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Preface

In 1970 K. It6 published a paper which was titled: ” Poisson point processes
attached to Markov processes”. In this paper he considers excursions from
a given state a of a standard Markov process. He notes that a special
role is played by the local time at a: labeled with the local time these
excursions can be considered as the points of a Poisson point process. This
tells us something about the randomness of the Markov process. In this
paper, it is also remarked that the stochastic process can be reconstructed
from the point process. In this book we will present a detailed discussion
of excursions from the point of view of the theory of point processes and
random measures. We also give the precise reconstruction of stochastic
processes from point processes of excursions.

At this place I should like to thank Prof. dr. C.L. Scheffer for his help
by the preparation of this book. I also should like to thank dr. J.G.M.
Schoenmakers for his critical comments and dr. W.H. Penninx, who was
able to solve all tex-problems.
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Chapter 1

Introduction

_ In his studies [35] and [36] of the sample paths of Brownian motion, Lévy
developed the idea to decompose the time set [0,00[ in a part Z at which
the process is in state 0 and intervals of time spent in IR\{0}. Throughout
the years this has proved to be a very fruitful idea. On one hand the
study of the set of zeros Z led Lévy to the description of local time as an
occupation density (Lévy used in [35] the term “mesure du voisinage”. See
for occupation densities the survey article of Geman and Horowitz [14], who
discuss connections between the behaviour of a (non-random) real-valued
Borel function and the behaviour of its occupation density. Local times for
general Markov processes were introduced by Blumenthal and Getoor in
[3]). On the other hand Lévy’s study of the behaviour of Brownian motion
on zero-free intervals was the starting point of excursion theory. Lévy’s
theory was extended in It6-McKean [27], (2.9) and (2.10). See also Chung’s
article [6], in which elementary derivations are given of a number of Lévy’s
results. This research led to many deep theorems about the behaviour of the
paths of diffusions, see for instance Williams [58] and Walsh’s discussion
of Williams’ results in [53]. Another important application of excursion
theory can be found in the construction of those strong Markov processes,
which behave outside a fixed state (or more generally outside a set D)
as a given Markov process X. In this area the works of Dynkin [9], [10]
and Watanabe [54], [55] are important. For excursions from a subset S,
see the works of Maisonneuve [38], [39] and Getoor [16]. Getoor gives
also an application to invariant measures, see also Kaspi [30] and [31].
Unlike occupation densities, which are also useful in the study of non-
random functions, excursion theory takes its use from the Markov character
of the random process. To make clear the ideas behind excursion theory,
let X = (X5 )n>0 be a homogeneous Markov chain with state space E. Let
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6 CHAPTER 1. INTRODUCTION

a € E be a given state. Denote for k = 1,2, ... by v* the time at which the
Markov chain X visits the state a for the k** time: v¥ = oo if there are less
than k visits to a. Suppose that a is a recurrent state, i.e. IP,[v} < 0o = 1.
Then the k** excursion Vi = (Vi(n))n>o from a of the Markov Chain X is
defined as follows

Ve(n) = Xykgn for0<n< vl k
a for n > vkt — ¥

Let Vo = (Vo(n))n>0 be defined by

[ X, forn<u!
Vo(n)—{ a for n > v}

It follows from the strong Markov property that the sequence of excursions
(Vi)r>1 is independent and identically distributed. It is clear that the
process X can be reconstructed pathwise from the sequence (Vk)kzo-

For Markov processes with continuous time parameter the situation is
more complicated. As an example take standard Brownian motion B =
(Bt)i>0 and consider the excursions from state 0. Let Z be the set of zeros
of B. The component intervals of [0,00[\Z are called excursion intervals.
Since Z is a topological Cantor set of Lebesgue measure 0 (see Ito-McKean
[27], problem 5, p.29), with probability 1 there is no first excursion interval.
Let I =]a, B[ be an excursion interval. The map V; : [0, co[—+ IR defined
by

0 fort>p -«

is the excursion made by B from 0 corresponding to the excursion interval
I; ( = B — « is called the length of the excursion. Put 71 = ¢(«), where ¢
is the local time of B at zero. It6 proved in [25] (see also Meyer [41]) that
the random distribution of points (77, Vr) in [0, 00[x U, I running through
the excursion intervals and U being the space of excursions from 0, is a
Poisson point process on [0, co[xU whose intensity measure is the product
of Lebesgue measure A on [0, co[ and some o-finite measure v on U. This
means that the number of points (77, V) in a set [u, v[xUp C [0, 00[x U is
Poisson distributed with expectation (v — u)r(Up) whilst the numbers of
points (77, V7) in disjoint subsets of [0, co[x U are independent. 1t proved
this result actually for excursions of a standard Markov process X from a
regular point a, and he gave a characterization of the excursion law v of a
recurrent extension of X, i.e. a strong Markov process, which behaves as
X until the first hitting of state a.

It is interesting to look at 1td’s definition of a point process. Let (S, S)
be a measurable space. A point function p :]0,00[— U is defined to be

V[(t)z{ Byyt for0<t<f—-a
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a map from a countable set D, C]0,00[ into U. Meyer in [41] considers
a point function p as a map defined for all points in ]0,00[ by putting
p(z) = 0 for z €]0, 00[\D, where 9 is an extra point added to U. Let now
[1 be the space of all point functions: ]0,c0[— U. Denote for p € [] and
for £ € B(]0,0[) ® S by N(E,p) the number of the time points ¢t € D,
for which (¢,p(t)) € E. The Borel o-algebra B([]) on [] is defined as the
o-algebra generated by the sets {p € [[: N(E,p) =k}, E € B(]0,0[) ® S,
k =0,1,2,... Ito defined a point process as a ([[, B([]))-valued random
variable. For instance the point process of excursions from 0 of Brownian
motion is the (stochastic) point function p defined by

D, = {77 : I an excursion interval} and
p(t) =Vi,t=1 € Dp.

This definition gives a clear picture of point processes such as they appear
in excursion theory and that is presumably the reason why in studies about
excursion theory this definition is always used, see for instance Watanabe
[64] and Greenwood and Pitman [17]. Beside this definition of a point
process as a stochastic point function, there exists a fairly general theory
of point processes which views a point process as a discrete random mea-
sure. See Neveu [44], Jagers [29] and Krickeberg [34] for point processes
on a locally compact space and Matthes, Kerstan and Mecke [40] for point
processes on a complete, separable metric space. This measure-theoretical
approach to excursions makes it possible to use some important results
from this theory, such as e.g. the Palm-formula, which were up to now not
used in the literature about excursion theory. An example of the use of the
Palm-formula can be found in the construction of a Markov process from
a Poisson point process of excursions. It6 only remarks in [25] that this
can be done by reversing the procedure of deriving the excursion process
from a Markov process. In Ikeda & Watanabe [22] Brownian motion is con-
structed from its excursion process using the general theory of stochastic
processes (compensators and stochastic integrals). And in [2] Blumenthal
gives a construction of which he claims that it is the construction It6 had in
mind; this construction consists of a pathwise approximation of the Markov
process. The most recent and complete work along these lines can be found
in Salisbury [47] and [48]. The construction that we will give is based on
an application of the Palm formula and on the so-called renewal property
of a Poisson point process of excursions. This construction has in our opin-
ion the advantage that it makes clear why the constructed process has the
Markov property and it displays the role of local time in the construction.
The same method can be used to write down a formula for the resolvent of
the constructed process.
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We continue with the definition of a point process as a discrete random
measure. Let X be a topological space with Borel o-algebra B(X). Roughly
stated, a point process on X is a probability measure on the space of locally
finite point measures on (X, B(X)), or a random variable with values in the
space of locally finite point measures on (X, B(X)) by which we identify a
random variable with its distribution. From now on we will use the word
point process only in this sense. In excursion theory the topological space
X is the (topological) product of the set of nonnegative reals [0, oo with the
usual topology and the space of excursions U endowed with the Skorohod
topology. For example the point process of excursions from 0 of Brownian
motion is the random measure )~ {6(,, v;) : I an excursion interval} where
8 is the notation for the Dirac measure in z. Note that X = [0, 0c0[xU
is a polish space. The main reference on point processes on polish spaces
is the book [40] of Matthes, Kerstan and Mecke. The theory which they
develop depends essentially on a fixed metric d on X, chosen in advance,
such that the metric topology coincides with the topology of X and (X, d)
is a complete, separable metric space. A nonnegative Borel measure on X is
locally finite if it is finite on the sets in B(X), which are bounded in the sense
of the metric d. This theory is not directly applicable to excursion theory.
The point measures which arises in excursion theory are finite on the sets
[a,b[x[¢ > £],£ > 0, (remember that { is the length of the excursion) and
the most interesting cases are those where the set [a, b[x U has infinite mass.
Note that the set [¢ > £] is dense in U. Thus it is not clear how to choose a
metric d on X for which the set of locally finite measure contains this family
of point measures. Instead of trying to find such a metric, it seems more
natural to define local finiteness directly in terms of the sets [a, b[x[¢ > £].
More general, let S be a family of Borel subsets of X. A nonnegative Borel
measure p on X is called S-finite if p(A) < oo for every A € S and a
point process P is an S-finite point process if the probability measure P
is concentrated on the space of S-finite measures. The set of locally finite
measures in the sense of Matthes, Kerstan and Mecke coincides then with
the S-finite measures, S being the family of all open balls with finite radius.
Point processes on locally compact spaces are probability measures on the

"set of Radon measures, which is the same as the set of S-finite measures
with & consisting of the compact subsets.

So far we did not discuss a measurable structure on the set M*(S) of S-
finite measures, which is of course necessary for the definition of probability
measures on M*(S). A o-algebra on M*(S) should at least measure the
maps p € M*(S) — p(A), A € B(X). In Matthes et al. [40] the o-algebra
on M*(8) (8 being the family of open balls of finite radius) is defined in an
abstract way as the o-algebra A generated by these maps. In the literature
about point processes on locally compact spaces, on the other hand a o-
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algebra on the set of Radon measures is introduced in a topological way
as the Borel o-algebra B(M™) corresponding to the vague topology on
M*(8). Tt turns out that B(M™*) = A in this case, so we have a definition
of A as a Borel g-algebra corresponding to a nice topology on M*(S),
which makes it possible to use the apparatus of topological measure theory.
In section (2.1) we will define a topology on the set M*(S) of S-finite
measures on an arbitrary polish space X. Let H(S) = {f € Cu(X) :
JA € S : supp(f) C A} and let 7(S) be the topology a(M*(S), H(S))
of pointwise convergence on H(S). If § is a family of open subsets of X
filtering to the right such that S covers X and such that S contains a
countable, cofinal subset, then it will turn out that (M*(S),7(S)) is a
Suslin space whilst the Borel o-algebra on M*(S) coincides with A. At
the end of the section we compare our results with the results of Harris in
[19] and [20], who also defined a topology on some family of nonnegative
Borel measures on a complete, separable metric space.

Section (2.2) contains standard results for S-finite point processes, in
particular the Palm-formula which is now a direct consequence of a general
theorem on disintegrations of measures from topological measure theory.
Further S-finite Poisson point processes and Cox processes are discussed.
Section (2.3) is devoted to the study of a special class of S-finite Poisson
point processes on X = [0, 00[xU, S being the family of subsets I x U, of X
where I is a bounded, open sub-interval of [0, oo[ and (Un)n>1 is a sequence
of open subsets of U, increasing to U. It is clear that S is a filtering family
of open subsets of X which covers X and has a countable, cofinal subse-
quence. Denote by M{(S) the set of S-finite point measures p for which
p({t} x U) < 1,t > 0. An Ito-Poisson point process is a Poisson point
process P on X with intensity measure A®v, A denoting Lebesgue measure
on [0,00[ and v a o-finite measure on U satisfying v(U,) < oo,n > 1. We
choose the name It6-Poisson point process, because the point process of ex-
cursions, as constructed by Ito, is of this type. Following It6, the measure
v is called the characteristic measure of P. Further P(M$(S)) = 1 for an
It6-Poisson point process P. The first important property of Ité-Poisson
point processes is the renewal property which is treated here as a gener-
alization of the property that a Poisson process is free from after-effects.
The renewal property was already mentioned in It6 [25], but without a
proof. We continue with Ité’s characterization of It6-Poisson point pro-
cesses with a proof using “point process techniques”. We end section (2.3)
with a beautiful theorem of Greenwood and Pitman [17], which states that
an It6-Poisson point process P has an intrinsic time clock in the following
sense: if u € M{(S), denote by €x1(x), Exa(p), . . . the Uk-sequence of p, i.e.
supp(p) N ([0, 00[xUk) = (7ri (1), Exi(pt))i>1 where the enumeration is such
that the sequence (73;(p))i>1 is increasing in the order of IR. The sequence
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& = (&ri)i>1 is an 1.i.d. sequence on the probability space (M3(S), P).
The theorem of Greenwood and Pitman states that the time coordinates
Tki can be reconstructed from the sequence &x1,&k2, ... if ¥(U) = +00. We
give a complete proof of a slightly more general version of this theorem,
which was formulated in [17] as a theorem on stochastic point functions.

In chapter 3 excursion theory is treated for Ray processes. We have
chosen to treat excursion theory for Ray processes, since this class is in some
sense the most general class of strong Markov processes, see Getoor [15]
and Wiliams [59]. After a brief survey of Ray processes in section (3.1), we
construct in section (3.2) the It6-Poisson point process of excursions from
a given state a of a Ray process Y. Since we want to include branchpoints
in our discussion, we use a definition for excursions which differs a bit from
It6’s definition, see also Rogers [45] who uses the same definition. We call
excursion intervals the connected components of the complement in [0, co|
of the closed set of time points where the process hits or approaches the
state a. Let (rx)r>1 be a decreasing sequence of positive real numbers
and let Uy = {u € U : ¢u > r1}. Denote by Vi, the n'® excursion of ¥
with length exceeding r;. The strong Markov property implies that the
sequence (Vin)n>1 is an independent, identically distributed sequence. Let
7o = inf{t > 0:Y; = a or ¥;— = a}. An application of the theorem of
Greenwood and Pitman yields:

- If IP4[r, = 0] = 1 there exists and S-finite It6-Poisson point process
N defined on (2, F,IP,) whose [{ > {]-subsequence is the sequence of
excursions of Y of length greater than £. The characteristic measure v
of N is the unique (modulo a multiplicative constant) measure on U of
which the conditional distribution v|y; is the probability distribution
of Vj1;v is a o-finite measure with total mass v(U) = +oo.

- In the remaining case where IP,[r, = 0] = 0 there exists an i.i.d.
sequence (€, )n>1 of U-valued random variables on (2, F,IP,) whose
[¢ > £]-subsequence of excursions of Y of length greater than ell.

Note that it was not necessary for this construction to introduce ex-
plicitly a local time at state a. Local time at state a will be discussed in
section (3.3), in which we construct Markov processes from an S-finite It6-
Poisson point process. The basic idea is the following. If 4 € M$(S), then
supp(p) can be considered as a countable, ordered subset (uq)ses(u) of U
where J(p) denotes the projection on [0, oo[ of supp(p) and where u, = u
iff (o, u) € sup(p). Note that (1, )ses(u) is not necessarily a totally ordered
subset of U. Let L : U — [0,00[ be a given, measurable function on U.
Define for o € [0, o[

Blo,w) = S {L(ur):7€ (N[00}
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= /,u(drdu)l[oyg](T)L(u)

and

C(l‘) = UUEJ(;‘) [B(O'—, /‘)) B(O’, /‘)[
If T = C(p) then denote by ji the concatenation of the functions Ug|[0,L(us)[s
o € J(u), that is

fi:[0,00[— FE
f(s) = ol = Blo—,m) = [ (drds)(wlisseon)(s = B(r=1)

where o € J(p) such that s € [B(oc—, 1), B(o, p)[. In general we do not
have that [0, c0[= C(u). If B(o,p) is strictly increasing as a function of
o, then [0, 0o[ is the disjoint union of C(x) and the range of R of B(., u).
Let now P be an S-finite It6-Poisson point process with charateristic mea-
sure v. We want to construct Markov processes, so we have to assume
that v satisfies the properties of the characteristic measures which arose by
the construction of the It6-Poisson point processes of excursions in section
(3.2). But it is not necessary to assume that v(U) = +oco. In this context
it is more natural to consider a family (P;)zeg of point processes, where
P, is the S-finite It6-Poisson point process P to which is added a first ex-
cursion corresponding to a start from «, taking in account the transition
mechanism which is contained in the measure v. For our construction we
will follow the above described idea with the lifetime ¢ in the role of L.
Considered as a function of p € M$(S), B(7,p) is a random variable on
the probability space (M$(S), Pr). The Poisson-property of the point pro-
cess P, implies that the stochastic process (B(7))->0 is a subordinator (i.e.
the process (B(7))->0 has nondecreasing cadlag realizations and station-
ary independent increments). In our construction we add a linear term 7
to B(t), with v a nonnegative real parameter, which gives us the general
form of a subordinator with the same Lévy measure as B(r). The simple
Markov property for the constructed process is proved in theorem (2.3.6).
In theorem (2.3.8) we give an expression for the resolvent and in theorem
(2.3.9) the strong Markov property is proved under a weak extra condition.
In theorem (2.3.10) we give an explicit formula for the Blumenthal-Getoor
local time at state a. We end this section with an example of the con-
struction of a stochastic process from a more general point process than an
Ito-Poisson point process. This construction is based on a Cox process and
leads to a strong Markov process which is killed exponentially in the local
time at a.

In chapter 4 we give some applications of excursion theory. In the first
two sections we derive explicit expressions for the characteristic measures
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of the Ito-Poisson point processes of excursions from 0 attached to stan-
dard Brownian motion and Brownian motion with constant drift. A natural
problem is to describe all strong Markov processes which behave like a given
Ray process Y until the first hitting or approach of a given state a. As far
as we know the only complete solution for this problem is given in It6 and
McKean [26] for the case of reflecting Brownian motion on [0, co[. In section
(4.3.) we given an interpretation in terms of excursion theory of the pa-
rameters which appear in its description. In section (4.4) we will construct
a model for random motion on an n-pod E,, that is a tree with one single
vertex 0 and with n leggs having infinite length. This is the most simple
example of random motion on a graph. We want to define a process on
E,, which is Markovian with stationary transition probabilities. We should
also like to have the process to behave like standard Brownian motion re-
stricted to a half line, when restricted to a single leg. Using the results for
reflecting Brownian motion from section (4.3) we are able to characterize all
strong Markov processes which satisfy this description. Frank and Durham
present in [12] for the first time an intuitive description of such a process
for the case n=3. They considered the case of continuous entering from 0
in a leg, which was chosen according to some given probability distribu-
tion. The difficulty which arises in the construction of this process is that
the process, when starting from 0, will visit 0 infinitely many times in a
finite time interval. It is therefore not possible to indicate the leg which is
visited first starting from 0. The construction that we will give is based on
section (3.3); our model allows also jumping in a leg, stickiness at 0 and
killing with a rate proportional to local time at 0. In section (4.5) we show
how theory of section (3.3) can be applied to the construction of certain
Markov processes with Blumenthal uses in [2] and for the construction of
which he refers to Meyer [42]. In this book only excursions from a single
state a are treated. Recently this approach has been generalized by J.G.M.
Schoenmakers to the description of excursions from a finite set of states.



Chapter 2

Point Processes

A point process is a random distribution of points in some space X. The case
where X is the real line, more generally a locally compact, second countable
Hausdorff space or a separable metric space, has been studied extensively.
One always assumes that there is a family S of subsets of X, each of which
can contain only a finite number of points. If X is locally compact then
S consists of the compact subsets, if X has a metrical structure then S
consists of the bounded subsets of X.

Mathematically the concept of a point process is formalized as follows.
Let X be a topological space and let S be a family of open subsets of X. To a
distribution Z of points in X we assign the point measure EZE 7 0, where 6,
is the Dirac measure in z. The description with measures on X has greater
flexibility than the description with subsets of X and is mathematically
more convenient because of the richer structure of the linear topological
nature of the space of measures. Moreover in the case of point processes
with multiple points the approach via measures is more natural. So let
M+ = M*(S) be the set of all nonnegative Borel measures on X which
are finite on the elements of S. Denote by A the smallest o-algebra on M*
which measures the maps

p € MY — pu(A), A€ B(X).

Let M** = M**(S) be the subset of M* consisting of the point mea-
sures on X. An S—finite point process on X is a probability measure on
(M, A) which is concentrated on M**, or an M**— valued random vari-
able where we identify a random variable with its distribution. However,
the measure-theoretic introduction of the o-algebra A is not quite satis-
factory. There are several reasons to prefer a definition of A as the Borel
o-algebra corresponding to some topological structure on M™ : a topology

13
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on M, which induces the corresponding narrow topology on. the space of :
measures on M1, makes it possible:to discuss weak convergence. of point:
processes. Further, measurability properties of subsets of M* (for example
M?**) can be derived from topological preperties and there is.a -powerful
disintegration theorem for-measures on topological spaces.

As an examplé, considér the set of nonnegative Borel measures on a lo-
cally compact; second countable Hausdorff space. X, Then S is the.set of all
compact:sets and ‘M7 is the set of all Radon measures. Let:Cx. be the set-
of all real-valued, continuous-functions:on X with: compact support: Endow
M with the vague topology 7= o(MT,Ck) of pointwise convergence on
the elements of Cx : a net (us) in Mt converges vaguely to-p.€ M. iff-
pa(f) — p(f) for-each f € Ck, where p(f) is the functional-analytic nota-
tion for the integral of f with respect to y. The vague topology renders M+
a polish space, i.e. the vague topology on M* is metrizable with a complete
metric. The Borel o-algebra Bon (M) coincides with the o-algebra A
generated by. the maps u € M+ +— pu(A), A € B. The basic result on weak
convergence is. Prohorov’s theorem, which gives a.characterization of the
relative compact: subsets. of (M¥, 7). The set of point measures M** is a
vaguely. closed :subset of M*. See for proofs Bourbaki [5] and Krickeberg
(34].

In the literature about point. processes.on complete, separable metric
spaces (X, p) one studies: always point- processes. which . are finite on the
family. S of bounded Borel subsets.of X In excursion theory we study: point
processes on a-polish space U which are finite on some family S of open
subsets. In this.we cannot apply.the theory of peint-processes.on.complete,
separable metric spaces. since-itis-not:clear whether-there exists.a.complete
metric d for U such that:S coincides with the family of d~bounded subsets
of U. So, before we can study excursion theory we have to study the set:
M (8S) of S—finite Borel measures on a polish space U, § being some family.
of :open -subsets.

2.1 Topological spaces. of Borel measures

We will first introduce some notations. Let X be a Suslin space with Borel
o-algebra B(X), A Suslin space is a Hausdorff'topological space which is
the image of a polish space under a continuous map, see Schwartz[49], p.96.
The space of nonnegative, hounded,Borel measures on. X will be denoted
by M;(X ): To have a.sufficient:amount of continuous real:valued functions
on: X, we will assume that: X'is a.completely. regular space, ie. for each
zg € X and each:open neighbourhood:U of zp there is a.continuous function
f X v+ [0,1] such that f(zo) = 1 and: f is identical zero on. X\U. The
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space of bounded continuous functions on X will be denoted by C3(X).

To define a topology on the space of measures M (X), let F be a class
of real-valued functions. Assume that each f € F is p—integrable for each
p € M (X). Then we will denote by o(Mj (X), F) the coarsest topology
on M (X) for which the maps g € Mf (X) — p(f), f € F, are continu-
ous. If we take F = Cy(X)) we get the narrow topology o(Mj (X),Cs(X))
on M (X) which will be also denoted by 7 (X). The topological space
(MF(X), (X)) is a Suslin space, see Bourbaki [5], p.6.

Let G be an open subset of X. Equipped with the relative topology,
G is a completely regular Suslin space (Schwartz [49] theorem 3, p.96). If
f € Cy(X) then its restriction fig to G is element of C3(G). Define

H(G) = {fi¢ : f € Cy(X),supp(f) C G}.

Denote by 72(G) the topology o(M(G), H(G)). It is clear that m(G) C
71(G). Note that equality does not necessarily hold. Indeed if (z,) is a
sequence in G converging to a point z in the boundary of G, then the
sequence of Dirac measures (6,) converges in the space (M;(G), m2(G))
while it diverges in the space (M} (G), 11(G)).

Proposition 2.1.1 Let X be a completely regular Suslin space. If G is an
open subset of X, then (M (G), 72(G)) is a Suslin space.

Proof. Since m5(G) C 71(G) and (M} (G), 71(G)) is a Suslin space, it fol-
lows that (M (G), 2(G)) is the image of a polish space under a continuous
map. So we only have to prove that (M} (G), 72(G)) is a Hausdorff space.
For this it is sufficient that #(G) separates the points of M (G).

So let O be an open subset of G and let z € O. Since G is completely
regular, there exists an open neighbourhood V of z whose closure V is
contained in O and a continuous function ¢, : G +— [0, 1] such that ¢, (z) =
1 and ¢ is zero outside V. It is clear that

¢: € H(G),z €O,
supp(¢;) CV COCG

and

andly = \/ oz

z€O

Since any Suslin space is a Lindelof space, the family {¢,;z € O} has a
countable subfamily (¢, )n>1 with the same upper envelope 1o, see Schwartz
[49], pp. 103 and 104. Define for n > 1

gn = \/ éi.

1<i<n



16 CHAPTER 2. POINT PROCESSES:

It follows:that (gy) is-an sequence in H(G), increasing to-1p. Hence: for
vy &M (G) we have

V€ H(G) : v(f) = u(f) = U0) = (0))

for:all open subsets O C G. By.a monotone:class argument we may conclude
that M (G) separates the points of M} (G).

Corollary 2.1.2' Let X be a complétély. reqular Suslin-space: If .G is-an
open subset ‘of X, then H(G) separates the points-of MH(G):

Remark:2.1.3" A Hausdorff topological space X is-said to be a:Lusin space
if it is the image of a polish space under:a continuous bijection, see Schwarz
[49] p.94: It:is-clear that any Lusinspace is: a.Suslin space. If we assume
that: X is:itself a polish space, then (M (G),n(G)) is also polish and it
follows that: (M (G), 72(G)) is a Lusin space.

Definition 2.1.4° Let S be a family of subsets of X. S s filtering to the
right with respect to inclusion if:

VA, BeS§;3CeS:ACCand BCC.

Definition . 2:1.5° Let 'S be-a family.of isubsets-of X A'subfamaly:D of S'is-
a- cofinal subset if
VAeS§,3DeD:ACD.

Definition . 2:1.6 Let S be a family of measurable subsets of the measurable
space X. A measure p € Mj (X)-is S-finite if u(A) < oo for all A€ S.

Let: S be a family of open subsets: of X', which is filtering to the right with
respect to inclusion. The space of S—finite measures will'be denoted by
MT = M (S). We continue with a precise description of the space M*.
Define for all pairs A; B'€ §, A C B: the map myp.by

Tap:t M (B) > MF(A), map(n) = ap
where 4 denotes the restriction of:y to A. Then
(M7 (A),m2(A)), maB)a,Bes
is a projective system of Suslin spaces: The projective limit:

M = M(S) = limmagM{(B):

is:the subspace of the productspace [T, ¢ s M (A) whoseelements = (p4)
satisfy the relation ps = map(up) whenever A C B. If p € M, then
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(ap)aes is an element of M. To describe the relation between the spaces
M and M, define the map ¢ by

¢:peMt— (ap) € M.

Proposition 2.1.7 Let X be a completely regular Suslin space and S be a
family of open subsets of X, which is filtering to the right. If S is a covering
of X, then ¢ is a bijection of M* onto M.

Proof. Since S is filtering, (J,¢s B(A) is a ring of subsets of X. To show
that every (1a)aes € M is ¢—image of an element i € M, we define the
setfunction p by

p: | B(A)— R, u(G) = pa(G) if G € B(A).
A€S

One easily verifies that p is unambiguously defined. To see that p is o-
additive, let (Gr)n>1 be a pairwise disjoint sequence in | J B(A) with union
also contained in | J B(A). Then |JG, € B(C) for some C € S. Hence every
G, € B(C). 1t follows that

p(JGn) = pelJGn) =Y ne(Gn) =Y u(Gn).

So p is a finite, o-additive measure on (X,|J B(A)). Being an open cover of
a Lindelof space, S has a countable subcover. It follows that B(X) is the
o-ring generated by the ring UB(A) and that a o-additive measure p on
UB(A) has a unique extension to a o-additive measure g € M* on B(X),
see Halmos [18], p. 54. It is clear that ¢(iz) = (u4) and that ¢ is one-to-
one.

On M we define the projective topology, the coarsest topology which makes
all the projections

g : M — M{ (B), 75((1a)) = np

continuous and is therefore the trace on M of the product topology on
[Tacs M; (A). Assume that S covers X. Denote by 7 = 7(S) the coarsest
topology on M which makes the bijection ¢ continuous. Define

H(S) ={f € Co(X) | 3A € S : supp(f) C A}

Then
= oM, H(S)).
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Let B be the Borel o-algebra on (M, 7). There are other natural definitions
of o-algebras on M™ : define

A; = o[p € M — pu(B), B € B(X)]

and

Ar=olp € M¥ = p(f), f € H(S)]-

Theorem 2.1.8 Let X be a completely regular Suslin space and let S be a
family of open subsets of X which

e s filtering to the right with respect to inclusion,
o covers X and
e has a countable cofinal subset.

Then

(i) (MH(S),7(S)) is a Suslin space and

(i) A, = Ay = B(MH)

Proof. Let D be a countable cofinal subset of S. It is clear that D is also
filtering to the right and covers X. Then H(D) = H(S) and M*(D) =
M*(S), hence oc(M*,H(D)) = o(M™*,H(S)). Being a projective limit of
of a countable family of Suslin spaces, M (D) is a Suslin space, see Schwartz
[49], p. 111. Hence (M*(D),7(D)) is a Suslin space and (i) follows. To
prove (ii) we first remark that the family of continuous maps

pe Mt u(f), f e (S),

separates the points of M*. Indeed, suppose that for u,v € Mt

p(f) = v(f)

for every f € H(S). Let A € S. Every ¢ € H(A) is the restriction to A of
a function f € H(S). Hence

ap(¢) = p(f) = v(f) = av(9).

So by corollary (2.1.2) we have that 4u = av. It follows that 4 = v since A
was arbitrarily chosen in S. Since M* is a Suslin space, there is a countable
subfamily (f;)n>1 of H(S) such that the points of M*(S) are separated
by the maps ¢, : p € M*(S) — p(fn). By Fernique’s lemma, the sequence



2.1. TOPOLOGICAL SPACES OF BOREL MEASURES 19

(¥n)n>1 generates B, see Schwartz [49] p. 104, 105 and 108. It follows now
that

B C As.

Let now f € H(S) and let supp(f) C A, A € S. Since f is continuous, there
exists a sequence of B(X)—stepfunctions, zero outside A and converging
uniformly to f. Hence the map p € M*(S) — u(f) is A—measurable and
it follows that

Ay C Ay

Let A € S and let O C A be open. As in the proof of proposition (2.1.1)
we construct an increasing sequence (f,)n,>1 in H(S) with supp(f,) C A
and with supremum 1¢. It follows that the map u € M*(S) — p(0) is
B—measurable. A monotone class argument yields the B—measurability
of the maps u € M*(8) — u(G) for all G € J s B(A). Since S has a
countable cofinal subset, every Borel set in X can be written as a countable
union of elements of | J, s B(A) hence

A, C B.

We may conclude that (ii) holds.

From now on we will assume that the space X is a polish space. Let d be a
metric on X such that the metric topology is the topology of X and (X, d)
is a complete metric space. Let S be a fixed family of open subsets of X
satisfying the conditions of theorem (2.1.8). Define

§'={GeB(X):3A€S8:G C A}.

Remark 2.1.9 (i) The topological space (M™,7) of S-finite measures
on X is a Lusin space, see Remark (2.1.3).

(ii) Even for polish spaces it need not be true that a filtering family of
open subsets, which covers the space, has a countable cofinal subset.
For example, let X be the space of all pairs of non-negative integers
with the discrete topology. Then X is a polish space. A set A is a
member of the family § iff for all except a finite number of integers
m the set {n : (m,n) € A} is finite. The family § is filtering to the
right and covers X. But S does not have a countable cofinal subset.
Indeed, let (Ag)r>1 be a sequence of subsets of X contained in S. For
every k > 1 we can choose an element zy = (m,n) € X such that
n > k and zy & Ax. The set B = {z) : k > 1} is an element of S and
there is no Ay such that B C Ag.
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Theorem 2.1.10 Let X be a polish space and let S be a family of open
subsets of X satisfying the conditions of theorem (2.1.8). Let (o) be a net
in Mt and p € M*. Then the following statements are equivalent:

(i) Pa — p in (M+’T)f

(ii) limsup po(F) < p(F) for all closed F € §' and liminf po(O) > p(0)
for all open O € §'.

Proof. (i) = (ii)
Let F be a closed subset of X, FF C A for some A € S and let D be a
countable dense subset of X. Define

I={(z,q):z€ D, € Q4,B,(¢9)NF =0}

where

B: ={y:y€ X,d(z,y) < q}.
The set I is countable. For i = (z,q) € I, the closed sets F' and A°U B(q)
are disjoint. Since X is a normal topological space, there are disjoint open
sets U and V such that F C U and A°U B;(g) C V. By Urysohn’s lemma
there is a continuous function f; : X + [0,1] which =0 on U® and =1 on
F. 1t is clear that supp(f;) CUNV® C A, so f; € H(S). If y € F¢, then
there is an element ¢ = (z,q) € I such that y € B;(g), hence fi(y) =0. It
follows that

1p = inf{f; : i € I}.

Define

gn = inf{fila- o :fin}y n> 1.'

where (in)n>1 is an enumeration of I. It is clear that (g,) is a decreasing
sequence in H(S) converging pointwise to 1p. So for each n > 1

limsup po(F) < limsup po(gn) = p(gn),
a a

hence
limsup po(F) < p(F).
o

Let O be an open subset of X, O C A for some A € S. Let, as in proposition
(2.1.1), (g9») be an increasing sequence of bounded continuous functions such
that supp(gn) C A and 1o = supg,. So for each n > 1

liminf 14 (0) > liminf pio(gn) = p(gn),

hence
liminf 46 (0) 2 pa(0).
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This completes the proof of the implication (i) = (ii).

(i) = (i)

Let f be a bounded nonnegative continuous function on X with supp(f) C
A for some A € §. Define for £ > 1 the functions ug, v : X — IR by

1
Ue = Z Zlr<ina
i>1

and
1

1
v = Tlsupp(s) + D Flyr< g
i>1

the summations being finite summations since f is bounded. It is clear that
up < f < v for all k > 1 and that ugx T f and vy | f. Hence

liminf pa(ue) > 3 liminf ra(([f < 7101 4)
i>1 "

Sl < 710 4)

i>1

v

= p(ur)

and analogously
limsup pa(vi) < p(v).
o

It follows that

p(ur) < liminf po(f) < limsup po(f) < p(vk-

Taking limits for £ — oo we get
limpo(f) = p(f)
which completes the proof of the implication (i) = (i).

Definition 2.1.11 Let X and 8 be as in theorem (2.1.8). A measure p €
MT is an S-finite point measure if

VG € S : u(G) € IN.
An S-finite point measure is called simple if

Vz € X, uz = p({e}) € {0,1}.
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The set of S-finite point measures will be denoted by M** = M**(S) and
the set of simple S-finite point measures by M®* = M*(S).

Proposition 2.1.12 Let X be a polish space and let S be a family of open
subsets of X satisfying the conditions of theorem (2.1.8). Then M?*® is a
closed subset of (M*,1).

Proof. Let (uq) be anet in M** converging to p € M™*. Take & € supp(u)
and let U be an open neighbourhood of z, U € §’. Then by proposition
(2.1.10)

0 < w(U) < liminf pq (V).

Since po(U) € IN, it follows that
liminf po(U) > 1.

Consider now a decreasing sequence (Un)n>1 of open neighbourhoods of z
in &’ such that U, | {z} and Uns1 C Uy, for every n > 1. From Urysohn’s
lemma follows the existence of a sequence (hy,) in H(S) such that for every
n>1

1(7n+1 < h, <ly,.

Then

N(hn):liénlia(hn) > limsup/-‘a(ﬁn-{'l)

\Y

liminf po(Up42) > 1

and
pr = lim p(hy) > 1.

It follows that supp(u) is a discrete set and therefore for n sufficiently large
pe = p(Un) = p(Us).
Proposition (2.1.10) implies that

/“((771.) > limsup Na(Un)

v

limsup p1o(Un)

\Y%

> liminf po(Up) > p(Uy).
Hence for n sufficiently large

po = lim po(Un) € N,

and it follows that u € M°®.
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Let Uy, ..., U, be afinite sequence of open subsets of X such that Uy,...,U, €
S’ and let kq,...,k, € IN. Define

VUr, o Unibr sk = A € M 1 p(Us) = p(Us) = kiyi=1,...,n}.
It follows from proposition (2.1.10) that the map
1€ M* — p(G)

is lower semicontinuous (resp. upper semicontinuous) for each open (resp.
closed) subset G C X in &’. Hence

1 _ 1 .
VU,,. Unikryeokn = M**0{p p(U;) > ki~ and pUi) <kitg,1<i< n}

is open in M**. Let U be a countable base for the topology of X consisting
of open subsets with closure in S’ (see Appendix Al) and let A1, A, ... be
an increasing, countable cofinal subfamily of §. Define for k.n > 1

Okn =UWy,,. Unil,. 1

where the union is taken over all finite sequences Uy,...,U, in Y whose
elements are contained in Ag. It follows that Oy, is open in M** and that
the set

{neM* :u(Ax) =n}=
{ne M p(Ar) > n—11\{p € M** : p(Ax) > n}

is a Borel subset of M**. So

o0 00

M= J{peM*™ : u(A) =n}N0kn

k=1n=1
is also a Borel subset of M** and we have derived the following proposition:

Proposition 2.1.13 Let X be a polish space and let S be a family of open
subsets of X satisfying the conditions of theorem (2.1.8). Then M® is a
Borel subset of (M™*,T).

In chapter 3 we will be interested in a special class of point measures on a
product space. Let X be the product T x U of the halfline T' = [0, oo[ with
the usual topology and a polish space U. The space X with the product
topology is a polish space. Let (Ug)r>1 be an increasing sequence of open
subsets of U, Uy T U. Define

S={IxG:1CT open and bounded, G C U open
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and G C Uy, for some k > 1}.

This family S satisfies the conditions of theorem (2.1.8). Denote by M*
the set of S-finite measures on (X,B(X)) and by M} the set of simple
S-finite point measures p satifying the condition

VieT :u({t} xU) <1

Proposition 2.1.14 Let X be the product T'x U of the halfline T = [0, oo[
with the usual topology and a polish space U. Let

S={IxG:ICT open and bounded, G C U open

and G C Uy, for some k > 1}.
Then M3 is a Borel subset of (M4, 7).

Proof. The proof is analogous to the proof of proposition (2.1.12) and is
therefore omitted.

Remark 2.1.15 (i) If X is a locally compact, second countable Haus-
dorff space and S the family of compact subsets of X, then M* is a
dense G set in M**.

(ii) Let (X,d) be a complete, separable metric space and let S be the
family of all bounded open subsets of X. The family S satisfies the
conditions of theorem (2.1.8): a countable cofinal subset of S is the
sequence of open balls (By(z))n>1 with radius n € IN and center a
fixed point z € X. Matthes, Kerstan and Mecke define in [40], section
(1.15) a metric p on M**. It turns out that (M?**,p) is a complete,
separable metric space and the metric topology on M?*® coincides
with the relative topology on M** as a subspace of (M**, 7).

(iii) Let (X,d) be a complete, separable metric space and zo, be a fixed
point of X. Harris defines in [19] a (nonnegative Borel) measure p on
X to be z,-finite if

(a) u(X\V) < oo for each open set V containing X, and
(b) p({z}) = 0.
Let M be the class of z.-finite measures. Define for ¢t > 0
1
The sets E; are closed and have disjoint boundaries. It is clear that

pEM <= Vt>0: u(E;) < oo.
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Harris introduced in [19] a topology on M, which we describe now.
Denote for ¢ > 0 by L} the Levy-Prohorov distance on M (E;),
that is a metric on Mj (E;) such that (M (E;),L}) is a complete,
separable metric space and the L}-topology on Mj (E;) is the narrow
topology o(Mj (E;), Cy(Er)). If p,v € M put

© e tLy(u,v)
Lip,v)= | S=bb) g
(“ V) A 1+Li(/“)y)

where L;(p,v) denotes the L} distance between the restrictions of p
and v to E;. The integral converges and L is a metric for M such that
(M, L) is a complete, separable metric space.

Consider now the polish space X\{zo,}. Let S be the family of open
subsets

A= {2 € X\{zeoo} : d(z, 200) > %},t > 0.

Then S satisfies the conditions of theorem (2.1.8). Denote by fi the
restriction of 4 € M to X\{zw}. Then i is a S-finite measure on

X\{z}.

Proposition 2.1.16 The map
X:pEMw—peMt

is a continuous bijection from (M, L) on (M™*,T).

Proof. It is clear that x is a bijection. To see that y is continuous,
let f € H and let (u,) be a sequence in M converging to g, i.e.
lim,,_, o L(ptn, ) = 0. Then supp(f) C A; for all ¢ sufficiently small.
It follows that there exists a t > 0 such that supp(f) C A; and
p{z € X : d(z,z0) = $}) = 0. From Harris [19], theorem (2.2) we
conclude that

nl_l_'ngo /“n(f) = nli{{.lo Ag/ln(f |A¢)
= Acl‘(f |Ai) :/‘l'(f)
So for each f € ‘H the map

B €M — (x(m)(f)

is continuous, which implies the continuity of x. If u,v € M put

d(p,v) = L(x" (), x"'(v).
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Then (M™,d) is a complete, separable metric space. Let 74 denote
the d-topology on M*. From the foregoing proposition it follows that
T C 14

Proposition 2.1.17 Let (u,) be a sequence in Mt and p € MT.
Then

7- lim pp, = p <> d- lim p, = p.
n-—00 n—00
Proof. The implication (<=) holds since 7 C 74. So assume that
- lim p, = p.
n— o0

If
1

u{z € X\{go} : d(@,200) = 7)) = 0,

then p(0FE;) = 0, where OF; is the boundary of E;. Identifying p
and x(p), it follows that the restrictions of (un) to E; converge in
(MF(Ey), L}) to p, see Topsoe [50], p.40. From Harris [19], theorem
2.2 we may conclude that d-lim u, = p.

So for the topologies 7 and 74 we have:
(M, 1) is a polish space,

T C 74,
T Td
P = b = fin = [

One cannot conclude from this that 7 = 74. Take for instance (X, 7) as
in example E of Kelley [33], p.77 and take for 74 the discrete topology
on X. It is clear that 7 and 74 satisfy the above conditions and that

T+ 1y

2.2 Poisson point processes

Let X be a polish space and let S be a family of open subsets of X which
is filtering to the right with respect to inclusion. Assume that S has a
countable cofinal subset and that S covers X. Denote by M* the Lusin
space of nonegative Borel measures on X which are finite on §. Let P be a
probability measure on (M*, B(M)). For a finite sequence By, ..., Bp in
B(X) the finite-dimensional distribution Pg,, . p,, is defined as the image
of P under the map

p€ M¥ = [u(By),..., u(Bm)] € ([0,00)™.

m
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Note that it is a consequence of theorem (2.1.8) that probability measures
on M* with the same finite-dimensional distributions are identical. The
Laplace transform P of P is defined by

P = [, Pnyessl- [ seuae)

where f runs through the cone B(X); of nonnegative, measurable func-
tions. The momentgenerating functions of the finite-dimensional distribu-
tions Pp,,.. B, are determined by P as follows from

m
m

[z P,y ) = P= Y i),
1

where 0 < u; < 1,7=1,...,m. So P is uniquely determined by its Laplace
transform. The intensity measure ¢ = ip of P is the Borel measure on X
defined by

i(8) = [ | Pmu(B), B € BX),

We say that P has S-finite intensity if : € M*. Denote by p the Campbell
measure of P, that is the measure on M* x X defined by

/M+><X F(u,z)p(dp, dz) =/M+ P(d/t)/xﬂ(dr)F(u,x)-

It is clear that p is a o-finite measure if the intensity measure ip is S-
finite. The projection p(M* x .) of p on X is the intensity measure ip. If
the intensity measure ip is S-finite, then a general theorem on disintegra-
tions of measures (see Bourbaki [5], section (2.7)) implies the existence of
a measurable family of probability measures (P;)zex on Mt such that

/M+xx Fdp /W P(dn)/xﬂ(da:)F(u,x)
- /X i(dz) /W Po(dp) F(u, @)

for every measurable, nonnegative function F' : M+ x X — IR. This formula
is called the Palm formula and the probability measures P, on M* are
called the Palm measures of P. From the Palm formula it follows that P is
completely determined by the intensity measure ip and the Palm measures
(Pr)zex. A straightforward calculation yields a formula for the Laplace
transforms of the Palm measures P;. Let f,g € B(X)4, then

[ir@) (Do) = =5 P +10) o
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Definition 2.2.1 A probability measure P on M will be called an S-finite
point process with phase space X (or an S-finite point process on X or a
point process if the phase space and the family S are clear from the context)

if
P(M**(8)) =1.

A point process P is simple if
PM*(8)) =1.

As usual in probability theory, an M™*-valued random variable N will also
be called a (simple) point process if its distribution on M is so.

Definition 2.2.2 A point process is said to be free from after-effects if for
every finite sequence Bi, ..., B in B(X) we have

Pp,,.,Bn = Pp, ® - ® Pp,
where Pp, ® -+~ ® Pp,, is the product of the measures Pg, on IN.

Definition 2.2.3 A Poisson point process with intensily measure v is a
point process P which is free from after-effects and whose one-dimensional
distributions Pg, B € B(X), are Poisson distributions with parameter v(B),
i.e. if y(B) < o0

Po( (k) = YL exp(—u(B)), k> 0.

If v(B) = 0o then Pp = bco.

Proposition 2.2.4 Let P be a Poisson point process with S-finite intensity
measure v. Then the Laplace transform P and the Palm-measures P, are
given by

P(f) = expl [ de)(1= /D)) f € BX)s

and
Py =6, %P,

where 535 denotes the Dirac measure on Mt in the point 6.
Proof. Follows from standard calculations.

Proposition 2.2.5 For every v € M*(S) there ezists a unique S-finite
Poisson point process on X with intensity measure v.
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Proof. Let A € S. The restriction 2v of v to A is a finite measure on
(A, B(A)). So there is a unique {A}-finite Poisson point process 4P on A
with intensity measure 4v, see Matthes et al. [40], section (1.7). The prob-
ability measure 4 P is defined on (M (A), BIM; (A))), where B(M (A))
is the Borel o-algebra on (M; (A), 72(A)), see section (2.1) for the defini-
tion of the topology 7.

Let A,B € S,A C B and let map be the projection of M (B) on M (A)
as defined in section (2.1). The image m4p(5P) of (gP) is a probabil-
ity measure on (M (A), B(M; (A))). A straightforward calculation gives
7aB(BPY= aP. So map(BP) =4 P and it follows that

(M (A), B(M; (A)),a P,map) is a projective system of probability spaces.
Since S has a countable cofinal subset, it is a consequence of Bochner’s the-
orem (see Bochner [4], p. 120) that there exists a projective limit P, which
is a probability measure on (M*, B(M1). An easy calculation yields that
P is the S-finite Poisson point process on X with intensity measure v.

Denote by P, the S-finite point process on X with intensity measure
. v € M*. Note that P, is a simple point process iff the intensity measure v
is a diffuse measure (i.e. v({z}) = 0 for every z € X). The family of point
processes {P,;v € M*} is a measurable family, i.e. for every G € B(M™)
the map v € M+ — P,(G) is measurable. Let V be a probability measure
on (M*,B(M%)) and let Q be the probability measure on (M, B(MT))
defined by
Q= V(dv)P,.
M+
It is clear that @) is a point process on X, which is simple iff V is con-

centrated on the diffuse measures in M. Such a process is called a Cox
process.

Proposition 2.2.6 Let Q) be a Coz process as defined above. The intensity
measure i, the Laplace transform @) and the Palm measures (Qz)sex of
Q are given by

ig(B) =iv(B) ,B € B(X),
Q(f) :Y(l_e_f) ’fEB(X)+a
Qs =éx* [Vo(dv)P, ,z€X,

where &, denotes the Dirac measure on Mt in the point by.

Proof. The formulas for ig and Q follow directly from the definitions.
To prove the formula for @, let F : M* x X — IR be a measurable,
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nonnegative function. Then

[ atn) [ ua)ru2)

[ v [ paw [wanrie)
[vian) [ wtaz) [G Py Fm2)
/ i (dz) / Va(dv) / Py(dp)F (s + 65, 2)
[iatan) [G+ [ Vetan)P ) F(u,2)

I

from which the result follows.

2.3 Ito-Poisson point processes

Let X be the product T" x U of the halfline T' = [0, co[ with the usual
topology and a polish space U. The Borel o-algebras on T" and U will be
denoted by Br and U. Endowed with the product topology X is a polish
space and its Borel o-algebra B(X) is identical to the product o-algebra
Br @U. Let (U)r>1 be an increasing sequence of open subsets of &/ which
covers U. Define

S={A:A=1xG,IC T open and bounded,
G C Uopen and G C Uy, for some k > 1}.

Then § is a family of open subsets of X which is filtering to the right
with respect to inclusion, contains a countable cofinal subfamily and covers
X. The topological space of S-finite measures on X will be denoted by
(M, 1), see section (2.1). The Borel o-algebra G on M7 coincides with
the o-algebra generated by the family of maps {p4 : A € B(X)}, where py
is the map p4 : v € Mt — v(4). The family (G)¢>o of sub-o-algebras of
G defined by
G = a(pA’A € B(X))A C [Oat] X U)

is a filtration on (M*,G). A measurable map ¥ : MT — T is called
(Gi)-adapted if [y < t] € G; for every t € T.

Definition 2.3.1 Let U be a polish space and let (Uy)r>1 be a sequence of
open subsets increasing to U. Let T = [0,00[. An Ité-Poisson point process
on U is an S-finite Poisson point process P with phase space X =T x U
and intensity measure p = A @ v where A denotes the Lebesgue measure on
T and v a nonnegative Borel measure on U, which is finite on the sequence
(Ur). Following Ité [25], v is also called the characteristic measure of the
It6-Poisson point process P.
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Remember from section (2.1) that M} is the (measurable) set of simple
S-finite point measures p satisfying the condition

VteT;p({t} xU) <1

Proposition 2.3.2 Let U be a polish space and P an S-finite It6-Poisson
point process on U with characteristic measure v. Then

PMY) =1

Proof. Since the intensity measure p = A ® v of P is diffuse, P is a simple
point process on X. Define the maps 7,k > 1, by

mk : M® = MY, () = [B € Br — p(B x Uy)),

where M3 denotes the space of point measures on 7' which are finite on
all bounded subintervals of T'. The maps 7 are P-a.e. defined, measurable
maps on M*. The measure P, = m(P) is the Poisson point process on
T with intensity measure iy = v(Ug)A. Since the intensity measure 7 is
diffuse, the point process Py is a simple point process. It follows that

P(mt(MY)) = P(M*) =11
and
P(M}) = P([| 7' (M) = 1,
k>1
which compietes the proof.
Let ¢ : Mt +— T be a measurable map. Define the transformation Ry :
Mt — Mt by
| Rewdo,duiio, =
TxU

/T o, du) (&, ), 01(0), f € BX)s-

For o € T we define the map t, by
to 1 (1,v) €lo,00[xU — (T —0,v) € X.
Finally we define the transformation Ty : M+ — M+ by

/ T¢(,u)(d0', du)f(o, u) / ,u(dcr, du)f °t¢(u)(0’ u)1]¢(#),oo[((f)
TxU TxU

Il

[ utdo, du) (e = 6, ) g ol():
TxU

We will write simply R, and T} if ¢ is the constant map p € M+ — s.



32 CHAPTER 2. POINT PROCESSES

Lemma 2.3.3 Let ¢ : MT — T be a measurable map. The above defined
maps Ry and Ty are both measurable.

Proof. Define for k,n=1,2,...
Apn = {1 € M¥E27" < §() < (k +1)27")

and

$n =D (k+1)27"14,,.
k

The sequence of measurable stepfunctions (¢, ),>1 is a strictly decreasing
sequence, which converges pointwise to ¢. It is clear that for every bounded
continuous function f : X — IR with support contained in some element of
S and for every p € M+

lim (Ty, 1)(f) = (To)(f)

and
lim (Rg,1)(f) = (Rop)(f).

It follows that the sequences (T4, )n>1 and (Ry, )n>1 converge pointwise to
Ty and Ry. Let A € B(X) and p € M*. Since

(Roo)(4) = 3 La (AN [0, (k + )2 [xV)
k

and

(Toi)(A) = D Lap, (WA((t1y2-7) " (A)),
k

it is clear that the maps p € M™ — (Ry, p)(A) and p € M* — (T, p1)(A)
are measurable maps which implies the measurability of the transformations
Ry, and Ty,

Theorem 2.3.4 (Renewal property). Let ¢ : Mt — T be a measurable
map and let P be an It6-Poisson point process with characteristic measure
v. If ¢ is (G:)-adapted, then Ry and Ty are independent M -valued random
variables on (M™*,G, P) and Ty(P) = P.

Proof. Consider first the case that ¢ is a stepfunction, say

¢ :ZSilAuAi € gs,‘-

i>1



2.3. ITO-POISSON POINT PROCESSES 33

Since P is free from after-effects
[ P expl~(Ran (1) = (Ter) (o)
=Y [ PanLe (0 expl- (R (1) - (T)(0)

=Y [ P ) exp(~(Re(5) [ Pld)exal(~(Te(@))
for f,g € B(X)4. Also for every s > 0 we have:
/P(du)e‘(T’“)(Q) = exp[- /°° da/u(du)(l—e‘gso‘s'u))]

= exp[— /()00 da/u(du)(l — e~9(0)]
= P(g).

Hence
[ Pawessl-(Ran)($) - @] = [ Pld)e= o0

which completes the proof of the theorem for stepfunctions. The general
case will follow by approximating ¢ from above by a sequence of stepfunc-
tions as in the proof of lemma (2.3.3).

Remark 2.3.5 Without further assumptions, it is not possible to say more
about Rg4. As an example, let P be an It6-Poisson point process on X with
S-finite characteristic measure v. Let Uy € S be a subset of U such that
v(Upy) > 0. Define the map ¢ : M} — T by

é(p) =min{t € T : p({t} x Uo) = 1}.

Since

{peMi:¢(p) <t} ={peMi:u0,t]x Uo) > 1},
i is a (Gt)-adapted map on M}. For f € B(X)4+

(Rs(P)Y
- / P(dp)e-(Fer))

:/P(d)u)//—L(deV)1[¢(#)=T]e"(Rr#)(f)
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:/ dT/ V(dv)/P(d'u)1[¢(#+6(,,”)):T]6_(R"(”+6(r,v)))(f)

0 U
00

:/0 dTLV(dV)/P(d“){1[¢(M)=T]+ 1[¢(/.t)>-r]1U0(’U)}e_(R"/‘)(f)—f(T,'v)
[}

:/ dT/ V(dv)/P(d")1[#([0,r]on)er]e‘““lO:flxuwof)—f(r,u)
0 Uo

:/ d'r/ y(dv)e_""’(UO)—f(T:U)/P(d’u)e—ll(llo,r]xu\uof).
0 Uo

Let @, be the image of the probability measure v(. | Up) under the map
u €U+ §(; ) € MT. Tt is clear that for f € B(X)4

) = L v)e~ (-r,v)
QN = gy [, @I,

Let S; be the image of the probability measure P under the map p €
Mt = 1o xv\vopt € Mt Tt is easy to see that S, is the Poisson point
process with intensity measure 1jo ,jxv\v, X (A ®@ v). It follows that

(Ro(P))(f) / " aru(U0)e= TG, (1)5: (f)

/ooo drv(Uo)e™ ™V (Qr % S;)(f)

and

R4(P) :/ drv(Up)e~™Wo)(Q, % S,).
0
Definition 2.3.6 A measure u € M7 is called recurrent if

Vt > 0,Yk > 1: p([t,co[xUy) > 0.

A point process P is called recurrent if P(Mr) = 1 where Mr is the set of
recurrent measures.

Note that an Ito-Poisson point process with characteristic measure v is
recurrent if ¥(Uz) > 0 for every £ > 1.

Let p € MY N Mrp. For every k > 1 the support of the restriction xp of
p to T x Uy is a countable infinite set whose projection on T has finite
intersections with bounded subintervals of T'. So we can write

supp(kp) = (i, uks))ix1
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where ty; € T, tr; < tkit1 and ug; € Ug, i > 1. For i,k = 1,2,... define
the maps 7¢;,€x; and og; on M} N Mr by

i(p) = tr,
Erilp) = upi, -
ori(p) = { Tk:(,,)_r,c,i”l(ﬂ) ifi>1

All these maps are measurable. Denote by o, and &, the vectors (ok1, ok2, . . .)
and (€k1,&k2,...),k > 1.

Theorem 2.3.7 (1t6). Let U be a polish space and (Uy)r>1 be a sequence
of open subsets increasing to U. Let P be an S-finite, recurrent, simple
point process on X =T x U and let v be a measure on (U,U) such that

0 < v(Ug) <o0,k>1.

Then, P is the It6-Poisson point process on U with characteristic measure
v iff for each k > 1

(i) (&ki)i>1 is a sequence of iid variables with distribution
v(ANUg)
v(Uk)
(ii) (ori)i>1 is a sequence of 4id variables with distribution

Plog; > t] = e_tV(U"),t > 0;

Pléri € Al = JAeU;

(ii1) o and & are independent vectors.

Proof. Let P be the It6-Poisson point process on U with characteristic
measure v. Then for k > 1,A > 0 and A € U we have

[ Py 1) w)
= / P(dp) / p(dodu)ls,, (uyx(anuy) (o, u)e™ 7

:/0 da/u(du)/P(d,u)l{akl(,,.p&(,’u))}x(AnUk)(‘T»u)e—)\o

by an application of the Palm formula and proposition (2.2.4)
[e ]
:/ da/u(du)/P(d/,z)lAnUk(u)1{6k1>0}e"\°
0

:u(AﬂUk)/O dge=v(Ur)=2o

_V(AﬂUk) V(Uk)
T v(Ur) A+v(Ur)
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Let now k,n > 1,Xy,...,A\, >0 and A;,..., A, €U. Then

/ P(dp) T (e La, (660)) (1)

i=1

= [ P Ly (€61)) R ) [T L, (€-)) (T

=2 .
= [ P Lay(@a)w) [ P T (97810 € (0)

by an application of theorem (2.3.4)

n

=TT [ P L) w)
i=1

by mathematical induction

_ 2 v(ANUg) v(Ug)
ﬁH v(Ur) Xi+v(Ui)

i=1

It follows that (i), (ii) and (iii) hold.
To prove the converse, let f € B(X)4.

/ P(dp)e= S 12

= tim [ P(du)e” Joaxu

k,t—o0

P(f)

W

oo
= lim{Z/ Pléri € du;, i € dt;,1 < i< n]
n=1{mkn<t<Tk,n41}

exp(— Y f(ti,w)) + Plry > 1]}
1
[ee] t t 1
= um{ge-vﬂfﬁ/o dt, /t dtg-u/tn_ldtn /U v(duy)
' / v(du)expl= ) f(ti, wi)] + e (UW)*)
Uk 1

o t
= llmz -1%-‘-{/ dU/ U(du)e—f(o,u)}ne—u(Uk)r
n=0 0 Ui

= exp(— /000 da/u(du)(l — e~ flowyy,
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Hence P is the It6-Poisson process with characteristic measure v.

Theorem 2.3.8 (Greenwood & Pitman). Let N be an M™*-valued random
variable defined on some probability space (Q, F,IP). Let N be an Ito-
Poisson point process with characteristic measure v. If0 < v(U,) < oo, n >
1, and v(U) = oo then

. 1

uniformly on bounded t-intervals IP-a.e..
Proof. Fix ¢t > 0 and define for n > 1
Frn=0(w € Q— N,([0,t] x Ug), k > n).

The random variables N([0,%] x Ug) are integrable with expecations given
by
EN([0,¢] x Ug) = tv(Us).

A straightforward calculation yields

v(Un)
v(Up1
Therefore (ﬁN([O, t]xUp), Fn)n>1 is a reversed martingale on (Q2, F,IP).
It follows that (W{lﬁjN([O’ t] x Uy,) converges a.s. and in L, to a limit which

IE(N([O,t] X Uy |~7:n+1) = N([O,t] X Un+1).

is a random variable measurable with respect to Foo = (1,5 Fn. See Neveu
[43]. Since for A > 0 as n — o0 -
1 -
eXP(—)\mN([O,t] x Un)) = exp{tv(Up)(1 —e -'ié’n5)} — e,

we may conclude

lim N([0,t] x U,) =t a.s. and in L'.

n—00 V(Un

The statement of the theorem now follows from a general lemma on the
convergence of positive non-decreasing functions for which we refer to Ap-
pendix A3.

Let N be as in theorem (2.3.8). For w € Q such that N, € M} N Mr we
write Thi(w), €&ki(w) and opi(w) for 7% (N,),Eki(Ny) and oki(Ny), see the
definitions preceeding theorem (2.3.7). Denote for k > j by Tkji(w) the
index at which the ith point of type U; in the vector £p(w) = &x(N,. If
N is an Itd-Poisson point process, then 7y;(w),€xi(w) and og;(w) are IP-a.e.
defined random variables.
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Corollary 2.3.9 Under the assumptions of theorem (2.3.8) we have

. 1
klil_’n;.lo mTk”(UJ) = T]l(UJ) IP—-a.s..

Proof. By definition of Tj;;(w) we have
No([0, 755 (w)] x Ux) = Tiji(w).

The corollary implies that an Itd-Poisson point process N can be con-
structed from (Uy,&x) whenever v(U) = +o0; the times 7; at which the
&ri occur, are already determined by (Ug,&x). We will put this in a more
general framework.

Let V& = (Vij);j>1 be asequence of Ug-valued random variables on (2, F,IP),
k=1,2,....

Definition 2.3.10 The sequence (Uy, Vi )x>1 15 called a nested array if
(1) Vi is an iid sequence, and

i) for j < k, V; is the U;-subsequence of Vi consisting of those terms
. . ] ] q
which are in U;.

See Greenwood & Pitman [17].

From theorem (2.3.7) it is clear that (Uk,&k)r>1 is an example of a nested
array. If p is a measure on (U,U) and if E € U is such that 0 < pu(E) < oo,
then p |g denotes the measure on U defined by

_ p(ANE)
© |E (A) - N(E)

Proposition 2.3.11 If (Ug, Vi)k>1 is a nested array on the probability
space (2, F,IP), then there exists a uniqgue measure v on (U,U) such that

VAeU.

v(U) =1 and v |y;= v;,
where v; denotes the probability distribution of Vji.

Proof. Let j < k. Define Si;; as the index at which the the it" point of
type U; occurs in the sequence Vi. For A € Y

vi(A) = P(Vj1 € A)
= Z]P(Vki € A, Spj1 = 1)

=1

= > {P(Va1 ¢ Uj}'P(Vis € ANT;)
i=1

= v lu; (A).
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Substitution of A = U; yields

v (Uyr)

vi(th) = vie(Uj)

It follows that for j < k and A € U

l/j(Ant) _ I/k(AﬁUj)
vi(Uh) — w(Uy)

Define
R=|J{Aeu:AcU;}.
J
The collection R is a ring of subsets of U, and the o-ring generated bu R is

U. From the above it follows that we can define consistently a setfunction
v on R by putting for A€ R,ACUj,j > 1,

A = Y (4)
A=

The setfunction 7 is a o-finite measure on R. Hence U has a unique exten-
sion v to a measure on (U,U), see Halmos [18]. From the construction it is
clear that v has the claimed properties. Define for & > 1

1

prk =P(Vk1 €U1) = =
( ) v(Uy)
Then (pg)r>1 is a decreasing sequence of positive real numbers:

v(U) =00 ¢ lim p; = 0.

k—o00

In the next theorem we associate an Itd-Poisson point process N to a given
nested array (U, Vi) in such a way that Vj is the Ui-subsequence (&xi)i>1
of N.

Theorem 2.3.12 (Greenwood & Pitman). Let (Uy, Vi )p>1 be a nested ar-
ray on the probability space (2, F,1P). If

lim pg =0,
k—o00
then for IP-a.e w the limits

tin(w) = klir{.lo PrSkjn(w)
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ezist for all n,j = 1,2,... where Skjn(w) is the index at which the n'®
point of type U; occurs in the sequence Vi. The sequence of limitpoints
(tnj(W))n>1 is a strictly increasing sequence of positive real numbers. The
IP-a.e. defined random variable

wEN— Z Z 5(tjn(w),an(w))

J=1n:Vin(w)gUj-1
is an Ité-Poisson point process on U with characteristic measure v as de-
fined in proposition (2.8.11).
Proof Define for k > j,n > 1,
Dij1 = Skj1,

Dijny1 = Skjnt1 — Skjn,
and
Dyj = (Dijn)n>1-
Then for measurable sets A;,..., A, C U; and dy,...,dyn € IN:

IP(Dyj; =di +1,Vj; € Ajyi=1,...,m)

= {IP(Vix ¢ Uj)}* 4 [[P(Vi € 4))

=1
= (L= v (U)"mi(Ar) - vk (Am)
= (1= 2oyt (G (Ar) vy (Am)
pj pPj
since v; = v |y;, see the proof of proposition (2.3.11). So Dy; and V; are in-
dependent sequences of random variables. The random variables (D ji)izl

form an iid sequence of random variables, geometrically distributed with
expectation %f. Define the filtration (Fj);>1 by

Fi=o(Vi,..., V).
Then for [ > k > j and n > 1 we have

Skjn

E(Sijn | Fr) = ]E(Z Digi | Fi) = %’:—Skjn-
i=1

So (pkSkjn, Fr)k>j is a martingale on (Q, F,IP), and it follows that outside
a set of IP-measure 0 the sequence (pgSkjn)r>; converges for all n,j > 1 to
a finite limit
tjn(w) = lim Skjn(w).
k—o0
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It is clear that 0 < tj;1(w) < tja(w) < .... Since py — oo, we have for
1,721
Dk o—Apk 1
: —ApkDijiy — pj — _Ps
i (e J)_l—(l—&)e“*l’k_l—}-)\'
Pj Pj

It follows that the random variables ;1,2 ,41 —%;n,n > 1 are independent
and exponentially distributed with expectation p;. So IP-a.s. the sequence
(tjn(w))n>1 is strictly increasing. Theorem (2.3.7) implies that

o0
weR— Z Z O(t jn(w),Vin(w))
J=1 niVia(w)gUj—,

is a Poisson point process on T' x U with intensity measure A @ v.

Let N' : © — M be an Ité-Poisson point process with characteristic
measure v’ such that the Ug-subsequence (£};)i>1 of N’ is V. Using the
notations and definitions of theorem (2.3.13) we get:

Corollary 2.3.13 There exists a positive constant ¢ such that for jyn > 1
/o d ! ]'
v =cv and T, = th"'

Proof. Since

IP(&;, € Ur) = px but also IP(¢;, € U1) = v (U)

k1l k1l 1 VI(U]C)’
it follows that )

V'(Ug) = —V'(Uh).
Pk
Hence for Ac U, AC U, k>1
/
V(A) =V (UP(E € 4) = LD _ iy )

pr v(Up)
So v/ = cv on the ring | JB(Uy), where ¢ = v/(U;). Finally for j,n > 1

1 1 1
/ E— oL —_ i = —L:i.
in = k—o00 I/'(Uk) kin C kllrngo Pk Sk]n ct‘7n
Corollary 2.3.14 Let (U, Vi)r>1 be a nested array on the probability space
Q,7,P). If
lim pg >0,
k—o0
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then for IP-a.e w the limits
én(w) = klim Vien (w)

exist for every n > 1. The sequence (§n)n>1 is an iid sequence of random
variables,
v(A)

v(U)

Further the (Uy)-subsequence of the sequence (£n)n>1 is P-a.s. equal to
(Vii)i>1-

Proof. Since limg_,o pr > 0, it follows from the proof of theorem (2.3.13)
that limg_,oo Skjn(w) exists IP-a.es.. So for every n > 1, and for k suf-
ficiently large, say k& > K,, the term Sy, is constant. It follows that
(Vk1, .-, Vkm,) is constant for k > K,, where M,, = limg_o Sk1n > 7.
Define for n > 1: &, = limg_,oo Vin. It is clear that the sequence (£n)n>1
is an iid sequence of random variables. Let A € Y, then

Fe e = o e = 400018

IP(¢n € A) = JAEU.

Finally, it is clear that the (Uy)-subsequence of the sequence (£,)n>1 is
IP-a.s. equal to (Vis)iy1.



Chapter 3

Excursion Theory

Let Y be a standard Markov process with state space S and let a € S be
a given state, which is recurrent for Y. In [25] It6 defined the excursion
process of Y with respect to IP, in the following way: let S(t) be the inverse
local time of Y at a. If ¢ is such that S(t—) < S(t), then the function u,
defined by
wi(s) = { Y(S(t=)+s) ,0<s<S(t)—S(t-)
a ,s>S(t)—S(t-)

is called the excursion of Y in ]S(t—), S(t)[. It6 proved that the random
distribution of the points (¢, u:),t € {s: S(s—) < S(s)}, is a Poisson point
process on [0,00[xU, where U denotes the space of all excursions. In the
first part of this chapter we will study the excursions of a Ray process
Y in the maximal components of [0,00[\Z, where Z = {t € [0,00[: V; =
a or Y;— = a}. The strong Markov property implies that the sequence of
excursions in the intervals of length greater than a given positive real num-
ber 7, is an iid sequence with respect to IP,. Using the the theorem of
Greenwood & Pitman (see section (2.3)) one can construct the It6-Poisson
point process of excursions without the explicit introduction of the local
time; the characteristic measure v is determined by the sub-Markov semi-
group (K¢):>o defined by

Ki(z,dy) =P —z[Y; €dy : Y,,Y;_ #afor all s <]

and an entrance law for the semigroup (K;). If the state a is regular for Y,
the total mass of v is co.

In the last part of the chapter we construct stochastic processes from
Ito6-Poisson point processes. Let P be an Ito-Poisson point process with

43
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characteristic measure v determined by the semigroup (k) and an entrance
law (75)s>0 for the semigroup (K;) such that n({a}) = 0 for every s > 0
and

/(1 — e~ $*)y(du) < oo.
U

The stochastic process Y constructed by concatenation of the excursions
of P will turn out to have the simple Markov property: the proof of this
property is based on an application of the renewal property of Ito-Poisson
point processes and an application of the Palm formula. Of course, the
assumptions about v are necessary to get a Markov evolution of the process
inside an excursion. We will give sufficient conditions for the process Y to
be a Ray process. A simple calculation based on the Palm formula will
give a formula for the resolvent of Y. Further we will give a formula for
the Blumenthal-Getoor local time of Y at state a. Finally we will give an
example of the construction of a Markov process from a Cox point process.

3.1 Ray processes

This section contains a summary of some important properties of Ray pro-
cesses. For proofs we refer to the books of Getoor [15] and Williams [59].
Let E denote a compact metric space with Borel o-algebra &.

Definition 3.1.1 Let C(E) be the space of continuous functions on E. A
family (R))x>o of kernels on (E,£) is called a Ray resolvent if

(1) YA>0:AR\1<1, (sub-Markov property),

(i) VYA p>0:Ry—Ru+ (A= p)RaR, =0 (resolvent equation),
(iii) VA > 0: Ry\(C(E)) C C(E),

(iv) UqspoCSM® separates the points of E (Ray property),

where CSM® s the family of continuous a-supermedian functions relative
to (R)\)

There is a standard construction to change a Ray resolvent (R)) into a
Markov Ray resolvent (i.e. AR\1 = 1 for every A > 0) on a space E’ which
arises from E by adjoining an isolated point. So assume that (Rj)aso is a
Markov resolvent on E. The construction of the Ray process with resolvent
(R») goes via a Markov semigroup (P;);>o whose existence and uniqueness
is guaranteed by a theorem of Ray.
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Theorem 3.1.2 (Ray). Let (R)) be a Markov Ray resolvent on a compact
metric space E. Then there exists a unique Markov semigroup (Pi)i>o0
satisfying for f € C(E) and z € E

(1) t— P.f(z) is right continuous on [0, co],
(i) VA > 0;Raf(z) = [;° e P, f(z)dt.

Proof. See Williams [59], p.187.

We continue with a brief description of the construction of the canonical
realization of the Markov process with transition semigroup (P;). The
sample space Q will be the space Djg,co[(E) of cadlag functions from [0, oof
to E. Let Y = (Y3):>0 be the coordinate process on Q:

Yi(w) = w(t) for w € Q,t > 0.

Let F? be the o-algebra o(Y;,0 < s < t) on § generated by the maps
Ys,s < t, and F° = o(Y;,t > 0). For every probability measure p on
(E,E), there exists a unique probability measure IP, on (2, F°) such that
for0<t; <...<t,

IP#(Y() € d:L‘o,Yt', € dzx;,1 = 1,..., n)
= /,u(da:)Po(x, dzo) Py, (zo,dz1) Pryy, (21, dm2) - - Pyt (Tn—1,dzy).
Let (Q, F#,{F}'}) be the usual IP,-augmentation of (2, F°,{F;}), where

F* is the IP,-completion of F° and F}' the o-algebra generated by 7, =
s>: Fs and the class of all IP,-null sets in F#. Then

Y = (ny#) {Ey})(y})tZOJIPM)

is a strong Markov process, this means that for every {F}}-stopping time
T and every bounded F*-measurable random variable 5 on Q

E[n 0 07 lir<oo) | Ff] = By (1) [1]l[{r<o0] Pu-a.s.,

see Getoor [15], p.24. Let D be the set of z € E such that Py(z,.) = é;. The
set D is a Borel subset of E. Points in B = E\D are called branchpoints.
For every p we have

]P,,[Yt €DNVt>0]=1.

So the paths t € [0, 00[— Y;(w) are a.s. right continuous functions with
values in D and left limits in E.
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Theorem 3.1.3 Let p be a probability measure on E and let
Y= (Q,.’F”, {];-t#}’ (K)tZO’IP#)

be as above. Let (7,) be an increasing sequence of {Fi'}- stopping times.
Let 7 = sup7, and A = [r < coandVn : 1, < 7]. If f is a bounded
universally measurable function on E, then IP,-a.s. we have

IEﬂ[foyrl[‘r<oo] | \/ ffn] = foy‘l'l[7<c>o]11\c +P0f(YT—)1A'
n>1

Proof. See Getoor [15], p.25.
Definition 3.1.4 Let (R)) be a Markov Ray resolvent on the compact met-

ric space E. The canonical realization of the Ray process associated with
the resolvent (R)) is the collection of quintuples

Y = (Q)]:#a {]:t#}!(yf)tZO!]P#)
where p runs through the set of probability measures on (E, £).

We will need the following notations

F=()F*and F, =) F.
b 7

Note that Y = (Q, F,{F:}, (Y1):>0,IP,) has also the strong Markov prop-
erty.

3.2 Point processes of excursions

Let Y be the canonical realization of the Ray process with Ray resolvent
(Ra)a>o0 on the compact metric state space E. We will use the notations
introduced in section (3.1). Let a be a given state. The polish space of
cadlag functions f : [0,00[— E will be denoted by U, see appendix A2.
The Borel o-algebra U on U coincides with the o-algebra generated by the
coordinate evaluations. For f € U, let Z(f)be the closed set of points at
which f approaches or hits the state a:

2(f) = {t € [0, 00f: £(t) = a or f(t-) = a}.

The connected components of [0,00[\Z(f) are called excursion intervals
from a of f. Let I =]D,T[ be an excursion interval of f. The map V;(f) :
[0,00[— E defined by

VI(f)(t):{ £(D+t) f0<t<T-D

ift>T—D
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is called the excursion of the function f from point a on the excursion
interval I. If it is clear from which point the excursions are considered,
we will speak simply of excursions and excursion intervals of f. The map

¢:feUwr (s €[0,00[ defined by

(s = nf(Z(£)\{0})

is a lower semi-continuous function, see appendix A2. If inf(Z(f)\{0}) >
0, then (; is the first time after zero at which f hits or approaches the
state a. The length (or the duration) of the excursion Vi(f) is defined by
¢(Vi(f) =T — D. Let r be a positive real number. We will now study the
excursions of length greater than r of the realizations of the Ray process
Y. Denote by (]Dn(w),Tn(w)[)n>1 the sequence of all excursion intervals
of Y (w) with length exceeding r, enumerated in such a way that D, (w) <
Dy 41(w),n > 1. This sequence is at most countable, and it is also possible
that there are only finitely many excursion intervals of lenght exceeding r.
The excursion corresponding to the excursion interval Dy, (w), T, (w)[ will
be denoted by V,(w). Note that V,, : w € Q — V,(w) € U is a partially
defined, U-valued random variable. Define T,,(w) = +oo if there are less
than n excursion intervals of length exceeding r. Note that the mappings
T, are (F;)-stopping times. With the above introduced definitions and
notations we have the following theorem.

Theorem 3.2.1 LetY be a Ray process on E,a € E and r > 0.

(1) The sequence of excursion intervals from a of lenght greater than r is
IP,-a.s. an infinite sequence if and only if IP, [T} < oo] = 1.

(ii) IfIP,[Ty < oo] =1, then the sequence (Vn)n>1 of excursions from a of
length greater than r is an itd sequence of U-valued random variables.

Proof. We start with the construction of a sequence (7,)n>1 of (F7)-
stopping times which increase to T7. Let (6,)n>1 be a sequence of positive
real numbers, strictly decreasing to zero: é, | 0(n — o0). Define for n > 1:

Tn =inf{t >r:Y; € B4(6,) and Y, Y;_ #a,s € [t — r,t[}
where B,(6y,) is the open ball in E with center a and radius é,. Define
T =sup T,

and
A=[r<oo}Vn>1:7, < 7]

Let w € Q and let ¢ be such that Y;(w) or ¥;_(w) = ¢ and Y;(w), Y;_(w) # a
for all s € [t — r,t[. If Yy(w) = a, then 7, <t foralln > 1. If Y;_(w) = a,
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then for every n > 1 there exists a positive real number €, such that
Yr(w) € Ba(6s) for all r €]t — €,,t[. Since Y{;_,)—(w) # a there exists an
n > 0 such that Yj(w),Y;_(w) # afor all s € [t —r — n,t — r]. Hence
Tn(w) <t —min(en, ) < t. Consequently in both cases we have Vn > 1 :
Tno(w) < t. It follows that

r(w) < T1(w).

To prove the converse inequality we consider first the case that w € A.
Since Y;, (w) € Bqy(6y), it follows that Y, _(w) = a. Further, it is clear that

Vs € [r(w) — r, 7(w)[: Vs(w), Ys— (w), # a.

Hence r(w) is the right-hand endpoint of an excursion interval of length
greater than r and it follows that 71 (w) < 7(w) for w € A.

Suppose now that w ¢ A and 7(w) < co. For k sufficiently large, 7(w) =
7(w). This implies that Y;(,)(w) = a and

Vs € [T(w) — r, 7(w)[: Ys(w), Y- (w) # a.
It follows that for every w € Q
Ti(w) < 1(w).

Hence
T =T

To prove (i) let A, = [T, < o0] be the event that there are at least n
excursions of length greater than r and let A be the event that there is an
infinite sequence of excursions of length greater than r.

Pa(Ant1) = IEo(liz,<oo)la, o r))
= Eq(1i7,<c0]Py(1,)(An)) (strong Markov property)

= IEa(IEa(l[TKOOJIPY(Tl)(A") | \/'7:7'"))

= Eu(lr, cooPy (1) (An)lac + 14 / Po(Yr, -, dy)P, (A,))

by an application of theorem (3.1.3).
It is clear that Y7, = a on [T} < 0co] N A® and Y7, = a on A. Hence

Po(Ant1) = E(l7,<co]lPa(An)) = Pa(A1)IPa(An)
and by mathematical induction

P.(An) = (IP[T1 < oo])™.
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It follows that
IP,(A) = lim (IP,[Th < 00])" =1 <= P,[T1 < 0] = 1.
n—00

This completes the proof of (i).

To prove (ii) let n > 2 and let (f;)1<i<n be a finite sequence of bounded
measurable functions on U. An application of the strong Markov property
yields

Eo[[ £ = Balfs() [T £iVier 0 02,))
= Eu[fi(Vi)Ey ey ([] i (Vi-1))]

=2
= (%)
Consider first the case that a is a branch point. Then

P, (A°) <TP,[Y, =a] = 0.

Hence Y, = a(IP,-a.s.). So the sequence (7;,) foretells 7 = T and T; is
predictable. It follows that

Fr,- =\ Fr..
An application of Galmarino’s test (see Dellacherie & Meyer [7], p.149)
yields the Fp _-measurability of fi(V;). So

(*) = Eufi(V)Ea(Ey (] fiVicy) |\ Fr,)]

=2

E,[f: (V1) / Po(Ys, )8y (T £:(Vie)]

=2

Balfs() [ Pola dy), ([ £i(ien)]

Ealfi(VO)JEG[] ] £i(Vi-1))-

=2

If @ is not a branch point, then by theorem (3.1.3)

P,[Y(T1) = a] = Ey[l{a} 0 Y, Lac + Eq[la / Po(Y1, -, dy)1a}(y)] = 1.
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So in both cases we have

n n

Bal[] £ (Vi)] = Balfs (Vi) ] £:(Vi-0))

=1
An induction argument completes the proof of (ii).

We introduce some more notation and definitions. Define the maps
Pa: Q> [0,00], pa(w) = sup{t > 0 : Y (w) = a for every s < t},
0q: Q2+ [0,00], 04(w) = inf{t > 0: Yy(w) = a or ¥;_(w) = a},
Ta 1 Q2 [0,00], 7g(w) = inf{t > 0: ¥3(w) = a or Yi_(w) = a}.

The maps ¢, and 7, are stopping times.

Definition 3.2.2 The state ¢ € F is called a holding point for the Ray
process Y if

Pylpa > 0] > 0.
Define for ¢ > 0 the kernel K; on (E,&) by
Ki(z,A) = Py[Y; € A,oa > T),z € E, A€ .

The family (K¢):>0 is a sub-Markov semigroup on (E,£). Define for s > r
the measure e, on (E, ) by

es(A) :IPa[YD1+3 €A, D1 +s<Ti < OO],A e,

Let p be the IP,-distribution of Vi; 4 is a finite measure on (U, ). With the
above introduced notations and definitions we have the following lemma.

Lemma 3.2.3 Let r be a given positive real number.
(1) Vs>rVt>0:e;K; =egq1.
(i1) For0<t; <...<t, and z1,...,2, € E\{a}

plu(r +t;) €de;,i=1,...,n]
= ertt,(d21)Kiy—t, (21, d22) - - Kty (Tn-1, dz,).

(iii) Pyfr, = 0] =0 or 1.
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Proof. Note that D; + s is for s > 7 a stopping time. Let A € £,s >
r and t > 0, then

esKt(A)

/IPa[YD1+s €dz,D1+s<Ti < o0]lP;[Y; € A,04 > 1]

= ]EG(I[D1+8<T1<OO]]EYD1+.:[lA(Yt); Oaq > t])
= Eu(1(p,+s<Ti<c0]l[0a06p, 4,511 4(YDs +541)]
= espi(A4).

This completes the proof of the first part of the lemma.
Let 0<t; <... <ty and z1,...,2, € E\{a},

plu(r + ;) €dei,i=1,...,n]
=1P,[D1+7r<Ti <00,0500p,4r >1tn,Y:,00p,4r €Edz;,i=1,...,n]

= /er(da:)IPx[Y}i €dzi,i=1,...,n,0, > t,].

by an application of the strong Markov property on stopping time D + r.
A repeated application of the simple Markov property yields

P,[Y;, €dzi,i=1,...,n,04 > tn]
= Ktl(x, dml)Ktz—tl (171, dmz) s 'Ktn“tn—l (a:n_l, d.’L‘n)

An application of (i) completes the proof of (ii).
The third statement is a consequence of Blumenthal’s 0-1 law, see Williams
(59], p.126.

Let X be the product T' x U of the halfline T' = [0,00[ with the usual
topology and the polish space U of cadlag functions f : [0,00[— E. Let
a € F and let S be the family of open subsets of X defined by

S={ACX:A=1Ix][{>1],ICT open and bounded, ¢t > 0},

where ( is the first time after zero at which f hits or approaches a. The ele-
ments of Uso = {u € U : (4 >_0} will be called excursions. Let Y, o, and K;
be defined as above and let Y be the process defined by

- | Y ift<o,
Yt—'{ a ift> o,

Denote by o,z € E, the IP,-distribution of Y. Then « is a probability
measure on U and the finite-dimensional distributions of «, are given by

aglu(t;) €de;,i=1,...,n]
= I{tl (iL‘, dxl)Ktz_tl (1‘1, diL‘z) e I{t,.-—tn_l(xn—la d.’L‘n),
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where 0 < t; < ... <1, and z1,...,2, € E\{a}. The shift operator on U
will also be denoted by 6;, so for t > 0 and u € U, 6;u is the element of U
defined by

(Biu)(s) = u(s+1t),s > 0.

With the above introduced notations and definitions we have the following
theorem.

Theorem 3.2.4 Let Y be a Ray process and a € E. Assume that a is not
a holding point and

Ar > 0:P,[T] < 0] =1

where T] denotes the endpoint of the first excursion of length greater than
r. Then there are two cases possible.

A. IP,[r, =0]=0.
In this case there exists an tid sequence (€p)n>1 on (R, F,IP,) of Uso-
valued random variables whose [( > I]-subsequence is the sequence of
ezxcursions of Y of length exceeding I.

B. IPy[r, =0]=1.
In this case there exists an S-finite Ité-Poisson point process N de-
fined on (Q, F,IP,) whose [( > ]-subsequence is the sequence of ex-
cursions of Y of length exceeding . The characteristic measure v of
N s a o-finite measure on Uy, having the following properties:

(1) v is concentrated on
{u €Us : Vs > (y : u(s) = a},

(ii) for each f € bFoo, t > 0 and A € o(u € Uss — u(r),r < t) we
have

/ FOu)(du) = / ruey(F)v(du),
Anlc>1 Ani>1

(iii) V¢ > 0:p([¢ > t]) < oo.

Proof. Let (rx)r>1 be a strictly decreasing sequence of positive real num-
bers, such that limg_,oo rx = 0 and P4[T}; < oo] = 1, where 71 is the
endpoint of the first excursion of length exceeding ry. For k,n = 1,2...
denote by |Din(w), Tin(w)[ resp. Vin(w) the nt* excursion interval of the
realization Y. (w) with length exceeding r¢. Since T; < 111, it follows that
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IP,[Tk1 < oo] = 1, and the sequence (Vin)n>1 of excursions of length ex-

ceeding 7 is an iid sequence of U-valued random variables, see theorem
(3.2.1). Define for k =1,2,...

Uy ={u€U:( >r},
Vi = (Vi1, Vao, .. ),

Vg = Vkl(lpa) and

pr = vk(U1).

Then (U, Vi)k>1 is a nested array on (2, F,1IP,), see section (2.3) for the
definition of a nested array.
Suppose that we are in case A. Since

kllrgo 1y, (Ve1(w)) = 1fr, > ry3(w) on [14 > 0],
it follows that
khm Pr = khm IPa[Vkl S U1] = IPa[Ta > 7"1] > 0.

By corollary (2.3.15) there exists an iid sequence (€, )n>1 of random varaibles
whose Ug-subsequence is IP;-a.s. equal to (Vin)n>1.
Suppose that we are in case B. Since a is not a holding point we have

P,({w:3K,,Vk > K, : Vii(w) € U1 }) = 1.
Hence in case B
Jim p = lim Po[Vi; € Ur] = 0.
It follows from theorem (2.3.12) that IP,-a.s. for n,j = 1,2, ... the limits
tin = klilglopkskjn

exist, where Skjn,k > j denotes the index of the n** excursion of length
greater than r; in the sequence (Vin)n>1. The IPs-a.s. defined random

variable
N:weQmd Y 8w Vmw)
J=1n:Via(w)@Uj—y

is an S-finite It6-Poisson point process on Uy, with characteristic measure
v determined by

v(U1) = 1 and yy; = v;.



54 CHAPTER 3. EXCURSION THEORY

Further the Ug-subsequence of N is the sequence (Vin)n>1 which implies
that for every { > 0 the [( > []-subsequence of N is the sequence of ex-
cursions of Y of length exceeding [. If (r;)x>1 is another strictly decreas-
ing sequence of positive real numbers with the same properties as the se-
quence (71 )k>1, then the Ito-Poisson point process N’ constructed as above
starting from the sequence (r},) has a characteristic measure v’ wich dif-
fers only by a multiplicative constant from v, see corollary (2.3.14). To
prove property (ii), fix ¢ > 0 and choose k such that r, < ¢. Let for
0<t1i <. <t,0<58,<...84, A1,..., A€ and f1,...,fn €BE

A=[ut)eA,i=1,...,1
and forue U .
£ = T] 5s(uts).

Then by definition of v

/ F(Oru)v(du)
An[¢>1]

1
= m An[(>t]f(9tu)uk(du)
1

Py[Tx1 > D1 + 7'1]
XIEG[H Lai(Vea(t)) X Lig(vi)>e) % Hfj(Vkl(Sj +1))]

J

1
IPo[Tr1 > Dyy + 1]

XEq[[ [ 14:(Y (D1 + 1)) X 1ipy, 41<m] X [[ fi (Y (55)) 0 0D, 44]
i J

1
IP,[Tk1 > Dy + 7]

XIEq[] [ 14,(Y (D1 + 1)) X 1Dy, 41<70] X @Dy 4)(F)]

(by an application of the Strong Markov property)
[ et
AN[¢>1]

A standard monotone class argument completes the proof of (ii).
For the proof of (i), first note that the set

W={u€Usx :Ys>( :u(s) =a}

Il
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is a measurable subset of Uy,. It is clear that
Ve e E: az(lw) =0.

So (ii) implies
/ L (By)v(du) = / a1 Ju(dus) = 0.
fc>1] >

On the other hand
(>t = 1w(0tu) = lw(u).
Hence

lim 1w (u)v(du
1B s (w)v(du)

= lim 1w (6iu)v(du) = 0,
H0 Jie>1)

/Um 1w (u)v(du)

which completes the proof of (i).
Finally,
Vt>0:v([¢>t]) =nE) < oo,

which implies (iii).

Definition 3.2.5 A family of finite measures (€5)s>0 on (E,E) will be
called an entrance law for the (sub-Markov) semigroup (Ki)i>0 whenever

Vs, t > 0: €K = €541

Theorem 3.2.6 There is a one-to-one correspondence between o-finite mea-
sures m on (Uw,Uso) satisfying properties (i), (ii) and (iii) of theorem

(8.2.4) and entrance laws (€5)s>o for the semigroup (K;) satisfying €;(a) =

0 for every s > 0.

Proof. Let us first assume that m is a o-finite measure on (Ueo,Uoo)
satisfying properties (i), (ii) and (iii) of theorem (3.2.4). Define for s > 0
and A €&

€s(A) = m({u € Uss : u(s) € A,(u > s}).

Then (€5)s>0 is a family of finite measures on (E, ) satisfying €;(a) = 0
for every s > 0. For A € £ , denoting A\{a} by A’,

es Ki(4) = /m(u(s) € dz,(y > 8)Eg[14(Y2); 00 > 1]
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= / m(du)IEy(s)[1a:(Y2)]
[Cu>s]

/ m(du)ay(sy[1ar (u(t))]
[Cu>s]

= / m(du)La (u(s +1)) (by property (ii))
[¢u>s]

I

/ m(du)14:(u(s + 1)) (by property (i))
[Cu>s+1]
€s+1(A) = €544(A).

So (€5)s>0 is an entrance law, which proves the first half of the theorem.
To prove the second half of the theorem, let (¢5)s»0 be an entrance law for
the semigroup (K3) satisfying ¢,(a) = 0 for every s > 0. Define for t > 0

Gi={BCUx:JAEUL, : B=[(>t]Nn6; (A}
The sets
{u€Ux : ¢y >tiult+s;) € Fi,i=1,...,n}

where n > 1,0 < 53 < ... < sy, and F,...,F, € &, generate the o-
algebra F;. If r < t, then Uy DO G, D G;. Indeed, let B € G;, say
B =[{>1nN6; (A) with A € Us,. Then

B=[>rNn6 - ([¢>t—r]) N6 (A) €G,.

Note that (J;5(G: is a ring generating Ue,. The setfunction p; defined on
G: by

pel(¢ > 00071(4) = [ dn)as(4),4 € e,

is a finite measure on the ring G;, whilst for r < ¢

e (I¢ > 1] N 671(A)) / e (do)aslC > t =114 0 6:s]

/ € (d2)Eq[11p51—r X 14 0 Y (r,)]

[ rtdo) [ Keor(a,dan ()

(by the simple Markov property)
[ atdsay ()
(¢ > 11N 671(A)).

Il
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It follows that we can define a setfunction p on ;5o G: by putting
w(B) = ps(B) if B € G;.

Since the setfunction y is a o-finite measure on the ring J,5( Gt, it has a
unique extension to a o-finite on (Uoo,Uoo). From standard monotone class
arguments it follows that for f € bldo, and ¢ > 0

/ u(du) f(6,u) = / e(dz)as(f).
[¢>1]
Fixt> 0 and definefor 0 <ry < ---<m <tand A;,... 41 €&

A:[u(ri)EAi,izl,...,l].
For 0 < r<r; and f € bl

/ (du) £(6.)
AN[¢>1]

o
= [ er(da) [ ol T tucrrrena(® Lo a7 01r0)

l
= ./er(dx)/-ax(du) H 1[u(r,'—r)€A,-](u) X 1[(>t—r](u)au(t—r)(f)
i=1

by an application of the simple Markov property

I
= /[C ],U(du) H 1[u(ri+r)€Ai](0ru) X 1[(>t_,.](eru)aoru(t_r)(f)
>r

=1
- / p(du)onyo (F).
AN[¢>t]

This proves the formula

/ F(Oru)v(du) = / ey (F)v(d)
AnlC>] Ani¢>1]

for elementary sets A. From a standard monotone class argument it follows
that this formula is true for all A € o(u € Uy, — u(r),r < t). As in the
proof of theorem (3.2.4) it now follows that v is concentrated on the set

{u € Us : V5 > (u : u(s) = a}.
From the definition of v it is clear that
VE>0:v([¢>1]) <oo,

which completes the proof.
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Remark 3.2.7 (i) In theorem (3.2.4) the excursions of ¥ are consid-
ered on the probability space (2, F,IP;). On a probability space
(2, F,1P,) we have to add to the It6-Poisson point process (or to the
iid sequence (€n)n>1) a first excursion describing the process up to
time o,. Let ¢ € E,x # a. The map W : Q — U defined by

Yi(w) fort < og4(w)
(Ww)(t)={ a() fort;agwg

is a Uy -valued random variable, describing the process Y up to time
0a. As in the proof of theorem (3.2.4), let (rx)r>1 be a strictly de-
creasing sequence of positive real numbers, r; | 0 as £ — oo. Denote
for k,n=1,2,... by V& (w) the n'* excursion from a with length ex-
ceeding ry of the realization Y (05, w). So Vi (w) = Vin(8aw). Define
the vector V¥ = (VF,V&,...). As in lemma (3.2.3) we can prove
that for every € E\{a} the sequence (V¥,Uk)r>1 is a nested array
on (Q,F,IP;) and

P, (W e B, Vi€ Ai,i=1,...,n]
= IPZ[W € B]IPG[V]”; € Ai,i =1,.. .,n]
for every n > 1,B, Ay,..., Ap, € U. When IP,[r, = 0] = 1, we define
the point processes N® and QF by
N®:w € Q— N(b,,w),
N as in theorem (3.2.4), and

Q7 1w €Q = bo,ww):

It follows that the point processes N* and @ defined on (22, F,1P;)
are independent and as in theorem (3.2.4) the point process N¥ is an
It6-Poisson point process with the same characteristic measure v as

N.

(i) If state a is a holding point for Y, then there exists an iid sequence
(€n)n>1 on (Q,F,IP,) of Ug-valued random variables whose [( > {]-
subsequence is the sequence of excursions of Y of length greater than
[. Between two consecutive excursions the process Y remains in the
state a. These time intervals are exponentially distributed.

3.3 Counstruction from point processes

Let (E, p) be a compact metric space with Borel o-algebra £ and a € E some
given point of E. The space of cadlag functions defined on T = [0, oo with
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values in F will be denoted by U. Endowed with the Skorohod topology,
U is a polish space. The Borel o-algebra on U will be denoted by U; this
o-algebra is also generated by the coordinate evaluations on U. The map
¢ : U+ [0,00] is defined by

C(u)=Cu=1inf{t > 0:u(t) =aor u(t—) = a}.

For u € U = [¢ > 0] the number ¢, is the first ”time” after zero that u
hits or approaches a. The map ( is lower semi-continuous.

On the space (E,£) there will be given a Markov semigroup of kernels
(Pt)tzo such that for every ¢ € E there exists a probability measure o, on
(U,U) which is concentrated on the set {u € U : V¢t > (, : u(t) = a} and
which has finite-dimensional distributions given by

agfu(t; € de;,i =1,...,n]
= P, (z,dz1) Py, (21,d22) - Prp—t,_, (Tno1, dzn)

where 0 < t; < --- <t, and z1,...,z, € E. For t > 0 the kernel K; on
(E,€) is defined by

Ki(z,dy) = as[u(t) € dy, Cu > t].

The family (K¢):>0 is a sub-Markov semigroup of kernels on (£,£). On
(E,€&) there will also be given a family of finite measures (7;)s>0 which
is an entrance law for the semigroup (Ky):>o with ns({a}) = 0 for every
s > 0. By theorem (3.2.6) there is a unique measure v on (Uss,Uco) having
the three properties

(i) v is concentrated on {u € Uss : Vs > (y : u(s) = a},

(i) Vf € bloo,¥t > 0,YA € o(u € Uso — u(r),r < t):

./An[<>t] f(brujv(du) = _/ () (f)v(du),

An[¢>1]
(i) V¢ > 0:v([¢ > 1)) < co.
It follows that
Vs > 0: ns(de) = v([Cu > s,u(s) € dz]).

We will always consider v as a measure on U by putting »(U\Us) = 0.
The product topological space T' x U, where T is equipped with the usual
topology will be denoted by X and M is the space of nonnegative Borel
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measures on (X, B(X)) which are finite on the family S consisting of the
subsets I x [( > t] where I runs through the bounded subintervals of T’
and ¢ > 0. The S-finite It6-Poisson point process on U with characteristic
measure v will be denoted by P. (The existence and unicity of P follows
from proposition (2.2.5).) By proposition (2.3.2) P(M}) = 1, where M}
is the set of S-finite point measures p with p({t} x U) < 1 for every ¢ > 0.
Measures p € M* have a countable support. For p € M$ the projection
J(p) of supp(p) on T is an ordered subset. If ¢ € J(u), thereisau € U
such that (o, u) € supp(r). We will write u, for u. Let L : U + [0,00[ be
a given, measurable function. Define for ¢ € T' and p € M}

B(o,p) = Z{L(u,) :7€ J(p) and 7 < 0}
= / p(drdv) 1 01(7)L(v)

and
Cw= |J [Blo—,n), Blo,p)

o€J(p)
If T'= C(p) then denote by
p:T—FE

the concatenation of the functions ur|jo,(u, )i, 7 € J(i), that is

i(s) = up(s — Blo—,p)) = /,u(drd‘v)(v X 1po,L())(s — B(T—, 1))
with
o € J(u) such that s € [B(o—, u), B(o, p)|.

The function u, is called the excursion straddling s. So, if @ is an S-finite
point process with phase space X such that

QreM:T=Cu}) =1,
then for s > 0 the maps
Yiipe{peMi:T=Cu)}— ils)

are (-a.e. defined random variables on the probability space
(M*,B(M*),Q).

In this section we want to consider a construction of this kind for the
Ito-Poisson point process P. With an extra assumption about the charac-
teristic measure v of P it will turn out that the process Y = (¥;)i>0 is a
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Markov process. So it is natural to consider a family of probability mea-
sures (Py)zeg on (M, B(M™)), where P, will be the distribution of the
process Y starting in z. To this end we add a first point to P corresponding
to a start from z taking in account the given transition probabilities (P;).
Consider the map

u€elUm— (5(0,,‘) e Mt.

For z # a, @, denotes the image of the probability measure a, under this
map. Then @ is a point process with phase space X; its intensity measure
iq,, its Palm measures (Qz)(m,) and its Laplace transform @), are given by

zQz = 60 Q oy,
(AQZ')(T,U) = 66(,.,\,)) (T, 'U) e X
Q(f) = [oo(du)e /O, feB(X),.

Define the family of point processes (Py)zer by

p [ QexP ifzeP\a)
TP ifr = a.
Some important properties of the point processes P, are collected in the

following lemma, whose straightforward proof is deleted.

Lemma 3.3.1 For z # a, the intensity measure ip,, the Palm measures
(Pa,)(,,v) and the Laplace transform P, of the point process P, are given by

’L'p:c - iQJE + Z'P)

P P, x 66(“”) forveUand >0

( -’U)(T:'U) 66(0,,,) *P  forveU and =0,

Po(f) = [os(du)e/OWexp[- [(1-ef)dr@ ], f € B(X)4.
Further

Py(M3}) =1.
Let Q@ = M{ and F the trace of B(M™) on Q. Our basic family of proba-
bility spaces will be (QF, P;),z € E. Define forw € Q and 7> 0

A(ryw) = /X w(dodu)ly, 11(0)C.

The random variable A(7) is the sum of the excursions up to and including
time 7, leaving out the excursion at time 0. As a function of 7, A(7,w) is
a non-decreasing cadlag function on [0, 00[ for every w € Q. The Laplace
transform of A(7) is given by

/ =MV P, = exp[—r / (1— e )w(du)], A > 0,z € E.
Q U
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From now on we will assume that
/(1 — e 5*)y(du) < oo.
U

Then A(7) is P;y-a.s. finite for every € E. Note that the family of random
variables (A(7))r>0 is a subordinator whose Lévy measure is the (-image
¢(v) of the measure v. See for subordinators It6 [24]. Addition to A(7) of
a linear term y7, v > 0, gives the general form of a subordinator with Levy
measure ((v). Define for 7 > 0 and w € Q

oq(w) = /w(dadu)l{o}(a)Cu

and
B(r,w) = 04(w) + A(r,w) + 77.

It follows from a straightforward calculation that the Laplace transform of
the random variable B(7) is given by

/ e *B(dp, = /e—""adPx x exp[—7(Ay + / (1 = X ) (du))).
o U

For w € Q, denote by R(w) the range of B(.,w);
Rw) = {s €[0,00f: 3r: 5 = B(r,w))
and let ¢(.,w) be the right continuous inverse of B(.,w):
é(s,w) = inf{r : B(r,w) > s},s > 0.
It follows from the definition of ¢ that
Vs > 0: B(9(s,w)—,w) < 5 < B(6(s,w),w)

with B(0—,w) = 0. Let J(w) be the projection of the support of the
measure w on T

Jw)={ceT :w({c} xU)=1}.

Note that J(w) is Py-a.s. a discrete subset of T'if v¥(U) < oo, and a
countable, dense subset of 7" if ¥(U) = co. Define for w € Q

Cw)= |J [B(o—w), Blo,w)l.
o€J(w)

With the above introduced definitions and notations we have the following
lemma.
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Lemma 3.3.2 Letxz € E. Then P;-a.s.

T_{R(w)-i—C(w) if v(U)=o00 or >0
| Cw) if 0<v(U)<oo and y=0

Proof. Assume that »(U) = coory > 0. The function B(.,w) is Py-
a.s. strictly increasing, B(r,w) 1 oo as 7 — oo. The assertion in the
lemma follows from appendix (A3.3). We continue with the case 0 <
v(U) < oo and y¥ = 0. In this case J(w) is Py-a.s. a discrete set, which
can be written as J(w) = (0n(w))n>1 with 01(w) < o2(w) < ... Further
on(w) — 0o as n — o0o. Since ¥ = 0, B(op(w)—,w) = B(on-1(w),w) and
the assertion of the lemma follows.

Let w € Qand t > 0. Let t € C(w). If there is some 7 > 0 such
that ¢ € [B(r—,w),B(7,w)[, and if u is such that w( ) = 1, then u
is the excursion (in w) straddling ¢. Note that 7 = ¢(t,w) and that
Cu = B(4(t,w),w) — B(¢(t,w)—,w). With w € Q we associate a function
@ : T — E defined by

- u(t — B(¢(t,w)—,w ifte Cw
o = { PO HECD oy

where u is the excursion straddling ¢. Note that for ¢ € C(w)

a(t) = [[w(dod)(u x Lpc)(t - Blo—w)
and
Low(t) = [ w(dodn)lng.t = Blo—\).
It follows that the map
we(Q,F)—oe(ETED
is measurable. Denote the coordinate evaluations on ET by Y;, t > 0, i.e.
Y.:f€ET — f(t) € E,

and the image of the probability measure P, under the map w — & by
IP,. Then, Y = {Y; : t > 0} is an E-valued stochastic process on the
probability space (ET,£T,IP;). We continue with the calculation of the
finite-dimensional distributions of the process Y. From the definition of
the measure v it follows that for 5,1 > 0

v([u(s) € dz,lu > s +1]) = ns(dz) Pi(z, E\{a}).
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Writing f§; for the a,-distribution of ¢,
Bo(dl) = a,[¢ € dl] = dPy(z, {a}),
we get for 5,1 > 0
v([u(s) € dz,y — s € dl]) = ny(dz)B;(dl).
Proposition 3.3.3 Let f € b€ such that f(a) = 0.
A z#a

_ | [ Ki(z,dy)f(y) + fot Be(dDIEq[f(Yi—1)] ift>0
E:[f(1)] = { [ Ko(z,dy)f(v) + B:({ODEalf(Yo)]  ift=0

B. z =a.
Fort>0:

Balr 0] = [ Pla) [ d6(.0) [ mosta) S0

Fort =0 we have to consider two cases:

(i) v(U)=o00 ory>0.

IEq[f(Yo)] =;0
(i) 0<v(U) < oo and y =0.

Ea[f(¥o)] = T}) [ vtdw )

Proof. The proof is based on an application of the Palm formula, see
section (2.2). We start with case B. Let t > 0.

Eq[f(Y)]
/P(dw)lc(w)(t)/w(dadu)(f ou x lp¢.)(t — B(o—,w))

[ P [wtdodu(f o ux 1)t - Blo-,w)

[ do [vtdw) [ P 0wk 1.0~ Blo—+ 80)
/P(GR‘J)/OOo do/m-ma-,w)(dy)f(y)

[ ) [ dsa) [ netini

Il
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where in the last step we have used an integration formula for right contin-
uous inverses, see appendix A3.

Let t = 0. If 0 < ¥(U) < oo and v = 0, then the formula for IE,[f(Y)]
follows from theorem (2.3.7). If ¥(U) = oo or v > 0, then

Pl0eCW)] = P[B(0,w)> 0]
= Pw({0}xU]=0

since AQv ({0} xU) = 0. It follows that IP,[Yy = a] = 1, hence IE,[f(Yy)] =
0.
We continue with case A. Let ¢ > 0.

IE.[f(Y2)]
= /Qz * P(dw)/w(dadu)(f ou x lp,c.)(t — Blo—,w))
= /Qx(dw/) /w'(dadu)l[o](a)(fo U X 1[0,(u[)(t)
+/Qx(dw/)/P(dw)/w(d0'du)
1Lj0,00((0)(f 0 u X 1jg ¢, [)(t — B(o—,w+w')) -
= [ ax@wicsaf)

+/az(dv)/P(dw)/w(do'du)(fo u X 1, )t — Blo—,w) = ()
= [ Ko, ti1) + [ Al

For t = 0 we only have to note that

[ stan) [ P [wtdodu)(foux 16,00~ Blo-) - )

= az[Cu = 0] X IEa[f(YO)]
= ,3({0}) X IEa[f(YO)]'

Define the measure ® on [0, oo[ by

a(dg) = [ P(ds)do(a,0).
Define the kernels (St):>0 on (E, &) by:

_ [ (@xn(dy) forz=a,y#a
Si(e.dy) = { Ki(z,dy) + fot B (d))(® * n)e—i(dy) forz,y #a
Si(z,{a}) =1-Si(z, E\{a}).
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Define the kernel Sy on (E, &) by:
(i) X v(U)= o0 orvy >0 then

_fo forr=a,y#a
So(z,dy) = { Ko(z,dy) for z,y # a,

(i) f0 < »(U) < 00 and y = 0 then
So(a, dy) = ;(IT)V[U(O)Edy,Cu>O] forz=a,y#a
0iF, 0y = Ko(z,dy) + @%(‘{U%DV[U(O(E dy,(u > 0] for z,y # a.

In both cases (i) and (ii)
So(z,{a}) = 1 — So(z, E\{a}).

The kernels (St):>0 are a family of Markov kernels om (E,£). The state-
ment of proposition (3.3.3) can be written as

E;[f(Y:)] = Sif(x),t >0, f € bE.
Define for ¢t > 0 the map ¢; : Q — Q by

Yi(w) = { sro) ift € R(w)
8(0,0,—noct,m)—yw) T Toy(w) if t & R(w)

where u is the excursion straddling ¢ and where T} is defined as in section
(2.3). The meaning of the map 1, is explained in the following lemma.

Lemma 3.3.4 Fors,t >0 and w € Q we have

é(s + t,w) = ¢(t,w) + ¢(s, Yrw)

and

Ys[(w)] = Ys4e(@).

Proof. First note that o,(¢w) = B(é(t,w),w) —t. Indeed, if t € R(w)
then

oa(Prw) 7a(Ty(tyw)

/(Td,(t)w)(dadu)l{o} (0)¢u

= /w(da‘du)l](p(t,w)’oo[(a)1{0}(0 = ¢(t,w))Cu
=0
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and the result follows, as B(¢(t,w),w) =t for t € R(w).
If t ¢ R(w) then
oa(Prw) = 00(6(0:9:-3(4,(:,‘.,)-,w)u)) + Ua(Td’(t)w)
= Gu— (- B(s(t,w)—,w))
= B(é(t,w)—,w)—t

since u is the excursion straddling ¢.
We continue with the calculation of B(r, ¢yw).

B(r,%w) = o4(hw) + A(T, Yw) + 7
= B(¢(t,w),w) —t4 /w(dO'du)1]¢(t,w),¢(t,w)+r](O')Cu + 7
= B(¢(t,w),w) —t+ B(¢(t,w) + 7,w) — B(¢(t,w),w)
B(¢(t,w) + m,w) —t. (*)
Hence
B(s, Yrw) inf{r : B(r,Yw) > s}
inf{r: B(¢(t,w) + 7,w) + 7 > s+ t}by formula (*)
= —¢(t,w) + ¢(s +t,w),

which proves the first part of the lemma.
For the second part, suppose first that s € R(ysw). Then, for some 7 > 0

B(7,¢%w) = s,

hence by formula (*)
B(¢(t,w) + mw) =t + B(r, ) =t +5,
and it follows that s +¢ € R(w). So
Y (($1w)) = Yopu(@) = @

by definition of Y.
Suppose now that s ¢ R(¢:w). Let

s < 04(Yhw) = B(¢(t,w),w) —t.

Then ¢(s+t,w) = ¢(t,w) and there is one excursion, say u, (in w) straddling
both t and s + ¢, so

V() = uls+t- Bo(t,w)—w)
u(s+t— B(é(t + s,w)—,w))

Ys41(@).
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For
s> oqa(Yw)
we have B(0,¢,w) < s, so ¢(s,¢,w) > 0. It follows that
($1w)(pspiw)u) = (To)@)(4(s+tw)-o(tw)u)

= W(é(s+t,w),u)

and the excursion straddling s in 1;w is the same as the excursion straddling
s+t in w. From

B(¢(s, hsw)—, hw)

lim B(g(s, buw) — ¢, )
= limB(6(s +1,0) - 6(4,w) - €, viw)
= limB(4(s +1,w) — ,w) ~t by formula (*)
= B(s+tw)-w) —t
it follows that
V() = uls = B(6(s, )=, %))

= u(s+t— B(¢(t +s,w)—,w))
= Yinu(@),

where u is the excursion straddling s in ¥;w.

Theorem 3.3.5 Letn > 2, f1,...,fn €0, 0<t;--- <tp, andz € E
then

n

E.([] £:(¥:,)]

i=1
:/Stl(mydyl)/Stg—tx(yl;dyil)‘“/St,.—t,,_l(yn—ladyn)Hfi(yi)-
i=1

Proof. We will only consider the case z # a and t; > 0. The proof for the

remaining cases is analogous and is therefore deleted. Let f; be defined on
E by

fi(e) = fi(z) - f(a).
Then

Eo ([ [ £V = Bolfu (Vo) [T £ (V) + (@B ([ £:vi))

1=2
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Since fi(a) = 0, we have
E,[fi(Ye) [T £i(¥)]
=2

= ]Ez[lc(tl)ﬁ(yt,) H fz(Ytz)] .

=2

[ Petae) [ wtdoau(fiowx L)t = Blo-,w)
fj;fi(m.._h)<<whw»
= [ Qutaw) [ Pldw) [+ u)(dodu

(Fi o ux 1po¢.0(t) = Blo—yw + w'))gfim,-_mwn(w +u)
- / Qs (du) / P(dw) / W' (dodu) - -

+/Qz(dwl)/P(dw)/w(do'du)...
= I+41II

We first calculate I.
'/Qx(dw’) /w'(dcrdu)(ﬁ ou x lgc,)(t1)
[ P@) TVt 1,0+ )

i=2

_ /ax(du)(fl oux I c.)(t1)
[ P@) TLAVams) (6, + S0

1=2
From
Cu>t1 =VY72>0:B(1,w+0,u) = B(T,w) + (u > t1
it follows that

¢(t1,w -+ 6(0’,‘)) =0andt; ¢ R(w —+ 6(0’1‘)).

69
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Hence P-a.s.
Y1, (@ + 60,u)) = 80,60, u) + To(w + 8(0,u)) = 6(0,6,,u) +w-
So

D= [a(@u)fioux et [ Po) [LAF-0) (o, + o)

[ Katednii) [ ay(@n) [ Pd) T]A(h-) (@ + 9D

/Ktl(m,dy)fl(y)IEy[H fi(Yei—,));

i=2

We continue with the calculation of II.

/az(dv)/P(dw)/w(dadu)

(fl ou X 1[0,4“[)(7:1 - Cv - B(a—,w))

x H Fi(Yei—) (%1, (8(0,0) + w)))

- / ,;(dv) /0 " do / v(du) / P(dw)

(fl ou X 1[0,(u[)(t1 —(y — B(O’—,w + (5(0111)))

x H fi(Yt.'—tx)((ﬁﬁtl (6(0,’0) +w+ 6(a,u))D

1=2

by an application of the Palm formula, see section (2.2).
Since

t1 — G — B(o—,w) = B(o—,w+b0w) + b)) >t
- ¢(t1)w + 6(0,1}) + 6(6,u)) <o

and

0<t = (¢ —B(o—,w) = B(o—,w+ 80 +0u) <t
= é(t1,w +60,0) + o)) > 0,

it follows that
¢(t1,w + b0,v) + S(ou)) = 0,
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and
t1 € R(w+ 600,0) + 6(o,u)),

hence P-a.s.

¢t1(5(0,,,) 4w+ 5((,’“)) = 5(0,17) + Ta(é(o,u) +w +
6c0,a) + To(w),

where @ = 0;, _p(s—w)-¢,u- S0

/ aa(dv) /0 " do / v(du) / P(dw)

II
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6(0,11.))

(froux 1)t —C — Blo—,w + 8(0,u)))

X H fi(Ye,—4,)(80,a) + To(w))

/:x(dv) /000 da/u(du)/P(dw)

fl ou X l[o,“[)(tl —Cv — B(O’—-,w + 6(0:“))

[ PN T ims) b0y + )
1=2
by an application of the renewal property

[astan) [@smi—cl@niw) [ (a0

[ PN TL (Ve ) G0 + )

l

/01 Bz (dl) /(<1> * n)tl_,(dy)fl(y)my[i_l’l Y
It follows that -
IEz[if[1 fi(Ye,)]
= /E\{a} Sh(ac,dy)fl(y)IEy[i:ﬂ2 FiYe—)] + fr(@)E,[

_ /E Sur (@, 49) o )y ([ i (Yosr)]

i—il)]'

[T £i(Yer)]

1=2
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An induction argument completes the proof of the theorem.

As a consequence of theorem (3.3.5), (St)i>0 is a Markov semigroup on
(E,€) and Y is the canonical representation of the Markov process with
this transition semigroup. Let (V))xso be the resolvent of the semigroup
(St)t>0, i.e. the operator on b€ defined by

Wiz) = /Ooo e M8, f(z)dt = E, /Ooo e Mf(Y,)dt,z € E.

Denote the resolvent of the semigroup (K;);>0 by (Ga)x>o. Define for A > 0
and f € b€

i) = [ e [ nans.

This integral converges because of the assumption
/(1 — =6 )(du) = A1 (1) < oo.
Define for A >0 and z € E
zy(z) = /ax(du)e_)‘c“.
In the next lemma we prove some relations between (G)), (%) and zy.

Lemma 3.3.6 Let A\,p > 0 and f € b€, then
(1) (= MN(Guf) = 0a(f) — M (f),

(il) zy =1-AG,1,

(i) (u = MNiu(zx) = piu(l) — Ada(1).
Proof.

(i)

(k= A)I\(GLf)

(r—2A) /000 dte™™ / n:(dz) /:o e WK, f(z)ds
(u=2) [ e [T emmn (s

| asem ) [ - e
n(f) = 1u(f).

Il

Il
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(ii)
(@) = / s (du)e=
= /ax(du)/ 1]Cu,oo[(s))\e"’\sds
0
= / e (1 — K,1(z))ds
0
(iii)
(b= Mhu(2a) = (k= N)Hu(1—AGA1) (by (iii))

= (1= N0u(1) + A(A(1) — 2 (1)) (by (1))
= piu(1) = Aia(1).

. We continue with a theorem which gives an expression for the resolvent

(V)\),\>0'
Theorem 3.3.7 Let A > 0 and f € bE. Then

Waf(z) = Gaf(z) + 2x(z)Vaf(a)

where
_ m(f) +7f(a)
Ay + (1)

Proof. Let z € E\{a}. Let f € b€ and f(.) = f(.) — f(a).
Wif(z

(2)
= /Px(dw)/w(dadu)/oooe"“(fou X o0, )t — B(o—,w))dt
+ [ Petao) [ e s
/Pz(dw)/w(dadu)/ow e M(foux L c,[)(t — B(o—,w))dt
+§f(a)
[ astan / "M oot + [ astar /( °° e ME[f(Yic, )t

+§f(a)

Vaf(a)



74 CHAPTER 3. EXCURSION THEORY

/000 e MK, f(z)dt +/az(dv)e_xc" Vaf(a) + %f(a)
= /0°°e"\tK,f(:c)dt+ (1- ,\/oo e MK, 1(z)dt) x Vif(a)
We continue with a calculation of V) f(a):
Vaf(a)
/P(dw)/w(dadu)/o e—)\t(fo u X 1[0,(u[)(t —_ B(a——,w))dt + ;f(a)
o0 Cu _
./o da/V(du)/P(dw)e_AB("_vw)/O e M f(u(t))dt + —i—f(a)
/Om da/u(du) expl—o(Ay + /(1 — e M) y(dw))]

o = 1
< [N ) sgd+ 30

1 e _ 1
- A*y—{—f(l—e"‘fw)v(dw)/o - /y(du)f(u(t))l[coﬂdtqtXf(a).

Note that

/(1 — e~ Mw)u(dw) = Ay (1)

and
/o e_’\t/u(du)f(u(t))1[<u>t]dt = ﬁ)‘(f)
Henee () +1/(a)
M yJia
USRS TNO

The rest of the theorem follows from the following observation
/ e (1 — K, 1(z))dt
0
/az(du)/ /\E_Ml[gugt]dt
0

/az(du)e-w

oo
1- ,\/ e MK 1(x)dt
0

Il

The next theorem states that the resolvent (V3) inherits the Ray property
of the resolvent (G,) if the following extra condition

Ve#a:z(z) <1
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1s satisfied.

Theorem 3.3.8 If z)(z) < 1 for every ¢ # a and if (G)) is a Ray resol-
vent, then the same is true for (V). In this case the process Y has cidlig
paths IP;-a.s. and is therefore a strong Markov process.

Proof. If (G)) is a Ray resolvent, then the same reasoning as in Rogers [ ]
can be used to prove the Ray property for the resolvent (Vy). By construc-
tion, Y is the canonical representation of the Markov process corresponding
to (V). So IP;-a.s. the limits

X:= lim Y,
geR 1t
exist for all ¢ > 0. The process X = (X;):;>0 is a cadlag version of the
process Y which has the strong Markov property, see Williams [ ], ch.IIL
So it is sufficient to show that the processes X and Y are P -equal. It is
clear that
Vi € C(w) : Xi(w) = Yy (w).

So there is nothing to prove in the case v = 0 and 0 < v(U) < oo, since in
this case T = C(w), see lemma (3.3.2). Solet v > 0 or ¥»(U) < co. Suppose
that t € R(w), say ¢t = B(r,w).
If v(U) < oo, then there is a first interval [B(o—,w), B(o,w)[ following t,
le.

t < B(o—,w) and [t, B(c—,w)[C R(w),
and it is clear that X;(w) = ¢ = Y;(w).
If v(U) = o0, there is no first interval [B(o—,w), B(o,w)[ following ¢, since
this would imply that

do>r:w(ro[xU)=0

which is impossible. So for every € > 0, the interval [¢,t + €] contains an
excursion interval. Since we can choose in each interval a rational number
g so that Yy(w) is in a arbitrary small neighbourhood of a, it follows that
Xi(w) = a =Y (w).

In the next theorem we give an explicit formula for the Blumenthal-Getoor
local time for Y at a, see Blumenthal&Getoor [ ]. Consider the map ¢(t)
defined on M} as a IP,-a.s. defined map on the sample space ET of the
process Y, which is possible since the map

weEM—aeET

is an injection.
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Theorem 3.3.9 Under the same assumptions as in theorem (3.3.7), the
Blumenthal-Getoor local time L = (L¢)i>0 at the state a of the process Y
s given by

Li=[y+ /(1 — e~ (du)] x ¢(t).

Proof. Let o, be the first time that Y hits or approaches the state a.
(™) = [ Puda)e 0

[ @uta) [ Puaue B0t

/Qx(dw’)e‘B(o""').

Note that

B(0,w + w') = B(0,w")for P almost every w
and

B(r,w') = B(0,w’) for Q. almost every w'.
So for t > B(0,w’)

#(t,w+w') = inf{r:B(r,w+w') >t}

inf{r : B(r,w) + B(0,w’) > t}
¢t — B(0,w'),w).

It follows that

[ rta) [ e aste)
J 2o [ e tmo iy iaott.0)
[ @et@) [ ) [ e ipoupany oot o + )
[ ety [ (@) [ e tipoun mi®ds(e - BO.,0)
/ Qq(dw')e=BOw) / P(dw) /0 etdg(t,w).

/ P(dw) /0 " e~tde(t,w) /0 * g / P(du)e-BC)
1

7+ J(L= e =0 )(du)

Since
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we get

Bale) = [+ [(1= e puian)] [ Putde) [ etaett).

Since the It6-Poisson point process of excursions from a can be recon-
structed from Y, it follows that @(¢) is measurable with respect to the
o-algebra o(Y; : t > 0) generated by the process Y. An application of Gal-
marino’s test, see Dellacherie&Meyer [ ], yields that the process (¢(t)):>0
is adapted to the filtration of the process Y. Finally, it follows from lemma
(3.3.4) that the functional (¢(t)):>0 is additive, which completes the proof
of the theorem. B

We conclude this section by a short description of the process Y ¢, which
is the process Y, constructed as above from the family of point processes
(P;), with killing on state a at a rate § proportional to the local time. This
is also an example of the construction of a stochastic process from a more
general point process. Let for s > 0 the point process P* be defined as the
image of P under the map

wEMt - 1[0,,]wa eMt,

It is clear that P® is a Poisson point process on X with intensity measure
1{0,5)A ® v where v is the characteristic measure of P. Let for 6 > 0 the
point process S° be the Cox process on X defined by

[ee]
56:/ Se~% Pds,
0

and let for z € E the family of point processes S¢ be defined by
55:{ Q:*S% forz+#a

S for £ = a.

where the point process @, is defined as in the beginning of this section.
Define the map

k:w € Mt —inf{r : w([r,00[xU) = 0} € [0, 0]
and define

) = Jw(dodu)lp ;1(0)Cu + 7 for 7 < ¢(w)
B(r.w) = { B(4(w),w) for 7 > ¢(w)

where v is a positive constant. The process Y is now constructed from the
family of point processes (S2) in the following way. Until time B(co,w) the
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construction is the same as for the process Y associated with the family
(P;). At time B(oco,w) the process Y is killed. It can be shown that Y°
has the simple Markov property. We will only give an expression: for the
resolvent of the process Y. Let (V)fs )as>0 be the resolvent of the process
Y% forz € E,A>0and f € b€

V¢ f(2) = Es / M F(YP)dt.
Jo
Theorem 3.3.10 Let x € E,X > 0 and f € b&. Then
VX f(z) = Grf(@) + 2a(2) V¥ f(a)
where

(f) +vf(a)

Sflay = Al — L
Vifla)= 6+ My + Aia(l)

Proof. We only calculate V{ f(a). The rest of the proof is analogous to
the proof of theorem (3.3.7). Suppose first that f(a) = 0.

Vif(a)
= /SéédW) /u(d’adu) /:o e M(foux I c,)(t — Blo—,w))dt
/0°° dsée™% /P(,vdw)/{w(dadu)l[oys](a)

[~ e 0 ux Lot - Blo- )
= /(-)oo dsée™" ./Os‘d'a/u(d'u)/P(dw)
/00 dte™(f o u x Ljo,c.)(t — B(o—,w))
_ / do / V(du) / P(dw)eto=Bo=w) / dte™ £ (u(t))

T 5+ x\7+f(l — e~ )y( dw)/ dte"\t/ V() f )

i(f)
6+ Ay + )\»ﬁ)\(l)'

Further

B(oo,w)
Vif(a) / S%(dw / dte™*t
0
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So for f € b€

V¥ f(a)

(] B(s,w)
/ dsée_é’/P(dw)/ dte=*
0 0

l /oo dsée'“[l _ 6—8(A7+>\ﬁa(1))]
A Jo

7 + 9 (1)
64 My + Aia(1)

VX (f - f(a) x D)(a) + f(a)V¥1(a)
(= f(a) x 1) + (v + (1)) f(a)
8+ Ay + Aia(1)

M (f) +7f(a)
84+ Ay + Aia(1)
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Chapter 4

Applications

In chapter 3 we saw how to construct for a Ray process Y the It6-Poisson
point process of excursions from a recurrent state a, which is not a holding
point and for which IP,[r, = 0] = 1 where 7, is the infimum of the times
t > 0 at which Y hits or approaches state a. In the first section of this
chapter we will show how one can get an explicit formula for the charac-
teristic measure of the It6-Poisson point process of excursions from zero for
standard Brownian motion using the elementary calculations of the distri-
bution of Brownian excursions in Chung [6]. By means of adjunction of a
Radon-Nikodym factor we get from this result an explicit formula for the
characteristic measure of the It6-Poisson point process of excursions from
zero for standard Brownian motion with constant drift. This will be done
in section (4.2). A well-known problem which can be treated with excursion
theory is to describe all strong Markov processes which behave like a given
strong Markov process outside a given state a (or more generally outside
some given subset of states D). We will consider the problem to describe
all Ray processes on [0, co[ which behave otside zero like Brownian motion.
This problem was first treated by Feller [11] using theory of differential
equations. Feller’s solution was that the infinitesimal generator of such a
process is the differential operator

with domain
D = C5([0, 00[) N {u : pru(0) — pau(0) + psu”(0) = / pa(de)[u(z) — u(0)]}

81
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where p;, ps and p3 are nonnegative real numbers and p4 a o-finite measure
on ]0, o[ such that

p1+p2+p3+ /P4(d$)(1 —e%)=1

Ité and McKean constructed in [26] the sample paths of these processes,
which they called Feller’s Brownian motions, from the reflecting Brownian
motion and its local time and (independent) exponential holding times and
differential processes. Rogers derived in [45] Feller’s result using resolvent
identities. We will give in section (4.3) an interpretation of the parameters
P1,P2,p3 and the measure p, by means of excursion theory. In section
(4.4) we will use these results to construct a model for a random motion
on an n-pod E,, that is a tree with one single vertex 0 and with n legs
having infinite length. This model can be used to describe the movement of
nutrients in the root system of a plant, also there is a possible application
to the description of the spread of pollutants in a stream system and to
the analysis and desgn of circulatory systems, see Frank and Durham [12].
We will construct all strong Markov processes which behave like standard
Brownian motion restricted to a halfline, when restricted to a single leg.
In the last section we will construct a Markov process on [0,00[ which
behaves as follows: starting at a point z €]0, oo[ it evolves like a given strong
Markov process until reaching 0 where it waits a length of time having
an exponential distribution with parameter « after which time it jumps
independently to a new position in ]0, co[ according to a given probability
measure 7) and then proceeds as before.

4.1 Point processes attached to Brownian
motion

In this section we will apply the results of section (3.2) to Brownian mo-
tion. In particular, we will derive an explicit formula for the characteristic
measure v of the It6-Poisson point process of excursions from zero. The
derivation is based on theorem (3.2.4) and on the following elementary cal-
culations of the distribution of Brownian excursions in Chung [6].

Let B = (B;);>0 be a standard one-dimensional Brownian motion on a
probability space (2, F,IPy). Let » > 0 and let V; be the first excursion
from zero with length greater than r. Following Chung [6], we introduce
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the following notations:
B(r) =inf{t > r: B, =0},
y(r) =sup{t <r:B; =0},
L(r)y =p8(r)—~(r).
So Jy(r), B(r)[ is the excursion interval containing r. As IPg[B, = 0] = 0
and B has continuous realizations, L(r) > 0,IP¢-a.s.. Denote as in section
(3.2), the first excursion interval of length greater than » by |Dy,T1[. Let
n>1,0<t <...<t,and zy,...,2, € Ry:
Po[Vi(ti) € dzs,i=1,...,n]
= Po[Vi(t;) €de;,i=1,...,n,L(r) < 7]
+Po[Vi(t;) €das,i=1,...,n,L(r) > r]
= I+ 1L
It is clear that ~
[L(r) < 7] =[D1 2> B(r)]
and that
D, = ﬂ(r) + Do gﬂ(r) on [D1 > ﬁ(?")]
It follows that
I = Po[Vi(ti)o 05(,.) €dr;,i=1,...,n,06(r)—v(r) <]
Po[B(r) — y(r) < r]Po[Vi(t;) € dziyi = 1,...,n]

Il

by an application of the strong Markov property on stopping time B(r). It
is also clear that

[L(r) > 7] = [T1 = B(r), D1 = 7()].
It follows that
IT = Po[By(r)41; € d2i,i =1,...,n,L(r) > max(tn,r)].
Hence

]P()[Vl(t,') €dr;,i=1,..., n]
Po[By(r)41; € dzi,i=1,...,n, L(r) > max(tn,r)]
IPo[L(r) > 7]

A simple calculation using Chung [6], formula (2.20) results in

PolL(r) > 1] = 2
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and the same reasoning as in Chung [6], theorem 6 yields for | > max(t,,r)

Po[y(r) € ds, B(y(r) + t;) € dz;,i =1,...,n,L(r) € dl]
= p(5;0,0)9(t1;0,21)q(t2 — t1;21,22) - --
Q(tn —ln-1;Tn-1, xn)g(l ~1n;0, wn)dezl cdzpdl

where

p(t;e,y) = exp[— &5,

— ot

9(t:0,9) = /5 Y exp[- 4],

q(t;z,y) = p(tz,y) —p(t;z, —y).

The probabilistic interpretations of p, ¢ and g are as follows
IP;[B(t) € dy] = p(t; z,y)dy,
Poloy € di] =g(t;0,y)dt,
P, [B(t) € dy,00 > t] = q(t;z,y)dy.
for t > 0 and zy > 0. It follows that for ¢, > r
Po[B(y(r) + t;) €dz;,i=1,...,n,L(r) > r]
= \/?g(tﬁ 0,21)q(ta —t1;21,22) - - q(tn — tno1;Tn_1, Tn)dey - dy.
hence
Po[Vi(t;) € dai,i=1,...,n]
= \/—-%;zg(tl; 0,z1)q(t2 —t1;21,22) - q(tn — the1; Tn—1, Tn)dz1 - - dTp.

This formula enables us to calculate some important quantities.
Po[T} < 0] = / Po[Vi(r) € da]

2\/27rr/ g(r;0,z)de =1
0

1PO[T1_D1>T+S]:”T‘-T—S'

Let (rg)r>1 be a strictly decreasing sequence of positive real numbers, such
that limy_, oo 7% = 0. Let (U, Vi)r>1 be defined as in the proof of theorem
(3.2.4), i.e. Vi is the sequence of excursions from 0 of length greater than

1

and
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rx and Uy is the set of functions u € U = Djg o[(IR) for which ¢y > %.
Then
Tk

limk—»oopk = limk__,oolPo(Vkl € Ul) =limi_ e =0
Ty + 71

so there is an It6-Poisson point process N on U whose [( > []-subsequence is
the sequence of excursions of B of length greater than [. The characteristic
measure v of N is given by

vju(t;) €dz;i=1,...,n]
™
= 4/ 79(11;0,$1)q(t2 —t1;21,22) - q(tn — tho1;Tn_1,Tn)dzy - - dy

where 0 < t; < ... < t, and z1,...,2, > 0. Taking r; = ;8; we get the
same normalization of v as in Ikeda & Watanabe [22]. With our notations
it is more convenient to take r, = %

4.2 Brownian motion with drift

With the results of section (4.1) for standard Brownian motion, it is not
very difficult to write down a formula for the characteristic measure of
the It6-Poisson point process of excursions from zero of Brownian motion
with constant drift. The passage from Brownian densities to densities of
Brownian motion with drift is done by adjunction of a Radon-Nikodym
factor, see for instance Imhof & Kummerling [23]. Let Y = (¥;):>0 be
Brownian motion with constant drift 6, i.e.

Y (t) = 6t + B(t),t > 0.
A straightforward calculation yields
P, [Y(t;) €dy;,i=1,...,n]
= exp[(yn — ) — :21-62tn]IPx[B(ti) €dy,i=1,...,n],
for 0 <t < - <t, and yy1,...,¥, € IR. It follows that the Radon-
Nikodym derivatives p(t; z,y),3(¢;0,y) and g(t;z,y) of the measures

IP.[Y(t) € dy],IPo[o € dt] and IP,[Y(¢) € dy,00 > 0] with respect to the
Lebesgue measure are given by

p(t;z,y) =exp[b(y — z) — $6%t]p(t; 2, y),
3(t;0,y) = exp[by — 16%t]g(t;0,y),
i(t;z,y) =exp[é(y —z) — 36%t]q(t; 2, y),
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for t > 0 and zy > 0. Let ]3(r), 3(t)[ be the excursion interval of ¥
containing r with length L(r) = B(r) — (r) and let |D1,T;[ resp. Vi be
the first excursion interval resp. the first excursion of the process Y with
length greater than r, then a simple calculation yields

Po[Y(H(r) +t;) €dy;,i = 1,...,n,L(r) > t,]

= {/r\/—l—ex (_1523)(18}
- 0 27s P 2
x§(t1;0,91) x Hq‘(t,-.,.l — i3 ¥i, Yir1)dys - - dyn

i=1

for0<t; < - <ty, ¥1,..-,¥s >0 and t,, > r. It follows that

_ _ T 1 1 2 oo B ‘
Po[L(r) > 7] -/0 \/ 5—;;—exp(—«-26 s)ds/_oo g(r;0,z)dz

Po[Vi(t:),i = 1,...,n]

and

1 _ o
= Wg(tl;o:yl) X H(I(ti+1 —ti;Yi, Yiv1)dys - - - Y.
- 00 1 1=1
So )
lPQ[Tl < OO] =1
e [, 3(r +5:0,2)
_ - g(r + s;0,z)dx
Po[Ty — Dy > = == -
o[7i 1>+ s] J-oo 3(r;0,2)dz
Since
< 1 1 §B(L)VF
| atrio,e)de = 5 exp(= 5% Eo(| B(1) | 42N
we get
. [ 9(r+5;0,z)dx
lim

rio % §(r;0,z)de
b /T e Lga Bl BQ) | exp(6BUWTFS) _
= s P ) TR B [exp GBI

So in the same way as for standard Brownian motion it follows that there
exists an It6-Poisson point proces N on U whose [¢ > []-subsequence is the
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sequence of excursions of Y of length greater than /. An appropiate choice
for r; yields the following formula for the characteristic measure 7 of N:

n
l_/[u(tz) € dyi)i = 1)"')"’] zg(tho)yl) X Hq_(ti+1 _ti;yi)yi-}—l)dyl dyn

i=1

for0<t1 <---<tyand y1,...,y, > 0.

4.3 Feller’s Brownian motions

Let B = (B¢)i>0 be a standard one-dimensional Brownian motion on a
probability space (2, F,IPg). The process Y = (Y3):>0 defined by Y; =| B |
is called reflecting Brownian motion. Let r > 0 be given and let V¥ (resp.
VB) be the first excursion from zero of the process Y (resp. B) with length
greater than r. Then, forn >1,0<t < --- < t, and zy,...,z, € IRy,
we have

IPO[VY(ti) €dz;,i=1,...,n]
= Po[VE(t;) €dzi,i=1,...,n]+Po[-VE(H;) €dz;,i=1,...,n]
n
[mr
= 2 79(t1;0,.’£1) X Hq(ti+1 —ti;Ti, Tiqr1)dzy - - dy
i=1

since ¢(¢;0,x) = g(¢;0,—2) and q(¢;z,y) = q(t;—z, —y), see section (4.1).
It is now clear that the characteristic measure v of the It6-Poisson point
process of excursions from zero of reflecting Brownian motion is given by

n
v[u(t;) €de;,i=1,...,n] = g(tl;O,ml)xHq(tiH—ti;m,-,m,-.,_l)d:cl coodey,

i=1

0 <t < - <t, and z,...,2, € Ry. The characteristic measures
of the It6-Poisson point process of excursions from zero of Brownian and

reflecting Brownian motion corresponds to the same semigroup (-Kt)tZO
which is defined by

Ki(z,dy) = q(t;z,y)dy.

The entrance laws (7;)s>0 are given by
ns(dy) = g(s; 0, y)dy for Brownian motion
and by

15 (dy) = 1j0,00[(¥)9(s; 0, y)dy for reflecting Brownian motion.
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Each strong Markov process Y which behaves like Brownian motion until
the first hitting 7§’ of 0, i.e.

IP.[Y(t;) € dy;,i = 1,...,n,rg' >t =P, [B(t;) €dyi,i =1,...,n,19 > 1],

where 0 < t; < --- < t, < t, has a characteristic measure (for the Ité-
Poisson point process of excursions from zero), which correspond to the
same semigroup (K;). It is clear from the construction of these processes
from It6-Poisson point processes that the converse also holds. A problem
extensively studied is to describe all the Ray processes on [0,00[, which
behave like Brownian motion until the first hitting or approach of 0, see
for example Feller [11], Ito-McKean [26] and Rogers [45]. It follows from
an application of the strong Markov property that the resolvent (V))xso of
such a process satisfies the following formula for f € Co([0,0[) and = > 0:

Waf(a) = Gaf(2) + e~ *VPVA£(0)

where

Grf(z) = /0 " MK f(2)dt = T, /D " e 5B, dt.

Rogers gives in [45] the following characterization of V3 £(0):

3p1,p2,p3 > 0:3p4 € M+(]0>OOD

such that
/ pa(dz)(1 —e™®) < 00
oof

0!

and such that

2ps [y° e—z\/ﬁf(a:)d:c + p3f(0) + f]o,oo[p‘*(dz)G)\f(x)

Vaf(0) =
WO p1+ P2V2X + dps + flo,oo[p‘;(dm)(l — e—zV2X)

Actually we should have considered these processes on the one-point -
compactification [0, 0o] of [0, oo[, the point co playing the role of a cemetery,
where the process is sent to when killed. We have left this out to avoid an-
noying technicalities. Rogers’ derivation of this characterization is based on
the resolvent equation. He remarks that the parameters p;, ps, ps and py
have natural interpretations in excursion theory. To see this, let for s > 0
and n > 0 the measure ¢;; on [0,00[ be defined by

_ [ q(s;z,y)dy ifz>0
€oa(dy) = { 9(s;0,y)dy ifz=0.
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The families (e55)s>0, € > 0, of finite measures on [0, oo[ are entrance laws
for the semigroup (K;). According to theorem (3.2.6), the semigroup (K)
and the entrance law (€z5)s>0 determine a unique o-finite measure v, on the
excursion space (Ue,Us ) satisfying property (i), (i) and (iii) of theorem
(3.2.4) such that

€zs(dy) = va([Cu > 5, u(s) € dy]).

It 1s clear that vy is the characteristic measure of the Ité-Poisson point
process of excursions from zero of standard Brownian motion. For z > 0
the measure v, is identical to the distribution oy on (Us,Uso) of stan-
dard Brownian started from z, which is absorbed in state 0. Let p be a
nonnegative measure on [0, o[ such that

Ve > 0: p([z, oof).

Define the measure v on (Uso,Us) by

v= / p(dz)v,.
[0,00[

Then the family (7;)s>o defined by
ne(dy) = v([Gu > 5, u(s) € dy]) = /[ p(d)ess (dy)
0,00

is an entrance law for the semigroup (K;). For A > 0 and bounded, mea-
surable functions f on [0, co[ we have

/0 " dse / n5(dy) f(y)

p({0}) / " ey + / p(dz)Gaf (z).

,O0

(f)

It follows that

/ (1—eY(dw) = (L)
U
1

= Zpon+ / p(dz)(1 — e==V?).

Let P be the Ito-Poisson point process on [0, oo[ with characteristic measure
v. As in section (3.3) we assume that

/ (1 — e % )u(du) < oo
U
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to guarantee that the sum A(7) of the lengths of the excursions up to time
7 is finite. This condition is equivalent to the following condition on the
measure p:

/ p(dz)(1 - e=*V?) < oo.
0,00
Let v > 0 and define as in section (3.3)

B(1,w) = oo(w) + A(T,w) + y7.

Finally, let § > 0 be the killing-rate in local time at state 0. If (Vi)aso is
the resolvent of the strong Markov process attached to P then by theorem
(3.3.10) we have

Grf(z) + Vaf(0)e==V2A forz #0
Vaf(z) =< »UoD) [7 1w ay+ [ p(de)Gx](x)+71(0)

Pt B(OVEH ], pan—ewvany  or e =0

It follows that p; is the killing-rate in local time at state 0. The parameter
p3 corresponds to v, which is a measure for the stickiness at state 0. Further,
it is easy to see that v, is concentrated on the set of excursions {u € Uy :
u(0) = z}, so ps(dz) is the rate in local time at 0 by which there appear
excursions starting at . The parameter 2p; is the rate in local time at 0
by which the process exits 0 continuously.

4.4 Brownian motion on an n-pod

In this example we will construct Markov processes on an n-pod E,. As a
set E, is defined by

E, =]0,00[x{1,...,n} U {0}.

Let
d, : Ep, x E, — IR

be defined by

. _ T+ fori#£j
dn[(it,l),(yd)]:{ |m—yy| forii;a

dn[0,(z,7)] = z,
d,[0,0] = 0.
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The function d,, is a metric on E, and the topological space (E,,dy) is a
locally compact, second countable Hausdorff space. The topological space
E, is called an n-pod. Denote by &, the Borel o-algebra on E,, and by
Ak, k=1,...,n, the subset

Ar={e€E,:e=0o0r3c>0:e=(z,k)}

of E,,,which is called the k** axis of E,,. It is clear that E is homeomorphic
to the real line IR and that A; is homeomorphic to [0,00[. We want to
consider strong Markov processes Y on F,, which behave like Brownian
motion until the first hitting or approach o of state 0, i.e.
{ q(t;z,y)Xi(dy) forj=i

0

]P(a:,z)[yvt € (yay+ dy) X {j}700 > t] = for j # 1

where A; is the image of the Lebesgue measure on [0,00[ under the map
é; : [0,00[— A; defined by

v (z,i) forz>0
¢'(z)~{0 forz >0

and where ¢(t;z,y) is defined as in section (4.1). Define for ¢ > 0 the kernel
P on (E,,&,) by

P ((z,i), F) = /Ooo 1r((y,1))a(t; ﬂﬂ,y)/\i(dy)JrlF(O){1—/0oo q(t;z,y)Ai(dy)}

PO, F) = 1.

The family of kernels (P{*);>0, where P§ is the identity kernel on (Ey,, &), is
a Markov semigroup of kernels which corresponds to a Feller-Dynkin semi-
group on Cy(E,), see Williams [59]. Let ., e € E,, be the measure on the
function space U(™) = Dg_ ([0, 00[) whose finite-dimensional distributions
are given by

m-—1
aelu(t; € de;,i=1,...,m] = P](e,der) [[ P, i (ei, deis1)
i=1
where m > 1,0<¢; <.-- <ty and e1,...e,, € E,. The measure a, is

concentrated on the set
{ue U™ vt > ¢, - u(t) =0}
where (, is the lifetime

Cu =inf{t > 0:u(t) =0 or u(t—) = 0}.
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Let (K7')i>0 be the sub-Markov semigroup of kernels on (Ej,, £,) defined
by

Kl (e,dy) = ac[u(t) € dy,(u > 1]
{ g(t;w,y)/\i(dy) for e = (z,17)

for e = 0.

Let Y be a strong Markov process on E,, which behaves like Brownian
motion until the first hitting or approach of 0, and let v be the characteristic
measure of the It6-Poisson point process of excursions from zero of the
process Y. The measure v is determined by an entrance law (7);)s>o for the
semigroup (K}') with Vs > 0:7,({0}) = 0. We have

[tk d) =Y [ it s uxdn) = Y- 1a s i)
i=1 V0 i=1

where 0} = ¢;7 [14,7] is the ¢; '-image of the restriction of 7, to the axis
A;. It follows that fori=1,...,n

(/ n,(dy)q(t; 2,y))dy = ny(dy).
0
As in section (4.3) there exist measures p(),i = 1,...,n on [0, co[ such that

/000 pD(dz)(1 —e™®) < 00

and

o} (dy) = / P (de)ezs (du),
[0,00[

where ¢, is defined as in section (4.3). It follows that the resolvent (Vj)xso
of the strong Markov process Y is given by

Vaf(z,i) = /0 G (2, dy) f(y,1) + VA F(0)e==VR
with
Vaf(0)
S p(0) [ f(y,i)e™vVPdy
6+ 27+ 3 0y PD(0) + Ty fig oop PO (da)(1 = e==V2X)
o T foPO(E) [57 a2 d9) (5, 1) + 7£(0)
6 + ’\7 + %‘ z:'l:l p(z)(o) + E?:l jj(),oo[p(z)(dm)(l - e—z‘\/ﬁ)
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where v and 8 are nonnegative constants and f € b€,. As a special case
take n = 2,6 = v = p(1)(]0, 00]) = p®(]0,00[) = 0 and & + 3 > 0 where
a= p(l)(O) and B = p(?)(0). Then we get

VAF(0) = \/f e / fly, eV Py + 6 / F(y 2)e™Pdy}.

Mapping E5 on IR by the map ¥:

P(y,1) =y
¥(y,2) =-y
P(O0) =0

and writing f for the composed map fo1), we get after some straightforward
calculation that

WO =\ 2t [ e Py [ s-u)e Ty

and

Vif(z) = /O \/%[e—\/ﬁlr—yl +Sign(y)gi‘ge‘m“”'+"")] ()dy

for all z € IR\{0}, where

-1 fory<0
sign(y)=¢ 0 fory=0.

1 fory>0

This is the resolvent of skew Brownian motion, see It6 and McKean [27].
The numbers %5 and ;L may be interpreted as the probabilities for an
excursion on the right- resp. the left hand side of 0, see Harrison and Shepp
[21]. In [12] Frank and Durham give an intuitive description of symmetric
Brownian motion on a 3-pod, which corresponds to the case

6= v = 0 and p(l) — p(Z) — p(3) — _;;60

We end this section by remarking that a similar construction is possible for

processes which behave outside zero like Brownian motion with constant
drift.
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4.5 Blumenthal’s construction

In [2] Blumenthal constructs for a given characteristic measure and entrance
law the extension of the original process whose entrance law is the given
one, claiming that this construction is the one that Ité6 was referring to in
[25]. Let E be a compact metric space and let a € E be a fixed point. Let
X = (X¢)t>0 be a Ray process with state space E. Blumenthal considers
the case E = [0,00[, a = 0 and X is a standard Markov process. By a
standard construction for Markov processes, X can be considered as a Ray
process on the one-point compactification [0, 00], see Getoor [15]. Denote
as in section (3.2) by @, the distribution on U = Dg([0, oo[) of the process
X starting at ¢ and absorbed in a after the first hitting or approach o, of
the point a and by (K;)¢>o the sub-Markov semigroup of kernels on (E, £)
defined by
Ki(z,dy) = a [u(t) € dy,{, > t].

Blumenthal’s construction is based on an approximation with Markov pro-
cesses of the following type. Starting at a point z € F\{a} the process
evolves according to the transition probabilities of the process X until
reaching the state a where it waits a length of time having an exponen-
tial distribution with mean a > 0 after which time it jumps independently
to a new position in F\{a} according to a given probability distribution 7
and so on. The measure 7 is called the jumping in measure and « is called
the holding parameter. For the existence of such a Markov process Blu-
menthal refers to Meyer [41]. A simple calculation using the strong Markov
property yields for the resolvent (Ux)a>o of this process the formula

2f(a)+ [ n(dy)Grf(y)
A+ [ n(dy)Ey(1 — eAoe)

Urf(z) = Grf(z) + Ea(e™*"*) 1

where

Grf(z) = /000 e MK, f(z)dt and f € bE.

It is not difficult to construct this process with the methods of section (3.3).
Define the family of finite measures (7,)s>0 on (E, &) by

ns(dy) = / n(dz)K,(z, dy).

The family (7;)s>0 is an entrance law for the semigroup (K;) satifying
the property Vs > 0 : n({a}) = 0. Let v be the o-finite measure on (U,U)
corresponding to the entrance law (7,) and the semigroup (K}), see theorem
(3.2.6), and let P be the It6-Poisson point process on U with characteristic
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measure v. Let Y be the Markov process attached to P as in section (3.3).
Then by theorem (3.3.10) the resolvent (V))aso of Y is given by

ﬁ)\(f) +7f(a),f € bE.

Vaf(@) = Gaf(@) + Eale™ ") T

Since
n(f) :/0 dte"\“/n(d:c)th(:c) = /n(d:c)GAf(:c)
and, for z # a,

AGl(z) = / Ae ™MK, 1(x)dt
0

= / Ae™MIE; (1[5, 54)dt
0

a
= IEx/ e~ Mdt
0

Ez(1—e7%),

the process Y with v = % is the above described Markov process. The
strong Markov property for Y follows from the assumptions in Blumenthal
[2] about the resolvent (Gx)a>o.-
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Appendix A

A.1 The existence of an S-finite base for the
topology
Let X be a polish space and let § be a collection of open subsets of X.

Denote by S’ the family of all Borel subsets of X contained in some element

of S.

Proposition A.1.1 If S covers X, then there exists a countable base for
the topology consisting entirely of open subsets with closure in S'.

Proof. Let D be a dense subset of X and let d be a metric on X compatible
with the topology of X. For each & € D there is an A € S containing z.
Let

6 =d(z,A%) = inf{d(z,y) : y # A}.

Then 6 > 0, since A° is closed and ¢ & A°. Let r € (0,6). The closure
B (r) of the ball with center z and radius r is contained in A:

Y€ By(r) = d(z,y)<r
= d(y,A°) >d(z,A°) —d(z,y) >6—-7r>0
= y¢A°
=> yEA

So B,(r) € S'. Define for z € D
I, ={g€eXQ: B;(q) € S'}.

Claim: 4 = {B;(q) : ¢ € D,q € I;} is a countable base for the topology of
X . To see this, let O C X be open. It is clear that

0 > | J{Ba(q) : Bz(q) €U, Bs(q) C O}.

97
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Let y € O. Choose A € § such that y € A. Then
€ = min(d(y, 0°),d(y, A°)) > 0.
For z € D N By(%¢) and g € IQN]¢, 3¢[ we have

d(z, A%) > d(y, A®) —d(z,y) > e — %6 >q.
So ¢ € I, and y € B;(q). Hence
0 | {B:(9) : B(q) € U, Bs(q) C O}.

It follows that each open set can be covered by elements of U.

A.2 The Skorohod topology

Let (X, p) be separable metric space. Let for ¢y, T € IR,ty < T, the space
of functions u : [tg,T] — X which are right continuous on [to,7[ and
have left limits on Jto,T] be denoted by Dx([to,T]). Let A([to,T]) be the
class of strictly increasing, continuous maps A : [to, T] +— [to, T}, such that
A(to) = to and A(T) = T. For u,v € Dx([to,T]), define dy(u,v) to be
the infimum of those positive real numbers ¢ for which there exists a map
A € A([to, T]) such that

sup{| A(t) —t |: t € [to, T]} < ¢

and
sup{p(u(t)), v 0 A1) : ¢ € [t0, TT} < e

The fuction dy is a metric on Dx([to,T]). The topology on Dx([to,T])
induced by dj is called Skorohod’s J; topology. Equipped with the J;
topology, Dx ([to,T]) is a polish space, see Billingsley [1]. Let U be the
space of cadlag functions of [0,00[ in X. There are several papers about
the extension of the J; topology to U, see among others Lindvall [37] and
Whitt [57]. We will summarize the theory of Whitt [57]. Let for 0 < b < ¢,
rye : U +— Dx([b,c]) be the restriction to [b,c] defined by (rp.z)(t) =
z(t),t € [b,¢]. For any z,y € U, let d be defined by

d(a:,y):/ dte™ " min[do: (ro: 2, 701 y), 1]
0

where dp; is the metric on Dx([0,t]) as defined above. The function d is a
metric on U. The topology induced by d is called the Skorohod topology on
U. Note that a sequence (z,,) C U converges to & € U iff dps(roi&p, doez) —
0 for almost all ¢. The basic properties of the Skorohod topology are:
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(i) U equipped with the Skorohod topology is a polish space,

(ii) the Borel o-algebra on U coincides with the o-algebra generated by
the coordinate evaluations,

(iii) if (Pn)ny1, P are probability measures on U, then

P, - P+~
[ee]
3 a sequence sk, tk]e>1 U [k, t] = [0,00]
k=1

and Vk : r54, (Pn) = rsit, (P) on Dx([sk,te]).

Fix a € X and define the map ¢ : u € U — (, € [0, 0] by
Cu=1inf{t > 0 :u(t) = a or u(t—) = a}.
Lemma A.2.1 The map ( is lower semi-continuous.

Proof. It is sufficient to show that the sets {u € U : {, < k},k > 0, are
closed sets. So let k > 0 be fixed and let (u,) be a sequence in {u € U :
Cu < k} converging to u. Let € > 0. If the restrictions of the u, to [0, k]
converge in Dx ([0, k]) to the restriction of u to [0, k], there exists for every
n sufficiently large a function A € A([0, k]) such that

sup{| A(t) =t |:t € [0,k]} <€
and
sup{p(un(t)),uo A(t)) : t € [0,k]} <e.

So
p(u 0 A(t),0) < p(un(D)), w0 A(D) + plun(D)), a) < 2

for some t € [0, k]. It follows that
Ve > 0,3s € [0,k] : p(u(s),a) < €

and this implies that {, < k. If the restrictions of u, to [0,k] do not
converge in Dx ([0, k]) to the restriction of u, then there exists a sequence
(km) decreasing to k, such that

Vm > 1: lim rog—mUn = Tok—mU.
n—0o0

As above we may conclude that Ym > 1 : {, < k,, and it follows that
Cu <k.
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A.3 Some results on real functions

A.3.1 Result1

Lemma A.3.1 (Greenwood & Pitman). For each n > 0 let fn(t) be a
positive, nondecreasing function of t € [0,00[ and let S C [0, 00[. If

VseS: nlirglo fn(s) = f(s) exists,

and

{f(s) : s € S} is dense in [0, 0],

then there is a continuous, nondecreasing function f defined on [0, a[, where
a =sup S, such that uniformly on bounded sub-intervals of [0, a[

nlLHgO () = f(2).
Proof. For every n > 0 and s € S we have 0 < f,(0) < fa(s). So
0 < limf,(0) < limf,,(0) < inf{f(s) : s € S} =0

and
lim £,(0) = 0.

Let z €]0,a[. If SN[0,2] = 0, then lim f,(z) = 0. In the remaining case
we have

sup{f(s) : s € SN[0,z]} < limf,(z) < imf,(z) < inf{f(s) : s € SN[z, 00[}.

Since {f(s) : s € S} is dense in [0, o[, lim f,(z) exists. Define the function
f : [0,a[— [0,00[ as the pointwise limit of the sequence functions (f,).It
is clear that f is a nondecreasing, continuous function on [0,a[. If the
convergence of the sequence (f,) is not uniform on bounded sub-intervals
of [0, a[, then there exists an M < a and an € > 0 such that

Vn € N, 3, € [0, M];| fu(tn) — f(tn) |> €.

Let (t,/) be a convergent subsequence of (t,),tc = limt,s. Choose z1,z2 €
[0, a[ such that

1
T < too < g and f(fl)g) - f(-’L‘]) < 4—6.

Iftoo =0, take £; = 0. Then for n’ sufficiently large
far(®1) = f(tnr) < far(tnr) = f(tn) < far(z2) = f(tnr),
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and it follows by letting n’ — oo that

— g€ STl (1) = f(ta)] < 3¢

which is a contradiction. So the convergence of the sequence (f,,) is uniform
on bounded sub-intervals of [0, af.

A.3.2 Result 2

Let A be a function on [0, co[ which is nonnegative, nondecreasing and right
continuous. Denote by A the Lebesgue measure on [0, oo[, and let ¢ be the
distribution function of the measure v = A(A) on [0,00[. Then for ¢t > 0

(1) / 1po,5dA(X)
= M{z:A(z) <t})

= sup{z: A(z) <t}).

The function ¢ is nonnegative, possibly infinite valued, nondecreasing and
right continuous.

o(t) <y y is an upperbound of {z : A(z) <t}
Ve>0:A(y+e)>t
A(y) = A(y+) >t

A(y) is an upperbound of {t : ¢(t) < y}.

Ll

On the other hand

u is an upperbound of {t : ¢(¢) <y} = Ve>0:4(u+¢)>y
= Ve>0:A(y)<u-+te

So
A(y) = sup{t : ¢(t) < y}

is the distribution function of the measure ¢(A). We call ¢ the right con-
tinuous inverse of A. We have shown that A is the right continuous inverse
of ¢. Let F € L'(v), then

/ F o A(z)A(dg) = / FAdAQ)) = / F(y)dd(y).
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A.3.3. Result &

Let: f-be a nondecreasing, right: continuous function on [0, co[, such that
f(0) = 0 and limp,_, f(z) = +o0. Define

J ={t €]0,00[: f(t-) < (1)}

and
R =range(f) = {s € [0,00[: It > 0:5= f(t)}.

Lemma A.3:2 If f is strictly increasing, the

[0,00[= R+ Y _[F(t-), F(1)]

ted
where the union is a union of disjoint intervals.

Proof. Let t € R, say t = f(r). Assume that there is an s € J such that
t € [f(s—), f(s)[. Then

f(s=) < f(r) < f(s):

It follows that » < s, so f(r) = f(s—). This can only be the case when f
is constant on [r, s[. This is impossible since f is strictly increasing. So

RNY[f(t-), f(0)[=0.

ted
Let ¢t € [0,00[\R. Then Vs € [0,00[: f(s) <t or f(s) > t. Define
u=inf{s: f(s) >t} =sup{s: f(s) <t}

Then f(u) >t,so f(u) >tand f(u—) < t. It follows that

t e [f(u-), fwc JIFE-), FR)L

teJ

which completes the proof of the lemma.
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