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Preface 

In 1970 K. Ito published a paper which was titled: "Poisson point processes 
attached to Markov processes". In this paper he considers excursions from 
a given state a of a standard Markov process. He notes that a special 
role is played by the local time at a: labeled with the local time these 
excursions can be considered as the points of a Poisson point process. This 
tells us something about the randomness of the Markov process. In this 
paper, it is also remarked that the stochastic process can be reconstructed 
from the point process. In this book we will present a detailed discussion 
of excursions from the point of view of the theory of point processes and 
random measures. We also give the precise reconstruction of stochastic 
processes from point processes of excursions. 

At this place I should like to thank Prof. dr. C.L. Scheffer for his help 
by the preparation of this book. I also should like to thank dr. J. G .M. 
Schoenmakers for his critical comments and dr. W.H. Penninx, who was 
able to solve all tex-problems. 
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Chapter 1 

Introduction 

In his studies (35] and (36] of the sample paths of Brownian motion, Levy 
developed the idea to decompose the time set [O, oo[ in a part Z at which 
the process is in state O and intervals of time spent in IR\ { 0}. Throughout 
the years this has proved to be a very fruitful idea. On one hand the 
study of the set of zeros Z led Levy to the description of local time as an 
occupation density (Levy used in [35] the term "mesure du voisinage". See 
for occupation densities the survey article of Geman and Horowitz (14], who 
discuss connections between the behaviour of a (non-random) real-valued 
Borel function and the behaviour of its occupation density. Local times for 
general Markov processes were introduced by Blumenthal and Getoor in 
[3]). On the other hand Levy's study of the behaviour of Brownian motion 
on zero-free intervals was the starting point of excursion theory. Levy's 
theory was extended in Ito-McKean (27], (2.9) and (2.10). See also Chung's 
article [6], in which elementary derivations are given of a number of Levy's 
results. This research led to many deep theorems about the behaviour of the 
paths of diffusions, see for instance Williams [58] and Walsh's discussion 
of Williams' results in [53]. Another important application of excursion 
theory can be found in the construction of those strong Markov processes, 
which behave outside a fixed state ( or more generally outside a set D) 
as a given Markov process X. In this area the works of Dynkin [9], (10] 
and Watanabe [54], [55] are important. For excursions from a subset S, 
see the works of Maisonneuve [38], [39] and Getoor [16]. Getoor gives 
also an application to invariant measures, see also Kaspi (30] and (31]. 
Unlike occupation densities, which are also useful in the study of non
random functions, excursion theory takes its use from the Markov character 
of the random process. To make clear the ideas behind excursion theory, 
let X = (Xn)n~o be a homogeneous Markov chain with state space E. Let 
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6 CHAPTER 1. INTRODUCTION 

a EE be a given state. Denote fork= l, 2, ... by v! the time at which the 
Markov chain X visits the state a for the kth time: v! = oo if there are less 
than k visits to a. Suppose that a is a recurrent state, i.e. IP a [v1 < oo] = 1. 
Then the kth excursion Vi = (Vi(n))n?:D from a of the Markov Chain Xis 
defined as follows 

Vi(n) = { ;v!;+n 

Let Vo= (Vo(n))n?:D be defined by 

Vo(n) = { ;n 
for n < v1 
for n 2: v1 

It follows from the strong Markov property that the sequence of excursions 
(Vi)k:::: 1 is independent and identically distributed. It is clear that the 
process X can be reconstructed path wise from the sequence ( Vi )k?: 0 . 

For Markov processes with continuous time parameter the situation is 
more complicated. As an example take standard Brownian motion B = 
(Bt)t?:D and consider the excursions from state 0. Let Z be the set of zeros 
of B. The component intervals of [O, oo[\Z are called excursion intervals. 
Since Z is a topological Cantor set of Lebesgue measure O (see Ito-McKean 
[27], problem 5, p.29), with probability 1 there is no first excursion interval. 
Let I =]a, ,8[ be an excursion interval. The map Vi : [O, oo[-H--+ IR defined 
by 

for O ~ t < ,8 --- a 
fort 2: ,8--- a 

is the excursion made by B from O corresponding to the excursion interval 
I; ( = ,8 --- a is called the length of the excursion. Put TJ = ¢(a), where ¢ 
is the local time of B at zero. Ito proved in [25] (see also Meyer [41]) that 
the random distribution of points ( TJ, Vi) in [O, oo[ x U, I running through 
the excursion intervals and U being the space of excursions from 0, is a 
Poisson point process on [O, oo[ x U whose intensity measure is the product 
of Lebesgue measure A on [O, oo[ and some a--finite measure v on U. This 
means that the number of points (TJ, Vi) in a set [u, v[xU0 C [O, oo[xU is 
Poisson distributed with expectation (v --- u)v(U0 ) whilst the numbers of 
points ( TJ, Vi) in disjoint subsets of [O, oo[ x U are independent. Ito proved 
this result actually for excursions of a standard Markov process X from a 
regular point a, and he gave a characterization of the excursion law v of a 
recurrent extension of X, i.e. a strong Markov process, which behaves as 
X until the first hitting of state a. 

It is interesting to look at Ito's definition of a point process. Let (S, S) 
be a measurable space. A point function p :JO, oo[~ U is defined to be 
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a map from a countable set Dp cJO, oo[ into U. Meyer in [41J considers 
a point function p as a map defined for all points in JO, oo[ by putting 
p(x) = 8 for x EJO, oo[\Dp where 8 is an extra point added to U. Let now 
TI be the space of all point functions: JO, oo[f-+ U. Denote for p E TI and 
for E E B(]O, oo[) ® S by N(E, p) the number of the time points t E Dp 
for which (t,p(t)) EE. The Borel o--algebra B(TI) on TI is defined as the 
o--algebra generated by the sets {p E TI : N(E,p) = k }, EE B(JO, oo[) ® S, 
k = 0, 1, 2, ... Ito defined a point process as a (TI, B(TI))-valued random 
variable. For instance the point process of excursions from O of Brownian 
motion is the (stochastic) point function p defined by 

Dp = { r1 : I an excursion interval} and 

p(t) = VJ,t = TJ E Dp. 

This definition gives a clear picture of point processes such as they appear 
in excursion theory and that is presumably the reason why in studies about 
excursion theory this definition is always used, see for instance Watanabe 
[54J and Greenwood and Pitman [17J. Beside this definition of a point 
process as a stochastic point function, there exists a fairly general theory 
of point processes which views a point process as a discrete random mea
sure. See Neveu [44], Jagers [29J and Krickeberg [34J for point processes 
on a locally compact space and Matthes, Kerstan and Mecke [40J for point 
processes on a complete, separable metric space. This measure-theoretical 
approach to excursions makes it possible to use some important results 
from this theory, such as e.g. the Palm-formula, which were up to now not 
used in the literature about excursion theory. An example of the use of the 
Palm-formula can be found in the construction of a Markov process from 
a Poisson point process of excursions. Ito only remarks in [25J that this 
can be done by reversing the procedure of deriving the excursion process 
from a Markov process. In Ikeda & Watanabe [22J Brownian motion is con
structed from its excursion process using the general theory of stochastic 
processes ( compensators and stochastic integrals). And in [2J Blumenthal 
gives a construction of which he claims that it is the construction Ito had in 
mind; this construction consists of a pathwise approximation of the Markov 
process. The most recent and complete work along these lines can be found 
in Salisbury [47J and [48J. The construction that we will give is based on 
an application of the Palm formula and on the so-called renewal property 
of a Poisson point process of excursions. This construction has in our opin
ion the advantage that it makes clear why the constructed process has the 
Markov property and it displays the role of local time in the construction. 
The same method can be used to write down a formula for the resolvent of 
the constructed process. 
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We continue with the definition of a point process as a discrete random 
measure. Let X be a topological space with Borel u-algebra B(X). Roughly 
stated, a point process on X is a probability measure on the space oflocally 
finite point measures on (X, B(X)), or a random variable with values in the 
space of locally finite point measures on (X, B(X)) by which we identify a 
random variable with its distribution. From now on we will use the word 
point process only in this sense. In excursion theory the topological space 
Xis the (topological) product of the set of nonnegative reals [0, oo[ with the 
usual topology and the space of excursions U endowed with the Skorohod 
topology. For example the point process of excursions from 0 of Brownian 
motion is the random measure L { 8( rr ,Vr) : I an excursion interval} where 
8,, is the notation for the Dirac measure in x. Note that X = [0, oo[xU 
is a polish space. The main reference on point processes on polish spaces 
is the book [40] of Matthes, Kerstan and Mecke. The theory which they 
develop depends essentially on a fixed metric d on X, chosen in advance, 
such that the metric topology coincides with the topology of X and (X, d) 
is a complete, separable metric space. A nonnegative Borel measure on X is 
locally finite if it is finite on the sets in B( X), which are bounded in the sense 
of the metric d. This theory is not directly applicable to excursion theory. 
The point measures which arises in excursion theory are finite on the sets 
[a,b[x[( > £],£ > 0, (remember that ( is the length of the excursion) and 
the most interesting cases are those where the set [a, b[ x U has infinite mass. 
Note that the set [( >£]is dense in U. Thus it is not clear how to choose a 
metric don X for which the set of locally finite measure contains this family 
of point measures. Instead of trying to find such a metric, it seems more 
natural to define local finiteness directly in terms of the sets [ a, b[ x [ ( > £]. 
More general, let S be a family of Borel subsets of X. A nonnegative Borel 
measure µ on X is called S-finite if µ(A) < oo for every A E S and a 
point process P is an S-finite point process if the probability measure P 
is concentrated on the space of S-finite measures. The set of locally finite 
measures in the sense of Matthes, Kerstan and Mecke coincides then with 
the S-finite measures, S being the family of all open balls with finite radius. 
Point processes on locally compact spaces are probability measures on the 
set of Radon measures, which is the same as the set of S-finite measures 
with S consisting of the compact subsets. 

So far we did not discuss a measurable structure on the set J\lt+ ( S) of S
finite measures, which is of course necessary for the definition of probability 
measures on M+(S). A u-algebra on M+(S) should at least measure the 
mapsµ E M+(S) 1-,- µ(A), A E B(X). In Matthes et al. [40] the u-algebra 
on M+(S) (S being the family of open balls of finite radius) is defined in an 
abstract way as the u-algebra A generated by these maps. In the literature 
about point processes on locally compact spaces, on the other hand a u-
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algebra on the set of Radon measures is introduced in a topological way 
as the Borel er-algebra B(M+) corresponding to the vague topology on 
M+(S). It turns out that B(M+) = A in this case, so we have a definition 
of A as a Borel er-algebra corresponding to a nice topology on M+(S), 
which makes it possible to use the apparatus of topological measure theory. 
In section (2.1) we will define a topology on the set M+(S) of S-finite 
measures on an arbitrary polish space X. Let 1i(S) = {f E Cb(X) : 
:3 A E S : supp (f) c A} and let r( S) be the topology er(M+ ( S), 1i( S)) 
of pointwise convergence on 1i(S). If S is a family of open subsets of X 
filtering to the right such that S covers X and such that S contains a 
countable, cofinal subset, then it will turn out that (M+(S), r(S)) is a 
Suslin space whilst the Borel er-algebra on M+(S) coincides with A. At 
the end of the section we compare our results with the results of Harris in 
[19] and [20], who also defined a topology on some family of nonnegative 
Borel measures on a complete, separable metric space. 

Section (2.2) contains standard results for S-finite point processes, in 
particular the Palm-formula which is now a direct consequence of a general 
theorem on disintegrations of measures from topological measure theory. 
Further S-finite Poisson point processes and Cox processes are discussed. 
Section (2.3) is devoted to the study of a special class of S-finite Poisson 
point processes on X = [0, oo[ x U, S being the family of subsets Ix Un of X 
where I is a bounded, open sub-interval of [0, oo[ and (Un)n?:1 is a sequence 
of open subsets of U, increasing to U. It is clear that S is a filtering family 
of open subsets of X which covers X and has a countable, cofinal subse
quence. Denote by Mi(S) the set of S-finite point measures µ for which 
µ({t} x U) ~ 1,t 2: 0. An Ito-Poisson point process is a Poisson point 
process P on X with intensity measure A® v, A denoting Lebesgue measure 
on [0, oo[ and v a er-finite measure on U satisfying v(Un) < oo, n 2: 1. We 
choose the name Ito-Poisson point process, because the point process of ex
cursions, as constructed by Ito, is of this type. Following Ito, the measure 
vis called the characteristic measure of P. Further P(Mi(S)) = 1 for an 
Ito-Poisson point process P. The first important property of Ito-Poisson 
point processes is the renewal property which is treated here as a gener
alization of the property that a Poisson process is free from after-effects. 
The renewal property was already mentioned in Ito [25], but without a 
proof. We continue with Ito's characterization of Ito-Poisson point pro
cesses with a proof using "point process techniques". We end section (2.3) 
with a beautiful theorem of Greenwood and Pitman [17], which states that 
an Ito-Poisson point process P has an intrinsic time clock in the following 
sense: ifµ E M!(S), denote by ek1(µ),ek2(µ), ... the Uk-sequence ofµ, i.e. 
supp(µ) n ([0,oo[xUk) = (rk;(µ),ek;(µ))i>l where the enumeration is such 
that the sequence ( Tki (µ) )i> 1 is increasing in the order of IR. The sequence 
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ek = (6;);2:1 is an i.i.d. sequence on the probability space (MHS), P). 
The theorem of Greenwood and Pitman states that the time coordinates 
Tki can be reconstructed from the sequence ek1,ek2, ... if v(U) = +oo. We 
give a complete proof of a slightly more general version of this theorem, 
which was formulated in [17] as a theorem on stochastic point functions. 

In chapter 3 excursion theory is treated for Ray processes. We have 
chosen to treat excursion theory for Ray processes, since this class is in some 
sense the most general class of strong Markov processes, see Getoor [15] 
and Wiliams [59]. After a brief survey of Ray processes in section (3.1), we 
construct in section (3.2) the Ito-Poisson point process of excursions from 
a given state a of a Ray process Y. Since we want to include branchpoints 
in our discussion, we use a definition for excursions which differs a bit from 
Ito's definition, see also Rogers (45] who uses the same definition. We call 
excursion intervals the connected components of the complement in [O, oo( 
of the closed set of time points where the process hits or approaches the 
state a. Let (rk)k> 1 be a decreasing sequence of positive real numbers 
and let Uk = {u E-U : (u > rk}. Denote by Vin the nth excursion of Y 
with length exceeding rk. The strong Markov property implies that the 
sequence (Vkn)n>l is an independent, identically distributed sequence. Let 
Ta = inf{t > 0 ~ Yi = a or Yi- = a}. An application of the theorem of 
Greenwood and Pitman yields: 

- If IP a [ra = 0] = 1 there exists and S-finite Ito-Poisson point process 
N defined on (0, :F, IP a) whose [( > £]-subsequence is the sequence of 
excursions of Y of length greater than £. The characteristic measure v 
of N is the unique (modulo a multiplicative constant) measure on U of 
which the conditional distribution vlui is the probability distribution 
of ½1 ; vis a o--finite measure with total mass v(U) = +oo. 

- In the remaining case where IPa[ra = OJ = 0 there exists an i.i.d. 
sequence (en)n>1 of U-valued random variables on (0, :F, IP a) whose 
[,;- > £]-subsequ~nce of excursions of Y of length greater than ell. 

Note that it was not necessary for this construction to introduce ex
plicitly a local time at state a. Local time at state a will be discussed in 
section (3.3), in which we construct Markov processes from an S-finite Ito
Poisson point process. The basic idea is the following. Ifµ E M!(S), then 
supp(µ) can be considered as a countable, ordered subset (ua)aEJ(µ) of U 
where J(µ) denotes the projection on [O, oo[ of supp(µ) and where Ua = u 

iff ( o-, u) E sup(µ). Note that ( Ua )aEJ(µ) is not necessarily a totally ordered 
subset of U. Let L : U --+ [O, oo[ be a given, measurable function on U. 
Define for u E [O, oo[ 

B(u, µ) I:{L(ur): r E J(µ) n [0,o-]} 
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J µ(drdu)l[o,a](r)L(u) 

and 
C(µ) = UaEl(µ)[B(o--,µ),B(o-,µ)[. 

IfT = C(µ) then denote byµ the concatenation of the functions Ual[D,L(u.,.)[, 

o- E J(µ), that is 

µ : [O, oo[--+ E 

µ(s) = ua(s - B(o--, µ)) = J µ(drdv)(vl[o,L(v)[)(s - B(r-, µ)) 

where o- E J(µ) such that s E [B(o--, µ), B(o-, µ)[. In general we do not 
have that [O, oo[= C(µ). If B(o-, µ) is strictly increasing as a function of 
o-, then [O, oo[ is the disjoint union of C(µ) and the range of R of B(., µ). 
Let now P be an S-finite Ito-Poisson point process with charateristic mea
sure v. We want to construct Markov processes, so we have to assume 
that v satisfies the properties of the characteristic measures which arose by 
the construction of the Ito-Poisson point processes of excursions in section 
(3.2). But it is not necessary to assume that v(U) = +oo. In this context 
it is more natural to consider a family (Px)xEE of point processes, where 
Px is the S-finite Ito-Poisson point process P to which is added a first ex
cursion corresponding to a start from x, taking in account the transition 
mechanism which is contained in the measure v. For our construction we 
will follow the above described idea with the lifetime ( in the role of L. 
Considered as a function ofµ E Mi(S), B( r, µ) is a random variable on 
the probability space (Mi(S), Px)- The Poisson-property of the point pro
cess Px implies that the stochastic process ( B( r)),,.>o is a subordinator (i.e. 
the process (B(r)),,.>o has nondecreasing cadlag iealizations and station
ary independent inc;:-ements). In our construction we add a linear term 1 T 

to B(t), with I a nonnegative real parameter, which gives us the general 
form of a subordinator with the same Levy measure as B( T). The simple 
Markov property for the constructed process is proved in theorem (2.3.6). 
In theorem (2.3.8) we give an expression for the resolvent and in theorem 
(2.3.9) the strong Markov property is proved under a weak extra condition. 
In theorem (2.3.10) we give an explicit formula for the Blumenthal-Getoor 
local time at state a. We end this section with an example of the con
struction of a stochastic process from a more general point process than an 
Ito-Poisson point process. This construction is based on a Cox process and 
leads to a strong Markov process which is killed exponentially in the local 
time at a. 

In chapter 4 we give some applications of excursion theory. In the first 
two sections we derive explicit expressions for the characteristic measures 



12 CHAPTER 1. INTRODUCTION 

of the Ito-Poisson point processes of excursions from 0 attached to stan
dard Brownian motion and Brownian motion with constant drift. A natural 
problem is to describe all strong Markov processes which behave like a given 
Ray process Y until the first hitting or approach of a given state a. As far 
as we know the only complete solution for this problem is given in Ito and 
McKean [26) for the case ofreflecting Brownian motion on [0, oo[. In section 
(4.3.) we given an interpretation in terms of excursion theory of the pa
rameters which appear in its description. In section ( 4.4) we will construct 
a model for random motion on an n-pod En, that is a tree with one single 
vertex 0 and with n leggs having infinite length. This is the most simple 
example of random motion on a graph. We want to define a process on 
En which is Markovian with stationary transition probabilities. We should 
also like to have the process to behave like standard Brownian motion re
stricted to a half line, when restricted to a single leg. Using the results for 
reflecting Brownian motion from section ( 4.3) we are able to characterize all 
strong Markov processes which satisfy this description. Frank and Durham 
present in [12) for the first time an intuitive description of such a process 
for the case n=3. They considered the case of continuous entering from 0 
in a leg, which was chosen according to some given probability distribu
tion. The difficulty which arises in the construction of this process is that 
the process, when starting from 0, will visit 0 infinitely many times in a 
finite time interval. It is therefore not possible to indicate the leg which is 
visited first starting from 0. The construction that we will give is based on 
section (3.3); our model allows also jumping in a leg, stickiness at 0 and 
killing with a rate proportional to local time at 0. In section (4.5) we show 
how theory of section (3.3) can be applied to the construction of certain 
Markov processes with Blumenthal uses in [2] and for the construction of 
which he refers to Meyer [42). In this book only excursions from a single 
state a are treated. Recently this approach has been generalized by J.G.M. 
Schoenmakers to the description of excursions from a finite set of states. 



Chapter 2 

Point Processes 

A point process is a random distribution of points in some space X. The case 
where X is the real line, more generally a locally compact, second countable 
Hausdorff space or a separable metric space, has been studied extensively. 
One always assumes that there is a family S of subsets of X, each of which 
can contain only a finite number of points. If X is locally compact then 
S consists of the compact subsets, if X has a metrical structure then S 
consists of the bounded subsets of X. 

Mathematically the concept of a point process is formalized as follows. 
Let X be a topological space and let S be a family of open subsets of X. To a 
distribution Z of points in X we assign the point measure I:zEZ Dz, where Dz 
is the Dirac measure in z. The description with measures on X has greater 
flexibility than the description with subsets of X and is mathematically 
more convenient because of the richer structure of the linear topological 
nature of the space of measures. Moreover in the case of point processes 
with multiple points the approach via measures is more natural. So let 
M+ = M+(S) be the set of all nonnegative Borel measures on X which 
are finite on the elements of S. Denote by A the smallest u-algebra on M+ 
which measures the maps 

µEM+ f-+ µ(A), A E B(X). 

Let M .. = M .. (S) be the subset of M+ consisting of the point mea
sures on X. An S-finite point process on X is a probability measure on 
(M+, A) which is concentrated on M .. , or an M .. - valued random vari
able where we identify a random variable with its distribution. However, 
the measure-theoretic introduction of the u-algebra A is not quite satis
factory. There are several reasons to prefer a definition of A as the Borel 
u-algebra corresponding to some topological structure on M+ : a topology 
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on M+, which in:duces the corresponding narrow topology on the space of 
measures on ,M+, makes it possible to discuss weak convergence.of point· 
processes. Further, measurability properties of subsets ofM+ (for example 
M'•) can be derived from topological properties aud there is a powerful 
disintegraticm ,theorem for-measures on topological spaces. 

As an example, consider the set of nonnegative Borel measures on a lo
cally compact, second countable Hausdorff space X. Then Sis the, set .of all 
compact sets and M+ is the, set of all Radon measures. Let. CK be.the set· 
of all rea~valued, continuous.fUJ:1dionson X, with compact support, Endow 
M+ with the vague topology T = o:(M+, CK) of pointwise convergence on 
the elements .of CK : a net (µc,) in M+ converges vaguely to.µ E M · iff. 
f.la(f) 1--+ µ(f) for each f E Ck, where µ(f) is the functional~analyti<; nota~ 
tion for the integral of I with respect. to µ .. The vague topology renders M + 
a polish space, i.e. th:e vague topology on M+ is metrizable with a complete 
metric. The Borel O'•algebra8:on (M+, r) coin<;ides with the O'-algebra A 
generated by the mapsµ EM+ >--+ µ(A), A EB. The basic result on weak 
convergence. is Prohorov's theorem,. which• gives a. characterization of the 
relative compact subsets of (M,t-, r). The set of point me.asures M•• is a 
vaguely cl0sed subset ofM+. See for proofs Bourbaki [5] and Krickeberg 
[34}. 

In the literature about point. p.:rocesses on complete, separable metric 
spaces (X,p) one studies always point processes which.are finite on the 
family. S of bounded Borel subsets of X In excursion theory .we study point 
processes on a polish space U which are finite on some family S of open 
subsets. In this. we cannot. apply the theory of point. processes on ,complete, 
separable metric spaces since,,it,is,not clear whether,there exi::.ts a complete 
metric d for U such,that S coincides with the family ofdT bounded subsets 
of U. So, before we can study excursion theory we have to study the set 
Mt ( S) of S-finite Borel measures on a polish space U, S being some family. 
of open .subsets. 

We will ·first introduce some notations. Let X be a Suslin space with Borel 
O'-algebra B(X), A. Suslin space is a Hausdorff'topological space which i::. 
the image of a polish space under a continuous map, see Schwartz(49l, p.96. 
The space of nonneg11tive,, bounded i Borel. measures. on, X will. be denoted 
by Mt ( X): To have a s,uffil;ient:amount · oftontim10us real" valued functions 
on X, we will assume that X: is a,completely, regular space, i,e. for each 
x0 E X and eaoh open neighbourhood •U o£,x0 there is a contirn1ous function 
f: X >--+ [O, 1] such that; f(xo) == 1 and f is identical z.ero on X\U. The 
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space of bounded continuous functions on X will be denoted by Cb(X). 
To define a topology on the space of measures Mt (X), let :F be a class 

of real-valued functions. Assume that each f E :Fis µ-integrable for each 
µ E Mt(X). Then we will denote by a-(Mt(X), :F) the coarsest topology 
on Mt(X) for which the mapsµ E Mt(X) 1-; µ(!), f E :F, are continu
ous. If we take :F = Cb(X)) we get the narrow topology a-(Mt(X), Cb(X)) 
on Mt(X) which will be also denoted by r 1 (X). The topological space 
(Mt(X), r1(X)) is a Suslin space, see Bourbaki [5], p.6. 

Let G be an open subset of X. Equipped with the relative topology, 
G is a completely regular Suslin space (Schwartz [49] theorem 3, p.96). If 
f E Cb(X) then its restriction fia to G is element of Cb(G). Define 

1i(G) = Uia : f E Cb(X), supp(!) CG}. 

Denote by r2(G) the topology a-(Mt(G), 1i(G)). It is clear that r2(G) C 
r1(G). Note that equality does not necessarily hold. Indeed if (xn) is a 
sequence in G converging to a point x in the boundary of G, then the 
sequence of Dirac measures (8xJ converges in the space (Mt(G), r2(G)) 
while it diverges in the space (Mt(G),r1(G)). 

Proposition 2.1.1 Let X be a completely regular Sus/in space. If G is an 
open subset of X, then (Mt(G), r 2 (G)) is a Sus/in space. 

Proof. Since r2(G) C r1(G) and (Mt(G), r1(G)) is a Suslin space, it fol
lows that (Mt(G), r2(G)) is the image of a polish space under a continuous 
map. So we only have to prove that (Mt(G),r2(G)) is a Hausdorff space. 
For this it is sufficient that 1i(G) separates the points of Mt(G). 

So let O be an open subset of G and let x E O. Since G is completely 
regular, there exists an open neighbourhood V of x whose closure V is 
contained in O and a continuous function <Px : G 1-; [O, 1] such that <Px ( x) = 
1 and <Px is zero outside V. It is clear that 

<Px E 1i(G), XE 0, 

supp(</Jx) CV c O c G 

and 
andlo = V <Px· 

xEO 

Since any Suslin space is a Lindelof space, the family { <Px; x E O} has a 
countable subfamily ( <Pn )n>I with the same upper envelope lo, see Schwartz 
[49], pp. 103 and 104. Define for n ~ l 

gn = V <Pi• 
1:S:i:S:n 
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ff f6litb.ws:, that 1 (g11 ) is an· sequence in 'Jf( G), ,in.creasing;\ to--, 1 h, Hence, forc • 
v~'Jlle=.Mt_t (1) :we h'ave 

for:a1Jop.en subsetsO CG. By,amonotone:class,argument,we,m-aycondude
that:1f(G) ,sepanates -the p,oints of Mt(G): 

C6rollin-Y. Z:'1:2' Let X be a comp,letely,,regular Susl:in, space, IJG is an 
open':subset 'of X, then ?i(G) 'separates the poin:ts 1 of'Mf-(G):' 

Remarkh 2~ll3 A Hausd0rf£ ,tor>ological.spaee X, is sai<l to b:e avusin sp:ace 
if·it,is the image of a polish spa<se under-a,contin.uous bij~ctiore, see Schwarz 
[49],jp,.9:4; Ihs .clear, that amy Lusin, space is, a,&slin space,. Ifwe, assume 
that,X.is,itself.a p:olish space, then; (Mt(G),7i.(G)) is also,polishi and it 
follows that, (Mt ( G), T2 ( G)) is a Lusin .sp:ace. 

D~finition 2.1.4 Let S be a family of su.bsets ofX. S is .filtering, to the 
righ.t · with' respect to inclusion if; 

\:/A,B E S;3G ES: A c_G'andB CG. 

Il.eflmtion.2H~5,· bet '8- be,a.'f(!,,milgvo,fisttblli!U•·otf,Jr: A:subflpmtili/11) 1ofS<is. 
a 1cofi;nal s.ubset ·if 

\:/A ES,3DE'D :AcD. 

Definition.2:1.6 Let S be a family ofmeasurables.ubsets ofthe measurable 
space X. A measureµ EMt(X)-isS~fi'n-ifo ifµ(A) :< oo /¢,r, all.AES. 

Let:S lie a family of open subsets, ofcX~ which is filtering:,to the •right with 
respect to· inclusion. The space ofS,;_finite measures• will' be denoted· by 
M:t = M+'(S). We continue with a precise description,of'th!e space M+. 
Definefor all pairsA;B'ES,A,c B; the map,71"}1.B;by 

where Aµ,denotes the restrictioniofµ to A, Then 

is ·a:. projective system of Suslin spaces, Th:e projective limit: 

M, = M{Sj i= limw;rnMf(l,8); -
is~thesuospace ofthe productspa:ce illkEs-Mt(0.) !wHose::elements-µ. = (µA)· 
satisfy the relation µA = 11"AB(µB) whenever AC B. Ifµ EM+, then 
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(Aµ)AES is an element of M. To describe the relation between the spaces 
M+ and M, define the map ef; by 

Proposition 2.1. 7 Let X be a completely regular Sus/in space and S be a 
family of open subsets of X, which is filtering to the right. If S is a covering 
of X, then q; is a bijection of M+ onto M. 

Proof. Since S is filtering, LJAES B(A) is a ring of subsets of X. To show 
that every (µA)AES EM is ¢;-image of an elementµ EM+, we define the 
setfunction µ by 

µ: LJ B(A) 1-+ IR, µ(G) = µA(G) if GE B(A). 
AES 

One easily verifies that µ is unambiguously defined. To see that µ is rr

additive, let (Gn)n>l be a pairwise disjoint sequence in LJ B(A) with union 
also contained in l]B(A). Then LJGn E B(C) for some CE S. Hence every 
Gn E B( C). It follows that 

So µ is a finite, rr-additive measure on (X, LJ B(A)). Being an open cover of 
a Lindelof space, S has a countable subcover. It follows that B(X) is the 
rr-ring generated by the ring UB(A) and that a rr-additive measure µ on 
UB(A) has a unique extension to arr-additive measureµ EM+ on B(X), 
see Halmos [18), p. 54. It is clear that ¢;(µ) = (µA) and that ef; is one-to
one. 

On M we define the projective topology, the coarsest topology which makes 
all the projections 

continuous and is therefore the trace on M of the product topology on 
TIAEs Mt (A). Assume that S covers X. Denote by T = r(S) the coarsest 
topology on M+ which makes the bijection ef; continuous. Define 

1i(S) = {f E Cb(X) I ::JAE S : supp(!) CA}. 

Then 
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Let B be the Borel IT-algebra on (M+, r). There are other natural definitions 
of IT-algebras on M+ : define 

A1 = IT[µ EM+ 1-+ µ(B), BE B(X)] 

and 
A1 = IT[µ EM+ I-+µ(!), f E 1-£(S)]. 

Theorem 2.1.8 Let X be a completely regular Suslin space and let S be a 
family of open subsets of X which 

• is filtering to the right with respect to inclusion, 

• covers X and 

• has a countable cofinal subset. 

Then 

(i) (M+(S), r(S)) is a Suslin space and 

(ii) A1 = A2 = B(M+) 

Proof. Let 'D be a countable cofinal subset of S. It is clear that 'D is also 
filtering to the right and covers X. Then 1-£('D) = 1-£(S) and M+(D) = 
M+(S), hence IT(M+,1-£(D)) = 1T(M+,1-£(S)). Being a projective limit of 
of a countable family of Suslin spaces, M('D) is a Suslin space, see Schwartz 
[49], p. 111. Hence (M+(D), r(D)) is a Suslin space and (i) follows. To 
prove (ii) we first remark that the family of continuous maps 

µEM+ 1-+ µ(f),f E 1-£(S), 

separates the points of M+. Indeed, suppose that for µ, v E M+ 

µ(!) = v(f) 

for every f E 1-£(S). Let A ES. Every <p E 1-£(A) is the restriction to A of 
a function f E 1-£(S). Hence 

So by corollary (2.1.2) we have that Aµ= AV. It follows thatµ= v since A 
was arbitrarily chosen in S. Since M+ is a Suslin space, there is a countable 
subfamily Un)n>t of 1-£(S) such that the points of M+(S) are separated 
by the maps 1Pn ~ µ E M+(S) 1-+ µ(fn), By Fernique's lemma, the sequence 
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( 1Pn)n2:: 1 generates B, see Schwartz [49] p. 104, 105 and 108. It follows now 
that 

Let now f E H(S) and let supp(!) CA, AES. Since f is continuous, there 
exists a sequence of B(X)-stepfunctions, zero outside A and converging 
uniformly to f. Hence the mapµ E M+(S) 1-+ µ(!) is A 1 -measurable and 
it follows that 

A2 c A1. 

Let A E S and let O C A be open. As in the proof of proposition (2.1.1) 
we construct an increasing sequence Un)n>l in 1i(S) with supp(fn) C A 
and with supremum 10 . It follows that th~ map µ E M+ ( S) 1-+ µ( 0) is 
B-measurable. A monotone class argument yields the B-measurability 
of the mapsµ E M+(S) 1-+ µ(G) for all G E LJAEs B(A). Since S has a 
countable cofinal subset, every Borel set in X can be written as a countable 
union of elements of LJAES B(A) hence 

We may conclude that (ii) holds. 

From now on we will assume that the space X is a polish space. Let d be a 
metric on X such that the metric topology is the topology of X and (X, d) 
is a complete metric space. Let S be a fixed family of open subsets of X 
satisfying the conditions of theorem (2.1.8). Define 

S' ={GE B(X): ::IA ES: G CA}. 

Remark 2.1.9 (i) The topological space (M+, r) of S-finite measures 
on Xis a Lusin space, see Remark (2.1.3). 

(ii) Even for polish spaces it need not be true that a filtering family of 
open subsets, which covers the space, has a countable cofinal subset. 
For example, let X be the space of all pairs of non-negative integers 
with the discrete topology. Then X is a polish space. A set A is a 
member of the family S iff for all except a finite number of integers 
m the set {n: (m, n) EA} is finite. The family Sis filtering to the 
right and covers X. But S does not have a countable cofinal subset. 
Indeed, let (Akh>i be a sequence of subsets of X contained in S. For 
every k 2 1 we ~an choose an element Xk = (m, n) E X such that 
n 2 k and Xk (/:. Ak, The set B = {xk : k 2 1} is an element of Sand 
there is no Ak such that B C Ak. 
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Theorem 2.1.10 Let X be a polish space and let S be a family of open 
subsets of X satisfying the conditions of theorem {2.1.8}. Let (µ 0 ) be a net 
in M+ and µ E M+. Then the following statements are equivalent: 

(i) µ 0 -+ µ in (M+, r); 

(ii) limsup µ 0 (F) ~ µ(F) for all closed FE S' and liminf µ 0 (0) ~ µ(O) 
for all open O E S'. 

Proof. (i) ⇒ (ii) 
Let F be a closed subset of X, F C A for some A E S and let D be a 
countable dense subset of X. Define 

I= {(x, q) : x ED, q E :Q+, Bx(q) n F = 0} 

where 
Bx= {y: y E X,d(x,y) ~ q}. 

The set I is countable. For i = (x; q) EI, the closed sets F and Ac U Bx(q) 
are disjoint. Since X is a normal topological space, there are disjoint open 
sets U and V such that F C U and Ac U Bx(q) C V. By Urysohn's lemma 
there is a continuous function /; : X i-+ [O, 1] which = 0 on uc and = 1 on 
F. It is clear that supp(/i) c Un vc c A, so fi E 1-l(S). If y E FC, then 
there is an element i = (x, q) E J such that y E Bx(q), hence f;(y) = 0. It 
follows that 

lp = inf{/; : i E J}. 

Define 
9n = inf{/;1' ... ,f;n }, n ~ 1, 

where (in)n>l is an enumeration of I. It is clear that (gn) is a decreasing 
sequence in 1i(S) converging pointwise to lp. So for each n ~ 1 

limsup µ 0 (F) ~ limsup µ 0 (gn) = µ(gn), 
0/ 0/ 

hence 
limsup µ 0 (F) ~ µ(F). 

0/ 

Let O be an open subset of X, 0 CA for some AES. Let, as in proposition 
(2.1.1), (gn) be an increasing sequence of bounded continuous functions such 
that supp(gn) C A and lo = sup 9n. So for each n ~ 1 

liminf µ 0 (0) ~ liminf µ0 (gn) = µ(gn), 
0/ 0/ 

hence 
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This completes the proof of the implication (i) ⇒ (ii). 
(ii) ⇒ (i) 

21 

Let f be a bounded nonnegative continuous function on X with supp(!) C 
A for some A E S. Define for k ~ I the functions Uk, Vk : X 1-+ IR by 

and 
1 1 

Vk = klsupp(f) + L kl[!<.,j-J, 
i~:1 

the summations being finite summations since f is bounded. It is clear that 
Uk ~ f ~ Vk for all k ~ I and that Uk i / and Vk ! /. Hence 

lim)nf µa(uk) > L ¼ li~inf µa([f < ¾] n A) 
i~l 

1 . 
> L kµ([f < i-l n A) 

i~l 

µ(uk) 

and analogously 
limsup µ 0 (vk) ~ µ(vk), 

a 

It follows that 

Taking limits fork - oo we get 

which completes the proof of the implication (ii) ⇒ (i). 

Definition 2.1.11 Let X and S be as in theorem {2.1.8). A measureµ E 
M+ is an S-finite point measure if 

VGES':µ(G)EIN. 

An S-finite point measure is called simple if 

Vx E X,µx = µ({x}) E {O, l}. 
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The set of S-finite point measures will be denoted by M .. = M .. (S) and 
the set of simple S-finite point measures by M' = M'(S). 

Proposition 2.1.12 Let X be a polish space and let S be a family of open 
subsets of X satisfying the conditions of theorem (2.1.8). Then M .. is a 
closed subset of (M+, r). 

Proof. Let (µ 0 ) be a net in M .. converging to µ E M+. Take x E supp(µ) 
and let U be an open neighbourhood of x, U E S'. Then by proposition 
(2.1.10) 

0 < µ(U) ~ liminf µ 0 (U). 

Since µ 0 (U) E IN, it follows that 

liminf µ 0 (U) ~ l. 

Consider now a decreasing sequence (Un)n>l of open neighbourhoods of x 
in S' such that Un ! { x} and Un+l C Un f;r every n ~ 1. From Urysohn's 
lemma follows the existence of a sequence (hn) in rl(S) such that for every 
n~l 

Then 

and 

It follows that supp(µ) is a discrete set and therefore for n sufficiently large 

Proposition (2.1.10) implies that 

µ(Un)~ limsup µ0 (Un) > limsup µ0 (Un) 
a a 

Hence for n sufficiently large 

and it follows that µ E M ... 
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Let U1, ... , Un be a finite sequence of open subsets of X such that U1, ... , Un E 
S' and let k1, ... , kn E IN. Define 

Vu,, ... ,Un;k,, ... ,kn ={µEM .. : µ(U;) = µ(U;) = k;, i = 1, ... , n}. 

It follows from proposition (2.1.10) that the map 

is lower semicontinuous (resp. upper semicontinuous) for each open (resp. 
closed) subset G C X in S'. Hence 

Vu,, ... ,Un;k,, ... ,kn = M .. n{µ: µ(U;) > k;-1 and µ(U;) < k;+i, 1 :s; i :s; n} 

is open in M ... Let U be a countable base for the topology of X consisting 
of open subsets with closure in S' (see Appendix Al) and let A1 ,A2, ... be 
an increasing, countable cofinal subfamily of S. Define for k.n 2'. 1 

where the union is taken over all finite sequences U1 , ... , Un in U whose 
elements are contained in Ak. It follows that Ok,n is open in M .. and that 
the set 

{µEM .. : µ(Ak) = n} = 

{µ E Mu : µ(Ak) > n - l}\{µ EM .. : µ(Ak) > n} 

is a Borel subset of M ... So 

00 00 

M•= n LJ{µEM .. :µ(Ak)=n}nOk,n 
k=ln=l 

is also a Borel subset of M .. and we have derived the following proposition: 

Proposition 2.1.13 Let X be a polish space and let S be a family of open 
subsets of X satisfying the conditions of theorem (2.1.8). Then M• is a 
Borel subset of (M+, r). 

In chapter 3 we will be interested in a special class of point measures on a 
product space. Let X be the product T x U of the halfline T = [O, oo[ with 
the usual topology and a polish space U. The space X with the product 
topology is a polish space. Let (Uk)k?:. 1 be an increasing sequence of open 
subsets of U, Uk j U. Define 

S = { I x G : I C T open and bounded, G C U open 
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and G C Uk for some k 2'. 1}. 

This family S satisfies the conditions of theorem (2.1.8). Denote by M+ 
the set of S-finite measures on (X,B(X)) and by M! the set of simple 
S-finite point measures µ satifying the condition 

Yt E T : µ( { t} x U) ~ l. 

Proposition 2.1.14 Let X be the product T x U of the halfiine T = [O, oo[ 
with the usual topology and a polish space U. Let 

S = {Ix G: IC T open and bounded, G C U open 

and G C Uk for some k 2'. l}. 

Then M! is a Borel subset of(M+,r). 

Proof. The proof is analogous to the proof of proposition (2.1.12) and is 
therefore omitted. 

Remark 2.1.15 (i) If X is a locally compact, second countable Haus
dorff space and S the family of compact subsets of X, then M" is a 
dense 06 set in M ... 

(ii) Let (X, d) be a complete, separable metric space and let S be the 
family of all bounded open subsets of X. The family S satisfies the 
conditions of theorem (2.1.8): a countable cofinal subset of S is the 
sequence of open balls (Bn(z))n>l with radius n E IN and center a 
fixed point z E X. Matthes, Kerstan and Mecke define in [40), section 
(1.15) a metric p on M ... It turns out that (M .. , p) is a complete, 
separable metric space and the metric topology on M .. coincides 
with the relative topology on M .. as a subspace of (M .. , r). 

(iii) Let (X, d) be a complete, separable metric space and x00 be a fixed 
point of X. Harris defines in [19] a (nonnegative Borel) measureµ on 
X to be x00-finite if 

(a) µ(X\ V) < oo for each open set V containing X 00 and 

(b) µ( { X00 }) = 0. 

Let M be the class of x00-finite measures. Define for t > 0 

The sets Et are closed and have disjoint boundaries. It is clear that 

µEM-<===> 'c/t > 0 : µ(Et)< oo. 
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Harris introduced in [19] a topology on M, which we describe now. 
Denote for t > 0 by L; the Levy-Prohorov distance on Mt(Et), 
that is a metric on Mt(Et) such that (Mt(Et), L;) is a complete, 
separable metric space and the L;-topology on Mt(Et) is the narrow 
topology <T(Mt(Et), Cb(Et)). Ifµ, 11 EM put 

100 e-t Lt(µ, 11) 
L(µ, 11) = l L ( ) dt, 

0 + t µ, II 

where Lt(µ, 11) denotes the L; distance between the restrictions ofµ 
and II to Et. The integral converges and L is a metric for M such that 
(M, L) is a complete, separable metric space. 

Consider now the polish space X\{x00 }. Let S be the family of open 
subsets 

1 
At= {x E X\{x00 }: d(x, x00 ) > - }, t > 0. 

t 
Then S satisfies the conditions of theorem (2.1.8). Denote by µ the 
restriction ofµ E M to X\{x00 }. Then µ is a S-finite measure on 
X\{x00 }. 

Proposition 2.1.16 The map 

X : µ E M i-+ µ E M+ 

is a continuous bijection from (M, L) on (M+, r). 

Proof. It is clear that x is a bijection. To see that x is continuous, 
let f E 1i and let (µn) be a sequence in M converging to µ, i.e. 
lirun_, 00 L(µn, µ) = 0. Then supp(!) C At for all t sufficiently small. 
It follows that there exists a t > 0 such that supp(!) C At and 
µ( {x EX : d(x, x00 ) = ¼}) = 0. From Harris [19], theorem (2.2) we 
conclude that 

lim µn(f) 
n->OO 

So for each f E 1i the map 

µEM i-+ (x(µ))(f) 

is continuous, which implies the continuity of x- Ifµ, 11 EM+ put 
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Then (M+, d) is a complete, separable metric space. Let rd denote 
the d-topology on M+. From the foregoing proposition it follows that 
r C rd. 

Proposition 2.1.17 Let (µn) be a sequence in M+ and µ E M+. 
Then 

r- lim µn = µ {=::> d- lim µn = µ. 
n--+oo n--+oo 

Proof. The implication (-¢=) holds since r C rd. So assume that 

r- lim µn = µ. 
n-+OO 

If 
1 

µ({x E X\{x 00 }: d(x,xoo) = t}) = 0, 

then µ(8Et) = 0, where 8Et is the boundary of Et. Identifying µ 
and x(µ), it follows that the restrictions of (µn) to Et converge in 
(Mt(Et), L;) toµ, see Topsoe [50], p.40. From Harris [19], theorem 
2.2 we may conclude that d-limµn = µ. 

So for the topologies r and rd we have: 

(M+, rd) is a polish space, 

r C rd, 
1' 1'd 

µn ---+ µ {=::> µn ---+ µ. 

One cannot conclude from this that r =rd.Take for instance (X, r) as 
in example E of Kelley [33], p.77 and take for rd the discrete topology 
on X. It is clear that r and rd satisfy the above conditions and that 
r =f. rd. 

2.2 Poisson point processes 

Let X be a polish space and let S be a family of open subsets of X which 
is filtering to the right with respect to inclusion. Assume that S has a 
countable cofinal subset and that S covers X. Denote by M+ the Lusin 
space of nonegative Borel measures on X which are finite on S. Let P be a 
probability measure on (M+, B(M+)). For a finite sequence B 1 , ... , Em in 
B(X) the finite-dimensional distribution PB,, ... ,Bm is defined as the image 
of P under the map 

µEM+ ~[µ(Bi), ... , µ(Em)] E ([0, oo]r. 
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Note that it is a consequence of theorem (2.1.8) that probability measures 
on M+ with the same finite-dimensional distributions are identical. The 
Laplace transform P of P is defined by 

P(f) = f P(dµ) exp[- f J(x)µ(dx)] 
JM+ lx 

where f runs through the cone B(X)+ of nonnegative, measurable func
tions. The momentgenerating functions of the finite-dimensional distribu
tions PB 1 , ... ,Bm are determined by P as follows from 

j u1 1 • • -u~mpB 1 , ... ,Bm(dx1 · · ·Xm) = F(- f ln(ui)lB;), 
1 

where O < ui :=; 1, i = 1, ... , m. So Pis uniquely determined by its Laplace 
transform. The intensity measure i = ip of P is the Borel measure on X 
defined by 

i(B) = f P(dµ)µ(B), BE B(X). 
JM+ 

We say that P has S-finite intensity if i E M+. Denote by p the Campbell 
measure of P, that is the measure on M+ x X defined by 

f F(µ,x)p(dµ,dx) = f P(dµ) f µ(dx)F(µ,x). 
JM+xx JM+ lx 

It is clear that p is a a--finite measure if the intensity measure ip is S
finite. The projection p(M+ x .) of p on X is the intensity measure ip. If 
the intensity measure ip is S-finite, then a general theorem on disintegra
tions of measures (see Bourbaki [5], section (2.7)) implies the existence of 
a measurable family of probability measures (Px)xEX on M+ such that 

f Fdp = 
JM+xx 

f P(dµ) f µ(dx)F(µ, x) 
JM+ lx 
f i(dx) f Px(dµ)F(µ, x) 
lx JM+ 

for every measurable, nonnegative function F : M+ x X ,_.IR.This formula 
is called the Palm formula and the probability measures Px on M+ are 
called the Palm measures of P. From the Palm formula it follows that P is 
completely determined by the intensity measure ip and the Palm measures 
( Px )xEX. A straightforward calculation yields a formula for the Laplace 
transforms of the Palm measures Px. Let f, g E B( X)+, then 
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Definition 2.2.1 A probability measure P on M+ will be called an S-finite 
point process with phase space X (or an S-finite point process on X or a 
point process if the phase space and the family S are clear from the context) 
if 

P(M .. (S)) = l. 
A point process P is simple if 

P(M•(S)) = l. 

As usual in probability theory, an M+-valued random variable N will also 
be called a (simple) point process if its distribution on M+ is so. 

Definition 2.2.2 A point process is said to be free from after-effects if for 
every finite sequence B1, ... , Bm in B(X) we have 

where PB, ® · · · ® PBm is the product of the measures PB, on IN. 

Definition 2.2.3 A Poisson point process with intensity measure v is a 
point process P which is free from after-effects and whose one-dimensional 
distributions PB, B E B(X), are Poisson distributions with parameter v( B), 
i.e. ifv(B) < oo 

If v(B) = oo then PB= 800 • 

Proposition 2.2.4 Let P be a Poisson point process with S-finite intensity 
measure v. Then the Laplace transform P and the Palm-measures Px are 
given by 

?(!)=exp[-L v(dx)(l - e-f(x))], f E B(X)+ 

and 

Px = 6x * P, 

where 6x denotes the Dirac measure on M+ in the point flx. 

Proof. Follows from standard calculations. 

Proposition 2.2.5 For every v E M+(S) there exists a unique S-finite 
Poisson point process on X with intensity measure v. 
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Proof. Let A E S. The restriction A II of II to A is a finite measure on 
(A,B(A)). So there is a unique {A}-finite Poisson point process AP on A 
with intensity measure All, see Matthes et al. [40], section (1.7). The prob
ability measure AP is defined on (Mt(A), B(Mt(A))), where B(Mt(A)) 
is the Borel a--algebra on (Mt(A), r2(A)), see section (2.1) for the defini
tion of the topology r2. 
Let A, BES, AC B and let 7rAB be the projection of Mt(B) on Mt(A) 
as defined in section (2.1). The image 1rA8 ( 8 P) of (8 P) is a probabil
ity measure on (Mt(A), B(Mt(A))). A straightforward calculation gives 
7rAB(BP)"= AF. So 7rAB(BP) =AP and it follows that 
(Mt(A), B(Mt(A)),A P, 7rAB) is a projective system of probability spaces. 
Since S has a countable cofinal subset, it is a consequence of Bochner's the
orem (see Bochner [4], p. 120) that there exists a projective limit P, which 
is a probability measure on (M+, B(M+). An easy calculation yields that 
P is the S-finite Poisson point process on X with intensity measure 11. 

Denote by Pv the S-finite point process on X with intensity measure 
11 E M+. Note that Pv is a simple point process iff the intensity measure 11 

is a diffuse measure (i.e. 11( { x}) = 0 for every x E X). The family of point 
processes {Pv; 11 EM+} is a measurable family, i.e. for every GE B(M+) 
the map II EM+ f-> Pv(G) is measurable. Let V be a probability measure 
on (M+, B(M+)) and let Q be the probability measure on (M+, B(M+)) 
defined by 

Q = 1 V(dv)Pv. 
M+ 

It is clear that Q is a point process on X, which is simple iff V is con
centrated on the diffuse measures in M+. Such a process is called a Cox 
process. 

Proposition 2.2.6 Let Q be a Cox process as defined above. The intensity 
measure iQ, the Laplace transform Q and the Palm measures (Qx)xEX of 
Q are given by 

= iv(B) 
= V(l - e-f) 

= 8 * J Vx(dv)Pv 

,BE B(X), 
,JEB(X)+, 
,x EX, 

where bx denotes the Dirac measure on M+ in the point 8x. 

Proof. The formulas for iQ and Q follow directly from the definitions. 
To prove the formula for Qx, let F : M+ x X f-> IR be a measurable, 
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nonnegative function. Then 

J Q(dµ) J µ(dx)F(µ, x) J V(dv) J Pv(dµ) J µ(dx)F(µ, x) 

= j V(dv) j v(dx) j(8 * Pv)(dµ)F(µ, x) 

J iv(dx) J Vx(dv) J Pv(dµ)F(µ + Dx, x) 

J iQ(dx) j(8 * J Vx(dv)Pv)(dµ)F(µ, x) 

from which the result follows. 

2.3 Ito-Poisson point processes 

Let X be the product T x U of the halfline T = [O, oo[ with the usual 
topology and a polish space U. The Borel o--algebras on T and U will be 
denoted by BT and U. Endowed with the product topology X is a polish 
space and its Borel o--algebra B(X) is identical to the product o--algebra 
BT @U. Let (Uk)k?, 1 be an increasing sequence of open subsets of U which 
covers U. Define 

S ={A: A= Ix G, IC T open and bounded, 

G C Uopen and G C Uk for some k 2: 1}. 

Then S is a family of open subsets of X which is filtering to the right 
with respect to inclusion, contains a countable cofinal subfamily and covers 
X. The topological space of S-finite measures on X will be denoted by 
(M+, r), see section (2.1). The Borel o--algebra g on M+ coincides with 
the o--algebra generated by the family of maps {PA : A E B(X)}, where PA 
is the map PA : v E M+ f--4 v(A). The family (9)t?,O of sub-o--algebras of 
g defined by 

9t = o-(pA,A E B(X),A C [O,t] x U) 

is a filtration on (M+, 9). A measurable map 't/J : M+ f--4 T is called 
Wt)-adapted if ['t/! ::; t] E 9t for every t E T. 

Definition 2.3.1 Let U be a polish space and let (Uk)k>i be a sequence of 
open subsets increasing to U. Let T = [O, oo[. An Ito-Poisson point process 
on U is an S-finite Poisson point process P with phase space X = T x U 
and intensity measure µ = ,\@ v where ,\ denotes the Lebesgue measure on 
T and v a nonnegative Borel measure on U, which is finite on the sequence 
(Uk), Following Ito {25], v is also called the characteristic measure of the 
Ito-Poisson point process P. 
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Remember from section (2.1) that Mi is the (measurable) set of simple 
S-finite point measures µ satisfying the condition 

Vt E T;µ({t} x U):::; 1. 

Proposition 2.3.2 Let U be a polish space and P an S-finite Ito-Poisson 
point process on U with characteristic measure v. Then 

P(Mn = 1 

Proof. Since the intensity measure µ = A 0 v of Pis diffuse, P is a simple 
point process on X. Define the maps 'lrk, k 2: 1, by 

'lrk : M· f---+ Mj,., 7rk(µ) = [BE BT f---+ µ(B X Uk)], 

where Mj,• denotes the space of point measures on T which are finite on 
all bounded subintervals of T. The maps 'lrk are P-a.e. defined, measurable 
maps on M+. The measure Pk = 'lrk (P) is the Poisson point process on 
T with intensity measure ik = v(Uk)A. Since the intensity measure ik is 
diffuse, the point process A is a simple point process. It follows that 

P(1r; 1(Mj,•)) = P(M•) = 1 

and 

which compietes the proof. 

Let ¢ : M+ f---+ T be a measurable map. Define the transformation R4> : 
M+ f---+M+ by 

f R4>(µ)(d<T, du)f(<T, u) = 
JTxU 

f µ(d<T, du)f(<T, u)l[o,4>(µ)](<T), f E B(X)+-
JTxU 

For <T E T we define the map ta by 

ta: (r,v) E]<T,oo[xU f---+ (r- <T,v) EX. 

Finally we define the transformation T4> : M+ f---+ M+ by 

{ T4>(µ)(d<T, du)f(<T, u) = { µ(d<T, du)f o t</>(µ)(<T, u)l]¢(µ),oo[(<T) 
JTxU JTxU 

f µ(d<T, du)f(<T - ¢(µ), u)l]</>(µ),oo[(<T). 
JTxU 

We will write simply Rs and Ts if¢ is the constant mapµ EM+ f---+ s. 
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Lemma 2.3.3 Let <P : M+ - T be a measurable map. The above defined 
maps R</> and T<f> are both measurable. 

Proof. Define fork, n = 1, 2, ... 

and 

<Pn = L(k + l)rn1Akn· 
k 

The sequence of measurable step functions ( <Pn )n> 1 is a strictly decreasing 
sequence, which converges pointwise to </J. It is clear that for every bounded 
continuous function f : X - IR with support contained in some element of 
S and for everyµ EM+ 

and 

It follows that the sequences (T<f,,.)n;?:l and (R<t>,.)n;?:l converge pointwise to 
T<f> and R<f>, Let A E B(X) andµ EM+. Since 

(R<t>,.µ)(A) = L lAkn(µ)µ(A n [O, (k + I)rn[xU) 
k 

and 
(T<f,,.µ)(A) = L lAkn(µ)µ((t(k+l)2-n)- 1(A)), 

k 

it is clear that the mapsµ EM+ - (R<1>,.µ)(A) andµ EM+ - (T<1>,.µ)(A) 
are measurable maps which implies the measurability of the transformations 
R<l>n and T<f>,.· 

Theorem 2.3.4 (Renewal property). Let </J : M+ - T be a measurable 
map and let P be an Ito-Poisson point process with characteristic measure 
v. If <P is (9t)-adapted, then R</> and T<f> are independent M+ -valued random 
variables on (M+,Q,P) and T<t>(P) = P. 

Proof. Consider first the case that <P is a stepfunction, say 

<P = Ls;lA,,Ai E 9s,• 
i;?: 1 
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Since P is free from after-effects 

J P(dµ)exp[-(R4>µ)(f)- (T4>µ)(g)] 

= ~ J P(dµ)lA;(µ)exp[-(R,;µ)(f) - (T.;µ)(g)] 

' 
= ~ J P(dµ)lA,(µ) exp(-(R1 ,µ)(f)) J P(dµ) exp(-(T.,µ)(g)) 

' 
for f, g E B(X)+ · Also for every s ~ 0 we have: 

J P(dµ)e-(T,µ)(g) 

Hence 

exp[-100 d<r j v(dµ)(l - e-g(u-s,µ))] 

exp[-100 d<r j v(dµ)(l - e-g(u,µ))] 

P(u). 

33 

J P(dµ)exp[-(R4>µ)(f)-(T4>µ)(g)] = J P(dµ)e-(R<1>µ)(J)fa(g) 

which completes the proof of the theorem for stepfunctions. The general 
case will follow by approximating <p from above by a sequence of stepfunc
tions as in the proof of lemma (2.3.3). 

Remark 2.3.5 Without further assumptions, it is not possible to say more 
about Rq,. As an example, let P be an Ito-Poisson point process on X with 
S-finite characteristic measure v. Let Uo E S be a subset of U such that 
v(U0 ) > 0. Define the map ¢ : M! I--!- T by 

¢(µ) = min{t ET:µ( {t} x Uo) = l}. 

Since 
{µ E M1: ¢(µ) ~ t} = {µ E M1: µ([0,t] x Uo) ~ 1}, 

µ is a (9t)-adapted map on M!. For f E B(X)+ 

(R4>(P)1 

= J P(dµ)e-(R<1>µ)(J) 

= j P(dµ) j µ(drdv)l[q,(µ)=T)e-(Rrµ)(f) 
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= 10() dr l v(dv) J P(dµ)l[¢(µ+b(r,v))=r]e-(Rr(µ+b(r,v)))(f) 

= 10() dr l v(dv) j P(dµ){l[¢(µ)=r] + 1[¢(µ)>r]lu0(v)}e-(Rrµ)(f)-f(r,v) 

= 10() dr lo v(dv) J P(dµ)l[µ([O,r]xUo)=O]e-µ(110,rJxu\uof)-J(r,v) 

= 10() dr lo v(dv)e-rv(Uo)-J(r,v) J P(dµ)e-µ(l[o,r]XU\Uon, 

Let Qr be the image of the probability measure v(. I Uo) under the map 
u E U 1-+ D(r,u) EM+. It is clear that for f E B(X)+ 

Qr(!)= _1_1 v(dv)e-f(r,v)_ 
v(Uo) u0 

Let Sr be the image of the probability measure P under the map µ E 
M+ 1-+ l[o,r]xU\Uoµ E M+. It is easy to see that Sr is the Poisson point 
process with intensity measure l[o,r]xU\Uo x (A 0 v). It follows that 

and 

(R¢(P))1J) = 10() drv(Uo)e-rv(Uo)(Jr(f)Sr(f) 

10() drv(Uo)e-rv(Uol(Qr * Sr )1J) 

Definition 2.3.6 A measure µ E M+ is called recurrent if 

Vt> 0, Vk 2:: 1 : µ([t, oo[x Uk) > 0. 

A point process P is called recurrent if P(Mr) = 1 where Mr is the set of 
recurrent measures. 

Note that an Ito-Poisson point process with characteristic measure v is 
recurrent if v(Uk) > 0 for every k 2:: 1. 
Let µ E M! n Mr. For every k 2:: 1 the support of the restriction kµ of 
µ to T x Uk is a countable infinite set whose projection on T has finite 
intersections with bounded subintervals of T. So we can write 
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where tk; ET, tk; < tk,i+1 and Uki E Uk, i 2: l. 
the maps Tki, (ki and (J'ki on Mi n Mr by 

For i, k = 1, 2, ... define 

Tk;(µ) tki, 
6;(µ) Uki, 

if i = 1 { Tk1(µ) 
Tk;(µ) - Tk,i-1(µ) if i > 1 

All these maps are measurable. Denote by (J'k and (k the vectors ((]'kl, (J'k2, ... ) 
and (61,(k2, ... ), k 2: l. 

Theorem 2.3. 7 (Ito). Let U be a polish space and ( Uk h> 1 be a sequence 
of open subsets increasing to U. Let P be an S-finite, -i"ecurrent, simple 
point process on X = T x U and let v be a measure on (U, U) such that 

0 < v(Uk) < oo,k 2: l. 

Then, P is the Ito-Poisson point process on U with characteristic measure 
v iff for each k 2: 1 

(i) (lki)i~l is a sequence of iid variables with distribution 

v(A n Uk) 
P[6; EA]= v(Uk) , A EU; 

(ii) ((J'ki)i~l is a sequence of iid variables with distribution 

P[(J'ki > t] = e-tv(Uk), t > O; 

(iii) (J'k and (k are independent vectors. 

Proof. Let P be the Ito-Poisson point process on U with characteristic 
measure v. Then fork 2: 1, >. > 0 and A EU we have 

j P(dµ)(e->.uki lA(61))(µ) 

= j P(dµ) j µ(d(J'du)luk 1(µ)x(AnUk)((J', u)e->.u 

= fo 00 
d(J' j v(du) j P(dµ)l{ukl(µ+o(u,u))}x(AnUk)((J', u)e->.u 

by an application of the Palm formula and proposition (2.2.4) 

= fo 00 
d(J' j v(du) J P(dµ)lAnuk(u)l{ukl>u}e->.u 

= v(A n Uk) laoo d(J'e-uv(Uk)->.u 

_ v(A n Uk) v(Uk) 

v(Uk) >. + v(Uk)' 
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Let now k, n 2'.: 1, >.1, ... , An > 0 and A1, ... , An EU. Then 

J P(dµ) IT (e->-,ab lA, ((ki))(µ) 
i=l 

= JP( dµ )( e->-,akl lA, ((k1) )(Rak,µ) IT ( e->-;ak,,-, lA/(k,i-i) )(Tak1 µ) 
i=2 

n-1 

= J P(dµ)(e->-1ak1 lA, (61))(µ) J P(dµ) II (e->-,+1ak, lA,+1 ((ki))(µ) 
1=1 

by an application of theorem (2.3.4) 

= IT J P(dµ)(e->-.ak11A,(61))(µ) 
i=l 

by mathematical induction 

IT v(A n Uk) v(Uk) 
i=l v(Uk) Ai+ v(Uk) · 

It follows that (i), (ii) and (iii) hold. 
To prove the converse, let f E B(X)+-

F(f) = J P(dµ)e- f fdµ 

lim J P(dµ)e - fr0 .•1xuk fdµ 
k,t--+oo 

n 

exp(-Lf(ti,ui))+Ph1 >t]} 
1 

= lim{I: e-v(Uk)t r dt1 it dt2 .. · it dtn 1 v(du1) 
n=l lo t, tn-1 Uk 

···1 v(dun)exp[-tf(ti,ui)]+e-v(Uk)t} 
Uk 1 
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Hence P is the Ito-Poisson process with characteristic measure v. 

Theorem 2.3.8 (Greenwood & Pitman). Let N be an M+-valued random 
variable defined on some probability space (0,.1",IP). Let N be an Ito
Poisson point process with characteristic measure v. IJO < v(Un) < oo, n 2:: 
l, and v(U) = oo then 

lim (Ul )N([O, t] x Un)= t 
n-+oo V n 

uniformly on bounded t-intervals IP-a.e .. 

Proof. Fix t 2:: 0 and define for n 2:: 1 

.1"n = o-(w E O i-+ Nw([O,t] x Uk),k 2:: n). 

The random variables N([O, t] x Uk) are integrable with expecations given 
by 

IEN([O, t] x Uk) = tv(Uk). 

A straightforward calculation yields 

v(Un) 
IE(N([O, t] X Un I Fn+i) = (U N([O, t] X Un+1). 

V n+l 

Therefore C,(ii-n)N([O, t] xUn), .1"n)n~1 is a reversed martingale on (0, .1", IP). 

It follows that ( v(ii'n) N([O, t] x Un) converges a.s. and in L1 to a limit which 
is a random variable measurable with respect to :Foo = nn>l .1"n. See Neveu 
[43]. Since for >. > 0 as n - oo -

1 ~ 
exp(->. v(Un) N([O, t] X Un)) = exp{tv(Un)(l - e- v(Un))} - e->.t, 

we may conclude 

lim -(1 N([O, t] x Un)= t a.s. and in L1. 
n-+oo V Un 

The statement of the theorem now follows from a general lemma on the 
convergence of positive non-decreasing functions for which we refer to Ap
pendix A3. 

Let N be as in theorem (2.3.8). For w E n such that Nw E Mi n Mr we 
write Tk;(w),6;(w) and <Tk;(w) for Tk;(Nw),6;(Nw) and <Tk;(Nw), see the 
definitions preceeding theorem (2.3.7). Denote for k > j by ni;(w) the 

index at which the i th point of type Ui in the vector {k ( w) = {k ( N w. If 
N is an Ito-Poisson point process, then Tk;(w),6;(w) and O"k;(w) are IP-a.e. 
defined random variables. 
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Corollary 2.3.9 Under the assumptions of theorem (2.3.8} we have 

lim -(1 )Tkji(w) = Tji(w) IP - a.s .. 
k->oo I/ Uk 

Proof. By definition of Tkji(w) we have 

Nw([O, Tji(w)] X Uk)= Tkji(w). 

The corollary implies that an Ito-Poisson point process N can be con
structed from (Uk, ~k) whenever v(U) = +oo; the times Tki at which the 
~ki occur, are already determined by (Uk,~k)- We will put this in a more 
general framework. 
Let Vi = (Vii )j2'.l be a sequence of Uk-valued random variables on (n, F, IP), 
k=l,2, .... 

Definition 2.3.10 The sequence (Uk, Vih2:1 is called a nested array if 

(i) Vi is an iid sequence, and 

(ii) for j < k, ½ is the Uj-subsequence of Vi consisting of those terms 
which are in Uj, 

See Greenwood f3 Pitman {17]. 

From theorem (2.3.7) it is clear that (Uk,~kh>1 is an example of a nested 
array. Ifµ is a measure on (U,U) and if EE U-is such that O < µ(E) < oo, 
then µ IE denotes the measure on U defined by 

µ(An E) 
µ IE (A)= µ(E) ,A EU. 

Proposition 2.3.11 If (Uk, Vih>1 is a nested array on the probability 
space (O,F,IP), then there exists~ unique measure v on (U,U) such that 

v(U1) = 1 and v lu1 = Vj, 

where Vj denotes the probability distribution of½ 1. 

Proof. Let j < k. Define Skji as the index at which the the ith point of 
type Uj occurs in the sequence Vi. For A EU 

IP(Vj1 EA) 
00 

L IP(Vii EA, Skjl = i) 
i=l 
00 

i=l 
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Substitution of A = U1 yields 

It follows that for j < k and A E U 

1/j ( A n Uj) - 1/k (A n Uj) 
Vj(U1) vk(U1) 

Define 
n = LJ { A E U : A C Ui}. 

j 

The collection n is a ring of subsets of U, and the O'-ring generated bu n is 
U. From the above it follows that we can define consistently a setfunction 
ii on n by putting for A E 1?,A C Uj,j 2'. 1, 

The setfunction ii is a O"-finite measure on n. Hence ii has a unique exten
sion v to a measure on (U,U), see Halmos [18]. From the construction it is 
clear that v has the claimed properties. Define for k 2'. 1 

1 
Pk= IP(Vi1 E U1) = v(Uk). 

Then (Pkh?i is a decreasing sequence of positive real numbers: 

v(U) = oo <=> lim Pk = 0. 
k->oo 

In the next theorem we associate an Ito-Poisson point process N to a given 
nested array (Uk, Vi) in such a way that Vi is the Uk-subsequence (lki)i>l 
of N. -

Theorem 2.3.12 (Greenwood fj Pitman). Let (Uk, Vih2: 1 be a nested ar
ray on the probability space (!J, :F, IP). If 

then for IP-a. e w the limits 

lim Pk = 0, 
k->oo 
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exist for all n,j = 1, 2, ... where Skjn(w) is the index at which the n th 

point of type Uj occurs in the sequence Vi. The sequence of limitpoints 
(tnj(w))n 21 is a strictly increasing sequence of positive real numbers. The 
IP-a. e. defined random variable 

00 

is an Ito-Poisson point process on U with characteristic measure v as de
fined in proposition {2. 3.11 ). 

Proof Define for k > j, n 2'. 1, 

and 
Dkj = (Dkjn)n2l · 

Then for measurable sets A1, ... , Am C Uj and d1, ... , dm E IN: 

IP(Dkji = d; + 1, Vji E Ai,i = 1, ... ,m) 
m 

= (1 - Vk(Uj))di+···dmvk(A1) · · · Vk(Am) 

= (1 - Pk )d1+ .. ·dm(Pk rvj(A1) ... Vj(Am) 
Pj Pi 

since Vj = Vk lu1 , see the proofofproposition (2.3.11). So Dkj and½ are in
dependent sequences of random variables. The random variables (Dkji)i 2 1 
form an iid sequence of random variables, geometrically distributed with 
expectation ~- Define the filtration (:Fj )j 21 by 

:Fj = u(Vi, ... , ½)

Then for l > k > j and n 2'. 1 we have 

Skjn 

IE(S1jn I h) = IE(L D1ki I h) = Pk Skjn• 
i=l Pl 

So (pkSkjn, :Fk)k2 j is a martingale on (0, :F, IP), and it follows that outside 
a set of IP-measure O the sequence (pkSkjn )k2 j converges for all n, j 2'. 1 to 
a finite limit 

tjn(w) = lim skjn(w). 
k-+oo 
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It is clear that O ::; tj1(w) ::; tj2(w) ::; .... Since Pk --+ oo, we have for 
i, j 2: 1 

It follows that the random variables tj 1, tj,n+l -tj,n, n 2: 1 are independent 
and exponentially distributed with expectation Pi. So IP-a.s. the sequence 
(tjn(w))n?:l is strictly increasing. Theorem (2.3.7) implies that 

00 

is a Poisson point process on T x U with intensity measure >. 0 v. 

Let N' : n 1---+ M+ be an Ito-Poisson point process with characteristic 
measure v' such that the Uk-subsequence (l~;)i?:l of N' is Vi- Using the 
notations and definitions of theorem (2.3.13) we get: 

Corollary 2.3.13 There exists a positive constant c such that for j, n 2: 1 

I I 1 
v = cv and Tjn = -tjn. 

C 

Proof. Since 

it follows that 

Hence for A E U,A C Uk,k 2: 1 

v'(A) = v'(Uk)IP(l~ 1 EA)= v'(Ui) v((UA)) = v'(U1)v(A). 
Pk V k 

So v' = cv on the ring LJB(Uk), where c = v'(U1). Finally for j, n 2: 1 

' 1· 1 S' 1 1· 1 S 1 Tjn = 1m -(-) kjn = - 1m - kjn = -tjn· 
k-,oo v' Uk c k-,oo Pk c 

Corollary 2.3.14 Let (Uk, Vih?:1 be a nested array on the probability space 
(rl,F,IP). If 

lim Pk> 0, 
k->oo 
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then for IP-a.e w the limits 

exist for every n ~ 1. The sequence (en)n>l is an iid sequence of random 
variables, 

v(A) 
IP(en EA)= v(U) ,A EU. 

Further the (Uk)-subsequence of the sequence (en)n>l is IP-a.s. equal to 
(Vi;);~l· -

Proof. Since limk--+oo Pk > 0, it follows from the proof of theorem (2.3.13) 
that limk--+oo Skjn(w) exists IP-a.es.. So for every n ~ 1, and for k suf
ficiently large, say k > Kn, the term Skin is constant. It follows that 
(Vk1, ... , ViM,.) is constant for k > Kn, where Mn = limk--+oo Skln ~ n. 
Define for n ~ 1: en = limk--+oo Vin, It is clear that the sequence (en)n~l 
is an iid sequence of random variables. Let A E U, then 

. . v(A n Uk) v(A) 
IP(en EA) = hm IP(Vin E A) = hm (U ) = (U) · k--+oo k--+oo ll k ll 

Finally, it is clear that the (Uk)-subsequence of the sequence (en)n>l lS 

IP-a.s. equal to (Vi;);> 1. -



Chapter 3 

Excursion Theory 

Let Y be a standard Markov process with state space S and let a E S be 
a given state, which is recurrent for Y. In [25] Ito defined the excursion 
process of Y with respect to IP a in the following way: let S(t) be the inverse 
local time of Y at a. If t is such that S(t-) < S(t), then the function Ut 
defined by 

( ) -{ Y(S(t-)+s) Ut S -
a 

, 0 ~ s < S(t) - S(t-) 
, s ~ S(t) - S(t-) 

is called the excursion of Y in ]S(t- ), S(t)[. Ito proved that the random 
distribution of the points (t,ut),t E {s: S(s-) < S(s)}, is a Poisson point 
process on [O, oo[ x U, where U denotes the space of all excursions. In the 
first part of this chapter we will study the excursions of a Ray process 
Y in the maximal components of [O, oo[\Z, where Z = {t E [O, oo[: Yt = 
a or Yi- = a}. The strong Markov property implies that the sequence of 
excursions in the intervals of length greater than a given positive real num
ber r, is an iid sequence with respect to IP a· Using the the theorem of 
Greenwood & Pitman (see section (2.3)) one can construct the Ito-Poisson 
point process of excursions without the explicit introduction of the local 
time; the characteristic measure II is determined by the sub-Markov semi
group (Kt)t~o defined by 

Kt(x, dy) = IP - x[Yi Edy: Ys, Ys- f. a for alls~ t] 

and an entrance law for the semigroup (I<t). If the state a is regular for Y, 
the total mass of II is oo. 

In the last part of the chapter we construct stochastic processes from 
Ito-Poisson point processes. Let P be an Ito-Poisson point process with 
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characteristic measure v determined by the semigroup (Kt) and an entrance 
law ( 1]8 )s> □ for the semigroup ( Kt) such that 17( {a}) = 0 for every s > 0 
and l(l -e-(n)v(du) < oo. 

The stochastic process Y constructed by concatenation of the excursions 
of P will turn out to have the simple Markov property: the proof of this 
property is based on an application of the renewal property of Ito-Poisson 
point processes and an application of the Palm formula. Of course, the 
assumptions about v are necessary to get a Markov evolution of the process 
inside an excursion. We will give sufficient conditions for the process Y to 
be a Ray process. A simple calculation based on the Palm formula will 
give a formula for the resolvent of Y. Further we will give a formula for 
the Blumenthal-Getoor local time of Y at state a. Finally we will give an 
example of the construction of a Markov process from a Cox point process. 

3.1 Ray processes 

This section contains a summary of some important properties of Ray pro
cesses. For proofs we refer to the books of Getoor [15] and Williams [59). 
Let E denote a compact metric space with Borel O"-algebra £. 

Definition 3.1.1 Let C(E) be the space of continuous functions on E. A 
family (R>.)>.> □ of kernels on (E, £) is called a Ray resolvent if 

(i) V>. > 0: >.R>.1 ~ 1, (sub-Markov property), 

(ii) V>., µ > 0 : R>. - Rµ + (>. - µ)R>.Rµ = 0 (resolvent equation}, 

(iii) V>. > 0: R>.(C(E)) C C(E), 

(iv) Ua~o CSM°' separates the points of E (Ray property), 

where CSM°' is the family of continuous cx-supermedian functions relative 
to (R>.)-

There is a standard construction to change a Ray resolvent (R>.) into a 
Markov Ray resolvent (i.e. >.R>. 1 = 1 for every >. > 0) on a space E' which 
arises from E by adjoining an isolated point. So assume that (R>.)>.> □ is a 
Markov resolvent on E. The construction of the Ray process with resolvent 
(R>.) goes via a Markov semigroup (Pt)t> □ whose existence and uniqueness 
is guaranteed by a theorem of Ray. -
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Theorem 3.1.2 (Ray). Let (R>.) be a Markov Ray resolvent on a compact 
metric space E. Then there exists a unique Markov semigroup (Pt)t>O 
satisfying for f E C( E) and x E E -

(i) t 1--+ Pd( x) is right continuous on [O, oo[, 

Proof. See Williams [59], p.187. 

We continue with a brief description of the construction of the canonical 
realization of the Markov process with transition semigroup (Pt), The 
sample space O will be the space D[o,oo[(E) of cadlag functions from [O, oo[ 
to E. Let Y = (Yt)t~o be the coordinate process on 0: 

Yt(w) = w(t) for w E 0, t 2: 0. 

Let Ft° be the o--algebra o-(Y,, 0 :S s :S t) on O generated by the maps 
Y,, s :S t, and F 0 = a-(Yt, t 2: 0). For every probability measure µ on 
( E ,£), there exists a unique probability measure IPµ on (0, F 0 ) such that 
for 0 :S t 1 :S ... :S in 

IPµ (Yo E dxa, Yt, E dx;, i = l, ... , n) 

= J µ(dx)Pa(x, dxa)Pt, (xo, dx1)Pt,-t1 (x1, dx2) · · · Ptn-tn-l (xn-1, dxn)-

Let (O,Fµ, {Ft}) be the usual IPµ-augmentation of (0,F 0 , {Fn), where 
Fµ is the IP µ-completion of F 0 and Ft the o--algebra generated by Ft°+ = 
n,>t Fi and the class of all IP µ-null sets in Fµ. Then 

is a strong Markov process, this means that for every {Ft }-stopping time 
T and every bounded ;:µ_measurable random variable T/ on 0 

IE[TJ o 0Tl[T<oo] \ F;] = IEY(T)[TJ]l[T<oo) IP µ-a.s., 

see Getoor [15], p.24. Let D be the set of x EE such that P0 (x, .) = Ox, The 
set D is a Borel subset of E. Points in B = E\D are called branchpoints. 
For every µ we have 

IPµ[Yt ED, Vt 2: O] = 1. 

So the paths t E [0, 00[1-+ Yt(w) are a.s. right continuous functions with 
values in D and left limits in E. 
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Theorem 3.1.3 Let µ be a probability measure on E and let 

y = (rl, .Fµ, { .Ft}, (Yt )t?:O, IPµ) 

be as above. Let ( Tn) be an increasing sequence of {.Ff}- stopping times. 
Let T = sup Tn and A = [r < oo and Vn : Tn < r]. If f is a bounded 
universally measurable function on E, then IP µ-a.s. we have 

IEµ[J O Yrl[r<oo] I V .FfJ = / O Yrl[r<oo]lAc + Pof(Yr-)lA. 
n?: 1 

Proof. See Getoor [15], p.25. 

Definition 3.1.4 Let (R>-.) be a Markov Ray resolvent on the compact met
ric space E. The canonical realization of the Ray process associated with 
the resolvent (R>-.) is the collection of quintuples 

Y = (n,.Fµ,{.Ft},(Yi)t?:a,IPµ) 

whereµ runs through the set of probability measures on (E, [). 

We will need the following notations 

.F = n.rµ and Ft= n.rt. 
µ µ 

Note that Y = (n, .F, {.Ft}, (Yt)t>o, IPµ) has also the strong Markov prop
erty. 

3.2 Point processes of excursions 

Let Y be the canonical realization of the Ray process with Ray resolvent 
( R>-.)>-.>O on the compact metric state space E. We will use the notations 
introduced in section (3.1). Let a be a given state. The polish space of 
cadlag functions f : [O, oo[i--+ E will be denoted by U, see appendix A2. 
The Borel O"-algebra U on U coincides with the O"-algebra generated by the 
coordinate evaluations. For f E U, let Z(f)be the closed set of points at 
which f approaches or hits the state a: 

Z(f) = {t E [O, oo[: f(t) = a or f(t-) = a}. 

The connected components of [O, oo[\Z(f) are called excursion intervals 
from a off. Let I =]D, T[ be an excursion interval off. The map Vr(f) : 
[O, oo[i--+ E defined by 

Vr(f)(t) = { :en+ t) if O ~ t ~ T- D 
ift > T- D 
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is called the excursion of the function f from point a on the excursion 
interval I. If it is clear from which point the excursions are considered, 
we will speak simply of excursions and excursion intervals of f. The map 
( : f E U 1--+ (1 E (0, oo( defined by 

(J = inf(Z(f)\{0}) 

is a lower semi-continuous function, see appendix A2. If inf(Z(f)\{0}) > 
0, then (1 is the first time after zero at which f hits or approaches the 
state a. The length ( or the duration) of the excursion Vi(!) is defined by 
((Vi(!)= T - D. Let r be a positive real number. We will now study the 
excursions of length greater than r of the realizations of the Ray process 
Y. Denote by (]Dn ( w), Tn ( w) Dn::?: 1 the sequence of all excursion intervals 
of Y(w) with length exceeding r, enumerated in such a way that Dn(w) < 
Dn+l ( w), n 2 1. This sequence is at most countable, and it is also possible 
that there are only finitely many excursion intervals of lenght exceeding r. 
The excursion corresponding to the excursion interval ]Dn(w),Tn(w)[ will 
be denoted by Vn(w). Note that Vn : w E Q 1--+ Vn(w) E U is a partially 
defined, U-valued random variable. Define Tn(w) = +oo if there are less 
than n excursion int~rvals of length exceeding r. Note that the mappings 
Tn are (:Ft)-stopping times. With the above introduced definitions and 
notations we have the following theorem. 

Theorem 3.2.1 Let Y be a Ray prncess on E, a EE and r > 0. 

(i) The sequence of excursion intervals frnm a of lenght greater than r is 
IPa-a.s. an infinite sequence if and only ifIPa[T1 < oo] = 1. 

(ii) If IP a[T1 < oo] = 1, then the sequence (Vn)n>l of excursions from a of 
length greater than r is an iid sequence of if-valued random variables. 

Proof. We start with the construction of a sequence ( Tn)n>l of (:Ft°)
stopping times which increase to T1 . Let (on)n::?:l be a sequenci of positive 
real numbers, strictly decreasing to zero: On l 0( n ---+ oo). Define for n 2 1: 

Tn = inf{t > r: Yt E Ba(On) and Ys, Ys- -:pa, s E (t - r, t(} 

where Ba(On) is the open ball in E with center a and radius On, Define 

T = sup Tn 

and 
A= [r < oo;\:/n 2 1: Tn < r]. 

Let w E r2 and let t be such that Yt(w) or Yt-(w) = a and Y8 (w), Y8 _(w) -:pa 
for alls E [t - r, t[. If Yt(w) = a, then Tn :St for all n 2 1. If Yi_(w) = a, 
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then for every n > l there exists a positive real number fn such that 
Yr(w) E Ba(/>n) for all r E]t - fn, t[. Since Y(t-r)-(w) fa there exists an 
1J > 0 such that Y,(w),Y,_(w) fa for alls E [t - r -17,t - r]. Hence 
Tn(w) ::; t - min( fn, 17) ::; t. Consequently in both cases we have Vn 2: 1 : 
T n ( w) ::; t. It follows that 

r(w)::; T1(w). 

To prove the converse inequality we consider first the case that w E A. 
Since Y7 Jw) E Ba(8n), it follows that Y7 _(w) = a. Further, it is clear that 

Vs E [r(w) - r, r(w )[: Y,(w ), Y,_ (w ), fa. 

Hence r( w) is the right-hand endpoint of an excursion interval of length 
greater than r and it follows that T1 ( w) ::; r( w) for w E A. 
Suppose now that w tt- A and r(w) < oo. Fork sufficiently large, Tk(w) = 
r(w). This implies that Yr(w)(w) = a and 

Vs E [r(w)- r, r(w)[: Y,(w), Y,_(w) fa. 

It follows that for every w E n 

Hence 
T1 = T. 

To prove (i) let An [Tn < oo] be the event that there are at least n 
excursions of length greater than r and let A be the event that there is an 
infinite sequence of excursions of length greater than r. 

IE a (l[T1 <oo] lAn o 0Ti) 

IEa(l[Ti<oo]IPY(T1 )(An)) (strong Markov property) 

IEa(IEa(l[T1 <oo]IPY(T1 )(An) IV FrJ) 

IEa(l[Ti<oo]IPY(T1 )(An)lAc + lA J Po(YT1 -, dy)IPy(An)) 

by an application of theorem (3.1.3). 
It is clear that YT1 = a on [T1 < oo) n Ac and YT1 _ = a on A. Hence 

and by mathematical induction 
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It follows that 

IPa(A) = lim (IPa[T1 < oo]t = l ¢::::> IPa[T1 < oo] = l. 
n-oo 

This completes the proof of (i). 
To prove (ii) let n ~ 2 and let Uih<i<n be a finite sequence of bounded 
measurable functions on U. An applkation of the strong Markov property 
yields 

n n 

IEa[Il /i(½)] IEa[/1(Vi) II /;(½-1 O 0Ti)] 
i=l i=2 

n 

IEa[/i(Vi)lEy(T1 )(Il /;(V;_i))] 
i=2 

(*) 

Consider first the case that a is a branch point. Then 

Hence Yr- = a(IP a-a.s.). So the sequence ( Tn) foretells 7' = T1 and T1 is 
predictable. It follows that 

:FT1- = V :Fr,.· 

An application of Galmarino's test (see Dellacherie & Meyer [7], p.149) 
yields the :FT1 --measurability of /i(Vi). So 

n 

(*) = IEa[/i(Vi)IEa(IEy(r)(Il /i(V;_i) IV :Fr,.)] 
i=2 

IEa[/1 (Vi) J Po(Yr-, dy)IEy(IT /;(½-i))] 
i=2 

IEa[/i(Vi) J Po(a,dy)IEy(ITf;(¼-1))] 
i=2 

n 

IEa[/1 (Vi)]IEa[Il /;(½-1)]. 
i=2 

If a is not a branch point, then by theorem (3.1.3) 

IPa[Y(T1) =a]= IEa[l{a} o YT1 1Ac + IEa[lA / Po(YT1 -,dy)l{a}(Y)] = 1. 
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So in both cases we have 

n n 

An induction argument completes the proof of (ii). 

We introduce some more notation and definitions. Define the maps 

pq. : 0 ....... [O, oo],pq.(w) = sup{t 2:: 0: Y,(w) = a for every s :St}, 
<Tq.: n ....... [O,oo],<rq.(w) = inf{t 2: 0: Yi(w) = a or r't_(w) = a}, 
Tq.: 0 ....... [O, oo], Ta(w) = inf{t > 0: Yi(w) = a or Yt-(w) = a}. 

The maps <Ta and Ta are stopping times. 

Definition 3.2.2 The state a E E is called a holding point for the Ray 
process Y if 

Define for t 2: 0 the kernel Kt on (E,£) by 

Kt(x,A) = IP;,,[Yt EA, <Ta> T], x E E,A E £. 

The family (Kt)t>o is a sub-Markov semigroup on (E, £). Define for s 2: r 
the measure e. o~ ( E, E) by 

Let µ be the IP 0 -distribution of Vi; µ is a finite measure on ( U, U). With the 
above introduced notations and definitions we have the following lemma. 

Lemma 3.2.3 Let r be a given positive real number. 

µ[u(r + ti) E dxi, i = 1, ... , n] 
= er+t, ( dx1)Kt,-t, (x1, dx2) · · · Ktn-tn~ 1 (xn-1, dxn). 

(iii) IP0 [r0 =0]=0 orl. 
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Proof. Note that D 1 + s is for s 2 r a stopping time. Let A E £, s 2 
r and t 2 0, then 

J IP a[Yv,+s E dx, D1 + s < T1 < oo]IP x[Yt EA, ua > t] 

IEa(l[D,+s<T,<oo]IEYDi+.[lA(Yt); O'a > t]) 
IEa(l[v, +s<T, <oo] l[u.o0D, +s>t] lA (Yv, +s+t )] 

e,+t(A). 

This completes the proof of the first part of the lemma. 
Let O :'.S t1 :'.S ... :'.S tn and X1, ... , Xn E E\ {a}, 

µ[u(r + t;) E dx;, i = l, ... , n] 
= IP a[D1 + r < T1 < oo, O'a o 0v,+r > tn, Yt, o 0v,+r E dx;, i = l, ... , n] 

= j er(dx)IPx[Yt, E dx;,i = 1, ... ,n,O'a > tn], 

by an application of the strong Markov property on stopping time D1 + r. 
A repeated application of the simple Markov property yields 

IPx[Yt, Edx;,i= l, ... ,n,O'a >in] 

= Kt, (x, dx1)Kt 2 -t, (x1, dx2) · · · Ktn-tn_, (xn-1, dxn)-

An application of (i) completes the proof of (ii). 
The third statement is a consequence of Blumenthal's 0-1 law, see Williams 
[59], p.126. 

Let X be the product T x U of the halfline T = [O, oo[ with the usual 
topology and the polish space U of cadlag functions f : [O, 00[1-+ E. Let 
a E E and let S be the family of open subsets of X defined by 

S ={ACX: A= Ix [( > t], IC T open and bounded, t > O}, 

where ( is the first time after zero at which f hits or approaches a. The ele
ments of U 00 = { u E U ; (u > O} will be called excursions. Let Y, u a and Kt 
be defined as above and let Y be the process defined by 

Yt = { Yi ~f t < u a 
a 1ft 2 O'a, 

Denote by O:x, x E E, the IP x-distribution of Y. Then O:x is a probability 
measure on U and the finite-dimensional distributions of O:x are given by 

o:x[u(t;) E dx;, i = l, ... , n] 

= Kt, ( X, dx1 )Ktrt, ( X1, dx2) · · · Ktn-tn-1 ( Xn-1, dxn), 
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where O < t1 < ... < tn and x1 , ... , Xn E E\{a}. The shift operator on U 
will also be denoted by 0t, so for t 2: 0 and u E U, 0t u is the element of U 
defined by 

(0tu)(s) = u(s + t), s 2: 0. 

With the above introduced notations and definitions we have the following 
theorem. 

Theorem 3.2.4 Let Y be a Ray process and a.EE. Assume that a is not 
a holding point and 

3r > 0 : IP a [T[ < 00] = 1 

where T[ denotes the endpoint of the first excursion of length greater than 
r. Then there are two cases possible. 

A. IPa[Ta = O] = 0. 
In this case there exists an iid sequence (en)n>l on (O,F,IPa) ofUoo· 
valued random variables whose [( > l]-subseq~ence is the sequence of 
excursions of Y of length exceeding l. 

B. IPa[Ta = O] = 1. 
In this case there exists an S-finite Ito-Poisson point process N de
fined on (fl, F, IP a) whose [( > !]-subsequence is the sequence of ex
cursions of Y of length exceeding l. The characteristic measure v of 
N is a O'-finite measure on U 00 having the following properties: 

(i) v is concentrated on 

{u E U00 : Vs 2: (u : u(s) = a}, 

(ii) for each f E bF00 , t > 0 and A E O'(u E U00 1-+ u(r), r ~ t) we 
have 

(iii) Vt > 0 : v([( > t]) < oo. 

Proof. Let (rk)k~ 1 be a strictly decreasing sequence of positive real num
bers, such that limk ... 00 rk = 0 and IPa[T11 < oo) = 1, where T11 is the 
endpoint of the first excursion of length exceeding r 1 . For k, n = l, 2 ... 
denote by ]Dkn(w), Tkn(w)[ resp. Vin(w) the nth excursion interval of the 
realization Y (w) with length exceeding rk, Since Tkl ~ T11 , it follows that 
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IP a [Tkl < oo] = 1, and the sequence (Vin )n;:::: 1 of excursions of length ex
ceeding rk is an iid sequence of U-valued random variables, see theorem 
(3.2.1). Define fork= l, 2, ... 

Uk = { u E U : (u > rk}, 
Vi= (Vii, Vi2, · · .), 
Vk = Vi1(IPa) and 
Pk= Vk(U1), 

Then (Uk, Vi)k;::::1 is a nested array on (0,F,IPa), see section (2.3) for the 
definition of a nested array. 
Suppose that we are in case A. Since 

it follows that 

lim Pk = lim IP a[Vi1 E U1] = IP a[Ta > r1] > 0. 
k-.oo k--+oo 

By corollary (2.3.15) there exists an iid sequence (en)n>l of random varaibles 
whose Uk-subsequence is IPa-a,s. equal to (Vin)n,::1· -
Suppose that we are in case B. Since a is not a holding point we have 

Hence in case B 

lim Pk = lim IP a[Vi1 E Ui] = 0. 
k-.oo k--+oo 

It follows from theorem (2.3.12) that IP a-a.s. for n, j = 1, 2, ... the limits 

exist, where Skjn, k > j denotes the index of the n th excursion of length 
greater than rj in the sequence (Vin)n,::1· The IPa-a,s. defined random 
variable 

00 

N : w En I-, L L O(tjn(w),Vjn(w)) 

j=l n:V;n(w)ltU;-1 

is an S-finite Ito-Poisson point process on U00 with characteristic measure 
v determined by 
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Further the Uk-subsequence of N is the sequence (Vin)n::,:1 which implies 
that for every l > 0 the [( > /)-subsequence of N is the sequence of ex
cursions of Y of length exceeding l. If ( r~ )k > 1 is another strictly decreas
ing sequence of positive real numbers with the same properties as the se
quence (rkh>i, then the Ito-Poisson point process N' constructed as above 
starting fro~ the sequence ( r~) has a characteristic measure 1./ wich dif
fers only by a multiplicative constant from 11, see corollary (2.3.14). To 
prove property (ii), fix t > 0 and choose k such that rk ~ t. Let for 
0 ~ t1 < ... t1 ~ t, 0 ~ s1 < ... sn, A1, ... , A1 E £ and Ji, ... , fn E bf; 

A= [u(t;) EA;, i = 1, ... , l] 

and for u EU 
n 

f(u) = II /j(u(sj)), 
j=l 

Then by definition of 11 

{ f(0tu)v(du) 
}An[(>t] 

_(lU) { f(0tu)vk(du) 
Ilk 1 j An[(>t] 

1 

lPa[Tk1 > Dk1 + r1] 

xlEa[II lA,(Vkl(t;)) X l[((Vkl)>t] XII /j(Vi1(sj + t))] 
i j 

1 

lPa[Tkl > Dkl + ri] 

xlEa[II lA.(Y(Dk1 + t;)) x l[nkl+t<Tk,l x II /j(Y(sj )) o 0nk,+tl 
i j 

1 

lPa[Tkl > Dk1 + ri] 
xlEa[II lA,(Y(Dkl + t;)) X l[Dki+t<Tk,] X lYY(Dk,+t)U)] 

i 

(by an application of the Strong Markov property) 

r O'.u(t)U)v(du). 
JAn[(>t] 

A standard monotone class argument completes the proof of (ii). 
For the proof of (i), first note that the set 

W = { u E U 00 : Vs 2: (u : u( s) = a} 
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is a measurable subset of U 00 • It is clear that 

Vx EE: ax(lw) = 0. 

So (ii) implies 

f lw(0tu)v(du) = f au(t)(lw )v(du) = 0. 
~(>rj ~(>rj 

On the other hand 

(u > t ~ lw(0tu) = lw(u). 

Hence 

1 lw(u)v(du) 
Uoo 

which completes the proof of (i). 
Finally, 

lim f lw(u)v(du) 
t!D j[C>t] 

limj lw(0tu)v(du) = 0, 
t!O [(>t) 

Vt > 0 : v([( > t]) = TJt(E) < oo, 

which implies (iii). 
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Definition 3.2.5 A family of finite measures (cs)s>D on (E,E) will be 
called an entrance law for the (sub-Markov) semigroup (Kt)t~o whenever 

Theorem 3.2.6 There is a one-to-one correspondence between O'-finite mea
sures m on (U00 ,U00 ) satisfying properties (i), (ii) and (iii) of theorem 
(3.2.4) and entrance laws (cs)s>D for the semigroup (Kt) satisfying c8 (a) = 
0 for every s > 0. 

Proof. Let us first assume that m is a O'-finite measure on (U00 ,U00 ) 

satisfying properties (i), (ii) and (iii) of theorem (3.2.4). Define for s > 0 
and A E £ 

fs(A) = m({u E U00 : u(s) E A,(u > s}). 

Then (cs)s>D is a family of finite measures on (E,E) satisfying f 8 (a) = 0 
for every s > 0. For A E £ , denoting A\{a} by A', 
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f m(du)IEu(s)[lA 1(Yt)] 
}[(,,>s] 

f m(du)au(s)[lA 1 (u(t))] 
}[(,,>s] 

f m(du)lA,(u(s + t)) (by property (ii)) 
}[(,,>s] 

f m(du)lA,(u(s + t)) (by property (i)) 
}[(,,>s+t] 
fs+t(A') = fs+t(A). 

So ( €8 )s>O is an entrance law, which proves the first half of the theorem. 
To prove the second half of the theorem, let ( fs )s>O be an entrance law for 
the semigroup (Kt) satisfying €8 (a) = 0 for every s > 0. Define for t > 0 

9t ={BC U00 : 3A E U00 : B = [( > t] n 0;1(A)}. 

The sets 
{u E U00 : (u > t,u(t + si) E Fi,i = 1, ... ,n} 

where n 2: 1,0 ::; s1 ::; ... ::; Sn and F1, ... ,Fn E £, generate the <,

algebra :Ft. If r < t, then U00 :) 9r :) 9t- Indeed, let B E 9t, say 
B = [( > t] n 0;1(A) with A E U00 . Then 

B = [( > r] n 0; 1 ([( > t - r]) n 0;_\(A) E 9r-

Note that Ut>O 9t is a ring generating U00 . The setfunction µt defined on 
9t by 

µt([( > t] n 0; 1(A)) = J ci(dx)ax(A), A E U00 , 

is a finite measure on the ring 9t, whilst for r < t 

j Er(dx)ax[( > t - r, lA o 0t-r] 

j Er(dx)IEx[l[a>t-r] X lA O Y(0t-r)] 

j Er(dx) j Ki-r(x, dy)ay(A) 

(by the simple Markov property) 

j ci(dy)ay(A) 

µi([( > t] n 0; 1 (A)). 
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It follows that we can define a setfunction µ on Ut>O gt by putting 

µ(B) = µt(B) if B E gt, 

Since the setfunction µ is a u-finite measure on the ring Ut>O gt, it has a 
unique extension to au-finite on (U00 ,U00 ). From standard monotone class 
arguments it follows that for f E bU00 and t > 0 

f µ(du)f(0tu) = j ft(dx)a:c(f). 
J[(>t] 

Fix t > 0 and define for O ~ r1 < · · · < r1 ~ t and A1, ... A1 E £ 

A= [u(ri) E Ai, i = 1, ... , /]. 

For O < r < r1 and / E bUoo 

f µ(du)f(0tu) 
JAn[(>t] 

I 

= j fr(dx) j a:c(du) J1 l[u(r,-r)EA,](u) X l[(>t-r](u)f(0t-rU) 
·i=l 

I 

= j fr(dx) j a:c(du) J1 l[u(r,-r)EA;](u) X l[(>t-r](u)au(t-r)U) 
i=l 

by an application of the simple Markov property 
I 

= 1. µ(du) IT l[u(r,+r)EA,](0ru) X l[(>t-r](0ru)a0ru(t-r)(/) 
[(>r] i=l 

= f µ(du)au(t)(f). 
JAn[(>t] 

This proves the formula 

f f(0tu)v(du) = f Ou(t)U)v(du) 
j An[(>t] j An[(>t] 

for elementary sets A. From a standard monotone class argument it follows 
that this formula is true for all A E u(u E U00 1---+ u(r), r ~ t). As in the 
proof of theorem (3.2.4) it now follows that vis concentrated on the set 

{u E U00 : Vs 2: (u: u(s) = a}. 

From the definition of v it is clear that 

Vt > 0 : v([( > t]) < oo, 

which completes the proof. 
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Remark 3.2. 7 (i) In theorem (3.2.4) the excursions of Y are consid
ered on the probability space (n, :F, IP 0 ). On a probability space 
(O,:F,IPx) we have to add to the Ito-Poisson point process (or to the 
iid sequence (en)n>i) a. fir.st excursion describing the process up to 
time u0 • Let x EE, x -::pa. The map W: Qi-+ U defi;ned by 

(Ww)(t) = { Yt("I) fort< Ua.(w), 
a fort~ u0 (w) 

is a U00-valued random variable, describing the process Yup to time 
Ua, As in the proof of theorem (3.2.4), let (rk)k2'.1 be a strictly de
creasing sequence of positive real numbers, rk ! 0 as k -+ oo. Denote 
fork, n = 1, 2, ... by V{n(w) the nth excursion from a with length ex
ceeding r1a of the realization Y(0cr 4 w). So V{n(w) = Vkn(0aw}. Deij.;ne 
the vector V{ = (V{1, V{2 , .• . ). As in lemma (3.2.3) we can. prove 
that for every~ E E\{a} the sequence (V{,Uk}k2'.1 is a nested array 
on (n, .1', 1P x) and 

IP x [W E B, V{; E A;, i = 1, ... , n] 
= IP x [W E B)IP a [Vi, E A;, i = 1, ... , n] 

for every n ~ 1,B,A1 , ... ,An EU. When IP 0 [r0 = 0) = 1, we define 
the point processes N,x ai;i,d Qx by 

N 11 : w EH i-+ N(0,, 4 w), 

N as. in theorem (3.2.4;), and 

Qx : w E O 1-+ 6(0,W(w))· 

It follows that the point processes Nx and Qx defined on (n, :F, IP x) 
are indepeadent and as in theorem (3.2.4) the p.oint process Nx is an 
Ito~Poisson point pro.cess with the sawe characteristic measure v as 
N. 

(ii) If state a is a holding point for Y, then there exists an iid sequence 
(en)n>1 on (n, :F, IP a) of U00-value<;l random variables whose [( > /)
subsequence is the sequence of excursions of Y of length greater than 
l. Between two consecutive excursions the process Y remains in the 
state a. These time intervals are exponentially distributed. 

3.3 Construction from point processes 

Let (E, p) be a compact metric space with Borel u-algebra £ anq a E E some 
given point of E. The space of cadlag functions defined on T = [O, oo[ with 
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values in E will be denoted by U. Endowed with the Skorohod topology, 
U is a polish space. The Borel CT-algebra on U will be denoted by U; this 
CT-algebra is also generated by the coordinate evaluations on U. The map 
( : U 1--+ [O, oo] is defined by 

((u) = (u = inf{t > 0: u(t) = a or u(t-) = a}. 

For u E U00 = [( > OJ the number (u is the first "time" after zero that u 
hits or approaches a. The map ( is lower semi-continuous. 
On the space (E, £) there will be given a Markov semigroup of kernels 
(F't)t>o such that for every x EE there exists a probability measure ax on 
(U,U) which is concentrated on the set {u EU: Vt 2':: (u : u(t) = a} and 
which has finite-dimensional distributions given by 

ax[u(ti E dxi, i = 1, ... , n] 
= A, (x, dx1).F't,-t,(x1, dx2) · · · F'tn-tn-, (xn-1, dxn) 

where O ::; t 1 ::; · · · ::; tn and x1 , ... , Xn E E. For t 2':: 0 the kernel Kt on 
( E, £) is defined by 

Kt(x,dy) = ax[u(t) E dy,(u > t]. 

The family ( Kt h> 0 is a sub-Markov semigroup of kernels on ( E, £). On 
( E, £) there will ~lso be given a family of finite measures ( 77s )s>D which 
is an entrance law for the semigroup (Kt)t>o with 77s({a}) = 0 for every 
s > 0. By theorem (3.2.6) there is a unique measure II on (Uoo,Uoo) having 
the three properties 

(i) 11 is concentrated on {u E U00 : Vs 2':: (u: u(s) = a}, 

(ii) VJ E bU00 , Vt> 0, VA E CT(u E U00 1-+ u(r), r::; t): 

f f(0tu)v(du) = f Ctu(t)U)v(du), 
kn~>rj kn~>rj 

(iii) Vt > 0 : 11([( > t]) < 00. 

It follows that 

Vs> 0: 17s(dx) = v([(u > s, u(s) E dx]). 

We will always consider II as a measure on U by putting 11(U\U00 ) = 0. 
The product topological space T x U, where Tis equipped with the usual 
topology will be denoted by X and M+ is the space of nonnegative Borel 
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measures on (X, B(X)) which are finite on the family S consisting of the 
subsets I x [( > t] where I runs through the bounded subintervals of T 
and t > 0. The S-finite Ito-Poisson point process on U with characteristic 
measure v will be denoted by P. (The existence and unicity of P follows 
from proposition (2.2.5).) By proposition (2.3.2) P(Mi) = 1, where M! 
is the set of S-finite point measuresµ with µ({t} x U) ~ 1 for every t 2: 0. 
Measures µ E M• have a countable support. For µ E Mf the projection 
J(µ) of supp(µ) on Tis an ordered subset. If cr E J(µ), there is au E U 
such that (cr,u) E supp(µ). We will write u,, for u. Let L: Ur--+ [O,=[ be 
a given, measurable function. Define for <r ET andµ E Mi 

B(cr, µ) 

and 

L)L(ur): TE J(µ) and T < cr} 

j µ(drdv)l[o,a](r)L.(v) 

C(µ) = LJ [B(cr-, p), B(cr, µ)[. 
aEJ(µ) 

If T = C(µ) then denote by 

µ:Tr--+E 

the concatenation of the functions Url[O,L(ur )[, T E J (11,), that is 

µ(s} = u,,(s- B(cr-,µ)) = jµ(drdv)(v x l[o,L(v)()(s - B(r-,µ)) 

with 
cr E J(µ) such thats E [B(cr-,µ),B(cr,µ)[. 

The function u,, is called the excursion straddling s. So, if Q is an S-finite 
point process with phase space X such that 

Q({µ E. M~: T = C(µ)}) = 1, 

then for s 2: 0 the maps 

are Q-a.e. defined random variables on the probability space 
(M+, B(M+), Q). 
In this section we want to consider a construction of this kind for the 
Ito-Poisson point process P. With an extra assumption about the charac
teristic measure v of P it will turn out that the process Y = (Yt)t::::o is a 
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Markov process. So it is natural to consider a family of probability mea
sures (Px)xEE on (M+, B(M+)), where Px will be the distribution of the 
process Y starting in x. To this end we add a first point to P corresponding 
to a start from x taking in account the given transition probabilities (A). 
Consider the map 

u EU f--+ (\o,u) EM+. 

For x -=/::. a, Qx denotes the image of the probability measure ax under this 
map. Then Qx is a point process with phase space X; its intensity measure 
iq,,, its Palm measures ( Qx )( r,v) and its Laplace transform Qx are given by 

iq,, Oo®ax, 
(Qx)(r,v) = OJ(r,v), 

Qx(f) = J ax(du)e-f(D,u), 
(r,v) EX 
f E B(X)+-

Define the family of point processes (Px)xEE by 

Px = { Qx * P ~fx E E\{a} 
P zfx=a. 

Some important properties of the point processes Px are collected in the 
following lemma, whose straightforward proof is deleted. 

Lemma 3.3.1 For x -=/::. a, the inten,_sity measure ip,,, the Palm measures 
(Px)(r,v) and the Laplace transform Px of the point process Px are given by 

Further 

iq,, + ip, 

{ Px * OJ(r,v) for v E U and r > 0 
OJ(O,v) * P for v E U and r = 0, 

J ax(du)e-f(D,u) exp[- f(l - e-f)d>. ® v], f E B(X)+. 

Px(M!) = l. 
Let n = M! and :F the trace of B(M+) on n. Our basic family of proba
bility spaces will be (DF, Px ), x E E. Define for w E n and r ~ 0 

A(r,w) = L w(dudu)l]o,r](u)(,... 

The random variable A( r) is the sum of the excursions up to and including 
time r, leaving out the excursion at time 0. As a function of r, A( r, w) is 
a non-decreasing cadlag function on [O, oo[ for every w E n. The Laplace 
transform of A( r) is given by 

l e-AA(r)dPx = exp[-r fu (1- e>-(u)v(du)], >. > 0, x EE. 
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From now on we will assume that 

fu (1 - e-(,. )v( du) < oo. 

Then A(r) is P.,-a.s. finite for every EE. Note that the family of random 
variables (A(r))r>o is a subordinator whose Levy measure is the (-image 
((v) of the measu~e v. See for subordinators Ito [24]. Addition to A( r) of 
a linear term ;r, ; ~ 0, gives the general form of a subordinator with Levy 
measure ((v). Define for r ~ 0 and w En 

O'a(w) = j w(do-du)l{o}(o-)(u 

and 
B(r,w) = o-a(w) + A(r,w) + ;r. 

It follows from a straightforward calculation that the Laplace transform of 
the random variable B(r) is given by 

l e->..B(r)dp., = j e->..uadP., x exp[-r(A; + fu (1 - e>..(,. )v(du))]. 

For w En, denote by R(w) the range of B(.,w); 

R(w) = {s E [0,oo[: 3r: s = B(r,w)} 

and let ¢(.,w) be the right continuous inverse of B(.,w): 

</J(s,w) = inf{r: B(r,w) > s},s ~ 0. 

It follows from the definition of <p that 

Vs~ 0: B(cf,(s,w)-,w) ~ s ~ B(cp(s,w),w) 

with B(0-,w) = 0. Let J(w) be the projection of the support of the 
measure w on T: 

J(w) = {o- ET: w({o-} x U) = 1}. 

Note that J(w) is P.,-a.s. a discrete subset of T if v(U) < oo, and a 
countable, dense subset of T if v(U) = oo. Define for w E n 

C(w) = LJ [B(o--,w),B(o-,w)[. 
uEJ(w) 

With the above introduced definitions and notations we have the following 
lemma. 
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Lemma 3.3.2 Let x EE. Then Px-a.s. 

T- { R(w) + C(w) if v(U) = oo or 1 > 0 
- C(w) if O < v(U) < oo and 1 = 0 

Proof. Assume that v(U) = oo or 1 > 0. The function B(.,w) is Px
a.s. strictly increasing, B( r, w) j oo as T --+ oo. The assertion in the 
lemma follows from appendix (A3.3). We continue with the case O < 
v(U) < oo and 'Y = 0. In this case J(w) is Px-a.s. a discrete set, which 
can be written as J(w) = (an(w))n~l with a1(w) < a2(w) < ... Further 
an(w)--+ oo as n--+ oo. Since 'Y = 0, B(an(w)-,w) = B(an-1(w),w) and 
the assertion of the lemma follows. 

Let w E n and t ~ 0. Let t E C(w). If there is some T ~ 0 such 
that t E [B(r-,w),B(r,w)[, and if u is such that w(T,u) = 1, then u 
is the excursion (in w) straddling t. Note that T = <f>(t,w) and that 
(u = B(<f>(t,w),w) - B(<f>(t,w)-,w). With w En we associate a function 
w : T >--+ E defined by 

_(t) _ { u(t - B(<f>(t,w)-,w)) ift E C(w) t T 
w - a if t :f C ( w) ' E ' 

where u is the excursion straddling t. Note that fort E C(w) 

w(t) = j w(dadu)(u x l[o,(,.[)(t - B(a-,w)) 

and 

lc(w)(t) = j w(dadu)l[o,(,.[(t - B(a-, w)). 

It follows that the map 

is measurable. Denote the coordinate evaluations on ET by Yt, t ~ 0, i.e. 

Yt : f E ET >--+ f(t) EE, 

and the image of the probability measure Px under the map w >--+ w by 
IP x. Then, Y = {Yt : t ~ 0} is an E-valued stochastic process on the 
probability space (ET, £T, IP x). We continue with the calculation of the 
finite-dimensional distributions of the process Y. From the definition of 
the measure v it follows that for s, l > 0 

v([u(s) E dx,(u > s + l]) = 1Js(dx)P1(x, E\{a}). 
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Writing fJx for the ax-distribution of(, 

f3x(dl) = ax[( Edi]= d.Pi(x, {a}), 

we get for s, l > 0 

v([u(s) E dx,(u - s E dl]) = TJ8 (dx)f3x(dl). 

Proposition 3.3.3 Let f Eb£ such that f(a) = 0. 

A. x/a. 

IE [f(Y, )] = { f Kt(X, dy)f(y) + J; f3x(dl)IEa[f(Yi-1)] if t > 0 
x t fKo(x,dy)f(y)+f3x({O})IEa[f(Yo)] ift=O 

B. x = a. 
Fort> 0: 

IEa[f(Yi)] = j P(dw) lt d</;(q,w) j T/t-q(dy)f(y) 

For t = 0 we have to consider two cases: 

(i) v(U) = oo or 1 > 0. 

IEa[f(Yo)] =; 0 

(ii) 0 < v(U) < oo and 1 = 0. 

IEa[f(Yo)] = v(~) j v(du)f[u(O)]. 

Proof. The proof is based on an application of the Palm formula, see 
section (2.2). We start with case B. Lett> 0. 

IEa[f(Yi)] 

= J P(dw)lc(w)(t) J w(da-du)(f o u x l[o,(,.[)(t - B(a--, w)) 

= J P(dw) J w(da-du)(f o u x l[o,(,.[)(t - B(a--,w)) 

= 100 
da- J v(du) J P(dw)(f o u x l[o,(,.[)(t - B(a--,w + O(o-,u))) 

= J P(dw) 100 
da- J T/t-B(o--,w)(dy)f(y) 

= J P(dw) 100 
d</;(q,w) J T/t-q(dy)f(y) 
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where in the last step we have used an integration formula for right contin
uous inverses, see appendix A3. 
Let t = 0. If 0 < v(U) < oo and 1 = 0, then the formula for IE0 [/(Yo)] 
follows from theorem (2.3.7). If v(U) = oo or 1 > 0 , then 

P[0 E C(w)] = P[B(0,w) > O] 

= P[w({0} x U] = 0 

since A®v( {0} x U) = 0. It follows that IP 0 [Yo = a] = 1, hence IE0 [/(Yo)] = 
0. 
We continue with case A. Let t > 0. 

IE., [/(Yi)] 

= j Q., * P(dw) j w(dudu)(f o u x l[o,(,.[)(t - B(u-,w)) 

= j Q.,(dw') j w'(dudu)l[o](u)(f o u x l[o,(,.[)(t) 

+ j Q.,(dw') j P(dw) j w(dudu) 

lJo,oo[(u)(f o u x l[o,(,.[)(t - B(u-, w + w')) 

= j a.,(du)l[(,.>t]f(u(t)) 

+ j a.,(dv) j P(dw) j w(dudu)(f o u x l[o,(,.[)(t - B(u-,w) - (v) 

= J Kt(x,dy)f(y) + 1t ,B.,(dl)IEa[f(Yi-1)]. 

For t = 0 we only have to note that 

j a.,(dv) j P(dw) j w(dudu)(f o u x l[o,(,.[)(0 - B(u-,w) - (v) 

= a.,[(v = O] X IE0 [/(Yo)] 
= ,8( {0}) x IEa[/(Yo)]. 

Define the measure <I> on [0, oo[ by 

<l>(dq) = lo P(dw)d</J(q,w). 

Define the kernels (St)t>o on (E, £) by: 

{ (<I> u1)t(dy) 
St(x, dy) = Kt(x, dy) + J; ,B.,(dl)(<I> * 1J)t-1(dy) 
St(x,{a}) = 1-St(x,E\{a}). 

for x = a, y =I- a 
for x, y =I- a 
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Define the kernel So on ( E, £) by: 

(i) If v(U) = oo or , > 0 then 

So(x, dy) = { ~{o(x, dy) 

(ii) If O < v(U) < oo and , = 0 then 

for x = a, y =f. a 
for x, y =f. a, 

{ 
v(h)v[u(O) E dy,(u > O] 

So(x,dy) = Ko(x,dy) + ,a:tl?)12v[u(O(E dy,(u > O] 

In both cases (i) and (ii) 

So(x, {a})= 1- So(x, E\{a}). 

for x = a, y =f. a 

for x, y =f. a. 

The kernels (St)t>o are a family of Markov kernels om (E, £). The state
ment of propositi~n (3.3.3) can be written as 

IEx[f(Yt)] = Stf(x), t 2: 0, f E bE. 

Define for t 2: 0 the map 1Pt : n f-+ n by 

'lj;( )-{T</>(t)(w) iftER(w) 
t w - 8co,0,_B(q,(t,w)-,w)u) + T</>(t)(w) if tr/:. R(w) 

where u is the excursion straddling t and where T4> is defined as in section 
(2.3). The meaning of the map 1Pt is explained in the following lemma. 

Lemma 3.3.4 Fors, t 2: 0 and w E n we have 

¢(s + t,w) = ¢(t,w) + ¢(s, 'lj;1w) 

and 

Y,[(1PtW)1 = Ys+i(w). 

Proof. First note that (J'a('lj; 1w) = B(cp(t,w),w) - t. Indeed, if t E R(w) 
then 

(J'a(T</>(t)w) 

j (T</>(t)W )(d(J'du)l{o} ((J')(u 

j w(d(J'du)l]</>(t,w),oo[((J')l{o}((J' - ¢(t,w))(u 

0 
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and the result follows, as B(rp(t,w),w) = t fort E R(w). 
If t tJ. R( w) then 

CT a( c\0,0,_B(o/>(t,w)-,w)u)) + CT a (Tq,(t)W) 
(u - (t - B(<jJ(t,w)-,w)) 

B(rp(t,w)-,w)-t 

since u is the excursion straddling t. 
We continue with the calculation of B ( r, 1PtW). 

CT a ( 1/)tW) + A( T, 1/)tW) + "(T 

67 

B(rp(t,w),w)- t + J w(dcrdu)l]q,(t,w),q,(t,w)+r](cr)(u + "fT 

B(</J(t,w),w)-t + B(</J(t,w) + r,w)- B(<jJ(t,w),w) 
B(</J(t,w) + r,w) - t. (*) 

Hence 

inf{r: B(r,1/Jtw) > s} 

inf{r: B(rp(t,w) + r,w) + T > s + t}by formula(*) 

-rp(t,w) + </J(s + t,w), 

which proves the first part of the lemma. 
For the second part, suppose first that s E R( 1PtW ). Then, for some T 2': 0 

B(r,1/Jtw) = s, 
hence by formula (*) 

B(<jJ(t,w)+r,w) =t+B(r,1/Jtw) =t+s, 

and it follows that s + t E R( w). So 

Y.((1/JtwD = Ys+t(w) = a 

by definition of Y. 
Suppose now thats tJ. R(1/Jtw). Let 

s < cr0 (1/Jtw) = B(rp(t,w),w)- t. 

Then </J(s+t,w) = <jJ(t, w) and there is one excursion, say u, (in w) straddling 
both t and s + t, so 

u(s+t- B(</J(t,w)-,w)) 
u(s + t - B(rp(t + s,w)-,w)) 

Ys+t(w). 
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For 
S > O'a(1PtW) 

we have B(0, 1Ptw) < s, so ¢(s, 1PtW) > 0. It follows that 

( 1/)tW )( <f>(s ;<f.,,w ),u) = (T¢(t)W )( <f>(s+t,w)-¢( t ,w ),u) 

= W(<f>(s+t,w),u) 

and the excursion straddling s in 1PtW is the same as the excursion straddling 
s + t in w. From 

B( ¢( s, 1/)tW )-, 1/)tW) 

it follows that 

limB(¢,(s,'lj;tw)- c,'lj;tw) 
f!D 
limB(¢,(s + t,w) - ¢,(t,w) - c, 1/)tW) 
f!D 
limB(¢(s +t,w)- c,w)-t by formula(*) 
f!D 
B(¢(s + t,w)-,w) - t, 

u( s - B( ¢,( s, 1/)tW )- , 1/)tW)) 

u(s + t - B(¢,(t + s,w)-,w)) 

Y,+t(w), 

where u is the excursion straddling s in 1PtW, 

Theorem 3.3.5 Let n 2: 2, Ji, ... , fn E bt:, 0 ::; t1 · · · ::::; tn and x E E 
then 

n 

IE.,[Il /i(Yt.)] 

Proof. We will only consider the case x -:j:. a and t 1 > 0. The proof for the 
remaining cases is analogous and is therefore deleted. Let f1 be defined on 
Eby 

fi(x) = fi(x) - f(a). 

Then 

n n n 

IE.,(Il h(Yt.)] = IE.,(f1(Yt,) IT f;(Yt.)] + fi(a)IE.,(Il f;(Yt.)]. 
i=l 
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Since f1 (a) = 0, we have 

n 

lEx[f1(Yt,) II f;(YtJ] 

n 

= lEx[lc(t1)f1(Yt,) IT f;(Yt.)] 

= j Px(dw) j w(d(J'du)(f1 o u X l[o,(u[)(ii - B((J'-,w)) 

n 

IT J; (Yt,-t, )( ( "Pt, w n 

= J Qx(dw') J P(dw) J (w + w')(d(J'du) 

n 

(!1 o u X l[o,(u[)(t1) - B(cr-,w + w')) IT f;(Yt,-t,)('I/Jt, (w + w''J) 

= j Qx(dw') j P(dw) j w'(dcrdu) · · · 

+ J Qx(dw') J P(dw) J w(d(J'du) · · · 

= I+ II. 

We first calculate I. 

j Qx(dw') j w'(d(J'du)(f1 o u X l[D,(u[)(t1) 

j P(dw) ITli(Yt,-t,)('I/Jt,(w +w''J) 
i=2 

= J O:x(du)(f1 0 U X l[o,(u[)(t1) 

j P(dw) ITli(Yt,-tJ('I/Jt,(w + D(o,u)'D· 
i=2 

From 

it follows that 
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Hence P-a.s. 

So 

I = J ax(du)(/1 0 u X l[o,(u[)(t1) J P(dw) IT f;(Yt,-tJ((8co,e,,u) + w)) 
•=2 

= j Kt, (x, dy)fi(y) j ay(du) j P(dw) IT f;(Yt;-t,)((8(0,u) + w)) 
•=2 

= j Kt,(x, dy)f1(Y)IEy[IT f;(Yt;-t,)]; 
i=2 

We continue with the calculation of II. 

j ax(dv) j P(dw) j w(d<rdu) 

(/1 o U X l[o,(u[)(t1 - (v - B(<r-,w)) 
n 

x IIt;(Yt,-t,)((1Pt,(8co,v) +w))) 

= j ax(dv) 100 
d<r j v(du) j P(dw) 

(/1 OU X l[D,(u[)(t1 - (v - B(<r-,W + D(a,u))) 
n 

X II f;(Yt,-t, )( ( 1Pt, ( D(o,v) + w + D(a,u)m 
i=2 

by an application of the Palm formula, see section (2.2). 
Since 

and 

t1 - (v - B(<r-,w) ===> B(<r-,w + D(o,v) + D(a,u)) > t1 

===> ¢(t1,w + D(o,v) + D(a,u)) '.S <T 

0:St1-(v-B(<r-,w) ===> B(<r-,w+8co,v)+8ca,u))'.St1 

===> ¢(t1,w + D(o,v) + D(a,u)) ~ <T, 

it follows that 
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and 

hence P-a.s. 

"Pt, (b(o,v) + W + D(a,u)) = O(O,u) + T.,(b(o,v) + W + D(a,u)) 

= b(o,u) + T.,(w), 

where u = 0t,-B(a-,w)-(v u. So 

II 

= j ax(dv) 100 
dcr j v(du) j P(dw) 

(/1 o U X l[o,(u[)(t1 - (v - B(cr-,w + O(a,u))) 
n 

X IT fi(Yt,-t,)(b(o,u) + T,,(w)) 

= j ax(dv) 100 
dcr j v(du) j P(dw) 

Ji o U X l[o,(u[)(t1 - (v - B(cr-,w + D(a,u)) 

j P(dw') Ilf;(Yt,-t,)(b(o,u) +w') 
i=2 

by an application of the renewal property 

= j ax(dv) j(<I> * 'TJ)t,-(.(dy)f1(Y) j ay(du) 

j P(dw') II f;(Yt,-t,)(b(o,u) + w') 
i=2 

= 1' f3x(dl) j(<I> * 'TJ)t,-1(dy)f1(y)IEy("fJ/i(Yt,-t,)]. 

It follows that 

i=l 

71 

= 1 St, (x, dy)f1(y)IEy[Il f;(Yt,-t,)] + fi(a)IEa[Il fi(Yt,-tJ] 
E\{a} i=2 i=2 

= L St, (x, dy)fi(y)IEy[g f;(Yt,-t,)] 
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An induction argument completes the proof of the theorem. 

As a consequence of theorem (3.3.5), (St)t>o is a Markov semigroup on 
( E, £) and Y is the canonical representatio~ of the Markov process with 
this transition semigroup. Let (Vi.)>.>O be the resolvent of the semigroup 
(St)t~o, i.e. the operator on bE defined by 

Denote the resolvent of the semigroup (I<t)t>o by (G>.)>.>O· Define for>.> 0 
~d/EW -

iJ>.(/) = 100 dte->.t le TJt(dx)f(x). 

This integral converges because of the assumption 

Define for >. > 0 and x E E 

In the next lemma we prove some relations between (G>.), (iJ>.) and Z>,. 

Lemma 3.3.6 Let>.,µ> 0 and f E bE, then 

(i) (µ - >.)iJ>.(Gµf) = iJ>-(/) - i]µ(f), 

(ii) Z>, = l - >.G>,l, 

(iii) (µ - >.)i]µ(z>.) = µi]µ(l) - >-11>.(l). 

Proof. 
(i) 

(µ - >.) 100 dte->.t j TJt(dx) 100 e-µs Ksf(x)ds 

(µ - >.) 100 dte->.t 100 e-µsT/s+t(/)ds 

100 dse-µ 8 TJ,(/) 1• (µ - >.)e-(µ->.)tdt 

TJ>. (!) - i/µ (!). 
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(ii) 

Z.>-(X) = j ax(du)e->-(u 

= j ax(du) 100 l](u,oo[(s)>.e--"•ds 

= 100 >.e--"•(1 - K.l(x))ds 

= 1- >.G.,_l(x). 

(iii) 

(µ - >.)17µ(z.,_) = (µ->.)17µ(1->.G.,_1) (by (iii)) 

= (µ - >.)17µ(1) + >.(17µ(1) -17.,_(l)) (by (i)) 

= µ17µ(1) - >.17.,_(l). 

We continue with a theorem which gives an expression for the resolvent 

(Vih>a· 

Theorem 3.3. 7 Let >. > 0 and f E b&. Then 

where 

v.,_f(x) = G.,_f(x) + Z.>-(x)V.>-f(a) 

v.,_f(a) = 11>-U) + 1f(a). 
>-1 + >.17.,_(1) 

Proof. Let x E E\{a}. Let f Eb& and f(.) = f(.) - f(a). 

v.,_f(x) 

= j Px(dw) j w(dO"du) 100 e--"\f o u X l[a,(u[)(t - B(O"-,w))dt 

+ j Px(dw) 100 lcc(w)(t)e->-t f(a)dt 

= j Px(dw) j w(dO"du) 100 e--"\J o u X l[o,(u[)(t - B(O"-,w))dt 

1 
+~ f(a) 

= j ax(dv) 1<• e->-t f(v(t))dt + j ax(dv) l~ e--"t1Ea[f(Yt-(J]dt 

1 
+~f(a) 
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100 e->.t Kt/(x)dt + j ax(dv)e->.("Vif(a) +½!(a) 

J 000 e->.t Ktf(x)dt + (1- >. 100 e->.t Ktl(x)dt) x Vif(a) 

We continue with a calculation of V>.f(a): 

V>.f(a) 

j P(dw) j w(d<Tdu) 100 e->.t(f o u X l[o,(u[)(t - B(<T-,w))dt + ½ f(a) 

100 d<T j v(du) j P(dw)e->.B(u-,w) l(u e->.t f(u(t))dt + ½ f(a) 

100 d<T j v(du)exp[-<T(>.,+ j(l- e->.(w)v(dw))] 

/00 )..t - 1 
X lo e- f(u(t))l[(u>t]dt + A f(a) 

1 /oo ->.t J - l 
>., + f(l - e->-(w )v(dw) la e v(du)f(u(t))l[(u>t]di + A f(a). 

Note that 

and 

Hence 

j(l - e->.(w)v(dw) = >.rh(l) 

100 
e->.t j v(du)f(u(t))l[(u>t]di = iJ>.(f). 

V>.f(a) = iJ>.(f) + ,f(a). 
>., + >.iJ>.(l) 

The rest of the theorem follows from the following observation 

100 >.e->.t(l - Ktl(x))dt 

j lYx(du) 100 >.e->.tl[(u~t]di 

j lYx(du)e->.(u. 

The next theorem states that the resolvent (V>.) inherits the Ray property 
of the resolvent (G>.) if the following extra condition 

\:/x #a: Z>.(x) < 1 
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is satisfied. 

Theorem 3.3.8 If z;_(x) < 1 for every x-/=- a and if (G;_) is a Ray resol
vent, then the same is true for (V;_). In this case the process Y has cad lag 
paths IPx-a.s. and is therefore a strong Markov process. 

Proof. If (G;_) is a Ray resolvent, then the same reasoning as in Rogers [] 
can be used to prove the Ray property for the resolvent (V;_). By construc
tion, Y is the canonical representation of the Markov process corresponding 
to (V;_). So IPx-a.s. the limits 

Xt = lim Yq 
qEIQ!!t 

exist for all t 2: 0. The process X = (Xt)t>O is a cadlag version of the 
process Y which has the strong Markov property, see Williams [ ], ch.III. 
So it is sufficient to show that the processes X and Y are IP x-equal. It is 
clear that 

Vt E C(w): Xt(w) = Yt(w). 

So there is nothing to prove in the case 'Y = 0 and 0 < v(U) < oo, since in 
this case T = C(w), see lemma (3.3.2). So let 'Y > 0 or v(U) < oo. Suppose 
that t E R(w), say t = B(r,w). 
If v(U) < oo, then there is a first interval [B(o--,w),B(a-,w)[ following t, 
i.e. 

t < B(o--,w) and [t,B(a--,w)[c R(w), 

and it is clear that Xt(w) =a= Yt(w). 
If 11 (U) = oo, there is no first interval [ B (a--, w), B (a-, w )[ following t, since 
this would imply that 

3a- > r: w([r,a-[xU) = 0 

which is impossible. So for every f > 0, the interval [t, t + f] contains an 
excursion interval. Since we can choose in each interval a rational number 
q so that Yq(w) is in a arbitrary small neighbourhood of a, it follows that 
Xt(w) =a= Yt(w). 

In the next theorem we give an explicit formula for the Blumenthal-Getoor 
local time for Y at a, see Blumenthal&Getoor [ ]. Consider the map </;(t) 
defined on Mt as a IPx-a.s. defined map on the sample space ET of the 
process Y, which is possible since the map 

is an injection. 
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Theorem 3.3.9 Under the same assumptions as in theorem (3.3. 7), the 
Blumenthal-Getoor local time L = (Lt)t>o at the state a of the process Y 
is given by -

Lt=[,+ j(l - e-(")v(du)] x </J(t). 

Proof. Let O-a be the first time that Y hits or approaches the state a. 

Note that 

and 

J Px(dw)e-B(O,w) 

J Qx(dw') J Px(dw)e-B(O,w+w') 

J Qx( dw')e-B(O,w'). 

B(O, w + w') = B(O, w')for P almost every w 

B(r,w') = B(O,w') for Qx almost every w'. 

So for t > B(O, w') 

</J(t,w +w') inf{r: B(r,w +w') > t} 

inf{r: B(r,w) + B(O,w') > t} 

</J(t - B(O,w'),w). 

It follows that 

j Px(dw) 100 
e-td</J(t,w) 

Since 

j Px(dw) 100 
e-tl[B(O,w),oo[(t)d</J(t,w) 

j Qx(dw') j P(dw) 100 
e-tl[B(O,w+w'),oo[(t)d</J(t, W + w') 

j Qx(dw') j P(dw) 100 
e-tl[B(O,w'),oo[(t)d</J(t - B(O,w'),w) 

j Qx(dw')e-B(O,w') X j P(dw) 1= e-td</J(t,w). 

1= dt J P(dw)e-B(t,w) 

1 
'Y + J (1 - e-(,. )v(du) 
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we get 

Since the Ito-Poisson point process of excursions from a can be recon
structed from Y, it follows that ¢(t) is measurable with respect to the 
a--algebra a-(Yt : t 2: 0) generated by the process Y. An application of Gal
marino's test, see Dellacherie&Meyer [ ], yields that the process ( ip(t))t~o 
is adapted to the filtration of the process Y. Finally, it follows from lemma 
(3.3.4) that the functional (¢(t))t~ 0 is additive, which completes the proof 
of the theorem. 

We conclude this section by a short description of the process Y 6 , which 
is the process Y, constructed as above from the family of point processes 
(Px ), with killing on state a at a rate 8 proportional to the local time. This 
is also an example of the construction of a stochastic process from a more 
general point process. Let for s 2: 0 the point process P' be defined as the 
image of P under the map 

w E M+ i---+ l[o,s]xuW E M+. 

It is clear that ps is a Poisson point process on X with intensity measure 
l[o,,]>.@ v where v is the characteristic measure of P. Let for 8 > 0 the 
point process S6 be the Cox process on X defined by 

S 6 = 100 
8e- 68 P'ds, 

and let for x E E the family of point processes S~ be defined by 

for x # a 
for x = a. 

where the point process Q,, is defined as in the beginning of this section. 
Define the map 

1,,: w EM+ i---+ inf{r: w([r,oo[xU) = O} E [0,oo] 

and define 

B( ) _ { J w(da-du)l[o,r](a-)(., + ,r for TS ¢(w) 
r,w - B(ip(w),w) for r > ip(w) 

where I is a positive constant. The process Y 6 is now constructed from the 
family of point processes ( S~) in the following way. Until time B( oo, w) the 
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construction is the same as for the process Y associated with the fumily 
(g,). At time B(oo,w) the process Y is killed. It can be shown, that y..s 
has the simple Markov property. We will only give an expression, for the 
resol:vent of the process Y 6. Let (V1)>.>0 be the resolvent of the process 
Y 6 : for x EE, A > 0 and f Eb£ 

V{'f(x) = IE~ 100 e->.t f(Y/)dt. 

Theorem 3.3~10 Let x E E, ~ > 0 a.nd f E bB .. Then 

V{f(x) = G>.f(x)+ Z>.(x)V{f(a) 

wher!e 
v;6 -Pf. )' _ ~~..(!) + r f (a) 

>. .l\a - 8 +A')'+ A~~.ul)' 

Proof. We only cahmla:te. Vlfl(a). The nest of tke proof is analogpus to 
the pcoof of theorem (3.3'. 7) .. Suppose first that f (a) = 0. 

vt,f(a)i 

J S6(dw}j w(do-du.) 100 e->.t(f o u x l[o,(,.[)(t- B.(u-,w))dt 

= fo00 
ds8e- 68 J P(dw)j w(dudu}l[o,s}{u) 

100 dte-><tu Ou X l[o,(,.[)(t- B{o--,w)} 

Ja00 
dsce- 6" 1"~ j 11(du}j P(dw) 

100 dte-A•tu O 'It, X li[o;(,.[)(t- B(G'-,w),} 

Ja00 du j 11(du) j P(dw)e-ou-->.B(u-,w) 1(,. dte->.t f(u(t)) 

= 8 +Jr+ I (1 ~ e-A(w )11(dw) 100 dte->.t J 11(du)f(u(t)}lr(,.>t] 

~>.(f) 

Further 
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= loo J lB(s,w) 
0 

dsoe- 8' P(dw) 
0 

dte->-.t 

= ~ 100 dsoe-8•[1 - e-s(>-.,+>-.rh(l))l 
), 0 

= 'Y+i/>-.(1) 
8 + >.1 + >.ih(l)' 

So for f Eb£ 

v1 f(a) = [Vf(f- f(a) x l))(a) + f(a)Vf l(a) 

= 
i/>-.(f - f(a) x 1) + (1 + i/>-.(l))f(a) 

8 + >,1 + >.iJ>-.(1) 
ii>--U) + 1f(a) = 8 + >,1 + >.iJ>-.(1)' 
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Chapter 4 

Applications 

In chapter 3 we saw how to construct for a Ray process Y the Ito-Poisson 
point process of excursions from a recurrent state a, which is not a holding 
point and for which IPa[Ta = O] = 1 where Ta is the infimum of the times 
t > 0 at which Y hits or approaches state a. In the first section of this 
chapter we will show how one can get an explicit formula for the charac
teristic measure of the Ito-Poisson point process of excursions from zero for 
standard Brownian motion using the elementary calculations of the distri
bution of Brownian excursions in Chung [6]. By means of adjunction of a 
Radon-Nikodym factor we get from this result an explicit formula for the 
characteristic measure of the Ito-Poisson point process of excursions from 
zero for standard Brownian motion with constant drift. This will be done 
in section ( 4.2). A well-known problem which can be treated with excursion 
theory is to describe all strong Markov processes which behave like a given 
strong Markov process outside a given state a ( or more generally outside 
some given subset of states D). We will consider the problem to describe 
all Ray processes on [O, oo[ which behave otside zero like Brownian motion. 
This problem was first treated by Feller [11] using theory of differential 
equations. Feller's solution was that the infinitesimal generator of such a 
process is the differential operator 

with domain 

1 d2 

g = 2 dx2 

81 



82 CHAPTER 4. APPLICATIONS 

where p 1 , p2 and p3 are nonnegative real numbers and p4 au-finite measure 
on JO, oo[ such that 

Ito and McKean constructed in [26J the sample paths of these processes, 
which they called Feller's Brownian motions, from the reflecting Brownian 
motion and its local time and (independent) exponential holding times and 
differential processes. Rogers derived in [45J Feller's result using resolvent 
identities. We will give in section ( 4.3) an interpretation of the parameters 
Pl , P2, p3 and the measure p4 by means of excursion theory. In section 
( 4.4) we will use these results to construct a model for a random motion 
on an n-pod En, that is a tree with one single vertex O and with n legs 
having infinite length. This model can be used to describe the movement of 
nutrients in the root system of a plant, also there is a possible application 
to the description of the spread of pollutants in a stream system and to 
the analysis and desgn of circulatory systems, see Frank and Durham [12J. 
We will construct all strong Markov processes which behave like standard 
Brownian motion restricted to a halfline, when restricted to a single leg. 
In the last section we will construct a Markov process on [O, oo[ which 
behaves as follows: starting at a point x EJO, oo[ it evolves like a given strong 
Markov process until reaching O where it waits a length of time having 
an exponential distribution with parameter a after which time it jumps 
independently to a new position in JO, oo[ according to a given probability 
measure 'f/ and then proceeds as before. 

4.1 Point processes attached to Brownian 
motion 

In this section we will apply the results of section (3.2) to Brownian mo
tion. In particular, we will derive an explicit formula for the characteristic 
measure v of the Ito-Poisson point process of excursions from zero. The 
derivation is based on theorem (3.2.4) and on the following elementary cal
culations of the distribution of Brownian excursions in Chung [6J. 
Let B = (Bt)t>o be a standard one-dimensional Brownian motion on a 
probability spa~e (fl, .:F, IP 0 ). Let r > 0 and let Vi be the first excursion 
from zero with length greater than r. Following Chung [6], we introduce 
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the following notations: 

f3(r) = inf{t > r: Bt = 0}, 
1 (r) = sup{t < r: Bt = 0}, 
L(r) = /3(r) - 1(r). 

So l,(r), /3(r)[ is the excursion interval containing r. As JP 0 [Br = 0] = 0 
and B has continuous realizations, L(r) > 0,IP0-a.s .. Denote as in section 
(3.2), the first excursion interval of length greater than r by ]D1, Ti[. Let 
n 2".: 1, 0 < t1 < ... < tn and X1, ... ,xn E IR+: 

IPo[Vi(t;) E dx;,i = 1, ... ,n] 

IPo[Vi(t;) E dx;, i = 1, ... , n, L(r) ~ r] 

+lPo[Vi(t;) E dx;, i = 1, ... , n, L(r) > r] 
I+ II. 

It is clear that 
[L(r) ~ r] = [D1 2 /3(r)] 

and that 

It follows that 

I= IPo[Vi(t;)o0,a(r)Edx;,i=l, ... ,n,/3(r)- 1(r)~r] 
= IPo[/3(r) - 1 (r) ~ r]IP0 [Vi(t;) E dx;, i = 1, ... , n] 

by an application of the strong Markov property on stopping time /3( r). It 
is also clear that 

[L(r) > r] = [T1 = /3(r), D1 = 1 (r)]. 

It follows that 

Hence 

II= IPo[B"Y(r)+t; E dx;, i = 1, ... , n, L(r) > max(tn, r)]. 

lPo[Vi(t;) E dx;, i = 1, ... , n] 
_ IPo[B"Y(r)+t, E dx;, i = 1, ... , n, L(r) > max(tn, r)] 

IP0 [L(r) > r] 

A simple calculation using Chung [6], formula (2.20) results in 

2 
lPo[L(r) 2".: r] = -

7r 
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and the same reasoning as in Chung [6), theorem 6 yields for I > max(tn, r) 

IPo[-y(r) Eds, B(-y(r) + ti) E dxi, i = 1, ... , n, L(r) Ed~ 

p(s; 0, 0)g(t1; 0, x1)q(t2 - t1; x1, x2) · · · 

q(tn - tn-1; Xn-1, Xn)g(l - tn; 0, Xn)dsdx1 · · · dxndl 

where 
- ~] p(t;x,y) - exp[- 2t , 

( ) - fT 1.tl [ U:] g t; 0, y - V 27ft t exp - 2t ' 

q(t; x, y) = p(t; x, y) - p(t; x, -y). 

The probabilistic interpretations of p, q and g are as follows 

IPx[B(t)Edy] =p(t;x,y)dy, 
IPo[uy E dt] = g(t; 0, y)dt, 
IPx[B(t) E dy,u0 > t] = q(t;x,y)dy. 

fort > 0 and xy > 0. It follows that for tn > r 

IPo[B(-y(r) + ti) E dxi, i = 1, ... , n, L(r) > r] 

= ~g(t1; 0, X1)q(t2 - t1; X1, x2) · · · q(tn - tn-1; Xn-1, Xn)dx1 · · · dxn, 

hence 

This formula enables us to calculate some important quantities. 

IPo[T1 < oo] j IPo[Vi (r) E dx] 

2~ fo 00 g(r; 0, x)dx = 1 

and 

IPo[T1 -Di> r+s] = tr_ v~ 
Let (rkh>i be a strictly decreasing sequence of positive real numbers, such 
that limk=.oo rk = 0. Let (Uk, Vih>i be defined as in the proof of theorem 
(3.2.4), i.e. Vi is the sequence of excursions from 0 of length greater than 
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rk and Uk is the set of functions u E U = D[o,oo[(IR) for which (,.. > rk. 
Then 

so there is an Ito-Poisson point process Non U whose [( > /]-subsequence is 
the sequence of excursions of B of length greater than l. The characteristic 
measure v of N is given by 

where 0 < t1 < ... < tn and x1, ... , Xn > 0. Taking r1 = ¾ we get the 
same normalization of v as in Ikeda & Watanabe [22]. With our notations 
it is more convenient to take r 1 = ¾. 

4.2 Brownian motion with drift 

With the results of section (4.1) for standard Brownian motion, it is not 
very difficult to write down a formula for the characteristic measure of 
the Ito-Poisson point process of excursions from zero of Brownian motion 
with constant drift. The passage from Brownian densities to densities of 
Brownian motion with drift is done by adjunction of a Radon-Nikodym 
factor, see for instance Imhof & Kummerling [23]. Let Y = (Yt)t~o be 
Brownian motion with constant drift 6, i.e. 

Y(t) = 8t + B(t), t ~ 0. 

A straightforward calculation yields 

lP.,[Y(t;) Edy;, i = 1, ... ,n] 

exp[8(yn - x) - io2tn]lP.,[B(t;) Edy;, i = 1, ... , n], 

for 0 :S t1 :S · · · :S tn and Y1, ... , Yn E IR. It follows that the Radon
Nikodym derivatives p(t;x,y),g(t;0,y) and ij(t;x,y) of the measures 
lP.,[Y(t) E dy],lPo[O" E dt] and lP.,[Y(t) E dy,0"0 > 0] with respect to the 
Lebesgue measure are given by 

p(t; x, y) 
g(t; 0, y) 
ij(t; x, y) 

= exp[8(y - x) - ½o 2t]p(t; x, y), 
= exp[8y - ½82t]g(t; 0, y), 
= exp[8(y - x) - ½o2t]q(t; x, y), 
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for t > 0 and :i:y > 0. Let Jt(r), ,B(t)[ be the excursion interval of Y 
containing r with length L(r) = ,B(r) - -y(r) and let ]..01, T1 [ resp. V1 be 
the .first excursion interval resp. the first excursion of the process Y with 
length greater than r, then a simple calculation yields 

n 

xg(t1;0, Yi) X IT q(t;+l - ti; Yi, Yi+i)dy1 "· dyn 
i=l 

for O < t1 < · · · < tn, Y1, ... , Yn > 0 and tn > r. It follows that 

- r fl 1 100 

IPo[L{r)>rJ= Jo y~exp(-i2s)ds _
00

g(r;O,:v)dx 

and 

So 
IPo[T1 < oo] = 1 

and 

Since 

g(r;O,:v)dx = -exp(--82r)IEo(I B{l) I e68 (1)v'r) 100 1 1 

-oo ..fr 2 

we get 

. J~00 g(r + s; 0, x)dx 
hm Joo 
r!O _ 00 g(r;O,x)dx 

= lim ~exp(-_!.02r)IEo{I B{l) I exp(8B{l)v'r+s) = O. 
r!O V ~ 2 IEo(I B{l) I exp(oB(l).../r) 

So in the same way as for standard Brownian motion it follows that there 
exists an Ito-Poisson point proces Non U whose [( > /)-subsequence is the 
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sequence of excursions of Y of length greater than /. An appropiate choice 
for r1 yields the following formula for the characteristic measure ii of N: 

n 

ii[u(t;) Edy;, i = 1, ... , n] = g(ii; 0, Y1) XII q(ti+l - ti; Yi, Yi+1)dy1 · · · dyn 
i=l 

for 0 < t1 < · · · < tn and Y1, ... , Yn > 0. 

4.3 Feller's Brownian motions 

Let B = (Bt)t'?.D be a standard one-dimensional Brownian motion on a 
probability space (!:1, F, IPo). The process Y = (Yt)t>o defined by Yi =I Bt I 
is called reflecting Brownian motion. Let r > 0 be given and let VY (resp. 
VB) be the first excursion from zero of the process Y (resp. B) with length 
greater than r. Then, for n 2: 1, 0 < t 1 < · · · < tn and x1 , ... , Xn E IR+, 
we have 

IP0[VY (ti) E dxi, i = 1, ... , n] 
IPo[VB(ti) E dxi, i = 1, ... ,n] + IPo[-VB(ti) E dx;, i = 1, ... ,n] 

= 2 {irg(t1;0,x1)xllq(ti+1-ti;xi,Xi+1)dx1•·•dxn 
V 2 i=l 

since g(t;0,x) = g(t;0,-x) and q(t;x,y) = q(t;-x,-y), see section (4.1). 
It is now clear that the characteristic measure v of the Ito-Poisson point 
process of excursions from zero of reflecting Brownian motion is given by 

n 

v[u(ti) E dxi, i = 1, ... , n] = g(t1; 0, x1) XII q(ti+l -ti; Xi, Xi+1)dx1 · · · dxn, 
i=l 

0 < t1 < · · · < tn and x1, ... , Xn E IR+· The characteristic measures 
of the Ito-Poisson point process of excursions from zero of Brownian and 
reflecting Brownian motion corresponds to the same semigroup (I<t)t?_o 
which is defined by 

Kt(X, dy) = q(t; x, y)dy. 

The entrance laws ( 'f/s )s>D are given by 

'f/s(dy) = g(s; 0, y)dy for Brownian motion 

and by 

'f/,(dy) = 110,oo[(y)g(s; 0, y)dy for reflecting Brownian motion. 
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Each strong Markov process Y which behaves like Brownian motion until 
the first hitting rJ' of 0, i.e. 

IP:r:[Y(t;) Edy;, i = l, ... , n, rJ' > t] = IP:r:[B(t;) Edy;, i = l, ... , n, ro > t], 

where O :::; t 1 < · · · < tn '.5 t, has a characteristic measure (for the Ito
Poisson point process of excursions from zero), which correspond to the 
same semigroup (Kt), It is clear from the construction of these processes 
from Ito-Poisson point processes that the converse also holds. A problem 
extensively studied is to describe all the Ray processes on [0, oo[, which 
behave like Brownian motion until the first hitting or approach of 0, see 
for example Feller [11], Ito-McKean [26] and Rogers [45]. It follows from 
an application of the strong Markov property that the resolvent (V>-.)>-.>O of 
such a process satisfies the following formula for f E C0 ([0, oo[) and x 2=: 0: 

where 

G>-.f(x) = fo 00 e->-.tKtf(x)dt = IE:r: faro e->-.tf(Bt}dt. 

Rogers gives in [45] the following characterization of V>,.f(0): 

such that 

and such that 

Actually we should have considered these processes on the one-point -
compactification [0, oo] of [0, oo[, the point oo playing the role of a cemetery, 
where the process is sent to when killed. We have left this out to avoid an
noying technicalities. Rogers' derivation of this characterization is based on 
the resolvent equation. He remarks that the parameters p 1, p 2, p3 and p4 
have natural interpretations in excursion theory. To see this, let for s > 0 
and n 2=: 0 the measure £:r:s on [O, oo[ be defined by 

£ (d)-{q(s;x,y)dy 
:r:s y - g(s; 0, y)dy 

if X > 0 
if X = 0. 
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The families (txs)s>O, x 2: 0, of finite measures on [0,oo[ are entrance laws 
for the semigroup (Kt)- According to theorem (3.2.6), the semigroup (Kt) 
and the entrance law ( fxs )s>O determine a unique er-finite measure Vx on the 
excursion space (U00 ,U00 ) satisfying property (i), (ii) and (iii) of theorem 
(3.2.4) such that 

fxs(dy) = Vx([(u > s, u(s) Edy]). 

It is clear that v0 is the characteristic measure of the Ito-Poisson point 
process of excursions from zero of standard Brownian motion. For x > 0 
the measure Vx is identical to the distribution O:x on (U 00 , U00 ) of stan
dard Brownian started from x, which is absorbed in state 0. Let p be a 
nonnegative measure on [0, oo[ such that 

Vx > 0 : p([x, oo[). 

Define the measure v on ( U 00 , U00 ) by 

v = { p(dx)vx. 
lro,oor 

Then the family (1Js)s>O defined by 

1Js(dy) = v([(u > s, u(s) Edy])= { p(dx)fxs(dy) 
lro,oor 

is an entrance law for the semigroup (I<t)- For >. > 0 and bounded, mea
surable functions f on [0, oo[ we have 

i/>-.(f) = fo 00 
dse->-.s j 1Js(dy)f(y) 

p( {O}) / 00 f(y)e-yv'?S.dy + f p(dx)G>-.J(x). 
lo lro,oor 

It follows that 

i (1 - e-(u )v(du) f/1(1) 

~p({O}) + f p(dx)(l - e-x'-1'2). 
v2 lro,oor 

Let P be the Ito-Poisson point process on [0, oo[ with characteristic measure 
v. As in section (3.3) we assume that 

i(l- e-(u)v(du) < oo 
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to guarantee that the sum A( r) of the lengths of the excursions up to time 
T is finite. This condition is equivalent to the following condition on the 
measure p: 

f p(dx)(l - e-xv'2) < oo. 
lro,oor 

Let -y ~ 0 and define as in section (3.3) 

B(r,w) = u0 (w) + A(r,w) + -yr. 

Finally, let 6 ~ 0 be the killing-rate in local time at state 0. If (V.x).x>o is 
the resolvent of the strong Markov process attached to P then by theorem 
(3.3.10) we have 

{ 
G.xf(x) + V.xf(O)e-x../2X for x f:. 0 

V.xf (x) = p( {O}) f. 00 J(y)e-y-./'v:dy+ .fi p(dx)G~J(x)+'Y. J(O) 
o o 00 for X = 0. 

6+.X'Y+ ½P( {O} )../2X+ p(dx )(1-e-.r:v'IT) 
[o,oo[ 

It follows that Pl is the killing-rate in local time at state 0. The parameter 
p3 corresponds to -y, which is a measure for the stickiness at state 0. Further, 
it is easy to see that Vx is concentrated on the set of excursions { u E U00 : 

u(0) = x}, so p4 ( dx) is the rate in local time at O by which there appear 
excursions starting at x. The parameter 2p2 is the rate in local time at 0 
by which the process exits O continuously. 

4.4 Brownian motion on an n-pod 

In this example we will construct Markov processes on an n-pod En. As a 
set En is defined by 

Let 

be defined by 

En =]0, oo(x{l, ... , n} U {0}. 

{ 
X + y for i -:j:. j 

dn[(x,i),(y,j)]= lx-yl £ .. or z = J, 

dn[0, (x, i)] = x, 

dn[0, O] = 0. 
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The function dn is a metric on En and the topological space (En, dn) is a 
locally compact, second countable Hausdorff space. The topological space 
En is called an n-pod. Denote by E:n the Borel O"-algebra on En and by 
Ak, k = l, ... , n, the subset 

Ak = {e E En : e = 0 or :lx > 0: e = (x, k)} 

of En ,which is called the kth axis of En. It is clear that E 2 is homeomorphic 
to the real line IR and that A; is homeomorphic to [O, oo(. We want to 
consider strong Markov processes Y on En, which behave like Brownian 
motion until the first hitting or approach O"o of state 0, i.e. 

IP(x,i)(Yt E (y,y+dy) x {j},O"o > t] = { 6(t;x,y)A;(dy) for j = i 
for j -1- i 

where A; is the image of the Lebesgue measure on (0, oo( under the map 
¢; : (0, 00[1-+ A; defined by 

¢;(x) = { ~x, i) for X > 0 
for X > 0 

and where q(t; x, y) is defined as in section (4.1). Define fort> 0 the kernel 
Pr on (En, E:n) by 

Pr((x, i), F) = fo 00 lF((y, i))q(t; x, y)A;(dy)+lF(O){l-100 q(t; x, y)A;(dy)} 

ptn(0, F) = lF, 

The family of kernels (Pr)t;::o, where P0 is the identity kernel on (En, E:n), is 
a Markov semigroup of kernels which corresponds to a Feller-Dynkin semi
group on Co (En), see Williams (59]. Let ae, e E En, be the measure on the 
function space u(n) = DEn ((0, oo[) whose finite-dimensional distributions 
are given by 

m-1 
ae[u(t; E de;,i = 1, ... ,m] = Pt~(e,de1) IT Pt~+i-t;(e;,de;+1) 

i=l 

where m 2:: 1, 0 :S t1 :S ··· :S tm and e1,.,.em E En, The measure ae is 
concentrated on the set 

{u E u(n): 'vt 2:: (u: u(t) = O} 

where (u is the lifetime 

(u = inf{t > 0: u(t) = 0 or u(t-) = 0}. 
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Let (Kf )t~o be the sub-Markov sernigroup of kernels on (En, £n) defined 
by 

Kf (e, dy) ae[u(t) Edy,(.,> t] 

{ q(t; x, y)>..i(dy) fore= (x, i) 
0 fore= 0. 

Let Y be a strong Markov process on En, which behaves like Brownian 
motion until the first hitting or approach of O, and let v be the characteristic 
measure of the Ito-Poisson point process of excursions from zero of the 
process Y. The measure vis determined by an entrance law ( 1Js )s>D for the 
semigroup (Kl') with Vs> 0: 1Js({O}) = 0. We have 

J n { 00 n 

1Js(de)Kf(e, dy) = L Jo 11!(dx)q(t; x, y)>..i(dy) = L 1A,(Y)1Js+t(dy) 
i=l O i=l 

where 11! = ¢; 1 [lA, 77,] is the ¢; 1 -image of the restriction of 17s to the axis 
A;. It follows that for i = 1, ... , n 

As in section ( 4.3) there exist measures p(i), i = 1, ... , n on [O, oo[ such that 

and 
i l (i) 17,(dy) = p (dx)Exs(du), 

[D,oo[ 

where Exs is defined as in section (4.3). It follows that the resolvent (V>.)>->D 
of the strong Markov process Y is given by 

V>.f(x,i) = fo 00 G>.(x,dy)f(y,i) + Vd(O)e-x'-"2X 

with 

V>.f(O) 

15 + >.., + ½ E7=1 p(i)(O) + E7=1 Jio,oo[ p(i)(dx)(l - e-x'-"2X) 

+ E7=1 fio,oo[P(il(dx) ft G,>.(x, dy)f(y, i) + ,f(O) 

l5 + >.., + ½ E7=1 pU)(O) + E7=1 Jio,oo[ pU)(dx)(l - e-x'-"2X) 



4.4. BROWNIAN MOTION ON AN N-POD 93 

where I and o are nonnegative constants and f E b£n, As a special case 
take n = 2, o = 1 = p(l)(]0, oo[) = p< 2)(]0, oo[) = 0 and o: + f3 > 0, where 
o: = p(l)(0) and f3 = p<2)(0). Then we get 

Mapping E2 on IR by the map '!/J: 

'!/J(y,l) =y 
'!/J(y, 2) = -y 
'!/J(0) = 0 

and writing f for the composed map f o'!/J, we get after some straightforward 
calculation that 

and 

ViJ(x) = -(e-V2Xlx-yl + sign(y)--e-V2X(lxl+IYl)]f(y)dy 100 1 o:-/3 
0 v'21 o:+/3 

for all x E IR\{0}, where 

sign(y) = { 
-1 for y < 0 
0 for y = 0 
1 for y > 0 

This is the resolvent of skew Brownian motion, see Ito and McKean [27]. 
The numbers a~/3 and &;a may be interpreted as the probabilities for an 
excursion on the right- resp. the left hand side of 0, see Harrison and Shepp 
[21]. In [12] Frank and Durham give an intuitive description of symmetric 
Brownian motion on a 3-pod, which corresponds to the case 

We end this section by remarking that a similar construction is possible for 
processes which behave outside zero like Brownian motion with constant 
drift. 
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4.5 Blumenthal's construction 

In [2] Blumenthal constructs for a given characteristic measure and entrance 
law the extension of the original process whose entrance law is the given 
one, claiming that this construction is the one that Ito was referring to in 
(25]. Let E be a compact metric space and let a E E be a fixed point. Let 
X = (Xt)t>O be a Ray process with state space E. Blumenthal considers 
the case E- = [O, oo[, a = 0 and X is a standard Markov process. By a 
standard construction for Markov processes, X can be considered as a Ray 
process on the one-point compactification [O, oo], see Getoor [15). Denote 
as in section (3.2) by O:x the distribution on U = DE([O, oo[) of the process 
X starting at x and absorbed in a after the first hitting or approach rr a of 
the point a and by (Kt)t?.O the sub-Markov semigroup of kernels on (E, £) 
defined by 

Kt(X, dy) = O:x[u(t) Edy, (u > t]. 

Blumenthal's construction is based on an approximation with Markov pro
cesses of the following type. Starting at a point x E E\ {a} the process 
evolves according to the transition probabilities of the process X until 
reaching the state a where it waits a length of time having an exponen
tial distribution with mean o: > 0 after which time it jumps independently 
to a new position in E\ {a} according to a given probability distribution 'T/ 
and so on. The measure 'T/ is called the jumping in measure and o: is called 
the holding parameter. For the existence of such a Markov process Blu
menthal refers to Meyer [41). A simple calculation using the strong Markov 
property yields for the resolvent (U.>-)>->O of this process the formula 

where 

G>-f(x) = fo 00 e->-t Ktf(x)dt and f Eb£. 

It is not difficult to construct this process with the methods of section (3.3). 
Define the family of finite measures ('TJs)s>O on (E,£) by 

'T/s(dy) = j 'TJ(dx)K.(x, dy). 

The family ('TJs)s>D is an entrance law for the semigroup (Kt) satifying 
the property Vs> 0: ry({a}) = 0. Let v be the rr-finite measure on (U,U) 
corresponding to the entrance law ( 1Js) and the semigroup (Kt), see theorem 
(3.2.6), and let P be the Ito-Poisson point process on U with characteristic 
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measure v. Let Y be the Markov process attached to Pas in section (3.3). 
Then by theorem (3.3.10) the resolvent (Vi.)>.>O of Y is given by 

Vf(x)=G f(x)+IE (e->-u.)iJ>.(f)+'Yf(a) /Eb£ 
>- >- a A"'f+AiJ>.(1)' . 

Since 

iJ>.(f) = 100 dte->.t j 17(dx)Ktf(x) = j 17(dx)G>.f(x) 

and, for x -:/=- a, 

fo 00 Ae->-t Ktl(x)dt 

fo 00 
Ae-,\1IEx(l[u. >t] )dt 

r· IEx Jo Ae->.tdt 

IEx(l - e-o-•), 

the process Y with 1 = ¼ is the above described Markov process. The 
strong Markov property for Y follows from the assumptions in Blumenthal 
[2] about the resolvent (G>.)>.>O· 
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Appendix A 

A.1 The existence of an S-finite base for the 
topology 

Let X be a polish space and let S be a collection of open subsets of X. 
Denote by S' the family of all Borel subsets of X contained in some element 
of S. 

Proposition A.1.1 If S covers X, then there exists a countable base for 
the topology consisting entirely of open subsets with closure in S'. 

Proof. Let D be a dense subset of X and let d be a metric on X compatible 
with the topology of X. For each x E D there is an A E S containing x. 
Let 

6 = d(x,Ac) = inf{d(x,y): y =J A}. 

Then 6 > 0, since Ac is closed and x (/. Ac. Let r E (0,6). The closure 
.B.,(r) of the ball with center x and radius r is contained in A: 

y E .B.,(r) ==> d(x, y) ~ r 

==> d(y, Ac)?. d(x, Ac) - d(x, y) ?. 6 - r > 0 
==> y(/.Ac 

==> y EA. 

So .B.,(r) ES'. Define for x ED 

I.,= {q E Q: .B.,(q) ES'}. 

Claim: U = { B., ( q) : x E D, q E I.,} is a countable base for the topology of 
X. To see this, let O C X be open. It is clear that 

0:) LJ{B.,(q): Bx(q) E U,B.,(q) CO}. 

97 



98 APPENDIX A. 

Let y E 0. Choose AES such that y EA. Then 

f = min(d(y,Oc),d(y,Ac)) > 0. 

For x ED n By(¼f) and q E IQn]¼f, ¾f[ we have 

1 
d(x,Ac) ~ d(y,Ac) - d(x,y) ~ € - :t > q. 

So q EI,,, and y E B,,,(q). Hence 

0 C LJ{B,,,(q): B,,,(q) EU, B,,,(q) CO}. 

It follows that each open set can be covered by elements of U. 

A.2 The Skorohod topology 

Let (X,p) he separable metric space. Let for t 0 ,T E 1R,t0 < T, the space 
of functions u : [to, T] i-+ X which are right continuous on [to, T[ and 
have left limits on ]to,T] be denoted by Dx([t0 ,T]). Let A([t0 ,T]) be the 
class of strictly increasing, continuous maps A : [to, T] i-+ [to, T], such that 
A(to) = to and A(T) = T. For u,v E Dx([t0 ,T]), define d1(u,v) to be 
the infimum of those positive real numbers <: for which there exists a map 
A E A((to, T]) such that 

sup{I A(t) - t I: t E (to, Tl} ::; f 

and 
sup{p(u(t)), v o A(t)): t E (to, Tl}::; L 

The faction d1 is a metric on Dx([t0 , Tl). The topology on Dx([to, Tl) 
induced by d1 is called Skorohod's Ji topology. Equipped with the Ji 
topology, Dx([t0 , Tl) is a polish space, see Billingsley [l]. Let U be the 
space of cadlag functions of [O,oo[ in X. There are several papers about 
the extension of the Ji topology to U, see among others Lindvall [37] and 
Whitt [57]. We will summarize the theory of Whitt [57]. Let for O < b < c, 
rbc : U i-+ Dx([b,c]) be the restriction to [b,c] defined by (rbcx)(t) = 
x(t), t E [b, c]. For any x, y EU, let d be defined by 

d(x, y) = fo00 dte-t min[dot(rotX, rotY), 1] 

where dot is the metric on Dx([0, t]) as defined above. The function dis a 
metric on U. The topology induced by d is called the Skorohod topology on 
U. Note that a sequence ( Xn) C U converges to x E U iff dot ( rot Xn, dot x) --+ 

0 for almost all t. The basic properties of the Skorohod topology are: 
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(i) U equipped with the Skorohod topology is a polish space, 

(ii) the Borel u-algebra on U coincides with the u-algebra generated by 
the coordinate evaluations, 

(iii) if(Pn)n~1,P are probability measures on U, then 

00 

:l a sequence (sk, tk]k~l : LJ (sk, tk] = (0, oo[ 
k=l 

and 'vk: rsktk(Pn) ==> rsktk(P) on Dx([sk,tk]). 

Fix a EX and define the map (: u EU,_. (u E (0,oo] by 

(u = inf{t > 0: u(t) = a or u(t-) = a}. 

Lemma A.2.1 The map ( is lower semi-continuous. 

Proof. It is sufficient to show that the sets { u E U : (u :S k}, k > 0, are 
closed sets. So let k > 0 be fixed and let ( un) be a sequence in { u E U : 
(u :S k} converging to u. Let £ > 0. If the restrictions of the Un to (0, k] 
converge in Dx((0, kl) to the restriction of u to [0, k], there exists for every 
n sufficiently large a function ,\ E A((0, kl) such that 

sup{! >.(t) - t j: t E [0, kl} :S £ 

and 
sup{p( un(t)), u o >.(t)) : t E [0, kl} :S £. 

So 
p(u o >.(t), a) :S p(un(t)), u o >.(t)) + p(un(t)), a) :S 2£ 

for some t E [0, k]. It follows that 

Ve> 0, :ls E [0, k] : p(u(s), a)<£ 

and this implies that (u :S k. If the restrictions of Un to [0, k] do not 
converge in Dx ([0, k]) to the restriction of u, then there exists a sequence 
(km) decreasing to k, such that 

Vm 2:: 1: lim rok-mUn = rok-mU. 
n-->oo 

As above we may conclude that Vm 2:: 1 : (u :S km and it follows that 
(u :S k. 
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A.3 Some results on real functions 

A.3.1 Result 1 

Lemma A.3.1 (Greenwood e3 Pitman). For each n > 0 let f n(t) be a 
positive, nondecreasing function oft E [0, oo[ and let SC (0, oo(. If 

Vs ES: lim fn(s) = J(s) exists, 
n-+oo 

and 
{!( s) : s E S} is dense in [O, oo[, 

then there is a continuous, nondecreasing function f defined on [O, a[, where 
a = sup S, such that uniformly on bounded sub-intervals of [0, a[ 

lim f n (t) = f (t). 
n-+oo 

Proof. For every n > 0 ands EB we have 0::; fn(0)::; fn(s). So 

0::; limfn(0)::; limfn(0)::; inf{/(s): s ES}= 0 

and 
limfn(0) = 0. 

Let x E]0, a[. If Sn [0, x] = 0, then lim fn ( x) = 0. In the remaining case 
we have 

sup{!( s) : s E Sn[0, x]} ::; limf ,,,( x) ::; lim/ n( x) ::; inf{/( s) : s E Sn[x, oo[}. 

Since {!( s) : s E S} is dense in (0, oo[, lim fn ( x) exists. Define the function 
f : [0, a[1--+ [0, oo[ as the pointwise limit of the sequence functions (/n).lt 
is clear that f is a nondecreasing, continuous function on [0, a[. If the 
convergence of the sequence Un) is not uniform on bounded sub-intervals 
of [0, a[, then there exists an M < a and an E > 0 such that 

Let (tn 1 ) be a convergent subsequence of (tn), t 00 = lim tn,. Choose x1, x2 E 
[0, a[ such that 

If t00 = 0, take x1 = 0. Then for n' sufficiently large 
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and it follows by letting n' -+ oo that 

which is a contradiction. So the convergence of the sequence (f n) is uniform 
on bounded sub-intervals of [O, a[. 

A.3.2 Result 2 

Let A be a function on [O, oo[ which is nonnegative, nondecreasing and right 
continuous. Denote by .X the Lebesgue measure on [O, oo[, and let cp be the 
distribution function of the measure v = A(.X) on [O, oo[. Then fort 2: 0 

cp(t) J lro,t]dA(.X) 

.X({x: A(x)::; t}) 

sup{x: A(x)::; t} ). 

The function cp is nonnegative, possibly infinite valued, nondecreasing and 
right continuous. 

cp(t)::; y ==> y is an upperbound of {x: A(x)::; t} 

==> '<If> 0: A(y + e) > t 

==> A(y) = A(y+) 2: t 
==> A(y) is an upperbound of {t: cp(t)::; y}. 

On the other hand 

So 

u is an upperbound of {t: cp(t)::; y} ==> Ye> 0: cp(u + e) > y 

==> Ye > 0 : A(y) ::; u + c 

A(y) = sup{t: cp(t)::; y} 

is the distribution function of the measure ¢(.X). We call cp the right con
tinuous inverse of A. We have shown that A is the right continuous inverse 
of cp. Let FE L1 (v), then 

J F o A(x).X(dx) = J FdA(.X) = J F(y)dcp(y). 
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A.3.3 Result 3· 

Let f be a nondecreasing, right continuous function on [O, oo[, such that 
/(0) = 0 and limn---,cxi f(:i:) = +oo. Define 

J = {t E)O, oo[: f(t-) < f(t)} 

and 
R= range(!)= {s E [O,oo[: 3t 2:: 0: s = f(t)}. 

Lemma A.3;2. If f is strictly increasing, the 

[O, oo[= R + z)!(t~ ), f(t)[ 
tEJ 

where the union is a union of disjoint intervals. 

Proof; Let t E R, say t = f( r). Assume that there is an s E J such that 
t E [f(s-), f(s)[. Then 

f(s-) :S f(r) < f(s). 

It follows that r < s, so f(r) = f(s- ). This can only be the case when f 
is constant on [r, s[. This is impossible since f is strictly increasing. So 

Rn Z:U(t-), J(t)[= 0. 
tEJ 

Lett E [O,oo[\R. Then Vs E [O,oo[: f(s) <tor f(s) > t. Define 

u = inf{s: f(s) > t} = sup{s: f(s) < t}. 

Then f(u) 2 t, so f(u) > t and f(u-) :St. It follows that 

t E [f(u-),f(u)[c LJ[J(t-),f(t)[, 
tEJ 

which completes the proof of the lemma. 
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