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INTRODUCTION 

Most of the charms and challenges of life seem to find their origin 

in our desires to steer the partially controllable and foreseeable 

evolution of the systems we feel concerned with. 

These systems may be thought of as being in a state which changes 

through time by adopting one of a generally large set of potential values. 

It is the uncertainty of the future evolution of the state of the world 

that tickles our phantasies, our i.ncenti ves for taking risks, and our 

desires to predict the future. 

Dynamism is the second important aspect that makes these systems 

variegated enough to fascinate our attention. Finally the (partial) 

controllability of the future creates complex optimization problems that 

keep challenging our intellectual ca.pa.cities. 

In the process of modelling these dynamic systems a major breakthrough 

was originated by the Russian mathematician Andrei Andrei.vi.ch Markov 

(1856-1922). Previously uncertainty had been treated as a sequence of 

independent trials which provides on adequate description only for simple 

situations like parlor games as roulette or black jack. 

As a major extension Markov incorporated the possibility of the 

current state of the system, to depend in a probabilistic sense upon i.ts 

previous value, It is remarkable that this Markov property fits most of the 

discrete-ti.me systems we encounter (albeit after a possible respeci.fi.cation 

of the information to be embodied into the state concept). 

What is now called the Markovian model of dependence, has incited a 

tremendous development in probability theory and the theory of stochastic 

processes with several areas (Markov chains, Markov processes) bearing 

the name of their founding father. 

Within the field of optimization theory or Operations Research it has 

inspired Richard Bellman, Ronald Howard and Lloyd Shapley in the fifties 

and early si.xtie.s to create the area of Markov Decision Theory. 

Here we generally assume that a decision maker derives rewards and 

costs out of a given system, which he can control by choosing, in 

dependence on the observed state an alternative out of a set of feasible 

opti.ons. 

His choice influences both the expectation of his current reward, and 

the evolution of the state of the.system in the future. As a consequence 

his objective is to determine a complete strategy for his entire planning 
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period, i.e. a sequence of rules to be applied in each of the decision 

epochs. The above described framework has proven to be extremely useful 

when analyzing a wide range of problems, like determining policies for the 

control of inventory and production systems, the operation of water or raw 

material resevoirs, the regulation of traffic and telecommunication systems 

as arising e.g. in computer networks; as well as the determination of opti­

mal harvesting policies. 

Quite frequently the control over a particular system is in the hands 

of several parties which tend to have conflicting interests. As Luce and 

Raiffa, in their book, "Games and Decisions", Wiley & Sons (1957) have put 

it: "In all of man's written record there has been preoccupation with con­

flict of interest; possibly only the topics of God, love and inner struggle 

have received comparable attention". And obviously, even inner struggle 

could or should be modelled as a game between several centers of the human 

mind, thereby abandoning its representation as a monolithic entity, and no 

games seem to be more fascinating than those originating from love, the 

players' interests only partially and occasionally concurring. Finally, 

even theological discussions center around the question whether and if so, 

in what way and to what extent a divine Ruler sets bour,c.aries t.o our free­

dom of controlling the world and points out strategies to act upon. 

The extension of Markov Decision Theory to the case where several 

players control the system simultaneously has led to the area of stochastic 

games. Part II (chapters 6, 7 and 8) is devoted to the latter. 

Solving these Markovian control problems genera.lly amounts to deriving 

(a system of) functional (or optimality) equations. Next, one analyzes the 

properties of the solution space of these equations, and develops algorithms 

for finding a particular solution. 

In some cases, like in finite Markov Decision Problems (cf. chapter 1) 

exact and finite algorithms can be obtained, based upon techniques like 

Policy Iteration of Linear Programming. However, for large systems, these 

exact methods become infeasible, because at each step of the algorithm, 

they tend to require the solution of a large set of equations. We therefore 

try to concentrate upon successive approximation methods which in general 

can tackle much larger problems, and in some models are the only alterna­

tive available. 

In chapter 1, we review various successive approximation methods for 

Markov Decision Problems (MDP'.s) with finite state and action spaces. We 

deal both with the d.iscounted version (where the present value of a stream 
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of rewards is the criterion to be considered) and with the undiscounted 

problem (where the long-run average return per unit time is to be optimized). 

Both the convergence conditions of these methods and their rates of conver­

gence are analyzed. In addition we dwell on the computation of upper and 

lower bounds on various quantities of interest, elimination schemes for 

non-optimal actions and data-transformations to ensure or accelerate the 

convergence of our algorithms. As a second topic we present a number of 

turnpike properties, which show the relation between the finite-horizon and 

infinite-horizon models. 

From a mathematical point of view, most. of the problems considered in 

chapter 1 cent.er around the properties of the so-called value-iteration 

operator which turns the tot.al expected reward function for a. planning 

period of n c,pochs into the corresponding function for a planning period 

of n + l epochs. Whereas this operator is a contraction mapping in the dis­

counted model, it fails to satisfy this property in the undiscounted ver­

sion. However in some cases a .reduction to a contraction 09erator can be 

achieved. In chapter 2, we derive both necessary and sufficient conditions 

for this reducibility. This "reduced contraction-property" has important 

consequences for the (geometric) convergence rate of the value-iteration 

method, which is the most minutely discussed algorithm in chapter 1. More­

over it can be exploited to obtain lower and upper bounds, variational 

characterizations for the fixed points of the optimality equations, as well 

as tests for eliminating suboptimal actions. 

Chapter 3 is devoted to the case where the parameters of the MDP-model 

can only be obtained via approximating schemes, or where it is computatio·­

nally preferable to approximate the parameters rather than employing exact 

algorithms for their computation. This situation occurs e.g. when the one­

step rewards appear as the optimal values of underlying optimization prob­

lems or when one faces the combined problem of simultaneously hav1ng to 

determine the design of a particular system, as well as a policy for its 

day-to-day operation. 

Finally a third example occurs when trying to solve nested sequences 

of (piecewise linear) functional equations, where each funct1onal equation 

has the structure of the optimality equation 1n undiscounted MDP's or 

Markov Renewal Programs (cf. section 1.9). 

Nested sequences of functional equations of the above described type, 

occur e.g. when considering next to the average return per unit time cri­

terion, a set of more selective criteria. It is the objectj_ve of chapter 4, 
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to derive a successive approximation method for solving these systems of 

functional equations. 

We next consider the case where the state space of our problem is de·· 

numerable instead of finite. HE,re optimal policies, as well as a solution 

to the average return optimality equation may fail to exist. In chapter 5, 

we present a number of recurrency conditions on the underlying laws of 

motion, under which the optimality equation has a bounded solution. Such a 

solution yields, in fact, a policy which is optimal for a strong version of 

the average return optimality criterion. Besides the existence of a bounded 

solution to this equation, we will show that both the value-iteration and 

the policy-iteration method can be used to determine such a solution. 

Chapter 6 in Part II of this book is devoted to the stochastic games­

model where a finite number (say N) players control the system simultane­

ously. Here the objective is to find an equilibrium tuple of rules, .e. an 

N-tuple of policies with the property that no player i.s able to better him­

self while the other players tie themselves down to their respective poli­

cies. The state space is again taken to be denumerable, and we consider 

both the discounted and the undiscounted version of the game. 

Finally, the last two chapters deal with the finite two-person model 

where we have a closed system, i.e. everything player 1 wins must be lost 

by player 2, and vice versa. We consider once again, the average return 

and a number of more selective equilibrium criteria. In chapter 7 we dis·· 

cuss the functional equations that arise in this model, and in chapter 8 

we obtain two successive approximation methods for solving the undiscounted 

modeL 

We assume the reader of this book to be familiar with the basic prin­

ciples of mathematical optimization, linear algebra, calculus and Markov 

Cha.in theory. Some elementary knowledge of game theory could help the under­

standing of part II. 

Concerning the numbering of formal statements, theorem 7.2.3 is the 

third theorem of sect.ion 7.2 in chapter 7. Equations, lemmas, propositions, 

corollaries and definitions are numbered in the san1e way. The symbol D sig­

nifies the end of a proof. 
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CHAPTER 1 

Value iteration in 

finite Markov Decision Problems 

1.1. INTRODUCTION 

We first describe the frequently studied model of Markov Decision 

Problems (MDPs) (cf. e.g. [5],[63]). A system is observed at equally spaced 

epochs numbered 0,1,2, .•.• At each epoch the system is observed to occupy 

one of N states, which are numbered 1 through N. Let ll = {1, ... ,N} denote 

the state space of the problem. Each state i has associated with it a finite 

non-empty decision set K(i). Whenever state i is observed, some decision 

k E K(i) must be chosen, after which a one-step expected reward q~ is earned 
l 

immediately, whereas the probability that state j is to be observed at the 

next epoch, is given by P~. (P~.;:, O; l~ 1 Pk.= 1; i, j Ell, k E K(i)). 
lJ lJ J= lJ 

This introductory chapter surveys both older and recent results on 

the asymptotic behaviour of the value-iteration scheme 

(LL1) v(n+l). 
l 

SiSN;n=0,1, ... 

with OS BS 1 and where the starting point v(O) (scrap value vector) is 

arbitrary and v(n) i denotes the maximum possible expected n-·period reward 

starting from state i (cf. DERMAN [25]). 

Parts of this chapter have been distilled from survey papers by 

FEDERGRUEN & SCHWEITZER [34] and FEDERGRUEN, SCHWEITZER & TIJMS [44]. 

Asymptotic results are of interest because they show the relation be­

tween the finite-horizon and infinite-horizon models where use of the latter 

case is justified if the planning horizon is large, although possibly not 

(exactly) kno;m. Two types of asymptotic results are presented. One type 

involves the asymptotic behaviour of the value function, i.e. 

(1) v(n) if the discount factor B satisfies OS B < 1, or 

(2) v(n) - ng* where g* is the maximal gain rate vector in the undiscounted 

case where B = 1. 
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The other type of asymptotic result concerns the behaviour of the sequence 

of the sets of optimizing policies S(n), where 

(Ll.2) S(n) K(n,i); n 1,2,3,. .. 

with N 
K(n,il {k I v(n). 

k I k 
v(n-1) j}; i = 1, ... ,N E K (i.) qi +S pij 

l 
j=l 

as well as the existence of so-called initially stationary or periodic op­

timal or E-optimal strategies (see below). 

The following notation will be employed. We let S = K(i) denote 

the finite set of policies. We use the notation f = (f(l), ... ,f(N)) where 

f(i) E K(i) denotes the alternative used in state i, i Ea. 

t ( f (.f.) f ( l)) · · f · . f 1 · . A s rategy 1T = ... , , ..• , is an in··inite sequence o · po icies 

l l . t . l. f (£.) h h O . d w~ere app ying s rategy TT means using po icy w en t ere are ,. perio s 

to go. 

A strategy is said to be stationary if it uses the same policy at each 

period, i.e. if f(l) = f for all l = 1,2, •••. Note that each policy speci-
(-L) ( 1 ) . 

fies a stationary strategy. Likewise, a strategy "Ir = ( ..• , f , ... , f ) is 

called initially stationary j_f there exists an integer n0 :> 1 and a policy 

f such that f(./'.) = f for all./'.:> n 0 • 

Finally, a strategy is optimal (ors-optimal for some s > 0) if for each 

n = 1,2, ... the total expected reward when there are n-periods to go equals 

(comes within E of) the maximal vector v(n), for every possible starting 

state i E ,L 

Observe that a strategy ·rr = ( ... , , ••• , f ( 1 ) ) is optimal if and only 

.l·•.-.· f·(ll • • S kl for all .c. = 1, 2,... • For each E > 0, and n = 1, 2, ... we de-

define S(n,s): 

S (n, E) {f E s I (i)+s).". p~~i)v(n-1),:>v(n).-c, i 
"J lJ J J. 

1, .•. ,N} 

Associated with each policy f = (f(1),f(2lro--,f(N)) ES are the reward 

vector q(f) = [q~(.i)J and transition probabili.ty matrix (tpm) P(f)=[P~(i)~L 
l lJ 

Thus (LL1) and (L .2) may be rewritten as: 

(Ll.3) v(n+i) Qv(n) (0) ' 

where the operator Q: ➔ is defined by: 
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(LL4) 

Separate treatment will be given for the discounted and undiscounted cases. 

In both models, the geometric rate of convergence of the value function 

* (i.e. of v(n) or of v(n) - ng) plays a central role. 

In section 2 and 3 we deal with the discounted case. In section 4, we 

first give the notation and preliminary results that will be needed in the 

following chapters. 

In section 5, a historical review will be given of the study of con­

vergence conditions for undiscounted value-iteration. In section 6, we 

discuss the rate of convergence for this undiscounted model. 

The behaviour of the sequence of sets of optimizing policies S(n) is 

discussed in section 7, whereas section 8 presents some algorithms and data­

transformations that may be applied in the undiscounted case. Section 9 

finally gives an introduc0:ion to Markov Renewal Programs (MRPs) . 

1.2. DISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF v(n) 

The discounted case possesses an elegant treatment because the Q··oper­

ator defined by (1.1.4) is a contraction operator with contraction modulus 

less than or equal to S < 1 when we use the norm II xii = Ix. I 
l 

(l.2.1) II QX-·Qyll o:: Sil x-yll , 

'i'he classical theory of contraction operators summarized for example in 

DENARDO [20], may be brought to bear, with the following immediate results, 

First let Qn denote then-fold application of the Q-operator, Le. 
n n-1 o 

Q x = Q(Q x) for n ~ 1 with Q x = x. 

(l.2.2) 

(L2.3) 

(L2A) 

(1.2.6) 

* Q has a unique fixed point v * Qv 

for any starting point x, Qnx converges geometrically to the 

fixed point: 

n = 1,2,3,.,. 

n * an upperbound on the distance between Q x and v can be computed 

aft.er just one iteration of Q via 
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which is fairly sharp provided Sis not too close to unity. 

Additional properties follow from the fact that Q is a monotone oper­

ator (x 2 y implies Qx 2 Qy). E.g. 

(L2. 7) * V. 
l 

max v(f)i., 
fES 

where v(f) is the total expected discounted return vector associated with 

policy f: 

(1.2 .8) v(f) 
-1 

[I - S P(f)] q(f). 

* Observe that both v and v (f), f E S, are independent of the scrap value 

vector v(0) E EN. 

As a consequence the unique fixed point of the Q-operator coincides 

with the maximal total discounted return vector. Moreover, 

(1.2. 9) * * n * n * x 2 v (xsv ) implies Q x+v (Q x1·v ) 

Some of these results have been modified by using instead of (1.2.1): 

(1.2. 10) 

where x. min. and x 
min i max 

Thus (1.2.6) is replaced by 

max. x .• 
l l 

LE~~'IA .2.1. For all n 2 1; x E EN and i E ~: 

(L?.11) 
(Qx-xlmin S(Qx-x)min 

s + Qxi + 
0-S) (1-13) 

s v(f (n) l. s s 
]. 

~"' & &s: 
n 

Q xi + 

n 
S (Qx-x)mjn 

(1-13) 

s 
Sn (Qx-xlmax 13 

(Ox-x1 
~ max (Qx-x)max 

+--- s ... s Qx.+ r=s· s 
( 1-13) (1-Sl ]. (1-SJ ( 1-S) 

where f(n) E S (n), wit:h v(0) 

vect:or. 

x and v(f(n)) is t:he associated t:ota.1 return 

PROOF .. Note by a repeated application of (1.2.10) that 

n Sn 
2 13 [Qx-x]mi'n = -- [Qx-x] . 1-13 mJ_n 

n+l 



n+l Sn+l n Sn 
and hence Q xi. + - 1 13 [ox-x] . 2 Q xi. + -- [Qx-x] . , for all 

- - min 1- /3 · min 
n 2 0 and i ED, which proves that the sequence of lower bounds 

rn 13m co * 
{Q x. + -(1 [3) [Qx-x] . } 1 is monotonically non-·decreasing towards v . 

i - · min m= i 
In a similar way one verifies that the sequence of upper bounds 

{Qmxi + (l~~) [Qx-x]max}:=l is monotonically non-increasing towards v:. 

The inequality v~ 2' v(f(nl). is immediate from (L2.7) which leaves us 
. i i 

with the proof of 

n 2 1 and i ED. 

Let H: EN ➔ EN: x + q(f(n)) + /3 P(f(n))x and note as a special case of 

(1.2.4) that lim Ff1y = v (f (n)) for all y E EN. Then 
m➔co 

n -1 
S (1-/3) [Qx-x]min' 

11 

where the third equality follows from HQn-lx= Qnx in view of f(n) c S(n) and 

where the last inequality follows from a repeated application of ( 1. 2. 1.0) • D 

Note that the bounds in ( L 2. 1l) are invariant to adding a constant c to 

each component of x. In addition we recall that the bounds in (1.2.ll)were 

originally derived for n = 1 by PORTEUS [94] who sharpened MacQueen's ([81]) 

original bounds (cf. ( 1. 2 .11) with n = 1) : 

X, + 
i 

-1 
(l··S) (Qx-x)rnin * s; V, 

]_ 
~ X + 

i 
-1 

(1-[3) (Qx-x)max 

Additional improvements on the bounds as well as on the rate of conver­

gence can be based upon data transformations ([95], [107], [38], [108]) or 

Gauss-Seidel variants of the iterative scheme ([52], [73], [107]), extra­

polation and over-relaxation techniques ([96], [103], [125]) as well as by 

removal of self transitions. These transformations obviously destroy the 

interpretation of v (n) . 

In terms of the original value-iteration scheme v(n) = Qnx where 

x = v(0), the above results have been useful in at least four ways: 
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* (a) v(n) is shown to approach v geometrically fast 

(b) then= 0 or 1 versions of (1.2.6) or (1.7..11) get computable bounds 

* on the error between the fixed point v and the current best guess 

(x or Qx) 

(c) eliminations via the bounds of alternatives which are not optimal for 

the 00--horizon problem, cf. MACQUEEN [ 81], HASTINGS and MELLO [ 55] and 

GRINOLD [50] 

(d) prior estimation of how many additional iterations n(x) are required 

given that the current estimate of v* is x, until the new estimate Qnx 

lies withins of v* or until a policy f(n) E: S(nl found at the end of 

these n iterations has a return vector v(f(n)) which lies withins of 

* v . Bounds on n(x) are obtained by setting (cf. (L2.6)) 

(1.2.12) II n *II _ 13nll Qx-xll 
Q x-v s 1-13 s s 

or cf. FINKBEINER and RUNG/\LDIER [45]: 

( 1. 2 .13) 1 S E 1 

with the result that at most 

(L2.14) ( ) 1 r ( 1 or 2) II Qx-xll 1 / I ( 13) I 
n x s .nl s(l-l3) J ln 

additional iterations are required. This has the property n(Qx) sn(x)-1, 

so that the number of remaining iterations to get accuracy E decreases 

by at least unity with each iteration; hence the termination criterion 

will be met after a finite number of steps. 

Unfortunately n(x) can be large if Sis close to unity or if the ini­

tial guess xis far from v*. An encouraging feature is that n(x) varies 

only logarithmically with E so that it is practical to achieve high 

precisions as long as Sis not too close to unity. 

We :finally note that usinq (L2.11) the upperbound for n(x) in (L2.14) 

may be replaced by: 

where 

(1.2.16) sp[x] X 
max 

denotes the span of x (cf. BATHER [ 3]), 
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The main question of interest is the relation of the sets S(n) to the 

* set S of policies which are optimal for the infinite horizon problem. 

(L3.1) s* = {f Es I * V 

Note that by (1.2.2) s* is uniquely determined and has a Cartesian product 

structure. 

It follows directly from (1.2.13) and (L2.14) that for each starting 

point x =0 v(O), we find S(n) * ,<:: s ' for sufficiently large n, say 11 2' n 1 (x). 

As a choice of n 1 (x) one may evaluate (1.2.14) with 

rin ( v' -v (fl . I f E s and 1 ~ i s; N such that 
l l 

* * (L3.2) E > E > v(f).} i.f s * s 
0 l 

if * 00 s s. 

Thus value--i teration eventually settles upon optimal policies. Unfortunately 

this result can not be used in general while performing calculations because 

* the lack of prior knowledge about v - and the resulting inability to eval-· 

uate - makes it impossible to calculate n 1 (x) a priori. Estimation of 

n 1 (x) remains an outstanding problem. Until the problem is resolved, no ways 

* are available to deduce whether a policy in S (n) lies in S , except by el.i..m-

ination of suboptimal actions. That is, a policy can appear during the first 

(say) 50 iterative steps yet fail to be optimal for the infinite horizon-

* model. Furthermore a policy from S might appear in say S( ) , not appear in 

S(2) and reappear in S(4) (or never reappear); so that a policy which has 

"dropped out" of S(n) cannot be eliminated as suboptimal (cL [114]). 

* In the special case where v is known, Eo may be estimated (cL 

SHAPIRO [114]) from: 

where 

* V, 
1. 

v(f). 
l 

-1 
[I-i3P(f)] f(f). 

l 

f(f) [v*-q(f)-S P(f)v*] 2' 0. 

* 

N 

I I 
n=O j=l 

rn P < fl l ~. r ( fl . , 
lJ J 

i E r/ 

Namely assuming that S is a proper subset of S, i.e. s 0 < 00 we can pick a 

pair (i,f) which achieve c 0 .in (1.3.2) and a state j and an integer n o; N, 

such that (S P(f))~. > 0 and f(f). > 0. We thus find: 
lJ J 
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where 

Cl min{Pk 
rs 

all s r,s:; N and k E: K(r) with > O} 

oo= min{r(f)j I all f E S,1 s j s N with r ( f) . > 0} > 0 
J 

* the last inequality following from the assumption S * S. Hence it suffices 
N 

to take E = (Sc,,) o0 when computing n 1 (x) via (1.2.14). 

The following properties are known regarding convergence of S(n) for 

large n 

(a) * * if S .is a s.ingleton, S (n) must reduce to S for large enough n (Le. 

for n ? n 1 (x)) 

{b) .if is not a singleton, S(n) does not need to possess a limit as n 

tends to infinity. SHAPIRO [114] has constructed a 2-state example 

* where S(n) oscillates with period 2 between the two members of S. 

Both his exa1~ple, and an example in BROWN [ 13] suggest that the set 

S(n) exhibits at least an ultimately periodic behaviour. 

However, an example which is similar to the one given in BATHER [2] 

for the tmdiscounted case (see below) shows that the worst behaviour 

of S(n) will be non-periodic oscillations. 

(c) Since S (n), for large n, may oscillate or contain only a proper sub·· 

* * set of S, the .individual S(n)'s do not by themselves determine S. 

* However, one may find the entire set S from E-opt.imal policies, i.e. 

from 

(1.3.3) 

where {En}:=l may be taken as an arbitrary sequence of positive numbers 

approaching O, provided that the rate of convergence of {En}:=l is 

slower than the one {v(n) }~=l exhibits, Le. whenever E 6-n ➔ °", as 
n_l 

n ➔ 00 • One choice is E = n-1 and more generally, take E as a posi-
n n 

tive polynomial in n. To confirm (L3.3) note that for all f E S(n, 
* ,, 

-En:Sq(f)+SP(f)v(n-1)-v(n) =q(fl+SP(f)v -v +O( 

In view of limn➔oo En= O, th.is implies that for all n sufficiently 

* large, q(f) + 6P(f) Le. S(n,E11 ):::: S for all n sufficiently 

large. To prove the reversed .inclusion, note that for f Es*, 

q(f) + SP(f) v(n·-1) - v(n) = q(f) + S P(f) - v* + O(Sn) = 0( 2 - 1 

for all n sufficiently large, as a consequence of E S-n ➔ 00 as n ➔ 00 

n 
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We finally turn to the issue of determining initially stationary opti­

mal strategies. We observed before that an optimal strategy must lie in 

x:=l S(n). SHAPIRO's example (cf. [114]) shows that in general there may be 

no (optimal) policy which is contained within all of the sets S(n) for all 

n large enough. That is, lim infn-+oo S(n) may be empty, or, none of the 

sequences of policies that may be generated by value-iteration needs to 

converge. So in general, no initially stationary optimal strategy may exist 

and the adaptation of example 1 in BATHER [2], mentioned above, shows that 

in general no initially periodic optimal strategy needs to exist either. 

Only in the case where is a singleton (S * {f*}), do we know that 

S(n) = {f*} for all n ~ n 1 (x), so that in this case every optimal strategy 

is initially stationary. Or, in other words, f* is the best choice of cur-

rent policy if the planning horizon is at least n 1 (x) additional periods 

and this choice is optimal without knowing the exact length of the planning 

horizon. 

* We observe however that every policy in S comes closer and closer to 
th 

being optimal at the n stage, as n tends to infinity. 'l'his may be veri-

fied from 

llv(n) - q(f) - S P(f) v(n-1)11 llv(n) - v* - S P(f)[v(n-1)-v*]II 

* f E S 

using (1. 2. 6) • 

This in turn implies for every E: > O, the existence of an init.ially 

stationary strategy that is s-optimal. In addition we point out the follow­

ing two properties: 

( 1) * Any policy in S may be used in the initially stationary part of the 

E:-optimal strategy; i.e. the initially stationary part does notdepend 

upon the scrap-value vector v(O). 

(2) An upperbound for the length of the non-stationary tail of the s-opti-

mal strategy is given by (cf. [34]) 

[ 211Qx-xll] j I m(x) 5 ln 2 / ln(S) 
s 0-Sl 

which varies again logarithmically with the precision E:. 

1.4. UNDISCOUNTED CASE: NOTATION AND PRELIMINARIES 

In the undiscounted case, S 1 and Q is a non-expansive opera.tor: 
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(L4.1) 

In add.ition the Q operator has the property 

OA.2) Q(x+c_l:.) Qx + cl for all x E EN and scalars c. 

Note as a consequence of (1.4.2) that the Q operator never has a unique 
. N 

fixed point and hence is never a contraction operator on E (and neither 

is any of its powers). Both (1.4.1) and (1.4.2) suggest choosing (cf. 

(1.2.16)) 

sp[x] X 
max 

X . 
min 

as a quasi-norm (cf. BATHER [3]). However, example 2 in chapter 2 shows 

that Q (or any of its powers) is not necessarily contracting with respect 

to the sp-norm either. That is, only under special conditions with respect 

to the (chain- and periodicity) structure of the problem, (cf. chapter 2) 

does there exist a number Os a< 1, and an integer n 2 1 such that 

As a consequence the asymptotic behaviour of {v(n)}~=i requires an entirely 

different and more complicated analysis in the undiscounted case. 

Randomized policies turn out to play an indispensible role in the 

study of the asymptotic behaviour of {v(n)}~=i· We therefore define a 

(stationary) randomized policy fas a tableau [fik] satisfying fik 2 0 and 

IkEK(i) fik = 1, where fik is the probability that the k-th alternative is 

chosen when entering state i. we therefore distinguish between SR, the set 

of all randomized policies, and SP .::: SR the set of all pure (non--randomized) 

policies (i.e. each fik = 0 or 1, for f ESP). 

We associate again, with each f E SR, a N-component reward vector q(f) 

and NXN-matrix P(f): 

(1. 4. 3) 

Note that P(f) is a stochastic matrix. For any f E SR, define the stochas-
n oo 

U.c matrix TI(f) as the Cesaro limit of the sequence {P (f) }n=l and define 

the fundamental matrix 

(lA.4) Z(f) = [I - P(f) + IT(f) 



These matrices always exist and have the following properties (cf. [10], 

[71]): 

(1. 4. 5) TI(f) = P(f)TI(f) = TI(f)P(f) = TI(f) 2 = TI(f)Z(f) Z (f) TI (f) 

(1.4.6) [I-P(f)]Z(f) = Z(f)[I-P(f)] = I-TI(f) 

(L4. 7) z (f) 
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Denote by n(f) the number of subchains (closed, irreducible sets of states) 

for P (f). Then 

(1.4.8) 

where 1Tm(f) i.s the unique equilibrium distribution of P (f) on the mth sub­

chain Cm(f), and w~(f) is the probability of absorption in Cm(f), starting 
l 

from state i (cf. [22] and [105]). Observe I. TT~(f) = 1 and 1rm(f)P(f) =1rm(f), 
l l 

as well as 1m(f) = P(f)¢m(f), m = 1, .•• ,n(f). 

Finally, let 

(1.4.9) R(f) = {j ED J TI(f) .. > 0} 
JJ 

i.e. R(f) is the set of recurrent states for P(f), with D\R(f) the set of 

transient states. 

A policy f E SR is said to be aperiodic in case the stochastic matrix 

P(f) is aperiodic; otherwise, f is said to be periodic. For each f E SR, 

we define the gain rate vector g (f) = JI (f) q (f), such that g (f) i represents 

the long run average expected return per unit time, when the initial state 

* is i, and policy f is used. Next, define the maximal gain rate vector g 

by 

(1.4.10) g(f).' 
l 

i 1, .•. ,N. 

We know from DERMAN [25] that there exist pure policies f which attain the 

N suprema in (1.4.10) simultaneously. As a consequence we define: 

(L4.11) 

as the set of all pure and the set of all randomized maximal gain policies. 

* Next, define R as the set of states that are recurrent under some maximal 

gain policy 
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(1.4.12) * R {i E Q 

{i E Q 

i E R(f) for some f E SRMG} 

i E R(f) for some f E SPMG} 

where the second equality in (1.4.12) was shown in th.3.2 part(a) of [109]. 

Likewise we define Ras the set of states that are recurrent under (some) 

arbitrary policy: 

(1.4.13) R = {i E Q i E R(f) for some f E SR} 

{i E QI i E R(f) for some f ESP} 

where the second equality in (1.4.13) is a special case of the second equal-
k * ity in (1.4.12) by taking every qi= 0. Note that R ~ R. 

The following lemma was proven in th. 3.2 part(b) of [109]: 

LEMMA 1.4.1. 

(a) There exist policies f E with R(f) * 
SRMG' R • 

(b) There exist policies f E SR, with R(f) ft. 

Note that randomization is essential for this result; in general no pure 

(maximal gain) policies need to exist, with a maximal set of recurrent states. 

Finally we consider the well-known pair of optimality equations for 

the average return per unit time criterion: 

(1.4.14) 

where 

(1.4.16) L(i) 

max }:. Pk g 
ke:K(i) J ij j' 

i E Q 

max {q~ + }:J. Pk1.J. vJ.}, 
ke:L(i) 1 

i E Q 

We recall (cf. e.g. [109] th.3.1) that there always exists a solution pair 

(g,v) to (1.4.14) and (1.4.15). In addition any solution pair (g,v) to 

(1.4.14) and (1.4.15) has g = g*, which implies that the g-part of the 

solution and hence each of the sets L(i) are uniquely determined. Finally 

let 

(1.4,17) V = {v E EN I (g*,v) satisfies (1.4.15)L 

For any v E EN, define 

(1.4.18) b(v)~ 
l. 

i E rl, k E K(i). 
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Note that 

(1.4.19) 

Note that unlike the discounted case, vis not uniquely determined by 

(1.4.15). Observe e.g. that if v E V, then so does v+c.!._ for any scalar c. 

A characterization of the set Vis given in [109], and is rather complex. 

As an example, we merely state that the necessary and sufficient condition 

for v EV to be unique up to a multiple of 1 is given by: 

(1.4.20) (UNI): There exists a policy f E SRMG' which has 

subchain. 

as its single 

The condition (UNI) will turn out to play an important role in the sub-­

sequent analysis. 

We finally define for each v EV, the sets of alternatives L(i,v) by: 

(1.4.21) L(i,v) {l E L(i) I b(v/ 
l 

0 i E u 

and let 

* (1.4.22) s (v) 

denote the Cartesian product set of policies achieving the maxima in ( 1. 4. 15) 

for the particular solution v EV. 

Lemma L4.2 concludes this section by giving a characterization of the 

set of maximal gain policies. 

LEMMA 1.4.2. (Properties of maximal gain policies) 

a) f E SRMG if and only if g* = P(f)g* and IT(f)[q(f)-g*] 0. 

b) Let f E SR: 

(1) Suppose that k E L(i) for each (i,k) with fik > 0 and that for some 

v EV, b(v)~ = 0 for each (i,k) with > 0, and i E R(f). Then 
]. 

f E SRMG" 

(2) Conversely, if f E SRMG' then .for each i = ~, .•. ,N: fik > 0 implies 

k E L(i) and for i E R(f), fik > 0 implies b (v) i = 0 for al.I v E v. 

As to the proof of this lemma, we refer to [109], th.3.1, part (a) and (e). 



20 

1. 5. UNDISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF' {v(n) }~=i 

The first asymptotic property of the sequence {v(n)}:=l' is due to 

BELLMAN [5] who showed that if every one-step transition probability P~. . lJ 
is strictly positive: 

( L 5 .1 l 

* 

Hm 
n->-oo 

V (n). 
l 

n 
* g , for all i E Si 

where g is the maximal gain rate. Note that Bellman's assumption is the 

strongest possible, one can make with respect to the chain- and periodic­

ity structure of the problem. HOWARD [63] conjectured that there generally 

* * exist two N-vectors g and v such that 

(LS.2) * * lim v(n) - ng - v o. 
n➔«> 

However, (1.5.2) may clearly fail to hold, if some of the transition prob­

ability matrices (tpm's) are periodic, as is illustrated by the two-state 

Markov process which has P 12 = P21 = 1 and q 1 = q 2 = 0 (Take e.g. v(0) = [1,0] 

and note that {v(n)}~=l alternates between the two limit points [1,0] and 

[0,1]). BROWN [13] showed in all generality that {v(n) - ng* is bounded 

inn, permitting the interpretation of g~ lim v(n) ./n as the maximal ex-
. l n➔«> l 

pected return per unit. time starting from st.ate L 

Two cases can be dist.uinguished. 
* 00 In the first case {v(n) - ng} 1 has a limit for any choice of v(0J. 

n= 
This corresponds roughly to the situation in the discounted process. In the 

* GO second case, {v(n) - ng }n=l has a limit for some, but not all choices of 

v(0). It is possible to show that for each Markov Decision Process there 

exist v(0) E EN * * * that limn➔«> [v(n)-ng] exists, namely v(0) = v + ag such 

satisfies the optimality equation (L4.15) above (cf. * where a >> 0 and V 

lemma 2.2 in [111]). 

It :is also possible to construct. MDP's in which case 2 holds, namely 

when certain tpm's have periodic st.at.es. For example consider a four-st.ate 

MDP with only one policy f having 

0 0 1 0 0 0 

0 0 0 0 0 
* q(f) P(f) g 

0 0 0 0 0 

0 0 0 0 0 
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(1.5.3) lim v(n) exists if and only if v(0) = (b,b,b,b) 
n-J-<X> 

(l. .5.4) ;.±.;;; v(2n) exists whereas {v(n)}~=l has two distinct limit points, 

if v{0) = (b,c,b,c) with b * c 

( l.. 5. 5) lim v(4n) always exists, whereas {v(n)}n00=l has four distinct 
n-J-<X> 
limit points, if v(0) = (b,c,d,e) with b,c,d,e distinct. 

Conditions determining the existence of lim [v(n)-ng*] are of importance n-+m 
for at least the following reasons: 

( 1) 

(2) 

(3) 

If v(O) is such that lim [v(n)-ng*J exists, then v(n)-v(n-1) con···· 
n-+m 

* verges tog, and nv(n-1)-(n-l)v(n) converges to a solution v EV. 

That is, both the maximal gain rate vector and a solution to the opti­

mality equation (1.4.15) can be computed. 

* 00 Convergence of { v (n) -ng } n= 1 guarantees that s (n) ::: SPMG for all n large 

enough (cL ODONI [89]), hence value-iteration may be used to identify 

maximal gain policies. However if v(0) is such that limn-+«> [v(n)-ng*] 

does not exist then S(n) ~ SPMG is not guaranteed to hold for all large 

n: LANERY [74] has given an example where S(n) ~ S\S for infinitely 
PMG 

many n, and FEDERGRUEN & SCWHEITZER have given an example (cf. [35]) 

where S(n) ~ S\SPMG for every n. In such cases value-iteration will 

not settle on maximal gain policies. In section 7 a more detailed anal­

ysis of the asymptotic behaviour of {S(n)}:=l will be given, both for 
* 00 the case where {v(n)-ng }n=l converges and for the one where it fails 

to converge. 

Since value-iteration is the only practical computational method for 

finding maximal gain policies when N >> 1, it is desirable to check 

whether lim [v(n)-ng*] is guaranteed to exist, or whether a data n-+oo 
transformation should be performed (cf. section 8) on the original 

data so as.to enforce convergence. 

* 00 Convergence of {v(n)-ng }n=l guarantees the existence of initially 

stationary E-optimal strategies for any positive E. 

Conversely, MDP's may be constructed in which for some choices of the 

* 00 scrap value vector v(0) for which {v(n)-ng }n=l fails to converge, no 

initially stationary strategy can be found which is E-optimal for E 

sufficiently small (see section 7 below). 

* 00 Sufficient conditions for the convergence of {v(n)-ng }n~l were ob-

tained by WHITE [131], SCHWEITZER [104] and others. BROWN [13] and LANERY 
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[74] both obtained, albeit with faulty proofs, that there exists a positive 

* integer J, such that 

lim [v(nJ* +r)-(nJ* +r)g*] exists for any v(O) and any r :: O,.,,,,., ,J*-1,., 
n-+m 

A new proof was provided by SCHWEITZER and FEDERGRUEN who obtained the 

following generalizations (cf. [110]): 

(a) * there exists an integer J ::> 1 such that lim [v(nJ+r)-(nJ+r)g*J 
n➔= 

exists for every v(0) E EN and r = 0,. .. ,J-1. if and only if ,J is a 

* multiple of ,T 

(b) for any given v(O) E EN, there exists an integer JO::> 1 which depends 

upon v(0) such that 

lim [v(nJ+r)-(nJ+r)g*] exists for some r 
n-,-oo 

if and only if 

(1.5.6) 
0 

J is a multiple of J. 

In addition, if (1.5.6) holds then 

(LS. 7) limn+co [v(nJ+r)-(nJ+r)g exists for all r 

o, ... ,J-1 

As an illustration of part (b), (L5.3)-(L5.5) show JO 1,2,4 de­

pending upon v(0). Note also that JO divides J*, which is 4 in this ex­

ample, and that for some v(0), JO equals J*. 

The above results require a detailed investigation of the chain- and 

periodicity structure of the set of maximal gain policies, including the 

* randomized ones. In fact J can be computed using a finite algorithm, and 

can be expressed as a function of the periods (and the chain structure) of 

the policies in SPMG" 

The consequence of (a) is that lim [v(n)-ng*] exists for all v(O) 
n-+m 

if and only if J 
,, 

1, and the following theorem gives a number of equiv,--

alent statements of the necessary and sufficient condition for globa.I con-
. * (XJ * 00 

vergence of {v(n)-ng }n=l' i.e. convergence of {v(n)-ng }n=l for all 

v(O) E EN: 

THEOREM L5.L (cf. th.5.4 of [110]) 

The following three statements are (equivalent) necessary and sufficient 

[ *}oo N conditions for the convergence of v(n)-ng n=l for a.Il v(O) EE: 
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(GC) (I) * J = 1. 

(GC) (II) There exists an aperiodic randomized maxima.I gain policy f, with 

* R(f) = R. 

(GC) (III)Each state i ER* lies within an aperiodic subchain of some ran­

domized maximal gain policy. 

Example 1 below emphasizes the fact that the adjective "randomized" in 

conditions (II), and (III) cannot be replaced by (the more restrictive) "pure". 

EXAMPLE 1. 

N = 4; K(l) = K(3) = K(4) = {1}; K(2) = {1,2}; 

1 1 1 1 2 k 
P12 = P34 = P42 = P21 = P23 = l; all qi= 0, i.e. 

Figure 1. 

Note that the two policies in Sp (and SPMG = Sp) are both periodic with 

periods 2 and 3; however a randomized policy which uses both alternatives 

* .in state 2, is aperiodic and has R ( f) = R = rl, and as a consequence = 1 . 

Note that neither (GC) (II) nor (GC) (III) holds when replacing "randomized" 

by "pure" (cL also the examples in [110]). Example 1 shows that condition 

(I)-(III) contain the possibility that all of the pure policies are periodic; 

on the other hand, the existence of an aperiodic maximal gain policy f is 

* only sufficient for global convergence, when R (f) = R 

We conclude this section by enumerating a number of conditions that 

* are sufficient for the existence of l.imn->-<x> v(n) - ng for all possible 

choices of v(0) E EN. 

We have seen that for arbitrary J ~ 1 and some fixed v(0) the sequences 

* 00 {v(nJ+r)-(nJ+r)g }n=l may fail to converge for some (or all) i E rl and for 

some (or all) r E {0,1, ... ,J-1}. We refer to section 5 of [110] for an in­

vestigation of the various ways in which the convergence of these sequences 

i.nterdepends. 

'fHEOREM LS.2. (cL th.5.5 of [110]) 

1'he following conditions are sufficient for the existence of * v(n)-·ng 
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N 
for all v(O) EE: 

(I) 

(II) 

(III) 

(IV) 

(V) 

(VI) 

All of the transition probabilities are strictly positive: 
k 

0 for all i,j St P .. > E 
lJ 

and k E K(i) (cL BELLMAN [5], BROWN [13]). 

For all v(O) E EN there exists an aperiodic f E S and p an integer n 0 

such that 

v(n+l) ~ q(f)+P(f)v(n), for all n 2 n 0 (cL MORTON and WECKER [86]). 

There exists a states and an integer v 2 1, such that 
1 V 1 2 V . 

P(f ) ... P(f )is> 0 for all f ,f '"°"'f E Sp; l E S"l (cL WHITE [131]). 

Every f E Sp is aperiodic (cf. SCHWEITZER [104] & [106]). 

Every f E SPMG/s aperiodic (cf. scm~EITZER [104] & [106]). 

For each i E R there exists a pure maximal gain policy f, such that 

state i is recurrent and aperiodic .for P (f). 

(VII) Every pure maximal gain policy has a unichained tpm and at least one 

of them is aperiodic. 

1.6. THE RATE OF CONVERGENCE OF UNDISCOUNTED VALUE-ITERATION 

Whereas section 5 settles the issue if one demands global convergence, 

we recall that there always exists a (non-empty) closed subset W.::. EN of 

scrap-value vectors for which {v(n)-ng*} converges. 

For any x E W we define 

L(xJ 

and recall the following easily verifiable properties of the L(.)-function: 

( 1.6 .1) {a) L(x) EV (cf. [111], lemma 2.2 part(g)) 

L(x) * + ng ( cf. U 11] lemma 2 . 1 pa.rt ( f) ). 

In this pa.rt we turn to the topic of the rate of convergence. As a. Major 
-;, 00 

result, it can be shown (cf. [111]) that whenever {v(n)-ng }n=l converges, 

the approach to the limit is ultimately geometric in the sense that there 

exist numbers C and A, with Os A< 1 such that 

for all n 1, 2, ... 

Applying the same analysis to ·so-called multi-step policies (cf. section 7), 

this result may be generalized in the sense that for all v(O) E and all 
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0 
r = 1, ... ,J (v(O)) 

0 0 * v(nJ +r) - (nJ +r)g approaches its limit geometrically fast, 

where JO was defined above. 

As a consequence various successive approximation methods which are 

based on the value-iteration scheme (1.1.1) exhibit a geometric rate of 

convergence as well (cf. section 8). We observe that this generalization of 

(1) what is known to be the case in a simple Markov Process, i.e. in a MDP 

with a single policy (cf. [113]), and 

(2) White's result [131] 

holds in all generality with no restrictions imposed on either the chain·-, 

periodicity- or reward structure of the problem. In addition, the result 

is to some extent surprising, since we noted that the value-iteration opera­

tor Q, is in general not a (J step) contraction mapping for any J = 1,2, ... 

on EN (cf. chapter 2); nor is there in general an obvious way of reducing 

it to such a mapping on some subspace of EN. To be more specific, we men­

tioned earlier (cf. section 4) that Q does not even need to be (J-step) 

contracting with respect to the (quasi) sp-norrn, defined by (1.2.16), unless 

some very restrictive conditions on the chain·· and periodicity structure of 

the problem are satisfied (cf. chapter 2). 

Example 2 in chapter 2 shows e.g. that the combination of the (UNI)­

and the (GC)- condition is in itself insufficient. The geometric convergence 
* co result of {v(n)-ng }n=l is obtained by analyzing the solution of the Q- op-

n oo 
erator in {Q x}n=l for any x E W. 

The evolution of the Q-operator 

First of all we recall from lemma 2.2 in [111] or from BROWN [13] that 

for all x E EN there exists an integer n 1 (x) such that 

(l. 6 .2) 
n 

Q X 
n-1 n-n n1 T(Q x) = T l(Q x) 

where the T-operator is defined by: 

(1.6.3) Tx. 
J_ 

max 
kEL(i) 

k k {q.+l:.P. ,x.}; 
J_ J l-J J 

X E 

This is due to the fact that, after a fi.nite number of iterations, only 
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alternatives k E L(i) attain the maximum in the value-iteration equation 

(LL1). 

Note that the 'I'-operator has the additional properties: 

(L6.4) * * T(x+cg) = Tx + cg 

and 

(1.6.5) sp[Tx-g*-v] = sp[Tx-Tv] s sp[x-v], for all x E EN and all v EV. 

n * In other words, after n 1 (x) iterations the "distance" between Q x - ng and 

any v EV, as measured by the sp[ ]-norm is monotonically non-increasing. 

Next, define for x E W: 

e(n,x) 

We note that by using definition (1.4.18), it follows that {e (n,x) }~=l 

satisfies the recursion equation: 

(1.6.6) e(n+l,x)i max 
kEI.,(i) 

{b(L(x))k + l:.P~.e(n,x) .}, 
l J l] J 

Since limn-+w e(n,x) = 0 for all x E W, it follows that after a still larger 

number of (say after n 2 (x)) iterations, only alternatives k E L(i) attain 

the maximum .in the value-iteration equation ( 1. 1.1), for which b ( L (x)) ~ = 0. 
l 

More specifically, for any v EV let 

( 1.6. 7) li(v) = min{jb(vl~ j j i Ell, k E L(i), b(v)k < OL 
l l 

Next, for any x E w, let n 2 (x)= .inf{n jn? n 1 (x);sp[e(n,x)J < o(L(x))} < 

Then for all x E Wand n? n 2 (x): 

(L6.B) e(n+l,x) U (L (xi) e (n,x) 

where for any v EV, the U(v) - operator i.s defined by (cL (L4.21)): 

(1.6. 9) U(v) 

To verify ( .6.8) assume to the contrary that for some n > n 2 (x), and 

i. E ll there exists a k E L (i) \L (i, L (x) ) which attains the maximum in ( L 6. 6) • 

Then e(n+l,x)i 

s - li(L(x)) + e(n,x)min + sp[e(n,x) < e(n,x) . 
min 
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which contradicts e(n+1,x) . 2': U(L(x))e(n,x) . 2': e(n,x) . (cf. (L4.1) 
min min min N 

and (1.6 .6)). Observe that in spite of V being an infinite subset of E , 

only finitely many U(v)-operators occur since there are only finitely many 

subsets of X,L(i). 
i 

Note in addition that the U(v)-operators have, on top of the proper-

ties (1.4.1) and (1.4.2) of Q and the property (1.6.4) of T, the extremely 

useful characteristic of being positively homogeneous i.e.: 

(1.6.10) U(v)[ax] = aU(v)x for all XE EN and a~ o. 

n * oo 
As a consequence the convergence of {Q x-ng }n=l for any x E W occurs in 

three phases. The first n 1 (x) iterations constitute the f.irst phase and 

the second phase terminates after the n 2 (x)··th iteration, and is followed 

by the third phase from thereon. 

We conclude this rsubsection by a short description of the behaviour of 

the Q-operator during the first phase. We first observe that this phase is 

* * void, if K(i) = L(i) for all i E St, which is e.g. the case when gi = <g >, 

i E St, i.e. when the maximal gain rate is independent of the initial state 
N 

of the system. On the other hand, n 1 (xi may be unbounded in x E E or x E W. 

In fact in the worst case the length of the first phase may be linear in 

sp[x] as is proven in [111], th.3.1. This is why the first phase is said to 

have a finite though linear type of convergence. 

The following example illustrates this: 

EXAMPLE 2. 

St= {1,2,3}; K(l) = K(3) = { 1}; K(2) = {1,2}; q~ 

1 1 2 1 
Pll = P21 = P23 = P33 1 · 

k = 1 k 2 

(01-------4-,( -~01------'►--® 

Note that g * = ( 0 , 0 , -1.) and that L ( 2 ) = { 1 } 

Let x = [O,O,X] with X >> 1 and verify that Qnx 

such that n 1 (x) = sp[x] = II xii = x. 

[O, max(O,X-n+1),X-n] 

The behaviour of sp[Qnx-ng*-L(x)] = sp[e(n,x)] during the first phase 

may be capricious. E.g. {sp[e(n,x)J}~=l may be alternatingly increasing and 

decreasing such that the first phase is not necessarily terminated as soon 
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as [Qnx-ng*] starts coming closer in sp[ ]-norm to the limit L(x) (cf. ex­

ample 1 in [111]). In the second phase the Q-operator essentially reduces 

to the T-operator. Let 

~ NI n * ~ n * W = {x E E lim T x - ng' exists} and L (x) = limn-'~ 'I' x-ng , for x E W. n-)-Co -T"'-"¥ 

Note that by (L6A) we have 
n * TV v+ng for any v E V and n 2 1, and so 

V.:: w. In analogy to e(n,x) define for n = 1, 2, ... and X E W: 

(1.6.11) e(n,x) = 
n 

T X ·-
* L(xl. ng -

It follows from (1.6.1) that for all x E W, and with n 1 {x) defined by (l.6.2): 

(1.6.12) 

L (x) + n 1 (x) 

In other words for all x E W, Qn 1x E W. As a consequence studying the con­
n * oo vergence of {Q x-ng }n=l in the second and third phase amounts to charac-

terizing the behaviour of Ton W. 

The Second and Third Phase. Geometric Convergence 

First we define for all x E W and all n = 1,:;,,... the n-st:ep contrac·­

tion factor f 11 (x) by: 

(L6.13) f (x) 
11 

sp[;(n,x)] 

sp[;(O,x)] 

sp[Tnx-ng*-L(x)] 

sp[x-L(x)] 

0 

n n~ 
sp[T x-T L(x)] 
~-------, if xi, V 

sp[x-I (x)] 

otherwise 

since sp[x-T(x)] = 0 can be shown to occur only if x EV (cf. [111], lemma 

2. 2 part (h) ) and where the equaU. ty in ( 1. 6. 13) follows from a repeated 

application of (1.6.4). 

Note that for all x E W, and n = 1,2, .•. ,f (x) S 1 and that {f (x)} 00 

1 n n n= 
is monotonically non-increasing towards 0, such that there exists an integer 

M(x) 2 1 with: 

(1.6.14) f (x) < 1 
n 

for all n 2 M(x). 
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Next the key result in the geometric convergence proof is provided by (cf. 

[110], th. 4.1). 

* THEOREM 1.6.1. T.here exists an integer M such t.hat for all x E 

Thus th. 1.6.1 expresses that M(x) the number of steps needed for contrac­

tion is bounded in x E W. 

For each rn = 1,2, •.• and x E w, let 

(1.6.16) h (x) 
rn 

n * sup fm ('r x-ng ) s 1 
n=l,2, • ., 

where the inequality follows from fm(y) 5 1, y E w, since by (1.6.4) we have 

n * T x-ng E W for all n :2: 1. The second part of the geometric convergence 

proof consists of showing that for all x E W: 

(1.6.17) 

We note that ( 1. 6. 17) is obtained by a detailed analysis of the U (v) ··-oper­

ator appearing in the third phase of the process. Further it was shown in 

[ 111] that for any n ? 1 and x E W: 

* 
( 1.6. 18) * * (n-l)M * * ~ * sp[e(nM +r,x)]Ssp[e(nM ,:x:)]:".fM*(T x-(n-1)M g )sp[e((n--l)M ,x)] 

~ * 5 hM*(x)sp[e((n-l)M ,x)]; r = 0 , •.. , M-1 . 

Finally, some further analysis leads to the main result (cf. [111], th.4.2). 

THEOREM 1.6.2. (Geometric convergence) 

For all x E W, t.here exi.sts a number K (x) such that 

(1.6.19) 

where LxJ indicates the .largest integer less than or equal t:o x. 

We observe that hM*(x) does not represent the ultimat:e convergence 

rate or ultimate average contraction factor per step, which is defined by: 
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(1.6.20) 

lim f (x) l/n 
n 

0 

lim 
n->-= 

for XE W\V 

for x EV. 

It was shown in [110], section 6, that for a.11 x E W, the ultimate conver­

gence rate may be bounded by 

(L6.21) { 
M* 

def sp[U(v) y] 
= max sup · [ J 

VEV sp y 

Observe that on the right hand side of (1.6.21) the maximum is taken over a 

finite number of distinct U(v)-operators. Note in addition that in the case 

of a single policy this reduces to the well-known fact that the convergence 

rate is bounded by the subdominant eigenvalue of the associated transition 

probability matrix (cf. also MORTON and WECKER [86], who found the same 

result in the special case of policy convergence, i.e. when there exists an 

integer n 0 (x) and a policy f ESP such that: 

( 1. 6. 22) 
n n-1 

Q X = q(f) + P(f)Q X 

Whereas the ultimate convergence rate is bounded on W, the same does not 

necessarily hold for then-step contraction factor fn(x) whatever the 

choice for n = 1,2,.H. That is, we may have: 

(L6.23) sup fn (x) 
XEW 

for all n 

as is illustrated by example 2 in chapter 2. 

The problem of finding conditions which in all generality are both 

necessary and sufficient for the existence of a uniform n-step contraction 

factor for some n = 1,2, .•. , has not been solved yet. However, under (UNI) 

the following necessary and sufficient condition was obtained in [111]: 

(1.6.24) (UR) There exists a randomized policy f 

single subchain. 

ES which has Ras its 
R 

* Another topic of interest is the dependence of M on the size of the 

problem. Again, under (UNI) it was shown in [111], th. 5.2 that: 

(1.6.25) 
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'.rhe upperbound was obtained by a combinatorial proof and is sharp up to a 

tern of 0(N) (cf. example 2 in [111]). The quadratic upperbound obviously 

represents the worst case behaviour, and contrasts with the fact that com­

putational experience as reported e.g. in SU and DEININGER [120] and TIJMS 

[122] shows that (in most cases) M* = 1 or 2. 

1.7. UNDISCOUNTED CASE; ASYMPTOTIC BEHAVIOUR OF S(n) AND THE EXISTENCE OF 

INITIALLY STATIONARY OR PERIODIC s-OPTIMAL STRATEGIES 

As discussed earlier, separate treatment is given to 

a) the case where lim [ v (n) --ng*] exists and 
n->-oo 

b) the one where the sequence fails to converge. 

We mentioned earlier that for the latter case an example was con­

structed in [35], in which S(n) lies outside SPMG for every n. In this 

case one merely knows (cf. BROWN [13]) that for large n, S(n) ~ XiL(i). 

In the case where L (v (0)) = limn->«> v (n) -ng*, exists then for large n: 

(L 7.1) 

'I'hus ( L 7 .1) shows that value-iteration settles upon maximal gain policies 

provided that convergence is guaranteed. 

The explanation of this discrepancy with respect to the behaviour of 

S(n) between the case where [v(n)-ng*] converges and the one where it fails 

to converge, requires the notion of multistep policies and periodic strate­

gies. 

For each integer J? 1, a J-step policy is a J-tuple of policies 

(f*(l) , .•. , (J)) and specifies a J-periodic strategy 

(L 7.2) 1f 
(£.) ( 1) 

( .... ,f .•.. ,f ) 

f(nJ+r) = f*(r) for all n 0 , 1 , • • • and r 

so, a J-step policy is called maximal gain, if the long run average return 

* vector of the associated J-periodic strategy equals g. (1.7.1) holds for 

* the special case where limn-+oo v(n)-ng exists, i.e. the case where 

JO(v(O)) = 1, and the following generalization for JO? 2 may be obtained 

(cf. [35]), (with JO having been defined by (1.5.6)): 

(L 7.3) For all n large enough, 

s(n+1) x x S(n+JO) is 

each J 0-tuple of policies 

. l . 0 maxima. gain as a J -step 

in 

policy. 
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Apparently a multistep-policy may be maximal gain, with each of the component­

policies being non-maximal gain. Indeed a close investigation shows that the 

necessary and sufficient conditions for a multistep-policy to be maximal 

gain, reduce to the actions, prescribed by the component policies, being 

required to satisfy the optimality equations (1.4.14) and ( .4.15) only in 

a very special subset of a (cf. [35]). 

The aforementioned example in [2] shows that even in the case where 

v (n) -ng * converges (in fact even in the case where each policy is unichained 

and aperiodic), S(n) may have a very irregular behaviour, the worst case of 

which exhibits nonperiodic oscillations. 

As a consequence we are only guaranteed to have an initially stationary 

* * * * (or periodic) strategy if S (v ) is a singleton where v = limn->= v(n)-ng . 

Using the geometric convergence result as discussed in section 6, we obtain 

however (cf. [35]) that for all E > O, there exists an initially periodic 

strategy which is £-optimal. In fact, the (initial) period of this strategy 
0 

may be taken to be equal to J (v(O)). 

In particular, we see that in case JO= 1, i.e. when v(n)-ng* exists, 

an initially stationary £-optimal strategy exists for all E > O, and in 

* * addition S (v) represents the set of policies which can be used in the 

initially stationary part of the strategy. This generalizes LANERY [75] who 

established the above result for all E ~ (some) s*. When .._._. 2, a similar 

characterization may be given for the set of J 0-step policies which can be 

used in the initially periodic part of any £-optimal strategy. In addition, 

MDP's can be constructed in which there exist choices of v(O) for which 

every initially J-periodic s-optimal strategy (withs small enough) has J 

as a multiple of JO (this result obviouslv doesn't hold for every MDP with 

* J 2: 2 as is illustrated by the case where S contains a single periodic 

policy. Observe that unless condition (UNI) is met, and unlike the discounted 

case the best (or E-best) choice for a current policy depends upon the ter­

minal reward vector v(O), whatever the length of the planning horizon. 

Since this terminal reward vector may not be known (exactly) in ad-

* * vance, and since S (v) may depend discontinuously upon v(O), it would be 

desirable to choose a policy which lies in the intersection of the sets 

{s* Jlv*cv}. n *<i ~ However, vEV S v , which may be written as a finite 

intersection, may be empty, 

In [109] it was shown that_convexity of Vis the necessary and suffi-

cient condition for n s* (v) f Jo, Le. for the existence of a policy which 
VEV 

can be used in the initially stationary part of the E-optima.l strategy, in 
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complete independence of v(O). Moreover an example was provided in which 

convexity of V fails to hold. Sufficient conditions for convexity of V are 

given by (cf. [109], th. 4.3): 

(1) R* = ~; (2) K(i) is a singleton for all i E ~\R*, (3) (UNI). 

It is worthwhile observing that in some cases a (Blackwell-) optimal 

policy, i.e. a policy which is optimal in the discounted model for all S 

sufficiently close to 1 (cf. BLACKWELL [ 10]) cannot be used in the initially 

stationary part of the ,>optimal policy (cf. [ 35]). 

In the unichained case, i.e. when all policies are unichained, an ex­

plicit upperbound may be derived for m(v(O)), the length of the non-station­

ary (or non-periodic) tail of the s-optimal strategy; the latter being due 

* to the existence of bounds for the distance between v and the relative 

value vector of a policy in S(n) (cf. section 8 and chapter 2). 

However, in the general multichain case and unlike the discounted 

model no bounds have been obtained as yet for m(v(O)). In analogy with the 

discounted case, m(v(O)) can however _in all generality be shown to vary 

logarithmically with the precision s. For the case of continuous time Markov 

Decision Problems, in which no periodicity problems arise, some of the above 

results were obtained by LEMBERSKY [76] and [77]. 

Finally, several difficulties appear when trying to find the set SPMG" 

* First for all v EV, S (v) can be a strict subset of S so that value-
PMG 

* iteration fails to yield all maximal gain policies. Indeed e"ven Uv*EV (v ) 

can be a strict subset of SPMG so that varying the starting point v(O) of 

value-iteration will fail to identify all maximal-gain policies. The ex­

planation is that a maximal gain policy f is merely required to choose its 

actions within L(i), for those states that are transient under P(f) (cf. 

lemma L4.2). 

The second difficulty is provided by the ir.cegulc,r behaviour of the 

sets {S(n)}~=l as described above. This difficulty can 11oweve.r be overcome 

in a way simUar t.o the one employed for the discounted modeL Let { E } 
00 

n n=l 
be a sequence of positive numbers approaching O, at a slower rate than the 

(geometric) convergence rate of [v(n)-ng*]. That is, let lim E /An 00 , 

-1 n-+«> n 
e.g. by taking En= n 

THEOREM 1.7.1. Assume v* = lim 
n-->= 

* limn_,00 S (n, (v ) . 

* v(n)-ng exists. 

(a) 

(b) Let g(n) = v(n) - v(n-1), and define for al.l E > 0: 

G(n,E) = {f E S P(f)g(n) ;, g(n+l) - E 1L 
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X,L(i). 
l 

PROOF. 

* * (a) Use limn-><o En= O, as well as (1.6.8) to verify that S(n,En) ~ S (v) 

(b) 

for all n sufficiently large. To prove the reversed inclusion, fix 

* * * * f E: S (v and note that q(f) + P(f)v(n) = v + (n+l)g +P(f)e(n) 

v(n+l) - e(n+1) + P(f)e(n) = v(n+1) + O(;\n) ::> v(n+l) - E 1 

* * for all n sufficiently large, where e(n) = v(n)-ng -v 

* * * * * we use g = P(f)g and g +v = q(f)+P(f)v. 

* 

n-
and where 

Use limn-><o En= O, as well as limn-)-00 g(n) = g to conclude that 

G(n,En) ~ XiL(i) for all n sufficiently large. To prove the 

reversed inclusion, fix f E XiL(i) and note that 

P(f)g(n) = P(f)[g(n)-g*] + g(n+l) + [g*-g(n+l)]= g(n+l)+O 

for all n sufficiently large. 

Table 1 concludes this section by summarizing some of the main results of 

section 3 and section 7. 
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Table 1. 

I II III 

< 1 1 1 13 

- 1 :2: 2 JO (v(O)) 

lim v(n) = v * limn-= v (n)-ng * 
,, 

= lim v(nJ+r)-(nJ+r)g asymptotic n+«> n+oo 
V E V exists, iff J is a mul ... behaviour of 

tiple of JO (v(O)) {v(n)}~=l 

geometric geometric geometric rate of 

convergence 

only 
0 policies gen-yes yes no, J -tuples 

of consecutively gener- erated need to 

ated policies need to be be optimal 

maximal gai.n as multi- after finite 

step policies number of 

iterations 

no no no stationary or 

periodic, op-

timal strate-

gies need to 

exist 

yes yes no, only E-optimal r::--optimal 
0 . d. ,T -per:i.o :i.c strate- stationary 

gies need to exist strategies 

need to exist. 
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1.8. UNDISCOUNTED CASE; ALGORITHMS AND SOME DATA-TRANSFORMATIONS 

In this section we show which successive approximation methods 

can be used in order to find maximal gain policies and the maximal gain 

rate vector. For the schemes that are based upon pure value-iteration the 

convergence results obviously follow from the study of the asymptotic be­

haviour of {v(n)}~=l· In sections 5 and 7, we observed that only in case 
* 00 {v(n)-ng }n=l converges, will value-iteration be guaranteed to ultimately 

settle upon maximal gain policies and only then, can sequences be derived 

00 * from { v (n)} n=l which converge to g and some v E V. 

* oo N 
In the case where {v(n)-ng }n=l may fail to converge for some v(O) EE 

* Le. whenever J = 1 is not guaranteed by the structure of the problem, the 

following alternatives can be used: 

A) Elimination of the periodicities using the following data-transforma­

tion: 

( 1. 8 .1) ~k k 
i "' k K(i) qi Cl q.; E E 

]_ 

(1.8.2) ~k T(P~. J+o .. , s; i, j s; and k K(i) P .. N E 
lJ lJ lJ 

where CJ > 0 and O < T < 1 , and with o. . denoting the Kronecker delta func­
:i.J 

tion, i.e. 6 .. = 0 for i # j, and 6. . for i = j. This tra.nsformation 
lJ lJ 

makes all of the diagonal elements of all of the tpm's strictly positive 

such that in the transformed model all of the policies are aperiodic. 

Moreover, the transformation turns the MDP into an equivalent one, 

in the sense that it has the same state- and poli.cy space and that each 

1 . fh ~(f) (f) ·t · a~ [ Nl-l } po icy as g · = a g · as 1 s gain rate vector anu V = · v E E CJ T v E V 

as the set of solutions to the corresponding optimality equation (1.4.15), 

a.s is shown in the next lemma. (cf. also (EQUI) in ( 1. 9. 2) ) : 

LEMMA 1.8.1. (cf. SCHWEITZER [108]) 

(a) v = {v E EN I o- 1, v Ev}. 

(b) For all f E SR, g(f) og(f); hence 2( * CJ g , SRMG = SRMG and 

SPMG = SPMG represent the maximal gain rate vector, and the sets 

of .randomized and pure maximal gain policies in the transformed model. 

PROOF: Rewrite the optimality equations (1.4.14) and (1.4.15) in a homo-

geneous way, i.e. 
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(1.8.3) 0 i € Q 

(1.8.4) 0 i € n. 

Note that the solution space of the optimality equations remains unaltered 

when multiplying the expressions within brackets in (1.8.3) and (1.8.4) by 

a T > 0 and a> 0 resp. Hence, 

(1.8.5) 0 i € Q 

(1.8.6) 0 i € Q 

such that in case (g,v) satisfies the optimality equations of the original 
-1 

model, then (ag,aT v) will satisfy the corresponding equations in the 

transformed model; and vice versa in case (g,v) satisfies (1.8.5) and (1.8.6), 
-1 -1 ~ then (o g,a TV) is a solution pair to the optimality equations in the 

original model. 

(bl Apply the proof of part (a) to the system of equations g = P(f)g; 

v = q(f) - g + P(f)v, to verify that if (g,v) is a solution to this system, 
-1 

then (og,oT v) will satisfy the corresponding system in which P(f) and q(f) 

are replaced by P(f) and q(f). Since the "g-" part of the solution to these 

systems is uniquely determined by the gain rate vector, (cf. lemma 1 in 

[22]) it follows that g(f) = og(f) represents the gain rate vector off in 

the transformed model. D 

The above presented transformation will play an important role through­

out this entire thesis, especially so for the choices o = 1 and o = T, since 

the first case has g* = g* and the second one has V = V. 
* 00 Due to the obtained aperiodicities {v(n)-ng }n=l converges (geometrically) 

in the transformed model for whatever choice of v(O) E EN (cf. th.1.5.2, con­

dition (IV)) . 

B) The modified value-iteration technique by HORDIJK and TIJMS [60]. 

This scheme has the discount factor 8 in (1.1.1) depending upon the index 

of the iteration stage, and tending to one as the index tends to infinity: 

(1.8. 7) u(n+l). 
]. 

where u(O) is a given N-vector. 

i E Q 
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The scheme can only be used when 

* * (1.8.8) g <g > 1. 

In this case 

(l.8.9) as n ➔ 00 

where {y } 00 is obtained recursively by 
n n=l 

Yn+l for n 2 O with Yo 

provided that 

(a) 13n 13n-1 r3i -+ 0 

n 
(b) I 13 sj+i I sj-sj_ 1 I + 0 

j=1 
n 

0 

(i1) and (b) essentially express that {Sn}:=l should increase to one at a 

low enough rate, and a computationally tractible choice is provided by 

1 - n-b with O < b :". 1. 

'I'he analysis of the behaviour of this scheme uses the Laurent series ex­

pansion of the total maximal discounted return vector in powers of (1-S) 

for discountfactors S that are close enough to one (cf. MILLER and VEINOT'l' 

[85]) . 

The scheme eventually settles upon maxima.l. gain policies, and with 

the choice (1.8.10) it can be shown that the ultimate convergence rate is 

O(n-bln n) which is substantially slower than the geometric convergence 

rate we obtained for the ordinary value-iteration scheme (cf. also th. 4. 3 .. 3 

in chapter 4, where a generalization of this scheme is given). 

However the scheme has two very nice characteristics: 

(1) convergence occurs regardless of the chain- and periodicity structure 

of the problem. 

(2) 
N 

For every starting point u(O) EE the scheme converges to the same 

limit vector z* which has the following very important interpretation: 

(1.8.11) 

where z (f) 

max 
fESPMG 

z (f) '' 
1. 

Z(f) [q(f)-g*]. 

i E D 
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* That is, z is the optimal. bias-vector, where the biasvector z(f) of a 

policy f ESP is the second term in the Laurent series expansion of the 

total discounted return vector V(f,S): 

(1.8.12) V(f,S) g(fl + z(fl + 0(1-S), 
1-13 13 + 1 

(cf. BLACKWELL [10] and MILLER and VEINOTT [85]). 

The HORDIJX-TLJMS scheme, however, does not necessarily settle upon 

bias optimal policies i.e. policies which attain the N maxima in (1.8.11) 

simultaneously (cf. chapter 4). 

We next review the bounds that have been derived for the maximal gain 

* * * rate vector g . In the case where g = <g > 1:._, which holds e.g. if all of 

the policies are unichained, these were obtained by ODONI [89] and HASTINGS 

[53] namely: 

(1.8.13) 5 g(f). ,; <g *> 5 [Qx-x] 
l max 

for all x E EN and i = 1, ... ,N and f achieving Qx. 

Moreover both bounds are sharp when x E V. In the context of value•-j_ ter·­

ation (1.8.13) becomes 

(1.8.14) [v(n+1)-v(n)] . 5 <g*> 5 [v(n+l)-v(n)] 
min max 

The bounds move inward (monotonically) as n increases and if lim v(n)-ng* 
n+w 

* exists, the bounds both converge geometrically fast to <g >. 

In the context of the approach under B), the bounds on 

altered as follows (cf. [60]): For l = 1,2, ... 

(1.8.15) 

have to be 

where is any policy which attains the N maxima at the l-th iteration 

* * stage of (1.8.7). Again, whenever gi = <g >, i E Q, will the outer bounds 

* in (1.8.15) converge to <g >. 

Under (UNI) the bounds on the scalar gain rate <g*> have been unac­

companied by corresponding bounds on the deviation of the current vector 

* x from v EV, which in this case is unique up to a multiple of 1:._. In view 

of the latter, this bound should be invariant to a replacement of x by 

x + for some scalar a. The existence of such bounds is also useful for 

demonstrating convergence of this or related types of value-iteration 
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schemes. Specifically, ZANGWILL [133] has sho;m that an iterative scheme 

* x(n+l) = Ax(n) will converge to x if the continuous operator A and a con-

tinuous (Lyapunov) function ¢(x) satisfy: 

( 1. 8 .16) (a) ¢ (x) :?: 0 

(b) q,(x) 0 * if and only if x = x 

(c) ¢(Ax) 5 ¢(x) all x E EN 

(d) for some integer m :?: 1, ¢ (Amx) < ¢ (x), for all x w.ith ¢ (x) > 0. 

* One choice of a Lyapunov function, not computable until v is known, i.s 

(1.8.17) Ax 

* * * X V - V~. 

Condition (1.8.16) (d) may be verified as the scalar gain rate version of 

( 1.6 .19), with m = N2 - 2N + 2 (see above), assuming that J* 1. 

Another choice of Lyapunov function which may be computed while in 

the midst of the value-iteration process is 

(1.8.18) ¢2 (x) = sp[Qx-x] 

* with the same choice of A and x. The conditions (1.8.16) (a)-(c) are 

easily verified while (1.R.16) (d) holds e.g. when every policy in SPMG 

is unichained, and assuming that the data-transformation (1.8.l) and 

(1.8.2) has been applied so as to ensure that J* = 1 (cf. [39]). 

The important new property is that the deviation of v* from x may be 

deduced from ¢ 2 (x) just as (1.2.6) and (1.2.11) were used in the discounted 

case. Specifically, under (UNI) there exists a constant p:?: 0 such that 

( 1. 8.19) * ½¢ 2(x)5sp[x-v ]5p<j) 2 (x) forallxifandonlyif (UR) holds (cf.(1.6.24)) 

* Under (UNI) a unique representation v of v EV can be obtained by 

* * requiring that vN = 0. So far, bounds for each of the components of v 

have only been obtained for the case where every policy is unicha.ined. The 

bounds will be derived in chapter 2, and a.rise by showing that the MOP can 

be transformed into an equivalent one, in which the operator Q, defined by 

-N NI Qx = Qx - [Qx]N.!_ is a N-step contraction operator, on E = {x EE xN = O}. 
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The bounds are of the same type as in (l.2.11) and allow for the derivation 

(although not for the actual computation prior to solving the MDP) of upper­

bounds on the number of iterations needed to have 

(1) 

(2) 

(3) 

S(n) '.:: SPMG' 

* v as a relative value vector v(f) for every policy fin S(n), i.e. 

* * S(n) S S (v ), as well as on 

(4) the length of the tail of an initially stationary (periodic) c-optimal 

strategy. 

All of the bounds in (1)-(4) vary logarithmically with c-l Qx·-x] 

where in (2), c has to be taken~ min{sp[g*-g(f)]I f E Sp, g* > g(f)} and 

* in (3), £ has to be taken~ min{sp[v -v(f)]J f E Sp, sp[v*-v(f)] > 0}. Ex-

cept for the case where every policy is unichained, (cf. chapter 2) and due 

to the lack of bounds on v EV, no tests have been proposed for permanent 

elimination of non-optimal actions. However, a device for temporary elimi-­

tion was recently obtained in HASTINGS [54]. 

Another open question is obtaining a computationally tractible esti·-· 

mate of the size of:\*. Nothing is known with the exception of the above 

mentioned case where SPMG is a singleton and the cases studied by WHITE 

[131] and ANTHONISSE and TIJMS [1] where an-step generalization of the 

* ergodic- (or scrambling-) coefficient provides an upperbound for:\. 

A further problem arises both in approach A) and approach B) due to 

the fact that the sequences generated ({v(n)}:=l and {u(n)}:=l) diverge 

linearly with n. That is, one has to do computations with numbers that 

grow linearly with the number of st.ages needed to come with.in the required 

precision. 

* In case g * <g >l_ the problem can be eliminated using White's proce-

dure, i.e . .in approach A) we generate 

(1.8.20) v(n). = v(n). - v(n)N = Qv(n-1). - Qv(n-l)N. 
l l l 

Then ;(n) ➔ 1.(v(0)) -· <L(v(0))N>l_ EV, and Q;(n)N ➔ </'>,as n + 00 • 

* * In the general mult.ichain case where g ~ <g >1:_ fails to hold, only 

approach A) needs to be considered. The only thing that comes to mind when 

trying to eliminate the above mentioned difficulty is the following: 

Write v(n) = ng(n) + y(n), with 

(1.8.21) g(n) = v(n) - v(n-1) 
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(1.8.22) y(n) = nv(n-1) - (n-1)v(n). 

Observe that the sequence (g(n) }~=land {y(n) }:=l converge to g* and Uv(O)) 

whenever L(v(O)) = lim v(n) - ng* exists. Note in addition tha.t g(n) 
n+oo 

and y(n) can be generated from the schemes: 

(1.8.23) 
k 

g(n+1). = max {q.+n 
l kEK(i) l 

l (P~ .-6 .. )g(n) .+ 
lJ lJ J 

j 

max 
kc:K(i) 

{. k 
q.+n 

1. 
l (P~.-6 .. ) (y(n) .+ng(n) .)}], 

1J 1J J J 

By generating (1.8.23) and (1.8.24) only two hounded sequences of numbers 

have to be stored. Unfortunately, however, this solves our numerical diffi­

culty only partially, since it is still necessary to do computations with 

unbounded terms when determining the right hand sides of (1.8.23) and 

(1.8.24). 

In some cases one may be interested in obtaining (as large as possible 

a subset of) the entire set SPMG' so as to make further selections on the 

basis of additional criteria. 

In section 7 we discussed the irregularities that may appear in the sequen­

ces of policies generated by the value iteration method (and which are iden­

tical both in approach A) and B)) . 

Th.1.7.1. showed that s*(L(v(O))) can be obtained by keeping track of the 

sets {S(n,E )} 00 

1 , and 
n n= 

the same way, provided 

* * in approach B) , S (z ) can be computed in exactly 

{En}:=l is chosen to decrease to Oat a rate which 

is slower than the convergence rate of {u(n)}~=l· That is, with the choice 

(1.8.10) for {Sn}~=l' choose 

(1.8. 25) ➔ 00 

Le. take n 
-b/2 

1 . 9 . MARKOV RENEWAL PROGRAMS 

In this section, we consider the more general class of Markov Renewal 

Programs (cf. [23], [69]) in w.hich the times between two successive tran­

sitions of state are random variables, whose distributions depend both on 
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the current state and the action chosen. Let T~. ~ 0 for i,j Erl; k E K(i) 
lJ 

denote the conditional expected holding time in state i, given the action 

k E K(i) is chosen and that state j is the next state to be observed. We 

assume that the unconditional expected holding times: 

( 1. 9 .1) 
k 

T. 
l 

l:.P~.T~.>0 (iErl;kEK(i)) 
J l] lJ 

For each policy f E SR, q(f) and P(f) are defined as in section 2, 

whereas g(f)i denotes again the long run average return per unit time, when 

starting in state L We recall that g(f) is given by (cf. e.g. lemma 1 in 

DENARDO [22]): 

(L9.2) 

with 

g(f). 
l. 

i E rJ 

Next, we define for each policy f E SR' the holding time vector T(f): 

(L9.3) 

Finally we call to mind that in this model the optimality equations (1.4.14) 

and (1.4.15) have to be altered as follows: 

(1.9.4) i E rJ 

(1.9 .5) maxk ('){q~ - I. P~. T~. g. + I. P~. v.}, 
EL l l. J l.J l.J J J l] J 

i E rJ 

* with L(i) defined as in (1.4.16). In addition the vector g and the sets 

SPMG and SRMG are defined as in section 4, where the non-emptyness of these 

sets in the MRP-model was shown in [69]. Again (1.9.4) and (1.9.5) always 

* have a solution pair, and again each solution pair (g,v) has g = g, the 

N * maximal gain rate vector (cf. [23], and [109]). Redefine v~ {vE E I (g ,v) 

satisfy (1.9.4) and (1.9.5)}. The properties of V, and the correspondence 

between SRMG and V, as mentioned in section 4 hold unaltered for the gen­

eral MRP case. 

Both the Policy Iteration Algorithm and the Linear Programming Ap··· 

proaches which were originally developed for MDP's have been adapted for 

the more general MRP-model (cf. e.g. [23]). To obtain a successive approx­

imation method for undiscounted MRP's, two data-transformations have to be 
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applied: 

We first observe from (1.9.2) that the gain rate vectors g(f) depend 

on the quantities Tk only through the unconditional holding times T~. As 
ij l 

a consequence, we conclude that every MRP is transformed into an equivalent 

one, by replacing T~. = T~ (i,j E fl; k E K(i)). In this context we define 
lJ l 

two und.iscounted MRPs to be equivalent, if 

(1. 9.6) (EQUI) they have the srune state and action spaces, and i.f the 

gain rate vector of any pol.icy (and hence the maximal gain rate 

vector) in the two models merely differs by a multiplicative 

constant. 

Note that two equivalent MRPs share the same set of maximal gain policies. 

Carrying out the above tranformation, we obtain the following pair of op­

timality equations: 

(1. 9. 7) i E (l 

( 1. 9. 8) } ' .i E ll. 

Let V be the set of solutions to (1.9.8). 

Next, we recall the following generalization of the data-transforma­

tion (l.8.1) and (1.8.2) (cf. [108], [38]): 

(1. 9. 9) 

~k 
T. 

l 

k k 
CT q,/T, , 

l 1. 

+ T(P~ .... o .. )/T~, 
lJ lJ l 

1' 

i E (l, k E: K(1} 

i E ll, k e K(i} 

i E St k E K(i) 

where CT> 0 and T has to be chosen such that 

(L9.10) 0 < 
k min{T./( 
l 

.. ) I (i,k) 
ll 

with Pk. < 1 } . 
1.1. 

·~ N -1 --. Using the proof of lemma 1. 8. 1, one verifies that again V = { v E E I o T v E VI 

is the set of solutions to the optimality equation (1.4.15) in the trans­

formed MDP, and that every policy f has g ( f) = og ( f} as its gain rate vector 

in the transformed model, i.e. the original MRP and the transformed MDP are 

,equivalent (cf. ( l . 9. 6) ) . Hence, the cho:Lce CJ T leads again to V = V and 

"" Tg* and the choice CJ 1 leads to V = {v E e1'.J[ T v EV} and;:( g*. 

By choosing T strictly less than the upperbound in (1.9.10) the same 
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transformation ensures, that every policy in the transformed MDP is ape­

riodic, such that the value-iteration method is guaranteed to converge for 

any starting point, with all of the nice consequences that were exhibited 

above. 

As a consequence, applying value-iteration to the transformed model 

will yield us the maximal gain rate vector, maximal gain policies as well 

as a solution to the optimality equations (1.9.7) and (1.9.8). However, it 

won't be possible in the general multichain case to find a solution to the 

optimality equations ( 1. 9. 4) and ( 1. 9. 5) of the original MRP--model, using 

a single successive approximation scheme. 

This is due to the fact that there does not need to exist a clear 

relationship between the sets V and V (as opposed to the one pointed out 

- ~ * between V and V). Only in case g <g _!_, do the pairs of equations 

(l.9.4)-(1.9.5) and (1.9.7)-(1.9.8) and hence the sets V and V need to 

coincide (cf. (l.9.1)), as is pointed out by the following example: 

Example 3. 

k 
k k Pk k 

i Pil pi2 i3 qi 

0 0 -1 
k 1 1 

2 1 5 0 .5 0 T .. = 
1.J 

1, except for T21 '? f T2J 

2 0 0 0 with 1 3 
•5 (T21+T23) 1. 

3 1 0 0 

* * Note that g = (-1,0,1); K(i) = L(i) for all i En and R 

V and V are given by the half spaces: 

V 

V 

n. verify that 

In case T; 1 < T23 Vis a strict subset of V and vice versa for the case 
1 1 . 

T21 > T23 . Note that V and V do not even need to coincide in the components 

* * that lie within R, as state 2 belongs to R 

Whereas in general, no method has been obtained to find a solution 

v E V via a sing.le successive approximation scheme, it will be shown in 

chapter 4 that this objective can be achieved, employing a pair of simul­

taneously generated schemes. 





CHAPTER 2 

Contraction mappings 

underlying undiscounted Markov decision problems 

2.1. INTRODUCTION AND SUMMARY 

We pointed out in chapter 1, that the value-iteration operator Qin 

undiscounted MDPs, is non-expansive (cf. (1.4.1)) and in addition has the 

property (l.4.2): 

(2 .1.1) Q(x+c.!_) = Qx+c.!_, for all XE EN and C E E1 . 

In view of (2.1.1) Q can never be a contraction mapping on EN, or a 

J-step contraction mapping for some integer J 2 1, where the latter is de­

fined as follows (cf. e.g. DENARDO [20]). 

(2 .1. 2) Let X be a nonned vector space; an operator A: X ➔ Xis a J-step 

contraction operator, if and only if there exists a scalar p, 

0 < p ,; 1. such that for all x, y E X: IAJx - AJyl ,; (1-p) !x-y!, 

where I is the norm on X. 

The fact that Q can never be (J-step) contracting on EN (for some 

J 2 1) may e.g. be verified by noting that the operator never has a unique 

fixed point in view of (2.1.1). 

This constrasts with what is known to be the case in the substochastic 

or discounted case where 1 . P~. < 1 (i E n, k E K(i)) (cf. section 2 of 
LJ lJ 

chapter 1, as well as DENARDO [20]). 

It should be pointed out that the fact whether an operator A, as de-

fined in (2.1.2) is J-step contracting for some J 1,2, ... , is independent 

of the norm chosen on X as may easily be verified using the fact that any 

two norms !xi and !xi' are equivalent in the sense that there exist finite 

constants Kand K' such that !xi ,; Klx\' and Ix!' ,; K' Ix! for all x E EN 

( cf. COLLATZ [15], § 9. 2) . ( 2. L 1) suggests considering the following equiv­

alence relation on the N-dimensional Euclidean space EN: 
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(2 .1. 3) x - y _., there exists a scalax c such that x = y+c_1:_. 

Let EN be the quotient space which is generated by this equivalence rela­

tion, and note that EN is a (N-1-dimensional) vector space, with the con­

ventional addition and scalar multiplication. Note that the sp[ ]-norm, 

defined by (1.2.16) which is a quasi-norm on EN, is a real norm on EN. As 

a consequence we endow EN with this sp[ ]-norm. 

Let Q: EN -+ il denote the reduced value·-iteration opera.tor i.e. Qx 

denotes the (unique) representation of Qx within i::N. Example 1 below shows 

that Q is sometimes a contraction mapping on EN, or in other words Q may be 

contract.i.ng with respect to the sp[ ]-"norm". On the other hand, example 2 

shows that the combination of the (UNI)-condition (whi.ch is the necessary 

and sufficient condition for v E V to be unique up to a multiple of J) and 

the (GC)-condition (which is the necessary and sufficient condition for 
n *·oo N {Q x-ng }n=l to converge for all x EE) is in itself insufficient for Q 

to be (,J-step) contracting (for some J 2'. 1). 

We first define for a.ny NxN-matrix A: 

(2 .1.4) 

Also, for any real number a, define a+= max(a,0) and a min(a,0), (with 

EXAMPLB 1. Let S = [f} where P(f) is uni.chained and aperiodic. Verify that 

IIP(:f)n-H(f)llsp[x-·y] S K;\n sp[x-y], for some K > 0 and OS !c < 1. The second 

equality follows from TI (fl (x-y) being a multiple of l_ and the second in­

equality may e.g. be found on p.131 in [67], whereas the first inequality 

follows :from the property 

(2,1.5) sp[Ax] S IIAllsp[xl, for any matrix A= [a .. ] with Al= 0; x 
lJ 

l + 
To verify (2 .1. 5) note, using the identi tv . a .. 

" .J lJ 
follows from Al= 0, that: 

sp[Ax] maxi nj 
+ 

Ij x . } -min . O: . = a. X, + a .. 
ij J ij J l J 

+ 'i. a. X. + a. 
ij J J ij 

N 
E 

X.} 
J 

maxi{lj 
+ 

xmax + lj <j xmiJ·-mini {Lj a+.x. +I.a:·.x } <; a. 
ij l] IDl.n J lJ max 
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Let Lj a;j maxi Lj a;j. Then, 2 maxi Lj a:j = lj a;j - Lj akj 

Lj (a;j-a~j) lj lakjl <::[!All (cf. (2.1.4)) whichcompletestheproofof 

(2 .1.5). 

As an even sharper result, one can show that in this case Q is J-step 

contracting for some J <:: ½N (N-1) as a result of P (f) n being scrambling for 

all n ee ½N(N-1) (cf. th.4.4 on p.89 in SENE'I'A [113]), where the scrambling 

notion and its implications will be discussed in section 3. 

EXAMPLE 2. 

i k 

1 1 1 0 0 

2 1 1 0 0 g* [O,O], hence K(i) =L(i) for all i Ell. 

2 0 1 -· 1 

Note that (GC) (cf. th.1.5.1) is satisfied in view of every policy being 

aperiodic (cf. th.1.5.2 cond. (IV)). In addition, it is directly verified 

that V = {cl_ I c E E1 } which implies that (UNI) is satisfied as well (cf. 

(1.4.20)). Take x = [O,X] and y = 0. Note that 

[0, max(0,X-n)] and Qny = 0 for all n 

J n n 
? SUP ~p[Q u-Q v] 

-l sp[u-v J 

n n 
? lim sp[Q x-Q tl = lim 

X➔oo sp[x-y] X➔oo 

(cf. also section 7 of [111]). 

max(0,X-n) 
X 

0,1,2, ... i.e. 

for all n 1,2, ... 

In this chapter we give (both necessary and sufficient) conditions for 

the Q-operator to be a J-step contraction mapping for some J = 1, 2,... . The 

identification of these conditions is of particular importance since with 

Q being contracting, the geometric convergence result of value-iteration, 

as discussed in section 6 of chapter 1, and which in the general case re­

quires a complicated analysis, is straightforward (cf. theorem 2.2.1), and 

in addition the contraction-property may be exploited in order to obtain: 

(1) a lower bound for the convergence rate of the value iteration method. 

(2) Upper and lower bounds, as well as variational characterizations for 

* the fixed point v of the functional equation (1.4.15) which in this 
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case is unique up to a multiple of 

is unique). 

(i.e. its representation in EN 

(3) A test for eliminating suboptimal actions in the value-iteration method. 

As necessary conditions we obtain some important charaterizations with res­

pect to the chain- and periodicity structure of the problem. In addition 

we present a general sufficient condition of a "scrambling" type (cf. [ 1 J, 

[51]) which encompasses a number of important and easily checkable condi­

tions. We note that in [86] a special case of this "scrambling-type" con­

dition was used to prove the convergence of the relative cost differences. 

In section 9 of the previous chapter, a data-transformation (cf. (1.9.9)) 

was presented which turns every undiscounted Markov Renewal Program into 

an "equivalent" undiscounted MDP. In addition the transformed problem has 
n * oo 

every policy aperiodic so that the (geometric) convergence of {Q x-ng }n=l 

is guaranteed for all x E EN, i.e. J* = 1 or (GC) is satisfied. In section 

3, we show that for unichained MRPs, this data-transformation has the con·­

siderably stronger property of turning the MRP into an equivalent MDP, in 

which the value iteration---operator is at least N-step contracting with all 

of the nice consequences mentioned above. These results are obtained by 

showing that the transformed problem satisfies the above "scrambling--type" 

condition. The results in this chapter are based upon FEDERGRUEN, SCHWEITZER 

and TIJMS [43]. 

2. 2. NECESSARY AND SUFFICIENT CONDITIONS FOR Q TO BE A (,T -S'I'EP) CON'I'RACTION 

MAPPING, AND SOME OF ITS IMPLICATIONS 

Before studying necessary and sufficient conditions for Q to be a 

J-step contraction mapping for some J = 1,2, ... , we first show that the 
n * co N 

geometric convergence of the sequence {Q x - ng }n=l for all x EE is 

straightforward when i/ is a contraction mapping. We first formulate and 

prove this result with respect to the T--operator (cf. ( 1 . 6. 3) ) . The corres­

ponding property for the Q-operator then follows from corollary 2.2.3 below. 

THEOREM 2.2.1. (Geometric convergence of value-iteration) 

Let T be a J-step contraction operator on EN, for some J = 1,2, ... and some 

contraction .Eactor O < p 5 1 (cf. (2. 1. 2)) . Then, for each x E EN, the:re 

exists a (x) E V such that for al.I i E D, 

(2. 2 .1) * b n o -(nJ+r)g_ -v.J 5 (1-p) sp[x-v ]; n = 1,2, ... ; r 
.1. J. 
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PROOF. Fix x E EN and v EV. For all n = 0,1,2, ... , let e(n,x) =Tnx-ng*-v. 

Then e(n,x) = Tnx-Tnv as follows from a repeated application of (1.6.4) and 

(1.4.15). From the non-expansiveness of the Q- and T operator (cf. (L4.1)), 

follows for all n ~ 1: 

(2 .2. 2) 

hence {e(n,x) }00 

1 [{e(n,x)} . } is monotonically non-increasing [non-
max n= min 

decreasing] to some limit t (xfl- [ t (x) . But 

nJ nJ -nJ -nJ . n [ 
0C".sp[e(nJ,x)]=sprT x-T v]=sp[T x-T v]5{1-p) spx-v],asn--xo 

hence t(x)+ - t(x) limn--xo sp[e(nJ,x)] = 0, so t(x)+ = t(x) t(x). Thus, 

limn--xo e(n,x) = t(x)l_ and limn--xo 'rnx - ng* = v + t(x)l = v0 (x) EV. 

Finally use the fact that for all n = 1,2, ... and r = O, ... ,J-1: 

e(nJ+r,x) . - t(x) 5 0 5 
min 

nJ+r * 0 
s e (nJ+r ,x) max - t (x) = ['l' x - (nJ+r) g - v (x) ]max 

just as the fact that x. s Os x implies llxll s sp[x], to obtain 
min max 

nJ+r * 0 nJ+r ,, 0 nJ+r nJ+r 0 II T x- (nJ+r) g -v (x) II s sp[T x- (nJ+r) g -v (x)] =sp[T x-T v J 

n 0 
s (1-p) sp[x-v ]. D 

We next introduce two conditions with respect to the chain- and periodicity 

structure, both of which appear as necessary conditions for QJ or TJ to be 

a contraction operator (for some J = 1,2, ... ). 

'l'here exists a randomized aperiodic policy f E SRMG' whcih has as 

its single subchain. 

A2 : There exists a randomized aper.iodic policy f E 

single subchain. 

which has Ras its 

Note that and A2 strenghten the conditions (UNI) and (UR) that were intro-

duced in sections 4 and 6 of the previous chapter by requiring the policy 

f to have the additional property of aperiodicity. The following statements 

are equivalent formulations for both A1 and A2 , which are expressed in terms 

of the structure of the finite set of pure (maximal gain) policies only (cf. 

corollary 3.3 in 109] and th.3.1 part (c) in [110], and observe that SR 
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appears as the set of all maximal gain policies, when taking all q~ 0): 
1 

A'. Let c* = {c :c: (l l C is a subchain for p (f) f for some f E s } 1 . PMG 
Then (a) for any pair c, C' E c* there exists {c (1 l C, C (2) ' ..• ' I 

c(n) = C'} with C (i) 
E c* and c(i) n c(i+l) i 0 (i = 1, ... ,n-1 l 

(b) the integers which appear as the period of some subchain of 

some policy in SPMG' are relatively prime. 

Let C {c :::. rl l C is a subchain for P (fl, for some f E Sp} 
- . (1) (2) (n) 

'Ehen (a) for any pair C, C' EC, there exists {c =C, C , ••• ,C 

= C'} with c(i) EC and c(i) n c(i+i) i 0 (i = 1, ... ,n) 

(b) the integers which appear as the period of some subchain of 

some policy in SP, are relatively prime. 

We note that whereas part (bl of A1 implies part (b) of A2 the parts (a) of 

A1 and A2 are mutually independent. In addition, we remark that more e.f.f.i­

cient procedures have been established to verify A1 and A2 (or alternatively 

Ai and A2). (cf. l109] and [1101). 

THEOREM 2.2.2. (Necessary conditions for T to be a contraction mapping). 

Let T be a J-step contraction mapping on il for some J = 1, 2,... (cf. 

(2.1.2)). Then 

(1) v EV is unique up to a multiple of.!_, i.e. (UNI) holds 

(2) * * gi = g for all i Erl; hence L(i) = K(i), for all i E Q and Qx 

for all x E EN. 

'I'x 

PROOF. Let v 0 , v 00 E V. By a repeated application of ( l. 4, 15) , we obtai.n, 

using ( 1 . 6. 4) : 

hence 

00 * 
V +Jg. 

which implies sp[v0 -v00J = 0, or v E V is unique up to a multiple of 1. 

This condi ti.on in turn, is equivalent with the existence of a pol.i.cy 

* f E SRMG' which has R as its single subchain Le. with (UNI) (cf. section 

4 of chapter 1) . 

Condition A1 , Le. the fact that even aperiodic policies can be found 
n * oo 

with this property, then follows from the convergence of {T x ·- ng \i=l 



for a.11 x E EN (cf. theorem 2.2.1, using th.5.4 pa.rt (b) a.nd th.3.1 part 

(f) of [110]). The existence of a unichained maximal ga.in policy in turn 

implies part (2) of the theorem. 

Next, assume to the contrary that A2 does not hold. State i is said 
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to reach state j, 

such that P (f) ~. 

if there exists a policy f ESP, and some integer r? 0, 

* * 
J.J 

> 0. Let f be a.ny randomized policy which has fik > 0 

for all i E ~, k E K(i). We claim 

(2 .2. 3) there exists a pair of states j 1 , j 2 ER such that j 2 does not 

reach j 1 . 

For assuming the contrary of (2.2.3) would imply that all states in 

R communicate with each other under P(f*), i.e. R(f*) R, in view of 

R(f*) ~ R, following from the definition (1.4.13). This contradicts our 

* assumption that A2 does not hold, since in this case P(f) has to be ape-

riodic. To verify the latter, fix an aperiodic maximal gain policy h, the 

existence of which was shown above. Let i E R(h) ~Rand note that 1 ~ 

greatest common divisor (g.c.d.){n!P(f*)~. > O} ~ g.c.d.{n!P(h)n. > O} = 1, 
ll ll 

where the last equality follows from the aperiodicity of h (cf. [71]), and 

where the second inequality is due to {n!P(f*)n > O} ::: {njP(h) 1:. > 0 
ll 

the latter following from the definition of 

Hence, P(f*) is aperiodic, thus completing the proof of (2.2.3). 

Next, fix a policy f 1 ESP with j 1 E R(f 1) and let C be the subchain of 

P(f1 ) which contains j 1 • Obviously j 2 does not reach any one of the states 

in C. Next choose x E EN such that x. = A>>l for i EC a.nd x. = 0(1) other-
l l 

wise, where 0(1) denotes any bounded term in A. Let v 0 satisfy (1.4.15). 

Since 

and since C is a subchain of P(f1), we have for each J 2 1, 

for i E c. 

J 
Since j 2 cannot reach C, we have (Tx) ~ = 0 ( 1) and so (T x) 01 

J2 -2 
Finally observing that = 0(1), we have 

sp[TJx - TJv0 J :\+0(1), 

whereas 

sp[x - v0 J A+ 0(1) 

0 (1). 
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as well. Conclude that for each J 2 1, 

sp[TJx-TJv0 J 
2 lim ~-----­

;\-+-00 sp[x-v0 J 

U 1 V E 

1 ' 

EN with sp[u-v] > O} 2 

thus contradicting the fact that Tis a contraction mapping. This proves 

A2 by contradiction. D 

COROLLARY 2.2.3. Fix J = 1,2, ... 

(1) Q .is a J-step contraction operator -N on E I for some contraction factor 

p > 0 (cf. (2.1.2)) if and only if 

(2) 'I' .is a J--·step contraction operator on EN, for some contraction factor 

p > o. 

In add.ition both ( 1) and (2) imply that the Q- and 'I'-operators coincide 

PROOF. 

(2) 

( 1) 

(1): follows from theorem 2.2.2 since condition (2) implies Q = T. 

(2): we recall that the Q operator reduces to the T operator as 

follows, 

for each x E EN there exists a scalar t 0 (x), such that 

Qn(x+tg*) ~, Tn(x+tg*) for n = 1,2, ... and t 2 t 0 (x) 

the proof of which is easy and may be found in lemma 2.2, part (g) of [111]. 

Next, assume to the contrary, that there exist two vectors x,y c 

that 

> ( 1-p) sp[ x-y J . 

Let t ? max{ t 0 (x) , t 0 (y) } and observe, using ( L 6 .4) , that 

) 1 

J J 1 * = sp[T x - Ty]> (1-p) sp[(x+tg') - (y+tg )], 

thus contradicting condition ( 1) . D 

, such 

REMARK 1. If Q (or T) is a J-step contraction operator on , with contrac-

tion factor p, then in the geometric convergence result achieved in theorem 



55 

2.2.1, an upper bound may be obtained for the number of steps J needed for 
2 

contraction, i.e. there exists an integer M s N - 2N + 2 and a number A, 
M/J N . o o 

with O s :\ s (1-o) such that for each x E E , there exists a v =v (x) EV 

with 

n = 1,2, ... ; r = O, ... ,M-1; i E: a. 

The upperbound on M holds whenever condition Al is satisfied, as was pointed 

out in (1.6.25) and we know from th.2.2.2 that Al holds whenever Q is a 

(J·-step) contraction operator. 

In addition the upperbound on Mis at least sharp up to a term of the 

order O(N) as has been demonstrated by example 2 in [111] (cf. also section 

6 of chapter 1). One may verify that in this example, the Q-operator is a 

contraction operator. 

we next introduce a general "scrambling type" recurrency condition 

under which the Q-operator will be shown to be a. contraction operator (cf. 

also [ 1], . [ 51]) : 

(S): there exists an integer J ?: 1, such that for every pair of J·-tuples 

of pure policies (f1 , ..• ,fJ) and (h 1 , ... ,hJ), 

(2 .2 .4) .; P(h ) ... P(hl) .. J > O; for alli1fi2Ea. 
J J l2J 

Note that if (2.2.4) holds for some integer J?: 1, then it equally holds 

for any integer m?: J (cf. e.g. the proof of lemma V. 2.3 in [67], or lemma 

3. 3 . 2 part (b) ) . 

Theorem 2. 2 A below shows that this condition (S), encompasses a number 

of important and easily checkable conditions. 

THEOREM 2.2.4. The following conditions are special cases of condition (S), 

(1) Ij 
kl k2 

0 f K(i 1), min(P .. , P .. ) > for all il i2 and k 1 E 
llJ l J 2 

k2 E K(i 2) . 

(2) There exists a state s and an integer V ?: l., such that 
1 V 

0 
1 2 v 

(cf. [131]). P(f ) ... P(f ) . > for all f ,f , ... ,f E: s . i E a WHITE 
lS p' 

(3) Every policy is unichained; there exists a state s E: " which is recur-

rent under every policy, and.Pk > 0 for all k E K(s). 

(4) Every policy is uni chained 
ssk 

K{i.). and P .. > 0 for all i E: a, k E 
ll 
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PROOF. (1) => (S) with J = 1; (2) => (S) with J = v, was shown in [131]; 

(3) => (2) with v = N - 1, was shown in [1] th.2. (4) => (S): Fix two 

sequences of policies (fN, ... ,f1) and (hN, .•. ,h1 ) and i 1 , i 2 ED with 

i 1 t- i 2 . Let 

S(n) ={j{P(f 1) ••• P(f ) .. >O}and W(n) ={j!P(h1) ••• P(h ). , > O}. 
ni1J ni2 J 

Note that, in view of P~. > 0 for all i En, k E K(i): 
].]. 

(2.2.5) S(n+l) ~ S(n), W(n+l) ~ W(n) n = 1,2, •.. 

Thus assuming to the contrary that S(N) n W(N) =~.it follows that 

S(m) n W(m) ~. for all O $ m $ N. Together this result and the fact that 

S(k) u W(k) is nondecreasing ink, implies for some m < N, S(m+i) = S(m) 
* • . and W(m+l) = W(m). Letting f be any policy such that f (1) = fm+l (1) for 

i E S(m) and f*(i) hm+l (i) for i € W(m), we then have that both S(m) and 

W(m) are closed sets of states for P(f*). This contradicts the unichained­

ness of P(f*) and so S(N) n W(N) is non-empty. 

REMARK 2. Observe that condition (1) requires each P(E), f E Sp, to be 

scrambling (cf. e.g. [51]). In addition we note that conditions (1), (2) 

and (4) are mutually independent. To verify that (2) =f:,> (1), and (2) -=/=-> (4), 

consider an example in which SP= {f}, with 

P(f) = I~ 
which satisfies (2) with v = 2 (where a* indicates a positive entry). Next, 

the example in which Sp= {f1,f2} with 

P(f1 ) = I:*· 
0g 0:1 and 

satisfies (1) but not White's condition, nor (4). Finally, the example with 

SP= {f} and 

P(f) 1; : ~., 
10 0 

shows (4) =f=.> (1), whereas (4) =f=.> (2) follows from the fact that (4) 

includes cases where no state is recurrent under every policy. Finally 



observe that condition (S) requires each policy to have a unichained and 

aperiodic tpm. 
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Finally we note that (S) is not necessarily satisfied, in case there 

is an integer J? 1 such that for all fJ, ... ,f1 ESP the stochastic matrix 

P(fJ) ... P(f1) is scrambling, where a stochastic matrix P 

is said to be scrambling if: 

l~-l min[P .. ;P, .] > O 
J- 11] l2J 

This can be verified from the example in which SP= {f1,f2 } with 

* 
* 
0 

Verify that, the product matrix of the tpm's of any triple of policies is 

scrambling. However for any h 2 1, ,~ * ~I· 2 
P(f. ) ... P(f. )P(f 1 ) P(f 1 ) * and 

11 1t * 

2 1: 0 :I P(f. ) ... P(f. )P(f 1 ) P(f2 ) 0 
11 lh I* 0 

which shows that (2.2.4) can't be satisfied for any J? 1, Le. (S) does not 

hold. 

Theorem 2.2.5 below shows that condition (S) is sufficient for Q to 

be a (J-·step) contraction operator: 

THEOREM 2.2.5. Condition (S) is a sufficient condition for Q to be a 

(J-step} contraction operator on EN. 

PROOF. The proof of this theorem is related to the one of th.1 in [1]. 

First, define 

(2 .2 .6) a= min{}'. min[P(f) ... P(f1) .. P(h ) ... P(h 1 ) .. J 
"J J llJ; J 12] 

i 1 ,i2 with i 1 f' i 2 , fk, hk (1 s ks J)}, 

where CJ. > 0 follows from (2.2.4) and the fact that in (2.2.6) the minimum 

is taken over a finite number of combinations. We shall prove that, 



58 

(2. 2. 7) 
J J J J 

(Q x-Q y)i - (Q x-Q y)t s (1-a) sp[x-y] for all i, t En. 

The theorem clearly follows from (2.2.7). The inequality in (2.2.7) triv­

ially holds when i = t. Fix now i ,f. t, and let 

and 

Next introduce the shorthand notation, 

S. = P(fJ) ..• P(f 1 ) .. 
J . lJ 

and 

Using the fact that 

\ + \" -L.a. := -l.a,, 
J J J J 

if I a = o j j • 

as well as the fact that (a-b)+ = a - min(a,b), we obtain 

'.[S.-y.J"t- (x.-y.) + '.[S.-y.J-(x-y). s (x-y) \"J,[S __ J· 
LJ J J J J LJ J J J max L 

= [1-Z.min(B.,y,)] sp[x-y] s (1-a) sp[x-y]. D 
J J J 

2.3. ON TRANSFORMING UNICHAINED MARKOV RENEWAL PROGRAMS INTO EQUIVALENT 

AND CONTRACTING MARKOV DECISION PROBLEMS 

In this section, we consider the more general class of Markov Renewal 

Programs, as introduced in section 9 of chapter 1. It was pointed out in 

t . 9 f h 1 h b 1 ' -k k ( · ' ' k ( ·)) d sec .i.on o. c apter tat y rep acing T .. = T. i,J c: ,I, c: Ki , an 
lJ l 

by applying the data-transformation ( l. 9. 9) with the choice a •-0 1, our MRP·-

model will be transformed into an equivalent undiscounted MDP-problem where 

the equivalency between two undiscounted MRPs was defined by (EQUI) in 

(1.9.6). 

Let Q be the value-iteration operator in this transformed MDP. It was 

pointed out that, by taking Tin (1.9.9) strictly smaller than the upper-

{~n *}"' bound given in (1.9.10), Q x-ng n=l converges geometrically fast to a 
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solution v EV, i.e. for each x E EN, there exists a vector L(x) EV, and 

numbers K = K(x), 0 s ;\ < 1, such that: 

II ;tx - ng * - L (x) II < K ;\ n, n 0, 1,2, •.. 

This shows that, by applying the above data-transformation, and by 

subsequently doing value-iteration with respect to the transformed MDP, 

* we find sequences which approach g and some v EV; moreover, it follows 

from a generalization of ODONI [89] and from the fact that the original 

MRP and the transformed MDP are equivalent, that any policy which is gen­

erated by the value-iteration scheme after a large enough number of iter­

ations is maximal gain (in the original MRP). 

We henceforth assume condition (U) to hold 

(2.3.1) (U): every pure policy in the MRP is unicha.ined, i.e. n(f) 

f E Sp. 

* 

1 1 

* We note that under (U), g <g >land as a consequence V 

1. 9) . It thus follows that under ( U) , T L (x) E V, for all 

V (cL section 

x E EN, so that 

the above described value iteration method will yield us in addition a 

sequence converging at a. geometric rate towards a solution of the optimal­

ity equation in the origina_l MRP. 

We next make the important observation that, with T chosen strictl.y 

less than the upperbound in (1.9.10), the Q-operator satisfies condition 

(4) of th.2.2.4, and as a consequence has the considerab_ly stronger prop­

erty of being J-step contracting for some J s N (cf. th.2.2.5), where the 

fact that J can be chosen _less than or equal to N fo-2-lows from the proof 

of th.2.2.4. 

Note that since the \'!-operator is contracting under (U), v EV 

is unique up to a multiple of 1:._ (cf. th.2.2.2), and in view of 

V = V = {v E EN T EV}, we have that v EV is unique up to a multiple 

of 1 as well. As a consequence the representation v* of v EV, in EN is 

unique. In the remainder of this chapter, we will show that for unichained 

MRP's the above data-transformation and the resulting contraction property 

of the operator Qin the transformed M.DP may be exploited, in order to 

(a) 

(b) 

(c) 

-* find lower and upper bounds for v 

-* derive variational character.izations (extremal principles) for v 

der.i.ve a test for eliminating nonoptimal actions. 
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-* To our knowledge, these bounds for v are the first one obtained in un--

discounted MRPs. 

We will use the following representation of EN (cf. section 2.1): 

EN {x E EN xN = O} so that the reprsentation of a vector x E EN in EN 

is given by x, with xi= xi - xN, i Eu. Note that since xmin SOS 

for all x E EN 

(2.3.2) ttitt s sp[i] = sp[x]. 

X ' max 

For ease of presentation, we first discuss the above topics for the dis­

crete time MDP as considered in section 2.1.. 

THEOREM 2.3.1. Consider the MDP value iteration operator Q. Define Q as 
-N - N -N ·-

the reduction of the operator Q to E , i.e. Q: E ➔ E with Qx = Qx-[ Qx]Nl_. 

Assume that Q .is a (J-step) contraction operator (for some J 2: 1) on EN, 

with contraction factor p > 0 (cf. (2.1.2)). 

Fina.l.ly, .let ;;* be the unique fixed point of Q on EN, i.e . .let ;/ 

be the unique representation of v E V in EN. 

(a) (Upper and .lower bounds) 

For a.11 x E EN, n 2 O, i E u and O s r s ,J-1: 

-nJ+r -1 n J -
Q x.-p (1-p) sp[O x-x] 

]_ ~ 
* S V. 
]_ 

-nJ+r -1 n J 
s Q xi+p (1-p) sp[Q x-xJ 

and, for v EV 

-1 n [ J ] s p (1-p) sp_Q x-x 

(b) (A.lternative elimination) 

If for some x E EN, some state i Eu, and some action k E K(i) 

(2. 3. 3) 

then k does not satisfy the maximum in the optimality equation ( .4.15) i.e. 

k is non-optimal. 

PROOF. '1'he proof of part (a) goes along lines with the one given for lemma 

1.2.L 

(a) Using the cont:i.nuity of the sp[x]-norm on EN, the fact that g* = <g*>l_, 

as well as (2.3.2) we obtain: 

1
-nJ+r 
Q X. -

l 

*I <_ nJ+r mJ+r sp[Q x - lim{O x - (mJ+r)g 
nr*"" ~ 
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too 1 J+r r 
s lt=n(1-p) sp[Q x - Q xJ 

-1 n J-
s p (1-p) sp[Q x - x] 

where the last inequality uses (1.4.1). This verifies part (a). 

(bl 
* J J-1 

It follows from the proof of theorem 1 of [89] that <g > z (Q x-Q x)min 

Suppose alternative k E K(i) which satisfies (2.3.3), attains the max­

imum in the optimality equation (1.4.15). Note from corollary 2.2.3 

that the Q-operator and T-operator coincide. Then, using part (a) and 

* the fact that v EV, we have 

-* -* * z (x-v) . - (x-v) + g 
min max 

-1 J J J-1 
z -p sp[Q x-x] + (Q x-Q x)min" 

REMARK 3. The reduction of the Q-operator to :il, was first used in White 

[131], in order to ensure the boundedness of his value-iteration scheme. 

-* The lower- and upper bounds for v are in fact generalizations of the lower-

and upper bounds obtained by MACQUEEN [81] and PORTEUS [94] for discounted 

MDP's (cf. lemma 1.2.1). Note that our bounds with n = 0 coincide with the 

analogue of MacQueen's bounds, whereas the analogue of Porteus' bounds is 

obtained by taking n = 1. 

We now return to the general MRP-model. By using the above data-·trans­

formation, and by applying th.2.3.1 to the transformed MDP, we obtain upper­

and lower bounds as well as variational characterizations for each of the 

components of , and in addition a test for eliminating non-optimal actions. 

COROLLARY 2.3.2. Consider a unichained MRP. Pix O<T<min{T~/(1-Pk.) [ (i.,k) 
l ll 

with P~. < 1}. Let Q be the value-iteration operator .in the transformed MDP 
ll 

(c.f. section 1.9). Next, let Q be the reduction of Q to il, i.e. Qx=Qx-[Qx]Nl_ 

for all x E EN. F'inal.Iy, let p be the (N-step) contraction factor of the 

operator Q (cf. 

satisfies 

·-* -* (2.1.2) and th.2.2.4). Then, the unique v EV, with vN=O, 
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(a) 

(b) 

·-nN+r -1 n ~N -i * -nN+r -1 n ~N 
Q x.-p (1-p) sp[Q x-x] <; T v. <; n x.+P (1-p) sp[Q x-x] 

* V. 
l 

l l ~ l 

0,1, ... ; r = 0, ... ,N-1; i E Q 

-nN+r -1 n "''n Truax N {o ·· ·x - p (1-p) sp[Q x-xJ} 
XEE - i 

i E Q; n = 0,1, ... ; r = 0, ... ,n-1. 

(c) If for some x E EN, some state i En, and some action k e K(i) 

then k does not satisfy the maximum in the optimality equation 

(1. 9. 5). 

The variational characterizations in part (b) follow from part (a) by 

-* taking x = v EV and using the fact that Qv = v for all v EV. Variation-

al characterizations for g'" were recently obtained in [ 112 J"' One might use 

-* both lower and upper bounds for v , a.nd the test for eliminating suboptimal 

actions (cf. part (a)) , in the course of the following value·-i teration 

* -* scheme for finding g, v and some maximal gain policy. 

(2 .3 .4) 

~k 1 ~k 
- maxkEK(N){qN + ljpNjy(n-l)j}, i E 11 

with y(O) E EN chosen arbitrarily. 

Let fn be a policy which achieves the N maxima in (2.3.4). Define 

The sequence {y(n)}~=l has the following, easily verified and previously 

discussed properties. 

(a) 

(b) 

Ty(n) -* + V 

g(f) 
n 

* <; g 

* 

<; 00 (n) (cf. HASTINGS [53] and ODONI [89]) 

with lim 0 (n) = g ,= lim 0 (n) 
n-+"' L n->= U 

(c) f 11 is maximal gain, for all n sufficiently large (cf. ODONI [89]). 
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E.g. whenever at some stage n, i.e. for x = y(n), the test in part (c) of 

cor.2.3.2 is met for some i E S"l, and k E K(i), k may be deleted permanently 

from K(i) thus reducing the number of calculations in the following itera-
-* tions. However, both the application of the bounds for v as the use of the 

elimination test require the computation of at least some lower bound of the 

(N-step) contraction factor of the operator Q. 

PROPOSITION 2.3.3. Define a by the right hand side of (2.2.6) with P(f) re­

placed by P (f), and define 

(2 .3. 5) 

Then 

(2. 3 .6) 0 < p S a, i.e. p may be used as a lower bound on the (N-·step) 

contraction factor of Q. 

PROOF. By the proof of th. 2. 2. 5 we can take the scrambling coefficient ci" 

as (N-step) contraction factor for the operator Q. Ive shall now verify 

(2.3.6). p > 0 is immediate from the fact that in (2.3.5) the minimum is 

taken over a finite number of positive numbers. Next, let the minimum in 

(2.2.6) (with P(f) replaced by P(f)) be attained for s,t E S"l; 

(1 s ks N) and let y be such that 

The 

Then, p 

(2.3.7) 

Observe 

so that 

lower bound p may be computed as follows. Let 

0 ~k 01 K(i)}, x. min{P .. > j E S"l, k E i E S"l. 
l l.J 

[uNxoJ 
min' where 

Ux. 
l. 

from 

p 

p 

the analogue 

[UNxo] 
min 

?: 

~k 
min{P .. I ~k 

P .. 
l.J lJ 

the operator u 

t ~k 
l .P .. x., 

J l.J J 

of ( 1.4 .1) 

[UN-lxo] 
min 

> O; i,j E 

that 

?: 

S"l, k 

is defined by: 

?: 
0 

X min 

E K(i)} 

be defined by 
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is another lower bound on a (it may however be worthwhile to do a number of 

iterations with the U-operator on x.0 , in order to obtain a better approxi­

mation of a) . 
If the employed approximation for a<< 1, then the bounds of cor.2.3.2 

part (a) will not be sharp, and the test of part (c) will not be met unless 

sp[x-v] is very close to zero, namely when x = y(n) and n >> 1. Hence, if 

p << 1, the bounds and the test will only be important near the very end 

of the calculations. In addition one should observe that N represents the 

worst case behaviour for the number of steps needed for contraction, which 

is enormously high, compared with the empirical fact that in most cases 

J = 1 or 2 (cf. e.g. [120] and [122]). 

Alternatively, one might want to use the test of part (c) in combina­

tion with a device, given recently by HAS'I'INGS [54] in order to eliminate 

actions on a provisional rather than on a permanent basis. 

REMARK 4. Hastings' test works as follows. Let 

and 

g(n,i,k) 

H(m,n,i,k) = g(n,i,k) - ,m-l cj,(c), m > n. 
lc=n 

Then, action k E K(i) is non-optimal at value iteration stage m, if 

H(m,n,i,k) > 0 (for some n < m). 

We observe that theorem 2 of [54] holds unconditionally, for every 

(multichain) MDP, i.e. there is a stage after which no nonoptima.l action 

will pass the above test. This is an immediate consequence of the georr,etric 

convergence result in section 6 of chapter 1. However, whereas the identifi­

cation of non-optimal actions is possible in the unichain case, using the 

above value-.. ·iteration scheme and cor.2.3.2 part (c), this is (so far) in­

feasible for the general multichain case, 



CHAPTER 3 

Nonstationary Markov Decision 

Problems with converging parameters 

3.1. INTRODUCTION AND SUMMARY 

In chapter 1, while discussing value-iteration in discounted and un­

discounted MDPs, we assumed that all of the parameters of the model were 

known, pe:tfectly and in advance. 

In a large number of applications, however, these parameters can only 

be obtained via approximating schemes, or otherwise it is computationally 

preferable to approximate the parameters rather than employing exact algo­

rithms for their computation. 

In this chapter we distinguish between the set K(i) representing the 

finite set of al_I (feasible and non-feasible) alternatives in state i (idl), 

and the set K(i).:: K(i), the set of all feasible alternatives. 

So, as a basic assumption, we will suppose throughout this chapter 
k k 

that the parameters 

in advance, but that 

q., P .. and the sets K(i) (iESl, kEK(i)) are unknown 
l lJ 
instead one can compute sequences 

(3. L 1) 

(3. l.2) 

(3.L3) 

{K(i,n) }~=l + K(i); i E ,l where K(i,n) ;:: K(i), i E Sl; n 2 

k "' 
{Pij(n)}n=1 + Pk,; i,j Eu, k E K(i), where 

lJ 

P~. (n) 
lJ 

2 0 and LJ, P~. (n) 
lJ 

1, i,j E ,i, k E K<il; n 2 1. 

The following three examples illustrate that this situation occurs in a 

large number of applications: 

k 
EXAMPLE 1, MDPs in which e.g. the one-step rewards qi appear as the optimal 

values of underlying optimization problems. As an example, consider a re­

source or inventory system which serves to supply (say) n simultaneous users. 
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At each period of time, one has to decide upon the amount to be withdrawn 

from the system, as well as upon the optimal way to allocate this amount 

among then users. With i representing the inventory level (in the resource 

system) and k the amount to be withdrawn from the latter, the one-step net 

benefit q~ may be obtained by subtracting a holding cost function h(i) and 

a transfer cost T (k) from the benefit to the entire system that is associ-· 

ated with an optimal allocation of k units among the users. The latter may 
k 

e.g. be computed by solving a mathematical program so that qi could e.g. 

have the following structure 

(3 .1.4) ~ - h(i) - T(k) + max c(x) 

s.t. X E X 

f(x) s: k 

X 2 0 

where xi (i = 1, ... ,n) represents the amount allocated to the i·-th user, 

and where the constraints, x EX, describe the restrictions imposed by 

the other resources and by the technological structure. 

There are various reasons for avoiding the computation of all of the 
k 

qi (i E ~, k E K(i)) prior to solving the MOP: 

(a) in many applications, exact solution methods for the mathematical pro-· 

gram in (3.1.4) are either non-available or hardly feasible, i.e. one 

needs or prefers to employ an approximation method, like a Lagrangean 

technique, a gradient projection method, or a reduced gradient method. 
N 

Rather than first solving the li=l II K(i) II mathematical programs with 

these approximation methods and next using E- approximations for the 

q~ when solving the MDP -· in case a good stopping criterion for the 
]_ 

algorithms that solve the mathematical programs is at all available -

one would prefer to use the approximating schemes for the q~, in a 

met.hod which simultaneously solves the MDP. 

(b) For the actions that turn out to be suboptimal, which in general rep·· 

resents the vast majority of the total number of I:=l IIK(i)II, there 

is no need to do the computational effort of calculating the associ­

ated one-step expected rewards precisely. 

In any method which generates approximating schemes for the numbers 

[ q~ [ i E St, k E K ( i) } and simultaneously solves the MDP, one could st.op the 

schemes associated with those actions that a test procedure detects to be 

suboptimal. 
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We recall from chapter 1 that suboptimality tests of this kind have 

been derived in connection with the value-iteration method, both for the 

discounted and undiscounted version of the model. With respect to the for­

mer we referred to GRINOLD [50], HASTINGS and MELLO [55], MACQUEEN [81] 

and PORTEUS [94]; and as far as the latter is concerned, we recalled that 

a device for temporary elimination of suboptimal actions was proposed by 

HASTINGS [54], which, although originally stated for the unichained case, 

may be applied to the general multichain model (cf. remark 4 in chapter 2). 

In addition, for the unichained undiscounted case, a test for perma­

nent elimination of actions was derived in section 3 of chapter 2. All of 

these elimination procedures can be adapted straightforwardly for the case, 

where rather than applying value-iteration to a MDP with exact knowledge 

of the expected rewards, one would use upper and lower bounds that ulti­

mately converge to the latter. 

Note that most of the approximation techniques, mentioned above for 

solving the mathematical programs in (3.1.4) have the special feature that, 

whenever convergence occurs, the rate of convergence is at least geometric, 

where a sequence {x(n)}:=l is said to converge to x* geometrically if there 

exist numbers K > 0, and 0 ~A< 1 such that 

(3.1. 5) n = 0,1,2, ••• 

(cf. e.g. sections 11.5 and 11.7 in LUENBERGER [80], as well as a recent 

survey on the subject by GOFFIN [49]). 

As examples of the above described model, we refer to RUSSEL [102], 

VERKHOVSKY [128] and VERKHOVSKY and SPIVAK [129]. 

EXAMPLE 2. MDPs are generally used for describing dynamic systems which 

have to be controlled on a periodic basis and the design of which is as­

sumed to be given. In many applications, however, one faces the problem 

of simultaneously having to make a one-time decision with respect to one 

or more design parameters, as well as finding an optimal policy for oper­

ating the system, once having been constructed. Usually both the laws of 

motion and the operating costs of the system are heavily affected by the 

choice of the design parameters. In mathematical terms, the problem amounts 

to solving: 

(3.1.6) 
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where a represents a scalar or vector of design parameters. In the dis­

counted version of the model, V. (ex*) would represent the minimal expected 
l 

total discounted operating costs, when the initial state of the system is 

* i, and ¢(a) the design costs, when choosing a= Similarly, in the un-

discounted version of the modeJ, V. (a*) would denote the minimaJ Jong run 
l 

average operating cost when starting in state i, and ¢(a*) the depreciation 

and interest costs of the investment that is needed to implement the design 

* parameters a. Note that the one-step rewards and transition probabilities 

in the MDP depend upon a, i.e. 

(3 .1. 7) 
def k 

P .. (a); 
l.J 

i,j E S'l; k E: K(.i), 

(3.1.6) may be considered as an unconstrained optimization probJem with 

respect to ex, which is well-defined under obvious continuity assumptions. 

Note that the optimal vaJue of a MDP is not necessarily differentiable with 

respect to its parameters, and even it it is, the derivatives are extremeJy 

hard to compute. 

As a consequence, one will have to confine oneself to direct search 

methods, like the Fibonacci method or the simplex method (cf. MURRAY [87]). 

Note that each evaluation of the objective function in (3.1.6) requires 

the solution of a MDP which is extremeJy expensive. On the other hand, in 

most direct search methods, one is, at each step of the algorithm merely 

interested in the relative order of the values of the objective function 

in a number of points, Le. one can quit calculatin<J the component Vi (a) 

for some trial point a, as soon as it becomes clear that a is suboptimaJ. 

We recaJl that when soJving the MDP via value-iteration, both in the dis­

counted modeJ (cf. MACQUEEN [ 81 J, PORTEUS [ 94]) and in the undiscounted uni­

chain case (cf. ODON! [89]) an upper bound on Vi (ex) may be calculated that 

converges to Vi (a) as the number of iterations tends to infinity. Hence, 

suboptimality of any point a may be detected after a finite number of steps, 

after which the search procedure may be continued by starting the evalua­

tion of the objective function in (3.1.6) for a different choice of a. 

The above considerations lead to a proposal for solving the entire 

problem (3.1.6) by a single value-iteration scheme in which the parameters 
k k 

q. (.) and P .. (.) are adapted in accordance with the search procedure and 
l lJ 

ultimately converge to the parameter values corresponding with the optimal 

value of ex. 

Note that most direct search methods have the property of locating 

the optimum at a geometric rate, such that in general the approximations 
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k 
for the parameters qi(.) and P~, (.) will converge to the desired values at 

lJ 
a geometric rate as well (cf. the proposition on p.130 in LUENBERGER [80]). 

For a more detailed description of the proposed method we refer to 

the appendix in this chapter. 

EXAMPLE 3. Solving nested sequences of (piecewise linear) functional equa­

tions where each functional (vector)-equation has the structure of the op­

timality equation of an undiscounted MDP or Markov Renewal Program (cf. 

(1.4.15)): 

(3 .1. 8) x(O), 
l 

x(m), 
l 

x(r), 
l 

max 
kEK0 (i) 

max 
kEifi(i) 

(0) + l, 
J 

[a~ (ml + Ij l 

l, 
1 J 

k 
P,, 
lJ 

x(O) j], 

x (ml, J, 
J 

x(r) ,J, 
J 

i E " 
i E " 
i E '2 

where Kr (.i) '.::. ••• :::. Km(i) :::. ... ;;;: Ko (i), 1 '.". m '.". r-1, and where the quanti­

ties a~!rn) and the sets Km(i) both depend upon x(O), ... ,x(m--1) i.e. upon the 

solution of the first m functional equations in the sequence ( 3 .1. 8) . A se­

quence of nested equations of this type occurs e.g. when trying to find the 

maximal gain rate vector or some of the higher terms in the Laurent series 

expansion of the maximal total discounted return vector in powers of the 

interest rate; and accordingly, when trying to locate maximal gain policies, 

or policies that are optimal under more selective (sensitive discounted or 

average overtaking) optimality criteria (cf. VEINOTT [127], MILLER and 

VEINOTT [85], DENARDO [22]). For a more detailed specification of these­

quence (3.1.8) and for a characterization of the solution set, we refer to 

chapter 4. 

In view of the dependence of the sets Km(i) and the quanti_ties ak(m) 
:L 

on the solution to the previous m equations in (3.1.8) one conce:Lvable way 

of solving the m+l-st equation is by computing these sets and quantities 

beforehand with the help of an exact solution method (Linear Programming, 

or the Policy Iterat:Lon Algorithm, cf. DENARDO [22J and VEINOTT [ 127]). How­

ever, when the state space becomes large, exact solution methods become in­

feasible, and a success:L ve approximation method is needed to solve the entire 

system; moreover, even when exact methods can still be applied, their use 

may none the less invoke numerical instability problems (cf. chapter 4). 

Such a successive approximation method will be developed in chapter 4, 
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where a sequence of value-iteration schemes is simultaneously generated in 

order to solve the entire system of equations ( 3. 1. 8) . 'rhe schemes that aim 

at finding a solution to the m+l-st 

replaced by approximating sequences 

are distilled from the schemes that 

equation, have a~(m) and the sets Km{i) 
k oo i m oo 

{ai (m)[n]}n=l and {K (i)[n]}n=l which 

aim at finding a solution to the pre-

vious equations, and which have the property of converging to the correct 

quantities and sets. 

All of the schemes involved may be interpreted as value-iteration 

schemes for undiscounted MDPs, the parameters of which are replaced by ap­

proximating sequences. 
k - oo 

Moreover, here again, the sequences {ai (m)[n.l}n=l may be constructed 

in such a way that 

(3 .1. 9) 
k 

a. (m) [n] 
l 

_,. ak (m), geomet.rica.I.ly as n ➔ 00 ; 

l 

m 0, ... ,r 

and the successive approximation method will be shown to converge to a 

solution of the entire system (3.1.8) at a geometric rate as well. 

In this chapter we study, the working of value-iteration for the case 

where the parameters of the MDP have to be approximated, i.e. where at the 

n-th stage, they are substituted by the currently available approximations 

l {n), P~. (n) and K(i,n). 
· 1 lJ 

For the discounted version of the model, geometric convergence can 

easily be obtained in the general multichain case, as is briefly shown in 

section 2. No assumptions are made with respect to the type of convergence 

in ( 3. 1 . 2) and ( 3. 1 . 3) . 

For the undiscounted version, we henceforth assume: 

(3.1.10) 
k 00 k 

(GEO) {qi (n) }n=l ->- qi, geometrically; i E 11, k E K(i) 

k 00 k 
{Pij(n)}n=l ➔ Pij' geometrically; i,j E 11, k E K(i) 

which was satisfied in all of our examples. 

A modified value-iteration method is shown to exhibit geometric 

convergence for the general multichain model, in case only the rewards and 

actions sets have to be approximated. 

If the tran.sition probabilities are to be approximated as well, more 

care is required since in this case the study of non-stationary Markov 
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chains is involved. So far, this topic has only been studied under the uni­

chainedness assumption (fora survey, cf. PAZ [91], SENE"rA [113] and ISAACSON 

and MADSEN [67]). Under this assumption we establish geometric convergence 

of our value-iteration method as well. The undiscounted model is dealt with 

in section 4, and in the appendix we specify our algorithm for the models, 

mentioned in example 2. 

First however, we derive in section 3, a new result on non-station•a.ry 

Markov Chains, which will be needed in the subsequent analysis. The results 

in this chapter have been distilled from FEDERGRUEN and SCHWEITZER [36], 

but for section 3 which is distilled from FEDERGRUEN [33]. 

3.2. THE DISCOUNTED MODEL 

In the discounted version of the model with discount factor Os S < 1, 

we consider the following iterative scheme: 

(3. 2 .1) v(n+1). 
:t 

Q(n)v(n)i, i E. D 

N 
where v(O) E. E may be chosen arbitrarily, and where the Q(n)-operators are 

defined by: 

Q(n)x; = maxk K(" )[l(n) + S L.P\(n)x.J, i ED. 
~ E. 1,n 1 J lJ J 

(3.2.2) 

One easily verifies that the Q(n)-operators satisfy the property (cf. 

(L2.10)): 

(3. 2. 3) (a) S1v ·1 :,; --~-y · min [Q(n)x-Q(n)y]min s [Q(n)x-Q(n)y]max 5 

so that 

(bl IIQ(n)x - Q(n)yll :,; Sllx-yll. 

Finally define Q(n) by Q(n)x = Q(n) ••. Q(l)x; x E. EN 

THEOREM 3.2.1. v(n) ➔ * geometrica.Zly, where v is the maximal total 

discounted return vector, Le. v* is the unique solution to v = Qv (cf. 

(L2.2)). 

PROOF. Let M be such that lq~(n) I 5 M for all i E. n, k E K(i), n ~ 1,2, •.. 

i II II 100 £. where M < 00 follows from (3.1.2). Verify that v(n) 5 M l.t=OS = M/(1-6) 

for all n ~ 1, and conclude that.{v(n)}~=l is a bounded sequence. Let 

{ v (nk)} ;=l and { v (~c)} :=l be two convergent subsequences with limit vectors 
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v 0 and v00 respectively. It is no restriction to assume that nk > for 

all k ? 1. Apnly O. 2. 3) repeatedly to conclude that 

(3.2.4) 

and let k tend to infinity j_n order to verj_fy that II v 0 -v00 11 = 0 in vj_ew of 

the second fac~or to the rj_ght of (3,2.4) being bounded. Hence {v(n)}:=l 

converges and j_ts limit vector satisfies the optimality eqaution v = Qv, 

* which j_mplies limn-+w v(n) = v. Finally to show that the rate of convergence 

is geometric, replace mk in (3.2.4) by a fixed integer m, and let k tend to 

infinity so as to conclude that 

(3.2.5) [] 

The set of all optimal policj_es can be obtained j_n the same way as j_n the 
k 

stationary model (cf. chapter 1 section 3). In case the parameters qi and 

k . h P .. are both approached from below and from above, all oft e bounds on 
1.J 

stopping criteria for E-approximations or E-optimal policies, as well as 

tests for eliminating suboptimal actions, that were found for the station­

ary model, can be adapted in a straighforward manner. 

3.3. ON NON-STATIONARY MARKOV CHAINS WITH CONVERGING TRANSITION MATRICES 

In the subsequent analysis for the undiscounted version of this 

model, a characterization will be needed of the asymptotj_c behaviour of 

backwards matrix products of the type: 

(3. 3 .1) P(m+n) ... P(m), 

as both n, and m tend to infinity. Here {P(m)}:=i is a non-stationary N­

state Markov chain, with 

(3. 3. 2) limm-i--oo P (m) p 

Matrix products of the type (3.3.1) are strongly related to the forward 

products, known as inhomogeneous Markov chains, and studied in an extensive 

literature that started with the papers by HAJNAL [51] (cf.[687, [91], [113] 

for a survey of the present state of the art). Other than in the context of 

this chapter, the backward matrix products arise e.g. 



73 

(a) in estimate modification processes, where n individuals each of whom 

has an estimate of some unknown quantity, enter information exchanges 

which lead them to readapt their estimates in an (infinite) sequence 

of iterations (cf. DE GROOT [17], and CHATTERJEE and SENETA [14] and 

DALKEY [ 16]) 

(b) in non-stationary Markov Decision Processes when analyzing the total 

reward in a planning period of n epochs as n tends to infinity (cf. 

MORTON and WECKER [86], and BOWERMAN [12]). 

Let U(r,k) be the stochastic matrix defined by 

(3.3.3) U(r,k) = P(r+k) ... P(r+l), k = 1,2, ... ; r = 0,1, ... 

The sequence {P(k)}:=l is said to be ergodic (in a backwards direction) if 

(3.3.4) lim U (r ,k) 
k->= 

ld(r) ', r 2 0 

where d(r) is obviously a probability vector, i.e. d(r) 2 0 and I. d(r). 1. 
1. ]_ 

Ergodicity of {P(k)};=l was shown in CHATTERJEE and SENE'rA [ 14] (th. 5 and 

corollary) for the case where Pis aperiodic and uni.chained, and can equal­

ly be obtained by a mere adaptation of the proof of th.1 in ANTHONISSE and 

TIJMS [1]. Also in these papers the convergence in (3.3.4) was shown to be 

geometrical. Hence we have: 

LEMMA 3.3 .. Assume that Pis unichained and aperiodic. Then 

1. d ( r) ', geometrica.Il y. 

U(r,k) 

Note that the rate of convergence of {U(r,k)}:=l is independent of the rate 

at which {P(k)}:=l approaches P. In this section we characterize the asymp­

totic behaviour of {d(r)}==l· First, however, example 4 shows that d(r) may 

heavily depend upon P(r), the first matrix in the product. 

For any N x N-stochastic matrix Q and for j = 1, ... ,N let 

(3. 3. 5) M. (Q) = max 
J i 

and (Q) 

and note from the identity 0(2)0(1) .. 
- -- l.J 'i' Q(2) 'k Q(1)k., that for any pair lk l - "J 

Q(l), Q(2) of stochastic matrices: 

(3. 3 .6) Mj(Q(2)Q(1)) S: (Q(l)) and l,. .. ,N. 

A matrix is said to be strictly positive, if all of its entries are strictly 
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positive. 

EXAMPLE 4. In this example we show that d{r) is strictly positive whenever 

P (r) is. In other words, whenever P (r) > 0 and P has transient states, d (r) c/ Tr 

where Tr is the (unique) stationary probability distribution associated with 

the matrix P. 

To verify the implication P(r) > 0 ~ d(r) > 0, note from (3.3.6) that 

m.(P(r)) C-::m.(U(r,k))C-::M,(U(r,k))C-:: M.(P(r)) for r,k = 1,2, ... and j = 1, ... ,N. 
J J J J 

Conclude that for all i = 1, ... ,N: d(r). = lim U(r,k),. 2 m.(P(r)) > 0. 
J k-+<:c lJ J 

Before characterizing the asymptotic behaviour of {d(r)};=l' we first 

need to introduce the following notions. First for any matrix A= [A, .J, 
lJ 

let its norm be given by 

(3. 3. 7) 

and define its delta coefficient o{A) by 

(3. 3.8) o (A) 1 - min. kt 1 min(A, .,A .) 
l, . J= lJ kJ 

(which is one minus the ergodic coefficient, cL e.g. [67], p.144). The 

following lemma recalls a number of elementary properties of the norm and 

delta - coefficient: 

LEMMA 3.3.2. 

(a) For any pair of matrices, II ABII <:: II Ali II Bil • 

(bl If A and Bare stochastic matrices, then o(AB) c-:: o(A)o(B). 

(c) If A is any matrix with Al = Q1 and B is a stochastic matrix, 

II ABII c-:: II All o (B). 

(d) For any aperiod.ic and unichained (stochastic) matrix A, 

(1) 0 <:: o(An) < 1 for all n 2 ½N(N+ll 

(2) z;=O o{Al) <"' 

PROOF. 

(al Note that 2) bijl <:: cij laij I) <Ij [bij I)' 
(b) cf. lemma v. 2.3 in [6 7]; 

(c) Cf. lemma v. 2.4 in [6 7]; (d) ( 1) immediate from the combination of 

lemma 4.1 and th.4.4 in chapter II of [91]. To verify (d) (2) note that in 

view of parts (b) and (d) (1): 
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where LxJ indicates the largest integer less than or equal to x. 0 

The next theorem shows that _!_TT' appears as the limit matrix when both 

rand k tend to infinity in the matrix product U(r,k); in addition the rate 

of convergence is specified. Related results for forward products were re­

cently obtained in HUANG, ISAACSON & VINOGRADE [65]. 

Let {Ek}:=l be a non-increasing sequence of positive numbers such that 

iP(k)-ptt S Ek' k = 1,2, .... 

THEOREM 3.3.3. 

(3.3.9) lim lim U(r,k) lim ld (r) ' = . .1:. Tf I f 

r--= k-->= r➔oo 

and 

(3. 3 .10) II d (r)-TTII O(E ) . 
r 

PROOF. We first prove that there exists a scalar K > O, such that 

(3.3.11) II U (r ,k)-Pkll s KE 
r 

II u (r ,k) ··Pkll 

for all r,k 1, 2, ... , i.e. 

In view of lemma 3.3.2, part (d) (2) it is sufficient to show: 

(3. 3 .12) 1k-1 .e_ 
(1 + l,f,=1 o(P )) for all r,k = 1,2, ... 

Fix r? 1. Note that (3.3.12) holds fork= 1 and assume it holds for some 

k. Then, 

II U (r ,k+l) -Pk+lll = II P (r+k+1) U (r ,k) -P (r+k+l) Pk + p (r+k+l) pk -Pk+lll 

,k 
( 1 + lf=l o 

where the first inequality follows from part (a) and (c) of lemma 3.3.2. 

This proves (3.3.12) by complete induction with respect to k. 

Fix j = 1, ..• ,N and o > 0 and recall from the aperiodicity and uni­

chainedness of P that there exists an integer n? 1 such that 

P~. - o S TT.SP~.+ o; 
lJ J lJ 

i 1, .•. ,N. 

Hence, 

(3. 3 .13) 
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Use (3.3.11) wi.th k = n and the fact that both M. (.) and m. (.) are Lipschitz 
0 J J -

continuous functions on the set of all N x N-matrices, to conclude that, 

(3. 3 .14) 
no no 

[M.(U(r,n ))-M.(P l[ = O(Er); \m.(U(r,n ))-m.(P )j 
J O J J O J 

Insert (3.3.14) into (3.3.13) to conclude that 

(3.3.15) M.(U(r,n )) - O(E) - 6 s 1!, s m,(U(r,n )) + O(E) + 6. 
J o r J J o r 

0 (E ) • 
r 

Next one verifies by a repeated application of (3.3.6) and in view of the 

fact that M. (.) and m. (.) are Lipschitz-continuous, that for all r = 1, 2, ... 
Joo J oo 

{Mj(U(r,k))}k=l and {mj(U(r,k))}k=l are resp. monotonically non-increasing 

and non-decreasing towards M. ( 1d (r) ') rn. ( ld (r) ') d (r) .. In particular 
J - J - J 

we have for all r = 1, 2, . . . : 

(3.3.16) m. (U(r,n )) S d(r). S M.(U(r,n )) 
J O J J 0 

and insert (3.3.16) into (3.3.15) to conclude that for all o > 0 

(3.3.17) d(r). - O(E) - 6 s TT. s d(r). + O(E) + 6 
J r J J r 

and hence 

Finally, example 5 below shows that the upperbound for the rate of 

convergence of {d(r)}:=l towards TT is the sharpest possible one: 

EXAMPLE 5. Let 

Verify that U(r,k) = P(r) for all k = 1,2, ... , such 

U(r,k) = P(r). Conclude that {d(r)}:=l approaches TT 

is exhibited by the convergence of {P(k)}:=l towards 

by the rate of convergence of {ak} ==l towa.rds zero). 

3.4. THE UNDISCOUNTED MODEL 

that 1d(r)' = lim 
k->-oo 

at the same rate as 

P (or alternatively 

In chapter 1 we showed that in the stationary case, where all para­

meters are known and available in advance, the following value .. -iteration 



scheme is used to locate maximal gain policies 

(3 .4 .1) v(n+1). 
1. 

i E '2. 

* 00 Assuming henceforth that all policies have aperiodic tpm's, {v(n)-ng }n=l 

was shown to converge geometrically for any choice of the scrap value 

vector v(O) E EN. 
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This aperiodic;ity assumption may be made without loss of generality 

since in section 8 of chapter 1 , the data-transformation ( L 8. 1) and ( 1. 8. 2) , 

with the choice 0 = 1, was exhibited to turn every MDP into an equivalent 

one .i.n which every policy is aperiodic. In th.i.s context, two undiscounted 

MDPs were defined to be equivalent, if they have the same state - and ac­

tion spaces and if every policy has the same gain rate vector, such that 

the two problems have the same maximal gain rate vector and the same set 

of maximal gain policies. In addition it was pointed out that V, the set 

of solutions to the average return optimality equation (1.4.15) in the orig­

inal model, and V, the corresponding set in the transformed model, satisfy 

the simple correspondence V = {v E ENIT v EV} (cf. section 8 of chapter 1). 

Finally we recall from (1. 8. 21) and (1.. 8. 22) : 

* (3.4.2) g(n) v(n) - v(n-1) + g, geometrically 

y(n) nv(n-1) - (n-l)v(n) + v EV, geometrically. 

In case only approximations of the parameters are available it seems natu­

ral to consider the following iterative scheme: 

(3 .4. 3) x(n+l), 
1. 

with x(O) E EN arbitrarily chosen. 

That is, we modify the classical value iteration method, merely in 

the sense that at each iteration, the unknown data of the problem are substi­

tuted by their current guesses. 

With each policy f ESP we associate the approximating tpm's P(f;n) 

and reward vectors q(f;n), n 2c 1: 

(3.4.4) P(f;n) .. 
l-J 

p~ ~i) (n); 
1.J 

i,j E sl; n 1,2, ... 

q(f;n). 
f(i) 

(n); i qi 1. 
E sl; n = 1,2,. .. 
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A unified analysis for both the case 

(I) the general multichain model where only the rewards and action sets 

have to be approximated, and 

(II) the unichained model, where all of the parameters of the MDP have to 

be approximated, 

is possible in view of 

(3 .4.5) limm+"" limn+oo P(f;n+m) ... P(f;m) ➔ IT(f), f E Sp 

Note that (3.4.5) holds for case I), in view of Lim Pn(f) IT (f), for n .. t-00 

aperiodic matrices P(f), and for case II) in view of th.3.3.3. 

We next present the main result of this chapter: 

TEHOREM 3.4.1. Assume condition (GEO) as wel.1 as (3.4.5) to hold for every 

policy f. 7'hen (with {x(n) }~=l satisfying (3.4.3)): 

(3.4.6) * 00 {x(n)-ng }n=l ➔ v EV, geometricalJy. □ 

The proof of this theorem is provided by the foll.owing lemmas. First, fix 

v 0 EV and let e(n) = x(n)-ng*·--v0 • Choose numbers K > 0, and Os), < 1, 

such that: 

(3.4. 7) I k kl n q, (n) - q. s KA; 
l. ]_ 

i. E ~, k E K(i); n 1,2, ... 

I k k I n P .. (n) - P. . s KA , i,j E ~, k E K(i); n 
l_J l_J 

* 00 
LEMMA 3.4.2. [x(n)-ng }n=l is bounded. 

PROOF. The proof of this lemma is related to the one gi.ven in th.5 .1 of 

[110], Fix f EX L(i,v0 ) (cf. (1.4.16) and (L4.21)). Then, in view of 
i 

L(i,v0 ) s L(i)' i E Q, 

l { * o} q(f;n). -1- • P(f;n) .. x(n).-ng.-v. 
]_ J 1J J J J 

. \ * 0 - q(f). + L,[P(f;n) .. -P(f) .. J[ng.+v.J, 
l. J 1] l.J J J 

Le. 

(3.4.8) 

11 · n II *11 II 0 1' ?: _-· K:\ - NKA (n g + v , l + e (n) min 



By iterating (3.4.8) n times, we obtain for all i Erl: 

(3 .4.9) 

K(1+Nllv0 11) 
(1-1') 

KNllg*IIA 
2 + e(0) .. 

(1-1') nun 
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oo k 1· k * * To show that {e (n) }n=l is bounded from above as well, let ai = lj P ij gfgi, 

i Erl, k E K(i). Use (1.4.18) and (3.4.7) to note (cf. also remark 1 in 

[111]): 

(3. 4 .10) 

Next use 

e (n+1). 
l 

l - [p~. (n) - P~. Jx. + l (n) - lJ 
J lJ lJ J l l 

< 0 fork E K(i)\L(i), i E r2 to conclude that there exists an 

integer n 0 2 1 such that for all n 2 n 0 the first term to the right of the 

inequality (3.4.10) is achieved fork E L(i) and hence vanishes (cf. (1.4.15) 

and (l..4.18)). By iterating (3.4.10) one concludes that for all n 2 n0 : 

(3.4.11) e(n+l) ~ e(n ) + K(Nllxll+l) l~--n :\./'. 
max 0 max ~ 0 

(3.4.11) together with (3.4.9) establish the lemma. D 

* ro 0 
LEMMA 3.4.3. {x(n)-ng }n=l + v Ev. 

PROOF. The proof of lemma 3.4.3 has the same structure as the one given for 

th.5.1 in [110]. Define x. =liminf [x(n)-ng*l and X.=limsup [x(n)-ng* 
i n-+«> · i i n+oo 

i Erl. Let fn' satisfy the N maxima in (3.4.3). From lemma 3.4.2, i.t follows 

that - 00 < ~Xi< 00 for all i Erl. Recall the equality part in (3.4.10): 

Observe using lemma 3.4.2 and (3.1.3) that the left side of this equality 

is bounded, just like all of the terms to its right side, with the possible 

exception of the first one. Conclude that for all n sufficiently large, only 

alternatives k E L(i) achieve the maximum in (3.4.3), or 
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(3.4.12) fn E Xi L(i), for all n sufficiently large 

whereas in addition, 

* (3.4.13) x(n+1) i-(n+l)gi { k * \' k [- *-
max_ L(') q.(n)-g. + l· P .. (n).x{n),-ng,J 

kE l l l J lJ J J 

i E Si. 

Fix i E It, take (sub)sequences {nk};=l (with li~-+ro nk = 00 ), such that 

* * li~ _ _,[x(nk)-nkg] exists and li~➔co[x(nk+1)-·(nk+l)g \=xi (or Xi resp.) 

which is feasible in view of lemma 3. 4. 2. Replace n by nk in ( 3. 4 .13) , let 

k tend to infinity and note that lim n (Pk. {n) Pk.) = 0 in view of as-
n-+"' l.J lJ 

sumption (GEO), in order to conclude 

(3 .4 .14) 2: [ k * I:i p~' xj], i ,(l X, max1 L ( . ) q. -g. + E 
l CE. 1 l l lJ 

(3 .4 .15) :,; [ k * Ij p~' X.], I n. X, maxkEL(l) qI-gi + E 
l lJ J 

We next show that 

(3 .4 .16) x. = X.' for * all i E R 
l l 

In order to verify that xi ~ Xi for all i E rl\R* as well, Le. in order to 

* 00 prove convergence of {x(n)-ng }n=l in each of its components, one can next 

apply the proof of part (d) of th.5.1 in [110] starting with equations 

( 5 • 4) and ( 5 . 5 ) • 

Finally let n tend to infinity in (3.4.13) to verify that 

lim x(n)-ng* satisfies the optimality equation (1.4.15), i.e.vc:V. 
n->= 

To prove (3.4.16), fix i E R*, Le. let i E R(f) for some f E X. L(j,v0 ) 
J 

(cL (L4.21) l. Iterate (3.4.8) to get: 

,n+m-1 l ,n+m-1 ,R..( 0 llg*ll+llvoll) + 
(3.4.17) e(n+m)i?: -K Lf=m ;\ - NK LR_=m I\ ,c_ 

P(f;n+m-1) ... P(f;m)e(m)., i E Q. 
l 

Since (e(n)} 00 

1 is bounded, it has at least one limit point. Let y, z be 
n= 

two limit points of the sequence. Take sequences {nk}:=l' and {11\}:=l with 

li!I\: .. "" nk = limk➔co mk = 00 , such that li!I\:➔oo e (II\:) = y and li~➔co e ( nk +~) = z. 

Replace n and m in ( 3 • 4. 17) by nk and mk, let k tend to inf i.ni ty, and use 

(3.4.5) to conclude: 

(3.4.18) 1 00 · l · 100 t I *1 I 0 1 z 2 li~➔co(-K lf=~ \ -· NK l£.=mk ;\ (llg l+lv I))+ TI(f)y II(f)y 
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where the equality in (3 .4 .18) follows from limn➔roI_~=na,e_= I;=l a-1'.-limn➔rolf=l a,e_=O, 

for any converging series L,e_ a,£_. 

In a similar way, we have y 2 IT(f)y, i.e. yi = Ij IT(f)ijyj, i E R(f), 

as may be verified by multiplying the inequality by TI(f) 2 O and using 

TI(f) 2 = TI(f) (cf. (1.4.5)). 

We conclude that 

z. 2 Yi' i E R(f)' and in a similar way, 
l 

Yi 2 z.' i E R(f), such that 
l 

Yi z.' l 
i E R(f), 

* 00 

which proves convergence of {x(n)-ng }n=l onR 

and hence (3.4.16). D 

We conclude the proof of theorem 3.4.1 by establishing the geometric rate 
* 00 of convergence of {x(n)-ng }n=l 

Proof of theorem 3.4.1. Let v * limn-+co x(n)-ng EV (cf. lemma 3.4.3) and 

* define e(n) = x(n) - ng - v; n 2 1. It follows from (3.4.12) that for all 

n sufficiently large, and all i E ~, 

(3.4.19) e(n+l). 
l 

Note that with the possible exception of the last term in (3.4.19), all of 

the terms converge to zero, as n tends to infinity. Hence there exists an 

integer n 0 2 1, such 

attain the maxima in 

I. P~. (n)e(n). = I. 

that for all n 2 n0 , only alternatives k E L(i,v) 

(3.4.19). That is, using (1.6.9) and the equality 

J l] J J 
k r k k . 

P .. e(n). + l,(P .. (n)-P .. )e(n)., one easily verifies: 
lJ J J lJ lJ J 

(3.4.20) lle(n+l) - U(v)e(n)II :SK (1+Nllvll)An + KNllg*llnAn + e (n) II. 

We conclude in view of lemma 3.4.2, that there exist numbers A,B > 0 with 

(3.4.21) lle(n+l)-U(v)e(n)II s (A+Bn)An, 

Verify next, by complete induction with respect tom, that: 

(3.4.22) m \•n+m-1 ,£, 
lle(n+m)-U(v) e(n)II :S l£=n (A+&)A, n 2: 

For, note that if (3.4.22) holds for all n 2 n0 and some m ~ 1, then 

* , 
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lle(n+m+1) - U(v)m+le(n)II II e (n+m+l) - U (v) (n+1) II 

1 n+m ~ 0 . ,[ \0 n+m 
s lf=n+l (A+J:¼.) :\ + II e (n+l) - u (v) e (n) II s lf=n (A+&) 

in view of the property II U (v) x - U (v) yll s II for all x,y E (cf. 

(1.4.1)). Next, define 

of U(v) 00x, for any x E 

U(v) 00x = lim U(v) and note that the existence 
n-->-oo 

k k 
q. (n) = 0 and P .. (n) 

EN, follows as a special case of lemma 3.4.3 with 
k 

P .. for all i,j Er!, k E K(i) (cf. also sect.ion 6 of 
lJ l lJ 

chapter 1). Let m tend to infinity in (3.4.22) and conclude that. for all n 

sufficiently large: 

00 1'00 ,[ 
(3.4.23) IIU(v) e(n)II s lf=n(A+&)II s 

I fn11 I 

where the second inequality follows from x;\ x being 
-1 100 ,[ Joo 

for x > ·• (fn A) · , such that lf..=n ,[\ s n-

for n sufficiently large. 

monotonically non-:increasing 
(n-i);\n-1 ;\n-1 

i£n7:1-- + (£.n ;\) 2 ' 

We next recall from [ i 11 J that there exists a contraction fact:o.r r, 

with Os r < 1 and a number M > 0 such that for all x E 

n = 1,2, ... 

Finally, use (3.4.22) with m = n, and conclude: 

ti~~i (A+&P,.t + [U(v)ne(n)-U(v) 00e(n)] + U(vJ°''e(n) s e(2n) s 

+ , 2n-l (A+&)/-+ [U(v)ne(n)-U(v) 00e(n)] + U(v) 00e(n) 
l£.=n 

whence we obtain, using (3.4.23) and (3.4.24) that for all n sufficiently 

large 

(3.4.25) lle(2n)II s Lt=n (A+B-E) + IIU(v) 00e(n)II + IIU(v) (n) - U(v) 00e(n)II 

2A ( 10) 2n 4Bn ( /\) 2n 2n 
,; 1-;\ + 7:rn,·-, - + M 

whereas a similar geor1etr.ic bound may be obtained for the odd members of 

the sequence {e(n) D 
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APPENDIX 

In this appendix we describe the algorithm, we propose for solving the 

models mentioned in example 2. Assrnning that the functions qk(a) and Pk< (a) 
l lJ 

and ¢(a) are continuous in a (cf. (3.1.6) and (3.1.7)), the function to be 

minimized in (3.1.6) is guaranteed to be continuous in a in the discounted 

version, whereas in the undi.scounted version some additional requirements 

on the chain structure of the tpm's of the policies in SP have to be imposed 

(continuity is e.g. guaranteed in the uni.chain case; cf. SCHWEITZER r105]). 

In the absence of these requirements on the chain structure, (a) can still 

be shown to be piecewise continuous, with a finite number of discontinuities, 

and an obvious modification of the below described algorithm can be employed: 

:3-..1:.':'E~' Initialize Max :=0 - 00 and x E EN. Fix abeS t 

and c > 0 

and compute lower and upper bounds on V(anew) as a function of x: 

L(anew) S V(anew) S U(anew) 

step 2: "If" U(anew)+¢ (anew) < MAX, "then" {anew is suboptimal; 

and choose anew according to a specifically chosen unconstrained 

search procedure; go to step 5} 

~_!ep _~: "If" U(anew)-L(anew) < c, "then" {MAX ,~ L(anew)+¢(anew); abest:~anew 

i.e. anew is the best parameter choice so far; ; choose 

anew according to the unconstrained search procedure; go to step 5} 

step 4: go back to step 1, and execute the next iteration 

~: "if" II a01d-anewll < E: "then" go to "END" "else" go back to step 1, 

and execute the next iteration with the adapted parameters 

best 
Use a as an E-optimal parameter choice, and ½(U 11 END 11 +L 

as an E-approximat.ion of the value of the entire problem. 





CHAPTER 4 

Successive approximation methods for solving 

nested functional equations in Markov Decision Theory 

4.1. INTRODUCTION AND SUMMARY 

This chapter is concerned wi_th sequences of nested functional equations 

of the following structure: 

(4 .1.1) 
(0) 

maxkE:Ko (i) [a~ {O) + I~=l 
p~. x ~0)]' i Q X. C 

J_ 1.J J 

{l) k 
Ij H~. (1) 

(0) k x: l)]' X. maxkcKl (i) [ai (1) x. + P .. i E Q 
J_ 1.J J 1.J J 

. (m) k Ij H~. (m) 
(m-1) 

p~. 
(m) 

X. maxkcKID(i)[ai (m) x. + xj J' i E Q 
I. 1.J J 1.J 

. (n) k 
Ij H~. (n) 

(n-1) 
Ij 

k 
X :n)]' X. maxkcKn Ci.) [ai (n) -- x. + P .. i E &"l. 

J_ 1.J J lJ J 

Si = {1'" .. ,N} denotes the finite state space of the decision problem. For 

all i E rt, K0 (i) is a given finite set of alternatives in state i, and for 
_Jll o m m-1 

fixed i, the sets K (i) are nested subsets of K (i), i.e. K (i) .':. K (i), 
k k o 

m '" 1, •. .,n. The numbers Pij' Hij(m) (i,j Erl; k EK (i); m = 1, .• .,n) are 

assumed to be nonnegative: 

(4.L2) p~. 2 O; H~. (m) ? 0 (i' j E St; k E K0 (i); m 
1.J 1.J 

where i.n addition 

(4 .1. 3) I;=l p~' 
l.J 1 ' (i E Q; k E Ko(i)) 

and where the numbers H~. (m) satisfy condition (CLO) to 
1.J 

For all i E rt, and k E K0 (i), the quantities a~{O) and 
k . i 

stants. Form? 2, the ai (m) a.re given affine functions 

(4.1. 4) 
k 

a. (m) 
J_ 

0 k_ (m) ,m-2 < bl. ;k (m), (i) 
µi + ll=O i . x >, m 2 2 

1, .•. ,n) 

be stated below. 

(1) are gi.ven con-
(0) (m-2) 

Of X , ... ,X • 
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with (m) E El and b~;k (m) a 
l 

Finally, Km(i) ;:. Km-l (i) 

given N-component row vector. 

represents the set of alternatives which at·· 

tain the maxima in the first m-1 functional equations. (For a more precise 

definition we refer to section 2). 

Sequences of nested functional equations of this type arise e.g. in 

Markov Renewal Programs (MRPs) i.n which one wants to find the maximal gain 

* * rate vector g, the maximal bias vector z , or any of the higher order terms 

of the Laurent series expansion in powers of the interest rate of the maxi­

mal total discounted return vector (cf. MILLER and VEINOTT [85], DENARDO 

I 22]) as well as policies that are maximal ga.in, bias··optimal or optimal 

under more selective discounted- or average overtaking optimality criteria 

(cf. VEINOTT [127], DENARDO [22] and SLADKY [116]). 

In the three cases a system of resp. two, three and four or more equa­

tions arises, i.e. the three cases correspond with n = 1, n = 2 and n 2: 3 

resp. 

For finding the maximal gain rate vector in multichai.n MRPs, three 

methods exist: 

(1) the Policy Iteration Algorithm (PIA) (cf. HOWARD [63 , JEWELL [69 ) 

(2) Linear Programming (LP) formulations: (cf. MAl'INE C84L DENARDO & FOX 

23]) 

(3) successive approximation methods (cf. chapter 1). 

For finding the maximal bias vector or more generally to solve a set 

of n+l nested functional equations, only the first two of the three above 

mentioned methods have been generalized: the former by VEINO'l"I' [127] and 

the latter by DENARDO [22] who proposed a decomposition of the problem into 

a sequence of Linear Programs combined with a number of search procedures. 

These two methods are impractical for large problems and it would be desir··­

able to fill the hiatus, by generalizing the third method of successive ap-· 

proximations, since this method is the only practical one. 'l'his objective 

is precisely the purpose of this chapter. 

As a special case we present a :,uccessive approximations scheme to 

find the optimal bias vector and a bi.as-optimal policy. HORDIJK and TIJMS 

[60] established a scheme which finds z"'--though not a bias-optimal policy­

for the special class of discrete-time Markov Decision Problems 

with a maximal gain rate that is independent of the initial state of the 

system. Our scheme finds both· the optimal vector and the optimal policy 

for all multichain MRP's and generalizes to the higher order functional 
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equations. 

In addition it is worth mentioning that a wide range of stochastic de­

cision models varying from Markov Decision Chains with multiplicative utili­

ties (cf. HOWARD and MATHEMSON [64]) to controlled branching processes (cf. 

MANDL [83] and PLISKA [92J) may be formulated as so-called Multiplicative 

Markov Decision Chains (MMDC's), as was pointed out by ROTHBLUM [99]. The 

latter generalize the ordinary Markov Decision Problems in the sense that 

the transition matrices are merely required to be nonnegative, rather than 

(sub) stochastic (cL (4.1.3)). 

RO'fHBLUM [99] showed that in these Multiplicative Markov Decision 

Chains, even when restricting attention to a "first order" criterion, a se­

quence of up to N nested functional equations arises, which satisfies the 

above described structure perfectly but for the (sub)stochasticity assump­

tion ( 4. 1 . 3) . 

Although the specific successive approximation method presented in 

this paper uses the entire structure as given by (4.1.1) up to (4.L4), 

including the (sub) stochasticity assumption, the basic ideas underlying our 

approach will be needed when establishing an approximation for the general 

MMDC-case. 

In section 2 we give some notation and preliminaries. In section 3 we 

summarize the properties of "single-equation" value-iteration schemes, as 

established in chapter 1 and 3 and as far as needed in the remainder. 

In section 4, we first show why any approximation method has to solve 

the entire sequence simultaneously rather than each of the equations suc­

cessively; next, we present our method for solving a pair of consecutive 

functional equations in the sequence (4.Ll), Le. a pair of equations of 

the structure: 

* k 
l~=l p~. *-(4. 1.5) maxkEK(i) [bi + xj J' i E ,I 

1.J 

;, k I k * 
I~=l pk_ * (4. 1. 6) y. = ma~o,J(i ,x*) [ci - H .. x. + yj], i C ,I 

1. J lJ J lJ 

where K(i) c K0 (i.), i E Q and where, for each solution x of the equation 

(4.1.5), the set M(i,x) is defined as: 

(4.1. 7) M(i,x) {k E K ( i) I k at·tains the maximum in ( 4. 1 . 5) for the 

solution x}. 
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Finally, in section 5 it is shown how this method mav be generalized 

to solve the entire sequence and next it is pointed out to which (simplified) 

algorithms, this method reduces in a number of special cases. The results 

in this chapter have been distilled from FEDERGRUEN and SCHWEITZER [37]. 

4.2. NOTATION AND PRELIMINARIES 

The following notation will be employed. For any policy 

f = (f(1),f(2), •.• ,f(N)) € x~_ 1 K0 (i) and m = O, ..• ,n we define N-vectors 
f(i) i- f(i) f(i) f(') 

a(f;m) = [a. (ml]; S(f;m) = [S. (m)]; b(f) = [b. ] and c(f) = [ci i ], 
i ,e_ i l·f('l i 

as well as the NxN matrices b (f;m) [b.' i (m)]; H(f) and H(f;m) 
i 

(m = 1, ..• ,n): 

(4.2.1) H(f) .. 
f(i) 

i,j Q H.. ; € 
iJ iJ 

H(f;m)ij 
f(i) 

i,j Q; 1, ... ,n. H .. (m); E m 
iJ 

k 
We assume that the numbers Hij ~ 

the closedness assumption (CLO) 

(4.2.2) (CLO) (a) ~ }:;=1 ~-i i] 

}:~=1 H~. (m) > 
iJ 

(b) For any policy 

0 and H~. (m) ~ 0 (m 
iJ 

> O; i E Q, k E K0 (i) 

O; i € Q, k E K0 (i), 

1, •.. ,n) satisfy 

m = 1, .•• ,n 

f E 
N 

xi=1 K0 (i) and any subchain C of the 

tpm p (f), C is closed for H(f) and H(f;m) (m = 1, ... ,n), 

i.e. if i € C then H(f) .. 
i] 

= o, and H(f;m)ij = 0 if j i. 

Assumption (CLO) is satisfied in all MRPs where H~.(m) = H~.; i,j E fl; 
k iJ iJ 

k E K0 (i); m = 1, ••• ,n and where T. represents the expected holding time i . 

in state i, when using alternative k € K0 (i), and where either~-= o .. 
k k k k iJ iJ 

or H. . = P. . -r . . with -r . . ~ 0, denoting the expected conditional ho] ding 

C 

iJ iJ iJ iJ 
time in state i, when using alternative k E K0 (i) and given state j is the 

next state to be observed. We finally define the N-vector T(f) = [Tf(i)J:=l' 

for any f EX. K0 (j) (ch. chapter 1, section 9). 
J 

The following theorem recalls the basic characterization of the so-

lution set to the pair of functional equations (4.1.5) and (4.1.6) (cf. 

[112]). 
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THEOREM 4.2.1. 

(a) The 2N functional equations (4.1.5) and (4.1.6) have a solution pair 

* {x ,y 

(4.2. 3) 

if and only if 

O; i E S"l. 

If this condition is met then SMC = {f E X ,K0 (j) !IT (f)b (f) 
* , J 

empty and x is unique and given by 

(4.2.4) 

where 

* X. 
J. 

max x(f) ., i E Q 
fESMG J. 

O} is non-

(4. 2. 5) x(f)i = Z(f)b(f)i + l:~1) t:(f) <nm(f) ,c(f)-H(f)Z(f)b(f)> , i E Q. 

<TTm(f) ,T(f) > 

Moreover there exist policies f E SMG which attain the N maxima in 

* (4.2.4) simultaneously, i.e. with x(f) = x 

* (b) if (4.2.3) is met then they -part of the solution pair is not unique, 

* * e.g·. if y satisfies (4.1.6), then so does y +dl_ for any scalar d. D 

We observe that (4.2.3) is the necessary and sufficient condition for 

the existence of a solution to the single (vector·-) equation (4.1.5) as 

well. So in other words, th.4.2.1 expresses that a solution of the pair of 

equations (4.1.5) and (4.1.6) exists if and only if the single (vector-) 

equation (4.1.5) has a solution (cf. [112]), 

Part (b) of the above theorem shows that the set Y = {y*E ENI 

satisfy (4.1.5) and (4.1.6)} is unbounded. For a more detailed character­

ization of this set we refer to [109]. We next return to the system (4.1.1). 

Henceforth assuming that 

(4.2.5) maxfEX.KO(j) IT(f)a{f;0)i 
J 

let s(O) = {f E X.K0 (j) !IT(f)a(f;0) 
MG J 

the system of linear equations: 

0, i E Q 

0}. For any policy f ES~~), consider 

f x(f;0) 

l x(f;m) 

a(f;0) + P(f)x(f;0) 
(4.2.6) 

a(f;m) H(f;m)x(f,m-1) + P(f)x(f;m); m = 1, ... ,n. 

(0) 
COROLLARY 4.2.2. For all f E SMG, the system (4.2.6) has a solution. More-

over, all the vectors x(f;0), ... ,x(f;n-1) are uniquely determined, ivhere­

as only the last and n+l-st equation .in (4.2 .6) has an unbounded solution 

set. 
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PROOF. We prove the corollary by complete induction with respect ton. For 

n = 1 the assertion follows as a special case of th. 4.2.1; next assume it 

holds for some value of n, and extend the system (4.2.6) with a n+2-nd 

vector-equation: x(f;n+1) = a(f;n+1)--H(f;n+1)x(f;n)+P(f)x(f;n+1). Consider 

the subsystem constituted by the n+1-st and n+2-nd vector-equation. In view 

of the first n+l vector-equations in (4.2.6) having a solution, it follows 

by multiplying both sides of the n+l-st equation with IT(f), that 

(4. 2. 7) IT(f)[a(f;n)-H(f;n)x(f;n-1)] = 0. 

Using (4.2.7) as well as the fact that a(f;n) and a(f;n+1) are uniquely 

determined in the extended system- which follows from (4. 1. 4) and the induc­

tion assumption- we conclude by applying th.4.2.1 to the above mentioned 

(single policy) subsystem that the extended system has a (n+2)-tuple of 

solution vectors in which x(f;O), ... ,x(f;n) are uniquely determined. Note 

finally that the vector x(f;n+1) which only appears in the last vector­

equation of the system, is not uniquely determined, since any multiple of 

1 can be added to it. D 

we next define recursively; 

(4.2.8) maxf s<l) x(f;.£).; i E ~; .£ 0, ... ,n-1 
E MG l 

with 

s(.£) = {f E s(.£-l) [x(f- 0 -1) = x*(.£-l)} f • 1 1 MG MG ,~ or~= , ... ,n-. 

'I'he following theorem, the proof of which goes along lines with that of 

corollary 4.2.2, extends the basic results obtained in th.4.2.1 to the 

system of functional equations (4.1.1). 

THEOREM 4.2.3. The system (4.l..1) has n+l-tuples of solut.ion vectors; more-
(□) (n-1) . . _ (.£) *(.£) 

over x , ... ,x are uniquely determined by x = x for .£ = 0, ... ,n·-1 
(n) *(O) *(n-1) (n) 

whereas the last component vector x is not unique (if [x , ... x ,x ] 
*(O) *(n--1) (n) 

satisfies (4.L1), then so does [x '"""x ,x +c.!:._]for any scalarc). □ 

Th.4.2.3 enables us to give a precise definition of the sets (i) 

for m = 1, ... ,n 

(4. 2. 9) {k E K0 (i) I k attains the maxima on the right-hand side of 

the first m functional equations in ( 4. 1 .1) for the 
. . * (0) * (m-1) (uniquely determined) solutions x , ... ,x } . 
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Lemma 4.2.4 finally gives a basic characterization of the sets S(K). 
MG 

LEMMA 4.2.4: 

(4. 2 .10) {f EX. 1/(j)jf(i) satisfies the l+1-st vector equation 
J 

in (4.1.1) for all iE R(f) and any solution 

[:x:(O) , ... ,:x:(K-l) ,x(t)J of the system (4.1.1), 

t = o, ... ,nL 

(-€.) . (0) (n) 
PROOF. Fix fESMG (0O:./'.O:n-1) and a solution [x ,,.qX ] to the system 

(4.Ll). Note from (4.2.6) and the definition of S(K) that f E X~_ 1i-l (j). Mul-
MG J- *(./'.-l) 

tiply both sides in (4.2.6) by Il(f) to verHy that, IT(f)[a(f;./'.)-H(f;./'.)x ]=0 

and conclude from f E x;=l /--l (j), and the inequality :x:(l) 2 a(f;./'.) -

- H(f;K)x(.€.-l) +P(f)x(.l) that f(i) satisfies the l+1-st vector equation in 

(4. L 1) for all i E R (f). This proves that S~~) is included within the policy 

set to the right of (4.2.10). To verify the reversed inclusion fix a policy 

within the latter set and apply corollary 4.2.2 to the first.€. equations in 

(4.2.6) to conclude that f E S~~-l). Note in addition that both x*(K-l) and 
0 V O * (.€.-2) 

x(f;~-1) satisfy the equations y = a(f;~-1) - H(f;~-l)x + P(f)y, and 

H(f)[a(f;./'.) - H(f;i)y] = 0, with the additional convention that 
* (i-1) It then follows from lemma 1 in [23] that x =x(f;K-1) Le. 

4. 3. SINGLE EQUATION VALUE-ITERATION; A REVIEW 

*(-1) 
X 

(./'.) 
f E SMG • 0 

Our successive approximation method consists of a sequence of itera­

tive schemes which are generated simultaneously. Some of these schemes aJm 

at finding either a vector that may be .interpreted as the maximal gain rate 

vector of some Markov Renewal Program, or a solution to the corresponding 

optimality equation (cf. chapter 1, section 9). 

In addition these schemes face in general the additional difficulty 

that 

(a) some (or a.l.l) of its one-step expected rewards, and 

(b) some (or all) of its action sets, 

are unknown in advance since depending upon quantities that have to be ap­

proximated simultaneously. 
N 

'l'hus for any Cartesian product space of policies Xi=l K(i) c 

consider the MRP which has 
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(1) x:=l K(i) as its policy-space; (2) nwnbers {q~ I i E II, k E K(i)} 
k 

as its one-step expected rewards and (3) the numbers , Ti 

(i,j E Ii; k E K(i)) as the transition probability to state j and the 

expected holding time when choosing alternative kin state i. 

Finally, suppose we wish to obtain an iterative scheme which approxi­

* mates the maximal gain rate vector g in this MRP, or a solution to the 

corresponding optimality equation (cf. (1.9.8)): 

* (4. 3 .1) 

where L(i) = {k E K(i)lg~ = IJ. Pk. g~}, i En (cf. (1.4.16)). 
l l] J 

Let v denote the solution space of the optimality equation (4.3.l.) 

(cf. (1.9.8)) and for any v E V, let 

(4. 3 .2) S(i,v) = {k E L(i) lk attains the maximum on the right hand side 

of (4.3.1) for the solution v E ; i E '2. 

Assume in addition that rather than having exact knowledge of the quantities 

{qkli E n, k E K(i)} and the sets {K(i) Ii E n} all we have, are: 
l 

( ) 

(2) 

sequences 

sequences 

{l (n) } 00 

1 + qk, geometrically as n + 00 ; i E 
l n= l 

{K(i,n) }~=l + K(i), as n + 00 , i.e. 

K(i,n) = K(i) for n sufficiently large, say n ~ 

advance. 

, where 

.\l; k E: K (i) 

is unknown in 

The definition of {x (n)} ~=l * + X r geometrically was given i.n (3,LS). 

In chapter 3, we derived a value iteration scheme which solves the special 

case of undiscounted discrete-time MDPs with (geometrically) converging pa­

rameters, whereas in add.it.ion it was po.inted out that all of the quantit.ies 

of interest can be approached at a geometric rate. Theorem 4.3.1 below com­

bines th.is method with the data-transformation (1.9.9), with o ~ T, which 

turns every undiscounted MRP into an equiva.Ient undiscounted MDP in wh.ich 

all of the policies are aperiodic. We recall that the aforementioned equ.iv·­

alence not.ion was defined by (EQUI) (cf. (1.9.6)). 

So, th.4.3.1 below cons.iders the scheme 

(4. 3.3) v(n+1). L/at/· 
T 

(P~ .-·o .. ) Jv(n) .1, i r2 maxk,c:K(i,n) + 
Tl: 

E: 
.1. l] .lJ J_ 

with 
l 

(4. 3. 4) 0 < T < m.in{T1:: ;'. (1 I (i,k) w.ith pi::. < 1} 
l • ll 
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and where the starting point v(0) E EN may be chosen arbitrarily. 

First, we convene that hereafter, {cn}~=l will indicate any sequence 

of positive numbers approaching zero in such a way that An/c ➔ 0 for any 
-1 n 

!c, 0 s A< 1, e.g. take c0 = n or the reciprocal of any positive polyno-

mial inn. 

THEOREM 4.3.1. 

(a) g(n) T- 1{v(n)-v(n-1)}-+ g*, geometrically, as n ➔ 00 

(b) w(n) nv(n-1)-(n-l)v(n) ➔ 
0 

V ' geometrically, as n ➔ 00 r,;here 

(c) For all i Erl, n = 1,2, .•. and E > 0 let 

A(i,n,c) 

B(i,n,s) 

Then, A ( i, n, En) ➔ L ( i) , as n -+ 00 , i E it and 

B(i,n,cn) + S(i,v0 J as n ➔ 00 , i E D 

i.e. for all n sufiiciently large, A(i,n,c 11 ) 

S ( i, for all i E Si. 

L (i) and B (i ,n, 

EV. 

PROOF. Consider the discrete-time MDP with the same state- and policy space 

d ~k k/ k . n k K ( . ) d ~k T [ k ~ ] ., . . n d k K ( . ) an q. = tq. T. ; l E "' . E l an p .. = ~ p. '-v' ' + u .. ; 1. 'J E " an . E 1. 
1. l 1. 1.J Ti 1.J 1.J 1.J 

which corresponds with the transformation formula (1.9.9) with the choice 

a = T. It was pointed out i.n section 9 of chapter l, that thi.s transforma­

tion turns the MRP into a discrete-time MDP which is equivalent in the (EQUI) 

sense (cf. (1.9.6)). In addition by choosing T strictly less than the upper 

bound in (4.3.4), all of the policies in the transformed MDP are aperiodic 

(cf. section 1.9). Next, one easily verifies that (4.3.3) corresponds to 

the scheme (3.4.3) in this transformed MDP. Hence, applying t.h.3.4.1 and 

using the equivalence bet.ween the original MRP and the transformed MDP, one 

concludes that for any starting point v(0) E 

(4. 3. 5) * v(n) - ntg -, , geometricall.y where v 0 EV. 

'I'he limit results in part (a) and (b) then follow as in (1.8.21) and (1.8.22) 

and the results in part ( c) are immediate from th. 1. 7. l. D 

We note that in some cases the parameter Tin (4.3.3) may be taken to 

be equa.I to the upperbound in (4.3.4). In particular, for discrete time 

MDP' ,; the choice T = 1 .is sometimes allowed for any starting point v ( 0) E 

}. 
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We refer to th.1.5.1 for the necessary and sufficient condition of the 

latter. 

Keeping track, at each stage of the iterative scheme (4.3.3), of the 

sets of En-optimal actions, rather than of the sets of optimal actions, is 

in general inevitable since it was pointed out in section 1.7 that these­

quences {A(i,n,O)}~=l and {B(i,n,O)}~=l' i c: n, may have a very irregular 

behaviour. 

* * We finally recall from section 1.8 (cf. (1.8.20)) that in case g = <g >.!:._ 

a simpler and numerically preferable scheme was established by WHITE [l.31] 

to separate g* and v 0 

An important special case of the latter occurs when computing a solu­

tion to a functional equation of the type 

(4.3.6) 
·k 

V 
i 

the necessary and sufficient condition for the existence of which is given 

by maxf K( ') Jl(f)q(f) = 0 (cf. th.4.2.1). Note that under this condition, 
_c:X. J 

(4.3.6) mJy be interpreted as the optimality equation of a discrete time 

* MDP with g = 0, and the fol.lowing iterative scheme may be applied: 

(4.3.7) y(n+l), =maxk K(' )hq~(n)+I.[o. ,+-r(Pk.-8 .. )Jy(n) .Li E It 
l E 1,n l J lJ lJ J_J J 

with O < T < . Verify that 

(4. 3 .8) 
00 0 0 

(n)}n=l + v geometrically, with v satisfying (4.3.6). 

For discrete-time MDP' s in which the maximal gain ra.te is independent of 

the initial state of the system, the following adapted version of the 

"modified value-iteration method" of HORDIJK and TI,TMS [ 60] (cf. section 

1.8, in particular (1.8.7)-(1.8.10)) may be used as an alternative to the 

scheme (4.3.3). In addition this algorithm has the special property of con-

* verging to the optimal bias vector z, defined by (1.8. 1), albeit at a con-

siderably slower rate than (4.3.3) exhibits. Since the scheme will merely 

* be needed in the case where g .2__, a simplified convergence proof will be 

given for this special case, The proof goes a.long the lines of the one giv­

en in HORDIJK and 'rIJMS [ 60] and the proof for the more general case where 

g* = <g*>1 can be obtained a.long the lines of [60] as well: 

THEOREM 4.3.3. Let 
k . 

T, = 1; i E It 
l 

k °' 
[qi(n)}n=l + q~, geometrically (i 

· i -

* and k E K(i) and g = 0. Assume 

E It; k E K(i)). Consider the scheme 



(4.3.9) z (n+l). 
l 

where S = 1-n-b, for some O < b S 1. Then {z (n) }°'' ➔ z * where 
n n=l 

(4.3.10) llz{n) - z*II = O(n-blnn). 
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PROOF. Let V(S) denote the total maximal expected S-discounted rewa.rd vector, 

satisfying the optimality equation: 

(4.3.11) V(S). = maxk K(')cl +SI. P~. V(S) .], i ED. 
l E l l J lJ J 

Note from MILLER and VEINOT'l' [85 J that there exists a constant K > 0, such that 

(4.3.12) IIV(S) - z*II s K(l-S), and 

Let C > 0 and OS A< 1 be such that 

Finally let fn be a policy satisfying the N maxima in (4.3.9) and let gn 

be a -optimal policy. Then, 

(4. 3 .15) 

where 

Hence, 

L(n)i s z (n+l). V(Bn) i s U(n)., i E (), 
l l 

L(n). q(gn;n)i - q(gn)i + Sn I. P(g ) .. tz(n) .-V(B ) .] 
l J n iJ J n J 

U(n). 
l 

q(fn;n)i ·- q(fn)i + Sn Ij P(fn)ij[z(n)j-V(Bn)j]. 

llz(n+lJ - V(S )II s c><n + S llz(n)-V(S )II s 
n n n 

+ S llz(n)-V( 
n 

+ s llv(S )-V(S 1)11 sc:>cn+S llz(n) -V(l3 1)11 + KS Is -s 11 
n n n- n n- n n n-

for all n?. (say). Iterating this inequality we obtain for all m? 0: 

with the convention that n° a 
r=L r 

1 if L > U. Hence, 
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(4. 3 .16) llz(n +m+1)-z*ii 
0 

This implies that for the choice S = 1-n-b, 0 < b ~ convergence of 
n 

{z(n)}~=l is determined by the last two terms to the right of (4.3.16). To 

verify convergence as well as its rate, note, using the mean value theorem 

that nb-(n-1)b ~ for all n = 1,2, ••• and use this inequality in order to 

verify that (cf. also chapter 8): 

(nb -1) ( (n-1) b __ l) 

b 
n 

Next we apply the mean value theorem to verify that 

<l-u O -b-1 , -b,n-1 .-1 
.b (J-1) ~ bn L.j=l J 
J 

which determines the convergence rate of {z(n)}~=l· [] 

4. 4. SOLVING TWO COUPLED FUNC'.l'IONAL EQUATIONS 

0(n n) 

In this section we wish to solve, by successive 

two coupled vector equations (4.1.5) and (4.1.6). Here 

approximations, the 

and c~ (iErl, kEK(i)) 
l 

* are assumed to be independent of x * and y . We first treat 
k k 

all of the sets K ( i) , and all of the parameters bi, c i, 

(i,j E: rl;k E: K(i)) are known exactly. Later on, we treat the 

stead of knowing the sets K(i) and the parameters bk and 
i 

proximations: 

the case where 

and l. 
lJ 

case where in-

, one has ap-

(1) 

(3) 

➔ b~, geometrically; 
l. 

* Theorem 4.2.1 shows us that x, if it exists, is unique. Our successive 

* approximation scheme decomposes x into three components which are approx-

imated simultaneously. 'rhe first component represents an arbitrary solution 

to (4.1.5) alone. Its computation is accomplished in accordance with the 

scheme (4.3.7) (cf. th. 4.3.1). 
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* * * In addition, the difference vector w x -( is decomposed into two 

-* * * * -* * -* components g and v i.e. x ( +g +v. The vector g can be interpreted 

as the maximal gain rate vector of a certain MRP and can be found in accor-

dance with a scheme of the type (4.3. 3) (cf. th. 4. 3 .1). Finally the vector 

* * 
V satisfies the inequalities V, 2 0, i E 11, with strict equality in a non-

1. 

empty subset of the state space, to be specified, below. 

This vector can be interpreted as the solution to an optimal stopping 

problem, hence it is the minimal solution to a certain functional equation 

arising in a transient MDP. It will be found by a successive approximation 

scheme in accordance with (4.3.6) and (4.3.7). 

In summary the proposed method generates simultaneously three value-
~~* 

iteration schemes with geometric convergence to the three vectors ,g 

* * and V. Then X -* t, +g * is part of the desired solution to (4.1.5) and 

* (4.1.6). 'rhe non--unique vector y in (4.1.6) may finally be determined by 
. k k 1· k * 

interpreting (4.1.6) as a special case of (4.3.6) w1.th qi =ci-ljHijxj and 

* K(i) replaced by M(i,x), and by applying th.4.3. , while geometric esti-

* * mates of x and M(i,x) (iE\1) are generated. 

We finally note that the above decomposition is similar to the one 

employed by DENARDO [21]. The temptation exists to devise a set of succes­

sive approximation schemes which solve the functional equations one after 

the other; e.g. the first scheme creates a sequence {x(n) n~l approaching 
(oo) (n) oo 

some solution x of (4.l.5) and sequences {M (i)}n=l that approach the 

action sets M(i,x(,~)). One might try to terminate these sequences after a 
* ·k 

finite number of steps and replace x and M(i,x), i E Q by the currently 

available approximations when starting a second iterative scheme to solve 

the second functional equation. 

There are three reasons why this method cannot work. First, th.4.2.1 

shows that not any solution x(oo) of (4.1.5) is acceptable, but only the 

* unique solution x which satisfies the second equation (4.1.6) for some 

* EN 11 S d ' { (n) } 00 .h . d y E as we . econ, even in case x n=l converges tote require 

solution x*, it is still possible for maxf M(' *)Il(f)[c(f)-H(f)x(n)J 
.EXj J ,x 

to be non-vanishing for all n = 1,2, ••• and as a consequence any successive 

* approximation scheme for solving (4.1.6) in which x is replaced by the 

currently available approximation x(n), will explode. Finally, one doesn't 

know when - if at all - the sets M(i,x*) can be replaced by the sets M(n)(i) ~ 
We conclude that the equations (4.1.5) and (4.1.6) must be solved by 

simultaneously computed successive approximation schemes, where the scheme 
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* * for y uses an ever-improving rather than a fixed approximation of x The 

above problems seemingly did not arise in Denardo's LP-decomposition method 

(cf. [21]), where one assumes to have solved the first functional equation 

exactly before tackling the next one. In the presence of numerical errors, 

however, the second equation 

resenting the computed value 

won't hold precisely. 

(4.1.6) may be inso.Ivable, since, with 

* .... * of x, maxf X (' *)ll(f)[c(f)-H(f)x] 
E jM J ,x 

x* rep-

= 0 

Henceforth assuming that condition (4.2.3) holds, we recall that the 

first equation (4.1.5) may be considered as an optimality equation of an 

undiscounted MDP of the special type (4.3.6). We conclude that with the 

help of the single equation methods presented in the previous section (cf. 

}oo -n. }oo 
(4.3.7)), sequences {i;(n) n=l and{~ (1) n=i' i E 0, may be generated with 

the properties 

(4.4.1) * * { i; (n)} :cci ➔ 
{::(n) (i) }:=1 ➔ 

i; , geometrically, with i; 

* M(i, I; ) as n ➔ 

a solution to (4.1.5) 

LEMMA 4.4.1. Pick i; (0) E EN arb.itrari.Iy and O < T < 1. Then the iterative 

scheme 

(4.4.2) 

00 * * has the property { i; (n)} n=l ➔ I; , geometrically, where i; satisf.ies (4 .1. 5) . 

In addition, let 

:': (n) (i) k N k 
{kEK(i)Jb.+L- 1[T(P .. -o .. )+o .. ]i;{n).?:/;(n+1)_-E }, 

l J= lJ lJ lJ J 1 D 

iED;n=1,2, ... 

The next step is finding an expression for w* * * * 'X· * x -I; . Insert x = I; +w 

into (4.1.5) and (4.1.6) to get the new coupled equations: 

(4. 4. 3) * 

(4.4.4) 

with 

(4.4.5) bk Ij k * * + P .. I;. I;. ; i E D, k E K{i) 
1 lJ J l 

···k k l- k 
I;~; i 0, c. c. - H .. E k E K(i). 

1 1 J lJ J 



Observe that (4.4.3) and (4.4.4) have the same structure as (4. 1.5) and 

(4.1.6). Note in addition, that 

maxfEX ,K(j) IT (f)b(f) 
J 

maxf€X.K(j)IT{f)b(f) = 0, with SMG = {fJIT(f)b(f) ,~ 0} = SMG 

J 

and apply theorem 4.2.1 to (4.4.3) and (4,4,4) to conclude that 

(4.4.6) 
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w{f)i 
m - -

Z{f)b(f). + ln(f) 1'1;1{f) <·rr (f),c(f)-H{f)Z(f)b(f)> i E fl. 

i m=1 i <1Tm{f),T(f)> 

0. This motivates us to define 

-* 
(4. 4. 7) gi -

maxfEX ,M(j '~*) 
w(f)., i E r2 

l 
J 

with the following properties. First, let 

(4.4.8) }. 

THEOREM 4.4.2. 

(a) 

{b) 

{c) 

m -
- 1n(f) m <TT (f) ,c(f)> 

For all f ES G' w(f). =Z(f)b(f).+l l 1'.{f) ---~--, j_ 
M l 1. m= l <1Tm(f) ,T(f) > 

where Z(f)b(f). = 0 for all i E R(f) 

* and w. 
l 

l 

j_ E St 

R(f), f r: □ 

PROOF. 

(a) * * * Fix f E SMG. Verify that~ ?: b(f)+P(f)~ since~ satisfies (4.L5) 

and multiply this inequality by IT(f) 2 0 to conclude that: 0 IT(f)b(f) 

= lT(f)[~*-b(f)-P(f)~*l?: 0, the equality part following from f E SMG" 

Hence, 

(4.4.9) b(f), = O, i E R(f) 
1. 

Next, note from assumption (CLO), (cf. (4.4.2)), and (4.4.7) that for 

all i E R(f), H(f) .. > 0 or Z (f) .. > 0 only if J. E R(f), and conclude 
1.J 1.J 

to part (a) using (4.4.6), 

(b) follows from part (a) and the equality b(f) 0 for f EX. M(j, 
J 
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* -* * Part (c): The inequality w 2 g follows from SMG:?. Xj M(j,I; ) • We next 

recall from th.4.2.1, part (a) that R # 0. 'I'o verify that the reversed 
* -* · opt 

inequality w, S g, holds at least for the components i E Rapt as well, fix 
l * l 

f E SMG' with w w(f), as well as a state i E Cm(f) (1 Sm S n(f)). De-

fine a policy h such that 

h(i) 
f f(i), for all i E R(f) 

l. * E M(i,1;) otherwise 

* and note from (4.4.9) that h EX. M(j,I; ). Conclude that, 
J 

* W, 
l 

w(f). 
l 

m - m 
<·ir (f) ,c(f)>/<11 (f) ,T(f)> 

the second equality following from part (a) and the third one from the 

fact that R(f) is closed under P(h), thus proving part (c). D 

-* 
The key observation now, is that theorem 4.4.2, part (b) represents g 

as the maximal gain rate vector of a MRP with the Cartesian policy space 

* -k k Ij }t' * X. M(j ,I; ) and one-step expected rewards C. = C, - l;j, i E SI and 
J l l lJ 

* k E K{i). These are not known in advance, because the sets M(i,I; ) , i E SI, 

* and the vector I; are unknown in advance. However both the policy space and 

the one-step expected rewards can be approximated by resp. (cf. (4.4.1)): 

(4.4 .10) 

we now invoke th.4.3.1 to get the following successive approximation method 

-* which converges geometrically tog 

THEOREM 4.4.3. Pick h(0) EENandO< T < min{T~/(1-P~.)J(i.,k)wlth P~.< 1}. 
l ll ll 

Then the iterative scheme 

(4.4.11) 

(n+l). 
l 

-k 
c. (n) 

l 
--k-+ 

T. 
l 

- k 
T (P, ,-6 .. ) 

I [ lJ lJ 
l· k 

J T 
i 

(n-t-1). 
l. 

:;:-l{h(n-t-1) ,"·h(n).}, i. E rt 
l l 

has the property {g(n) }~=l ➔ ~r*, geometrically. □ 

* * We finally turn to the evaluation of v. Insert w 

* -* 

+ 

-* * 

]h(n) .},id1 
J 

g +v and the 

inequality w 2 g (cf. th.4.4.2 part (b)) into (4.4.3) to get 
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r k 
+ z:. k 

V :} ' ma'\ ('){r. P .. i E n 
.EK l l J l] J 

(4.4.12) 

vi ?: 0, i E n 

k b-k. + 1 k -* -* k 1· k * -* * -* where r. LJ· P .. g, - 9; = b 1. + LJ· P .. (1;.+g,) ·- t,. Note that * l l lJ J ~ lJ J J l 
vi 0, for all i E Ropt 

* As a consequence v satisfies the functional equation 

(4.4.13) 

* 'l'he following theorem shows as a. key observation that v is in fact the 

smal..1.est solution to (4.4.13): 

* THEOREM 4.4.4. v is the smal..1.est so.1.ution to (4.4.13) i.e. every so.1.ution 

* v of (4.4.13) has V?. V 

PROOF. Fix a solution v to (4.4.13) and define z. =min{v~,v.L Fix f E sopt· 
(i) 1. 1. l -

Define the vector r(f) by r(f)i. . Note that both, 

* ~· 
V. ?. r(f)i + P(f)v. 

l. l. 
?. r (f). + P(f) 

1. 
i. E '1, and 

v. ?:: r (f). + P(f)v. ?. r (f). + P(f) i C n. Hence, 
l 1. l l 

(4.4. 14) z - r(f)-P(f)z >- 0. 

Multiplying (4.4.14) by Jl(f) 2: 0, yields O = JI(f)([I-P(f)]z - r(f)), in 

view of O = JI(f)r(f) = TI(f)b(f) = 0 (cf. assumption (4.2.3) and note that 

f ES t c S ). This implies that (4.4.14) is a strict equality for compo­
op - MG 

nents i E R(f). Using this and the fact that as a result of (1.4.7) for 

j i. R(f), Z(f) .. ? 0 for all i, with Z(f) .. •= 0 when i E R(f), we get 
1.J 1.J 

(4.4.15) z?. Z(f)r(f) + TI(f)z 

by multiplying (4.4.14) by Z(f) and invoking (1.4.6). Next note from part 

(b) of th.4.4.2 that for all i E Ropt' hence especially for all i E R(f), 

* * z. ~ 
l 

0 =vi.As a consequence, we have vi for all i E R(f) and combine 

this with (4.4.15) to obtain: 

?: Z(f)r(f). + IT(f)v~ 
l l 

Z(f)r(f). + JI(f)[w(f). 
1. 1. 
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I:~:i m -
+ <!>1'.1(fl 

<TI (f),c(f)> 
l <Tim(f) ,T(f)> 

-* * -* * = w(f). - gi w. gi v.' for all i E Si 
l l l 

in view of Jl(f)b(f) = 0. Conclude v * 
□ that :0- V 

Functional equations of the type (4.4.13), with a smallest solution 

arise inter alia in Leontief Substitution Systems (cf. KOEHLER et aL [72]). 

The equation (4.4.13) may be interpreted as an optimal stopping problem 

(cf. DERMAN [25], ch.8) where the decision to stop earns a reward O from 

thereon. More formally, append a new stoppi.ng state O Le. 

(4.4.16) D = Du{O}; K(il 

k 
i E 0. 

K{i)u{O}, i E Si and K(O) = {O} 

and k E K{i) 
;/ = { ri 

i 0 i E fi and k 0 

k { p = 
ij 

P~ . ; k E K ( i) ; 
lJ 

o ·o; k 
J 

O; 

i, j E Q 

and rewrite (4.4.13) as 

(4.4.17) 

(4.4.18) 

-k l -k max. "' ( . ) [ r. + . ;,; P. . vJ. J , i c: Q, with 
!cE1' l l JE0< lJ 

o. 

This is a MDP with O as the max.imal gain rate vector, and state O a trapping 

state under each policy f E SMG" The following theorem shows that [v*,o] 

may be interpreted as the optimal bias vector of this MDP such that th.4.3.2 

* may be invoked in order to obtain an iterative scheme that approaches v 

ultimately from above. 

THEOREM 4.4.5. 

(a) [v*,o] is the smallest solution of (4.4.17) and (4.4.18) 

{b) [v'' ,OJ is the optimal bias vector in the MDP, specified by (4.4.16) 

(c) Consider the scheme 

(4.4.19) z (n+l). 
l 

where Bn 
-b 

1-n , for some O < b <;; 1, and 

(4.4.20) -k 
r. (n) 

l 

{ 
b~ + L, p~_(i;(n).+g(n).)-i;(n).-g(n).; i E 11; k E K(i) 

.1. J lJ J J l l 

0 otherwise 
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Let 

(4.4.21) 

PROOF. 
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N+l 
,,.,here z (0) c E has z (0) 0 = O. 

{nn}~=i be a sequence of non-increasing positive numbers, such that 
-b/2 

0 (n-blnn); e.g. take nn = n ; n::: L Then 

(a) Note that for any solution v of (4.4.13) the vector [v,0] satisfies 

(4.4.17) and (4.4.18) and vice versa. Next invoke theorem 4.4.4. 

(b) Let SMG be the set of maximal gain policies in the above considered 

MDP. For each policy f, let r(f), P(f), Z(f) and IT(f) denote the as­

sociated reward vector, transition probability, fundamental and in­

variant probability matrix. Let d be the least common multiple of the 
- -* periods of the policies in SMG' and let z represent the optimal bi.as 

vector. Then, using (1.4.7): 

z(flr<tl. 
l 

,nd -£ -= maxf -5 lim l• 0 P ·(f)r(f) .; 
.. E MG n->= ,c..= 1 

i E (l 

where the interchange of the limit and summation operator is justified 

by 

for some K > 0, 0 s "A< l, and 

all O s a s 1 and n ::: 

and the well-known fact that the l:Lm:Lt function of a uniformly convergent 

sequence of continuous functions on a closed interval, :Ls a continuous 

function itself. Next, take a solution v of (4.4.17) and (4.4.18) and 

fix f E SMG' Then, 

1 M ,nd-1 -·£ - Md+l 
v ::C r(f)+P(f)v 2 ln=l lf=(n-l)d P (f)r(f) + P .. (f)v 

(n-1 )d 
(f)r(f), in view of v 2 0 (cL (4A.13)) 

,°" ,nd-1 -£ - " ,°" ,nd-1 -l -: _ 
Hence, v::: ln=llf=(n-l)d P (f)r(f), or v ~ maxfES ln=llf=(n-l)d P (f)r (fl--

-* -* MG = z • Observe on the other hand, that z , as the optimal bias vector, 

-·* i.s itself a solution to (4.4.17), with z 0 = 0, hence satisfying (4.4.18) 
uo•* 

as well, and conclude that z · is the smallest solution of (4.4.17) and 

(4.4.18) 
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(c) Part (c) follows from thA.3.2, in combination with lemma 4.4.1 and 

th.4.4.3. 0 

Although (4.4.20) provides an approximation method for the third and 

* * * last component in the decomposition x = I; +g , one should observe that 

its rate of convergence is far from geometric. A geometric type of conver­

gence will, however, be needed in any attempt to solve the second equation 

in the pair (4.LS) and (4.1.6). Fortunately, the latter may be achieved 

* by observing that v is the smallest vector v, with v0 = 0, that satisfies 

the average return optimality equation (4A.17). 'I'he method, presented in 

th.4.4.6 below exploits both this property, and the availability of an as-

* ymptotical.ly converging upper bound for v (cf. part (c) of the previous 

theorem). 

'l'HEOREM 4.4.6. Consider the scheme: 

step 0: Pick a sequence of positive numbers {ym}==l' with 

0 < T < L 

Co .. +T cio~ .-a .. l Jv.}, 
lJ l] lJ J 

ri; k E K(i) and 1,ith 

.c........£_2 __ "if" vi> z(n+l)i + nn+l' for some i E ri "then" 

(a) v := 0; (b) m := m+1 

~tep 3: n := n+1; go back to step L 

t 1. Initialize 

i E ri where 

:? (n) defined 
l 

Let {v(n)}~=l denote the sequence of values adopted by the vector variable 

v as n = 1 , 2 , . • • • Then, 

(a) the test in step 2, can only be met for a finite number of times 

(b) {v(n)} ➔ v*, geometrically. 

PROOF. 

1-k -k n 
(a) Note that ri (n)-ril 5 C\ for some C > 0, and Os\< 1. Since 

{ y11J:=l t 1, and in view of part (c) of the previous theorem there is 

an integer rn0 2'. 1, such that 

C,n n k k 
(4.4.22) (a) /\ < (y ) Le. r. (n) < r. for all n 2'. 

m0 l l 
i E ri, k E K(i) 

(b) z(n)i + nn > v: for all n 2c m0 ; i E ri 

Next, we show that m cannot be incremented above rn0+1; i.e. the test 

in step 2 can be met for at most m0+l times. For assume that m adapts 
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* the value m0+1. Note that the current value n of n ~ m0+1, since m 

can only be incremented after incrementing n by at least one. Observe 

* furthermore that v(n +1) = O. Then, 

* k * Ij -k v(n*+1)] v(n +2). maxkEK(i)[ri (n +1) + P .. 
l. l.J 

-k Ij -k 
v~] * ::; maxkEK (i) [r i + P .. = vi, i E fl 

l.J J 

* * where the inequality part follows from (4.4.22) and v(n +1) 0 Sv 

* (cf. (4.4.13)). Proceed by induction to verify that for all n ~ n +1 

v(n)i S v: S z(n)i + nn' i ED, such that the test in step 2 is never 

met again. 

(b) We conclude from part (a), that after the test in step 2 has been met 

for a finite number of times, the vector vis reinitialized at 0, and 

from thereon, the algorithm behaves exactly like the scheme (4.3.7) 

with {r:(n)}:=l + r:, geometrically. Note in addition that v(n) 0 = 0 

for all n ~ 1 and apply th.4.3.1 to conclude that {v(n)}:=l + v, geo­

metrically, where v satisfies (4.4.17) and (4.4.18). Moreover, since 

v(n)i S z(n)i + nn' i ED, it follows that v S v* by letting n tend 

to infinity, and invoking part (c) of the previous theorem. Conclude 

* * that, v = v, in view of v being the smallest solution to (4.4.17) 

and (4.4.18) (cf. part (a) of th.4.4.5). Finally, the geometric rate 

of convergence follows from th.4.3.1. D 

We conclude this section by putting all the pieces together, We pre­

sent our algorithm for solving the pair of coupled equations (4.1.5) and 

(4.1.6), for the more general case, where instead of knowing the parameters 

in advance, only geometric approximations are available, i.e. we assume to 

have: 

{b~(n)}00 ➔ b~, geometrically, i E fl, k E K(i) 
l. J. 

geometrically, i E fl, k E K(i). 

It is easily verified that all of the results in theorem 4.4.2 to 4.4.6 

go through when replacing the parameters in the pair of equations (4,1.5) 

and (4.1.6) by their approximatiors. 
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THEOREM 4. 4. 7. (Main Result) • 

(a) To find the unique solution x* to (4.1.5) and (4.1.6), given approxi­

mations for its parameters, as specified by (4.4.23) construct these-
oo * - 00 -* 00 

quences {1;(n)}n=l ->-1;, {g(n)}n=l -+g, {v(n)}n=l ➔ , by generating 

the schemes (4.4.2), (4.4.11) as well as the scheme in th.4.4.6, in 

which {K(i)liED}.{b~liEl"l, kEK(i)} and {c~lidl, kEK(i)} have been 
l l 

replaced by their approximations. Lemma 4.4.1, and theorem 4.4.3 and 

4,4.6 show that the three sequences exhibit a geometric rate of con­

vergence, Note that the construction of {v(n)}~=i requires the gene-

ration of a fourth sequence {z(n)} 00 
, via the scheme (4.4.19) i11r,1hich 

n=l 
the parameters of the problem are again replaced by their approxima-

tions. Then 

(4.4.24) * X , geometrica.lly 

(b) Let F(i,n,c) {k E K(i,n) lx(n+l). s b~(n)+ l,. P~. x(n) .-d; iEl"l;nd;s>O. 
* l l J J.J J 

Then, limn➔oo F(i,n,cn) = M(i,x ); i ED. 

(c) To find a (non-unique) y* satisfying (4,,1,,6) generate the sequence 

(4.4.25) y(n+l). = maxk (. ){T (c~(n)··· l,. H~ .x (n).)+ l · [cS .. +T J·.J·-'\J·) ]y(n)J.} 
i EF i,n,cn 1. J J.J J J iJ 

i c D; n = 1,2,~~~ 

with O < T < 1 and y(O) E EN arbitrarily chosen. Then y(n) ->- y*, 

geometrically. 0 

?!.Q.OF. Only parts (b) and (c) need to be proved. Part (b) follows from the 

proof of th.1.7.1. part (a). Part (c) follows by invoking th.4.3.1 and by 

interpreting (4.1.6) as the average return optimality equation of a MDP, 
* k,k*. ·*} with M(i,x ) as the action set in state i and {ci- lj Ffijxj Ii E D;k E M(i,x ) 

as the set of one-step expected rewards. 0 

REMARK 1 . .All of the sequences employed in the above algorithm are bounded, 

but for {h(n)}~=l which is generated in (4.4.11) and which diverges linearly 

with n, We refer to section 1.8 ((1.8.20)-(1.8.24)) for a discussion of pos­

sible methods to eliminate this numerical difficulty. 

4.5. THE n+1 NESTED FUNCTION.AL EQUATIONS 

We showed in theorem 4.4.7 how to solve two coupled equations by 

successive approximations. For two equations, we saw that 4 successive 
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apprcximation schemes (cf. th.4.4. 7 part (a)) suffice to find the first 

unknown. and one additional scheme (cf. th.4.4.7 part (c)) will find a so-· 

lution to the second equation. Since (4.Ll) has a similar structure, sim­

ilar methods will work for n+1 sets of equations with n arbitrarily large. 
*(O) *(n-1) 

Then unique vectors {x , ••• ,x } (cf. th.4.2.3) are found by 4 n 
*(n) 

successive approximation schemes and the (non-unique) vector x is found 

by one additional scheme. 

To avoid excessive notation, the procedure will only be described ver­

bally. First construct 4 schemes (given by applying th.4.4.7 part (a) to 

the first 2 equations) to find x*(O). Here the action sets K0 (i), i c n, 
and the rewards a~(O) and a~(l), i E n and k E K0 (i), are known exactly. 

l l 

The result of these 4 schemes is a sequence {x (O) (n) }:•~l which converges 

*(O) 1 . }"' geometrically to x and sequences of sets {K (1.,n) n=l' i c n, which con-

verge to (i). Next construct 4 more schemes (given by anplying th.4.4.7 

to the second and third equation in (4.1.1)) to find x*< 1 l. Here the action 
\' k *(O) 

sets (i), i E It, and the rewards (1) - l· H .. 0) x. and (2), iE It; 
J lJ J 

k E K0 (i), are not known in advance; instead we employ the approximations 

available from the earlier schemes: 

(1) 

s~ c2) 
:L 

k ,: k 
a.(1)-l,H,.(1) 

]. "J :LJ 

a~(2); iEu; kc 
]. 

The result is a scheme giving a sequence {x(l) (n)}:~l which converges geo­

metrically to x*(l) and sets K2 (i;n) which converge to (i), i c n. Con­

tinuing this way, we get 4n+1 simultaneous successive approximation schemes, 

each dependent upon its predecessors and each converging geometrically. 

Note the feature that the geometric rate of convergence propagates .from 

one pair of functional equations to the next; this is crucial for quarantee­

.inq convergence of the whole set of 4n+1 successive approximation schemes. 

We conclude this chapter by considering the following special cases: 

A) a~ (0) = 0, i E: It, k E: K0 (i). This case occurs in all MRPs in which one 
:L 

wants to find policies that are maximal gain or optimal under more selective 

discounted or average overtaking optimality criteria (cf. [22], [127] and 

section 4.1). For notational simplicity assume, as is actually the case in 

the MRP model, that H~. (m) = H~. for all m = 1, ••• ,n and i,j c It and k E K0 (i). 
lJ lJ 

A solution to the first two equations in (4.4.1) may be obtained by genera-

ting a system of only two (rather than four, as in the general case of th. 
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4.4.7) schemes. To verify the latter, note from th.4.2.1 that in this par­

ticular case, SMG = Xj K0 (j) such that 

* (0) x. 
l 

1 n(f) m <1l1 (f),a(f;l)> 
maxfEX.K(J') lm=l ~i (f) 

J <rrm(f),'I'(f)> 

* (0) . . i.e. we rederive that x itself represents a "maximal gain rate" vector 

and may be approximated with a single equation scheme (cf. section 1.9 and 

section 4.3). 

We recall having noticed in section 1.9, that whereas the maximal gain 

rate and maximal gain policies in an undiscounted MRP, can be found via a 

single iteration scheme, the computation of a solution to the optimal.tty 

equation 1.9.5 requires two (simultaneously generated) schemes. The above 

described procedure clarifies how this objective may be meL 

In the special case where 

or (2) if. =T~ o .. or (3) H~. 

*(O) 
either (1) x has identical components, 

lJ l l] l] 
may be rewritten as 

(4.5,,1) * ( 1) 

k k 
T. P .. , the second equation in (4.1.l) 

l iJ 

which coincides with the simplified optimality equation, (1.9.8) associated 

with the maximal gain rate vector x*(O). We conclude that in this case, a 

sequence approaching some solution yo to (4.5.1) may be derived from the 

same scheme that is needed to obtain x*(O) (cf. th.4,3.1 part (b)), Le. a 

single equation scheme suffices to solve the first two functional equations. 

B) Finding bias-optimal policies in MRPs. This problem reduces to solving 

the following triple of nested equations. 

* 
maxkEKO(i) [}:j Pk. * (4.5.2) gi gj], i € (l 

lJ 

* k Ij H~. 
* I:1 

k * 
maxkEK1 (i) [qi - gj + P .. zj], i E Sl 

lJ lJ 

* 

Since (4.5.2) satisfies A) only two schemes are needed to solve the first 

two equations, and an additional quadruple of schemes has to be added to 

solve the entire problem. 

The algorithm simplifi.es, however, under condition (UNI) (cL (1.4.20)). 
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LEMMA 4. 5 .1. Assume condition (UNI) to hold. Fix v0 E V. Let the vector u 

and the scalar d satisfy 

(4.5. 3) u. 
l 

u.J,iEri. 
J 

Then, (v0 +d_l;__,u) sat.isfy the last ti-ro equations in (4.5.2), Le. (<g _1;__, 

v 0 +d.!:r u) solves the entire system ( 4. 5. 2) • 

* * PROOF. The fact that g = <g >J_ follows immediately from (1.4.20). Note that 

(UNI) implies that the sets S(i,v) are independent of v EV for all i c n. 
Hence we write S(i) for S(i,v), i En. Let z = v0 +d1 E:V. Regroup the terms 

to the right of (4.5.3) and use I. Hl:. = Tk (i c n,-k c K0 (i)) to conclude 
J J.J l. 

that (z,u) satisfy the last two equations in (4.5.2). Hence z represents 

* * the optimal bias vector z and (<g >l_,z,u) solves the entire svstem (4.5.2). D 

* Under (UNI) we have in view of g 

tion (1.9.5) reduces to (1.9.8) i.e. V 

* <g >l_, that the optimality equa-

V. Hence a vector v 0 c V, the max-

imaJ gain rate <g*> and the sets S(i,v0 ) = S(i), i c n may be obtained from 

a single equation scheme, like (4.3.3). Next, it follows from lemma 4.5.1 

that the scalar d[v0 J and hence the vector z*, as well as a solution u to 

the third equation in (4.5.2) and a bias·-optimal policy may be obtained 

from a simultaneously computed second scheme of the type (4.3.3). 

We conclude that whereas in general a system of 6 schemes is required 

to obtain bias-optimal policies, the number may be reduced to two under as­

sumption (UNI). We finally recall that Hordijk and Tijms' method (cf. sec-

* * tion 4.3 and 1.8) may be used in case g ~ <g >1 to find the optimal bias-

vector, though not necessarily a bias-optimal policy. 





CHAPTER 5 

The optimality equation in average cost denumerable state 

semi-Markov decision problems, recurrence conditions and algorithms 

5.1. INTRODUCTION 

In this chapter we consider an undiscounted semi-Markov decision model 

specified by five objects (I, A(i), p .. (a), c(i,a), T (i,a)). We are con-
lJ 

cerned with a dynamic system which at decision epochs beginning with epoch 

0 is observed to be in one of the states of the denumerable state space I. 

After observing the state of the system, an action must be chosen. For any 

state i EI, the set A(i) denotes the set of possible actions for state i. 

If the system is in state i at any decision epoch and action aEA(i) is cho­

sen, then regardless of the history of the system, the following happens: 

(i) an immediate cost c(i,a) is incurred; 

(ii) the time until the next decision epoch is random with mean T(i,a); 

(iii) at the next decision epoch the system will be in state j with proba-

bility pij (a) where ljEIPij (a) = 1 for all i EI and aEA(i). 

Unless stated otherwise, we make throughout this chapter the following 

assu:ri.ptions. 

Al. Fol'.' any i EI, the set A(i) is a compact metric space on which both 

c (i,a), T (i,a) and (a) for any j E I are continuous. 

A2. There .is a f.inite number M such that !c(i,a)I 0: Mand T(i,a) '.': M 

for all i EI and aEA(i). 

A3. There is a positive number 8 such that T ( i, a) 2: 8 for all i E I and 

aEA(i). 

we note that assumption Al is satisfied when A(i) is finite for all i EI. 

A policy 1T for controlling the system is any (possibly randomized) 

rule for choosing acti.ons. For any initial state i and policy 1T, denote by 

Xn and an the state and the action chosen at the nth decision epoch for 

n = 0,1, .... (the oth decision epoch is at epoch 0). Denote by the 
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expectation when policy TT is used. Let F = XiEIA(i), Le. F is the class 

of all functions f which add to each state i EI a single action f(i)EA(i). 

For any f E F, denote by f(oo) the stationary policy which prescribes action 
( 00) 

f(i) whenever the system is in state i. Under each stationary policy f 

the process {X ,n~0} is a Markov-chain with one-step transition probability 
n 

matrix P(f) = (p,. (f(i))), i,j EI. For n 
lJ . 

sition probability matrix of this Markov 

For n = 1 we write P(f) = (pij(f)). 

= 1,2, ... , denote then-step tran­

chain by Pn ( f) = (p ~ . ( f) l , i , j E I. 
. lJ 

Finally, the following assumption is made throughout this chapter: 

A4. For any f E F, the stochastic matrix P (f) has no t:v10 disjoint: closed 

sets. 

In this chapter, we are concerned with the optimality equation for the 

long run average costs. We give a large number of recurrence conditions with 

respect to the stochastic matrices P(f), f E F, under which the existence 

of a bounded solution to this optimality equation will be proven. This will 

be done in section 3. First, however, these recurrence conditions are pre·­

sented in section 2, and we exhibit several relations between them, there­

by mapping out some of the existence conditions that have appeared in the 

literature, so far. 

It is important to note that the existence of a bounded solution to 

the optimality equation, implies the existence of an optimal stationary pol­

icy among the class of all policies and with respect to a strong version of 

the average cost optimality criterion, which implies essentially weaker 

versions usually considered in the literature (cf. [ 46] and th. 5. 3. 2) . Fur­

ther we note that after having established the optimality equation for the 

average costs, a repeated application of this result yields a sequence of 

optimality equations that are involved when considering the more sensitive 

and selective n-discounted optimality criteria, thus showing the existence 

of stationary n-discounted optimal policies (cf. HORDIJK and SLADKY [59] 

and section 4.1). 

Besides the existence of a bounded solution to the optimality equation 

for the average costs, we will consider the problem of determining such a 

solution, which in turn yields an optimal stationary policy. In section 4, 

we shall show that under each of our conditions the value-iteration method 

can be used to determine a bounded solution to the optimality equation. The 

policy··iteration method will be· considered in section 5. Under condition 
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C6', to be stated below, we shall prove that the average costs and the 

relative cost functions of the policies generated by this method, converge 

to a solution of the optimality equation. This result considerably gener­

alizes a related result in DERMAN [24]. 

The results in this chapter are based upon FEDERGRUEN and TIJMS [40] 

and FEDERGRUEN, HORDIJK and TIJMS [42]. 

5.2. RECURRENCE CONDITIONS AND EQUIVALENCES 

In this section we shall formulate a number of recurrence conditions, 

on the set P = (P (f), f E F) and prove several relations between these condi­

tions. Before doing this, we note that by F = XiEIA(i) and assumption Al, 

the set Fis a compact metric space in the product topology where for any 

i, j E I, the function p .. ( f) is continuous on F. We note that in the remain-
J.J 

der of this section, we merely use this fact, rather than the product prop-

erty of F. Also, using the relation 

(5. 2 .1) 
m+1 

pij (f) 1 p (f)pm (f) for all i,j EI, m :>c 1 and f E F 
lkEI ik kj 

and proposition 18 on p.232 in [100], it follows by complete induction that 

for any n :>c 1 and i, j E I the function 

introduce the following notation. For 

the taboo probability 

(5.2.2) 

P~.(f) is continuous 
- l.J 
any i 0 E I, A s I and 

on F. Further we 

f E F, define 

n = 1,2, ... 

i.e. t:A(f) in the probability that the first return to set A, takes more 

than n transitions, when starting in state i and using policy f(oo). For 

any i E I, A S I and f E F, define the (possibly infinite) mean recurrence 

time 

(5. 2. 3) 

i.e. µiA(f) is the excepted number of transitions until the first return 
(oo) 

to the set A, when starting in state i and using policy f . Finally, we 

write t~A(f) = t~.(f) and µ.A(f) = µ, .(f) for A= {j}. 
1 l.J 1 . l.J 

Consider now the following simultaneous recurrence conditions on the 

set P = (P(f), f E F). 
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Cl. There is a finite set Kand a finite number B such that 

µiK(f) s B for all i EI and f E F. 

C2. There is a finite set K, an integer v? 1 and a number p > 0 such that 

\' \) l p .. ( fl ? p for al 1 i E I and f E F. 
jEK.1-J 

C3. There is an integer v? 1 and a number p > 0 such that 

(5.2 .4) inf { I 
il ,i 2EI jEI 

p for all f c F 

C4. There is an integer v? 1 and a number p > 0 such that for any f E F 

a probabil.i.ty distribution {11. (f) ,jEI} (say) exists for which 
J 

(5.2. 5) I l P~. (f) - l 11,(f) I s (1-p)Ln/vJ for all 
jEA lJ jEA J 

i EI, Ac I 

and n ? 1. 

where LxJ denotes the .largest integer less than or equal to x. 

C5. For any f E F there is a probability distribution (f),jEI} such that 

(5 .2 .6) 
n 

pij(f) + 11j(f) uniformly in (i,f) EI x Fas n ➔ 00 for any j EI. 

CG. There is a finite number B such that for any f E Fa state 

for 1<1hich 

µ, (f) SB for all i EI. 
lS 

f 

exists 

C7. There .is a finite set K and a f.in.i te number B such that for any f E F 

a state sf EK exists for which 

µ . ( f) s B for all i E I. 
lSf 

C8. There is an .integer v ? 1 and a number p > 0 such that for any f E F 

a state exists for which 

p~ (f) ? p for al.l i E I. 
lSf 

C9. There is a finite set K, an integer v? 1 and a number p > 0 such that 

for any f E F a state sf E K exists for iirhich 

p~ 8 (f) ? p for all i EI. 
f 
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We note that in C4 the condition I. IP~.(f) - rr.(f)I ~ 2(1-p)Ln/vJ 
JE I 1-J J 

for all i EI, f E F and n ~ 1 may be equivalently stated instead of (5.2.5). 

The condition Cl was considered in [58], cf. also [98]. The condition C2 

was introduced in [58] and called the simultaneous Doeblin condition since 

for each f E F the stochastic matrix P(f) satisfies the so-called Doeblin 

condition from Markov chain theory. The conditions C3 and C4 were intro­

duced in [40]. Following Markov chain terminology, the conditions C3 and C4 

could be called a simultaneous scrambling condit~on (cf. [51]) and a simul­

taneous quasi-compactness (or strong ergodicity) condition (cf. [88]) res­

pectively. Observe that except for C1-C2 each of the above conditions im­

plies assumption A4 in itself. 

Further, any P(f) is aperiodic under C3, C4, CS, and CS. Finally, 

we note that the left side of (5.2.4) denotes the ergodic coefficient of 

the stochastic matrix Pv (f) (cf. also (3.3.8)) and that {rr. (f), j EI} in 
J 

C4-C5 denotes the unique stationary probability distribution of P(f). 

The following theorem was obtained in a more general setting in 

HORDIJK [58]. 

THEOREM 5.2.1. 

(i) The conditions Cl and C2 are equivalent. 

(ii) Under condition C2, every stochastic matrix P(f) has a unique stationary 

probability distribution {TT. (f), j EI} (say) such that for any j E I, 
J 

the function rr.(f) is continuous on F. 
J 

We shall now give the following equivalences: 

THEOREM 5.2.2. If the stochastic matrix P(f) is aperiodic for each f E F, 

then condition C2 implies condition C3. 

THEOREM 5.2.3. Condition C3 implies condition C4. 

THEOREM 5.2.4. 

(i) The condition CS implies both condition C2 and C9. 

(ii) The conditions C3, C4, CS, C8 and C9 are equivalent. 

THEOREM 5.2.5. 

(i) The condition C2 implies the condition C7. 

(ii) The condition C6 implies the condition C7. 

(iii) The conditions Cl, C2, C6 and C7 are equivalent. 

(iv) If the stochastic matrix P(f) is aperiodic for each f E F, then the 

conditions Cl-C9 are equivalent. 
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In case the set P consists of a single stochastic matrix, the above equiv­

alences may be found, albeit in a scattered way, in the literature, cf. p. 

197 in DOOB [28], p.142 in HUANG, et al. [65], p.226 in ISAACSON and MADSEN 

[67], and p.185 in NEVEU [88]. 

We shall now give the proof of the above theorems 5.2.2 - 5.2.5. 

Proof of Theorem 5.2.2. Suppose first that C2 with triple (K,v,p) holds 

and that every P(f) is aperiodic. We shall then verify condition C3. Since 

for any f E F the stochastic matrix P(f) satisfies the Doeblin condition, 

has no two disjoint closed sets and is aperiodic, we have from Markov chain 

theory (e.g. [28]) that every P(f) has a unique stationary probability dis­

tribution {1r.(f),j EI} (say) such that 
J 

(5. 2. 7) lim 
n-+oo 

(f) Tr. (f) 
J 

for all i,j E I. 

Since C2 implies )'. p~. (f) 2 p for all i EI, f E F and n 2 v, we have 
·'7EK 1.J 

(5.2.8) I 
jEK 

Define now 

(5 .2. 9) 

Tr.(f) 2 p 
J 

for all f E F. 

K 
fork€ K. 

where IKI denotes the number of states in K. Then, by (5.2.8), 

F U 
kEK 

Using part (ii) of th.5.2.1 and the fact that Fis a compact metric space, 

it follows that for any k E K the set Fk is closed and hence compact. For any 

i E I and kc K, define 

By (5.2. 7), n(i,k,f) exists and i.s finite. Using the fact that Fn(f) .is 

continuous on F for each n 2 1, it .is .immediately verified that for each 

i E I and k E K the set { f E ln(.i,k,f) 2 a} is closed for any real a, i.e. 

for each i EI and k EK the function n(i,k,f) is upper semi-continuous on 

the compact set Fk. 

Now, by Proposition 10 on p.161 in ROYDEN [100], we have that for each 

i E I and k EK the function n (i ,k, f) assumes a finite maximum on 

using the finiteness of K, we can find an .integerµ? 1 such that 

. Hence, 
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(5.2.11) n(i,k,f) :S:µ for all i E K, k E K and f E Fk. 

Next define for any k E K 

we now verify that for each kEK the set so: {fEFklm(k,f) :Co:} is closed 

for any real o:. Fix k EK and an integer CT> 1. Suppose that fn E So: for n :Cl 

* and that fn + f as n->-oo. Then we can find a subsequence {nh,h? 1} of inte-

gers, and integers r and t with 1 :S: r :S: o: - 1 and r :S: t :S: r + JJ such that 

p~k(fnh) :S: p/(2[K[) for all h? 1. Hence, by the fact that p~k(f) is con-

t * tinuous on F, we find pkk(f) :S: p/(2[K[) and so E So:. We have now proved 

that for any k EK, the function m(k,f) is upper semi-contirruous on the com­

pact set Fk. Hence there exists an integer N? 1 such that 

m(k,f) < N for all k EK and f E Fk. 

For any k E K and f E F k, we have by ( 5. 2. 10) - ( 5. 2. 12) 

2 
µ+m(k,f) (f)? n(i,k,f) (f) m(k,f)+µ-n(i,k,f) (f) P f all ic:K. 

pik pi.k pkk > ~Kl2 or 

Hence for any k E K and f E 

v+µ+m(k,f) ( ) 
pik f ? 

3 
, '! (f) µ+m(k,f) (f) > _P __ for 11 ' I 
l Pij Pjk . 2 a lE . 

jEK 4/KI 

Using this result, we now find for any k E K and f E Fk, 

I 
jEI 

? , 'n[ v+µ+m(k,f) (f) N-m(k,f) (f) v+p+m(k,f) (fl N-m(k,f) (f) J ? 
l mi -P, k pk ' 'p' k Pk , -

jEI 1 1 J 1 2 J 

3 3 
p 

4IK[ 4JKl 2 

which verifies C3. 

Proof of Theorem 5.2.3. The proof of this theorem proceeds along the same 

lines as that of theorem 1 in ANTHONISSE & TIJMS [1], or that of th.2.2.5. 

Assume C3 holds with the pair (v,p). Fix fEF and A:::I. For n = 1,2, ... , 

define 

and m 
n 

inf, I . p~ , < f, . 
lEI JEA .lJ 
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Using (5.2.1), it follows that 

(5. 2 .13) S M 
n 

and for all n z 1. 

For any number a, let a+ and a be defined as in section 2.1, i.e. 

a+=max(a,O) and a-=min(a,O). Then, a=a++a- and for any sequence {a.,jEI} 
+ . ? 

of number.s such that I. I a. I < 00 and I . a. = 0 we have I . a. = - !_,.a.. Fur-
J EI J JEI J J J J J 

ther, we note that (a-b)+ = a-min(a,b) for any pair of numbers a,b. Fix now 

i E I and n > v . Then, 

~ \J V + 
s [M -rn } l {p.k (f) - prk (f)} n-,, n-v kE 1 i 

{M -rn }{ 1-
n--v n--v 

Since i and r were arbitrarily chosen, it follows that 

Hence, since Mn-rnn is non-increasing inn z 1, 

(5. 2 .14) M --m 
n n 

s ( l-p) Ln/vJ for all n z l. 

Together (5.2.11) and (5.2.12) imply that for some finite non-negative 

number TT (A) 

lirn M 
n➔oo n 

lim m 
n--><o n 

Further for any n z 1, 

(5. 2. 15) m S ·rr(A) SM 
n n 

TT(A). 

and m s I p:. (f) s M 
11 jEA J n 

It now foll.ows from (5.2.12) and (5.2.13) that 

for all i E I. 
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Since this relation holds for any A~ I, it follows that TT(.) is a proba­

bility measure on the class of all subsets of I which completes the proof. D 

Proof of Theorem 5.2.4. (i) Suppose that condition CS holds. Since for any 

i, j E I a.nd n :, 1 the function p~. ( f) is continuous on F, it follows from 
1-J 

(5.2.6) that for any j E I the function TT. (f) is continuous in f E F. Now, 
J 

let {Kn' n=l,2, .... } be a sequence of finite sets c I such that :::, K 
- n 

for all n:, 1 and lim K 
n-+= n 

= I. Let a (fl I, ·rr. (f) for n :, 1 and f E F. 
n JEKn J 

Then the function an(f) is continuous inf E F for any n:, 1, and moreover, 

for any f E F we have an+l (f) :, an(f) for all n:, 1 and lim a (fl = 1. 
n-+= n 

Now, since Fis compact, we have by theorem 7.13 in RUDIN [101] that an(f) 

converges to 1 uniformly inf E Fas n ➔ Hence for each E > 0 there is 

a finite integer n such that an(f) ? l-E for all f E F. This shows that we 

can find a finite set Kand a number cS > 0 such that 

(s.2.16) I 11.(f) 2- o 
jEK J 

for all f E F. 

By (5.2.6) and the finiteness of K, we can find an integer v > 1 such that 
\) 

TT , ( f) pij (f) ? -
J 

cS/(21 Kl l for all i E I, f E F and j E K where IKI denotes, 

once again, the number of states in K. Together this inequality and (5. 2 .14) 

imply condition C2. Further we get from (5.2.14) that for any f E F' there is 

a states such that TTsf(f) ? cS/!KI and sop~ (f) ? cS/(2!KI) for all i EI 
. f 1-Sf 

and f E F. This inequality verifies condition C9 which completes the proof 

of part (i). 

(ii) Since C9 implies CB and in its turn CB implies C3 and since C4 implies 

CS, this part follows by using theorem 5.2.3 and part (i) of theorem 5.2,4. D 

Proof of Theorem 5.2.5. To prove the theorem, we shall use a classical per­

turbation of the stochastic matrices P(f), f E F', which is analogous to the 

data-transformation (1.8.1) and (LB.2) with a 1. Fix any number T with 

0 < '[ < 

P(fl = 

a.nd let P = (P ( f) , f E F) be the set of stochastic matrices 

(f)), i,j EI such that for any f E F and i,j EI: 

tP·. (f) for j f i 
lJ 

pij (f) 

L - T + Tpii (f) for j i 

Note that, by pii (f) :, - T > 0 for all i EI and f E F, the stochastic 

matrix P(f) is aperiodic for all f E F. Also note that for any i,j EI the 

function p .. ( f) is continuous in f E F and for any f E: F, the stochastic 
lJ 
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matrix P(f) has no two disjoint closed sets. Define for the stochastic ma­

trices P (f) the taboo probabilities tn (f) and the mean recurrence times 
iA 

µiA(f) as in (5.2.2) and (5.2.3). By induction on n, it is straightforward 

to verify that for any f E F 

(5. 2. 17) 

where 

-n 
t .. (f) 

:LJ 
for all n = 0,1, ... and 

i,j EI with if j, 

(f) t 0 .(f) = 1. From the relations (5.2.3) and (5.2.17) we get 
:LJ 

)J .. (f) 
(5.2.18) Y .. (f) = .::..:u...:.._ __ for all i,j E I with j f j and f E F. 

1.J T 

we note that this relation is intuitively clear by a direct probabilistic 

interpretation. 

we now prove (i). Suppose that the condition C2 holds with triple 

(K,v,p). Then, by p.ij(f) 2 Tpij(f) for all i,j e: rand f E F, we have 

\ --V V I V V 
L p,. (f) 2c T l p .. (f) 2 T p 

jEK :LJ jEK :LJ 
for all i E I and f CF. 

Hence the condition C2 applies to the set P (P(f) ,f E F). Moreover we 

have that any stochastic ma.tr.ix P(f), f E F' .is aperiodic. Now, by the com­

bination of th.5.2.2, th.5.2.3 and part (.ii.) of th.5.2.4, .it follows that 

condition C9 applies to the set P. Since condition C9 implies C7, we have 

that cond:Lt.i.on C7 applies to the set P. Now, by invoking (5.2.16), .it fol­

lows that the condition C7 holds for the set P = (P(f),f E Fl as was to be 

proved. 

Next we prove (ii). Suppose that condition C6 holds. Then, by in­

voking again (5.2.16), we have that condition C6 applies to the set P. 
Hence there is a finite number B such that for any f E F' there exists a 

state 

(5. 2 .19) 

such that 

<fl = i + I 
n=l 

t~ (f) ~ B for all i E I. 
isf 

Fix now O < y < 1. Since for any f E F' and :L E I the taboo probability 

t~ (f) .is non-increasing .in n, .it follows that there is an integer N :2: 
:LSf 

such that 

(5.2.20) (f) s y for alL .i EI and f E F. 



121 

(Supposing the contrary to (5.2.20) gives a contradiction with (5.2.19)). 

Together the inequality (5.2.20) and the fact that pkk(f)? 1 - T for all 

k EI and f E F imply 

-N N-1 
p. (f) ? (1-T) (1-y) for all i E I and f E F. 

lSf 

This shows that condition CB applies to the set P. Next, by part (ii) of 

theorem 5.2.4 condition C9 applies to the set P. Since C9 implies C7, it 

follows that condition C7 applies to the set P. Now by invoking again 

(5.2.16) we have that condition C7 holds for the stochastic matrices P(f), 

f E Fas was to be verified. 

We obtain part (iii) of the theorem by noting that C7 trivially im­

plies both Cl and C6 and using part (i) of theorem 5.2.1 and parts (i)-(ii) 

of theorem 5.2.5. Finally, part (iv) of the theorem is an immediate c0nse­

quence of the theorems 5.2.2-5.2.4 and part (iii) of the theorem. 

5. 3. THE AVERAGE COSTS OPTIMALI'l'Y EQUATION 

In this section we shall prove that under each of the conditions C1-

C9 the optimality equation for the average costs has a bounded solution. 

To establish the optimality equation, we shall employ a simple but very 

useful data-transformation analogous to the one introduced in SCHWEITZER 

[ 108], which is the exact analogue of ( 1. 9. 9) and ( 1. 9. lO) . We associate 

with the semi-Markov model a discrete-time Markov decision model with state 

space I, the set A(i) as the set of possible actions for state i, one-step 

costs c(i,a), one-step transition times T(i,a) = 1 and one-step transition 

probabilities (a) where, for all i,j EI and a E A(i) 

c(i,a) and 

with 6ij representing the Kronecker function, as before, and where 1 .is a 

fixed number such that 

0 < T < 6 = inf {T(i,a)/(1-p .. (a))[p .. (a) < 1}. 
ll 'll i,a 

Observe that 6 > 0 and note that the assumptions Al - A4 also apply to the 

transformed model. Further, letting the finite positive number y be equal 

to sup. T U,a), it is readily verified that for all i E I and a E A(i) we 1.,a 
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have that {p .. (a) ,j EI} is a probability distribution with 
.l_J 

(5. 3. 1) 
T 

2: 1 - 8 > 0 and (a) ? 2:._ p .. (a) 
y .l_J 

for j ,f L 

By the first part of (5.3.1), we have that for any f E: F the stochastic 

matrix P(f) is aperiodic. This aperiodicity will play a crucial role in 

the analysis below. Also, letting the finite positive number ct, be equal 

to min[l-T/o,T/y] and using (5.3.1), it is immediately verified that for 

any set AS I and all n? 1, 

(5.3.2) I 
jEA 

n I' n 
(f) ? ct, l p .. (f) 

jEA LJ 
for all i EI and f c F. 

By parts (iii)-(iv) of theorem 5.2.5, we have that each of the conditions 

C1-C9 implies condition C2. Hence, by (5.3.2) we have that under each of 

the conditions Cl-C9, holding for the set P = (P(f) ,f E F), condition C2 

applies to the set P = (P(f) ,f E F) as well. Together this result, the ape­

riodicity of the policies in P and the theorems 5. 2. 2-··5. 2. 3, imply that un­

der each of the conditions C1-C9 there is a number p > 0 and an :Lnteger 

\! ? 1, such that for any f E F, the stochastic matrix P ( f) has a unique 

stationary probability distribution {n. {f) ,j E I} (say) with 
J 

(5. 3. 3) I .. I Ln/vJ . 
(f) s (1-o) for all 1. EI, AS I and n? 1. 

jE:A 

This result will underly the derivation of the optimality equation for the 

transformed model (cL also TIJMS [123]) from which we easily get the opti­

mality equation for the semi-Markov decision model considered. Before show··· 

.ing this, we give the following lemma. 

LEMMA 5.3.1. Let (. ) , n ? 1} be a sequence of bounded functions on I 

such that, for some bounded funct}on h (.) on I, limn-xo 

i E I. Then, .for any i E I, 

(i) = h(i) for all 

lim min . {c (i,a) + L p .. (a)h (j)} 
n·= aEA(l) jEI .l_J n . 

min {c(i,a) + 
acA(i) 

I (a)h(j)}. 
jEI 

PROOF. Fix i E L For any n 2 1, let action an mi.ni.mize c(i,a) + (a) (j) 

for a E A(i). Observe that, by Al, such a minimizin9 action exists. 

Now, let ,k? 1} be any infinite sequence of positive integers. Since 

A(i) is a compact metric space,·we can choose an action a E: A(i) and a sub­

sequence {tk,k 2 1} of {nk,k? 1} such that atk + a* ask+ 00 • Using the 
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fact that, by .Al, ljEA pij (atk) ➔ ljEA pij (a*) as k ➔ 00 for any set A _s I 

and using proposition 18 on p.232 in ROYDEN [100], it follows from 

for all a E A(i) and k ;c: 1, that 

lim min {c(i,a) + l p._.(a)h (j)}=min {c(i,a) + l p .. (a)h(j)} 
k➔oo aEA(i) jEI lJ tk aEA(i) jEI lJ 

which proves the lemma. D 

We now prove the main result of this section. 

THEOREM 5.3.2. Under each of the conditions Cl-C9 there exists a finite 

* * constant g and a bounded function v (i), i E I such that 

(5. 3 .4) v*(i) =min {c(i,a)-g*i:(i,a) + l p, .(a)v*(j)} for all i EI. 
aEA(i) jEI lJ 

* * The constant g is uniquely determined and the bounded funct.ion v (i), 

i EI is uniquely determined up to an additive constant. 

PROOF. Consider first the transformed model. As shown above, there is an 

integer v 2 1 and a number p > 0 such that for any f E F the stochastic 

matrix P(f) has a stationary probability distribution satisfying (5.3.3). 

To verify the optimality equation for the transformed model, consider first 

the discounted cost criterion. For any O < J3 < 1, define for each policy TT 

(observe that c(i,a) is uniformly bounded in i,a), 

i] for i EI, 

and let v8 (i) = inf7rVJ3(i,rr), i EI. It is known that for any O < S < 1 

the function v8 (i), i. EI is the unique bounded solution to: (cL e.g. 

MAITRA [82]) 

(5. 3. 5) min {c(i,a) + B Ip, ,(a) Vo(j)}, 
aEA(i.) jEI lJ µ 

i E I, 

and, moreover, 

(5.3.6) for all i E I, 

for any f 8 E F such that f 8 (i) minimizes the right-side of (5.3.5) for all 

i EI. For any 0 < J3 < 1 and f E F, we have 
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(5. 3. 7) 
, n 1 -n -
l S l P- .(f)c(j,f(j)) 

n=O jEI lJ 
for all i EI 

-o . 
where p .. (f) = 6 ..• From (5.3.3), it follows that for any f E F, i, k c I 

lJ J.J 
and n ~ 1 the total variation of the signed measure µ(A) = (f) -

··· Z, pn_(f) is bounded by 4(1-p)ln/v_J_ Using this result and letting B be 
JEA kJ 

any finite number such that lc(i,a) I s B for all i,a, it follows from (5.3. 

that, for any O < B < 1 and all f E F, 

(k,f(oo)) [ ,; 4B L (1-·p) ln/vJ 5 

n=O 
p 

for all i,kEI. 

Hence, by (5.3.6), 

lvs(i) - Vs(k) I 5 4:v for all i,k E I and all O < 13 < L 

Now, by using lemma 5.3.1 and by making an obvious modification on the proof 

of theorem 6.18 in ROSS t98], there exists a finite constant g and a bounded 

function v(.i.), i EI such that 

(5.3.8) v(i) min {c(i,a) - g + I~-. (a)v(j)} for all 
aEA(.i.) jEI J.J 

L 

* * We shall now verify that g = g and v (i) = Tv(i), i EI satisfy (5.3.4). 

•ro do this, observe that (5.3.8) can be equivalently written as 

v(i) I T l p .. (a)v(j) + (1 - ----- 1v(i) 
jEA J.J T 

for all i E I and a E A(i) 

where for any i ,= I the equality holds for at least one a E A ( i) . Multi·­

plying both sides of this inequali.ty by T(i,a) > 0, we find 

0 s c(i,a) - gT (i,a) + T L p,. (a)v(j) - Tv(i), i E I and a E A(i), 
j;I J.J 

where for any i E I the equality sign holds for at least one a E A(:L). 

* * This proves that g = g and v (i.) = Tv(i), i EI satisfy the optimality 

equation (5.3.4). By theorem 6.17 in ROSS [98], we ha.ve that the constant 

* g in (5,3.4) is uniquely determined and, by lemma 3 in HORDIJK, SCHWEITZER 

and TIJMS [61], we have that the "function v*(i), i EI in (5.3.4) is unique­

ly determi.ned up to an additive constant. 

For any policy n, define for all i EI and n ~ 1, 
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n n 

vn(i,11) = E/k_I
0

c(Xk,ak) lx0=i] and Tn(i,11) =E/ I -r(Xk,ak) !x0=i]. 
k=O 

Define a policy TI* to be average cost optimal _in the strong sense if 

(5.3.9) 
V (i, V (i,11) 

lim sup n ~ lim inf _n __ _ 
n..-,.oo T (i,11*) n..-,.oo T (i,11) 

n n 

for all i EI and any policy 11. 

An examination of the proof of theorem 7.6 in ROSS [98] gives the fol­

lowing theorem. 

THEOREM 5.3.2. Let {g* ,v* (i) ,i EI} be any bounded solution to the optimality 

equation (5.3.4) and let f 0 E F be such that r0 (i) minimizes the right side 

of (5.3.4) for all i EI. Then 

V (i, 11) 
* n 

lim inf 
Tn (i,TI) 

::0: g for all i E I and any policy 11 
n-+= 

and 
Vn(i,fO(oo)) 

* for all i lim 
'I' (i f ("")) 

g E I, 
n-+= 

n ' 0 

so thP stationary policy f~ 00
) is average cost optima-I in the strong sense. 

1 Although strong optimality as in (5.3.9) is immediate when the optimal­

ity equation has a bounded solution, this criterion may be difficult to 

verify directly. In the literature the lim sup and lim inf average cost 

criteria are usually considered when the optimality equation cannot be es­

tablished. However, the relations (2)-(4) in FLYNN [46] show that these cri­

teria are essentially weaker than the criterion (5.3.9). 

Finally, letting Z(t) be the total costs incurred up to time t and 

using theorem 7.5 in ROSS [981, we have under each of the conditions C1-C9 

that for any f E F, 

(5.3.10) 

- 1 c(j,f(j)) 1T,(f) /I.I T(j,f(j)) 11,(f) for all i EI 
-ljEI J JE J 

where {11.(f),j EI} is the unique stationary probability distribution of 
J 

P(f). 
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5.4. THE VALUE-ITERATION METHOD 

In this section it is assumed that one of the conditions Cl-C9 holds. 

we shall show that a bounded solution to the optimality equation (5.3.4) 

may be obtained by using value····iteration. We note that value-iteration may 

not work when some of the one-step transition probability matrices associ­

ated with the stationary policies a.re periodic. However, in the proof of 

theorem 5.3.2 we have seen that by the data-transformation given in section 

3 any semi-Markov decision problem can be transformed into a discrete-time 

Markov dec.ision problem with aperiodic transition probability matrices so 

that any bounded solution {g; v(i), i EI} to the optimality equation of 

the transformed model gives a bounded solution {g*=g; v*(il = rv(i), i E I} 

to (5. 3. 4). T'herefore we assume in the remainder of this section that 

T(i,a) = 1 for all i,a and that P(f) is aperiodic for all f E F. 

Let { g *; v * ( i) , i E I} be any bounded set of numbers satisfying 

(5. 4.1) V (i) min {c(i,a) 
aEA(i) 

For any given bounded function (i.), i EI, define for n = 1,2, ... the 

bounded function vn(i), i EI by the value-iteration equation 

(5 .4 .2) v (j_) = min {c(i,a) + Ip, .(a)v 1 (:j)} for i EI. 
n aEA(i) jEI lJ n-

Observe that, by Al, the minimum on the right side of (5.4.2) is attained 

for all L The asymptotic behaviour of the sequence {v (i)-ng*, n?.1} for 
ll 

i EI has been studied in [61] where the action sets A(i) were taken to be 

finite. 'I'his finiteness is in fact only used to verify relation (18) in 

[61]; however, by invoking lemma 32 on p.178 in [100], it follows that the 

results in [6 J also apply when for any i EI the set A(i) is a compact 

metric space such that both c(i,a) and p,. (a) for j E I are continuous on 
lJ 

A(i). Since the a.ssumptions l - 5 in [61] are satisfied, we have for some 

constant c that 

(5.4.3) lim 
n->-oo 

(i) for all i E I. 

Hence, by choosing some st.ate i 0 and defining yn = vn - vn-l (i0 ) and 

w11 (i) (i)-vn(i 0 ) for i EI and n ~ l, it follows that the bounded num-

bers (i), i E I} converge as n->-00 to a bounded solut.i.on of (5. 4 .1). 
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it was pointed out in remark 2 in chapter 2, that even in the finite state 

space case, C3' with v;,: 2 is essentially stronger than C3 with v ::o: 2. 

5. 5. THE POLICY ITERA'l'ION METHOD 

Throughout this sect.ion, it is assumed that the following strengthening 

of condition C6 holds. 

C6': There is a finite number B and a state s such that µ. (f) s B for all 
lS 

i E I and all f E F. 

Condition C6' was first introduced in ROSS [98]. Since C6' implies C6, it 

follows from the combination of th.5.2.5 (iii) and th.5.2.1 (ii) that for 

each f E F, the stochastic matrix P(f) has a unique stationary probability 

distribution {1T. (f) ,j E I} (say). We further suppose that the assumptions 
J 

Al and A2 together with the assumption A3' hold where 

A3': There are finite numbers E > 0 and M such that T(i,a) s M for all i,a 

and I. I T(i,f(j))TT.(f) ~ c for all f E F. 
JE J 

This assumption slightly weakens A3 and allows instantaneous transitions. 

Using ideas from a convergence proof given in [19] for a policy iteration 

approach to controlled Markov processes with a general state space, it will 

be shown that both the average costs and the relative cost functions of the 

stationary policies generated by the pol.icy iteration method converge so 

that the limits constitute a bounded solution to the optimality equation 

(5.3.4). Partial convergence results of this type were obtained .in DERMAN 

[24] under the restrictive additional assumption of no transient states 

under any P(f), f E F. 

We first give some preliminaries. Let the states be as in condition 

C6'. We have for any f E F that 

(5. 5 .1) rr, ( f) 
l 

1 . I p (f) TT (f) 
LJE ji j 

for all i E I. 

Moreover, we have from Markov chain theory 

(5.5.2) 

(5. 5. 3) 

1T. (f) = 
l 

6ij for all i,j and 

for all i E I 

p~.(f) =P (oo){X11=j, \:;&s for 1 $ks n[X0=i} for i,j EI and n::0:1. 
S lJ f 
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Next, we note that, by choosing fn E F such that fn(i) minimizes the right 

side of (5.4.2) for all i, and when defining the average costs vector g(f) 

by (5.3.10), it follows by making minor modifications on standard argumt"nts 

used in HASTINGS [53] and ODONI [89] (cf. also (1.8.13) and (1.8.14)) that, 

for all n?: 1: 

where inf.{v (i)-v 1 (i)] and sup.{v (i)-v 1 (i)} are non-decreasing and 
i n n- i n n-

non-increasing respectively inn?: 1. 

Finally, consider the special case where condition C3 with v~1 holds. 

Let B be the class of all bounded functions on I and define the mapping 

T: B + B by 

'ru ( i ) ,~ min { c ( i , a) + 'i p .. (a) u (j ) } 
aEA(i) jEI lJ 

and define sp[u] ~ supiu(i) - infiu(i) for u EB. Then a repetition of 

the proof of theorem 2.2.4 and 2.2.5 shows that, for some number p > 0 

sp[Tu - Tw] o: (1-p) sp[u - w] for all u,w E B i.e. T is contracting with 

respect to the sp[.] "norm". Next, using this result. and the existence of 

a bounded solution to (5.4.1), it is readily verified (cf. the proof of th. 

2.2.1) that Jvn(i)-ng*-v''(i)I o: (1-p)n sp[v0 -v*] for all iEiand n?:1, i.e. 

in this case the convergence in (5.4.3) is geometrically fast and uniform in L 

Establishing the rate of convergence in the general case where in the 

transformed model C3 holds with v 2' 1 (i.e. where either one of the condi­

tions C1-C9 applies to the oriq'.nal model) remains an outstanding problem. 

'.J:'he analysis given in section 1. 6 expJ.oi ts the finite dimensionali t.y of the 

state space heavily, and cannot be used in the infinite state space case. 

Note from the proof of th.2.2.5 that the T-operator can be shown to be 

(v-·step) contracting with respect to the quasi-norm sp[.] on B, in case 

condition C3' applies (cf. condition (S) in (2.2.4)): 

C3': There is an integer v ~ 1 and a number p > 0 such that 

Hence, using the proof of th.2.2.1 it follows that under C3', value­

iteration is guaranteed to exhibit a geometric rate of convergence. Finally, 



Observe that 

(5. 5 .4) i + I I sp~j(f) 
n=l jEI 

for all i E L 

Further, for any f E F, define 

(5 .5. 5) g(f) = I c(i,f(i) )rr. (f)/ I T (i,f(i) )Tri (f), 

iEI 
l 

iEI 
and 

co 

(5 .5 .6) w. (f) I I {c(j ,f(j)) - g(f) T(j,f(j))} p?. (f)' 
l 

n=0 jEI S lJ 
i E I. 

We note that g(f) gives the long-run average expected costs per unit time 

under policy f(co) for each initial state. Also w. (f) for i EI can be in­
l 

terpreted as a relative cost function. 
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It is immediately verified from (5.5.2) and (5.5.4)-(5.5.6) that, for 

any f E F, the function wi (f), i EI is bounded and has the property that 

(5.5.7) w (f) = 0. 
s 

Consider now for fixed f E F the following system of linear equations in 

{g; ,i.EI}, 

(5.5.8) v. 
l 

C ( i ' f ( j_ ) ) - gT ( i 'f ( i ) ) + I 
jEI 

p .. (f(i) )v. 
lJ J 

for i E L 

We recall the following well-known theorem (see [18] and DERMAN & VEINOT'r [27]). 

THEOREM 5.5.1. For any f E F, 

(a) The set of numbers {g = g(f); v. 
l 

to (5.5.8). 

w. (f), i E I} is a bounded so.Iution 
J. 

(b) In any bounded so.Iution {g; v., i EI} to (5.5.8), g = g(f). 
1. 

(c) For any two bounded solutions {g ;v} and {g;u} to (5.5.8) there is 

a constant c such that vi - ui = c for all i EI. 

(d) For any j E I, there is a unique bounded solution { g ; v} to (5. 5. 8) 

such that v. = 0. 
J 

In general it will be difficult to solve the system of equations (5.5.8). 

However, in a number of applications the particular structure of the problem 

may be exploited to solve these equations, cf. [18]. 

By the assumptions A2 and A3'' , we have 

LEMMA 5.5.2. '.l'he set of numbers {g(f) ,f E F} is bounded. 
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For any f c F and any bounded solution {g(f); 

define 

( f) 1 i E I} to ( 5 . 5 . 8 ) , 

(5. 5. 9) T(i,a, v(f)) c(i,a) - g(f)T(i,a) + l Pij(a) (f) 

j EI for i E I and a E A ( i) . 
Observe that 

(5.5.10) 'l'(i, f(i), v(f)) = vi (f) for all i E I and f E F. 

( 00) 
The following lemma shows how the stationary policy f can be improved to 

a stationary policy h(oo) whose average costs are less than or equal to that 

of f(oo). 

LEMMA 5.5.3. Let f E F and let {g(f);v(f)} be any bounded solution to 

(5.5.8). Suppose h E Fis such that 

(5. 5. 11) T(i, h (i), v(f)) :S 

Then g(h) :S g(f). 

V, (f) 
i 

for all i E I. 

PROOF'. The proof is standard. Multi.ply both sides of the inequality ( :i. 5. 11) 

with (f) and sum over i E L Next the desired result follows after an 

interchange of the order of summation which is justified by the boundedness 

Of ( ) ' ( 5 5 1 ) f 1 . h ( 00
) v f and using the steady-state equation . . or po icy . , 

We now formulate the policy-iteration method. 

Policy Iteration Method 

Step 0. Initialize with any f 1 E F. 

Step 1. Let f(oo) be the current policy. Determine the unique bounded solu­

tion {g(f); w(f)} to the system of linear equations (5.5.8) in 

which v = 0. 
s 

Step 2. Determine f' E F such that T(i, f'(i), w(f)) (i) T(i,a,w(f)) 

for all i E I. 

Let { f (oo), n 2: 1} be the sequence of stationary policies generated by the 
n 

policy iteration method. Observe that, by part (c) of theorem 5.5.1, 

is independent of the particular choice of the bounded solution to (5.5.8) 

with f = fn. By lemma 5.5.3, 

for all n 2: 1. 

We shall prove that the bounded.numbers {g(f). w ( 
n ' i 

, i E I} converge as 
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n ➔ 00 to a bounded solution of the optimality equation (5.3.4). To do this, 

we shall use a modified semi-Markov decision model specified by the five 

objects (I, A(i), p, .(a),c(i,a), T(i,a)) where, for some artificial state 
lJ 

00 and action a 00 (say), 

I= I U { 00 }, A(i) = A(i) for i E I, A( 00 ) 

c(La) c(i,a), T(i,a) T(i,a) for i E I and a E A(i), 

c( 00 ,aoo) = f( 00 ,aoo) = 0, p (a) oos 00 

pij(a) = lp .. (a) f. or lJ 

pis(a) for 

i,j E I, a E A(i), jf.s 

i EI, a E A(i), j=00 • 

0 for f. s' 

In fact this modified model is identical to the oricrinal semi-Markov deci­

sion model, except that before any transition to states there first occurs 

a transition to state 00 after which an instantaneous transition occurs to 

states involving no costs. For the modified model, denote by F the class 

of all functions h which add to each state i E I a single action h ( i) E A (i) 

and associate with any h E F the stochastic matrix P(h) = (p .. (h(i))), i,j EI. 
lJ 

Since h( 00 ) = a 00 for all h E F, there is a one-to-one correspondence between 

F' and F'. For any f E F', denote by f the unique element in F such that 

f (i) = f(i) for all i E I. It is immediate that there is a finite number 

B (say) such that under any stochastic matrix P(f), f E F' the expected num­

ber of transitions required before the first return to state 00 is bounded 

by B for any starting state i EI. Hence condition C6' with states replaced 

by state 00 also appl.ies to the modified model. This result together with 

the fact that A( 00 ) consists of a single action will play a crucial role in 

the convergence proof below. Further, for any f E F', the stochastic matrix 

P(f) has a unique stationary probability distribution {ir. (f), j EI}. Using 
J 

the steady-state equation, we have for any f E F that TTs(f) = TT 00 (f) and 

TT. (f) = TT. (f)/{l+1r (f)} for all i EI. Hence the assumptions Al, A2 and A3' 
l l S 

also apply to the modified model. Further, letting 

g(f) 

it follows that 

(5.5.13) g(f) = g(f) for all f c F. 
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Further, for any f E F define 

where the 

Then, as 

property 

(f) I I {;::(j,f(j)) 
n=O jEI 

g(f)T{j,f{j))}jt.{f), i EI 
lJ 

definition of 00p1j (f) is analogous to that of sp:j(f) in (5.5.3). 

above, the bounded function w. {f), i EI has for any f E F the 
l 

(5.5.14) w00 (f) = 0. 

Since theorem 5.5.1 also applies to the modified model, we have for any 

f E F that {g 

(5. 5 .15) V. 
l 

g{f); w. (f), i E I} is the unique bounded solution to 
l 

;:: < i , r < i l l - gT < i , r < i l l + ' p. ,{f(i))v., 
l_ lJ J 

i EI, 

jEI 

with the property that v 00 °0 0. Further, using (5.5.13) - (5.5.15), it 

is immediately verified that for any f E F, w00 {f) = ws(f) and that 

{g = g(f); (f), i EI} is a bounded solution to (5.5.8) having the 

property that 

follows that 

v = O. By the parts (a) and (d) of theorem 5.5.1, it now 
s 

(5.5.16) (f) = W, (f) 
l 

for all i EI and f E F. 

Using the relations (5.5.14) and (5.5.16) it is now straightforward to 

verify that the following correspondence exists between any pair of se­

quences { (oo),n?l}, with f E F, and {h("'l,n?1}, with h E F, that are 
n n n 

generated by the policy iteration method in the original and modified model 

respectively 

(5.5.17) h 
n 

for all n? 1 when h 1 = f 1 . 

The above relationships will be used to prove the convergence results for 

the policy-iteration method. Before doing this, we give the following lenm1a. 

LEMMA 5.5.4. Let , n? 1} be a bounded sequence of numbers such that for 

any s > 0 there is an integer N(s) for which un+m 

Then the sequence is convergent. 

~ u + E: for al 1 n, m >- N ( E) ~ 
11 

PROOF. Let u = lim inf11+«>un and let U = Li.m supn+«>un. Choose s > 0. Then, 

U cS un + s for all n ? N(s), so, U cS u + s which proves the lemma si.nce E 

was arbitrarily chosen. D 

We now prove the convergence results for the policy-iteration method. 
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THEOREM 5.5.5. Let {f(oo), n? 1} with f E F be any sequence o.f stationary 
n n 

policies generated by the policy-iteration method appl.ied on the semi-Markov 

* decision model. considered. Let g = inffEFg(f). Then 

(5. 5 .18) lim g(f ) = g 
n--+<"' n 

* 

* and, for some bounded function w., i EI, 

(5. 5 .19) * lim w. ( f ) = w. 
n-+oo J. Tl l 

l 

for all i E I. 

Moreover, the bounded numbers {g*; * w i, i E I} satisfy the optimality equation 

(5. 5. 20) * w. 
l 

min {c(i,a) 
aEA(i) 

g*~(',a) + 1 (a)w*} C ~ l p,. . 
jEI lJ J 

for all i E I. 

PROOF. Suppose that we have already verified (5.5.18) and (5.5.19). Using 

the construction of fn and the relations (5.5.8) and (5.5.9), we have for 

all n ? 2 

(5. 5 .21) 

and 

(5.5.22) 

w. ( f ) = C ( i I f ( i) ) -g ( f ) T ( i' f ( i) ) + I p .. ( f ( i) ) w . ( f ) ' i E I 
:i. n n n n jEI·:i.J n J n 

c ( i, f ( i) ) -g ( f l) T ( i, f ( i) ) + LP . . ( f ( i) ) w. ( f 1 ) ~ 
n n- n :i.J n J n-

= min { c ( i , a) -g ( f 1 ) t ( i , a) + }: p . . (a) w . ( f 1 ) } , i E I . 
aEA(i) n- jEI lJ J n-

Since I is denumerable and A(i) is a compact metric space for any i EI, 

* we can choose a f E F and an infinite sequence { nk, k ? 1} such that 

lim f (i) 
k➔oo nk 

for all i E I. 

Now, taking n = nk in (5.5.21) and (5.5.22), letting k ➔ 00 and using Al 

together with the same arguments as in the proof of lemma 5.3.1 we easily 

get the result (5.5.20) where f*(i) minimizes the right-side of (5.5.20) 

for all i E I. It remains to prove (5.'i.18) and (5.5.19). We shall first 

prove these relations under the assumption 

(5.5.23) the action set A(s) consists of a single action. 

Next, using the modified model, we shall verify that (5.5.18) and (5.5.19) 

also hold without the assumption (5.5.23). Now suppose that (5.5.23) holds. 

Fix n? 1. By (5.5.23), we have fn+l (s) = fn(s) and so, by (5.5.9) and part 
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(a) of theorem 5.5.1, 

T(s,f 1 (s),w(f ))=c(s,f (s))-g(f )T(s,f (s))+L p ,(f (s))w.(f )=w (f ). 
n+ n n n n jEI SJ n J n s n 

Hence, by (5.5.7), 

Using the abbreviated notation 

for i EI 

we have, by (5.5.9) 

(5.5.25) T(i,fn+l(i),w(fn)) = a (i)+ l p .. (f 1Jw.(f) for i EI. 
n jEI iJ n+ J n 

By the construction of fn+l and (5.5.10), 

( 5. 5. 26) w. ( f ) 2 T ( j, f l ( j) , w ( f ) ) 
J n n+ n 

for all j E I. 

Using (5.5.24) (5.5.26) and (5.5.3), we have for any i EI 

T(i,f 1 (i),w(f )) 2 a (i) + I p .. (f 1 )T(j,f 1 (j),w(f )) 
n+ n n i#s lJ n+ n+ n 

an ( i) + I p ~ . ( f + 1) T ( j , f 1 ( j ) , w ( f ) ) 
jEI s lJ n n+ n 

a (i) + 
n 

Continuing in this way, we find by induction on m that for any m 2 

m k 
T(i,fn+l {i) ,w(fn)) 2 l l a (j) p .. (f +l) + 

k=O jEI n s lJ n 

i E I. 

We now observe that, by condition C6' and relation (5.5.4), 

lim I sp~j(f) = 0 for all i EI and f E F. 
m+'X> jEI 

Using this result, (5.5.4) and the boundedness of the functions an(i) and 

wi (fn)' i EI, it now follows that 

(5.5.27) T(i,fn+l (i) ,w(fn)) 2 ·I I a (j) l. (f +i) for all i E I. 
k=O jEI n s lJ n 
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for any i EI, 
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6 I I T(j,f 1 Cjll l.cf 1 J, n n+ s lJ n+. 
k=O jEI 

where the various interchanges of the summations involved, are justified by the 

absolute convergence of these series. Next, using the boundedness of T(i,a), 

relation (5.5.4) and condition C6', there is some finite number B such that 

(5.5.28) I':,, B 
n 

for all i E I and n 2: 1. 

Hence, by (5.5.26) and (5.5.28), wi (fn+l)-wi (f11 ) s 

n 2: 1 which implies 

I':,, B for all i E 
n 

I and 

(5.5.29) w. (f )-w. (f) S {g(f )-g(f )}B for all i EI and n,m 2: 1. 
i n+m i n n · n+m 

Since the sequence {g(fn), n 2: 1} is bounded from below and non-increasing 

(see lemma 5.5.2 and (5.5.12)), it follows that limn-+«> q(fn) exists and is 

finite. Further, it is immediate from (5.5.6) and (5.5.4) that w, (f) is 
l 

bounded inf E F for each i EI. Now, using (5.5.29) and lemma 5.5.4, we 

* obtain (5.5.19) for some bounded function wi, i EI. To prove (5.5.18), 

observe that, by (5.5.26), 

and so, by (5.5.19) and (5.5.28), 

(5. 5. 30) lim {w.(f )-T(i,f 1 (i),w(f ))} 
n+oo i n n+ n 

0 for all i E I 

Choose now f E F. By the definition of fn+l and (5.5.9), we have for all 

i EI and n 2: 1, 

c(i,f(i))-g(f )T(i,f(i))I- l p .. (f)w. (f )2:T(i,f ,(i),w(f )) +w. 
n . - lJ J n n+l n .1 

JEI 

Multiply both sides of this inequality by (f) and sum over i E I. After 

an interchange of the order of summation, justified by the boundedness of 

the functions involved, and using (5.5.1), we get 

l {c(i,f(i))-g(f )T(i,f(i))hr.(f)'.?:l {T(i,f 1 (i),w(f )) 
. n i . · n+ n lEI · JEI 

(f )hr. (f). 
n l 
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Next, letting n ➔ 00 and using the bounded convergence theorem and the 

relations (5.5.30) and (5.5.5), we find g(f) ?c limn➔oo g(fn) which implies 

(5.5.18) since f E F was arbitrarily chosen. We now have verified (5.5.18) 

and (5.5.19) under the assumption (5.5.23). Finally, using the modified 

model for which condition C6' with state 00 instead of states applies, 

and where A( 00 ) consists of a single action, the above proof shows, using 

the relations (5.5.13), (5.5.14), (5.5.16) and (5.5.17), that (5.5.18) and 

(5.5.19) equally hold without the assumption (5.5.23). This completes the 

proof. 
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CHAPTER 6 

On N-person stochastic 

games with denumerable state space 

6 . 1 . INTRODUCTION 

In the previous chapters, we considered Markov Decision and Renewal 

Problems in which a single decision maker controls the development of some 

Markovian system. However in many stochastic control problems arising in 

various applications such as the modelling of economic markets, the des­

cription of biological systems etc. (cf. SOBEL [ 11 7 J) , the system is simul­

taneously controlled by more than one decision maker. As a consequence, 

these problems have to be modelled using stochastic games, and the follow­

ing three chapters will be devoted to the latter. 

1~is chapter considers non-cooperative N-person stochastic games with 

a countable state space and compact metric action spaces. We concentrate 

upon the average return per unit time criterion for which both the exis­

tence of an equilibrium policy and solutions to the optimality equation are 

established, under a number of recurrence conditions with respect to the 

transition probability matrices associated with the stationary policies. 

These results are obtained by showing tha.t the average return crite­

rion arises a.s a (first) sensitive discount optimality criterion. More spe­

cifically, we show tha.t under each one-of the aforementioned recurrency 

conditions, average return equilibrium policies appear as limit policies 

of sequences of total discounted return equilibrium policies where the dis­

count factor tends to one. 'I'he first results on this topic are due to STERN 

[119]. 

Accordingly, after giving some preliminaries and notation in section 

2, we first establish in section 3 the existence of a total discounted re­

turn equilibrium policy for each discount factor a E [0,1) (an existing 

proof in [118] appears to be incoi:rect). Related work on the discounted 

model with infinite state space may be found for example in HIMMELBERG et 

al. [56], IDZIK [66] and WHIT'l' [132]. 
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In section 4, the existence of an average return equilibrium policy 

and a solution to the optimality equation are established, whereas in sec­

tion 5, we review and extend the results that are known for the case where 

both the state space and the action spaces are finite. Finally, in section 

6, we deal with the case of perfect information. The results in this chapter 

have been taken from FEDERGRUEN [30]. 

6.2. PRELIMINARIES AND NOI'ATION 

This chapter treats a N-person non-cooperative stochastic game speci­

fied by the objects S, Ai(s), q and r. 

The set Sis countable, and for each i = 1, ... ,N ands ES, Ai(s) is 

a compact metric space where the set S denotes the state space of some sys­

tem and Ai(s) denotes the set of actions, available to player i, in states. 

We define A as the union of all Ai(s) (s ES; i = 1, ... ,N) and C as 

(6. 2 .1) C 

q associates with each pair (s,~) ES x Ca probability distribution q (:'::..) 
. s. 

on the elements of S which is measurable in a; and rl is a bounded real-

valued measurable function on S x C, for all i = 1, ... ,N. 

A stochastic game may be considered as a sequence y 1 , y 2 , ••• of non­

coor,erati ve games played by the N players, where s E S indexes the set 

{rs Is Es} from which yt (t = 1,2, ... ) is drawn. Note that all the players' 
1 N 

actions in yt = s (t = 1,2, ... ; s ES) constitute a vector~= [a , ... ,a Jc 

E C(s) where 

C(s) S E S. 

When y t = s, i.e., when the system is in state s and the vector a E C ( s) de­

notes all the players' actions in yt' then the one-step expected reward to 
i 

player i, is given by r (s;..a.:_) and the system moves to state t with proba-

bHity qst (~) . 

For each s ES, and i = 1, ... ,N let ~(Ai(s)) denote the set of all 

signed measures on B. , the Borel subsets of Ai(s), endowed with the 
Al(s) 

weak topology (cf. VARADARAJAN [126], p.16-·17). This corresponds to weak 

convergence within the sets c:(Ai(s)). The sets belonging to the base by 

which this topology is defined satisfy the Hausdorff .oostulates for neigh­

bourhoods, and are in addition locally convex (cf. p.205 in ROYDEN U00]). 
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As a consequence we obtain that ':(Ai(s)) is a linear Hausdorff localJy con­

vex topological space. 

Let M(Ai(s)) be the subspace of aJl probability measures on Bi , 
. A (s) i 

with the induced topoJogy. It then follows from th.3.4 in [126] that M(A (s)) 

can be metrized as a compact convex metric subspace of ':(Ai(s)), since Ai(s) 

is a compact metric space. 

Next we define for each s ES, ':(c(s)) 

x~=i M(Ai(s)), i = 1, ... ,N. 

Note that ':(C(s)) is again a linear Hausdorff locally convex topologi­

cal space, and that M(C(s)) is again a compact convex metrizable subspace 

of ':(C(s)), s c S. Finally, we observe that M(C(s)) can be identified as 

the space of all product probability measures on BC(s), the product 0--field 

in C(s). Moreover, for any sequence{µ }00
_ 1 with~ E M(C(s)), n = 1,2, ... , 

-n n-. u 

it follows from th.3.2 in BILLINGSLEY [9] that 

(6.2. 3) as n ➔ 00 

for all real-valued and continuous functions v(.) on C(s) 

if and only if ~ ➔ _!:!. (in the product topology). 

We note that any continuous function on the compact metric space C(s) is 
-i 

bounded. we use the (abbreviated) notation[_!:!. ,v] for the N-person ran-

d , d , [ 1 i-1 i+l NJ l , 1 N 7 ornize action µ , ... ,µ ,v,µ , ... ,µ that resu ts from 1:1... = ,.µ , ... ,µ ., 
i 

when the i-th player changes fromµ to v, the other players continuing to 

use their respective actions inµ. Defining ri(s;µ) = E ri(s;a) and qt(~) 
1 -N - J:!. s 

= E q ~(a) for allµ=[µ , ... ,µ ] E M(C(s)), s ES, i = 1, ... ,N, we ob-
J:I. SL - -

tain 

(6 .2 .4) 

(6. 2. 5) 

( 1 N 11 NN 
J N q 8 t (a , ... ,a ) dµ (a ) ... dµ (a ) 

.i'I (s) 

where the second equality in (6.2.4) and (6.2.5) follows from F'ubini's 
i . 

theorem. Observe that r (s;];I_) and q 8 t (!:1,) are both multilinear in !:1,, Le., 
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for all A E [0,1]: 

(6.2.6) 
i 1 j j N 

r (s;u , ... ,Au +(1-A)v , ... ,µ) 
i 1 j 

Ar (s;u , ... ,u , ... , + 

+ (1-A) 

(6 .2. 7) 

Hereafter we assume that for each s ES, 

(6.2 .8) ri(s;a) and qst(.':':.) are continuous on C(s), for all i 1, ... ,N 

and t ES. 

Observe from (6.2.3) that (6.2.8) implies that, for each s ES, the one­

step expected rewards and transition probabilities are continuous on the 

space of all randomized N players' actions M(C(s)) as well: 

(6. 2. 9) 
i 

r (S;J:!..) and qst (J:!..) are continuous on M(C(s)) for all i 1,.,. ,N 

and t ES. 

Let Fi= X M(Ai(s)) be the set of all decision rules for player i, 
SES 

(i = 1, ••• , N) , i.e., of all functions fi mapping each state s into an act.ion 

f\s) E M(Ai(s)). A policy for a player i is a. sequence Tii,., (fi(1) ,fi( 2 ) , ••• ) 

of decision rules. Using policy ·rri. means that fi (n) is employed at time n; 

thus if the system is observed in states at time n, then player i chooses 
(n) i (n) i (00 ) 

action (.s), the s-th component of f . We write f for the station-

ary policy (fi, , ... ) for player i. As a consequence we let represent 

the class of all stationary policies for player i as well 
( oo) 

A stationary policy E is said to be pure if in each state 

s ES it prescribes a specific action in Ai(s) with probability one. Final-

ly, the set of all policies for player i is denoted by , and lT 
N 

represents the class of all N players' policies, with _l:'. = Xi=l 

N i 
'' Xi=l TI 

the sub-

set of the stationary N players' policies. We associate with each stationary 

policy !_(oo) E ~• the transition probability matrix P(f) (tpm), Le., 

with the n-th power Pn (!.) indi~ating the matrix of n-step transition proba­

bilities, i.e. Pn(!_) P(f) Pn-l (_f_), n 2: 2" 



For any policy ~ = [ 11 1 , ... ,11N] E 11 we define Vi (11 ;s) and gi. (~;s) as 
a-
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the total expected a-discounted return, and the long-run average return per 

unit time to player i, when the initial state is s: 

(6.2.10) 

(6. 2 .11 l 
i 

g (~;s) limsup t+l 
t-+= 

1, .•• ,N; SES; 0 <;a< 1 

where E11 indicates the expectation given the players' common policy~ E: _!l 

is used-and where {sk;k=0,1,2, ... } and {~;k=0,1, ... } denote the stochastic 

processes of the states and actions that result from policy~-
* r *1 *N A N-tuple of policies .12:. = ~ 11 , ... , 11 ] E IT is said to be an a-dis-

counted equil.ibrium point of policies (a-DEP) if, simultaneously for every 

initial state of the systems, 

(6. 2 .12) 1 , ••• , N and ·rr E 

where 

(6. 2. 13) * ( 1[ ) 
*J 

11 , j f iL 

* Similarly we define 11 as an average return equilibrium point of" policies 

(AEP), if simultaneously f"or every initial state s, 

(6 .2 .14) i * i -i * g (~ ;s) ~ g (~;s) for all i = 1, ... ,N and 11 c IT (11 ). 

* Hence, whenever the players choose an a-DEP (AEP) 2:_ , none of them, whatever 

the initial state of the system, can increase his own total expected a-dis­

counted return (expected average return per unit time) by changing to some 

other policy ni f n*i E rri, the other players continuing to use their res-

* pecti ve _oolicies in TI • 

Note that we do not consider history-dependent policies, i.e. policies 

which prescribe for each time t, a randomized action in dependence on the 

entire history Ht 

rather than in dependence on the current state st alone. The justification 

for our confining ourselves to the class _!l is provided by [62], who showed 

as an adaptation of the corresponding result in DERMAN & STRAUCH [261 that 

* whenc,ver a policy~ is an a-DEP or AEP within _!l, it is an equilibrium po-

licy within the broader class of history-dependent policies as well. 

We conclude this section by observing that if the sets Ai (s) (i=l, ... , 

N; SES) are convex compact subsets of some linear metric space themselves, 
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such that for all i , ... ,N ri(s;a) is linear or even concave in the i-th 

component of a (cf. (6.2.6) and (6.2.7)) then the existence of a pure in­

stead of a randomized stationary a-DEF or AEP is guaranteed under the same 

conditions, as follows from an examination of the analysis below. 

6.3. EXISTENCE OF S'l'ATIONARY a-DEP'S 

In this section we prove the existence of a stationary a-DEP for each 

a E [0,1). For each policy f(oo) E !_, the total expected a-discounted return 

to player i, when starting in states ES, is denoted by 

(6. 3. 1) I 
n=O 

The following lemma proves that Vi 
a 

(t;_f(t)). 

("') 
;s) is a continuous function on F 

for all i = , •.. ,N; s ES and a E [0,1): 

i (oo) 
LEMMA 6.3.L Fix s ES, 1 sis Nanda E [0,1). Then V (f ;s) is continu-

a -
ous on F. 

PROOF. We first observe that since Fis metrizable, it suffices to show 

t.h.at Vi(f(oo) ;s) Vi(f(oo) ;s) whenever {£) 00n--l ➔ _f, with f E F. 
a-n a-·- " 

Let M be such that 

(6. 3.2) (s;~) I s M for alls e S, and a e C(s). 

It is then easily verified that 

(6. 3. 3) I i cooi I V (h ;s) s M/(1-a) 
a-

for all h(oo) e F and s ES~ 

llext, observe by complete induction that as a consequence of (6.2.8) and 

(6.2.3) Pk(f) tis continuous on F' for all s,t e Sand k = 1.,2, ..•. This, -s 
in turn, implies using proposition 18 on p.232 .in ROYDEN [100] that for 

each l = 0, , ••. 

(6.3A) 

Finally, pi.ck E > 0 and 
,k-1 l, l 

= l£=0 a LtES P (b_)st 

that for each h E F: 

(6. 3.5) 
( "') 

(b_ ; s) 

(t;!_(t)). 

K I k choose K such that a s E (1-a) 4M. Let Hh (s) 

(t;h(t.)) for all k = 1,2, ... and h E F. Observe 



In view of (6.3.4) there exists an integer N0 such that !H1~ (s) 
-n 

for all n 2c N0 . We thus obtain that for all n 2: N0 : 

(oo) ; t) I ~ 

f./2 + E (1-al_ ~ 
4M (1-a) 

E. □ 

we now turn to the existence of an a-DEP. 
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For a compact, metric state space and under somewhat stronger continu­

ity assumptions with respect to the one-step expected rewards, and transi­

tion probability functions, the issue of the existence of an a-DEP was first 

dealt with by SOBEL [118]. Unfortunately there seem to be a number of seri­

ous errors which invalidate the approach. Although with a considerable 

amount of additional work, the proof in [118] can be rectified for the case 

of a denumerable state space, we prefer to give a different proof. 

'l'he extension of theorem 6. 3. 4 to a more general state space remains 

an outstanding problem. Difficulties arise e.g. in view of ~becoming non­

metrizable when the state space is over-countable, and as a consequence 

more general and less tractable convergence concepts are required. F'or the 

most recent development on this topic, we refer to WHITT [132]. 

Our approach uses an extension of the Kakutani fixed point theorem 

which was obtained independently by GLICKSBERG [48] and FAN [29]. First, 

for each compact set U, let 2u denote the class of all (non-empty) closed 

subsets of U. A point to set mapping 1>: U ➔ 2U (with U satisfying the first 

countability axiom) is said to be upper semi-continuous, if for each sequ­

ence {x } 00 

1 , x EU: 
n n= n 

(6. 3.6) 

LEMMA 6. 3. 2. Given an upper semi-continuous point to convex set mapping cJ): 

u ➔ 2u, defined on a convex compact subset u of a linear Hausdorff loca-11y 

convex topological space, there exists a point x c 1>(x). D 

Observe from the analysis in section 1, that XsES E'(C(s)), the space 

of all functions f mapping each states into a N-tuple of (finite, signed) 

measures f(s) E '::(C(s)), endowed with the product topology, is again a linear 

Hausdorff locally convex topological space, with!:::_, the countable topoloqical 
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product of the spaces M(C(s)) (sES), a metrizable subspace which is in ad­

dition convex and compact, as a consequence of Tychonoff's theorem. The 

fixed point theorem in lemma 6.3.2 will be applied by constructing a point 

to set mapping on E:_, as a subspace of XsES c' (C (s)). 

We finally need the following lemma, the proof of which follows from 

th. 6-f in BLACKWELL [ 11]: 

(ro) _ 1 (co) N (ro) 
LEMMA 6.3.3. Fix O 5 a< A stationary policy f = Lf , ... ,f J 

is an a-DEP, iff Vi(f(ro) ;s) satisfies the optimality equation: 
a -

(6.3.7) 
i (oo) 

V (f ;s) max {ri(s;[f-i(s) ,µ]) + 
a- ).JEM(Ai(s)) -

\' -i i (ro) 
+ l qst ([f (s) ,µ]) Va (f ;t)} 

tE:S 

for al.I s E S, i = 1 , ••• , N. 

THEOREM 6.3.4. There exists a stationary a-DEP for each a E [0,1). 

PROOF. we first observe that for each f E F and i 1, ... ,N there exists, 

as a result of (6.2.8) ah E Fi such that for alls ES: 

(6.3.8) 
-i 

(s;[f (s),h(s)]) 

max 
wM (Ai (s)) 

{ri (s; f-i (s) ,µ])+a l qst ([ __ 
tES 

i (ro) 
(s) ,µ])V (f ;t)}. 

a -

For any i 1, ... ,N and f E E:_, let r!>i (!) denote the set of all h E Fi that 

satisfy (6.3.8) for alls ES, and define the point-to-convex set mapping 

F 
<!>: F-+2-, f+rp(f) 

We next show the upper semi-continuity of this point-to-set mapping. Fix 

{!n}:=l' {~}~=l with (1) !n• ~ E !::_, (2) limn+ro !n ~ h and 

(3) E <Jl (h ) • 
--n . i 

Substitute .fn for_!_ and hn for h in (6.3.8) and let n tend to infinity. 

It then follows that hi satisfies (6.3.8) for!_, and this for all i = , ... N 

ands ES, as a consequence of (6.2.8), lemma 6.3.2, the boundedness of 

(f (ro),·s) and ·t· 18 on p.232 in ROYDEN [100]. --1, propos1. 1.on 

A.s a consequence of the upper semi·-continui ty of <Ii, and the fact that 

<Ii is a point-to-convex set mapping of a convex compact subset!::_ of the lin­

ear Hausdorff locally convex topological space XsES ~(C(s)) into itself, it 
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* * follows from lemma 6.3.2 that there exists a f E F such that f E <!> 

which implies (6.3.7) and hence proves the theorem (cf. lemma 6.3.3). 0 

6 .4. THE EXISTENCE OF .AVERAGE RETURN EQULIBRIUM POLICIES (AEP' s) 

In this section, we will show that the existence of stationary average 

return equilibrium policies (AEP's) is guaranteed when either one of the 

recurrence conditions Cl - C9, in combination with assumption A4, as intro­

duced in chapter 5, is imposed on P 0= { P (!_) I .f E !:) , the set of all transi­

tion probability matrices, associated with the stationary policies. For ease 

of reference, we first restate these conc1itions, in the context of this 

stochastic games model. For any s ES, A~ Sand f E !:_, define the possibly 

infinite recurrence time µsA(.f) as in chapter 5 (cf. (5.2.3)) i.e. (f) 

represents the expected number of transitions until the first visit to the 

set A, when starting in state s and when the N players use the policy l") E F. 

We convene, once again, to write µsA(_!.) 

Cl. There is a finite set Kc Sand a finite number B such that 

µSK(!_) s B for alls Es and f E F 

C2. 'l'here is a finite set K, an integer v 2 1 and a number p > 0 such that 

There is an integer v 2 1 and a number p > 0 such that 

(6. 4.1) 

C4. There is an integer v 2 1 and a number p > 0 such that for any!. E F 

a probability distribution {rrt (_!), t E s} (say) exists for which 

(6.4.2) (f) I s (1-p) Ln/vJ for all s E s, A~ S 

and n 2 1, 

where LxJ denotes the largest integer less than or equal to x. 

CS. For any .f E £'._ there i.s a probabili. ty distribution { rr t (_!.) , t E S} such that 

E S x F as n ➔ 00 , for any t E S 

C6. * There i.s a fi.nite number B such that for any f E Fa state sf exists 

for which 
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]J ( f') s; B for alls ES 

C7. There is a finite set Kand a finite number B, such that for any f E F 

* a state sf EK exists for which 

]J 

* ssf 

(f) '.': B for alls ES 

CB. There is an integer v ~ 1 and a number p > 0 such that for any f E F 

* a state sf exists for which 

V p ~ p for alls ES 

C9. There is a finite set K, an integer v ~ 1 and a number p > 0 such that 

* for any f E F a state sf E K exists for which 

Moreover, the following assumption is made throughout this section (cf. A.4 

in chapter 5) • 

A. For any f E !':_, the stochastic matrix P(f) has no two d_isjoint closed 

sets. 

which is automatically implied by conditions C3 - C9. We refer to chapter 5, 

section 2, for a detailed investigation of the various ways in which some 

of these simultaneous recurrence conditions generalize well-known conditions 

from Markov chain theory, as well as for an analysis of the various relation­

ships that exist among these conditions. We merely note that the special case 

of C3 with v = 1, can be formulated in a simpler way: 

LEMMA 6.4.1. C3 with v = 1 ~ there is a number p > 0 such that for each 

four elements (s 1 ,s2 ,~1 ,~2 ) with s 1 cf s 2 and ~l E C(s 1), ~ 2 E C(s 2 ): 

(6.4.4) 

PROOF. Fix s 1 ,s2 ES and ~ 1 E M(C(s 1 )), ~ 2 E M(C(s 2 )) and observe that, as 

a consequence of (6.4.4): 

(6 .4. 5) min{q 
s s 
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where the interchange of expectation and sUJJllllation is justified by the non­

negativity of min{q t(a1 ) ,q t(a2 )}, and where the inequality part follows 
s1 - s2 -

f . ( ) 2 f' l from J"ensen' s inequality and the concaveness o min . , . on R • Note ina --

ly that (6.4.5) coincides with the special case of (6.4.2) where \! = 1. D 

Moreover, we point out that in STERN [119], the existence of a statio­

nary AEP was recently proven under the following special case of C6 (cf. C6' 

in chapter 5) : 

* C6'. There exists a states and a number B, such that the mean recurrence 

times (f) $ B for alls Es, f E F. 

In addition to the conditions Cl -c9, we introduce the recurrence condition 

D (cf. HORDI,TK [58], p.106) which is of an entirely different type, and under 

which the existence of a stationary AEP will be shown to hold equally well: 

D: There exists a number R such that for each player i = 1, ... ,N and for 
1 i-1 i+l N-

any combination of stationary policies {f , ... ,f ,f , ... ,f} of 

the other players, there is a policy fi E Fi for player i, for which 

the mean recurrence time Nµst (!_) from any state s to any state t, un-

der policy f = , ... ,f] is bounded by R, i.e. for each 
1 i-1 

{f , ... ,f ' 

' ... ,fN} with fj E Fj for all j 1' i, there exists a E Fi such 

that 

(6.4.6) µst(f) $ R for all s,t ES, with f 

Theorem 6.4.2 below gives the main result of this chapter. 

THEOREM 6. 4. 2. A stationary AEP exists undez- each one o.f the conditions 

Cl --- C9, or condition D. 

PROOF. Once again, the possible periodicity of some of the transition prob­

ability matrices in P = {P (!) l.f E E:_} may cause unnecessary problems in es·­

tablishing the existence proof. We therefore employ, once again, a general­

ization of the data-transformation ( 1. 8. 1) and ( 1. 8. 2) with CJ = 1, so as 

to transform our model into an "equivalent" one in which all of the tpm's 

are aperiodic. Consider the transformed N-person stochastic game which has 

the same state and action spaces for all players and the same reward struc­

tures. Only the transition probability functions alter as follows: 

(6.4.7) (a) = ,[q t(a) - o t] + o t; s,t ES; a E C(s) s - s s -
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where Tis a fixed number such that 

O < T < T = inf {1/(1-q (al))q (a)< 1} 
0 s,~ ss - ss -· 

and where ost represents once again, the Kronecker function. Note that 

(6.2.8) and assumption A hold in the transformed model as well, and that 

for alls ES and a E C(s) we have that (q t(a), t Es} is a probability 
s -

distribution, with 

(6.4.8) 

Moreover both (6.4.7) and (6.4.8) remain true when replacing the pure ac­

tion vectors a E C { s) by the randomized action vectors H_ E M ( s) , s E S. 

Due to the first part of (6.4.8) we have that for any f E F the t.p.m. P(f) 

is aperiodic. In add.i.tion, one immediately verifies 

(6.4.9) 

* where T 

Next, let 

)n P(f) ~• for all s,t ES; n 2 1 and f E F 
- Se-

( 00) (f ;s) denote the total expected a-discounted reward, 

for player i, in the transformed model, when starting in states, and when 
(ro) 

the N players use policy f Er- For each a (0 ~ u < 1) we choose a spe-

cific u-DEP E F' {with respect to the transformed model). Finally, we 

fix a states* ES and define: 

we next need the following result, the proof of which will be deferred to 

the end of the proof of the theorem: 

(6.4.11) Under e.ither one of the conditi.ons C1--C9 or D (applying to the 

original model), the family of functions {:;;1 (.) IO S a < 1} is 
a 

uniformly bounded for all i , .... ., ,N .. 

-i (oo) * 
Next, observe that I (1-u) V (f ;s )I s M for all a E [0,1) and i = 1,_,°'N. u -{X 

Thi.s, together with (6.4.11) and the fact that for alls ES, any sequence 

of points in the compact metric space M(C(s)) has a convergent subsequence, 

imply, using the diagonalization procedure, the existence of N constants 
i (oo) { }"' 

g, N bounded functions .), a policy f E F and a sequence ak k=l' 

with E [ 0 , 1 ) and lill\-= ~ 1, such that: 
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(a) lim. f = f 
K--l--00 -ak -

(b) lim. ~ ( 1 - ak) Vi (f (oo); s *) 
k ak -ak 

.i 1' g ; 

~,i ~i 
lim. v (s) = v (s), for alls Es, i = 1, .. .,N. 

K~ ak 
(c) 

Now, fix 

sides of 

~i (oo) * 
i E {1, ... ,N} ands= s 0 ES and subtract V (f ;s) from both 

ak -ak 
(6.3.7) with a= ak, ands= s 0 , in order to obtain {cf. (6.4.10)): 

(6. 4 .12) 

where fi (s) attains the maximum on the right side of (6.4.12). Letting 
ak o 

k tend to infinity in (6.4.12) we obtain for alls ES: 

(6 13) i ~i ( ) .4. . g +v s (s) ,µ]) + 

with fi(s) attaining the maximum on the right hand side of (6.4.13); all 

of this as a consequence of (a), (b) and (c), (6.3.1) and proposition 18 on 

p.232 in ROYDEN [100]. Next, using (6.4.7), one verifies that the functions 

(.) (.) satisfy (6.4.13) with qst(.) replaced by qst(.), Le. for 

alls ES and i = 1, ... ,N: 

(6 .4 .14) 
-i 

(s; [!_ (s) ,p]) + 

(oo) 
Next, it follows from th.6.17 in ROSS [98] that policy f is an AEP and 

i ( 00 ) i 
that g {.f. ;s) = g· for alls ES and i = 1, ... ,N. 

This leaves us with the proof of (6.4.11). Under condition D, (6.4.11) 

is immediate from theorem 12.8 in HORDIJK [58]. Next, using the combination 

of th.5.2.2, th.5.2.4 part (ii) and th.5.2.5 part (iii) it follows that if 

either one of the conditions Cl - C9 applies to the original model, then C2 

applies to this model as well. In view of (6.4.9), C2 then applies to the 

transformed model, in which C2 ""'C4, in view of the introduced aperiodicity 

and th.5,2.5 part (i.v). It then ,follows from (6.4.2), that for any f E !°:.' 

s Es and n::, l, and some integer v::, 1 and positive number p < 1, the 
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, ~n , ~n 
total variation of the siqned measure o (A) = ltEA P (.f_) st - ltEA P (fl s*t 

is bounded by 4 (1-p)Ln/vJ_ Finally it follows from (6.3.1) that, for any 

0 Sa< 1 and i = 1, ... ,N and all f e F: 

-1 
4Mvp for all seS 

thus proving (6.4.11) under each of the C--conditions. D 

The proof of theorem 6.4.2 also shows the following corollary. 

COROLLARY 6.4.3. Under any one of the conditions Cl - C9 and condition D, 

each limit policy obtained fr-om a sequence o.f stationary a-DEP's with dis­

count-.factor tending to one, .is an AEP. 

6. 5. STOCHASTIC GAMES WITH A FINITE STA"rE AND ACTION SPACE 

In this section, we finally consider the N-person stochastic games 

with finite state and action space, as studied in ROGERS [97] and SOBEL 

[117]. We first need the following 

Let Ai(s) = {1, ... ,Ki(s)} and 

supplementary notation: 
i 

let fsk' for any 

the probability with which the kth alternative (1 s 

player i when entering states es. 

* 

policy f E £:., denote 

ks Ki(s)) is chosen by 

For any policy f_ e !::_, we define P (f) as the Cesaro limit of the se-
n oo * .-1 

quence {p (£_)} 11=1 and the fundamental matrix Z(f_) = [I-P(f_)+P (!_) J ·. For 

each i. = 1, ... ,N let the bias-vector wi(f_) be defined by (cf. BLACKWELL 

[ 10]) : 

Finally, let R(f) = {t e sl 
for P(f). 

(fl tt > 0} denote the set of recurrent states 

j_ (ro) * 
Observe that for each f_ E !:., g (!_ ;s) = l:t P (!_) st {t;!(t)) for 

all i 0 , 1, ... ,N, s e S, and that: (cf. [85]) 

(6. 5 .1) 
(oo) 

(f ;s) 
Cl --

i (oo) 
g (,f ; s) i i 

l-a + w CQ + o (a;f_)s' for all j_ = 1,.,.,N, 

SES,aE[0,1), 

where oi(a = l-t=J (1-a/· /- (!), such that 

(6 .5.2) 
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Note that (o:;_f.), as a Taylor series in (1-o:), is continuous for a: 

and hence decreases monotonically to O as a t 1. 

Denote by n(f_) the number of subchains (closed, irreducible sets of 

states) for P(f) and let Cm(f) indicate the mth subchain (l s ms n(f)). 

Finally, let F _c_: F denote the finite set of pure and stationary policies 
·-p 

and define (cf. SCHWEITZER & FEDERGRUEN [109]): 

* R = {s I s E R(f_) for some policy f E F }, 
-· -p 

the set of states that are recurrent under some pure policy. 

Although the existence of an a-DEP is always guaranteed, it is known 

from a well···known counterexample by GILLETTE [47] that even in the two per­

son-zero sum case an AEP does not .need to exist when for some of the poli­

cies _f_(oo) EI!:_, P(!_) is multichained (Le. n(f) 2 2). This seeming contrast 

with the Markov Decision Processes (MDPs) with finite state and act.ion 

space is explained by the fact that in stochastic games, as distinct from 

the former, an essential use is made of the set of all randomized actions, 

whereas in addition the above result perfectly corresponds with what is 

known to be the case in MDPs with a finite state space, but arbitrary com­

ract action spaces (cf. BATHER [2]). Under the assumption that for each 

f(oo) E F, P(f) is uni.chained, the existence of an AEP was first proved in 
--p -

ROGERS [97] and SOBEL [117]. Moreover, in SOBEL [117], as a still stronger 

property, the existence of a (g,w)- or bias-equilibrium policy was 

treated, which we believe should be defined as an AEP , for which: 

(6.5.3) 

where 

( the definition 3 in [ 11 7] does not extend the (g, w) -optimality notion in 

Markov Decision Theory; moreover, with the definition in [1171, a (g,w)­

optimal policy does not even need to exist in the case N = 1, i.e., in the 

case of an MDP). 

In SOBEL [117], the question of the existence of a (g,w)-equilibrium 

policy was treated using the Brouwer fixed···poi.nt theorem with respect to 

the point-to-point mapping 1/J: F + E:., with for all i = 1, ... , N; s c: S and 

k E I\: 



154 

where 

¢i (f))' 
sl -

( 1) max{O, l qst([!_-i{s),k]) gi(f(oo);t) - gi 
tES 

( 00) 
; s)}' 

(2) 

. f 1 1 bi > 0 
i ls lk sk ' 

(3) 

where zi(f) = -Z(f) wi(f). 

Unfortunately, the mapping qi may be discontinuous in!_, since the 

¢ik(f) can be discontinuous in those f that satisfy, for all i = 1, ... ,N, 
s -

s Es the functional equation: 

(6.5.4) 

or the functional equation 

(6.5.5) 
i i (oo) 

w (f) + g (!_ ;s) 
-s 

max {ri(s;[f-i(s) ,k]) + 
kEAi (s) -

i 
(s) ,k])w (!_) 

but for which, in any sphere in F containing!_, policies .!:1, can be found 

that do not satisfy (6.5.4) (or (6.5.5) respectively). An example of this 

kind is easy to construct. 

While under the assumption in SOBEL [117] that P(f) is un.ichained for 

every policy f E I':..p' the proof in [ 117] can be rectified in order to show the 

existence of an AEP (merely by redefining <jli (f) = bi since in this case 
sk - sk 

only criterion (2) is needed), we observe that this result follows immedi-

ately from theorem 6.4.2 and the observation that with S a finite state 

space, condition C2 is automatically satisfied. 
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we note that in both the counterexamples (to the existence of an AEP) 

by BATHER [2], example 2.3 and GILLETTE [47], the matrix p* (f) is discon­

tinuous inf e F. 

In this section we show in fact that the existence of an AEP is guar-

* anteed, if either P (fl is a continuous (matrix)-function on!::_, or 1f the 

Markov Decision Process that results for any player ,i e {1, .•• ,N} when the 

other players have chosen some stationary policy, is a communicating sys­

tem (cf. BATHER [4] and condition B2 below). Moreover we show that the for­

mer property is met under condition Bl below which is an assumption upon 

the chain structure of the pure (stationary) policies. 

In addition, the approach used in this section has again the advantage 

of showing that AEPs appear as limit policies from a sequence of a-DEPs with 

discount factor a tending to one. 

Let be an enumeration of F , and consider the following equi·· 
--p 

valence relation on (cf. the condi ti.ans Ai and A2 in section 2 of chapter 2) : 

I 1 ~ r ~ L; 

Let c = C' if there exists {c(l) = c,c 12 ) , ... ,c<n) c•} with c(i) e c, and 

C (i) n c(i+1) i 0, for i = 1, ... ,n-1. 

Let C(l) , ... ,C(n*) be the corresponding equivalence classes on C, and 

1 t R* ( 1 ) (n*) b h d · · · f R* ( f (6 c 2)) e , •.. , et e correspon ing partition o· c. .~. : 

The following lemma shows that under assumption Bl, all policies in F 

have the same number of subchains, i.e. n (!) is constant on F: 

Bl: * (£) 
Every (pure) policy f E F has exactly one subcha1n with1n each R , 

-p 

LEMMA 6.5 .. If Bl holds, then all the policies in F have the same number 

of subchains. 

PROOF. Fix f E !::_. We prove that P (-of) has exactly one subchain within each 
.R*c1f ( o -o * 

~ 1, ... ,n) by showing subsequently: 

* (1) R(~) s:_ R ; 

(2) any subchain of P(f) is contained within one of the sets R*(i); 
-o 

(3) in every one of the sets R*(iJ there is exactly one subchain of P(f ). 
·---o 



156 

(1) and (2) follow immediately from parts (b) and (c) of Th. 3.2 in [109], 

so that (3) remains to be shown. 
* (£) Fix ,{'_ (1 S: ,{'_ S: n) and assume first that R(!.c,) n R = 0. It then fol-

lows from lemma 2.2 in [109] that there exists a pure policy h E F, with 
- --p 

R(h);:;, R{!.c,), such that R(b_) n R*(f) = 0, contradicting BL Finally, ob-

serve that for any pair !:_1 ,f.2 E: _:::p, the subchains of .f_1 and !,2 that are 

contained within R*(f) must intersect., since it would otherwise be possible 

f . h ub h ' ' h' R* (./'.) d' . 1 to construct a 3 E F wit two s c ains wit. in , contra 1.ct.1.ng B , 
- -p 

and verify that this property implies that P(f) cannot have two or more 

subchains within R* (,{'_). D -

REMARK. Assume that every policy in F is unichained (cf. SOBEL [117], 
--p 

ROGERS [97]) and observe that this assumption implies for any pair E 

E that their subchains must intersect., so that all the subchains in C 

* belong to the same equivalence class, i.e. n = 1. 

It hence follows that the assumption in SOBEL [117] and ROGERS [97] 

* is identical with the special case of B1 where n = 1. 

We next introduce condition B2: 

B2: For every iE{lp .. ,N}, for every pair of st.at.es s,tES, and for every 

combination {fj E Fj I j f i} of policies of the other players, there is 

a policy fi E for player i and an integer,('_ such that P(f),t > O; 
- st 

where f = , ... ,fN]. 

Note that B2 can be seen as an extension of the assumption that the 

system is communicating (cf. BA'rHER [2], HORDIJK [58]). It is easily veri­

fied (cf. BATHER [3], p. 526) that under assumption B2 the seemingly stronger 

condition (6.5.6) is satisfied. 

(6.5.6) For every i E { 1, ... ,N} and for every combination { 

of policies of the other players there is a policy 

E I j f i} 
i 

E F for 

player i, such that P(f) is an irreducible Markov Chain, where 

. [ 1 NJ f= f, .. .,f .. 

Using the fact tha.t in an .irreducible Markov Chain the mean recurrence time 

from any states to any state tis finite one concludes that B2 .is in fact 

the relaxation of condition D to the finite state space model, such that 

the existence of stationary AEP is guaranteed under this condition. Theorem 

6.5.2 below shows that the same applies to condition Bl. 
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THEOREM 6.5.2. There exists a stationary AEP if either Bl or B2 holds. 

PROOF. The theorem merely has to be proved under Bl. Fix i = 1, ... ,N; s ES. 

It follows from lemma 6.5.1 that n(!_) is constant on!':_, and hence from th.5 

in SCHWEITZER [105] that p*(f) is continuous inf E F, which in its turn 

invokes, by their very defin~tion, the continuit; of-gi(!_(oo) ;s) and (f) 
- s 

in !_ E !':_, for all s E S. 

We first fix an a-DEP !a E !':_, for each a E [0,1). Inserting (6.5.1) 

into both sides of (6. 2 .12) a.nd multiplying both sides of the resulting 

inequality by (1-a) we obtain for all h E Fi 

(6.5. 7) + (1-a) oi(a;f) 
-<:( s 

It next fol.lows from the fact that Fis a compact metric space that 

one can find a policy 
( 00) 

and li1\_-+co ak = l, such that 

(6.5.8) 

E _i::_, and a sequence {ak}:=l, 

* lim. f f. We further 
k+oo -ak 

with ak E [0,1) 

show: 

Merely proving the first equality in (6.5.8) (the proof of the second 
i 

one being analogous), we observe that for each a E [0,1), o (a;!_)s is con-

tinuous inf E F, as a result of lemma 6.3.1, relation (6.5.1) and the con-
-i (oo) i 

tinuity of g (!_ ;s) and w-(!.)s inf E F. 

(6.5.8) then follows from the fact that for any !2_ E !':_, I (1-a) oi(a;h) I 
-s 

is bounded by I (1-a) ci(a;h) [ which decreases monotonically to zero (cf. -s 
(6.5.2)), as at 1, using e.g. Dini's theorem (cf. ROYDEN [100], p.162). 

Finally, let k tend to infinity on both sides of (6.5.7) with a= ak, 

and use (6.5.8) as well as the continuity of gi(f(oo) ;s) and wi(f) in !_E !':_, 
- -~ s 

in order to obtain: 

(6.5.9) 
i * (oo) i *-i (oo) 

g (.f. ;s) 2 g ([f ,h] ;s), for all i 

s Es and h E 

Consider next the "decision problem" that arises when all players but 

player i tie themselves down to their respective policies in , and ob-
*] 

serve from (6.5.9) that in this decision problem, f - is a maximal gain pol-

icy to player i within It theri follows from theorem 2 in BLACKWELL [10]. 

th f *i . 1 . 1 !Ti at .is a so optima within . 
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6. 6. N-PERSON GAMES WI'l'H PERFEC'l' INFORMA'l'ION 

We finally turn to the question under which condition(s) a pure instead 

of a randomized AEP exists, for every choice of the one-step expected rewards 

/(s;a). 

So far the only stochastic games known to have this property are the 

so-called two person-zero sum games with perfect information, in which in 

each state of the system one of the two players has not more than one al-· 

ternative. 

The existence of a pure AEP for this class of stochastic games was 

first treated by GILLETTE [47]. Unfortunately an incorrect extension of 

the Hardy-Littlewood theorem was used, as has been pointed out by LIGGETT 

& LIPPMAN [78]. 

The existence of a pure AEP, and, as an even stronger result, the 

existence of a pure bias-equilibrium policy may, however be derived from 

the fact that a pure stationary a-DEP exists for each a E [0,1), where the 

latter has already been proved by SHAPLEY [115]. 
* *1 *2 

Since F is a finite set, we can therefore find a policy f ~ (f ,f ) c 
--p 00 * 

E F and a sequence {a} 1 , with a t 1, such that f is 
-p n n=. n 2 -

an a -DEF for 
1 n 

n = 1,2, •.• Let r(s;a) = rl(s;a) = -r (s;a) and V (h;s) 
- - - Cl -

-v2 (h(oo) ;s), and observe that V (h,s) = lt[I-aP(h)]- 1 
a - a - -- st 

tional function in a for all h E F ands c S. 

V (h("');s) 
Cl -

r(t;h(t)) is a ra-

. - 1 *2 - *-p *1 2 * 
Since V ([h ,f ];s) - V (f ;s) and V (rf ,h ];s) - V (f ;s) are also 

a a- 1 ? a a-
rational functions in a, for all h ,h- ands Es, and hence are either iden-

tically equal to zero or have a finite number of zeros, there exists an 
- 1 2 1 2 
a(h ,h ,s) such that, for all a > a(h. ,h ,s): 

(6.6 .1) * *1 2 ~ V (f ;s) :s; V ([f ,h l ;s) ~ 
a - a 

* * Since Sand F are finite, we thus obtain an a such that f is an a-DEP 
--p 

for all a> a*. It then follows by comparing the Laurent series expansion 
* 1 *2 * - 1<1 2 

for Va(!_) and Va([h ,f ]) as well as the one of Va(!) and Va([f ,h ]) 

* that f is a bias-equilibrium policy, and more generally an equilibrium 

policy under all of the sensitive discount optimality cr1teria (cf. MILLER 

& VEINOTT [85]). 

REMARK. The proof in LIGGETT & LIPPMAN [78] for the existence of a pure 

AEP is more compl:tcated than the one above; moreover, it requires an addi-
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tional argument. More specifically, instead of th.5 in BLACKWELL [10] we 

need the stronger result that in each Markov Decision Model there exists a 

* * discount factor a such that any policy that is a-optimal for some a> a 

* is a-optimal for all a> a, which is immediate from the proof of th.5. 

Relation (5) in [781 should be adapted in this sense. 

One might wonder whether the existence of a pure AEP is also guaranteed 

in the case of two-person, nonzero-sum, or even more generally in the case 

of N person games with perfect information. The following two-person game 

is, however a counterexample, which is due to VRIEZE & WANROOIJ [130]. Let 

S = { 1 , 2} and Al ( 1) = A 2 ( 2) = { 1, 2} with A 2 ( 1) = Al ( 2) = { 1}. Let r 2 ( 1; ( 1 , 1) ) 

r 1 (2;(1,1)) = 1 and r 2 (1;(2,1)) = r 1 (2;(1,2)) = -1, the other rewards being 

zero, and let 

2/3 and q 11 (2,1) 1/3. 





CHAPTER 7 

On the functional equations in 

undiscounted and sensitive discounted stochastic games 

7.1. INTRODUCTION AND SUMMARY 

After having dealt in the previous chapter with the general N person 

stochastic games model, we now turn in the last two chapters of this book 

to the special case where the state and action spaces are finite, with two 

pl.ayers and where the games are zero-sum. In fact we will consider a slight 

generalization of the latter, which we will denote as a two-person zero-sum 

Stochastic Renewal Game (SRG). n = {1, ••• ,N} indicates, once again, the 

finite state space, and in each state i En, K(i) and M(i) represent the 

finite sets of actions available to player 1 and 2 resp. When the actions 

k E K(i) and l E M(i) are chosen in state i, then 

(1) the probability that state j is the next state to be observed, is 

given by PkiJ'.l ~ 0 (L~ P~'.l = 1) 
J=1 1J 

(2) the period of time until the next observation of state, is a randon 

variable t, with conditional probability distribution function F~'.l(.) 
1] 

given that j is the next state of the system 

(3) for each x ~ o, R~'.l(x) denotes the expected income earned by player 1 
1J 

from player 2, during the first x units of time, given that state j is 

the next state of the system and t ~ x. 

The discrete time case, where each transition takes exactly one unit of 

time, is known as the stochastic games-model (cf. e.g. [90], [115]) and 

will be denoted as the SDG-case. When one of the two players has only one 

action in each state of the system, the SRG and SDG model reduce to a Mar­

kov Renewal Program (MRP), and a pure Markov Decision Problem (MDP) resp. 

If the payoffs are discounted at the interest rater> O, the SRG-game is 

called the r-discount game. Let V(r) denote the vector the i-th component 

of which indicates the value of the r-discount game with initial state 
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i E: (l. T'he existence of a value for the r-discount game goes back to 

SHAPLEY [115]. 

In a recent paper, BEWLEY and KOHLBERG [6] gave a description of the 

asymptotic behaviour of V(r), as the interest rater decreases to zero, by 

deriving a series expansion of V(r), for all r sufficiently smalL When 

there is no reason to discount future rewards, or whenever the infinite 

stage game model serves as an approximation to the model where the planning 

horizon is finite though large, the average return per unit time criterion, 

in one of its possible specifications (cf. BEWLEY and KOHLBERG [7]) is the 

first criterion to be considered. 

In section 6.5 we recalled from GILLETTE [47] that one or both players 

may fail to have equilibrium policies with respect to the average return 

per unit time criterion, and we pointed out a number of recurrency condi­

tions under which the existence of an AEP (cf. (6.2.14)) is guaranteed for 

each possible corrIDination of rewards. 

In this chapter we show that in undiscounted SRG's, a pair of functio­

nal vector equations arises which is the natural analogue of the corres-­

ponding ones in Markov Decision Theory (cf. (1.9.4) and (1.9.5)). We show 

that, in complete analogy to the structure of MRP's, the existence of a 

solution to this pair of functional equations is a necessary condition for 

the existence of a stationary AEP. 

We give a constructive proof, showing that a specific class of suc-­

cessive approximation schemes converges to a solution of this pair of 

functional equations (f.e.). 

For the case where the optimal average return per unit time is inde­

dependent of the initial state of the system, these successive approxima­

tion schemes provide an algorithm to locate AEPs whenever existing, as will 

be pointed out in chapter 8. Conversely and in contrast with what is known 

to be the case in ordinary MRP's, it is shown that the existence of a solu­

tion to the pair of functional equations only needs to be sufficient for 

the existence of an AEP when the asymptotic average value (cf. section 3) 

is independent of the initial state of the system. 

This is explained by showing that a pair of policies which satisfies 

the two optimality equations for some solution pair, is merely guaranteed 

to meet some partial optimality result (cf. prop.7.3.4). 

The above results are obtained in section 3, after giving the nota­

tion in section 2. 
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In section 4, we give some properties of the optimality equations, 

both for the general multichain and for the unichain-case. Since only the 

tails of the streams of rewards matter when considering the average return 

per unit time criterion, more sensitive optimality criteria are needed to 

make further selections within the class of AEPs. As a consequence, we next 

consider the extension to the SRG-model of the sensitive discount and cu­

mulative average optimality criteria that have been formulated and studied 

in the literature on MDPs (cf. MILLER and VEINOTT [85], VEINOTT [127], SLADKY 

[116], DENARDO [22] as well as chapter 4). In section 6, we show that in ad­

dition to the above mentioned pair of Le. an entire sequence of coupled 

f.e. arises when considering these sensitive optimality criteria. We prove 

that this sequence has a solution when all of the tpm's associated with 

the pure stationary policies are uni.chained. Moreover, we extend the results 

obtained for the average return per unit time criterion to the ent.ire set 

of sensitive optimality cr.iteria. 

7.2. NOTATION AND PRELIMINARIES 

For each finite set S, let II s11 denote the number of elements, it 

contains. If A = [A .. J is a matrix, let val A indicate the value of the 
l.J 

corresponding matrix game. In this chapter we will use a matrix norm which 

is different from the one employed so far (cf. (2.1.4)). Accordingly, let 

!Al = max .. IA .. I, and observe that for any pair of matrices A,B of equal 
J.,J lJ 

dimensions: 

(7.2.1) !val A - val Bl s IA - Bl. 

A A 
(Let (x ,Y) and 

B 
,Y) be equilibrium pairs of actions in the matrix 

A 
games A and B; then min .. (A .. -B .. ) s (A-B)y = x 

B i,JA lJB iJ A B 

B A B A 
Ay - x By S 

val A - val BS Ay - X By = X (A-B)y s max .. 
1.,J 

IIK(il II 
For each state i E St, let K(i) = {x E E I x 2 

denote the set of all randomized actions available to ,:,layer 1 in state i. 
IIM(i)III ,IIM(i)II } 

Similarly M(i) = (y EE y 2 O, L.t=l Y_e, = 1 indicates the set 

of all randomized actions available to player 2 in state i Erl. For every 

i E: '2, any tableau of numbers [c~'.t], k = 1, •• qliK(i)II; £, = 1,. • .,IIM(i)II 
l ~ ~ ~ 

and for each pair of closed convex subsets K(i) ::c K(i) and M(i) 5:. /.!(i), we 

denote by 

(7, 2. 2) CK(i),M(ilJ 
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the two-person zero-sum game which has K(.i) and M(i) as the act.ion sets 

for player 1 and 2 resp. and where the payoff to player 1, .is given by 

,IIK(.i)II ,IIM(.i)II X k,l 
lk=l lf=l k c.i Y,e_, 

when the p).ayers choose act.ion x E K (.i) and y E M (.i) resp. The minimax 

[ k,£] 
value of th.is game .is .indicated by val[K(i)M(i)] c.i • 

When K(.i) = K(i) and /1(.i) = M(.i) we use the abbreviated notation 

[c~'./'.J to .indicate the game in (7.2.2). The following lemma is .immediate 
l 

from KARLIN ([70], pp.63): 

LEMMA 7.2.L Fix i En. Let K(i) and M(i) be closed convex polyhedral sub-· 

sets of K(i) and M(i). Then the sets of optimal actions in any one of the 

two-person zero-sum games in (7.2.2) are again closed convex polyhedral 

subsets of K(i) and M(i) and thus o.f K(i) and H(i). 

Note that a stationary strategy f (h) for player 1 (2) is character­

ized by a tableau [fik] ([\ . ./'.]) satisfying fik ;,, 0 and Lk<:K(j_) fik "·' 1 

(hik;,, 0 and LfEM(i) hi.I'.= 1), where fik(hii) is the probability that the 

k-th (./'.-th) alternative is chosen when entering state i En. We let w(~) 

denote the set of all stationary policies for player 1 (2). 

When a positive interest rater is introduced into the model, income 
-rt 

earned at time tis discounted by the factor e and the associated SRG 

will be referred to as the r-discount game. When in state i the players 

choose action k E K(i) and£ E M(i), the one-step expected r-discounted re-

ward for player is given by: 

X 

k,£.( ) Ij k,./:. r 
J 

-rt R~'../'.(t) k,l 
(7 .2. 3) Pi r P,. j e d d F .. (x) 

k,£ 
and let qi 

Let 

lJ lJ lJ 
0 0 

.'.t(O) denote the one-step expected (undiscounted) reward. 
.1. 

j( x d F~. (x) < 00 

lJ 
0 

denote the expected conditional holding time in state i, when the players 

choose actions k E K(i), .l E M(i) and given that the next state observed 

is state j. Likewise, let 
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denote the expected unconditional holding time in state i, when kc K(i), 
k l 

and l e M(i) are the actions chosen, and assume '1'/ > 0 (i c '1, k E K(i), 

£ E M(i)). 

Like in chapter 1 we associate with each pair (f,h) e c!> x 1¥ the N­

component reward vector q ( f, h) , the holding time vector T ( f, h) , and the 

matrices P(f,h) and H(f,h): 

q(f,h)i IkE:K(i) lfeM(i) fik" 
k,£ 

qi • i E Q 

T(f,h). = IkE:K(i) lfeM(i) fik" 
, k,l 

hi£ i E: Q l'. • 
l l 

P(f,h). '= lk Lt fik" 
k,l 

hil i,j Q p. . • E 
lJ lJ 

H(f,h)ij=Ik L,e_ fik" 
k,l. 

hil i,j Q. H, .• E 
lJ 

For any pair (f,h) E <!i x '¥ define the stochastic matrix IT(f,h) as the 
n oo 

Cesaro limit of the sequence {P (f,h)} 1 • Denote by n(f,h) the number 
n= 

of subchains (closed, irreducible sets of states) for P(f,h) and let 

R(f,h) = {i c ll I IT(f,h) .. > 0} Le. R(f,h) is the set of recurrent states 
J.l 

for P(f,h). Cm(f,h) (m = 1, •• .,n(f,h)) denotes them-th subchain of P(f,h); 

w1'.1(f,h) is the probability of absorption in Cm(f,h) when starting in state 
l 

i, and rrm(f,h) represents the (unique) stationary probability distribution 

of P(f,h) on Cm(f,h). Finally, g(f,h) represents the gain rate vector when 

the two players use policy f E <!i, and h E '¥. 

Next, we recall that V(r), the value vector of the r-discount game, 

satisfies the equation (cf. SHAPLEY [115]): 

(7 .2.4) V(r), [ k,f ( ) + Ij k,£ ( ) V(r) , ] , i Qr 0 val p, r m .. r (- r > l l l.J J 

where 

k,l( k,l I -.. rt k,l( m,. r) P., e d F., t) 2 o. 
lJ l.J l.J 

0 

BEWLEY and KOHLBERG [6] recently showed for the discrete time case (SDG's) 

that V(r) may be expressed as a real fractional power or Puiseux series 

in r, for all interest rates r that are sufficiently close to 0. More 

specifically, there exists an integer L 2 1 and constants (k) (i E '1; 

k 00 -oo,. •• ,L) such that: 



166 

(7.2.5) 
(kl 

a 
-k/L 

r 

This result 

assume that 

k E K(i); l 

carries 

k,l( l 
Pi r 

easily over to the general SRG-case. We henceforth 

and m~'.l(r) have a Taylor series expansion (i E Cl; 
lJ 

E M(i)): 

LEMMA 7,2.2. V(r) has a Puiseux series expansion as in (7.2.5). 

PROOF. The proof goes along the lines of section 11 in [6]. Note that 

~,l < o lj mij r) < 1 for all r > 0 and all i E Cl; k E K(i) and-LE M(i). Observe 

next, from a standard contraction mapping argument that 

(7.2.6) the equation xi= val[p:'l(r) + I. m~'.l(r) x.J, i E Cl has a 
J lJ J kl 

(unique) solution for all values of the parameters p,' (r) 
kl kl t k,l l 

and m. '. (r) such that m. '. (r) ?: 0 and l. m .. (r) < 1. 
lJ lJ J lJ 

Since (7.2.6) is a sentence in elementary algebra (cL cor.9.2 in [6]) it 

follows from Tarski's principle (cL section 11 in [6]) that (7.2.6) is 

true over any real closed field, if it is true over the reals. Finally, 

the set of all real Puiseux series was shown to be a closed ordered field 

(cf. section 10 in [6]) which completes the proof that V(r) has an expan-

sion of the type 1.:,:-00 
(k) -·k/L 

for pair of integers K,L ~ L The a r some 

fact that a 
(k) 

0, for all k > L finally follows from the proof of th. 

7.2 in [6] and the observation that for all r sufficiently small, 

(7.2.7) l k,l 
m .. (r) 

j lJ 
5: 1 - ½r T . , 

min 
i En, k E K(iJ, l E M(il 

h . k,l 
w ere Tmin mini,k,l Ti > 

for all r sufficiently close 

0. To verify (7.2.7) note that e-rt 5: 1 •- ½rt 

k,l □ to zero, and use the definition of m .. (r) . 
.l_J 

We recall from the example in section 14 of [6] that in general V(r) can­

not be expressed as a rational function or Laurent series in r (i.e. the 

special case of (7.2.5) where L ,= 1) as is known to be the case in ordinary 

MRP's (cL [22], [85]). The vector a(L) in (7.2.5) is called the asymptotic 

ave.rage value vector. Finally it was shown in [6] that in the disc.rete-
(L) 

time case (of SDG's), a = limn-t=v(n)/n where v(n) is the vector, whose 

i-tll component denotes the value of then-step game with initial state i.. 



167 

7.3. THE AVERAGE RETURN CRITERION; A PAIR OF FUNCTIONAL EQUATIONS 

In this section we are concerned with the average return per unit 

time criterion, i.e. we evaluate any pair of (possibly non-stationary) 

policies for players 1 and 2, by considering for each initial state i c ,1: 

(7.3.1) = liminf (E I Ln 
n-= (i),1/! r=l 

where pr(Tr) denotes the payoff to player 1 (the length of the period) in 

between of the r-1-st and the r-th observation of state. E ,,, indicates 
w,"' 

the expectation, qiven the players' policies l.,'l and tj;. A number of equiva-

lent criteria have been formulated in [8]. 

It is known from GILLETTE [47] that one or both players may fail to 

have gain- optimal policies. For the di.screte-time case, we pointed out 

in section 5 of the previous chapter, that the exi.stence of a stationary 

.AEP .is guaranteed for every possible combination of one-step expected re­

wards q~,f if the matrix function ll(f,h) is continuous on<!> x 'L In add.i-
i 

tion we remarked that the latter, in its turn, is guaranteed to hold when 

the number of subcha.ins n(f,h) is continuous, i.e. constant on <Ji ' ' '¥, and 

a (finitely verifiable) sufficient condition with respect to the chain 

structure of the set of pure policies, was provided by lemma 6.5.1. Lemma 

7.3.1 shows that these results carrv over to the general SRG-case: 

LEMMA 7.3.L Let n(f,h) be constant on <Ji x 'V. Then there exists a station­

ary AEP. 

Note first of all that an equilibrium pair of stationary policies 

exists in the r-·discount game, for all r > 0. For any pair of policies 

f,h E <Ji x '11 let V(f,h) (r) denote the total expected return vector in the 

r-discount game, and consider i.ts Laurent. series expansion in powers of 

the interest rater (cf. DENARDO [22]): 

V(f,h) (r) = r (f,h) + w(f,h) + o(r;f,h) 

We next observe from lemma 1 and corollary 2 .in DENARDO [22] that both 

g(f,h) and w(:f,h) may be written as rational functions of q(:f,h) P(f,h); 

(f,h) and 'llm(f,h); Z(f,h) = [I-P(f,h) + ll(f,h)]- 1 ; T(f,h) as well as of bi-

linear functions 

sions of ,l(r) 

in the first two (three) terms of the power series expan-
k f · 

(and mi.j-(r)). Using theorem 5 in SCHWEITZER [105] we note 
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that all of these functions are continuous on ¢ x ljl, in view of n (f ,h) 

being constant. Conclude that both g(f,h) and w(f,h) are continuous on 

¢ x o/, as well, whence the existence of a stationary AEP can be proved 

in complete analogy to the proof of theorem 6.5.1. D 

As a special case of the condition in lemma 7.3.1, we have that stationary 

AEPs exist, if 

(U): every pair of pure stationary policies is unichai.ned. 

In this section, we show that the following pair of optimality equations 

arises when analyzing the average return criterion: 

(7. 3. 3) vaHI~=l 
k,l 

gj J' i Q gi P,. E 
J.J 

(7.3.4) val[K(' ) M(' )][l'.l Ij 
k,.('. 

+ I. P~'.£. V,]' i Q, V. ·- H .. g, C 
]. +,g t 1.,g 1 J.J J J J.J J 

where for each i E nv and each solution g* to (7 .. 3 .. 3), K(i,g*) and M(i,g*) 

* are the sets of optimal act.ions in the matrix game in (7.3.3) with g = g. 

Note from lemma 7.2.1 that the sets K(i,g) and /.{(i,g) are in fact the con­

vex hulls of a finite number of extreme points such that the games to the 

right of (7.3.4) may be interpreted as simple matrix games. Observe final·­

ly that (7.3.3) and (7.3.4) are the natural extension of the optimality 

equations (1.9.7) and (1.9.8) in undiscounted MRPs. 

* * We say that a pair of policies (f ,h) satisfies the optimality equa-

tions (7.3.3) and (7.3.4), if for some solution (g*,v*), (f*(i), h*(i)) is 

an equilibrium pair of actions in the matrix games to the right of (7.3.3) 

and (7.3.4). J,"irst we show that a solution pair to the equations (7.3.3) 

and (7 .3.4) exists whenever a stationary AEP exists. Our proof is a con···· 

structive one; in fact we show that a certain class of successive approxi­

mation schemes converge to a solution pair of (7.3.3) and (7.3.4). These 

schemes are the natural analogue of a value iteration scheme in undiscounted 

MDPs which is due to HORDIJK and TIJMS [60] and which was presented in sec-
(L) 

ti.on 1.8 (cf. also section 4.3). First of all, observe that a , the as-

ymptotic average value vector (cf. (7.2.5)) is a solution to (7.3.3): 

(7.3.5) 
(L) 

a. 
l 



169 

as is easily verified by inserting (7.2.5) into both sides of (7.2.4), 

multiplying the resulting equality by r > 0, letting r tend to zero, and 

by interchanging the limit and value-operation (cL (7.2. )). 

We next consider a related SRG, with 0. as state space. For each i E ~, 

k E K(i), l E M(i) let, 

(L) 
- a. x; i,j E ~; k E K(i); l 

J 
(i) 

denote the .income functions, and verify using (7. 2. 3) that 

(7. 3.6) i E $1; k E K(i), l C M(i). 

Both the transition probabilities and the transition time distributions 

remain unaltered. Moreover we restrict i.n each state i E ,l the set of 

(randomized) actions available for player 1 to K(i.,a(L)) and the set of 

t . f 1 2~Lo'1(' (L)) ~v() ~<kl k I df h ac ions __ or p ayer ,, i, a. • r , a , -· 00 , ••• , , an or eac 
,N . (L) I (L) ~ ~ 

f E Xi~l K(i,a ) , h E /!!(i.,a ) the quantities q(f,h) and g(f,h) are 

defined in complete analogy to V(r), a(k), k = -=,. .. ,L; q(f,h) and g(f,h). 

Before introducing the successive approximation schemes we first need the 

following theorem: 

* THEOREM 7.3.2, Assume there exists a stationary AEP 

original stochastic renewal game (SRG). Then 

,h) Et x o/ in the 

(a) 

(b) 

a (L) 

(k) 
a 

* * g(f ,h) 

0 , k = 1 , ••. , L-1 

(c) every policy f E t (hEo/) which is gain-opt.imal for p.Iayer 1 (or 2) in 

the orig.ina.I SRG, is gain-opt_imal .in the transformed SRG 

(d) t.here exists a constant B > 0, and an integer L 2 1, such that .for al.I 

r, s > 0 sufficiently sma.Il, 

(7. 3. 7) 

PROOF. 

(a), (b): go along the lines of lemma 7, l .1 in [8]: 
1:·1 (k) -k 1 1 (k) -k 

Let lk=-"' A r [lk=-oo B r J be the Laurent series expansion 

of w1 (r) [w2 (r)], the total discounted return to olaver [2] in the 

MRP that results when olaver 2 [1] ties himself down to policy 

Since f*[h *] is gain-optimal in this MRP conclude that A ( 1 ) -~ B (1) = 

= g 
2 w (r) 

• Finally, parts (a) and (b) follow from the inequalities 

:".;V(r)sw1 (r). 
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(c) Fix a stationary AEP (f*,h* and i E: D; recall (e.g. from th.1 i.n [23]) 

that for any f E 0 and h E ~: 

* * * * * * * * * * * * P(f,h ) g(f ,h ) ~ P(f ,h ) g(f ,h ) g(f ,h ) :S P(f ,h) g(f ,h l 
* (L) * * (L) CL) * (L) 

such that: [P(f,h) a ]. ~ [P(f ,h) a 7. = a. s [P(f ,h) a ],, 
* l ( ) *.1. l (L) l 

thus proving that f Ci) EK (i,a L) and h (i) E MCi,a ) for all 

* * i Ea, or in other words the feasibility off and h in the trans-

* * formed game. We next show, that (f ,h) is an AEP in the transformed 

SRG, with g(f*,h*) 0, by proving: 

(i) g(f,h * * (L) K (" (L)) ) g(f,h ) a for all f E X. i,a 
(7.3.8) 

l 

(L) (. (L)) 

(d) 

* * (ii) g(f ,h) g(f ,h) - a for all h E X. M i,a ,, 
l 

Confining ourselves to (7.3.8) (i) (the proof of (ii) being analogous) 

fix f EX. K (i,a(L)), and observe by iterating the equality 
(L) l * (L) 

a P(f,h ) a , that: 

(L) 
a 

* 1, .. .,n(f,h) 

(m) 
C for all i E S1\R(f,h*). 

Then, 

g{m) ( 
m * * * (L) <rr (f,h ) ,g(f,h )-H(f,h )a > 

<rrm(f,h*) ,T(f,h*)> 

(m) 1 m * , * m * * 
c (l.1T (f,h ). L,H(f,h ) .. )/<rr (f,h ),T(f,h )> 

(m) 
C 

l l J l] 

* m = 1, ••• ,n(f,h) 

* and conclude that ~g(f 11*). = ,n(f,h) 
' i lm=l 

= g(f,h*). - a~Ll, for all i Ea. 
l l ~ 

~CL) 'I'he proof of part Cb) shows that a = 0 as well as the existence of 

a stationary AEP in the transformed model, and the latter implies by 
~Ck)_ 1 _ applying part (al to the transformed game, that a - 0 for K - 1, ••• 

as well i.e. for all r sufficiently small: 

(7. 3. 9) 
(-k) k/L 

a r 

Now by applying the mean~value theorem and using the fact that V(r) 

as a power series in rl/L has a continuous derivative at r = 0, we 

obtain the desired result. 



171 

we next introduce the followi.ng successive approximation scheme: 

£. 
' (r )y(n-1) .J 

n J 

where { rn} :=l is a sequence of interest rates, with limn+oo rn '·" 0. Under 

the assumption that a stationary AEP exists, the following theorem exhi­

bits the existence of a solution pair to the optimality equations (7.3.3) 

and (7.3.4) by showing in analogy to th.1 in HORDIJK and TIJMS [60] that 

the sequence {y(n)}:=l converges under specific conditions on {rn}:=l' 

THEOREM 7. 3. 3. Assume the original SRG has a stationary AEP. Then: 

(a) (a(L) ,a(O)) is a solution pair to the Le. (7.3.4) and (7.3.5) 

(bl Let {rn}:=i satisfy the condi.tions: 

(1) (1-r1) ... (1-r;1 ) + O, as n + oo 

(2) ,·n (1-r') .•• (1-r'.) I ,1/L -
lj=2 n J 

I+ 0, as n + 00 

where 

PROOF. 

min. k 0 
1., ,--L 

,£. ' ( ~ (0) . Then lim y n) = a . 
n+oo 

(a) part (a) follows immediately from part (b) by letting n tend to in­

finity on both sides of (7.3.10) and by observing that the value of a 

matrix oame depends continuously upon its entries (cf. (7.2.1)). 

(b) Note that 

~k,l 
val[K(' (L)) M(· (L))][p. (r) + iFa , 1,a 1 n 

and conclude from (7.2.1) that !y(n+l)i - V(r ) . I <; 

V(r ) .J, id"l 
n J 

· kl ~ - nJ. 
(max. l J!._ l- m.'. (r )). lly(n) -V(r )II<; (1-½r .'I'. )lly(n) -V(r )II 1,,, "J iJ n n n min n 
= (1·-r') lly(n) - V(r )II, for all i E S"l, where in (7.2.7) the second n n 
inequality was shown to hold for all rn sufficiently close to zero, 

Le. for all n 2 n 0 (say). As a consequence of theorem 7.3.2 part (d), 

we may fix an integer n1 2 n 0 ~uch that f;:'.r all m-2 n 1 : 

IIV(r )-V(r )II <;B!r 1/L - rl/LI =B'lr'l/L - r'l/LI, where 
m+l m m-t-1 m m+l m 

B' = (2/T. )1/LB. We conclude that for all m 1 2 min ' , ••. 

lly(n 1+ml - V(r )II 
n 1+m 

+ B' ( 
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and by iterating this inequality, we finally obtain: 

lly(n 1+m) - V(r )II :s: (1-r' 1) ... (1-rn•
1

+ 1)11y(n 1) - V(r )II 
n 1+m n 1+m- n 1 

n +m -1 ~ 
+ B' l, 1 (1-r' 1 ) ••. (1-r'.) [ rJ•.~? - r'_ l/L[. 

J=n 1 n 1+m- J J 

It follows from (7.3.9) that lim V(r) 
n-+oo n 

of the above inequality and the properties 

abl . ( ) ~(O) es us to conclude that limn-+oo y n -a 

= a(O) which in view 

imposed upon {r }00 

1 , en­
n n= 

= lim y(n) - V(r) =O. D n-+oo · n 

We note that 

the analysis 

. ~k,,l . ~k,.£ k,.f'. (L) k,.£ . 
withqi redeflnedbyqi =qi -ai Ti (rnsteadof(7.3.6)) 

of th. 7.3.2 and th. 7.3.3 leads just as well to the existence of 

a solution to the following pair of f.e., whenever a stationary AEP exists: 

i E Si 

(7.3.12) 

We next observe that conditions (1) and (2) of theorem 7.3.3, part (b) are 

satisfied for any choice: 

r = n n 
-b 

with O < b :C:: 1 

a.swill be verified in lemma 8.2.1. 

In addition, we note that when the asymptotic average value is inde-
(L) (L) 

pendent of the initial state of the system, Le. when <a > for 

all i E: St, the f.e. (7.3.3) and (7.3.4), as well as (7.3.11) a.nd (7.3.12) 

reduce to the single (vector)-equation: 

(7 .3.13) * - < 9 > 

the discrete---time version of which has been considered in HOFFMAN and KARP 

[57]. In this case, the convergence result of part (b) of the previous the­

orem leads to a method for approxir,1atinq the asymptotic average value by 

lower and upper bounds as well as for finding for both players and any E > 0 

stationary policies which are E-optimal with respect to the average return 

criterion (sf. chapter 8). 

EXAMPLE shows that whereas the existence of a solution pair to the f,e. 

(7.3.3) and (7.3.4) is a necessary condition for the existence of a station­

ary AEP, .it may fail to be sufficient: 



k,l 
EXAMPLE 1. (all T .. 

1-J 
1; i,j Erl; k E K(i), £ E M(i)). 

1 0 0 

/~cl;,½) /40,0) (0 ,0, 1) 

0 0 

(0,0, 1) (0, 1, 0) state 2 

state 1 
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[21 
state 3 

'I'he notation means that if the players choose the row and 

column corresponding to this box, then player 2 pays player 1 the amount x 

and the next state is 1, with probability a, 2 with probability Sand 3 
(L) 

with probability y = 1-a-B, Take p = %. We first verify that a = [ 1,0,2]. 

Note, by limn-+oo v ~) = a (L) that a~L) = 0 and aiL) = 2. Next, we show that 

x = 1 is the unique solution to the equation, 

(7.3.14) r 1 
val[O.S 

X 

2 
2 

by distinguishing between the cases x > 1 and x < 1. Finally recall from 

(7.3.5) that a{L) is a solution to (7.3.14). We next verify that a(L) in 

* * * combination with any vector v E satisfying v 1 = ½v2 + ½v* - l- is a 3 ', 

= {[J ,0]} and (7.3.4). Note that K(l,a(L)) 
2 

0,y 1+y2 = 1, y 1 2 3}, such that in this exam-· 

ple (7.3.4) becomes: 

* * 

We next verify that there is no stationary A.EP in this game. Note that a 

stationary policy for player 1 is completely specified by the probability 

x with which action 1 in state 1 is chosen. Likewise, a stationary policy 

for player 2, is specified by the probability vector (y1 ) with which 
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the available actions in state 1 are randomized. 

If X and Y2 1 : g(f ,h) l 0 

if X and Y2 < 1: g(f,h) 1 (y1+2y3)/(y1+Y3l 

if X < 1 g(f ,h) 1 
x(½y1- 2Y2+2Y3l+½yl+2y2 

: = 1-xy2 

which shows that no pair of stationary policies is an AEP. 

(Note first that only pairs of policies with x < 1, can be candidates for 

an AEP, since with x = 1, player 2 reacts optimally by putting = 1, whereas 

with the choice y 2 = 1, player is strictly better off when choosing x < 1 • 

Next observe that with x < 1, player 1 can guarantee himself rnin{½x+l,;2;2x} 

which allows him to come arbitrarily close to one, without actually reaching 

the value one itself). 

We conclude that in general, and in contrast to what is known to be the 

* * case for ordinary MRPs, a policy pair (f ,h ) which satisfies the optimali.ty 

* * equations (7.3.3) and (7.3.4) for some solut.ion pair (g ,v ), does not need 

to be an AEP. 

Example 1, with p 

AEPs do exist: 

½ shows that this may even be the case when stationary 

Note that with p = ½, g* [1,0,2]satisfies (7.3.3), by verifying 

valfl l i 
21 

2 oJ' 

and conclude that K(l,g*) 

optimality equation (7,3.4) thus becomes: 

{[1,0,0]}. The 

* 

3 * * * such that in combination with any vector v* E E satisfying v 1 ~0 liv 2 +½v 3 , 

is a solution pair to (7.3.3) and (7.3.4L Verify that any pair of policies 

(f*,11*) with½ 5 f; 1 < 1 and h; 1 = 1 is a stationary AEP, whereas the only 

pair of policies which satisfies the optimality equations (7.3.3) and (7.3.4) 

* * * * for (g ,v) has f 11 = l and h 11 = 1 and is not an AEP. Observe finally (by 
* (L) 

considering the gain rate of one of the AEPs) that g = a 

We conclude that even when stationary AEPs do exist, such policy pairs 

do not necessarily need to be found within the class of (pairs of) policies 

that satisfy the optimality equations for some solution pair (the existence 
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of which follows from th.7.3.3). 

Whereas the above examples illustrate that no full optimality results 

may be obtained for policy pairs that satisfy the optimality equations 

* * (7.3.3) and (7.3.4) for some solution pair (g ,v), in proposition 7.3,4 

below a restricted optimality result is derived. 

PROPOSITION 7 .3.4. Let (f* ,J/) .be a policy pair which satisfies the opti­

* * mality equations (7.3.3) and (7.3.4) for so.me solution pair (g ,v ). Then 

g(f*,h*) s; g(f*,h) for a.Il policies h, having the property: 

(7.3.15) [P( ,h)g*] . .., h(i) is an optimal action in the matrix game 
l 

* in (7.3.3) with g = g; i E ~ 

w.i t:h t:he same restricted opt:.imali ty resu.Z t ho.I ding for player 1, when 

player 2 t:.ies himself down to policy h *. 

PROOF. Fix a policy h which satisfies (7.3.15). Recall from the proof of 

* * part (a) of th.7.3.2 that g is constant on each of the subchains of P(f ,h) 

and conclude that: 

( 1) * 
gi s; [P( ,h)g with 

* * * [P(f * ,h)v*J., (2) V, s; q(f ,h) . - gi '.l'(f ,h) i + for all states i ER( 
.1. l 1. 

for which (1) holds with strict equaUty. Apply the proof of lemma 

part (a) in [23] to verify that g* s; g(f*,h), with strict equality 

* holding for h = h. □ 

,h) 

4, 

k k 
Let in example 1, f (h ) , k = 1,2 be the pure policy for player 1 (2) which 

k k 
has 1 = flk = (hlk). Note 

. 1 1 
that both for p =½and p = \, (f ,h) satisfies 

the restricted optimality result of prop.7.3.4, but fails to be an AEP, 

since O = g ,h2 ) 1 < g ) 1 = L Observe that h 2 satisfies g* = P (:E 1 

but h 2 (1) is not an optimal action in the matrix game in (7.3.3). 

Finally note that, whereas a stationary AEP does not need to satisfy 

)g 

* * both optimality equations (7.3.3) and (7.3.4) for any solution pair (g ,v) 

(cf. example 1 with p = ½), it will certainly have to satisfy the first Le. 
* (L) 

for g = a 

REMARK 1. In ordinary MRP's, a policy f, in order to be maximal gai.n, needs 

to satisfy the second optimality equation (7.3.4) only in its recurrent 

states (cf. lemma 1.4.2). In the general SDG or SRG model. however, we could 

not weaken the prerequisite in proposition 7.3.4, to the assumption: 

* 
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(a) (f*(i), h*(i)) is an equilibrium pair of actions in the matrix game in 

(7. 3. 3) for every i E r2 

(bl * 
(f (i)' (i)) is an equilibrium pair of actions in the matrix game in 

(7.3.4) for every i E R(f*,h*) 

even when confining ourselves to the restricted optimality result in prop. 

7.3.4, as is illustrated by example 2: 

EXAMPLE 2. Consider the SDG-·model: 

1/ 
a 

~ (0, 1) (1,0) 

b/ 
/ 

( 1,0) ( 1,0) state 2 

state 

Let fk(hk); k = 1,2 be defined as above. Take a= 0, b = 2, c = L Note 

that (f2 ,h 1 ) is an AEP such that a(L) = [1,1] and verify that in this e,xam­

ole, (a(L);[0,1]) is a solution pair to (7.3.3) and (7.3.4). Note that (f 1 ,h1) 

satisfies (7.3.3) in every i ED, and (7.3.4) in every i E: R(f1 ) = {2}; 
1 2 1 1 ~ 2 • .C • however O g (f ,h ) 1 < g (f ,h ) 1 = 1 in spite o;c h sat1s,:y1ng condition 

(7.3.15) in proposition 7.3.4. 

Prop.7.3.4 makes clear that a policy pair which satisfies (7.3.3) and (7.3.4) 

may fail to be an AEP, only when one of the sets K(i,g*) or l·l(i,g*) (i c rl) 

is a str.ict subset of K(i) or M(i). As a consequence no problems arise when 

the asymptotic average value is independent of the initial state of the sys­

tem: 

COROLLARY 7. 3. 5. Assume a _(L) 
l 

statements are equivalent, 

(L) 
<a > for all i r: rl. Then the fol.lowing 

(I) a(k) = 0, Ear k = 1, ••. ,L-1 

(II) there exists a stationary AEP 

(III) the functional equations (7.3.3) and (7.3.4) have a sol.ution pair 
(L) * 

(a ,v ) • 
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In addition, under either one of (I), (II) or (III), any policy pair 

which satisfies the funct. eq. (7.3.4) and (7.3.5) for some solution pair 

(L) * (a ,v ) is an AEP. 

PROOF. We shall prove (II)"'? {I)"'? (III)* {II). By theorem 7.3.2 part (b), 

d (L) (L) . 
we have {II) * (I). Use (7.2.3), (7.3.6) an a = <a >.!_, to verify 

(7 3 16) ~k,.t( ) • • P. r k,.t <a(L)> {'. k,.t() } ; ) o () p. (r)+---- l m .. r-l;iErl,kEK\i,,eEMi 
l r J lJ l 

and 

(7. 3. 17) 

Subtract <a(L)>/r from both sides of (7.2.4), to obtain 

V(r)i 
<a(L)> 

----= r 

and conclude that V(r) = V(r) 

(7.3.18) V(r). 
i 

a(L) 

r 
, satisfying 

It follows from (7.3.9) that V(r) is continuous in r = 0. Using this, 

i E Q 

} · ~k,.t( ) - e.:k,-t'. d 1· k,-t'.( ) - Pk,-t'. well as (7.3.17), we .1.mr 10 P. r -q. an im+0 m r -- .. as 
"" l .. (L) ;'.:; (O) . r J J . lJ . 

obtain that [a ,a ] satisfy (7.3.3) and (7.3.4) by letting r tend to 

zero in (7.3.18). 

(III) =<> (II): follows from prop. 7. 3 .4, by taking any pair of policies which 

satisfies the funct. e.q. (7.3.3) and (7.3.4) for (a(L) ,v*), thus 

proving the last assertion of the corollary, at one blow. D 

REMARK 2. 'l'he implication (III) * (II) even holds for a denumerable state 

space (cf. e.g. th.6.4.2). Observe that when the asymptotic average value 

does depend upon the initial state of the system, (I) and (II) do not need 

to be equivalent, Le. (I) may fail to imply (II); as an example take the 

Big Match (cL [47]) which has even a Laurent series expansion for V(r), 

Le. wh:i.ch has L ~ 1 (cL [7], section 8). 

7.4. SOME PROPERTIES OF THE SOLUTION SPACE OF THE OPTIMALITY EQUATIONS 

In this section, we discuss a number of properties of the functional 

equations (7.3.3) and (7.3.4) which we will need in the following section. 

We first observe that in general (7.3.3) and (7.3.4) may fail to have a 
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solution pair, just like there may fail to be (stationary) AEPs. As an ex­

ample, take ex.2 with a= 1, b = c = 0, which appeared first in STERN [119] 

and was used in BEWLEY and KOHLBE.RG ([7], sect. 11). Note from [7], that 

this example ha.s O as its asymptotic average value vector, but has no sta­

tionary AEP and apply cor. 7 .3.5 (or alternatively note that in this exam­

ple L = 2, and a(l) [1,0]; and apply cor.7.3.5). 

* * Next, whenever a solution pair (g ,v) exists to the optimality equa-

* tions (7.3.3) and (7.3.4), the v -part of the solution is obviously not 

* * uniquely determined (note e.g. that if (g ,v) is a solution pair, then so 

* * i.s ( g , v +c .!:_) for any scalar c; cf. also [ 109], where a complete characte-

rization of the solution space was given, for the case of ordinary MRPs). 

* * In addition, since a pair of policies (f ,h) which satisfies the optima-

lity equations, does need to be an AEP, it is still unclear to us whether 

* the g -part is always uniquely determined. All of the above difficulties 

arise, in view of the chain structure being discontinuous on<!>"'¥ in the 

general multichain case. Theorem 7.4.1 below gives a number of character­

izations with respect to the optimality equations, under condition (U). 

Since in the following section, optimality equations of a slightly more 

general structure will appear, we formulate and derive our results with 

respect to the f.e.: 

l [ k,l I k,l J . 
va[K-(')'l(')]a. +L,P,, x., lEli l ,I• 1. J.. J lJ J 

(7.4.2) Y - val[~K(' *) "(' -*)][ck_,l - '. Hk_,_r X i - 1.,x ,iv, i,x 1. LJ iJ j + '. L,J 
,l y 'J' i E D, 

J 

- -
where for each i ED, K(i) and M(i) are closed convex polyhedral subsets of 

K(i) and M(i), and where for each solution x* to (7,4,1), K(i, 

are the sets of optimal actions in the matri.x games in ( 7. 4. 1.) with 
k,l kl 

ai and ci' are given quantities (i ED, k E K(i), l E M(i)). 

THEOREM 7.4.1. 

* (a) (7.4,1) has a solution x, if and only if 

* X = X ; 

(7 ,4. 3) . ._k,l k,l h . d o · the SDG with qi = ai as a stationary AEP, an as its 

asymptotic average value vector 

(b) Assume condit.ion (U) to be satisfied, 7'hen if (7.4.3) holds, 

( 1) The solution J/ to (7 A .1) is unique up to a multiple of .!:_, such 

that the sets K( 
ly determined, 

= i<<i and ij(i) = M(i,x*), i ED, are unique-



(2) A solution (x*,y*) to (7.4.1) and (7.4.2) exists, where x* is 

uniquely determined by: 
1 o 
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(7 .4.4.) * x. 
o <TT (f,h),c{f,h)-H(f,h)x > 

xi+ maxfEX.K(i) minhEX.M(i) 1 i i i <TT (f,h),T(f,h)> 

1 0 
0 <TT (f,h),c(f,h)-H(f,h)x > 

xi+ minhEX.M(i) maxfEX,K(i) 1 
i i <TT (f,h),T(f,h)> 

where x0 denotes some solution to (7.4.1). Moreover, y* is unique up 

to a multiple of 1. 

PROOF. 

(a) immediate from corollary 7.3.5 

(b) (1): Let x0 ,x1 be two solutions to (7.4.1) and let (f0 ,h0 ) 
1 1 

and (f ,h ) 

be two pairs of policies which satisfy (7.4.1) for x0 and x 1 resp. 
o ol ol o 1 o1 oll Note that : x ,,; a ( f , h ) + P ( f , h ) x and x ?: a ( f , h ) + P ( f , h ) x 

and subtract the second inequality from the first one, in order to ob­

tain: x0 - x 1 ,,; P(f0 ,h1 ) [x0 -x1 J, and by iterating the latter: 

(7.4.5) 0 1 1 0 1 0 1 . [x ,x Ji,,; cl= <TT (f ,h ), X - X >,].En. 

Similarly, we obtain 

1 1 0 0 1 < [ 0 1] 
<TT (f ,h ), x - x > = c2 - x ,x i' i En. 

We finally show c 1 = c 2 , which proves part (a). Multiply both sides of 

(7.4.5) by TT 1 (f0 ,h1) in order to conclude that x? = x~ c 1 , for all 
i i 

i E R(f0 ,h1). Similarly we obtain x? - x~ = c 2 for all i E R(f1 ,h0 ) 
i i 1 0 0 1 

which implies c 1=c2=c, as a consequence of R(f ,h) n R(f ,h ~ 0, 

in view of assumption (U). 

(2): Fix a solution x0 to (7.4.1), and consider the SRG, which has Q 

as its state space, K(i) and M(i) as the sets of (randomized) alter­

natives available to player 1 and 2 and with one-step expected rewards 
~k,f. k,f. ' k,f. o d l d ' ' b b'l' . d q. = c. - l· H,. x. an una tere transition oro a i ities an 

i i J l.J J -
transition time distributions. Note from lemma 7.2.1 that each of the 

sets K(i) and M(i) may be considered as the set of randomizations of a 

finite number of (pure) alternatives. This, in combination with condi­

tion (U), implies as a result of lemma 7.3.1, and cor.7.3.5 the exis­

tence of a solution to the f.e.: 
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where g 0 is 

game with g~ 
l 

the asymptotic average value vector in this stochastic 

This implies that 

i Erl in view of our unicha.inedness-assumption. 

x 0 +,;° is a solution to (7 .4 .1), thus showing 

the existence of a solution pair to (7.4.1) and (7.4.2). We next show 

* that the x -part is uniquely determined, and derive its explicit ex-

* pression. The fa.ct that they -pa.rt is unique up to a multiple of l_ 

* * follows as in pa.rt (b) ( 1). Let (x ,y ) be a solution to (7 .4 .1) and 

* -J: (7.4.2), and let (f ,h) be a policy pair which satisfies (7.4.1) and 

* * 0 (7.4.2) for (x ,y ). Let g * 0 X -X Then for ea.ch h EX. M(i): 
l 

* * * 0 0 y 2: c (f ,h) - H (f ,h) x - <g > T ,h) + P * ,h)y 

Multiply this inequality by IT(f*,h) and conclude that: 

1 * * * 0 
(7.4.6) 9 o ~ <rr (f ,h),c(f ,h)-H(f ,h)x > 

1 * <rr (f ,h) ,T( ,h) > 

* with strict equality holding for h = h. Likewise, one can show that: 

1 ,, 
:S <1! (f,h ), c(f 

for all f EX. K(i), with strict equality for f 
l 

the proof of part (b). D 

* * (f,h ),T(f,ll )> 

, thus completing 

7.5. SENSITIVE DISCOUNT AND CUMULATIVE AVERAGE OPTIMALITY 

In this section, we consider a sequence of increasingly selective opti­

mality criteria, which appears as the natural extension to the SRG-model of 

the sensitive discount (or cumulative average) optimality criteria, as for­

mulated and studied in Markov Decision Theory (cf. e.q. [22],[85],[127]). 
* ,, 

We call a policy pair (tp , ljJ ) a n·-discount equilibrium pair of policies 

{n-EP) (n ~ -1,0, ... ), if: 

(7 .5 .1) .limsup r -n[V (lp*, 
r+O 

.liminf r-n[V(tp* ,i/J*) (r) - V((j), ) (r) J 
r+o 

where V (l!J, ljJ) ( r) denotes the total discounted return to player , when the 

players use policies (p, ljJ and when the rewards are discounted at rate r, 

We restrict our analysis to the sensitive discount criteria for the 
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discrete-time case of SDGs, in order to avoid too burdensome a notation. 

The extension of our results to the general SRG-case, is immediate and the 

analysis of the cumulative average optimality criteria is analogous to the 

one given below, with the same sequence of f.e. associated (note that for 

n = -1, equivalence of the two criteria was proven in BEWLEY and KOHLBERG 

[7]). E.g. whereas in the general SRG-model the expressions in the various 

f.e., to be considered below, become more complicated functions of the terms 

in the expansions of pk,l(r) and m~'.l(r) (cf. DENARDO [22]), the structure 
l lJ 

of each consecutive pair of f.e. is exactly identical to the one of (7.4.1) 

and (7.4.2). Consider the following sequence of optimality equations: 

(7.5.2) 

(7 .5 .3) 

(7.5A) 

x(O). 
l 

x(m). 
l 

val[K(i.c;l 

(m) (i,X(m-1)) (m-·1) 
k l l . P. '. x (m) . J, 

J lJ J 

m=l,2,. .. ,iEsl 

where X(m) denotes the m+2-tuple of vectors (g,x(O),.,.,x(m)), m = 0,1, ..• 

In addition for all m = 1 , 2, . • • and i E '2 and any solution X (m·-1) to the 

first m+1 f.e. in (7.5.2)-(7.SA), K(m) (i,X(m·-1)) and M(m) (i,X(m-1)) denote 

the sets of optimal a.ctions in the m+l-st f.e. 

F'or each stationary pair of policies (f,h) let: 

(7.5.5) 

represent the Laurent series expansion of the total discounted return asso­

ciated with (f,h). Finally, if x is a vector, we say x is .Iexicog.raphica.lly 

non-negative, written x 2: 0, if the first nonvanishing element of x is posi­

tive. Similarly, xis called lexicographically positive, written x >- 0 if 

x ~ 0 and x t°' o. We write x 2: C>)y or y :'5_ (-<)x if x-y C: (r)O. 

THEOREM 7.5.1. 

(a) * Let (f be a stationary n-EP (n = -1,0, ••. ). Then 

(1) There exists a n+3-tuple (g* ,x(O),. . .,x(n+1)) which satisf.ies 

(7.5.2), (7.5.J) and the first n+l f.e. of (7.5.4). 

(2) In the Puiseux series expansion of V(r), we have: 
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g(f ,h ) , for l -1 { .. 
(7.5.6) 

(-fL) 
a 

x(,f_) (f* * for l = ,h ) , 0, •• .,n 

(---t'.L-p) o = 1 a = 0, for~ -1, •.• ,n; p = 1, .•• ,L-

(b) Let (f*,h") be a stationary N-EP. Then 

* * (1) (f ,h) is a n-EP for all n ~ N 

(2) V(r) has a Laurent series expansion. 

PROOF'. 

(a) (1) For n = -1 the assertion holds as a consequence of th.7.3.3; hence 

* * we assume n ~ 0. Note that h (f) is a n-optimaJ. policy in the MDP 

which results for player 2 (1) when player 1 (2) ties himself down to 

policy f*(h*). Use th.4 of [127] to conclude that for all i. Erl, fE <\l, 

(7 .5. 7) 

. * * (0) .* * (n) * * . [g(f ,h ) . ; x (f ,h ) . ; ... ;x (f ,h ) . J ~ 
l l l 

I * 7, 7, * * * \ ·k (Q) * * [;_.P(f,h).,g(f ,h ).;q(f ,h).-g(f ,h ),+L,P(f ,h) .. x (f ,h ). 
'J lJ' J l l J 1.J J 

- _x(n-1) (f*,h*). L * (n) * * 7 + , P(f ,h),. x (f ,h ) .. 
l J l] J 

* * with strict equality holding for h = h, and f = f. One easily con-

* . * . (n) * * . eludes that X(n) = [g(f ,n ); ... ,x (f ,h )] satisfy (7.5.2), (7.5.3) 

and the first n Le. in (7 .5.4). To prove that there exists a solution 

* * to the n+1-st Le. in (7 .5.4) as well, note that (f ,h ) is an AEP in 

the stochastic game, which has Si as its state space, K(n+l) (i,X(n)) 

M(n+l) . . 
and (1,X(n)) as the act1.on spaces in state i E Si, and with one-

~· (n) * * step expected reward vectors q(f,h) = - x (f ,h ), and transition 

probabilities P~'..t = P~'.,f_. (cf. e.g. DENARDO [22], p.491). Finally 
lJ 1.J . 

note that this stochastic game has Oas its asymptotic average vector, 

and apply th.7.3.3. 

(2) We prove part (a) (2) by complete induction with respect to £.. Note 
O . • • (--fL) * * (-lL••·p) 

that for-t.. = --1, the equall.ties a =g(f ,h) and a =0 for 



* p = 1, ... ,L-1 follow from the fact that ( ,h ) is a stationary AEP, 

using theorem 7.3.2. Assume that (7.5.6) holds for all£= -1, ... ,l*<n. 

Let 

1 [ 2 ] be the Laurent series expansion of W (r) W (r) , the total discounted 

return to player 1 [2] in the MDP that results when player 2 [ J ties 

himself down to policy h *[ and note that 

(7.5.8) r1nd A{-k) = B(-k) (k) 
X 

for all k = 0, ..• 

In view of f*[h*] being l*-H- optimal in this MDP. Observe that, 

w2 (r) S: V(r) S: w1 (r), and conclude from (7.5.8) and the induction assump­

tion that the coefficients of the terms with power strictly less than 
0*·1-l, i·n 1 ( ) ( ) d 2, ) . "d . (-l*-1) (-£*-1) we 
~ W r, V r an W \r co1nc1 e. Since A = B 

conclude that (7.5.6) holds for .i'. = £*+1 as welL 

(b) {1): It follows from VEINOTT ([127.], p,1646) that i'rh*], since being 

N-optimal, is n-optimal for all n ~Nin the MDP that results when 

player 2 [1] ties himself down to policy 1i*[f*]. 

(b) (2): Immediate from (a) (2) and (b) (1). ll 

We observe that part (b) of th.7.5.1 may not be extended to the general 

SRG···model, since it does not even hold i.n the general MRP-case (cf. [ 22 J, 

p .489) • However, part (b) generalizes proposition 6 .4 in [ 7], where it was 

shown that V(r) has a Laurent series expansion, if there exists a uniformly 

* discount optimal pair of policies, i.e. a pair (f which is optimal in 

the r-discount game for all r sufficiently smalL \·le next observe, that 

whereas the existence of a solution to the first n+l Le. in (7,5,2)-(7.5,4) 

is a necessary condition for the existence of a stationary n-EP, it certain­

ly may fail to be sufficient, as was pointed out for the cas0c n = -1, in 

section 3, 

In analogy to prop,7.3.4, the following partial optimality result may 

be obtained for any policy pair which satisfies (7.5.2), (7,5.3) and the 

* * * first n+1 f.e. in (7.5,4) for some solution (a ,x (0) .••• ,x (n+l)): 

* * * PROPOSITION 7,5.2, Fix n ~ ··1,0'° .•. Let (g ,x (O), ... ,x (n+1)) be a so-

lution to (7.5.2), (7,5,3) and the first n+1 Le, of (7.5.4), and .let 
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* * (f ,h) E <!> x '!' be a policy pair which satisfies these optimality equations 

for this so.Iution. Then 

* * (0) * * (n) * * * (n) * [g(f ,h ).;x (f ,h ).; ... ;x (f ,h ).]~ [g(f ,h),; ... ;x (f ,h).J 
l l l l l 

holds in every i E '2, for those policies h for which: 

(7. 5. 9) \ * * * * l . p ( f 'h) " g . = gl. => h (j_ ) E M ( i , g ) 
J lJ J 

{h(i) E M(m) (i, 

* * q(f ,h)i .. gi + 

\ * * (1) + l· P(f ,h) .. x (0).} =>h(i) EM (i, 
J l] J 

* (m-1)) and x (ml. = 
l 

(0)), 

* , * * (m+l) . * =-x(m-1).+l,P(f,h) .. x(m)J=>h(i)EM (i,X (m)), 
l J lJ J 

~ms n+1 

with the same restricted optimality result holding for po.l.icy f*,. D 

We finally turn to the case where condition (U) is satisfied: 

'rHEOREM 7. 5. 3. Assume condi t.ion (U) ho.Ids. Then 

(a) there exists a solution to the entire sequence of Le. (7.5.2),(7.5.3) 

and ( 7 • 5 • 4 ) • 

(b) * * * Fix n = 0,1,. ... .rn the solution (g ,x (0), ••• ,x (n)) to (7.5.2), 

* * * (7.5.3) and the first n f.e. of (7.5.4), we have (g ,x (O), .•• ,x (n-1)) 

un.ique1y determined (exp1icit expressions of which may be obtained by 

* a repeated app1ication of th.7.4.1), whereas x (n) is unique up to a 

mu1 tiple of }_. 

PROOF. Part (a) follows from part (b), and :,:,art (b) is proven by complete 

induction with respect ton. Note that for n = 0, the assertion follows as 

a special case of th. 7 .4. L Assume, it holds for some n = 0, 1, .... We then 

* * have in particular that x (n-1) (or g when n = 0) is uniquely determined 

and that the f.e.: 

(7.5.10) [ 1 k ,.£. J 
x(n). =val[K(n)(. X( -·l))·M{n)(. ( -l))] -x(n-1). +L,P,, x(n)., 

i i, n , 1.,x n J_ J iJ J 

i E S'I 

(or (7.5.3) in case n 0) has a solution. Apply th.7.4.1 to the combination 
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of (7.5.10) (or (7.5.3) in case n = 0) and the n+l-st f.e. in (7.5.4), to 

verify that the assertion holds for n+l as well. D 

In SOBEL ([117], th.2), it was asserted that a stationary 1-EP always 

exists under condition (U). In chapter 6 we pointed out that the proof of 

this theorem is incorrect, and the next example shows that the asserted 

result itself may fail to hold: 

EXAMPLE 3. 

2 

/ 
(0, 1) 

-1 

( 1, 0) 

d~f Note that g ( f, h) r ( x , y) 

y = h1l.. Let 

(7.5.11) 
def 

¢(x) min r(x,y) 
y 

(7.5.12) 1j, (y) maxx r(x,y) 

3 
/ 

(0, 1) 

(5xy-2x-4y+3)/(2+2xy-x-y) where x 

. J 3x-1 
minL l+x 

3x-1 

where the second equality in (7.5.11) and (7.5.12) follows from the obser­

vation that with one of the two players tieing himself down to a specific 

(randomized) strategy, a pure strategy can be used by his rival when opti­

mizing the resulting MDP. 

Conclude that 

(7 .5.13) = max ¢(x)}, and 
X 

min ij,(y)} 
y 

such that { Jf;l = 1} and {h*Jh; 1 2: 1/3} are the sets of optimal (stationary) 

policies for players 1 and 2, with respect to the average return per unit 

ti.me criterion, Note however that none of these policy pairs is 1-EP, since 
(0) * * (0) * * 

x (f ,h) = 0 and g(f ,h) = 1 when h 11 = 0, whereas x (f ,h ) 1 > 0 for 

* * all policies E {h jh11 2 1/3}, which are gain optimal for player 2. 





CHAPTER 8 

Successive approximation methods 

in two-person zero-sum stochastic games 

8. 1. INTRODUC'rION AND SUMMARY 

In this final chapter we turn to the computational aspects of solving 

SDG's (two-person zero-sum stochastic games). Moreover, we concentrate upon 

the undiscounted version of the game. The discounted version is relatively 

easy to deal with in view of contraction mapping theory forcing itself to 

the front. In fact, the idea of solving the discounted version via succes­

sive approximations, goes back to SHAPLEY [115] thereby preceding the work 

on successive approximation methods within the restricted area of Markov 

Decision Theory. 

The undiscounted version of the problem is more difficult to solve. 

In chapter 6, we pointed out that one or both players may fail to have op­

timal policies, as follows from an example in GILLETTE [47]. Moreover, with­

in the same chapter we obtained a series of recurrency conditions with res·­

pect to the tprn's associated with the stationary policies, under which the 

existence of a stationary AEP is guaranteed. So far, very little attention 

* has been paid to the actual computation of the asymptotic average value g 

and the determination of optimal policies for both players. 

In view of the fact that the value of the discounted (and a fortiori, 

the undiscounted version of the) game does not necessarily lie within the 

same ordered field as the parameters of the problem (cL BEWLEY & KOHLBERG 

[6]) we cannot expect to find algorithms that are finite in the sense that 

they involve a finite number of field operations. 

So far, the literature has provided two algorithms (HOFFMAN & KARP 

[57] and POLLATSCHEK & AVI-ITZHAK [93]). It was shown that the first algo­

rithm converges to a stationary AEP, if the tpm of each pure stationary po­

licy pair is unichained and has no transient states. Although the second al­

gorithm seems to compare favorably with the first one, as far as net running 
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time and the required number of iterations is concerned, it is still un­

known under which conditions its convergence is guaranteed. 

Observe that successive approximation methods tend to tackle much lar­

ger problems than methods that are based on Policy Iteration or mathematical 

programming. In this chapter we provide two successive approximation methods 

for locating optimal policies for both players. (The second method has also 

been treated quite recently by VAN DER WAL [124]). In both algorithms we 

obtain in addition at each step of the iteration procedure, upper and lower 

bounds for the asymptotic average value which converge to the latter as the 

number of iteration steps tends to infinity. 

The first algorithm is an adaptation of the modified value-iteration 

method of HORDIJK and TIJMS [60], as presented in section 1.8 and as used in 

sections 4.3 and 7.3. Its convergence is guaranteed whenever condition (H) 

below is satisfied: 

(H) (a) a stationary AEP exists 

(b) the asymptotic average value g* is independent of the initial 

state of the system. 

The second algorithm is based upon the more elementary value-iteration 

method, and may succesfully be applied whenever condition (U) below holds: 

(U) the tpm of each of the pure stationary policy pairs is unichained. 

We recall that (U) => (HJ (cf. e.g. section 6.4). Corollary 7.3.2 showed us 

that under (H) the solution of the game reduces completely to the problem 

of finding a solution to a single (vector)-functional equation (cf. (7.3.13)). 

Under (U) this optimality equation has a solution v*, which is unique up 

* to a multiple of,!_ (cf. theorem 7.4.1). Thus putting vN = 0, we obtain in 

* this case, lower and upper bounds for the components of v as well. These 

bounds generalize the ones obtained under (U) in the one player case (cf. 

corollary 2.3.2). 

At each step of the procedure, both methods merely require the solu­

tion of N relatively small Linear Programs (the size of which is determined 

by the number of actions in K(i) and M(i), i En). Especially for large 

scale systems, i.e. when N >> 1, this compares favorably with the techniques 

used in [57] and [93] which require at each step of the procedure, the so­

lution of a system of at least N equations. 

One might wish to extend these methods to the general SRG-case, as 

discussed in chapter 7. In the one-player case, this extension was possible 
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due to the data-transformations (1.9.9) and (1.9.10) which turn every 

undiscounted MRP into an equivalent MDP. In the two-player case, the ana­

logue of this data-transformation, will generally fail to work. The only 

exception is provided by the case where the expected holding times Tk,l 
i 

(i E Q, k E K(i), l E M(i)) satisfy the separability assumption: 

(SEP) (8.1.1) E Q, k E K(i), l E M(i). 

This will be shown in the appendix, section 8.4. (8.1.1) holds e.g. in case 

the transition time between two successive observations of the state of the 

system, merely depends upon the current state, possibly .in combination with 

the action chosen by one of the two players. Establishing an algorithm for 

the general SRG-case remains however, an outstanding problem. 

In section 2 and 3 we present our two methods. Throughout this chapter 

we use the notation and preliminary results as given in section 7.2. Final­

ly, the results in this chapter have been distilled from FEDERGRUEN [32]. 

8. 2. A MODIFIED VALUE·· ITERATION '.I'ECHNIQUE 

Throughout this section, we assume (H) to hold, which implies in view 

* * of corollary 7.3.5 the existence of a solution pair (g ,v) to the opti··· 

rnality equation (7.3.13): 

(8. 2 .1) 

* where g denotes the asymptotic average value of the game. Define Vas the 

set of solutions to (8.2.1). Recall from (7.3.9) that V(r), as defined by 

(7. 2 .4), has for some integer L 2 1, a Puiseux series expansion of the spe-­

cial type: 

(8.2.2) V(r) 
-k/L 

r ' for all r sufficiently close to O. 

Applying the proof of th.7.3.3 to the SDG-case, we conclude that any scheme 

(8.2. 3) y(n+i), 
l 

* g 
-1 '\" k,l + (l+r) l· P., y(n). , 

n J lJ J 
i E Q, 

with y(0) a given N--vector, has lim11-+oo y(n) 

quence {r }00 

1 satisfies the conditions: 

(0) 
a provided that these-

n n= 
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(8.2.4) 

(8. 2. 5) 

(1-r ) ... ( 
n 

) ➔ 0, as n ➔ 00 

I 1/L 1/LI ( 1-r . ) r . -r . 1 J J J-
as n + 00 

where in addition a(O) is a solution to the optimality equation (8.2.1). 

LEMMA 8.2.1. Conditions (8.2.4) and (8.2.5) are satis.fied for any choice, 

r 
n 

-b 
n with 0 < b s: L 

PROOF. Note using the mean value theorem that - (n-1)b s: 1 for all 

n = 1,2, .•. and use this inequality in order to verify that: 

(1-r ) ... ( 
n 

(nb-1) ((n-l)b-1) 
--b-

(2b -1) < 2b-1 
b - b 

2 n n 

which proves (8.2.4). Next we apply the mean value theorem to verify that 

j=3 
n 

-1 \" 
bL L 

j=3 
n 

) \r~/L - 1/LI < 
J rj-1 -

<l-1) ··b/L-1 1 b n 
-))-- ( j-1 ) S: bL - n - L 

J j=2 

bL-1n--·b j xb(l-1/L)-1 dx s: 

1 
-b r, 

Jbn ln(n), if L 

l - •··b/L 
(L--1) , otherwise 

which proves (8.2.5). ~ 

(1-1/L)-1 S: 

REMARK 1. For the MDP- Le. one player - case, lemma 8.2.1 indicates a larger 

range of permitted values for b, than the one that was obtained in 160J (p. 

206, remark) using a different analysis. 

Observe that the sequence {y(n) }'" 1 cannot be computed in view of g 1' 
n:::,l 

being unknown. We circumvent this numerical difficulty as in WHITE C131], 

i.e. we define the sequences {y(n) and {G(n) }~=l by: 

(8.2,6) y(n+1) 

- G(n+l); i e 0; n = 0,1,2, .... 
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(8. 2. 7) G(n+1) [ k, f ( l +r ) -1 1 k, f - ] val qN + lJ· P. y(n).; 
n NJ J 

i E le; n 0 I 1, 2 1 •, • 

THEOREM 8.2.2. For all n = 1,2, ... let 

(8. 2 .8) L(n+l) 

U(n+l) - -1- ' 
max.{v(n+l). + G(n+1) - (l+rn) y(n)l.J 

l - l 

* * (a) Let (f ,h) be a stationary AEP and for any n = 1,2, ... let 

(b) 

(f11 ,h11 ) c <Ii x '¥ be any pair of policies which atta.in the N equ.i.Iibria 

to the right o.f (8.2.6) simultaneously. T'hen 

( 1) L(n) s G(n) s U(n) 11 = 1 , 2, •.• 

* * * (2) L(n+1) s g(f ,h ) . s g s g(f ,hn)i s U(n+1); i E S"l 
n 1 

If {rn}:=1 satisfies (8.2.4) and (8 .2 .5), then 

lim n-reo 
L(n) lim 

n-+-00 
G(n) = lim 

n-reo 
U(n) * = g 

lim y(n) 
(0) (0) 

l_, satis.fying (8. 2 .1). a <aN > n-+= 

PROOF. 

(a) (1) Note from (8.2.6) that y(n)N 0 for all n 0,1,2, ... , hence 

(2) 'rhe inner inequalities are immediate from the fact that (f* is 

a stationary AEP. We next prove the left most inequality L(n+l) s 

g(fn,1/), the proof of g(f*,hn)::; U(n+l) being analogous. Note that 

for all j E S"l: 

)y(n) J., 
J 

* and multiply both sides of this inequality by IT(f11 ,h )ij 2c O and sum 

on j E S"l. 

(b) R 11 h 1 . ( ) (0) eca t at .irnn-+= y n = a c V. Next we observe that if v E V then 

so is v + cl for all scalars c. Hence, 
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'l'his in combination with the fact that the "val"-operator is (Lipschitz) 

continuous (cf. (7.2.1)) imply: 

min, { vaHq~ ,-l Ij l'.£ (0) J (0)} * Hm .L(n) + minig n-)-00 l l lJ 

* { [ k ,.t I. P~'.f a '.O) J (0)} U(n) g max. val_q, + - l.im 
J_ l J lJ J n-),-00 

which together with part (a) (1) completes the proof 0£ (b). [l 

REMARK 2. When taking n-b for some b, with 0 < b 5 1, the approach to 

the limits in part (b) of the above theorem, exhibits a convergence rate 

which is of the order 

-b 
fO(n .fn n), if L = 1 

l -b/.L O(n ) , otherwise 

as follows from the proof of lemma 8.2.1 and theorem 7.3.3. We note that 

the bounds for g* in part (a) (2) generalize the bounds ODONI [89] and 

HASTINGS [53] obtained for the MDP-case. 

We summarize this section by specifying an algorithm which approximates 

* g, as well as a solution v EV, and which finds for any s > 0, E-optimal 

policies for both players: 

ALGORITHM 1. 

~tep 0: Fix a sequence {rn}~=l satisfying (8.2.4) and (8.2.5), e.g. take 

r = n-b, with 0 < b 5 1. Set n = 0, fix y(O) E EN and E > 0. 
11 

.::,!-el::....l_: Calculate y(n+l), L(n+1), G(n+1), and U(n+l) from y(n) using (8.2.6), 

( 8 • 2 • 7 ) and ( 8 . 2 • 8 ) . 

Etep 2_: If U (n+l) - L (n+1) < E, determine a stationary policy pair ,h ) 
n 

which attains the N equilibria to the right of (8.2.6) simultaneouslv, 

use fn (h11 ) as an E-optimal policy for player 1 (2); G(n+1) as an c­

approximation for g* and y(n+1) as an approximation for a solution 

v EV. Otherwise, increment n by one and return to step 1. 

8.3. VALUE-ITERATION; A SUFFICIENT CONDITION FOR CONVERGENCE 

In this section we discuss the asymptotic behaviour of the sequence: 



(8. 3 .1) v(n+1), 
l 

Qv(n),, 
l 

i E [2 

where the operator Q: EN-+ EN is defined by Qxi 

i E S'l, and where v(O) E EN is a given N-vector. 
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Note that the Q operator is monotonic, and satisfies the basic proper­

ties: 

(8. 3.2) Qx + for all scalars c; x E EN 

(8. 3. 3) 

where (8.3.3) is easily verified by applying the Q-operator to both sides 

of the inequalities y + (x-y)min.!. 5 x and x <:: y + (x-y) 

monotonicity as well as (8.3.2). 

using its 

Note that v(n)i may be interpreted as the value of then-stage game 

when starting in state i and given some final amount v(O), is earned by 
J 

player 1 from player 2, when ending up in state j. Whereas we still have 
v(n) * g lim 

n-too n 
(cf. BEWLEY & KOHLBERG [6], th.3.2) the difference 

* 00 {v(n) - ng }n=l does not need to be bounded, in sharp contrast to the beha-

viour in the one player - model (cf. BROWN [13], th.4.3). 

In fact, BEWLEY & KOHLBERG [BJ proved the existence of a number B > 0 

and a Puiseux series inn, 

W(n) * ng + 
f.-1 l b (k) n 

k/L 

k=~·"' 

such that llv(n) - W(n)II <Blog (n+l), n = 1,2, ... and they gave an example 

in which the distance between { v (n)} ~=l and the field of Pui.seux series is 

indeed of O(log n). 

* co LEMMA 8.3.1. {v(n)-ng }n~l is bounded under condition (H). 

PROOF. Note from corollary 7.3.5 that (H) implies the existence of a solu­

tion v EV. Next use (7.2.1) in order to conclude that: 

[v(n), - ng* 
l 

[vaHl 
l 

vaHl'l + I, Pk,{ (v+(n-l)g*)J[ 5 llv(n-1)-(n-l)g*-vll, i E S'l. D 
l J ij 

It was pointed out in section 1.5 which deals with the one -player case 

* 00 that even in case [v(n)-ng }n=l is bounded, the sequence may fail to converge 
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provided that some of the tpm's of the pure stationary policy pairs happen 

to be periodic (in section 1. 5 we recalled the necessary and sufficient 

* co condition for {v(n)-ng }n=i to converge in the MDP-case for all v(O) E 

In this section we first apply a data-transformation which turns our 

SDG into an equivalent one, and next analyze the behaviour of (8.3.1) under 

condition (U) which is a stronger version of (H) (cf. section 1). The data­

transformation is the natural analogue of ( 1. 8. 1) and ( 1. 8. 2) with o =· 1 and 

bas been employed in some of the proofs of chapter 6. 

(8. 3. 4) 

(8. 3. 5) 

k,l • qi ; i E 0, k E K(i), ~ E M(i), 

~k,£. k,l 
P,, = T (P .. 
lJ lJ 8' ') + lJ 

i,j E 0; k E K(i), f E M(i) 

where O < T < 1. 
~k,f 1 ~kl 

Verify that P. . 2: 0 and l . P. '. = l and use the arguments of 
lJ "J lJ 

.8 to conclude that the gain rate vector of each pair of policies 

sect.ion 

remains unaltered by the data-transformation. In addition, each of the tpm's 

of the stationary policy pairs in the transformed model, has a pos.i tive 

d.iagonal, which obviously implies aperiodici t.y. Let Q be the value iteration 

operator in the transformed model, and define Vas the solution set of its 

optimality equation (8.2.1). Finally let. {v(n)}~=l (0) 

LEMMA 8.3.2. 

(a) v = [v E EN[, v ~ v} 

(b) If ( ) E w x 'JI satisfy the optimality eauation (8.2.1) in the 

orig.ina.I [ transformed] model, for some v E V, E then theu will 

satisfy the optimality equation in the transformed [original model 

for T -l v [ ,:;;:l as well. 

[-. k PROOF. Consider an arbitrary two-person zero-sum game c. 
l 

i c 12. Then for any constant a and positive number b: 

(8. 3 .6) (i) + a 

[ k,l] [ k,l] (Hi) val be. = b val c. 
1. l 

for some 

with the set. of eauillbrium oai.rs of action remaining unaltered, both by 

the translation, and by the (positive) scalar multipl:Lcat.ion. Use (8 .. 6) 

while rewriting (8.2.1) as 
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0 [ k,l * Ij (P~'.l 0, , ) V.], nor val q, - ~T + - i E 
]_ lJ l] J 

0 [ k,l * Ij ( k,l ) (1 ) J' 0 val qi - g + 1 P .. j_ E n. 
lJ 

Next, as in section 2.3, we restrict the analysis of the Q-operator on the 

N-1-dimensional subspace it = {x E ENj xN = O}, considering the following 

reduction Q of the Q-operator: 

-N -N 
Q: E + E: X ➔ Qx - <QxN>.!_. 

Accordingly define ;(n). = v(n). - v(n)N, i E: !:l (Note the similarity with 
l J. 

the reduction in WHITE [131] and of {y(n)}:=i to {y(n)}:=l i~ (8.2.6)). 

Now, under (U), v EV, and hence in view of lemma 8.3.2 v EV are unique 

up to a multiple of 1,_; i.e. on EN there exists a unique solution v E: V, 

which we will denote by v*. Likewise, let v* ,-1v* be the unique member 

of Vin EN. In section 1.8 we introduced the concept of a Lvaounov function, 

and pointed out how th.10.4. in ZANGWILL [133] can be used in order to study 

the asymptotic behaviour of iterative schemes of the type v(n+1) = Qv(n); n2>0. 
--N 

We next observe that both A1 (x) and A2 (x) are Lyapunov-functions on E 
~* with v as origin, where (cf. (1.8.17) and (1.8.18)): 

(8. 3. 7) 

A2 (x) = sp[Qx-x] sp[Qx-x] 

by verifying that both fork= 1,2 (cf. (1.8.16), (al and (b)): 

(8. 3 .8) (i) 

(ii) 

(x) is continuous on EN 

~* 
V • 

The verification fork= 1 is immediate. The non-negativity of (x) is 

immediate as well, its continuity follows from the continuity of the value 

operator (cf. (7.2.1)) and finally sp[Qx-x] = 0 - there exists a scalar g, 

such that Qx-x = <g>l_ - x EV n EN - x = v*. Note finally that A2(x) has 

the advantage of being computable at each point x in EN 

We next recall that in the transformed model, and as a consequence of 

assumption (U) the tpm's of all stationa.ry policy pairs are unichai.ned, a.nd 

in addition have all diagonal entries strictly positive. In th.2.2.4, part 

(4) we proved that thi.s implies the following "scrambling-type" condition 
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for all pairs of N-tuples of pure policy pairs { (f 1 ,h 1 ) ; ... ; (fN,hN)} and 

{ (f1,hiJ; ... ; (f~,h~)}: 

(8. 3 .9) min[P(f ,h ). .. P(f1 ,h1 ) .. ;P(f',h') .... P(f;,hi), .J 
N N . ll.] N N • i 2 J 

> 0 

for all i 1 

Observe that for all i 1 ,i2 E ~ the expression to the left of the above in­

equality is a continuous function on [x_~=l <!> x '1'] 2 which can be embedded 

as a compact subset of a Euclidean space. Hence there exists a uniform 

scrambl.ing coefficient a > 0, such that 

N 

(8. 3 .10) I min[~(f ,h ) ... ~(f1 ,h1 ) .. ;~(f',h') ... ~(f11 ,h11 ) .. J > a 
j~l N N i 1J N N i 2 J 

for all i 1 f i 2 ; (f,t,h,el and (fl,hk) E <!> x '¥ (.l = 1, .•. ,N). 

This enables us to prove the convergence of {v(n) }~=l under (U). Let 

.l(n+l) [Q v(n) - v (nl J 
min 

[Q ;(n)-';;(n) J • f 

nun 
and 

u (n+l) .• [Q v(n) v(n)] [Q ;(n) -;(n)] for all n 0, 1, ... 
max max 

.Finally define g (n+1) = [Q v (n) J N. 

•.ro prove convergence of {v(n) }~=l we merely have to show that either 

one of the functions 1\ 1 (x) or A2 (x) satisfy (cf. ( 1. 8. 16)): 

(8. 3. 11) 1, 2, 

(ii) for some integer cT ? 1, /\k (c/x) < /\k (x) for al1 x with 

/\k(x) > O; k = 1,2. 

THEOREM 8.3.3. Suppose that (U) holds. 

(a) both 1\ 1 (x) and 1\ 2 (x) satisfy (8.3.11) with J 

=;*for all v(0) E EN. 

N; hence 1im v(n) 
n-+oo 

(b) .l(n)-:; f.(n+l) 5 g(n+l) 5 u(n+l) 5 u(n) for all n = 1,2, .... 

lim11➔°" .l(n) lim g(n) = lim u(n) = g*. 
n➔co . n-•)-CO 

(c) Let (f*·,h*) E <Ji x '¥ be an AEP, and for al.I n = 1,2, ... , let 

(fn ,h11 ) E <!> x '¥ be any pair of policies r11hich attain the N equ.il.ibr.ia 

to the right of 

v(n+l) = Q v(n); n? .0 

s.imultaneously, Then l(n+l) 5g(f11 ,h*) sg* 5g(f*,h11 ) :Su(n+l). 



PROOF. 

(al We merely show that A1 (x) satisfies (8.3.11), the proof for A2 (x) 

being analogous. Use (8.3.3) to verify that A1 (Qx) = sp[Qx···v*J = 
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~ ~~·* ~* = sp[Qx-Qv J s sp[x-v] = A1 (x). Next we obtain part (ii) of condition 

(8.3.11) by showing that for all x E EN 

(8. 3 .12) 

where the proof of (8.3.12) goes along lines with the proof of theo­

rem 2.2.5, using (8.3.10). 

(b) The proof of f(n+l) s g(n+l) s u(n+l) is analogous to the proof of 

part (a) (1) in theorem 8.2.2. Next note that f(n+l) 

= [Q(Qv(n-1)) ···Qv(n-1)] . ::': [Qv(n-1) -v(n-1)] . 
min - min 

[Qv{n) -v(n)] . = 
min 

= l (n), where the 

inequality part follows from (8.3.3). The monotonicity of {u(n)}~=l .is 

shown in complete analogy. 

(c) cf. the proof of theorem 8.2.2 part (a) (2). D 

Observe that (8.3.12) is stronger than condit.ion (8.3.11) part (ii), 

since the latter does not require the existence of some integer J ::': 1, for 

which 

In fact (8.3.12) shows that the approach to all of the limits in parts (a) 

and (b) of the above theorem exhibit a geometric rate of convercJence, which 

is considerably better than the rates we obtained in section 2, for algo­

rithm 1 (cf. Remark 2). In this particular case, it is even possible to 

show (along lines with the proof of theorem 2.2.5) that Q is a N··-step con-
-N ~N ~N N 

traction mappinq on E , i.e. sp[Q x - Q y] s (1-a) sp[x-y] for all x,y E E 

and the latter leads to the following bounds on v*: 

(8. 3 .13) -1 N ~ ~ 
v(nN+r). - a (1-a) sp[v(n)-v(0)] 

l 

-1 * :::; T V. ::; 
i 

- -1 N ~ ~ 
v(nN+r). +a (1-a) sp[v(n)-v(0)]; i E S"t;n•~l,2, ... ;r=0, ... ,N-1. 

i 

(for a proof cf. theorem 2. 3 .1). 

Finally we conclude this section by specifying as in section 2 an 

algorithm which approximates g* as well as some v EV, and for any E > 0, 

s-optimal policies for both players: 
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ALGORITHM 2. 

0 0 1 f h . h ( k,l k,l) . step : Fix < T < and trans orm t e SDG wit q, ;P,. into an 
l l i iJ 

alent SDG with (q~' ;~J'. ) using the transformation formulae 
i N 

and (8.3.5). Set n = O; fix v(O) EE and E > 0 

equiv­

(8.3.4) 

step 1 and step 2: as in algorithm 1, merely replacing y(n), L(n), G(n), 

U(n) by v(n), l(n), g(n) and u(n); n 1, 2, ... 

Note that in this case (8.3.13) may be used as a stopping criterion for 

* getting E-approximations for v. 

8.4. APPENDIX: ON REDUCING UNDISCOUNTED SRGs TO EQUIVALENT UNDISCOUNTED SDGs 

In section 1.9 we pointed out that successive approximation methods 

for Markov Renewal Programs could be obtained by transforming the MRP-model 

into an equivalent undiscounted MDP-model. When trying to obtain a similar 

reduction for the SRG-case, thereby establishing an algorithm to solve the 

undiscounted version of this game, it is tempting to consider the natural 

extension of the data-transformation (1.9.9) and (1.9.10): 

(8.4.1) 

with 

(8.4.2) 

~kl 
q,' 

1 
i E Q; k E K(i), l E M(i) 

1; i E Q; k E K(i); l E M(i). 

~k,l > , ~k,l _ 1 Note that as a consequence of (8.4.2) P .. - 0 and l· P .. - for all 
1] J 1] 

i,j E Q, k E K(i), l E M(i) such that it is possible to define a (related) 

discrete-time SDG which has {q~'l} as its one-step expected rewards and 

{P~'.l} as its set of one-step ~ransition probabilities. 
1] 

We recall from (7.3.13) that under (H), the solution of our SRG-model 

reduces to the problem of finding a vector v E EN that satisfies the func­

tional equation (cf. also (8.2.1) and corollary 7.3.5): 

(8.4.3) V, 
1 

k l * val[q,' - g 
1 

Lemma 8.4.1 below shows that the above proposed reduction method works, in 
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case the holding times T~,l satisfy the separability assumption (SEP) in 
]. 

(8.1.1). Let V denote the set of solutions to (8.4.3) and let V be the set 

of solutions to the optimality equation in the transformed SDG. Likewise, 

all other quantities of interest in the transformed model will be marked 

off by a (~)-symbol. 

LEMMA 8.4.1. Suppose (H) and (SEP) in (8.1.1) hold. For each pair of policies 

f E ~ and h E f define f, f E ~ and h, h E f by: 

(8.4.4) fik fika1/IrEK(i) f, r 
i € Q' k E K(i) Ct • ; 

ir i 

fik 
k -1 l 

fik (ai) / rEK(i) 
r -1 

fir(ai) ; i E Q, k E K(i) 

hil hil sf;IrEM(i) h, S~; ir i 
i E Q, l E M(i) 

l -1 l r -1 
Q, l E M(i). hil hil(Si) / rEM(i) hir((3i) ; i E 

Then, 

(a) g(f,h) g(f,h) and g(f,h) g(f,h) 

i.e. if (f,h) is an AEP in the original [transformed] model, then 

(f,h) [(f,h)] is an AEP in the transformed [original] model. In other words, 

there exists a computationally tractible one- to one correspondence between 

the sets of stationary AEPs in the two models. 

~ NI (b) V = {v EE TV Ev}. 

PROOF. We first consider an arbitrary matrix game [c~'l] for some i E Q, 

"transformed" version [c~'l/T~'l]. Assuming that in relationship with its 
l l 

val[c~'l] = 0, we prove the following 
]. 

two properties 

(8.4.5) [ k,l/ k,l] val c. T, = 0. 
]. ]. 

(8.4.6) If x* E K(i) is an optimal action in the original {transformed} 
~ * k, * r - * k -1 matrix game, then x = [xk a.IL x ai]kEK(i) {and x = [xk(ai) / 

* r -1 i r r 
llr x (a.) ]k (')} is an optimal action in the transformed r l EK l 

{original} model. 

A similar one to one correspondence exists between the sets of optimal 

actions for player 2. 
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Part (b) then follows by rewriting (8.4.3) in a homogeneous way, i.e. 

l[ k,L * k,L 
0 = va _qi - g Ti + I. T(P~'.£.-6 .. ) (T- 1v).J, i E rt, invoking (8.4.5). 

J lJ lJ J 
The proof of part (a) follows from (8.4.6) and the observation that in the 

system 

(8.4. 7) 0 tP(f,h)-I]g 

0 '.q(f,h). - g.T(f,h). + [P(f,h)··I]v.}, i E rt 
l l l l 

the g-part is uniquely determined as g(f,h). 
·J: * 

This leaves us with the proof of (8.4.5) and (8.4.6). Let (x ,y ) be 

a pair of equilibrium actions in the original matrix game. Then, for all 

y E M(i): 

. k,l 
(LrYr rh ,f_ 

C, 

* k £. r Y.e_f\ l (8.4.8) Ik I.e.~ l J. Ik I.e. 1z-I Y.e_ xk c., 2 0 
I * r l -I Y s: J etiBi ( X Cl.) 

r r J. r r i 

* where the inequality follows from x being optimal in the original game. 

Likewise, with y = * Sill s:] 0 (') we obtain 
l r J. -<.EM l 

(8.4.9) for all x E K(i) 

such that (8.4.5) and (8.4.6) follow from the combination of (8.4.8) and 

(8.4.9). □ 

* We conclude that g, v EV ands-optimal policies for both players can be 

computed by applying algorithm 1 under (H), or algorithm (2) under (U) to 

the transformed SDG, and by exploiting the one to one correspondences ex­

hibited by lemma 8.4.1. Note in add.ition, that by choosing T strictly less 

than the upperbound in (8.4.2) the transformation in step O of algorithin 2 

becomes superfluous. 

'l'he above described reduction fails, if the expected holding times fail to 

satisfy (SEP). 'l'his is due to (8.4.5) and (8.4.6) breaking down in general, 

examples of which can easily be constructed. As a consequence, establishing 

an algorithm for the oeneral SRG-case remains an out.st.andino problem. 
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