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INTRODUCTION

This work deals with initial value problems and initial-boundary value

problems in IR2 which are governed by a differential equation of the type

(1) L] = er,lul + L, [ul = £0x,t)

where € is a small positive parameter (i.e. 0 < € << 1), the operator L2 is

a linear hyperbolic differential operator of the second order given by

32u
+ cl(x,t)cz(x,t);—i
b'e

9

u
(2) Lz[u] =— + {cl(x,t) + c2(x,t)}

9
9xot

2
u
Bt2

(with oy < c2) and the operator L, is a nonvanishing first order differen-

1
tial operator which is either linear

du Ju A
1= ou su
(3) Ll[uJ a(x,t)at + b(x,t)Bx + d(x,t)u

or quasilinear
(4) L [ul = atx,t, w2 + bix,t, w2 + d(x,t,u)
1 Tt ! 9x reees

The equation (1) describes the propagation of waves and occurs in many prob-
lems in mathematical physics. One class of physical problems which lead to
the equation (1) concerns certain phenomena which are governed in first
approximation by a quasilinear conservation law of the type

M4 st = 0.
If higher order effects are taken into account there results a nonlinear
mathematical model which yields after linearization an equation of the type
(1). Phenomena which can thus be described are for instance traffic flow,
the flow of water in long rivers and glacier flow. Also certain chemical
exchange processes and the process of sedimentation in rivers are governed
by a conservation law of the above mentioned type. For details we refer to

WHITHAM [56, chapter 3] where also an extensive bibliography can be found.

Other physical problems which lead to the equation (1) are so-called



vi

overdamped vibration problems. Problems of this kind are governed by an

equation of the type
(5) Lz[u] = p{f(x,t) - Ll[u]}

where y is some large positive constant (i.e. p >> 1) and L2 and L1 are
given by (2) and (3). Putting u = E—l in (5) we obtain the equation (1).
Physically the large constant p corresponds to a strong suppression of the
vibration which may be caused for instance by a heavy damping (mechanical
problems) or by a highly absorbing surrounding medium (radiation problems) .
An example of an overdamped vibration is given by the propagation of elec-
trical signals along a conducting wire of large resistance. In this case the
mathematical description leads to the well-known telegraph equation with a
small factor € = u—l in front of the wave operator (see SMITH & PALMER [46]).
Other overdamped vibration problems are for instance the motion of a vib-
rating string imbedded in a highly viscous medium and the propagation of

radiation thrcugh a highly absorbing medium.

Since problems which are governed by an equation of the type (1) be-
long to the class of so-called singular perturbation problems we shall give
a brief description of the concept of singular perturbation problem. This
description will be followed by a discussion of some techniques which are

characteristic of singular perturbation theory.

Let © be some domain in bi with boundary 9D and let X = (xl,xz,...,xn) de-
note a point in R". We consider the boundary value problem

L) = enful + L ful = £, Feo
(6)

>

Bi[u] = gi(x) along 3D (i = 1,2,...,k)
where £ and gi (i =1,2,...,k) are given functions and the Bi[u]
(i =1,2,...,k) are expressions involving u and its derivatives; the con-

stant k is a positive integer depending on the type of boundary value
problem. L2 and L1 are differential operators of arbitrary type (either
ordinary differential operators or partial differential operators of ellip-

tic, parabolic or hyperbolic type) and of arbitrary order; these operators
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may be linear or nonlinear. The constant € is a small positive parameter

which appears only as a factor in front of the operator L

2

One can think of the left-hand side of the differential equation (6) as con-
sisting of a term Ll[u] together with a small perturbation eLz[u]. For this
reason problems of the type (6) are called perturbation problems; the term
Ll[u] is referred to as the unperturbed e-independent part of the operator
L(€) and the term epzﬁqﬂ is called the perturbation.

One distinguishes between regular perturbation problems and singular pertur-
bation problems. A class of singular perturbation problems is characterized
by the fact that the order of L

is larger than the order of L,; in case

2

the order of L2 is lower than or equal to that of L1

perturbation problems (for an analysis of the concepts regular perturbation

1
we speak of regular

versus singular perturbation we refer to ECKHAUS [10]). From now on we shall
assume that (6) is a singular perturbation problem in which the order of

L2 is larger than that of L

1
A solution u of problem (6) is in general difficult to obtain explicitly.

In practice, however, it often occurs that one is content with an approxi-
mation u of u which is valid for small values of €. In that case the prob-

lem reduces to the determination of a function u which satisfies-

(7) lim lu - GIIS-2 = 0.
ev0

Here “-"5 denotes some norm which has been given in advance. We may take

.

for instance the sup-norm

la - 3ll= sup |u - u
S

or the L2—norm

]

~ ~ 2
la - uﬂﬁ r J lu - u[zdx]%

Q
where § denotes the closure of Q; also norms involving derivatives are pos-
sible. The construction of the approximation u is usually carried out in
two steps. First one constructs a so-called formal approximation ; which

satisfies the differential equation and the boundary conditions (6) up to
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some order of €. In a second step one proves the correctness of the formal
approxipation by showing that (7) holds.

We shall now discuss both steps in some more detail, where it will be assum-
ed for simplicity that the operators L1 and L2, as well as the expressions
Bi (i=1,2,...,k), are linear. However, much of what will be said applies

also to nonlinear problems.

One always starts the construction of “the formal approximation by solv-

ing the reduced equation
> >
L1[w0] = f£(x), X € Q

which follows from the equation (6) by putting € = 0. The solution W is

chosen such that it satisfies as many of the boundary conditions (6) as
possible (the reduced equation together with the selected boundary condi-

tions is also referred to as the reduced problem). If w. is sufficiently

0
smooth it satisfies the differential equation (6) up to order €, namely

(e) _ e2 e
L [w0] = f(x) + 6L2[w0] = f(x) + 0(e), e+ 0

uniformly valid in subsets of . However, since the order of L2 is larger

than that of L1 the function Wy generally does not satisfy all boundary con-

ditions (6), so w, is not a formal approximation of u.

0

In order to cope with the remaining boundary conditions (6) a so-called
boundary layer function v is added to vy which, for ‘€ approaching zero,
tends asymptotically to zero everywhere in Q with the exception of a small

neighborhood of the boundary 9 where it contributes to w, in such a way

that the remaining boundary conditions are fulfilled; theoappearance of
boundary layers is characteristic of singular perturbation problems. Usually
a boundary layer function can be constructed by stretching the coordinate,
say xn, which measures the distance of a point ; to the boundary (if neces-
sary, one introduces local coordinates in a neighborhood of the boundary) .

The following type of boundary layer function occurs frequently in singular

perturbation problems:

Xn xn
n—l'_;E) = ¢(x11---rxn_1)exp(" “E_p')r X

v
o

vy = vo(xl,xz,...,x



where p is some positive constant.

Once a boundary layer function v, has been determined a formal approxima-

0
tion u of u (up to order €) can be written down, namely

~
u=w, + v,.

Formal approximations of higher order can be obtained by taking more terms

into account. For instance, the function

~ n n k
(8) u= ] ew + ] v

with an appropriate choice for the functions w, (k = 0,1,...,n) and the

k
boundary layer functions v, (k = 0,1,...,n) may give a formal approximation

of u up to order €n+1.

k

As an illustration we shall now construct a formal approximation for the

solution of a simple initial value problem in one independent variable,

namely
(e) d2u a
Ll 2224+ Ly u=s£(t), 0<t<ow
dt2 dt
(9)
u(0;e) = Cl, ut(O;e) = C2

with f some Cw—function. This problem can of course easily be solved expli-
citly, but we give this example in this introduction merely to illustrate
the construction of a formal approximation. Stretching the coordinate t by

introducing

o |t

we can write the differential operator (9) as

2
Ly = e_l(d—%+ duy ..
art dt

Let u be defined by (8) where the functions W depend on t and the boundary

layer functions vk depend on T. Then we obtain



n n
L3 - AR ) w1+ L)L b e

(10) + ) e (=t W,

and also

n
~ _ k -1 n
u(05e) = wy(0) + k£1 £ {wk(O) + e vk_l(O)} + v _(0)
(11)
n dw, dv,
~ _ k, "k -1 Vg
u (0;e) = Z e g0 + 7 2O

The functions wy (k =0,1,...,n) and vy (k = 0,1,...,n) can now be obtained

by solving the following set of initial value problems

- + w, = f(t), 0<t<m
(12) 9

+ — =0, 0 < T < @™

dvO dwo
(13) S 7;;«0) = e{c2 - 75;(0)}

lim VO(T) =0
T

3

and for k = 1,2,...,n



X1

r 2
dw. dw
k k-1
—_—t W, = = —— 0 <t << o
dat k dtz
(14) 9
wk(O) = -€ vk_1(0)
~
2
e, e
dT2 ar k-1
J av aw
k _ k
(15) —5;40) = -¢ dt(O)
lim vk(r) = 0.
T->c0

It is easily verified that the functions v, are of the type
t t
v (2) = eP (Dexp(- )

with Pk(t) some polynomial in t; these functions are typical boundary layer

functions. Moreover it follows from (10), (11), (12), (13), (14) and (15)
that

LEE7 = £0) + 0™, 0<t<oew

~ n+1 .

u(0;e) = C1 + 0(e )

ut(O;e) = c2

so u is a formal approximation (up to order €n+1) for the solution u of (9).

For an exposition of formal constructive methods we refer to COLE [6]

and NAYFEH [32]. FRIEDRICHS [14] has written a survey article on the occur-
rence of boundary layers in various branches of mathematical physics. A gen-
eralization of the concept of formal approximation can be found in ECKHAUS

[11].

+1
After a formal approximation up to some order of €, say e , has been

constructed its correctness (that is, the validity of (7)) remains to be
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shown. This can be done by introducing the so-called remainder term z defin-

ed by
(1e6) z=u-u
and proving that

(17) lim Izl5 = 0.

€+0
Since u is a formal approximation of u up to order €n+1 it follows that =z
satisfies a boundary value problem of the type

~ 1 >

L(E)[z] = L(E)[u] - L(E)[u] = O(en+ ), X € Q

(18)
n+1 .
Bifz] = 0(e ) along 9Q (i =1,2,...,k)

so in order to prove (17) it suffices to derive an a priori estimate for the
solution z of (18) which estimates Hzﬂﬁ in terms of the right-hand side
function and the boundary functions. Once an a priori estimate has been
established, say for instance

"zﬂﬁ = 0(en+1), e+ 0

we obtain from (8) and (16)

Tk n+1
(19) lu = 7 e'(w, +v)lz=o0(""), e+ 0
k=0 k k' Q

from which the correctness of the formal approximation follows. The series
in the left-hand side of (19) is called an asymptotic expansion of u into

powers of €.

REMARK. Not every formal approximation is a correct approximation. Examples
of formal approximations which are not approximations can be found for in-

stance in ECKHAUS [11] and will also be given in this thesis.

A priori estimates for the solution z of (18) can be obtained by var-

ious methods, depending on the nature of the operators L1 and L2. For prob-

lems with a singular perturbation of elliptic type (that is, for problems
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with an elliptic operator L2) a priori estimates have been established
amongst others by BESJES [2], ECKHAUS & DE JAGER [12], VAN HARTEN [23], HUET
[24*], LIONS [28] and VISIK & LYUSTERNIK [49], whereas a priori estimates
for problems with a singular perturbation of parabolic type can be found for
instance in BESJES [2] and LIONS [28]. In this thesis we shall be concerned
primarily with singular perturbation problems in IR2 which are governed by

an equation of the type (1) in which the operator L, is a linear hyperbolic

2
differential operator of the second order. A priori estimates for solutions
of these kind of problems can be obtained by applying the so-called energy

integral method. This method can briefly be described as follows:
consider the initial-boundary value problem
Lz[u] + Ll[u] = f(x,t) in Q c IR2

(20)

u or u and its first normal derivative prescribed along 3Q

where the operators L2 and L1 are given by (2) and (3) (in order to fix the
idea one may think of L2 as the wave operator and take for Q the strip

0 <x<1, 0 <t < in that case u should be prescribed along x = 0,
t20and x =1, t 2 0, whereas u and ut should be prescribed aldng t =0,

0 < x £ 1). Note that (20) is not a singular perturbation problem. We multi-
ply the differential equation by a linear combination of u(x,t) and its

first derivatives and integrate the resulting formula over a suitably chosen

region S < Q, which usually contains a part of the boundary 9Q. This yields

f

JI (aut-FBux-qu)(L2[u]-+L1[u])dxdt = JJ (aut-+6ux + yu) f dxdt.
S

Selecting the coefficients a = a(x,t), B = B(x,t) and y = y(x,t) in an appro-
priate way, applying GREEN's theorem in the plane to the left-hand side
integral and taking into account the prescribed initial and boundary condi-
tions we obtain certain integrals of positive definite quadratic forms in

u, u and u, usually referred to as energy integrals. A careful manipula-
tion of these energy integrals leads then to an a priori estimate for the

solution u of (20).

The energy integral method has been known for a long time as a powerful tool



for obtaining a priori estimates and uniqueness proofs for solutions of
initial value problems, not only in IR2 but also in R" (see for instance
HADAMARD [22], RUBINOWICZ [42], WEBER [53], ZAREMBA [57] and the review in
the article by FRIEDRICHS [13]). In its simplest form, with the choice

(21) a1, By

i}
o

the method has been applied to CAUCHY's problem for linear hyperbolic equa-
tions of the second order (see FRIEDRICHS & LEWY [15]); a less trivial
choice of o, B and y is required for a proof of the uniqueness of the solu-
tion of TRICOMI's problem (cf. PROTTER [40]) or FRANKL's problem (cf.
MORAWETZ [31]). Although the energy integral method is usually applied to
hyperbolic equations it has also been used for elliptic equations (see

GARABEDIAN [16, p.426]).

If the energy integral method described above is applied to singularly per-
turbed initial value problems which are governed by an equation of the type
(1), (2), (3) a slight complication is formed by the presence of the small
factor € in front of the hyperbolic operator L2 since it turns out that due
to this factor the choice (21) for a, B and Y does no longer lead to useful
estimates (see DE JAGER [26]). In case the coefficient d(x,t) in (3) is
identically equal to zero this difficulty can be overcome by choosing a and

B such that
(22) o(x,t) = a(x,t), B(x,t) = b(x,t)

(where a(x,t) and b(x,t) are the coefficients occurring in Ll)'

With this choice it is possible to derive by means of the energy integral
method a priori estimates for solutions of initial value problems with a
singular perturbation of hyperbolic type, provided that the coefficients a,
b, ¢, and ¢, in L, and L_, satisfy a so-called "timelike" condition (see

1 2 1 2
DE JAGER [26]).

A generalized version of the energy integral method described above has been
applied by DZAVADOV [7] to singularly perturbed initial value problems in
R". In that case the differential equation is multiplied by Ll[u] and inte-
grated over a suitably chosen region. For a problem in IR2 multiplication

by Li[u] comes down to the choice (22), provided that d(x,t) = O.
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An application of the energy integral method to singularly perturbed initial-
boundary value problems in R” with a quasilinear first order operator L1
of the type

n
Llul = a0+ 7 b &02+ 0 lul’u, p>0
1 ot k=1 k axk

can be found in GENET & MADAUNE [17].
A different form of the energy integral method, based on a multiplication

of the equation by a second derivative of u, has been used by BLONDEL [3].

There exists a large amount of literature on singular perturbation
problems. Singular perturbations of elliptic type have been studied for in-
stance by BESJES [2], ECKHAUS [9], ECKHAUS & DE JAGER [121, GRASMAN [20],

DE GROEN [21], VAN HARTEN [23], HUET [24*1, DE JAGER [25], LIONS [28],
O'MALLEY [37] and VISIK & LYUSTERNIK [49]; for singular perturbations of
parabolic type we refer to BESJES [2] and LIONS [28]. Extensive bibliograph-
ies can be found in LIONS [28], NAYFEH [32] and O'MALLEY [37], [38]. Con-
sidering this large amount of literature the number of articles that deal
with singular perturbations of hyperbolic type is relatively small. BLONDEL
[31, [4], pzavapbov [7], DE JAGER [26], SMITH [44], SMITH & PALMER [46] and
WEINSTEIN & SMITH [55] have studied singularly perturbed initial value prob-
lems for linear hyperbolic differential equations, whereas singularly per-
turbed initial-boundary value problems have been investigated by DZAVADOV
[8], GENET & PUPION [18] and WEINSTEIN & SMITH [55] (linear problems) and
by GENET & MADAUNE [17] and MADAUNE [30] (nonlinear problems). Singular
perturbations of hyperbolic type are also discussed iﬁ the books by COLE
[6], LioNs [28], ROSEAU [41] and WHITHAM [56].

We shall end this introduction with a survey of the contents of this thesis.

The first two chapters of the thesis are devoted to singularly perturb-
ed initial value problems for ordinary differential equations of the second
order, because problems of this kind can be considered as special cases of
similar problems for hyperbolic equations and in our opinion the methods
that will be used later on in the analysis of singularly perturbed initial
value problems for hyperbolic differential equations can best be understood
by applying these methods first to relatively simple problems for ordinary

differential equations.
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In chapter I we deal with linear problems of the type

a° a

e——‘:;-+a(t)d—:+b(t)u=f(t), D<t<w
(23) dt

u(0;e) = Cl, ut(O;a) = 02

where the coefficient a(t) is strictly positive.

Applying the energy integral method we establish pointwise a priori esti-
mates for the solution of the initial value problem and its first deriva-
tive, which are uniformly valid in any bounded segment O < t < T for € suf-
ficiently small. Next we construct a formal approximation for the solution
and use the a priori estimates to prove its correctness. It is shown that
the difference between the solution and the formal approximation and also
the difference between their first derivatives tend pointwise to zero as €
approaches zero, uniformly in any bounded segment 0 < t < T. We investigate
also problems of the type (23) with a strictly negative coefficient a(t).
It is shown that in this case the solution tends pointwise to infinity as

€ approaches zero.

In chapter II we deal with nonlinear problems of the type

dzu du
E——3-+ a(t,u)=— + b(t,u) = 0, 0 <t<w
dt
dt
u(0;e) = C

1’ ut(O;s) = C2
where the coefficient a(t,u) is strictly positive. )

We construct a formal approximation and formulate an estimation theorem
from which the existence of a solution near the formal approximation fol-
lows; the difference between this solution and the formal approximation
and also the difference between their first derivatives are shown to con-
verge pointwise to zero for € tending to zero, uniformly in any bounded
segment 0 < t < T where the solution Yo of the reduced problem is regular.
The estimation theorem is a modified version of a similar theorem by

VAN HARTEN [23] and its proof is based on a contraction mapping principle

for operators in a Banach space.

In the two chapters that follow we extend the results of the chapters I
and II to singularly perturbed initial value problems for hyperbolic dif-

ferential equations. In chapter III we discuss linear problems of the type
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€L2[u] + L1[u] = f(x,t), -~ < x <w, 0<t <o
u(x,0;e) = g(x), —© < x <
ut(x,O;e) = h(x), —© < X < ®

where the operators L2 and L1 are given by (2) and (3). The coefficient
a(x,t) is assumed to be strictly positive. An energy integral method is
employed which yields pointwise a priori estimates for the solution of the
initial value problem and its first derivatives, provided that the coeffi-

cients satisfy the so-called "timelike" condition

b(XIt)

cl(x,t) < a(x,t)

< c2(x,t) for —©» < x < @, 0 £t < o,

These a priori estimates are, for € sufficiently small, uniformly valid in
any compact subset of -» < x < », 0 £ t < o, The energy integral method
that is employed is an extension of a similar method developed by DE JAGER
[26] and is basically different from the methods used by other authors (cf.
[31, [41, [71, [44], [46] and [55]). Next we construct a formal approxima-
tion for the solution and use the a priori estimates to show that the dif-
ference between the solution and the formal approximation and also the dif-
ference between their first derivatives tend pointwise to zero as & ap-
proaches zero, uniformly in any compact subset of - < x < ®, 0 < t < o,

In chapter IV we investigate nonlinear problems of the type

22 2 %
E{_u-c (x,t)—u}+L[u]=0, —w<x<oo,0<t<m
2 2 1
ot 9x
u(x,0;e) = £(x), —o < x < ®©
ut(x,O;e) = g(x), -® < x < ®

where the operator L, is given by (4) and the functions c(x,t) and a(x,t,u)

are strictly positivi. It is shown that a formal approximation can be con-
structed if the solution LA of the quasilinear reduced problem is sufficient-
ly smooth. The existence of a solution of the full equation near this for-
mal approximation is established by applying the estimation theorem of chap-
ter II; the difference between this solution and the formal approximation
and also the difference between their first derivatives are shown to con-

verge pointwise to zero for e tending to zero, uniformly in compact subsets
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of —» < x <o, 0 £t < » where w, is regular. As in chapter III the results

0
are obtained under the condition that the coefficients satisfy a "timelike"

condition. Here this condition reads

b(x,t,u)

—elx,t) < a(x,t,u)

< c(x,t) for -» < x,u < ®, 0 £t < o,

Generally, however, the solution w, of the quasilinear reduced problem does

0
not exist in the classical sense for all t 2 0. Hence we are led to the
concept of "generalized solution of the reduced problem". A discussion of
generalized solutions and their relevance to singular perturbations of hyper-

bolic type is presented.

The last two chapters of this thesis are devoted to singularly per-
turbed initial-boundary value problems for hyperbolic differential equations.

In chapter V we consider the following problem in a strip:

\\ 82u 2 Bzu
¢{——2 -c (x,t)——z—} + L1[u] = f(x,t), 0<x<k, 0<t <o
ot 9x
J u(x,0;¢e) = g(x), 0<sx< 4k
ut(x,O;e) = h(x), 0<x <%
u(0,t;e) = kl(t)' 0 <t <w
u(l,t;e) =k, (t), 0<t<w

where the operator L, is given by (3), the coefficients c(x,t) and a(x,t)

1
are strictly positive and the boundary functions satisfy

g(0) = kl(O)' g) = k2(0).

Applying a modified version of the energy integral method developed in chap-
ter III we derive pointwise a priori estimates for the solution of this
problem. We give also pointwise estimates for the first derivatives of the
solution. The estimates are, for € sufficiently small, uniformly valid in
any compact subset of 0 £ x < £, 0 £ t < o,

Under the additional condition b(x,t) > 0 we construct a formal approxima-
tion for the solution. The correctness of the approximation is established

by applying the a priori estimates; we show that the difference between the
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solution and the formal approximation tends pointwise to zero as € approach-
es zero, uniformly in any compact subset of 0 £ x < l, 0 £ t < », Here, too,
the results are obtained under the restriction that the coefficients satisfy

the "timelike" condition.

b(x,t)

< < < < o,
0 < c(x,t) for 0 <x<4{, 0<t

-c(x,t) <

In chapter VI we investigate boundary value problems of the type

2

93 u Ju u
s§;§§-+ a(x,y)5§-+ b(x,y)5§-+ c(x,y)u = £(x,y), (x,y) € D
u(x,0;¢e) = g(x), 0 < x <
u(¢(y),yie) = hiy), 0fy<w

where the region D is given by
D={(x,) | ¢(y) <x<w, 0<y<=}

with ¢(y) some non-decreasing function defined for 0 < y < « and satisfying
$(0) = 0. The coefficients a(x,y) and b(x,y) are strictly positive and the

boundary functions satisfy
g(0) = h(0).

Note that in this problem the part of the boundary given by y =0, 0 x <

coincides with a characteristic of the second order differential operator

82

axdy

Problems of this kind are sometimes referred to as Goursat problems. Apply-
ing a modified version of the energy integral method developed in chapter

III we establish pointwise a priori estimates for the solution of this bound-
ary value problem which are uniformly valid in any compact subset of D for

e sufficiently small. Next we construct a formal approximation for the so-
lution and use the a priori estimates to show that the difference between

the solution and the formal approximation converges pointwise to zero for

€ tending to zero, uniformly in any compact subset of D.






NOTATIONS
Numbers
Z: integers.
IN: positive integers.
IR: real numbers.
n .
IlR+ i= {(xl,xz,...,xn) lxk e R; k=1,2,...,n} withne N, n2 2,

IR : positive real numbers.

]R+: nonnegative real numbers.

C: complex numbers.

Rel: real part of X € C.

ImA: imaginary part of A € C.

argl: argument of A € €, A # O.

;'g: dot or scalar product of vectors ; and g
ng: cross or vector product of vectors ; and g

D: closure of the open set D c© :IRZ.

- 2
9D: boundary D\D of the open set D ¢ RR".

Functions

u(t): real-valued function of the variable t € RR.
u(t;e): real-valued function of the variable t € IR, depending on the

parameter € € IR.

u' = ut = g—:: first derivative of u(t) or u(t;e).
d2u
u" = u = ——=: second derivative of u(t) or u(t;e).
tt dt2

u(x,t): real-valued function of the variables x,t € IR.
u(x,t;e): real-valued function of the variables x,t € IR, depending on

the parameter € € IR.

_ du _ou  _. . : .
ut = 3% uX = 3% first derivatives of u(x,t) or u(x,t;e).
Bzu 92u 32\1
utt = 5 uxt = yyell uxx = — second derivatives of u(x,t) or u(x,t;e).

ot 9x



XXii
Order symbols

If n € IN and u(x,t;e) is a function defined in Q < IR2 then
u(x,t;e) = 0(en), € ¥+ 0 wuniformly in @ iff there exist positive constants
C and e, such that lu(x,t;e)| < ce™ for (x,t) € R and 0 < € < €o-

Function spaces

0
c [0,T]: space of real-valued, continuous functions defined in [0,T] < RR.
Ck[O,T], k € IN: space of real-valued, k times continuously differen-
tiable functions defined in [0,T] c IR.
o
w k
¢ to,T] == 0, clo0,T].

CO(Q), Ck(Q) and Cw(ﬂ) denote similar spaces of real-valued functions

defined in Q < IR2.

Norms

For functions of the variable t defined in 0 £ t £ T:

1
luly = sw lul, [ul{® = sup lul + e sup lu|
T ' T
Il - I L = Jujat
Yro,r] e Wi,r0,m1° u
0

2
For functions of the variables x and t defined in a compact subset @ ¢ IR :

€ 3 3
|ul0.= sup |ul, Iuli - sup |ul + €* sup |uxl +'e* sup lutl
Q Q Q Q
Il 2 :
u 0" [ JJ u dxdt]
Q

Generic constants

Sometimes C and EO denote generic constants of which the value may be

different on each appearance.



CHAPTER I

INITIAL VALUE PROBLEMS FOR LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we shall discuss the initial value problem (singular

perturbation problem)

dz du
eZ 2 4 a(t;e)22 + b(t;e)u = £(t;e), 0<t<ow
2 at
(1) dt

u(0;e) = Cl(e), ut(O:s) = Cz(e)

where € is a small positive parameter, i.e. 0 < € << 1,
The functions a, b and f depend on the variable t and on the parameter €.

The initial data Cl(e) and Cz(e) are constants depending on €.

It will be assumed that the coefficient a(t;e) is either strictly positive

a(t;e) 2 a0 >0 for 0 £t T

or strictly negative

a(t;e) < -a, <0 for 0 <t <s<T
valid for each constant T > 0 provided that € is sufficiently small, say
0 <egec<s EO with € depending on T. Here ag is some positive constant

depending on T and €, but independent of €.

0

There exists a large amount of literature on singularly perturbed initial
value problems for ordinary differential equations. Most authors investi-
gate these problems by writing them as a system of first order equations,
see for instance HOPPENSTEADT [24], O'MALLEY [38, chapter 4], PONZO & WAX
[39], vASIL'EVA [47], VASIL'EVA & VOLOSOV [48] and WASOW [52, chapter 10].

The problems considered by these authors are generally nonlinear.



Singularly perturbed initial value problems in the form of a single differ-
ential equation of higher order are less frequently encountered in litera-
ture. We mention here the work of GRADSTEIN [19], O'MALLEY [37], SMITH [45]
vorosov [50], [51] and WEINSTEIN & SMITH [54].

In spite of this wide variety of literature we have thought it appropriate
to devote the first two chapters of this thesis to singularly perturbed
initial value problems for linear and nonlinear ordinary differential equa-
tions of order two. Our considerations are that initial value problems for
hyperbolic differential equations (which form the main subject of our in-
vestigations) can be solved essentially in the same way as initial value
problems for ordinary differential equations, so the methods that will be
used in .the analysis of linear and nonlinear hyperbolic equations (chapters
IIT and IV) can best be understood by applying them first to relatively
simple problems which are governed by linear and nonlinear ordinary differ-

ential equations (chapters I and II).

In the sections 1 and 2 of this chapter we shall study problem (1)
with a strictly positive coefficient a(t;e). We shall derive a priori esti-
mates for the solution u of (1) (section 1) and construct an asymptotic ex-
pansion into powers of € for this solution (section 2).

In section 3 we shall discuss problem (1) in case the coefficient a(t;e) is

strictly negative.

1. A priori estimates

We consider the initial value problem (1) under the following condi-

tions:

—~
for each positive constant T there exists a positive constant €

(depending on T) such that
. 1 1 0
(i) a(t;e) € c'[0,T],  ©b(t;e) € c'[0,T], £(t;e) € c [0,T]

valid for every value of € satisfying 0 < g < 60

(2)
< (ii) the functions a(t;e), b(t;e) and their first derivatives are

uniformly bounded in 0 £ £t €< T for 0 < g€ < €yr i.e. there exist

positive constants A and B (depending on T and €, but independ-

0
ent of €) such that for all t € [0,T] and all € € (O,eo]




[
b

la(t;e)! + 1%%(t:€)| <

IN
w

b e ..
Ibtt;e)l + Idt(t,e)l

(2) (iii) a(t;e) =2 a, >0

valid for all t € [0,T] and all € € (0,80], where aj is some

but independent of €.

constant depending on T and €

- 0

For the moment it will be assumed that the initial conditions are homogen-

eous, So

(3) Cl(e) = Cz(e) = 0.

In order to derive an estimate for the solution u(t;e) of (1) in an inter-

val 0 £ t £ T we multiply the differential equation (1) by 2u. This yields
d 2 2 2 _
(4) dt(au + 2€uut) + (2b - at)u - 2eut = 2fu

valid for 0 < t £ T and 0 < g < eo, where arguments have been omitted for

simplicity.

Similarly, multiplication of (1) by 2aut leads to

(5) '—d (eau,) - €a,u,_ + 2a" u, + 2abuu, = 2afu

valid for 0 £ t < T and 0 < € < eo.

Adding (4) and (5) and using the inequalities

2 2 2 2 2
- - + <
2a ut 2abuut 2afut b™u” + £

2fu < u2 + f2

we obtain
d 2 2 2 2 2 2
— + < -

(6) dt(au + 2€uut eaut) (1 + at + b 2b)u” + (2 + at)ut~+2f

valid for 0 £ £t < T and 0 < g < so.



From the positiveness of a(t;e) it follows that for 0 £ t < T and & suffi-

ciently small, say 0 < € < EO with €. a generic constant

0

2 2 2 2
+ + + +
au 2euu gau, =2 aou 2euu anu

}

\2

1
)u2 + z»:(a0 - ez)u2

(a0 - € e

v

2 2
m(u” + eut)

where the positive constant m (independent of €) may be defined by

So integrating (6) with respect to t and using this inequality as well as

(3) we obtain

t
2 2 2 2 2
< I
m(u” + eut) M J (u” + eut)dr + M f“[O,T]
0
or
t
2 2 M 2 2 M 2
- = < = Il
(7) (u” + eut) o j (u™ + eut)dT o £ [0,1]
0

valid for 0 £ t £ T and 0 < € < eo, where the positive constant M (inde-

pendent of €) is given by

M=max(2+A,1+A+B2+2B)

a fel - .
an [o,T] denotes the L2 norm

Using GRONWALL's lemma (see for instance RUBINSTEIN [43, p.26]) we obtain
from (7)

M

2 2 2 Mt
< =1l =t
u +-eut - £ Lo, T] exp ( m)

A
g|=

2 MT
| gl
elpg, gy exe

and hence



lu(t;e)] < c(m) £l
(8) Co,T]

du -4
=—(t: < I £l
'dt(t's)l C(T)e [O,T]

valid for 0 £t £ T and 0 < € < eo, where the positive constant C(T), de-
pending on T but independent of €, is given by

M 4

cm = () exp ().

2m
Note that so far we did not use the differentiability of the coefficient

b(t;e) required in (2, i and ii).

Now that we have established estimates for the solution of the homo-
geneous initial value problem (1) it is not difficult to obtain estimates

for the inhomogeneous problem. We put

t
| re) = wits _ [ ble) gy _ae)t
(9) u(t;e) = w(t;e) + p exp{ J T dt} - eq exp{ - 1
0
where the e-dependent constants p and q are defined by
a(O;e){a(O;e)Cl(e) + ecz(e)}
p= 7 ’
a"(0;e) - eb(0;¢)
<
b(O;e)Cl(E) + a(O;s)Cz(s)
q = 2 -
a (0;e) - €b(0;¢)
Substitution of (9) into (1) yields
d2w dw
e——= + a(t;e)=— + b(t;e)w = F(t;e), 0<t<ow
2 dat
dat
w(0;e) = wt(O;e) =0
with
5 t
F(tie) = £(t;e) - ep <= exp{- | 2EL 4y
2 a(tie)
dat 0

- qa(0;e){a(t;e) - a(0;e) exp{-

a(O;e)t} .
€



a(O;e)t}

+ egb(t;e)exp{- .

Using the positiveness of a(t;e) it is easily verified that there exists a
generic constant C(T), depending on T but independent of &, such that

, 2
Iel < c(m){ll£l + eJcl(e)I + 53/ ICZ(€>|}-

fo,r] fo,T]

So applying the estimates (8) to the function w and using (9) as well as

the positiveness of a(t;e) we obtain

lutese) | < c(m) {I£l + e (&)l + ele, (o)1}

fo,T]

-1
lg%(t;e)l < c(m {2l + lc @] + lc,(e) ]}

[o,T]
valid for 0 £ t < T and 0 < € £ EO, with C(T) a generic constant.
We summarize the results in

THEOREM 1. Let u(t;e) be the solution of the initial value problem (1) under

the conditions (2). Then we have in every interval 0 < t < T the estimates

(10a) sup |u(t;e)| < C(T){ﬂf“[O’T] + ICl(s)] + elCz(e)I}
[o,T]
du .. -3
(10b) [zugjidt(t,e)l < c(T){e "f"[O,T] + lcl(e)l + |C2(e)l}

valid for all values of € satisfying 0 < € < eo, where EO is a con~-
stant depending on T and C(T) is a positive constant depending on T but

independent of €.

REMARKS.

1. The differentiability of the coefficient b(t;e€) can be disposed of in
case Cl(e) = Cz(e) = 0 (see formula (8)).

2. An estimate for the second derivative éEE follows by substitution of

at?
(10a) and (10b) into the differential equation (1).



2. Asymptotic expansions

As an application of the a priori estimates that have been established
in the preceding section we shall now construct an asymptotic expansion into
powers of € for the solution u(t;e) of the initial value problem (1). In
order not to complicate the calculations we shall assume that the functions
a, b and £ as well as the initial data C1 and C2 are independent of the para-
meter €. Furthermore we shall assume that a, b and f are Cm—functions. So

we consider the initial wvalue problem

d2u du
e—— + a(t)=—— + b(t)u= £f(t), = 0<t <
at2 dt
(11)
u(0;e) =C,, u (0;e) =C,
with 0 < € << 1 and
a(t) e c(RY, b)) e @), £) e cCT(wH

(12)
a(t) >0 for 0 £t < oo,

Expanding the functions a(t) and b(t) into a Taylor series we obtain for

any n € IN U {0}

a(t) 1

1]
Il ~18

k n+
Lo akt + an+1(t)t
n
k n+
kZO bt  +b_ . (0)t

1

b(t)

with a, = a(0), bo = b(0) etc.

0
We define the differential operator L(E) by

2
Ly =42, a(t)%:— + b(t)u.

dt2
. _t . (e) . .
Putting T = E—and expanding L into powers of € we obtain
(g) -1 dzu -1, ¢ k_k +1 n+1.d
L™ lul=€¢" =S+ {] act +a_, (en)e 12
dfz k=0 k n+1 dart

n+l n+1
+ T u

k k
\.
bks T u + bn+1(ET,€

| 18

k=0



We construct now a formal approximation G(t;e) of u(t;e) in the form

n n
(13) Beie) = ] wm v ) Mo

k=0 k=0 k

where the functions wk and vk (k = 0,1,...,n) have to be determined. A cal-

culation shows that

n n
L =) He 1t M

]
k=0 k=0 k

dw dzv dv

0 . 0 0
{a(t)jﬁ;-+ b(t)wo} + { 2 + a(O)TEFJ

dw. dzw

n
k k k-1
(14) + ) e{alt)== + b(t)w + ——2—}
k=1 dt k dt2

2
n dv dv, k . dv, |
) S raomzty ] oadd 2
k=1 ar j=1 7

k-1 .
+ ) bj‘rJ

._1} + R(t;e)
j=0

k-3
where the function R(t;e) is defined by

dw 2n n , dv.

n+l n+l o k+1
T z €
k=0

+ bn+1(t)e

N.B. Empty sums, i.e. sums of which the upper limit of summation is less

than the lower limit, are to be interpreted as zero.

Putting t = 0 in (13) we get



n
B0 = wp©@ + ) Flw ) + v _ @1 + My (0
(15) N n k dwk dvk
U (05e) = ] € {570 + O

k=0

The formal approximation U of the solution u of (11) is now obtained by sol-

ving the following set of initial value problems

dw

. 0
a(t)jag-+ b(t)wO = f(t), 0 <t <w
(16) <
w.(0) =C
L O 1
/azv dv0
2+a(0)—d:[_—=0, 0 < T <K >
dart
dv dw
0 = -9
(17) T dT(0) = 02 dt(0)
lim VO(T) =0
T

—

and for k = 1,2,...,n

r aw, d"w
at) ==+ btw, = - —EL o<t <o
dt k dt2
(18) <
Liark(O) = vk_l(O)
(2
a‘v av, E 3 dv, 5 kil ;
+ a(0)—— = - a,T — - ) b.t'v,_ . ’ 0 <T <o
dT2 dat j=1 3 dart .z 3j k-j-1
(19) %0 - - Mg,
drt dt
lim Vk(T) =0
T->o

It is easily established that the functions vk(T), being of the form

(20) Vk(T) = Pk(T)exp{—a(O)T}
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with Pk(T) a polynomial in T, are typical boundary layer functions and also

that (14) and (15) can be written as

L(e)[ﬁ] = f(t) + R(t;e), 0<t <o
(21) 30;e) = c. + ey (o)
1 n
ut(O;E) = C2.

Finally it is easily verified that for any nonnegative number T

R(tse) = 0(e™ Yy, e+ 0

uniformly valid in O £ t £ T. Hence the function a provides a formal approx-

imation (up to order €n+1) for the solution u of problem (11).

Introdﬁcing the remainder term z(t;e) by
(22) z(t;e) = ult;e) - Ultse)

it follows from (11) and (21) that

rL(E)[z] = -R(t;e), 0<t<ew

n

_ _ ntl
<z(0;e) = -¢ vn(O)

zt(O;e) =0

-

so we obtain from theorem 1

z(t;e) = 0(e™h), €40
(23)

n+i

dz
a;(t,e) = 0(e ), e+ 0

uniformly valid in 0 < t < T,

X +1 . . +
Since en vn(T) is uniformly of order en 1 in 0 £ 1 < @ it follows from

(13), (22) and (23) that
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Tk 22l ke n+1
u(t;e) = Z € wk(t) + Z € vk(T) + 0(e” 7)), e+ 0
k=0 k=0
n aw. n av, 1
Deie) = ) e+ ) & =X + 0™, €40
k=0 k=0

uniformly valid in O £ t £ T.

The accuracy in the expansion for %% can be improved by applying the for-

mula with n replaced by n+l1 and using the fact that the terms

dw dv
n+1 n+1 n+1 n+1
€ Ty (t) and € e ‘T)

+1
are uniformly of order el . In this way we obtain

THEOREM 2. Let u(t;e) be the solution of the initial value problem (11)

under the conditions (12). Then we have for any n € IN u {0}

n n-1

u(t;e) = z ekwk(t) + ek+1vk(r) + O(en+1), e+ 0
k=0 k=0
(24)
n aw. n av.
Do) = ] & gEm + ] o o+ oe™h, €40
k=0 k=0

uniformly valid in every bounded interval 0 < t < T, where T = E—and the
functions Wy and Vi (k = 0,1,...,n) follow successively from (16), (17),
(18) and (19).

In case n = 0 empty sums are to be interpreted as zero.

COROLLARY 1. It follows from (24) that first approximations (n=0) for the

solution u of (11) and its derivative are given by

u(t;e) = wo(t) + 0(e), e+ 0
daw daw
du. oy =0 - _0 —a(0)t
dt(t,E) dt(t) + {C2 dt(O)}exp[ a(O)E] + 0(¢g), e+ 0

uniformly valid in every bounded interval 0 < t < T, where L is the solu-

tion of the so-called reduced differential equation (16) which follows from

(11) by putting € = 0.
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COROLLARY 2. It follows from (24) and (20) that for any n € IN u {0}

n

u(t;e) = z ekwk(t) + O(en+1), e+ 0 .
k=0
n aw.
gE(t;e) = z ek ——E(t) + 0(en+1), e+ 0
at W0 @

uniformly valid in every bounded interval 0 < § < t < T, where § is an arbi-

trarily small positive constant independent of €.

REMARK. If the condition of infinite smoothness of the functions a, b and
f is weakened, then the expansions (24) are valid for all n € IN u {0} with

n < Ny the bound n, being determined by the differentiability of the func-

0
tions a, b and f.

3. The case a(t;e) < -a, <0

In this section we shall study problem (1) with a strictly negative co-
efficient a(t;e). In order not to complicate the calculations it will be
assumed that the functions a, b and f are independent of €; without loss of
generality it will further be assumed that Cl(e) = C2(e) = 0. Thus we con-

sider the initial value problem

d2 du
=4 + a(t)o=— + b(tlu = £(t), 0<t <o
) at
(25)

u(0;e) = ut(O;s) =0

with 0 < € << 1 and
a(t) € C2(®Y), b(t) e cL(R"), £(t) ¢ c (&
(26)
a(t) <0 for 0t <e .,

Without loss of generality we may assume that there exists no interval

[O,to) with the property that f£(t) Z 0 for 0 £ t < to. Otherwise we could

take the largest interval with this property, say [O,t;), and formulate a

similar initial value problem for u in t;

*
conditions at t = to, the solution in [O,t;) being given by u(t;e) = 0.

< t < « with homogeneous initial
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In the preceding section we have shown that the solution u(t;e) of pro-

blem (25) with a positive coefficient a(t) satisfies
lim u(t;e) = w(t)
e¥0

uniformly in 0 £ t £ T, where w is the solution of the reduced problem

a(t)3E + bt)w = £(8), 0<t<w
(27)
w(0)

0.

It will turn out that the solution u(t;e) of problem (25) with a negative
coefficient a(t) behaves quite differently. We shall show that for every
value of t with t 2 § > 0 (8§ arbitrarily small but independent of &) the
solution u(t;e) (and hence also the difference u(t;e) - w(t)) increases ex-

ponentially as € tends to zero.

In order to analyse the solution u of (25) we put
t
(28) u(t;e) = w(t) + U(t;E)exp£—é J a(t)dr}

0

where w is the solution of the reduced problem (27) which is given by

t t
_ [ £ [p®
(29) w(t) = j 0 exp{ J<;T23d£}dr.
0 T

Then we obtain for U the initial value problem

t
LU a(t)g% + {b(t) - a'(0)}u = e¥, (t)exp{é— I a(n)dr}, 0<t<w
0

(30) at’
U(ie) =0, U_(0se) =—§§g;
with
d f bf d b b2
15 a2t @a T 2™

2
a

the prime denoting differentiation with respect to t. Defining the function

v(t;e) by
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t t T
oy o _ | £ b(g) - a'(§) 1
v(t;e) = j_—a(f)’ expl f {___a(g) lag + . J a(g)dgldr
(31) 0 T 0
t t T
_ 1 b (&) 1
=-20 [ £ (1) exp{ J—-—a(g)di + 2 J a(g)dgldar
0 T 0

it is easily established that v satisfies the initial value problem

dzv

edY - a4 (b(t) - a'(B)Iv = —ed(t)v(tie)
2 dt
dt
t
(32) + ¥ (t) exp{é-J a(t)ar}
0
- ey = -£(0)
v(0;e) =0, vt(O,e) 2(0)
where
__4a b-a'' = b-a'?2
@——dt ( 2 ) ( 2 )
(33) q £ b
- — al_
2 "acat O
So putting
(34) U(t;e) = v(t;e) + z(t;e)
we obtain from (30) and (32)
d2 dz
e—g— a(t)gr + {b(t) - a'(t)}z = F(tse), 0<t<ow
(35) dt
z(0;e) = zt(O;E) =0
with
t
F(t;e) = ed(t)v(t;e) + eW(t)exp{%- a(t)dr}
(36) %
- _ = (2b-a’ S b _b_
Yy = Yl Wz = ( a2 )£ + (dt 2 a2)w.

We shall show that z(t;e) is relatively small with respect to v(t;e), or

more precisely
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z(t;€)

(37) v(tie)

= O(s%), e+ 0
uniformly in each interval 0 < § < t £ T, where § is an arbitrarily small

positive constant independent of e.

Let us assume for the moment that £(0) = £ # O (without loss of generality
we may assume the constant £ to be positive). From the differentiability
of £ it follows that there exists an interval [O,to] such that

(38) -;-zsm:) <32  forostst

0"

N|w

Using this inequality we obtain from (31) the following estimates for v(t;e)

which are valid for sufficiently small values of €:

0 < v(t;e) < Ae for 0 <t =T
(39)
v(t;e) 2 Be for 0 < § <t <T.

Here A and B are positive constants independent of €, and § is some arbi-
trarily small positive constant independent of €. Furthermore it is easily
established that the function F defined’by (36), (29) and (33) satisfies
aot

IF(tie) | < c(Melvitie) + [£(tie) lexp-—)
40
(40) t agt

+ J |£(tie) lat exp(-——)}
0

valid for 0 < t < T, where C(T) is some generic constant depending on T but
not on €, and a, = mln[O,T] latt)|.
From this inequality we obtain with the aid of (38) and (39) an estimate

for the L2-norm of F, namely

_ 3/2
"F“[O,T] = 0(e ), e+ 0

so it follows from theorem 1 that the solution z of (35) satisfies

(41) z(t;e) 3/2

0(e ), e+ 0

IA
=]

uniformly in 0 £ t
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Finally we obtain from (39) and (41)

z(tje) _ 3
;TE?ET-— 0(e*), e+ 0

uniformly valid for 0 < § < t < T.

Let us now consider the case where £(0) = O.

We assume that there exists an interval (O,tOJ with the property that
f(t) # 0 for 0 < t < tO (without loss of generality we may assume f(t) to
be positive for 0 < t < to). In addition it will be assumed that there

exist positive constants Cl' 02 and a such that

(42) cit“ < f(t) < Czta for 0 < t St

(note that necessarily o 2 1 because of the differentiability of f at t = 0).
Using (42) we obtain from (31) the following estimates for v(t;e) which are
valid for sufficiently small values of €:

0 < v(t;e) < Aea+1 for 0 £ t

IA
H

(43)

v(t;e) 2 B€a+1 for 0 < §

A
o+
IA
s

Here A and B are positive constants independent of €, and 6 is some arbi-
trarily small positive constant independent of €. We also obtain from (40),

(42) and (43) the estimate

a+3/2
IFll = 0(e / ) e+ 0
fo,T1] !
so theorem 1 yields
(44) z(tie) = 0(23/2), €+ 0

uniformly valid in 0 < t < T.

Finally it follows from (43) and (44) that

z(t;e)

1
= 2
vtie) 0(e*®), e+ 0
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uniformly valid for 0 < § < t < T.
Using the formulae (28), (31), (34) and (37) we obtain

t
u(t;e) = w(t) + {1 + O(s*)}v(t;e)expﬂvé J a(t)dr]
(45) 0
% t t t
- wie - LroEh) b(E) 4 _ 1
w(t) = (0) J £(1) exp{ Ja(g) ag - < J a(g)dgldr
0 T T
uniformly valid in every bounded interval 0 < § £ t < T.

REMARK. One easily verifies that the solution w(t) of the reduced problem
(27) provides a formal approximation for u(t;e) in case £(0) = 0. However,
it follows from formula (45) that w(t) does not approximate u(t;e) for small
values of € since the difference u-w increases exponentially as € tends to
zero. Hence we conclude that a formal approximation for the solution u of
problem (25) with a negative coefficient a(t) is not necessarily a good

approximation.
Finally we obtain from (45)

THEOREM 3. Let u(t;e) be the solution of the initial value problem (25)
under the conditions (26) and let the function f(t) satisfy

(46) clt“ < f(t) < czt“

in some interval 0 < t < to, where the constants C1 and C2 are elther both

positive or both negative and the constant o is nonnegative. Then we have

) t t t
Ly - _ 1+0¢(e*) : b(g) .. _ 1
(47) u(t;e) BTN J £(1)exp{ J a(g)dg . f a(g)dglat, € + O
0 T T

uniformly valid in every bounded interval O < § < t < T, where § is an

arbitrarily small positive constant independent of €.

COROLLARY. It follows from (39), (43) and (45) that the solution u(t;e) of
(25) under the conditions (26) and (46) satisfies

t t
Klea+1 expfvé [ a(t)dt} < u(t;e) < K2€a+1 exp{-é-f a(t)ar}
0 0 '
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valid for 0 < § < t < T and € sufficiently small. Here K1 and K2 are e-inde-

pendent constants which are either both positive or both negative.

REMARK. Using a result of SMITH [45, p.245] (see also formula (49)) it is

possible to replace the term 0(6*) in the right-hand side of (47) by O(e).
4. Discussion

The a priori estimates for u and g% that were established in theorem 1
are, under the conditions stated, the sharpest possible in the sense that

the e-dependent factors in front of the quantities Il £l |C1(€)| and

[o,rl’
ICZ(E)[ are the smallest possible. This can easily be checked by consider-
ing appropriate initial value problems. As an example we shall prove that

the factor € ? in the right-hand side of (10b) is optimal.

Let u be the solution of the initial value problem

2
edu du_ s, 0<t<m
dtz dt
(48)
u(0;e) = ut(O;E) =0 .
with
t
f(t;e) = exP(—-E—).

It is easily verified that this solution satisfies

du -t et
dt(t,E) e exp ( €)

so it follows from the relations

- 3
"f"[O,T] = 0(e?), e+ 0
sup lg—%(t:e)l = 0(1), e+ 0
[o,T]
3

that the factor € 2 in the right-hand side of (10b) is the smallest possible.

In a similar way the other factors in (10a) and (10b) can be shown to be

optimal.
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Alternative methods for obtaining a priori estimates have been given
by O'MALLEY [37] and SMITH [45]: an estimate for the solution u of (1) (with
a positive coefficient a(t;e)) is derived by integrating the differential
equation twice and then either solving the resulting Volterra equation by
successive approximations (O'MALLEY) or applying GRONWALL's lemma (SMITH).
The latter method yields the estimate

(49) sup | u(t;e) | < c(r){lzl + |C1(e)| + e]C2(€)[}

(0,77 1,00,T]
where
) T
"f"1,[o,T] = J [£(t;e) lar.
0

This estimate may for certain problems (e.g. problem (48)) be sharper than

(10a).

Estimates which are valid in the infinite interval 0 £ t < « have been de-
rived by WEINSTEIN & SMITH [54] for an equation of the type (1) and by
HOPPENSTEADT [24] for a nonlinear system of first order equations.

-~

The estimates obtained in section 1 for solutions of linear differen-
tial equations will turn out to play an important role in the investiga-
tions of nonlinear initial value problems. We shall deal with these pro-
blems in chapter II.

The energy integral method underlying the proof of theorem 1 can be general-
ized to yield a priori estimates for solutions of singularly perturbed ini-
tial value problems for hyperbolic differential equations and asymptotic
expansions for these solutions can be obtained by a generalization of the
expansion technique developed in section 2. This subject will be discussed

in chapter III.



CHAPTER II

INITIAL VALUE PROBLEMS FOR NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we shall extend the linear theory developed in chapter
I to nonlinear initial value problems. In particular we shall investigate
the quasilinear problem
d2u

dt2

cdu, a(t,u;e)g% + b(t,uje) = £(t;€), 0<t<w
(1)

u(0;e) = ut(O;e) =0

where € is a small positive parameter, i.e. 0 < g << 1.

Under appropriate conditions on the data we shall establish in section 1
the existence of a solution for problem (1), together with an a priori
estimate for this solution.

In section 2 we shall construct a formal approximation U for the solution
u of (1). The correctness of this approximation will then be verified with

the aid of the results of section 1.

1. Existence and a priori estimates

We shall start this section with the formulation of a theorem on non-
linear operators defined in some normed linear space. This theorem is a
modified version of a theorem by VAN HARTEN [23, p.190] and its proof is

based on a contraction mapping principle for operators in a Banach space.

Let us define the following spaces:

R: a normed linear space with norm Il -l

B: a Banach space with norm |- |
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‘Let 5 be a certain positive number and let Q(E) c R denote the ball with

radius 5, that is

Q) = {w e r| lal < p}.

We consider a nonlinear operator F from Q(E) into B satisfying
(2) Flgl =19

where @ denotes the zero element in R or B.
It is assumed that F can be split up into a linear part L and a nonlinear

part ¥Y:

(3) Flul] = LLul + ¥Y[ul.

The linear operator L can be extended to a map from R into B and this exten-
sion will also be denoted by L. In addition we assume that the following

conditions for the operators L and ¥ are satisfied:

Condition a. L: R + B is bijective and the inverse operator L_lz B + R is

continuous, that is
-1 -1
Il "[vil < £ " |v| for all v € B

where £ is some positive constant.

Condition b. V¥: 9(5) -+ B satisfies the Lipschitz condition
- < -
I¥lw,1 - ¥lw,]] < m@e)lo, - ol

valid for all ;,@, € Q(p) and all p € [0,5].
Here m(p) is supposed to be continuous for p € [0,p0] and monotonically de-

creasing for decreasing p with

lim m(p) = O.
pY0

Our problem is to determine an element u € Q(E) which satisfies
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(4) F[ul = £

for a given f € B.

Putting u = L-l[v] we obtain the following equivalence:
Flul=f, ue Qp), fe BeTlvl=v, velLlQpI £eB
where the nonlinear operator T: L[Q(p)] + B is given by
-1
Tlv] = £ - YeoL [vl.

After these preparations we can formulate
THEOREM 1. Suppose that the nonlinear operator F: Q(p) -~ B with Q(p) a
closed ball with radius p in a normed linear space R (norm l-l) and B a
Banach space (norm |+|) satisfies the conditions (2) and (3) and the condi-
tions a and b.
Let pO be defined as the largest number P € [OIE] for which
1
< = -
m(po) < 2-@.
Then problem (4) has for sufficiently small f € B, viz.
1
< -
£l < 5 Loy,
a solution u in the ball Q(po) and this solution satisfies the estimate
-1
(5) Tl < 22 " |£].
PROOF. Since problem (4) is equivalent to
T[vl=v, velLlQpPI £feB
it can be considered as a search for a fixed point of an operator T from

L[Q(E)] c B into B. The existence of such a fixed point can easily be esta-

blished. Following VAN HARTEN [23, p.191] we show that for 22_1lf| Sp <o,
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(i) T is defined in the ball B(Lp) = {v € B| |v| < £p},
(ii) T is a strict contraction on B(Lp),

(iii) T[B(Lp)] < B(Lp).

Ad (i): for any v € B(£p) we have
-1 -1 -1 -
v==LeL [v]l] and Irn [vll <& 7|v] <p < Pp =P
so it follows that B(£p) < L[Q(p)]. Since T is defined in L[R(p)]
it is also defined in B(£p).

Ad (ii): for ViV, € B(£p) we have

ITlv, - Tlv,]| < |‘1’°L_1[v1] - ¥or ' v,]l

IA

m(p)“L—l[vlj - L_l[vzflll

IA

ﬂ_lm(p)lv1 - vl

IA

1—|v -v
2
Ad (iii): for v € B(£p) we have

ITCvl] < |£] + |¥ o ‘vl

IA

IA

%Zp + m(p)"L_l[v]ll

IA

1
5-29 + m(p)p

IA

Lo.

It is well known that a strictly contractive map T from a sphere (in a
Banach space) into itself has exactly one fixed point in that sphere. This
leads to the unique existence of a solution v € B(£p). Due to the equiva-
lence there exists also a solution u € Q(p) of problem (4); actually we

have

ol = 127l < 274 v < p.
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Note that uniqueness of u has not been established in the whole ball Q(p),
but only in L_1[B(£p)] < Q(p).

Finally, choosing p = po we obtain the largest domain for which uniqueness
can be guaranteed; choosing p = 21-1If| we find the estimate (5), which

concludes the proof of theorem 1.

The proof given above is, apart from the definition of the operator T, ident-
ical to the proof of a similar theorem by VAN HARTEN [23, p.191]. The dif-
ference between VAN HARTEN's theorem and ours is formed by the definition

of the operator F: in our case F maps a ball belonging to a normed linear
space into a Banach space, whereas VAN HARTEN considers an operator F which
maps a (linear subspace of a) Banach space into a normed linear space.

Our formulation has the advantage that the theory is applicable to more
general operators F, since F is allowed to be defined only in a ball instead
of in a linear subspace. This fact will enable us for instance to consider
quasilinear differential operators F with coefficients having singularities
when regarded as functions of u.

Another advantage is lying in the fact that F is defined in a subset of a
normed linear space instead of in a subset of a Banach space. This will be-
come clear when we apply theorem 1 to hyperbolic differential equations con-

taining a quasilinear first order part (see chapter IV, section 1).

After these preliminaries we turn our attention to the initial value

problem (1). We impose the following conditions on the data:

(there exists a positive constant T, such that for each positive con-

1

stant T satisfying T < T, there exists a positive constant e, (depend-

1 1

ing on T) such that

(1) a(t,0;e) € Cl[O,T], bu(t,O;e) € COEO,T], f(t;e) € CO[O,T]
(6)

§ valid for every value of € satisfying 0 < € < g

(ii) the function a(t,0;e) and its first derivative %%(t,o;e) as well
as the function bu(t,O;e) are uniformly bounded in 0 < t < T for

<
0 <e < 61
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(iii) a(t,0;e) =2 ao >0

(6)
valid for all te[0,T] and all € ¢ (0,61], where a0 is some

constant depending on T and €, but independent of €

L 1

—

there exists a positive constant T2 such that for each positive con-
stant T satisfying T < T2 there exist a positive constant U0 and a

positive constant €, (depending on T and Uo) such that

2

(i) a(t,u;e) € COEO,T], b(t,u;e) € Co[O,T]

valid for all u € [—UO,Uo] and all € € (0,82]

(ii) the derivative au(t,u;e) exists and is uniformly bounded in

(7) <i [0,T] x [-Uy,U ] for O < € < ¢,

(iii) the derivative bu(t,u;e) exists in [0,T] x [-UO,UO] for 0<e<e

and satisfies a Lipschitz condition with exponent a > 0, viz.

b, (t,uie) = b (£,05€) | < c(T,Uy,¢e,) lul®
valid for all (t,u) € [0,T] x [-Uo,Uo] and all € € (0,52]. Here

C(T,Uo,az) is some positive constant depending on T, UO and €2

but independent of t, u or e.

It follows from the conditions (6,i) and (7,i) that we may assume without

loss of generality that
(8) b(t,0;e) =0 for 0 £t <wand 0 < e << 1,

The existence of a solution for problem (1) can now be established by ap-
plying theorem 1. In terms of this theorem we introduce for any positive
T with T < TO = min(Tl,Tz) and for any fixed value of € with

0<ege<eg, = min(ei,ez) the Banach space

0
0-
B={u|uecio,rl}

with norm
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luly = sup lul
fo,rl
and the normed linear space

9) R={u|uce c®ro,1], u(0) = u (0) = 0}

with norm

(10) Iu[:e> = sup |u| + e% sup lutl.
fo,T] Lo,r]
Choosing o = U0 we define the operator F: Q(S) + B by
d2u du
Fl[ul = e——§-+ a(t,u;e)aE-+ b(t,u;e)
dt

which according to (8) satisfies the relation (2). For the operator L: R > B
we take the linearization of F in the origin, thus
d2u du
Llul =e—+ a(t,0;e)g + b, (£,05€)u.

dt2

Then the operator ¥: Q(p) » B is given.by
du
¥[ul = Flul - Llul = {a(t,u;e) - a(t,O;e)}EE
+ b(t,u;e) - bu(t,O;e)u.

Using the conditions (6) we obtain from theorem 1 in chapter I (and from

the first remark following that theorem)

(g)

IL—l[v]l1

<
< M(T)]vl0
valid for all € € (O,EO] and all v € B, where M(T) is some positive constant

depending on T but independent of €, and €, is some generic constant. So in

0
terms of theorem 1 we have

1
Z_M(T) :

It can easily be verified that the operator Y satisfies a Lipschitz condi-

tion. Using the conditions (7) we obtain for every p ¢ [0,p] and every
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v,w € R with Ivlis) <p, leie) < p the following relation
¥lv] - ¥Lwl = {a(t,vie) - a(t,0;e) H(v -w,)
+w {a(t,vie) - alt,wie)}
+ b(t,v;e) - b(t,w;e) - bu(t,O;e)(v—w)

= vau(t,e v;e)(vt—wt) + wtau(t,w + ez(v—w);e)(v—w)

1
+ {bu(t,w + 05(v-w)je) - bu(t,O;e:)}(v-w)

with 0 < ei <1 (i=1,2,3). Hence it follows that

¢ io,oa) sup |v - w|}
[o,T] [o,T]

4

|¥[v] - W[w]lo < c(T){p sup Ivt - w, | + max(e

(e)
1

IA

- o
C(T)max(e *p,p ) |v - w]|

valid for 0 < € £ €_.. Here C(T) is a positive constant which depends (apart

0
from Uo and eo) on T but not on €.

So still using the terminology of theorem 1 we conclude that
- -4 o
m(p) = C(T)max(e *p,p ).

N.B. The following simplifications are easily established:
if a does not depend on u then m(p) = C(T)pa,

if b is linear in u then m(p) = C(T)e 2p.
. 1 .
Solving m(po) = Enﬁ we obtain
by = N(mE"

with

0 if a does not depend on u

(11) A=

otherwise

N



28

and N(T) some positive constant depending on T but independent of €. .
Finally, applying theorem 1 we obtain

THEOREM 2. Let the functions a(t,u;e), b(t,u;e) and f£(t;e) satisfy the con-
ditions (6), (7) and (8), and let T be some positive constant satisfying

T<T_ = min(Tl,Tz). Then there exist positive constants € M(T) and N(T)

0 0’

(depending on T but independent of e€) such that for 0 < t < T < T0 and

0 <eg< problem (1) has a solution u € R, provided that f is sufficiently

€0
small, viz.

N(T) A .
2M(T) -

sup |£f]| <
[o,r]
Here the normed linear space R is given by (9) and (10), and the nonnegative
constant )\ is given by (11).
The solution u satisfies the estimate

|§5) < 2M(T) sup |£].

[o,T]

lu

REMARKS . °
1. Note that the coefficients a(t,u;e) and b(t,u;e) are allowed to have
singularities in u. For instance, if
1

a(t,u;e) = =

0 mentioned in (7) such that U0 < 1.

With this choice the conditions (6) and (7) for a(t,u;e) are fulfilled,

we choose the positive constant U

as one easily verifies.
2. A similar theorem can be formulated for more general nonlinear initial

value problems of the type

2
ei—lzl+ F(t,d;e) = £(t;e), 0<t<m
dt

u(0;e) = ut(O;a) =0

>
(where u denotes the vector (u,ut)) provided that suitable conditions

are imposed on the nonlinear function F, namely



29

(1) F(t,0:¢) = 0 for 0<t<w and O0<eg << 1,

(ii) in order that theorem 1 of chapter I is applicable to the lineari-
zed problem one must require that (6) holds, with a(t,0;e) and
-
bu(t,O;e) replaced by Fut(t,g;e) respectively Fu(t,O;e),

(iii) in order that the nonlinear part ¥ given by

¥lul = F(t,%e) - F_ (£,8:0022 - F_(¢,8;e)u
ut dt u

satisfies a Lipschitz condition it is sufficient to require that

there exist positive constants T, UO and eo such that the functions

F, F_, F and F are continuous and uniformly bounded in
uu uug Ugute
0st=<T, |ul < Uy, IutI SU, for 0 < e <S¢

0 0°

2. Asymptotic expansions

As an application of the a priori estimates obtained in the foregoing
section we shall construct an asymptotic expansion into powers of € for the

solution u of the quasilinear initial value problem

-

(g) d2u du
L' 7 '[ul = e= + a(t,u)a€‘+ b(t,u) = 0, 0<t<w
(12) dt
u(0;e) = Cl' ut(O;e) = C2.

For simplicity it will be assumed that all data are C?-functions, that is

© 4 0 4
(13) a(tu) e ¢ (R x R), b(t,u) e C (R x R) .
In addition we assume that
(14) a(t,u) >0 for 0 £ t < ® and -» < u < ©,

However, we emphasize that the conditions (13) and (14) are not necessary
and can be weakened considerably (see the remarks following theorem 3 of

this section).

According to a standard procedure in singular perturbation theory a formal

approximation u for the solution u of problem (12) can be constructed by
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putting

~ 2
(15) u(t;e) = wo(t) + evo(r) + ewl(t) + € vl(T)

k k
mined. For the moment we shall assume that these functions have the follow-

where T = E and w, and v, (k = 0,1) are functions which have to be deter-

ing properties

P

there exists a positive number T
k =0,1

0 (possibly TO = =) such that for

w (£) € cro,r]

valid for every positive T satisfying T < TO;

(16)< vk(T) € Cm(ﬂf3 for k = 0,1;

for any n € IN U{0} and any polynomial P(T) the expression
n

dv,
P(T)

(k = 0,1) -
dat

L?S uniformly bounded in 0 € T < =,

We shall verify the validity of these properties later on, when the functions

wk and v have been determined explicitly.

Let T be some positive number satisfying T < T,. Expanding the coefficient

0
a(t,d) we obtain using (15) and (16)

~ 2
a(t,u) = a(t,w0 + eV, + ew, + € Vl)

- da 2
= a(t,wo) + e(vO + wl)sait,wo) + 0(e™)

uniformly valid in 0 £ t £ T < T .

Using

at - at T ar at at
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we get

dN dwo dv
a(t,u)d = a(t wo) at + a(t, wo) o

dw1 dv
+ efa(t, wo) e T a(t,wo)—d?}

dw0 dv 0

+s(w1+vo)(—a-£—+ I 3 (tw)

+ 0(e?)

uniformly valid in 0 £ £t £ T < TO.
So putting t = €T -and expanding into powers of € we arrive at

~ dw dv
~. du 0 0
a(t,u)d = a(t wo) a a(O,wO(O)) 3

dw dvo
+ e[{ (o wy(0)) + (o Wy (0)) 3 (0)}r——

dw1 dv1
+ al(t, wo) %t a(O,wO(O))—d——

o 2a o
(t w )w1 T t E(O'WO(O))wl(O)T
dw dvo
(O LA (0)) (0)v (0 w (0))v0 drj
+ 0(52)
uniformly valid in 0 < £t £ T < TO'
dw dw

0

T wl' d_t is t and the

N.B. Unless othezwised‘s;tated tge argument of w
v

0 .
—— is T.

argument . of VO' ar vl, ar

A similar expansion of the other terms in L(E)[G] leads to the following

expansion of the operator:



32

dw dzv dvo

(€) p~q _ _0 0 _0
L [ul = a(t,wo) 3t + b(t,wo) + ———de + a(O,wO(O)) o

<:'lw1 -
(17) + e[a(t,wo)—dt— + b(t,wo)w1 + 4’1(t)]
(El2v1 dv1 P
+ a(O,wo(O))-ET— + ‘1’1(1)] + 0(e”)

d’l‘2

+ e[

uniformly valid in 0 £t < T < TO' where

e dw

z _da 0,3
blt,wy) = ggltmg)ge + 3g(tavp)
d2w0
<I>1(t) = >
dt
dw
_(da 0. 4 B
‘l’l(T) = {au(O,WO(O)) ETy (0) + Bu(O,WO(O))}VO
(18) <
dw
da da 0
+ [{E(O'WO(O)) + E(O'WO(O))—&?(O)}T
dv
da 0
+ 2q 0wy (0))w, (0) 15—
Jda v, )
+ E(O'WOM))VOET_ .
-
Now we take for wo the solution of the nonlinear initial value problem
dwo
a(t'wO)_cTt_:_ + b(t,wo) =0, t >0
(19)
wO(O) = Cl'

o+
Note that this solution does not necessarily belong to the class C (IR ) but
may have singularities for finite values of t. As an example consider the

case where

- 2
a(tlwo) = 11 b(tlwo) = "‘WOI C1 = 1.
The solution is given by wo = ﬁ and has a singularity at t = 1.

We shall denote by TO the smallest value of t for which the solution wO of

(19) becomes singular (T0 = oo if vy has no singularities). Then we have
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wo € Cm[O,T] for each positive T with T < TO.

The functions Vor Wy and v, can now be obtained by solving the following

set of initial value problems
~

d2v0 dv,
— + al0,w,(0))z= =0, 0<T<o
dt
dv daw
0, _ 0
(20) j 3t (0) = -3 (0)

lim VO(T) =0

-
s dw

a(t,w.)— + b(t,wo)w1 = —¢1(t), 0O<tx<rT

0" dt 0

(21) <
Lw1(0) = -v,(0)

—~

sz1 dvl
dtz + a(olwo(o))TEF-= —Wl(r), 0<T<®
dvl dw1

(22) ﬂ—d?'(o) = _—dT(O)

lim Vl(T) = 0.
T

- .

Note that only the first term wO of the expansion of U follows from the sol-
ution of a nonlinear initial value problem; the remaining functions Vor W

1
and v1 satisfy linear equations which can easily be solved.

It is not difficult to verify that the conditions (16) are satisfied. In

particular, the functions V0 and v1 have the form

dwo
75;40) -C
VO(T) = j;a;;ﬁ;aﬂj— exp[—a(O,wo(O))T]

vl(r) Pl(T)exp[—a(O,wO(O))T] + P2(T)exp[-2a(0,wo(0))T]
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with Pk(T) (k = 1,2) polynomials in T. So we see that Yo and v, are typical

boundary layer functions.

Finally, we obtain from (15), (17), (19), (20), (21) and (22) the result

—

L(E)[§]=R(t;s), 0<t<T < T

S B(0se) = ¢, + e2v1(0)

where R(t;e) is some function satisfying

R(t;e) 0(52), e+ 0

uniformly in 0 < £t < T < TO'
Hence the function G(t;e) defined by (15), (18), (19), (20), (21) and (22)
provides a formal approximation (up to order 82) for the solution u of pro-

blem (12).

-

Higher order approximations can be obtained by considering

~ T ok T k+t
(23) u(t;e) = Z € wk(t) + Z € vk(r), neXN, nz22.

k=0 k=0

In that case it can be shown that w_and v, (k = 0,1) are given by (18),

k k
(19), (20), (21) and (22), whereas Wy and vk (k 2 2) follow from the linear
problems
dwk ~
a(t,wo)ii;-+ b(t,wo)wk = —¢k(t), 0<t< TO
(24)
wk(O) = _Vk-l(o)
respectively
~
d2vk dvk
5 + a(O,wO(O))—dF= —‘l’k('r), 0 <T<
dt
(25) <av aw,
k k
at (0) =~ 3t (0)
L%&g vk(T) =0,
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the functions ¢k and Wk (k € IN, k 2 2) being completely determined by the

ALTARRTA
VgrVyreee iV _y-
The functions vk(T) (k € IN u{0}) are boundary layer functions of the type

functions w respectively the functions wo,wl,...,wk and

k+1 (k)
(26) v (0 = 1 P (n)expl-3a(0,uw,(0))1]
=1
. (k) . .
with Pj (1) a polynomial in T.

It follows that

AL(E)[EJ = R(t;e), 6’ <t <T<T
(27) : u0ie) = ¢, + sn+1vn(0)

u, (05e) = c,
with

R(tie) = 0(e™Th), €+ 0.

uniformly valid in 0 £ t £ T < To.

Next we shall prove that a formal approximation G is indeed a good approxi-

mation for the solution u of (12). To this end we put
(28) z(t;e) = u(t;e) - Ult;e).
Then we obtain from (12) and (27)

eé~§-+ a(t,z+ﬁ)g§-+ F(t,z;e) = -R(tje), 0 <t<T<T

dt 0

z(0;¢) = ™1y (0)
n
2, (0;€) = 0

where

F(t,zie) = {a(t,z+d) - a(t,ﬁ)}§%-+ b(t,z+3) - b(t,Y).
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Defining a function ;(t;e) by

(29) Z(tie) = z(tie) + en+1vn(0)
we obtain

% %~ dn %~ *

e +a (t,z;e)gg+ b (t,z;e) = -R (t;e), 0<t<Tc< T,
(30) dt

where

a*(t,z;e) = a(t,Z+§—e“+1vn(0))
* 0~ _ ~ ~ n+l ~ n+l au
b (t,z;e) = {a(t,z+u-¢€ vn(O)) a(t,u-€ vn(O))}dt
J + b(e,245-e"y_(0)) - b(t,G—En+1vn(0))

R*(t;e) = R(t;e) + {a(t,E—en+1

-~

~ . du
vn(O)) - a(t,u)}ag

~ n+l ~
+ b(t,u-¢ vn(O)) - b(t,u).

—

* * *
It is easily established that the functions a , b and R satisfy the condi-
tions (6), (7) and (8) of theorem 2 (with Lipschitz exponent o = 1) and that

R*(£;e) = 0(e™Fh), €40

uniformly valid in 0 £ t £ T < TO.

So according to theorem 2 there exists for sufficiently small values of € a
solution z of (30) which satisfies

(31) 1211 < cme™t.

Here C(T) is some positive constant depending on T but independent of €.
Using (23), (28) and (29) we obtain from the estimate (31) the following

theorem, which is a nonlinear generalization of theorem 2 of chapter I:
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THEOREM 3. Let the functions a(t,u) and b(t,u) satisfy the conditions (13)

and (14), and let w. be the solution of the nonlinear initial value problem

0
(19). Let T, denote the smallest value of t for which w, becomes singular

0 0
(TO = o if vy has no singularities).
Then there exists for 0 £ t < T < T0 and for sufficiently small values of €
a solution u of problem (12). This solution and its derivative satisfy for

any n € IN u {0} the relations

n n-1
u(tie) = ) ekwk(t) + ) €k+1vk(1) + 0(€n+1), ev0
k=0 k=0
(32)
n dw. n dv.
e = ] 2w+ [ F Ewo v o™, €40
k=0 k=0

uniformly in every bounded interval O < t £ T < TO; the functions W and Vi
(k = 0,1,...,n) follow successively from (19), (20), (21), (22), (24) and
(25) where 1 is defined by T = Eu
In case n = 0 empty sums are to be interpreted as zero.

COROLLARY 1. It follows from (32) that first approximations (n=0) for the
solution u of (12) and its derivative are given by

-~

u(t;e) = wo(t) + 0(e), e+ 0
dw dw
du -_9 __0 - t
a;(t,e) = dt(t) + {C2 dt(0)}exp[ a(O,wO(O))E] + 0(e), €+0

uniformly valid in every bounded interval 0 < t < T < TO’ where LA is the

solution of the reduced problem (19).

COROLLARY 2. It follows from (32) and (26) that for any n € N u {0}

T ok n+1
u(t;e) = Z ew (t) + 0(e 7)), e+ 0
k
k=0
n dw.
du _ k 'k n+l
F(tie) = E € S(t) +0(e ), €+ 0

uniformly valid in every bounded interval 0 < § £ £t £ T < TO, where § is an

arbitrarily small positive constant independent of €.
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REMARK 1. The statements of theorem 3 remain valid if the conditions (13)

and (14) are replaced by the less stringent requirements

alt,u) e c°°([o,T1] x I), b(t,u) € c°°([o,T1] x I)
(33)
a(t,u) >0 for 0 <t < T1 and uel

where T1 is some positive constant with T1 < T0 and I is some open subset

of R containing the range RWO of Wyt

I>R ={yemR | 3 y = w, (t)}.
\ 0
0 te[O,T1]

In that case the relations (32) are uniformly valid in every bounded inter-
valOStSTwithTSTl.

The conditions (33) have the advantage that they allow the functions
a(t,u) and b(t,u) to have singularities in u, provided that these singular-
ities do not belong to RWO' As an illustration we consider the nonlinear

initial value problem

e-d—%+%§—z—+u=0, O<t<w
dt
u(0;e) = C1 > 0, ut(O;e) = Cz.

It is easily established that

C1
= — <
wo(t) T+ Clt for 0 <t < »
and also that
C:1
_— < <
1 +C,T _WO(t)_cl

171

valid for 0 < t < Tl’ where T, is an arbitrarily large positive constant.

1
Hence it follows that the conditions (33) can be fulfilled by choosing
¢
I={u€]RI~2—(1—+C—1-T—1—)-<u<C1+1},

and we obtain
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C

1
u(t;e) = T+vct + 0(e), e+ 0
1

uniformly valid in every bounded interval O < t < T.

REMARK 2. The condition of infinite smoothness of the data can be weakened.
In that case the expansions (32) are valid for all n € IN U{0} with n < n,

the bound ng being determined by the differentiability of the data.

REMARK 3. Since the solution u of an initial value problem which is governed

by a differential equation of the type

du
a—g = F(t,u)

(with u and F vector-valued functions) is uniquely determined if F is con-
tinuous with respect to t and locally lipschitzian with respect to u
(PICARD—LINDEL&F theorem), we may conclude that the solution u of which the
existence has been established in theorem 3 is unique. A similar remark can

be made for the solution u mentioned in theorem 2.



CHAPTER III

INITIAL VALUE PROBLEMS FOR LINEAR
HYPERBOLIC DIFFERENTIAL EQUATIONS

In this chapter we shall investigate the initial value problem (singu-

lar perturbation problem)

eLz[u] + Lis)[u] = f(x,t;e), (x,t) € D
(1) u(x,0;e) = g(x;e), -® < x < ®
ut(XIO;e) = h(x;e), -® < ¥ < ®

where € is a small positive parameter, i.e. 0 < € << 1, the region D is the

upper half-plane

-

D = {(x,t) |-ou <x <o, 0<t < »}

and the differential operators L, and L(e)

P 1 are defined by

Bzu Bzu Bzu
(2) L2[u] ==+ {cl(x,t) + c2(x,t)}5;sz-+ cl(x,t)cz(x,t)——i
ot 9x
respectively
(3) L(e)[u] = a(x,t;s)EE + b(x,t;e)22-+ d(x,t;e)u.
1 ot X

The functions a, b, d, £, g and h depend on the variables x and/or t and
on the parameter €; the functions <y and c, satisfy

cl(x,t) < c2(x,t) in 5,

which implies that L, is a hyperbolic operator.

2
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Furthermore it will be assumed that the coefficient a(x,t;e) is strictly

positive, i.e.

a(x,t;e) 2 a0 >0 in Q

valid for each compact subset Q < D provided that € is sufficiently small,

say 0 < g £ ¢ Here a, is some positive constant depending on £ and on €

0° 0
but independent of €.

0

Compared to singular perturbations of elliptic type there exists relatively
few literature on singular perturbations of hyperbolic type. BLONDEL [3],
[4], pzavapov [7], DE JAGER [26], SMITH [44j and SMITH & PALMER [46] studied
singularly perturbed initial value problems for linear hyperbolic differen-
tial equations, whereas singularly perturbed initial-boundary value problems
were investigated by DZAVADOV [8] and GENET & PUPION [18] (linear problems)
and by GENET & MADAUNE [17] and MADAUNE [30] (nonlinear problems). Singular
perturbations of hyperbolic type are also discussed in the books by COLE

[6, pp.129-140], ROSEAU [41, chapter 6] and WHITHAM [55, chapters 3 and 10].
The energy integral method that will be applied in this chapter to linear
initial value problems of the type (1) is an extension of a similar method
developed by DE JAGER [26] and differs b;sically from the methods used in
[31, C41, [7]1, [44] and [46]. A brief discussion of these papers together

with a comparison of the results will be given in section 4.

Section 1 of this chapter will be devoted to some preliminaries. In
section 2 we shall derive a priori estimates for the solution u of (1) and
in section 3 we shall construct an asymptotic expansion into powers of €

for this solution.
1. Preliminaries

We bring into mind that the characteristics of the operator L2 defined

by (2) follow from the equations

dx

- ax _
T cl(x,t) and = c2(x,t).

dt

We shall assume that c1 and c2 are Cl—functions. Under this condition it

is possible to draw at each point (xo,to) two vectors, tangent to the
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characteristics through (xo,to) and pointing in the direction of increasing

t (see figure 1). These vectors define the so-called characteristic direc-

tions at (xO,to).

(xorto)

Figure 1: Characteristic directions

-

The characteristics of the operator LiE) defined by (3) follow from the
equation

dx _ b(x,tie)

at  a(x,t;e)
In order not to mix up the characteristics of L2 and L;E) we shall refer to

the latter as subcharacteristics.

In the analysis of the initial value problem (1) the position of the

(g)
1

subcharacteristics of the unperturbed operator L with respect to the

characteristics of the perturbing operator L, plays an important role. Be-

2
fore entering into this subject we shall give a definition.

DEFINITION 1. Let ¢(x, t) be a C1-function satisfying ¢i + ¢i > 0. The curve
¢(x,t) = 0 has at one of its points (xo,to) a spacelike (resp. timelike
resp. characteristic) direction with respect to the characteristic directions

connected with L2 iff
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(¢t + c1¢x)(¢t + 02¢x) >0 (resp. <0 resp. =0) at (xo,to).

The curve ¢(x,t) = 0 is said to be spacelike (resp. timelike resp. character-
istic) if it has a spacelike (resp. timelike resp. characteristic) direction

at each of its points.

This definition admits the following geometrical interpretation.

c
> 1
Let the characteristic directions be described by the vectors p = \ 1\ and

> 2
q= \1 /" The direction of t(gxe tangent to the curve ¢(x,t) = 0 can be char-
-
acterized by a vector r = (~£:/. Evaluating cross products we obtain
X

(¥ x p)+ (T x E) = (¢, + cy0 ) (0 + cy0),

the dot denoting the scalar product.

Hence it follows that the curve ¢(x,t) = 0 has a spacelike (resp. timelike)
> ->

direction at (xo,to) iff the vectors p and g are lying on the same side

(resp. on different sides) of the tangent to the curve at (xo,to) (see fig-

ure 2).
t t t
/ /
| AN /
—
—_— / X
/ / N
/ 4 \
X b3 b4
Spacelike Timelike Characteristic
direction direction directions

Figure 2: Direction of a curve

With this knowledge we turn our attention to the following model prob-
lem (cf. COLE [6, p. 129])
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82u 32u 32u Ju Ju
—_— — — —_ —_—= D
ef 5+ (c1 + c2)axat +ccy 2} +age + baX 0, (x,t) €
ot 9x
(4) u(x,05€) = g(x),  —=<x<w
ut(x,O;e) =0, - < X < @

where a, b, ¢y and c, are constants with a > 0 and ¢y < ¢, and g is a c”-
function.
We shall investigate under which conditions the solution w(x,t) of the re-

duced problem

ow ow _ :
a-a-—€+bg— o, (x,t) ¢ D
w(x,0) = g(x), —© < X < @

which is given by

(5) wix,t) = g(x - gt)

provides for small values of € an approximation for the solution u(x,t;e)
of (4).
We shall distinguish between problems with spacelike subcharacteristics and

problems with timelike subcharacteristics.
1. The subcharacteristics are spacelike.

In this case, according to definition 1, the coefficients satisfy

(b - acl)(b - ac2) > 0, that is

o
o

either

A possible situation is sketched in figure 3. Note that the subcharacteri-

stic through P lies outside the characteristic triangle PRS.
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t
—— characteristics
through P
—————— subcharacteristic
through P
P
Q R ° *

Figure 3: Spacelike subcharacteristics

From the theory of hyperbolic differential equations it is known (see for
instance GARABEDIAN [16, p. 105]) that the value of the solution u(x,t;e)

at the point P depends only on the values of g(x) with x in the segment RS.
On the other hand the value of w(x,t) at the point P depends only on the
value of g at the point Q (cf. (5)). Since the value of g at Q is indepen-
dent of the values of g(x) with x in RS (in fact we assumed that g(x) be-
longs to Cw(IR), but not that g(x) is analytic in IR) we expect that general-
ly w(x,t) does not approximate u(x,t;e) for small values of €. This is con-

«

firmed by the following example.

EXAMPLE 1. Consider problem (4) with g(x) some c”-function satisfying

1]

IA

g(x) x for x < -1

]
o

for X

v
o

g(x)

-1 < g(x) <0 for -1 < x <0.

The coefficients are supposed to satisfy a > O, ¢y < c, and 0 < c, <

which implies that the subcharacteristics are spacelike.

o

It follows from the theory of hyperbolic differential equations that
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u(x,t;e) = 0 for 0 < ct £x < o,

On the other hand the solution of the reduced problem satisfies
w(x,t) = g(x - E-t) <0 for 0 < x < g-t < ®

so the function w(x,t) does not approximate u(x,t;e) in the region

0 < c2t < x < g-t < o (see figure 4).

)
A
o

Figure 4

Hence we conclude that generally in the case of spacelike subcharacteristics
the solution w(x,t) of the reduced problem turns out to be a bad approxima-
tion for the solution u(x,t;e) of (4). However, w(x,t) does not necessarily
provide a bad approximation. This is illustrated by

EXAMPLE 2. Consider problem (4) with g(x) = x and a > O, c1 < c2. No other
conditions are imposed on the coefficients.

It is easily verified that the solution of this problem is given by

b

- ._b b, _ _at
u(x,tie) = x - —t + E;E{l exp ( E)}.

Since w(x,t) is given by

oo

wix,t) = x -
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it follows that
u(x,t;e) = wix,t) + 0(e), e+ 0
uniformly valid in 5, so in this example w(x,t) approximates u(x,t;e) for
small values of €, whether the subcharacteristics are spacelike or not.
Note that if in this example the condition a > 0 is replaced by a < 0
the solution u increases exponentially for all (x,t) with t 2 § > 0 if €

tends to zero, regardless whether the subcharacteristics are timelike or

spacelike. In this case w does not approximate u for small values of €.
2. The subcharacteristics are timeiike.

In this case the coefficients satisfy (b - acl)(b - ac2) < 0, that is
(6) c, <

A typical situation is sketched in figure 5. Note that the subcharacteristic
through P lies inside the characteristic triangle PRS.

-~

t ————— characteristics through P

subcharacteristic through P

Figure 5: Timelike subcharacteristics

Using the same arguments as before (see text following figure 3) we have no
reason to suspect w(x,t) of being a bad approximation for u(x,t;e). However,

it follows from example 2 that the timelike condition (6) alone does not
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guarantee that w is a good approximation for u; it appears that we have to
impose an additional condition and by the results of example 2 we get the
suggestion to impose a > 0 as additional condition. Therefore we shall con-
fine ourselves from now on to problems with timelike subcharacteristics and
a positive coefficient a. It will be shown in the sections 2 and 3 that
these restrictions are sufficient in order that the solution w of the re-
duced problem approximates the solution u for small values of &€, not only
for problems of type (4) with constant coefficients but also for more gen-
eral problems of type (1). For a discussion of initial value problems with
timelike subcharacteristics and a negative coefficient a we refer to

BLONDEL [3], [4] (see also section 4).

We shall end this section with a physical interpretation of the

conditions

b
(7) a>o, ¢y < 2 < Cye

Introducing characteristic coordinates by

we may write the differential equation

82u 32u 32u du , . Ju
(8) e{?—+ (01 + c2)m+ clcz-z;?} +a§€+b§= 0

(with constant coefficients and c, < c2) in the form

1
2

2 3 u
9 eley = ¢y) 35s

du Ju
(b - acl)S;'— (b - ac2)sg-— 0.

. . . . . ) s
Let us consider a jump Kk in the derivative Sg-across the characteristic

)
K = k(xr) = gs(r,so+0) - EE(r,sO—O).

We shall examnine the propagation of k along s s

0
Assuming that u itself is continuous across s = S, We can evaluate
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equation (9) at s = s,+0 and s = s.,-0 and form the difference to obtain

0 0
2 3k _
e(c2 - cl) 3 (b acz)K
and hence
b - ac
K =K exp[————————il——(r -r)]
0 e a )2 o’
27 %
Here Ko = K(ro) is the jump across s = g at the point (ro,so). It follows

that a jump across a characteristic propagates to infinity along that char-
acteristic; in case b - ac2 < 0 we have for t - « exponential decay, where-
as for b - ac2 >.0 we have exponential growth.

- . . . . du c s
A similar discussion for jumps in 3 across a characteristic r = rO shows

that b - acy > 0 implies exponential decay for t -+ «, whereas b - ac, <0

leads to exponential growth.

Hence we conclude that necessary and sufficient conditions for exponential

decay are given by
b - ac, >0,
b - ac, < 0.

Together with the condition ¢y < c, these conditions are equivalent to

Thus we have shown that the conditions (7) are in fact necessary and suffi-
cient conditions for exponential decay of jumps in the first derivatives.
We may expect these conditions to be fulfilled for any problem describing

some physical system.

Another way to obtain the conditions (7) by physical arguments is the
following (see also ROSEAU [41, p. 198]). Let us look for solutions of the
equation (8) which are periodic in the space variable and exponentially de-

caying for t » «. To this end we set
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u = exp(ikx - At)
and we require that

k € IR, k>0

A e C, Re A > 0.

Substitution into the differential equation yields the following relation

between A and k

£f(A) = e(ikc, - A) (ikc2 - A) + (ikb - a}X) = 0.

1

The roots A of this equation will have a positive real part if and only if
the quantity argf(iy) decreases by 2m as y increases from -« to +». For y
running through these values the point

f(iy) = —e:(kc1 -y) (kc2 -y) + i(kb - ay)

describes a parabola in the complex plane (see figure 6).

\Im
k(b—acl)

Re
k(b—acz)

Figure 6: Position of f(iy)
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It is easily verified that we have exponential decay if and only if a > 0
(in which case the point f(iy) travels in the proper direction along the
parabola) and the origin lies inside the parabola. By calculating the points
of intersection with the imaginary axis we see that the latter condition is

equivalent to

indicating that the conditions (7) can also be considered as necessary and
sufficient conditions for the equation (8) to admit exponentially decaying

periodic solutions.

Now that we have established the physical relevancy of the conditions
(7) we are going to derive in the sections 2 and 3 a priori estimates and
asymptotic expansions for the solution of problem (1) under the conditions

(7).

2. A priori estimates

We consider the initial value problem (1) under the following condi-

tions:

1 = 1 =
cl(x,t) e C° (D), cz(x,t) e C (D)
¢ (x,t) < c,(x,t) in D

cl(x,t) resp. c2(x,t) is uniformly bounded in any strip
{(x,t) |0 s x <®, 0<t<T} resp. {(x,t) |[-» <x<0,0<¢tsT}
(10)< i.e.

|Cl(x,t)| sM  for 0Sx<o, 0<tsT

[c2(x,t)|SMl for -~w<x<0, 0<t<T

where M1 is some positive constant which may depend on T
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- -
for each compact subset © © D there exists a positive constant 81

(depending on ) such that

(i) a(x,t;e) € CI(Q), b(x,t;e) € Cl(Q)

d(x,t;e) € CO(Q), f(x,t;e) € CO(Q)

valid for every value of € satisfying 0 < € <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>