MATHEMATICAL CENTRE TRACTS 97

MARKOVIAN CONTROL
PROBLEMS

FUNCTIONAL EQUATIONS AND ALGORITHMS

A. FEDERGRUEN

MATHEMATISCH CENTRUM AMSTERDAM 1983



1980 Mathematics subject classification: 90C40, 90DI5, 93E05, 90C45, 90C47

ISBN 90 6196 165 3

Copyright © 1983, Mathematisch Centrum, Amsterdam



PREFACE

This volume is a reprint of the doctoral dissertation of A. Federgruen.

In 1978, at the time of its original publication, Dr. Federgruen was a
member of the Department of Operations Research of the Mathematical Centre,
He is currently at the Graduate School of Business, Columbia University,

New York.

Thanks are due to all those at the Centre for Mathematics and Computer

Science who have contributed to this publication.






CONTENTS

INTRODUCTION

Part 1. Markov Decision Theony

1. VALUE-ITERATION IN FINITE MARKOV PROBLEMS

1.1. Introduction

1.2. Discounted case: asymptotic behaviour of v(n)

1.3. Discounted case: asymptotic behaviour of S(n) and the
existence of initially stationary e-optimal strategies

1.4. Undiscounted case: notation and preliminaries

1.5. Undiscounted case: asymptotic behaviour of v(n)

1.6. The rate of convergence of undiscounted value-iteration

1.7. Undiscounted case: asymptotic behaviour of S(n) and the
existence of initially stationary or periodic e-optimal
strategies

1.8. Undiscounted case:; algorithms and some data-transformations

1.9. Markov Renewal Programs

2. CONTRACTION MAPPINGS UNDERLYING UNDISCOUNTED MARKOV DECISION
PROBLEMS
2.1. Introduction and summary
2.2. Necessary and sufficient conditions for 5 to be a (J-step)
contraction mapping, and some of its implications
2.3. On transforming unichained Markov Renewal Programs into

equivalent and contracting Markov Decision Problems

3. NONSTATIONARY MARKOV DECISION PROBLEMS WITH CONVERGING
PARAMETERS
3.1. Introduction and summary
3.2. The discounted model
3.3. On non-stationary Markov chains with converging transition
matrices

3.4. The undiscounted model

15
20
24
31

36

42

47

47
50

58

65

65

71

72

76



4, SUCCESSIVE APPROXIMATION METHODS FOR SOLVING NESTED FUNCTIONAL
EQUATIONS IN MARKOV DECISION THEORY

4.1. Introduction and summary

4.2. Notation and preliminaries

4.3. Single equation value-iteration; a review

4.4. Solving two coupled functional equations

4.5. The n+l nested functional equations

5. THE OPTIMALITY EQUATION IN AVERAGE COST DENUMERABLE STATE
SEMI-MARKOV DECISION PROBLEMS, RECURRENCE CONDITIONS AND
ALGORITHMS

5.1. Introduction

5.2. Recurrence conditions and equivalences

5.3. The average costs optimality equation

5.4. The value-iteration method

5.5. The policy~iteration method

Part 11. Stochastic games

6. ON N-~-PERSON STOCHASTIC GAMES

6.1. Introduction

6.2. Preliminaries and notation

6.3. Existence of stationary a-DEP's

6.4. The existence of average return equilibrium policies (AEP's)
6.5. Stochastic games with a finite state and action space

6.6. N-person games with perfect information

7. ON THE FUNCTIONAL EQUATIONS IN UNDISCOUNTED AND SENSITIVE
DISCOUNTED STOCHASTIC GAMES

7.1. Introduction and summary

7.2, Notation and preliminaries

7.3. The average return criterion, a pair of functional
equations

7.4. Some properties of the solution space of the optimality
equations

7.5. Sensitive discount and cumulative average optimality

85

111
113
121
126
127

139
139
140
144
147
152
158

161

161

163

167

177

180



Vit

8. SUCCESSIVE APPROXIMATION METHODS IN TWO-PERSON ZERO-SUM 187
STOCHASTIC GAMES

8.1. Introduction and summary 187
8.2. A modified value-iteration technique 189
8.3. Value-iteration; a sufficient condition for convergence 192

8.4. Appendix: on reducing undiscounted SRGs to equivalent

undiscounted SDGs 198

REFERENCES 203






INTRODUCTION

Most of the charms and challenges of life seem to find their origin
in our desires to steer the partially controllable and foreseeable
evolution of the systems we feel concerned with.

These systems may be thought of as being in a state which changes
through time by adopting one of a generally large set of potential values.
It is the uncertainty of the future evolution of the state of the world
that tickles our phantasies, our incentives for taking risks, and our
desires to predict the future.

Dynamism is the second important aspect that makes these systems
variegated enough to fascinate our attention. Finally the (partial)
controllability of the future creates complex optimization problems that
keep challenging our intellectual capacities.

In the process of modelling these dynamic systems a major breakthrough
was originated by the Russian mathematician Andrei Andreivich Markov
(1856~1922). Previously uncertainty had been treated as a sequence of
independent trials which provides on adequate description only for simple
situations like parlor games as roulette or black jack.

As a major extension Markov incorporated the possibility of the
current state of the system, to depend in a probabilistic sense upon its
previous value., It is remarkable that this Markov property fits most of the
discrete~time systems we encounter (albeit after a possible respecification
of the information to be embodied into the state concept).

What is now called the Markovian model of dependence, has incited a
tremendous development in probability theory and the theory of stochastic
processes with several areas (Markov chains, Markov processes) bearing
the name of their founding father.

Within the field of optimization theory or Operations Research it has
inspired Richard Bellman, Ronald Howard and Lloyd Shapley in the fifties
and early sixties to create the area of Markov Decision Theory.

Here we generally assume that a decision maker derives rewards and
costs out of a given system, which he can control by choosing, in
dependence on the observed state an alternative out of a set of feasible
options.

His choice influences both the expectation of his current reward, and
the evolution of the state of the system in the future. As a consequence

his objective is to determine a complete strategy for his entire planning



period, i.e. a sequence of rules to be applied in each of the decision
epochs. The above described framework has proven to be extremely useful
when analyzing a wide range of problems, like determining policies for the
control of inventory and production systems, the operation of water or raw
material resevoirs, the regulation of traffic and telecommunication systems
as arising e.g. in computer networks; as well as the determination of opti-
mal harvesting policies.

Quite frequently the control over a particular system is in the hands
of several parties which tend to have conflicting interests. As Luce and
Raiffa, in their book, "Games and Decisions", Wiley & Sons (1957) have put
it: "In all of man's written record there has been preoccupation with con-
flict of interest; possibly only the topics of God, love and inner struggle
have received comparable attention". And obviously, even inner struggle
could or should be modelled as a game between several centers of the human
mind, thereby abandoning its representation as a monolithic entity, and no
games seem to be more fascinating than those originating from love, the
players' interests only partially and occasionally concurring. Finally,
even theological discussions center around the question whether and if so,
in what way and to what extent a divine Ruler sets bourdaries to our free-
dom of controlling the world and points out strategies to act upon.

The extension of Markov Decision Theory to the case where several
players control the system simultaneously has led to the area of stochastic
games. Part II (chapters 6, 7 and 8) is devoted to the latter.

Solving these Markovian control problems generally amounts to deriving
(a system of) functional (or optimality) equations. Next, one analyzes the
properties of the solution space of these equations, and develops algorithms
for finding a particular solution.

In some cases, like in finite Markov Decision Problems (cf. chapter 1)
exact and finite algorithms can be obtained, based upon techniques like
Policy Iteration of Linear Programming. However, for large systems, these
exact methods become infeasible, because at each step of the algorithm,
they tend to require the solution of a large set of equations. We therefore
try to concentrate upon successive approximation methods which in general
can tackle much larger problems, and in some models are the only alterna-

tive available.
In chapter 1, we review various successive approximation methods for

Markov Decision Problems (MDP's) with finite state and action spaces. We

deal both with the discounted version (where the present value of a stream



of rewards is the criterion to be considered) and with the undiscounted
problem (where the long-run average return per unit time is to be optimized} .
Both the convergence conditions of these methods and their rates of conver-
gence are analyzed. In addition we dwell on the computation of upper and
lower bounds on various quantities of interest, elimination schemes for
non-optimal actions and data-transformations to ensure or accelerate the
convergence of our algorithms. As a second topic we present a number of
turnpike properties, which show the relation between the finite-horizon and

infinite~horizon models.
From a mathematical point of view, most of the problems considered in

chapter 1 center around the properties of the so-called value-iteration
operator which turns the total expected reward function for a planning
period of n epochs into the corresponding function for a planning period
of n + 1 epochs. Whereas this operator is a contraction mapping in the dis=-
counted model, it fails to satisfy this property in the undiscounted ver-
sion. However in some cases a reduction to a contraction operator can be
achieved. In chapter 2, we derive both necessary and sufficient conditions
for this reducibility. This "reduced contraction-property" has important
consequences for the (geometric) convergence rate of the value-iteration
method, which is the most minutely discussed algorithm in chapter 1. More-
over it can be exploited to obtain lower and upper bounds, variational
characterizations for the fixed points of the optimality equations, as well

as tests for eliminating suboptimal actions.
Chapter 3 is devoted to the case where the parameters of the MDP-model

can only be obtained via approximating schemes, or where it is computatio-
nally preferable to approximate the parameters rather than employing exact
algorithms for their computation. This situation occurs e.g. when the one-
step rewards appear as the optimal values of underlying optimization prob-
lems or when one faces the combined problem of simultaneously having to
determine the design of a particular system, as well as a policy for its
day~to-day operation.

Finally a third example occurs when trying to solve nested sequences
of (piecewise linear) functional equations, where each functional equation
has the structure of the optimality equation in undiscounted MDP's or

Markov Renewal Programs (cf. section 1.9).

Nested sequences of functional equations of the above described type,
occur e.g. when considering next to the average return per unit time cri-

terion, a set of more selective criteria. It is the objective of chapter 4,



to derive a successive approximation method for solving these systems of
functional equations.

We next consider the case where the state space of our problem is de-
numerable instead of finite. Here optimal policies, as well as a solution
to the average return optimality equation may fail to exist. In chapter 5,
we present a number of recurrency conditions on the underlying laws of
motion, under which the optimality equation has a bounded solution. Such a
solution yields, in fact, a policy which is optimal for a strong version of
the average return optimality criterion. Besides the existence of a bounded
splution to this equation, we will show that both the value-iteration and
the policy-iteration method can be used to determine such a solution.

Chapter 6 in Part II of this book is devoted to the stochastic games-—
model where a finite number (say N) players control the system simultane-
ously. Here the objective is to find an equilibrium tuple of rules, i.e. an
N-tuple of policies with the property that no player is able to better him-
self while the other players tie themselves down to their respective poli-
cies. The state space is again taken to be denumerable, and we consider
both the discounted and the undiscounted version of the game.

Finally, the last two chapters deal with the finite two-person model
where we have a closed system, i.e. everything player 1 wins must be lost
by player 2, and vice versa. We consider once again, the average return
and a number of more selective equilibrium criteria. In chapter 7 we dis-
cuss the functional equations that arise in this model, and in chapter 8
we obtain two successive approximation methods for solving the undiscounted
model.

We assume the reader of this book to be familiar with the basic prin-
ciples of mathematical optimization, linear algebra, calculus and Markov
Chain theory. Some elementary knowledge of game theory could help the undexr-
standing of part II.

Concerning the numbering of formal statements, theorem 7.2.3 is the
third theorem of section 7.2 in chapter 7. Equations, lemmas, propositions,
corollaries and definitions are numbered in the same way. The symbol [] sig-

nifies the end of a proof.
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CHAPTER 1

Value iteration in

finite Markov Decision Problems

1.1. INTRODUCTION

We first describe the frequently studied model of Markov Decision
Problems (MDPs) (cf. e.g. [5],[63]). A system is observed at equally spaced
epochs numbered 0,1,2,... . At each epoch the system is observed to occupy
one of N states, which are numbered ! through N. Let © = {1,...,N} denote
the state space of the problem. Each state i has associated with it a finite
non-empty decision set K(i). Whenever state i is observed, some decision
k € K(i) must be chosen, after which a one-step expected reward q? is earned
immediately, whereas the probability that state j is to be observed at the
next epoch, is given by Ptj (P];j > 0; Z?=1 sz =1; i, j € 2, k € K(1)).

This introductory chapter surveys both older and recent results on
the asymptotic behaviour of the value-iteration scheme

(1.1.1) v(n+1)i = k + B ZN pk, v(n)j], 1 <i<N;n=0,1,...

maxkeK(i)[qi J=1 "1ij
with 0 < B £ 1 and where the starting point v(0) (scrap value vector) is
arbitrary and v(n)i denotes the maximum possible expected n-period reward
starting from state i (cf. DERMAN [251]).
Parts of this chapter have been distilled from survey papers by
FEDERGRUEN & SCHWEITZER [34] and FEDERGRUEN, SCHWEITZER & TIJMS [44].
Asymptotic results are of interest because they show the relation be-
tween the finite-horizon and infinite-horizon models whereuse of the latter
case is justified if the planning horizon is large, although possibly not
(exactly) known. Two types of asymptotic results are presented. One type
involves the asymptotic behaviour of>the value function, i.e.
(1) v(n) if the discount factor. B satisfies 0 < B < 1, or
(2) v(n) - ng* where g* is the maximal gain rate vector in the undiscounted

case where B = 1.



The other type of asymptotic result concerns the behaviour of the sequence

of the sets of optimizing policies S(n), where

(1.1.2) s = X|_ Kn,4); 0 =1,2,3,...

with

PY. vine1).}; i=1,...,N
1] J

K(n,i) = {k ¢ K(1) | v(n), =q; +8
1

3

-
1| D12

as well as the existence of so-called initially stationary or periodic op-
timal or e-optimal strategies (see below).

N .
The following notation will be employed. We let S = Xi=1 K(i) denote

the finite set of policies. We use the notation £ = (£(1),...,£f(N)) where

f(i) € K(i) denotes the alternative used in state i, i ¢ Q.

£) £

A strategy T = (...,f PR ) is an infinite sequence of policies

where applying strategy 7 means using policy f<£) when there are £ periods
to go.
A strategy is said to be stationary if it uses the same policy at each

@ f for all £ = 1,2,... . Note that each policy speci-

f(ﬂ) f(1)

period, i.e. if f

fies a stationary strategy. Likewise, a strategy m = (..., ) is

goo g

called initially stationary if there exists an integer n, > 1 and a policy
)

= f for all £ > n,-

Finally, a strategy is optimal (or e-optimal for some & > 0) if for each

£ such that £

n=1,2,... the total expected reward when there are n-periods to go equals
(comes within € of) the maximal vector v(n), for every possible starting

state 1 € Q.

'
Observe that a strategy m = (.,.,f(>,...,f(1)) is optimal if and only
if f(g) e s() for alt £ = 1,2,... . For each € > 0, and n = 1,2,... we de-

define S(n,e):

i

S(nye) = {f ¢ s lqi(

f?i)v(n—l), >vyn),~¢e, i =1,...,N}
J J i

)
+B Ej P,

Associated with each policy £ = (£(1),£f(2),...,£(N)) € S are the reward
f(l)] and transition probability matrix (tpm) P(f) = [Pi;l)].

Thus (1.1.1) and (1.1.2) may be rewritten as:

vector q(f) = [g

n+1
v

(1.1.3) v(n+l) = Qu(n) = Q (0), n=20,1,2,3,...

N L
where the operator Q: E - EN is defined by:



k
i =1,...,N.
i3 Xj], 1 v N

(1.1.4)  ox, = maxkEK(i)[q}i( +8 Z;Ll p
Separate treatment will be given for the discounted and undiscounted cases.
In both models, the geometric rate of convergence of the value function
(i.e. of v(n) or of v(n) - ng*) plays a central role.

In section 2 and 3 we deal with the discounted case. In section 4, we
first give the notation and preliminary results that will be needed in the
following chapters.

In section 5, a historical review will be given of the study of con-
vergence conditions for undiscounted value-iteration. In section 6, we
discuss the rate of convergence for this undiscounted model.

The behaviour of the sequence of sets of optimizing policies S(n) is
discussed in section 7, whereas section 8 presents some algorithms and data-
transformations that may be applied in the undiscounted case. Section 9

finally gives an introduction to Markov Renewal Programs (MRPs).
1.2. DISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF v (n)

The discounted case possesses an elegant treatment because the Q-oper-
ator defined by (1.1.4) is a contraction operator with contraction modulus

less than or equal to B < 1 when we use the norm lxl = max lxi[

A

(1.2.1)  lox-gyl < glx-yl, all x,y ¢ E.

The classical theory of contraction operators summarized for example in
DENARDO [20], may be brought to bear, with the following immediate results:
First let Qn denote the n-fold application of the Q-operator, i.e.

n -1
O x = Q(Qn x) for n 2 1 with Qox = XK.
*

(1.2.2) O has a unique fixed point v* = Qv

(1.2.3) for any starting point x, an converges geometrically to the

fixed point:
(1.2.4) IoPx=v™l < g®lx-vl; n=1,2,3,...

(1.2.5) an upperbound on the distance between an and v can be computed

after just one iteration of Q via

(1.2.6) Ho"x—v I < g™Mox-xl/(1-B); =n = 1,2,...
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which is fairly sharp provided B is not too close to unity.
Additional properties follow from the fact that Q is a monotone oper-
ator (x 2 y implies Qx 2 Qy). E.g.

(1.2.7) v: = max v (f) 1 <i <N

fes i’
where v (f) is the total expected discounted return vector associated with
policy f:

(1.2.8)  v(e) =) 8" e q) = [1 - 8 p(£) 1 q(e).

n=0

Observe that both v* and v(f), £ € S, are independent of the scrap value

vector v(0) e EN,

As a consequence the unique fixed point of the Q-operator coincides

with the maximal total discounted return vector. Moreover,
% * * *
(1.2.9) x > v (x<v7) implies Q x¥v (0 xtv )

Some of these results have been modified by using instead of (1.2.1):

(1.2.10) B(x—y)min < (_Qx--Qy)min < (Qx-—Qy)max < B(x—y)max

where x . = min, x, and x = max, X,.
min i i max i 7

Thus (1.2.6) is replaced by

N
LEMMA 1.2.,1, For all n 2 1; x ¢ E and i ¢ Q:

(Qx~x)_, B(Qx-x) . Bn( X-X)_ .
(1.2.11)  x, + —0 <oy 4 — 0 o g% 4 £ 9% min
1 (1-B) i (1-8) i (1-B)
< v(f(n)), < vf <
i i
n (Qx-x) (Qx-x) (Ox~-x%)
< o'k, + 8 T << ox+ BT maxX e max
i -p (1-B) i 1= (1-p) i (1-8)
where f(n) € S(n), with v(0) = x and v(f(n)) is the associated total return

vector.

PROOF. Note by a repeated application of (1.2.10) that

n+1

1-8

n+1 n n Bn
0 Xy -Q x, > B [Qx—x]min =-T:§~[Qx—x]min—

[Qx~x]mi

n
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n+1 n

! B [ox-x] . = o'k, + e
min 1

n+
+
and hence Q xi s -8
n >0 and i1 ¢ @, which proves that the sequence of lower bounds

gm o
(1-8) Cox X]min}m=1
In a similar way one verifies that the sequence of upper bounds

gm o
(1-8) Lox X]max}mzl
The inequality v, 2 v(f(n))i is immediate from (1.2.7) which leaves

[Qx-x]min, for all

m : . .
{0 X + is monotonically non-decreasing towards v, .

m : . . . *
{0 X, + is monotonically non-increasing towards V.

with the proof of

n
Ny

v(f(n y n >
i

10
b

5 + FB) 1 and i € Q.

[QX_XJmin <

(n)

+ B P(f )x and note as a special case

v(f(n))

Let H: EN » BN: x » q(£™)

&y -

of

(1.2.4) that 1lim for all y € EN. Then
m-ree

. -1
[V(f(n)) - an]min = I:llmnﬁoo H Qn X - an]min =

n-1

HQ

H£+1 Qn—1x_ £ ]

: -1 n o m-1
llmm+wan§P X 0 X]min—'llmm+w[zﬂ=1(

£

s Zz=1[H an_ ya Bil+n~1

n-1 L _
HO X]m:'LnZ Z@=1 [QXUXJmin B

n -1
B (1-B) [Qx—x]min,

(n)

n-1

where the third equality follows from HQ X = an in view of f € S(n) and

where the last inequality follows from a repeated application of (1.2.10). O

Note that the bounds in (1.2.11) are invariant to adding a constant ¢ to

each component of x. In addition we recall that the bounds in (1.2.11) were

originally derived for n = 1 by PORTEUS [94] who sharpened MacQueen's ([811)

original bounds (cf. (1.2.11) with n = 1):

Dy < <
I

x, + (1-8) Ylox-x) . < v(f
1 min 1

x, + (1-8) " (Qx-x)
1 max

on the bounds as well as on the rate of conver=-

transformations ([95]1, [107]1, {381, [t08]) or

Additional improvements

gence can be based upon data

Gauss—Seidel variants of the
polation and over-relaxation
removal of self transitions.

interpretation of v(n).

In terms of the original value-iteration scheme v(n) =

o=

iterative scheme ([52], [73], [107]), extra-
techniques ([96], [103], [125]) as well as by

These transformations obviously destroy the

n
O x where

v(0), the above results have been useful in at least four ways:
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(a) wv(n) is shown to approach v* geometrically fast

(b) the n =0 or 1 versions of (1.2.6) or (1.2.11) get computable bounds
on the error between the fixed point v* and the current best guess
(x or Qx)

(¢) eliminations via the bounds of alternatives which are not optimal for
the ©-horizon problem, cf. MACQUEEN [81], HASTINGS and MELLO [55] and
GRINOLD [50]

(d) prior estimation of how many additional iterations n(x) are required
given that the current estimate of V* is %, until the new estimate an

lies within € of v* or until a policy f(n) € S(n) found at the end of

(n)

these n iterations has a return vector v(f )} which lies within e of

v". Bounds on n(x) are obtained by setting (cf. (1.2.6))

87 ox-xl <

2. IoPx-~v™Il <
(1.2.12) Q x-v o8

or cf. FINKBEINER and RUNGALDIER [45]:

n
(1.2.13) 0 < v* - v(£™) sﬁ%-’f’g-l-x"-_g_m}‘
with the result that at most
p [(1 or 2)||Qx—x||-}
D e e R e st e
(1.2.14) 0G0 < |~ 1K [1n(B) |

additional iterations are required., This has the property n(Qx) <n(x)-1,
so that the number of remaining iterations to get accuracy € decreases
by at least unity with each iteration; hence the termination criterion
will be met after a finite number of steps.

Unfortunately n(x) can be large if B is close to unity or if the ini-
tial guess x is far from v*. An encouraging feature is that n(x) varies
only logarithmically with € so that it is practical to achieve high
precisions as long as 8 is not too close to unity.

We finally note that using (1.2.11) the upperbound for n(x) in (1.2.14)
may be replaced by:

(1.2.15) n(x) < ln{%@—:—é—;{—]—] / |in(8) |

where

(1.2.16) splx] = x _~-x
max ~min

denotes the span of x (cf, BATHER [3]).
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1.3. DISCOUNTED CASE; ASYMPTOTIC BEHAVIOUR OF S(n) AND THE EXISTENCE OF
INITIALLY STATIONARY e-OPTIMAL STRATEGIES

The main question of interest is the relation of the sets S(n) to the

set S* of policies which are optimal for the infinite horizon problem.
(1.3.1) s  ={fes | v =q(f) +BRP(E) v }.

Note that by (1.2.2) S* is uniquely determined and has a Cartesian product
structure.

It follows directly from (1.2.13) and (1.2.14) that for each starting
point x = v(0), we find S(n) < S*, for sufficiently large n, say n 2 nl(x).

As a choice of nl(x) one may evaluate (1.2.14) with

min{v:—v(f)i | fesand 1 £ i <N such that
*
(1.3.2) e>¢_ = vi> v(f).} if 5 %8
0 i i "

) , 1E S =S,
Thus value-iteration eventually settles upon optimal policies. Unfortunately
this result can not be used in general while performing calculations because
the lack of prior knowledge about v* - and the resulting inability to eval-
uate EO - makes it impossible to calculate nl(x) a priori. Estimation of
nl(x) remains an outstanding problem. Until the problem is resolved, no ways
are available to deduce whether a policy in S(n) lies in S*, except by elim-~
ination of suboptimal actions. That is, a policy can appear during the first
(say) 50 iterative steps yet fail to be optimal for the infinite horizon-
model. Furthermore a policy from S* might appear in say S(1), not appear in
5(2) and reappear in S(4) (or never reappear); so that a policy which has
"dropped out" of S(n) cannot be eliminated as suboptimal (cf. [114]).

*
In the special case where v is known, Eq may be estimated (cf.
SHAPIRO [114]) from:
* 1 o d n
v, = v(f), =[1-BP(E)] " T(E), = } )} BEENL.TE,, i€
i i i . 1] J
n=0 j=1

where

T(f) = [v ~q(£)-BP(E)v ] > 0.

%
Namely assuming that S 1is a proper subset of S, i.e. €, < ® we can pick a

0

pair (i,f) which achieve ¢_ in (1.3.2) and a state j and an integer n < N,

¢}
such that (B P(f))?j > 0 and I‘(f)j > 0. We thus find:
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e = (Bu)ndo

where

o = min{Pk | all 1 < r,s £ N and k ¢ K(x) with P 0}
rs rs

8= min{F(f)j | all £ e 5,1 £ § < N with e > 0} >0

*
the last inequality following from the assumption S # S. Hence it suffices
to take e = (Ba)N6O when computing nl(x) via (1.2.14).
The following properties are known regarding convergence of S(n) for

large n

(a) 4if s” is a singleton, S(n) must reduce to s* for large enough n (i.e.
for n = nl(x))

(b) if s* is not a singleton, S(n) does not need to possess a limit as n
tends to infinity. SHAPIRO [114] has constructed a 2-state example
where S(n) oscillates with period 2 between the two members of S*.
Both his example, and an example in BROWN [13] suggest that the set
S(n) exhibits at least an ultimately periodic behaviour.

However, an example which is similar to the one given in BATHER [2]
for the undiscounted case (see below) shows that the worst behaviour
of S(n) will be non-periodic oscillations.

(c) Since S(n), for large n, may oscillate or contain only a proper sub-
set of S*, the individual S(n)'s do not by themselves determine S*m
However, one may find the entire set S* from e~optimal policies, i.e.

from
(1.3.3) 8" = 1im s(
3 S = nig n,en)

where {sn}:_l may be taken as an arbitrary sequence of positive numbers
approaching 0, provided that the rate of convergence of {En}:“l is

0 -
slower than the one {v(n)}n“ exhibits, i.e. whenever EnB Dy o, as

n + «, One choice is En = n“% and more generally, take 8;1 as a posi-

tive polynomial in n. To confirm (1.3.3) note that for all f €S(n,an)

- $qf) + BRP()vin=-1)=-v(n) = q(£) +B B(£) v - v'' + 0(8™).

In view of limn+m e, = 0, this implies that for all n sufficiently
large, q(f) + BP(£)v' = v", i.e. S(n,e ) c S for all n sufficiently
large. To prove the reversed inclusion, note that for f ¢ S*,
q(£) +BP(F) vin-1) = v(n) = q(f) + BR()v' -v" + 0(8") = 0(8™ > - 1
for all n sufficiently large, as a consequence of eann > ® a5 n > o,
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We finally turn to the issue of determining initially stationary opti-
mal strategies. We observed before that an optimal strategy must lie in
X:=1 S(n). SHAPIRO's example (cf. [114]) shows that in general there may be
no (optimal) policy which is contained within all of the sets S(n) for all
n large enough. That is, lim infnﬁw S(n) may be empty, or, none of the
sequences of policies that may be generated by value-iteration needs to
converge. So in general, no initially stationary optimal strategy may exist
and the adaptation of example 1 in BATHER [2], mentioned above, shows that
in general no initially periodic optimal strategy needs to exist either.

Only in the case where S* is a singleton (S* = {f*}), do we know that
S(n) = {£°} for all n = n, (x), so that in this case every optimal strategy
is initially stationary. Or, in other words, f* is the best choice of cur-

rent policy if the planning horizon is at least n, (x) additional periods

and this choice is optimal without knowing the ex;ct length of the planning
horizon.

We observe however that every policy in S* comes closer and closer to
being optimal at the nth stage, as n tends to infinity. This may be veri-

fied from

Ivin) - q(f) - pP(E) vin-DI = Iv@m) - v - gp(E)[vin-1)~v ]I

IA

28" ox-xl / (1-8), £ ¢ 8"

using (1.2.6).
This in turn implies for every € > 0, the existence of an initially
stationary strategy that is e-optimal. In addition we point out the follow-

ing two properties:

(1) Any policy in s* may be used in the initially stationary part of the
c-optimal strategy; i.e. the initially stationary part does notdepend
upon the scrap-value vector v(0).

(2) An upperbound for the length of the non-stationary tail of the e~opti-
mal strategy is given by (cf. [341])

I ox~xl
2—9—}—{——’%-} / lin()]
e(1-B)

which varies again logarithmically with the precision e.

m(x) < ln[

1.4. UNDISCOUNTED CASE: NOTATION AND PRELIMINARIES

In the undiscounted case, B = | and Q is a non-expansive operator:
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N
(1.4.1) (x-y)min < (Qx-Qy)min < (Qx«Qy)maX < (x—y)max; all X,y € E .

In addition the Q operator has the property

(1.4.2) Qfxt+cl) = Ox + cl for all x € EN and scalars c.

Note as a consequence of (1.4.2) that the Q operator never has a unique
fixed point and hence is never a contraction operator on EN (and neither
is any of its powers). Both (1.4.1) and (1.4.2) suggest choosing (cf.
(1.2.16))

splx] = x - X,
max min

as a quasi-norm (cf. BATHER [3]). However, example 2 in chapter 2 shows
that Q (or any of its powers) is not necessarily contracting with respect
to the sp-norm either. That is, only under special conditions with respect
to the (chain- and periodicity) structure of the problem, (cf. chapter 2)

does there exist a number 0 < o < 1, and an integer n = 1 such that
n n N
splO x-Q v] £ a splx-yJ; for all x,y € E .

0
As a consequence the asymptotic behaviour of {v(n)}n_ requires an entirely

different and more complicated analysis in the undiscéunted case.

Randomized policies turn out to play an indispensible role in the
study of the asymptotic behaviour of {v(n)}:=1. We therefore define a
(stationary) randomized policy f as a tableau [fik] satisfying fik > 0 and
XkeK(i) fik = 1, where fik is the probability that the k~th alternative is
chosen when entering state i. We therefore distinguish between SR, the set
of all randomized policies, and SP = SR the set of all pure (non-randomized)
policies (i.e. each fik =0 or 1, for f ¢ Sp)m

We associate again, with each f € SR' a N-component reward vector g{f)

and NxN-matrix P(f):

k

:Z £ q k
keK (i) "ik Ti

1.4.3 ; L. o= . . 1 <4, §J £N.
¢ ) q(f)i P(f)lj zkeK(l)fik Plj' ted N
Note that P(f) is a stochastic matrix. For any f € SR’ define the stochas-
tic matrix I{f) as the Cesaro limit of the sequence {Pn(f)}:=1 and define

the fundamental matrix

(1.4.4)  z(£) = [T - p(£) + N(£)] L.
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These matrices always exist and have the following properties (cf. [10],

[71]):

(1.4.5) M(£) = P(EYN(E) = NN(E)P(E) = T[(f)2 = M(£)2(£f) = Z2(£)T(£)
(1.4.6) [1-p(£)1z(f) = 2(£)[1-P(£)] = I-TI(£)

(1.4.7)  2(£) =T + lim_,, z:=1 atle(e)*-1(g) ].

Denote by n(f) the number of subchains (closed, irreducible sets of states)
for P(f). Then

_ tn(f)
(1.4.8)  T(6),0 =]

o7 (£) 15 (), 1<1i, J<N
i J
m . . s ) . . th

where T (f) is the unique equilibrium distribution of P(f) on the m~ sub-
chain Cm(f), and @?(f) is the probability of absorption in Cm(f), starting
from state i (cf. [22] and [105]). Observe zi ﬂ?(f) = 1 and 1 (£)P(F) =T (£),
as well as @m(f) = P(f)@m(f), m=1,...,n(f).

Finally, let

(1.4.9) R(f) = {3 e 0 | H(f)jj > 0}

i.e. R(f) is the set of recurrent states for P(f), with Q\R(f) the set of
transient states.

A policy f € SR is said to be aperiodic in case the stochastic matrix
P(f) is aperiodic; otherwise, f is said to be periodic. For each f € SR'
we define the gain rate vector g(f) = NM(£)g(£f), such that g(f)i represents
the long run average expected return per unit time, when the initial state
is i, and policy f is used. Next, define the maximal gain rate vector g*

by

(1.4.10) gz = sup g(f) i=1,...,N.

]
fesg L
R

We know from DERMAN [25] that there exist pure policies f which attain the

N suprema in (1.4.10) simultaneously. As a consequence we define:

*

(1.4.11) s =(fes, | gf) =g"h sy, = (fes, | g =g,

PMG RMG

as the set of all pure and the set of all randomized maximal gain policies.
*
Next, define R as the set of states that are recurrent under some maximal

gain policy
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* . . -
(1.4.12) R = {i e Q ] i € R(f) for some f ¢ SRMG} =

{i e | i € R(f) for some f € SPMG}

where the second equality in (1.4.12) was shown in th.3.2 part(a) of [109].
Likewise we define R as the set of states that are recurrent under (some)

arbitrary policy:
(1.4.13) R = {i e Q| i ¢ R(f) for some f ¢ s} =
{ie Q| ie R(f) for some f ¢ SP}

where the second equality in (1.4.13) is a special case of the second equal-
ity in (1.4.12) by taking every qi = 0. Note that R < R,
The following lemma was proven in th. 3.2 part(b) of [109]:

LEMMA 1.4.1.
, with R(f)

it
o

There exist lici q S
(a) re exist policies f € RMG

(b) There exist policies f € Sgr with R(f)

1l
by

Note that randomization is essential for this result; in general no pure
(maximal gain) policies need to exist, with a maximal set of recurrent states.
Finally we consider the well~known pair of optimality equations for

the average return per unit time criterion:

(1.4.14) g, = max z‘ P#. g, ie Q
T kex(iy 4 373

(1.4.15) v, + g, = max {qk + ). Pg. V.}r ief
i i ken(i) Ui SIS I
where
(1.4.16) L(i) = {k ¢ k(1) | g, = J. P, g.}.
i I

We recall (cf. e.g. [109] th.3.1) that there always exists a solution pair
(g,v) to (1.4.14) and (1.4.15). In addition any solution pair (g,v) to
(1.4.14) and (1.4.15) has g = g*, which implies that the g-part of the
solution and hence each of the sets L(i) are uniquely determined. Finally

let
N *
(1.4.17) v ={veE | (g,v) satisfies (1.4.15)}.

N
For any v ¢ E , define

k k % N k
1.4. =q - - i ).
(1.4.18) b(v); =q - g; + Zj=1 iy vy T Ve €8 ke K@)
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Note that

k _
(1.4.19) v e V &= manEL(i) b(v)i = 0.

Note that unlike the discounted case, v is not uniquely determined by
(1.4.15). Observe e.g. that if v € V, then so does v+cl for any scalar c.
A characterization of the set V is given in [109], and is rather complex.
As an example , we merely state that the necessary and sufficient condition

for v € V to be unique up to a multiple of 1 is given by:

(1.4.20) (UNI): There exists a policy f € SRMG' which has R" as its single

subchain.

The condition (UNI) will turn out to play an important role in the sub-
sequent analysis.
We finally define for each v € V, the sets of alternatives L(i,v) by:

(1.4.21) L(i,v) = {£ ¢ L) | b(v)f =0 = Ky

and let

* N
(1.4.22) s (v) = X, L(i,v)
i=1
denote the Cartesian product set of policies achieving the maxima in (1.4.15)
for the particular solution v € V.
Lemma 1.4.2 concludes this section by giving a characterization of the

set of maximal gain policies.

LEMMA 1.4.2. (Properties of maximal gain policies)

a) fes G if and only if g* = P(f)g* and H(f)[q(f)—g*] = 0,

RM
b) Let £ ¢ SR:
(1) Suppose that k € L(i) for each (i,k) with fik > 0 and that for some
v ev, b(v)? = 0 for each (i,k) with fik > 0, and i € R(f). Then
f e SRMG'
(2) Conversely, if f € SRMG' then for each i = é,...,N: fik > 0 implies
k € L(i) and for i € R(f), fik >0 implies b(v)i = 0 for all v € V.

As to the proof of this lemma, we refer to [109], th.3.1, part (a) and (e).
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1.5. UNDISCOUNTED CASE: ASYMPTOTIC BEHAVIOUR OF {v(n)}:_1

The first asymptotic property of the sequence {v(n)}: is due to

=1
BELLMAN [5] who showed that if every one-step transition probability P?j

is strictly positive:

v{n),
1

(1.5.1) lim = g*, for all i € Q

n--o
*

where g 1is the maximal gain rate. Note that Bellman's assumption is the

strongest possible, one can make with respect to the chain~ and periodic-

ity structure of the problem. HOWARD [63] conjectured that there generally

* *
exist two N-vectors g and v such that

(1.5.2)  lim v(n) - ng” - v = 0.

However, (1.5.2) may clearly fail to hold, if some of the transition prob-
ability matrices (tpm‘s) are periodic, as is illustrated by the two-state

Markov process which has Pi,=Pyy =1 and qy =q2=0 (Take e.g. v(0) = [1,0]

and note that {v(n)}:=1 alternates between the two limit points [1,0] and

[0,1]). BrOWN [13] showed in all generality that {v(n)-«ng*}:=1 is bounded
in n, permitting the interpretation of g; = %%g v(n)i/n as the maximal ex-
pected return per unit time starting from state i.

Two cases can be distuinguished.

In the first case {v(n) ~ ng*}:= has a limit for any choice of v(0).

This corresponds roughly to the situaiion in the discounted process. In the
second case, {v(n) - ng*}:=1 has a limit for some, but not all choices of
v(0). It is possible to show that for each Markov Decision Process there
exist v(0) € EN such that limnﬁm [v(n)—ng*] exists, namely v(0) = v* + ag*
where a >> 0 and v* satisfies the optimality equation (1.4.15) above (cf.
lemma 2.2 in [1117).

It is also possible to construct MDP's in which case 2 holds, namely

when certain tpm's have periodic states. For example consider a four-state

MDP with only one policy f having

0 0100 0

0 0010 % 0
q(f) = ’ p(f) = ' g =

0 . 0001 0

1000 0



21

(1.5.3) lim v(n) exists if and only if v(0) = (b,b,b,b)
n->-o©

(1.5.4) lim v(2n) exists whereas {v(n)}:_ has two distinct limit points,
o =

>0
if v(0) = (b,c,b,c) with b % ¢

1

(1.5.5) lim v(4n) always exists, whereas {v(n)}:__1 has four distinct
n>eo =

limit points, if v(0) = (b,c,d,e) with b,c,d,e distinct.

*
Conditions determining the existence of limném [v(n)-ng ] are of importance

for at least the following reasons:

(1) If v(0) is such that limnﬁw [V(n)—ng*] exists, then v(n)-v(n-1) con=-
verges to g*, and nv(n-1)~-(n-1)v(n) converges to a solution v € V.
That is, both the maximal gain rate vector and a solution to the opti-
mality equation (1.4.15) can be computed.

(2) Convergence of {v(n)—ng*}:=1 guarantees that S(n) ESPMG for all n large
enough (cf. ODONI [89]), hence value~iteration may be used to identify
maximal gain policies. However if v(0) is such that lj_mn_)oo [v(n)—ng*]

does not exist then S(n)c SPM is not guaranteed to hold for all large

G

n: LANERY [74] has given an example where S(n) ¢ S\SPM for infinitely

G
many n, and FEDERGRUEN & SCWHEITZER have given an example (cf. [35])

where S(n) ¢ S\SPM for every n. In such cases value-iteration will

G
not settle on maximal gain policies. In section 7 a more detailed anal-
ysis of the asymptotic behaviour of {S(n)}:=1 will be given, both for
the case where {v(n)—ng*}:=1 converges and for the one where it fails
to converge.

Since value-iteration is the only practical computational method for
finding maximal gain policies when N >> 1, it is desirable to check
whether limnaw [v(n)—ng*] is guaranteed to exist, or whether a data
transformation should be performed (cf. section 8) on the original
data so as.to enforce convergence.

(3) Convergence of {v(n)—ng*}::=1 guarantees the existence of initially
stationary e-optimal strategies for any positive €.

Conversely, MDP's may be constructed in which for some choices of the
scrap value vector v(0) for which {v(n)—ng*}:=1 fails to converge, no
initially stationary strategy can be found which is e-optimal for e

sufficiently small (see section 7 below).

% .00
Sufficient conditions for the convergence of {v(n)-ng }n=1 were ob-

tained by WHITE [131], SCHWEITZER [104] and others. BROWN [13] and LANERY
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[747 both obtained, albeit with faulty proofs, that there exists a positive
*
integer J , such that
* * * .
lim [v(nJ +r)~-(nJ +r)g Jexists for any v(0)and any r = 0,...,J ~1.
n->,o
A new proof was provided by SCHWEITZER and FEDERGRUEN who obtained the

following generalizations (cf. [110]):

(a) there exists an integer J* > 1 such that limn»m[v(nJ+r)—(nJ+r)g*]
exists for every v(0) € EN and ¥ = 0,...,J-1 if and only if J is a
multiple of J°

(b) for any given v(0) e EN, there exists an integer JO > 1 which depends

upon v(0) such that
*
lim [v(nJd+r)-(nJ+r)g ] exists for some r = 0,...,J~1
n—roo
if and only if

(1.5.6) J is a multiple of JO.

In addition, if (1.5.6) holds then
(1.5.7) limn+m [v(nJ+r)—(nJ+r)g*] exists for all r = 0,...,J~1.

As an illustration of part (b}, (1.5.3)-(1.5.5) show JO = 1,2,4 de~
pending upon v (0). Note also that JO divides J*, which is 4 in this ex-
ample, and that for some v(0), JO equals J*.

The above results require a detailed investigation of the chain- and
periodicity structure of the set of maximal gain policies, including the
randomized ones. In fact J* can be computed using a finite algorithm, and
can be expressed as a function of the periods (and the chain structure) of
the policies in SPMG' .

The consequence of (a) is that limn%m[v(n)—ng 1 exists for all v (0)
if and only if 3= 1, and the following theorem gives a number of eguiv-
alent statements of the necessary and sufficient condition for global con-
vergence of {v(n)~ng*}z=1, i.e. convergence of {v(n)ung*}:=1 for all

v(0) € BY:

THEOREM 1.5.1. (cf. th.5.4 of [110])

The following three statements are (equivalent) necessary and sufficient

conditions for the convergence of {V(ﬂ)—ng*}:=1 for all v(0) € EN:



23

(Go) (1) 3° = 1.

(GC) (II) There exists an aperiodic randomized maximal gain policy £, with
R(f) = R".

(GC) (I1I) Each state i € R" lies within an aperiodic subchain of some ran-

domized maximal gain policy.

Example 1 below emphasizes the fact that the adjective "randomized" in

conditions (II), and (III) cannot be replaced by (the more restrictive) “pure”.

EXAMPLE 1.
N = 4; K(1) = K(3) = K(4) = {1}; K(2) = {1,2};
r _ . .t .t 2 k _
P12 = P34 = P42 = P21 = P23 = 1; all qi =0, i.e.

Figure 1.

Note that the two policies in SP (and SPM = Sp)are both periodic with

periods 2 and 3; however a randomized policy ;iich uses both alternatives
in state 2, is aperiodic and has R(f) = R" = Q, and as a consequence J* =1.
Note that neither (GC) (II) nor (GC) (III) holds when replacing "randomized"
by "pure" (cf. also the examples in [110]). Example 1 shows that condition
(I)-(III) contain the possibility that all of the pure policies are periodic;
on the other hand, the existence of an aperiodic maximal gain policy f is
only sufficient for global convergence, when R(f) = R".

We conclude this section by enumerating a number of conditions that
are sufficient for the existence of limn_wo v(n) - ng* for all possible
choices of v(0) € EN.

We have seen that for arbitrary J =2 1 and some fixed v(0) the sequences
{v(nJ+r)—(nJ+r)g*}:=1 may fail to converge for some (or all) i € Q and for
some (or all) r ¢ {0,1,...,J-1}. We refer to section 5 of [110] for an in-

vestigation of the various ways in which the convergence of these sequences

interdepends.

THEOREM 1.5.2. (cf. th.5.5 of [110])

*
The following conditions are sufficient for the existence of limn v (n)~ng

300
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N
for all v(0) € E

(1) All of the transition probabilities are strictly positive:
P};j > 0 for all Ii\l,j € Q and k € K(i) (cf. BELLMAN [5], BROWN [13]).
(I1) For all v(0) € E there exists an aperiodic f e SP and an integer ng
such that )
v(nt+l) = q(£)+P(f)v(n), for all n = n, (cf. MORTON and WECKER [86]).
(III) There exists a state s and an integer v = 1, such that
P(fl)...P(f\))iS > 0 for all £1,6%,...,6" ¢ Spiie @ (cf. WHITE [131]).

(1V) Every f € Sp is aperiodic (cf. SCHWEITZER [104] & [106]).

(V) Every f ¢ S, . is aperiodic (cf. SCHWEITZER [104] & [106]).

G
*
(VI) For each i € R there exists a pure maximal gain policy f, such that
state 1 is recurrent and aperiodic for P(f).
(VII) Every pure maximal gain policy has a unichained tpm and at least one

of them is aperiodic.
1.6. THE RATE OF CONVERGENCE OF UNDISCOUNTED VALUE-ITERATION

Whereas section 5 settles the issue if one demands global convergence,
N
we recall that there always exists a (non-empty) closed subset W ¢ E of
*
scrap-value vectors for which {v(n)-ng } converges.

For any x € W we define
L(x) = Hm o'x - ng*
and recall the following easily verifiable properties of the L(.)~function:
(1.6.1) (a) L(x) € Vv (cf. [111], lemma 2.2 part(g))
() Lo"x) = L(x) + ng* (c£. [111] lemma 2.1 part(f)).

In this part we turn to the topic of the rate of convergence. As a major
*

result, it can be shown (cf. [111]) that whenever {v(n)-ng }:~1 converges,

the approach to the limit is ultimately geometric in the sense that there

exist numbers C and A, with O < A < 1 such that
* n
splv(n)-ng - L(v(0))] < cA™, for all n = 1,2,...

Applying the same analysis to 'so-called multi-step policies (cf. section 7),

this result may be generalized in the sense that for all v(0) ¢ EN and all
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0
r=1,...,7 (v(0))
0 0 * ) A ,
v(nJ +r) - (nJ +r)g approaches its limit geometrically fast,

where JO was defined above.
As a consequence various successive approximation methods which are
based on the value-iteration scheme (1.1.1) exhibit a geometric rate of

convergence as well (cf. section 8). We observe that this generalization of

(1) what is known to be the case in a simple Markov Process, i.e. in a MDP
with a single policy (cf. [113]), and
(2) White's result [131]

holds in all generality with no restrictions imposed on either the chain-,
periodicity- or reward structure of the problem. In addition, the result
is to some extent surprising, since we noted that the value-iteration opera-
tor Q, is in general not a (J step) contraction mapping for any J = 1,2,...
on EN (cf. chapter 2); nor is there in general an obvious way of reducing
it to such a mapping on some subspace of EN. To be more specific, we men-
tioned earlier (cf. section 4) that Q does not even need to be (J-step)
contracting with respect to the (quasi) sp-norxm, defined by (1.2.16), unless
some very restrictive conditions on the chain- and periodicity structure of
the problem are satisfied (cf. chapter 2).

Example 2 in chapter 2 shows e.g. that the combination of the (UNI)-
and the (GC)- condition is in itself insufficient. The geometric convergence
result of {v(n)—ng*}:=1 is obtained by analyzing the solution of the Q- op-

. n_.®
erator in {Q x}n—l for any x € W.

The evolution of the Q-operator
First of all we recall from lemma 2.2 in [111] or from BROWN [13] that
for all x € EN there exists an integer nl(X) such that

1

(1.6.2)  o™x = 1" 'x) = ™" M1 (" %) for all n > n, (x)

where the T-operator is defined by:

(1.6.3) Tx, = max {q#+Z,Pk.xj}; xeE.

KeL (1) 3+

This is due to the fact that, after a finite number of iterations, only
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alternatives k € L(i) attain the maximum in the value-iteration equation
(1.1.1).

Note that the T-operator has the additional properties:

* * N 1
(1.6.4) T(x+cg ) = Tx + cg for all x € E ; ceE

and

N
(1.6.5) sp[Tx—g*—v] = sp[Tx-Tv] < sp[x-v], for all x ¢ E  and all v € V.

. I *
In other words, after nl(X) iterations the "distance" between Q x -~ ng and
any v € V, as measured by the spl J-norm is monotonically non-increasing.

Next, define for x € W:
*
e(n,x) = an - ng - L(x).

We note that by using definition (1.4.18), it follows that {e(n,x)}:=1

satisfies the recursion equation:

(1.6.6) e(n+l,x), = max {b(L(x))g + Z,Pg,e(n,x).}, n zn, (x).
L keL (1) 1 J 1] J
Since limn_>O° e(n,x) = 0 for all x € W, it follows that after a still larger

number of (say after n_(x)) iterations, only alternatives k € L(i) attain

2
the maximum in the value-iteration equation (1.1.1), for which b(L(x))]; =0,

More specifically, for any v € V let
. k . . k
(1.6.7) &(v) = mn{lb(v)i | | ie9, kernd, bv)] <o}

Next, for any x € W, let n2(x)= inf{n ]n > nl(x); sple(n,x)] < §(L(x))} < o,

Then for all x € W and n 2 n2(x):
(1.6.8) e(n+l,x) = U(L(x))e(n,x)
where for any v € V, the U(v) - operator is defined by (cf. (1.4.21)):

k N
(1.6.9) U(v)x, = max [Z.Pi.x.], ieQ; xe E .
keL(i,v) - 7

To verify (1.6.8) assume to the contrary that for some n > n,(x), and

2
i € Q there exists a k € L(i)\L(i,L(x)) which attains the maximum in (1.6.6).

Then e(n+1,x)i < - S(L(x)) + e.(n,x)min + zj Pij[e(n,x)j - e(n,x)min]

IA

- 8(L(x)) + e(n,x) . + sple(n,x)] < e(n,x) .
min min
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which contradicts e(n+1,x)min > U(L(x))e(n,x)min > e(n,x)min (cf. (1.4&1)
and (1.6.6)). Observe that in spite of V being an infinite subset of E ,
only finitely many U(v)-operators occur since there are only finitely many
subsets of XiL(i).

Note in addition that the U(v)-operators have, on top of the proper-
ties (1.4.1) and (1.4.2) of Q and the property (1.6.4) of T, the extremely

useful characteristic of being positively homogeneous i.e.:
(1.6.10) U(v)lax] = au(v)x for all x € E' and a > O.

As a consequence the convergence of {an—ng*}:=1 for any x € W occurs in
three phases. The first nl(x) iterations constitute the first phase and
the second phase terminates after the nz(x)nth iteration, and is followed
by the third phase from thereon.

We conclude this subsection by a short description of the behaviour of
the Q-operator during the first phase. We first observe that this phase is
void, if K(i) = L(i) for all i € Q, which is e.g. the case when g; = <g >,
i e Q, i.e. when the maximal gain rate is independent of the initial state
of the system. On the other hand, nl(x) may be unbounded in x € EN or x € W.
In fact in the worst case the length of the first phase may be linear in
sp[x] as is proven in [111], th.3.1. This is why the first phase is said to
have a finite though linear type of convergence.

The following example illustrates this:

EXAMPLE 2.
112 1
@=1{,2,3}; x()=x3)={1}; K2)=1{1,2}; q =q, =q, = 0; g;=-1
1 1 2 1
Piy = Pyy = Pp3 = Py = 1.

X =1 k=2
@ O———@

Note that g* = (0,0,~1) and that L(2) = {1}

Let x = [0,0,X] with X >> 1 and verify that an = [0, max(0,X-n+1),X~n]

such that n, (x) = splx] = Ixl = x.

The behaviour of sp[an—ng*—L(x)] = sple(n,x)] during the first phase
may be capricious. E.q. {sp[e(n,x)]}:zl may be alternatingly increasing and

decreasing such that the first phase is not necessarily terminated as soon
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as [an—ng*] starts coming closer in spl J-norm to the limit L(x) (cf. ex-
ample 1 in [111]). In the second phase the Q-operator essentially reduces

to the T-operator. Let
~ N n . .o n__ox ~
W={xe E l llmn+m T'x - ng exists} and L(x)—-llmnéwi‘x ng , for xe W.

Note that by (1.6.4) we have ™ = v+ng* for any v € Vand n 2 1, and so

vV c ﬁ, In analogy to e(n,x) define for n = 1,2,... and x ¢ W:
(1.6.11) S(n,x) = ™x - ng" - L(x).

It follows from (1.6.1) that for all xe W, and with nl(x) defined by (1.6.2):

L' = lim 7" (@"x) - ng” =

(1.6.12)
lim Qn+n1(X)x - (n+n1(x))g* + nl(x)g* = L(x) + nl(x)g*.
n->o

In other words for all x € W, inx € ﬁ. As a consequence studying the con-
*
vergence of {an-ng }:_1 in the second and third phase amounts to charac-

terizing the behaviour of T on W.
The Second and Third Phase. Geometric Convergence

First we define for all x € ﬁ and all n = 1,2,... the n-step contrac-

tion factor fn(x) by:

sple (n,x)] _ sp[Tnx—ng*-T(x)] _ splTx-T"1 (x) ]
sple(0,x)] sp[x—Z(x)] splx-1 (x)]

,1Ef x£ V

(1.6.13) £ _(x) =X
n

0 otherwise

since sp[x~z(x)] = 0 can be shown to occur only if x € V (cf. [111], lemma
2.2 part (h)) and where the equality in (1.6.13) follows from a repeated
application of (1.6.4).

Note that for all x ¢ W, and n = 1,2,...,fn(x) < 1 and that {fn(x)}:=1
is monotonically non-increasing towards 0, such that there exists an integer

M(x) =2 1 with:

(1.6.14) £ (x) <1 for all n o= M(x).
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Next the key result in the geometric convergence proof is provided by (cf.

[110], th. 4.1).
THEOREM 1.6.1. There exists an integer . such that for all x e W:
(1.6.15) fM*(x) < 1. 0

Thus th. 1.6.1 expresses that M(x) the number of steps needed for contrac-
tion is bounded in x € ﬁ.
For eachm = 1,2,... and x € ﬁ, let
n *
(1.6.16) h (x) = sup f (T x-ng ) <1
m n=1,2,... @
where the inequality follows from fm(y) <1, vy ¢ ﬁ, since by (1.6.4) we have
Tanng* € % for all n 2 1. The second part of the geometric convergence

proof consists of showing that for all x € %:
(1.6.17) hM*(X) < 1,

We note that (1.6.17) is obtained by a detailed analysis of the U(v)-oper—
ator appearing in the third phase of the process. Further it was shown in

[111] that for any n 2 1 and x € W:

*
T(n»l)M x—(n—l)M*g*)sp[e(m—l)M*,xﬂ

(1.6.18)  spl@mM +r,x)]< spla(nm’,x)] < £
< hM*(x)sp[Z(<n—1)M*,x)]; r=0,...,M1.

Finally, some further analysis leads to the main result (cf. [111], th.4.2).

THEOREM 1.6.2. (Geometric convergence)

For all x € W, there exists a number K(x) such that

F
19™cmng ™~ L (o)l £ K (x) L x o) L2/
(1.6.19)
*
splQ%x-ng ~L(x)] < K(x){hM*(x)}Ln/M .

where | x| indicates the largest integer less than or equal to x.

We observe that hM*(x) does not represent the ultimate convergence

rate or ultimate average contraction factor per step, which is defined by:
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~ 1/n N
lim £ (x)l/n = lim :ELSAELEAJ} for x € W\V
n =
n->o n»>e ‘sple(0,x)]

(1.6.20)
0 for x € V.

It was shown in [110], section 6, that for all x € %, the ultimate conver-—

gence rate may be bounded by

M*
(1.6.21) 2" AEf ax sup splu(v) _yl
splyl

veV

lim uw)y = 0 ¢ < 1.

n-—-oe

Observe that on the right hand side of (1.6.21) the maximum is taken over a
finite number of distinct U(v)-operators. Note in addition that in the case
of a single policy this reduces to the well-known fact that the convergence
rate is bounded by the subdominant eigenvalue of the associated transition
probability matrix (cf. also MORTON and WECKER [86], who found the same
result in the special case of policy convergence, i.e. when there exists an

integer n_(x) and a policy f ¢ SP such that:

0

(1.6.22) o"x = q(®) + P(©)g" 'x  for all n > n (x).

Whereas the ultimate convergence rate is bounded on ﬁ, the same does not
necessarily hold for the n~step contraction factor fn(x) whatever the

choice for n = 1,2,... . That is, we may have:

(1.6.23) sup fn(x) =1 for all n=1,2,...
XeW
as is illustrated by example 2 in chapter 2.
The problem of finding conditions which in all generality are both
necessary and sufficient for the existence of a uniform n-step contraction
factor for some n = 1,2,..., has not been solved yet. However, under (UNI)

the following necessary and sufficient condition was obtained in [111]:

(1.6.24) (UR) There exists a randomized policy f ¢ SR which has R as its

single subchain.

*
Another topic of interest is the dependence of M on the size of the

problem. Again, under (UNI) it was shown in [111], th. 5.2 that:

(1.6.25) M* < N° - 2N + 2.
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The upperbound was obtained by a combinatorial proof and is sharp up to a
term of O(N) (cf. example 2 in [111]). The quadratic upperbound obviously
represents the worst case behaviour, and contrasts with the fact that com-
putational experience as reported e.g. in SU and DEININGER [120] and TIJMS

[122] shows that (in most cases) M =1 or 2.

1.7. UNDISCOUNTED CASE; ASYMPTOTIC BEBAVIOUR OF S(n) AND THE EXISTENCE OF
INITIALLY STATIONARY OR PERIODIC e~OPTIMAL STRATEGIES

As discussed earlier, separate treatment is given to

a) the case where limn+m [v(n)—ng*] exists and

b) the one where the sequence fails to converge.

We mentioned earlier that for the latter case an example was con-
structed in [35], in which S(n) lies outside Spyg for every n. In this
case one merely knows (cf. BROWN [13]) that for large n, S(n) ¢ XiL(i).

In the case where vF o= L{v(0)) = limn+m v(n)—ng*, exists then for large n:

(1.7.1) s 8" (v') ¢ sy, € X LE).

PMG

Thus (1.7.1) shows that value-iteration settles upon maximal gain policies
provided that convergence is guaranteed.

The explanation of this discrepancy with respect to the behaviour of
S(n) between the case where [v(n)—ng*] converges and the one where it fails
to converge, requires the notion of multistep policies and periodic strate-
gies.

For each integer J 2 1, a J-step policy is a J-tuple of policies

*(1 .
(f ¢ ),..,,f*(J)) and specifies a J-periodic strategy
(1.7.2) w= .., eB e
f(nJ+r) = f*(r) for alln =0,1,... and r = 1,...,J;

so, a J-step policy is called maximal gain, if the long run average return
vector of the associated J-periodic strategy equals g*, (1.7.1) holds for
the special case where limnam v(n)—ng* exists, i.e. the case where
JO(V(O)) = 1, and the following generalization for 30 =2 may be obtained
(cf. [357), (with 30 having been defined by (1.5.6)):

(1.7.3) For all n large enough, each Jo—tuple of policies in

0
S{n+1) x,..%x S(n+J ) is maximal gain as a Jo—step policy.
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Apparently a multistep~policy may be maximal gain, with each of the component-
policies being non-maximal gain. Indeed a close investigation shows that the
necessary and sufficient conditions for a multistep-policy to be maximal
gain, reduce to the actions, prescribed by the component policies, being
required to satisfy the optimality equations (1.4.14) and (1.4.15) only in
a very special subset of  (cf. [35]).

The aforementioned example in [2] shows that even in the case where
v(n)—ng* converges (in fact even in the case where each policy is unichained
and aperiodic), S(n) may have a very irregular behaviour, the worst case of
which exhibits nonperiodic oscillations.

As a consequence we are only guaranteed to have an initially stationary
(or periodic) strategy if S*(v*) is a singleton where v* =limn%«;v(n)~ng*.
Using the geometric convergence result as discussed in section 6, we obtain
however (cf. [35]) that for all € > 0, there exists an initially periodic
strategy which is e-optimal. In fact, the (initial) period of this strategy
may be taken to be equal to JO(V(O)).

In particular, we see that in case JO =1, i.e. when v(n)wng* exists,
an initially stationary e-optimal strategy exists for all € > 0, and in
addition S*(v*) represents the set of policies which can be used in the
initially stationary part of the strategy. This generalizes LANERY [75] who
established the above result for all € 2 (some) E*. When JO > 2, a similar
characterization may be given for the set of Jowstep policies which can be
used in the initially periodic part of any e-optimal strategy. In addition,
MDP's can be constructed in which there exist choices of v(0) for which
every initially J-periodic e-optimal strategy (with € small enough) has J
as a multiple of JO (this result obviously doesn't hold for every MDP with
J* 2 2 as is illustrated by the case where S contains a single periodic
policy. Observe that unless condition (UNI) is met, and unlike the discounted
case the best (or e-best) choice for a current policy depends upon the ter-
minal reward vector v(0), whatever the length of the planning horizon.

Since this terminal reward vector may not be known (exactly) in ad-
vance, and since S*(v*) may depend discontinuously upon v(0), it would be
desirable to choose a policy which lies in the intersection of the sets
*

(

* * *
{s" (v )| v e v}. However, N s
veV

intersection, may be empty.

v), which may be written as a finite

In [109] it was shown that convexity of V is the necessary and suffi-
*

cient condition for ﬂv S (v) # #, i.e. for the existence of a policy which

ev
can be used in the initially stationary part of the e-optimal strategy, in
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complete independence of v(0). Moreover an example was provided in which
convexity of V fails to hold. Sufficient conditions for convexity of V are
given by (cf. [109], th. 4.3):

(1) R" = 0;(2) K(1) is a singleton for all i e Q\R';(3) (UNI).

It is worthwhile observing that in some cases a (Blackwell-) optimal
policy, i.e. a policy which is optimal in the discounted model for all B
sufficiently close to 1 (cf. BLACKWELL [10]) cannot be used in the initially
stationary part of the e-optimal policy (cf. [35]).

In the unichained case, i.e. when all policies are unichained, an ex-
plicit upperbound may be derived for m(v(0)), the length of the non-station-
ary (or non-periodic) tail of the e-optimal strategy; the latter being due
to the existence of bounds for the distance between v* and the relative
value vector of a policy in S(n) (cf. section 8 and chapter 2).

However, in the general multichain case and unlike the discounted
model no bounds have been obtained as yet for m(v(0)). In analogy with the
discounted case, m(v(0)) can however in all generality be shown to vary
logarithmically with the precision €. For the case of continuous time Markov
Decision Problems, in which no periodicity problems arise, some of the above
results were obtained by LEMBERSKY [761 and [77].

Finally, several difficulties appear when trying to find the set SP

MG”

*
First for all v € V, S (v) can be a strict subset of SPMF so that value-

- * %
iteration fails to yield all maximal gain policies. Indeed even Uv*ev S (v )

can be a strict subset of SPMG so that varying the starting point v(0) of

value~iteration will fail to identify all maximal-gain policies. The ex-—
planation is that a maximal gain policy f is merely required to choose its
actions within L(1), for those states that are transient under P(f) (cf.
lemma 1.4.2).

The second difficulty is provided by the irregular behaviour of the
sets {S(n)}:___1 as described above. This difficulty can however be overcome

o

in a way similar to the one employed for the discounted model. Let {En}n_l

be a sequence of positive numbers approaching 0, at a slower rate than the

(geometric) convergence rate of [v(n)—ng*]& That is, let limn_)man/)\rl = ®,

e.g. by taking e, = nnlﬂ

*
THEOREM 1.7,1. Assume v* = lim . v(n)-ng exists.
. * *
(a) llmn+m S(n,sn) =8 (v ).

(b) Let g(n) = v(n) - v(n~1), and define for all e > O:
G(n,e) = {f ¢ § | P(E)g(n) = g(n+l) ~ e 1}.
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Then, limn_)m G(n,en) = XiL(i).
PROOF',

. . * *
(a) Use llmném e, = 0, as well as (1.6.8) to verify that S(n,en) c S (v)

for all n sufficiently large. To prove the reversed inclusion, fix
£ ¢ s (v¥) and note that q(f) + P(f)v(n) = v + (n+l)g +P(£)e(n) =
= v(n+l) - e(n+l) + P(fle(n) = v(n+l) + 0(A") = v(n+l) - Enl

for all n sufficiently large, where e(n) = v(n)—ng*—v* and where
we use g* = P(f)g* and g*+v* = q(f)+P(f)v*.

(b) Use lim e =0, as well as lim g(n) = g* to conclude that

n>®© n n--e©
G(n,en) c XiL(i) for all n sufficiently large. To prove the
reversed inclusion, fix f € XiL(i) and note that
P(£)gn) = P(£)[g(n)-g" 1 + g(n+l) + [¢ -g(n+1)]= g(n+1)+0(A") 2 g(ntl)-e 1,

for all n sufficiently large.

Table 1 concludes this section by summarizing some of the main results of

section 3 and section 7.
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Table 1.
I II I1I
<1 1 1 B
0
. 1 > 2 J7(v(0))
1i () =v" |1 (n)-ng” = | 1i +r)g” toti
im v(n)=v im ., v(n)-ng im e v (nJ+r) - (nJ+x)g asymptotic
v ev exists, iff J is a mul- behaviour of
0 ©
tiple of J (v (0)) {v(n)}n=1
geometric geometric geometric rate of
convergence
0 L
ves yes no, only J -tuples policies gen-
of consecutively gener-— erated need to
ated policies need to be | be optimal
maximal gain as multi- after finite
step policies number of
iterations
no no no stationary or
periodic, op-
timal strate-
gies need to
exist
yes yes no, only e-optimal e~-optimal

0 .
J -periodic strate-

gies need to exist

stationary
strategies

need to exist.
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1.8. UNDISCOUNTED CASE; ALGORITHMS AND SOME DATA-TRANSFORMATIONS

In this section we show which successive approximation methods
can be used in order to find maximal gain policies and the maximal gain
rate vector. For the schemes that are based upon pure value-iteration the
convergence results obviously follow from the study of the asymptotic be-

haviour of {v(n)}:k In sections 5 and 7, we observed that only in case

1
*

{v(n)-ng }2_1 converges, will value-iteration be guaranteed to ultimately
settle upon maximal gain policies and only then, can sequences be derived

*
from {v(n)}:_ which converge to g and some v € V.

1
N

In the case where {v(n)-ng*}:_1 may fail to converge for some v(0) € E

i.e. whenever J* = 1 is not guaranteed by the structure of the problem, the

following alternatives can be used:

A) Elimination of the periodicities using the following data-transforma-
tion:
(1.8.1) FF=0q% ieq, kex@
i i
~k k L .
(1.8.2) P, = 1(P,.~6, . )+6. ., 1 <4i, J £N and k € K(i)
1] 13 1] i3

where 0 > 0 and 0 < 1t < 1, and with Gi. denoting the Kronecker delta func-
tion, i.e. éij =0 for i # j, and Gij = 1 for i = j. This transformation
makes all of the diagonal elements of all of the tpm's strictly positive
such that in the transformed model all of the policies are aperiodic.
Moreover, the transformation turns the MDP into an equivalent one,
in the sense that it has the same state- and policy space and that each
policy f has §(f) = 0g(f) as its gain rate vector and V={ve ENIU-lrve'V}
as the set of solutions to the corresponding optimality equation (1.4.15),

as is shown in the next lemma. (cf. also (EQUI) in (1.9.2)):

LEMMA 1.8.1. (cf. SCHWEITZER [108])

(a) V={ve BN | o lt v e v}.
~ ok *
(b) ior all £ € SR, g(f) = og(f); hence g =o0g , SRMG = SRMG and
S =S represent the maximal gain rate vector, and the sets

PMG PMG
of randomized and pure maximal gain policies in the transformed model.

PROOF: Rewrite the optimality equations (1.4.14) and (1.4.15) in a homo-

geneous way, i.e.
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k . .
(1.8.3) 0 = maxkeK(i)[zj(Pij—sij)gj]' ie®

]

k k
.8. =g, + ). (P, =0, )v_ 1, i Q.
(1.8.4) © maxkEL(i)[qi g, Zj(p13 6lj)v]] ie
Note that the solution space of the optimality equations remains unaltered
when multiplying the expressions within brackets in (1.8.3) and (1.8.4) by

ot >0 and o > 0 resp. Hence,

k .
(1.8.5) 0 = maxkeK(i)[zj T(Pij—Gij)(Ugj)], ien

(1.8.6) 0 = maxkeL(i)[cq? - ogi + Zj T(P];j —éij) (cr_lvj)], ie®
such that in case (g,v) satisfies the optimality equations of the original
model, then (Gg,GTﬂlv) will satisfy the corresponding equations in the
transformed model; and vice versa in case (g,V) satisfies (1.8.5) and (1.8.6),
then (0_15,0—115) is a solution pair to the optimality equations in the
original model.

(b) Apply the proof of part (a) to the system of equations g = P(f)g;

v = q(f) - g + P(f)v, to verify that if (g,v) is a solution to this system,
then (Og,OT_lv) will satisfy the corresponding system in which P(f) and gq(f)
are replaced by g(f) and q(f). Since the "g-" part of the solution to these
systems is uniquely determined by the gain rate vector, (cf. lemma 1 in
[22]) it follows that J(f) = og(f) represents the gain rate vector of f in

the transformed model. ]

The above presented transformation will play an important role through-
out this entire thesis, especially so for the choices o=1 and o=1, since
the first case has ﬁ* = g* and the second one has V = V.

Due to the obtained aperiodicities {ﬁ(n)—nﬁ*}:=1converges(geometrically)
in the transformed model for whatever choice of ¥(0) ¢ E (cf. th.1.5.2, con-

dition (IV)).

B) The modified value-iteration technique by HORDIJK and TIJMS [60].
This scheme has the discount factor B in (1.1.1) depending upon the index

of the iteration stage, and tending to one as the index tends to infinity:

k 13 .
(1.8.7)  uln+D), = max o {ay + B Xj P u(n)j}, ie

where u(0) is a given N-vector.
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The scheme can only be used when

* *

(1.8.8) g = <g > L.

In this case

* *
(1.8.9) u(n) - Y9 > z €V as n » «
where {Yn}:=1 is obtained recursively by

= > i =
Yn+1 1+ BnYn for n 2 0 with Yo 0

provided that
(a) B B

n

n
(b) Z B .- Bj+1[8j~8j_1
(a) and (b) essentially express that {Bn}:=1 should increase to one at a

low enough rate, and a computationally tractible choice is provided by
B o) .
(1.8.10) Bn =1~n with 0 < b < 1,

The analysis of the behaviour of this scheme uses the Laurent series ex-
pansion of the total maximal discounted return vector in powers of (1-B)
for discountfactors B that are close enough to one (cf. MILLER and VEINOTT
[851).

The scheme eventually settles upon maximal gain policies, and with
the choice (1.8.10) it can be shown that the ultimate convergence rate is
O(n—bln n) which is substantially slower than the geometric convergence
rate we obtained for the ordinary value-iteration scheme (cf. also th.4.3.3
in chapter 4, where a generalization of this scheme is given).

However the scheme has two very nice characteristics:

(1) convergence occurs regardless of the chain- and periodicity structure
of the problem.
. N
(2) For every starting point u(0) € E the scheme converges to the same
limit vector z* which has the following very important interpretation:
(1.8.11) 2y = max z(f),, 1ieQ

feS
PMG

i

where z(f) Z(f)[q(f)-g*].
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*
That is, z is the optimal bias-~vector, where the biasvector z(£f) of a
policy £ € SP is the second term in the Laurent series expansion of the

total discounted return vector V(f,B):

g(£f)

(1.8.12) V(£,8) = I

+ z(f) + 0(1~-B), B+ 1

(cf. BLACKWELL [10] and MILLER and VEINOTT [851]).

The HORDIJK~-TIJMS scheme, however, does not necessarily settle upon
bias optimal policies i.e. policies which attain the N maxima in (1.8.11)
simultaneously (cf. chapter 4).

We next review the bounds that have been derived for the maximal gain
rate vector g*. In the case where g* = <g*>1_, which holds e.g. if all of
the policies are unichained, these were obtained by ODONI [89] and HASTINGS

[53] namely:
*
(1.8.13) [Qx—x]min < g(f)i < <g > < [Qx—x]max

for all x ¢ EN and i = 1,...,N and f achieving Qx.
Moreover both bounds are sharp when x € V. In the context of value-iter-
ation (1.8.13) becomes

%
(1.8.14) [v(n+1)—v(n)]min < <g > < [v(n+1)“v(n)]max.

The bounds move inward (monotonically) as n increases and if limn+mv(n)—ng*
*
exists, the bounds both converge geometrically fast to <g >.
In the context of the approach under B), the bounds on g* have to be

altered as follows (cf. [60]): For £ = 1,2,...

(1.8.15) min {w(ﬂ)i" Bzw(ﬂ—l)i} < glfp), < gz < maxi{w(l)i— Bzw(ﬂ—l)i}

where fﬁ is any polic¢y which attains the N maxima at the £~th iteration
stage of (1.8.7). Again, whenever gi = <g*>, i e Q, will the outer bounds
in (1.8.15) converge to <g*>.

Under (UNI) the bounds on the scalar gain rate <g*> have been unac-
companied by corresponding bounds on the deviation of the current vector
x from v* € V, which in this case is unique up to a multiple of 1. In view
of the latter, this bound should be invariant to a replacement of x by
x + al for some scalar a. The existence of such bounds is also useful for

demonstrating convergence of this or related types of value-iteration
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schemes. Specifically, ZANGWILL [133] has shown that an iterative scheme
*
x(n+l) = Ax(n) will converge to x if the continuous operator A and a con-

tinuous (Lyapunov) function ¢(x) satisfy:

(1.8.16) (a) é(x) = 0 all x € EV
(b) $(x) =0 if and only if x = x
(c) ¢(Ax) < ¢(x) all x ¢ BV

(d) for some integer m = 1, ¢(Amx) < ¢(x), for all x with ¢(x) > 0.
*
One choice of a Lyapunov function, not computable until v 1is known, is

¢1(x) = sp[x—v*], with

(1.8.17) Ax = Qx-(Qx)NL

* * *1
X =v =V .
N—

Condition (1.8.16) (d) may be verified as the scalar gain rate version of
2
(1.6.19), with m = N° - 2N + 2 (see above), assuming that J = 1.
Another choice of Lyapunov function which may be computed while in

the midst of the value-~iteration process is
(1.8.18) ¢2(x) = spl[Qx~x]

with the same choice of A and x*. The conditions (1.8.16) (a)-(c) are
easily verified while (1.8.16) (d) holds e.g. when every policy in SPMG
is unichained, and assuming that the data-transformation (1.8.1) and
(1.8.2) has been applied so as to ensure that J* =1 (cf. [39]).

The important new property is that the deviation of v* from x may be
deduced from ¢2(x) just as (1.2.6) and (1.2.11) were used in the discounted

case. Specifically, under (UNI) there exists a constant p = 0 such that
(1.8.19) %¢2(X)Ssp[x—v*]Sp¢2(x) for all x if and only if (UR) holds (cf. (1.6.24))

5
Under (UNI) a unique representation v of v € V can be obtained by

* *
requiring that v = 0. So far, bounds for each of the components of v

N
have only been obtained for the case where every policy is unichained. The
bounds will be derived in chapter 2, and arise by showing that the MDP can
be transformed into an equivalent one, in which the operator O, defined by

Ox = Ox - [Qx]Nl_is a N~step contraction operator, on ﬁN=={xe EN!XN = 0}.
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The bounds are of the same type as in (1.2.11) and allow for the derivation
(although not for the actual computation prior to solving the MDP) of upper-

bounds on the number of iterations needed to have

(1) énx within € of v*,

(2) s(n) ¢ SPMG’

(3) v as a relative value vector v(f) for every policy f in S(n), i.e.
s(n) ¢ S*(v*), as well as on

(4) the length of the tail of an initially stationary (periodic) e-optimal

strategy.

All of the bounds in (1)-(4) vary logarithmically with e_l spl Ox-x1
where in (2), € has to be taken < min{sp[g*"g(f)]| fe S, g* > g(£f)} and
in (3), & has to be taken < min{sp[v*—v(f)][ f e Sp, splv*-v(£)] > 0}. Ex-
cept for the case where every policy is unichained, (cf. chapter 2) and due
to the lack of bounds on v € V, no tests have been proposed for permanent
elimination of non-optimal actions. However, a device for temporary elimi-
tion was recently obtained in HASTINGS [54].

Another open question is obtaining a computationally tractible esti-
mate of the size of A*. Nothing is known with the exception of the above
mentioned case where SPMG is a singleton and the cases studied by WHITE
[131] and ANTHONISSE and TIJMS [1] where a n-step generalization of the
ergodic- (or scrambling-) coefficient provides an upperbound for A*.

A further problem arises both in approach A) and approach B) due to
the fact that the sequences generated ({v(n)}:=1 and {u(n)}:=1) diverge
linearly with n. That is, one has to do computations with numbers that
grow linearly with the number of stages needed to come within the required
precision.

In case g* = <g*>l_the problem can be eliminated using White's proce-

dure, i.e. in approach A) we generate
(1.8.20) v(n)i = v(n)i - v(n)N = Qv(n-l)i - Qv(n—l)N.

Then v(n) =+ L(v(0)) - <L(V(O))N>l_€ vV, and Q\‘f(n)N > <g*>, as n > o,

In the general multichain case where g* = <g*>l_fails to hold, only
approach A) needs to be considered. The only thing that comes to mind when
trying to eliminate the above mentioned difficulty is the following:

Write v(n) = ng(n) + y(n), with

(1.8.21) g(n) = v(n) - v(n-1)
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(1.8.22) y(n) = nv(n-1) - (n~-1)v(n).

Observe that the sequence {g(n)}:_1 and {y(n)}:=1 converge to g* and L(v(0))
whenever L(v(0)) = limn%O v(n) - ng* exists. Note in addition that g(n)
and y(n) can be generated from the schemes:

B k k ] k
(1.8.23) g(ntl), = k???i){qi+n § (pij 8;5)gm) 4 g 7 6ij)y(n)j}

(1.8.24) y(n+1)i y(n)i + n[g(n)i -

max  {dm § BF.-6. ) (v(m) +ngm) D3], i€ Q.
keK (1) 1 i i3 13 J J

By generating (1.8.23) and (1.8.24) only two bounded sequences of numbers

have to be stored. Unfortunately, however, this solves our numerical diffi-

culty only partially, since it is still necessary to do computations with

unbounded terms when determining the right hand sides of (1.8.23) and

(1.8.24).

In some cases one may be interested in obtaining (as large as possible
a subset of) the entire set SPMG' so as to make further selections on the
basis of additional criteria.
In section 7 we discussed the irregularities that may appear in the sequen-
ces of policies generated by the value iteration method (and which are iden-
tical both in approach A) and B)).
Th.1.7.1. showed that S*(L(V(O))) can be obtained by keeping track of the
sets {S(n,en)}::l, and in approach B), S*(z*) can be computed in exactly
the same way, provided {En}:zl is chosen to decrease to 0 at a rate which
is slower than the convergence rate of fum

n=1" That is, with the choice
(1.8.10) for {8} ., choose
n n=1

(1.8.25) 1im___ (In n) 'nPe = o
- n

i.e. take e.qg. €, = n_b/z.

1.9. MARKOV RENEWAL PROGRAMS

In this section, we consider the more general class of Markov Renewal
Programs (cf. [23], [69]) in which the times between two successive tran-

sitions of state are random variables, whose distributions depend both on
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k .. .
the current state and the action chosen. Let Tij > 0 for i, € 9; k € K(i)
denote the conditional expected holding time in state i, given the action
k € K(i) is chosen and that state j is the next state to be observed. We
assume that the unconditional expected holding times:
k Pk Tk

(1.9.1) T =3I,P,.T.. >0 (i€ Q; k € K(1))
i § i3 ij

For each policy f € SR, qg(f) and P(f) are defined as in section 2,
whereas g(f)i denotes again the long run average return per unit time, when
starting in state i. We recall that g(f) is given by (cf. e.g. lemma 1 in

DENARDO [22]):

(1.9.2) g5, =12 ¢™e) Mgy, 1en
1 m= 1

with

g (E) = <n(£),q(£)>/<n"(£) ,T(£)>.

Next, we define for each policy f € Sgps the holding time vector T(f):

X
Deex(i) fix Ti

(1.9.3) T(f), =
i

Finally we call to mind that in this model the optimality equations (1.4.14)
and (1.4.15) have to be altered as follows:

_ K .
(1.9.4) gy =max 5y by Pyy 950 1€

( k

(1.9.5) vy = maxy 519

- Zj P?j Tij gj + zj P?j vj}, ieQ
with L(i) defined as in (1.4.16). In addition the vector g* and the sets
SPMG and SRMG are defined as in section 4, where the non-emptyness of these
sets in the MRP-model was shown in [69]. Again (1.9.4) and (1.9.5) always
have a solution pair, and again each solution pair (g,v) has g = g*, the
maximal gain rate vector (cf. [23], and [109]). Redefine V=={VEZENI(g*,V)
satisfy (1.9.4) and (1.9.5)}. The properties of V, and the correspondence
between SRMG and V, as mentioned in section 4 hold unaltered for the gen-
eral MRP case.

Both the Policy Iteration Algorithm and the Linear Programming Ap-
proaches which were originally developed for MDP's have been adapted for
the more general MRP-model (cf. e.g. [23]). To obtain a successive approx-

imation method for undiscounted MRP's, two data-transformations have to be
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applied:

We first observe from (1.9.2) that the gain rate vectors g(f) depend
on the quantities Tij only through the unconditional holding times T?. As
a consequence, we conclude that every MRP is transformed into an equivalent
one, by replacing %tj = T? (i, € 9; k¥ € K(i)). In this context we define

two undiscounted MRPs to be equivalent, if

(1.9.6) (EQUI) they have the same state and action spaces, and if the
gain rate vector of any policy (and hence the maximal gain rate
vector) in the two models merely differs by a multiplicative

constant.

Note that two equivalent MRPs share the same set of maximal gain policies.
Carrying out the above tranformation, we obtain the following pair of op-

timality equations:

. ~ x .
(1.9.7) g, = max_, ., Xj Py 9y tew

k k . k
1.9. = - i .
( 8) v, maxkeL(i){qi Tigi + lj Pij vj}, ie

Let V be the set of solutions to (1.9.8).
Next, we recall the following generalization of the data-transforma-

tion (1.8.1) and (1.8.2) (cf. [108], [381]):

k. ko, k o .
(1.9.9) qi = qu/Ti , ieQ, ke K(i)
B =6+ 6 /TN, ie, ke K1)

1] 1] i3 i3] i
~k . .
Ti =1, ie k e K(i)

where o > 0 and T has to be chosen such that
(1.9.10) 0 < 1 < min{T/(1-P )| (1,k) with PX < 1}.
i ii ii

Using the proof of lemma 1.8.1, one verifies that againV={ve EN[ o ltvew
is the set of solutions to the optimality equation (1.4.15) in the trans-
formed MDP, and that every policy f has §(f) = og(f) as its gain rate vector

in the transformed model, i.e. the original MRP and the transformed MDP are

equivalent (cf. (1.9.6)). Hence, the choice o = T leads again to V = v and
ok * ; . ~ N ok *
§ = tg and the choice 0 =1 leads to V = {v ¢ E ! TveVl andg =g .

By choosing T strictly less than the upperbound in (1.9.10) the same
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transformation ensures, that every policy in the transformed MDP is ape-
riodic, such that the value-iteration method is guaranteed to converge for
any starting point, with all of the nice consequences that were exhibited
above.

As a consequence, applying value-iteration to the transformed model
will yield us the maximal gain rate vector, maximal gain policies as well
as a solution to the optimality equations (1.9.7) and (1.9.8). However, it
won't be possible in the general multichain case to find a solution to the
optimality equations (1.9.4) and (1.9.5) of the original MRP-model, using
a single successive approximation scheme.

This is due to the fact that there does not need to exist a clear
relationship between the sets V and V (as opposed to the one pointed out
between V and V). Only in case g* = <9*?lr do the pairs of equations
(1.9.4)-(1.9.5) and (1.9.7)-(1.9.8) and hence the sets V and V need to

coincide (cf. (1.9.1)), as is pointed out by the following example:

Example 3.
Kk k k k
ook By Py By 9
1 1 1 0 0 -1
2 1 5 0 5 0 Tk = 1, except £ Tl # 1 # Tl
. ig - e ExeeP 'Oj 21 23
2 0 1 0 0 with .5(t, +13,) = 1.
3 1 0 0 1 1

Note that g* = (=1,0,1); K(1) = L(i) for all i € Q and R = Q. Verify that

V and V are given by the half spaces:

]

{v e E3 | v, 2 0.5(v

5 =

v 1+V3)}I ) .
0.5(v1+v3) + 0.51'21 -~ O.ST23

v

Ve={ver | v .

]

1 . . o .
In case T < V is a strict subset of V and vice versa for the case

Tl
1 21 23 R
Toy To3e Note that V and V do not even need to coincide in the components

* *
that lie within R , as state 2 belongs to R .

>

Whereas in general, no method has been obtained to find a solution
v € V via a single successive approximation scheme, it will be shown in
chapter 4 that this objective can be achieved, employing a pair of simul-

taneously generated schemes.






CHAPTER 2

Contraction mappings

underlying undiscounted Markov decision problems

2.1. INTRODUCTION AND SUMMARY

We pointed out in chapter 1, that the value-iteration operator Q in
undiscounted MDPs, is non-expansive (cf. (1.4.1)) and in addition has the

property (1.4.2):
N 1
(2.1.1) Q(x+cl) = Ox+cl, for all x € E and ¢ € E .

N
In view of (2.1.1) Q can never be a contraction mapping on E , or a
J-step contraction mapping for some integer J = 1, where the latter is de-

fined as follows (cf. e.g. DENARDO [20]).

(2.1.2) Let X be a normed vector space; an operator A: X - X is a J-step
contraction operator, if and only if there exists a scalar p,
0 < p <1 such that for all x, y € X: IAJx - AJyl < (1-p) Ix=yl,

where | | is the norm on X.

The fact that Q can never be (J-step) contracting on EN (for some
J 2 1) may e.g. be verified by noting that the operator never has a unique
fixed point in view of (2.1.1).

This constrasts with what is known to be the case in the substochastic
tj <1 (ieQ, k e K(1)) (cf. section 2 of
chapter 1, as well as DENARDO [20]).

or discounted case where Zj P

It should be pointed out that the fact whether an operator A, as de-
fined in (2.1.2) is J-step contracting for some J = 1,2,..., is independent
of the norm chosen on X as may easily be verified using the fact that any
two norms |x| and |x|' are equivalent in the sense that there exist finite
constants K and K° such that |x| < K|x|'and [x]|*' < K'|x| for all x € BN
(cf. coLLATz [15], §9.2). (2.1.1{ suggests considering the following equiv-

alence relation on the N-dimensional Euclidean space EN:
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(2.1.3) X ~ y = there exists a scalar c such that x = y+cl.

Let EN be the quotient space which is generated by this equivalence rela-
tion, and note that EN is a (N-l1-dimensional) vector space, with the con-
ventional addition and scalar multiplication. Note that the spl J-norm,
defined by (1.2.16) which is a guasi-norm on EN, is a real norm on EV. As
a consequence we endow EN with this spl J-norm.

Let é: EN +-EN denote the reduced value-iteration operator i.e. éx
denotes the (unique) representation of Qx within EN. Example 1 below shows
that é is sometimes a contraction mapping on EN, or in other words Q may be
contracting with respect to the spl J-"norm". On the other hand, example 2
shows that the combination of the (UNI)-condition {(which is the necessary
and sufficient condition for v € V to be unigue up to a multiple of 1) and
the (GC)=-condition (which is the necessary and sufficient condition for
{an-ng*}:=1 to converge for all x € EN) ig in itself insufficient for é
to be (J~step) contracting (for some J = 1).

We first define for any NxN-matrix A:

(2.1.4)  lal = max, ). Ia_.|.

1 "3 1]
Also, for any real number a, define a+ = max(a,0) and a = min(a,0), (with
at > 0, a <0 and a~ + a = a and at - a = lal).

EXAMPLE 1. Let S = {f} where P(f) is unichained and aperiodic. Verify that
spl0"x-0"y] = splP(£)™(x-y) ] = spl (P(£)7-11(£)) (x~y) ] <

Ip(£) 1 (£) I splx-y1 < KA? gplx-y], for some K > 0 and 0 € A < 1. The second
equality follows from II(f) (x~y) being a multiple of 1 and the second in-
equality may e.g. be found on p.131 in [67], whereas the first inequality

follows from the property

(2.1.5) splax] < lalsplx], for any matrix A = [aij] with Al = 0; x ¢ B

To verify (2.1.5) note, using the identity Ej azj = - Xj a;j, i e Q which
follows from Al = 0, that:

splax] = max, {)_ al. x, + V. a . x. d-min {}, at. x, + Y. oa.. x.}
Rt N S B | J 13 3 173 13 3 S

A

+ - -
max, {). a.. x __+).a, . x  t-min, {), alx +).a
i*%9 %15 Tmax  £3 %ij “min 1743 %ij "min

it

+ s - e . -
sp[x]{maxi zj a;, - ming Ej aij} 2splx] max, ). a
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+ + + . + -

Let ). a . = max, . a,.. Then, 2 max, . a, ., . a, . - ). a =
. 23 kj i zJ ij ! i ZJ ij 23 kJ zJ kJ
Y. (al.~a_.) = ). la .l < Ial (c£. (2.1.4)) which completes the proof of
J k3 kj j K]
(2.1.5).

As an even sharper result, one can show that in this case é is J-step
contracting for some J < %N(N-1) as a result of P(f)n being scrambling for
all n = %N(N-1) (cf. th.4.4 on p.89 in SENETA [113]), where the scrambling

notion and its implications will be discussed in section 3.

EXAMPLE 2.
) K K X
ook Py Py 9
1] 1 1 0 0
2 | 1 1 0 0| ¢* =10,0], hence K(i) =L(i) for all ic f.
2 0 1| -1

Note that (GC) (cf. th.1.5.1) is satisfied in view of every policy being
aperiodic (cf. th.1.5.2 cond. (IV)). In addition, it is directly verified
that v = {cl | c ¢ El} which implies that (UNI) is satisfied as well (cf.
(1.4.20)). Take x = [0,X] and y = 0. Note that

o"x = [0, max(0,X-n)] and Qny =0 for alln =0,1,2,... i.e.

[\

n_n o
1 = sup{§£££L£L£llil u,v € EN, splu-v] > O}

n n
o s splo x-0 v1 _ .. max (0,X-n) _ -
> 11mx+m splx—y] llmxém B — 1 for all n 1,2,.

(cf. also section 7 of [111]).

In this chapter we give (both necessary and sufficient) conditions for
the é—operator to be a J-step contraction mapping for some J=1,2,... . The
identification of these conditions is of particular importance since with
5 being contracting, the geometric convergence result of value-iteration,
as discussed in section 6 of chapter 1, and which in the general case re-
quires a complicated analysis, is straightforward (cf. theorem 2.2.1), and

in addition the contraction-property may be exploited in order to obtain:

(1) a lower bound for the convergence rate of the value iteration method.
(2) Upper and lower bounds, as well as variational characterizations for

the fixed point v of the functional equation (1.4.15) which in this
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. . . =N
case is unique up to a multiple of 1 (i.e. its representation in E
is unique).

(3) A test for eliminating suboptimal actions in the value-iteration method.

As necessary conditions we obtain some important charaterizations with res-
pect to the chain- and periodicity structure of the problem. In addition

we present a general sufficient condition of a "scrambling" type (cf. [1],
[51]) which encompasses a number of important and easily checkable condi-
tions. We note that in [86] a special case of this "scrambling-type" con-
dition was used to prove the convergence of the relative cost differences.
In section 9 of the previous chapter, a data-transformation (cf. (1.9.9))
was presented which turns every undiscounted Markov Renewal Program into

an "equivalent" undiscounted MDP. In addition the transformed problem has
every policy aperiodic so that the (geometric) convergence of {an_ng*}:=1
is guaranteed for all x € EN, i.e. J* = 1 or (GC) is satisfied. In section
3, we show that for unichained MRPs, this data-transformation has the con-
siderably stronger property of turning the MRP into an equivalent MDP, in
which the value iteration-operator is at least N-step contracting with all
of the nice consequences mentioned above. These results are obtained by
showing that the transformed problem satisfies the above "scrambling-type"
condition. The results in this chapter are based upon FEDERGRUEN, SCHWEITZER

and TIJMS [43].

2,2. NECESSARY AND SUFFICIENT CONDITIONS FOR é TO BE A (J-STEP) CONTRACTION
MAPPING, AND SOME OF ITS IMPLICATIONS

Before studying necessary and sufficient conditions for 5 to be a
J-step contraction mapping for some J = 1,2,..., we first show that the
geometric convergence of the sequence {an - ng*}::=1 for all x € EN is
straightforward when QJ is a contraction mapping. We first formulate and
prove this result with respect to the T-operator (cf. (1.6.3)). The corres-

ponding property for the Q-operator then follows from corollary 2.2.3 below.

THEOREM 2.2.1. (Geometric convergence of value-iteration)

Let T be a J~step contraction operator on E , for some J = 1,2,... and some

contraction factor O < p £ 1 (cf. (2.1.2)). Then, for each x € EN, there

exists a VO = vo(x) € V such that for all i € Q,

nJ+r

(2.2.1) [T xi—(nJ+r)g;-vg| S(l—p)nsp[x~voj; n=1,2,...; r=0,...,J-1.
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N *
PROOF. Fix x ¢ E and v € V. For all n = 0,1,2,..., let e(n,x)==Tnx-—ng -V,
Then e(n,x) = Tx-T''v as follows from a repeated application of (1.6.4) and
(1.4.15). From the non-expansiveness of the Q- and T operator (cf. (1.4.1)),

follows for all n = 1:

(2.2.2) (x—v)mirl < e(n,x)min < e(n+1,x)min < e(n+1,x)maX <

e(n,x < (x-v)
(n )max max

hence {e(n,x) }°  [{e(n,x)} . } is monotonically non-increasing [non-
m, n=1 min

ax
decreasing] to some limit £(x)" [t(x) 1. But

0<sple(nd,x)]= sp[Tan - TnJv] = sp[‘fan - 'I’nJv] S(l—p)nsp[x~v] , as N>

hence t(x)+ - t(x) = limn_)00 sple(nJ,x)] = 0, so t(x)+ = t(x) = t(x). Thus,

i

limnéw e(n,x) = t(x)! and limnéw Tnx - ng* = v+ t(x)1l vo(x) € V.

Finally use the fact that for alln =1,2,... and ¥ = 0,...,J~1:

+
[TnJ g - (nJ+r)g* - vo(x)]min = e(nJ+r,x)min - t(x) €0 <

< e(nJ+r,x)max - t(x) = [TnJ+rx - (nJ+r)g* - vo(x)]maX

just as the fact that x , < 0 < x implies lxl < splx], to obtain
min max

nJ+r

+ +
I O( nJ rx_TnJ rVO]

x—(nJ+r)g*~v x) 1 Ssp[TnJ+rx~(nJ+r)g*—vo(X)J=sp[T

< (1-p)™ splx-v"1. 0

We next introduce two conditions with respect to the chain- and periodicity
structure, both of which appear as necessary conditions for §J or EJ to be

a contraction operator (for some J = 1,2,...).

*
Al: There exists a randomized aperiodic policy £ € SRMG' whcih has R as
its single subchain.
e There exists a randomized aperiodic policy £ € SR, which has R as its

single subchain.

Note that A1 and A2 strenghten the conditions (UNI) and (UR) that were intro-

duced in sections 4 and 6 of the previous chapter by requiring the policy

f to have the additional property of aperiodicity. The following statements

are equivalent formulations for both Al and A2, which are expressed in terms
of the structure of the finite set of pure (maximal gain) policies only (cf.

corollary 3.3 in [109] and th.3.1 part (¢) in [110], and observe that Sy
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appears as the set of all maximal gain policies, when taking all q% = 0}):

i
*
Al: Let ¢ = {cc Q| C is a subchain for P(f), for some f ¢ S MG}

Then (a) for any pair C, C' € C*, there exists {C(l)

C(n) ) e C* and c(i) n c(i+1)

=c, c2), .,
# @ (i=1,...,n-1)

(b) the integers which appear as the period of some subchain of

= C'} with C

some policy in S , are relatively prime.

PMG
Aé: Let C = {C € Q| C is a subchain for P(f), for some f € SP}
Then (a) for any pair C, C' € @, there exists ﬂfl) =C, C(Qh...,c(n)=
. R . i+
= C'} with C(l) e C and C(l) n C(l D ¢ (i =1,...,n)

(b) the integers which appear as the period of some subchain of

some policy in SP’ are relatively prime.

We note that whereas part (b) of Ai implies part (b) of Aé the parts (a) of

Ai and Aé are mutually independent. In addition, we remark that more effi-
cient procedures have been established to verify A, and A, (or alternatively

1 2
Ai and Aé). (cf. [109] and [110]).

THEOREM 2.2.2. (Necessary conditions for T to be a contraction mapping) .
= , , =N
Let T be a J~step contraction mapping on E for some J = 1,2,... (cf.

(2.1.2)). Then

(1) v € V is unique up to a multiple of 1, i.e. (UNI) holds
(2) g: = g" for all i € Q; hence L(i) = K(i), for all i ¢ Q and Ox = Tx
for all x € EN.

(3) A and A, hold.

PROOF. Let v©, vO° ¢ V. By a repeated application of (1.4.15), we obtain,
using (1.6.4):
N} * *
99 = v 4 Jg and TJVOO = v 4 Jg .

hence

- J F
splvP-v°] = splT vo-1"v"°7 < (1-p) splv®~v°°T,

which implies sp[vowvoo] = 0, or v € V is unique up to a multiple of 1.
This condition in turn, is equivalent with the existence of a policy

f e SRMG’ which has R* as its single subchain i.e. with (UNI) (cf. section
4 of chapter 1).

Condition Al' i.e. the fact that even aperiodic policies can be found
with this property, then follows from the convergence of {Tnx - ng*}:~1
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for all x ¢ E (cf. theorem 2.2.1, using th.5.4 part (b) and th.3.1 part
(f) of [110]). The existence of a unichained maximal gain policy in turn
implies part (2) of the theorem.

Next, assume to the contrary that A2 does not hold. State i is said

to reach state j, if there exists a policy f € S_, and some integer r 2= O,

P

* *
such that P(f)}i:j > 0. Let £ be any randomized policy which has fik >0

for all i € Q, k € K(i). We claim

(2.2.3) there exists a pair of states jl' € R such that j2 does not

)
reach jl'
For assuming the contrary of (2.2.3) would imply that all states in
R communicate with each other under P(f*), i.e. R(f*) = ﬁ, in view of
R(f*) < i, following from the definition (1.4.13). This contradicts our

assumption that A, does not hold, since in this case P(f*) has to be ape-

riodic. To verifyzthe latter, fix an aperiodic maximal gain policy h, the
existence of which was shown above. Let i € R(h) € R and note that 1 <
greatest common divisor (g.c.d.){n!P(f*)?i > 0} < g.c.d.{an(h)rili > 0} =1,
where the last equality follows from the aperiodicity of h (cf. [71]), and
where the second inequality is due to {n]P(f*)Iili > 0} 2 {an(h)?i > 0}, .
the latter following from the definition of f*.

Hence, P(f*) is aperiodic, thus completing the proof of (2.2.3).
Next, fix a policy f1 € SP with j1 € R(fl) and let C be the subchain of
P(fl) which contains jl' Obviously j2 does not reach any one of the states
in C. Next choose x € EN such that X, = A>>1 for i € C and X, = 0(1) other-

o]

wise, where 0(1) denotes any bounded term in A. Let v® satisfy (1.4.15).

Since

% £

i

[\

J J-1
[p(e) %], + Ly [P(E)Tale) ],

and since C is a subchain of P(fl)' we have for each J = 1,

J
T x,

5 A+ 0(1), for i € C.

Since j, cannot reach C, we have (Tx)., = 0(1) and so (TJx). = 0(1).
2 3 22

2
Finally observing that TJvO = 0(1), we have
sp[TJx - TJVO] =X+ 0(1),

whereas

splx - v°] = A + 0(1)
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as well. Conclude that for each J 2 1,

N
u,v € E with splu-v] > 0} 2

.
v

{sp[TJu-TJv]
BUPY e S

splu-v]
J J o
> lim splT x-T"v"] _ 1,
A splx-v®]

thus contradicting the fact that T is a contraction mapping. This proves

A, by contradiction. 0

COROLLARY 2.2.3. Fix J = 1,2,...

= , =N .

(1) Q is a J-step contraction operator on E , for some contraction factor
p >0 (cf. (2.1.2)) if and only if

(2) T is a J~-step contraction operator on EN, for some contraction factor

p > 0.

In addition both (1) and (2) imply that the Q- and T-operators coincide.

PROOF .
(2) ===> (1): follows from theorem 2.2.2 since condition (2) implies Q = T.
(1) ===> (2): we recall that the Q operator reduces to the T operator as

follows:

N
for each x ¢ E there exists a scalar tO(x), such that

Qn(x+tg*) = Tn(x+tg*) forn=1,2,... and t 2 to(x)

the proof of which is easy and may be found in lemma 2.2, part (g) of [111].
N
Next, assume to the contrary, that there exist two vectors x,vy ¢ E , such

that

sp[TJx - TJy] > (1-p) splx-yl.

Let t 2 max{to(x),to(y)} and observe, using (1.6.4), that
splo”? (ertg™) = o7 (y+tg™ T = spl1” (xtg™) - 17 (y+tg™) 1 =
= splTx - Ty > (1-p) spl (x+tg™) - (y+tg™)1,

thus contradicting condition (1). 0

= = . =N .
REMARK 1. If Q (oxr T) is a J-step contraction operator on E , with contrac-

tion factor p, then in the geometric convergence result achieved in theorem
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2.2.1, an upper bound may be obtained for the number of steps J needed for

2
contraction, i.e. there exists an integer M < N~ - 2N + 2 and a number A,

M .
with 0 £ A £ (1-p) /3 such that for each x € EN, there exists a vo=vo(x)e v
with
+ %*
”QnM rxl - (nM+r)qi - vz“ <" splx-v°]

n=1,2,...; r=20,...,M1; 1€ Q.

The upperbound on M holds whenever condition Al is satisfied, as was pointed
out in (1.6.25) and we know from th.2.2.2 that Al holds whenever é is a
(J-step) contraction operator.

In addition the upperbound on M is at least sharp up to a term of the
order 0(N) as has been demonstrated by example 2 in [111] (cf. also section
6 of chapter 1). One may verify that in this example, the 5—operator is a

contraction operator.

We next introduce a general "scrambling type" recurrency condition
under which the é—operator will be shown to be a contraction operator (cf.

also [1],.[51]):

(S): there exists an integer J 2 1, such that for every pair of J-tuples
of pure policies (fl,...,fJ) and (hl,...,hJ):

(2.2.4) Z?=1

mln[P(fJ)...P(fl)ilj; P(hJ)"'P(hl)izj] > 0; for allll#lze Q.

Note that if (2.2.4) holds for some integer J 2 1, then it equally holds
for any integer m > J (cf. e.g. the proof of lemma V. 2.3 in [67], or lemma
3.3.2 part (b)).

Theorem 2.2.4 below shows that this condition (S), encompasses a number

of important and easily checkable conditions.

THEOREM 2.2.4. The following conditions are special cases of condition (S):

k k

. 1 2 . . .
>
(1) zj mln(Piij' Pi2j) 0 for all i # i, and kl € K(ll),
k2 € K(lz).
(2) There exists a state s and an integer v = 1, such that

1 2
p(f )...P(fv)is >0 for all £1,£2,...,£" ¢ Spi i€ @ (cf. wHITE [131]).

(3) Every policy is unichained; there exists a state s € Q which is recur-
rent under every policy, and_P];s > 0 for all k € K(s).

(4) Every policy is unichained and Pii >0 for all i € @, k € K(i).
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PROCF. (1) ==> (8) with J = 1; (2) ==> (8) with J = v, was shown in [131];
(3) ==> (2) with v = N - 1, was shown in [1]J th.2. (4) ==> (8): Fix two

i, ¢ Q with

sequences of policies (fN""'fl) and (hN""’hl) and il’ 5

i # i Let

S(n) ={j!rwfl)...P(fn§1j>~o}and w(n)w{jip(hl)”.?(hn)izj > 0.

Note that, in view of P?i >0 for all i € Q, k € K(i):

(2.2.5) S(n+l) 2 S(n), W(n+l) 2 W(n) n

L]

1,2,...

Thus assuming to the contrary that S(N) n W(N) = @, it follows that

S(m) n W(m) = @, for all 0 £ m £ N, Together this result and the fact that
S(k) u W(k) is nondecreasing in k, implies for some m < N, S(m+l) = S(m)
and W(m+1) = W(m). Letting £" be any policy such that fﬁ(i) = fm+1(i) for
i € S(m) and f*(i) = hm+1(i) for i € ¥W(m), we then hawe that both S(m) and
W(m) are closed sets of states for P(f*). This contradicts the unichained-

ness of P(f*) and so S(N) n W(N) is non-empty.

REMARK 2. Observe that condition (1) requires each P(£f), f ¢ S to be

P’
scrambling (cf. e.g. [51]). In addition we note that conditions (1), (2)

and (4) are mutually independent. To verify that (2) =k> (1), and (2) 5=> (4),
consider an example in which SP = {f}, with

|
|

P(f) =

[eleole)
o O sk
* ¥ O

which satisfies (2) with v = 2 (where a * indicates a positive entry). Next,

the example in which S, = {fl,fz} with

*
*
*

P(fl) = and P(f2)

o OO

(@2 3

ocoo
*

O % %

satisfies (1) but not White's condition, nor (4). Finally, the example with

§p = {f} and

<
< %
* % O

[0

shows (4) =£> (1), whereas (4)‘=#> (2) follows from the fact that (4)

includes cases where no state is recurrent under every policy. Finally
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observe that condition (S) requires each policy to have a unichained and
aperiodic tpm.

Finally we note that (S) is not necessarily satisfied, in case there
is an integer J 2 1 such that for all fJ,...,f1 € SP the stochastic matrix
P(fJ)...P(fl) is scrambling, where a stochastic matrix P = (Pij); i,j e Q

is said to be scrambling if:

XN minlp, .;P, .1 >0 for all i,,i € Q.
j=1 i j i, j

1 P 1772
This can be verified from the example in which SP = {fi’f2} with
0 * 0 0 = 0
P(fl) =10 * 0|, and P(fz) = |x 0 =*
*x 0 O * 0 O

Verify that, the product matrix of the tpm's of any triple of policies is

scrambling. However for any h = 1,

9 0 = O
P(f, )...P(E, )P(fl) P(fl) = {0 % 0|, and
1 n 0 % 0
5 * 0 *
P(f, )...P(f, JP(£,) P(f,)) = |*x 0 =
i i 1 2
1 h [x o =

which shows that (2.2.4) can't be satisfied for any J21, i.e. (S) does not
hold.
Theorem 2.2.5 below shows that condition (S) is sufficient for é to

be a (J~step) contraction operator:

THEOREM 2.2.5. Condition (S) is a sufficient condition for 5 to be a

X =N
(J-step) contraction operator on E .

PROOF. The proof of this theorem is related to the one of th.l in [1].

First, define

). L1

(2.2.6) o= min{zj min(P(£)...P(£), Vi3

37 P(hJ)...P(h

i ke Py (1 <k =d)},

ot

5 with i # iys f
where o > 0 follows from (2.2.4) and the fact that in (2.2.6) the minimum

is taken over a finite number of combinations. We shall prove that:
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(2.2.7) (QJx—QJy)i - (QJx—QJy)'Q < (1-a) splx-y]l for all i, % € Q.

The theorem clearly follows from (2.2.7). The inequality in (2.2.7) triv-
ially holds when i = ¢. Fix now 1 # £, and let

J-1
0%, = q(fJ)i * lyey P(fJ)...P(fJ_k+1)q(fJ_k)i+P(fJ)...P(f1)xi,
and
J J-1
Qy, = ath), + zk=1 P(h)...P(h o alhy ) +P(h)...P(h)y,.

Next introduce the shorthand notation,
Bj = P(fJ)“'P(fl)ij and Yj = P(hJ)"'P(hl)Zj'
Using the fact that
+ -
A, = -).a, if a. =0
zJ 3 >jj i zJ 3 !
as well as the fact that (a_b)+ = a - min(a,b), we obtain

g3 I I oy oy
(0°x ~ Q y)i (Ox -0 y)ﬁ < Xij(x y)j vaj(x y)j

il

S T e < g ot
thsj yj] (xj yj) + Zj[Bj Yj] (x y)j (x=y) thsj vy

+

(x-y)

Y [g.—y.1T = —~. 1" —y] =
min kj“sj Yj] Xj[sj Yj] splx-y]

it

[1—zjmin(8j,yj)] splx-y] < (1-a) splx-yl. ]

2.3. ON TRANSFORMING UNICHAINED MARKOV RENEWAL PROGRAMS INTO EQUIVALENT
AND CONTRACTING MARKOV DECISION PROBLEMS

In this section, we consider the more general class of Markov Renewal
Programs, as introduced in section 9 of chapter 1. It was pointed out in
section 9 of chapter 1 that by replacing %tj = T? (i,5 ¢ 2, k e K{(1)), and
by applying the data-transformation (1,9.9) with the choice ¢ = 1, our MRP~-
model will be transformed into an equivalent undiscounted MDP-problem where
the equivalency between two undiscounted MRPs was defined by (EQUI) in
(1.9.6).

Let § be the value-iteration operator in this transformed MDP. It was
pointed out that, by taking T in (1.9.9) strictly smaller than the upper-—

~ %, ,
bound given in (1.9.10), {Q%x-ng }n=1 converges geometrically fast to a
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~ N ~
solution v € V, i.e. for each x € E , there exists a vector L(x) € V, and

numbers K = K(x), 0 £ X < 1, such that:
10"M% - ng* - L)l <k Xn, n=20,1,2,...

This shows that, by applying the above data-transformation, and by
subsequently doing value-iteration with respect to the transformed MDP,
we find sequences which approach g* and some v € G; moreover, it follows
from a generalization of ODONI [89] and from the fact that the original
MRP and the transformed MDP are equivalent, that any policy which is gen-
erated by the value-iteration scheme after a large enough number of iter-

ations is maximal gain (in the original MRP).

We henceforth assume condition (U) to hold

(2.3.1) (U): every pure policy in the MRP is unichained, i.e. n(f) = 1,

f e SP.

We note that under (U), g* = <g*>l_and as a consequence V = v (cf. section
1.9). It thus follows that under (U), T L(x) € V, for all x € EN, so that
the above described value iteration method will yield us in addition a
sequence converging at a geometric rate towards a solution of the optimal-
ity equation in the original MRP.

We next make the important observation that, with Tt chosen strictly
less than the upperbound in (1.9.10), the §—operator satisfies condition
(4) of th.2.2.4, and as a consequence has the considerably stronger prop-—
erty of being J-step contracting for some J < N (cf. th.2.2.5), where the
fact that J can be chosen less than or equal to N follows from the proof
of th.2.2.4.

Note that since the J-operator is contracting under (U), v ¢ v
is unique up to a multiple of 1 (cf. th.2.2.2), and in view of

Veve={ve BN | Tml

v ¢ ¥V}, we have that v € V is unique up to a multiple
of i_as well. As a consequence the representation ¥ of v € vV, in EN is

unique. In the remainder of this chapter, we will show that for unichained
MRP's the above data-transformation and the resulting contraction property

of the operator § in the transformed MDP may be exploited, in order to

(a) find lower and upper bounds for 5*
—%
(b) derive variational characterizations (extremal principles) for v

(c) derive a test for eliminating nonoptimal actions.
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—%
To our knowledge, these bounds for v are the first one obtained in un-
discounted MRPs.

. . . =N .
We will use the following representation of E (cf. section 2.1):

=N

N N -
E ={xeE | Xy = 0} so that the reprsentation of a vector x € E in o

is given by %, with x, = x, - x_, i € Q. Note that since x . 0<% ,
i i N min max

in

for all x € EN:
(2.3.2) %l < spl[x] = splx].

For ease of presentation, we first discuss the above topics for the dis-

crete time MDP as considered in section 2.1.

THEOREM 2.3.1. Consider the MDP value iteration operator Q. Define é as
the reduction of the operator Q to EN, i.e. O: BN & with §x==Qx~[Qx]N1:
Assume that 5 is a (J-step) contraction operator (for some J 2 1) on EN,
with contraction factor p > 0 (cf. (2.1.2)).

Finally, let G* be the unique fixed point of 5 on EN, i.e. let 5*

. . . =N
be the unique representation of v € V in E .

(a) (Upper and lower bounds)

For all X € EN, n20,1€e Qoand 0 < ¢ £ J-1¢

=nJ+xr

- _ - T+ .
0 X, =P 1(1—p)nsp[QJx"xJ < v; < QnJ * L

X 0 (1«p)nsp[QJx—x]
and, for v € V

nJ+r *

spl O x-v ] < pul(l-p)nsp[QJx—x]

(b) (Alternative elimination)

N . .
If for some % € E , some state 1 € Q, and some action k ¢ K(i)

k vk J J-1 -1 J
.3. + - - - -
(2.3.3) qa; ijpijxj X < (% -~ Q x)min p “splo x-x],
then k does not satisfy the maximum in the optimality equation (1.4.15) i.e.

k is non-optimal.

PROOF. The proof of part (a) goes along lines with the one given for lemma
1.2.1.

e *
(a) Using the continuity of the splx]-norm on EN, the fact that g = <g >1,

as well as (2.3.2) we obtain:

=nJd+r * nd+xr
|Q X, = viI < splQ

. X - lim{QmJ+rx - (mJ+r)g*}] =
1 Jiigasd



61

- LJ+
= lim sp[QmJ+rx - QnJ+rx] = lim sp[zm_l(Q(E+1)J+rx -0 %] =
e e L=n
< 2z=n Sp[Q(E+1)J+rx B Q£J+rx] < z;=n(1_p)l sp[QJ+rX B er]

D—l(l-o)n sp[QJx - x]

A

where the last inequality uses (1.4.1). This verifies part (a).

* J-1
(b) It follows from the proof of theorem 1 of [89] that <g >2 (QJX—Q %) .

min’
Suppose alternative k € K(i) which satisfies (2.3.3), attains the max-
imum in the optimality equation (1.4.15). Note from corollary 2.2.3
that the Q-operator and T-operator coincide. Then, using part (a) and

*
the fact that v € V, we have

k k k * k =% % k -
.+ )P x.-x, =g, - + ). Po.v, = v, + ) P, (x,~v,) -
9+l 3597 T4 T 9 ZJ i35 7 Vit L i3 %577y

v

( —*) ta > ( -*) ( —*) gt -*] .
X;7Vy g =z (x=v) . x~v) ot 9 = -spix-v g

> -p ! sp[QJx—x] + (QJx—QJ 1x)min'
REMARK 3. The reduction of the Q-operator to EN, was first used in White
[131], in order to ensure the boundedness of his value~iteration scheme.

The lower- and upper bounds for G* are in fact generalizations of the lower-
and upper bounds obtained by MACQUEEN [81] and PORTEUS [94] for discounted
MDP's (cf. lemma 1.2.1). Note that our bounds with n = 0 coincide with the

analogue of MacQueen's bounds, whereas the analogue of Porteus' bounds is

obtained by taking n = 1.

We now return to the general MRP-model. By using the above data-trans-
formation, and by applying th.2.3.1 to the transformed MDP, we obtain upper-
and lower bounds as well as variational characterizations for each of the

3 .
components of v , and in addition a test for eliminating non-optimal actions.

COROLLARY 2.3.2. Consider a unichained MRP. Fix O<T<min{T§/(1—P§i)|(i,k)

with P?i < 1}. Let § be the value-iteration operator in the transformed MDP
(cf. section 1.9). Next, let QO be the reduction of J to EN, i.e. §x=§x—[§X]Nl
for all X € EN, Finally, let p be the (N-step) contraction factor of the
operator § (cf. (2.1.2) and th.2.2.4). Then, the unigue 5* € V, with §;==O,

satisfies
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- - ~N -i_% _=nN+ -1 ~N

(a) QnN+rxi~p 1(l—p)nsp[Q x-x] £ T 1vi SQn rxi+p (1—p)nsp[Q x-%]
N .
for all x €e E, andn =0,1,...; r=20,...,N-1; 1€ Q
* ~nN+xr -1 n ~n
= - - —-x]
(b) v, = mmax_ N {0 X, p (1-p) splo x-x1}
. =nN+xr -1 n ~N
= Tmin__ N {0 x; 0 " (1-p) splQ x-x1}

ie®Q; n=20,1,...; r=0,...,n-1.

N . .
(c) If for some x € E , some state i € Q, and some action k e K(i)
~k ~Kk ~N ~N-1 -1 ~N
+ P - X, <(0 -0 . - . -
q; Ej 1% 7% (Qx - 0 x)mln p “splQ x-x]

then k does not satisfy the maximum in the optimality equation

(1.9.5).

The variational characterizations in part (b) follow from part (a) by
taking x = v € V and using the fact that év = G* for all v € V. Variation-
al characterizations for g* were recently obtained in [112]. One might use
both lower and upper bounds for G*, and the test for eliminating suboptimal
actions (cf. part (a)), in the course of the following value-iteration

* =%
scheme for finding g , v and some maximal gain policy.

- B ~k ~k
(2.3.4)  y(n), =Qy(n-1), = maxkEK(i){qi + ijijy(n 1)j}

~k ¢ ~k
- + P -1 i
maneK(N){qN Zj Njy(n )j}, ieQ
with y(0) € g chosen arbitrarily.
Let fn be a policy which achieves the N maxima in (2.3.4). Define

OL(n) = [Qy(n-1) - y(n~1)]min; @U(n) = [Qy(n-1) - y(n-l)JmaX-

(=]
The sequence {y(n)}n_1

discussed properties.

has the following, easily verified and previously

(a) Ty (n) - v*

(b) 0p(m) < g(f) < g* < OU(n) (cf. HASTINGS [53] and ODONI [89])

with lim @t(n) = g* = lim © (n)
e L poe U

() f, is maximal gain, for all n sufficiently large (cf. ODONI [89]).
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E.g. whenever at some stage n, i.e. for x = y(n), the test in part (c) of
cor.2.3.2 is met for some i € @, and k € K(i), k may be deleted permanently
from K(i) thus reducing the number of calculations in the following itera-
tions. However, both the application of the bounds for G* as the use of the
elimination test require the computation of at least some lower bound of the

(N-step) contraction factor of the operator é.

PROPOSITION 2.3.3. Define & by the right hand side of (2.2.6) with P(f) re-

placed by B(f), and define

(2.3.5) p = min{P(fN)...P(f )ijIP(fN)...P(f > 0; 1 e Q; fl,...,fNe SPL

1 115

Then

(2.3.6) 0 < 5 <a, i.e. 6 may be used as a lower bound on the (N-step)

contraction factor of 5.

PROOF. By the proof of th.2.2.5 we can take the scrambling coefficient o
as (N-step) contraction factor for the operator @. We shall now verify
(2.3.6). p> 0 is immediate from the fact that in (2.3.5) the minimum is
taken over a finite number of positive numbers. Next, let the minimum in

* *

(2.2.6) (with P(f) replaced by P(f)) be attained for s,t e Q; fk'hk

(1 < k £ N) and let y be such that

€ SP

. ~ * ~ * ~ * ~ *
B = mln[P(fN)...P(fl)sy,P(hN).,.P(hl)tYJ > 0.

820, O

Y

Then o
The lower bound p may be computed as follows. Let x° be defined by
o .~k . . .
X, = mJ.n{Pij >0l 3 €9, k € RK(1)}, ie Q.

Then, p = [UNxo]min’ where the operator U is defined by:

~k N
2.3.7 = mi i ; .
(2.3.7) Uxi mlnkeK(i) EjPinj’ ie Q; xe E

Observe from the analogue of (1.4.1) that

- N N_
6= . >tV 22 xC
min min min
so that
2 . Tk ~k . .
6 =min{P, .| P,, > 0; i,j € 9, k € K(i)}
ijl ij
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is another lower bound on o (it may however be worthwhile to do a number of
iterations with the U-operator on XO, in order to obtain a better approxi-
mation of Q).

If the employed approximation for o << 1, then the bounds of cor.2.3.2
part (a) will not be sharp, and the test of part (c) will not be met unless
splx~v] is very close to zero, namely when x = y(n) and n >> 1. Hence, if
5 << 1, the bounds and the test will only be important near the very end
of the calculations. In addition one should observe that N represents the
worst case behaviour for the number of steps needed for contraction, which
is enormously high, compared with the empirical fact that in most cases
J=1or 2 (cf. e.g. [120] and [122]).

Alternatively, one might want to use the test of part (c¢) in combina-
tion with a device, given recently by HASTINGS [54] in order to eliminate

actions on a provisional rather than on a permanent basis.
REMARK 4. Hastings® test works as follows. Let
(n,i,k) = oy(-1) - a¢ - 3.55. ym-1). 2 0; ¢(n) = 6_(n) - 0_(n)
gin,i, Qy q; 315 Yy 5 ° Vi o I, ’
and

H(m,n,i,k) = g(n,i,k) - Z’g;}l $(c), m > n.

Then, action k € K(i) is non-optimal at value iteration stage m, if
H(m,n,i,k) > 0 (for some n < m).

We observe that theorem 2 of [54] holds unconditionally, for every
(multichain) MDP, i.e. there is a stage after which no nonoptimal action
will pass the above test. This is an immediate consequence of the geometric
convergence result in section 6 of chapter 1. However, whereas the identifi-
cation of non-optimal actions is possible in the unichain case, using the
above value-iteration scheme and cor.2.3.2 part (c), this is (so far) in-

feasible for the general multichain case.



CHAPTER 3

Nonstationary Markov Decision

Problems with converging parameters

3.1. INTRODUCTION AND SUMMARY

In chapter 1, while discussing value-iteration in discounted and un-
discounted MDPs, we assumed that all of the parameters of the model were
known, perfectly and in advance.

In a large number of applications, however, these parameters can only
be obtained via approximating schemes, or otherwise it is computationally
preferable to approximate the parameters rather than employing exact algo-
rithms for their computation.

In this chapter we distinguish between the set K(i) representing the
finite set of all (feasible and non-feasible) alternatives in state i (ieQ),
and the set K(i) ¢ K(i), the set of all feasible alternatives.

So, as a basic assumption, we will suppose throughout this chapter
that the parameters q?, P?j and the sets K(i) (i€, ke K(i)) are unknown

in advance, but that instead one can compute sequences

(3.1.1) {K(i,n)}:=1 + K(i); i€ Q where K(i,n) ¢ K(i), i € Q; n 2 1
3.1.2) Aoy} _, ~ qi<; ieQ; ke K(i)

(3.1.3) 25 m)°, >p5.; 1,9 €q, k € K(i), where
ij n=1 ij

Pk.(n) 2 0 and 2. P%.(n) =1; i,7 € Q; k e K(1); n 2 1.
1] J 1]
The following three examples illustrate that this situation occurs in a

large number of applications:

. . k
EXAMPLE 1. MDPs in which e.g. the one-step rewards q; appear as the optimal
values of underlying optimization problems. As an example, consider a re-

source or inventory system which serves to supply (say) n simultaneous users.
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At each period of time, one has to decide upon the amount to be withdrawn
from the system, as well as upon the optimal way to allocate this amount
among the n users. With i representing the inventory level (in the resource
system) and k the amount to be withdrawn from the latter, the one-step net
benefit qt may be obtained by subtracting a holding cost function h(i) and
a transfer cost T(k) from the benefit to the entire system that is associ-
ated with an optimal allocation of k units among the users. The latter may
e.g. be computed by solving a mathematical program so that q? could e.qg.

have the following structure

k
(3.1.4) q; = - h(i) - T(k) + max c(x)
s.t. X € X
f(x) <k
x 20
where xi (i =1,...,n) represents the amount allocated to the i-th user,

and where the constraints, x € X, describe the restrictions imposed by
the other resources and by the technological structure.
There are various reasons for avoiding the computation of all of the

k
q; (1 € @, k € K(1)) prior to solving the MDP:

(a) in many applications, exact solution methods for the mathematical pro-
gram in (3.1.4) are either non-available or hardly feasible, i.e. one
needs or prefers to employ an approximation method, like a Lagrangean
technique, a gradient projection method, or a reduced gradient method.

- k(i) mathematical programs with

these approximation methods and next using €~ approximations for the

N
Rather than first solving the Xi

qt when solving the MDP -~ in case a good stopping criterion for the
algorithms that solve the mathematical programs is at all available -
one would prefer to use the approximating schemes for the q?, in a
method which simultaneously solves the MDP.

(b) For the actions that turn out to be suboptimal, which in general rep-

resents the vast majority of the total number of XT_ lx(i)l, there

1
is no need to do the computational effort of calculating the associ-

ated one~step expected rewards precisely.

In any method which generates approximating schemes for the numbers
ki . . ,
{qil ieQ, keK(i)} and simultaneously solves the MDP, one could stop the
schemes associated with those actions that a test procedure detects to be

suboptimal.
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We recall from chapter 1 that suboptimality tests of this kind have
been derived in connection with the value-iteration method, both for the
discounted and undiscounted version of the model. With respect to the for-
mer we referred to GRINOLD [50], HASTINGS and MELLC [55], MACQUEEN [81]
and PORTEUS [94]; and as far as the latter is concerned, we recalled that
a device for temporary elimination of suboptimal actions was proposed by
HASTINGS [54], which, although originally stated for the unichained case,
may be applied to the general multichain model (cf. remark 4 in chapter 2).

In addition, for the unichained undiscounted case, a test for perma-
nent elimination of actions was derived in section 3 of chapter 2. All of
these elimination procedures can be adapted straightforwardly for the case,
where rather than applying value-iteration to a MDP with exact knowledge
of the expected rewards, one would use upper and lower bounds that ulti-
mately converge to the latter.

Note that most of the approximation techniques, mentioned above for
solving the mathematical programs in (3.1.4) have the special feature that,
whenever convergence occurs, the rate of convergence is at least geometric,
where a sequence {x(n)}°° is said to converge to x* geometrically if there

n=1
exist numbers K > 0, and 0 < A < 1 such that

(3.1.5)  Ixm) - x1 <x A", =n=0,1,2,...
(cf. e.g. sections 11.5 and 11.7 in LUENBERGER [80], as well as a recent
survey on the subject by GOFFIN [491]).

As examples of the above described model, we refer to RUSSEL [102],
VERKHOVSKY [128] and VERKHOVSKY and SPIVAK [129].

EXAMPLE 2. MDPs are generally used for describing dynamic systems which
have to be controlled on a periodic basis and the design of which is as-
sumed to be given. In many applications, however, one faces the problem

of simultaneously having to make a one-time decision with respect to one

or more design parameters, as well as finding an optimal policy for oper-
ating the system, once having been constructed. Usually both the laws of
motion and the operating costs of the system are heavily affected by the
choice of the design parameters. In mathematical terms, the problem amounts
to solving:

(3.1.6) min o [V (@) + ¢ ()]

<<
ocomon_ 1
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where o represents a scalar or vector of design parameters. In the dis-
counted version of the model, Vi(a*) would represent the minimal expected
total discounted operating costs, when the initial state of the system is
i, and ¢(a*) the design costs, when choosing o = o, Similarly, in the un-
discounted version of the model, Vi(a*) would denote the minimal long run
average operating cost when starting in state i, and ¢(a*) the depreciation
and interest costs of the investment that is needed to implement the design
parameters a*. Note that the one-step rewards and transition probabilities

in the MDP depend upon o, i.e.

k def x x def i o )
(3.1.7) qi = qi(a); Pij = Pij(a); i,j € 9; k e K(i),

(3.1.6) may be considered as an unconstrained optimization problem with
respect to o, which is well-defined under obvious continuity assumptions.
Note that the optimal value of a MDP is not necessarily differentiable with
respect to its parameters, and even it it is, the derivatives are extremely
hard to compute.

As a consequence, one will have to confine oneself to direct search
methods, like the Fibonacci method or the simplex method (cf. MURRAY [87]).
Note that each evaluation of the objective function in (3.1.6) requires
the solution of a MDP which is extremely expensive. On the other hand, in
most direct search methods, one is, at each step of the algorithm merely
interested in the relative order of the values of the objective function
in a number of points, i.e. one can quit calculating the component Vi(u)
for some trial point o, as soon as it becomes clear that o is suboptimal.
We recall that when solving the MDP via value-iteration, both in the dis-
counted model {(cf. MACQUEEN [81], PORTEUS [941) and in the undiscounted uni-
chain case (cf. ODONI [89]) an upper bound on Vi(a) may be calculated that
converges to Vi(u) as the number of iterations tends to infinity. Hence,
suboptimality of any point o may be detected after a finite number of steps,
after which the search procedure may be continued by starting the evalua-
tion of the objective function in (3.1.6) for a different choice of a.

The above considerations lead to a proposal for solving the entire
problem (3.1.6) by a single value~iteration scheme in which the parameters
q?(.) and P?j(.) are adapted in accordance with the search procedure and
ultimately converge to the parameter values corresponding with the optimal
value of a.

Note that most direct séarch methods have the property of locating

the optimum at a geometric rate, such that in general the approximations
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for the parameters q?(.) and P?j(.) will converge to the desired values at
a geometric rate as well (cf. the proposition on p.130 in LUENBERGER [80]).
For a more detailed description of the proposed method we refer to

the appendix in this chapter.

EXAMPLE 3. Solving nested sequences of (piecewise linear) functional equa-
tions where each functional (vector)-equation has the structure of the op-
timality equation of an undiscounted MDP or Markov Renewal Program (cf.

(1.4.15)):

(3.1.8)  x(0), = max [a%0) + ), 2 x0),1, ieaq
.3 o i J 1] J

. keK (1)
x(m)i = max [ak(m) + ), Pk, x(m).], i€
. keK ™ (d) L J
x(r), = max %) + 5, P x(n.1, ie@
kek' (1) * 4 3
where Kr(i) c ... C Km(i) < ... & Ko(i), 1 £m £ r~1, and where the gquanti-

ties a?(m) and the sets K" (i) both depend upon x(0),...,x(m-1) i.e. upon the
solution of the first m functional equations in the sequence (3.1.8). A se-
quence of nested equations of this type occurs e.g. when trying to find the
maximal gain rate vector or some of the higher terms in the Laurent series
expansion of the maximal total discounted return vector in powers of the
interest rate; and accordingly, when trying to locate maximal gain policies,
or policies that are optimal under more selective (sensitive discounted ox
average overtaking) optimality criteria (cf. VEINOTT [127], MILLER and
VEINOTT [85], DENARDO [22]). For a more detailed specification of the se-
quence (3.1.8) and for a characterization of the solution set, we refer to

chapter 4.

In view of the dependence of the sets Km(i) and the quantities a?(m)
on the solution to the previous m equations in (3.1.8) one conceivable way
of solving the m+l-st equation is by computing these sets and quantities
beforehand with the help of an exact solution method (Linear Programming,
or the Policy Iteration Algorithm, cf. DENARDO [22] and VEINOTT [127]). How-
ever, when the state space becomes large, exact solution methods become in-
feasible, and a successive approximation method is needed to solve the entire
system; moreover, even when exact methods can still be applied, their use
may none the less invoke numericél instability problems (cf. chapter 4).

Such a successive approximation method will be developed in chapter 4,
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where a sequence of value-iteration schemes is simultaneously generated in
order to solve the entire system of equations (3.1.8). The schemes that aim
at finding a solution to the m+l-st equation, have a?(m) and the sets Km(i)
replaced by approximating sequences {a?(m)[n]}:=1 and {Km(i)[n]}:=1 which
are distilled from the schemes that aim at finding a solution to the pre-
vious equations, and which have the property of converging to the correct
quantities and sets.

All of the schemes involved may be interpreted as value-iteration
schemes for undiscounted MDPs, the parameters of which are replaced by ap—
proximating sequences.

Moreover, here again, the sequences {a};(m)[n]}:=1 may be constructed

in such a way that

(3.1.9) at(m)[n] > a?(m), geometrically as n > «®; i € Q, k € Ko(i),

m= 0,...,r

and the successive approximation method will be shown to converge to a

solution of the entire system (3.1.8) at a geometric rate as well.

In this chapter we study, the working of value-iteration for the case
where the parameters of the MDP have to be approximated, i.e. where at the
n~th stage, they are substituted by the currently available approximations
qt(n), P?j(n) and K(i,n).

For the discounted version of the model, geometric convergence can
easily be obtained in the general multichain case, as is briefly shown in
section 2. No assumptions are made with respect to the type of convergence
in (3.1.2) and (3.1.3).

For the undiscounted version, we henceforth assume:

K, .
(3.1.10)  (6RO) {qfm)} _, ~ q’;, geometrically; i € 9, k € K(i)

k o k L ..
{Pij(n)}n=1 > Pij' geometrically; i,j € Q, k € K(i)

which was satisfied in all of our examples.
A modified value-iteration method is shown to exhibit geometric
convergence for the general multichain model, in case only the rewards and

actions sets have to be approximated.

If the transition probabilities are to be approximated as well, more

care is required since in this case the study of non-stationary Markov
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chains is involved. So far, this topic has only been studied under the uni-
chainedness assumption (for a survey, cf. PAZ [91], SENETA [113] and ISAACSON
and MADSEN [67]). Under this assumption we establish geometric convergence
of our value-iteration method as well. The undiscounted model is dealt with
in section 4, and in the appendix we specify our algorithm for the models,
mentioned in example 2.

First however, we derive in section 3, a new result on non-stationsary
Markov Chains, which will be needed in the subsequent analysis. The results
in this chapter have been distilled from FEDERGRUEN and SCHWEITZER [36],
but for section 3 which is distilled from FEDERGRUEN [33].

3.2. THE DISCOUNTED MODEL

In the discounted version of the model with discount factor 0 < g < 1,
we consider the following iterative scheme:
(3.2.1) v(n+1)i = Q(n)v(n)i, ieQ
where v(0) € EN may be chosen arbitrarily, and where the Q(n)-operators are

defined by:

B k ko .
(3.2.2)  om)x, = la; () + 8 ijij(n,xj], ie Q.

maxkeK(i,n)

One easily verifies that the Q(n)-operators satisfy the property (cf.
(1.2.10)) :

(3.2.3) (a) B[x—y]min < [Q(n)x—Q(n)y]min < [Q(n)x—,()_(n)y]max < B[x—y]max,

so that
®) lom)x - o)yl < Blx-yl.

Finally define Q(n) by O(n)x =0(n)...Q0()x; x € EN°

* *
THEOREM 3.2.1. v(n) > v , geometrically, where v is the maximal total
. I3 * ] . .
discounted return vector, i.e. v 1is the unique solution to v = Qv (cf.

(1.2.2)).

PROOF. Let M be such that qu(n)! <M for all i € R, k e K(i), n = 1,2,...
where M < © follows from (3.1.2). Verify that lv(m)l <M ZZZOBK = M/ (1-B)
for all n 2 1, and conclude thatA{v(n)}:_1 is a bounded sequence. Let

(2] fee]
{v(nk)}k=1 and {v(mk)}k=1 be two convergent subsequences with limit vectors
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[} 00 . . o s
v and v respectively. It is no restriction to assume that oy > m, for

all k =2 1., Apoly {3.2.3) repeatedly to conclude that

m:
(3.2.4)  lvin) - vim)l <8 k Iv(n, -m) = v(O)I

oo

and let k tend to infinity in order to verify that Iv°-v = 0 in view of

the second factor to the right of (3.2.4) being bounded. Hence {V(n)}n=1
converges and its limit vector satisfies the optimality eqaution v = Qv,

*
which implies limn+m v(n) = v . Finally to show that the rate of convergence

is geometric, replace m, in (3.2.4) by a fixed integer m, and let k tend to

k
infinity so as to conclude that

(3.2.5)  lvim) - v < 8%v - v, 0

The set of all optimal policies can be obtained in the same way as in the
stationary model (cf. chapter 1 section 3). In case the parameters qi and
P?j are both approached from below and from above, all of the bounds on v*,
stopping criteria for e-approximations or e-optimal policies, as well as
tests for eliminating suboptimal actions, that were found for the station-

ary model, can be adapted in a straighforward manner.
3.3. ON NON-STATIONARY MARKOV CHAINS WITH CONVERGING TRANSITION MATRICES

In the subsequent analysis for the undiscounted version of this
model, a characterization will be needed of the asymptotic behaviour of

backwards matrix products of the type:
(3.3.1)  P(m+n) ... P(m),

©
as both n, and m tend to infinity. Here {P(m)}m_1 is a non-stationary N-

state Markov chain, with
(3.3.2) lim P(m) = P
Jimacel

Matrix products of the type (3.3.1) are strongly related to the forward

products, known as inhomogeneous Markov chains, and studied in an extensive
literature that started with the papers by HAJNAL [51] (cf.[68], [91], [113]
for a survey of the present state of the art). Other than in the context of

this chapter, the backward matrix products arise e.g.
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(a) in estimate modification processes, where n individuals each of whom
has an estimate of some unknown quantity, enter information exchanges
which lead them to readapt their estimates in an (infinite) sequence
of iterations (cf. DE GROOT [17], and CHATTERJEE and SENETA [14] and
DALKEY [16])

(b) 1in non-stationary Markov Decision Processes when analyzing the total
reward in a planning period of n epochs as n tends to infinity (cf.

MORTON and WECKER [86], and BOWERMAN [12]).

Let U(r,k) be the stochastic matrix defined by
(3.3.3) U(r,k) = P{r+k)...P(x+1), k=1,2,...; ¥ =0,1,...
The sequence {P(k)}:=1 is said to be ergodic (in a backwards direction) if

(3.3.4) Lim U(xr,k) = ld(x)*, r =0

koo

where d(r) is obviously a probability vector, i.e. d(r) = 0 and zi d(r)i-= 1.
Exgodicity of {P(k)}::__1 was shown in CHATTERJEE and SENETA [14] (th.5 and
corollary) for the case where P is aperiodic and unichained, and can equal-
ly be obtained by a mere adaptation of the proof of th.l in ANTHONISSE and
TIOMS [1]. Also in these papers the convergence in (3.3.4) was shown to be

geometrical. Hence we have:

LEMMA 3.3.1, Assume that P is unichained and aperiodic. Then 1imk_)m U(r,k) =

1 d(x)', geometrically.

Note that the rate of convergence of {U(r,k)}:=1 is independent of the rate
at which {P(k)}:=1 approaches P. In this section we characterize the asymp-—
totic behaviour of {d(r)}:=1. First, however, example 4 shows that d(r) may
heavily depend upon P(r), the first matrix in the product.

For any N X N-stochastic matrix Q and for j = 1,...,N let

it

(3.3.5) Mj(Q) = max Qij and mj(Q) min Qij

1 X

i

and note from the identity Q(2)Q(1)..

ij Xk Q(2)ik Q(l)kjp that for any pair

0(1), 9(2) of stochastic matrices:

(3.3.6) Mj(Q(2)Q(1)) < Mj(Q(l)) and mj(Q(Z)Q(l)) > mj(Q(l)); j o= 1,...,N.

A matrix is said to be strictly positive, if all of its entries are strictly
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positive.

EXAMPLE 4. In this example we show that d(r) is strictly positive whenever
P(r) is. In other words, whenever P(r) >0 and P has transient states, d(x) # 7
where 7 is the (unique) stationary probability distribution associated with
the matrix P.

To verify the implication P(r) > 0 = d(r) > 0, note from (3.3.6) that
mj(P(r)) SHH(U(r,k))SDﬁ¥U(r,k))S Mj(P(r)) for r,k = 1,2,... and j = 1,...,N.
Conclude that for all i = 1,...,N: d(x). = lim U(x,k).. =2 m, (P(x)) > O.

J K-> 1] J

Before characterizing the asymptotic behaviour of {d(r)}r , we first

=1
need to introduce the following notions. First for any matrix A = [Aij],

let its norm be given by

(3.3.7)  lal = max, ). |&,.]
i®j ij

and define its delta coefficient §(A) by
(3.3.8)  6(A) =1 - min, . )% . min(a,.,A .)
i,k b=t 15" %%3

(which is one minus the ergodic coefficient, cf. e.g. [67], p.144). The
following lemma recalls a number of elementary properties of the norm and

delta ~ coefficient:

LEMMA 3.3.2.

(a) For any pair of matrices, laBl < lal Isl.

(b) If A and B are stochastic matrices, then §(AB) < §(A)S§(B).

(c}) If A is any matrix with Al = 0, and B is a stochastic matrix,
IaBl < lal &(B).

(d) For any aperiodic and unichained (stochastic) matrix A,

(1) 0 £ 6(&A™) <1 for all n = LN(N+1)

@ Ty, sty < =

PROOF.

(a) Note that zjlaij bijl < (Zj[aij|><2j|bij[>,

(b) cf. lemma V. 2.3 in [67];

(c) Cf. lemma V. 2.4 in [67]; (d) (1) immediate from the combination of
lemma 4.1 and th.4.4 in chapter II of [91]. To verify (d)(2) note that in
view of parts (b) and (d) (1):

-1 -1
o LN(N+1)  L28N T (N+1) )
b <1, o )

Lo—o 8
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where |xl] indicates the largest integer less than or equal to x. 0

The next theorem shows that In' appears as the limit matrix when both
r and k tend to infinity in the matrix product U(r,k); in addition the rate
of convergence is specified. Related results for forward products were re-
cently obtained in HUANG, ISAACSON & VINOGRADE [65].

Let {Ek}:=1 be a non-increasing sequence of positive numbers such that

Ipxy-pl < k=1,2,... .

sk,
THEOREM 3.3.3.
(3.3.9) lim lim U(r,k) = lim 1d(x)*' = 1m',
oo keyoo >0

and

(3.3.10) fd(x)-nl = O(er).
PROOF. We first prove that there exists a scalar K > 0, such that

(3.3.11)  lu(z,x)~P5I < Ke, for all r,k = 1,2,..., i.e.

1o (x, %) "1

O0(e_ ) as r,k + .,
r
In view of lemma 3.3.2, part (d)(2) it is sufficient to show:
- £
(3.3.12) MG, 0-2"1 e (1 + Jp11 6(8 ) for all rk = 1,2,...

Fix r 2 1. Note that (3.3.12) holds for k = 1 and assume it holds for some
k. Then,

k+1“ k—Pk+1H

o (x,k+1)-P = “P(r+k+1)U(r,k)-P(r+k+1)Pk + P(r+k+1)P

e (r+k+1) HU(r,k)«Pk" + UP(r+k+1)~pH§(Pk)

IA

£

k-1 L k k
§(P%) < e (L4, 8(F1)

e (14 J, ) 6(FD) + ¢

IA

r+k+1

where the first inequality follows from part (a) and (c¢) of lemma 3.3.2.
This proves {3.3.12) by complete induction with respect to k.
Fix j = 1,...,N and § > 0 and recall from the aperiodicity and uni~-

chainedness of P that there exists an integer n 2 1 such that

Hence,

(3.3.13) M. (P™) - § < 7. < m. (P + §.
J J J
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Use (3.3.11) with k = ng and the fact that both Mj(.) and mj(.) are Lipschitz

continuous functions on the set of all N X N-matrices, to conclude that,
ng Do
(3.3.14) [Mj(U(r,no))nMj(P Y| = e ); lmj(u(r,no))~mj(p V| = 0te).
Insert (3.3.14) into (3.3.13) to conclude that
(3.3.15) M, (U{x,n )) - 0(e ) - 8§ <7, <m.(U(r,n)) + 0(e ) + 6.
3 o r 3j j o r

Next one verifies by a repeated application of (3.3.6) and in view of the
fact that M, (.} and m,(.) are Lipschitz-continuous, that for all r = 1,2,...
{Mj(U(r,k))}::1 and {mj(U(r,k))};;1 are resp. monotonically non-increasing
and non-decreasing towards Mj(lﬁ(r)') = mj(lﬁ(r)') = d(r)j. In particular

we have for all r = 1,2,...
(3.3.16) m,(U(xr,n )) < d(xr), < M,(U(r,n))
J o J ] o
and insert (3.3.16) into (3.3.15) to conclude that for all § > 0
(3.3.17) d(x), - 0(e ) -~ 6§ <m, <d{r), + 0(e_) + &
J r J 3 r
and hence
la(r),-m | = 0(e ). il
J o] r

Finally, example 5 below shows that the upperbound for the rate of

convergence of {d(r)}:_ towards m is the sharpest possible one:

1

EXAMPLE 5. Let

Lo+ o L - o ] )
Pk) = where {ak}k=1 ¥ 0.
Lo+ oy L. uk J
Verify that U(r,k) = P(r) for all k = 1,2,..., such that d(x)' = limk+®

U(r,k) = P(r). Conclude that {d(r)}:=1 approaches m at the same rate as
is exhibited by the convergence of {P(k)}:n1 towards P (or alternatively

by the rate of convergence of {ak}:_ towards zero) .

1

3.4. THE UNDISCOUNTED MODEL

In chapter 1 we showed that in the stationary case, where all para-

meters are known and available in advance, the following value~iteration
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scheme is used to locate maximal gain policies
k k .
4. = + . .
(3.4.1)  vintl), maxkeK(i)[qi Zj Pij v(n)]], ief

Assuming henceforth that all policies have aperiodic tpm's, {v(n)—ng*}:=1
was shown to converge geometrically for any choice of the scrap value
vector v(0) € EN.

This aperiodicity assumption may be made without loss of generality
since in section 8 of chapter 1, the data-transformation (1.8.1) and (1.8.2),
with the choice o = 1, was exhibited to turn every MDP into an equivalent
one in which every policy is aperiodic. In this context, two undiscounted
MDPs were defined to be equivalent, if they have the same state - and ac-
tion spaces and if every policy has the same gain rate vector, such that
the two problems have the same maximal gain rate vector and the same set
of maximal gain policies. In addition it was pointed out that V, the set
of solutions to the average return optimality equation (1.4.15) in the orig-
inal model, and 5, the corresponding set in the transformed model, satisfy
the simple correspondence v = {v e EN{T v € V} (cf. section 8 of chapter 1).

Finally we recall from (1.8.21) and (1.8.22):

Il

(3.4.2)  g() = v(n) - vin-1) > g", geometrically

il

v (n) nv(n-1) - (n-1)v(n) = v € V, geometrically.

In case only approximations of the parameters are available it seems natu-

ral to consider the following iterative scheme:

B k k .
(3.4.3)  x(n+l), = lq () + Zj Py x(n)j], ieq

MaXy ek (i,n)

with x(0) € EN arbitrarily chosen.
That is, we modify the classical value iteration method, merely in
the sense that at each iteration, the unknown data of the problem are substi-
tuted by their current guesses.
With each policy £ € SP we associate the approximating tpm's P(f;un)
and reward vectors g(f;n), n 2 1:

(3.4.4)  p(En).. =2 P m); i,5e n=1,2,...
1] 13

_ E(1) i . . _
q(f,n)i = qi (n); ieQ; n=1,2,... .
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A unified analysis for both the case

(I) the general multichain model where only the rewards and action sets
have to be approximated, and
(II) the unichained model, where all of the parameters of the MDP have to

be approximated,

is possible in view of

(3.4.5) lim limnam P(f;n+m)...P(f;m) » N(£f), £ e S

e P

Note that (3.4.5) holds for case I), in view of limn+m Pn(f) = [ (£}, for
aperiodic matrices P(f), and for case II) in view of th.3.3.3.

We next present the main result of this chapter:

TEHOREM 3.4.1. Assume condition (GEO) as well as (3.4.5) to hold for every
policy f. Then (with {x(n)}:=1 satisfying (3.4.3)):

(3.4.6) {x(n)—ng*}:=1 > v € V, geometrically. 0

The proof of this theorem is provided by the following lemmas. First, fix
*
vo € V and let e(n) = x{(n)-ng ~vo. Choose numbers K > 0, and 0 < X < 1,

such that:

(3.4.7) |q§(n) - qt‘ <k, i€, keK@);n=1,2,...

k
{Pk.(n)-—P_.] s\ i,i e 9, ke RKA);n = 1,2,0.. .
ij ij

% 5 00 .
LEMMA 3.4.2. {x(n)-ng }n_1 is bounded.
PROOF. The proof of this lemma is related to the one given in th.5.1 of

[110]. Fix £ € Xi L(i,v°) (cf. (1.4.16) and (1.4.21)). Then, in view of

L(i,v°) ¢ L(i), i € Q:

* [e] * [e]
x(n+1) - (n+l) g -v] = q(fin), + Zj P(f;n)ij{x(n)j~ng,~vj}

J
* [e]
- Q)+ Zj[P(f;n)ij~p<f>ij]ingj+vj],

(3.4.8) e(ntl), = - A" - NKAn(nﬁg*H+Hv°H) + Z, P(f;n), .e(n).
i J 13 J

> - k" - N (g T+l + e(n)
N min
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By iterating (3.4.8) n times, we obtain for all i € Q:

£

B xnlg™l Do O + e(0)

o] n
(3.4.9)  e(n+l) . > -k(1+nlvol) 2£=o A nin

Il g™l
B K(H(Nl—vm e el ine
(1-X)
k *_
i3 %3
i€ Q, k e K(1). Use (1.4.18) and (3.4.7) to note (cf. also remark 1 in
f111]):

*
To show that {e(n)}:_1 is bounded from above as well, let ai = Zj P gil

~ X ok X
(3.4.10) e(n+l), = manEK(i){nai +b(vi) + Ej Pij e(n)j

!

k k k k
3 [Pij(n) - Pij]xj + qi(n) - qi}

k o,k n n
Il
keK(i){nai + b(v )i} + e(n)maX + NKAI x4+ k)

Next use a? < 0 for k € K(i)\L(i), i € Q to conclude that there exists an

integer no 2 1 such that for all n 2 ng the first term to the right of the

inequality (3.4.10) is achieved for k e€ L(i) and hence vanishes (cf. (1.4.15)

and (1.4.18)). By iterating (3.4.10) one concludes that for all n = ng:

£

n
(3.4.11) el+l) < ey  + Knlxl+1) Z£=n0 A

IA

e(no)maX + k(NI xl+1) /(1-2)

(3.4.11) together with (3.4.9) establish the lemma. O

LEMMA 3.4.3. {X(n)—ng*}:=1 +v° e V.
PROOF. The proof of lemma 3.4.3 has the same structure as the one given for
*
5.1 i . Defi i s Lk =14 - _
th.5.1 in [110]. Define %, =liminf _ [x(n)-ng ]i and X, llmsupn+mfx(n) ng ]f
ie Q. Let fn’ satisfy the N maxima in (3.4.3). From lemma 3.4.2, it follows
that -« < X, < Xi < o for all i € Q. Recall the equality part in (3.4.10):
k ok k k k k
+1), = + + + - + ~-q, S
e(n+l), maxkeK(i){nai b(v); szije(nG ZjD%j(n) Pij]xj q; (n) qi}
Observe using lemma 3.4.2 and (3.1.3) that the left side of this equality
is bounded, just like all of the terms to its right side, with the possible
exception of the first one. Conclude that for all n sufficiently large, only

alternatives k € L(i) achieve the maximum in (3.4.3), or
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(3.4.12) fn € Xi L(i), for all n sufficiently large
whereas in addition,

* k * . k *
(3.4.13) x(n+1)i-(n+1)gi = manEL(i){qi(n)—gi + Zj Pij(n)[x(n)j ngj]

+n L ES P56, i e .
J 13 13 73
Fix i € @, take (sub)sequences {nk}:=1 (with limk%w o= ©), such that
limk+m[x(nk)—nkg*] exists and limk_)m[x(nk+1)-(nk+1)g*]i =%, (or X, resp. }

which is feasible in view of lemma 3.4.2. Replace n by n_ in (3.4.13), let

k
k
k tend to infinity and note that lim n(P,.(n) ~ P?.) = 0 in view of as-
fonad ij ij
sumption (GEO), in order to conclude

k * k
> - 3
(3.4.14) x, 2 [qi g; * Ej Pi. x.1, ie®

WA eI (i) 373

k% k
AL < - X i 2.
(3.4.15) X maxkeL(i)[qi g; * Ej Pij j]' ieQ

We next show that
*
(3.4.16) x, = X, , for all i ¢ R .
i i

In order to verify that xi = Xi for all i € Q\R* as well, i.e. in order to
prove convergence of {x(n)—ng*}:=1 in each of its components, one can next
apply the proof of part {(d) of th.5.1 in [110] starting with equations
(5.4) and (5.5).

Finally let n tend to infinity in (3.4.13) to verify that

v = limn_»m x(n)—ng* satisfies the optimality equation (1.4.15), i.e. v e V.
To prove (3.4.16), fix i € R*, i.e. let 1 € R(f) for some f ¢ Xj L(j,vo)
(cf. (1.4.21)). Iterate (3.4.8) to get:

ntm-1 £ n+m-1 £ * o
(3.4.17) e(mm); > ~K 2£=m AT - NK Zzzm A lg Ry +

P(f;n+m—1)«..P(f;m)e(m)i, ie Q.

Since {e(n)}::1 is bounded, it has at least one limit point. Let y, z be

o [ee]
two limit points of the sequence. Take sequences {nk}k=1' and {mk}k=1 with
llmk»m o= l:Lm}ﬁOo mo= e, such that llmk»m e(mk):=y and llmk%me(nk+mk)ﬂ z.
Replace n and m in (3.4.17) by nk and mk, let k tend to infinity, and use
(3.4.5) to conclude:

£

© w4 o Es o
(3.4.18) =z = lim  (-K ZK AT - NK 22 A LlgT ey Iy + ey = M(E)y
=mk =mk



81

where the equality in(3.4.18)followsfromlimn4w22=na£=zz=1a£*limn+m22=1a£=0,
for any converging series ZK ap-
In a similar way, we have y = Nl(f)y, i.e. vy = zj H(f)ijyj' i e R(f),
as may be verified by multiplying the inequality by I (f) = 0 and using
H(f)2 = II(f) (cf. (1.4.5)).

We conclude that

z, 2> oy i € R(f), and in a similar way,

i
vy > zi, i € R(f), such that

%, 00 *
vy =20 i € R(f), which proves convergence of {x(n)-ng }n=1 onR ,

and hence (3.4.16). ]

We conclude the proof of theorem 3.4.1 by establishing the geometric rate

*
of convergence of {x(n)-ng }:=1=

x(n)—ng* € V (cf. lemma 3.4.3) and

il
o
[
8

Proof of theorem 3.4.1. Let v

define e(n) = x(n) - ng* - v; n 1. It follows from (3.4.12) that for all

n sufficiently large, and all i € Q:

- ko, _ Kk k g -
(3.4.19) e(n+1)i = maxkeL(i){qi(n) a;+ Zj Pij(n)[x(n)j ngj vj]
+n )L m-PX gt + 1L -5 v, + b ).
33 13773 0 B3 ds i3’ 3 i

Note that with the possible exception of the last term in (3.4.19), all of
the terms converge to zero, as n tends to infinity. Hence there exists an
0 > 1, such that for all n 2 no, only alternatives k € L(i,v)
attain the maxima in (3.4.19). That is, using (1.6.9) and the equality

integer n
Z, Pk,(n)e(n), = z, Pk, e(n), + Z_(Pk,(n)-P&.)e(n),, one easily verifies:
J 13 J J 1] J J i3] 1] J

(3.4.20) le(n+l) - U(weml <k (1+nlvi)A™ + kg InA™ + xa™le (n) .
We conclude in view of lemma 3.4.2, that there exist numbers A,B > 0 with

(3.4.21) le(n+l)~-U(v)e(m) < (a+Bn)A™, n = ng-

Verify next, by complete induction with respect to m, that:

(3.4.22) le(n+m)-u(v)Tem)l < Xz::_l(A+BZ)AZ, n =g

For, note that if (3.4.22) holds for all n > nO and some m = 1, then
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le(n+m+i) - U(v)m+1e(n)" = le(n+tmt1) - u(v)®e(n+)l

+ lu(v)e(n+l) - U(v)m+1e(n)”

£

n-+m

L=n

< zn+m

L=n+1 (B0

(A+BK)A£ +le(n+l) - UwemI < 7§

in view of the property lU(v)x - U(v)yl < lx-yl for all x,y ¢ Y (cf.
(1.4.1)). Next, define U(v)wx = limn»m U(v)™x and note that the existence
of U(v)mx, for any x € EN, follows as a special case of lemma 3.4.3 with
q?(n) = 0 and Pij(n) = P?j for all i,j € 9, k € K(i) (cf. also section 6 of
chapter 1). Let m tend to infinity in (3.4.22) and conclude that for all n

sufficiently large:

£ _m"  2mm”

=X 7 Jena

(3.4.23) 1o em)l < J;_ (a+B0)A

where the second inequality follows from N being monotonically nonfiﬁéreasing

. © © - n-] n-
for x > - (£n 1) 1, such that Zﬂa £A£ < [ _1xkxdx = (nﬁé)il - 5
= n o (£n X))

¥
for n sufficiently large.
We next recall from [111] that there exists a contraction factor T,

with O € T < 1 and a number M > 0 such that for all x € EN:
(3.4.24) v ™x -~ () xl < Mr®, n=1,2,....

Finally, use (3.4.22) with m = n, and conclude:

£

= 3 st + [ "em-um em ] + U e(n) < e(2m) <

£

+ 72770 st + o e () -u(w) e m) 1 + U e (n)

L=n

whence we obtain, using (3.4.23) and (3.4.24) that for all n sufficiently

laxrge

(3.4.25) Je(2n)|

IA

Yoo @302+ 1U el + 10w "em) - 6 em)]

2n oy 2N
2a (/) 4Bn (Y1) 2n
e Vo VGO

whereas a similar geometric bound may be obtained for the odd members of

the sequence {e(n)}znl. 0
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APPENDIX

In this appendix we describe the algorithm, we propose for solving the
models mentioned in example 2. Assuming that the functions qt(a) and P?j(u)
and ¢ (o) are continuous in a (cf. (3.1.6) and (3.1.7)), the function to be
minimized in (3.1.6) is guaranteed to be continuous in o in the discounted
version, whereas in the undiscounted version some additional requirements
on the chain structure of the tpm's of the policies in Sp have to be imposed
(continuity is e.g. guaranteed in the unichain case; cf. SCHWEITZER [1051]).
In the absence of these requirements on the chain structure, Vi(a) can still
be shown to be piecewise continuous, with a finite number of discontinuities,

and an obvious modification of the below described algorithm can be employed:

step O: Initialize Max := -» and x € E'. Fix ubeSt = o L= aOld e[ao,ulj
and € > 0

Step 1: x :=m (™) + 8 ). P @™x.1, 1e0

TSP o X E A ki) Y SIS i’
and compute lower and upper bounds on V(aP€W) as a function of x:
L™ < vie™) < ™)

step 2: "If" U(anew)+¢(unew) < MAX, "then" {anew is suboptimal; aOld c=al ol

new s :
and choose o according to a specifically chosen unconstrained
search procedure; go to step 5}

w best new
) o =0 ’

step 3: "If" U(unew)ﬁL(anew) < g, "then" {MAX := L(anew)+¢(ane

. new , . old new
i.e. o is the best parameter choice so far; o = Q ; choose

new . .
o4 according to the unconstrained search procedure; go to step 5}

step 4: go back to step 1, and execute the next iteration

step 5: "if" "uold_anew" < & "then" go to "END" "else" go back to step 1,
and execute the next iteration with the adapted parameters

best b t
"END" Use o o0 as an e—-optimal parameter choice, and %(U(a eSt)+L(0Lbes ))

as an e-approximation of the value of the entire problem.






CHAPTER 4

Successive approximation methods for solving

nested functional equations in Markov Decision Theory

4.1, INTRODUCTION AND SUMMARY

This chapter is concerned with sequences of nested functional equations

of the following structure:

(410 x(® = max_o ¥ + B @1, o
fil) = max, g pyLah (1) - I Hij(l) x;o’ + 1 p?j xgl)], ieq
iim) = maxkeKm(i)[at(m) - Zj Hij(m) xém_1)+ Zj Pij xém)], ieQ
;in) - maxkEKn(i)[a?(n) -1 H?j(n) xén—1)+ I pfj xgn)], ieq.

2 = {1,...,N} denotes the finite state space of the decision problem. For

all i € @, Ko(i) is a given finite set of alternatives in state i, and for

. m,, m-1 .
fixed i, the sets Km(i) are nested subsets of Ko(i), i.e. K (i) ¢ K (i),

m= 1,...,n, The numbers Pij, Htj(m) (i, ¢ Q; k € Ko(i); m=1,...,n) are

assumed to be nonnegative:

(4.1.2) p};j > 0; E{};j(m) >0 (i,5 € 97 k € k(i) m = 1,00.,0)

where in addition

sz k

(4.1.3) ., P
j=1 713

=1, (ieQ; ke x2(1))

and where the numbers Htj(m) satisfy condition (CLO) to be stated below.

For all i € 9, and k ¢ K°(i), the quantities a?(O) and ai(l) are given con-

: , . -2
stants. For m = 2, the a?(m) are given affine functions of x(O),.,.,x(m )

Lk

k ok m-2 (£)
(4.1.4)  a/(m) = B/ (m) + Z£=o < b,

m); x>, m

v
)
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£;
! and bi k(m) a given N-component row vector.

with Bk(m) € E
* -1

Finally, Km(i) [~ K (i) represents the set of alternatives which at~-

tain the maxima in the first m-1 functional equations. (For a more precise

definition we refer to section 2).

Sequences of nested functional equations of this type arise e.g. in
Markov Renewal Programs (MRPs) in which one wants to find the maximal gain
rate vector gk, the maximal bias vector z*, or any of the higher order terms
of the Laurent series expansion in powers of the interest rate of the maxi-
mal total discounted return vector (cf. MILLER and VEINOTT [857], DENARDO
[22]) as well as policies that are maximal gain, bias-optimal or optimal
under more selective discounted- or average overtaking optimality criteria
(cf. vEINOTT [127], DENARDG [22] and SLADKY [116]).

In the three cases a system of resp. two, three and four or more equa-
tions arises, i.e. the three cases correspond with n =1, n = 2 and n 2 3
resp.

For finding the maximal gain rate vector in multichain MRPs, three

methods exist:

(1) the Policy Iteration Algorithm (PIA) (cf. HOWARD [63], JEWELL [691)
(2) Linear Programming (LP) formulations: (cf. MANNE [84], DENARDO & FOX
(23D

(3)  successive approximation methods (c¢f. chapter 1).

For finding the maximal bias vector or more generally to solve a set
of n+l nested functional equations, only the first two of the three above
mentioned methods have been generalized: the former by VEINOTT [127] and
the latter by DENARDO [22] who proposed a decomposition of the problem into
a sequence of Linear Programs combined with a number of search procedures.
These two methods are impractical for large problems and it would be desir-
able to fill the hiatus, by generalizing the third method of successive ap-
proximations, since this method is the only practical one. This objective
is precisely the purpose of this chapter.

As a special case we present a successive approximations scheme to
find the optimal bias vector and a bias-optimal policy. HORDIJK and TIJMS
[60] established a scheme which finds z*nthough not a bias-optimal policy-
for the special class of discrete-time Markov Decision Problems (MDP’s)
with a maximal gain rate that is independent of the initial state of the
system. Our scheme finds both' the optimal vector and the optimal policy

for all multichain MRP's and generalizes to the higher order functional
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equations.

In addition it is worth mentioning that a wide range of stochastic de-
cision models varying from Markov Decision Chains with multiplicative utili-
ties (cf. HOWARD and MATHEMSON [64]) to controlled branching processes (cf.
MANDL [83] and PLISKA [92]) may be formulated as so-called Multiplicative
Markov Decision Chains (MMDC's), as was pointed out by ROTHBLUM [99]. The
latter generalize the ordinary Markov Decision Problems in the sense that
the transition matrices are merely required to be nonnegative, rather than
(sub)stochastic (cf. (4.1.3)).

ROTHBLUM [99] showed that in these Multiplicative Markov Decision
Chains, even when restricting attention to a "first order" criterion, a se-
quence of up to N nested functional equations arises, which satisfies the
above described structure perfectly but for the (sub)stochasticity assump-
tion (4.1.3).

Although the specific successive approximation method presented in
this paper uses the entire structure as given by (4.1.1) up to (4.1.4),
including the (sub)stochasticity assumption, the basic ideas underlying our
approach will be needed when establishing an approximation for the general

MMDC-case.

In section 2 we give some notation and preliminaries. In section 3 we
summarize the properties of "single~equation" value-iteration schemes, as
established in chapter 1 and 3 and as far as needed in the remainder.

In section 4, we first show why any approximation method has to solve
the entire sequence simultaneously rather than each of the equations suc-
cessively; next, we present our method for solving a pair of consecutive
functional equations in the sequence (4.1.1), i.e. a pair of equations of

the structure:

* k N k .
(4.1.5) X = maxkeK(i)[bi + zj=1 Pij x. 1, ieq
% k k * N k *
.1, = - P , i
(4.1.6) ' maxkeM(i,x*)[ci Zj Hij Xj + zj=1 i3 yj] ieQ

where K(i) < Ko(i), i € R and where, for each solution x of the equation

(4.1.5), the set M(i,x) is defined as:

(4.1.7)  M(i,x) = {k € X(i)| k attains the maximum in (4.1.5) for the

solution xJ.
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Finally, in section 5 it is shown how this method may be generalized
to solve the entire sequence and next it is pointed out to which (simplified)
algorithms, this method reduces in a number of special cases. The results

in this chapter have been distilled from FEDERGRUEN and SCHWEITZER [37].
4.2. NOTATION AND PRELIMINARIES

The following notation will be employed. For any policy

£= (£(1),£(2),...,£(N)) € XN_ k°(i) and m = 0,...,n we define N-vectors

£(1) £(1) £(1)

Py
a(fsm) = [ai (m)1; B(fim) = [Bi (m)1; b(f) = [bi ] and c(f) = [ci(l)],
as well as the NxN matrices b (f;m) = [bf;f(l)(m)]; H(f) and H(f;m)
(m=1,...,n):
2.1 mE, . =5, i5e0

i3 ij

. L E) o . -

H(f,m)ij = Hij (m); i, € Q; m l,0..,0.

We assume that the numbers H?j =z 0 and Hﬁj(m) 20 (m=1,...,n) satisfy

the closedness assumption (CLO)

(4.2.2)  (cro)(a) T = N ®. > 0; i€, ke (1)
i g=1 717

ZN Hk.(m) >0; 1€ Q, k e Ko(i), m=1,...,0
j=1 "ij

(b) For any policy f € X?ﬁ Ko(i) and any subchain C of the

1
tpm P(f), C is closed for H(f) and H(f;m) (m = 1,...,n),

i.e. if 1 € C then H(f)ij = 0, and H(f;m)ij =0 if § ¢ C

Assumption (CLO) is satisfied in all MRPs where Hij(m) = H?j; i,5 € Q;
k
k e Ko(i); m= 1,...,n and where Ti represents the expected holding time

in state i, when using alternative k € Ko(i), and where either H?j = 6ij
oxr H?j = P?j th with th 2 0, denoting the expected conditional holding
time in state i, when using alternative k ¢ Ko(i) and given state j is the
next state to be observed. We finally define the N-~vector T(f) = [Tf(i)]?=1,
for any f € Xj Ko(j) (ch. chapter 1, section 9). .

The following theorem recalls the basic characterization of the so-
lution set to the pair of functional eguations (4.1.5) and (4,1.6) (cf.

[112D).
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THEOREM 4,2.1.
(a) The 2N functional equations (4.1.5) and (4.1.6) have a solution pair
* *
{x ,vy } if and only if
T{f)p(f), = 0; 1€ Q.
(4.2.3) maxfeXNleo(j) (£)o( )y i
If this condition is met then S . = {f ¢ XjKo(j) IM(£)b(f) = 0} is non-
empty and x* is unique and given by
*
(4.2.4) X, = max x(£),, 1€
i fesMG i
where
<1 (£) ¢ (£) ~H(£) Z(£)D(£) >
<" (£),T(£)>

€ 0.

4.2.5)  x(£). = z(e)p(e), + T2 ghg
i i m=1 i

Moreover there exist policies f € SMG which attain the N maxima in
*
(4.2.4) simultaneously, i.e. with x(f) = x
*
(b)y if (4.2.3) is met then the y =-part of the solution pair is not unique,

e.g. 1if y* satisfies (4.1.6), then so does y*+dlhfor any scalar d. 0

We observe that (4.2.3) is the necessary and sufficient condition for
the existence of a solution to the single (vector-) equation (4.1.5) as
well., So in other words, th.4.2.1 expresses that a solution of the pair of
equations (4.1.5) and (4.1.6) exists if and only if the single (vector-)
equation (4.1.5) has a solution (cf. [1121).

Part (b) of the above theorem shows that the set Y = {y*e ENI(X*,y*)
satisfy (4.1.5) and (4.1.6)} is unbounded. For a more detailed character-—
ization of this set we refer to [109]. We next return to the system (4.1.1).

Henceforth assuming that

(4.2.5) maxferKO(j) H(f)a(f;O)i =0, 1€
(0) _ o,. ‘ . (0) .
let 5,0 = {f ¢ XjK (1) [T (£f)a(f;0) = 0}. For any policy f ¢ Syc consider

the system of linear equations:

x(£;0) = a(f;0) + P(f)x(f;0)
(4.2.6) {
x(fym) = a(f;m) -~ H(Fm)x(f,m-1) + P(E)x(fm); m = 1,...,n.

COROLLARY 4.2.2. For all f € Ség)

over, all the vectors x(£;0),...,%(f;n~1) are uniquely determined, where-

, the system (4.2.6) has a solution. More-

as only the last and n+l-st equation in (4.2.6) has an unbounded solution

set.
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PROOF. We prove the corollary by complete induction with respect to n. For
n = 1 the assertion follows as a special case of th. 4.2.1; next assume it
holds for some value of n, and extend the system (4.2.6) with a n+2-nd
vector-equation: x(f;n+l) = a(f;n+1)~H(£;n+1)x(£;n)+P(£f)x(£;n+1). Consider
the subsystem constituted by the n+l-st and n+2-nd vector-equation. In view
of the first n+l vector-equations in (4.2.6) having a solution, it follows

by multiplying both sides of the n+l-st equation with II(f), that
(4.2.7) I(f){a(f;n)~H(f;n)x(£f;n-1)]1 = 0.

Using (4.2.7) as well as the fact that a(f;n) and a(f;n+l) are uniquely
determined in the extended system- which follows from (4.1.4) and the induc-
tion assumption- we conclude by applying th.4.2.1 to the above mentioned
(single policy) subsystem that the extended system has a (n+2)~-tuple of
solution vectors in which x(£;0),...,x(f;n) are uniquely determined. Note
finally that the vector x(f;n+l) which only appears in the last vector-
equation of the system, is not uniquely determined, since any multiple of

1 can be added to it. O

We next define recursively:

(4.2.8) xf(ﬁ) =max_ . (f) x(£;4),; 1e9; £ =0,...,n-1
i fesS i
MG
with
W =1 | o p oy _ *(L=1) ,
SMG = {f € SMG lx(f,ﬂ 1) = x } forl =1,...,n-1.

The following theorem, the proof of which goes along lines with that of
corollary 4.2.2, extends the basic results obtained in th.4.2.1 to the

system of functional equations (4.1.1).

THEOREM 4.2.3. The system (4.1.1) has n+l-tuples of solution vectors; more-

over X(O),...,x(n_l) are uniquely determined by x(£)==x*(£) for £=0,...,n-1
*(0) X*(n«l) X(n)]

whereas the last component vector>én).isnot unique (if [x poee
R % (0) *(n-1) (n)
satisfies (4.1.1), then so does [x seessX ,x +cl] for any scalarc).l
Th.4.2.3 enables us to give a precise definition of the sets Km(i)

form=1,...,n

(4.2.9) Km(i) = {k € Ko(i)l k attains the maxima on the right-hand side of

the first m functional equations in {4.1.1) for the

* -
(uniquely determined) solutions x (O%..,,x*(m 1)}
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)4
Lemma 4.2.4 finally gives a basic characterization of the sets S;G).
LEMMA 4.2.4:
) L. . e ;

(4.2.10) SMG = {f € Xj K (j)|£(i) satisfies the £+1-st vector equation
in (4.1.1) for all ie R(f) and any solution
[x(o),...,x(z_l),x(z)] of the system (4.1.1),
£ =0,...,n}.

€4 (0)

,...,x(n)] to the system

(4.1.1). Note from (4.2.6) and the definition of sb(é) that £ex™ 1) . mua-

j=1 _
tiply both sides in (4.2.6) by I (f) to verify that,IKf[a(f;K)~H(f;£)x*(£ 1)]=O

and conclude from f € XN_l ﬂ_l(j), and the inequality x(z) > al(fid) ~

=
- H(f;ﬂ)x(g_l)

PROOF. Fix fe SMG (0<£<n-1) and a solution [x

1—P(f)x(£) that £(i) satisfies the f£+1-st vector equation in
(4.1.1) for all ie R(f). This proves that Séé)is included within the policy
set to the right of (4.2.10). To verify the reversed inclusion fix a policy

within the latter set and apply corollary 4.2.2 to the first £ equations in
(£~1) % (£-1)

(4.2.6) to conclude that f ¢ Sue . Note in addition that both x and
x(£f;£~1) satisfy the equations y = a(f;f-1) - H(f;Z—l)x*(£‘2) + P(f)y, and
-1
n(£)la(f;L) ~ H(£;£)y] = 0, with the additional convention that x*( . 0.
* (L-1) _ (£)

It then follows from lemma 1 in [23] that x x(f;40~1) i,e, fe Sye 0

4.3. SINGLE EQUATION VALUE~ITERATION; A REVIEW

Our successive approximation method consists of a sequence of itera-
tive schemes which are generated simultaneously. Some of these schemes aim
at finding either a vector that may be interpreted as the maximal gain rate
vector of some Markov Renewal Program, or a solution to the corresponding
optimality equation (cf. chapter 1, section 9).

In addition these schemes face in general the additional difficulty

that

(a) some (or all) of its one-step expected rewards, and

(b) some (or all) of its action sets,

are unknown in advance since depending upon quantities that have to be ap~
proximated simultaneously.

N
Thus for any Cartesian product space of policies Xi=1 K(i) ¢ X?—] Ko(i),

consider the MRP which has
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k . .
(1) X?—l K(i) as its policy-space; (2) numbers {qi | i€ Q, k e K(1)}
B k
as its one-step expected rewards and (3) the numbers P?j, Ti
(i,3 € Q; k € K(i)) as the transition probability to state j and the

expected holding time when choosing alternative k in state i.

Finally, suppose we wish to obtain an iterative scheme which approxi-
* .
mates the maximal gain rate vector g in this MRP, or a solution to the

corresponding optimality equation (cf. (1.9.8}):
* k * k k * .
= - g, T, + ). P, v, Q
(4.3.1) v, maxkeL(i)[qi 9; Ty EJ i vj], ie
k

. P
. J 13
Let V denote the solution space of the optimality equation (4.3.1)

where L(i) = {k ¢ K(i)]g: =7 g;}, ieQ (cf. (1.4.16)).

(cf. (1.9.8)) and for any v € G, let

(4.3.2) S(i,v) = {k € L(i)]k attains the maximum on the right hand side

of (4.3.1) for the solution v ¢ V}; i € Q.

Assume in addition that rather than having exact knowledge of the quantities

{q?li € 9, k € K(1)} and the sets {K(i)|i ¢ 92} all we have, are:

(1) sequences {q?(n)}:_1 - q?, geometrically as n -~ ®; i € Q; k € K(i)

(2) sequences {K(i,n)}:= + K(i), as n > «, i.e.

1
K(i,n) = K(i) for n sufficiently large, say n 2 ny, where ng is unknown in
advance.

The definition of {x(n)}:=1 - x*, geometrically was given in (3.1.5).
In chapter 3, we derived a value iteration scheme which solves the special
case of undiscounted discrete~time MDPs with (geometrically) converging pa-
rameters, whereas in addition it was pointed out that all of the quantities
of interest can be approached at a geometric rate. Theorem 4.3.1 below com-
bines this method with the data-transformation (1.9.9), with o = 1, which
turns every undiscounted MRP into an equivalent undiscounted MDP in which
all of the policies are aperiodic. We recall that the aforementioned equiv-
alence notion was defined by (EQUI) (cf. (1.9.6)).

So, th.4.3.1 below considers the scheme

k
Tq, (n)
(4.3.3)  v(n+l), = ma S S Y N LG Nl 1ea
i ke (i,n) | K 37%37 kUi 3]
B i

with

(4.3.4) 0 < 1t < min{T"/(1-PX )| (i,k) with P*, < 1}
1 11 i1l
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and where the starting point v(0) € EN may be chosen arbitrarily.

First, we convene that hereafter, {En}:=1 will indicate any sequence
of positive numbers approaching zero in such a way that Xn/en + 0 for any
A, 0 £ X <1, e.g. take S n_1 or the reciprocal of any positive polyno-

mial in n.

THEOREM 4.3.1.
(a) gf{n) = T~1{v(n)—v(n—1)} > g*, geometrically, as n + «

(b) w(n) = nv(n-1)~(n-1)v(n) ~» vo, geometrically, as n - © where v° e V.

(¢) For all i ¢ Q, n=1,2,... and € > 0 let

A(i,n,e) = {k € K(i,n)[ij Ptj g(n)j = g(n+1)i - ¢}, and
g5 (n) (%5, )
B(i,n,e) = {keK(i,n)I-—ir +z.[6i.+ :ij *d Jv(n) . 2v(n+1)i—€}.
Ti J J Ti J

Then, A(i,n,en) + L(i), as n > o, 1 ¢ Q and

. O .
B(i,n,sn) > 8(i,v’) as n > o, i € O

i.e. for all n sufficiently large, A(i,n,en) = L(i) and B(i,n,en) =

S(i,vo) for all i € Q.

PROOF. Consider the discrete-time MDP with the same state- and policy space
and '&i=rq1;/T]i<; ieQ, keK(i) and 'ﬁ’i‘js % [p]i‘j-aij] #0685 1,3e0 andk e K(D)
which corresponds with the transformation formula (1.9.9) with the choice

0 = 1. It was pointed out in section 9 of chapter 1, that this transforma-
tion turns the MRP into a discrete-time MDP which is equivalent in the (EQUI)
sense (cf. (1.9.6)). In addition by choosing T strictly less than the upper
bound in (4.3.4), all of the policies in the transformed MDP are aperiodic
(cf. section 1.9). Next, one easily verifies that (4.3.3) corresponds to

the scheme (3.4.3) in this transformed MDP. Hence, applying th.3.4.1 and
using the equivalence between the original MRP and the transformed MDP, one

concludes that for any starting point v(0) € EN:

*
(4.3.5) v(n) - ntg - vo, geometrically where v© e V.

The limit results in part (a) and (b) then follow as in (1.8.21) and (1.8.22)

and the results in part (c) are immediate from th.1.7.1. O

We note that in some cases the parameter T in (4.3.3) may be taken to
be equal to the upperbound in (4.3.4). In particular, for discrete time

. . . N
MDP's the choice T = 1 is sometimes allowed for any starting point v(0) ¢ E .
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We refer to th.1.5.1 for the necessary and sufficient condition of the
latter.

Keeping track, at each stage of the iterative scheme (4.3.3), of the
sets of en—optimal actions, rather than of the sets of optimal actions, is
in general inevitable since it was pointed out in section 1.7 that the se-

quences {A(i,n,O)}:= and {B(i,n,O)}:zl, i € Q, may have a very irregular

behaviour. '
We finally recall from section 1.8 (cf. (1.8.20)) that in case g*==<g*>l
a simpler and numerically preferable scheme was established by WHITE [131]
to separate g* and v°.
An important special case of the latter occurs when computing a solu-
tion to a functional equation of the type

*
(4.3.6) vi = maxkeK(i)

k k%
{q; + ), P, v.}
4 ZJ 13 37
the necessary and sufficient condition for the existence of which is given

by max M(£)gq(f) = 0 (cf. th.4.2.1). Note that under this condition,

feX,K(3)
(4.3.6) mgy be interpreted as the optimality equation of a discrete time

*
MDP with g = 0, and the following iterative scheme may be applied:

_ k k .
(4.3.7) y(n+1)i—maxkEK(i'n){Tqi(n)+Zj[dij+T(Pij 6ij)]y(n)j}, ie9

with O < t < 1. Verify that

(4.3.8) {y(n)}; + v° geometrically, with v° satisfying (4.3.6).

=1

For discrete~time MDP's in which the maximal gain rate is independent of

the initial state of the system, the following adapted version of the
"modified value~iteration method" of HORDIJK and TIJMS [60] (cf. section
1.8, in particular (1.8.7)-(1.8.10)) may be used as an alternative to the
scheme (4.3.3). In addition this algorithm has the special property of con-
verging to the optimal bias vector z*, defined by (1.8.11), albeit at a con-
siderably slower rate than (4.3.3) exhibits. Since the scheme will merely
be needed in the case where g* = 0, a simplified convergence proof will be
given for this special case. The proof goes along the lines of the one giv-
en in HORDIJK and TIJMS [60] and the proof for the more general case where

* s
g = <g >1 can be obtained along the lines of [60] as well:

: *
THEOREM 4.3.3. Let T? =1; i € Q and k € K(1) and g = 0. Assume

{q?(n)}:=1 - q?, geometrically (i € Q; k € K(i}). Consider the scheme
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(4.3.9)  z(n#l), = [m +8 V. P% 2,1, ien
1 n =3y 1] J

Xy ex(i,n) 4

_b ©0 *
where Bn = l-n , for some 0 < b £ 1. Then {z(n)}n_1 + z , where

(4.3.10) lz() - 21 = 0(n P1inn).

PROOF. Let V(B) denote the total maximal expected B-discounted reward vector,

satisfying the optimality equation:

_ X X .
(4.3.11) v(B); = maxkeK(i)[qi + B Xj Pij V(B)j]. ie Q.

Note from MILLER and VEINOTT [85] that there exists a constantK >0, such that
(4.3.12) lIv(g) - 2z’ < K(1-B), and
(4.3.13) HV(61)~V(82)H < Klsl~62{, for 61,82 close enough to one.

Let C > 0 and 0 £ A < 1 be such that

n

K Xlcea™ 160, ke K@) n=1,2,...

(4.3.14) lqi(n) - q

Finally let fn be a policy satisfying the N maxima in (4.3.9) and let 9,

be a anoptimal policy. Then,

(4.3.15) L(n)i < z(n+1)i - V(Bn)i < U(n)i, ie@

where

L(n), = qlg

1 n

i) - alg), + 8 B Pla)Tam) v ) ]

Un); = alfin) - alE) o+ B L PUE) STz n) ~v(B ) .

Hence v n
lzmer) - vl < a2 + g lzmy-vig )l < ca” + g lzm)-vie, )l

+ B IV(B)-v(B <A™ lz(n) -v(8 I + k8 |8 -8 |

1

for all n 2 n. (say). Iterating this inequality we obtain for all m 2 O:

0
Iz (n +m+1) I < Tt 3
Bo™m V(Bno-#m) =c j=n +1[Bj+l"'8n +m]A
0 0
n0+m
- lz(n +1)-v I+ x ), N B
+ By By ) 12 g FD VI ) ZJ=HO+1[BD Bno+m]EBJ Byl

with the convention that HS—L a = 1 if L > U. Hence,
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+m

n .
- 0 3
(4.3.16) lz(ntme1)-z1 < K(1-6n0+m) +C zj=n0+1 Bj+1"'8no+mjx
zn0+m
+ (B ...B Mzn +1)-v(B_ )l +x ) B....B 18,-B. 1.
no+1 no+m 0 n, 3-n0+1 3 n0+m i -1

This implies that for the choice Bn = 1—n-b, 0 < b £ 1 convergence of

{z(n)}:=1 is determined by the last two terms to the right of (4.3.16). To
verify convergence as well as its rate, note, using the mean value theorem
that nb--(n—l)b <1 for all n = 1,2,... and use this inequality in order to

verify that (cf. also chapter 8):

o g o) (menPen o @Py 2P
noo2 n® (n-1)° 2P n®

Next we apply the mean value theorem to verify that

n
N <sj'..sn)lsj-sj_1[ <

j=2
b b
n (n"~1) (37-1) . -b-1 -byn-1 -1 _ ~b
b Zj=2 5 e e (50D < bn zj=1 = 0(n "1lnn)
n J
which determines the convergence rate of {Z(n)}:=1' N

4.4. SOLVING TWO COUPLED FUNCTIONAL EQUATIONS

In this section we wish to solve, by successive approximations, the
two coupled vector equations (4.1.5) and (4.1.6). Here b? and c? (i€, keK(i))
are assumed to be independent of x* and y*. We first treat the case where
all of the sets K(i), and all of the parameters b?, c?, H?j and P?j
(i,9€Q;ke K(i)) are known exactly. Later on, we treat the case where in-
stead of knowing the sets K(i) and the parameters b? and c?, one has ap-

proximations:

(1) k@Y
n=1

> K(1); (2) {Bf(n)}_, + b, geometrically;
k, 4 k . -
(3) (Ci(n)}n=1 + ¢, geometrically.

Theorem 4.2.1 shows us that x*, if it exists, is unique. Our successive

approximation scheme decomposes x* into three components which are approx-—
imated simultaneously. The first component represents an arbitrary solution
E* to (4.1.5) alone. Its computation is accomplished in accordance with the

scheme (4.3.7) (cf. th. 4.3.1).
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In addition, the difference vector w* = x*—E* is decomposed into two
components 6* and v*, i.e. x* = £*+§*+V*. The vector a* can be interpreted
as the maximal gain rate vector of a certain MRP and can be found in accor-—
dance with a scheme of the type (4.3.3) (cf. th. 4.3.1). Finally the vector
v* satisfies the inequalities v: >0, i € Q, with strict equality in a non-
empty subset of the state space, to be specified, below.

This vector can be interpreted as the solution to an optimal stopping
problem, hence it is the minimal solution to a certain functional equation
arising in a transient MDP. It will be found by a successive approximation
scheme in accordance with (4.3.6) and (4.3.7).

In summary the proposed method generates simultaneously three value-
iteration schemes with geometr;c convergence to the three vectors 5*,5*
and v*. Then x* = E*+§*+V* is part of the desired solution to (4.1.5) and
(4.1.6). The non-unique vector y* in (4.1.6) may finally be determined by
interpreting (4.1.6) as a special case of (4.3.6) with q?==c§~ZjH§j x; and
K(i) replaced by M(i,x*), and by applying th.4.3.1, while geémetric esti-
mates of x* and M(i,x*) (ieQ) are generated.

We finally note that the above decomposition is similar to the one
employed by DENARDO [21]. The temptation exists to devise a set of succes-—
sive approximation schemes which solve the functional equations one after
the other; e.g. the first scheme creates a sequence {x<n)}w

() (n) e
<i)}n=1 that approach the

approaching

of (4.1.5) and sequences {M
()

some solution x
action sets M(i,x ). One might try to terminate these sequences after a
finite number of steps and replace x* and M(i,x*), i € Q by the currently
available approximations when starting a second iterative scheme to solve
the second functional equation.

There are three reasons why this method cannot work. First, th.4.2.1
@)

shows that not any solution x( of (4.1.5) is acceptable, but only the
*
unique solution x which satisfies the second equation (4.1.6) for some
* ©
vy € EN as well. Second, even in case {X(n)}n—l converges to the required
a . (n)

ferM(j,x*)H(f)[C(f) H(E)x ']
to be non-vanishing for all n = 1,2,... and as a consequence any successive

*
solution x , it is still possible for max

*
approximation scheme for solving (4.1.6) in which x is replaced by the

(n)

currently available approximation x , will explode. Finally, one doesn't

know when - if at all - the sets M(i,x*) can be replaced by the sets M(n%i).
We conclude that the equations (4.1.5) and (4.1.6) must be solved by

simultaneously computed successive approximation schemes, where the scheme
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for y* uses an ever~improving rather than a fixed approximation of x*. The

above problems seemingly did not arise in Denardo's LP-decomposition method
(cf. [21]), where one assumes to have solved the first functional equation

exactly before tackling the next one. In the presence of numerical errors,

however, the second equation (4.1.6) may be insolvable, since, with x* rep-
0

1

. * ~%
resenting the computed value of x , maxfeX,M(j,x*)H(f)[C(f) H(f)x ]
won't hold precisely. J

Henceforth assuming that condition (4.2.3) holds, we recall that the
first equation (4.1.5) may be considered as an optimality equation of an
undiscounted MDP of the special type (4.3.6). We conclude that with the
help of the single equation methods presented in the previous section (cf.
(4.3.7)), sequences {E(n)}:xl and {En(i)}:Nl, i € 9, may be generated with
the properties

© * *
(4.4.1) {E(n)}n=1 ~+ &£ , geometrically, with £ a solution to (4.1.5)
3] *
=™ )1° > ML,ET) as n > .
n=1
LEMMA 4.4.1. Pick E(0) € EN arbitrarily and 0 < t < 1. Then the iterative

scheme

(4.4.2) E(n+1)i =

k N k .
maxkeK(i){Tbi+ Xj=1[T(Pij-6ij)+Gij]€(n)j}, ief

has the property {E(n)}:=1 > E*, geometrically, where E* satisfies (4.1.5).
In addition, let
. (n) k N k
2 i) = {keXK(i)|b, + - - > -
(1) = {kex(i)|b] Zj=1[T(Pij 8,046, 06(m) 2 E(ne) -e T,
ieQyn=1,2,...

Then lim . ™4y = Mi,EY), 1e0. O

. . . . * * * *
The next step is finding an expression for w = x -£ . Insert x*=:g+w

into (4.1.5) and (4.1.6) to get the new coupled equations:

E * -k k *
(4.4.3 .= i i
)Wy maxkeK(i){bi+ Zj Pij wj}, ieq
* -k k * k *
(4.4.4 = -
)y maxkeM(i;w*+€*){ci Zj Hij wj+ Zj Pij Yj}
with
~k k k * *
4.4.5 = - . 4
( ) b =D+ Zj Piy £y 7 By 1€ 0, ke K()

ok oy koo .
e, = ¢y Zj Hij Ej, ie®, ke K(1).
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Observe that (4.4.3) and (4.4.4) have the same structure as (4.1.5) and
(4.1.6). Note in addition, that

T(£)B(£) = T(£) b (£)+(P(£)-T)E ] =

maxferK(j) maxferK(j)

T(£)b(£)

i

0, with §M = {f|I(H)D(£) = 0} = S

MaXee XK (3) G MG

and apply theorem 4.2.1 to (4.4.3) and (4.4.4) to conclude that

* . .
(4.4.6) w, = maxfeSMG W(f)i; i e Q with

< (£),(£)-H(F)Z(£)B(£)> .
< (£),T(£)>

€ Q.

w(g), = z(e)bee), + JRE) ¢
i i m=1 i

* -
For f € Xj M(j,& ), we have b(f) = 0. This motivates us to define

(4.4.7) 5; = w(£) ieQ

maxfexjm<j,g*> i’

with the following properties. First, let

*
(4.4.8) sopt = {f ¢ sMle(f) =w }.

THEOREM 4.4.2.

(a) For all f ¢ SMG’ w(f)i==Z(f)b(f)i+ ie

m e -
znff)éw(f) < (f),c(f)>,
= < (£) ,T(£)>

where z(f)B(f)i = 0 for all ie R(f)

(£) m,., <t™(£),c(f)> .

(b) g. = max P Zn_ ¢, (f) it i € Q)
i feij(j,E ) fm=1 i <™ (£) T (E)>

(c) w*

v

b * —% i .
g and wi = gi for all i € RO £ = {j € Q'j € R(f), £ e 8 1. O

P opt

PROOE.

(a) Fix f e §,.. Verify that £" > b(£)+P(£)E", since £ satisfies (4.1.5)
and multiply this inequality by II(f) = 0 to conclude that: 0 = I(£)b(f) =
= IE)[E b (F)~P(£)E"] > 0, the equality part following from f € S,

G
Hence,

(4.4.9) B(f)i =0, i e R(f)

Next, note from assumption (CLO), (cf. (4.4.2)), and (4.4.7) that for
all i € R(f), H(f)ij > 0 or Z(f)ij > 0 only if je R(f), and conclude

to part (a) using (4.4.6).
(b) follows from part (a) and the equality b(f) = 0 for f ¢ Xj M(j,E*)
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* =k *
Part (c): The inequality w > g follows from S__ D X, M(j,£ ). We next

MG

recall from th.4. 2 1, part (a) that R # @#. To verify that the reversed

inequality wz < g holds at least for the components ieR opt as well, fix
*

f e SMG’ with w = w(f), as well as a state i ¢ C (f) (1 £ m < n(f)). De~

fine a policy h such that

I £(i), for all i € R(f)
h(i) = 1

€ M(i,g*) otherwise
and note from (4.4.9) that h ¢ X, M(j,£"). Conclude that,
W, = W(E) = <n’(£),E(5)>/<a™ (£) T (£)>
= <r™(h),&(h)> <1 (h),T(h)> < 51

the second equality following from part (a) and the third one from the

fact that R(f) is closed under P(h), thus proving part (c). ]

The key observation now, is that theorem 4.4.2, part (b) represents é*
as the maximal gain rate vector of a MRP with the Cartesian policy space
XjM(j,E*) and one-step expected rewards c = - 2 5 i e Q and
k € K(i). These are not known in advance, because the sets M ,E ), ie Q,
and the vector E are unknown in advance. However both the policy space and
the one~step expected rewards can be approximated by resp. (cf. (4.4.1)):
122 (1)1

n

(4.4.10) and {c(m))7_ = {cf- IyE; .E(n).}m~, ief, ke K(1).
i n= j n=1

=1

We now invoke th.4.3.1 to get the following successive approximation method

which converges geometrically to 6*.

THEOREM 4.4.3. Pick h(0) eEVand0< T < min{T /- P ) 1(i,k) with P < 1},
Then the iterative scheme
_ i) T8

Rlnth)y = maxy g m) () (T T Lt & +Oyylnin)hien
(4.4.11) i i

- -1 .

g(n+1):,L = T {h(n+1)i~h(n)i}, ie
has the property {é(n)}:zl - 5*, geometrically. O

* * -k *
We finally turn to the evaluation of v . Insert w = g +v and the

-
inequality w2 g (cf. th.4.4.2 part (b)) into (4.4.3) to get
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k k *
= + i e Q
v, maxkeK(i){ri zj Pij vj}, ie

i
(4.4.12)
v, 2 0, ieQ
k =k k=% -k k k * -k * -k
w&ere r; = bi + Zj Pij gj g9; = bi + Zj Pij(€j+gj) Ei 9; - Note that
v, = 0, for all i € R .
i opt

* . . s .
As a consequence v satisfies the functional equation

(4.4.13) v, = maxkeK(i)

{0; 5+ 1. PX. v}, icq.
1 J 13 3
*
The following theorem shows as a key observation that v is in fact the

smallest solution to (4.4.13):

THEOREM 4.4.4. v is the smallest solution to (4.4.13) i.e. every solution
v of (4.4.13) has v = v .

PROOF. Fix a solution ¥ to (4.4.13) and define z. =1nin{vf,§,}, Fix f ¢ sont’
— it i is

£(1)

i
Define the vector r(f) by r(f)i =r . Note that both,

Vi o> r(f), + P(E)V, > r(£), + P(f)z,, ie R, and
1 1 1 1 €1

v

~
v

~ . . ) )
5 r(f)i + P(f)vi > r(f)i + P(f)zi, ie Hence

(4.4.14) =z - r(f)-pP(f)z = 0.

Multiplying (4.4.14) by II(f) = 0, yields O = II(f) ([I-P(f) ]z - r(f)), in
view of O = II(£)r(f) = NM(£)b(£f) = O (cf. assumption (4.2.3) and note that

fes S ). This implies that (4.4.14) is a strict equality for compo-

[
opt — MG
nents i € R(f). Using this and the fact that as a result of (1.4.7) for

j ¢ R(f), Z(f)ij > 0 for all i, with Z(f)ij = 0 when i ¢ R(f), we get
(4.4.15) z =2 Z(f)r(f) + I(f)z

by multiplying (4.4.14) by Z(f) and invoking (1.4.6). Next note from part
(b) of th.i.4.2 that for all i ¢ Ropt' hence ispecially for all i € R(f),
z; >0 = v, . As a consequence, we have z, = v, for all i € R(f) and combine
this with (4.4.15) to obtain:

z, 2 Z2(E)r(f), + n(f)v; = Z(E)x(£), + H(f)[w(f)i—ﬁij

< (£) ,C(f)>
< (£) ,T(£)>

Z(6)r(£), + 1O zEBE), + I2E) g G
i i m=1 i i

1

- —% -k - —%
Z(f)b(f)i + l'[(f)gi—gi + H(f)b(f)i - H(f)gi +
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<" (£) ,C(£)>

. Zn(f) o™ (£)
m=1 i m
<t (£),T(£)>

1

=w(f), - g, =w -3 =v., forallice®
=wif), —g, =w -g; =v., or all i
in view of N(£f)b(f) = 0. Conclude that v > v*. 0

Functional equations of the type (4.4.13), with a smallest solution
arise inter alia in Leontief Substitution Systems (cf. KOEHLER et al. [721).
The equation (4.4.13) may be interpreted as an optimal stopping problem
(cf. DERMAN [25], ch.8) where the decision to stop earns a reward O from

thereon. More formally, append a new stopping state 0 i.e.

(4.4.16) Q = Qu{0}:; K(i) = K(i)u{0}, i € © and K(0) = {0}

rk ;i e @ and k € K(i)
~k _ { i
0 ;ie® andk =0

X { Pij; ke K(1); 1i,j € @

Gjo; k = 0; i,j € Q

and rewrite (4.4.13) as

_ -k =k . = .

(4.4.17) v, = maxkd-((i)[ri + zjeﬂ Pij vj], ie Q, with
4

(4.4.18) v

It

0.

This is a MDP with 0 as the maximal gain rate vector, and state 0 a trapping

*
state under each policy f € S __. The following theorem shows that [v ,0]

MG
may be interpreted as the optimal bias vector of this MDP such that th.4.3.2

*
may be invoked in order to obtain an iterative scheme that approaches v

ultimately from above.

THEOREM 4.4.5.
*
(a) [v ,0] is the smallest solution of (4.4.17) and (4.4.18)

*
(o) [v ,0] is the optimal bias vector in the MDP, specified by (4.4.16)

(c) Consider the scheme

(4.4.19) z(n+1)i =

maxkeﬁ(i)[ri(n) + By stﬁ = Z(n)j]

1]

~b
where B, = l-n 7, for some O < b < 1, and

k k - -
by + ). Pr (E(n) +g(n) )-E(n),~g(n).; i € Q; k ¢ K(i)
(4.4.20) fi(n) = { * i3 3 3 i i

0 ' ; Ootherwise
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and where z(0) € EN+1 has z(O)O = 0.

[ee]
Let {nn}n—l be a sequence of non-increasing positive numbers, such that

n—b/2

n, o= o(n™Plnn); e.g. take n,o= ; n = 1. Then

© * o *
(4.4.21) {z(n)}rl=1 - v and {z(n)+nn1}n=1 approaches v from above.

PROOF .

(a)

(b)

Note that for any solution v of (4.,4.13) the vector [v,0] satisfies
(4.4.17) and (4.4.18) and vice versa. Next invoke theorem 4.4.4.

Let éMG be the set of maximal gain policies in the above considered
MDP. For each policy £, let r(f), P(f), z2(f) and II(f) denote the as-
sociated reward vector, transition probability, fundamental and in-
variant probability matrix. Let d be the least common multiple of the
periods of the policies in §MG, and let E* represent the optimal bias
vector, Then, using (1.4.7):

z: = max_ = E(f);(f)i =

fsSMG

. . nd L£-L -
max, = lim, lim o Jeco @ B (£)r(f);

MG
. nd -£ - .
= maxfegMG l:l,mn_)00 ZK=O P (f)r(f)i, ieQ

where the interchange of the limit and summation operator is justified
by
"ZE?O STl < k(1 - AY),  for some K > 0, 0 £ A < 1, and

all 0 <a=<1landn = 1.

and the well-known fact that the limit function of a uniformly convergent
sequence of continuous functions on a closed interval, is a continuous
function itself. Next, take a solution v of (4.4.17) and (4.4.18) and

fix f e §MG. Then,

nd-1 £

L=(n-1)d

Md+1

v ey 2 ] BU(E)T(E) + B (D)

2 z:zl ZZizi_l)d BYE)T(E), in view of v 2 0 (cf. (4.4.13))

nd-1 nd-1
£=(n-1)d £=(n~-1)d

3 -k
= z , Observe on the other hand, that z , as the optimal bias vector,

Hence, v 2 2::12 PYUE) T (£), or v = max = Z:=1Z §£(f)f(f)=

is itself a solution to (4.4.17), with 2; = 0, hence satisfying (4.4.18)

—k
as well, and conclude that z - is the smallest solution of (4.4.17) and

(4.4.18) i.e. 2z =+v' .
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(c¢) Part (c) follows from th.4.3.2, in combination with lemma 4.4.1 and

th.4.4.3. 0

Although (4.4.20) provides an approximation method for the third and
last component in the decomposition x* = £*+§*+v*, one should observe that
its rate of convergence is far from geometric. A geometric type of conver-
gence will, however, be needed in any attempt to solve the second equation
in the pair (4.1.5) and (4.1.6). Fortunately, the latter may be achieved
by observing that v* is the smallest vector v, with Vg = 0, that satisfies
the average return optimality equation (4.4.17). The method, presented in
th.4.4.6 below exploits both this property, and the availability of an as-
ymptotically converging upper bound for v* (cf. part (c) of the previous

theorem) .

THEOREM 4.4.6. Consider the scheme:

step 0: Pick a sequence of positive numbers {Ym}:zl, with Yn 4+ 1, Initialize
m:=0; v := 0;; n := 0, Fix 0 < 1 < 1,

step 1: v, : {Tfk(n) + z. [6..+T(5¥.—6..)]v.}, i ¢ Q where
—— 1 1 J 1] 1iJ 1] J

= max, =,

_keK(l) N _ X
f?(n) = r?(n) - (ym)n; i€ Q; k € K(i) and with ri(n) defined
by (4.4,20).

step 2: "if" v, > z(n+1)i + n, for some i ¢ { "then"

+17
(a) v := 0; (b) m := mt+l

step 3: n := n+l; go back to step 1.

(9]
Let {v(n)}n=1 denote the sequence of values adopted by the vector variable

vasn=1,2,... . Then,

(a) the test in step 2, can only be met for a finite number of times

(b) A{v(n)} - v*, geometrically.

PROOF .
- -k
(a) Note that lr?(n)-ril < c\" for some C > 0, and 0 < X < 1, Since
0
{Ym}m=1 + 1, and in view of part (c) of the previous theorem there is

an integer m, 2 1, such that

(4.4.22) (@) A < (v 1" ie. f}i((n) < r]i{ for all n > m

0

07 i€ Q; k € K(i)

* -
(b) z(n), + n_ >v, for all n >2m.; 1 €
i n i 0

Next, we show that m cannot be incremented above mo+1; i.e. the test
in step 2 can be met for at most m0+1 times., For assume that m adapts



105

%*
the wvalue m0+1e Note that the current value n of n 2 m0+1, since m
can only be incremented after incrementing n by at least one. Observe

*
furthermore that v(n +1) = 0. Then,

* _ B k, *x -k *
vin+2); = max = [27(741) + Xj Py vin +1) ]

X “k % T
< - + =
maxkeK(i)[ri Zj Py vj] vir 1e@

*
where the inequality part follows from (4.4.22) and v(n*+1) = 0 <v

(cf. (4.4.13)). Proceed by induction to verify that for all n 2 n*+1
V(n)i < VI < Z(n)i tnsie Q, such that the test in step 2 is never
met again.

(b) We conclude from part (a), that after the test in step 2 has been met
for a finite number of times, the vector v is reinitialized at 0, and
from thereon, the algorithm behaves exactly like the scheme (4.3.7)
with {f?(n)}z’:l - f];, geometrically. Note in addition that v(n)y = 0
for all n 2 1 and apply th.4.3.1 to conclude that {v(n)}:=1 > v, geo—
metrically, where v satisfies (4.4.17) and (4.4.18). Moreover, since
v(n)i < z(n)i + ne i€ 5, it follows that v < v* by letting n tend
to infinity, and invoking part (c¢) of the previous theorem. Conclude
that, v = v*, in view of v* being the smallest solution to (4.4.17)
and (4.4.18) (cf. part (a) of th.4.4.5). Finally, the geometric rate

of convergence follows from th,4.3.1. 0

We conclude this section by putting all the pieces together, We pre-
sent our algorithm for solving the pair of coupled equations (4.1.5) and
(4.1.6), for the more general case, where instead of knowing the parameters
in advance, only geometric approximations are available, i.e. we assume to

have:

(4.4.23) {x(i,m)} _, + K(i), ieQ

{b];(n)]-Do + b, geometrically, i € @, k ¢ K(i)

mR

{z:]z(n)}o0 + ¢., geometrically, i € 9, k € K(i).

.

It is easily verified that all of the results in theorem 4.4.2 to 4.4.6
go through when replacing the parameters in the pair of equations (4.1.5)

and (4.1.6) by their approximations.
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THEOREM 4.4.,7. (Main Result).

(a) To find the unique solution %" to (4.1,5) and (4.1.6), given approxi-
mations for its parameters, as specified by (4.4.23) construct the se-
quences {E(n)}:=1 > £F, {é(n)}z=1 >3, {v(n)}:=1 + v, by generating
the schemes (4.4.2), (4.4.11) as well as the scheme in th.4.4.6, in
which {K(i)lie Q},{btlie Q, ke X(i)} and {c?liezﬁ, k € K(i)} have been
replaced by their approximations. Lemma 4.4.1, and theorem 4.4.3 and
4,4.6 show that the three sequences exhibit a geometric rate of con-

®
vergence., Note that the construction of {v(n)}n:1 requires the gene-

o

ration of a fourth sequence {z(n)} via the scheme (4.4.19) inwhich

n=1"'
the parameters of the problem are again replaced by their approxima-

tions., Then

(4.4.24) {xm)1° . = {E(n)+§(n)+v(n)}:=1 - x*, geometrically

n=1

(b) Let F(i,n,e) = {keK(i,n) [x(n+l)i$b}i{(n)+2j P};jx(n)j—E}; ieQ;n=1;e>0,
Then, limn+w F(i,n,an) = M(i,x ); 1 € Q.

(¢) To find a (non-unique) y* satisfying (4.1.6) generate the sequence.

x K ik
(4.4.25)  y(n+1) {r(ci(n)-}jjHijx(n)j)+2j[6ij+r<pij 8340 Jy ()}

izmaxkeF(i,n,E—:n) i

ie€e Q;n=1,2,...
*

with O < 1 < 1 and y(0) € EN arbitrarily chosen. Then y(n) ~ vy ,

geometrically. 0

PROOF. Only parts (b) and (c) need to be proved. Part (b) follows from the
proof of th.1.7.1. part (a). Part (c) follows by invoking th.4.3.1 and by
interpreting (4.1.6) as the average return optimality equation of a MDP,
with M(i,x*) as the action set in state i and {c?- Zjﬂtjx;]ie Qke M(i,x*)}

as the set of one-step expected rewards. 0

REMARK 1, All of the sequences employed in the above algorithm are bounded,
but for {h(n)}zzl which is generated in (4.4,11) and which diverges linearly
with n, We refer to section 1.8 ((1.8.20)~(1.8.24)) for a discussion of pos=-

sible methods to eliminate this numerical difficulty.
4.5, THE n+1 NESTED FUNCTIONAL EQUATIONS

We showed in theorem 4.4.7 how to solve two coupled equations by

successive approximations, For two equations, we saw that 4 successive
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approximation schemes (cf. th.4.4.7 part (a)) suffice to find the first

unknown and one additional scheme (cf. th.4.4.7 part (c)) will find a so-
lution to the second equation. Since (4.1.1) has a similar structure, sim-
ilar methods will work for n+l sets of equations with n arbitrarily large.

The n unique vectors {x*(o),...,x*(n_l)} (cf., th.4.2.3) are found by 4 n

*(n)

successive approximation schemes and the (non-unique) vector x is found
by one additional scheme,

To avoid excessive notation, the procedure will only be described ver-
bally. First construct 4 schemes (given by applying th.4.4.7 part (a) to
the first 2 equations) to find x*(O). Here the action sets K°(i), i ¢ ©,
and the rewards a (0) and a; (1), ie Q and k € K (i), are known exactly.
The result of these 4 schemes is a sequence {x (n)} which converges

*(0)

geometrically to x and sequences of sets {Kl(l n)} , i e Q, which con-

verge to K (i) . Next construct 4 more schemes (given by ;nplylng th.4.4.7
to the second and third equation in (4 1.1)) to find x*(lx Here the action
sets K (i), 1 € 9, and the rewards a (1) - z H (1) xf(O) and a?(Z), ie Q;
k e x° (i), are not known in advance; lnstead we employ the approximations

available from the earlier schemes:

Kl(i,n) for Kl(i); ieQ

a* (1) -1 1) x D@y, for a5 =T B (1) ienr ke K.
i ij 3 1 j 13 J
}:(2) + <bf %), x % (m)>  for a]i(2), ie®; kek%(i).
The result is a scheme giving a sequence {x( (n)} which converges geo-
metrically to x*(l) and sets K (i;n) which converge to XK' (i), 1 € Q. Con-

tinuing this way, we get 4n+l simultaneous successive approximation schemes,
each dependent upon its predecessors and each converging geometrically.

Note the feature that the geometric rate of convergence propagates from
one pair of functional equations to the next; this is crucial for guarantee-

ing convergence of the whole set of 4n+l successive approximation schemes.
We conclude this chapter by considering the following special cases:

A) at(O) =0, i€ Q, ke Ko(i)° This case occurs in all MRPs in which one
wants to find policies that are maximal gain or optimal under more selective
discounted or average overtaking optimality criteria (cf. [22], [127] and
section 4.1). For notational simplicity assume, as is actually the case in

the MRP model, that H (m) = H?j for allm = 1,...,n and i,j € @ and k € K%i).
A solution to the flrst two equetlons in (4.4.1) may be obtained by genera-

ting a system of only two (rather than four, as in the general case of th.



108

4.4.7) schemes. To verify the latter, note from th.4.2.1 that in this par-

. _ o,.
ticular case, SMG = Xj K7 (j) such that
m
s1)>
XZ(O) = maxg o K(3) Xzif) ¢?(f) SE—éELLELELLL-r
g <™ (£),T(£)>

(0)

. » * . s .
i.e. we rederive that x itself represents a "maximal gain rate" vector

and may be approximated with a single equation scheme (cf. section 1.9 and
section 4.3).

We recall having noticed in section 1.9, that whereas the maximal gain
rate and maximal gain policies in an undiscounted MRP, can be found via a
single iteration scheme, the computation of a solution to the optimality
equation 1.9.5 requires two (simultaneously generated) schemes. The above

described procedure clarifies how this objective may be met.

*(0)

In the special case where either (1) x has identical components,

or (2) Hk, = T# §,. or (3) H#. = Tg Pg‘, the second equation in (4.1.1)
ij i ij ij i 7ij
may be rewritten as

*(1)

(4.5,1)  x - (O gk XM
L3 o i )

k : k .
[ai(l) Ti + Zj Pij xj 1, ieQ

= maX ekl (i)

which coincides with the simplified optimality equation, (1.9.8) associated

(0)

*
with the maximal gain rate vector x . We conclude that in this case, a

sequence approaching some solution yO to (4.5.1) may be derived from the

*(0)

same scheme that is needed to obtain x (cf. th.4.3,1 part (b)), i.e. a

single equation scheme suffices to solve the first two functional equations.
B) Finding bias-optimal policies in MRPs, This problem reduces to solving

the following triple of nested equations.

* k * .
(4.5.2) g9; = maxkeKO(i)[zj Pij gj], ieQ

* k k * k * .
z, = maxkeKl(i)[qi Zj Hij 9; + zj Pij zj], ie®
* k., k% K ox
= 2) - +
uy maxk€K2(i)[ai( ) zj Hij z5 Zj Pij uj], ie Q.

Since (4.5.2) satisfies A) only two schemes are needed to solve the first
two equations, and an additional quadruple of schemes has to be added to
solve the entire problem.

The algorithm simplifies, however, under condition (UNI) (cf. (1.4.20)).
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LEMMA 4.5.1. Assume condition (UNI) to hold. Fix v ¢ V., Let the vector u
and the scalar d satisfy
k k o) k k .
.5, . = . L(2)=- ). H,, v.] -dT, + ). P,, u, Q.
(4.5.3)  u, maxkes(l,vp){[al( ) zj Hy g vj] ar; Z] i3 uj], ie

*
Then, (vo+dlju) satisfy the last two equations in (4.5.2), i.e. (<g >1,

V°+d1!u) solves the entire system (4.5.2).

PROOF. The fact that g* = <g*>1‘follows immediately from (1.4.20). Note that
(UNI) implies that the sets S(i,v) are independent of v ¢ V for all i € Q.
Hence we write S(i) for S(i,v), i € Q. Let z = vo+difzv. Regroup the terms
to the right of (4.5.3) and use zj H?j = T? (i e Q, ke Ko(i)) to conclude
that (z,u) satisfy the last two equations in (4.5.2). Hence z represents

the optimal bias vector 2" and (<g*>1!z,u) solves the entire svstem (4.5.2).0

Under (UNI) we have in view of g* = <g*>l! that the optimality equa-
tion (1.9.5) reduces to (1.9.8) i.e. V = ¥V, Hence a vector v© e V, the max-
imal gain rate <g*> and the sets S(i,vo) = S(i), i € Q may be obtained from
a single equation scheme, like (4.3.3). Next, it follows from lemma 4.5.1
that the scalar dEvO] and hence the vector z*, as well as a solution u to
the third equation in (4.5.2) and a bias-optimal policy may be obtained

from a simultaneously computed second scheme of the type (4.3.3).

We conclude that whereas in general a system of 6 schemes is required
to obtain bias~optimal policies, the number may be reduced to two under as—
sumption (UNI). We finally recall that Hordijk and Tijms' method (cf. sec~
tion 4.3 and 1.8) may be used in case g* = <g*>l.to find the optimal bias-

vector, though not necessarily a bias-optimal policy.






CHAPTER 5

The optimality equation in average cost denumerable state

semi-Markov decision problems, recurrence conditions and algorithms

5.1. INTRODUCTION

In this chapter we consider an undiscounted semi-Markov decision model
specified by five objects (I, A(i), pij(a), c(i,a), t(i,a)). We are con-
cerned with a dynamic system which at decision epochs beginning with epoch
0 is observed to be in one of the states of the denumerable state space I.
After observing the state of the system, an action must be chosen. For any
state i€ I, the set A(i) denotes the set of possible actions for state i.
If the system is in state i at any decision epoch and action aeA(i) is cho-

sen, then regardless of the history of the system, the following happens:

(i) an immediate cost c(i,a) is incurred;
(ii) the time until the next decision epoch is random with mean 7t (i,a);
(iii) at the next decision epoch the system will be in state j with proba-

bility pij(a) where E (a) = 1 for all ie I and aeA(i).

jeIPij
Unless stated otherwise, we make throughout this chapter the following

assumptions.

Al. For any i€ I, the set A(i) is a compact metric space on which both
c(i,a), t(i,a) and pij(a) for any j e I are continuous.

A2. There is a finite number M such that |c(i,a)] < M and t(i,a) < M
for all ieI and acA(i).

A3. There is a positive number § such that t(i,a) = § for all i€ I and

aeA(i).

We note that assumption Al is satisfied when A(i) is finite for all ie I.

A policy m for controlling the system is any (possibly randomized)
rule for choosing actions. For any initial state i and policy w, denote by
Xn and a, the state and the action chosen at the nth decision epoch for

t!
n=20,1,.... (the O h decision epoch is at epoch 0). Denote by ETT the
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expectation when policy m is used. Let F = XieIA(i>' i.e. F is the class

of all functions f which add to each state i€ I a single action £(i)eA(i).

For any f € F, denote by f(m) the stationary policy which prescribes action
(=)

f(i) whenever the system is in state i. Under each stationary policy £

the process {Xn,nZO} is a Markov-chain with one-step transition probability

matrix P(f) = (pij(f(i))), i,jeI. For n = 1,2,..., denote the n-step tran-
sition probability matrix of this Markov chain by Pn(f) = (p?j(f)), i,jeI.

For n = 1 we write P(f) = (pij(f)).

Finally, the following assumption is made throughout this chapter:

Ad. For any f € F, the stochastic matrix P(f) has no two disjoint closed

sets.

In this chapter, we are concerned with the optimality equation for the
long run average costs. We give a large number of recurrence conditions with
respect to the stochastic matrices P(f), £ € F, under which the existence
of a bounded solution to this optimality equation will be proven. This will
be done in section 3. First, however, these recurrence conditions are pre-
sented in section 2, and we exhibit several relations between them, there-
by mapping out some of the existence conditions that have appeared in the
literature, so far.

It is important to note that the existence of a bounded solution to
the optimality equation, implies the existence of an optimal stationary pol-
icy among the class of all policies and with respect to a strong version of
the average cost optimality criterion, which implies essentially weaker
versions usually considered in the literature (cf.[46] and th.5.3.2). Fur-—
ther we note that after having established the optimality equation for the
average costs, a repeated application of this result yields a sequence of
optimality equations that are involved when considering the more sensitive
and selective n~discounted optimality criteria, thus showing the existence
of stationary n-discounted optimal policies (cf. HORDIJK and SLADKY [59]
and section 4.1).

Besides the existence of a bounded solution to the optimality equation
for the average costs, we will consider the problem of determining such a
solution, which in £urn yields an optimal stationary policy. In section 4,
we shall show that under each of our conditions the value~iteration method
can be used to determine a bounded solution to the optimality equation. The

policy—~iteration method will be considered in section 5. Under condition
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C6', to be stated below, we shall prove that the average costs and the
relative cost functions of the policies generated by this method, converge
to a solution of the optimality equation. This result considerably gener-
alizes a related result in DERMAN [24].

The results in this chapter are based upon FEDERGRUEN and TIJMS [40]
and FEDERGRUEN, HORDIJK and TIJMS [42].

5.2. RECURRENCE CONDITIONS AND EQUIVALENCES

In this section we shall formulate a number of recurrence conditions,
on the set P = (P(f),f e F) and prove several relations between these condi-
tions. Before doing this, we note that by F = XieIA(i) and assumption Al,
the set F is a compact metric space in the product topology where for any
i,j €I, the function pij(f) is continuous on F. We note that in the remain-
der of this section, we merely use this fact, rather than the product prop-

erty of F. Also, using the relation

m+1 m
.2, . = 1,1 > e B
(5 1) pij (£) zkeI pik(f)pkj(f) for all i,jeI, m 1 and f ¢ F
and proposition 18 on p.232 in [100], it follows by complete induction that
for any n 2 1 and i,j e I the function p?j(f) is continuous on F. Further we

introduce the following notation. For any i,€ I, A <€ I and f ¢ F, define

0
the taboo probability

(5.2.2)  t] () = 1 p, ; (Bl.op, L (B, n=1,2,...

0 il,...,inel\A 071 n-1"n

i.e. t?A(f) in the probability that the first return to set A, takes more
than n transitions, when starting in state i and using policy f(w). For
any 1ie€I, A< I and f € F, define the (possibly infinite) mean recurrence

time
= © n
(5.2.3)  p(£) =1+ ] ot (f)

i.e. uiA(f) is the excepted number of transitions until the first return

to the set A, when starting in state i and using policy f(w). Finally, we

R n
write ti

- n — — .
A(f) = tij(f) and uiA(f) = uij(f) for A = {3}.

Consider now the following simultaneous recurrence conditions on the

set P = (P(f), £ e F).



Cl. There is a finite set K and a finite number B such that
uiK(f) < B for all i € I and £ € F.
C2. There is a finite set K, an integer v 2 1 and a number p > O such that
) p,.(£) = o for all i e T and £ ¢ F.
jekK
C3. There is an integer v =2 1 and a number p > 0 such that
. . v v
(5.2.4) inf { ) min(p; 5(6)/p; j(f)]} > p for all £ ¢ F
11,1261 jeI 1 2
C4. There is an integer Vv =2 1 and a number p > 0 such that for any f ¢ F
a probability distribution {wj(f),jeI} (say) exists for which
(5.2.5) |} P?.(f) -3 ﬂj(f)l < )™ fora11i e, ac1
jea Jeh and n 2 1.
where |x] denotes the largest integer less than or equal to X.
Cc5.

For any f € F there is a probability distribution {Wj(f),j€I} such that

(5.2.6) p?j(f) - ﬁj(f) uniformly in (i,f) € I X F as n > ® for any j € I.

Ce.

Cc7.

Cc8.

Cc9.

There 1is a finite number B such that for any £ ¢ F a state Se exists

for which

u, (f) < B for all i € I.
isg

There is a finite set K and a finite number B such that for any f € F

a state Sp € K exists for which

u, (f) < B for all i € I.
isg

There is an integer v 2 1 and a number p > 0 such that for any f ¢ F

a state sf exists for which

p, (f) 2 p for all i € I.
isg

There is a finite set K, an integer v 2 1 and a number o > O such that

for any £ € F a state Sg € K exists for which

pY (f) 2 p for all i € I.
isg
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)Ln/vJ

We note that in C4 the condition | Ip?j(f) - ﬂj(f)l < 2(1-p

for all i e I, £ € F and n 2 1 may be iéiivalently stated instead of (5.2.5).
The condition Cl1 was considered in [58], cf. also [98]. The condition C2
was introduced in [58] and called the simultaneous Doeblin condition since
for each £ € F the stochastic matrix P(f) satisfies the so-called Doeblin
condition from Markov chain theory. The conditions C3 and C4 were intro-
duced in [40]. Following Markov chain terminology, the conditions C3 and C4
could be called a simultaneous scrambling condition (cf. [51]) and a simul-
taneous quasi-compactness (or strong ergodicity) condition (cf. [88]) res-
pectively. Observe that except for Ci-C2 each of the above conditions im-
plies assumption A4 in itself.

Further, any P(f) is aperiodic under C3, C4, C5, and C8. Finally,
we note that the left side of (5.2.4) denotes the ergodic coefficient of
the stochastic matrix Pv(f) (cf. also (3.3.8)) and that {ﬂj(f), je I} in
C4-C5 denotes the unique stationary probability distribution of P(f).

The following theorem was obtained in a more general setting in

HORDIJK [587.

THEOREM 5.2.1.

(i) The conditions Cl and C2 are equivalent.

(1i) Under condition C2, every stochastic matrix P(f) has a unique stationary
probability distribution {Wj(f), j eI} (say) such that for any j € I,

the function Wj(f) is continuous on F.
We shall now give the following equivalences:

THEOREM 5.2.2. If the stochastic matrix P(f) is aperiodic for each f ¢ F,

then condition C2 implies condition C3.
THEOREM 5.2.3. Condition C3 implies condition C4.

THEOREM 5.2.4.
(i) The condition C5 implies both condition C2 and C9.

(ii) The conditions C3, C4, C5, C8 and C9 are equivalent.

THEOREM 5.2.5.

(i) The condition C2 implies the condition C7.

(ii) The condition C6 implies the condition C7.

(iii) The conditions Cl, C2, C6 and C7 are equivalent.

(iv) If the stochastic matrix P(f) is aperiodic for each f ¢ F, then the

conditions Cl-C9 are equivalent.
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In case the set P consists of a single stochastic matrix, the above equiv-
alences may be found, albeit in a scattered way, in the literature, cf. p.
197 in DOOB [28], p.142 in HUANG, et al.[65], p.226 in ISAACSON and MADSEN
[67], and p.185 in NEVEU [88].

We shall now give the proof of the above theorems 5.2.2 - 5.2.5.

Proof of Theorem 5.2.2. Suppose first that C2 with triple (K,v,p) holds

and that every P(£f) is aperiodic. We shall then verify condition C3. Since
for any f € F the stochastic matrix P(f) satisfies the Doeblin condition,
has no two disjoint closed sets and is aperiodic, we have from Markov chain
theory (e.g. [28]) that every P(f) has a unique stationary probability dis-
tribution {ﬂj(f),js I} (say) such that

(5.2.7) lim p.,(f) = m,(f) for all i, e I.
ne T 1] J

Since C2 implies Zjexpgj(f) > p for all ieI, feF and n=v, we have
(5.2.8) Yy w.(f) 2p for all f e F.

jeK
Define now

- b
(5.2.9) Fo= {fs‘Flnk(f) > IKI} for k € K.

where |K| denotes the number of states in K. Then, by (5.2.8),
F= U F .
kek K
Using part (ii) of th.5.2.1 and the fact that F is a compact metric space,

it follows that for any k € K the set F

K is closed and hence compact. For any

ieI and ke X, define
. . n 0
(5.2.10) n(i,k,f) = mln{nzzllpik(f) > §TET} for feFy.

By (5.2.7), n{(i,k,f) exists and is finite. Using the fact that Pn(f) is
continuous on F for each n = 1, it is immediately verified that for each
i e I and k € K the set {fe Fkln(i,k,f) > o} is closed for any real o, i.e.
for each 1 € I and k € K the function n(i,k,f) is upper semi-continuous on
the compact set Fk.
Now, by Proposition 10 on p.161 in ROYDEN [100], we have that for each

ieI and k € K the function n(i,k,f) assumes a finite maximum on F . Hence,

k*
using the finiteness of K, we can find an integer u = 1 such that



(5.2.11) n(i,k,f) =yp for all i €KX, keK and feFk.

Next define for any ke K

for all n<m<n+u} for feF, .

(5.2.12) m(k,f) = min{nzzllpik(f) > 517 5

We now verify that for each k € K the set S, = {fe Fklm(k,f) >qg} is closed
for any real o. Fix ke K and an integer o > 1. Suppose that fn € Su for n 21
and that fn -> f* as n>», Then we can find a subsequence {nh,hz 1} of inte-
gers, and integers r and t with 1<r < a -~ 1 and r< t £ r + p such that
p;:k(fnh) < p/(2]K]) fortall*h > 1, Hence, by the fact that plzk(f) is con-
tinuous on F, we find pkk(f ) < p/(2|K|) and so £ ¢ SOL. We have now proved
that for any k € K, the function m(k,f) is upper semi~continuous on the com-

pact set Fk. Hence there exists an integer N = 1 such that

m(k,f) <N for all ke K and feFk.

For any ke K and fe F, , we have by (5.2.10)-(5.2.12)

k
(K, £) (i,k,£) (k,£)+u-n (i Kk, £) 2
pr M) gy 2T s ) gy g K BIFHTRELG R (£ > B for all iek.
ik ik kk 2
41x|
Hence for any ke K and f e Fk'
v+u+m(k, £) v +m(k, £) 3
ik“ mir B gy > ¥ pi‘(f)p‘fk g s 2 > for all iel.
jeK 3 J 41x]
Using this result, we now find for any ke K and f ¢ Fk,
. +u+N
X mln[p\iﬂl.JrN(f),p\.) N T
jeI 17 o]
+u+ - + =
> 2 m.m[pY p+m(k, £) (f)pN.m(k,f) (£) ,py+u m(k,f) (f)PN.m(k,f) 5] =
. ik kj ik k3
jel 1 2
3 3
N~m (k
> L k.m( g = —£—  for all i ,ijeT,
41k]“ gex 4]x|

which verifies C3.

Proof of Theorem 5.2.3. The proof of this theorem proceeds along the same

lines as that of theorem 1 in ANTHONISSE & TIJMS [1], or that of th.2.2.5.
Assume C3 holds with the pair (v,p). Fix fe¢F and Ac I, Forn = 1,2,...
define

= n o n
My =Sy Ligp Byy (9 andmy = ingy ) By 6).
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Using (5.2.1), it follows that

< >
(5.2.13) Mn+1 < Mn and mn+1 > mn for all n = 1.

+ -
For any number a, let a and a be defined as in section 2.1, i.e.
+ - -
a =max(a,0) and a =min(a,0). Then, a==a++a and for any sequence {a.,j eI}

of numbers such that Ejellaj! < @ and z. = 0 we have zja; = - X,a}. Fur-

J
a. )
JeI 3 J 3]
ther, we note that (a—b)+ = a-min(a,b) for any pair of numbers a,b. Fix now

ie€eI and n>v. Then,

n n Y \Y n-v
Pl (E) = Yopo(£) = ) {p., (£)-p, ()} } p . (£) =
jen *J jea Y ker K Tk jen K3
= 3 el (6)-pl O T Ve + T ) (B -pl(6)) T o Ve <
kel ik rk jen kj KeT ik rk jen ki
v Y +
<fm_-m b dp (£) - p o (£)} =

kel

i

v v
{anv—mnwv}{1~ kgl minlp,, (£), prk(f)]} <

A

< (1_0)(Mn—v—mn—v)'

Since i and r were arbitrarily chosen, it follows that

- < - -’
Memo< (1-p) (M -m } for all n > v.

Hence, since Mnmmrl is non-~increasing in n 2 1,

)Ln/vJ

(5.2.14) M ~-m_ < (1-p for all n 2 1.
n n

Together (5.2.11) and (5.2.12) imply that for some finite non-negative
number m(A)

limM_ = lim m_ = w(A).

o e N

Further for any n = 1,

(5.2.15) m_<m(d) <M and m_< ) p.. (f) <M for all i € I.
n n n . ij n
jeA
It now follows from (5.2.12) and (5.2.13) that

D) pgj(f) - m(a)]< (1-0) ) e a11n > 1.

jeA
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Since this relation holds for any A ¢ I, it follows that w(.) is a proba-

bility measure on the class of all subsets of I which completes the proof. [

Proof of Theorem 5.2.4. (i) Suppose that condition C5 holds. Since for any

i,j € I and n 2 1 the function p?j(f) is continuous on F, it follows from
(5.2.6) that for any j € I the function ﬂj(f) is continuous in f ¢ F. Now,
let {K ,n=1,2,....} be a sequence of finite sets K < I such that K > K
n e n+i = "n
for all n 2 1 and lim K = I. Let a (f) = Z, 7w, (f) for n 2 1 and f ¢ F.
n»>© n n jeKn 3
Then the function an(f) is continuous in f € F for any n = 1, and moreover,

(£f) = an(f) for all n 2 1 and lim a_ (f) = 1.

for any £ € F we have a
n+® n

n+1
Now, since F is compact, we have by theorem 7.13 in RUDIN [101] that an(f)
converges to 1 uniformly in £ € F as n > ©. Hence for each € > 0 there is

a finite integer n such that an(f) > 1-e for all £ ¢ F. This shows that we

can find a finite set X and a number § > 0 such that

(5.2.16) ) m,(f) = § for all f e F.

jeK
By (5.2.6) and the finiteness of K, we can find an integer v = 1 such that
pzj(f) > Wj(f) - 8/(2]K]) for all i € I, £ € F and § € K where |K| denotes,
once again, the number of states in K. Together this inequality and (5.2.14)
imply condition C2. Further we get from (5.2.14) that for any f € F there is

£
and f € F. This inequality verifies condition C9 which completes the proof

a state s_ such that nsf(f) > §/]k] and so pzs (£) = 8/(2|K]) for all i € I
£

of part (i).
(1i) Since C9 implies C8 and in its turn C8 implies C3 and since C4 implies

C5, this part follows by using theorem 5.2.3 and part (i) of theorem 5.2.4. []

Proof of Theorem 5.2.5. To prove the theorem, we shall use a classical per-

turbation of the stochastic matrices P(f), f € F, which is analogous to the
data~-transformation (1.8.1) and (1.8.2) with o = 1. Fix any number T with
0 <1 <1 and let P = (E(f),f € F) be the set of stochastic matrices

P(f) = (ﬁiﬁ(f))' i,j € I such that for any £ ¢ F and i,j € I:

[Tpij(f) for § # i
pij(f) =

i
o

11 - T + Tpii(f) for j

Note that, by pii(f) 21 -1 >0 for all i € I and £ € F, the stochastic
matrix P(f) is aperiodic for all £ € F. Also note that for any i,j € I the

function Eij(f) is continuous in £ € F and for any f € F, the stochastic
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matrix P(f) has no two disjoint closed sets. Define for the stochastic ma-

trices P(f) the taboo probabilities E?A(f) and the mean recurrence times

uiA(f) as in (5.2.2) and (5.2.3). By induction on n, it is straightforward

to verify that for any £ € F

~n v n n-k k k
(5.2.17) (&) = ) Ma-o" T (£)  for all n = 0,1,... and
ij k=0 k ij
i, € T with i # 9,
where Egj(f) = tgj(f) = 1. From the relations (5.2.3) and (5.2.17) we get

~ o (£)
(5.2.18) i (£) = “i;F“”‘ for all i,5 € I with i # § and £ ¢ F.
1

We note that this relation is intuitively clear by a direct probabilistic
interpretation.

We now prove (i). Suppose that the condition C2 holds with triple
(K,v,p). Then, by Eij(f) 2 Tpij(f) for all i,j € I and f € F, we have

EY‘(f) 2 TV z p?.(f) = Tvp for all i € I and f ¢ F.
jek 1] jekK +J
Hence the condition C2 applies to the set P = (P(f),f € F). Moreover we
have that any stochastic matrix E(f), f ¢ F is aperiodic. Now, by the com-—
bination of th.5.2.2, th.5.2.3 and part (ii) of th.5.2.4, it follows that
condition C9 applies to the set P. since condition C9 implies C7, we have
that condition C7 applies to the set P. Now, by invoking (5.2.16), it fol-
lows that the condition C7 holds for the set P = (P(f),f € F) as was to be
proved.

Next we prove (ii). Suppose that condition C6 holds. Then, by in-
voking again (5.2.16), we have that condition C6 applies to the set p.
Hence there is a finite number B such that for any £ € F there exists a

state sf such that

E? (f£) < B for all 1 € I.

(5.2.19) u, (f) =1 +
is le

£ n

I ~18

1

Pix now O < v < 1. Since for any £ ¢ F and i € I the taboo probability
E?s (£) is non-increasing in n, it follows that there is an integer N 2 1
£

such that

(5.2.20) E,S (f) <y for all i e I and f € F.



(Supposing the contrary to (5.2.20) gives a contradiction with (5.2.19)).
Together the inequality (5.2.20) and the fact that ékk(f) > 1 - 1 for all

ke Iand f € F imply

‘Ts (f) = (1-T)N“1(1—Y) for all i € I and f ¢ F.

£

This shows that condition C8 applies to the set P. Next, by part (ii) of
theorem 5.2.4 condition C9 applies to the set P. Since 9 implies C7, it
follows that condition C7 applies to the set P. Now by invoking again
(5.2.16) we have that condition C7 holds for the stochastic matrices P(f),
f € F as was to be verified.

We obtain part (iii) of the theorem by noting that C7 trivially im-
plies both Cl and C6 and using part (i) of theorem 5.2.1 and parts (i)-(ii)
of theorem 5.2.5. Finally, part (iv) of the theorem is an immediate conse-

quence of the theorems 5.2.2-5.2.4 and part (iii) of the theorem.
5.3. THE AVERAGE COSTS OPTIMALITY EQUATION

In this section we shall prove that under each of the conditions Cl-
C9 the optimality equation for the average costs has a bounded solution.
To establish the optimality equation, we shall employ a simple but very
useful data~transformation analogous to the one introduced in SCHWEITZER
[108], which is the exact analogue of (1.9.9) and (1.9.10). We associate
with the semi-Markov model a discrete-time Markov decision model with state
space I, the set A(i) as the set of possible actions for state i, one-step
costs c(i,a), one-step transition times T(i,a) = 1 and one-step transition

robabilities p..(a) where, for all i,j € I and a € A(i)
P Pl]

c(i,a)

c(i,a) = (1,5

3 -t -
and pij(a) = ) {pij(a) Sij} + 8, .

T(i ij
with éij representing the Kronecker function, as before, and where T is a
fixed number such that
0<T <& = ;ng {T(l,a)/<1—pii(a))lpii(a) < 1}.
7
Observe that § > 0 and note that the assumptions Al -~ B4 also apply to the
transformed model. Further, letting the finite positive number y be equal

to supi a T(i,a), it is readily verified that for all i € I and a € A(i) we
v
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have that {ﬁij(a),je I} is a probability distribution with

p..(a) for j # i.

1]

(5.3.1) B, (a) 21~ §-> 0 and @ij(a> >

< |4

By the first part of (5.3.1), we have that for any f ¢ F the stochastic
matrix P(f) is aperiodic. This aperiodicity will play a crucial role in
the analysis below. Also, letting the finite positive number ¢ be equal
to min[1-1t/8,t/y] and using (5.3.1), it is immediately verified that for

any set A ¢ I and all n = 1,

W

\

(5.3.2) Z ﬁ?.(f) z ¢n Z p?‘(f) for all 1 € I and f ¢ F.
jea ™ jea *

By parts (iii)~(iv) of theorem 5.2.5, we have that each of the conditions

C1-C9 implies condition C2. Hence, by (5.3.2) we have that under each of

the conditions C1-C9, holding for the set P = (P(f),f € F), condition C2

applies to the set P = (P(f),f € F) as well. Together this result, the ape-

riodicity of the policies in ﬁ and the theorems 5.2.2-5.2.3, imply that un-

der each of the conditions C1-C9 there is a number p > 0 and an integer

v 2 1, such that for any f ¢ F, the stochastic matrix ﬁ(f) has a unique

stationary probability distribution {%j(f),j € I} (say) with

Ln/v]

(5.3.3) | Yol (f) - ) ﬁj(f)l < (1-p) for all i ¢ I, AS T and n > 1.

Jjeh +J jeA
This result will underly the derivation of the optimality equation for the
transformed model (cf. also TIJMS [123]) from which we easily get the opti-
mality equation for the semi-Markov decision model considered. Before show-

ing this, we give the following lemma.

LEMMA 5.3.1. Let {hn(.), n 2 1} be a sequence of bounded functions on I
such that, for some bounded function h(.) on I, limn»m hn(i) = h(i) for all

i e I. Then, for any i € I,

lim min(i){c(i,a) + ) pij(a)hn(j)} =min {c(i,a) + Z P Yh(§) )

. (a
n>w achA jeI aeh (i) jer ij

PROOF., Fix i € I. For any n 2 1, let action a minimize c(i,a) +ijij(a)hn<j)

for a € A(i). Observe that, by Al, such a minimizing action exists.

Now, let {nk,k > 1} be any infinite sequence of positive integers. Since
*
A(i) is a compact metric space, we can choose an action a ¢ A(i) and a sub-

sequence {tk,k > 1} of {nk,k 2 1} such that a_ > a” as k + . Using the
k
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*
> © t Acl
fact that, by al, ZjeA pij(atk) > EjEA pij(a ) as k for any se <
and using proposition 18 on p.232 in ROYDEN [100], it follows from

clia, ) + ) op..la_)dh_ (3) <clia) + ) p..(@h (3
s jer 23 &

for all a € A(i) and k =2 1, that

lim min {c(i,a) + z p..(a)ht (1)} =min {c(i,a) + z pi(a)h(j)}
ko aeA(i) jer I k a€a (i) jer *I

which proves the lemma. [J
We now prove the main result of this section.

THEOREM 5.3.2. Under each of the conditions Cl-C9 there exists a finite

* *
constant g and a bounded function v (i), i € I such that

(5.3.4) v (i) =min {c(i,a)-g"T(i,a)+ ) p..(a)v ()} for all i ¢ I.
aeA (1) . 1]
jeI
* *
The constant g 1is uniquely determined and the bounded function v (i),

i e I is uniquely determined up to an additive constant.

PROOF. Consider first the transformed model. As shown above, there is an
integer v 2 1 and a number p > O such that for any f € F the stochastic
matrix P(f) has a stationary probability distribution satisfying (5.3.3).
To verify the optimality equation for the transformed model, consider first
the discounted cost criterion. For any 0 < B < 1, define for each policy m

(observe that c(i,a) is uniformly bounded in i,a),

(e
s, n- ) .
VB(l,W) = E"[nZQB c(Xn,an)IXO =4i] for i e I,

and let V(i) = infﬂ& (i,mM), i € I. Tt is known that for any 0 < B < 1

8 B
the function VB(i), i € I is the unique bounded solution to: (cf. e.g.

MAITRA [827)

(5,3.5) %B(i) =min {c(i,a) + B ) p,.(a) ﬁs(j)}, ie 1,
aea (i) jer I

and, moreover,

()

(5.3.6) VB(i'fB ) = Vﬁ(i) for all 1 ¢ I,

for any £, € F such that f£,(i) minimizes the right-side of (5.3.5) for all

B8 8

i€ I. For any 0 < 8 < 1 and f € F, we have
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(5.3.7) V.1, = Y g™ Y Bl (£)C(§,£(5)) for all i € I
B & . ij
n=0 jel

where égj(f) = dij' From (5.3.3), it follows that for any f € F, i, k ¢ I

and n =2 1 the total variation of the signed measure u(a) = szA é?j(f) -
- szAﬁiij(f) is bounded by 4(1—p)Ln/vJ. Using this result and letting B be

any finite number such that [&(i,a)| € B for all i,a, it follows from (5.3.7)
that, for any 0 < B < 1 and all f ¢ F,

o ke <4 Y

!ﬁs(ilf —p)Ln/vJ < égx
n=0 P

for all i,ke I.
Hence, by (5.3.6),

]08(1) - ¥

8(k)[ < égthor all i,k ¢ I and all 0 < B < 1.

Now, by using lemma 5.3.1 and by making an obvious modification on the proof
of theorem 6.18 in ROSS [98], there exists a finite constant g and a bounded
function v(i), i € I such that
(5.3.8)  v(i) =min {&(i,a) - g+ ) p..(a)v(§)} for all i e I.
aehA (i) jer 7
*
We shall now verify that g = g and V*(i) = tv(i), i € I satisfy (5.3.4).

To do this, observe that (5.3.8) can be equivalently written as

cli,a) _ T
T(i,a) T(i,a)

Y op,.(a)v(i) + (1 -~ —=

v(i) = -
ng 1] T(lra)

Vv (i)

for all 1 € T and a € A(i)

where for any i € I the equality holds for at least one a € A(i). Multi-

plying both sides of this inequality by t(i,a) > 0, we find

0 <c(i,a) - gr(i,a) + T ) pyj(a)v(3) = (i), i e Iandaeali),
jel

where for any i € I the equality sign holds for at least one a ¢ A(i).
This proves that g* = g and v*(i) = 1tv(i), i € I satisfy the optimality
equation (5.3.4). By theorem 6.17 in ROSS [98], we have that the constant
g* in (5.3.4) is uniquely determined and, by lemma 3 in HORDIJK, SCHWEITZER
and TIJMS [61], we have that the function v*(i), i e I in (5.3.4) is unique-
ly determined up to an additive constant.

For any policy m, define for all i € T and n > 1,



n
Oc( vay) [xy=iland T_(i,m) =En[k£OT()%<,ak) %y=11.

o~

vn(i,n)= Eﬂ&

* .
Define a policy m to be average cost optimal in the strong sense if

* .
Vn(i,w ) vV _(i,m)
5.3.9 1i ————— < lim inf ——7—
( ) lﬁ+2up Tn(l,n ) llg+in Tn(l,ﬂ)

for all i € T and any policy .
An examination of the proof of theorem 7.6 in ROSS [98] gives the fol-

lowing theorem.

THEOREM 5.3.2. Let {g*,v*(i),ie I} be any bounded solution to the optimality

equation (5.3.4) and let f_ € F be such that fo(i) minimizes the right side

0
of (5.3.4) for all i € I. Then

Vn(i,ﬂ) .
lim inf ————— 2 g for all i € I and any policy 7
n>o Tn(l,ﬂ)
and ()
Vn(i,fO ) .
1lim ) =g for all i € I,
e (i, f )
n 0

co

so the stationary policy f( ) is average cost optimal in the strong sense.

0

; Although strong optimality as in (5.3.9) is immediate when the optimal-
ity equation has a bounded solution, this criterion may be difficult to
verify directly. In the literature the lim sup and lim inf average cost
criteria are usually considered when the optimality equation cannot be es-
tablished. However, the relations (2)-(4) in FLYNN [46] show that these cri-
teria are essentially weaker than the criterion (5.3.9).

Finally, letting Z(t) be the total costs incurred up to time t and
using theorem 7.5 in ROSS [981, we have under each of the conditions C1-C9
that for any f € F,

Vn(i,f(w))
oy [2(E) [X=1] = Lim ——— =

lim t 'E
tre T (i,f' )

£(
(5.3.10)

=7,

jer SEAEGN) T(6) / ).

. . . .
jet T(3,£(3)) nj(f) for all i €

where {ﬂj(f),j € I} is the unique stationary probability distribution of

P(£f).
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5.4. THE VALUE-ITERATION METHOD

In this section it is assumed that one of the conditions C1-C9 holds.

We shall show that a bounded solution to the optimality equation (5.3.4)
may be obtained by using value-iteration. We note that value-iteration may
not work when some of the one-step transition probability matrices associ-
ated with the stationary policies are periodic. However, in the proof of
theorem 5.3.2 we have seen that by the data-transformation given in section
3 any semi-Markov decision problem can be transformed into a discrete-time
Markov decision problem with aperiodic transition probability matrices so
that any bounded solution {g; v(i), i € I} to the optimality equation of
the transformed model gives a bounded solution {g*=g; v*(i) = tv(i), i € I}
to (5.3.4). Therefore we assume in the remainder of this section that
T(i,a) = 1 for all i,a and that P(f) is aperiodic for all f € F.
*

(

*
Let {g; v (i), i€ I} be any bounded set of numbers satisfying

(5.4.1) v (i) =min {c(i,a) - g+ ) p..(a)v ()} for all i ¢ I.
BEA(i) j€I 1]

For any given bounded function v.(i), i € I, define for n = 1,2,... the

0
bounded function vn(i), i € I by the value-iteration equation

(5.4.2) v (1) =min {c(i,a) + I p

(a)v 1(j)} for i € I,
aeA (i) jeI n-

ij
Observe that, by Al, the minimum on the right side of (5.4.2) is attained
for all i. The asymptotic behaviour of the sequence {vn(i)—ng*, nz1} for
i € I has been studied in [61] where the action sets A(i) were taken to be
finite. This finiteness is in fact only used to verify relation (18) in

[61]; however, by invoking lemma 32 on p.178 in [100], it follows that the
results in [61] also apply when for any i € I the set A(i) is a compact

metric space such that both c(i,a) and pij(a) for j € I are continuous on
A(i). Since the assumptions 1 - 5 in [61] are satisfied, we have for some

constant c¢ that

(5.4.3) lim {v_(i) - ng'} = v (i) + ¢ for all i e I.
neo 1

Hence, by choosing some state i and defining v, = vn(io) - vn—l(iO) and

0
wn(i) = vn(i)—vn(io) for i e T and n 2 1, it follows that the bounded num-

bers {yn; wn(i), ie I} converge as n>® to a bounded solution of (5.4.1).



127

it was pointed out in remark 2 in chapter 2, that even in the finite state

space case, C3'" with v 2 2 is essentially stronger than C3 with v = 2.
5.5. THE POLICY ITERATION METHOD

Throughout this section, it is assumed that the following strengthening

of condition C6 holds.

C6': There is a finite number B and a state s such that uis(f) < B for all

i€ I and all f € F.

Condition C6' was first introduced in ROSS [98]. Since C6' implies C6, it
follows from the combination of th.5.2.5 (iii) and th.5.2.1 (ii) that for
each f ¢ F, the stochastic matrix P(f) has a unique stationary probability
distribution {Wj(f),j € I} (say). We further suppose that the assumptions

Al and A2 together with the assumption A3' hold where

A3': There are finite numbers € > 0 and M such that 1(i,a) < M for all i,a

and Zjel T, E(3))T(E) 2 € for all £ ¢ F.

This assumption slightly weakens A3 and allows instantaneous transitions.
Using ideas from a convergence proof given in [19] for a policy iteration
approach to controlled Markov processes with a general state space, it will
be shown that both the average costs and the relative cost functions of the
stationary policies generated by the policy iteration method converge so
that the limits constitute a bounded solution to the optimality equation
(5.3.4). Partial convergence results of this type were obtained in DERMAN
[24] under the restrictive additional assumption of no transient states
under any P(f), £ € F.

We first give some preliminaries. Let the state s be as in condition
C6'. We have for any f € F that
(5.5.1) m (£) = Zjel pji(f)ﬂj(f) for all i € I.

Moreover, we have from Markov chain theory
=]
n
5.5.2 : = i
( ) vl(f) nZO Spsi(f)/uss(f) for all 1 e I

where p?. = §,, for all i,j and
sTij ij

n
= = < < =3 PR >
(5.5.3) spij(f) Pf(m){xn 3, Xk#s for 1 < k < n[XO i} for i,j € T and n21.
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Next, we note that, by choosing fn € F such that fn(i) minimizes the right

side of (5.4.2) for all i, and when defining the average costs vector g(f)

by (5.3.10), it follows by making minor modifications on standard arguments
used in HASTINGS [53] and ODONI [89] (cf. also (1.8.13) and (1.8.14)) that,
for all n 2 1:

» . . * s s
1nfi€I{vn(1)-vn_1(1)} Sg <gl(f) < supi€1{vn(1)~vn_1(l)},

where 1nfi{vn(1)-v (i)} and supi{vn(l)—vn_l(l)} are non-decreasing and

n-1
non-increasing respectively in n 2 1.

Finally, consider the special case where condition C3 with v=1 holds.
Let B be the class of all bounded functions on I and define the mapping

T: B+ B by

Tu(i) = min {c(i,a) + ) p,.(a)u(3)}
aeA (i) jerI 1]

and define splul = supiu(i) - infiu(i) for u € B. Then a repetition of
the proof of theorem 2.2.4 and 2.2.5 shows that, for some number p > 0O
sp[Tu ~ Tw] € (1-p) splu -~ w] for all u,w ¢ B i.e. T is contracting with
respect to the spl.] "norm". Next, using this result and the existence of
a bounded solution to (5.4.1), it is readily verified (cf. the proof of th.
2.2.1) that lvn(i)mng*mv*(i)l < (1-p)" sp[vo—v*] for all ieIand n21, i.e.
in this case the convergence in (5.4.3) is geometrically fast and uniform in i.

Establishing the rate of convergence in the general case where in the
transformed model C3 holds with v 2 1 (i.e. where either one of the condi-
tions C1-C9 applies to the original model) remains an outstanding problem.
The analysis given in section 1.6 exploits the finite dimensionality of the
state space heavily, and cannot be used in the infinite state space case.
Note from the proof of th.2.2.5 that the T-operator can be shown to be
(v-step) contracting with respect to the quasi-norm spl.] on B, in case

condition C3*% applies (cf. condition (8) in (2.2.4)):

C3': There is an integer v 2 1 and a number p > 0 such that

inf,

1 min[P(f\))H.P(fl)i j;P(hv)...P(h ) j]} > p

171

1 1 2

. 1)
flz Jel
for all (fl’"'°’fv) and (hl""’hv) e F.

Hence, using the proof of th.2.2.1 it follows that under C3', value-

iteration is guaranteed to exhibit a geometric rate of convergence. Finally,
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Observe that

o
(5.5.4) u, (F) =1+ ) J _p..(f) for all i e I.
is . s ij
n=1 jeI

Further, for any f € F, define

(5.5.5) g(f) = ] cli,£())m (£)/ ] T(,EE)T (),
iel ieIl
and

L)

(5.5.6) w,(£) = )} ) {c(3,£(3)) - g(f) T(i, £} p . (£), i e I.
i . s ij
n=0 jeI

We note that g(f) gives the long-run average expected costs per unit time
under policy f(m) for each initial state. Also wi(f) for i € I can be in-
terpreted as a relative cost function.

It is immediately verified from (5.5.2) and (5.5.4)~(5.5.6) that, for

any £ € F, the function wi(f), i € I is bounded and has the property that
(5.5.7) ws(f) = 0.

Consider now for fixed f ¢ F the following system of linear equations in

{g: virie 1},

(5.5.8) v, = cl(i,f(i)) - gt(i,f(i)) + ) p..(£(i))v, for i e I.
i je1 1] J

We recall the following well-known theorem (see [18] and DERMAN & VEINOTT [271]).

THEOREM 5.5.1. For any f € F,

(a) The set of numbers {g = g(f); v, = wi(f), i € I} is a bounded solution
to (5.5.8).

(b) In any bounded solution {g; Vi ie I} to (5.5.8), g = g(f).

(c) For any two bounded solutions {g;v} and {g;u} to (5.5.8) there is
a constant c such that v, -u =c for all i € I.

(d) For any j € I, there is a unique bounded solution {g; v} to (5.5.8)
such that vj = 0.

In general it will be difficult to solve the system of equations (5.5.8).
However, in a number of applications the particular structure of the problem
may be exploited to solve these equations, cf. [187.

By the assumptions A2 and A3", we have

LEMMA 5.5.2. The set of numbers {g(f),f € F} is bounded.



For any f ¢ F and any bounded solution {g(f); vi(f), ie I} to (5.5.8),

define
(5.5.9) T(i,a, v(£)) = c(i,a) - g(f)t(i,a) + ) py 4@V, ()
jeI for ie€I and ae A(i).
Observe that
(5.5.10) T(i, £(1), v(£)) = vi(f) for all i € T and £ ¢ F,
The following lemma shows how the stationary policy f(m) can be improved to

a stationary policy h(w)
()
of £ .

whose average costs are less than or equal to that

LEMMA 5.5.3. Let f ¢ F and let {g(£f)iv(f)} be any bounded solution to
(5.5.8). Suppose h ¢ F is such that

(5.5.11) T(i, h(i), v(£)) < vi(f) for all 1 € I.

Then g(h) < g(£f).

PROOF. The proof is standard. Multiply both sides of the inequality (5.5.11)
with Wi(f) and sum over i1 € I. Next the desired result follows after an
interchange of the order of summation which is justified by the boundedness

of v(f) and using the steady-state equation (5.5.1) for policy h(w)h

We now formulate the policy-iteration method.
Policy Iteration Method

Step 0. Initialize with any f1 e F.

Step 1. Let f(m) be the current policy. Determine the unique bounded solu-
tion {g(f); w(f)} to the system of linear equations (5.5.8) in
which v, = 0.

Step 2., Determine f' € F such that T(i, £'(i), w(f)) = minaeA(i)T(i,a,w(f))
for all i € I.

Let {féw), nz1} be the sequence of stationary policies generated by the
policy iteration method. Observe that, by part (c) of theorem 5.5.1, fn+1
is independent of the particular choice of the bounded solution to (5.5.8)

with £ = fn' By lemma 5.5.3,

(5.5.12) g(f ) < g(fn) for all n > 1.

n+1

We shall prove that the bounded numbers {g(fn)-

i

w, (f ), ie I} converge as
i "n
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n -+ ® to a bounded solution of the optimality equation (5.3.4). To do this,
we shall use a modified semi-Markov decision model specified by the five
objects (i, g(i), ﬁij(a),g(i,a), %(i,a)) where, for some artificial state

« and action a_ (say),

I=1ufx}, A(1) = A1) for i e I, A(») = {a_},

c(i,a) = c{i,a), T(i.a) = 1(i,a) for i € I and a € A(i),

cl=,a,) = T(=,a,) =0, p,_(a) =1, gmj<am> =0 for j # s,
pij(a) for i, € I, a € A(i), j#s

pij(a) =

Pis(a) for i € I, a € A(i), j=w.

In fact this modified model is identical to the original semi-Markov deci-
sion model, except that before any transition to state s there first occurs
a transition to state « after which an instantaneous transition occurs to
state s involving no costs. For the modified model, denote by F the class
of all functions h which add to each state i € I a single action h(i) e A(i)
and associate with any h € F the stochastic matrix ﬁ(h):=(§ij(h(i))h i,jel.
Since h(®) = a, for all h € F, there is a one-to-one correspondence between
F and F. For any £ € F, denote by f the unique element in F such that

(i) = £(i) for all i € I. It is immediate that there is a finite number

B (say) such that under any stochastic matrix ﬁ(f), f € F the expected num-
ber of transitions required before the first return to state « is bounded
by B for any starting state i € I. Hence condition C6' with state s replaced
by state « also applies to the modified model. This result together with
the fact that A(») consists of a single action will play a crucial role in
the convergence proof below. Further, for any f € F, the stochastic matrix
P(f) has a unique stationary probability distribution {Ej(f), jeI}. Using
the steady-state equation, we have for any f ¢ F that %S(f) = Ew(f) and
ﬂi(f) = Wi(f)/{1+ﬂs(f)} for all i € I. Hence the assumptions Al, A2 and A3'

also apply to the modified model. Further, letting

G(E) = ) c(,E@NT (£)/ }_ T(i,E(1))7, (£) for £ e F
iel * iel .

it follows that

(5.5.13) g(f) = g(f) for all £ e F.
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Further, for any f € F define

©

wo ) = ) 1 {etEG)) - gBTEEGNI P (), i€
n=0 jel J

where the definition of wﬁ?.(f) is analogous to that of p?.(f) in (5.5.3).
ij = N svij
Then, as above, the bounded function wi(f), i € I has for any f ¢ F the

property

(5.5.14) w_(£) = 0.

Since theorem 5.5.1 also applies to the modified model, we have for any

f € F that {g = a(f); vy o= ﬁi(f), i e I} is the unique bounded solution to

(5.5.15) v, = c(i,£(i)) - gT(i,E(L) + }_ ﬁij(E(i))v‘, ield,

Jel J
with the property that v, = 0. Further, using (5.5.13) - (5.5.15), it
is immediately verified that for any f € F, @m(f) = ﬁs(f) and that

{g=qg); v, = w, (£), i € I} is a bounded solution to (5.5.8) having the
property that v, = 0. By the parts (a) and (d) of theorem 5.5.1, it now
follows that

(5.5.16) &i(f) =w,(f) forallielandfeccF.

Using the relations (5.5.14) and (5.5.16) it is now straightforward to

verify that the following correspondence exists between any pair of se-
()
n

generated by the policy iteration method in the original and modified model

quences {fé ),nz 1}, with f € F, and {nh ,n>1}, with hn e F, that are

respectively

(5.5.17) h_=f for all n > 1 when h, = £,.
n n 1 1

The above relationships will be used to prove the convergence results for

the policy~iteration method. Before doing this, we give the following lemma.

LEMMA 5.5.4. Let {un, nx1} be a bounded sequence of numbers such that for
any € > 0 there is an integer N(e) for which un+m < u + € for all n,m2N(g).

Then the sequence {un} is convergent.

PROOF. Let u = lim inf u_and let U = lim sup u . Choose € > 0. Then,
—_— n>e n n+© n
U < un + € for all n 2 N(g), so, U< u + ¢ which proves the lemma since e

was arbitrarily chosen. [J

We now prove the convergence results for the policy-iteration method.



133

THEOREM 5.5.5. Let {féw), nz1} with f eF be any seguence of stationary
policies generated by the policy-iteration method applied on the semi-Markov

*
decision model considered. Let g = infféFg(f). Then

(5.5.18) 1lim g(f ) = g*
N n

*
and, for some bounded function wi, ie I,

(5.5.19) lim w,(f ) = wf for all i € I.
e 1on i

* *
Moreover, the bounded numbers {g ; Wi i€ I} satisfy the optimality equation

(5.5.20) we = min {c(i,a) - g*T(i,a) + 2 p_,(a)wf} for all i € I.

1 aea(i) jer 3 J
PROOF. Suppose that we have already verified (5.5.18) and (5.5.19). Using
the construction of fn and the relations (5.5.8) and (5.5.9), we have for

all n 2 2

(5.5.21) w_ (f ) =c(i,f_(1))=g(f )T (i,f_(i)) + Z p..(f (1w, (f), 1 eI
1 n n n n jEI 1] n J n
and

(5.5.22) c(i,fn(i))—g(fn_l)r(i,fn(i)) + Zpij(fn(i))wj(fnul) =

=min {c(i,a)-g(f__)t(i,a) + ) p,.(a)w. (£ )}, i e I.
aeA (i) n-1 jer £33 Tt
Since I is denumerable and A(i) is a compact metric space for any i € I,
*
we can choose a £ € F and an infinite sequence {nk, k>1} such that

lim £ (i) = £7(i) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>