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PREFACE 

This vol11me contains the proceedings of a ''Symposi11m on Interfaces between 

Computer Science and Operations Research", held at the Mathematisch Centrum, 

Amsteroam, September 7-10, 1976. 

The program of the symposium consisted of the following lectures. 

1. The influence of the machine model on computational complexity, 

by W.J. Savitch. 

2. Developments in data structures, 

by P. Van Emde Boas. 

3. Graphical algorithms, 

by E.L. Lawler. 

4. Programming for linear and integer programming, 

by J.M. Anthonisse and B.J. Lageweg. 

5. Complexity of combinatorial problems, 

by J.K. Lenstra. 

6. Worst-case analysis of algorithms, 

by M.L. Fisher. 

7. Probabilistic analysis of algorithms, 

by R.M. Karp. 

8. Scheduling on parallel machines, 

by A.H.G. Rinnooy Kan and E.L. Lawler. 

The content of lectures 1, 2, 5 and 6 has been adapted to appear in this 

voJ_11me. Lectures 3 and 7 were of a general nature; the papers contributed by 

these lecturers deal with more specific problems. It has not been possible 

to publish a written version of lecture 4. The material presented in lecture 

8 is included in the final paper in the proceedings. 

' 

The symposium grew out of the observation that the disciplines of computer 

science and operations research, though never far apart, seem to exhibit more 

and more interaction and that many interesting developments in both areas 

occur at the interfaces between them. On one hand, the theory of operations 

research has found large-scale application only through the power of modern 
• 

computing devices, and its development has benefited from the study of prob-

lem complexity and the design and analysis of algorithms. On the other hand, 



. i·, 

• 

vi 
• 

problems arising in the design and analysis of operating systems have led to 

an increased interest in queueing and scheduling theory. Thus, computer sci-, 

ence contributes to the solution of operations research problems and asks for 

the solution of such problems at the same time. The proceedings demonstrate 

the importance of both aspects • 
• 

In order to allow mathematical analysis of computer algorithms, a f orr11al 

model of a computer is required. The paper by W.J. Savitch provides a survey 

of the various models that have been proposed. Particular attention is given 

to the influence of the machine model chosen on standard performance measures 

such as running time and storage requirements. 

Implementing an algorithm on a computer is an art by itself. Indeed, an 

appropriate data structure may yield important savings in time and storage. 

This is especially true for the representation and manipulation of sets, for 

which most programming languages hardly provide any support. The paper by 

P. Van Emde Boas demonstrates how in a few years a wide range of elegant and 

efficient data structures for this goal has become available, and indicates 

on which grounds to choose between them. 

In spite of all elaborate methods, many problems currently remain essen

tially intractable, even for the. fastest machines. The running time of any 

known algorithm for their solution grows superpolynomially with increasing 

problem size. Recent developments in computational complexity theory have 

provided means to show that, due to the inherent difficulty of such a problem 

itself, no polynomial-time algorithm is likely to exist. The resulting theory 

of NP-completeness is now a standard tool in the analysis of combinatorial 

problems. The paper by J.K. Lenstxa and A.H.G. Rinnooy Kan presents an intro

duction to this area and illustrates various proof techniques. 

NP-completeness of a problem justifies the use of a superpolynomjal 

method to find an optimal solution, but also suggests that is may be wise 

to apply a fast heurlstic and accept an approximate solution. Analyzing the 

behavior of he11ristics then becomes of obvious interest. A worst-case analy

sis tries to establish a perfo~mance guarantee for an algorithm; a probabil

istic analysis requires the specification of a density function for the prob

lem instances and may yield results with respect to, e.g., the average-case 

performance of an algorithm. Again, these are areas in which enormous prog

ress has been made recently. The paper by M.L. Fisher reviews the techniques 

of worst-case analysis of heuristics and describes some examples. 

This concludes the first part of the proceedings, which is devoted to 

general concepts, techniques and results. In the remaining papers these con-
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cepts are used and the techniques and results are applied in the context of 

more specific problems. 

The first paper in this second part has been contributed by A. Hajnal , 

and L. Lov~sz. It provides and elegant solution to a well-known, if not no

torious, combinatorial problem involving the spread of infectuous diseases. 

The authors prove a lower bound on the cheapest prevention method and present 

an algorithm that meets this bound within an additive constant equal to 1. 

The paper by E.L. Lawler contains a very thorough worst-case analysis 

of heuristics for knapsack problems. The approximation schemes discussed 

produce solutions within E percent from the optim11m and rtin in time polyno

mial in the size of the problem and the inverse of e. 

The paper by R.M. Karp takes a probabilistic approach to the analysis 

of heuristics for the traveling salesman problem in the plane. In spite of 

many technical complications, surprising new insights into this classical 
• 

problem are obtained. 

The final paper by R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. 

Rinnooy Kan presents a comprehensive survey of the theory of deterministic 

sequencing and scheduling. In this area, many of the tools previously intro

duced find successful appiication. 

The editors of these proceedings are confident that the coming years will 

confirm the growing importance of the interfaces discussed during the sym.

posi1un. They are grateful to the guest speakers and authors for their con

tributions, to the audience at the symposium for their participartion, and 

to the Netherlands Organization for the Advancement of Pure Research (Z.W.O.) 

and the Graduate School. of Management in Delft for their financial and orga

nizational assistance. Finally, they thank the Mathematisch Centrum for the 

opportunity to publish the vol1Jme in the series Mathematical Centre Tracts 

and all those at the Mathematisch Centrum who have contributed to its tech

nical realization. 

Amsterdam, April 1978 

J.K. Lenstra 

A.H.G. Rinnooy Kan 

P. Van Emde Boas 
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THE INFLUENCE OF THE MACHINE MODEL ON COMPUTATIONAL COMPLEXITY 

W.J. SAVITCH 

University of California, San Diego, U.S.A./ 

Mathematisch Centrum, Amsterdam, The Netherlands 

ABSTRACT 

The most common abstract models for digital computers are described and 

these models are compared with respect to time and storage efficiency. 

• 



2 

CONTENTS 

1. INTRODUCTION 

2. THE TURING MACHINE MODEL 

2.1. The usual model 

2.2. Time and storage defined 

2.3. Resolution of the model 

2.4. The single tape mqd~l 

3. RANDOM ACCESS STORAGE MODELS 

3.1. The Cook-Reckhow model 

3.2. RAM storage 
b;; £&&4. 

3.3. RAM time 

3.4. RAM-ALGOL 

3.5. 

3.6. The class P 

machines 
; U F I 

4. NONDETERMINISTIC MODELS 

4 .. 1.. Nondeternii nistic RAMs 

4 .. 2. Nondeterministic time and storage 

4.3. Nondeterministic Turing machines 

4.4. ~elatio?,ships betwee:n,, diff~;rent nond~t~i::ministic models 
Mk 4 

4 .. 5.. Deter1nj nistic simulation of nondeter111i nistic machines 

5. MULTIPLICATION RAMS 

6. p 

6.1. The k-PRAM model 

6.2. Eliminating nondetetminism 

6.3. Counting processors 
IT IP o Tl In 

6.4. Tim~ storage ~r~de-off 

ACKNOWLEDGMENT 

• 

f 

3 

5 

5 

7 

8 

8 

10 

10 

12 

14 

16 

17 

17 

18 

18 

21 

22 

23 

23 

25 

27 

27 

30 

31 

31 

32 

32 

" 

, 

" 

' 

j, 

' ! 
' 
' 
' , 
, 

' " 



3 

1. INTRODUCTION 
' 

In order to state with precision the amount of time or storage consumed by 

an algorithm, we need a well-defined forirlal model of a computer. Different 

formal models can give different values for the amount of time or storage 

needed for a given info:r111ally stated algorithm. In this paper we will sur

vey the various common models for a computer and will compare the models 

with respect to time and storage efficiency. One of our conclusions will be 

that, if care is taken to exclude certain models with special characteris

tics, then the various models do not vary too greatly with respect to time 

and storage efficiency. 

All of our remarks will be predicated on a number of assumptions, some 

important and some merely convenient. In all our models we assume that the 

computer has unbounded memory. When measuring time and storage, we will al

ways measure these quantities as a function of the problem size. So time 

and storage measures will always be functions from and to the natural num

bers. When we say that a problem is doable in time or storage g(n), we will 

mean that if an instance of the problem has size n, then the progra.m uses 

at most g(n) units of time or storage. So, for example, to say that a graph 

can be checked for planarity in linear time means that there is a constant 

c and an algorithm which, given any graph of ''size'' n, will determine if 

the graph is planar and will do so in at most en time units. Thus we are 

not discussing algorithms that depend on some upper bound on the problem 

size and we are not, directly, dealing with the problem of getting something 

to run on a particularly small machine. Also, in discussing time and stor

age bounds we will only consider asymptotic results. The models discussed 

do not seem to give very meaningful results beyond this limit of resolution. 

Following standard usage, we define f(n) = O(g(n)) to mean that there is a 

constant c such that f(n) $ cg(n), for all n greater than some threshold. 

With all our models, to say something is doable in time or storage g(n) con

veys little more infox111ation than to say it is doable in time or storage 

O(g(n)). In some cases discussed below we will even have to settle for less 

resolution than this. 

The remainder of our assumptions are to simplify the exposition and 

are not critical to the results presented. We will assume that all problems 

have yes/no answers. This is reflected in the formalism by the fact that 

we will talk about languages being accepted rather than problems being 

solved. The language corresponding to a problem is just the set of inputs 



• 

which yield (if the program is correct) the answer ''yes''. We could have 

stated the results for problems which admit of arbitrary answers and simi-, 

lar results would hold. Also, we will only be concerned with worst-case 

ana.lysis. This is convenient and consistent with most of the literature on 

the subject. However, all our results are case-by-case simulation algo

rithms .. So the results would apply equally well to average-case analysis. 
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2. THE TURING MACHINE MODEL 
I 

2.1. The usual model 

The oldest and most extensively studied abstract model of a general-purpose 

computer is the Turing machine model. The model was first introduced by Tu

ring in 1936 [Turing 1936, 1937]. Since that time Turing's model and varia

tions on it have been central to much of the theoretical development in com

puter science. The most commonly used variant of Turing's model is the so

called ''deterministic, multi-tape, off-line Turing machine 1'. In this paper 

we will use the unmodified term ''Turing machine'' to refer to this model. 

Below is an informal definition of the model. The reader who finds this 

description too imprecise can consult any of a n1Jmber of standard refer

ences ([Hopcroft & Ullman 1969] for example). 

A Turing machine is a finite state machine attached to a read-only 

input tape, finitely many read/write storage tapes, and a write-only output 

tape. The finite state machine is referred to as the finite state control 

or sometimes just the control. The tapes are divided into squares. Each 

square of a storage tape is capable of holding any one sy11thol from a speci

fied finite storage tape alphabet. The storage tapes are infinitely long 

in both directions. The output tape has a left-hand end but extends infi

nitely long to the right. There is a specified finite input alphabet and 

a specified finite output alphabet. The input consists of a string over the 

input alphabet and is placed on the input tape. The input tape is provided 

with two distinguished end markers, one at each end of the input string. 

Each tape has one tape head communicating with the finite state control. 

The situation is diagrammed in Figure 1. The machine in Figure 1 has two 

storage tapes, and the end markers are denoted by¢ and$. 

At any point in time, each head will be scanning one square on its 

tape and the finite state control will be in one state. Depending on this 

state and the symbols scanned by the input and storage tape heads, the 

machine will, in one step, do all of the following: 

(1) overwrite a symbol on the scanned square of each of its storage 

tapes (it is, of course,, pe:rtnissible to overwrite a sy11lbol by itself 

and so leave it unchanged); 

(2) shift its input head and each storage tape head either left one square, 

right one square or not at all (different heads may get different in

structions); 
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(3) possibly, write a symbol on the ouput tape; in this case the output 

d r e to the right so that it tape head is advance one squa is ready to ' 

write the next output symbol; 

(4) change the state of the finite state control. 

l l.·s des1.·gned so that the input head will never The finite state contro 

leave the segment of tape containing the input ~tring and the end markers • 
• 

! 

!FINITE ~ I N p u T $ 
STATE 

0 u T p u T T A p E 

' 

s T 0 R A G E T A p E 1 

s T 0 R A G E T A p E 2 

F_~g~~E: ... 1 Turing machine with two storage tapes. 

One state of the finite state control is designated as a start state 

and finitely many states are designated to be accepting states. One special 

tape symbol is designated as the blank symbol. At the start of a computa

tion, the input string is placed on the input tape and delimited by the 

end Markers, the input tape head is set scanning the left end marker, the 

finite state control is put into the start state, the output tape and stor

age tapes are blank, and the output tape head is placed at the left end of 

the output tape. 

A Turing machine is said to compute a function f from input strings 

to output strings, provided that starting in the designated start config

uration with input w, the machine eventually halts in an accepting state 

with f (w) written on its output tape. If f is a partial function , then it 

is usual to in.sist that the machine does not halt on any input w for which 

f(w) is undefined. 

To simplify the discussion we will confine ourselves to situations in 

which the input is in some sense either accepted or rejected. In these 

cases there is no need for an output tape. From now on, we. will assume that 

our Turing machines have no output tape. If the machine reaches an accept

ing state, that will designate acceptance. Thus, we say that the machine 



accepts the input w provided that the computation of the machine on input 

w eventually reaches an accepting state. We say that a Turir1g machine M 

accepts the language L provided that Lis the set of all input strings 

accepted by M. 

2.2. Time and stor~ge d~fined 

7 

We now introduce the measures of time and storage that we will use for the 

Turing machine model. In all cases, the time and storage will be measured 

as a function of the length of the input. 

DEFINITION. Let M be a Turing machine, let A be a set of strings over the 

input alphabet of M, and let both T(n) and S(n) be functions on the natural 

n11mhers. 

(1) Mis said to accept A within time T(n) provided that 

(i) M accepts exactly those input strings which are in A, and 

(ii) for each string win A, the computation of Mon w takes T(n) or 

fewer steps, where n is the length of w. 

(2) Mis said to accept A within storage S(n) provided that 

(i) M accepts exactly those input strings which are in A, and 

(ii) for each string win A, the computation of Mon w uses no more 

than S(n) storage tape squares, where n is the length of w; that 

is, a total of at most S(n) storage tape squares are scanned by 

the storage tape heads during the computation or1 w. 

There are a number of observations to be made about these two definitions. 

First note that we are only measuring time and storage on those inputs 

which are accepted. If an input is not accepted, then the machine may use 

any amount of time and storage. This may seem peculiar. However, for well

behaved time and storage bounds it can be shown that the above definition 

is equivalent to one that requires that the machine always operates within 

the bound specified. Later on we will introduce the notion of nondetermin

istic machines. The reason for giving the definition in this form is so 

that it will be consistent with the definitions given for nondeterministic 

machines. It should also be noted that the above definition can easily be 

extended to accommodate machines that have an output tape and which compute 

some partial function. Finally, note that when measuring storage, no charge 

is made for the input tape; only the storage tapes are charged for. This is 
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to accommodate procedtJres that run in very smal.l storage. 
, 

2.3. Resolution of the model 

In the introduction, we said that we would only be considering asymptotic 

results. If we confine ourselves to the Turing ~achine model, then this 

restriction is forced on us by the model. Let us first consider storage. It 

can be shown that, if a language is accepted by a Turing machine within 

storage S(n), then we find another machine that accepts the same language 

in storage cS(n}, for any constant c, no matter how small. To accomplish 

this, all we need to do is enlarge the tape alphabet so many syi,,hols can be 

coded as ~ single sytnbol. So, saying that something is doable on a Turing 

machine in storage S {n) , conveys no more infor111ation than to say it is do-
• 

able in storage O(S(n)). The following result makes this more precise. 

THEOREM 1. If A is accepted by a Turing machine within storage S(n), and if 

c is any constant greater than zero, then we can find another Turing machine 

that accepts A within storage cS(n). 

A result similar to Theorem 1 can be proven for time. So, saying that some

thing is doable on a Turing machine in time T(n), conveys no more info~ma

tion than to say it is doable in time O(T(n)). (Theorems 1 and 2 are from 

[Hartmanis et al. 1965; Eartmanis & Stearns 1965], and can now be found 

in many introductory texts.) 

THEOREM 2 .. If A is accepted by a Turing machine wit;hin time T(n) and c is 

any positive constant, then we can find another Turing machine that accept;s 

A within time T2 (n} = max{cT(n) ,n+l}, provided inf T(n)/n = oo. 
n ► 00 

2.4. The single ta~ model 

Another Turing machine model that is often used is the so-called ''dete:trnin

istic, single tape Turing machine''. This model has only one tape and a fi

nite state control. The tape is of the same type as the storage tapes of the 

usual model; the tape head on this single infinite tape can both read and 

write. Since the input is delimited by blanks, there is no need for special 

end markers. A computation begins with the finite state control in a desig

nated start state and with the tape head scanning the left most synibol of 

• 
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tl1e input.. The computation proceeds in much the same way as with the usual 

model. At an instant of time, the finite state control is in some state and 

the tape head is scanning some symbol. On the basis of this information, -
the machine, in one move, replaces the scanned syrs!bol by some, possibly 

different, sy111bol, changes the state of the finite state control, and moves 

the tape head a maximum of one square. The input is accepted if the compu

tation ever reaches a configuration with the finite state control in one of 

a designated set of accepting states. Acceptance of a language within desig

nated time and storage bom1ds is defined analogously to how they are defined 

for the usual model. 

The single tape model has the virtue of being particularly simple and, 

for some purposes, is equivalent to the usual model. It can be shown that 
' 

for any storage bound S(n) ~ n, a language is accepted by some (determinis

tic) single tape Turing machine within storage S(n) if and only if it is 

accepted by some usual Turing machine within storage S(n). The situation 

for time is a little more complicated. Forcing a procedure to work with but 

one tape can increase the run time significantly. However, the next theorem 

shows that it cannot increase it above the square of the time needed by 

the usual model. 

THEOREM 3. If a language L is accepted by a usual (deter1ninistic, off-line, 

multi-tape) Turing machine in time T(n), then Lis accepted by 

ministic) single tape Turing machine in time (T(n)) 2 , provided 

= 00 • 

some (deter

inf T(n)/n 
n ►oo 

Theorem 3 is from [Hartmanis & Stearns 1965]. A discussion of this and other 

results about single tape Turing machines can be found in [Hoocroft & Ullman -
1969]. 
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3. RANDOM ACCESS STORAGE MODELS 

Most real computers can access a large part of their memory immediately, 

that • l.S, in one machine step. In this sense, the Turing machine model is 

somewhat unlike real computers. If a Turing machine tape head is at one 

square and the machine needs to access information that is k squares away 

from the tape head location, then it takes k steps before the machine can 

start to access this in£oxmation. Since k may be very large, the time pen

alty for implementing algorithms on a Turing machine can be large. The 

multi-head models partially overcome this problem but even they have only 

' 

a fixed n,:imber of memory locations that can be accessed in one step. In order 

to obtain more realistic models 0£ computers, a n11mber of authors have in

troduced what are called ''random access machines'' (RAMs). These include 

[Shepherdson & Sturgis 1963; Elgot & Robinson 1964; Hartmanis 1971; Cook & 

Reckhow 1973]. The model most often used is the Cook-Reckhow model, and 

our discussion of RAMs is based on their paper. 

3. 1 • The Cook-Reckhow model 

The Cook-Reck.how RAM is a model that uses a prograrmning language which is 

very similar to the assembly language of many existing computers. The def

inition is as follows .. A RAM consists of an infinite sequence R
0

,R
1

,R
2

, ..• 

of registers together with a program. Each register is capable of holding 

any one integer. The program consists of a finite list of uniquely labeled 

instructions chosen from the instruction list given in Table 1 . In this 

table, a and b may be any operands of the form i, indicating the integer 

value i, or Ri, indicating the contents of register Ri; the relation COMP 

may be any of the binary relation sytrtbols <,S:,=,~,>,~, where these sy1r1bols 

have their usual interpretation .. The symbolism R[R.] is used to indicate 
J 

indirect addressing. R[Rj] stands for Ri, where i is the contents of reg-

ister Rj .. If Rj < 0 and the RAM attempts to execute an instruction involv
ing R(R.], then the computation is aborted. 

ple, 

then 

J 

The effect of each of these instructions should be evident. For exam-

R5 + 7 causes register R5 to assume the value 7; if R
3 

contains 6, 

register R7 to assume 

R1 , and so forth .. 

+ R1+3 causes 
the value x+3 where xis the value of the register 

A RAM recieves a single integer as input. A computation proceeds as 



TABLE 1. RAM INSTRUCTIONS AND EXECUTION TIMES 

function 

direct assignment 

indirect assignment 

indirect assignment 

addition 

subtraction 

conditional branch 

unconditional branch 

accept input 

instruction format 

R + b • 
l. 

R[R.] + b 
l. 

R. + R[R.] 
l. J 

R. + a+b 
l. 

R. + a-b 
J_ 

IF a COMP b THEN LABEL1 ELSE LABEL2 
GOTO LABEL 

ACCEPT 

11 

' execution time 

£ (b) 

t(R.)+Q.(b) 
1 

fl ( R. ) +Q. ( R[ R . ] ) 
J J 

fl (a) +Q. (b) 

9.. (a) +1 (b) 

!l (a)+£ (b) 

1 

1 

follows. Initially, register R
0 

contains the input and all other registers 

are set to zero. The RAM program is started at the first instruction. The 

instructions are executed in order until a conditional or unconditional 

branch is encountered. When an instruction of the form GOTO Xis encounter

ed, then control is transferred to the instruction with label X; the in

structions are then executed in order starting with the instruction la

beled X. A conditional branch is similar. If the comparison a COMP bis 

true, then the instruction is equivalent to GOTO LABEL
1

; if the comparison 

is false, then the instruction is equivalent to GOTO LABEL2 • The program 

te~minates whenever any of the following types of instructions are encoun

tered: ACCEPT, a branch that transfers control to a label which is not in 

the program, or an instruction involving a negative indirect address. The 

input is said to be accepted, if the computation on the input teiminates 

with the instruction ACCEPT. The language accepted by the RAM is the set of 

all nonnegative integers accepted by the RAM. 

We could have defined RAMs so that they compute arbitrary partial re

cursive functions. For example, we could say that the RAM has output f(x) 

for input x provided that the computation on input x terminates with the 

instruction ACCEPT and that, when it does terminate, the contents of regis

ter R0 is f(x). All our remarks would apply equally well to such RAMs with 

output. Also, we could have defined RAMs to have several integers as input 

instead of just one input; we would obtain a theory similar to the one we 

get for RAMs with a single input. However, as in the Turing machine case, 

we have, for simplicity, confined ourselves to the special case where a 

single input is simply accepted or not accepted. 

In order to compare Turing machines and RAMs, we will need to cor:i.sicler 
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the input to a RAM as a string of symbols. To make this comparison easy, 

we have assumed that the input to a RAM is a nonnegative integer. So, if we, 

identify nonnegative integers with their binary representation, then a RAM 

accepts strings over the alphabet {0,1}. (We always assume that leading 

zeros have been trimmed when we take the binary representation of an inte

ger.) Thus we can talk of a set of integers being accepted by ei ther ....... a RAM 

or a Turing machine. Similarly we can talk of a language over the syuibols 

{0,1} as being accepted by either a RAM or a Turing machine. Leading zeros 

present a minor problem. However, this problem can be accommodated in a 

number of ways. For example, when we wish to give the RAM an input w which 

is a string of zeros and ones, we can give the RAM the integer with binary 

representation 1w as input. By taking integers in some base other uhan two, 

we can similarly identify strings over any alphabet (with at least two sym

bols) with the nonnegative integers. All these details are, however, of 

minor importance. Any reasonable way of identifying RAM and Turing machine 

inputs would yield similar results. 

3 .. 2. ,~ storage 
' 

Since the instruction set for a RAM resembles the assembly language of many 

existing computers and since the registers behave rather like the memory 

locations of such computers, one might be tempted to define the storage 

used in a RAM computation as the maximum number of registers used. The next 

result indicates that there would be something peculiar about such a defi

nition. The theorem is from [Minsky 1961]. 

THEOREM 4. If A is accepted by a RAM, then A is also accepted by some other 

RAM that uses only two registers. 

An analysis of the proof of Theorem 4 indicates how the RAM model admits 

of this peculiarity. The proof uses a simulation algorithm which generates 

extremely large numbers. This presents no problem in the RAM model, since 

any register can hold an arbi trar·ily large integer. If, on the other hand, 

the simulation were to be implemented on a real computer, then it would 

take many memory locations to hold the contents of these two registers. A 

RAM register corresponds to a chunk of memory which may grow arbitrarily 

large; it does not correspond to a single memory location of a real comput

er. Thus, in counting storage, we will count the number of bits used rather 
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than the n1Jmber of registers used. 

DEFINITION. Let M be a RAM, A a set of natural n11rnbers and s (n) a function 

on the natural n11mbers. M is said to accept A within storage S (n) provided 

(i) M accepts exactly those natural n11mbers which are in A, and 

(ii) for each number win A, the following inequality is satisfied at each 

step in the computation of Mon w: 

where n is the length of win binary, mis the largest address of any 

register referenced in the computation, and length(R.) is the length 
1 

of the contents of R .• (In computing length(R.), we set length(O) = l; 
1 1 

otherwise, we take the length of the binary numeral for the contents 

of R., after deleting the sign and any leading zeros.) 
1 

Formally, the RAM model gives better resolution than the Turing machine 

model. The analogue of Theorem 1 for a RAM is not true. It can be shown 

' 

that with a slight increase in storage, a RAM can accept additional lan

guages. However, if we implement an algorithm on a RAM as described above 

and also on a RAM defined in a slightly different way, then the storage 

needs can differ by a constant multiple. For example, if we charge for stor

ing the sign of an integer, compute lengths of integers as their base ten 

representation or charge for storing register addresses, then our storage 

bounds can change by a constant multiple. So to say something can be done 

on a RAM in storage S(n), conveys little more information than to say it 

can be done in storage O(S(n)). 

Storage is a very stable concept. If we implement an algorithm on most 

any two different reasonable models of a computer, we will need about the 

same storage on both models. If the algorithm can be done in storage O(S(n)) 

on one model, it can be done in storage O(S(n)) on the other. The next 

theorem formdlizes this result when the two models are the RAM and the Tu

ring machine. The result is implicit in [Cook & Reckhow 1973]. 

THEOREM 5. Suppose S(n) ~ n. A set A is accepted by some Turing machine 

within storage S(n) if and only if A is accepted by some RAM in storage 

0 (S (n) ) • 
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If we were to provide our RAMs with a separate input tape like that of a 

Turing machine, then the hypothesis S(n) 2:': n in Theorem 5 can be dropped. I 

3 .. 3. RAM time 

The run time of a RAM program is computed using a function which assigns a 

time charge (execution time) to each instruction executed. The execution 

time of each instruction is given in Table 1, where i is a function from 

integers to positive integers. Different choices fort can, of course, give 

vastly different run times. 

DEFINITION. Let M be a RAM, A a set of natural numbers and T(n) a function 

on the natural numbers.Mis said to accept A within time T(n) using the 

t-cost criterion provided 

(i) M accepts exactly those natural numbers which are in A, and 

(ii) for each n111r,ber w in A, the computation of M on w takes time T (n) , 

where n is the length of w in binary; that is, if we s,1m up the execu

tion cost {as given in Table 1) of all instructions executed in this 

computation, then this sum is at most T {n) • 

The most common values for the function i are i(x) = 1 for all x and t(x) = 

length of x in binary. If we use the first choice for R,, the RAM is said 

to operate with the uniform cost criteria. If we use the second choice for 

1, the RAM is said to operate with the logari'thrrdc cos't criteria. The log

arithmic cost criteria usually gives a more accurate measure of what the 

run time of an algorithm would be if implemented on a real machine. The 

reason for this is that registers may hold arbitrarily large integers. Sup-

pose a prog:i::-am were implemented on a real machine with fixed word length. 

The fixed word length machine would require about c log2x storage locations 

to store the number x held by a single RAM register, where c is a constant 

depending on the word length. So it would require about c log
2

x memory acces

ses on the real machine in order to simulate one memory access to a register 

containing x. Thus the logarithmic cost criteria gives a good approximation 

to the number of memory accesses needed to implement an algorithm on a real 

machine with fixed word length. Of course, the constant c is lost but, since 

this c is machine dependent, we have no hope of capturing it in a single for

mal model. To say something is doable on a RAM, with logarithmic cost, in 

time T(n) conveys little more real information than to say it is doable in 
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time O(T(n)). 

Although the logarithmic cost criteria is a more realistic time mea- . 

sure, the uniform cost criteria is also widely used. When a program pro

duces only register values which are relatively small, the uniform cost 

criteria is about as accurate as the logarithmic cost criteria and can safe

ly be taken as an approximate measure of the time needed to implement the 

program on a real machine. Even when numbers are allowed to grow very large, 

the uniform cost criteria still gives a crude approximation to the cost of 

implementing the program on a real machine. The following theorems show 

the relationship between the various time measures discussed so far. 

THEOREM 6. Suppose T(n) > n. 

(1) If A is accepted by some RAM using the logarithmic cost criteria in 

time T(n), then A is accepted by the same RAM using the uniform cost 

criteria within time T(n). 

(2) If A is accepted by some RAM using the uniform cost criteria in time 

T(n), then A is accepted by some RAM using the logarithmic cost cri

in time 0( (T(n)) 2 ). 

THEOREM 7. Suppose T(n) > n. 

(1) If A is accepted by some RAM using the logarithmic cost criteria in 

time T(n), then A is accepted by some Turing machine within time 

(T(n)) 2 • 

(2) If A is accepted by some Turing machine in time T(n), then A is accept

ed by some RAM using the logarithmic cost criteria within time 

THEOREM 8. Suppose T(n) > n. 

(1} If A is accepted by some RAM using the uniform cost criteria in time 

T(n), then A is accepted by some Turing machine in time (T(n)) 3 • 

(2} If A is accepted by some Turing machine in time T(n), then A is accept

ed by some RAM using the uniform cost criteria in time O(T(n)). 

Theorem 6 is implicit in [Hartmanis 1971]. Theorems 7 and 8 are from [Cook 

& Reckhow 1973]. 
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3.4. RAM-ALGOL 

As with any assembly language, RAM programs are often difficult to write 

and even more difficult to read. So it is desirable to have a high level 

language to state programs in. One can safely use a small, but still rich, 

subset of ALGOL which is easier to read than RAM programs and which allows 

for easy estimations of the time and storage needed to implement programs 

on a RAM. Cook and Reckhow describe a language called RAM-ALGOL which is 

a subset of ALGOL 60. The main differences between RAM-ALGOL and ALGOL 60 

are that in RAM-ALGOL: 

1. declarations are superfluous; 

2. 

3. 

4. 

real n,1mbers are eliminated; 

the only arithmetic operations are+ and-; 

procedures and switches are not allowed to be recursive; 

5. arrays are one-dimensional and infinite. 

Time and storage for RAM-ALGOL are computed in much the same way that they 

' 

are computed for RAM programs. The storage 

ALGOL program is lxlength(X), where length 

used in a computation of a RAM

is defined as before and X rang-
• 

es over all variables and array elements referenced in the computation. 

RAM-ALGOL run times are also defined by analogy to RAM run times. For exam

ple, the execution time for the RAM-ALGOL statement A[Z] := Y+B[X] is 

i(Z)+i(Y)+i(X)+£(B[X]). As with RAM programs, 1 is usually taken to be 

either identically one or defined by !l(x) = length(x). So we have both a 

unifo:r111 and a logarithmic cost criteria for RAM-ALGOL. RAM-ALGOL time and 

storage corresponds very closely to RAM time and storage. If a RAM-ALGOL 

program runs in storage S{n), then it can be converted to an ordinary RAM 

program that runs in storage o (S (n)). If a RAM-ALGOL program runs in J.oga

ri thmic (respectively uniform) cost time T(n), then it can be converted to 

an ordinary RAM program that runs in logarithmic (respectively uniform) cost 

O(T(n)). So we can safely write in RAM-ALGOL knowing that all of our results 

about RAM programs apply equally well to our RAM-ALGOL programs. 

We can make RAM-ALGOL even richer by taking a still larger subset of 

ALGOL 60. However, it is difficult to say exactly how much additional struc

ture we can safely take and still accurately measure time and storage. For 

example, it is easy to handle simple instances of recursive procedures. How

ever, for nested recursion and co-routines, it is frequently not clear what 

the time and storage requirements of the program are. 

' j' 
l
ra 
' t. 
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3.5. Stored program machines 

' 

The RAM model is a fixed program machine. The program is separated from mem

ory and may not modify itself. One can define RAMs in such a way that the 

program is stored in memory and may modify itself just as it can modify any 

other memory locations. Such RAMs are usually called "random access stored 

program machines" or RASPs. Most existing computers do allow programs to 

modify themselves and this feature can sometimes save some time and memory. 

However, the amount of time and storage saved is not significant, within 

the bounds of accuracy we are using. If a set A is accepted by a RASP with

in resource bound R(n), then A is accepted by some RAM within resource bound 

O(R(n)). The resource bound may be any of the ones we have discussed: stor

age, logarithmic cost time or uniform cost time. For a discussion of RASPs, 

see [Hartmanis 1971i Cook & Reckhow 1973; Aho et al. 1974]. 

3.6. The class P 

As we have seen, Turing machine and RAM storage are equivalent up to growth 

rate. So when discussing storage it matters little which model we use. The 

situation for time is different. The usual Turing machine model, the single 

tape Turing machine, the uniform cost RAM model and the logarithmic cost 

RAM model can each give a significantly different run time when we implement 

the same informally stated algorithm on the various models. However, all 

the run times will be polynomially related. In particular, if we devise an 

algorithm and show that it runs in polynomial time on one of these models, 
• 

then we know that it can be made to run in polynomial time on any of the 

other models as well. Thus, if we are only interested in whether or not an 

algorithm runs in polynomial time, then it does not matter which of the 

above discussed models we use. With this in mind, we define P to be the 

class of all languages accepted in polynomial time by a usual Turing ma

chine (equivalently single tape Turing machine, equivalently uniform cost 

RAM or RASP or RAM-ALGOL program, equivalently logarithmic cost RAM or RASP 

or RAM-ALGOL program). The class P and its invariance under change of 

machine model were first discussed in [Cobham 1964]. Lately, it has re

ceived much attention since it is considered an approximation to the class 

of practically doable problems . 
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4. NONDETERMINISTIC MODELS 
I 

All the models discussed so far are what is called ''deterministic''. That is, 

at each point in a computation there is a unique next step (or the computa

tion has ended). All real computers are deterministic. This is, therefore, 

a very reasonable assumption to build into the definition of a model. There 
• 

are, however, some very good reasons for considering models in which this 

assumption is relaxed to allow finitely many possible next steps. Models in 

which a machine configuration may in one step go to finitely many next con

figurations (as opposed to just one) are called ''nondete:rministic 11 models. 

(Whenever we do not explicitly state whether a model is deterministic or 

nondete.t.rnlnistic, we are assuming that it is dete:r:ministic. ) The easiest 

nondeterministic model to describe is the nondeteiministic RAM and so we 

will consider it first. 

4.1. Nondete:r:ministic RAMs 

A nondeterministic RAM is defined exactly the same as a RAM except that we 

do not req1Ji.re that statements have unique labels. Two or more statements 

may have the same label. A computation of a nondetex111inistic RAM proceeds 

exactly as it does for an ordinary (deter1nj.nistic) RAM until it encounters 

a transfer (conditional or unconditional branch) to a label L such that two 

or more statements are labeled L. Say there are m ~ 2 statements labeled L. 

At this point, the machine replicates itself and produces m identical copies 

of itself. Each copy transfers to a different one of them statements la

beled Land them copies compute in parallel. Some of these m copies may 

later encounter a transfer to a label which labels two or more statements. 

Those copies then replicate themselves to the needed number and all the 

copies compute in parallel. This process continues with machines replicat

ing themselves whenever they encounter a transfer to a label which labels 

two or more statements. The input is said to be accepted if at least one 

of these machines which are computing in parallel reaches an ACCEPT instruc

tion. For example, consider the following nondetex.mlnistic RAM program .. 

L1: R1 + 1 

L2: GOTO L3 

L3: R1 + R1+1 

L3: R1 + R1+o 

• 

-

t 
' 



L4: GOTO LS 

LS: 

LS: 

L6: 

R
1 

+ R
1
+1 

R
1 

+ R
1
+o 

IF RO= R1 
L7: ACCEPT 

19 

THEN L7 ELSE LS 

Recall that the input is in 

test if R
0 

contains 1, 2 

accepts the set {1,2,3}. 

or 

R0 • The above program is a rather poor way to 

3. So the above nondeterministic RAM program 

Say the input were 2. Initially, R0 = 2 and all 

other registers contain zero. The instructions executed by the parallel 

machines are shown in Figure 2. The input is accepted since at least one 

.___ _______ ....,1 

L2: GOTO L3 

L4: GOTO L5 

, L6: .•• 

I 

transfer to 
LS aborts 
computation ,...._ _____ _ 

Figure 2 

L6: ••• L6: .•• 

L7: ACCEPT L7: ACCEPT 

L4: GOTO LS 

L6: ... 

... , ______ ...._ __ ......, 
transfer to 
LB aborts 
computation 

,1.....--_____ _,,. 

; 
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of the parallel computations leads to an ACCEPT instruction. The transfer 

to label L8 ends the computation in a nonaccepting mode. 

We can think of the branching tree in Figure 2 or the replicating 

machines as a kind of guessing procedure. If a machine is faced with a 

transfer to label Land there is more than one statement labeled L, then 

it guesses which one to execute next. The input is said to be accepted if 

there is some sequence of guesses that leads to an ACCEPT instruction. The 

above program has four possible sequences of guesses represented by the 

four paths from the root to the leaves of the tree. The program can be 

stated informally as follows. 

1 • 

2 .. 

Guess at an integer R1 such that 1 ~ R1 ~ 3. 

Test: Does R1 = R
0

? 

Yes: ACCEPT. 

No: Abort the computation. 

• 

( 

Notice that if a nondeterministic machine makes a series of guesses that 

does not lead to an ACCEPT instruction, then this does not mean that the 

input is in any sense rejected. In fact, no infor:1nation is gained, since 

another series of guesses might or might not lead to an ACCEPT instruction. 

This is the reason we confined our attention to partial algorithms that 

accept the appropriate inputs but need not reject the rest of the inputs. 

It is cumbersome to have to write complete nondeter1n.Lnistic RAM pro

grams. However, we can often write very easily stated and understood infor

mal, nondeterrninistic RAM programs.. For example, consider the following in

formal, nondeterro:i nistic program to accept the composite n11mbers. As usual, 

the input is in R
0

• 

1. Guess at a number Rl such that 1 < Rl < RO. 

2 .. Test: Does Rl divide R ? o· 
Yes: ACCEPT .. 

No: Abort the computation. 

• 

If a set A is accepted by a nondetenninistic RAM program then we can always 

produce a deterministic program to accept A. So, in some sense, nondeter

ministic programs give us no additional computing power. However, they are 

often easier to state and often run in much less time or much less storage 

than the best known deterministic programs to perform the same task. so one 

• • , 

' 1 
·' , 

' ,' 
t :· , , 

J . 
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goal of research in computer science has been to find algorithms that con

vert efficient nondeterministic programs into efficient deterministic pro- , 

grams_ With such conversion algorithms at our disposal, we can write effi

cient nondete1ministic programs and know that they can be converted to 

efficient deterministic programs which can then be implemented on real ma

chines. As we shall see, sometimes there are such efficient conversion algo

rithms and sometimes none seem possible. 

4.2. Nondeterministic time and storage 

As noted above, a nondeterministic RAM can be viewed as a type of guessing 

machine. The input is accepted if there is a possible series of guesses that 

leads to an ACCEPT instruction. Each series of guesses produces a computa

tion much like the computation of an ordinary (dete:r.111i nistic) RAM. Each 

series of guesses causes the RAM to execute a sequence of instructions that 

changes the contents of its registers. Just as with ordinary (deterministic) 

RAMs, each such computation uses some amount of storage and depending on 

which criteria we use, uniform or logarithmic, some amount of time. 

DEFINITION. Let M be a nondeter·rninistic RAM, let A be a set of natural num

bers, and let T (n) and S (n) be functions on the natural n11mhers. 

(1) M accepts A in time T(n) with the uniform (respectively logarithmic) 

cost criteria provided that 

(i) M accepts exactly those inputs which are in A, and 

(ii) for each x EA, there is some computation (sequence of guesses) 

of Mon input x that leads to an ACCEPT instruction and uses at 

most T(n) time units using the unifoLrn (respectively logarithmic) 

cost criteria; here n is the length of x. 

(2) M accepcs A in scorage S(n) provided that 

(i) M accepts exactly those inputs which are in A, and 

(ii) for each x EA, there is some computation of Mon input x that 

leads to an ACCEPT instruction and is such that the following 

inequality is satisfied at each step in the computation: 

where n is the length of x in binary, mis the largest address of 

any register referenced in the computation, and 

length of the contents of R. written in binary. 
l. 

length(R.) is the 
l.. 
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Now that we have well-defined notions of nondeterministic time and storage, 

we can point out examples of where a nondeterministic procedure 
• is more 

efficient than the obvious dete:rministic procedure for the same task. Con

sider the previously described procedure to accept the composite numbers. 

For a given input x it need perform only one division. The obvious deter

ministic algorithm would require about h divisions. Other papers in this 

tract give numerous exa.mples of time efficient nondete:r:rr1i nistic procedures -

4. 3. Nondete1:rninistic Turing machines 

The notion of nondeterrr,J nism for Turing machines is similar to what it is 

for RAMs. A nondeterministic Turing machine is defined exactly the same 
• 

' 

way as a usual (deterministic) Turing machine except that the finite state 

control is allowed to be nondetermi.nistic. That is, for any machine config

uration, the Turing machine description specifies a finite nt1mber of ac

tions each of which deter.mines a different next configuration. Each of 

these finitely many actions are just like a single move of a usual Turing 

machine as described in Section 2 .. 1 • When a nondete:tnij nistic Turing machine 

has more than one possible next action, we will think of it.as guessing 

which action to follow. Each series of guesses produces a computation which 

is {aside from the guessing) just like a computation of a usual Turing ma

chine. The start configuration is defined the same as it is for usual Turing 

machines. A nondet~rministic Turing machine is said to accept an input w 

provided there is some sequence of guesses such that the computation on 

input w produced by these guesses causes the finite state control to enter 

one of its accepting states. We can also think of a nondeterministic Turing 

machine as a kind of parallel machine. Instead of guessing, it replicates 

and produces enough copies of itself to follow all possible next steps. 

However, the guessing characterization will prove more useful. A more or 

less formal definition of time and storage measures follows. More formal 

definitions of these concepts can be found in [Hopcroft & Ullman 1969] . 

• 

DEFINITION. Let M be a nondeterministic Turing machine, let A be a set of 

strings over the input alphabet of M, and let both T(n) and S(n) be func

tions on the natural numbers.Mis said to accept A within time T(n) (re

spectively storage S{n)) provided that 

(i) M accepts exactly those input strings which are in A, and 

(ii) for each string win A, there is at least one computation (sequence 
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of guesses) of Mon input w such that this computation both accepts 

wand takes T(n) or fewer steps (respectively both accepts wand uses, 

S(n) or fewer storage tape squares); here n is the length of w. 

4. 4. Re,l_ation~hip:9 betwe~?--.. di~_ferE:nt nondeterministic models 
= • 4 a: • = r 

All of the results stated above for deterministic models carry over if we 

ass11me that the models are nondetel'.ministic. Theorems 1 through 8 remain 

true if we replace every occurrence of ''Turing machine'' by 1'nondete1:1ninistic 

Turing machine'' and replace every occurrence of ''RAM'' by ''nondeterministic 

RAM 11
• As long as all models are nondeterministic, the same simulation algo

rithms work. However, when one model is dete.crrij nistic and one is nondeter

mj nistic, the situation appears to be quite different. A nondeterministic 

machine can obviously simulate a dete:rrninistic machine of the same variety 

with no loss of efficiency. This is trivially true, since a deterministic 

machine is just a special type of nondeterministic machine. It is the spe

cial case where the finite set of next moves always has cardinality at most 

one. How efficiently a deterministic machine can simulate a nondeterministic 

machine is a major area of current research in theoretical computer science. 

4.5. Deterministic simulation of nondeterministic machines 

As we already noted, every nondeterministic machine can be simulated by a 

deterministic machine. All the deterministic machine need do is to system

atically try all possible sequences of guesses. However, if this is done 

in the most obvious way, the time and storage costs can be extremely high. 

The obvious algorithm can simulate nondetermlnistic storage S(n) in deter

ministic storage ks (n} and can simulate nondete:r:rri:i nistic time T (n) in 
T (n) 

deterministic time k • Herek is a constant depending on the nondeter-

ministic procedure that is being simulated. With a more efficient simula

tion we can do much better than this for the case of storage. The result 

is from [Savitch 1970]. 

THEOREM 9. If A is accepted by a nondeterministic Turing machine in storage 

S(n), then we can find a (deterministic) Turing machine that accepts A with-

The analogue of Theorem 9 holds for RAMs, or any other reasonable model, 
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and not just for Turing machines. Of course with RAMs, it does not make 

sense to talk of storage S(n) unless S(n} ~ n. Also, since we do not have 

a technique to shrink RAM storage by a constant multiple, the bound of 

(S(n)) 2 changes to O((S(n)) 2) in the case of RAMs. 

' 

The best known algorithm for simulating nondeterministic time by deter-

ministic time is the obvious one discussed above. With that algorithm, a 

deterministic machine needs time exponential in T(n) in order to simulate 

a T(n) time bounded nondeterministic program. Some improvement on the ob

vious algorithm may be possible but the commonly accepted conjecture is 

that no major improvement can be obtained. The conjecture is usually phrased 

in termB of polynomial time bounded programs. By analogy to the class P, 
we define NP to be the class of all languages accepted in nondeteLministic 

polynomial time. As with P, it does not matter which of the previously dis

cussed machine models we use; they all yield the same class NP .. Trivially, 

Pis a subclass of NP. The commonly accepted conjecture is that Pf NP. 
This conjecture has received much attention in recent years, since many 

important problems are known to be in the class NP, and it would be very 

useful to have deterx,ij nistic polynomial time algorithms for these problems. 

Work by Cook [Cook 1971], Karp [Karp 1972, 1975A] and others has shown that 

if the conjecture P ~ NP is true, then many practically important problems 

lie outside the class P and so probably do not admit of practical.computer 

program solutions. These problems are among the so-called ''NP-complete prob

lems''. A language A is said to be NP-complete if (i) A is in NP, and (ii) 

A in P implies P =NP.Some of the other papers in this tract [Lenstra & 

Rinnooy Kan 1978B; Graham et al. 1978] discuss NP-complete problems in more 

detail. 
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5. MULTIPLICATION RAMS 

' 

Our definition of RAMs allowed only addition and subtraction as operations 

but did not allow multiplication or any other arithmetic operations. Most 

of our analysis would remain valid if we allowed our RAMs to have multipli

cation and any other reasonably simple operations. All our results on stor

age would remain valid for a RAM with such additional operations. The situ

ation for time is a little more complicated. If we use the logarithmic cost 

criteria, then the character of our results is not changed. In some cases, 

the run time of the simulation algorithm can increase by a square (or other 

relatively small power) but all models which were polynomially related 

using our original definition remain polynomially related if we allow our 

RAMs to have these additional operations. In particular, we could define 

P and NP using such machines and we would obtain the same two classes as 

we did for RAMs with only addition and subtraction. If we use the uniform 

cost criteria, the situation appears to be quite different. Recent work by 

Hartmanis and Simon has shown that, under the unifoxm cost criteria, a 

small change in the arithmetic operations allowed in a RAM model appears 

to change its computing efficiency significantly. 

Define a multiplication RAM (MRAM) to be just like a RAM except that 

we allow the following instructions in addition to those in Table 1: 

R. + a*b and R. + a BOOL b. Here a*b denotes multiplication and BOOL may be 
1. 1. 

any bitwise Boolean operation. (To perform BOOL we consider integers to be 

strings of binary bits, drop the sign and drop leading zeros.) Both instruc

tions have execution time i(a)+i(b). As with RAMs, MRAMs come in both deter

ministic and nondeterministic models. The next theorem is from [Hartmanis 

& Simon 1974]. 

THEOREM 10. Assume the uniform cost criteria for MRAMs. 

(1) A is accepted by some nondeterministic MRAM in polynomial time if and 

only if A is accepted by some deterministic MRAM in polynomial time. 

(2) A is accepted by some Turing machine in polynomial storage if and only 

if A is accepted by some MRAM in polynomial time. 

Notice that in (2) we do not mention whether or not the machines are deter

ministic. This is because, by Theorem 9 and part (1), it does not matter: 

detezministic and nondeterministic polynomial storage are equivalent; 

deterministic and nondeterministic polynomial time are equivalent for MRAMs 
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with the uniform cost criteria. 

As already mentioned, the common conjecture is that P ~ NP, where P 
and NP are defined using any of the models except the MRAM under the uni

form cost criteria. But, by Theorem 10, MRAMs can accept all languages in 

NP and can do so in deterministic polynomial time. Thus it appears that, 

under the polynomial time restriction, deteLminstic MRAMs are more power

ful than deterministic RAMs. Since an MRAM looks more like existing ma

chines than a RAM does, this result needs to be reconciled with our other 

remarks. If MRAMs are more powerful than the other models and are also more 

realistic, then we should happily use the MRAM model and not the other 

models. However, an analysis of the proof of the Theorem 10 would show that 

this is not always a wise course of action. The simulation algorithm used 

to prove Theorem 10 generates very large numbers and, since the uniform 

cost criteria is ass1Jmed, these numbers are multiplied together in one ma

chine step. If the algorithm were implemented on a real machine, these 

multiplications would take many machine steps, since these extremely large 

n1Jmbers must be multiplied with complete precision. Thus, al though Theorem 

10 looks like it gives a good simulation algorithm, the algorithm would not 

, 

perform efficiently in practice. In order to avoid the danger of writing 

seemingly efficient algorithms that cannot be efficiently implemented on 

real machines, we should use the logarithmic cost criteria when using MRAMs, 

or else use one of the other models. Theorem 10 does not appear to be true 

for MR.A.Ms with the logarithmic cost criteria. MRAMs with the logarithmic 

cost criteria have run times which are polynomially related to the run times 

of the other models we have discussed. 

Theorem 10 does not appear to give us a practically efficient simula

tion algorithm. It is, however, one of the important recent results in the 

theory of formal models for computers. It gives us an al te:r:11ate, surprising 

and useful characterization of the class of languages accepted in poly

nomial space. It also provides us with a dramatic example of the importance 

of using the logarithmic cost criteria. Until the result of Hartmanis and 

Simon, there were really no results which so dramatically separated the 

logarithmic and uniforin cost cri terias.. Some very nice earlier work of 

Pratt, Stockmeyer and Rabin [Pratt et al. 1974] gave similar examples of 

powerful instruction sets for RAMs. Their model was not as conspicuously 

like existing machines as the Hartmanis-Simon MRAM model, but the two models 

are similar in character. 
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6. PARALLEL PROCESSING RAMS 

' 

With the recent rapid advance in hardware technology, multiprocessing comput

er systems are growing in importance and availability. Some highly parallel 

machines, such as the ILLIAC IV and CDC STAR-100, are already available. When 

very highly parallel systems become generally available, parallel processors 

may come to be thought of as a computing resource in much the same way that 

storage is now. Recently, a number of formal models for parallel processing 

computers have been introduced. For example, models have been proposed in 

[Chandra & Stockmeyer 1976; Kozen 1976; Savitch & Stimson 1976, 1978]. The 

proofs of all our results can be found in [Savitch & Stimson 1978]. 

• 

6.1. The k-PRAM model 

In order to obtain a model for parallel processing of algorithms, we extend 

the RAM model of Cook and Reckhow to allow parallel recursive calls. The 

parallel model obtained in this way is called a k-offspring parallel random 

access machine (k-PRAM). Let k be a positive integer. A k-PRAM consists of 

a finite program, a potentially infinite supply of processors and a posi

tive integer u. The integer u is the number of parameters that are passed 

when a recursive call is made or returned. As with an ordinary RAM, each 

k-PRAM processor has a pointer into the program telling it which instruction 

to execute next; all processors use the same program. Each processor has a 

memory which consists of an infinite sequence of registers R0 ,R1 ,R2 , •.• , 

each of which is capable of holding any integer. Each processor also has 

available to it k other processors (its offspring) which it can call. Each 

processor may have up to k of its offspring computing in parallel with it. 

These k processors may, in turn, call up to k offspring each, and so forth. 

When an offspring is done with its computation, it returns its response to 

its parent by way of a special bank of registers called channels. That off

spring is then available for another recursive call. Channel i, 1 ~ t ~ k, 

is used by a processor to receive parameters passed to it by its 2-th off

spring. Channel i is a bank of u read-only 

which is changed only as a result of offspring t completing a computation. 

Therefore, each channel register is a read-only register to the parent, but 
• • 

the registers in channel i are modified whenever offspring 2 returns from a 

recursive call. 

The program for a PRAM is a sequence of (optionally) labeled instruc-
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1 • pn1\ u m a e uni' que, the program is said to tions.. If the labe s in a l.VU·1 progra r 

be deterministic; otherwise, 

tions for a PRAM program are 

it is said to be nonder.ernzinistic. The instruc

drawn from the instruction set given in Table 

2 Tabl 2 t d h re integers such that 1 ~ i ~ k, 1 ~ h ~ u; a,b,al, . In e , an a 

a
2

, •.. ,au are operands 

(1) i, indicating the 

of the fo.r.m 

integer value i, or 

(2) 

(3) 

indicating the contents of register R., or 
i 

indicating the contents of channel register 

The relation COMP in Table 2 may be any of the binary relation syi11hols 

<,$,=,~,>,,, where these symbols have their usual interpretation over the 

integers. In what follows, we will consider each instruction to have an 

execution time of one time unit. 

Instructions 1 through 7 are exactly the same as their counterparts 

for ordinary RAMs. Instruction 8 is the same as instruction 1, except 

that in 8 it is a channel register that is accessed. Instruction 8 changes 

the value of R. to the value of channel 
i 

bank. Instruction 9 allows a processor (the parent) to initiate its i-th 

offspring, 1 $ t $ k. If that offpsring is currently active, the parent is 

blocked at that instruction until the offspring returns. When the call 

instruction is executed, the values of a 1 ,a
2

, ••• ,au are copied into the 

t-th offspring's registers R
0

,R
1

, ..• ,Ru-l' respectively. The parent then 

continues with its computation and, in parallel, the offspring begins exe-

cuting the program starting with the first instruction. If the parent at

or recall offspring t while it is 

still active, then the parent is blocked at that point in the computation 

until offspring 1 completes its computation and returns. Instruction 10 

allows an offspring to return an answer to its parent. The operation of 

this instruction is similar to that of the call instruction, except that 

information is passed back up to the parent. When offspring i executes 

RETURN (a1,a2 , ••• ,a ), the values of a 1 ,a2 , •.. ,a are loaded into the par-
u i i £ u 

ent's channel registers c1 ,c2 , ••• ,cu, respectively. The offspring and all 

its descendants are then removed from the comoutation and are available -
for additional calls. Instruction 11 is similar to instruction 6. If off

spring tis not active at the time instruction 11 is executed, then control 

transfers to the instruction labeled by LABEL 1 • If offspring t is active, 

then the instruction 

said to be active if 

call. 

labeled by LABEL2 is executed next. An offspring 

it has been called but has not yet returned from that 



TABLE 2. PRAM INSTRUCTIONS 

n1Jmber 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

function 

direct assignment 

indirect assignment 

indirect assignment 

addition 

subtraction 

conditional branch 

unconditional branch 

channel access 

call to offspring 

return to parent 

£-return-test branch 
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instruction format 

R. +b 
1. 

R[R.] +b 
l. 

R. R[R.] 
1. J 

R. + a+b 
1. 

R. + a-b 
1. 

IF a COMP b THEN LABEL
1 

ELSE LABEL
2 

GOTO 

RETURN (a1 ,a2 , ..• ,au) 

IF Jl RETURNED THEN I.ABEL! ELSE LABEL
2 

The computation of a PRAM proceeds as follows. Initially, there is a 

single processor active. The input is in register R0 of this processor and 

all other registers are set to zero. The PRAM computes in much the same 

way as an ordinary RAM until a call instruction is executed. When this 

occurs, an offspring processor is activated. The call parameters are copied 

into the registers of the offspring as outlined in the description of the 

call instruction above. All of the offspring's other registers are set to 

zero. The offspring then starts computing. Both processors remain active 

and compute in parallel (and, in fact, each processor may make additional 

calls} until one executes a return instruction. When this occurs, the re

turn parameters are loaded into the channel registers corresponding to the 

returning offspring·and this offspring and all of its descendants are re

moved from the computation. 

An integer xis said to be accepted if there is a computation of the 

k-PAAM on input x such that the computation texminates with the top level 

processor executing a return instruction. The set accepted by a k-PRAM is 

the set of all integers accepted by the k-PRAM. A k-PRAM Pis said to ac

cept the set A of integers in time bound T(n) provided that P accepts A and 

that, for every x in A, there is an accepting computation of Pon x that 

takes at most T(n) steps, where n is the length of x as a binary numeral. 

It will be convenient (and sometimes necessary) to assume that our time 

bounds satisfy some minimum niceness conditions. We say that a function f(n) 

is T(n) time countable provided there is a deterministic ordinary RAM which, 
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given any input x of length n, will construct the value f(n) in a specified 

one of its registers within T(n) time units. A function is O(T(n)) time 

countable if it is cT(n) time countable for some c. In what follows we will 

assume that every time bound function T{n) is O(T(n)) time countable. We 

also assume that all time bound functions T(n) are such that T(n) ~ n, for 

all n. Most all common time bounds T(n) are O(T(n)) time countable. 

We have observed that a nondeterministic machine can be viewed as a kind 

of parallel processing machine. Therefore, it should not be suprising to 

find out that parallelism can be used to eliminate nondetern1lnism and to 

I 

do it for only a small time penalty. The next result makes the point formal. 

THEOREM 11. If A is accepted by some nondeterministic k-PRAM in time T(n), 

then we can find a deterministic k-PRAM that accepts A in time O((T(n)) 4 ), 

provided k ~ 2. 

Theorem 11 says that if we are only interested in getting a polynomial time 

bounded algorithm and if we have a parallel processing computer available, 

then it does not matter whether our programs are deterministic or nondeter

ministic. A time efficient nondeterministic program can always be converted 

to a time efficient deterministic program with the aid of parallelism. 

We have essentially used the uniforrr1 cost criteria in computing run 

times for k-PRAMs. Since the logarithmic cost criteria is more realistic, 

it is natural to ask if Theorem 11 depends heavily on the use of the uni

foxm cost criteria. It does not. If we use a logarithmic cost criteria we 

do not appear to get a bound of O{(T(n)) 4 ). However, we still do get a 

bound which is a polynomial in T(n). This should not be suprising, since 

we have only allowed addition and subtraction as arithmetic operations .. 

As we already noted, if we restrict RAMs to having only these operations, 

then logarithmic and unifot111 cost time are polynomially related. 

Theorem 11 might seem to hint that parallelism and nondeterminism are 

equivalent. They are not. Nondeterminism is a very special kind of paral

lelism and parallelism, in full generality, appears to be more powerful 

than nondeterminism. The next theorem shows that with just a small amount 

of additional time, a deterministic parallel machine can do more than a 

nondeter·ministic serial machine .. 
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THEOREM 12. There are sets that can be accepted by O(T
1 

(n)) time bounded 

deterministic 2-PRAMs, but cannot be accepted by any O(T
2

(n)) time bounded, 

nondeterministic RAM, 

either the uniform of 

provided sup T2 (n)/T (n) = O. (Here we may use 
n-+oo 1 

the logarithmic cost criteria for RAMs.) 

6.3. C9unting processors 
' 

Theorem 11 indicates that if we only consider time bounds, then parallel 

machines are very powerful. This power does come at some cost though. In 

order to get very fast parallel algorithms we use a large number of proces

sors. Our next result says that if a parallel processor is required to run 

in polynomial time and required to use only a polynomial number of proces

sors, then it is no more powerful than a serial processor which runs in 

polynomial time. To make this more precise, let us say that a k-PRAM is 

U{n) processor bounded provided that in any computation on an input of 

length n, no more than U(n) processors are ever active at the same time. 

THEOREM 13. A deterministic (respectively nondeterministic) k-PRAM program 
• 

which is simultaneously T(n) time bounded and U(n) processor bounded, can 

be simulated by a dete1.ll2inistic (respectively nondeterministic) RAM using 

the uniforTLz cost:. criteria in time o (U (n) T (n) ) • 

6.4. Time storage trade-off 

When studying MRAMs, we saw that for some powerful types of machines poly

nomial time and polynomial storage are equivalent. We can expand this 

equivalence to include k-PRAMs as well as MRAMs and obtain the following. 

THEOREM 14. The following statements are equivalent. 

(1) A is accepted by a nondeterministic polynomial time bounded k-PRAM. 

(2) A is accepted by a deterministic polynomial time bounded k-PRAM. 

(3) · A is accepted by a nondeterministic polynomial storage bounded RAM. 

(4) A is accepted by a deterministic polynomial storage bounded RAM. 

(5) A is accepted by a nondeterministic polynomial time bounded MRAM 

under the uniform cost criteria. 

(6) A is accepted by a deterministic polynomial time bounded MRAM under 

the uniform cost criteria. 
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7. SUMMARY 

, 

We have seen that if a given info.r·mally stated algorithm is implemented on 

two or more different fo.r·1nal models for a computer then the different models 

can yield different, and sometimes vastly different, run times and storage 

consumption. There are, however, a number of things that remain invariant 

under change of machine model. Storage is a very stable concept. If we only 

measure storage up to growth rate, then it does not matter which one of the 
' 

various models considered we use. As long as all models are deterministic 

or all models are nondeterministic, they all will have the sa.me storage 

consumption. Time, on the other hand, is much less stable. However, if we 

only measure time up to a polynomial relation, then most models are equiva

lent. In this case, the models seem to fall into two classes. One class 

contains parallel processing models and the MRAM with the uniform cost cri

teria. The other class contains all the remaining models. The two classes 

can then be subdivided into deterininistic and nondeterministic models. If 

we consider only polynomial time bounded programs, then all models in a sub

class are equivalent. The relationships between the subclasses can be summa

rized as follows. Let NPparallel, Pparallel, NP and P denote the class of 

sets accepted in polynomial time by nondete1.111inistic parallel models, deter

ministic parallel models, nondeteLministic serial models and deterministic 

serial models respectively. (Consider the MRAM with the unifoxm cost crite

ria to be a parallel model.) Then NPparallel = Pparallel 2 NP 2 P and the 

commonly accepted conjecture is that the last two inclusions are strict. 
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ABSTRACT 

A nu..mber of data structures for set manipulation is discussed. We illustrate 

how set manipulation is involved in the design of algorithms and in which 

manner the efficiency of an algorithm may be hurted by an ill-chosen repre

sentation for the sets dealt with. The choice of a representation mainly 

depends on the instructions one needs to execute and on the amount of stor

age available. The paper concludes with a new description of a linear space 

data structure, supporting the full repertoire of single-set operations with 

sublogarithroic processing time. 
• 

• 
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1. INTRODUCTION 

' 

Current day mathematics is founded on a set theoretical base. The language 

of set theory has established itself even in the curricula of primary and 

secondary schools. Consequently set operations such as union and intersection 

are household terms and generally considered trivial and noninteresting. 

It is a notable fact that the set concept hardly plays any role in the 

practice of programming. Most programming languages (PASCAL being an excep

tion) have no implemented set feature. The available data structures are 

arrays, records, files and pointers, and sets have to be simulated in soft

ware. 

On closer inspection there appears to be an explanation for this phe

nomenon. The choice how to implement sets using hardware features such as 

words, bits and addresses heavily depends on the operations one likes to 

execute, on the presence or absence of an ordering and on whether one or 

more sets have to be dealt with simultaneously. Time and space restrictions 

further limit the possible methods of set representation. 

In the present paper we demonstrate that the efficiency of algorithms 
• 

may suffer from an ill-chosen representation of the data used by means of 

an example concerning graph representations. We discuss a number of data 

structures for set manipulation, indicating for which operations they are 

particularly appropriate. 
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2. SETS AND INSTRUCTIONS 

' 

Data in everyday computer practice are usually ordered collections of items 

such as real numbers, integers, truth values, alphanumeric strings or refer

ences to other pieces of data. These composite objects can be implemented 

using programming constructs like the record type of PASCAL or the structured 

modes of ALGOL 68. In general, a special field is used for data identifica

tion. This field, which is called the primary key, has either an integral 

or a string value; in both cases the primary key values are totally ordered. 

Depending on whether data items are of constant or variable size, the primary 

key can be used as the address for the data item or as the address for a 

pointer to the data item. In many cases data can be manipulated by manipula

ting their primary keys. 

In turns out that, in manipulating sets of records, we can assume by 

way of approximation that we are dealing with sets of primary keys, i.e., 

totally ordered sets of nl1rnbers or strings. Moreover there will be a fixed 

a priori upper bound for the integer value or string length, implying that 

we are dealing with subsets of a large but finite universe U. We denote the 

size of the universe by u; thus we may assume that U = {1, ••. ,u} or U = 
{o, ... ,u-1}. 

The choice of a data structure is not dictated by the size of the uni

verse alone. Another important factor is the expected size of the subsets 

one has to deal with; this value is denoted by n. Finally there are external 

restrictions imposed by the limited amount of available storage. These re

strictions enforce that at most N elements can be dealt with simultaneously. 

Clearly n:;; u; we also assume that n:;; N since otherwise our task is hopeless 

right from the beginning. 

TABLE 1. OPERATIONS FOR SET MANIPULATION 

no order order 

single set INSERT(i) MIN MAX 

DELETE(i) EXTRACT MIN EXTRACT MAX 

MEMBER(i) ALL MIN(i) ALL MAX(i) 

CARD PREDECESSOR(i) SUCCESSOR{i) 

EMPTY 

more sets UNION(A,B,C) SPLIT(a,S,T) 

FIND(i) CONCATENATE(A,B,C) 
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In Table 1 we indicate the basic instructions we are going to discuss. 

The table is divided according to whether a single set or more sets are in-, 

valved and whether the order on the universe U is involved in the operation 

or not. 

In the above table lower case letters denote elements in u wheras upper 

case letters denote subsets of U. An instruction may yield a value or not. 

The types of the values obtained are: 

- boolean for MEMBER and EMPTY; 

-
-
-

integer for CARD; 

elements in U for MIN, MAX, PREDECESSOR and SUCCESSOR; 

subset of U for FIND. 

The remaining instructions yield no value. 

For most instructions, e.g., INSERT, DELETE, MEMBER, CARD, EMPTY, MIN, 

MAX, EXTRACT MIN and EXTRACT MAX, the meaning should be clear. The remaining 

ones perforn2 the foll.owing tasks: 

- ALL MIN(i) (ALL MAX(i)) removes from the single set manipulated all 

members~ i (~ i); 

- PREDECESSOR(i) (SUCCESSOR(i)) computes the largest (smallest) member 

in the set Si (~ i); 

-

-

UNION(A,B,C) unites the sets A and B creating a new set named C, or 

equivalently C:= AUB; 

FIND(i) yields the (name of the) subset currently containing element i. 

It is always assumed that programs dealing with UNION and/or FIND deal with 

disjoint sets. A similar assumption holds for SPLIT and CONCATENATE where 

it is moreover assumed that the sets are pairwise comparable with respect 

to the ordering. These latter instructions have the following meanings: 

- SPLIT(a,S,T) removes from Sall entries> a putting them into a new 

set T; 

- CONCATENATE(A,B,C) is equivalent to UNION(A,B,C), provided A~ B. 

It is possible to call the above instructions with improper arguments, e.g. 

MIN on an empty set; we assume that in these circumstances some appropriate 

action will be executed which we leave unspecified for the moment. 

In the sequel we will not discuss the instructions CARD and EMPTY; they 

are easily implemented using a single counter. 

Specific names are attached to data structures supporting particular 

subsets of the above repertoire. They are indicated in Table 2. The question 

mark indicates the absence of a well established name for a structure sup

porting UNION and FIND, a pair which has been investigated thoroughly; see 
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TABLE 2. SOME TYPES OF DATA STRUCTURES 

data structure 

dictionary 

priority queue 

restricted priority queue 

priority deque 

mergeable heap 

concatenable queue 

? • 

Section 8. 

instructions 

INSERT, DELETE, MEMBER 

INSERT, DELETE, MIN 

INSERT, EXTRACT MIN 

all single-set instructions 

INSERT, DELETE, MIN, UNION, FIND 

INSERT, DELETE, FIND, CONCATENATE, SPLIT 

UNION, FIND 

It turns out that some structures are hard to implement under the re

striction N << u but are easy if N = u, whereas for other structures the 

problem remains hard even if N = u. If there is no limit on the amount of 

storage and initialization time, the complete instruction repertoire can be 

implemented in such a way that each instruction takes unit time, using a 

huge precomputed table storing the result of each legal instruction on each 

legal configuration. For all practical purposes, however, this trivial so

lution is useless. 

All data structures described in this paper will be of size O(u), where 

storage is expressed in terms of RAM words. The time needed to perform oper

ations is measured in terms of RAM operations with unit time cost (cf. [Aho 

et al. 1974]). Except possibly for the priority deques in Section 10, this 

will correspond to the programmer's intuition. 
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3. HOW TO REPRESENT A GRAPH - AN OMINOUS EXAMPLE 

The question we consider in this section is: how should one store a directed 

graph within a computer? According to one of the available mathematical def

initions, a graph is a pair (V,E) where Eis a subset of vxv. Without loss 

of generality one takes V = {1, .•• ,n}. 

One of the representations found in text books on graph theory is the 

so-called adjacency matrix. This is an nxn matrix with entry aij equal to 

the nt1mber of edges. from i to j. This representation al.lows multiple edges 

as well. 

The adjacency matrix has some useful properties. Absence of self-loops 

can be detected by inspection of the diagonal entries. Undirected graphs 

can be represented by symmetric matrices. The matrix is {0,1}-valued if no 

multiple edges occur. A clique in the graph corresponds to a submatrix J-I 

(where J represents the all 1-matrix and I represents the identity matrix). 

A more interesting connection exists between paths in the graph and 

algebraic operations on the matrix. If we raise the matrix to the k-th 

power, the entry at location i, j equals the n1Jmb~r of paths of length k 

from i to j. If one is only interested in presence or absence of paths, one 

can perfoim the same matrix operations over the Boolean algebra {0,1} in

stead of the integers. 

• 

An alternative representation is the so-called adjacency list structure. 

For each node i we give a linear list of all nodes j such that <i,j> is an 

edge in E. This representation has none of the nice mathematical features 

mentioned above. 

Ass11me that we want to develop an algorithm to decide if a given graph 

is strongly connected. Starting from the adjacency matrix A we have the fol

lowing obvious method. The graph is strongly connected if each node can be 

reached from each other node by some path. Eliminating cycles from this path 

we may assume that the path length is at most n. Presence or absence of 

paths of length~ n can be detected by raising the matrix I+A to then-th 

power over the Boolean algebra {0,1}. Starting from the adjacency list we 

can develop algorithms based on depth-first search. In fact, one of the 

first described applications of this technique of graph traversal yields an 

algorithm for testing strong connectedness; see [Aho et al. 1974]. 

So far both representations seem suitable. However, if we consider the 

complexity of the algorithms involved, we discover an impressive difference. 

Computation of (I+A)n requires flog2nl squarings; using Strassen's matrix 
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multiplication this yields an O{n2 · 81 ) algorithm [Strassen 1969; Aho et al. 

1974]. The depth-first search algorithm has a run time of order n+e, where 

e denotes the number of edges in the given graph. 

The reader might ask whether the above gap between O(n2 · 81 ) and O(n+e) 

can be narrowed. It might be possible to improve the efficiency of algorithms 

based on adjacency matrices. However, it can be 

will never yield an algorithm which runs faster 

shown that 
2 than O(n) 

this improvement 

in the worst case. 

The reason is that any algorithm operating on adjacency matrices which tests 
2 for strong connectedness can be forced to probe all n entries of the matrix 

at least once. 

The above statement is formalized by investigating the so-called deci

sion tree model for algorithms that recognize graph properties, based upon 

the presence or absence of edges. The model is best understood by consider

ing the following two-person game. Player A conceives a graph G on the ver

tices 1, .•• ,n; player B has to determine whether this graph has a particular 

property P (e.g., strong connectedness) or not. In order to do so B may 

probe individual pairs <i,j> with i j; A tells B whether <i,j> is an edge 

or not. The game is continued until B has gathered sufficient information 

to verify the property. B loses if he cannot decide the property before 

having asked for all n(n-1) feasible pairs. 

The best strategy for A is not to select his graph in advance but to 

develop it during the game. Each question posed by B divides the set of pos

sible graphs in two equal parts; by giving an answer A selects the part on 

which he wishes to play. As long as the set of possible graphs contains both 

graphs having the property and graphs not having it, the game is not finished. 

The above reasoning indicates that A has a winning strategy in case the 

total n11mber of graphs having the property is odd, since it is always possi

ble to select the part containing an odd number of graphs having the proper

ty; note that the number of possible graphs always is a power of two. This 

argument can be strengthened as follows. Consider the so-called weight enu-

A9 denotes the number of graphs with property P having e edges. A sufficient 

condition for A to have a winning strategy is that l+X does not divide F, 

or equivalently F(-1) ~ 0. The latter expression has been subjected to study 

in en11.merati ve graph theory. In particular for the property ''strong connec

tedness" R.W. Robinson [Robinson 1973] has shown that F(-1) = (n-1)!. Conse

quently A has a winning strategy, showing that any algorithm for testing 

strong connectedness can be forced to probe all edges. 
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For which properties can one prove O(n2 ) lower bounds for adjacency 

matrix based algorithms using the tricks explained above? A. Rosenberg con

jectured in 1973 that for any nontrivial graph property (i.e., a property 

invariant under relabeling the nodes, which could not be decided from the 

1111mber of nodes only), such a lower bound would exist. Shortly afterwards S. 

Aanderaa gave an example of such a property which could be decided in 3n 

probes. To circumvent this counterexample they added the condition of mono

tonicity (i.e., the property is not disturbed by adding edges) and in this 

form the conjecture was proved by R.L. Rivest and J. Vuillemin. For further 

information the reader is referred to [Best et al. 1974; Rivest & Vuillemin 

1976]. 

The result shows that for some problems there exists a ''natural'' lower 

bound for adjacency matrix based algorithms which can be circumvented by 

using adjacency lists. The choice of the representation matters indeed. 
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4. ARRAYS 

The most direct way of representing subsets Sc {1, ... ,u} uses the encoding 

of a set by its characteristic function which is stored in a table. The re

sulting type is an ALGOL Boolean array or a PASCAL type like array[ 1 .. u] of 

(present, absent) • Using this representation we have a perfect dictionary; 

INSERT, DELETE and MEMBER take constant time. The snag is that in general 

n ~ N << u (these identifiers have been introduced in Section 2); the array 

uses too much space and the information has to be condensed. 

We may store the present elements in a table. The corresponding type 

then becomes array[ 1 •• N] of O •• u, where O denotes that no element is stored• 

On such a data structure the times needed for executing an INSERT, DELETE 

or MEMBER instruction become O ( 1), 0 (n) and O (n) respectively. If we arrange 

to have the elements stored in order, we can retrieve an element using bina

ry search but insertions and deletions become or remain expensive, because 

of the necessity to shift the array in order to create or close gaps. On the 

other hand MAX and EXTRACT MAX (as well as MIN and EXTRACT MIN when we use 

the array as a cyclic buffer) can now be executed in constant time. 

Replacing the array by a linear list or doubly linked list structure 

does not improve the situation very much. If no order is preserved, the run 

times for INSERT, DELETE and MEMBER become O ( 1) , O (n) and O (n) respectively, 

but if the location of an i tern to be removed is known, it can be deleted in 

constant time if a doubly linked list is used. Since binary search cannot 

be used on a linear list, preserving order will not help; on the other hand 

MIN, MAX, EXTRACT MIN and EXTRACT MAX take constant time on a doubly linked 

ordered list. 

An alternative approach which preserves the random access behavior of 

an array is the use of a hash table .. We use a fixed mapping g: { 1, ••. , u} + 

{ 1, .... ,N}, which tells where an element of U should be stored in the array 

[1 •• N] 0£ O •• u. However using the function g we can condense u into the 

array only because of the fact that g is not 1-1, leaving the possibility 

that two different items have to be stored at the same location. An occur-

rence of two items x 4 y w1.· th g .(x) = g (y) 1.· s 11 r ca ed a collision. There are 

several ways of dealing with collisions. One can create an externai overflow 

area which can be organized into a family of linear lists, most of which 

will be empty .. An alternative is to store the collided items into the hash 

table on locations reserved for still other items. For example, one selects 

a number, called stride, coprime to N, to be used as follows. If one detects 
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that the location g(x) is already used, inspect the locations g(x)+stride, 

g(x)+2*stride, •.• (all mod N) until a free location is found, and store x 

at this place. On a subsequent lookup for x the same path through the table 

is traversed. If the insertion fails, this means that the table is full and 

the insertion is impossible. The hashing technique described above does not 

allow for items to be removed. 

If measured according to worst-case behavior, a hash table behaves 

badly (all items may collide), but its expected run time renders it a widely 

used data structure. 
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5. BINARY SEARCH TREES 

• 

A binary search tree is a labeled tree whose internal nodes are labeled by 

elements in the sets whereas the leaves represent intervals of elements 

outsides {the gaps in S). For the universe one uses an ordered set; binary 

search trees can also be used for storing finite sets with real valued pri

mary keys. Figure 1 gives an example of a binary search tree, where the uni

verse U is the set {1, ... ,49}. 

16 

4 24 

0 .. 4 11 19 31 

10 13 16 .• 19 19 .. 24 26 32 

4 .. 10 10 .. 11 11 .. 13 13 .. 16 24 .. 26 26 .. 31 31 .. 32 32 .. 50 

Figure 1 A binary search tree. 

The order relation in a binary search tree is that all labels of a 

left-hand (right-hand) subtree are smaller (greater) than the label of a 

node. The intervals labeling a leaf are determined as follows: the left-hand 

(right-hand) endpoint of the interval labeling a right-hand (left-hand) leaf 

is the label of its direct father; the other label is the label of the lowest 

ancestor of which it is a left-hand (right-hand) descendant, or u+l (0) if 

such an ancestor does not exist. Internal nodes having two, one or no leaves 

as direct sons are called boundary, semi-boundary and interior nodes respec

tively. 

On a binary search tree the instructions INSERT, DELETE, MEMBER, MIN 

and MAX can be executed in time O(k), where k is the longest path length in 

the tree inbetween a leaf and the root. The expected run time is proportional 

to the expected path lengthi the expected time may moreover depend on proba

bility weights given to the internal nodes and leaves. 

Most instructions proceed by a top to bottom search guided by the labels 
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of the internal nodes. If a new element is inserted, a new internal node is 

created at the location of the leaf labeled by the gap into which the new 

element is situated; its two leaf sons are labeled by the two parts into 

which the gap is decomposed. 

The most complex instruction is DELETE. Deleting a boundary node is an 

easy reverse to the insert described above. A semi-boundary node with a 

right-hand (left-hand) leaf is deleted by replacing it by its left-hand 

(right-hand) subtree, merging the interval which labeled its original leaf 

with the interval labeling the right most (left most) leaf of this subtree. 

An interior node is deleted by replacing it by the largest internal node of 

a .. b 

a •. c c •• b 

(a) Deleting a boundary node. 

a. .c 

C •• e 

C 

• • • -• .. 
.. 
• • .. 
• • 

a •• e 

• -• -• • 

• • • • • • 

(b) Deleting a semi-boundary node • 

• • .. 

c •. h 

f .. g g •• c 

.. 
• • 

• • • 

f .. g g •• h 

(c) Deleting an interior node. 

Fig:o,re 2 

• 
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its left-hand subtree (this is always a boundary or semi-boundary node), 

deleting the latter node and updating the left most leaf of its right-hand 

subtree. The effect of these deletes is illustrated in Figure 2. 

In order to reduce the run time it is advantageous to keep the tree 

balanced, i.e., the average and maximal path lengths should be as equal as 

possible. Note that the longest path length may vary inbetween flog nl and 
• 

n. In case the structure of a binary search tree remains fixed (no inser-

tions or deletions), one may ask for optimal binary search trees, which 

should be based on expected probabilities for elements in or outside S to 

be asked for. 

A dynamic programming algorithm which computes an optimal binary search 

tree in time O(n2 ) is given by D.E. Knuth [Knuth 1973A]; he also describes 

an algorithm due to Hu and Tucker which gives for the special case that ele

ments in Sare never asked for an optimal search tree in time O(n log n) and 

space O(n). 

Instead of asking for an optimal tree one may produce a suboptimal 

search tree using a linear time algorithm based upon a heuristic rule which 

yields a result with efficiency within a constant factor of the optimal 

tree. Two of these rules are: 

-

-

the weight balancing rule (Gottlieb and Walker): make the weights of 

the left- and right-hand subtree as equal as possible; 

the min-max rule (Bayer and Schnorr): minimize the maximal weight of 

the left- and right-hand subtree. 

The result of these rules is illustrated in Figure 3. Consider the four ele-

ment set S = {s1 ,s2 ,s3 ,s4 } with the following weights (all multiplied by 24): 

0 3 

3 10 1 0 

3 4 3 3 10 

4 0 0 3 0 0 

(a) 

Figure 3 Binary search trees constructed using heuristic rules. 
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!_ < s 1 : 4, x ~ s 1 : 1, s 1 < x < s 2 : 0, x = s 2 : 3, s 2 < x < s 3 : 0, x = s
3

: 3, 

s 3 < x < s 4 : 3, x = s 4 : 0 and x > s 4 : 10. Using the weight balancing rule . 

one obtains the tree of Figure 3(a) with average path length 49/24. The min

max rule yields the tree of Figure 3(b) with average path length 2. It turns 

out that the latter tree is optimal. 

For further information the reader is referred to [Knuth 1973A; Guttler 

ec al. 1976]. 
• 

The still more difficult problem of preserving suboptimality within 

dynamically changing binary search trees has been investigated only recently. 

A solution with a search time within a constant factor of the optimum and an 

updating time of the same order has been given by K. Mehlhorn [Mehlhorn 1977]. 
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6. THE BINARY HEAP 

The binary heap is the data structure underlying the heapsort algorithm. It 

is a restricted priority queue supporting the INSERT and EXTRACT MIN instruc

tions in time O(log n). The structure moreover is stored within an array 

using as much space as there are elements in the set. 

Consider an array a[l •. N]. This array becomes an optimally balanced 

binary tree by defining the element with index i to be the father of the 

elements with index 2*i and 2*i+l (as long as these indices are within the 

range 1, ..• ,N). Hence a[1] becomes the root of the tree. Thus the tree is 

numbered from top to bottom with each layer numbered from left to right, as 

shown in Figure 4. 

1 

2 3 

4 5 6 7 

8 9 10 11 12 

Fig~re 4 A twelve element array representing a binary heap. 

The crucial condition turning the array into a binary heap is the order

ing on the paths: the element stored at a node should be less than the ele

ments stored at its sons (if present}. Consequently the least element is 

stored at the root. 

Manipulating a binary heap requires this ordering to be preserved. We 

always ass1.1me that an initial part of the array is used; the identifier n 

stores the number of entries in the heap, and it is increased and decreased 

when elements are inserted and deleted. 

To insert an element x we increase n by one and store x into a[n]; next 

xis interchanged with the element stored at its father as long as the lat

ter e1ement is larger than x. When this process stops (or when the root is 

reached), a binary heap is obtained. 

To extract the least element we remove the element a[l], replace it by 
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a[n] and decrease n by one. Next we have to interchange the element at the 

root with its smallest son, proceeding downwards as long as it is larger 

than this son. When this stops (or when a leaf is reached), a binary heap 

is obtained. 

The two processes are formalized in the following ALGOL like programs. 

Other, less transparent, presentations can be found in [Knuth 1973A; Aho et 

al. 1974]. · 

proc insert(x): 

b!gi~ n:= n+l; a[n]:= x; j:= n; 

while if j = 1 then false else a[jf2] > a[j] fi 

do interchange(a[j],a[j+2]); j:= j¾2 od 

end #insert#; 

function extract min: 

begin extract min:= a[l]; a[l]:= a[n]; n:= n-1; j:= 1; 

while if 2*j > n then false 

else k:= if 2*j = n then n 

fi 

elif a[2*j] ~ a[2*j+1] then 2*j+l else 2*j fi; 

a[j] > a[k] 

do interchange(a[j],a[k]); j:= k od 

end #extract min#; 

Clearly the instructions INSERT and EXTRACT MIN suffice to sort an array. 

It should be noted however that no additional work space is needed; the 

unsorted array can be reordered into a heap and be transformed into a sorted 

array afterwards. In this way the heapsort algorithm is obtained which is 

given below. Note that this algorithm is far from optimal; each call of 

insert{a[j]) loads the element a[j] into itself! For improvements see [Knuth 

1973A]. 

proc sort(m): 

?e2in n:= 1; 

for j from 2 tom do insert(a[j]) od; 

for j from m ~ -1 to 2 do a[j]:= extract min od 

end #sort#; 
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7. BALANCED TREES 

Balanced trees enforce some rules on the branching orders, in order to have 

path lengths approximately equal to O(log n). Several schemes for achieving 

this goal have been proposed; we mention the AVL trees, mentioned after their 

proposers Adelson, Vilenski and Landis, the 1-2 trees, proposed by Maurer, 

Wood, Ottman and Six, and the 2-3 trees, described in [Aho et al. 1974]. For 

further references see [Van Leeuwen 1976]. By way of example we describe the 

2-3 trees. 

In a 2-3 tree all leaves have the same level. Each internal node has 

two or three descendants. As a consequence the numbP.r of leaves of a height-k 

tree lies in range 2k s ms 3k and conversely a 2-3 tree with m leaves has 

a height in the range log3m $ k ~ log2m. 

The leaves of a 2-3 tree are used for storing elements; the internal 

nodes may be used to store additional information like the number of descen

dant leaves and the largest and smallest element stored at a descendant leaf. 

Manipulating 2-3 trees requires the preservation of their structural 

properties. We describe the INSERT and DELETE instructions. Although these 

instructions deal with elements, we generalize their meaning in order to be 

capable of inserting and deleting subtrees at any level in the tree. The in

structions all operate locally, considering a node with its father and (some

times) its uncles. In some circumstances the operation may require a recur

sive call one level upwards; if the recursion goes up to the root, the height 

of the tree may be increased or decreased by one. 

To insert a node x at father y, xis made a son of y. If y now has four 

sons, y is '' spli tted '' and the newly created uncle is inserted as a brother 

of y .. If the root is splitted, a new root is created with the two ''roots'' as 

direct sons. 

To delete a node x at father y, xis removed. If y now has less than 

two sons, we inspect the remaining uncles of x. If one of the uncles is 

''rich'' and has three sons, y adopts one of his nephews; otherwise y' s unique 

son is adopted by one of his poor uncles and y is deleted. If y however is 

the root, then his unique son becomes the root and y is deleted. 

Formal descriptions of these algorithms are given in [Aho et al. 1974]. 

Their operations are illustrated in Figures 5 and 6. 

With various additional internal information the 2-3 trees have been 

used to obtain dictionaries, mergeable heaps and concatenable queues with 

O(log n) instruction time. Details can be found in [Aho et al. 1974]. 
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, 

Figure 5 Inserting a fourth son. 

• 

\ 

(a) with poor uncle. (b) with rich uncle. 

Figure 6 Deleting a second son. 
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8. TRITER TREES 

In Triter trees the edges are directed from son to father, the root being 

chracterized by the absence of an outgoing edge. There is no bound on the 

number of sons a father may have. 

The most important application of Triter trees is to support the UNION

FIND repertoire. A set is represented by gathering all elements belonging 

to the set in a tree, using the root of the tree as a location for storing 

the ''name'' of the set. A UNION instruction can be executed by making the 

root of one set a son of the root of the other set. A FIND instruction is 

executed by traversing the path of the node looked for to the root of the 

tree to which it currently belongs. The time needed to execute a UNION in

struction is constant; the time for executing a FIND instruction is propor

tional to the length of the path traversed. 

Without further precautions it is clear that the above algorithms may 

lead to trees with path lengths of order n, leading to an O(nm) run time 

for programs consisting of n UNION and m FIND instructions. This time can 

be reduced using two different tricks, called balancing and path compression. 

The balancing rule states that in performing a UNION instruction the 

root of the tree having the smaller number of elements is made a son of the 

other tree. In this way one enforces that a tree which has a descendant at 

t."le k-th level has an offspring of size at least 2k. The maximal path length 

now becomes o (log n). 

The rule of path compression states that during execution of a FIND in

struction all nodes on the path between the node looked for and the root are 

made direct sons of the root. This does not reduce the time needed for exe

cuting the current FIND instruction (actually it requires the path to be tra

versed twice), but it reduces the time needed for fut11re FIND instructions. 

Estimating the efficiency gained using path compression is far from 

trivial. It has been shown by M.S. Paterson [Paterson-] that the total run 

time needed for execution of n UNIONs and m FINDs using path compression 

without balancing is of order m log n .. If both path compression and balancing 

are used, upper and lower bounds of order m • a. (m, n) have been proved by R. E. 

Tarjan [Tarjan 1975A]. In this expression a denotes a functional inverse of 

a function A related to the Ackermann function. The function a grows unbound

edly but slower than any primitive recursive function. The formal definition 

of A reads as follows: 



A(O,m) = 2m; 

A(i+l,O) = O; 

A(i+1,m+1) = A(i,A(i+l,m)). 

m-1 
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• 

Consequently 
m A(l,m) = 2 and A(2,m) • The definition of a becomes: 

a(m,n) = min{kjA(k,4fm/nl) ~ log n}. 
• 

An impression of the huge growth of the function A may be obtained by inspec

tion of Table 3. The numbers in the table preceded by periods denote entries 

from which only the least significant digits are given. It turns out that 

they are easier to compute than the most significant ones; cf. [Labbers 1976]. 

TABLE 3. FRAGMENT OF AN ACKE 

i+ m+ 

0 

1 

2 

3 

4 

0 

0 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

4 

4 

4 

4 

TABLE 

3 

6 

8 

16 

4 

8 

16 

5 

10 

32 

65536 •. 56736 

65536 •• 48736 •• 48736 

4 .. 48736 .. 48736 .. 48736 

The UNION-FIND algorithm with balancing and path compression is an ex

ample of a concrete algorithm having a nonprimi.tive recursive run time com

plexity. 

The same O(m·et (m,n)) time bound shows up at an increasing n1:i.mber of 

seemingly unrelated problems. This occurs because of the following general

ization given in [Tarjan 1975B]. 

Assume that in a forest of Triter trees the edges are labeled by values 

from a semigroup F. For each node on which a FIND instruction is executed 

one would like to compute the product of the labels of the edges on the path 

traversed. In performing path compression one replaces the label of the edge 

by the product of the edge labels along the path segment of which the new 

edge becomes a shortcut; note that these products can easily be computed 

during the downward scan of path compression. See also Figure 7. 

In this application it is difficult to keep the trees balanced. The 

balancing requires that the root of a small tree is made a son of the root 

of a larger one also in the case that the instruction uniting the two trees 

actually requires to link the two trees in the opposite direction. If each 
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1 

3 

a 

5 

2 
cd 

4 

abed 

Figure 7 Path compression on a Triter tree with edge labels. 

5 
• 

element in F has an inverse, this change of direction is resolved by replac

ing the edge label by its inverse. For some other concrete semigroups Tarjan 

has obtained O(m•~(m,n)) algorithms by rather complicated methods as well • 

• 
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9. THE BINOMIAL HEAP 

The binon1ial heap is a data structure designed by J. Vui llemin [Vuillemin 

1978] for implementing a mergeable heap, i .. e., the repertoire MIN, INSERT, 

EXTRACT MIN and UNION. 

The structure is based on the so-called binomial trees Bk. These are 

defined inductively as follows: a single node forms a B
0

, and two copies of 

a Bk with an additional edge between the two roots form a Bk+!; see Figure 
8. It turns out that a Bk-tree may also be described as a root with k sons 

being roots of a Bk-l'Bk_2 , ... ,B0 respectively; see Figure 9. 

Fig~r~ ~ Definition of binomial trees. 

- - - - -

Figure 9 An alternative decomposition of a binomial tree. 

presses n in binary and collects a Bk-tree for every k for which the k-th 

binary digit in the representation of n equals 1. The resulting forest is 

denoted by F. 
n 

The binomial heap is obtained from 

which we have seen before in the binary 

F by enforcing the heap ordering n 
heap (Section 6): the element stored 

at the father is always less than all elements stored at the sons. As a con

sequence the least element always resides at one of the roots, and since· 

there are at most log n binomial trees in an 

takes time O(log n). 

F -forest n locating this element 

The crucial operation for the binomial heap is UNION. First note that 
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two heap ordered Bk-trees can be combined into a Bk+ 1-tree in constant time 

by making the root of the Bk-tree with the largest element stored at the 

root a son of the other root. Using this operation as a basic step the union 

of two binomial fores ts can be perfor111ed like a binary addition in time 

O(log n}; see Figure 10. 

INSERT is implemented by a UNION of a binomial forest F with a single 
n 

element forest F 1 consisting of a single B0-tree. Careful analysis shows 

that the actual time spent during a UNION is proportional to the number of 

new edges created, which again equals the number of carries processed during 

the corresponding binary addition. As a consequence a sequence of k INSERTs 

in an F is about as complex as a corresponding sequence of k incrementations 
n 

of the binary number n; this latter time is easily seen to be about linear 

inn - an impressive improvement over the O(log n) estimate for a single 

UNION. 

EXTRACT MIN is implemented by first locating the Bk-tree with the small

est root, decomposing it into an F 2k_ 1 by deleting this root and uniting 

this new binomial forest with the remainder of the original one. This takes 

again time O{log n). In fact it can be shown that an arbitrary element from 

a binomial heap can be deleted in time O(log n) provided its location within 

the forest is completely known. 

On base of a practical implementation of the binomial heap it has been 

shown by M. Brown [Brown 1978] that the binomi .. al heap is not only an asymp

totically optimal structure but among the structures achieving the same 

O(log n) bound the one with the smallest constant factor. 
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10. PRIORITY DEQUES 

In this final section we describe a rather complex data structure developed 

by the author. On this structure the complete instruction repertoire for 

single-set manipulation is supported with an O(log log u) processing time 

per instruction. The name ''priority deque 11 is due to Knuth [Knuth -] .. 

The structure is based upon a simple divide-and-conquer s·cheme. Assume 

u = k•m. We divide the universe {O, ••. ,u-1} into a cluster of k galaxies 

each of size m. So element x becomes element x mod min the galaxy with 

index Lx/mj. We denote these expressions by: 

head x = lx/mJ; 

tai,J. x = x mod m; 

y cone z = Y*m+z. 

t 

Each galaxy in the cluster is represented by a separate priority deque of 

size m, whereas another priority deque represents the set of nonempty galax

ies in the cluster. 

It is easy to see that each instruction in the single-set manipulation 

repertoire can be decomposed into similar instructions operating on individ

ual galaxies and the cluster. For example the INSERT instruction becomes: 

proc insertun(x): 

R..~2.~n y:= head x; t:= tail x; 

if emptygal (y) 

then insertgal(y,t); insertcl(y) 

else insertgal(y,t) 

fi 

end #insertun#; 

Other instructions can be decomposed similarly: 

function mi.nun: 

b~9in_ y:= mincl; minun:= y cone mingal(y) 

end #minun#; 

function successorun(x): 

begi~, y:= head x; t:= tail x; 



if t > maxgal(y) 

then z:= successorcl(y+l); successorun:= z cone mingal(z) 

else successorun:= y cone successorgal(y,t) 

fi 

end #successorun#; 
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' 

It turns out that each operation on the universe level requires at most two 

calls of similar operations at galaxy or cluster level. A divide-and-conquer 

scheme based on a recursive decomposition with k = m; fu would yield an 

O(log u) implementation. However it can be concluded from inspection of the 

programs that in those cases that two inner calls are required one of them 

is always simple, i.e., inserting a first element or deleting the last one. 

For example, the INSERT instruction is decomposed as follows: 

proc insertun(x): 

begin 

• 

if emptyun then firstinsertun(x) 

else y:= head x; t:= tail x; 

fi 

if emptygal(y) 

then firstinsertgal(y,t); insertcl(y) 

else insertgal(y,t) 

fi 

end #insertun#; 

If we can construct an implementation where ''trivial 11 operations like first

insert and lastdelete take constant time, we can obtain a divide-and-conquer 

scheme yielding a recurrence relation of the type T(u) ~ T(/u)+C, which has 

an O(log log u) solution. 

A nasty problem in designing this implementation is the realization of 

the operations head, tail and cone, which are required by most of the opera

tions. Using the definition in terms of multiplication and division is not 

a legitimate solution, since these instructions are not available at unit 

time cost in the ordinary RAM model. Moreover the introduction of these op

erations with unit time cost may lead to an unrealistic machine model as has 

been shown in [Hartmanis & Simon 1976]. 

In [Van Emde Boas et al. 1977] we have described a concrete implementa

tion which results from unwinding the recursion in the proposed data struc-
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ture. The operations head, tail and cone are replaced by a collection of 

pointers which requires storage of 

Consider a universe of size u 

of a huge binary tree of height 2h. 

ru = 22h-l internal nodes at height 

size O(u log log u) RAM words. 

= 22h_ We represent it using the leaves 

The root represents the universe. The 
h-1 

2 represent the galaxies; they are 

the root of a subtree with lu leaves, and also the leaves of a subtree with 

/u leaves and having the original root as top. • 

' 

The complete tree 

into a top subtree and 

is called a canonical 
2h-1 2 bottom subtrees 

tree of rank h. It is decomposed 

of rank h-1. These subtrees are 

decomposed analogously into canonical subtrees of rank h-2, etc. Canonical 

subtrees of rank O consist of three nodes: a father with two sons. 

In each node we store h pointers p 0 , ••• ,ph-l' 

the root of the unique canonical subtree of rank j 

such that p. points to 
J 

which contains this node 

and for which this node is not the root. At the root of the complete tree 

these pointers are undefined. The collection of these pointers requires the 

use of log log u RAM words for each node, leading to the O(u log log u) 

storage requirements for the complete structure. These pointers are used to 

jump in a single step to the node at the halfway level inbetween a leaf and 

the root of some canonical subtree. 

Aside from the pointers each node contains a fixed n11mber of additional 

storage locations, used to represent subsets s c {1, ••• ,u}. The basic idea 

is that as long as (within a particular hierarchical level, corresponding 

to a canonical subtree) there is a single entry to be represented, its iden

tity is stored at the root of this canonical subtree and all internal infor

mation is ''clean''. If however more entries have to be represented, the cor

responding nodes at halfway level become active as well, in this way acti

vating the next level of the hierarchical decomposition. This idea is ilius
trated in Figure 11. 

The data structure contains next to the stratified tree a doubly linked 

I 

' I 
I I , 

' 
I , 

I 
. , , 
I 

I 
I 

I 

' I I I , • I I I 
I I 
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, 
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~i2~re 11 Inserting a second element in a stratified tree. 
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list of all elements in S, which is used for preserving order. For further 

details the reader is referred to [Van Emde Boas et al. 1977]. 
' 

It has been shown afterwards [Van Emde Boas 1977] that the above struc

ture can be used to obtain an implementation for a priority deque with 

O(log log u) processing time and O(u) space. This implementation is obtained 

by performing one more cluster-galaxy decomposition and using different 

structures for the galaxy and the cluster. . 

For the cluster we take the O(log log k) time O(k log log k) space 

implementation mentioned above. The galaxies are implemented using an O(m) 

time O(m) space structure, e.g., an unsorted list. Taking u = k•m with m = 

log log k we obtain the following estimates: 

time: O(log log k) + O(m) = O(log log k) = O(log log u); 

space: O(k log log k) + k•O{m) = O(k log log k) = O(u). 

Knuth [Knuth-] has proposed to use a recursive data structure instead of 

unwinding the recursion. The structure may be expressed by the following 

mode description: 

mode degue = struct(int card,min,max, 
$ I 

ref deque cluster, 

ref[] deque galaxies); 

Using multiplication and addition for the realization of the head, tail and 

cone instructions, the resulting space requirements become O(u) bits. The 

forbidden instructions can be eliminated by introduction of tables for the 

functions head and tail and for the multiples of m needed for computing 

cone. Since we need these operations at each level in the recursion, we 

need log log u tables, but their sizes are of respective orders u, fu, u, 

etc., and therefore the total storage requirements are O(u) RAM words. These 

tables can be precomputed in time O(u) without use of forbidden instructions 

by simple counting. 
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ABSTRACT 

Recent developments in the theory of computational complexity as applied 

to combinatorial problems have revealed the existence of a large class of 

so-called NP-complete problems, either all or none of which are solvable 

in polynomial time. Since many infamous combinatorial problems have been 

proved to be NP-complete, the latter alternative seems far more likely. In 

that sense, NP-completeness of a problem justifies the use of enumerative 

optimization methods and of approximation algorithms. In this paper we give 

an infoxmal introduction to the theory of NP-completeness and derive some 

fundamental results, in the hope of stimulating further use of this valu

able analytical tool. 
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1 .. INTRODUCTION 
' 

After a wave of initial optimism, integer programming soon proved to be 

much harder than linear programming. As integer programming forn1ulations 

were found for more and more discrete optimization problems, it also became 

obvious that such for111ulations yielded little computational benefit. To this 
• 

day, general integer programming problems of more than miniature size remain 

computationally intractable. 

For some specially structured problems, however, highly efficient algo

rithms have been developed. Network flow and matching provide well-known 

examples of problems that are easy in the sense that they are solvable by 

a good algorithm - a term coined by J. Edmonds [Edmonds 1965A] to indicate 

an algorithm whose running time is bounded by a polynomial function of prob

lem size. This notion is not only theoretically convenient, but is also 

supported by overwhelming practical evidence that polynomial-time algorithms 

can indeed solve large problem instances very efficiently; the polynomial 

involved is usually of low degree. For example, in a network on v vertices 

a maximum flow can be deteLmined in O(v3 ) time [Dinic 1970; Karzanov 1974; 

Even 1976] and a maximum weight matching can be found in O(v3 } time [Gabow 

1976; Lawler 1976B]. 

It is commonly conjectured that no good algorithm exists for the gener

al integer prograr,1n1ing problem. A similar conjecture holds with respect to 

many other combinatorial problems that are notorious for their computational 

intractability [Johnson 1973], such as graph coloring, set covering, travel

ing salesman and job shop scheduling problems. Typically, all optimization 

methods that have been proposed so far for these problems are of an en1Jmera-
• 

tive nature. They involve some type of backtrack search in a tree whose 

depth is bounded by a polynomial function of problem size. In the worst 

case, those algorithms require superpolynomial (e.g., exponential) time. 

For the time being, we shall loosely denote the class of all problems 

solvable in polynomial time by P and the class of all problems solvable by 

polynomial-depth backtrack search by NP. It is obvious that Pc NP. 
The battle against hard combinatorial problems dragged on until s. Cook 

[Cook 1971] and R.M. Karp [Karp 1972] showed the way to peace with honor 

[Fisher 1976B]. They exhibited the existence within NP of a large class of 

so-called NP-complete problems [Knuth 1974] that are equivalent in the fol

lowing sense: 

- none of them is known to belong to P; 
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- if one of them belongs to P, then all problems in NP belong to P, 
which would imply that P = NP. 

NP-completeness of a problem is generally accepted as strong evidence 

against the existence of a good algorithm and consequently as a justifica

tion for the use of en11merati ve optimization methods such as branch-and-

bound or of approximation algorithms. By way of examples, even restricted 
• 

versions of all hard problems mentioned above are NP-complete. 

NP-completeness theory has proved to be an extremely fruitful research 

area. The computational complexity of many types of combinatorial problems 

has been analyzed in detail. Under the assumption that P f:. NP, this analy

sis often reveals the existence of a sharp borderline between P and the 

class of NP-complete problems that is expressible in terms of natural prob

lem parameters. A truly remarkable feature of the theory is the large pro

portion of time in which a given problem in NP can be shown to be either 

in P or NP-complete. Moreover, the two types of problems really have proved 

to be quite different in character. As mentioned, extremely large instances 

of problems in P are efficiently solvable, whereas only relatively small 

instances of NP-complete problems admit of solution by tedious en11merati ve 

procedures. Establishing NP-completeness of a problem provides important 

information on the quality of the algorithm that one can hope to find, 

which makes it easier to accept the computational burden of enumerative 

methods or to face the inevitability of a heuristic approach. 

In this paper we shall not attempt to present an exhaustive survey of 

all NP-completeness results (see [Karp 1972; Karp 1975A; Garey & Johnson 

1978A]) • Instead, we shall examine some typical NP-complete problems, demon

strate some typical proof techniques and discuss some typical open problems 

(cf. [Aho et al. 1974; Savage 1976; Reingold et al. 1977]}. We hope that 

as a result the reader will be stimulated to consider the computational 

complexity of his of her favorite combinatorial problem and to draw the 
algorithmic implications. 
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2. CONCEPTS OF COMPLEXITY THEORY 

• 

A formal theory of NP-completeness would require the introduction of Turing 

machines [Aho et al. 1974] as theoretical computing devices. A deterministic 

Turing machine is a classical model for an ordinary computer, which is poly

nomially related to more realistic models such as the random access machine 

[Aho et al. 1974]. It can be designed to recognize languages; the input con

sists of a string, which is accepted by the machine if and only if it belongs 

to the language. A nondeterministic Turing machine is an artificial model, 

which can be thought of as a deterministic one that can create copies of 

itself corresponding to different state transitions whenever convenient. In 

this case, a string is accepted if and only if it is accepted by one of the 

deterministic copies. P and NP are now defined as the classes 0£ languages 

recognizable in polynomial time by deterministic and nondeterministic Turing 

machines, respectively. 

For the purposes of exposition, we will expound the theory in terms of 

recognicion problems, which require a yes/no answer. A string then corre

sponds to a problem instance and a language to a problem type or, more 

exactly, to the set of all its feasible instances. The feasibility of an 

instance is usually equivalent to the existence of an associated structure, 

whose size is bounded by a polynomjal in the size of the instance; for 

example, the instance may be a graph and the structure a Harni, 1 tonian circuit 

[Karp 1975A]. A recognition problem is in P if, for any instance, one can 

determine its feasibility or infeasibility in polynomial time. It is in NP 

if, £or any instance, one can detern1ine in polynomial time whether a given 

structure affirms its feasibility. 

Problem P' is said to be reducible to problem P (notation: P' « P) if 

for any instance of P' an instance of P can be constructed in polynomial 

time such that solving the instance of P will solve the instance of P' as 

well. Informally, the reducibility of P' to P implies that P' can be con

sidered as a special case of P, so that Pis at least as hard as P'. 

Pis called NP-hard if P' « P for every P' E NP. In that case, Pis at 

least as hard as any problem in NP.Pis called NP-complete if Pis NP-hard 

and PE NP. Thus, the NP-complete problems are the most difficult problems 

in NP. 

A good algorithm for an NP-complete problem P could be used to solve 

all problems in NP in polynomial time, since for any instance of such a 

problem the construction of the corresponding instance of P and its solu-

" 
' ' i 
' " 
" 
' " ' 
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• 

tion can be both effected in polynomial time. Note the following two 

tant observations. 

impor-

com-
- It is very unlikely that P = NP, since NP contains many notorious 

bl f hi h J.·n spi·te of a considerable research binatorial pro ems, or w c 

-
effort no good algorithms have been found so far. 
It is very unlikely that p € P for any NP-complete P, since this would 

imply that P = NP by the earlier argument. 

The first NP-completeness result is due to Cook [Cook 1971]. He designed a 

''master reduction'' to prove that every problem in NP is reducible to the 

SATISFIABILITY problem. This is the problem of determining whether a bool

ean expression in conjuctive normal form assumes the value true for some 

assignment of truth values to the variables; for instance, the expression 

• 

is satisfied if x
1 

= x
2 

= x
3 

=true.Given this result, one 

NP-completeness of some PE NP by specifying a reduction P' 

(1) 

can establish 

o: P with P' 

already known to be NP-complete: for every P '' E NP, P '' P' and P' « P then 

imply that p•• a: P as well. In the following section we shall present sever

al such proofs. 

As far as optimization problems are concerned, we shall reformulate 

I 

a minimization (maximization} problem by asking for the existence of a fea

sible solution with value at most (at least) equal to a given threshold. 

It should be noted that membership of NP for this recognition version does 

not immediately imply membership of NP for the original optimization prob

lem as well.. In particular, proposing a systematic search over a polynomial 

number of threshold values, guided by positive and negative answers to.the 

existence question, is not a valid argument. This is because a nondeter

ministic Turing machine is only required to give positive answers in poly

nomial time. Indeed, no complement of any NP-complete problem is known to 

be in NP! 

As an obvious consequence of the above discussion, NP-completeness 

can only be proved with respect to a recognition problem. However, the 

correspondi.ng optimization problem might be called NP-hard in the sense 

that the existence of a good algorithm for its solution would imply that 

p • frJP. 

So far, we have been purposefully vague about the specific encoding of 

problem instances. Suffice it to say that most reasonable encodings are 
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polynomially related. One important exception with respect to the represen

tation of positive integers will be dealt with in Section 3.5. 

The classes P and NP are certainly not the only classes of interest to com

plexity theorists. There is, for instance, the class PsPACE, which contains 

all languages recognizable in polynomial space. This class is the same for 

both deterministic and nondeterministic Turing machines. There is a notion 

of PSPACE-completeness analogous to NP-completeness. The standard PSPACE-

complete problem is ''quantified 11 SATISFIABILITY or QSATISFIABILITY [Stock

meyer & Meyer 1973; Aho et al. 1974]. An instance of this problem results 

from the quantification of a boolean expression by both existential and 

universal quantifiers, e.g. 

The QSATISFIABILITY problem can be viewed as defining a game between two 

players: an '' existential 1' player who tries to select values to make the 

expression true and a ''universal'' player who tries to defeat him. This in-

sight has suggested a rich lode of simply-structured combinatorial games 

for which the problem of determining the outcome of optimal play is PSPACE

complete [Schaefer 1976] .. One example of such a game is ''generalized hex'' 

[Even & Tarjan 1976]. 

Clearly NP c PSPACE. It has not been proved that NP~ PSPACE. However, 

it seems reasonable to conjecture that this is the case and that PSPACE

complete problems are more difficult than NP-complete ones. 

We should also mention that there are problems which have been shown 

to be inherently more difficult than any problem in PSPACE. For example, 

consider the ''reachability'' problem for vector addition systems: given a 

finite set of vectors with integer components, an initial vector u and a 

final vector v, is it possible to add vectors from the given set to u, 

with repetition allowed, so as to reach v, while always staying within the 

positive orthant? This problem has been shown to be decidable [Sacerdote & 

Tenney 1977] but to require exponential space [Lipton 1976]. Some other 

combinatorial problems have been shown to require exponential space as well 

[Stockmeyer & Meyer 1973] . 

• 
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3 .. NP-COMPLETENESS RESULTS 

In this section we shall establish some basic-NP-completeness results 

according to the scheme given in Fig1Jre 1, and we shall mention similar 

results for related problems. Our proofs will be sketchy; for instance, it 

will be left to the reader to verify the membership of NP for the problems 

considered and the polynomial-boundedness of the reductions presented. 

SATISFIABILITY 

CLIQUE 0-1 PROGRAMMING 

VERTEX PACKING 

SET PACKING VERTEX COVER SET PARTITION 

SET COVER DIRECTED HAMILTONIAN CIRCUIT KNAPSACK 

UNDIRECTED HAMILTONIAN CIRCUIT 3-PARTITION 

3-MACHINE UNIT-TIME JOB SHOP 

~ig~~e 1 Scheme of reductions. 

3.1. SATISFIABILITY 

SATISFIABILITY: Given a conjuctive normal form expression, i.e. a conjunc

tion of clauses c1, .•• ,C
9

, each of which is a disjunction of literals 
- -x1 ,x1 , •.. ,xt,xt where x 1, .•• ,xt are boolean variables 

denote their complements, is there a truth assignment 

such that the expression assumes the value true? 

- -
and x 1 , ••• ,xt 

to the variables 



NP-completeness 

It has already been mentioned that SATISFIABILITY was the first problem 

shown to be NP-complete. The proof of this key result is quite technical 
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I 

and beyond the scope of this paper; we refer to [Cook 1971; Aho et al. 1974]. 

We shall take (1) as an example of an instance of SATISFIABILITY to illus

trate subsequent reductions. 

Related results 

Even the 3-SATISFIABILITY problem, • 
J.. e. SATISFIABILITY with at most three 

literals per clause, is NP-complete [Cook 1971]. The 2-SATISFIABILITY prob

lem, however, belongs to P. Often, the borderline between easy and hard 

problems is crossed when a problem parameter increases from two to three. 

This phenomenon will be encountered on various occasions below, and is held 

by some to explain the di vision of mankind .in two and not three sexes. 

3.2. CLIQUE, VERTEX PACKING & VERTEX COVER 

CLIQUE: Given an undirected graph G = (V,E) and an integer k, does G have 

a set of at least k pairwise adjacent vertices? 

VERTEX PACKING ( INDEPENDENT SET) : Given an undirected graph G' = (V' , E 1 ) 

and an integer k', does G' have a set of at least k' pairwise non

adjacent vertices? 

VERTEX COVER: Given an undirected grapr1 G = (V ,E) and an integer k, does G 

have a set of at most k vertices such that every edge is incident with 

at least one of them? 

NP-completeness 

SATISFIABILITY~ CLIQUE: 

V = {(x,i) Ix is a literal 

E = {{ (x,i), (y,j)} Ix~ Y, 
k = s. 

in clause c.}; 
J. 

Cf. Figure 2. We have created a vertex for each occurrence of a literal in 

a clause and an edge for each pair of literals that can be assigned the 

value true independently of each other. A clique of size k corresponds to 

s literals (one in each clause) that satisfy the expression and vice versa 
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[Cook 1971]. The NP-completeness of CLIQUE now follows from (i) its member

ship of NP, {ii) the polynomial-boundedness of the reduction, and (iii) the, 

NP-completeness of SATISFIABILITY. 

CLIQUE« VERTEX PACKING: 

V' = V; 

E' = {{i,j}ji # j, {i,j} t E}; 

k' = k. 

Cf. Figure 3. A set of vertices is independent in G' if and only if it is a 

clique in the complementary graph G. This relation between the two problems 

belongs to folklore_ 

Fi~re 2 Instance of CLIQUE for the e~ample. 

F~.9?:1;',e 3 Instance of VERTEX PACKING for the exampl.e. 

3 

5 

!~-~~;'8: 4 Instance of VERTEX COVER for the example. 



VERTEX PACKING« VERTEX COVER: 

V = V'; 

E = E'; 

k = IV I 1-k 1 
• 

Cf. Figure 4. It is well known that a set of vertices covers all edges if 

and only if its complement is independent. 

Related results 
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Given the above results, it is not surprising (though less easy to prove) 

that the problems of determining whether the vertex set of a graph can be 

covered by at most k cliques or, after complementation, by at most k inde

pendent sets are NP-complete [Karp 1972]. These problems are known as 

CLIQUE COVER and GRAPH COLORABILITY respectively. In fact, it is already 

an NP-complete problem to determine if a planar graph with vertex degree 

at most 4 is 3-colorable [Garey et al. 1976D], whereas 2-colorability is 

equivalent to bipartiteness and can be checked in polynomial time. 

3.3. SET PACKING, SET COVER & SET PARI'ITION 

• 

SET. PACKING: Given a finite set S, a finite family S of subsets of Sand 

an integer 1, does S include a subfamily S• of at least i pairwise 

disjoint sets? 

SET COVER: Given a finite set S, a finite family S of subsets of Sand an 

integer 1, does S include a subfamily S• of at most 1 sets such that 

U S ' - S? 
S 1 eS 1 - • 

SET PARTITION (EXACT COVER): Given a finite set Sand a finite family S of 

subsets of S, does S include a subfamily S• of pairwise disjoint sets 

such that Us•eS• S' = S? 

NP-completeness 

VERTEX PACKING« SET PACKING: 

s = EI; 

S = {{{i,j}j{i,j} E E'}li e v•}; 

= k, .. 

VERTEX COVER~ SET COVER: 

delete the primes in the above reduction. 
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VERTEX PACKING and VERTEX COVER are easily recognized as special cases of 

SET PACKING and SET COVER respectively, and these reductions require no 

further com111ent. 

VERTEX PACKING~ SET PARTITION: 

S = E' U {1, .... ,k'}; 

€ V', h = l, ... ,k'} 
1., J 

E E'}, where 

€ E, i' = i} u {h}, 

Cf. 

s
1

h = {{i',j}l{i',j} 

Figure 5. Suppose that G' has an independent set U' c V' of size k', 

' 

say, u• = {v , ••• ,v }~ Then the sets S 1 , ••• ,s k• are pairwise disjoint, 
1 k • v1 vk' 

and the elements of Snot contained in any of them belong to E'. It follows 

that a partition of Sis given by 

v 1 vk • l., J 
€ E', ii U', j ;_ U'}. 

Conversely, suppose that there exists a partition S 1 of s. Then S' contains 

k' pairwise disjoint sets Sv 1, ••• ,Sv k'' and the vertices v 1 , ... ,vk' 
1 k' 

clearly constitute an independent set of size k' in G'. 

This reduction simplifies the NP-completeness proof given in [Karp 1972]. 

s 

{1,2} @ • • 
{2,3} • 
{2,4} • • 
{3,4} • • • 
{4,5} • • 

1 

2 
• 

3 

r~f.2!!!e. ,,5,, Instance of SET PARTITION for the example. 

Related results 

Even the EXACT 3-COVER problem, where all subsets in Sare constrained to 
• 

be of size 3, is NP-complete, since it is an obvious generalization of the 

3-DIMENSIONAL MATCHING problem, proved NP-complete in [Karp 1972]. An EXACT 
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2-COVER corresponds to a perfect matching in a graph, which can be found in 

polynomial time. The existence of good matching algorithms proves that EDGE' 

PACKING and EDGE COVER problems are members of P. 

3.4. DIRECTED & UNDIRECTED HAMILTONIAN CIRCUIT 

DIRECTED HAMILTONIAN CIRCUIT: Given a directed graph H = (W,A), does H have 

a directed cycle passing through each vertex exactly once? 

UNDIRECTED HAMILTONIAN CIRCUIT: Given an undirected graph G = (V,E), does 

G have a cycle passing through each vertex exactly once? 

• 

NP-completeness 

VERTEX COVER~ DIRECTED HAMILTONIAN CIRCUIT: 

W = {(i,j),{i,j},(j,i) l{i,j} EE} u {1, ... ,k}; 

A= {((i,j),{i,j}),({i,j},(i,j)),((j,i),{i,j}),({i,j},(j,i))l{i,j} EE} 

u { ( (h,i), (i,j)) I {h,i} ,{i,j} € E, h f; j} 

u { ((i,j) ,h),(h,(i,j)),((j,i) ,h),(h,(j,i)) l{i,j} EE, h=1, .... ,k}. 

Cf. Figure 6. For each edge {i,j} in G we have created a configuration in 

H consisting of three vertices (i,j) ,{i,j},(j,i) and four arcs, as shown 

in the figure. The configurations are linked by arcs from (h,i) to (i,j) 

for hf j. Further, we have added k vertices 1, ••. ,k and all arcs between 

·them and the vertices of r.ype (i,j). 

Suppose that G has a vertex cover Uc V of size k, say, U = {v1 .•• ,vk}. 

The edge set E can then be written as 

E = = 1, .... ,k} 
h 

and it is easily checked that a hamiltonian circuit in His given by 

• • • 

Conversely, suppose that H has a hamiltonian circuit. By deletion of all 

arcs incident with vertices 1, .•. ,k, the circuit is decomposed into k paths. 

A path starting at (i,j) for {i,j} € E has to go on to visit {i,j} and 

(j,i); then it ends or goes on to visit (i,j') ,{i,j'},(j',i) for some 
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{i,j'} ! E, etc. Thus, this path corresponds to a specific vertex i Ev, 

covering edges {i,j},{i,j'}, etc. Since the circuit passes through each , 

{i,j} exactly once, each edge {i,j} €Eis covered by one of k specific 

vertices, which therefore constitute a vertex cover of size kin G. 

The above reduction is a modification of the original construction 

due to E.L. Lawler [Karp 1972], based on ideas of M. Furer [Schuster 1976] 

and P .. van Emde Boas. 

(2,3 

2,3 

(3,2 

1,2 2,4 

2,4 

4,2 

-.. -

3,4 

3,4 

4,3 

I 

I 

' l 
I 

l 
I 
l 
I 
I 
I 
1 
I 

' I 
I 

I 
I 

I 

4,5 

4,5 

5,4 
.,,.. 

---

!i2::;l!:~ .. , .? .. Instance of DIRECTED HAMILTONIAN CIRCUIT for the example. 

Not all arcs incident with vertices 1, ••• ,k have been drawn. 

DIRECTED HAMILTONIAN CIRCUIT« UNDIRECTED HAMILTONIAN CIRCUIT: 

V = { (i,in), (i,mid), (i,out:) Ii E: i-1}; 

E == {{ (i,in), (i,mid)} ,{ (i,mid), (i,out)} li E w} 

u { { (i,out), (j ,in)} J (i,j) E A}. 

The one-one correspondence between undirected hamiltonian circuits in G and 

directed hamj,ltonian circuits in H is evident. This reduction is due to 

R.E. Tarjan [Karp 1972]. 
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Related results 

The above results have been strengthened in various ways. For instance, the 

UNDIRECTED HAMILTON.IAN CIRCUIT problem remains NP-complete if G is planar, 

triply-connected and regular of degree 3 [Garey et al. 1976E] or if G is 

bipartite [Krishnamoorthy 1975]. The latter result is a simple extension of 

the last reduction given above and we recommend it as an exercise. 

NP-hardness of the (general) TRAVELING SAI£SMAN problem is another 

obvious consequence. Intricate NP-hardness proofs for the EUCLIDEAN TRAVEL

ING SAI,ESMAN problem can be formd in [Garey et al.. 1976A; Papadimitriou 

1977]. It is well known that TRAVELING SALESMAN is a special case of the 

problem of finding a maximum weight independent set in the intersection of 

three matroids. Thus, the 3-MATROID INTERSECTION problem is NP-hard, where

as 2-MATROID INTERSECTION problems, such as finding an optimal linear 

assignment or spanning arborescence, oan be solved in polynomial time 

[Lawler 1976B]. 

The TRAVELING SALESMAN problem serves as a prototype for a whole class 

of routing problems where, given a mixed graph consisting of a set V of 

vertices, a set E of (rmdirected) edges and a set A of (directed) arcs, a 

salesman has to find a minimum-weight tour passing through subsets V' c V, 

E' c E and A' c A. If V' = ~, E' = E and A'= A, we have the CHINESE POST

MAN problem, which can be solved in polynomial time in the undirected or 

directed case (A=~ or E = ~) [Edmonds 1965B; Edmonds & Johnson 1973], but 

is NP-hard in the mixed case [Papadimitriou 1976]. For the case that only 

V' = 0, NP-hardness has been established for the UNDIRECTED and DIRECTED 

RURAL POSTMAN problems (A=~ and E =~respectively) [Lenstra & Rinnooy 

Kan 1976] and for the STACKER-CRANE problem (E' =~,A'= A) [Frederickson 

et al.. 1976]. 

3.5. 0-1 PROGRAMMING, KNAPSACK & 3-PARTITION 

0-1 PROGRAMMING: Given an integer matrix A and an integer vector b, does 

there exist a 0-1 vector x such that Ax~ b? 

KNAPSACK: Given positive integers a 1 , ... ,at,b, does there exist a subset 

Tc {1, ... ,t} such that 2- Ta.= b? 
JE J 

3-PARTITION: Given positive integers a , ... ,a ,b, do there exist t pair-
1 3t 

wise disjoint 3-element subsets 

(i = 1, ... ,t)? 

s. c {1, ... ,3t} such that l· 8. i JE i 
a • = b 

J 

' 
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NP-completeness 
' 

SATISFIABILITY~ 0-1 PROGRAMMING: 

1 if X. 
• J.S a literal in clause C. ' l. J 1, ... ,s, • (i J -- clause C. I 

- -• literal • --1 if J.S a J..n 1 , ••• , t) ; 
x. a .. -- l. 

l.J J 
0 otherwise 

1 { j I xj • clause c.}I (i - 1, .... ,s). • literal -b = 1 l.S a J..n - l. i 
Cf. Figure 7 and [Karp 1972]. 

> 1 

1 

7 Instance of 0-1 PROGRAMMING for the example • 
• 

SET PARI'ITION ~ KNAPSACK: 

Given S = and S = {S , ••• ,s }, we define 
1 t 

1 if e. € s. 
l. J (i 1, ••• ,s, • 1, ••• ,t), - J -e: . . - - --

l.J 0 if e. s. 
l. J 

u = t+1, 

and specify the reduction by 

tS i-1 
a.= l· 1 e:, .u 

J 1= l.J 
(j=l, ••. ,t); 

s 
b = (u -1)/t. 

Cf .. Figure 8. The one-one correspondence between solutions to KNAPSACK and 

SET PARTITION is easily verified [Karp 1972]. 
• 

Given this result, the reader should have little difficulty in estab

lishing NP-completeness for the PARTITION problem, i.e. KNAPSACK with 

t~ 1 a.= 2b. 
lJ= J 

3-PARTITION has been proved NP-complete through a complicated sequence of 

reductions, which can be found in [Garey & Johnson 1975]. 
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e ,. ,. r 1 2 3 4 5 6 7 '8 9 10 11 12 13 14) 16 17 8 19 20 a. 
~j ' ' ., • j 
+-+ 

0 1 '1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 e1 -·u + • 
j 1 ., 1 2 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 e2 ,•U + " .. 
j 2 

3 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1" 0 0 ... . 

4 0 0 1 1 0 0 0 , 1 1 " . 0 0 0 1 1 0 0 0 0 1 0 
5 0 0 0 1 1 0 0 0 1 1 0 0 0 1 ·1 0 0 0 0 1 £5 ,• U + ' . 

j 5 
6 . 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. . 
7 0 0 0 0 0 1 1 , 1 1 1 0 0 0 0 0 0 0 0 0 0 £7 #. u + 

' 
j 7 8 0 0 0 0 0 0 a 0 0 0 1 1 1 1 '1' 0 0 0 0 0 eBj•U ' . 

Figure 8 Instance of KNAPSACK for the example, wheres= 8, t = 20, u = 21. 

Binary vs. unary encoding 

KNAPSACK was the first example of an NP-complete probJem involving numeri

cal data. The size of a problem instance is O(t log b) in the standard 

binary encoding and O(tb) if a unary encoding is allowed. Readers will have 

noticed that the reduction SET PARTITION« KNAPSACK is polynomial-bounded 

only with respect to a binary encoding. Indeed, KNAPSACK can be solved by 

dynamic programming in O(tb) time [Bellmore & Dreyfus 1962], which might 

be called a pseudopolynomial algorithm in the sense that it is polynomial-
, 

I 

bounded only with respect to a unary encoding. Thus, the binary NP-complete-

ness of KNAPSACK and its unary membership of Pare perfectly compatible 

results1 although it tends to make us think of KNAPSACK as less hard than 

other NP-complete problems. 

3-PARTITION was the first example of a problem involving nt.lmerical 

data that remains NP-complete even if we measure the problem size by using 

the actual n1.1mbers involved instead of their logarithms. This strong or 

unary NP-completeness of 3-PARTITION indicates that already the existence 

of a pseudopolynomial algorithm for its solution would imply that P = NP 

[Garey & Johnson 1978B]. 

Quite often, a binary NP-completeness proof involving KNAPSACK or 

PARTITION can be converted to a unary NP-completeness proof involving 3-

PARTITION in a straightforward manner. Occasionally, however, the polyno

mial-boundedness of a reduction depends essentially on allowing a unary 
• 

encoding for 3-PARTITION. An example of such a reduction is given in the 

next section. 

b 

uo+ 

ul+ 
u2+ 

u3+ 
u.4+ 

u5+ 
u6+ 
u7 
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3.6. 3-MACHINE UNIT-TIME JOB SHOP 

3-MACHINE UNIT-TIME JOB SHOP: Given 3 machines M1,M2,M3 each of which can 

· b t a time, n J'obs J 1 , .... ,Jn where JJ. {j = 1, process at most one JO a 
· the h th of which 

.... ,n ) Consists of a chain of unit-time operations, -
1, and 

a Schedule with length at most k? an integer k, does there exist 

NP-completeness 

3-PARTITION « 3-MACHINE UNIT-TIME JOB SHOP: 

n = 3t+2; a. 

t 
1 J } ; 

b t 
~n = ([M3,M2,M3,M2,M1,M2,[M3,M1] ,M2,M1,M2] ); 

k = (2b+9)t; 

where [s]h = s,(s]h-l for h > 1 and [s] 1 = s. 

Note that both J 
1 

and J consist of a chain of operations of length 

' 

n- n 
equal to the threshold k. We may assum~ the h-th operations of these chains 

to be completed at time h, since otherwise the schedule length would exceed 

k. This leaves a pattern of idle machines for the other jobs that can be 

described as 

(cf .. Figure 9). we will show that this pattern can be filled properly if 

and only if 3-PARI'ITION has a solution. 

Suppose that 3-PARTITION has a solution ( S 1 , .... , St} . In this case, 

processing Jj with j e Si entirely within the interval [(2b+9) (i-1} ,(2b+9)i] 

(j • 1, •.. ,3t, i = 1, .•• ,t) yields a schedule with length k • 
• 

Conversely, suppose that there exists a schedule with length k. We 

will prove that in such a schedule exactly three jobs are started in 

(0,2b+9l and that they are completed in this interval as well; clearly, 

these jobs indicate a 3-element subset S with I a = b. One easily 
1 j€S1 j 

proves by induction that Si is similarly defined by the jobs started and 

completed in ( (2b+9) (i-1), (2b+9)i] {1 < i s t). 

If Jj starts in (0 ,2b+9], its subchain of operations completed in that 

interval is of one of four types: 
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type 1: 

type 2: 

type 3: 

type 4: 

h 
(M1,M3,[M1,M2] ) 

[ a. 
(M1,M3, Ml,M2] J,M3). 

(0 ~ h 

(0 sh 

::; a.); 
J 

< a.); 
J 
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' 

Let x. denote the n11mber 
1. 

tions on M
2 

in subchains 

of subchains of type i and y. the ntJmber 
1. 

of type i. We have to prove that x 1 = x 2 

of opera

= X = 0, 
3 

x
4 

= 3. Observing that a 

periods, we have 

schedule of length k contains no idle unit-time 

(2) 

(3) x
2 

Subtracting (1) 

+ 

from the sum 

+ 2x4 
of (2) 

therefore x
4 

~ 3. Also, (3) implies 

and x 1 = x2 = x 3 = 0. 

- -- -
1 

I - I • 
I I 

I I 

:F - • 

.l I 1 

0 • 3 6 

+ y 4 = b; 

= 6. 

and (3), we obtain -x1-x3+x4 = 3 and 

that x 4 s 3. It follows that x 4 = 3, 

-- • • 
I I 

I 

- I 

I I 

-' I 

I 

I I " 

2b+6 2b+9 

' 
operation 

opera ti on 

operation 

of J - (1 < j < 3~) 
j 

t= I of Jn-1 
of J - n 

Figure 9 First part of 3-MACHINE UNIT-TIME JOB SHOP schedule corresponding 

to an instance of 3-PARTITION with b = 7. 

Related results 

The complexity of the 2-MACHINE UNIT-TIME JOB SHOP problem is unknown; to 

introduce a competitive element we shall be happy to award a chocolate 

windmill to the first person establishing membership of P or NP-complete

ness for this problem. If the processing times of the operations are allow

ed to be equal to 1 or 2, the 2-machine problem can be proved NP-complete 

by a reduction similar to (but simpler than) the above one; this improves 

upon related results given in [Garey et al. 1976C; Lenstra et al. 1977]. 

If each job has at most two operations, the 2-machine problem belongs to 
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P even for arbitrary processing times [Jackson 1956]. 

I These results form but a small fraction of the extensive complexity 

analysis carried out for scheduling problems. We refer to [Ullman 1975; 

Garey & Johnson 1975; Coffman 1976; Garey et al. 1976C; Lenstra et al. 1977; 

1978] Lenstra & Rinnooy Kan 1978A] for further details and to [Graham ec al. 

for a concise survey of the field. 
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4. CONCLUDING REMARKS 

We hope that the preceding section has conveyed some of the flavor and ele

gance of NP-completeness results. In only a few years an impressive amount 

of results has been obtained. Nevertheless, there are still plenty of open 

probiems, for which neither a polynomial algorithm nor an NP-completeness 

proof is available. We shall mention four famous ones, on whose complexity 

status little or no progress has been made so far. 

(a) GRAPH ISOMORPHISM 
• 

' 

This is the problem of determining whether there exists a one-one mapping 

between the vertex sets of two graphs which preserves the adjacency rela

tion. The essential nature of the problem does not change if we restrict 

our attention to graphs of certain types such as bipartite or regular ones; 

these problems are polynomially equivalent to the general case [Booth 1976]. 

The status of the problem is totally unknown and we do not dare to guess 

the final outcome. 

(b) MATROID PARITY 

This problem is interesting because it generalizes both the matroid inter

section problem and the nonbipartite matching problem [Lawler 1976B]. De

spite-serious investigation, its status is far from clear. A special case 

of the matroid parity problem is as follows. Given a connected graph G 

with an even n11mber of edges, arbitrarily paired (i.e. , each edge e has 
-a uniquely defined mate e), does G have a spanning tree T with the property 

that if an edge is contained in T, then its mate is in T as well? An NP

completeness proof for this special case would, of course, resolve the 

question for the general problem. On the other hand, a polynomial-time 

algorithm for this special case would probably suggest a similar procedure 

for the general problem. 

(c) 3-MACHINE UNIT-TIME PARALLEL SHOP 

This problem involves the scheduling of unit-time jobs on three identical 

parallel machines subject to precedence constraints between the jobs, so 

as to meet a common deadline of the jobs. For a variable number of machines,, 

the problem is NP-complete [Ullman 1975; Lenstra & Rinnooy Kan 1978A]; the 

special case of tree-type precedence constraints can be solved in poly

nomial time [Hu 1961]. The 2-machine problem belongs to P [Coffman & Graham 
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1972], even if for each job a time-interval is specified in which it has to 

be processed [Garey & Johnson 1977]. The 3-machine problem has remained 

open in spite of vigorous attacks. In this case we would be willing to 

extrapolate on the magic quality of three-ness and conjecture NP-complete-

ness. 

(d) LINEAR PROGRAMMING 

• 

, 

This is perhaps the most vexing open problem. The simplex method perfoz:·ms 

very well in practice and usually requires time linear in the number of 

constraints. On certain weird polytopes, however, it takes exponential time 

[Klee & Minty 1972). Fortunately, in this case there is circ11mstantial 

evidence against NP-completeness. Thanks to duality theory, determjning the 

existence or nonexistence of a feasible solution are equally hard problems, 

and NP-completeness of LINEAR PROGRAMMING would therefore imply NP-complete

ness for the complements of all other NP-complete problems as well. How

ever,, as mentioned, it is not even known whether the complement of any NP

complete problem belongs to NP. In addition to the above rather technical 

arg11ment, it seems highly unlikely that all NP-complete problems would allow 

a polynomial-bounded linear programming fo:r:111ulation. 

Interpretation of NP-completeness results as more or less definite proofs 

of computational intractability has stimulated the design and analysis of 

fast approximation algorithms. 

With respect to the worst-case analysis of such algorithms, a wide 

variety of outcomes is possible. We give the following examples. 

( 1) For the optimization version of the KNAPSACK problem, a solution with

in an arbitrary percentage e: from the optim11m can be found in time 

polynomial int and 1/e [Ibarra & Kim 1975A; Lawler 1978B]. 

(2) For the EUCILDEAN TRAVELING SALESMAN problem, a solution within 50% 

from the optim1lm can be found in polynomial time [Christofides 1978; 

Cornuejols & Nemhauser 1978]. 
( 3) F th or · e GRAPH COLORABILITY problem, a solution within 100% from the 

optimum cannot be found in polynomial time unless p = NP [Garey & 

Johnson 1976A]. 

(4) th 
For .·· e general TRAVELING SALESMAN problem, a solution within any 

fixed percentage from the optimum cannot be found in polynomial time 

unless P ~ NP (Sahni & Gonzalez 1976]. 

ff,e ref•r to [Garey & Johnson 1976C.] for a survey of this area. Impressive 
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advances have been made and more can be expected in the near future. 

The above approach to performance guarantees may be accused of being 

overly pessimistic - cf. the simplex method with its exponential worst-case, 

behavior! The probabilistic analysis of average or ''almost everywhere'' be

havior, however, requires the specification of a probability distribution 

over the set of all problem instances. For some problems, a natural distri

bution function is available and some intriguing results have been derived 

[Karp 1976], although technically this approach seems to be very demanding. 

The worst-case analysis of approximation algorithms shows that there 

are significant differences in complexity within the class of NP-complete 

problems. These problems might be classifiable according to the best possi-
• • 

ble polynomjal-time performance guarantee that one can get (cf. [Ausiello 

& D'Atri 1977; Paz & Moran 1977]). Another refinement of the complexity 

measure may be based on the way in which numerical problem data are encoded, 

i.e. on the distinction between binary and unary encoding mentioned in 

Section 3.5. Several other ways of measuring problem size could be devised 

and each of them could be subjected to a complexity analysis, producing new 

information on the best type of algorithm that is likely to exist. 

The concluding remarks above were intended to confirm to the reader 

that the field of computational complexity is still very much alive. In the 

first place, however, the theory of NP-completeness has yielded highly use

ful tools for the analysis of combinatorial problems that deserve to find 

acceptance in a wide circle of researchers and practitioners. 
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ABSTRACT 

The basic ground ruies of worst-case analysis of heuristics are reviewed 

and a large variety of the existing types of worst-case results are de

scribed in terms of the knapsack problem. A selected sample of results for 

other problems is also given • 
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1. INTRODUCTION 

One of the significant developments in the field of combinatorial optimiza

tion during this decade was the identification of a large class of important 

problems that are probably computationally intractable. To be more precise, 

it is conjectured that any algorithm for these problems must, in the worst 

case, require an amount of computation time that grows exponentially in the 

size of the problem input. Two pieces of evidence support this somber pre

diction. First, all known algorithms for these problems have exponential 

worst-case running time. Second, Cook [Cook 1971] and Karp [Karp 1972, 

1975A] have used the concept of NP-completeness to show that these problems 

are equivalent in the sense that if any of them can be solved in less than 

exponential time, they all can. The list of NP-complete problems is long 

and includes many important examples in scheduling, location, routing and 

graphical optimization. 

An individual who must face one of these problems as part of his daily 

life is frequently bewildered when told that his problem is extremely dif

ficult. While he may regard problem definition, collection of relevant data 

or implementation of results as challenging tasks, the computation of a 

solution is rarely difficult for him because he is willing to resort to 

simple heuristic methods. These methods require little computation and 

usually produce solutions that are acceptably close to optimal. Computa

tional economy is one obvious reason for employing heuristics. Their use is 

sometimes also dictated by a problem setting that requires that a solution 

be computed dynamjcally before all problem data are known. For example, 

this is often the case with scheduling problems. 

Until recently, forrnal research on heuristic methods contained large 

doses of art and empiricism and there was a tendency to regard heuristics 

as somehow less elegant than optimization methods. Of course, there is no 

reason why a rigorous treatment of approximation methods need be inelegant. 

Recently a n11mber of analytic results have appeared that might be regarded 

as first steps toward a theory of heuristics. These results provide various 

kinds of information about a he11ristic to assist a problem solver who must 
• 

select among alternative heuristics or a designer of heuristics who wishes 

to evaluate his latest creation. Two distinct approaches have been taken to 

he11ristic analysis: worst-case and probabilistic. Worst-case results estab

lish the maximum deviation from optimality that can occur when a specified 

heuristic is applied within a given problem class. In a probabilistic 



approach, one assumes a density function for the problem data and tries to 

tista.blish pro.babilistic properties of a heuristic, such as a bound on the 

probability that the heuristic finds a solution within a prespecified per

centage of optimality. A general description of the probabilistic approach 

is available in [Karp 1976) and a specific application to the traveling

salesman problem is discussed in this vol11me [Karp 1977 J. 

It should be clear that worst-case and probabilistic analyses offer 

different advantages and limitations in achieving the basic objective of 

predi.cting the performance of a heuristic. Therefore, these methods, to-· 

gether with computational testing, should be viewed as complementary rather 

than competitive. In assessing the limitations of either approach it is 

also important to realize just how new this field is. A recent bibliography 

[ Garey & Johnson 1976C] provides a thorough compilation of references 

through mid-1976. Of the 48 papers listed in this bibliography, only 3 have 

publication dates prior to 1972. An optimist would expect that there is 

substantial opportunity for improving our ability to predict heuristic 

perforn~ance .. 

These methods can also be employed for broader purposes than the study 

of a specific heuristic. 

The effect of approximations in models can be studied using either 

worst-case or probabilistic analysis in a manner that parallels heuristic 

analysis both philosophically and technically. For example, the effect of 

various levels of ma.rket aggregat.ion in a location model might be studied. 

Studies of this type have been conducted by Geoffrion [Geoffrion 1977A, 

1977B] using a worst-case approach. 

Another natural extension is to use these methods to study the perfor

-.nce of relaxations designed for obtaining lower bounds in a branch-and

bound algorithm. For exar11ple, a worst-case result for a linear progran11t1i ng 

relaxation of the uncapacitated location problem has been reported in 

[Cornuejols et al.. 1977]. 

These methods can also be of value in understanding the perforruance of 

opti•izing algorithms, such as branch-and-bound, that employ he11ristics and 

relaxations. Also, while it is important to have the option of pursuing the 

opt,i.lll'LUI, one must also be prepared for the possibility that this pursuit 

will he uneconomical for some large problems. If the algorithm is ter1i:1inated 
••rly, worst-case or probabili t· 1 

· · · s 1.c ana ysis can provide useful predictions 

About the quality of the suboptimal solutions obtained. 

Finally, research on heuristics might further refine the problem 
taxon-

I 
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omy offered by complexity theory. For example, NP-complete problems might be 

classified by how amenable they are to heuristic solution. Some preliminary' 

results along these lines are given in [Garey & Johnson 1978B]. 

This paper provides an introduction to the worst-case analysis of heu

ristics. In Section 2 the basic ground rules of worst-case analysis are re

viewed and a large variety of the existing types of worst-case results are 

described in terms of the knapsack problem. Section 3 gives a selected sam

ple of results for other problems. Although the list of references for this 

paper is long, it is not intended to be a comprehensive survey. For a com

prehensive listing of references through mid-1976, consult the bibliography 

in [Garey & Johnson 1976c]. 
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2. FUNDAMENTALS OF WORST-CASE ANALYSIS 

In this section the knapsack problem is used to introduce the fundamental 

concepts of worst-case analysis of heuristics and to illustrate the type of 

results that have been obtained. The standard knapsack problem is concerned 

with optimally filling a knapsack of capacity busing n items. Item j has 

value p. 
J 

and weight a .• 
J 

The problem is formulated as follows. 

Z = max p.x. 
J J 

a.x. ~ b, 
J J 

x. ~ 0 and integral, j = 1, ••• ,n. 
J 

(1} 

(2) 

(3) 

We assume that n, b, pj and aj are 

all j. The 0-1 knapsack problem is 

positive integers satisfying a. s b for 
J 

a variation in which (3) is replaced by 

the requirement that x. = 0 or 1. 
J 

Despite the simplicity of this model, a number of heuristic solution 

methods have been proposed and studied analytically. These knapsack heuris

tics and worst-case analyses are representative of much of the general re

search on worst-case performance of heuristics for combinatorial problems. 

The ground rules of a worst-case analysis are simple. The analysis is 

always conducted with respect to a well-defined heuristic and set of prob

lem instances. Let P denote the set of problem instances, IE Pa particular 

problem instance, Z(I) the optimal value of problem I, and ZH(I) the value 

obtained when he11ristic H is applied to problem I. We assume that heuristic 

His suitably specified to uniquely define z8 (I). In terms of the standard 

knapsack problemr I is defined by a vector of integers consisting of a pos

itive integer value n denoting the number of items and a (2n+1)-tuple of 

positive integers p 1 , ••• ,pn,a1 , ••• ,an,b that 

the set of all such n and {2n+1)-tuples. 

satisfy a. ~ b for all j. P 
J 

• 
J.S 

We ass12me throughout this section that we are dealing with maximization 

problems for which Z {I) :?:: 0. Given a real number r s 1, he11ristic H is said 

to solve problem class P within r if 

ZH{I) ~ rZ(I) for all IE P. ( 4) 

In analyzing a he1.Jristic we would like to find the largest r for which ( 4) 

holds. This value is called the worst-case perfor11zance rat;io. we know that 

a given r is the largest possible if we can find a single problem instance 
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I for which ZH(I) = rZ(I) or an infinite sequence of instances for which 

z
8

{I)~rZ(I) approaches zero. For notational simplicity we will drop the 

argt.tment I on ZH(I) and Z(I) throughout the remainder of the paper with the 

understanding that Z and Z are always defined for a particular problem 
H 

• instance. 

The first heuristic we will consider for the knapsack problem is called 

a greedy heuristic. It is convenient to assume that items are indexed so 

that p 1/a1 ~ p 2/a2 ~ •·· 2 pn/an. A greedy heuristic can be given for either 

the standard or 0-1 knapsack problems. For the standard problem items are 

considered in index order (decreasing p./a.). We 
J. J. 

place as many integral 

units of each new item into the knapsack as will fit in the remaining capac

ity. In the case of the 0-1 problem, a single unit of each new item is 

placed into the knapsack if it fits. 

A fo.r1nal description of the greedy heuristic that applies to both ver

sions of the knapsack problem can be given if we introduce an upper bound 

u. on 
J 

x .• For the 0-1 
J 

knapsack problem u. = 1, while for the standard prob
J 

lem u. = [b/a.] where 
J 

[y] denotes the largest integer less than or equal 
J 

toy. 

Greedy heuristic 

1. 

2. 

3. 

-Set j = 1 and b = b. 

Set x. = min{u.,[b/a.]} and b = b-a.x .• 
J J J J J 

Stop if j = n. Otherwise set j = j+1 and go to 2. 

If the items have been presorted so that p 1/a1 2>; p 2/a2 :?:: • • • :?:: Pn/an, 

greedy runs in O(n) time. Sorting the items requires O(n log n) time. 

It is easy to see that for the standard knapsack problem greedy has a 
1 

worst-case perfor11,ance ratio of r = 2• Let ZG denote the value of a greedy 

knapsack packing and z the value of an optimal packing. Clearly ZG:?:: 

p 1 [b/a1]. Solution 

1axed provides the 

of (1)-(3) with the integrality requirement on xj re

upper bound p
1 

(b/a
1

) ~ Z. Together these results imply 

[b/al] 1 
- ------------=- > -- [b/a

1
]+(b/a

1
-[b/a1]) - 2· 

The second inequality follows from [b/a1 ] 2'; 1 2'; (b/a 1-[b/a1]). To show that 

pl= a
1 

= k+l, p
2 

= a 2 = k, and b = 2k fork= 1,2, •.•• For this series 

Z = 2k and ZG = k+1, so ZG/Z can be 

• 
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Obviously, for any heuristic and problem class the worst-case perfor

mance ratio must be at least O. The greedy heuristic applied to the 0-1 

knapsack problem is a case which shows that the worst-case performance can 

o. The • of examples 2, P1 = a - 1, P2 - a2 - k be as bad as series n = - - - I 1 
b = k, k - 1, 2, ••• has ZG - 1 and z = k so ZG/Z can be arbitrarily close - -

Such a heuristic • said to be arbitrarily bad for the given prob-to zero. l.S 

lem class. 

Since greedy is arbitrarily bad for the 0-1 knapsack problem, one might 

ask whether there is any polynomial-time he1Jristic for this problem with 

r > 0. The answer is yes; in fact there are heuristics with r arbitrarily 

close to 1. The first method of this type to be suggested involves partial 

enumeration of subsets of items. The he1.1ristic is parameterized by an inte-

ger k, has a worst-case performance ratio of r k . k+l = k+l and requires O(kn ) 

computation. For S ~ {1, ••• ,n} let ZG(S) denote the value 

ing of items from {1, ••• ,n}-s into a knapsack of capacity 

of a greedy pack

b - \'. S a .• The L.JE J 
k-th level partial enumeration algorithm obtains a solution by solving 

s.t. ' a ~ b, l . S . ]E J 

This problem is 

less. There are 

solved by 

lk n 
. 1(.) < 

enumeration of all sets S of cardinality k 
k 

kn such sets and computation of ZG(S) for 

or 

each J.= J. 

set requires at most O(n). Thus the time to compute ZE(k) is bounded by 
O (knk+l). 

Partial en1Jmeration was first proposed and studied by Johnson [Johnson 

1974B] for the case p. =a.for 
J J 

work to the general case. It is 

all j. Sahni [Sahni 1975] extended this 
k 

k+l z. shown in [Sahni 1975] that ZE(k) ~ 

The series of problem instances n = k+2 p = 2 a = 1 p = a = · b = 
' 1 ' 1 ' i i J, 

(k+l)j for j = 3,4, ••• has Z = (k+l)j and ZE(k) = kj+2 so this bound is 

tight for all k. 

A heuristic of this type is called a polynomial approximation scheme. 

Any performance ratio can be obtained and for a fixed performance ratio, 

the computational requirements are polynomial in problem size. The quantity 

1-r might be called the worst-case percentage ·error of a heuristic. As a 

' 

function 

is O( r 
1-r 

of 1-r the 
n1/(l-r))_ 

computation required by the partial enumeration scheme 
Thus, although the scheme can achiever arbitrarily close 
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to 1, the computation grows exponentially in the inverse of 1-r. 

This disadvantage is overcome in the following scheme for the 0-1 knap

sack problem in which r can be arbitrarily close to 1 and computational re

quirements grow polynomially in the inverse of 1-r. A method with this 

property is called a fully polynomial approximation scheme. 

There is a well-known dynamic programming algorithm in which the 0-1 

knapsack problem is solved by recursively solving a family of knapsack prob

lems that use some of the items and a portion of the knapsack. A variation 

on this approach will be given that forms the basis of the fully polynomial 

approximation scheme. Given integers y and k with 1 ~ k ~ n, let 

fk(y) = min 

s.t. 

a.x. 
J J 

p.x. ~ y, 
J J 

x. E {0,1}, j = 1, ••• ,k. 
J 

By convention set fk(y) know by definition 

that fk(y) = 0 if y ~ 0. Then fk(y) can be computed fork= 1, ••• ,n and 

y = 1,2, ••• by 

1 :$; y 

oo, y > P1, 

fk(y) = mjn{fk-1 (y),fk-1 (y-pk)+~}, k==2, ••• ,n. 

The 0-1 knapsack problem can be solved by computing fn(y) for y = 1,2, •••• 

Let K+1 be the least integer for which f {K+l) > b. Then the optimal value 
n 

is given by z = K. The optimal solution can also be obtained if a 0-1 index 

~(y) is maintained as fk(y) is computed. The index is given by 

and 

• 

• 

x 1 (y) = 1, 1 :5: y ~ Pi 

~(y) = 

• 

1, 

o, otherwise 

fork= 2, ••• ,n and y ~ 1. Then it is easy to verify that the solution 

• 

, 
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scheme for 

solving the 0-1 knapsack problem requires at most O(nd) evaluations of 

one might consider the possibility of economizing on computation by using 

a coarser scale for measuring profits. Specifically, for some A> 1 we 

might replace each p. by <p./A> where <a> denotes the smallest integer 
J J 

less than a. With this substitution, computational requirements become 
nd o ( A ) • For example, if p. is measured in dollars, then 

J 
using A = 100 is 

not 

equivalent to measuring profit in hundreds of dollars. If it is really im-

possible to measure item profits more accurately than to the nearest hun

dred dollars, introducing such a scale change makes perfect sense; we save 

two orders of magnitude in computation with no real loss in accuracy. More

over, even if item profits can be determined precisely to the nearest dol

lar, using scaled profits may be a desirable heuristj.c if the loss in op

timality due to scaling is outweighed by the savings in computation. 
-

To assess the loss in optimality due to scaling, let x denote an op-

timal knapsack solution - In -- . 1 p . x . , and 
J= J J 

2:: 
P n J J n J 

for all j. Also, since 11.<p ./>-.> 2:: p. and x is optimal for profits A<p. /A>, 
n - n J - J J 

ZS l., 1 A<p./A>x. ~ l· 1 (p.+>..)x. S ZDP(')+n.11.. Together these resul.ts give 
"]= J J J= J J /\ 

Thus to guarantee a specific 

which implies computational 

requirements are polynomial 

2 

perf orznance 

requirements 
• and the inn 

a fully polynomial approximation scheme. 

ratio r we would set A= (1-r)d/n2 

O(nd) --
A 

these 
-r 

• inverse of 1-r, we have obtained 

The version of the fully polynomjal approximation scheme presented 

here is simple and easy to explain. For operational purposes, there are 

more 

less 

complicated schemes based on sjrnilar principles that have running time 

-r these was given in [Ibarra & Kim 1975A]. 

Their scheme is improved upon in [Lawler 1978B], appearing in this volume. 

Fully polynomial approximation schemes exist for some other problem 

types. On the other hand, Garey and Johnson have shown that if a problem 

has a certain property defined in [Garey & Johnson 1978B], then no fully 

polynoml.al approximation scheme is possible. A number of important problems 

have this property. 

Dynamjc programming with data scaling is clearly more attractive than 

I 
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partial enilroeration for the 0-1 knapsack problem, at least for r 

Partial en11meration is still of interest, however, because it is applicable 

to other problems (specifically the uncapacitated location problem as de

scribed in [Nemhauser et al. 1978; Fisher et al. 1978B]) for which a fully 

polynomial approximation scheme is precluded by the Garey-Johnson result. 

Simple though they are, the foregoing analyses of knapsack problem 

heuristics illustrate a number of features that are typical of many worst

case analyses. Specifically: 

1. For a given heuristic H, a bound on ZH/Z is actually established by 

bounding the ratio of ZH to an upper bound on Z. This is not surprising 

since the whole reason for resorting to heuristics is that it is hard 

to get informa.tion about z. 
2. There is no single problem instance for which ZH/H achieves its mini

mum value. Rather, an infinite series of instances are required. 

3. Several types of worst-case performance are possible. At one extreme, 

a perfectly plausible heuristic has arbitrarily bad performance 

(r = 0). Another heuristic has a fixed performance ratio r between 0 

and 1. Other heuristics are parameterized and can have any performance 

ratio r satisfying O < r < 1. 

4. For fixed r, all heuristics have a running time that is polynomial in 

problem input. Most heuristic either run in polynomjal time or are 

iterative improvement methods (see Section 3.2) that can be made to 
• 

run in polynomial time by early termjnation. For heuristics where r 

may be varied, the running time can vary either exponentially in r 

(polynomjal approximation scheme) or polynornjally in r (fully polyno

mial approximation scheme). 

5. The e~amples that achieve the worst-case performance are quite spe

cialized and one might suspect that the worst-case performance is not 

pr.edictive of performance for a ''random'' problem. It is possible to 

compute more predictive performance bounds that are functions of one 

or more Sl.1mmary parameters of the problem inputs. For example, as a 

function of m = [b/max.{a.}], the bound for greedy for the standard 
J J 

• 

knapsack problem can be sharpened to 

[b/a1 ] 
> ------ b/a

1 

[b/a
1

] 
> -~--=:---- > - [b/a

1 
]+1 -

m 
• m+l 

This bound could provide useful information to someone contemplating 

the use of the greedy heuristic for the repetitive solution of knapsack 

• 
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problems for which it is known that the weight of all items are small 

relative to knapsack size. Despite their apparent usefulness, past 

research has not emphasized input dependent bounds. 

6. After executing the greedy heuristic one can compute what might be 

called an '•a posteriori'' bound. For the standard knapsack problem and 

the greedy heuristic this bound is equal to ZG/(b/a1) and is the tightest 

of the possible bounds we have discussed. It would be useful in deciding 

whether additional computational effort is warranted before using more 

elaborate heuristics or optimizing proced11rP.s • 

• 
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3. SELECTIVE SURVEY OF RESULTS FOR OTHER PROBLEMS 

This section will give a brief description of some results for three other 

problems: (1) parallel machine scheduling, (2) uncapacitated location, and 

(3) the traveling-salesman problem. These particular results have been 

selected to illustrate the diversity of worst-case research on heuristics. 

3. 1. Parallel ma,ch~.?e. schedul,in9 
-ihl ell 

In pioneering papers published in 1966 and 1969, Graham describes what 

is probably the first worst-case analysis of a heuristic. Graham was con

cerned with the following parallel machine scheduling problem. Given m 
• 

identical machines and n jobs, where each job j is to be processed on one 

of the machines for an uninterrupted interval of length pj, determine an 

assignment of jobs to machines that minimizes the earliest time at which 

all jobs are complete • 
• 

For simplicity, assuroP. that jobs are indexed so that p
1 

~ p
2 

~ ••• 

2:: p • The longest processing time (LPT) rule is a he11ristic for this prob-n 
lem that assigns jobs sequentially in increasing index order. Each job is 

assigned to the machine with the least processing already assigned. Assume 

ties in the choice of a machine are resolved in favor of the machine with 

smallest index. Figure 1 depicts the LPT and optimal assignments for an 

e~ample with m = 3, n = 7, and processing times 5, S, 4, 4, 3, 3 and 3. 

times 

the m:i .. nirnurn completion time. In [Graham 1969] it is shown that this is the 

worst that the LPT rule can do when m = 3. More generally, if ZLPT is the 

completion time of the LPT assignment and z the minimum completion time, 

then 

· machine 1 

machine 2 

machine 3 

• 

5 3 3 

5 3 

4 4 

• • • • • • • • • • • • 
0 8 11 

LPT assignment 

~is,zire .. ,1. Assignments for the example. 

5 4 

5 4 

3 3 3 

• • • • • • • • • • 
0 9 

optimal assignment 

' 
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There is a natural minimization analogue for the definition of worst-case 

performance ratio stated for maximization problems in Section 2. Given a 

real number r 2! 1, a he1Jristic solves a class of minimization problems 

within r if for every problem instance it finds a solution with cost no 

greater 
4 

than r times the optimal cost. Graham's result is an example with 
1 

r = - -3 3m· 
Graham's work has spawned a variety of results giving improved heuris

tics (such as [Coffman et al. 1978]) or dealing with variations of the basic 

model. This research is surveyed in [Garey et al. 1978]. In addition, a 

polynomi.al approximation scheme for this problem based on partial enumera

tion is given in [Graham 1966]. Fully polynomial approximation schemes based 

on dyn,ami.c prograttsroj ng and data scaling have been developed for various 

scheduling problems in [Sahni 1976]. The comprehensive survey of scheduling 

theory that appears in this volume [Graham et al. 1978] also contains a 

thorough discussion of approximation results. 

3.2. Uncapacitated location 

Given a set N = {1, ••• ,n} of possible facility locations, a set 

M = {1, ••• ,m} of markets, and a nonnegative 

from a facility at location j, where should 
• 

value c .. for serving market i 
1] 

K facilities be located to 

maximj_ze total value? Ass1.1mj_ng that each facility can handle any set of 

ma.rkets, each market should be served from the highest value available 

facility. Then the value of placing a facility at every location in the 

set S £ N is given by f(S) = l~ 1 max. 5{c .. } and the uncapacitated loca-
l.= JE J..J 

tion problem can be stated as 

(UL) 

Examples of this problem include the location of disbursement accounts to 
• • 

maximize payment float and the location of firehouses to maximjze the num-

ber of neighborhoods reachable within a specified time interval. 

Feasible solutions for (UL) can be obtained with a greedy heuristic 

similar to the one stated in Section 2 for the knapsack problem. This 

heuristic forms a solution in a single pass by selecting locations 

sequentially in an order that maximizes the increase in the objective at 

each step. The first location jl is selected to maximize f({j
1
}). If loca-

I 

, 
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tions j 1 , ••• ,jk, k < K have been selected, location jk+l is selected to 

maximize f({j 1 , ••• ,jk,jk+l}). This process stops when K locations have been' 

selected or when additional locations do not increase f. Assuming ties in 

selection are resolved in a well specified way, the value ZG of a greedy 

solution is well .defined. 

The analysis conducted in [Cornuejols et al. 1977] shows that the 

greedy heuristic satisfies 

(1 -
1 
-)Z 
e 

and that this bound is 1 
tight for all K. The bound 1 - - is also tight as K 

e 
approaches co. 

[cornuejols et al. 1977] also considered a local improvement or inter

change heuristic that begins with some solution set Sand attempts to im

prove it by replacing some element of S by an element of N-S. This process 

continues as long as improving interchanges can be made. Let z denote the 
I 

value of a solution set S that cannot be improved by the interchange of an 

element in S with an element in N-S. Then 

K 
2K-l z 

and this bound is tight for all K. 

All heuristics previously considered in this paper have required an 

a.mount of computation that is bo1.+nded by a low order polynomial of the 

problem size and certainly computational economy is a principal motivation 

for using a heuristic. For this reason, it is important to note that the 

interchange heuristic may require an exponential n11rnber of iterations. 

Consider the sequence of examples (given in [Nemhauser ec al. 1978]) 

defined for K = 2,3 ••• by m = K, n = 2K and 

• 

21.-1, • 2i-1, J --
• 

2 (21 -1), • 2i, C .• - J -- -
l.J 

o, otherwise. 

For K = 3 we have 

C = 
1 2 0 0 0 0 

0 0 3 6 0 0 

0 0 0 0 7 14 
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• 
and beginning at s

0 
= (1,3,5} the interchange heuristic can require 

23+1-(3+2) iterations and generate the sequence of solutions (1,3,5), 

(2,3,5) r {3,4,5) I (1,4,5) I (2,4 1 5) I (2 1 5 1 6) I (3,5,6) I (1,3,6) I (2,3,6) I 

(3,4,6), (1,4,6), and (2,4,6). It is easy to verify that a similar sequence 

exists for general K, beginning at (1,3,5, ••• ,K-3,K-1), ending at 
K+l . 

(2,4, ••• ,K-2,K) and requiring 2 -(K+2) iterations. 

Interchange heuristics have been given for a variety of other problems, 

the best known being the heuristic from [Lin & Kernighan 1973] for the 

traveling-salesman problem. For most of these, including [Lin & Kernighan 

1973], it is currently unknown whether or not an exponential number of 

interchanges can occur. 

The uncapacitated location problem also has a minimization version in 

which c .. is the nonnegative cost of serving market i 
J.J 

one must determine a set S that minimizes f(S) = I~=l 
from location j and 

min. 
8

{c .. } subject 
JE 1] 

to Isl s K. At first glance the distinction between maximization and mini-

mization might seem to be inconsequential. Both the greedy and interchange 

he1.1ristics can be modified for the minimization problem and for most opti

mj,zing algorithms, the problem of finding a minimizing location set is 

mathematically equivalent to the maximization problem. Unfortunately, this 

equivalence does not extend to the analysis of heuristics. Not only are 

the bounds for the greedy and interchange heuristics invalid for the mini

mjzation problem, but it is unlikely that any polynomial-time heuristic 

can be found that is not arbitra~ily bad in the worst-case. More precisely, 

letting Z denote the minimum value for a location problem and given any 

fixed r > 1, the problem of finding a location set with value ZA satisfying 

ZA ~ rZ is NP-hard. This follows because such a heuristic could solve the 

NP-complete vertex covering problem. Given a graph G = (V,E) with vertices 

V = { 1, .... ,n} and edges E, a vertex i is said to cover vertex j if i = j 

or if {i,j} EE. The vertex covering problem asks whether there is a set 

of K vertices that covers V. We can answer this question with a heuristic 

~ rZ for some fixed r by applying the heuristic to the that guarantees zA 

minimization location problem defined by M N {1 } d = = , ••• ,n an 

C ... = 
l.J 

1 -n 

r+l 

if i = j or {i,j} e E, 

otherwise. 

It is easy to verify that the answer is yes if and only if z = 1. 
A 

Similar results have been obtained for other problems. In the case of 

I 
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the traveling-salesman problem, although there is a polynomial-time heuris

tic given in [Fisher et al. 1978A] for finding a maximum length tour with 

a worst-case 

approximating the minimum length tour is NP-hard for finite r. For the 

problem of coloring the vertices of a graph with a minimum number of colors 

so that no two adjacent vertices receive the same colors, [Garey & Johnson 

1976A] gives an intricate construction showing that approximation is NP

hard for any r < 2. 

All of the results given in this section have been generalized in 

[Nemhauser et al. 1978; Fisher et al. 1978B] for a version of problem (UL) 

that allows a broader class of objective functions. A nl1mber of new results 

are also given in [Nemhauser et al. 1978; Fisher et al. 1978B], including 

a polynomial approximation scheme based on partial enumeration and results 

for a version of (UL) with more complicated constraints. [Nemhauser & 

Wolsey 1976] shows that the greedy heuristic for the general problem is 

''best'' in a well-defined sense • 

• 

3. 3. The tr~ve~ing-sal_e_s!11~.!1. problem • 

Let G = (V,E) be a complete graph with vertices V = {1, ••• ,n} and edges 

E = {{i,j}l1 $ i < j ~ n}. Let c .. be the length of the edge {i,j}. The 
1] 

well-known traveling-salesman problem requires an optimal tour, a minimum 

length cycle passing through each vertex exactly once. 

Many heuristics have been proposed for this model. When the edge 

lengths satisfy the triangle inequality ( C. . $ 
1.J 

cik+ckj for all i, j, and k) 

the following heuristic the best worst-case performance is achieved by 

recently given in [Christofides 1978]. Let EST~ Ebe the edges of a mini-

m11m 4- spanning tree and T s E the edges of a mi.nimt1m length tour. For any 

S C -
deletion of any edge from 

c. . • It is clear 
l..J 

T will produce a 

since the 

spanning tree. 

Let v
0 
~ V be the vertices which have odd degree in the tree EST and 

let Eo = {{i,j} E Eli€ Vo, j E Vo}. Since k = lvol is even, the graph 

GO = cv
0

,E
0

) has a perfect matching (an edge se·t for which each vertex has 

' 

degree 1). Let EPM ~ E be the edges of a minim1.1m length perfect matching of 

GO and without loss of generality, ass11roP. that T0 = {e12 ,e23 , ••• ,ek-l,k'ek1 } 

are the edges of a minimum length tour of G0 • Then 

1 S 2 Z(T). 



Tlie first inequality follows because {e12 ,e34 ,e56 , ••• ,ek-l ,k} and 

tit/I!, .<!<, e ,e } are perfect matchings. The second inequality 
L•23' 5 45'•••I k-2,k-1 kl 
follows because the edge lengths satisfy the triangle inequality. 

Define the multigraph G' = (V, E UE ) • Since every vertex of G' has 
PM ST 

even degree there is a closed walk (a cycle passing through each vertex at 

.least once) of length z8T+ZPM 

EPMUEST. By the triangle inequality the walk may be converted to a tour 

without increasing its length. 

In [cornuejols & Nemhauser 1978] it is shown 

bound and as a function of n may be 

that the perfoxmance 
3[n/2]-1 

sharpened to 2[n/2] • 

Other analyses of traveling-salesman problem heuristics have been conducted 

in [Rosenkrantz et al. 1977; Fisher et al. 1978A]. 
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ABSTRACT 

Given n rabbits R1 , .•• ,Rn, each having a different disease, and m plates 

P 1 , ••. ,Pm, smeared with different radioactive isotopes, we want to carry 

out nm experiments of placing each rabbit on each plate. Protective mem

branes have to prevent the rabbits from infecting each other or a plate 

and the isotopes from getting on another plate or on an animal. In each 
• 

experiment, we may put an arbitrary number of membranes on the plate under 

the rabbit. The same membrane may be used more than once, but if an infected 

surface touches another surface, an animal, or a plate, then the infection 

carries over. The problem is to design the order of the experiments and the 

use of the membranes so as to minimize the total number of membranes used . 
• 

Restricting ourselves to the case n = m = 6k, we present an algorithm using 

7k+1 membranes and prove that every algorithm needs at least 7k membranes. 
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We haven experimental rabbits R , ••• ,R, each having a different disease. 
1 n 

We have m plates P1 , ••• ,Pm' smeared with different radioactive isotopes. We, 

want to carry out nm experiments of placing each rabbit on each plate; the 

order in which this is done is arbitrary. We use protective membranes whose 

purpose is multitude: they have to prevent the rabbits from infecting each 

other or a plate, and the isotopes from getting on another plate or on an 

animal. In each experiment, we may put an arbitrary number of protecting 

membranes on the plate under the rabbit. The same membrane may be used more 

than once, but one has to be careful because if a surface of a membrane is 

infected by the disease of an animal or by an isotope and it touches another 

surface, an animal, or a plate, the infection carries over. There is no way 

to clean the membranes. 

The problem is to design the order of the experiments and the use of 

the membranes so as to minimize the total n11mber of membranes used.. (This 

problem has a well-known more practical interpretation, which the authors 

are too shy to formulate.) 

We shall restrict ourselves to the case when n == m = 6k. Distinguishing 
' 

• 

36 possibilities modulo 6, one could get a full analysis along the same 

lines, but this is left to the applier of the theory. Also note that there 

is a difference of 1 between the upper and lower bounds we shall prove on 

the miniIJ111m n1lrober of membranes. To fill in this gap needs further work in 

this fertile area. 
• 

THEOREM. If n = m = 6k, then there is an algorithm using 7k+l membranes. On 

the other hand, every algorithm needs at least 7k membranes. 

(The general result would be 2 
3 

Proof. I. First we present the algorithm. Let us relabel the rabbits by 

R1 , ••• ,R3k,Ri,••·,R3k, and the plates by P 1 , ••• ,P2k,Pi,•··,P2k,Pl, •.• ,P2k. 

Label the membranes by M1 , .•• ,M3k,N1 , •.• ,N2k,Ni,·•·,N2k and J (J for Jolly 

Joker)• Let us distinguish an ''upper'' and a ''lower'' surface of each membrane 

(although there is no difference in use). 

During the run of the experiments, a surface can be in three different 

states: it can be clean, infected (by a disease or isotope, but only one), 

or dirty (infected by at least two diseases and/or isotopes). Clearly we 

may asstune that the lower surface of J is dirty right at the beginning; the 

other side will remain clean throughout. 
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Let us denote the placing of rabbit Ron plate P by (PR). If we want a 

full description of the experiment 

membranes M1 ,M2 ,M 3 ,M4 are used, in 

. - -we write (PM
1
M2M

3
M4R), meaning that the 

this order, with M2 and M
3 

upside down. 

The experiments are carried out in six turns. 

Turn 1. All experiments (P.N.M.R.) (1 $ i $ 2k, 1 ~ j ~ 3k). 
l. l. J J 

After turn 1, the lower surface of N. gets infected by P., and the upper 
l. l. 

surface of M. gets infected by R., for all i and j. 
J J 

Turn 2. All experiments (P~N~M.R.). 
l. l. J J 

After turn 2, the lower 

Turn 3. All experiments 

The upper surface of N! 

surface of N~ gets infected by P~. 
l. l. -( P 1

•
1N ~ JM . R. ) • 

l. J. J J 

J. 
gets infected by P'' 

i' its lower surface gets dirty. 

Turn 4. All experiments --(P.N.JM.R~) .. 
l. 1. J J 

The upper surface of M. 
J 

gets dirty, its lower surface gets infected by 

Turn 5. All experiments - -(P!N.M.R~). 
l. l. J J 

The upper surface of N. 
J. 

gets infected by p ! , 
l. 

its lower surface gets dirty. 
- -Turn 6. All experiments ( P 1.'N ! M . R ! ) • 

l. J. J J 
It is straightforward to check that all experiments are feasible in 

the sense that no infection and no isotopes can be carri~d over to any 

other animal or plate. 

II. Consider now an arbitrary algorithm solving the problem and con

sider a side of a membrane. It may happen that (a) it remains clean though

out, or (b) it gets first infected by a disease or isotope, or (c) it gets 

dirty without being first infected. In case (b), let us assign to the given 
• 

side of the membrane the rabbit or plate which infects it first. In cases 

(a) and (c) we assign an arbitrary rabbit to the given side of the membrane. 

Also let us call the side which gets infected first the first side. 

Again, in case of ambiguity we call either one of the sides first. 

Now we represent the situation by a graph G. The vertices of Gare the 
+ ~ 

rabbits and the plates. For each membrane M, we draw a directed line M = XY 

from the vertex X assigned to its first side to the vertex Y assigned to 

its other side. 

Let us make some observations. 

(1) G has no isolated vertices. 

In fact, the first experiment in which a given vertex Vis involved yields 

a membrane with a side infected by V, i.e. an edge adjacent to V. 

(2) 
, ; 

There cannot exist two edges R1R2 and P 1P 2 such that R1 ,R2 are rabbits, 

P 1 ,P2 are plates and these edges form a single-edge component of G. 

For suppose that there are such edges. Consider the experiments (P2R1 ) and 

' 
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(P 
1

R
2
). Without loss of generality we may ass11me that (P2R1 } is carried out 

earlier. Since P 1P2_ is a component of G, in this experiment the membrane on , 
n r , ), 

the bottom must be P 1P 2 • But by the definition of the orientation of G, by 

this time the other side of this membrane must be infected by isotope P 1• 

So the rabbit R1 cannot have been placed directly on this membrane. Consider 

the second membrane from below. The bottom side of this couid not be clean 

or P 1-infected before the experiment, because then it would yield a second 

edge incident with P1 , in contradiction with the assumption that P 1P2 forms 

a component of G just by itself. So this bottom side was infected by some

thing different from P 1 or was dirty. Hence after the experiment the P 1-side 
·► of P 1P2 gets dirty. But then there is no way to carry out (P 1R2 ). 

* ). ). 

(3) Let P 1R1 and P2R2 be edges such that P 1 ,P2 are plates, R1 ,R2 are rab-

bits and these edges foxm single-edge components of G. Then one of 

them must be oriented from the rabbit to the plate and the other one 

conversely. 

This follows by the same argument as (2). 

We are in the position now to make a computation. Let G1 , •.• ,Gt be the 

connected components of G, and let 

G1 , ••• ,G be those components 

p. be the number of vertices in 
J.. 

having two points and one edge. 

G .• Let, 
l. 

Then G. 
J 

say, 

(s < 
s 2 

j :;; t) has at least 
3 

pj edges. So the n11mber of edges is at least 

s + 2 
3

{12k-2s) s = Bk - 3 • 

But from (2) and (3) we know that there are at most two single-edge compo

nents connecting rabbits to plates, and that either the rabbits or the 

plates span no such components. Hences~ 3k+1, and so the number of edges 

is at least 

1 = 7k - 3 • 

This completes the proof. D 
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ABSTRACT 

Fully polynomj al approx.:i,roation algorithms for knapsack problems are present

ed. These algorithms are based on ideas of Ibarra and Kim, with modifications 

which yield better time and space bounds, and also tend to improve the prac

ticality of the procedures. Among the principal improvements are the intro

duction of a more efficient method of scaling and the use of a median-finding 

routine to eliminate sorting. The 0-1 knapsack problem, for n itPms and ac

curacy e > 0, is solved in O(n log(l/e) + 1/e4 ) time and O(n + 1/e3) space. 

The unbounded knapsack problem is solved in O(n + 1/e3) time and O{n + 1/E2 ) 

space. For the subset-sum problem, O(n + 1/e3 ) time and O(n + 1/e2) space, 

or O(n + (1/e
2
)log{1/e)) time and space, are achieved. The multipie-choice 

problem, with m equivalence classes, is solved in O(nm2/e) time and space • 

• 

• 
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1 .. I N'.rROOOC'l'ION 

The 0-1 knapsack problem is as follows: Given n pairs of positive integers 

(p1 ,a.) and a positive integer b, find x 1 ,x
2

, ••• ,xn so as to 
.,, J 

maximize p - p.x. -
J J 

subject to A - ajxj b, -

x. E: {0,1}. 
J 

we may think of j as indexing items, with associated profits p. and 
J 

weights 

itAms a .• The object is 
J 

to find the most profitable possible selection of 

which can be made to fit into a knapsack with capacity b. One variation of 

the problem pe:rroi ts itPms to be chosen with repetition. 

mitted to be any nonnegative integer. This is sometimes 

knapsack problem. 

That is, x. is per
J 

called the unbounded 

There are well-known methods for solving the 0-1 knapsack problem which 

have worst-case running time of O(nb) [Bellman & Dreyfus 1962]. However, 

these do not Q\lalify as ''polynomj al-bounded•• algorithms, because the running 
' 

t.irne is not bounded by a polynomial in the length of the encoding of input 

data. Th1Js O (n log b) is a polynomial bound, but not O (nb) • (Unless data 

are encoded in unary notation, a possibility we disregard here, cf. [Garey & 

Johnson 1978B]). In fact, the problem is known to be NP-complete, even in 

the case of the subset-sum problem, where p. 
J 

is very unlikely that any polynomial-bounded 

= a., for 
J 

algorithm 

all items. Hence it 

exists. 

However, it is possible, within polynomial time, to find a solution 

which is arbitrarily close to optim,Jm. An approx,i-mation algorithm for this 

purpose receives two inputs: one is the encoded set of data for a problem 

instance, i . e.. pairs (p j , aj ) , and the other is a n11rober e: , 0 < e: s 1 , which 

prescribes the degree of accuracy required. The algorithm then produces a 

solution with profit P, such that 

* * p - p::;; e:P. 

* if p is the value of an optimal solution, 

If for every fixed£, the algorithm operates in time bounded by the length 

of the encoded input, the algorithm is a ''polynomj al time approximation 

scheme••. If the algorithm operates in ti me bounded by a polynomi.al in the 

length of the encoded input and in 1/e:, it is said to be ''fully polynomial'' 

[Garey & Johnson 1976C, 1978B]. 
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Ibarra and Kim [Ibarra & Kim 1975A] have presented fully polynomial 

approximation algorithms for the 0-1 knapsack problem, and variations. Their 

* most efficient algorithm utilizes a lower bound P0 , P0 s; P s; 2P0 , to sep-

arate i terns according to profits into a class of ''small'' items and a class 

of '' large'' i terns. The problem is then solved for the large i terns only, with 

profits scaled by a suitably chosen scale factor. Feasible solutions of 

large items are then joined with sets of small items, and the feasible so

lution with the largest total profit is selected. 

By noting that it is possible to obtain a bound, independent of n, on 

the n,Jmber of large i terns which need to be considered for their computation, 

Ibarra and Kim claim a bound of 

O(n 
1 1 

log n + 4 log{e)) 
E 

on running time and 

O(n + 1 ) 
3 

€ 

on space requirements. 

( 1 .. 1) 

( 1. 2) 

In this paper we elaborate on the Ibarra-Kim approach, introducing a 

number of improvements which yield better time and space boW1ds and also 

tend to enhance the practicality of the procedures. Among the modifications 

proposed are the use of a median-finding routine to elimjnate sorting and 

a more efficient scaling technique. A n11mber of other modifications are 

proposed, including alternative data structures and a different method for 

carrying out the large-item computation. 

As a result of these changes, we are able to obtain the following 

bounds .. For the 0-1 problem: O(n log(1/e:) + 1/e:4 ) time and O(n + 1/c: 3 ) 
· 3 2 space. For the unbounded problem: O(n + 1/€) time and O(n + 1/£) space. 

For the subset-sum problem: O(n + 1/e3 ) time and O(n + 1/E2) space, or 

O(n + {1/e:2)log(1/~)) time and space. The multiple-choice problem, with m 

equivalence classes, is solved in O(nm2/£) time and space. 

The organization of this paper is as follows. In Section 2 a basic 

optimization proced11rP. is described. Modifications of this procedure are 

presented in Sections 3-11. These yield various approximation algorithms 

for the 0-1 knapsack problem. In Sections 12 through 15, algorithms are 

outlined for related problems, including the unbounded problem, the subset

sum problem, and multiple-choice knapsack problems. Concluding sections, 

16 and 17, indicate possible further extensions and directions for future 
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ComJoont. CofilF)lexity estimates are based on the assumption that computer 

word length is sufficient to accommodate numbers as * large as P, b, and n. 

1'1.ritt'lJOPtic operations on numbers as large as these are assumed to require 

constant ti~ .. Thus, factors such as log b do no·t appear in bounds such 

as (lDl) and (1.2). However, we shall not assume word length on the order 

of 1/E or n bits (n1Jmbers as large as 2l/£ or 2n) .. O 
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2 .. A BASIC OPTIMIZATION PROCEDURE 

we begin with the description of an optjmization algorithm for the 0-1 

knapsack problem. All of the approximation algorithms presented in this 

paper are modifications or adaptations of this basic proced_11re. 

One way to solve the 0-1 knapsack problem is to generate a list of all 

feasible combinations of profit and weight. Each such combination is repre

sented by a pair (P,A), for which there is a subset of items S with 

p. = P, 
J 

a.= A:$ b. 
J 

* The value of P is then given by a pair (P ,A) for which P is maxim1J1n. 

The list can be generated inn iterations as follows. Initially place 

only the pair (0,0) in the list. Then, at iteration j, forn1 from each pair 

(P ,A) a 1'candidate'1 pair (P+p. ,A+a.), if A+a. :5 b, and place the new pair 
J J J 

in the list if it does not duplicate an existing one. The result is that 

at the end of iteration j, each pair in the list represents a feasible 

profit-weight combination for some subset of items S £ {1,2, ••. ,j}, and 

each subset is represented by a pair. 

This procedure is unnecessarily inefficient, because it generates many 

pairs which are not needed to deter·rrii ne an optimal solution. It clearly 

' 

does not affect the computed value of * p if ''domj nated 11 pairs are discarded. 

That is, if (P,A) is in the list, one may eliminate any pair (P 1 ,A 1
), where 

P G! P', and A s A'. After dominated pairs are eliminated, each remaining 

pair (P,A) satisfies the following conditions at the end of iteration j: 

Pis the largest attainable profit for a subset of items S ~ {1,2, .•• ,j}, 

with weight at most equal to A, and A is the smallest attainable weight 

for a subset of items with profit at least equal to P. 

The procedure is now revised as follows. At the end of each iteration, 

the pairs (P ,A) are in strictly increasing order of P and of A. To perfo.:r.1n 

iteration j, produce a candidate pair (P+p. ,A+a.) for each pair (P ,A) , 
J J 

provided A+aj s b. Since the list is in increasing order of A, the produc-

tion of candidate pairs can be terminated whenever a pair (P,A) is reached 

for which A+a. > b. Then merge the existing list and the list of candidates, 
J 

discarding dominated pairs in the process. This is easily accomplished, 

because of the ordering of the P's and A• s. At the end of iteration n,, the 

l t . . th 1· t · ( * * * as pair in e is is P ,A ) , where A is the minimum attainable weight 
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for an opt.i.mal solution. 

rrhere are "rarious data structures and list merging tecl·1niques which are 

sui.table for processing the list of pairs. In any case, it is clear that at 

eacJ:1 iteration the running time and space requirements are linearly propor

tior1al to the number of pairs existing in tl1e list at the beginning of the 

* iteration. An upper bound on the number of pairs in the list is min{P ,b}. 

Hence an upper bo-und on the running ti1ne for the overall procedure, in the 

worst case, is O(n min{P*,b}), and an upper bound on space requirements is 

* o(n + min{P ,b}). (The term n in the space bound accounts for the storage 

of input data.) 

Up to this point, we have ignored the problem of constructing an opti

* mal solution, i.e. determining a set S corresponding to the last pair 

* * (P ,A ) in the list at tl1e end of iteration n. There are at least two 

methods for doing this. 

A very straightforward method is to convert each pair (P,A) to a triple 

(P,A,S), wheres is a list of indices of items such that r. s p. = P, 
JE J 

tjES aj =A.Initially, only the triple (0,0,~) is placed in the list. There-

after, at iteration j, each candidate triple is of the form (P+p.,A+a., 
J J * 

SIJ {j}). This has the effect of increasing the space bound to O(n min{P ,b}), 

Since S may be O (n) in size. Forrr1i ng the set S u { j} may be ass\1med to re-

quire O(n) time, 

running it up to 

thereby also adding 
2 . * O(n min{P ,b}). 

an extra factor of n to the time bound, 

We choose not to provide an explicit representation of the set S cor

responding to a pair (P ,A). Instead, we propose to construct S by 1'back

tracing11 through secondary data struct1.Jre in the form of a rooted tree. 

The necessary data structures are indicated in Figure 1. Each entry 

in the list of (P,A) pairs has four components: a P value, an A value, a 

pointer to the next entry in the list, and a pointer to a node in the rooted 

tree. Each tree node has two components: an item index j and a pointer to 

its parent node. 

To find the set S for an entry (P,A) in the list, one goes to the tree 

node indicated by its pointer and then reads off the item indices associated 
' ' 

with nodes on the path to the root. Thus, for the entry at the head of the 

list in Fig1.1re 1, s = { 6, 4, 3, 1} .. It is easily seen that S can be constructed 

in O(n} time. 

Initially the list contains only the pair (0,0) and the tree pointer 

for this pair is directed to the root of the tree. Thereafter, whenever a 

pair (P+pj,A+aj) is added to the list of (P,A) pairs, the tree pointer for 
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~,;2u;;e 1, Data structures for list of (P ,A) pairs and tree for backtracing. 

(P+p.,A+a.) is directed to a new tree node with associated item index j. 
J J . 

The pointer, for this new node is directed to the node pointed to by (P,A). 

It is clear that these operations can be implemented in constant time for 

each new pair (P+p.,A+a.), or in O(n 
J J 

* min{P ,b}) time overall. Moreover, the 

tree requires O(n min{P*,b}) space. 
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3. SCAT,tNG OF PROFIT SPACE 

One way to make the computation more efficient is to reduce the number of 

distinct P (or A) values which may occur in the pairs (P,A). The simplest 

method to accomplish 

q. = 
J 

p. 
J 

K 
, 

this is to replace each p. 
J 

coefficient by 

* * where K is a suitably chosen scale factor. Then P /K replaces P in the 

time and space bounds given above. 

Bow large can we make K, and be ass11red that the solution we obtain 

differs f ram the optim1Jrn * by no more than e:P? We note the inequality, 

Kq. s p. < K(q.+1). 
J J J 

(3 • 1) 

It follows that for any set S, 

I. s p. - KI. 8 q. < Klsl. 
]€ J ]€ J 

* Hence if we can insure that KIS I where * s is an optimal solution, 

then K will be a valid scale factor: the solution found by the computation 

outlined in the previous 

* E > 0. But surely Is I~ 

p = max. {p.}. 
max J J 

section will be within the prescribed acct1racy 

* n and P ;?:: p , where 
max 

(We can assume a. s b for all items.) Hence we may choose 
J 

1 
K = - ep • (3.2) n max 

* Now p n pmax' so 

* 2 p 
< n - .. 

K E 

2 * . 
Substituting n /E for P in the bounds obtained in the previous section, 

we obtain time and space bounds of O(n 3
/E), with ass1.1rance that the rela

tive error of the solution we obtain does not exceed e, as specified. (Here

after we ingnore the role of bin time and space bounds.) We have thus ob

tained a fully polynomial approximation algorithm. 
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* 4. A LOWER BOUND ON P 

* It is evident that a lower bound on P better than p will enable us to 
max 

increase the size of the scale factor Kand thereby improve the efficiency 

of the computation. 

If we relax the conditions x. € {0,1} to OS x. S 1, a linear pro-
J J 

gramrnj_ng problem results. It can be solved quite simply: First sort the 

items in nonincreasing p./a. ratio order, so that, without loss of genera1-
J J 

ity, p 1/a1 ~ p 2/a2 ~ ••. ~ pn/an. Then place the items in the knapsack in 

order until either (a) the items are exhausted or (b) the capacity is exact

ly used up or {c) it is necessary to fractionalize one item to use up the 

capacity exactly. In cases (a) and (b), an optimal solution is obtained, 

and it is unnecessary to proceed further. So suppose case (c) occurs and 

< b but 

* Po$ P < 2Pa, 

where 

= max{p1+p2+ ..• +p. ,p } . 
J max 

• 

* This is because p 1+p2+ ••• +pj $ 

Replacing p by P0 in (3.2), 
max 

p, pJ.+1 s p $ max 
we obtain 

K = 

and find that 

* P 2n 
$ • 

K 

* p I 

(4 .1) 

* > p • 

(4. 2) 

The computation can now be carried out in O(n2/E:..) time and space, exclusive 

of the time required to sort the items in p./a. order. 
J J 

But sorting is not necessary to compute P
0

• This can be done in O(n) 

time by employing a median-finding algorithm as follows: First compute the 

ratio P. /a. for all items. Then find the median of these ratios. (All ratios J J 
are conside::r·ed to be distinct; if ties occur, the item with the smaller 

• 

index is co11sidered to have the smaller ratio.) Suppose the median ratio 
• 
is r and let 

J = {jlp./a. ~ r}. 
J J (4. 3) 



119 

If l _ aj >(<) b, find the median ratio 
jt.'-' 

in (the complement of) J until the 

s b .. 

case (a) above occ11rs if J contains all items. Case (b) occurs if 

a. = b. Otherwise, case (c) occ1Jrs and P 0 = max{\. J p., p } . 
J lJE J max 

There are median-finding routines which require only O(n) time [Blum 

et al. 197 3]. This proced\Jre requj res O ( log n) applications of such a rou

tine, but these are carried out over sets which contain n,n/2,n/4, ... ele

ments .. It is thus evident that the computation of P0 requires only O(n) 

time and space .. 

In the next section, we shall have need for a procedure which will fill 

the knapsack to any desired capacity b', 0 ~ b' ~ b, just as we filled it 

to capacity bin computing 

that I. J a. ~ b', where J 
JE: J 

P0 • This means finding the smallest ratio r such 

is defined as in (4.3). We shall let ~(b') denote 

the total profit of the items so placed in the knapsack: ~(b 1
) = I. J 

JE 
p ... 

J 
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5. SEPARATION OF ITEMS 

The existence of the lower bound P0 enabled us to reduce the time bound 

3 2 from O(n /£) to O{n /s). A technique due to Sahni [Sahni 1975] and employed 
2 

enables us to reduce the bound still further, to O(n/s) -by Ibarra and Kim 

Comment. The reader may 

The bounds stated are intended to emphasize asymptotic behavior inn, 

rather than€. The algorithm we are ab~ut to describe will, in fact, be 
2 2 

bounded by O(n /t), as well as O(n/E ). D 
The approach is as follows: First compute PO, as described in the pre-

vious section. Use P
0 

to determine a threshold value T. Items with p. s T 
J 

are considered 11 small 11
, and those with p. > T ''large''. Solve the 

J 
problem, 

using the large items only, with some appropriately chosen scale factor K. 

This yields a final list of (Q,A) pairs, where Q denotes total scaled pro-

fit. 

For each pair {Q,A) in the final list, fill in the remaining knapsack 

capacity b-A with small items, as indicated in the nrevious section. These 

small items yield total profit ~(b-A). The approximate solution, a combina

tion of large and small items, is chosen to yield profit P, where 
• 

(5. 1) 

Intuitively, it seems reasonable to divide the pern1j ssible error equally 

between the small items and the large items. This suggests setting 

the following result: When space b-A is filled with 
1 

~mall items, at most one item with profit no greater than 2 EPO (half the 

estimated per111i ssible error) will be omitted. The scale factor K should 

then be chosen so that the total error contributed by the large items is 

also no more than one half the pexmlssible amount. Below we justify this 

intuitive argtn11ent, and prove that this choice of T also enables us to 

maximize the scale factor K. 

Suppose there exists an optimal solution in which the large items con-

tribute profit P and weight 
L AL and the small items PS 

the s 1.1m of the scaled profit coefficients contributing to p L, using scale 

factor K. It should be apparent, without need of proof, that the final. list 

for the large-item com_putation must contain a pair (Q,A), dominating 

(QL,AL), i .e •, Q ~ QL, A s; AL. Thus P, determined by (5 .1), must be such that 

P ~ KQ + $(b-A) ~ KQ + ~(b-AJ 
L (5 .2) 



The number of large items contributing to the optimal solution cannot 

exceed P /T, wl1ere 
L 

PL p* 
::; -· T T 

Employing the inequality (3.1), 

with (5.3), we obtain 

* p =PL+ PS< K(QL + 
* p ) 

T 

From (5.2) and (5.4) it follows that 

* K * p - p < T p + p S - cp (b-A) . 
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(5. 3) 

(5.5) 

But b-A > b-~. If 011r proced11re exactly filled the capacity b-A with small 

items, then ~(b-A) ~ P8 . If it left some unused capacity, the profit of the 

item which could not be fit in was no greater than T, and 

From inequalities (5.5) and (5.6), we obtain 

It follows that T and K should be chosen to insure * that (K/T)P + T 

(5.6) 

( 5 .. 7) 

* e:P , 

which can be done by letting K/T = A£ and T = (1-A)e:P
0 

~ * (1-A)E:P for any 

< 1. Assuming T ~ 0, this 2 means K = A(l-A)e P0 • 

ma>d mi ze K, we choose A 

K = 1 
T = 

2 

1 
=-,yielding 

2 
' 

Since we wish to 

(5.8) 

This confir1us 011r intuition as to the correct choice of T and K. 

Con:menc. In [Ibarra & Kim 1975A], the choice of Kand Twas, in effect: 

corresponding to a choice of 

Observe that 

* p 

K 
---= 8 

2 I 

E 
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so the size of scaled profit space is now 0(1/e: 2), instead of O(n/£). Time 

and space for the large-item computation are bounded by O(n/e: 2), since 

there are n iterations. 

We have yet to discuss the computation of the ¢-values at the end of 

the large-item computation. This can be accomplished in O(n log(l/£)) time, 
• 

as we shall show in the next 

bolll1.ds for the procedure are 

section .. 
2 o (n/e: ) • 

Hence the overall time and space 

Now notice that if T < 1 (all. items 

'' large 11
) as deter1ni ned by ( 5 . 8) , then ce:ttai11ly K < 1 in ( 4 • 2) • Hence there 

is no instance in which the method of the previous section provides a use

ful scale factor (greater than unity) and the present one does not. More-
l over, if T = 2 e:P 

O 
< 1, then one should simply solve the problem optimally, 

* which can be done in O(n/e:) time, since P < 4/e:. 

* Next notice that P /T can be replaced in (5.3) by n, yielding 

* p - P <Kn+ T. 

Ass1.1mi ng 
1 

>.. = 2 , this implies that K should be of the form 

1 
K = 2n e:PO, 

which results in 

* p 

K 
4n 

2 

• 

and an O(n /E) computation, as in Section 4. 

These observations suggest that equations (5. 8) should be modified to 
become 

1 
K = ma.:x{

4 T = 
if K = 1, 

if K > 1. 

Equations (5.9) assure a computation which is time and space bounded by 
2 2 

both O(n /£) and O(n/e). Moreover, whenever T < 1 · (5 9) in • , an optimal 

solution is obtained in O(n/e:) time. Although in succeeding sections we 

shall present ideas leading to substantially better asymptotic performance 

with respect ton, we shall t b abl 2 no e e to jmprove on O(n /E), for asymp-
• 

totic performance with respect toe:. 
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6. t.UMPL'TATION OF ¢-VALUES 

It is easy to compute the $-values in O(n + 1/£2 ) time, as in [Ibarra & Kim 

19'75A], once the sma.l.l items 

we elimi.nated sorting in tl:1.e 

have been placed in p . /a. ra t.io order. However, 
J J 

computation of P0 , so we do not have an ordered 

set of small items available as a byproduct. The procedure we propose is as 

follows .. 

First find the median pj/aj ratio for the set of all small items. Let 

this ratio be rand 
J JE J 

away the complement of J and repeat, continuing to throw away half-sets 

until a ratio r is found, such that\. J a. s b. Then search the list of 
lJ€ J - - -pairs until a pair (Q,A) is found, such that A= 

and ¢ (b-A) = I . J P. • J€ J 

b-A} 

At this point one $-value has been found in O(n) time, exclusive of the 
- -time required to find the pair (Q,A) .. A set J, !JI s n/2, has been deter-

mined, as has a complementary set J, IJI s n/2, within the set of remaining 
-small i terns .. Proper subsets of J deter1r1j .. ne q, (b-A) for A > A. Proper subsets 

- -of J, joined with all the items in J, deter11ai .. ne <f> (b-A) for A < A. Thus there 

are now two subproblems of the same character as the original one • 
• 

The difficulty in estimating the remaining time-required for the proce

dure is that we cannot be sure how many pairs are involved for each subprob

lem: about 4/E 2 for each or 8/£2 for one and none for the other? We can 

confirm that time is bounded by O(n log(l/£)) by the following analysis. 

Let T(m,n) = the time required for median finding, given m pairs and 

n small items. Then 

T(m,n) = en+ 

where c is a constant. Assume T(m,n) :S: en log2m. Then 

T(mrnl Sen+_ - + log2 {q-1)]} 

sen+ m-1 en log2 ( 2 ) 

en log2m, 

as required. 

Thus, median-finding 
2 

0(1/e). Other operations 
- -locating pairs (Q,A}) are 

requires at most O(n log(l/E)) time, since mis 

required in determining the $-values (such as 
2 

bounded by 0((1/e )log(1/E)). 
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7. DISCARDING SUPERFLUOUS ITEMS 

The time and space bounds can be further reduced by the following observa

tions. 

The n1nnher of distinct q. values that can exist for the large items 

is bounded by 

p* f T 8 2 
K -,K.$ 2-e: .. 

e 

J 

• 

The number of large items with scaled profit 
• 

q. which can be 
J 

contained in 

any feasible solution is at most 

n. = 
J 

Hence for any scaled profit q., one need only consider the 
J 

n. 
J 

items with 

smallest weight for use in the large-item computation. 

For q. values in the interval (2/e:,4/e], the average 
J 

value of n. is 
J 

about 3/ t:. For the interval (4/£,8/e:], the average value of n. is about 
J 

3/2e:. For each successive interval, the average val.ue of n. is half as 
J 

large, but 

* 
the interval contains twice as many q. values. There are at most 

J 
log2 (P /T) 

• 

:S: log
2 

{4/e) intervals. Hence the n11mber of items which must be 

considered for the large-item computation is bounded by 

( 7 .1) 

Identifying the items which need be considered for the l.arge-item com-
• 2 putation is simple: Place the large-items in at most max{n,8/e: } buckets, 

each bucket conta_j_ning items with the 

finding 

weight. 

routine to each bucket qj, to 

This can be done in O{n) time. 

same q. value. 
J 

identify then. 
J 

Then apply a median

items with smallest 

can now substitute (1/E 2)log(1/c) for n in We the time and space 

bounds for the large-item co:rrputation obtained in Section 5. This yields 

a t-j me bound of O(n log (1/e:) + ( 1/e: 4) log ( 1/e:)) and a space bound of 
4 

O(n + (1/e )log(1/c)) for the overall computation. (Note that O(n) space 

is req1Ji red to store the input data.) 
• 

• 

I 
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8.. AN IMPROVED METHOD OF SCAT.,ING 

The method of scaling we have employed up to this point is unnecessarily 

conservative. The ~ame fixed error, K, has been pemitted each scaled prof

it coefficient q .. It is more effective to produce coefficients for which 
J 

the pe.rrnj ssible error is somewhat in proportion to the size of the coeffi-

cient. This can be done as follows. 

Let 

1 . 
T = 2 e:PO, 

1 
K = 

2 
e:T 

1 2 
= 4 e: PO, 

as in Section 5. If p. 
J 

lies in the interval (2kT,2k+lT], k = 
* llog2 (P /T)J, then 

q. = 
J 

p. k 
_J_____ 2 
2kK • 

Now notice that 

let 

Kq. ~p. < 
J J 

k 
Kq. + 2 K 

J 
1 

Kq. + 2 e:p ... 
J J 

(8 .1) 

0,1,2, •.. , 

(8.2) 

The above inequality is parallel to (3.1}. It follows that we have, 

place of inequality (5.4), 

• in 

* p = p 
L 

E:P 
L 

By reasoning similar to that used before, we obtain 

* p - p < 1 * 1 
2 e:P + T = 2 

* 

* E:P 

Let m llog2 (P /T)J. The • of scaled - size - profit space is bounded by 

* * p 2m < 
p 

< 8 
• - - 2 2~ K 

E 

as before. However, the 
. k k+l 

p.-interval (2 T,2 T] 
J 

n11mber of distinct q. values obtained 
J 

is at most (2/e)-1, independent of k. 

from each 

Thus for the 

scaled profit-space interval (2/e:,4/e:], the number of q. values is about 
J 

2/e:, and the average value of n. is 3/e:. For the interval (4/e,8/e:], the 
J 

number of q. values is still 2/e:, and the average value of n. is 3/2e:, and 
J J 

so on. It follows that the n11mher of i terns which must be considered for 

the large-item computation is bounded by 

6 (1 
2 

E: 

1 T 
+ 2 + •.. + *) 

p 

< 12 
- 2. 

e: 
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We have thus eliminated the log factor in (7.1). 

Conment. We have dispensed with a more general arg1Jroent, in which 

T = (1-A)€P
0

, K = AET, as this carries through exactly as in Section 5. Nor 

shall we confixm that there is no advantage in choosing an integer a> 2, 

and letting 

q. = 
J 

• 

if p. lies in the interval 
J 

k k+l (a T,a T]. Note that the previous scaling 

technique is the 

Since there 

case in which a 
2 are now 0(1/€ ) 

* ~ p /T. 0 

items for the large-item 
4 

log(l/£) + 1/e) and the 

computation, the 

space bound to time botmd can be reduced to O(n 
4 

O(n + 1/e ). In the next section we shall show how the space bound can be 

further reduced to O(n + 1/e3), while maintaining the time bound • 

• 
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9. MODIFICATION OF THE LARGE-ITEM COMPUTATION 

We propose to modify the large-item computation to reduce the space required 

for backtracing. Our plan is as follows. 

First sort at most n .. items with a given 
J 

q. value into nondecreasing 
J 2 

order of weight. This can be done, for all q. 
J 

values, in 0((1/s )log(l/e)) 

time. Now notice that there are at most n.+1 possibilities for each q. 
J ) 

value: Either no items are chosen, the first (smallest-weight) item is 

chosen, the first two items are chosen, .•• , or all (at most n.) i terns· 
J 

are 

chosen. The large-item computation is now carried out in iterations over 

distinct q. values (instead of individual items) in strictly decreasing 
J 

order of q .• 
J 

Initially the list contains only the pair (0,0). At the end of itera-

tion i, each pair (Q,A) indicates the smallest weight A attainable for a 

subset of items chosen from the i largest q. values, with total profit at 
J 

least Q. It also indicates the largest profit Q attainable for a subset of 

items chosen from the i largest q. values, with total weight not exceeding 
J 

A. 

Suppose iteration i is for scaled profit q. and 
. J 

this scaled profit. For each pair (Q,A) in the list, 

there are n. 
J 

n. candidate 
J 

items with 
• pairs are 

formed, corresponding to the choice of 1 item, 2 items, •.• , n. items. These 
J 

pairs are placed inn. separate candidate lists. The n.+1 
J J 

merged by means of n. pairwise merges. Each list entering 
J 

merge is 0(1/e 2 ) in length and the resulting list is also 

lists are then 

into a pairwise 
2 0(1/s) in length, 

dominated entries being eliminated in the course of 

that the running time for each iteration is bounded 

time for the large-item computation is thus bounded 

0(1/s 2). 

the merge. It follows 

by O(n./e
2). The running 

J 4 
by 0(1/E ), since Ln. is 

J 

Now let us consider the space bound. At each iteration, the space re

quired by candidate lists is at most O(n.N.), where N. is the length of the 
J J J 

list of pairs produced by the previous iteration. This space is bounded by 

0(1/e:
3
). The n\1mber of new entries added to the list of pairs, and hence the 

number of nodes added to the tree used for backtracing is O(Nj). But Nj 

at most 1 for the largest interval, 2 for the second-largest, .•• , 2/e: 2 

2 the second-smallest, and 4/s for the smallest. This is because the q. 
J 

• 
l.S 

for 

values 

of the 

in each interval are a power of 

* scaled profit space from P /K ~ 

2, which reduces the effective size 
2 -k * -k 2 8/e: to 2 P /K ~ 2 (8/e ), for iter-

ations over q. values in interval k. The number of q. values (iterations) 
J J 
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for each interval is at most T ::; 2/e .. It follows that the total nurob~r of 

nodes in the tree is bounded by a number proportional to 

+ 2 + ... + 4 ) ,..,, 16 
2 -

€: 
3 • 

€: 

Hence total space is 
. . 3 

bounded by O(n + 1/e ). 

(9.1) 

Con:ment. Each of then. candidate pairs obtained from a pair (Q,A) can 
J . 

be viewed as corresponding to the choice of a ''multiple'' i tern. The indexing 

scheme and backtracing procedure must be slightly modified. It is not dif

ficult to do this, while staying within the time and space bounds. Here

after, we shall not mention necessary modifications of the indexing scheme 

and backtracing proced1.1re, assuming the reader can supply details. D 

• 
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10 .. SUMMARY OF ALGORITHM 

we now sllTI!1marize the steps of the approximation algorithm for the 0-1 knap

sack problem: 

1 .. 

2 .. 

Compute p./a. ratios for all items. Compute P
0

, using a median-finding 
J J 

routine as indicated in Section 4: O{n) time and space. 

Determine the threshold T and scale factor K by (8.1). Compute 

all large items, using equation (8.2): O(n) time and space. 

q. for 
J 

3.. Detei:ttllne the O(l/e2 ) items to enter into the large-item computation, 

by applying a median-finding routine to find the at most n. items with 
J 

4 .. 

5 .. 

6 .. 

smallest weight, for each 

Sort the at most n. items 
2 J 

weight: 0((1/e: )log(l/e:)) 

q. value: O(n) time and space. 
J 

for each q. value in order of nonincreasing 
J 2 

time and 0(1/£) space. 

Carry out the modified version of the 

in the previous section: 0(1/c4 ) time 

large-item computation described 
3 and 0(1/£) space. 

Compute ~(b-A) fro each pair (Q,A) in the final list, employing a 

median-finding procedure, as described in Section 6: O(n log(l/£) + 

(1/c
2
)log(1/€)) time and O(n + 1/€ 2 ) space. 

7. Find a pair (Q,A) for which KQ + ~(b-A) is maximum: 0(1/e2) time and 

space. 

8. Find the set of large items in the approximate solution by backtracing: 

O(l/E) time and space. The set of small ltens in the approximate solu

tion is readily available as a byproduct of Step 6. 

In succeeding sections we shall indicate how the steos of the algorithm 

should be modified, for other versions of the knapsack problem. 
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11. ''BOOTSTRAPPING'' THE ALGORITHM 

A further analysis of the space bound shows that space is bounded by a 

constant times 

* p 
3 . 

E PO 

• 

Simj.larly, time is bonnded by a constant times 

(P*)2 
4 2 • 

E PO 

It follows that an improvement in the quality of the lower bound P
0 

will 

yield a reduction in the bounds by at least a linear scale factor. 

One way to obtain a better bound is to use the algorithm itself to 

produce approximate solutions which provide better lower bounds.. A ''boot

strapping'' procedure is as follows. Begin with the lower bound P
0 

with accu

racy EQ S 

racy E 1 < e: 0 • Apply the approximation algorithm to obtain an approximate 

solution with profit P
1 and relative error 

iterations, with accuracies 
• • • 

At succesive iterations, the lower bounds 

factors K. are detexmined by the relations: 
l. 

* P. ~ (1-E.)P , 
1. l. 

K. 
1. 

€:. p. 1 
l. 1..-

1 * 2: -2- E. ( 1-e: . 1) p , 
J.. l.-

2 * e: . { 1-e: . 1) p • 
J.. J.-

Proceed through successive 

> e: = E N . 

P. , thresholds 
J.. 

T. and scale 
J.. 

The running time at iteration i is then bounded by a constant times 

(P *) 2 1 
----___,.;.- s --=-----4 2 4 2· 
E: • p . 1 e: . ( 1-E . 1 ) 

l. 1.- l. J.-

If we perform one iteration, as in 

then the quantity (11.1) becomes 

4 
4 • 

€ 

(11.1) 

1 the preceding, with e:
0 

= 
2

, El= e:, 

If we perform N iterations, a lower bound on the quantity (11.1) • 
J.S 

1 - .. 
4 

€ 
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It follows that no matter how such a bootstrapping scheme is arranged, we 

can expect to improve the time bound by no more than a linear scale factor 

less than four. 

A practical advantage of bootstrapping is that early iterations are 

likely, in practice, to be quite short, lengthening considerably with each 

successive iteration. This enables one to halt the procedure, when desired, 

with an approximate solution known to have accuracy 

iteration. 

E: • , 
l. 

where i was the last 



132 • 

12. THE UNBOUNDED PROBLEM 

Recall the unbounded knapsack problem is the case in which the variables 

x. are not restricted to 0,1 values, but may not be nonnegative integers. 
J 

A n,1mber of simplifications can be made in this case. 

First, it is evident that the computation of P0 and of the ~-values 

is now much more straightforward: One need only identify a single item with 

maximum p./a. ratio, which can be done with a single scan through the items. 
J J 

A small. item with ma.xiID1Jm p./a. ratio is all that is needed to compute all 

It is evident we need retain only one large item for each q. value 
J 

for the large-item computation, i.e. one with minimum weight. However, we 

must provide for all possible n. multiplicities of each such item, where 
J 

n - == 
J 

* p 

Kq. 
J 

4 
• 

Ibarra and Kim propose doing this by providing n. identical copies of the 
J 

item. A more sensible procedure is to provide only llog2njJ additional cop-

ies by 11 doubling 11
• That is, let the i-th copy of item j be such that 

(i) 
p. 

J 

• 
l. 

= 2 P, I 

J 

(i) 
a. 

J 

• • 

l. 
= 2 a .• 

J 

All necessary copies of items can be found in 0((1/e2)log(1/e)) time. It 

is now necessary to retain only the smallest-weight items, or copy of an 

item, for each q. value. This leaves O ( ( 1/ e:} log { 1/ e:) ) items for the large-
] 

item computation. The large-item computation now proceeds by iteration over 

items or q. values (there is no difference), from largest to smallest. It 
J 

is evident that this can be carried out in 0(1/e:3) time. Finally, we note 

that the secondary data struct1.1re used for backtracing in the 0-1 problem 

can be eliminated. List entries can be of the foxm (Q,A,j), where j is the 

index of the item identified with the iteration at which the entry is 

foxmed, i.e. candidate entries are of the foLm (P+p.,A+a.,j). solutions can 
J J 

be constructed by simple backtracing using the it-em indices. Hence we con-
3 elude that the 1.1nbounded knapsack problem can be solved in o (n + 1/e: ) time 

and O{n + 1/e:2) space. 
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13. SUBSET-SUM PROBLEM 

The subset-sum problem is as follows: Given n positive integers p
1

,p
2

, .•• , 

pn, and an integer b, does there exist a subset S, such that l· Sp.= b? 
JE ] 

This can obviously be reduced to a 0-1 knapsack problem of the form 

• • maximJze 

subject to 

I. p.x. 
J J J 

I. p.x. ~ b, 
J J J 

X, E {Q,1}. 
J 

This is the type of problem for which we propose to find an approximate 

solution with accuracy e; > 0. 

We first observe that it is a simple matter to compute P
0

• The knap

sack may be filled with items in arbitrary order. This clearly requires 

only O(n) time. 

We next observe that it is possible to carry out the large-item compu

tation without consideration of item weights. That is, it is possible to 

process only lists of scaled profits Q, Q s b/K, instead of pairs (Q,A). 

However, we must insi.1.re that each entry in· 011r lists is feasible. That is, 

if Sis the set corresponding to Q, where KQ s b, then I. S 
JE 

p. Sb. In 
J 

order to guarantee this, we propose to round-up in scaling, rather than 

rounding down, 

q. = 
J 

• i.e. replace (8.2) by 

When this is done, all of the preceding error analysis goes through as 

before. 

Notice that no existing list entry need ever be eliminated by domj,

nance. Hence the data struct.11re used for back tracing requires only O ( 1/ E 
2 ) 

space. (In fact, the secondary data struct11re can be dispensed with entire

ly, and the pointers replaced by pointers to other list entries.) 

Let us now make a selection of items for the large-time computation. 

First place the large items in buckets, according to their scaled profits 

q. and elimj.nating any 
J 

leaves at most 0(1/E2 ) 

s 1Jrpl us items (more than 

items. The situation now 

• 

n.) in any bucket. This 
J 

differs from the ordinary 

0-1 problem in that the items in each bucket are indistinguishable: they 

can all be considered to have the same weight. We now want to provide for 

the choice of any possible n,Jmber of the items in any bucket. The procedure 
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is as follows. 

Start with the smallest and work upwa.rd. 

n1JDJber of items, say 2k+1, place k ''multiple'' 

If bucket q. contains an odd 
J 

items, each with scaled profit 

2qj, in bucket 2qj, discarding any extra items if the capacity of bucket 

2qj is exceeded. This leaves one item in bucket qj. If bucket q is nonempty 

and contains 2k+2 items, do the sa.me thing, leaving two i terns. This process 

requires 0{1/e 2) time, for all buckets. 

We are now left with at most two it~ms with any given scaled profit 

qj. The large-item computation can be carried out in a straightforward · 

fashion, in 0(1/e3 ) time and 0(1/£ 2 ) space. This yields overall time and 
3 2 space bounds of O(n + 1/E) and O(n + 1/E ). 

It is also possible to solve the subset-s,.1.m problem in 

O(n + (1/e2)log(1/E)) time and space by applying the computation proposed 

in [Karp 1975B] to the 0((1/e:)log(l/e)) large items. This computation in

volves the consideration of ''intervals'' of attainable P-values. vle shall 

not give details of this computation, referring the reader to the reference • 

• 

• 
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14. MULTIPLE-CHOICE PROBLEMS 

Suppose then items are partitioned into m equivalence classes and it is 

stipulated that no more than one item (or multiples of one item) may be 

chosen f:rom each equivalence class. Such a problem is sometimes called a 

mulciple-choice knapsack problem. 

135 

The author has developed an approximation algorithm for the 1.1nbounded 

multiple-choice problem with time and space bounds of O(n + (1/s6 )1og(1/£)) 

and O(n + (1/s
4
)log(l/£)). However, this algorithm is rather complicated 

and very likely can be improved upon. Hence we shall limit 01Jr discussion 

to the 0-1 multiple-choice problem. 

01Jr first observation is that there seems to be no feasible method to 

compute the lower bound P0 for the 0-1 multiple-choice problem. One can 

easily find an item with maxim1Jm p./a. ratio in each of them equivalence 
J J 

classes. But what if these m items do not fill the knapsack to capacity? 

There are simjlar, but even more severe difficulties in computing ~-values. 

There seems to be no alternative to returning to the approach of Section 3. 

In order to find some sort of lower bound, find an item with maximum 

profit in each equivalence class. Then fill the knapsack with these m items, 
• 

in nondecreasinq order of profit, until either the items are exhausted or 

it is not possible to insert another item. (This can be done in O(m) time, 

using a median-finding routine.) 

In the former case, an optimal solution has been found, and there is 

nothing more to do. In the latter case, m' items have been used, where 

1 ~ m' < m. Let the total profit of these m' items be P 1 • Then 

* P' $ p ~ m P' 
m' :s: mP' -

We now propose to let P' play 

Section 3. Th11s, we let 

K = m• 
e:P I ~ 

1 e:P I • 
m m 

the same role asp 
max 

in the approach of 

Note that the size of scaled profit space is given by 

* p 

K 

2 
< m -

The list of pairs (Q,A) is processed with iteration over equivalence 

classes, rather than single items. The procedure is very similar to that 

proposed for the large-item computation in Section 9. 
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Initially the list contains only the pair (0,0). At the end of itera

tion i, each pair (Q,A) is identified with a feasible solution containing 

items chosen from eqtJi valence classes 1 through i. Suppose 

items in equivalence class i. To perform iteration i, fo~m 

there are n 
i 

n. candidate 
J. 

items for each pair (Q,A) existing in the list at the end of iteration i-1. 

These candidate pairs are placed inn. separate candidate 
J. 

lists are then merged, eliminating domj,nated entries. 

lists. The n.+1 
J. 

Iteration i requires O(n.m2/e:) time; O(m2
/t:) space, and at most O(m2/e) 

J_ 

nodes are added to the tree used for backtracing. Hence overall time and 

space requirements are bounded by O(nm2/e:) and O(n + m3/e:), respectively. 

Comment. The nnmber of items which need be considered from each equiv-

alence class is bounded by the 

O(m2/e). Hence a time bound of 

n1JmbP.r of distinct q. 
5 2 J 

O(n + m /e:) can also 

• 

values, which is 

be obtained. D 



15 .. SEPARABLE NONLINEAR FUNCTIONS 

One considerable generalization of the knapsack problem is: 

maxirnize 

subject to 

P. (x. ) 
J J 

a. (x.) s; b, 
J J 

x. nonnegative integer, 
J 

x. n ... 
J J 

and a. are arbitrary real-valued functions, j = 1,2, ••• ,m. 
J 
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Here pj 

By evaluating each function at each feasible integer point, one obtains 

n = In j items for a 0-1 multiple-choice knapsack problem, with m equiva-

lence classes. This can be solved, for any prescribed relative error c > 0, 

in O(nm2
/e) time and space, using the procedure of the previous section. 

Note that there is nothing in our theory which cannot accommodate real

valued profits and weights. (Of course, items with negative profits or 

weights may be neglected, or may cause a knapsack problem to become un

bounded, under certain obvio1Js conditions~) 



138 

16. FURrHER EXTENSIONS 

The knapsack problem arises in many applications. However, it is a greatly 

specialized version of more general integer progra.r,i1oing models for which 

there is a real need for approximation algorithms. 

Certainly the techniques discussed in this paper fall far short of 

providing a fully polynomial approximation algorithm for multi-constraint 

problems. The principal reason is that they involve rescaling profit (ob

jective) space instead of weight (constraint) space. Until a new technique 

is devised, there seems to be no reasonable way to apply the present 

approach to multi-constraint problems. 

That is, unless we are willing to modify 01.1r views of optimi zation and 

approximation. For example, it is clearly possible to scale weight space 

to obtain an approximate knapsack solution of the following type: Given 

o > 0, find a subset of items s, such that 

and 

I. s a. s (l+c)b .. 
JE: J 

• 

At first glance, the above may seem like an unnat11ral fo:rm of approximation. 

Possibly this is because we have been taught that constraints are inviolate. 

But suppose the knapsack problem is being used as a simplified model for, 

say, project scheduling. A manager seeks to choose projects for a certain 

period, subject to certain resource constraints (knapsack capacity). The 

profits associated with the items are real and hard. The constraints are 

soft and flexible. He certainly wants to earn p* dollars, if possible. 

Which type of approximation is more reasonable? 

If the notion of constraint approximation is accepted, then it seems 

feasible to move ahead with the application of known techniques to multi
constraint problems. 
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17. CONCLUDING REMARKS 

It is certainly possible that the t.j.me and space bounds presented here can 

be improved upon. Aside from improveme11ts in factors of 1/e:, or log(l/E), 

there are a number of open questions and directions for future research 
' 

which suggest themselves. 

We have made a few sjmple assumptions in making time and space bounds. 

Among these are that arithmetic operations can be performed in constant 

* time on integer operands as large as P and b. In the case of the 0-1 knap-

sack problem, operations on integers as large as n are assumed, for the 

puipose of finding medians. Can this assumption be removed? 

Perhaps a more interesting question is: Can a 0-1 approximation algo

rithm be found which is 11 strictly linear'' in n, instead of order n log(l/e:)? 

More generally, is it possible to establish that the 0-1 problem in inher

ently more complex than the unbounded problem? 
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PROBABILISTIC ANALYSIS OF PARTITIONING ALGORITHMS 

FOR THE TRAVELING-SALESMAN PROBLEM IN THE PLANE 
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' 

University of California, Berkeley, ·U.S.A • 

• 

• 

• 

ABSTRACT 

We consider partitioning algorithms for the approximate solution of large 

instances of the traveling-salesman problem in the plane. These algorithms 

subdivide the set of cities into small groups, construct an optimum tour 

through each group, and then patch the subtours together to form a tour 

through all the cities. If the number of cities in the problem is n, and 
• 

the number of cities in each group is t, then the worst-case error is 

O { •1n/'t) • If the cities are randomly distributed, then the relative error 

is O{t- 112 ) (with probability one). Hybrid schemes are suggested, in which 

partitioning is used in conjunction with existing heuristic algorithms. 

These hybrid schemes may be expected to give near-optimum solutions to 

problems with thousands of cities. 

• 

' 

• 

' 
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1. INTRODUCTION 

By the traveling-salesman problem in the plane we mean the problem of con-
• 

structing a polygon of minim11m perimeter through a given set of points 

(cities) in the plane. There has been considerable investigation of heuris-
• 

tic methods for the solution of this· problem. Computer programs based on 

local improvement techniques [Lin & Ke;rnighan 1973] or other heuristic prin-
. 

ciples [Krolak et al. 1970] appear to give near-optimal solutions to prob-

lem instances with two or three hundred cities, without using excessive 
• 

amounts of computer time. Good results have also been obtained using man

machine systems, in which a person, communicating with a computer through 

a display terminal, controls the search for a solution [Barbosa-; Krolak 

et al. 1971; Mitchie et al. 1968]. Success on problems of modest size has 

also been achieved by persons armed with pegs to mark the cities and string 

to measure distances [Dantzig -]. 

On the other hand, at the present state of the art it is quite impos-
• 

sible to find, and prove that one has found, the strictly optimal solution 

to a large problem. The most effective exact solution methods are based on 

branch-and-bound techniques [Helbig Hansen & Krarup 1974; Held & Karp 1970, 

1971; Smith & Thompson 1977; Smith et al. 1977]; they solve sixty-city 

problems routinely, but use excessive amounts of computer time on problems 

with one hundred cities. The fact that the traveling-salesman problem in 

the plane is NP-hard [Garey et al. 1976A; Papadimitriou 1977] provides 

convincing evidence that there does not exist a polynomial-time algorithm 

capable of solving the problem exactly. 

Recently attention has turned to the construction of polynomial-time 

algorithms guaranteed to solve the problem within a specified approximation 

[Christofides 1978; Rosenkrantz et al. 1977]. The best result along these 

lines is due to Christofides, who has given an algorithm that runs in time 

O(n
3
), and always yields a tour less than 50% longer than the optimum tour •. 

The present paper takes a probabilistic ap~roach. We assume that the 

cities are scattered at random in a rectangular region X of the plane. We 

exhibit a family of algorithms with the following property: for every 

e > 0 there is an algorithm A(e) in the family such that 

(a} A(e) runs in time C(E)n + O(n log n); 

(b) with probability 1, A(e) produces a tour costing not more than 

(l+E) times the cost of an optima1 tour. 

The algorithms are based on partitioning the region X into ''small'' subre-

' 
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gions, each of which contains about t cit;ies. An optimum tour is constructed 

within each subregion, and these subtours are then combined to yield a tour 

through all the cities. Of course, standard heiiristic methods may be used 
• 

instead of exact solution methods to find the tours through the subregions. 

Such a combination of partitioning with existing he11ristic methods should 
• 

I 

make it feasible to find near-optima~ solutions to problems with many thou-

sands of cities. 
I 

• 

• • 

• 

• 

• 

• 

' 

• 

• 

• 

• 

I 

•• 
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2 • TOURS AND SPANNING WAI.KS 

The traveling-salesman problem in the plane asks for a polygon of minimum 

length through a given set of points. Such a polygon corresponds to a closed 

tour in which each city is visited exactly once. In designing algorithms for 
, 

the problem it is convenient to allqw a larger set of feasible solutions, 

corresponding to tours which visit some cities repeatedly. This short sec-
• 

tion is devoted to showing that such a .change in the problem statement makes 

no real difference. 
• • 

Let V be a set of points in the plane. For u EV and v EV, let d(u,v) 

be the Euclidean distance between u and v. Given any multigraph (possibly 
, 

with loops or multiple edges) G = (V,E), with vertex set V and edge set E, 

define w(G), the weigh-t of G, as 2{ · } d(u,v); here d(u,v) is counted 
u,v -EE 

multiply if {u,v} is a multiple edge. The graph G = (V,E) is a -tour if G is 

connected and every vertex has degree 2; G is a spanning walk if G is con-

nected and all vertices are of even degree (a loop at v contributes 2 to 
• 

the degree) • 
• 

!,EMMA 1. Let G be a spanning walk. Then there is a tour E such that 
., 

w(H) :;;w(G). 

Proof. We ·define two operations on a multigraph G = (V,E) at a vertex v. 

(a) If there is a ·1oop v, then the operation LOOP(v) is applicable; 

it deletes the loop. 

{b) If {u,.v} EE,. {w,.v} e: E and the pair of arcs {{u,v},{w,v}} is not 

a cut set of G, then the operation PASS(u,v,w) is applicable; 

it deletes the arcs {u,v} and {w,v}, and adds the arc {u,w}. 

We claim (omitting the easy proof) that 

(1) the application of any operation tr~nsforms G to another spanning 

walk G', 

(2) w(G') s w(G) (this follows from the trian~le inequality 

d(u,v)+d(v,w) ~ d(u,w)), and 

(3) if vis of degree> 2 in G, then some operation at vis applicable. 

Repeated application of operations yields the desired tour H. D 
• 

' 
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• 

• 

PASS ( 2, 4, 3). 
t I I •• ) 

' l 
' 

' 

• 

• 

PASS(2,3,2) 

• 
• 

' 

LOOP(2) · 

~ig:ure ... ~ ... Transfor1ning a spanning walk to a to1Jr. 

• 



• 
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3. A PARTITIONING ALGORITHM • 

In this section we present a partitioning algorithm (called Algorithm 1) 
• 

• 
for the construction of a spanning walk through n given points (cities) 

• 

in a rectangular region of the plane~ The algorithm uses a subroutine TOUR 
• 

• 
capable of the exact solution of t-oity traveling-salesman problems, where 

' 

tis specified by the user of the algorithm. We show that the execution 
• • • n-1 

time of Algorithm 1 is O(n log n) plus •the time for t-i calls on TOUR, and 

that 

produced by ~e algorithm, and IT* I is the length of an optim11m tour T*. It 

follows that, if the cities are distributed at random, then, with probabil-
, 

ity 1, 

s12ecif ica,tiop._ of Algorithm 1 
4 .. • -

• 

Let n be the number of cities, let t be a parameter which will serve as an 
• 

' 

upper bound on the sizes of subproblems solved exactly by the subroutine 

r n-17 · TOUR, and let k(n) = log2 t-l ; when n is clear from context we write k 

instead of k (n) • 
• 

Algorithm 1 proceeds by subdividing the original . 2k rectangle 1.nto 

subrectangles, each containing at most t of the cities. Subroutine TOUR is 

then calle'd to construct an optimum tour through the cities in each sub

rectangle. The subdivision is such that the union of the 2k subtours forms 

a spanning walk through all n cities. The operations LOOP and PASS intro

duced in Le1rnna 1 may then be used to transform this walk to a tour. 

We ass11me for convenience that no two cities are at exactly the same 

distance from any side of the original rectangle. 

Let Y be a rectangle containing m cities. Assume Y is placed so that 

its longer side is horizontal. Let X be the r~lth closest city to the left 

edge of Y. A vertical cut through x subdivides Y into a '' left rectangle 11 

t (Y) and a ''right rectangle'' r (Y), having x on ·their common boundary. The 

• • • • 
• 

• X 

Q.( Y) r(Y) 

2 Partitioning a rectangle by a cut in the shorter direction. 
' 

I 
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construction is indicated in Figure 2. 

Note that a spanning walk through the cities in t (Yl _, pl us a spanning 

walk through the cities in r (Y) , constitutes a spanning walk through the 

ci.ties in Y. • 

• 

Now we are ready to define 01.1r algorithm. Procedure Al takes a rect-
• 

angle X as input and produces as output a _spanning walk through the cities 
, 

• 

in x .. The quantity n (X) denotes the 'number of cities in X. In the course of 
. . 

the definition a recursive proced11re WALK occurs. This procedure takes as 
• I 

inputs a rectangle Y and a nonnegative 'integer j. The output of WALK is a 

spanning walk through the cities _in Y. The argument j. det~r•nines the depth 

of the recurs.ion used in constructing this walk. At the base of the recur

sion (j -= 0) , WALK calls on a subroutine TOUR (Y) that constructs an optim11m 

tour through the cities in Y. 

PROCEDURE Al 

A1(X) = WALK{X,k(n{X))} 

WALK(Y,j) = if j = 0 

then TOUR(Y) · 
• 

else WALK(i(Y) ,j-1) U WALK(r(Y) ,j-1) 

Figure 3 shows the result of applying Algorithm 1 to an example with 

n • 25, t = 4 and k = 3. The walk is the union of 8 quadrilaterals. Figure 
• 

gives a tour obtained from this walk by the technique of Lemma 1. 

I 
I 
I 

' I 
l 

f 

' I 
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• 

- -
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~.:!:2:-1:.! ...... 3_ Walk created by Algorithm 1. 

I 
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• 

~i93:!re, 4 Tour obtained using the LOOP and PASS operations. 

Correctness ?f. A_l54:ori t?~ .. 1 
1j 1• i• Ill 

LEMMA 2. The result of applying A1 (X) is a spanning walk through the cities 
" 

in x. Each time TOUR(Y) is called, Y contains at most t cities. 
, 

Proof. Induction on k shows that WALK(Y,j) delivers a spanning walk through 
, 

the cities in X; the first statement follows. A second induction, through 

decreasing values of j, shows that, whenever WALK(Y,j) is called, the num-
• 

ber of cities in Y is s 2J(t-1)+1; since TOUR(Y) is called by WALK(Y,j) 

only when j = O, the second result follows. D 

In the following analysis we assume that Algorithm 1 is to be implemented 

on a random-access computer that requires one unit of time to compare or 

add real n1.1mbers (such as the x- or y-coordinates of two cities). we as

s1Jme there are constants D and d such that TOUR( ) requires time S Ddt to 

solve at-city problem. For example, if the standard dynamic programming 

algorithm with execution time t 2 •2t is used [Bellman 1962; Held & Karp 

1962], then any value> 2 can be used ford. 

TH.E:OREM 1 • 

time bound 

With suitable implementation, 

2k{n)Ddt O( 1 ) 2 n-1 
+ n og n < t-l 

Algorithm 1 operates within the 

Ddt + O(n log n). 
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Proof. The term 2k(n)Ddt bounds the total time spent in 

TOUR (i.e., solving small traveling-salesman problems). 

executing proced11re 

The remaining work is dominated by the computations of l(Y) and r(Y). 

Assume inductively that when we are ready to compute £ (Y) and r {Y) , we have 

available n(Y), the number of cities in Y, as well as linked lists H(Y) 

and V(Y); H(Y) contains the cities in Y listed in left-to-right order, and 

V(Y) contains these cities listed in bottom-to-top order. Setting up these 

lists initially requires sorting then cities on their horizontal and ver

tical coordinates, which can be done in O(n log n) steps. Thereafter we· can 

process each Yin time proportional to n(Y), producing 9.-(Y), r(Y), n(i(Y)), 

H(!(Y)), V(i(Y)), n(r(Y)), li(r{Y)) and V(r(Y)) as output. The total work 

for these computations is o (n log n) for the initial sorting, and O (nk) = 

O(n log n) for the subsequent processing. D 

Our next objective is to derive an upper bound on the difference between 

the cost of the walk produced by our algorithm and the cost of an optimum 
tour .. 

• 

In preparation for this analysis we introduce a game involving the 

subdivision of a rectangle X into subrectangles. There are two players, 

called Min and Max. The play requires k rounds. Each round consists of a 

move by Min, and then a move by Max. At 
t-1 been subdivided into 2 subrectangles 

the beginning of round 1, X has 

{x.}. During round i, each of the 
J. 

Xi is cut in two, by either a vertical or a horizontal cut. Min's move con-

sists of deciding, independently for each 

will be vertical or horizontal. Max then chooses the location 
X., whether the cut 

J. dividing X. 
1. 

of the cut. 
At the end of the k ro a f l · un s o p ay, Min pays Max an amount equal to the 

sum of the perimeters of the 2k rectangles produced in round k. 

Figure 5 shows a play of the 3-round game. Each cut is labelled with 
the n11mber of the round in which it is played. 

3 1 2 3 
3 2 

3 

~i~~e 2 A play of the cutting game. 

I 

I 
-;: 
' 
' 
' 

-
' 
' 

' I 
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By the short strategy for Min we mean the policy of choosing, for eacl1 

rectangle which occurs, the direction parallel to the shorter side. By the 

bisection strategy for Max we mean the policy of placing each cut so as to 

divide a rectangle into equal halves. 

THEOREM 2. The short strategy is optimal for Min and the bisection strategy 

is optimal for Max. 

Proof. First we show that the short strategy is best against the bisection 

strategy. However Min plays against the bisection strategy, the result of 

the play will be a subdivision of X into 2k rectangles of equal area. If x 

is axb, then each of these rectangles will be 2-fax2-ll\,, where£ and mare 

nonnegative integers adding to k. Since the perimeter of a rectangle of 

fixed area is an increasing function of the longer side, the most favorable 

choice oft and m for Min is the one that minimizes Max{2-1a,2-~}. The 

short strategy achieves this optimal choice simultaneously for all 2k rect

angles occurring in the subdivision. 

Next we show by induction on k that the bisection strategy is best for 

Max against the short strategy. This is certainly true fork= 1, where any 

strategy for Max is best against the short strategy. Assume it as an induc

tion hypothesis fork= t. Since we know already that the short strategy is 

best against the bisection strategy, we can conclude that the short strate

gy and the bisection strategy form an optimal strategy pair for any t-round 

game. Now consider an (i+1)-round game on an axb rectangle, with a< b. Sup-

pose Min, following the short 

short side. If Max bisects we 

strategy, specifies a cut parallel to the 
b get two ax2 rectangles, and optimal play (with 

Min using 

-2. ensuing 
-Ji a.S = 2 • 

the short strategy 

roW1ds yields 2i+l 

and Max using the bisection strategy) for 
b congruent rectangles of size, say, aaxs2, 

The value of the game to Max is 

b 
28-) = 

2 

the 

where 

On the other hand, if Max does not bisect we get an axb1 rectangle and an 
b ax(b-b1) rectangle, with b 1 ~ 2. Suppose that, in the ensuing play, Max 

uses the bisection strategy (which is known to be optimal), but Min, possi-

bly deviating from optimal play, chooses the same directions he would have 

chosen if Max had bisected 
i angles, and 2 aaxS(b-b1) 

t in the first round. Then we get 2 aaxSb 1 rect-

rectangles, for a total payoff of 
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i + 2 (2CLa + 
i+2 i+l 

28 (b-b } ) = 2 eta + 2 Sb. 
1 

· 1 t bi' sect 1· n the fi' rst round, Min can achieve at least as Thus, if Max fai s o 

much as he could have achieved if Max had bisected. It follows that bisec-

t.ion is best for Max against the short strategy in the ( R-+1) -round game, and 

the induction step is complete. 

Finally, since the short strategy and the bisection strategy are best 

h h th f ddl Pol.. nt•, or opti'mal pair of pure strat-against eac at er, ey orm a sa e 

egies, for the cutting game. 0 

Let Fk(a,b) denote the value (to Max) of a k-round cutting game on an axb 

rectangle. 

COROLLARY 1 .. 

(a) 

(b) 

Fk(a,b) == Min
5 

If a and bare 

t 
. 2(2 a+ 

.:z.n tegex, s+t=k 
held fixed, then supk exists. 

We are now ready to apply our results about· the cutting game in an error 

analysis of Algorithm 1. First we establish notation. Let per (Y) denote the 

perimeter of rectangle Y, and let Jwl denote the length of the walk W (i.e., 

~'lie sum of the lengths of the occurrences of line segments in W) • Let X be 

an axb rectangle containing n cities. Let * T denote an optim11m tour through 

the n cities, let w1 denote the walk produced by Algorithm 1, and let 

r n-1l k • k(n) = log2 t-l • 

THEOREM 3 .. Let Y be a 

through the cities in 

* 

rectangle wit.bin x. Let. T (Y) .be an optimum tour 
* 3 Y. Then IT(Y) I-IT nYI ~ 2 per (Y). 

Proof .. Let T nY consist of 

points of these c1Jrves, in 

k continuous curves c 1 ,c2
, ••• ,ck. Let the 2k end 

clockwise order around the boundary of Y, be 

Y 1 1 Y2 1 • • • ,Y2k"' Assume without loss of generality that 

denotes the dis

tance from Yi to Y j along the perimeter of Y. Consider the walk w (Y) con

siating of the following three parts: 

- the curves 

- two copies 
c1,c2,·••1Sc, 
of each of the segments y y y y y 

. 1 2' 3 4' ..... ' 2k-l y 2k' plus 
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- one copy of each of the 

Then the length of the first 

segments Y2Y3,Y4Y51••·,Y2kY1• 
* part is 1 T nY 1 , and the sum of the lengths of 

the second and third parts is less than or equal 3 
to 2 the perimeter of Y. 

Thus IT (Y) I $; 

1 

2 

y 1 

2 

1 Y5 

~-~gu,r~ 6 Converting 
' 

* T nY to a walk W(Y) .. 

1 
•••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••• e 

•••••••••••••••••••••••••••••• 

(a) points in a rectangle 

* {b) T nY 

(c) T (Y) 

F,i@r~ ? An adverse distribution of points. • 
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* Figure 7 indicates a family of examples for which IT(Y) 1-fT nYf approaches 
3 
2 per(Y). Let Y be an £X1 rectangle, where£ is small, let the cities occur 

* d" more and more densely on the dotted line segments, and let T nY be as in i-

cated in Figure 7(b). The fT*nyf + 1, (T(Y) I+ 4+2E, and IT(Y) 1-IT*nYI + 
3+€ 1 

3+t + l+E· 2 per{Y). 

· d . 2k ub t 1 . Proof. The execution of Algorithm 1 subdi vi es X into s rec ang es, 
k 

1,2, ••• ,2, and may be regarded as a play of a k-round cutting 

game on X. Since every cut is parallel to the short side of its rectangle, 

the play 

optimal. 

may regarded as one 
2k 

Th us \ . 1 per ( Y . ) ~ 
l 1.= .l 

in which Min 

Fk (a,b). But 

Theorem 3, 

2k * 3 li=l CIT nYil + 2 per(Yi)) 

IT l + 2 i=l per(Y1 ) ~ IT I 3 
+ 2 Fk{a,b). 0 

Now regard a and bas fixed and n and t as variable. Then the error bound 

COROI,I.ARY 

The following construction, which we sketch informally,. shows that the 

growth rate of our error estimate cannot be improved. Let x be the unit 
square, let k(n) be even and 

congruent subsquares Yi, i = 

possible to place the cities 

let t be a multiple 
k 1,2, ••• ,2 , each of 

of 4. Subdivide X into 
. d 2-k/2 Th . . si e • en it is 

{Yi}, and such that the t cities in each subsquare Y. fall into four clus-
1. 

ters of size t/4, with one cluster infinitesimally close to each corner of 

such that Algorithm 1 produces the subdivision 

Yi. T!1en 

and 

k 2 

k 
I~ IT(Y.)I - 2k(4•2-k/2) = 4•2k/2 J..•1 1 . . , 

IT*!~ (2k/2+1)2•2-k/2 _ 2k/2, 

k 
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4. RANDOM TRAVELING-SALESMAN PROBLEMS IN THE PLANE 

In this section we discuss a theorem from [Beardwood ec ai. 1959], showing 

that, if the cities are randomly distributed in a region of the plane, then 

the length of the shortest ~our tends to grow as the square root of the 

ntlmber of cities. Since Algorithm 1 produces a spanning walk whose cost 

differs from the cost of an optimum tour by O(ln/t), it follows that the 

ratio of the 

vary with the 

cost of this walk to the cost 
-1/2 

of an optim11m tour tends to 

parameter t as 1+0 (t ) • 

We model a random distribution of points in a region x of the plane by 

a two-dimensional Poisson distribution IT (X). The distribution TI (X) is 
n n 

determined by the following assumptions: 

(1) the number of cities occurring in two or more disjoint subregions are 

distributed independently of each other; 

(2) the expected n11mber of cities in a region A is nv (A) , where v (A) 

the area of A; and 

(3) as v(A) tends to zero, the probability of more than one city occurring 

in A tends to zero faster than v(A). 

From these ass11mptions it follows that 

(4) Pr{A contains exactly m cities}= m!, where A = nv (A) • 

We study the random variable T (X), which denotes the length of a shortest 
n 

tour through the cities in x, assuming that the set of cities is distrib-

uted according to II (X) • 
n 

'l'HF:OREM 5 [Beardwood ec al. 1959]. There exists a positive constant B (in-

dependent of X) such -thac T /Inv (X) ➔ B with probability 1. 
n 

The technical meaning of this statement is as follows. Suppose we fozm an 

infinite sequence z 1,z2 , ••• ,zn,··· of independent samples, where 

drawn from the distribution of T /lnv(X). Then, for every e > O, 
n 

Pr{limlzn-Bl > e} = o. 

z 
n 

• 
l.S 

Thus, when n is sufficiently large, one can predict the value of 

T Jin. closely with a high probability of being correct. The result of 
n 

Beardwood, Halton and HaromP.rsley applies not only to rectangles, but to all 

r- n(d-l)/d, the1.·r result also Lebesgue measurable regions; replacing ~n by 

applies to traveling-salesman problems in Euclidean d-space. 

Combining Theorem 5 with our analysis of Algorithm 1, we can state the 

following result, which establishes that Algorithm 1 yields a ''probabilistic 
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e::.-approximation scheme'' for the solution of the traveling-salesman problem 

in the plane. 

THEOREM 6. There are constant:s n
1 

and d
1 

such that, for every E > 0, we can 

construct an algorithm A
1 

(e:} wit:h th~ following properties: 

O(n log n), and 

(2) with probability 1, A(e::.) constructs a tour of length < (l+e:) times the 

cost of an opt;imum tour. 

Proof. Corollary 2 tells us that lw1 !-IT*l < cln/t. Thus, the relative error 

is< c•t-112;a, with probability 1, for any C' > C; A(E) is simply Algorithm 
2 2 2 . . . n-1 t 

1, with t > c /S £. By Theorem 1, the running time is< 2 t-l Dd + 
2 2 - 2 2 

O(n log n). D 

We shall be interested in the expected performance of a partitioning algo

rithm for the traveling-salesman problem in the plane. 

This leads us to investigate the quantity BX(t) = E(Tt(X))//t. By a 

construction given in [Beardwood et al. 1959] there exists a constant C 

depending on X such that the length of a shortest tour through any n points 
• 

in Xis~ cln. From this it follows that SX(t) is uniformly bounded. Hence, 

using Theorem 5 and the dominated convergence theorem [Moran 1968,p.206], 

it follows that $ (t)··,, ➔-Slv(x)· 
X ti,,oo • 

Here we study the rate of convergence. 

Let the axb rectangle X be fixed throughout the following discussion. 

Ass1.Jme that dimensions are scaled so that ab = 1. 

THEOREM 7. For all t, BX(t)-B ~ 6(a+b)//t. 

Proof. Consider a problem instance drawn for II (X) • Let T * 
ab 4t 

tour. Subdivide X into four 2x2 rectangles Y
1

, Y
2

, Y
3

, Y
4

• 

the length of a shortest tour through the cities in y. .. By 
1 

IT(Y.)! 
1 

Hence, 

But 

be an optim11m 
• 

Let T (Y. ) denote 
1 

Theorem 3 



• 

• 

and 

• 

since the set of cities 

Ilt(X), and then had all 

in Y. is distributed as if it were 
l. 

dimensions scaled down by a factor 

By induction on k, 

+ 6 (a+b) /✓t. 

Since 
k >00 

S, the theorem follows. D 

• 

• 

drawn 
1 

of 2• 
from 

Hence, 
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5. EXPECI'ED PERFORMANCE OF A PARTITIONING ALGORITHM 

In this section we 

consider a variant 

assume that the set of cities is drawn from TI (X). We n 
of Algorithm 1 in which the rectangle Xis partitioned 

into subrectangles, in each of which the expected n 11rnber of cities is t. An 

optimum tour is constructed in each subrectangle, and these tours are then 

all the cities. Our main result 

• 

Spe.~~fication of Algori~ 2 

Throughout the following discussion Xis a fixed rectangle of area 1, and 

t is a fixed positive real n1.,mher. Choose k = k(n) as the least positive 

integer such that t•2k(n) ~ n. Given any rectangle Y, define t'{Y) and 

r' (Y) as the two subrectangles determi,ned by a bisecting cut parallel to 

the short sides of Y. Define e(Y) as the shortest line segment joining a 

city in Jl' (Y) with a city in r" (Y); if either t• (Y) or r' (Y) contains no 

city, then e(Y) is undefined. 

In the following procedure definition, procedure A2 takes a rectangle 
• 

as input and produces as output a spanning walk through the cities in X. 

The recursive procedure WALK2(Y,j) accepts as input a rectangle Yanda 

positive integer j, and produces a spanning walk through the cities in Y. 

The input j controls the depth of rec,.1rsion. The procedure TOUR ( Y) is a 

subroutine that constructs an optim1.lIIl tour through the cities in Y. 

PROCEDURE A2 

A2(X) = WALK2(X,k) 

WALK2(Y,j) = if j = 0 

then TOUR (Y) 

else WALK2(i' (Y),j-1) u WALK2(r'(Y) ,j-1) u 2e(Y) 

Alternately, 

divided into 
Algorithm 2 may be viewed as follows. The rectangle 

k 
2 subrectangles according to a play of the cutting 

X is sub-

• game in 

which the two players use the short strategy and the bisection strategy, 

respectively• The spanning walk W 2 consists of shortest tours through these 

subrectangles, together with additional line segments linking these to1.1rs 
together into a ted t · connec s ructure; each of these connecting segments 
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Figure 8 shows the result 

Figtlre 3. The parameters are n 

of applying Algorithm 2 to the example of 
25 

= 25, t = 8 , k = 3. Each cross-hatched seg-
ment in Figure 8 occurs twice in w

2 
• 

• 

Figure 8 Example of the construction of w
2

. 

LEMMA 3. The resulc of applying Algorithm 2 is an Eulerian walk t;hrough the 

cities in X. Each cime TOUR(Y) is called, tile expected number of cities in 

Y is n/2k ~ t. 
• 

The expected execution time of Algorithm 2 

In analyzing the performance of Algorithm 2, we make the following as~11mp

tion about the subroutine TOUR. 

ASSUMPTION. Let E(s,Y) denote the expected time for TOUR to compute a short

est tour through s points randoml.y distributed in the rectangle Y. Then there 

are absolute constants c and C such that, for alls and Y, E(s,Y) s cc9 • 

If TOUR is the standard dyriamj,c progra.1m11ing algorithm CBellman 1962; Held & 

Karp 1962] with execution time O(s2 •2 5
) then any constant c > 2 will work. 

Certain branch-and-bound methods [Helbig Hansen & Krarup 1974; Held & Karp 

1970, 1971; Smith & Thompson 1977; Smith et al. 1977] seem to achieve sub-
' 

stantially smaller values of c, but no rigorous analyses exist. 

' 

THEOREM 8. Let c and C be as in the Assumption. Then, with suitable imple-

:mt':::ntation, the expected 

from TI (X) is less than 
n 

execution time 
2n 

or equal to t · 

of Algorithm 2 

Ce(c-l)t + O(n 
on problems 

2 log n). 

drawn 
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Proof. The execution time is the sum of three contributions: 

( 1) the time spent solving ''small'' traveling-salesman problems using the 

subroutine TOUR; 

(2) the time spent determining the line segments e{Y); and 

( 3) the time spent on othe,r operations. 

Contribution (3) can be bounded by O{n log n), exactly as in the analysis 

of Algorithm 1 • 

We estimate contribution (1) as follows. The subroutine TOUR is in

voked 2k(n) times. Each time the number of cities has a Poisson distribution 

with meant. Thus the expected execution time of each invocation is 
00 -t tx x c-1 t 

total time spent in TOUR is 

thus~ 2k(n>ce<c-1)t < 2n ce<c-1)t_ 
t 

Finally, we show that contribution (2) is O(n log2n). As a first step, 

we show that the time to compute e(Y), the shortest segment joining a city 

. in Jl' (Y) with a city in r' (Y) , is O (n (Y) log n (Y) ) • Each candidate for e (Y) 

must cross B, the cut separating t• {Y) from r' (Y). For each city a E Jl'(Y), 

define the interval I(a) by 

I(a) = {x E Bja is the closest city in~• (Y} to x}; 
• 

similarly, for any city b € r' (Y), 

J(b) = {x E Bib is the closest city in r' (Y) to x}. 

Using techniques from [Shamas 1975; Shamos & Hoey 1975] these intervals can 

be determined in O(n(Y) log n(Y)} steps. Then, in linear time, one can list 

all pairs a,b such that I(a)nJ(b) has positive measure. There are at most 

n(Y) such pairs, and they are the only candidates for the segment e(Y). 

Thus e(Y) can be determined in O(n(Y) log n(Y)) steps. The expected time 

spent in computing the segments e(Y) thus grows as 

log n(Y)). 

Application of Chebyshev's inequality yields the result that, if n(Y). 

Poisson distributed with mean A, then 

E(n(Y) 

Hence, 

is subdivided}n(Y) log n(Y)) 
~ \'k-1 

lj=O 
n log -

• 
l..S 
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4 k 
< kn log n + 3(2 -1) 

2 = o (n log n). 

This completes the proof. D 

continue to ass,une that X is a fixed axb rectangle and the parameter t 

is fixed. Assuming 

the expected value 

that problem 

* of I W 2 1- IT I 

instances are drawn from 

as a function of n. Here 

IT (X), we analyze 
n 

w2 denotes the 

spanning walk generated by Algorithm * 2, and T denotes a fixed tour. 

To avoid purely technical complications we assume that a~ b < 2a, 
k(n) . 

n = 2 •t, and k(n) is even. 

Proof. In estimating Jw2 1 we note that, because a~ b < 2a, the k-stage 

subdivision process alternates between stages of vertical cutting and 
k 

stages of horizontal cutting. Because k is even, the 2 resulting rect-

angles 

factor 

are similar 
-k/2 

2 • 

to X, but with both their dimensions scaled down by the 

The length lw2 i is the sum of two contributions: 

{1) the sum of the lengths of the shortest tours within the rectangles, 

and 

(2) twice the s1.1ro of the lengths of the arcs e {Y). 

The first 

cities in 

contribution may be estimated as follows. The distribution of 
k any one of the 2 rectangles is the same as if the cities had 

been drawn from Ilt(X), and then all directions had been scaled down by 

the factor 2-k/2 • Thus the expected value of the first contribution is 

We estimate the second contribution as follows. By Lemma. 5, the expected 

length of e(Y) is n-2131-l/3 + o(n-2131-113 ), where tis the length of the 

shorter side of Y (the fact that 1'(Y) or r' (Y) may fail to contain a city, 

in which case we take le(Y) I= O, only helps us). Summing over all the 

rectangles Y that get subdivided we have 



• 

162 · 

j=O 

-- t 
• 

It only remains to give the Lemma used in the proof of Theorem 9. This re

quires a prelimjnary Lemma. 

l.f!MMA 4. Let h points be placed at random on a unit interval. Then the ex
pected value of the minimum distance between a pair of -these points is 
< 2 
- (h-2} (h-1} • 

Proof. Let A be a constant. We derive an upper bound on QA, the probability 

that the minimum distance is~ A. Regard the points as being placed succes

sively at random locations on the unit interval. Ass1.nning that no two of 

the first k points are within A of each other, the probability that the 

= (k-1 )A. Hence 

Q s 
A 

h-1 -A (k-1) 
:s; IIk=2 e 

A 
--(h-2) (h-1) 

. 2 = e 

The expected value· of the shortest distance is 

Q dA :s; 
A=O A 

00 

A=O e dA = (h-2) (h-1). □ 

• 

LEMMA 5. Suppose cities are distributed according to a 2-dimensional 

Poisson distribution with density n in the infinite strip between the t:wo 

parallel lines y = 0 and y = R.. The expected value of the minimum disr.ance 

between a city in t:he right half-plane and a city in the left half-pl.ane is 
s 2n-2/31-1/3 + o(n-2/3£-1/3}. 

Proof. Leth be a positive integer to be specified later. Order the cities 

in increasing order of their distance from the line x = O; call this total 

ordering ••~••. Select an increasing sequence of cities a
1

, a
2

, ••• , ¾ as 

follows. For a 1, we select the first city in the ordering. Given a
1

, ••• ,au, 

if the point in {a1 ,a2 , ••• ,au} at the least vertical displacement from a is 

and 
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a. be the two at minimum vertical distance from each other. By the way the .1.2 
points were selected, ai

1 
and ai

2 
are in opposite half-planes. We compute 

the expected value of the distance between ai
1 

and ai
2

• 

Let a. have the coordinates (x. ,y.). Then lx
1

1 has 
l. -- l l 

an exponential dis

the ai, E ( I xi 
1 

I ) = 

. n i+ l. 

E(lx.l) = 
n h . . 1 h 

h i=l nJ2, = 2nQ.. Similarly, E ( I xi
2 

! ) = 2ni. 

The random variables {a1 , ••• ,¾} are highly dependent, but their ver

tical coordinates {y} are independent and uniformly distributed over [0,£]. u 
For, given a 1 ,a2 , ••• ,au, note that au+l is the city closest to the y-axis 

in a region R consisting of horizontal strips in both the right half-plane 

and the left half-plane, such that Rn{(x,y) IY = y
0

} is 

either 

or 

{ (x,yo) Ix 
{ (x,yo) Ix 

> a } 
u 

<-a}. 
u 

Hence, every y 0 is equally likely to be they-coordinate of the next city 

1/3 2/3 1 2 
h = [n i ], the result follows. 0 

• 

• 

• • 

the expected value 
h 

S --~--~ nt· Setting 

• 

= !l 

• 

• 
• 

• 
• 

y = 

Figure 9 Construction in the proof of Lemma 5 (h = 5). 

It is natural to-conjecture that SX(t) ~$for all t. We cannot prove this, 

but Theorem 9 does yield the following corollary. 
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Proof. Theorem 9 shows that, for infinitely many n, 

~ SX(n). Since Bx(n) + B, the result follows. D 

COROLLARY 4. The expected 
-7/6 

- (3 + 0 (t ) ) .. 

* ,- -7/6 .. EC IT I) i=.. -rnBX (n). By Corollary 3, Bx (n) + O (n ) 2::: f3. Combining these 

results, 
• 

* COROI,LARY 5. For every a > 1, the ratio /w2 I/IT I is ::; 1 + a.(BX(t) + 

O(t-7/ 6 ))/S, with probability 1. 

-1 2 · · 
relative error for Algorithm 2 is 

-1/2 O(t ). So far as growth rate is concerned, this is no improvement over 

Algori t..11m 1. The advantage of Algorithm 2, and our reason for presenting 

it in detail, is that the expected error is• given explicitly in terms of 

BX(t) .. Thus, any inforn1ation gained about SX(t), with respect to either its 

growth rate or its values for specific t, will be directly applicable. 
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6. EXPERIMENTAL RESULTS 

To deter ine experimentally the quality of solutions produced by Algorithm 1 

or Algorithm 2 would have required a supply of randomly generated problems 

for which optimal (or nearly optimal) solutions are known, as well as con

siderable investment in computer programming and data preparation. We decid

ed instead to test the effectiveness of partitioning schemes using the min

im1.1m spanning tree problem in the plane as a substitute for the traveling

salesman problem. This permitted the experiments to be done by hand. 

The problem of constructing a minimum-length spanning tree through a 

set of n points in the plane can be solved in O(n log n} steps [Shames 1975; 

Shamas & Hoey 1975]. To test our partitioning ideas, we ignored the exis

tence of this efficient exact solution algorithm, and instead used the fol

lowing partitioning scheme, which combines features of our two partitioning 

algorithms for the traveling-salesman problem. 

Let Y be a rectangle, oriented so that its longer sides are horizontal, 

and containing m cities. Then Y can be subdivided into two rectangles, 

the left and the <L~J+1)st city from the left. Let e*(Y} denote the shortest 

segment joining a city in i*(Y) with a city in r*(Y). Let TFEE(Y) be a sub

routine capable of finding a minim1.1m spanning tree through all the cities 

in Y; this subroutine will be 

Let k(n) be the least integer 

called only when Y contains tor fewer cities. 
k (n) n 

such that 2 ~ t· 
The following is a recursive presentation of the partitioning scheme, 

simj lar to our earlier presentations of proced11res Al and A2. 

PROCEDURE A3 

A3(X) = APPROXTREE(X,k) 

APPROXTREE(Y,j) = if j = 0 

then TREE(Y) 

* else APPROXTREE(t (Y),j-1) 

* * U APPROXTREE(r (Y),j-1) U e (Y) 

Applying ideas quite similar to those that occur in the analysis of Alge-

rithm 1, we can show that the difference between !Tapproxl, 

the spanning tree produced by A3 (x), and IToptl, the length 

spanning tree, is less than 

the length of 

of the minim1Jm 
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<ly per(Y))-per(X}, 

where the summation is over all rectangles Y to which the procedure TREE is 

applied. 

Five 128-city problems were generated. In each, the cities were random-

ly distributed in the unit square. Each problem was solved with t = 4, 8, 

16, 32 and 64. Table 1 reports the observed percentage error (defined as 

lOO(IT I/IT 1-1)) for each run of Algorithm 3. 
approx opt 

TABLE 1. PERCENTAGE ERROR.EXPERIENCED BY ALGORITHM 3 

problem 

t 64 

32 

16 

8 

4 

1 

.6 

2.4 

5.3 

7.9 

10.5 

2 

3.2 

4.7 

10.7 

14.1 

16 .. 3 

3 

3.0 

4.3 

7.0 

8.0 

10.6 

4 

.s 
1.7 

3.7 

6.2 

10.4 

5 

1.6 

4.9 

9.7 

12.9 

16.8 

A good empirical formula for the error is 
• 

Thus, the error is typically proportional to (l per(Y))-per(X), but with a 
y 

much smaller constant of proportionality than the one arising from a worst-

case analysis. 

We speculate that a similar relationship exists between the average 

and worst-case error of our traveling-salesman algorithms. In particular, 
· ........ -1 2 

constant of proportionality than the one given in the upper bound of 

Theorem 7. 

smaller 
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7. CONCLUSION 

We believe that the partitioning schemes presented here have both theoret

ical and practical interest .. Using Algorithm 1 we have available a ''proba

bilistic s-approximation scheme" for the traveling-salesman problem in the 

plane. That is, for every E > O, we can construct an algorithm A1 (c) that 

runs . . . 2 1 £ 2 
log n) and, with probability 1, con-

structs a tour of length< (l+s) times the cost of an optimum tour. This is 

done simply by running Algorithm 1, with t depending suitably on s. 

lar scheme can be constructed using Algorithm 2. The choice oft necessary 

to achieve a specified relative error in this case will depend on the rate 

at which SX(t) converges to 8; our present estimates of this convergence 

rate (Theorem 7) are undoubtedly far too pessimistic. We conjecture that 

8 ( ) 8 . . d d . 1 -l/2 b · th X t - is in ee proportiona tot , ut wi a much smaller constant 

of proportionality than is given by our upper estimate. Our experimental 

results with a partitioning algorithm for the minimum spanning tree problem 

lend support to this conjecture. 

In practice Algorithm 1 is probably to be preferred over Algorithm 2, 

since its absolute error bound is independent of any assumptions about the 

distribution of the cities. 

Some of the technical results used in analyzing the algorithms may be 

of independent interest. Among these results are the characterization of 

optimal strategies for the cutting game, and the lemma bounding the expect

ed shortest distance between cities in adjacent rectangles. 

Our partitioning schemes should prove to be of practical use in the 

solution of extremely large traveling-salesman problems in the plane. The 

heuristic methods from [Krolak et al. 1970; Lin & Kernighan 1973] yield 

good approximate solutions in reasonable time to problems with two or three 

hundred cities, but they become unwieldy for larger problems. When the n11m

ber of cities is in the thousands one can use a hybrid scheme with combines 

partitioning with one of these heuristics. In such a scheme the exact solu

tion procedure TOUR(Y) in Algorithm 2 would be replaced by a heuristic 

method. It would then be feasible to run the algorithm with t = 200 (say), 

and the expected relative error would be 

fi(t) + 

where ~(t) is the expected relative error for the underlying heuristic 
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algorithm. 

All the results generalize easily if we allow the locations of the 

cities to be determined according to an arbitrary 2-dimensional probability 

density function or if we let the domain X be any connected Lebesgue measur

able set. Also, we may use the rectilinear or L
00 

metric instead of the 

Euclidean metric. The algorithms may also be generalized to d dimensions; 

the worst-case error in Algorithm 1 becomes 

error (with probability 1) is O(t-(d-l)/d). 

and the relative 

Finally, the partitioning methods and their analyses may be modified 

in a straightforward way to apply to many other optimization problems of 

a geometric nature. Among these are the Steiner tree problem in the plane, 

the problem of constructing a minim1.1m-weight perfect matching when the 

weights are Euclidean distances, the simple plant location problem in the 

plane, and various multi-vehicle delivery problems in the plane. 
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ABSTRACT 

The theory of deterministic sequencing and scheduling has expanded rapidly 

during the past years. In this paper we survey the state of the art with 

respect to optimization and approximation algorithms and interpret these in 

terms of computational complexity theory. Special cases considered are 

single machine scheduling, identical, uniform and unrelated parallel machine 

scheduling, and open shop, flow shop and job shop scheduling. We indicate 

some problems for future research and include a selective bibliography. 
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1. INTRODUCTION 

In this paper we attempt to survey the rapidly expanding area of determinis

tic scheduling theory. Although the field only dates back to the early fif

ties, an impressive amount of literature has been created and the remaining 

open problems are currently under heavy attack. An exhaustive discussion of 

all available material would be impossible - we will have to restrict our

selves to the most significant results, omitting detailed theorems and proofs. 
, 

For further information the reader is referred to the classic book by Conway, 

Maxwell and Miller [Conway et al. 1967], the more recent introductory text

book by Baker [Baker 1974], the advanced expository articles collected by 

Coffman [Coffman 1976] and a few survey papers and theses [Bakshi & Arora 

1969; Lenstra 1977; Liu 1976; Rinnooy Kan 1976]. 

The outline of the paper is as follows. Section 2 introduces the essen

tial notation and presents a detailed problem classification. Sections 3, 4 

and 5 deal with single machine, parallel machine, and open shop, flow shop 

and job shop problems, respectively. In each section we briefly outline the 

relevant complexity results and optimization and approximation algorithms. 

Section 6 contains some concluding remarks • 
• 

We shall be making extensive use of concepts from the theory of compu-

tational complexity [Karp 1972, 1975A]. An introductory survey of this area 

appears elsewhere in this volume [Lenstra & Rinnooy Kan 1978B] and hence 

terms like (pseudo)polynomial-time algorithm and (binary and unary) NP

hardness will be used without further explanation. 
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2. PROBLEM CLASSIFICATION 

2.1. Introduction 

Suppose that n 

(i = 1, •.. ,m). 

jobs J. (j ~ 1, ••• ,n) have to be processed on m machines M. 
J 1 

Throughout, we assume that each machine can process at most 

one job at a time and that each job can be processed on at most one machine 

at a time. Various job, machine and scheduling characteristics are reflected 

by a 3-field problem classification a.lBIY, to be introduced in this section. 

2.2. Job data 

In the first place, the following data can be ppecified for each J.: 
J - a number of operations m.; 

-
J 

one or more processing times p . or p . . , that J . has 
J 1J J 

to spend on the 

various machines on which it requires processing; 

- a release dater., on which J. becomes available for processing; 
J J 

- a due dated., by which J. should ideally be completed; 
J J 

- a weigh~ w., indicating the relative importance of Jj; 
J . 

- a nondecreasing real cost function f., measuring the cost f.(t) 
J J 

incurred if J. is completed at time t. 
J 

In general, m. , p. , p .. , r. , d. and w. are integer variables. 
J J iJ J J J 

2.3. Machine environment 

We shall now describe the first field a= a 1a.2 specifying the machine 

environment. Let O denote the empty symbol. 

If a 1 € {o,P,Q,R}, each J. consists of a single operation that can be 
J 

processed on any M.; 
.l. 

the processing time of J . on M. is p . . • The four values 
J i 1J 

are characterized as follows: 

- a 1 = o: single machine; plj = pj; 

- a 1 = P: identical parallel ma.chines; p. . = p. ( i = 1, •.• , m) ; 
i] J 

- a 1 = Q: uniform parallel ma.chines; p .. = q.p. for a given speed factor 
J.J l. J 

q. of M. ( i = 1, ... , m) ; 
J. J. 

- a 1 = R: unrelated parallel machines. 

If a = o, we have an open shop, in which each J. consists of a set of oper-
1 J 

ations {o1 ., •.• ,o .}. o .. has to be processed on M. during p
1
.J. time units, 

J mJ .l.J i 

but the order in which the operations are executed is immaterial. If 
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a
1 

E {F,J}, an ordering is imposed on the set of operations corresponding to 

consists of a each job. If a
1 

= F, we have a flow shop, in which each Jj 

chain (O 
1 

. , .... ,o . ) . o. . has to be processed on M
1
. during pi J. time uni ts -

J mJ l.J 
If a

1 
= J, we have a job shop, in which each J j consists of a chain 

on a given machine µ .. during P .. 
l.J l.J 

time units, withµ, 1 . ~µ,.for i = 2, ••. ,m .• 
1- ,J 1.J J 

If a
2 

is a positive integer, then m is constant and equal to a 2 • If 

a
2 

= o, then m is ass11med to be variable. Obviously, a 1 = 0 if and only if 

= 1 .. 

2.4. Job characteristics 

The second field B c {8
1

, ••• ,8
6

} indicates a number of job characteristics, 

which are defined as follows. 

1 .. B 
1 

€ { pmtn , o } 

2. 

3. 

4. 

8
1 

= pmtn : Preemption (job splitting) is allowed; the processing 

$1 -- 0 

of any operation may be interrupted and resumed at a 

later time. 

: No preemption is allowed. 
• 

82 € {res ,resl, o} 

82 -- res 

132 res1 

132 = 0 

: The presence of s limited resources¾ (h = 1, .•. ,s) is 

assumed, with the property that each J. requires the use 
J 

• • 

• • 

of rhj units of ~ at all times during its execution. Of 

course, at no time may more than 100% of any resource be 
• 1.n use. 

The presence 

No resource 

of only a single resource is ass1-1med. 

constraints are specified. 

8 3 E: {prec,tree,o} 

s = prec 
3 

B3 = tree 

B3 = o 

84 e: {rj,o} 

84 =: rj 

• ,. 

• .. 

A precedence relation < between the jobs is specified • 

It is derived from a directed acyclic graph G with 

vertex set { 1, ••. ,n}. If G contains a directed path 

from j to k, we write J, < J and • that J. • require l.S 
J k J 

completed before Jk can start. 

G is a rooted tree with either outdegree at most one 

for each vertex or indegree at most one for each vertex. 

: No precedence relation is specified. 

: Release dates that may differ per job are specified. 
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f3 4 
0 .. - • -
{m ,:Sm, O} s .. S5 € 

J 

We ass11me that r. = 0 .. 
J 

-
85 m.Sm • - • - A constant upper bound on m . 

J 
is specified (only if 

J 
• 

Ss = o 
: No such bound is specified. 

6. 

86 = p .. =1 l.J 
: Each operation has unit processing time. 

-a
6 

= E:Spijsp: Constant lower and upper bounds on 

86 = 0 
: No such bounds are specified. 

2.5. ~pti~~l.ity criteria 

p .. are 
l.J 

specified. 

The third field y € {f ,lf,} refers to the optimality criterion chosen. 
max J 

Given a schedule, we can compute for each J.: 
J 

- the completion time C.; 
J 

the lateness L. = c.-d.; 
J J J 

- the tardiness T. = max{O,C.-d.}; 
J J J 

- the unit penalty U. = if C. s d. then O else 1. 
J J J 

The optirr1al.ity criteria most commonly chosen involve the minimization of 
• 

f E {C L } 
max max' max 

where f = max.{f. (C.)} with f. (C.) = C.,L., respectively, or 
max J J J J J J J 

where Lf. = I1?' 
1 

f.(C.) with f.(C.) = C.,T.,U.,w.C.,w.T.,w.U., respectively. 
J J= J J J J J J J J J J J J J 

It should be noted that Iw.C. and Iw.L. differ by a constant Iw.d. and 
J J J J J J 

hence are equivalent. Furthe~more, any schedule minimizing L also minimax 
• mizes T and U , but not vice versa. 

max max 
The optimal value of y will be denoted by * y , the value produced by 

y(A)/y * 
an 

is (approximation) algorithm A by y (A). If a known upper bound p on 

* best possible in the sense that examples exist for which y(A)/y equals or 

asymptotically approaches p, this will be denoted by a dagger (t). 

2.6. Exarnples 

llpreclLmax: minimize maximum lateness on a single machine subject to 

general precedence constraints. This problem can be solved in 
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p Qc 0 F 

Oc 

1 

Fi911r_~ 2 .,,l". G1 ; c denotes an integer constant. 

0 pmtn 

0 

p .. = I 
. fj 

res 

rest · 

0 

prec 

tree 

0 

Lmax 

Cmax 

r . 
J 

0 

~w.LJ. 
·"-' J J 

u . 
J 

J 

Jc 

Fe 

0 

m· < m J -
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polynomial time {Section 3.2). 

Rlpmtnlic. : minimize total completion time on a variable number of unre
J 

lated parallel machines, allowing preemption. The complexity of this 

problem is unknown (Section 4.4.3). 

J3 Ip .. ::::: 1 IC : minimize ma.xi:rn1.1m completion time in a 3-rnachine job shop 
.l.J max 
with unit processing times. This problem is NP-hard (Section 5 .. 4.1). 

Each scheduling problem in the class outlined above corresponds to a 8-tuple 
8 

(v. ) . 1, 
1 l.= 

where v. is a vertex 
l. 8 

of graph G., drawn in Figure 2.i (i = 1, ••• ,8) .. 
l. 

For two Problems P' = (v!). 1 .1. l.= l. J.= 

v' = v. or G. contains a directed path from 
i l. J.. 

reader should verify that P' + P implies P' 

v ~ to v . , for i 
l. l. 

a: P. The graphs 

+ P if either 

= 1, .•• ,8. The 

thus define 

elementary reductions among scheduling problems. It follows that 

- if P • + P and P E P, then P I E P; 

- if p• + P and P' is NP-hard, then Pis NP-hard. 

• 
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3. Sit-iGLE MACHINE PROBLEMS 

3.1. Introduction 

The single machine case has been the object of extensive research ever since 

the seminal work by Jackson [Jackson 1955] and Smith [Smith 1956]. We will 

give a brief survey of the principal results, classifying them according to 

the optimality criterion chosen. As a general result, we note that if all 

idle time [Conway et al. 1967]. 

The most general result in this section is an O(n2) algorithm to solve 

llpreclf for arbitrary nondecreasing cost functions [Lawler 1973]. At · max 

each step of the algorithm, let S denote the index set of unscheduled jobs, 

let p ( S) = l · p. , and let S • c S indicate the jobs all whose successors JE'.S J 

by requiring that fk(p(S)) ~ f.(p(S)) for all j ES'. 
] . 

For t I IL a , this procedure specializes to Jackson's rul.e: schedule the m_x 

jobs according to nondecreasing due dates [Jackson 1955]. Introduction of • 

release dates turns this problem into a unary NP-hard one [Lenstra et al.. 
1977] .. 

J and 1jpmtn,prec,r.jL can still be solved in · max J ~x 
polynomial time: first update release and due dates so that they suitably 

reflect the precedence constraints and then apply Jackson's rule continu

ally to the set of available jobs [Lageweg et; al.. 1976]. 

Various elegant en11merative methods exist for solving 1 lprec,r. IL . 
J max 

Baker and Su [Baker & Su 1974] obtain a lower bound by allowing preemption; 

their enumeration scheme simply generates all active schedul.es, i .. e. sched

ules in which one cannot decrease the starting time of an operation without 

increasing the starting time of another one. McMahon and Florian [McMahon & 

Florian 1975] propose a more ingenious approach; a slight modification of 

their algorithm allows very fast solution of problems with up to 80 jobs 
[Lageweg et al. 1976]. 
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3. 3. Mini~~.2:,in9 , .~ot:9-_l cost 
' 

3.3 .. 1. 11s11w.C. 
J J 

The case lj ILwjcj can be solved in O(n log n) time by Smith's rule: sched

ule the jobs according to nonincreasing rations w./p. (Smith 1956]. If all 
] J 

weights are equal, this amounts to the SPT rule of executing the jobs on 

the basis of shortest processing time first, a rule that is often used in 

more complicated situations without much empirical, let alone theoretical, 

support for its superior quality (cf. Section 5.4.2). 

This result has been extended to O(n log n) algorithms that deal with 

tree-like [Horn 1972; Adolphson & Hu 1973; Sidney 1975] and even series

parallel [Knuth 1973B; Lawler 1978A] precedence constraints; see [Adolphson 

1977] for an O(n3 ) algorithm covering a slightly more general case. The 

crucial observation to make here is that, if Jj· < Jk with wj/pj < wk/pk 

and if all other jobs either have to precede Jj, succeed Jk, or are incom

parable with both, then Jj and Jk are adjacent in at least one optimal 

schedule and can effectively be treated as one job with processing time 

pj+pk and weight wj+wk. By successive application of this device, starting 

at the bottom of the precedence tree, one will eventually obtain an optimal 

schedule. Addition of general precedence constraints results in NP-hardness, 

even if all p. = 1 or all 
J 

w. = 1 [Lawler 1978A; Lenstra & Rinnooy Kan 1978A]. 
J 

If release dates are 

[Lenstra et al. 1977]. In 

introduced, ljr.lic. is already unary NP-hard 
J J 

the preemptive case, llpmtn,r.!Ic. can be solved 
J J 

by an obvious extension of Smith's rule, but, 
' J J 

is unary NP-hard [Labetoulle et al. 1978]. 

1}!Iw.T. is a unary NP-hard problem [Lawler 1977; Lenstra et al. 1977], for 
J J 

which various enumerative solution methods have been proposed, some of which 

can be extended to cover arbitrary nondecreasing cost functions .. Lower bounds 

developed for the problem involve a linear assignment relaxation using an 

underestimate of the cost of assigning J. to position k [Rinnooy Kan et al. 
J 

1975], a fairly similar relaxation to a transportation problem [Gelders & 

Kleindorfer 1974, 1975], and relaxation of the requirement that the machine 

can process at most one job at a time [Fisher 1976A]. In the latter approach, 
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one attaches ''prices'' (i.e., Lagrangean multipliers) to each unit-time 

interval. Multiplier values are sought for which a cheapest schedule does 

not violate the capacity constraint. The resulting algorithm is quite suc

cessful on problems with up to 50 jobs, although a straightforward but clev

erly implemented dynamic p~ograrnrning approach [Baker & Schrage 1978] offers 

a surprisingly good alternative. 

If all p. = 1, we have a simple linear assignment problem, the cost of 
J 

assigning J. to position k being given by f.(k). If all w. = 1, the problem 
] J 4 J 

can be solved by a pseudopolynomial algorithm in O(n LP,) time [Lawler 
J 

1977]; the computational complexity with respect to a binary 

encoding remains an open question. 

Addition of precedence constraints yields NP-hardness, even for 

· 1lprec,p.=1IIT. [Lenstra & Rinnooy Kan 1978A]. 
J J 

If we introduce release dates, llr.,p.=llLw,T. can again be solved as 
J J J J 

a linear assignment problem, whereas 1lr.j1T. is obviously unary NP-hard 
J J 

(cf. Section 2.7). 

3.3.3. 1Jsliw.U. 
J J 

• 

An algorithm due to Moore [Moore 1968] allows solution of 11 IIu. in 
J 

' 

O(n log n) time: jobs are added to the schedule in order of nondecreasing 

due dates, and if addition of J. results in this job being completed after 
J 

a., 
J 

the scheduled job with the largest processing time is marked to be late 

and removed. This proced1.1re can be extended to cover the case in which 

certain specified jobs have to be on time [Sidney 1973]. The problem also 

remains solvable in polynomial time if we add agreeable weights (i.e., 

Pj < Pk ::o- wj ~ wk) [Lawler 1976A] or agreeable release dates (i.e., 

::o- r. ~ 

1972], but can be solved by dynamic programming in O(nLp.) time [Lawler & 
J 

Moore 1969]. 

Again, 1lprec,p.=1llu. is NP-hard [Garey & Johnson 1976B], even for 
J J 

chain-like precedence constraints [Lenstra -]. 

Of course, llr.liu. is unary NP-hard. The preemptive case 
J J 

1 lpmtn, r. I LU. is an intriguing open problem. 
J J 

Very little work has been done on worst-case analysis of approximation 

Sahni [Sahni 1976] 
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J 
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running time such that 

For lltreeliw.U., Ibarra and Kim [Ibarra & Kim 1975B] give 
·k+2J J 

order O(kn ) with the same worst-case error bound. 

• 
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4. PARALLEL MACHINE PROBLEMS 

4.1. Introduction 

Recall from Section 2.3 the definitions of identical, uniform and unrelated 

machines, denoted by P, Q and R, respectively. 

Nonpreemptive parallel scheduling problems tend to be difficult. This 

can be inferred immediately from the fact that P21 le and max P 2 I I }: w . C . are 
J J 

binary NP-hard [Bruno et al. 1974; Lenstra et al. 1977]. If we are to look 

for polynomial algorithms, it follows that we should either restrict atten-

tion to the special 

selves with the Ic. 
J 

case p. = 1, as we do in Section 4.2, or concern our
J 

criterion, as we do in the first three subsections of 

Section 4.3. The remaining part of Section 4.3 is entirely devoted to enu

merative optimization methods and approximation algorithms for various NP

hard problems. 

The situation is much brighter with respect to preemptive parallel 

scheduling. For example, Plpmtnlc has long been known to admit a simple 
max 

O(n) algorithm [McNaughton 1959]. Many new results for the Ic., C and 
J max 

L 
max criteria have been obtained quite recently. These are s11mm~rized in 

• 

Section 4.4. With respect to other criteria, P2lpmtnl}:w.c. turns out to be 
J J 

NP-hard (see Section 4.4.1). Little is known about PlpmtnlIT. and 
J 

problems remain open. However, we know from Section 3 

that ljpmtnliw.T. and 1jpmtnliw.U. are already NP-hard. 
J J J J 

A simple transportation network model provides an efficient solution method 

for Qlp.=11It. and Qlp.=ljf • 
J J J max 

Let there be n sources j {j = 1, ... ,n) and mn sinks (i,k) (i = 1, ... ,m, 

k = 1, ••. ,n). Set the cost of arc (j,(i,k)) equal to C .. k = f . (kq. ) . The 
J.J J J. 

arc flow is to have the interpretation: 

1 if Jj is executed on Mi in the k-th position, 

0 otherwise. 

Then the problem is to minimize 
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2 . . k c .. kx .. k or max. . k { c .. kx .. k} i,J, 1] 1J 1,J, iJ 1] 

subject to 

' x = 1 for all J·, l · k .. k i, 1] 

' x S 1 for all i· ,k, l . . 'k J 1] 

xijk ~ 0 for all i,j,k. 

The time required to prepare the data for this transportation problem is 
2 

O(mn ). A careful analysis reveals that the problem can be solved {in in-

tegers) in O{n
3

) time. Since we may assume that ms n, the overall running 

.time is O(n 3 ). 

It may be noted that some special cases can be solved more efficiently. 

For instance, Plp.=lliu. can be solved in O(n log n) time [Lawler 1976A]. 
J J 

4.2.2. Plprec,p.=llc 
J max 

Pjprec,p.=llc is known to be NP-hard [Ullman 1975; Lenstra & Rinnooy Kan J max 
1978A]. It is an open question whether thi~ remains true for any constant 

value of m ~ 3. The problem is in P, however, if the precedence relation is 

of the tree-type or if m = 2. 

Pltree,p.=llc can be solved in O(n) time by Hu's algorithm [Hu 1961; 
J max 

Hsu 1966; Sethi 1976A]. The level of a job is defined as the ntlmber of jobs 

in the unique path to the root of the precedence tree. At the beginning of 

each time unit, as many available jobs as possible are scheduled on them 

machines, where highest priority is granted to the jobs with the largest 

levels. Thus, Hu's algorithm is a nonpreemptive list scheduling algorithm, 

whereby at each step the available job with the highest ranking on a prior

ity list is assigned to the first machine that becomes available. It can 

also be viewed as a critical path scheduling algorithm: the next job chosen 

is the one which heads the longest current chain of unexecuted jobs. 

If the precedence constraints are in the form of an intree (each job 

has at most one successor), then Hu's algorithm can be adapted to minimize 

L ; in the case of an outtree (each job has at most one predecessor), the max 
L problem turns out to be NP-hard [Brucker et al. 1977]. max 

2 
P2jprec,p.=1lc can be solved in O(n) time [Coffman & Graham 1972]. 

J max 
Previous polynomial-time algorithms for this problem are given in [Fujii 
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et al. 1969, 1971; Muraoka 1971]. 

In the approach due to Fujii et al., an undirected graph is constructed 

with vertices corresponding to jobs and edges {j,k} whenever Jj and Jk can 

be executed simultaneously, i.e., Jj t Jk and Jk i Jj. An optimal schedule 

is then derived from a maximum cardinality matching in the graph. Such a 
' 

matching can be found in O(n3 ) time [Lawler 1976B]. 

The Coffman-Graham approach leads to a list algorithm. First the jobs 

are labelled in the following way. Suppose labels 1, ••. ,k have been applied 

and Sis the subset of unlabelled jobs all of whose successors have been 

labelled. Then a job in Sis given the label k+l if the labels of its imme

diate successors are lexicographically minimal with respect to all jobs in 

S. The priority list is given by ordering the jobs according to decreasing 

labels. It is possible to execute this algorithm in time almost linear in 

n+a, where a is the number of arcs in the transitive reduction of the pre

cedence graph (all arcs implied by transitivity removed) [Sethi 1976B]. 

h th h . . ( 2.8) Note, owever, at construction of sue a representation requires On 

time [Aho et al. 1972]. 

Garey and Johnson present polynomial algorithms for P2jprec,p.=1lc 
J max 

where, in addition, each job becomes available at its release date and has 
• 

to meet a given deadline. In this approach, one obtains an optimal schedule 

by processing the 

fication requires 

jobs in order 

O(n2 ) time if 

of increasing modified deadlines. This 

all r. = 0 [Garey & Johnson 1976B] and 
J 

time in the general case [Garey & Johnson 1977]. 

We note that Plprec,pj=1Jicj is NP-hard [Lenstra & Rinnooy Kan 1978A]. 

Hu's algorithm does not yield an optimal Ic. schedule in the case of intrees, 
J 

but in the case of outtrees critical path scheduling minimizes both C 
max and 

Ic. 
J 

[Rosenfeld-]. The Coffman-Graham algorithm also minimizes l c . [ Garey - J • 
J 

As far as approximation algorithms for Plprec,p.=llc are concerned, the 
J max 

NP-hardness proof given in [Lenstra & Rinnooy Kan 1978A] implies that, un-

less P = NP, the best possible worst-case bound for a polynomial-time algo

of both Ru's algorithm and the Coffman

Graham algorithm has been analyzed. 

When critical path (CP) scheduling is used, Chen and Liu [Chen 1975; 

Chen & Liu 1975] and Kunde [Kunde 1976] show that 

* C (CP)/C 
max max 

4 
for 2 , - m --3 < {t) - 1 

2 for 3. - m 
m-1 

j 
• 

• 
I 

i 
• 
' 

• 
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In [Kaufman 1972] an example is constructed for which no CP schedule is op

timal. 

Lam and Sethi [I,am & Sethi 1977] use the Coffman-Graham (CG) algorithm 

to generate lists and show that 
• 

C (CG) / C * $ 2 - ~ . ( m :?: 2 ) • 
max max m (t) 

If SS denotes the algorithm which schedules as the. next job the one having 

the greatest number of successors then it can be shown [Ibarra & Kim 1976] 

that 

* C (SS)/C 
max max 

< i - 3 
for m = 2. (t} 

'Examples show that this bound does not hold form~ 3. 

Finally, we mention some results for the more general case in which p. E 
J 

{1,k}. Fork= 2, both P2lprec,1$p.$2lc and P2lprec,1Sp.s2jic. are NP-hard 
J max J J 

[Ullman 1975; Lenstra & Rinnooy Kan 1978A]. For P2lprec,p.E{1,k}lc , Goyal 
J max 

[Goyal 1977B] proposes a generalized version of the Coffman-Graham algorithm 

(GCG) and shows that 

4 -
* C (GCG) /C 

max max 
< 3 - 3 -

2 

4.2.3. Plres,8,p.=llc 
J max 

1 - 2k 

fork= 2, 

fork~ 3. 
(t) 

We now take up the variation in which resource constraints enter the model. 

P2jres,p.=llc can be formulated and solved as a maximum cardinality 
J max 

matching problem in an obvious way. However, 

P3lres1,p.=llc are unary NP-hard [Garey & 
J max 

P2lres1,cree,p.=1lc 
J max 

Johnson 1975]. 

and 

For the case Plres,prec,p.=1,~nlc , the following results for list sched-
J max 

uling (LS) using an arbitrary priority list are known [Garey et al. 1976B]: 

* C (LS)/C 
max max 

1 * 1 
~ - sc + - s + 1 2 max 2 

and examples exist with 

* C (LS)/C 
max max 

1 * - sC 
2 max 

* 2s/C • max 
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For the CP scheduling algorithm, the bound improves considerably: 

C (CP)/c* 
max max 

:s; 17 s + 1 
10 

(s ;?:: 0) .. (t) 

Let DMR denote the algorithm which schedules jobs according to decreasing 
. 

maxim11m resource requirement. Then 

* C (DMR)/C 
max max 

17 
:::; 10 s + 1 .. 

In the other direction, examples are given in [Garey et al. 1976B] for any 

e: > 0 with 

* C (DMR)/C > 
. max max 

1 
a . 

]. 

- e: = 1. 69. . . - e: 

where a 1 = 1 and ai+l = a.(a.+1) 
1 ]_ 

for i ~ 1. 

An even better bound applies to the case of independent jobs, i.e., 

Pjres,p.=1,m;?::njc : 
J max 

C (LS)~ (s + max 
7 )c* 
10 max 

* 

7 
+ -2 

(s ~ 1), 

where the coefficient of C is best possible. max 
The case Pjresl,p.=1,m~nlc has been the subject of intensive study 

J max 
(under the name of bin packing} during the past few years. The problem can 

be viewed as one of placing a n1-1rnher of i terns with weights r lj into a mini

m11m n1.Jmber of bins of capacity 1. It is also known as the one-dimensional. 

cutting stock problem. It is for this scheduling model that some of the 

deepest results have been obtained. Rather than giving a complete survey of 

what is known for this model, we shall instead give a sample of typical. 

results and refer the reader to the literature for details [Johnson 1973, 

1974A; Johnson et al. 1974; Graham 1976; Garey & Johnson 1976C]. 

Given a list L of items, the first-fit (FF) algorithm packs the items 

successively in the order in which they occ11r in L, always placing each 

item into the first bin into it will validly fit (i.e., so that the sum of 

the weights in the bin does not exceed its capacity 1). The number of bins 

required by the packing is just the time required to execute the jobs using 

Las a priority list. If instead of choosing the first bin into which an 

item will fit, we always choose the bin for which the unused capacity is 

mjnimized, then the resulting procedure is called the best-fit (BF) algo

rithm. Finally, when Lis first ordered by decreasing weights and then 

first-fit or best-fit packed, the resulting algorithm is called first-fit 
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decreasing (FFD) or best-fit decreasing (BFD), respectively. 

The basic results which apply to these algorithms are the following 

[Johnson et al. 1974; Garey et al. 1976B]: 

C (FF) 
max 

C (FFD) 
max 

C (BFD) 
max 

< r17 
- 10 c* l-

max ' . 

11 * S - C + 4; 
9 max 

< 11 
- 9 

* C + 4. max 
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The only known proofs of the last two inequalities are extremely lengthy. 

• Examples can be given which show that the coefficients 17 11 
10 

and 
9 

are best 

possible. 

-If constraints are made on the resource requirements, i.e., r :s; :s; r 

for all j, then the following results hold: 

l..f r ~ _l th C ( ) < ( ) en BFD - C FFD; 
- 6 max max 

if > 1 
then r -- 5 -

- 1 
if r < - then - 2 

-
if r E 

C (BFD) C (FFD); --max max 

* C (FF)/C :s; 
max max 

then C (FFD) max 

1 + 

71 
:s; 60 

• 

lr-1J-1; 

* C + c 
max 

-

for some constant c. 

For these and a n11mher of similar results, the reader is referred to [ Graham 

1976]. 

Krause [Krause 1973] (see also [Krause 

the case Plres1,p.=1lc • He proves that 
J max 

24 --max max 10m' 

(C (DMR)-1)/c* ~ 2 - 3 (m ~ 2), 
max max m 

and he gives examples for which 

* C (LS)/C max max 
~ 27 _ 37 

10 1om· 

et al. 1975, 1977]) considers 

Krause also proves several bounds 

one of which is 

for the preemptive case Plpmtn,res1Jc , 
max 

c (DMR)/c* < 3 - ~ (m ~ 2). 
max max m 
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Goyal [Goyal 1977A] studies the case Pjresl,prec,p.=ljc with the 
J max 

restriction that each resource requirement is either zero or 100%. Thus, 

two jobs both requiring the use of the resource can never be executed simul

taneously. This problem is already NP-hard form= 2 [Coffman 1976]. Goyal 

proves that 

* 2 C (LS)/C S 3 - -max max m' 

* C (CG)/C max max 
< ~ 
- 2 for m == 2, 

where in the latter case a priority list is formed according to the CG 

labelling algorithm described earlier. 

4.3. Nonpreemp~ive scheduling:_ 2eneral proc~ssin~_tim~s 

4.3.1. Pl IIw.c. 
J J 

{t) 

The following 

solves P I I IC . 
J 

generalization of the SPT rule for 1j IIc. (see Section 
J 

in O(n log n) time [Conway et al. 1967]. Assume n = km 

3.3.1) 

(d11mmy 

jobs with zero processing times can be added if not) and suppose 
• 

pl S ••• 

machines 

S p . Assign the m jobs J ( . 1 ) 1 ,J ( . 1 ) 2 , ••• ,J. to m different 
n J - m+ J - m+ J m 

(j = 1, ••. ,k) and execute the k jobs assigned to each machine in 

SPT order. 

Bruno, Coffman and Sethi [Bruno et al. 1974] consider the algorithm 

RPT: first apply list scheduling on the basis of largest processing time 

first (LPT), then reverse the order of jobs on each machine, and finally 

left justify the schedule. RPT has the same behavior as LPT with respect 

to the C criterion (see Section 4.3.5.1); however, it only yields max 

(t) 

With respect to Pl ILw.c., similar heuristics are described and tested empiri
J J 

cally by Baker and Merten [Baker & Merten 1973]. 

Eastman, Even and Isaacs [Eastman et al. 1964] show that after ren11m-

bering the jobs according to nonincreasing ratios w./p. 
J J 

f . 1 ~n > 1 tn 
l w . C . ( LS ) - -2 l . 1 w . p . - - ( l . 

J J J= J J m J=l 

It follows from this inequality that 

j 1 n 
w .p.) • 

J J 
(t) 
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m+n 
m (n+l) 
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In [Elmaghraby & Park 1974; Barnes & Brennan 1977] branch-and-bound algo

rithms based on this lower bound are developed. 

Sahni [Sahni 1976] constructs algorithms¾ (in the same spirit as his 

. . th ( ( 2k) m-1 ) . approach for 1 J j L w . U . 
J J 

mentioned in Section 3.3.3) wi On n running 

time for which 

Form= 2, the running time of A2 can be improved to 
2 

0 (n k). 

The algorithm for solving Pl !Ic. given in the previous section can be 
J 

generalized to the case of uniform machines [Conway et al. 1967]. If J. is 
J 

the k-th last job executed on M., a cost contribution kp .. = kq.p. is in-
i 1. J l. J 

curred. Ic. is a weighted s11m of the p. and is minimized by matching the n 
J J 

smallest weights kq. in nondecreasing order 
l. 

with the p. in nonincreasing 
J 

order. The procedure can be implemented to run in O(n log n) time [Horowitz 
• 

& Sahni 1976]. 

Rj IIc. can be formulated and solved as an mxn transportation problem [Horn 
J 

1973; Bruno et aL. 1974). Let 

1 

0 

if J. is the k-th last job executed on M., 
J 1. 

otherwise. 

Then the problem is to minimize 

subject to 

x. 'k ~ 0 
1.J 

kp .. x .. k 
1.J 1J 

= 1 for all j, 

for all i,k, 

for all i,j,k .. 
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This problem, like the similar one in Section 4.2.1, can be solved in 

time. 

4.3.4. Other cases: enumerative optimization methods 

3 
O(n) 

As we noted in Section 4.1, P 2 I I C and P 2 I I L w . C . are NP-hard. Hence it 
max J J 

seems fruitless to attempt to find polynomial-time optimization algorithms 

for criteria other than Ic .• Moreover, P2ltreelic. is known to be NP-hard, 
J J 

both for intrees and outtrees [ Sethi 197·7]. It follows that it is also· not 

possible to extend the above algorithms to problems with precedence con

straints. The only remaining possibility for optimization methods seems to 

be implicit en11rnP.ration. 

RI le can be solved by a branch-and-bound procedure described in max 
[Stern 1976]. The enumerative approach for identical machines in [Bratley 

et al. 1975] allows inclusion of release dates and deadlines as well. 

A general dynamic prograrnmi.ng technique [Rothkopf 1966; Lawler & Moore 

1969] is applicable to parallel machine problems with the C , L , Iw.C. 
max max J J 

and Iw.U. optimality criteria, and even 
J J to problems with the Iw.T. crite-

J J 
rion in the special case of a common due date. 

Let us define F. ( t 1 , .... , t ) as the minim11m cost of a schedule without 
J m 

idle time for J 1, ••• ,Jj subject to the constraint that the last job on M. 
l. 

is completed at time t., for i = 1, ... ,m. Then, in the case off 
1. max crite-

• r1.a, 

F.(t
1

, ••• ,t) 
J m = min 1 < . < { max { f . ( t . ) , F . 1 ( t 1 

, . . .. , t . -p . . , • • . , t ) } } , 
-J.~ J i J- i l.J m 

and in the case of 2£, criteria, 
J 

F.(t
1

, .... ,t) 
J m = min 1 <1.· <m{ fJ. ( t

1
.) + F . 1 ( t 1 , ... , t. -p .. , ••• , t ) } . 

- - J- l. iJ m 

In both cases, the initial conditions are 

0 if t. = 0 for i = 1, ... ,m, 
l. 

00 otherwise. 

Appropriate implementation of these equations yields O(mncm-l) computations 

for a variety of problems, where c is an upper 

of any job in an optimal schedule. Among these 

be solved in 

bound on the completion 

problems are Plr.lc , 
J max 

O(mn(max.{d.})m) time. 
J J 

time 
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Still other dynamic programming approaches can be used to solve Pl !It. 
J 

and Pl llf in O(m min{3n,n2nC}) time, but these are probably of little 
max 

practical importance. 

4.3.5. Other cases: approximation algorithms 

4 .. 3.5.1. PIie max 

By far the 

algorithms 

most studied scheduling model from the viewpoint of approximation 

is Pj {e . We refer to [Garey et al. 1978] for an easily read-
max 

able introduction into the techniques involved in many of the ''performance 

guarantees'' mentioned below. 

Perhaps the earliest and simplest result on the worst-case performance 

of list scheduling is given in [Graham 1966]: 

C (LS)/c* S 2 - !. 
max max m 

(t} 

If the jobs are selected in LPT order, then the bound can be considerably 

improved, as is shown in [Graham 1969]: 

* C (LPT)/C 
max max 

4 
< - -

3 

• 

(t) 

A somewhat better algorithm, called multifit (MF) and based on a completely 

different principle, is given in [Coffman et al. 1978]. The idea behind MF 

is to find (by binary search) the smallest ''capacity'' a set of m ''bins'' can 

have and still accommodate all jobs when the jobs are taken in order of non-

increasing p. and each job is placed into the first bin into which it will 
J 

fit. The set of jobs in the i-th bin will be processed by 

attempts are made, the algorithm (denoted 

kn.m) and satisfies 

* C (MF } /C S 
max k max 

1.22 + 

by MFk) runs 

We note that if the jobs are not 

be guaranteed by this method is 

ordered by decreasing p. 
J 

max max 

M .• If k 
l. 

time O(n 

packing 

log n + 

then all that can 

(t) 

The following algorithm zk was introduced in [Graham 1969]: schedule the k 

largest jobs optimally, then list schedule the remaining jobs arbitrarily. 
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It is shown in [Graham 1969] that 

and that when m divides k, this is best possible. Thus, we can make the bound 

as close to 1 as desired by taking k sufficiently large. Unfortunately, the 
km 

best bound on the running time is O(n ) . 

A very interesting algorithm for Pl le is given by Sahni [Sahni 1976]. max 
He presents algorithms 

Form 

·cases of 1! IIw.U. (Section 3.3.3) and Pj IIw.C. (Section 4.3.1), the algo-
J J J J 

ri thms ¾ are based on a clever combination of dynamic progra.mming and 

''rounding'' and are beyond the scope of the present discussion .. 

Several bounds are available which take into account the processing 

times of the jobs. In [Graham 1969] it is shown that 

* C (LS)/C max max ~ 1 + ( m-1 ) max . { p . } / I . P . -
J J J J 

' 

For the case of LPT, Ibarra and Kim [Ibarra & Kim 1977] prove that 

C (L. PT) ;c* <_ 1 + 2 (m- l) f > 2 ( 1) { }/ · { } or n - m- max. p. min. p .. 
max max n J J J J 

The following local interchange (LI) algorithm gives a slight improvement 

over the original 2 - ! bound: assign jobs to machines arbitrarily, then 
m 

move individual jobs and interchange pairs of 

decreased by any such change. It then follows 

* C (LI)/C max max 
~ 2 - 2 • 

m+l 

jobs as 

[Graham 

long as 

-] that 

C max can be 

(t) 

In [Bruno et al. 1974] the 

P I I IC . C see Section 4. 3 • 1) 
J 

Conway-Maxwell-Miller (CMM) algorithm for solving 

* is considered. Let C (CMM) be the • • minimum com-
max 

pletion time among all schedules that can be generated by CMM. Then 

* C (CMM)/C (LPT) max max 

* * C (CMM)/C 
max max 

1 
~ 2 - -m' 

1 
~ 2 - -. 

m 

An interesting variation on the 

and Wong [Chandra & Wong 1975]. 

C 
max 

They 

(t) 

(t) 

criterion arises in the work of Chandra 

consider the case Pl !IB~, where B. 
J_ 1 
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denotes the completion time of the job 

the surprisingly good behavior of LPT: 

executed last on Mi, and establish 

They also construct examples for which 

1 
36m· 

Finally, we mention the following result [Garey e't al. -] . For any LPT .sched-

ule, let t denote the latest possible time at which a machine can become max 
idle and let t . denote the earliest time a machine can be idle. Then min 

t /t -max min 
4m-2 < 

- 3m-1 

and this bound is best possible. 

4.3.s.2 .. QI le 
max 

In the literature on approximation algorithms for scheduling problems, it is 

usually ass11med that unforced idleness (UI) of machines is not; allowed, i.e., 

a machine cannot be idle when jobs are available. In the case of identical 

machines, UI need not occur in an optimal schedule if there are no prece

dence constraints or if all p. = 1. Allowing UI may yield better solutions, 
J 

however,inthe cases which are to be discussed in Sections 4.3.5.2-6. The 

optimal value of C under the restriction of no UI will be denoted by max 
* * C , the optim11m if UI is allowed by C (UI) • 
max max 

Liu and Liu [Liu & Liu 1974A, 1974B, 1974C] study numerous questions 

dealing with uniform machines. We outline some of their results. 

For the case that q 1 = ... = ~-l = 1, ~ = q ~ 1, they prove 

* C (LPT)/C (UI) ~ 
max max 

2(~-:l+g) 
q+2 

m-l!q 
2 

for q ~ 2, 

for q > 2. 

For the general case, they define the algorithm 

k longest jobs first, resulting in a completion 

the remaining tasks for a total completion time 

Ck(Ak), then 

1 + 1 - -
Q 

1 

~ as follows: schedule the 

time of Ck(¾,), and schedule 

of C (A.). If C (Ak) > max -l<. max 
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where all q. 
l. 

Q = max 

2 1 and 

m .in . • ----==-- -
] I. r q. l qj 

l. 1. 

I ,. 

q. 
J L,q. 

1. 1. 

This is best possible when the 

Gonzalez, Ibarra and Sahni 

qi are integers and liqi divides k. 

[Gonzalez et al. 1977] consider the follow-

ing generalization LPT' of LPT: assign each job, in order of nonincreasing 

processing time, to the machine on which it will be completed soonest. Thus, 

unforced idleness may occur in the schedule. 

For the case that q 1 = ... 

1+117 

= q = 1, 
,n-1 

~ 1, they show that 

* 4 C (LPT')/C. 2 2 l max max 

form= 2, 

- -
3 2m 

form> 2 .. 

For the general case, they show 

* C (LPT')/C max max 
2 

s; 2 - m+l. 

* Also, examples are given for which 

to infinity. 

C (LPT') /C max max 

4.3.5.3. RI le max 

(t) 

3 approaches 2 as m tends 

Very little is known about approximation algorithms for this model .. Ibarra 

and Kim [Ibarra & Kim 1977] consider six algorithms, typical of which is to 

schedule J. on the machine that executes 
J 

it fastest, i.e., on an M. with 
l.. 

minimum all six algorithms A they prove 

* C (A)/C Sm max max 

with equality possible for four of the six. For the other two, they conjec

ture 

? 
• 

s; 2. 

For the special case R2 I IC , max they give a complicated algorithm G (however, 

with O(n log n) running time) such that 

< 1+rs 
- 2 .. 

In a variation on Rj le max' we assume that each Jj 

(t) 

has a processing time p. 
J 
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and a 

IM. I . 
1. 

fixed memory requirement IJ.I and that each M. 
J J. 

we require that IMil ~ IJjl in order for Mi to 

has a memory capacicy 

be able to execute J., 
J 

p .. = 
J.] 

p. 
J 

if I M. I ~ I J . I , 
.1. ' J 

otherwise. 

Kafura and Shen [Kafura & Shen 1977] show 

* C (LS}/C S 1 + log m. 
max max 

They also note that when mis a power of 2, the bound can be achieved. 

Suppose a list is foLmed in order of 

denoted by LMF (largest memory first) • 

decreasing !J.I; this algorithm 
J 

• 
l..S It can be shown [Kafura & Shen 

1977] that 

* 1 C (LMF)/C S 2 - -. max max m 

A refinement of LMF is LMTF where ties in !J. I are broken by decreasing 
J 

order of p . • In this case, 
J 

* C (LMTF)/C 
max max 

< -
5 -4 

2 -

' 

for 2, m --
1 for > 3. m m-1 -

{t) 

(t) 

Kafura and Shen also give a complicated {but polynomial-time) algorithm 2D 

for which 

* C (2D)/C max max s 2 - 2 
m+1 • 

Other results for this model may be found in [Kafura & Shen 1976]. 

4.3.5.4. Plpreclc 
max 

In the presence of precedence constraints it is 

[Graham 1966] that the 2 - ! bound still holds, 
m 

* 1 C (LS)/C S 2 - -. max max m 

somewhat unexpected 
• i.e., 

(t) 

Now, consider executing the set of jobs cwice: the first time using proces-

sing times p., precedence constraints, 
J 

list, the second time using processing 

m machines and an arbitrary priority 

times P '. :S; p . t 
J J 

weakened precedence 
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constraints, m• machines and a (possibly different) priority list. Then 

[Graham 1966] 

• 

C' (LS)/C (LS)~ 1 + 
max max 

m-1 
I • m 

(t) 

Even when critical path (CP.) scheduling is used, examples exist [Graham -] 

for which 

. * C (CP)/C = 2 
max max 

1 - - • 
m 

It is known [Graham-] that unforced idleness (UI) has the following behav

ior: 

* 1 C (LS)/C (UI) ~ 2 - -. 
max max m 

(t) 

* Let C (pmtn) denote the optimal value of C if preemption is allowed. 
max max 

As in the case of UI, it is known [Graham-] that 

c (LS)/c* (pmtn) s 2 - !. 
max max m 

(t) 

Liu [Liu 1972] shows that 

* * C (UI)/C (pmtn) ~ max max 
2 

2 - m+1 • 
• (t) 

Relatively little is known in the way of approximation algorithms for the 

more special case 

1973] that 

* 

P I tree I C • It max 
is conjectured in [Denning & Scott Graham 

? 2 
:s; 2 -C (CP)/C max max m+1· 

If true this would be best possible as examples show. For the special case 

that the precedence constraints form an intree, Kaufman [Kaufman 1974] 

shows that 

C (CP) 
max 

* :s; cmax(pmtn) 
1 

+ max . { P . } - f - max . { p . } 1 .. 
J J m J J 

4.3.5.5. Qlpreclc 
max 

Liu and Liu [Liu & Liu 1974B] also consider the presence of precedence con

straints in the case of uniform machines. They show that, when unforced 

idleness or preemption is allowed, 
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* C (LS)/C (UI) 
max max ~ 1 + max . { q . } / min . { q . } - max . { q . } / I . q . , 

l l l l l. 1 1 1 (t} 

C (LS)/c* (pmt:n) ::;; 1 + max. {q. }/min. {q.} - max. {q. }/\' .q .• 
max max i i 1 i i i li 1 (t) 

When all q. 
l. 

= 1 this reduces to the earlier 2 - 1 
- bounds for these questions 
m 

on identical machines. 

Suppose that the jobs are executed twice: the first time using m ma

chines of speeds q 1 , •.• ,~, the second time using m' machines of speeds 

qi,···,~,. Then 

C ' ( LS ) / C ( LS ) ::;; max . { q . } / min . { q ~ } + I . q . / I . q ~ - max . { q . } / I . q ~ • ( t) max max i 1 1 i i 1 i 1 1 1 1 1 

Note that when 
m-1 

all q. = 1, this reduces to the previously mentioned bound 
1 

' 

of 1 + ' • m 
We mention here two rather special results of Baer [Baer 1974]. He con-

structs an algorithm B based on the CG labelling algorithm which has the 

following behavior. For Q2ltreeJc with q
2
/q

1 
= 3, 

max 

* C (B) ~ C + 1; 
max max 

for Q2lprec!c with q 2/q1 = 2, 
max 

* C (B)/C 
max max 

4.3.5.6. Pjres,precjc . 
max 

• 

The most general 

It states 

bound for Plres,preclc is given in [Garey & Graham 1975]. max 

* C (LS)/C ~ m 
max max (t} 

and, in fact, examples withs= 1 are given which achieve this bound. Thus, 

the addition of even a single resource in the presence of precedence con

straints can have a drastic effect on the worst-case behavior of an arbi

trary priority list. 

For Plreslc , it is shown in [Garey & Graham 1975] that form~ 2 max 

* C (LS)/C · 
max max -

< . {m+l min 
2

, s + 2 

With the restriction that m ~ n, s ~ 1, this can be improved to 

* C (LS)/C ~ s + 1. 
max max 

(t) 

(t) 
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The techniques used to prove this inequality involve an interesting appli

cation of Ramsey theory, a branch of combinatorics. 

A theorem of McNaughton [McNaughton 

is no schedule with a finite number 

1959] states that for P[pmtnliw.c. there 
J J 

of preemptions which yields a smaller 

criterion value than an optimal nonpreemptive schedule. The finiteness 

restriction can be removed by appropriate application of results from open 

shop theory. It therefore follows that the procedure of Section 4.3.1 can 

that NP-

hard, since P21 IIw.C. is known to be NP-hard. 
J J 

4.4.2. Qlpmtnlic. 
J 

McNaughton's theorem does not apply to uniform machines, as can be demon-

strated by a simple counterexample. 

rithm for Qjpmtnlic .. 
J 

There is, however, a polynomial alga-
• 

One can show that there exists an optimal preemptive schedule in which 

Cj s Ck if pj < pk [Lawler & Labetoulle 1978]. Accordingly, first place the 

jobs in SPT order. Then obtain an optimal schedule by preemptively schedul

ing each successive job in the available time on them machines so as to 

minimize its completion time [Gonzalez 1977]. This procedure can be imple

mented in O(n log n + mn) time and yields an optimal schedule with no more 

than (m-1) (n-;) preemptions. It has been extended to cover the case in which 

Ic. is minimized subject to a common deadline for all jobs [Gonzalez 1977]. 
J 

4.4.3. Rlpmtnlic. 
J 

Very little is known 

NP-hard. However, this remains one of the 

of preemptive scheduling. 

conjecture that the problem is 

more vexing questions in the area 



4.4.4. Pjpmtn,preclc 
max 

An obvious 

given by 

lower bound on the value of an optimal Plpmtnlc schedule 
max 

• 

max{max.{p.}, ! '.p.}. 
J J m L.J J 
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• is 

A schedule meeting this bound can be constructed in O(n) time [McNaughton 

1959]: just fill the machines successively, scheduling the jobs in any order 

and splitting a job whenever the above time bound is met. The number 0f 

preemptions occurring in this schedule is at most m-1. It is possible to 

design a class of problems for which this number is minimal, but the general 

. problem of minimizing the number of preemptions is easily seen to be NP-hard. 

In the case of precedence constraints, Pjpmcn,prec,p.=llc turns out 
J max 

to be NP-hard [Ullman 1976], but Pjpmtn,treejc and P2 pmtn,precjc can 
max max 

be solved by a polynomial-time algorithm due to Muntz and Coffman [Muntz & 

Coffman 1969, 1970]. This is as follows. 

Define i. (t) to be the level of a J. wholly or partly unexecuted at 
J J 

time t. Suppose that at time t m' machines are available and that n' jobs 

are currently maximizing £.{t). If m' < n•~ we assign m'/n' machines to 
J 

each of then' jobs, which implies that each of these jobs will be executed 

at speed m'/n'. If m' ~ n', we assign one machine to each job, consider the 

jobs at the next highest level, and repeat. The machines are reassigned 

whenever a job is completed or threatens to be processed at a higher speed 

than another one at a currently higher level. Between each pair of succes

sive reassignment points, jobs are finally rescheduled by means of 

McNaughton's algorithm for Pjpmtnjc . The algorithm requires O(n2 ) time 
max 

[Gonzalez & Johnson 1977]. 

Recently, Gonzalez and Johnson [Gonzalez & Johnson 1977] have developed 

a totally different algorithm that solves Pjpmtn,treelc by starting at 
max 

the roots rather than the leaves of the tree and determines priority by con-

sidering the total remaining processing time in subtrees rather than by 

looking at critical paths. The algorithm runs in O(n log m) time and intro

duces at most n-2 preemptions into the resulting optimal schedule. 

Lam and Sethi [Lam & Sethi 1977], much in the same spirit as their 

work mentioned in Section 

Coffman (MC) algorithm for 

4.2.2, analyze the 

Plpmcn,preclc . max 

* 2 C (MC)/C ~ 2 - - (m ~ 2). max max m 

performance of the Muntz

They show 

(t) 
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4.4.5 .. 

• 

Qlpmtn,preclc max 

Horvath, 

rithm to 

sults in 

Lam and Sethi [Horvath et al. 1977] adapt the Muntz-Coffman algo-

solve Qlpmtnlc and Q2jpmtn,preclc in O(mn
2

) time. This re-
max max 2 . 

an optimal schedule with no more than (m-l)n preemptions. 

but computationally efficient, algorithm due to 

& Sahni 1978B] solves Qlpmtnlc in O(n) time, max 

Gonzalez 

if the 

A complicated, 

and Sahni [Gonzalez 

jobs are given in order of nonincreasing p. and the machines in order of 
J 

nondecreasing q .• 
l. 

This procedure yields an optimal schedule with no more 

than 2(m-1) preemptions, which 

The optimal value of C max 

can be shown to be a tight bound. 

is given by 

1 } 
q. , 

1.. 

• 

where p 1 ~ .•• ~ pn and q 1 $ •.. $~-This result generalizes the one given 

in Section 4.4.4. 

The Gonzalez-Johnson algorithm for Plpmtn,treelc mentioned in the 
max 

previous section can be adapted to the case Q2lpmtn,treelc . 
max 

In [Horvath et al. 1977] it is shown that for Qjpmtn,preclc , criti-
max 

cal path scheduling has the bound 

* C (CP)/C max max 

and examples are given for which the bound 

closely. 

4.4.6. Rlpmtnlc max 

• 

Many preemptive scheduling problems involving independent jobs on unrelated 

machines can be formulated as linear programming problems [Lawler & 

Labetoulle 1978]. For instance, solving Rlpmcnlc is equivalent to mini-
max 

mizing 

C max 

subject to 

X . . /p. . = 1 
l.J l.J 

lm 
. 1 X . . 
l.= l.J 

~ C 
max 

(j = 1, ... ,n), 

(j = 1, ... ,n), 
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\'~ l X. . ~ C ( i = 1 , .... , m) , 
LJ= 1.J max 

X. . ~ Q 
l.J 

(i = 1, ... ,m, j = 1, ... ,n). 

In this formulation x .. represents the total time spent by J. on M .. Given 
l.J J l. 

a solution to the linear program, a feasible schedule can be constructed in 

polynomial time by applying the algorithm for olpmtnlc , discussed in 
max 

Section 5.2.2. 

This procedure can be modified to yield an optimal schedule with no 

h b 7 2 · · · t h. h more tan a out 2 m preemptions. It remains an open question as ow et er 

O(m2 ) preemptions are necessary for an optimal preemptive schedule. 

For fixed m, it seems to be possible to solve the linear program in 

. linear time. Certainly, the special case R2jpmtnlc can be solved in O(n) 
max 

time [Gonzalez et al. 1978]. 

We note that a similar linear programming formulation can be given for 

the minimization of L [Lawler & Labetoulle 1978]. max 

4.4.7. Pjpmtn,r.lL 
J max 

PlpmtnJL and Pjpmtn,r.lc max 
2 

J max 
[Horn 1974]. The O(n) running 

Johnson 1977]. 

can be solved by a procedure due to Horn 

time has been reduced to O(mn) [Gonzalez & 

More generally, the existence of a feasible preemptive schedule with 

given release dates and deadlines can be tested by means of a network flow 

model in O(n3 ) time [Horn 1974]. A binary search can then be conducted on 

the optimal value of L , with each trial value of L inducing deadlines 
max max 

which are checked for feasibility by means of the network computation. It 

can be shown that this yields an O(n3 min{n2 ,log n + log max.{p.}}) algo
J J 

rithm [Labetoulle et al. 1978]. 

4.4.8. Qlpmcn,r. IL 
J max 

In the case of uniform machines, the existence of a feasible preemptive 

schedule with given release dates and a common deadline can be tested in 

O(n log n + mn) time; the algorithm generates O(mn) preemptions in the 
• 

worst case [Sahni & Cho 1977A]. More generally, Q]pmtn,r.lc and, by sym-
2 2 J max 

in o (m n+n ) time; the n1Jmber of preemptions metry, QlpmtnjL are solvable 
m~x 

generated is O(n) [Sahni & Cho 1977B; Labetoulle et al. 1978]. 
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The feasibility test mentioned in the previous section has been adapted 

to the case of two uniform machines [Bruno & Gonzalez 1976] and extended to 

a polynomial-time algorithm for Q2jpmrn,r.jL [Labetoulle et ai. 1978]. 
J max 

It appears not unlikely that the Gonzalez-Johnson algorithm for 
• 

Plpmtn,treelc and the above mentioned algorithm for Qjpmtn,r.lc allow 
max . J max 

a common generalization that will make Qlpmtn,treelc solvable in polyno-
max 

mial time. 

• 

• 



5. OPEN SHOP, FLOW SHOP AND JOB SHOP PROBLEMS 

5.1. Introduction 

We now pass on to problems in wt1ich each job :requires execution on more tl'1an 

one machine. Recall from Section 2 .. 3 t.hat in an open shop {denoted by O) the 

order in which a job passes through the machines is im.~aterial, whereas in a 

flow shop (F) each job has the same machine ordering (M
1

, ... ,Mm) and in a 

job shop (J) possibly different machine orderings are specified for the jobs. 
' 

survey these problem classes in Sections 5.2, 5.3 and 5.4, respectively. 

An obvious extension of this type of problem involves machines which 

can process more than one job at the same time. The resulting resource con

strained project scheduling problems are extremely hard to solve. we refer 

to surveys by Davis [Davis 1966, 1973] that contain an extensive bibliography. 

We shall be dealing exclusively 

ity criteria lead usually to NP-hard 

with the C max 
problems, even 

1976C; Lenstra et al. 1977]; a notable exception is 

criterion. Other optimal

form = 2 [Garey et al. 

02 I I Icj, wl1ich is open. 

Only a few enumerative algori thins for problems involving criteria other thar, 

C have been developed, e.g., for F2j Ire. [Ignall & Schrage 1965], 
~x J 

Fj !Iw.c. [Townsend 1977A], Fj IL [Townsend 1977B], and Jj IIw,T. [Fisher 
J J max J J 

1973]. 

5.2.1. Nonpreemptive case 

The case 021 fe admits of an O(n) algorithm [Gonzalez & Sahni 1976]. A max 
simplified exposition is given below. 

For convenience, let aj = plj' bj = 
{Jjlaj < bj}. Now choose Jr and J 2 to be 

A or B) such that 

a 
r ~ max A{b.}, 

J.€ J 
J 

~ maxJ B{a.} .. 
. E J 
J 

p
2 

. • Let A -= { J . I a . 2 
J J J 

any two distinct jobs 

b.}, B = 
J 

(whether in 

Let A'= A-{Jr,J1 }, B1 = B-{Jr,Ji}. we assert that it is possible to form 

feasible schedules for B'u{J} and for A'u{J} as indicated in Figure 5.1, t · r 
the jobs in A' and B 1 being ordered arbitrarily. In each of these separate 
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schedules, there is no idle time on either machine, from the start of the 

first job on that machine to the completion of the last job on that machine. 

b .• Suppose T1-a2 
2'.: T2-br (the 

T
2
-br being symme,t_ric). We then combine the two schedules as shown in Figure 

5.2, pushing the jobs in B'U{J
1

} on M2 to the right. Again, there is no idle 

time on either machine, from the start of the first job to the completion of 

the last job. 

We finally propose to move the processing of Jr on M2 to the first po-

sition on that machine. There are two cases to consider. · 

(1) ar ~ T
2
-br. The resulting schedule is as in Figure 5.3. The length of 

the schedule is max{T1 ,T2 }. 

(2) ar > T
2
-br. The resulting schedule is as in Figure 5.4. The length of 

the schedule is max{T1 ,a +b }. r r 

Jl B' A' Tr 

Ji s' A' J"r 

• 

Jl B' A' J" r 

Ji s' A' Jr 

F;gure 5.2 
* l 

Jt B' A' .Jr .. 
Jr J ./, s· A' 

Ji 8' A' Jr 

Jr J~ s' A' 
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For any feasible schedule we obviously that 

C ~ max{T 1 ,T2 ,max.{a.+b.}}. 
max J J J 

Since, in all cases, we have met this lower bound, it follows tr1at t.he scr1ed

ules constructed are optimal. 

There is a little hope of finding polynomial-ti1ne algor i ttims fcJr nor1-

preemptive open shop problems more complicated than 02! fc . The case 
max 

03j le is binary NP-hard [Gonzalez & Sahni 1976] and 02jr,lc , 
max J max 

02 1 tree IC and O I 11 C are unarv NP-hard [ Lens tr a - ] .. l max max ... 

5.2.2. Preemptive case 

The result on 02j le presented in the previous section shows that there max 
is no advantage to preemption form= 2, and hence 02jpmtnfcmax can be 

solved in O(n) time. More generally, olpmtnlcmax is solvable in polynomial 

time as well [Gonzalez & Sahni 1976]. We already had occasion to refer to 

this result in Section 4.4.6. An outline of the algorithm, adapted from 

[Lawler & Labetoulle 1978], follows below. 

Let P = (p .. ) be the matrix of processing times and 
l. J 

C = max{max.{I. p .. },max.{lj p, .}}. 
J l. l.J 1 1J 

Call row i {colwnn j) of P tight if slack other-
• w1.se. 

We clearly have * C ~ c. It is possible to construct a feasible sched-max 
ule for which C = C. Hence this schedule will be optimal. max 

Suppose we can find a subset S of strictly positive elements of P, with 

exactly one element of Sin each tight row and in each tight column, and at 

most one element of Sin each slack row and in each slack column. We shall 

call such a subset a decrementing set, and use it to construct a partial 

schedul.e of length o, for some o > 0. The constraints on the choice of o 
are as follows. 

( 1) 

(2) 

(3) 

If p .. E S and either row i or column j is tight, then 
1.J 

If p .. ES and row i (column j) is slack, then o ~ p .. 
1J 1) 

(o :5 p .. + C -
l.J 

< -,I, p ii ... 

.l 

+ C - k pik 

If row i (column j) contains no element in S (and is therefore neces-

sarily slack), then o ~ C - Lk Pik (o ~ C - lk Pkj). 

For a given decrementing set S, let o be the maximum subject to (1),(2),(3). 
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Then the partial schedule constructed is such that for each Pij £ S, 

esses J. for min{p .. ,o} units of time. 
J l.J 

we then obtain the matrix P 1 from P be replacing each Pij ES by 

M. 
l. 

proc-

{ } d h d e until after a finite n,Jmber of times max O,p .. -6, an repeat t e proce ur 
l.J 

p• = (0). Joining together the partial schedules obtained for successive 

decrementing sets then yields an optimal preemptive schedule for P. 

By suitably embedding pin a doubly stochastic matrix and appealing to 

the Birkhoff-Von Ne11mann theorem, it can be shown that a decrementing set 

can be found by solving a linear assignment problem; see [Lawler & Lal:ietoulle 

1978] for details. 

Other network formulations of the problem are possible. An analysis of 

various possible computations reveals that ojpmtnlc can be solved in max 
O(r + min{m4 ,n4 ,r2}) time, where r is the number of nonzero elements in P 

[Gonzalez 1976). 

5 .. 3 .. ~!?.:-1 .?.ho2 sc~eduling: 
' 

s.3.1. F21Blc , F3lalc 
max max 

' 

A fundamP.ntal algorithm for solving F21 le is due to Johnson [Johnson 
max 

1954]. He shows that there exists an optimal schedule in which J. precedes 
J 

Jk if min{p1j,p2k} ~ min{p2j,plk}. It follows that the problem can be solved 

in O{n log n) time: arrange first the jobs with plj ~ p 2j in order of non

decreasing plj and subsequently the remaining jobs in order of nonincreasing 

P2j· 

Some special cases involve start lags t 1 j and stop lags t 2 j for Jj, 

that represent mjnimum time intervals between starting times on M1 and M2 
and between completion tjm~s on M1 and M

2
, respectively [Mitten 1958; 

Johnson 1958; Nabeshima 1963; Szwarc 1968]. Defining i. = min{i
1

.-p
1 
.,t

2
.-p

2
.} 

J J J J J 
and applying Johnson's algorithm to processing times (p

1
.+i.,p

2
.+i.) wil.l 

J J J ) 
produce an optimal permutation schedule,. i _ e. , one with identical processing 

orders on all machines [Rinnooy Kan 1976]. If we drop the latter restriction, 

the problem is unary NP-hard [Lenstra -]. 

Similarly, some F3!jcmax problems can be solved by applying Johnson's 

algorithm to processing times (p +p + ) ·t lj 2j'p2j P 3 j , e.g., i there exists a 

& Rooker 1976] or if M2 can process any number of jobs at the same time 

[Conway et al. 1967]. We refer to [Monma 1977] ~~ further generalizations. 



The aeneral F3! le 
J max 

applies to F2 j r . IC and 
J max 

problem, howe"?et.R, is u:r1ary NP-hard, and the same 

F2 l tree! Cmax [ Garey et a.l.. 1976C; Lens tr a et al .. 

1977]. 

It should be noted that an interpretation of precedence constraints 

which differs from our definition is possible. If J j <' Jk only means t.hat 

0 .. should precede 0
1
.k for i = 1,2, then F2 11tree 1 le can be solved in 

1J ·· ' max 
O(n log n) time [Sidney 1977]. In fact, Sidney's algorithm applies even to 

series-parallel precedence constraints. The arguments used to establisr1 this 

result are very similar to those referred to .in Section 3. 3.1 and apply to 

a larger class of scheduling problems [!'-ior1n1a & Sidney 1977]. Tl1e general 

case F2fprec• fc is unary NP-hard [Monma 1978] .. max 
Gonzalez and Sahni [Gonzalez & Sahni 1978A] consider the case of pre-

emptive flow shop scheduling. They show that preemptions on M
1 and M can 

m 
be removed without increasing C . Hence, Johnson's algorithm solves 

max 
F2lpmtn!c as well. F3lpmtnjc turns out to be unary NP-hard. max max 

5 .. 3.2. Fl le max 

As a general result, we note that there exists an optimal flow shop schedule 

with the same processing order on M1 and M2 and the same processing order 

on M 1 and M [Conway et al. 1967]. It is, however, not difficult to con-m- m 
struct a 4-machine example in which a job ''passes 11 another one between M., ... 
and M3 in the optimal schedule. Nevertheless, it has become tradition i.n the 

literature to assume identical processing orders on all machines, so that in 

effect only the best permutation schedule has to be determined. 

Except for some rather simple worst-case results for heuristics, ob

tained by Gonzalez and Sahni [Gonzalez & Sahni 1978A], that are to be men

tioned in Section 5.4.2, all research in this area has focused an enumera

tive methods. 

The usual e:011meration scheme is to assign jobs to the £.-th position in 

the schedule at the £.-th level of the search tree .. Thus, at a node at that 

level a partial schedule (Jo(l)'···,Jcr(!)) has been formed and the jobs wj.th 

index sets= {1, ••. ,n} - {o(1), .... ,cr(.t)} are candidates for the (!+1)-st 

position. One then needs to find a lower bound on the value of all possible 

completions of the partial schedule .. It turns out that almost all lower 

bounds developed so far are generated by the following bounding scheme 

[Lageweg et al.. 1978B] .. 

Let us relax the capacity constraint that each machine can process at 
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most one job at a time, for all machines but 

(1 ~ u ~ v ~ m). We then obtain a problem of 

at most two, say, M and 
u 

scheduling {J.Jj ES} on 
J 

M 
V 

five 

machines N ,M ,N ,M ,N in that order, which is specified as follows. 
·u u UV V v• 

Let C(cr,i) denote the completion time of Jcr(i) on Mi. N·u' NuvandNv• have 

infinite capacity; the processing times on these machines are defined by 

q•uJ· = max1<.< {C(cr,i) 
-l.-U 

= \'v-1 
lh=u+1 

u-1 

• 

M and M 
U V 

have capacity 1 and processing times p . and p ., respectively. 
UJ VJ 

·Note that we can interpret N as yielding release dates q . on M and N 
•u •uJ -u v• 

as setting due dates -q . on M, with respect to which L is to be mini-
v•J v max 

mized. 

Any of the 

underestimating 

machines N ,N ,N can be removed from this problem by •u uv v· 
its contribution to the lower bound to be the minimum pro-

cessing time on that machine. Valid lower bounds are obtained by adding 

these contributions to the optimal solution value of the remaining problem. 

For the case that u = v, removing N ·and N from the problem produces 
•u u• 

the machine-based bound used in [Ignall & Schrage 1965; McMahon 1971]: 

max1< < {min. s{q .} + 
-U-ID J€ 0 UJ 

Removing only N results in a 1j jL problem 
•u max 

by Jackson's rule {Section 3.2) and provides a 

on M, which can be solved 
u 

slightly stronger bound. 

If u ~ v, removal 

be solved by Johnson 1 s 

of N , N and N yields an F2l le problem, to 
•u uv v• max 

algorithm (Section 5. 3 .1). As pointed out in that sec-

tion, solution in polynomial time remains possible if N is taken fully 
UV 

into account; the resulting bound dominates the job-based bound proposed in 

[McMahon 1971] and is the best one currently available. 

All other variations on this theme (e.g., taking u = v and considering 

the resulting ljr.lL problem) would involve the solution of NP-hard J max 
problems. The development of fast algorithms or strong lower bounds for 

these problems thus emerges as a possibly fruitful research area. 

The computational performance of branch-and-bound algorithms for 

Fl le might be improved by the use of elimination criceria. Particular max 

attention has been paid to conditions under which all completions of 

(Jcr(1)'···,Ja(i)'Jj) can be eliminated because a schedule at least as good 
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exists among the completions of (J (l)'···,J ( )'J ,J). If all information 
cr cr £ k j 

obtainable from the processing times of the other jobs is disregarded, the 

strongest condition under which this is allowed is as follows. Defining 

~- = C(crkj,i) - C(crj,i), we can exclude 
1 

max { 8 . 1 , 8 . } :s; p . . 
J.- J. J.J 

(i = 2, .... ,m) 

J. 
J 

for the t-th position if 

[McMahon 1969; Szwarc 1971, 1973]. Inclusion of these and similar dominance 

rules can be very helpful from a computational point of view, depending on 
• 

the lower bound used [Lageweg ec al. 1978B]. It may be worthwhile to con-

sider further extensions that, for instance, involve the processing 

of the unscheduled jobs [Gupta & Reddi 1978; Szwarc 1978] . 

• times 

5.3.3. No waic in process 

In a variation on the flow shop problem, each job, once started, has to be 

processed without interruption until it is completed. This no wait constraint 

may arise out of certain job characteristics (e.g., the ''hot ingot'' problem 

in which metal has to be processed at continuously high temperature) or out 

of the unavailability of intermediate stor~ge in between machines. 

The resulting Fino waitlc problem can be formulated as a traveling max 
salesman problem with cities 0,1, ... ,n and intercity distances 

(j,k = 0,1, .•. ,n), 

where Pio= 0 (i = 1, •.• ,m) [Piehler 1960; Reddi & Ramamoorthy 1972; Wismer 

1972]. We refer to [Lenstra & Rinnooy Kan 1975] for an extension of this 

formulation to certain job shop systems and to [Van Deman & Baker 1974] for 

a branch-and-bound approach to Fino waitlic .. 
J 

For the case F2fno wait le , the traveling salesman problem assumes a max 
special structure and the results from [Gilmore & Gomory 1964] can be applied 

to yield an O(n2 ) algorithm [Reddi & Ramaro0orthy 1972]. Both Fino waitJcmax 

and Fino waitllc. are unary NP-hard [Lenstra et al. 1977], and the same is 
J 

true for 02Jno waitjc and J2lno waitlc [Sahni & Cho 1977c]. In spite 
max max 

of challenging prizes awarded for their solution [Lenstra et al. 1977], 

F3lno waitlc and F2lno waitlic. are still open. 
max· J 

The no wait constraint may lengthen the optimal flow shop schedule 

considerably. It can be shown [Lenstra -] that 

* C (no 
max 

* wait) /C max 
< m form~ 2. ( t) 
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5.4. Job shop 
" 

schedul _i1!,9' 
t I 

A simple extension of Johnson's 

J2lm.~2!c in O(n log n) time 

algorithm for F2I le max 
[Jackson 1956]. Let J. 

J_ 

allows solution of 

be the set of jobs 
J max 

1 ( · 1 2) d J the set of J·obs that go from with operations on Mi on Y i = , an hi 

gorithm and the former two sets arbitrarily. One then obtains an optim:al 

schedule by executing the jobs on M1 in the order (] 12 ,J 1 ,J 21 ) and on M2 in 

the order (J21 ,J2 ,J12 ). 

This, however, is probably as far as we can get. Unary NP-hardness of 

.J2 I I c results as soon as we allow one job to have more than two opera
max 

tions [Garey et al. 1976C; Lens tr a et al. 1977 J. In fact, J2 11 :5p • • $2 IC x 1J ma 

and J3jp .. =lie are already NP-hard [Lenstra & Rinnooy Kan 1978B]. 
iJ max 

s.4.2. Jj le max 

The general job shop problem is extremely hard to solve optimally. An indi

cation of this is given by the fact that a .10-job 10-machine problem, formu

lated in 1963 [Muth & Thompson 1963], still has not been solved. 

A convenient problem representation is provided by the disjunctive 

graph model, introduced by Roy and Sussmann [Roy & Sussmann 1964]. Assume 

each operation O. . being ren1.Jmbered as O with 
lJ U 

·-1 
u = ,J m.. + i and add two 

L·k=l k 

fictitious initial and final operations o0 and o* with = 0. The 

disjunctive graph is then defined as follows. There is a vertex u with 

weight p corresponding to each operation O. The directed conjective arcs 
u u 

link the consecutive operations of each job, and link o 0 to all first opera-· 

tions and all last operations too*. A pair of directed disjunccive arcs 

connects every two operations that have to be executed on the same machine .. 

A feasible schedule corresponds to the selection of one disjunctive arc 

of every such pair, granting precedence of one operation over the other on 

their common machine, in such a way that the resulting directed graph is 

acyclic. The value of the schedule is given by the weight of the maximum 

' weight path from O to *. We refer to Figures 5 _ 5 and 5. 6 for examples. 

At a typical stage of any enumerative algorithm, a certain subset D 

of disjunctive arcs will have been selected. We con~ider the directed graph 
• 

obtained by removing all other disjunctive arcs. Let tne maximum weights of 
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.....-....I ...........6 

0 7 
4 

• 

7 

Fi~ure 5.5 Job shop problem, represented as a disjunctive graph. 

I 
2 

7 

7 

Fig~~e .-~. 6 Job shop probl.em, represented as an acyclic directed graph. 

. ' -

paths from Oto u and from u to*, excluding p, be denoted by r and q, 
u u u 

respectively. In particular, r* is an obvious lower bound on the value of 

any feasible schedule obtainable from the current graph [Charlton & Death 

1970]. We caI?, get a far better bound in a manner very similar to the devel

opment of flow shop bounds in Section 5.3.2 [Lageweg ec al. 1977]. 

Let us relax the capacity constraints for all machines except M .. We 
.1. 

with release then obtain a problem of scheduling the operations 0 on M. u l. 

dates r, processing times p, due dates -q and precedence constraints u u ~ 

defined by the directed graph, so as to minimize maximum lateness. As pointed 

out in Section 3.2, this llprec,r.jL problem is NP-hard, but there exist 
J max 

fast enumerative methods for its solution on each M .• Again, all lower 
l. 

bounds proposed in the literature appear as special cases of the above one 
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by underestimating the contribution of ru, qu or both, by ignoring the 

precedence constraints, or by restricting the set of machines over which 

maximization is to take place. 

· The currently best job shop algorithm [McMahon & Florian 1975] involves 

the 1jr.jL bound combined with the enumeration of active scheduies. 
J max 

Starting from o
0

, we consider at each stage the subset S of operations 

of whose predecessors have been scheduled and calculate their earliest 

sible completion times r +p. It can be shown [Giffler & Thompson 1960] 
u u 

• • 

all 

pos-

that it is sufficient to consider only a machine on which the minimum value 

of r +p is 
u u 

achieved and to branch by successively scheduling next on that 

machine all 0 
V 

for which r < min0 ~s{r +p }. In this scheme, several dis-v u,;;;. u u 
junctive arcs are added to D at each stage. An alternative approach whereby 

at each stage one disjunctive arc of some crucial pair is selected leads to 

a computationally inferior approach [Lageweg et ai. 1977]. 

The applicability of Lagrangean techniques to obtain stronger lower 

bounds is the subject of ongoing research. Either the precedence constraints 

fixing the machine orders for the jobs or the capacity constraints of the 

machines can be multiplied by a Lagrangean variable and added to the objec

tive function. For fixed values of the multipliers, the resulting problems 
• 

can be solved in (pseudo)polynomial time. Computational experiments will 

have to reveal if this approach, combined with subgradient optimization or 

another suitable technique, will lead to any substantially better job shop 

algorithm. 

• • 

As far as approximation algorithms are concerned, a considerable effort has 
been invested 

Conway et al . 

in the empirical testing of various priority rules 

1967; Day & Hottenstein 1970; Panwalkar & Iskander 

[Gere 1966; 

1977]. No 

rule appears to be consistently better than any other and in practical situ-

ations one would be well adv1.· sed to explo1.· t any · 1 t h h specia s ructure tat t e 
problem at hand has to offer • 

. 

Not much has been done in the way of worst-case analysis of approxima-

tion algorithms for flow shop and job shop problems. Gonzalez and Sahni 

[Gonzalez & Sahni 1978A] show that for any t· fl h ac ive ow sop or job shop 
schedule (AS) 

C (AS)/c* ~ m. 
max max 

• 

{t) 

This bound is tight even for LPT schedules, in which the jobs are ordered 



• 

• 

213 

according to nonincreasing sums of processing times. 

algorithm H for Fl lcmax based on Johnson's algorithm 

They give an O (mn log n) 

* C (H)/C :5 
max max 

m -2 • 

With SPT defined similarly as LPT, it is 

for F2 I IC with max 

also shown that for Fj IIc. and 
J 

. ' 

(t) 

(t) 

It thus appears that, in general, the obvious algorithms can deviate quite 

substantially from the optimum for this class of problems . 

• 
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6. CONCLUDING REMARKS 

If one thing emerges from the preceding survey, it is the ar11azing success 

of complexity theory as a means of differentiating between easy and hard 

problems. Within the very Qetailed problem classification developed espe

cially for this purpose, s11rprisingly few open problems remain. For an 

extensive class of scheduling problems, a computer program has been devel

oped that classifies these problems according to their computational com-
• 

plexi ty [Lageweg et al. 1978A]. It employs elementary reductions such as 

those defined in Section 2. 7 in order to deduce the consequences of the 

development of a new polynomial-time algorithm or a new NP-hardness proof. 

As far as polynomial-time algorithms are concerned, the most impres

sive recent advances have occurred in the area of parallel machine schedul

ing and are due to researchers with a computer science background, recogniz-
• 

able as such by their use of terms like tasks and processors rather than 

jobs and machines .. Single machine, flow shop and job shop scheduling has 

been traditionally the domain of operations researchers. Here, an analyti

cal approach to the performance of approximation algorithms is badly needed, 

although for any practical problem it probably will remain true that a 
• 

successful heuristic will have to exploit whatever special structure and 

properties the problem at hand may have. 

Thus, the area of deterministic scheduling theory appears as one of 

the more fruitful interfaces between computer science and operations re

search .. Much progress has been made and more can be expected in the near 

future. 

Note. The last three authors are currently engaged in writing a book on 

scheduling problems and would very much appreciate being inforrued about 

new algorithmic and complexity results in this area. 
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