code has not been altered. 
When comparing the estimate,s with tolt, the maximum norm is used. Finally we 
mention that the step size prediction is carried out per level. More precisely, when 
entering a new level, the last predicted step size taken on that level is used. The step 
sizes are always fitted to hit the endpoint of integration. For example, if at level 2 
the predicted step size is smaller than that currently in use at the coarsest level 1, but 
greater than half this step size, then the level-2 step size is taken to be half of the 
level- I step size. During the first base time step the initial step size is the same for 
any level that may be introduced. 

To illustrate the foregoing we conclude this section with a pseudo FORTRAN 
description of the entire LUGR algorithm. In this description T (level) denotes the 
end time of the 'level' level. For level= 1 the end time is simply the final physical 
time. For level > 1 this end time changes dynamically with the introduction and 
removal of the refined grids and is always smaller than or equal to the forward time 
value of the current coarse grid step size: 

Program LUGR 
level= l 
T (level) = physical end time 
t (level) = physical initial time 
At (level) = initial step size 
call PDEsol 
endLUGR 



28 

subroutine PDEsol 
10 if t (level) < T (level) then 
20 advance on 'level' level from t (level) to t (level) + At (level) 

compute time error indicator estt and predict new At (level) 
if estt > tolt then 

decrease At (level) 
go to 20 

end if 
compute space error indicators ests and estsm for all nodes at "level" 
if estsm > tols then 

compute tolspc 
end if 
flag all untolerable nodes 
if nodes are flagged then 

else 

generate new 'level' level + 1 
t (level+ 1) = t (level) 
lit (level+ 1) = At (level) or previously predicted At (level+ 1) 
T (level+ 1) = t (level) + At (level) 
level = level + 1 
go to 10 

t (level) = t (level)+ At (level) 
l1t (level) = new At (level) 
go to 10 

end if 
end if 
if level > 1 then 

update the solution on 'level- I' with 'level' values at coinciding 
nodes 

level = level - 1 
t (level) = t (level) + !:J.t (level) 
lit (level) = new At (level) 
go to 10 

end if 
endPDEsol 

2.8. NUMERICAL EXAMPLES 

We present two examples of parabolic problems (I.I) that were solved with our 
static-regridding method using the explicit RKC scheme for time integration. The 
entire code is written in standard FORTRAN and the numerical experiments have 
been carried out on a SUN/SPARC station 1. 
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2.8.1. Problem I 

This test problem is hypothetical and due to Adjerid and Flaherty [ 1]. The equa
tion is the Ii.war parabolic model equation 

u, = Uxx + u>Y + f (x,y,t), 0 < x,y < l, t > 0, (8.1) 

and the initial function at t = 0, the Dirichlet boundary conditions for t > 0, and the 
source term f are selected so that the exact solution is 

u(x,y,t) = exp(-80((x - r(t))2 + (y -s(t))2)), (8.2) 

where 

r(t) = ¼ [2 + sin(1tt)], s (t) = ¼ [2 + cos(1tt)]. (8.3) 

This solution is a cone that is initially centered at (½, ¾) and that symmetrically 
rotates around the center(½,½) of the domain in a clockwise direction. The speed of 
rotation is constant and one rotation has a period of 2. This problem is not a very 
difficult one in the sense that the spatial gradients of the solution are not extremely 
large, that is, the cone is not that steep. However, the problem is suitable to subdue 
an LUGR regridding algorithm like ours to a convergence test. 

The solution is computed five times over the time interval [0,0.25] with an 
increasing number of levels and decreasing time step. In the first computation only 
one level is used, in the second two, and so on. The addition of a new level is 
governed by selecting tols appropriately. Of course, the movement of the refined 
grids is governed by the regridding algorithm itself. For each computation a constant 
time step is taken which is the same for all levels (the time step control was 
switched off). This time step is halved in the next computation when a new level is 
added. Thus, in view of our regridding strategy based upon using the second toler
ance parameter tolspc, we expect the error to decrease with a factor 4, due to the 
second-order spatial differencing and the second-order consistency of the RKC 
method. Note that the number of explicit Runge-Kutta stages varies with Mand the 
spatial mesh width according to formulas (6.4) - (6.5). We refer to [20] for a conver
gence test using the fixed grid approach (one single level) where the second order 
nicely shows up. 

Results of the convergence test have been collected in Table 8.1 and Figure 8.1. 
The figure shows two grid structures used in the level-4 run. Observe that (away 
from the physical boundary) the grids accurately reflect the symmetry of the rotating 
cone. This gives confidence that the principles underlying the grid strategy of Sec
tion 3 work out very satisfactorily. The size of the region of refinement is still con
siderable, even at the fourth level. This is due to the fact that the cone is not that 
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steep, as we mentioned earlier. 
Table 8.1 contains global errors at specified times given in the maximum norm 

over the base grid (level 1 ). The base grid is uniform with a grid distance of 0.1. We 
observe that the accuracy nicely decreases with the number of levels. Inspection of 
all output data also revealed that the maximum error was indeed found on the finest 
grid, as we anticipated in the development of the regridding strategy in Section 3. 
However, quite interestingly, we also observe a slight reduction in order for increas
ing number of levels. For instance, at t = 0.25 the successive ratios of the errors are 
approximately 4.8, 3.5, 3.3, 3.2 and thus tend to deviate from 4, although the devia
tion itself settles down. We believe this order reduction to be inherent in the LUGR 
approach and to originate from the small 'discontinuities' in the grid functions 
which are caused by the interpolation and injection (cf. the discussion of Section 7). 
A particular role hereby is played by the internal Dirichlet boundaries. The follow
ing experiment serves to illustrate this observation. 

We have repeated the convergence test while omitting injection of fine grid 
results into coarse grid nodes. Hence, the only change in the algorithm is that coarse 
grid results are never updated so as to reduce the nonsmoothness in the grid func
tions. Note that this way for each level solutions are obtained only by integration or 
by interpolation. Further, the number of nodes where interpolation takes place will 
be relatively small since this is needed only at locations where the current level not 
yet exists. In this non-update convergence test we observed an overall improvement 
in accuracy. For instance, for increasing number of levels, the errors at t = 0.25 with 
their successive ratios now are, respectively, 0.21759, 0.04425, 0.01045, 0.00240, 
0.00082 and 4.9, 4.2, 4.4, 2.9. Apparently, till level 4 the order has improved, but it 
drops again at level 5. Inspection of the output data revealed that in the level-5 run 
the maximal error was not always committed at this finest level-5 grid. This means 
that in the level-5 run the heuristic spatial error indicator (7.1) probably failed in 
adequately identifying the highest error region and this observation should explain 
the drop in order. If this, more or less technical, problem can be overcome, the 
'non-update version' of the LUGR algorithm might be a remedy to the reduction in 
order and a good alternative for the more standard 'update version'. On the other 
hand, omitting updating may be somewhat dangerous because the coarse grid solu
tion can become so dispersed that the algorithm decides that grid refinement is no 
longer necessary. Of course, this can also happen when updating is used since we 
must rely here on error indicators or estimators. More precisely, since error indica
tors or estimators always underly some form of asymptotics, approximations serving 
as input for them should be of a certain minimal degree of accuracy in order to let 
them detect inaccuracies safely. For an LUGR method this implies that some care 
must be exercised in selecting the base grid parameters not too large since this might 
work out in the wrong way. 

We conclude this numerical example with a measurement of overhead, in terms 
of total execution time and total number of PDE evaluations counted per node. The 
estimated part of the total execution time that is spent outside the integration routine 
is defined as overhead. Table 8.2 contains execution times and number of PDE 
evaluations for four runs over the time interval [0,0.25], using, respectively, 1, 2, 3 



31 

and 4 refinement levels. The data are obtained with the 'update' version using now 
also variable step sizes in time. The computations were organized such that at each 
run the finest grid has Ax= Lly = 0.0125. Hence, the level-I run is performed on an 
80-by-80 level-I grid with Ax= Lly = 0.0125, the level-2 run on a 40-by-40 level-I 
grid accompanied with a level-2 grid with Ax= Lly = 0.0125, and so on. This way 
the maximal error committed during each of the four runs is more or less equal, so 
that the measurement of overhead is not 

Levels I 1-2 1-2-3 1-2-3-4 1-2-3-4-5 

tols 4.0 1.0 0.25 0.125 0.03125 

6.t 0.01 0.005 0.0025 0.00125 0.000625 

Time point 
Global errors measured in the maximum norm over the coarsest I 0-by- l 0 grid. 

The numbers in the brackets are the corresponding error ratios. 

0.10 0.19120 0.03886 (4.9) 0.01154 (3.7) 0.00340 (3.4) 0.00112 (3.0) 

0.15 0.24592 0.04904 (5.0) 0.01386 (3.5) 0.00420 (3.3) 0.00132 (3.2) 

0.20 0.18575 0.03877 (4.8) 0.01150 (3.4) 0.00359 (3.2) 0.00119 (3.0) 

0.25 0.21759 0.0451 I (4.8) 0.01273 (3.5) 0.00383 (3.3) 0.00121 (3.2) 

TABLE 8.1. Results of the convergence test on Problem I. 

t = 0.1 

FIGURE 8.1. Grid structures used in the level-4 run with Problem I. 

interfered by large differences in accuracy (in this reasoning we neglect the small 
effects of the above observed order-reduction phenomenon). The finest grid with 
Ax= Lly = 0.0125 is invoked by the spatial error indicator value tols = 0.125. The 
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Levels PDE Execution times Overhead 
evaluations (sec) % 

1 9749646 865 0 
1-2 3604712 365 12 

1-2-3 3427610 381 20 
1-2-3-4 4147352 512 28 

TABLE 8.2. Results of time measurements for Problem I. 

time step tolerance parameter tolt = 2.0E-7 and the initial time step equals 0.005. 
The parameter tolt was tuned so as to obtain nearly the same accuracy as in the 
level-4 run of the convergence experiment. 

The entries 'overhead' in Table 8.2 are percentages defined by 

overhead = ((time(level) - (eval(level) * 865)/9749646) * 100%, 
time (level)) 

(8.4) 

where eval(level) is the total number of PDE evaluations and time(level) is the exe
cution time. Thus in our measurement of overhead the work load for the single, 80-
by-80 grid is used as a reference point. When inspecting Table 8.2 one should real
ize that the overhead factors are valid only for this particular experiment. Overhead 
is not only solution dependent (size of the refined grids), but, since we measure CPU 
times, also depends on the differential equation (expensive expressions in the opera
tor) and on the degree of optimality in the FORTRAN code for the data structure 
and the like. As yet, we have paid little attention to the matter of optimal coding. In 
our opinion, the overhead factors found in this experiment are quite acceptable, 
although we should note that the use of garbage collection will increase the over
head (cf. Section 4). Finally we wish to note that for the present experiment the 
decrease in execution time shown in Table 8.2 is minor due to the fact that the 
refined grids are still of considerable size. 

2.8.2. Problem ll 

Our second example problem has also been borrowed from [1] and stems from 
combustion theory. The problem is a model for a so-called single, one-step reaction 
of a mixture of two chemicals. In the problem, the dependent variable u represents 
the temperature of the mixture. The equation reads 

0 
u1 = d(uxx+uvv)+D(l+cx-u)exp(--), 0<x,y<l, t>0, (8.5) .. u 
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and is subjected to the following initial and boundary conditions, 

u(x,y, 0) = I, 0:5:x,y:5:l, (8.6) 

ux(0,y,t)=0, u(l,y,t)=l, 0:5:y:5:l, t>0, 

uy(x,0,t)=0, u(x,l,t)=l, 0:5:x:5:l, t>0. 

The parameter a is the heat release, D = R exp(0)/ao the Damkohler number, 8 the 
activation energy, and R is the reaction rate. For small times the temperature gradu
ally increases in a circular area around the origin. Then, provided the reaction rate is 
large enough, at a finite time 'ignition' occurs causing the temperature to suddenly 
jump from near unity to I +a, while simultaneously a reaction front is formed which 
circularly propagates towards the outer Dirichlet boundary. When the front reaches 
the boundary the problem runs into steady state. Following [I] we select the param
eter values a= I, 8 = 20, R = 5, but choose a different value for the diffusion 
parameter. While in [1] the diffusion coefficient d = 1.0, we here put d = 0.1. A 
smaller diffusion coefficient has the effect that the wave front becomes steeper, par
ticularly so upon approaching steady state [14]. With this choice of parameters the 
'ignition' takes place at about t = 0.24 and the solution is in 'steady state' at about 
t = 0.35. 

In spite of the fact that a fine grid is necessary for combustion problems of this 
type, the explicit RKC scheme is a natural candidate for the numerical integration. 
Two arguments support this observation. First, we must follow a traveling front on 
static, i.e., non-moving space grids. This naturally limits the temporal step size of 
any integration scheme, be it explicit or implicit. Second, during the time evolution 
this special combustion problem is 'I ocally unstable'. Inspection of the reaction term 
reveals that for I :5: u :5: 2 its derivative varies approximately between + 1000 (for 
u ::::: 1.6) and -5500 (for u ::::: 2.0). Consequently, irrespective the integrator used, 
quite small integration steps are required to maintain sufficient accuracy in regions 
of 'local instability' and before steady state will be reached the advantage of uncon
ditional stability as provided by implicit methods shall not be fully exploited. To our 
experience, for this problem the explicit, stabilized RKC method is a good alterna
tive. 

Figure 8.2 shows generated grids and solutions at six specified time points. These 
are obtained using the full variable step size in time option using a uniform base grid 
with llx = Ay = 0.05, tols = 0.6, tolt = l.0E-7 and initial step size of 0.005. With this 
choice of parameters the method uses at most three levels, but integrates till 
t = 0.24175 only on the coarse base grid. A notable point is that the grids accurately 
reflect the symmetrical shape of the combustion wave front, thus again showing that 
our regridding strategy works very well. The steepening up of the wave front for 
evolving time is also clearly visible from the width of the finest level-3 grid. The 
solution at the end time t = 0.35 is, approximately, in steady state and shows a thin 
layer at the outer Dirichlet boundaries. At this time point the level-3 grid near the 
layer is only 6 cells wide, which is the minimum number that is possible near a 
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boundary. 
Inherent in static-regridding methods is that they have some difficulty in 

efficiently approaching steady state. When using a single grid without refinement, 
and assuming stability, a good variable step size solver will steadily increase the 
step size upon approaching steady state. On fine level grids this steady increase of 
step size will be less for a static-regridding method like ours, at least when using the 
'update version', due to the fact that the injection of solutions from fine grids into 
coarse ones has the effect that the numerical solution at the coarse grids is 'slightly 
perturbed'. The 'slight perturbations' hinder the approximation from steadily 
becoming stationary like in single-grid computations. This negative effect will be 
most pronounced at higher levels of refinement. Fortunately, the drawback can be 
largely overcome by using the 'non-update version' where injection is omitted. 

By way of illustration we have included Table 8.3. This table contains informa
tion concerning the temporal integration for three runs: 

(i) the run corresponding with Figure 8.2, where 'updating' was used, 
(ii) a similar run, but now without 'updating', 
(iii) a run using a single, 80-by-80 grid without refinement, with the same parame-

ter values for the variable step size control. 

We note that in case (ii) the generated grids are nearly the same as in case (i) and 
that the plot accuracy in the three runs is the same. In particular, the finest mesh 
width in space for all three runs is Li.x- = Liy = 0.0125, so that, since the accuracy is 
very much the same, we can compare the workload. We see that for (i) and (ii) the 
workload is nearly the same; (ii) requires more steps at level 1, but less at level 2 
and 3 as to be expected. The number of time steps in (iii) is nearly the same as at 
level 1 in (i) and (ii). The reduction in execution time, when comparing (i) and (ii) 
with (iii) is approximately a factor of 2.7. This includes CPU time for overhead 
which here appears to be larger than for Problem I. 

2.9. FINAL REMARKS AND FUTURE PLANS 

The LUGR algorithm presented in this paper is based on a mix of various tech
niques and builts on previous work started by Berger and Oliger [4] and continued 
by Gropp [9-11], Arney and Flaherty [2] and others. While Berger and Oliger [4] 
consider hyperbolic problems, we have focussed on parabolic problems and have 
applied a special, explicit time integrator using variable time steps. The integrator is 
special in that it possesses an extended real stability interval. For parabolic problems 
of type (1.1), the integrator is therefore an attractive alternative in situations where 
the good stability properties of the more common implicit solvers can not be fully 
exploited due to inherent step size restrictions. Our example Problem II illustrates 
such a situation. 

Further, while Berger and Oliger [4] and Arney and Flaherty [2] use noncellular 
refinement and truly rectangular subgrids which may overlap and rotate to align with 
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Accepted time steps PDE Execution Overhead 
l~vel 1 level 2 level 3 evaluations times (sec) % 

(i) 186 193 178 1530249 264 37 
(ii) 199 168 154 1470343 252 37 
(iii) 195 0 0 6206706 671 0 

TABLE 8.3. Results of time measurements for Problem II. The number of rejected 
steps is negligible in all three cases. The overhead is defined in the same way as for 
Problem I, now relative to experiment (iii). 

an evolving dynamic structure, we have chosen to use cellular refinement and to 
avoid overlapping subgrids. On the other hand, our subgrids are not necessarily truly 
rectangular and may of course be disjunct with neighboring subgrids at the same 
level of refinement. This approach allows a simpler data structure and, most impor
tantly, makes it possible in a relatively simple and transparent way to exclusively 
interpolate missing initial and boundary conditions at internal grid interfaces in 
low-error regions. It is emphasized that our method, unlike the method of Berger 
and Oliger [4] due to overlapping subgrids, does not allow steep solutions to inter
sect grid interfaces. For this purpose, a reliable refinement strategy is of crucial 
importance. A good refinement strategy should refine in such a way that the accu
racy obtained at the current highest level grid is comparable to the accuracy 
obtained on this grid if it would be used without any adaptation. This.way the inter
polation errors will never become visible. Our refiment strategy, as discussed in Sec
tion 3, attempts to achieve this through the use of the refinement condition (3.6). 
This condition in fact looks ahead such that all cells at the current level are refined, 
except those for which at the anticipated highest level the solution is already 
sufficiently accurate. The rationale behind this strategy is that when at a certain level 
a cell is not refined, we never return to this cell within the current base time step as 
we work with nested subgrids. 

In connection with the use of nested subgrids, we recall that each time step we 
restart from the base grid, but also that we keep the finest grid solution in storage for 
possible use in the next time step. Actually, for evolving time we integrate on dif
ferent grid levels with the understanding that the integration domains are nested per 
level and change in time. The nesting requires the interpolation of Dirichlet boun
dary values and the change in time requires interpolation of initial values, but only 
for those nodal points not already used at the previous time step. Most of the time 
we thus restart from the finest grid solution that already exist at a given nodal point. 

The advantage of this approach, which is typical for LUGR methods, is that one 
can integrate on uniform subgrids and avoid the use of truly nonuniform grids such 
as obtained in a pointwise refinement procedure (see, e.g., Adjerid and Flaherty [1]). 
Admittedly, the approach may be a bit wasteful in situations where the sharp transi
tions move very slowly, e.g., when approaching steady state. On the other hand, the 
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computational effort for the coarser grids normally shall not be large and finite
difference or finite-element expressions on uniform grids are more accurate and 
cheaper to process than on nonuniform grids. Also note that an inherent drawback of 
pointwise refinement and a truly nonuniform grid is a more complex and expensive 
data structure. 

There are two major reasons why the development of LUGR methods is of 
interest. The first reason is obvious and of a purely practical nature: by refining the 
spatial grid locally in regions of high spatial activity, it is attempted to obtain accu
rate numerical solutions at significantly lower costs than required in the standard 
approach without refinement. Our second numerical example illustrates this nicely 
in respect with the execution time (see Table 8.3). Of course, since any LUGR 
method necessarily involves considerable overhead arising from the data structure, 
the regridding, the repeated integrations, etc., these methods are of interest only 
when the spatial solution variations are sufficiently large, like in our Problem IL We 
also conclude that in both our numerical examples the actual regridding strategy 
based on the refinement condition (3.6) has functioned very well. This follows 
directly from inspection of the plotted grids. On the other hand, in this paper the 
actual input for the regridding still stems from the heuristic indicator (7.1 ). Our 
choices of tols illustrate very clearly that this 'curvature indicator' bears no good 
resemblance with the true spatial errors. No doubt it will be very worthwhile to 
replace (7 .1) by an accurate estimator of the genuine local space error, assuming this 
is feasible. This of course is also true for the time error indicator (7.2). 

These observations lead us to the second reason why LUGR methods are of 
interest. This second reason is of a more fundamental nature: these methods offer 
the natural environment for balancing genuine local space and time errors and to let 
the local refinement be governed by the genuine local space error. Balancing local 
space and time errors has so far got only very little attention in the literature, but is 
of obvious importance when one aims at efficiency and robustness in solving time
dependent PDEs (see Berzins [5] and Schonauer et al. [18]). We will therefore con
tinue our work on adaptive grid methods with an investigation to convergence pro
perties of the present LUGR method. In this investigation we plan to analyze both 
implicit and explicit methods and an important goal will be balancing genuine local 
time and space errors. In this connection it should be noted that L-stable implicit 
Runge-Kutta methods are of interest because of their inherent smoothing properties. 
This will no doubt help to reduce any difficulty originating from the unavoidable 
'nonsmoothness' in the numerical solution. 
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Chapter 3 

Analysis of the Implicit Euler 

Local Uniform Grid Refinement Method 

3.1. INTRODUCTION 
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Attention is focussed on parabolic problems having solutions with sharp moving 
transitions in space and time, such as steep fronts and disappearing layers. For such 
problems, a space grid held fixed throughout the entire time evolution can be com
putationally very inefficient. We consider an adaptive grid method that refines 
locally around sharp spatial transitions so as to avoid discretization on a very fine 
grid over the entire physical domain. 

Our method is based on the techniques called static regridding and local uniform 
grid refinement (LUGR), as previously proposed by Berger and Oliger [3], Gropp 
[7-9], Arney and Flaherty [2], Flaherty, Moore and Ozturan [6], Trompert and 
Verwer [13], and others. Static regridding means that for evolving time the space 
grid is adapted at discrete times. This should be contrasted with dynamic regridding 
where the space grid moves continuously in the space-time domain. With the term 
LUGR we mean that the actual adaptation of the space grid takes place using local, 
uniform, refined grids. LUGR should be contrasted with pointwise refinement 
which leads to truly nonuniform grids. In this connection, our LUGR method bears 
resemblance with the fast adaptive composite grid (FAC) method [11] for elliptic 
equations, where the basic computational objective is to solve on an irregular grid 
by way of regular grids only. 

The idea of the method can be briefly described as follows. Given a coarse base 
grid and a temporal step size, nested, local, uniform subgrids are generated. These 
subgrids possess nonphysical boundaries and on each of these subgrids an integra
tion is carried out. They are generated up to a level of refinement good enough to 
resolve the anticipated fine scale structures. Having completed the refinement for the 
current base space-time grid, the process is continued to the next one while the fine 
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grid results computed at forward time levels are kept in storage so that they can: be 
used for step continuation. 

An attractive feature of the static-regridding approach is the possibility of divid
ing the solution process into the following computational procedures: spatial discret
ization, temporal integration, error estimation, regridding and interpolation. Depend
ing on the application, these individual procedures may range from simple or 
straightforward to very sophisticated. This flexibility is attractive since it makes it 
possible to treat different types of partial differential equations (PDEs) with almost 
one and the same code, assuming that the grid and the associated data structure 
remain unchanged. Note that the choice of data structure is important for keeping 
the unavoidable overhead at an acceptable level, because at each time step grids 
may be created or removed while also communication between grids of adjacent 
levels of refinement frequently takes place. 

The method we analyze in this paper has many similarities with the method con
structed in Trompert and Verwer [13]. In fact, the grid and data structure, the spatial 
differencing and the memory use are the same. However, in the present paper we 
concentrate on analysis rather than on construction, while using implicit Euler 
instead of the explicit Runge-Kutta-Chebyschev method for time integration. The 
main aim of this paper is to present a detailed error analysis and to prove stability 
and convergence for a certain class of PDEs. The central issue in this analysis is a 
refinement condition and a strategy that distributes spatial discretization and interpo
lation errors in such a way that the spatial accuracy obtained is comparable to the 
spatial accuracy on the finest grid if this grid would be used without any adaptation. 

Section 2 is devoted to the problem class we concentrate on. In Section 3 we 
introduce the tools and the formulation for the multilevel LUGR method. In Section 
4 we discuss the maximum-norm stability of this method. We prove an uncondi
tional stability result which is closely related to a maximum-norm stability result of 
implicit Euler when applied on a single space grid. Section 5 is devoted to the error 
analysis. In this section we investigate the total local error with its component parts. 
Furthermore, here we introduce the refinement strategy underlying the so-called 
refinement condition. This condition enables us to control the contribution of the 
interpolation errors in favor of discretization errors. Due to this condition, we are. 
able to prove a convergence result as if we are working on a single, fixed grid. We 
further elaborate on this condition in Section 6 where we show how to implement it 
for practical use. A numerical illustration of the error analysis is given irr Section 7. 
The numerical results found here are in complete agreement with the analysis. 
Finally, Section 8 briefly discusses our future research plans. 

3.2. THE PROBLEM CLASS 

Following the method-of-lines approach [12], we consider a real abstract Cauchy 
problem 

ur=L(t,u), O<t~T. u(~,O)=u0(~), (2.1) 
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where L represents a second-order partial differential operator which differentiates 
the (possibly vector valued) solution u (x,t) to its space variable x in a space domain 
Q in IR, IR2 or IR3. Boundary conditions are supposed to be included in the 
definition of L. 

With (2.1) we associate a real Cauchy problem for an explicit system of ordinary 
differential equations (ODEs) in JRd, 

.!!._ U (t) = F(t, U(t)), 0 < T ~ <t_' U(O) = u0 , (2.2) 

which is defined by a finite-difference space-discretization. Thus, U and F are vec
tors in ]Rd representing grid functions on a space grid co covering the interior of the 
space domain. Each component of U and F is vector valued if u is vector valued. 
The dimension d is determined by the spatial dimension, the grid spacing, and the 
number of PD Es in (2.1 ). F is determined by the type of grid, by the actual finite
difference formulas and of course by the precise form of L and its boundary condi
tions. Note that boundary values have been eliminated and worked into the ODE 
system. In the following, our method description and analysis are centered around 
this system. 

Next we introduce some notations and assumptions needed for further specifying 
(2.1) and (2.2). The symbol II.II denotes the maximum norm on the vector space JRd 
or the induced matrix norm. Throughout our analysis we will deal only with the 
maximum norm. The symbol µ[A ] denotes the logarithmic matrix norm of the real 
d x d matrix A = (aij) associated with 11-11, i.e., 

(2.3) 

µ[A] is a useful tool in the stability analysis of nonlinear, stiff ODEs and semi
discrete PDEs [4]. In this analysis, the structure of the Jacobian matrix 
F' (t, TJ) = cJF(t, TJ)ldTJ plays a decisive role. 

We are now ready to list our assumptions we make in further specifying (2.1) -
(2.2). These assumptions are concerned with, respectively, the class of PD Es (2.1 ), 
the smoothness of u, the choice of spatial grid and actual finite-differencing, and the 
stability of the semi-discrete system (2.2): 

(Al) The LUGR method is applicable in any number of space dimensions. Fol
lowing [13], we concentrate on the 2D case, while Q is supposed to be the unit 
square. With minor changes Q is allowed to be composed of a union of rectangles 
with sides parallel to the co-ordinate axes. In fact, as we will see later, refined grids 
normally are of this shape. In what follows, we will mostly use the notation u (x,y,t), 
rather than u (x,t). 

(A2) The solution u of (2.1) uniquely exists and is as smooth as the numerical 
analysis requires. Specifically, for our purpose it suffices that, u is a C 2-function int 
and a C4-function in (x,y). 
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(A3) We will invariably use uniform space grids. Our base grid thus can be writ
ten as 

where hx = 1/M, hy = 1/N and M, N are positive integers. The spatial differencing 
on co is supposed to be based on three-point formulas of second-order consistency. 
As a rule, we use central differencing conditions involving first-order derivatives, 
the one-sided three-point formula is used. 

(A4) A constant v exists such that µ[F' (t, TJ)] :::;: v for all t E (0, T], TJ E IRd and all 
grid spacings. Like (Al) and (A2), this assumption involves a restriction on the class 
of PDE problems. Of course, they are made only for the sake of (model) analysis. 
The LUGR method remains applicable in situations where these assumptions do not 
hold or cannot be verified. On the other hand, for interesting classes of operators, 
such as the scalar, nonlinear parabolic operator 

with standard restrictions on/; and P;, one can prove the existence of a constant v. 
The inequality µ[F' (t, TJ)] :::;: v is to be interpreted as a stability condition, both 

concerning the ODE system (2.2) and its implicit Euler discretization 

(2.6) 

where 'C = tn - tn-l is the step size and un is the approximation for U Ctn)- This ine
quality enables us to formulate the following, powerful stability result for implicit 
Euler. Consider the perturbed form 

(2.7) 

- n-1 - n 
where rn is an arbitrary local perturbation and U , U are perturbations to un-I, 
un_ Then 

for all 'C > 0 satisfying 'CV< 1 [4]. Since v is independent of the grid spacing, this 
stability inequality is valid uniformly in hx and hy, For v = 0 we have contractivity 
for all 'C > 0, while for v < 0 we even have damping for all 'C > 0. A result closely 
related to (2.8) will be derived in Section 4. 



3.3. THE IMPLICIT EULER LOCAL UNIFORM GRID REFINEMENT METHOD 

3.3.1. Outline 
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Although its elaboration readily becomes complicated, the idea behind LUGR is 
simple. Starting from the coarse base grid covering the whole domain, finer-and
finer uniform subgrids are created locally in a nested manner in regions of high spa
tial activity. These subgrids are created by bisecting sides of next coarser grid cells. 
A new initial-boundary value problem is solved at each subgrid, and the integration 
takes place in a consecutive order, from coarse to fine. Each of these integrations 
spans the same time interval. Required initial values are defined by interpolation 
from the next coarser subgrid or taken from a subgrid from the previous time step 
when available. Internal boundaries are treated as Dirichlet boundaries and values 
are also interpolated from the next coarser subgrid. The generation of subgrids is 
determined by the local refinement strategy and is continued until the spatial 
phenomena are described well enough by the finest grid. 

During each time step the following operations are performed: 

(l) Integrate on coarse base grid. 
(2) Determine new finer uniform subgrid at forward time. 
(3) Interpolate internal boundary values at forward time. 
(4) Provide new initial values at backward time. 
(5) Integrate on subgrid, using the same step length. 
(6) If the desired accuracy in space is reached go to 7, else go to 2. 
(7) Inject fine grid values in coinciding coarser grid points. 

Thus, for each time step, the comp11tation starts at the coarse base grid using the 
most accurate solution available, since fine solution values are always injected in 
coinciding coarse grid points. Moreover, all subgrids are kept in storage for step 
continuation. 

We consider the use of uniform grids attractive because uniform grids allow an 
efficient use of vector-based algorithms and finite differences on uniform grids are 
faster and more accurate to compute than on nonuniform grids. In this respect the 
current approach is to be contrasted with pointwise refinement leading to truly 
nonuniform grids. Pointwise refinement techniques also require a more involved 
data structure (Ewing [5]). On the other hand, with the LUGR method, there are 
nodes that exist on more than one grid at the same time, meaning that at these nodes 
integration takes place more than once during one time step. Hence, the total 
number of nodal integrations needed will be larger than on a comparable single, 
nonuniform grid. 

In [2, 3, 6, 8] LUGR methods are examined based on noncellular refinement and 
truly rectangular subgrids which may rotate and overlap to align with an evolving 
fine scale structure. We avoid these difficulties. Our local sub grids do not overlap, 
they may be disjunct, they need not be rectangles, and the actual refinement is cellu
lar. 
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3.3.2. The mathematical formulation 

LUGR methods solve PDEs on the whole domain at the coarsest grid only and on 
a part of the domain at finer subgrids. Our method can be interpreted as a sequence 
of operations on vectors in IRd with varying dimension d. The dimensions are time 
and level dependent because the number of nodes changes per level of refinement 
and per time step. This constitutes a problem for the formulation of the method. To 
bypass this difficulty, the fine grids will be expanded so that they cover the whole 
domain. The dimensions are then fixed per level of refinement, which facilitates the 
derivation of a concise mathematical formulation. We emphasize that this grid 
expansion is auxiliary. In actual application only part of the expanded higher-level 
grids is processed. 

Suppose that for a given time interval [O, T] and a given base grid, l levels are 
needed to describe the spatial activity of a solution sufficiently accurately when 
integrating over the entire time interval [O, T]. Introduce for k = 1, · · · , l the 
expanded uniform grids 

COk= {(x;, Yj):x;=ihx,k> 15,.i 5,.2k-lM-l and 

Y; = jhy,k, 1 5,. j 5,. 2k-l N-1}, 

(3.1) 

where N and Mare the ~ame integers as in (2.4) and hx,k = hxl2k-l, hy,k = hyl2k-l. 
Note that fork = 1 the base grid ro1 = co given by (2.4) is recovered. 

Let the generic notation for a grid function rt defined at rok be Tlk and let Sk denote 
the space of these grid functions. We then denote the semi-discrete system con
sidered in Sk by 

(3.2) 

Note that due to the grid expansion, only a part of the components of the ODE sys
tem (3.2) is integrated for k>l in reality. 

We are now ready to formulate the implicit Euler LUGR method. The following 
formula defines the time step from step point tn-l to tn for I levels of refinement: 

u7 = R11 U'/-1 + 1:F I Un, un, 
uz = DZ [R1ku'r1 + 1:Fk(tn, Vi)]+(h - DZ) [Pk-lkUZ-1 + Vi], 

for k=2, .... ,l, where 

ur E sz is the approximation to u at (Ok at t = tn' 

h: Sr~Sk is the unit matrix, 
DZ: Sk➔Sk is a diagonal matrix with entries (DZ);; either unity or zero, 

(3.3a) 

(3.3b) 



R1k: S1➔Sk is the natural restriction operator from co1 to cok 
Pk-ik: Sk-l ➔Sk is an interpolation operator from cok-I to cok 
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Vi e Sk contains time-dependent terms emanating from the boundary an. 

Specifically, the nonzero entries of DZ (2 ~ k ~ l) are meant to determine that part of 
cok where the actual integration takes place. This integration has the fine grid solu
tion DZR1ku7-1 as initial function and is defined by 

(3.4) 

The definition of D~ is provided by the refinement strategy. For the time being there 
is no need to further specifying DZ. Note that the nesting property of the integration 
domains is hidden in the precise definition of the matrices vi. The interpolation 
step is defined by 

(3.5) 

where the grid function Vi contains various time-dependent terms occurring in phy
sical boundary conditions. We need to include Vi because physical boundary condi
tions have been worked into the semi-discrete system. For the analysis in the 
remainder, Vi plays no role whatsoever. 

The formulation (3.3) automatically comprises the interpolation of boundary 
values at grid interfaces. This follows directly from the observation that for nodes at 
grid interfaces, the associated diagonal entry of DZ is zero (there is no integration at 
grid interfaces). Further, we note that (3.3) implies an order, (3.3a) is carried out for 
the coarse base grid and (3.3b) for k=2, .... ,l successively. Having done this, the 
updating will take place, meaning that UZ is replaced by R1k U7 from k =l-1 to 1. 
After this we move on to the next time step. Recall that, due to the grid expansion, 
in (3.3) the interpolation is carried out for all nodal points outside the integration 
domain of cok. This enables the stability and convergence analysis to be carried out 
for the spaces Sk. However, in actual application interpolation only takes place at 
the local subgrids. In Section 6.2 it is shown that this does not interfere with the 
analysis. 

3.4. STABILITY ANALYSIS 

3.4.1. Preliminaries 

Consider, on the analogy of (2.7), for n =1,2, .... , the perturbed scheme 

(4. la) 
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(4.lb) 

for k=2, .... ,l with local perturbations r'J., and introduce the errors e'lc = U~ - U'lc, for 
k=I, .... ,l. To shorten the formulas, we introduce the auxiliary quantities e0, D1 and 
P 01 , where e0 = 0 E S 1, D1 is the unit matrix / 1 , and P 01 is the zero matrix. Then, 
by subtracting (3.3) from (4.1), we get 

n=l,2, .... ; k=I, .... ,l, 

where Z'lc = h - 1:D'lcM'lc and is M'lc the integrated Jacobian matrix 

I 

M'lc = fF' Ctn, 0V~ + (1 - 0)U'lc)d0 
0 

which results from applying the mean value theorem for vector functions. 
Assuming Z'lc to be nonsingular, we can rewrite (4.2) as 

with 

X'lc = czv-1 (h - D'lc)Pk-lk• 

q = (Z'lcr' D'lcRtb 

<)>k = (Z'lc)-lrk-

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Note that X1 = 0 and that the operators X'lc, q are associated, respectively, to the 
interpolation and restriction. We can rewrite (4.4) to the standard form 

e'lc = G'lce7-' + '!f'lc, n=I,2, .... ; k=l, .... ,l, (4.6) 

where the amplification operators G'lc and the local perturbation terms '!f'lc are defined 
by a recurrence relation: 

G7=r7, (4.7) 
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'1'7 = <1>7. (4.8) 

'Ilk =Xi 'Ilk-I +<1>i, k=2, .... ,l. 

The error recurrence (4.6) describes the error propagation for all refinement levels. 
The main interest lies in the operator G? and the local perturbation \If?, since coarse 
grid values are always updated by fine grid values. In (4.6) this is reflected by the 
presence of e7-1• 

The stability of the implicit Euler method in the above is contained the following 
lemma: 
LEMMA 4.1. Let v be the logarithmic norm value defined in assumption (A4) of Sec
tion 2. Then, 

11cz1r111 ~ - 1-, V'tV < 1 k=1. 
1 - 'tV 

{ 
1 , V'tV< 1 ifv>O, 

11czkr1 11 ~ 1 - 'tV 
1 , V 't > 0 if v ~ 0, 

(4.9) 

k=2, .... ,l. 

PROOF. The result for k=l is standard since DJ is the unit matrix (see [4], p.46). The 
premultiplication of MZ for k > l with Dk has the effect that either entire rows of Mk 
are put to zero, or are left unchanged. From (2.3) we then can immediately deduce 
that for v > 0 the bound (1 - 't\lr1 still holds, whereas for v ~ 0 the zero rows intro
duce the bound 1. □ 

Observe that the replacement of the bound (1 - 'tVt1 by the bound 1 for v < 0 
implies that in this case we do no longer exploit the damping property of implicit 
Euler. For the analysis to follow this is no restriction since we are here merely 
interested in proving stability and convergence results. Specifically the stability 
result we are going to prove is not dependent on the damping in implicit Euler. To 
shorten derivations, we first make another assumption. 

(A5) The logarithmic norm bound v from (A4) in is nonpositive. Hence we res
trict ourselves to dissipative problems. This is not essential; results obtained for v~O 
can be extended to the case v>O by inserting (1 - 'tVt1 for the bound 1 any time the 
stability inequality 11czkr1 II ~ 1 is used. 

3.4.2. Stability and linear interpolation 

In this section we will prove a general stability result for the multilevel adaptive 
grid method (3.3) that is similar to the stability result (2.8) for the Euler method 
applied without adaptation. 

THEOREM 4.2. Let v~O according to (A5) and suppose that linear interpolation is 
used. Then, for all 't>O and all n :C:: 1, 

IIGZ!I ~ 1, k=l, .... ,l, (4.10) 
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k 

11\JfZII ~ Lllr'JII, k=l, .... ,l, (4.11) 
j=l 

I 

lle711 ~ lle7-1 II+ Lllrkll. (4.12) 
k=I 

PROOF. Inequality (4.12) is a trivial consequence of (4.10) and (4.11). Let us first 
prove (4.10). This is done by induction with respect to k. Suppose IIGk-I 11 ~ 1. From 
( 4. 7) it follows that 

(4.13) 

where QZ = (/k - Dk)Pk-lkGk-l + DZR1k• 
Consider the i th row of this operator. Suppose (DZ);; = 1. Then 

(4.14) 
j j 

by definition of the restriction operator Rik· Next suppose (DZ);;= 0. Then 

j j 

by virtue of the induction hypothesis and the norm 

IIPk-Jkll = I (4.16) 

of the linear interpolation operator Pk-lk· Combining (4.14) and (4.15) gives IIQZ+i 11 
and inequality (4.10) now follows from (4.13). The induction proof is finished if we 
can prove that IIGT II ~ l. This follows immediately from the observation that 
GT =rT =<zn-1R11. 

There remains to prove (4.11). We have ll<l>ZII ~ IITZII- It then follows from (4.8) 
that 

11\JfZII ~ IIXZIIII\JfZ-1'1 + IITZII, (4.17) 

so that we are finished if we can prove that IIXk II ~ 1. This is trivial due to ( 4.16) and 
llh-Dkll= 1. D 

The inequality (4.12) is the counterpart of the inequality (2.8). We may conclude 
from Theorem 4.2 that when implicit Euler is stable and we interpolate linearly, our 
multilevel adaptive grid method (3.3) retains stability of implicit Euler through the 
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bound IIG?II::; 1. 

3.4.3. Stability and higher-order interpolation 

A drawback of linear interpolation is its limited accuracy. In a genuine applica
tion it might well be preferable to use higher-order interpolants (in [13] we have 
successfully used fourth-order Lagrangian interpolation). Unfortunately, in that 
case we must have IIPk-Ikli > 1 so that we are not able to prove the results of 
Theorem 4.2 when following the above method of proof. If IIPk-lkll > 1, then it is 
possible to prove (a constrained form of) stability by introducing an additional con
dition that underlies the intention of interpolating exclusively in low-error regions. 
Unfortunately, this condition turns out to be of no direct practical use. On the other 
hand, numerical evidence suggests very strongly that those higher-order interpolants 
do not cause genuine stability problems in real application. We believe we owe this 
to the fact that the method interpolates in low-error regions, so that, loosely speak
ing, this condition is satisfied implicitly. 

3.5. ERROR ANALYSIS 

We will present a detailed examination of the local error. From this we deduce the 
refinement condition which henceforth underlies the refinement strategy. This condi
tion enables us to control the contribution of spatial interpolation errors in favor of 
spatial discretization errors. Due to this condition, we can prove a convergence 
result as if we are working on a single, fixed grid. Specifically, it will be shown that 
the usual convergence behavior applies and that the accuracy obtained is compar
able to the accuracy obtained on the finest grid if this grid would be used without 
any adaptation. 

3.5.1. The local level error 

Let uk(t) denote the point~ise restriction of the true solution u (x,y,t) to cok. Con
sider (4.1). By replacing all U-values by associated uk-values, the local perturbation 
r'Z becomes the local level error at grid level k. For convenience, we will denote this 
error also by r'lc: 

r'Z = u'Z - DZ [R1ku;i- 1 + 'tFk(tn, u'Z)] - (5.1) 

(h-DD [Pk-lkuk-1 +b'Z], n=l,2, .... ; k=l, .... ,l, 

where u'lc = uk(tn) and p 01, Uo, b'{ are auxiliary and put to zero; r'lc contains the fol
lowing local error components, the local spatial error induced by the finite
difference approximation, the local temporal error of the implicit Euler method, and 
the interpolation error. We first discuss these different components. They are defined 
in the standard way by, 
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d 
ak(t) = dt uk(t) - Fk(t,uk(t)) (spatial discretization error) (5.2) 

d 
~k(t) = uk(t) - uk(t-t) - t-uit) (temporal error) (5.3) 

dt 

Yk(t) = uk(t) - Pk-lkuk-1 (t) - bit) (interpolation error) (5.4) 

The grid function bk(t) in (5.4) has the same meaning as bZ in (3.5). In the follow
ing, we assume without loss of generality that hx,k = hy,k = hk. In view of assump
tions (A2) and (A3) made in Section 2, we have 

(5.5) 

with order constants determined by higher-order spatial derivatives of u and by PDE 
operator quantities. Likewise, (A2) implies ~it)= t2ck where Ck= - ½d2uk/dt2 

evaluated at a time t+(K-1 )t, 0 ~ K ~ I. If u is a C3 -function in t, then 

A 1 z dz 3 
t->it) = - -t - 2 uk(t) + 0 (t ), 

2 dt 

Let q denote the accuracy order of the (Lagrangian) interpolation. Then 

Yk(t) = O(hV, k=2, .... ,l, 

(5.6) 

(5.7) 

and here the order constants again depend exclusively on higher spatial derivatives 
of u, assuming sufficient differentiability. If linear interpolation is used, then 
assumption (A2) implies q = 2 and second-order spatial derivatives determine the 
constants. 

Now, using the relation uz-1 = R1ku7-1 for k=l, ... ,l, we can derive 

Note, by definition of DZ, that DZ(ta.Z + ~D is the restriction of the usual local 
discretization error ta.Z + ~k to the integration domain of the grid cok, while 
(h - DZ)"fl represents the restriction of the interpolation error "fl to the complement 
of this domain. 
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3.5.2. A crude global error bound 

Denote the global discretization error by eZ = uZ - UZ and suppose e2 = 0. For 
any choice of DZ the consistency results (5.5) - (5.8) imply 

(5.9) 

If we now suppose linear interpolation and assumption (A5), then application of 
(4.12) yields 

(5.10) 

where IISnll = 0 (-cht) + 0 (-c2) + 0 (ht). Here the coarsest mesh width occurs due 
to simply adding all normed local level errors in (4.15), including llr'l 11- Following 
standard practice we thus obtain at any fixed time point tn = n't the global error 
bound 

(5.11) 

where h = h 1 , and C 1 , C 2 , C 3 are positive constants independent of step size and 
mesh sizes. 

The first two terms are due to the temporal integration and spatial discretization. 
They will vanish if mesh sizes and step size tend to zero independently of each 
other, thus reflecting the unconditional convergence of the method when applied 
without adaptation. On the other hand, if no relation is imposed between 't and h, 
then the third term can grow unboundedly as 't, h ➔ 0. This term is due to the inter
polation. Hence, even though we have stability and consistency, this result shows 
that unconditional convergence cannot be hoped for. Fortunately, this conclusion is 
not as bad as at it looks. By not specifying the matrices DZ and, subsequently, by 
adding norms of the local level errors, we have simply supposed arbitrary integra
tion domains at all levels of refinement. This must lead to a crude error bound like 
(5.11 ). In application, the computations should be organized in such a way that the 
interpolation only takes place in low-error regions so that the interpolation error is 
virtually absent. This poses the task of setting up a precise error analysis and the 
design of a local refinement strategy aimed at a suitable selection of the matrices 
DZ. 
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3.5.3. Local and global errors 

According to (4.6), the global error eZ satisfies the recurrence relation 

eZ = GZer-1 + 'l'k, n=I,2, .... ; k=I, .... ,l, (5.12) 

where 'l'k is the local error defined by the recursion (cf. (4.8), (4.5)) 

'1'7 = (zn-1 r7, (5.13) 

'l'k = Xk'l'k-1 + (ZZr1 rt, k=2, .... ,l. 

The operators GZ, XZ and zi are supposed to be redefined (replace all U-values by 
associated uk-values). Note that 'l'k is essentially different from the local level err0r 
ri. While ri is associated to the single k th level, 'l'k is associated to all levels up to 
this k th level according to (5.13). This recursion governs the propagation of each 
local level error when introducing higher-and-higher levels. Elaborating it gives, for 
k=I, .... ,l, 

k j+I 

'l'k = !,(fIX7) (Zjr1 rj. (5.14} 
j=I i=k 

Next we split 'l'k into its temporal and spatial part denoted by, respectively, 'l'l, and 
'l'Z,s: 

'l'k ='lfZ,t+'l'k,s• k=I, .... ,l, (5.15) 

and it follows from (5.8) that 'l'k,t and 'l'k,s are given, respectively, by 

k j+l 

vz., = :r,(nxn (z1Jr1 D'.i~'.i (5.16) 
j=l i=k 

k j+I 

'l't = !,(IlXf) (Zj)-1 [-rDjaj + (Ij - Dj)yj] (5.17) 
j=I i=k 

Let us first examine 'l'k,t· Since ~k does not depend on mesh sizes, we have 
~k = R1k~7. Substitution into (5.16) then yields 

k j+I 

vi.,= :r,<nxn (Zjr1 n1Rlj~7 (5.18) 
j=l i=k 
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and we see that this operator is just the amplification operator GZ featuring in (5.12); 
see the recursion (4.7). In conclusion, 'Vt, satisfies 

llfn _ GnAn 
yk,r- kf.l/, k=l, .... ,!. (5.19) 

We next examine \lfk,s- Using the definition of XZ given in (4.5), we rewrite (5.17) 
as 

where 

k-1 j+I 

'Vk,s = (ZD-] (h - DZ)Pk-lk L ( Il Xi') * 
j=I i=k-1 

(5.20) 

(5.21) 

and p7 = 0. In (5.20) the spatial local discretization error DZaZ committed on the 
integration domain of grid rok is separated from the spatial local error part 
(/k - Dk)Pk defined outside this domain. Hence, pZ collects all spatial error contri
butions defined on the grids ro.i ( 1 :S: j :S: k-1 ), including discretization error a'} and 
interpolation error y'}, together with y'l on rok. This separation enables us to formu
late a refinement condition which ensures that when a new grid level is introduced, 
the spatial local accuracy outside its integration domain will be smaller than or equal 
to the spatial accuracy on the integration domain itself. This distribution of local 
space errors is desirable, as we never return to grid points lying outside a current 
integration domain. 

The refinement condition constraints the matrices DZ, and is taken to be 

where c > 0 is a parameter specified in Section 6. If (5.22) is true, then all errors 
'Vk,s satisfy 

(5.23) 
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and combining (5.12) with (5.15), (5.19) enables us to present the global error ine
quality 

lleZII::; IIGZlllle?-111 + IIGW711 + (l+c)ll(ZZr1'tDZcxm (5.24) 

n=l,2, .... ; k=I, .... ,l. 

The importance of the refinement condition (5.22) is reflected by the fact that in 
(5.24) the interpolation error contribution has been removed. This is in agreement 
with our goal of developing a local refinement strategy that generates refined 
subgrids such that the accuracy obtained on the final finest grid is comparable to the 
accuracy obtained if this finest grid would be used without adaptation. We will 
further elaborate on condition (5.22) in Section 6. Note that it suffices to consider 
(5.22) only for k=l, since it suffices to consider (5.23) and (5.24) for k=l. 

3.5.4. Convergence and linear interpolation 

Assuming linear interpolation and assumption (AS), as in Section 5.2, (5.24) can 
be rewritten as 

lleZII ~ lle?-111 + IIPZII + (l+c)'tllcxZII, n=l,2, .... ; k=l, .... ,l. (5.25) 

Hence, following the same derivation as carried out for (5.11), for the highest level l 
the global error bound 

lle711::; C 1't + C2(l+c)hf (5.26) 

results where C I and C 2 are positive constants independent of step size and mesh 
sizes. This bound is unconditional in the sense that it assumes no relation between 
step size and mesh sizes and, according to our goal, the smallest mesh width h1 

occurs. We have recovered an error bound similar to the standard error bound for 
implicit Euler when applied on a single grid. 

3.5.5. Convergence and higher-order interpolation 

As pointed out in Section 4.3, for the case of higher-order Lagrangian interpolants 
a powerful stability result like that of Theorem 4.2 are not available. However 
assuming that higher-order interpolation in low-error regions does not severely dam
ages stability, as is strongly supported by our practical experience, it is natural to 
impose the refinement condition (5.22) also in the case of higher-order interpolation. 
Note that in the derivation of (5.22) no a priori choice was made for the interpolants. 
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3.6. THE REFINEMENT CONDITION 

3.6.1. Determining the integration domains 

Condition (5.22) needs first to be elaborated into a workable form before it can be 
implemented for determining the integration domains. To begin with, we rewrite the 
error Pk as 

k-l j+I 
PZ =y'/, +Pk-ikL( TIX:') (Z'])-1'tD']a'] + (6.1) 

j=I i=k-1 
k-l j+I 

Pk-lk L< TI xn <z'}r1 uj - D'J)rJ, 2 ~ k ~ z . 
.i=2 i=k-l 

Next, we rewrite the first sum as 

k-1 j+I 
pk-lk L< TI xn (Z'jr1'tD']a'] = pk_lk(Zk-1 r 1 'tDk-l aZ-1 + (6.2) 

.i=I i=k-1 
k-1 j+I 

pk-IkL( TIX:') (Z'}r1(lj -D'])Pj-lj(Z'J-1 r1'tD'J-1 a'J-1, 
j=2 i=k-1 

and substitute this expression into (6.1). It then follows that PZ can be written as 

k-1 j+I 
Pk= 11,z + Pk-1kL< TI xn <z'Jr1c1j -D'J)'A,'J, k=2, .... ,z, (6.3) 

j=2 i=k-1 

where 

~ 11 _ ,/l p (Z" )-1 D" n 11,.i - lj + j-lj j-1 't j-1 (Xj-1, j=2, .... ,l. (6.4) 

The error function 'A,'] contains the interpolation error at level j and the prolongation 
of the spatial discretization error of level j-1 to level j. The derivation now rests 
upon monitoring the error (ZZ)-1 (h - DZ)Pk occurring in (5.22) through monitoring 
all errors (11 -D'j)'A,'], jg, occurring in (6.3). The idea is to select the matrices D'J 
such that the error functions (11 - D1)'A,') become sufficiently small. This makes 
sense because if C 3 , C 4 are stability constants such that 

j+l 

II TI X?II ~ C4, (6.5) 
i=k-1 



then 

ll(ZZ)-1 Ch - DZ)pkll ::; (6.6J 

C3(l + IIPk-lkll(k-2)C3C4) max2~jg, {ll(/j-DJ)11/}II}. 

Hence, if fork =2, .... , l the matrices Dk are selected such that 

then the refinement condition (S.22) is satisfied. 
In general, the stability constants C 3 and C 4 are unknown. However, if the dissi

pativity assumption (AS) is satisfied, then the constant C 3 ::; I. Furthermore, if we 
use linear interpolation, then ( 4.16) applies and also C 4 can be put equal to one, so 
that (6.7) simplifies to 

If assumption (AS) does_ not hold or higher-order interpolation is used, then C 3 and 
C 4 may be larger than one, but not with a considerable extent. C 3 shall in general be 
of moderate size in view of the excellent stability behavior of implicit Euler. Our 
practical experience with fourth-order Lagrangian interpolation is that higher-order 
interpolation is unlikely to yield instability problems, thus indicating that also IIXkll, 
and hence C4, are of moderate size. That is why we proceed with (6.8) and also to 
use it in situations where (AS) may be violated and/or higher-order interpolation is 
used. 

In application it suffices to impose (S.22) for k=l only, so that (6.8) can be 
replaced by 

(6.9) 

In order to satisfy this condition, estimates of 11,z have to be computed. Therefore, to 
create an extra safety margin, we replace (6.9) by the slightly more conservative 
condition 

(6.10) 

where, per component, ~k is defined as 
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(6.11) 

Condition (6.10) will determine the integration domain of wk. Let nz be this 
integration domain and recall that when a node belongs to nz, the corresponding 
diagonal entry of DZ is equal to one and zero otherwise. Suppose that the maximal 
level number/ and c(/-1)-111(Z?r1'tD1a?II are known and that a solution at Qk-I, 
k ':S:l, has just been computed. Prior to the integration step on level k, our task is then 
to determine nz. That is, we must define DZ such that ( 6.10) is satisfied and in such 
a way that the area of ni is as small as possible. The actual selection of Qk is car
ried out by a flagging procedure which scans level-k grid points. A point is flagged 
if, using appropriate estimates, 

(6.12) 

Hence, for such a point the corresponding diagonal entry (D'Dii = 1 and for non
flagged points we define (Di:);; = 0. This way the refinement condition (6.10) is 
satisfied. 

In conclusion the solution at a node of grid wk is interpolated only if a 
corresponding component of Sk is smaller than the maximum of the spatial discreti
zation error at the finest grid multiplied with 'tc(/-1)-1. Otherwise integration is car
ried out at this node. No doubt· this imposes a severe restriction on the size of the 
interpolation errors. On the other hand, this restriction is natural because when going 
to a higher level within the current time step, we never return to a grid point where 
the solution has been interpolated which means that the interpolation error will be 
carried along to the next time step. The fact that we do not return is a direct conse
quence of the nesting property of the integration domains, which we discuss next. 

3.6.2. Restricted interpolation and the nesting property 

We now introduce the nesting property of the integration domains. Recall that this 
property, being hidden in the definition of the matrices Dk, has played no role in the 
foregoing analysis. We stipulate that in application the nesting is enforced by the 
flagging procedure, in other words, this procedure scans only level-k points lying 
within the previous integration domain Qk-I · A direct consequence is that, different 
from (3.5), the interpolation is carried out only for level-k points within nz_1• Here 
we will justify the deviation due to this restricted interpolation. We argue that the 
restricted interpolation is in fact allowed by the inequality (6.10) where interpolation 
over the whole of wk is still assumed. 

Consider the error (ZZ-i r 1 'tDk-I aZ-1- This spatial error is defined at level k-1 
and, by definition of DZ_1, has zero components outside nz_1• Hence, all its pro
longated components are taken into account in the flagging procedure for determin
ing nz_ For the interpolation error )1, which lives on the whole of wk (grid expan
sion), the situation is different. However, restricted interpolation is allowed if for all 
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level-k points outside nz_1, the interpolation error satisfies 

(6.13) 

because then points outside ni_1 will not be flagged if the interpolation step (3.5) 
would be carried out on the whole of cok. In other words, if (6.13) holds outside 
nz_1, then the integration domains found with the restricted interpolation over nz_1 

are equal to the domains found if the interpolation would be carried out on the 
whole of cob which is in accordance with the method description (3.3). 

The following argument shows that inequality (6.13) is very plausible with the 
restricted interpolation procedure. First we recall that QJ coincides with the entire 
physical domain. Hence for k =2 there is no restricted interpolation so that for all 
level-2 points outside Q 2 inequality (6. I 3) is trivially satisfied. Next consider the 
case k=3. Now the interpolation is restricted to level-3 points within Q~. Since for 
all level-2 points outside Q~ inequality (6.13) is satisfied, we are justified in suppos
ing that this is also true for all level-3 points outside Q~, in view of the consistency 
of the interpolation (level-3 interpolation errors are smaller than level-2 errors). 
Further, by construction of Q 3, (6. I 0) is satisfied for all level-3 points within Q 2 and 
outside Q 3, and so is (6.16). In conclusion, we may suppose that (6.13) is satisfied 
for all level-3 points outside Q 3 when using the restricted interpolation for k=3. For 
k =4 and so on this argument can be repeated. 

3.6.3. Implementation aspects 

On top of the flagging procedure implementing (6.12) some safety measures have 
been built. Any node for which (6.12) is true is flagged together with its eight neigh
bors. Next, to create an extra buffer, all sides of cells with at least one flagged 
corner node are bisected. This means that a buffer zone of two mesh widths is used 
around any intolerable node. Near boundaries, physical and internal ones, the 
buffering differs slightly. Although in theory this buffering could be omitted, in 
practice it is wise to create a buffer zone around intolerable nodes because the esti
mation of higher spatial derivatives contained in aZ and y'J_ is prone to inaccuracies. 
After the flagging procedure, a cluster algorithm groups all untolerable nodes 
together to form the newly defined integration domain. 

The parameter c in (6.12) must be specified. In view of result (5.25), c should be 
taken small so that the spatial accuracy obtained is indeed nearly equal to the spatial 
accuracy obtained without adaptation. In fact hand, the smaller c, the more points 
will be flagged and hence the safer the local refinement will be ( c =0 implies global 
refinement). On the other hand, when c is too large, the situation can occur that the 
space errors are large and refinement is neccessary but no nodes are flagged because 
(6.12) is satisfied at every node. Hence, c is available as a tuning parameter. In the 
experiments in Section 7 we have simply put c=l. 

Estimates of spatial interpolation and discretization errors are required. For 2s.k s.l 
we must estimate the interpolation error y'J_ and the prolongated spatial discretization 
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error Pk-lk(Z'k_1 )-1 D'k_1 a.'k_1• Further, an estimate of the spatial discretization error 
(Z7r1 D7a.7 committed at the final l th level must be available at all lower levels. 
Because we use local, uniform grids, the estimation of these errors can be realized 
cheaply anr. easily. Consider the error a.r (cf. (5.2)) and let p be the order of con
sistency (in this paper p =2). The es!imation we apply is based on the use of a 
second spatial discretization operator F of a higher-order p. After some elementary 
calculations we obtain the following approximation 

-a.Z ::::: Fk(tn, uk(tn)) - Fk(tn, Uk(tn)) (6.14) 

as an asymptotically corr~ct estimator for a.Z. The benefit of using uniform grids 
now lies in the fact that F is easily constructed. At internal nodes our F provides 
fourth-order accuracy (standard symmetrical differences), while at nodes adjacent to 
physical or internal boundaries third-order accuracy is realized (standard one-sided 
differences). The benefit of using uniform grids is also reflected in the estimation 
for the error Yi (cf. (5.4)). So far we have implemented Lagrangian interpolation of 
second (linear) and fourth order. For the second-order interpolation we need to esti
mate spatial derivatives ux,:, etc., while in the fourth-order case spatial derivatives 
like u~xxx appear. For both cases the estimation is straightforward. 

We emphasize that, in spite of its simplicity, linear interpolation may become 
disadvantageous due to the low order of accuracy. Inspection of the various terms in 
(6.12) suggests to compare the following order relations: 

-r<Pk-1k<zz_1 r 1 vz_1 a.Z-1 )i = o (-rhh 

11<zrr1-rv7a.711 = o (-rhf ), 

('fk)i = 0 (hr), second-order linear, 

(Y'D; = 0 (hf), fourth-order Lagrangian. 

(6.15a) 

(6.15b) 

(6.15c) 

(6.15d) 

In the discretization terms the step size 'tis contained. Consequently, it is the inter
polation error that may will govern the refinement if 't is very small, and particularly 
so when the interpolation is linear. The comparison is clearly in favor of the fourth
order interpolation. 

To estimate the right-hand-side term ll(Z7r1D7a.?II of (6.12) for 25'k5'l-l, we 
exploit the asymptotics. Since the mesh width of level k is half that of level k + l, we 
thus invoke 

(6.16) 

for k=l,2, ..... In theory it suffices to do this only for k=l, but since for larger values 
of k this estimation will become more and more accurate, it is done for every k. 

Finally, we make a few remarks about the approximations (6.14) and (6.16). Our 
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method, like every other adaptive grid method is designed to solve PDEs with steep 
solutions. Yet (6.14) and (6.16) underlie asymptotics, which means that they are 
only accurate if the solution is sufficiently smooth on the grid in use. This consti
tutes a problem for LUGR methods, because these methods estimate errors on 
coarse grids. Nevertheless, if in practice the estimated error is not that accurate, it 
might still give an good indication of where the spatial error is large and where it is 
not and, specifically, the estimated error might still be in more or less the same order 
of magnitude as the exact error, in which case the implemented refinement strategy 
based upon ( 6.14) will still work. In our experience so far this is indeed the case. 
We believe this is due to the fact that estimation (6.16) is carried out for finer-and
finer subgrids with an increasing accuracy which partly remedies the problem. 
However, if solutions become very steep it may be necessary to improve the imple
mentation of the refinement strategy. 

3.7. NUMERICAL EXAMPLE 

This section is devoted to an illustration of the foregoing error analysis. Our goal 
here is to numerically illustrate that by imposing the refinement condition the usual 
order behavior is recovered. At the same time, the spatial accuracy obtained is com
parable to the spatial accuracy on the finest grid if this grid would be used without 
adaptation. 

3. 7. I. The issue of implicitness 

We use the implicit Euler method for time integration. In connection with impli
citness, two points are worth mentioning. The first is that at any time step 
refinement takes place at different levels, resulting in a different Jacobian per level 
whose order usually varies. This impedes the profitable use of old Jacobians (like in 
sophisticated stiff ODE solvers), unless it is decided not to adapt grids at every time 
step, but instead per prescribed number of steps. We consider this as part of an 
overall strategy that can easily be placed on top of the existing one. We adapt grids 
at every time step since our main aim with the experiments is to illustrate the con
vergence analysis together with the refinement strategy. However, when dealing 
with real applications, it is most likely to be more advantageous to omit adaptation 
at every base time step, just for efficiency reasons. The second point is that the Jaco
bians do not posses a regular band structure, since the integration domains Qk nor
mally have an irregular shape. Unlike the first, this point is intrinsic to the local 
refinement method. In the experiments reported here the Harwell sparse matrix 
solver MA28 has been used. This solver is well suited to cope with the structures we 
meet, but is rather time consuming for the present application. It is likely that stan
dard iterative methods can be applied at lower costs. 
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3. 7.2. The example problem 

This test example is hypothetical and due to [I]. The equation is the linear para
bolic equation 

(7.1) 

and the initial function, the Dirichlet boundary conditions for and the source term f 
are selected so that the exact solution is 

u (x,y,t) = exp[-80((x - r(t))2 + (y - s (t))2)], (7.2) 

where r(t) = ¼ [2 + sin(7tt)] and s (t) = V4 [2 + cos(nt)]. This solution is a cone that 
is initially centered at(½,¾) and that symmetrically rotates around (V2, Vz) in a clock
wise direction with a constant speed. We have used this problem to subdue our 
refinement method to a convergence test. Observe that the semi-discrete version of 
this problem satisfies the dissipativity assumption (A5). 

3. 7.3. Convergence experiments 

We have carried out two identical convergence experiments. In the first linear 
interpolation has been used and in the second, fourth-order Lagrangian. In both the 
solution is computed four times over the interval O::=;t :Q, using a uniform IO x IO 
grid and a constant time step size 't. In the first computation l =I, in the second l =2, 
and so on. Since per computation the smallest mesh width is halved, 't is simultane
ously decreased by 22 in view of the first order of implicit Euler. Hence, in line with 
our analysis, per computation the maximal global error should also decrease by 22 . 

Table 7. I shows the maxima of the global errors restricted to the finest integration 
domain in use. This table clearly reveals the expected order behavior. The errors of 
the l =4 runs are about a factor 4 smaller than the corresponding errors of the l =3 
runs. Note that there is hardly a difference between the corresponding errors, show
ing that, as anticipated by our strategy, the choice of interpolant has no notable 
influence on the error. We emphasize that, in spite of the relatively large values for 
't, the spatial error dominates the global errors shown in this table. For example, 
using 't = 0.125 instead of 't = 0.5 in the l =2 run, the same global errors are found 
(they deviate in the third or fourth decimal digit). In other words, conclusions on the 
spatial error behavior induced by the local refinement algorithm can be drawn from 
this table. 

These results convincingly show, for the current example problem, that the use of 
the refinement condition ensures that the spatial accuracy obtained is very much 
comparable to the spatial accuracy on the finest grid if this grid is used without any 
adaptation. Finally we note that the choice c =I apparently has no influence on the 
error. We owe this to the fact that the refinement condition has been derived from 
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#of single t 
't interpolation 

levels grid 0.50 1.00 I.SO 2.00 

2.00000 I JO X 10 0.16447 

linear 0.03876 0.03890 0.03891 0.03891 
2 

0.50000 fourth order 0.03929 0.03945 0.03946 0.03946 

20x20 0.03865 0.03881 0.03882 0.03882 

linear 0.01369 0.01369 0.01369 0.01369 
3 

0.12500 fourth order 0.01376 0.01376 0.01376 0.01376 

40x40 0.01389 0.01389 0.01389 0.01389 

linear 0.00340 
4 

0.00340 0.00340 0.00340 

0.03125 fourth order 0.00359 0.00359 0.00359 0.00359 

80x80 0.00347 0.00347 0.00347 0.00347 

TABLE 7. I . Maxima of global errors restricted to the finest domain. 
Comparison with errors on a standard uniform grid. 

errors bounds and is thus rather conservative. 
The use of the two different interpolants is expressed in the slightly different 

integration domains shown in Figures 7.1 and 7.2. As expected, at the higher levels 
linear interpolation gives rise to somewhat larger domains. Showing that linear 
interpolation is more expensive. As a rule, fourth-order interpolation is to be pre
ferred as it leads to smaller domains. Note that for both interpolants the moving 
domains accurately reflect the symmetric rotation of the cone, which once again 
nicely illustrates the reliability of the implemented refinement condition with the 
various estimators. 

3.8. FINAL REMARKS AND FUTURE PLANS 

In our future research we plan to pay more attention to time-stepping efficiency. 
Using the refinement strategy of this paper as a starting point, we plan to examine 
the application of methods possessing a higher order in time. Natural candidates 
belong to the class of Runge-Kutta methods. It should be stressed, though, that fully 
implicit methods can only be of serious advantage if the numerical algebra issue can 
be satisfactorily solved. In this connection splitting methods of the ADI and LOD 
type (see [10]) may therefore provide an attractive alternative to fully implicit ones, 
although they are usually less accurate in time. Another point of serious practical 
concern is to apply methods not only using an a priori chosen number of levels, but 
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FIGURE 7 .1. Linear interpolation. Integration domains for the l =4 run at four dif
ferent times. The size of the integration domains decreases only slowly with the 
number of levels. This is due to the fact that the cone is not very steep. At the end 
time t=2.0 the number of nodes amounts to 121, 425, 813 and 1917, respectively. 
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t=0.5 t= 1.0 

t=l.5 t=2.0 

FIGURE 7 .2. Fourth-order interpolation. Integration domains for the l =4 run at four 
different times. At the end time t=2.0 the number of nodes amounts to 121, 425, 
813 and 1361, respectively. 
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to have also the possibility to vary the number of levels. This might be useful for the 
computation of solutions which, for example, steepen up in time like the combustion 
problem in [13]. For such problems, the application of a variable number of levels 
should be combined with the use of variable temporal step sizes. Preferably, the 
complete adaptation then should be monitored by estimators of temporal and spatial 
errors in such a way that there is a balance between the two which aims at minimiz
ing the waste of computing time. 
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Chapter 4 

Runge-Kutta Methods 

and Local Uniform Grid Refinement 

4.1. INTRODUCTION 

Local uniform grid refinement (LUGR) is an adaptive grid technique for comput
ing solutions of partial differential equations (PDEs) possessing sharp spatial transi
tions. Using nested, finer-and-finer, uniform subgrids, the LUGR technique refines 
the space grid locally around these transitions to avoid discretization on a very fine 
grid covering the entire domain. In this paper we examine the LUGRtechnique for 
time-dependent problems. Thus, typical solutions aimed at are those possessing 
sharp moving transitions, such as steep fronts, emerging layers, moving pulses, etc. 
For time-dependent problems, LUGR is combined with static regridding. Static 
regridding means that in the course of the time evolution, the space grid is adapted 
at discrete times. 

We consider Runge-Kutta methods for the time integration and, following the 
method-of-lines approach, develop a mathematical framework for the general 
Runge-Kutta LUGR method. We hereby focus on parabolic problems, but a consid
erable part of the discussion applies to hyperbolic problems as well. The present 
paper is a continuation of [12] which deals with the implicit Euler method. Here we 
discuss how the ideas developed in [12] are extended to the general Runge-Kutta 
case. Like in [12], much attention is paid to the local error analysis. The central 
issue here is the 'refinement condition', which is to underly the refinement strategy. 
By obeying this condition, spatial interpolation errors are controlled in a manner that 
the spatial accuracy obtained is comparable to the spatial accuracy on the finest grid 
if this grid would be used without any adaptation. Non-numerical subjects, such as 
the data structure and the memory use, are not discussed here. These are the same 
as in [11]. For related earlier work on LUGR methods, we refer to Berger and 
Oliger [3], Gropp [6, 7], Arney and Flaherty [2] and references therein. 
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Section 2 is devoted to the method formulation. Here we develop the mathemati
cal framework that enables us to give a concise description of the Runge-Kutta 
LUGR method. In Section 3 we set up a general error scheme, which is further ela
borated in Sections 4 and 5. Section 4 briefly addresses the stability issue, while 
Section 5 is devoted to the local error analysis. Here we derive the important 
refinement condition. Under a natural assumption on the Runge-Kutta method, we 
next prove that the 'uniform in h' temporal order of the method is at least equal to 
the stage order. Noteworthy is that Sections 3 - 5 apply to the whole class of 
Runge-Kutta methods. As a result, the outcome of the analysis is of a general nature, 
so that for a specific Runge-Kutta method a further elaboration is needed. Such an 
elaboration is presented in the remainder of the paper for a three-stage diagonally
implicit Runge-Kutta (DIRK) method. In Section 6 attention is given to the order 
reduction phenomenon and to how to implement the refinement condition for this 
specific method. Section 7 deals with two numerical examples in two space dimen
sions. Finally, we conclude the paper with Section 8 discussing two important 
matters of practical interest. 

4.2. THE GENERAL METHOD FORMULATION 

4.2.1. The Runge-Kutta method 

Consider the initial value problem for a standard system ordinary differential 
equations (ODEs) 

!u(t)=F(t,U(t)), O<t-5':T, U(O) = u0 . (2.1) 

The general one-step, s-stage RK scheme for the numerical solution of (2.1) 1s 

denoted by 

s 

U(i) = un-l + -cI,aijF(tn-1 + cj'C, U(j)), I -5': i -5': s, 
j=I 

.I' 

un = un-l + -cI,b;FCtn-1 + C;'C, u<0), 
i=I 

(2.2) 

(2.3) 

where the step size 'C may vary with n. Superscripts will refer to time, while brack
eted superscripts are used for approximations at intermediate stages. As usual, we 
suppose c; = a; 1 + · · · + a;s• In the remainder it is convenient to combine (2.2)
(2.3) into one formula. Denote a.v+li = b;, 1 -5': i -5': s, u<s+I) = un, then we rewrite 
(2.2)-(2.3) as 

s 

u<i) = un-l + 'C I,aijFCtn-1 + c j'C, u<n), 1 -5': i -5': s + 1. (2.4) 
.i=l 
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4.2.2. The semi-discrete problem 

Consider an initial-boundary value problem in d space dimensions, 

u1 =L(t,u), 0<t5'T, u(::,O)=u0(~), (2.5) 

where L is supposed to be of at most second order and provided with appropriate 
boundary conditions on the boundary an of the space domain n. The boundary is 
taken to be locally parallel to the co-ordinate axes. The function u (x,t) may be vec
tor valued and is supposed to exist uniquely and to be as often differentiable on 
(nuan) x [0, T] as the numerical analysis requires. 

LUGR methods use local, uniform grids whose size and number mostly vary in 
time. Therefore, LUGR methods generate a sequence of operations on vectors in 
vector spaces with a variable dimension. This complicates the error analysis. In 
[12] we got round this problem by expanding the fine grids in the mathematical for
mulation of the method, so that the entire domain is covered. Also here we use this 
'grid expansion'. Temporal integration then takes place on one part of the expanded 
fine grid and interpolation on the other. Note that this grid expansion does not take 
place in the actual application but only in the mathematical formulation of the 
method. Nevertheless, the results of the error analysis presented remain valid for 
the applicated method. 

Let l E JN+. For k = I, · · · , , l we introduce uniform space grids cok where each 
cok is supposed to cover the whole of the interior domain n. The grid cok has no 
points on an. The grid co1 is called the base grid and, given this grid, co2 is obtained 
from co1 by bisecting all sides of all cells of co1, etc.. To (2.5) we now associate on 
each cok a real Cauchy problem for an explicit ODE system in lRd', 

(2.6) 

defined by a finite-difference space-discretization of (2.5) and its boundary condi
tions. Thus, Uk and Fk are vectors representing the values of grid functions defined 
on the grid cok. Each component of Uk and Fk itself is vector valued if u is vector 
valued. The boundary conditions have been worked into the semi-discrete system 
by eliminating semi-discrete values at an. The dimension dk is determined by the 
spatial dimension, the grid spacing, and the number of PDEs. The initial vector U2 
for (2.6) is supposed to be exact. 

In the remainder we let Sk with dim (Sk) = dk denote the grid function space. Sk 
coincides with lRd' and Uk> Fk are elements of Sk. Let uk(t) e Sk represent the 
natural (nodal wise) restriction of u (x,t) to cok. In Sk the fully continuous problem 
(2.5) and the semi-discrete problem (2.6) are related by the local spatial discretiza
tion error 
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(2.7) 

In particular, uk and ak are sufficiently often differentiable with respect to t and 
ak(t) has the order of consistency of the finite-difference scheme. Finally, we note 
once more that we consider elements uk(t), Uk(t) E Sk defined on space grids wk 
which cover the entire physical domain Q. 

4.2.3. The multi-level multi-stage RK method 

Starting at the coarse base grid ro1, this method successively integrates on 
subgrids of wk fork= 2, · · · , lover the same time interval [tn-I, tnl- Characteristic 
for the method is that subgrids, henceforth called the integration domains, are nested 
and that so to say on each domain a new initial-boundary value problem is solved. 
Required initial values are defined by interpolation from the next coarser integration 
domain or taken from a possibly existing one from the previous time interval. Boun
dary values required at internal boundaries are also interpolated from the next 
coarser integration domain. At each level of refinement, the domains are allowed to 
be disjunct and thus may consist of two or more subdomains. The nesting is contin
ued up to a level fine enough to resolve the anticipated fine scale structure. This 
means that, given ro1, l must be chosen sufficiently large. Having completed the 
integration on the finest, 1th-level integration domain, the process is repeated for the 
next time interval [tn, tn+il by again starting from ro1• We note that all refined 
subgrids computed at forward time are kept in storage as they are used for step con
tinuation. Further, for step continuation always the most accurate solution is used 
that is available. 

The above described process is defined by the formulas 

s 
U\il =R11U7-I +'t_LaijF1Ctn-l +cj't, U\n), 

j=I 

1::;i::;s+l; k=I, 

s 
ufl = Di [Rzkvl-l + 't LaijFitn-1 + C j't, u}/l)] + 

j=I 

(2.8a) 

(2.8b) 

where u~<+I) = V'!c E sk is the approximation to uk(fn> at the grid O)b ufl E sk is the 
i th intermediate approximation at rob h: Sk ➔ Skis the unit matrix, DZ: Sk ➔ Sk is a 
diagonal matrix with entries (DDu either unity or zero, R1k: S1 ➔ Sk, k = 1, · · ·, l, is 
the natural restriction operator from ro1 to wk with Ru= 11, Pk-lk: Sk-I ➔ Sk, 
k = 2, · · ·, l, is an interpolation operator from rok-l to rob and bfl E Sk contains 
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time-dependent terms emanating from the physical boundary an. 
The nesting property of the integration domains is induced by the grid strategy. 

This strategy determines at which nodes integration or interpolation is carried out 
and defines t11e diagonal matrices DZ. If at a node integration is to take place, then 
the associated diagonal entry (DZ)u is defined as (DZ)u = l. For all remaining inter
polation nodes, (DZ);; = 0. The nesting property itself cannot be recovered from the 
above formulation, as this is hidden in the actual definition of DZ. 

The interpolation step on level k ;c: 2 stands on its own and is represented by 

The grid function bfl plays an auxiliary role. We need to include it as boundary 
conditions have been worked into (2.6) (method of lines). For the analysis 
presented bfl plays no role (it contains merely time-dependent terms and does not 
depend on u (x,t)). Likewise, the integration step on the integration domain of level 
k is represented by 

s 

DZUf) =Di [R1ku7-1 +1:I,aijFk(tn-l +cj'l:, uf/l)], 
j=I 

(2.10) 

where, according to (2.8a), D7 = I 1. Values at or beyond internal boundaries needed 
in the function evaluation in (2.10) are defined by (2.9), for each RK stage. Hence, 
due to the internal boundaries, (2.10) cannot be considered uncoupled from the 
interpolation (2.9). Also observe that at each grid level the integration has the fine 
grid solution DkRtku7-1 as initial function. Note that if we substitute the implicit 
Euler formula in (2.10), the scheme of [12] is obtained. 

In (2.8) the approximations ufl are defined on the whole of the grids rok and thus 
are also elements of Sk. Consequently, for any k ;c: 2 interpolation is considered to 
take place on the whole of rob which is costly. In actual application, the interpola
tions are therefore restricted to the nested integration domains. This point will be 
discussed later in the paper. For the time being, it is assumed that the numerical 
solutions are indeed generated as grid functions in Sk (grid expansion). 

In (2.8) the number of grid levels l is fixed a priori, independent of time. In appli
cations this fixed-level mode of operation may be inefficient. For example, if a solu
tion steepens up in time, less levels are needed in the initial integration than at later 
times. Consequently, at early times l must be taken larger than necessary, which is 
not efficient. On the other hand, the solution may also become less steep, which 
again makes a fixed l inefficient. Obviously, the method should be capable of work
ing with a variable l. For this variable-level mode of operation (2.8) requires a 
modification. Let ln-l, ln denote the number of levels from tn-l to tn and tn to t11 +1, 

respectively. Then, for the step from t11 _ 1 to tn, (2.8) is modified to 
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s 

UV) =R1"_11Uf;~_\ +1:I;auF1Ctn-l +cj't, U\n), 
j=I 

l:S:i:'.S:s+I; k=I, 

s 

ufl = DZ [R1n-1ku7;=_\ + 1:I;aijFkCtn-l + Cj't, u}jl)] + 
j=l 

and, provided ln > ln-l, fork= ln_1+1, · · ·, ln we have 

l:S:i:'.S:s+I. 

(2.11 a) 

(2.1 lb) 

(2.1 lc) 

Consequently, if the number of levels should increase for use in the next step, then 
so-called full interpolations (2.1 lc) are carried out at the end of the current step, so 
that the required initial function, which is to be taken from the highest grid level that 
will be used, is always available. If ln :'.S: ln-l, then (2.1 lc) is omitted and nothing 
really changes. Full interpolation is necessary only when the solution steepens up in 
time. Because we will, let the ln depend exclusively on the spatial steepness, and 
because maxn { ln} is finite, full interpolation is carried out only for a finite number 
of steps, uniformly in 't. Hence full interpolation cannot have a strongly diminishing 
effect on global accuracy. Like the matrices DZ, the actual choice for ln is part of the 
adaptation strategy. 

We conclude this section with a minor modification for certain RK methods. 
Above, Dk depends only on the step number n and the level index k, and not on the 
stages. There exist RK methods for which all coefficients a lj are zero, trivially so 
for all explicit methods, but for example also for the implicit Lobatto IIIA-methods 
(s = 2 yields the familiar trapezoidal rule). If this is the case, then it is more natural 
to define for all grid levels the first-stage value as 

(2.12) 

to avoid interpolation. This means that at stage one DZ is to be replaced by the unit 
matrix lk. 



4.3. THE GENERAL ERROR SCHEME 

To save space, (2.11) is rewritten as 

s 
uf) = DZ [R1n-1kut:.\ + 'tI,aijFkCtn-1 + Cj't, uV))] + 

j=I 

75 

(3.1) 

Note that D7 = 11 and DZ= 0 if k > ln-l · Further, if a lj = 0 (l :;; j:;; s), then DZ is 
to be replaced by h for i = l, but only for 1 :;; k :;; ln-l · The rewriting of (2.11) into 
(3.1) introduces variables not existing in reality, viz. the grid functions u~l, b\i) and 
the operators P 01 and R1n_,k fork> ln-l· Formally we can use (3.1) due to the 
definition of DZ. 

The derivation of the error scheme parallels that in [12]. Consider the perturbed 
scheme 

with the local perturbations rfl still arbitrary. Introduce the errors 

eu) = u-<ki) - vu), 1 < · < +1 1 < k < t k k - l - S ; - - n, 

and subtract (3.1) from (3.2) to obtain 

s 

ef) = DZ [R,n_1ke~-::_~ + 't I,aijMV) eV)] + 
j=I 

(3.3) 

(3.4) 

MV) is the integrated Jacobian matrix resulting from the use of the mean value 
theorem: 

(3.5a) 

(3.5b) 
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We next introduce the Kronecker product notation. Let Es+I be the unit matrix of 
order s+l and denote e = [1, ···If E JR.s+t _ Introduce the augmented vectors 

in the augmented space sk = JR.(s+l)d, and the matrix operators 

R1n-1k: S111-I ➔ sk, 
pk_lk: sk-1 ➔ sk, 
Ik: sk ➔ sk, 

R1n-1k = Es+I ® R1._,k = diag(R1n_,d, 

Pk-tk = Es+1 ® Pk-tk = diag(Pk-lk), 

lk = Es+I ® h = diag(/k)-

(3.7) 

Define o;: sk ➔ sk, D~ = diag(/k, DZ, · · ·, DV if a,j = 0, 1 ~ j ~ s (cf. (2.12)), 
and otherwise diag(DZ). Finally, we introduce the augmented Jacobian operators 

a11Mk') a12Mk2) a1,,M}z) 0 

M:= (3.8a) 

a_,.;Mf') a.,2Mf) a.,.,Mf') 0 

as+11Mf') as+12Mf) as+lsMks) 0 

(3.8b) 

so that (3.4) can now be written in the compact form 

Z n n DnR '°' n-1 I Dn p n n 
kek = k l11-1ie 'Cl e111-I) + ( k - k) k-lkek-1 + rk, (3.9) 

I~ k ~ ln. 

In (3.9) we deal with an inner and outer recursion connected, respectively, with 
the grid refinement index k and time stepping index n. Introduce 

x: = (Z~)-1(1k -D;)Pk-lb 

rn (Zn)_,DnR 
k = k k l11 -1b (3.10) 

<j>~ = (Z~r'r~, 
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where k = 1, · · ·, ln. Note that z; = lb X; = Pk-lb r; = 0, 4>; = r; for the full 
interpolation levels k = ln_1+1, · · ·, ln. Using (3.10), (3.9) is rewritten as 

k = 1, · · ·, ln. 

An elementary calculation then leads to the final form 

where G; and 'I'~ itself are also defined by recursions: 

G" X"G" rn j = j j-1 + j, 

n xn n "'n 
'lfj= j'lfj-l+'f'j, 

j =2, · · ·, k, 

j =2, · · ·, k. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Equation (3.12) describes the error propagation for increasing levels within one 
complete time step. When to be used as error recursion in time, we put k = ln as we 
use the highest level approximations uf;=-~, Uf" , · · · for step continuation. Hence, 

n = 1,2, · · ·, (3.15) 

is the final error scheme for the highest level approximations. Similar as in the stan
dard application of the RK method (single-level, multi-stage), our main interest con
cerns the (s+l)th component vector. Note that the formulation (3.15) supposes that 
U~ is taken for output rather than Ufn-i . 

4.4. REMARKS ON STABILITY 

In [12] we have presented a comprehensive analysis of the stability of the multi
level implicit Euler method. The multi-level multi-stage RK formulas are not so 
feasible for a comprehensive stability analysis. A technical difficulty originates from 
the property that at any RK stage, nonphysical boundary values are defined by inter
polating the solution of the corresponding stage from the next coarser grid. This 
implies that the internal RK stages play a role in the stability analysis, even for con
stant coefficient linear problems. On the other hand, we believe this role is little and 
that in application one encounters the same step-by-step stability as on a single grid, 
as long as interpolation takes place in low-error regions. In this paper no further 
attention is paid to stability analysis. Instead, we refer to the preprint [10] for some 
preliminary remarks on stability and proceed with the local error analysis which is 
to reveal how to define the adaptation strategy for choosing the spatial integration 
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domains at the various refinement levels. Obviously, this is one of the main issues in 
the analysis, implementation and application of adaptive grid methods. 

4.5. THE LOCAL ERRORS 

4.5.1. Preliminaries 

In the following, 11-11 denotes the conventional maximum norm. We use the max
imum norm as this norm is most natural for implementing adaptation strategies. 
Note that 11-11 stands for the maximum norm in any space Sk or Sk under considera
tion, while the same symbol will be used for operators. We will examine the total 
local error 'V~ obtained by associatinp. the local perturbations r~ with the true PDE 
solution. Note that the global errors e; then become global discretization errors, viz. 

(5.1) 

For clarity, henceforth we will consistently call 'V~ the total local error, whereas r; 
will be consistently called a residual, so as to distinguish from 'V;. Note that 'V~ can 
be interpreted as the kth -level global error after one time step starting from the true 
PDE solution (put e7;::.\ = 0 in (3.12)). 

We have tacitly used the natural assumption that any occurring augmented RK 
operator Z~ is invertible (under appropriate conditions on 't and cod. We thus may 
introduce the following bound: 

(5.2) 

where C 2 I denotes a constant independent of 't and cok> while 't itself satisfies 
't ~ 'to with 'to possibly depending on co1._1 . The constant C and step size bound 'to 
are assumed to take on appropriate values (C close to 1 and 'to not unduly restric
tive). As in [12], the aim of the error analysis is to derive a refinement condition 
that distributes space discretization and interpolation errors in such a way that the 
local spatial accuracy obtained on co1._1 is comparable to the local spatial accuracy 

if this grid would be used without any adaptation. Assuming a stable time stepping 
process, this will then also be true for the global spatial accuracy. 

n 
4.5.2. The local error 'Vk 

~(i) 
Replace, in the perturbed scheme (3.2), all Uk values by the corresponding PDE 

solution values ufl. Then, in the space Sk> the resulting residual r~ can be 
expressed as 

(5.3) 



where 

~; = [Pk)) T, · · · , Pk') T, Pks+l) Tf, 

cr; = (A ® Ik) [<Xkl) T, ... '<Xks) T, cxr'+I) Tf, 

y; = [rP) T, · · · , rt) T, rt+!) Tf, 

The component pfl is the PDE residual defined for the i th RK stage: 

The component cxfl is the PDE residual defined by the semi-discretization: 
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(5.4a) 

(5.4b) 

(5.4c) 

(5.5) 

(5.6) 

Following common use, a; and likewise cr; and their components, will also be 
called local space discretization error. The matrix A represents the (s+l) x (s+l) 
Butcher matrix of RK coefficients aij whose (s+ l) th column is zero. Hence, the i th 

component crfl of cr; is given by crfl = I,~_1 aijcxVl. Finally, the component rfl is 
the residual defined by the interpolation: J-

and rfl and y; will also be called interpolation error. Observe that any component 
vector 

(5.8) 

of r; is now determined completely by the true PDE solution u = u(x, t). Thus, rfl 
can be Taylor expanded assuming sufficient differentiability. -

We are now ready to determine the local error \j/; defined by recursion (3.14). 
Assuming 

k+I 

I]X~=lk, k=l,···,l,,, (5.9) 
i=k 

and using (3.10) and (5.3), we get 
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(5.10) 

A natural splitting into a temporal and a spatial local error is 

n n n 
\jlk = \jlk,s + \jlk,r, (5.11) 

where 

(5.12) 

(5.13) 

The local space error \jl~,s contains only contributions from the spatial approxima
tion, viz. local space discretization errors cr; and spatial interpolation errors y;. The 
local time error \jl~,r contains only contributions ~; from the time integration. 
Hence, due to the splitting (5.11), for the spatial local error analysis we may restrict 
ourselves to \jl~,s and f?r the temporal local error analysis to \j/;, 1• 

n 
4.5.3. The local space error 'l'k,s 

We rewrite \j/;,., as 

n zn -1 I Dn p 
'l'k,s=( d ( k- k) k-lk* 

(5.14) 

where 

k = 2, · · ·, ln. (5.15) 

In (5.14), the local space discretization error D~cr~, defined at the level-k integra
tion domain, is separated from the local spatial error part (lk - D~)P~ outside this 
domain. Note that p ~ contains the level-k interpolation error Yk and the prolongated 
local space error Pk-lk 'l'~-l,s· At the full interpolation levels, (5.14) simplifies to 



n n p n 
\Jfk,s =''(k + k-lk\Jfk-1,s, 
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(5.16) 

The separation of errors in (5.14) enables us to formulate the important 
refinement c,:mdition: 

(5.17) 

where c > 0 denotes a threshold factor to be specified later. Substitution into (5.14) 
yields 

" Z" I Dn n 
ll'V1n-1,sll 5 (l+c)II( In-Ir 't In-I (jln-111. (5.18) 

Hence, apart from the factor ( 1 +c ), the local space error at the finest level is 
bounded by the local space discretization error on its integration domain. By impos
ing (5.17), we have virtually removed the error contribution from interpolation com
mitted on all levels k 5 ln-l. Inequality (5.18) is in agreement with our goal of 
developing an adaptation strategy that generates integration domains in such a way 
that the spatial accuracy obtained on the finest level is comparable to that obtained 
without adaptation. 

The refinement condition (5.17) implies constraints on the matrices o; for 
2 5 k 5 [11 _ 1• These constraints follow from the following derivation. Let, for brev
ity, l = ln-l . With a simple calculation [12], we can rewrite p7 as 

1-1 k+I 
n ,.. n p xn zn -I I on ,.. n 

P1=/\,1+ 1-111:(Il i)( k) (k- k)l\,k, (5.19) 
k=2 i=l-1 

where 

,.. n n p zn _ 1 0 n n 
l\,k =''(k + k-li k-1) 't k-l(jk-1• k =2, · · ·, l, (5.20) 

contains the interpolation error at level k and the prolongated spatial discretization 
error of level k-1 to k (fork= l - 1 convention (5.9) applies). This A-function will 
be used for determining the matrices D~. Let C1 ~ 1 be a constant such that 

(5.21) 

For linear interpolation C1 = 1, while for higher-order Lagrangian interpolation 
Ci> 1. Now, 
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k+I 
II TI X711 ~ Cx ~ (Ccd-k-l (5.22) 
i=l-1 

and using (5.19) we get 

(5.23) 

with the grid independent constant 

(5.24) 

Hence, if for each k = 2, · · ·, l, the matrices o; are selected such that 

I D n ') II C zn I DI! II II( k - k)l\,kll ~ -=-II( I)- 't I <J1 II, (5.25) 
C 

then the refinement condition (5.17) is satisfied. In the remainder, (5.25) thus 
replaces (5.17). 

This condition says that outside any integration domain the sum of the interpola
tion and prolongated spatial discretization error from the previous coarser level wUl 
be bounded by the spatial discretization error of the highest level, multiplied by c IC. 
This imposes a severe restriction on the size of the interpolation and discretization 
errors of the lower levels. On the other hand, this restriction is natural, because, 
when going to a higher level within the current time step, we never return to a grid 
point where the solution has been interpolated (nesting property). Note that in (5.25) 
the temporal step size 't features. In particular, if 't➔O, then the interpolation errors 
will prevail and o; ➔ lk. Recall that we interpolate at each time step so that inter
polation errors can accumulate linearly with the number of time steps. Our 
refinement condition prevents this. 

The refinement condition (5.25) is not applicable to the full interpolation levels as 
at these levels o; = 0. For simplicity, we now consider only one full interpolation 
level and note that this is sufficient for practical purposes. Using (5.16), if 
ln = [11 _ 1 + 1 we thus find, instead of (5 .18), 

(5.26) 

Recall that full interpolation occurs only in a finite number of steps, uniformly in 't. 

Hence, when adding all local errors for a convergence proof, assuming stability, this 
fact should be taken into account so as to avoid an overly pessimistic summation 
like 
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(5.27) 

With a more subtle summation, based on the finite number of full interpolations, the 
1:-1-term is avoided. 

In conclusion, by imposing the refinement condition (5.25), the local space error 
bounds (5.18), (5.26) are valid. In an implementation these bounds can be used to 
monitor the spatial accuracy, while (5.25) is then used for selecting the actual 
integration domains. Such an implementation is method dependent and therefore 
best to describe for a selected method. An illustration for a DIRK method is 
presented below. Finally, the error bound (5.18) suggests to choose the threshold 
factor c not too large. However, if we take c very small, then the effect will be that 
the greater part of the diagonal entries of D~ are put to unity to satisfy the 
refinement condition, which implies that the integration domains will become quite 
large. 

4.5.4. The local time error 'l'~,t 

Since the same 't is used at all levels, and B ~ does not depend on the mesh width, 
we have B~ = R1n-ikB~-i so that (5.13) yields 

(5.28) 

By comparison with the recursion (3.13) for the amplification operators GZ, one can 
see that 

n _ Gnn.n 
'l'k,t- kfJln-1' (5.29) 

This formula shows the dependence of the local time error on the temporal residual 
of the finest integration level. Alternatively, we may write, similar as for the local 
space error (5.14), 

'I';,/= (ZZr1 [D;R,n-1kB~-I + (lk -D~)Pk-lk'l'~-1,t], (5.30) 

k = 1, · · · , ln-1. 

This representation shows more insight than (5.29). At each integration level we 
recover the local time error contribution committed on the integration domain, viz. 
(Z~)-1 [D~R111 _ 1kB7,,_1], and the prolongation of the previous local time error of the 

. zn I I Dn p n next coarser level, VIZ. ( kr [( k - k) k-lk'l'k-1,t]-

Let p denote the stage order of the RK method, [5, 8, 9]. Using (5.2) we have 
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(5.31) 

Because both ~t-i and \JI;,, are O ('tjj+I ), by definition of stage order, we thus trivi

ally recover the usual stage-order result at all grid levels, that is, 

11l = 0 ('tj,+I) 'I' k,t , (5.32) 

where, apart from the norm bounds C for (Z~r1 and C1 for Pj-lj, the order con
stant involved depends exclusively on bounds for temporal derivatives of u (x,t) (cf. 
(5.5)). To recover the conventional ODE order, p say, of the RK method, the 
(s+lt output component of \j/~,, must be expanded. We then would also arrive at 
an order relation \j/~,, = 0 ('tp+l ), but here the constant involved may depend on 
negative powers of the mesh width, similar as in existing method-of-lines conver
gence theories (see [8, 9] and the preprint [10] on the order reduction phenomenon). 
Finally, no integration takes place at a full interpolation level, so that 

n p n \JI k,t = k-lk \JI k-1,t, (5.33) 

and we thus have the same temporal order as for \j/~,1, 1 ~ k ~In-I· 

4.6. ERROR ANALYSIS FOR A THREE-STAGE DIRK METHOD 

By way of illustration, in this section we elaborate the local error analysis for a 
three-stage DIRK method which later on will be used for presenting numerical 
examples. 

4.6.1. The DIRK method 

The DIRK method is found in [4] and defined by the Butcher array 

0 0 
20 0 

b1 

0 0 
0 0 

h2 0 

0 =(3+{3)/6 
b 1 = 3/2-0-1/( 40) 
b2 =-1/2+1/(40) (6.1) 

It is strongly A-stable, has classical order p = 3, stage order p = 2, and uses only 
two effective stages (first row of coefficients is zero). Note that stage one and two 
define the trapezoidal rule and that stage three and four, the output stage, are identi
cal. 
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4.6.2. Elaboration of the local time error 

Assume, for simplicity, that the semi-discrete problem is of constant coefficient 
linear type, 

(6.2) 

Note that the linear case reveals the essentials of the local error analysis. Also for 
simplicity, we put ln-l = 2. Conclusions for the higher-level case immediately fol
low. Thus, our task is to examine 

n zn -IR An 
'1'1,1 = ( I) 21 l-'2• (6.3) 

n zn -I DnAn I on p n '1'2,1=( 2) [ 21-'2+( 2- 2) 12'1'1,r]. 

From (5.5), (6.1) we deduce~?>= 0, ~&4> =~~)and 

(6.4) 

For any vk E Sk having vk'l = 0, the components w~> of wk= (Z~)-1Vk satisfy 
Wkl) = 0, 

wf> = (h - 0-cDZMk)-1 Vk2), (6.5) 

wP) = (h-0-cDiMkr2h2-cDiMkvf) + (h-0-cDZMkr1vPl, 

and wk4) = wPl. We note in passing that the bound (5.2) may be derived from 

(6.6) 

with the logarithmic norm µ = µ=[DZMd independent of (the mesh width of) Mk. 
This bound applies in all cases where implicit Euler integrates in a stable way 
[5, 12]. 

Now first put k = l. In view of the foregoing we then find 'l'I'.) = 0, 'I'\;/ = 'I'\:) and 

(6.7) 
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Using the boundedness of the operators (/ 1 - 0tM I r', (/ 1 - 0tM I r 2tM 1, fork = 1 
the stage-order result (5.32) with p = 2 is recovered. Also the classical order p = 3 
follows from 'I'~;) when interpreted as the local ODE error. However, then the order 
constant depends on M 1R 21 d 3u 2/dt3<tn-t)=M 1d 3u 1/dt 3(tn-l). Hence, p =3 is 
meaningful only when M 1d 3u 1ldt3<tn-i)= 0(1), uniformly in the mesh width, 
which is the case if the third derivative is zero at an. Otherwise the constant blows 
up for decreasing mesh width, making p = 3 not meaningful ( order reduction, see 
[10] for a concrete example). 

Next we put the level index k = 2. Since also ln-t = 2, it suffices to examine the 
local error of the output stage, which is calculated from (6.3) as 

"'~l = u2 - etDiM2r2h2tDiM2[Di~&2> + u2 -Di)P12'l'~:l1 + 

(/ 2 - 0tDiM 2r1 [Di ~&3> + (/ 2 - Di )P 12 'l'~:)J 

= u2 - 0tD2M2r2h2tDiM2CDi~&2> + u2 -Di)P12'fll:l1 + (6.s) 

u 2 - etDiM 2r' u 2 - Di )P 12 '1'1:l + o (t4). 

'!'&;/ = 'l'&:l 

Using boundedness of the operators, and the results for k = 1, stage order p = 2 
directly follows. Inspection of the various terms also reveals the classical order 
p = 3. In connection with the occurrence of internal boundaries at grid interfaces, it 
is of interest to again examine the possibility of order reduction. 

Distinguishing local error components outside and inside the integration domain, 
we can write, 

(/ 2 - Di)'!'&;) = (/ 2 - Di )P 12 'I'~;), 

Di'!'&;)= (/2 -8tDiM2r2b2tDiM2 * 

[DW&2> + (/2 -Di)P12'fll:l1 + 

(6.9a) 

(6.9b) 

Apart from the interpolation, the outside local error (6.9a) is completely determined 
by level-I properties, so that a reduction at level 1 will also be felt at level-2 com
ponents outside the integration domain. The reduction will also be felt inside the 
level-2 integration domain, since (6.9b) depends on internal boundary values com
puted at level 1. An interesting question is, will the internal boundaries cause order 
reduction in case the physical one does not. To examine this question, we hen
ceforth suppose that no reduction will take place at an and thus assume the 
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additional boundary condition Mkd 3 uJdt\tn-l) = 0 (1), uniformly m the mesh 
width. Then'!'\;{ = 0 (-c4) , so that (6.8) yields 

"'~:? = u2 - e-cD2M2r2b2-cD2M2[DW~2) + u2 -D2)P12'1'\:l1 + 
O(-c4) 

= - b 2 2: 3 
(/ 2 - 0-cD2M 2)-2-c4 D2M 2 * 

[D2 d: u2<tn-d+U2 -D2)P12 d: u1Un-1)] + O(-c4). 
dt dt 

Substitution of the interpolation error (5.7), 

yields 

'1'~4l = b2 283 (/ 2 - 0'CD2M 2r2-c4D2M 2U 2 - DD d 3
3 'Y2<tn-l) ' 3 ~ 

+ O('t4). 

(6.10) 

(6.11) 

(6.12) 

We note in passing that the additionally imposed boundary condition implies 'homo
geneity in boundary conditions', causing the third derivative of b2(t) to vanish. 
From (6.12) we now deduce that if 

(6.13) 

uniformly in the mesh width, then 'I'~;/ = 0 (-c4 ) uniformly in the mesh width. 
Hence, assuming that at the physical boundary no order reduction takes place, an 

important conclusion is that the internal boundaries do not cause order reduction if 
the interpolation condition (6.13) holds. Fortunately, in applications this condition is 
easily satisfied. Sufficient is that 

(6.14) 

saying that the accuracy order of the interpolation should be greater than or equal to 
the spatial order of the differential operator (not to be confused with the order of 
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consistency of the difference operator). For example, for second order in space 
problems it suffices to use simple linear interpolation. 

4.6.3. Elaboration of the refinement condition 

Given a specific integration method, the general refinement condition (5.25) 
needs to be simplified for practical use. Two main simplifications can be dis
tinguished: 

(i) The first has to do with the augmented form. Working with (5.25) requires 
computing in Sk which is expensive. Consequently, (5.25) is better replaced by an 
appropriate approximating condition in Sk> preferably connected with the output 
stage. It is always possible to carry this out, since the refinement condition is con
cerned with spatial errors. Apart from various multiplying bounded operators, these 
errors are similar over the stages. 

Consider (5.20), (5.25). First we replace the Jacobian Mfl occurring in Z~ by an 
approximation Mk constant over the stages. Mk is taken to be the (approximate) 
Jacobian, computed at the beginning of the time step. Mk is available as it is also 
used in the iterative Newton process for solving the implicit relations. Second, the 
augmented spatial error cr; is approximated as 

0 

n 

crk = b I aPl + b2afl + eapi :::: (6.15) 

Note that we here truncate O ('t) terms and that aPl = aZ = ak(tn)- Next, by using 
(6.5), the nontrivial components of the spatial error function Wk= (Z;r1 D;cr; are 
approximated by 

wfl :::: 20(h - 0'CDkMkr1 DZai, 

wPl:::: (h - 0'tDZMkr1(2b20(h - 0'CDkMk)-1'CDkMk + h)Diaz, (6.16) 

wi4l = wPl 

At each of the stages we recover a proportionality with the local space discretization 
error DZar This justifies to select one particular stage. We choose the approxima
tion 

(6.17) 
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which avoids two forward-backward substitutions and is based on 

(6.18) 

In first approximation, (6.18) is exact if DZaZ is taken to be an eigenvector belong
ing to the maximal eigenvalue. On the other hand, the operator in (6.18) is bounded, 
which justifies this step. 

We now can replace the constituents of the regridding condition by their counter
parts in Sk: 

k = 2, · · · , l = ln-t, 

11.Z = "fl + (1 - 2b2)tPk-lk(ZZ-t rt DZ-t aZ-t, 

zz = h - 0tDZMk. 

(6.19) 

(6.20) 

(6.21) 

Obserye that ll(h -DZ)11.ZII = ll(lk -D~)A.~11 + 0 (t). The choice l - 1 for the con
stant C is ~xact in case of linear interpolation, provided C::;; 1 (see (5.24), (5.2)). We 
will use C = l - l also in other situations and note that, apart from the constant 
1 - 2b 2, condition (6.19) is completely identical to the regridding condition found 
for the implicit Euler method in [12]. 

(ii) The second simplification has to do with the nesting property and restricted 
interpolation. Once at level k-1 the integration is completed, (6.19) is used to select 
the integration domain for level k. This selection process is carried out by the so
called flagging procedure which scans level-k points and flags those points for which 
(6.19) is violated to be placed within the new domain. Our mathematical framework 
prescribes that the scan be carried out on the whole of cok, as the interpolation error 
"fl is defined on the whole of cok. This, of course, is time consuming. We therefore 
apply restricted interpolation, saying that the interpolation is restricted to level-k 
points lying within the (k-l)th integration domain. Subsequently, the scan is also 
restricted to the (k-l)th integration domain. This way the nesting of the integration 
domains is enforced. In [12] it is shown that restricted interpolation leads to (nearly) 
the same integration domains as found with full interpolation, hence full interpola
tion is truly redundant. Finally, the flagging procedure contains some safety meas
ures (buffering) which enhances the reliability of the restricted interpolation. This 
procedure also implements numerical estimators for "fl, (zi-t rt ni-t aZ-t and 
ll(Z?)-t D?a?II- To save space, we again refer to [12]. 
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4.7. NUMERICAL EXAMPLES 

We will illustrate the outcome of the simplified refinement condition ( 6.19) of the 
DIRK method (6.1). Recall that, in theory, this condition guarantees local space 
errors at most equal to the maximum of the local space error on the finest grid when 
used without adaptation, up to a certain grid independent con~tant (arising, e.g., 
from transferring the refinement condition to Sk and estimating C by l -1 ). Hence, 
assuming stability, our theory dictates that the usual convergence behavior of the 
discretization method applied without adaptation will be maintained. 

Two examples are presented, both 2D. The first serves to illustrate the above 
claim on convergence. This problem is solved using the 'fixed-level mode of opera
tion'. The second serves to illustrate the performance of the method when applied in 
the 'variable-level mode of operation'. This mode is advocated if the solution shape 
strongly changes in time, e.g., when steep layers emerge at later times and at earlier 
times large gradients are absent. In such situations it is important that new levels are 
created in time in order to preserve accuracy. On the other hand, new levels should 
not be created too early for efficiency. 

4.7.J. Example problem I 

The equation is linear and parabolic and given by (Adjerid and Flaherty [1]) 

u1 =ux.x+U}y-Ux-uy+J(x,y,t), 0<x,y<l, t>0. (7.1) 

The initial and Dirichlet boundary conditions and forcing function f are adjusted to 

u (x,y,t) = 1 - tanh(25(x - t) + 5(y - 1)). (7.2) 

This solution is a skew wave propagating through the domain from left to right. The 
wave starts near the left boundary and approaches the right boundary at approxi
mately t = 0.8. We integrate over the time interval [0,0.6). This problem is suitable 
to subdue the LUGR method to a convergence test. 

The spatial discretization is based on second-order symmetric differences. Simple 
linear interpolation is used and the constant c, introduced in the refinement condi
tion, is put equal to one. Four computations were performed using, respectively, 
1,2,3 and 4 levels. The mesh width in both x- and y-direction of the base grid is 
0.05. During a computation the step size 'C is fixed. However, when adding a level, 
we simultaneously halve 'C. Because the stage order of the DIRK method is 2, like 
the order of the spatial discretization, per computation a gain factor of approxi
mately 4 then should be found for the total global errors. To compare the accuracy 
with the accuracy obtained on a single, uniform grid, we have also solved the prob
lem in the standard way using the same values for 'C and the mesh width of the finest 
level. The values for -c and the mesh width in space are always such that the space 



91 

error dominates. For illustration purposes this is necessary, since otherwise no valid 
conclusion can be drawn on the performance of the spatial refinement condition. 

#of single t 
't 

levels grid 0.3 0.6 

0.1 1 20x20 0.17319 0.17401 

0.05 
2 0.02728 0.02815 

40x40 0.02789 0.02810 

0.025 
3 0.00624 0.00716 

80x80 0.00680 0.00684 

0.0125 
4 0.00177 0.00174 

160x160 0.00168 0.00169 

TABLE 7.1. Example problem I. Maxima of global errors computed at the finest 
available level. Comparison with the accuracy obtained on a single, uniform grid. 

The results of the computations are contained in Table 7.1. We see that the LUGR 
solutions converge according to the theory and, also, that these solutions are as 
accurate as the standard, uniform grid solutions. In view of the simplifications of 
Section 6.3, this correspondence in accuracy is striking. We should note, though, 
that in the actual flagging procedure some safety measures have been built, like 
buffering. Buffering of course helps in keeping the LUGR accuracy close to the 
standard accuracy. Figure 7.1 shows the grids of the 2-,3- and 4-level computations 
at two different times. Note that the grids align with the wave front and become 
larger for smaller 't, in accordance with (6.19). 

4. 7.2. Example problem II 

The equation is again linear and parabolic, 

u1 =u.xx+uyy+J(x,y,t), 0<x,y<l, t>0. (7.3) 

The initial and Dirichlet boundary conditions and forcing function f are adjusted to 

u (x,y,t) = 1 -tanh(l00[(x - 0.5)2 + (y - 0.5)2 - t + 0.025]). (7.4) 

This solution rapidly varies its shape and serves to illustrate the 'variable-level mode 
of operation'. At t = 0 the solution is almost zero over the entire domain. As time 
elapses it steepens up at [0.5,0.5], developing a circular wave front. This front starts 
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FIGURE 7.1. Example Problem I. Grids of the 2-,3- and 4-level computations at 
t = 0.3 and t = 0.6. 
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to propagate towards the boundaries when u (0.5,0.5,t):::: 2 and during the propaga
tion the front becomes steeper. When the front has passed a point (x,y ), the solution 
u (x,y,t) approximates the value 2. We solve the problem over the time interval 
[0,0.1 ], whi ~'1 is sufficiently large to see all phenomena happen. 

The refinement condition (6.19) tells us where to integrate on a finer level. When 
using the 'fixed-level mode of operation' this suffices. When using the 'variable
level mode of operation', we also need a criterion to decide when to change the 
number of levels. A natural thing to do is to associate this criterion to the spatial 
local error value. In the present experiment we employ the numerical spatial local 
error expression as used in (6.19). Within each base time step we monitor the 
number of grid levels with the criterion 

(7.5) 

where TOL represents a tolerance value. Starting with k = l, this inequality is 
checked after each level integration. If it is violated, then k is increased by 1. Other
wise it is decided that enough levels have been introduced and ln-t is assigned the 
current value for k. Hence, the idea is to select ln-l in such a way that the local 
error expression in (7 .5) is kept close to -cTOL. 

We will encounter a few full interpolations. The full interpolation error is 
neglected in (7.5). We justify this heuristic decision with the observation that full 
interpolation can take place only in a few number of steps (see also Section 5). 
However, to remain on the safe side, we now use fourth-order Lagrangian interpola
tion instead of second-order linear. It is obvious that full interpolation should not 
diminish the quality of the approximations, since otherwise the estimation of the 
discretization and interpolation errors used by the refinement condition is hindered. 
The full interpolation should also not interfere with the estimation of the number of 
levels needed in the step to follow. Therefore, the additional errors stemming from 
full interpolation have to be restricted in some manner. In the present experiment 
fourth-order interpolation has turned out to work satisfactorily. 

The actual experiment with problem (7.3) - (7.4) concerns one run over the time 
interval [0,0.1]. The constant c of the refinement condition is again put equal to 1. 
The step size "C = 0.001 and is kept constant. The value of 0.001 is sufficiently small 
to guarantee that spatial effects dominate. The mesh width in both x- and y-direction 
of the base grid is 0.05 and the tolerance parameter TOL = 50. Results are collected 
in Tables 7.2-7.3 and Figure 7.2. For a subset of time points, including those where 
a new grid level is added, Table 7.2 shows the course of the number of grid levels 
and the maximum of the global error measured at the finest available grid. Note that 
while the circular wave front develops, the algorithm keeps the error at a fairly con
stant level, which is in line with the idea behind the error monitor (7.5). 

The pictures contained in Figure 7.2 illustrate that the grids accurately reflect the 
circular wave front form (symmetry), showing that the refinement condition, which 
tells us where to refine, works as anticipated. On the other hand, the number of lev
els needed is not always computed optimally. This happens, e.g., at t = 0.04 and 
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#of global 
t 

levels error 

0.01 
1 

0.01074 
0.017 0.03171 

0.D18 0.01222 
0.02 

2 
0.01117 

0.03 0.01612 
0.039 0.02523 

0.04 0.01392 
0.05 0.01493 
0.06 3 0.01668 
0.07 0.02168 
0.072 0.02136 

0.073 0.01289 
0.08 

4 
0.01191 

0.09 0.00722 
0.1 0.00713 

TABLE 7.2. Example problem II. Maxima of global errors computed at the finest grid 
at various time points, including those where a new grid is introduced. 

t = 0.073, time points where a new grid level is used for the first time. The grid pic
tures show that at these time points the new fine grid almost completely overlaps the 
existing one, indicating that the new fine grid is introduced too late (the solution 
steepens up). Fortunately, Table 7.2 shows that this small deficiency does not dimin
ish the accuracy for evolving time. Also note that at later points of time this 
phenomenon disappears, see t = 0.05 and t = 0.1. This is of course what should hap
pen due to the ever increasing solution gradients. 

The precise origin of this small deficiency is not clear. The error introduced by 
the full interpolation can play a role here (this error is not monitored by (7.5)). More 
likely is, however, that it emanates from the lack of asymptotics at the coarser grids. 
This lack of asymptotics is inherent to any monitoring process that starts on coarse 
grids and therefore very difficult to overcome. To provide insight in the asymptotics 
for the estimator of (7.5), we have added Table 7.3. This table shows the exact, 
analytical values for (7.5) with their estimated numerical values at time points just 
before and after the introduction of a new grid level. First, we see that at 
corresponding levels before and after the listed time points the numerical estima
tions are in fairly good agreement with one another, even on the coarse base grid. 
This supports the conclusion that the full interpolation is sufficiently accurate for not 
interfering with the selection of number of levels. Second, there is excellent agree
ment between the exact and numerical values on the fine grids. However, 
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t level approx. exact 

0.017 1 0.04616 0.05307 
0.Q18 1 0.05165 0.05793 

2 0.01246 0.01468 

0.039 1 0.12511 0.28075 
2 0.04678 0.05579 

0.04 1 0.13972 0.33177 
2 0.05084 0.06329 
3 0.01495 0.01467 

0.072 1 0.31630 1.48171 
2 0.18625 0.30880 
3 0.04685 0.05130 

0.073 I 0.34144 1.39739 
2 0.18078 0.29537 
3 0.05088 0.05367 
4 0.01683 0.01382 

TABLE 7.3. Example problem II. Exact values and numerical estimates of the spatial 
local error expression (7.5). Note that the step size 't = 0.001 is contained in these 
values. 

particularly at later times, the coarse grid values are not in good agreement with one 
another. This means that we are outside the asymptotic regime and this is likely to 
cause some disturbances in the selection of the right number of levels. We wish to 
emphasize once more that in spite of this lack of asymptotics, the overall behavior 
of the algorithm is very satisfactorily. 

Let us conclude with a remark on the choice of TOL, in connection with the 
discrepancy between the value TOL = 50 and the global accuracy shown in Table 
7.2. A discrepancy like this is unavoidable, due to damping of global errors. Note 
that we have a parabolic problem and that the DIRK method mimics the damping 
property of the parabolic operator (strong A-stability). Part of the discrepancy may 
also originate from cancellation between temporal and spatial terms. This damping 
of global errors, and this eventual cancellation, has not been taken into account in 
our error analysis which focuses on local errors, in particular on local error bounds. 
For precise estimation purposes our analysis is simply too general. On the other 
hand, the present example once more shows that local error bounds like (7.5) can be 
much too conservative (the simplified form is not essential for the present discus
sion). Consequently, for application, local error expressions like (7.5) are better be 
interpreted as error monitors. In connection with grid selection purposes, our practi
cal experience is that with this interpretation the (simplified) spatial local error 
expression is reliable and works very satisfactorily. 
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FIGURE 7 .2. continued. 
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4.8. EFFICIENCY OF TIME STEPPING 

An important subject for future research is that of efficiency of the time-stepping 
scheme itself when combined with the LUGR technique. Two important issues not 
addressed in this work concern the use of variable time steps and the solution of the 
arising systems of linear and nonlinear algebraic equations, in case of an implicit 
scheme. Straightforward use of variable time step algorithms, as successfully 
applied in single-grid, method-of-lines computations, renders problems due to the 
fact that approximations obtained with an LUGR method are always difficult to 
numerically differentiate in time. The reason for this is that part of the components 
is obtained from a numerical integration, part from interpolation or injection. The 
resulting 'nonsmoothness' is then felt when computing higher temporal derivatives. 
More precisely, the higher temporal derivatives are estimated in a rough way, result
ing in disturbances in the step size selection (see also [II]). To our experience, 
smoothing or filtering procedures provide only a partial remedy here. 

Concerning the second issue, by nature of the LUGR approach approximations 
are computed in varying dimensions, even within one base time step. For DIRK or 
alternative implicit methods this obviously implies that the numerical algebra effort, 
to be made in solving systems of algebraic equations, becomes highly important. In 
the numerical experiments reported here, we have paid no attention to the efficiency 
of the numerical algebra computations and simply used an available sparse matrix 
technique (same as in 02]). This technique, however, is known to yield a consider
able overhead when used in the solution of time-dependent problems. It is most 
likely that sophisticated iterative solution procedures will be much more effective. 

ACKNOWLEDGEMENT 
This chapter is based on the paper "Runge-Kutta Methods and Local Uniform 

Grid Refinement" by Trompert and Verwer which appeared in Math. Comp. 60 
(202) (1993), 591-616. We would like to thank the American Mathematical Society 
for granting permission to reprint. 

REFERENCES 
1. S. ADJERID and J.E. FLAHERTY (1988). A local Refinement Finite Element 

Method for Two Dimensional Parabolic Systems, SIAM J. Sci. Statist. Comput., 
9, 792-811. 

2. D.C. ARNEY and J.E. FLAHERTY (1989). An Adaptive Local Mesh Refinement 
Method for Time-Dependent Partial Differential Equations, Appl. Numer. Math., 
5, 257-274. 

3. M.J. BERGER and J. OLIGER (1984). Adaptive Mesh Refinement for Hyperbolic 
Partial Differential Equations, J. Comput. Phys., 53, 484-512. 

4. M. CROUZEIX and P.A. RAVIART (1980). Approximation des Problemes 
d'Evolution. Premiere Partie: Etude des Methodes Lineaires a Pas Multiples et 
des Methodes de Runge-Kutta, Unpublished Lecture Notes, Universite de 



99 

Rennes, France. 
5. K. DEKKER and J.G. VERWER (1984). Stability of Runge-Kutta Methods for Stiff 

Nonlinear Differential Equations, North-Holland, Amsterdam-New York
Oxford. 

6. W.D. GROPP (1987). Local Uniform Mesh Refinement on Vector and Parallel 
Processors, in Large Scale Scientific Computing, 349-367, ed. P. DEUFLHARD, B. 
ENGQUIST, Birkhauser Series Progress in Scientific Computing. 

7. W.D. GROPP (1987). Local Uniform Mesh Refinement with Moving Grids, 
SIAM J. Sci. Statist. Comput., 8, 292-304. 

8. J.M SANZ-SERNA and J.G. VERWER (1989). Stability and Convergence at the 
PDE/Stiff ODE Interface, Appl. Numer. Math., 5, 117-132. 

9. J.M SANZ-SERNA, J.G. VERWER, and W.H. HUNDSDORFER (1987). Conver
gence and Order Reduction of Runge-Kutta Schemes Applied to Evolutionary 
Problems in Partial Differential Equations, Numer. Math., 50, 405-418. 

10. R.A. TROMPERT and J.G. VERWER (1990). Runge-Kutta Methods and Local 
Uniform Grid Refinement, NM-R9022, Centre for Mathematics and Computer 
Science, Amsterdam. 

11. R.A. TROMPERT and J.G. VERWER (1991). A Static-Regridding Method for Two 
Dimensional Parabolic Partial Differential Equations, Appl. Numer. Math., 8, 
65-90. 

12. R.A. TROMPERT and J.G. VERWER (1993). Analysis of the Implicit Euler Local 
Uniform Grid Refinement Method, SIAM J. Sci. Comput., 18, 259-278. 





101 

Chapter 5 

Local Uniform Grid Refinement and 

Systems of Coupled Partial Differential Equations 

5.1. INTRODUCTION 

The local uniform grid refinement method is an adaptive grid method used to 
solve time-dependent partial differential equations (PDEs) with locally steep solu
tions. For such problems, a uniform space grid can be computationally very 
inefficient, since, to obtain an accurate approximation, such a grid would easily have 
to contain an excessive number of nodes, particulary so in two and three space 
dimensions. 

The main feature of local uniform grid refinement is that the PD Es are solved on a 
series of nested, uniform, Cartesian, increasingly finer subgrids covering only that 
part of the domain where the spatial error is high. The PDEs are solved on each 
separate subgrid in a consecutive manner, from coarse to fine. The location and size 
of the subgrids are automatically adjusted at discrete times in order to follow the 
movement of the steep fronts. The generation of subgrids is continued until 
sufficient spatial accuracy is reached. 

So far, local uniform grid refinement methods were proposed in a number of dif
ferent varieties and applied to different kinds of PDEs. Here, we will not attempt to 
give a complete overview of the field. We will only sketch some varieties of the 
local uniform grid refinement method briefly and provide some references for 
interested readers. The methods contained in [1-3, 5] are applied to hyperbolic 
PDEs and use explicit time stepping techniques. The method proposed by Berger 
and Oliger in [3] employs subgrids which are rectangles which may be skewed with 
respect to the co-ordinate axes in order to align with the steep region of the solution. 
Subgrids having the same cell sizes can partially overlap each other in this method. 
In [l], Arney and Flaherty developed a method very similar to the one in [3] except 
that the subgrids here are created by cellular refinement, meaning that the fine grid 
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cells are properly nested within coarser grid cells. Hence, these subgrids have a 
piecewise polygonal shape. 

Local uniform grid refinement is combined with grid movement in [2, 5]. In [5], a 
method proposed by Gropp uses subgrids which are rectangles having sides parallel 
to the co-ordinate axes and which are able to move as a whole with the moving 
steep fronts. In this method the subgrids are also allowed to overlap each other. In 
[2], Arney and Flaherty added grid movement to their method described in [1]. The 
grid nodes of the coarsest grid are able to move and the fine grid movement is 
induced by the movement of the coarsest grid. Local uniform grid refinement 
methods are also used to solve parabolic and elliptic PDEs in [4, 6] and involve the 
implicit solution of systems of equations. The subgrids in [4] are piecewise polygo
nal and the ones in [6] are rectangles. In both [4, 6] domain decomposition is 
applied to improve the performance on parallel computers. 

Our previous work on this type of adaptive grid method is contained in [7-11]. 
The subgrids in our method have a piecewise polygonal shape and do not overlap. 
Our method is a static-regridding method which means that no grid movement is 
applied during a time step. The refinement strategy controlling the generation of 
subgrids in [7] is based on heuristic criteria while in [8-11] it is underlied by a 
comprehensive error analysis which has resulted in a so-called refinement condition. 
This condition has been designed so that when this condition is satisfied during the 
grid refinement process and the number of subgrids is fixed in time, then the spatial 
accuracy of the solution obtained with the adaptive grid method should be compar
able to the spatial accuracy obtained using one uniform grid covering the entire spa
tial domain when the cell sizes of this uniform grid are identical to those of the finest 
subgrid in use in the adaptive grid method. The refinement strategy is designed to 
fulfill the refinement condition. Due to the refinement condition a convergence 
result as if a single, uniform grid was used could be proved in certain model situa
tions. The error analysis was carried out for the local uniform grid refinement 
method applied to time-dependent PDEs which after spatial discretization yield a 
system of ordinary differential equations (ODEs). However, when a system of cou
pled PDEs is solved, this need not be the case. It is known that the global and local 
error components associated with each separate PDE belonging to such a system can 
behave differently from one PDE to another. This means that, for example, the glo
bal error corresponding with one PDE can propagate in a different way to future 
time levels than the one associated with another PDE. With respect to the local 
error, this difference in behavior means that the local errors connected with different 
PDEs do not always behave in the same way when the time step size tends to zero. 
For this reason the refinement strategy has to be adapted to this more general class 
of PDEs. Moreover, in most of our previous work, the refinement strategy is aimed 
at controlling the spatial accuracy or global space error by, in some sense, control
ling the local space error. This strategy performs satisfactorily but can be very res
trictive, especially when the number of subgrids is large or the time step size very 
small. In this paper, the error analysis is redone for systems of coupled PDEs. 
From this, a more general and much less restrictive refinement strategy is obtained 
aiming at controlling the spatial accuracy by estimating the global space error itself. 
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In Section 2 a brief outline will be given of our version of the local uniform grid 
refinement method. Section 3 deals with the mathematical formulation of the 
method needed for the error analysis. The results of the error analysis are given in 
Section 4. This section also considers the influence of a system of coupled PDEs on 
the behavior of the global and local error. The refinement strategy is discussed in 
Section 5. Three example problems were used to illustrate the performance of the 
method. The results of these tests are given in Section 6. Although the example 
problems involve two space dimensions, the error analysis, refinement condition and 
refinement strategy applies to any number of space dimensions. The final Section 7 
contains the summary and concluding remarks. 

5 .2. OUTLINE OF THE ADAPTIVE GRID METHOD 

Although its elaboration readily becomes complicated, the idea behind local uni
form grid refinement is simple. Starting from a coarse grid, finer-and-finer uniform 
subgrids are created locally in a nested manner in regions where the solution is 
steep. Here, a set of interconnected grid cells, all having the same sizes, is called a 
subgrid. A set of subgrids having the same cell sizes is called a grid level or just 
grid. Hence, a grid level consists of a single subgrid or several disjunct non
overlapping subgrids. A new (initial-) boundary value problem is solved at each 
grid level in a consecutive order, from coarse to fine using the same time step size 
for all grid levels. This means -that the refinement in time is global, i.e. the step size 
is adapted in time but is the same for all grid levels in use. Note that the PDEs are 
solved on a grid level as a whole, in spite of the fact that the grid level can consist of 
several disjunct subgrids. The required initial values for the finer subgrids are 
defined by interpolation from the coarser subgrid or taken from a finer subgrid from 
the previous time step when available. Internal boundaries, i.e. subgrid boundaries 
lying in the interior of the domain, are treated as Dirichlet boundaries and values are 
also interpolated from the next coarser grid level. Where the boundary of a fine 
subgrid coincides with the boundary of the domain, the prescribed boundary condi
tions are used. Except for the necessary initial and boundary conditions, all subgrids 
are independent of each other. Therefore, the subgrids are not patched into the 
coarser grids but are actually overlaying them. The generation of subgrids is contin
ued until the spatial phenomena are described accurate enough by the finest grid. 
The fine grid cells are created by bisecting the sides of the cells of the next coarser 
grid, so the refinement is cellular. The subgrids created this way have a piecewise 
polygonal shape. Further, the unknowns are defined at cell vertices which implies 
that in the region where the coarse grid is overlapped by the fine grid, the coarse 
grid nodes coincide with the fine grid nodes. 

During each time step the following operations are performed: 

(1) Solve the PDEs on the coarsest grid level. 
(2) If the desired accuracy in space or the maximum number of grid levels is 

reached then go to 8. 
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(3) Determine new finer uniform grid level at forward time. 
(4) Interpolate internal boundary values at forward time. 
(5) Provide new initial values at backward time. 
(6) Solve the PDEs on the new grid level, using the same step length. 
(7) go to 2. 
(8) Assign fine grid values to the corresponding coarser grid points. 

Thus, for each time step the computation starts at the coarse base grid using the most 
accurate solution available, since coarse grid solution values are always replaced by 
fine grid values at coarse grid nodes coinciding with fine grid nodes and all subgrids 
are kept in storage for step continuation. 

5.3. MATHEMATICAL FORMULATION 

A mathematical formulation will be given needed for the error analysis of the 
local uniform grid refinement method. The following system of PDEs is considered, 
together with the initial and boundary conditions, defined on a domain n in IR, IR2 

or IR3 with boundary an and sides parallel to the co-ordinate axes, 

.9ln (~,t,u) u, = :Fn(~,t,u), t > t0 , x E n, 

.9/an (~,t,u)'ur = :fan (~,t,u), t > to, X E an, 
U(X,to) = Uo(X), X E nuan. 

- -

(3. la) 

(3.1 b) 

(3.J C) 

This system of PDEs is assumed to possess a unique solution u(x,t), which is as 
often differentiable as the numerical analysis requires. The matrices .9/n and .9/an 
are possibly singular matrices; :Fn and :Jan are functions containing spatial partial 
differential operators. The matrices .9/n and .9/an do not contain space or time 
derivatives of u(~,t). The space discretization of (3.1) (method of lines) yields 

A(t,U)U = F(t,U), U(to) = Uo, t > to, (3.2) 

where U(t) is the numerical approximation of u(x,t) on a space grid. If A (t, U) is 
singular then (3.2) will be a system of differential-algebraic equations (DAEs) and 
(3.2) will be a system of ordinary differential equations (ODEs), otherwise. In case 
we have, for example, Neumann or Dirichlet boundary conditions, then A (t, U) will 
possess rows containing only zeros which implies that (3.2) is a DAE system. 

Local uniform grid refinement methods use local subgrids of changing size in 
time and thus generate solution vectors with a variable dimension. This complicates 
the analysis. In order to circumvent this problem, the fine local subgrids are 
expanded over the whole of nuan. The solution to (3 .1) is computed only within 
the original perimeter of the subgrid and interpolated from the next coarser subgrid 



105 

outside this region. This is only done in the mathematical formulation of the method 
to make the error analysis easier. It does not take place in the implementation of the 
method. 

Let Qk, 1 ::; k ::; l, be uniform space grids covering Quan with l denoting the 
maximum number of grid levels needed to advance the solution from tn-l to tn- The 
grid refinement is cellular so Qk is obtained from Qk-l by bisecting sides of cells of 
Qk-l. Note that nodes of Qk-l coincide with nodes on Qk· Let Sk be the vector 
space of all grid functions on Qk and let UZ e Sk be the approximation to u(x,tn) at 
Qk· Suppose that (3.2) is defined on Qb then using ans-step backward differentia
tion fonnula (BDF) for time stepping results in the following system of equations, 

_l_An(Un)un = _l_An(Un)vn-1 + Fn(Un) 0't k k k S't k k k k k, 
s s 

(3.3) 

where 't = tn - tn-l, vz-1 is the history vector collecting values computed at back
ward time points and 0.,, a 1, ••• , a., are coefficients depending on current and previ
ous time step sizes. 

Our formulation of the grid refinement method uses the following matrix opera
tors: 

the identity matrix h : sk ➔ sk, 
a diagonal matrix DZ : Sk ➔ Sb with diagonal entries equal to unity or zero, 

D7 = Ii, 
the restriction operator R1k : S1 ➔ Sk, Ru = 11 

the interpolation operator pk-lk : sk-1 ➔ sk. 

The matrix DZ determines whether the solution at a particular grid node is obtained 
by solving (3.1) or by interpolation from Qk-l. The diagonal entries of DZ associ
ated with this node are equal to unity when (3.1) is solved and equal to zero other
wise. The number of the diagonal entries associated with each grid node is equal to 
the number of PDEs. Note that on the coarsest grid, system (3.1) is solved on the 
whole of Q 1, meaning that D7 = 11• For example, the components of the vector 
DZBZ, where 8Z is an arbitrary vector in Sk> are nonzero when their corresponding 
nodes lie inside the region where (3.1) is solved, and if interpolation takes place then 
these components are zero. With the vector (h - DZ)BZ it is just the other way 
around. The injection of fine grid solution values in the coarser grid solution is 
denoted by the operator R1k and the interpolation by the operator Pk-lk· Since all 
nodes of Qk are also contained in Q1, injection takes place at each node of Qk· 

One time step of the grid refinement method consists of l consecutive interpola
tion and solution steps on grids Qk· Those are defined by 

(3.4a) 
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(3.4b) 

k=l, .... ,l. 

Formula (3.4a) represents the interpolation step and (3.4b) the BDF solution step. 
The subgrids in the local uniform grid refinement method are properly nested. This 
means that the region of the domain covered by that part of grid level k where (3 .1) 
is solved is covered completely by its counterpart associated with grid level k-1. 
Hence, the set of nodes contained by that part of grid level k where interpolation 
takes place will also belong to the set of nodes where interpolation takes place at the 
grid levels k+l, k+2, ... , l. In other words, the solution at the part of grid level k 
where interpolation takes place will be repeatedly interpolated until grid level l is 
reached. Finally, we emphasize that this occurs only in the formulation of the 
method to make the analysis easier. In practice, interpolation only takes place 
where it is really needed. 

5.4. ERROR ANALYSIS 

In this section the results of the error analysis are presented. First, the truncation 
errors of the interpolation and the space and time discretization will be introduced. 
Then, using the mathematical formulation (3.4), relations are derived for the local 
and global error. Finally, we give an example of the behavior of the local and glo
bal error when a coupled system of PDEs is solved. 

5.4.1. Error relations 

For ut the pointwise restriction tonk of the exact solution u(x, tn) of (3.1), we 
have the following error relations -

(h - DDui = (/k - DD Pk-lk ui-1 + (/k - DD Yi:, 

1 DnAn( n) n 1 DnAn( n)R n-1 + DnkFkn(unk) + -e k k Uk Uk = -e k k Uk /kV/ .~ .~ 
(4. la) 

(4.lb) 

h n-1 n-1 n-, d n An d ,,rJ h · f th w ere v1 = a I u1 + ... +a,u1 · an <Xk, Pk an lk are t e truncation errors o e 
space discretization, the time discretization and the interpolation, respectively. They 
are defined by 

(4.2a) 



~k = (u,)r - /c [uk -a1ui-1 - · · · -a.,u;:-,'], 
s 
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(4.2b) 

(4.2c) 

where (u,)Z is the restriction of ur(x, tn) to Qk· Since the restriction operator R1k 

involves only the replacement of coarse grid values by fine grid values at coinciding 
nodes after a time step has been performed on all grid levels, no additional errors are 
introduced here. Therefore, we have uk-l = R1ku7-1 . The global error attn at Qk is 
defined by 

Subtracting (3.4) from (4.1) we get 

where 

and 

(lk - DZ)eZ = (h - DZ)Pk-lkek-1 + (h - DZ)y't_, 

- 1-Dn[K" + wnk]e;: = - 1-DHL;:ez + WZR1kf7-1] + 
0/C k k 0.(t 

k=l, .... ,l, 

I 

(4.3) 

(4.4a) 

(4.4b) 

(4.5) 

[KZ + Wk]ek = f ~[Ak(1;)~]d0 = AZ(uDur - AZCUZ)UZ, (4.6a) 
0 d0 
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I 

LZeZ + WZR1d?-1 = J :e [AZ@ri]d0 
0 

(4.6b) 

I 

M'/,e'/, = f :e [F%(s)Jd0 = FZ(uZ) - FZ(UZ), 
0 

(4.6c) 

I I I 

wz = fAZ(s)d0, KZ = J~[AZ(~)s]d0, LZ = J~[AZ(~)T]]d0, (4.6d) 
o o ds o ds 

s = ~ = euz + (1 - 0)UZ, 11 = 0R,kv7-1 + (1 -0)R,k Vi'-1, (4.6e) 

which are obtained by applying the mean value theorem for vector functions. Com
bining (4.4a) and (4.4b) yields a recurrence relation for the global error 

where 

r n - (Zn)-1- 1 DnwnR 
k - k es 't k k lk 

xz = czv-1 (h - DZ)Pk-Ik, 

<l>Z = czzr1 {DZaZ - DZAZ(u'/,)PZ + (/k -DZ))1}, 

zz =Ik-nk + mc-0
1 rwz +KZ-LZJ - MZ). 
s 't 

(4.7) 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

The vector <p'/, is the local level error which is the contribution associated with a sin
gle time step of grid level k to the global error eZ and zz is the integrated Jacobian 
of the system of equations. Using the specific form of ZZ, we note that zz can be 
written as Ik - DZ+ DZZZ. When czzr' is written as (h -nvczzr1 + nzczn-1, it 
can by pre-multiplying (ZZ)-1 with zz very easily be shown that 

czn-1 = h-DZ + mczzr1, k=l, .... ,l. (4.9) 

Relation (4.7) is similar to the one obtained in [8-11] and leads to the following 
expressions for the global and local error. 

e'/, = cur-1 + \JIZ, n=l,2, .... ; k=l, .... ,l, (4.10) 
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where Gk is the amplification matrix and 'l'k the local error which is the contribution 
associated with one time step of k grid levels to the global error eZ. They are given 
by 

which result in 

k-1 j+I az = L(IJxn q + n. 
.i=l i=k 

k-1 j+I 

'l'k = L(IJX7) <l>j + <l>Z, k=2, .... ,l. 
.i=l i=k 

(4.1 la) 

(4.1 lb) 

(4.12a) 

(4.12b) 

Now the local level error <l>k (4.8c) can be split up in a spatial part <!>ts and a tem
poral part <l>Z,,, where <l>Z == <l>Z,s + <1>t1• These parts are given by 

(4.13a) 

(4.13b) 

This yields two distinct relations for the local space error 'l'k,s and the local time 
error 'l'k,r· With (4.9), (4.1 lb) and (4. 13a), the relations for 'l'k,s read 

DZ'l't = DZ(zv-1 {DZaZ + (h - DV[Pk-lk'l'k-1,s + Y,:]}, 

(h - DV'l'Z.S = (h - DV[Pk-lk 'l'k-1,s + YZJ. 

(4.14a) 

(4.14b) 

Here DZ'l'k,s denotes the local space error inside the region of grid level k where 
(3.1) is solved and (h - DZ}\jlt, the local space error outside this region. In a simi
lar way, the local time error can be written as 

DZ'l'Z,, = DZ(ZZ)-1 { - DkAZ(uZ)~Z + (h - Dk)Pk-lk'l'k-1,t }, (4. 15a) 

(h - Dk)'l'Z,t = (Ik -Dk)Pk-lk'l'k-1,t· (4.15b) 

Since the local error can be split up in a spatial and temporal part, the same can be 
done with the global error. Using (4.7)-(4.9) and (4.13) we get similar relations for 
the global space error 
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(4.16a) 

(4.16b) 

and for the global time error 

D"e" - D"(Z")-1 {D"[-1-W"R fn-l - A"k(u"k)A"k] + k k,r - k k k e k lk l,t t-' 
/C 

(4.17a) 

(4.17b) 

When we consider for example the global space error, given by ( 4.16), we observe 
that the global space error in the region of grid level k where interpolation takes 
place ( 4. I 6b) is determined by the global space error at grid level k-1 and the inter
polation error. The global space error in the region of grid level k where (3.1) is 
solved ( 4.16a) is determined by the inverse of the Jacobian zz operating on a vector 
which consists of a part due to the spatial discretization error and the global space 
error at previous time points, only nonzero inside this region, and a part due to the 
global space error outside this region. 

5.4.2. Error behavior 

In this paragraph an example will be given of the behavior of the global and local 
error. We consider a system of two coupled PDEs which is solved on a single grid. 
Therefore, we will drop the subscripts denoting grid levels, k and l, in the remainder 
of this section. This system of PDEs leads to the following system of differential
algebraic equations after spatial discretization 

(4.18) 

which is written in the format (3.2). The BDF method (3.3) is applied to solve 
( 4.18) and some notation will be introduced needed for the examination of the glo
bal and local errors. Relations for the local and global error are derived, using (4.7) 
and (4.8). Due to (4.6c), (4.6d) and (4.18), we have 

W" = [/ OJ 
0 0' 

K" = L" = [O OJ 
0 0 ' 

(4.19) 
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The matrix DZ appearing in the error relation (4.7) will be equal to the identity 
matrix h in this case which implies that the (h - Dn-terms vanish from (4.7) and 
(4.8). The matrix zn is now given by 

zn - 1-I-M11 -Mh 
0/t (4.20) 

Further, the matrix R1k will be equal to the identity matrix. Using the notation 
above, this relation (4.7) for the global error is now given by 

- 1-I-M11 e., 'C 

-M11 

(4.21) 

The global error at the current time tn, en is given by (e1, e1l and the vector fn-l 

in which global errors at backward times are collected by (!7-1 , n-1 )7 (cf. (4.5)). 
The vectors e1 and e~ represent the global error belonging to U'1 and U~ respec
tively. Now examining (4.21) leads to the conclusion that only J7-1 contributes to 
en. This means that in this case only e7 carries over to future time points while e~ 
does not. 

For the local error \jln we have, according to (4.21) 

- 1-I-M11 
0.,'C 

-M~1 

-1 

(4.22) 

The behavior of the local error for small 'C is determined by the operator (znrl. The 
behavior of this operator when it operates on a vector will be investigated for this 
case where it is assumed that the cell sizes of the space grid remain constant. This 
operator can be written as 

-1 
- 1-I-M71 -Mh [Y71 Yhl (Z")-1 = 0., 'C = 

Y11 Y" 
-M~1 -M12 22 

(4.23) 



112 

When we assume that the diagonal blocks of zn are nonsingular we obtain 

u + c-1-1 -M'l1 F 1 M'l2CM22)-1 M21 r 1 * 
0.,'t 

(-1-I -M11 r 1, 
e_,.'t 

Y21 = - (M22)-1 M21 Y'{1, 

This leads to the following approximations for small 't 

(4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

(4.25) 

from which we obtain the following approximations for the local error components 

\j/1 ::::: e., 't/(a.'I - Bn - 0., 'tM12 CM22 F 1 a.2, 

\j/2::::: - 0s't(M22)-1M21 (a,'1-B'l)-(M22F1U2. 

(4.26a) 

(4.26b) 

We see from (4.26) that the first component of the local error \Jfi' consists of the 
truncation errors of the space and time discretization multiplied with an operator 
which behaves like O ('t) for 't➔O, meaning that this component of the local error 
will vanish in this case. Further we see that, unlike \Jf'I, the component \j/2 does not 
disappear completely when 't➔O. 

From this example we conclude that when a system of coupled PDEs are solved 
the local and global error components can exhibit a very different behavior. There
fore, a refinement strategy of an adaptive grid method based on error estimation will 
have to take such differences in behavior into account. This means that in case of a 
system of coupled PDEs, distinction must be made between errors associated with 
each separate PDE when we want to develop a refinement strategy based on error 
estimations. This will be discussed in the next section. 
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5.5. REFINEMENT STRATEGY 

In [8] PDEs were considered which upon discretization of the space derivatives 
lead to a S) stem of explicit ODEs in which the boundary conditions were incor
porated. This system of ODEs was solved using the implicit Euler method. The 
idea was to control the spatial accuracy of the solution by controlling the local space 
error. Moreover, in case the number of grid levels is constant in time, the local 
space error at the finest local subgrid should be comparable to the local space error 
on a single, uniform grid having the same cell sizes as the finest subgrid. A 
refinement strategy was developed aiming to fulfill the following inequality which is 
called the refinement condition 

C > 0, 

where Z? is defined as 

(5.2) 

The matrices /1 and D? are defined similarly as in Section 3. The matrix M? arises 
after discretizing the space derivatives of a time-dependent PDE and is comparable 
to the matrix defined by (4.6c). When ll(Z7f111=:::::; 1, (5.1) results in the following 
bound for the local space error at the finest subgrid 

(5.3) 

Apart from the constant c, this error bound is similar to the error bound we would 
get using a single, uniform grid. This indicates that by satisfying the refinement 
condition it is possible to get more or less the same spatial accuracy as if a single, 
uniform grid was used. Further, it was proved that (5.1) holds when the inequality 

(5.4) 

is satisfied while creating finer, local, uniform subgrids, where 

A)= y'j + P;-1;(Z'J-1 f 1'tD'J-1 a.'J-1 • (5.5) 

In [9] a similar refinement condition and error bound were derived based on a gen
eral Runge-Kutta time stepping scheme and in [11] a refinement condition was 
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derived for elliptic PDEs. 
Although the refinement strategy based on fulfilling (5.4) worked satisfactorily in 

practice, it stems from rather conservative estimates of norms and can therefore be 
restrictive, especially when the number of grid levels is large. Further, in order to 
fulfill (5.4) when 't➔O then the matrix DZ inevitably has to approach the identity 
matrix h- This means that when 't is decreased, the local subgrids will cover an 
increasingly larger part of the domain and will in the limit of 't = 0 cover the entire 
domain. In this respect, (5.4) is also restrictive and one can argue whether it is 
really necessary to let the local subgrids cover a larger part of the domain with 
decreasing 't in order to retain a high spatial accuracy. Finally, from the previous 
section we have concluded that components of the global and local error can exhibit 
a different behavior. This is due to the fact that these different components are asso
ciated with different PDEs. The inequalities (5.1) and (5.4) and the error bound 
(5.3) are based on estimates of matrix norms where it is assumed that the system of 
PDEs at hand lead to a system of explicit ODEs after spatial discretization. Hence, 
it is assumed that all local and global error components behave in a similar manner. 
This implies that (5.1) and (5.4) are not sufficiently accurate in case a coupled sys
tem of general PDEs is solved. This might also be the case with a system of coupled 
PDEs where upon semi discretization one or more PDEs lead to a much stiffer sys
tem of ODEs than the other ones. For this reason, a new, more general refinement 
strategy is developed for a general system of coupled PDEs. In contrast to most of 
our previous work, this _new strategy will be based on controlling the global space 
error which is less restrictive than (5.1). It should satisfy two demands. First, it 
must make a distinction between vector components associated with different PDEs, 
and second, it must computationally not be too expensive. 

Basically a refinement strategy has to answer two questions. The first one is, when 
should a new finer grid level be created, and the second one is, which grid cells need 
to be refined. In order to answer these questions we will now introduce some nota
tion. Suppose (3.l) consists of q different PDEs in which the boundary conditions 
are included, i.e. boundary conditions are regarded as separate PDEs defined on 
boundaries only. Note that a single PDE with Neumann or Dirichlet boundary con
ditions can also be regarded this way. 

An arbitrary vector 8k E sk is generically denoted as csr, J, 8k, 2, ... , 8'L1l, 
where the component 8Z,; is associated with the /h PDE. The matrices h, DZ, 
Pk-lb R1k are block diagonal and can be written as 

h = diag(Jk.l, Ik, 2, ... , h,q), 

DZ = diag(DZ, 1 , D'b, ... , Dk,q ), 

pk-lk = diag(Pk-lk, I, pk-lk, 2, ... , pk-lk,q), 

R1k = diag(R1k, 1, Rik, 2, ... , Rtk,q)-

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

The matrices WZ, Kk, LZ, Mk and zz are written as block matrices with the blocks 
Wk,;;, Kk,ij, Lk,ij, MZ,ij and ZZ,;;, where i,j=I, .... ,q. The blocks of zz are given by 
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zkn,,.,· = Ik · - Dnk · + Dnk -(-1-[wnk .. + Knk .. - Lkn ··] - Mnk ··) (5.7) 
,l ,l ,l 0s't ,ll ,tt ,ll ,ll , 

znk,,;; = Dkn -(-1-[wnk .. + Knk .. - Lnk ··] - Mnk,,,;), i-:t=1· 
, ,l es 't ,U ,l) ,l} , • 

This leads to the following relation for the global space error 

lJ 1 lJ 
en - ~ Y" {Dn [ ~ wn R 1n-l + a,n ] + k,s,i - £..; k,ij k,.i O 't _,t,,., k,jm lk,m l,s,m kj 

J=I s m=I 

(5.8) 

i=l, .... ,q; k=l, .... ,l, 

where r;:,ij is a block of (ZZ)-1• We have established that the various components of 
the global and local space error can behave very differently. Consequently, a cri
terion like, re.fine the grid when the local space error 'lfZ or the global space error 
eZ exceeds some tolerance, is simply too crude. Although the operators (ZZ)-1 and 
WZ determine how the truncation error of the space discretization a.Z affects the spa
tial accuracy, one can say that the source of the space error is a.Z. This is certainly 
true when a single, uniform grid is used. Therefore, the following criterion can be 
used. A new grid level k + 1 is created if there exists a component i for which 

(5.9) 

holds, where TOL is a user-defined tolerance. It is assumed here that the PDE prob
lem at hand is properly scaled. Otherwise the scaling of the various PDEs have to 
be taken into account in criterion (5.9). We have also built in an extra condition in 
our research code to smoothen its behavior. Suppose that the maximum number of 
grid levels during the previous time step is l and that at grid level k <l, lla.Z,dl= < TOL 
for all i. Although this means that a new finer grid level k + 1 is actually not neces
sary, it will still be created when Ila.LIi= > 0.9 x TOL, to avoid fluctuations of the 
maximum number of grid levels from one time point to the next. 

Further, it should be pointed out that when the number of grid levels is increasing 
in time additional interpolation errors are introduced, because new initial values 
have to be interpolated over the whole newly created grid. It is possible that these 
extra interpolation errors diminish the spatial accuracy. For example, this can be the 
case when solving reaction diffusion problems with a small diffusion coefficient. In 
such case, the interpolation error which will be committed when an extra grid level 
is introduced can be very large due to a steep solution while the global space error is 
small. For this reason it may be necessary to use an extra criterion to create a new 
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finer grid level based on controlling this potential interpolation error. This means 
that the situation can occur that grid refinement talces place not to reduce the global 
space error but to reduce the potential interpolation error. However, in most cases 
when these potential interpolation errors are large, the global space error will also be 
large and therefore, a criterion like (5.9) will be sufficient to control the global spa
tial accuracy. In the refinement strategy we have implemented, only (5.9) is used as 
a refinement criterion. 

Having devised a criterion to generate new finer grid levels, we now have to find 
a criterion to determine which grid cells need to be refined. In order to do this we 
use (4.9) to rewrite (5.8) as 

Dn -e" · - D" ~ Y" {D" [-1- ~ W" R fn-l + ex" ] + (5 10a) k,1 k,s,1 - k,i ."-' k,ij kj S 't ."-' k,jm lk,m l,s,m k,J · 
J=I s m=I 

(5.I0b) 

i=l, .... ,q; k=1, .... ,l. 

When we for a moment abandon the idea of expanded grids and think within terms 
of local subgrids, then this new criterion will be based on the notion that after the 
coarser grid values have been replaced by the finer grid values at coinciding nodes, 
the largest absolute nodal value of the global space error should be at the finest grid 
level. If this is not the case then the maximum norm of the global space error over 
all grids will not be reduced by creating the finest grid level, which means that this 
finest grid level is of no use. 

When a grid is locally refined, the nodal values at the part of the grid which is 
refined are eventually replaced by finer grid values. However, the nodal values out
side this part of the domain remain unchanged. This means that if the nodal value of 
the maximum space error should be at the finest grid level, we have to malce sure 
that the value of the global space error at nodes outside the part of a grid which is 
going to be refined are smaller than the maximum global space error at the finest 
grid level. This means that, returning to the expanded grids, the global space error 
at the part of a grid level where interpolation takes place is smaller than the max
imum global space error in the region of the finest grid level where (3.1) is solved. 
In other words, we have to demand that 

(5.11) 

i=l, .... ,q ; k=2, .... ,l; 0 < c::;;; 1, 

where c is a user-defined constant and l the finest grid level which is going to be 
used during this time step. If at grid level k-1 (5.9) holds for PDE component i and 
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if at node j the associated component of the vector (h,i - D'/;,i)e'/;,s,i satisfies 

(5.12) 

then the sixteen cells surrounding j will be refined. This implies that the refinement 
is only controlled by the error components connected with the space discretization 
error components for which (5.9) holds. In practice the right hand side of (5.12) is 
estimated at grid level k-1. Not all grid level-k-1 nodes are scanned but only the 
nodes within the region of k-1 where the PDEs are solved. The reason for this is 
that outside the region where the PDEs are solved only repeated interpolation takes 
place until grid level / is reached. The interpolation error committed by repeated 
interpolation will be bounded since repeated interpolation implies that only more 
intermediate points will be computed on the same interpolation polynomial. Hence, 
the estimate of the right hand side of (5.12) at k-2 can be regarded as a first-order 
approximation to the estimate at k-1 for the nodes lying outside the region of k-1 
where the PDEs are solved. This means that when in the region of k-1 where inter
polation takes place, (5.12) did not hold at a node belonging to k-2, we can assume 
that it will not hold at its corresponding node plus its nearest neighbors at k-1 
either. 

We use (4.16) to compute the global space error which implies that on top of 
solving (3.4) for the solution we solve an extra equation for the global space error. 
The spatial discretization error a'/; is estimated by computing F'/;(U'/;) in (3.3) with a 
higher- and a lower-order discretization and subtracting the two. The interpolation 
error y'l. is computed by numerically estimating the truncation error. For both esti
mates the numerically computed solution is used. To estimate the right hand side of 
(5.11) we use the asymptotic behavior of the global space error. In case the space 
discretization is of order p we have 

IIDn II - 2-p(l-k+l)IIDn II l,iel,s,i = - k-l,iek-1,s,i =· (5.13) 

If llaZ-1.ill= is computed and (5.9) holds then using the asymptotics we can estimate 
how many grid levels are needed to achieve that (5.9) does not hold any longer. The 
maximum number of grid levels I which are necessary during this time step is then 
estimated as 

. { log(llaZ-1,dl=) - log(TOL) } 
I = k + ent1er p log(2) , i=l, .... ,q. (5.14) 

This means that for component i we need I grid levels in order to fulfill 
lla7,JI= < TOL. This I value is used in (5.13) to estimate IIDte1,.,,ill=- Note that for 
different PDE components we can have different I values. The estimates above 
might not always be accurate, especially at times when the number of grid levels in 
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use is about to change. This may lead to a refinement criterion (5.12) which is too 
restrictive or not restrictive enough. Only the latter can influence the accuracy in a 
negative manner. However, chosing c in (5.14) sufficiently small can overcome this 
problem. It is also possible to improve the estimates of IID7,;e1,s,dloo and l by taking 
these values at the previous time step into consideration. 

Finally, we conclude this section with the following remarks. The strategy based 
on (5.13) does not guarantee that, in case l is fixed over the entire time interval over 
which the solution is computed, the global space error is comparable to the global 
space error obtained with a single, uniform grid having the same cell sizes as the 
finest grid level in the adaptive grid method. If such a guarantee is desired then 
extra requirements have to be fulfilled in order to get a bound for lle1,s,;lloo which is 
similar to the bound using a single, uniform grid. However, these requirements are 
difficult to satisfy in practice and they can only be satisfied in an a posteriori 
manner. For this reason we have not incorporated these requirements in the 
refinement strategy. Nevertheless, when the constant c decreases then more grid 
cells are refined and the gap between the spatial error of the adaptive grid and uni
form grid computation is likely to become smaller. Further, the strategy described 
in this section is not the only possible strategy. The relations for the local and global 
space error, given by (4.14) and (4.16), respectively, leave room for other strategies 
as well. The new strategy based on (5.11) is less restrictive than the previous one 
based on (5.4). When the time step size tends to zero, then, according to (5.11), the 
finer subgrids do not necessarily need to grow. This is in contrast to (5.4) where the 
subgrids eventually will -cover the entire domain. Moreover, the (l-lf1 term is also 
avoided in (5.11). 

5.6. EXAMPLE PROBLEMS 

Three example problems are used to illustrate the method and to test the 
refinement strategy. For time integration, Implicit Euler for the first time step and 
BDF2 with variable coefficients for the following time steps are used. Standard 
second-order finite differences are used for space discretization and the interpolation 
is fourth-order Lagrangian. 

5.6.1. Problem 1 

This test example is hypothetical and is given by a coupled parabolic and el1iptic 
equation, both linear: 

u, = Uxx + Uyy - V + g (x,y,t), 

O=vxx+Vyy+u+h(x,y,t), O<x,y<l, t>O. 

(6.la) 

(6.lb) 

The initial function, the Dirichlet boundary conditions and the source terms g and h 
are selected so that the exact solution is given by 



FIGURE 6.1 Problem I. The scaled absolute values of the exact global space error in 
u and v obtained with 2 grid levels at t = 0.25. 
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FIGURE 6.1 Continued. The scaled absolute values of the exact global space error in 
u and v obtained with 3 grid levels at t = 0.25. 
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FIGURE 6.1 Continued. The scaled absolute values of the exact global space error in 
u and v obtained with 4 grid levels at t = 0.25. 
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FIGURE 6.2 Problem I. The grids of the 2- and 3-level computation at t = 0.25. 



123 

+ 

FIGURE 6.2 Continued. The grids of the 4-level computation at t = 0.25. 

u (x,y,t) = v (x,y,t) = exp[-80((x - r(t))2 + (y - s (t))2)], (6.2) 

where r(t) = ¼ [2 + sin(7tt)] and s(t) = ¼ [2 + cos(7tt)]. This solution is a cone that 
is initially centered at (½,¾) and that rotates around (½, ½) in a clockwise direction 
with a constant speed. We have used this problem to subdue the method to a con
vergence test. The solution was computed from t = 0 to t = 0.25. Starting from a 
coarse 20 x 20 grid, 1,2 and 3 additional grid levels were used. The number of grid 
levels were kept constant throughout the entire time interval. The associated TOL 
values were 20, 5 and 1. These tolerance values appear to be large compared to the 
tolerance values one is used to. The reason for this is that the llaZ,dl= values can be 
large. However the accuracy does not deteriorate severely by this because the 
inverse of the Jacobian operates on the vector aZ (cf. (4.14a), (4.16a)) which 
reduces the values of the components of this vector considerably. This is due to the 
large high-frequent components of the grid function aZ and the fact that the Jaco
bian stems from an elliptic/parabolic operator of which the inverse strongly damps 
such components. The constant time step size was chosen to be equal to 0.005 and 
the constant c from (5.17) equal to 0.5. The results at the final time, given in Table 
6.1, show that the obtained global space errors decrease roughly with a factor of 
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#of global space error 
grid levels u V 

1 0.043973 0.044304 

2 0.013465 0.012874 

3 0.003594 0.002991 

4 0.000757 0.000631 

TABLE 6.1 Problem I. Maxima of the exact global space error restricted to the finest 
grid. 

#of global space error 
grid levels u V 

1 0.043441 0.044379 

2 0.013277 0.013304 

3 0.003543 0.003135 

4 0.000748 0.000663 

TABLE 6.2 Problem I. Maxima of the numerically estimated global space error res
tricted to the finest grid. 

four indicating the normal second-order convergence behavior which would also be 
obtained with a single, uniform grid. Since the success of the refinement strategy, 
described in the previous section, depends on the accuracy of error estimates, we 
have also compared the numerical estimates of the global space error with the exact 
values. In Table 6.2 the numerical estimates of the global space errors are given and 
it appears that the estimates are quite accurate. The scaled absolute values of the 
exact global space error in u and v at t = 0.25 for all computations is shown in Fig
ure 6.1. The positioning of the finer subgrids in Figure 6.1 appears to be good. The 
maximum global space error for both components is located at the finest subgrid in 
use. Moreover, the refinements are fairly efficient, meaning that not many grid cells 
are unnecessarily refined. Figure 6.2 shows the grids at t = 0.25. 
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FIGURE 6.3 Problem IL The maximum local space error in u (i) and in v (ii). 

5.6.2. Problem II 
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The second test problem is a problem with a steady-state solution. Again the sys
tem of PDEs given by (6.1) is solved but this time the sources g and hand the initial 
function and Dirichlet boundary conditions are chosen such that the exact solution is 
given by 

1 
u (x,y,t) = v (x,y,t) = exp[-80((x - r(t))2 + (y - 2 )2)], (6.3) 

where r(t)=½- ¼ exp(-IO00t). This represents a cone which is centered at(½,¼) 
at t=0 and moves towards the center of the domain (½, ½) with a continuously 
decreasing speed. In the steady-state situation the cone will have reached the center 
of the domain. 

Just like in example problem I, (6.1) was solved using 1,2 and 3 extra grid levels 
after starting from a 20 x 20 uniform grid. Variable time step sizes were used. On 
the 20 x 20 grid at tn, 't is predicted for the next time step so that 'tV7 = 0.1, where 
V7 is a numerical approximation of u1(x, tn). These computed 't values were kept in 
storage and used as time step sizes for all computations. The constant c from (5.17) 
is chosen equal to 0.5 for all computations. 

This problem was used to illustrate the differences in behavior of the local and 
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FIGURE 6.4 Problem II. The maximum global space error in u obtained with I, 2, 3 
and 4 grid levels, indicated by i, ii, iii and iv, respectively. 

global space error belonging to (6.la) and (6.lb) and to compare the maxima of the 
global space errors in u and v of the adaptive grid solution obtained with a different 
number of grid levels throughout the entire time interval. The solution was com
puted to t=I.0. The TOL values were equal to 20, 5 and 1. The number of grid lev
els were kept constant throughout the entire time interval. The results of paragraph 
4.2 apply to this case, since, (6.l) fits in the format (4.18). It is to be expected that 
the local space error in u behaves like O ('t) and the local space error in v like O (1) 
when 't➔O. Figure 6.3 shows the behavior of the maximum local space error in u 
and in v over the interior of a 20 x 20 grid as a function of the time step sizes. A 
double logarithmic scale was used in this figure and the slope of the local space 
error in u is almost equal to unity for small time step sizes indicating a linear 
behavior in 't. Further, the local space error in v appears to be almost constant. This 
means that the local space error in u and v behave indeed like predicted by (4.26) for 
small 't. Figure 6.4 and 6.5 compare the maximum global space errors in u and v, 
respectively, obtained with the adaptive grid method on l, 2, 3 and 4 grid levels. 
These figures clearly reveal that the global space error in u, belonging to the PDE 
(6. la) gradually increases in time until a certain maximum is reached while the glo
bal space error in v, connected with the PDE (6.lb) remains at an almost constant 
level over the entire time interval. The distances between the lines in Figure 6.4 and 
6.5 reveal a second-order convergence behavior which would also be obtained with 
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FIGURE 6.5 Problem II. The maximum global space error in v obtained with 1, 2, 3 
and 4 grid levels, indicated by i, ii, iii and iv, respectively. 

a single, uniform grid. The scaled absolute values of the global error in u at t=l.0 
are shown in Figure 6.6. The global space error in v is not shown here, because it is 
very similar to the one in u for this case. Again, the grids are reasonably efficient 
and the maximum global space error is located at the finest subgrid in use. The 
grids at the final time are shown in Figure 6.7. 

5.6.3. Problem III 

The third test problem is a problem with an oscillatory solution. The system of 
PDEs given by (6.1) is solved once more but this time the sources g and hand the 
initial function and Dirichlet boundary conditions are chosen such that the exact 
solution is given by 

u (x,y,t) = v (x,y,t) = sin(1tt)exp[-320((x - ~ )2 + (y - ~ )2)]. (6.4) 

This represents an oscillating cone which is centered at (½, ½). At t=O the solution 
is zero everywhere. Then a steep pulse emerges at the center of the domain which 
reaches its maximum at t=0.5 after this it will decay until the solution is equal to 
zero again at t=l.0. 
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FIGURE 6.6 Problem II. The scaled absolute values of the exact global space error in 
u obtained with 2 and 3 grid levels at t = 1.0. 
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FIGURE 6.6 Continued. The scaled absolute values of the exact global space error in 
u obtained with 4 grid levels at t = 1.0. 

This problem was solved to test the performance of the method when a variable 
number of grid levels is used. The solution was computed four times from t==O to 
t=l.0 using a maximum number of grid levels of 2,3,4 and 5. The corresponding 
TOL values were 160,40,10 and 2.5, respectively and the constant c was chosen to 
be 0.5. Variable time steps were also used here which were determined in exactly 
the same manner as in problem II and also kept in storage to be used for all compu
tations. The maximum global space error in u as a function of time is shown in Fig
ure 6.8. Here, the behavior of the global space error in vis very similar to the one in 
u. The kinks in this figure indicate that at that time, a new finer grid level is created 
or discarded. It appears that the global space error decreases with a certain factor 
when the TOL value is divided by four. Inspection of the data revealed that this fac
tor is larger than four in both the infinity and the L I norm. These norms of the max
imum global space error were taken over the values at all time levels. This implies 
that when the TOL value is decreased by a factor of four that the spatial accuracy is 
increased by a factor of at least four for this example problem. The grids at t=0.5 
are shown in Figure 6.9. 
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FIGURE 6.7 Problem II. The grids of the 2- and 3-level computation at t = 1.0. 



FIGURE 6.7 Continued. The grids of the 4-level computation at t = l .O. 

5.7. SUMMARY AND CONCLUDING REMARKS 
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In this paper we have discussed the application of a local uniform grid refinement 
method to systems of coupled PDEs. The main feature of local uniform grid 
refinement is that the PDEs are solved on a series of nested, uniform, Cartesian, 
increasingly finer subgrids covering only a part of the domain where the spatial error 
is high. The PDEs are solved on these subgrids in a consecutive manner, from 
coarse to fine. The location and size of the subgrids are automatically adjusted at 
discrete times in order to follow the movement of the steep fronts. The generation 
of subgrids is continued until sufficient spatial accuracy is reached. 

An error analysis was performed for the local uniform grid refinement method 
applied to systems of coupled PDEs. It was shown that the global and local error 
components associated with each separate PDE can exhibit an entirely different 
behavior. With respect to the global error, this means that the global error com
ponents can carry over to future time points in a very different way from one PDE to 
another. The local space error components can show a different behavior for small 
time step sizes. A refinement strategy controlling the generation of finer subgrids 
was developed from the results of the error analysis. This strategy takes these 
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FIGURE 6.8 Problem III: The maximum global space error in u as a function of time. 
The maximum number of grid levels is 2 (i), 3 (ii), 4 (iii) and 5 (iv). 

differences in behavior into account and is based on estimating and controlling the 
global space error. We have applied the method to three example problems, all 
involving a system containing a parabolic and an elliptic equation to test the 
refinement strategy. The observed convergence behavior of the global space error is 
comparable to uniform grid computations. We have also seen the predicted differ
ences in behavior of the components of the global and local space error. Further, the 
global error estimates are fairly accurate and not many grid cells appear to be 
unnecessarily refined. Using both a fixed and a variable number of grid levels in 
time and a second-order space discretization, we have observed that when the toler
ance value is decreased with a factor of four, the spatial accuracy also appears to 
improve with a factor of four. 

We consider these results to be very satisfactory. However, we feel that testing 
on more difficult (nonlinear) problems needs to be done in order to fully appreciate 
this refinement strategy. Further, in the example problems where variable time step 
sizes were used, these step sizes were adapted in order to equidistribute a heuristic 
monitor. It would be desirable to implement a time step strategy based on ( 4.15) or 
( 4.17). However, such a strategy only works well when the time error estimates are 
sufficiently accurate. In [7] we have already reported that when using the local uni
form grid refinement method these time error estimates do not resemble the actual 
time error at all. Nevertheless, perhaps there is a remedy for this so that a time step 
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FIGURE 6.9 Problem III. The grids of the 2- and 3-level computation at t = 0.5. 
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FIGURE 6.9 Continued. The grids of the 4- and 5-level computation at t = 0.5. 
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strategy can be developed which is just as successful as the refinement strategy in 
space. 
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Chapter 6 

Local Uniform Grid Refinement and Transport in 

Heterogeneous Porous Media 

6.1. INTRODUCTION 
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An adaptive grid finite-difference method is applied to a model for unsteady 
isothermal groundwater flow coupled with transport in heterogeneous porous media. 
The origin of this work lies in a safety assessment study on disposal of high-level 
radioactive wastes in rock salt formations, like salt domes. The numerical simula
tions of groundwater flow near these salt formations may provide insight in what 
might happen in the event of contaroinants escaping from such a repository. The 
concentration of salt in the proximity of salt formations is known to be large and 
also in aquifers overlying these salt formations the salt content varies from fresh 
water to that of saturated brine [8]. It should be noted that the presence of a high 
concentration of salt in these natural situations gives rise to large concentration gra
dients as well. A typical situation one encounters is that of a sharp fresh-salt water 
interface that moves in time. A single, uniform space grid can be computationally 
very inefficient when solving the partial differential equations (PDEs) describing 
such problems because, to afford an accurate approximation, such a grid has to be 
very fine over the whole domain while a fine grid is only needed where a sharp front 
is located. Adaptive grid methods prove to be very useful here, since these methods 
refine the space grid only where it is really needed, hence, reducing the necessary 
CPU time. 

The applied adaptive grid method is based on local uniform grid refinement. The 
main feature of local uniform grid refinement is that the PDEs are solved on a series 
of nested, uniform, finer-and-finer subgrids covering only a part of the domain. 
These subgrids are automatically adjusted at discrete times in order to follow the 
movement of large spatial variations. On each local subgrid a new initial boundary 
value problem is solved for one time step in a consecutive order, from coarse to fine. 
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The generation of subgrids is continued until the spatial phenomena are described 
with sufficient accuracy. 

Local uniform grid refinement methods have been proposed in a number of dif
ferent varieties, applied to different kinds of PDEs. Here, we will not attempt to 
give a complete overview of the field. We will only sketch some varieties of the 
local uniform grid refinement method very briefly, and provide some references. 
The methods contained in [ 1-3, 6] are applied to hyperbolic PD Es and use explicit 
time stepping techniques. The method proposed by Berger and Oliger in [3] 
employs rectangular subgrids which may be skewed with respect to the co-ordinate 
axes in order to align with the steep region of the solution. Subgrids having the 
same cell sizes can partially overlap in this method. In [I], Arney and Flaherty 
developed a method very similar to the one in [3] except that the subgrids here are 
created by cellular refinement, meaning that the fine grid cells are properly nested 
within coarser grid cells. Hence, these subgrids have a piecewise polygonal shape. 

Local uniform grid refinement is combined with grid movement in [2, 6]. In [6], a 
method proposed by Gropp uses subgrids which are rectangles having sides parallel 
to the co-ordinate axes and which are able to move as a whole with the moving 
steep fronts. In this method the subgrids are also allowed to overlap. In [2], Arney 
and Flaherty added grid movement to their method described in [I]. The grid points 
of the coarsest grid are able to move and the fine grid movement is induced by the 
movement of the coarsest grid. Local uniform grid refinement methods are also 
used to solve parabolic and elliptic PDEs in [5, 7, 9-15] and involve the implicit 
solution of systems of equations. The subgrids in [5] are piecewise polygonal and 
the ones in [7] are rectangles. In both [5] and [7] domain decomposition is applied 
to improve the performance on parallel computers. 

Our previous work on this type of adaptive grid method is contained in [9-15]. 
The subgrids in our method have a piecewise polygonal shape and do not overlap. 
Our method is a so-called 'static-regridding method' which means that no grid 
movement is applied during a time step. The refinement strategy controlling the 
generation of subgrids in [IO, 13] is based on heuristic criteria while in 
[11, 12, 14, 15] it is underlied by a comprehensive error analysis which has resulted 
in a so-called refinement condition. This analysis was carried out for PDEs which 
after spatial discretization lead to a system of ordinary differential equations 
(ODEs). The aim of this refinement condition is that, once fulfilled, the overall spa
tial accuracy should be dominated by the spatial accuracy at the finest grid level. 
Due to the refinement condition, a convergence result could be proved in certain 
model situations which is similar to the result obtained for a single, uniform grid. In 
[9] the error analysis was carried out for systems of general coupled PDEs. These 
systems of PDEs do not necessarily lead to a system of ODEs after spatial discreti
zation. A refinement strategy was derived based on the notion that the finest subgrid 
should contain the largest spatial errors. This strategy works quite satisfactorily but 
a rigorous convergence proof like the one mentioned previously can no longer be 
given. 

In this work, the application of our version of the local uniform grid refinement 
method to transport problems in heterogeneous porous media is discussed. The 
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adaptive grid method has been implemented in a code called MOORKOP. This 
code can handle systems of PDEs of the following type, defined on a rectangular 
domain 

(I.la) 

The boundary conditions may take the form 

H(x,y,t,u,u,, ux, Uy) = 0, t > t0 , 

and the initial conditions may be defined by 

u(x,y,to) = uo(x,y). (I.le) 

The solution u may be vector valued. This general format was chosen to allow the 
user to solve not only transport problems in porous media but other PDEs as well. 
Moreover, in case transport problems are solved, the format (1.1) makes it easy for 
the user to implement various modifications to the basic equations of the model. 

This work can be regarded as a sequel to the work reported in [13] in which this 
adaptive grid method was applied to transport problems in homogeneous porous 
media. Since in natural situations, soil properties such as permeability and transver
sal and longitudinal dispersivity can change abruptly from one region to another, 
MOORKOP has now been extended so that it can handle transport in porous media 
with such non-homogeneities. At these abrupt changes, interface conditions based 
on continuity of fluxes are applied to obtain consistent numerical approximations. 

6.2. OUTLINE OF THE ADAPTIVE GRID METHOD 

The idea behind local uniform grid refinement is simple. Starting from a coarse 
base grid covering the whole domain, finer-and-finer uniform subgrids are created 
locally in a nested manner in regions of large spatial variations. Here, a set of inter
connected grid cells, all having the same size, is called a subgrid. A set of subgrids 
having the same cell size is called a grid level or just grid. Hence, in our version of 
the local uniform grid refinement method, a grid level consists of a single subgrid or 
several disjunct, non-overlapping subgrids. A new initial boundary value problem is 
solved at each grid level separately in a consecutive order, from coarse to fine. The 
same time step size is used for all grids. The required initial values are defined by 
interpolation from the coarser grid level in which the refinement is embedded or 
taken from a grid level from the previous time step when available. Internal boun
daries, i.e. subgrid boundaries lying in the interior of the domain, are treated as Diri
chlet boundaries and values are also interpolated from the coarser grid level. Where 
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the boundary of a fine subgrid coincides with the boundary of the domain, the 
prescribed boundary conditions are used. Except for the necessary initial and boun
dary conditions, all subgrids are independent of each other. Therefore, the subgrids 
are not patched into the coarser grids but are actually overlaying them. The genera
tion of grid levels is continued until the spatial phenomena are described accurately 
enough by the finest grid. The fine grid cells are created by bisecting the sides of the 
cells of the coarser grid. This means that the refinement is cellular and that the 
subgrids have a piecewise polygonal shape. 

During each time step the following operations are performed: 

(1) Solve PDEs on the coarse grid. 
(2) If the desired accuracy in space or the maximum number of grid levels is 

reached then go to 8. 
(3) Determine new finer grid level at forward time. 
(4) Interpolate internal boundary values at forward time. 
(5) Provide new initial values at backward time. 
(6) Solve PDEs on new grid level, using the same time step. 
(7) go to 2. 
(8) Update the coarser grid solution using the finer grid values. 

Thus, for each time step the computation starts at the coarse base grid using the most 
accurate solution available, since coarser grid solution values are always updated by 
the finer grid solution. , 

For time integration we use implicit Euler for the first time step and the second
order two-step implicit BDF method with variable coefficients for the following 
time steps where variable step sizes are taken. Standard second-order central finite 
differences are used for space discretization and the interpolation, which is used for 
obtaining initial and boundary conditions, is linear. The discretization of the boun
dary conditions and the interface conditions are of first order. The unknowns in our 
difference scheme are located at vertices of cells. Hence, where the coarser grid is 
overlapped by a finer grid, the coarser grid nodes coincide with the finer grid nodes. 
The resulting systems of equations are solved by an adapted version of modified 
Newton's method in combination with the iterative linear solver BI-CGSTAB [16]. 

6.3. STRATEGIES 

6.3.1. Refinement strategy 

The local uniform grid refinement method is a valuable method for solving PDEs 
with steep solutions because it can solve these PDEs just as accurately as on a very 
fine grid, but with considerably less computational effort, since the involved fine 
subgrids cover only a part of the domain. Moreover, it creates extra refinements 
when necessary and removes these when they are no longer needed. This 
refinement process is controlled by a refinement strategy. In [9, 11, 12, 14, 15], the 
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refinement strategy is based on a comprehensive error analysis taking into account 
space discretization and interpolation error estimates. The aim of this strategy is to 
have the overall spatial accuracy dominated by the spatial accuracy at the finest grid 
level. Whe'.t the number of grid levels is constant for all times, this strategy should 
lead to a spatial accuracy which is comparable to the one achieved with a single, 
uniform grid having cell sizes identical to those of the finest grid level in the adap
tive grid method. 

The success of such a refinement strategy is very much dependent on the accu
racy of error estimates. It is clear that these error estimates can only be accurate 
when the solution is sufficiently smooth, i.e. it may be steep but it should be 
sufficiently differentiable in space. Since nonsmoothness in the boundary condi
tions, or even in the solution itself, is a well known phenomenon in flow and tran
sport problems in porous media, the approach above was abandoned and replaced by 
a more heuristic approach. In [10, 13] the refinement strategy was based on a curva
ture monitor. This monitor is also used here because it is able to detect high-error 
regions. Further, this monitor can also detect kinks in the solution profile which 
occur at interfaces in porous media more quickly than a monitor based on the gra
dient of a solution. This implies that refinements at interfaces will be created much 
sooner. This is favorable for the accuracy of the computed solution, the approxi
mated geometry of the interfaces, and also for solving the systems of nonlinear 
equations. 

The error monitor can be regarded as a scaled approximation of 
ltix2a2u/ax2 I+ 1Liy 2a2u/ay 2-I for each solution component at every node. The 
value of this monitor at node j associated with solution component i is denoted as 
ESTS;,j- At every grid node and for each solution component this monitor value is 
computed. 

Let grid level 1 be the coarsest grid level and grid level 2 be the next finer grid 
level and so on. Suppose we have just completed a time step on grid level m. After 
this time step, the maximum values of ESTS;,j are computed over grid level m for 
each component i. These maxima are denoted as ESTSmax;. If for some i, 
ESTSmax; > TOLS, then a new grid level m+l is created within the current time 
step, provided that m+l does not exceed the user-specified maximum number of 
grid levels. Here, TOLS is a user-defined tolerance. Grid level m + 1 is the con
structed as follows. For each i, for which ESTSmax; > TOLS holds, the cells around 
the nodes of grid level m where ESTS;,j > ¼ x TOLS will be subdivided in four 
identical cells. The set of these finer cells makes up grid level m + 1, on which the 
current time step will now be repeated. 

Finally, we have built in an extra condition to smooth the behavior of the code. 
Suppose that the maximum number of grid levels during the previous time step is 
levtop and that at grid level m <levtop, one has ESTSmax; s; TOLS. Although this 
means that a new finer grid level m + 1 is actually not necessary, it will still be 
created when ESTSmax; > 0.9 x TOLS. This way fluctuation of the maximum 
number of grid levels from one time point to the next is likely to be avoided. 
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6.3.2. Time integration aspects 

We have implemented the two-step BDF method of order two which we apply in 
the variable step size mode. The. time derivative in ( 1.1) is then approximated as 

where 

Un -a1Un-l -a2Un-2 
u,~----------

02At,, 

-I 
a 2 = _c_2_+_2_c, 0 _ c+l 

2 - c+2' 

(3.1) 

(3.2) 

Here, U, represents the pointwise restriction of u, to a space grid. Note that variable 
time stepping is a prerequisite for transport problems in porous media, as they can 
exhibit a highly distinct behavior in time. As starting formula we employ the one
step BDF method of order one (implicit Euler). 

In the second-order BDF method, it would be appropriate to use the numerical 
estimates of the third time derivative of the solution for time step size control. This 
would work satisfactorily in standard applications where a grid without adaptation is 
used. However, one will encounter difficulties with such an estimator using a 
static-regridding method like the local uniform grid refinement method. This was 
already reported in [10]. These difficulties are due to the fact that the solution vec
tor at the backward time points, present in the BDF formula, is obtained from inter
polation from the coarser grid level, from computing the solution to ( 1. 1) at the 
current grid level, and from assigning finer grid values to corresponding grid points 
at the current grid. Although these operations do not adversely affect the accuracy 
of the computed solution, they do introduce small 'discontinuities' in the solution 
which cause small stiff transient solution components in time. These small tran
sients are quickly damped due to the stability of the BDF method. They are, how
ever, seen by the local truncation error estimator which will in turn greatly overesti
mate the true local truncation error. This will lead to far too small time steps. In 
order to circumvent this problem we will use a time error monitor which is able to 
notice the transient behavior of the solution but does not see this background noise. 
This means that the values this monitor measures should be considerably larger than 
the background noise. 

Here, the time step size is controlled by the time error monitor value which is a 
scaled approximation of I At oulot I for each solution component at every node. 
This monitor worked quite satisfactorily in previous applications. The maximum 
value of this monitor, denoted as ESTT, is computed only over the interior grid 
nodes of each subgrid for reason of robustness of the code. We will not elaborate 
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this further here. After a time step has been performed on all grid levels ESIT is 
computed over all grid levels. If this maximum exceeds a user-specified tolerance 
TOLT, then the time step is rejected, otherwise accepted. For each grid level a new 
time step size is predicted such that the predicted value of ESIT for the new time 
step is equal to 0.5 x TOLT. The minimum of these new time step size estimates is 
taken to be the time step size for the next time step. The rationale is that when a 
new time step is taken with this predicted value, ESIT will in general be approxi
mately equal to 0.5 x TOLT which implies that time step rejections are unlikely to 
occur. However, in case of a step rejection, the new time step size will be taken as 
0.8 times this estimated value. In all cases, we require that the new time step size is 
not smaller than ½ times and not larger than 2 times the old time step size to avoid 
too large jumps in the step size selection. This strategy was adopted because of its 
performance in numerous previous applications. Finally, the new time step size is 
corrected with a small value to assure that the next output point is reached exactly. 

6. 3.3. Solution of the linear and nonlinear systems 

Because we use an implicit integration method and treat PDEs like (1.1) fully 
coupled, we are facing the task of solving large coupled systems of nonlinear alge
braic equations. Let the nonlinear system of equations to be solved be denoted as, 

F(U) = 0. (3.3) 

In the standard modified Newton approach the linear system of equations 

J(U0 )'fl = -F(Uk-1), (3.4) 

Uk uk-1 + 'f/, 

is subsequently solved, starting with k=l, until a stopping criterion is satisfied. Here 
J is the Jacobian matrix, u 0 is the initial guess, and Uk is the eh iterate. In our 
code, we use an adapted version of modified Newton in combination with precondi
tioned BI-CGSTAB [16] for iteratively solving the resulting system of linear equa
tions. For any system of PDEs like (1.1), the required Jacobian matrix for the New
ton process is computed in a completely automatic manner. In our code the ele
ments of the Jacobian are estimated by a simple first-order difference formula, so 
that the user does not need to specify these. The reason why the standard modified 
Newton procedure has been adapted for the application of the local uniform grid 
refinement method is explained below. 

When solving flow and transport problems in heterogeneous porous media one 
can encounter convergence problems. For example, when a subgrid is newly 
created or moves in space from one time point to the next, initial values for the new 
fine subgrid cells are interpolated from the next coarser subgrid solution which may 
be kinked due to an interface, leading to large interpolation errors. This way initial 
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data is obtained which does not look like the fine grid solution to the PDEs at the 
backward time point, leading to a bad approximation of the Jacobian. To our 
experience, when the modified Newton iteration fails to converge because of this, 
the standard procedure of time step size reduction works very poorly, or not at all. 
For this reason the modified Newton procedure had to be adapted. The 
modifications we have made will now be elaborated upon. 

The solution at the backward time point is taken as the initial guess for the finest 
grid level. With respect to the initial guess for the coarser grid levels, in spite of the 
fact that assigning of fine grid values to corresponding coarser grid nodes improves 
the accuracy of the solution at the coarser grid level (cf. Section 2, step 8), the 
updated coarser grid solution is usually not a very good initial guess for the solution 
at this grid at the future time point. Therefore, we also keep the original, not
updated solution at the backward time point in storage which is used as initial guess 
for the next time step. After this, the linear system (3.4) is generated and iteratively 
solved. In case this linear iteration process terminates unsuccessfully, (3.4) is gen
erated all over again, employing a smaller time step size. 

When (3.4) is solved at least twice (i.e. after two modified Newton iterations), we 
check for convergence and convergence speed. When the corresponding criterion is 
satisfied, the modified Newton stopping criterion is expected to be fulfilled within 
the user-specified maximum number of iterations. Note that the convergence(speed) 
criterion terminates a diverging as well as a slowly converging iteration process. 

After this criterion has been fulfilled, we check if the modified Newton stopping 
criterion is satisfied. If this is the case then we are done, otherwise we proceed with 
the next iteration. In case that the convergence(speed) criterion is not satisfied, a 
new Jacobian is computed. 

There are two ways to compute a new Jacobian. First, the Jacobian can be com
puted using the previous iterate uk-I as initial guess and employing the same time 
step size. Second, we can compute the new Jacobian using the original initial guess 
u0 with a reduced time step size, just as in the standard modified Newton approach. 
The way the Jacobian is calculated depends on a number of criteria. First, the 
number of new Jacobians using the same time step size during the whole iteration 
process is limited to a user-defined maximum. If this maximum is reached then the 
new Jacobian is computed with a reduced time step size. When a new Jacobian 
using the same time step size was already obtained during the previous iteration and 
the convergence(speed) criterion is still not satisfied, the new Jacobian is also calcu
lated using a smaller time step size. Suppose that the last iteration where a new 
Jacobian was computed with the same time step size is denoted by j. We assume 
that when IIF(Uk-I)II= < IIF(Uj-I)II=, the iterate Uk-I is a 'better' solution to (3.3) 
than u.i-I. A new Jacobian is only computed using the same time step size if this is 
the case, and computed with a reduced time step size, otherwise. 

This algorithm is more complicated than the standard modified Newton. Its 
behavior ranges from standard modified Newton to a genuine Newton-Raphson pro
cess. The idea behind it is that when the convergence criteria are not fulfilled, the 
iteration is not immediately repeated with a smaller time step size, like in the stan
dard modified Newton approach, but a new Jacobian, based on the last accepted 
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iterate and the same time step size, is tried first. Should this fail too, then the itera
tion is repeated with a smaller time step size. 

The maximum number of Newton iterations and Jacobians should not be chosen 
too small, si 1:ce this would lead to a premature termination of a converging iteration 
process. On the other hand, these numbers should not be chosen too large because a 
slowly converging iteration process can then carry on for a long time which is com
putationally inefficient. The maximum number of Newton iterations and Jacobians 
with the same time step size in our code are chosen to be 10 and 5 respectively 
which appeared to be reasonable choices in practice. When the time step size needs 
to be decreased, we take the new step size to be ¼ times the previous one. 

6.4. MODEL OF BRINE TRANSPORT IN POROUS MEDIA 

In this section the mathematical model of brine transport used to solve the exam
ple problem (cf. Section 6) is described. Following Trompert, Verwer and Blom 
[13], we consider a model for unsteady, isothermal, single-phase, two-component, 
saturated flow in a porous medium in two space dimensions. This model contains 
two conservation laws, namely one for the mass of the whole fluid, i.e. water and 
salt, and one for the mass of salt only. The mass conservation of the fluid supple
mented with Darcy's law for the velocity field is given by 

;t (np) + V. (pq)' = 0, q = - .!.<v P - pg), 
µ 

(4.1) 

where n is the porosity of the porous medium, p is the mass density and q the velo
city vector of the fluid. Note that here the velocity of the solid phase is neglected. 
The permeability of the porous medium is denoted by k, µ is the dynamic viscosity, 
p pressure and g the gravity vector. The mass conservation law of salt and Fick' s 
law for the dispersive mass flux are given by 

a 
at(npco) + V. (pcoq + J) = 0, J = - pnDVco, (4.2) 

respectively, where co is the concentration of salt and J the dispersive mass flux vec
tor. D is the 2 x 2 dispersion tensor defined by 

(4.3) 

where a.L denotes the longitudinal and a.T the transversal dispersivity and drn the 
molecular diffusion coefficient. I is the 2 x 2 identity matrix. The soil properties in 
this model are n, drn, a.L, a.T and k. Temperature and compressibility effects are 
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neglected in this model, as well as sources, sinks and deformation of the porous 
medium. To complete the model we need an equation of state for the fluid mass 
density p and an expression for the dynamic viscosity µ which depends on the con
centration of salt: 

p = Po exp (yco), 

µ = µo(l + l.85co - 4.10co2 + 44.50co3 ), 

(4.4) 

(4.5) 

where p0 and ~ are the reference density and dynamic viscosity and y is a 
coefficient obtained from laboratory experiments. 

In cases of a low salt concentration (4.1) and (4.2) are only weakly coupled and 
can be solved independently. The flow can then be regarded as independent from 
the density gradients caused by differences in the salt concentration since these gra
dients prove to be negligible. However, we consider cases of high salt concentra
tion, in which case the flow is no longer independent from the density gradients, so 
these equations should be solved together. With this model we have followed Has
sanizadeh and Leijnse [8] in the description of brine transport, except for Darcy's 
law and Fick' s law. In this paper these laws are used in their classical formulation, 
valid for low concentration cases. 

Using p and co as independent variables, we have recasted equations ( 4.1 ), ( 4.2) 
in the form 

-y'v. J + p'v. q = 0, 

aco 
pnTt + pq. 'vco + 'v. J = O, 

(4.6) 

which is obtained after some elementary calculations. At this stage we note that this 
model fits into format ( 1.1) and can, within the limits of (I.I), be modified by the 
user of the code. For example, one can add a temperature equation or use different 
formulations for Darcy's law and/or Fick's law, or by add compressibility effects, 
etcetera. 

6.5. INTERFACE CONDITIONS 

In this section we explain the interface conditions. These conditions are based on 
continuity of fluxes across cell edges. Although we will only discuss the interface 
conditions using the mathematical model of brine transport from the previous sec
tion, it is straight forward to derive interface conditions for other transport problems 
in heterogeneous porous media. 

The soil properties in heterogeneous porous media can show abrupt changes from 
one region to another. Moreover, across these interfaces, i.e. where the sudden 
changes occur, p and co are continuous but their profiles may be kinked. We will 
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assume that, mathematically, these soil properties are piecewise constant functions 
and that p and co are both continuous functions, not differentiable in space, at an 
interface. This means that in order to get consistent numerical approximations, we 
have to take care that numerical differentiation does not take place across such an 
interface. Therefore, the numerical solution at an interface is obtained by fulfilling 
interface conditions which connect the solution on both sides of the interface and 
involve only one-sided difference schemes. Since (4.1) and (4.2) represent two con
servation laws, it is natural to impose continuity of the spatial fluxes pq. n and 
(pcoq + J). n at interfaces as interface conditions, where n is a unit vector locally 
perpendicular to the interface. It suffices to impose continuity of q. n and J. n, 
since p and co are both continuous functions. 

II 

X X 
CJ CII 

IV III 

X X 
CIV CIII 

>----------<S>----------< 

FIGURE 5 .1. Four arbitrary grid cells with cell edges, parallel to the co-ordinate axes. 

Consider the four grid cells shown in Figure. 5.1, numbered I through IV, with 
cell edges parallel to the co-ordinate axes. First, the soil properties are evaluated in 
all cell centers and are supposed to be constant over each cell. Hence, the interfaces 
are assumed to coincide with cell edges in the numerical approximation. The means 
that the interfaces are approximated by piecewise vertical and horizontal lines. 

When the soil properties are constant over these four cells then none of these cells 
are intersected by an interface and (4.6) is discretized at grid node C using the stan
dard second-order central finite differences in space. Now suppose that, for exam
ple, the soil properties in CI are different from those in CII. Then the component of 
q and J in x-direction which is perpendicular to the cell edge, separating the upper 
left cell I from the upper right cell II, must be continuous. This cell edge is denoted 
as CN. From (4.1)-(4.3) we have, 
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k 
qz = - -(py - pgz), 

µ 

J 1 = -pnD1 1ffix-pnD 12 roy, 

qy 
nD 11 = ndm + cxTlql + (aL -aT)lql, 

(5.1) 

where q 1, J I and g I are the components in x-direction of q, J and g, respectively, 
and nD 11 and nD 12 are elements of the first row of the dispersion tensor nD; q 2 and 
g 2 are the components in y-direction of q and g. The derivatives of (5.1) are discre
tized using the grid nodes N, S, E, W and C, which yields a first-order accurate 
discretization. The fluxes q I and J I on the left and right hand side of CN are 
denoted as q i,CN,1, J 1,cN,1 and q 1,cN,/l, J 1,cN,/l, respectively. They are now approxi
mated as 

where 

kCI Pc- Pw = --(--- - Pcgi), 
µc L\.x 

roe - row ro N - roe 
J 1,CN,1 = - PcnD11,CN,1 L\.x - PcnD12,cN,1 L1y 

ken PE - Pc 
--(--- - Pcg1), 

µc L\.x 
q 1,CN,/1 

roE - roe roN - roe 
= - PcnD 11,cN,ll L\.x - PcnD 12,CN,11 L1y 

2 
D d I I ( ) ql,CN,I 

n 11,cN,1 = n m,C/ + aT,C/ qCNJ + aL,C/ - <XT,C/ I I , 
qCN,I 

nD12,cN,1 

2 

(5.2) 

D d I I ( ) ql,CN,/1 
n 11,cN,11 = n m,Cll + aT,CII qCNJI + aL,c11-aT,CII I I' 

qCN,11 

nD12,CNJI 
( ) ql,CN,llq2,CN,ll 

= aL,cn - aT,cu I q I , 
CN,11 

kC/ PN- Pc 
= - -(--- - Pcgz), 

µc L1y 

(5,3) 



q2,CN,II 

I q I _ (q2 + q2 )½ CN,I - I, CN,l 2, CN,l , I q I = (q2 + q2 )½ CN,II l,CN,Il 2,CN,/1 · 
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Here q 2,cN,I and q 2,CN,1I represent velocities parallel to CN and nD 11 ,cN,1, nD 12,cN,1, 

nD 11 ,cN,ll, nD l2,CNJI are the elements of the first row of the dispersion tensor on the 
two sides of CN. Constants like kc11 and aL,Cll denote the permeability and longitu
dinal dispersivity at cell II and entries like, for example, Pc and µc are the mass 
density and the dynamic viscosity in C. Continuity of q. n and J. n across CN yields 
the following system of flux continuity equations for p and ro in C 

ql,CN,I - ql,CN,/1 = 0, 

J l,CN,I - J l,CN,1/ = 0. 

(5.4) 

When not only CN is an interface but also CW, CE or CS then the flux continuity 
equations are generated for each interface. The equations we then solve is the sum 
of these flux continuity equations. 

6.6. NUMERICAL ILLUSTRATION 

An example problem is presented dealing with the displacement of fresh water by 
brine in a vertical column, filled with a porous medium and measuring one by one 
meter. Here we assume that g = (0,-gf. The values of the parameters are chosen 
as 

n = 0.4, dm = 0m 2.s-1, Po= 103 kg.m-3 , Po= 105 N.m-2 , (6.1) 

y = log(2.0), g = 9.81 m.s-2, ~ = 10-3kg.m-1.s-1. 

In the vertical column considered, there are four different regions, indicated as I 
through IV. This is shown in Figure 6.1. Each of these regions has its own permea
bility and longitudinal and transversal dispersivity. These are given below in (6.3). 
The column is completely open at the top and only half open at the bottom. The 
vertical sides are closed. The initial values, boundary conditions are: 

p(x,y,0) = Po+(I-y)p0 g, ro(x,y,0) = 0, 0m<x,y<lm, 

ql = 0m.s-1, ffix = om-1, X = 0,Imand0m<y<lm, 

q 2 =10-4 m.s-1, ro = 0.25x(l-exp(-10t)), (6.2) 

0 m < x s; 0.5 m andy = 0 m, 
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y 

r 
(2) II 

III (I) IV 

FIGURE 6.1. The vertical column. 

q 2 =0m.s-\ ro = 0, 0.5m<x<lmandy = Om, 

p=p 0 , my= om-1, Om<x<lmandy = Im. 

The soil properties are given by: 

Region I: k = 10-13 m2, UL = 0.008m, a.r = 0.0016 m, 

Region II: k = 10-15 m2, a,L = 0.005 m, a.r = 0.0010 m, (6.3) 

Region III: k = 10-10 m2, a,L = 0.010 m, a.r = 0.0020 m, 

Region IV: k = 10-13 m2, a,L = 0.008 m, a.r = 0.0016 m. 

The interfaces are defined as: 

I: x=0.1m, 

2: x=0.3 m + 0.2 x y, (6.4) 

3: y=0.6 m + 0.1 xx. 

Saturated brine is injected into the column at the opening in the bottom and a 
steep front in the salt concentration will develop, moving slowly towards the top of 
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the column. At first, the front will move completely past the interface on its right 
hand side. So, initially there will be almost no penetration of salt into region IV and 
a very sharp transition in the salt concentration arises at the interface between III 
and IV. The front smoothes while moving. Later on, the front will pass the inter
face between III and I and will move into region I. Much later the salt penetrates II 
and IV from III at approximately the same time. First the salt penetrates IV at its 
top left corner and later at the entire interface (1). Steady state is reached when 
eventually the saturated brine has spread out over the entire domain. 

We have computed the solution to this problem with two and three grid levels, of 
which the coarsest is a 20 x 20 grid. We have chosen TOLT = 0.1 and 
TOLS = 0.25 for both cases. The salt concentration is shown in the Figures 6.2 
through 6.5. The lower boundary of these figures corresponds with the top of the 
column. We have also computed the solution on a single, uniform 40 x 40 and 
80 x 80 grid for comparison. The absolute value of the difference between the salt 
concentration obtained with the uniform grid computation and the adaptive grid 
computation is plotted in the Figures 6.6 and 6.7. 

It appears that the maxima of these differences of 0.05 in both cases are rather 
large. A reason for this could be that the refinement strategy is not restrictive 
enough, i.e. too few grid cells are refined. Moreover, the spatial error monitor bears 
no relationship with the true numerical errors which means that it is possible that 
cells that should have been refined are not refined. Both of these factors contribute 
to a larger numerical error. Further, the difference scheme we have used, the way 
internal grid boundaries are treated and the interpolation and updating procedure can 
be a cause, since, neither one is conservative. Applying a control volume scheme 
and observing the conservation property at grid interfaces might help here. 
Nevertheless, the real reason for the large differences is still unclear to us. 

We have shown 3D plots of the salt concentration at the top and the pressure at 
the bottom of Figure 6.8 at t=4000 s, computed on the 40 x 40 grid. The kinked 
solution profile at some interfaces are clearly visible here. Note that at the interface 
(1) there is a sharp kink in the salt concentration and no visible kink in the pressure. 

#of single CPU time 
grid levels grid sec. 

2 3332 
40x40 5995 

3 9097 
80x 80 40441 

TABLE 6.1. CPU times of adaptive grid and uniform grid computations. 

We have also compared the necessary CPU times of the adaptive grid and uniform 
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grid level # of Newton iterations # of Jacobians 

1 973 294 

2 1051 291 

TABLE 6.2. # of Newton iterations and Jacobians, needed for the two-grid computa
tion. The number of time steps is 290. 

grid level # of Newton iterations # of Jacobians 

1 1074 322 

2 1175 326 

3 1189 318 

TABLE 6.3. # of Newton iterations and Jacobians, needed for the three-grid compu
tation. The number of time steps is 318. 

FIGURE 6.2. The salt concentration with two grid levels at t=4. 103 . 
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FrouRE 6.3. The salt <oncentrat;on Mil, two lltid levefs at t"'6.1<Y'. 

FIGURE 6.4. The salt concenlnition .,;11, lhree grid levels at t=t.10'. 
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FIGURE 6.5. The salt concentration with three grid levels at t=6. 104. 

FIGURE 6.6. The absolute differences in salt concentration. The 40 x 40 grid solution 
compared to the two-level adaptive grid solution at t=6.104 . The maximum is 0.05. 
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FIGURE 6.7. The absolute differences in salt concentration. The 80 x 80 grid solution 
compared to the three-level adaptive grid solution at t=6. 104 . The maximum is 0.05. 

grid computations. These are compared in Table 6.1. We can see that the two-grid 
and three-grid computations are 1.8 and 4.4 times faster than the corresponding uni
form grid computations. These measurements were performed on a Silicon Graph
ics INDIGO workstation. The Tables 6.2 and 6.3 contain information about Newton 
iteration process of both adaptive grid computations. We can see that for both the 
two- and the three-grid level computations the number of Jacobians is only 
moderately larger than the number of time steps. Hence, our Newton iteration stra
tegy performs well in combination with the local uniform grid refinement method 
for this case. 

6.7. SUMMARY ANDCONCLUDINGREMARKS 

In this paper we have discussed the application of a code using local uniform grid 
refinement, to transport problems in heterogeneous porous media. For such prob
lems, where locally steep fronts in the solute concentration occur, adaptive grid 
methods are valuable. They can compute a solution to these problems with locally 
the same resolution as on a very fine uniform grid, but with less computational costs. 

With respect to the modern computer architectures we note that it is easier to 
obtain large speed ups on a vector/parallel computer with a rectangular uniform grid 
than with an adaptive grid method. However, according to [4], we can obtain con
siderable gains with an adaptive grid method too. On top of that, there will always 
be cases in which it is very difficult or even impossible to perform accurate uniform 
grid computations due to memory requirements, especially in three space 



156 

FIGIJRB 6.8. The salt concentration and the l"essure at t~.103 w;,1, a 40 x 40 grid. 
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dimensions. 
In natural circumstances, the soil properties of the porous medium can change 

very suddenly from one region to another. At these sudden changes the profile of 
the pressure 0r the solute concentration may be kinked. Consequently, interface con
ditions, implying continuity of fluxes across these interfaces and involving only 
one-sided difference schemes, have been applied here to obtain consistent numerical 
approximations. The 'numerical' interfaces are supposed to coincide with grid cell 
edges. Further, compared to our previous publication [13], the modified Newton 
method for solving the systems of nonlinear equations has been adapted to increase 
the robustness of the code. 

The results of the test problem indicates that the solution computed with the local 
uniform grid refinement method requires less costs than a comparable uniform grid 
method. However, we have observed considerable local differences between the 
uniform grid and the adaptive grid solution. The cause of this is still unclear to us 
and should be investigated. The results also indicate that the adapted modified New
ton method and the linear iterative solver BI-CGSTAB work satisfactorily for the 
example problem. Nevertheless we think that a warning is appropriate here. 
Although the adaptation of the modified Newton method has improved the robust
ness of the code considerably, there still is a possibility that the code breaks down, 
simply because the (partially) interpolated initial guess for the iteration process (cf. 
Section 3) is too far away from the solution of the system of nonlinear equations at 
hand. A remedy to this could be to create at all times finer grids at interfaces, 
whether or not required by the space error monitor. 
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